VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR0/HMVMXR0.cpp@ 90842

Last change on this file since 90842 was 90842, checked in by vboxsync, 3 years ago

VMM/HMVMXR0: bugref:10080 Cannot assume that a pending TRPM event here always implies it originated from VMLAUNCH/VMRESUME instruction emulation.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 739.4 KB
Line 
1/* $Id: HMVMXR0.cpp 90842 2021-08-24 11:40:31Z vboxsync $ */
2/** @file
3 * HM VMX (Intel VT-x) - Host Context Ring-0.
4 */
5
6/*
7 * Copyright (C) 2012-2020 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_HM
23#define VMCPU_INCL_CPUM_GST_CTX
24#include <iprt/x86.h>
25#include <iprt/asm-amd64-x86.h>
26#include <iprt/thread.h>
27#include <iprt/mem.h>
28#include <iprt/mp.h>
29
30#include <VBox/vmm/pdmapi.h>
31#include <VBox/vmm/dbgf.h>
32#include <VBox/vmm/iem.h>
33#include <VBox/vmm/iom.h>
34#include <VBox/vmm/tm.h>
35#include <VBox/vmm/em.h>
36#include <VBox/vmm/gim.h>
37#include <VBox/vmm/apic.h>
38#include "HMInternal.h"
39#include <VBox/vmm/vmcc.h>
40#include <VBox/vmm/hmvmxinline.h>
41#include "HMVMXR0.h"
42#include "dtrace/VBoxVMM.h"
43
44#ifdef DEBUG_ramshankar
45# define HMVMX_ALWAYS_SAVE_GUEST_RFLAGS
46# define HMVMX_ALWAYS_SAVE_RO_GUEST_STATE
47# define HMVMX_ALWAYS_SAVE_FULL_GUEST_STATE
48# define HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE
49# define HMVMX_ALWAYS_CLEAN_TRANSIENT
50# define HMVMX_ALWAYS_CHECK_GUEST_STATE
51# define HMVMX_ALWAYS_TRAP_ALL_XCPTS
52# define HMVMX_ALWAYS_TRAP_PF
53# define HMVMX_ALWAYS_FLUSH_TLB
54# define HMVMX_ALWAYS_SWAP_EFER
55#endif
56
57
58/*********************************************************************************************************************************
59* Defined Constants And Macros *
60*********************************************************************************************************************************/
61/** Use the function table. */
62#define HMVMX_USE_FUNCTION_TABLE
63
64/** Determine which tagged-TLB flush handler to use. */
65#define HMVMX_FLUSH_TAGGED_TLB_EPT_VPID 0
66#define HMVMX_FLUSH_TAGGED_TLB_EPT 1
67#define HMVMX_FLUSH_TAGGED_TLB_VPID 2
68#define HMVMX_FLUSH_TAGGED_TLB_NONE 3
69
70/**
71 * Flags to skip redundant reads of some common VMCS fields that are not part of
72 * the guest-CPU or VCPU state but are needed while handling VM-exits.
73 */
74#define HMVMX_READ_IDT_VECTORING_INFO RT_BIT_32(0)
75#define HMVMX_READ_IDT_VECTORING_ERROR_CODE RT_BIT_32(1)
76#define HMVMX_READ_EXIT_QUALIFICATION RT_BIT_32(2)
77#define HMVMX_READ_EXIT_INSTR_LEN RT_BIT_32(3)
78#define HMVMX_READ_EXIT_INTERRUPTION_INFO RT_BIT_32(4)
79#define HMVMX_READ_EXIT_INTERRUPTION_ERROR_CODE RT_BIT_32(5)
80#define HMVMX_READ_EXIT_INSTR_INFO RT_BIT_32(6)
81#define HMVMX_READ_GUEST_LINEAR_ADDR RT_BIT_32(7)
82#define HMVMX_READ_GUEST_PHYSICAL_ADDR RT_BIT_32(8)
83#define HMVMX_READ_GUEST_PENDING_DBG_XCPTS RT_BIT_32(9)
84
85/** All the VMCS fields required for processing of exception/NMI VM-exits. */
86#define HMVMX_READ_XCPT_INFO ( HMVMX_READ_EXIT_INTERRUPTION_INFO \
87 | HMVMX_READ_EXIT_INTERRUPTION_ERROR_CODE \
88 | HMVMX_READ_EXIT_INSTR_LEN \
89 | HMVMX_READ_IDT_VECTORING_INFO \
90 | HMVMX_READ_IDT_VECTORING_ERROR_CODE)
91
92/** Assert that all the given fields have been read from the VMCS. */
93#ifdef VBOX_STRICT
94# define HMVMX_ASSERT_READ(a_pVmxTransient, a_fReadFields) \
95 do { \
96 uint32_t const fVmcsFieldRead = ASMAtomicUoReadU32(&pVmxTransient->fVmcsFieldsRead); \
97 Assert((fVmcsFieldRead & (a_fReadFields)) == (a_fReadFields)); \
98 } while (0)
99#else
100# define HMVMX_ASSERT_READ(a_pVmxTransient, a_fReadFields) do { } while (0)
101#endif
102
103/**
104 * Subset of the guest-CPU state that is kept by VMX R0 code while executing the
105 * guest using hardware-assisted VMX.
106 *
107 * This excludes state like GPRs (other than RSP) which are always are
108 * swapped and restored across the world-switch and also registers like EFER,
109 * MSR which cannot be modified by the guest without causing a VM-exit.
110 */
111#define HMVMX_CPUMCTX_EXTRN_ALL ( CPUMCTX_EXTRN_RIP \
112 | CPUMCTX_EXTRN_RFLAGS \
113 | CPUMCTX_EXTRN_RSP \
114 | CPUMCTX_EXTRN_SREG_MASK \
115 | CPUMCTX_EXTRN_TABLE_MASK \
116 | CPUMCTX_EXTRN_KERNEL_GS_BASE \
117 | CPUMCTX_EXTRN_SYSCALL_MSRS \
118 | CPUMCTX_EXTRN_SYSENTER_MSRS \
119 | CPUMCTX_EXTRN_TSC_AUX \
120 | CPUMCTX_EXTRN_OTHER_MSRS \
121 | CPUMCTX_EXTRN_CR0 \
122 | CPUMCTX_EXTRN_CR3 \
123 | CPUMCTX_EXTRN_CR4 \
124 | CPUMCTX_EXTRN_DR7 \
125 | CPUMCTX_EXTRN_HWVIRT \
126 | CPUMCTX_EXTRN_HM_VMX_MASK)
127
128/**
129 * Exception bitmap mask for real-mode guests (real-on-v86).
130 *
131 * We need to intercept all exceptions manually except:
132 * - \#AC and \#DB are always intercepted to prevent the CPU from deadlocking
133 * due to bugs in Intel CPUs.
134 * - \#PF need not be intercepted even in real-mode if we have nested paging
135 * support.
136 */
137#define HMVMX_REAL_MODE_XCPT_MASK ( RT_BIT(X86_XCPT_DE) /* always: | RT_BIT(X86_XCPT_DB) */ | RT_BIT(X86_XCPT_NMI) \
138 | RT_BIT(X86_XCPT_BP) | RT_BIT(X86_XCPT_OF) | RT_BIT(X86_XCPT_BR) \
139 | RT_BIT(X86_XCPT_UD) | RT_BIT(X86_XCPT_NM) | RT_BIT(X86_XCPT_DF) \
140 | RT_BIT(X86_XCPT_CO_SEG_OVERRUN) | RT_BIT(X86_XCPT_TS) | RT_BIT(X86_XCPT_NP) \
141 | RT_BIT(X86_XCPT_SS) | RT_BIT(X86_XCPT_GP) /* RT_BIT(X86_XCPT_PF) */ \
142 | RT_BIT(X86_XCPT_MF) /* always: | RT_BIT(X86_XCPT_AC) */ | RT_BIT(X86_XCPT_MC) \
143 | RT_BIT(X86_XCPT_XF))
144
145/** Maximum VM-instruction error number. */
146#define HMVMX_INSTR_ERROR_MAX 28
147
148/** Profiling macro. */
149#ifdef HM_PROFILE_EXIT_DISPATCH
150# define HMVMX_START_EXIT_DISPATCH_PROF() STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitDispatch, ed)
151# define HMVMX_STOP_EXIT_DISPATCH_PROF() STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitDispatch, ed)
152#else
153# define HMVMX_START_EXIT_DISPATCH_PROF() do { } while (0)
154# define HMVMX_STOP_EXIT_DISPATCH_PROF() do { } while (0)
155#endif
156
157/** Assert that preemption is disabled or covered by thread-context hooks. */
158#define HMVMX_ASSERT_PREEMPT_SAFE(a_pVCpu) Assert( VMMR0ThreadCtxHookIsEnabled((a_pVCpu)) \
159 || !RTThreadPreemptIsEnabled(NIL_RTTHREAD))
160
161/** Assert that we haven't migrated CPUs when thread-context hooks are not
162 * used. */
163#define HMVMX_ASSERT_CPU_SAFE(a_pVCpu) AssertMsg( VMMR0ThreadCtxHookIsEnabled((a_pVCpu)) \
164 || (a_pVCpu)->hmr0.s.idEnteredCpu == RTMpCpuId(), \
165 ("Illegal migration! Entered on CPU %u Current %u\n", \
166 (a_pVCpu)->hmr0.s.idEnteredCpu, RTMpCpuId()))
167
168/** Asserts that the given CPUMCTX_EXTRN_XXX bits are present in the guest-CPU
169 * context. */
170#define HMVMX_CPUMCTX_ASSERT(a_pVCpu, a_fExtrnMbz) AssertMsg(!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnMbz)), \
171 ("fExtrn=%#RX64 fExtrnMbz=%#RX64\n", \
172 (a_pVCpu)->cpum.GstCtx.fExtrn, (a_fExtrnMbz)))
173
174/** Log the VM-exit reason with an easily visible marker to identify it in a
175 * potential sea of logging data. */
176#define HMVMX_LOG_EXIT(a_pVCpu, a_uExitReason) \
177 do { \
178 Log4(("VM-exit: vcpu[%RU32] %85s -v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-\n", (a_pVCpu)->idCpu, \
179 HMGetVmxExitName(a_uExitReason))); \
180 } while (0) \
181
182
183/*********************************************************************************************************************************
184* Structures and Typedefs *
185*********************************************************************************************************************************/
186/**
187 * VMX per-VCPU transient state.
188 *
189 * A state structure for holding miscellaneous information across
190 * VMX non-root operation and restored after the transition.
191 *
192 * Note: The members are ordered and aligned such that the most
193 * frequently used ones (in the guest execution loop) fall within
194 * the first cache line.
195 */
196typedef struct VMXTRANSIENT
197{
198 /** Mask of currently read VMCS fields; HMVMX_READ_XXX. */
199 uint32_t fVmcsFieldsRead;
200 /** The guest's TPR value used for TPR shadowing. */
201 uint8_t u8GuestTpr;
202 uint8_t abAlignment0[3];
203
204 /** Whether the VM-exit was caused by a page-fault during delivery of an
205 * external interrupt or NMI. */
206 bool fVectoringPF;
207 /** Whether the VM-exit was caused by a page-fault during delivery of a
208 * contributory exception or a page-fault. */
209 bool fVectoringDoublePF;
210 /** Whether the VM-entry failed or not. */
211 bool fVMEntryFailed;
212 /** Whether the TSC_AUX MSR needs to be removed from the auto-load/store MSR
213 * area after VM-exit. */
214 bool fRemoveTscAuxMsr;
215 /** Whether TSC-offsetting and VMX-preemption timer was updated before VM-entry. */
216 bool fUpdatedTscOffsettingAndPreemptTimer;
217 /** Whether we are currently executing a nested-guest. */
218 bool fIsNestedGuest;
219 /** Whether the guest debug state was active at the time of VM-exit. */
220 bool fWasGuestDebugStateActive;
221 /** Whether the hyper debug state was active at the time of VM-exit. */
222 bool fWasHyperDebugStateActive;
223
224 /** The basic VM-exit reason. */
225 uint32_t uExitReason;
226 /** The VM-exit interruption error code. */
227 uint32_t uExitIntErrorCode;
228
229 /** The host's rflags/eflags. */
230 RTCCUINTREG fEFlags;
231
232 /** The VM-exit exit code qualification. */
233 uint64_t uExitQual;
234
235 /** The VMCS info. object. */
236 PVMXVMCSINFO pVmcsInfo;
237
238 /** The VM-exit interruption-information field. */
239 uint32_t uExitIntInfo;
240 /** The VM-exit instruction-length field. */
241 uint32_t cbExitInstr;
242
243 /** The VM-exit instruction-information field. */
244 VMXEXITINSTRINFO ExitInstrInfo;
245 /** IDT-vectoring information field. */
246 uint32_t uIdtVectoringInfo;
247
248 /** IDT-vectoring error code. */
249 uint32_t uIdtVectoringErrorCode;
250 uint32_t u32Alignment0;
251
252 /** The Guest-linear address. */
253 uint64_t uGuestLinearAddr;
254
255 /** The Guest-physical address. */
256 uint64_t uGuestPhysicalAddr;
257
258 /** The Guest pending-debug exceptions. */
259 uint64_t uGuestPendingDbgXcpts;
260
261 /** The VM-entry interruption-information field. */
262 uint32_t uEntryIntInfo;
263 /** The VM-entry exception error code field. */
264 uint32_t uEntryXcptErrorCode;
265
266 /** The VM-entry instruction length field. */
267 uint32_t cbEntryInstr;
268} VMXTRANSIENT;
269AssertCompileMemberSize(VMXTRANSIENT, ExitInstrInfo, sizeof(uint32_t));
270AssertCompileMemberAlignment(VMXTRANSIENT, fVmcsFieldsRead, 8);
271AssertCompileMemberAlignment(VMXTRANSIENT, fVectoringPF, 8);
272AssertCompileMemberAlignment(VMXTRANSIENT, uExitReason, 8);
273AssertCompileMemberAlignment(VMXTRANSIENT, fEFlags, 8);
274AssertCompileMemberAlignment(VMXTRANSIENT, uExitQual, 8);
275AssertCompileMemberAlignment(VMXTRANSIENT, pVmcsInfo, 8);
276AssertCompileMemberAlignment(VMXTRANSIENT, uExitIntInfo, 8);
277AssertCompileMemberAlignment(VMXTRANSIENT, ExitInstrInfo, 8);
278AssertCompileMemberAlignment(VMXTRANSIENT, uIdtVectoringErrorCode, 8);
279AssertCompileMemberAlignment(VMXTRANSIENT, uGuestLinearAddr, 8);
280AssertCompileMemberAlignment(VMXTRANSIENT, uGuestPhysicalAddr, 8);
281AssertCompileMemberAlignment(VMXTRANSIENT, uEntryIntInfo, 8);
282AssertCompileMemberAlignment(VMXTRANSIENT, cbEntryInstr, 8);
283/** Pointer to VMX transient state. */
284typedef VMXTRANSIENT *PVMXTRANSIENT;
285/** Pointer to a const VMX transient state. */
286typedef const VMXTRANSIENT *PCVMXTRANSIENT;
287
288/**
289 * VMX page allocation information.
290 */
291typedef struct
292{
293 uint32_t fValid; /**< Whether to allocate this page (e.g, based on a CPU feature). */
294 uint32_t uPadding0; /**< Padding to ensure array of these structs are aligned to a multiple of 8. */
295 PRTHCPHYS pHCPhys; /**< Where to store the host-physical address of the allocation. */
296 PRTR0PTR ppVirt; /**< Where to store the host-virtual address of the allocation. */
297} VMXPAGEALLOCINFO;
298/** Pointer to VMX page-allocation info. */
299typedef VMXPAGEALLOCINFO *PVMXPAGEALLOCINFO;
300/** Pointer to a const VMX page-allocation info. */
301typedef const VMXPAGEALLOCINFO *PCVMXPAGEALLOCINFO;
302AssertCompileSizeAlignment(VMXPAGEALLOCINFO, 8);
303
304/**
305 * Memory operand read or write access.
306 */
307typedef enum VMXMEMACCESS
308{
309 VMXMEMACCESS_READ = 0,
310 VMXMEMACCESS_WRITE = 1
311} VMXMEMACCESS;
312
313/**
314 * VMX VM-exit handler.
315 *
316 * @returns Strict VBox status code (i.e. informational status codes too).
317 * @param pVCpu The cross context virtual CPU structure.
318 * @param pVmxTransient The VMX-transient structure.
319 */
320#ifndef HMVMX_USE_FUNCTION_TABLE
321typedef VBOXSTRICTRC FNVMXEXITHANDLER(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient);
322#else
323typedef DECLCALLBACKTYPE(VBOXSTRICTRC, FNVMXEXITHANDLER,(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient));
324/** Pointer to VM-exit handler. */
325typedef FNVMXEXITHANDLER *PFNVMXEXITHANDLER;
326#endif
327
328/**
329 * VMX VM-exit handler, non-strict status code.
330 *
331 * This is generally the same as FNVMXEXITHANDLER, the NSRC bit is just FYI.
332 *
333 * @returns VBox status code, no informational status code returned.
334 * @param pVCpu The cross context virtual CPU structure.
335 * @param pVmxTransient The VMX-transient structure.
336 *
337 * @remarks This is not used on anything returning VERR_EM_INTERPRETER as the
338 * use of that status code will be replaced with VINF_EM_SOMETHING
339 * later when switching over to IEM.
340 */
341#ifndef HMVMX_USE_FUNCTION_TABLE
342typedef int FNVMXEXITHANDLERNSRC(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient);
343#else
344typedef FNVMXEXITHANDLER FNVMXEXITHANDLERNSRC;
345#endif
346
347
348/*********************************************************************************************************************************
349* Internal Functions *
350*********************************************************************************************************************************/
351#ifndef HMVMX_USE_FUNCTION_TABLE
352DECLINLINE(VBOXSTRICTRC) hmR0VmxHandleExit(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient);
353# define HMVMX_EXIT_DECL DECLINLINE(VBOXSTRICTRC)
354# define HMVMX_EXIT_NSRC_DECL DECLINLINE(int)
355#else
356# define HMVMX_EXIT_DECL static DECLCALLBACK(VBOXSTRICTRC)
357# define HMVMX_EXIT_NSRC_DECL HMVMX_EXIT_DECL
358#endif
359#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
360DECLINLINE(VBOXSTRICTRC) hmR0VmxHandleExitNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient);
361#endif
362
363static int hmR0VmxImportGuestState(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo, uint64_t fWhat);
364
365/** @name VM-exit handler prototypes.
366 * @{
367 */
368static FNVMXEXITHANDLER hmR0VmxExitXcptOrNmi;
369static FNVMXEXITHANDLER hmR0VmxExitExtInt;
370static FNVMXEXITHANDLER hmR0VmxExitTripleFault;
371static FNVMXEXITHANDLERNSRC hmR0VmxExitIntWindow;
372static FNVMXEXITHANDLERNSRC hmR0VmxExitNmiWindow;
373static FNVMXEXITHANDLER hmR0VmxExitTaskSwitch;
374static FNVMXEXITHANDLER hmR0VmxExitCpuid;
375static FNVMXEXITHANDLER hmR0VmxExitGetsec;
376static FNVMXEXITHANDLER hmR0VmxExitHlt;
377static FNVMXEXITHANDLERNSRC hmR0VmxExitInvd;
378static FNVMXEXITHANDLER hmR0VmxExitInvlpg;
379static FNVMXEXITHANDLER hmR0VmxExitRdpmc;
380static FNVMXEXITHANDLER hmR0VmxExitVmcall;
381#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
382static FNVMXEXITHANDLER hmR0VmxExitVmclear;
383static FNVMXEXITHANDLER hmR0VmxExitVmlaunch;
384static FNVMXEXITHANDLER hmR0VmxExitVmptrld;
385static FNVMXEXITHANDLER hmR0VmxExitVmptrst;
386static FNVMXEXITHANDLER hmR0VmxExitVmread;
387static FNVMXEXITHANDLER hmR0VmxExitVmresume;
388static FNVMXEXITHANDLER hmR0VmxExitVmwrite;
389static FNVMXEXITHANDLER hmR0VmxExitVmxoff;
390static FNVMXEXITHANDLER hmR0VmxExitVmxon;
391static FNVMXEXITHANDLER hmR0VmxExitInvvpid;
392#endif
393static FNVMXEXITHANDLER hmR0VmxExitRdtsc;
394static FNVMXEXITHANDLER hmR0VmxExitMovCRx;
395static FNVMXEXITHANDLER hmR0VmxExitMovDRx;
396static FNVMXEXITHANDLER hmR0VmxExitIoInstr;
397static FNVMXEXITHANDLER hmR0VmxExitRdmsr;
398static FNVMXEXITHANDLER hmR0VmxExitWrmsr;
399static FNVMXEXITHANDLER hmR0VmxExitMwait;
400static FNVMXEXITHANDLER hmR0VmxExitMtf;
401static FNVMXEXITHANDLER hmR0VmxExitMonitor;
402static FNVMXEXITHANDLER hmR0VmxExitPause;
403static FNVMXEXITHANDLERNSRC hmR0VmxExitTprBelowThreshold;
404static FNVMXEXITHANDLER hmR0VmxExitApicAccess;
405static FNVMXEXITHANDLER hmR0VmxExitEptViolation;
406static FNVMXEXITHANDLER hmR0VmxExitEptMisconfig;
407static FNVMXEXITHANDLER hmR0VmxExitRdtscp;
408static FNVMXEXITHANDLER hmR0VmxExitPreemptTimer;
409static FNVMXEXITHANDLERNSRC hmR0VmxExitWbinvd;
410static FNVMXEXITHANDLER hmR0VmxExitXsetbv;
411static FNVMXEXITHANDLER hmR0VmxExitInvpcid;
412static FNVMXEXITHANDLERNSRC hmR0VmxExitSetPendingXcptUD;
413static FNVMXEXITHANDLERNSRC hmR0VmxExitErrInvalidGuestState;
414static FNVMXEXITHANDLERNSRC hmR0VmxExitErrUnexpected;
415/** @} */
416
417#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
418/** @name Nested-guest VM-exit handler prototypes.
419 * @{
420 */
421static FNVMXEXITHANDLER hmR0VmxExitXcptOrNmiNested;
422static FNVMXEXITHANDLER hmR0VmxExitTripleFaultNested;
423static FNVMXEXITHANDLERNSRC hmR0VmxExitIntWindowNested;
424static FNVMXEXITHANDLERNSRC hmR0VmxExitNmiWindowNested;
425static FNVMXEXITHANDLER hmR0VmxExitTaskSwitchNested;
426static FNVMXEXITHANDLER hmR0VmxExitHltNested;
427static FNVMXEXITHANDLER hmR0VmxExitInvlpgNested;
428static FNVMXEXITHANDLER hmR0VmxExitRdpmcNested;
429static FNVMXEXITHANDLER hmR0VmxExitVmreadVmwriteNested;
430static FNVMXEXITHANDLER hmR0VmxExitRdtscNested;
431static FNVMXEXITHANDLER hmR0VmxExitMovCRxNested;
432static FNVMXEXITHANDLER hmR0VmxExitMovDRxNested;
433static FNVMXEXITHANDLER hmR0VmxExitIoInstrNested;
434static FNVMXEXITHANDLER hmR0VmxExitRdmsrNested;
435static FNVMXEXITHANDLER hmR0VmxExitWrmsrNested;
436static FNVMXEXITHANDLER hmR0VmxExitMwaitNested;
437static FNVMXEXITHANDLER hmR0VmxExitMtfNested;
438static FNVMXEXITHANDLER hmR0VmxExitMonitorNested;
439static FNVMXEXITHANDLER hmR0VmxExitPauseNested;
440static FNVMXEXITHANDLERNSRC hmR0VmxExitTprBelowThresholdNested;
441static FNVMXEXITHANDLER hmR0VmxExitApicAccessNested;
442static FNVMXEXITHANDLER hmR0VmxExitApicWriteNested;
443static FNVMXEXITHANDLER hmR0VmxExitVirtEoiNested;
444static FNVMXEXITHANDLER hmR0VmxExitRdtscpNested;
445static FNVMXEXITHANDLERNSRC hmR0VmxExitWbinvdNested;
446static FNVMXEXITHANDLER hmR0VmxExitInvpcidNested;
447static FNVMXEXITHANDLERNSRC hmR0VmxExitErrInvalidGuestStateNested;
448static FNVMXEXITHANDLER hmR0VmxExitInstrNested;
449static FNVMXEXITHANDLER hmR0VmxExitInstrWithInfoNested;
450/** @} */
451#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
452
453
454/*********************************************************************************************************************************
455* Global Variables *
456*********************************************************************************************************************************/
457#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
458/**
459 * Array of all VMCS fields.
460 * Any fields added to the VT-x spec. should be added here.
461 *
462 * Currently only used to derive shadow VMCS fields for hardware-assisted execution
463 * of nested-guests.
464 */
465static const uint32_t g_aVmcsFields[] =
466{
467 /* 16-bit control fields. */
468 VMX_VMCS16_VPID,
469 VMX_VMCS16_POSTED_INT_NOTIFY_VECTOR,
470 VMX_VMCS16_EPTP_INDEX,
471
472 /* 16-bit guest-state fields. */
473 VMX_VMCS16_GUEST_ES_SEL,
474 VMX_VMCS16_GUEST_CS_SEL,
475 VMX_VMCS16_GUEST_SS_SEL,
476 VMX_VMCS16_GUEST_DS_SEL,
477 VMX_VMCS16_GUEST_FS_SEL,
478 VMX_VMCS16_GUEST_GS_SEL,
479 VMX_VMCS16_GUEST_LDTR_SEL,
480 VMX_VMCS16_GUEST_TR_SEL,
481 VMX_VMCS16_GUEST_INTR_STATUS,
482 VMX_VMCS16_GUEST_PML_INDEX,
483
484 /* 16-bits host-state fields. */
485 VMX_VMCS16_HOST_ES_SEL,
486 VMX_VMCS16_HOST_CS_SEL,
487 VMX_VMCS16_HOST_SS_SEL,
488 VMX_VMCS16_HOST_DS_SEL,
489 VMX_VMCS16_HOST_FS_SEL,
490 VMX_VMCS16_HOST_GS_SEL,
491 VMX_VMCS16_HOST_TR_SEL,
492
493 /* 64-bit control fields. */
494 VMX_VMCS64_CTRL_IO_BITMAP_A_FULL,
495 VMX_VMCS64_CTRL_IO_BITMAP_A_HIGH,
496 VMX_VMCS64_CTRL_IO_BITMAP_B_FULL,
497 VMX_VMCS64_CTRL_IO_BITMAP_B_HIGH,
498 VMX_VMCS64_CTRL_MSR_BITMAP_FULL,
499 VMX_VMCS64_CTRL_MSR_BITMAP_HIGH,
500 VMX_VMCS64_CTRL_EXIT_MSR_STORE_FULL,
501 VMX_VMCS64_CTRL_EXIT_MSR_STORE_HIGH,
502 VMX_VMCS64_CTRL_EXIT_MSR_LOAD_FULL,
503 VMX_VMCS64_CTRL_EXIT_MSR_LOAD_HIGH,
504 VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_FULL,
505 VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_HIGH,
506 VMX_VMCS64_CTRL_EXEC_VMCS_PTR_FULL,
507 VMX_VMCS64_CTRL_EXEC_VMCS_PTR_HIGH,
508 VMX_VMCS64_CTRL_EXEC_PML_ADDR_FULL,
509 VMX_VMCS64_CTRL_EXEC_PML_ADDR_HIGH,
510 VMX_VMCS64_CTRL_TSC_OFFSET_FULL,
511 VMX_VMCS64_CTRL_TSC_OFFSET_HIGH,
512 VMX_VMCS64_CTRL_VIRT_APIC_PAGEADDR_FULL,
513 VMX_VMCS64_CTRL_VIRT_APIC_PAGEADDR_HIGH,
514 VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL,
515 VMX_VMCS64_CTRL_APIC_ACCESSADDR_HIGH,
516 VMX_VMCS64_CTRL_POSTED_INTR_DESC_FULL,
517 VMX_VMCS64_CTRL_POSTED_INTR_DESC_HIGH,
518 VMX_VMCS64_CTRL_VMFUNC_CTRLS_FULL,
519 VMX_VMCS64_CTRL_VMFUNC_CTRLS_HIGH,
520 VMX_VMCS64_CTRL_EPTP_FULL,
521 VMX_VMCS64_CTRL_EPTP_HIGH,
522 VMX_VMCS64_CTRL_EOI_BITMAP_0_FULL,
523 VMX_VMCS64_CTRL_EOI_BITMAP_0_HIGH,
524 VMX_VMCS64_CTRL_EOI_BITMAP_1_FULL,
525 VMX_VMCS64_CTRL_EOI_BITMAP_1_HIGH,
526 VMX_VMCS64_CTRL_EOI_BITMAP_2_FULL,
527 VMX_VMCS64_CTRL_EOI_BITMAP_2_HIGH,
528 VMX_VMCS64_CTRL_EOI_BITMAP_3_FULL,
529 VMX_VMCS64_CTRL_EOI_BITMAP_3_HIGH,
530 VMX_VMCS64_CTRL_EPTP_LIST_FULL,
531 VMX_VMCS64_CTRL_EPTP_LIST_HIGH,
532 VMX_VMCS64_CTRL_VMREAD_BITMAP_FULL,
533 VMX_VMCS64_CTRL_VMREAD_BITMAP_HIGH,
534 VMX_VMCS64_CTRL_VMWRITE_BITMAP_FULL,
535 VMX_VMCS64_CTRL_VMWRITE_BITMAP_HIGH,
536 VMX_VMCS64_CTRL_VIRTXCPT_INFO_ADDR_FULL,
537 VMX_VMCS64_CTRL_VIRTXCPT_INFO_ADDR_HIGH,
538 VMX_VMCS64_CTRL_XSS_EXITING_BITMAP_FULL,
539 VMX_VMCS64_CTRL_XSS_EXITING_BITMAP_HIGH,
540 VMX_VMCS64_CTRL_ENCLS_EXITING_BITMAP_FULL,
541 VMX_VMCS64_CTRL_ENCLS_EXITING_BITMAP_HIGH,
542 VMX_VMCS64_CTRL_TSC_MULTIPLIER_FULL,
543 VMX_VMCS64_CTRL_TSC_MULTIPLIER_HIGH,
544
545 /* 64-bit read-only data fields. */
546 VMX_VMCS64_RO_GUEST_PHYS_ADDR_FULL,
547 VMX_VMCS64_RO_GUEST_PHYS_ADDR_HIGH,
548
549 /* 64-bit guest-state fields. */
550 VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL,
551 VMX_VMCS64_GUEST_VMCS_LINK_PTR_HIGH,
552 VMX_VMCS64_GUEST_DEBUGCTL_FULL,
553 VMX_VMCS64_GUEST_DEBUGCTL_HIGH,
554 VMX_VMCS64_GUEST_PAT_FULL,
555 VMX_VMCS64_GUEST_PAT_HIGH,
556 VMX_VMCS64_GUEST_EFER_FULL,
557 VMX_VMCS64_GUEST_EFER_HIGH,
558 VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL,
559 VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_HIGH,
560 VMX_VMCS64_GUEST_PDPTE0_FULL,
561 VMX_VMCS64_GUEST_PDPTE0_HIGH,
562 VMX_VMCS64_GUEST_PDPTE1_FULL,
563 VMX_VMCS64_GUEST_PDPTE1_HIGH,
564 VMX_VMCS64_GUEST_PDPTE2_FULL,
565 VMX_VMCS64_GUEST_PDPTE2_HIGH,
566 VMX_VMCS64_GUEST_PDPTE3_FULL,
567 VMX_VMCS64_GUEST_PDPTE3_HIGH,
568 VMX_VMCS64_GUEST_BNDCFGS_FULL,
569 VMX_VMCS64_GUEST_BNDCFGS_HIGH,
570
571 /* 64-bit host-state fields. */
572 VMX_VMCS64_HOST_PAT_FULL,
573 VMX_VMCS64_HOST_PAT_HIGH,
574 VMX_VMCS64_HOST_EFER_FULL,
575 VMX_VMCS64_HOST_EFER_HIGH,
576 VMX_VMCS64_HOST_PERF_GLOBAL_CTRL_FULL,
577 VMX_VMCS64_HOST_PERF_GLOBAL_CTRL_HIGH,
578
579 /* 32-bit control fields. */
580 VMX_VMCS32_CTRL_PIN_EXEC,
581 VMX_VMCS32_CTRL_PROC_EXEC,
582 VMX_VMCS32_CTRL_EXCEPTION_BITMAP,
583 VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK,
584 VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH,
585 VMX_VMCS32_CTRL_CR3_TARGET_COUNT,
586 VMX_VMCS32_CTRL_EXIT,
587 VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT,
588 VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT,
589 VMX_VMCS32_CTRL_ENTRY,
590 VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT,
591 VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO,
592 VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE,
593 VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH,
594 VMX_VMCS32_CTRL_TPR_THRESHOLD,
595 VMX_VMCS32_CTRL_PROC_EXEC2,
596 VMX_VMCS32_CTRL_PLE_GAP,
597 VMX_VMCS32_CTRL_PLE_WINDOW,
598
599 /* 32-bits read-only fields. */
600 VMX_VMCS32_RO_VM_INSTR_ERROR,
601 VMX_VMCS32_RO_EXIT_REASON,
602 VMX_VMCS32_RO_EXIT_INTERRUPTION_INFO,
603 VMX_VMCS32_RO_EXIT_INTERRUPTION_ERROR_CODE,
604 VMX_VMCS32_RO_IDT_VECTORING_INFO,
605 VMX_VMCS32_RO_IDT_VECTORING_ERROR_CODE,
606 VMX_VMCS32_RO_EXIT_INSTR_LENGTH,
607 VMX_VMCS32_RO_EXIT_INSTR_INFO,
608
609 /* 32-bit guest-state fields. */
610 VMX_VMCS32_GUEST_ES_LIMIT,
611 VMX_VMCS32_GUEST_CS_LIMIT,
612 VMX_VMCS32_GUEST_SS_LIMIT,
613 VMX_VMCS32_GUEST_DS_LIMIT,
614 VMX_VMCS32_GUEST_FS_LIMIT,
615 VMX_VMCS32_GUEST_GS_LIMIT,
616 VMX_VMCS32_GUEST_LDTR_LIMIT,
617 VMX_VMCS32_GUEST_TR_LIMIT,
618 VMX_VMCS32_GUEST_GDTR_LIMIT,
619 VMX_VMCS32_GUEST_IDTR_LIMIT,
620 VMX_VMCS32_GUEST_ES_ACCESS_RIGHTS,
621 VMX_VMCS32_GUEST_CS_ACCESS_RIGHTS,
622 VMX_VMCS32_GUEST_SS_ACCESS_RIGHTS,
623 VMX_VMCS32_GUEST_DS_ACCESS_RIGHTS,
624 VMX_VMCS32_GUEST_FS_ACCESS_RIGHTS,
625 VMX_VMCS32_GUEST_GS_ACCESS_RIGHTS,
626 VMX_VMCS32_GUEST_LDTR_ACCESS_RIGHTS,
627 VMX_VMCS32_GUEST_TR_ACCESS_RIGHTS,
628 VMX_VMCS32_GUEST_INT_STATE,
629 VMX_VMCS32_GUEST_ACTIVITY_STATE,
630 VMX_VMCS32_GUEST_SMBASE,
631 VMX_VMCS32_GUEST_SYSENTER_CS,
632 VMX_VMCS32_PREEMPT_TIMER_VALUE,
633
634 /* 32-bit host-state fields. */
635 VMX_VMCS32_HOST_SYSENTER_CS,
636
637 /* Natural-width control fields. */
638 VMX_VMCS_CTRL_CR0_MASK,
639 VMX_VMCS_CTRL_CR4_MASK,
640 VMX_VMCS_CTRL_CR0_READ_SHADOW,
641 VMX_VMCS_CTRL_CR4_READ_SHADOW,
642 VMX_VMCS_CTRL_CR3_TARGET_VAL0,
643 VMX_VMCS_CTRL_CR3_TARGET_VAL1,
644 VMX_VMCS_CTRL_CR3_TARGET_VAL2,
645 VMX_VMCS_CTRL_CR3_TARGET_VAL3,
646
647 /* Natural-width read-only data fields. */
648 VMX_VMCS_RO_EXIT_QUALIFICATION,
649 VMX_VMCS_RO_IO_RCX,
650 VMX_VMCS_RO_IO_RSI,
651 VMX_VMCS_RO_IO_RDI,
652 VMX_VMCS_RO_IO_RIP,
653 VMX_VMCS_RO_GUEST_LINEAR_ADDR,
654
655 /* Natural-width guest-state field */
656 VMX_VMCS_GUEST_CR0,
657 VMX_VMCS_GUEST_CR3,
658 VMX_VMCS_GUEST_CR4,
659 VMX_VMCS_GUEST_ES_BASE,
660 VMX_VMCS_GUEST_CS_BASE,
661 VMX_VMCS_GUEST_SS_BASE,
662 VMX_VMCS_GUEST_DS_BASE,
663 VMX_VMCS_GUEST_FS_BASE,
664 VMX_VMCS_GUEST_GS_BASE,
665 VMX_VMCS_GUEST_LDTR_BASE,
666 VMX_VMCS_GUEST_TR_BASE,
667 VMX_VMCS_GUEST_GDTR_BASE,
668 VMX_VMCS_GUEST_IDTR_BASE,
669 VMX_VMCS_GUEST_DR7,
670 VMX_VMCS_GUEST_RSP,
671 VMX_VMCS_GUEST_RIP,
672 VMX_VMCS_GUEST_RFLAGS,
673 VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS,
674 VMX_VMCS_GUEST_SYSENTER_ESP,
675 VMX_VMCS_GUEST_SYSENTER_EIP,
676
677 /* Natural-width host-state fields */
678 VMX_VMCS_HOST_CR0,
679 VMX_VMCS_HOST_CR3,
680 VMX_VMCS_HOST_CR4,
681 VMX_VMCS_HOST_FS_BASE,
682 VMX_VMCS_HOST_GS_BASE,
683 VMX_VMCS_HOST_TR_BASE,
684 VMX_VMCS_HOST_GDTR_BASE,
685 VMX_VMCS_HOST_IDTR_BASE,
686 VMX_VMCS_HOST_SYSENTER_ESP,
687 VMX_VMCS_HOST_SYSENTER_EIP,
688 VMX_VMCS_HOST_RSP,
689 VMX_VMCS_HOST_RIP
690};
691#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
692
693#ifdef VBOX_STRICT
694static const uint32_t g_aVmcsSegBase[] =
695{
696 VMX_VMCS_GUEST_ES_BASE,
697 VMX_VMCS_GUEST_CS_BASE,
698 VMX_VMCS_GUEST_SS_BASE,
699 VMX_VMCS_GUEST_DS_BASE,
700 VMX_VMCS_GUEST_FS_BASE,
701 VMX_VMCS_GUEST_GS_BASE
702};
703static const uint32_t g_aVmcsSegSel[] =
704{
705 VMX_VMCS16_GUEST_ES_SEL,
706 VMX_VMCS16_GUEST_CS_SEL,
707 VMX_VMCS16_GUEST_SS_SEL,
708 VMX_VMCS16_GUEST_DS_SEL,
709 VMX_VMCS16_GUEST_FS_SEL,
710 VMX_VMCS16_GUEST_GS_SEL
711};
712static const uint32_t g_aVmcsSegLimit[] =
713{
714 VMX_VMCS32_GUEST_ES_LIMIT,
715 VMX_VMCS32_GUEST_CS_LIMIT,
716 VMX_VMCS32_GUEST_SS_LIMIT,
717 VMX_VMCS32_GUEST_DS_LIMIT,
718 VMX_VMCS32_GUEST_FS_LIMIT,
719 VMX_VMCS32_GUEST_GS_LIMIT
720};
721static const uint32_t g_aVmcsSegAttr[] =
722{
723 VMX_VMCS32_GUEST_ES_ACCESS_RIGHTS,
724 VMX_VMCS32_GUEST_CS_ACCESS_RIGHTS,
725 VMX_VMCS32_GUEST_SS_ACCESS_RIGHTS,
726 VMX_VMCS32_GUEST_DS_ACCESS_RIGHTS,
727 VMX_VMCS32_GUEST_FS_ACCESS_RIGHTS,
728 VMX_VMCS32_GUEST_GS_ACCESS_RIGHTS
729};
730AssertCompile(RT_ELEMENTS(g_aVmcsSegSel) == X86_SREG_COUNT);
731AssertCompile(RT_ELEMENTS(g_aVmcsSegLimit) == X86_SREG_COUNT);
732AssertCompile(RT_ELEMENTS(g_aVmcsSegBase) == X86_SREG_COUNT);
733AssertCompile(RT_ELEMENTS(g_aVmcsSegAttr) == X86_SREG_COUNT);
734#endif /* VBOX_STRICT */
735
736#ifdef HMVMX_USE_FUNCTION_TABLE
737/**
738 * VMX_EXIT dispatch table.
739 */
740static const struct CLANG11NOTHROWWEIRDNESS { PFNVMXEXITHANDLER pfn; } g_aVMExitHandlers[VMX_EXIT_MAX + 1] =
741{
742 /* 0 VMX_EXIT_XCPT_OR_NMI */ { hmR0VmxExitXcptOrNmi },
743 /* 1 VMX_EXIT_EXT_INT */ { hmR0VmxExitExtInt },
744 /* 2 VMX_EXIT_TRIPLE_FAULT */ { hmR0VmxExitTripleFault },
745 /* 3 VMX_EXIT_INIT_SIGNAL */ { hmR0VmxExitErrUnexpected },
746 /* 4 VMX_EXIT_SIPI */ { hmR0VmxExitErrUnexpected },
747 /* 5 VMX_EXIT_IO_SMI */ { hmR0VmxExitErrUnexpected },
748 /* 6 VMX_EXIT_SMI */ { hmR0VmxExitErrUnexpected },
749 /* 7 VMX_EXIT_INT_WINDOW */ { hmR0VmxExitIntWindow },
750 /* 8 VMX_EXIT_NMI_WINDOW */ { hmR0VmxExitNmiWindow },
751 /* 9 VMX_EXIT_TASK_SWITCH */ { hmR0VmxExitTaskSwitch },
752 /* 10 VMX_EXIT_CPUID */ { hmR0VmxExitCpuid },
753 /* 11 VMX_EXIT_GETSEC */ { hmR0VmxExitGetsec },
754 /* 12 VMX_EXIT_HLT */ { hmR0VmxExitHlt },
755 /* 13 VMX_EXIT_INVD */ { hmR0VmxExitInvd },
756 /* 14 VMX_EXIT_INVLPG */ { hmR0VmxExitInvlpg },
757 /* 15 VMX_EXIT_RDPMC */ { hmR0VmxExitRdpmc },
758 /* 16 VMX_EXIT_RDTSC */ { hmR0VmxExitRdtsc },
759 /* 17 VMX_EXIT_RSM */ { hmR0VmxExitErrUnexpected },
760 /* 18 VMX_EXIT_VMCALL */ { hmR0VmxExitVmcall },
761#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
762 /* 19 VMX_EXIT_VMCLEAR */ { hmR0VmxExitVmclear },
763 /* 20 VMX_EXIT_VMLAUNCH */ { hmR0VmxExitVmlaunch },
764 /* 21 VMX_EXIT_VMPTRLD */ { hmR0VmxExitVmptrld },
765 /* 22 VMX_EXIT_VMPTRST */ { hmR0VmxExitVmptrst },
766 /* 23 VMX_EXIT_VMREAD */ { hmR0VmxExitVmread },
767 /* 24 VMX_EXIT_VMRESUME */ { hmR0VmxExitVmresume },
768 /* 25 VMX_EXIT_VMWRITE */ { hmR0VmxExitVmwrite },
769 /* 26 VMX_EXIT_VMXOFF */ { hmR0VmxExitVmxoff },
770 /* 27 VMX_EXIT_VMXON */ { hmR0VmxExitVmxon },
771#else
772 /* 19 VMX_EXIT_VMCLEAR */ { hmR0VmxExitSetPendingXcptUD },
773 /* 20 VMX_EXIT_VMLAUNCH */ { hmR0VmxExitSetPendingXcptUD },
774 /* 21 VMX_EXIT_VMPTRLD */ { hmR0VmxExitSetPendingXcptUD },
775 /* 22 VMX_EXIT_VMPTRST */ { hmR0VmxExitSetPendingXcptUD },
776 /* 23 VMX_EXIT_VMREAD */ { hmR0VmxExitSetPendingXcptUD },
777 /* 24 VMX_EXIT_VMRESUME */ { hmR0VmxExitSetPendingXcptUD },
778 /* 25 VMX_EXIT_VMWRITE */ { hmR0VmxExitSetPendingXcptUD },
779 /* 26 VMX_EXIT_VMXOFF */ { hmR0VmxExitSetPendingXcptUD },
780 /* 27 VMX_EXIT_VMXON */ { hmR0VmxExitSetPendingXcptUD },
781#endif
782 /* 28 VMX_EXIT_MOV_CRX */ { hmR0VmxExitMovCRx },
783 /* 29 VMX_EXIT_MOV_DRX */ { hmR0VmxExitMovDRx },
784 /* 30 VMX_EXIT_IO_INSTR */ { hmR0VmxExitIoInstr },
785 /* 31 VMX_EXIT_RDMSR */ { hmR0VmxExitRdmsr },
786 /* 32 VMX_EXIT_WRMSR */ { hmR0VmxExitWrmsr },
787 /* 33 VMX_EXIT_ERR_INVALID_GUEST_STATE */ { hmR0VmxExitErrInvalidGuestState },
788 /* 34 VMX_EXIT_ERR_MSR_LOAD */ { hmR0VmxExitErrUnexpected },
789 /* 35 UNDEFINED */ { hmR0VmxExitErrUnexpected },
790 /* 36 VMX_EXIT_MWAIT */ { hmR0VmxExitMwait },
791 /* 37 VMX_EXIT_MTF */ { hmR0VmxExitMtf },
792 /* 38 UNDEFINED */ { hmR0VmxExitErrUnexpected },
793 /* 39 VMX_EXIT_MONITOR */ { hmR0VmxExitMonitor },
794 /* 40 VMX_EXIT_PAUSE */ { hmR0VmxExitPause },
795 /* 41 VMX_EXIT_ERR_MACHINE_CHECK */ { hmR0VmxExitErrUnexpected },
796 /* 42 UNDEFINED */ { hmR0VmxExitErrUnexpected },
797 /* 43 VMX_EXIT_TPR_BELOW_THRESHOLD */ { hmR0VmxExitTprBelowThreshold },
798 /* 44 VMX_EXIT_APIC_ACCESS */ { hmR0VmxExitApicAccess },
799 /* 45 VMX_EXIT_VIRTUALIZED_EOI */ { hmR0VmxExitErrUnexpected },
800 /* 46 VMX_EXIT_GDTR_IDTR_ACCESS */ { hmR0VmxExitErrUnexpected },
801 /* 47 VMX_EXIT_LDTR_TR_ACCESS */ { hmR0VmxExitErrUnexpected },
802 /* 48 VMX_EXIT_EPT_VIOLATION */ { hmR0VmxExitEptViolation },
803 /* 49 VMX_EXIT_EPT_MISCONFIG */ { hmR0VmxExitEptMisconfig },
804 /* 50 VMX_EXIT_INVEPT */ { hmR0VmxExitSetPendingXcptUD },
805 /* 51 VMX_EXIT_RDTSCP */ { hmR0VmxExitRdtscp },
806 /* 52 VMX_EXIT_PREEMPT_TIMER */ { hmR0VmxExitPreemptTimer },
807#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
808 /* 53 VMX_EXIT_INVVPID */ { hmR0VmxExitInvvpid },
809#else
810 /* 53 VMX_EXIT_INVVPID */ { hmR0VmxExitSetPendingXcptUD },
811#endif
812 /* 54 VMX_EXIT_WBINVD */ { hmR0VmxExitWbinvd },
813 /* 55 VMX_EXIT_XSETBV */ { hmR0VmxExitXsetbv },
814 /* 56 VMX_EXIT_APIC_WRITE */ { hmR0VmxExitErrUnexpected },
815 /* 57 VMX_EXIT_RDRAND */ { hmR0VmxExitErrUnexpected },
816 /* 58 VMX_EXIT_INVPCID */ { hmR0VmxExitInvpcid },
817 /* 59 VMX_EXIT_VMFUNC */ { hmR0VmxExitErrUnexpected },
818 /* 60 VMX_EXIT_ENCLS */ { hmR0VmxExitErrUnexpected },
819 /* 61 VMX_EXIT_RDSEED */ { hmR0VmxExitErrUnexpected },
820 /* 62 VMX_EXIT_PML_FULL */ { hmR0VmxExitErrUnexpected },
821 /* 63 VMX_EXIT_XSAVES */ { hmR0VmxExitErrUnexpected },
822 /* 64 VMX_EXIT_XRSTORS */ { hmR0VmxExitErrUnexpected },
823 /* 65 UNDEFINED */ { hmR0VmxExitErrUnexpected },
824 /* 66 VMX_EXIT_SPP_EVENT */ { hmR0VmxExitErrUnexpected },
825 /* 67 VMX_EXIT_UMWAIT */ { hmR0VmxExitErrUnexpected },
826 /* 68 VMX_EXIT_TPAUSE */ { hmR0VmxExitErrUnexpected },
827};
828#endif /* HMVMX_USE_FUNCTION_TABLE */
829
830#if defined(VBOX_STRICT) && defined(LOG_ENABLED)
831static const char * const g_apszVmxInstrErrors[HMVMX_INSTR_ERROR_MAX + 1] =
832{
833 /* 0 */ "(Not Used)",
834 /* 1 */ "VMCALL executed in VMX root operation.",
835 /* 2 */ "VMCLEAR with invalid physical address.",
836 /* 3 */ "VMCLEAR with VMXON pointer.",
837 /* 4 */ "VMLAUNCH with non-clear VMCS.",
838 /* 5 */ "VMRESUME with non-launched VMCS.",
839 /* 6 */ "VMRESUME after VMXOFF",
840 /* 7 */ "VM-entry with invalid control fields.",
841 /* 8 */ "VM-entry with invalid host state fields.",
842 /* 9 */ "VMPTRLD with invalid physical address.",
843 /* 10 */ "VMPTRLD with VMXON pointer.",
844 /* 11 */ "VMPTRLD with incorrect revision identifier.",
845 /* 12 */ "VMREAD/VMWRITE from/to unsupported VMCS component.",
846 /* 13 */ "VMWRITE to read-only VMCS component.",
847 /* 14 */ "(Not Used)",
848 /* 15 */ "VMXON executed in VMX root operation.",
849 /* 16 */ "VM-entry with invalid executive-VMCS pointer.",
850 /* 17 */ "VM-entry with non-launched executing VMCS.",
851 /* 18 */ "VM-entry with executive-VMCS pointer not VMXON pointer.",
852 /* 19 */ "VMCALL with non-clear VMCS.",
853 /* 20 */ "VMCALL with invalid VM-exit control fields.",
854 /* 21 */ "(Not Used)",
855 /* 22 */ "VMCALL with incorrect MSEG revision identifier.",
856 /* 23 */ "VMXOFF under dual monitor treatment of SMIs and SMM.",
857 /* 24 */ "VMCALL with invalid SMM-monitor features.",
858 /* 25 */ "VM-entry with invalid VM-execution control fields in executive VMCS.",
859 /* 26 */ "VM-entry with events blocked by MOV SS.",
860 /* 27 */ "(Not Used)",
861 /* 28 */ "Invalid operand to INVEPT/INVVPID."
862};
863#endif /* VBOX_STRICT && LOG_ENABLED */
864
865
866/**
867 * Checks if the given MSR is part of the lastbranch-from-IP MSR stack.
868 * @returns @c true if it's part of LBR stack, @c false otherwise.
869 *
870 * @param pVM The cross context VM structure.
871 * @param idMsr The MSR.
872 * @param pidxMsr Where to store the index of the MSR in the LBR MSR array.
873 * Optional, can be NULL.
874 *
875 * @remarks Must only be called when LBR is enabled.
876 */
877DECL_FORCE_INLINE(bool) hmR0VmxIsLbrBranchFromMsr(PCVMCC pVM, uint32_t idMsr, uint32_t *pidxMsr)
878{
879 Assert(pVM->hmr0.s.vmx.fLbr);
880 Assert(pVM->hmr0.s.vmx.idLbrFromIpMsrFirst);
881 uint32_t const cLbrStack = pVM->hmr0.s.vmx.idLbrFromIpMsrLast - pVM->hmr0.s.vmx.idLbrFromIpMsrFirst + 1;
882 uint32_t const idxMsr = idMsr - pVM->hmr0.s.vmx.idLbrFromIpMsrFirst;
883 if (idxMsr < cLbrStack)
884 {
885 if (pidxMsr)
886 *pidxMsr = idxMsr;
887 return true;
888 }
889 return false;
890}
891
892
893/**
894 * Checks if the given MSR is part of the lastbranch-to-IP MSR stack.
895 * @returns @c true if it's part of LBR stack, @c false otherwise.
896 *
897 * @param pVM The cross context VM structure.
898 * @param idMsr The MSR.
899 * @param pidxMsr Where to store the index of the MSR in the LBR MSR array.
900 * Optional, can be NULL.
901 *
902 * @remarks Must only be called when LBR is enabled and when lastbranch-to-IP MSRs
903 * are supported by the CPU (see hmR0VmxSetupLbrMsrRange).
904 */
905DECL_FORCE_INLINE(bool) hmR0VmxIsLbrBranchToMsr(PCVMCC pVM, uint32_t idMsr, uint32_t *pidxMsr)
906{
907 Assert(pVM->hmr0.s.vmx.fLbr);
908 if (pVM->hmr0.s.vmx.idLbrToIpMsrFirst)
909 {
910 uint32_t const cLbrStack = pVM->hmr0.s.vmx.idLbrToIpMsrLast - pVM->hmr0.s.vmx.idLbrToIpMsrFirst + 1;
911 uint32_t const idxMsr = idMsr - pVM->hmr0.s.vmx.idLbrToIpMsrFirst;
912 if (idxMsr < cLbrStack)
913 {
914 if (pidxMsr)
915 *pidxMsr = idxMsr;
916 return true;
917 }
918 }
919 return false;
920}
921
922
923/**
924 * Gets the CR0 guest/host mask.
925 *
926 * These bits typically does not change through the lifetime of a VM. Any bit set in
927 * this mask is owned by the host/hypervisor and would cause a VM-exit when modified
928 * by the guest.
929 *
930 * @returns The CR0 guest/host mask.
931 * @param pVCpu The cross context virtual CPU structure.
932 */
933static uint64_t hmR0VmxGetFixedCr0Mask(PCVMCPUCC pVCpu)
934{
935 /*
936 * Modifications to CR0 bits that VT-x ignores saving/restoring (CD, ET, NW) and
937 * to CR0 bits that we require for shadow paging (PG) by the guest must cause VM-exits.
938 *
939 * Furthermore, modifications to any bits that are reserved/unspecified currently
940 * by the Intel spec. must also cause a VM-exit. This prevents unpredictable behavior
941 * when future CPUs specify and use currently reserved/unspecified bits.
942 */
943 /** @todo Avoid intercepting CR0.PE with unrestricted guest execution. Fix PGM
944 * enmGuestMode to be in-sync with the current mode. See @bugref{6398}
945 * and @bugref{6944}. */
946 PCVMCC pVM = pVCpu->CTX_SUFF(pVM);
947 return ( X86_CR0_PE
948 | X86_CR0_NE
949 | (pVM->hmr0.s.fNestedPaging ? 0 : X86_CR0_WP)
950 | X86_CR0_PG
951 | VMX_EXIT_HOST_CR0_IGNORE_MASK);
952}
953
954
955/**
956 * Gets the CR4 guest/host mask.
957 *
958 * These bits typically does not change through the lifetime of a VM. Any bit set in
959 * this mask is owned by the host/hypervisor and would cause a VM-exit when modified
960 * by the guest.
961 *
962 * @returns The CR4 guest/host mask.
963 * @param pVCpu The cross context virtual CPU structure.
964 */
965static uint64_t hmR0VmxGetFixedCr4Mask(PCVMCPUCC pVCpu)
966{
967 /*
968 * We construct a mask of all CR4 bits that the guest can modify without causing
969 * a VM-exit. Then invert this mask to obtain all CR4 bits that should cause
970 * a VM-exit when the guest attempts to modify them when executing using
971 * hardware-assisted VMX.
972 *
973 * When a feature is not exposed to the guest (and may be present on the host),
974 * we want to intercept guest modifications to the bit so we can emulate proper
975 * behavior (e.g., #GP).
976 *
977 * Furthermore, only modifications to those bits that don't require immediate
978 * emulation is allowed. For e.g., PCIDE is excluded because the behavior
979 * depends on CR3 which might not always be the guest value while executing
980 * using hardware-assisted VMX.
981 */
982 PCVMCC pVM = pVCpu->CTX_SUFF(pVM);
983 bool const fFsGsBase = pVM->cpum.ro.GuestFeatures.fFsGsBase;
984 bool const fXSaveRstor = pVM->cpum.ro.GuestFeatures.fXSaveRstor;
985 bool const fFxSaveRstor = pVM->cpum.ro.GuestFeatures.fFxSaveRstor;
986
987 /*
988 * Paranoia.
989 * Ensure features exposed to the guest are present on the host.
990 */
991 Assert(!fFsGsBase || pVM->cpum.ro.HostFeatures.fFsGsBase);
992 Assert(!fXSaveRstor || pVM->cpum.ro.HostFeatures.fXSaveRstor);
993 Assert(!fFxSaveRstor || pVM->cpum.ro.HostFeatures.fFxSaveRstor);
994
995 uint64_t const fGstMask = ( X86_CR4_PVI
996 | X86_CR4_TSD
997 | X86_CR4_DE
998 | X86_CR4_MCE
999 | X86_CR4_PCE
1000 | X86_CR4_OSXMMEEXCPT
1001 | (fFsGsBase ? X86_CR4_FSGSBASE : 0)
1002 | (fXSaveRstor ? X86_CR4_OSXSAVE : 0)
1003 | (fFxSaveRstor ? X86_CR4_OSFXSR : 0));
1004 return ~fGstMask;
1005}
1006
1007
1008/**
1009 * Gets the active (in use) VMCS info. object for the specified VCPU.
1010 *
1011 * This is either the guest or nested-guest VMCS info. and need not necessarily
1012 * pertain to the "current" VMCS (in the VMX definition of the term). For instance,
1013 * if the VM-entry failed due to an invalid-guest state, we may have "cleared" the
1014 * current VMCS while returning to ring-3. However, the VMCS info. object for that
1015 * VMCS would still be active and returned here so that we could dump the VMCS
1016 * fields to ring-3 for diagnostics. This function is thus only used to
1017 * distinguish between the nested-guest or guest VMCS.
1018 *
1019 * @returns The active VMCS information.
1020 * @param pVCpu The cross context virtual CPU structure.
1021 *
1022 * @thread EMT.
1023 * @remarks This function may be called with preemption or interrupts disabled!
1024 */
1025DECLINLINE(PVMXVMCSINFO) hmGetVmxActiveVmcsInfo(PVMCPUCC pVCpu)
1026{
1027 if (!pVCpu->hmr0.s.vmx.fSwitchedToNstGstVmcs)
1028 return &pVCpu->hmr0.s.vmx.VmcsInfo;
1029 return &pVCpu->hmr0.s.vmx.VmcsInfoNstGst;
1030}
1031
1032
1033/**
1034 * Returns whether the VM-exit MSR-store area differs from the VM-exit MSR-load
1035 * area.
1036 *
1037 * @returns @c true if it's different, @c false otherwise.
1038 * @param pVmcsInfo The VMCS info. object.
1039 */
1040DECL_FORCE_INLINE(bool) hmR0VmxIsSeparateExitMsrStoreAreaVmcs(PCVMXVMCSINFO pVmcsInfo)
1041{
1042 return RT_BOOL( pVmcsInfo->pvGuestMsrStore != pVmcsInfo->pvGuestMsrLoad
1043 && pVmcsInfo->pvGuestMsrStore);
1044}
1045
1046
1047/**
1048 * Sets the given Processor-based VM-execution controls.
1049 *
1050 * @param pVmxTransient The VMX-transient structure.
1051 * @param uProcCtls The Processor-based VM-execution controls to set.
1052 */
1053static void hmR0VmxSetProcCtlsVmcs(PVMXTRANSIENT pVmxTransient, uint32_t uProcCtls)
1054{
1055 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
1056 if ((pVmcsInfo->u32ProcCtls & uProcCtls) != uProcCtls)
1057 {
1058 pVmcsInfo->u32ProcCtls |= uProcCtls;
1059 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVmcsInfo->u32ProcCtls);
1060 AssertRC(rc);
1061 }
1062}
1063
1064
1065/**
1066 * Removes the given Processor-based VM-execution controls.
1067 *
1068 * @param pVCpu The cross context virtual CPU structure.
1069 * @param pVmxTransient The VMX-transient structure.
1070 * @param uProcCtls The Processor-based VM-execution controls to remove.
1071 *
1072 * @remarks When executing a nested-guest, this will not remove any of the specified
1073 * controls if the nested hypervisor has set any one of them.
1074 */
1075static void hmR0VmxRemoveProcCtlsVmcs(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient, uint32_t uProcCtls)
1076{
1077 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
1078 if (pVmcsInfo->u32ProcCtls & uProcCtls)
1079 {
1080#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
1081 if ( !pVmxTransient->fIsNestedGuest
1082 || !CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, uProcCtls))
1083#else
1084 NOREF(pVCpu);
1085 if (!pVmxTransient->fIsNestedGuest)
1086#endif
1087 {
1088 pVmcsInfo->u32ProcCtls &= ~uProcCtls;
1089 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVmcsInfo->u32ProcCtls);
1090 AssertRC(rc);
1091 }
1092 }
1093}
1094
1095
1096/**
1097 * Sets the TSC offset for the current VMCS.
1098 *
1099 * @param uTscOffset The TSC offset to set.
1100 * @param pVmcsInfo The VMCS info. object.
1101 */
1102static void hmR0VmxSetTscOffsetVmcs(PVMXVMCSINFO pVmcsInfo, uint64_t uTscOffset)
1103{
1104 if (pVmcsInfo->u64TscOffset != uTscOffset)
1105 {
1106 int rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_TSC_OFFSET_FULL, uTscOffset);
1107 AssertRC(rc);
1108 pVmcsInfo->u64TscOffset = uTscOffset;
1109 }
1110}
1111
1112
1113/**
1114 * Adds one or more exceptions to the exception bitmap and commits it to the current
1115 * VMCS.
1116 *
1117 * @param pVmxTransient The VMX-transient structure.
1118 * @param uXcptMask The exception(s) to add.
1119 */
1120static void hmR0VmxAddXcptInterceptMask(PCVMXTRANSIENT pVmxTransient, uint32_t uXcptMask)
1121{
1122 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
1123 uint32_t uXcptBitmap = pVmcsInfo->u32XcptBitmap;
1124 if ((uXcptBitmap & uXcptMask) != uXcptMask)
1125 {
1126 uXcptBitmap |= uXcptMask;
1127 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, uXcptBitmap);
1128 AssertRC(rc);
1129 pVmcsInfo->u32XcptBitmap = uXcptBitmap;
1130 }
1131}
1132
1133
1134/**
1135 * Adds an exception to the exception bitmap and commits it to the current VMCS.
1136 *
1137 * @param pVmxTransient The VMX-transient structure.
1138 * @param uXcpt The exception to add.
1139 */
1140static void hmR0VmxAddXcptIntercept(PCVMXTRANSIENT pVmxTransient, uint8_t uXcpt)
1141{
1142 Assert(uXcpt <= X86_XCPT_LAST);
1143 hmR0VmxAddXcptInterceptMask(pVmxTransient, RT_BIT_32(uXcpt));
1144}
1145
1146
1147/**
1148 * Remove one or more exceptions from the exception bitmap and commits it to the
1149 * current VMCS.
1150 *
1151 * This takes care of not removing the exception intercept if a nested-guest
1152 * requires the exception to be intercepted.
1153 *
1154 * @returns VBox status code.
1155 * @param pVCpu The cross context virtual CPU structure.
1156 * @param pVmxTransient The VMX-transient structure.
1157 * @param uXcptMask The exception(s) to remove.
1158 */
1159static int hmR0VmxRemoveXcptInterceptMask(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient, uint32_t uXcptMask)
1160{
1161 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
1162 uint32_t u32XcptBitmap = pVmcsInfo->u32XcptBitmap;
1163 if (u32XcptBitmap & uXcptMask)
1164 {
1165#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
1166 if (!pVmxTransient->fIsNestedGuest)
1167 { /* likely */ }
1168 else
1169 {
1170 PCVMXVVMCS pVmcsNstGst = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
1171 uXcptMask &= ~pVmcsNstGst->u32XcptBitmap;
1172 }
1173#endif
1174#ifdef HMVMX_ALWAYS_TRAP_ALL_XCPTS
1175 uXcptMask &= ~( RT_BIT(X86_XCPT_BP)
1176 | RT_BIT(X86_XCPT_DE)
1177 | RT_BIT(X86_XCPT_NM)
1178 | RT_BIT(X86_XCPT_TS)
1179 | RT_BIT(X86_XCPT_UD)
1180 | RT_BIT(X86_XCPT_NP)
1181 | RT_BIT(X86_XCPT_SS)
1182 | RT_BIT(X86_XCPT_GP)
1183 | RT_BIT(X86_XCPT_PF)
1184 | RT_BIT(X86_XCPT_MF));
1185#elif defined(HMVMX_ALWAYS_TRAP_PF)
1186 uXcptMask &= ~RT_BIT(X86_XCPT_PF);
1187#endif
1188 if (uXcptMask)
1189 {
1190 /* Validate we are not removing any essential exception intercepts. */
1191 Assert(pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging || !(uXcptMask & RT_BIT(X86_XCPT_PF)));
1192 NOREF(pVCpu);
1193 Assert(!(uXcptMask & RT_BIT(X86_XCPT_DB)));
1194 Assert(!(uXcptMask & RT_BIT(X86_XCPT_AC)));
1195
1196 /* Remove it from the exception bitmap. */
1197 u32XcptBitmap &= ~uXcptMask;
1198
1199 /* Commit and update the cache if necessary. */
1200 if (pVmcsInfo->u32XcptBitmap != u32XcptBitmap)
1201 {
1202 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, u32XcptBitmap);
1203 AssertRC(rc);
1204 pVmcsInfo->u32XcptBitmap = u32XcptBitmap;
1205 }
1206 }
1207 }
1208 return VINF_SUCCESS;
1209}
1210
1211
1212/**
1213 * Remove an exceptions from the exception bitmap and commits it to the current
1214 * VMCS.
1215 *
1216 * @returns VBox status code.
1217 * @param pVCpu The cross context virtual CPU structure.
1218 * @param pVmxTransient The VMX-transient structure.
1219 * @param uXcpt The exception to remove.
1220 */
1221static int hmR0VmxRemoveXcptIntercept(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient, uint8_t uXcpt)
1222{
1223 return hmR0VmxRemoveXcptInterceptMask(pVCpu, pVmxTransient, RT_BIT(uXcpt));
1224}
1225
1226
1227/**
1228 * Loads the VMCS specified by the VMCS info. object.
1229 *
1230 * @returns VBox status code.
1231 * @param pVmcsInfo The VMCS info. object.
1232 *
1233 * @remarks Can be called with interrupts disabled.
1234 */
1235static int hmR0VmxLoadVmcs(PVMXVMCSINFO pVmcsInfo)
1236{
1237 Assert(pVmcsInfo->HCPhysVmcs != 0 && pVmcsInfo->HCPhysVmcs != NIL_RTHCPHYS);
1238 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1239
1240 int rc = VMXLoadVmcs(pVmcsInfo->HCPhysVmcs);
1241 if (RT_SUCCESS(rc))
1242 pVmcsInfo->fVmcsState |= VMX_V_VMCS_LAUNCH_STATE_CURRENT;
1243 return rc;
1244}
1245
1246
1247/**
1248 * Clears the VMCS specified by the VMCS info. object.
1249 *
1250 * @returns VBox status code.
1251 * @param pVmcsInfo The VMCS info. object.
1252 *
1253 * @remarks Can be called with interrupts disabled.
1254 */
1255static int hmR0VmxClearVmcs(PVMXVMCSINFO pVmcsInfo)
1256{
1257 Assert(pVmcsInfo->HCPhysVmcs != 0 && pVmcsInfo->HCPhysVmcs != NIL_RTHCPHYS);
1258 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1259
1260 int rc = VMXClearVmcs(pVmcsInfo->HCPhysVmcs);
1261 if (RT_SUCCESS(rc))
1262 pVmcsInfo->fVmcsState = VMX_V_VMCS_LAUNCH_STATE_CLEAR;
1263 return rc;
1264}
1265
1266
1267#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
1268/**
1269 * Loads the shadow VMCS specified by the VMCS info. object.
1270 *
1271 * @returns VBox status code.
1272 * @param pVmcsInfo The VMCS info. object.
1273 *
1274 * @remarks Can be called with interrupts disabled.
1275 */
1276static int hmR0VmxLoadShadowVmcs(PVMXVMCSINFO pVmcsInfo)
1277{
1278 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1279 Assert(pVmcsInfo->HCPhysShadowVmcs != 0 && pVmcsInfo->HCPhysShadowVmcs != NIL_RTHCPHYS);
1280
1281 int rc = VMXLoadVmcs(pVmcsInfo->HCPhysShadowVmcs);
1282 if (RT_SUCCESS(rc))
1283 pVmcsInfo->fShadowVmcsState |= VMX_V_VMCS_LAUNCH_STATE_CURRENT;
1284 return rc;
1285}
1286
1287
1288/**
1289 * Clears the shadow VMCS specified by the VMCS info. object.
1290 *
1291 * @returns VBox status code.
1292 * @param pVmcsInfo The VMCS info. object.
1293 *
1294 * @remarks Can be called with interrupts disabled.
1295 */
1296static int hmR0VmxClearShadowVmcs(PVMXVMCSINFO pVmcsInfo)
1297{
1298 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1299 Assert(pVmcsInfo->HCPhysShadowVmcs != 0 && pVmcsInfo->HCPhysShadowVmcs != NIL_RTHCPHYS);
1300
1301 int rc = VMXClearVmcs(pVmcsInfo->HCPhysShadowVmcs);
1302 if (RT_SUCCESS(rc))
1303 pVmcsInfo->fShadowVmcsState = VMX_V_VMCS_LAUNCH_STATE_CLEAR;
1304 return rc;
1305}
1306
1307
1308/**
1309 * Switches from and to the specified VMCSes.
1310 *
1311 * @returns VBox status code.
1312 * @param pVmcsInfoFrom The VMCS info. object we are switching from.
1313 * @param pVmcsInfoTo The VMCS info. object we are switching to.
1314 *
1315 * @remarks Called with interrupts disabled.
1316 */
1317static int hmR0VmxSwitchVmcs(PVMXVMCSINFO pVmcsInfoFrom, PVMXVMCSINFO pVmcsInfoTo)
1318{
1319 /*
1320 * Clear the VMCS we are switching out if it has not already been cleared.
1321 * This will sync any CPU internal data back to the VMCS.
1322 */
1323 if (pVmcsInfoFrom->fVmcsState != VMX_V_VMCS_LAUNCH_STATE_CLEAR)
1324 {
1325 int rc = hmR0VmxClearVmcs(pVmcsInfoFrom);
1326 if (RT_SUCCESS(rc))
1327 {
1328 /*
1329 * The shadow VMCS, if any, would not be active at this point since we
1330 * would have cleared it while importing the virtual hardware-virtualization
1331 * state as part the VMLAUNCH/VMRESUME VM-exit. Hence, there's no need to
1332 * clear the shadow VMCS here, just assert for safety.
1333 */
1334 Assert(!pVmcsInfoFrom->pvShadowVmcs || pVmcsInfoFrom->fShadowVmcsState == VMX_V_VMCS_LAUNCH_STATE_CLEAR);
1335 }
1336 else
1337 return rc;
1338 }
1339
1340 /*
1341 * Clear the VMCS we are switching to if it has not already been cleared.
1342 * This will initialize the VMCS launch state to "clear" required for loading it.
1343 *
1344 * See Intel spec. 31.6 "Preparation And Launching A Virtual Machine".
1345 */
1346 if (pVmcsInfoTo->fVmcsState != VMX_V_VMCS_LAUNCH_STATE_CLEAR)
1347 {
1348 int rc = hmR0VmxClearVmcs(pVmcsInfoTo);
1349 if (RT_SUCCESS(rc))
1350 { /* likely */ }
1351 else
1352 return rc;
1353 }
1354
1355 /*
1356 * Finally, load the VMCS we are switching to.
1357 */
1358 return hmR0VmxLoadVmcs(pVmcsInfoTo);
1359}
1360
1361
1362/**
1363 * Switches between the guest VMCS and the nested-guest VMCS as specified by the
1364 * caller.
1365 *
1366 * @returns VBox status code.
1367 * @param pVCpu The cross context virtual CPU structure.
1368 * @param fSwitchToNstGstVmcs Whether to switch to the nested-guest VMCS (pass
1369 * true) or guest VMCS (pass false).
1370 */
1371static int hmR0VmxSwitchToGstOrNstGstVmcs(PVMCPUCC pVCpu, bool fSwitchToNstGstVmcs)
1372{
1373 /* Ensure we have synced everything from the guest-CPU context to the VMCS before switching. */
1374 HMVMX_CPUMCTX_ASSERT(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
1375
1376 PVMXVMCSINFO pVmcsInfoFrom;
1377 PVMXVMCSINFO pVmcsInfoTo;
1378 if (fSwitchToNstGstVmcs)
1379 {
1380 pVmcsInfoFrom = &pVCpu->hmr0.s.vmx.VmcsInfo;
1381 pVmcsInfoTo = &pVCpu->hmr0.s.vmx.VmcsInfoNstGst;
1382 }
1383 else
1384 {
1385 pVmcsInfoFrom = &pVCpu->hmr0.s.vmx.VmcsInfoNstGst;
1386 pVmcsInfoTo = &pVCpu->hmr0.s.vmx.VmcsInfo;
1387 }
1388
1389 /*
1390 * Disable interrupts to prevent being preempted while we switch the current VMCS as the
1391 * preemption hook code path acquires the current VMCS.
1392 */
1393 RTCCUINTREG const fEFlags = ASMIntDisableFlags();
1394
1395 int rc = hmR0VmxSwitchVmcs(pVmcsInfoFrom, pVmcsInfoTo);
1396 if (RT_SUCCESS(rc))
1397 {
1398 pVCpu->hmr0.s.vmx.fSwitchedToNstGstVmcs = fSwitchToNstGstVmcs;
1399 pVCpu->hm.s.vmx.fSwitchedToNstGstVmcsCopyForRing3 = fSwitchToNstGstVmcs;
1400
1401 /*
1402 * If we are switching to a VMCS that was executed on a different host CPU or was
1403 * never executed before, flag that we need to export the host state before executing
1404 * guest/nested-guest code using hardware-assisted VMX.
1405 *
1406 * This could probably be done in a preemptible context since the preemption hook
1407 * will flag the necessary change in host context. However, since preemption is
1408 * already disabled and to avoid making assumptions about host specific code in
1409 * RTMpCpuId when called with preemption enabled, we'll do this while preemption is
1410 * disabled.
1411 */
1412 if (pVmcsInfoTo->idHostCpuState == RTMpCpuId())
1413 { /* likely */ }
1414 else
1415 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE);
1416
1417 ASMSetFlags(fEFlags);
1418
1419 /*
1420 * We use a different VM-exit MSR-store areas for the guest and nested-guest. Hence,
1421 * flag that we need to update the host MSR values there. Even if we decide in the
1422 * future to share the VM-exit MSR-store area page between the guest and nested-guest,
1423 * if its content differs, we would have to update the host MSRs anyway.
1424 */
1425 pVCpu->hmr0.s.vmx.fUpdatedHostAutoMsrs = false;
1426 }
1427 else
1428 ASMSetFlags(fEFlags);
1429 return rc;
1430}
1431#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
1432
1433
1434/**
1435 * Updates the VM's last error record.
1436 *
1437 * If there was a VMX instruction error, reads the error data from the VMCS and
1438 * updates VCPU's last error record as well.
1439 *
1440 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
1441 * Can be NULL if @a rc is not VERR_VMX_UNABLE_TO_START_VM or
1442 * VERR_VMX_INVALID_VMCS_FIELD.
1443 * @param rc The error code.
1444 */
1445static void hmR0VmxUpdateErrorRecord(PVMCPUCC pVCpu, int rc)
1446{
1447 if ( rc == VERR_VMX_INVALID_VMCS_FIELD
1448 || rc == VERR_VMX_UNABLE_TO_START_VM)
1449 {
1450 AssertPtrReturnVoid(pVCpu);
1451 VMXReadVmcs32(VMX_VMCS32_RO_VM_INSTR_ERROR, &pVCpu->hm.s.vmx.LastError.u32InstrError);
1452 }
1453 pVCpu->CTX_SUFF(pVM)->hm.s.ForR3.rcInit = rc;
1454}
1455
1456
1457#ifdef VBOX_STRICT
1458/**
1459 * Reads the VM-entry interruption-information field from the VMCS into the VMX
1460 * transient structure.
1461 *
1462 * @param pVmxTransient The VMX-transient structure.
1463 */
1464DECLINLINE(void) hmR0VmxReadEntryIntInfoVmcs(PVMXTRANSIENT pVmxTransient)
1465{
1466 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &pVmxTransient->uEntryIntInfo);
1467 AssertRC(rc);
1468}
1469
1470
1471/**
1472 * Reads the VM-entry exception error code field from the VMCS into
1473 * the VMX transient structure.
1474 *
1475 * @param pVmxTransient The VMX-transient structure.
1476 */
1477DECLINLINE(void) hmR0VmxReadEntryXcptErrorCodeVmcs(PVMXTRANSIENT pVmxTransient)
1478{
1479 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, &pVmxTransient->uEntryXcptErrorCode);
1480 AssertRC(rc);
1481}
1482
1483
1484/**
1485 * Reads the VM-entry exception error code field from the VMCS into
1486 * the VMX transient structure.
1487 *
1488 * @param pVmxTransient The VMX-transient structure.
1489 */
1490DECLINLINE(void) hmR0VmxReadEntryInstrLenVmcs(PVMXTRANSIENT pVmxTransient)
1491{
1492 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, &pVmxTransient->cbEntryInstr);
1493 AssertRC(rc);
1494}
1495#endif /* VBOX_STRICT */
1496
1497
1498/**
1499 * Reads the VM-exit interruption-information field from the VMCS into the VMX
1500 * transient structure.
1501 *
1502 * @param pVmxTransient The VMX-transient structure.
1503 */
1504DECLINLINE(void) hmR0VmxReadExitIntInfoVmcs(PVMXTRANSIENT pVmxTransient)
1505{
1506 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_EXIT_INTERRUPTION_INFO))
1507 {
1508 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INTERRUPTION_INFO, &pVmxTransient->uExitIntInfo);
1509 AssertRC(rc);
1510 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_INTERRUPTION_INFO;
1511 }
1512}
1513
1514
1515/**
1516 * Reads the VM-exit interruption error code from the VMCS into the VMX
1517 * transient structure.
1518 *
1519 * @param pVmxTransient The VMX-transient structure.
1520 */
1521DECLINLINE(void) hmR0VmxReadExitIntErrorCodeVmcs(PVMXTRANSIENT pVmxTransient)
1522{
1523 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_EXIT_INTERRUPTION_ERROR_CODE))
1524 {
1525 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INTERRUPTION_ERROR_CODE, &pVmxTransient->uExitIntErrorCode);
1526 AssertRC(rc);
1527 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_INTERRUPTION_ERROR_CODE;
1528 }
1529}
1530
1531
1532/**
1533 * Reads the VM-exit instruction length field from the VMCS into the VMX
1534 * transient structure.
1535 *
1536 * @param pVmxTransient The VMX-transient structure.
1537 */
1538DECLINLINE(void) hmR0VmxReadExitInstrLenVmcs(PVMXTRANSIENT pVmxTransient)
1539{
1540 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_EXIT_INSTR_LEN))
1541 {
1542 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INSTR_LENGTH, &pVmxTransient->cbExitInstr);
1543 AssertRC(rc);
1544 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_INSTR_LEN;
1545 }
1546}
1547
1548
1549/**
1550 * Reads the VM-exit instruction-information field from the VMCS into
1551 * the VMX transient structure.
1552 *
1553 * @param pVmxTransient The VMX-transient structure.
1554 */
1555DECLINLINE(void) hmR0VmxReadExitInstrInfoVmcs(PVMXTRANSIENT pVmxTransient)
1556{
1557 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_EXIT_INSTR_INFO))
1558 {
1559 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INSTR_INFO, &pVmxTransient->ExitInstrInfo.u);
1560 AssertRC(rc);
1561 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_INSTR_INFO;
1562 }
1563}
1564
1565
1566/**
1567 * Reads the Exit Qualification from the VMCS into the VMX transient structure.
1568 *
1569 * @param pVmxTransient The VMX-transient structure.
1570 */
1571DECLINLINE(void) hmR0VmxReadExitQualVmcs(PVMXTRANSIENT pVmxTransient)
1572{
1573 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_EXIT_QUALIFICATION))
1574 {
1575 int rc = VMXReadVmcsNw(VMX_VMCS_RO_EXIT_QUALIFICATION, &pVmxTransient->uExitQual);
1576 AssertRC(rc);
1577 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_QUALIFICATION;
1578 }
1579}
1580
1581
1582/**
1583 * Reads the Guest-linear address from the VMCS into the VMX transient structure.
1584 *
1585 * @param pVmxTransient The VMX-transient structure.
1586 */
1587DECLINLINE(void) hmR0VmxReadGuestLinearAddrVmcs(PVMXTRANSIENT pVmxTransient)
1588{
1589 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_GUEST_LINEAR_ADDR))
1590 {
1591 int rc = VMXReadVmcsNw(VMX_VMCS_RO_GUEST_LINEAR_ADDR, &pVmxTransient->uGuestLinearAddr);
1592 AssertRC(rc);
1593 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_GUEST_LINEAR_ADDR;
1594 }
1595}
1596
1597
1598/**
1599 * Reads the Guest-physical address from the VMCS into the VMX transient structure.
1600 *
1601 * @param pVmxTransient The VMX-transient structure.
1602 */
1603DECLINLINE(void) hmR0VmxReadGuestPhysicalAddrVmcs(PVMXTRANSIENT pVmxTransient)
1604{
1605 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_GUEST_PHYSICAL_ADDR))
1606 {
1607 int rc = VMXReadVmcs64(VMX_VMCS64_RO_GUEST_PHYS_ADDR_FULL, &pVmxTransient->uGuestPhysicalAddr);
1608 AssertRC(rc);
1609 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_GUEST_PHYSICAL_ADDR;
1610 }
1611}
1612
1613#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
1614/**
1615 * Reads the Guest pending-debug exceptions from the VMCS into the VMX transient
1616 * structure.
1617 *
1618 * @param pVmxTransient The VMX-transient structure.
1619 */
1620DECLINLINE(void) hmR0VmxReadGuestPendingDbgXctps(PVMXTRANSIENT pVmxTransient)
1621{
1622 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_GUEST_PENDING_DBG_XCPTS))
1623 {
1624 int rc = VMXReadVmcsNw(VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS, &pVmxTransient->uGuestPendingDbgXcpts);
1625 AssertRC(rc);
1626 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_GUEST_PENDING_DBG_XCPTS;
1627 }
1628}
1629#endif
1630
1631/**
1632 * Reads the IDT-vectoring information field from the VMCS into the VMX
1633 * transient structure.
1634 *
1635 * @param pVmxTransient The VMX-transient structure.
1636 *
1637 * @remarks No-long-jump zone!!!
1638 */
1639DECLINLINE(void) hmR0VmxReadIdtVectoringInfoVmcs(PVMXTRANSIENT pVmxTransient)
1640{
1641 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_IDT_VECTORING_INFO))
1642 {
1643 int rc = VMXReadVmcs32(VMX_VMCS32_RO_IDT_VECTORING_INFO, &pVmxTransient->uIdtVectoringInfo);
1644 AssertRC(rc);
1645 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_IDT_VECTORING_INFO;
1646 }
1647}
1648
1649
1650/**
1651 * Reads the IDT-vectoring error code from the VMCS into the VMX
1652 * transient structure.
1653 *
1654 * @param pVmxTransient The VMX-transient structure.
1655 */
1656DECLINLINE(void) hmR0VmxReadIdtVectoringErrorCodeVmcs(PVMXTRANSIENT pVmxTransient)
1657{
1658 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_IDT_VECTORING_ERROR_CODE))
1659 {
1660 int rc = VMXReadVmcs32(VMX_VMCS32_RO_IDT_VECTORING_ERROR_CODE, &pVmxTransient->uIdtVectoringErrorCode);
1661 AssertRC(rc);
1662 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_IDT_VECTORING_ERROR_CODE;
1663 }
1664}
1665
1666#ifdef HMVMX_ALWAYS_SAVE_RO_GUEST_STATE
1667/**
1668 * Reads all relevant read-only VMCS fields into the VMX transient structure.
1669 *
1670 * @param pVmxTransient The VMX-transient structure.
1671 */
1672static void hmR0VmxReadAllRoFieldsVmcs(PVMXTRANSIENT pVmxTransient)
1673{
1674 int rc = VMXReadVmcsNw(VMX_VMCS_RO_EXIT_QUALIFICATION, &pVmxTransient->uExitQual);
1675 rc |= VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INSTR_LENGTH, &pVmxTransient->cbExitInstr);
1676 rc |= VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INSTR_INFO, &pVmxTransient->ExitInstrInfo.u);
1677 rc |= VMXReadVmcs32(VMX_VMCS32_RO_IDT_VECTORING_INFO, &pVmxTransient->uIdtVectoringInfo);
1678 rc |= VMXReadVmcs32(VMX_VMCS32_RO_IDT_VECTORING_ERROR_CODE, &pVmxTransient->uIdtVectoringErrorCode);
1679 rc |= VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INTERRUPTION_INFO, &pVmxTransient->uExitIntInfo);
1680 rc |= VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INTERRUPTION_ERROR_CODE, &pVmxTransient->uExitIntErrorCode);
1681 rc |= VMXReadVmcsNw(VMX_VMCS_RO_GUEST_LINEAR_ADDR, &pVmxTransient->uGuestLinearAddr);
1682 rc |= VMXReadVmcs64(VMX_VMCS64_RO_GUEST_PHYS_ADDR_FULL, &pVmxTransient->uGuestPhysicalAddr);
1683 AssertRC(rc);
1684 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_QUALIFICATION
1685 | HMVMX_READ_EXIT_INSTR_LEN
1686 | HMVMX_READ_EXIT_INSTR_INFO
1687 | HMVMX_READ_IDT_VECTORING_INFO
1688 | HMVMX_READ_IDT_VECTORING_ERROR_CODE
1689 | HMVMX_READ_EXIT_INTERRUPTION_INFO
1690 | HMVMX_READ_EXIT_INTERRUPTION_ERROR_CODE
1691 | HMVMX_READ_GUEST_LINEAR_ADDR
1692 | HMVMX_READ_GUEST_PHYSICAL_ADDR;
1693}
1694#endif
1695
1696/**
1697 * Enters VMX root mode operation on the current CPU.
1698 *
1699 * @returns VBox status code.
1700 * @param pHostCpu The HM physical-CPU structure.
1701 * @param pVM The cross context VM structure. Can be
1702 * NULL, after a resume.
1703 * @param HCPhysCpuPage Physical address of the VMXON region.
1704 * @param pvCpuPage Pointer to the VMXON region.
1705 */
1706static int hmR0VmxEnterRootMode(PHMPHYSCPU pHostCpu, PVMCC pVM, RTHCPHYS HCPhysCpuPage, void *pvCpuPage)
1707{
1708 Assert(pHostCpu);
1709 Assert(HCPhysCpuPage && HCPhysCpuPage != NIL_RTHCPHYS);
1710 Assert(RT_ALIGN_T(HCPhysCpuPage, _4K, RTHCPHYS) == HCPhysCpuPage);
1711 Assert(pvCpuPage);
1712 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1713
1714 if (pVM)
1715 {
1716 /* Write the VMCS revision identifier to the VMXON region. */
1717 *(uint32_t *)pvCpuPage = RT_BF_GET(g_HmMsrs.u.vmx.u64Basic, VMX_BF_BASIC_VMCS_ID);
1718 }
1719
1720 /* Paranoid: Disable interrupts as, in theory, interrupt handlers might mess with CR4. */
1721 RTCCUINTREG const fEFlags = ASMIntDisableFlags();
1722
1723 /* Enable the VMX bit in CR4 if necessary. */
1724 RTCCUINTREG const uOldCr4 = SUPR0ChangeCR4(X86_CR4_VMXE, RTCCUINTREG_MAX);
1725
1726 /* Record whether VMXE was already prior to us enabling it above. */
1727 pHostCpu->fVmxeAlreadyEnabled = RT_BOOL(uOldCr4 & X86_CR4_VMXE);
1728
1729 /* Enter VMX root mode. */
1730 int rc = VMXEnable(HCPhysCpuPage);
1731 if (RT_FAILURE(rc))
1732 {
1733 /* Restore CR4.VMXE if it was not set prior to our attempt to set it above. */
1734 if (!pHostCpu->fVmxeAlreadyEnabled)
1735 SUPR0ChangeCR4(0 /* fOrMask */, ~(uint64_t)X86_CR4_VMXE);
1736
1737 if (pVM)
1738 pVM->hm.s.ForR3.vmx.HCPhysVmxEnableError = HCPhysCpuPage;
1739 }
1740
1741 /* Restore interrupts. */
1742 ASMSetFlags(fEFlags);
1743 return rc;
1744}
1745
1746
1747/**
1748 * Exits VMX root mode operation on the current CPU.
1749 *
1750 * @returns VBox status code.
1751 * @param pHostCpu The HM physical-CPU structure.
1752 */
1753static int hmR0VmxLeaveRootMode(PHMPHYSCPU pHostCpu)
1754{
1755 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1756
1757 /* Paranoid: Disable interrupts as, in theory, interrupts handlers might mess with CR4. */
1758 RTCCUINTREG const fEFlags = ASMIntDisableFlags();
1759
1760 /* If we're for some reason not in VMX root mode, then don't leave it. */
1761 RTCCUINTREG const uHostCr4 = ASMGetCR4();
1762
1763 int rc;
1764 if (uHostCr4 & X86_CR4_VMXE)
1765 {
1766 /* Exit VMX root mode and clear the VMX bit in CR4. */
1767 VMXDisable();
1768
1769 /* Clear CR4.VMXE only if it was clear prior to use setting it. */
1770 if (!pHostCpu->fVmxeAlreadyEnabled)
1771 SUPR0ChangeCR4(0 /* fOrMask */, ~(uint64_t)X86_CR4_VMXE);
1772
1773 rc = VINF_SUCCESS;
1774 }
1775 else
1776 rc = VERR_VMX_NOT_IN_VMX_ROOT_MODE;
1777
1778 /* Restore interrupts. */
1779 ASMSetFlags(fEFlags);
1780 return rc;
1781}
1782
1783
1784/**
1785 * Allocates pages specified as specified by an array of VMX page allocation info
1786 * objects.
1787 *
1788 * The pages contents are zero'd after allocation.
1789 *
1790 * @returns VBox status code.
1791 * @param phMemObj Where to return the handle to the allocation.
1792 * @param paAllocInfo The pointer to the first element of the VMX
1793 * page-allocation info object array.
1794 * @param cEntries The number of elements in the @a paAllocInfo array.
1795 */
1796static int hmR0VmxPagesAllocZ(PRTR0MEMOBJ phMemObj, PVMXPAGEALLOCINFO paAllocInfo, uint32_t cEntries)
1797{
1798 *phMemObj = NIL_RTR0MEMOBJ;
1799
1800 /* Figure out how many pages to allocate. */
1801 uint32_t cPages = 0;
1802 for (uint32_t iPage = 0; iPage < cEntries; iPage++)
1803 cPages += !!paAllocInfo[iPage].fValid;
1804
1805 /* Allocate the pages. */
1806 if (cPages)
1807 {
1808 size_t const cbPages = cPages << PAGE_SHIFT;
1809 int rc = RTR0MemObjAllocPage(phMemObj, cbPages, false /* fExecutable */);
1810 if (RT_FAILURE(rc))
1811 return rc;
1812
1813 /* Zero the contents and assign each page to the corresponding VMX page-allocation entry. */
1814 void *pvFirstPage = RTR0MemObjAddress(*phMemObj);
1815 RT_BZERO(pvFirstPage, cbPages);
1816
1817 uint32_t iPage = 0;
1818 for (uint32_t i = 0; i < cEntries; i++)
1819 if (paAllocInfo[i].fValid)
1820 {
1821 RTHCPHYS const HCPhysPage = RTR0MemObjGetPagePhysAddr(*phMemObj, iPage);
1822 void *pvPage = (void *)((uintptr_t)pvFirstPage + (iPage << X86_PAGE_4K_SHIFT));
1823 Assert(HCPhysPage && HCPhysPage != NIL_RTHCPHYS);
1824 AssertPtr(pvPage);
1825
1826 Assert(paAllocInfo[iPage].pHCPhys);
1827 Assert(paAllocInfo[iPage].ppVirt);
1828 *paAllocInfo[iPage].pHCPhys = HCPhysPage;
1829 *paAllocInfo[iPage].ppVirt = pvPage;
1830
1831 /* Move to next page. */
1832 ++iPage;
1833 }
1834
1835 /* Make sure all valid (requested) pages have been assigned. */
1836 Assert(iPage == cPages);
1837 }
1838 return VINF_SUCCESS;
1839}
1840
1841
1842/**
1843 * Frees pages allocated using hmR0VmxPagesAllocZ.
1844 *
1845 * @param phMemObj Pointer to the memory object handle. Will be set to
1846 * NIL.
1847 */
1848DECL_FORCE_INLINE(void) hmR0VmxPagesFree(PRTR0MEMOBJ phMemObj)
1849{
1850 /* We can cleanup wholesale since it's all one allocation. */
1851 if (*phMemObj != NIL_RTR0MEMOBJ)
1852 {
1853 RTR0MemObjFree(*phMemObj, true /* fFreeMappings */);
1854 *phMemObj = NIL_RTR0MEMOBJ;
1855 }
1856}
1857
1858
1859/**
1860 * Initializes a VMCS info. object.
1861 *
1862 * @param pVmcsInfo The VMCS info. object.
1863 * @param pVmcsInfoShared The VMCS info. object shared with ring-3.
1864 */
1865static void hmR0VmxVmcsInfoInit(PVMXVMCSINFO pVmcsInfo, PVMXVMCSINFOSHARED pVmcsInfoShared)
1866{
1867 RT_ZERO(*pVmcsInfo);
1868 RT_ZERO(*pVmcsInfoShared);
1869
1870 pVmcsInfo->pShared = pVmcsInfoShared;
1871 Assert(pVmcsInfo->hMemObj == NIL_RTR0MEMOBJ);
1872 pVmcsInfo->HCPhysVmcs = NIL_RTHCPHYS;
1873 pVmcsInfo->HCPhysShadowVmcs = NIL_RTHCPHYS;
1874 pVmcsInfo->HCPhysMsrBitmap = NIL_RTHCPHYS;
1875 pVmcsInfo->HCPhysGuestMsrLoad = NIL_RTHCPHYS;
1876 pVmcsInfo->HCPhysGuestMsrStore = NIL_RTHCPHYS;
1877 pVmcsInfo->HCPhysHostMsrLoad = NIL_RTHCPHYS;
1878 pVmcsInfo->HCPhysVirtApic = NIL_RTHCPHYS;
1879 pVmcsInfo->HCPhysEPTP = NIL_RTHCPHYS;
1880 pVmcsInfo->u64VmcsLinkPtr = NIL_RTHCPHYS;
1881 pVmcsInfo->idHostCpuState = NIL_RTCPUID;
1882 pVmcsInfo->idHostCpuExec = NIL_RTCPUID;
1883}
1884
1885
1886/**
1887 * Frees the VT-x structures for a VMCS info. object.
1888 *
1889 * @param pVmcsInfo The VMCS info. object.
1890 * @param pVmcsInfoShared The VMCS info. object shared with ring-3.
1891 */
1892static void hmR0VmxVmcsInfoFree(PVMXVMCSINFO pVmcsInfo, PVMXVMCSINFOSHARED pVmcsInfoShared)
1893{
1894 hmR0VmxPagesFree(&pVmcsInfo->hMemObj);
1895 hmR0VmxVmcsInfoInit(pVmcsInfo, pVmcsInfoShared);
1896}
1897
1898
1899/**
1900 * Allocates the VT-x structures for a VMCS info. object.
1901 *
1902 * @returns VBox status code.
1903 * @param pVCpu The cross context virtual CPU structure.
1904 * @param pVmcsInfo The VMCS info. object.
1905 * @param fIsNstGstVmcs Whether this is a nested-guest VMCS.
1906 *
1907 * @remarks The caller is expected to take care of any and all allocation failures.
1908 * This function will not perform any cleanup for failures half-way
1909 * through.
1910 */
1911static int hmR0VmxAllocVmcsInfo(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo, bool fIsNstGstVmcs)
1912{
1913 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
1914
1915 bool const fMsrBitmaps = RT_BOOL(g_HmMsrs.u.vmx.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_MSR_BITMAPS);
1916 bool const fShadowVmcs = !fIsNstGstVmcs ? pVM->hmr0.s.vmx.fUseVmcsShadowing : pVM->cpum.ro.GuestFeatures.fVmxVmcsShadowing;
1917 Assert(!pVM->cpum.ro.GuestFeatures.fVmxVmcsShadowing); /* VMCS shadowing is not yet exposed to the guest. */
1918 VMXPAGEALLOCINFO aAllocInfo[] =
1919 {
1920 { true, 0 /* Unused */, &pVmcsInfo->HCPhysVmcs, &pVmcsInfo->pvVmcs },
1921 { true, 0 /* Unused */, &pVmcsInfo->HCPhysGuestMsrLoad, &pVmcsInfo->pvGuestMsrLoad },
1922 { true, 0 /* Unused */, &pVmcsInfo->HCPhysHostMsrLoad, &pVmcsInfo->pvHostMsrLoad },
1923 { fMsrBitmaps, 0 /* Unused */, &pVmcsInfo->HCPhysMsrBitmap, &pVmcsInfo->pvMsrBitmap },
1924 { fShadowVmcs, 0 /* Unused */, &pVmcsInfo->HCPhysShadowVmcs, &pVmcsInfo->pvShadowVmcs },
1925 };
1926
1927 int rc = hmR0VmxPagesAllocZ(&pVmcsInfo->hMemObj, &aAllocInfo[0], RT_ELEMENTS(aAllocInfo));
1928 if (RT_FAILURE(rc))
1929 return rc;
1930
1931 /*
1932 * We use the same page for VM-entry MSR-load and VM-exit MSR store areas.
1933 * Because they contain a symmetric list of guest MSRs to load on VM-entry and store on VM-exit.
1934 */
1935 AssertCompile(RT_ELEMENTS(aAllocInfo) > 0);
1936 Assert(pVmcsInfo->HCPhysGuestMsrLoad != NIL_RTHCPHYS);
1937 pVmcsInfo->pvGuestMsrStore = pVmcsInfo->pvGuestMsrLoad;
1938 pVmcsInfo->HCPhysGuestMsrStore = pVmcsInfo->HCPhysGuestMsrLoad;
1939
1940 /*
1941 * Get the virtual-APIC page rather than allocating them again.
1942 */
1943 if (g_HmMsrs.u.vmx.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_TPR_SHADOW)
1944 {
1945 if (!fIsNstGstVmcs)
1946 {
1947 if (PDMHasApic(pVM))
1948 {
1949 rc = APICGetApicPageForCpu(pVCpu, &pVmcsInfo->HCPhysVirtApic, (PRTR0PTR)&pVmcsInfo->pbVirtApic, NULL /*pR3Ptr*/);
1950 if (RT_FAILURE(rc))
1951 return rc;
1952 Assert(pVmcsInfo->pbVirtApic);
1953 Assert(pVmcsInfo->HCPhysVirtApic && pVmcsInfo->HCPhysVirtApic != NIL_RTHCPHYS);
1954 }
1955 }
1956 else
1957 {
1958 pVmcsInfo->pbVirtApic = (uint8_t *)CPUMGetGuestVmxVirtApicPage(&pVCpu->cpum.GstCtx, &pVmcsInfo->HCPhysVirtApic);
1959 Assert(pVmcsInfo->pbVirtApic);
1960 Assert(pVmcsInfo->HCPhysVirtApic && pVmcsInfo->HCPhysVirtApic != NIL_RTHCPHYS);
1961 }
1962 }
1963
1964 return VINF_SUCCESS;
1965}
1966
1967
1968/**
1969 * Free all VT-x structures for the VM.
1970 *
1971 * @returns IPRT status code.
1972 * @param pVM The cross context VM structure.
1973 */
1974static void hmR0VmxStructsFree(PVMCC pVM)
1975{
1976 hmR0VmxPagesFree(&pVM->hmr0.s.vmx.hMemObj);
1977#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
1978 if (pVM->hmr0.s.vmx.fUseVmcsShadowing)
1979 {
1980 RTMemFree(pVM->hmr0.s.vmx.paShadowVmcsFields);
1981 pVM->hmr0.s.vmx.paShadowVmcsFields = NULL;
1982 RTMemFree(pVM->hmr0.s.vmx.paShadowVmcsRoFields);
1983 pVM->hmr0.s.vmx.paShadowVmcsRoFields = NULL;
1984 }
1985#endif
1986
1987 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1988 {
1989 PVMCPUCC pVCpu = VMCC_GET_CPU(pVM, idCpu);
1990 hmR0VmxVmcsInfoFree(&pVCpu->hmr0.s.vmx.VmcsInfo, &pVCpu->hm.s.vmx.VmcsInfo);
1991#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
1992 if (pVM->cpum.ro.GuestFeatures.fVmx)
1993 hmR0VmxVmcsInfoFree(&pVCpu->hmr0.s.vmx.VmcsInfoNstGst, &pVCpu->hm.s.vmx.VmcsInfoNstGst);
1994#endif
1995 }
1996}
1997
1998
1999/**
2000 * Allocate all VT-x structures for the VM.
2001 *
2002 * @returns IPRT status code.
2003 * @param pVM The cross context VM structure.
2004 *
2005 * @remarks This functions will cleanup on memory allocation failures.
2006 */
2007static int hmR0VmxStructsAlloc(PVMCC pVM)
2008{
2009 /*
2010 * Sanity check the VMCS size reported by the CPU as we assume 4KB allocations.
2011 * The VMCS size cannot be more than 4096 bytes.
2012 *
2013 * See Intel spec. Appendix A.1 "Basic VMX Information".
2014 */
2015 uint32_t const cbVmcs = RT_BF_GET(g_HmMsrs.u.vmx.u64Basic, VMX_BF_BASIC_VMCS_SIZE);
2016 if (cbVmcs <= X86_PAGE_4K_SIZE)
2017 { /* likely */ }
2018 else
2019 {
2020 VMCC_GET_CPU_0(pVM)->hm.s.u32HMError = VMX_UFC_INVALID_VMCS_SIZE;
2021 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2022 }
2023
2024 /*
2025 * Allocate per-VM VT-x structures.
2026 */
2027 bool const fVirtApicAccess = RT_BOOL(g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS);
2028 bool const fUseVmcsShadowing = pVM->hmr0.s.vmx.fUseVmcsShadowing;
2029 VMXPAGEALLOCINFO aAllocInfo[] =
2030 {
2031 { fVirtApicAccess, 0 /* Unused */, &pVM->hmr0.s.vmx.HCPhysApicAccess, (PRTR0PTR)&pVM->hmr0.s.vmx.pbApicAccess },
2032 { fUseVmcsShadowing, 0 /* Unused */, &pVM->hmr0.s.vmx.HCPhysVmreadBitmap, &pVM->hmr0.s.vmx.pvVmreadBitmap },
2033 { fUseVmcsShadowing, 0 /* Unused */, &pVM->hmr0.s.vmx.HCPhysVmwriteBitmap, &pVM->hmr0.s.vmx.pvVmwriteBitmap },
2034#ifdef VBOX_WITH_CRASHDUMP_MAGIC
2035 { true, 0 /* Unused */, &pVM->hmr0.s.vmx.HCPhysScratch, (PRTR0PTR)&pVM->hmr0.s.vmx.pbScratch },
2036#endif
2037 };
2038
2039 int rc = hmR0VmxPagesAllocZ(&pVM->hmr0.s.vmx.hMemObj, &aAllocInfo[0], RT_ELEMENTS(aAllocInfo));
2040 if (RT_SUCCESS(rc))
2041 {
2042#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
2043 /* Allocate the shadow VMCS-fields array. */
2044 if (fUseVmcsShadowing)
2045 {
2046 Assert(!pVM->hmr0.s.vmx.cShadowVmcsFields);
2047 Assert(!pVM->hmr0.s.vmx.cShadowVmcsRoFields);
2048 pVM->hmr0.s.vmx.paShadowVmcsFields = (uint32_t *)RTMemAllocZ(sizeof(g_aVmcsFields));
2049 pVM->hmr0.s.vmx.paShadowVmcsRoFields = (uint32_t *)RTMemAllocZ(sizeof(g_aVmcsFields));
2050 if (!pVM->hmr0.s.vmx.paShadowVmcsFields || !pVM->hmr0.s.vmx.paShadowVmcsRoFields)
2051 rc = VERR_NO_MEMORY;
2052 }
2053#endif
2054
2055 /*
2056 * Allocate per-VCPU VT-x structures.
2057 */
2058 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus && RT_SUCCESS(rc); idCpu++)
2059 {
2060 /* Allocate the guest VMCS structures. */
2061 PVMCPUCC pVCpu = VMCC_GET_CPU(pVM, idCpu);
2062 rc = hmR0VmxAllocVmcsInfo(pVCpu, &pVCpu->hmr0.s.vmx.VmcsInfo, false /* fIsNstGstVmcs */);
2063
2064#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
2065 /* Allocate the nested-guest VMCS structures, when the VMX feature is exposed to the guest. */
2066 if (pVM->cpum.ro.GuestFeatures.fVmx && RT_SUCCESS(rc))
2067 rc = hmR0VmxAllocVmcsInfo(pVCpu, &pVCpu->hmr0.s.vmx.VmcsInfoNstGst, true /* fIsNstGstVmcs */);
2068#endif
2069 }
2070 if (RT_SUCCESS(rc))
2071 return VINF_SUCCESS;
2072 }
2073 hmR0VmxStructsFree(pVM);
2074 return rc;
2075}
2076
2077
2078/**
2079 * Pre-initializes non-zero fields in VMX structures that will be allocated.
2080 *
2081 * @param pVM The cross context VM structure.
2082 */
2083static void hmR0VmxStructsInit(PVMCC pVM)
2084{
2085 /* Paranoia. */
2086 Assert(pVM->hmr0.s.vmx.pbApicAccess == NULL);
2087#ifdef VBOX_WITH_CRASHDUMP_MAGIC
2088 Assert(pVM->hmr0.s.vmx.pbScratch == NULL);
2089#endif
2090
2091 /*
2092 * Initialize members up-front so we can cleanup en masse on allocation failures.
2093 */
2094#ifdef VBOX_WITH_CRASHDUMP_MAGIC
2095 pVM->hmr0.s.vmx.HCPhysScratch = NIL_RTHCPHYS;
2096#endif
2097 pVM->hmr0.s.vmx.HCPhysApicAccess = NIL_RTHCPHYS;
2098 pVM->hmr0.s.vmx.HCPhysVmreadBitmap = NIL_RTHCPHYS;
2099 pVM->hmr0.s.vmx.HCPhysVmwriteBitmap = NIL_RTHCPHYS;
2100 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2101 {
2102 PVMCPUCC pVCpu = VMCC_GET_CPU(pVM, idCpu);
2103 hmR0VmxVmcsInfoInit(&pVCpu->hmr0.s.vmx.VmcsInfo, &pVCpu->hm.s.vmx.VmcsInfo);
2104 hmR0VmxVmcsInfoInit(&pVCpu->hmr0.s.vmx.VmcsInfoNstGst, &pVCpu->hm.s.vmx.VmcsInfoNstGst);
2105 }
2106}
2107
2108#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
2109/**
2110 * Returns whether an MSR at the given MSR-bitmap offset is intercepted or not.
2111 *
2112 * @returns @c true if the MSR is intercepted, @c false otherwise.
2113 * @param pvMsrBitmap The MSR bitmap.
2114 * @param offMsr The MSR byte offset.
2115 * @param iBit The bit offset from the byte offset.
2116 */
2117DECLINLINE(bool) hmR0VmxIsMsrBitSet(const void *pvMsrBitmap, uint16_t offMsr, int32_t iBit)
2118{
2119 uint8_t const * const pbMsrBitmap = (uint8_t const * const)pvMsrBitmap;
2120 Assert(pbMsrBitmap);
2121 Assert(offMsr + (iBit >> 3) <= X86_PAGE_4K_SIZE);
2122 return ASMBitTest(pbMsrBitmap + offMsr, iBit);
2123}
2124#endif
2125
2126/**
2127 * Sets the permission bits for the specified MSR in the given MSR bitmap.
2128 *
2129 * If the passed VMCS is a nested-guest VMCS, this function ensures that the
2130 * read/write intercept is cleared from the MSR bitmap used for hardware-assisted
2131 * VMX execution of the nested-guest, only if nested-guest is also not intercepting
2132 * the read/write access of this MSR.
2133 *
2134 * @param pVCpu The cross context virtual CPU structure.
2135 * @param pVmcsInfo The VMCS info. object.
2136 * @param fIsNstGstVmcs Whether this is a nested-guest VMCS.
2137 * @param idMsr The MSR value.
2138 * @param fMsrpm The MSR permissions (see VMXMSRPM_XXX). This must
2139 * include both a read -and- a write permission!
2140 *
2141 * @sa CPUMGetVmxMsrPermission.
2142 * @remarks Can be called with interrupts disabled.
2143 */
2144static void hmR0VmxSetMsrPermission(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo, bool fIsNstGstVmcs, uint32_t idMsr, uint32_t fMsrpm)
2145{
2146 uint8_t *pbMsrBitmap = (uint8_t *)pVmcsInfo->pvMsrBitmap;
2147 Assert(pbMsrBitmap);
2148 Assert(VMXMSRPM_IS_FLAG_VALID(fMsrpm));
2149
2150 /*
2151 * MSR-bitmap Layout:
2152 * Byte index MSR range Interpreted as
2153 * 0x000 - 0x3ff 0x00000000 - 0x00001fff Low MSR read bits.
2154 * 0x400 - 0x7ff 0xc0000000 - 0xc0001fff High MSR read bits.
2155 * 0x800 - 0xbff 0x00000000 - 0x00001fff Low MSR write bits.
2156 * 0xc00 - 0xfff 0xc0000000 - 0xc0001fff High MSR write bits.
2157 *
2158 * A bit corresponding to an MSR within the above range causes a VM-exit
2159 * if the bit is 1 on executions of RDMSR/WRMSR. If an MSR falls out of
2160 * the MSR range, it always cause a VM-exit.
2161 *
2162 * See Intel spec. 24.6.9 "MSR-Bitmap Address".
2163 */
2164 uint16_t const offBitmapRead = 0;
2165 uint16_t const offBitmapWrite = 0x800;
2166 uint16_t offMsr;
2167 int32_t iBit;
2168 if (idMsr <= UINT32_C(0x00001fff))
2169 {
2170 offMsr = 0;
2171 iBit = idMsr;
2172 }
2173 else if (idMsr - UINT32_C(0xc0000000) <= UINT32_C(0x00001fff))
2174 {
2175 offMsr = 0x400;
2176 iBit = idMsr - UINT32_C(0xc0000000);
2177 }
2178 else
2179 AssertMsgFailedReturnVoid(("Invalid MSR %#RX32\n", idMsr));
2180
2181 /*
2182 * Set the MSR read permission.
2183 */
2184 uint16_t const offMsrRead = offBitmapRead + offMsr;
2185 Assert(offMsrRead + (iBit >> 3) < offBitmapWrite);
2186 if (fMsrpm & VMXMSRPM_ALLOW_RD)
2187 {
2188#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
2189 bool const fClear = !fIsNstGstVmcs ? true
2190 : !hmR0VmxIsMsrBitSet(pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvMsrBitmap), offMsrRead, iBit);
2191#else
2192 RT_NOREF2(pVCpu, fIsNstGstVmcs);
2193 bool const fClear = true;
2194#endif
2195 if (fClear)
2196 ASMBitClear(pbMsrBitmap + offMsrRead, iBit);
2197 }
2198 else
2199 ASMBitSet(pbMsrBitmap + offMsrRead, iBit);
2200
2201 /*
2202 * Set the MSR write permission.
2203 */
2204 uint16_t const offMsrWrite = offBitmapWrite + offMsr;
2205 Assert(offMsrWrite + (iBit >> 3) < X86_PAGE_4K_SIZE);
2206 if (fMsrpm & VMXMSRPM_ALLOW_WR)
2207 {
2208#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
2209 bool const fClear = !fIsNstGstVmcs ? true
2210 : !hmR0VmxIsMsrBitSet(pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvMsrBitmap), offMsrWrite, iBit);
2211#else
2212 RT_NOREF2(pVCpu, fIsNstGstVmcs);
2213 bool const fClear = true;
2214#endif
2215 if (fClear)
2216 ASMBitClear(pbMsrBitmap + offMsrWrite, iBit);
2217 }
2218 else
2219 ASMBitSet(pbMsrBitmap + offMsrWrite, iBit);
2220}
2221
2222
2223/**
2224 * Updates the VMCS with the number of effective MSRs in the auto-load/store MSR
2225 * area.
2226 *
2227 * @returns VBox status code.
2228 * @param pVCpu The cross context virtual CPU structure.
2229 * @param pVmcsInfo The VMCS info. object.
2230 * @param cMsrs The number of MSRs.
2231 */
2232static int hmR0VmxSetAutoLoadStoreMsrCount(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo, uint32_t cMsrs)
2233{
2234 /* Shouldn't ever happen but there -is- a number. We're well within the recommended 512. */
2235 uint32_t const cMaxSupportedMsrs = VMX_MISC_MAX_MSRS(g_HmMsrs.u.vmx.u64Misc);
2236 if (RT_LIKELY(cMsrs < cMaxSupportedMsrs))
2237 {
2238 /* Commit the MSR counts to the VMCS and update the cache. */
2239 if (pVmcsInfo->cEntryMsrLoad != cMsrs)
2240 {
2241 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, cMsrs); AssertRC(rc);
2242 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, cMsrs); AssertRC(rc);
2243 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, cMsrs); AssertRC(rc);
2244 pVmcsInfo->cEntryMsrLoad = cMsrs;
2245 pVmcsInfo->cExitMsrStore = cMsrs;
2246 pVmcsInfo->cExitMsrLoad = cMsrs;
2247 }
2248 return VINF_SUCCESS;
2249 }
2250
2251 LogRel(("Auto-load/store MSR count exceeded! cMsrs=%u MaxSupported=%u\n", cMsrs, cMaxSupportedMsrs));
2252 pVCpu->hm.s.u32HMError = VMX_UFC_INSUFFICIENT_GUEST_MSR_STORAGE;
2253 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2254}
2255
2256
2257/**
2258 * Adds a new (or updates the value of an existing) guest/host MSR
2259 * pair to be swapped during the world-switch as part of the
2260 * auto-load/store MSR area in the VMCS.
2261 *
2262 * @returns VBox status code.
2263 * @param pVCpu The cross context virtual CPU structure.
2264 * @param pVmxTransient The VMX-transient structure.
2265 * @param idMsr The MSR.
2266 * @param uGuestMsrValue Value of the guest MSR.
2267 * @param fSetReadWrite Whether to set the guest read/write access of this
2268 * MSR (thus not causing a VM-exit).
2269 * @param fUpdateHostMsr Whether to update the value of the host MSR if
2270 * necessary.
2271 */
2272static int hmR0VmxAddAutoLoadStoreMsr(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient, uint32_t idMsr, uint64_t uGuestMsrValue,
2273 bool fSetReadWrite, bool fUpdateHostMsr)
2274{
2275 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
2276 bool const fIsNstGstVmcs = pVmxTransient->fIsNestedGuest;
2277 PVMXAUTOMSR pGuestMsrLoad = (PVMXAUTOMSR)pVmcsInfo->pvGuestMsrLoad;
2278 uint32_t cMsrs = pVmcsInfo->cEntryMsrLoad;
2279 uint32_t i;
2280
2281 /* Paranoia. */
2282 Assert(pGuestMsrLoad);
2283
2284#ifndef DEBUG_bird
2285 LogFlowFunc(("pVCpu=%p idMsr=%#RX32 uGuestMsrValue=%#RX64\n", pVCpu, idMsr, uGuestMsrValue));
2286#endif
2287
2288 /* Check if the MSR already exists in the VM-entry MSR-load area. */
2289 for (i = 0; i < cMsrs; i++)
2290 {
2291 if (pGuestMsrLoad[i].u32Msr == idMsr)
2292 break;
2293 }
2294
2295 bool fAdded = false;
2296 if (i == cMsrs)
2297 {
2298 /* The MSR does not exist, bump the MSR count to make room for the new MSR. */
2299 ++cMsrs;
2300 int rc = hmR0VmxSetAutoLoadStoreMsrCount(pVCpu, pVmcsInfo, cMsrs);
2301 AssertMsgRCReturn(rc, ("Insufficient space to add MSR to VM-entry MSR-load/store area %u\n", idMsr), rc);
2302
2303 /* Set the guest to read/write this MSR without causing VM-exits. */
2304 if ( fSetReadWrite
2305 && (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS))
2306 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, fIsNstGstVmcs, idMsr, VMXMSRPM_ALLOW_RD_WR);
2307
2308 Log4Func(("Added MSR %#RX32, cMsrs=%u\n", idMsr, cMsrs));
2309 fAdded = true;
2310 }
2311
2312 /* Update the MSR value for the newly added or already existing MSR. */
2313 pGuestMsrLoad[i].u32Msr = idMsr;
2314 pGuestMsrLoad[i].u64Value = uGuestMsrValue;
2315
2316 /* Create the corresponding slot in the VM-exit MSR-store area if we use a different page. */
2317 if (hmR0VmxIsSeparateExitMsrStoreAreaVmcs(pVmcsInfo))
2318 {
2319 PVMXAUTOMSR pGuestMsrStore = (PVMXAUTOMSR)pVmcsInfo->pvGuestMsrStore;
2320 pGuestMsrStore[i].u32Msr = idMsr;
2321 pGuestMsrStore[i].u64Value = uGuestMsrValue;
2322 }
2323
2324 /* Update the corresponding slot in the host MSR area. */
2325 PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVmcsInfo->pvHostMsrLoad;
2326 Assert(pHostMsr != pVmcsInfo->pvGuestMsrLoad);
2327 Assert(pHostMsr != pVmcsInfo->pvGuestMsrStore);
2328 pHostMsr[i].u32Msr = idMsr;
2329
2330 /*
2331 * Only if the caller requests to update the host MSR value AND we've newly added the
2332 * MSR to the host MSR area do we actually update the value. Otherwise, it will be
2333 * updated by hmR0VmxUpdateAutoLoadHostMsrs().
2334 *
2335 * We do this for performance reasons since reading MSRs may be quite expensive.
2336 */
2337 if (fAdded)
2338 {
2339 if (fUpdateHostMsr)
2340 {
2341 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
2342 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2343 pHostMsr[i].u64Value = ASMRdMsr(idMsr);
2344 }
2345 else
2346 {
2347 /* Someone else can do the work. */
2348 pVCpu->hmr0.s.vmx.fUpdatedHostAutoMsrs = false;
2349 }
2350 }
2351 return VINF_SUCCESS;
2352}
2353
2354
2355/**
2356 * Removes a guest/host MSR pair to be swapped during the world-switch from the
2357 * auto-load/store MSR area in the VMCS.
2358 *
2359 * @returns VBox status code.
2360 * @param pVCpu The cross context virtual CPU structure.
2361 * @param pVmxTransient The VMX-transient structure.
2362 * @param idMsr The MSR.
2363 */
2364static int hmR0VmxRemoveAutoLoadStoreMsr(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient, uint32_t idMsr)
2365{
2366 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
2367 bool const fIsNstGstVmcs = pVmxTransient->fIsNestedGuest;
2368 PVMXAUTOMSR pGuestMsrLoad = (PVMXAUTOMSR)pVmcsInfo->pvGuestMsrLoad;
2369 uint32_t cMsrs = pVmcsInfo->cEntryMsrLoad;
2370
2371#ifndef DEBUG_bird
2372 LogFlowFunc(("pVCpu=%p idMsr=%#RX32\n", pVCpu, idMsr));
2373#endif
2374
2375 for (uint32_t i = 0; i < cMsrs; i++)
2376 {
2377 /* Find the MSR. */
2378 if (pGuestMsrLoad[i].u32Msr == idMsr)
2379 {
2380 /*
2381 * If it's the last MSR, we only need to reduce the MSR count.
2382 * If it's -not- the last MSR, copy the last MSR in place of it and reduce the MSR count.
2383 */
2384 if (i < cMsrs - 1)
2385 {
2386 /* Remove it from the VM-entry MSR-load area. */
2387 pGuestMsrLoad[i].u32Msr = pGuestMsrLoad[cMsrs - 1].u32Msr;
2388 pGuestMsrLoad[i].u64Value = pGuestMsrLoad[cMsrs - 1].u64Value;
2389
2390 /* Remove it from the VM-exit MSR-store area if it's in a different page. */
2391 if (hmR0VmxIsSeparateExitMsrStoreAreaVmcs(pVmcsInfo))
2392 {
2393 PVMXAUTOMSR pGuestMsrStore = (PVMXAUTOMSR)pVmcsInfo->pvGuestMsrStore;
2394 Assert(pGuestMsrStore[i].u32Msr == idMsr);
2395 pGuestMsrStore[i].u32Msr = pGuestMsrStore[cMsrs - 1].u32Msr;
2396 pGuestMsrStore[i].u64Value = pGuestMsrStore[cMsrs - 1].u64Value;
2397 }
2398
2399 /* Remove it from the VM-exit MSR-load area. */
2400 PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVmcsInfo->pvHostMsrLoad;
2401 Assert(pHostMsr[i].u32Msr == idMsr);
2402 pHostMsr[i].u32Msr = pHostMsr[cMsrs - 1].u32Msr;
2403 pHostMsr[i].u64Value = pHostMsr[cMsrs - 1].u64Value;
2404 }
2405
2406 /* Reduce the count to reflect the removed MSR and bail. */
2407 --cMsrs;
2408 break;
2409 }
2410 }
2411
2412 /* Update the VMCS if the count changed (meaning the MSR was found and removed). */
2413 if (cMsrs != pVmcsInfo->cEntryMsrLoad)
2414 {
2415 int rc = hmR0VmxSetAutoLoadStoreMsrCount(pVCpu, pVmcsInfo, cMsrs);
2416 AssertRCReturn(rc, rc);
2417
2418 /* We're no longer swapping MSRs during the world-switch, intercept guest read/writes to them. */
2419 if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
2420 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, fIsNstGstVmcs, idMsr, VMXMSRPM_EXIT_RD | VMXMSRPM_EXIT_WR);
2421
2422 Log4Func(("Removed MSR %#RX32, cMsrs=%u\n", idMsr, cMsrs));
2423 return VINF_SUCCESS;
2424 }
2425
2426 return VERR_NOT_FOUND;
2427}
2428
2429
2430/**
2431 * Checks if the specified guest MSR is part of the VM-entry MSR-load area.
2432 *
2433 * @returns @c true if found, @c false otherwise.
2434 * @param pVmcsInfo The VMCS info. object.
2435 * @param idMsr The MSR to find.
2436 */
2437static bool hmR0VmxIsAutoLoadGuestMsr(PCVMXVMCSINFO pVmcsInfo, uint32_t idMsr)
2438{
2439 PCVMXAUTOMSR pMsrs = (PCVMXAUTOMSR)pVmcsInfo->pvGuestMsrLoad;
2440 uint32_t const cMsrs = pVmcsInfo->cEntryMsrLoad;
2441 Assert(pMsrs);
2442 Assert(sizeof(*pMsrs) * cMsrs <= X86_PAGE_4K_SIZE);
2443 for (uint32_t i = 0; i < cMsrs; i++)
2444 {
2445 if (pMsrs[i].u32Msr == idMsr)
2446 return true;
2447 }
2448 return false;
2449}
2450
2451
2452/**
2453 * Updates the value of all host MSRs in the VM-exit MSR-load area.
2454 *
2455 * @param pVCpu The cross context virtual CPU structure.
2456 * @param pVmcsInfo The VMCS info. object.
2457 *
2458 * @remarks No-long-jump zone!!!
2459 */
2460static void hmR0VmxUpdateAutoLoadHostMsrs(PCVMCPUCC pVCpu, PCVMXVMCSINFO pVmcsInfo)
2461{
2462 RT_NOREF(pVCpu);
2463 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2464
2465 PVMXAUTOMSR pHostMsrLoad = (PVMXAUTOMSR)pVmcsInfo->pvHostMsrLoad;
2466 uint32_t const cMsrs = pVmcsInfo->cExitMsrLoad;
2467 Assert(pHostMsrLoad);
2468 Assert(sizeof(*pHostMsrLoad) * cMsrs <= X86_PAGE_4K_SIZE);
2469 LogFlowFunc(("pVCpu=%p cMsrs=%u\n", pVCpu, cMsrs));
2470 for (uint32_t i = 0; i < cMsrs; i++)
2471 {
2472 /*
2473 * Performance hack for the host EFER MSR. We use the cached value rather than re-read it.
2474 * Strict builds will catch mismatches in hmR0VmxCheckAutoLoadStoreMsrs(). See @bugref{7368}.
2475 */
2476 if (pHostMsrLoad[i].u32Msr == MSR_K6_EFER)
2477 pHostMsrLoad[i].u64Value = g_uHmVmxHostMsrEfer;
2478 else
2479 pHostMsrLoad[i].u64Value = ASMRdMsr(pHostMsrLoad[i].u32Msr);
2480 }
2481}
2482
2483
2484/**
2485 * Saves a set of host MSRs to allow read/write passthru access to the guest and
2486 * perform lazy restoration of the host MSRs while leaving VT-x.
2487 *
2488 * @param pVCpu The cross context virtual CPU structure.
2489 *
2490 * @remarks No-long-jump zone!!!
2491 */
2492static void hmR0VmxLazySaveHostMsrs(PVMCPUCC pVCpu)
2493{
2494 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2495
2496 /*
2497 * Note: If you're adding MSRs here, make sure to update the MSR-bitmap accesses in hmR0VmxSetupVmcsProcCtls().
2498 */
2499 if (!(pVCpu->hmr0.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST))
2500 {
2501 Assert(!(pVCpu->hmr0.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)); /* Guest MSRs better not be loaded now. */
2502 if (pVCpu->CTX_SUFF(pVM)->hmr0.s.fAllow64BitGuests)
2503 {
2504 pVCpu->hmr0.s.vmx.u64HostMsrLStar = ASMRdMsr(MSR_K8_LSTAR);
2505 pVCpu->hmr0.s.vmx.u64HostMsrStar = ASMRdMsr(MSR_K6_STAR);
2506 pVCpu->hmr0.s.vmx.u64HostMsrSfMask = ASMRdMsr(MSR_K8_SF_MASK);
2507 pVCpu->hmr0.s.vmx.u64HostMsrKernelGsBase = ASMRdMsr(MSR_K8_KERNEL_GS_BASE);
2508 }
2509 pVCpu->hmr0.s.vmx.fLazyMsrs |= VMX_LAZY_MSRS_SAVED_HOST;
2510 }
2511}
2512
2513
2514/**
2515 * Checks whether the MSR belongs to the set of guest MSRs that we restore
2516 * lazily while leaving VT-x.
2517 *
2518 * @returns true if it does, false otherwise.
2519 * @param pVCpu The cross context virtual CPU structure.
2520 * @param idMsr The MSR to check.
2521 */
2522static bool hmR0VmxIsLazyGuestMsr(PCVMCPUCC pVCpu, uint32_t idMsr)
2523{
2524 if (pVCpu->CTX_SUFF(pVM)->hmr0.s.fAllow64BitGuests)
2525 {
2526 switch (idMsr)
2527 {
2528 case MSR_K8_LSTAR:
2529 case MSR_K6_STAR:
2530 case MSR_K8_SF_MASK:
2531 case MSR_K8_KERNEL_GS_BASE:
2532 return true;
2533 }
2534 }
2535 return false;
2536}
2537
2538
2539/**
2540 * Loads a set of guests MSRs to allow read/passthru to the guest.
2541 *
2542 * The name of this function is slightly confusing. This function does NOT
2543 * postpone loading, but loads the MSR right now. "hmR0VmxLazy" is simply a
2544 * common prefix for functions dealing with "lazy restoration" of the shared
2545 * MSRs.
2546 *
2547 * @param pVCpu The cross context virtual CPU structure.
2548 *
2549 * @remarks No-long-jump zone!!!
2550 */
2551static void hmR0VmxLazyLoadGuestMsrs(PVMCPUCC pVCpu)
2552{
2553 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2554 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
2555
2556 Assert(pVCpu->hmr0.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST);
2557 if (pVCpu->CTX_SUFF(pVM)->hmr0.s.fAllow64BitGuests)
2558 {
2559 /*
2560 * If the guest MSRs are not loaded -and- if all the guest MSRs are identical
2561 * to the MSRs on the CPU (which are the saved host MSRs, see assertion above) then
2562 * we can skip a few MSR writes.
2563 *
2564 * Otherwise, it implies either 1. they're not loaded, or 2. they're loaded but the
2565 * guest MSR values in the guest-CPU context might be different to what's currently
2566 * loaded in the CPU. In either case, we need to write the new guest MSR values to the
2567 * CPU, see @bugref{8728}.
2568 */
2569 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
2570 if ( !(pVCpu->hmr0.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
2571 && pCtx->msrKERNELGSBASE == pVCpu->hmr0.s.vmx.u64HostMsrKernelGsBase
2572 && pCtx->msrLSTAR == pVCpu->hmr0.s.vmx.u64HostMsrLStar
2573 && pCtx->msrSTAR == pVCpu->hmr0.s.vmx.u64HostMsrStar
2574 && pCtx->msrSFMASK == pVCpu->hmr0.s.vmx.u64HostMsrSfMask)
2575 {
2576#ifdef VBOX_STRICT
2577 Assert(ASMRdMsr(MSR_K8_KERNEL_GS_BASE) == pCtx->msrKERNELGSBASE);
2578 Assert(ASMRdMsr(MSR_K8_LSTAR) == pCtx->msrLSTAR);
2579 Assert(ASMRdMsr(MSR_K6_STAR) == pCtx->msrSTAR);
2580 Assert(ASMRdMsr(MSR_K8_SF_MASK) == pCtx->msrSFMASK);
2581#endif
2582 }
2583 else
2584 {
2585 ASMWrMsr(MSR_K8_KERNEL_GS_BASE, pCtx->msrKERNELGSBASE);
2586 ASMWrMsr(MSR_K8_LSTAR, pCtx->msrLSTAR);
2587 ASMWrMsr(MSR_K6_STAR, pCtx->msrSTAR);
2588 /* The system call flag mask register isn't as benign and accepting of all
2589 values as the above, so mask it to avoid #GP'ing on corrupted input. */
2590 Assert(!(pCtx->msrSFMASK & ~(uint64_t)UINT32_MAX));
2591 ASMWrMsr(MSR_K8_SF_MASK, pCtx->msrSFMASK & UINT32_MAX);
2592 }
2593 }
2594 pVCpu->hmr0.s.vmx.fLazyMsrs |= VMX_LAZY_MSRS_LOADED_GUEST;
2595}
2596
2597
2598/**
2599 * Performs lazy restoration of the set of host MSRs if they were previously
2600 * loaded with guest MSR values.
2601 *
2602 * @param pVCpu The cross context virtual CPU structure.
2603 *
2604 * @remarks No-long-jump zone!!!
2605 * @remarks The guest MSRs should have been saved back into the guest-CPU
2606 * context by hmR0VmxImportGuestState()!!!
2607 */
2608static void hmR0VmxLazyRestoreHostMsrs(PVMCPUCC pVCpu)
2609{
2610 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2611 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
2612
2613 if (pVCpu->hmr0.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
2614 {
2615 Assert(pVCpu->hmr0.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST);
2616 if (pVCpu->CTX_SUFF(pVM)->hmr0.s.fAllow64BitGuests)
2617 {
2618 ASMWrMsr(MSR_K8_LSTAR, pVCpu->hmr0.s.vmx.u64HostMsrLStar);
2619 ASMWrMsr(MSR_K6_STAR, pVCpu->hmr0.s.vmx.u64HostMsrStar);
2620 ASMWrMsr(MSR_K8_SF_MASK, pVCpu->hmr0.s.vmx.u64HostMsrSfMask);
2621 ASMWrMsr(MSR_K8_KERNEL_GS_BASE, pVCpu->hmr0.s.vmx.u64HostMsrKernelGsBase);
2622 }
2623 }
2624 pVCpu->hmr0.s.vmx.fLazyMsrs &= ~(VMX_LAZY_MSRS_LOADED_GUEST | VMX_LAZY_MSRS_SAVED_HOST);
2625}
2626
2627
2628/**
2629 * Verifies that our cached values of the VMCS fields are all consistent with
2630 * what's actually present in the VMCS.
2631 *
2632 * @returns VBox status code.
2633 * @retval VINF_SUCCESS if all our caches match their respective VMCS fields.
2634 * @retval VERR_VMX_VMCS_FIELD_CACHE_INVALID if a cache field doesn't match the
2635 * VMCS content. HMCPU error-field is
2636 * updated, see VMX_VCI_XXX.
2637 * @param pVCpu The cross context virtual CPU structure.
2638 * @param pVmcsInfo The VMCS info. object.
2639 * @param fIsNstGstVmcs Whether this is a nested-guest VMCS.
2640 */
2641static int hmR0VmxCheckCachedVmcsCtls(PVMCPUCC pVCpu, PCVMXVMCSINFO pVmcsInfo, bool fIsNstGstVmcs)
2642{
2643 const char * const pcszVmcs = fIsNstGstVmcs ? "Nested-guest VMCS" : "VMCS";
2644
2645 uint32_t u32Val;
2646 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY, &u32Val);
2647 AssertRC(rc);
2648 AssertMsgReturnStmt(pVmcsInfo->u32EntryCtls == u32Val,
2649 ("%s controls mismatch: Cache=%#RX32 VMCS=%#RX32\n", pcszVmcs, pVmcsInfo->u32EntryCtls, u32Val),
2650 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_ENTRY,
2651 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
2652
2653 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT, &u32Val);
2654 AssertRC(rc);
2655 AssertMsgReturnStmt(pVmcsInfo->u32ExitCtls == u32Val,
2656 ("%s controls mismatch: Cache=%#RX32 VMCS=%#RX32\n", pcszVmcs, pVmcsInfo->u32ExitCtls, u32Val),
2657 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_EXIT,
2658 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
2659
2660 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, &u32Val);
2661 AssertRC(rc);
2662 AssertMsgReturnStmt(pVmcsInfo->u32PinCtls == u32Val,
2663 ("%s controls mismatch: Cache=%#RX32 VMCS=%#RX32\n", pcszVmcs, pVmcsInfo->u32PinCtls, u32Val),
2664 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_PIN_EXEC,
2665 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
2666
2667 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, &u32Val);
2668 AssertRC(rc);
2669 AssertMsgReturnStmt(pVmcsInfo->u32ProcCtls == u32Val,
2670 ("%s controls mismatch: Cache=%#RX32 VMCS=%#RX32\n", pcszVmcs, pVmcsInfo->u32ProcCtls, u32Val),
2671 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_PROC_EXEC,
2672 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
2673
2674 if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
2675 {
2676 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, &u32Val);
2677 AssertRC(rc);
2678 AssertMsgReturnStmt(pVmcsInfo->u32ProcCtls2 == u32Val,
2679 ("%s controls mismatch: Cache=%#RX32 VMCS=%#RX32\n", pcszVmcs, pVmcsInfo->u32ProcCtls2, u32Val),
2680 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_PROC_EXEC2,
2681 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
2682 }
2683
2684 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, &u32Val);
2685 AssertRC(rc);
2686 AssertMsgReturnStmt(pVmcsInfo->u32XcptBitmap == u32Val,
2687 ("%s exception bitmap mismatch: Cache=%#RX32 VMCS=%#RX32\n", pcszVmcs, pVmcsInfo->u32XcptBitmap, u32Val),
2688 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_XCPT_BITMAP,
2689 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
2690
2691 uint64_t u64Val;
2692 rc = VMXReadVmcs64(VMX_VMCS64_CTRL_TSC_OFFSET_FULL, &u64Val);
2693 AssertRC(rc);
2694 AssertMsgReturnStmt(pVmcsInfo->u64TscOffset == u64Val,
2695 ("%s TSC offset mismatch: Cache=%#RX64 VMCS=%#RX64\n", pcszVmcs, pVmcsInfo->u64TscOffset, u64Val),
2696 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_TSC_OFFSET,
2697 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
2698
2699 NOREF(pcszVmcs);
2700 return VINF_SUCCESS;
2701}
2702
2703#ifdef VBOX_STRICT
2704
2705/**
2706 * Verifies that our cached host EFER MSR value has not changed since we cached it.
2707 *
2708 * @param pVmcsInfo The VMCS info. object.
2709 */
2710static void hmR0VmxCheckHostEferMsr(PCVMXVMCSINFO pVmcsInfo)
2711{
2712 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2713
2714 if (pVmcsInfo->u32ExitCtls & VMX_EXIT_CTLS_LOAD_EFER_MSR)
2715 {
2716 uint64_t const uHostEferMsr = ASMRdMsr(MSR_K6_EFER);
2717 uint64_t const uHostEferMsrCache = g_uHmVmxHostMsrEfer;
2718 uint64_t uVmcsEferMsrVmcs;
2719 int rc = VMXReadVmcs64(VMX_VMCS64_HOST_EFER_FULL, &uVmcsEferMsrVmcs);
2720 AssertRC(rc);
2721
2722 AssertMsgReturnVoid(uHostEferMsr == uVmcsEferMsrVmcs,
2723 ("EFER Host/VMCS mismatch! host=%#RX64 vmcs=%#RX64\n", uHostEferMsr, uVmcsEferMsrVmcs));
2724 AssertMsgReturnVoid(uHostEferMsr == uHostEferMsrCache,
2725 ("EFER Host/Cache mismatch! host=%#RX64 cache=%#RX64\n", uHostEferMsr, uHostEferMsrCache));
2726 }
2727}
2728
2729
2730/**
2731 * Verifies whether the guest/host MSR pairs in the auto-load/store area in the
2732 * VMCS are correct.
2733 *
2734 * @param pVCpu The cross context virtual CPU structure.
2735 * @param pVmcsInfo The VMCS info. object.
2736 * @param fIsNstGstVmcs Whether this is a nested-guest VMCS.
2737 */
2738static void hmR0VmxCheckAutoLoadStoreMsrs(PVMCPUCC pVCpu, PCVMXVMCSINFO pVmcsInfo, bool fIsNstGstVmcs)
2739{
2740 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2741
2742 /* Read the various MSR-area counts from the VMCS. */
2743 uint32_t cEntryLoadMsrs;
2744 uint32_t cExitStoreMsrs;
2745 uint32_t cExitLoadMsrs;
2746 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, &cEntryLoadMsrs); AssertRC(rc);
2747 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, &cExitStoreMsrs); AssertRC(rc);
2748 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, &cExitLoadMsrs); AssertRC(rc);
2749
2750 /* Verify all the MSR counts are the same. */
2751 Assert(cEntryLoadMsrs == cExitStoreMsrs);
2752 Assert(cExitStoreMsrs == cExitLoadMsrs);
2753 uint32_t const cMsrs = cExitLoadMsrs;
2754
2755 /* Verify the MSR counts do not exceed the maximum count supported by the hardware. */
2756 Assert(cMsrs < VMX_MISC_MAX_MSRS(g_HmMsrs.u.vmx.u64Misc));
2757
2758 /* Verify the MSR counts are within the allocated page size. */
2759 Assert(sizeof(VMXAUTOMSR) * cMsrs <= X86_PAGE_4K_SIZE);
2760
2761 /* Verify the relevant contents of the MSR areas match. */
2762 PCVMXAUTOMSR pGuestMsrLoad = (PCVMXAUTOMSR)pVmcsInfo->pvGuestMsrLoad;
2763 PCVMXAUTOMSR pGuestMsrStore = (PCVMXAUTOMSR)pVmcsInfo->pvGuestMsrStore;
2764 PCVMXAUTOMSR pHostMsrLoad = (PCVMXAUTOMSR)pVmcsInfo->pvHostMsrLoad;
2765 bool const fSeparateExitMsrStorePage = hmR0VmxIsSeparateExitMsrStoreAreaVmcs(pVmcsInfo);
2766 for (uint32_t i = 0; i < cMsrs; i++)
2767 {
2768 /* Verify that the MSRs are paired properly and that the host MSR has the correct value. */
2769 if (fSeparateExitMsrStorePage)
2770 {
2771 AssertMsgReturnVoid(pGuestMsrLoad->u32Msr == pGuestMsrStore->u32Msr,
2772 ("GuestMsrLoad=%#RX32 GuestMsrStore=%#RX32 cMsrs=%u\n",
2773 pGuestMsrLoad->u32Msr, pGuestMsrStore->u32Msr, cMsrs));
2774 }
2775
2776 AssertMsgReturnVoid(pHostMsrLoad->u32Msr == pGuestMsrLoad->u32Msr,
2777 ("HostMsrLoad=%#RX32 GuestMsrLoad=%#RX32 cMsrs=%u\n",
2778 pHostMsrLoad->u32Msr, pGuestMsrLoad->u32Msr, cMsrs));
2779
2780 uint64_t const u64HostMsr = ASMRdMsr(pHostMsrLoad->u32Msr);
2781 AssertMsgReturnVoid(pHostMsrLoad->u64Value == u64HostMsr,
2782 ("u32Msr=%#RX32 VMCS Value=%#RX64 ASMRdMsr=%#RX64 cMsrs=%u\n",
2783 pHostMsrLoad->u32Msr, pHostMsrLoad->u64Value, u64HostMsr, cMsrs));
2784
2785 /* Verify that cached host EFER MSR matches what's loaded on the CPU. */
2786 bool const fIsEferMsr = RT_BOOL(pHostMsrLoad->u32Msr == MSR_K6_EFER);
2787 AssertMsgReturnVoid(!fIsEferMsr || u64HostMsr == g_uHmVmxHostMsrEfer,
2788 ("Cached=%#RX64 ASMRdMsr=%#RX64 cMsrs=%u\n", g_uHmVmxHostMsrEfer, u64HostMsr, cMsrs));
2789
2790 /* Verify that the accesses are as expected in the MSR bitmap for auto-load/store MSRs. */
2791 if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
2792 {
2793 uint32_t const fMsrpm = CPUMGetVmxMsrPermission(pVmcsInfo->pvMsrBitmap, pGuestMsrLoad->u32Msr);
2794 if (fIsEferMsr)
2795 {
2796 AssertMsgReturnVoid((fMsrpm & VMXMSRPM_EXIT_RD), ("Passthru read for EFER MSR!?\n"));
2797 AssertMsgReturnVoid((fMsrpm & VMXMSRPM_EXIT_WR), ("Passthru write for EFER MSR!?\n"));
2798 }
2799 else
2800 {
2801 /* Verify LBR MSRs (used only for debugging) are intercepted. We don't passthru these MSRs to the guest yet. */
2802 PCVMCC pVM = pVCpu->CTX_SUFF(pVM);
2803 if ( pVM->hmr0.s.vmx.fLbr
2804 && ( hmR0VmxIsLbrBranchFromMsr(pVM, pGuestMsrLoad->u32Msr, NULL /* pidxMsr */)
2805 || hmR0VmxIsLbrBranchToMsr(pVM, pGuestMsrLoad->u32Msr, NULL /* pidxMsr */)
2806 || pGuestMsrLoad->u32Msr == pVM->hmr0.s.vmx.idLbrTosMsr))
2807 {
2808 AssertMsgReturnVoid((fMsrpm & VMXMSRPM_MASK) == VMXMSRPM_EXIT_RD_WR,
2809 ("u32Msr=%#RX32 cMsrs=%u Passthru read/write for LBR MSRs!\n",
2810 pGuestMsrLoad->u32Msr, cMsrs));
2811 }
2812 else if (!fIsNstGstVmcs)
2813 {
2814 AssertMsgReturnVoid((fMsrpm & VMXMSRPM_MASK) == VMXMSRPM_ALLOW_RD_WR,
2815 ("u32Msr=%#RX32 cMsrs=%u No passthru read/write!\n", pGuestMsrLoad->u32Msr, cMsrs));
2816 }
2817 else
2818 {
2819 /*
2820 * A nested-guest VMCS must -also- allow read/write passthrough for the MSR for us to
2821 * execute a nested-guest with MSR passthrough.
2822 *
2823 * Check if the nested-guest MSR bitmap allows passthrough, and if so, assert that we
2824 * allow passthrough too.
2825 */
2826 void const *pvMsrBitmapNstGst = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvMsrBitmap);
2827 Assert(pvMsrBitmapNstGst);
2828 uint32_t const fMsrpmNstGst = CPUMGetVmxMsrPermission(pvMsrBitmapNstGst, pGuestMsrLoad->u32Msr);
2829 AssertMsgReturnVoid(fMsrpm == fMsrpmNstGst,
2830 ("u32Msr=%#RX32 cMsrs=%u Permission mismatch fMsrpm=%#x fMsrpmNstGst=%#x!\n",
2831 pGuestMsrLoad->u32Msr, cMsrs, fMsrpm, fMsrpmNstGst));
2832 }
2833 }
2834 }
2835
2836 /* Move to the next MSR. */
2837 pHostMsrLoad++;
2838 pGuestMsrLoad++;
2839 pGuestMsrStore++;
2840 }
2841}
2842
2843#endif /* VBOX_STRICT */
2844
2845/**
2846 * Flushes the TLB using EPT.
2847 *
2848 * @returns VBox status code.
2849 * @param pVCpu The cross context virtual CPU structure of the calling
2850 * EMT. Can be NULL depending on @a enmTlbFlush.
2851 * @param pVmcsInfo The VMCS info. object. Can be NULL depending on @a
2852 * enmTlbFlush.
2853 * @param enmTlbFlush Type of flush.
2854 *
2855 * @remarks Caller is responsible for making sure this function is called only
2856 * when NestedPaging is supported and providing @a enmTlbFlush that is
2857 * supported by the CPU.
2858 * @remarks Can be called with interrupts disabled.
2859 */
2860static void hmR0VmxFlushEpt(PVMCPUCC pVCpu, PCVMXVMCSINFO pVmcsInfo, VMXTLBFLUSHEPT enmTlbFlush)
2861{
2862 uint64_t au64Descriptor[2];
2863 if (enmTlbFlush == VMXTLBFLUSHEPT_ALL_CONTEXTS)
2864 au64Descriptor[0] = 0;
2865 else
2866 {
2867 Assert(pVCpu);
2868 Assert(pVmcsInfo);
2869 au64Descriptor[0] = pVmcsInfo->HCPhysEPTP;
2870 }
2871 au64Descriptor[1] = 0; /* MBZ. Intel spec. 33.3 "VMX Instructions" */
2872
2873 int rc = VMXR0InvEPT(enmTlbFlush, &au64Descriptor[0]);
2874 AssertMsg(rc == VINF_SUCCESS, ("VMXR0InvEPT %#x %#RHp failed. rc=%Rrc\n", enmTlbFlush, au64Descriptor[0], rc));
2875
2876 if ( RT_SUCCESS(rc)
2877 && pVCpu)
2878 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushNestedPaging);
2879}
2880
2881
2882/**
2883 * Flushes the TLB using VPID.
2884 *
2885 * @returns VBox status code.
2886 * @param pVCpu The cross context virtual CPU structure of the calling
2887 * EMT. Can be NULL depending on @a enmTlbFlush.
2888 * @param enmTlbFlush Type of flush.
2889 * @param GCPtr Virtual address of the page to flush (can be 0 depending
2890 * on @a enmTlbFlush).
2891 *
2892 * @remarks Can be called with interrupts disabled.
2893 */
2894static void hmR0VmxFlushVpid(PVMCPUCC pVCpu, VMXTLBFLUSHVPID enmTlbFlush, RTGCPTR GCPtr)
2895{
2896 Assert(pVCpu->CTX_SUFF(pVM)->hmr0.s.vmx.fVpid);
2897
2898 uint64_t au64Descriptor[2];
2899 if (enmTlbFlush == VMXTLBFLUSHVPID_ALL_CONTEXTS)
2900 {
2901 au64Descriptor[0] = 0;
2902 au64Descriptor[1] = 0;
2903 }
2904 else
2905 {
2906 AssertPtr(pVCpu);
2907 AssertMsg(pVCpu->hmr0.s.uCurrentAsid != 0, ("VMXR0InvVPID: invalid ASID %lu\n", pVCpu->hmr0.s.uCurrentAsid));
2908 AssertMsg(pVCpu->hmr0.s.uCurrentAsid <= UINT16_MAX, ("VMXR0InvVPID: invalid ASID %lu\n", pVCpu->hmr0.s.uCurrentAsid));
2909 au64Descriptor[0] = pVCpu->hmr0.s.uCurrentAsid;
2910 au64Descriptor[1] = GCPtr;
2911 }
2912
2913 int rc = VMXR0InvVPID(enmTlbFlush, &au64Descriptor[0]);
2914 AssertMsg(rc == VINF_SUCCESS,
2915 ("VMXR0InvVPID %#x %u %RGv failed with %Rrc\n", enmTlbFlush, pVCpu ? pVCpu->hmr0.s.uCurrentAsid : 0, GCPtr, rc));
2916
2917 if ( RT_SUCCESS(rc)
2918 && pVCpu)
2919 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushAsid);
2920 NOREF(rc);
2921}
2922
2923
2924/**
2925 * Invalidates a guest page by guest virtual address. Only relevant for EPT/VPID,
2926 * otherwise there is nothing really to invalidate.
2927 *
2928 * @returns VBox status code.
2929 * @param pVCpu The cross context virtual CPU structure.
2930 * @param GCVirt Guest virtual address of the page to invalidate.
2931 */
2932VMMR0DECL(int) VMXR0InvalidatePage(PVMCPUCC pVCpu, RTGCPTR GCVirt)
2933{
2934 AssertPtr(pVCpu);
2935 LogFlowFunc(("pVCpu=%p GCVirt=%RGv\n", pVCpu, GCVirt));
2936
2937 if (!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_TLB_FLUSH))
2938 {
2939 /*
2940 * We must invalidate the guest TLB entry in either case, we cannot ignore it even for
2941 * the EPT case. See @bugref{6043} and @bugref{6177}.
2942 *
2943 * Set the VMCPU_FF_TLB_FLUSH force flag and flush before VM-entry in hmR0VmxFlushTLB*()
2944 * as this function maybe called in a loop with individual addresses.
2945 */
2946 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
2947 if (pVM->hmr0.s.vmx.fVpid)
2948 {
2949 if (g_HmMsrs.u.vmx.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR)
2950 {
2951 hmR0VmxFlushVpid(pVCpu, VMXTLBFLUSHVPID_INDIV_ADDR, GCVirt);
2952 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbInvlpgVirt);
2953 }
2954 else
2955 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
2956 }
2957 else if (pVM->hmr0.s.fNestedPaging)
2958 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
2959 }
2960
2961 return VINF_SUCCESS;
2962}
2963
2964
2965/**
2966 * Dummy placeholder for tagged-TLB flush handling before VM-entry. Used in the
2967 * case where neither EPT nor VPID is supported by the CPU.
2968 *
2969 * @param pHostCpu The HM physical-CPU structure.
2970 * @param pVCpu The cross context virtual CPU structure.
2971 *
2972 * @remarks Called with interrupts disabled.
2973 */
2974static void hmR0VmxFlushTaggedTlbNone(PHMPHYSCPU pHostCpu, PVMCPUCC pVCpu)
2975{
2976 AssertPtr(pVCpu);
2977 AssertPtr(pHostCpu);
2978
2979 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH);
2980
2981 Assert(pHostCpu->idCpu != NIL_RTCPUID);
2982 pVCpu->hmr0.s.idLastCpu = pHostCpu->idCpu;
2983 pVCpu->hmr0.s.cTlbFlushes = pHostCpu->cTlbFlushes;
2984 pVCpu->hmr0.s.fForceTLBFlush = false;
2985 return;
2986}
2987
2988
2989/**
2990 * Flushes the tagged-TLB entries for EPT+VPID CPUs as necessary.
2991 *
2992 * @param pHostCpu The HM physical-CPU structure.
2993 * @param pVCpu The cross context virtual CPU structure.
2994 * @param pVmcsInfo The VMCS info. object.
2995 *
2996 * @remarks All references to "ASID" in this function pertains to "VPID" in Intel's
2997 * nomenclature. The reason is, to avoid confusion in compare statements
2998 * since the host-CPU copies are named "ASID".
2999 *
3000 * @remarks Called with interrupts disabled.
3001 */
3002static void hmR0VmxFlushTaggedTlbBoth(PHMPHYSCPU pHostCpu, PVMCPUCC pVCpu, PCVMXVMCSINFO pVmcsInfo)
3003{
3004#ifdef VBOX_WITH_STATISTICS
3005 bool fTlbFlushed = false;
3006# define HMVMX_SET_TAGGED_TLB_FLUSHED() do { fTlbFlushed = true; } while (0)
3007# define HMVMX_UPDATE_FLUSH_SKIPPED_STAT() do { \
3008 if (!fTlbFlushed) \
3009 STAM_COUNTER_INC(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch); \
3010 } while (0)
3011#else
3012# define HMVMX_SET_TAGGED_TLB_FLUSHED() do { } while (0)
3013# define HMVMX_UPDATE_FLUSH_SKIPPED_STAT() do { } while (0)
3014#endif
3015
3016 AssertPtr(pVCpu);
3017 AssertPtr(pHostCpu);
3018 Assert(pHostCpu->idCpu != NIL_RTCPUID);
3019
3020 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
3021 AssertMsg(pVM->hmr0.s.fNestedPaging && pVM->hmr0.s.vmx.fVpid,
3022 ("hmR0VmxFlushTaggedTlbBoth cannot be invoked unless NestedPaging & VPID are enabled."
3023 "fNestedPaging=%RTbool fVpid=%RTbool", pVM->hmr0.s.fNestedPaging, pVM->hmr0.s.vmx.fVpid));
3024
3025 /*
3026 * Force a TLB flush for the first world-switch if the current CPU differs from the one we
3027 * ran on last. If the TLB flush count changed, another VM (VCPU rather) has hit the ASID
3028 * limit while flushing the TLB or the host CPU is online after a suspend/resume, so we
3029 * cannot reuse the current ASID anymore.
3030 */
3031 if ( pVCpu->hmr0.s.idLastCpu != pHostCpu->idCpu
3032 || pVCpu->hmr0.s.cTlbFlushes != pHostCpu->cTlbFlushes)
3033 {
3034 ++pHostCpu->uCurrentAsid;
3035 if (pHostCpu->uCurrentAsid >= g_uHmMaxAsid)
3036 {
3037 pHostCpu->uCurrentAsid = 1; /* Wraparound to 1; host uses 0. */
3038 pHostCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new VPID. */
3039 pHostCpu->fFlushAsidBeforeUse = true; /* All VCPUs that run on this host CPU must flush their new VPID before use. */
3040 }
3041
3042 pVCpu->hmr0.s.uCurrentAsid = pHostCpu->uCurrentAsid;
3043 pVCpu->hmr0.s.idLastCpu = pHostCpu->idCpu;
3044 pVCpu->hmr0.s.cTlbFlushes = pHostCpu->cTlbFlushes;
3045
3046 /*
3047 * Flush by EPT when we get rescheduled to a new host CPU to ensure EPT-only tagged mappings are also
3048 * invalidated. We don't need to flush-by-VPID here as flushing by EPT covers it. See @bugref{6568}.
3049 */
3050 hmR0VmxFlushEpt(pVCpu, pVmcsInfo, pVM->hmr0.s.vmx.enmTlbFlushEpt);
3051 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
3052 HMVMX_SET_TAGGED_TLB_FLUSHED();
3053 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH);
3054 }
3055 else if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH)) /* Check for explicit TLB flushes. */
3056 {
3057 /*
3058 * Changes to the EPT paging structure by VMM requires flushing-by-EPT as the CPU
3059 * creates guest-physical (ie. only EPT-tagged) mappings while traversing the EPT
3060 * tables when EPT is in use. Flushing-by-VPID will only flush linear (only
3061 * VPID-tagged) and combined (EPT+VPID tagged) mappings but not guest-physical
3062 * mappings, see @bugref{6568}.
3063 *
3064 * See Intel spec. 28.3.2 "Creating and Using Cached Translation Information".
3065 */
3066 hmR0VmxFlushEpt(pVCpu, pVmcsInfo, pVM->hmr0.s.vmx.enmTlbFlushEpt);
3067 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
3068 HMVMX_SET_TAGGED_TLB_FLUSHED();
3069 }
3070 else if (pVCpu->hm.s.vmx.fSwitchedNstGstFlushTlb)
3071 {
3072 /*
3073 * The nested-guest specifies its own guest-physical address to use as the APIC-access
3074 * address which requires flushing the TLB of EPT cached structures.
3075 *
3076 * See Intel spec. 28.3.3.4 "Guidelines for Use of the INVEPT Instruction".
3077 */
3078 hmR0VmxFlushEpt(pVCpu, pVmcsInfo, pVM->hmr0.s.vmx.enmTlbFlushEpt);
3079 pVCpu->hm.s.vmx.fSwitchedNstGstFlushTlb = false;
3080 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbNstGst);
3081 HMVMX_SET_TAGGED_TLB_FLUSHED();
3082 }
3083
3084
3085 pVCpu->hmr0.s.fForceTLBFlush = false;
3086 HMVMX_UPDATE_FLUSH_SKIPPED_STAT();
3087
3088 Assert(pVCpu->hmr0.s.idLastCpu == pHostCpu->idCpu);
3089 Assert(pVCpu->hmr0.s.cTlbFlushes == pHostCpu->cTlbFlushes);
3090 AssertMsg(pVCpu->hmr0.s.cTlbFlushes == pHostCpu->cTlbFlushes,
3091 ("Flush count mismatch for cpu %d (%u vs %u)\n", pHostCpu->idCpu, pVCpu->hmr0.s.cTlbFlushes, pHostCpu->cTlbFlushes));
3092 AssertMsg(pHostCpu->uCurrentAsid >= 1 && pHostCpu->uCurrentAsid < g_uHmMaxAsid,
3093 ("Cpu[%u] uCurrentAsid=%u cTlbFlushes=%u pVCpu->idLastCpu=%u pVCpu->cTlbFlushes=%u\n", pHostCpu->idCpu,
3094 pHostCpu->uCurrentAsid, pHostCpu->cTlbFlushes, pVCpu->hmr0.s.idLastCpu, pVCpu->hmr0.s.cTlbFlushes));
3095 AssertMsg(pVCpu->hmr0.s.uCurrentAsid >= 1 && pVCpu->hmr0.s.uCurrentAsid < g_uHmMaxAsid,
3096 ("Cpu[%u] pVCpu->uCurrentAsid=%u\n", pHostCpu->idCpu, pVCpu->hmr0.s.uCurrentAsid));
3097
3098 /* Update VMCS with the VPID. */
3099 int rc = VMXWriteVmcs16(VMX_VMCS16_VPID, pVCpu->hmr0.s.uCurrentAsid);
3100 AssertRC(rc);
3101
3102#undef HMVMX_SET_TAGGED_TLB_FLUSHED
3103}
3104
3105
3106/**
3107 * Flushes the tagged-TLB entries for EPT CPUs as necessary.
3108 *
3109 * @param pHostCpu The HM physical-CPU structure.
3110 * @param pVCpu The cross context virtual CPU structure.
3111 * @param pVmcsInfo The VMCS info. object.
3112 *
3113 * @remarks Called with interrupts disabled.
3114 */
3115static void hmR0VmxFlushTaggedTlbEpt(PHMPHYSCPU pHostCpu, PVMCPUCC pVCpu, PCVMXVMCSINFO pVmcsInfo)
3116{
3117 AssertPtr(pVCpu);
3118 AssertPtr(pHostCpu);
3119 Assert(pHostCpu->idCpu != NIL_RTCPUID);
3120 AssertMsg(pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging, ("hmR0VmxFlushTaggedTlbEpt cannot be invoked without NestedPaging."));
3121 AssertMsg(!pVCpu->CTX_SUFF(pVM)->hmr0.s.vmx.fVpid, ("hmR0VmxFlushTaggedTlbEpt cannot be invoked with VPID."));
3122
3123 /*
3124 * Force a TLB flush for the first world-switch if the current CPU differs from the one we ran on last.
3125 * A change in the TLB flush count implies the host CPU is online after a suspend/resume.
3126 */
3127 if ( pVCpu->hmr0.s.idLastCpu != pHostCpu->idCpu
3128 || pVCpu->hmr0.s.cTlbFlushes != pHostCpu->cTlbFlushes)
3129 {
3130 pVCpu->hmr0.s.fForceTLBFlush = true;
3131 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
3132 }
3133
3134 /* Check for explicit TLB flushes. */
3135 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
3136 {
3137 pVCpu->hmr0.s.fForceTLBFlush = true;
3138 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
3139 }
3140
3141 /* Check for TLB flushes while switching to/from a nested-guest. */
3142 if (pVCpu->hm.s.vmx.fSwitchedNstGstFlushTlb)
3143 {
3144 pVCpu->hmr0.s.fForceTLBFlush = true;
3145 pVCpu->hm.s.vmx.fSwitchedNstGstFlushTlb = false;
3146 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbNstGst);
3147 }
3148
3149 pVCpu->hmr0.s.idLastCpu = pHostCpu->idCpu;
3150 pVCpu->hmr0.s.cTlbFlushes = pHostCpu->cTlbFlushes;
3151
3152 if (pVCpu->hmr0.s.fForceTLBFlush)
3153 {
3154 hmR0VmxFlushEpt(pVCpu, pVmcsInfo, pVCpu->CTX_SUFF(pVM)->hmr0.s.vmx.enmTlbFlushEpt);
3155 pVCpu->hmr0.s.fForceTLBFlush = false;
3156 }
3157}
3158
3159
3160/**
3161 * Flushes the tagged-TLB entries for VPID CPUs as necessary.
3162 *
3163 * @param pHostCpu The HM physical-CPU structure.
3164 * @param pVCpu The cross context virtual CPU structure.
3165 *
3166 * @remarks Called with interrupts disabled.
3167 */
3168static void hmR0VmxFlushTaggedTlbVpid(PHMPHYSCPU pHostCpu, PVMCPUCC pVCpu)
3169{
3170 AssertPtr(pVCpu);
3171 AssertPtr(pHostCpu);
3172 Assert(pHostCpu->idCpu != NIL_RTCPUID);
3173 AssertMsg(pVCpu->CTX_SUFF(pVM)->hmr0.s.vmx.fVpid, ("hmR0VmxFlushTlbVpid cannot be invoked without VPID."));
3174 AssertMsg(!pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging, ("hmR0VmxFlushTlbVpid cannot be invoked with NestedPaging"));
3175
3176 /*
3177 * Force a TLB flush for the first world switch if the current CPU differs from the one we
3178 * ran on last. If the TLB flush count changed, another VM (VCPU rather) has hit the ASID
3179 * limit while flushing the TLB or the host CPU is online after a suspend/resume, so we
3180 * cannot reuse the current ASID anymore.
3181 */
3182 if ( pVCpu->hmr0.s.idLastCpu != pHostCpu->idCpu
3183 || pVCpu->hmr0.s.cTlbFlushes != pHostCpu->cTlbFlushes)
3184 {
3185 pVCpu->hmr0.s.fForceTLBFlush = true;
3186 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
3187 }
3188
3189 /* Check for explicit TLB flushes. */
3190 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
3191 {
3192 /*
3193 * If we ever support VPID flush combinations other than ALL or SINGLE-context (see
3194 * hmR0VmxSetupTaggedTlb()) we would need to explicitly flush in this case (add an
3195 * fExplicitFlush = true here and change the pHostCpu->fFlushAsidBeforeUse check below to
3196 * include fExplicitFlush's too) - an obscure corner case.
3197 */
3198 pVCpu->hmr0.s.fForceTLBFlush = true;
3199 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
3200 }
3201
3202 /* Check for TLB flushes while switching to/from a nested-guest. */
3203 if (pVCpu->hm.s.vmx.fSwitchedNstGstFlushTlb)
3204 {
3205 pVCpu->hmr0.s.fForceTLBFlush = true;
3206 pVCpu->hm.s.vmx.fSwitchedNstGstFlushTlb = false;
3207 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbNstGst);
3208 }
3209
3210 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
3211 pVCpu->hmr0.s.idLastCpu = pHostCpu->idCpu;
3212 if (pVCpu->hmr0.s.fForceTLBFlush)
3213 {
3214 ++pHostCpu->uCurrentAsid;
3215 if (pHostCpu->uCurrentAsid >= g_uHmMaxAsid)
3216 {
3217 pHostCpu->uCurrentAsid = 1; /* Wraparound to 1; host uses 0 */
3218 pHostCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new VPID. */
3219 pHostCpu->fFlushAsidBeforeUse = true; /* All VCPUs that run on this host CPU must flush their new VPID before use. */
3220 }
3221
3222 pVCpu->hmr0.s.fForceTLBFlush = false;
3223 pVCpu->hmr0.s.cTlbFlushes = pHostCpu->cTlbFlushes;
3224 pVCpu->hmr0.s.uCurrentAsid = pHostCpu->uCurrentAsid;
3225 if (pHostCpu->fFlushAsidBeforeUse)
3226 {
3227 if (pVM->hmr0.s.vmx.enmTlbFlushVpid == VMXTLBFLUSHVPID_SINGLE_CONTEXT)
3228 hmR0VmxFlushVpid(pVCpu, VMXTLBFLUSHVPID_SINGLE_CONTEXT, 0 /* GCPtr */);
3229 else if (pVM->hmr0.s.vmx.enmTlbFlushVpid == VMXTLBFLUSHVPID_ALL_CONTEXTS)
3230 {
3231 hmR0VmxFlushVpid(pVCpu, VMXTLBFLUSHVPID_ALL_CONTEXTS, 0 /* GCPtr */);
3232 pHostCpu->fFlushAsidBeforeUse = false;
3233 }
3234 else
3235 {
3236 /* hmR0VmxSetupTaggedTlb() ensures we never get here. Paranoia. */
3237 AssertMsgFailed(("Unsupported VPID-flush context type.\n"));
3238 }
3239 }
3240 }
3241
3242 AssertMsg(pVCpu->hmr0.s.cTlbFlushes == pHostCpu->cTlbFlushes,
3243 ("Flush count mismatch for cpu %d (%u vs %u)\n", pHostCpu->idCpu, pVCpu->hmr0.s.cTlbFlushes, pHostCpu->cTlbFlushes));
3244 AssertMsg(pHostCpu->uCurrentAsid >= 1 && pHostCpu->uCurrentAsid < g_uHmMaxAsid,
3245 ("Cpu[%u] uCurrentAsid=%u cTlbFlushes=%u pVCpu->idLastCpu=%u pVCpu->cTlbFlushes=%u\n", pHostCpu->idCpu,
3246 pHostCpu->uCurrentAsid, pHostCpu->cTlbFlushes, pVCpu->hmr0.s.idLastCpu, pVCpu->hmr0.s.cTlbFlushes));
3247 AssertMsg(pVCpu->hmr0.s.uCurrentAsid >= 1 && pVCpu->hmr0.s.uCurrentAsid < g_uHmMaxAsid,
3248 ("Cpu[%u] pVCpu->uCurrentAsid=%u\n", pHostCpu->idCpu, pVCpu->hmr0.s.uCurrentAsid));
3249
3250 int rc = VMXWriteVmcs16(VMX_VMCS16_VPID, pVCpu->hmr0.s.uCurrentAsid);
3251 AssertRC(rc);
3252}
3253
3254
3255/**
3256 * Flushes the guest TLB entry based on CPU capabilities.
3257 *
3258 * @param pHostCpu The HM physical-CPU structure.
3259 * @param pVCpu The cross context virtual CPU structure.
3260 * @param pVmcsInfo The VMCS info. object.
3261 *
3262 * @remarks Called with interrupts disabled.
3263 */
3264static void hmR0VmxFlushTaggedTlb(PHMPHYSCPU pHostCpu, PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
3265{
3266#ifdef HMVMX_ALWAYS_FLUSH_TLB
3267 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
3268#endif
3269 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
3270 switch (pVM->hmr0.s.vmx.enmTlbFlushType)
3271 {
3272 case VMXTLBFLUSHTYPE_EPT_VPID: hmR0VmxFlushTaggedTlbBoth(pHostCpu, pVCpu, pVmcsInfo); break;
3273 case VMXTLBFLUSHTYPE_EPT: hmR0VmxFlushTaggedTlbEpt(pHostCpu, pVCpu, pVmcsInfo); break;
3274 case VMXTLBFLUSHTYPE_VPID: hmR0VmxFlushTaggedTlbVpid(pHostCpu, pVCpu); break;
3275 case VMXTLBFLUSHTYPE_NONE: hmR0VmxFlushTaggedTlbNone(pHostCpu, pVCpu); break;
3276 default:
3277 AssertMsgFailed(("Invalid flush-tag function identifier\n"));
3278 break;
3279 }
3280 /* Don't assert that VMCPU_FF_TLB_FLUSH should no longer be pending. It can be set by other EMTs. */
3281}
3282
3283
3284/**
3285 * Sets up the appropriate tagged TLB-flush level and handler for flushing guest
3286 * TLB entries from the host TLB before VM-entry.
3287 *
3288 * @returns VBox status code.
3289 * @param pVM The cross context VM structure.
3290 */
3291static int hmR0VmxSetupTaggedTlb(PVMCC pVM)
3292{
3293 /*
3294 * Determine optimal flush type for nested paging.
3295 * We cannot ignore EPT if no suitable flush-types is supported by the CPU as we've already setup
3296 * unrestricted guest execution (see hmR3InitFinalizeR0()).
3297 */
3298 if (pVM->hmr0.s.fNestedPaging)
3299 {
3300 if (g_HmMsrs.u.vmx.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT)
3301 {
3302 if (g_HmMsrs.u.vmx.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_SINGLE_CONTEXT)
3303 pVM->hmr0.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_SINGLE_CONTEXT;
3304 else if (g_HmMsrs.u.vmx.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_ALL_CONTEXTS)
3305 pVM->hmr0.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_ALL_CONTEXTS;
3306 else
3307 {
3308 /* Shouldn't happen. EPT is supported but no suitable flush-types supported. */
3309 pVM->hmr0.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_NOT_SUPPORTED;
3310 VMCC_GET_CPU_0(pVM)->hm.s.u32HMError = VMX_UFC_EPT_FLUSH_TYPE_UNSUPPORTED;
3311 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3312 }
3313
3314 /* Make sure the write-back cacheable memory type for EPT is supported. */
3315 if (RT_UNLIKELY(!(g_HmMsrs.u.vmx.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_EMT_WB)))
3316 {
3317 pVM->hmr0.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_NOT_SUPPORTED;
3318 VMCC_GET_CPU_0(pVM)->hm.s.u32HMError = VMX_UFC_EPT_MEM_TYPE_NOT_WB;
3319 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3320 }
3321
3322 /* EPT requires a page-walk length of 4. */
3323 if (RT_UNLIKELY(!(g_HmMsrs.u.vmx.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_PAGE_WALK_LENGTH_4)))
3324 {
3325 pVM->hmr0.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_NOT_SUPPORTED;
3326 VMCC_GET_CPU_0(pVM)->hm.s.u32HMError = VMX_UFC_EPT_PAGE_WALK_LENGTH_UNSUPPORTED;
3327 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3328 }
3329 }
3330 else
3331 {
3332 /* Shouldn't happen. EPT is supported but INVEPT instruction is not supported. */
3333 pVM->hmr0.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_NOT_SUPPORTED;
3334 VMCC_GET_CPU_0(pVM)->hm.s.u32HMError = VMX_UFC_EPT_INVEPT_UNAVAILABLE;
3335 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3336 }
3337 }
3338
3339 /*
3340 * Determine optimal flush type for VPID.
3341 */
3342 if (pVM->hmr0.s.vmx.fVpid)
3343 {
3344 if (g_HmMsrs.u.vmx.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID)
3345 {
3346 if (g_HmMsrs.u.vmx.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT)
3347 pVM->hmr0.s.vmx.enmTlbFlushVpid = VMXTLBFLUSHVPID_SINGLE_CONTEXT;
3348 else if (g_HmMsrs.u.vmx.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_ALL_CONTEXTS)
3349 pVM->hmr0.s.vmx.enmTlbFlushVpid = VMXTLBFLUSHVPID_ALL_CONTEXTS;
3350 else
3351 {
3352 /* Neither SINGLE nor ALL-context flush types for VPID is supported by the CPU. Ignore VPID capability. */
3353 if (g_HmMsrs.u.vmx.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR)
3354 LogRelFunc(("Only INDIV_ADDR supported. Ignoring VPID.\n"));
3355 if (g_HmMsrs.u.vmx.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT_RETAIN_GLOBALS)
3356 LogRelFunc(("Only SINGLE_CONTEXT_RETAIN_GLOBALS supported. Ignoring VPID.\n"));
3357 pVM->hmr0.s.vmx.enmTlbFlushVpid = VMXTLBFLUSHVPID_NOT_SUPPORTED;
3358 pVM->hmr0.s.vmx.fVpid = false;
3359 }
3360 }
3361 else
3362 {
3363 /* Shouldn't happen. VPID is supported but INVVPID is not supported by the CPU. Ignore VPID capability. */
3364 Log4Func(("VPID supported without INVEPT support. Ignoring VPID.\n"));
3365 pVM->hmr0.s.vmx.enmTlbFlushVpid = VMXTLBFLUSHVPID_NOT_SUPPORTED;
3366 pVM->hmr0.s.vmx.fVpid = false;
3367 }
3368 }
3369
3370 /*
3371 * Setup the handler for flushing tagged-TLBs.
3372 */
3373 if (pVM->hmr0.s.fNestedPaging && pVM->hmr0.s.vmx.fVpid)
3374 pVM->hmr0.s.vmx.enmTlbFlushType = VMXTLBFLUSHTYPE_EPT_VPID;
3375 else if (pVM->hmr0.s.fNestedPaging)
3376 pVM->hmr0.s.vmx.enmTlbFlushType = VMXTLBFLUSHTYPE_EPT;
3377 else if (pVM->hmr0.s.vmx.fVpid)
3378 pVM->hmr0.s.vmx.enmTlbFlushType = VMXTLBFLUSHTYPE_VPID;
3379 else
3380 pVM->hmr0.s.vmx.enmTlbFlushType = VMXTLBFLUSHTYPE_NONE;
3381
3382
3383 /*
3384 * Copy out the result to ring-3.
3385 */
3386 pVM->hm.s.ForR3.vmx.fVpid = pVM->hmr0.s.vmx.fVpid;
3387 pVM->hm.s.ForR3.vmx.enmTlbFlushType = pVM->hmr0.s.vmx.enmTlbFlushType;
3388 pVM->hm.s.ForR3.vmx.enmTlbFlushEpt = pVM->hmr0.s.vmx.enmTlbFlushEpt;
3389 pVM->hm.s.ForR3.vmx.enmTlbFlushVpid = pVM->hmr0.s.vmx.enmTlbFlushVpid;
3390 return VINF_SUCCESS;
3391}
3392
3393
3394/**
3395 * Sets up the LBR MSR ranges based on the host CPU.
3396 *
3397 * @returns VBox status code.
3398 * @param pVM The cross context VM structure.
3399 */
3400static int hmR0VmxSetupLbrMsrRange(PVMCC pVM)
3401{
3402 Assert(pVM->hmr0.s.vmx.fLbr);
3403 uint32_t idLbrFromIpMsrFirst;
3404 uint32_t idLbrFromIpMsrLast;
3405 uint32_t idLbrToIpMsrFirst;
3406 uint32_t idLbrToIpMsrLast;
3407 uint32_t idLbrTosMsr;
3408
3409 /*
3410 * Determine the LBR MSRs supported for this host CPU family and model.
3411 *
3412 * See Intel spec. 17.4.8 "LBR Stack".
3413 * See Intel "Model-Specific Registers" spec.
3414 */
3415 uint32_t const uFamilyModel = (pVM->cpum.ro.HostFeatures.uFamily << 8)
3416 | pVM->cpum.ro.HostFeatures.uModel;
3417 switch (uFamilyModel)
3418 {
3419 case 0x0f01: case 0x0f02:
3420 idLbrFromIpMsrFirst = MSR_P4_LASTBRANCH_0;
3421 idLbrFromIpMsrLast = MSR_P4_LASTBRANCH_3;
3422 idLbrToIpMsrFirst = 0x0;
3423 idLbrToIpMsrLast = 0x0;
3424 idLbrTosMsr = MSR_P4_LASTBRANCH_TOS;
3425 break;
3426
3427 case 0x065c: case 0x065f: case 0x064e: case 0x065e: case 0x068e:
3428 case 0x069e: case 0x0655: case 0x0666: case 0x067a: case 0x0667:
3429 case 0x066a: case 0x066c: case 0x067d: case 0x067e:
3430 idLbrFromIpMsrFirst = MSR_LASTBRANCH_0_FROM_IP;
3431 idLbrFromIpMsrLast = MSR_LASTBRANCH_31_FROM_IP;
3432 idLbrToIpMsrFirst = MSR_LASTBRANCH_0_TO_IP;
3433 idLbrToIpMsrLast = MSR_LASTBRANCH_31_TO_IP;
3434 idLbrTosMsr = MSR_LASTBRANCH_TOS;
3435 break;
3436
3437 case 0x063d: case 0x0647: case 0x064f: case 0x0656: case 0x063c:
3438 case 0x0645: case 0x0646: case 0x063f: case 0x062a: case 0x062d:
3439 case 0x063a: case 0x063e: case 0x061a: case 0x061e: case 0x061f:
3440 case 0x062e: case 0x0625: case 0x062c: case 0x062f:
3441 idLbrFromIpMsrFirst = MSR_LASTBRANCH_0_FROM_IP;
3442 idLbrFromIpMsrLast = MSR_LASTBRANCH_15_FROM_IP;
3443 idLbrToIpMsrFirst = MSR_LASTBRANCH_0_TO_IP;
3444 idLbrToIpMsrLast = MSR_LASTBRANCH_15_TO_IP;
3445 idLbrTosMsr = MSR_LASTBRANCH_TOS;
3446 break;
3447
3448 case 0x0617: case 0x061d: case 0x060f:
3449 idLbrFromIpMsrFirst = MSR_CORE2_LASTBRANCH_0_FROM_IP;
3450 idLbrFromIpMsrLast = MSR_CORE2_LASTBRANCH_3_FROM_IP;
3451 idLbrToIpMsrFirst = MSR_CORE2_LASTBRANCH_0_TO_IP;
3452 idLbrToIpMsrLast = MSR_CORE2_LASTBRANCH_3_TO_IP;
3453 idLbrTosMsr = MSR_CORE2_LASTBRANCH_TOS;
3454 break;
3455
3456 /* Atom and related microarchitectures we don't care about:
3457 case 0x0637: case 0x064a: case 0x064c: case 0x064d: case 0x065a:
3458 case 0x065d: case 0x061c: case 0x0626: case 0x0627: case 0x0635:
3459 case 0x0636: */
3460 /* All other CPUs: */
3461 default:
3462 {
3463 LogRelFunc(("Could not determine LBR stack size for the CPU model %#x\n", uFamilyModel));
3464 VMCC_GET_CPU_0(pVM)->hm.s.u32HMError = VMX_UFC_LBR_STACK_SIZE_UNKNOWN;
3465 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3466 }
3467 }
3468
3469 /*
3470 * Validate.
3471 */
3472 uint32_t const cLbrStack = idLbrFromIpMsrLast - idLbrFromIpMsrFirst + 1;
3473 PCVMCPU pVCpu0 = VMCC_GET_CPU_0(pVM);
3474 AssertCompile( RT_ELEMENTS(pVCpu0->hm.s.vmx.VmcsInfo.au64LbrFromIpMsr)
3475 == RT_ELEMENTS(pVCpu0->hm.s.vmx.VmcsInfo.au64LbrToIpMsr));
3476 if (cLbrStack > RT_ELEMENTS(pVCpu0->hm.s.vmx.VmcsInfo.au64LbrFromIpMsr))
3477 {
3478 LogRelFunc(("LBR stack size of the CPU (%u) exceeds our buffer size\n", cLbrStack));
3479 VMCC_GET_CPU_0(pVM)->hm.s.u32HMError = VMX_UFC_LBR_STACK_SIZE_OVERFLOW;
3480 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3481 }
3482 NOREF(pVCpu0);
3483
3484 /*
3485 * Update the LBR info. to the VM struct. for use later.
3486 */
3487 pVM->hmr0.s.vmx.idLbrTosMsr = idLbrTosMsr;
3488
3489 pVM->hm.s.ForR3.vmx.idLbrFromIpMsrFirst = pVM->hmr0.s.vmx.idLbrFromIpMsrFirst = idLbrFromIpMsrFirst;
3490 pVM->hm.s.ForR3.vmx.idLbrFromIpMsrLast = pVM->hmr0.s.vmx.idLbrFromIpMsrLast = idLbrFromIpMsrLast;
3491
3492 pVM->hm.s.ForR3.vmx.idLbrToIpMsrFirst = pVM->hmr0.s.vmx.idLbrToIpMsrFirst = idLbrToIpMsrFirst;
3493 pVM->hm.s.ForR3.vmx.idLbrToIpMsrLast = pVM->hmr0.s.vmx.idLbrToIpMsrLast = idLbrToIpMsrLast;
3494 return VINF_SUCCESS;
3495}
3496
3497
3498#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
3499/**
3500 * Sets up the shadow VMCS fields arrays.
3501 *
3502 * This function builds arrays of VMCS fields to sync the shadow VMCS later while
3503 * executing the guest.
3504 *
3505 * @returns VBox status code.
3506 * @param pVM The cross context VM structure.
3507 */
3508static int hmR0VmxSetupShadowVmcsFieldsArrays(PVMCC pVM)
3509{
3510 /*
3511 * Paranoia. Ensure we haven't exposed the VMWRITE-All VMX feature to the guest
3512 * when the host does not support it.
3513 */
3514 bool const fGstVmwriteAll = pVM->cpum.ro.GuestFeatures.fVmxVmwriteAll;
3515 if ( !fGstVmwriteAll
3516 || (g_HmMsrs.u.vmx.u64Misc & VMX_MISC_VMWRITE_ALL))
3517 { /* likely. */ }
3518 else
3519 {
3520 LogRelFunc(("VMX VMWRITE-All feature exposed to the guest but host CPU does not support it!\n"));
3521 VMCC_GET_CPU_0(pVM)->hm.s.u32HMError = VMX_UFC_GST_HOST_VMWRITE_ALL;
3522 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3523 }
3524
3525 uint32_t const cVmcsFields = RT_ELEMENTS(g_aVmcsFields);
3526 uint32_t cRwFields = 0;
3527 uint32_t cRoFields = 0;
3528 for (uint32_t i = 0; i < cVmcsFields; i++)
3529 {
3530 VMXVMCSFIELD VmcsField;
3531 VmcsField.u = g_aVmcsFields[i];
3532
3533 /*
3534 * We will be writing "FULL" (64-bit) fields while syncing the shadow VMCS.
3535 * Therefore, "HIGH" (32-bit portion of 64-bit) fields must not be included
3536 * in the shadow VMCS fields array as they would be redundant.
3537 *
3538 * If the VMCS field depends on a CPU feature that is not exposed to the guest,
3539 * we must not include it in the shadow VMCS fields array. Guests attempting to
3540 * VMREAD/VMWRITE such VMCS fields would cause a VM-exit and we shall emulate
3541 * the required behavior.
3542 */
3543 if ( VmcsField.n.fAccessType == VMX_VMCSFIELD_ACCESS_FULL
3544 && CPUMIsGuestVmxVmcsFieldValid(pVM, VmcsField.u))
3545 {
3546 /*
3547 * Read-only fields are placed in a separate array so that while syncing shadow
3548 * VMCS fields later (which is more performance critical) we can avoid branches.
3549 *
3550 * However, if the guest can write to all fields (including read-only fields),
3551 * we treat it a as read/write field. Otherwise, writing to these fields would
3552 * cause a VMWRITE instruction error while syncing the shadow VMCS.
3553 */
3554 if ( fGstVmwriteAll
3555 || !VMXIsVmcsFieldReadOnly(VmcsField.u))
3556 pVM->hmr0.s.vmx.paShadowVmcsFields[cRwFields++] = VmcsField.u;
3557 else
3558 pVM->hmr0.s.vmx.paShadowVmcsRoFields[cRoFields++] = VmcsField.u;
3559 }
3560 }
3561
3562 /* Update the counts. */
3563 pVM->hmr0.s.vmx.cShadowVmcsFields = cRwFields;
3564 pVM->hmr0.s.vmx.cShadowVmcsRoFields = cRoFields;
3565 return VINF_SUCCESS;
3566}
3567
3568
3569/**
3570 * Sets up the VMREAD and VMWRITE bitmaps.
3571 *
3572 * @param pVM The cross context VM structure.
3573 */
3574static void hmR0VmxSetupVmreadVmwriteBitmaps(PVMCC pVM)
3575{
3576 /*
3577 * By default, ensure guest attempts to access any VMCS fields cause VM-exits.
3578 */
3579 uint32_t const cbBitmap = X86_PAGE_4K_SIZE;
3580 uint8_t *pbVmreadBitmap = (uint8_t *)pVM->hmr0.s.vmx.pvVmreadBitmap;
3581 uint8_t *pbVmwriteBitmap = (uint8_t *)pVM->hmr0.s.vmx.pvVmwriteBitmap;
3582 ASMMemFill32(pbVmreadBitmap, cbBitmap, UINT32_C(0xffffffff));
3583 ASMMemFill32(pbVmwriteBitmap, cbBitmap, UINT32_C(0xffffffff));
3584
3585 /*
3586 * Skip intercepting VMREAD/VMWRITE to guest read/write fields in the
3587 * VMREAD and VMWRITE bitmaps.
3588 */
3589 {
3590 uint32_t const *paShadowVmcsFields = pVM->hmr0.s.vmx.paShadowVmcsFields;
3591 uint32_t const cShadowVmcsFields = pVM->hmr0.s.vmx.cShadowVmcsFields;
3592 for (uint32_t i = 0; i < cShadowVmcsFields; i++)
3593 {
3594 uint32_t const uVmcsField = paShadowVmcsFields[i];
3595 Assert(!(uVmcsField & VMX_VMCSFIELD_RSVD_MASK));
3596 Assert(uVmcsField >> 3 < cbBitmap);
3597 ASMBitClear(pbVmreadBitmap + (uVmcsField >> 3), uVmcsField & 7);
3598 ASMBitClear(pbVmwriteBitmap + (uVmcsField >> 3), uVmcsField & 7);
3599 }
3600 }
3601
3602 /*
3603 * Skip intercepting VMREAD for guest read-only fields in the VMREAD bitmap
3604 * if the host supports VMWRITE to all supported VMCS fields.
3605 */
3606 if (g_HmMsrs.u.vmx.u64Misc & VMX_MISC_VMWRITE_ALL)
3607 {
3608 uint32_t const *paShadowVmcsRoFields = pVM->hmr0.s.vmx.paShadowVmcsRoFields;
3609 uint32_t const cShadowVmcsRoFields = pVM->hmr0.s.vmx.cShadowVmcsRoFields;
3610 for (uint32_t i = 0; i < cShadowVmcsRoFields; i++)
3611 {
3612 uint32_t const uVmcsField = paShadowVmcsRoFields[i];
3613 Assert(!(uVmcsField & VMX_VMCSFIELD_RSVD_MASK));
3614 Assert(uVmcsField >> 3 < cbBitmap);
3615 ASMBitClear(pbVmreadBitmap + (uVmcsField >> 3), uVmcsField & 7);
3616 }
3617 }
3618}
3619#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
3620
3621
3622/**
3623 * Sets up the virtual-APIC page address for the VMCS.
3624 *
3625 * @param pVmcsInfo The VMCS info. object.
3626 */
3627DECLINLINE(void) hmR0VmxSetupVmcsVirtApicAddr(PCVMXVMCSINFO pVmcsInfo)
3628{
3629 RTHCPHYS const HCPhysVirtApic = pVmcsInfo->HCPhysVirtApic;
3630 Assert(HCPhysVirtApic != NIL_RTHCPHYS);
3631 Assert(!(HCPhysVirtApic & 0xfff)); /* Bits 11:0 MBZ. */
3632 int rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_VIRT_APIC_PAGEADDR_FULL, HCPhysVirtApic);
3633 AssertRC(rc);
3634}
3635
3636
3637/**
3638 * Sets up the MSR-bitmap address for the VMCS.
3639 *
3640 * @param pVmcsInfo The VMCS info. object.
3641 */
3642DECLINLINE(void) hmR0VmxSetupVmcsMsrBitmapAddr(PCVMXVMCSINFO pVmcsInfo)
3643{
3644 RTHCPHYS const HCPhysMsrBitmap = pVmcsInfo->HCPhysMsrBitmap;
3645 Assert(HCPhysMsrBitmap != NIL_RTHCPHYS);
3646 Assert(!(HCPhysMsrBitmap & 0xfff)); /* Bits 11:0 MBZ. */
3647 int rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_MSR_BITMAP_FULL, HCPhysMsrBitmap);
3648 AssertRC(rc);
3649}
3650
3651
3652/**
3653 * Sets up the APIC-access page address for the VMCS.
3654 *
3655 * @param pVCpu The cross context virtual CPU structure.
3656 */
3657DECLINLINE(void) hmR0VmxSetupVmcsApicAccessAddr(PVMCPUCC pVCpu)
3658{
3659 RTHCPHYS const HCPhysApicAccess = pVCpu->CTX_SUFF(pVM)->hmr0.s.vmx.HCPhysApicAccess;
3660 Assert(HCPhysApicAccess != NIL_RTHCPHYS);
3661 Assert(!(HCPhysApicAccess & 0xfff)); /* Bits 11:0 MBZ. */
3662 int rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL, HCPhysApicAccess);
3663 AssertRC(rc);
3664}
3665
3666#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
3667
3668/**
3669 * Sets up the VMREAD bitmap address for the VMCS.
3670 *
3671 * @param pVCpu The cross context virtual CPU structure.
3672 */
3673DECLINLINE(void) hmR0VmxSetupVmcsVmreadBitmapAddr(PVMCPUCC pVCpu)
3674{
3675 RTHCPHYS const HCPhysVmreadBitmap = pVCpu->CTX_SUFF(pVM)->hmr0.s.vmx.HCPhysVmreadBitmap;
3676 Assert(HCPhysVmreadBitmap != NIL_RTHCPHYS);
3677 Assert(!(HCPhysVmreadBitmap & 0xfff)); /* Bits 11:0 MBZ. */
3678 int rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_VMREAD_BITMAP_FULL, HCPhysVmreadBitmap);
3679 AssertRC(rc);
3680}
3681
3682
3683/**
3684 * Sets up the VMWRITE bitmap address for the VMCS.
3685 *
3686 * @param pVCpu The cross context virtual CPU structure.
3687 */
3688DECLINLINE(void) hmR0VmxSetupVmcsVmwriteBitmapAddr(PVMCPUCC pVCpu)
3689{
3690 RTHCPHYS const HCPhysVmwriteBitmap = pVCpu->CTX_SUFF(pVM)->hmr0.s.vmx.HCPhysVmwriteBitmap;
3691 Assert(HCPhysVmwriteBitmap != NIL_RTHCPHYS);
3692 Assert(!(HCPhysVmwriteBitmap & 0xfff)); /* Bits 11:0 MBZ. */
3693 int rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_VMWRITE_BITMAP_FULL, HCPhysVmwriteBitmap);
3694 AssertRC(rc);
3695}
3696
3697#endif
3698
3699/**
3700 * Sets up the VM-entry MSR load, VM-exit MSR-store and VM-exit MSR-load addresses
3701 * in the VMCS.
3702 *
3703 * @returns VBox status code.
3704 * @param pVmcsInfo The VMCS info. object.
3705 */
3706DECLINLINE(int) hmR0VmxSetupVmcsAutoLoadStoreMsrAddrs(PVMXVMCSINFO pVmcsInfo)
3707{
3708 RTHCPHYS const HCPhysGuestMsrLoad = pVmcsInfo->HCPhysGuestMsrLoad;
3709 Assert(HCPhysGuestMsrLoad != NIL_RTHCPHYS);
3710 Assert(!(HCPhysGuestMsrLoad & 0xf)); /* Bits 3:0 MBZ. */
3711
3712 RTHCPHYS const HCPhysGuestMsrStore = pVmcsInfo->HCPhysGuestMsrStore;
3713 Assert(HCPhysGuestMsrStore != NIL_RTHCPHYS);
3714 Assert(!(HCPhysGuestMsrStore & 0xf)); /* Bits 3:0 MBZ. */
3715
3716 RTHCPHYS const HCPhysHostMsrLoad = pVmcsInfo->HCPhysHostMsrLoad;
3717 Assert(HCPhysHostMsrLoad != NIL_RTHCPHYS);
3718 Assert(!(HCPhysHostMsrLoad & 0xf)); /* Bits 3:0 MBZ. */
3719
3720 int rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_FULL, HCPhysGuestMsrLoad); AssertRC(rc);
3721 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_EXIT_MSR_STORE_FULL, HCPhysGuestMsrStore); AssertRC(rc);
3722 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_EXIT_MSR_LOAD_FULL, HCPhysHostMsrLoad); AssertRC(rc);
3723 return VINF_SUCCESS;
3724}
3725
3726
3727/**
3728 * Sets up MSR permissions in the MSR bitmap of a VMCS info. object.
3729 *
3730 * @param pVCpu The cross context virtual CPU structure.
3731 * @param pVmcsInfo The VMCS info. object.
3732 */
3733static void hmR0VmxSetupVmcsMsrPermissions(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
3734{
3735 Assert(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS);
3736
3737 /*
3738 * By default, ensure guest attempts to access any MSR cause VM-exits.
3739 * This shall later be relaxed for specific MSRs as necessary.
3740 *
3741 * Note: For nested-guests, the entire bitmap will be merged prior to
3742 * executing the nested-guest using hardware-assisted VMX and hence there
3743 * is no need to perform this operation. See hmR0VmxMergeMsrBitmapNested.
3744 */
3745 Assert(pVmcsInfo->pvMsrBitmap);
3746 ASMMemFill32(pVmcsInfo->pvMsrBitmap, X86_PAGE_4K_SIZE, UINT32_C(0xffffffff));
3747
3748 /*
3749 * The guest can access the following MSRs (read, write) without causing
3750 * VM-exits; they are loaded/stored automatically using fields in the VMCS.
3751 */
3752 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
3753 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, false, MSR_IA32_SYSENTER_CS, VMXMSRPM_ALLOW_RD_WR);
3754 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, false, MSR_IA32_SYSENTER_ESP, VMXMSRPM_ALLOW_RD_WR);
3755 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, false, MSR_IA32_SYSENTER_EIP, VMXMSRPM_ALLOW_RD_WR);
3756 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, false, MSR_K8_GS_BASE, VMXMSRPM_ALLOW_RD_WR);
3757 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, false, MSR_K8_FS_BASE, VMXMSRPM_ALLOW_RD_WR);
3758
3759 /*
3760 * The IA32_PRED_CMD and IA32_FLUSH_CMD MSRs are write-only and has no state
3761 * associated with then. We never need to intercept access (writes need to be
3762 * executed without causing a VM-exit, reads will #GP fault anyway).
3763 *
3764 * The IA32_SPEC_CTRL MSR is read/write and has state. We allow the guest to
3765 * read/write them. We swap the guest/host MSR value using the
3766 * auto-load/store MSR area.
3767 */
3768 if (pVM->cpum.ro.GuestFeatures.fIbpb)
3769 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, false, MSR_IA32_PRED_CMD, VMXMSRPM_ALLOW_RD_WR);
3770 if (pVM->cpum.ro.GuestFeatures.fFlushCmd)
3771 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, false, MSR_IA32_FLUSH_CMD, VMXMSRPM_ALLOW_RD_WR);
3772 if (pVM->cpum.ro.GuestFeatures.fIbrs)
3773 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, false, MSR_IA32_SPEC_CTRL, VMXMSRPM_ALLOW_RD_WR);
3774
3775 /*
3776 * Allow full read/write access for the following MSRs (mandatory for VT-x)
3777 * required for 64-bit guests.
3778 */
3779 if (pVM->hmr0.s.fAllow64BitGuests)
3780 {
3781 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, false, MSR_K8_LSTAR, VMXMSRPM_ALLOW_RD_WR);
3782 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, false, MSR_K6_STAR, VMXMSRPM_ALLOW_RD_WR);
3783 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, false, MSR_K8_SF_MASK, VMXMSRPM_ALLOW_RD_WR);
3784 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, false, MSR_K8_KERNEL_GS_BASE, VMXMSRPM_ALLOW_RD_WR);
3785 }
3786
3787 /*
3788 * IA32_EFER MSR is always intercepted, see @bugref{9180#c37}.
3789 */
3790#ifdef VBOX_STRICT
3791 Assert(pVmcsInfo->pvMsrBitmap);
3792 uint32_t const fMsrpmEfer = CPUMGetVmxMsrPermission(pVmcsInfo->pvMsrBitmap, MSR_K6_EFER);
3793 Assert(fMsrpmEfer == VMXMSRPM_EXIT_RD_WR);
3794#endif
3795}
3796
3797
3798/**
3799 * Sets up pin-based VM-execution controls in the VMCS.
3800 *
3801 * @returns VBox status code.
3802 * @param pVCpu The cross context virtual CPU structure.
3803 * @param pVmcsInfo The VMCS info. object.
3804 */
3805static int hmR0VmxSetupVmcsPinCtls(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
3806{
3807 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
3808 uint32_t fVal = g_HmMsrs.u.vmx.PinCtls.n.allowed0; /* Bits set here must always be set. */
3809 uint32_t const fZap = g_HmMsrs.u.vmx.PinCtls.n.allowed1; /* Bits cleared here must always be cleared. */
3810
3811 fVal |= VMX_PIN_CTLS_EXT_INT_EXIT /* External interrupts cause a VM-exit. */
3812 | VMX_PIN_CTLS_NMI_EXIT; /* Non-maskable interrupts (NMIs) cause a VM-exit. */
3813
3814 if (g_HmMsrs.u.vmx.PinCtls.n.allowed1 & VMX_PIN_CTLS_VIRT_NMI)
3815 fVal |= VMX_PIN_CTLS_VIRT_NMI; /* Use virtual NMIs and virtual-NMI blocking features. */
3816
3817 /* Enable the VMX-preemption timer. */
3818 if (pVM->hmr0.s.vmx.fUsePreemptTimer)
3819 {
3820 Assert(g_HmMsrs.u.vmx.PinCtls.n.allowed1 & VMX_PIN_CTLS_PREEMPT_TIMER);
3821 fVal |= VMX_PIN_CTLS_PREEMPT_TIMER;
3822 }
3823
3824#if 0
3825 /* Enable posted-interrupt processing. */
3826 if (pVM->hm.s.fPostedIntrs)
3827 {
3828 Assert(g_HmMsrs.u.vmx.PinCtls.n.allowed1 & VMX_PIN_CTLS_POSTED_INT);
3829 Assert(g_HmMsrs.u.vmx.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_ACK_EXT_INT);
3830 fVal |= VMX_PIN_CTLS_POSTED_INT;
3831 }
3832#endif
3833
3834 if ((fVal & fZap) != fVal)
3835 {
3836 LogRelFunc(("Invalid pin-based VM-execution controls combo! Cpu=%#RX32 fVal=%#RX32 fZap=%#RX32\n",
3837 g_HmMsrs.u.vmx.PinCtls.n.allowed0, fVal, fZap));
3838 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PIN_EXEC;
3839 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3840 }
3841
3842 /* Commit it to the VMCS and update our cache. */
3843 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, fVal);
3844 AssertRC(rc);
3845 pVmcsInfo->u32PinCtls = fVal;
3846
3847 return VINF_SUCCESS;
3848}
3849
3850
3851/**
3852 * Sets up secondary processor-based VM-execution controls in the VMCS.
3853 *
3854 * @returns VBox status code.
3855 * @param pVCpu The cross context virtual CPU structure.
3856 * @param pVmcsInfo The VMCS info. object.
3857 */
3858static int hmR0VmxSetupVmcsProcCtls2(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
3859{
3860 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
3861 uint32_t fVal = g_HmMsrs.u.vmx.ProcCtls2.n.allowed0; /* Bits set here must be set in the VMCS. */
3862 uint32_t const fZap = g_HmMsrs.u.vmx.ProcCtls2.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
3863
3864 /* WBINVD causes a VM-exit. */
3865 if (g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_WBINVD_EXIT)
3866 fVal |= VMX_PROC_CTLS2_WBINVD_EXIT;
3867
3868 /* Enable EPT (aka nested-paging). */
3869 if (pVM->hmr0.s.fNestedPaging)
3870 fVal |= VMX_PROC_CTLS2_EPT;
3871
3872 /* Enable the INVPCID instruction if we expose it to the guest and is supported
3873 by the hardware. Without this, guest executing INVPCID would cause a #UD. */
3874 if ( pVM->cpum.ro.GuestFeatures.fInvpcid
3875 && (g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_INVPCID))
3876 fVal |= VMX_PROC_CTLS2_INVPCID;
3877
3878 /* Enable VPID. */
3879 if (pVM->hmr0.s.vmx.fVpid)
3880 fVal |= VMX_PROC_CTLS2_VPID;
3881
3882 /* Enable unrestricted guest execution. */
3883 if (pVM->hmr0.s.vmx.fUnrestrictedGuest)
3884 fVal |= VMX_PROC_CTLS2_UNRESTRICTED_GUEST;
3885
3886#if 0
3887 if (pVM->hm.s.fVirtApicRegs)
3888 {
3889 /* Enable APIC-register virtualization. */
3890 Assert(g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_APIC_REG_VIRT);
3891 fVal |= VMX_PROC_CTLS2_APIC_REG_VIRT;
3892
3893 /* Enable virtual-interrupt delivery. */
3894 Assert(g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VIRT_INTR_DELIVERY);
3895 fVal |= VMX_PROC_CTLS2_VIRT_INTR_DELIVERY;
3896 }
3897#endif
3898
3899 /* Virtualize-APIC accesses if supported by the CPU. The virtual-APIC page is
3900 where the TPR shadow resides. */
3901 /** @todo VIRT_X2APIC support, it's mutually exclusive with this. So must be
3902 * done dynamically. */
3903 if (g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
3904 {
3905 fVal |= VMX_PROC_CTLS2_VIRT_APIC_ACCESS;
3906 hmR0VmxSetupVmcsApicAccessAddr(pVCpu);
3907 }
3908
3909 /* Enable the RDTSCP instruction if we expose it to the guest and is supported
3910 by the hardware. Without this, guest executing RDTSCP would cause a #UD. */
3911 if ( pVM->cpum.ro.GuestFeatures.fRdTscP
3912 && (g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_RDTSCP))
3913 fVal |= VMX_PROC_CTLS2_RDTSCP;
3914
3915 /* Enable Pause-Loop exiting. */
3916 if ( (g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_PAUSE_LOOP_EXIT)
3917 && pVM->hm.s.vmx.cPleGapTicks
3918 && pVM->hm.s.vmx.cPleWindowTicks)
3919 {
3920 fVal |= VMX_PROC_CTLS2_PAUSE_LOOP_EXIT;
3921
3922 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PLE_GAP, pVM->hm.s.vmx.cPleGapTicks); AssertRC(rc);
3923 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PLE_WINDOW, pVM->hm.s.vmx.cPleWindowTicks); AssertRC(rc);
3924 }
3925
3926 if ((fVal & fZap) != fVal)
3927 {
3928 LogRelFunc(("Invalid secondary processor-based VM-execution controls combo! cpu=%#RX32 fVal=%#RX32 fZap=%#RX32\n",
3929 g_HmMsrs.u.vmx.ProcCtls2.n.allowed0, fVal, fZap));
3930 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_EXEC2;
3931 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3932 }
3933
3934 /* Commit it to the VMCS and update our cache. */
3935 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, fVal);
3936 AssertRC(rc);
3937 pVmcsInfo->u32ProcCtls2 = fVal;
3938
3939 return VINF_SUCCESS;
3940}
3941
3942
3943/**
3944 * Sets up processor-based VM-execution controls in the VMCS.
3945 *
3946 * @returns VBox status code.
3947 * @param pVCpu The cross context virtual CPU structure.
3948 * @param pVmcsInfo The VMCS info. object.
3949 */
3950static int hmR0VmxSetupVmcsProcCtls(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
3951{
3952 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
3953 uint32_t fVal = g_HmMsrs.u.vmx.ProcCtls.n.allowed0; /* Bits set here must be set in the VMCS. */
3954 uint32_t const fZap = g_HmMsrs.u.vmx.ProcCtls.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
3955
3956 fVal |= VMX_PROC_CTLS_HLT_EXIT /* HLT causes a VM-exit. */
3957 | VMX_PROC_CTLS_USE_TSC_OFFSETTING /* Use TSC-offsetting. */
3958 | VMX_PROC_CTLS_MOV_DR_EXIT /* MOV DRx causes a VM-exit. */
3959 | VMX_PROC_CTLS_UNCOND_IO_EXIT /* All IO instructions cause a VM-exit. */
3960 | VMX_PROC_CTLS_RDPMC_EXIT /* RDPMC causes a VM-exit. */
3961 | VMX_PROC_CTLS_MONITOR_EXIT /* MONITOR causes a VM-exit. */
3962 | VMX_PROC_CTLS_MWAIT_EXIT; /* MWAIT causes a VM-exit. */
3963
3964 /* We toggle VMX_PROC_CTLS_MOV_DR_EXIT later, check if it's not -always- needed to be set or clear. */
3965 if ( !(g_HmMsrs.u.vmx.ProcCtls.n.allowed1 & VMX_PROC_CTLS_MOV_DR_EXIT)
3966 || (g_HmMsrs.u.vmx.ProcCtls.n.allowed0 & VMX_PROC_CTLS_MOV_DR_EXIT))
3967 {
3968 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_MOV_DRX_EXIT;
3969 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3970 }
3971
3972 /* Without nested paging, INVLPG (also affects INVPCID) and MOV CR3 instructions should cause VM-exits. */
3973 if (!pVM->hmr0.s.fNestedPaging)
3974 {
3975 Assert(!pVM->hmr0.s.vmx.fUnrestrictedGuest);
3976 fVal |= VMX_PROC_CTLS_INVLPG_EXIT
3977 | VMX_PROC_CTLS_CR3_LOAD_EXIT
3978 | VMX_PROC_CTLS_CR3_STORE_EXIT;
3979 }
3980
3981 /* Use TPR shadowing if supported by the CPU. */
3982 if ( PDMHasApic(pVM)
3983 && (g_HmMsrs.u.vmx.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_TPR_SHADOW))
3984 {
3985 fVal |= VMX_PROC_CTLS_USE_TPR_SHADOW; /* CR8 reads from the Virtual-APIC page. */
3986 /* CR8 writes cause a VM-exit based on TPR threshold. */
3987 Assert(!(fVal & VMX_PROC_CTLS_CR8_STORE_EXIT));
3988 Assert(!(fVal & VMX_PROC_CTLS_CR8_LOAD_EXIT));
3989 hmR0VmxSetupVmcsVirtApicAddr(pVmcsInfo);
3990 }
3991 else
3992 {
3993 /* Some 32-bit CPUs do not support CR8 load/store exiting as MOV CR8 is
3994 invalid on 32-bit Intel CPUs. Set this control only for 64-bit guests. */
3995 if (pVM->hmr0.s.fAllow64BitGuests)
3996 fVal |= VMX_PROC_CTLS_CR8_STORE_EXIT /* CR8 reads cause a VM-exit. */
3997 | VMX_PROC_CTLS_CR8_LOAD_EXIT; /* CR8 writes cause a VM-exit. */
3998 }
3999
4000 /* Use MSR-bitmaps if supported by the CPU. */
4001 if (g_HmMsrs.u.vmx.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_MSR_BITMAPS)
4002 {
4003 fVal |= VMX_PROC_CTLS_USE_MSR_BITMAPS;
4004 hmR0VmxSetupVmcsMsrBitmapAddr(pVmcsInfo);
4005 }
4006
4007 /* Use the secondary processor-based VM-execution controls if supported by the CPU. */
4008 if (g_HmMsrs.u.vmx.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
4009 fVal |= VMX_PROC_CTLS_USE_SECONDARY_CTLS;
4010
4011 if ((fVal & fZap) != fVal)
4012 {
4013 LogRelFunc(("Invalid processor-based VM-execution controls combo! cpu=%#RX32 fVal=%#RX32 fZap=%#RX32\n",
4014 g_HmMsrs.u.vmx.ProcCtls.n.allowed0, fVal, fZap));
4015 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_EXEC;
4016 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
4017 }
4018
4019 /* Commit it to the VMCS and update our cache. */
4020 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, fVal);
4021 AssertRC(rc);
4022 pVmcsInfo->u32ProcCtls = fVal;
4023
4024 /* Set up MSR permissions that don't change through the lifetime of the VM. */
4025 if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
4026 hmR0VmxSetupVmcsMsrPermissions(pVCpu, pVmcsInfo);
4027
4028 /* Set up secondary processor-based VM-execution controls if the CPU supports it. */
4029 if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
4030 return hmR0VmxSetupVmcsProcCtls2(pVCpu, pVmcsInfo);
4031
4032 /* Sanity check, should not really happen. */
4033 if (RT_LIKELY(!pVM->hmr0.s.vmx.fUnrestrictedGuest))
4034 { /* likely */ }
4035 else
4036 {
4037 pVCpu->hm.s.u32HMError = VMX_UFC_INVALID_UX_COMBO;
4038 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
4039 }
4040
4041 /* Old CPUs without secondary processor-based VM-execution controls would end up here. */
4042 return VINF_SUCCESS;
4043}
4044
4045
4046/**
4047 * Sets up miscellaneous (everything other than Pin, Processor and secondary
4048 * Processor-based VM-execution) control fields in the VMCS.
4049 *
4050 * @returns VBox status code.
4051 * @param pVCpu The cross context virtual CPU structure.
4052 * @param pVmcsInfo The VMCS info. object.
4053 */
4054static int hmR0VmxSetupVmcsMiscCtls(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
4055{
4056#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
4057 if (pVCpu->CTX_SUFF(pVM)->hmr0.s.vmx.fUseVmcsShadowing)
4058 {
4059 hmR0VmxSetupVmcsVmreadBitmapAddr(pVCpu);
4060 hmR0VmxSetupVmcsVmwriteBitmapAddr(pVCpu);
4061 }
4062#endif
4063
4064 Assert(pVmcsInfo->u64VmcsLinkPtr == NIL_RTHCPHYS);
4065 int rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL, NIL_RTHCPHYS);
4066 AssertRC(rc);
4067
4068 rc = hmR0VmxSetupVmcsAutoLoadStoreMsrAddrs(pVmcsInfo);
4069 if (RT_SUCCESS(rc))
4070 {
4071 uint64_t const u64Cr0Mask = hmR0VmxGetFixedCr0Mask(pVCpu);
4072 uint64_t const u64Cr4Mask = hmR0VmxGetFixedCr4Mask(pVCpu);
4073
4074 rc = VMXWriteVmcsNw(VMX_VMCS_CTRL_CR0_MASK, u64Cr0Mask); AssertRC(rc);
4075 rc = VMXWriteVmcsNw(VMX_VMCS_CTRL_CR4_MASK, u64Cr4Mask); AssertRC(rc);
4076
4077 pVmcsInfo->u64Cr0Mask = u64Cr0Mask;
4078 pVmcsInfo->u64Cr4Mask = u64Cr4Mask;
4079
4080 if (pVCpu->CTX_SUFF(pVM)->hmr0.s.vmx.fLbr)
4081 {
4082 rc = VMXWriteVmcsNw(VMX_VMCS64_GUEST_DEBUGCTL_FULL, MSR_IA32_DEBUGCTL_LBR);
4083 AssertRC(rc);
4084 }
4085 return VINF_SUCCESS;
4086 }
4087 else
4088 LogRelFunc(("Failed to initialize VMCS auto-load/store MSR addresses. rc=%Rrc\n", rc));
4089 return rc;
4090}
4091
4092
4093/**
4094 * Sets up the initial exception bitmap in the VMCS based on static conditions.
4095 *
4096 * We shall setup those exception intercepts that don't change during the
4097 * lifetime of the VM here. The rest are done dynamically while loading the
4098 * guest state.
4099 *
4100 * @param pVCpu The cross context virtual CPU structure.
4101 * @param pVmcsInfo The VMCS info. object.
4102 */
4103static void hmR0VmxSetupVmcsXcptBitmap(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
4104{
4105 /*
4106 * The following exceptions are always intercepted:
4107 *
4108 * #AC - To prevent the guest from hanging the CPU and for dealing with
4109 * split-lock detecting host configs.
4110 * #DB - To maintain the DR6 state even when intercepting DRx reads/writes and
4111 * recursive #DBs can cause a CPU hang.
4112 * #PF - To sync our shadow page tables when nested-paging is not used.
4113 */
4114 bool const fNestedPaging = pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging;
4115 uint32_t const uXcptBitmap = RT_BIT(X86_XCPT_AC)
4116 | RT_BIT(X86_XCPT_DB)
4117 | (fNestedPaging ? 0 : RT_BIT(X86_XCPT_PF));
4118
4119 /* Commit it to the VMCS. */
4120 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, uXcptBitmap);
4121 AssertRC(rc);
4122
4123 /* Update our cache of the exception bitmap. */
4124 pVmcsInfo->u32XcptBitmap = uXcptBitmap;
4125}
4126
4127
4128#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
4129/**
4130 * Sets up the VMCS for executing a nested-guest using hardware-assisted VMX.
4131 *
4132 * @returns VBox status code.
4133 * @param pVmcsInfo The VMCS info. object.
4134 */
4135static int hmR0VmxSetupVmcsCtlsNested(PVMXVMCSINFO pVmcsInfo)
4136{
4137 Assert(pVmcsInfo->u64VmcsLinkPtr == NIL_RTHCPHYS);
4138 int rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL, NIL_RTHCPHYS);
4139 AssertRC(rc);
4140
4141 rc = hmR0VmxSetupVmcsAutoLoadStoreMsrAddrs(pVmcsInfo);
4142 if (RT_SUCCESS(rc))
4143 {
4144 if (g_HmMsrs.u.vmx.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_MSR_BITMAPS)
4145 hmR0VmxSetupVmcsMsrBitmapAddr(pVmcsInfo);
4146
4147 /* Paranoia - We've not yet initialized these, they shall be done while merging the VMCS. */
4148 Assert(!pVmcsInfo->u64Cr0Mask);
4149 Assert(!pVmcsInfo->u64Cr4Mask);
4150 return VINF_SUCCESS;
4151 }
4152 LogRelFunc(("Failed to set up the VMCS link pointer in the nested-guest VMCS. rc=%Rrc\n", rc));
4153 return rc;
4154}
4155#endif
4156
4157
4158/**
4159 * Sets pfnStartVm to the best suited variant.
4160 *
4161 * This must be called whenever anything changes relative to the hmR0VmXStartVm
4162 * variant selection:
4163 * - pVCpu->hm.s.fLoadSaveGuestXcr0
4164 * - HM_WSF_IBPB_ENTRY in pVCpu->hmr0.s.fWorldSwitcher
4165 * - HM_WSF_IBPB_EXIT in pVCpu->hmr0.s.fWorldSwitcher
4166 * - Perhaps: CPUMIsGuestFPUStateActive() (windows only)
4167 * - Perhaps: CPUMCTX.fXStateMask (windows only)
4168 *
4169 * We currently ASSUME that neither HM_WSF_IBPB_ENTRY nor HM_WSF_IBPB_EXIT
4170 * cannot be changed at runtime.
4171 */
4172static void hmR0VmxUpdateStartVmFunction(PVMCPUCC pVCpu)
4173{
4174 static const struct CLANGWORKAROUND { PFNHMVMXSTARTVM pfn; } s_aHmR0VmxStartVmFunctions[] =
4175 {
4176 { hmR0VmxStartVm_SansXcr0_SansIbpbEntry_SansL1dEntry_SansMdsEntry_SansIbpbExit },
4177 { hmR0VmxStartVm_WithXcr0_SansIbpbEntry_SansL1dEntry_SansMdsEntry_SansIbpbExit },
4178 { hmR0VmxStartVm_SansXcr0_WithIbpbEntry_SansL1dEntry_SansMdsEntry_SansIbpbExit },
4179 { hmR0VmxStartVm_WithXcr0_WithIbpbEntry_SansL1dEntry_SansMdsEntry_SansIbpbExit },
4180 { hmR0VmxStartVm_SansXcr0_SansIbpbEntry_WithL1dEntry_SansMdsEntry_SansIbpbExit },
4181 { hmR0VmxStartVm_WithXcr0_SansIbpbEntry_WithL1dEntry_SansMdsEntry_SansIbpbExit },
4182 { hmR0VmxStartVm_SansXcr0_WithIbpbEntry_WithL1dEntry_SansMdsEntry_SansIbpbExit },
4183 { hmR0VmxStartVm_WithXcr0_WithIbpbEntry_WithL1dEntry_SansMdsEntry_SansIbpbExit },
4184 { hmR0VmxStartVm_SansXcr0_SansIbpbEntry_SansL1dEntry_WithMdsEntry_SansIbpbExit },
4185 { hmR0VmxStartVm_WithXcr0_SansIbpbEntry_SansL1dEntry_WithMdsEntry_SansIbpbExit },
4186 { hmR0VmxStartVm_SansXcr0_WithIbpbEntry_SansL1dEntry_WithMdsEntry_SansIbpbExit },
4187 { hmR0VmxStartVm_WithXcr0_WithIbpbEntry_SansL1dEntry_WithMdsEntry_SansIbpbExit },
4188 { hmR0VmxStartVm_SansXcr0_SansIbpbEntry_WithL1dEntry_WithMdsEntry_SansIbpbExit },
4189 { hmR0VmxStartVm_WithXcr0_SansIbpbEntry_WithL1dEntry_WithMdsEntry_SansIbpbExit },
4190 { hmR0VmxStartVm_SansXcr0_WithIbpbEntry_WithL1dEntry_WithMdsEntry_SansIbpbExit },
4191 { hmR0VmxStartVm_WithXcr0_WithIbpbEntry_WithL1dEntry_WithMdsEntry_SansIbpbExit },
4192 { hmR0VmxStartVm_SansXcr0_SansIbpbEntry_SansL1dEntry_SansMdsEntry_WithIbpbExit },
4193 { hmR0VmxStartVm_WithXcr0_SansIbpbEntry_SansL1dEntry_SansMdsEntry_WithIbpbExit },
4194 { hmR0VmxStartVm_SansXcr0_WithIbpbEntry_SansL1dEntry_SansMdsEntry_WithIbpbExit },
4195 { hmR0VmxStartVm_WithXcr0_WithIbpbEntry_SansL1dEntry_SansMdsEntry_WithIbpbExit },
4196 { hmR0VmxStartVm_SansXcr0_SansIbpbEntry_WithL1dEntry_SansMdsEntry_WithIbpbExit },
4197 { hmR0VmxStartVm_WithXcr0_SansIbpbEntry_WithL1dEntry_SansMdsEntry_WithIbpbExit },
4198 { hmR0VmxStartVm_SansXcr0_WithIbpbEntry_WithL1dEntry_SansMdsEntry_WithIbpbExit },
4199 { hmR0VmxStartVm_WithXcr0_WithIbpbEntry_WithL1dEntry_SansMdsEntry_WithIbpbExit },
4200 { hmR0VmxStartVm_SansXcr0_SansIbpbEntry_SansL1dEntry_WithMdsEntry_WithIbpbExit },
4201 { hmR0VmxStartVm_WithXcr0_SansIbpbEntry_SansL1dEntry_WithMdsEntry_WithIbpbExit },
4202 { hmR0VmxStartVm_SansXcr0_WithIbpbEntry_SansL1dEntry_WithMdsEntry_WithIbpbExit },
4203 { hmR0VmxStartVm_WithXcr0_WithIbpbEntry_SansL1dEntry_WithMdsEntry_WithIbpbExit },
4204 { hmR0VmxStartVm_SansXcr0_SansIbpbEntry_WithL1dEntry_WithMdsEntry_WithIbpbExit },
4205 { hmR0VmxStartVm_WithXcr0_SansIbpbEntry_WithL1dEntry_WithMdsEntry_WithIbpbExit },
4206 { hmR0VmxStartVm_SansXcr0_WithIbpbEntry_WithL1dEntry_WithMdsEntry_WithIbpbExit },
4207 { hmR0VmxStartVm_WithXcr0_WithIbpbEntry_WithL1dEntry_WithMdsEntry_WithIbpbExit },
4208 };
4209 uintptr_t const idx = (pVCpu->hmr0.s.fLoadSaveGuestXcr0 ? 1 : 0)
4210 | (pVCpu->hmr0.s.fWorldSwitcher & HM_WSF_IBPB_ENTRY ? 2 : 0)
4211 | (pVCpu->hmr0.s.fWorldSwitcher & HM_WSF_L1D_ENTRY ? 4 : 0)
4212 | (pVCpu->hmr0.s.fWorldSwitcher & HM_WSF_MDS_ENTRY ? 8 : 0)
4213 | (pVCpu->hmr0.s.fWorldSwitcher & HM_WSF_IBPB_EXIT ? 16 : 0);
4214 PFNHMVMXSTARTVM const pfnStartVm = s_aHmR0VmxStartVmFunctions[idx].pfn;
4215 if (pVCpu->hmr0.s.vmx.pfnStartVm != pfnStartVm)
4216 pVCpu->hmr0.s.vmx.pfnStartVm = pfnStartVm;
4217}
4218
4219
4220/**
4221 * Selector FNHMSVMVMRUN implementation.
4222 */
4223static DECLCALLBACK(int) hmR0VmxStartVmSelector(PVMXVMCSINFO pVmcsInfo, PVMCPUCC pVCpu, bool fResume)
4224{
4225 hmR0VmxUpdateStartVmFunction(pVCpu);
4226 return pVCpu->hmr0.s.vmx.pfnStartVm(pVmcsInfo, pVCpu, fResume);
4227}
4228
4229
4230/**
4231 * Sets up the VMCS for executing a guest (or nested-guest) using hardware-assisted
4232 * VMX.
4233 *
4234 * @returns VBox status code.
4235 * @param pVCpu The cross context virtual CPU structure.
4236 * @param pVmcsInfo The VMCS info. object.
4237 * @param fIsNstGstVmcs Whether this is a nested-guest VMCS.
4238 */
4239static int hmR0VmxSetupVmcs(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo, bool fIsNstGstVmcs)
4240{
4241 Assert(pVmcsInfo->pvVmcs);
4242 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
4243
4244 /* Set the CPU specified revision identifier at the beginning of the VMCS structure. */
4245 *(uint32_t *)pVmcsInfo->pvVmcs = RT_BF_GET(g_HmMsrs.u.vmx.u64Basic, VMX_BF_BASIC_VMCS_ID);
4246 const char * const pszVmcs = fIsNstGstVmcs ? "nested-guest VMCS" : "guest VMCS";
4247
4248 LogFlowFunc(("\n"));
4249
4250 /*
4251 * Initialize the VMCS using VMCLEAR before loading the VMCS.
4252 * See Intel spec. 31.6 "Preparation And Launching A Virtual Machine".
4253 */
4254 int rc = hmR0VmxClearVmcs(pVmcsInfo);
4255 if (RT_SUCCESS(rc))
4256 {
4257 rc = hmR0VmxLoadVmcs(pVmcsInfo);
4258 if (RT_SUCCESS(rc))
4259 {
4260 /*
4261 * Initialize the hardware-assisted VMX execution handler for guest and nested-guest VMCS.
4262 * The host is always 64-bit since we no longer support 32-bit hosts.
4263 * Currently we have just a single handler for all guest modes as well, see @bugref{6208#c73}.
4264 */
4265 if (!fIsNstGstVmcs)
4266 {
4267 rc = hmR0VmxSetupVmcsPinCtls(pVCpu, pVmcsInfo);
4268 if (RT_SUCCESS(rc))
4269 {
4270 rc = hmR0VmxSetupVmcsProcCtls(pVCpu, pVmcsInfo);
4271 if (RT_SUCCESS(rc))
4272 {
4273 rc = hmR0VmxSetupVmcsMiscCtls(pVCpu, pVmcsInfo);
4274 if (RT_SUCCESS(rc))
4275 {
4276 hmR0VmxSetupVmcsXcptBitmap(pVCpu, pVmcsInfo);
4277#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
4278 /*
4279 * If a shadow VMCS is allocated for the VMCS info. object, initialize the
4280 * VMCS revision ID and shadow VMCS indicator bit. Also, clear the VMCS
4281 * making it fit for use when VMCS shadowing is later enabled.
4282 */
4283 if (pVmcsInfo->pvShadowVmcs)
4284 {
4285 VMXVMCSREVID VmcsRevId;
4286 VmcsRevId.u = RT_BF_GET(g_HmMsrs.u.vmx.u64Basic, VMX_BF_BASIC_VMCS_ID);
4287 VmcsRevId.n.fIsShadowVmcs = 1;
4288 *(uint32_t *)pVmcsInfo->pvShadowVmcs = VmcsRevId.u;
4289 rc = hmR0VmxClearShadowVmcs(pVmcsInfo);
4290 if (RT_SUCCESS(rc))
4291 { /* likely */ }
4292 else
4293 LogRelFunc(("Failed to initialize shadow VMCS. rc=%Rrc\n", rc));
4294 }
4295#endif
4296 }
4297 else
4298 LogRelFunc(("Failed to setup miscellaneous controls. rc=%Rrc\n", rc));
4299 }
4300 else
4301 LogRelFunc(("Failed to setup processor-based VM-execution controls. rc=%Rrc\n", rc));
4302 }
4303 else
4304 LogRelFunc(("Failed to setup pin-based controls. rc=%Rrc\n", rc));
4305 }
4306 else
4307 {
4308#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
4309 rc = hmR0VmxSetupVmcsCtlsNested(pVmcsInfo);
4310 if (RT_SUCCESS(rc))
4311 { /* likely */ }
4312 else
4313 LogRelFunc(("Failed to initialize nested-guest VMCS. rc=%Rrc\n", rc));
4314#else
4315 AssertFailed();
4316#endif
4317 }
4318 }
4319 else
4320 LogRelFunc(("Failed to load the %s. rc=%Rrc\n", rc, pszVmcs));
4321 }
4322 else
4323 LogRelFunc(("Failed to clear the %s. rc=%Rrc\n", rc, pszVmcs));
4324
4325 /* Sync any CPU internal VMCS data back into our VMCS in memory. */
4326 if (RT_SUCCESS(rc))
4327 {
4328 rc = hmR0VmxClearVmcs(pVmcsInfo);
4329 if (RT_SUCCESS(rc))
4330 { /* likely */ }
4331 else
4332 LogRelFunc(("Failed to clear the %s post setup. rc=%Rrc\n", rc, pszVmcs));
4333 }
4334
4335 /*
4336 * Update the last-error record both for failures and success, so we
4337 * can propagate the status code back to ring-3 for diagnostics.
4338 */
4339 hmR0VmxUpdateErrorRecord(pVCpu, rc);
4340 NOREF(pszVmcs);
4341 return rc;
4342}
4343
4344
4345/**
4346 * Does global VT-x initialization (called during module initialization).
4347 *
4348 * @returns VBox status code.
4349 */
4350VMMR0DECL(int) VMXR0GlobalInit(void)
4351{
4352#ifdef HMVMX_USE_FUNCTION_TABLE
4353 AssertCompile(VMX_EXIT_MAX + 1 == RT_ELEMENTS(g_aVMExitHandlers));
4354# ifdef VBOX_STRICT
4355 for (unsigned i = 0; i < RT_ELEMENTS(g_aVMExitHandlers); i++)
4356 Assert(g_aVMExitHandlers[i].pfn);
4357# endif
4358#endif
4359 return VINF_SUCCESS;
4360}
4361
4362
4363/**
4364 * Does global VT-x termination (called during module termination).
4365 */
4366VMMR0DECL(void) VMXR0GlobalTerm()
4367{
4368 /* Nothing to do currently. */
4369}
4370
4371
4372/**
4373 * Sets up and activates VT-x on the current CPU.
4374 *
4375 * @returns VBox status code.
4376 * @param pHostCpu The HM physical-CPU structure.
4377 * @param pVM The cross context VM structure. Can be
4378 * NULL after a host resume operation.
4379 * @param pvCpuPage Pointer to the VMXON region (can be NULL if @a
4380 * fEnabledByHost is @c true).
4381 * @param HCPhysCpuPage Physical address of the VMXON region (can be 0 if
4382 * @a fEnabledByHost is @c true).
4383 * @param fEnabledByHost Set if SUPR0EnableVTx() or similar was used to
4384 * enable VT-x on the host.
4385 * @param pHwvirtMsrs Pointer to the hardware-virtualization MSRs.
4386 */
4387VMMR0DECL(int) VMXR0EnableCpu(PHMPHYSCPU pHostCpu, PVMCC pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage, bool fEnabledByHost,
4388 PCSUPHWVIRTMSRS pHwvirtMsrs)
4389{
4390 AssertPtr(pHostCpu);
4391 AssertPtr(pHwvirtMsrs);
4392 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
4393
4394 /* Enable VT-x if it's not already enabled by the host. */
4395 if (!fEnabledByHost)
4396 {
4397 int rc = hmR0VmxEnterRootMode(pHostCpu, pVM, HCPhysCpuPage, pvCpuPage);
4398 if (RT_FAILURE(rc))
4399 return rc;
4400 }
4401
4402 /*
4403 * Flush all EPT tagged-TLB entries (in case VirtualBox or any other hypervisor have been
4404 * using EPTPs) so we don't retain any stale guest-physical mappings which won't get
4405 * invalidated when flushing by VPID.
4406 */
4407 if (pHwvirtMsrs->u.vmx.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_ALL_CONTEXTS)
4408 {
4409 hmR0VmxFlushEpt(NULL /* pVCpu */, NULL /* pVmcsInfo */, VMXTLBFLUSHEPT_ALL_CONTEXTS);
4410 pHostCpu->fFlushAsidBeforeUse = false;
4411 }
4412 else
4413 pHostCpu->fFlushAsidBeforeUse = true;
4414
4415 /* Ensure each VCPU scheduled on this CPU gets a new VPID on resume. See @bugref{6255}. */
4416 ++pHostCpu->cTlbFlushes;
4417
4418 return VINF_SUCCESS;
4419}
4420
4421
4422/**
4423 * Deactivates VT-x on the current CPU.
4424 *
4425 * @returns VBox status code.
4426 * @param pHostCpu The HM physical-CPU structure.
4427 * @param pvCpuPage Pointer to the VMXON region.
4428 * @param HCPhysCpuPage Physical address of the VMXON region.
4429 *
4430 * @remarks This function should never be called when SUPR0EnableVTx() or
4431 * similar was used to enable VT-x on the host.
4432 */
4433VMMR0DECL(int) VMXR0DisableCpu(PHMPHYSCPU pHostCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage)
4434{
4435 RT_NOREF2(pvCpuPage, HCPhysCpuPage);
4436
4437 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
4438 return hmR0VmxLeaveRootMode(pHostCpu);
4439}
4440
4441
4442/**
4443 * Does per-VM VT-x initialization.
4444 *
4445 * @returns VBox status code.
4446 * @param pVM The cross context VM structure.
4447 */
4448VMMR0DECL(int) VMXR0InitVM(PVMCC pVM)
4449{
4450 AssertPtr(pVM);
4451 LogFlowFunc(("pVM=%p\n", pVM));
4452
4453 hmR0VmxStructsInit(pVM);
4454 int rc = hmR0VmxStructsAlloc(pVM);
4455 if (RT_FAILURE(rc))
4456 {
4457 LogRelFunc(("Failed to allocated VMX structures. rc=%Rrc\n", rc));
4458 return rc;
4459 }
4460
4461 /* Setup the crash dump page. */
4462#ifdef VBOX_WITH_CRASHDUMP_MAGIC
4463 strcpy((char *)pVM->hmr0.s.vmx.pbScratch, "SCRATCH Magic");
4464 *(uint64_t *)(pVM->hmr0.s.vmx.pbScratch + 16) = UINT64_C(0xdeadbeefdeadbeef);
4465#endif
4466 return VINF_SUCCESS;
4467}
4468
4469
4470/**
4471 * Does per-VM VT-x termination.
4472 *
4473 * @returns VBox status code.
4474 * @param pVM The cross context VM structure.
4475 */
4476VMMR0DECL(int) VMXR0TermVM(PVMCC pVM)
4477{
4478 AssertPtr(pVM);
4479 LogFlowFunc(("pVM=%p\n", pVM));
4480
4481#ifdef VBOX_WITH_CRASHDUMP_MAGIC
4482 if (pVM->hmr0.s.vmx.pbScratch)
4483 RT_BZERO(pVM->hmr0.s.vmx.pbScratch, X86_PAGE_4K_SIZE);
4484#endif
4485 hmR0VmxStructsFree(pVM);
4486 return VINF_SUCCESS;
4487}
4488
4489
4490/**
4491 * Sets up the VM for execution using hardware-assisted VMX.
4492 * This function is only called once per-VM during initialization.
4493 *
4494 * @returns VBox status code.
4495 * @param pVM The cross context VM structure.
4496 */
4497VMMR0DECL(int) VMXR0SetupVM(PVMCC pVM)
4498{
4499 AssertPtr(pVM);
4500 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
4501
4502 LogFlowFunc(("pVM=%p\n", pVM));
4503
4504 /*
4505 * At least verify if VMX is enabled, since we can't check if we're in VMX root mode or not
4506 * without causing a #GP.
4507 */
4508 RTCCUINTREG const uHostCr4 = ASMGetCR4();
4509 if (RT_LIKELY(uHostCr4 & X86_CR4_VMXE))
4510 { /* likely */ }
4511 else
4512 return VERR_VMX_NOT_IN_VMX_ROOT_MODE;
4513
4514 /*
4515 * Check that nested paging is supported if enabled and copy over the flag to the
4516 * ring-0 only structure.
4517 */
4518 bool const fNestedPaging = pVM->hm.s.fNestedPagingCfg;
4519 AssertReturn( !fNestedPaging
4520 || (g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_EPT), /** @todo use a ring-0 copy of ProcCtls2.n.allowed1 */
4521 VERR_INCOMPATIBLE_CONFIG);
4522 pVM->hmr0.s.fNestedPaging = fNestedPaging;
4523 pVM->hmr0.s.fAllow64BitGuests = pVM->hm.s.fAllow64BitGuestsCfg;
4524
4525 /*
4526 * Without unrestricted guest execution, pRealModeTSS and pNonPagingModeEPTPageTable *must*
4527 * always be allocated. We no longer support the highly unlikely case of unrestricted guest
4528 * without pRealModeTSS, see hmR3InitFinalizeR0Intel().
4529 */
4530 bool const fUnrestrictedGuest = pVM->hm.s.vmx.fUnrestrictedGuestCfg;
4531 AssertReturn( !fUnrestrictedGuest
4532 || ( (g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_UNRESTRICTED_GUEST)
4533 && fNestedPaging),
4534 VERR_INCOMPATIBLE_CONFIG);
4535 if ( !fUnrestrictedGuest
4536 && ( !pVM->hm.s.vmx.pNonPagingModeEPTPageTable
4537 || !pVM->hm.s.vmx.pRealModeTSS))
4538 {
4539 LogRelFunc(("Invalid real-on-v86 state.\n"));
4540 return VERR_INTERNAL_ERROR;
4541 }
4542 pVM->hmr0.s.vmx.fUnrestrictedGuest = fUnrestrictedGuest;
4543
4544 /* Initialize these always, see hmR3InitFinalizeR0().*/
4545 pVM->hm.s.ForR3.vmx.enmTlbFlushEpt = pVM->hmr0.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_NONE;
4546 pVM->hm.s.ForR3.vmx.enmTlbFlushVpid = pVM->hmr0.s.vmx.enmTlbFlushVpid = VMXTLBFLUSHVPID_NONE;
4547
4548 /* Setup the tagged-TLB flush handlers. */
4549 int rc = hmR0VmxSetupTaggedTlb(pVM);
4550 if (RT_FAILURE(rc))
4551 {
4552 LogRelFunc(("Failed to setup tagged TLB. rc=%Rrc\n", rc));
4553 return rc;
4554 }
4555
4556 /* Determine LBR capabilities. */
4557 pVM->hmr0.s.vmx.fLbr = pVM->hm.s.vmx.fLbrCfg;
4558 if (pVM->hmr0.s.vmx.fLbr)
4559 {
4560 rc = hmR0VmxSetupLbrMsrRange(pVM);
4561 if (RT_FAILURE(rc))
4562 {
4563 LogRelFunc(("Failed to setup LBR MSR range. rc=%Rrc\n", rc));
4564 return rc;
4565 }
4566 }
4567
4568#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
4569 /* Setup the shadow VMCS fields array and VMREAD/VMWRITE bitmaps. */
4570 if (pVM->hmr0.s.vmx.fUseVmcsShadowing)
4571 {
4572 rc = hmR0VmxSetupShadowVmcsFieldsArrays(pVM);
4573 if (RT_SUCCESS(rc))
4574 hmR0VmxSetupVmreadVmwriteBitmaps(pVM);
4575 else
4576 {
4577 LogRelFunc(("Failed to setup shadow VMCS fields arrays. rc=%Rrc\n", rc));
4578 return rc;
4579 }
4580 }
4581#endif
4582
4583 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
4584 {
4585 PVMCPUCC pVCpu = VMCC_GET_CPU(pVM, idCpu);
4586 Log4Func(("pVCpu=%p idCpu=%RU32\n", pVCpu, pVCpu->idCpu));
4587
4588 pVCpu->hmr0.s.vmx.pfnStartVm = hmR0VmxStartVmSelector;
4589
4590 rc = hmR0VmxSetupVmcs(pVCpu, &pVCpu->hmr0.s.vmx.VmcsInfo, false /* fIsNstGstVmcs */);
4591 if (RT_SUCCESS(rc))
4592 {
4593#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
4594 if (pVM->cpum.ro.GuestFeatures.fVmx)
4595 {
4596 rc = hmR0VmxSetupVmcs(pVCpu, &pVCpu->hmr0.s.vmx.VmcsInfoNstGst, true /* fIsNstGstVmcs */);
4597 if (RT_SUCCESS(rc))
4598 { /* likely */ }
4599 else
4600 {
4601 LogRelFunc(("Nested-guest VMCS setup failed. rc=%Rrc\n", rc));
4602 return rc;
4603 }
4604 }
4605#endif
4606 }
4607 else
4608 {
4609 LogRelFunc(("VMCS setup failed. rc=%Rrc\n", rc));
4610 return rc;
4611 }
4612 }
4613
4614 return VINF_SUCCESS;
4615}
4616
4617
4618/**
4619 * Saves the host control registers (CR0, CR3, CR4) into the host-state area in
4620 * the VMCS.
4621 * @returns CR4 for passing along to hmR0VmxExportHostSegmentRegs.
4622 */
4623static uint64_t hmR0VmxExportHostControlRegs(void)
4624{
4625 int rc = VMXWriteVmcsNw(VMX_VMCS_HOST_CR0, ASMGetCR0()); AssertRC(rc);
4626 rc = VMXWriteVmcsNw(VMX_VMCS_HOST_CR3, ASMGetCR3()); AssertRC(rc);
4627 uint64_t uHostCr4 = ASMGetCR4();
4628 rc = VMXWriteVmcsNw(VMX_VMCS_HOST_CR4, uHostCr4); AssertRC(rc);
4629 return uHostCr4;
4630}
4631
4632
4633/**
4634 * Saves the host segment registers and GDTR, IDTR, (TR, GS and FS bases) into
4635 * the host-state area in the VMCS.
4636 *
4637 * @returns VBox status code.
4638 * @param pVCpu The cross context virtual CPU structure.
4639 * @param uHostCr4 The host CR4 value.
4640 */
4641static int hmR0VmxExportHostSegmentRegs(PVMCPUCC pVCpu, uint64_t uHostCr4)
4642{
4643 /*
4644 * If we've executed guest code using hardware-assisted VMX, the host-state bits
4645 * will be messed up. We should -not- save the messed up state without restoring
4646 * the original host-state, see @bugref{7240}.
4647 *
4648 * This apparently can happen (most likely the FPU changes), deal with it rather than
4649 * asserting. Was observed booting Solaris 10u10 32-bit guest.
4650 */
4651 if (pVCpu->hmr0.s.vmx.fRestoreHostFlags > VMX_RESTORE_HOST_REQUIRED)
4652 {
4653 Log4Func(("Restoring Host State: fRestoreHostFlags=%#RX32 HostCpuId=%u\n", pVCpu->hmr0.s.vmx.fRestoreHostFlags,
4654 pVCpu->idCpu));
4655 VMXRestoreHostState(pVCpu->hmr0.s.vmx.fRestoreHostFlags, &pVCpu->hmr0.s.vmx.RestoreHost);
4656 pVCpu->hmr0.s.vmx.fRestoreHostFlags = 0;
4657 }
4658
4659 /*
4660 * Get all the host info.
4661 * ASSUME it is safe to use rdfsbase and friends if the CR4.FSGSBASE bit is set
4662 * without also checking the cpuid bit.
4663 */
4664 uint32_t fRestoreHostFlags;
4665#if RT_INLINE_ASM_EXTERNAL
4666 if (uHostCr4 & X86_CR4_FSGSBASE)
4667 {
4668 hmR0VmxExportHostSegmentRegsAsmHlp(&pVCpu->hmr0.s.vmx.RestoreHost, true /*fHaveFsGsBase*/);
4669 fRestoreHostFlags = VMX_RESTORE_HOST_CAN_USE_WRFSBASE_AND_WRGSBASE;
4670 }
4671 else
4672 {
4673 hmR0VmxExportHostSegmentRegsAsmHlp(&pVCpu->hmr0.s.vmx.RestoreHost, false /*fHaveFsGsBase*/);
4674 fRestoreHostFlags = 0;
4675 }
4676 RTSEL uSelES = pVCpu->hmr0.s.vmx.RestoreHost.uHostSelES;
4677 RTSEL uSelDS = pVCpu->hmr0.s.vmx.RestoreHost.uHostSelDS;
4678 RTSEL uSelFS = pVCpu->hmr0.s.vmx.RestoreHost.uHostSelFS;
4679 RTSEL uSelGS = pVCpu->hmr0.s.vmx.RestoreHost.uHostSelGS;
4680#else
4681 pVCpu->hmr0.s.vmx.RestoreHost.uHostSelTR = ASMGetTR();
4682 pVCpu->hmr0.s.vmx.RestoreHost.uHostSelSS = ASMGetSS();
4683 pVCpu->hmr0.s.vmx.RestoreHost.uHostSelCS = ASMGetCS();
4684 ASMGetGDTR((PRTGDTR)&pVCpu->hmr0.s.vmx.RestoreHost.HostGdtr);
4685 ASMGetIDTR((PRTIDTR)&pVCpu->hmr0.s.vmx.RestoreHost.HostIdtr);
4686 if (uHostCr4 & X86_CR4_FSGSBASE)
4687 {
4688 pVCpu->hmr0.s.vmx.RestoreHost.uHostFSBase = ASMGetFSBase();
4689 pVCpu->hmr0.s.vmx.RestoreHost.uHostGSBase = ASMGetGSBase();
4690 fRestoreHostFlags = VMX_RESTORE_HOST_CAN_USE_WRFSBASE_AND_WRGSBASE;
4691 }
4692 else
4693 {
4694 pVCpu->hmr0.s.vmx.RestoreHost.uHostFSBase = ASMRdMsr(MSR_K8_FS_BASE);
4695 pVCpu->hmr0.s.vmx.RestoreHost.uHostGSBase = ASMRdMsr(MSR_K8_GS_BASE);
4696 fRestoreHostFlags = 0;
4697 }
4698 RTSEL uSelES, uSelDS, uSelFS, uSelGS;
4699 pVCpu->hmr0.s.vmx.RestoreHost.uHostSelDS = uSelDS = ASMGetDS();
4700 pVCpu->hmr0.s.vmx.RestoreHost.uHostSelES = uSelES = ASMGetES();
4701 pVCpu->hmr0.s.vmx.RestoreHost.uHostSelFS = uSelFS = ASMGetFS();
4702 pVCpu->hmr0.s.vmx.RestoreHost.uHostSelGS = uSelGS = ASMGetGS();
4703#endif
4704
4705 /*
4706 * Determine if the host segment registers are suitable for VT-x. Otherwise use zero to
4707 * gain VM-entry and restore them before we get preempted.
4708 *
4709 * See Intel spec. 26.2.3 "Checks on Host Segment and Descriptor-Table Registers".
4710 */
4711 RTSEL const uSelAll = uSelFS | uSelGS | uSelES | uSelDS;
4712 if (uSelAll & (X86_SEL_RPL | X86_SEL_LDT))
4713 {
4714 if (!(uSelAll & X86_SEL_LDT))
4715 {
4716#define VMXLOCAL_ADJUST_HOST_SEG(a_Seg, a_uVmcsVar) \
4717 do { \
4718 (a_uVmcsVar) = pVCpu->hmr0.s.vmx.RestoreHost.uHostSel##a_Seg; \
4719 if ((a_uVmcsVar) & X86_SEL_RPL) \
4720 { \
4721 fRestoreHostFlags |= VMX_RESTORE_HOST_SEL_##a_Seg; \
4722 (a_uVmcsVar) = 0; \
4723 } \
4724 } while (0)
4725 VMXLOCAL_ADJUST_HOST_SEG(DS, uSelDS);
4726 VMXLOCAL_ADJUST_HOST_SEG(ES, uSelES);
4727 VMXLOCAL_ADJUST_HOST_SEG(FS, uSelFS);
4728 VMXLOCAL_ADJUST_HOST_SEG(GS, uSelGS);
4729#undef VMXLOCAL_ADJUST_HOST_SEG
4730 }
4731 else
4732 {
4733#define VMXLOCAL_ADJUST_HOST_SEG(a_Seg, a_uVmcsVar) \
4734 do { \
4735 (a_uVmcsVar) = pVCpu->hmr0.s.vmx.RestoreHost.uHostSel##a_Seg; \
4736 if ((a_uVmcsVar) & (X86_SEL_RPL | X86_SEL_LDT)) \
4737 { \
4738 if (!((a_uVmcsVar) & X86_SEL_LDT)) \
4739 fRestoreHostFlags |= VMX_RESTORE_HOST_SEL_##a_Seg; \
4740 else \
4741 { \
4742 uint32_t const fAttr = ASMGetSegAttr(a_uVmcsVar); \
4743 if ((fAttr & X86_DESC_P) && fAttr != UINT32_MAX) \
4744 fRestoreHostFlags |= VMX_RESTORE_HOST_SEL_##a_Seg; \
4745 } \
4746 (a_uVmcsVar) = 0; \
4747 } \
4748 } while (0)
4749 VMXLOCAL_ADJUST_HOST_SEG(DS, uSelDS);
4750 VMXLOCAL_ADJUST_HOST_SEG(ES, uSelES);
4751 VMXLOCAL_ADJUST_HOST_SEG(FS, uSelFS);
4752 VMXLOCAL_ADJUST_HOST_SEG(GS, uSelGS);
4753#undef VMXLOCAL_ADJUST_HOST_SEG
4754 }
4755 }
4756
4757 /* Verification based on Intel spec. 26.2.3 "Checks on Host Segment and Descriptor-Table Registers" */
4758 Assert(!(pVCpu->hmr0.s.vmx.RestoreHost.uHostSelTR & X86_SEL_RPL)); Assert(!(pVCpu->hmr0.s.vmx.RestoreHost.uHostSelTR & X86_SEL_LDT)); Assert(pVCpu->hmr0.s.vmx.RestoreHost.uHostSelTR);
4759 Assert(!(pVCpu->hmr0.s.vmx.RestoreHost.uHostSelCS & X86_SEL_RPL)); Assert(!(pVCpu->hmr0.s.vmx.RestoreHost.uHostSelCS & X86_SEL_LDT)); Assert(pVCpu->hmr0.s.vmx.RestoreHost.uHostSelCS);
4760 Assert(!(pVCpu->hmr0.s.vmx.RestoreHost.uHostSelSS & X86_SEL_RPL)); Assert(!(pVCpu->hmr0.s.vmx.RestoreHost.uHostSelSS & X86_SEL_LDT));
4761 Assert(!(uSelDS & X86_SEL_RPL)); Assert(!(uSelDS & X86_SEL_LDT));
4762 Assert(!(uSelES & X86_SEL_RPL)); Assert(!(uSelES & X86_SEL_LDT));
4763 Assert(!(uSelFS & X86_SEL_RPL)); Assert(!(uSelFS & X86_SEL_LDT));
4764 Assert(!(uSelGS & X86_SEL_RPL)); Assert(!(uSelGS & X86_SEL_LDT));
4765
4766 /*
4767 * Determine if we need to manually need to restore the GDTR and IDTR limits as VT-x zaps
4768 * them to the maximum limit (0xffff) on every VM-exit.
4769 */
4770 if (pVCpu->hmr0.s.vmx.RestoreHost.HostGdtr.cb != 0xffff)
4771 fRestoreHostFlags |= VMX_RESTORE_HOST_GDTR;
4772
4773 /*
4774 * IDT limit is effectively capped at 0xfff. (See Intel spec. 6.14.1 "64-Bit Mode IDT" and
4775 * Intel spec. 6.2 "Exception and Interrupt Vectors".) Therefore if the host has the limit
4776 * as 0xfff, VT-x bloating the limit to 0xffff shouldn't cause any different CPU behavior.
4777 * However, several hosts either insists on 0xfff being the limit (Windows Patch Guard) or
4778 * uses the limit for other purposes (darwin puts the CPU ID in there but botches sidt
4779 * alignment in at least one consumer). So, we're only allowing the IDTR.LIMIT to be left
4780 * at 0xffff on hosts where we are sure it won't cause trouble.
4781 */
4782#if defined(RT_OS_LINUX) || defined(RT_OS_SOLARIS)
4783 if (pVCpu->hmr0.s.vmx.RestoreHost.HostIdtr.cb < 0x0fff)
4784#else
4785 if (pVCpu->hmr0.s.vmx.RestoreHost.HostIdtr.cb != 0xffff)
4786#endif
4787 fRestoreHostFlags |= VMX_RESTORE_HOST_IDTR;
4788
4789 /*
4790 * Host TR base. Verify that TR selector doesn't point past the GDT. Masking off the TI
4791 * and RPL bits is effectively what the CPU does for "scaling by 8". TI is always 0 and
4792 * RPL should be too in most cases.
4793 */
4794 RTSEL const uSelTR = pVCpu->hmr0.s.vmx.RestoreHost.uHostSelTR;
4795 AssertMsgReturn((uSelTR | X86_SEL_RPL_LDT) <= pVCpu->hmr0.s.vmx.RestoreHost.HostGdtr.cb,
4796 ("TR selector exceeds limit. TR=%RTsel cbGdt=%#x\n", uSelTR, pVCpu->hmr0.s.vmx.RestoreHost.HostGdtr.cb),
4797 VERR_VMX_INVALID_HOST_STATE);
4798
4799 PCX86DESCHC pDesc = (PCX86DESCHC)(pVCpu->hmr0.s.vmx.RestoreHost.HostGdtr.uAddr + (uSelTR & X86_SEL_MASK));
4800 uintptr_t const uTRBase = X86DESC64_BASE(pDesc);
4801
4802 /*
4803 * VT-x unconditionally restores the TR limit to 0x67 and type to 11 (32-bit busy TSS) on
4804 * all VM-exits. The type is the same for 64-bit busy TSS[1]. The limit needs manual
4805 * restoration if the host has something else. Task switching is not supported in 64-bit
4806 * mode[2], but the limit still matters as IOPM is supported in 64-bit mode. Restoring the
4807 * limit lazily while returning to ring-3 is safe because IOPM is not applicable in ring-0.
4808 *
4809 * [1] See Intel spec. 3.5 "System Descriptor Types".
4810 * [2] See Intel spec. 7.2.3 "TSS Descriptor in 64-bit mode".
4811 */
4812 Assert(pDesc->System.u4Type == 11);
4813 if ( pDesc->System.u16LimitLow != 0x67
4814 || pDesc->System.u4LimitHigh)
4815 {
4816 fRestoreHostFlags |= VMX_RESTORE_HOST_SEL_TR;
4817
4818 /* If the host has made GDT read-only, we would need to temporarily toggle CR0.WP before writing the GDT. */
4819 if (g_fHmHostKernelFeatures & SUPKERNELFEATURES_GDT_READ_ONLY)
4820 fRestoreHostFlags |= VMX_RESTORE_HOST_GDT_READ_ONLY;
4821 if (g_fHmHostKernelFeatures & SUPKERNELFEATURES_GDT_NEED_WRITABLE)
4822 {
4823 /* The GDT is read-only but the writable GDT is available. */
4824 fRestoreHostFlags |= VMX_RESTORE_HOST_GDT_NEED_WRITABLE;
4825 pVCpu->hmr0.s.vmx.RestoreHost.HostGdtrRw.cb = pVCpu->hmr0.s.vmx.RestoreHost.HostGdtr.cb;
4826 int rc = SUPR0GetCurrentGdtRw(&pVCpu->hmr0.s.vmx.RestoreHost.HostGdtrRw.uAddr);
4827 AssertRCReturn(rc, rc);
4828 }
4829 }
4830
4831 pVCpu->hmr0.s.vmx.fRestoreHostFlags = fRestoreHostFlags;
4832
4833 /*
4834 * Do all the VMCS updates in one block to assist nested virtualization.
4835 */
4836 int rc;
4837 rc = VMXWriteVmcs16(VMX_VMCS16_HOST_CS_SEL, pVCpu->hmr0.s.vmx.RestoreHost.uHostSelCS); AssertRC(rc);
4838 rc = VMXWriteVmcs16(VMX_VMCS16_HOST_SS_SEL, pVCpu->hmr0.s.vmx.RestoreHost.uHostSelSS); AssertRC(rc);
4839 rc = VMXWriteVmcs16(VMX_VMCS16_HOST_DS_SEL, uSelDS); AssertRC(rc);
4840 rc = VMXWriteVmcs16(VMX_VMCS16_HOST_ES_SEL, uSelES); AssertRC(rc);
4841 rc = VMXWriteVmcs16(VMX_VMCS16_HOST_FS_SEL, uSelFS); AssertRC(rc);
4842 rc = VMXWriteVmcs16(VMX_VMCS16_HOST_GS_SEL, uSelGS); AssertRC(rc);
4843 rc = VMXWriteVmcs16(VMX_VMCS16_HOST_TR_SEL, pVCpu->hmr0.s.vmx.RestoreHost.uHostSelTR); AssertRC(rc);
4844 rc = VMXWriteVmcsNw(VMX_VMCS_HOST_GDTR_BASE, pVCpu->hmr0.s.vmx.RestoreHost.HostGdtr.uAddr); AssertRC(rc);
4845 rc = VMXWriteVmcsNw(VMX_VMCS_HOST_IDTR_BASE, pVCpu->hmr0.s.vmx.RestoreHost.HostIdtr.uAddr); AssertRC(rc);
4846 rc = VMXWriteVmcsNw(VMX_VMCS_HOST_TR_BASE, uTRBase); AssertRC(rc);
4847 rc = VMXWriteVmcsNw(VMX_VMCS_HOST_FS_BASE, pVCpu->hmr0.s.vmx.RestoreHost.uHostFSBase); AssertRC(rc);
4848 rc = VMXWriteVmcsNw(VMX_VMCS_HOST_GS_BASE, pVCpu->hmr0.s.vmx.RestoreHost.uHostGSBase); AssertRC(rc);
4849
4850 return VINF_SUCCESS;
4851}
4852
4853
4854/**
4855 * Exports certain host MSRs in the VM-exit MSR-load area and some in the
4856 * host-state area of the VMCS.
4857 *
4858 * These MSRs will be automatically restored on the host after every successful
4859 * VM-exit.
4860 *
4861 * @param pVCpu The cross context virtual CPU structure.
4862 *
4863 * @remarks No-long-jump zone!!!
4864 */
4865static void hmR0VmxExportHostMsrs(PVMCPUCC pVCpu)
4866{
4867 AssertPtr(pVCpu);
4868
4869 /*
4870 * Save MSRs that we restore lazily (due to preemption or transition to ring-3)
4871 * rather than swapping them on every VM-entry.
4872 */
4873 hmR0VmxLazySaveHostMsrs(pVCpu);
4874
4875 /*
4876 * Host Sysenter MSRs.
4877 */
4878 int rc = VMXWriteVmcs32(VMX_VMCS32_HOST_SYSENTER_CS, ASMRdMsr_Low(MSR_IA32_SYSENTER_CS)); AssertRC(rc);
4879 rc = VMXWriteVmcsNw(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr(MSR_IA32_SYSENTER_ESP)); AssertRC(rc);
4880 rc = VMXWriteVmcsNw(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr(MSR_IA32_SYSENTER_EIP)); AssertRC(rc);
4881
4882 /*
4883 * Host EFER MSR.
4884 *
4885 * If the CPU supports the newer VMCS controls for managing EFER, use it. Otherwise it's
4886 * done as part of auto-load/store MSR area in the VMCS, see hmR0VmxExportGuestMsrs().
4887 */
4888 if (g_fHmVmxSupportsVmcsEfer)
4889 {
4890 rc = VMXWriteVmcs64(VMX_VMCS64_HOST_EFER_FULL, g_uHmVmxHostMsrEfer);
4891 AssertRC(rc);
4892 }
4893
4894 /** @todo IA32_PERF_GLOBALCTRL, IA32_PAT also see
4895 * hmR0VmxExportGuestEntryExitCtls(). */
4896}
4897
4898
4899/**
4900 * Figures out if we need to swap the EFER MSR which is particularly expensive.
4901 *
4902 * We check all relevant bits. For now, that's everything besides LMA/LME, as
4903 * these two bits are handled by VM-entry, see hmR0VMxExportGuestEntryExitCtls().
4904 *
4905 * @returns true if we need to load guest EFER, false otherwise.
4906 * @param pVCpu The cross context virtual CPU structure.
4907 * @param pVmxTransient The VMX-transient structure.
4908 *
4909 * @remarks Requires EFER, CR4.
4910 * @remarks No-long-jump zone!!!
4911 */
4912static bool hmR0VmxShouldSwapEferMsr(PCVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient)
4913{
4914#ifdef HMVMX_ALWAYS_SWAP_EFER
4915 RT_NOREF2(pVCpu, pVmxTransient);
4916 return true;
4917#else
4918 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4919 uint64_t const u64HostEfer = g_uHmVmxHostMsrEfer;
4920 uint64_t const u64GuestEfer = pCtx->msrEFER;
4921
4922# ifdef VBOX_WITH_NESTED_HWVIRT_VMX
4923 /*
4924 * For nested-guests, we shall honor swapping the EFER MSR when requested by
4925 * the nested-guest.
4926 */
4927 if ( pVmxTransient->fIsNestedGuest
4928 && ( CPUMIsGuestVmxEntryCtlsSet(pCtx, VMX_ENTRY_CTLS_LOAD_EFER_MSR)
4929 || CPUMIsGuestVmxExitCtlsSet(pCtx, VMX_EXIT_CTLS_SAVE_EFER_MSR)
4930 || CPUMIsGuestVmxExitCtlsSet(pCtx, VMX_EXIT_CTLS_LOAD_EFER_MSR)))
4931 return true;
4932# else
4933 RT_NOREF(pVmxTransient);
4934#endif
4935
4936 /*
4937 * For 64-bit guests, if EFER.SCE bit differs, we need to swap the EFER MSR
4938 * to ensure that the guest's SYSCALL behaviour isn't broken, see @bugref{7386}.
4939 */
4940 if ( CPUMIsGuestInLongModeEx(pCtx)
4941 && (u64GuestEfer & MSR_K6_EFER_SCE) != (u64HostEfer & MSR_K6_EFER_SCE))
4942 return true;
4943
4944 /*
4945 * If the guest uses PAE and EFER.NXE bit differs, we need to swap the EFER MSR
4946 * as it affects guest paging. 64-bit paging implies CR4.PAE as well.
4947 *
4948 * See Intel spec. 4.5 "IA-32e Paging".
4949 * See Intel spec. 4.1.1 "Three Paging Modes".
4950 *
4951 * Verify that we always intercept CR4.PAE and CR0.PG bits, so we don't need to
4952 * import CR4 and CR0 from the VMCS here as those bits are always up to date.
4953 */
4954 Assert(hmR0VmxGetFixedCr4Mask(pVCpu) & X86_CR4_PAE);
4955 Assert(hmR0VmxGetFixedCr0Mask(pVCpu) & X86_CR0_PG);
4956 if ( (pCtx->cr4 & X86_CR4_PAE)
4957 && (pCtx->cr0 & X86_CR0_PG))
4958 {
4959 /*
4960 * If nested paging is not used, verify that the guest paging mode matches the
4961 * shadow paging mode which is/will be placed in the VMCS (which is what will
4962 * actually be used while executing the guest and not the CR4 shadow value).
4963 */
4964 AssertMsg( pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging
4965 || pVCpu->hm.s.enmShadowMode == PGMMODE_PAE
4966 || pVCpu->hm.s.enmShadowMode == PGMMODE_PAE_NX
4967 || pVCpu->hm.s.enmShadowMode == PGMMODE_AMD64
4968 || pVCpu->hm.s.enmShadowMode == PGMMODE_AMD64_NX,
4969 ("enmShadowMode=%u\n", pVCpu->hm.s.enmShadowMode));
4970 if ((u64GuestEfer & MSR_K6_EFER_NXE) != (u64HostEfer & MSR_K6_EFER_NXE))
4971 {
4972 /* Verify that the host is NX capable. */
4973 Assert(pVCpu->CTX_SUFF(pVM)->cpum.ro.HostFeatures.fNoExecute);
4974 return true;
4975 }
4976 }
4977
4978 return false;
4979#endif
4980}
4981
4982
4983/**
4984 * Exports the guest state with appropriate VM-entry and VM-exit controls in the
4985 * VMCS.
4986 *
4987 * This is typically required when the guest changes paging mode.
4988 *
4989 * @returns VBox status code.
4990 * @param pVCpu The cross context virtual CPU structure.
4991 * @param pVmxTransient The VMX-transient structure.
4992 *
4993 * @remarks Requires EFER.
4994 * @remarks No-long-jump zone!!!
4995 */
4996static int hmR0VmxExportGuestEntryExitCtls(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient)
4997{
4998 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_VMX_ENTRY_EXIT_CTLS)
4999 {
5000 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
5001 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
5002
5003 /*
5004 * VM-entry controls.
5005 */
5006 {
5007 uint32_t fVal = g_HmMsrs.u.vmx.EntryCtls.n.allowed0; /* Bits set here must be set in the VMCS. */
5008 uint32_t const fZap = g_HmMsrs.u.vmx.EntryCtls.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
5009
5010 /*
5011 * Load the guest debug controls (DR7 and IA32_DEBUGCTL MSR) on VM-entry.
5012 * The first VT-x capable CPUs only supported the 1-setting of this bit.
5013 *
5014 * For nested-guests, this is a mandatory VM-entry control. It's also
5015 * required because we do not want to leak host bits to the nested-guest.
5016 */
5017 fVal |= VMX_ENTRY_CTLS_LOAD_DEBUG;
5018
5019 /*
5020 * Set if the guest is in long mode. This will set/clear the EFER.LMA bit on VM-entry.
5021 *
5022 * For nested-guests, the "IA-32e mode guest" control we initialize with what is
5023 * required to get the nested-guest working with hardware-assisted VMX execution.
5024 * It depends on the nested-guest's IA32_EFER.LMA bit. Remember, a nested hypervisor
5025 * can skip intercepting changes to the EFER MSR. This is why it needs to be done
5026 * here rather than while merging the guest VMCS controls.
5027 */
5028 if (CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx))
5029 {
5030 Assert(pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_LME);
5031 fVal |= VMX_ENTRY_CTLS_IA32E_MODE_GUEST;
5032 }
5033 else
5034 Assert(!(fVal & VMX_ENTRY_CTLS_IA32E_MODE_GUEST));
5035
5036 /*
5037 * If the CPU supports the newer VMCS controls for managing guest/host EFER, use it.
5038 *
5039 * For nested-guests, we use the "load IA32_EFER" if the hardware supports it,
5040 * regardless of whether the nested-guest VMCS specifies it because we are free to
5041 * load whatever MSRs we require and we do not need to modify the guest visible copy
5042 * of the VM-entry MSR load area.
5043 */
5044 if ( g_fHmVmxSupportsVmcsEfer
5045 && hmR0VmxShouldSwapEferMsr(pVCpu, pVmxTransient))
5046 fVal |= VMX_ENTRY_CTLS_LOAD_EFER_MSR;
5047 else
5048 Assert(!(fVal & VMX_ENTRY_CTLS_LOAD_EFER_MSR));
5049
5050 /*
5051 * The following should -not- be set (since we're not in SMM mode):
5052 * - VMX_ENTRY_CTLS_ENTRY_TO_SMM
5053 * - VMX_ENTRY_CTLS_DEACTIVATE_DUAL_MON
5054 */
5055
5056 /** @todo VMX_ENTRY_CTLS_LOAD_PERF_MSR,
5057 * VMX_ENTRY_CTLS_LOAD_PAT_MSR. */
5058
5059 if ((fVal & fZap) == fVal)
5060 { /* likely */ }
5061 else
5062 {
5063 Log4Func(("Invalid VM-entry controls combo! Cpu=%#RX32 fVal=%#RX32 fZap=%#RX32\n",
5064 g_HmMsrs.u.vmx.EntryCtls.n.allowed0, fVal, fZap));
5065 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_ENTRY;
5066 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
5067 }
5068
5069 /* Commit it to the VMCS. */
5070 if (pVmcsInfo->u32EntryCtls != fVal)
5071 {
5072 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY, fVal);
5073 AssertRC(rc);
5074 pVmcsInfo->u32EntryCtls = fVal;
5075 }
5076 }
5077
5078 /*
5079 * VM-exit controls.
5080 */
5081 {
5082 uint32_t fVal = g_HmMsrs.u.vmx.ExitCtls.n.allowed0; /* Bits set here must be set in the VMCS. */
5083 uint32_t const fZap = g_HmMsrs.u.vmx.ExitCtls.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
5084
5085 /*
5086 * Save debug controls (DR7 & IA32_DEBUGCTL_MSR). The first VT-x CPUs only
5087 * supported the 1-setting of this bit.
5088 *
5089 * For nested-guests, we set the "save debug controls" as the converse
5090 * "load debug controls" is mandatory for nested-guests anyway.
5091 */
5092 fVal |= VMX_EXIT_CTLS_SAVE_DEBUG;
5093
5094 /*
5095 * Set the host long mode active (EFER.LMA) bit (which Intel calls
5096 * "Host address-space size") if necessary. On VM-exit, VT-x sets both the
5097 * host EFER.LMA and EFER.LME bit to this value. See assertion in
5098 * hmR0VmxExportHostMsrs().
5099 *
5100 * For nested-guests, we always set this bit as we do not support 32-bit
5101 * hosts.
5102 */
5103 fVal |= VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE;
5104
5105 /*
5106 * If the VMCS EFER MSR fields are supported by the hardware, we use it.
5107 *
5108 * For nested-guests, we should use the "save IA32_EFER" control if we also
5109 * used the "load IA32_EFER" control while exporting VM-entry controls.
5110 */
5111 if ( g_fHmVmxSupportsVmcsEfer
5112 && hmR0VmxShouldSwapEferMsr(pVCpu, pVmxTransient))
5113 {
5114 fVal |= VMX_EXIT_CTLS_SAVE_EFER_MSR
5115 | VMX_EXIT_CTLS_LOAD_EFER_MSR;
5116 }
5117
5118 /*
5119 * Enable saving of the VMX-preemption timer value on VM-exit.
5120 * For nested-guests, currently not exposed/used.
5121 */
5122 /** @todo r=bird: Measure performance hit because of this vs. always rewriting
5123 * the timer value. */
5124 if (pVM->hmr0.s.vmx.fUsePreemptTimer)
5125 {
5126 Assert(g_HmMsrs.u.vmx.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_SAVE_PREEMPT_TIMER);
5127 fVal |= VMX_EXIT_CTLS_SAVE_PREEMPT_TIMER;
5128 }
5129
5130 /* Don't acknowledge external interrupts on VM-exit. We want to let the host do that. */
5131 Assert(!(fVal & VMX_EXIT_CTLS_ACK_EXT_INT));
5132
5133 /** @todo VMX_EXIT_CTLS_LOAD_PERF_MSR,
5134 * VMX_EXIT_CTLS_SAVE_PAT_MSR,
5135 * VMX_EXIT_CTLS_LOAD_PAT_MSR. */
5136
5137 if ((fVal & fZap) == fVal)
5138 { /* likely */ }
5139 else
5140 {
5141 Log4Func(("Invalid VM-exit controls combo! cpu=%#RX32 fVal=%#RX32 fZap=%R#X32\n",
5142 g_HmMsrs.u.vmx.ExitCtls.n.allowed0, fVal, fZap));
5143 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_EXIT;
5144 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
5145 }
5146
5147 /* Commit it to the VMCS. */
5148 if (pVmcsInfo->u32ExitCtls != fVal)
5149 {
5150 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT, fVal);
5151 AssertRC(rc);
5152 pVmcsInfo->u32ExitCtls = fVal;
5153 }
5154 }
5155
5156 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_VMX_ENTRY_EXIT_CTLS);
5157 }
5158 return VINF_SUCCESS;
5159}
5160
5161
5162/**
5163 * Sets the TPR threshold in the VMCS.
5164 *
5165 * @param pVmcsInfo The VMCS info. object.
5166 * @param u32TprThreshold The TPR threshold (task-priority class only).
5167 */
5168DECLINLINE(void) hmR0VmxApicSetTprThreshold(PVMXVMCSINFO pVmcsInfo, uint32_t u32TprThreshold)
5169{
5170 Assert(!(u32TprThreshold & ~VMX_TPR_THRESHOLD_MASK)); /* Bits 31:4 MBZ. */
5171 Assert(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW);
5172 RT_NOREF(pVmcsInfo);
5173 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_TPR_THRESHOLD, u32TprThreshold);
5174 AssertRC(rc);
5175}
5176
5177
5178/**
5179 * Exports the guest APIC TPR state into the VMCS.
5180 *
5181 * @param pVCpu The cross context virtual CPU structure.
5182 * @param pVmxTransient The VMX-transient structure.
5183 *
5184 * @remarks No-long-jump zone!!!
5185 */
5186static void hmR0VmxExportGuestApicTpr(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient)
5187{
5188 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_APIC_TPR)
5189 {
5190 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_APIC_TPR);
5191
5192 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
5193 if (!pVmxTransient->fIsNestedGuest)
5194 {
5195 if ( PDMHasApic(pVCpu->CTX_SUFF(pVM))
5196 && APICIsEnabled(pVCpu))
5197 {
5198 /*
5199 * Setup TPR shadowing.
5200 */
5201 if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
5202 {
5203 bool fPendingIntr = false;
5204 uint8_t u8Tpr = 0;
5205 uint8_t u8PendingIntr = 0;
5206 int rc = APICGetTpr(pVCpu, &u8Tpr, &fPendingIntr, &u8PendingIntr);
5207 AssertRC(rc);
5208
5209 /*
5210 * If there are interrupts pending but masked by the TPR, instruct VT-x to
5211 * cause a TPR-below-threshold VM-exit when the guest lowers its TPR below the
5212 * priority of the pending interrupt so we can deliver the interrupt. If there
5213 * are no interrupts pending, set threshold to 0 to not cause any
5214 * TPR-below-threshold VM-exits.
5215 */
5216 uint32_t u32TprThreshold = 0;
5217 if (fPendingIntr)
5218 {
5219 /* Bits 3:0 of the TPR threshold field correspond to bits 7:4 of the TPR
5220 (which is the Task-Priority Class). */
5221 const uint8_t u8PendingPriority = u8PendingIntr >> 4;
5222 const uint8_t u8TprPriority = u8Tpr >> 4;
5223 if (u8PendingPriority <= u8TprPriority)
5224 u32TprThreshold = u8PendingPriority;
5225 }
5226
5227 hmR0VmxApicSetTprThreshold(pVmcsInfo, u32TprThreshold);
5228 }
5229 }
5230 }
5231 /* else: the TPR threshold has already been updated while merging the nested-guest VMCS. */
5232 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_APIC_TPR);
5233 }
5234}
5235
5236
5237/**
5238 * Gets the guest interruptibility-state and updates related force-flags.
5239 *
5240 * @returns Guest's interruptibility-state.
5241 * @param pVCpu The cross context virtual CPU structure.
5242 *
5243 * @remarks No-long-jump zone!!!
5244 */
5245static uint32_t hmR0VmxGetGuestIntrStateAndUpdateFFs(PVMCPUCC pVCpu)
5246{
5247 /*
5248 * Check if we should inhibit interrupt delivery due to instructions like STI and MOV SS.
5249 */
5250 uint32_t fIntrState = 0;
5251 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
5252 {
5253 /* If inhibition is active, RIP and RFLAGS should've been imported from the VMCS already. */
5254 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS);
5255
5256 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
5257 if (pCtx->rip == EMGetInhibitInterruptsPC(pVCpu))
5258 {
5259 if (pCtx->eflags.Bits.u1IF)
5260 fIntrState = VMX_VMCS_GUEST_INT_STATE_BLOCK_STI;
5261 else
5262 fIntrState = VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS;
5263 }
5264 else if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
5265 {
5266 /*
5267 * We can clear the inhibit force flag as even if we go back to the recompiler
5268 * without executing guest code in VT-x, the flag's condition to be cleared is
5269 * met and thus the cleared state is correct.
5270 */
5271 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
5272 }
5273 }
5274
5275 /*
5276 * Check if we should inhibit NMI delivery.
5277 */
5278 if (CPUMIsGuestNmiBlocking(pVCpu))
5279 fIntrState |= VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI;
5280
5281 /*
5282 * Validate.
5283 */
5284#ifdef VBOX_STRICT
5285 /* We don't support block-by-SMI yet.*/
5286 Assert(!(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_SMI));
5287
5288 /* Block-by-STI must not be set when interrupts are disabled. */
5289 if (fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)
5290 {
5291 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RFLAGS);
5292 Assert(pVCpu->cpum.GstCtx.eflags.u & X86_EFL_IF);
5293 }
5294#endif
5295
5296 return fIntrState;
5297}
5298
5299
5300/**
5301 * Exports the exception intercepts required for guest execution in the VMCS.
5302 *
5303 * @param pVCpu The cross context virtual CPU structure.
5304 * @param pVmxTransient The VMX-transient structure.
5305 *
5306 * @remarks No-long-jump zone!!!
5307 */
5308static void hmR0VmxExportGuestXcptIntercepts(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient)
5309{
5310 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_VMX_XCPT_INTERCEPTS)
5311 {
5312 /* When executing a nested-guest, we do not need to trap GIM hypercalls by intercepting #UD. */
5313 if ( !pVmxTransient->fIsNestedGuest
5314 && pVCpu->hm.s.fGIMTrapXcptUD)
5315 hmR0VmxAddXcptIntercept(pVmxTransient, X86_XCPT_UD);
5316 else
5317 hmR0VmxRemoveXcptIntercept(pVCpu, pVmxTransient, X86_XCPT_UD);
5318
5319 /* Other exception intercepts are handled elsewhere, e.g. while exporting guest CR0. */
5320 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_VMX_XCPT_INTERCEPTS);
5321 }
5322}
5323
5324
5325/**
5326 * Exports the guest's RIP into the guest-state area in the VMCS.
5327 *
5328 * @param pVCpu The cross context virtual CPU structure.
5329 *
5330 * @remarks No-long-jump zone!!!
5331 */
5332static void hmR0VmxExportGuestRip(PVMCPUCC pVCpu)
5333{
5334 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_RIP)
5335 {
5336 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RIP);
5337
5338 int rc = VMXWriteVmcsNw(VMX_VMCS_GUEST_RIP, pVCpu->cpum.GstCtx.rip);
5339 AssertRC(rc);
5340
5341 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_RIP);
5342 Log4Func(("rip=%#RX64\n", pVCpu->cpum.GstCtx.rip));
5343 }
5344}
5345
5346
5347/**
5348 * Exports the guest's RSP into the guest-state area in the VMCS.
5349 *
5350 * @param pVCpu The cross context virtual CPU structure.
5351 *
5352 * @remarks No-long-jump zone!!!
5353 */
5354static void hmR0VmxExportGuestRsp(PVMCPUCC pVCpu)
5355{
5356 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_RSP)
5357 {
5358 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RSP);
5359
5360 int rc = VMXWriteVmcsNw(VMX_VMCS_GUEST_RSP, pVCpu->cpum.GstCtx.rsp);
5361 AssertRC(rc);
5362
5363 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_RSP);
5364 Log4Func(("rsp=%#RX64\n", pVCpu->cpum.GstCtx.rsp));
5365 }
5366}
5367
5368
5369/**
5370 * Exports the guest's RFLAGS into the guest-state area in the VMCS.
5371 *
5372 * @param pVCpu The cross context virtual CPU structure.
5373 * @param pVmxTransient The VMX-transient structure.
5374 *
5375 * @remarks No-long-jump zone!!!
5376 */
5377static void hmR0VmxExportGuestRflags(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient)
5378{
5379 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_RFLAGS)
5380 {
5381 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RFLAGS);
5382
5383 /* Intel spec. 2.3.1 "System Flags and Fields in IA-32e Mode" claims the upper 32-bits of RFLAGS are reserved (MBZ).
5384 Let us assert it as such and use 32-bit VMWRITE. */
5385 Assert(!RT_HI_U32(pVCpu->cpum.GstCtx.rflags.u64));
5386 X86EFLAGS fEFlags = pVCpu->cpum.GstCtx.eflags;
5387 Assert(fEFlags.u32 & X86_EFL_RA1_MASK);
5388 Assert(!(fEFlags.u32 & ~(X86_EFL_1 | X86_EFL_LIVE_MASK)));
5389
5390 /*
5391 * If we're emulating real-mode using Virtual 8086 mode, save the real-mode eflags so
5392 * we can restore them on VM-exit. Modify the real-mode guest's eflags so that VT-x
5393 * can run the real-mode guest code under Virtual 8086 mode.
5394 */
5395 PVMXVMCSINFOSHARED pVmcsInfo = pVmxTransient->pVmcsInfo->pShared;
5396 if (pVmcsInfo->RealMode.fRealOnV86Active)
5397 {
5398 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
5399 Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
5400 Assert(!pVmxTransient->fIsNestedGuest);
5401 pVmcsInfo->RealMode.Eflags.u32 = fEFlags.u32; /* Save the original eflags of the real-mode guest. */
5402 fEFlags.Bits.u1VM = 1; /* Set the Virtual 8086 mode bit. */
5403 fEFlags.Bits.u2IOPL = 0; /* Change IOPL to 0, otherwise certain instructions won't fault. */
5404 }
5405
5406 int rc = VMXWriteVmcsNw(VMX_VMCS_GUEST_RFLAGS, fEFlags.u32);
5407 AssertRC(rc);
5408
5409 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_RFLAGS);
5410 Log4Func(("eflags=%#RX32\n", fEFlags.u32));
5411 }
5412}
5413
5414
5415#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
5416/**
5417 * Copies the nested-guest VMCS to the shadow VMCS.
5418 *
5419 * @returns VBox status code.
5420 * @param pVCpu The cross context virtual CPU structure.
5421 * @param pVmcsInfo The VMCS info. object.
5422 *
5423 * @remarks No-long-jump zone!!!
5424 */
5425static int hmR0VmxCopyNstGstToShadowVmcs(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
5426{
5427 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
5428 PCVMXVVMCS pVmcsNstGst = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
5429
5430 /*
5431 * Disable interrupts so we don't get preempted while the shadow VMCS is the
5432 * current VMCS, as we may try saving guest lazy MSRs.
5433 *
5434 * Strictly speaking the lazy MSRs are not in the VMCS, but I'd rather not risk
5435 * calling the import VMCS code which is currently performing the guest MSR reads
5436 * (on 64-bit hosts) and accessing the auto-load/store MSR area on 32-bit hosts
5437 * and the rest of the VMX leave session machinery.
5438 */
5439 RTCCUINTREG const fEFlags = ASMIntDisableFlags();
5440
5441 int rc = hmR0VmxLoadShadowVmcs(pVmcsInfo);
5442 if (RT_SUCCESS(rc))
5443 {
5444 /*
5445 * Copy all guest read/write VMCS fields.
5446 *
5447 * We don't check for VMWRITE failures here for performance reasons and
5448 * because they are not expected to fail, barring irrecoverable conditions
5449 * like hardware errors.
5450 */
5451 uint32_t const cShadowVmcsFields = pVM->hmr0.s.vmx.cShadowVmcsFields;
5452 for (uint32_t i = 0; i < cShadowVmcsFields; i++)
5453 {
5454 uint64_t u64Val;
5455 uint32_t const uVmcsField = pVM->hmr0.s.vmx.paShadowVmcsFields[i];
5456 IEMReadVmxVmcsField(pVmcsNstGst, uVmcsField, &u64Val);
5457 VMXWriteVmcs64(uVmcsField, u64Val);
5458 }
5459
5460 /*
5461 * If the host CPU supports writing all VMCS fields, copy the guest read-only
5462 * VMCS fields, so the guest can VMREAD them without causing a VM-exit.
5463 */
5464 if (g_HmMsrs.u.vmx.u64Misc & VMX_MISC_VMWRITE_ALL)
5465 {
5466 uint32_t const cShadowVmcsRoFields = pVM->hmr0.s.vmx.cShadowVmcsRoFields;
5467 for (uint32_t i = 0; i < cShadowVmcsRoFields; i++)
5468 {
5469 uint64_t u64Val;
5470 uint32_t const uVmcsField = pVM->hmr0.s.vmx.paShadowVmcsRoFields[i];
5471 IEMReadVmxVmcsField(pVmcsNstGst, uVmcsField, &u64Val);
5472 VMXWriteVmcs64(uVmcsField, u64Val);
5473 }
5474 }
5475
5476 rc = hmR0VmxClearShadowVmcs(pVmcsInfo);
5477 rc |= hmR0VmxLoadVmcs(pVmcsInfo);
5478 }
5479
5480 ASMSetFlags(fEFlags);
5481 return rc;
5482}
5483
5484
5485/**
5486 * Copies the shadow VMCS to the nested-guest VMCS.
5487 *
5488 * @returns VBox status code.
5489 * @param pVCpu The cross context virtual CPU structure.
5490 * @param pVmcsInfo The VMCS info. object.
5491 *
5492 * @remarks Called with interrupts disabled.
5493 */
5494static int hmR0VmxCopyShadowToNstGstVmcs(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
5495{
5496 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
5497 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
5498 PVMXVVMCS pVmcsNstGst = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
5499
5500 int rc = hmR0VmxLoadShadowVmcs(pVmcsInfo);
5501 if (RT_SUCCESS(rc))
5502 {
5503 /*
5504 * Copy guest read/write fields from the shadow VMCS.
5505 * Guest read-only fields cannot be modified, so no need to copy them.
5506 *
5507 * We don't check for VMREAD failures here for performance reasons and
5508 * because they are not expected to fail, barring irrecoverable conditions
5509 * like hardware errors.
5510 */
5511 uint32_t const cShadowVmcsFields = pVM->hmr0.s.vmx.cShadowVmcsFields;
5512 for (uint32_t i = 0; i < cShadowVmcsFields; i++)
5513 {
5514 uint64_t u64Val;
5515 uint32_t const uVmcsField = pVM->hmr0.s.vmx.paShadowVmcsFields[i];
5516 VMXReadVmcs64(uVmcsField, &u64Val);
5517 IEMWriteVmxVmcsField(pVmcsNstGst, uVmcsField, u64Val);
5518 }
5519
5520 rc = hmR0VmxClearShadowVmcs(pVmcsInfo);
5521 rc |= hmR0VmxLoadVmcs(pVmcsInfo);
5522 }
5523 return rc;
5524}
5525
5526
5527/**
5528 * Enables VMCS shadowing for the given VMCS info. object.
5529 *
5530 * @param pVmcsInfo The VMCS info. object.
5531 *
5532 * @remarks No-long-jump zone!!!
5533 */
5534static void hmR0VmxEnableVmcsShadowing(PVMXVMCSINFO pVmcsInfo)
5535{
5536 uint32_t uProcCtls2 = pVmcsInfo->u32ProcCtls2;
5537 if (!(uProcCtls2 & VMX_PROC_CTLS2_VMCS_SHADOWING))
5538 {
5539 Assert(pVmcsInfo->HCPhysShadowVmcs != 0 && pVmcsInfo->HCPhysShadowVmcs != NIL_RTHCPHYS);
5540 uProcCtls2 |= VMX_PROC_CTLS2_VMCS_SHADOWING;
5541 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, uProcCtls2); AssertRC(rc);
5542 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL, pVmcsInfo->HCPhysShadowVmcs); AssertRC(rc);
5543 pVmcsInfo->u32ProcCtls2 = uProcCtls2;
5544 pVmcsInfo->u64VmcsLinkPtr = pVmcsInfo->HCPhysShadowVmcs;
5545 Log4Func(("Enabled\n"));
5546 }
5547}
5548
5549
5550/**
5551 * Disables VMCS shadowing for the given VMCS info. object.
5552 *
5553 * @param pVmcsInfo The VMCS info. object.
5554 *
5555 * @remarks No-long-jump zone!!!
5556 */
5557static void hmR0VmxDisableVmcsShadowing(PVMXVMCSINFO pVmcsInfo)
5558{
5559 /*
5560 * We want all VMREAD and VMWRITE instructions to cause VM-exits, so we clear the
5561 * VMCS shadowing control. However, VM-entry requires the shadow VMCS indicator bit
5562 * to match the VMCS shadowing control if the VMCS link pointer is not NIL_RTHCPHYS.
5563 * Hence, we must also reset the VMCS link pointer to ensure VM-entry does not fail.
5564 *
5565 * See Intel spec. 26.2.1.1 "VM-Execution Control Fields".
5566 * See Intel spec. 26.3.1.5 "Checks on Guest Non-Register State".
5567 */
5568 uint32_t uProcCtls2 = pVmcsInfo->u32ProcCtls2;
5569 if (uProcCtls2 & VMX_PROC_CTLS2_VMCS_SHADOWING)
5570 {
5571 uProcCtls2 &= ~VMX_PROC_CTLS2_VMCS_SHADOWING;
5572 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, uProcCtls2); AssertRC(rc);
5573 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL, NIL_RTHCPHYS); AssertRC(rc);
5574 pVmcsInfo->u32ProcCtls2 = uProcCtls2;
5575 pVmcsInfo->u64VmcsLinkPtr = NIL_RTHCPHYS;
5576 Log4Func(("Disabled\n"));
5577 }
5578}
5579#endif
5580
5581
5582/**
5583 * Exports the guest hardware-virtualization state.
5584 *
5585 * @returns VBox status code.
5586 * @param pVCpu The cross context virtual CPU structure.
5587 * @param pVmxTransient The VMX-transient structure.
5588 *
5589 * @remarks No-long-jump zone!!!
5590 */
5591static int hmR0VmxExportGuestHwvirtState(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient)
5592{
5593 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_HWVIRT)
5594 {
5595#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
5596 /*
5597 * Check if the VMX feature is exposed to the guest and if the host CPU supports
5598 * VMCS shadowing.
5599 */
5600 if (pVCpu->CTX_SUFF(pVM)->hmr0.s.vmx.fUseVmcsShadowing)
5601 {
5602 /*
5603 * If the nested hypervisor has loaded a current VMCS and is in VMX root mode,
5604 * copy the nested hypervisor's current VMCS into the shadow VMCS and enable
5605 * VMCS shadowing to skip intercepting some or all VMREAD/VMWRITE VM-exits.
5606 *
5607 * We check for VMX root mode here in case the guest executes VMXOFF without
5608 * clearing the current VMCS pointer and our VMXOFF instruction emulation does
5609 * not clear the current VMCS pointer.
5610 */
5611 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
5612 if ( CPUMIsGuestInVmxRootMode(&pVCpu->cpum.GstCtx)
5613 && !CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx)
5614 && CPUMIsGuestVmxCurrentVmcsValid(&pVCpu->cpum.GstCtx))
5615 {
5616 /* Paranoia. */
5617 Assert(!pVmxTransient->fIsNestedGuest);
5618
5619 /*
5620 * For performance reasons, also check if the nested hypervisor's current VMCS
5621 * was newly loaded or modified before copying it to the shadow VMCS.
5622 */
5623 if (!pVCpu->hm.s.vmx.fCopiedNstGstToShadowVmcs)
5624 {
5625 int rc = hmR0VmxCopyNstGstToShadowVmcs(pVCpu, pVmcsInfo);
5626 AssertRCReturn(rc, rc);
5627 pVCpu->hm.s.vmx.fCopiedNstGstToShadowVmcs = true;
5628 }
5629 hmR0VmxEnableVmcsShadowing(pVmcsInfo);
5630 }
5631 else
5632 hmR0VmxDisableVmcsShadowing(pVmcsInfo);
5633 }
5634#else
5635 NOREF(pVmxTransient);
5636#endif
5637 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_HWVIRT);
5638 }
5639 return VINF_SUCCESS;
5640}
5641
5642
5643/**
5644 * Exports the guest CR0 control register into the guest-state area in the VMCS.
5645 *
5646 * The guest FPU state is always pre-loaded hence we don't need to bother about
5647 * sharing FPU related CR0 bits between the guest and host.
5648 *
5649 * @returns VBox status code.
5650 * @param pVCpu The cross context virtual CPU structure.
5651 * @param pVmxTransient The VMX-transient structure.
5652 *
5653 * @remarks No-long-jump zone!!!
5654 */
5655static int hmR0VmxExportGuestCR0(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient)
5656{
5657 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_CR0)
5658 {
5659 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
5660 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
5661
5662 uint64_t fSetCr0 = g_HmMsrs.u.vmx.u64Cr0Fixed0;
5663 uint64_t const fZapCr0 = g_HmMsrs.u.vmx.u64Cr0Fixed1;
5664 if (pVM->hmr0.s.vmx.fUnrestrictedGuest)
5665 fSetCr0 &= ~(uint64_t)(X86_CR0_PE | X86_CR0_PG);
5666 else
5667 Assert((fSetCr0 & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG));
5668
5669 if (!pVmxTransient->fIsNestedGuest)
5670 {
5671 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
5672 uint64_t u64GuestCr0 = pVCpu->cpum.GstCtx.cr0;
5673 uint64_t const u64ShadowCr0 = u64GuestCr0;
5674 Assert(!RT_HI_U32(u64GuestCr0));
5675
5676 /*
5677 * Setup VT-x's view of the guest CR0.
5678 */
5679 uint32_t uProcCtls = pVmcsInfo->u32ProcCtls;
5680 if (pVM->hmr0.s.fNestedPaging)
5681 {
5682 if (CPUMIsGuestPagingEnabled(pVCpu))
5683 {
5684 /* The guest has paging enabled, let it access CR3 without causing a VM-exit if supported. */
5685 uProcCtls &= ~( VMX_PROC_CTLS_CR3_LOAD_EXIT
5686 | VMX_PROC_CTLS_CR3_STORE_EXIT);
5687 }
5688 else
5689 {
5690 /* The guest doesn't have paging enabled, make CR3 access cause a VM-exit to update our shadow. */
5691 uProcCtls |= VMX_PROC_CTLS_CR3_LOAD_EXIT
5692 | VMX_PROC_CTLS_CR3_STORE_EXIT;
5693 }
5694
5695 /* If we have unrestricted guest execution, we never have to intercept CR3 reads. */
5696 if (pVM->hmr0.s.vmx.fUnrestrictedGuest)
5697 uProcCtls &= ~VMX_PROC_CTLS_CR3_STORE_EXIT;
5698 }
5699 else
5700 {
5701 /* Guest CPL 0 writes to its read-only pages should cause a #PF VM-exit. */
5702 u64GuestCr0 |= X86_CR0_WP;
5703 }
5704
5705 /*
5706 * Guest FPU bits.
5707 *
5708 * Since we pre-load the guest FPU always before VM-entry there is no need to track lazy state
5709 * using CR0.TS.
5710 *
5711 * Intel spec. 23.8 "Restrictions on VMX operation" mentions that CR0.NE bit must always be
5712 * set on the first CPUs to support VT-x and no mention of with regards to UX in VM-entry checks.
5713 */
5714 u64GuestCr0 |= X86_CR0_NE;
5715
5716 /* If CR0.NE isn't set, we need to intercept #MF exceptions and report them to the guest differently. */
5717 bool const fInterceptMF = !(u64ShadowCr0 & X86_CR0_NE);
5718
5719 /*
5720 * Update exception intercepts.
5721 */
5722 uint32_t uXcptBitmap = pVmcsInfo->u32XcptBitmap;
5723 if (pVmcsInfo->pShared->RealMode.fRealOnV86Active)
5724 {
5725 Assert(PDMVmmDevHeapIsEnabled(pVM));
5726 Assert(pVM->hm.s.vmx.pRealModeTSS);
5727 uXcptBitmap |= HMVMX_REAL_MODE_XCPT_MASK;
5728 }
5729 else
5730 {
5731 /* For now, cleared here as mode-switches can happen outside HM/VT-x. See @bugref{7626#c11}. */
5732 uXcptBitmap &= ~HMVMX_REAL_MODE_XCPT_MASK;
5733 if (fInterceptMF)
5734 uXcptBitmap |= RT_BIT(X86_XCPT_MF);
5735 }
5736
5737 /* Additional intercepts for debugging, define these yourself explicitly. */
5738#ifdef HMVMX_ALWAYS_TRAP_ALL_XCPTS
5739 uXcptBitmap |= 0
5740 | RT_BIT(X86_XCPT_BP)
5741 | RT_BIT(X86_XCPT_DE)
5742 | RT_BIT(X86_XCPT_NM)
5743 | RT_BIT(X86_XCPT_TS)
5744 | RT_BIT(X86_XCPT_UD)
5745 | RT_BIT(X86_XCPT_NP)
5746 | RT_BIT(X86_XCPT_SS)
5747 | RT_BIT(X86_XCPT_GP)
5748 | RT_BIT(X86_XCPT_PF)
5749 | RT_BIT(X86_XCPT_MF)
5750 ;
5751#elif defined(HMVMX_ALWAYS_TRAP_PF)
5752 uXcptBitmap |= RT_BIT(X86_XCPT_PF);
5753#endif
5754 if (pVCpu->hm.s.fTrapXcptGpForLovelyMesaDrv)
5755 uXcptBitmap |= RT_BIT(X86_XCPT_GP);
5756 Assert(pVM->hmr0.s.fNestedPaging || (uXcptBitmap & RT_BIT(X86_XCPT_PF)));
5757
5758 /* Apply the hardware specified CR0 fixed bits and enable caching. */
5759 u64GuestCr0 |= fSetCr0;
5760 u64GuestCr0 &= fZapCr0;
5761 u64GuestCr0 &= ~(uint64_t)(X86_CR0_CD | X86_CR0_NW);
5762
5763 /* Commit the CR0 and related fields to the guest VMCS. */
5764 int rc = VMXWriteVmcsNw(VMX_VMCS_GUEST_CR0, u64GuestCr0); AssertRC(rc);
5765 rc = VMXWriteVmcsNw(VMX_VMCS_CTRL_CR0_READ_SHADOW, u64ShadowCr0); AssertRC(rc);
5766 if (uProcCtls != pVmcsInfo->u32ProcCtls)
5767 {
5768 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, uProcCtls);
5769 AssertRC(rc);
5770 }
5771 if (uXcptBitmap != pVmcsInfo->u32XcptBitmap)
5772 {
5773 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, uXcptBitmap);
5774 AssertRC(rc);
5775 }
5776
5777 /* Update our caches. */
5778 pVmcsInfo->u32ProcCtls = uProcCtls;
5779 pVmcsInfo->u32XcptBitmap = uXcptBitmap;
5780
5781 Log4Func(("cr0=%#RX64 shadow=%#RX64 set=%#RX64 zap=%#RX64\n", u64GuestCr0, u64ShadowCr0, fSetCr0, fZapCr0));
5782 }
5783 else
5784 {
5785 /*
5786 * With nested-guests, we may have extended the guest/host mask here since we
5787 * merged in the outer guest's mask. Thus, the merged mask can include more bits
5788 * (to read from the nested-guest CR0 read-shadow) than the nested hypervisor
5789 * originally supplied. We must copy those bits from the nested-guest CR0 into
5790 * the nested-guest CR0 read-shadow.
5791 */
5792 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
5793 uint64_t u64GuestCr0 = pVCpu->cpum.GstCtx.cr0;
5794 uint64_t const u64ShadowCr0 = CPUMGetGuestVmxMaskedCr0(&pVCpu->cpum.GstCtx, pVmcsInfo->u64Cr0Mask);
5795 Assert(!RT_HI_U32(u64GuestCr0));
5796 Assert(u64GuestCr0 & X86_CR0_NE);
5797
5798 /* Apply the hardware specified CR0 fixed bits and enable caching. */
5799 u64GuestCr0 |= fSetCr0;
5800 u64GuestCr0 &= fZapCr0;
5801 u64GuestCr0 &= ~(uint64_t)(X86_CR0_CD | X86_CR0_NW);
5802
5803 /* Commit the CR0 and CR0 read-shadow to the nested-guest VMCS. */
5804 int rc = VMXWriteVmcsNw(VMX_VMCS_GUEST_CR0, u64GuestCr0); AssertRC(rc);
5805 rc = VMXWriteVmcsNw(VMX_VMCS_CTRL_CR0_READ_SHADOW, u64ShadowCr0); AssertRC(rc);
5806
5807 Log4Func(("cr0=%#RX64 shadow=%#RX64 (set=%#RX64 zap=%#RX64)\n", u64GuestCr0, u64ShadowCr0, fSetCr0, fZapCr0));
5808 }
5809
5810 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_CR0);
5811 }
5812
5813 return VINF_SUCCESS;
5814}
5815
5816
5817/**
5818 * Exports the guest control registers (CR3, CR4) into the guest-state area
5819 * in the VMCS.
5820 *
5821 * @returns VBox strict status code.
5822 * @retval VINF_EM_RESCHEDULE_REM if we try to emulate non-paged guest code
5823 * without unrestricted guest access and the VMMDev is not presently
5824 * mapped (e.g. EFI32).
5825 *
5826 * @param pVCpu The cross context virtual CPU structure.
5827 * @param pVmxTransient The VMX-transient structure.
5828 *
5829 * @remarks No-long-jump zone!!!
5830 */
5831static VBOXSTRICTRC hmR0VmxExportGuestCR3AndCR4(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient)
5832{
5833 int rc = VINF_SUCCESS;
5834 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
5835
5836 /*
5837 * Guest CR2.
5838 * It's always loaded in the assembler code. Nothing to do here.
5839 */
5840
5841 /*
5842 * Guest CR3.
5843 */
5844 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_CR3)
5845 {
5846 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR3);
5847
5848 if (pVM->hmr0.s.fNestedPaging)
5849 {
5850 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
5851 pVmcsInfo->HCPhysEPTP = PGMGetHyperCR3(pVCpu);
5852
5853 /* Validate. See Intel spec. 28.2.2 "EPT Translation Mechanism" and 24.6.11 "Extended-Page-Table Pointer (EPTP)" */
5854 Assert(pVmcsInfo->HCPhysEPTP != NIL_RTHCPHYS);
5855 Assert(!(pVmcsInfo->HCPhysEPTP & UINT64_C(0xfff0000000000000)));
5856 Assert(!(pVmcsInfo->HCPhysEPTP & 0xfff));
5857
5858 /* VMX_EPT_MEMTYPE_WB support is already checked in hmR0VmxSetupTaggedTlb(). */
5859 pVmcsInfo->HCPhysEPTP |= VMX_EPT_MEMTYPE_WB
5860 | (VMX_EPT_PAGE_WALK_LENGTH_DEFAULT << VMX_EPT_PAGE_WALK_LENGTH_SHIFT);
5861
5862 /* Validate. See Intel spec. 26.2.1 "Checks on VMX Controls" */
5863 AssertMsg( ((pVmcsInfo->HCPhysEPTP >> 3) & 0x07) == 3 /* Bits 3:5 (EPT page walk length - 1) must be 3. */
5864 && ((pVmcsInfo->HCPhysEPTP >> 7) & 0x1f) == 0, /* Bits 7:11 MBZ. */
5865 ("EPTP %#RX64\n", pVmcsInfo->HCPhysEPTP));
5866 AssertMsg( !((pVmcsInfo->HCPhysEPTP >> 6) & 0x01) /* Bit 6 (EPT accessed & dirty bit). */
5867 || (g_HmMsrs.u.vmx.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_EPT_ACCESS_DIRTY),
5868 ("EPTP accessed/dirty bit not supported by CPU but set %#RX64\n", pVmcsInfo->HCPhysEPTP));
5869
5870 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, pVmcsInfo->HCPhysEPTP);
5871 AssertRC(rc);
5872
5873 uint64_t u64GuestCr3;
5874 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
5875 if ( pVM->hmr0.s.vmx.fUnrestrictedGuest
5876 || CPUMIsGuestPagingEnabledEx(pCtx))
5877 {
5878 /* If the guest is in PAE mode, pass the PDPEs to VT-x using the VMCS fields. */
5879 if (CPUMIsGuestInPAEModeEx(pCtx))
5880 {
5881 rc = PGMGstGetPaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
5882 AssertRC(rc);
5883 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, pVCpu->hm.s.aPdpes[0].u); AssertRC(rc);
5884 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, pVCpu->hm.s.aPdpes[1].u); AssertRC(rc);
5885 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, pVCpu->hm.s.aPdpes[2].u); AssertRC(rc);
5886 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, pVCpu->hm.s.aPdpes[3].u); AssertRC(rc);
5887 }
5888
5889 /*
5890 * The guest's view of its CR3 is unblemished with nested paging when the
5891 * guest is using paging or we have unrestricted guest execution to handle
5892 * the guest when it's not using paging.
5893 */
5894 u64GuestCr3 = pCtx->cr3;
5895 }
5896 else
5897 {
5898 /*
5899 * The guest is not using paging, but the CPU (VT-x) has to. While the guest
5900 * thinks it accesses physical memory directly, we use our identity-mapped
5901 * page table to map guest-linear to guest-physical addresses. EPT takes care
5902 * of translating it to host-physical addresses.
5903 */
5904 RTGCPHYS GCPhys;
5905 Assert(pVM->hm.s.vmx.pNonPagingModeEPTPageTable);
5906
5907 /* We obtain it here every time as the guest could have relocated this PCI region. */
5908 rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pNonPagingModeEPTPageTable, &GCPhys);
5909 if (RT_SUCCESS(rc))
5910 { /* likely */ }
5911 else if (rc == VERR_PDM_DEV_HEAP_R3_TO_GCPHYS)
5912 {
5913 Log4Func(("VERR_PDM_DEV_HEAP_R3_TO_GCPHYS -> VINF_EM_RESCHEDULE_REM\n"));
5914 return VINF_EM_RESCHEDULE_REM; /* We cannot execute now, switch to REM/IEM till the guest maps in VMMDev. */
5915 }
5916 else
5917 AssertMsgFailedReturn(("%Rrc\n", rc), rc);
5918
5919 u64GuestCr3 = GCPhys;
5920 }
5921
5922 Log4Func(("guest_cr3=%#RX64 (GstN)\n", u64GuestCr3));
5923 rc = VMXWriteVmcsNw(VMX_VMCS_GUEST_CR3, u64GuestCr3);
5924 AssertRC(rc);
5925 }
5926 else
5927 {
5928 Assert(!pVmxTransient->fIsNestedGuest);
5929 /* Non-nested paging case, just use the hypervisor's CR3. */
5930 RTHCPHYS const HCPhysGuestCr3 = PGMGetHyperCR3(pVCpu);
5931
5932 Log4Func(("guest_cr3=%#RX64 (HstN)\n", HCPhysGuestCr3));
5933 rc = VMXWriteVmcsNw(VMX_VMCS_GUEST_CR3, HCPhysGuestCr3);
5934 AssertRC(rc);
5935 }
5936
5937 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_CR3);
5938 }
5939
5940 /*
5941 * Guest CR4.
5942 * ASSUMES this is done everytime we get in from ring-3! (XCR0)
5943 */
5944 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_CR4)
5945 {
5946 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
5947 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
5948
5949 uint64_t const fSetCr4 = g_HmMsrs.u.vmx.u64Cr4Fixed0;
5950 uint64_t const fZapCr4 = g_HmMsrs.u.vmx.u64Cr4Fixed1;
5951
5952 /*
5953 * With nested-guests, we may have extended the guest/host mask here (since we
5954 * merged in the outer guest's mask, see hmR0VmxMergeVmcsNested). This means, the
5955 * mask can include more bits (to read from the nested-guest CR4 read-shadow) than
5956 * the nested hypervisor originally supplied. Thus, we should, in essence, copy
5957 * those bits from the nested-guest CR4 into the nested-guest CR4 read-shadow.
5958 */
5959 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
5960 uint64_t u64GuestCr4 = pCtx->cr4;
5961 uint64_t const u64ShadowCr4 = !pVmxTransient->fIsNestedGuest
5962 ? pCtx->cr4
5963 : CPUMGetGuestVmxMaskedCr4(pCtx, pVmcsInfo->u64Cr4Mask);
5964 Assert(!RT_HI_U32(u64GuestCr4));
5965
5966 /*
5967 * Setup VT-x's view of the guest CR4.
5968 *
5969 * If we're emulating real-mode using virtual-8086 mode, we want to redirect software
5970 * interrupts to the 8086 program interrupt handler. Clear the VME bit (the interrupt
5971 * redirection bitmap is already all 0, see hmR3InitFinalizeR0())
5972 *
5973 * See Intel spec. 20.2 "Software Interrupt Handling Methods While in Virtual-8086 Mode".
5974 */
5975 if (pVmcsInfo->pShared->RealMode.fRealOnV86Active)
5976 {
5977 Assert(pVM->hm.s.vmx.pRealModeTSS);
5978 Assert(PDMVmmDevHeapIsEnabled(pVM));
5979 u64GuestCr4 &= ~(uint64_t)X86_CR4_VME;
5980 }
5981
5982 if (pVM->hmr0.s.fNestedPaging)
5983 {
5984 if ( !CPUMIsGuestPagingEnabledEx(pCtx)
5985 && !pVM->hmr0.s.vmx.fUnrestrictedGuest)
5986 {
5987 /* We use 4 MB pages in our identity mapping page table when the guest doesn't have paging. */
5988 u64GuestCr4 |= X86_CR4_PSE;
5989 /* Our identity mapping is a 32-bit page directory. */
5990 u64GuestCr4 &= ~(uint64_t)X86_CR4_PAE;
5991 }
5992 /* else use guest CR4.*/
5993 }
5994 else
5995 {
5996 Assert(!pVmxTransient->fIsNestedGuest);
5997
5998 /*
5999 * The shadow paging modes and guest paging modes are different, the shadow is in accordance with the host
6000 * paging mode and thus we need to adjust VT-x's view of CR4 depending on our shadow page tables.
6001 */
6002 switch (pVCpu->hm.s.enmShadowMode)
6003 {
6004 case PGMMODE_REAL: /* Real-mode. */
6005 case PGMMODE_PROTECTED: /* Protected mode without paging. */
6006 case PGMMODE_32_BIT: /* 32-bit paging. */
6007 {
6008 u64GuestCr4 &= ~(uint64_t)X86_CR4_PAE;
6009 break;
6010 }
6011
6012 case PGMMODE_PAE: /* PAE paging. */
6013 case PGMMODE_PAE_NX: /* PAE paging with NX. */
6014 {
6015 u64GuestCr4 |= X86_CR4_PAE;
6016 break;
6017 }
6018
6019 case PGMMODE_AMD64: /* 64-bit AMD paging (long mode). */
6020 case PGMMODE_AMD64_NX: /* 64-bit AMD paging (long mode) with NX enabled. */
6021 {
6022#ifdef VBOX_WITH_64_BITS_GUESTS
6023 /* For our assumption in hmR0VmxShouldSwapEferMsr. */
6024 Assert(u64GuestCr4 & X86_CR4_PAE);
6025 break;
6026#endif
6027 }
6028 default:
6029 AssertFailed();
6030 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
6031 }
6032 }
6033
6034 /* Apply the hardware specified CR4 fixed bits (mainly CR4.VMXE). */
6035 u64GuestCr4 |= fSetCr4;
6036 u64GuestCr4 &= fZapCr4;
6037
6038 /* Commit the CR4 and CR4 read-shadow to the guest VMCS. */
6039 rc = VMXWriteVmcsNw(VMX_VMCS_GUEST_CR4, u64GuestCr4); AssertRC(rc);
6040 rc = VMXWriteVmcsNw(VMX_VMCS_CTRL_CR4_READ_SHADOW, u64ShadowCr4); AssertRC(rc);
6041
6042 /* Whether to save/load/restore XCR0 during world switch depends on CR4.OSXSAVE and host+guest XCR0. */
6043 bool const fLoadSaveGuestXcr0 = (pCtx->cr4 & X86_CR4_OSXSAVE) && pCtx->aXcr[0] != ASMGetXcr0();
6044 if (fLoadSaveGuestXcr0 != pVCpu->hmr0.s.fLoadSaveGuestXcr0)
6045 {
6046 pVCpu->hmr0.s.fLoadSaveGuestXcr0 = fLoadSaveGuestXcr0;
6047 hmR0VmxUpdateStartVmFunction(pVCpu);
6048 }
6049
6050 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_CR4);
6051
6052 Log4Func(("cr4=%#RX64 shadow=%#RX64 (set=%#RX64 zap=%#RX64)\n", u64GuestCr4, u64ShadowCr4, fSetCr4, fZapCr4));
6053 }
6054 return rc;
6055}
6056
6057
6058/**
6059 * Exports the guest debug registers into the guest-state area in the VMCS.
6060 * The guest debug bits are partially shared with the host (e.g. DR6, DR0-3).
6061 *
6062 * This also sets up whether \#DB and MOV DRx accesses cause VM-exits.
6063 *
6064 * @returns VBox status code.
6065 * @param pVCpu The cross context virtual CPU structure.
6066 * @param pVmxTransient The VMX-transient structure.
6067 *
6068 * @remarks No-long-jump zone!!!
6069 */
6070static int hmR0VmxExportSharedDebugState(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
6071{
6072 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
6073
6074 /** @todo NSTVMX: Figure out what we want to do with nested-guest instruction
6075 * stepping. */
6076 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
6077 if (pVmxTransient->fIsNestedGuest)
6078 {
6079 int rc = VMXWriteVmcsNw(VMX_VMCS_GUEST_DR7, CPUMGetGuestDR7(pVCpu));
6080 AssertRC(rc);
6081
6082 /*
6083 * We don't want to always intercept MOV DRx for nested-guests as it causes
6084 * problems when the nested hypervisor isn't intercepting them, see @bugref{10080}.
6085 * Instead, they are strictly only requested when the nested hypervisor intercepts
6086 * them -- handled while merging VMCS controls.
6087 *
6088 * If neither the outer nor the nested-hypervisor is intercepting MOV DRx,
6089 * then the nested-guest debug state should be actively loaded on the host so that
6090 * nested-guest reads its own debug registers without causing VM-exits.
6091 */
6092 if ( !(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_MOV_DR_EXIT)
6093 && !CPUMIsGuestDebugStateActive(pVCpu))
6094 CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
6095 return VINF_SUCCESS;
6096 }
6097
6098#ifdef VBOX_STRICT
6099 /* Validate. Intel spec. 26.3.1.1 "Checks on Guest Controls Registers, Debug Registers, MSRs" */
6100 if (pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG)
6101 {
6102 /* Validate. Intel spec. 17.2 "Debug Registers", recompiler paranoia checks. */
6103 Assert((pVCpu->cpum.GstCtx.dr[7] & (X86_DR7_MBZ_MASK | X86_DR7_RAZ_MASK)) == 0);
6104 Assert((pVCpu->cpum.GstCtx.dr[7] & X86_DR7_RA1_MASK) == X86_DR7_RA1_MASK);
6105 }
6106#endif
6107
6108 bool fSteppingDB = false;
6109 bool fInterceptMovDRx = false;
6110 uint32_t uProcCtls = pVmcsInfo->u32ProcCtls;
6111 if (pVCpu->hm.s.fSingleInstruction)
6112 {
6113 /* If the CPU supports the monitor trap flag, use it for single stepping in DBGF and avoid intercepting #DB. */
6114 if (g_HmMsrs.u.vmx.ProcCtls.n.allowed1 & VMX_PROC_CTLS_MONITOR_TRAP_FLAG)
6115 {
6116 uProcCtls |= VMX_PROC_CTLS_MONITOR_TRAP_FLAG;
6117 Assert(fSteppingDB == false);
6118 }
6119 else
6120 {
6121 pVCpu->cpum.GstCtx.eflags.u32 |= X86_EFL_TF;
6122 pVCpu->hm.s.fCtxChanged |= HM_CHANGED_GUEST_RFLAGS;
6123 pVCpu->hmr0.s.fClearTrapFlag = true;
6124 fSteppingDB = true;
6125 }
6126 }
6127
6128 uint64_t u64GuestDr7;
6129 if ( fSteppingDB
6130 || (CPUMGetHyperDR7(pVCpu) & X86_DR7_ENABLED_MASK))
6131 {
6132 /*
6133 * Use the combined guest and host DRx values found in the hypervisor register set
6134 * because the hypervisor debugger has breakpoints active or someone is single stepping
6135 * on the host side without a monitor trap flag.
6136 *
6137 * Note! DBGF expects a clean DR6 state before executing guest code.
6138 */
6139 if (!CPUMIsHyperDebugStateActive(pVCpu))
6140 {
6141 CPUMR0LoadHyperDebugState(pVCpu, true /* include DR6 */);
6142 Assert(CPUMIsHyperDebugStateActive(pVCpu));
6143 Assert(!CPUMIsGuestDebugStateActive(pVCpu));
6144 }
6145
6146 /* Update DR7 with the hypervisor value (other DRx registers are handled by CPUM one way or another). */
6147 u64GuestDr7 = CPUMGetHyperDR7(pVCpu);
6148 pVCpu->hmr0.s.fUsingHyperDR7 = true;
6149 fInterceptMovDRx = true;
6150 }
6151 else
6152 {
6153 /*
6154 * If the guest has enabled debug registers, we need to load them prior to
6155 * executing guest code so they'll trigger at the right time.
6156 */
6157 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_DR7);
6158 if (pVCpu->cpum.GstCtx.dr[7] & (X86_DR7_ENABLED_MASK | X86_DR7_GD))
6159 {
6160 if (!CPUMIsGuestDebugStateActive(pVCpu))
6161 {
6162 CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
6163 Assert(CPUMIsGuestDebugStateActive(pVCpu));
6164 Assert(!CPUMIsHyperDebugStateActive(pVCpu));
6165 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
6166 }
6167 Assert(!fInterceptMovDRx);
6168 }
6169 else if (!CPUMIsGuestDebugStateActive(pVCpu))
6170 {
6171 /*
6172 * If no debugging enabled, we'll lazy load DR0-3. Unlike on AMD-V, we
6173 * must intercept #DB in order to maintain a correct DR6 guest value, and
6174 * because we need to intercept it to prevent nested #DBs from hanging the
6175 * CPU, we end up always having to intercept it. See hmR0VmxSetupVmcsXcptBitmap().
6176 */
6177 fInterceptMovDRx = true;
6178 }
6179
6180 /* Update DR7 with the actual guest value. */
6181 u64GuestDr7 = pVCpu->cpum.GstCtx.dr[7];
6182 pVCpu->hmr0.s.fUsingHyperDR7 = false;
6183 }
6184
6185 if (fInterceptMovDRx)
6186 uProcCtls |= VMX_PROC_CTLS_MOV_DR_EXIT;
6187 else
6188 uProcCtls &= ~VMX_PROC_CTLS_MOV_DR_EXIT;
6189
6190 /*
6191 * Update the processor-based VM-execution controls with the MOV-DRx intercepts and the
6192 * monitor-trap flag and update our cache.
6193 */
6194 if (uProcCtls != pVmcsInfo->u32ProcCtls)
6195 {
6196 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, uProcCtls);
6197 AssertRC(rc);
6198 pVmcsInfo->u32ProcCtls = uProcCtls;
6199 }
6200
6201 /*
6202 * Update guest DR7.
6203 */
6204 int rc = VMXWriteVmcsNw(VMX_VMCS_GUEST_DR7, u64GuestDr7);
6205 AssertRC(rc);
6206
6207 /*
6208 * If we have forced EFLAGS.TF to be set because we're single-stepping in the hypervisor debugger,
6209 * we need to clear interrupt inhibition if any as otherwise it causes a VM-entry failure.
6210 *
6211 * See Intel spec. 26.3.1.5 "Checks on Guest Non-Register State".
6212 */
6213 if (fSteppingDB)
6214 {
6215 Assert(pVCpu->hm.s.fSingleInstruction);
6216 Assert(pVCpu->cpum.GstCtx.eflags.Bits.u1TF);
6217
6218 uint32_t fIntrState = 0;
6219 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INT_STATE, &fIntrState);
6220 AssertRC(rc);
6221
6222 if (fIntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS))
6223 {
6224 fIntrState &= ~(VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS);
6225 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_INT_STATE, fIntrState);
6226 AssertRC(rc);
6227 }
6228 }
6229
6230 return VINF_SUCCESS;
6231}
6232
6233
6234#ifdef VBOX_STRICT
6235/**
6236 * Strict function to validate segment registers.
6237 *
6238 * @param pVCpu The cross context virtual CPU structure.
6239 * @param pVmcsInfo The VMCS info. object.
6240 *
6241 * @remarks Will import guest CR0 on strict builds during validation of
6242 * segments.
6243 */
6244static void hmR0VmxValidateSegmentRegs(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
6245{
6246 /*
6247 * Validate segment registers. See Intel spec. 26.3.1.2 "Checks on Guest Segment Registers".
6248 *
6249 * The reason we check for attribute value 0 in this function and not just the unusable bit is
6250 * because hmR0VmxExportGuestSegReg() only updates the VMCS' copy of the value with the
6251 * unusable bit and doesn't change the guest-context value.
6252 */
6253 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
6254 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6255 hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_CR0);
6256 if ( !pVM->hmr0.s.vmx.fUnrestrictedGuest
6257 && ( !CPUMIsGuestInRealModeEx(pCtx)
6258 && !CPUMIsGuestInV86ModeEx(pCtx)))
6259 {
6260 /* Protected mode checks */
6261 /* CS */
6262 Assert(pCtx->cs.Attr.n.u1Present);
6263 Assert(!(pCtx->cs.Attr.u & 0xf00));
6264 Assert(!(pCtx->cs.Attr.u & 0xfffe0000));
6265 Assert( (pCtx->cs.u32Limit & 0xfff) == 0xfff
6266 || !(pCtx->cs.Attr.n.u1Granularity));
6267 Assert( !(pCtx->cs.u32Limit & 0xfff00000)
6268 || (pCtx->cs.Attr.n.u1Granularity));
6269 /* CS cannot be loaded with NULL in protected mode. */
6270 Assert(pCtx->cs.Attr.u && !(pCtx->cs.Attr.u & X86DESCATTR_UNUSABLE)); /** @todo is this really true even for 64-bit CS? */
6271 if (pCtx->cs.Attr.n.u4Type == 9 || pCtx->cs.Attr.n.u4Type == 11)
6272 Assert(pCtx->cs.Attr.n.u2Dpl == pCtx->ss.Attr.n.u2Dpl);
6273 else if (pCtx->cs.Attr.n.u4Type == 13 || pCtx->cs.Attr.n.u4Type == 15)
6274 Assert(pCtx->cs.Attr.n.u2Dpl <= pCtx->ss.Attr.n.u2Dpl);
6275 else
6276 AssertMsgFailed(("Invalid CS Type %#x\n", pCtx->cs.Attr.n.u2Dpl));
6277 /* SS */
6278 Assert((pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL));
6279 Assert(pCtx->ss.Attr.n.u2Dpl == (pCtx->ss.Sel & X86_SEL_RPL));
6280 if ( !(pCtx->cr0 & X86_CR0_PE)
6281 || pCtx->cs.Attr.n.u4Type == 3)
6282 {
6283 Assert(!pCtx->ss.Attr.n.u2Dpl);
6284 }
6285 if (pCtx->ss.Attr.u && !(pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE))
6286 {
6287 Assert((pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL));
6288 Assert(pCtx->ss.Attr.n.u4Type == 3 || pCtx->ss.Attr.n.u4Type == 7);
6289 Assert(pCtx->ss.Attr.n.u1Present);
6290 Assert(!(pCtx->ss.Attr.u & 0xf00));
6291 Assert(!(pCtx->ss.Attr.u & 0xfffe0000));
6292 Assert( (pCtx->ss.u32Limit & 0xfff) == 0xfff
6293 || !(pCtx->ss.Attr.n.u1Granularity));
6294 Assert( !(pCtx->ss.u32Limit & 0xfff00000)
6295 || (pCtx->ss.Attr.n.u1Granularity));
6296 }
6297 /* DS, ES, FS, GS - only check for usable selectors, see hmR0VmxExportGuestSegReg(). */
6298 if (pCtx->ds.Attr.u && !(pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE))
6299 {
6300 Assert(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
6301 Assert(pCtx->ds.Attr.n.u1Present);
6302 Assert(pCtx->ds.Attr.n.u4Type > 11 || pCtx->ds.Attr.n.u2Dpl >= (pCtx->ds.Sel & X86_SEL_RPL));
6303 Assert(!(pCtx->ds.Attr.u & 0xf00));
6304 Assert(!(pCtx->ds.Attr.u & 0xfffe0000));
6305 Assert( (pCtx->ds.u32Limit & 0xfff) == 0xfff
6306 || !(pCtx->ds.Attr.n.u1Granularity));
6307 Assert( !(pCtx->ds.u32Limit & 0xfff00000)
6308 || (pCtx->ds.Attr.n.u1Granularity));
6309 Assert( !(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_CODE)
6310 || (pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_READ));
6311 }
6312 if (pCtx->es.Attr.u && !(pCtx->es.Attr.u & X86DESCATTR_UNUSABLE))
6313 {
6314 Assert(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
6315 Assert(pCtx->es.Attr.n.u1Present);
6316 Assert(pCtx->es.Attr.n.u4Type > 11 || pCtx->es.Attr.n.u2Dpl >= (pCtx->es.Sel & X86_SEL_RPL));
6317 Assert(!(pCtx->es.Attr.u & 0xf00));
6318 Assert(!(pCtx->es.Attr.u & 0xfffe0000));
6319 Assert( (pCtx->es.u32Limit & 0xfff) == 0xfff
6320 || !(pCtx->es.Attr.n.u1Granularity));
6321 Assert( !(pCtx->es.u32Limit & 0xfff00000)
6322 || (pCtx->es.Attr.n.u1Granularity));
6323 Assert( !(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_CODE)
6324 || (pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_READ));
6325 }
6326 if (pCtx->fs.Attr.u && !(pCtx->fs.Attr.u & X86DESCATTR_UNUSABLE))
6327 {
6328 Assert(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
6329 Assert(pCtx->fs.Attr.n.u1Present);
6330 Assert(pCtx->fs.Attr.n.u4Type > 11 || pCtx->fs.Attr.n.u2Dpl >= (pCtx->fs.Sel & X86_SEL_RPL));
6331 Assert(!(pCtx->fs.Attr.u & 0xf00));
6332 Assert(!(pCtx->fs.Attr.u & 0xfffe0000));
6333 Assert( (pCtx->fs.u32Limit & 0xfff) == 0xfff
6334 || !(pCtx->fs.Attr.n.u1Granularity));
6335 Assert( !(pCtx->fs.u32Limit & 0xfff00000)
6336 || (pCtx->fs.Attr.n.u1Granularity));
6337 Assert( !(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
6338 || (pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_READ));
6339 }
6340 if (pCtx->gs.Attr.u && !(pCtx->gs.Attr.u & X86DESCATTR_UNUSABLE))
6341 {
6342 Assert(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
6343 Assert(pCtx->gs.Attr.n.u1Present);
6344 Assert(pCtx->gs.Attr.n.u4Type > 11 || pCtx->gs.Attr.n.u2Dpl >= (pCtx->gs.Sel & X86_SEL_RPL));
6345 Assert(!(pCtx->gs.Attr.u & 0xf00));
6346 Assert(!(pCtx->gs.Attr.u & 0xfffe0000));
6347 Assert( (pCtx->gs.u32Limit & 0xfff) == 0xfff
6348 || !(pCtx->gs.Attr.n.u1Granularity));
6349 Assert( !(pCtx->gs.u32Limit & 0xfff00000)
6350 || (pCtx->gs.Attr.n.u1Granularity));
6351 Assert( !(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
6352 || (pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_READ));
6353 }
6354 /* 64-bit capable CPUs. */
6355 Assert(!RT_HI_U32(pCtx->cs.u64Base));
6356 Assert(!pCtx->ss.Attr.u || !RT_HI_U32(pCtx->ss.u64Base));
6357 Assert(!pCtx->ds.Attr.u || !RT_HI_U32(pCtx->ds.u64Base));
6358 Assert(!pCtx->es.Attr.u || !RT_HI_U32(pCtx->es.u64Base));
6359 }
6360 else if ( CPUMIsGuestInV86ModeEx(pCtx)
6361 || ( CPUMIsGuestInRealModeEx(pCtx)
6362 && !pVM->hmr0.s.vmx.fUnrestrictedGuest))
6363 {
6364 /* Real and v86 mode checks. */
6365 /* hmR0VmxExportGuestSegReg() writes the modified in VMCS. We want what we're feeding to VT-x. */
6366 uint32_t u32CSAttr, u32SSAttr, u32DSAttr, u32ESAttr, u32FSAttr, u32GSAttr;
6367 if (pVmcsInfo->pShared->RealMode.fRealOnV86Active)
6368 {
6369 u32CSAttr = 0xf3; u32SSAttr = 0xf3; u32DSAttr = 0xf3;
6370 u32ESAttr = 0xf3; u32FSAttr = 0xf3; u32GSAttr = 0xf3;
6371 }
6372 else
6373 {
6374 u32CSAttr = pCtx->cs.Attr.u; u32SSAttr = pCtx->ss.Attr.u; u32DSAttr = pCtx->ds.Attr.u;
6375 u32ESAttr = pCtx->es.Attr.u; u32FSAttr = pCtx->fs.Attr.u; u32GSAttr = pCtx->gs.Attr.u;
6376 }
6377
6378 /* CS */
6379 AssertMsg((pCtx->cs.u64Base == (uint64_t)pCtx->cs.Sel << 4), ("CS base %#x %#x\n", pCtx->cs.u64Base, pCtx->cs.Sel));
6380 Assert(pCtx->cs.u32Limit == 0xffff);
6381 Assert(u32CSAttr == 0xf3);
6382 /* SS */
6383 Assert(pCtx->ss.u64Base == (uint64_t)pCtx->ss.Sel << 4);
6384 Assert(pCtx->ss.u32Limit == 0xffff);
6385 Assert(u32SSAttr == 0xf3);
6386 /* DS */
6387 Assert(pCtx->ds.u64Base == (uint64_t)pCtx->ds.Sel << 4);
6388 Assert(pCtx->ds.u32Limit == 0xffff);
6389 Assert(u32DSAttr == 0xf3);
6390 /* ES */
6391 Assert(pCtx->es.u64Base == (uint64_t)pCtx->es.Sel << 4);
6392 Assert(pCtx->es.u32Limit == 0xffff);
6393 Assert(u32ESAttr == 0xf3);
6394 /* FS */
6395 Assert(pCtx->fs.u64Base == (uint64_t)pCtx->fs.Sel << 4);
6396 Assert(pCtx->fs.u32Limit == 0xffff);
6397 Assert(u32FSAttr == 0xf3);
6398 /* GS */
6399 Assert(pCtx->gs.u64Base == (uint64_t)pCtx->gs.Sel << 4);
6400 Assert(pCtx->gs.u32Limit == 0xffff);
6401 Assert(u32GSAttr == 0xf3);
6402 /* 64-bit capable CPUs. */
6403 Assert(!RT_HI_U32(pCtx->cs.u64Base));
6404 Assert(!u32SSAttr || !RT_HI_U32(pCtx->ss.u64Base));
6405 Assert(!u32DSAttr || !RT_HI_U32(pCtx->ds.u64Base));
6406 Assert(!u32ESAttr || !RT_HI_U32(pCtx->es.u64Base));
6407 }
6408}
6409#endif /* VBOX_STRICT */
6410
6411
6412/**
6413 * Exports a guest segment register into the guest-state area in the VMCS.
6414 *
6415 * @returns VBox status code.
6416 * @param pVCpu The cross context virtual CPU structure.
6417 * @param pVmcsInfo The VMCS info. object.
6418 * @param iSegReg The segment register number (X86_SREG_XXX).
6419 * @param pSelReg Pointer to the segment selector.
6420 *
6421 * @remarks No-long-jump zone!!!
6422 */
6423static int hmR0VmxExportGuestSegReg(PVMCPUCC pVCpu, PCVMXVMCSINFO pVmcsInfo, uint32_t iSegReg, PCCPUMSELREG pSelReg)
6424{
6425 Assert(iSegReg < X86_SREG_COUNT);
6426
6427 uint32_t u32Access = pSelReg->Attr.u;
6428 if (!pVmcsInfo->pShared->RealMode.fRealOnV86Active)
6429 {
6430 /*
6431 * The way to differentiate between whether this is really a null selector or was just
6432 * a selector loaded with 0 in real-mode is using the segment attributes. A selector
6433 * loaded in real-mode with the value 0 is valid and usable in protected-mode and we
6434 * should -not- mark it as an unusable segment. Both the recompiler & VT-x ensures
6435 * NULL selectors loaded in protected-mode have their attribute as 0.
6436 */
6437 if (u32Access)
6438 { }
6439 else
6440 u32Access = X86DESCATTR_UNUSABLE;
6441 }
6442 else
6443 {
6444 /* VT-x requires our real-using-v86 mode hack to override the segment access-right bits. */
6445 u32Access = 0xf3;
6446 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
6447 Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
6448 RT_NOREF_PV(pVCpu);
6449 }
6450
6451 /* Validate segment access rights. Refer to Intel spec. "26.3.1.2 Checks on Guest Segment Registers". */
6452 AssertMsg((u32Access & X86DESCATTR_UNUSABLE) || (u32Access & X86_SEL_TYPE_ACCESSED),
6453 ("Access bit not set for usable segment. %.2s sel=%#x attr %#x\n", "ESCSSSDSFSGS" + iSegReg * 2, pSelReg, pSelReg->Attr.u));
6454
6455 /*
6456 * Commit it to the VMCS.
6457 */
6458 Assert((uint32_t)VMX_VMCS16_GUEST_SEG_SEL(iSegReg) == g_aVmcsSegSel[iSegReg]);
6459 Assert((uint32_t)VMX_VMCS32_GUEST_SEG_LIMIT(iSegReg) == g_aVmcsSegLimit[iSegReg]);
6460 Assert((uint32_t)VMX_VMCS32_GUEST_SEG_ACCESS_RIGHTS(iSegReg) == g_aVmcsSegAttr[iSegReg]);
6461 Assert((uint32_t)VMX_VMCS_GUEST_SEG_BASE(iSegReg) == g_aVmcsSegBase[iSegReg]);
6462 int rc = VMXWriteVmcs32(VMX_VMCS16_GUEST_SEG_SEL(iSegReg), pSelReg->Sel); AssertRC(rc);
6463 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_SEG_LIMIT(iSegReg), pSelReg->u32Limit); AssertRC(rc);
6464 rc = VMXWriteVmcsNw(VMX_VMCS_GUEST_SEG_BASE(iSegReg), pSelReg->u64Base); AssertRC(rc);
6465 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_SEG_ACCESS_RIGHTS(iSegReg), u32Access); AssertRC(rc);
6466 return VINF_SUCCESS;
6467}
6468
6469
6470/**
6471 * Exports the guest segment registers, GDTR, IDTR, LDTR, TR into the guest-state
6472 * area in the VMCS.
6473 *
6474 * @returns VBox status code.
6475 * @param pVCpu The cross context virtual CPU structure.
6476 * @param pVmxTransient The VMX-transient structure.
6477 *
6478 * @remarks Will import guest CR0 on strict builds during validation of
6479 * segments.
6480 * @remarks No-long-jump zone!!!
6481 */
6482static int hmR0VmxExportGuestSegRegsXdtr(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient)
6483{
6484 int rc = VERR_INTERNAL_ERROR_5;
6485 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
6486 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6487 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
6488 PVMXVMCSINFOSHARED pVmcsInfoShared = pVmcsInfo->pShared;
6489
6490 /*
6491 * Guest Segment registers: CS, SS, DS, ES, FS, GS.
6492 */
6493 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SREG_MASK)
6494 {
6495 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_CS)
6496 {
6497 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CS);
6498 if (pVmcsInfoShared->RealMode.fRealOnV86Active)
6499 pVmcsInfoShared->RealMode.AttrCS.u = pCtx->cs.Attr.u;
6500 rc = hmR0VmxExportGuestSegReg(pVCpu, pVmcsInfo, X86_SREG_CS, &pCtx->cs);
6501 AssertRC(rc);
6502 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_CS);
6503 }
6504
6505 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SS)
6506 {
6507 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SS);
6508 if (pVmcsInfoShared->RealMode.fRealOnV86Active)
6509 pVmcsInfoShared->RealMode.AttrSS.u = pCtx->ss.Attr.u;
6510 rc = hmR0VmxExportGuestSegReg(pVCpu, pVmcsInfo, X86_SREG_SS, &pCtx->ss);
6511 AssertRC(rc);
6512 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_SS);
6513 }
6514
6515 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_DS)
6516 {
6517 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_DS);
6518 if (pVmcsInfoShared->RealMode.fRealOnV86Active)
6519 pVmcsInfoShared->RealMode.AttrDS.u = pCtx->ds.Attr.u;
6520 rc = hmR0VmxExportGuestSegReg(pVCpu, pVmcsInfo, X86_SREG_DS, &pCtx->ds);
6521 AssertRC(rc);
6522 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_DS);
6523 }
6524
6525 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_ES)
6526 {
6527 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_ES);
6528 if (pVmcsInfoShared->RealMode.fRealOnV86Active)
6529 pVmcsInfoShared->RealMode.AttrES.u = pCtx->es.Attr.u;
6530 rc = hmR0VmxExportGuestSegReg(pVCpu, pVmcsInfo, X86_SREG_ES, &pCtx->es);
6531 AssertRC(rc);
6532 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_ES);
6533 }
6534
6535 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_FS)
6536 {
6537 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_FS);
6538 if (pVmcsInfoShared->RealMode.fRealOnV86Active)
6539 pVmcsInfoShared->RealMode.AttrFS.u = pCtx->fs.Attr.u;
6540 rc = hmR0VmxExportGuestSegReg(pVCpu, pVmcsInfo, X86_SREG_FS, &pCtx->fs);
6541 AssertRC(rc);
6542 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_FS);
6543 }
6544
6545 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_GS)
6546 {
6547 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_GS);
6548 if (pVmcsInfoShared->RealMode.fRealOnV86Active)
6549 pVmcsInfoShared->RealMode.AttrGS.u = pCtx->gs.Attr.u;
6550 rc = hmR0VmxExportGuestSegReg(pVCpu, pVmcsInfo, X86_SREG_GS, &pCtx->gs);
6551 AssertRC(rc);
6552 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_GS);
6553 }
6554
6555#ifdef VBOX_STRICT
6556 hmR0VmxValidateSegmentRegs(pVCpu, pVmcsInfo);
6557#endif
6558 Log4Func(("cs={%#04x base=%#RX64 limit=%#RX32 attr=%#RX32}\n", pCtx->cs.Sel, pCtx->cs.u64Base, pCtx->cs.u32Limit,
6559 pCtx->cs.Attr.u));
6560 }
6561
6562 /*
6563 * Guest TR.
6564 */
6565 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_TR)
6566 {
6567 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_TR);
6568
6569 /*
6570 * Real-mode emulation using virtual-8086 mode with CR4.VME. Interrupt redirection is
6571 * achieved using the interrupt redirection bitmap (all bits cleared to let the guest
6572 * handle INT-n's) in the TSS. See hmR3InitFinalizeR0() to see how pRealModeTSS is setup.
6573 */
6574 uint16_t u16Sel;
6575 uint32_t u32Limit;
6576 uint64_t u64Base;
6577 uint32_t u32AccessRights;
6578 if (!pVmcsInfoShared->RealMode.fRealOnV86Active)
6579 {
6580 u16Sel = pCtx->tr.Sel;
6581 u32Limit = pCtx->tr.u32Limit;
6582 u64Base = pCtx->tr.u64Base;
6583 u32AccessRights = pCtx->tr.Attr.u;
6584 }
6585 else
6586 {
6587 Assert(!pVmxTransient->fIsNestedGuest);
6588 Assert(pVM->hm.s.vmx.pRealModeTSS);
6589 Assert(PDMVmmDevHeapIsEnabled(pVM)); /* Guaranteed by HMCanExecuteGuest() -XXX- what about inner loop changes? */
6590
6591 /* We obtain it here every time as PCI regions could be reconfigured in the guest, changing the VMMDev base. */
6592 RTGCPHYS GCPhys;
6593 rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pRealModeTSS, &GCPhys);
6594 AssertRCReturn(rc, rc);
6595
6596 X86DESCATTR DescAttr;
6597 DescAttr.u = 0;
6598 DescAttr.n.u1Present = 1;
6599 DescAttr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY;
6600
6601 u16Sel = 0;
6602 u32Limit = HM_VTX_TSS_SIZE;
6603 u64Base = GCPhys;
6604 u32AccessRights = DescAttr.u;
6605 }
6606
6607 /* Validate. */
6608 Assert(!(u16Sel & RT_BIT(2)));
6609 AssertMsg( (u32AccessRights & 0xf) == X86_SEL_TYPE_SYS_386_TSS_BUSY
6610 || (u32AccessRights & 0xf) == X86_SEL_TYPE_SYS_286_TSS_BUSY, ("TSS is not busy!? %#x\n", u32AccessRights));
6611 AssertMsg(!(u32AccessRights & X86DESCATTR_UNUSABLE), ("TR unusable bit is not clear!? %#x\n", u32AccessRights));
6612 Assert(!(u32AccessRights & RT_BIT(4))); /* System MBZ.*/
6613 Assert(u32AccessRights & RT_BIT(7)); /* Present MB1.*/
6614 Assert(!(u32AccessRights & 0xf00)); /* 11:8 MBZ. */
6615 Assert(!(u32AccessRights & 0xfffe0000)); /* 31:17 MBZ. */
6616 Assert( (u32Limit & 0xfff) == 0xfff
6617 || !(u32AccessRights & RT_BIT(15))); /* Granularity MBZ. */
6618 Assert( !(pCtx->tr.u32Limit & 0xfff00000)
6619 || (u32AccessRights & RT_BIT(15))); /* Granularity MB1. */
6620
6621 rc = VMXWriteVmcs16(VMX_VMCS16_GUEST_TR_SEL, u16Sel); AssertRC(rc);
6622 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_TR_LIMIT, u32Limit); AssertRC(rc);
6623 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_TR_ACCESS_RIGHTS, u32AccessRights); AssertRC(rc);
6624 rc = VMXWriteVmcsNw(VMX_VMCS_GUEST_TR_BASE, u64Base); AssertRC(rc);
6625
6626 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_TR);
6627 Log4Func(("tr base=%#RX64 limit=%#RX32\n", pCtx->tr.u64Base, pCtx->tr.u32Limit));
6628 }
6629
6630 /*
6631 * Guest GDTR.
6632 */
6633 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_GDTR)
6634 {
6635 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_GDTR);
6636
6637 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, pCtx->gdtr.cbGdt); AssertRC(rc);
6638 rc = VMXWriteVmcsNw(VMX_VMCS_GUEST_GDTR_BASE, pCtx->gdtr.pGdt); AssertRC(rc);
6639
6640 /* Validate. */
6641 Assert(!(pCtx->gdtr.cbGdt & 0xffff0000)); /* Bits 31:16 MBZ. */
6642
6643 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_GDTR);
6644 Log4Func(("gdtr base=%#RX64 limit=%#RX32\n", pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt));
6645 }
6646
6647 /*
6648 * Guest LDTR.
6649 */
6650 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_LDTR)
6651 {
6652 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_LDTR);
6653
6654 /* The unusable bit is specific to VT-x, if it's a null selector mark it as an unusable segment. */
6655 uint32_t u32Access;
6656 if ( !pVmxTransient->fIsNestedGuest
6657 && !pCtx->ldtr.Attr.u)
6658 u32Access = X86DESCATTR_UNUSABLE;
6659 else
6660 u32Access = pCtx->ldtr.Attr.u;
6661
6662 rc = VMXWriteVmcs16(VMX_VMCS16_GUEST_LDTR_SEL, pCtx->ldtr.Sel); AssertRC(rc);
6663 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_LDTR_LIMIT, pCtx->ldtr.u32Limit); AssertRC(rc);
6664 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_LDTR_ACCESS_RIGHTS, u32Access); AssertRC(rc);
6665 rc = VMXWriteVmcsNw(VMX_VMCS_GUEST_LDTR_BASE, pCtx->ldtr.u64Base); AssertRC(rc);
6666
6667 /* Validate. */
6668 if (!(u32Access & X86DESCATTR_UNUSABLE))
6669 {
6670 Assert(!(pCtx->ldtr.Sel & RT_BIT(2))); /* TI MBZ. */
6671 Assert(pCtx->ldtr.Attr.n.u4Type == 2); /* Type MB2 (LDT). */
6672 Assert(!pCtx->ldtr.Attr.n.u1DescType); /* System MBZ. */
6673 Assert(pCtx->ldtr.Attr.n.u1Present == 1); /* Present MB1. */
6674 Assert(!pCtx->ldtr.Attr.n.u4LimitHigh); /* 11:8 MBZ. */
6675 Assert(!(pCtx->ldtr.Attr.u & 0xfffe0000)); /* 31:17 MBZ. */
6676 Assert( (pCtx->ldtr.u32Limit & 0xfff) == 0xfff
6677 || !pCtx->ldtr.Attr.n.u1Granularity); /* Granularity MBZ. */
6678 Assert( !(pCtx->ldtr.u32Limit & 0xfff00000)
6679 || pCtx->ldtr.Attr.n.u1Granularity); /* Granularity MB1. */
6680 }
6681
6682 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_LDTR);
6683 Log4Func(("ldtr base=%#RX64 limit=%#RX32\n", pCtx->ldtr.u64Base, pCtx->ldtr.u32Limit));
6684 }
6685
6686 /*
6687 * Guest IDTR.
6688 */
6689 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_IDTR)
6690 {
6691 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_IDTR);
6692
6693 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, pCtx->idtr.cbIdt); AssertRC(rc);
6694 rc = VMXWriteVmcsNw(VMX_VMCS_GUEST_IDTR_BASE, pCtx->idtr.pIdt); AssertRC(rc);
6695
6696 /* Validate. */
6697 Assert(!(pCtx->idtr.cbIdt & 0xffff0000)); /* Bits 31:16 MBZ. */
6698
6699 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_IDTR);
6700 Log4Func(("idtr base=%#RX64 limit=%#RX32\n", pCtx->idtr.pIdt, pCtx->idtr.cbIdt));
6701 }
6702
6703 return VINF_SUCCESS;
6704}
6705
6706
6707/**
6708 * Exports certain guest MSRs into the VM-entry MSR-load and VM-exit MSR-store
6709 * areas.
6710 *
6711 * These MSRs will automatically be loaded to the host CPU on every successful
6712 * VM-entry and stored from the host CPU on every successful VM-exit.
6713 *
6714 * We creates/updates MSR slots for the host MSRs in the VM-exit MSR-load area. The
6715 * actual host MSR values are not- updated here for performance reasons. See
6716 * hmR0VmxExportHostMsrs().
6717 *
6718 * We also exports the guest sysenter MSRs into the guest-state area in the VMCS.
6719 *
6720 * @returns VBox status code.
6721 * @param pVCpu The cross context virtual CPU structure.
6722 * @param pVmxTransient The VMX-transient structure.
6723 *
6724 * @remarks No-long-jump zone!!!
6725 */
6726static int hmR0VmxExportGuestMsrs(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient)
6727{
6728 AssertPtr(pVCpu);
6729 AssertPtr(pVmxTransient);
6730
6731 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
6732 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6733
6734 /*
6735 * MSRs that we use the auto-load/store MSR area in the VMCS.
6736 * For 64-bit hosts, we load/restore them lazily, see hmR0VmxLazyLoadGuestMsrs(),
6737 * nothing to do here. The host MSR values are updated when it's safe in
6738 * hmR0VmxLazySaveHostMsrs().
6739 *
6740 * For nested-guests, the guests MSRs from the VM-entry MSR-load area are already
6741 * loaded (into the guest-CPU context) by the VMLAUNCH/VMRESUME instruction
6742 * emulation. The merged MSR permission bitmap will ensure that we get VM-exits
6743 * for any MSR that are not part of the lazy MSRs so we do not need to place
6744 * those MSRs into the auto-load/store MSR area. Nothing to do here.
6745 */
6746 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_VMX_GUEST_AUTO_MSRS)
6747 {
6748 /* No auto-load/store MSRs currently. */
6749 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_VMX_GUEST_AUTO_MSRS);
6750 }
6751
6752 /*
6753 * Guest Sysenter MSRs.
6754 */
6755 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SYSENTER_MSR_MASK)
6756 {
6757 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SYSENTER_MSRS);
6758
6759 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SYSENTER_CS_MSR)
6760 {
6761 int rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_SYSENTER_CS, pCtx->SysEnter.cs);
6762 AssertRC(rc);
6763 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_SYSENTER_CS_MSR);
6764 }
6765
6766 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SYSENTER_EIP_MSR)
6767 {
6768 int rc = VMXWriteVmcsNw(VMX_VMCS_GUEST_SYSENTER_EIP, pCtx->SysEnter.eip);
6769 AssertRC(rc);
6770 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_SYSENTER_EIP_MSR);
6771 }
6772
6773 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SYSENTER_ESP_MSR)
6774 {
6775 int rc = VMXWriteVmcsNw(VMX_VMCS_GUEST_SYSENTER_ESP, pCtx->SysEnter.esp);
6776 AssertRC(rc);
6777 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_SYSENTER_ESP_MSR);
6778 }
6779 }
6780
6781 /*
6782 * Guest/host EFER MSR.
6783 */
6784 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_EFER_MSR)
6785 {
6786 /* Whether we are using the VMCS to swap the EFER MSR must have been
6787 determined earlier while exporting VM-entry/VM-exit controls. */
6788 Assert(!(ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_VMX_ENTRY_EXIT_CTLS));
6789 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_EFER);
6790
6791 if (hmR0VmxShouldSwapEferMsr(pVCpu, pVmxTransient))
6792 {
6793 /*
6794 * EFER.LME is written by software, while EFER.LMA is set by the CPU to (CR0.PG & EFER.LME).
6795 * This means a guest can set EFER.LME=1 while CR0.PG=0 and EFER.LMA can remain 0.
6796 * VT-x requires that "IA-32e mode guest" VM-entry control must be identical to EFER.LMA
6797 * and to CR0.PG. Without unrestricted execution, CR0.PG (used for VT-x, not the shadow)
6798 * must always be 1. This forces us to effectively clear both EFER.LMA and EFER.LME until
6799 * the guest has also set CR0.PG=1. Otherwise, we would run into an invalid-guest state
6800 * during VM-entry.
6801 */
6802 uint64_t uGuestEferMsr = pCtx->msrEFER;
6803 if (!pVM->hmr0.s.vmx.fUnrestrictedGuest)
6804 {
6805 if (!(pCtx->msrEFER & MSR_K6_EFER_LMA))
6806 uGuestEferMsr &= ~MSR_K6_EFER_LME;
6807 else
6808 Assert((pCtx->msrEFER & (MSR_K6_EFER_LMA | MSR_K6_EFER_LME)) == (MSR_K6_EFER_LMA | MSR_K6_EFER_LME));
6809 }
6810
6811 /*
6812 * If the CPU supports VMCS controls for swapping EFER, use it. Otherwise, we have no option
6813 * but to use the auto-load store MSR area in the VMCS for swapping EFER. See @bugref{7368}.
6814 */
6815 if (g_fHmVmxSupportsVmcsEfer)
6816 {
6817 int rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_EFER_FULL, uGuestEferMsr);
6818 AssertRC(rc);
6819 }
6820 else
6821 {
6822 /*
6823 * We shall use the auto-load/store MSR area only for loading the EFER MSR but we must
6824 * continue to intercept guest read and write accesses to it, see @bugref{7386#c16}.
6825 */
6826 int rc = hmR0VmxAddAutoLoadStoreMsr(pVCpu, pVmxTransient, MSR_K6_EFER, uGuestEferMsr,
6827 false /* fSetReadWrite */, false /* fUpdateHostMsr */);
6828 AssertRCReturn(rc, rc);
6829 }
6830
6831 Log4Func(("efer=%#RX64 shadow=%#RX64\n", uGuestEferMsr, pCtx->msrEFER));
6832 }
6833 else if (!g_fHmVmxSupportsVmcsEfer)
6834 hmR0VmxRemoveAutoLoadStoreMsr(pVCpu, pVmxTransient, MSR_K6_EFER);
6835
6836 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_EFER_MSR);
6837 }
6838
6839 /*
6840 * Other MSRs.
6841 */
6842 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_OTHER_MSRS)
6843 {
6844 /* Speculation Control (R/W). */
6845 HMVMX_CPUMCTX_ASSERT(pVCpu, HM_CHANGED_GUEST_OTHER_MSRS);
6846 if (pVM->cpum.ro.GuestFeatures.fIbrs)
6847 {
6848 int rc = hmR0VmxAddAutoLoadStoreMsr(pVCpu, pVmxTransient, MSR_IA32_SPEC_CTRL, CPUMGetGuestSpecCtrl(pVCpu),
6849 false /* fSetReadWrite */, false /* fUpdateHostMsr */);
6850 AssertRCReturn(rc, rc);
6851 }
6852
6853 /* Last Branch Record. */
6854 if (pVM->hmr0.s.vmx.fLbr)
6855 {
6856 PVMXVMCSINFOSHARED const pVmcsInfoShared = pVmxTransient->pVmcsInfo->pShared;
6857 uint32_t const idFromIpMsrStart = pVM->hmr0.s.vmx.idLbrFromIpMsrFirst;
6858 uint32_t const idToIpMsrStart = pVM->hmr0.s.vmx.idLbrToIpMsrFirst;
6859 uint32_t const cLbrStack = pVM->hmr0.s.vmx.idLbrFromIpMsrLast - pVM->hmr0.s.vmx.idLbrFromIpMsrFirst + 1;
6860 Assert(cLbrStack <= 32);
6861 for (uint32_t i = 0; i < cLbrStack; i++)
6862 {
6863 int rc = hmR0VmxAddAutoLoadStoreMsr(pVCpu, pVmxTransient, idFromIpMsrStart + i,
6864 pVmcsInfoShared->au64LbrFromIpMsr[i],
6865 false /* fSetReadWrite */, false /* fUpdateHostMsr */);
6866 AssertRCReturn(rc, rc);
6867
6868 /* Some CPUs don't have a Branch-To-IP MSR (P4 and related Xeons). */
6869 if (idToIpMsrStart != 0)
6870 {
6871 rc = hmR0VmxAddAutoLoadStoreMsr(pVCpu, pVmxTransient, idToIpMsrStart + i,
6872 pVmcsInfoShared->au64LbrToIpMsr[i],
6873 false /* fSetReadWrite */, false /* fUpdateHostMsr */);
6874 AssertRCReturn(rc, rc);
6875 }
6876 }
6877
6878 /* Add LBR top-of-stack MSR (which contains the index to the most recent record). */
6879 int rc = hmR0VmxAddAutoLoadStoreMsr(pVCpu, pVmxTransient, pVM->hmr0.s.vmx.idLbrTosMsr,
6880 pVmcsInfoShared->u64LbrTosMsr, false /* fSetReadWrite */,
6881 false /* fUpdateHostMsr */);
6882 AssertRCReturn(rc, rc);
6883 }
6884
6885 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_OTHER_MSRS);
6886 }
6887
6888 return VINF_SUCCESS;
6889}
6890
6891
6892/**
6893 * Wrapper for running the guest code in VT-x.
6894 *
6895 * @returns VBox status code, no informational status codes.
6896 * @param pVCpu The cross context virtual CPU structure.
6897 * @param pVmxTransient The VMX-transient structure.
6898 *
6899 * @remarks No-long-jump zone!!!
6900 */
6901DECLINLINE(int) hmR0VmxRunGuest(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient)
6902{
6903 /* Mark that HM is the keeper of all guest-CPU registers now that we're going to execute guest code. */
6904 pVCpu->cpum.GstCtx.fExtrn |= HMVMX_CPUMCTX_EXTRN_ALL | CPUMCTX_EXTRN_KEEPER_HM;
6905
6906 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
6907 bool const fResumeVM = RT_BOOL(pVmcsInfo->fVmcsState & VMX_V_VMCS_LAUNCH_STATE_LAUNCHED);
6908#ifdef VBOX_WITH_STATISTICS
6909 if (fResumeVM)
6910 STAM_COUNTER_INC(&pVCpu->hm.s.StatVmxVmResume);
6911 else
6912 STAM_COUNTER_INC(&pVCpu->hm.s.StatVmxVmLaunch);
6913#endif
6914 int rc = pVCpu->hmr0.s.vmx.pfnStartVm(pVmcsInfo, pVCpu, fResumeVM);
6915 AssertMsg(rc <= VINF_SUCCESS, ("%Rrc\n", rc));
6916 return rc;
6917}
6918
6919
6920/**
6921 * Reports world-switch error and dumps some useful debug info.
6922 *
6923 * @param pVCpu The cross context virtual CPU structure.
6924 * @param rcVMRun The return code from VMLAUNCH/VMRESUME.
6925 * @param pVmxTransient The VMX-transient structure (only
6926 * exitReason updated).
6927 */
6928static void hmR0VmxReportWorldSwitchError(PVMCPUCC pVCpu, int rcVMRun, PVMXTRANSIENT pVmxTransient)
6929{
6930 Assert(pVCpu);
6931 Assert(pVmxTransient);
6932 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
6933
6934 Log4Func(("VM-entry failure: %Rrc\n", rcVMRun));
6935 switch (rcVMRun)
6936 {
6937 case VERR_VMX_INVALID_VMXON_PTR:
6938 AssertFailed();
6939 break;
6940 case VINF_SUCCESS: /* VMLAUNCH/VMRESUME succeeded but VM-entry failed... yeah, true story. */
6941 case VERR_VMX_UNABLE_TO_START_VM: /* VMLAUNCH/VMRESUME itself failed. */
6942 {
6943 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_REASON, &pVCpu->hm.s.vmx.LastError.u32ExitReason);
6944 rc |= VMXReadVmcs32(VMX_VMCS32_RO_VM_INSTR_ERROR, &pVCpu->hm.s.vmx.LastError.u32InstrError);
6945 AssertRC(rc);
6946 hmR0VmxReadExitQualVmcs(pVmxTransient);
6947
6948 pVCpu->hm.s.vmx.LastError.idEnteredCpu = pVCpu->hmr0.s.idEnteredCpu;
6949 /* LastError.idCurrentCpu was already updated in hmR0VmxPreRunGuestCommitted().
6950 Cannot do it here as we may have been long preempted. */
6951
6952#ifdef VBOX_STRICT
6953 PVMXVMCSINFO pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
6954 Log4(("uExitReason %#RX32 (VmxTransient %#RX16)\n", pVCpu->hm.s.vmx.LastError.u32ExitReason,
6955 pVmxTransient->uExitReason));
6956 Log4(("Exit Qualification %#RX64\n", pVmxTransient->uExitQual));
6957 Log4(("InstrError %#RX32\n", pVCpu->hm.s.vmx.LastError.u32InstrError));
6958 if (pVCpu->hm.s.vmx.LastError.u32InstrError <= HMVMX_INSTR_ERROR_MAX)
6959 Log4(("InstrError Desc. \"%s\"\n", g_apszVmxInstrErrors[pVCpu->hm.s.vmx.LastError.u32InstrError]));
6960 else
6961 Log4(("InstrError Desc. Range exceeded %u\n", HMVMX_INSTR_ERROR_MAX));
6962 Log4(("Entered host CPU %u\n", pVCpu->hm.s.vmx.LastError.idEnteredCpu));
6963 Log4(("Current host CPU %u\n", pVCpu->hm.s.vmx.LastError.idCurrentCpu));
6964
6965 static struct
6966 {
6967 /** Name of the field to log. */
6968 const char *pszName;
6969 /** The VMCS field. */
6970 uint32_t uVmcsField;
6971 /** Whether host support of this field needs to be checked. */
6972 bool fCheckSupport;
6973 } const s_aVmcsFields[] =
6974 {
6975 { "VMX_VMCS32_CTRL_PIN_EXEC", VMX_VMCS32_CTRL_PIN_EXEC, false },
6976 { "VMX_VMCS32_CTRL_PROC_EXEC", VMX_VMCS32_CTRL_PROC_EXEC, false },
6977 { "VMX_VMCS32_CTRL_PROC_EXEC2", VMX_VMCS32_CTRL_PROC_EXEC2, true },
6978 { "VMX_VMCS32_CTRL_ENTRY", VMX_VMCS32_CTRL_ENTRY, false },
6979 { "VMX_VMCS32_CTRL_EXIT", VMX_VMCS32_CTRL_EXIT, false },
6980 { "VMX_VMCS32_CTRL_CR3_TARGET_COUNT", VMX_VMCS32_CTRL_CR3_TARGET_COUNT, false },
6981 { "VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO", VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, false },
6982 { "VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE", VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, false },
6983 { "VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH", VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, false },
6984 { "VMX_VMCS32_CTRL_TPR_THRESHOLD", VMX_VMCS32_CTRL_TPR_THRESHOLD, false },
6985 { "VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT", VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, false },
6986 { "VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT", VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, false },
6987 { "VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT", VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, false },
6988 { "VMX_VMCS32_CTRL_EXCEPTION_BITMAP", VMX_VMCS32_CTRL_EXCEPTION_BITMAP, false },
6989 { "VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK", VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK, false },
6990 { "VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH", VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH, false },
6991 { "VMX_VMCS_CTRL_CR0_MASK", VMX_VMCS_CTRL_CR0_MASK, false },
6992 { "VMX_VMCS_CTRL_CR0_READ_SHADOW", VMX_VMCS_CTRL_CR0_READ_SHADOW, false },
6993 { "VMX_VMCS_CTRL_CR4_MASK", VMX_VMCS_CTRL_CR4_MASK, false },
6994 { "VMX_VMCS_CTRL_CR4_READ_SHADOW", VMX_VMCS_CTRL_CR4_READ_SHADOW, false },
6995 { "VMX_VMCS64_CTRL_EPTP_FULL", VMX_VMCS64_CTRL_EPTP_FULL, true },
6996 { "VMX_VMCS_GUEST_RIP", VMX_VMCS_GUEST_RIP, false },
6997 { "VMX_VMCS_GUEST_RSP", VMX_VMCS_GUEST_RSP, false },
6998 { "VMX_VMCS_GUEST_RFLAGS", VMX_VMCS_GUEST_RFLAGS, false },
6999 { "VMX_VMCS16_VPID", VMX_VMCS16_VPID, true, },
7000 { "VMX_VMCS_HOST_CR0", VMX_VMCS_HOST_CR0, false },
7001 { "VMX_VMCS_HOST_CR3", VMX_VMCS_HOST_CR3, false },
7002 { "VMX_VMCS_HOST_CR4", VMX_VMCS_HOST_CR4, false },
7003 /* The order of selector fields below are fixed! */
7004 { "VMX_VMCS16_HOST_ES_SEL", VMX_VMCS16_HOST_ES_SEL, false },
7005 { "VMX_VMCS16_HOST_CS_SEL", VMX_VMCS16_HOST_CS_SEL, false },
7006 { "VMX_VMCS16_HOST_SS_SEL", VMX_VMCS16_HOST_SS_SEL, false },
7007 { "VMX_VMCS16_HOST_DS_SEL", VMX_VMCS16_HOST_DS_SEL, false },
7008 { "VMX_VMCS16_HOST_FS_SEL", VMX_VMCS16_HOST_FS_SEL, false },
7009 { "VMX_VMCS16_HOST_GS_SEL", VMX_VMCS16_HOST_GS_SEL, false },
7010 { "VMX_VMCS16_HOST_TR_SEL", VMX_VMCS16_HOST_TR_SEL, false },
7011 /* End of ordered selector fields. */
7012 { "VMX_VMCS_HOST_TR_BASE", VMX_VMCS_HOST_TR_BASE, false },
7013 { "VMX_VMCS_HOST_GDTR_BASE", VMX_VMCS_HOST_GDTR_BASE, false },
7014 { "VMX_VMCS_HOST_IDTR_BASE", VMX_VMCS_HOST_IDTR_BASE, false },
7015 { "VMX_VMCS32_HOST_SYSENTER_CS", VMX_VMCS32_HOST_SYSENTER_CS, false },
7016 { "VMX_VMCS_HOST_SYSENTER_EIP", VMX_VMCS_HOST_SYSENTER_EIP, false },
7017 { "VMX_VMCS_HOST_SYSENTER_ESP", VMX_VMCS_HOST_SYSENTER_ESP, false },
7018 { "VMX_VMCS_HOST_RSP", VMX_VMCS_HOST_RSP, false },
7019 { "VMX_VMCS_HOST_RIP", VMX_VMCS_HOST_RIP, false }
7020 };
7021
7022 RTGDTR HostGdtr;
7023 ASMGetGDTR(&HostGdtr);
7024
7025 uint32_t const cVmcsFields = RT_ELEMENTS(s_aVmcsFields);
7026 for (uint32_t i = 0; i < cVmcsFields; i++)
7027 {
7028 uint32_t const uVmcsField = s_aVmcsFields[i].uVmcsField;
7029
7030 bool fSupported;
7031 if (!s_aVmcsFields[i].fCheckSupport)
7032 fSupported = true;
7033 else
7034 {
7035 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
7036 switch (uVmcsField)
7037 {
7038 case VMX_VMCS64_CTRL_EPTP_FULL: fSupported = pVM->hmr0.s.fNestedPaging; break;
7039 case VMX_VMCS16_VPID: fSupported = pVM->hmr0.s.vmx.fVpid; break;
7040 case VMX_VMCS32_CTRL_PROC_EXEC2:
7041 fSupported = RT_BOOL(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_SECONDARY_CTLS);
7042 break;
7043 default:
7044 AssertMsgFailedReturnVoid(("Failed to provide VMCS field support for %#RX32\n", uVmcsField));
7045 }
7046 }
7047
7048 if (fSupported)
7049 {
7050 uint8_t const uWidth = RT_BF_GET(uVmcsField, VMX_BF_VMCSFIELD_WIDTH);
7051 switch (uWidth)
7052 {
7053 case VMX_VMCSFIELD_WIDTH_16BIT:
7054 {
7055 uint16_t u16Val;
7056 rc = VMXReadVmcs16(uVmcsField, &u16Val);
7057 AssertRC(rc);
7058 Log4(("%-40s = %#RX16\n", s_aVmcsFields[i].pszName, u16Val));
7059
7060 if ( uVmcsField >= VMX_VMCS16_HOST_ES_SEL
7061 && uVmcsField <= VMX_VMCS16_HOST_TR_SEL)
7062 {
7063 if (u16Val < HostGdtr.cbGdt)
7064 {
7065 /* Order of selectors in s_apszSel is fixed and matches the order in s_aVmcsFields. */
7066 static const char * const s_apszSel[] = { "Host ES", "Host CS", "Host SS", "Host DS",
7067 "Host FS", "Host GS", "Host TR" };
7068 uint8_t const idxSel = RT_BF_GET(uVmcsField, VMX_BF_VMCSFIELD_INDEX);
7069 Assert(idxSel < RT_ELEMENTS(s_apszSel));
7070 PCX86DESCHC pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u16Val & X86_SEL_MASK));
7071 hmR0DumpDescriptor(pDesc, u16Val, s_apszSel[idxSel]);
7072 }
7073 else
7074 Log4((" Selector value exceeds GDT limit!\n"));
7075 }
7076 break;
7077 }
7078
7079 case VMX_VMCSFIELD_WIDTH_32BIT:
7080 {
7081 uint32_t u32Val;
7082 rc = VMXReadVmcs32(uVmcsField, &u32Val);
7083 AssertRC(rc);
7084 Log4(("%-40s = %#RX32\n", s_aVmcsFields[i].pszName, u32Val));
7085 break;
7086 }
7087
7088 case VMX_VMCSFIELD_WIDTH_64BIT:
7089 case VMX_VMCSFIELD_WIDTH_NATURAL:
7090 {
7091 uint64_t u64Val;
7092 rc = VMXReadVmcs64(uVmcsField, &u64Val);
7093 AssertRC(rc);
7094 Log4(("%-40s = %#RX64\n", s_aVmcsFields[i].pszName, u64Val));
7095 break;
7096 }
7097 }
7098 }
7099 }
7100
7101 Log4(("MSR_K6_EFER = %#RX64\n", ASMRdMsr(MSR_K6_EFER)));
7102 Log4(("MSR_K8_CSTAR = %#RX64\n", ASMRdMsr(MSR_K8_CSTAR)));
7103 Log4(("MSR_K8_LSTAR = %#RX64\n", ASMRdMsr(MSR_K8_LSTAR)));
7104 Log4(("MSR_K6_STAR = %#RX64\n", ASMRdMsr(MSR_K6_STAR)));
7105 Log4(("MSR_K8_SF_MASK = %#RX64\n", ASMRdMsr(MSR_K8_SF_MASK)));
7106 Log4(("MSR_K8_KERNEL_GS_BASE = %#RX64\n", ASMRdMsr(MSR_K8_KERNEL_GS_BASE)));
7107#endif /* VBOX_STRICT */
7108 break;
7109 }
7110
7111 default:
7112 /* Impossible */
7113 AssertMsgFailed(("hmR0VmxReportWorldSwitchError %Rrc (%#x)\n", rcVMRun, rcVMRun));
7114 break;
7115 }
7116}
7117
7118
7119/**
7120 * Sets up the usage of TSC-offsetting and updates the VMCS.
7121 *
7122 * If offsetting is not possible, cause VM-exits on RDTSC(P)s. Also sets up the
7123 * VMX-preemption timer.
7124 *
7125 * @returns VBox status code.
7126 * @param pVCpu The cross context virtual CPU structure.
7127 * @param pVmxTransient The VMX-transient structure.
7128 * @param idCurrentCpu The current CPU number.
7129 *
7130 * @remarks No-long-jump zone!!!
7131 */
7132static void hmR0VmxUpdateTscOffsettingAndPreemptTimer(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient, RTCPUID idCurrentCpu)
7133{
7134 bool fOffsettedTsc;
7135 bool fParavirtTsc;
7136 uint64_t uTscOffset;
7137 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
7138 PVMXVMCSINFO pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
7139
7140 if (pVM->hmr0.s.vmx.fUsePreemptTimer)
7141 {
7142 /* The TMCpuTickGetDeadlineAndTscOffset function is expensive (calling it on
7143 every entry slowed down the bs2-test1 CPUID testcase by ~33% (on an 10980xe). */
7144 uint64_t cTicksToDeadline;
7145 if ( idCurrentCpu == pVCpu->hmr0.s.idLastCpu
7146 && TMVirtualSyncIsCurrentDeadlineVersion(pVM, pVCpu->hmr0.s.vmx.uTscDeadlineVersion))
7147 {
7148 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatVmxPreemptionReusingDeadline);
7149 fOffsettedTsc = TMCpuTickCanUseRealTSC(pVM, pVCpu, &uTscOffset, &fParavirtTsc);
7150 cTicksToDeadline = pVCpu->hmr0.s.vmx.uTscDeadline - SUPReadTsc();
7151 if ((int64_t)cTicksToDeadline > 0)
7152 { /* hopefully */ }
7153 else
7154 {
7155 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatVmxPreemptionReusingDeadlineExpired);
7156 cTicksToDeadline = 0;
7157 }
7158 }
7159 else
7160 {
7161 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatVmxPreemptionRecalcingDeadline);
7162 cTicksToDeadline = TMCpuTickGetDeadlineAndTscOffset(pVM, pVCpu, &uTscOffset, &fOffsettedTsc, &fParavirtTsc,
7163 &pVCpu->hmr0.s.vmx.uTscDeadline,
7164 &pVCpu->hmr0.s.vmx.uTscDeadlineVersion);
7165 pVCpu->hmr0.s.vmx.uTscDeadline += cTicksToDeadline;
7166 if (cTicksToDeadline >= 128)
7167 { /* hopefully */ }
7168 else
7169 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatVmxPreemptionRecalcingDeadlineExpired);
7170 }
7171
7172 /* Make sure the returned values have sane upper and lower boundaries. */
7173 uint64_t const u64CpuHz = SUPGetCpuHzFromGipBySetIndex(g_pSUPGlobalInfoPage, pVCpu->iHostCpuSet);
7174 cTicksToDeadline = RT_MIN(cTicksToDeadline, u64CpuHz / 64); /* 1/64th of a second, 15.625ms. */ /** @todo r=bird: Once real+virtual timers move to separate thread, we can raise the upper limit (16ms isn't much). ASSUMES working poke cpu function. */
7175 cTicksToDeadline = RT_MAX(cTicksToDeadline, u64CpuHz / 32678); /* 1/32768th of a second, ~30us. */
7176 cTicksToDeadline >>= pVM->hm.s.vmx.cPreemptTimerShift;
7177
7178 /** @todo r=ramshankar: We need to find a way to integrate nested-guest
7179 * preemption timers here. We probably need to clamp the preemption timer,
7180 * after converting the timer value to the host. */
7181 uint32_t const cPreemptionTickCount = (uint32_t)RT_MIN(cTicksToDeadline, UINT32_MAX - 16);
7182 int rc = VMXWriteVmcs32(VMX_VMCS32_PREEMPT_TIMER_VALUE, cPreemptionTickCount);
7183 AssertRC(rc);
7184 }
7185 else
7186 fOffsettedTsc = TMCpuTickCanUseRealTSC(pVM, pVCpu, &uTscOffset, &fParavirtTsc);
7187
7188 if (fParavirtTsc)
7189 {
7190 /* Currently neither Hyper-V nor KVM need to update their paravirt. TSC
7191 information before every VM-entry, hence disable it for performance sake. */
7192#if 0
7193 int rc = GIMR0UpdateParavirtTsc(pVM, 0 /* u64Offset */);
7194 AssertRC(rc);
7195#endif
7196 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscParavirt);
7197 }
7198
7199 if ( fOffsettedTsc
7200 && RT_LIKELY(!pVCpu->hmr0.s.fDebugWantRdTscExit))
7201 {
7202 if (pVmxTransient->fIsNestedGuest)
7203 uTscOffset = CPUMApplyNestedGuestTscOffset(pVCpu, uTscOffset);
7204 hmR0VmxSetTscOffsetVmcs(pVmcsInfo, uTscOffset);
7205 hmR0VmxRemoveProcCtlsVmcs(pVCpu, pVmxTransient, VMX_PROC_CTLS_RDTSC_EXIT);
7206 }
7207 else
7208 {
7209 /* We can't use TSC-offsetting (non-fixed TSC, warp drive active etc.), VM-exit on RDTSC(P). */
7210 hmR0VmxSetProcCtlsVmcs(pVmxTransient, VMX_PROC_CTLS_RDTSC_EXIT);
7211 }
7212}
7213
7214
7215/**
7216 * Gets the IEM exception flags for the specified vector and IDT vectoring /
7217 * VM-exit interruption info type.
7218 *
7219 * @returns The IEM exception flags.
7220 * @param uVector The event vector.
7221 * @param uVmxEventType The VMX event type.
7222 *
7223 * @remarks This function currently only constructs flags required for
7224 * IEMEvaluateRecursiveXcpt and not the complete flags (e.g, error-code
7225 * and CR2 aspects of an exception are not included).
7226 */
7227static uint32_t hmR0VmxGetIemXcptFlags(uint8_t uVector, uint32_t uVmxEventType)
7228{
7229 uint32_t fIemXcptFlags;
7230 switch (uVmxEventType)
7231 {
7232 case VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT:
7233 case VMX_IDT_VECTORING_INFO_TYPE_NMI:
7234 fIemXcptFlags = IEM_XCPT_FLAGS_T_CPU_XCPT;
7235 break;
7236
7237 case VMX_IDT_VECTORING_INFO_TYPE_EXT_INT:
7238 fIemXcptFlags = IEM_XCPT_FLAGS_T_EXT_INT;
7239 break;
7240
7241 case VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT:
7242 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT | IEM_XCPT_FLAGS_ICEBP_INSTR;
7243 break;
7244
7245 case VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT:
7246 {
7247 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT;
7248 if (uVector == X86_XCPT_BP)
7249 fIemXcptFlags |= IEM_XCPT_FLAGS_BP_INSTR;
7250 else if (uVector == X86_XCPT_OF)
7251 fIemXcptFlags |= IEM_XCPT_FLAGS_OF_INSTR;
7252 else
7253 {
7254 fIemXcptFlags = 0;
7255 AssertMsgFailed(("Unexpected vector for software exception. uVector=%#x", uVector));
7256 }
7257 break;
7258 }
7259
7260 case VMX_IDT_VECTORING_INFO_TYPE_SW_INT:
7261 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT;
7262 break;
7263
7264 default:
7265 fIemXcptFlags = 0;
7266 AssertMsgFailed(("Unexpected vector type! uVmxEventType=%#x uVector=%#x", uVmxEventType, uVector));
7267 break;
7268 }
7269 return fIemXcptFlags;
7270}
7271
7272
7273/**
7274 * Sets an event as a pending event to be injected into the guest.
7275 *
7276 * @param pVCpu The cross context virtual CPU structure.
7277 * @param u32IntInfo The VM-entry interruption-information field.
7278 * @param cbInstr The VM-entry instruction length in bytes (for
7279 * software interrupts, exceptions and privileged
7280 * software exceptions).
7281 * @param u32ErrCode The VM-entry exception error code.
7282 * @param GCPtrFaultAddress The fault-address (CR2) in case it's a
7283 * page-fault.
7284 */
7285DECLINLINE(void) hmR0VmxSetPendingEvent(PVMCPUCC pVCpu, uint32_t u32IntInfo, uint32_t cbInstr, uint32_t u32ErrCode,
7286 RTGCUINTPTR GCPtrFaultAddress)
7287{
7288 Assert(!pVCpu->hm.s.Event.fPending);
7289 pVCpu->hm.s.Event.fPending = true;
7290 pVCpu->hm.s.Event.u64IntInfo = u32IntInfo;
7291 pVCpu->hm.s.Event.u32ErrCode = u32ErrCode;
7292 pVCpu->hm.s.Event.cbInstr = cbInstr;
7293 pVCpu->hm.s.Event.GCPtrFaultAddress = GCPtrFaultAddress;
7294}
7295
7296
7297/**
7298 * Sets an external interrupt as pending-for-injection into the VM.
7299 *
7300 * @param pVCpu The cross context virtual CPU structure.
7301 * @param u8Interrupt The external interrupt vector.
7302 */
7303DECLINLINE(void) hmR0VmxSetPendingExtInt(PVMCPUCC pVCpu, uint8_t u8Interrupt)
7304{
7305 uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_VECTOR, u8Interrupt)
7306 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_ENTRY_INT_INFO_TYPE_EXT_INT)
7307 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 0)
7308 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
7309 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
7310}
7311
7312
7313/**
7314 * Sets an NMI (\#NMI) exception as pending-for-injection into the VM.
7315 *
7316 * @param pVCpu The cross context virtual CPU structure.
7317 */
7318DECLINLINE(void) hmR0VmxSetPendingXcptNmi(PVMCPUCC pVCpu)
7319{
7320 uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_NMI)
7321 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_ENTRY_INT_INFO_TYPE_NMI)
7322 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 0)
7323 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
7324 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
7325}
7326
7327
7328/**
7329 * Sets a double-fault (\#DF) exception as pending-for-injection into the VM.
7330 *
7331 * @param pVCpu The cross context virtual CPU structure.
7332 */
7333DECLINLINE(void) hmR0VmxSetPendingXcptDF(PVMCPUCC pVCpu)
7334{
7335 uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_DF)
7336 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
7337 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 1)
7338 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
7339 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
7340}
7341
7342
7343/**
7344 * Sets an invalid-opcode (\#UD) exception as pending-for-injection into the VM.
7345 *
7346 * @param pVCpu The cross context virtual CPU structure.
7347 */
7348DECLINLINE(void) hmR0VmxSetPendingXcptUD(PVMCPUCC pVCpu)
7349{
7350 uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_UD)
7351 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
7352 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 0)
7353 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
7354 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
7355}
7356
7357
7358/**
7359 * Sets a debug (\#DB) exception as pending-for-injection into the VM.
7360 *
7361 * @param pVCpu The cross context virtual CPU structure.
7362 */
7363DECLINLINE(void) hmR0VmxSetPendingXcptDB(PVMCPUCC pVCpu)
7364{
7365 uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_DB)
7366 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
7367 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 0)
7368 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
7369 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
7370}
7371
7372
7373#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
7374/**
7375 * Sets a general-protection (\#GP) exception as pending-for-injection into the VM.
7376 *
7377 * @param pVCpu The cross context virtual CPU structure.
7378 * @param u32ErrCode The error code for the general-protection exception.
7379 */
7380DECLINLINE(void) hmR0VmxSetPendingXcptGP(PVMCPUCC pVCpu, uint32_t u32ErrCode)
7381{
7382 uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_GP)
7383 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
7384 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 1)
7385 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
7386 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, u32ErrCode, 0 /* GCPtrFaultAddress */);
7387}
7388
7389
7390/**
7391 * Sets a stack (\#SS) exception as pending-for-injection into the VM.
7392 *
7393 * @param pVCpu The cross context virtual CPU structure.
7394 * @param u32ErrCode The error code for the stack exception.
7395 */
7396DECLINLINE(void) hmR0VmxSetPendingXcptSS(PVMCPUCC pVCpu, uint32_t u32ErrCode)
7397{
7398 uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_SS)
7399 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
7400 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 1)
7401 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
7402 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, u32ErrCode, 0 /* GCPtrFaultAddress */);
7403}
7404#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
7405
7406
7407/**
7408 * Fixes up attributes for the specified segment register.
7409 *
7410 * @param pVCpu The cross context virtual CPU structure.
7411 * @param pSelReg The segment register that needs fixing.
7412 * @param pszRegName The register name (for logging and assertions).
7413 */
7414static void hmR0VmxFixUnusableSegRegAttr(PVMCPUCC pVCpu, PCPUMSELREG pSelReg, const char *pszRegName)
7415{
7416 Assert(pSelReg->Attr.u & X86DESCATTR_UNUSABLE);
7417
7418 /*
7419 * If VT-x marks the segment as unusable, most other bits remain undefined:
7420 * - For CS the L, D and G bits have meaning.
7421 * - For SS the DPL has meaning (it -is- the CPL for Intel and VBox).
7422 * - For the remaining data segments no bits are defined.
7423 *
7424 * The present bit and the unusable bit has been observed to be set at the
7425 * same time (the selector was supposed to be invalid as we started executing
7426 * a V8086 interrupt in ring-0).
7427 *
7428 * What should be important for the rest of the VBox code, is that the P bit is
7429 * cleared. Some of the other VBox code recognizes the unusable bit, but
7430 * AMD-V certainly don't, and REM doesn't really either. So, to be on the
7431 * safe side here, we'll strip off P and other bits we don't care about. If
7432 * any code breaks because Attr.u != 0 when Sel < 4, it should be fixed.
7433 *
7434 * See Intel spec. 27.3.2 "Saving Segment Registers and Descriptor-Table Registers".
7435 */
7436#ifdef VBOX_STRICT
7437 uint32_t const uAttr = pSelReg->Attr.u;
7438#endif
7439
7440 /* Masking off: X86DESCATTR_P, X86DESCATTR_LIMIT_HIGH, and X86DESCATTR_AVL. The latter two are really irrelevant. */
7441 pSelReg->Attr.u &= X86DESCATTR_UNUSABLE | X86DESCATTR_L | X86DESCATTR_D | X86DESCATTR_G
7442 | X86DESCATTR_DPL | X86DESCATTR_TYPE | X86DESCATTR_DT;
7443
7444#ifdef VBOX_STRICT
7445 VMMRZCallRing3Disable(pVCpu);
7446 Log4Func(("Unusable %s: sel=%#x attr=%#x -> %#x\n", pszRegName, pSelReg->Sel, uAttr, pSelReg->Attr.u));
7447# ifdef DEBUG_bird
7448 AssertMsg((uAttr & ~X86DESCATTR_P) == pSelReg->Attr.u,
7449 ("%s: %#x != %#x (sel=%#x base=%#llx limit=%#x)\n",
7450 pszRegName, uAttr, pSelReg->Attr.u, pSelReg->Sel, pSelReg->u64Base, pSelReg->u32Limit));
7451# endif
7452 VMMRZCallRing3Enable(pVCpu);
7453 NOREF(uAttr);
7454#endif
7455 RT_NOREF2(pVCpu, pszRegName);
7456}
7457
7458
7459/**
7460 * Imports a guest segment register from the current VMCS into the guest-CPU
7461 * context.
7462 *
7463 * @param pVCpu The cross context virtual CPU structure.
7464 * @param iSegReg The segment register number (X86_SREG_XXX).
7465 *
7466 * @remarks Called with interrupts and/or preemption disabled.
7467 */
7468static void hmR0VmxImportGuestSegReg(PVMCPUCC pVCpu, uint32_t iSegReg)
7469{
7470 Assert(iSegReg < X86_SREG_COUNT);
7471 Assert((uint32_t)VMX_VMCS16_GUEST_SEG_SEL(iSegReg) == g_aVmcsSegSel[iSegReg]);
7472 Assert((uint32_t)VMX_VMCS32_GUEST_SEG_LIMIT(iSegReg) == g_aVmcsSegLimit[iSegReg]);
7473 Assert((uint32_t)VMX_VMCS32_GUEST_SEG_ACCESS_RIGHTS(iSegReg) == g_aVmcsSegAttr[iSegReg]);
7474 Assert((uint32_t)VMX_VMCS_GUEST_SEG_BASE(iSegReg) == g_aVmcsSegBase[iSegReg]);
7475
7476 PCPUMSELREG pSelReg = &pVCpu->cpum.GstCtx.aSRegs[iSegReg];
7477
7478 uint16_t u16Sel;
7479 int rc = VMXReadVmcs16(VMX_VMCS16_GUEST_SEG_SEL(iSegReg), &u16Sel); AssertRC(rc);
7480 pSelReg->Sel = u16Sel;
7481 pSelReg->ValidSel = u16Sel;
7482
7483 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_SEG_LIMIT(iSegReg), &pSelReg->u32Limit); AssertRC(rc);
7484 rc = VMXReadVmcsNw(VMX_VMCS_GUEST_SEG_BASE(iSegReg), &pSelReg->u64Base); AssertRC(rc);
7485
7486 uint32_t u32Attr;
7487 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_SEG_ACCESS_RIGHTS(iSegReg), &u32Attr); AssertRC(rc);
7488 pSelReg->Attr.u = u32Attr;
7489 if (u32Attr & X86DESCATTR_UNUSABLE)
7490 hmR0VmxFixUnusableSegRegAttr(pVCpu, pSelReg, "ES\0CS\0SS\0DS\0FS\0GS" + iSegReg * 3);
7491
7492 pSelReg->fFlags = CPUMSELREG_FLAGS_VALID;
7493}
7494
7495
7496/**
7497 * Imports the guest LDTR from the current VMCS into the guest-CPU context.
7498 *
7499 * @param pVCpu The cross context virtual CPU structure.
7500 *
7501 * @remarks Called with interrupts and/or preemption disabled.
7502 */
7503static void hmR0VmxImportGuestLdtr(PVMCPUCC pVCpu)
7504{
7505 uint16_t u16Sel;
7506 uint64_t u64Base;
7507 uint32_t u32Limit, u32Attr;
7508 int rc = VMXReadVmcs16(VMX_VMCS16_GUEST_LDTR_SEL, &u16Sel); AssertRC(rc);
7509 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_LDTR_LIMIT, &u32Limit); AssertRC(rc);
7510 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_LDTR_ACCESS_RIGHTS, &u32Attr); AssertRC(rc);
7511 rc = VMXReadVmcsNw(VMX_VMCS_GUEST_LDTR_BASE, &u64Base); AssertRC(rc);
7512
7513 pVCpu->cpum.GstCtx.ldtr.Sel = u16Sel;
7514 pVCpu->cpum.GstCtx.ldtr.ValidSel = u16Sel;
7515 pVCpu->cpum.GstCtx.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
7516 pVCpu->cpum.GstCtx.ldtr.u32Limit = u32Limit;
7517 pVCpu->cpum.GstCtx.ldtr.u64Base = u64Base;
7518 pVCpu->cpum.GstCtx.ldtr.Attr.u = u32Attr;
7519 if (u32Attr & X86DESCATTR_UNUSABLE)
7520 hmR0VmxFixUnusableSegRegAttr(pVCpu, &pVCpu->cpum.GstCtx.ldtr, "LDTR");
7521}
7522
7523
7524/**
7525 * Imports the guest TR from the current VMCS into the guest-CPU context.
7526 *
7527 * @param pVCpu The cross context virtual CPU structure.
7528 *
7529 * @remarks Called with interrupts and/or preemption disabled.
7530 */
7531static void hmR0VmxImportGuestTr(PVMCPUCC pVCpu)
7532{
7533 uint16_t u16Sel;
7534 uint64_t u64Base;
7535 uint32_t u32Limit, u32Attr;
7536 int rc = VMXReadVmcs16(VMX_VMCS16_GUEST_TR_SEL, &u16Sel); AssertRC(rc);
7537 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_TR_LIMIT, &u32Limit); AssertRC(rc);
7538 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_TR_ACCESS_RIGHTS, &u32Attr); AssertRC(rc);
7539 rc = VMXReadVmcsNw(VMX_VMCS_GUEST_TR_BASE, &u64Base); AssertRC(rc);
7540
7541 pVCpu->cpum.GstCtx.tr.Sel = u16Sel;
7542 pVCpu->cpum.GstCtx.tr.ValidSel = u16Sel;
7543 pVCpu->cpum.GstCtx.tr.fFlags = CPUMSELREG_FLAGS_VALID;
7544 pVCpu->cpum.GstCtx.tr.u32Limit = u32Limit;
7545 pVCpu->cpum.GstCtx.tr.u64Base = u64Base;
7546 pVCpu->cpum.GstCtx.tr.Attr.u = u32Attr;
7547 /* TR is the only selector that can never be unusable. */
7548 Assert(!(u32Attr & X86DESCATTR_UNUSABLE));
7549}
7550
7551
7552/**
7553 * Imports the guest RIP from the VMCS back into the guest-CPU context.
7554 *
7555 * @param pVCpu The cross context virtual CPU structure.
7556 *
7557 * @remarks Called with interrupts and/or preemption disabled, should not assert!
7558 * @remarks Do -not- call this function directly, use hmR0VmxImportGuestState()
7559 * instead!!!
7560 */
7561static void hmR0VmxImportGuestRip(PVMCPUCC pVCpu)
7562{
7563 uint64_t u64Val;
7564 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7565 if (pCtx->fExtrn & CPUMCTX_EXTRN_RIP)
7566 {
7567 int rc = VMXReadVmcsNw(VMX_VMCS_GUEST_RIP, &u64Val);
7568 AssertRC(rc);
7569
7570 pCtx->rip = u64Val;
7571 EMR0HistoryUpdatePC(pVCpu, pCtx->rip, false);
7572 pCtx->fExtrn &= ~CPUMCTX_EXTRN_RIP;
7573 }
7574}
7575
7576
7577/**
7578 * Imports the guest RFLAGS from the VMCS back into the guest-CPU context.
7579 *
7580 * @param pVCpu The cross context virtual CPU structure.
7581 * @param pVmcsInfo The VMCS info. object.
7582 *
7583 * @remarks Called with interrupts and/or preemption disabled, should not assert!
7584 * @remarks Do -not- call this function directly, use hmR0VmxImportGuestState()
7585 * instead!!!
7586 */
7587static void hmR0VmxImportGuestRFlags(PVMCPUCC pVCpu, PCVMXVMCSINFO pVmcsInfo)
7588{
7589 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7590 if (pCtx->fExtrn & CPUMCTX_EXTRN_RFLAGS)
7591 {
7592 uint64_t u64Val;
7593 int rc = VMXReadVmcsNw(VMX_VMCS_GUEST_RFLAGS, &u64Val);
7594 AssertRC(rc);
7595
7596 pCtx->rflags.u64 = u64Val;
7597 PCVMXVMCSINFOSHARED pVmcsInfoShared = pVmcsInfo->pShared;
7598 if (pVmcsInfoShared->RealMode.fRealOnV86Active)
7599 {
7600 pCtx->eflags.Bits.u1VM = 0;
7601 pCtx->eflags.Bits.u2IOPL = pVmcsInfoShared->RealMode.Eflags.Bits.u2IOPL;
7602 }
7603 pCtx->fExtrn &= ~CPUMCTX_EXTRN_RFLAGS;
7604 }
7605}
7606
7607
7608/**
7609 * Imports the guest interruptibility-state from the VMCS back into the guest-CPU
7610 * context.
7611 *
7612 * @param pVCpu The cross context virtual CPU structure.
7613 * @param pVmcsInfo The VMCS info. object.
7614 *
7615 * @remarks Called with interrupts and/or preemption disabled, try not to assert and
7616 * do not log!
7617 * @remarks Do -not- call this function directly, use hmR0VmxImportGuestState()
7618 * instead!!!
7619 */
7620static void hmR0VmxImportGuestIntrState(PVMCPUCC pVCpu, PCVMXVMCSINFO pVmcsInfo)
7621{
7622 uint32_t u32Val;
7623 int rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INT_STATE, &u32Val); AssertRC(rc);
7624 if (!u32Val)
7625 {
7626 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
7627 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
7628 CPUMSetGuestNmiBlocking(pVCpu, false);
7629 }
7630 else
7631 {
7632 /*
7633 * We must import RIP here to set our EM interrupt-inhibited state.
7634 * We also import RFLAGS as our code that evaluates pending interrupts
7635 * before VM-entry requires it.
7636 */
7637 hmR0VmxImportGuestRip(pVCpu);
7638 hmR0VmxImportGuestRFlags(pVCpu, pVmcsInfo);
7639
7640 if (u32Val & (VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS | VMX_VMCS_GUEST_INT_STATE_BLOCK_STI))
7641 EMSetInhibitInterruptsPC(pVCpu, pVCpu->cpum.GstCtx.rip);
7642 else if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
7643 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
7644
7645 bool const fNmiBlocking = RT_BOOL(u32Val & VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI);
7646 CPUMSetGuestNmiBlocking(pVCpu, fNmiBlocking);
7647 }
7648}
7649
7650
7651/**
7652 * Worker for VMXR0ImportStateOnDemand.
7653 *
7654 * @returns VBox status code.
7655 * @param pVCpu The cross context virtual CPU structure.
7656 * @param pVmcsInfo The VMCS info. object.
7657 * @param fWhat What to import, CPUMCTX_EXTRN_XXX.
7658 */
7659static int hmR0VmxImportGuestState(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo, uint64_t fWhat)
7660{
7661 int rc = VINF_SUCCESS;
7662 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
7663 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7664 uint32_t u32Val;
7665
7666 /*
7667 * Note! This is hack to workaround a mysterious BSOD observed with release builds
7668 * on Windows 10 64-bit hosts. Profile and debug builds are not affected and
7669 * neither are other host platforms.
7670 *
7671 * Committing this temporarily as it prevents BSOD.
7672 *
7673 * Update: This is very likely a compiler optimization bug, see @bugref{9180}.
7674 */
7675#ifdef RT_OS_WINDOWS
7676 if (pVM == 0 || pVM == (void *)(uintptr_t)-1)
7677 return VERR_HM_IPE_1;
7678#endif
7679
7680 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatImportGuestState, x);
7681
7682 /*
7683 * We disable interrupts to make the updating of the state and in particular
7684 * the fExtrn modification atomic wrt to preemption hooks.
7685 */
7686 RTCCUINTREG const fEFlags = ASMIntDisableFlags();
7687
7688 fWhat &= pCtx->fExtrn;
7689 if (fWhat)
7690 {
7691 do
7692 {
7693 if (fWhat & CPUMCTX_EXTRN_RIP)
7694 hmR0VmxImportGuestRip(pVCpu);
7695
7696 if (fWhat & CPUMCTX_EXTRN_RFLAGS)
7697 hmR0VmxImportGuestRFlags(pVCpu, pVmcsInfo);
7698
7699 if (fWhat & CPUMCTX_EXTRN_HM_VMX_INT_STATE)
7700 hmR0VmxImportGuestIntrState(pVCpu, pVmcsInfo);
7701
7702 if (fWhat & CPUMCTX_EXTRN_RSP)
7703 {
7704 rc = VMXReadVmcsNw(VMX_VMCS_GUEST_RSP, &pCtx->rsp);
7705 AssertRC(rc);
7706 }
7707
7708 if (fWhat & CPUMCTX_EXTRN_SREG_MASK)
7709 {
7710 PVMXVMCSINFOSHARED pVmcsInfoShared = pVmcsInfo->pShared;
7711 bool const fRealOnV86Active = pVmcsInfoShared->RealMode.fRealOnV86Active;
7712 if (fWhat & CPUMCTX_EXTRN_CS)
7713 {
7714 hmR0VmxImportGuestSegReg(pVCpu, X86_SREG_CS);
7715 hmR0VmxImportGuestRip(pVCpu);
7716 if (fRealOnV86Active)
7717 pCtx->cs.Attr.u = pVmcsInfoShared->RealMode.AttrCS.u;
7718 EMR0HistoryUpdatePC(pVCpu, pCtx->cs.u64Base + pCtx->rip, true /* fFlattened */);
7719 }
7720 if (fWhat & CPUMCTX_EXTRN_SS)
7721 {
7722 hmR0VmxImportGuestSegReg(pVCpu, X86_SREG_SS);
7723 if (fRealOnV86Active)
7724 pCtx->ss.Attr.u = pVmcsInfoShared->RealMode.AttrSS.u;
7725 }
7726 if (fWhat & CPUMCTX_EXTRN_DS)
7727 {
7728 hmR0VmxImportGuestSegReg(pVCpu, X86_SREG_DS);
7729 if (fRealOnV86Active)
7730 pCtx->ds.Attr.u = pVmcsInfoShared->RealMode.AttrDS.u;
7731 }
7732 if (fWhat & CPUMCTX_EXTRN_ES)
7733 {
7734 hmR0VmxImportGuestSegReg(pVCpu, X86_SREG_ES);
7735 if (fRealOnV86Active)
7736 pCtx->es.Attr.u = pVmcsInfoShared->RealMode.AttrES.u;
7737 }
7738 if (fWhat & CPUMCTX_EXTRN_FS)
7739 {
7740 hmR0VmxImportGuestSegReg(pVCpu, X86_SREG_FS);
7741 if (fRealOnV86Active)
7742 pCtx->fs.Attr.u = pVmcsInfoShared->RealMode.AttrFS.u;
7743 }
7744 if (fWhat & CPUMCTX_EXTRN_GS)
7745 {
7746 hmR0VmxImportGuestSegReg(pVCpu, X86_SREG_GS);
7747 if (fRealOnV86Active)
7748 pCtx->gs.Attr.u = pVmcsInfoShared->RealMode.AttrGS.u;
7749 }
7750 }
7751
7752 if (fWhat & CPUMCTX_EXTRN_TABLE_MASK)
7753 {
7754 if (fWhat & CPUMCTX_EXTRN_LDTR)
7755 hmR0VmxImportGuestLdtr(pVCpu);
7756
7757 if (fWhat & CPUMCTX_EXTRN_GDTR)
7758 {
7759 rc = VMXReadVmcsNw(VMX_VMCS_GUEST_GDTR_BASE, &pCtx->gdtr.pGdt); AssertRC(rc);
7760 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, &u32Val); AssertRC(rc);
7761 pCtx->gdtr.cbGdt = u32Val;
7762 }
7763
7764 /* Guest IDTR. */
7765 if (fWhat & CPUMCTX_EXTRN_IDTR)
7766 {
7767 rc = VMXReadVmcsNw(VMX_VMCS_GUEST_IDTR_BASE, &pCtx->idtr.pIdt); AssertRC(rc);
7768 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, &u32Val); AssertRC(rc);
7769 pCtx->idtr.cbIdt = u32Val;
7770 }
7771
7772 /* Guest TR. */
7773 if (fWhat & CPUMCTX_EXTRN_TR)
7774 {
7775 /* Real-mode emulation using virtual-8086 mode has the fake TSS (pRealModeTSS) in TR,
7776 don't need to import that one. */
7777 if (!pVmcsInfo->pShared->RealMode.fRealOnV86Active)
7778 hmR0VmxImportGuestTr(pVCpu);
7779 }
7780 }
7781
7782 if (fWhat & CPUMCTX_EXTRN_DR7)
7783 {
7784 if (!pVCpu->hmr0.s.fUsingHyperDR7)
7785 rc = VMXReadVmcsNw(VMX_VMCS_GUEST_DR7, &pCtx->dr[7]); AssertRC(rc);
7786 }
7787
7788 if (fWhat & CPUMCTX_EXTRN_SYSENTER_MSRS)
7789 {
7790 rc = VMXReadVmcsNw(VMX_VMCS_GUEST_SYSENTER_EIP, &pCtx->SysEnter.eip); AssertRC(rc);
7791 rc = VMXReadVmcsNw(VMX_VMCS_GUEST_SYSENTER_ESP, &pCtx->SysEnter.esp); AssertRC(rc);
7792 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_SYSENTER_CS, &u32Val); AssertRC(rc);
7793 pCtx->SysEnter.cs = u32Val;
7794 }
7795
7796 if (fWhat & CPUMCTX_EXTRN_KERNEL_GS_BASE)
7797 {
7798 if ( pVM->hmr0.s.fAllow64BitGuests
7799 && (pVCpu->hmr0.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST))
7800 pCtx->msrKERNELGSBASE = ASMRdMsr(MSR_K8_KERNEL_GS_BASE);
7801 }
7802
7803 if (fWhat & CPUMCTX_EXTRN_SYSCALL_MSRS)
7804 {
7805 if ( pVM->hmr0.s.fAllow64BitGuests
7806 && (pVCpu->hmr0.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST))
7807 {
7808 pCtx->msrLSTAR = ASMRdMsr(MSR_K8_LSTAR);
7809 pCtx->msrSTAR = ASMRdMsr(MSR_K6_STAR);
7810 pCtx->msrSFMASK = ASMRdMsr(MSR_K8_SF_MASK);
7811 }
7812 }
7813
7814 if (fWhat & (CPUMCTX_EXTRN_TSC_AUX | CPUMCTX_EXTRN_OTHER_MSRS))
7815 {
7816 PVMXVMCSINFOSHARED pVmcsInfoShared = pVmcsInfo->pShared;
7817 PCVMXAUTOMSR pMsrs = (PCVMXAUTOMSR)pVmcsInfo->pvGuestMsrStore;
7818 uint32_t const cMsrs = pVmcsInfo->cExitMsrStore;
7819 Assert(pMsrs);
7820 Assert(cMsrs <= VMX_MISC_MAX_MSRS(g_HmMsrs.u.vmx.u64Misc));
7821 Assert(sizeof(*pMsrs) * cMsrs <= X86_PAGE_4K_SIZE);
7822 for (uint32_t i = 0; i < cMsrs; i++)
7823 {
7824 uint32_t const idMsr = pMsrs[i].u32Msr;
7825 switch (idMsr)
7826 {
7827 case MSR_K8_TSC_AUX: CPUMSetGuestTscAux(pVCpu, pMsrs[i].u64Value); break;
7828 case MSR_IA32_SPEC_CTRL: CPUMSetGuestSpecCtrl(pVCpu, pMsrs[i].u64Value); break;
7829 case MSR_K6_EFER: /* Can't be changed without causing a VM-exit */ break;
7830 default:
7831 {
7832 uint32_t idxLbrMsr;
7833 if (pVM->hmr0.s.vmx.fLbr)
7834 {
7835 if (hmR0VmxIsLbrBranchFromMsr(pVM, idMsr, &idxLbrMsr))
7836 {
7837 Assert(idxLbrMsr < RT_ELEMENTS(pVmcsInfoShared->au64LbrFromIpMsr));
7838 pVmcsInfoShared->au64LbrFromIpMsr[idxLbrMsr] = pMsrs[i].u64Value;
7839 break;
7840 }
7841 if (hmR0VmxIsLbrBranchToMsr(pVM, idMsr, &idxLbrMsr))
7842 {
7843 Assert(idxLbrMsr < RT_ELEMENTS(pVmcsInfoShared->au64LbrFromIpMsr));
7844 pVmcsInfoShared->au64LbrToIpMsr[idxLbrMsr] = pMsrs[i].u64Value;
7845 break;
7846 }
7847 if (idMsr == pVM->hmr0.s.vmx.idLbrTosMsr)
7848 {
7849 pVmcsInfoShared->u64LbrTosMsr = pMsrs[i].u64Value;
7850 break;
7851 }
7852 /* Fallthru (no break) */
7853 }
7854 pCtx->fExtrn = 0;
7855 pVCpu->hm.s.u32HMError = pMsrs->u32Msr;
7856 ASMSetFlags(fEFlags);
7857 AssertMsgFailed(("Unexpected MSR in auto-load/store area. idMsr=%#RX32 cMsrs=%u\n", idMsr, cMsrs));
7858 return VERR_HM_UNEXPECTED_LD_ST_MSR;
7859 }
7860 }
7861 }
7862 }
7863
7864 if (fWhat & CPUMCTX_EXTRN_CR_MASK)
7865 {
7866 if (fWhat & CPUMCTX_EXTRN_CR0)
7867 {
7868 uint64_t u64Cr0;
7869 uint64_t u64Shadow;
7870 rc = VMXReadVmcsNw(VMX_VMCS_GUEST_CR0, &u64Cr0); AssertRC(rc);
7871 rc = VMXReadVmcsNw(VMX_VMCS_CTRL_CR0_READ_SHADOW, &u64Shadow); AssertRC(rc);
7872#ifndef VBOX_WITH_NESTED_HWVIRT_VMX
7873 u64Cr0 = (u64Cr0 & ~pVmcsInfo->u64Cr0Mask)
7874 | (u64Shadow & pVmcsInfo->u64Cr0Mask);
7875#else
7876 if (!CPUMIsGuestInVmxNonRootMode(pCtx))
7877 {
7878 u64Cr0 = (u64Cr0 & ~pVmcsInfo->u64Cr0Mask)
7879 | (u64Shadow & pVmcsInfo->u64Cr0Mask);
7880 }
7881 else
7882 {
7883 /*
7884 * We've merged the guest and nested-guest's CR0 guest/host mask while executing
7885 * the nested-guest using hardware-assisted VMX. Accordingly we need to
7886 * re-construct CR0. See @bugref{9180#c95} for details.
7887 */
7888 PCVMXVMCSINFO pVmcsInfoGst = &pVCpu->hmr0.s.vmx.VmcsInfo;
7889 PCVMXVVMCS pVmcsNstGst = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
7890 u64Cr0 = (u64Cr0 & ~pVmcsInfo->u64Cr0Mask)
7891 | (pVmcsNstGst->u64GuestCr0.u & pVmcsNstGst->u64Cr0Mask.u)
7892 | (u64Shadow & (pVmcsInfoGst->u64Cr0Mask & ~pVmcsNstGst->u64Cr0Mask.u));
7893 }
7894#endif
7895 VMMRZCallRing3Disable(pVCpu); /* May call into PGM which has Log statements. */
7896 CPUMSetGuestCR0(pVCpu, u64Cr0);
7897 VMMRZCallRing3Enable(pVCpu);
7898 }
7899
7900 if (fWhat & CPUMCTX_EXTRN_CR4)
7901 {
7902 uint64_t u64Cr4;
7903 uint64_t u64Shadow;
7904 rc = VMXReadVmcsNw(VMX_VMCS_GUEST_CR4, &u64Cr4); AssertRC(rc);
7905 rc |= VMXReadVmcsNw(VMX_VMCS_CTRL_CR4_READ_SHADOW, &u64Shadow); AssertRC(rc);
7906#ifndef VBOX_WITH_NESTED_HWVIRT_VMX
7907 u64Cr4 = (u64Cr4 & ~pVmcsInfo->u64Cr4Mask)
7908 | (u64Shadow & pVmcsInfo->u64Cr4Mask);
7909#else
7910 if (!CPUMIsGuestInVmxNonRootMode(pCtx))
7911 {
7912 u64Cr4 = (u64Cr4 & ~pVmcsInfo->u64Cr4Mask)
7913 | (u64Shadow & pVmcsInfo->u64Cr4Mask);
7914 }
7915 else
7916 {
7917 /*
7918 * We've merged the guest and nested-guest's CR4 guest/host mask while executing
7919 * the nested-guest using hardware-assisted VMX. Accordingly we need to
7920 * re-construct CR4. See @bugref{9180#c95} for details.
7921 */
7922 PCVMXVMCSINFO pVmcsInfoGst = &pVCpu->hmr0.s.vmx.VmcsInfo;
7923 PCVMXVVMCS pVmcsNstGst = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
7924 u64Cr4 = (u64Cr4 & ~pVmcsInfo->u64Cr4Mask)
7925 | (pVmcsNstGst->u64GuestCr4.u & pVmcsNstGst->u64Cr4Mask.u)
7926 | (u64Shadow & (pVmcsInfoGst->u64Cr4Mask & ~pVmcsNstGst->u64Cr4Mask.u));
7927 }
7928#endif
7929 pCtx->cr4 = u64Cr4;
7930 }
7931
7932 if (fWhat & CPUMCTX_EXTRN_CR3)
7933 {
7934 /* CR0.PG bit changes are always intercepted, so it's up to date. */
7935 if ( pVM->hmr0.s.vmx.fUnrestrictedGuest
7936 || ( pVM->hmr0.s.fNestedPaging
7937 && CPUMIsGuestPagingEnabledEx(pCtx)))
7938 {
7939 uint64_t u64Cr3;
7940 rc = VMXReadVmcsNw(VMX_VMCS_GUEST_CR3, &u64Cr3); AssertRC(rc);
7941 if (pCtx->cr3 != u64Cr3)
7942 {
7943 pCtx->cr3 = u64Cr3;
7944 VMCPU_FF_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3);
7945 }
7946
7947 /* If the guest is in PAE mode, sync back the PDPE's into the guest state.
7948 Note: CR4.PAE, CR0.PG, EFER MSR changes are always intercepted, so they're up to date. */
7949 if (CPUMIsGuestInPAEModeEx(pCtx))
7950 {
7951 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, &pVCpu->hm.s.aPdpes[0].u); AssertRC(rc);
7952 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, &pVCpu->hm.s.aPdpes[1].u); AssertRC(rc);
7953 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, &pVCpu->hm.s.aPdpes[2].u); AssertRC(rc);
7954 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, &pVCpu->hm.s.aPdpes[3].u); AssertRC(rc);
7955 VMCPU_FF_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES);
7956 }
7957 }
7958 }
7959 }
7960
7961#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
7962 if (fWhat & CPUMCTX_EXTRN_HWVIRT)
7963 {
7964 if ( (pVmcsInfo->u32ProcCtls2 & VMX_PROC_CTLS2_VMCS_SHADOWING)
7965 && !CPUMIsGuestInVmxNonRootMode(pCtx))
7966 {
7967 Assert(CPUMIsGuestInVmxRootMode(pCtx));
7968 rc = hmR0VmxCopyShadowToNstGstVmcs(pVCpu, pVmcsInfo);
7969 if (RT_SUCCESS(rc))
7970 { /* likely */ }
7971 else
7972 break;
7973 }
7974 }
7975#endif
7976 } while (0);
7977
7978 if (RT_SUCCESS(rc))
7979 {
7980 /* Update fExtrn. */
7981 pCtx->fExtrn &= ~fWhat;
7982
7983 /* If everything has been imported, clear the HM keeper bit. */
7984 if (!(pCtx->fExtrn & HMVMX_CPUMCTX_EXTRN_ALL))
7985 {
7986 pCtx->fExtrn &= ~CPUMCTX_EXTRN_KEEPER_HM;
7987 Assert(!pCtx->fExtrn);
7988 }
7989 }
7990 }
7991 else
7992 AssertMsg(!pCtx->fExtrn || (pCtx->fExtrn & HMVMX_CPUMCTX_EXTRN_ALL), ("%#RX64\n", pCtx->fExtrn));
7993
7994 /*
7995 * Restore interrupts.
7996 */
7997 ASMSetFlags(fEFlags);
7998
7999 STAM_PROFILE_ADV_STOP(& pVCpu->hm.s.StatImportGuestState, x);
8000
8001 if (RT_SUCCESS(rc))
8002 { /* likely */ }
8003 else
8004 return rc;
8005
8006 /*
8007 * Honor any pending CR3 updates.
8008 *
8009 * Consider this scenario: VM-exit -> VMMRZCallRing3Enable() -> do stuff that causes a longjmp -> VMXR0CallRing3Callback()
8010 * -> VMMRZCallRing3Disable() -> hmR0VmxImportGuestState() -> Sets VMCPU_FF_HM_UPDATE_CR3 pending -> return from the longjmp
8011 * -> continue with VM-exit handling -> hmR0VmxImportGuestState() and here we are.
8012 *
8013 * The reason for such complicated handling is because VM-exits that call into PGM expect CR3 to be up-to-date and thus
8014 * if any CR3-saves -before- the VM-exit (longjmp) postponed the CR3 update via the force-flag, any VM-exit handler that
8015 * calls into PGM when it re-saves CR3 will end up here and we call PGMUpdateCR3(). This is why the code below should
8016 * -NOT- check if CPUMCTX_EXTRN_CR3 is set!
8017 *
8018 * The longjmp exit path can't check these CR3 force-flags and call code that takes a lock again. We cover for it here.
8019 */
8020 if (VMMRZCallRing3IsEnabled(pVCpu))
8021 {
8022 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3))
8023 {
8024 Assert(!(ASMAtomicUoReadU64(&pCtx->fExtrn) & CPUMCTX_EXTRN_CR3));
8025 PGMUpdateCR3(pVCpu, CPUMGetGuestCR3(pVCpu));
8026 }
8027
8028 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES))
8029 PGMGstUpdatePaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
8030
8031 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
8032 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
8033 }
8034
8035 return VINF_SUCCESS;
8036}
8037
8038
8039/**
8040 * Saves the guest state from the VMCS into the guest-CPU context.
8041 *
8042 * @returns VBox status code.
8043 * @param pVCpu The cross context virtual CPU structure.
8044 * @param fWhat What to import, CPUMCTX_EXTRN_XXX.
8045 */
8046VMMR0DECL(int) VMXR0ImportStateOnDemand(PVMCPUCC pVCpu, uint64_t fWhat)
8047{
8048 AssertPtr(pVCpu);
8049 PVMXVMCSINFO pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
8050 return hmR0VmxImportGuestState(pVCpu, pVmcsInfo, fWhat);
8051}
8052
8053
8054/**
8055 * Check per-VM and per-VCPU force flag actions that require us to go back to
8056 * ring-3 for one reason or another.
8057 *
8058 * @returns Strict VBox status code (i.e. informational status codes too)
8059 * @retval VINF_SUCCESS if we don't have any actions that require going back to
8060 * ring-3.
8061 * @retval VINF_PGM_SYNC_CR3 if we have pending PGM CR3 sync.
8062 * @retval VINF_EM_PENDING_REQUEST if we have pending requests (like hardware
8063 * interrupts)
8064 * @retval VINF_PGM_POOL_FLUSH_PENDING if PGM is doing a pool flush and requires
8065 * all EMTs to be in ring-3.
8066 * @retval VINF_EM_RAW_TO_R3 if there is pending DMA requests.
8067 * @retval VINF_EM_NO_MEMORY PGM is out of memory, we need to return
8068 * to the EM loop.
8069 *
8070 * @param pVCpu The cross context virtual CPU structure.
8071 * @param pVmxTransient The VMX-transient structure.
8072 * @param fStepping Whether we are single-stepping the guest using the
8073 * hypervisor debugger.
8074 *
8075 * @remarks This might cause nested-guest VM-exits, caller must check if the guest
8076 * is no longer in VMX non-root mode.
8077 */
8078static VBOXSTRICTRC hmR0VmxCheckForceFlags(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient, bool fStepping)
8079{
8080 Assert(VMMRZCallRing3IsEnabled(pVCpu));
8081
8082 /*
8083 * Update pending interrupts into the APIC's IRR.
8084 */
8085 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_UPDATE_APIC))
8086 APICUpdatePendingInterrupts(pVCpu);
8087
8088 /*
8089 * Anything pending? Should be more likely than not if we're doing a good job.
8090 */
8091 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
8092 if ( !fStepping
8093 ? !VM_FF_IS_ANY_SET(pVM, VM_FF_HP_R0_PRE_HM_MASK)
8094 && !VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HP_R0_PRE_HM_MASK)
8095 : !VM_FF_IS_ANY_SET(pVM, VM_FF_HP_R0_PRE_HM_STEP_MASK)
8096 && !VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HP_R0_PRE_HM_STEP_MASK) )
8097 return VINF_SUCCESS;
8098
8099 /* Pending PGM C3 sync. */
8100 if (VMCPU_FF_IS_ANY_SET(pVCpu,VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL))
8101 {
8102 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
8103 Assert(!(ASMAtomicUoReadU64(&pCtx->fExtrn) & (CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4)));
8104 VBOXSTRICTRC rcStrict = PGMSyncCR3(pVCpu, pCtx->cr0, pCtx->cr3, pCtx->cr4,
8105 VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
8106 if (rcStrict != VINF_SUCCESS)
8107 {
8108 AssertRC(VBOXSTRICTRC_VAL(rcStrict));
8109 Log4Func(("PGMSyncCR3 forcing us back to ring-3. rc2=%d\n", VBOXSTRICTRC_VAL(rcStrict)));
8110 return rcStrict;
8111 }
8112 }
8113
8114 /* Pending HM-to-R3 operations (critsects, timers, EMT rendezvous etc.) */
8115 if ( VM_FF_IS_ANY_SET(pVM, VM_FF_HM_TO_R3_MASK)
8116 || VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
8117 {
8118 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
8119 int rc = RT_LIKELY(!VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY)) ? VINF_EM_RAW_TO_R3 : VINF_EM_NO_MEMORY;
8120 Log4Func(("HM_TO_R3 forcing us back to ring-3. rc=%d\n", rc));
8121 return rc;
8122 }
8123
8124 /* Pending VM request packets, such as hardware interrupts. */
8125 if ( VM_FF_IS_SET(pVM, VM_FF_REQUEST)
8126 || VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_REQUEST))
8127 {
8128 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchVmReq);
8129 Log4Func(("Pending VM request forcing us back to ring-3\n"));
8130 return VINF_EM_PENDING_REQUEST;
8131 }
8132
8133 /* Pending PGM pool flushes. */
8134 if (VM_FF_IS_SET(pVM, VM_FF_PGM_POOL_FLUSH_PENDING))
8135 {
8136 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchPgmPoolFlush);
8137 Log4Func(("PGM pool flush pending forcing us back to ring-3\n"));
8138 return VINF_PGM_POOL_FLUSH_PENDING;
8139 }
8140
8141 /* Pending DMA requests. */
8142 if (VM_FF_IS_SET(pVM, VM_FF_PDM_DMA))
8143 {
8144 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchDma);
8145 Log4Func(("Pending DMA request forcing us back to ring-3\n"));
8146 return VINF_EM_RAW_TO_R3;
8147 }
8148
8149#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
8150 /*
8151 * Pending nested-guest events.
8152 *
8153 * Please note the priority of these events are specified and important.
8154 * See Intel spec. 29.4.3.2 "APIC-Write Emulation".
8155 * See Intel spec. 6.9 "Priority Among Simultaneous Exceptions And Interrupts".
8156 */
8157 if (pVmxTransient->fIsNestedGuest)
8158 {
8159 /* Pending nested-guest APIC-write. */
8160 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_APIC_WRITE))
8161 {
8162 Log4Func(("Pending nested-guest APIC-write\n"));
8163 VBOXSTRICTRC rcStrict = IEMExecVmxVmexitApicWrite(pVCpu);
8164 Assert(rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE);
8165 return rcStrict;
8166 }
8167
8168 /* Pending nested-guest monitor-trap flag (MTF). */
8169 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_MTF))
8170 {
8171 Log4Func(("Pending nested-guest MTF\n"));
8172 VBOXSTRICTRC rcStrict = IEMExecVmxVmexit(pVCpu, VMX_EXIT_MTF, 0 /* uExitQual */);
8173 Assert(rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE);
8174 return rcStrict;
8175 }
8176
8177 /* Pending nested-guest VMX-preemption timer expired. */
8178 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_PREEMPT_TIMER))
8179 {
8180 Log4Func(("Pending nested-guest preempt timer\n"));
8181 VBOXSTRICTRC rcStrict = IEMExecVmxVmexitPreemptTimer(pVCpu);
8182 Assert(rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE);
8183 return rcStrict;
8184 }
8185 }
8186#else
8187 NOREF(pVmxTransient);
8188#endif
8189
8190 return VINF_SUCCESS;
8191}
8192
8193
8194/**
8195 * Converts any TRPM trap into a pending HM event. This is typically used when
8196 * entering from ring-3 (not longjmp returns).
8197 *
8198 * @param pVCpu The cross context virtual CPU structure.
8199 */
8200static void hmR0VmxTrpmTrapToPendingEvent(PVMCPUCC pVCpu)
8201{
8202 Assert(TRPMHasTrap(pVCpu));
8203 Assert(!pVCpu->hm.s.Event.fPending);
8204
8205 uint8_t uVector;
8206 TRPMEVENT enmTrpmEvent;
8207 uint32_t uErrCode;
8208 RTGCUINTPTR GCPtrFaultAddress;
8209 uint8_t cbInstr;
8210 bool fIcebp;
8211
8212 int rc = TRPMQueryTrapAll(pVCpu, &uVector, &enmTrpmEvent, &uErrCode, &GCPtrFaultAddress, &cbInstr, &fIcebp);
8213 AssertRC(rc);
8214
8215 uint32_t u32IntInfo;
8216 u32IntInfo = uVector | VMX_IDT_VECTORING_INFO_VALID;
8217 u32IntInfo |= HMTrpmEventTypeToVmxEventType(uVector, enmTrpmEvent, fIcebp);
8218
8219 rc = TRPMResetTrap(pVCpu);
8220 AssertRC(rc);
8221 Log4(("TRPM->HM event: u32IntInfo=%#RX32 enmTrpmEvent=%d cbInstr=%u uErrCode=%#RX32 GCPtrFaultAddress=%#RGv\n",
8222 u32IntInfo, enmTrpmEvent, cbInstr, uErrCode, GCPtrFaultAddress));
8223
8224 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, cbInstr, uErrCode, GCPtrFaultAddress);
8225}
8226
8227
8228/**
8229 * Converts the pending HM event into a TRPM trap.
8230 *
8231 * @param pVCpu The cross context virtual CPU structure.
8232 */
8233static void hmR0VmxPendingEventToTrpmTrap(PVMCPUCC pVCpu)
8234{
8235 Assert(pVCpu->hm.s.Event.fPending);
8236
8237 /* If a trap was already pending, we did something wrong! */
8238 Assert(TRPMQueryTrap(pVCpu, NULL /* pu8TrapNo */, NULL /* pEnmType */) == VERR_TRPM_NO_ACTIVE_TRAP);
8239
8240 uint32_t const u32IntInfo = pVCpu->hm.s.Event.u64IntInfo;
8241 uint32_t const uVector = VMX_IDT_VECTORING_INFO_VECTOR(u32IntInfo);
8242 TRPMEVENT const enmTrapType = HMVmxEventTypeToTrpmEventType(u32IntInfo);
8243
8244 Log4(("HM event->TRPM: uVector=%#x enmTrapType=%d\n", uVector, enmTrapType));
8245
8246 int rc = TRPMAssertTrap(pVCpu, uVector, enmTrapType);
8247 AssertRC(rc);
8248
8249 if (VMX_IDT_VECTORING_INFO_IS_ERROR_CODE_VALID(u32IntInfo))
8250 TRPMSetErrorCode(pVCpu, pVCpu->hm.s.Event.u32ErrCode);
8251
8252 if (VMX_IDT_VECTORING_INFO_IS_XCPT_PF(u32IntInfo))
8253 TRPMSetFaultAddress(pVCpu, pVCpu->hm.s.Event.GCPtrFaultAddress);
8254 else
8255 {
8256 uint8_t const uVectorType = VMX_IDT_VECTORING_INFO_TYPE(u32IntInfo);
8257 switch (uVectorType)
8258 {
8259 case VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT:
8260 TRPMSetTrapDueToIcebp(pVCpu);
8261 RT_FALL_THRU();
8262 case VMX_IDT_VECTORING_INFO_TYPE_SW_INT:
8263 case VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT:
8264 {
8265 AssertMsg( uVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_INT
8266 || ( uVector == X86_XCPT_BP /* INT3 */
8267 || uVector == X86_XCPT_OF /* INTO */
8268 || uVector == X86_XCPT_DB /* INT1 (ICEBP) */),
8269 ("Invalid vector: uVector=%#x uVectorType=%#x\n", uVector, uVectorType));
8270 TRPMSetInstrLength(pVCpu, pVCpu->hm.s.Event.cbInstr);
8271 break;
8272 }
8273 }
8274 }
8275
8276 /* We're now done converting the pending event. */
8277 pVCpu->hm.s.Event.fPending = false;
8278}
8279
8280
8281/**
8282 * Sets the interrupt-window exiting control in the VMCS which instructs VT-x to
8283 * cause a VM-exit as soon as the guest is in a state to receive interrupts.
8284 *
8285 * @param pVmcsInfo The VMCS info. object.
8286 */
8287static void hmR0VmxSetIntWindowExitVmcs(PVMXVMCSINFO pVmcsInfo)
8288{
8289 if (g_HmMsrs.u.vmx.ProcCtls.n.allowed1 & VMX_PROC_CTLS_INT_WINDOW_EXIT)
8290 {
8291 if (!(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_INT_WINDOW_EXIT))
8292 {
8293 pVmcsInfo->u32ProcCtls |= VMX_PROC_CTLS_INT_WINDOW_EXIT;
8294 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVmcsInfo->u32ProcCtls);
8295 AssertRC(rc);
8296 }
8297 } /* else we will deliver interrupts whenever the guest Vm-exits next and is in a state to receive the interrupt. */
8298}
8299
8300
8301/**
8302 * Clears the interrupt-window exiting control in the VMCS.
8303 *
8304 * @param pVmcsInfo The VMCS info. object.
8305 */
8306DECLINLINE(void) hmR0VmxClearIntWindowExitVmcs(PVMXVMCSINFO pVmcsInfo)
8307{
8308 if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_INT_WINDOW_EXIT)
8309 {
8310 pVmcsInfo->u32ProcCtls &= ~VMX_PROC_CTLS_INT_WINDOW_EXIT;
8311 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVmcsInfo->u32ProcCtls);
8312 AssertRC(rc);
8313 }
8314}
8315
8316
8317/**
8318 * Sets the NMI-window exiting control in the VMCS which instructs VT-x to
8319 * cause a VM-exit as soon as the guest is in a state to receive NMIs.
8320 *
8321 * @param pVmcsInfo The VMCS info. object.
8322 */
8323static void hmR0VmxSetNmiWindowExitVmcs(PVMXVMCSINFO pVmcsInfo)
8324{
8325 if (g_HmMsrs.u.vmx.ProcCtls.n.allowed1 & VMX_PROC_CTLS_NMI_WINDOW_EXIT)
8326 {
8327 if (!(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_NMI_WINDOW_EXIT))
8328 {
8329 pVmcsInfo->u32ProcCtls |= VMX_PROC_CTLS_NMI_WINDOW_EXIT;
8330 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVmcsInfo->u32ProcCtls);
8331 AssertRC(rc);
8332 Log4Func(("Setup NMI-window exiting\n"));
8333 }
8334 } /* else we will deliver NMIs whenever we VM-exit next, even possibly nesting NMIs. Can't be helped on ancient CPUs. */
8335}
8336
8337
8338/**
8339 * Clears the NMI-window exiting control in the VMCS.
8340 *
8341 * @param pVmcsInfo The VMCS info. object.
8342 */
8343DECLINLINE(void) hmR0VmxClearNmiWindowExitVmcs(PVMXVMCSINFO pVmcsInfo)
8344{
8345 if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_NMI_WINDOW_EXIT)
8346 {
8347 pVmcsInfo->u32ProcCtls &= ~VMX_PROC_CTLS_NMI_WINDOW_EXIT;
8348 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVmcsInfo->u32ProcCtls);
8349 AssertRC(rc);
8350 }
8351}
8352
8353
8354/**
8355 * Does the necessary state syncing before returning to ring-3 for any reason
8356 * (longjmp, preemption, voluntary exits to ring-3) from VT-x.
8357 *
8358 * @returns VBox status code.
8359 * @param pVCpu The cross context virtual CPU structure.
8360 * @param fImportState Whether to import the guest state from the VMCS back
8361 * to the guest-CPU context.
8362 *
8363 * @remarks No-long-jmp zone!!!
8364 */
8365static int hmR0VmxLeave(PVMCPUCC pVCpu, bool fImportState)
8366{
8367 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8368 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
8369
8370 RTCPUID const idCpu = RTMpCpuId();
8371 Log4Func(("HostCpuId=%u\n", idCpu));
8372
8373 /*
8374 * !!! IMPORTANT !!!
8375 * If you modify code here, check whether VMXR0CallRing3Callback() needs to be updated too.
8376 */
8377
8378 /* Save the guest state if necessary. */
8379 PVMXVMCSINFO pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
8380 if (fImportState)
8381 {
8382 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
8383 AssertRCReturn(rc, rc);
8384 }
8385
8386 /* Restore host FPU state if necessary. We will resync on next R0 reentry. */
8387 CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu);
8388 Assert(!CPUMIsGuestFPUStateActive(pVCpu));
8389
8390 /* Restore host debug registers if necessary. We will resync on next R0 reentry. */
8391#ifdef VBOX_STRICT
8392 if (CPUMIsHyperDebugStateActive(pVCpu))
8393 Assert(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_MOV_DR_EXIT);
8394#endif
8395 CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, true /* save DR6 */);
8396 Assert(!CPUMIsGuestDebugStateActive(pVCpu));
8397 Assert(!CPUMIsHyperDebugStateActive(pVCpu));
8398
8399 /* Restore host-state bits that VT-x only restores partially. */
8400 if (pVCpu->hmr0.s.vmx.fRestoreHostFlags > VMX_RESTORE_HOST_REQUIRED)
8401 {
8402 Log4Func(("Restoring Host State: fRestoreHostFlags=%#RX32 HostCpuId=%u\n", pVCpu->hmr0.s.vmx.fRestoreHostFlags, idCpu));
8403 VMXRestoreHostState(pVCpu->hmr0.s.vmx.fRestoreHostFlags, &pVCpu->hmr0.s.vmx.RestoreHost);
8404 }
8405 pVCpu->hmr0.s.vmx.fRestoreHostFlags = 0;
8406
8407 /* Restore the lazy host MSRs as we're leaving VT-x context. */
8408 if (pVCpu->hmr0.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
8409 {
8410 /* We shouldn't restore the host MSRs without saving the guest MSRs first. */
8411 if (!fImportState)
8412 {
8413 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_KERNEL_GS_BASE | CPUMCTX_EXTRN_SYSCALL_MSRS);
8414 AssertRCReturn(rc, rc);
8415 }
8416 hmR0VmxLazyRestoreHostMsrs(pVCpu);
8417 Assert(!pVCpu->hmr0.s.vmx.fLazyMsrs);
8418 }
8419 else
8420 pVCpu->hmr0.s.vmx.fLazyMsrs = 0;
8421
8422 /* Update auto-load/store host MSRs values when we re-enter VT-x (as we could be on a different CPU). */
8423 pVCpu->hmr0.s.vmx.fUpdatedHostAutoMsrs = false;
8424
8425 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatEntry);
8426 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatImportGuestState);
8427 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExportGuestState);
8428 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatPreExit);
8429 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitHandling);
8430 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitIO);
8431 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitMovCRx);
8432 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitXcptNmi);
8433 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitVmentry);
8434 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
8435
8436 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
8437
8438 /** @todo This partially defeats the purpose of having preemption hooks.
8439 * The problem is, deregistering the hooks should be moved to a place that
8440 * lasts until the EMT is about to be destroyed not everytime while leaving HM
8441 * context.
8442 */
8443 int rc = hmR0VmxClearVmcs(pVmcsInfo);
8444 AssertRCReturn(rc, rc);
8445
8446#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
8447 /*
8448 * A valid shadow VMCS is made active as part of VM-entry. It is necessary to
8449 * clear a shadow VMCS before allowing that VMCS to become active on another
8450 * logical processor. We may or may not be importing guest state which clears
8451 * it, so cover for it here.
8452 *
8453 * See Intel spec. 24.11.1 "Software Use of Virtual-Machine Control Structures".
8454 */
8455 if ( pVmcsInfo->pvShadowVmcs
8456 && pVmcsInfo->fShadowVmcsState != VMX_V_VMCS_LAUNCH_STATE_CLEAR)
8457 {
8458 rc = hmR0VmxClearShadowVmcs(pVmcsInfo);
8459 AssertRCReturn(rc, rc);
8460 }
8461
8462 /*
8463 * Flag that we need to re-export the host state if we switch to this VMCS before
8464 * executing guest or nested-guest code.
8465 */
8466 pVmcsInfo->idHostCpuState = NIL_RTCPUID;
8467#endif
8468
8469 Log4Func(("Cleared Vmcs. HostCpuId=%u\n", idCpu));
8470 NOREF(idCpu);
8471 return VINF_SUCCESS;
8472}
8473
8474
8475/**
8476 * Leaves the VT-x session.
8477 *
8478 * @returns VBox status code.
8479 * @param pVCpu The cross context virtual CPU structure.
8480 *
8481 * @remarks No-long-jmp zone!!!
8482 */
8483static int hmR0VmxLeaveSession(PVMCPUCC pVCpu)
8484{
8485 HM_DISABLE_PREEMPT(pVCpu);
8486 HMVMX_ASSERT_CPU_SAFE(pVCpu);
8487 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
8488 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8489
8490 /* When thread-context hooks are used, we can avoid doing the leave again if we had been preempted before
8491 and done this from the VMXR0ThreadCtxCallback(). */
8492 if (!pVCpu->hmr0.s.fLeaveDone)
8493 {
8494 int rc2 = hmR0VmxLeave(pVCpu, true /* fImportState */);
8495 AssertRCReturnStmt(rc2, HM_RESTORE_PREEMPT(), rc2);
8496 pVCpu->hmr0.s.fLeaveDone = true;
8497 }
8498 Assert(!pVCpu->cpum.GstCtx.fExtrn);
8499
8500 /*
8501 * !!! IMPORTANT !!!
8502 * If you modify code here, make sure to check whether VMXR0CallRing3Callback() needs to be updated too.
8503 */
8504
8505 /* Deregister hook now that we've left HM context before re-enabling preemption. */
8506 /** @todo Deregistering here means we need to VMCLEAR always
8507 * (longjmp/exit-to-r3) in VT-x which is not efficient, eliminate need
8508 * for calling VMMR0ThreadCtxHookDisable here! */
8509 VMMR0ThreadCtxHookDisable(pVCpu);
8510
8511 /* Leave HM context. This takes care of local init (term) and deregistering the longjmp-to-ring-3 callback. */
8512 int rc = HMR0LeaveCpu(pVCpu);
8513 HM_RESTORE_PREEMPT();
8514 return rc;
8515}
8516
8517
8518/**
8519 * Does the necessary state syncing before doing a longjmp to ring-3.
8520 *
8521 * @returns VBox status code.
8522 * @param pVCpu The cross context virtual CPU structure.
8523 *
8524 * @remarks No-long-jmp zone!!!
8525 */
8526DECLINLINE(int) hmR0VmxLongJmpToRing3(PVMCPUCC pVCpu)
8527{
8528 return hmR0VmxLeaveSession(pVCpu);
8529}
8530
8531
8532/**
8533 * Take necessary actions before going back to ring-3.
8534 *
8535 * An action requires us to go back to ring-3. This function does the necessary
8536 * steps before we can safely return to ring-3. This is not the same as longjmps
8537 * to ring-3, this is voluntary and prepares the guest so it may continue
8538 * executing outside HM (recompiler/IEM).
8539 *
8540 * @returns VBox status code.
8541 * @param pVCpu The cross context virtual CPU structure.
8542 * @param rcExit The reason for exiting to ring-3. Can be
8543 * VINF_VMM_UNKNOWN_RING3_CALL.
8544 */
8545static int hmR0VmxExitToRing3(PVMCPUCC pVCpu, VBOXSTRICTRC rcExit)
8546{
8547 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
8548
8549 PVMXVMCSINFO pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
8550 if (RT_UNLIKELY(rcExit == VERR_VMX_INVALID_VMCS_PTR))
8551 {
8552 VMXGetCurrentVmcs(&pVCpu->hm.s.vmx.LastError.HCPhysCurrentVmcs);
8553 pVCpu->hm.s.vmx.LastError.u32VmcsRev = *(uint32_t *)pVmcsInfo->pvVmcs;
8554 pVCpu->hm.s.vmx.LastError.idEnteredCpu = pVCpu->hmr0.s.idEnteredCpu;
8555 /* LastError.idCurrentCpu was updated in hmR0VmxPreRunGuestCommitted(). */
8556 }
8557
8558 /* Please, no longjumps here (any logging shouldn't flush jump back to ring-3). NO LOGGING BEFORE THIS POINT! */
8559 VMMRZCallRing3Disable(pVCpu);
8560 Log4Func(("rcExit=%d\n", VBOXSTRICTRC_VAL(rcExit)));
8561
8562 /*
8563 * Convert any pending HM events back to TRPM due to premature exits to ring-3.
8564 * We need to do this only on returns to ring-3 and not for longjmps to ring3.
8565 *
8566 * This is because execution may continue from ring-3 and we would need to inject
8567 * the event from there (hence place it back in TRPM).
8568 */
8569 if (pVCpu->hm.s.Event.fPending)
8570 {
8571 hmR0VmxPendingEventToTrpmTrap(pVCpu);
8572 Assert(!pVCpu->hm.s.Event.fPending);
8573
8574 /* Clear the events from the VMCS. */
8575 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, 0); AssertRC(rc);
8576 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS, 0); AssertRC(rc);
8577 }
8578#ifdef VBOX_STRICT
8579 /*
8580 * We check for rcExit here since for errors like VERR_VMX_UNABLE_TO_START_VM (which are
8581 * fatal), we don't care about verifying duplicate injection of events. Errors like
8582 * VERR_EM_INTERPRET are converted to their VINF_* counterparts -prior- to calling this
8583 * function so those should and will be checked below.
8584 */
8585 else if (RT_SUCCESS(rcExit))
8586 {
8587 /*
8588 * Ensure we don't accidentally clear a pending HM event without clearing the VMCS.
8589 * This can be pretty hard to debug otherwise, interrupts might get injected twice
8590 * occasionally, see @bugref{9180#c42}.
8591 *
8592 * However, if the VM-entry failed, any VM entry-interruption info. field would
8593 * be left unmodified as the event would not have been injected to the guest. In
8594 * such cases, don't assert, we're not going to continue guest execution anyway.
8595 */
8596 uint32_t uExitReason;
8597 uint32_t uEntryIntInfo;
8598 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_REASON, &uExitReason);
8599 rc |= VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &uEntryIntInfo);
8600 AssertRC(rc);
8601 AssertMsg(VMX_EXIT_REASON_HAS_ENTRY_FAILED(uExitReason) || !VMX_ENTRY_INT_INFO_IS_VALID(uEntryIntInfo),
8602 ("uExitReason=%#RX32 uEntryIntInfo=%#RX32 rcExit=%d\n", uExitReason, uEntryIntInfo, VBOXSTRICTRC_VAL(rcExit)));
8603 }
8604#endif
8605
8606 /*
8607 * Clear the interrupt-window and NMI-window VMCS controls as we could have got
8608 * a VM-exit with higher priority than interrupt-window or NMI-window VM-exits
8609 * (e.g. TPR below threshold).
8610 */
8611 if (!CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx))
8612 {
8613 hmR0VmxClearIntWindowExitVmcs(pVmcsInfo);
8614 hmR0VmxClearNmiWindowExitVmcs(pVmcsInfo);
8615 }
8616
8617 /* If we're emulating an instruction, we shouldn't have any TRPM traps pending
8618 and if we're injecting an event we should have a TRPM trap pending. */
8619 AssertMsg(rcExit != VINF_EM_RAW_INJECT_TRPM_EVENT || TRPMHasTrap(pVCpu), ("%Rrc\n", VBOXSTRICTRC_VAL(rcExit)));
8620#ifndef DEBUG_bird /* Triggered after firing an NMI against NT4SP1, possibly a triple fault in progress. */
8621 AssertMsg(rcExit != VINF_EM_RAW_EMULATE_INSTR || !TRPMHasTrap(pVCpu), ("%Rrc\n", VBOXSTRICTRC_VAL(rcExit)));
8622#endif
8623
8624 /* Save guest state and restore host state bits. */
8625 int rc = hmR0VmxLeaveSession(pVCpu);
8626 AssertRCReturn(rc, rc);
8627 STAM_COUNTER_DEC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
8628
8629 /* Thread-context hooks are unregistered at this point!!! */
8630 /* Ring-3 callback notifications are unregistered at this point!!! */
8631
8632 /* Sync recompiler state. */
8633 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TO_R3);
8634 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_SYSENTER_MSR
8635 | CPUM_CHANGED_LDTR
8636 | CPUM_CHANGED_GDTR
8637 | CPUM_CHANGED_IDTR
8638 | CPUM_CHANGED_TR
8639 | CPUM_CHANGED_HIDDEN_SEL_REGS);
8640 if ( pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging
8641 && CPUMIsGuestPagingEnabledEx(&pVCpu->cpum.GstCtx))
8642 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_GLOBAL_TLB_FLUSH);
8643
8644 Assert(!pVCpu->hmr0.s.fClearTrapFlag);
8645
8646 /* Update the exit-to-ring 3 reason. */
8647 pVCpu->hm.s.rcLastExitToR3 = VBOXSTRICTRC_VAL(rcExit);
8648
8649 /* On our way back from ring-3 reload the guest state if there is a possibility of it being changed. */
8650 if ( rcExit != VINF_EM_RAW_INTERRUPT
8651 || CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx))
8652 {
8653 Assert(!(pVCpu->cpum.GstCtx.fExtrn & HMVMX_CPUMCTX_EXTRN_ALL));
8654 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
8655 }
8656
8657 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchExitToR3);
8658 VMMRZCallRing3Enable(pVCpu);
8659 return rc;
8660}
8661
8662
8663/**
8664 * VMMRZCallRing3() callback wrapper which saves the guest state before we
8665 * longjump to ring-3 and possibly get preempted.
8666 *
8667 * @returns VBox status code.
8668 * @param pVCpu The cross context virtual CPU structure.
8669 * @param enmOperation The operation causing the ring-3 longjump.
8670 */
8671VMMR0DECL(int) VMXR0CallRing3Callback(PVMCPUCC pVCpu, VMMCALLRING3 enmOperation)
8672{
8673 if (enmOperation == VMMCALLRING3_VM_R0_ASSERTION)
8674 {
8675 /*
8676 * !!! IMPORTANT !!!
8677 * If you modify code here, check whether hmR0VmxLeave() and hmR0VmxLeaveSession() needs to be updated too.
8678 * This is a stripped down version which gets out ASAP, trying to not trigger any further assertions.
8679 */
8680 VMMRZCallRing3RemoveNotification(pVCpu);
8681 VMMRZCallRing3Disable(pVCpu);
8682 HM_DISABLE_PREEMPT(pVCpu);
8683
8684 PVMXVMCSINFO pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
8685 hmR0VmxImportGuestState(pVCpu, pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
8686 CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu);
8687 CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, true /* save DR6 */);
8688
8689 /* Restore host-state bits that VT-x only restores partially. */
8690 if (pVCpu->hmr0.s.vmx.fRestoreHostFlags > VMX_RESTORE_HOST_REQUIRED)
8691 VMXRestoreHostState(pVCpu->hmr0.s.vmx.fRestoreHostFlags, &pVCpu->hmr0.s.vmx.RestoreHost);
8692 pVCpu->hmr0.s.vmx.fRestoreHostFlags = 0;
8693
8694 /* Restore the lazy host MSRs as we're leaving VT-x context. */
8695 if (pVCpu->hmr0.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
8696 hmR0VmxLazyRestoreHostMsrs(pVCpu);
8697
8698 /* Update auto-load/store host MSRs values when we re-enter VT-x (as we could be on a different CPU). */
8699 pVCpu->hmr0.s.vmx.fUpdatedHostAutoMsrs = false;
8700 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
8701
8702 /* Clear the current VMCS data back to memory (shadow VMCS if any would have been
8703 cleared as part of importing the guest state above. */
8704 hmR0VmxClearVmcs(pVmcsInfo);
8705
8706 /** @todo eliminate the need for calling VMMR0ThreadCtxHookDisable here! */
8707 VMMR0ThreadCtxHookDisable(pVCpu);
8708
8709 /* Leave HM context. This takes care of local init (term). */
8710 HMR0LeaveCpu(pVCpu);
8711 HM_RESTORE_PREEMPT();
8712 return VINF_SUCCESS;
8713 }
8714
8715 Assert(pVCpu);
8716 Assert(VMMRZCallRing3IsEnabled(pVCpu));
8717 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
8718
8719 VMMRZCallRing3Disable(pVCpu);
8720 Assert(VMMR0IsLogFlushDisabled(pVCpu));
8721
8722 Log4Func(("-> hmR0VmxLongJmpToRing3 enmOperation=%d\n", enmOperation));
8723
8724 int rc = hmR0VmxLongJmpToRing3(pVCpu);
8725 AssertRCReturn(rc, rc);
8726
8727 VMMRZCallRing3Enable(pVCpu);
8728 return VINF_SUCCESS;
8729}
8730
8731
8732/**
8733 * Pushes a 2-byte value onto the real-mode (in virtual-8086 mode) guest's
8734 * stack.
8735 *
8736 * @returns Strict VBox status code (i.e. informational status codes too).
8737 * @retval VINF_EM_RESET if pushing a value to the stack caused a triple-fault.
8738 * @param pVCpu The cross context virtual CPU structure.
8739 * @param uValue The value to push to the guest stack.
8740 */
8741static VBOXSTRICTRC hmR0VmxRealModeGuestStackPush(PVMCPUCC pVCpu, uint16_t uValue)
8742{
8743 /*
8744 * The stack limit is 0xffff in real-on-virtual 8086 mode. Real-mode with weird stack limits cannot be run in
8745 * virtual 8086 mode in VT-x. See Intel spec. 26.3.1.2 "Checks on Guest Segment Registers".
8746 * See Intel Instruction reference for PUSH and Intel spec. 22.33.1 "Segment Wraparound".
8747 */
8748 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
8749 if (pCtx->sp == 1)
8750 return VINF_EM_RESET;
8751 pCtx->sp -= sizeof(uint16_t); /* May wrap around which is expected behaviour. */
8752 int rc = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), pCtx->ss.u64Base + pCtx->sp, &uValue, sizeof(uint16_t));
8753 AssertRC(rc);
8754 return rc;
8755}
8756
8757
8758/**
8759 * Injects an event into the guest upon VM-entry by updating the relevant fields
8760 * in the VM-entry area in the VMCS.
8761 *
8762 * @returns Strict VBox status code (i.e. informational status codes too).
8763 * @retval VINF_SUCCESS if the event is successfully injected into the VMCS.
8764 * @retval VINF_EM_RESET if event injection resulted in a triple-fault.
8765 *
8766 * @param pVCpu The cross context virtual CPU structure.
8767 * @param pVmxTransient The VMX-transient structure.
8768 * @param pEvent The event being injected.
8769 * @param pfIntrState Pointer to the VT-x guest-interruptibility-state. This
8770 * will be updated if necessary. This cannot not be NULL.
8771 * @param fStepping Whether we're single-stepping guest execution and should
8772 * return VINF_EM_DBG_STEPPED if the event is injected
8773 * directly (registers modified by us, not by hardware on
8774 * VM-entry).
8775 */
8776static VBOXSTRICTRC hmR0VmxInjectEventVmcs(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient, PCHMEVENT pEvent, bool fStepping,
8777 uint32_t *pfIntrState)
8778{
8779 /* Intel spec. 24.8.3 "VM-Entry Controls for Event Injection" specifies the interruption-information field to be 32-bits. */
8780 AssertMsg(!RT_HI_U32(pEvent->u64IntInfo), ("%#RX64\n", pEvent->u64IntInfo));
8781 Assert(pfIntrState);
8782
8783 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
8784 uint32_t u32IntInfo = pEvent->u64IntInfo;
8785 uint32_t const u32ErrCode = pEvent->u32ErrCode;
8786 uint32_t const cbInstr = pEvent->cbInstr;
8787 RTGCUINTPTR const GCPtrFault = pEvent->GCPtrFaultAddress;
8788 uint8_t const uVector = VMX_ENTRY_INT_INFO_VECTOR(u32IntInfo);
8789 uint32_t const uIntType = VMX_ENTRY_INT_INFO_TYPE(u32IntInfo);
8790
8791#ifdef VBOX_STRICT
8792 /*
8793 * Validate the error-code-valid bit for hardware exceptions.
8794 * No error codes for exceptions in real-mode.
8795 *
8796 * See Intel spec. 20.1.4 "Interrupt and Exception Handling"
8797 */
8798 if ( uIntType == VMX_EXIT_INT_INFO_TYPE_HW_XCPT
8799 && !CPUMIsGuestInRealModeEx(pCtx))
8800 {
8801 switch (uVector)
8802 {
8803 case X86_XCPT_PF:
8804 case X86_XCPT_DF:
8805 case X86_XCPT_TS:
8806 case X86_XCPT_NP:
8807 case X86_XCPT_SS:
8808 case X86_XCPT_GP:
8809 case X86_XCPT_AC:
8810 AssertMsg(VMX_ENTRY_INT_INFO_IS_ERROR_CODE_VALID(u32IntInfo),
8811 ("Error-code-valid bit not set for exception that has an error code uVector=%#x\n", uVector));
8812 RT_FALL_THRU();
8813 default:
8814 break;
8815 }
8816 }
8817
8818 /* Cannot inject an NMI when block-by-MOV SS is in effect. */
8819 Assert( uIntType != VMX_EXIT_INT_INFO_TYPE_NMI
8820 || !(*pfIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS));
8821#endif
8822
8823 if ( uIntType == VMX_EXIT_INT_INFO_TYPE_HW_XCPT
8824 || uIntType == VMX_EXIT_INT_INFO_TYPE_NMI
8825 || uIntType == VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT
8826 || uIntType == VMX_EXIT_INT_INFO_TYPE_SW_XCPT)
8827 {
8828 Assert(uVector <= X86_XCPT_LAST);
8829 Assert(uIntType != VMX_EXIT_INT_INFO_TYPE_NMI || uVector == X86_XCPT_NMI);
8830 Assert(uIntType != VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT || uVector == X86_XCPT_DB);
8831 STAM_COUNTER_INC(&pVCpu->hm.s.paStatInjectedXcptsR0[uVector]);
8832 }
8833 else
8834 STAM_COUNTER_INC(&pVCpu->hm.s.paStatInjectedIrqsR0[uVector & MASK_INJECT_IRQ_STAT]);
8835
8836 /*
8837 * Hardware interrupts & exceptions cannot be delivered through the software interrupt
8838 * redirection bitmap to the real mode task in virtual-8086 mode. We must jump to the
8839 * interrupt handler in the (real-mode) guest.
8840 *
8841 * See Intel spec. 20.3 "Interrupt and Exception handling in Virtual-8086 Mode".
8842 * See Intel spec. 20.1.4 "Interrupt and Exception Handling" for real-mode interrupt handling.
8843 */
8844 if (CPUMIsGuestInRealModeEx(pCtx)) /* CR0.PE bit changes are always intercepted, so it's up to date. */
8845 {
8846 if (pVCpu->CTX_SUFF(pVM)->hmr0.s.vmx.fUnrestrictedGuest)
8847 {
8848 /*
8849 * For CPUs with unrestricted guest execution enabled and with the guest
8850 * in real-mode, we must not set the deliver-error-code bit.
8851 *
8852 * See Intel spec. 26.2.1.3 "VM-Entry Control Fields".
8853 */
8854 u32IntInfo &= ~VMX_ENTRY_INT_INFO_ERROR_CODE_VALID;
8855 }
8856 else
8857 {
8858 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
8859 Assert(PDMVmmDevHeapIsEnabled(pVM));
8860 Assert(pVM->hm.s.vmx.pRealModeTSS);
8861 Assert(!CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx));
8862
8863 /* We require RIP, RSP, RFLAGS, CS, IDTR, import them. */
8864 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
8865 int rc2 = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_TABLE_MASK
8866 | CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_RFLAGS);
8867 AssertRCReturn(rc2, rc2);
8868
8869 /* Check if the interrupt handler is present in the IVT (real-mode IDT). IDT limit is (4N - 1). */
8870 size_t const cbIdtEntry = sizeof(X86IDTR16);
8871 if (uVector * cbIdtEntry + (cbIdtEntry - 1) > pCtx->idtr.cbIdt)
8872 {
8873 /* If we are trying to inject a #DF with no valid IDT entry, return a triple-fault. */
8874 if (uVector == X86_XCPT_DF)
8875 return VINF_EM_RESET;
8876
8877 /* If we're injecting a #GP with no valid IDT entry, inject a double-fault.
8878 No error codes for exceptions in real-mode. */
8879 if (uVector == X86_XCPT_GP)
8880 {
8881 uint32_t const uXcptDfInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_DF)
8882 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_ENTRY_INT_INFO_TYPE_HW_XCPT)
8883 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 0)
8884 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
8885 HMEVENT EventXcptDf;
8886 RT_ZERO(EventXcptDf);
8887 EventXcptDf.u64IntInfo = uXcptDfInfo;
8888 return hmR0VmxInjectEventVmcs(pVCpu, pVmxTransient, &EventXcptDf, fStepping, pfIntrState);
8889 }
8890
8891 /*
8892 * If we're injecting an event with no valid IDT entry, inject a #GP.
8893 * No error codes for exceptions in real-mode.
8894 *
8895 * See Intel spec. 20.1.4 "Interrupt and Exception Handling"
8896 */
8897 uint32_t const uXcptGpInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_GP)
8898 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_ENTRY_INT_INFO_TYPE_HW_XCPT)
8899 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 0)
8900 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
8901 HMEVENT EventXcptGp;
8902 RT_ZERO(EventXcptGp);
8903 EventXcptGp.u64IntInfo = uXcptGpInfo;
8904 return hmR0VmxInjectEventVmcs(pVCpu, pVmxTransient, &EventXcptGp, fStepping, pfIntrState);
8905 }
8906
8907 /* Software exceptions (#BP and #OF exceptions thrown as a result of INT3 or INTO) */
8908 uint16_t uGuestIp = pCtx->ip;
8909 if (uIntType == VMX_ENTRY_INT_INFO_TYPE_SW_XCPT)
8910 {
8911 Assert(uVector == X86_XCPT_BP || uVector == X86_XCPT_OF);
8912 /* #BP and #OF are both benign traps, we need to resume the next instruction. */
8913 uGuestIp = pCtx->ip + (uint16_t)cbInstr;
8914 }
8915 else if (uIntType == VMX_ENTRY_INT_INFO_TYPE_SW_INT)
8916 uGuestIp = pCtx->ip + (uint16_t)cbInstr;
8917
8918 /* Get the code segment selector and offset from the IDT entry for the interrupt handler. */
8919 X86IDTR16 IdtEntry;
8920 RTGCPHYS const GCPhysIdtEntry = (RTGCPHYS)pCtx->idtr.pIdt + uVector * cbIdtEntry;
8921 rc2 = PGMPhysSimpleReadGCPhys(pVM, &IdtEntry, GCPhysIdtEntry, cbIdtEntry);
8922 AssertRCReturn(rc2, rc2);
8923
8924 /* Construct the stack frame for the interrupt/exception handler. */
8925 VBOXSTRICTRC rcStrict;
8926 rcStrict = hmR0VmxRealModeGuestStackPush(pVCpu, pCtx->eflags.u32);
8927 if (rcStrict == VINF_SUCCESS)
8928 {
8929 rcStrict = hmR0VmxRealModeGuestStackPush(pVCpu, pCtx->cs.Sel);
8930 if (rcStrict == VINF_SUCCESS)
8931 rcStrict = hmR0VmxRealModeGuestStackPush(pVCpu, uGuestIp);
8932 }
8933
8934 /* Clear the required eflag bits and jump to the interrupt/exception handler. */
8935 if (rcStrict == VINF_SUCCESS)
8936 {
8937 pCtx->eflags.u32 &= ~(X86_EFL_IF | X86_EFL_TF | X86_EFL_RF | X86_EFL_AC);
8938 pCtx->rip = IdtEntry.offSel;
8939 pCtx->cs.Sel = IdtEntry.uSel;
8940 pCtx->cs.ValidSel = IdtEntry.uSel;
8941 pCtx->cs.u64Base = IdtEntry.uSel << cbIdtEntry;
8942 if ( uIntType == VMX_ENTRY_INT_INFO_TYPE_HW_XCPT
8943 && uVector == X86_XCPT_PF)
8944 pCtx->cr2 = GCPtrFault;
8945
8946 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CS | HM_CHANGED_GUEST_CR2
8947 | HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS
8948 | HM_CHANGED_GUEST_RSP);
8949
8950 /*
8951 * If we delivered a hardware exception (other than an NMI) and if there was
8952 * block-by-STI in effect, we should clear it.
8953 */
8954 if (*pfIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)
8955 {
8956 Assert( uIntType != VMX_ENTRY_INT_INFO_TYPE_NMI
8957 && uIntType != VMX_ENTRY_INT_INFO_TYPE_EXT_INT);
8958 Log4Func(("Clearing inhibition due to STI\n"));
8959 *pfIntrState &= ~VMX_VMCS_GUEST_INT_STATE_BLOCK_STI;
8960 }
8961
8962 Log4(("Injected real-mode: u32IntInfo=%#x u32ErrCode=%#x cbInstr=%#x Eflags=%#x CS:EIP=%04x:%04x\n",
8963 u32IntInfo, u32ErrCode, cbInstr, pCtx->eflags.u, pCtx->cs.Sel, pCtx->eip));
8964
8965 /*
8966 * The event has been truly dispatched to the guest. Mark it as no longer pending so
8967 * we don't attempt to undo it if we are returning to ring-3 before executing guest code.
8968 */
8969 pVCpu->hm.s.Event.fPending = false;
8970
8971 /*
8972 * If we eventually support nested-guest execution without unrestricted guest execution,
8973 * we should set fInterceptEvents here.
8974 */
8975 Assert(!pVmxTransient->fIsNestedGuest);
8976
8977 /* If we're stepping and we've changed cs:rip above, bail out of the VMX R0 execution loop. */
8978 if (fStepping)
8979 rcStrict = VINF_EM_DBG_STEPPED;
8980 }
8981 AssertMsg(rcStrict == VINF_SUCCESS || rcStrict == VINF_EM_RESET || (rcStrict == VINF_EM_DBG_STEPPED && fStepping),
8982 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
8983 return rcStrict;
8984 }
8985 }
8986
8987 /*
8988 * Validate.
8989 */
8990 Assert(VMX_ENTRY_INT_INFO_IS_VALID(u32IntInfo)); /* Bit 31 (Valid bit) must be set by caller. */
8991 Assert(!(u32IntInfo & VMX_BF_ENTRY_INT_INFO_RSVD_12_30_MASK)); /* Bits 30:12 MBZ. */
8992
8993 /*
8994 * Inject the event into the VMCS.
8995 */
8996 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, u32IntInfo);
8997 if (VMX_ENTRY_INT_INFO_IS_ERROR_CODE_VALID(u32IntInfo))
8998 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, u32ErrCode);
8999 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, cbInstr);
9000 AssertRC(rc);
9001
9002 /*
9003 * Update guest CR2 if this is a page-fault.
9004 */
9005 if (VMX_ENTRY_INT_INFO_IS_XCPT_PF(u32IntInfo))
9006 pCtx->cr2 = GCPtrFault;
9007
9008 Log4(("Injecting u32IntInfo=%#x u32ErrCode=%#x cbInstr=%#x CR2=%#RX64\n", u32IntInfo, u32ErrCode, cbInstr, pCtx->cr2));
9009 return VINF_SUCCESS;
9010}
9011
9012
9013/**
9014 * Evaluates the event to be delivered to the guest and sets it as the pending
9015 * event.
9016 *
9017 * Toggling of interrupt force-flags here is safe since we update TRPM on premature
9018 * exits to ring-3 before executing guest code, see hmR0VmxExitToRing3(). We must
9019 * NOT restore these force-flags.
9020 *
9021 * @returns Strict VBox status code (i.e. informational status codes too).
9022 * @param pVCpu The cross context virtual CPU structure.
9023 * @param pVmxTransient The VMX-transient structure.
9024 * @param pfIntrState Where to store the VT-x guest-interruptibility state.
9025 */
9026static VBOXSTRICTRC hmR0VmxEvaluatePendingEvent(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient, uint32_t *pfIntrState)
9027{
9028 Assert(pfIntrState);
9029 Assert(!TRPMHasTrap(pVCpu));
9030
9031 /*
9032 * Compute/update guest-interruptibility state related FFs.
9033 * The FFs will be used below while evaluating events to be injected.
9034 */
9035 *pfIntrState = hmR0VmxGetGuestIntrStateAndUpdateFFs(pVCpu);
9036
9037 /*
9038 * Evaluate if a new event needs to be injected.
9039 * An event that's already pending has already performed all necessary checks.
9040 */
9041 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
9042 bool const fIsNestedGuest = pVmxTransient->fIsNestedGuest;
9043 if ( !pVCpu->hm.s.Event.fPending
9044 && !VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
9045 {
9046 /** @todo SMI. SMIs take priority over NMIs. */
9047
9048 /*
9049 * NMIs.
9050 * NMIs take priority over external interrupts.
9051 */
9052 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
9053 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NMI))
9054 {
9055 /*
9056 * For a guest, the FF always indicates the guest's ability to receive an NMI.
9057 *
9058 * For a nested-guest, the FF always indicates the outer guest's ability to
9059 * receive an NMI while the guest-interruptibility state bit depends on whether
9060 * the nested-hypervisor is using virtual-NMIs.
9061 */
9062 if (!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
9063 {
9064#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
9065 if ( fIsNestedGuest
9066 && CPUMIsGuestVmxPinCtlsSet(pCtx, VMX_PIN_CTLS_NMI_EXIT))
9067 return IEMExecVmxVmexitXcptNmi(pVCpu);
9068#endif
9069 hmR0VmxSetPendingXcptNmi(pVCpu);
9070 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI);
9071 Log4Func(("NMI pending injection\n"));
9072
9073 /* We've injected the NMI, bail. */
9074 return VINF_SUCCESS;
9075 }
9076 else if (!fIsNestedGuest)
9077 hmR0VmxSetNmiWindowExitVmcs(pVmcsInfo);
9078 }
9079
9080 /*
9081 * External interrupts (PIC/APIC).
9082 * Once PDMGetInterrupt() returns a valid interrupt we -must- deliver it.
9083 * We cannot re-request the interrupt from the controller again.
9084 */
9085 if ( VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)
9086 && !pVCpu->hm.s.fSingleInstruction)
9087 {
9088 Assert(!DBGFIsStepping(pVCpu));
9089 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_RFLAGS);
9090 AssertRC(rc);
9091
9092 /*
9093 * We must not check EFLAGS directly when executing a nested-guest, use
9094 * CPUMIsGuestPhysIntrEnabled() instead as EFLAGS.IF does not control the blocking of
9095 * external interrupts when "External interrupt exiting" is set. This fixes a nasty
9096 * SMP hang while executing nested-guest VCPUs on spinlocks which aren't rescued by
9097 * other VM-exits (like a preemption timer), see @bugref{9562#c18}.
9098 *
9099 * See Intel spec. 25.4.1 "Event Blocking".
9100 */
9101 if (CPUMIsGuestPhysIntrEnabled(pVCpu))
9102 {
9103#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
9104 if ( fIsNestedGuest
9105 && CPUMIsGuestVmxPinCtlsSet(pCtx, VMX_PIN_CTLS_EXT_INT_EXIT))
9106 {
9107 VBOXSTRICTRC rcStrict = IEMExecVmxVmexitExtInt(pVCpu, 0 /* uVector */, true /* fIntPending */);
9108 if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
9109 return rcStrict;
9110 }
9111#endif
9112 uint8_t u8Interrupt;
9113 rc = PDMGetInterrupt(pVCpu, &u8Interrupt);
9114 if (RT_SUCCESS(rc))
9115 {
9116#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
9117 if ( fIsNestedGuest
9118 && CPUMIsGuestVmxPinCtlsSet(pCtx, VMX_PIN_CTLS_EXT_INT_EXIT))
9119 {
9120 VBOXSTRICTRC rcStrict = IEMExecVmxVmexitExtInt(pVCpu, u8Interrupt, false /* fIntPending */);
9121 Assert(rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE);
9122 return rcStrict;
9123 }
9124#endif
9125 hmR0VmxSetPendingExtInt(pVCpu, u8Interrupt);
9126 Log4Func(("External interrupt (%#x) pending injection\n", u8Interrupt));
9127 }
9128 else if (rc == VERR_APIC_INTR_MASKED_BY_TPR)
9129 {
9130 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchTprMaskedIrq);
9131
9132 if ( !fIsNestedGuest
9133 && (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW))
9134 hmR0VmxApicSetTprThreshold(pVmcsInfo, u8Interrupt >> 4);
9135 /* else: for nested-guests, TPR threshold is picked up while merging VMCS controls. */
9136
9137 /*
9138 * If the CPU doesn't have TPR shadowing, we will always get a VM-exit on TPR changes and
9139 * APICSetTpr() will end up setting the VMCPU_FF_INTERRUPT_APIC if required, so there is no
9140 * need to re-set this force-flag here.
9141 */
9142 }
9143 else
9144 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchGuestIrq);
9145
9146 /* We've injected the interrupt or taken necessary action, bail. */
9147 return VINF_SUCCESS;
9148 }
9149 if (!fIsNestedGuest)
9150 hmR0VmxSetIntWindowExitVmcs(pVmcsInfo);
9151 }
9152 }
9153 else if (!fIsNestedGuest)
9154 {
9155 /*
9156 * An event is being injected or we are in an interrupt shadow. Check if another event is
9157 * pending. If so, instruct VT-x to cause a VM-exit as soon as the guest is ready to accept
9158 * the pending event.
9159 */
9160 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NMI))
9161 hmR0VmxSetNmiWindowExitVmcs(pVmcsInfo);
9162 else if ( VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)
9163 && !pVCpu->hm.s.fSingleInstruction)
9164 hmR0VmxSetIntWindowExitVmcs(pVmcsInfo);
9165 }
9166 /* else: for nested-guests, NMI/interrupt-window exiting will be picked up when merging VMCS controls. */
9167
9168 return VINF_SUCCESS;
9169}
9170
9171
9172/**
9173 * Injects any pending events into the guest if the guest is in a state to
9174 * receive them.
9175 *
9176 * @returns Strict VBox status code (i.e. informational status codes too).
9177 * @param pVCpu The cross context virtual CPU structure.
9178 * @param pVmxTransient The VMX-transient structure.
9179 * @param fIntrState The VT-x guest-interruptibility state.
9180 * @param fStepping Whether we are single-stepping the guest using the
9181 * hypervisor debugger and should return
9182 * VINF_EM_DBG_STEPPED if the event was dispatched
9183 * directly.
9184 */
9185static VBOXSTRICTRC hmR0VmxInjectPendingEvent(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient, uint32_t fIntrState, bool fStepping)
9186{
9187 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
9188 Assert(VMMRZCallRing3IsEnabled(pVCpu));
9189
9190#ifdef VBOX_STRICT
9191 /*
9192 * Verify guest-interruptibility state.
9193 *
9194 * We put this in a scoped block so we do not accidentally use fBlockSti or fBlockMovSS,
9195 * since injecting an event may modify the interruptibility state and we must thus always
9196 * use fIntrState.
9197 */
9198 {
9199 bool const fBlockMovSS = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS);
9200 bool const fBlockSti = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI);
9201 Assert(!fBlockSti || !(ASMAtomicUoReadU64(&pVCpu->cpum.GstCtx.fExtrn) & CPUMCTX_EXTRN_RFLAGS));
9202 Assert(!fBlockSti || pVCpu->cpum.GstCtx.eflags.Bits.u1IF); /* Cannot set block-by-STI when interrupts are disabled. */
9203 Assert(!(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_SMI)); /* We don't support block-by-SMI yet.*/
9204 Assert(!TRPMHasTrap(pVCpu));
9205 NOREF(fBlockMovSS); NOREF(fBlockSti);
9206 }
9207#endif
9208
9209 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
9210 if (pVCpu->hm.s.Event.fPending)
9211 {
9212 /*
9213 * Do -not- clear any interrupt-window exiting control here. We might have an interrupt
9214 * pending even while injecting an event and in this case, we want a VM-exit as soon as
9215 * the guest is ready for the next interrupt, see @bugref{6208#c45}.
9216 *
9217 * See Intel spec. 26.6.5 "Interrupt-Window Exiting and Virtual-Interrupt Delivery".
9218 */
9219 uint32_t const uIntType = VMX_ENTRY_INT_INFO_TYPE(pVCpu->hm.s.Event.u64IntInfo);
9220#ifdef VBOX_STRICT
9221 if (uIntType == VMX_ENTRY_INT_INFO_TYPE_EXT_INT)
9222 {
9223 Assert(pVCpu->cpum.GstCtx.eflags.u32 & X86_EFL_IF);
9224 Assert(!(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI));
9225 Assert(!(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS));
9226 }
9227 else if (uIntType == VMX_ENTRY_INT_INFO_TYPE_NMI)
9228 {
9229 Assert(!(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI));
9230 Assert(!(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI));
9231 Assert(!(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS));
9232 }
9233#endif
9234 Log4(("Injecting pending event vcpu[%RU32] u64IntInfo=%#RX64 Type=%#RX32\n", pVCpu->idCpu, pVCpu->hm.s.Event.u64IntInfo,
9235 uIntType));
9236
9237 /*
9238 * Inject the event and get any changes to the guest-interruptibility state.
9239 *
9240 * The guest-interruptibility state may need to be updated if we inject the event
9241 * into the guest IDT ourselves (for real-on-v86 guest injecting software interrupts).
9242 */
9243 rcStrict = hmR0VmxInjectEventVmcs(pVCpu, pVmxTransient, &pVCpu->hm.s.Event, fStepping, &fIntrState);
9244 AssertRCReturn(VBOXSTRICTRC_VAL(rcStrict), rcStrict);
9245
9246 if (uIntType == VMX_ENTRY_INT_INFO_TYPE_EXT_INT)
9247 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterrupt);
9248 else
9249 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectXcpt);
9250 }
9251
9252 /*
9253 * Deliver any pending debug exceptions if the guest is single-stepping using EFLAGS.TF and
9254 * is an interrupt shadow (block-by-STI or block-by-MOV SS).
9255 */
9256 if ( (fIntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS))
9257 && !pVmxTransient->fIsNestedGuest)
9258 {
9259 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RFLAGS);
9260
9261 if (!pVCpu->hm.s.fSingleInstruction)
9262 {
9263 /*
9264 * Set or clear the BS bit depending on whether the trap flag is active or not. We need
9265 * to do both since we clear the BS bit from the VMCS while exiting to ring-3.
9266 */
9267 Assert(!DBGFIsStepping(pVCpu));
9268 uint8_t const fTrapFlag = !!(pVCpu->cpum.GstCtx.eflags.u32 & X86_EFL_TF);
9269 int rc = VMXWriteVmcsNw(VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS, fTrapFlag << VMX_BF_VMCS_PENDING_DBG_XCPT_BS_SHIFT);
9270 AssertRC(rc);
9271 }
9272 else
9273 {
9274 /*
9275 * We must not deliver a debug exception when single-stepping over STI/Mov-SS in the
9276 * hypervisor debugger using EFLAGS.TF but rather clear interrupt inhibition. However,
9277 * we take care of this case in hmR0VmxExportSharedDebugState and also the case if
9278 * we use MTF, so just make sure it's called before executing guest-code.
9279 */
9280 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_DR_MASK);
9281 }
9282 }
9283 /* else: for nested-guest currently handling while merging controls. */
9284
9285 /*
9286 * Finally, update the guest-interruptibility state.
9287 *
9288 * This is required for the real-on-v86 software interrupt injection, for
9289 * pending debug exceptions as well as updates to the guest state from ring-3 (IEM).
9290 */
9291 int rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_INT_STATE, fIntrState);
9292 AssertRC(rc);
9293
9294 /*
9295 * There's no need to clear the VM-entry interruption-information field here if we're not
9296 * injecting anything. VT-x clears the valid bit on every VM-exit.
9297 *
9298 * See Intel spec. 24.8.3 "VM-Entry Controls for Event Injection".
9299 */
9300
9301 Assert(rcStrict == VINF_SUCCESS || rcStrict == VINF_EM_RESET || (rcStrict == VINF_EM_DBG_STEPPED && fStepping));
9302 return rcStrict;
9303}
9304
9305
9306/**
9307 * Enters the VT-x session.
9308 *
9309 * @returns VBox status code.
9310 * @param pVCpu The cross context virtual CPU structure.
9311 */
9312VMMR0DECL(int) VMXR0Enter(PVMCPUCC pVCpu)
9313{
9314 AssertPtr(pVCpu);
9315 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fSupported);
9316 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
9317
9318 LogFlowFunc(("pVCpu=%p\n", pVCpu));
9319 Assert((pVCpu->hm.s.fCtxChanged & (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE))
9320 == (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE));
9321
9322#ifdef VBOX_STRICT
9323 /* At least verify VMX is enabled, since we can't check if we're in VMX root mode without #GP'ing. */
9324 RTCCUINTREG uHostCr4 = ASMGetCR4();
9325 if (!(uHostCr4 & X86_CR4_VMXE))
9326 {
9327 LogRelFunc(("X86_CR4_VMXE bit in CR4 is not set!\n"));
9328 return VERR_VMX_X86_CR4_VMXE_CLEARED;
9329 }
9330#endif
9331
9332 /*
9333 * Do the EMT scheduled L1D and MDS flush here if needed.
9334 */
9335 if (pVCpu->hmr0.s.fWorldSwitcher & HM_WSF_L1D_SCHED)
9336 ASMWrMsr(MSR_IA32_FLUSH_CMD, MSR_IA32_FLUSH_CMD_F_L1D);
9337 else if (pVCpu->hmr0.s.fWorldSwitcher & HM_WSF_MDS_SCHED)
9338 hmR0MdsClear();
9339
9340 /*
9341 * Load the appropriate VMCS as the current and active one.
9342 */
9343 PVMXVMCSINFO pVmcsInfo;
9344 bool const fInNestedGuestMode = CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx);
9345 if (!fInNestedGuestMode)
9346 pVmcsInfo = &pVCpu->hmr0.s.vmx.VmcsInfo;
9347 else
9348 pVmcsInfo = &pVCpu->hmr0.s.vmx.VmcsInfoNstGst;
9349 int rc = hmR0VmxLoadVmcs(pVmcsInfo);
9350 if (RT_SUCCESS(rc))
9351 {
9352 pVCpu->hmr0.s.vmx.fSwitchedToNstGstVmcs = fInNestedGuestMode;
9353 pVCpu->hm.s.vmx.fSwitchedToNstGstVmcsCopyForRing3 = fInNestedGuestMode;
9354 pVCpu->hmr0.s.fLeaveDone = false;
9355 Log4Func(("Loaded Vmcs. HostCpuId=%u\n", RTMpCpuId()));
9356 }
9357 return rc;
9358}
9359
9360
9361/**
9362 * The thread-context callback.
9363 *
9364 * This is used together with RTThreadCtxHookCreate() on platforms which
9365 * supports it, and directly from VMMR0EmtPrepareForBlocking() and
9366 * VMMR0EmtResumeAfterBlocking() on platforms which don't.
9367 *
9368 * @param enmEvent The thread-context event.
9369 * @param pVCpu The cross context virtual CPU structure.
9370 * @param fGlobalInit Whether global VT-x/AMD-V init. was used.
9371 * @thread EMT(pVCpu)
9372 */
9373VMMR0DECL(void) VMXR0ThreadCtxCallback(RTTHREADCTXEVENT enmEvent, PVMCPUCC pVCpu, bool fGlobalInit)
9374{
9375 AssertPtr(pVCpu);
9376 RT_NOREF1(fGlobalInit);
9377
9378 switch (enmEvent)
9379 {
9380 case RTTHREADCTXEVENT_OUT:
9381 {
9382 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
9383 VMCPU_ASSERT_EMT(pVCpu);
9384
9385 /* No longjmps (logger flushes, locks) in this fragile context. */
9386 VMMRZCallRing3Disable(pVCpu);
9387 Log4Func(("Preempting: HostCpuId=%u\n", RTMpCpuId()));
9388
9389 /* Restore host-state (FPU, debug etc.) */
9390 if (!pVCpu->hmr0.s.fLeaveDone)
9391 {
9392 /*
9393 * Do -not- import the guest-state here as we might already be in the middle of importing
9394 * it, esp. bad if we're holding the PGM lock, see comment in hmR0VmxImportGuestState().
9395 */
9396 hmR0VmxLeave(pVCpu, false /* fImportState */);
9397 pVCpu->hmr0.s.fLeaveDone = true;
9398 }
9399
9400 /* Leave HM context, takes care of local init (term). */
9401 int rc = HMR0LeaveCpu(pVCpu);
9402 AssertRC(rc);
9403
9404 /* Restore longjmp state. */
9405 VMMRZCallRing3Enable(pVCpu);
9406 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatSwitchPreempt);
9407 break;
9408 }
9409
9410 case RTTHREADCTXEVENT_IN:
9411 {
9412 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
9413 VMCPU_ASSERT_EMT(pVCpu);
9414
9415 /* Do the EMT scheduled L1D and MDS flush here if needed. */
9416 if (pVCpu->hmr0.s.fWorldSwitcher & HM_WSF_L1D_SCHED)
9417 ASMWrMsr(MSR_IA32_FLUSH_CMD, MSR_IA32_FLUSH_CMD_F_L1D);
9418 else if (pVCpu->hmr0.s.fWorldSwitcher & HM_WSF_MDS_SCHED)
9419 hmR0MdsClear();
9420
9421 /* No longjmps here, as we don't want to trigger preemption (& its hook) while resuming. */
9422 VMMRZCallRing3Disable(pVCpu);
9423 Log4Func(("Resumed: HostCpuId=%u\n", RTMpCpuId()));
9424
9425 /* Initialize the bare minimum state required for HM. This takes care of
9426 initializing VT-x if necessary (onlined CPUs, local init etc.) */
9427 int rc = hmR0EnterCpu(pVCpu);
9428 AssertRC(rc);
9429 Assert( (pVCpu->hm.s.fCtxChanged & (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE))
9430 == (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE));
9431
9432 /* Load the active VMCS as the current one. */
9433 PVMXVMCSINFO pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
9434 rc = hmR0VmxLoadVmcs(pVmcsInfo);
9435 AssertRC(rc);
9436 Log4Func(("Resumed: Loaded Vmcs. HostCpuId=%u\n", RTMpCpuId()));
9437 pVCpu->hmr0.s.fLeaveDone = false;
9438
9439 /* Restore longjmp state. */
9440 VMMRZCallRing3Enable(pVCpu);
9441 break;
9442 }
9443
9444 default:
9445 break;
9446 }
9447}
9448
9449
9450/**
9451 * Exports the host state into the VMCS host-state area.
9452 * Sets up the VM-exit MSR-load area.
9453 *
9454 * The CPU state will be loaded from these fields on every successful VM-exit.
9455 *
9456 * @returns VBox status code.
9457 * @param pVCpu The cross context virtual CPU structure.
9458 *
9459 * @remarks No-long-jump zone!!!
9460 */
9461static int hmR0VmxExportHostState(PVMCPUCC pVCpu)
9462{
9463 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
9464
9465 int rc = VINF_SUCCESS;
9466 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_HOST_CONTEXT)
9467 {
9468 uint64_t uHostCr4 = hmR0VmxExportHostControlRegs();
9469
9470 rc = hmR0VmxExportHostSegmentRegs(pVCpu, uHostCr4);
9471 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
9472
9473 hmR0VmxExportHostMsrs(pVCpu);
9474
9475 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_HOST_CONTEXT;
9476 }
9477 return rc;
9478}
9479
9480
9481/**
9482 * Saves the host state in the VMCS host-state.
9483 *
9484 * @returns VBox status code.
9485 * @param pVCpu The cross context virtual CPU structure.
9486 *
9487 * @remarks No-long-jump zone!!!
9488 */
9489VMMR0DECL(int) VMXR0ExportHostState(PVMCPUCC pVCpu)
9490{
9491 AssertPtr(pVCpu);
9492 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
9493
9494 /*
9495 * Export the host state here while entering HM context.
9496 * When thread-context hooks are used, we might get preempted and have to re-save the host
9497 * state but most of the time we won't be, so do it here before we disable interrupts.
9498 */
9499 return hmR0VmxExportHostState(pVCpu);
9500}
9501
9502
9503/**
9504 * Exports the guest state into the VMCS guest-state area.
9505 *
9506 * The will typically be done before VM-entry when the guest-CPU state and the
9507 * VMCS state may potentially be out of sync.
9508 *
9509 * Sets up the VM-entry MSR-load and VM-exit MSR-store areas. Sets up the
9510 * VM-entry controls.
9511 * Sets up the appropriate VMX non-root function to execute guest code based on
9512 * the guest CPU mode.
9513 *
9514 * @returns VBox strict status code.
9515 * @retval VINF_EM_RESCHEDULE_REM if we try to emulate non-paged guest code
9516 * without unrestricted guest execution and the VMMDev is not presently
9517 * mapped (e.g. EFI32).
9518 *
9519 * @param pVCpu The cross context virtual CPU structure.
9520 * @param pVmxTransient The VMX-transient structure.
9521 *
9522 * @remarks No-long-jump zone!!!
9523 */
9524static VBOXSTRICTRC hmR0VmxExportGuestState(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
9525{
9526 AssertPtr(pVCpu);
9527 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
9528 LogFlowFunc(("pVCpu=%p\n", pVCpu));
9529
9530 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExportGuestState, x);
9531
9532 /*
9533 * Determine real-on-v86 mode.
9534 * Used when the guest is in real-mode and unrestricted guest execution is not used.
9535 */
9536 PVMXVMCSINFOSHARED pVmcsInfoShared = pVmxTransient->pVmcsInfo->pShared;
9537 if ( pVCpu->CTX_SUFF(pVM)->hmr0.s.vmx.fUnrestrictedGuest
9538 || !CPUMIsGuestInRealModeEx(&pVCpu->cpum.GstCtx))
9539 pVmcsInfoShared->RealMode.fRealOnV86Active = false;
9540 else
9541 {
9542 Assert(!pVmxTransient->fIsNestedGuest);
9543 pVmcsInfoShared->RealMode.fRealOnV86Active = true;
9544 }
9545
9546 /*
9547 * Any ordering dependency among the sub-functions below must be explicitly stated using comments.
9548 * Ideally, assert that the cross-dependent bits are up-to-date at the point of using it.
9549 */
9550 int rc = hmR0VmxExportGuestEntryExitCtls(pVCpu, pVmxTransient);
9551 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
9552
9553 rc = hmR0VmxExportGuestCR0(pVCpu, pVmxTransient);
9554 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
9555
9556 VBOXSTRICTRC rcStrict = hmR0VmxExportGuestCR3AndCR4(pVCpu, pVmxTransient);
9557 if (rcStrict == VINF_SUCCESS)
9558 { /* likely */ }
9559 else
9560 {
9561 Assert(rcStrict == VINF_EM_RESCHEDULE_REM || RT_FAILURE_NP(rcStrict));
9562 return rcStrict;
9563 }
9564
9565 rc = hmR0VmxExportGuestSegRegsXdtr(pVCpu, pVmxTransient);
9566 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
9567
9568 rc = hmR0VmxExportGuestMsrs(pVCpu, pVmxTransient);
9569 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
9570
9571 hmR0VmxExportGuestApicTpr(pVCpu, pVmxTransient);
9572 hmR0VmxExportGuestXcptIntercepts(pVCpu, pVmxTransient);
9573 hmR0VmxExportGuestRip(pVCpu);
9574 hmR0VmxExportGuestRsp(pVCpu);
9575 hmR0VmxExportGuestRflags(pVCpu, pVmxTransient);
9576
9577 rc = hmR0VmxExportGuestHwvirtState(pVCpu, pVmxTransient);
9578 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
9579
9580 /* Clear any bits that may be set but exported unconditionally or unused/reserved bits. */
9581 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~( (HM_CHANGED_GUEST_GPRS_MASK & ~HM_CHANGED_GUEST_RSP)
9582 | HM_CHANGED_GUEST_CR2
9583 | (HM_CHANGED_GUEST_DR_MASK & ~HM_CHANGED_GUEST_DR7)
9584 | HM_CHANGED_GUEST_X87
9585 | HM_CHANGED_GUEST_SSE_AVX
9586 | HM_CHANGED_GUEST_OTHER_XSAVE
9587 | HM_CHANGED_GUEST_XCRx
9588 | HM_CHANGED_GUEST_KERNEL_GS_BASE /* Part of lazy or auto load-store MSRs. */
9589 | HM_CHANGED_GUEST_SYSCALL_MSRS /* Part of lazy or auto load-store MSRs. */
9590 | HM_CHANGED_GUEST_TSC_AUX
9591 | HM_CHANGED_GUEST_OTHER_MSRS
9592 | (HM_CHANGED_KEEPER_STATE_MASK & ~HM_CHANGED_VMX_MASK)));
9593
9594 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExportGuestState, x);
9595 return rc;
9596}
9597
9598
9599/**
9600 * Exports the state shared between the host and guest into the VMCS.
9601 *
9602 * @param pVCpu The cross context virtual CPU structure.
9603 * @param pVmxTransient The VMX-transient structure.
9604 *
9605 * @remarks No-long-jump zone!!!
9606 */
9607static void hmR0VmxExportSharedState(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
9608{
9609 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
9610 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
9611
9612 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_DR_MASK)
9613 {
9614 int rc = hmR0VmxExportSharedDebugState(pVCpu, pVmxTransient);
9615 AssertRC(rc);
9616 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_GUEST_DR_MASK;
9617
9618 /* Loading shared debug bits might have changed eflags.TF bit for debugging purposes. */
9619 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_RFLAGS)
9620 hmR0VmxExportGuestRflags(pVCpu, pVmxTransient);
9621 }
9622
9623 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_VMX_GUEST_LAZY_MSRS)
9624 {
9625 hmR0VmxLazyLoadGuestMsrs(pVCpu);
9626 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_VMX_GUEST_LAZY_MSRS;
9627 }
9628
9629 AssertMsg(!(pVCpu->hm.s.fCtxChanged & HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE),
9630 ("fCtxChanged=%#RX64\n", pVCpu->hm.s.fCtxChanged));
9631}
9632
9633
9634/**
9635 * Worker for loading the guest-state bits in the inner VT-x execution loop.
9636 *
9637 * @returns Strict VBox status code (i.e. informational status codes too).
9638 * @retval VINF_EM_RESCHEDULE_REM if we try to emulate non-paged guest code
9639 * without unrestricted guest execution and the VMMDev is not presently
9640 * mapped (e.g. EFI32).
9641 *
9642 * @param pVCpu The cross context virtual CPU structure.
9643 * @param pVmxTransient The VMX-transient structure.
9644 *
9645 * @remarks No-long-jump zone!!!
9646 */
9647static VBOXSTRICTRC hmR0VmxExportGuestStateOptimal(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
9648{
9649 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
9650 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
9651 Assert(VMMR0IsLogFlushDisabled(pVCpu));
9652
9653#ifdef HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE
9654 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
9655#endif
9656
9657 /*
9658 * For many VM-exits only RIP/RSP/RFLAGS (and HWVIRT state when executing a nested-guest)
9659 * changes. First try to export only these without going through all other changed-flag checks.
9660 */
9661 VBOXSTRICTRC rcStrict;
9662 uint64_t const fCtxMask = HM_CHANGED_ALL_GUEST & ~HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE;
9663 uint64_t const fMinimalMask = HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RSP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_HWVIRT;
9664 uint64_t const fCtxChanged = ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged);
9665
9666 /* If only RIP/RSP/RFLAGS/HWVIRT changed, export only those (quicker, happens more often).*/
9667 if ( (fCtxChanged & fMinimalMask)
9668 && !(fCtxChanged & (fCtxMask & ~fMinimalMask)))
9669 {
9670 hmR0VmxExportGuestRip(pVCpu);
9671 hmR0VmxExportGuestRsp(pVCpu);
9672 hmR0VmxExportGuestRflags(pVCpu, pVmxTransient);
9673 rcStrict = hmR0VmxExportGuestHwvirtState(pVCpu, pVmxTransient);
9674 STAM_COUNTER_INC(&pVCpu->hm.s.StatExportMinimal);
9675 }
9676 /* If anything else also changed, go through the full export routine and export as required. */
9677 else if (fCtxChanged & fCtxMask)
9678 {
9679 rcStrict = hmR0VmxExportGuestState(pVCpu, pVmxTransient);
9680 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
9681 { /* likely */}
9682 else
9683 {
9684 AssertMsg(rcStrict == VINF_EM_RESCHEDULE_REM, ("Failed to export guest state! rc=%Rrc\n",
9685 VBOXSTRICTRC_VAL(rcStrict)));
9686 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
9687 return rcStrict;
9688 }
9689 STAM_COUNTER_INC(&pVCpu->hm.s.StatExportFull);
9690 }
9691 /* Nothing changed, nothing to load here. */
9692 else
9693 rcStrict = VINF_SUCCESS;
9694
9695#ifdef VBOX_STRICT
9696 /* All the guest state bits should be loaded except maybe the host context and/or the shared host/guest bits. */
9697 uint64_t const fCtxChangedCur = ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged);
9698 AssertMsg(!(fCtxChangedCur & fCtxMask), ("fCtxChangedCur=%#RX64\n", fCtxChangedCur));
9699#endif
9700 return rcStrict;
9701}
9702
9703
9704/**
9705 * Tries to determine what part of the guest-state VT-x has deemed as invalid
9706 * and update error record fields accordingly.
9707 *
9708 * @returns VMX_IGS_* error codes.
9709 * @retval VMX_IGS_REASON_NOT_FOUND if this function could not find anything
9710 * wrong with the guest state.
9711 *
9712 * @param pVCpu The cross context virtual CPU structure.
9713 * @param pVmcsInfo The VMCS info. object.
9714 *
9715 * @remarks This function assumes our cache of the VMCS controls
9716 * are valid, i.e. hmR0VmxCheckCachedVmcsCtls() succeeded.
9717 */
9718static uint32_t hmR0VmxCheckGuestState(PVMCPUCC pVCpu, PCVMXVMCSINFO pVmcsInfo)
9719{
9720#define HMVMX_ERROR_BREAK(err) { uError = (err); break; }
9721#define HMVMX_CHECK_BREAK(expr, err) do { \
9722 if (!(expr)) { uError = (err); break; } \
9723 } while (0)
9724
9725 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
9726 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
9727 uint32_t uError = VMX_IGS_ERROR;
9728 uint32_t u32IntrState = 0;
9729 bool const fUnrestrictedGuest = pVM->hmr0.s.vmx.fUnrestrictedGuest;
9730 do
9731 {
9732 int rc;
9733
9734 /*
9735 * Guest-interruptibility state.
9736 *
9737 * Read this first so that any check that fails prior to those that actually
9738 * require the guest-interruptibility state would still reflect the correct
9739 * VMCS value and avoids causing further confusion.
9740 */
9741 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INT_STATE, &u32IntrState);
9742 AssertRC(rc);
9743
9744 uint32_t u32Val;
9745 uint64_t u64Val;
9746
9747 /*
9748 * CR0.
9749 */
9750 /** @todo Why do we need to OR and AND the fixed-0 and fixed-1 bits below? */
9751 uint64_t fSetCr0 = (g_HmMsrs.u.vmx.u64Cr0Fixed0 & g_HmMsrs.u.vmx.u64Cr0Fixed1);
9752 uint64_t const fZapCr0 = (g_HmMsrs.u.vmx.u64Cr0Fixed0 | g_HmMsrs.u.vmx.u64Cr0Fixed1);
9753 /* Exceptions for unrestricted guest execution for CR0 fixed bits (PE, PG).
9754 See Intel spec. 26.3.1 "Checks on Guest Control Registers, Debug Registers and MSRs." */
9755 if (fUnrestrictedGuest)
9756 fSetCr0 &= ~(uint64_t)(X86_CR0_PE | X86_CR0_PG);
9757
9758 uint64_t u64GuestCr0;
9759 rc = VMXReadVmcsNw(VMX_VMCS_GUEST_CR0, &u64GuestCr0);
9760 AssertRC(rc);
9761 HMVMX_CHECK_BREAK((u64GuestCr0 & fSetCr0) == fSetCr0, VMX_IGS_CR0_FIXED1);
9762 HMVMX_CHECK_BREAK(!(u64GuestCr0 & ~fZapCr0), VMX_IGS_CR0_FIXED0);
9763 if ( !fUnrestrictedGuest
9764 && (u64GuestCr0 & X86_CR0_PG)
9765 && !(u64GuestCr0 & X86_CR0_PE))
9766 HMVMX_ERROR_BREAK(VMX_IGS_CR0_PG_PE_COMBO);
9767
9768 /*
9769 * CR4.
9770 */
9771 /** @todo Why do we need to OR and AND the fixed-0 and fixed-1 bits below? */
9772 uint64_t const fSetCr4 = (g_HmMsrs.u.vmx.u64Cr4Fixed0 & g_HmMsrs.u.vmx.u64Cr4Fixed1);
9773 uint64_t const fZapCr4 = (g_HmMsrs.u.vmx.u64Cr4Fixed0 | g_HmMsrs.u.vmx.u64Cr4Fixed1);
9774
9775 uint64_t u64GuestCr4;
9776 rc = VMXReadVmcsNw(VMX_VMCS_GUEST_CR4, &u64GuestCr4);
9777 AssertRC(rc);
9778 HMVMX_CHECK_BREAK((u64GuestCr4 & fSetCr4) == fSetCr4, VMX_IGS_CR4_FIXED1);
9779 HMVMX_CHECK_BREAK(!(u64GuestCr4 & ~fZapCr4), VMX_IGS_CR4_FIXED0);
9780
9781 /*
9782 * IA32_DEBUGCTL MSR.
9783 */
9784 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_DEBUGCTL_FULL, &u64Val);
9785 AssertRC(rc);
9786 if ( (pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG)
9787 && (u64Val & 0xfffffe3c)) /* Bits 31:9, bits 5:2 MBZ. */
9788 {
9789 HMVMX_ERROR_BREAK(VMX_IGS_DEBUGCTL_MSR_RESERVED);
9790 }
9791 uint64_t u64DebugCtlMsr = u64Val;
9792
9793#ifdef VBOX_STRICT
9794 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY, &u32Val);
9795 AssertRC(rc);
9796 Assert(u32Val == pVmcsInfo->u32EntryCtls);
9797#endif
9798 bool const fLongModeGuest = RT_BOOL(pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_IA32E_MODE_GUEST);
9799
9800 /*
9801 * RIP and RFLAGS.
9802 */
9803 rc = VMXReadVmcsNw(VMX_VMCS_GUEST_RIP, &u64Val);
9804 AssertRC(rc);
9805 /* pCtx->rip can be different than the one in the VMCS (e.g. run guest code and VM-exits that don't update it). */
9806 if ( !fLongModeGuest
9807 || !pCtx->cs.Attr.n.u1Long)
9808 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffff00000000)), VMX_IGS_LONGMODE_RIP_INVALID);
9809 /** @todo If the processor supports N < 64 linear-address bits, bits 63:N
9810 * must be identical if the "IA-32e mode guest" VM-entry
9811 * control is 1 and CS.L is 1. No check applies if the
9812 * CPU supports 64 linear-address bits. */
9813
9814 /* Flags in pCtx can be different (real-on-v86 for instance). We are only concerned about the VMCS contents here. */
9815 rc = VMXReadVmcsNw(VMX_VMCS_GUEST_RFLAGS, &u64Val);
9816 AssertRC(rc);
9817 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffffffc08028)), /* Bit 63:22, Bit 15, 5, 3 MBZ. */
9818 VMX_IGS_RFLAGS_RESERVED);
9819 HMVMX_CHECK_BREAK((u64Val & X86_EFL_RA1_MASK), VMX_IGS_RFLAGS_RESERVED1); /* Bit 1 MB1. */
9820 uint32_t const u32Eflags = u64Val;
9821
9822 if ( fLongModeGuest
9823 || ( fUnrestrictedGuest
9824 && !(u64GuestCr0 & X86_CR0_PE)))
9825 {
9826 HMVMX_CHECK_BREAK(!(u32Eflags & X86_EFL_VM), VMX_IGS_RFLAGS_VM_INVALID);
9827 }
9828
9829 uint32_t u32EntryInfo;
9830 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &u32EntryInfo);
9831 AssertRC(rc);
9832 if (VMX_ENTRY_INT_INFO_IS_EXT_INT(u32EntryInfo))
9833 HMVMX_CHECK_BREAK(u32Eflags & X86_EFL_IF, VMX_IGS_RFLAGS_IF_INVALID);
9834
9835 /*
9836 * 64-bit checks.
9837 */
9838 if (fLongModeGuest)
9839 {
9840 HMVMX_CHECK_BREAK(u64GuestCr0 & X86_CR0_PG, VMX_IGS_CR0_PG_LONGMODE);
9841 HMVMX_CHECK_BREAK(u64GuestCr4 & X86_CR4_PAE, VMX_IGS_CR4_PAE_LONGMODE);
9842 }
9843
9844 if ( !fLongModeGuest
9845 && (u64GuestCr4 & X86_CR4_PCIDE))
9846 HMVMX_ERROR_BREAK(VMX_IGS_CR4_PCIDE);
9847
9848 /** @todo CR3 field must be such that bits 63:52 and bits in the range
9849 * 51:32 beyond the processor's physical-address width are 0. */
9850
9851 if ( (pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG)
9852 && (pCtx->dr[7] & X86_DR7_MBZ_MASK))
9853 HMVMX_ERROR_BREAK(VMX_IGS_DR7_RESERVED);
9854
9855 rc = VMXReadVmcsNw(VMX_VMCS_HOST_SYSENTER_ESP, &u64Val);
9856 AssertRC(rc);
9857 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_SYSENTER_ESP_NOT_CANONICAL);
9858
9859 rc = VMXReadVmcsNw(VMX_VMCS_HOST_SYSENTER_EIP, &u64Val);
9860 AssertRC(rc);
9861 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_SYSENTER_EIP_NOT_CANONICAL);
9862
9863 /*
9864 * PERF_GLOBAL MSR.
9865 */
9866 if (pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_PERF_MSR)
9867 {
9868 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL, &u64Val);
9869 AssertRC(rc);
9870 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xfffffff8fffffffc)),
9871 VMX_IGS_PERF_GLOBAL_MSR_RESERVED); /* Bits 63:35, bits 31:2 MBZ. */
9872 }
9873
9874 /*
9875 * PAT MSR.
9876 */
9877 if (pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_PAT_MSR)
9878 {
9879 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PAT_FULL, &u64Val);
9880 AssertRC(rc);
9881 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0x707070707070707)), VMX_IGS_PAT_MSR_RESERVED);
9882 for (unsigned i = 0; i < 8; i++)
9883 {
9884 uint8_t u8Val = (u64Val & 0xff);
9885 if ( u8Val != 0 /* UC */
9886 && u8Val != 1 /* WC */
9887 && u8Val != 4 /* WT */
9888 && u8Val != 5 /* WP */
9889 && u8Val != 6 /* WB */
9890 && u8Val != 7 /* UC- */)
9891 HMVMX_ERROR_BREAK(VMX_IGS_PAT_MSR_INVALID);
9892 u64Val >>= 8;
9893 }
9894 }
9895
9896 /*
9897 * EFER MSR.
9898 */
9899 if (pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_EFER_MSR)
9900 {
9901 Assert(g_fHmVmxSupportsVmcsEfer);
9902 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_EFER_FULL, &u64Val);
9903 AssertRC(rc);
9904 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xfffffffffffff2fe)),
9905 VMX_IGS_EFER_MSR_RESERVED); /* Bits 63:12, bit 9, bits 7:1 MBZ. */
9906 HMVMX_CHECK_BREAK(RT_BOOL(u64Val & MSR_K6_EFER_LMA) == RT_BOOL( pVmcsInfo->u32EntryCtls
9907 & VMX_ENTRY_CTLS_IA32E_MODE_GUEST),
9908 VMX_IGS_EFER_LMA_GUEST_MODE_MISMATCH);
9909 /** @todo r=ramshankar: Unrestricted check here is probably wrong, see
9910 * iemVmxVmentryCheckGuestState(). */
9911 HMVMX_CHECK_BREAK( fUnrestrictedGuest
9912 || !(u64GuestCr0 & X86_CR0_PG)
9913 || RT_BOOL(u64Val & MSR_K6_EFER_LMA) == RT_BOOL(u64Val & MSR_K6_EFER_LME),
9914 VMX_IGS_EFER_LMA_LME_MISMATCH);
9915 }
9916
9917 /*
9918 * Segment registers.
9919 */
9920 HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
9921 || !(pCtx->ldtr.Sel & X86_SEL_LDT), VMX_IGS_LDTR_TI_INVALID);
9922 if (!(u32Eflags & X86_EFL_VM))
9923 {
9924 /* CS */
9925 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u1Present, VMX_IGS_CS_ATTR_P_INVALID);
9926 HMVMX_CHECK_BREAK(!(pCtx->cs.Attr.u & 0xf00), VMX_IGS_CS_ATTR_RESERVED);
9927 HMVMX_CHECK_BREAK(!(pCtx->cs.Attr.u & 0xfffe0000), VMX_IGS_CS_ATTR_RESERVED);
9928 HMVMX_CHECK_BREAK( (pCtx->cs.u32Limit & 0xfff) == 0xfff
9929 || !(pCtx->cs.Attr.n.u1Granularity), VMX_IGS_CS_ATTR_G_INVALID);
9930 HMVMX_CHECK_BREAK( !(pCtx->cs.u32Limit & 0xfff00000)
9931 || (pCtx->cs.Attr.n.u1Granularity), VMX_IGS_CS_ATTR_G_INVALID);
9932 /* CS cannot be loaded with NULL in protected mode. */
9933 HMVMX_CHECK_BREAK(pCtx->cs.Attr.u && !(pCtx->cs.Attr.u & X86DESCATTR_UNUSABLE), VMX_IGS_CS_ATTR_UNUSABLE);
9934 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u1DescType, VMX_IGS_CS_ATTR_S_INVALID);
9935 if (pCtx->cs.Attr.n.u4Type == 9 || pCtx->cs.Attr.n.u4Type == 11)
9936 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl == pCtx->ss.Attr.n.u2Dpl, VMX_IGS_CS_SS_ATTR_DPL_UNEQUAL);
9937 else if (pCtx->cs.Attr.n.u4Type == 13 || pCtx->cs.Attr.n.u4Type == 15)
9938 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl <= pCtx->ss.Attr.n.u2Dpl, VMX_IGS_CS_SS_ATTR_DPL_MISMATCH);
9939 else if (fUnrestrictedGuest && pCtx->cs.Attr.n.u4Type == 3)
9940 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl == 0, VMX_IGS_CS_ATTR_DPL_INVALID);
9941 else
9942 HMVMX_ERROR_BREAK(VMX_IGS_CS_ATTR_TYPE_INVALID);
9943
9944 /* SS */
9945 HMVMX_CHECK_BREAK( fUnrestrictedGuest
9946 || (pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL), VMX_IGS_SS_CS_RPL_UNEQUAL);
9947 HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u2Dpl == (pCtx->ss.Sel & X86_SEL_RPL), VMX_IGS_SS_ATTR_DPL_RPL_UNEQUAL);
9948 if ( !(pCtx->cr0 & X86_CR0_PE)
9949 || pCtx->cs.Attr.n.u4Type == 3)
9950 HMVMX_CHECK_BREAK(!pCtx->ss.Attr.n.u2Dpl, VMX_IGS_SS_ATTR_DPL_INVALID);
9951
9952 if (!(pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE))
9953 {
9954 HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u4Type == 3 || pCtx->ss.Attr.n.u4Type == 7, VMX_IGS_SS_ATTR_TYPE_INVALID);
9955 HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u1Present, VMX_IGS_SS_ATTR_P_INVALID);
9956 HMVMX_CHECK_BREAK(!(pCtx->ss.Attr.u & 0xf00), VMX_IGS_SS_ATTR_RESERVED);
9957 HMVMX_CHECK_BREAK(!(pCtx->ss.Attr.u & 0xfffe0000), VMX_IGS_SS_ATTR_RESERVED);
9958 HMVMX_CHECK_BREAK( (pCtx->ss.u32Limit & 0xfff) == 0xfff
9959 || !(pCtx->ss.Attr.n.u1Granularity), VMX_IGS_SS_ATTR_G_INVALID);
9960 HMVMX_CHECK_BREAK( !(pCtx->ss.u32Limit & 0xfff00000)
9961 || (pCtx->ss.Attr.n.u1Granularity), VMX_IGS_SS_ATTR_G_INVALID);
9962 }
9963
9964 /* DS, ES, FS, GS - only check for usable selectors, see hmR0VmxExportGuestSReg(). */
9965 if (!(pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE))
9966 {
9967 HMVMX_CHECK_BREAK(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_DS_ATTR_A_INVALID);
9968 HMVMX_CHECK_BREAK(pCtx->ds.Attr.n.u1Present, VMX_IGS_DS_ATTR_P_INVALID);
9969 HMVMX_CHECK_BREAK( fUnrestrictedGuest
9970 || pCtx->ds.Attr.n.u4Type > 11
9971 || pCtx->ds.Attr.n.u2Dpl >= (pCtx->ds.Sel & X86_SEL_RPL), VMX_IGS_DS_ATTR_DPL_RPL_UNEQUAL);
9972 HMVMX_CHECK_BREAK(!(pCtx->ds.Attr.u & 0xf00), VMX_IGS_DS_ATTR_RESERVED);
9973 HMVMX_CHECK_BREAK(!(pCtx->ds.Attr.u & 0xfffe0000), VMX_IGS_DS_ATTR_RESERVED);
9974 HMVMX_CHECK_BREAK( (pCtx->ds.u32Limit & 0xfff) == 0xfff
9975 || !(pCtx->ds.Attr.n.u1Granularity), VMX_IGS_DS_ATTR_G_INVALID);
9976 HMVMX_CHECK_BREAK( !(pCtx->ds.u32Limit & 0xfff00000)
9977 || (pCtx->ds.Attr.n.u1Granularity), VMX_IGS_DS_ATTR_G_INVALID);
9978 HMVMX_CHECK_BREAK( !(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_CODE)
9979 || (pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_DS_ATTR_TYPE_INVALID);
9980 }
9981 if (!(pCtx->es.Attr.u & X86DESCATTR_UNUSABLE))
9982 {
9983 HMVMX_CHECK_BREAK(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_ES_ATTR_A_INVALID);
9984 HMVMX_CHECK_BREAK(pCtx->es.Attr.n.u1Present, VMX_IGS_ES_ATTR_P_INVALID);
9985 HMVMX_CHECK_BREAK( fUnrestrictedGuest
9986 || pCtx->es.Attr.n.u4Type > 11
9987 || pCtx->es.Attr.n.u2Dpl >= (pCtx->es.Sel & X86_SEL_RPL), VMX_IGS_DS_ATTR_DPL_RPL_UNEQUAL);
9988 HMVMX_CHECK_BREAK(!(pCtx->es.Attr.u & 0xf00), VMX_IGS_ES_ATTR_RESERVED);
9989 HMVMX_CHECK_BREAK(!(pCtx->es.Attr.u & 0xfffe0000), VMX_IGS_ES_ATTR_RESERVED);
9990 HMVMX_CHECK_BREAK( (pCtx->es.u32Limit & 0xfff) == 0xfff
9991 || !(pCtx->es.Attr.n.u1Granularity), VMX_IGS_ES_ATTR_G_INVALID);
9992 HMVMX_CHECK_BREAK( !(pCtx->es.u32Limit & 0xfff00000)
9993 || (pCtx->es.Attr.n.u1Granularity), VMX_IGS_ES_ATTR_G_INVALID);
9994 HMVMX_CHECK_BREAK( !(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_CODE)
9995 || (pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_ES_ATTR_TYPE_INVALID);
9996 }
9997 if (!(pCtx->fs.Attr.u & X86DESCATTR_UNUSABLE))
9998 {
9999 HMVMX_CHECK_BREAK(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_FS_ATTR_A_INVALID);
10000 HMVMX_CHECK_BREAK(pCtx->fs.Attr.n.u1Present, VMX_IGS_FS_ATTR_P_INVALID);
10001 HMVMX_CHECK_BREAK( fUnrestrictedGuest
10002 || pCtx->fs.Attr.n.u4Type > 11
10003 || pCtx->fs.Attr.n.u2Dpl >= (pCtx->fs.Sel & X86_SEL_RPL), VMX_IGS_FS_ATTR_DPL_RPL_UNEQUAL);
10004 HMVMX_CHECK_BREAK(!(pCtx->fs.Attr.u & 0xf00), VMX_IGS_FS_ATTR_RESERVED);
10005 HMVMX_CHECK_BREAK(!(pCtx->fs.Attr.u & 0xfffe0000), VMX_IGS_FS_ATTR_RESERVED);
10006 HMVMX_CHECK_BREAK( (pCtx->fs.u32Limit & 0xfff) == 0xfff
10007 || !(pCtx->fs.Attr.n.u1Granularity), VMX_IGS_FS_ATTR_G_INVALID);
10008 HMVMX_CHECK_BREAK( !(pCtx->fs.u32Limit & 0xfff00000)
10009 || (pCtx->fs.Attr.n.u1Granularity), VMX_IGS_FS_ATTR_G_INVALID);
10010 HMVMX_CHECK_BREAK( !(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
10011 || (pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_FS_ATTR_TYPE_INVALID);
10012 }
10013 if (!(pCtx->gs.Attr.u & X86DESCATTR_UNUSABLE))
10014 {
10015 HMVMX_CHECK_BREAK(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_GS_ATTR_A_INVALID);
10016 HMVMX_CHECK_BREAK(pCtx->gs.Attr.n.u1Present, VMX_IGS_GS_ATTR_P_INVALID);
10017 HMVMX_CHECK_BREAK( fUnrestrictedGuest
10018 || pCtx->gs.Attr.n.u4Type > 11
10019 || pCtx->gs.Attr.n.u2Dpl >= (pCtx->gs.Sel & X86_SEL_RPL), VMX_IGS_GS_ATTR_DPL_RPL_UNEQUAL);
10020 HMVMX_CHECK_BREAK(!(pCtx->gs.Attr.u & 0xf00), VMX_IGS_GS_ATTR_RESERVED);
10021 HMVMX_CHECK_BREAK(!(pCtx->gs.Attr.u & 0xfffe0000), VMX_IGS_GS_ATTR_RESERVED);
10022 HMVMX_CHECK_BREAK( (pCtx->gs.u32Limit & 0xfff) == 0xfff
10023 || !(pCtx->gs.Attr.n.u1Granularity), VMX_IGS_GS_ATTR_G_INVALID);
10024 HMVMX_CHECK_BREAK( !(pCtx->gs.u32Limit & 0xfff00000)
10025 || (pCtx->gs.Attr.n.u1Granularity), VMX_IGS_GS_ATTR_G_INVALID);
10026 HMVMX_CHECK_BREAK( !(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
10027 || (pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_GS_ATTR_TYPE_INVALID);
10028 }
10029 /* 64-bit capable CPUs. */
10030 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->fs.u64Base), VMX_IGS_FS_BASE_NOT_CANONICAL);
10031 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->gs.u64Base), VMX_IGS_GS_BASE_NOT_CANONICAL);
10032 HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
10033 || X86_IS_CANONICAL(pCtx->ldtr.u64Base), VMX_IGS_LDTR_BASE_NOT_CANONICAL);
10034 HMVMX_CHECK_BREAK(!RT_HI_U32(pCtx->cs.u64Base), VMX_IGS_LONGMODE_CS_BASE_INVALID);
10035 HMVMX_CHECK_BREAK((pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->ss.u64Base),
10036 VMX_IGS_LONGMODE_SS_BASE_INVALID);
10037 HMVMX_CHECK_BREAK((pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->ds.u64Base),
10038 VMX_IGS_LONGMODE_DS_BASE_INVALID);
10039 HMVMX_CHECK_BREAK((pCtx->es.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->es.u64Base),
10040 VMX_IGS_LONGMODE_ES_BASE_INVALID);
10041 }
10042 else
10043 {
10044 /* V86 mode checks. */
10045 uint32_t u32CSAttr, u32SSAttr, u32DSAttr, u32ESAttr, u32FSAttr, u32GSAttr;
10046 if (pVmcsInfo->pShared->RealMode.fRealOnV86Active)
10047 {
10048 u32CSAttr = 0xf3; u32SSAttr = 0xf3;
10049 u32DSAttr = 0xf3; u32ESAttr = 0xf3;
10050 u32FSAttr = 0xf3; u32GSAttr = 0xf3;
10051 }
10052 else
10053 {
10054 u32CSAttr = pCtx->cs.Attr.u; u32SSAttr = pCtx->ss.Attr.u;
10055 u32DSAttr = pCtx->ds.Attr.u; u32ESAttr = pCtx->es.Attr.u;
10056 u32FSAttr = pCtx->fs.Attr.u; u32GSAttr = pCtx->gs.Attr.u;
10057 }
10058
10059 /* CS */
10060 HMVMX_CHECK_BREAK((pCtx->cs.u64Base == (uint64_t)pCtx->cs.Sel << 4), VMX_IGS_V86_CS_BASE_INVALID);
10061 HMVMX_CHECK_BREAK(pCtx->cs.u32Limit == 0xffff, VMX_IGS_V86_CS_LIMIT_INVALID);
10062 HMVMX_CHECK_BREAK(u32CSAttr == 0xf3, VMX_IGS_V86_CS_ATTR_INVALID);
10063 /* SS */
10064 HMVMX_CHECK_BREAK((pCtx->ss.u64Base == (uint64_t)pCtx->ss.Sel << 4), VMX_IGS_V86_SS_BASE_INVALID);
10065 HMVMX_CHECK_BREAK(pCtx->ss.u32Limit == 0xffff, VMX_IGS_V86_SS_LIMIT_INVALID);
10066 HMVMX_CHECK_BREAK(u32SSAttr == 0xf3, VMX_IGS_V86_SS_ATTR_INVALID);
10067 /* DS */
10068 HMVMX_CHECK_BREAK((pCtx->ds.u64Base == (uint64_t)pCtx->ds.Sel << 4), VMX_IGS_V86_DS_BASE_INVALID);
10069 HMVMX_CHECK_BREAK(pCtx->ds.u32Limit == 0xffff, VMX_IGS_V86_DS_LIMIT_INVALID);
10070 HMVMX_CHECK_BREAK(u32DSAttr == 0xf3, VMX_IGS_V86_DS_ATTR_INVALID);
10071 /* ES */
10072 HMVMX_CHECK_BREAK((pCtx->es.u64Base == (uint64_t)pCtx->es.Sel << 4), VMX_IGS_V86_ES_BASE_INVALID);
10073 HMVMX_CHECK_BREAK(pCtx->es.u32Limit == 0xffff, VMX_IGS_V86_ES_LIMIT_INVALID);
10074 HMVMX_CHECK_BREAK(u32ESAttr == 0xf3, VMX_IGS_V86_ES_ATTR_INVALID);
10075 /* FS */
10076 HMVMX_CHECK_BREAK((pCtx->fs.u64Base == (uint64_t)pCtx->fs.Sel << 4), VMX_IGS_V86_FS_BASE_INVALID);
10077 HMVMX_CHECK_BREAK(pCtx->fs.u32Limit == 0xffff, VMX_IGS_V86_FS_LIMIT_INVALID);
10078 HMVMX_CHECK_BREAK(u32FSAttr == 0xf3, VMX_IGS_V86_FS_ATTR_INVALID);
10079 /* GS */
10080 HMVMX_CHECK_BREAK((pCtx->gs.u64Base == (uint64_t)pCtx->gs.Sel << 4), VMX_IGS_V86_GS_BASE_INVALID);
10081 HMVMX_CHECK_BREAK(pCtx->gs.u32Limit == 0xffff, VMX_IGS_V86_GS_LIMIT_INVALID);
10082 HMVMX_CHECK_BREAK(u32GSAttr == 0xf3, VMX_IGS_V86_GS_ATTR_INVALID);
10083 /* 64-bit capable CPUs. */
10084 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->fs.u64Base), VMX_IGS_FS_BASE_NOT_CANONICAL);
10085 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->gs.u64Base), VMX_IGS_GS_BASE_NOT_CANONICAL);
10086 HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
10087 || X86_IS_CANONICAL(pCtx->ldtr.u64Base), VMX_IGS_LDTR_BASE_NOT_CANONICAL);
10088 HMVMX_CHECK_BREAK(!RT_HI_U32(pCtx->cs.u64Base), VMX_IGS_LONGMODE_CS_BASE_INVALID);
10089 HMVMX_CHECK_BREAK((pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->ss.u64Base),
10090 VMX_IGS_LONGMODE_SS_BASE_INVALID);
10091 HMVMX_CHECK_BREAK((pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->ds.u64Base),
10092 VMX_IGS_LONGMODE_DS_BASE_INVALID);
10093 HMVMX_CHECK_BREAK((pCtx->es.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->es.u64Base),
10094 VMX_IGS_LONGMODE_ES_BASE_INVALID);
10095 }
10096
10097 /*
10098 * TR.
10099 */
10100 HMVMX_CHECK_BREAK(!(pCtx->tr.Sel & X86_SEL_LDT), VMX_IGS_TR_TI_INVALID);
10101 /* 64-bit capable CPUs. */
10102 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->tr.u64Base), VMX_IGS_TR_BASE_NOT_CANONICAL);
10103 if (fLongModeGuest)
10104 HMVMX_CHECK_BREAK(pCtx->tr.Attr.n.u4Type == 11, /* 64-bit busy TSS. */
10105 VMX_IGS_LONGMODE_TR_ATTR_TYPE_INVALID);
10106 else
10107 HMVMX_CHECK_BREAK( pCtx->tr.Attr.n.u4Type == 3 /* 16-bit busy TSS. */
10108 || pCtx->tr.Attr.n.u4Type == 11, /* 32-bit busy TSS.*/
10109 VMX_IGS_TR_ATTR_TYPE_INVALID);
10110 HMVMX_CHECK_BREAK(!pCtx->tr.Attr.n.u1DescType, VMX_IGS_TR_ATTR_S_INVALID);
10111 HMVMX_CHECK_BREAK(pCtx->tr.Attr.n.u1Present, VMX_IGS_TR_ATTR_P_INVALID);
10112 HMVMX_CHECK_BREAK(!(pCtx->tr.Attr.u & 0xf00), VMX_IGS_TR_ATTR_RESERVED); /* Bits 11:8 MBZ. */
10113 HMVMX_CHECK_BREAK( (pCtx->tr.u32Limit & 0xfff) == 0xfff
10114 || !(pCtx->tr.Attr.n.u1Granularity), VMX_IGS_TR_ATTR_G_INVALID);
10115 HMVMX_CHECK_BREAK( !(pCtx->tr.u32Limit & 0xfff00000)
10116 || (pCtx->tr.Attr.n.u1Granularity), VMX_IGS_TR_ATTR_G_INVALID);
10117 HMVMX_CHECK_BREAK(!(pCtx->tr.Attr.u & X86DESCATTR_UNUSABLE), VMX_IGS_TR_ATTR_UNUSABLE);
10118
10119 /*
10120 * GDTR and IDTR (64-bit capable checks).
10121 */
10122 rc = VMXReadVmcsNw(VMX_VMCS_GUEST_GDTR_BASE, &u64Val);
10123 AssertRC(rc);
10124 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_GDTR_BASE_NOT_CANONICAL);
10125
10126 rc = VMXReadVmcsNw(VMX_VMCS_GUEST_IDTR_BASE, &u64Val);
10127 AssertRC(rc);
10128 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_IDTR_BASE_NOT_CANONICAL);
10129
10130 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, &u32Val);
10131 AssertRC(rc);
10132 HMVMX_CHECK_BREAK(!(u32Val & 0xffff0000), VMX_IGS_GDTR_LIMIT_INVALID); /* Bits 31:16 MBZ. */
10133
10134 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, &u32Val);
10135 AssertRC(rc);
10136 HMVMX_CHECK_BREAK(!(u32Val & 0xffff0000), VMX_IGS_IDTR_LIMIT_INVALID); /* Bits 31:16 MBZ. */
10137
10138 /*
10139 * Guest Non-Register State.
10140 */
10141 /* Activity State. */
10142 uint32_t u32ActivityState;
10143 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_ACTIVITY_STATE, &u32ActivityState);
10144 AssertRC(rc);
10145 HMVMX_CHECK_BREAK( !u32ActivityState
10146 || (u32ActivityState & RT_BF_GET(g_HmMsrs.u.vmx.u64Misc, VMX_BF_MISC_ACTIVITY_STATES)),
10147 VMX_IGS_ACTIVITY_STATE_INVALID);
10148 HMVMX_CHECK_BREAK( !(pCtx->ss.Attr.n.u2Dpl)
10149 || u32ActivityState != VMX_VMCS_GUEST_ACTIVITY_HLT, VMX_IGS_ACTIVITY_STATE_HLT_INVALID);
10150
10151 if ( u32IntrState == VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS
10152 || u32IntrState == VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)
10153 HMVMX_CHECK_BREAK(u32ActivityState == VMX_VMCS_GUEST_ACTIVITY_ACTIVE, VMX_IGS_ACTIVITY_STATE_ACTIVE_INVALID);
10154
10155 /** @todo Activity state and injecting interrupts. Left as a todo since we
10156 * currently don't use activity states but ACTIVE. */
10157
10158 HMVMX_CHECK_BREAK( !(pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_ENTRY_TO_SMM)
10159 || u32ActivityState != VMX_VMCS_GUEST_ACTIVITY_SIPI_WAIT, VMX_IGS_ACTIVITY_STATE_SIPI_WAIT_INVALID);
10160
10161 /* Guest interruptibility-state. */
10162 HMVMX_CHECK_BREAK(!(u32IntrState & 0xffffffe0), VMX_IGS_INTERRUPTIBILITY_STATE_RESERVED);
10163 HMVMX_CHECK_BREAK((u32IntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS))
10164 != (VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS),
10165 VMX_IGS_INTERRUPTIBILITY_STATE_STI_MOVSS_INVALID);
10166 HMVMX_CHECK_BREAK( (u32Eflags & X86_EFL_IF)
10167 || !(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI),
10168 VMX_IGS_INTERRUPTIBILITY_STATE_STI_EFL_INVALID);
10169 if (VMX_ENTRY_INT_INFO_IS_EXT_INT(u32EntryInfo))
10170 {
10171 HMVMX_CHECK_BREAK( !(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)
10172 && !(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS),
10173 VMX_IGS_INTERRUPTIBILITY_STATE_EXT_INT_INVALID);
10174 }
10175 else if (VMX_ENTRY_INT_INFO_IS_XCPT_NMI(u32EntryInfo))
10176 {
10177 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS),
10178 VMX_IGS_INTERRUPTIBILITY_STATE_MOVSS_INVALID);
10179 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI),
10180 VMX_IGS_INTERRUPTIBILITY_STATE_STI_INVALID);
10181 }
10182 /** @todo Assumes the processor is not in SMM. */
10183 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_SMI),
10184 VMX_IGS_INTERRUPTIBILITY_STATE_SMI_INVALID);
10185 HMVMX_CHECK_BREAK( !(pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_ENTRY_TO_SMM)
10186 || (u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_SMI),
10187 VMX_IGS_INTERRUPTIBILITY_STATE_SMI_SMM_INVALID);
10188 if ( (pVmcsInfo->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI)
10189 && VMX_ENTRY_INT_INFO_IS_XCPT_NMI(u32EntryInfo))
10190 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI), VMX_IGS_INTERRUPTIBILITY_STATE_NMI_INVALID);
10191
10192 /* Pending debug exceptions. */
10193 rc = VMXReadVmcsNw(VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS, &u64Val);
10194 AssertRC(rc);
10195 /* Bits 63:15, Bit 13, Bits 11:4 MBZ. */
10196 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffffffffaff0)), VMX_IGS_LONGMODE_PENDING_DEBUG_RESERVED);
10197 u32Val = u64Val; /* For pending debug exceptions checks below. */
10198
10199 if ( (u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)
10200 || (u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS)
10201 || u32ActivityState == VMX_VMCS_GUEST_ACTIVITY_HLT)
10202 {
10203 if ( (u32Eflags & X86_EFL_TF)
10204 && !(u64DebugCtlMsr & RT_BIT_64(1))) /* Bit 1 is IA32_DEBUGCTL.BTF. */
10205 {
10206 /* Bit 14 is PendingDebug.BS. */
10207 HMVMX_CHECK_BREAK(u32Val & RT_BIT(14), VMX_IGS_PENDING_DEBUG_XCPT_BS_NOT_SET);
10208 }
10209 if ( !(u32Eflags & X86_EFL_TF)
10210 || (u64DebugCtlMsr & RT_BIT_64(1))) /* Bit 1 is IA32_DEBUGCTL.BTF. */
10211 {
10212 /* Bit 14 is PendingDebug.BS. */
10213 HMVMX_CHECK_BREAK(!(u32Val & RT_BIT(14)), VMX_IGS_PENDING_DEBUG_XCPT_BS_NOT_CLEAR);
10214 }
10215 }
10216
10217 /* VMCS link pointer. */
10218 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL, &u64Val);
10219 AssertRC(rc);
10220 if (u64Val != UINT64_C(0xffffffffffffffff))
10221 {
10222 HMVMX_CHECK_BREAK(!(u64Val & 0xfff), VMX_IGS_VMCS_LINK_PTR_RESERVED);
10223 /** @todo Bits beyond the processor's physical-address width MBZ. */
10224 /** @todo SMM checks. */
10225 Assert(pVmcsInfo->HCPhysShadowVmcs == u64Val);
10226 Assert(pVmcsInfo->pvShadowVmcs);
10227 VMXVMCSREVID VmcsRevId;
10228 VmcsRevId.u = *(uint32_t *)pVmcsInfo->pvShadowVmcs;
10229 HMVMX_CHECK_BREAK(VmcsRevId.n.u31RevisionId == RT_BF_GET(g_HmMsrs.u.vmx.u64Basic, VMX_BF_BASIC_VMCS_ID),
10230 VMX_IGS_VMCS_LINK_PTR_SHADOW_VMCS_ID_INVALID);
10231 HMVMX_CHECK_BREAK(VmcsRevId.n.fIsShadowVmcs == (uint32_t)!!(pVmcsInfo->u32ProcCtls2 & VMX_PROC_CTLS2_VMCS_SHADOWING),
10232 VMX_IGS_VMCS_LINK_PTR_NOT_SHADOW);
10233 }
10234
10235 /** @todo Checks on Guest Page-Directory-Pointer-Table Entries when guest is
10236 * not using nested paging? */
10237 if ( pVM->hmr0.s.fNestedPaging
10238 && !fLongModeGuest
10239 && CPUMIsGuestInPAEModeEx(pCtx))
10240 {
10241 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, &u64Val);
10242 AssertRC(rc);
10243 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
10244
10245 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, &u64Val);
10246 AssertRC(rc);
10247 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
10248
10249 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, &u64Val);
10250 AssertRC(rc);
10251 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
10252
10253 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, &u64Val);
10254 AssertRC(rc);
10255 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
10256 }
10257
10258 /* Shouldn't happen but distinguish it from AssertRCBreak() errors. */
10259 if (uError == VMX_IGS_ERROR)
10260 uError = VMX_IGS_REASON_NOT_FOUND;
10261 } while (0);
10262
10263 pVCpu->hm.s.u32HMError = uError;
10264 pVCpu->hm.s.vmx.LastError.u32GuestIntrState = u32IntrState;
10265 return uError;
10266
10267#undef HMVMX_ERROR_BREAK
10268#undef HMVMX_CHECK_BREAK
10269}
10270
10271
10272/**
10273 * Map the APIC-access page for virtualizing APIC accesses.
10274 *
10275 * This can cause a longjumps to R3 due to the acquisition of the PGM lock. Hence,
10276 * this not done as part of exporting guest state, see @bugref{8721}.
10277 *
10278 * @returns VBox status code.
10279 * @param pVCpu The cross context virtual CPU structure.
10280 */
10281static int hmR0VmxMapHCApicAccessPage(PVMCPUCC pVCpu)
10282{
10283 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
10284 uint64_t const u64MsrApicBase = APICGetBaseMsrNoCheck(pVCpu);
10285
10286 Assert(PDMHasApic(pVM));
10287 Assert(u64MsrApicBase);
10288
10289 RTGCPHYS const GCPhysApicBase = u64MsrApicBase & PAGE_BASE_GC_MASK;
10290 Log4Func(("Mappping HC APIC-access page at %#RGp\n", GCPhysApicBase));
10291
10292 /* Unalias the existing mapping. */
10293 int rc = PGMHandlerPhysicalReset(pVM, GCPhysApicBase);
10294 AssertRCReturn(rc, rc);
10295
10296 /* Map the HC APIC-access page in place of the MMIO page, also updates the shadow page tables if necessary. */
10297 Assert(pVM->hmr0.s.vmx.HCPhysApicAccess != NIL_RTHCPHYS);
10298 rc = IOMR0MmioMapMmioHCPage(pVM, pVCpu, GCPhysApicBase, pVM->hmr0.s.vmx.HCPhysApicAccess, X86_PTE_RW | X86_PTE_P);
10299 AssertRCReturn(rc, rc);
10300
10301 /* Update the per-VCPU cache of the APIC base MSR. */
10302 pVCpu->hm.s.vmx.u64GstMsrApicBase = u64MsrApicBase;
10303 return VINF_SUCCESS;
10304}
10305
10306
10307/**
10308 * Worker function passed to RTMpOnSpecific() that is to be called on the target
10309 * CPU.
10310 *
10311 * @param idCpu The ID for the CPU the function is called on.
10312 * @param pvUser1 Null, not used.
10313 * @param pvUser2 Null, not used.
10314 */
10315static DECLCALLBACK(void) hmR0DispatchHostNmi(RTCPUID idCpu, void *pvUser1, void *pvUser2)
10316{
10317 RT_NOREF3(idCpu, pvUser1, pvUser2);
10318 VMXDispatchHostNmi();
10319}
10320
10321
10322/**
10323 * Dispatching an NMI on the host CPU that received it.
10324 *
10325 * @returns VBox status code.
10326 * @param pVCpu The cross context virtual CPU structure.
10327 * @param pVmcsInfo The VMCS info. object corresponding to the VMCS that was
10328 * executing when receiving the host NMI in VMX non-root
10329 * operation.
10330 */
10331static int hmR0VmxExitHostNmi(PVMCPUCC pVCpu, PCVMXVMCSINFO pVmcsInfo)
10332{
10333 RTCPUID const idCpu = pVmcsInfo->idHostCpuExec;
10334 Assert(idCpu != NIL_RTCPUID);
10335
10336 /*
10337 * We don't want to delay dispatching the NMI any more than we have to. However,
10338 * we have already chosen -not- to dispatch NMIs when interrupts were still disabled
10339 * after executing guest or nested-guest code for the following reasons:
10340 *
10341 * - We would need to perform VMREADs with interrupts disabled and is orders of
10342 * magnitude worse when we run as a nested hypervisor without VMCS shadowing
10343 * supported by the host hypervisor.
10344 *
10345 * - It affects the common VM-exit scenario and keeps interrupts disabled for a
10346 * longer period of time just for handling an edge case like host NMIs which do
10347 * not occur nearly as frequently as other VM-exits.
10348 *
10349 * Let's cover the most likely scenario first. Check if we are on the target CPU
10350 * and dispatch the NMI right away. This should be much faster than calling into
10351 * RTMpOnSpecific() machinery.
10352 */
10353 bool fDispatched = false;
10354 RTCCUINTREG const fEFlags = ASMIntDisableFlags();
10355 if (idCpu == RTMpCpuId())
10356 {
10357 VMXDispatchHostNmi();
10358 fDispatched = true;
10359 }
10360 ASMSetFlags(fEFlags);
10361 if (fDispatched)
10362 {
10363 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatExitHostNmiInGC);
10364 return VINF_SUCCESS;
10365 }
10366
10367 /*
10368 * RTMpOnSpecific() waits until the worker function has run on the target CPU. So
10369 * there should be no race or recursion even if we are unlucky enough to be preempted
10370 * (to the target CPU) without dispatching the host NMI above.
10371 */
10372 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatExitHostNmiInGCIpi);
10373 return RTMpOnSpecific(idCpu, &hmR0DispatchHostNmi, NULL /* pvUser1 */, NULL /* pvUser2 */);
10374}
10375
10376
10377#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
10378/**
10379 * Merges the guest with the nested-guest MSR bitmap in preparation of executing the
10380 * nested-guest using hardware-assisted VMX.
10381 *
10382 * @param pVCpu The cross context virtual CPU structure.
10383 * @param pVmcsInfoNstGst The nested-guest VMCS info. object.
10384 * @param pVmcsInfoGst The guest VMCS info. object.
10385 */
10386static void hmR0VmxMergeMsrBitmapNested(PCVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfoNstGst, PCVMXVMCSINFO pVmcsInfoGst)
10387{
10388 uint32_t const cbMsrBitmap = X86_PAGE_4K_SIZE;
10389 uint64_t *pu64MsrBitmap = (uint64_t *)pVmcsInfoNstGst->pvMsrBitmap;
10390 Assert(pu64MsrBitmap);
10391
10392 /*
10393 * We merge the guest MSR bitmap with the nested-guest MSR bitmap such that any
10394 * MSR that is intercepted by the guest is also intercepted while executing the
10395 * nested-guest using hardware-assisted VMX.
10396 *
10397 * Note! If the nested-guest is not using an MSR bitmap, every MSR must cause a
10398 * nested-guest VM-exit even if the outer guest is not intercepting some
10399 * MSRs. We cannot assume the caller has initialized the nested-guest
10400 * MSR bitmap in this case.
10401 *
10402 * The nested hypervisor may also switch whether it uses MSR bitmaps for
10403 * each of its VM-entry, hence initializing it once per-VM while setting
10404 * up the nested-guest VMCS is not sufficient.
10405 */
10406 PCVMXVVMCS pVmcsNstGst = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
10407 if (pVmcsNstGst->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
10408 {
10409 uint64_t const *pu64MsrBitmapNstGst = (uint64_t const *)pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvMsrBitmap);
10410 uint64_t const *pu64MsrBitmapGst = (uint64_t const *)pVmcsInfoGst->pvMsrBitmap;
10411 Assert(pu64MsrBitmapNstGst);
10412 Assert(pu64MsrBitmapGst);
10413
10414 /** @todo Detect and use EVEX.POR? */
10415 uint32_t const cFrags = cbMsrBitmap / sizeof(uint64_t);
10416 for (uint32_t i = 0; i < cFrags; i++)
10417 pu64MsrBitmap[i] = pu64MsrBitmapNstGst[i] | pu64MsrBitmapGst[i];
10418 }
10419 else
10420 ASMMemFill32(pu64MsrBitmap, cbMsrBitmap, UINT32_C(0xffffffff));
10421}
10422
10423
10424/**
10425 * Merges the guest VMCS in to the nested-guest VMCS controls in preparation of
10426 * hardware-assisted VMX execution of the nested-guest.
10427 *
10428 * For a guest, we don't modify these controls once we set up the VMCS and hence
10429 * this function is never called.
10430 *
10431 * For nested-guests since the nested hypervisor provides these controls on every
10432 * nested-guest VM-entry and could potentially change them everytime we need to
10433 * merge them before every nested-guest VM-entry.
10434 *
10435 * @returns VBox status code.
10436 * @param pVCpu The cross context virtual CPU structure.
10437 */
10438static int hmR0VmxMergeVmcsNested(PVMCPUCC pVCpu)
10439{
10440 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
10441 PCVMXVMCSINFO pVmcsInfoGst = &pVCpu->hmr0.s.vmx.VmcsInfo;
10442 PCVMXVVMCS pVmcsNstGst = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
10443 Assert(pVmcsNstGst);
10444
10445 /*
10446 * Merge the controls with the requirements of the guest VMCS.
10447 *
10448 * We do not need to validate the nested-guest VMX features specified in the nested-guest
10449 * VMCS with the features supported by the physical CPU as it's already done by the
10450 * VMLAUNCH/VMRESUME instruction emulation.
10451 *
10452 * This is because the VMX features exposed by CPUM (through CPUID/MSRs) to the guest are
10453 * derived from the VMX features supported by the physical CPU.
10454 */
10455
10456 /* Pin-based VM-execution controls. */
10457 uint32_t const u32PinCtls = pVmcsNstGst->u32PinCtls | pVmcsInfoGst->u32PinCtls;
10458
10459 /* Processor-based VM-execution controls. */
10460 uint32_t u32ProcCtls = (pVmcsNstGst->u32ProcCtls & ~VMX_PROC_CTLS_USE_IO_BITMAPS)
10461 | (pVmcsInfoGst->u32ProcCtls & ~( VMX_PROC_CTLS_INT_WINDOW_EXIT
10462 | VMX_PROC_CTLS_NMI_WINDOW_EXIT
10463 | VMX_PROC_CTLS_MOV_DR_EXIT
10464 | VMX_PROC_CTLS_USE_TPR_SHADOW
10465 | VMX_PROC_CTLS_MONITOR_TRAP_FLAG));
10466
10467 /* Secondary processor-based VM-execution controls. */
10468 uint32_t const u32ProcCtls2 = (pVmcsNstGst->u32ProcCtls2 & ~VMX_PROC_CTLS2_VPID)
10469 | (pVmcsInfoGst->u32ProcCtls2 & ~( VMX_PROC_CTLS2_VIRT_APIC_ACCESS
10470 | VMX_PROC_CTLS2_INVPCID
10471 | VMX_PROC_CTLS2_VMCS_SHADOWING
10472 | VMX_PROC_CTLS2_RDTSCP
10473 | VMX_PROC_CTLS2_XSAVES_XRSTORS
10474 | VMX_PROC_CTLS2_APIC_REG_VIRT
10475 | VMX_PROC_CTLS2_VIRT_INT_DELIVERY
10476 | VMX_PROC_CTLS2_VMFUNC));
10477
10478 /*
10479 * VM-entry controls:
10480 * These controls contains state that depends on the nested-guest state (primarily
10481 * EFER MSR) and is thus not constant between VMLAUNCH/VMRESUME and the nested-guest
10482 * VM-exit. Although the nested hypervisor cannot change it, we need to in order to
10483 * properly continue executing the nested-guest if the EFER MSR changes but does not
10484 * cause a nested-guest VM-exits.
10485 *
10486 * VM-exit controls:
10487 * These controls specify the host state on return. We cannot use the controls from
10488 * the nested hypervisor state as is as it would contain the guest state rather than
10489 * the host state. Since the host state is subject to change (e.g. preemption, trips
10490 * to ring-3, longjmp and rescheduling to a different host CPU) they are not constant
10491 * through VMLAUNCH/VMRESUME and the nested-guest VM-exit.
10492 *
10493 * VM-entry MSR-load:
10494 * The guest MSRs from the VM-entry MSR-load area are already loaded into the guest-CPU
10495 * context by the VMLAUNCH/VMRESUME instruction emulation.
10496 *
10497 * VM-exit MSR-store:
10498 * The VM-exit emulation will take care of populating the MSRs from the guest-CPU context
10499 * back into the VM-exit MSR-store area.
10500 *
10501 * VM-exit MSR-load areas:
10502 * This must contain the real host MSRs with hardware-assisted VMX execution. Hence, we
10503 * can entirely ignore what the nested hypervisor wants to load here.
10504 */
10505
10506 /*
10507 * Exception bitmap.
10508 *
10509 * We could remove #UD from the guest bitmap and merge it with the nested-guest bitmap
10510 * here (and avoid doing anything while exporting nested-guest state), but to keep the
10511 * code more flexible if intercepting exceptions become more dynamic in the future we do
10512 * it as part of exporting the nested-guest state.
10513 */
10514 uint32_t const u32XcptBitmap = pVmcsNstGst->u32XcptBitmap | pVmcsInfoGst->u32XcptBitmap;
10515
10516 /*
10517 * CR0/CR4 guest/host mask.
10518 *
10519 * Modifications by the nested-guest to CR0/CR4 bits owned by the host and the guest must
10520 * cause VM-exits, so we need to merge them here.
10521 */
10522 uint64_t const u64Cr0Mask = pVmcsNstGst->u64Cr0Mask.u | pVmcsInfoGst->u64Cr0Mask;
10523 uint64_t const u64Cr4Mask = pVmcsNstGst->u64Cr4Mask.u | pVmcsInfoGst->u64Cr4Mask;
10524
10525 /*
10526 * Page-fault error-code mask and match.
10527 *
10528 * Although we require unrestricted guest execution (and thereby nested-paging) for
10529 * hardware-assisted VMX execution of nested-guests and thus the outer guest doesn't
10530 * normally intercept #PFs, it might intercept them for debugging purposes.
10531 *
10532 * If the outer guest is not intercepting #PFs, we can use the nested-guest #PF filters.
10533 * If the outer guest is intercepting #PFs, we must intercept all #PFs.
10534 */
10535 uint32_t u32XcptPFMask;
10536 uint32_t u32XcptPFMatch;
10537 if (!(pVmcsInfoGst->u32XcptBitmap & RT_BIT(X86_XCPT_PF)))
10538 {
10539 u32XcptPFMask = pVmcsNstGst->u32XcptPFMask;
10540 u32XcptPFMatch = pVmcsNstGst->u32XcptPFMatch;
10541 }
10542 else
10543 {
10544 u32XcptPFMask = 0;
10545 u32XcptPFMatch = 0;
10546 }
10547
10548 /*
10549 * Pause-Loop exiting.
10550 */
10551 /** @todo r=bird: given that both pVM->hm.s.vmx.cPleGapTicks and
10552 * pVM->hm.s.vmx.cPleWindowTicks defaults to zero, I cannot see how
10553 * this will work... */
10554 uint32_t const cPleGapTicks = RT_MIN(pVM->hm.s.vmx.cPleGapTicks, pVmcsNstGst->u32PleGap);
10555 uint32_t const cPleWindowTicks = RT_MIN(pVM->hm.s.vmx.cPleWindowTicks, pVmcsNstGst->u32PleWindow);
10556
10557 /*
10558 * Pending debug exceptions.
10559 * Currently just copy whatever the nested-guest provides us.
10560 */
10561 uint64_t const uPendingDbgXcpts = pVmcsNstGst->u64GuestPendingDbgXcpts.u;
10562
10563 /*
10564 * I/O Bitmap.
10565 *
10566 * We do not use the I/O bitmap that may be provided by the nested hypervisor as we always
10567 * intercept all I/O port accesses.
10568 */
10569 Assert(u32ProcCtls & VMX_PROC_CTLS_UNCOND_IO_EXIT);
10570 Assert(!(u32ProcCtls & VMX_PROC_CTLS_USE_IO_BITMAPS));
10571
10572 /*
10573 * VMCS shadowing.
10574 *
10575 * We do not yet expose VMCS shadowing to the guest and thus VMCS shadowing should not be
10576 * enabled while executing the nested-guest.
10577 */
10578 Assert(!(u32ProcCtls2 & VMX_PROC_CTLS2_VMCS_SHADOWING));
10579
10580 /*
10581 * APIC-access page.
10582 */
10583 RTHCPHYS HCPhysApicAccess;
10584 if (u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
10585 {
10586 Assert(g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS);
10587 RTGCPHYS const GCPhysApicAccess = pVmcsNstGst->u64AddrApicAccess.u;
10588
10589 /** @todo NSTVMX: This is not really correct but currently is required to make
10590 * things work. We need to re-enable the page handler when we fallback to
10591 * IEM execution of the nested-guest! */
10592 PGMHandlerPhysicalPageTempOff(pVM, GCPhysApicAccess, GCPhysApicAccess);
10593
10594 void *pvPage;
10595 PGMPAGEMAPLOCK PgLockApicAccess;
10596 int rc = PGMPhysGCPhys2CCPtr(pVM, GCPhysApicAccess, &pvPage, &PgLockApicAccess);
10597 if (RT_SUCCESS(rc))
10598 {
10599 rc = PGMPhysGCPhys2HCPhys(pVM, GCPhysApicAccess, &HCPhysApicAccess);
10600 AssertMsgRCReturn(rc, ("Failed to get host-physical address for APIC-access page at %#RGp\n", GCPhysApicAccess), rc);
10601
10602 /** @todo Handle proper releasing of page-mapping lock later. */
10603 PGMPhysReleasePageMappingLock(pVCpu->CTX_SUFF(pVM), &PgLockApicAccess);
10604 }
10605 else
10606 return rc;
10607 }
10608 else
10609 HCPhysApicAccess = 0;
10610
10611 /*
10612 * Virtual-APIC page and TPR threshold.
10613 */
10614 RTHCPHYS HCPhysVirtApic;
10615 uint32_t u32TprThreshold;
10616 if (u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
10617 {
10618 Assert(g_HmMsrs.u.vmx.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_TPR_SHADOW);
10619 RTGCPHYS const GCPhysVirtApic = pVmcsNstGst->u64AddrVirtApic.u;
10620
10621 void *pvPage;
10622 PGMPAGEMAPLOCK PgLockVirtApic;
10623 int rc = PGMPhysGCPhys2CCPtr(pVM, GCPhysVirtApic, &pvPage, &PgLockVirtApic);
10624 if (RT_SUCCESS(rc))
10625 {
10626 rc = PGMPhysGCPhys2HCPhys(pVM, GCPhysVirtApic, &HCPhysVirtApic);
10627 AssertMsgRCReturn(rc, ("Failed to get host-physical address for virtual-APIC page at %#RGp\n", GCPhysVirtApic), rc);
10628
10629 /** @todo Handle proper releasing of page-mapping lock later. */
10630 PGMPhysReleasePageMappingLock(pVCpu->CTX_SUFF(pVM), &PgLockVirtApic);
10631 }
10632 else
10633 return rc;
10634
10635 u32TprThreshold = pVmcsNstGst->u32TprThreshold;
10636 }
10637 else
10638 {
10639 HCPhysVirtApic = 0;
10640 u32TprThreshold = 0;
10641
10642 /*
10643 * We must make sure CR8 reads/write must cause VM-exits when TPR shadowing is not
10644 * used by the nested hypervisor. Preventing MMIO accesses to the physical APIC will
10645 * be taken care of by EPT/shadow paging.
10646 */
10647 if (pVM->hmr0.s.fAllow64BitGuests)
10648 u32ProcCtls |= VMX_PROC_CTLS_CR8_STORE_EXIT
10649 | VMX_PROC_CTLS_CR8_LOAD_EXIT;
10650 }
10651
10652 /*
10653 * Validate basic assumptions.
10654 */
10655 PVMXVMCSINFO pVmcsInfoNstGst = &pVCpu->hmr0.s.vmx.VmcsInfoNstGst;
10656 Assert(pVM->hmr0.s.vmx.fUnrestrictedGuest);
10657 Assert(g_HmMsrs.u.vmx.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_SECONDARY_CTLS);
10658 Assert(hmGetVmxActiveVmcsInfo(pVCpu) == pVmcsInfoNstGst);
10659
10660 /*
10661 * Commit it to the nested-guest VMCS.
10662 */
10663 int rc = VINF_SUCCESS;
10664 if (pVmcsInfoNstGst->u32PinCtls != u32PinCtls)
10665 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, u32PinCtls);
10666 if (pVmcsInfoNstGst->u32ProcCtls != u32ProcCtls)
10667 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, u32ProcCtls);
10668 if (pVmcsInfoNstGst->u32ProcCtls2 != u32ProcCtls2)
10669 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, u32ProcCtls2);
10670 if (pVmcsInfoNstGst->u32XcptBitmap != u32XcptBitmap)
10671 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, u32XcptBitmap);
10672 if (pVmcsInfoNstGst->u64Cr0Mask != u64Cr0Mask)
10673 rc |= VMXWriteVmcsNw(VMX_VMCS_CTRL_CR0_MASK, u64Cr0Mask);
10674 if (pVmcsInfoNstGst->u64Cr4Mask != u64Cr4Mask)
10675 rc |= VMXWriteVmcsNw(VMX_VMCS_CTRL_CR4_MASK, u64Cr4Mask);
10676 if (pVmcsInfoNstGst->u32XcptPFMask != u32XcptPFMask)
10677 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK, u32XcptPFMask);
10678 if (pVmcsInfoNstGst->u32XcptPFMatch != u32XcptPFMatch)
10679 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH, u32XcptPFMatch);
10680 if ( !(u32ProcCtls & VMX_PROC_CTLS_PAUSE_EXIT)
10681 && (u32ProcCtls2 & VMX_PROC_CTLS2_PAUSE_LOOP_EXIT))
10682 {
10683 Assert(g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_PAUSE_LOOP_EXIT);
10684 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PLE_GAP, cPleGapTicks);
10685 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PLE_WINDOW, cPleWindowTicks);
10686 }
10687 if (u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
10688 {
10689 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_TPR_THRESHOLD, u32TprThreshold);
10690 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_VIRT_APIC_PAGEADDR_FULL, HCPhysVirtApic);
10691 }
10692 if (u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
10693 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL, HCPhysApicAccess);
10694 rc |= VMXWriteVmcsNw(VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS, uPendingDbgXcpts);
10695 AssertRC(rc);
10696
10697 /*
10698 * Update the nested-guest VMCS cache.
10699 */
10700 pVmcsInfoNstGst->u32PinCtls = u32PinCtls;
10701 pVmcsInfoNstGst->u32ProcCtls = u32ProcCtls;
10702 pVmcsInfoNstGst->u32ProcCtls2 = u32ProcCtls2;
10703 pVmcsInfoNstGst->u32XcptBitmap = u32XcptBitmap;
10704 pVmcsInfoNstGst->u64Cr0Mask = u64Cr0Mask;
10705 pVmcsInfoNstGst->u64Cr4Mask = u64Cr4Mask;
10706 pVmcsInfoNstGst->u32XcptPFMask = u32XcptPFMask;
10707 pVmcsInfoNstGst->u32XcptPFMatch = u32XcptPFMatch;
10708 pVmcsInfoNstGst->HCPhysVirtApic = HCPhysVirtApic;
10709
10710 /*
10711 * We need to flush the TLB if we are switching the APIC-access page address.
10712 * See Intel spec. 28.3.3.4 "Guidelines for Use of the INVEPT Instruction".
10713 */
10714 if (u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
10715 pVCpu->hm.s.vmx.fSwitchedNstGstFlushTlb = true;
10716
10717 /*
10718 * MSR bitmap.
10719 *
10720 * The MSR bitmap address has already been initialized while setting up the nested-guest
10721 * VMCS, here we need to merge the MSR bitmaps.
10722 */
10723 if (u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
10724 hmR0VmxMergeMsrBitmapNested(pVCpu, pVmcsInfoNstGst, pVmcsInfoGst);
10725
10726 return VINF_SUCCESS;
10727}
10728#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
10729
10730
10731/**
10732 * Does the preparations before executing guest code in VT-x.
10733 *
10734 * This may cause longjmps to ring-3 and may even result in rescheduling to the
10735 * recompiler/IEM. We must be cautious what we do here regarding committing
10736 * guest-state information into the VMCS assuming we assuredly execute the
10737 * guest in VT-x mode.
10738 *
10739 * If we fall back to the recompiler/IEM after updating the VMCS and clearing
10740 * the common-state (TRPM/forceflags), we must undo those changes so that the
10741 * recompiler/IEM can (and should) use them when it resumes guest execution.
10742 * Otherwise such operations must be done when we can no longer exit to ring-3.
10743 *
10744 * @returns Strict VBox status code (i.e. informational status codes too).
10745 * @retval VINF_SUCCESS if we can proceed with running the guest, interrupts
10746 * have been disabled.
10747 * @retval VINF_VMX_VMEXIT if a nested-guest VM-exit occurs (e.g., while evaluating
10748 * pending events).
10749 * @retval VINF_EM_RESET if a triple-fault occurs while injecting a
10750 * double-fault into the guest.
10751 * @retval VINF_EM_DBG_STEPPED if @a fStepping is true and an event was
10752 * dispatched directly.
10753 * @retval VINF_* scheduling changes, we have to go back to ring-3.
10754 *
10755 * @param pVCpu The cross context virtual CPU structure.
10756 * @param pVmxTransient The VMX-transient structure.
10757 * @param fStepping Whether we are single-stepping the guest in the
10758 * hypervisor debugger. Makes us ignore some of the reasons
10759 * for returning to ring-3, and return VINF_EM_DBG_STEPPED
10760 * if event dispatching took place.
10761 */
10762static VBOXSTRICTRC hmR0VmxPreRunGuest(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient, bool fStepping)
10763{
10764 Assert(VMMRZCallRing3IsEnabled(pVCpu));
10765
10766 Log4Func(("fIsNested=%RTbool fStepping=%RTbool\n", pVmxTransient->fIsNestedGuest, fStepping));
10767
10768#ifdef VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM
10769 if (pVmxTransient->fIsNestedGuest)
10770 {
10771 RT_NOREF2(pVCpu, fStepping);
10772 Log2Func(("Rescheduling to IEM due to nested-hwvirt or forced IEM exec -> VINF_EM_RESCHEDULE_REM\n"));
10773 return VINF_EM_RESCHEDULE_REM;
10774 }
10775#endif
10776
10777 /*
10778 * Check and process force flag actions, some of which might require us to go back to ring-3.
10779 */
10780 VBOXSTRICTRC rcStrict = hmR0VmxCheckForceFlags(pVCpu, pVmxTransient, fStepping);
10781 if (rcStrict == VINF_SUCCESS)
10782 {
10783 /* FFs don't get set all the time. */
10784#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
10785 if ( pVmxTransient->fIsNestedGuest
10786 && !CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx))
10787 {
10788 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchNstGstVmexit);
10789 return VINF_VMX_VMEXIT;
10790 }
10791#endif
10792 }
10793 else
10794 return rcStrict;
10795
10796 /*
10797 * Virtualize memory-mapped accesses to the physical APIC (may take locks).
10798 */
10799 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
10800 if ( !pVCpu->hm.s.vmx.u64GstMsrApicBase
10801 && (g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
10802 && PDMHasApic(pVM))
10803 {
10804 int rc = hmR0VmxMapHCApicAccessPage(pVCpu);
10805 AssertRCReturn(rc, rc);
10806 }
10807
10808#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
10809 /*
10810 * Merge guest VMCS controls with the nested-guest VMCS controls.
10811 *
10812 * Even if we have not executed the guest prior to this (e.g. when resuming from a
10813 * saved state), we should be okay with merging controls as we initialize the
10814 * guest VMCS controls as part of VM setup phase.
10815 */
10816 if ( pVmxTransient->fIsNestedGuest
10817 && !pVCpu->hm.s.vmx.fMergedNstGstCtls)
10818 {
10819 int rc = hmR0VmxMergeVmcsNested(pVCpu);
10820 AssertRCReturn(rc, rc);
10821 pVCpu->hm.s.vmx.fMergedNstGstCtls = true;
10822 }
10823#endif
10824
10825 /*
10826 * Evaluate events to be injected into the guest.
10827 *
10828 * Events in TRPM can be injected without inspecting the guest state.
10829 * If any new events (interrupts/NMI) are pending currently, we try to set up the
10830 * guest to cause a VM-exit the next time they are ready to receive the event.
10831 */
10832 if (TRPMHasTrap(pVCpu))
10833 hmR0VmxTrpmTrapToPendingEvent(pVCpu);
10834
10835 uint32_t fIntrState;
10836 rcStrict = hmR0VmxEvaluatePendingEvent(pVCpu, pVmxTransient, &fIntrState);
10837
10838#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
10839 /*
10840 * While evaluating pending events if something failed (unlikely) or if we were
10841 * preparing to run a nested-guest but performed a nested-guest VM-exit, we should bail.
10842 */
10843 if (rcStrict != VINF_SUCCESS)
10844 return rcStrict;
10845 if ( pVmxTransient->fIsNestedGuest
10846 && !CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx))
10847 {
10848 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchNstGstVmexit);
10849 return VINF_VMX_VMEXIT;
10850 }
10851#else
10852 Assert(rcStrict == VINF_SUCCESS);
10853#endif
10854
10855 /*
10856 * Event injection may take locks (currently the PGM lock for real-on-v86 case) and thus
10857 * needs to be done with longjmps or interrupts + preemption enabled. Event injection might
10858 * also result in triple-faulting the VM.
10859 *
10860 * With nested-guests, the above does not apply since unrestricted guest execution is a
10861 * requirement. Regardless, we do this here to avoid duplicating code elsewhere.
10862 */
10863 rcStrict = hmR0VmxInjectPendingEvent(pVCpu, pVmxTransient, fIntrState, fStepping);
10864 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
10865 { /* likely */ }
10866 else
10867 {
10868 AssertMsg(rcStrict == VINF_EM_RESET || (rcStrict == VINF_EM_DBG_STEPPED && fStepping),
10869 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
10870 return rcStrict;
10871 }
10872
10873 /*
10874 * A longjump might result in importing CR3 even for VM-exits that don't necessarily
10875 * import CR3 themselves. We will need to update them here, as even as late as the above
10876 * hmR0VmxInjectPendingEvent() call may lazily import guest-CPU state on demand causing
10877 * the below force flags to be set.
10878 */
10879 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3))
10880 {
10881 Assert(!(ASMAtomicUoReadU64(&pVCpu->cpum.GstCtx.fExtrn) & CPUMCTX_EXTRN_CR3));
10882 int rc2 = PGMUpdateCR3(pVCpu, CPUMGetGuestCR3(pVCpu));
10883 AssertMsgReturn(rc2 == VINF_SUCCESS || rc2 == VINF_PGM_SYNC_CR3,
10884 ("%Rrc\n", rc2), RT_FAILURE_NP(rc2) ? rc2 : VERR_IPE_UNEXPECTED_INFO_STATUS);
10885 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
10886 }
10887 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES))
10888 {
10889 PGMGstUpdatePaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
10890 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
10891 }
10892
10893#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
10894 /* Paranoia. */
10895 Assert(!pVmxTransient->fIsNestedGuest || CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx));
10896#endif
10897
10898 /*
10899 * No longjmps to ring-3 from this point on!!!
10900 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional, better than a kernel panic.
10901 * This also disables flushing of the R0-logger instance (if any).
10902 */
10903 VMMRZCallRing3Disable(pVCpu);
10904
10905 /*
10906 * Export the guest state bits.
10907 *
10908 * We cannot perform longjmps while loading the guest state because we do not preserve the
10909 * host/guest state (although the VMCS will be preserved) across longjmps which can cause
10910 * CPU migration.
10911 *
10912 * If we are injecting events to a real-on-v86 mode guest, we would have updated RIP and some segment
10913 * registers. Hence, exporting of the guest state needs to be done -after- injection of events.
10914 */
10915 rcStrict = hmR0VmxExportGuestStateOptimal(pVCpu, pVmxTransient);
10916 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
10917 { /* likely */ }
10918 else
10919 {
10920 VMMRZCallRing3Enable(pVCpu);
10921 return rcStrict;
10922 }
10923
10924 /*
10925 * We disable interrupts so that we don't miss any interrupts that would flag preemption
10926 * (IPI/timers etc.) when thread-context hooks aren't used and we've been running with
10927 * preemption disabled for a while. Since this is purely to aid the
10928 * RTThreadPreemptIsPending() code, it doesn't matter that it may temporarily reenable and
10929 * disable interrupt on NT.
10930 *
10931 * We need to check for force-flags that could've possible been altered since we last
10932 * checked them (e.g. by PDMGetInterrupt() leaving the PDM critical section,
10933 * see @bugref{6398}).
10934 *
10935 * We also check a couple of other force-flags as a last opportunity to get the EMT back
10936 * to ring-3 before executing guest code.
10937 */
10938 pVmxTransient->fEFlags = ASMIntDisableFlags();
10939
10940 if ( ( !VM_FF_IS_ANY_SET(pVM, VM_FF_EMT_RENDEZVOUS | VM_FF_TM_VIRTUAL_SYNC)
10941 && !VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
10942 || ( fStepping /* Optimized for the non-stepping case, so a bit of unnecessary work when stepping. */
10943 && !VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HM_TO_R3_MASK & ~(VMCPU_FF_TIMER | VMCPU_FF_PDM_CRITSECT))) )
10944 {
10945 if (!RTThreadPreemptIsPending(NIL_RTTHREAD))
10946 {
10947#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
10948 /*
10949 * If we are executing a nested-guest make sure that we should intercept subsequent
10950 * events. The one we are injecting might be part of VM-entry. This is mainly to keep
10951 * the VM-exit instruction emulation happy.
10952 */
10953 if (pVmxTransient->fIsNestedGuest)
10954 CPUMSetGuestVmxInterceptEvents(&pVCpu->cpum.GstCtx, true);
10955#endif
10956
10957 /*
10958 * We've injected any pending events. This is really the point of no return (to ring-3).
10959 *
10960 * Note! The caller expects to continue with interrupts & longjmps disabled on successful
10961 * returns from this function, so do -not- enable them here.
10962 */
10963 pVCpu->hm.s.Event.fPending = false;
10964 return VINF_SUCCESS;
10965 }
10966
10967 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchPendingHostIrq);
10968 rcStrict = VINF_EM_RAW_INTERRUPT;
10969 }
10970 else
10971 {
10972 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
10973 rcStrict = VINF_EM_RAW_TO_R3;
10974 }
10975
10976 ASMSetFlags(pVmxTransient->fEFlags);
10977 VMMRZCallRing3Enable(pVCpu);
10978
10979 return rcStrict;
10980}
10981
10982
10983/**
10984 * Final preparations before executing guest code using hardware-assisted VMX.
10985 *
10986 * We can no longer get preempted to a different host CPU and there are no returns
10987 * to ring-3. We ignore any errors that may happen from this point (e.g. VMWRITE
10988 * failures), this function is not intended to fail sans unrecoverable hardware
10989 * errors.
10990 *
10991 * @param pVCpu The cross context virtual CPU structure.
10992 * @param pVmxTransient The VMX-transient structure.
10993 *
10994 * @remarks Called with preemption disabled.
10995 * @remarks No-long-jump zone!!!
10996 */
10997static void hmR0VmxPreRunGuestCommitted(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
10998{
10999 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
11000 Assert(VMMR0IsLogFlushDisabled(pVCpu));
11001 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
11002 Assert(!pVCpu->hm.s.Event.fPending);
11003
11004 /*
11005 * Indicate start of guest execution and where poking EMT out of guest-context is recognized.
11006 */
11007 VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
11008 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC);
11009
11010 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
11011 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
11012 PHMPHYSCPU pHostCpu = hmR0GetCurrentCpu();
11013 RTCPUID const idCurrentCpu = pHostCpu->idCpu;
11014
11015 if (!CPUMIsGuestFPUStateActive(pVCpu))
11016 {
11017 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatLoadGuestFpuState, x);
11018 if (CPUMR0LoadGuestFPU(pVM, pVCpu) == VINF_CPUM_HOST_CR0_MODIFIED)
11019 pVCpu->hm.s.fCtxChanged |= HM_CHANGED_HOST_CONTEXT;
11020 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatLoadGuestFpuState, x);
11021 STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadGuestFpu);
11022 }
11023
11024 /*
11025 * Re-export the host state bits as we may've been preempted (only happens when
11026 * thread-context hooks are used or when the VM start function changes) or if
11027 * the host CR0 is modified while loading the guest FPU state above.
11028 *
11029 * The 64-on-32 switcher saves the (64-bit) host state into the VMCS and if we
11030 * changed the switcher back to 32-bit, we *must* save the 32-bit host state here,
11031 * see @bugref{8432}.
11032 *
11033 * This may also happen when switching to/from a nested-guest VMCS without leaving
11034 * ring-0.
11035 */
11036 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_HOST_CONTEXT)
11037 {
11038 hmR0VmxExportHostState(pVCpu);
11039 STAM_COUNTER_INC(&pVCpu->hm.s.StatExportHostState);
11040 }
11041 Assert(!(pVCpu->hm.s.fCtxChanged & HM_CHANGED_HOST_CONTEXT));
11042
11043 /*
11044 * Export the state shared between host and guest (FPU, debug, lazy MSRs).
11045 */
11046 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE)
11047 hmR0VmxExportSharedState(pVCpu, pVmxTransient);
11048 AssertMsg(!pVCpu->hm.s.fCtxChanged, ("fCtxChanged=%#RX64\n", pVCpu->hm.s.fCtxChanged));
11049
11050 /*
11051 * Store status of the shared guest/host debug state at the time of VM-entry.
11052 */
11053 pVmxTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActive(pVCpu);
11054 pVmxTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActive(pVCpu);
11055
11056 /*
11057 * Always cache the TPR-shadow if the virtual-APIC page exists, thereby skipping
11058 * more than one conditional check. The post-run side of our code shall determine
11059 * if it needs to sync. the virtual APIC TPR with the TPR-shadow.
11060 */
11061 if (pVmcsInfo->pbVirtApic)
11062 pVmxTransient->u8GuestTpr = pVmcsInfo->pbVirtApic[XAPIC_OFF_TPR];
11063
11064 /*
11065 * Update the host MSRs values in the VM-exit MSR-load area.
11066 */
11067 if (!pVCpu->hmr0.s.vmx.fUpdatedHostAutoMsrs)
11068 {
11069 if (pVmcsInfo->cExitMsrLoad > 0)
11070 hmR0VmxUpdateAutoLoadHostMsrs(pVCpu, pVmcsInfo);
11071 pVCpu->hmr0.s.vmx.fUpdatedHostAutoMsrs = true;
11072 }
11073
11074 /*
11075 * Evaluate if we need to intercept guest RDTSC/P accesses. Set up the
11076 * VMX-preemption timer based on the next virtual sync clock deadline.
11077 */
11078 if ( !pVmxTransient->fUpdatedTscOffsettingAndPreemptTimer
11079 || idCurrentCpu != pVCpu->hmr0.s.idLastCpu)
11080 {
11081 hmR0VmxUpdateTscOffsettingAndPreemptTimer(pVCpu, pVmxTransient, idCurrentCpu);
11082 pVmxTransient->fUpdatedTscOffsettingAndPreemptTimer = true;
11083 }
11084
11085 /* Record statistics of how often we use TSC offsetting as opposed to intercepting RDTSC/P. */
11086 bool const fIsRdtscIntercepted = RT_BOOL(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_RDTSC_EXIT);
11087 if (!fIsRdtscIntercepted)
11088 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscOffset);
11089 else
11090 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscIntercept);
11091
11092 ASMAtomicUoWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true); /* Used for TLB flushing, set this across the world switch. */
11093 hmR0VmxFlushTaggedTlb(pHostCpu, pVCpu, pVmcsInfo); /* Invalidate the appropriate guest entries from the TLB. */
11094 Assert(idCurrentCpu == pVCpu->hmr0.s.idLastCpu);
11095 pVCpu->hm.s.vmx.LastError.idCurrentCpu = idCurrentCpu; /* Record the error reporting info. with the current host CPU. */
11096 pVmcsInfo->idHostCpuState = idCurrentCpu; /* Record the CPU for which the host-state has been exported. */
11097 pVmcsInfo->idHostCpuExec = idCurrentCpu; /* Record the CPU on which we shall execute. */
11098
11099 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatEntry, &pVCpu->hm.s.StatInGC, x);
11100
11101 TMNotifyStartOfExecution(pVM, pVCpu); /* Notify TM to resume its clocks when TSC is tied to execution,
11102 as we're about to start executing the guest. */
11103
11104 /*
11105 * Load the guest TSC_AUX MSR when we are not intercepting RDTSCP.
11106 *
11107 * This is done this late as updating the TSC offsetting/preemption timer above
11108 * figures out if we can skip intercepting RDTSCP by calculating the number of
11109 * host CPU ticks till the next virtual sync deadline (for the dynamic case).
11110 */
11111 if ( (pVmcsInfo->u32ProcCtls2 & VMX_PROC_CTLS2_RDTSCP)
11112 && !fIsRdtscIntercepted)
11113 {
11114 hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_TSC_AUX);
11115
11116 /* NB: Because we call hmR0VmxAddAutoLoadStoreMsr with fUpdateHostMsr=true,
11117 it's safe even after hmR0VmxUpdateAutoLoadHostMsrs has already been done. */
11118 int rc = hmR0VmxAddAutoLoadStoreMsr(pVCpu, pVmxTransient, MSR_K8_TSC_AUX, CPUMGetGuestTscAux(pVCpu),
11119 true /* fSetReadWrite */, true /* fUpdateHostMsr */);
11120 AssertRC(rc);
11121 Assert(!pVmxTransient->fRemoveTscAuxMsr);
11122 pVmxTransient->fRemoveTscAuxMsr = true;
11123 }
11124
11125#ifdef VBOX_STRICT
11126 Assert(pVCpu->hmr0.s.vmx.fUpdatedHostAutoMsrs);
11127 hmR0VmxCheckAutoLoadStoreMsrs(pVCpu, pVmcsInfo, pVmxTransient->fIsNestedGuest);
11128 hmR0VmxCheckHostEferMsr(pVmcsInfo);
11129 AssertRC(hmR0VmxCheckCachedVmcsCtls(pVCpu, pVmcsInfo, pVmxTransient->fIsNestedGuest));
11130#endif
11131
11132#ifdef HMVMX_ALWAYS_CHECK_GUEST_STATE
11133 /** @todo r=ramshankar: We can now probably use iemVmxVmentryCheckGuestState here.
11134 * Add a PVMXMSRS parameter to it, so that IEM can look at the host MSRs,
11135 * see @bugref{9180#c54}. */
11136 uint32_t const uInvalidReason = hmR0VmxCheckGuestState(pVCpu, pVmcsInfo);
11137 if (uInvalidReason != VMX_IGS_REASON_NOT_FOUND)
11138 Log4(("hmR0VmxCheckGuestState returned %#x\n", uInvalidReason));
11139#endif
11140}
11141
11142
11143/**
11144 * First C routine invoked after running guest code using hardware-assisted VMX.
11145 *
11146 * @param pVCpu The cross context virtual CPU structure.
11147 * @param pVmxTransient The VMX-transient structure.
11148 * @param rcVMRun Return code of VMLAUNCH/VMRESUME.
11149 *
11150 * @remarks Called with interrupts disabled, and returns with interrupts enabled!
11151 *
11152 * @remarks No-long-jump zone!!! This function will however re-enable longjmps
11153 * unconditionally when it is safe to do so.
11154 */
11155static void hmR0VmxPostRunGuest(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient, int rcVMRun)
11156{
11157 ASMAtomicUoWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, false); /* See HMInvalidatePageOnAllVCpus(): used for TLB flushing. */
11158 ASMAtomicIncU32(&pVCpu->hmr0.s.cWorldSwitchExits); /* Initialized in vmR3CreateUVM(): used for EMT poking. */
11159 pVCpu->hm.s.fCtxChanged = 0; /* Exits/longjmps to ring-3 requires saving the guest state. */
11160 pVmxTransient->fVmcsFieldsRead = 0; /* Transient fields need to be read from the VMCS. */
11161 pVmxTransient->fVectoringPF = false; /* Vectoring page-fault needs to be determined later. */
11162 pVmxTransient->fVectoringDoublePF = false; /* Vectoring double page-fault needs to be determined later. */
11163
11164 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
11165 if (!(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_RDTSC_EXIT))
11166 {
11167 uint64_t uGstTsc;
11168 if (!pVmxTransient->fIsNestedGuest)
11169 uGstTsc = pVCpu->hmr0.s.uTscExit + pVmcsInfo->u64TscOffset;
11170 else
11171 {
11172 uint64_t const uNstGstTsc = pVCpu->hmr0.s.uTscExit + pVmcsInfo->u64TscOffset;
11173 uGstTsc = CPUMRemoveNestedGuestTscOffset(pVCpu, uNstGstTsc);
11174 }
11175 TMCpuTickSetLastSeen(pVCpu, uGstTsc); /* Update TM with the guest TSC. */
11176 }
11177
11178 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatInGC, &pVCpu->hm.s.StatPreExit, x);
11179 TMNotifyEndOfExecution(pVCpu->CTX_SUFF(pVM), pVCpu, pVCpu->hmr0.s.uTscExit); /* Notify TM that the guest is no longer running. */
11180 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
11181
11182 pVCpu->hmr0.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_REQUIRED; /* Some host state messed up by VMX needs restoring. */
11183 pVmcsInfo->fVmcsState |= VMX_V_VMCS_LAUNCH_STATE_LAUNCHED; /* Use VMRESUME instead of VMLAUNCH in the next run. */
11184#ifdef VBOX_STRICT
11185 hmR0VmxCheckHostEferMsr(pVmcsInfo); /* Verify that the host EFER MSR wasn't modified. */
11186#endif
11187 Assert(!ASMIntAreEnabled());
11188 ASMSetFlags(pVmxTransient->fEFlags); /* Enable interrupts. */
11189 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
11190
11191#ifdef HMVMX_ALWAYS_CLEAN_TRANSIENT
11192 /*
11193 * Clean all the VMCS fields in the transient structure before reading
11194 * anything from the VMCS.
11195 */
11196 pVmxTransient->uExitReason = 0;
11197 pVmxTransient->uExitIntErrorCode = 0;
11198 pVmxTransient->uExitQual = 0;
11199 pVmxTransient->uGuestLinearAddr = 0;
11200 pVmxTransient->uExitIntInfo = 0;
11201 pVmxTransient->cbExitInstr = 0;
11202 pVmxTransient->ExitInstrInfo.u = 0;
11203 pVmxTransient->uEntryIntInfo = 0;
11204 pVmxTransient->uEntryXcptErrorCode = 0;
11205 pVmxTransient->cbEntryInstr = 0;
11206 pVmxTransient->uIdtVectoringInfo = 0;
11207 pVmxTransient->uIdtVectoringErrorCode = 0;
11208#endif
11209
11210 /*
11211 * Save the basic VM-exit reason and check if the VM-entry failed.
11212 * See Intel spec. 24.9.1 "Basic VM-exit Information".
11213 */
11214 uint32_t uExitReason;
11215 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_REASON, &uExitReason);
11216 AssertRC(rc);
11217 pVmxTransient->uExitReason = VMX_EXIT_REASON_BASIC(uExitReason);
11218 pVmxTransient->fVMEntryFailed = VMX_EXIT_REASON_HAS_ENTRY_FAILED(uExitReason);
11219
11220 /*
11221 * Log the VM-exit before logging anything else as otherwise it might be a
11222 * tad confusing what happens before and after the world-switch.
11223 */
11224 HMVMX_LOG_EXIT(pVCpu, uExitReason);
11225
11226 /*
11227 * Remove the TSC_AUX MSR from the auto-load/store MSR area and reset any MSR
11228 * bitmap permissions, if it was added before VM-entry.
11229 */
11230 if (pVmxTransient->fRemoveTscAuxMsr)
11231 {
11232 hmR0VmxRemoveAutoLoadStoreMsr(pVCpu, pVmxTransient, MSR_K8_TSC_AUX);
11233 pVmxTransient->fRemoveTscAuxMsr = false;
11234 }
11235
11236 /*
11237 * Check if VMLAUNCH/VMRESUME succeeded.
11238 * If this failed, we cause a guru meditation and cease further execution.
11239 *
11240 * However, if we are executing a nested-guest we might fail if we use the
11241 * fast path rather than fully emulating VMLAUNCH/VMRESUME instruction in IEM.
11242 */
11243 if (RT_LIKELY(rcVMRun == VINF_SUCCESS))
11244 {
11245 /*
11246 * Update the VM-exit history array here even if the VM-entry failed due to:
11247 * - Invalid guest state.
11248 * - MSR loading.
11249 * - Machine-check event.
11250 *
11251 * In any of the above cases we will still have a "valid" VM-exit reason
11252 * despite @a fVMEntryFailed being false.
11253 *
11254 * See Intel spec. 26.7 "VM-Entry failures during or after loading guest state".
11255 *
11256 * Note! We don't have CS or RIP at this point. Will probably address that later
11257 * by amending the history entry added here.
11258 */
11259 EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_VMX, pVmxTransient->uExitReason & EMEXIT_F_TYPE_MASK),
11260 UINT64_MAX, pVCpu->hmr0.s.uTscExit);
11261
11262 if (RT_LIKELY(!pVmxTransient->fVMEntryFailed))
11263 {
11264 VMMRZCallRing3Enable(pVCpu);
11265
11266 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
11267 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
11268
11269#ifdef HMVMX_ALWAYS_SAVE_RO_GUEST_STATE
11270 hmR0VmxReadAllRoFieldsVmcs(pVmxTransient);
11271#endif
11272
11273 /*
11274 * Import the guest-interruptibility state always as we need it while evaluating
11275 * injecting events on re-entry.
11276 *
11277 * We don't import CR0 (when unrestricted guest execution is unavailable) despite
11278 * checking for real-mode while exporting the state because all bits that cause
11279 * mode changes wrt CR0 are intercepted.
11280 */
11281 uint64_t const fImportMask = CPUMCTX_EXTRN_HM_VMX_INT_STATE
11282#if defined(HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE) || defined(HMVMX_ALWAYS_SAVE_FULL_GUEST_STATE)
11283 | HMVMX_CPUMCTX_EXTRN_ALL
11284#elif defined(HMVMX_ALWAYS_SAVE_GUEST_RFLAGS)
11285 | CPUMCTX_EXTRN_RFLAGS
11286#endif
11287 ;
11288 rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, fImportMask);
11289 AssertRC(rc);
11290
11291 /*
11292 * Sync the TPR shadow with our APIC state.
11293 */
11294 if ( !pVmxTransient->fIsNestedGuest
11295 && (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW))
11296 {
11297 Assert(pVmcsInfo->pbVirtApic);
11298 if (pVmxTransient->u8GuestTpr != pVmcsInfo->pbVirtApic[XAPIC_OFF_TPR])
11299 {
11300 rc = APICSetTpr(pVCpu, pVmcsInfo->pbVirtApic[XAPIC_OFF_TPR]);
11301 AssertRC(rc);
11302 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
11303 }
11304 }
11305
11306 Assert(VMMRZCallRing3IsEnabled(pVCpu));
11307 Assert( pVmxTransient->fWasGuestDebugStateActive == false
11308 || pVmxTransient->fWasHyperDebugStateActive == false);
11309 return;
11310 }
11311 }
11312#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
11313 else if (pVmxTransient->fIsNestedGuest)
11314 AssertMsgFailed(("VMLAUNCH/VMRESUME failed but shouldn't happen when VMLAUNCH/VMRESUME was emulated in IEM!\n"));
11315#endif
11316 else
11317 Log4Func(("VM-entry failure: rcVMRun=%Rrc fVMEntryFailed=%RTbool\n", rcVMRun, pVmxTransient->fVMEntryFailed));
11318
11319 VMMRZCallRing3Enable(pVCpu);
11320}
11321
11322
11323/**
11324 * Runs the guest code using hardware-assisted VMX the normal way.
11325 *
11326 * @returns VBox status code.
11327 * @param pVCpu The cross context virtual CPU structure.
11328 * @param pcLoops Pointer to the number of executed loops.
11329 */
11330static VBOXSTRICTRC hmR0VmxRunGuestCodeNormal(PVMCPUCC pVCpu, uint32_t *pcLoops)
11331{
11332 uint32_t const cMaxResumeLoops = pVCpu->CTX_SUFF(pVM)->hmr0.s.cMaxResumeLoops;
11333 Assert(pcLoops);
11334 Assert(*pcLoops <= cMaxResumeLoops);
11335 Assert(!CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx));
11336
11337#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
11338 /*
11339 * Switch to the guest VMCS as we may have transitioned from executing the nested-guest
11340 * without leaving ring-0. Otherwise, if we came from ring-3 we would have loaded the
11341 * guest VMCS while entering the VMX ring-0 session.
11342 */
11343 if (pVCpu->hmr0.s.vmx.fSwitchedToNstGstVmcs)
11344 {
11345 int rc = hmR0VmxSwitchToGstOrNstGstVmcs(pVCpu, false /* fSwitchToNstGstVmcs */);
11346 if (RT_SUCCESS(rc))
11347 { /* likely */ }
11348 else
11349 {
11350 LogRelFunc(("Failed to switch to the guest VMCS. rc=%Rrc\n", rc));
11351 return rc;
11352 }
11353 }
11354#endif
11355
11356 VMXTRANSIENT VmxTransient;
11357 RT_ZERO(VmxTransient);
11358 VmxTransient.pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
11359
11360 /* Paranoia. */
11361 Assert(VmxTransient.pVmcsInfo == &pVCpu->hmr0.s.vmx.VmcsInfo);
11362
11363 VBOXSTRICTRC rcStrict = VERR_INTERNAL_ERROR_5;
11364 for (;;)
11365 {
11366 Assert(!HMR0SuspendPending());
11367 HMVMX_ASSERT_CPU_SAFE(pVCpu);
11368 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
11369
11370 /*
11371 * Preparatory work for running nested-guest code, this may force us to
11372 * return to ring-3.
11373 *
11374 * Warning! This bugger disables interrupts on VINF_SUCCESS!
11375 */
11376 rcStrict = hmR0VmxPreRunGuest(pVCpu, &VmxTransient, false /* fStepping */);
11377 if (rcStrict != VINF_SUCCESS)
11378 break;
11379
11380 /* Interrupts are disabled at this point! */
11381 hmR0VmxPreRunGuestCommitted(pVCpu, &VmxTransient);
11382 int rcRun = hmR0VmxRunGuest(pVCpu, &VmxTransient);
11383 hmR0VmxPostRunGuest(pVCpu, &VmxTransient, rcRun);
11384 /* Interrupts are re-enabled at this point! */
11385
11386 /*
11387 * Check for errors with running the VM (VMLAUNCH/VMRESUME).
11388 */
11389 if (RT_SUCCESS(rcRun))
11390 { /* very likely */ }
11391 else
11392 {
11393 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatPreExit, x);
11394 hmR0VmxReportWorldSwitchError(pVCpu, rcRun, &VmxTransient);
11395 return rcRun;
11396 }
11397
11398 /*
11399 * Profile the VM-exit.
11400 */
11401 AssertMsg(VmxTransient.uExitReason <= VMX_EXIT_MAX, ("%#x\n", VmxTransient.uExitReason));
11402 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll);
11403 STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[VmxTransient.uExitReason & MASK_EXITREASON_STAT]);
11404 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatPreExit, &pVCpu->hm.s.StatExitHandling, x);
11405 HMVMX_START_EXIT_DISPATCH_PROF();
11406
11407 VBOXVMM_R0_HMVMX_VMEXIT_NOCTX(pVCpu, &pVCpu->cpum.GstCtx, VmxTransient.uExitReason);
11408
11409 /*
11410 * Handle the VM-exit.
11411 */
11412#ifdef HMVMX_USE_FUNCTION_TABLE
11413 rcStrict = g_aVMExitHandlers[VmxTransient.uExitReason].pfn(pVCpu, &VmxTransient);
11414#else
11415 rcStrict = hmR0VmxHandleExit(pVCpu, &VmxTransient);
11416#endif
11417 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitHandling, x);
11418 if (rcStrict == VINF_SUCCESS)
11419 {
11420 if (++(*pcLoops) <= cMaxResumeLoops)
11421 continue;
11422 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
11423 rcStrict = VINF_EM_RAW_INTERRUPT;
11424 }
11425 break;
11426 }
11427
11428 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
11429 return rcStrict;
11430}
11431
11432
11433#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
11434/**
11435 * Runs the nested-guest code using hardware-assisted VMX.
11436 *
11437 * @returns VBox status code.
11438 * @param pVCpu The cross context virtual CPU structure.
11439 * @param pcLoops Pointer to the number of executed loops.
11440 *
11441 * @sa hmR0VmxRunGuestCodeNormal.
11442 */
11443static VBOXSTRICTRC hmR0VmxRunGuestCodeNested(PVMCPUCC pVCpu, uint32_t *pcLoops)
11444{
11445 uint32_t const cMaxResumeLoops = pVCpu->CTX_SUFF(pVM)->hmr0.s.cMaxResumeLoops;
11446 Assert(pcLoops);
11447 Assert(*pcLoops <= cMaxResumeLoops);
11448 Assert(CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx));
11449
11450 /*
11451 * Switch to the nested-guest VMCS as we may have transitioned from executing the
11452 * guest without leaving ring-0. Otherwise, if we came from ring-3 we would have
11453 * loaded the nested-guest VMCS while entering the VMX ring-0 session.
11454 */
11455 if (!pVCpu->hmr0.s.vmx.fSwitchedToNstGstVmcs)
11456 {
11457 int rc = hmR0VmxSwitchToGstOrNstGstVmcs(pVCpu, true /* fSwitchToNstGstVmcs */);
11458 if (RT_SUCCESS(rc))
11459 { /* likely */ }
11460 else
11461 {
11462 LogRelFunc(("Failed to switch to the nested-guest VMCS. rc=%Rrc\n", rc));
11463 return rc;
11464 }
11465 }
11466
11467 VMXTRANSIENT VmxTransient;
11468 RT_ZERO(VmxTransient);
11469 VmxTransient.pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
11470 VmxTransient.fIsNestedGuest = true;
11471
11472 /* Paranoia. */
11473 Assert(VmxTransient.pVmcsInfo == &pVCpu->hmr0.s.vmx.VmcsInfoNstGst);
11474
11475 VBOXSTRICTRC rcStrict = VERR_INTERNAL_ERROR_5;
11476 for (;;)
11477 {
11478 Assert(!HMR0SuspendPending());
11479 HMVMX_ASSERT_CPU_SAFE(pVCpu);
11480 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
11481
11482 /*
11483 * Preparatory work for running guest code, this may force us to
11484 * return to ring-3.
11485 *
11486 * Warning! This bugger disables interrupts on VINF_SUCCESS!
11487 */
11488 rcStrict = hmR0VmxPreRunGuest(pVCpu, &VmxTransient, false /* fStepping */);
11489 if (rcStrict != VINF_SUCCESS)
11490 break;
11491
11492 /* Interrupts are disabled at this point! */
11493 hmR0VmxPreRunGuestCommitted(pVCpu, &VmxTransient);
11494 int rcRun = hmR0VmxRunGuest(pVCpu, &VmxTransient);
11495 hmR0VmxPostRunGuest(pVCpu, &VmxTransient, rcRun);
11496 /* Interrupts are re-enabled at this point! */
11497
11498 /*
11499 * Check for errors with running the VM (VMLAUNCH/VMRESUME).
11500 */
11501 if (RT_SUCCESS(rcRun))
11502 { /* very likely */ }
11503 else
11504 {
11505 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatPreExit, x);
11506 hmR0VmxReportWorldSwitchError(pVCpu, rcRun, &VmxTransient);
11507 return rcRun;
11508 }
11509
11510 /*
11511 * Profile the VM-exit.
11512 */
11513 AssertMsg(VmxTransient.uExitReason <= VMX_EXIT_MAX, ("%#x\n", VmxTransient.uExitReason));
11514 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll);
11515 STAM_COUNTER_INC(&pVCpu->hm.s.StatNestedExitAll);
11516 STAM_COUNTER_INC(&pVCpu->hm.s.paStatNestedExitReasonR0[VmxTransient.uExitReason & MASK_EXITREASON_STAT]);
11517 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatPreExit, &pVCpu->hm.s.StatExitHandling, x);
11518 HMVMX_START_EXIT_DISPATCH_PROF();
11519
11520 VBOXVMM_R0_HMVMX_VMEXIT_NOCTX(pVCpu, &pVCpu->cpum.GstCtx, VmxTransient.uExitReason);
11521
11522 /*
11523 * Handle the VM-exit.
11524 */
11525 rcStrict = hmR0VmxHandleExitNested(pVCpu, &VmxTransient);
11526 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitHandling, x);
11527 if (rcStrict == VINF_SUCCESS)
11528 {
11529 if (!CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx))
11530 {
11531 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchNstGstVmexit);
11532 rcStrict = VINF_VMX_VMEXIT;
11533 }
11534 else
11535 {
11536 if (++(*pcLoops) <= cMaxResumeLoops)
11537 continue;
11538 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
11539 rcStrict = VINF_EM_RAW_INTERRUPT;
11540 }
11541 }
11542 else
11543 Assert(rcStrict != VINF_VMX_VMEXIT);
11544 break;
11545 }
11546
11547 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
11548 return rcStrict;
11549}
11550#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
11551
11552
11553/** @name Execution loop for single stepping, DBGF events and expensive Dtrace
11554 * probes.
11555 *
11556 * The following few functions and associated structure contains the bloat
11557 * necessary for providing detailed debug events and dtrace probes as well as
11558 * reliable host side single stepping. This works on the principle of
11559 * "subclassing" the normal execution loop and workers. We replace the loop
11560 * method completely and override selected helpers to add necessary adjustments
11561 * to their core operation.
11562 *
11563 * The goal is to keep the "parent" code lean and mean, so as not to sacrifice
11564 * any performance for debug and analysis features.
11565 *
11566 * @{
11567 */
11568
11569/**
11570 * Transient per-VCPU debug state of VMCS and related info. we save/restore in
11571 * the debug run loop.
11572 */
11573typedef struct VMXRUNDBGSTATE
11574{
11575 /** The RIP we started executing at. This is for detecting that we stepped. */
11576 uint64_t uRipStart;
11577 /** The CS we started executing with. */
11578 uint16_t uCsStart;
11579
11580 /** Whether we've actually modified the 1st execution control field. */
11581 bool fModifiedProcCtls : 1;
11582 /** Whether we've actually modified the 2nd execution control field. */
11583 bool fModifiedProcCtls2 : 1;
11584 /** Whether we've actually modified the exception bitmap. */
11585 bool fModifiedXcptBitmap : 1;
11586
11587 /** We desire the modified the CR0 mask to be cleared. */
11588 bool fClearCr0Mask : 1;
11589 /** We desire the modified the CR4 mask to be cleared. */
11590 bool fClearCr4Mask : 1;
11591 /** Stuff we need in VMX_VMCS32_CTRL_PROC_EXEC. */
11592 uint32_t fCpe1Extra;
11593 /** Stuff we do not want in VMX_VMCS32_CTRL_PROC_EXEC. */
11594 uint32_t fCpe1Unwanted;
11595 /** Stuff we need in VMX_VMCS32_CTRL_PROC_EXEC2. */
11596 uint32_t fCpe2Extra;
11597 /** Extra stuff we need in VMX_VMCS32_CTRL_EXCEPTION_BITMAP. */
11598 uint32_t bmXcptExtra;
11599 /** The sequence number of the Dtrace provider settings the state was
11600 * configured against. */
11601 uint32_t uDtraceSettingsSeqNo;
11602 /** VM-exits to check (one bit per VM-exit). */
11603 uint32_t bmExitsToCheck[3];
11604
11605 /** The initial VMX_VMCS32_CTRL_PROC_EXEC value (helps with restore). */
11606 uint32_t fProcCtlsInitial;
11607 /** The initial VMX_VMCS32_CTRL_PROC_EXEC2 value (helps with restore). */
11608 uint32_t fProcCtls2Initial;
11609 /** The initial VMX_VMCS32_CTRL_EXCEPTION_BITMAP value (helps with restore). */
11610 uint32_t bmXcptInitial;
11611} VMXRUNDBGSTATE;
11612AssertCompileMemberSize(VMXRUNDBGSTATE, bmExitsToCheck, (VMX_EXIT_MAX + 1 + 31) / 32 * 4);
11613typedef VMXRUNDBGSTATE *PVMXRUNDBGSTATE;
11614
11615
11616/**
11617 * Initializes the VMXRUNDBGSTATE structure.
11618 *
11619 * @param pVCpu The cross context virtual CPU structure of the
11620 * calling EMT.
11621 * @param pVmxTransient The VMX-transient structure.
11622 * @param pDbgState The debug state to initialize.
11623 */
11624static void hmR0VmxRunDebugStateInit(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient, PVMXRUNDBGSTATE pDbgState)
11625{
11626 pDbgState->uRipStart = pVCpu->cpum.GstCtx.rip;
11627 pDbgState->uCsStart = pVCpu->cpum.GstCtx.cs.Sel;
11628
11629 pDbgState->fModifiedProcCtls = false;
11630 pDbgState->fModifiedProcCtls2 = false;
11631 pDbgState->fModifiedXcptBitmap = false;
11632 pDbgState->fClearCr0Mask = false;
11633 pDbgState->fClearCr4Mask = false;
11634 pDbgState->fCpe1Extra = 0;
11635 pDbgState->fCpe1Unwanted = 0;
11636 pDbgState->fCpe2Extra = 0;
11637 pDbgState->bmXcptExtra = 0;
11638 pDbgState->fProcCtlsInitial = pVmxTransient->pVmcsInfo->u32ProcCtls;
11639 pDbgState->fProcCtls2Initial = pVmxTransient->pVmcsInfo->u32ProcCtls2;
11640 pDbgState->bmXcptInitial = pVmxTransient->pVmcsInfo->u32XcptBitmap;
11641}
11642
11643
11644/**
11645 * Updates the VMSC fields with changes requested by @a pDbgState.
11646 *
11647 * This is performed after hmR0VmxPreRunGuestDebugStateUpdate as well
11648 * immediately before executing guest code, i.e. when interrupts are disabled.
11649 * We don't check status codes here as we cannot easily assert or return in the
11650 * latter case.
11651 *
11652 * @param pVCpu The cross context virtual CPU structure.
11653 * @param pVmxTransient The VMX-transient structure.
11654 * @param pDbgState The debug state.
11655 */
11656static void hmR0VmxPreRunGuestDebugStateApply(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient, PVMXRUNDBGSTATE pDbgState)
11657{
11658 /*
11659 * Ensure desired flags in VMCS control fields are set.
11660 * (Ignoring write failure here, as we're committed and it's just debug extras.)
11661 *
11662 * Note! We load the shadow CR0 & CR4 bits when we flag the clearing, so
11663 * there should be no stale data in pCtx at this point.
11664 */
11665 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
11666 if ( (pVmcsInfo->u32ProcCtls & pDbgState->fCpe1Extra) != pDbgState->fCpe1Extra
11667 || (pVmcsInfo->u32ProcCtls & pDbgState->fCpe1Unwanted))
11668 {
11669 pVmcsInfo->u32ProcCtls |= pDbgState->fCpe1Extra;
11670 pVmcsInfo->u32ProcCtls &= ~pDbgState->fCpe1Unwanted;
11671 VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVmcsInfo->u32ProcCtls);
11672 Log6Func(("VMX_VMCS32_CTRL_PROC_EXEC: %#RX32\n", pVmcsInfo->u32ProcCtls));
11673 pDbgState->fModifiedProcCtls = true;
11674 }
11675
11676 if ((pVmcsInfo->u32ProcCtls2 & pDbgState->fCpe2Extra) != pDbgState->fCpe2Extra)
11677 {
11678 pVmcsInfo->u32ProcCtls2 |= pDbgState->fCpe2Extra;
11679 VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, pVmcsInfo->u32ProcCtls2);
11680 Log6Func(("VMX_VMCS32_CTRL_PROC_EXEC2: %#RX32\n", pVmcsInfo->u32ProcCtls2));
11681 pDbgState->fModifiedProcCtls2 = true;
11682 }
11683
11684 if ((pVmcsInfo->u32XcptBitmap & pDbgState->bmXcptExtra) != pDbgState->bmXcptExtra)
11685 {
11686 pVmcsInfo->u32XcptBitmap |= pDbgState->bmXcptExtra;
11687 VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, pVmcsInfo->u32XcptBitmap);
11688 Log6Func(("VMX_VMCS32_CTRL_EXCEPTION_BITMAP: %#RX32\n", pVmcsInfo->u32XcptBitmap));
11689 pDbgState->fModifiedXcptBitmap = true;
11690 }
11691
11692 if (pDbgState->fClearCr0Mask && pVmcsInfo->u64Cr0Mask != 0)
11693 {
11694 pVmcsInfo->u64Cr0Mask = 0;
11695 VMXWriteVmcsNw(VMX_VMCS_CTRL_CR0_MASK, 0);
11696 Log6Func(("VMX_VMCS_CTRL_CR0_MASK: 0\n"));
11697 }
11698
11699 if (pDbgState->fClearCr4Mask && pVmcsInfo->u64Cr4Mask != 0)
11700 {
11701 pVmcsInfo->u64Cr4Mask = 0;
11702 VMXWriteVmcsNw(VMX_VMCS_CTRL_CR4_MASK, 0);
11703 Log6Func(("VMX_VMCS_CTRL_CR4_MASK: 0\n"));
11704 }
11705
11706 NOREF(pVCpu);
11707}
11708
11709
11710/**
11711 * Restores VMCS fields that were changed by hmR0VmxPreRunGuestDebugStateApply for
11712 * re-entry next time around.
11713 *
11714 * @returns Strict VBox status code (i.e. informational status codes too).
11715 * @param pVCpu The cross context virtual CPU structure.
11716 * @param pVmxTransient The VMX-transient structure.
11717 * @param pDbgState The debug state.
11718 * @param rcStrict The return code from executing the guest using single
11719 * stepping.
11720 */
11721static VBOXSTRICTRC hmR0VmxRunDebugStateRevert(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient, PVMXRUNDBGSTATE pDbgState,
11722 VBOXSTRICTRC rcStrict)
11723{
11724 /*
11725 * Restore VM-exit control settings as we may not reenter this function the
11726 * next time around.
11727 */
11728 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
11729
11730 /* We reload the initial value, trigger what we can of recalculations the
11731 next time around. From the looks of things, that's all that's required atm. */
11732 if (pDbgState->fModifiedProcCtls)
11733 {
11734 if (!(pDbgState->fProcCtlsInitial & VMX_PROC_CTLS_MOV_DR_EXIT) && CPUMIsHyperDebugStateActive(pVCpu))
11735 pDbgState->fProcCtlsInitial |= VMX_PROC_CTLS_MOV_DR_EXIT; /* Avoid assertion in hmR0VmxLeave */
11736 int rc2 = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pDbgState->fProcCtlsInitial);
11737 AssertRC(rc2);
11738 pVmcsInfo->u32ProcCtls = pDbgState->fProcCtlsInitial;
11739 }
11740
11741 /* We're currently the only ones messing with this one, so just restore the
11742 cached value and reload the field. */
11743 if ( pDbgState->fModifiedProcCtls2
11744 && pVmcsInfo->u32ProcCtls2 != pDbgState->fProcCtls2Initial)
11745 {
11746 int rc2 = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, pDbgState->fProcCtls2Initial);
11747 AssertRC(rc2);
11748 pVmcsInfo->u32ProcCtls2 = pDbgState->fProcCtls2Initial;
11749 }
11750
11751 /* If we've modified the exception bitmap, we restore it and trigger
11752 reloading and partial recalculation the next time around. */
11753 if (pDbgState->fModifiedXcptBitmap)
11754 pVmcsInfo->u32XcptBitmap = pDbgState->bmXcptInitial;
11755
11756 return rcStrict;
11757}
11758
11759
11760/**
11761 * Configures VM-exit controls for current DBGF and DTrace settings.
11762 *
11763 * This updates @a pDbgState and the VMCS execution control fields to reflect
11764 * the necessary VM-exits demanded by DBGF and DTrace.
11765 *
11766 * @param pVCpu The cross context virtual CPU structure.
11767 * @param pVmxTransient The VMX-transient structure. May update
11768 * fUpdatedTscOffsettingAndPreemptTimer.
11769 * @param pDbgState The debug state.
11770 */
11771static void hmR0VmxPreRunGuestDebugStateUpdate(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient, PVMXRUNDBGSTATE pDbgState)
11772{
11773 /*
11774 * Take down the dtrace serial number so we can spot changes.
11775 */
11776 pDbgState->uDtraceSettingsSeqNo = VBOXVMM_GET_SETTINGS_SEQ_NO();
11777 ASMCompilerBarrier();
11778
11779 /*
11780 * We'll rebuild most of the middle block of data members (holding the
11781 * current settings) as we go along here, so start by clearing it all.
11782 */
11783 pDbgState->bmXcptExtra = 0;
11784 pDbgState->fCpe1Extra = 0;
11785 pDbgState->fCpe1Unwanted = 0;
11786 pDbgState->fCpe2Extra = 0;
11787 for (unsigned i = 0; i < RT_ELEMENTS(pDbgState->bmExitsToCheck); i++)
11788 pDbgState->bmExitsToCheck[i] = 0;
11789
11790 /*
11791 * Software interrupts (INT XXh) - no idea how to trigger these...
11792 */
11793 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
11794 if ( DBGF_IS_EVENT_ENABLED(pVM, DBGFEVENT_INTERRUPT_SOFTWARE)
11795 || VBOXVMM_INT_SOFTWARE_ENABLED())
11796 {
11797 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_XCPT_OR_NMI);
11798 }
11799
11800 /*
11801 * INT3 breakpoints - triggered by #BP exceptions.
11802 */
11803 if (pVM->dbgf.ro.cEnabledInt3Breakpoints > 0)
11804 pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_BP);
11805
11806 /*
11807 * Exception bitmap and XCPT events+probes.
11808 */
11809 for (int iXcpt = 0; iXcpt < (DBGFEVENT_XCPT_LAST - DBGFEVENT_XCPT_FIRST + 1); iXcpt++)
11810 if (DBGF_IS_EVENT_ENABLED(pVM, (DBGFEVENTTYPE)(DBGFEVENT_XCPT_FIRST + iXcpt)))
11811 pDbgState->bmXcptExtra |= RT_BIT_32(iXcpt);
11812
11813 if (VBOXVMM_XCPT_DE_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_DE);
11814 if (VBOXVMM_XCPT_DB_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_DB);
11815 if (VBOXVMM_XCPT_BP_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_BP);
11816 if (VBOXVMM_XCPT_OF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_OF);
11817 if (VBOXVMM_XCPT_BR_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_BR);
11818 if (VBOXVMM_XCPT_UD_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_UD);
11819 if (VBOXVMM_XCPT_NM_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_NM);
11820 if (VBOXVMM_XCPT_DF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_DF);
11821 if (VBOXVMM_XCPT_TS_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_TS);
11822 if (VBOXVMM_XCPT_NP_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_NP);
11823 if (VBOXVMM_XCPT_SS_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_SS);
11824 if (VBOXVMM_XCPT_GP_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_GP);
11825 if (VBOXVMM_XCPT_PF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_PF);
11826 if (VBOXVMM_XCPT_MF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_MF);
11827 if (VBOXVMM_XCPT_AC_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_AC);
11828 if (VBOXVMM_XCPT_XF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_XF);
11829 if (VBOXVMM_XCPT_VE_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_VE);
11830 if (VBOXVMM_XCPT_SX_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_SX);
11831
11832 if (pDbgState->bmXcptExtra)
11833 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_XCPT_OR_NMI);
11834
11835 /*
11836 * Process events and probes for VM-exits, making sure we get the wanted VM-exits.
11837 *
11838 * Note! This is the reverse of what hmR0VmxHandleExitDtraceEvents does.
11839 * So, when adding/changing/removing please don't forget to update it.
11840 *
11841 * Some of the macros are picking up local variables to save horizontal space,
11842 * (being able to see it in a table is the lesser evil here).
11843 */
11844#define IS_EITHER_ENABLED(a_pVM, a_EventSubName) \
11845 ( DBGF_IS_EVENT_ENABLED(a_pVM, RT_CONCAT(DBGFEVENT_, a_EventSubName)) \
11846 || RT_CONCAT3(VBOXVMM_, a_EventSubName, _ENABLED)() )
11847#define SET_ONLY_XBM_IF_EITHER_EN(a_EventSubName, a_uExit) \
11848 if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
11849 { AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
11850 ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
11851 } else do { } while (0)
11852#define SET_CPE1_XBM_IF_EITHER_EN(a_EventSubName, a_uExit, a_fCtrlProcExec) \
11853 if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
11854 { \
11855 (pDbgState)->fCpe1Extra |= (a_fCtrlProcExec); \
11856 AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
11857 ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
11858 } else do { } while (0)
11859#define SET_CPEU_XBM_IF_EITHER_EN(a_EventSubName, a_uExit, a_fUnwantedCtrlProcExec) \
11860 if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
11861 { \
11862 (pDbgState)->fCpe1Unwanted |= (a_fUnwantedCtrlProcExec); \
11863 AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
11864 ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
11865 } else do { } while (0)
11866#define SET_CPE2_XBM_IF_EITHER_EN(a_EventSubName, a_uExit, a_fCtrlProcExec2) \
11867 if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
11868 { \
11869 (pDbgState)->fCpe2Extra |= (a_fCtrlProcExec2); \
11870 AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
11871 ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
11872 } else do { } while (0)
11873
11874 SET_ONLY_XBM_IF_EITHER_EN(EXIT_TASK_SWITCH, VMX_EXIT_TASK_SWITCH); /* unconditional */
11875 SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_EPT_VIOLATION, VMX_EXIT_EPT_VIOLATION); /* unconditional */
11876 SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_EPT_MISCONFIG, VMX_EXIT_EPT_MISCONFIG); /* unconditional (unless #VE) */
11877 SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_VAPIC_ACCESS, VMX_EXIT_APIC_ACCESS); /* feature dependent, nothing to enable here */
11878 SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_VAPIC_WRITE, VMX_EXIT_APIC_WRITE); /* feature dependent, nothing to enable here */
11879
11880 SET_ONLY_XBM_IF_EITHER_EN(INSTR_CPUID, VMX_EXIT_CPUID); /* unconditional */
11881 SET_ONLY_XBM_IF_EITHER_EN( EXIT_CPUID, VMX_EXIT_CPUID);
11882 SET_ONLY_XBM_IF_EITHER_EN(INSTR_GETSEC, VMX_EXIT_GETSEC); /* unconditional */
11883 SET_ONLY_XBM_IF_EITHER_EN( EXIT_GETSEC, VMX_EXIT_GETSEC);
11884 SET_CPE1_XBM_IF_EITHER_EN(INSTR_HALT, VMX_EXIT_HLT, VMX_PROC_CTLS_HLT_EXIT); /* paranoia */
11885 SET_ONLY_XBM_IF_EITHER_EN( EXIT_HALT, VMX_EXIT_HLT);
11886 SET_ONLY_XBM_IF_EITHER_EN(INSTR_INVD, VMX_EXIT_INVD); /* unconditional */
11887 SET_ONLY_XBM_IF_EITHER_EN( EXIT_INVD, VMX_EXIT_INVD);
11888 SET_CPE1_XBM_IF_EITHER_EN(INSTR_INVLPG, VMX_EXIT_INVLPG, VMX_PROC_CTLS_INVLPG_EXIT);
11889 SET_ONLY_XBM_IF_EITHER_EN( EXIT_INVLPG, VMX_EXIT_INVLPG);
11890 SET_CPE1_XBM_IF_EITHER_EN(INSTR_RDPMC, VMX_EXIT_RDPMC, VMX_PROC_CTLS_RDPMC_EXIT);
11891 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDPMC, VMX_EXIT_RDPMC);
11892 SET_CPE1_XBM_IF_EITHER_EN(INSTR_RDTSC, VMX_EXIT_RDTSC, VMX_PROC_CTLS_RDTSC_EXIT);
11893 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDTSC, VMX_EXIT_RDTSC);
11894 SET_ONLY_XBM_IF_EITHER_EN(INSTR_RSM, VMX_EXIT_RSM); /* unconditional */
11895 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RSM, VMX_EXIT_RSM);
11896 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMM_CALL, VMX_EXIT_VMCALL); /* unconditional */
11897 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMM_CALL, VMX_EXIT_VMCALL);
11898 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMCLEAR, VMX_EXIT_VMCLEAR); /* unconditional */
11899 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMCLEAR, VMX_EXIT_VMCLEAR);
11900 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMLAUNCH, VMX_EXIT_VMLAUNCH); /* unconditional */
11901 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMLAUNCH, VMX_EXIT_VMLAUNCH);
11902 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMPTRLD, VMX_EXIT_VMPTRLD); /* unconditional */
11903 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMPTRLD, VMX_EXIT_VMPTRLD);
11904 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMPTRST, VMX_EXIT_VMPTRST); /* unconditional */
11905 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMPTRST, VMX_EXIT_VMPTRST);
11906 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMREAD, VMX_EXIT_VMREAD); /* unconditional */
11907 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMREAD, VMX_EXIT_VMREAD);
11908 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMRESUME, VMX_EXIT_VMRESUME); /* unconditional */
11909 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMRESUME, VMX_EXIT_VMRESUME);
11910 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMWRITE, VMX_EXIT_VMWRITE); /* unconditional */
11911 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMWRITE, VMX_EXIT_VMWRITE);
11912 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMXOFF, VMX_EXIT_VMXOFF); /* unconditional */
11913 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMXOFF, VMX_EXIT_VMXOFF);
11914 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMXON, VMX_EXIT_VMXON); /* unconditional */
11915 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMXON, VMX_EXIT_VMXON);
11916
11917 if ( IS_EITHER_ENABLED(pVM, INSTR_CRX_READ)
11918 || IS_EITHER_ENABLED(pVM, INSTR_CRX_WRITE))
11919 {
11920 int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR4
11921 | CPUMCTX_EXTRN_APIC_TPR);
11922 AssertRC(rc);
11923
11924#if 0 /** @todo fix me */
11925 pDbgState->fClearCr0Mask = true;
11926 pDbgState->fClearCr4Mask = true;
11927#endif
11928 if (IS_EITHER_ENABLED(pVM, INSTR_CRX_READ))
11929 pDbgState->fCpe1Extra |= VMX_PROC_CTLS_CR3_STORE_EXIT | VMX_PROC_CTLS_CR8_STORE_EXIT;
11930 if (IS_EITHER_ENABLED(pVM, INSTR_CRX_WRITE))
11931 pDbgState->fCpe1Extra |= VMX_PROC_CTLS_CR3_LOAD_EXIT | VMX_PROC_CTLS_CR8_LOAD_EXIT;
11932 pDbgState->fCpe1Unwanted |= VMX_PROC_CTLS_USE_TPR_SHADOW; /* risky? */
11933 /* Note! We currently don't use VMX_VMCS32_CTRL_CR3_TARGET_COUNT. It would
11934 require clearing here and in the loop if we start using it. */
11935 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_MOV_CRX);
11936 }
11937 else
11938 {
11939 if (pDbgState->fClearCr0Mask)
11940 {
11941 pDbgState->fClearCr0Mask = false;
11942 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR0);
11943 }
11944 if (pDbgState->fClearCr4Mask)
11945 {
11946 pDbgState->fClearCr4Mask = false;
11947 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR4);
11948 }
11949 }
11950 SET_ONLY_XBM_IF_EITHER_EN( EXIT_CRX_READ, VMX_EXIT_MOV_CRX);
11951 SET_ONLY_XBM_IF_EITHER_EN( EXIT_CRX_WRITE, VMX_EXIT_MOV_CRX);
11952
11953 if ( IS_EITHER_ENABLED(pVM, INSTR_DRX_READ)
11954 || IS_EITHER_ENABLED(pVM, INSTR_DRX_WRITE))
11955 {
11956 /** @todo later, need to fix handler as it assumes this won't usually happen. */
11957 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_MOV_DRX);
11958 }
11959 SET_ONLY_XBM_IF_EITHER_EN( EXIT_DRX_READ, VMX_EXIT_MOV_DRX);
11960 SET_ONLY_XBM_IF_EITHER_EN( EXIT_DRX_WRITE, VMX_EXIT_MOV_DRX);
11961
11962 SET_CPEU_XBM_IF_EITHER_EN(INSTR_RDMSR, VMX_EXIT_RDMSR, VMX_PROC_CTLS_USE_MSR_BITMAPS); /* risky clearing this? */
11963 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDMSR, VMX_EXIT_RDMSR);
11964 SET_CPEU_XBM_IF_EITHER_EN(INSTR_WRMSR, VMX_EXIT_WRMSR, VMX_PROC_CTLS_USE_MSR_BITMAPS);
11965 SET_ONLY_XBM_IF_EITHER_EN( EXIT_WRMSR, VMX_EXIT_WRMSR);
11966 SET_CPE1_XBM_IF_EITHER_EN(INSTR_MWAIT, VMX_EXIT_MWAIT, VMX_PROC_CTLS_MWAIT_EXIT); /* paranoia */
11967 SET_ONLY_XBM_IF_EITHER_EN( EXIT_MWAIT, VMX_EXIT_MWAIT);
11968 SET_CPE1_XBM_IF_EITHER_EN(INSTR_MONITOR, VMX_EXIT_MONITOR, VMX_PROC_CTLS_MONITOR_EXIT); /* paranoia */
11969 SET_ONLY_XBM_IF_EITHER_EN( EXIT_MONITOR, VMX_EXIT_MONITOR);
11970#if 0 /** @todo too slow, fix handler. */
11971 SET_CPE1_XBM_IF_EITHER_EN(INSTR_PAUSE, VMX_EXIT_PAUSE, VMX_PROC_CTLS_PAUSE_EXIT);
11972#endif
11973 SET_ONLY_XBM_IF_EITHER_EN( EXIT_PAUSE, VMX_EXIT_PAUSE);
11974
11975 if ( IS_EITHER_ENABLED(pVM, INSTR_SGDT)
11976 || IS_EITHER_ENABLED(pVM, INSTR_SIDT)
11977 || IS_EITHER_ENABLED(pVM, INSTR_LGDT)
11978 || IS_EITHER_ENABLED(pVM, INSTR_LIDT))
11979 {
11980 pDbgState->fCpe2Extra |= VMX_PROC_CTLS2_DESC_TABLE_EXIT;
11981 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_GDTR_IDTR_ACCESS);
11982 }
11983 SET_ONLY_XBM_IF_EITHER_EN( EXIT_SGDT, VMX_EXIT_GDTR_IDTR_ACCESS);
11984 SET_ONLY_XBM_IF_EITHER_EN( EXIT_SIDT, VMX_EXIT_GDTR_IDTR_ACCESS);
11985 SET_ONLY_XBM_IF_EITHER_EN( EXIT_LGDT, VMX_EXIT_GDTR_IDTR_ACCESS);
11986 SET_ONLY_XBM_IF_EITHER_EN( EXIT_LIDT, VMX_EXIT_GDTR_IDTR_ACCESS);
11987
11988 if ( IS_EITHER_ENABLED(pVM, INSTR_SLDT)
11989 || IS_EITHER_ENABLED(pVM, INSTR_STR)
11990 || IS_EITHER_ENABLED(pVM, INSTR_LLDT)
11991 || IS_EITHER_ENABLED(pVM, INSTR_LTR))
11992 {
11993 pDbgState->fCpe2Extra |= VMX_PROC_CTLS2_DESC_TABLE_EXIT;
11994 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_LDTR_TR_ACCESS);
11995 }
11996 SET_ONLY_XBM_IF_EITHER_EN( EXIT_SLDT, VMX_EXIT_LDTR_TR_ACCESS);
11997 SET_ONLY_XBM_IF_EITHER_EN( EXIT_STR, VMX_EXIT_LDTR_TR_ACCESS);
11998 SET_ONLY_XBM_IF_EITHER_EN( EXIT_LLDT, VMX_EXIT_LDTR_TR_ACCESS);
11999 SET_ONLY_XBM_IF_EITHER_EN( EXIT_LTR, VMX_EXIT_LDTR_TR_ACCESS);
12000
12001 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_INVEPT, VMX_EXIT_INVEPT); /* unconditional */
12002 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_INVEPT, VMX_EXIT_INVEPT);
12003 SET_CPE1_XBM_IF_EITHER_EN(INSTR_RDTSCP, VMX_EXIT_RDTSCP, VMX_PROC_CTLS_RDTSC_EXIT);
12004 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDTSCP, VMX_EXIT_RDTSCP);
12005 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_INVVPID, VMX_EXIT_INVVPID); /* unconditional */
12006 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_INVVPID, VMX_EXIT_INVVPID);
12007 SET_CPE2_XBM_IF_EITHER_EN(INSTR_WBINVD, VMX_EXIT_WBINVD, VMX_PROC_CTLS2_WBINVD_EXIT);
12008 SET_ONLY_XBM_IF_EITHER_EN( EXIT_WBINVD, VMX_EXIT_WBINVD);
12009 SET_ONLY_XBM_IF_EITHER_EN(INSTR_XSETBV, VMX_EXIT_XSETBV); /* unconditional */
12010 SET_ONLY_XBM_IF_EITHER_EN( EXIT_XSETBV, VMX_EXIT_XSETBV);
12011 SET_CPE2_XBM_IF_EITHER_EN(INSTR_RDRAND, VMX_EXIT_RDRAND, VMX_PROC_CTLS2_RDRAND_EXIT);
12012 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDRAND, VMX_EXIT_RDRAND);
12013 SET_CPE1_XBM_IF_EITHER_EN(INSTR_VMX_INVPCID, VMX_EXIT_INVPCID, VMX_PROC_CTLS_INVLPG_EXIT);
12014 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_INVPCID, VMX_EXIT_INVPCID);
12015 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMFUNC, VMX_EXIT_VMFUNC); /* unconditional for the current setup */
12016 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMFUNC, VMX_EXIT_VMFUNC);
12017 SET_CPE2_XBM_IF_EITHER_EN(INSTR_RDSEED, VMX_EXIT_RDSEED, VMX_PROC_CTLS2_RDSEED_EXIT);
12018 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDSEED, VMX_EXIT_RDSEED);
12019 SET_ONLY_XBM_IF_EITHER_EN(INSTR_XSAVES, VMX_EXIT_XSAVES); /* unconditional (enabled by host, guest cfg) */
12020 SET_ONLY_XBM_IF_EITHER_EN(EXIT_XSAVES, VMX_EXIT_XSAVES);
12021 SET_ONLY_XBM_IF_EITHER_EN(INSTR_XRSTORS, VMX_EXIT_XRSTORS); /* unconditional (enabled by host, guest cfg) */
12022 SET_ONLY_XBM_IF_EITHER_EN( EXIT_XRSTORS, VMX_EXIT_XRSTORS);
12023
12024#undef IS_EITHER_ENABLED
12025#undef SET_ONLY_XBM_IF_EITHER_EN
12026#undef SET_CPE1_XBM_IF_EITHER_EN
12027#undef SET_CPEU_XBM_IF_EITHER_EN
12028#undef SET_CPE2_XBM_IF_EITHER_EN
12029
12030 /*
12031 * Sanitize the control stuff.
12032 */
12033 pDbgState->fCpe2Extra &= g_HmMsrs.u.vmx.ProcCtls2.n.allowed1;
12034 if (pDbgState->fCpe2Extra)
12035 pDbgState->fCpe1Extra |= VMX_PROC_CTLS_USE_SECONDARY_CTLS;
12036 pDbgState->fCpe1Extra &= g_HmMsrs.u.vmx.ProcCtls.n.allowed1;
12037 pDbgState->fCpe1Unwanted &= ~g_HmMsrs.u.vmx.ProcCtls.n.allowed0;
12038 if (pVCpu->hmr0.s.fDebugWantRdTscExit != RT_BOOL(pDbgState->fCpe1Extra & VMX_PROC_CTLS_RDTSC_EXIT))
12039 {
12040 pVCpu->hmr0.s.fDebugWantRdTscExit ^= true;
12041 pVmxTransient->fUpdatedTscOffsettingAndPreemptTimer = false;
12042 }
12043
12044 Log6(("HM: debug state: cpe1=%#RX32 cpeu=%#RX32 cpe2=%#RX32%s%s\n",
12045 pDbgState->fCpe1Extra, pDbgState->fCpe1Unwanted, pDbgState->fCpe2Extra,
12046 pDbgState->fClearCr0Mask ? " clr-cr0" : "",
12047 pDbgState->fClearCr4Mask ? " clr-cr4" : ""));
12048}
12049
12050
12051/**
12052 * Fires off DBGF events and dtrace probes for a VM-exit, when it's
12053 * appropriate.
12054 *
12055 * The caller has checked the VM-exit against the
12056 * VMXRUNDBGSTATE::bmExitsToCheck bitmap. The caller has checked for NMIs
12057 * already, so we don't have to do that either.
12058 *
12059 * @returns Strict VBox status code (i.e. informational status codes too).
12060 * @param pVCpu The cross context virtual CPU structure.
12061 * @param pVmxTransient The VMX-transient structure.
12062 * @param uExitReason The VM-exit reason.
12063 *
12064 * @remarks The name of this function is displayed by dtrace, so keep it short
12065 * and to the point. No longer than 33 chars long, please.
12066 */
12067static VBOXSTRICTRC hmR0VmxHandleExitDtraceEvents(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient, uint32_t uExitReason)
12068{
12069 /*
12070 * Translate the event into a DBGF event (enmEvent + uEventArg) and at the
12071 * same time check whether any corresponding Dtrace event is enabled (fDtrace).
12072 *
12073 * Note! This is the reverse operation of what hmR0VmxPreRunGuestDebugStateUpdate
12074 * does. Must add/change/remove both places. Same ordering, please.
12075 *
12076 * Added/removed events must also be reflected in the next section
12077 * where we dispatch dtrace events.
12078 */
12079 bool fDtrace1 = false;
12080 bool fDtrace2 = false;
12081 DBGFEVENTTYPE enmEvent1 = DBGFEVENT_END;
12082 DBGFEVENTTYPE enmEvent2 = DBGFEVENT_END;
12083 uint32_t uEventArg = 0;
12084#define SET_EXIT(a_EventSubName) \
12085 do { \
12086 enmEvent2 = RT_CONCAT(DBGFEVENT_EXIT_, a_EventSubName); \
12087 fDtrace2 = RT_CONCAT3(VBOXVMM_EXIT_, a_EventSubName, _ENABLED)(); \
12088 } while (0)
12089#define SET_BOTH(a_EventSubName) \
12090 do { \
12091 enmEvent1 = RT_CONCAT(DBGFEVENT_INSTR_, a_EventSubName); \
12092 enmEvent2 = RT_CONCAT(DBGFEVENT_EXIT_, a_EventSubName); \
12093 fDtrace1 = RT_CONCAT3(VBOXVMM_INSTR_, a_EventSubName, _ENABLED)(); \
12094 fDtrace2 = RT_CONCAT3(VBOXVMM_EXIT_, a_EventSubName, _ENABLED)(); \
12095 } while (0)
12096 switch (uExitReason)
12097 {
12098 case VMX_EXIT_MTF:
12099 return hmR0VmxExitMtf(pVCpu, pVmxTransient);
12100
12101 case VMX_EXIT_XCPT_OR_NMI:
12102 {
12103 uint8_t const idxVector = VMX_EXIT_INT_INFO_VECTOR(pVmxTransient->uExitIntInfo);
12104 switch (VMX_EXIT_INT_INFO_TYPE(pVmxTransient->uExitIntInfo))
12105 {
12106 case VMX_EXIT_INT_INFO_TYPE_HW_XCPT:
12107 case VMX_EXIT_INT_INFO_TYPE_SW_XCPT:
12108 case VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT:
12109 if (idxVector <= (unsigned)(DBGFEVENT_XCPT_LAST - DBGFEVENT_XCPT_FIRST))
12110 {
12111 if (VMX_EXIT_INT_INFO_IS_ERROR_CODE_VALID(pVmxTransient->uExitIntInfo))
12112 {
12113 hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
12114 uEventArg = pVmxTransient->uExitIntErrorCode;
12115 }
12116 enmEvent1 = (DBGFEVENTTYPE)(DBGFEVENT_XCPT_FIRST + idxVector);
12117 switch (enmEvent1)
12118 {
12119 case DBGFEVENT_XCPT_DE: fDtrace1 = VBOXVMM_XCPT_DE_ENABLED(); break;
12120 case DBGFEVENT_XCPT_DB: fDtrace1 = VBOXVMM_XCPT_DB_ENABLED(); break;
12121 case DBGFEVENT_XCPT_BP: fDtrace1 = VBOXVMM_XCPT_BP_ENABLED(); break;
12122 case DBGFEVENT_XCPT_OF: fDtrace1 = VBOXVMM_XCPT_OF_ENABLED(); break;
12123 case DBGFEVENT_XCPT_BR: fDtrace1 = VBOXVMM_XCPT_BR_ENABLED(); break;
12124 case DBGFEVENT_XCPT_UD: fDtrace1 = VBOXVMM_XCPT_UD_ENABLED(); break;
12125 case DBGFEVENT_XCPT_NM: fDtrace1 = VBOXVMM_XCPT_NM_ENABLED(); break;
12126 case DBGFEVENT_XCPT_DF: fDtrace1 = VBOXVMM_XCPT_DF_ENABLED(); break;
12127 case DBGFEVENT_XCPT_TS: fDtrace1 = VBOXVMM_XCPT_TS_ENABLED(); break;
12128 case DBGFEVENT_XCPT_NP: fDtrace1 = VBOXVMM_XCPT_NP_ENABLED(); break;
12129 case DBGFEVENT_XCPT_SS: fDtrace1 = VBOXVMM_XCPT_SS_ENABLED(); break;
12130 case DBGFEVENT_XCPT_GP: fDtrace1 = VBOXVMM_XCPT_GP_ENABLED(); break;
12131 case DBGFEVENT_XCPT_PF: fDtrace1 = VBOXVMM_XCPT_PF_ENABLED(); break;
12132 case DBGFEVENT_XCPT_MF: fDtrace1 = VBOXVMM_XCPT_MF_ENABLED(); break;
12133 case DBGFEVENT_XCPT_AC: fDtrace1 = VBOXVMM_XCPT_AC_ENABLED(); break;
12134 case DBGFEVENT_XCPT_XF: fDtrace1 = VBOXVMM_XCPT_XF_ENABLED(); break;
12135 case DBGFEVENT_XCPT_VE: fDtrace1 = VBOXVMM_XCPT_VE_ENABLED(); break;
12136 case DBGFEVENT_XCPT_SX: fDtrace1 = VBOXVMM_XCPT_SX_ENABLED(); break;
12137 default: break;
12138 }
12139 }
12140 else
12141 AssertFailed();
12142 break;
12143
12144 case VMX_EXIT_INT_INFO_TYPE_SW_INT:
12145 uEventArg = idxVector;
12146 enmEvent1 = DBGFEVENT_INTERRUPT_SOFTWARE;
12147 fDtrace1 = VBOXVMM_INT_SOFTWARE_ENABLED();
12148 break;
12149 }
12150 break;
12151 }
12152
12153 case VMX_EXIT_TRIPLE_FAULT:
12154 enmEvent1 = DBGFEVENT_TRIPLE_FAULT;
12155 //fDtrace1 = VBOXVMM_EXIT_TRIPLE_FAULT_ENABLED();
12156 break;
12157 case VMX_EXIT_TASK_SWITCH: SET_EXIT(TASK_SWITCH); break;
12158 case VMX_EXIT_EPT_VIOLATION: SET_EXIT(VMX_EPT_VIOLATION); break;
12159 case VMX_EXIT_EPT_MISCONFIG: SET_EXIT(VMX_EPT_MISCONFIG); break;
12160 case VMX_EXIT_APIC_ACCESS: SET_EXIT(VMX_VAPIC_ACCESS); break;
12161 case VMX_EXIT_APIC_WRITE: SET_EXIT(VMX_VAPIC_WRITE); break;
12162
12163 /* Instruction specific VM-exits: */
12164 case VMX_EXIT_CPUID: SET_BOTH(CPUID); break;
12165 case VMX_EXIT_GETSEC: SET_BOTH(GETSEC); break;
12166 case VMX_EXIT_HLT: SET_BOTH(HALT); break;
12167 case VMX_EXIT_INVD: SET_BOTH(INVD); break;
12168 case VMX_EXIT_INVLPG: SET_BOTH(INVLPG); break;
12169 case VMX_EXIT_RDPMC: SET_BOTH(RDPMC); break;
12170 case VMX_EXIT_RDTSC: SET_BOTH(RDTSC); break;
12171 case VMX_EXIT_RSM: SET_BOTH(RSM); break;
12172 case VMX_EXIT_VMCALL: SET_BOTH(VMM_CALL); break;
12173 case VMX_EXIT_VMCLEAR: SET_BOTH(VMX_VMCLEAR); break;
12174 case VMX_EXIT_VMLAUNCH: SET_BOTH(VMX_VMLAUNCH); break;
12175 case VMX_EXIT_VMPTRLD: SET_BOTH(VMX_VMPTRLD); break;
12176 case VMX_EXIT_VMPTRST: SET_BOTH(VMX_VMPTRST); break;
12177 case VMX_EXIT_VMREAD: SET_BOTH(VMX_VMREAD); break;
12178 case VMX_EXIT_VMRESUME: SET_BOTH(VMX_VMRESUME); break;
12179 case VMX_EXIT_VMWRITE: SET_BOTH(VMX_VMWRITE); break;
12180 case VMX_EXIT_VMXOFF: SET_BOTH(VMX_VMXOFF); break;
12181 case VMX_EXIT_VMXON: SET_BOTH(VMX_VMXON); break;
12182 case VMX_EXIT_MOV_CRX:
12183 hmR0VmxReadExitQualVmcs(pVmxTransient);
12184 if (VMX_EXIT_QUAL_CRX_ACCESS(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_CRX_ACCESS_READ)
12185 SET_BOTH(CRX_READ);
12186 else
12187 SET_BOTH(CRX_WRITE);
12188 uEventArg = VMX_EXIT_QUAL_CRX_REGISTER(pVmxTransient->uExitQual);
12189 break;
12190 case VMX_EXIT_MOV_DRX:
12191 hmR0VmxReadExitQualVmcs(pVmxTransient);
12192 if ( VMX_EXIT_QUAL_DRX_DIRECTION(pVmxTransient->uExitQual)
12193 == VMX_EXIT_QUAL_DRX_DIRECTION_READ)
12194 SET_BOTH(DRX_READ);
12195 else
12196 SET_BOTH(DRX_WRITE);
12197 uEventArg = VMX_EXIT_QUAL_DRX_REGISTER(pVmxTransient->uExitQual);
12198 break;
12199 case VMX_EXIT_RDMSR: SET_BOTH(RDMSR); break;
12200 case VMX_EXIT_WRMSR: SET_BOTH(WRMSR); break;
12201 case VMX_EXIT_MWAIT: SET_BOTH(MWAIT); break;
12202 case VMX_EXIT_MONITOR: SET_BOTH(MONITOR); break;
12203 case VMX_EXIT_PAUSE: SET_BOTH(PAUSE); break;
12204 case VMX_EXIT_GDTR_IDTR_ACCESS:
12205 hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
12206 switch (RT_BF_GET(pVmxTransient->ExitInstrInfo.u, VMX_BF_XDTR_INSINFO_INSTR_ID))
12207 {
12208 case VMX_XDTR_INSINFO_II_SGDT: SET_BOTH(SGDT); break;
12209 case VMX_XDTR_INSINFO_II_SIDT: SET_BOTH(SIDT); break;
12210 case VMX_XDTR_INSINFO_II_LGDT: SET_BOTH(LGDT); break;
12211 case VMX_XDTR_INSINFO_II_LIDT: SET_BOTH(LIDT); break;
12212 }
12213 break;
12214
12215 case VMX_EXIT_LDTR_TR_ACCESS:
12216 hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
12217 switch (RT_BF_GET(pVmxTransient->ExitInstrInfo.u, VMX_BF_YYTR_INSINFO_INSTR_ID))
12218 {
12219 case VMX_YYTR_INSINFO_II_SLDT: SET_BOTH(SLDT); break;
12220 case VMX_YYTR_INSINFO_II_STR: SET_BOTH(STR); break;
12221 case VMX_YYTR_INSINFO_II_LLDT: SET_BOTH(LLDT); break;
12222 case VMX_YYTR_INSINFO_II_LTR: SET_BOTH(LTR); break;
12223 }
12224 break;
12225
12226 case VMX_EXIT_INVEPT: SET_BOTH(VMX_INVEPT); break;
12227 case VMX_EXIT_RDTSCP: SET_BOTH(RDTSCP); break;
12228 case VMX_EXIT_INVVPID: SET_BOTH(VMX_INVVPID); break;
12229 case VMX_EXIT_WBINVD: SET_BOTH(WBINVD); break;
12230 case VMX_EXIT_XSETBV: SET_BOTH(XSETBV); break;
12231 case VMX_EXIT_RDRAND: SET_BOTH(RDRAND); break;
12232 case VMX_EXIT_INVPCID: SET_BOTH(VMX_INVPCID); break;
12233 case VMX_EXIT_VMFUNC: SET_BOTH(VMX_VMFUNC); break;
12234 case VMX_EXIT_RDSEED: SET_BOTH(RDSEED); break;
12235 case VMX_EXIT_XSAVES: SET_BOTH(XSAVES); break;
12236 case VMX_EXIT_XRSTORS: SET_BOTH(XRSTORS); break;
12237
12238 /* Events that aren't relevant at this point. */
12239 case VMX_EXIT_EXT_INT:
12240 case VMX_EXIT_INT_WINDOW:
12241 case VMX_EXIT_NMI_WINDOW:
12242 case VMX_EXIT_TPR_BELOW_THRESHOLD:
12243 case VMX_EXIT_PREEMPT_TIMER:
12244 case VMX_EXIT_IO_INSTR:
12245 break;
12246
12247 /* Errors and unexpected events. */
12248 case VMX_EXIT_INIT_SIGNAL:
12249 case VMX_EXIT_SIPI:
12250 case VMX_EXIT_IO_SMI:
12251 case VMX_EXIT_SMI:
12252 case VMX_EXIT_ERR_INVALID_GUEST_STATE:
12253 case VMX_EXIT_ERR_MSR_LOAD:
12254 case VMX_EXIT_ERR_MACHINE_CHECK:
12255 case VMX_EXIT_PML_FULL:
12256 case VMX_EXIT_VIRTUALIZED_EOI:
12257 break;
12258
12259 default:
12260 AssertMsgFailed(("Unexpected VM-exit=%#x\n", uExitReason));
12261 break;
12262 }
12263#undef SET_BOTH
12264#undef SET_EXIT
12265
12266 /*
12267 * Dtrace tracepoints go first. We do them here at once so we don't
12268 * have to copy the guest state saving and stuff a few dozen times.
12269 * Down side is that we've got to repeat the switch, though this time
12270 * we use enmEvent since the probes are a subset of what DBGF does.
12271 */
12272 if (fDtrace1 || fDtrace2)
12273 {
12274 hmR0VmxReadExitQualVmcs(pVmxTransient);
12275 hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
12276 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
12277 switch (enmEvent1)
12278 {
12279 /** @todo consider which extra parameters would be helpful for each probe. */
12280 case DBGFEVENT_END: break;
12281 case DBGFEVENT_XCPT_DE: VBOXVMM_XCPT_DE(pVCpu, pCtx); break;
12282 case DBGFEVENT_XCPT_DB: VBOXVMM_XCPT_DB(pVCpu, pCtx, pCtx->dr[6]); break;
12283 case DBGFEVENT_XCPT_BP: VBOXVMM_XCPT_BP(pVCpu, pCtx); break;
12284 case DBGFEVENT_XCPT_OF: VBOXVMM_XCPT_OF(pVCpu, pCtx); break;
12285 case DBGFEVENT_XCPT_BR: VBOXVMM_XCPT_BR(pVCpu, pCtx); break;
12286 case DBGFEVENT_XCPT_UD: VBOXVMM_XCPT_UD(pVCpu, pCtx); break;
12287 case DBGFEVENT_XCPT_NM: VBOXVMM_XCPT_NM(pVCpu, pCtx); break;
12288 case DBGFEVENT_XCPT_DF: VBOXVMM_XCPT_DF(pVCpu, pCtx); break;
12289 case DBGFEVENT_XCPT_TS: VBOXVMM_XCPT_TS(pVCpu, pCtx, uEventArg); break;
12290 case DBGFEVENT_XCPT_NP: VBOXVMM_XCPT_NP(pVCpu, pCtx, uEventArg); break;
12291 case DBGFEVENT_XCPT_SS: VBOXVMM_XCPT_SS(pVCpu, pCtx, uEventArg); break;
12292 case DBGFEVENT_XCPT_GP: VBOXVMM_XCPT_GP(pVCpu, pCtx, uEventArg); break;
12293 case DBGFEVENT_XCPT_PF: VBOXVMM_XCPT_PF(pVCpu, pCtx, uEventArg, pCtx->cr2); break;
12294 case DBGFEVENT_XCPT_MF: VBOXVMM_XCPT_MF(pVCpu, pCtx); break;
12295 case DBGFEVENT_XCPT_AC: VBOXVMM_XCPT_AC(pVCpu, pCtx); break;
12296 case DBGFEVENT_XCPT_XF: VBOXVMM_XCPT_XF(pVCpu, pCtx); break;
12297 case DBGFEVENT_XCPT_VE: VBOXVMM_XCPT_VE(pVCpu, pCtx); break;
12298 case DBGFEVENT_XCPT_SX: VBOXVMM_XCPT_SX(pVCpu, pCtx, uEventArg); break;
12299 case DBGFEVENT_INTERRUPT_SOFTWARE: VBOXVMM_INT_SOFTWARE(pVCpu, pCtx, (uint8_t)uEventArg); break;
12300 case DBGFEVENT_INSTR_CPUID: VBOXVMM_INSTR_CPUID(pVCpu, pCtx, pCtx->eax, pCtx->ecx); break;
12301 case DBGFEVENT_INSTR_GETSEC: VBOXVMM_INSTR_GETSEC(pVCpu, pCtx); break;
12302 case DBGFEVENT_INSTR_HALT: VBOXVMM_INSTR_HALT(pVCpu, pCtx); break;
12303 case DBGFEVENT_INSTR_INVD: VBOXVMM_INSTR_INVD(pVCpu, pCtx); break;
12304 case DBGFEVENT_INSTR_INVLPG: VBOXVMM_INSTR_INVLPG(pVCpu, pCtx); break;
12305 case DBGFEVENT_INSTR_RDPMC: VBOXVMM_INSTR_RDPMC(pVCpu, pCtx); break;
12306 case DBGFEVENT_INSTR_RDTSC: VBOXVMM_INSTR_RDTSC(pVCpu, pCtx); break;
12307 case DBGFEVENT_INSTR_RSM: VBOXVMM_INSTR_RSM(pVCpu, pCtx); break;
12308 case DBGFEVENT_INSTR_CRX_READ: VBOXVMM_INSTR_CRX_READ(pVCpu, pCtx, (uint8_t)uEventArg); break;
12309 case DBGFEVENT_INSTR_CRX_WRITE: VBOXVMM_INSTR_CRX_WRITE(pVCpu, pCtx, (uint8_t)uEventArg); break;
12310 case DBGFEVENT_INSTR_DRX_READ: VBOXVMM_INSTR_DRX_READ(pVCpu, pCtx, (uint8_t)uEventArg); break;
12311 case DBGFEVENT_INSTR_DRX_WRITE: VBOXVMM_INSTR_DRX_WRITE(pVCpu, pCtx, (uint8_t)uEventArg); break;
12312 case DBGFEVENT_INSTR_RDMSR: VBOXVMM_INSTR_RDMSR(pVCpu, pCtx, pCtx->ecx); break;
12313 case DBGFEVENT_INSTR_WRMSR: VBOXVMM_INSTR_WRMSR(pVCpu, pCtx, pCtx->ecx,
12314 RT_MAKE_U64(pCtx->eax, pCtx->edx)); break;
12315 case DBGFEVENT_INSTR_MWAIT: VBOXVMM_INSTR_MWAIT(pVCpu, pCtx); break;
12316 case DBGFEVENT_INSTR_MONITOR: VBOXVMM_INSTR_MONITOR(pVCpu, pCtx); break;
12317 case DBGFEVENT_INSTR_PAUSE: VBOXVMM_INSTR_PAUSE(pVCpu, pCtx); break;
12318 case DBGFEVENT_INSTR_SGDT: VBOXVMM_INSTR_SGDT(pVCpu, pCtx); break;
12319 case DBGFEVENT_INSTR_SIDT: VBOXVMM_INSTR_SIDT(pVCpu, pCtx); break;
12320 case DBGFEVENT_INSTR_LGDT: VBOXVMM_INSTR_LGDT(pVCpu, pCtx); break;
12321 case DBGFEVENT_INSTR_LIDT: VBOXVMM_INSTR_LIDT(pVCpu, pCtx); break;
12322 case DBGFEVENT_INSTR_SLDT: VBOXVMM_INSTR_SLDT(pVCpu, pCtx); break;
12323 case DBGFEVENT_INSTR_STR: VBOXVMM_INSTR_STR(pVCpu, pCtx); break;
12324 case DBGFEVENT_INSTR_LLDT: VBOXVMM_INSTR_LLDT(pVCpu, pCtx); break;
12325 case DBGFEVENT_INSTR_LTR: VBOXVMM_INSTR_LTR(pVCpu, pCtx); break;
12326 case DBGFEVENT_INSTR_RDTSCP: VBOXVMM_INSTR_RDTSCP(pVCpu, pCtx); break;
12327 case DBGFEVENT_INSTR_WBINVD: VBOXVMM_INSTR_WBINVD(pVCpu, pCtx); break;
12328 case DBGFEVENT_INSTR_XSETBV: VBOXVMM_INSTR_XSETBV(pVCpu, pCtx); break;
12329 case DBGFEVENT_INSTR_RDRAND: VBOXVMM_INSTR_RDRAND(pVCpu, pCtx); break;
12330 case DBGFEVENT_INSTR_RDSEED: VBOXVMM_INSTR_RDSEED(pVCpu, pCtx); break;
12331 case DBGFEVENT_INSTR_XSAVES: VBOXVMM_INSTR_XSAVES(pVCpu, pCtx); break;
12332 case DBGFEVENT_INSTR_XRSTORS: VBOXVMM_INSTR_XRSTORS(pVCpu, pCtx); break;
12333 case DBGFEVENT_INSTR_VMM_CALL: VBOXVMM_INSTR_VMM_CALL(pVCpu, pCtx); break;
12334 case DBGFEVENT_INSTR_VMX_VMCLEAR: VBOXVMM_INSTR_VMX_VMCLEAR(pVCpu, pCtx); break;
12335 case DBGFEVENT_INSTR_VMX_VMLAUNCH: VBOXVMM_INSTR_VMX_VMLAUNCH(pVCpu, pCtx); break;
12336 case DBGFEVENT_INSTR_VMX_VMPTRLD: VBOXVMM_INSTR_VMX_VMPTRLD(pVCpu, pCtx); break;
12337 case DBGFEVENT_INSTR_VMX_VMPTRST: VBOXVMM_INSTR_VMX_VMPTRST(pVCpu, pCtx); break;
12338 case DBGFEVENT_INSTR_VMX_VMREAD: VBOXVMM_INSTR_VMX_VMREAD(pVCpu, pCtx); break;
12339 case DBGFEVENT_INSTR_VMX_VMRESUME: VBOXVMM_INSTR_VMX_VMRESUME(pVCpu, pCtx); break;
12340 case DBGFEVENT_INSTR_VMX_VMWRITE: VBOXVMM_INSTR_VMX_VMWRITE(pVCpu, pCtx); break;
12341 case DBGFEVENT_INSTR_VMX_VMXOFF: VBOXVMM_INSTR_VMX_VMXOFF(pVCpu, pCtx); break;
12342 case DBGFEVENT_INSTR_VMX_VMXON: VBOXVMM_INSTR_VMX_VMXON(pVCpu, pCtx); break;
12343 case DBGFEVENT_INSTR_VMX_INVEPT: VBOXVMM_INSTR_VMX_INVEPT(pVCpu, pCtx); break;
12344 case DBGFEVENT_INSTR_VMX_INVVPID: VBOXVMM_INSTR_VMX_INVVPID(pVCpu, pCtx); break;
12345 case DBGFEVENT_INSTR_VMX_INVPCID: VBOXVMM_INSTR_VMX_INVPCID(pVCpu, pCtx); break;
12346 case DBGFEVENT_INSTR_VMX_VMFUNC: VBOXVMM_INSTR_VMX_VMFUNC(pVCpu, pCtx); break;
12347 default: AssertMsgFailed(("enmEvent1=%d uExitReason=%d\n", enmEvent1, uExitReason)); break;
12348 }
12349 switch (enmEvent2)
12350 {
12351 /** @todo consider which extra parameters would be helpful for each probe. */
12352 case DBGFEVENT_END: break;
12353 case DBGFEVENT_EXIT_TASK_SWITCH: VBOXVMM_EXIT_TASK_SWITCH(pVCpu, pCtx); break;
12354 case DBGFEVENT_EXIT_CPUID: VBOXVMM_EXIT_CPUID(pVCpu, pCtx, pCtx->eax, pCtx->ecx); break;
12355 case DBGFEVENT_EXIT_GETSEC: VBOXVMM_EXIT_GETSEC(pVCpu, pCtx); break;
12356 case DBGFEVENT_EXIT_HALT: VBOXVMM_EXIT_HALT(pVCpu, pCtx); break;
12357 case DBGFEVENT_EXIT_INVD: VBOXVMM_EXIT_INVD(pVCpu, pCtx); break;
12358 case DBGFEVENT_EXIT_INVLPG: VBOXVMM_EXIT_INVLPG(pVCpu, pCtx); break;
12359 case DBGFEVENT_EXIT_RDPMC: VBOXVMM_EXIT_RDPMC(pVCpu, pCtx); break;
12360 case DBGFEVENT_EXIT_RDTSC: VBOXVMM_EXIT_RDTSC(pVCpu, pCtx); break;
12361 case DBGFEVENT_EXIT_RSM: VBOXVMM_EXIT_RSM(pVCpu, pCtx); break;
12362 case DBGFEVENT_EXIT_CRX_READ: VBOXVMM_EXIT_CRX_READ(pVCpu, pCtx, (uint8_t)uEventArg); break;
12363 case DBGFEVENT_EXIT_CRX_WRITE: VBOXVMM_EXIT_CRX_WRITE(pVCpu, pCtx, (uint8_t)uEventArg); break;
12364 case DBGFEVENT_EXIT_DRX_READ: VBOXVMM_EXIT_DRX_READ(pVCpu, pCtx, (uint8_t)uEventArg); break;
12365 case DBGFEVENT_EXIT_DRX_WRITE: VBOXVMM_EXIT_DRX_WRITE(pVCpu, pCtx, (uint8_t)uEventArg); break;
12366 case DBGFEVENT_EXIT_RDMSR: VBOXVMM_EXIT_RDMSR(pVCpu, pCtx, pCtx->ecx); break;
12367 case DBGFEVENT_EXIT_WRMSR: VBOXVMM_EXIT_WRMSR(pVCpu, pCtx, pCtx->ecx,
12368 RT_MAKE_U64(pCtx->eax, pCtx->edx)); break;
12369 case DBGFEVENT_EXIT_MWAIT: VBOXVMM_EXIT_MWAIT(pVCpu, pCtx); break;
12370 case DBGFEVENT_EXIT_MONITOR: VBOXVMM_EXIT_MONITOR(pVCpu, pCtx); break;
12371 case DBGFEVENT_EXIT_PAUSE: VBOXVMM_EXIT_PAUSE(pVCpu, pCtx); break;
12372 case DBGFEVENT_EXIT_SGDT: VBOXVMM_EXIT_SGDT(pVCpu, pCtx); break;
12373 case DBGFEVENT_EXIT_SIDT: VBOXVMM_EXIT_SIDT(pVCpu, pCtx); break;
12374 case DBGFEVENT_EXIT_LGDT: VBOXVMM_EXIT_LGDT(pVCpu, pCtx); break;
12375 case DBGFEVENT_EXIT_LIDT: VBOXVMM_EXIT_LIDT(pVCpu, pCtx); break;
12376 case DBGFEVENT_EXIT_SLDT: VBOXVMM_EXIT_SLDT(pVCpu, pCtx); break;
12377 case DBGFEVENT_EXIT_STR: VBOXVMM_EXIT_STR(pVCpu, pCtx); break;
12378 case DBGFEVENT_EXIT_LLDT: VBOXVMM_EXIT_LLDT(pVCpu, pCtx); break;
12379 case DBGFEVENT_EXIT_LTR: VBOXVMM_EXIT_LTR(pVCpu, pCtx); break;
12380 case DBGFEVENT_EXIT_RDTSCP: VBOXVMM_EXIT_RDTSCP(pVCpu, pCtx); break;
12381 case DBGFEVENT_EXIT_WBINVD: VBOXVMM_EXIT_WBINVD(pVCpu, pCtx); break;
12382 case DBGFEVENT_EXIT_XSETBV: VBOXVMM_EXIT_XSETBV(pVCpu, pCtx); break;
12383 case DBGFEVENT_EXIT_RDRAND: VBOXVMM_EXIT_RDRAND(pVCpu, pCtx); break;
12384 case DBGFEVENT_EXIT_RDSEED: VBOXVMM_EXIT_RDSEED(pVCpu, pCtx); break;
12385 case DBGFEVENT_EXIT_XSAVES: VBOXVMM_EXIT_XSAVES(pVCpu, pCtx); break;
12386 case DBGFEVENT_EXIT_XRSTORS: VBOXVMM_EXIT_XRSTORS(pVCpu, pCtx); break;
12387 case DBGFEVENT_EXIT_VMM_CALL: VBOXVMM_EXIT_VMM_CALL(pVCpu, pCtx); break;
12388 case DBGFEVENT_EXIT_VMX_VMCLEAR: VBOXVMM_EXIT_VMX_VMCLEAR(pVCpu, pCtx); break;
12389 case DBGFEVENT_EXIT_VMX_VMLAUNCH: VBOXVMM_EXIT_VMX_VMLAUNCH(pVCpu, pCtx); break;
12390 case DBGFEVENT_EXIT_VMX_VMPTRLD: VBOXVMM_EXIT_VMX_VMPTRLD(pVCpu, pCtx); break;
12391 case DBGFEVENT_EXIT_VMX_VMPTRST: VBOXVMM_EXIT_VMX_VMPTRST(pVCpu, pCtx); break;
12392 case DBGFEVENT_EXIT_VMX_VMREAD: VBOXVMM_EXIT_VMX_VMREAD(pVCpu, pCtx); break;
12393 case DBGFEVENT_EXIT_VMX_VMRESUME: VBOXVMM_EXIT_VMX_VMRESUME(pVCpu, pCtx); break;
12394 case DBGFEVENT_EXIT_VMX_VMWRITE: VBOXVMM_EXIT_VMX_VMWRITE(pVCpu, pCtx); break;
12395 case DBGFEVENT_EXIT_VMX_VMXOFF: VBOXVMM_EXIT_VMX_VMXOFF(pVCpu, pCtx); break;
12396 case DBGFEVENT_EXIT_VMX_VMXON: VBOXVMM_EXIT_VMX_VMXON(pVCpu, pCtx); break;
12397 case DBGFEVENT_EXIT_VMX_INVEPT: VBOXVMM_EXIT_VMX_INVEPT(pVCpu, pCtx); break;
12398 case DBGFEVENT_EXIT_VMX_INVVPID: VBOXVMM_EXIT_VMX_INVVPID(pVCpu, pCtx); break;
12399 case DBGFEVENT_EXIT_VMX_INVPCID: VBOXVMM_EXIT_VMX_INVPCID(pVCpu, pCtx); break;
12400 case DBGFEVENT_EXIT_VMX_VMFUNC: VBOXVMM_EXIT_VMX_VMFUNC(pVCpu, pCtx); break;
12401 case DBGFEVENT_EXIT_VMX_EPT_MISCONFIG: VBOXVMM_EXIT_VMX_EPT_MISCONFIG(pVCpu, pCtx); break;
12402 case DBGFEVENT_EXIT_VMX_EPT_VIOLATION: VBOXVMM_EXIT_VMX_EPT_VIOLATION(pVCpu, pCtx); break;
12403 case DBGFEVENT_EXIT_VMX_VAPIC_ACCESS: VBOXVMM_EXIT_VMX_VAPIC_ACCESS(pVCpu, pCtx); break;
12404 case DBGFEVENT_EXIT_VMX_VAPIC_WRITE: VBOXVMM_EXIT_VMX_VAPIC_WRITE(pVCpu, pCtx); break;
12405 default: AssertMsgFailed(("enmEvent2=%d uExitReason=%d\n", enmEvent2, uExitReason)); break;
12406 }
12407 }
12408
12409 /*
12410 * Fire of the DBGF event, if enabled (our check here is just a quick one,
12411 * the DBGF call will do a full check).
12412 *
12413 * Note! DBGF sets DBGFEVENT_INTERRUPT_SOFTWARE in the bitmap.
12414 * Note! If we have to events, we prioritize the first, i.e. the instruction
12415 * one, in order to avoid event nesting.
12416 */
12417 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
12418 if ( enmEvent1 != DBGFEVENT_END
12419 && DBGF_IS_EVENT_ENABLED(pVM, enmEvent1))
12420 {
12421 hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
12422 VBOXSTRICTRC rcStrict = DBGFEventGenericWithArgs(pVM, pVCpu, enmEvent1, DBGFEVENTCTX_HM, 1, uEventArg);
12423 if (rcStrict != VINF_SUCCESS)
12424 return rcStrict;
12425 }
12426 else if ( enmEvent2 != DBGFEVENT_END
12427 && DBGF_IS_EVENT_ENABLED(pVM, enmEvent2))
12428 {
12429 hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
12430 VBOXSTRICTRC rcStrict = DBGFEventGenericWithArgs(pVM, pVCpu, enmEvent2, DBGFEVENTCTX_HM, 1, uEventArg);
12431 if (rcStrict != VINF_SUCCESS)
12432 return rcStrict;
12433 }
12434
12435 return VINF_SUCCESS;
12436}
12437
12438
12439/**
12440 * Single-stepping VM-exit filtering.
12441 *
12442 * This is preprocessing the VM-exits and deciding whether we've gotten far
12443 * enough to return VINF_EM_DBG_STEPPED already. If not, normal VM-exit
12444 * handling is performed.
12445 *
12446 * @returns Strict VBox status code (i.e. informational status codes too).
12447 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
12448 * @param pVmxTransient The VMX-transient structure.
12449 * @param pDbgState The debug state.
12450 */
12451DECLINLINE(VBOXSTRICTRC) hmR0VmxRunDebugHandleExit(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient, PVMXRUNDBGSTATE pDbgState)
12452{
12453 /*
12454 * Expensive (saves context) generic dtrace VM-exit probe.
12455 */
12456 uint32_t const uExitReason = pVmxTransient->uExitReason;
12457 if (!VBOXVMM_R0_HMVMX_VMEXIT_ENABLED())
12458 { /* more likely */ }
12459 else
12460 {
12461 hmR0VmxReadExitQualVmcs(pVmxTransient);
12462 int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
12463 AssertRC(rc);
12464 VBOXVMM_R0_HMVMX_VMEXIT(pVCpu, &pVCpu->cpum.GstCtx, pVmxTransient->uExitReason, pVmxTransient->uExitQual);
12465 }
12466
12467 /*
12468 * Check for host NMI, just to get that out of the way.
12469 */
12470 if (uExitReason != VMX_EXIT_XCPT_OR_NMI)
12471 { /* normally likely */ }
12472 else
12473 {
12474 hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
12475 uint32_t const uIntType = VMX_EXIT_INT_INFO_TYPE(pVmxTransient->uExitIntInfo);
12476 if (uIntType == VMX_EXIT_INT_INFO_TYPE_NMI)
12477 return hmR0VmxExitHostNmi(pVCpu, pVmxTransient->pVmcsInfo);
12478 }
12479
12480 /*
12481 * Check for single stepping event if we're stepping.
12482 */
12483 if (pVCpu->hm.s.fSingleInstruction)
12484 {
12485 switch (uExitReason)
12486 {
12487 case VMX_EXIT_MTF:
12488 return hmR0VmxExitMtf(pVCpu, pVmxTransient);
12489
12490 /* Various events: */
12491 case VMX_EXIT_XCPT_OR_NMI:
12492 case VMX_EXIT_EXT_INT:
12493 case VMX_EXIT_TRIPLE_FAULT:
12494 case VMX_EXIT_INT_WINDOW:
12495 case VMX_EXIT_NMI_WINDOW:
12496 case VMX_EXIT_TASK_SWITCH:
12497 case VMX_EXIT_TPR_BELOW_THRESHOLD:
12498 case VMX_EXIT_APIC_ACCESS:
12499 case VMX_EXIT_EPT_VIOLATION:
12500 case VMX_EXIT_EPT_MISCONFIG:
12501 case VMX_EXIT_PREEMPT_TIMER:
12502
12503 /* Instruction specific VM-exits: */
12504 case VMX_EXIT_CPUID:
12505 case VMX_EXIT_GETSEC:
12506 case VMX_EXIT_HLT:
12507 case VMX_EXIT_INVD:
12508 case VMX_EXIT_INVLPG:
12509 case VMX_EXIT_RDPMC:
12510 case VMX_EXIT_RDTSC:
12511 case VMX_EXIT_RSM:
12512 case VMX_EXIT_VMCALL:
12513 case VMX_EXIT_VMCLEAR:
12514 case VMX_EXIT_VMLAUNCH:
12515 case VMX_EXIT_VMPTRLD:
12516 case VMX_EXIT_VMPTRST:
12517 case VMX_EXIT_VMREAD:
12518 case VMX_EXIT_VMRESUME:
12519 case VMX_EXIT_VMWRITE:
12520 case VMX_EXIT_VMXOFF:
12521 case VMX_EXIT_VMXON:
12522 case VMX_EXIT_MOV_CRX:
12523 case VMX_EXIT_MOV_DRX:
12524 case VMX_EXIT_IO_INSTR:
12525 case VMX_EXIT_RDMSR:
12526 case VMX_EXIT_WRMSR:
12527 case VMX_EXIT_MWAIT:
12528 case VMX_EXIT_MONITOR:
12529 case VMX_EXIT_PAUSE:
12530 case VMX_EXIT_GDTR_IDTR_ACCESS:
12531 case VMX_EXIT_LDTR_TR_ACCESS:
12532 case VMX_EXIT_INVEPT:
12533 case VMX_EXIT_RDTSCP:
12534 case VMX_EXIT_INVVPID:
12535 case VMX_EXIT_WBINVD:
12536 case VMX_EXIT_XSETBV:
12537 case VMX_EXIT_RDRAND:
12538 case VMX_EXIT_INVPCID:
12539 case VMX_EXIT_VMFUNC:
12540 case VMX_EXIT_RDSEED:
12541 case VMX_EXIT_XSAVES:
12542 case VMX_EXIT_XRSTORS:
12543 {
12544 int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
12545 AssertRCReturn(rc, rc);
12546 if ( pVCpu->cpum.GstCtx.rip != pDbgState->uRipStart
12547 || pVCpu->cpum.GstCtx.cs.Sel != pDbgState->uCsStart)
12548 return VINF_EM_DBG_STEPPED;
12549 break;
12550 }
12551
12552 /* Errors and unexpected events: */
12553 case VMX_EXIT_INIT_SIGNAL:
12554 case VMX_EXIT_SIPI:
12555 case VMX_EXIT_IO_SMI:
12556 case VMX_EXIT_SMI:
12557 case VMX_EXIT_ERR_INVALID_GUEST_STATE:
12558 case VMX_EXIT_ERR_MSR_LOAD:
12559 case VMX_EXIT_ERR_MACHINE_CHECK:
12560 case VMX_EXIT_PML_FULL:
12561 case VMX_EXIT_VIRTUALIZED_EOI:
12562 case VMX_EXIT_APIC_WRITE: /* Some talk about this being fault like, so I guess we must process it? */
12563 break;
12564
12565 default:
12566 AssertMsgFailed(("Unexpected VM-exit=%#x\n", uExitReason));
12567 break;
12568 }
12569 }
12570
12571 /*
12572 * Check for debugger event breakpoints and dtrace probes.
12573 */
12574 if ( uExitReason < RT_ELEMENTS(pDbgState->bmExitsToCheck) * 32U
12575 && ASMBitTest(pDbgState->bmExitsToCheck, uExitReason) )
12576 {
12577 VBOXSTRICTRC rcStrict = hmR0VmxHandleExitDtraceEvents(pVCpu, pVmxTransient, uExitReason);
12578 if (rcStrict != VINF_SUCCESS)
12579 return rcStrict;
12580 }
12581
12582 /*
12583 * Normal processing.
12584 */
12585#ifdef HMVMX_USE_FUNCTION_TABLE
12586 return g_aVMExitHandlers[uExitReason].pfn(pVCpu, pVmxTransient);
12587#else
12588 return hmR0VmxHandleExit(pVCpu, pVmxTransient, uExitReason);
12589#endif
12590}
12591
12592
12593/**
12594 * Single steps guest code using hardware-assisted VMX.
12595 *
12596 * This is -not- the same as the guest single-stepping itself (say using EFLAGS.TF)
12597 * but single-stepping through the hypervisor debugger.
12598 *
12599 * @returns Strict VBox status code (i.e. informational status codes too).
12600 * @param pVCpu The cross context virtual CPU structure.
12601 * @param pcLoops Pointer to the number of executed loops.
12602 *
12603 * @note Mostly the same as hmR0VmxRunGuestCodeNormal().
12604 */
12605static VBOXSTRICTRC hmR0VmxRunGuestCodeDebug(PVMCPUCC pVCpu, uint32_t *pcLoops)
12606{
12607 uint32_t const cMaxResumeLoops = pVCpu->CTX_SUFF(pVM)->hmr0.s.cMaxResumeLoops;
12608 Assert(pcLoops);
12609 Assert(*pcLoops <= cMaxResumeLoops);
12610
12611 VMXTRANSIENT VmxTransient;
12612 RT_ZERO(VmxTransient);
12613 VmxTransient.pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
12614
12615 /* Set HMCPU indicators. */
12616 bool const fSavedSingleInstruction = pVCpu->hm.s.fSingleInstruction;
12617 pVCpu->hm.s.fSingleInstruction = pVCpu->hm.s.fSingleInstruction || DBGFIsStepping(pVCpu);
12618 pVCpu->hmr0.s.fDebugWantRdTscExit = false;
12619 pVCpu->hmr0.s.fUsingDebugLoop = true;
12620
12621 /* State we keep to help modify and later restore the VMCS fields we alter, and for detecting steps. */
12622 VMXRUNDBGSTATE DbgState;
12623 hmR0VmxRunDebugStateInit(pVCpu, &VmxTransient, &DbgState);
12624 hmR0VmxPreRunGuestDebugStateUpdate(pVCpu, &VmxTransient, &DbgState);
12625
12626 /*
12627 * The loop.
12628 */
12629 VBOXSTRICTRC rcStrict = VERR_INTERNAL_ERROR_5;
12630 for (;;)
12631 {
12632 Assert(!HMR0SuspendPending());
12633 HMVMX_ASSERT_CPU_SAFE(pVCpu);
12634 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
12635 bool fStepping = pVCpu->hm.s.fSingleInstruction;
12636
12637 /* Set up VM-execution controls the next two can respond to. */
12638 hmR0VmxPreRunGuestDebugStateApply(pVCpu, &VmxTransient, &DbgState);
12639
12640 /*
12641 * Preparatory work for running guest code, this may force us to
12642 * return to ring-3.
12643 *
12644 * Warning! This bugger disables interrupts on VINF_SUCCESS!
12645 */
12646 rcStrict = hmR0VmxPreRunGuest(pVCpu, &VmxTransient, fStepping);
12647 if (rcStrict != VINF_SUCCESS)
12648 break;
12649
12650 /* Interrupts are disabled at this point! */
12651 hmR0VmxPreRunGuestCommitted(pVCpu, &VmxTransient);
12652
12653 /* Override any obnoxious code in the above two calls. */
12654 hmR0VmxPreRunGuestDebugStateApply(pVCpu, &VmxTransient, &DbgState);
12655
12656 /*
12657 * Finally execute the guest.
12658 */
12659 int rcRun = hmR0VmxRunGuest(pVCpu, &VmxTransient);
12660
12661 hmR0VmxPostRunGuest(pVCpu, &VmxTransient, rcRun);
12662 /* Interrupts are re-enabled at this point! */
12663
12664 /* Check for errors with running the VM (VMLAUNCH/VMRESUME). */
12665 if (RT_SUCCESS(rcRun))
12666 { /* very likely */ }
12667 else
12668 {
12669 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatPreExit, x);
12670 hmR0VmxReportWorldSwitchError(pVCpu, rcRun, &VmxTransient);
12671 return rcRun;
12672 }
12673
12674 /* Profile the VM-exit. */
12675 AssertMsg(VmxTransient.uExitReason <= VMX_EXIT_MAX, ("%#x\n", VmxTransient.uExitReason));
12676 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll);
12677 STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[VmxTransient.uExitReason & MASK_EXITREASON_STAT]);
12678 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatPreExit, &pVCpu->hm.s.StatExitHandling, x);
12679 HMVMX_START_EXIT_DISPATCH_PROF();
12680
12681 VBOXVMM_R0_HMVMX_VMEXIT_NOCTX(pVCpu, &pVCpu->cpum.GstCtx, VmxTransient.uExitReason);
12682
12683 /*
12684 * Handle the VM-exit - we quit earlier on certain VM-exits, see hmR0VmxHandleExitDebug().
12685 */
12686 rcStrict = hmR0VmxRunDebugHandleExit(pVCpu, &VmxTransient, &DbgState);
12687 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitHandling, x);
12688 if (rcStrict != VINF_SUCCESS)
12689 break;
12690 if (++(*pcLoops) > cMaxResumeLoops)
12691 {
12692 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
12693 rcStrict = VINF_EM_RAW_INTERRUPT;
12694 break;
12695 }
12696
12697 /*
12698 * Stepping: Did the RIP change, if so, consider it a single step.
12699 * Otherwise, make sure one of the TFs gets set.
12700 */
12701 if (fStepping)
12702 {
12703 int rc = hmR0VmxImportGuestState(pVCpu, VmxTransient.pVmcsInfo, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
12704 AssertRC(rc);
12705 if ( pVCpu->cpum.GstCtx.rip != DbgState.uRipStart
12706 || pVCpu->cpum.GstCtx.cs.Sel != DbgState.uCsStart)
12707 {
12708 rcStrict = VINF_EM_DBG_STEPPED;
12709 break;
12710 }
12711 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_DR7);
12712 }
12713
12714 /*
12715 * Update when dtrace settings changes (DBGF kicks us, so no need to check).
12716 */
12717 if (VBOXVMM_GET_SETTINGS_SEQ_NO() != DbgState.uDtraceSettingsSeqNo)
12718 hmR0VmxPreRunGuestDebugStateUpdate(pVCpu, &VmxTransient, &DbgState);
12719
12720 /* Restore all controls applied by hmR0VmxPreRunGuestDebugStateApply above. */
12721 rcStrict = hmR0VmxRunDebugStateRevert(pVCpu, &VmxTransient, &DbgState, rcStrict);
12722 Assert(rcStrict == VINF_SUCCESS);
12723 }
12724
12725 /*
12726 * Clear the X86_EFL_TF if necessary.
12727 */
12728 if (pVCpu->hmr0.s.fClearTrapFlag)
12729 {
12730 int rc = hmR0VmxImportGuestState(pVCpu, VmxTransient.pVmcsInfo, CPUMCTX_EXTRN_RFLAGS);
12731 AssertRC(rc);
12732 pVCpu->hmr0.s.fClearTrapFlag = false;
12733 pVCpu->cpum.GstCtx.eflags.Bits.u1TF = 0;
12734 }
12735 /** @todo there seems to be issues with the resume flag when the monitor trap
12736 * flag is pending without being used. Seen early in bios init when
12737 * accessing APIC page in protected mode. */
12738
12739 /* Restore HMCPU indicators. */
12740 pVCpu->hmr0.s.fUsingDebugLoop = false;
12741 pVCpu->hmr0.s.fDebugWantRdTscExit = false;
12742 pVCpu->hm.s.fSingleInstruction = fSavedSingleInstruction;
12743
12744 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
12745 return rcStrict;
12746}
12747
12748
12749/** @} */
12750
12751
12752/**
12753 * Checks if any expensive dtrace probes are enabled and we should go to the
12754 * debug loop.
12755 *
12756 * @returns true if we should use debug loop, false if not.
12757 */
12758static bool hmR0VmxAnyExpensiveProbesEnabled(void)
12759{
12760 /* It's probably faster to OR the raw 32-bit counter variables together.
12761 Since the variables are in an array and the probes are next to one
12762 another (more or less), we have good locality. So, better read
12763 eight-nine cache lines ever time and only have one conditional, than
12764 128+ conditionals, right? */
12765 return ( VBOXVMM_R0_HMVMX_VMEXIT_ENABLED_RAW() /* expensive too due to context */
12766 | VBOXVMM_XCPT_DE_ENABLED_RAW()
12767 | VBOXVMM_XCPT_DB_ENABLED_RAW()
12768 | VBOXVMM_XCPT_BP_ENABLED_RAW()
12769 | VBOXVMM_XCPT_OF_ENABLED_RAW()
12770 | VBOXVMM_XCPT_BR_ENABLED_RAW()
12771 | VBOXVMM_XCPT_UD_ENABLED_RAW()
12772 | VBOXVMM_XCPT_NM_ENABLED_RAW()
12773 | VBOXVMM_XCPT_DF_ENABLED_RAW()
12774 | VBOXVMM_XCPT_TS_ENABLED_RAW()
12775 | VBOXVMM_XCPT_NP_ENABLED_RAW()
12776 | VBOXVMM_XCPT_SS_ENABLED_RAW()
12777 | VBOXVMM_XCPT_GP_ENABLED_RAW()
12778 | VBOXVMM_XCPT_PF_ENABLED_RAW()
12779 | VBOXVMM_XCPT_MF_ENABLED_RAW()
12780 | VBOXVMM_XCPT_AC_ENABLED_RAW()
12781 | VBOXVMM_XCPT_XF_ENABLED_RAW()
12782 | VBOXVMM_XCPT_VE_ENABLED_RAW()
12783 | VBOXVMM_XCPT_SX_ENABLED_RAW()
12784 | VBOXVMM_INT_SOFTWARE_ENABLED_RAW()
12785 | VBOXVMM_INT_HARDWARE_ENABLED_RAW()
12786 ) != 0
12787 || ( VBOXVMM_INSTR_HALT_ENABLED_RAW()
12788 | VBOXVMM_INSTR_MWAIT_ENABLED_RAW()
12789 | VBOXVMM_INSTR_MONITOR_ENABLED_RAW()
12790 | VBOXVMM_INSTR_CPUID_ENABLED_RAW()
12791 | VBOXVMM_INSTR_INVD_ENABLED_RAW()
12792 | VBOXVMM_INSTR_WBINVD_ENABLED_RAW()
12793 | VBOXVMM_INSTR_INVLPG_ENABLED_RAW()
12794 | VBOXVMM_INSTR_RDTSC_ENABLED_RAW()
12795 | VBOXVMM_INSTR_RDTSCP_ENABLED_RAW()
12796 | VBOXVMM_INSTR_RDPMC_ENABLED_RAW()
12797 | VBOXVMM_INSTR_RDMSR_ENABLED_RAW()
12798 | VBOXVMM_INSTR_WRMSR_ENABLED_RAW()
12799 | VBOXVMM_INSTR_CRX_READ_ENABLED_RAW()
12800 | VBOXVMM_INSTR_CRX_WRITE_ENABLED_RAW()
12801 | VBOXVMM_INSTR_DRX_READ_ENABLED_RAW()
12802 | VBOXVMM_INSTR_DRX_WRITE_ENABLED_RAW()
12803 | VBOXVMM_INSTR_PAUSE_ENABLED_RAW()
12804 | VBOXVMM_INSTR_XSETBV_ENABLED_RAW()
12805 | VBOXVMM_INSTR_SIDT_ENABLED_RAW()
12806 | VBOXVMM_INSTR_LIDT_ENABLED_RAW()
12807 | VBOXVMM_INSTR_SGDT_ENABLED_RAW()
12808 | VBOXVMM_INSTR_LGDT_ENABLED_RAW()
12809 | VBOXVMM_INSTR_SLDT_ENABLED_RAW()
12810 | VBOXVMM_INSTR_LLDT_ENABLED_RAW()
12811 | VBOXVMM_INSTR_STR_ENABLED_RAW()
12812 | VBOXVMM_INSTR_LTR_ENABLED_RAW()
12813 | VBOXVMM_INSTR_GETSEC_ENABLED_RAW()
12814 | VBOXVMM_INSTR_RSM_ENABLED_RAW()
12815 | VBOXVMM_INSTR_RDRAND_ENABLED_RAW()
12816 | VBOXVMM_INSTR_RDSEED_ENABLED_RAW()
12817 | VBOXVMM_INSTR_XSAVES_ENABLED_RAW()
12818 | VBOXVMM_INSTR_XRSTORS_ENABLED_RAW()
12819 | VBOXVMM_INSTR_VMM_CALL_ENABLED_RAW()
12820 | VBOXVMM_INSTR_VMX_VMCLEAR_ENABLED_RAW()
12821 | VBOXVMM_INSTR_VMX_VMLAUNCH_ENABLED_RAW()
12822 | VBOXVMM_INSTR_VMX_VMPTRLD_ENABLED_RAW()
12823 | VBOXVMM_INSTR_VMX_VMPTRST_ENABLED_RAW()
12824 | VBOXVMM_INSTR_VMX_VMREAD_ENABLED_RAW()
12825 | VBOXVMM_INSTR_VMX_VMRESUME_ENABLED_RAW()
12826 | VBOXVMM_INSTR_VMX_VMWRITE_ENABLED_RAW()
12827 | VBOXVMM_INSTR_VMX_VMXOFF_ENABLED_RAW()
12828 | VBOXVMM_INSTR_VMX_VMXON_ENABLED_RAW()
12829 | VBOXVMM_INSTR_VMX_VMFUNC_ENABLED_RAW()
12830 | VBOXVMM_INSTR_VMX_INVEPT_ENABLED_RAW()
12831 | VBOXVMM_INSTR_VMX_INVVPID_ENABLED_RAW()
12832 | VBOXVMM_INSTR_VMX_INVPCID_ENABLED_RAW()
12833 ) != 0
12834 || ( VBOXVMM_EXIT_TASK_SWITCH_ENABLED_RAW()
12835 | VBOXVMM_EXIT_HALT_ENABLED_RAW()
12836 | VBOXVMM_EXIT_MWAIT_ENABLED_RAW()
12837 | VBOXVMM_EXIT_MONITOR_ENABLED_RAW()
12838 | VBOXVMM_EXIT_CPUID_ENABLED_RAW()
12839 | VBOXVMM_EXIT_INVD_ENABLED_RAW()
12840 | VBOXVMM_EXIT_WBINVD_ENABLED_RAW()
12841 | VBOXVMM_EXIT_INVLPG_ENABLED_RAW()
12842 | VBOXVMM_EXIT_RDTSC_ENABLED_RAW()
12843 | VBOXVMM_EXIT_RDTSCP_ENABLED_RAW()
12844 | VBOXVMM_EXIT_RDPMC_ENABLED_RAW()
12845 | VBOXVMM_EXIT_RDMSR_ENABLED_RAW()
12846 | VBOXVMM_EXIT_WRMSR_ENABLED_RAW()
12847 | VBOXVMM_EXIT_CRX_READ_ENABLED_RAW()
12848 | VBOXVMM_EXIT_CRX_WRITE_ENABLED_RAW()
12849 | VBOXVMM_EXIT_DRX_READ_ENABLED_RAW()
12850 | VBOXVMM_EXIT_DRX_WRITE_ENABLED_RAW()
12851 | VBOXVMM_EXIT_PAUSE_ENABLED_RAW()
12852 | VBOXVMM_EXIT_XSETBV_ENABLED_RAW()
12853 | VBOXVMM_EXIT_SIDT_ENABLED_RAW()
12854 | VBOXVMM_EXIT_LIDT_ENABLED_RAW()
12855 | VBOXVMM_EXIT_SGDT_ENABLED_RAW()
12856 | VBOXVMM_EXIT_LGDT_ENABLED_RAW()
12857 | VBOXVMM_EXIT_SLDT_ENABLED_RAW()
12858 | VBOXVMM_EXIT_LLDT_ENABLED_RAW()
12859 | VBOXVMM_EXIT_STR_ENABLED_RAW()
12860 | VBOXVMM_EXIT_LTR_ENABLED_RAW()
12861 | VBOXVMM_EXIT_GETSEC_ENABLED_RAW()
12862 | VBOXVMM_EXIT_RSM_ENABLED_RAW()
12863 | VBOXVMM_EXIT_RDRAND_ENABLED_RAW()
12864 | VBOXVMM_EXIT_RDSEED_ENABLED_RAW()
12865 | VBOXVMM_EXIT_XSAVES_ENABLED_RAW()
12866 | VBOXVMM_EXIT_XRSTORS_ENABLED_RAW()
12867 | VBOXVMM_EXIT_VMM_CALL_ENABLED_RAW()
12868 | VBOXVMM_EXIT_VMX_VMCLEAR_ENABLED_RAW()
12869 | VBOXVMM_EXIT_VMX_VMLAUNCH_ENABLED_RAW()
12870 | VBOXVMM_EXIT_VMX_VMPTRLD_ENABLED_RAW()
12871 | VBOXVMM_EXIT_VMX_VMPTRST_ENABLED_RAW()
12872 | VBOXVMM_EXIT_VMX_VMREAD_ENABLED_RAW()
12873 | VBOXVMM_EXIT_VMX_VMRESUME_ENABLED_RAW()
12874 | VBOXVMM_EXIT_VMX_VMWRITE_ENABLED_RAW()
12875 | VBOXVMM_EXIT_VMX_VMXOFF_ENABLED_RAW()
12876 | VBOXVMM_EXIT_VMX_VMXON_ENABLED_RAW()
12877 | VBOXVMM_EXIT_VMX_VMFUNC_ENABLED_RAW()
12878 | VBOXVMM_EXIT_VMX_INVEPT_ENABLED_RAW()
12879 | VBOXVMM_EXIT_VMX_INVVPID_ENABLED_RAW()
12880 | VBOXVMM_EXIT_VMX_INVPCID_ENABLED_RAW()
12881 | VBOXVMM_EXIT_VMX_EPT_VIOLATION_ENABLED_RAW()
12882 | VBOXVMM_EXIT_VMX_EPT_MISCONFIG_ENABLED_RAW()
12883 | VBOXVMM_EXIT_VMX_VAPIC_ACCESS_ENABLED_RAW()
12884 | VBOXVMM_EXIT_VMX_VAPIC_WRITE_ENABLED_RAW()
12885 ) != 0;
12886}
12887
12888
12889/**
12890 * Runs the guest using hardware-assisted VMX.
12891 *
12892 * @returns Strict VBox status code (i.e. informational status codes too).
12893 * @param pVCpu The cross context virtual CPU structure.
12894 */
12895VMMR0DECL(VBOXSTRICTRC) VMXR0RunGuestCode(PVMCPUCC pVCpu)
12896{
12897 AssertPtr(pVCpu);
12898 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
12899 Assert(VMMRZCallRing3IsEnabled(pVCpu));
12900 Assert(!ASMAtomicUoReadU64(&pCtx->fExtrn));
12901 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
12902
12903 VBOXSTRICTRC rcStrict;
12904 uint32_t cLoops = 0;
12905 for (;;)
12906 {
12907#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
12908 bool const fInNestedGuestMode = CPUMIsGuestInVmxNonRootMode(pCtx);
12909#else
12910 NOREF(pCtx);
12911 bool const fInNestedGuestMode = false;
12912#endif
12913 if (!fInNestedGuestMode)
12914 {
12915 if ( !pVCpu->hm.s.fUseDebugLoop
12916 && (!VBOXVMM_ANY_PROBES_ENABLED() || !hmR0VmxAnyExpensiveProbesEnabled())
12917 && !DBGFIsStepping(pVCpu)
12918 && !pVCpu->CTX_SUFF(pVM)->dbgf.ro.cEnabledInt3Breakpoints)
12919 rcStrict = hmR0VmxRunGuestCodeNormal(pVCpu, &cLoops);
12920 else
12921 rcStrict = hmR0VmxRunGuestCodeDebug(pVCpu, &cLoops);
12922 }
12923#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
12924 else
12925 rcStrict = hmR0VmxRunGuestCodeNested(pVCpu, &cLoops);
12926
12927 if (rcStrict == VINF_VMX_VMLAUNCH_VMRESUME)
12928 {
12929 Assert(CPUMIsGuestInVmxNonRootMode(pCtx));
12930 continue;
12931 }
12932 if (rcStrict == VINF_VMX_VMEXIT)
12933 {
12934 Assert(!CPUMIsGuestInVmxNonRootMode(pCtx));
12935 continue;
12936 }
12937#endif
12938 break;
12939 }
12940
12941 int const rcLoop = VBOXSTRICTRC_VAL(rcStrict);
12942 switch (rcLoop)
12943 {
12944 case VERR_EM_INTERPRETER: rcStrict = VINF_EM_RAW_EMULATE_INSTR; break;
12945 case VINF_EM_RESET: rcStrict = VINF_EM_TRIPLE_FAULT; break;
12946 }
12947
12948 int rc2 = hmR0VmxExitToRing3(pVCpu, rcStrict);
12949 if (RT_FAILURE(rc2))
12950 {
12951 pVCpu->hm.s.u32HMError = (uint32_t)VBOXSTRICTRC_VAL(rcStrict);
12952 rcStrict = rc2;
12953 }
12954 Assert(!ASMAtomicUoReadU64(&pCtx->fExtrn));
12955 Assert(!VMMRZCallRing3IsNotificationSet(pVCpu));
12956 return rcStrict;
12957}
12958
12959
12960#ifndef HMVMX_USE_FUNCTION_TABLE
12961/**
12962 * Handles a guest VM-exit from hardware-assisted VMX execution.
12963 *
12964 * @returns Strict VBox status code (i.e. informational status codes too).
12965 * @param pVCpu The cross context virtual CPU structure.
12966 * @param pVmxTransient The VMX-transient structure.
12967 */
12968DECLINLINE(VBOXSTRICTRC) hmR0VmxHandleExit(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
12969{
12970#ifdef DEBUG_ramshankar
12971# define VMEXIT_CALL_RET(a_fSave, a_CallExpr) \
12972 do { \
12973 if (a_fSave != 0) \
12974 hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL); \
12975 VBOXSTRICTRC rcStrict = a_CallExpr; \
12976 if (a_fSave != 0) \
12977 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST); \
12978 return rcStrict; \
12979 } while (0)
12980#else
12981# define VMEXIT_CALL_RET(a_fSave, a_CallExpr) return a_CallExpr
12982#endif
12983 uint32_t const uExitReason = pVmxTransient->uExitReason;
12984 switch (uExitReason)
12985 {
12986 case VMX_EXIT_EPT_MISCONFIG: VMEXIT_CALL_RET(0, hmR0VmxExitEptMisconfig(pVCpu, pVmxTransient));
12987 case VMX_EXIT_EPT_VIOLATION: VMEXIT_CALL_RET(0, hmR0VmxExitEptViolation(pVCpu, pVmxTransient));
12988 case VMX_EXIT_IO_INSTR: VMEXIT_CALL_RET(0, hmR0VmxExitIoInstr(pVCpu, pVmxTransient));
12989 case VMX_EXIT_CPUID: VMEXIT_CALL_RET(0, hmR0VmxExitCpuid(pVCpu, pVmxTransient));
12990 case VMX_EXIT_RDTSC: VMEXIT_CALL_RET(0, hmR0VmxExitRdtsc(pVCpu, pVmxTransient));
12991 case VMX_EXIT_RDTSCP: VMEXIT_CALL_RET(0, hmR0VmxExitRdtscp(pVCpu, pVmxTransient));
12992 case VMX_EXIT_APIC_ACCESS: VMEXIT_CALL_RET(0, hmR0VmxExitApicAccess(pVCpu, pVmxTransient));
12993 case VMX_EXIT_XCPT_OR_NMI: VMEXIT_CALL_RET(0, hmR0VmxExitXcptOrNmi(pVCpu, pVmxTransient));
12994 case VMX_EXIT_MOV_CRX: VMEXIT_CALL_RET(0, hmR0VmxExitMovCRx(pVCpu, pVmxTransient));
12995 case VMX_EXIT_EXT_INT: VMEXIT_CALL_RET(0, hmR0VmxExitExtInt(pVCpu, pVmxTransient));
12996 case VMX_EXIT_INT_WINDOW: VMEXIT_CALL_RET(0, hmR0VmxExitIntWindow(pVCpu, pVmxTransient));
12997 case VMX_EXIT_TPR_BELOW_THRESHOLD: VMEXIT_CALL_RET(0, hmR0VmxExitTprBelowThreshold(pVCpu, pVmxTransient));
12998 case VMX_EXIT_MWAIT: VMEXIT_CALL_RET(0, hmR0VmxExitMwait(pVCpu, pVmxTransient));
12999 case VMX_EXIT_MONITOR: VMEXIT_CALL_RET(0, hmR0VmxExitMonitor(pVCpu, pVmxTransient));
13000 case VMX_EXIT_TASK_SWITCH: VMEXIT_CALL_RET(0, hmR0VmxExitTaskSwitch(pVCpu, pVmxTransient));
13001 case VMX_EXIT_PREEMPT_TIMER: VMEXIT_CALL_RET(0, hmR0VmxExitPreemptTimer(pVCpu, pVmxTransient));
13002 case VMX_EXIT_RDMSR: VMEXIT_CALL_RET(0, hmR0VmxExitRdmsr(pVCpu, pVmxTransient));
13003 case VMX_EXIT_WRMSR: VMEXIT_CALL_RET(0, hmR0VmxExitWrmsr(pVCpu, pVmxTransient));
13004 case VMX_EXIT_VMCALL: VMEXIT_CALL_RET(0, hmR0VmxExitVmcall(pVCpu, pVmxTransient));
13005 case VMX_EXIT_MOV_DRX: VMEXIT_CALL_RET(0, hmR0VmxExitMovDRx(pVCpu, pVmxTransient));
13006 case VMX_EXIT_HLT: VMEXIT_CALL_RET(0, hmR0VmxExitHlt(pVCpu, pVmxTransient));
13007 case VMX_EXIT_INVD: VMEXIT_CALL_RET(0, hmR0VmxExitInvd(pVCpu, pVmxTransient));
13008 case VMX_EXIT_INVLPG: VMEXIT_CALL_RET(0, hmR0VmxExitInvlpg(pVCpu, pVmxTransient));
13009 case VMX_EXIT_MTF: VMEXIT_CALL_RET(0, hmR0VmxExitMtf(pVCpu, pVmxTransient));
13010 case VMX_EXIT_PAUSE: VMEXIT_CALL_RET(0, hmR0VmxExitPause(pVCpu, pVmxTransient));
13011 case VMX_EXIT_WBINVD: VMEXIT_CALL_RET(0, hmR0VmxExitWbinvd(pVCpu, pVmxTransient));
13012 case VMX_EXIT_XSETBV: VMEXIT_CALL_RET(0, hmR0VmxExitXsetbv(pVCpu, pVmxTransient));
13013 case VMX_EXIT_INVPCID: VMEXIT_CALL_RET(0, hmR0VmxExitInvpcid(pVCpu, pVmxTransient));
13014 case VMX_EXIT_GETSEC: VMEXIT_CALL_RET(0, hmR0VmxExitGetsec(pVCpu, pVmxTransient));
13015 case VMX_EXIT_RDPMC: VMEXIT_CALL_RET(0, hmR0VmxExitRdpmc(pVCpu, pVmxTransient));
13016#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
13017 case VMX_EXIT_VMCLEAR: VMEXIT_CALL_RET(0, hmR0VmxExitVmclear(pVCpu, pVmxTransient));
13018 case VMX_EXIT_VMLAUNCH: VMEXIT_CALL_RET(0, hmR0VmxExitVmlaunch(pVCpu, pVmxTransient));
13019 case VMX_EXIT_VMPTRLD: VMEXIT_CALL_RET(0, hmR0VmxExitVmptrld(pVCpu, pVmxTransient));
13020 case VMX_EXIT_VMPTRST: VMEXIT_CALL_RET(0, hmR0VmxExitVmptrst(pVCpu, pVmxTransient));
13021 case VMX_EXIT_VMREAD: VMEXIT_CALL_RET(0, hmR0VmxExitVmread(pVCpu, pVmxTransient));
13022 case VMX_EXIT_VMRESUME: VMEXIT_CALL_RET(0, hmR0VmxExitVmwrite(pVCpu, pVmxTransient));
13023 case VMX_EXIT_VMWRITE: VMEXIT_CALL_RET(0, hmR0VmxExitVmresume(pVCpu, pVmxTransient));
13024 case VMX_EXIT_VMXOFF: VMEXIT_CALL_RET(0, hmR0VmxExitVmxoff(pVCpu, pVmxTransient));
13025 case VMX_EXIT_VMXON: VMEXIT_CALL_RET(0, hmR0VmxExitVmxon(pVCpu, pVmxTransient));
13026 case VMX_EXIT_INVVPID: VMEXIT_CALL_RET(0, hmR0VmxExitInvvpid(pVCpu, pVmxTransient));
13027 case VMX_EXIT_INVEPT: VMEXIT_CALL_RET(0, hmR0VmxExitSetPendingXcptUD(pVCpu, pVmxTransient));
13028#else
13029 case VMX_EXIT_VMCLEAR:
13030 case VMX_EXIT_VMLAUNCH:
13031 case VMX_EXIT_VMPTRLD:
13032 case VMX_EXIT_VMPTRST:
13033 case VMX_EXIT_VMREAD:
13034 case VMX_EXIT_VMRESUME:
13035 case VMX_EXIT_VMWRITE:
13036 case VMX_EXIT_VMXOFF:
13037 case VMX_EXIT_VMXON:
13038 case VMX_EXIT_INVVPID:
13039 case VMX_EXIT_INVEPT:
13040 return hmR0VmxExitSetPendingXcptUD(pVCpu, pVmxTransient);
13041#endif
13042
13043 case VMX_EXIT_TRIPLE_FAULT: return hmR0VmxExitTripleFault(pVCpu, pVmxTransient);
13044 case VMX_EXIT_NMI_WINDOW: return hmR0VmxExitNmiWindow(pVCpu, pVmxTransient);
13045 case VMX_EXIT_ERR_INVALID_GUEST_STATE: return hmR0VmxExitErrInvalidGuestState(pVCpu, pVmxTransient);
13046
13047 case VMX_EXIT_INIT_SIGNAL:
13048 case VMX_EXIT_SIPI:
13049 case VMX_EXIT_IO_SMI:
13050 case VMX_EXIT_SMI:
13051 case VMX_EXIT_ERR_MSR_LOAD:
13052 case VMX_EXIT_ERR_MACHINE_CHECK:
13053 case VMX_EXIT_PML_FULL:
13054 case VMX_EXIT_VIRTUALIZED_EOI:
13055 case VMX_EXIT_GDTR_IDTR_ACCESS:
13056 case VMX_EXIT_LDTR_TR_ACCESS:
13057 case VMX_EXIT_APIC_WRITE:
13058 case VMX_EXIT_RDRAND:
13059 case VMX_EXIT_RSM:
13060 case VMX_EXIT_VMFUNC:
13061 case VMX_EXIT_ENCLS:
13062 case VMX_EXIT_RDSEED:
13063 case VMX_EXIT_XSAVES:
13064 case VMX_EXIT_XRSTORS:
13065 case VMX_EXIT_UMWAIT:
13066 case VMX_EXIT_TPAUSE:
13067 default:
13068 return hmR0VmxExitErrUnexpected(pVCpu, pVmxTransient);
13069 }
13070#undef VMEXIT_CALL_RET
13071}
13072#endif /* !HMVMX_USE_FUNCTION_TABLE */
13073
13074
13075#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
13076/**
13077 * Handles a nested-guest VM-exit from hardware-assisted VMX execution.
13078 *
13079 * @returns Strict VBox status code (i.e. informational status codes too).
13080 * @param pVCpu The cross context virtual CPU structure.
13081 * @param pVmxTransient The VMX-transient structure.
13082 */
13083DECLINLINE(VBOXSTRICTRC) hmR0VmxHandleExitNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
13084{
13085 uint32_t const uExitReason = pVmxTransient->uExitReason;
13086 switch (uExitReason)
13087 {
13088 case VMX_EXIT_EPT_MISCONFIG: return hmR0VmxExitEptMisconfig(pVCpu, pVmxTransient);
13089 case VMX_EXIT_EPT_VIOLATION: return hmR0VmxExitEptViolation(pVCpu, pVmxTransient);
13090 case VMX_EXIT_XCPT_OR_NMI: return hmR0VmxExitXcptOrNmiNested(pVCpu, pVmxTransient);
13091 case VMX_EXIT_IO_INSTR: return hmR0VmxExitIoInstrNested(pVCpu, pVmxTransient);
13092 case VMX_EXIT_HLT: return hmR0VmxExitHltNested(pVCpu, pVmxTransient);
13093
13094 /*
13095 * We shouldn't direct host physical interrupts to the nested-guest.
13096 */
13097 case VMX_EXIT_EXT_INT:
13098 return hmR0VmxExitExtInt(pVCpu, pVmxTransient);
13099
13100 /*
13101 * Instructions that cause VM-exits unconditionally or the condition is
13102 * always is taken solely from the nested hypervisor (meaning if the VM-exit
13103 * happens, it's guaranteed to be a nested-guest VM-exit).
13104 *
13105 * - Provides VM-exit instruction length ONLY.
13106 */
13107 case VMX_EXIT_CPUID: /* Unconditional. */
13108 case VMX_EXIT_VMCALL:
13109 case VMX_EXIT_GETSEC:
13110 case VMX_EXIT_INVD:
13111 case VMX_EXIT_XSETBV:
13112 case VMX_EXIT_VMLAUNCH:
13113 case VMX_EXIT_VMRESUME:
13114 case VMX_EXIT_VMXOFF:
13115 case VMX_EXIT_ENCLS: /* Condition specified solely by nested hypervisor. */
13116 case VMX_EXIT_VMFUNC:
13117 return hmR0VmxExitInstrNested(pVCpu, pVmxTransient);
13118
13119 /*
13120 * Instructions that cause VM-exits unconditionally or the condition is
13121 * always is taken solely from the nested hypervisor (meaning if the VM-exit
13122 * happens, it's guaranteed to be a nested-guest VM-exit).
13123 *
13124 * - Provides VM-exit instruction length.
13125 * - Provides VM-exit information.
13126 * - Optionally provides Exit qualification.
13127 *
13128 * Since Exit qualification is 0 for all VM-exits where it is not
13129 * applicable, reading and passing it to the guest should produce
13130 * defined behavior.
13131 *
13132 * See Intel spec. 27.2.1 "Basic VM-Exit Information".
13133 */
13134 case VMX_EXIT_INVEPT: /* Unconditional. */
13135 case VMX_EXIT_INVVPID:
13136 case VMX_EXIT_VMCLEAR:
13137 case VMX_EXIT_VMPTRLD:
13138 case VMX_EXIT_VMPTRST:
13139 case VMX_EXIT_VMXON:
13140 case VMX_EXIT_GDTR_IDTR_ACCESS: /* Condition specified solely by nested hypervisor. */
13141 case VMX_EXIT_LDTR_TR_ACCESS:
13142 case VMX_EXIT_RDRAND:
13143 case VMX_EXIT_RDSEED:
13144 case VMX_EXIT_XSAVES:
13145 case VMX_EXIT_XRSTORS:
13146 case VMX_EXIT_UMWAIT:
13147 case VMX_EXIT_TPAUSE:
13148 return hmR0VmxExitInstrWithInfoNested(pVCpu, pVmxTransient);
13149
13150 case VMX_EXIT_RDTSC: return hmR0VmxExitRdtscNested(pVCpu, pVmxTransient);
13151 case VMX_EXIT_RDTSCP: return hmR0VmxExitRdtscpNested(pVCpu, pVmxTransient);
13152 case VMX_EXIT_RDMSR: return hmR0VmxExitRdmsrNested(pVCpu, pVmxTransient);
13153 case VMX_EXIT_WRMSR: return hmR0VmxExitWrmsrNested(pVCpu, pVmxTransient);
13154 case VMX_EXIT_INVLPG: return hmR0VmxExitInvlpgNested(pVCpu, pVmxTransient);
13155 case VMX_EXIT_INVPCID: return hmR0VmxExitInvpcidNested(pVCpu, pVmxTransient);
13156 case VMX_EXIT_TASK_SWITCH: return hmR0VmxExitTaskSwitchNested(pVCpu, pVmxTransient);
13157 case VMX_EXIT_WBINVD: return hmR0VmxExitWbinvdNested(pVCpu, pVmxTransient);
13158 case VMX_EXIT_MTF: return hmR0VmxExitMtfNested(pVCpu, pVmxTransient);
13159 case VMX_EXIT_APIC_ACCESS: return hmR0VmxExitApicAccessNested(pVCpu, pVmxTransient);
13160 case VMX_EXIT_APIC_WRITE: return hmR0VmxExitApicWriteNested(pVCpu, pVmxTransient);
13161 case VMX_EXIT_VIRTUALIZED_EOI: return hmR0VmxExitVirtEoiNested(pVCpu, pVmxTransient);
13162 case VMX_EXIT_MOV_CRX: return hmR0VmxExitMovCRxNested(pVCpu, pVmxTransient);
13163 case VMX_EXIT_INT_WINDOW: return hmR0VmxExitIntWindowNested(pVCpu, pVmxTransient);
13164 case VMX_EXIT_NMI_WINDOW: return hmR0VmxExitNmiWindowNested(pVCpu, pVmxTransient);
13165 case VMX_EXIT_TPR_BELOW_THRESHOLD: return hmR0VmxExitTprBelowThresholdNested(pVCpu, pVmxTransient);
13166 case VMX_EXIT_MWAIT: return hmR0VmxExitMwaitNested(pVCpu, pVmxTransient);
13167 case VMX_EXIT_MONITOR: return hmR0VmxExitMonitorNested(pVCpu, pVmxTransient);
13168 case VMX_EXIT_PAUSE: return hmR0VmxExitPauseNested(pVCpu, pVmxTransient);
13169
13170 case VMX_EXIT_PREEMPT_TIMER:
13171 {
13172 /** @todo NSTVMX: Preempt timer. */
13173 return hmR0VmxExitPreemptTimer(pVCpu, pVmxTransient);
13174 }
13175
13176 case VMX_EXIT_MOV_DRX: return hmR0VmxExitMovDRxNested(pVCpu, pVmxTransient);
13177 case VMX_EXIT_RDPMC: return hmR0VmxExitRdpmcNested(pVCpu, pVmxTransient);
13178
13179 case VMX_EXIT_VMREAD:
13180 case VMX_EXIT_VMWRITE: return hmR0VmxExitVmreadVmwriteNested(pVCpu, pVmxTransient);
13181
13182 case VMX_EXIT_TRIPLE_FAULT: return hmR0VmxExitTripleFaultNested(pVCpu, pVmxTransient);
13183 case VMX_EXIT_ERR_INVALID_GUEST_STATE: return hmR0VmxExitErrInvalidGuestStateNested(pVCpu, pVmxTransient);
13184
13185 case VMX_EXIT_INIT_SIGNAL:
13186 case VMX_EXIT_SIPI:
13187 case VMX_EXIT_IO_SMI:
13188 case VMX_EXIT_SMI:
13189 case VMX_EXIT_ERR_MSR_LOAD:
13190 case VMX_EXIT_ERR_MACHINE_CHECK:
13191 case VMX_EXIT_PML_FULL:
13192 case VMX_EXIT_RSM:
13193 default:
13194 return hmR0VmxExitErrUnexpected(pVCpu, pVmxTransient);
13195 }
13196}
13197#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
13198
13199
13200/** @name VM-exit helpers.
13201 * @{
13202 */
13203/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
13204/* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= VM-exit helpers -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- */
13205/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
13206
13207/** Macro for VM-exits called unexpectedly. */
13208#define HMVMX_UNEXPECTED_EXIT_RET(a_pVCpu, a_HmError) \
13209 do { \
13210 (a_pVCpu)->hm.s.u32HMError = (a_HmError); \
13211 return VERR_VMX_UNEXPECTED_EXIT; \
13212 } while (0)
13213
13214#ifdef VBOX_STRICT
13215/* Is there some generic IPRT define for this that are not in Runtime/internal/\* ?? */
13216# define HMVMX_ASSERT_PREEMPT_CPUID_VAR() \
13217 RTCPUID const idAssertCpu = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId()
13218
13219# define HMVMX_ASSERT_PREEMPT_CPUID() \
13220 do { \
13221 RTCPUID const idAssertCpuNow = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId(); \
13222 AssertMsg(idAssertCpu == idAssertCpuNow, ("VMX %#x, %#x\n", idAssertCpu, idAssertCpuNow)); \
13223 } while (0)
13224
13225# define HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient) \
13226 do { \
13227 AssertPtr((a_pVCpu)); \
13228 AssertPtr((a_pVmxTransient)); \
13229 Assert((a_pVmxTransient)->fVMEntryFailed == false); \
13230 Assert((a_pVmxTransient)->pVmcsInfo); \
13231 Assert(ASMIntAreEnabled()); \
13232 HMVMX_ASSERT_PREEMPT_SAFE(a_pVCpu); \
13233 HMVMX_ASSERT_PREEMPT_CPUID_VAR(); \
13234 Log4Func(("vcpu[%RU32]\n", (a_pVCpu)->idCpu)); \
13235 HMVMX_ASSERT_PREEMPT_SAFE(a_pVCpu); \
13236 if (VMMR0IsLogFlushDisabled((a_pVCpu))) \
13237 HMVMX_ASSERT_PREEMPT_CPUID(); \
13238 HMVMX_STOP_EXIT_DISPATCH_PROF(); \
13239 } while (0)
13240
13241# define HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient) \
13242 do { \
13243 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient); \
13244 Assert((a_pVmxTransient)->fIsNestedGuest); \
13245 } while (0)
13246
13247# define HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient) \
13248 do { \
13249 Log4Func(("\n")); \
13250 } while (0)
13251#else
13252# define HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient) \
13253 do { \
13254 HMVMX_STOP_EXIT_DISPATCH_PROF(); \
13255 NOREF((a_pVCpu)); NOREF((a_pVmxTransient)); \
13256 } while (0)
13257
13258# define HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient) \
13259 do { HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient); } while (0)
13260
13261# define HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient) do { } while (0)
13262#endif
13263
13264#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
13265/** Macro that does the necessary privilege checks and intercepted VM-exits for
13266 * guests that attempted to execute a VMX instruction. */
13267# define HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(a_pVCpu, a_uExitReason) \
13268 do \
13269 { \
13270 VBOXSTRICTRC rcStrictTmp = hmR0VmxCheckExitDueToVmxInstr((a_pVCpu), (a_uExitReason)); \
13271 if (rcStrictTmp == VINF_SUCCESS) \
13272 { /* likely */ } \
13273 else if (rcStrictTmp == VINF_HM_PENDING_XCPT) \
13274 { \
13275 Assert((a_pVCpu)->hm.s.Event.fPending); \
13276 Log4Func(("Privilege checks failed -> %#x\n", VMX_ENTRY_INT_INFO_VECTOR((a_pVCpu)->hm.s.Event.u64IntInfo))); \
13277 return VINF_SUCCESS; \
13278 } \
13279 else \
13280 { \
13281 int rcTmp = VBOXSTRICTRC_VAL(rcStrictTmp); \
13282 AssertMsgFailedReturn(("Unexpected failure. rc=%Rrc", rcTmp), rcTmp); \
13283 } \
13284 } while (0)
13285
13286/** Macro that decodes a memory operand for an VM-exit caused by an instruction. */
13287# define HMVMX_DECODE_MEM_OPERAND(a_pVCpu, a_uExitInstrInfo, a_uExitQual, a_enmMemAccess, a_pGCPtrEffAddr) \
13288 do \
13289 { \
13290 VBOXSTRICTRC rcStrictTmp = hmR0VmxDecodeMemOperand((a_pVCpu), (a_uExitInstrInfo), (a_uExitQual), (a_enmMemAccess), \
13291 (a_pGCPtrEffAddr)); \
13292 if (rcStrictTmp == VINF_SUCCESS) \
13293 { /* likely */ } \
13294 else if (rcStrictTmp == VINF_HM_PENDING_XCPT) \
13295 { \
13296 uint8_t const uXcptTmp = VMX_ENTRY_INT_INFO_VECTOR((a_pVCpu)->hm.s.Event.u64IntInfo); \
13297 Log4Func(("Memory operand decoding failed, raising xcpt %#x\n", uXcptTmp)); \
13298 NOREF(uXcptTmp); \
13299 return VINF_SUCCESS; \
13300 } \
13301 else \
13302 { \
13303 Log4Func(("hmR0VmxDecodeMemOperand failed. rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrictTmp))); \
13304 return rcStrictTmp; \
13305 } \
13306 } while (0)
13307#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
13308
13309
13310/**
13311 * Advances the guest RIP by the specified number of bytes.
13312 *
13313 * @param pVCpu The cross context virtual CPU structure.
13314 * @param cbInstr Number of bytes to advance the RIP by.
13315 *
13316 * @remarks No-long-jump zone!!!
13317 */
13318DECLINLINE(void) hmR0VmxAdvanceGuestRipBy(PVMCPUCC pVCpu, uint32_t cbInstr)
13319{
13320 /* Advance the RIP. */
13321 pVCpu->cpum.GstCtx.rip += cbInstr;
13322 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP);
13323
13324 /* Update interrupt inhibition. */
13325 if ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)
13326 && pVCpu->cpum.GstCtx.rip != EMGetInhibitInterruptsPC(pVCpu))
13327 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
13328}
13329
13330
13331/**
13332 * Advances the guest RIP after reading it from the VMCS.
13333 *
13334 * @returns VBox status code, no informational status codes.
13335 * @param pVCpu The cross context virtual CPU structure.
13336 * @param pVmxTransient The VMX-transient structure.
13337 *
13338 * @remarks No-long-jump zone!!!
13339 */
13340static int hmR0VmxAdvanceGuestRip(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
13341{
13342 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13343 int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS);
13344 AssertRCReturn(rc, rc);
13345
13346 hmR0VmxAdvanceGuestRipBy(pVCpu, pVmxTransient->cbExitInstr);
13347 return VINF_SUCCESS;
13348}
13349
13350
13351/**
13352 * Handle a condition that occurred while delivering an event through the guest or
13353 * nested-guest IDT.
13354 *
13355 * @returns Strict VBox status code (i.e. informational status codes too).
13356 * @retval VINF_SUCCESS if we should continue handling the VM-exit.
13357 * @retval VINF_HM_DOUBLE_FAULT if a \#DF condition was detected and we ought
13358 * to continue execution of the guest which will delivery the \#DF.
13359 * @retval VINF_EM_RESET if we detected a triple-fault condition.
13360 * @retval VERR_EM_GUEST_CPU_HANG if we detected a guest CPU hang.
13361 *
13362 * @param pVCpu The cross context virtual CPU structure.
13363 * @param pVmxTransient The VMX-transient structure.
13364 *
13365 * @remarks Requires all fields in HMVMX_READ_XCPT_INFO to be read from the VMCS.
13366 * Additionally, HMVMX_READ_EXIT_QUALIFICATION is required if the VM-exit
13367 * is due to an EPT violation, PML full or SPP-related event.
13368 *
13369 * @remarks No-long-jump zone!!!
13370 */
13371static VBOXSTRICTRC hmR0VmxCheckExitDueToEventDelivery(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
13372{
13373 Assert(!pVCpu->hm.s.Event.fPending);
13374 HMVMX_ASSERT_READ(pVmxTransient, HMVMX_READ_XCPT_INFO);
13375 if ( pVmxTransient->uExitReason == VMX_EXIT_EPT_VIOLATION
13376 || pVmxTransient->uExitReason == VMX_EXIT_PML_FULL
13377 || pVmxTransient->uExitReason == VMX_EXIT_SPP_EVENT)
13378 HMVMX_ASSERT_READ(pVmxTransient, HMVMX_READ_EXIT_QUALIFICATION);
13379
13380 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
13381 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
13382 uint32_t const uIdtVectorInfo = pVmxTransient->uIdtVectoringInfo;
13383 uint32_t const uExitIntInfo = pVmxTransient->uExitIntInfo;
13384 if (VMX_IDT_VECTORING_INFO_IS_VALID(uIdtVectorInfo))
13385 {
13386 uint32_t const uIdtVector = VMX_IDT_VECTORING_INFO_VECTOR(uIdtVectorInfo);
13387 uint32_t const uIdtVectorType = VMX_IDT_VECTORING_INFO_TYPE(uIdtVectorInfo);
13388
13389 /*
13390 * If the event was a software interrupt (generated with INT n) or a software exception
13391 * (generated by INT3/INTO) or a privileged software exception (generated by INT1), we
13392 * can handle the VM-exit and continue guest execution which will re-execute the
13393 * instruction rather than re-injecting the exception, as that can cause premature
13394 * trips to ring-3 before injection and involve TRPM which currently has no way of
13395 * storing that these exceptions were caused by these instructions (ICEBP's #DB poses
13396 * the problem).
13397 */
13398 IEMXCPTRAISE enmRaise;
13399 IEMXCPTRAISEINFO fRaiseInfo;
13400 if ( uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_INT
13401 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT
13402 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT)
13403 {
13404 enmRaise = IEMXCPTRAISE_REEXEC_INSTR;
13405 fRaiseInfo = IEMXCPTRAISEINFO_NONE;
13406 }
13407 else if (VMX_EXIT_INT_INFO_IS_VALID(uExitIntInfo))
13408 {
13409 uint32_t const uExitVectorType = VMX_EXIT_INT_INFO_TYPE(uExitIntInfo);
13410 uint8_t const uExitVector = VMX_EXIT_INT_INFO_VECTOR(uExitIntInfo);
13411 Assert(uExitVectorType == VMX_EXIT_INT_INFO_TYPE_HW_XCPT);
13412
13413 uint32_t const fIdtVectorFlags = hmR0VmxGetIemXcptFlags(uIdtVector, uIdtVectorType);
13414 uint32_t const fExitVectorFlags = hmR0VmxGetIemXcptFlags(uExitVector, uExitVectorType);
13415
13416 enmRaise = IEMEvaluateRecursiveXcpt(pVCpu, fIdtVectorFlags, uIdtVector, fExitVectorFlags, uExitVector, &fRaiseInfo);
13417
13418 /* Determine a vectoring #PF condition, see comment in hmR0VmxExitXcptPF(). */
13419 if (fRaiseInfo & (IEMXCPTRAISEINFO_EXT_INT_PF | IEMXCPTRAISEINFO_NMI_PF))
13420 {
13421 pVmxTransient->fVectoringPF = true;
13422 enmRaise = IEMXCPTRAISE_PREV_EVENT;
13423 }
13424 }
13425 else
13426 {
13427 /*
13428 * If an exception or hardware interrupt delivery caused an EPT violation/misconfig or APIC access
13429 * VM-exit, then the VM-exit interruption-information will not be valid and we end up here.
13430 * It is sufficient to reflect the original event to the guest after handling the VM-exit.
13431 */
13432 Assert( uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
13433 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_NMI
13434 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_EXT_INT);
13435 enmRaise = IEMXCPTRAISE_PREV_EVENT;
13436 fRaiseInfo = IEMXCPTRAISEINFO_NONE;
13437 }
13438
13439 /*
13440 * On CPUs that support Virtual NMIs, if this VM-exit (be it an exception or EPT violation/misconfig
13441 * etc.) occurred while delivering the NMI, we need to clear the block-by-NMI field in the guest
13442 * interruptibility-state before re-delivering the NMI after handling the VM-exit. Otherwise the
13443 * subsequent VM-entry would fail, see @bugref{7445}.
13444 *
13445 * See Intel spec. 30.7.1.2 "Resuming Guest Software after Handling an Exception".
13446 */
13447 if ( uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_NMI
13448 && enmRaise == IEMXCPTRAISE_PREV_EVENT
13449 && (pVmcsInfo->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI)
13450 && CPUMIsGuestNmiBlocking(pVCpu))
13451 {
13452 CPUMSetGuestNmiBlocking(pVCpu, false);
13453 }
13454
13455 switch (enmRaise)
13456 {
13457 case IEMXCPTRAISE_CURRENT_XCPT:
13458 {
13459 Log4Func(("IDT: Pending secondary Xcpt: idtinfo=%#RX64 exitinfo=%#RX64\n", uIdtVectorInfo, uExitIntInfo));
13460 Assert(rcStrict == VINF_SUCCESS);
13461 break;
13462 }
13463
13464 case IEMXCPTRAISE_PREV_EVENT:
13465 {
13466 uint32_t u32ErrCode;
13467 if (VMX_IDT_VECTORING_INFO_IS_ERROR_CODE_VALID(uIdtVectorInfo))
13468 u32ErrCode = pVmxTransient->uIdtVectoringErrorCode;
13469 else
13470 u32ErrCode = 0;
13471
13472 /* If uExitVector is #PF, CR2 value will be updated from the VMCS if it's a guest #PF, see hmR0VmxExitXcptPF(). */
13473 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectReflect);
13474 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_IDT_INFO(uIdtVectorInfo), 0 /* cbInstr */,
13475 u32ErrCode, pVCpu->cpum.GstCtx.cr2);
13476
13477 Log4Func(("IDT: Pending vectoring event %#RX64 Err=%#RX32\n", pVCpu->hm.s.Event.u64IntInfo,
13478 pVCpu->hm.s.Event.u32ErrCode));
13479 Assert(rcStrict == VINF_SUCCESS);
13480 break;
13481 }
13482
13483 case IEMXCPTRAISE_REEXEC_INSTR:
13484 Assert(rcStrict == VINF_SUCCESS);
13485 break;
13486
13487 case IEMXCPTRAISE_DOUBLE_FAULT:
13488 {
13489 /*
13490 * Determing a vectoring double #PF condition. Used later, when PGM evaluates the
13491 * second #PF as a guest #PF (and not a shadow #PF) and needs to be converted into a #DF.
13492 */
13493 if (fRaiseInfo & IEMXCPTRAISEINFO_PF_PF)
13494 {
13495 pVmxTransient->fVectoringDoublePF = true;
13496 Log4Func(("IDT: Vectoring double #PF %#RX64 cr2=%#RX64\n", pVCpu->hm.s.Event.u64IntInfo,
13497 pVCpu->cpum.GstCtx.cr2));
13498 rcStrict = VINF_SUCCESS;
13499 }
13500 else
13501 {
13502 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectConvertDF);
13503 hmR0VmxSetPendingXcptDF(pVCpu);
13504 Log4Func(("IDT: Pending vectoring #DF %#RX64 uIdtVector=%#x uExitVector=%#x\n", pVCpu->hm.s.Event.u64IntInfo,
13505 uIdtVector, VMX_EXIT_INT_INFO_VECTOR(uExitIntInfo)));
13506 rcStrict = VINF_HM_DOUBLE_FAULT;
13507 }
13508 break;
13509 }
13510
13511 case IEMXCPTRAISE_TRIPLE_FAULT:
13512 {
13513 Log4Func(("IDT: Pending vectoring triple-fault uIdt=%#x uExit=%#x\n", uIdtVector,
13514 VMX_EXIT_INT_INFO_VECTOR(uExitIntInfo)));
13515 rcStrict = VINF_EM_RESET;
13516 break;
13517 }
13518
13519 case IEMXCPTRAISE_CPU_HANG:
13520 {
13521 Log4Func(("IDT: Bad guest! Entering CPU hang. fRaiseInfo=%#x\n", fRaiseInfo));
13522 rcStrict = VERR_EM_GUEST_CPU_HANG;
13523 break;
13524 }
13525
13526 default:
13527 {
13528 AssertMsgFailed(("IDT: vcpu[%RU32] Unexpected/invalid value! enmRaise=%#x\n", pVCpu->idCpu, enmRaise));
13529 rcStrict = VERR_VMX_IPE_2;
13530 break;
13531 }
13532 }
13533 }
13534 else if ( (pVmcsInfo->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI)
13535 && !CPUMIsGuestNmiBlocking(pVCpu))
13536 {
13537 if ( VMX_EXIT_INT_INFO_IS_VALID(uExitIntInfo)
13538 && VMX_EXIT_INT_INFO_VECTOR(uExitIntInfo) != X86_XCPT_DF
13539 && VMX_EXIT_INT_INFO_IS_NMI_UNBLOCK_IRET(uExitIntInfo))
13540 {
13541 /*
13542 * Execution of IRET caused a fault when NMI blocking was in effect (i.e we're in
13543 * the guest or nested-guest NMI handler). We need to set the block-by-NMI field so
13544 * that virtual NMIs remain blocked until the IRET execution is completed.
13545 *
13546 * See Intel spec. 31.7.1.2 "Resuming Guest Software After Handling An Exception".
13547 */
13548 CPUMSetGuestNmiBlocking(pVCpu, true);
13549 Log4Func(("Set NMI blocking. uExitReason=%u\n", pVmxTransient->uExitReason));
13550 }
13551 else if ( pVmxTransient->uExitReason == VMX_EXIT_EPT_VIOLATION
13552 || pVmxTransient->uExitReason == VMX_EXIT_PML_FULL
13553 || pVmxTransient->uExitReason == VMX_EXIT_SPP_EVENT)
13554 {
13555 /*
13556 * Execution of IRET caused an EPT violation, page-modification log-full event or
13557 * SPP-related event VM-exit when NMI blocking was in effect (i.e. we're in the
13558 * guest or nested-guest NMI handler). We need to set the block-by-NMI field so
13559 * that virtual NMIs remain blocked until the IRET execution is completed.
13560 *
13561 * See Intel spec. 27.2.3 "Information about NMI unblocking due to IRET"
13562 */
13563 if (VMX_EXIT_QUAL_EPT_IS_NMI_UNBLOCK_IRET(pVmxTransient->uExitQual))
13564 {
13565 CPUMSetGuestNmiBlocking(pVCpu, true);
13566 Log4Func(("Set NMI blocking. uExitReason=%u\n", pVmxTransient->uExitReason));
13567 }
13568 }
13569 }
13570
13571 Assert( rcStrict == VINF_SUCCESS || rcStrict == VINF_HM_DOUBLE_FAULT
13572 || rcStrict == VINF_EM_RESET || rcStrict == VERR_EM_GUEST_CPU_HANG);
13573 return rcStrict;
13574}
13575
13576
13577#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
13578/**
13579 * Perform the relevant VMX instruction checks for VM-exits that occurred due to the
13580 * guest attempting to execute a VMX instruction.
13581 *
13582 * @returns Strict VBox status code (i.e. informational status codes too).
13583 * @retval VINF_SUCCESS if we should continue handling the VM-exit.
13584 * @retval VINF_HM_PENDING_XCPT if an exception was raised.
13585 *
13586 * @param pVCpu The cross context virtual CPU structure.
13587 * @param uExitReason The VM-exit reason.
13588 *
13589 * @todo NSTVMX: Document other error codes when VM-exit is implemented.
13590 * @remarks No-long-jump zone!!!
13591 */
13592static VBOXSTRICTRC hmR0VmxCheckExitDueToVmxInstr(PVMCPUCC pVCpu, uint32_t uExitReason)
13593{
13594 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_SS
13595 | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_EFER);
13596
13597 /*
13598 * The physical CPU would have already checked the CPU mode/code segment.
13599 * We shall just assert here for paranoia.
13600 * See Intel spec. 25.1.1 "Relative Priority of Faults and VM Exits".
13601 */
13602 Assert(!CPUMIsGuestInRealOrV86ModeEx(&pVCpu->cpum.GstCtx));
13603 Assert( !CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx)
13604 || CPUMIsGuestIn64BitCodeEx(&pVCpu->cpum.GstCtx));
13605
13606 if (uExitReason == VMX_EXIT_VMXON)
13607 {
13608 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
13609
13610 /*
13611 * We check CR4.VMXE because it is required to be always set while in VMX operation
13612 * by physical CPUs and our CR4 read-shadow is only consulted when executing specific
13613 * instructions (CLTS, LMSW, MOV CR, and SMSW) and thus doesn't affect CPU operation
13614 * otherwise (i.e. physical CPU won't automatically #UD if Cr4Shadow.VMXE is 0).
13615 */
13616 if (!CPUMIsGuestVmxEnabled(&pVCpu->cpum.GstCtx))
13617 {
13618 Log4Func(("CR4.VMXE is not set -> #UD\n"));
13619 hmR0VmxSetPendingXcptUD(pVCpu);
13620 return VINF_HM_PENDING_XCPT;
13621 }
13622 }
13623 else if (!CPUMIsGuestInVmxRootMode(&pVCpu->cpum.GstCtx))
13624 {
13625 /*
13626 * The guest has not entered VMX operation but attempted to execute a VMX instruction
13627 * (other than VMXON), we need to raise a #UD.
13628 */
13629 Log4Func(("Not in VMX root mode -> #UD\n"));
13630 hmR0VmxSetPendingXcptUD(pVCpu);
13631 return VINF_HM_PENDING_XCPT;
13632 }
13633
13634 /* All other checks (including VM-exit intercepts) are handled by IEM instruction emulation. */
13635 return VINF_SUCCESS;
13636}
13637
13638
13639/**
13640 * Decodes the memory operand of an instruction that caused a VM-exit.
13641 *
13642 * The Exit qualification field provides the displacement field for memory
13643 * operand instructions, if any.
13644 *
13645 * @returns Strict VBox status code (i.e. informational status codes too).
13646 * @retval VINF_SUCCESS if the operand was successfully decoded.
13647 * @retval VINF_HM_PENDING_XCPT if an exception was raised while decoding the
13648 * operand.
13649 * @param pVCpu The cross context virtual CPU structure.
13650 * @param uExitInstrInfo The VM-exit instruction information field.
13651 * @param enmMemAccess The memory operand's access type (read or write).
13652 * @param GCPtrDisp The instruction displacement field, if any. For
13653 * RIP-relative addressing pass RIP + displacement here.
13654 * @param pGCPtrMem Where to store the effective destination memory address.
13655 *
13656 * @remarks Warning! This function ASSUMES the instruction cannot be used in real or
13657 * virtual-8086 mode hence skips those checks while verifying if the
13658 * segment is valid.
13659 */
13660static VBOXSTRICTRC hmR0VmxDecodeMemOperand(PVMCPUCC pVCpu, uint32_t uExitInstrInfo, RTGCPTR GCPtrDisp, VMXMEMACCESS enmMemAccess,
13661 PRTGCPTR pGCPtrMem)
13662{
13663 Assert(pGCPtrMem);
13664 Assert(!CPUMIsGuestInRealOrV86Mode(pVCpu));
13665 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_EFER
13666 | CPUMCTX_EXTRN_CR0);
13667
13668 static uint64_t const s_auAddrSizeMasks[] = { UINT64_C(0xffff), UINT64_C(0xffffffff), UINT64_C(0xffffffffffffffff) };
13669 static uint64_t const s_auAccessSizeMasks[] = { sizeof(uint16_t), sizeof(uint32_t), sizeof(uint64_t) };
13670 AssertCompile(RT_ELEMENTS(s_auAccessSizeMasks) == RT_ELEMENTS(s_auAddrSizeMasks));
13671
13672 VMXEXITINSTRINFO ExitInstrInfo;
13673 ExitInstrInfo.u = uExitInstrInfo;
13674 uint8_t const uAddrSize = ExitInstrInfo.All.u3AddrSize;
13675 uint8_t const iSegReg = ExitInstrInfo.All.iSegReg;
13676 bool const fIdxRegValid = !ExitInstrInfo.All.fIdxRegInvalid;
13677 uint8_t const iIdxReg = ExitInstrInfo.All.iIdxReg;
13678 uint8_t const uScale = ExitInstrInfo.All.u2Scaling;
13679 bool const fBaseRegValid = !ExitInstrInfo.All.fBaseRegInvalid;
13680 uint8_t const iBaseReg = ExitInstrInfo.All.iBaseReg;
13681 bool const fIsMemOperand = !ExitInstrInfo.All.fIsRegOperand;
13682 bool const fIsLongMode = CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx);
13683
13684 /*
13685 * Validate instruction information.
13686 * This shouldn't happen on real hardware but useful while testing our nested hardware-virtualization code.
13687 */
13688 AssertLogRelMsgReturn(uAddrSize < RT_ELEMENTS(s_auAddrSizeMasks),
13689 ("Invalid address size. ExitInstrInfo=%#RX32\n", ExitInstrInfo.u), VERR_VMX_IPE_1);
13690 AssertLogRelMsgReturn(iSegReg < X86_SREG_COUNT,
13691 ("Invalid segment register. ExitInstrInfo=%#RX32\n", ExitInstrInfo.u), VERR_VMX_IPE_2);
13692 AssertLogRelMsgReturn(fIsMemOperand,
13693 ("Expected memory operand. ExitInstrInfo=%#RX32\n", ExitInstrInfo.u), VERR_VMX_IPE_3);
13694
13695 /*
13696 * Compute the complete effective address.
13697 *
13698 * See AMD instruction spec. 1.4.2 "SIB Byte Format"
13699 * See AMD spec. 4.5.2 "Segment Registers".
13700 */
13701 RTGCPTR GCPtrMem = GCPtrDisp;
13702 if (fBaseRegValid)
13703 GCPtrMem += pVCpu->cpum.GstCtx.aGRegs[iBaseReg].u64;
13704 if (fIdxRegValid)
13705 GCPtrMem += pVCpu->cpum.GstCtx.aGRegs[iIdxReg].u64 << uScale;
13706
13707 RTGCPTR const GCPtrOff = GCPtrMem;
13708 if ( !fIsLongMode
13709 || iSegReg >= X86_SREG_FS)
13710 GCPtrMem += pVCpu->cpum.GstCtx.aSRegs[iSegReg].u64Base;
13711 GCPtrMem &= s_auAddrSizeMasks[uAddrSize];
13712
13713 /*
13714 * Validate effective address.
13715 * See AMD spec. 4.5.3 "Segment Registers in 64-Bit Mode".
13716 */
13717 uint8_t const cbAccess = s_auAccessSizeMasks[uAddrSize];
13718 Assert(cbAccess > 0);
13719 if (fIsLongMode)
13720 {
13721 if (X86_IS_CANONICAL(GCPtrMem))
13722 {
13723 *pGCPtrMem = GCPtrMem;
13724 return VINF_SUCCESS;
13725 }
13726
13727 /** @todo r=ramshankar: We should probably raise \#SS or \#GP. See AMD spec. 4.12.2
13728 * "Data Limit Checks in 64-bit Mode". */
13729 Log4Func(("Long mode effective address is not canonical GCPtrMem=%#RX64\n", GCPtrMem));
13730 hmR0VmxSetPendingXcptGP(pVCpu, 0);
13731 return VINF_HM_PENDING_XCPT;
13732 }
13733
13734 /*
13735 * This is a watered down version of iemMemApplySegment().
13736 * Parts that are not applicable for VMX instructions like real-or-v8086 mode
13737 * and segment CPL/DPL checks are skipped.
13738 */
13739 RTGCPTR32 const GCPtrFirst32 = (RTGCPTR32)GCPtrOff;
13740 RTGCPTR32 const GCPtrLast32 = GCPtrFirst32 + cbAccess - 1;
13741 PCCPUMSELREG pSel = &pVCpu->cpum.GstCtx.aSRegs[iSegReg];
13742
13743 /* Check if the segment is present and usable. */
13744 if ( pSel->Attr.n.u1Present
13745 && !pSel->Attr.n.u1Unusable)
13746 {
13747 Assert(pSel->Attr.n.u1DescType);
13748 if (!(pSel->Attr.n.u4Type & X86_SEL_TYPE_CODE))
13749 {
13750 /* Check permissions for the data segment. */
13751 if ( enmMemAccess == VMXMEMACCESS_WRITE
13752 && !(pSel->Attr.n.u4Type & X86_SEL_TYPE_WRITE))
13753 {
13754 Log4Func(("Data segment access invalid. iSegReg=%#x Attr=%#RX32\n", iSegReg, pSel->Attr.u));
13755 hmR0VmxSetPendingXcptGP(pVCpu, iSegReg);
13756 return VINF_HM_PENDING_XCPT;
13757 }
13758
13759 /* Check limits if it's a normal data segment. */
13760 if (!(pSel->Attr.n.u4Type & X86_SEL_TYPE_DOWN))
13761 {
13762 if ( GCPtrFirst32 > pSel->u32Limit
13763 || GCPtrLast32 > pSel->u32Limit)
13764 {
13765 Log4Func(("Data segment limit exceeded. "
13766 "iSegReg=%#x GCPtrFirst32=%#RX32 GCPtrLast32=%#RX32 u32Limit=%#RX32\n", iSegReg, GCPtrFirst32,
13767 GCPtrLast32, pSel->u32Limit));
13768 if (iSegReg == X86_SREG_SS)
13769 hmR0VmxSetPendingXcptSS(pVCpu, 0);
13770 else
13771 hmR0VmxSetPendingXcptGP(pVCpu, 0);
13772 return VINF_HM_PENDING_XCPT;
13773 }
13774 }
13775 else
13776 {
13777 /* Check limits if it's an expand-down data segment.
13778 Note! The upper boundary is defined by the B bit, not the G bit! */
13779 if ( GCPtrFirst32 < pSel->u32Limit + UINT32_C(1)
13780 || GCPtrLast32 > (pSel->Attr.n.u1DefBig ? UINT32_MAX : UINT32_C(0xffff)))
13781 {
13782 Log4Func(("Expand-down data segment limit exceeded. "
13783 "iSegReg=%#x GCPtrFirst32=%#RX32 GCPtrLast32=%#RX32 u32Limit=%#RX32\n", iSegReg, GCPtrFirst32,
13784 GCPtrLast32, pSel->u32Limit));
13785 if (iSegReg == X86_SREG_SS)
13786 hmR0VmxSetPendingXcptSS(pVCpu, 0);
13787 else
13788 hmR0VmxSetPendingXcptGP(pVCpu, 0);
13789 return VINF_HM_PENDING_XCPT;
13790 }
13791 }
13792 }
13793 else
13794 {
13795 /* Check permissions for the code segment. */
13796 if ( enmMemAccess == VMXMEMACCESS_WRITE
13797 || ( enmMemAccess == VMXMEMACCESS_READ
13798 && !(pSel->Attr.n.u4Type & X86_SEL_TYPE_READ)))
13799 {
13800 Log4Func(("Code segment access invalid. Attr=%#RX32\n", pSel->Attr.u));
13801 Assert(!CPUMIsGuestInRealOrV86ModeEx(&pVCpu->cpum.GstCtx));
13802 hmR0VmxSetPendingXcptGP(pVCpu, 0);
13803 return VINF_HM_PENDING_XCPT;
13804 }
13805
13806 /* Check limits for the code segment (normal/expand-down not applicable for code segments). */
13807 if ( GCPtrFirst32 > pSel->u32Limit
13808 || GCPtrLast32 > pSel->u32Limit)
13809 {
13810 Log4Func(("Code segment limit exceeded. GCPtrFirst32=%#RX32 GCPtrLast32=%#RX32 u32Limit=%#RX32\n",
13811 GCPtrFirst32, GCPtrLast32, pSel->u32Limit));
13812 if (iSegReg == X86_SREG_SS)
13813 hmR0VmxSetPendingXcptSS(pVCpu, 0);
13814 else
13815 hmR0VmxSetPendingXcptGP(pVCpu, 0);
13816 return VINF_HM_PENDING_XCPT;
13817 }
13818 }
13819 }
13820 else
13821 {
13822 Log4Func(("Not present or unusable segment. iSegReg=%#x Attr=%#RX32\n", iSegReg, pSel->Attr.u));
13823 hmR0VmxSetPendingXcptGP(pVCpu, 0);
13824 return VINF_HM_PENDING_XCPT;
13825 }
13826
13827 *pGCPtrMem = GCPtrMem;
13828 return VINF_SUCCESS;
13829}
13830#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
13831
13832
13833/**
13834 * VM-exit helper for LMSW.
13835 */
13836static VBOXSTRICTRC hmR0VmxExitLmsw(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo, uint8_t cbInstr, uint16_t uMsw, RTGCPTR GCPtrEffDst)
13837{
13838 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK);
13839 AssertRCReturn(rc, rc);
13840
13841 VBOXSTRICTRC rcStrict = IEMExecDecodedLmsw(pVCpu, cbInstr, uMsw, GCPtrEffDst);
13842 AssertMsg( rcStrict == VINF_SUCCESS
13843 || rcStrict == VINF_IEM_RAISED_XCPT, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
13844
13845 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR0);
13846 if (rcStrict == VINF_IEM_RAISED_XCPT)
13847 {
13848 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
13849 rcStrict = VINF_SUCCESS;
13850 }
13851
13852 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitLmsw);
13853 Log4Func(("rcStrict=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
13854 return rcStrict;
13855}
13856
13857
13858/**
13859 * VM-exit helper for CLTS.
13860 */
13861static VBOXSTRICTRC hmR0VmxExitClts(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo, uint8_t cbInstr)
13862{
13863 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK);
13864 AssertRCReturn(rc, rc);
13865
13866 VBOXSTRICTRC rcStrict = IEMExecDecodedClts(pVCpu, cbInstr);
13867 AssertMsg( rcStrict == VINF_SUCCESS
13868 || rcStrict == VINF_IEM_RAISED_XCPT, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
13869
13870 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR0);
13871 if (rcStrict == VINF_IEM_RAISED_XCPT)
13872 {
13873 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
13874 rcStrict = VINF_SUCCESS;
13875 }
13876
13877 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitClts);
13878 Log4Func(("rcStrict=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
13879 return rcStrict;
13880}
13881
13882
13883/**
13884 * VM-exit helper for MOV from CRx (CRx read).
13885 */
13886static VBOXSTRICTRC hmR0VmxExitMovFromCrX(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo, uint8_t cbInstr, uint8_t iGReg, uint8_t iCrReg)
13887{
13888 Assert(iCrReg < 16);
13889 Assert(iGReg < RT_ELEMENTS(pVCpu->cpum.GstCtx.aGRegs));
13890
13891 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK);
13892 AssertRCReturn(rc, rc);
13893
13894 VBOXSTRICTRC rcStrict = IEMExecDecodedMovCRxRead(pVCpu, cbInstr, iGReg, iCrReg);
13895 AssertMsg( rcStrict == VINF_SUCCESS
13896 || rcStrict == VINF_IEM_RAISED_XCPT, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
13897
13898 if (iGReg == X86_GREG_xSP)
13899 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_RSP);
13900 else
13901 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
13902#ifdef VBOX_WITH_STATISTICS
13903 switch (iCrReg)
13904 {
13905 case 0: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR0Read); break;
13906 case 2: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR2Read); break;
13907 case 3: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR3Read); break;
13908 case 4: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR4Read); break;
13909 case 8: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR8Read); break;
13910 }
13911#endif
13912 Log4Func(("CR%d Read access rcStrict=%Rrc\n", iCrReg, VBOXSTRICTRC_VAL(rcStrict)));
13913 return rcStrict;
13914}
13915
13916
13917/**
13918 * VM-exit helper for MOV to CRx (CRx write).
13919 */
13920static VBOXSTRICTRC hmR0VmxExitMovToCrX(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo, uint8_t cbInstr, uint8_t iGReg, uint8_t iCrReg)
13921{
13922 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK);
13923 AssertRCReturn(rc, rc);
13924
13925 VBOXSTRICTRC rcStrict = IEMExecDecodedMovCRxWrite(pVCpu, cbInstr, iCrReg, iGReg);
13926 AssertMsg( rcStrict == VINF_SUCCESS
13927 || rcStrict == VINF_IEM_RAISED_XCPT
13928 || rcStrict == VINF_PGM_SYNC_CR3, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
13929
13930 switch (iCrReg)
13931 {
13932 case 0:
13933 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR0
13934 | HM_CHANGED_GUEST_EFER_MSR | HM_CHANGED_VMX_ENTRY_EXIT_CTLS);
13935 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR0Write);
13936 Log4Func(("CR0 write. rcStrict=%Rrc CR0=%#RX64\n", VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cr0));
13937 break;
13938
13939 case 2:
13940 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR2Write);
13941 /* Nothing to do here, CR2 it's not part of the VMCS. */
13942 break;
13943
13944 case 3:
13945 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR3);
13946 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR3Write);
13947 Log4Func(("CR3 write. rcStrict=%Rrc CR3=%#RX64\n", VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cr3));
13948 break;
13949
13950 case 4:
13951 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR4);
13952 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR4Write);
13953 Log4Func(("CR4 write. rc=%Rrc CR4=%#RX64 fLoadSaveGuestXcr0=%u\n", VBOXSTRICTRC_VAL(rcStrict),
13954 pVCpu->cpum.GstCtx.cr4, pVCpu->hmr0.s.fLoadSaveGuestXcr0));
13955 break;
13956
13957 case 8:
13958 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged,
13959 HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_APIC_TPR);
13960 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR8Write);
13961 break;
13962
13963 default:
13964 AssertMsgFailed(("Invalid CRx register %#x\n", iCrReg));
13965 break;
13966 }
13967
13968 if (rcStrict == VINF_IEM_RAISED_XCPT)
13969 {
13970 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
13971 rcStrict = VINF_SUCCESS;
13972 }
13973 return rcStrict;
13974}
13975
13976
13977/**
13978 * VM-exit exception handler for \#PF (Page-fault exception).
13979 *
13980 * @remarks Requires all fields in HMVMX_READ_XCPT_INFO to be read from the VMCS.
13981 */
13982static VBOXSTRICTRC hmR0VmxExitXcptPF(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
13983{
13984 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13985 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
13986 hmR0VmxReadExitQualVmcs(pVmxTransient);
13987
13988 if (!pVM->hmr0.s.fNestedPaging)
13989 { /* likely */ }
13990 else
13991 {
13992#if !defined(HMVMX_ALWAYS_TRAP_ALL_XCPTS) && !defined(HMVMX_ALWAYS_TRAP_PF)
13993 Assert(pVmxTransient->fIsNestedGuest || pVCpu->hmr0.s.fUsingDebugLoop);
13994#endif
13995 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory or vectoring #PF. */
13996 if (!pVmxTransient->fVectoringDoublePF)
13997 {
13998 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), 0 /* cbInstr */,
13999 pVmxTransient->uExitIntErrorCode, pVmxTransient->uExitQual);
14000 }
14001 else
14002 {
14003 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
14004 Assert(!pVmxTransient->fIsNestedGuest);
14005 hmR0VmxSetPendingXcptDF(pVCpu);
14006 Log4Func(("Pending #DF due to vectoring #PF w/ NestedPaging\n"));
14007 }
14008 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
14009 return VINF_SUCCESS;
14010 }
14011
14012 Assert(!pVmxTransient->fIsNestedGuest);
14013
14014 /* If it's a vectoring #PF, emulate injecting the original event injection as PGMTrap0eHandler() is incapable
14015 of differentiating between instruction emulation and event injection that caused a #PF. See @bugref{6607}. */
14016 if (pVmxTransient->fVectoringPF)
14017 {
14018 Assert(pVCpu->hm.s.Event.fPending);
14019 return VINF_EM_RAW_INJECT_TRPM_EVENT;
14020 }
14021
14022 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
14023 int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
14024 AssertRCReturn(rc, rc);
14025
14026 Log4Func(("#PF: cs:rip=%#04x:%#RX64 err_code=%#RX32 exit_qual=%#RX64 cr3=%#RX64\n", pCtx->cs.Sel, pCtx->rip,
14027 pVmxTransient->uExitIntErrorCode, pVmxTransient->uExitQual, pCtx->cr3));
14028
14029 TRPMAssertXcptPF(pVCpu, pVmxTransient->uExitQual, (RTGCUINT)pVmxTransient->uExitIntErrorCode);
14030 rc = PGMTrap0eHandler(pVCpu, pVmxTransient->uExitIntErrorCode, CPUMCTX2CORE(pCtx), (RTGCPTR)pVmxTransient->uExitQual);
14031
14032 Log4Func(("#PF: rc=%Rrc\n", rc));
14033 if (rc == VINF_SUCCESS)
14034 {
14035 /*
14036 * This is typically a shadow page table sync or a MMIO instruction. But we may have
14037 * emulated something like LTR or a far jump. Any part of the CPU context may have changed.
14038 */
14039 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
14040 TRPMResetTrap(pVCpu);
14041 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
14042 return rc;
14043 }
14044
14045 if (rc == VINF_EM_RAW_GUEST_TRAP)
14046 {
14047 if (!pVmxTransient->fVectoringDoublePF)
14048 {
14049 /* It's a guest page fault and needs to be reflected to the guest. */
14050 uint32_t const uGstErrorCode = TRPMGetErrorCode(pVCpu);
14051 TRPMResetTrap(pVCpu);
14052 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory #PF. */
14053 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), 0 /* cbInstr */,
14054 uGstErrorCode, pVmxTransient->uExitQual);
14055 }
14056 else
14057 {
14058 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
14059 TRPMResetTrap(pVCpu);
14060 pVCpu->hm.s.Event.fPending = false; /* Clear pending #PF to replace it with #DF. */
14061 hmR0VmxSetPendingXcptDF(pVCpu);
14062 Log4Func(("#PF: Pending #DF due to vectoring #PF\n"));
14063 }
14064
14065 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
14066 return VINF_SUCCESS;
14067 }
14068
14069 TRPMResetTrap(pVCpu);
14070 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPFEM);
14071 return rc;
14072}
14073
14074
14075/**
14076 * VM-exit exception handler for \#MF (Math Fault: floating point exception).
14077 *
14078 * @remarks Requires all fields in HMVMX_READ_XCPT_INFO to be read from the VMCS.
14079 */
14080static VBOXSTRICTRC hmR0VmxExitXcptMF(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
14081{
14082 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14083 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestMF);
14084
14085 int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_CR0);
14086 AssertRCReturn(rc, rc);
14087
14088 if (!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_NE))
14089 {
14090 /* Convert a #MF into a FERR -> IRQ 13. See @bugref{6117}. */
14091 rc = PDMIsaSetIrq(pVCpu->CTX_SUFF(pVM), 13, 1, 0 /* uTagSrc */);
14092
14093 /** @todo r=ramshankar: The Intel spec. does -not- specify that this VM-exit
14094 * provides VM-exit instruction length. If this causes problem later,
14095 * disassemble the instruction like it's done on AMD-V. */
14096 int rc2 = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
14097 AssertRCReturn(rc2, rc2);
14098 return rc;
14099 }
14100
14101 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), pVmxTransient->cbExitInstr,
14102 pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
14103 return VINF_SUCCESS;
14104}
14105
14106
14107/**
14108 * VM-exit exception handler for \#BP (Breakpoint exception).
14109 *
14110 * @remarks Requires all fields in HMVMX_READ_XCPT_INFO to be read from the VMCS.
14111 */
14112static VBOXSTRICTRC hmR0VmxExitXcptBP(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
14113{
14114 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14115 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestBP);
14116
14117 int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
14118 AssertRCReturn(rc, rc);
14119
14120 if (!pVmxTransient->fIsNestedGuest)
14121 rc = DBGFTrap03Handler(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(&pVCpu->cpum.GstCtx));
14122 else
14123 rc = VINF_EM_RAW_GUEST_TRAP;
14124
14125 if (rc == VINF_EM_RAW_GUEST_TRAP)
14126 {
14127 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
14128 pVmxTransient->cbExitInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
14129 rc = VINF_SUCCESS;
14130 }
14131
14132 Assert(rc == VINF_SUCCESS || rc == VINF_EM_DBG_BREAKPOINT);
14133 return rc;
14134}
14135
14136
14137/**
14138 * VM-exit exception handler for \#AC (Alignment-check exception).
14139 *
14140 * @remarks Requires all fields in HMVMX_READ_XCPT_INFO to be read from the VMCS.
14141 */
14142static VBOXSTRICTRC hmR0VmxExitXcptAC(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
14143{
14144 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14145
14146 /*
14147 * Detect #ACs caused by host having enabled split-lock detection.
14148 * Emulate such instructions.
14149 */
14150 int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo,
14151 CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_SS | CPUMCTX_EXTRN_CS);
14152 AssertRCReturn(rc, rc);
14153 /** @todo detect split lock in cpu feature? */
14154 if ( /* 1. If 486-style alignment checks aren't enabled, then this must be a split-lock exception */
14155 !(pVCpu->cpum.GstCtx.cr0 & X86_CR0_AM)
14156 /* 2. #AC cannot happen in rings 0-2 except for split-lock detection. */
14157 || CPUMGetGuestCPL(pVCpu) != 3
14158 /* 3. When the EFLAGS.AC != 0 this can only be a split-lock case. */
14159 || !(pVCpu->cpum.GstCtx.eflags.u & X86_EFL_AC) )
14160 {
14161 /*
14162 * Check for debug/trace events and import state accordingly.
14163 */
14164 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatExitGuestACSplitLock);
14165 PVMCC pVM = pVCpu->pVMR0;
14166 if ( !DBGF_IS_EVENT_ENABLED(pVM, DBGFEVENT_VMX_SPLIT_LOCK)
14167 && !VBOXVMM_VMX_SPLIT_LOCK_ENABLED())
14168 {
14169 if (pVM->cCpus == 1)
14170 {
14171#if 0 /** @todo r=bird: This is potentially wrong. Might have to just do a whole state sync above and mark everything changed to be safe... */
14172 rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK);
14173#else
14174 rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
14175#endif
14176 AssertRCReturn(rc, rc);
14177 }
14178 }
14179 else
14180 {
14181 rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
14182 AssertRCReturn(rc, rc);
14183
14184 VBOXVMM_XCPT_DF(pVCpu, &pVCpu->cpum.GstCtx);
14185
14186 if (DBGF_IS_EVENT_ENABLED(pVM, DBGFEVENT_VMX_SPLIT_LOCK))
14187 {
14188 VBOXSTRICTRC rcStrict = DBGFEventGenericWithArgs(pVM, pVCpu, DBGFEVENT_VMX_SPLIT_LOCK, DBGFEVENTCTX_HM, 0);
14189 if (rcStrict != VINF_SUCCESS)
14190 return rcStrict;
14191 }
14192 }
14193
14194 /*
14195 * Emulate the instruction.
14196 *
14197 * We have to ignore the LOCK prefix here as we must not retrigger the
14198 * detection on the host. This isn't all that satisfactory, though...
14199 */
14200 if (pVM->cCpus == 1)
14201 {
14202 Log8Func(("cs:rip=%#04x:%#RX64 rflags=%#RX64 cr0=%#RX64 split-lock #AC\n", pVCpu->cpum.GstCtx.cs.Sel,
14203 pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.rflags, pVCpu->cpum.GstCtx.cr0));
14204
14205 /** @todo For SMP configs we should do a rendezvous here. */
14206 VBOXSTRICTRC rcStrict = IEMExecOneIgnoreLock(pVCpu);
14207 if (rcStrict == VINF_SUCCESS)
14208#if 0 /** @todo r=bird: This is potentially wrong. Might have to just do a whole state sync above and mark everything changed to be safe... */
14209 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged,
14210 HM_CHANGED_GUEST_RIP
14211 | HM_CHANGED_GUEST_RFLAGS
14212 | HM_CHANGED_GUEST_GPRS_MASK
14213 | HM_CHANGED_GUEST_CS
14214 | HM_CHANGED_GUEST_SS);
14215#else
14216 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
14217#endif
14218 else if (rcStrict == VINF_IEM_RAISED_XCPT)
14219 {
14220 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
14221 rcStrict = VINF_SUCCESS;
14222 }
14223 return rcStrict;
14224 }
14225 Log8Func(("cs:rip=%#04x:%#RX64 rflags=%#RX64 cr0=%#RX64 split-lock #AC -> VINF_EM_EMULATE_SPLIT_LOCK\n",
14226 pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.rflags, pVCpu->cpum.GstCtx.cr0));
14227 return VINF_EM_EMULATE_SPLIT_LOCK;
14228 }
14229
14230 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatExitGuestAC);
14231 Log8Func(("cs:rip=%#04x:%#RX64 rflags=%#RX64 cr0=%#RX64 cpl=%d -> #AC\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
14232 pVCpu->cpum.GstCtx.rflags, pVCpu->cpum.GstCtx.cr0, CPUMGetGuestCPL(pVCpu) ));
14233
14234 /* Re-inject it. We'll detect any nesting before getting here. */
14235 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
14236 pVmxTransient->cbExitInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
14237 return VINF_SUCCESS;
14238}
14239
14240
14241/**
14242 * VM-exit exception handler for \#DB (Debug exception).
14243 *
14244 * @remarks Requires all fields in HMVMX_READ_XCPT_INFO to be read from the VMCS.
14245 */
14246static VBOXSTRICTRC hmR0VmxExitXcptDB(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
14247{
14248 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14249 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDB);
14250
14251 /*
14252 * Get the DR6-like values from the Exit qualification and pass it to DBGF for processing.
14253 */
14254 hmR0VmxReadExitQualVmcs(pVmxTransient);
14255
14256 /* Refer Intel spec. Table 27-1. "Exit Qualifications for debug exceptions" for the format. */
14257 uint64_t const uDR6 = X86_DR6_INIT_VAL
14258 | (pVmxTransient->uExitQual & ( X86_DR6_B0 | X86_DR6_B1 | X86_DR6_B2 | X86_DR6_B3
14259 | X86_DR6_BD | X86_DR6_BS));
14260
14261 int rc;
14262 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
14263 if (!pVmxTransient->fIsNestedGuest)
14264 {
14265 rc = DBGFTrap01Handler(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx), uDR6, pVCpu->hm.s.fSingleInstruction);
14266
14267 /*
14268 * Prevents stepping twice over the same instruction when the guest is stepping using
14269 * EFLAGS.TF and the hypervisor debugger is stepping using MTF.
14270 * Testcase: DOSQEMM, break (using "ba x 1") at cs:rip 0x70:0x774 and step (using "t").
14271 */
14272 if ( rc == VINF_EM_DBG_STEPPED
14273 && (pVmxTransient->pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_MONITOR_TRAP_FLAG))
14274 {
14275 Assert(pVCpu->hm.s.fSingleInstruction);
14276 rc = VINF_EM_RAW_GUEST_TRAP;
14277 }
14278 }
14279 else
14280 rc = VINF_EM_RAW_GUEST_TRAP;
14281 Log6Func(("rc=%Rrc\n", rc));
14282 if (rc == VINF_EM_RAW_GUEST_TRAP)
14283 {
14284 /*
14285 * The exception was for the guest. Update DR6, DR7.GD and
14286 * IA32_DEBUGCTL.LBR before forwarding it.
14287 * See Intel spec. 27.1 "Architectural State before a VM-Exit".
14288 */
14289 VMMRZCallRing3Disable(pVCpu);
14290 HM_DISABLE_PREEMPT(pVCpu);
14291
14292 pCtx->dr[6] &= ~X86_DR6_B_MASK;
14293 pCtx->dr[6] |= uDR6;
14294 if (CPUMIsGuestDebugStateActive(pVCpu))
14295 ASMSetDR6(pCtx->dr[6]);
14296
14297 HM_RESTORE_PREEMPT();
14298 VMMRZCallRing3Enable(pVCpu);
14299
14300 rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_DR7);
14301 AssertRCReturn(rc, rc);
14302
14303 /* X86_DR7_GD will be cleared if DRx accesses should be trapped inside the guest. */
14304 pCtx->dr[7] &= ~(uint64_t)X86_DR7_GD;
14305
14306 /* Paranoia. */
14307 pCtx->dr[7] &= ~(uint64_t)X86_DR7_RAZ_MASK;
14308 pCtx->dr[7] |= X86_DR7_RA1_MASK;
14309
14310 rc = VMXWriteVmcsNw(VMX_VMCS_GUEST_DR7, pCtx->dr[7]);
14311 AssertRC(rc);
14312
14313 /*
14314 * Raise #DB in the guest.
14315 *
14316 * It is important to reflect exactly what the VM-exit gave us (preserving the
14317 * interruption-type) rather than use hmR0VmxSetPendingXcptDB() as the #DB could've
14318 * been raised while executing ICEBP (INT1) and not the regular #DB. Thus it may
14319 * trigger different handling in the CPU (like skipping DPL checks), see @bugref{6398}.
14320 *
14321 * Intel re-documented ICEBP/INT1 on May 2018 previously documented as part of
14322 * Intel 386, see Intel spec. 24.8.3 "VM-Entry Controls for Event Injection".
14323 */
14324 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
14325 pVmxTransient->cbExitInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
14326 return VINF_SUCCESS;
14327 }
14328
14329 /*
14330 * Not a guest trap, must be a hypervisor related debug event then.
14331 * Update DR6 in case someone is interested in it.
14332 */
14333 AssertMsg(rc == VINF_EM_DBG_STEPPED || rc == VINF_EM_DBG_BREAKPOINT, ("%Rrc\n", rc));
14334 AssertReturn(pVmxTransient->fWasHyperDebugStateActive, VERR_HM_IPE_5);
14335 CPUMSetHyperDR6(pVCpu, uDR6);
14336
14337 return rc;
14338}
14339
14340
14341/**
14342 * Hacks its way around the lovely mesa driver's backdoor accesses.
14343 *
14344 * @sa hmR0SvmHandleMesaDrvGp.
14345 */
14346static int hmR0VmxHandleMesaDrvGp(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient, PCPUMCTX pCtx)
14347{
14348 LogFunc(("cs:rip=%#04x:%#RX64 rcx=%#RX64 rbx=%#RX64\n", pCtx->cs.Sel, pCtx->rip, pCtx->rcx, pCtx->rbx));
14349 RT_NOREF(pCtx);
14350
14351 /* For now we'll just skip the instruction. */
14352 return hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
14353}
14354
14355
14356/**
14357 * Checks if the \#GP'ing instruction is the mesa driver doing it's lovely
14358 * backdoor logging w/o checking what it is running inside.
14359 *
14360 * This recognizes an "IN EAX,DX" instruction executed in flat ring-3, with the
14361 * backdoor port and magic numbers loaded in registers.
14362 *
14363 * @returns true if it is, false if it isn't.
14364 * @sa hmR0SvmIsMesaDrvGp.
14365 */
14366DECLINLINE(bool) hmR0VmxIsMesaDrvGp(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient, PCPUMCTX pCtx)
14367{
14368 /* 0xed: IN eAX,dx */
14369 uint8_t abInstr[1];
14370 if (pVmxTransient->cbExitInstr != sizeof(abInstr))
14371 return false;
14372
14373 /* Check that it is #GP(0). */
14374 if (pVmxTransient->uExitIntErrorCode != 0)
14375 return false;
14376
14377 /* Check magic and port. */
14378 Assert(!(pCtx->fExtrn & (CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RDX | CPUMCTX_EXTRN_RCX)));
14379 /*Log(("hmR0VmxIsMesaDrvGp: rax=%RX64 rdx=%RX64\n", pCtx->rax, pCtx->rdx));*/
14380 if (pCtx->rax != UINT32_C(0x564d5868))
14381 return false;
14382 if (pCtx->dx != UINT32_C(0x5658))
14383 return false;
14384
14385 /* Flat ring-3 CS. */
14386 AssertCompile(HMVMX_CPUMCTX_EXTRN_ALL & CPUMCTX_EXTRN_CS);
14387 Assert(!(pCtx->fExtrn & CPUMCTX_EXTRN_CS));
14388 /*Log(("hmR0VmxIsMesaDrvGp: cs.Attr.n.u2Dpl=%d base=%Rx64\n", pCtx->cs.Attr.n.u2Dpl, pCtx->cs.u64Base));*/
14389 if (pCtx->cs.Attr.n.u2Dpl != 3)
14390 return false;
14391 if (pCtx->cs.u64Base != 0)
14392 return false;
14393
14394 /* Check opcode. */
14395 AssertCompile(HMVMX_CPUMCTX_EXTRN_ALL & CPUMCTX_EXTRN_RIP);
14396 Assert(!(pCtx->fExtrn & CPUMCTX_EXTRN_RIP));
14397 int rc = PGMPhysSimpleReadGCPtr(pVCpu, abInstr, pCtx->rip, sizeof(abInstr));
14398 /*Log(("hmR0VmxIsMesaDrvGp: PGMPhysSimpleReadGCPtr -> %Rrc %#x\n", rc, abInstr[0]));*/
14399 if (RT_FAILURE(rc))
14400 return false;
14401 if (abInstr[0] != 0xed)
14402 return false;
14403
14404 return true;
14405}
14406
14407
14408/**
14409 * VM-exit exception handler for \#GP (General-protection exception).
14410 *
14411 * @remarks Requires all fields in HMVMX_READ_XCPT_INFO to be read from the VMCS.
14412 */
14413static VBOXSTRICTRC hmR0VmxExitXcptGP(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
14414{
14415 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14416 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestGP);
14417
14418 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
14419 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
14420 PVMXVMCSINFOSHARED pVmcsInfoShared = pVmcsInfo->pShared;
14421 if (pVmcsInfoShared->RealMode.fRealOnV86Active)
14422 { /* likely */ }
14423 else
14424 {
14425#ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
14426 Assert(pVCpu->hmr0.s.fUsingDebugLoop || pVCpu->hm.s.fTrapXcptGpForLovelyMesaDrv || pVmxTransient->fIsNestedGuest);
14427#endif
14428 /*
14429 * If the guest is not in real-mode or we have unrestricted guest execution support, or if we are
14430 * executing a nested-guest, reflect #GP to the guest or nested-guest.
14431 */
14432 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
14433 AssertRCReturn(rc, rc);
14434 Log4Func(("Gst: cs:rip=%#04x:%#RX64 ErrorCode=%#x cr0=%#RX64 cpl=%u tr=%#04x\n", pCtx->cs.Sel, pCtx->rip,
14435 pVmxTransient->uExitIntErrorCode, pCtx->cr0, CPUMGetGuestCPL(pVCpu), pCtx->tr.Sel));
14436
14437 if ( pVmxTransient->fIsNestedGuest
14438 || !pVCpu->hm.s.fTrapXcptGpForLovelyMesaDrv
14439 || !hmR0VmxIsMesaDrvGp(pVCpu, pVmxTransient, pCtx))
14440 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
14441 pVmxTransient->cbExitInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
14442 else
14443 rc = hmR0VmxHandleMesaDrvGp(pVCpu, pVmxTransient, pCtx);
14444 return rc;
14445 }
14446
14447 Assert(CPUMIsGuestInRealModeEx(pCtx));
14448 Assert(!pVCpu->CTX_SUFF(pVM)->hmr0.s.vmx.fUnrestrictedGuest);
14449 Assert(!pVmxTransient->fIsNestedGuest);
14450
14451 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
14452 AssertRCReturn(rc, rc);
14453
14454 VBOXSTRICTRC rcStrict = IEMExecOne(pVCpu);
14455 if (rcStrict == VINF_SUCCESS)
14456 {
14457 if (!CPUMIsGuestInRealModeEx(pCtx))
14458 {
14459 /*
14460 * The guest is no longer in real-mode, check if we can continue executing the
14461 * guest using hardware-assisted VMX. Otherwise, fall back to emulation.
14462 */
14463 pVmcsInfoShared->RealMode.fRealOnV86Active = false;
14464 if (HMCanExecuteVmxGuest(pVCpu->pVMR0, pVCpu, pCtx))
14465 {
14466 Log4Func(("Mode changed but guest still suitable for executing using hardware-assisted VMX\n"));
14467 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
14468 }
14469 else
14470 {
14471 Log4Func(("Mode changed -> VINF_EM_RESCHEDULE\n"));
14472 rcStrict = VINF_EM_RESCHEDULE;
14473 }
14474 }
14475 else
14476 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
14477 }
14478 else if (rcStrict == VINF_IEM_RAISED_XCPT)
14479 {
14480 rcStrict = VINF_SUCCESS;
14481 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
14482 }
14483 return VBOXSTRICTRC_VAL(rcStrict);
14484}
14485
14486
14487/**
14488 * VM-exit exception handler wrapper for all other exceptions that are not handled
14489 * by a specific handler.
14490 *
14491 * This simply re-injects the exception back into the VM without any special
14492 * processing.
14493 *
14494 * @remarks Requires all fields in HMVMX_READ_XCPT_INFO to be read from the VMCS.
14495 */
14496static VBOXSTRICTRC hmR0VmxExitXcptOthers(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
14497{
14498 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14499
14500#ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
14501 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
14502 AssertMsg(pVCpu->hmr0.s.fUsingDebugLoop || pVmcsInfo->pShared->RealMode.fRealOnV86Active || pVmxTransient->fIsNestedGuest,
14503 ("uVector=%#x u32XcptBitmap=%#X32\n",
14504 VMX_EXIT_INT_INFO_VECTOR(pVmxTransient->uExitIntInfo), pVmcsInfo->u32XcptBitmap));
14505 NOREF(pVmcsInfo);
14506#endif
14507
14508 /*
14509 * Re-inject the exception into the guest. This cannot be a double-fault condition which
14510 * would have been handled while checking exits due to event delivery.
14511 */
14512 uint8_t const uVector = VMX_EXIT_INT_INFO_VECTOR(pVmxTransient->uExitIntInfo);
14513
14514#ifdef HMVMX_ALWAYS_TRAP_ALL_XCPTS
14515 int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
14516 AssertRCReturn(rc, rc);
14517 Log4Func(("Reinjecting Xcpt. uVector=%#x cs:rip=%#04x:%#RX64\n", uVector, pCtx->cs.Sel, pCtx->rip));
14518#endif
14519
14520#ifdef VBOX_WITH_STATISTICS
14521 switch (uVector)
14522 {
14523 case X86_XCPT_DE: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDE); break;
14524 case X86_XCPT_DB: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDB); break;
14525 case X86_XCPT_BP: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestBP); break;
14526 case X86_XCPT_OF: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestOF); break;
14527 case X86_XCPT_BR: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestBR); break;
14528 case X86_XCPT_UD: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestUD); break;
14529 case X86_XCPT_NM: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestOF); break;
14530 case X86_XCPT_DF: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDF); break;
14531 case X86_XCPT_TS: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestTS); break;
14532 case X86_XCPT_NP: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNP); break;
14533 case X86_XCPT_SS: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestSS); break;
14534 case X86_XCPT_GP: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestGP); break;
14535 case X86_XCPT_PF: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF); break;
14536 case X86_XCPT_MF: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestMF); break;
14537 case X86_XCPT_AC: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestAC); break;
14538 case X86_XCPT_XF: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestXF); break;
14539 default:
14540 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestXcpUnk);
14541 break;
14542 }
14543#endif
14544
14545 /* We should never call this function for a page-fault, we'd need to pass on the fault address below otherwise. */
14546 Assert(!VMX_EXIT_INT_INFO_IS_XCPT_PF(pVmxTransient->uExitIntInfo));
14547 NOREF(uVector);
14548
14549 /* Re-inject the original exception into the guest. */
14550 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
14551 pVmxTransient->cbExitInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
14552 return VINF_SUCCESS;
14553}
14554
14555
14556/**
14557 * VM-exit exception handler for all exceptions (except NMIs!).
14558 *
14559 * @remarks This may be called for both guests and nested-guests. Take care to not
14560 * make assumptions and avoid doing anything that is not relevant when
14561 * executing a nested-guest (e.g., Mesa driver hacks).
14562 */
14563static VBOXSTRICTRC hmR0VmxExitXcpt(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
14564{
14565 HMVMX_ASSERT_READ(pVmxTransient, HMVMX_READ_XCPT_INFO);
14566
14567 /*
14568 * If this VM-exit occurred while delivering an event through the guest IDT, take
14569 * action based on the return code and additional hints (e.g. for page-faults)
14570 * that will be updated in the VMX transient structure.
14571 */
14572 VBOXSTRICTRC rcStrict = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pVmxTransient);
14573 if (rcStrict == VINF_SUCCESS)
14574 {
14575 /*
14576 * If an exception caused a VM-exit due to delivery of an event, the original
14577 * event may have to be re-injected into the guest. We shall reinject it and
14578 * continue guest execution. However, page-fault is a complicated case and
14579 * needs additional processing done in hmR0VmxExitXcptPF().
14580 */
14581 Assert(VMX_EXIT_INT_INFO_IS_VALID(pVmxTransient->uExitIntInfo));
14582 uint8_t const uVector = VMX_EXIT_INT_INFO_VECTOR(pVmxTransient->uExitIntInfo);
14583 if ( !pVCpu->hm.s.Event.fPending
14584 || uVector == X86_XCPT_PF)
14585 {
14586 switch (uVector)
14587 {
14588 case X86_XCPT_PF: return hmR0VmxExitXcptPF(pVCpu, pVmxTransient);
14589 case X86_XCPT_GP: return hmR0VmxExitXcptGP(pVCpu, pVmxTransient);
14590 case X86_XCPT_MF: return hmR0VmxExitXcptMF(pVCpu, pVmxTransient);
14591 case X86_XCPT_DB: return hmR0VmxExitXcptDB(pVCpu, pVmxTransient);
14592 case X86_XCPT_BP: return hmR0VmxExitXcptBP(pVCpu, pVmxTransient);
14593 case X86_XCPT_AC: return hmR0VmxExitXcptAC(pVCpu, pVmxTransient);
14594 default:
14595 return hmR0VmxExitXcptOthers(pVCpu, pVmxTransient);
14596 }
14597 }
14598 /* else: inject pending event before resuming guest execution. */
14599 }
14600 else if (rcStrict == VINF_HM_DOUBLE_FAULT)
14601 {
14602 Assert(pVCpu->hm.s.Event.fPending);
14603 rcStrict = VINF_SUCCESS;
14604 }
14605
14606 return rcStrict;
14607}
14608/** @} */
14609
14610
14611/** @name VM-exit handlers.
14612 * @{
14613 */
14614/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
14615/* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- VM-exit handlers -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- */
14616/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
14617
14618/**
14619 * VM-exit handler for external interrupts (VMX_EXIT_EXT_INT).
14620 */
14621HMVMX_EXIT_DECL hmR0VmxExitExtInt(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
14622{
14623 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14624 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitExtInt);
14625 /* Windows hosts (32-bit and 64-bit) have DPC latency issues. See @bugref{6853}. */
14626 if (VMMR0ThreadCtxHookIsEnabled(pVCpu))
14627 return VINF_SUCCESS;
14628 return VINF_EM_RAW_INTERRUPT;
14629}
14630
14631
14632/**
14633 * VM-exit handler for exceptions or NMIs (VMX_EXIT_XCPT_OR_NMI). Conditional
14634 * VM-exit.
14635 */
14636HMVMX_EXIT_DECL hmR0VmxExitXcptOrNmi(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
14637{
14638 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14639 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitXcptNmi, y3);
14640
14641 hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
14642
14643 uint32_t const uExitIntType = VMX_EXIT_INT_INFO_TYPE(pVmxTransient->uExitIntInfo);
14644 uint8_t const uVector = VMX_EXIT_INT_INFO_VECTOR(pVmxTransient->uExitIntInfo);
14645 Assert(VMX_EXIT_INT_INFO_IS_VALID(pVmxTransient->uExitIntInfo));
14646
14647 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
14648 Assert( !(pVmcsInfo->u32ExitCtls & VMX_EXIT_CTLS_ACK_EXT_INT)
14649 && uExitIntType != VMX_EXIT_INT_INFO_TYPE_EXT_INT);
14650 NOREF(pVmcsInfo);
14651
14652 VBOXSTRICTRC rcStrict;
14653 switch (uExitIntType)
14654 {
14655 /*
14656 * Host physical NMIs:
14657 * This cannot be a guest NMI as the only way for the guest to receive an NMI is if we
14658 * injected it ourselves and anything we inject is not going to cause a VM-exit directly
14659 * for the event being injected[1]. Go ahead and dispatch the NMI to the host[2].
14660 *
14661 * See Intel spec. 27.2.3 "Information for VM Exits During Event Delivery".
14662 * See Intel spec. 27.5.5 "Updating Non-Register State".
14663 */
14664 case VMX_EXIT_INT_INFO_TYPE_NMI:
14665 {
14666 rcStrict = hmR0VmxExitHostNmi(pVCpu, pVmcsInfo);
14667 break;
14668 }
14669
14670 /*
14671 * Privileged software exceptions (#DB from ICEBP),
14672 * Software exceptions (#BP and #OF),
14673 * Hardware exceptions:
14674 * Process the required exceptions and resume guest execution if possible.
14675 */
14676 case VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT:
14677 Assert(uVector == X86_XCPT_DB);
14678 RT_FALL_THRU();
14679 case VMX_EXIT_INT_INFO_TYPE_SW_XCPT:
14680 Assert(uVector == X86_XCPT_BP || uVector == X86_XCPT_OF || uExitIntType == VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT);
14681 RT_FALL_THRU();
14682 case VMX_EXIT_INT_INFO_TYPE_HW_XCPT:
14683 {
14684 NOREF(uVector);
14685 hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
14686 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
14687 hmR0VmxReadIdtVectoringInfoVmcs(pVmxTransient);
14688 hmR0VmxReadIdtVectoringErrorCodeVmcs(pVmxTransient);
14689
14690 rcStrict = hmR0VmxExitXcpt(pVCpu, pVmxTransient);
14691 break;
14692 }
14693
14694 default:
14695 {
14696 pVCpu->hm.s.u32HMError = pVmxTransient->uExitIntInfo;
14697 rcStrict = VERR_VMX_UNEXPECTED_INTERRUPTION_EXIT_TYPE;
14698 AssertMsgFailed(("Invalid/unexpected VM-exit interruption info %#x\n", pVmxTransient->uExitIntInfo));
14699 break;
14700 }
14701 }
14702
14703 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3);
14704 return rcStrict;
14705}
14706
14707
14708/**
14709 * VM-exit handler for interrupt-window exiting (VMX_EXIT_INT_WINDOW).
14710 */
14711HMVMX_EXIT_NSRC_DECL hmR0VmxExitIntWindow(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
14712{
14713 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14714
14715 /* Indicate that we no longer need to VM-exit when the guest is ready to receive interrupts, it is now ready. */
14716 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
14717 hmR0VmxClearIntWindowExitVmcs(pVmcsInfo);
14718
14719 /* Evaluate and deliver pending events and resume guest execution. */
14720 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIntWindow);
14721 return VINF_SUCCESS;
14722}
14723
14724
14725/**
14726 * VM-exit handler for NMI-window exiting (VMX_EXIT_NMI_WINDOW).
14727 */
14728HMVMX_EXIT_NSRC_DECL hmR0VmxExitNmiWindow(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
14729{
14730 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14731
14732 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
14733 if (RT_UNLIKELY(!(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_NMI_WINDOW_EXIT))) /** @todo NSTVMX: Turn this into an assertion. */
14734 {
14735 AssertMsgFailed(("Unexpected NMI-window exit.\n"));
14736 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient->uExitReason);
14737 }
14738
14739 Assert(!CPUMIsGuestNmiBlocking(pVCpu));
14740
14741 /*
14742 * If block-by-STI is set when we get this VM-exit, it means the CPU doesn't block NMIs following STI.
14743 * It is therefore safe to unblock STI and deliver the NMI ourselves. See @bugref{7445}.
14744 */
14745 uint32_t fIntrState;
14746 int rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INT_STATE, &fIntrState);
14747 AssertRC(rc);
14748 Assert(!(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS));
14749 if (fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)
14750 {
14751 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
14752 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
14753
14754 fIntrState &= ~VMX_VMCS_GUEST_INT_STATE_BLOCK_STI;
14755 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_INT_STATE, fIntrState);
14756 AssertRC(rc);
14757 }
14758
14759 /* Indicate that we no longer need to VM-exit when the guest is ready to receive NMIs, it is now ready */
14760 hmR0VmxClearNmiWindowExitVmcs(pVmcsInfo);
14761
14762 /* Evaluate and deliver pending events and resume guest execution. */
14763 return VINF_SUCCESS;
14764}
14765
14766
14767/**
14768 * VM-exit handler for WBINVD (VMX_EXIT_WBINVD). Conditional VM-exit.
14769 */
14770HMVMX_EXIT_NSRC_DECL hmR0VmxExitWbinvd(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
14771{
14772 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14773 return hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
14774}
14775
14776
14777/**
14778 * VM-exit handler for INVD (VMX_EXIT_INVD). Unconditional VM-exit.
14779 */
14780HMVMX_EXIT_NSRC_DECL hmR0VmxExitInvd(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
14781{
14782 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14783 return hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
14784}
14785
14786
14787/**
14788 * VM-exit handler for CPUID (VMX_EXIT_CPUID). Unconditional VM-exit.
14789 */
14790HMVMX_EXIT_DECL hmR0VmxExitCpuid(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
14791{
14792 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14793
14794 /*
14795 * Get the state we need and update the exit history entry.
14796 */
14797 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
14798 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
14799
14800 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
14801 AssertRCReturn(rc, rc);
14802
14803 VBOXSTRICTRC rcStrict;
14804 PCEMEXITREC pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu,
14805 EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_CPUID),
14806 pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base);
14807 if (!pExitRec)
14808 {
14809 /*
14810 * Regular CPUID instruction execution.
14811 */
14812 rcStrict = IEMExecDecodedCpuid(pVCpu, pVmxTransient->cbExitInstr);
14813 if (rcStrict == VINF_SUCCESS)
14814 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
14815 else if (rcStrict == VINF_IEM_RAISED_XCPT)
14816 {
14817 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
14818 rcStrict = VINF_SUCCESS;
14819 }
14820 }
14821 else
14822 {
14823 /*
14824 * Frequent exit or something needing probing. Get state and call EMHistoryExec.
14825 */
14826 int rc2 = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
14827 AssertRCReturn(rc2, rc2);
14828
14829 Log4(("CpuIdExit/%u: %04x:%08RX64: %#x/%#x -> EMHistoryExec\n",
14830 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.ecx));
14831
14832 rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
14833 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
14834
14835 Log4(("CpuIdExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
14836 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
14837 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
14838 }
14839 return rcStrict;
14840}
14841
14842
14843/**
14844 * VM-exit handler for GETSEC (VMX_EXIT_GETSEC). Unconditional VM-exit.
14845 */
14846HMVMX_EXIT_DECL hmR0VmxExitGetsec(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
14847{
14848 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14849
14850 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
14851 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_CR4);
14852 AssertRCReturn(rc, rc);
14853
14854 if (pVCpu->cpum.GstCtx.cr4 & X86_CR4_SMXE)
14855 return VINF_EM_RAW_EMULATE_INSTR;
14856
14857 AssertMsgFailed(("hmR0VmxExitGetsec: Unexpected VM-exit when CR4.SMXE is 0.\n"));
14858 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient->uExitReason);
14859}
14860
14861
14862/**
14863 * VM-exit handler for RDTSC (VMX_EXIT_RDTSC). Conditional VM-exit.
14864 */
14865HMVMX_EXIT_DECL hmR0VmxExitRdtsc(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
14866{
14867 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14868
14869 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
14870 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
14871 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK);
14872 AssertRCReturn(rc, rc);
14873
14874 VBOXSTRICTRC rcStrict = IEMExecDecodedRdtsc(pVCpu, pVmxTransient->cbExitInstr);
14875 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
14876 {
14877 /* If we get a spurious VM-exit when TSC offsetting is enabled,
14878 we must reset offsetting on VM-entry. See @bugref{6634}. */
14879 if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TSC_OFFSETTING)
14880 pVmxTransient->fUpdatedTscOffsettingAndPreemptTimer = false;
14881 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
14882 }
14883 else if (rcStrict == VINF_IEM_RAISED_XCPT)
14884 {
14885 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
14886 rcStrict = VINF_SUCCESS;
14887 }
14888 return rcStrict;
14889}
14890
14891
14892/**
14893 * VM-exit handler for RDTSCP (VMX_EXIT_RDTSCP). Conditional VM-exit.
14894 */
14895HMVMX_EXIT_DECL hmR0VmxExitRdtscp(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
14896{
14897 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14898
14899 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
14900 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
14901 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_TSC_AUX);
14902 AssertRCReturn(rc, rc);
14903
14904 VBOXSTRICTRC rcStrict = IEMExecDecodedRdtscp(pVCpu, pVmxTransient->cbExitInstr);
14905 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
14906 {
14907 /* If we get a spurious VM-exit when TSC offsetting is enabled,
14908 we must reset offsetting on VM-reentry. See @bugref{6634}. */
14909 if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TSC_OFFSETTING)
14910 pVmxTransient->fUpdatedTscOffsettingAndPreemptTimer = false;
14911 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
14912 }
14913 else if (rcStrict == VINF_IEM_RAISED_XCPT)
14914 {
14915 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
14916 rcStrict = VINF_SUCCESS;
14917 }
14918 return rcStrict;
14919}
14920
14921
14922/**
14923 * VM-exit handler for RDPMC (VMX_EXIT_RDPMC). Conditional VM-exit.
14924 */
14925HMVMX_EXIT_DECL hmR0VmxExitRdpmc(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
14926{
14927 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14928
14929 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
14930 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_CR0
14931 | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_SS);
14932 AssertRCReturn(rc, rc);
14933
14934 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
14935 rc = EMInterpretRdpmc(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
14936 if (RT_LIKELY(rc == VINF_SUCCESS))
14937 {
14938 rc = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
14939 Assert(pVmxTransient->cbExitInstr == 2);
14940 }
14941 else
14942 {
14943 AssertMsgFailed(("hmR0VmxExitRdpmc: EMInterpretRdpmc failed with %Rrc\n", rc));
14944 rc = VERR_EM_INTERPRETER;
14945 }
14946 return rc;
14947}
14948
14949
14950/**
14951 * VM-exit handler for VMCALL (VMX_EXIT_VMCALL). Unconditional VM-exit.
14952 */
14953HMVMX_EXIT_DECL hmR0VmxExitVmcall(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
14954{
14955 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14956
14957 VBOXSTRICTRC rcStrict = VERR_VMX_IPE_3;
14958 if (EMAreHypercallInstructionsEnabled(pVCpu))
14959 {
14960 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
14961 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_CR0
14962 | CPUMCTX_EXTRN_SS | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_EFER);
14963 AssertRCReturn(rc, rc);
14964
14965 /* Perform the hypercall. */
14966 rcStrict = GIMHypercall(pVCpu, &pVCpu->cpum.GstCtx);
14967 if (rcStrict == VINF_SUCCESS)
14968 {
14969 rc = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
14970 AssertRCReturn(rc, rc);
14971 }
14972 else
14973 Assert( rcStrict == VINF_GIM_R3_HYPERCALL
14974 || rcStrict == VINF_GIM_HYPERCALL_CONTINUING
14975 || RT_FAILURE(rcStrict));
14976
14977 /* If the hypercall changes anything other than guest's general-purpose registers,
14978 we would need to reload the guest changed bits here before VM-entry. */
14979 }
14980 else
14981 Log4Func(("Hypercalls not enabled\n"));
14982
14983 /* If hypercalls are disabled or the hypercall failed for some reason, raise #UD and continue. */
14984 if (RT_FAILURE(rcStrict))
14985 {
14986 hmR0VmxSetPendingXcptUD(pVCpu);
14987 rcStrict = VINF_SUCCESS;
14988 }
14989
14990 return rcStrict;
14991}
14992
14993
14994/**
14995 * VM-exit handler for INVLPG (VMX_EXIT_INVLPG). Conditional VM-exit.
14996 */
14997HMVMX_EXIT_DECL hmR0VmxExitInvlpg(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
14998{
14999 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
15000 Assert(!pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging || pVCpu->hmr0.s.fUsingDebugLoop);
15001
15002 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
15003 hmR0VmxReadExitQualVmcs(pVmxTransient);
15004 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
15005 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
15006 AssertRCReturn(rc, rc);
15007
15008 VBOXSTRICTRC rcStrict = IEMExecDecodedInvlpg(pVCpu, pVmxTransient->cbExitInstr, pVmxTransient->uExitQual);
15009
15010 if (rcStrict == VINF_SUCCESS || rcStrict == VINF_PGM_SYNC_CR3)
15011 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
15012 else if (rcStrict == VINF_IEM_RAISED_XCPT)
15013 {
15014 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
15015 rcStrict = VINF_SUCCESS;
15016 }
15017 else
15018 AssertMsgFailed(("Unexpected IEMExecDecodedInvlpg(%#RX64) status: %Rrc\n", pVmxTransient->uExitQual,
15019 VBOXSTRICTRC_VAL(rcStrict)));
15020 return rcStrict;
15021}
15022
15023
15024/**
15025 * VM-exit handler for MONITOR (VMX_EXIT_MONITOR). Conditional VM-exit.
15026 */
15027HMVMX_EXIT_DECL hmR0VmxExitMonitor(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
15028{
15029 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
15030
15031 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
15032 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
15033 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK | CPUMCTX_EXTRN_DS);
15034 AssertRCReturn(rc, rc);
15035
15036 VBOXSTRICTRC rcStrict = IEMExecDecodedMonitor(pVCpu, pVmxTransient->cbExitInstr);
15037 if (rcStrict == VINF_SUCCESS)
15038 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
15039 else if (rcStrict == VINF_IEM_RAISED_XCPT)
15040 {
15041 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
15042 rcStrict = VINF_SUCCESS;
15043 }
15044
15045 return rcStrict;
15046}
15047
15048
15049/**
15050 * VM-exit handler for MWAIT (VMX_EXIT_MWAIT). Conditional VM-exit.
15051 */
15052HMVMX_EXIT_DECL hmR0VmxExitMwait(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
15053{
15054 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
15055
15056 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
15057 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
15058 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
15059 AssertRCReturn(rc, rc);
15060
15061 VBOXSTRICTRC rcStrict = IEMExecDecodedMwait(pVCpu, pVmxTransient->cbExitInstr);
15062 if (RT_SUCCESS(rcStrict))
15063 {
15064 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
15065 if (EMMonitorWaitShouldContinue(pVCpu, &pVCpu->cpum.GstCtx))
15066 rcStrict = VINF_SUCCESS;
15067 }
15068
15069 return rcStrict;
15070}
15071
15072
15073/**
15074 * VM-exit handler for triple faults (VMX_EXIT_TRIPLE_FAULT). Unconditional
15075 * VM-exit.
15076 */
15077HMVMX_EXIT_DECL hmR0VmxExitTripleFault(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
15078{
15079 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
15080 return VINF_EM_RESET;
15081}
15082
15083
15084/**
15085 * VM-exit handler for HLT (VMX_EXIT_HLT). Conditional VM-exit.
15086 */
15087HMVMX_EXIT_DECL hmR0VmxExitHlt(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
15088{
15089 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
15090
15091 int rc = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
15092 AssertRCReturn(rc, rc);
15093
15094 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RFLAGS); /* Advancing the RIP above should've imported eflags. */
15095 if (EMShouldContinueAfterHalt(pVCpu, &pVCpu->cpum.GstCtx)) /* Requires eflags. */
15096 rc = VINF_SUCCESS;
15097 else
15098 rc = VINF_EM_HALT;
15099
15100 if (rc != VINF_SUCCESS)
15101 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHltToR3);
15102 return rc;
15103}
15104
15105
15106/**
15107 * VM-exit handler for instructions that result in a \#UD exception delivered to
15108 * the guest.
15109 */
15110HMVMX_EXIT_NSRC_DECL hmR0VmxExitSetPendingXcptUD(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
15111{
15112 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
15113 hmR0VmxSetPendingXcptUD(pVCpu);
15114 return VINF_SUCCESS;
15115}
15116
15117
15118/**
15119 * VM-exit handler for expiry of the VMX-preemption timer.
15120 */
15121HMVMX_EXIT_DECL hmR0VmxExitPreemptTimer(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
15122{
15123 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
15124
15125 /* If the VMX-preemption timer has expired, reinitialize the preemption timer on next VM-entry. */
15126 pVmxTransient->fUpdatedTscOffsettingAndPreemptTimer = false;
15127Log12(("hmR0VmxExitPreemptTimer:\n"));
15128
15129 /* If there are any timer events pending, fall back to ring-3, otherwise resume guest execution. */
15130 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
15131 bool fTimersPending = TMTimerPollBool(pVM, pVCpu);
15132 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatExitPreemptTimer);
15133 return fTimersPending ? VINF_EM_RAW_TIMER_PENDING : VINF_SUCCESS;
15134}
15135
15136
15137/**
15138 * VM-exit handler for XSETBV (VMX_EXIT_XSETBV). Unconditional VM-exit.
15139 */
15140HMVMX_EXIT_DECL hmR0VmxExitXsetbv(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
15141{
15142 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
15143
15144 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
15145 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
15146 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_CR4);
15147 AssertRCReturn(rc, rc);
15148
15149 VBOXSTRICTRC rcStrict = IEMExecDecodedXsetbv(pVCpu, pVmxTransient->cbExitInstr);
15150 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, rcStrict != VINF_IEM_RAISED_XCPT ? HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS
15151 : HM_CHANGED_RAISED_XCPT_MASK);
15152
15153 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
15154 bool const fLoadSaveGuestXcr0 = (pCtx->cr4 & X86_CR4_OSXSAVE) && pCtx->aXcr[0] != ASMGetXcr0();
15155 if (fLoadSaveGuestXcr0 != pVCpu->hmr0.s.fLoadSaveGuestXcr0)
15156 {
15157 pVCpu->hmr0.s.fLoadSaveGuestXcr0 = fLoadSaveGuestXcr0;
15158 hmR0VmxUpdateStartVmFunction(pVCpu);
15159 }
15160
15161 return rcStrict;
15162}
15163
15164
15165/**
15166 * VM-exit handler for INVPCID (VMX_EXIT_INVPCID). Conditional VM-exit.
15167 */
15168HMVMX_EXIT_DECL hmR0VmxExitInvpcid(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
15169{
15170 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
15171
15172 /** @todo Enable the new code after finding a reliably guest test-case. */
15173#if 1
15174 return VERR_EM_INTERPRETER;
15175#else
15176 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
15177 hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
15178 hmR0VmxReadExitQualVmcs(pVmxTransient);
15179 int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
15180 | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
15181 AssertRCReturn(rc, rc);
15182
15183 /* Paranoia. Ensure this has a memory operand. */
15184 Assert(!pVmxTransient->ExitInstrInfo.Inv.u1Cleared0);
15185
15186 uint8_t const iGReg = pVmxTransient->ExitInstrInfo.VmreadVmwrite.iReg2;
15187 Assert(iGReg < RT_ELEMENTS(pVCpu->cpum.GstCtx.aGRegs));
15188 uint64_t const uType = CPUMIsGuestIn64BitCode(pVCpu) ? pVCpu->cpum.GstCtx.aGRegs[iGReg].u64
15189 : pVCpu->cpum.GstCtx.aGRegs[iGReg].u32;
15190
15191 RTGCPTR GCPtrDesc;
15192 HMVMX_DECODE_MEM_OPERAND(pVCpu, pVmxTransient->ExitInstrInfo.u, pVmxTransient->uExitQual, VMXMEMACCESS_READ, &GCPtrDesc);
15193
15194 VBOXSTRICTRC rcStrict = IEMExecDecodedInvpcid(pVCpu, pVmxTransient->cbExitInstr, pVmxTransient->ExitInstrInfo.Inv.iSegReg,
15195 GCPtrDesc, uType);
15196 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
15197 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
15198 else if (rcStrict == VINF_IEM_RAISED_XCPT)
15199 {
15200 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
15201 rcStrict = VINF_SUCCESS;
15202 }
15203 return rcStrict;
15204#endif
15205}
15206
15207
15208/**
15209 * VM-exit handler for invalid-guest-state (VMX_EXIT_ERR_INVALID_GUEST_STATE). Error
15210 * VM-exit.
15211 */
15212HMVMX_EXIT_NSRC_DECL hmR0VmxExitErrInvalidGuestState(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
15213{
15214 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
15215 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
15216 AssertRCReturn(rc, rc);
15217
15218 rc = hmR0VmxCheckCachedVmcsCtls(pVCpu, pVmcsInfo, pVmxTransient->fIsNestedGuest);
15219 if (RT_FAILURE(rc))
15220 return rc;
15221
15222 uint32_t const uInvalidReason = hmR0VmxCheckGuestState(pVCpu, pVmcsInfo);
15223 NOREF(uInvalidReason);
15224
15225#ifdef VBOX_STRICT
15226 uint32_t fIntrState;
15227 uint64_t u64Val;
15228 hmR0VmxReadEntryIntInfoVmcs(pVmxTransient);
15229 hmR0VmxReadEntryXcptErrorCodeVmcs(pVmxTransient);
15230 hmR0VmxReadEntryInstrLenVmcs(pVmxTransient);
15231
15232 Log4(("uInvalidReason %u\n", uInvalidReason));
15233 Log4(("VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO %#RX32\n", pVmxTransient->uEntryIntInfo));
15234 Log4(("VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE %#RX32\n", pVmxTransient->uEntryXcptErrorCode));
15235 Log4(("VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH %#RX32\n", pVmxTransient->cbEntryInstr));
15236
15237 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INT_STATE, &fIntrState); AssertRC(rc);
15238 Log4(("VMX_VMCS32_GUEST_INT_STATE %#RX32\n", fIntrState));
15239 rc = VMXReadVmcsNw(VMX_VMCS_GUEST_CR0, &u64Val); AssertRC(rc);
15240 Log4(("VMX_VMCS_GUEST_CR0 %#RX64\n", u64Val));
15241 rc = VMXReadVmcsNw(VMX_VMCS_CTRL_CR0_MASK, &u64Val); AssertRC(rc);
15242 Log4(("VMX_VMCS_CTRL_CR0_MASK %#RX64\n", u64Val));
15243 rc = VMXReadVmcsNw(VMX_VMCS_CTRL_CR0_READ_SHADOW, &u64Val); AssertRC(rc);
15244 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RX64\n", u64Val));
15245 rc = VMXReadVmcsNw(VMX_VMCS_CTRL_CR4_MASK, &u64Val); AssertRC(rc);
15246 Log4(("VMX_VMCS_CTRL_CR4_MASK %#RX64\n", u64Val));
15247 rc = VMXReadVmcsNw(VMX_VMCS_CTRL_CR4_READ_SHADOW, &u64Val); AssertRC(rc);
15248 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RX64\n", u64Val));
15249 if (pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging)
15250 {
15251 rc = VMXReadVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, &u64Val); AssertRC(rc);
15252 Log4(("VMX_VMCS64_CTRL_EPTP_FULL %#RX64\n", u64Val));
15253 }
15254 hmR0DumpRegs(pVCpu, HM_DUMP_REG_FLAGS_ALL);
15255#endif
15256
15257 return VERR_VMX_INVALID_GUEST_STATE;
15258}
15259
15260/**
15261 * VM-exit handler for all undefined/unexpected reasons. Should never happen.
15262 */
15263HMVMX_EXIT_NSRC_DECL hmR0VmxExitErrUnexpected(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
15264{
15265 /*
15266 * Cumulative notes of all recognized but unexpected VM-exits.
15267 *
15268 * 1. This does -not- cover scenarios like a page-fault VM-exit occurring when
15269 * nested-paging is used.
15270 *
15271 * 2. Any instruction that causes a VM-exit unconditionally (for e.g. VMXON) must be
15272 * emulated or a #UD must be raised in the guest. Therefore, we should -not- be using
15273 * this function (and thereby stop VM execution) for handling such instructions.
15274 *
15275 *
15276 * VMX_EXIT_INIT_SIGNAL:
15277 * INIT signals are blocked in VMX root operation by VMXON and by SMI in SMM.
15278 * It is -NOT- blocked in VMX non-root operation so we can, in theory, still get these
15279 * VM-exits. However, we should not receive INIT signals VM-exit while executing a VM.
15280 *
15281 * See Intel spec. 33.14.1 Default Treatment of SMI Delivery"
15282 * See Intel spec. 29.3 "VMX Instructions" for "VMXON".
15283 * See Intel spec. "23.8 Restrictions on VMX operation".
15284 *
15285 * VMX_EXIT_SIPI:
15286 * SIPI exits can only occur in VMX non-root operation when the "wait-for-SIPI" guest
15287 * activity state is used. We don't make use of it as our guests don't have direct
15288 * access to the host local APIC.
15289 *
15290 * See Intel spec. 25.3 "Other Causes of VM-exits".
15291 *
15292 * VMX_EXIT_IO_SMI:
15293 * VMX_EXIT_SMI:
15294 * This can only happen if we support dual-monitor treatment of SMI, which can be
15295 * activated by executing VMCALL in VMX root operation. Only an STM (SMM transfer
15296 * monitor) would get this VM-exit when we (the executive monitor) execute a VMCALL in
15297 * VMX root mode or receive an SMI. If we get here, something funny is going on.
15298 *
15299 * See Intel spec. 33.15.6 "Activating the Dual-Monitor Treatment"
15300 * See Intel spec. 25.3 "Other Causes of VM-Exits"
15301 *
15302 * VMX_EXIT_ERR_MSR_LOAD:
15303 * Failures while loading MSRs are part of the VM-entry MSR-load area are unexpected
15304 * and typically indicates a bug in the hypervisor code. We thus cannot not resume
15305 * execution.
15306 *
15307 * See Intel spec. 26.7 "VM-Entry Failures During Or After Loading Guest State".
15308 *
15309 * VMX_EXIT_ERR_MACHINE_CHECK:
15310 * Machine check exceptions indicates a fatal/unrecoverable hardware condition
15311 * including but not limited to system bus, ECC, parity, cache and TLB errors. A
15312 * #MC exception abort class exception is raised. We thus cannot assume a
15313 * reasonable chance of continuing any sort of execution and we bail.
15314 *
15315 * See Intel spec. 15.1 "Machine-check Architecture".
15316 * See Intel spec. 27.1 "Architectural State Before A VM Exit".
15317 *
15318 * VMX_EXIT_PML_FULL:
15319 * VMX_EXIT_VIRTUALIZED_EOI:
15320 * VMX_EXIT_APIC_WRITE:
15321 * We do not currently support any of these features and thus they are all unexpected
15322 * VM-exits.
15323 *
15324 * VMX_EXIT_GDTR_IDTR_ACCESS:
15325 * VMX_EXIT_LDTR_TR_ACCESS:
15326 * VMX_EXIT_RDRAND:
15327 * VMX_EXIT_RSM:
15328 * VMX_EXIT_VMFUNC:
15329 * VMX_EXIT_ENCLS:
15330 * VMX_EXIT_RDSEED:
15331 * VMX_EXIT_XSAVES:
15332 * VMX_EXIT_XRSTORS:
15333 * VMX_EXIT_UMWAIT:
15334 * VMX_EXIT_TPAUSE:
15335 * These VM-exits are -not- caused unconditionally by execution of the corresponding
15336 * instruction. Any VM-exit for these instructions indicate a hardware problem,
15337 * unsupported CPU modes (like SMM) or potentially corrupt VMCS controls.
15338 *
15339 * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally".
15340 */
15341 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
15342 AssertMsgFailed(("Unexpected VM-exit %u\n", pVmxTransient->uExitReason));
15343 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient->uExitReason);
15344}
15345
15346
15347/**
15348 * VM-exit handler for RDMSR (VMX_EXIT_RDMSR).
15349 */
15350HMVMX_EXIT_DECL hmR0VmxExitRdmsr(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
15351{
15352 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
15353
15354 /** @todo Optimize this: We currently drag in the whole MSR state
15355 * (CPUMCTX_EXTRN_ALL_MSRS) here. We should optimize this to only get
15356 * MSRs required. That would require changes to IEM and possibly CPUM too.
15357 * (Should probably do it lazy fashion from CPUMAllMsrs.cpp). */
15358 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
15359 uint32_t const idMsr = pVCpu->cpum.GstCtx.ecx;
15360 uint64_t fImport = IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_ALL_MSRS;
15361 switch (idMsr)
15362 {
15363 case MSR_K8_FS_BASE: fImport |= CPUMCTX_EXTRN_FS; break;
15364 case MSR_K8_GS_BASE: fImport |= CPUMCTX_EXTRN_GS; break;
15365 }
15366
15367 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
15368 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, fImport);
15369 AssertRCReturn(rc, rc);
15370
15371 Log4Func(("ecx=%#RX32\n", idMsr));
15372
15373#ifdef VBOX_STRICT
15374 Assert(!pVmxTransient->fIsNestedGuest);
15375 if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
15376 {
15377 if ( hmR0VmxIsAutoLoadGuestMsr(pVmcsInfo, idMsr)
15378 && idMsr != MSR_K6_EFER)
15379 {
15380 AssertMsgFailed(("Unexpected RDMSR for an MSR in the auto-load/store area in the VMCS. ecx=%#RX32\n", idMsr));
15381 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, idMsr);
15382 }
15383 if (hmR0VmxIsLazyGuestMsr(pVCpu, idMsr))
15384 {
15385 Assert(pVmcsInfo->pvMsrBitmap);
15386 uint32_t fMsrpm = CPUMGetVmxMsrPermission(pVmcsInfo->pvMsrBitmap, idMsr);
15387 if (fMsrpm & VMXMSRPM_ALLOW_RD)
15388 {
15389 AssertMsgFailed(("Unexpected RDMSR for a passthru lazy-restore MSR. ecx=%#RX32\n", idMsr));
15390 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, idMsr);
15391 }
15392 }
15393 }
15394#endif
15395
15396 VBOXSTRICTRC rcStrict = IEMExecDecodedRdmsr(pVCpu, pVmxTransient->cbExitInstr);
15397 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdmsr);
15398 if (rcStrict == VINF_SUCCESS)
15399 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
15400 else if (rcStrict == VINF_IEM_RAISED_XCPT)
15401 {
15402 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
15403 rcStrict = VINF_SUCCESS;
15404 }
15405 else
15406 AssertMsg(rcStrict == VINF_CPUM_R3_MSR_READ || rcStrict == VINF_EM_TRIPLE_FAULT,
15407 ("Unexpected IEMExecDecodedRdmsr rc (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
15408
15409 return rcStrict;
15410}
15411
15412
15413/**
15414 * VM-exit handler for WRMSR (VMX_EXIT_WRMSR).
15415 */
15416HMVMX_EXIT_DECL hmR0VmxExitWrmsr(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
15417{
15418 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
15419
15420 /** @todo Optimize this: We currently drag in the whole MSR state
15421 * (CPUMCTX_EXTRN_ALL_MSRS) here. We should optimize this to only get
15422 * MSRs required. That would require changes to IEM and possibly CPUM too.
15423 * (Should probably do it lazy fashion from CPUMAllMsrs.cpp). */
15424 uint32_t const idMsr = pVCpu->cpum.GstCtx.ecx;
15425 uint64_t fImport = IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_ALL_MSRS;
15426
15427 /*
15428 * The FS and GS base MSRs are not part of the above all-MSRs mask.
15429 * Although we don't need to fetch the base as it will be overwritten shortly, while
15430 * loading guest-state we would also load the entire segment register including limit
15431 * and attributes and thus we need to load them here.
15432 */
15433 switch (idMsr)
15434 {
15435 case MSR_K8_FS_BASE: fImport |= CPUMCTX_EXTRN_FS; break;
15436 case MSR_K8_GS_BASE: fImport |= CPUMCTX_EXTRN_GS; break;
15437 }
15438
15439 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
15440 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
15441 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, fImport);
15442 AssertRCReturn(rc, rc);
15443
15444 Log4Func(("ecx=%#RX32 edx:eax=%#RX32:%#RX32\n", idMsr, pVCpu->cpum.GstCtx.edx, pVCpu->cpum.GstCtx.eax));
15445
15446 VBOXSTRICTRC rcStrict = IEMExecDecodedWrmsr(pVCpu, pVmxTransient->cbExitInstr);
15447 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWrmsr);
15448
15449 if (rcStrict == VINF_SUCCESS)
15450 {
15451 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
15452
15453 /* If this is an X2APIC WRMSR access, update the APIC state as well. */
15454 if ( idMsr == MSR_IA32_APICBASE
15455 || ( idMsr >= MSR_IA32_X2APIC_START
15456 && idMsr <= MSR_IA32_X2APIC_END))
15457 {
15458 /*
15459 * We've already saved the APIC related guest-state (TPR) in post-run phase.
15460 * When full APIC register virtualization is implemented we'll have to make
15461 * sure APIC state is saved from the VMCS before IEM changes it.
15462 */
15463 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
15464 }
15465 else if (idMsr == MSR_IA32_TSC) /* Windows 7 does this during bootup. See @bugref{6398}. */
15466 pVmxTransient->fUpdatedTscOffsettingAndPreemptTimer = false;
15467 else if (idMsr == MSR_K6_EFER)
15468 {
15469 /*
15470 * If the guest touches the EFER MSR we need to update the VM-Entry and VM-Exit controls
15471 * as well, even if it is -not- touching bits that cause paging mode changes (LMA/LME).
15472 * We care about the other bits as well, SCE and NXE. See @bugref{7368}.
15473 */
15474 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_EFER_MSR | HM_CHANGED_VMX_ENTRY_EXIT_CTLS);
15475 }
15476
15477 /* Update MSRs that are part of the VMCS and auto-load/store area when MSR-bitmaps are not used. */
15478 if (!(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS))
15479 {
15480 switch (idMsr)
15481 {
15482 case MSR_IA32_SYSENTER_CS: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_SYSENTER_CS_MSR); break;
15483 case MSR_IA32_SYSENTER_EIP: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_SYSENTER_EIP_MSR); break;
15484 case MSR_IA32_SYSENTER_ESP: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_SYSENTER_ESP_MSR); break;
15485 case MSR_K8_FS_BASE: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_FS); break;
15486 case MSR_K8_GS_BASE: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_GS); break;
15487 case MSR_K6_EFER: /* Nothing to do, already handled above. */ break;
15488 default:
15489 {
15490 if (hmR0VmxIsLazyGuestMsr(pVCpu, idMsr))
15491 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_VMX_GUEST_LAZY_MSRS);
15492 else if (hmR0VmxIsAutoLoadGuestMsr(pVmcsInfo, idMsr))
15493 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_VMX_GUEST_AUTO_MSRS);
15494 break;
15495 }
15496 }
15497 }
15498#ifdef VBOX_STRICT
15499 else
15500 {
15501 /* Paranoia. Validate that MSRs in the MSR-bitmaps with write-passthru are not intercepted. */
15502 switch (idMsr)
15503 {
15504 case MSR_IA32_SYSENTER_CS:
15505 case MSR_IA32_SYSENTER_EIP:
15506 case MSR_IA32_SYSENTER_ESP:
15507 case MSR_K8_FS_BASE:
15508 case MSR_K8_GS_BASE:
15509 {
15510 AssertMsgFailed(("Unexpected WRMSR for an MSR in the VMCS. ecx=%#RX32\n", idMsr));
15511 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, idMsr);
15512 }
15513
15514 /* Writes to MSRs in auto-load/store area/swapped MSRs, shouldn't cause VM-exits with MSR-bitmaps. */
15515 default:
15516 {
15517 if (hmR0VmxIsAutoLoadGuestMsr(pVmcsInfo, idMsr))
15518 {
15519 /* EFER MSR writes are always intercepted. */
15520 if (idMsr != MSR_K6_EFER)
15521 {
15522 AssertMsgFailed(("Unexpected WRMSR for an MSR in the auto-load/store area in the VMCS. ecx=%#RX32\n",
15523 idMsr));
15524 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, idMsr);
15525 }
15526 }
15527
15528 if (hmR0VmxIsLazyGuestMsr(pVCpu, idMsr))
15529 {
15530 Assert(pVmcsInfo->pvMsrBitmap);
15531 uint32_t fMsrpm = CPUMGetVmxMsrPermission(pVmcsInfo->pvMsrBitmap, idMsr);
15532 if (fMsrpm & VMXMSRPM_ALLOW_WR)
15533 {
15534 AssertMsgFailed(("Unexpected WRMSR for passthru, lazy-restore MSR. ecx=%#RX32\n", idMsr));
15535 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, idMsr);
15536 }
15537 }
15538 break;
15539 }
15540 }
15541 }
15542#endif /* VBOX_STRICT */
15543 }
15544 else if (rcStrict == VINF_IEM_RAISED_XCPT)
15545 {
15546 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
15547 rcStrict = VINF_SUCCESS;
15548 }
15549 else
15550 AssertMsg(rcStrict == VINF_CPUM_R3_MSR_WRITE || rcStrict == VINF_EM_TRIPLE_FAULT,
15551 ("Unexpected IEMExecDecodedWrmsr rc (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
15552
15553 return rcStrict;
15554}
15555
15556
15557/**
15558 * VM-exit handler for PAUSE (VMX_EXIT_PAUSE). Conditional VM-exit.
15559 */
15560HMVMX_EXIT_DECL hmR0VmxExitPause(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
15561{
15562 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
15563
15564 /** @todo The guest has likely hit a contended spinlock. We might want to
15565 * poke a schedule different guest VCPU. */
15566 int rc = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
15567 if (RT_SUCCESS(rc))
15568 return VINF_EM_RAW_INTERRUPT;
15569
15570 AssertMsgFailed(("hmR0VmxExitPause: Failed to increment RIP. rc=%Rrc\n", rc));
15571 return rc;
15572}
15573
15574
15575/**
15576 * VM-exit handler for when the TPR value is lowered below the specified
15577 * threshold (VMX_EXIT_TPR_BELOW_THRESHOLD). Conditional VM-exit.
15578 */
15579HMVMX_EXIT_NSRC_DECL hmR0VmxExitTprBelowThreshold(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
15580{
15581 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
15582 Assert(pVmxTransient->pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW);
15583
15584 /*
15585 * The TPR shadow would've been synced with the APIC TPR in the post-run phase.
15586 * We'll re-evaluate pending interrupts and inject them before the next VM
15587 * entry so we can just continue execution here.
15588 */
15589 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTprBelowThreshold);
15590 return VINF_SUCCESS;
15591}
15592
15593
15594/**
15595 * VM-exit handler for control-register accesses (VMX_EXIT_MOV_CRX). Conditional
15596 * VM-exit.
15597 *
15598 * @retval VINF_SUCCESS when guest execution can continue.
15599 * @retval VINF_PGM_SYNC_CR3 CR3 sync is required, back to ring-3.
15600 * @retval VERR_EM_RESCHEDULE_REM when we need to return to ring-3 due to
15601 * incompatible guest state for VMX execution (real-on-v86 case).
15602 */
15603HMVMX_EXIT_DECL hmR0VmxExitMovCRx(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
15604{
15605 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
15606 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitMovCRx, y2);
15607
15608 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
15609 hmR0VmxReadExitQualVmcs(pVmxTransient);
15610 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
15611
15612 VBOXSTRICTRC rcStrict;
15613 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
15614 uint64_t const uExitQual = pVmxTransient->uExitQual;
15615 uint32_t const uAccessType = VMX_EXIT_QUAL_CRX_ACCESS(uExitQual);
15616 switch (uAccessType)
15617 {
15618 /*
15619 * MOV to CRx.
15620 */
15621 case VMX_EXIT_QUAL_CRX_ACCESS_WRITE:
15622 {
15623 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK);
15624 AssertRCReturn(rc, rc);
15625
15626 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
15627 uint32_t const uOldCr0 = pVCpu->cpum.GstCtx.cr0;
15628 uint8_t const iGReg = VMX_EXIT_QUAL_CRX_GENREG(uExitQual);
15629 uint8_t const iCrReg = VMX_EXIT_QUAL_CRX_REGISTER(uExitQual);
15630
15631 /*
15632 * MOV to CR3 only cause a VM-exit when one or more of the following are true:
15633 * - When nested paging isn't used.
15634 * - If the guest doesn't have paging enabled (intercept CR3 to update shadow page tables).
15635 * - We are executing in the VM debug loop.
15636 */
15637 Assert( iCrReg != 3
15638 || !pVM->hmr0.s.fNestedPaging
15639 || !CPUMIsGuestPagingEnabledEx(&pVCpu->cpum.GstCtx)
15640 || pVCpu->hmr0.s.fUsingDebugLoop);
15641
15642 /* MOV to CR8 writes only cause VM-exits when TPR shadow is not used. */
15643 Assert( iCrReg != 8
15644 || !(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW));
15645
15646 rcStrict = hmR0VmxExitMovToCrX(pVCpu, pVmcsInfo, pVmxTransient->cbExitInstr, iGReg, iCrReg);
15647 AssertMsg( rcStrict == VINF_SUCCESS
15648 || rcStrict == VINF_PGM_SYNC_CR3, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
15649
15650 /*
15651 * This is a kludge for handling switches back to real mode when we try to use
15652 * V86 mode to run real mode code directly. Problem is that V86 mode cannot
15653 * deal with special selector values, so we have to return to ring-3 and run
15654 * there till the selector values are V86 mode compatible.
15655 *
15656 * Note! Using VINF_EM_RESCHEDULE_REM here rather than VINF_EM_RESCHEDULE since the
15657 * latter is an alias for VINF_IEM_RAISED_XCPT which is asserted at the end of
15658 * this function.
15659 */
15660 if ( iCrReg == 0
15661 && rcStrict == VINF_SUCCESS
15662 && !pVM->hmr0.s.vmx.fUnrestrictedGuest
15663 && CPUMIsGuestInRealModeEx(&pVCpu->cpum.GstCtx)
15664 && (uOldCr0 & X86_CR0_PE)
15665 && !(pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE))
15666 {
15667 /** @todo Check selectors rather than returning all the time. */
15668 Assert(!pVmxTransient->fIsNestedGuest);
15669 Log4Func(("CR0 write, back to real mode -> VINF_EM_RESCHEDULE_REM\n"));
15670 rcStrict = VINF_EM_RESCHEDULE_REM;
15671 }
15672 break;
15673 }
15674
15675 /*
15676 * MOV from CRx.
15677 */
15678 case VMX_EXIT_QUAL_CRX_ACCESS_READ:
15679 {
15680 uint8_t const iGReg = VMX_EXIT_QUAL_CRX_GENREG(uExitQual);
15681 uint8_t const iCrReg = VMX_EXIT_QUAL_CRX_REGISTER(uExitQual);
15682
15683 /*
15684 * MOV from CR3 only cause a VM-exit when one or more of the following are true:
15685 * - When nested paging isn't used.
15686 * - If the guest doesn't have paging enabled (pass guest's CR3 rather than our identity mapped CR3).
15687 * - We are executing in the VM debug loop.
15688 */
15689 Assert( iCrReg != 3
15690 || !pVM->hmr0.s.fNestedPaging
15691 || !CPUMIsGuestPagingEnabledEx(&pVCpu->cpum.GstCtx)
15692 || pVCpu->hmr0.s.fLeaveDone);
15693
15694 /* MOV from CR8 reads only cause a VM-exit when the TPR shadow feature isn't enabled. */
15695 Assert( iCrReg != 8
15696 || !(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW));
15697
15698 rcStrict = hmR0VmxExitMovFromCrX(pVCpu, pVmcsInfo, pVmxTransient->cbExitInstr, iGReg, iCrReg);
15699 break;
15700 }
15701
15702 /*
15703 * CLTS (Clear Task-Switch Flag in CR0).
15704 */
15705 case VMX_EXIT_QUAL_CRX_ACCESS_CLTS:
15706 {
15707 rcStrict = hmR0VmxExitClts(pVCpu, pVmcsInfo, pVmxTransient->cbExitInstr);
15708 break;
15709 }
15710
15711 /*
15712 * LMSW (Load Machine-Status Word into CR0).
15713 * LMSW cannot clear CR0.PE, so no fRealOnV86Active kludge needed here.
15714 */
15715 case VMX_EXIT_QUAL_CRX_ACCESS_LMSW:
15716 {
15717 RTGCPTR GCPtrEffDst;
15718 uint8_t const cbInstr = pVmxTransient->cbExitInstr;
15719 uint16_t const uMsw = VMX_EXIT_QUAL_CRX_LMSW_DATA(uExitQual);
15720 bool const fMemOperand = VMX_EXIT_QUAL_CRX_LMSW_OP_MEM(uExitQual);
15721 if (fMemOperand)
15722 {
15723 hmR0VmxReadGuestLinearAddrVmcs(pVmxTransient);
15724 GCPtrEffDst = pVmxTransient->uGuestLinearAddr;
15725 }
15726 else
15727 GCPtrEffDst = NIL_RTGCPTR;
15728 rcStrict = hmR0VmxExitLmsw(pVCpu, pVmcsInfo, cbInstr, uMsw, GCPtrEffDst);
15729 break;
15730 }
15731
15732 default:
15733 {
15734 AssertMsgFailed(("Unrecognized Mov CRX access type %#x\n", uAccessType));
15735 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, uAccessType);
15736 }
15737 }
15738
15739 Assert((pVCpu->hm.s.fCtxChanged & (HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS))
15740 == (HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS));
15741 Assert(rcStrict != VINF_IEM_RAISED_XCPT);
15742
15743 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitMovCRx, y2);
15744 NOREF(pVM);
15745 return rcStrict;
15746}
15747
15748
15749/**
15750 * VM-exit handler for I/O instructions (VMX_EXIT_IO_INSTR). Conditional
15751 * VM-exit.
15752 */
15753HMVMX_EXIT_DECL hmR0VmxExitIoInstr(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
15754{
15755 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
15756 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitIO, y1);
15757
15758 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
15759 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
15760 hmR0VmxReadExitQualVmcs(pVmxTransient);
15761 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
15762 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_SREG_MASK
15763 | CPUMCTX_EXTRN_EFER);
15764 /* EFER MSR also required for longmode checks in EMInterpretDisasCurrent(), but it's always up-to-date. */
15765 AssertRCReturn(rc, rc);
15766
15767 /* Refer Intel spec. 27-5. "Exit Qualifications for I/O Instructions" for the format. */
15768 uint32_t const uIOPort = VMX_EXIT_QUAL_IO_PORT(pVmxTransient->uExitQual);
15769 uint8_t const uIOSize = VMX_EXIT_QUAL_IO_SIZE(pVmxTransient->uExitQual);
15770 bool const fIOWrite = (VMX_EXIT_QUAL_IO_DIRECTION(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_IO_DIRECTION_OUT);
15771 bool const fIOString = VMX_EXIT_QUAL_IO_IS_STRING(pVmxTransient->uExitQual);
15772 bool const fGstStepping = RT_BOOL(pCtx->eflags.Bits.u1TF);
15773 bool const fDbgStepping = pVCpu->hm.s.fSingleInstruction;
15774 AssertReturn(uIOSize <= 3 && uIOSize != 2, VERR_VMX_IPE_1);
15775
15776 /*
15777 * Update exit history to see if this exit can be optimized.
15778 */
15779 VBOXSTRICTRC rcStrict;
15780 PCEMEXITREC pExitRec = NULL;
15781 if ( !fGstStepping
15782 && !fDbgStepping)
15783 pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu,
15784 !fIOString
15785 ? !fIOWrite
15786 ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_READ)
15787 : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_WRITE)
15788 : !fIOWrite
15789 ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_STR_READ)
15790 : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_STR_WRITE),
15791 pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base);
15792 if (!pExitRec)
15793 {
15794 static uint32_t const s_aIOSizes[4] = { 1, 2, 0, 4 }; /* Size of the I/O accesses in bytes. */
15795 static uint32_t const s_aIOOpAnd[4] = { 0xff, 0xffff, 0, 0xffffffff }; /* AND masks for saving result in AL/AX/EAX. */
15796
15797 uint32_t const cbValue = s_aIOSizes[uIOSize];
15798 uint32_t const cbInstr = pVmxTransient->cbExitInstr;
15799 bool fUpdateRipAlready = false; /* ugly hack, should be temporary. */
15800 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
15801 if (fIOString)
15802 {
15803 /*
15804 * INS/OUTS - I/O String instruction.
15805 *
15806 * Use instruction-information if available, otherwise fall back on
15807 * interpreting the instruction.
15808 */
15809 Log4Func(("cs:rip=%#04x:%#RX64 %#06x/%u %c str\n", pCtx->cs.Sel, pCtx->rip, uIOPort, cbValue, fIOWrite ? 'w' : 'r'));
15810 AssertReturn(pCtx->dx == uIOPort, VERR_VMX_IPE_2);
15811 bool const fInsOutsInfo = RT_BF_GET(g_HmMsrs.u.vmx.u64Basic, VMX_BF_BASIC_VMCS_INS_OUTS);
15812 if (fInsOutsInfo)
15813 {
15814 hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
15815 AssertReturn(pVmxTransient->ExitInstrInfo.StrIo.u3AddrSize <= 2, VERR_VMX_IPE_3);
15816 AssertCompile(IEMMODE_16BIT == 0 && IEMMODE_32BIT == 1 && IEMMODE_64BIT == 2);
15817 IEMMODE const enmAddrMode = (IEMMODE)pVmxTransient->ExitInstrInfo.StrIo.u3AddrSize;
15818 bool const fRep = VMX_EXIT_QUAL_IO_IS_REP(pVmxTransient->uExitQual);
15819 if (fIOWrite)
15820 rcStrict = IEMExecStringIoWrite(pVCpu, cbValue, enmAddrMode, fRep, cbInstr,
15821 pVmxTransient->ExitInstrInfo.StrIo.iSegReg, true /*fIoChecked*/);
15822 else
15823 {
15824 /*
15825 * The segment prefix for INS cannot be overridden and is always ES. We can safely assume X86_SREG_ES.
15826 * Hence "iSegReg" field is undefined in the instruction-information field in VT-x for INS.
15827 * See Intel Instruction spec. for "INS".
15828 * See Intel spec. Table 27-8 "Format of the VM-Exit Instruction-Information Field as Used for INS and OUTS".
15829 */
15830 rcStrict = IEMExecStringIoRead(pVCpu, cbValue, enmAddrMode, fRep, cbInstr, true /*fIoChecked*/);
15831 }
15832 }
15833 else
15834 rcStrict = IEMExecOne(pVCpu);
15835
15836 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP);
15837 fUpdateRipAlready = true;
15838 }
15839 else
15840 {
15841 /*
15842 * IN/OUT - I/O instruction.
15843 */
15844 Log4Func(("cs:rip=%04x:%08RX64 %#06x/%u %c\n", pCtx->cs.Sel, pCtx->rip, uIOPort, cbValue, fIOWrite ? 'w' : 'r'));
15845 uint32_t const uAndVal = s_aIOOpAnd[uIOSize];
15846 Assert(!VMX_EXIT_QUAL_IO_IS_REP(pVmxTransient->uExitQual));
15847 if (fIOWrite)
15848 {
15849 rcStrict = IOMIOPortWrite(pVM, pVCpu, uIOPort, pCtx->eax & uAndVal, cbValue);
15850 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOWrite);
15851 if ( rcStrict == VINF_IOM_R3_IOPORT_WRITE
15852 && !pCtx->eflags.Bits.u1TF)
15853 rcStrict = EMRZSetPendingIoPortWrite(pVCpu, uIOPort, cbInstr, cbValue, pCtx->eax & uAndVal);
15854 }
15855 else
15856 {
15857 uint32_t u32Result = 0;
15858 rcStrict = IOMIOPortRead(pVM, pVCpu, uIOPort, &u32Result, cbValue);
15859 if (IOM_SUCCESS(rcStrict))
15860 {
15861 /* Save result of I/O IN instr. in AL/AX/EAX. */
15862 pCtx->eax = (pCtx->eax & ~uAndVal) | (u32Result & uAndVal);
15863 }
15864 if ( rcStrict == VINF_IOM_R3_IOPORT_READ
15865 && !pCtx->eflags.Bits.u1TF)
15866 rcStrict = EMRZSetPendingIoPortRead(pVCpu, uIOPort, cbInstr, cbValue);
15867 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIORead);
15868 }
15869 }
15870
15871 if (IOM_SUCCESS(rcStrict))
15872 {
15873 if (!fUpdateRipAlready)
15874 {
15875 hmR0VmxAdvanceGuestRipBy(pVCpu, cbInstr);
15876 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP);
15877 }
15878
15879 /*
15880 * INS/OUTS with REP prefix updates RFLAGS, can be observed with triple-fault guru
15881 * while booting Fedora 17 64-bit guest.
15882 *
15883 * See Intel Instruction reference for REP/REPE/REPZ/REPNE/REPNZ.
15884 */
15885 if (fIOString)
15886 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RFLAGS);
15887
15888 /*
15889 * If any I/O breakpoints are armed, we need to check if one triggered
15890 * and take appropriate action.
15891 * Note that the I/O breakpoint type is undefined if CR4.DE is 0.
15892 */
15893 rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_DR7);
15894 AssertRCReturn(rc, rc);
15895
15896 /** @todo Optimize away the DBGFBpIsHwIoArmed call by having DBGF tell the
15897 * execution engines about whether hyper BPs and such are pending. */
15898 uint32_t const uDr7 = pCtx->dr[7];
15899 if (RT_UNLIKELY( ( (uDr7 & X86_DR7_ENABLED_MASK)
15900 && X86_DR7_ANY_RW_IO(uDr7)
15901 && (pCtx->cr4 & X86_CR4_DE))
15902 || DBGFBpIsHwIoArmed(pVM)))
15903 {
15904 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxIoCheck);
15905
15906 /* We're playing with the host CPU state here, make sure we don't preempt or longjmp. */
15907 VMMRZCallRing3Disable(pVCpu);
15908 HM_DISABLE_PREEMPT(pVCpu);
15909
15910 bool fIsGuestDbgActive = CPUMR0DebugStateMaybeSaveGuest(pVCpu, true /* fDr6 */);
15911
15912 VBOXSTRICTRC rcStrict2 = DBGFBpCheckIo(pVM, pVCpu, pCtx, uIOPort, cbValue);
15913 if (rcStrict2 == VINF_EM_RAW_GUEST_TRAP)
15914 {
15915 /* Raise #DB. */
15916 if (fIsGuestDbgActive)
15917 ASMSetDR6(pCtx->dr[6]);
15918 if (pCtx->dr[7] != uDr7)
15919 pVCpu->hm.s.fCtxChanged |= HM_CHANGED_GUEST_DR7;
15920
15921 hmR0VmxSetPendingXcptDB(pVCpu);
15922 }
15923 /* rcStrict is VINF_SUCCESS, VINF_IOM_R3_IOPORT_COMMIT_WRITE, or in [VINF_EM_FIRST..VINF_EM_LAST],
15924 however we can ditch VINF_IOM_R3_IOPORT_COMMIT_WRITE as it has VMCPU_FF_IOM as backup. */
15925 else if ( rcStrict2 != VINF_SUCCESS
15926 && (rcStrict == VINF_SUCCESS || rcStrict2 < rcStrict))
15927 rcStrict = rcStrict2;
15928 AssertCompile(VINF_EM_LAST < VINF_IOM_R3_IOPORT_COMMIT_WRITE);
15929
15930 HM_RESTORE_PREEMPT();
15931 VMMRZCallRing3Enable(pVCpu);
15932 }
15933 }
15934
15935#ifdef VBOX_STRICT
15936 if ( rcStrict == VINF_IOM_R3_IOPORT_READ
15937 || rcStrict == VINF_EM_PENDING_R3_IOPORT_READ)
15938 Assert(!fIOWrite);
15939 else if ( rcStrict == VINF_IOM_R3_IOPORT_WRITE
15940 || rcStrict == VINF_IOM_R3_IOPORT_COMMIT_WRITE
15941 || rcStrict == VINF_EM_PENDING_R3_IOPORT_WRITE)
15942 Assert(fIOWrite);
15943 else
15944 {
15945# if 0 /** @todo r=bird: This is missing a bunch of VINF_EM_FIRST..VINF_EM_LAST
15946 * statuses, that the VMM device and some others may return. See
15947 * IOM_SUCCESS() for guidance. */
15948 AssertMsg( RT_FAILURE(rcStrict)
15949 || rcStrict == VINF_SUCCESS
15950 || rcStrict == VINF_EM_RAW_EMULATE_INSTR
15951 || rcStrict == VINF_EM_DBG_BREAKPOINT
15952 || rcStrict == VINF_EM_RAW_GUEST_TRAP
15953 || rcStrict == VINF_EM_RAW_TO_R3
15954 || rcStrict == VINF_TRPM_XCPT_DISPATCHED, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
15955# endif
15956 }
15957#endif
15958 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitIO, y1);
15959 }
15960 else
15961 {
15962 /*
15963 * Frequent exit or something needing probing. Get state and call EMHistoryExec.
15964 */
15965 int rc2 = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
15966 AssertRCReturn(rc2, rc2);
15967 STAM_COUNTER_INC(!fIOString ? fIOWrite ? &pVCpu->hm.s.StatExitIOWrite : &pVCpu->hm.s.StatExitIORead
15968 : fIOWrite ? &pVCpu->hm.s.StatExitIOStringWrite : &pVCpu->hm.s.StatExitIOStringRead);
15969 Log4(("IOExit/%u: %04x:%08RX64: %s%s%s %#x LB %u -> EMHistoryExec\n",
15970 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
15971 VMX_EXIT_QUAL_IO_IS_REP(pVmxTransient->uExitQual) ? "REP " : "",
15972 fIOWrite ? "OUT" : "IN", fIOString ? "S" : "", uIOPort, uIOSize));
15973
15974 rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
15975 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
15976
15977 Log4(("IOExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
15978 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
15979 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
15980 }
15981 return rcStrict;
15982}
15983
15984
15985/**
15986 * VM-exit handler for task switches (VMX_EXIT_TASK_SWITCH). Unconditional
15987 * VM-exit.
15988 */
15989HMVMX_EXIT_DECL hmR0VmxExitTaskSwitch(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
15990{
15991 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
15992
15993 /* Check if this task-switch occurred while delivery an event through the guest IDT. */
15994 hmR0VmxReadExitQualVmcs(pVmxTransient);
15995 if (VMX_EXIT_QUAL_TASK_SWITCH_TYPE(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_TASK_SWITCH_TYPE_IDT)
15996 {
15997 hmR0VmxReadIdtVectoringInfoVmcs(pVmxTransient);
15998 if (VMX_IDT_VECTORING_INFO_IS_VALID(pVmxTransient->uIdtVectoringInfo))
15999 {
16000 uint32_t uErrCode;
16001 if (VMX_IDT_VECTORING_INFO_IS_ERROR_CODE_VALID(pVmxTransient->uIdtVectoringInfo))
16002 {
16003 hmR0VmxReadIdtVectoringErrorCodeVmcs(pVmxTransient);
16004 uErrCode = pVmxTransient->uIdtVectoringErrorCode;
16005 }
16006 else
16007 uErrCode = 0;
16008
16009 RTGCUINTPTR GCPtrFaultAddress;
16010 if (VMX_IDT_VECTORING_INFO_IS_XCPT_PF(pVmxTransient->uIdtVectoringInfo))
16011 GCPtrFaultAddress = pVCpu->cpum.GstCtx.cr2;
16012 else
16013 GCPtrFaultAddress = 0;
16014
16015 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
16016
16017 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_IDT_INFO(pVmxTransient->uIdtVectoringInfo),
16018 pVmxTransient->cbExitInstr, uErrCode, GCPtrFaultAddress);
16019
16020 Log4Func(("Pending event. uIntType=%#x uVector=%#x\n", VMX_IDT_VECTORING_INFO_TYPE(pVmxTransient->uIdtVectoringInfo),
16021 VMX_IDT_VECTORING_INFO_VECTOR(pVmxTransient->uIdtVectoringInfo)));
16022 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
16023 return VINF_EM_RAW_INJECT_TRPM_EVENT;
16024 }
16025 }
16026
16027 /* Fall back to the interpreter to emulate the task-switch. */
16028 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
16029 return VERR_EM_INTERPRETER;
16030}
16031
16032
16033/**
16034 * VM-exit handler for monitor-trap-flag (VMX_EXIT_MTF). Conditional VM-exit.
16035 */
16036HMVMX_EXIT_DECL hmR0VmxExitMtf(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
16037{
16038 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
16039
16040 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
16041 pVmcsInfo->u32ProcCtls &= ~VMX_PROC_CTLS_MONITOR_TRAP_FLAG;
16042 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVmcsInfo->u32ProcCtls);
16043 AssertRC(rc);
16044 return VINF_EM_DBG_STEPPED;
16045}
16046
16047
16048/**
16049 * VM-exit handler for APIC access (VMX_EXIT_APIC_ACCESS). Conditional VM-exit.
16050 */
16051HMVMX_EXIT_DECL hmR0VmxExitApicAccess(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
16052{
16053 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
16054 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitApicAccess);
16055
16056 hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
16057 hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
16058 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
16059 hmR0VmxReadIdtVectoringInfoVmcs(pVmxTransient);
16060 hmR0VmxReadIdtVectoringErrorCodeVmcs(pVmxTransient);
16061
16062 /*
16063 * If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly.
16064 */
16065 VBOXSTRICTRC rcStrict = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pVmxTransient);
16066 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
16067 {
16068 /* For some crazy guest, if an event delivery causes an APIC-access VM-exit, go to instruction emulation. */
16069 if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending))
16070 {
16071 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterpret);
16072 return VINF_EM_RAW_INJECT_TRPM_EVENT;
16073 }
16074 }
16075 else
16076 {
16077 Assert(rcStrict != VINF_HM_DOUBLE_FAULT);
16078 return rcStrict;
16079 }
16080
16081 /* IOMMIOPhysHandler() below may call into IEM, save the necessary state. */
16082 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
16083 hmR0VmxReadExitQualVmcs(pVmxTransient);
16084 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK);
16085 AssertRCReturn(rc, rc);
16086
16087 /* See Intel spec. 27-6 "Exit Qualifications for APIC-access VM-exits from Linear Accesses & Guest-Phyiscal Addresses" */
16088 uint32_t const uAccessType = VMX_EXIT_QUAL_APIC_ACCESS_TYPE(pVmxTransient->uExitQual);
16089 switch (uAccessType)
16090 {
16091 case VMX_APIC_ACCESS_TYPE_LINEAR_WRITE:
16092 case VMX_APIC_ACCESS_TYPE_LINEAR_READ:
16093 {
16094 AssertMsg( !(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
16095 || VMX_EXIT_QUAL_APIC_ACCESS_OFFSET(pVmxTransient->uExitQual) != XAPIC_OFF_TPR,
16096 ("hmR0VmxExitApicAccess: can't access TPR offset while using TPR shadowing.\n"));
16097
16098 RTGCPHYS GCPhys = pVCpu->hm.s.vmx.u64GstMsrApicBase; /* Always up-to-date, as it is not part of the VMCS. */
16099 GCPhys &= PAGE_BASE_GC_MASK;
16100 GCPhys += VMX_EXIT_QUAL_APIC_ACCESS_OFFSET(pVmxTransient->uExitQual);
16101 Log4Func(("Linear access uAccessType=%#x GCPhys=%#RGp Off=%#x\n", uAccessType, GCPhys,
16102 VMX_EXIT_QUAL_APIC_ACCESS_OFFSET(pVmxTransient->uExitQual)));
16103
16104 rcStrict = IOMR0MmioPhysHandler(pVCpu->CTX_SUFF(pVM), pVCpu,
16105 uAccessType == VMX_APIC_ACCESS_TYPE_LINEAR_READ ? 0 : X86_TRAP_PF_RW, GCPhys);
16106 Log4Func(("IOMMMIOPhysHandler returned %Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
16107 if ( rcStrict == VINF_SUCCESS
16108 || rcStrict == VERR_PAGE_TABLE_NOT_PRESENT
16109 || rcStrict == VERR_PAGE_NOT_PRESENT)
16110 {
16111 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RSP | HM_CHANGED_GUEST_RFLAGS
16112 | HM_CHANGED_GUEST_APIC_TPR);
16113 rcStrict = VINF_SUCCESS;
16114 }
16115 break;
16116 }
16117
16118 default:
16119 {
16120 Log4Func(("uAccessType=%#x\n", uAccessType));
16121 rcStrict = VINF_EM_RAW_EMULATE_INSTR;
16122 break;
16123 }
16124 }
16125
16126 if (rcStrict != VINF_SUCCESS)
16127 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchApicAccessToR3);
16128 return rcStrict;
16129}
16130
16131
16132/**
16133 * VM-exit handler for debug-register accesses (VMX_EXIT_MOV_DRX). Conditional
16134 * VM-exit.
16135 */
16136HMVMX_EXIT_DECL hmR0VmxExitMovDRx(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
16137{
16138 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
16139 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
16140
16141 /*
16142 * We might also get this VM-exit if the nested-guest isn't intercepting MOV DRx accesses.
16143 * In such a case, rather than disabling MOV DRx intercepts and resuming execution, we
16144 * must emulate the MOV DRx access.
16145 */
16146 if (!pVmxTransient->fIsNestedGuest)
16147 {
16148 /* We should -not- get this VM-exit if the guest's debug registers were active. */
16149 if (pVmxTransient->fWasGuestDebugStateActive)
16150 {
16151 AssertMsgFailed(("Unexpected MOV DRx exit\n"));
16152 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient->uExitReason);
16153 }
16154
16155 if ( !pVCpu->hm.s.fSingleInstruction
16156 && !pVmxTransient->fWasHyperDebugStateActive)
16157 {
16158 Assert(!DBGFIsStepping(pVCpu));
16159 Assert(pVmcsInfo->u32XcptBitmap & RT_BIT(X86_XCPT_DB));
16160
16161 /* Don't intercept MOV DRx any more. */
16162 pVmcsInfo->u32ProcCtls &= ~VMX_PROC_CTLS_MOV_DR_EXIT;
16163 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVmcsInfo->u32ProcCtls);
16164 AssertRC(rc);
16165
16166 /* We're playing with the host CPU state here, make sure we can't preempt or longjmp. */
16167 VMMRZCallRing3Disable(pVCpu);
16168 HM_DISABLE_PREEMPT(pVCpu);
16169
16170 /* Save the host & load the guest debug state, restart execution of the MOV DRx instruction. */
16171 CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
16172 Assert(CPUMIsGuestDebugStateActive(pVCpu));
16173
16174 HM_RESTORE_PREEMPT();
16175 VMMRZCallRing3Enable(pVCpu);
16176
16177#ifdef VBOX_WITH_STATISTICS
16178 hmR0VmxReadExitQualVmcs(pVmxTransient);
16179 if (VMX_EXIT_QUAL_DRX_DIRECTION(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_DRX_DIRECTION_WRITE)
16180 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
16181 else
16182 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
16183#endif
16184 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxContextSwitch);
16185 return VINF_SUCCESS;
16186 }
16187 }
16188
16189 /*
16190 * EMInterpretDRx[Write|Read]() calls CPUMIsGuestIn64BitCode() which requires EFER MSR, CS.
16191 * The EFER MSR is always up-to-date.
16192 * Update the segment registers and DR7 from the CPU.
16193 */
16194 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
16195 hmR0VmxReadExitQualVmcs(pVmxTransient);
16196 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_DR7);
16197 AssertRCReturn(rc, rc);
16198 Log4Func(("cs:rip=%#04x:%#RX64\n", pCtx->cs.Sel, pCtx->rip));
16199
16200 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
16201 if (VMX_EXIT_QUAL_DRX_DIRECTION(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_DRX_DIRECTION_WRITE)
16202 {
16203 rc = EMInterpretDRxWrite(pVM, pVCpu, CPUMCTX2CORE(pCtx),
16204 VMX_EXIT_QUAL_DRX_REGISTER(pVmxTransient->uExitQual),
16205 VMX_EXIT_QUAL_DRX_GENREG(pVmxTransient->uExitQual));
16206 if (RT_SUCCESS(rc))
16207 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_DR7);
16208 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
16209 }
16210 else
16211 {
16212 rc = EMInterpretDRxRead(pVM, pVCpu, CPUMCTX2CORE(pCtx),
16213 VMX_EXIT_QUAL_DRX_GENREG(pVmxTransient->uExitQual),
16214 VMX_EXIT_QUAL_DRX_REGISTER(pVmxTransient->uExitQual));
16215 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
16216 }
16217
16218 Assert(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER);
16219 if (RT_SUCCESS(rc))
16220 {
16221 int rc2 = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
16222 AssertRCReturn(rc2, rc2);
16223 return VINF_SUCCESS;
16224 }
16225 return rc;
16226}
16227
16228
16229/**
16230 * VM-exit handler for EPT misconfiguration (VMX_EXIT_EPT_MISCONFIG).
16231 * Conditional VM-exit.
16232 */
16233HMVMX_EXIT_DECL hmR0VmxExitEptMisconfig(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
16234{
16235 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
16236 Assert(pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging);
16237
16238 hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
16239 hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
16240 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
16241 hmR0VmxReadIdtVectoringInfoVmcs(pVmxTransient);
16242 hmR0VmxReadIdtVectoringErrorCodeVmcs(pVmxTransient);
16243
16244 /*
16245 * If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly.
16246 */
16247 VBOXSTRICTRC rcStrict = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pVmxTransient);
16248 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
16249 {
16250 /*
16251 * In the unlikely case where delivering an event causes an EPT misconfig (MMIO), go back to
16252 * instruction emulation to inject the original event. Otherwise, injecting the original event
16253 * using hardware-assisted VMX would trigger the same EPT misconfig VM-exit again.
16254 */
16255 if (!pVCpu->hm.s.Event.fPending)
16256 { /* likely */ }
16257 else
16258 {
16259 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterpret);
16260#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
16261 /** @todo NSTVMX: Think about how this should be handled. */
16262 if (pVmxTransient->fIsNestedGuest)
16263 return VERR_VMX_IPE_3;
16264#endif
16265 return VINF_EM_RAW_INJECT_TRPM_EVENT;
16266 }
16267 }
16268 else
16269 {
16270 Assert(rcStrict != VINF_HM_DOUBLE_FAULT);
16271 return rcStrict;
16272 }
16273
16274 /*
16275 * Get sufficient state and update the exit history entry.
16276 */
16277 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
16278 hmR0VmxReadGuestPhysicalAddrVmcs(pVmxTransient);
16279 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK);
16280 AssertRCReturn(rc, rc);
16281
16282 RTGCPHYS const GCPhys = pVmxTransient->uGuestPhysicalAddr;
16283 PCEMEXITREC pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu,
16284 EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_MMIO),
16285 pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base);
16286 if (!pExitRec)
16287 {
16288 /*
16289 * If we succeed, resume guest execution.
16290 * If we fail in interpreting the instruction because we couldn't get the guest physical address
16291 * of the page containing the instruction via the guest's page tables (we would invalidate the guest page
16292 * in the host TLB), resume execution which would cause a guest page fault to let the guest handle this
16293 * weird case. See @bugref{6043}.
16294 */
16295 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
16296 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
16297/** @todo bird: We can probably just go straight to IOM here and assume that
16298 * it's MMIO, then fall back on PGM if that hunch didn't work out so
16299 * well. However, we need to address that aliasing workarounds that
16300 * PGMR0Trap0eHandlerNPMisconfig implements. So, some care is needed.
16301 *
16302 * Might also be interesting to see if we can get this done more or
16303 * less locklessly inside IOM. Need to consider the lookup table
16304 * updating and use a bit more carefully first (or do all updates via
16305 * rendezvous) */
16306 rcStrict = PGMR0Trap0eHandlerNPMisconfig(pVM, pVCpu, PGMMODE_EPT, CPUMCTX2CORE(pCtx), GCPhys, UINT32_MAX);
16307 Log4Func(("At %#RGp RIP=%#RX64 rc=%Rrc\n", GCPhys, pCtx->rip, VBOXSTRICTRC_VAL(rcStrict)));
16308 if ( rcStrict == VINF_SUCCESS
16309 || rcStrict == VERR_PAGE_TABLE_NOT_PRESENT
16310 || rcStrict == VERR_PAGE_NOT_PRESENT)
16311 {
16312 /* Successfully handled MMIO operation. */
16313 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RSP | HM_CHANGED_GUEST_RFLAGS
16314 | HM_CHANGED_GUEST_APIC_TPR);
16315 rcStrict = VINF_SUCCESS;
16316 }
16317 }
16318 else
16319 {
16320 /*
16321 * Frequent exit or something needing probing. Call EMHistoryExec.
16322 */
16323 Log4(("EptMisscfgExit/%u: %04x:%08RX64: %RGp -> EMHistoryExec\n",
16324 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, GCPhys));
16325
16326 rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
16327 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
16328
16329 Log4(("EptMisscfgExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
16330 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
16331 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
16332 }
16333 return rcStrict;
16334}
16335
16336
16337/**
16338 * VM-exit handler for EPT violation (VMX_EXIT_EPT_VIOLATION). Conditional
16339 * VM-exit.
16340 */
16341HMVMX_EXIT_DECL hmR0VmxExitEptViolation(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
16342{
16343 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
16344 Assert(pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging);
16345
16346 hmR0VmxReadExitQualVmcs(pVmxTransient);
16347 hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
16348 hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
16349 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
16350 hmR0VmxReadIdtVectoringInfoVmcs(pVmxTransient);
16351 hmR0VmxReadIdtVectoringErrorCodeVmcs(pVmxTransient);
16352
16353 /*
16354 * If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly.
16355 */
16356 VBOXSTRICTRC rcStrict = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pVmxTransient);
16357 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
16358 {
16359 /*
16360 * If delivery of an event causes an EPT violation (true nested #PF and not MMIO),
16361 * we shall resolve the nested #PF and re-inject the original event.
16362 */
16363 if (pVCpu->hm.s.Event.fPending)
16364 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectReflectNPF);
16365 }
16366 else
16367 {
16368 Assert(rcStrict != VINF_HM_DOUBLE_FAULT);
16369 return rcStrict;
16370 }
16371
16372 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
16373 hmR0VmxReadGuestPhysicalAddrVmcs(pVmxTransient);
16374 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK);
16375 AssertRCReturn(rc, rc);
16376
16377 RTGCPHYS const GCPhys = pVmxTransient->uGuestPhysicalAddr;
16378 uint64_t const uExitQual = pVmxTransient->uExitQual;
16379 AssertMsg(((pVmxTransient->uExitQual >> 7) & 3) != 2, ("%#RX64", uExitQual));
16380
16381 RTGCUINT uErrorCode = 0;
16382 if (uExitQual & VMX_EXIT_QUAL_EPT_INSTR_FETCH)
16383 uErrorCode |= X86_TRAP_PF_ID;
16384 if (uExitQual & VMX_EXIT_QUAL_EPT_DATA_WRITE)
16385 uErrorCode |= X86_TRAP_PF_RW;
16386 if (uExitQual & VMX_EXIT_QUAL_EPT_ENTRY_PRESENT)
16387 uErrorCode |= X86_TRAP_PF_P;
16388
16389 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
16390 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
16391 Log4Func(("at %#RX64 (%#RX64 errcode=%#x) cs:rip=%#04x:%#RX64\n", GCPhys, uExitQual, uErrorCode, pCtx->cs.Sel, pCtx->rip));
16392
16393 /*
16394 * Handle the pagefault trap for the nested shadow table.
16395 */
16396 TRPMAssertXcptPF(pVCpu, GCPhys, uErrorCode);
16397 rcStrict = PGMR0Trap0eHandlerNestedPaging(pVM, pVCpu, PGMMODE_EPT, uErrorCode, CPUMCTX2CORE(pCtx), GCPhys);
16398 TRPMResetTrap(pVCpu);
16399
16400 /* Same case as PGMR0Trap0eHandlerNPMisconfig(). See comment above, @bugref{6043}. */
16401 if ( rcStrict == VINF_SUCCESS
16402 || rcStrict == VERR_PAGE_TABLE_NOT_PRESENT
16403 || rcStrict == VERR_PAGE_NOT_PRESENT)
16404 {
16405 /* Successfully synced our nested page tables. */
16406 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitReasonNpf);
16407 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RSP | HM_CHANGED_GUEST_RFLAGS);
16408 return VINF_SUCCESS;
16409 }
16410
16411 Log4Func(("EPT return to ring-3 rcStrict2=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
16412 return rcStrict;
16413}
16414
16415
16416#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
16417/**
16418 * VM-exit handler for VMCLEAR (VMX_EXIT_VMCLEAR). Unconditional VM-exit.
16419 */
16420HMVMX_EXIT_DECL hmR0VmxExitVmclear(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
16421{
16422 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
16423
16424 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
16425 hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
16426 hmR0VmxReadExitQualVmcs(pVmxTransient);
16427 int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
16428 | CPUMCTX_EXTRN_HWVIRT
16429 | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
16430 AssertRCReturn(rc, rc);
16431
16432 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
16433
16434 VMXVEXITINFO ExitInfo;
16435 RT_ZERO(ExitInfo);
16436 ExitInfo.uReason = pVmxTransient->uExitReason;
16437 ExitInfo.u64Qual = pVmxTransient->uExitQual;
16438 ExitInfo.InstrInfo.u = pVmxTransient->ExitInstrInfo.u;
16439 ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
16440 HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_READ, &ExitInfo.GCPtrEffAddr);
16441
16442 VBOXSTRICTRC rcStrict = IEMExecDecodedVmclear(pVCpu, &ExitInfo);
16443 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
16444 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_HWVIRT);
16445 else if (rcStrict == VINF_IEM_RAISED_XCPT)
16446 {
16447 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
16448 rcStrict = VINF_SUCCESS;
16449 }
16450 return rcStrict;
16451}
16452
16453
16454/**
16455 * VM-exit handler for VMLAUNCH (VMX_EXIT_VMLAUNCH). Unconditional VM-exit.
16456 */
16457HMVMX_EXIT_DECL hmR0VmxExitVmlaunch(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
16458{
16459 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
16460
16461 /* Import the entire VMCS state for now as we would be switching VMCS on successful VMLAUNCH,
16462 otherwise we could import just IEM_CPUMCTX_EXTRN_VMX_VMENTRY_MASK. */
16463 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
16464 int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
16465 AssertRCReturn(rc, rc);
16466
16467 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
16468
16469 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitVmentry, z);
16470 VBOXSTRICTRC rcStrict = IEMExecDecodedVmlaunchVmresume(pVCpu, pVmxTransient->cbExitInstr, VMXINSTRID_VMLAUNCH);
16471 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitVmentry, z);
16472 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
16473 {
16474 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
16475 if (CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx))
16476 rcStrict = VINF_VMX_VMLAUNCH_VMRESUME;
16477 }
16478 Assert(rcStrict != VINF_IEM_RAISED_XCPT);
16479 return rcStrict;
16480}
16481
16482
16483/**
16484 * VM-exit handler for VMPTRLD (VMX_EXIT_VMPTRLD). Unconditional VM-exit.
16485 */
16486HMVMX_EXIT_DECL hmR0VmxExitVmptrld(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
16487{
16488 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
16489
16490 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
16491 hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
16492 hmR0VmxReadExitQualVmcs(pVmxTransient);
16493 int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
16494 | CPUMCTX_EXTRN_HWVIRT
16495 | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
16496 AssertRCReturn(rc, rc);
16497
16498 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
16499
16500 VMXVEXITINFO ExitInfo;
16501 RT_ZERO(ExitInfo);
16502 ExitInfo.uReason = pVmxTransient->uExitReason;
16503 ExitInfo.u64Qual = pVmxTransient->uExitQual;
16504 ExitInfo.InstrInfo.u = pVmxTransient->ExitInstrInfo.u;
16505 ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
16506 HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_READ, &ExitInfo.GCPtrEffAddr);
16507
16508 VBOXSTRICTRC rcStrict = IEMExecDecodedVmptrld(pVCpu, &ExitInfo);
16509 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
16510 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_HWVIRT);
16511 else if (rcStrict == VINF_IEM_RAISED_XCPT)
16512 {
16513 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
16514 rcStrict = VINF_SUCCESS;
16515 }
16516 return rcStrict;
16517}
16518
16519
16520/**
16521 * VM-exit handler for VMPTRST (VMX_EXIT_VMPTRST). Unconditional VM-exit.
16522 */
16523HMVMX_EXIT_DECL hmR0VmxExitVmptrst(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
16524{
16525 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
16526
16527 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
16528 hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
16529 hmR0VmxReadExitQualVmcs(pVmxTransient);
16530 int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
16531 | CPUMCTX_EXTRN_HWVIRT
16532 | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
16533 AssertRCReturn(rc, rc);
16534
16535 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
16536
16537 VMXVEXITINFO ExitInfo;
16538 RT_ZERO(ExitInfo);
16539 ExitInfo.uReason = pVmxTransient->uExitReason;
16540 ExitInfo.u64Qual = pVmxTransient->uExitQual;
16541 ExitInfo.InstrInfo.u = pVmxTransient->ExitInstrInfo.u;
16542 ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
16543 HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_WRITE, &ExitInfo.GCPtrEffAddr);
16544
16545 VBOXSTRICTRC rcStrict = IEMExecDecodedVmptrst(pVCpu, &ExitInfo);
16546 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
16547 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
16548 else if (rcStrict == VINF_IEM_RAISED_XCPT)
16549 {
16550 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
16551 rcStrict = VINF_SUCCESS;
16552 }
16553 return rcStrict;
16554}
16555
16556
16557/**
16558 * VM-exit handler for VMREAD (VMX_EXIT_VMREAD). Conditional VM-exit.
16559 */
16560HMVMX_EXIT_DECL hmR0VmxExitVmread(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
16561{
16562 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
16563
16564 /*
16565 * Strictly speaking we should not get VMREAD VM-exits for shadow VMCS fields and
16566 * thus might not need to import the shadow VMCS state, it's safer just in case
16567 * code elsewhere dares look at unsynced VMCS fields.
16568 */
16569 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
16570 hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
16571 hmR0VmxReadExitQualVmcs(pVmxTransient);
16572 int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
16573 | CPUMCTX_EXTRN_HWVIRT
16574 | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
16575 AssertRCReturn(rc, rc);
16576
16577 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
16578
16579 VMXVEXITINFO ExitInfo;
16580 RT_ZERO(ExitInfo);
16581 ExitInfo.uReason = pVmxTransient->uExitReason;
16582 ExitInfo.u64Qual = pVmxTransient->uExitQual;
16583 ExitInfo.InstrInfo.u = pVmxTransient->ExitInstrInfo.u;
16584 ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
16585 if (!ExitInfo.InstrInfo.VmreadVmwrite.fIsRegOperand)
16586 HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_WRITE, &ExitInfo.GCPtrEffAddr);
16587
16588 VBOXSTRICTRC rcStrict = IEMExecDecodedVmread(pVCpu, &ExitInfo);
16589 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
16590 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
16591 else if (rcStrict == VINF_IEM_RAISED_XCPT)
16592 {
16593 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
16594 rcStrict = VINF_SUCCESS;
16595 }
16596 return rcStrict;
16597}
16598
16599
16600/**
16601 * VM-exit handler for VMRESUME (VMX_EXIT_VMRESUME). Unconditional VM-exit.
16602 */
16603HMVMX_EXIT_DECL hmR0VmxExitVmresume(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
16604{
16605 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
16606
16607 /* Import the entire VMCS state for now as we would be switching VMCS on successful VMRESUME,
16608 otherwise we could import just IEM_CPUMCTX_EXTRN_VMX_VMENTRY_MASK. */
16609 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
16610 int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
16611 AssertRCReturn(rc, rc);
16612
16613 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
16614
16615 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitVmentry, z);
16616 VBOXSTRICTRC rcStrict = IEMExecDecodedVmlaunchVmresume(pVCpu, pVmxTransient->cbExitInstr, VMXINSTRID_VMRESUME);
16617 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitVmentry, z);
16618 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
16619 {
16620 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
16621 if (CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx))
16622 rcStrict = VINF_VMX_VMLAUNCH_VMRESUME;
16623 }
16624 Assert(rcStrict != VINF_IEM_RAISED_XCPT);
16625 return rcStrict;
16626}
16627
16628
16629/**
16630 * VM-exit handler for VMWRITE (VMX_EXIT_VMWRITE). Conditional VM-exit.
16631 */
16632HMVMX_EXIT_DECL hmR0VmxExitVmwrite(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
16633{
16634 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
16635
16636 /*
16637 * Although we should not get VMWRITE VM-exits for shadow VMCS fields, since our HM hook
16638 * gets invoked when IEM's VMWRITE instruction emulation modifies the current VMCS and it
16639 * flags re-loading the entire shadow VMCS, we should save the entire shadow VMCS here.
16640 */
16641 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
16642 hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
16643 hmR0VmxReadExitQualVmcs(pVmxTransient);
16644 int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
16645 | CPUMCTX_EXTRN_HWVIRT
16646 | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
16647 AssertRCReturn(rc, rc);
16648
16649 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
16650
16651 VMXVEXITINFO ExitInfo;
16652 RT_ZERO(ExitInfo);
16653 ExitInfo.uReason = pVmxTransient->uExitReason;
16654 ExitInfo.u64Qual = pVmxTransient->uExitQual;
16655 ExitInfo.InstrInfo.u = pVmxTransient->ExitInstrInfo.u;
16656 ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
16657 if (!ExitInfo.InstrInfo.VmreadVmwrite.fIsRegOperand)
16658 HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_READ, &ExitInfo.GCPtrEffAddr);
16659
16660 VBOXSTRICTRC rcStrict = IEMExecDecodedVmwrite(pVCpu, &ExitInfo);
16661 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
16662 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_HWVIRT);
16663 else if (rcStrict == VINF_IEM_RAISED_XCPT)
16664 {
16665 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
16666 rcStrict = VINF_SUCCESS;
16667 }
16668 return rcStrict;
16669}
16670
16671
16672/**
16673 * VM-exit handler for VMXOFF (VMX_EXIT_VMXOFF). Unconditional VM-exit.
16674 */
16675HMVMX_EXIT_DECL hmR0VmxExitVmxoff(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
16676{
16677 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
16678
16679 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
16680 int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_CR4
16681 | CPUMCTX_EXTRN_HWVIRT
16682 | IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
16683 AssertRCReturn(rc, rc);
16684
16685 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
16686
16687 VBOXSTRICTRC rcStrict = IEMExecDecodedVmxoff(pVCpu, pVmxTransient->cbExitInstr);
16688 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
16689 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_HWVIRT);
16690 else if (rcStrict == VINF_IEM_RAISED_XCPT)
16691 {
16692 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
16693 rcStrict = VINF_SUCCESS;
16694 }
16695 return rcStrict;
16696}
16697
16698
16699/**
16700 * VM-exit handler for VMXON (VMX_EXIT_VMXON). Unconditional VM-exit.
16701 */
16702HMVMX_EXIT_DECL hmR0VmxExitVmxon(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
16703{
16704 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
16705
16706 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
16707 hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
16708 hmR0VmxReadExitQualVmcs(pVmxTransient);
16709 int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
16710 | CPUMCTX_EXTRN_HWVIRT
16711 | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
16712 AssertRCReturn(rc, rc);
16713
16714 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
16715
16716 VMXVEXITINFO ExitInfo;
16717 RT_ZERO(ExitInfo);
16718 ExitInfo.uReason = pVmxTransient->uExitReason;
16719 ExitInfo.u64Qual = pVmxTransient->uExitQual;
16720 ExitInfo.InstrInfo.u = pVmxTransient->ExitInstrInfo.u;
16721 ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
16722 HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_READ, &ExitInfo.GCPtrEffAddr);
16723
16724 VBOXSTRICTRC rcStrict = IEMExecDecodedVmxon(pVCpu, &ExitInfo);
16725 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
16726 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_HWVIRT);
16727 else if (rcStrict == VINF_IEM_RAISED_XCPT)
16728 {
16729 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
16730 rcStrict = VINF_SUCCESS;
16731 }
16732 return rcStrict;
16733}
16734
16735
16736/**
16737 * VM-exit handler for INVVPID (VMX_EXIT_INVVPID). Unconditional VM-exit.
16738 */
16739HMVMX_EXIT_DECL hmR0VmxExitInvvpid(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
16740{
16741 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
16742
16743 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
16744 hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
16745 hmR0VmxReadExitQualVmcs(pVmxTransient);
16746 int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
16747 | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
16748 AssertRCReturn(rc, rc);
16749
16750 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
16751
16752 VMXVEXITINFO ExitInfo;
16753 RT_ZERO(ExitInfo);
16754 ExitInfo.uReason = pVmxTransient->uExitReason;
16755 ExitInfo.u64Qual = pVmxTransient->uExitQual;
16756 ExitInfo.InstrInfo.u = pVmxTransient->ExitInstrInfo.u;
16757 ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
16758 HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_READ, &ExitInfo.GCPtrEffAddr);
16759
16760 VBOXSTRICTRC rcStrict = IEMExecDecodedInvvpid(pVCpu, &ExitInfo);
16761 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
16762 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
16763 else if (rcStrict == VINF_IEM_RAISED_XCPT)
16764 {
16765 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
16766 rcStrict = VINF_SUCCESS;
16767 }
16768 return rcStrict;
16769}
16770#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
16771/** @} */
16772
16773
16774#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
16775/** @name Nested-guest VM-exit handlers.
16776 * @{
16777 */
16778/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
16779/* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- Nested-guest VM-exit handlers -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
16780/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
16781
16782/**
16783 * Nested-guest VM-exit handler for exceptions or NMIs (VMX_EXIT_XCPT_OR_NMI).
16784 * Conditional VM-exit.
16785 */
16786HMVMX_EXIT_DECL hmR0VmxExitXcptOrNmiNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
16787{
16788 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
16789
16790 hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
16791
16792 uint64_t const uExitIntInfo = pVmxTransient->uExitIntInfo;
16793 uint32_t const uExitIntType = VMX_EXIT_INT_INFO_TYPE(uExitIntInfo);
16794 Assert(VMX_EXIT_INT_INFO_IS_VALID(uExitIntInfo));
16795
16796 switch (uExitIntType)
16797 {
16798 /*
16799 * Physical NMIs:
16800 * We shouldn't direct host physical NMIs to the nested-guest. Dispatch it to the host.
16801 */
16802 case VMX_EXIT_INT_INFO_TYPE_NMI:
16803 return hmR0VmxExitHostNmi(pVCpu, pVmxTransient->pVmcsInfo);
16804
16805 /*
16806 * Hardware exceptions,
16807 * Software exceptions,
16808 * Privileged software exceptions:
16809 * Figure out if the exception must be delivered to the guest or the nested-guest.
16810 */
16811 case VMX_EXIT_INT_INFO_TYPE_SW_XCPT:
16812 case VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT:
16813 case VMX_EXIT_INT_INFO_TYPE_HW_XCPT:
16814 {
16815 hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
16816 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
16817 hmR0VmxReadIdtVectoringInfoVmcs(pVmxTransient);
16818 hmR0VmxReadIdtVectoringErrorCodeVmcs(pVmxTransient);
16819
16820 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
16821 bool const fIntercept = CPUMIsGuestVmxXcptInterceptSet(pCtx, VMX_EXIT_INT_INFO_VECTOR(uExitIntInfo),
16822 pVmxTransient->uExitIntErrorCode);
16823 if (fIntercept)
16824 {
16825 /* Exit qualification is required for debug and page-fault exceptions. */
16826 hmR0VmxReadExitQualVmcs(pVmxTransient);
16827
16828 /*
16829 * For VM-exits due to software exceptions (those generated by INT3 or INTO) and privileged
16830 * software exceptions (those generated by INT1/ICEBP) we need to supply the VM-exit instruction
16831 * length. However, if delivery of a software interrupt, software exception or privileged
16832 * software exception causes a VM-exit, that too provides the VM-exit instruction length.
16833 */
16834 VMXVEXITINFO ExitInfo;
16835 RT_ZERO(ExitInfo);
16836 ExitInfo.uReason = pVmxTransient->uExitReason;
16837 ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
16838 ExitInfo.u64Qual = pVmxTransient->uExitQual;
16839
16840 VMXVEXITEVENTINFO ExitEventInfo;
16841 RT_ZERO(ExitEventInfo);
16842 ExitEventInfo.uExitIntInfo = pVmxTransient->uExitIntInfo;
16843 ExitEventInfo.uExitIntErrCode = pVmxTransient->uExitIntErrorCode;
16844 ExitEventInfo.uIdtVectoringInfo = pVmxTransient->uIdtVectoringInfo;
16845 ExitEventInfo.uIdtVectoringErrCode = pVmxTransient->uIdtVectoringErrorCode;
16846
16847#ifdef DEBUG_ramshankar
16848 hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
16849 Log4Func(("exit_int_info=%#RX32 err_code=%#RX32 exit_qual=%#RX64\n", pVmxTransient->uExitIntInfo,
16850 pVmxTransient->uExitIntErrorCode, pVmxTransient->uExitQual));
16851 if (VMX_IDT_VECTORING_INFO_IS_VALID(pVmxTransient->uIdtVectoringInfo))
16852 {
16853 Log4Func(("idt_info=%#RX32 idt_errcode=%#RX32 cr2=%#RX64\n", pVmxTransient->uIdtVectoringInfo,
16854 pVmxTransient->uIdtVectoringErrorCode, pCtx->cr2));
16855 }
16856#endif
16857 return IEMExecVmxVmexitXcpt(pVCpu, &ExitInfo, &ExitEventInfo);
16858 }
16859
16860 /* Nested paging is currently a requirement, otherwise we would need to handle shadow #PFs in hmR0VmxExitXcptPF. */
16861 Assert(pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging);
16862 return hmR0VmxExitXcpt(pVCpu, pVmxTransient);
16863 }
16864
16865 /*
16866 * Software interrupts:
16867 * VM-exits cannot be caused by software interrupts.
16868 *
16869 * External interrupts:
16870 * This should only happen when "acknowledge external interrupts on VM-exit"
16871 * control is set. However, we never set this when executing a guest or
16872 * nested-guest. For nested-guests it is emulated while injecting interrupts into
16873 * the guest.
16874 */
16875 case VMX_EXIT_INT_INFO_TYPE_SW_INT:
16876 case VMX_EXIT_INT_INFO_TYPE_EXT_INT:
16877 default:
16878 {
16879 pVCpu->hm.s.u32HMError = pVmxTransient->uExitIntInfo;
16880 return VERR_VMX_UNEXPECTED_INTERRUPTION_EXIT_TYPE;
16881 }
16882 }
16883}
16884
16885
16886/**
16887 * Nested-guest VM-exit handler for triple faults (VMX_EXIT_TRIPLE_FAULT).
16888 * Unconditional VM-exit.
16889 */
16890HMVMX_EXIT_DECL hmR0VmxExitTripleFaultNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
16891{
16892 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
16893 return IEMExecVmxVmexitTripleFault(pVCpu);
16894}
16895
16896
16897/**
16898 * Nested-guest VM-exit handler for interrupt-window exiting (VMX_EXIT_INT_WINDOW).
16899 */
16900HMVMX_EXIT_NSRC_DECL hmR0VmxExitIntWindowNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
16901{
16902 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
16903
16904 if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_INT_WINDOW_EXIT))
16905 return IEMExecVmxVmexit(pVCpu, pVmxTransient->uExitReason, 0 /* uExitQual */);
16906 return hmR0VmxExitIntWindow(pVCpu, pVmxTransient);
16907}
16908
16909
16910/**
16911 * Nested-guest VM-exit handler for NMI-window exiting (VMX_EXIT_NMI_WINDOW).
16912 */
16913HMVMX_EXIT_NSRC_DECL hmR0VmxExitNmiWindowNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
16914{
16915 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
16916
16917 if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_NMI_WINDOW_EXIT))
16918 return IEMExecVmxVmexit(pVCpu, pVmxTransient->uExitReason, 0 /* uExitQual */);
16919 return hmR0VmxExitIntWindow(pVCpu, pVmxTransient);
16920}
16921
16922
16923/**
16924 * Nested-guest VM-exit handler for task switches (VMX_EXIT_TASK_SWITCH).
16925 * Unconditional VM-exit.
16926 */
16927HMVMX_EXIT_DECL hmR0VmxExitTaskSwitchNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
16928{
16929 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
16930
16931 hmR0VmxReadExitQualVmcs(pVmxTransient);
16932 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
16933 hmR0VmxReadIdtVectoringInfoVmcs(pVmxTransient);
16934 hmR0VmxReadIdtVectoringErrorCodeVmcs(pVmxTransient);
16935
16936 VMXVEXITINFO ExitInfo;
16937 RT_ZERO(ExitInfo);
16938 ExitInfo.uReason = pVmxTransient->uExitReason;
16939 ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
16940 ExitInfo.u64Qual = pVmxTransient->uExitQual;
16941
16942 VMXVEXITEVENTINFO ExitEventInfo;
16943 RT_ZERO(ExitEventInfo);
16944 ExitEventInfo.uIdtVectoringInfo = pVmxTransient->uIdtVectoringInfo;
16945 ExitEventInfo.uIdtVectoringErrCode = pVmxTransient->uIdtVectoringErrorCode;
16946 return IEMExecVmxVmexitTaskSwitch(pVCpu, &ExitInfo, &ExitEventInfo);
16947}
16948
16949
16950/**
16951 * Nested-guest VM-exit handler for HLT (VMX_EXIT_HLT). Conditional VM-exit.
16952 */
16953HMVMX_EXIT_DECL hmR0VmxExitHltNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
16954{
16955 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
16956
16957 if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_HLT_EXIT))
16958 {
16959 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
16960 return IEMExecVmxVmexitInstr(pVCpu, pVmxTransient->uExitReason, pVmxTransient->cbExitInstr);
16961 }
16962 return hmR0VmxExitHlt(pVCpu, pVmxTransient);
16963}
16964
16965
16966/**
16967 * Nested-guest VM-exit handler for INVLPG (VMX_EXIT_INVLPG). Conditional VM-exit.
16968 */
16969HMVMX_EXIT_DECL hmR0VmxExitInvlpgNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
16970{
16971 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
16972
16973 if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_INVLPG_EXIT))
16974 {
16975 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
16976 hmR0VmxReadExitQualVmcs(pVmxTransient);
16977
16978 VMXVEXITINFO ExitInfo;
16979 RT_ZERO(ExitInfo);
16980 ExitInfo.uReason = pVmxTransient->uExitReason;
16981 ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
16982 ExitInfo.u64Qual = pVmxTransient->uExitQual;
16983 return IEMExecVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
16984 }
16985 return hmR0VmxExitInvlpg(pVCpu, pVmxTransient);
16986}
16987
16988
16989/**
16990 * Nested-guest VM-exit handler for RDPMC (VMX_EXIT_RDPMC). Conditional VM-exit.
16991 */
16992HMVMX_EXIT_DECL hmR0VmxExitRdpmcNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
16993{
16994 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
16995
16996 if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_RDPMC_EXIT))
16997 {
16998 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
16999 return IEMExecVmxVmexitInstr(pVCpu, pVmxTransient->uExitReason, pVmxTransient->cbExitInstr);
17000 }
17001 return hmR0VmxExitRdpmc(pVCpu, pVmxTransient);
17002}
17003
17004
17005/**
17006 * Nested-guest VM-exit handler for VMREAD (VMX_EXIT_VMREAD) and VMWRITE
17007 * (VMX_EXIT_VMWRITE). Conditional VM-exit.
17008 */
17009HMVMX_EXIT_DECL hmR0VmxExitVmreadVmwriteNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
17010{
17011 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
17012
17013 Assert( pVmxTransient->uExitReason == VMX_EXIT_VMREAD
17014 || pVmxTransient->uExitReason == VMX_EXIT_VMWRITE);
17015
17016 hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
17017
17018 uint8_t const iGReg = pVmxTransient->ExitInstrInfo.VmreadVmwrite.iReg2;
17019 Assert(iGReg < RT_ELEMENTS(pVCpu->cpum.GstCtx.aGRegs));
17020 uint64_t u64VmcsField = pVCpu->cpum.GstCtx.aGRegs[iGReg].u64;
17021
17022 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_EFER);
17023 if (!CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx))
17024 u64VmcsField &= UINT64_C(0xffffffff);
17025
17026 if (CPUMIsGuestVmxVmreadVmwriteInterceptSet(pVCpu, pVmxTransient->uExitReason, u64VmcsField))
17027 {
17028 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
17029 hmR0VmxReadExitQualVmcs(pVmxTransient);
17030
17031 VMXVEXITINFO ExitInfo;
17032 RT_ZERO(ExitInfo);
17033 ExitInfo.uReason = pVmxTransient->uExitReason;
17034 ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
17035 ExitInfo.u64Qual = pVmxTransient->uExitQual;
17036 ExitInfo.InstrInfo = pVmxTransient->ExitInstrInfo;
17037 return IEMExecVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
17038 }
17039
17040 if (pVmxTransient->uExitReason == VMX_EXIT_VMREAD)
17041 return hmR0VmxExitVmread(pVCpu, pVmxTransient);
17042 return hmR0VmxExitVmwrite(pVCpu, pVmxTransient);
17043}
17044
17045
17046/**
17047 * Nested-guest VM-exit handler for RDTSC (VMX_EXIT_RDTSC). Conditional VM-exit.
17048 */
17049HMVMX_EXIT_DECL hmR0VmxExitRdtscNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
17050{
17051 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
17052
17053 if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_RDTSC_EXIT))
17054 {
17055 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
17056 return IEMExecVmxVmexitInstr(pVCpu, pVmxTransient->uExitReason, pVmxTransient->cbExitInstr);
17057 }
17058
17059 return hmR0VmxExitRdtsc(pVCpu, pVmxTransient);
17060}
17061
17062
17063/**
17064 * Nested-guest VM-exit handler for control-register accesses (VMX_EXIT_MOV_CRX).
17065 * Conditional VM-exit.
17066 */
17067HMVMX_EXIT_DECL hmR0VmxExitMovCRxNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
17068{
17069 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
17070
17071 hmR0VmxReadExitQualVmcs(pVmxTransient);
17072 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
17073
17074 VBOXSTRICTRC rcStrict;
17075 uint32_t const uAccessType = VMX_EXIT_QUAL_CRX_ACCESS(pVmxTransient->uExitQual);
17076 switch (uAccessType)
17077 {
17078 case VMX_EXIT_QUAL_CRX_ACCESS_WRITE:
17079 {
17080 uint8_t const iCrReg = VMX_EXIT_QUAL_CRX_REGISTER(pVmxTransient->uExitQual);
17081 uint8_t const iGReg = VMX_EXIT_QUAL_CRX_GENREG(pVmxTransient->uExitQual);
17082 Assert(iGReg < RT_ELEMENTS(pVCpu->cpum.GstCtx.aGRegs));
17083 uint64_t const uNewCrX = pVCpu->cpum.GstCtx.aGRegs[iGReg].u64;
17084
17085 bool fIntercept;
17086 switch (iCrReg)
17087 {
17088 case 0:
17089 case 4:
17090 fIntercept = CPUMIsGuestVmxMovToCr0Cr4InterceptSet(&pVCpu->cpum.GstCtx, iCrReg, uNewCrX);
17091 break;
17092
17093 case 3:
17094 fIntercept = CPUMIsGuestVmxMovToCr3InterceptSet(pVCpu, uNewCrX);
17095 break;
17096
17097 case 8:
17098 fIntercept = CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_CR8_LOAD_EXIT);
17099 break;
17100
17101 default:
17102 fIntercept = false;
17103 break;
17104 }
17105 if (fIntercept)
17106 {
17107 VMXVEXITINFO ExitInfo;
17108 RT_ZERO(ExitInfo);
17109 ExitInfo.uReason = pVmxTransient->uExitReason;
17110 ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
17111 ExitInfo.u64Qual = pVmxTransient->uExitQual;
17112 rcStrict = IEMExecVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
17113 }
17114 else
17115 rcStrict = hmR0VmxExitMovToCrX(pVCpu, pVmxTransient->pVmcsInfo, pVmxTransient->cbExitInstr, iGReg, iCrReg);
17116 break;
17117 }
17118
17119 case VMX_EXIT_QUAL_CRX_ACCESS_READ:
17120 {
17121 /*
17122 * CR0/CR4 reads do not cause VM-exits, the read-shadow is used (subject to masking).
17123 * CR2 reads do not cause a VM-exit.
17124 * CR3 reads cause a VM-exit depending on the "CR3 store exiting" control.
17125 * CR8 reads cause a VM-exit depending on the "CR8 store exiting" control.
17126 */
17127 uint8_t const iCrReg = VMX_EXIT_QUAL_CRX_REGISTER(pVmxTransient->uExitQual);
17128 if ( iCrReg == 3
17129 || iCrReg == 8)
17130 {
17131 static const uint32_t s_auCrXReadIntercepts[] = { 0, 0, 0, VMX_PROC_CTLS_CR3_STORE_EXIT, 0,
17132 0, 0, 0, VMX_PROC_CTLS_CR8_STORE_EXIT };
17133 uint32_t const uIntercept = s_auCrXReadIntercepts[iCrReg];
17134 if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, uIntercept))
17135 {
17136 VMXVEXITINFO ExitInfo;
17137 RT_ZERO(ExitInfo);
17138 ExitInfo.uReason = pVmxTransient->uExitReason;
17139 ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
17140 ExitInfo.u64Qual = pVmxTransient->uExitQual;
17141 rcStrict = IEMExecVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
17142 }
17143 else
17144 {
17145 uint8_t const iGReg = VMX_EXIT_QUAL_CRX_GENREG(pVmxTransient->uExitQual);
17146 rcStrict = hmR0VmxExitMovFromCrX(pVCpu, pVmxTransient->pVmcsInfo, pVmxTransient->cbExitInstr, iGReg, iCrReg);
17147 }
17148 }
17149 else
17150 {
17151 AssertMsgFailed(("MOV from CR%d VM-exit must not happen\n", iCrReg));
17152 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, iCrReg);
17153 }
17154 break;
17155 }
17156
17157 case VMX_EXIT_QUAL_CRX_ACCESS_CLTS:
17158 {
17159 PCVMXVVMCS pVmcsNstGst = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
17160 Assert(pVmcsNstGst);
17161 uint64_t const uGstHostMask = pVmcsNstGst->u64Cr0Mask.u;
17162 uint64_t const uReadShadow = pVmcsNstGst->u64Cr0ReadShadow.u;
17163 if ( (uGstHostMask & X86_CR0_TS)
17164 && (uReadShadow & X86_CR0_TS))
17165 {
17166 VMXVEXITINFO ExitInfo;
17167 RT_ZERO(ExitInfo);
17168 ExitInfo.uReason = pVmxTransient->uExitReason;
17169 ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
17170 ExitInfo.u64Qual = pVmxTransient->uExitQual;
17171 rcStrict = IEMExecVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
17172 }
17173 else
17174 rcStrict = hmR0VmxExitClts(pVCpu, pVmxTransient->pVmcsInfo, pVmxTransient->cbExitInstr);
17175 break;
17176 }
17177
17178 case VMX_EXIT_QUAL_CRX_ACCESS_LMSW: /* LMSW (Load Machine-Status Word into CR0) */
17179 {
17180 RTGCPTR GCPtrEffDst;
17181 uint16_t const uNewMsw = VMX_EXIT_QUAL_CRX_LMSW_DATA(pVmxTransient->uExitQual);
17182 bool const fMemOperand = VMX_EXIT_QUAL_CRX_LMSW_OP_MEM(pVmxTransient->uExitQual);
17183 if (fMemOperand)
17184 {
17185 hmR0VmxReadGuestLinearAddrVmcs(pVmxTransient);
17186 GCPtrEffDst = pVmxTransient->uGuestLinearAddr;
17187 }
17188 else
17189 GCPtrEffDst = NIL_RTGCPTR;
17190
17191 if (CPUMIsGuestVmxLmswInterceptSet(&pVCpu->cpum.GstCtx, uNewMsw))
17192 {
17193 VMXVEXITINFO ExitInfo;
17194 RT_ZERO(ExitInfo);
17195 ExitInfo.uReason = pVmxTransient->uExitReason;
17196 ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
17197 ExitInfo.u64GuestLinearAddr = GCPtrEffDst;
17198 ExitInfo.u64Qual = pVmxTransient->uExitQual;
17199 rcStrict = IEMExecVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
17200 }
17201 else
17202 rcStrict = hmR0VmxExitLmsw(pVCpu, pVmxTransient->pVmcsInfo, pVmxTransient->cbExitInstr, uNewMsw, GCPtrEffDst);
17203 break;
17204 }
17205
17206 default:
17207 {
17208 AssertMsgFailed(("Unrecognized Mov CRX access type %#x\n", uAccessType));
17209 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, uAccessType);
17210 }
17211 }
17212
17213 if (rcStrict == VINF_IEM_RAISED_XCPT)
17214 {
17215 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
17216 rcStrict = VINF_SUCCESS;
17217 }
17218 return rcStrict;
17219}
17220
17221
17222/**
17223 * Nested-guest VM-exit handler for debug-register accesses (VMX_EXIT_MOV_DRX).
17224 * Conditional VM-exit.
17225 */
17226HMVMX_EXIT_DECL hmR0VmxExitMovDRxNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
17227{
17228 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
17229
17230 if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_MOV_DR_EXIT))
17231 {
17232 hmR0VmxReadExitQualVmcs(pVmxTransient);
17233 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
17234
17235 VMXVEXITINFO ExitInfo;
17236 RT_ZERO(ExitInfo);
17237 ExitInfo.uReason = pVmxTransient->uExitReason;
17238 ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
17239 ExitInfo.u64Qual = pVmxTransient->uExitQual;
17240 return IEMExecVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
17241 }
17242 return hmR0VmxExitMovDRx(pVCpu, pVmxTransient);
17243}
17244
17245
17246/**
17247 * Nested-guest VM-exit handler for I/O instructions (VMX_EXIT_IO_INSTR).
17248 * Conditional VM-exit.
17249 */
17250HMVMX_EXIT_DECL hmR0VmxExitIoInstrNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
17251{
17252 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
17253
17254 hmR0VmxReadExitQualVmcs(pVmxTransient);
17255
17256 uint32_t const uIOPort = VMX_EXIT_QUAL_IO_PORT(pVmxTransient->uExitQual);
17257 uint8_t const uIOSize = VMX_EXIT_QUAL_IO_SIZE(pVmxTransient->uExitQual);
17258 AssertReturn(uIOSize <= 3 && uIOSize != 2, VERR_VMX_IPE_1);
17259
17260 static uint32_t const s_aIOSizes[4] = { 1, 2, 0, 4 }; /* Size of the I/O accesses in bytes. */
17261 uint8_t const cbAccess = s_aIOSizes[uIOSize];
17262 if (CPUMIsGuestVmxIoInterceptSet(pVCpu, uIOPort, cbAccess))
17263 {
17264 /*
17265 * IN/OUT instruction:
17266 * - Provides VM-exit instruction length.
17267 *
17268 * INS/OUTS instruction:
17269 * - Provides VM-exit instruction length.
17270 * - Provides Guest-linear address.
17271 * - Optionally provides VM-exit instruction info (depends on CPU feature).
17272 */
17273 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
17274 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
17275
17276 /* Make sure we don't use stale/uninitialized VMX-transient info. below. */
17277 pVmxTransient->ExitInstrInfo.u = 0;
17278 pVmxTransient->uGuestLinearAddr = 0;
17279
17280 bool const fVmxInsOutsInfo = pVM->cpum.ro.GuestFeatures.fVmxInsOutInfo;
17281 bool const fIOString = VMX_EXIT_QUAL_IO_IS_STRING(pVmxTransient->uExitQual);
17282 if (fIOString)
17283 {
17284 hmR0VmxReadGuestLinearAddrVmcs(pVmxTransient);
17285 if (fVmxInsOutsInfo)
17286 {
17287 Assert(RT_BF_GET(g_HmMsrs.u.vmx.u64Basic, VMX_BF_BASIC_VMCS_INS_OUTS)); /* Paranoia. */
17288 hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
17289 }
17290 }
17291
17292 VMXVEXITINFO ExitInfo;
17293 RT_ZERO(ExitInfo);
17294 ExitInfo.uReason = pVmxTransient->uExitReason;
17295 ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
17296 ExitInfo.u64Qual = pVmxTransient->uExitQual;
17297 ExitInfo.InstrInfo = pVmxTransient->ExitInstrInfo;
17298 ExitInfo.u64GuestLinearAddr = pVmxTransient->uGuestLinearAddr;
17299 return IEMExecVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
17300 }
17301 return hmR0VmxExitIoInstr(pVCpu, pVmxTransient);
17302}
17303
17304
17305/**
17306 * Nested-guest VM-exit handler for RDMSR (VMX_EXIT_RDMSR).
17307 */
17308HMVMX_EXIT_DECL hmR0VmxExitRdmsrNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
17309{
17310 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
17311
17312 uint32_t fMsrpm;
17313 if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_USE_MSR_BITMAPS))
17314 fMsrpm = CPUMGetVmxMsrPermission(pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvMsrBitmap), pVCpu->cpum.GstCtx.ecx);
17315 else
17316 fMsrpm = VMXMSRPM_EXIT_RD;
17317
17318 if (fMsrpm & VMXMSRPM_EXIT_RD)
17319 {
17320 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
17321 return IEMExecVmxVmexitInstr(pVCpu, pVmxTransient->uExitReason, pVmxTransient->cbExitInstr);
17322 }
17323 return hmR0VmxExitRdmsr(pVCpu, pVmxTransient);
17324}
17325
17326
17327/**
17328 * Nested-guest VM-exit handler for WRMSR (VMX_EXIT_WRMSR).
17329 */
17330HMVMX_EXIT_DECL hmR0VmxExitWrmsrNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
17331{
17332 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
17333
17334 uint32_t fMsrpm;
17335 if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_USE_MSR_BITMAPS))
17336 fMsrpm = CPUMGetVmxMsrPermission(pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvMsrBitmap), pVCpu->cpum.GstCtx.ecx);
17337 else
17338 fMsrpm = VMXMSRPM_EXIT_WR;
17339
17340 if (fMsrpm & VMXMSRPM_EXIT_WR)
17341 {
17342 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
17343 return IEMExecVmxVmexitInstr(pVCpu, pVmxTransient->uExitReason, pVmxTransient->cbExitInstr);
17344 }
17345 return hmR0VmxExitWrmsr(pVCpu, pVmxTransient);
17346}
17347
17348
17349/**
17350 * Nested-guest VM-exit handler for MWAIT (VMX_EXIT_MWAIT). Conditional VM-exit.
17351 */
17352HMVMX_EXIT_DECL hmR0VmxExitMwaitNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
17353{
17354 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
17355
17356 if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_MWAIT_EXIT))
17357 {
17358 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
17359 return IEMExecVmxVmexitInstr(pVCpu, pVmxTransient->uExitReason, pVmxTransient->cbExitInstr);
17360 }
17361 return hmR0VmxExitMwait(pVCpu, pVmxTransient);
17362}
17363
17364
17365/**
17366 * Nested-guest VM-exit handler for monitor-trap-flag (VMX_EXIT_MTF). Conditional
17367 * VM-exit.
17368 */
17369HMVMX_EXIT_DECL hmR0VmxExitMtfNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
17370{
17371 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
17372
17373 /** @todo NSTVMX: Should consider debugging nested-guests using VM debugger. */
17374 hmR0VmxReadGuestPendingDbgXctps(pVmxTransient);
17375 VMXVEXITINFO ExitInfo;
17376 RT_ZERO(ExitInfo);
17377 ExitInfo.uReason = pVmxTransient->uExitReason;
17378 ExitInfo.u64GuestPendingDbgXcpts = pVmxTransient->uGuestPendingDbgXcpts;
17379 return IEMExecVmxVmexitTrapLike(pVCpu, &ExitInfo);
17380}
17381
17382
17383/**
17384 * Nested-guest VM-exit handler for MONITOR (VMX_EXIT_MONITOR). Conditional VM-exit.
17385 */
17386HMVMX_EXIT_DECL hmR0VmxExitMonitorNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
17387{
17388 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
17389
17390 if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_MONITOR_EXIT))
17391 {
17392 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
17393 return IEMExecVmxVmexitInstr(pVCpu, pVmxTransient->uExitReason, pVmxTransient->cbExitInstr);
17394 }
17395 return hmR0VmxExitMonitor(pVCpu, pVmxTransient);
17396}
17397
17398
17399/**
17400 * Nested-guest VM-exit handler for PAUSE (VMX_EXIT_PAUSE). Conditional VM-exit.
17401 */
17402HMVMX_EXIT_DECL hmR0VmxExitPauseNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
17403{
17404 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
17405
17406 /** @todo NSTVMX: Think about this more. Does the outer guest need to intercept
17407 * PAUSE when executing a nested-guest? If it does not, we would not need
17408 * to check for the intercepts here. Just call VM-exit... */
17409
17410 /* The CPU would have already performed the necessary CPL checks for PAUSE-loop exiting. */
17411 if ( CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_PAUSE_EXIT)
17412 || CPUMIsGuestVmxProcCtls2Set(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS2_PAUSE_LOOP_EXIT))
17413 {
17414 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
17415 return IEMExecVmxVmexitInstr(pVCpu, pVmxTransient->uExitReason, pVmxTransient->cbExitInstr);
17416 }
17417 return hmR0VmxExitPause(pVCpu, pVmxTransient);
17418}
17419
17420
17421/**
17422 * Nested-guest VM-exit handler for when the TPR value is lowered below the
17423 * specified threshold (VMX_EXIT_TPR_BELOW_THRESHOLD). Conditional VM-exit.
17424 */
17425HMVMX_EXIT_NSRC_DECL hmR0VmxExitTprBelowThresholdNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
17426{
17427 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
17428
17429 if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_USE_TPR_SHADOW))
17430 {
17431 hmR0VmxReadGuestPendingDbgXctps(pVmxTransient);
17432 VMXVEXITINFO ExitInfo;
17433 RT_ZERO(ExitInfo);
17434 ExitInfo.uReason = pVmxTransient->uExitReason;
17435 ExitInfo.u64GuestPendingDbgXcpts = pVmxTransient->uGuestPendingDbgXcpts;
17436 return IEMExecVmxVmexitTrapLike(pVCpu, &ExitInfo);
17437 }
17438 return hmR0VmxExitTprBelowThreshold(pVCpu, pVmxTransient);
17439}
17440
17441
17442/**
17443 * Nested-guest VM-exit handler for APIC access (VMX_EXIT_APIC_ACCESS). Conditional
17444 * VM-exit.
17445 */
17446HMVMX_EXIT_DECL hmR0VmxExitApicAccessNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
17447{
17448 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
17449
17450 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
17451 hmR0VmxReadIdtVectoringInfoVmcs(pVmxTransient);
17452 hmR0VmxReadIdtVectoringErrorCodeVmcs(pVmxTransient);
17453 hmR0VmxReadExitQualVmcs(pVmxTransient);
17454
17455 Assert(CPUMIsGuestVmxProcCtls2Set(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS2_VIRT_APIC_ACCESS));
17456
17457 Log4Func(("at offset %#x type=%u\n", VMX_EXIT_QUAL_APIC_ACCESS_OFFSET(pVmxTransient->uExitQual),
17458 VMX_EXIT_QUAL_APIC_ACCESS_TYPE(pVmxTransient->uExitQual)));
17459
17460 VMXVEXITINFO ExitInfo;
17461 RT_ZERO(ExitInfo);
17462 ExitInfo.uReason = pVmxTransient->uExitReason;
17463 ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
17464 ExitInfo.u64Qual = pVmxTransient->uExitQual;
17465
17466 VMXVEXITEVENTINFO ExitEventInfo;
17467 RT_ZERO(ExitEventInfo);
17468 ExitEventInfo.uIdtVectoringInfo = pVmxTransient->uIdtVectoringInfo;
17469 ExitEventInfo.uIdtVectoringErrCode = pVmxTransient->uIdtVectoringErrorCode;
17470 return IEMExecVmxVmexitApicAccess(pVCpu, &ExitInfo, &ExitEventInfo);
17471}
17472
17473
17474/**
17475 * Nested-guest VM-exit handler for APIC write emulation (VMX_EXIT_APIC_WRITE).
17476 * Conditional VM-exit.
17477 */
17478HMVMX_EXIT_DECL hmR0VmxExitApicWriteNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
17479{
17480 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
17481
17482 Assert(CPUMIsGuestVmxProcCtls2Set(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS2_APIC_REG_VIRT));
17483 hmR0VmxReadExitQualVmcs(pVmxTransient);
17484 return IEMExecVmxVmexit(pVCpu, pVmxTransient->uExitReason, pVmxTransient->uExitQual);
17485}
17486
17487
17488/**
17489 * Nested-guest VM-exit handler for virtualized EOI (VMX_EXIT_VIRTUALIZED_EOI).
17490 * Conditional VM-exit.
17491 */
17492HMVMX_EXIT_DECL hmR0VmxExitVirtEoiNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
17493{
17494 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
17495
17496 Assert(CPUMIsGuestVmxProcCtls2Set(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS2_VIRT_INT_DELIVERY));
17497 hmR0VmxReadExitQualVmcs(pVmxTransient);
17498 return IEMExecVmxVmexit(pVCpu, pVmxTransient->uExitReason, pVmxTransient->uExitQual);
17499}
17500
17501
17502/**
17503 * Nested-guest VM-exit handler for RDTSCP (VMX_EXIT_RDTSCP). Conditional VM-exit.
17504 */
17505HMVMX_EXIT_DECL hmR0VmxExitRdtscpNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
17506{
17507 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
17508
17509 if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_RDTSC_EXIT))
17510 {
17511 Assert(CPUMIsGuestVmxProcCtls2Set(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS2_RDTSCP));
17512 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
17513 return IEMExecVmxVmexitInstr(pVCpu, pVmxTransient->uExitReason, pVmxTransient->cbExitInstr);
17514 }
17515 return hmR0VmxExitRdtscp(pVCpu, pVmxTransient);
17516}
17517
17518
17519/**
17520 * Nested-guest VM-exit handler for WBINVD (VMX_EXIT_WBINVD). Conditional VM-exit.
17521 */
17522HMVMX_EXIT_NSRC_DECL hmR0VmxExitWbinvdNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
17523{
17524 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
17525
17526 if (CPUMIsGuestVmxProcCtls2Set(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS2_WBINVD_EXIT))
17527 {
17528 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
17529 return IEMExecVmxVmexitInstr(pVCpu, pVmxTransient->uExitReason, pVmxTransient->cbExitInstr);
17530 }
17531 return hmR0VmxExitWbinvd(pVCpu, pVmxTransient);
17532}
17533
17534
17535/**
17536 * Nested-guest VM-exit handler for INVPCID (VMX_EXIT_INVPCID). Conditional VM-exit.
17537 */
17538HMVMX_EXIT_DECL hmR0VmxExitInvpcidNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
17539{
17540 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
17541
17542 if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_INVLPG_EXIT))
17543 {
17544 Assert(CPUMIsGuestVmxProcCtls2Set(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS2_INVPCID));
17545 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
17546 hmR0VmxReadExitQualVmcs(pVmxTransient);
17547 hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
17548
17549 VMXVEXITINFO ExitInfo;
17550 RT_ZERO(ExitInfo);
17551 ExitInfo.uReason = pVmxTransient->uExitReason;
17552 ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
17553 ExitInfo.u64Qual = pVmxTransient->uExitQual;
17554 ExitInfo.InstrInfo = pVmxTransient->ExitInstrInfo;
17555 return IEMExecVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
17556 }
17557 return hmR0VmxExitInvpcid(pVCpu, pVmxTransient);
17558}
17559
17560
17561/**
17562 * Nested-guest VM-exit handler for invalid-guest state
17563 * (VMX_EXIT_ERR_INVALID_GUEST_STATE). Error VM-exit.
17564 */
17565HMVMX_EXIT_DECL hmR0VmxExitErrInvalidGuestStateNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
17566{
17567 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
17568
17569 /*
17570 * Currently this should never happen because we fully emulate VMLAUNCH/VMRESUME in IEM.
17571 * So if it does happen, it indicates a bug possibly in the hardware-assisted VMX code.
17572 * Handle it like it's in an invalid guest state of the outer guest.
17573 *
17574 * When the fast path is implemented, this should be changed to cause the corresponding
17575 * nested-guest VM-exit.
17576 */
17577 return hmR0VmxExitErrInvalidGuestState(pVCpu, pVmxTransient);
17578}
17579
17580
17581/**
17582 * Nested-guest VM-exit handler for instructions that cause VM-exits uncondtionally
17583 * and only provide the instruction length.
17584 *
17585 * Unconditional VM-exit.
17586 */
17587HMVMX_EXIT_DECL hmR0VmxExitInstrNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
17588{
17589 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
17590
17591#ifdef VBOX_STRICT
17592 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
17593 switch (pVmxTransient->uExitReason)
17594 {
17595 case VMX_EXIT_ENCLS:
17596 Assert(CPUMIsGuestVmxProcCtls2Set(pCtx, VMX_PROC_CTLS2_ENCLS_EXIT));
17597 break;
17598
17599 case VMX_EXIT_VMFUNC:
17600 Assert(CPUMIsGuestVmxProcCtls2Set(pCtx, VMX_PROC_CTLS2_VMFUNC));
17601 break;
17602 }
17603#endif
17604
17605 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
17606 return IEMExecVmxVmexitInstr(pVCpu, pVmxTransient->uExitReason, pVmxTransient->cbExitInstr);
17607}
17608
17609
17610/**
17611 * Nested-guest VM-exit handler for instructions that provide instruction length as
17612 * well as more information.
17613 *
17614 * Unconditional VM-exit.
17615 */
17616HMVMX_EXIT_DECL hmR0VmxExitInstrWithInfoNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
17617{
17618 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
17619
17620#ifdef VBOX_STRICT
17621 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
17622 switch (pVmxTransient->uExitReason)
17623 {
17624 case VMX_EXIT_GDTR_IDTR_ACCESS:
17625 case VMX_EXIT_LDTR_TR_ACCESS:
17626 Assert(CPUMIsGuestVmxProcCtls2Set(pCtx, VMX_PROC_CTLS2_DESC_TABLE_EXIT));
17627 break;
17628
17629 case VMX_EXIT_RDRAND:
17630 Assert(CPUMIsGuestVmxProcCtls2Set(pCtx, VMX_PROC_CTLS2_RDRAND_EXIT));
17631 break;
17632
17633 case VMX_EXIT_RDSEED:
17634 Assert(CPUMIsGuestVmxProcCtls2Set(pCtx, VMX_PROC_CTLS2_RDSEED_EXIT));
17635 break;
17636
17637 case VMX_EXIT_XSAVES:
17638 case VMX_EXIT_XRSTORS:
17639 /** @todo NSTVMX: Verify XSS-bitmap. */
17640 Assert(CPUMIsGuestVmxProcCtls2Set(pCtx, VMX_PROC_CTLS2_XSAVES_XRSTORS));
17641 break;
17642
17643 case VMX_EXIT_UMWAIT:
17644 case VMX_EXIT_TPAUSE:
17645 Assert(CPUMIsGuestVmxProcCtlsSet(pCtx, VMX_PROC_CTLS_RDTSC_EXIT));
17646 Assert(CPUMIsGuestVmxProcCtls2Set(pCtx, VMX_PROC_CTLS2_USER_WAIT_PAUSE));
17647 break;
17648 }
17649#endif
17650
17651 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
17652 hmR0VmxReadExitQualVmcs(pVmxTransient);
17653 hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
17654
17655 VMXVEXITINFO ExitInfo;
17656 RT_ZERO(ExitInfo);
17657 ExitInfo.uReason = pVmxTransient->uExitReason;
17658 ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
17659 ExitInfo.u64Qual = pVmxTransient->uExitQual;
17660 ExitInfo.InstrInfo = pVmxTransient->ExitInstrInfo;
17661 return IEMExecVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
17662}
17663
17664/** @} */
17665#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
17666
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette