1 | /* $Id: HMVMXR0.cpp 94882 2022-05-06 06:33:54Z vboxsync $ */
|
---|
2 | /** @file
|
---|
3 | * HM VMX (Intel VT-x) - Host Context Ring-0.
|
---|
4 | */
|
---|
5 |
|
---|
6 | /*
|
---|
7 | * Copyright (C) 2012-2022 Oracle Corporation
|
---|
8 | *
|
---|
9 | * This file is part of VirtualBox Open Source Edition (OSE), as
|
---|
10 | * available from http://www.virtualbox.org. This file is free software;
|
---|
11 | * you can redistribute it and/or modify it under the terms of the GNU
|
---|
12 | * General Public License (GPL) as published by the Free Software
|
---|
13 | * Foundation, in version 2 as it comes in the "COPYING" file of the
|
---|
14 | * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
|
---|
15 | * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
|
---|
16 | */
|
---|
17 |
|
---|
18 |
|
---|
19 | /*********************************************************************************************************************************
|
---|
20 | * Header Files *
|
---|
21 | *********************************************************************************************************************************/
|
---|
22 | #define LOG_GROUP LOG_GROUP_HM
|
---|
23 | #define VMCPU_INCL_CPUM_GST_CTX
|
---|
24 | #include <iprt/x86.h>
|
---|
25 | #include <iprt/asm-amd64-x86.h>
|
---|
26 | #include <iprt/thread.h>
|
---|
27 | #include <iprt/mem.h>
|
---|
28 | #include <iprt/mp.h>
|
---|
29 |
|
---|
30 | #include <VBox/vmm/pdmapi.h>
|
---|
31 | #include <VBox/vmm/dbgf.h>
|
---|
32 | #include <VBox/vmm/iem.h>
|
---|
33 | #include <VBox/vmm/iom.h>
|
---|
34 | #include <VBox/vmm/tm.h>
|
---|
35 | #include <VBox/vmm/em.h>
|
---|
36 | #include <VBox/vmm/gcm.h>
|
---|
37 | #include <VBox/vmm/gim.h>
|
---|
38 | #include <VBox/vmm/apic.h>
|
---|
39 | #include "HMInternal.h"
|
---|
40 | #include <VBox/vmm/vmcc.h>
|
---|
41 | #include <VBox/vmm/hmvmxinline.h>
|
---|
42 | #include "HMVMXR0.h"
|
---|
43 | #include "VMXInternal.h"
|
---|
44 | #include "dtrace/VBoxVMM.h"
|
---|
45 |
|
---|
46 |
|
---|
47 | /*********************************************************************************************************************************
|
---|
48 | * Defined Constants And Macros *
|
---|
49 | *********************************************************************************************************************************/
|
---|
50 | #ifdef DEBUG_ramshankar
|
---|
51 | # define HMVMX_ALWAYS_SAVE_GUEST_RFLAGS
|
---|
52 | # define HMVMX_ALWAYS_SAVE_RO_GUEST_STATE
|
---|
53 | # define HMVMX_ALWAYS_SAVE_FULL_GUEST_STATE
|
---|
54 | # define HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE
|
---|
55 | # define HMVMX_ALWAYS_CLEAN_TRANSIENT
|
---|
56 | # define HMVMX_ALWAYS_CHECK_GUEST_STATE
|
---|
57 | # define HMVMX_ALWAYS_TRAP_ALL_XCPTS
|
---|
58 | # define HMVMX_ALWAYS_TRAP_PF
|
---|
59 | # define HMVMX_ALWAYS_FLUSH_TLB
|
---|
60 | # define HMVMX_ALWAYS_SWAP_EFER
|
---|
61 | #endif
|
---|
62 |
|
---|
63 |
|
---|
64 | /*********************************************************************************************************************************
|
---|
65 | * Structures and Typedefs *
|
---|
66 | *********************************************************************************************************************************/
|
---|
67 | /**
|
---|
68 | * VMX page allocation information.
|
---|
69 | */
|
---|
70 | typedef struct
|
---|
71 | {
|
---|
72 | uint32_t fValid; /**< Whether to allocate this page (e.g, based on a CPU feature). */
|
---|
73 | uint32_t uPadding0; /**< Padding to ensure array of these structs are aligned to a multiple of 8. */
|
---|
74 | PRTHCPHYS pHCPhys; /**< Where to store the host-physical address of the allocation. */
|
---|
75 | PRTR0PTR ppVirt; /**< Where to store the host-virtual address of the allocation. */
|
---|
76 | } VMXPAGEALLOCINFO;
|
---|
77 | /** Pointer to VMX page-allocation info. */
|
---|
78 | typedef VMXPAGEALLOCINFO *PVMXPAGEALLOCINFO;
|
---|
79 | /** Pointer to a const VMX page-allocation info. */
|
---|
80 | typedef const VMXPAGEALLOCINFO *PCVMXPAGEALLOCINFO;
|
---|
81 | AssertCompileSizeAlignment(VMXPAGEALLOCINFO, 8);
|
---|
82 |
|
---|
83 |
|
---|
84 | /*********************************************************************************************************************************
|
---|
85 | * Internal Functions *
|
---|
86 | *********************************************************************************************************************************/
|
---|
87 | static bool hmR0VmxShouldSwapEferMsr(PCVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient);
|
---|
88 | static int hmR0VmxExitHostNmi(PVMCPUCC pVCpu, PCVMXVMCSINFO pVmcsInfo);
|
---|
89 |
|
---|
90 |
|
---|
91 | /**
|
---|
92 | * Checks if the given MSR is part of the lastbranch-from-IP MSR stack.
|
---|
93 | * @returns @c true if it's part of LBR stack, @c false otherwise.
|
---|
94 | *
|
---|
95 | * @param pVM The cross context VM structure.
|
---|
96 | * @param idMsr The MSR.
|
---|
97 | * @param pidxMsr Where to store the index of the MSR in the LBR MSR array.
|
---|
98 | * Optional, can be NULL.
|
---|
99 | *
|
---|
100 | * @remarks Must only be called when LBR is enabled.
|
---|
101 | */
|
---|
102 | DECL_FORCE_INLINE(bool) hmR0VmxIsLbrBranchFromMsr(PCVMCC pVM, uint32_t idMsr, uint32_t *pidxMsr)
|
---|
103 | {
|
---|
104 | Assert(pVM->hmr0.s.vmx.fLbr);
|
---|
105 | Assert(pVM->hmr0.s.vmx.idLbrFromIpMsrFirst);
|
---|
106 | uint32_t const cLbrStack = pVM->hmr0.s.vmx.idLbrFromIpMsrLast - pVM->hmr0.s.vmx.idLbrFromIpMsrFirst + 1;
|
---|
107 | uint32_t const idxMsr = idMsr - pVM->hmr0.s.vmx.idLbrFromIpMsrFirst;
|
---|
108 | if (idxMsr < cLbrStack)
|
---|
109 | {
|
---|
110 | if (pidxMsr)
|
---|
111 | *pidxMsr = idxMsr;
|
---|
112 | return true;
|
---|
113 | }
|
---|
114 | return false;
|
---|
115 | }
|
---|
116 |
|
---|
117 |
|
---|
118 | /**
|
---|
119 | * Checks if the given MSR is part of the lastbranch-to-IP MSR stack.
|
---|
120 | * @returns @c true if it's part of LBR stack, @c false otherwise.
|
---|
121 | *
|
---|
122 | * @param pVM The cross context VM structure.
|
---|
123 | * @param idMsr The MSR.
|
---|
124 | * @param pidxMsr Where to store the index of the MSR in the LBR MSR array.
|
---|
125 | * Optional, can be NULL.
|
---|
126 | *
|
---|
127 | * @remarks Must only be called when LBR is enabled and when lastbranch-to-IP MSRs
|
---|
128 | * are supported by the CPU (see hmR0VmxSetupLbrMsrRange).
|
---|
129 | */
|
---|
130 | DECL_FORCE_INLINE(bool) hmR0VmxIsLbrBranchToMsr(PCVMCC pVM, uint32_t idMsr, uint32_t *pidxMsr)
|
---|
131 | {
|
---|
132 | Assert(pVM->hmr0.s.vmx.fLbr);
|
---|
133 | if (pVM->hmr0.s.vmx.idLbrToIpMsrFirst)
|
---|
134 | {
|
---|
135 | uint32_t const cLbrStack = pVM->hmr0.s.vmx.idLbrToIpMsrLast - pVM->hmr0.s.vmx.idLbrToIpMsrFirst + 1;
|
---|
136 | uint32_t const idxMsr = idMsr - pVM->hmr0.s.vmx.idLbrToIpMsrFirst;
|
---|
137 | if (idxMsr < cLbrStack)
|
---|
138 | {
|
---|
139 | if (pidxMsr)
|
---|
140 | *pidxMsr = idxMsr;
|
---|
141 | return true;
|
---|
142 | }
|
---|
143 | }
|
---|
144 | return false;
|
---|
145 | }
|
---|
146 |
|
---|
147 |
|
---|
148 | /**
|
---|
149 | * Gets the active (in use) VMCS info. object for the specified VCPU.
|
---|
150 | *
|
---|
151 | * This is either the guest or nested-guest VMCS info. and need not necessarily
|
---|
152 | * pertain to the "current" VMCS (in the VMX definition of the term). For instance,
|
---|
153 | * if the VM-entry failed due to an invalid-guest state, we may have "cleared" the
|
---|
154 | * current VMCS while returning to ring-3. However, the VMCS info. object for that
|
---|
155 | * VMCS would still be active and returned here so that we could dump the VMCS
|
---|
156 | * fields to ring-3 for diagnostics. This function is thus only used to
|
---|
157 | * distinguish between the nested-guest or guest VMCS.
|
---|
158 | *
|
---|
159 | * @returns The active VMCS information.
|
---|
160 | * @param pVCpu The cross context virtual CPU structure.
|
---|
161 | *
|
---|
162 | * @thread EMT.
|
---|
163 | * @remarks This function may be called with preemption or interrupts disabled!
|
---|
164 | */
|
---|
165 | DECLINLINE(PVMXVMCSINFO) hmGetVmxActiveVmcsInfo(PVMCPUCC pVCpu)
|
---|
166 | {
|
---|
167 | if (!pVCpu->hmr0.s.vmx.fSwitchedToNstGstVmcs)
|
---|
168 | return &pVCpu->hmr0.s.vmx.VmcsInfo;
|
---|
169 | return &pVCpu->hmr0.s.vmx.VmcsInfoNstGst;
|
---|
170 | }
|
---|
171 |
|
---|
172 |
|
---|
173 | /**
|
---|
174 | * Returns whether the VM-exit MSR-store area differs from the VM-exit MSR-load
|
---|
175 | * area.
|
---|
176 | *
|
---|
177 | * @returns @c true if it's different, @c false otherwise.
|
---|
178 | * @param pVmcsInfo The VMCS info. object.
|
---|
179 | */
|
---|
180 | DECL_FORCE_INLINE(bool) hmR0VmxIsSeparateExitMsrStoreAreaVmcs(PCVMXVMCSINFO pVmcsInfo)
|
---|
181 | {
|
---|
182 | return RT_BOOL( pVmcsInfo->pvGuestMsrStore != pVmcsInfo->pvGuestMsrLoad
|
---|
183 | && pVmcsInfo->pvGuestMsrStore);
|
---|
184 | }
|
---|
185 |
|
---|
186 |
|
---|
187 | /**
|
---|
188 | * Sets the given Processor-based VM-execution controls.
|
---|
189 | *
|
---|
190 | * @param pVmxTransient The VMX-transient structure.
|
---|
191 | * @param uProcCtls The Processor-based VM-execution controls to set.
|
---|
192 | */
|
---|
193 | static void hmR0VmxSetProcCtlsVmcs(PVMXTRANSIENT pVmxTransient, uint32_t uProcCtls)
|
---|
194 | {
|
---|
195 | PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
|
---|
196 | if ((pVmcsInfo->u32ProcCtls & uProcCtls) != uProcCtls)
|
---|
197 | {
|
---|
198 | pVmcsInfo->u32ProcCtls |= uProcCtls;
|
---|
199 | int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVmcsInfo->u32ProcCtls);
|
---|
200 | AssertRC(rc);
|
---|
201 | }
|
---|
202 | }
|
---|
203 |
|
---|
204 |
|
---|
205 | /**
|
---|
206 | * Removes the given Processor-based VM-execution controls.
|
---|
207 | *
|
---|
208 | * @param pVCpu The cross context virtual CPU structure.
|
---|
209 | * @param pVmxTransient The VMX-transient structure.
|
---|
210 | * @param uProcCtls The Processor-based VM-execution controls to remove.
|
---|
211 | *
|
---|
212 | * @remarks When executing a nested-guest, this will not remove any of the specified
|
---|
213 | * controls if the nested hypervisor has set any one of them.
|
---|
214 | */
|
---|
215 | static void hmR0VmxRemoveProcCtlsVmcs(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient, uint32_t uProcCtls)
|
---|
216 | {
|
---|
217 | PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
|
---|
218 | if (pVmcsInfo->u32ProcCtls & uProcCtls)
|
---|
219 | {
|
---|
220 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
221 | if ( !pVmxTransient->fIsNestedGuest
|
---|
222 | || !CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, uProcCtls))
|
---|
223 | #else
|
---|
224 | NOREF(pVCpu);
|
---|
225 | if (!pVmxTransient->fIsNestedGuest)
|
---|
226 | #endif
|
---|
227 | {
|
---|
228 | pVmcsInfo->u32ProcCtls &= ~uProcCtls;
|
---|
229 | int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVmcsInfo->u32ProcCtls);
|
---|
230 | AssertRC(rc);
|
---|
231 | }
|
---|
232 | }
|
---|
233 | }
|
---|
234 |
|
---|
235 |
|
---|
236 | /**
|
---|
237 | * Sets the TSC offset for the current VMCS.
|
---|
238 | *
|
---|
239 | * @param uTscOffset The TSC offset to set.
|
---|
240 | * @param pVmcsInfo The VMCS info. object.
|
---|
241 | */
|
---|
242 | static void hmR0VmxSetTscOffsetVmcs(PVMXVMCSINFO pVmcsInfo, uint64_t uTscOffset)
|
---|
243 | {
|
---|
244 | if (pVmcsInfo->u64TscOffset != uTscOffset)
|
---|
245 | {
|
---|
246 | int rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_TSC_OFFSET_FULL, uTscOffset);
|
---|
247 | AssertRC(rc);
|
---|
248 | pVmcsInfo->u64TscOffset = uTscOffset;
|
---|
249 | }
|
---|
250 | }
|
---|
251 |
|
---|
252 |
|
---|
253 | /**
|
---|
254 | * Loads the VMCS specified by the VMCS info. object.
|
---|
255 | *
|
---|
256 | * @returns VBox status code.
|
---|
257 | * @param pVmcsInfo The VMCS info. object.
|
---|
258 | *
|
---|
259 | * @remarks Can be called with interrupts disabled.
|
---|
260 | */
|
---|
261 | static int hmR0VmxLoadVmcs(PVMXVMCSINFO pVmcsInfo)
|
---|
262 | {
|
---|
263 | Assert(pVmcsInfo->HCPhysVmcs != 0 && pVmcsInfo->HCPhysVmcs != NIL_RTHCPHYS);
|
---|
264 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
265 |
|
---|
266 | int rc = VMXLoadVmcs(pVmcsInfo->HCPhysVmcs);
|
---|
267 | if (RT_SUCCESS(rc))
|
---|
268 | pVmcsInfo->fVmcsState |= VMX_V_VMCS_LAUNCH_STATE_CURRENT;
|
---|
269 | return rc;
|
---|
270 | }
|
---|
271 |
|
---|
272 |
|
---|
273 | /**
|
---|
274 | * Clears the VMCS specified by the VMCS info. object.
|
---|
275 | *
|
---|
276 | * @returns VBox status code.
|
---|
277 | * @param pVmcsInfo The VMCS info. object.
|
---|
278 | *
|
---|
279 | * @remarks Can be called with interrupts disabled.
|
---|
280 | */
|
---|
281 | static int hmR0VmxClearVmcs(PVMXVMCSINFO pVmcsInfo)
|
---|
282 | {
|
---|
283 | Assert(pVmcsInfo->HCPhysVmcs != 0 && pVmcsInfo->HCPhysVmcs != NIL_RTHCPHYS);
|
---|
284 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
285 |
|
---|
286 | int rc = VMXClearVmcs(pVmcsInfo->HCPhysVmcs);
|
---|
287 | if (RT_SUCCESS(rc))
|
---|
288 | pVmcsInfo->fVmcsState = VMX_V_VMCS_LAUNCH_STATE_CLEAR;
|
---|
289 | return rc;
|
---|
290 | }
|
---|
291 |
|
---|
292 |
|
---|
293 | /**
|
---|
294 | * Checks whether the MSR belongs to the set of guest MSRs that we restore
|
---|
295 | * lazily while leaving VT-x.
|
---|
296 | *
|
---|
297 | * @returns true if it does, false otherwise.
|
---|
298 | * @param pVCpu The cross context virtual CPU structure.
|
---|
299 | * @param idMsr The MSR to check.
|
---|
300 | */
|
---|
301 | static bool hmR0VmxIsLazyGuestMsr(PCVMCPUCC pVCpu, uint32_t idMsr)
|
---|
302 | {
|
---|
303 | if (pVCpu->CTX_SUFF(pVM)->hmr0.s.fAllow64BitGuests)
|
---|
304 | {
|
---|
305 | switch (idMsr)
|
---|
306 | {
|
---|
307 | case MSR_K8_LSTAR:
|
---|
308 | case MSR_K6_STAR:
|
---|
309 | case MSR_K8_SF_MASK:
|
---|
310 | case MSR_K8_KERNEL_GS_BASE:
|
---|
311 | return true;
|
---|
312 | }
|
---|
313 | }
|
---|
314 | return false;
|
---|
315 | }
|
---|
316 |
|
---|
317 |
|
---|
318 | /**
|
---|
319 | * Loads a set of guests MSRs to allow read/passthru to the guest.
|
---|
320 | *
|
---|
321 | * The name of this function is slightly confusing. This function does NOT
|
---|
322 | * postpone loading, but loads the MSR right now. "hmR0VmxLazy" is simply a
|
---|
323 | * common prefix for functions dealing with "lazy restoration" of the shared
|
---|
324 | * MSRs.
|
---|
325 | *
|
---|
326 | * @param pVCpu The cross context virtual CPU structure.
|
---|
327 | *
|
---|
328 | * @remarks No-long-jump zone!!!
|
---|
329 | */
|
---|
330 | static void hmR0VmxLazyLoadGuestMsrs(PVMCPUCC pVCpu)
|
---|
331 | {
|
---|
332 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
333 | Assert(!VMMRZCallRing3IsEnabled(pVCpu));
|
---|
334 |
|
---|
335 | Assert(pVCpu->hmr0.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST);
|
---|
336 | if (pVCpu->CTX_SUFF(pVM)->hmr0.s.fAllow64BitGuests)
|
---|
337 | {
|
---|
338 | /*
|
---|
339 | * If the guest MSRs are not loaded -and- if all the guest MSRs are identical
|
---|
340 | * to the MSRs on the CPU (which are the saved host MSRs, see assertion above) then
|
---|
341 | * we can skip a few MSR writes.
|
---|
342 | *
|
---|
343 | * Otherwise, it implies either 1. they're not loaded, or 2. they're loaded but the
|
---|
344 | * guest MSR values in the guest-CPU context might be different to what's currently
|
---|
345 | * loaded in the CPU. In either case, we need to write the new guest MSR values to the
|
---|
346 | * CPU, see @bugref{8728}.
|
---|
347 | */
|
---|
348 | PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
|
---|
349 | if ( !(pVCpu->hmr0.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
|
---|
350 | && pCtx->msrKERNELGSBASE == pVCpu->hmr0.s.vmx.u64HostMsrKernelGsBase
|
---|
351 | && pCtx->msrLSTAR == pVCpu->hmr0.s.vmx.u64HostMsrLStar
|
---|
352 | && pCtx->msrSTAR == pVCpu->hmr0.s.vmx.u64HostMsrStar
|
---|
353 | && pCtx->msrSFMASK == pVCpu->hmr0.s.vmx.u64HostMsrSfMask)
|
---|
354 | {
|
---|
355 | #ifdef VBOX_STRICT
|
---|
356 | Assert(ASMRdMsr(MSR_K8_KERNEL_GS_BASE) == pCtx->msrKERNELGSBASE);
|
---|
357 | Assert(ASMRdMsr(MSR_K8_LSTAR) == pCtx->msrLSTAR);
|
---|
358 | Assert(ASMRdMsr(MSR_K6_STAR) == pCtx->msrSTAR);
|
---|
359 | Assert(ASMRdMsr(MSR_K8_SF_MASK) == pCtx->msrSFMASK);
|
---|
360 | #endif
|
---|
361 | }
|
---|
362 | else
|
---|
363 | {
|
---|
364 | ASMWrMsr(MSR_K8_KERNEL_GS_BASE, pCtx->msrKERNELGSBASE);
|
---|
365 | ASMWrMsr(MSR_K8_LSTAR, pCtx->msrLSTAR);
|
---|
366 | ASMWrMsr(MSR_K6_STAR, pCtx->msrSTAR);
|
---|
367 | /* The system call flag mask register isn't as benign and accepting of all
|
---|
368 | values as the above, so mask it to avoid #GP'ing on corrupted input. */
|
---|
369 | Assert(!(pCtx->msrSFMASK & ~(uint64_t)UINT32_MAX));
|
---|
370 | ASMWrMsr(MSR_K8_SF_MASK, pCtx->msrSFMASK & UINT32_MAX);
|
---|
371 | }
|
---|
372 | }
|
---|
373 | pVCpu->hmr0.s.vmx.fLazyMsrs |= VMX_LAZY_MSRS_LOADED_GUEST;
|
---|
374 | }
|
---|
375 |
|
---|
376 |
|
---|
377 | /**
|
---|
378 | * Checks if the specified guest MSR is part of the VM-entry MSR-load area.
|
---|
379 | *
|
---|
380 | * @returns @c true if found, @c false otherwise.
|
---|
381 | * @param pVmcsInfo The VMCS info. object.
|
---|
382 | * @param idMsr The MSR to find.
|
---|
383 | */
|
---|
384 | static bool hmR0VmxIsAutoLoadGuestMsr(PCVMXVMCSINFO pVmcsInfo, uint32_t idMsr)
|
---|
385 | {
|
---|
386 | PCVMXAUTOMSR pMsrs = (PCVMXAUTOMSR)pVmcsInfo->pvGuestMsrLoad;
|
---|
387 | uint32_t const cMsrs = pVmcsInfo->cEntryMsrLoad;
|
---|
388 | Assert(pMsrs);
|
---|
389 | Assert(sizeof(*pMsrs) * cMsrs <= X86_PAGE_4K_SIZE);
|
---|
390 | for (uint32_t i = 0; i < cMsrs; i++)
|
---|
391 | {
|
---|
392 | if (pMsrs[i].u32Msr == idMsr)
|
---|
393 | return true;
|
---|
394 | }
|
---|
395 | return false;
|
---|
396 | }
|
---|
397 |
|
---|
398 |
|
---|
399 | /**
|
---|
400 | * Performs lazy restoration of the set of host MSRs if they were previously
|
---|
401 | * loaded with guest MSR values.
|
---|
402 | *
|
---|
403 | * @param pVCpu The cross context virtual CPU structure.
|
---|
404 | *
|
---|
405 | * @remarks No-long-jump zone!!!
|
---|
406 | * @remarks The guest MSRs should have been saved back into the guest-CPU
|
---|
407 | * context by hmR0VmxImportGuestState()!!!
|
---|
408 | */
|
---|
409 | static void hmR0VmxLazyRestoreHostMsrs(PVMCPUCC pVCpu)
|
---|
410 | {
|
---|
411 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
412 | Assert(!VMMRZCallRing3IsEnabled(pVCpu));
|
---|
413 |
|
---|
414 | if (pVCpu->hmr0.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
|
---|
415 | {
|
---|
416 | Assert(pVCpu->hmr0.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST);
|
---|
417 | if (pVCpu->CTX_SUFF(pVM)->hmr0.s.fAllow64BitGuests)
|
---|
418 | {
|
---|
419 | ASMWrMsr(MSR_K8_LSTAR, pVCpu->hmr0.s.vmx.u64HostMsrLStar);
|
---|
420 | ASMWrMsr(MSR_K6_STAR, pVCpu->hmr0.s.vmx.u64HostMsrStar);
|
---|
421 | ASMWrMsr(MSR_K8_SF_MASK, pVCpu->hmr0.s.vmx.u64HostMsrSfMask);
|
---|
422 | ASMWrMsr(MSR_K8_KERNEL_GS_BASE, pVCpu->hmr0.s.vmx.u64HostMsrKernelGsBase);
|
---|
423 | }
|
---|
424 | }
|
---|
425 | pVCpu->hmr0.s.vmx.fLazyMsrs &= ~(VMX_LAZY_MSRS_LOADED_GUEST | VMX_LAZY_MSRS_SAVED_HOST);
|
---|
426 | }
|
---|
427 |
|
---|
428 |
|
---|
429 | /**
|
---|
430 | * Sets pfnStartVm to the best suited variant.
|
---|
431 | *
|
---|
432 | * This must be called whenever anything changes relative to the hmR0VmXStartVm
|
---|
433 | * variant selection:
|
---|
434 | * - pVCpu->hm.s.fLoadSaveGuestXcr0
|
---|
435 | * - HM_WSF_IBPB_ENTRY in pVCpu->hmr0.s.fWorldSwitcher
|
---|
436 | * - HM_WSF_IBPB_EXIT in pVCpu->hmr0.s.fWorldSwitcher
|
---|
437 | * - Perhaps: CPUMIsGuestFPUStateActive() (windows only)
|
---|
438 | * - Perhaps: CPUMCTX.fXStateMask (windows only)
|
---|
439 | *
|
---|
440 | * We currently ASSUME that neither HM_WSF_IBPB_ENTRY nor HM_WSF_IBPB_EXIT
|
---|
441 | * cannot be changed at runtime.
|
---|
442 | */
|
---|
443 | static void hmR0VmxUpdateStartVmFunction(PVMCPUCC pVCpu)
|
---|
444 | {
|
---|
445 | static const struct CLANGWORKAROUND { PFNHMVMXSTARTVM pfn; } s_aHmR0VmxStartVmFunctions[] =
|
---|
446 | {
|
---|
447 | { hmR0VmxStartVm_SansXcr0_SansIbpbEntry_SansL1dEntry_SansMdsEntry_SansIbpbExit },
|
---|
448 | { hmR0VmxStartVm_WithXcr0_SansIbpbEntry_SansL1dEntry_SansMdsEntry_SansIbpbExit },
|
---|
449 | { hmR0VmxStartVm_SansXcr0_WithIbpbEntry_SansL1dEntry_SansMdsEntry_SansIbpbExit },
|
---|
450 | { hmR0VmxStartVm_WithXcr0_WithIbpbEntry_SansL1dEntry_SansMdsEntry_SansIbpbExit },
|
---|
451 | { hmR0VmxStartVm_SansXcr0_SansIbpbEntry_WithL1dEntry_SansMdsEntry_SansIbpbExit },
|
---|
452 | { hmR0VmxStartVm_WithXcr0_SansIbpbEntry_WithL1dEntry_SansMdsEntry_SansIbpbExit },
|
---|
453 | { hmR0VmxStartVm_SansXcr0_WithIbpbEntry_WithL1dEntry_SansMdsEntry_SansIbpbExit },
|
---|
454 | { hmR0VmxStartVm_WithXcr0_WithIbpbEntry_WithL1dEntry_SansMdsEntry_SansIbpbExit },
|
---|
455 | { hmR0VmxStartVm_SansXcr0_SansIbpbEntry_SansL1dEntry_WithMdsEntry_SansIbpbExit },
|
---|
456 | { hmR0VmxStartVm_WithXcr0_SansIbpbEntry_SansL1dEntry_WithMdsEntry_SansIbpbExit },
|
---|
457 | { hmR0VmxStartVm_SansXcr0_WithIbpbEntry_SansL1dEntry_WithMdsEntry_SansIbpbExit },
|
---|
458 | { hmR0VmxStartVm_WithXcr0_WithIbpbEntry_SansL1dEntry_WithMdsEntry_SansIbpbExit },
|
---|
459 | { hmR0VmxStartVm_SansXcr0_SansIbpbEntry_WithL1dEntry_WithMdsEntry_SansIbpbExit },
|
---|
460 | { hmR0VmxStartVm_WithXcr0_SansIbpbEntry_WithL1dEntry_WithMdsEntry_SansIbpbExit },
|
---|
461 | { hmR0VmxStartVm_SansXcr0_WithIbpbEntry_WithL1dEntry_WithMdsEntry_SansIbpbExit },
|
---|
462 | { hmR0VmxStartVm_WithXcr0_WithIbpbEntry_WithL1dEntry_WithMdsEntry_SansIbpbExit },
|
---|
463 | { hmR0VmxStartVm_SansXcr0_SansIbpbEntry_SansL1dEntry_SansMdsEntry_WithIbpbExit },
|
---|
464 | { hmR0VmxStartVm_WithXcr0_SansIbpbEntry_SansL1dEntry_SansMdsEntry_WithIbpbExit },
|
---|
465 | { hmR0VmxStartVm_SansXcr0_WithIbpbEntry_SansL1dEntry_SansMdsEntry_WithIbpbExit },
|
---|
466 | { hmR0VmxStartVm_WithXcr0_WithIbpbEntry_SansL1dEntry_SansMdsEntry_WithIbpbExit },
|
---|
467 | { hmR0VmxStartVm_SansXcr0_SansIbpbEntry_WithL1dEntry_SansMdsEntry_WithIbpbExit },
|
---|
468 | { hmR0VmxStartVm_WithXcr0_SansIbpbEntry_WithL1dEntry_SansMdsEntry_WithIbpbExit },
|
---|
469 | { hmR0VmxStartVm_SansXcr0_WithIbpbEntry_WithL1dEntry_SansMdsEntry_WithIbpbExit },
|
---|
470 | { hmR0VmxStartVm_WithXcr0_WithIbpbEntry_WithL1dEntry_SansMdsEntry_WithIbpbExit },
|
---|
471 | { hmR0VmxStartVm_SansXcr0_SansIbpbEntry_SansL1dEntry_WithMdsEntry_WithIbpbExit },
|
---|
472 | { hmR0VmxStartVm_WithXcr0_SansIbpbEntry_SansL1dEntry_WithMdsEntry_WithIbpbExit },
|
---|
473 | { hmR0VmxStartVm_SansXcr0_WithIbpbEntry_SansL1dEntry_WithMdsEntry_WithIbpbExit },
|
---|
474 | { hmR0VmxStartVm_WithXcr0_WithIbpbEntry_SansL1dEntry_WithMdsEntry_WithIbpbExit },
|
---|
475 | { hmR0VmxStartVm_SansXcr0_SansIbpbEntry_WithL1dEntry_WithMdsEntry_WithIbpbExit },
|
---|
476 | { hmR0VmxStartVm_WithXcr0_SansIbpbEntry_WithL1dEntry_WithMdsEntry_WithIbpbExit },
|
---|
477 | { hmR0VmxStartVm_SansXcr0_WithIbpbEntry_WithL1dEntry_WithMdsEntry_WithIbpbExit },
|
---|
478 | { hmR0VmxStartVm_WithXcr0_WithIbpbEntry_WithL1dEntry_WithMdsEntry_WithIbpbExit },
|
---|
479 | };
|
---|
480 | uintptr_t const idx = (pVCpu->hmr0.s.fLoadSaveGuestXcr0 ? 1 : 0)
|
---|
481 | | (pVCpu->hmr0.s.fWorldSwitcher & HM_WSF_IBPB_ENTRY ? 2 : 0)
|
---|
482 | | (pVCpu->hmr0.s.fWorldSwitcher & HM_WSF_L1D_ENTRY ? 4 : 0)
|
---|
483 | | (pVCpu->hmr0.s.fWorldSwitcher & HM_WSF_MDS_ENTRY ? 8 : 0)
|
---|
484 | | (pVCpu->hmr0.s.fWorldSwitcher & HM_WSF_IBPB_EXIT ? 16 : 0);
|
---|
485 | PFNHMVMXSTARTVM const pfnStartVm = s_aHmR0VmxStartVmFunctions[idx].pfn;
|
---|
486 | if (pVCpu->hmr0.s.vmx.pfnStartVm != pfnStartVm)
|
---|
487 | pVCpu->hmr0.s.vmx.pfnStartVm = pfnStartVm;
|
---|
488 | }
|
---|
489 |
|
---|
490 |
|
---|
491 | /**
|
---|
492 | * Pushes a 2-byte value onto the real-mode (in virtual-8086 mode) guest's
|
---|
493 | * stack.
|
---|
494 | *
|
---|
495 | * @returns Strict VBox status code (i.e. informational status codes too).
|
---|
496 | * @retval VINF_EM_RESET if pushing a value to the stack caused a triple-fault.
|
---|
497 | * @param pVCpu The cross context virtual CPU structure.
|
---|
498 | * @param uValue The value to push to the guest stack.
|
---|
499 | */
|
---|
500 | static VBOXSTRICTRC hmR0VmxRealModeGuestStackPush(PVMCPUCC pVCpu, uint16_t uValue)
|
---|
501 | {
|
---|
502 | /*
|
---|
503 | * The stack limit is 0xffff in real-on-virtual 8086 mode. Real-mode with weird stack limits cannot be run in
|
---|
504 | * virtual 8086 mode in VT-x. See Intel spec. 26.3.1.2 "Checks on Guest Segment Registers".
|
---|
505 | * See Intel Instruction reference for PUSH and Intel spec. 22.33.1 "Segment Wraparound".
|
---|
506 | */
|
---|
507 | PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
|
---|
508 | if (pCtx->sp == 1)
|
---|
509 | return VINF_EM_RESET;
|
---|
510 | pCtx->sp -= sizeof(uint16_t); /* May wrap around which is expected behaviour. */
|
---|
511 | int rc = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), pCtx->ss.u64Base + pCtx->sp, &uValue, sizeof(uint16_t));
|
---|
512 | AssertRC(rc);
|
---|
513 | return rc;
|
---|
514 | }
|
---|
515 |
|
---|
516 |
|
---|
517 | /**
|
---|
518 | * Wrapper around VMXWriteVmcs16 taking a pVCpu parameter so VCC doesn't complain about
|
---|
519 | * unreferenced local parameters in the template code...
|
---|
520 | */
|
---|
521 | DECL_FORCE_INLINE(int) hmR0VmxWriteVmcs16(PCVMCPUCC pVCpu, uint32_t uFieldEnc, uint16_t u16Val)
|
---|
522 | {
|
---|
523 | RT_NOREF(pVCpu);
|
---|
524 | return VMXWriteVmcs16(uFieldEnc, u16Val);
|
---|
525 | }
|
---|
526 |
|
---|
527 |
|
---|
528 | /**
|
---|
529 | * Wrapper around VMXWriteVmcs32 taking a pVCpu parameter so VCC doesn't complain about
|
---|
530 | * unreferenced local parameters in the template code...
|
---|
531 | */
|
---|
532 | DECL_FORCE_INLINE(int) hmR0VmxWriteVmcs32(PCVMCPUCC pVCpu, uint32_t uFieldEnc, uint32_t u32Val)
|
---|
533 | {
|
---|
534 | RT_NOREF(pVCpu);
|
---|
535 | return VMXWriteVmcs32(uFieldEnc, u32Val);
|
---|
536 | }
|
---|
537 |
|
---|
538 |
|
---|
539 | /**
|
---|
540 | * Wrapper around VMXWriteVmcs64 taking a pVCpu parameter so VCC doesn't complain about
|
---|
541 | * unreferenced local parameters in the template code...
|
---|
542 | */
|
---|
543 | DECL_FORCE_INLINE(int) hmR0VmxWriteVmcs64(PCVMCPUCC pVCpu, uint32_t uFieldEnc, uint64_t u64Val)
|
---|
544 | {
|
---|
545 | RT_NOREF(pVCpu);
|
---|
546 | return VMXWriteVmcs64(uFieldEnc, u64Val);
|
---|
547 | }
|
---|
548 |
|
---|
549 |
|
---|
550 | /**
|
---|
551 | * Wrapper around VMXReadVmcs16 taking a pVCpu parameter so VCC doesn't complain about
|
---|
552 | * unreferenced local parameters in the template code...
|
---|
553 | */
|
---|
554 | DECL_FORCE_INLINE(int) hmR0VmxReadVmcs16(PCVMCPUCC pVCpu, uint32_t uFieldEnc, uint16_t *pu16Val)
|
---|
555 | {
|
---|
556 | RT_NOREF(pVCpu);
|
---|
557 | return VMXReadVmcs16(uFieldEnc, pu16Val);
|
---|
558 | }
|
---|
559 |
|
---|
560 |
|
---|
561 | /**
|
---|
562 | * Wrapper around VMXReadVmcs32 taking a pVCpu parameter so VCC doesn't complain about
|
---|
563 | * unreferenced local parameters in the template code...
|
---|
564 | */
|
---|
565 | DECL_FORCE_INLINE(int) hmR0VmxReadVmcs32(PCVMCPUCC pVCpu, uint32_t uFieldEnc, uint32_t *pu32Val)
|
---|
566 | {
|
---|
567 | RT_NOREF(pVCpu);
|
---|
568 | return VMXReadVmcs32(uFieldEnc, pu32Val);
|
---|
569 | }
|
---|
570 |
|
---|
571 |
|
---|
572 | /**
|
---|
573 | * Wrapper around VMXReadVmcs64 taking a pVCpu parameter so VCC doesn't complain about
|
---|
574 | * unreferenced local parameters in the template code...
|
---|
575 | */
|
---|
576 | DECL_FORCE_INLINE(int) hmR0VmxReadVmcs64(PCVMCPUCC pVCpu, uint32_t uFieldEnc, uint64_t *pu64Val)
|
---|
577 | {
|
---|
578 | RT_NOREF(pVCpu);
|
---|
579 | return VMXReadVmcs64(uFieldEnc, pu64Val);
|
---|
580 | }
|
---|
581 |
|
---|
582 |
|
---|
583 | /*
|
---|
584 | * Instantiate the code we share with the NEM darwin backend.
|
---|
585 | */
|
---|
586 | #define VCPU_2_VMXSTATE(a_pVCpu) (a_pVCpu)->hm.s
|
---|
587 | #define VCPU_2_VMXSTATS(a_pVCpu) (a_pVCpu)->hm.s
|
---|
588 |
|
---|
589 | #define VM_IS_VMX_UNRESTRICTED_GUEST(a_pVM) (a_pVM)->hmr0.s.vmx.fUnrestrictedGuest
|
---|
590 | #define VM_IS_VMX_NESTED_PAGING(a_pVM) (a_pVM)->hmr0.s.fNestedPaging
|
---|
591 | #define VM_IS_VMX_PREEMPT_TIMER_USED(a_pVM) (a_pVM)->hmr0.s.vmx.fUsePreemptTimer
|
---|
592 | #define VM_IS_VMX_LBR(a_pVM) (a_pVM)->hmr0.s.vmx.fLbr
|
---|
593 |
|
---|
594 | #define VMX_VMCS_WRITE_16(a_pVCpu, a_FieldEnc, a_Val) hmR0VmxWriteVmcs16((a_pVCpu), (a_FieldEnc), (a_Val))
|
---|
595 | #define VMX_VMCS_WRITE_32(a_pVCpu, a_FieldEnc, a_Val) hmR0VmxWriteVmcs32((a_pVCpu), (a_FieldEnc), (a_Val))
|
---|
596 | #define VMX_VMCS_WRITE_64(a_pVCpu, a_FieldEnc, a_Val) hmR0VmxWriteVmcs64((a_pVCpu), (a_FieldEnc), (a_Val))
|
---|
597 | #define VMX_VMCS_WRITE_NW(a_pVCpu, a_FieldEnc, a_Val) hmR0VmxWriteVmcs64((a_pVCpu), (a_FieldEnc), (a_Val))
|
---|
598 |
|
---|
599 | #define VMX_VMCS_READ_16(a_pVCpu, a_FieldEnc, a_pVal) hmR0VmxReadVmcs16((a_pVCpu), (a_FieldEnc), (a_pVal))
|
---|
600 | #define VMX_VMCS_READ_32(a_pVCpu, a_FieldEnc, a_pVal) hmR0VmxReadVmcs32((a_pVCpu), (a_FieldEnc), (a_pVal))
|
---|
601 | #define VMX_VMCS_READ_64(a_pVCpu, a_FieldEnc, a_pVal) hmR0VmxReadVmcs64((a_pVCpu), (a_FieldEnc), (a_pVal))
|
---|
602 | #define VMX_VMCS_READ_NW(a_pVCpu, a_FieldEnc, a_pVal) hmR0VmxReadVmcs64((a_pVCpu), (a_FieldEnc), (a_pVal))
|
---|
603 |
|
---|
604 | #include "../VMMAll/VMXAllTemplate.cpp.h"
|
---|
605 |
|
---|
606 | #undef VMX_VMCS_WRITE_16
|
---|
607 | #undef VMX_VMCS_WRITE_32
|
---|
608 | #undef VMX_VMCS_WRITE_64
|
---|
609 | #undef VMX_VMCS_WRITE_NW
|
---|
610 |
|
---|
611 | #undef VMX_VMCS_READ_16
|
---|
612 | #undef VMX_VMCS_READ_32
|
---|
613 | #undef VMX_VMCS_READ_64
|
---|
614 | #undef VMX_VMCS_READ_NW
|
---|
615 |
|
---|
616 | #undef VM_IS_VMX_PREEMPT_TIMER_USED
|
---|
617 | #undef VM_IS_VMX_NESTED_PAGING
|
---|
618 | #undef VM_IS_VMX_UNRESTRICTED_GUEST
|
---|
619 | #undef VCPU_2_VMXSTATS
|
---|
620 | #undef VCPU_2_VMXSTATE
|
---|
621 |
|
---|
622 |
|
---|
623 | /**
|
---|
624 | * Updates the VM's last error record.
|
---|
625 | *
|
---|
626 | * If there was a VMX instruction error, reads the error data from the VMCS and
|
---|
627 | * updates VCPU's last error record as well.
|
---|
628 | *
|
---|
629 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
630 | * Can be NULL if @a rc is not VERR_VMX_UNABLE_TO_START_VM or
|
---|
631 | * VERR_VMX_INVALID_VMCS_FIELD.
|
---|
632 | * @param rc The error code.
|
---|
633 | */
|
---|
634 | static void hmR0VmxUpdateErrorRecord(PVMCPUCC pVCpu, int rc)
|
---|
635 | {
|
---|
636 | if ( rc == VERR_VMX_INVALID_VMCS_FIELD
|
---|
637 | || rc == VERR_VMX_UNABLE_TO_START_VM)
|
---|
638 | {
|
---|
639 | AssertPtrReturnVoid(pVCpu);
|
---|
640 | VMXReadVmcs32(VMX_VMCS32_RO_VM_INSTR_ERROR, &pVCpu->hm.s.vmx.LastError.u32InstrError);
|
---|
641 | }
|
---|
642 | pVCpu->CTX_SUFF(pVM)->hm.s.ForR3.rcInit = rc;
|
---|
643 | }
|
---|
644 |
|
---|
645 |
|
---|
646 | /**
|
---|
647 | * Enters VMX root mode operation on the current CPU.
|
---|
648 | *
|
---|
649 | * @returns VBox status code.
|
---|
650 | * @param pHostCpu The HM physical-CPU structure.
|
---|
651 | * @param pVM The cross context VM structure. Can be
|
---|
652 | * NULL, after a resume.
|
---|
653 | * @param HCPhysCpuPage Physical address of the VMXON region.
|
---|
654 | * @param pvCpuPage Pointer to the VMXON region.
|
---|
655 | */
|
---|
656 | static int hmR0VmxEnterRootMode(PHMPHYSCPU pHostCpu, PVMCC pVM, RTHCPHYS HCPhysCpuPage, void *pvCpuPage)
|
---|
657 | {
|
---|
658 | Assert(pHostCpu);
|
---|
659 | Assert(HCPhysCpuPage && HCPhysCpuPage != NIL_RTHCPHYS);
|
---|
660 | Assert(RT_ALIGN_T(HCPhysCpuPage, _4K, RTHCPHYS) == HCPhysCpuPage);
|
---|
661 | Assert(pvCpuPage);
|
---|
662 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
663 |
|
---|
664 | if (pVM)
|
---|
665 | {
|
---|
666 | /* Write the VMCS revision identifier to the VMXON region. */
|
---|
667 | *(uint32_t *)pvCpuPage = RT_BF_GET(g_HmMsrs.u.vmx.u64Basic, VMX_BF_BASIC_VMCS_ID);
|
---|
668 | }
|
---|
669 |
|
---|
670 | /* Paranoid: Disable interrupts as, in theory, interrupt handlers might mess with CR4. */
|
---|
671 | RTCCUINTREG const fEFlags = ASMIntDisableFlags();
|
---|
672 |
|
---|
673 | /* Enable the VMX bit in CR4 if necessary. */
|
---|
674 | RTCCUINTREG const uOldCr4 = SUPR0ChangeCR4(X86_CR4_VMXE, RTCCUINTREG_MAX);
|
---|
675 |
|
---|
676 | /* Record whether VMXE was already prior to us enabling it above. */
|
---|
677 | pHostCpu->fVmxeAlreadyEnabled = RT_BOOL(uOldCr4 & X86_CR4_VMXE);
|
---|
678 |
|
---|
679 | /* Enter VMX root mode. */
|
---|
680 | int rc = VMXEnable(HCPhysCpuPage);
|
---|
681 | if (RT_FAILURE(rc))
|
---|
682 | {
|
---|
683 | /* Restore CR4.VMXE if it was not set prior to our attempt to set it above. */
|
---|
684 | if (!pHostCpu->fVmxeAlreadyEnabled)
|
---|
685 | SUPR0ChangeCR4(0 /* fOrMask */, ~(uint64_t)X86_CR4_VMXE);
|
---|
686 |
|
---|
687 | if (pVM)
|
---|
688 | pVM->hm.s.ForR3.vmx.HCPhysVmxEnableError = HCPhysCpuPage;
|
---|
689 | }
|
---|
690 |
|
---|
691 | /* Restore interrupts. */
|
---|
692 | ASMSetFlags(fEFlags);
|
---|
693 | return rc;
|
---|
694 | }
|
---|
695 |
|
---|
696 |
|
---|
697 | /**
|
---|
698 | * Exits VMX root mode operation on the current CPU.
|
---|
699 | *
|
---|
700 | * @returns VBox status code.
|
---|
701 | * @param pHostCpu The HM physical-CPU structure.
|
---|
702 | */
|
---|
703 | static int hmR0VmxLeaveRootMode(PHMPHYSCPU pHostCpu)
|
---|
704 | {
|
---|
705 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
706 |
|
---|
707 | /* Paranoid: Disable interrupts as, in theory, interrupts handlers might mess with CR4. */
|
---|
708 | RTCCUINTREG const fEFlags = ASMIntDisableFlags();
|
---|
709 |
|
---|
710 | /* If we're for some reason not in VMX root mode, then don't leave it. */
|
---|
711 | RTCCUINTREG const uHostCr4 = ASMGetCR4();
|
---|
712 |
|
---|
713 | int rc;
|
---|
714 | if (uHostCr4 & X86_CR4_VMXE)
|
---|
715 | {
|
---|
716 | /* Exit VMX root mode and clear the VMX bit in CR4. */
|
---|
717 | VMXDisable();
|
---|
718 |
|
---|
719 | /* Clear CR4.VMXE only if it was clear prior to use setting it. */
|
---|
720 | if (!pHostCpu->fVmxeAlreadyEnabled)
|
---|
721 | SUPR0ChangeCR4(0 /* fOrMask */, ~(uint64_t)X86_CR4_VMXE);
|
---|
722 |
|
---|
723 | rc = VINF_SUCCESS;
|
---|
724 | }
|
---|
725 | else
|
---|
726 | rc = VERR_VMX_NOT_IN_VMX_ROOT_MODE;
|
---|
727 |
|
---|
728 | /* Restore interrupts. */
|
---|
729 | ASMSetFlags(fEFlags);
|
---|
730 | return rc;
|
---|
731 | }
|
---|
732 |
|
---|
733 |
|
---|
734 | /**
|
---|
735 | * Allocates pages specified as specified by an array of VMX page allocation info
|
---|
736 | * objects.
|
---|
737 | *
|
---|
738 | * The pages contents are zero'd after allocation.
|
---|
739 | *
|
---|
740 | * @returns VBox status code.
|
---|
741 | * @param phMemObj Where to return the handle to the allocation.
|
---|
742 | * @param paAllocInfo The pointer to the first element of the VMX
|
---|
743 | * page-allocation info object array.
|
---|
744 | * @param cEntries The number of elements in the @a paAllocInfo array.
|
---|
745 | */
|
---|
746 | static int hmR0VmxPagesAllocZ(PRTR0MEMOBJ phMemObj, PVMXPAGEALLOCINFO paAllocInfo, uint32_t cEntries)
|
---|
747 | {
|
---|
748 | *phMemObj = NIL_RTR0MEMOBJ;
|
---|
749 |
|
---|
750 | /* Figure out how many pages to allocate. */
|
---|
751 | uint32_t cPages = 0;
|
---|
752 | for (uint32_t iPage = 0; iPage < cEntries; iPage++)
|
---|
753 | cPages += !!paAllocInfo[iPage].fValid;
|
---|
754 |
|
---|
755 | /* Allocate the pages. */
|
---|
756 | if (cPages)
|
---|
757 | {
|
---|
758 | size_t const cbPages = cPages << HOST_PAGE_SHIFT;
|
---|
759 | int rc = RTR0MemObjAllocPage(phMemObj, cbPages, false /* fExecutable */);
|
---|
760 | if (RT_FAILURE(rc))
|
---|
761 | return rc;
|
---|
762 |
|
---|
763 | /* Zero the contents and assign each page to the corresponding VMX page-allocation entry. */
|
---|
764 | void *pvFirstPage = RTR0MemObjAddress(*phMemObj);
|
---|
765 | RT_BZERO(pvFirstPage, cbPages);
|
---|
766 |
|
---|
767 | uint32_t iPage = 0;
|
---|
768 | for (uint32_t i = 0; i < cEntries; i++)
|
---|
769 | if (paAllocInfo[i].fValid)
|
---|
770 | {
|
---|
771 | RTHCPHYS const HCPhysPage = RTR0MemObjGetPagePhysAddr(*phMemObj, iPage);
|
---|
772 | void *pvPage = (void *)((uintptr_t)pvFirstPage + (iPage << X86_PAGE_4K_SHIFT));
|
---|
773 | Assert(HCPhysPage && HCPhysPage != NIL_RTHCPHYS);
|
---|
774 | AssertPtr(pvPage);
|
---|
775 |
|
---|
776 | Assert(paAllocInfo[iPage].pHCPhys);
|
---|
777 | Assert(paAllocInfo[iPage].ppVirt);
|
---|
778 | *paAllocInfo[iPage].pHCPhys = HCPhysPage;
|
---|
779 | *paAllocInfo[iPage].ppVirt = pvPage;
|
---|
780 |
|
---|
781 | /* Move to next page. */
|
---|
782 | ++iPage;
|
---|
783 | }
|
---|
784 |
|
---|
785 | /* Make sure all valid (requested) pages have been assigned. */
|
---|
786 | Assert(iPage == cPages);
|
---|
787 | }
|
---|
788 | return VINF_SUCCESS;
|
---|
789 | }
|
---|
790 |
|
---|
791 |
|
---|
792 | /**
|
---|
793 | * Frees pages allocated using hmR0VmxPagesAllocZ.
|
---|
794 | *
|
---|
795 | * @param phMemObj Pointer to the memory object handle. Will be set to
|
---|
796 | * NIL.
|
---|
797 | */
|
---|
798 | DECL_FORCE_INLINE(void) hmR0VmxPagesFree(PRTR0MEMOBJ phMemObj)
|
---|
799 | {
|
---|
800 | /* We can cleanup wholesale since it's all one allocation. */
|
---|
801 | if (*phMemObj != NIL_RTR0MEMOBJ)
|
---|
802 | {
|
---|
803 | RTR0MemObjFree(*phMemObj, true /* fFreeMappings */);
|
---|
804 | *phMemObj = NIL_RTR0MEMOBJ;
|
---|
805 | }
|
---|
806 | }
|
---|
807 |
|
---|
808 |
|
---|
809 | /**
|
---|
810 | * Initializes a VMCS info. object.
|
---|
811 | *
|
---|
812 | * @param pVmcsInfo The VMCS info. object.
|
---|
813 | * @param pVmcsInfoShared The VMCS info. object shared with ring-3.
|
---|
814 | */
|
---|
815 | static void hmR0VmxVmcsInfoInit(PVMXVMCSINFO pVmcsInfo, PVMXVMCSINFOSHARED pVmcsInfoShared)
|
---|
816 | {
|
---|
817 | RT_ZERO(*pVmcsInfo);
|
---|
818 | RT_ZERO(*pVmcsInfoShared);
|
---|
819 |
|
---|
820 | pVmcsInfo->pShared = pVmcsInfoShared;
|
---|
821 | Assert(pVmcsInfo->hMemObj == NIL_RTR0MEMOBJ);
|
---|
822 | pVmcsInfo->HCPhysVmcs = NIL_RTHCPHYS;
|
---|
823 | pVmcsInfo->HCPhysShadowVmcs = NIL_RTHCPHYS;
|
---|
824 | pVmcsInfo->HCPhysMsrBitmap = NIL_RTHCPHYS;
|
---|
825 | pVmcsInfo->HCPhysGuestMsrLoad = NIL_RTHCPHYS;
|
---|
826 | pVmcsInfo->HCPhysGuestMsrStore = NIL_RTHCPHYS;
|
---|
827 | pVmcsInfo->HCPhysHostMsrLoad = NIL_RTHCPHYS;
|
---|
828 | pVmcsInfo->HCPhysVirtApic = NIL_RTHCPHYS;
|
---|
829 | pVmcsInfo->HCPhysEPTP = NIL_RTHCPHYS;
|
---|
830 | pVmcsInfo->u64VmcsLinkPtr = NIL_RTHCPHYS;
|
---|
831 | pVmcsInfo->idHostCpuState = NIL_RTCPUID;
|
---|
832 | pVmcsInfo->idHostCpuExec = NIL_RTCPUID;
|
---|
833 | }
|
---|
834 |
|
---|
835 |
|
---|
836 | /**
|
---|
837 | * Frees the VT-x structures for a VMCS info. object.
|
---|
838 | *
|
---|
839 | * @param pVmcsInfo The VMCS info. object.
|
---|
840 | * @param pVmcsInfoShared The VMCS info. object shared with ring-3.
|
---|
841 | */
|
---|
842 | static void hmR0VmxVmcsInfoFree(PVMXVMCSINFO pVmcsInfo, PVMXVMCSINFOSHARED pVmcsInfoShared)
|
---|
843 | {
|
---|
844 | hmR0VmxPagesFree(&pVmcsInfo->hMemObj);
|
---|
845 | hmR0VmxVmcsInfoInit(pVmcsInfo, pVmcsInfoShared);
|
---|
846 | }
|
---|
847 |
|
---|
848 |
|
---|
849 | /**
|
---|
850 | * Allocates the VT-x structures for a VMCS info. object.
|
---|
851 | *
|
---|
852 | * @returns VBox status code.
|
---|
853 | * @param pVCpu The cross context virtual CPU structure.
|
---|
854 | * @param pVmcsInfo The VMCS info. object.
|
---|
855 | * @param fIsNstGstVmcs Whether this is a nested-guest VMCS.
|
---|
856 | *
|
---|
857 | * @remarks The caller is expected to take care of any and all allocation failures.
|
---|
858 | * This function will not perform any cleanup for failures half-way
|
---|
859 | * through.
|
---|
860 | */
|
---|
861 | static int hmR0VmxAllocVmcsInfo(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo, bool fIsNstGstVmcs)
|
---|
862 | {
|
---|
863 | PVMCC pVM = pVCpu->CTX_SUFF(pVM);
|
---|
864 |
|
---|
865 | bool const fMsrBitmaps = RT_BOOL(g_HmMsrs.u.vmx.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_MSR_BITMAPS);
|
---|
866 | bool const fShadowVmcs = !fIsNstGstVmcs ? pVM->hmr0.s.vmx.fUseVmcsShadowing : pVM->cpum.ro.GuestFeatures.fVmxVmcsShadowing;
|
---|
867 | Assert(!pVM->cpum.ro.GuestFeatures.fVmxVmcsShadowing); /* VMCS shadowing is not yet exposed to the guest. */
|
---|
868 | VMXPAGEALLOCINFO aAllocInfo[] =
|
---|
869 | {
|
---|
870 | { true, 0 /* Unused */, &pVmcsInfo->HCPhysVmcs, &pVmcsInfo->pvVmcs },
|
---|
871 | { true, 0 /* Unused */, &pVmcsInfo->HCPhysGuestMsrLoad, &pVmcsInfo->pvGuestMsrLoad },
|
---|
872 | { true, 0 /* Unused */, &pVmcsInfo->HCPhysHostMsrLoad, &pVmcsInfo->pvHostMsrLoad },
|
---|
873 | { fMsrBitmaps, 0 /* Unused */, &pVmcsInfo->HCPhysMsrBitmap, &pVmcsInfo->pvMsrBitmap },
|
---|
874 | { fShadowVmcs, 0 /* Unused */, &pVmcsInfo->HCPhysShadowVmcs, &pVmcsInfo->pvShadowVmcs },
|
---|
875 | };
|
---|
876 |
|
---|
877 | int rc = hmR0VmxPagesAllocZ(&pVmcsInfo->hMemObj, &aAllocInfo[0], RT_ELEMENTS(aAllocInfo));
|
---|
878 | if (RT_FAILURE(rc))
|
---|
879 | return rc;
|
---|
880 |
|
---|
881 | /*
|
---|
882 | * We use the same page for VM-entry MSR-load and VM-exit MSR store areas.
|
---|
883 | * Because they contain a symmetric list of guest MSRs to load on VM-entry and store on VM-exit.
|
---|
884 | */
|
---|
885 | AssertCompile(RT_ELEMENTS(aAllocInfo) > 0);
|
---|
886 | Assert(pVmcsInfo->HCPhysGuestMsrLoad != NIL_RTHCPHYS);
|
---|
887 | pVmcsInfo->pvGuestMsrStore = pVmcsInfo->pvGuestMsrLoad;
|
---|
888 | pVmcsInfo->HCPhysGuestMsrStore = pVmcsInfo->HCPhysGuestMsrLoad;
|
---|
889 |
|
---|
890 | /*
|
---|
891 | * Get the virtual-APIC page rather than allocating them again.
|
---|
892 | */
|
---|
893 | if (g_HmMsrs.u.vmx.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_TPR_SHADOW)
|
---|
894 | {
|
---|
895 | if (!fIsNstGstVmcs)
|
---|
896 | {
|
---|
897 | if (PDMHasApic(pVM))
|
---|
898 | {
|
---|
899 | rc = APICGetApicPageForCpu(pVCpu, &pVmcsInfo->HCPhysVirtApic, (PRTR0PTR)&pVmcsInfo->pbVirtApic, NULL /*pR3Ptr*/);
|
---|
900 | if (RT_FAILURE(rc))
|
---|
901 | return rc;
|
---|
902 | Assert(pVmcsInfo->pbVirtApic);
|
---|
903 | Assert(pVmcsInfo->HCPhysVirtApic && pVmcsInfo->HCPhysVirtApic != NIL_RTHCPHYS);
|
---|
904 | }
|
---|
905 | }
|
---|
906 | else
|
---|
907 | {
|
---|
908 | pVmcsInfo->pbVirtApic = &pVCpu->cpum.GstCtx.hwvirt.vmx.abVirtApicPage[0];
|
---|
909 | pVmcsInfo->HCPhysVirtApic = GVMMR0ConvertGVMPtr2HCPhys(pVM, pVmcsInfo->pbVirtApic);
|
---|
910 | Assert(pVmcsInfo->HCPhysVirtApic && pVmcsInfo->HCPhysVirtApic != NIL_RTHCPHYS);
|
---|
911 | }
|
---|
912 | }
|
---|
913 |
|
---|
914 | return VINF_SUCCESS;
|
---|
915 | }
|
---|
916 |
|
---|
917 |
|
---|
918 | /**
|
---|
919 | * Free all VT-x structures for the VM.
|
---|
920 | *
|
---|
921 | * @returns IPRT status code.
|
---|
922 | * @param pVM The cross context VM structure.
|
---|
923 | */
|
---|
924 | static void hmR0VmxStructsFree(PVMCC pVM)
|
---|
925 | {
|
---|
926 | hmR0VmxPagesFree(&pVM->hmr0.s.vmx.hMemObj);
|
---|
927 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
928 | if (pVM->hmr0.s.vmx.fUseVmcsShadowing)
|
---|
929 | {
|
---|
930 | RTMemFree(pVM->hmr0.s.vmx.paShadowVmcsFields);
|
---|
931 | pVM->hmr0.s.vmx.paShadowVmcsFields = NULL;
|
---|
932 | RTMemFree(pVM->hmr0.s.vmx.paShadowVmcsRoFields);
|
---|
933 | pVM->hmr0.s.vmx.paShadowVmcsRoFields = NULL;
|
---|
934 | }
|
---|
935 | #endif
|
---|
936 |
|
---|
937 | for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
|
---|
938 | {
|
---|
939 | PVMCPUCC pVCpu = VMCC_GET_CPU(pVM, idCpu);
|
---|
940 | hmR0VmxVmcsInfoFree(&pVCpu->hmr0.s.vmx.VmcsInfo, &pVCpu->hm.s.vmx.VmcsInfo);
|
---|
941 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
942 | if (pVM->cpum.ro.GuestFeatures.fVmx)
|
---|
943 | hmR0VmxVmcsInfoFree(&pVCpu->hmr0.s.vmx.VmcsInfoNstGst, &pVCpu->hm.s.vmx.VmcsInfoNstGst);
|
---|
944 | #endif
|
---|
945 | }
|
---|
946 | }
|
---|
947 |
|
---|
948 |
|
---|
949 | /**
|
---|
950 | * Allocate all VT-x structures for the VM.
|
---|
951 | *
|
---|
952 | * @returns IPRT status code.
|
---|
953 | * @param pVM The cross context VM structure.
|
---|
954 | *
|
---|
955 | * @remarks This functions will cleanup on memory allocation failures.
|
---|
956 | */
|
---|
957 | static int hmR0VmxStructsAlloc(PVMCC pVM)
|
---|
958 | {
|
---|
959 | /*
|
---|
960 | * Sanity check the VMCS size reported by the CPU as we assume 4KB allocations.
|
---|
961 | * The VMCS size cannot be more than 4096 bytes.
|
---|
962 | *
|
---|
963 | * See Intel spec. Appendix A.1 "Basic VMX Information".
|
---|
964 | */
|
---|
965 | uint32_t const cbVmcs = RT_BF_GET(g_HmMsrs.u.vmx.u64Basic, VMX_BF_BASIC_VMCS_SIZE);
|
---|
966 | if (cbVmcs <= X86_PAGE_4K_SIZE)
|
---|
967 | { /* likely */ }
|
---|
968 | else
|
---|
969 | {
|
---|
970 | VMCC_GET_CPU_0(pVM)->hm.s.u32HMError = VMX_UFC_INVALID_VMCS_SIZE;
|
---|
971 | return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
|
---|
972 | }
|
---|
973 |
|
---|
974 | /*
|
---|
975 | * Allocate per-VM VT-x structures.
|
---|
976 | */
|
---|
977 | bool const fVirtApicAccess = RT_BOOL(g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS);
|
---|
978 | bool const fUseVmcsShadowing = pVM->hmr0.s.vmx.fUseVmcsShadowing;
|
---|
979 | VMXPAGEALLOCINFO aAllocInfo[] =
|
---|
980 | {
|
---|
981 | { fVirtApicAccess, 0 /* Unused */, &pVM->hmr0.s.vmx.HCPhysApicAccess, (PRTR0PTR)&pVM->hmr0.s.vmx.pbApicAccess },
|
---|
982 | { fUseVmcsShadowing, 0 /* Unused */, &pVM->hmr0.s.vmx.HCPhysVmreadBitmap, &pVM->hmr0.s.vmx.pvVmreadBitmap },
|
---|
983 | { fUseVmcsShadowing, 0 /* Unused */, &pVM->hmr0.s.vmx.HCPhysVmwriteBitmap, &pVM->hmr0.s.vmx.pvVmwriteBitmap },
|
---|
984 | #ifdef VBOX_WITH_CRASHDUMP_MAGIC
|
---|
985 | { true, 0 /* Unused */, &pVM->hmr0.s.vmx.HCPhysScratch, (PRTR0PTR)&pVM->hmr0.s.vmx.pbScratch },
|
---|
986 | #endif
|
---|
987 | };
|
---|
988 |
|
---|
989 | int rc = hmR0VmxPagesAllocZ(&pVM->hmr0.s.vmx.hMemObj, &aAllocInfo[0], RT_ELEMENTS(aAllocInfo));
|
---|
990 | if (RT_SUCCESS(rc))
|
---|
991 | {
|
---|
992 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
993 | /* Allocate the shadow VMCS-fields array. */
|
---|
994 | if (fUseVmcsShadowing)
|
---|
995 | {
|
---|
996 | Assert(!pVM->hmr0.s.vmx.cShadowVmcsFields);
|
---|
997 | Assert(!pVM->hmr0.s.vmx.cShadowVmcsRoFields);
|
---|
998 | pVM->hmr0.s.vmx.paShadowVmcsFields = (uint32_t *)RTMemAllocZ(sizeof(g_aVmcsFields));
|
---|
999 | pVM->hmr0.s.vmx.paShadowVmcsRoFields = (uint32_t *)RTMemAllocZ(sizeof(g_aVmcsFields));
|
---|
1000 | if (!pVM->hmr0.s.vmx.paShadowVmcsFields || !pVM->hmr0.s.vmx.paShadowVmcsRoFields)
|
---|
1001 | rc = VERR_NO_MEMORY;
|
---|
1002 | }
|
---|
1003 | #endif
|
---|
1004 |
|
---|
1005 | /*
|
---|
1006 | * Allocate per-VCPU VT-x structures.
|
---|
1007 | */
|
---|
1008 | for (VMCPUID idCpu = 0; idCpu < pVM->cCpus && RT_SUCCESS(rc); idCpu++)
|
---|
1009 | {
|
---|
1010 | /* Allocate the guest VMCS structures. */
|
---|
1011 | PVMCPUCC pVCpu = VMCC_GET_CPU(pVM, idCpu);
|
---|
1012 | rc = hmR0VmxAllocVmcsInfo(pVCpu, &pVCpu->hmr0.s.vmx.VmcsInfo, false /* fIsNstGstVmcs */);
|
---|
1013 |
|
---|
1014 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
1015 | /* Allocate the nested-guest VMCS structures, when the VMX feature is exposed to the guest. */
|
---|
1016 | if (pVM->cpum.ro.GuestFeatures.fVmx && RT_SUCCESS(rc))
|
---|
1017 | rc = hmR0VmxAllocVmcsInfo(pVCpu, &pVCpu->hmr0.s.vmx.VmcsInfoNstGst, true /* fIsNstGstVmcs */);
|
---|
1018 | #endif
|
---|
1019 | }
|
---|
1020 | if (RT_SUCCESS(rc))
|
---|
1021 | return VINF_SUCCESS;
|
---|
1022 | }
|
---|
1023 | hmR0VmxStructsFree(pVM);
|
---|
1024 | return rc;
|
---|
1025 | }
|
---|
1026 |
|
---|
1027 |
|
---|
1028 | /**
|
---|
1029 | * Pre-initializes non-zero fields in VMX structures that will be allocated.
|
---|
1030 | *
|
---|
1031 | * @param pVM The cross context VM structure.
|
---|
1032 | */
|
---|
1033 | static void hmR0VmxStructsInit(PVMCC pVM)
|
---|
1034 | {
|
---|
1035 | /* Paranoia. */
|
---|
1036 | Assert(pVM->hmr0.s.vmx.pbApicAccess == NULL);
|
---|
1037 | #ifdef VBOX_WITH_CRASHDUMP_MAGIC
|
---|
1038 | Assert(pVM->hmr0.s.vmx.pbScratch == NULL);
|
---|
1039 | #endif
|
---|
1040 |
|
---|
1041 | /*
|
---|
1042 | * Initialize members up-front so we can cleanup en masse on allocation failures.
|
---|
1043 | */
|
---|
1044 | #ifdef VBOX_WITH_CRASHDUMP_MAGIC
|
---|
1045 | pVM->hmr0.s.vmx.HCPhysScratch = NIL_RTHCPHYS;
|
---|
1046 | #endif
|
---|
1047 | pVM->hmr0.s.vmx.HCPhysApicAccess = NIL_RTHCPHYS;
|
---|
1048 | pVM->hmr0.s.vmx.HCPhysVmreadBitmap = NIL_RTHCPHYS;
|
---|
1049 | pVM->hmr0.s.vmx.HCPhysVmwriteBitmap = NIL_RTHCPHYS;
|
---|
1050 | for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
|
---|
1051 | {
|
---|
1052 | PVMCPUCC pVCpu = VMCC_GET_CPU(pVM, idCpu);
|
---|
1053 | hmR0VmxVmcsInfoInit(&pVCpu->hmr0.s.vmx.VmcsInfo, &pVCpu->hm.s.vmx.VmcsInfo);
|
---|
1054 | hmR0VmxVmcsInfoInit(&pVCpu->hmr0.s.vmx.VmcsInfoNstGst, &pVCpu->hm.s.vmx.VmcsInfoNstGst);
|
---|
1055 | }
|
---|
1056 | }
|
---|
1057 |
|
---|
1058 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
1059 | /**
|
---|
1060 | * Returns whether an MSR at the given MSR-bitmap offset is intercepted or not.
|
---|
1061 | *
|
---|
1062 | * @returns @c true if the MSR is intercepted, @c false otherwise.
|
---|
1063 | * @param pbMsrBitmap The MSR bitmap.
|
---|
1064 | * @param offMsr The MSR byte offset.
|
---|
1065 | * @param iBit The bit offset from the byte offset.
|
---|
1066 | */
|
---|
1067 | DECLINLINE(bool) hmR0VmxIsMsrBitSet(uint8_t const *pbMsrBitmap, uint16_t offMsr, int32_t iBit)
|
---|
1068 | {
|
---|
1069 | Assert(offMsr + (iBit >> 3) <= X86_PAGE_4K_SIZE);
|
---|
1070 | return ASMBitTest(pbMsrBitmap + offMsr, iBit);
|
---|
1071 | }
|
---|
1072 | #endif
|
---|
1073 |
|
---|
1074 | /**
|
---|
1075 | * Sets the permission bits for the specified MSR in the given MSR bitmap.
|
---|
1076 | *
|
---|
1077 | * If the passed VMCS is a nested-guest VMCS, this function ensures that the
|
---|
1078 | * read/write intercept is cleared from the MSR bitmap used for hardware-assisted
|
---|
1079 | * VMX execution of the nested-guest, only if nested-guest is also not intercepting
|
---|
1080 | * the read/write access of this MSR.
|
---|
1081 | *
|
---|
1082 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1083 | * @param pVmcsInfo The VMCS info. object.
|
---|
1084 | * @param fIsNstGstVmcs Whether this is a nested-guest VMCS.
|
---|
1085 | * @param idMsr The MSR value.
|
---|
1086 | * @param fMsrpm The MSR permissions (see VMXMSRPM_XXX). This must
|
---|
1087 | * include both a read -and- a write permission!
|
---|
1088 | *
|
---|
1089 | * @sa CPUMGetVmxMsrPermission.
|
---|
1090 | * @remarks Can be called with interrupts disabled.
|
---|
1091 | */
|
---|
1092 | static void hmR0VmxSetMsrPermission(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo, bool fIsNstGstVmcs, uint32_t idMsr, uint32_t fMsrpm)
|
---|
1093 | {
|
---|
1094 | uint8_t *pbMsrBitmap = (uint8_t *)pVmcsInfo->pvMsrBitmap;
|
---|
1095 | Assert(pbMsrBitmap);
|
---|
1096 | Assert(VMXMSRPM_IS_FLAG_VALID(fMsrpm));
|
---|
1097 |
|
---|
1098 | /*
|
---|
1099 | * MSR-bitmap Layout:
|
---|
1100 | * Byte index MSR range Interpreted as
|
---|
1101 | * 0x000 - 0x3ff 0x00000000 - 0x00001fff Low MSR read bits.
|
---|
1102 | * 0x400 - 0x7ff 0xc0000000 - 0xc0001fff High MSR read bits.
|
---|
1103 | * 0x800 - 0xbff 0x00000000 - 0x00001fff Low MSR write bits.
|
---|
1104 | * 0xc00 - 0xfff 0xc0000000 - 0xc0001fff High MSR write bits.
|
---|
1105 | *
|
---|
1106 | * A bit corresponding to an MSR within the above range causes a VM-exit
|
---|
1107 | * if the bit is 1 on executions of RDMSR/WRMSR. If an MSR falls out of
|
---|
1108 | * the MSR range, it always cause a VM-exit.
|
---|
1109 | *
|
---|
1110 | * See Intel spec. 24.6.9 "MSR-Bitmap Address".
|
---|
1111 | */
|
---|
1112 | uint16_t const offBitmapRead = 0;
|
---|
1113 | uint16_t const offBitmapWrite = 0x800;
|
---|
1114 | uint16_t offMsr;
|
---|
1115 | int32_t iBit;
|
---|
1116 | if (idMsr <= UINT32_C(0x00001fff))
|
---|
1117 | {
|
---|
1118 | offMsr = 0;
|
---|
1119 | iBit = idMsr;
|
---|
1120 | }
|
---|
1121 | else if (idMsr - UINT32_C(0xc0000000) <= UINT32_C(0x00001fff))
|
---|
1122 | {
|
---|
1123 | offMsr = 0x400;
|
---|
1124 | iBit = idMsr - UINT32_C(0xc0000000);
|
---|
1125 | }
|
---|
1126 | else
|
---|
1127 | AssertMsgFailedReturnVoid(("Invalid MSR %#RX32\n", idMsr));
|
---|
1128 |
|
---|
1129 | /*
|
---|
1130 | * Set the MSR read permission.
|
---|
1131 | */
|
---|
1132 | uint16_t const offMsrRead = offBitmapRead + offMsr;
|
---|
1133 | Assert(offMsrRead + (iBit >> 3) < offBitmapWrite);
|
---|
1134 | if (fMsrpm & VMXMSRPM_ALLOW_RD)
|
---|
1135 | {
|
---|
1136 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
1137 | bool const fClear = !fIsNstGstVmcs ? true
|
---|
1138 | : !hmR0VmxIsMsrBitSet(pVCpu->cpum.GstCtx.hwvirt.vmx.abMsrBitmap, offMsrRead, iBit);
|
---|
1139 | #else
|
---|
1140 | RT_NOREF2(pVCpu, fIsNstGstVmcs);
|
---|
1141 | bool const fClear = true;
|
---|
1142 | #endif
|
---|
1143 | if (fClear)
|
---|
1144 | ASMBitClear(pbMsrBitmap + offMsrRead, iBit);
|
---|
1145 | }
|
---|
1146 | else
|
---|
1147 | ASMBitSet(pbMsrBitmap + offMsrRead, iBit);
|
---|
1148 |
|
---|
1149 | /*
|
---|
1150 | * Set the MSR write permission.
|
---|
1151 | */
|
---|
1152 | uint16_t const offMsrWrite = offBitmapWrite + offMsr;
|
---|
1153 | Assert(offMsrWrite + (iBit >> 3) < X86_PAGE_4K_SIZE);
|
---|
1154 | if (fMsrpm & VMXMSRPM_ALLOW_WR)
|
---|
1155 | {
|
---|
1156 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
1157 | bool const fClear = !fIsNstGstVmcs ? true
|
---|
1158 | : !hmR0VmxIsMsrBitSet(pVCpu->cpum.GstCtx.hwvirt.vmx.abMsrBitmap, offMsrWrite, iBit);
|
---|
1159 | #else
|
---|
1160 | RT_NOREF2(pVCpu, fIsNstGstVmcs);
|
---|
1161 | bool const fClear = true;
|
---|
1162 | #endif
|
---|
1163 | if (fClear)
|
---|
1164 | ASMBitClear(pbMsrBitmap + offMsrWrite, iBit);
|
---|
1165 | }
|
---|
1166 | else
|
---|
1167 | ASMBitSet(pbMsrBitmap + offMsrWrite, iBit);
|
---|
1168 | }
|
---|
1169 |
|
---|
1170 |
|
---|
1171 | /**
|
---|
1172 | * Updates the VMCS with the number of effective MSRs in the auto-load/store MSR
|
---|
1173 | * area.
|
---|
1174 | *
|
---|
1175 | * @returns VBox status code.
|
---|
1176 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1177 | * @param pVmcsInfo The VMCS info. object.
|
---|
1178 | * @param cMsrs The number of MSRs.
|
---|
1179 | */
|
---|
1180 | static int hmR0VmxSetAutoLoadStoreMsrCount(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo, uint32_t cMsrs)
|
---|
1181 | {
|
---|
1182 | /* Shouldn't ever happen but there -is- a number. We're well within the recommended 512. */
|
---|
1183 | uint32_t const cMaxSupportedMsrs = VMX_MISC_MAX_MSRS(g_HmMsrs.u.vmx.u64Misc);
|
---|
1184 | if (RT_LIKELY(cMsrs < cMaxSupportedMsrs))
|
---|
1185 | {
|
---|
1186 | /* Commit the MSR counts to the VMCS and update the cache. */
|
---|
1187 | if (pVmcsInfo->cEntryMsrLoad != cMsrs)
|
---|
1188 | {
|
---|
1189 | int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, cMsrs); AssertRC(rc);
|
---|
1190 | rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, cMsrs); AssertRC(rc);
|
---|
1191 | rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, cMsrs); AssertRC(rc);
|
---|
1192 | pVmcsInfo->cEntryMsrLoad = cMsrs;
|
---|
1193 | pVmcsInfo->cExitMsrStore = cMsrs;
|
---|
1194 | pVmcsInfo->cExitMsrLoad = cMsrs;
|
---|
1195 | }
|
---|
1196 | return VINF_SUCCESS;
|
---|
1197 | }
|
---|
1198 |
|
---|
1199 | LogRel(("Auto-load/store MSR count exceeded! cMsrs=%u MaxSupported=%u\n", cMsrs, cMaxSupportedMsrs));
|
---|
1200 | pVCpu->hm.s.u32HMError = VMX_UFC_INSUFFICIENT_GUEST_MSR_STORAGE;
|
---|
1201 | return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
|
---|
1202 | }
|
---|
1203 |
|
---|
1204 |
|
---|
1205 | /**
|
---|
1206 | * Adds a new (or updates the value of an existing) guest/host MSR
|
---|
1207 | * pair to be swapped during the world-switch as part of the
|
---|
1208 | * auto-load/store MSR area in the VMCS.
|
---|
1209 | *
|
---|
1210 | * @returns VBox status code.
|
---|
1211 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1212 | * @param pVmxTransient The VMX-transient structure.
|
---|
1213 | * @param idMsr The MSR.
|
---|
1214 | * @param uGuestMsrValue Value of the guest MSR.
|
---|
1215 | * @param fSetReadWrite Whether to set the guest read/write access of this
|
---|
1216 | * MSR (thus not causing a VM-exit).
|
---|
1217 | * @param fUpdateHostMsr Whether to update the value of the host MSR if
|
---|
1218 | * necessary.
|
---|
1219 | */
|
---|
1220 | static int hmR0VmxAddAutoLoadStoreMsr(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient, uint32_t idMsr, uint64_t uGuestMsrValue,
|
---|
1221 | bool fSetReadWrite, bool fUpdateHostMsr)
|
---|
1222 | {
|
---|
1223 | PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
|
---|
1224 | bool const fIsNstGstVmcs = pVmxTransient->fIsNestedGuest;
|
---|
1225 | PVMXAUTOMSR pGuestMsrLoad = (PVMXAUTOMSR)pVmcsInfo->pvGuestMsrLoad;
|
---|
1226 | uint32_t cMsrs = pVmcsInfo->cEntryMsrLoad;
|
---|
1227 | uint32_t i;
|
---|
1228 |
|
---|
1229 | /* Paranoia. */
|
---|
1230 | Assert(pGuestMsrLoad);
|
---|
1231 |
|
---|
1232 | #ifndef DEBUG_bird
|
---|
1233 | LogFlowFunc(("pVCpu=%p idMsr=%#RX32 uGuestMsrValue=%#RX64\n", pVCpu, idMsr, uGuestMsrValue));
|
---|
1234 | #endif
|
---|
1235 |
|
---|
1236 | /* Check if the MSR already exists in the VM-entry MSR-load area. */
|
---|
1237 | for (i = 0; i < cMsrs; i++)
|
---|
1238 | {
|
---|
1239 | if (pGuestMsrLoad[i].u32Msr == idMsr)
|
---|
1240 | break;
|
---|
1241 | }
|
---|
1242 |
|
---|
1243 | bool fAdded = false;
|
---|
1244 | if (i == cMsrs)
|
---|
1245 | {
|
---|
1246 | /* The MSR does not exist, bump the MSR count to make room for the new MSR. */
|
---|
1247 | ++cMsrs;
|
---|
1248 | int rc = hmR0VmxSetAutoLoadStoreMsrCount(pVCpu, pVmcsInfo, cMsrs);
|
---|
1249 | AssertMsgRCReturn(rc, ("Insufficient space to add MSR to VM-entry MSR-load/store area %u\n", idMsr), rc);
|
---|
1250 |
|
---|
1251 | /* Set the guest to read/write this MSR without causing VM-exits. */
|
---|
1252 | if ( fSetReadWrite
|
---|
1253 | && (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS))
|
---|
1254 | hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, fIsNstGstVmcs, idMsr, VMXMSRPM_ALLOW_RD_WR);
|
---|
1255 |
|
---|
1256 | Log4Func(("Added MSR %#RX32, cMsrs=%u\n", idMsr, cMsrs));
|
---|
1257 | fAdded = true;
|
---|
1258 | }
|
---|
1259 |
|
---|
1260 | /* Update the MSR value for the newly added or already existing MSR. */
|
---|
1261 | pGuestMsrLoad[i].u32Msr = idMsr;
|
---|
1262 | pGuestMsrLoad[i].u64Value = uGuestMsrValue;
|
---|
1263 |
|
---|
1264 | /* Create the corresponding slot in the VM-exit MSR-store area if we use a different page. */
|
---|
1265 | if (hmR0VmxIsSeparateExitMsrStoreAreaVmcs(pVmcsInfo))
|
---|
1266 | {
|
---|
1267 | PVMXAUTOMSR pGuestMsrStore = (PVMXAUTOMSR)pVmcsInfo->pvGuestMsrStore;
|
---|
1268 | pGuestMsrStore[i].u32Msr = idMsr;
|
---|
1269 | pGuestMsrStore[i].u64Value = uGuestMsrValue;
|
---|
1270 | }
|
---|
1271 |
|
---|
1272 | /* Update the corresponding slot in the host MSR area. */
|
---|
1273 | PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVmcsInfo->pvHostMsrLoad;
|
---|
1274 | Assert(pHostMsr != pVmcsInfo->pvGuestMsrLoad);
|
---|
1275 | Assert(pHostMsr != pVmcsInfo->pvGuestMsrStore);
|
---|
1276 | pHostMsr[i].u32Msr = idMsr;
|
---|
1277 |
|
---|
1278 | /*
|
---|
1279 | * Only if the caller requests to update the host MSR value AND we've newly added the
|
---|
1280 | * MSR to the host MSR area do we actually update the value. Otherwise, it will be
|
---|
1281 | * updated by hmR0VmxUpdateAutoLoadHostMsrs().
|
---|
1282 | *
|
---|
1283 | * We do this for performance reasons since reading MSRs may be quite expensive.
|
---|
1284 | */
|
---|
1285 | if (fAdded)
|
---|
1286 | {
|
---|
1287 | if (fUpdateHostMsr)
|
---|
1288 | {
|
---|
1289 | Assert(!VMMRZCallRing3IsEnabled(pVCpu));
|
---|
1290 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
1291 | pHostMsr[i].u64Value = ASMRdMsr(idMsr);
|
---|
1292 | }
|
---|
1293 | else
|
---|
1294 | {
|
---|
1295 | /* Someone else can do the work. */
|
---|
1296 | pVCpu->hmr0.s.vmx.fUpdatedHostAutoMsrs = false;
|
---|
1297 | }
|
---|
1298 | }
|
---|
1299 | return VINF_SUCCESS;
|
---|
1300 | }
|
---|
1301 |
|
---|
1302 |
|
---|
1303 | /**
|
---|
1304 | * Removes a guest/host MSR pair to be swapped during the world-switch from the
|
---|
1305 | * auto-load/store MSR area in the VMCS.
|
---|
1306 | *
|
---|
1307 | * @returns VBox status code.
|
---|
1308 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1309 | * @param pVmxTransient The VMX-transient structure.
|
---|
1310 | * @param idMsr The MSR.
|
---|
1311 | */
|
---|
1312 | static int hmR0VmxRemoveAutoLoadStoreMsr(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient, uint32_t idMsr)
|
---|
1313 | {
|
---|
1314 | PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
|
---|
1315 | bool const fIsNstGstVmcs = pVmxTransient->fIsNestedGuest;
|
---|
1316 | PVMXAUTOMSR pGuestMsrLoad = (PVMXAUTOMSR)pVmcsInfo->pvGuestMsrLoad;
|
---|
1317 | uint32_t cMsrs = pVmcsInfo->cEntryMsrLoad;
|
---|
1318 |
|
---|
1319 | #ifndef DEBUG_bird
|
---|
1320 | LogFlowFunc(("pVCpu=%p idMsr=%#RX32\n", pVCpu, idMsr));
|
---|
1321 | #endif
|
---|
1322 |
|
---|
1323 | for (uint32_t i = 0; i < cMsrs; i++)
|
---|
1324 | {
|
---|
1325 | /* Find the MSR. */
|
---|
1326 | if (pGuestMsrLoad[i].u32Msr == idMsr)
|
---|
1327 | {
|
---|
1328 | /*
|
---|
1329 | * If it's the last MSR, we only need to reduce the MSR count.
|
---|
1330 | * If it's -not- the last MSR, copy the last MSR in place of it and reduce the MSR count.
|
---|
1331 | */
|
---|
1332 | if (i < cMsrs - 1)
|
---|
1333 | {
|
---|
1334 | /* Remove it from the VM-entry MSR-load area. */
|
---|
1335 | pGuestMsrLoad[i].u32Msr = pGuestMsrLoad[cMsrs - 1].u32Msr;
|
---|
1336 | pGuestMsrLoad[i].u64Value = pGuestMsrLoad[cMsrs - 1].u64Value;
|
---|
1337 |
|
---|
1338 | /* Remove it from the VM-exit MSR-store area if it's in a different page. */
|
---|
1339 | if (hmR0VmxIsSeparateExitMsrStoreAreaVmcs(pVmcsInfo))
|
---|
1340 | {
|
---|
1341 | PVMXAUTOMSR pGuestMsrStore = (PVMXAUTOMSR)pVmcsInfo->pvGuestMsrStore;
|
---|
1342 | Assert(pGuestMsrStore[i].u32Msr == idMsr);
|
---|
1343 | pGuestMsrStore[i].u32Msr = pGuestMsrStore[cMsrs - 1].u32Msr;
|
---|
1344 | pGuestMsrStore[i].u64Value = pGuestMsrStore[cMsrs - 1].u64Value;
|
---|
1345 | }
|
---|
1346 |
|
---|
1347 | /* Remove it from the VM-exit MSR-load area. */
|
---|
1348 | PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVmcsInfo->pvHostMsrLoad;
|
---|
1349 | Assert(pHostMsr[i].u32Msr == idMsr);
|
---|
1350 | pHostMsr[i].u32Msr = pHostMsr[cMsrs - 1].u32Msr;
|
---|
1351 | pHostMsr[i].u64Value = pHostMsr[cMsrs - 1].u64Value;
|
---|
1352 | }
|
---|
1353 |
|
---|
1354 | /* Reduce the count to reflect the removed MSR and bail. */
|
---|
1355 | --cMsrs;
|
---|
1356 | break;
|
---|
1357 | }
|
---|
1358 | }
|
---|
1359 |
|
---|
1360 | /* Update the VMCS if the count changed (meaning the MSR was found and removed). */
|
---|
1361 | if (cMsrs != pVmcsInfo->cEntryMsrLoad)
|
---|
1362 | {
|
---|
1363 | int rc = hmR0VmxSetAutoLoadStoreMsrCount(pVCpu, pVmcsInfo, cMsrs);
|
---|
1364 | AssertRCReturn(rc, rc);
|
---|
1365 |
|
---|
1366 | /* We're no longer swapping MSRs during the world-switch, intercept guest read/writes to them. */
|
---|
1367 | if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
|
---|
1368 | hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, fIsNstGstVmcs, idMsr, VMXMSRPM_EXIT_RD | VMXMSRPM_EXIT_WR);
|
---|
1369 |
|
---|
1370 | Log4Func(("Removed MSR %#RX32, cMsrs=%u\n", idMsr, cMsrs));
|
---|
1371 | return VINF_SUCCESS;
|
---|
1372 | }
|
---|
1373 |
|
---|
1374 | return VERR_NOT_FOUND;
|
---|
1375 | }
|
---|
1376 |
|
---|
1377 |
|
---|
1378 | /**
|
---|
1379 | * Updates the value of all host MSRs in the VM-exit MSR-load area.
|
---|
1380 | *
|
---|
1381 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1382 | * @param pVmcsInfo The VMCS info. object.
|
---|
1383 | *
|
---|
1384 | * @remarks No-long-jump zone!!!
|
---|
1385 | */
|
---|
1386 | static void hmR0VmxUpdateAutoLoadHostMsrs(PCVMCPUCC pVCpu, PCVMXVMCSINFO pVmcsInfo)
|
---|
1387 | {
|
---|
1388 | RT_NOREF(pVCpu);
|
---|
1389 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
1390 |
|
---|
1391 | PVMXAUTOMSR pHostMsrLoad = (PVMXAUTOMSR)pVmcsInfo->pvHostMsrLoad;
|
---|
1392 | uint32_t const cMsrs = pVmcsInfo->cExitMsrLoad;
|
---|
1393 | Assert(pHostMsrLoad);
|
---|
1394 | Assert(sizeof(*pHostMsrLoad) * cMsrs <= X86_PAGE_4K_SIZE);
|
---|
1395 | LogFlowFunc(("pVCpu=%p cMsrs=%u\n", pVCpu, cMsrs));
|
---|
1396 | for (uint32_t i = 0; i < cMsrs; i++)
|
---|
1397 | {
|
---|
1398 | /*
|
---|
1399 | * Performance hack for the host EFER MSR. We use the cached value rather than re-read it.
|
---|
1400 | * Strict builds will catch mismatches in hmR0VmxCheckAutoLoadStoreMsrs(). See @bugref{7368}.
|
---|
1401 | */
|
---|
1402 | if (pHostMsrLoad[i].u32Msr == MSR_K6_EFER)
|
---|
1403 | pHostMsrLoad[i].u64Value = g_uHmVmxHostMsrEfer;
|
---|
1404 | else
|
---|
1405 | pHostMsrLoad[i].u64Value = ASMRdMsr(pHostMsrLoad[i].u32Msr);
|
---|
1406 | }
|
---|
1407 | }
|
---|
1408 |
|
---|
1409 |
|
---|
1410 | /**
|
---|
1411 | * Saves a set of host MSRs to allow read/write passthru access to the guest and
|
---|
1412 | * perform lazy restoration of the host MSRs while leaving VT-x.
|
---|
1413 | *
|
---|
1414 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1415 | *
|
---|
1416 | * @remarks No-long-jump zone!!!
|
---|
1417 | */
|
---|
1418 | static void hmR0VmxLazySaveHostMsrs(PVMCPUCC pVCpu)
|
---|
1419 | {
|
---|
1420 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
1421 |
|
---|
1422 | /*
|
---|
1423 | * Note: If you're adding MSRs here, make sure to update the MSR-bitmap accesses in hmR0VmxSetupVmcsProcCtls().
|
---|
1424 | */
|
---|
1425 | if (!(pVCpu->hmr0.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST))
|
---|
1426 | {
|
---|
1427 | Assert(!(pVCpu->hmr0.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)); /* Guest MSRs better not be loaded now. */
|
---|
1428 | if (pVCpu->CTX_SUFF(pVM)->hmr0.s.fAllow64BitGuests)
|
---|
1429 | {
|
---|
1430 | pVCpu->hmr0.s.vmx.u64HostMsrLStar = ASMRdMsr(MSR_K8_LSTAR);
|
---|
1431 | pVCpu->hmr0.s.vmx.u64HostMsrStar = ASMRdMsr(MSR_K6_STAR);
|
---|
1432 | pVCpu->hmr0.s.vmx.u64HostMsrSfMask = ASMRdMsr(MSR_K8_SF_MASK);
|
---|
1433 | pVCpu->hmr0.s.vmx.u64HostMsrKernelGsBase = ASMRdMsr(MSR_K8_KERNEL_GS_BASE);
|
---|
1434 | }
|
---|
1435 | pVCpu->hmr0.s.vmx.fLazyMsrs |= VMX_LAZY_MSRS_SAVED_HOST;
|
---|
1436 | }
|
---|
1437 | }
|
---|
1438 |
|
---|
1439 |
|
---|
1440 | #ifdef VBOX_STRICT
|
---|
1441 |
|
---|
1442 | /**
|
---|
1443 | * Verifies that our cached host EFER MSR value has not changed since we cached it.
|
---|
1444 | *
|
---|
1445 | * @param pVmcsInfo The VMCS info. object.
|
---|
1446 | */
|
---|
1447 | static void hmR0VmxCheckHostEferMsr(PCVMXVMCSINFO pVmcsInfo)
|
---|
1448 | {
|
---|
1449 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
1450 |
|
---|
1451 | if (pVmcsInfo->u32ExitCtls & VMX_EXIT_CTLS_LOAD_EFER_MSR)
|
---|
1452 | {
|
---|
1453 | uint64_t const uHostEferMsr = ASMRdMsr(MSR_K6_EFER);
|
---|
1454 | uint64_t const uHostEferMsrCache = g_uHmVmxHostMsrEfer;
|
---|
1455 | uint64_t uVmcsEferMsrVmcs;
|
---|
1456 | int rc = VMXReadVmcs64(VMX_VMCS64_HOST_EFER_FULL, &uVmcsEferMsrVmcs);
|
---|
1457 | AssertRC(rc);
|
---|
1458 |
|
---|
1459 | AssertMsgReturnVoid(uHostEferMsr == uVmcsEferMsrVmcs,
|
---|
1460 | ("EFER Host/VMCS mismatch! host=%#RX64 vmcs=%#RX64\n", uHostEferMsr, uVmcsEferMsrVmcs));
|
---|
1461 | AssertMsgReturnVoid(uHostEferMsr == uHostEferMsrCache,
|
---|
1462 | ("EFER Host/Cache mismatch! host=%#RX64 cache=%#RX64\n", uHostEferMsr, uHostEferMsrCache));
|
---|
1463 | }
|
---|
1464 | }
|
---|
1465 |
|
---|
1466 |
|
---|
1467 | /**
|
---|
1468 | * Verifies whether the guest/host MSR pairs in the auto-load/store area in the
|
---|
1469 | * VMCS are correct.
|
---|
1470 | *
|
---|
1471 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1472 | * @param pVmcsInfo The VMCS info. object.
|
---|
1473 | * @param fIsNstGstVmcs Whether this is a nested-guest VMCS.
|
---|
1474 | */
|
---|
1475 | static void hmR0VmxCheckAutoLoadStoreMsrs(PVMCPUCC pVCpu, PCVMXVMCSINFO pVmcsInfo, bool fIsNstGstVmcs)
|
---|
1476 | {
|
---|
1477 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
1478 |
|
---|
1479 | /* Read the various MSR-area counts from the VMCS. */
|
---|
1480 | uint32_t cEntryLoadMsrs;
|
---|
1481 | uint32_t cExitStoreMsrs;
|
---|
1482 | uint32_t cExitLoadMsrs;
|
---|
1483 | int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, &cEntryLoadMsrs); AssertRC(rc);
|
---|
1484 | rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, &cExitStoreMsrs); AssertRC(rc);
|
---|
1485 | rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, &cExitLoadMsrs); AssertRC(rc);
|
---|
1486 |
|
---|
1487 | /* Verify all the MSR counts are the same. */
|
---|
1488 | Assert(cEntryLoadMsrs == cExitStoreMsrs);
|
---|
1489 | Assert(cExitStoreMsrs == cExitLoadMsrs);
|
---|
1490 | uint32_t const cMsrs = cExitLoadMsrs;
|
---|
1491 |
|
---|
1492 | /* Verify the MSR counts do not exceed the maximum count supported by the hardware. */
|
---|
1493 | Assert(cMsrs < VMX_MISC_MAX_MSRS(g_HmMsrs.u.vmx.u64Misc));
|
---|
1494 |
|
---|
1495 | /* Verify the MSR counts are within the allocated page size. */
|
---|
1496 | Assert(sizeof(VMXAUTOMSR) * cMsrs <= X86_PAGE_4K_SIZE);
|
---|
1497 |
|
---|
1498 | /* Verify the relevant contents of the MSR areas match. */
|
---|
1499 | PCVMXAUTOMSR pGuestMsrLoad = (PCVMXAUTOMSR)pVmcsInfo->pvGuestMsrLoad;
|
---|
1500 | PCVMXAUTOMSR pGuestMsrStore = (PCVMXAUTOMSR)pVmcsInfo->pvGuestMsrStore;
|
---|
1501 | PCVMXAUTOMSR pHostMsrLoad = (PCVMXAUTOMSR)pVmcsInfo->pvHostMsrLoad;
|
---|
1502 | bool const fSeparateExitMsrStorePage = hmR0VmxIsSeparateExitMsrStoreAreaVmcs(pVmcsInfo);
|
---|
1503 | for (uint32_t i = 0; i < cMsrs; i++)
|
---|
1504 | {
|
---|
1505 | /* Verify that the MSRs are paired properly and that the host MSR has the correct value. */
|
---|
1506 | if (fSeparateExitMsrStorePage)
|
---|
1507 | {
|
---|
1508 | AssertMsgReturnVoid(pGuestMsrLoad->u32Msr == pGuestMsrStore->u32Msr,
|
---|
1509 | ("GuestMsrLoad=%#RX32 GuestMsrStore=%#RX32 cMsrs=%u\n",
|
---|
1510 | pGuestMsrLoad->u32Msr, pGuestMsrStore->u32Msr, cMsrs));
|
---|
1511 | }
|
---|
1512 |
|
---|
1513 | AssertMsgReturnVoid(pHostMsrLoad->u32Msr == pGuestMsrLoad->u32Msr,
|
---|
1514 | ("HostMsrLoad=%#RX32 GuestMsrLoad=%#RX32 cMsrs=%u\n",
|
---|
1515 | pHostMsrLoad->u32Msr, pGuestMsrLoad->u32Msr, cMsrs));
|
---|
1516 |
|
---|
1517 | uint64_t const u64HostMsr = ASMRdMsr(pHostMsrLoad->u32Msr);
|
---|
1518 | AssertMsgReturnVoid(pHostMsrLoad->u64Value == u64HostMsr,
|
---|
1519 | ("u32Msr=%#RX32 VMCS Value=%#RX64 ASMRdMsr=%#RX64 cMsrs=%u\n",
|
---|
1520 | pHostMsrLoad->u32Msr, pHostMsrLoad->u64Value, u64HostMsr, cMsrs));
|
---|
1521 |
|
---|
1522 | /* Verify that cached host EFER MSR matches what's loaded on the CPU. */
|
---|
1523 | bool const fIsEferMsr = RT_BOOL(pHostMsrLoad->u32Msr == MSR_K6_EFER);
|
---|
1524 | AssertMsgReturnVoid(!fIsEferMsr || u64HostMsr == g_uHmVmxHostMsrEfer,
|
---|
1525 | ("Cached=%#RX64 ASMRdMsr=%#RX64 cMsrs=%u\n", g_uHmVmxHostMsrEfer, u64HostMsr, cMsrs));
|
---|
1526 |
|
---|
1527 | /* Verify that the accesses are as expected in the MSR bitmap for auto-load/store MSRs. */
|
---|
1528 | if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
|
---|
1529 | {
|
---|
1530 | uint32_t const fMsrpm = CPUMGetVmxMsrPermission(pVmcsInfo->pvMsrBitmap, pGuestMsrLoad->u32Msr);
|
---|
1531 | if (fIsEferMsr)
|
---|
1532 | {
|
---|
1533 | AssertMsgReturnVoid((fMsrpm & VMXMSRPM_EXIT_RD), ("Passthru read for EFER MSR!?\n"));
|
---|
1534 | AssertMsgReturnVoid((fMsrpm & VMXMSRPM_EXIT_WR), ("Passthru write for EFER MSR!?\n"));
|
---|
1535 | }
|
---|
1536 | else
|
---|
1537 | {
|
---|
1538 | /* Verify LBR MSRs (used only for debugging) are intercepted. We don't passthru these MSRs to the guest yet. */
|
---|
1539 | PCVMCC pVM = pVCpu->CTX_SUFF(pVM);
|
---|
1540 | if ( pVM->hmr0.s.vmx.fLbr
|
---|
1541 | && ( hmR0VmxIsLbrBranchFromMsr(pVM, pGuestMsrLoad->u32Msr, NULL /* pidxMsr */)
|
---|
1542 | || hmR0VmxIsLbrBranchToMsr(pVM, pGuestMsrLoad->u32Msr, NULL /* pidxMsr */)
|
---|
1543 | || pGuestMsrLoad->u32Msr == pVM->hmr0.s.vmx.idLbrTosMsr))
|
---|
1544 | {
|
---|
1545 | AssertMsgReturnVoid((fMsrpm & VMXMSRPM_MASK) == VMXMSRPM_EXIT_RD_WR,
|
---|
1546 | ("u32Msr=%#RX32 cMsrs=%u Passthru read/write for LBR MSRs!\n",
|
---|
1547 | pGuestMsrLoad->u32Msr, cMsrs));
|
---|
1548 | }
|
---|
1549 | else if (!fIsNstGstVmcs)
|
---|
1550 | {
|
---|
1551 | AssertMsgReturnVoid((fMsrpm & VMXMSRPM_MASK) == VMXMSRPM_ALLOW_RD_WR,
|
---|
1552 | ("u32Msr=%#RX32 cMsrs=%u No passthru read/write!\n", pGuestMsrLoad->u32Msr, cMsrs));
|
---|
1553 | }
|
---|
1554 | else
|
---|
1555 | {
|
---|
1556 | /*
|
---|
1557 | * A nested-guest VMCS must -also- allow read/write passthrough for the MSR for us to
|
---|
1558 | * execute a nested-guest with MSR passthrough.
|
---|
1559 | *
|
---|
1560 | * Check if the nested-guest MSR bitmap allows passthrough, and if so, assert that we
|
---|
1561 | * allow passthrough too.
|
---|
1562 | */
|
---|
1563 | void const *pvMsrBitmapNstGst = pVCpu->cpum.GstCtx.hwvirt.vmx.abMsrBitmap;
|
---|
1564 | Assert(pvMsrBitmapNstGst);
|
---|
1565 | uint32_t const fMsrpmNstGst = CPUMGetVmxMsrPermission(pvMsrBitmapNstGst, pGuestMsrLoad->u32Msr);
|
---|
1566 | AssertMsgReturnVoid(fMsrpm == fMsrpmNstGst,
|
---|
1567 | ("u32Msr=%#RX32 cMsrs=%u Permission mismatch fMsrpm=%#x fMsrpmNstGst=%#x!\n",
|
---|
1568 | pGuestMsrLoad->u32Msr, cMsrs, fMsrpm, fMsrpmNstGst));
|
---|
1569 | }
|
---|
1570 | }
|
---|
1571 | }
|
---|
1572 |
|
---|
1573 | /* Move to the next MSR. */
|
---|
1574 | pHostMsrLoad++;
|
---|
1575 | pGuestMsrLoad++;
|
---|
1576 | pGuestMsrStore++;
|
---|
1577 | }
|
---|
1578 | }
|
---|
1579 |
|
---|
1580 | #endif /* VBOX_STRICT */
|
---|
1581 |
|
---|
1582 | /**
|
---|
1583 | * Flushes the TLB using EPT.
|
---|
1584 | *
|
---|
1585 | * @returns VBox status code.
|
---|
1586 | * @param pVCpu The cross context virtual CPU structure of the calling
|
---|
1587 | * EMT. Can be NULL depending on @a enmTlbFlush.
|
---|
1588 | * @param pVmcsInfo The VMCS info. object. Can be NULL depending on @a
|
---|
1589 | * enmTlbFlush.
|
---|
1590 | * @param enmTlbFlush Type of flush.
|
---|
1591 | *
|
---|
1592 | * @remarks Caller is responsible for making sure this function is called only
|
---|
1593 | * when NestedPaging is supported and providing @a enmTlbFlush that is
|
---|
1594 | * supported by the CPU.
|
---|
1595 | * @remarks Can be called with interrupts disabled.
|
---|
1596 | */
|
---|
1597 | static void hmR0VmxFlushEpt(PVMCPUCC pVCpu, PCVMXVMCSINFO pVmcsInfo, VMXTLBFLUSHEPT enmTlbFlush)
|
---|
1598 | {
|
---|
1599 | uint64_t au64Descriptor[2];
|
---|
1600 | if (enmTlbFlush == VMXTLBFLUSHEPT_ALL_CONTEXTS)
|
---|
1601 | au64Descriptor[0] = 0;
|
---|
1602 | else
|
---|
1603 | {
|
---|
1604 | Assert(pVCpu);
|
---|
1605 | Assert(pVmcsInfo);
|
---|
1606 | au64Descriptor[0] = pVmcsInfo->HCPhysEPTP;
|
---|
1607 | }
|
---|
1608 | au64Descriptor[1] = 0; /* MBZ. Intel spec. 33.3 "VMX Instructions" */
|
---|
1609 |
|
---|
1610 | int rc = VMXR0InvEPT(enmTlbFlush, &au64Descriptor[0]);
|
---|
1611 | AssertMsg(rc == VINF_SUCCESS, ("VMXR0InvEPT %#x %#RHp failed. rc=%Rrc\n", enmTlbFlush, au64Descriptor[0], rc));
|
---|
1612 |
|
---|
1613 | if ( RT_SUCCESS(rc)
|
---|
1614 | && pVCpu)
|
---|
1615 | STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushNestedPaging);
|
---|
1616 | }
|
---|
1617 |
|
---|
1618 |
|
---|
1619 | /**
|
---|
1620 | * Flushes the TLB using VPID.
|
---|
1621 | *
|
---|
1622 | * @returns VBox status code.
|
---|
1623 | * @param pVCpu The cross context virtual CPU structure of the calling
|
---|
1624 | * EMT. Can be NULL depending on @a enmTlbFlush.
|
---|
1625 | * @param enmTlbFlush Type of flush.
|
---|
1626 | * @param GCPtr Virtual address of the page to flush (can be 0 depending
|
---|
1627 | * on @a enmTlbFlush).
|
---|
1628 | *
|
---|
1629 | * @remarks Can be called with interrupts disabled.
|
---|
1630 | */
|
---|
1631 | static void hmR0VmxFlushVpid(PVMCPUCC pVCpu, VMXTLBFLUSHVPID enmTlbFlush, RTGCPTR GCPtr)
|
---|
1632 | {
|
---|
1633 | Assert(pVCpu->CTX_SUFF(pVM)->hmr0.s.vmx.fVpid);
|
---|
1634 |
|
---|
1635 | uint64_t au64Descriptor[2];
|
---|
1636 | if (enmTlbFlush == VMXTLBFLUSHVPID_ALL_CONTEXTS)
|
---|
1637 | {
|
---|
1638 | au64Descriptor[0] = 0;
|
---|
1639 | au64Descriptor[1] = 0;
|
---|
1640 | }
|
---|
1641 | else
|
---|
1642 | {
|
---|
1643 | AssertPtr(pVCpu);
|
---|
1644 | AssertMsg(pVCpu->hmr0.s.uCurrentAsid != 0, ("VMXR0InvVPID: invalid ASID %lu\n", pVCpu->hmr0.s.uCurrentAsid));
|
---|
1645 | AssertMsg(pVCpu->hmr0.s.uCurrentAsid <= UINT16_MAX, ("VMXR0InvVPID: invalid ASID %lu\n", pVCpu->hmr0.s.uCurrentAsid));
|
---|
1646 | au64Descriptor[0] = pVCpu->hmr0.s.uCurrentAsid;
|
---|
1647 | au64Descriptor[1] = GCPtr;
|
---|
1648 | }
|
---|
1649 |
|
---|
1650 | int rc = VMXR0InvVPID(enmTlbFlush, &au64Descriptor[0]);
|
---|
1651 | AssertMsg(rc == VINF_SUCCESS,
|
---|
1652 | ("VMXR0InvVPID %#x %u %RGv failed with %Rrc\n", enmTlbFlush, pVCpu ? pVCpu->hmr0.s.uCurrentAsid : 0, GCPtr, rc));
|
---|
1653 |
|
---|
1654 | if ( RT_SUCCESS(rc)
|
---|
1655 | && pVCpu)
|
---|
1656 | STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushAsid);
|
---|
1657 | NOREF(rc);
|
---|
1658 | }
|
---|
1659 |
|
---|
1660 |
|
---|
1661 | /**
|
---|
1662 | * Invalidates a guest page by guest virtual address. Only relevant for EPT/VPID,
|
---|
1663 | * otherwise there is nothing really to invalidate.
|
---|
1664 | *
|
---|
1665 | * @returns VBox status code.
|
---|
1666 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1667 | * @param GCVirt Guest virtual address of the page to invalidate.
|
---|
1668 | */
|
---|
1669 | VMMR0DECL(int) VMXR0InvalidatePage(PVMCPUCC pVCpu, RTGCPTR GCVirt)
|
---|
1670 | {
|
---|
1671 | AssertPtr(pVCpu);
|
---|
1672 | LogFlowFunc(("pVCpu=%p GCVirt=%RGv\n", pVCpu, GCVirt));
|
---|
1673 |
|
---|
1674 | if (!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_TLB_FLUSH))
|
---|
1675 | {
|
---|
1676 | /*
|
---|
1677 | * We must invalidate the guest TLB entry in either case, we cannot ignore it even for
|
---|
1678 | * the EPT case. See @bugref{6043} and @bugref{6177}.
|
---|
1679 | *
|
---|
1680 | * Set the VMCPU_FF_TLB_FLUSH force flag and flush before VM-entry in hmR0VmxFlushTLB*()
|
---|
1681 | * as this function maybe called in a loop with individual addresses.
|
---|
1682 | */
|
---|
1683 | PVMCC pVM = pVCpu->CTX_SUFF(pVM);
|
---|
1684 | if (pVM->hmr0.s.vmx.fVpid)
|
---|
1685 | {
|
---|
1686 | if (g_HmMsrs.u.vmx.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR)
|
---|
1687 | {
|
---|
1688 | hmR0VmxFlushVpid(pVCpu, VMXTLBFLUSHVPID_INDIV_ADDR, GCVirt);
|
---|
1689 | STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbInvlpgVirt);
|
---|
1690 | }
|
---|
1691 | else
|
---|
1692 | VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
|
---|
1693 | }
|
---|
1694 | else if (pVM->hmr0.s.fNestedPaging)
|
---|
1695 | VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
|
---|
1696 | }
|
---|
1697 |
|
---|
1698 | return VINF_SUCCESS;
|
---|
1699 | }
|
---|
1700 |
|
---|
1701 |
|
---|
1702 | /**
|
---|
1703 | * Dummy placeholder for tagged-TLB flush handling before VM-entry. Used in the
|
---|
1704 | * case where neither EPT nor VPID is supported by the CPU.
|
---|
1705 | *
|
---|
1706 | * @param pHostCpu The HM physical-CPU structure.
|
---|
1707 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1708 | *
|
---|
1709 | * @remarks Called with interrupts disabled.
|
---|
1710 | */
|
---|
1711 | static void hmR0VmxFlushTaggedTlbNone(PHMPHYSCPU pHostCpu, PVMCPUCC pVCpu)
|
---|
1712 | {
|
---|
1713 | AssertPtr(pVCpu);
|
---|
1714 | AssertPtr(pHostCpu);
|
---|
1715 |
|
---|
1716 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH);
|
---|
1717 |
|
---|
1718 | Assert(pHostCpu->idCpu != NIL_RTCPUID);
|
---|
1719 | pVCpu->hmr0.s.idLastCpu = pHostCpu->idCpu;
|
---|
1720 | pVCpu->hmr0.s.cTlbFlushes = pHostCpu->cTlbFlushes;
|
---|
1721 | pVCpu->hmr0.s.fForceTLBFlush = false;
|
---|
1722 | return;
|
---|
1723 | }
|
---|
1724 |
|
---|
1725 |
|
---|
1726 | /**
|
---|
1727 | * Flushes the tagged-TLB entries for EPT+VPID CPUs as necessary.
|
---|
1728 | *
|
---|
1729 | * @param pHostCpu The HM physical-CPU structure.
|
---|
1730 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1731 | * @param pVmcsInfo The VMCS info. object.
|
---|
1732 | *
|
---|
1733 | * @remarks All references to "ASID" in this function pertains to "VPID" in Intel's
|
---|
1734 | * nomenclature. The reason is, to avoid confusion in compare statements
|
---|
1735 | * since the host-CPU copies are named "ASID".
|
---|
1736 | *
|
---|
1737 | * @remarks Called with interrupts disabled.
|
---|
1738 | */
|
---|
1739 | static void hmR0VmxFlushTaggedTlbBoth(PHMPHYSCPU pHostCpu, PVMCPUCC pVCpu, PCVMXVMCSINFO pVmcsInfo)
|
---|
1740 | {
|
---|
1741 | #ifdef VBOX_WITH_STATISTICS
|
---|
1742 | bool fTlbFlushed = false;
|
---|
1743 | # define HMVMX_SET_TAGGED_TLB_FLUSHED() do { fTlbFlushed = true; } while (0)
|
---|
1744 | # define HMVMX_UPDATE_FLUSH_SKIPPED_STAT() do { \
|
---|
1745 | if (!fTlbFlushed) \
|
---|
1746 | STAM_COUNTER_INC(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch); \
|
---|
1747 | } while (0)
|
---|
1748 | #else
|
---|
1749 | # define HMVMX_SET_TAGGED_TLB_FLUSHED() do { } while (0)
|
---|
1750 | # define HMVMX_UPDATE_FLUSH_SKIPPED_STAT() do { } while (0)
|
---|
1751 | #endif
|
---|
1752 |
|
---|
1753 | AssertPtr(pVCpu);
|
---|
1754 | AssertPtr(pHostCpu);
|
---|
1755 | Assert(pHostCpu->idCpu != NIL_RTCPUID);
|
---|
1756 |
|
---|
1757 | PVMCC pVM = pVCpu->CTX_SUFF(pVM);
|
---|
1758 | AssertMsg(pVM->hmr0.s.fNestedPaging && pVM->hmr0.s.vmx.fVpid,
|
---|
1759 | ("hmR0VmxFlushTaggedTlbBoth cannot be invoked unless NestedPaging & VPID are enabled."
|
---|
1760 | "fNestedPaging=%RTbool fVpid=%RTbool", pVM->hmr0.s.fNestedPaging, pVM->hmr0.s.vmx.fVpid));
|
---|
1761 |
|
---|
1762 | /*
|
---|
1763 | * Force a TLB flush for the first world-switch if the current CPU differs from the one we
|
---|
1764 | * ran on last. If the TLB flush count changed, another VM (VCPU rather) has hit the ASID
|
---|
1765 | * limit while flushing the TLB or the host CPU is online after a suspend/resume, so we
|
---|
1766 | * cannot reuse the current ASID anymore.
|
---|
1767 | */
|
---|
1768 | if ( pVCpu->hmr0.s.idLastCpu != pHostCpu->idCpu
|
---|
1769 | || pVCpu->hmr0.s.cTlbFlushes != pHostCpu->cTlbFlushes)
|
---|
1770 | {
|
---|
1771 | ++pHostCpu->uCurrentAsid;
|
---|
1772 | if (pHostCpu->uCurrentAsid >= g_uHmMaxAsid)
|
---|
1773 | {
|
---|
1774 | pHostCpu->uCurrentAsid = 1; /* Wraparound to 1; host uses 0. */
|
---|
1775 | pHostCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new VPID. */
|
---|
1776 | pHostCpu->fFlushAsidBeforeUse = true; /* All VCPUs that run on this host CPU must flush their new VPID before use. */
|
---|
1777 | }
|
---|
1778 |
|
---|
1779 | pVCpu->hmr0.s.uCurrentAsid = pHostCpu->uCurrentAsid;
|
---|
1780 | pVCpu->hmr0.s.idLastCpu = pHostCpu->idCpu;
|
---|
1781 | pVCpu->hmr0.s.cTlbFlushes = pHostCpu->cTlbFlushes;
|
---|
1782 |
|
---|
1783 | /*
|
---|
1784 | * Flush by EPT when we get rescheduled to a new host CPU to ensure EPT-only tagged mappings are also
|
---|
1785 | * invalidated. We don't need to flush-by-VPID here as flushing by EPT covers it. See @bugref{6568}.
|
---|
1786 | */
|
---|
1787 | hmR0VmxFlushEpt(pVCpu, pVmcsInfo, pVM->hmr0.s.vmx.enmTlbFlushEpt);
|
---|
1788 | STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
|
---|
1789 | HMVMX_SET_TAGGED_TLB_FLUSHED();
|
---|
1790 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH);
|
---|
1791 | }
|
---|
1792 | else if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH)) /* Check for explicit TLB flushes. */
|
---|
1793 | {
|
---|
1794 | /*
|
---|
1795 | * Changes to the EPT paging structure by VMM requires flushing-by-EPT as the CPU
|
---|
1796 | * creates guest-physical (ie. only EPT-tagged) mappings while traversing the EPT
|
---|
1797 | * tables when EPT is in use. Flushing-by-VPID will only flush linear (only
|
---|
1798 | * VPID-tagged) and combined (EPT+VPID tagged) mappings but not guest-physical
|
---|
1799 | * mappings, see @bugref{6568}.
|
---|
1800 | *
|
---|
1801 | * See Intel spec. 28.3.2 "Creating and Using Cached Translation Information".
|
---|
1802 | */
|
---|
1803 | hmR0VmxFlushEpt(pVCpu, pVmcsInfo, pVM->hmr0.s.vmx.enmTlbFlushEpt);
|
---|
1804 | STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
|
---|
1805 | HMVMX_SET_TAGGED_TLB_FLUSHED();
|
---|
1806 | }
|
---|
1807 | else if (pVCpu->hm.s.vmx.fSwitchedNstGstFlushTlb)
|
---|
1808 | {
|
---|
1809 | /*
|
---|
1810 | * The nested-guest specifies its own guest-physical address to use as the APIC-access
|
---|
1811 | * address which requires flushing the TLB of EPT cached structures.
|
---|
1812 | *
|
---|
1813 | * See Intel spec. 28.3.3.4 "Guidelines for Use of the INVEPT Instruction".
|
---|
1814 | */
|
---|
1815 | hmR0VmxFlushEpt(pVCpu, pVmcsInfo, pVM->hmr0.s.vmx.enmTlbFlushEpt);
|
---|
1816 | pVCpu->hm.s.vmx.fSwitchedNstGstFlushTlb = false;
|
---|
1817 | STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbNstGst);
|
---|
1818 | HMVMX_SET_TAGGED_TLB_FLUSHED();
|
---|
1819 | }
|
---|
1820 |
|
---|
1821 |
|
---|
1822 | pVCpu->hmr0.s.fForceTLBFlush = false;
|
---|
1823 | HMVMX_UPDATE_FLUSH_SKIPPED_STAT();
|
---|
1824 |
|
---|
1825 | Assert(pVCpu->hmr0.s.idLastCpu == pHostCpu->idCpu);
|
---|
1826 | Assert(pVCpu->hmr0.s.cTlbFlushes == pHostCpu->cTlbFlushes);
|
---|
1827 | AssertMsg(pVCpu->hmr0.s.cTlbFlushes == pHostCpu->cTlbFlushes,
|
---|
1828 | ("Flush count mismatch for cpu %d (%u vs %u)\n", pHostCpu->idCpu, pVCpu->hmr0.s.cTlbFlushes, pHostCpu->cTlbFlushes));
|
---|
1829 | AssertMsg(pHostCpu->uCurrentAsid >= 1 && pHostCpu->uCurrentAsid < g_uHmMaxAsid,
|
---|
1830 | ("Cpu[%u] uCurrentAsid=%u cTlbFlushes=%u pVCpu->idLastCpu=%u pVCpu->cTlbFlushes=%u\n", pHostCpu->idCpu,
|
---|
1831 | pHostCpu->uCurrentAsid, pHostCpu->cTlbFlushes, pVCpu->hmr0.s.idLastCpu, pVCpu->hmr0.s.cTlbFlushes));
|
---|
1832 | AssertMsg(pVCpu->hmr0.s.uCurrentAsid >= 1 && pVCpu->hmr0.s.uCurrentAsid < g_uHmMaxAsid,
|
---|
1833 | ("Cpu[%u] pVCpu->uCurrentAsid=%u\n", pHostCpu->idCpu, pVCpu->hmr0.s.uCurrentAsid));
|
---|
1834 |
|
---|
1835 | /* Update VMCS with the VPID. */
|
---|
1836 | int rc = VMXWriteVmcs16(VMX_VMCS16_VPID, pVCpu->hmr0.s.uCurrentAsid);
|
---|
1837 | AssertRC(rc);
|
---|
1838 |
|
---|
1839 | #undef HMVMX_SET_TAGGED_TLB_FLUSHED
|
---|
1840 | }
|
---|
1841 |
|
---|
1842 |
|
---|
1843 | /**
|
---|
1844 | * Flushes the tagged-TLB entries for EPT CPUs as necessary.
|
---|
1845 | *
|
---|
1846 | * @param pHostCpu The HM physical-CPU structure.
|
---|
1847 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1848 | * @param pVmcsInfo The VMCS info. object.
|
---|
1849 | *
|
---|
1850 | * @remarks Called with interrupts disabled.
|
---|
1851 | */
|
---|
1852 | static void hmR0VmxFlushTaggedTlbEpt(PHMPHYSCPU pHostCpu, PVMCPUCC pVCpu, PCVMXVMCSINFO pVmcsInfo)
|
---|
1853 | {
|
---|
1854 | AssertPtr(pVCpu);
|
---|
1855 | AssertPtr(pHostCpu);
|
---|
1856 | Assert(pHostCpu->idCpu != NIL_RTCPUID);
|
---|
1857 | AssertMsg(pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging, ("hmR0VmxFlushTaggedTlbEpt cannot be invoked without NestedPaging."));
|
---|
1858 | AssertMsg(!pVCpu->CTX_SUFF(pVM)->hmr0.s.vmx.fVpid, ("hmR0VmxFlushTaggedTlbEpt cannot be invoked with VPID."));
|
---|
1859 |
|
---|
1860 | /*
|
---|
1861 | * Force a TLB flush for the first world-switch if the current CPU differs from the one we ran on last.
|
---|
1862 | * A change in the TLB flush count implies the host CPU is online after a suspend/resume.
|
---|
1863 | */
|
---|
1864 | if ( pVCpu->hmr0.s.idLastCpu != pHostCpu->idCpu
|
---|
1865 | || pVCpu->hmr0.s.cTlbFlushes != pHostCpu->cTlbFlushes)
|
---|
1866 | {
|
---|
1867 | pVCpu->hmr0.s.fForceTLBFlush = true;
|
---|
1868 | STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
|
---|
1869 | }
|
---|
1870 |
|
---|
1871 | /* Check for explicit TLB flushes. */
|
---|
1872 | if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
|
---|
1873 | {
|
---|
1874 | pVCpu->hmr0.s.fForceTLBFlush = true;
|
---|
1875 | STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
|
---|
1876 | }
|
---|
1877 |
|
---|
1878 | /* Check for TLB flushes while switching to/from a nested-guest. */
|
---|
1879 | if (pVCpu->hm.s.vmx.fSwitchedNstGstFlushTlb)
|
---|
1880 | {
|
---|
1881 | pVCpu->hmr0.s.fForceTLBFlush = true;
|
---|
1882 | pVCpu->hm.s.vmx.fSwitchedNstGstFlushTlb = false;
|
---|
1883 | STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbNstGst);
|
---|
1884 | }
|
---|
1885 |
|
---|
1886 | pVCpu->hmr0.s.idLastCpu = pHostCpu->idCpu;
|
---|
1887 | pVCpu->hmr0.s.cTlbFlushes = pHostCpu->cTlbFlushes;
|
---|
1888 |
|
---|
1889 | if (pVCpu->hmr0.s.fForceTLBFlush)
|
---|
1890 | {
|
---|
1891 | hmR0VmxFlushEpt(pVCpu, pVmcsInfo, pVCpu->CTX_SUFF(pVM)->hmr0.s.vmx.enmTlbFlushEpt);
|
---|
1892 | pVCpu->hmr0.s.fForceTLBFlush = false;
|
---|
1893 | }
|
---|
1894 | }
|
---|
1895 |
|
---|
1896 |
|
---|
1897 | /**
|
---|
1898 | * Flushes the tagged-TLB entries for VPID CPUs as necessary.
|
---|
1899 | *
|
---|
1900 | * @param pHostCpu The HM physical-CPU structure.
|
---|
1901 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1902 | *
|
---|
1903 | * @remarks Called with interrupts disabled.
|
---|
1904 | */
|
---|
1905 | static void hmR0VmxFlushTaggedTlbVpid(PHMPHYSCPU pHostCpu, PVMCPUCC pVCpu)
|
---|
1906 | {
|
---|
1907 | AssertPtr(pVCpu);
|
---|
1908 | AssertPtr(pHostCpu);
|
---|
1909 | Assert(pHostCpu->idCpu != NIL_RTCPUID);
|
---|
1910 | AssertMsg(pVCpu->CTX_SUFF(pVM)->hmr0.s.vmx.fVpid, ("hmR0VmxFlushTlbVpid cannot be invoked without VPID."));
|
---|
1911 | AssertMsg(!pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging, ("hmR0VmxFlushTlbVpid cannot be invoked with NestedPaging"));
|
---|
1912 |
|
---|
1913 | /*
|
---|
1914 | * Force a TLB flush for the first world switch if the current CPU differs from the one we
|
---|
1915 | * ran on last. If the TLB flush count changed, another VM (VCPU rather) has hit the ASID
|
---|
1916 | * limit while flushing the TLB or the host CPU is online after a suspend/resume, so we
|
---|
1917 | * cannot reuse the current ASID anymore.
|
---|
1918 | */
|
---|
1919 | if ( pVCpu->hmr0.s.idLastCpu != pHostCpu->idCpu
|
---|
1920 | || pVCpu->hmr0.s.cTlbFlushes != pHostCpu->cTlbFlushes)
|
---|
1921 | {
|
---|
1922 | pVCpu->hmr0.s.fForceTLBFlush = true;
|
---|
1923 | STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
|
---|
1924 | }
|
---|
1925 |
|
---|
1926 | /* Check for explicit TLB flushes. */
|
---|
1927 | if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
|
---|
1928 | {
|
---|
1929 | /*
|
---|
1930 | * If we ever support VPID flush combinations other than ALL or SINGLE-context (see
|
---|
1931 | * hmR0VmxSetupTaggedTlb()) we would need to explicitly flush in this case (add an
|
---|
1932 | * fExplicitFlush = true here and change the pHostCpu->fFlushAsidBeforeUse check below to
|
---|
1933 | * include fExplicitFlush's too) - an obscure corner case.
|
---|
1934 | */
|
---|
1935 | pVCpu->hmr0.s.fForceTLBFlush = true;
|
---|
1936 | STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
|
---|
1937 | }
|
---|
1938 |
|
---|
1939 | /* Check for TLB flushes while switching to/from a nested-guest. */
|
---|
1940 | if (pVCpu->hm.s.vmx.fSwitchedNstGstFlushTlb)
|
---|
1941 | {
|
---|
1942 | pVCpu->hmr0.s.fForceTLBFlush = true;
|
---|
1943 | pVCpu->hm.s.vmx.fSwitchedNstGstFlushTlb = false;
|
---|
1944 | STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbNstGst);
|
---|
1945 | }
|
---|
1946 |
|
---|
1947 | PVMCC pVM = pVCpu->CTX_SUFF(pVM);
|
---|
1948 | pVCpu->hmr0.s.idLastCpu = pHostCpu->idCpu;
|
---|
1949 | if (pVCpu->hmr0.s.fForceTLBFlush)
|
---|
1950 | {
|
---|
1951 | ++pHostCpu->uCurrentAsid;
|
---|
1952 | if (pHostCpu->uCurrentAsid >= g_uHmMaxAsid)
|
---|
1953 | {
|
---|
1954 | pHostCpu->uCurrentAsid = 1; /* Wraparound to 1; host uses 0 */
|
---|
1955 | pHostCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new VPID. */
|
---|
1956 | pHostCpu->fFlushAsidBeforeUse = true; /* All VCPUs that run on this host CPU must flush their new VPID before use. */
|
---|
1957 | }
|
---|
1958 |
|
---|
1959 | pVCpu->hmr0.s.fForceTLBFlush = false;
|
---|
1960 | pVCpu->hmr0.s.cTlbFlushes = pHostCpu->cTlbFlushes;
|
---|
1961 | pVCpu->hmr0.s.uCurrentAsid = pHostCpu->uCurrentAsid;
|
---|
1962 | if (pHostCpu->fFlushAsidBeforeUse)
|
---|
1963 | {
|
---|
1964 | if (pVM->hmr0.s.vmx.enmTlbFlushVpid == VMXTLBFLUSHVPID_SINGLE_CONTEXT)
|
---|
1965 | hmR0VmxFlushVpid(pVCpu, VMXTLBFLUSHVPID_SINGLE_CONTEXT, 0 /* GCPtr */);
|
---|
1966 | else if (pVM->hmr0.s.vmx.enmTlbFlushVpid == VMXTLBFLUSHVPID_ALL_CONTEXTS)
|
---|
1967 | {
|
---|
1968 | hmR0VmxFlushVpid(pVCpu, VMXTLBFLUSHVPID_ALL_CONTEXTS, 0 /* GCPtr */);
|
---|
1969 | pHostCpu->fFlushAsidBeforeUse = false;
|
---|
1970 | }
|
---|
1971 | else
|
---|
1972 | {
|
---|
1973 | /* hmR0VmxSetupTaggedTlb() ensures we never get here. Paranoia. */
|
---|
1974 | AssertMsgFailed(("Unsupported VPID-flush context type.\n"));
|
---|
1975 | }
|
---|
1976 | }
|
---|
1977 | }
|
---|
1978 |
|
---|
1979 | AssertMsg(pVCpu->hmr0.s.cTlbFlushes == pHostCpu->cTlbFlushes,
|
---|
1980 | ("Flush count mismatch for cpu %d (%u vs %u)\n", pHostCpu->idCpu, pVCpu->hmr0.s.cTlbFlushes, pHostCpu->cTlbFlushes));
|
---|
1981 | AssertMsg(pHostCpu->uCurrentAsid >= 1 && pHostCpu->uCurrentAsid < g_uHmMaxAsid,
|
---|
1982 | ("Cpu[%u] uCurrentAsid=%u cTlbFlushes=%u pVCpu->idLastCpu=%u pVCpu->cTlbFlushes=%u\n", pHostCpu->idCpu,
|
---|
1983 | pHostCpu->uCurrentAsid, pHostCpu->cTlbFlushes, pVCpu->hmr0.s.idLastCpu, pVCpu->hmr0.s.cTlbFlushes));
|
---|
1984 | AssertMsg(pVCpu->hmr0.s.uCurrentAsid >= 1 && pVCpu->hmr0.s.uCurrentAsid < g_uHmMaxAsid,
|
---|
1985 | ("Cpu[%u] pVCpu->uCurrentAsid=%u\n", pHostCpu->idCpu, pVCpu->hmr0.s.uCurrentAsid));
|
---|
1986 |
|
---|
1987 | int rc = VMXWriteVmcs16(VMX_VMCS16_VPID, pVCpu->hmr0.s.uCurrentAsid);
|
---|
1988 | AssertRC(rc);
|
---|
1989 | }
|
---|
1990 |
|
---|
1991 |
|
---|
1992 | /**
|
---|
1993 | * Flushes the guest TLB entry based on CPU capabilities.
|
---|
1994 | *
|
---|
1995 | * @param pHostCpu The HM physical-CPU structure.
|
---|
1996 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1997 | * @param pVmcsInfo The VMCS info. object.
|
---|
1998 | *
|
---|
1999 | * @remarks Called with interrupts disabled.
|
---|
2000 | */
|
---|
2001 | static void hmR0VmxFlushTaggedTlb(PHMPHYSCPU pHostCpu, PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
|
---|
2002 | {
|
---|
2003 | #ifdef HMVMX_ALWAYS_FLUSH_TLB
|
---|
2004 | VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
|
---|
2005 | #endif
|
---|
2006 | PVMCC pVM = pVCpu->CTX_SUFF(pVM);
|
---|
2007 | switch (pVM->hmr0.s.vmx.enmTlbFlushType)
|
---|
2008 | {
|
---|
2009 | case VMXTLBFLUSHTYPE_EPT_VPID: hmR0VmxFlushTaggedTlbBoth(pHostCpu, pVCpu, pVmcsInfo); break;
|
---|
2010 | case VMXTLBFLUSHTYPE_EPT: hmR0VmxFlushTaggedTlbEpt(pHostCpu, pVCpu, pVmcsInfo); break;
|
---|
2011 | case VMXTLBFLUSHTYPE_VPID: hmR0VmxFlushTaggedTlbVpid(pHostCpu, pVCpu); break;
|
---|
2012 | case VMXTLBFLUSHTYPE_NONE: hmR0VmxFlushTaggedTlbNone(pHostCpu, pVCpu); break;
|
---|
2013 | default:
|
---|
2014 | AssertMsgFailed(("Invalid flush-tag function identifier\n"));
|
---|
2015 | break;
|
---|
2016 | }
|
---|
2017 | /* Don't assert that VMCPU_FF_TLB_FLUSH should no longer be pending. It can be set by other EMTs. */
|
---|
2018 | }
|
---|
2019 |
|
---|
2020 |
|
---|
2021 | /**
|
---|
2022 | * Sets up the appropriate tagged TLB-flush level and handler for flushing guest
|
---|
2023 | * TLB entries from the host TLB before VM-entry.
|
---|
2024 | *
|
---|
2025 | * @returns VBox status code.
|
---|
2026 | * @param pVM The cross context VM structure.
|
---|
2027 | */
|
---|
2028 | static int hmR0VmxSetupTaggedTlb(PVMCC pVM)
|
---|
2029 | {
|
---|
2030 | /*
|
---|
2031 | * Determine optimal flush type for nested paging.
|
---|
2032 | * We cannot ignore EPT if no suitable flush-types is supported by the CPU as we've already setup
|
---|
2033 | * unrestricted guest execution (see hmR3InitFinalizeR0()).
|
---|
2034 | */
|
---|
2035 | if (pVM->hmr0.s.fNestedPaging)
|
---|
2036 | {
|
---|
2037 | if (g_HmMsrs.u.vmx.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT)
|
---|
2038 | {
|
---|
2039 | if (g_HmMsrs.u.vmx.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_SINGLE_CONTEXT)
|
---|
2040 | pVM->hmr0.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_SINGLE_CONTEXT;
|
---|
2041 | else if (g_HmMsrs.u.vmx.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_ALL_CONTEXTS)
|
---|
2042 | pVM->hmr0.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_ALL_CONTEXTS;
|
---|
2043 | else
|
---|
2044 | {
|
---|
2045 | /* Shouldn't happen. EPT is supported but no suitable flush-types supported. */
|
---|
2046 | pVM->hmr0.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_NOT_SUPPORTED;
|
---|
2047 | VMCC_GET_CPU_0(pVM)->hm.s.u32HMError = VMX_UFC_EPT_FLUSH_TYPE_UNSUPPORTED;
|
---|
2048 | return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
|
---|
2049 | }
|
---|
2050 |
|
---|
2051 | /* Make sure the write-back cacheable memory type for EPT is supported. */
|
---|
2052 | if (RT_UNLIKELY(!(g_HmMsrs.u.vmx.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_MEMTYPE_WB)))
|
---|
2053 | {
|
---|
2054 | pVM->hmr0.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_NOT_SUPPORTED;
|
---|
2055 | VMCC_GET_CPU_0(pVM)->hm.s.u32HMError = VMX_UFC_EPT_MEM_TYPE_NOT_WB;
|
---|
2056 | return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
|
---|
2057 | }
|
---|
2058 |
|
---|
2059 | /* EPT requires a page-walk length of 4. */
|
---|
2060 | if (RT_UNLIKELY(!(g_HmMsrs.u.vmx.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_PAGE_WALK_LENGTH_4)))
|
---|
2061 | {
|
---|
2062 | pVM->hmr0.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_NOT_SUPPORTED;
|
---|
2063 | VMCC_GET_CPU_0(pVM)->hm.s.u32HMError = VMX_UFC_EPT_PAGE_WALK_LENGTH_UNSUPPORTED;
|
---|
2064 | return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
|
---|
2065 | }
|
---|
2066 | }
|
---|
2067 | else
|
---|
2068 | {
|
---|
2069 | /* Shouldn't happen. EPT is supported but INVEPT instruction is not supported. */
|
---|
2070 | pVM->hmr0.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_NOT_SUPPORTED;
|
---|
2071 | VMCC_GET_CPU_0(pVM)->hm.s.u32HMError = VMX_UFC_EPT_INVEPT_UNAVAILABLE;
|
---|
2072 | return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
|
---|
2073 | }
|
---|
2074 | }
|
---|
2075 |
|
---|
2076 | /*
|
---|
2077 | * Determine optimal flush type for VPID.
|
---|
2078 | */
|
---|
2079 | if (pVM->hmr0.s.vmx.fVpid)
|
---|
2080 | {
|
---|
2081 | if (g_HmMsrs.u.vmx.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID)
|
---|
2082 | {
|
---|
2083 | if (g_HmMsrs.u.vmx.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT)
|
---|
2084 | pVM->hmr0.s.vmx.enmTlbFlushVpid = VMXTLBFLUSHVPID_SINGLE_CONTEXT;
|
---|
2085 | else if (g_HmMsrs.u.vmx.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_ALL_CONTEXTS)
|
---|
2086 | pVM->hmr0.s.vmx.enmTlbFlushVpid = VMXTLBFLUSHVPID_ALL_CONTEXTS;
|
---|
2087 | else
|
---|
2088 | {
|
---|
2089 | /* Neither SINGLE nor ALL-context flush types for VPID is supported by the CPU. Ignore VPID capability. */
|
---|
2090 | if (g_HmMsrs.u.vmx.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR)
|
---|
2091 | LogRelFunc(("Only INDIV_ADDR supported. Ignoring VPID.\n"));
|
---|
2092 | if (g_HmMsrs.u.vmx.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT_RETAIN_GLOBALS)
|
---|
2093 | LogRelFunc(("Only SINGLE_CONTEXT_RETAIN_GLOBALS supported. Ignoring VPID.\n"));
|
---|
2094 | pVM->hmr0.s.vmx.enmTlbFlushVpid = VMXTLBFLUSHVPID_NOT_SUPPORTED;
|
---|
2095 | pVM->hmr0.s.vmx.fVpid = false;
|
---|
2096 | }
|
---|
2097 | }
|
---|
2098 | else
|
---|
2099 | {
|
---|
2100 | /* Shouldn't happen. VPID is supported but INVVPID is not supported by the CPU. Ignore VPID capability. */
|
---|
2101 | Log4Func(("VPID supported without INVEPT support. Ignoring VPID.\n"));
|
---|
2102 | pVM->hmr0.s.vmx.enmTlbFlushVpid = VMXTLBFLUSHVPID_NOT_SUPPORTED;
|
---|
2103 | pVM->hmr0.s.vmx.fVpid = false;
|
---|
2104 | }
|
---|
2105 | }
|
---|
2106 |
|
---|
2107 | /*
|
---|
2108 | * Setup the handler for flushing tagged-TLBs.
|
---|
2109 | */
|
---|
2110 | if (pVM->hmr0.s.fNestedPaging && pVM->hmr0.s.vmx.fVpid)
|
---|
2111 | pVM->hmr0.s.vmx.enmTlbFlushType = VMXTLBFLUSHTYPE_EPT_VPID;
|
---|
2112 | else if (pVM->hmr0.s.fNestedPaging)
|
---|
2113 | pVM->hmr0.s.vmx.enmTlbFlushType = VMXTLBFLUSHTYPE_EPT;
|
---|
2114 | else if (pVM->hmr0.s.vmx.fVpid)
|
---|
2115 | pVM->hmr0.s.vmx.enmTlbFlushType = VMXTLBFLUSHTYPE_VPID;
|
---|
2116 | else
|
---|
2117 | pVM->hmr0.s.vmx.enmTlbFlushType = VMXTLBFLUSHTYPE_NONE;
|
---|
2118 |
|
---|
2119 |
|
---|
2120 | /*
|
---|
2121 | * Copy out the result to ring-3.
|
---|
2122 | */
|
---|
2123 | pVM->hm.s.ForR3.vmx.fVpid = pVM->hmr0.s.vmx.fVpid;
|
---|
2124 | pVM->hm.s.ForR3.vmx.enmTlbFlushType = pVM->hmr0.s.vmx.enmTlbFlushType;
|
---|
2125 | pVM->hm.s.ForR3.vmx.enmTlbFlushEpt = pVM->hmr0.s.vmx.enmTlbFlushEpt;
|
---|
2126 | pVM->hm.s.ForR3.vmx.enmTlbFlushVpid = pVM->hmr0.s.vmx.enmTlbFlushVpid;
|
---|
2127 | return VINF_SUCCESS;
|
---|
2128 | }
|
---|
2129 |
|
---|
2130 |
|
---|
2131 | /**
|
---|
2132 | * Sets up the LBR MSR ranges based on the host CPU.
|
---|
2133 | *
|
---|
2134 | * @returns VBox status code.
|
---|
2135 | * @param pVM The cross context VM structure.
|
---|
2136 | *
|
---|
2137 | * @sa nemR3DarwinSetupLbrMsrRange
|
---|
2138 | */
|
---|
2139 | static int hmR0VmxSetupLbrMsrRange(PVMCC pVM)
|
---|
2140 | {
|
---|
2141 | Assert(pVM->hmr0.s.vmx.fLbr);
|
---|
2142 | uint32_t idLbrFromIpMsrFirst;
|
---|
2143 | uint32_t idLbrFromIpMsrLast;
|
---|
2144 | uint32_t idLbrToIpMsrFirst;
|
---|
2145 | uint32_t idLbrToIpMsrLast;
|
---|
2146 | uint32_t idLbrTosMsr;
|
---|
2147 |
|
---|
2148 | /*
|
---|
2149 | * Determine the LBR MSRs supported for this host CPU family and model.
|
---|
2150 | *
|
---|
2151 | * See Intel spec. 17.4.8 "LBR Stack".
|
---|
2152 | * See Intel "Model-Specific Registers" spec.
|
---|
2153 | */
|
---|
2154 | uint32_t const uFamilyModel = (pVM->cpum.ro.HostFeatures.uFamily << 8)
|
---|
2155 | | pVM->cpum.ro.HostFeatures.uModel;
|
---|
2156 | switch (uFamilyModel)
|
---|
2157 | {
|
---|
2158 | case 0x0f01: case 0x0f02:
|
---|
2159 | idLbrFromIpMsrFirst = MSR_P4_LASTBRANCH_0;
|
---|
2160 | idLbrFromIpMsrLast = MSR_P4_LASTBRANCH_3;
|
---|
2161 | idLbrToIpMsrFirst = 0x0;
|
---|
2162 | idLbrToIpMsrLast = 0x0;
|
---|
2163 | idLbrTosMsr = MSR_P4_LASTBRANCH_TOS;
|
---|
2164 | break;
|
---|
2165 |
|
---|
2166 | case 0x065c: case 0x065f: case 0x064e: case 0x065e: case 0x068e:
|
---|
2167 | case 0x069e: case 0x0655: case 0x0666: case 0x067a: case 0x0667:
|
---|
2168 | case 0x066a: case 0x066c: case 0x067d: case 0x067e:
|
---|
2169 | idLbrFromIpMsrFirst = MSR_LASTBRANCH_0_FROM_IP;
|
---|
2170 | idLbrFromIpMsrLast = MSR_LASTBRANCH_31_FROM_IP;
|
---|
2171 | idLbrToIpMsrFirst = MSR_LASTBRANCH_0_TO_IP;
|
---|
2172 | idLbrToIpMsrLast = MSR_LASTBRANCH_31_TO_IP;
|
---|
2173 | idLbrTosMsr = MSR_LASTBRANCH_TOS;
|
---|
2174 | break;
|
---|
2175 |
|
---|
2176 | case 0x063d: case 0x0647: case 0x064f: case 0x0656: case 0x063c:
|
---|
2177 | case 0x0645: case 0x0646: case 0x063f: case 0x062a: case 0x062d:
|
---|
2178 | case 0x063a: case 0x063e: case 0x061a: case 0x061e: case 0x061f:
|
---|
2179 | case 0x062e: case 0x0625: case 0x062c: case 0x062f:
|
---|
2180 | idLbrFromIpMsrFirst = MSR_LASTBRANCH_0_FROM_IP;
|
---|
2181 | idLbrFromIpMsrLast = MSR_LASTBRANCH_15_FROM_IP;
|
---|
2182 | idLbrToIpMsrFirst = MSR_LASTBRANCH_0_TO_IP;
|
---|
2183 | idLbrToIpMsrLast = MSR_LASTBRANCH_15_TO_IP;
|
---|
2184 | idLbrTosMsr = MSR_LASTBRANCH_TOS;
|
---|
2185 | break;
|
---|
2186 |
|
---|
2187 | case 0x0617: case 0x061d: case 0x060f:
|
---|
2188 | idLbrFromIpMsrFirst = MSR_CORE2_LASTBRANCH_0_FROM_IP;
|
---|
2189 | idLbrFromIpMsrLast = MSR_CORE2_LASTBRANCH_3_FROM_IP;
|
---|
2190 | idLbrToIpMsrFirst = MSR_CORE2_LASTBRANCH_0_TO_IP;
|
---|
2191 | idLbrToIpMsrLast = MSR_CORE2_LASTBRANCH_3_TO_IP;
|
---|
2192 | idLbrTosMsr = MSR_CORE2_LASTBRANCH_TOS;
|
---|
2193 | break;
|
---|
2194 |
|
---|
2195 | /* Atom and related microarchitectures we don't care about:
|
---|
2196 | case 0x0637: case 0x064a: case 0x064c: case 0x064d: case 0x065a:
|
---|
2197 | case 0x065d: case 0x061c: case 0x0626: case 0x0627: case 0x0635:
|
---|
2198 | case 0x0636: */
|
---|
2199 | /* All other CPUs: */
|
---|
2200 | default:
|
---|
2201 | {
|
---|
2202 | LogRelFunc(("Could not determine LBR stack size for the CPU model %#x\n", uFamilyModel));
|
---|
2203 | VMCC_GET_CPU_0(pVM)->hm.s.u32HMError = VMX_UFC_LBR_STACK_SIZE_UNKNOWN;
|
---|
2204 | return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
|
---|
2205 | }
|
---|
2206 | }
|
---|
2207 |
|
---|
2208 | /*
|
---|
2209 | * Validate.
|
---|
2210 | */
|
---|
2211 | uint32_t const cLbrStack = idLbrFromIpMsrLast - idLbrFromIpMsrFirst + 1;
|
---|
2212 | PCVMCPU pVCpu0 = VMCC_GET_CPU_0(pVM);
|
---|
2213 | AssertCompile( RT_ELEMENTS(pVCpu0->hm.s.vmx.VmcsInfo.au64LbrFromIpMsr)
|
---|
2214 | == RT_ELEMENTS(pVCpu0->hm.s.vmx.VmcsInfo.au64LbrToIpMsr));
|
---|
2215 | if (cLbrStack > RT_ELEMENTS(pVCpu0->hm.s.vmx.VmcsInfo.au64LbrFromIpMsr))
|
---|
2216 | {
|
---|
2217 | LogRelFunc(("LBR stack size of the CPU (%u) exceeds our buffer size\n", cLbrStack));
|
---|
2218 | VMCC_GET_CPU_0(pVM)->hm.s.u32HMError = VMX_UFC_LBR_STACK_SIZE_OVERFLOW;
|
---|
2219 | return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
|
---|
2220 | }
|
---|
2221 | NOREF(pVCpu0);
|
---|
2222 |
|
---|
2223 | /*
|
---|
2224 | * Update the LBR info. to the VM struct. for use later.
|
---|
2225 | */
|
---|
2226 | pVM->hmr0.s.vmx.idLbrTosMsr = idLbrTosMsr;
|
---|
2227 |
|
---|
2228 | pVM->hm.s.ForR3.vmx.idLbrFromIpMsrFirst = pVM->hmr0.s.vmx.idLbrFromIpMsrFirst = idLbrFromIpMsrFirst;
|
---|
2229 | pVM->hm.s.ForR3.vmx.idLbrFromIpMsrLast = pVM->hmr0.s.vmx.idLbrFromIpMsrLast = idLbrFromIpMsrLast;
|
---|
2230 |
|
---|
2231 | pVM->hm.s.ForR3.vmx.idLbrToIpMsrFirst = pVM->hmr0.s.vmx.idLbrToIpMsrFirst = idLbrToIpMsrFirst;
|
---|
2232 | pVM->hm.s.ForR3.vmx.idLbrToIpMsrLast = pVM->hmr0.s.vmx.idLbrToIpMsrLast = idLbrToIpMsrLast;
|
---|
2233 | return VINF_SUCCESS;
|
---|
2234 | }
|
---|
2235 |
|
---|
2236 |
|
---|
2237 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
2238 | /**
|
---|
2239 | * Sets up the shadow VMCS fields arrays.
|
---|
2240 | *
|
---|
2241 | * This function builds arrays of VMCS fields to sync the shadow VMCS later while
|
---|
2242 | * executing the guest.
|
---|
2243 | *
|
---|
2244 | * @returns VBox status code.
|
---|
2245 | * @param pVM The cross context VM structure.
|
---|
2246 | */
|
---|
2247 | static int hmR0VmxSetupShadowVmcsFieldsArrays(PVMCC pVM)
|
---|
2248 | {
|
---|
2249 | /*
|
---|
2250 | * Paranoia. Ensure we haven't exposed the VMWRITE-All VMX feature to the guest
|
---|
2251 | * when the host does not support it.
|
---|
2252 | */
|
---|
2253 | bool const fGstVmwriteAll = pVM->cpum.ro.GuestFeatures.fVmxVmwriteAll;
|
---|
2254 | if ( !fGstVmwriteAll
|
---|
2255 | || (g_HmMsrs.u.vmx.u64Misc & VMX_MISC_VMWRITE_ALL))
|
---|
2256 | { /* likely. */ }
|
---|
2257 | else
|
---|
2258 | {
|
---|
2259 | LogRelFunc(("VMX VMWRITE-All feature exposed to the guest but host CPU does not support it!\n"));
|
---|
2260 | VMCC_GET_CPU_0(pVM)->hm.s.u32HMError = VMX_UFC_GST_HOST_VMWRITE_ALL;
|
---|
2261 | return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
|
---|
2262 | }
|
---|
2263 |
|
---|
2264 | uint32_t const cVmcsFields = RT_ELEMENTS(g_aVmcsFields);
|
---|
2265 | uint32_t cRwFields = 0;
|
---|
2266 | uint32_t cRoFields = 0;
|
---|
2267 | for (uint32_t i = 0; i < cVmcsFields; i++)
|
---|
2268 | {
|
---|
2269 | VMXVMCSFIELD VmcsField;
|
---|
2270 | VmcsField.u = g_aVmcsFields[i];
|
---|
2271 |
|
---|
2272 | /*
|
---|
2273 | * We will be writing "FULL" (64-bit) fields while syncing the shadow VMCS.
|
---|
2274 | * Therefore, "HIGH" (32-bit portion of 64-bit) fields must not be included
|
---|
2275 | * in the shadow VMCS fields array as they would be redundant.
|
---|
2276 | *
|
---|
2277 | * If the VMCS field depends on a CPU feature that is not exposed to the guest,
|
---|
2278 | * we must not include it in the shadow VMCS fields array. Guests attempting to
|
---|
2279 | * VMREAD/VMWRITE such VMCS fields would cause a VM-exit and we shall emulate
|
---|
2280 | * the required behavior.
|
---|
2281 | */
|
---|
2282 | if ( VmcsField.n.fAccessType == VMX_VMCSFIELD_ACCESS_FULL
|
---|
2283 | && CPUMIsGuestVmxVmcsFieldValid(pVM, VmcsField.u))
|
---|
2284 | {
|
---|
2285 | /*
|
---|
2286 | * Read-only fields are placed in a separate array so that while syncing shadow
|
---|
2287 | * VMCS fields later (which is more performance critical) we can avoid branches.
|
---|
2288 | *
|
---|
2289 | * However, if the guest can write to all fields (including read-only fields),
|
---|
2290 | * we treat it a as read/write field. Otherwise, writing to these fields would
|
---|
2291 | * cause a VMWRITE instruction error while syncing the shadow VMCS.
|
---|
2292 | */
|
---|
2293 | if ( fGstVmwriteAll
|
---|
2294 | || !VMXIsVmcsFieldReadOnly(VmcsField.u))
|
---|
2295 | pVM->hmr0.s.vmx.paShadowVmcsFields[cRwFields++] = VmcsField.u;
|
---|
2296 | else
|
---|
2297 | pVM->hmr0.s.vmx.paShadowVmcsRoFields[cRoFields++] = VmcsField.u;
|
---|
2298 | }
|
---|
2299 | }
|
---|
2300 |
|
---|
2301 | /* Update the counts. */
|
---|
2302 | pVM->hmr0.s.vmx.cShadowVmcsFields = cRwFields;
|
---|
2303 | pVM->hmr0.s.vmx.cShadowVmcsRoFields = cRoFields;
|
---|
2304 | return VINF_SUCCESS;
|
---|
2305 | }
|
---|
2306 |
|
---|
2307 |
|
---|
2308 | /**
|
---|
2309 | * Sets up the VMREAD and VMWRITE bitmaps.
|
---|
2310 | *
|
---|
2311 | * @param pVM The cross context VM structure.
|
---|
2312 | */
|
---|
2313 | static void hmR0VmxSetupVmreadVmwriteBitmaps(PVMCC pVM)
|
---|
2314 | {
|
---|
2315 | /*
|
---|
2316 | * By default, ensure guest attempts to access any VMCS fields cause VM-exits.
|
---|
2317 | */
|
---|
2318 | uint32_t const cbBitmap = X86_PAGE_4K_SIZE;
|
---|
2319 | uint8_t *pbVmreadBitmap = (uint8_t *)pVM->hmr0.s.vmx.pvVmreadBitmap;
|
---|
2320 | uint8_t *pbVmwriteBitmap = (uint8_t *)pVM->hmr0.s.vmx.pvVmwriteBitmap;
|
---|
2321 | ASMMemFill32(pbVmreadBitmap, cbBitmap, UINT32_C(0xffffffff));
|
---|
2322 | ASMMemFill32(pbVmwriteBitmap, cbBitmap, UINT32_C(0xffffffff));
|
---|
2323 |
|
---|
2324 | /*
|
---|
2325 | * Skip intercepting VMREAD/VMWRITE to guest read/write fields in the
|
---|
2326 | * VMREAD and VMWRITE bitmaps.
|
---|
2327 | */
|
---|
2328 | {
|
---|
2329 | uint32_t const *paShadowVmcsFields = pVM->hmr0.s.vmx.paShadowVmcsFields;
|
---|
2330 | uint32_t const cShadowVmcsFields = pVM->hmr0.s.vmx.cShadowVmcsFields;
|
---|
2331 | for (uint32_t i = 0; i < cShadowVmcsFields; i++)
|
---|
2332 | {
|
---|
2333 | uint32_t const uVmcsField = paShadowVmcsFields[i];
|
---|
2334 | Assert(!(uVmcsField & VMX_VMCSFIELD_RSVD_MASK));
|
---|
2335 | Assert(uVmcsField >> 3 < cbBitmap);
|
---|
2336 | ASMBitClear(pbVmreadBitmap + (uVmcsField >> 3), uVmcsField & 7);
|
---|
2337 | ASMBitClear(pbVmwriteBitmap + (uVmcsField >> 3), uVmcsField & 7);
|
---|
2338 | }
|
---|
2339 | }
|
---|
2340 |
|
---|
2341 | /*
|
---|
2342 | * Skip intercepting VMREAD for guest read-only fields in the VMREAD bitmap
|
---|
2343 | * if the host supports VMWRITE to all supported VMCS fields.
|
---|
2344 | */
|
---|
2345 | if (g_HmMsrs.u.vmx.u64Misc & VMX_MISC_VMWRITE_ALL)
|
---|
2346 | {
|
---|
2347 | uint32_t const *paShadowVmcsRoFields = pVM->hmr0.s.vmx.paShadowVmcsRoFields;
|
---|
2348 | uint32_t const cShadowVmcsRoFields = pVM->hmr0.s.vmx.cShadowVmcsRoFields;
|
---|
2349 | for (uint32_t i = 0; i < cShadowVmcsRoFields; i++)
|
---|
2350 | {
|
---|
2351 | uint32_t const uVmcsField = paShadowVmcsRoFields[i];
|
---|
2352 | Assert(!(uVmcsField & VMX_VMCSFIELD_RSVD_MASK));
|
---|
2353 | Assert(uVmcsField >> 3 < cbBitmap);
|
---|
2354 | ASMBitClear(pbVmreadBitmap + (uVmcsField >> 3), uVmcsField & 7);
|
---|
2355 | }
|
---|
2356 | }
|
---|
2357 | }
|
---|
2358 | #endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
|
---|
2359 |
|
---|
2360 |
|
---|
2361 | /**
|
---|
2362 | * Sets up the virtual-APIC page address for the VMCS.
|
---|
2363 | *
|
---|
2364 | * @param pVmcsInfo The VMCS info. object.
|
---|
2365 | */
|
---|
2366 | DECLINLINE(void) hmR0VmxSetupVmcsVirtApicAddr(PCVMXVMCSINFO pVmcsInfo)
|
---|
2367 | {
|
---|
2368 | RTHCPHYS const HCPhysVirtApic = pVmcsInfo->HCPhysVirtApic;
|
---|
2369 | Assert(HCPhysVirtApic != NIL_RTHCPHYS);
|
---|
2370 | Assert(!(HCPhysVirtApic & 0xfff)); /* Bits 11:0 MBZ. */
|
---|
2371 | int rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_VIRT_APIC_PAGEADDR_FULL, HCPhysVirtApic);
|
---|
2372 | AssertRC(rc);
|
---|
2373 | }
|
---|
2374 |
|
---|
2375 |
|
---|
2376 | /**
|
---|
2377 | * Sets up the MSR-bitmap address for the VMCS.
|
---|
2378 | *
|
---|
2379 | * @param pVmcsInfo The VMCS info. object.
|
---|
2380 | */
|
---|
2381 | DECLINLINE(void) hmR0VmxSetupVmcsMsrBitmapAddr(PCVMXVMCSINFO pVmcsInfo)
|
---|
2382 | {
|
---|
2383 | RTHCPHYS const HCPhysMsrBitmap = pVmcsInfo->HCPhysMsrBitmap;
|
---|
2384 | Assert(HCPhysMsrBitmap != NIL_RTHCPHYS);
|
---|
2385 | Assert(!(HCPhysMsrBitmap & 0xfff)); /* Bits 11:0 MBZ. */
|
---|
2386 | int rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_MSR_BITMAP_FULL, HCPhysMsrBitmap);
|
---|
2387 | AssertRC(rc);
|
---|
2388 | }
|
---|
2389 |
|
---|
2390 |
|
---|
2391 | /**
|
---|
2392 | * Sets up the APIC-access page address for the VMCS.
|
---|
2393 | *
|
---|
2394 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2395 | */
|
---|
2396 | DECLINLINE(void) hmR0VmxSetupVmcsApicAccessAddr(PVMCPUCC pVCpu)
|
---|
2397 | {
|
---|
2398 | RTHCPHYS const HCPhysApicAccess = pVCpu->CTX_SUFF(pVM)->hmr0.s.vmx.HCPhysApicAccess;
|
---|
2399 | Assert(HCPhysApicAccess != NIL_RTHCPHYS);
|
---|
2400 | Assert(!(HCPhysApicAccess & 0xfff)); /* Bits 11:0 MBZ. */
|
---|
2401 | int rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL, HCPhysApicAccess);
|
---|
2402 | AssertRC(rc);
|
---|
2403 | }
|
---|
2404 |
|
---|
2405 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
2406 |
|
---|
2407 | /**
|
---|
2408 | * Sets up the VMREAD bitmap address for the VMCS.
|
---|
2409 | *
|
---|
2410 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2411 | */
|
---|
2412 | DECLINLINE(void) hmR0VmxSetupVmcsVmreadBitmapAddr(PVMCPUCC pVCpu)
|
---|
2413 | {
|
---|
2414 | RTHCPHYS const HCPhysVmreadBitmap = pVCpu->CTX_SUFF(pVM)->hmr0.s.vmx.HCPhysVmreadBitmap;
|
---|
2415 | Assert(HCPhysVmreadBitmap != NIL_RTHCPHYS);
|
---|
2416 | Assert(!(HCPhysVmreadBitmap & 0xfff)); /* Bits 11:0 MBZ. */
|
---|
2417 | int rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_VMREAD_BITMAP_FULL, HCPhysVmreadBitmap);
|
---|
2418 | AssertRC(rc);
|
---|
2419 | }
|
---|
2420 |
|
---|
2421 |
|
---|
2422 | /**
|
---|
2423 | * Sets up the VMWRITE bitmap address for the VMCS.
|
---|
2424 | *
|
---|
2425 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2426 | */
|
---|
2427 | DECLINLINE(void) hmR0VmxSetupVmcsVmwriteBitmapAddr(PVMCPUCC pVCpu)
|
---|
2428 | {
|
---|
2429 | RTHCPHYS const HCPhysVmwriteBitmap = pVCpu->CTX_SUFF(pVM)->hmr0.s.vmx.HCPhysVmwriteBitmap;
|
---|
2430 | Assert(HCPhysVmwriteBitmap != NIL_RTHCPHYS);
|
---|
2431 | Assert(!(HCPhysVmwriteBitmap & 0xfff)); /* Bits 11:0 MBZ. */
|
---|
2432 | int rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_VMWRITE_BITMAP_FULL, HCPhysVmwriteBitmap);
|
---|
2433 | AssertRC(rc);
|
---|
2434 | }
|
---|
2435 |
|
---|
2436 | #endif
|
---|
2437 |
|
---|
2438 | /**
|
---|
2439 | * Sets up the VM-entry MSR load, VM-exit MSR-store and VM-exit MSR-load addresses
|
---|
2440 | * in the VMCS.
|
---|
2441 | *
|
---|
2442 | * @returns VBox status code.
|
---|
2443 | * @param pVmcsInfo The VMCS info. object.
|
---|
2444 | */
|
---|
2445 | DECLINLINE(int) hmR0VmxSetupVmcsAutoLoadStoreMsrAddrs(PVMXVMCSINFO pVmcsInfo)
|
---|
2446 | {
|
---|
2447 | RTHCPHYS const HCPhysGuestMsrLoad = pVmcsInfo->HCPhysGuestMsrLoad;
|
---|
2448 | Assert(HCPhysGuestMsrLoad != NIL_RTHCPHYS);
|
---|
2449 | Assert(!(HCPhysGuestMsrLoad & 0xf)); /* Bits 3:0 MBZ. */
|
---|
2450 |
|
---|
2451 | RTHCPHYS const HCPhysGuestMsrStore = pVmcsInfo->HCPhysGuestMsrStore;
|
---|
2452 | Assert(HCPhysGuestMsrStore != NIL_RTHCPHYS);
|
---|
2453 | Assert(!(HCPhysGuestMsrStore & 0xf)); /* Bits 3:0 MBZ. */
|
---|
2454 |
|
---|
2455 | RTHCPHYS const HCPhysHostMsrLoad = pVmcsInfo->HCPhysHostMsrLoad;
|
---|
2456 | Assert(HCPhysHostMsrLoad != NIL_RTHCPHYS);
|
---|
2457 | Assert(!(HCPhysHostMsrLoad & 0xf)); /* Bits 3:0 MBZ. */
|
---|
2458 |
|
---|
2459 | int rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_FULL, HCPhysGuestMsrLoad); AssertRC(rc);
|
---|
2460 | rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_EXIT_MSR_STORE_FULL, HCPhysGuestMsrStore); AssertRC(rc);
|
---|
2461 | rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_EXIT_MSR_LOAD_FULL, HCPhysHostMsrLoad); AssertRC(rc);
|
---|
2462 | return VINF_SUCCESS;
|
---|
2463 | }
|
---|
2464 |
|
---|
2465 |
|
---|
2466 | /**
|
---|
2467 | * Sets up MSR permissions in the MSR bitmap of a VMCS info. object.
|
---|
2468 | *
|
---|
2469 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2470 | * @param pVmcsInfo The VMCS info. object.
|
---|
2471 | */
|
---|
2472 | static void hmR0VmxSetupVmcsMsrPermissions(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
|
---|
2473 | {
|
---|
2474 | Assert(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS);
|
---|
2475 |
|
---|
2476 | /*
|
---|
2477 | * By default, ensure guest attempts to access any MSR cause VM-exits.
|
---|
2478 | * This shall later be relaxed for specific MSRs as necessary.
|
---|
2479 | *
|
---|
2480 | * Note: For nested-guests, the entire bitmap will be merged prior to
|
---|
2481 | * executing the nested-guest using hardware-assisted VMX and hence there
|
---|
2482 | * is no need to perform this operation. See hmR0VmxMergeMsrBitmapNested.
|
---|
2483 | */
|
---|
2484 | Assert(pVmcsInfo->pvMsrBitmap);
|
---|
2485 | ASMMemFill32(pVmcsInfo->pvMsrBitmap, X86_PAGE_4K_SIZE, UINT32_C(0xffffffff));
|
---|
2486 |
|
---|
2487 | /*
|
---|
2488 | * The guest can access the following MSRs (read, write) without causing
|
---|
2489 | * VM-exits; they are loaded/stored automatically using fields in the VMCS.
|
---|
2490 | */
|
---|
2491 | PVMCC pVM = pVCpu->CTX_SUFF(pVM);
|
---|
2492 | hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, false, MSR_IA32_SYSENTER_CS, VMXMSRPM_ALLOW_RD_WR);
|
---|
2493 | hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, false, MSR_IA32_SYSENTER_ESP, VMXMSRPM_ALLOW_RD_WR);
|
---|
2494 | hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, false, MSR_IA32_SYSENTER_EIP, VMXMSRPM_ALLOW_RD_WR);
|
---|
2495 | hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, false, MSR_K8_GS_BASE, VMXMSRPM_ALLOW_RD_WR);
|
---|
2496 | hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, false, MSR_K8_FS_BASE, VMXMSRPM_ALLOW_RD_WR);
|
---|
2497 |
|
---|
2498 | /*
|
---|
2499 | * The IA32_PRED_CMD and IA32_FLUSH_CMD MSRs are write-only and has no state
|
---|
2500 | * associated with then. We never need to intercept access (writes need to be
|
---|
2501 | * executed without causing a VM-exit, reads will #GP fault anyway).
|
---|
2502 | *
|
---|
2503 | * The IA32_SPEC_CTRL MSR is read/write and has state. We allow the guest to
|
---|
2504 | * read/write them. We swap the guest/host MSR value using the
|
---|
2505 | * auto-load/store MSR area.
|
---|
2506 | */
|
---|
2507 | if (pVM->cpum.ro.GuestFeatures.fIbpb)
|
---|
2508 | hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, false, MSR_IA32_PRED_CMD, VMXMSRPM_ALLOW_RD_WR);
|
---|
2509 | if (pVM->cpum.ro.GuestFeatures.fFlushCmd)
|
---|
2510 | hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, false, MSR_IA32_FLUSH_CMD, VMXMSRPM_ALLOW_RD_WR);
|
---|
2511 | if (pVM->cpum.ro.GuestFeatures.fIbrs)
|
---|
2512 | hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, false, MSR_IA32_SPEC_CTRL, VMXMSRPM_ALLOW_RD_WR);
|
---|
2513 |
|
---|
2514 | /*
|
---|
2515 | * Allow full read/write access for the following MSRs (mandatory for VT-x)
|
---|
2516 | * required for 64-bit guests.
|
---|
2517 | */
|
---|
2518 | if (pVM->hmr0.s.fAllow64BitGuests)
|
---|
2519 | {
|
---|
2520 | hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, false, MSR_K8_LSTAR, VMXMSRPM_ALLOW_RD_WR);
|
---|
2521 | hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, false, MSR_K6_STAR, VMXMSRPM_ALLOW_RD_WR);
|
---|
2522 | hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, false, MSR_K8_SF_MASK, VMXMSRPM_ALLOW_RD_WR);
|
---|
2523 | hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, false, MSR_K8_KERNEL_GS_BASE, VMXMSRPM_ALLOW_RD_WR);
|
---|
2524 | }
|
---|
2525 |
|
---|
2526 | /*
|
---|
2527 | * IA32_EFER MSR is always intercepted, see @bugref{9180#c37}.
|
---|
2528 | */
|
---|
2529 | #ifdef VBOX_STRICT
|
---|
2530 | Assert(pVmcsInfo->pvMsrBitmap);
|
---|
2531 | uint32_t const fMsrpmEfer = CPUMGetVmxMsrPermission(pVmcsInfo->pvMsrBitmap, MSR_K6_EFER);
|
---|
2532 | Assert(fMsrpmEfer == VMXMSRPM_EXIT_RD_WR);
|
---|
2533 | #endif
|
---|
2534 | }
|
---|
2535 |
|
---|
2536 |
|
---|
2537 | /**
|
---|
2538 | * Sets up pin-based VM-execution controls in the VMCS.
|
---|
2539 | *
|
---|
2540 | * @returns VBox status code.
|
---|
2541 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2542 | * @param pVmcsInfo The VMCS info. object.
|
---|
2543 | */
|
---|
2544 | static int hmR0VmxSetupVmcsPinCtls(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
|
---|
2545 | {
|
---|
2546 | PVMCC pVM = pVCpu->CTX_SUFF(pVM);
|
---|
2547 | uint32_t fVal = g_HmMsrs.u.vmx.PinCtls.n.allowed0; /* Bits set here must always be set. */
|
---|
2548 | uint32_t const fZap = g_HmMsrs.u.vmx.PinCtls.n.allowed1; /* Bits cleared here must always be cleared. */
|
---|
2549 |
|
---|
2550 | fVal |= VMX_PIN_CTLS_EXT_INT_EXIT /* External interrupts cause a VM-exit. */
|
---|
2551 | | VMX_PIN_CTLS_NMI_EXIT; /* Non-maskable interrupts (NMIs) cause a VM-exit. */
|
---|
2552 |
|
---|
2553 | if (g_HmMsrs.u.vmx.PinCtls.n.allowed1 & VMX_PIN_CTLS_VIRT_NMI)
|
---|
2554 | fVal |= VMX_PIN_CTLS_VIRT_NMI; /* Use virtual NMIs and virtual-NMI blocking features. */
|
---|
2555 |
|
---|
2556 | /* Enable the VMX-preemption timer. */
|
---|
2557 | if (pVM->hmr0.s.vmx.fUsePreemptTimer)
|
---|
2558 | {
|
---|
2559 | Assert(g_HmMsrs.u.vmx.PinCtls.n.allowed1 & VMX_PIN_CTLS_PREEMPT_TIMER);
|
---|
2560 | fVal |= VMX_PIN_CTLS_PREEMPT_TIMER;
|
---|
2561 | }
|
---|
2562 |
|
---|
2563 | #if 0
|
---|
2564 | /* Enable posted-interrupt processing. */
|
---|
2565 | if (pVM->hm.s.fPostedIntrs)
|
---|
2566 | {
|
---|
2567 | Assert(g_HmMsrs.u.vmx.PinCtls.n.allowed1 & VMX_PIN_CTLS_POSTED_INT);
|
---|
2568 | Assert(g_HmMsrs.u.vmx.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_ACK_EXT_INT);
|
---|
2569 | fVal |= VMX_PIN_CTLS_POSTED_INT;
|
---|
2570 | }
|
---|
2571 | #endif
|
---|
2572 |
|
---|
2573 | if ((fVal & fZap) != fVal)
|
---|
2574 | {
|
---|
2575 | LogRelFunc(("Invalid pin-based VM-execution controls combo! Cpu=%#RX32 fVal=%#RX32 fZap=%#RX32\n",
|
---|
2576 | g_HmMsrs.u.vmx.PinCtls.n.allowed0, fVal, fZap));
|
---|
2577 | pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PIN_EXEC;
|
---|
2578 | return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
|
---|
2579 | }
|
---|
2580 |
|
---|
2581 | /* Commit it to the VMCS and update our cache. */
|
---|
2582 | int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, fVal);
|
---|
2583 | AssertRC(rc);
|
---|
2584 | pVmcsInfo->u32PinCtls = fVal;
|
---|
2585 |
|
---|
2586 | return VINF_SUCCESS;
|
---|
2587 | }
|
---|
2588 |
|
---|
2589 |
|
---|
2590 | /**
|
---|
2591 | * Sets up secondary processor-based VM-execution controls in the VMCS.
|
---|
2592 | *
|
---|
2593 | * @returns VBox status code.
|
---|
2594 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2595 | * @param pVmcsInfo The VMCS info. object.
|
---|
2596 | */
|
---|
2597 | static int hmR0VmxSetupVmcsProcCtls2(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
|
---|
2598 | {
|
---|
2599 | PVMCC pVM = pVCpu->CTX_SUFF(pVM);
|
---|
2600 | uint32_t fVal = g_HmMsrs.u.vmx.ProcCtls2.n.allowed0; /* Bits set here must be set in the VMCS. */
|
---|
2601 | uint32_t const fZap = g_HmMsrs.u.vmx.ProcCtls2.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
|
---|
2602 |
|
---|
2603 | /* WBINVD causes a VM-exit. */
|
---|
2604 | if (g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_WBINVD_EXIT)
|
---|
2605 | fVal |= VMX_PROC_CTLS2_WBINVD_EXIT;
|
---|
2606 |
|
---|
2607 | /* Enable EPT (aka nested-paging). */
|
---|
2608 | if (pVM->hmr0.s.fNestedPaging)
|
---|
2609 | fVal |= VMX_PROC_CTLS2_EPT;
|
---|
2610 |
|
---|
2611 | /* Enable the INVPCID instruction if we expose it to the guest and is supported
|
---|
2612 | by the hardware. Without this, guest executing INVPCID would cause a #UD. */
|
---|
2613 | if ( pVM->cpum.ro.GuestFeatures.fInvpcid
|
---|
2614 | && (g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_INVPCID))
|
---|
2615 | fVal |= VMX_PROC_CTLS2_INVPCID;
|
---|
2616 |
|
---|
2617 | /* Enable VPID. */
|
---|
2618 | if (pVM->hmr0.s.vmx.fVpid)
|
---|
2619 | fVal |= VMX_PROC_CTLS2_VPID;
|
---|
2620 |
|
---|
2621 | /* Enable unrestricted guest execution. */
|
---|
2622 | if (pVM->hmr0.s.vmx.fUnrestrictedGuest)
|
---|
2623 | fVal |= VMX_PROC_CTLS2_UNRESTRICTED_GUEST;
|
---|
2624 |
|
---|
2625 | #if 0
|
---|
2626 | if (pVM->hm.s.fVirtApicRegs)
|
---|
2627 | {
|
---|
2628 | /* Enable APIC-register virtualization. */
|
---|
2629 | Assert(g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_APIC_REG_VIRT);
|
---|
2630 | fVal |= VMX_PROC_CTLS2_APIC_REG_VIRT;
|
---|
2631 |
|
---|
2632 | /* Enable virtual-interrupt delivery. */
|
---|
2633 | Assert(g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VIRT_INTR_DELIVERY);
|
---|
2634 | fVal |= VMX_PROC_CTLS2_VIRT_INTR_DELIVERY;
|
---|
2635 | }
|
---|
2636 | #endif
|
---|
2637 |
|
---|
2638 | /* Virtualize-APIC accesses if supported by the CPU. The virtual-APIC page is
|
---|
2639 | where the TPR shadow resides. */
|
---|
2640 | /** @todo VIRT_X2APIC support, it's mutually exclusive with this. So must be
|
---|
2641 | * done dynamically. */
|
---|
2642 | if (g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
|
---|
2643 | {
|
---|
2644 | fVal |= VMX_PROC_CTLS2_VIRT_APIC_ACCESS;
|
---|
2645 | hmR0VmxSetupVmcsApicAccessAddr(pVCpu);
|
---|
2646 | }
|
---|
2647 |
|
---|
2648 | /* Enable the RDTSCP instruction if we expose it to the guest and is supported
|
---|
2649 | by the hardware. Without this, guest executing RDTSCP would cause a #UD. */
|
---|
2650 | if ( pVM->cpum.ro.GuestFeatures.fRdTscP
|
---|
2651 | && (g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_RDTSCP))
|
---|
2652 | fVal |= VMX_PROC_CTLS2_RDTSCP;
|
---|
2653 |
|
---|
2654 | /* Enable Pause-Loop exiting. */
|
---|
2655 | if ( (g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_PAUSE_LOOP_EXIT)
|
---|
2656 | && pVM->hm.s.vmx.cPleGapTicks
|
---|
2657 | && pVM->hm.s.vmx.cPleWindowTicks)
|
---|
2658 | {
|
---|
2659 | fVal |= VMX_PROC_CTLS2_PAUSE_LOOP_EXIT;
|
---|
2660 |
|
---|
2661 | int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PLE_GAP, pVM->hm.s.vmx.cPleGapTicks); AssertRC(rc);
|
---|
2662 | rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PLE_WINDOW, pVM->hm.s.vmx.cPleWindowTicks); AssertRC(rc);
|
---|
2663 | }
|
---|
2664 |
|
---|
2665 | if ((fVal & fZap) != fVal)
|
---|
2666 | {
|
---|
2667 | LogRelFunc(("Invalid secondary processor-based VM-execution controls combo! cpu=%#RX32 fVal=%#RX32 fZap=%#RX32\n",
|
---|
2668 | g_HmMsrs.u.vmx.ProcCtls2.n.allowed0, fVal, fZap));
|
---|
2669 | pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_EXEC2;
|
---|
2670 | return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
|
---|
2671 | }
|
---|
2672 |
|
---|
2673 | /* Commit it to the VMCS and update our cache. */
|
---|
2674 | int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, fVal);
|
---|
2675 | AssertRC(rc);
|
---|
2676 | pVmcsInfo->u32ProcCtls2 = fVal;
|
---|
2677 |
|
---|
2678 | return VINF_SUCCESS;
|
---|
2679 | }
|
---|
2680 |
|
---|
2681 |
|
---|
2682 | /**
|
---|
2683 | * Sets up processor-based VM-execution controls in the VMCS.
|
---|
2684 | *
|
---|
2685 | * @returns VBox status code.
|
---|
2686 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2687 | * @param pVmcsInfo The VMCS info. object.
|
---|
2688 | */
|
---|
2689 | static int hmR0VmxSetupVmcsProcCtls(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
|
---|
2690 | {
|
---|
2691 | PVMCC pVM = pVCpu->CTX_SUFF(pVM);
|
---|
2692 | uint32_t fVal = g_HmMsrs.u.vmx.ProcCtls.n.allowed0; /* Bits set here must be set in the VMCS. */
|
---|
2693 | uint32_t const fZap = g_HmMsrs.u.vmx.ProcCtls.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
|
---|
2694 |
|
---|
2695 | fVal |= VMX_PROC_CTLS_HLT_EXIT /* HLT causes a VM-exit. */
|
---|
2696 | | VMX_PROC_CTLS_USE_TSC_OFFSETTING /* Use TSC-offsetting. */
|
---|
2697 | | VMX_PROC_CTLS_MOV_DR_EXIT /* MOV DRx causes a VM-exit. */
|
---|
2698 | | VMX_PROC_CTLS_UNCOND_IO_EXIT /* All IO instructions cause a VM-exit. */
|
---|
2699 | | VMX_PROC_CTLS_RDPMC_EXIT /* RDPMC causes a VM-exit. */
|
---|
2700 | | VMX_PROC_CTLS_MONITOR_EXIT /* MONITOR causes a VM-exit. */
|
---|
2701 | | VMX_PROC_CTLS_MWAIT_EXIT; /* MWAIT causes a VM-exit. */
|
---|
2702 |
|
---|
2703 | /* We toggle VMX_PROC_CTLS_MOV_DR_EXIT later, check if it's not -always- needed to be set or clear. */
|
---|
2704 | if ( !(g_HmMsrs.u.vmx.ProcCtls.n.allowed1 & VMX_PROC_CTLS_MOV_DR_EXIT)
|
---|
2705 | || (g_HmMsrs.u.vmx.ProcCtls.n.allowed0 & VMX_PROC_CTLS_MOV_DR_EXIT))
|
---|
2706 | {
|
---|
2707 | pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_MOV_DRX_EXIT;
|
---|
2708 | return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
|
---|
2709 | }
|
---|
2710 |
|
---|
2711 | /* Without nested paging, INVLPG (also affects INVPCID) and MOV CR3 instructions should cause VM-exits. */
|
---|
2712 | if (!pVM->hmr0.s.fNestedPaging)
|
---|
2713 | {
|
---|
2714 | Assert(!pVM->hmr0.s.vmx.fUnrestrictedGuest);
|
---|
2715 | fVal |= VMX_PROC_CTLS_INVLPG_EXIT
|
---|
2716 | | VMX_PROC_CTLS_CR3_LOAD_EXIT
|
---|
2717 | | VMX_PROC_CTLS_CR3_STORE_EXIT;
|
---|
2718 | }
|
---|
2719 |
|
---|
2720 | /* Use TPR shadowing if supported by the CPU. */
|
---|
2721 | if ( PDMHasApic(pVM)
|
---|
2722 | && (g_HmMsrs.u.vmx.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_TPR_SHADOW))
|
---|
2723 | {
|
---|
2724 | fVal |= VMX_PROC_CTLS_USE_TPR_SHADOW; /* CR8 reads from the Virtual-APIC page. */
|
---|
2725 | /* CR8 writes cause a VM-exit based on TPR threshold. */
|
---|
2726 | Assert(!(fVal & VMX_PROC_CTLS_CR8_STORE_EXIT));
|
---|
2727 | Assert(!(fVal & VMX_PROC_CTLS_CR8_LOAD_EXIT));
|
---|
2728 | hmR0VmxSetupVmcsVirtApicAddr(pVmcsInfo);
|
---|
2729 | }
|
---|
2730 | else
|
---|
2731 | {
|
---|
2732 | /* Some 32-bit CPUs do not support CR8 load/store exiting as MOV CR8 is
|
---|
2733 | invalid on 32-bit Intel CPUs. Set this control only for 64-bit guests. */
|
---|
2734 | if (pVM->hmr0.s.fAllow64BitGuests)
|
---|
2735 | fVal |= VMX_PROC_CTLS_CR8_STORE_EXIT /* CR8 reads cause a VM-exit. */
|
---|
2736 | | VMX_PROC_CTLS_CR8_LOAD_EXIT; /* CR8 writes cause a VM-exit. */
|
---|
2737 | }
|
---|
2738 |
|
---|
2739 | /* Use MSR-bitmaps if supported by the CPU. */
|
---|
2740 | if (g_HmMsrs.u.vmx.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_MSR_BITMAPS)
|
---|
2741 | {
|
---|
2742 | fVal |= VMX_PROC_CTLS_USE_MSR_BITMAPS;
|
---|
2743 | hmR0VmxSetupVmcsMsrBitmapAddr(pVmcsInfo);
|
---|
2744 | }
|
---|
2745 |
|
---|
2746 | /* Use the secondary processor-based VM-execution controls if supported by the CPU. */
|
---|
2747 | if (g_HmMsrs.u.vmx.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
|
---|
2748 | fVal |= VMX_PROC_CTLS_USE_SECONDARY_CTLS;
|
---|
2749 |
|
---|
2750 | if ((fVal & fZap) != fVal)
|
---|
2751 | {
|
---|
2752 | LogRelFunc(("Invalid processor-based VM-execution controls combo! cpu=%#RX32 fVal=%#RX32 fZap=%#RX32\n",
|
---|
2753 | g_HmMsrs.u.vmx.ProcCtls.n.allowed0, fVal, fZap));
|
---|
2754 | pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_EXEC;
|
---|
2755 | return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
|
---|
2756 | }
|
---|
2757 |
|
---|
2758 | /* Commit it to the VMCS and update our cache. */
|
---|
2759 | int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, fVal);
|
---|
2760 | AssertRC(rc);
|
---|
2761 | pVmcsInfo->u32ProcCtls = fVal;
|
---|
2762 |
|
---|
2763 | /* Set up MSR permissions that don't change through the lifetime of the VM. */
|
---|
2764 | if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
|
---|
2765 | hmR0VmxSetupVmcsMsrPermissions(pVCpu, pVmcsInfo);
|
---|
2766 |
|
---|
2767 | /* Set up secondary processor-based VM-execution controls if the CPU supports it. */
|
---|
2768 | if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
|
---|
2769 | return hmR0VmxSetupVmcsProcCtls2(pVCpu, pVmcsInfo);
|
---|
2770 |
|
---|
2771 | /* Sanity check, should not really happen. */
|
---|
2772 | if (RT_LIKELY(!pVM->hmr0.s.vmx.fUnrestrictedGuest))
|
---|
2773 | { /* likely */ }
|
---|
2774 | else
|
---|
2775 | {
|
---|
2776 | pVCpu->hm.s.u32HMError = VMX_UFC_INVALID_UX_COMBO;
|
---|
2777 | return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
|
---|
2778 | }
|
---|
2779 |
|
---|
2780 | /* Old CPUs without secondary processor-based VM-execution controls would end up here. */
|
---|
2781 | return VINF_SUCCESS;
|
---|
2782 | }
|
---|
2783 |
|
---|
2784 |
|
---|
2785 | /**
|
---|
2786 | * Sets up miscellaneous (everything other than Pin, Processor and secondary
|
---|
2787 | * Processor-based VM-execution) control fields in the VMCS.
|
---|
2788 | *
|
---|
2789 | * @returns VBox status code.
|
---|
2790 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2791 | * @param pVmcsInfo The VMCS info. object.
|
---|
2792 | */
|
---|
2793 | static int hmR0VmxSetupVmcsMiscCtls(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
|
---|
2794 | {
|
---|
2795 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
2796 | if (pVCpu->CTX_SUFF(pVM)->hmr0.s.vmx.fUseVmcsShadowing)
|
---|
2797 | {
|
---|
2798 | hmR0VmxSetupVmcsVmreadBitmapAddr(pVCpu);
|
---|
2799 | hmR0VmxSetupVmcsVmwriteBitmapAddr(pVCpu);
|
---|
2800 | }
|
---|
2801 | #endif
|
---|
2802 |
|
---|
2803 | Assert(pVmcsInfo->u64VmcsLinkPtr == NIL_RTHCPHYS);
|
---|
2804 | int rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL, NIL_RTHCPHYS);
|
---|
2805 | AssertRC(rc);
|
---|
2806 |
|
---|
2807 | rc = hmR0VmxSetupVmcsAutoLoadStoreMsrAddrs(pVmcsInfo);
|
---|
2808 | if (RT_SUCCESS(rc))
|
---|
2809 | {
|
---|
2810 | uint64_t const u64Cr0Mask = vmxHCGetFixedCr0Mask(pVCpu);
|
---|
2811 | uint64_t const u64Cr4Mask = vmxHCGetFixedCr4Mask(pVCpu);
|
---|
2812 |
|
---|
2813 | rc = VMXWriteVmcsNw(VMX_VMCS_CTRL_CR0_MASK, u64Cr0Mask); AssertRC(rc);
|
---|
2814 | rc = VMXWriteVmcsNw(VMX_VMCS_CTRL_CR4_MASK, u64Cr4Mask); AssertRC(rc);
|
---|
2815 |
|
---|
2816 | pVmcsInfo->u64Cr0Mask = u64Cr0Mask;
|
---|
2817 | pVmcsInfo->u64Cr4Mask = u64Cr4Mask;
|
---|
2818 |
|
---|
2819 | if (pVCpu->CTX_SUFF(pVM)->hmr0.s.vmx.fLbr)
|
---|
2820 | {
|
---|
2821 | rc = VMXWriteVmcsNw(VMX_VMCS64_GUEST_DEBUGCTL_FULL, MSR_IA32_DEBUGCTL_LBR);
|
---|
2822 | AssertRC(rc);
|
---|
2823 | }
|
---|
2824 | return VINF_SUCCESS;
|
---|
2825 | }
|
---|
2826 | else
|
---|
2827 | LogRelFunc(("Failed to initialize VMCS auto-load/store MSR addresses. rc=%Rrc\n", rc));
|
---|
2828 | return rc;
|
---|
2829 | }
|
---|
2830 |
|
---|
2831 |
|
---|
2832 | /**
|
---|
2833 | * Sets up the initial exception bitmap in the VMCS based on static conditions.
|
---|
2834 | *
|
---|
2835 | * We shall setup those exception intercepts that don't change during the
|
---|
2836 | * lifetime of the VM here. The rest are done dynamically while loading the
|
---|
2837 | * guest state.
|
---|
2838 | *
|
---|
2839 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2840 | * @param pVmcsInfo The VMCS info. object.
|
---|
2841 | */
|
---|
2842 | static void hmR0VmxSetupVmcsXcptBitmap(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
|
---|
2843 | {
|
---|
2844 | /*
|
---|
2845 | * The following exceptions are always intercepted:
|
---|
2846 | *
|
---|
2847 | * #AC - To prevent the guest from hanging the CPU and for dealing with
|
---|
2848 | * split-lock detecting host configs.
|
---|
2849 | * #DB - To maintain the DR6 state even when intercepting DRx reads/writes and
|
---|
2850 | * recursive #DBs can cause a CPU hang.
|
---|
2851 | * #PF - To sync our shadow page tables when nested-paging is not used.
|
---|
2852 | */
|
---|
2853 | bool const fNestedPaging = pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging;
|
---|
2854 | uint32_t const uXcptBitmap = RT_BIT(X86_XCPT_AC)
|
---|
2855 | | RT_BIT(X86_XCPT_DB)
|
---|
2856 | | (fNestedPaging ? 0 : RT_BIT(X86_XCPT_PF));
|
---|
2857 |
|
---|
2858 | /* Commit it to the VMCS. */
|
---|
2859 | int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, uXcptBitmap);
|
---|
2860 | AssertRC(rc);
|
---|
2861 |
|
---|
2862 | /* Update our cache of the exception bitmap. */
|
---|
2863 | pVmcsInfo->u32XcptBitmap = uXcptBitmap;
|
---|
2864 | }
|
---|
2865 |
|
---|
2866 |
|
---|
2867 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
2868 | /**
|
---|
2869 | * Sets up the VMCS for executing a nested-guest using hardware-assisted VMX.
|
---|
2870 | *
|
---|
2871 | * @returns VBox status code.
|
---|
2872 | * @param pVmcsInfo The VMCS info. object.
|
---|
2873 | */
|
---|
2874 | static int hmR0VmxSetupVmcsCtlsNested(PVMXVMCSINFO pVmcsInfo)
|
---|
2875 | {
|
---|
2876 | Assert(pVmcsInfo->u64VmcsLinkPtr == NIL_RTHCPHYS);
|
---|
2877 | int rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL, NIL_RTHCPHYS);
|
---|
2878 | AssertRC(rc);
|
---|
2879 |
|
---|
2880 | rc = hmR0VmxSetupVmcsAutoLoadStoreMsrAddrs(pVmcsInfo);
|
---|
2881 | if (RT_SUCCESS(rc))
|
---|
2882 | {
|
---|
2883 | if (g_HmMsrs.u.vmx.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_MSR_BITMAPS)
|
---|
2884 | hmR0VmxSetupVmcsMsrBitmapAddr(pVmcsInfo);
|
---|
2885 |
|
---|
2886 | /* Paranoia - We've not yet initialized these, they shall be done while merging the VMCS. */
|
---|
2887 | Assert(!pVmcsInfo->u64Cr0Mask);
|
---|
2888 | Assert(!pVmcsInfo->u64Cr4Mask);
|
---|
2889 | return VINF_SUCCESS;
|
---|
2890 | }
|
---|
2891 | LogRelFunc(("Failed to set up the VMCS link pointer in the nested-guest VMCS. rc=%Rrc\n", rc));
|
---|
2892 | return rc;
|
---|
2893 | }
|
---|
2894 | #endif
|
---|
2895 |
|
---|
2896 |
|
---|
2897 | /**
|
---|
2898 | * Selector FNHMSVMVMRUN implementation.
|
---|
2899 | */
|
---|
2900 | static DECLCALLBACK(int) hmR0VmxStartVmSelector(PVMXVMCSINFO pVmcsInfo, PVMCPUCC pVCpu, bool fResume)
|
---|
2901 | {
|
---|
2902 | hmR0VmxUpdateStartVmFunction(pVCpu);
|
---|
2903 | return pVCpu->hmr0.s.vmx.pfnStartVm(pVmcsInfo, pVCpu, fResume);
|
---|
2904 | }
|
---|
2905 |
|
---|
2906 |
|
---|
2907 | /**
|
---|
2908 | * Sets up the VMCS for executing a guest (or nested-guest) using hardware-assisted
|
---|
2909 | * VMX.
|
---|
2910 | *
|
---|
2911 | * @returns VBox status code.
|
---|
2912 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2913 | * @param pVmcsInfo The VMCS info. object.
|
---|
2914 | * @param fIsNstGstVmcs Whether this is a nested-guest VMCS.
|
---|
2915 | */
|
---|
2916 | static int hmR0VmxSetupVmcs(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo, bool fIsNstGstVmcs)
|
---|
2917 | {
|
---|
2918 | Assert(pVmcsInfo->pvVmcs);
|
---|
2919 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
2920 |
|
---|
2921 | /* Set the CPU specified revision identifier at the beginning of the VMCS structure. */
|
---|
2922 | *(uint32_t *)pVmcsInfo->pvVmcs = RT_BF_GET(g_HmMsrs.u.vmx.u64Basic, VMX_BF_BASIC_VMCS_ID);
|
---|
2923 | const char * const pszVmcs = fIsNstGstVmcs ? "nested-guest VMCS" : "guest VMCS";
|
---|
2924 |
|
---|
2925 | LogFlowFunc(("\n"));
|
---|
2926 |
|
---|
2927 | /*
|
---|
2928 | * Initialize the VMCS using VMCLEAR before loading the VMCS.
|
---|
2929 | * See Intel spec. 31.6 "Preparation And Launching A Virtual Machine".
|
---|
2930 | */
|
---|
2931 | int rc = hmR0VmxClearVmcs(pVmcsInfo);
|
---|
2932 | if (RT_SUCCESS(rc))
|
---|
2933 | {
|
---|
2934 | rc = hmR0VmxLoadVmcs(pVmcsInfo);
|
---|
2935 | if (RT_SUCCESS(rc))
|
---|
2936 | {
|
---|
2937 | /*
|
---|
2938 | * Initialize the hardware-assisted VMX execution handler for guest and nested-guest VMCS.
|
---|
2939 | * The host is always 64-bit since we no longer support 32-bit hosts.
|
---|
2940 | * Currently we have just a single handler for all guest modes as well, see @bugref{6208#c73}.
|
---|
2941 | */
|
---|
2942 | if (!fIsNstGstVmcs)
|
---|
2943 | {
|
---|
2944 | rc = hmR0VmxSetupVmcsPinCtls(pVCpu, pVmcsInfo);
|
---|
2945 | if (RT_SUCCESS(rc))
|
---|
2946 | {
|
---|
2947 | rc = hmR0VmxSetupVmcsProcCtls(pVCpu, pVmcsInfo);
|
---|
2948 | if (RT_SUCCESS(rc))
|
---|
2949 | {
|
---|
2950 | rc = hmR0VmxSetupVmcsMiscCtls(pVCpu, pVmcsInfo);
|
---|
2951 | if (RT_SUCCESS(rc))
|
---|
2952 | {
|
---|
2953 | hmR0VmxSetupVmcsXcptBitmap(pVCpu, pVmcsInfo);
|
---|
2954 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
2955 | /*
|
---|
2956 | * If a shadow VMCS is allocated for the VMCS info. object, initialize the
|
---|
2957 | * VMCS revision ID and shadow VMCS indicator bit. Also, clear the VMCS
|
---|
2958 | * making it fit for use when VMCS shadowing is later enabled.
|
---|
2959 | */
|
---|
2960 | if (pVmcsInfo->pvShadowVmcs)
|
---|
2961 | {
|
---|
2962 | VMXVMCSREVID VmcsRevId;
|
---|
2963 | VmcsRevId.u = RT_BF_GET(g_HmMsrs.u.vmx.u64Basic, VMX_BF_BASIC_VMCS_ID);
|
---|
2964 | VmcsRevId.n.fIsShadowVmcs = 1;
|
---|
2965 | *(uint32_t *)pVmcsInfo->pvShadowVmcs = VmcsRevId.u;
|
---|
2966 | rc = vmxHCClearShadowVmcs(pVmcsInfo);
|
---|
2967 | if (RT_SUCCESS(rc))
|
---|
2968 | { /* likely */ }
|
---|
2969 | else
|
---|
2970 | LogRelFunc(("Failed to initialize shadow VMCS. rc=%Rrc\n", rc));
|
---|
2971 | }
|
---|
2972 | #endif
|
---|
2973 | }
|
---|
2974 | else
|
---|
2975 | LogRelFunc(("Failed to setup miscellaneous controls. rc=%Rrc\n", rc));
|
---|
2976 | }
|
---|
2977 | else
|
---|
2978 | LogRelFunc(("Failed to setup processor-based VM-execution controls. rc=%Rrc\n", rc));
|
---|
2979 | }
|
---|
2980 | else
|
---|
2981 | LogRelFunc(("Failed to setup pin-based controls. rc=%Rrc\n", rc));
|
---|
2982 | }
|
---|
2983 | else
|
---|
2984 | {
|
---|
2985 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
2986 | rc = hmR0VmxSetupVmcsCtlsNested(pVmcsInfo);
|
---|
2987 | if (RT_SUCCESS(rc))
|
---|
2988 | { /* likely */ }
|
---|
2989 | else
|
---|
2990 | LogRelFunc(("Failed to initialize nested-guest VMCS. rc=%Rrc\n", rc));
|
---|
2991 | #else
|
---|
2992 | AssertFailed();
|
---|
2993 | #endif
|
---|
2994 | }
|
---|
2995 | }
|
---|
2996 | else
|
---|
2997 | LogRelFunc(("Failed to load the %s. rc=%Rrc\n", rc, pszVmcs));
|
---|
2998 | }
|
---|
2999 | else
|
---|
3000 | LogRelFunc(("Failed to clear the %s. rc=%Rrc\n", rc, pszVmcs));
|
---|
3001 |
|
---|
3002 | /* Sync any CPU internal VMCS data back into our VMCS in memory. */
|
---|
3003 | if (RT_SUCCESS(rc))
|
---|
3004 | {
|
---|
3005 | rc = hmR0VmxClearVmcs(pVmcsInfo);
|
---|
3006 | if (RT_SUCCESS(rc))
|
---|
3007 | { /* likely */ }
|
---|
3008 | else
|
---|
3009 | LogRelFunc(("Failed to clear the %s post setup. rc=%Rrc\n", rc, pszVmcs));
|
---|
3010 | }
|
---|
3011 |
|
---|
3012 | /*
|
---|
3013 | * Update the last-error record both for failures and success, so we
|
---|
3014 | * can propagate the status code back to ring-3 for diagnostics.
|
---|
3015 | */
|
---|
3016 | hmR0VmxUpdateErrorRecord(pVCpu, rc);
|
---|
3017 | NOREF(pszVmcs);
|
---|
3018 | return rc;
|
---|
3019 | }
|
---|
3020 |
|
---|
3021 |
|
---|
3022 | /**
|
---|
3023 | * Does global VT-x initialization (called during module initialization).
|
---|
3024 | *
|
---|
3025 | * @returns VBox status code.
|
---|
3026 | */
|
---|
3027 | VMMR0DECL(int) VMXR0GlobalInit(void)
|
---|
3028 | {
|
---|
3029 | #ifdef HMVMX_USE_FUNCTION_TABLE
|
---|
3030 | AssertCompile(VMX_EXIT_MAX + 1 == RT_ELEMENTS(g_aVMExitHandlers));
|
---|
3031 | # ifdef VBOX_STRICT
|
---|
3032 | for (unsigned i = 0; i < RT_ELEMENTS(g_aVMExitHandlers); i++)
|
---|
3033 | Assert(g_aVMExitHandlers[i].pfn);
|
---|
3034 | # endif
|
---|
3035 | #endif
|
---|
3036 | return VINF_SUCCESS;
|
---|
3037 | }
|
---|
3038 |
|
---|
3039 |
|
---|
3040 | /**
|
---|
3041 | * Does global VT-x termination (called during module termination).
|
---|
3042 | */
|
---|
3043 | VMMR0DECL(void) VMXR0GlobalTerm()
|
---|
3044 | {
|
---|
3045 | /* Nothing to do currently. */
|
---|
3046 | }
|
---|
3047 |
|
---|
3048 |
|
---|
3049 | /**
|
---|
3050 | * Sets up and activates VT-x on the current CPU.
|
---|
3051 | *
|
---|
3052 | * @returns VBox status code.
|
---|
3053 | * @param pHostCpu The HM physical-CPU structure.
|
---|
3054 | * @param pVM The cross context VM structure. Can be
|
---|
3055 | * NULL after a host resume operation.
|
---|
3056 | * @param pvCpuPage Pointer to the VMXON region (can be NULL if @a
|
---|
3057 | * fEnabledByHost is @c true).
|
---|
3058 | * @param HCPhysCpuPage Physical address of the VMXON region (can be 0 if
|
---|
3059 | * @a fEnabledByHost is @c true).
|
---|
3060 | * @param fEnabledByHost Set if SUPR0EnableVTx() or similar was used to
|
---|
3061 | * enable VT-x on the host.
|
---|
3062 | * @param pHwvirtMsrs Pointer to the hardware-virtualization MSRs.
|
---|
3063 | */
|
---|
3064 | VMMR0DECL(int) VMXR0EnableCpu(PHMPHYSCPU pHostCpu, PVMCC pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage, bool fEnabledByHost,
|
---|
3065 | PCSUPHWVIRTMSRS pHwvirtMsrs)
|
---|
3066 | {
|
---|
3067 | AssertPtr(pHostCpu);
|
---|
3068 | AssertPtr(pHwvirtMsrs);
|
---|
3069 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
3070 |
|
---|
3071 | /* Enable VT-x if it's not already enabled by the host. */
|
---|
3072 | if (!fEnabledByHost)
|
---|
3073 | {
|
---|
3074 | int rc = hmR0VmxEnterRootMode(pHostCpu, pVM, HCPhysCpuPage, pvCpuPage);
|
---|
3075 | if (RT_FAILURE(rc))
|
---|
3076 | return rc;
|
---|
3077 | }
|
---|
3078 |
|
---|
3079 | /*
|
---|
3080 | * Flush all EPT tagged-TLB entries (in case VirtualBox or any other hypervisor have been
|
---|
3081 | * using EPTPs) so we don't retain any stale guest-physical mappings which won't get
|
---|
3082 | * invalidated when flushing by VPID.
|
---|
3083 | */
|
---|
3084 | if (pHwvirtMsrs->u.vmx.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_ALL_CONTEXTS)
|
---|
3085 | {
|
---|
3086 | hmR0VmxFlushEpt(NULL /* pVCpu */, NULL /* pVmcsInfo */, VMXTLBFLUSHEPT_ALL_CONTEXTS);
|
---|
3087 | pHostCpu->fFlushAsidBeforeUse = false;
|
---|
3088 | }
|
---|
3089 | else
|
---|
3090 | pHostCpu->fFlushAsidBeforeUse = true;
|
---|
3091 |
|
---|
3092 | /* Ensure each VCPU scheduled on this CPU gets a new VPID on resume. See @bugref{6255}. */
|
---|
3093 | ++pHostCpu->cTlbFlushes;
|
---|
3094 |
|
---|
3095 | return VINF_SUCCESS;
|
---|
3096 | }
|
---|
3097 |
|
---|
3098 |
|
---|
3099 | /**
|
---|
3100 | * Deactivates VT-x on the current CPU.
|
---|
3101 | *
|
---|
3102 | * @returns VBox status code.
|
---|
3103 | * @param pHostCpu The HM physical-CPU structure.
|
---|
3104 | * @param pvCpuPage Pointer to the VMXON region.
|
---|
3105 | * @param HCPhysCpuPage Physical address of the VMXON region.
|
---|
3106 | *
|
---|
3107 | * @remarks This function should never be called when SUPR0EnableVTx() or
|
---|
3108 | * similar was used to enable VT-x on the host.
|
---|
3109 | */
|
---|
3110 | VMMR0DECL(int) VMXR0DisableCpu(PHMPHYSCPU pHostCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage)
|
---|
3111 | {
|
---|
3112 | RT_NOREF2(pvCpuPage, HCPhysCpuPage);
|
---|
3113 |
|
---|
3114 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
3115 | return hmR0VmxLeaveRootMode(pHostCpu);
|
---|
3116 | }
|
---|
3117 |
|
---|
3118 |
|
---|
3119 | /**
|
---|
3120 | * Does per-VM VT-x initialization.
|
---|
3121 | *
|
---|
3122 | * @returns VBox status code.
|
---|
3123 | * @param pVM The cross context VM structure.
|
---|
3124 | */
|
---|
3125 | VMMR0DECL(int) VMXR0InitVM(PVMCC pVM)
|
---|
3126 | {
|
---|
3127 | AssertPtr(pVM);
|
---|
3128 | LogFlowFunc(("pVM=%p\n", pVM));
|
---|
3129 |
|
---|
3130 | hmR0VmxStructsInit(pVM);
|
---|
3131 | int rc = hmR0VmxStructsAlloc(pVM);
|
---|
3132 | if (RT_FAILURE(rc))
|
---|
3133 | {
|
---|
3134 | LogRelFunc(("Failed to allocated VMX structures. rc=%Rrc\n", rc));
|
---|
3135 | return rc;
|
---|
3136 | }
|
---|
3137 |
|
---|
3138 | /* Setup the crash dump page. */
|
---|
3139 | #ifdef VBOX_WITH_CRASHDUMP_MAGIC
|
---|
3140 | strcpy((char *)pVM->hmr0.s.vmx.pbScratch, "SCRATCH Magic");
|
---|
3141 | *(uint64_t *)(pVM->hmr0.s.vmx.pbScratch + 16) = UINT64_C(0xdeadbeefdeadbeef);
|
---|
3142 | #endif
|
---|
3143 | return VINF_SUCCESS;
|
---|
3144 | }
|
---|
3145 |
|
---|
3146 |
|
---|
3147 | /**
|
---|
3148 | * Does per-VM VT-x termination.
|
---|
3149 | *
|
---|
3150 | * @returns VBox status code.
|
---|
3151 | * @param pVM The cross context VM structure.
|
---|
3152 | */
|
---|
3153 | VMMR0DECL(int) VMXR0TermVM(PVMCC pVM)
|
---|
3154 | {
|
---|
3155 | AssertPtr(pVM);
|
---|
3156 | LogFlowFunc(("pVM=%p\n", pVM));
|
---|
3157 |
|
---|
3158 | #ifdef VBOX_WITH_CRASHDUMP_MAGIC
|
---|
3159 | if (pVM->hmr0.s.vmx.pbScratch)
|
---|
3160 | RT_BZERO(pVM->hmr0.s.vmx.pbScratch, X86_PAGE_4K_SIZE);
|
---|
3161 | #endif
|
---|
3162 | hmR0VmxStructsFree(pVM);
|
---|
3163 | return VINF_SUCCESS;
|
---|
3164 | }
|
---|
3165 |
|
---|
3166 |
|
---|
3167 | /**
|
---|
3168 | * Sets up the VM for execution using hardware-assisted VMX.
|
---|
3169 | * This function is only called once per-VM during initialization.
|
---|
3170 | *
|
---|
3171 | * @returns VBox status code.
|
---|
3172 | * @param pVM The cross context VM structure.
|
---|
3173 | */
|
---|
3174 | VMMR0DECL(int) VMXR0SetupVM(PVMCC pVM)
|
---|
3175 | {
|
---|
3176 | AssertPtr(pVM);
|
---|
3177 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
3178 |
|
---|
3179 | LogFlowFunc(("pVM=%p\n", pVM));
|
---|
3180 |
|
---|
3181 | /*
|
---|
3182 | * At least verify if VMX is enabled, since we can't check if we're in VMX root mode or not
|
---|
3183 | * without causing a #GP.
|
---|
3184 | */
|
---|
3185 | RTCCUINTREG const uHostCr4 = ASMGetCR4();
|
---|
3186 | if (RT_LIKELY(uHostCr4 & X86_CR4_VMXE))
|
---|
3187 | { /* likely */ }
|
---|
3188 | else
|
---|
3189 | return VERR_VMX_NOT_IN_VMX_ROOT_MODE;
|
---|
3190 |
|
---|
3191 | /*
|
---|
3192 | * Check that nested paging is supported if enabled and copy over the flag to the
|
---|
3193 | * ring-0 only structure.
|
---|
3194 | */
|
---|
3195 | bool const fNestedPaging = pVM->hm.s.fNestedPagingCfg;
|
---|
3196 | AssertReturn( !fNestedPaging
|
---|
3197 | || (g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_EPT), /** @todo use a ring-0 copy of ProcCtls2.n.allowed1 */
|
---|
3198 | VERR_INCOMPATIBLE_CONFIG);
|
---|
3199 | pVM->hmr0.s.fNestedPaging = fNestedPaging;
|
---|
3200 | pVM->hmr0.s.fAllow64BitGuests = pVM->hm.s.fAllow64BitGuestsCfg;
|
---|
3201 |
|
---|
3202 | /*
|
---|
3203 | * Without unrestricted guest execution, pRealModeTSS and pNonPagingModeEPTPageTable *must*
|
---|
3204 | * always be allocated. We no longer support the highly unlikely case of unrestricted guest
|
---|
3205 | * without pRealModeTSS, see hmR3InitFinalizeR0Intel().
|
---|
3206 | */
|
---|
3207 | bool const fUnrestrictedGuest = pVM->hm.s.vmx.fUnrestrictedGuestCfg;
|
---|
3208 | AssertReturn( !fUnrestrictedGuest
|
---|
3209 | || ( (g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_UNRESTRICTED_GUEST)
|
---|
3210 | && fNestedPaging),
|
---|
3211 | VERR_INCOMPATIBLE_CONFIG);
|
---|
3212 | if ( !fUnrestrictedGuest
|
---|
3213 | && ( !pVM->hm.s.vmx.pNonPagingModeEPTPageTable
|
---|
3214 | || !pVM->hm.s.vmx.pRealModeTSS))
|
---|
3215 | {
|
---|
3216 | LogRelFunc(("Invalid real-on-v86 state.\n"));
|
---|
3217 | return VERR_INTERNAL_ERROR;
|
---|
3218 | }
|
---|
3219 | pVM->hmr0.s.vmx.fUnrestrictedGuest = fUnrestrictedGuest;
|
---|
3220 |
|
---|
3221 | /* Initialize these always, see hmR3InitFinalizeR0().*/
|
---|
3222 | pVM->hm.s.ForR3.vmx.enmTlbFlushEpt = pVM->hmr0.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_NONE;
|
---|
3223 | pVM->hm.s.ForR3.vmx.enmTlbFlushVpid = pVM->hmr0.s.vmx.enmTlbFlushVpid = VMXTLBFLUSHVPID_NONE;
|
---|
3224 |
|
---|
3225 | /* Setup the tagged-TLB flush handlers. */
|
---|
3226 | int rc = hmR0VmxSetupTaggedTlb(pVM);
|
---|
3227 | if (RT_FAILURE(rc))
|
---|
3228 | {
|
---|
3229 | LogRelFunc(("Failed to setup tagged TLB. rc=%Rrc\n", rc));
|
---|
3230 | return rc;
|
---|
3231 | }
|
---|
3232 |
|
---|
3233 | /* Determine LBR capabilities. */
|
---|
3234 | pVM->hmr0.s.vmx.fLbr = pVM->hm.s.vmx.fLbrCfg;
|
---|
3235 | if (pVM->hmr0.s.vmx.fLbr)
|
---|
3236 | {
|
---|
3237 | rc = hmR0VmxSetupLbrMsrRange(pVM);
|
---|
3238 | if (RT_FAILURE(rc))
|
---|
3239 | {
|
---|
3240 | LogRelFunc(("Failed to setup LBR MSR range. rc=%Rrc\n", rc));
|
---|
3241 | return rc;
|
---|
3242 | }
|
---|
3243 | }
|
---|
3244 |
|
---|
3245 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
3246 | /* Setup the shadow VMCS fields array and VMREAD/VMWRITE bitmaps. */
|
---|
3247 | if (pVM->hmr0.s.vmx.fUseVmcsShadowing)
|
---|
3248 | {
|
---|
3249 | rc = hmR0VmxSetupShadowVmcsFieldsArrays(pVM);
|
---|
3250 | if (RT_SUCCESS(rc))
|
---|
3251 | hmR0VmxSetupVmreadVmwriteBitmaps(pVM);
|
---|
3252 | else
|
---|
3253 | {
|
---|
3254 | LogRelFunc(("Failed to setup shadow VMCS fields arrays. rc=%Rrc\n", rc));
|
---|
3255 | return rc;
|
---|
3256 | }
|
---|
3257 | }
|
---|
3258 | #endif
|
---|
3259 |
|
---|
3260 | for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
|
---|
3261 | {
|
---|
3262 | PVMCPUCC pVCpu = VMCC_GET_CPU(pVM, idCpu);
|
---|
3263 | Log4Func(("pVCpu=%p idCpu=%RU32\n", pVCpu, pVCpu->idCpu));
|
---|
3264 |
|
---|
3265 | pVCpu->hmr0.s.vmx.pfnStartVm = hmR0VmxStartVmSelector;
|
---|
3266 |
|
---|
3267 | rc = hmR0VmxSetupVmcs(pVCpu, &pVCpu->hmr0.s.vmx.VmcsInfo, false /* fIsNstGstVmcs */);
|
---|
3268 | if (RT_SUCCESS(rc))
|
---|
3269 | {
|
---|
3270 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
3271 | if (pVM->cpum.ro.GuestFeatures.fVmx)
|
---|
3272 | {
|
---|
3273 | rc = hmR0VmxSetupVmcs(pVCpu, &pVCpu->hmr0.s.vmx.VmcsInfoNstGst, true /* fIsNstGstVmcs */);
|
---|
3274 | if (RT_SUCCESS(rc))
|
---|
3275 | { /* likely */ }
|
---|
3276 | else
|
---|
3277 | {
|
---|
3278 | LogRelFunc(("Nested-guest VMCS setup failed. rc=%Rrc\n", rc));
|
---|
3279 | return rc;
|
---|
3280 | }
|
---|
3281 | }
|
---|
3282 | #endif
|
---|
3283 | }
|
---|
3284 | else
|
---|
3285 | {
|
---|
3286 | LogRelFunc(("VMCS setup failed. rc=%Rrc\n", rc));
|
---|
3287 | return rc;
|
---|
3288 | }
|
---|
3289 | }
|
---|
3290 |
|
---|
3291 | return VINF_SUCCESS;
|
---|
3292 | }
|
---|
3293 |
|
---|
3294 |
|
---|
3295 | /**
|
---|
3296 | * Saves the host control registers (CR0, CR3, CR4) into the host-state area in
|
---|
3297 | * the VMCS.
|
---|
3298 | * @returns CR4 for passing along to hmR0VmxExportHostSegmentRegs.
|
---|
3299 | */
|
---|
3300 | static uint64_t hmR0VmxExportHostControlRegs(void)
|
---|
3301 | {
|
---|
3302 | int rc = VMXWriteVmcsNw(VMX_VMCS_HOST_CR0, ASMGetCR0()); AssertRC(rc);
|
---|
3303 | rc = VMXWriteVmcsNw(VMX_VMCS_HOST_CR3, ASMGetCR3()); AssertRC(rc);
|
---|
3304 | uint64_t uHostCr4 = ASMGetCR4();
|
---|
3305 | rc = VMXWriteVmcsNw(VMX_VMCS_HOST_CR4, uHostCr4); AssertRC(rc);
|
---|
3306 | return uHostCr4;
|
---|
3307 | }
|
---|
3308 |
|
---|
3309 |
|
---|
3310 | /**
|
---|
3311 | * Saves the host segment registers and GDTR, IDTR, (TR, GS and FS bases) into
|
---|
3312 | * the host-state area in the VMCS.
|
---|
3313 | *
|
---|
3314 | * @returns VBox status code.
|
---|
3315 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3316 | * @param uHostCr4 The host CR4 value.
|
---|
3317 | */
|
---|
3318 | static int hmR0VmxExportHostSegmentRegs(PVMCPUCC pVCpu, uint64_t uHostCr4)
|
---|
3319 | {
|
---|
3320 | /*
|
---|
3321 | * If we've executed guest code using hardware-assisted VMX, the host-state bits
|
---|
3322 | * will be messed up. We should -not- save the messed up state without restoring
|
---|
3323 | * the original host-state, see @bugref{7240}.
|
---|
3324 | *
|
---|
3325 | * This apparently can happen (most likely the FPU changes), deal with it rather than
|
---|
3326 | * asserting. Was observed booting Solaris 10u10 32-bit guest.
|
---|
3327 | */
|
---|
3328 | if (pVCpu->hmr0.s.vmx.fRestoreHostFlags > VMX_RESTORE_HOST_REQUIRED)
|
---|
3329 | {
|
---|
3330 | Log4Func(("Restoring Host State: fRestoreHostFlags=%#RX32 HostCpuId=%u\n", pVCpu->hmr0.s.vmx.fRestoreHostFlags,
|
---|
3331 | pVCpu->idCpu));
|
---|
3332 | VMXRestoreHostState(pVCpu->hmr0.s.vmx.fRestoreHostFlags, &pVCpu->hmr0.s.vmx.RestoreHost);
|
---|
3333 | pVCpu->hmr0.s.vmx.fRestoreHostFlags = 0;
|
---|
3334 | }
|
---|
3335 |
|
---|
3336 | /*
|
---|
3337 | * Get all the host info.
|
---|
3338 | * ASSUME it is safe to use rdfsbase and friends if the CR4.FSGSBASE bit is set
|
---|
3339 | * without also checking the cpuid bit.
|
---|
3340 | */
|
---|
3341 | uint32_t fRestoreHostFlags;
|
---|
3342 | #if RT_INLINE_ASM_EXTERNAL
|
---|
3343 | if (uHostCr4 & X86_CR4_FSGSBASE)
|
---|
3344 | {
|
---|
3345 | hmR0VmxExportHostSegmentRegsAsmHlp(&pVCpu->hmr0.s.vmx.RestoreHost, true /*fHaveFsGsBase*/);
|
---|
3346 | fRestoreHostFlags = VMX_RESTORE_HOST_CAN_USE_WRFSBASE_AND_WRGSBASE;
|
---|
3347 | }
|
---|
3348 | else
|
---|
3349 | {
|
---|
3350 | hmR0VmxExportHostSegmentRegsAsmHlp(&pVCpu->hmr0.s.vmx.RestoreHost, false /*fHaveFsGsBase*/);
|
---|
3351 | fRestoreHostFlags = 0;
|
---|
3352 | }
|
---|
3353 | RTSEL uSelES = pVCpu->hmr0.s.vmx.RestoreHost.uHostSelES;
|
---|
3354 | RTSEL uSelDS = pVCpu->hmr0.s.vmx.RestoreHost.uHostSelDS;
|
---|
3355 | RTSEL uSelFS = pVCpu->hmr0.s.vmx.RestoreHost.uHostSelFS;
|
---|
3356 | RTSEL uSelGS = pVCpu->hmr0.s.vmx.RestoreHost.uHostSelGS;
|
---|
3357 | #else
|
---|
3358 | pVCpu->hmr0.s.vmx.RestoreHost.uHostSelTR = ASMGetTR();
|
---|
3359 | pVCpu->hmr0.s.vmx.RestoreHost.uHostSelSS = ASMGetSS();
|
---|
3360 | pVCpu->hmr0.s.vmx.RestoreHost.uHostSelCS = ASMGetCS();
|
---|
3361 | ASMGetGDTR((PRTGDTR)&pVCpu->hmr0.s.vmx.RestoreHost.HostGdtr);
|
---|
3362 | ASMGetIDTR((PRTIDTR)&pVCpu->hmr0.s.vmx.RestoreHost.HostIdtr);
|
---|
3363 | if (uHostCr4 & X86_CR4_FSGSBASE)
|
---|
3364 | {
|
---|
3365 | pVCpu->hmr0.s.vmx.RestoreHost.uHostFSBase = ASMGetFSBase();
|
---|
3366 | pVCpu->hmr0.s.vmx.RestoreHost.uHostGSBase = ASMGetGSBase();
|
---|
3367 | fRestoreHostFlags = VMX_RESTORE_HOST_CAN_USE_WRFSBASE_AND_WRGSBASE;
|
---|
3368 | }
|
---|
3369 | else
|
---|
3370 | {
|
---|
3371 | pVCpu->hmr0.s.vmx.RestoreHost.uHostFSBase = ASMRdMsr(MSR_K8_FS_BASE);
|
---|
3372 | pVCpu->hmr0.s.vmx.RestoreHost.uHostGSBase = ASMRdMsr(MSR_K8_GS_BASE);
|
---|
3373 | fRestoreHostFlags = 0;
|
---|
3374 | }
|
---|
3375 | RTSEL uSelES, uSelDS, uSelFS, uSelGS;
|
---|
3376 | pVCpu->hmr0.s.vmx.RestoreHost.uHostSelDS = uSelDS = ASMGetDS();
|
---|
3377 | pVCpu->hmr0.s.vmx.RestoreHost.uHostSelES = uSelES = ASMGetES();
|
---|
3378 | pVCpu->hmr0.s.vmx.RestoreHost.uHostSelFS = uSelFS = ASMGetFS();
|
---|
3379 | pVCpu->hmr0.s.vmx.RestoreHost.uHostSelGS = uSelGS = ASMGetGS();
|
---|
3380 | #endif
|
---|
3381 |
|
---|
3382 | /*
|
---|
3383 | * Determine if the host segment registers are suitable for VT-x. Otherwise use zero to
|
---|
3384 | * gain VM-entry and restore them before we get preempted.
|
---|
3385 | *
|
---|
3386 | * See Intel spec. 26.2.3 "Checks on Host Segment and Descriptor-Table Registers".
|
---|
3387 | */
|
---|
3388 | RTSEL const uSelAll = uSelFS | uSelGS | uSelES | uSelDS;
|
---|
3389 | if (uSelAll & (X86_SEL_RPL | X86_SEL_LDT))
|
---|
3390 | {
|
---|
3391 | if (!(uSelAll & X86_SEL_LDT))
|
---|
3392 | {
|
---|
3393 | #define VMXLOCAL_ADJUST_HOST_SEG(a_Seg, a_uVmcsVar) \
|
---|
3394 | do { \
|
---|
3395 | (a_uVmcsVar) = pVCpu->hmr0.s.vmx.RestoreHost.uHostSel##a_Seg; \
|
---|
3396 | if ((a_uVmcsVar) & X86_SEL_RPL) \
|
---|
3397 | { \
|
---|
3398 | fRestoreHostFlags |= VMX_RESTORE_HOST_SEL_##a_Seg; \
|
---|
3399 | (a_uVmcsVar) = 0; \
|
---|
3400 | } \
|
---|
3401 | } while (0)
|
---|
3402 | VMXLOCAL_ADJUST_HOST_SEG(DS, uSelDS);
|
---|
3403 | VMXLOCAL_ADJUST_HOST_SEG(ES, uSelES);
|
---|
3404 | VMXLOCAL_ADJUST_HOST_SEG(FS, uSelFS);
|
---|
3405 | VMXLOCAL_ADJUST_HOST_SEG(GS, uSelGS);
|
---|
3406 | #undef VMXLOCAL_ADJUST_HOST_SEG
|
---|
3407 | }
|
---|
3408 | else
|
---|
3409 | {
|
---|
3410 | #define VMXLOCAL_ADJUST_HOST_SEG(a_Seg, a_uVmcsVar) \
|
---|
3411 | do { \
|
---|
3412 | (a_uVmcsVar) = pVCpu->hmr0.s.vmx.RestoreHost.uHostSel##a_Seg; \
|
---|
3413 | if ((a_uVmcsVar) & (X86_SEL_RPL | X86_SEL_LDT)) \
|
---|
3414 | { \
|
---|
3415 | if (!((a_uVmcsVar) & X86_SEL_LDT)) \
|
---|
3416 | fRestoreHostFlags |= VMX_RESTORE_HOST_SEL_##a_Seg; \
|
---|
3417 | else \
|
---|
3418 | { \
|
---|
3419 | uint32_t const fAttr = ASMGetSegAttr(a_uVmcsVar); \
|
---|
3420 | if ((fAttr & X86_DESC_P) && fAttr != UINT32_MAX) \
|
---|
3421 | fRestoreHostFlags |= VMX_RESTORE_HOST_SEL_##a_Seg; \
|
---|
3422 | } \
|
---|
3423 | (a_uVmcsVar) = 0; \
|
---|
3424 | } \
|
---|
3425 | } while (0)
|
---|
3426 | VMXLOCAL_ADJUST_HOST_SEG(DS, uSelDS);
|
---|
3427 | VMXLOCAL_ADJUST_HOST_SEG(ES, uSelES);
|
---|
3428 | VMXLOCAL_ADJUST_HOST_SEG(FS, uSelFS);
|
---|
3429 | VMXLOCAL_ADJUST_HOST_SEG(GS, uSelGS);
|
---|
3430 | #undef VMXLOCAL_ADJUST_HOST_SEG
|
---|
3431 | }
|
---|
3432 | }
|
---|
3433 |
|
---|
3434 | /* Verification based on Intel spec. 26.2.3 "Checks on Host Segment and Descriptor-Table Registers" */
|
---|
3435 | Assert(!(pVCpu->hmr0.s.vmx.RestoreHost.uHostSelTR & X86_SEL_RPL)); Assert(!(pVCpu->hmr0.s.vmx.RestoreHost.uHostSelTR & X86_SEL_LDT)); Assert(pVCpu->hmr0.s.vmx.RestoreHost.uHostSelTR);
|
---|
3436 | Assert(!(pVCpu->hmr0.s.vmx.RestoreHost.uHostSelCS & X86_SEL_RPL)); Assert(!(pVCpu->hmr0.s.vmx.RestoreHost.uHostSelCS & X86_SEL_LDT)); Assert(pVCpu->hmr0.s.vmx.RestoreHost.uHostSelCS);
|
---|
3437 | Assert(!(pVCpu->hmr0.s.vmx.RestoreHost.uHostSelSS & X86_SEL_RPL)); Assert(!(pVCpu->hmr0.s.vmx.RestoreHost.uHostSelSS & X86_SEL_LDT));
|
---|
3438 | Assert(!(uSelDS & X86_SEL_RPL)); Assert(!(uSelDS & X86_SEL_LDT));
|
---|
3439 | Assert(!(uSelES & X86_SEL_RPL)); Assert(!(uSelES & X86_SEL_LDT));
|
---|
3440 | Assert(!(uSelFS & X86_SEL_RPL)); Assert(!(uSelFS & X86_SEL_LDT));
|
---|
3441 | Assert(!(uSelGS & X86_SEL_RPL)); Assert(!(uSelGS & X86_SEL_LDT));
|
---|
3442 |
|
---|
3443 | /*
|
---|
3444 | * Determine if we need to manually need to restore the GDTR and IDTR limits as VT-x zaps
|
---|
3445 | * them to the maximum limit (0xffff) on every VM-exit.
|
---|
3446 | */
|
---|
3447 | if (pVCpu->hmr0.s.vmx.RestoreHost.HostGdtr.cb != 0xffff)
|
---|
3448 | fRestoreHostFlags |= VMX_RESTORE_HOST_GDTR;
|
---|
3449 |
|
---|
3450 | /*
|
---|
3451 | * IDT limit is effectively capped at 0xfff. (See Intel spec. 6.14.1 "64-Bit Mode IDT" and
|
---|
3452 | * Intel spec. 6.2 "Exception and Interrupt Vectors".) Therefore if the host has the limit
|
---|
3453 | * as 0xfff, VT-x bloating the limit to 0xffff shouldn't cause any different CPU behavior.
|
---|
3454 | * However, several hosts either insists on 0xfff being the limit (Windows Patch Guard) or
|
---|
3455 | * uses the limit for other purposes (darwin puts the CPU ID in there but botches sidt
|
---|
3456 | * alignment in at least one consumer). So, we're only allowing the IDTR.LIMIT to be left
|
---|
3457 | * at 0xffff on hosts where we are sure it won't cause trouble.
|
---|
3458 | */
|
---|
3459 | #if defined(RT_OS_LINUX) || defined(RT_OS_SOLARIS)
|
---|
3460 | if (pVCpu->hmr0.s.vmx.RestoreHost.HostIdtr.cb < 0x0fff)
|
---|
3461 | #else
|
---|
3462 | if (pVCpu->hmr0.s.vmx.RestoreHost.HostIdtr.cb != 0xffff)
|
---|
3463 | #endif
|
---|
3464 | fRestoreHostFlags |= VMX_RESTORE_HOST_IDTR;
|
---|
3465 |
|
---|
3466 | /*
|
---|
3467 | * Host TR base. Verify that TR selector doesn't point past the GDT. Masking off the TI
|
---|
3468 | * and RPL bits is effectively what the CPU does for "scaling by 8". TI is always 0 and
|
---|
3469 | * RPL should be too in most cases.
|
---|
3470 | */
|
---|
3471 | RTSEL const uSelTR = pVCpu->hmr0.s.vmx.RestoreHost.uHostSelTR;
|
---|
3472 | AssertMsgReturn((uSelTR | X86_SEL_RPL_LDT) <= pVCpu->hmr0.s.vmx.RestoreHost.HostGdtr.cb,
|
---|
3473 | ("TR selector exceeds limit. TR=%RTsel cbGdt=%#x\n", uSelTR, pVCpu->hmr0.s.vmx.RestoreHost.HostGdtr.cb),
|
---|
3474 | VERR_VMX_INVALID_HOST_STATE);
|
---|
3475 |
|
---|
3476 | PCX86DESCHC pDesc = (PCX86DESCHC)(pVCpu->hmr0.s.vmx.RestoreHost.HostGdtr.uAddr + (uSelTR & X86_SEL_MASK));
|
---|
3477 | uintptr_t const uTRBase = X86DESC64_BASE(pDesc);
|
---|
3478 |
|
---|
3479 | /*
|
---|
3480 | * VT-x unconditionally restores the TR limit to 0x67 and type to 11 (32-bit busy TSS) on
|
---|
3481 | * all VM-exits. The type is the same for 64-bit busy TSS[1]. The limit needs manual
|
---|
3482 | * restoration if the host has something else. Task switching is not supported in 64-bit
|
---|
3483 | * mode[2], but the limit still matters as IOPM is supported in 64-bit mode. Restoring the
|
---|
3484 | * limit lazily while returning to ring-3 is safe because IOPM is not applicable in ring-0.
|
---|
3485 | *
|
---|
3486 | * [1] See Intel spec. 3.5 "System Descriptor Types".
|
---|
3487 | * [2] See Intel spec. 7.2.3 "TSS Descriptor in 64-bit mode".
|
---|
3488 | */
|
---|
3489 | Assert(pDesc->System.u4Type == 11);
|
---|
3490 | if ( pDesc->System.u16LimitLow != 0x67
|
---|
3491 | || pDesc->System.u4LimitHigh)
|
---|
3492 | {
|
---|
3493 | fRestoreHostFlags |= VMX_RESTORE_HOST_SEL_TR;
|
---|
3494 |
|
---|
3495 | /* If the host has made GDT read-only, we would need to temporarily toggle CR0.WP before writing the GDT. */
|
---|
3496 | if (g_fHmHostKernelFeatures & SUPKERNELFEATURES_GDT_READ_ONLY)
|
---|
3497 | fRestoreHostFlags |= VMX_RESTORE_HOST_GDT_READ_ONLY;
|
---|
3498 | if (g_fHmHostKernelFeatures & SUPKERNELFEATURES_GDT_NEED_WRITABLE)
|
---|
3499 | {
|
---|
3500 | /* The GDT is read-only but the writable GDT is available. */
|
---|
3501 | fRestoreHostFlags |= VMX_RESTORE_HOST_GDT_NEED_WRITABLE;
|
---|
3502 | pVCpu->hmr0.s.vmx.RestoreHost.HostGdtrRw.cb = pVCpu->hmr0.s.vmx.RestoreHost.HostGdtr.cb;
|
---|
3503 | int rc = SUPR0GetCurrentGdtRw(&pVCpu->hmr0.s.vmx.RestoreHost.HostGdtrRw.uAddr);
|
---|
3504 | AssertRCReturn(rc, rc);
|
---|
3505 | }
|
---|
3506 | }
|
---|
3507 |
|
---|
3508 | pVCpu->hmr0.s.vmx.fRestoreHostFlags = fRestoreHostFlags;
|
---|
3509 |
|
---|
3510 | /*
|
---|
3511 | * Do all the VMCS updates in one block to assist nested virtualization.
|
---|
3512 | */
|
---|
3513 | int rc;
|
---|
3514 | rc = VMXWriteVmcs16(VMX_VMCS16_HOST_CS_SEL, pVCpu->hmr0.s.vmx.RestoreHost.uHostSelCS); AssertRC(rc);
|
---|
3515 | rc = VMXWriteVmcs16(VMX_VMCS16_HOST_SS_SEL, pVCpu->hmr0.s.vmx.RestoreHost.uHostSelSS); AssertRC(rc);
|
---|
3516 | rc = VMXWriteVmcs16(VMX_VMCS16_HOST_DS_SEL, uSelDS); AssertRC(rc);
|
---|
3517 | rc = VMXWriteVmcs16(VMX_VMCS16_HOST_ES_SEL, uSelES); AssertRC(rc);
|
---|
3518 | rc = VMXWriteVmcs16(VMX_VMCS16_HOST_FS_SEL, uSelFS); AssertRC(rc);
|
---|
3519 | rc = VMXWriteVmcs16(VMX_VMCS16_HOST_GS_SEL, uSelGS); AssertRC(rc);
|
---|
3520 | rc = VMXWriteVmcs16(VMX_VMCS16_HOST_TR_SEL, pVCpu->hmr0.s.vmx.RestoreHost.uHostSelTR); AssertRC(rc);
|
---|
3521 | rc = VMXWriteVmcsNw(VMX_VMCS_HOST_GDTR_BASE, pVCpu->hmr0.s.vmx.RestoreHost.HostGdtr.uAddr); AssertRC(rc);
|
---|
3522 | rc = VMXWriteVmcsNw(VMX_VMCS_HOST_IDTR_BASE, pVCpu->hmr0.s.vmx.RestoreHost.HostIdtr.uAddr); AssertRC(rc);
|
---|
3523 | rc = VMXWriteVmcsNw(VMX_VMCS_HOST_TR_BASE, uTRBase); AssertRC(rc);
|
---|
3524 | rc = VMXWriteVmcsNw(VMX_VMCS_HOST_FS_BASE, pVCpu->hmr0.s.vmx.RestoreHost.uHostFSBase); AssertRC(rc);
|
---|
3525 | rc = VMXWriteVmcsNw(VMX_VMCS_HOST_GS_BASE, pVCpu->hmr0.s.vmx.RestoreHost.uHostGSBase); AssertRC(rc);
|
---|
3526 |
|
---|
3527 | return VINF_SUCCESS;
|
---|
3528 | }
|
---|
3529 |
|
---|
3530 |
|
---|
3531 | /**
|
---|
3532 | * Exports certain host MSRs in the VM-exit MSR-load area and some in the
|
---|
3533 | * host-state area of the VMCS.
|
---|
3534 | *
|
---|
3535 | * These MSRs will be automatically restored on the host after every successful
|
---|
3536 | * VM-exit.
|
---|
3537 | *
|
---|
3538 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3539 | *
|
---|
3540 | * @remarks No-long-jump zone!!!
|
---|
3541 | */
|
---|
3542 | static void hmR0VmxExportHostMsrs(PVMCPUCC pVCpu)
|
---|
3543 | {
|
---|
3544 | AssertPtr(pVCpu);
|
---|
3545 |
|
---|
3546 | /*
|
---|
3547 | * Save MSRs that we restore lazily (due to preemption or transition to ring-3)
|
---|
3548 | * rather than swapping them on every VM-entry.
|
---|
3549 | */
|
---|
3550 | hmR0VmxLazySaveHostMsrs(pVCpu);
|
---|
3551 |
|
---|
3552 | /*
|
---|
3553 | * Host Sysenter MSRs.
|
---|
3554 | */
|
---|
3555 | int rc = VMXWriteVmcs32(VMX_VMCS32_HOST_SYSENTER_CS, ASMRdMsr_Low(MSR_IA32_SYSENTER_CS)); AssertRC(rc);
|
---|
3556 | rc = VMXWriteVmcsNw(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr(MSR_IA32_SYSENTER_ESP)); AssertRC(rc);
|
---|
3557 | rc = VMXWriteVmcsNw(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr(MSR_IA32_SYSENTER_EIP)); AssertRC(rc);
|
---|
3558 |
|
---|
3559 | /*
|
---|
3560 | * Host EFER MSR.
|
---|
3561 | *
|
---|
3562 | * If the CPU supports the newer VMCS controls for managing EFER, use it. Otherwise it's
|
---|
3563 | * done as part of auto-load/store MSR area in the VMCS, see hmR0VmxExportGuestMsrs().
|
---|
3564 | */
|
---|
3565 | if (g_fHmVmxSupportsVmcsEfer)
|
---|
3566 | {
|
---|
3567 | rc = VMXWriteVmcs64(VMX_VMCS64_HOST_EFER_FULL, g_uHmVmxHostMsrEfer);
|
---|
3568 | AssertRC(rc);
|
---|
3569 | }
|
---|
3570 |
|
---|
3571 | /** @todo IA32_PERF_GLOBALCTRL, IA32_PAT also see
|
---|
3572 | * hmR0VmxExportGuestEntryExitCtls(). */
|
---|
3573 | }
|
---|
3574 |
|
---|
3575 |
|
---|
3576 | /**
|
---|
3577 | * Figures out if we need to swap the EFER MSR which is particularly expensive.
|
---|
3578 | *
|
---|
3579 | * We check all relevant bits. For now, that's everything besides LMA/LME, as
|
---|
3580 | * these two bits are handled by VM-entry, see hmR0VMxExportGuestEntryExitCtls().
|
---|
3581 | *
|
---|
3582 | * @returns true if we need to load guest EFER, false otherwise.
|
---|
3583 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3584 | * @param pVmxTransient The VMX-transient structure.
|
---|
3585 | *
|
---|
3586 | * @remarks Requires EFER, CR4.
|
---|
3587 | * @remarks No-long-jump zone!!!
|
---|
3588 | */
|
---|
3589 | static bool hmR0VmxShouldSwapEferMsr(PCVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient)
|
---|
3590 | {
|
---|
3591 | #ifdef HMVMX_ALWAYS_SWAP_EFER
|
---|
3592 | RT_NOREF2(pVCpu, pVmxTransient);
|
---|
3593 | return true;
|
---|
3594 | #else
|
---|
3595 | PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
|
---|
3596 | uint64_t const u64HostEfer = g_uHmVmxHostMsrEfer;
|
---|
3597 | uint64_t const u64GuestEfer = pCtx->msrEFER;
|
---|
3598 |
|
---|
3599 | # ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
3600 | /*
|
---|
3601 | * For nested-guests, we shall honor swapping the EFER MSR when requested by
|
---|
3602 | * the nested-guest.
|
---|
3603 | */
|
---|
3604 | if ( pVmxTransient->fIsNestedGuest
|
---|
3605 | && ( CPUMIsGuestVmxEntryCtlsSet(pCtx, VMX_ENTRY_CTLS_LOAD_EFER_MSR)
|
---|
3606 | || CPUMIsGuestVmxExitCtlsSet(pCtx, VMX_EXIT_CTLS_SAVE_EFER_MSR)
|
---|
3607 | || CPUMIsGuestVmxExitCtlsSet(pCtx, VMX_EXIT_CTLS_LOAD_EFER_MSR)))
|
---|
3608 | return true;
|
---|
3609 | # else
|
---|
3610 | RT_NOREF(pVmxTransient);
|
---|
3611 | #endif
|
---|
3612 |
|
---|
3613 | /*
|
---|
3614 | * For 64-bit guests, if EFER.SCE bit differs, we need to swap the EFER MSR
|
---|
3615 | * to ensure that the guest's SYSCALL behaviour isn't broken, see @bugref{7386}.
|
---|
3616 | */
|
---|
3617 | if ( CPUMIsGuestInLongModeEx(pCtx)
|
---|
3618 | && (u64GuestEfer & MSR_K6_EFER_SCE) != (u64HostEfer & MSR_K6_EFER_SCE))
|
---|
3619 | return true;
|
---|
3620 |
|
---|
3621 | /*
|
---|
3622 | * If the guest uses PAE and EFER.NXE bit differs, we need to swap the EFER MSR
|
---|
3623 | * as it affects guest paging. 64-bit paging implies CR4.PAE as well.
|
---|
3624 | *
|
---|
3625 | * See Intel spec. 4.5 "IA-32e Paging".
|
---|
3626 | * See Intel spec. 4.1.1 "Three Paging Modes".
|
---|
3627 | *
|
---|
3628 | * Verify that we always intercept CR4.PAE and CR0.PG bits, so we don't need to
|
---|
3629 | * import CR4 and CR0 from the VMCS here as those bits are always up to date.
|
---|
3630 | */
|
---|
3631 | Assert(vmxHCGetFixedCr4Mask(pVCpu) & X86_CR4_PAE);
|
---|
3632 | Assert(vmxHCGetFixedCr0Mask(pVCpu) & X86_CR0_PG);
|
---|
3633 | if ( (pCtx->cr4 & X86_CR4_PAE)
|
---|
3634 | && (pCtx->cr0 & X86_CR0_PG))
|
---|
3635 | {
|
---|
3636 | /*
|
---|
3637 | * If nested paging is not used, verify that the guest paging mode matches the
|
---|
3638 | * shadow paging mode which is/will be placed in the VMCS (which is what will
|
---|
3639 | * actually be used while executing the guest and not the CR4 shadow value).
|
---|
3640 | */
|
---|
3641 | AssertMsg( pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging
|
---|
3642 | || pVCpu->hm.s.enmShadowMode == PGMMODE_PAE
|
---|
3643 | || pVCpu->hm.s.enmShadowMode == PGMMODE_PAE_NX
|
---|
3644 | || pVCpu->hm.s.enmShadowMode == PGMMODE_AMD64
|
---|
3645 | || pVCpu->hm.s.enmShadowMode == PGMMODE_AMD64_NX,
|
---|
3646 | ("enmShadowMode=%u\n", pVCpu->hm.s.enmShadowMode));
|
---|
3647 | if ((u64GuestEfer & MSR_K6_EFER_NXE) != (u64HostEfer & MSR_K6_EFER_NXE))
|
---|
3648 | {
|
---|
3649 | /* Verify that the host is NX capable. */
|
---|
3650 | Assert(pVCpu->CTX_SUFF(pVM)->cpum.ro.HostFeatures.fNoExecute);
|
---|
3651 | return true;
|
---|
3652 | }
|
---|
3653 | }
|
---|
3654 |
|
---|
3655 | return false;
|
---|
3656 | #endif
|
---|
3657 | }
|
---|
3658 |
|
---|
3659 |
|
---|
3660 | /**
|
---|
3661 | * Exports the guest's RSP into the guest-state area in the VMCS.
|
---|
3662 | *
|
---|
3663 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3664 | *
|
---|
3665 | * @remarks No-long-jump zone!!!
|
---|
3666 | */
|
---|
3667 | static void hmR0VmxExportGuestRsp(PVMCPUCC pVCpu)
|
---|
3668 | {
|
---|
3669 | if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_RSP)
|
---|
3670 | {
|
---|
3671 | HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RSP);
|
---|
3672 |
|
---|
3673 | int rc = VMXWriteVmcsNw(VMX_VMCS_GUEST_RSP, pVCpu->cpum.GstCtx.rsp);
|
---|
3674 | AssertRC(rc);
|
---|
3675 |
|
---|
3676 | ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_RSP);
|
---|
3677 | Log4Func(("rsp=%#RX64\n", pVCpu->cpum.GstCtx.rsp));
|
---|
3678 | }
|
---|
3679 | }
|
---|
3680 |
|
---|
3681 |
|
---|
3682 | /**
|
---|
3683 | * Exports the guest hardware-virtualization state.
|
---|
3684 | *
|
---|
3685 | * @returns VBox status code.
|
---|
3686 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3687 | * @param pVmxTransient The VMX-transient structure.
|
---|
3688 | *
|
---|
3689 | * @remarks No-long-jump zone!!!
|
---|
3690 | */
|
---|
3691 | static int hmR0VmxExportGuestHwvirtState(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient)
|
---|
3692 | {
|
---|
3693 | if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_HWVIRT)
|
---|
3694 | {
|
---|
3695 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
3696 | /*
|
---|
3697 | * Check if the VMX feature is exposed to the guest and if the host CPU supports
|
---|
3698 | * VMCS shadowing.
|
---|
3699 | */
|
---|
3700 | if (pVCpu->CTX_SUFF(pVM)->hmr0.s.vmx.fUseVmcsShadowing)
|
---|
3701 | {
|
---|
3702 | /*
|
---|
3703 | * If the nested hypervisor has loaded a current VMCS and is in VMX root mode,
|
---|
3704 | * copy the nested hypervisor's current VMCS into the shadow VMCS and enable
|
---|
3705 | * VMCS shadowing to skip intercepting some or all VMREAD/VMWRITE VM-exits.
|
---|
3706 | *
|
---|
3707 | * We check for VMX root mode here in case the guest executes VMXOFF without
|
---|
3708 | * clearing the current VMCS pointer and our VMXOFF instruction emulation does
|
---|
3709 | * not clear the current VMCS pointer.
|
---|
3710 | */
|
---|
3711 | PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
|
---|
3712 | if ( CPUMIsGuestInVmxRootMode(&pVCpu->cpum.GstCtx)
|
---|
3713 | && !CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx)
|
---|
3714 | && CPUMIsGuestVmxCurrentVmcsValid(&pVCpu->cpum.GstCtx))
|
---|
3715 | {
|
---|
3716 | /* Paranoia. */
|
---|
3717 | Assert(!pVmxTransient->fIsNestedGuest);
|
---|
3718 |
|
---|
3719 | /*
|
---|
3720 | * For performance reasons, also check if the nested hypervisor's current VMCS
|
---|
3721 | * was newly loaded or modified before copying it to the shadow VMCS.
|
---|
3722 | */
|
---|
3723 | if (!pVCpu->hm.s.vmx.fCopiedNstGstToShadowVmcs)
|
---|
3724 | {
|
---|
3725 | int rc = vmxHCCopyNstGstToShadowVmcs(pVCpu, pVmcsInfo);
|
---|
3726 | AssertRCReturn(rc, rc);
|
---|
3727 | pVCpu->hm.s.vmx.fCopiedNstGstToShadowVmcs = true;
|
---|
3728 | }
|
---|
3729 | vmxHCEnableVmcsShadowing(pVCpu, pVmcsInfo);
|
---|
3730 | }
|
---|
3731 | else
|
---|
3732 | vmxHCDisableVmcsShadowing(pVCpu, pVmcsInfo);
|
---|
3733 | }
|
---|
3734 | #else
|
---|
3735 | NOREF(pVmxTransient);
|
---|
3736 | #endif
|
---|
3737 | ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_HWVIRT);
|
---|
3738 | }
|
---|
3739 | return VINF_SUCCESS;
|
---|
3740 | }
|
---|
3741 |
|
---|
3742 |
|
---|
3743 | /**
|
---|
3744 | * Exports the guest debug registers into the guest-state area in the VMCS.
|
---|
3745 | * The guest debug bits are partially shared with the host (e.g. DR6, DR0-3).
|
---|
3746 | *
|
---|
3747 | * This also sets up whether \#DB and MOV DRx accesses cause VM-exits.
|
---|
3748 | *
|
---|
3749 | * @returns VBox status code.
|
---|
3750 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3751 | * @param pVmxTransient The VMX-transient structure.
|
---|
3752 | *
|
---|
3753 | * @remarks No-long-jump zone!!!
|
---|
3754 | */
|
---|
3755 | static int hmR0VmxExportSharedDebugState(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
3756 | {
|
---|
3757 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
3758 |
|
---|
3759 | /** @todo NSTVMX: Figure out what we want to do with nested-guest instruction
|
---|
3760 | * stepping. */
|
---|
3761 | PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
|
---|
3762 | if (pVmxTransient->fIsNestedGuest)
|
---|
3763 | {
|
---|
3764 | int rc = VMXWriteVmcsNw(VMX_VMCS_GUEST_DR7, CPUMGetGuestDR7(pVCpu));
|
---|
3765 | AssertRC(rc);
|
---|
3766 |
|
---|
3767 | /*
|
---|
3768 | * We don't want to always intercept MOV DRx for nested-guests as it causes
|
---|
3769 | * problems when the nested hypervisor isn't intercepting them, see @bugref{10080}.
|
---|
3770 | * Instead, they are strictly only requested when the nested hypervisor intercepts
|
---|
3771 | * them -- handled while merging VMCS controls.
|
---|
3772 | *
|
---|
3773 | * If neither the outer nor the nested-hypervisor is intercepting MOV DRx,
|
---|
3774 | * then the nested-guest debug state should be actively loaded on the host so that
|
---|
3775 | * nested-guest reads its own debug registers without causing VM-exits.
|
---|
3776 | */
|
---|
3777 | if ( !(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_MOV_DR_EXIT)
|
---|
3778 | && !CPUMIsGuestDebugStateActive(pVCpu))
|
---|
3779 | CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
|
---|
3780 | return VINF_SUCCESS;
|
---|
3781 | }
|
---|
3782 |
|
---|
3783 | #ifdef VBOX_STRICT
|
---|
3784 | /* Validate. Intel spec. 26.3.1.1 "Checks on Guest Controls Registers, Debug Registers, MSRs" */
|
---|
3785 | if (pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG)
|
---|
3786 | {
|
---|
3787 | /* Validate. Intel spec. 17.2 "Debug Registers", recompiler paranoia checks. */
|
---|
3788 | Assert((pVCpu->cpum.GstCtx.dr[7] & (X86_DR7_MBZ_MASK | X86_DR7_RAZ_MASK)) == 0);
|
---|
3789 | Assert((pVCpu->cpum.GstCtx.dr[7] & X86_DR7_RA1_MASK) == X86_DR7_RA1_MASK);
|
---|
3790 | }
|
---|
3791 | #endif
|
---|
3792 |
|
---|
3793 | bool fSteppingDB = false;
|
---|
3794 | bool fInterceptMovDRx = false;
|
---|
3795 | uint32_t uProcCtls = pVmcsInfo->u32ProcCtls;
|
---|
3796 | if (pVCpu->hm.s.fSingleInstruction)
|
---|
3797 | {
|
---|
3798 | /* If the CPU supports the monitor trap flag, use it for single stepping in DBGF and avoid intercepting #DB. */
|
---|
3799 | if (g_HmMsrs.u.vmx.ProcCtls.n.allowed1 & VMX_PROC_CTLS_MONITOR_TRAP_FLAG)
|
---|
3800 | {
|
---|
3801 | uProcCtls |= VMX_PROC_CTLS_MONITOR_TRAP_FLAG;
|
---|
3802 | Assert(fSteppingDB == false);
|
---|
3803 | }
|
---|
3804 | else
|
---|
3805 | {
|
---|
3806 | pVCpu->cpum.GstCtx.eflags.u32 |= X86_EFL_TF;
|
---|
3807 | pVCpu->hm.s.fCtxChanged |= HM_CHANGED_GUEST_RFLAGS;
|
---|
3808 | pVCpu->hmr0.s.fClearTrapFlag = true;
|
---|
3809 | fSteppingDB = true;
|
---|
3810 | }
|
---|
3811 | }
|
---|
3812 |
|
---|
3813 | uint64_t u64GuestDr7;
|
---|
3814 | if ( fSteppingDB
|
---|
3815 | || (CPUMGetHyperDR7(pVCpu) & X86_DR7_ENABLED_MASK))
|
---|
3816 | {
|
---|
3817 | /*
|
---|
3818 | * Use the combined guest and host DRx values found in the hypervisor register set
|
---|
3819 | * because the hypervisor debugger has breakpoints active or someone is single stepping
|
---|
3820 | * on the host side without a monitor trap flag.
|
---|
3821 | *
|
---|
3822 | * Note! DBGF expects a clean DR6 state before executing guest code.
|
---|
3823 | */
|
---|
3824 | if (!CPUMIsHyperDebugStateActive(pVCpu))
|
---|
3825 | {
|
---|
3826 | CPUMR0LoadHyperDebugState(pVCpu, true /* include DR6 */);
|
---|
3827 | Assert(CPUMIsHyperDebugStateActive(pVCpu));
|
---|
3828 | Assert(!CPUMIsGuestDebugStateActive(pVCpu));
|
---|
3829 | }
|
---|
3830 |
|
---|
3831 | /* Update DR7 with the hypervisor value (other DRx registers are handled by CPUM one way or another). */
|
---|
3832 | u64GuestDr7 = CPUMGetHyperDR7(pVCpu);
|
---|
3833 | pVCpu->hmr0.s.fUsingHyperDR7 = true;
|
---|
3834 | fInterceptMovDRx = true;
|
---|
3835 | }
|
---|
3836 | else
|
---|
3837 | {
|
---|
3838 | /*
|
---|
3839 | * If the guest has enabled debug registers, we need to load them prior to
|
---|
3840 | * executing guest code so they'll trigger at the right time.
|
---|
3841 | */
|
---|
3842 | HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_DR7);
|
---|
3843 | if (pVCpu->cpum.GstCtx.dr[7] & (X86_DR7_ENABLED_MASK | X86_DR7_GD))
|
---|
3844 | {
|
---|
3845 | if (!CPUMIsGuestDebugStateActive(pVCpu))
|
---|
3846 | {
|
---|
3847 | CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
|
---|
3848 | Assert(CPUMIsGuestDebugStateActive(pVCpu));
|
---|
3849 | Assert(!CPUMIsHyperDebugStateActive(pVCpu));
|
---|
3850 | STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
|
---|
3851 | }
|
---|
3852 | Assert(!fInterceptMovDRx);
|
---|
3853 | }
|
---|
3854 | else if (!CPUMIsGuestDebugStateActive(pVCpu))
|
---|
3855 | {
|
---|
3856 | /*
|
---|
3857 | * If no debugging enabled, we'll lazy load DR0-3. Unlike on AMD-V, we
|
---|
3858 | * must intercept #DB in order to maintain a correct DR6 guest value, and
|
---|
3859 | * because we need to intercept it to prevent nested #DBs from hanging the
|
---|
3860 | * CPU, we end up always having to intercept it. See hmR0VmxSetupVmcsXcptBitmap().
|
---|
3861 | */
|
---|
3862 | fInterceptMovDRx = true;
|
---|
3863 | }
|
---|
3864 |
|
---|
3865 | /* Update DR7 with the actual guest value. */
|
---|
3866 | u64GuestDr7 = pVCpu->cpum.GstCtx.dr[7];
|
---|
3867 | pVCpu->hmr0.s.fUsingHyperDR7 = false;
|
---|
3868 | }
|
---|
3869 |
|
---|
3870 | if (fInterceptMovDRx)
|
---|
3871 | uProcCtls |= VMX_PROC_CTLS_MOV_DR_EXIT;
|
---|
3872 | else
|
---|
3873 | uProcCtls &= ~VMX_PROC_CTLS_MOV_DR_EXIT;
|
---|
3874 |
|
---|
3875 | /*
|
---|
3876 | * Update the processor-based VM-execution controls with the MOV-DRx intercepts and the
|
---|
3877 | * monitor-trap flag and update our cache.
|
---|
3878 | */
|
---|
3879 | if (uProcCtls != pVmcsInfo->u32ProcCtls)
|
---|
3880 | {
|
---|
3881 | int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, uProcCtls);
|
---|
3882 | AssertRC(rc);
|
---|
3883 | pVmcsInfo->u32ProcCtls = uProcCtls;
|
---|
3884 | }
|
---|
3885 |
|
---|
3886 | /*
|
---|
3887 | * Update guest DR7.
|
---|
3888 | */
|
---|
3889 | int rc = VMXWriteVmcsNw(VMX_VMCS_GUEST_DR7, u64GuestDr7);
|
---|
3890 | AssertRC(rc);
|
---|
3891 |
|
---|
3892 | /*
|
---|
3893 | * If we have forced EFLAGS.TF to be set because we're single-stepping in the hypervisor debugger,
|
---|
3894 | * we need to clear interrupt inhibition if any as otherwise it causes a VM-entry failure.
|
---|
3895 | *
|
---|
3896 | * See Intel spec. 26.3.1.5 "Checks on Guest Non-Register State".
|
---|
3897 | */
|
---|
3898 | if (fSteppingDB)
|
---|
3899 | {
|
---|
3900 | Assert(pVCpu->hm.s.fSingleInstruction);
|
---|
3901 | Assert(pVCpu->cpum.GstCtx.eflags.Bits.u1TF);
|
---|
3902 |
|
---|
3903 | uint32_t fIntrState = 0;
|
---|
3904 | rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INT_STATE, &fIntrState);
|
---|
3905 | AssertRC(rc);
|
---|
3906 |
|
---|
3907 | if (fIntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS))
|
---|
3908 | {
|
---|
3909 | fIntrState &= ~(VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS);
|
---|
3910 | rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_INT_STATE, fIntrState);
|
---|
3911 | AssertRC(rc);
|
---|
3912 | }
|
---|
3913 | }
|
---|
3914 |
|
---|
3915 | return VINF_SUCCESS;
|
---|
3916 | }
|
---|
3917 |
|
---|
3918 |
|
---|
3919 | /**
|
---|
3920 | * Exports certain guest MSRs into the VM-entry MSR-load and VM-exit MSR-store
|
---|
3921 | * areas.
|
---|
3922 | *
|
---|
3923 | * These MSRs will automatically be loaded to the host CPU on every successful
|
---|
3924 | * VM-entry and stored from the host CPU on every successful VM-exit.
|
---|
3925 | *
|
---|
3926 | * We creates/updates MSR slots for the host MSRs in the VM-exit MSR-load area. The
|
---|
3927 | * actual host MSR values are not- updated here for performance reasons. See
|
---|
3928 | * hmR0VmxExportHostMsrs().
|
---|
3929 | *
|
---|
3930 | * We also exports the guest sysenter MSRs into the guest-state area in the VMCS.
|
---|
3931 | *
|
---|
3932 | * @returns VBox status code.
|
---|
3933 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3934 | * @param pVmxTransient The VMX-transient structure.
|
---|
3935 | *
|
---|
3936 | * @remarks No-long-jump zone!!!
|
---|
3937 | */
|
---|
3938 | static int hmR0VmxExportGuestMsrs(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient)
|
---|
3939 | {
|
---|
3940 | AssertPtr(pVCpu);
|
---|
3941 | AssertPtr(pVmxTransient);
|
---|
3942 |
|
---|
3943 | PVMCC pVM = pVCpu->CTX_SUFF(pVM);
|
---|
3944 | PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
|
---|
3945 |
|
---|
3946 | /*
|
---|
3947 | * MSRs that we use the auto-load/store MSR area in the VMCS.
|
---|
3948 | * For 64-bit hosts, we load/restore them lazily, see hmR0VmxLazyLoadGuestMsrs(),
|
---|
3949 | * nothing to do here. The host MSR values are updated when it's safe in
|
---|
3950 | * hmR0VmxLazySaveHostMsrs().
|
---|
3951 | *
|
---|
3952 | * For nested-guests, the guests MSRs from the VM-entry MSR-load area are already
|
---|
3953 | * loaded (into the guest-CPU context) by the VMLAUNCH/VMRESUME instruction
|
---|
3954 | * emulation. The merged MSR permission bitmap will ensure that we get VM-exits
|
---|
3955 | * for any MSR that are not part of the lazy MSRs so we do not need to place
|
---|
3956 | * those MSRs into the auto-load/store MSR area. Nothing to do here.
|
---|
3957 | */
|
---|
3958 | if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_VMX_GUEST_AUTO_MSRS)
|
---|
3959 | {
|
---|
3960 | /* No auto-load/store MSRs currently. */
|
---|
3961 | ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_VMX_GUEST_AUTO_MSRS);
|
---|
3962 | }
|
---|
3963 |
|
---|
3964 | /*
|
---|
3965 | * Guest Sysenter MSRs.
|
---|
3966 | */
|
---|
3967 | if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SYSENTER_MSR_MASK)
|
---|
3968 | {
|
---|
3969 | HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SYSENTER_MSRS);
|
---|
3970 |
|
---|
3971 | if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SYSENTER_CS_MSR)
|
---|
3972 | {
|
---|
3973 | int rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_SYSENTER_CS, pCtx->SysEnter.cs);
|
---|
3974 | AssertRC(rc);
|
---|
3975 | ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_SYSENTER_CS_MSR);
|
---|
3976 | }
|
---|
3977 |
|
---|
3978 | if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SYSENTER_EIP_MSR)
|
---|
3979 | {
|
---|
3980 | int rc = VMXWriteVmcsNw(VMX_VMCS_GUEST_SYSENTER_EIP, pCtx->SysEnter.eip);
|
---|
3981 | AssertRC(rc);
|
---|
3982 | ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_SYSENTER_EIP_MSR);
|
---|
3983 | }
|
---|
3984 |
|
---|
3985 | if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SYSENTER_ESP_MSR)
|
---|
3986 | {
|
---|
3987 | int rc = VMXWriteVmcsNw(VMX_VMCS_GUEST_SYSENTER_ESP, pCtx->SysEnter.esp);
|
---|
3988 | AssertRC(rc);
|
---|
3989 | ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_SYSENTER_ESP_MSR);
|
---|
3990 | }
|
---|
3991 | }
|
---|
3992 |
|
---|
3993 | /*
|
---|
3994 | * Guest/host EFER MSR.
|
---|
3995 | */
|
---|
3996 | if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_EFER_MSR)
|
---|
3997 | {
|
---|
3998 | /* Whether we are using the VMCS to swap the EFER MSR must have been
|
---|
3999 | determined earlier while exporting VM-entry/VM-exit controls. */
|
---|
4000 | Assert(!(ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_VMX_ENTRY_EXIT_CTLS));
|
---|
4001 | HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_EFER);
|
---|
4002 |
|
---|
4003 | if (hmR0VmxShouldSwapEferMsr(pVCpu, pVmxTransient))
|
---|
4004 | {
|
---|
4005 | /*
|
---|
4006 | * EFER.LME is written by software, while EFER.LMA is set by the CPU to (CR0.PG & EFER.LME).
|
---|
4007 | * This means a guest can set EFER.LME=1 while CR0.PG=0 and EFER.LMA can remain 0.
|
---|
4008 | * VT-x requires that "IA-32e mode guest" VM-entry control must be identical to EFER.LMA
|
---|
4009 | * and to CR0.PG. Without unrestricted execution, CR0.PG (used for VT-x, not the shadow)
|
---|
4010 | * must always be 1. This forces us to effectively clear both EFER.LMA and EFER.LME until
|
---|
4011 | * the guest has also set CR0.PG=1. Otherwise, we would run into an invalid-guest state
|
---|
4012 | * during VM-entry.
|
---|
4013 | */
|
---|
4014 | uint64_t uGuestEferMsr = pCtx->msrEFER;
|
---|
4015 | if (!pVM->hmr0.s.vmx.fUnrestrictedGuest)
|
---|
4016 | {
|
---|
4017 | if (!(pCtx->msrEFER & MSR_K6_EFER_LMA))
|
---|
4018 | uGuestEferMsr &= ~MSR_K6_EFER_LME;
|
---|
4019 | else
|
---|
4020 | Assert((pCtx->msrEFER & (MSR_K6_EFER_LMA | MSR_K6_EFER_LME)) == (MSR_K6_EFER_LMA | MSR_K6_EFER_LME));
|
---|
4021 | }
|
---|
4022 |
|
---|
4023 | /*
|
---|
4024 | * If the CPU supports VMCS controls for swapping EFER, use it. Otherwise, we have no option
|
---|
4025 | * but to use the auto-load store MSR area in the VMCS for swapping EFER. See @bugref{7368}.
|
---|
4026 | */
|
---|
4027 | if (g_fHmVmxSupportsVmcsEfer)
|
---|
4028 | {
|
---|
4029 | int rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_EFER_FULL, uGuestEferMsr);
|
---|
4030 | AssertRC(rc);
|
---|
4031 | }
|
---|
4032 | else
|
---|
4033 | {
|
---|
4034 | /*
|
---|
4035 | * We shall use the auto-load/store MSR area only for loading the EFER MSR but we must
|
---|
4036 | * continue to intercept guest read and write accesses to it, see @bugref{7386#c16}.
|
---|
4037 | */
|
---|
4038 | int rc = hmR0VmxAddAutoLoadStoreMsr(pVCpu, pVmxTransient, MSR_K6_EFER, uGuestEferMsr,
|
---|
4039 | false /* fSetReadWrite */, false /* fUpdateHostMsr */);
|
---|
4040 | AssertRCReturn(rc, rc);
|
---|
4041 | }
|
---|
4042 |
|
---|
4043 | Log4Func(("efer=%#RX64 shadow=%#RX64\n", uGuestEferMsr, pCtx->msrEFER));
|
---|
4044 | }
|
---|
4045 | else if (!g_fHmVmxSupportsVmcsEfer)
|
---|
4046 | hmR0VmxRemoveAutoLoadStoreMsr(pVCpu, pVmxTransient, MSR_K6_EFER);
|
---|
4047 |
|
---|
4048 | ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_EFER_MSR);
|
---|
4049 | }
|
---|
4050 |
|
---|
4051 | /*
|
---|
4052 | * Other MSRs.
|
---|
4053 | */
|
---|
4054 | if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_OTHER_MSRS)
|
---|
4055 | {
|
---|
4056 | /* Speculation Control (R/W). */
|
---|
4057 | HMVMX_CPUMCTX_ASSERT(pVCpu, HM_CHANGED_GUEST_OTHER_MSRS);
|
---|
4058 | if (pVM->cpum.ro.GuestFeatures.fIbrs)
|
---|
4059 | {
|
---|
4060 | int rc = hmR0VmxAddAutoLoadStoreMsr(pVCpu, pVmxTransient, MSR_IA32_SPEC_CTRL, CPUMGetGuestSpecCtrl(pVCpu),
|
---|
4061 | false /* fSetReadWrite */, false /* fUpdateHostMsr */);
|
---|
4062 | AssertRCReturn(rc, rc);
|
---|
4063 | }
|
---|
4064 |
|
---|
4065 | /* Last Branch Record. */
|
---|
4066 | if (pVM->hmr0.s.vmx.fLbr)
|
---|
4067 | {
|
---|
4068 | PVMXVMCSINFOSHARED const pVmcsInfoShared = pVmxTransient->pVmcsInfo->pShared;
|
---|
4069 | uint32_t const idFromIpMsrStart = pVM->hmr0.s.vmx.idLbrFromIpMsrFirst;
|
---|
4070 | uint32_t const idToIpMsrStart = pVM->hmr0.s.vmx.idLbrToIpMsrFirst;
|
---|
4071 | uint32_t const cLbrStack = pVM->hmr0.s.vmx.idLbrFromIpMsrLast - pVM->hmr0.s.vmx.idLbrFromIpMsrFirst + 1;
|
---|
4072 | Assert(cLbrStack <= 32);
|
---|
4073 | for (uint32_t i = 0; i < cLbrStack; i++)
|
---|
4074 | {
|
---|
4075 | int rc = hmR0VmxAddAutoLoadStoreMsr(pVCpu, pVmxTransient, idFromIpMsrStart + i,
|
---|
4076 | pVmcsInfoShared->au64LbrFromIpMsr[i],
|
---|
4077 | false /* fSetReadWrite */, false /* fUpdateHostMsr */);
|
---|
4078 | AssertRCReturn(rc, rc);
|
---|
4079 |
|
---|
4080 | /* Some CPUs don't have a Branch-To-IP MSR (P4 and related Xeons). */
|
---|
4081 | if (idToIpMsrStart != 0)
|
---|
4082 | {
|
---|
4083 | rc = hmR0VmxAddAutoLoadStoreMsr(pVCpu, pVmxTransient, idToIpMsrStart + i,
|
---|
4084 | pVmcsInfoShared->au64LbrToIpMsr[i],
|
---|
4085 | false /* fSetReadWrite */, false /* fUpdateHostMsr */);
|
---|
4086 | AssertRCReturn(rc, rc);
|
---|
4087 | }
|
---|
4088 | }
|
---|
4089 |
|
---|
4090 | /* Add LBR top-of-stack MSR (which contains the index to the most recent record). */
|
---|
4091 | int rc = hmR0VmxAddAutoLoadStoreMsr(pVCpu, pVmxTransient, pVM->hmr0.s.vmx.idLbrTosMsr,
|
---|
4092 | pVmcsInfoShared->u64LbrTosMsr, false /* fSetReadWrite */,
|
---|
4093 | false /* fUpdateHostMsr */);
|
---|
4094 | AssertRCReturn(rc, rc);
|
---|
4095 | }
|
---|
4096 |
|
---|
4097 | ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_OTHER_MSRS);
|
---|
4098 | }
|
---|
4099 |
|
---|
4100 | return VINF_SUCCESS;
|
---|
4101 | }
|
---|
4102 |
|
---|
4103 |
|
---|
4104 | /**
|
---|
4105 | * Wrapper for running the guest code in VT-x.
|
---|
4106 | *
|
---|
4107 | * @returns VBox status code, no informational status codes.
|
---|
4108 | * @param pVCpu The cross context virtual CPU structure.
|
---|
4109 | * @param pVmxTransient The VMX-transient structure.
|
---|
4110 | *
|
---|
4111 | * @remarks No-long-jump zone!!!
|
---|
4112 | */
|
---|
4113 | DECLINLINE(int) hmR0VmxRunGuest(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient)
|
---|
4114 | {
|
---|
4115 | /* Mark that HM is the keeper of all guest-CPU registers now that we're going to execute guest code. */
|
---|
4116 | pVCpu->cpum.GstCtx.fExtrn |= HMVMX_CPUMCTX_EXTRN_ALL | CPUMCTX_EXTRN_KEEPER_HM;
|
---|
4117 |
|
---|
4118 | PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
|
---|
4119 | bool const fResumeVM = RT_BOOL(pVmcsInfo->fVmcsState & VMX_V_VMCS_LAUNCH_STATE_LAUNCHED);
|
---|
4120 | #ifdef VBOX_WITH_STATISTICS
|
---|
4121 | if (fResumeVM)
|
---|
4122 | STAM_COUNTER_INC(&pVCpu->hm.s.StatVmxVmResume);
|
---|
4123 | else
|
---|
4124 | STAM_COUNTER_INC(&pVCpu->hm.s.StatVmxVmLaunch);
|
---|
4125 | #endif
|
---|
4126 | int rc = pVCpu->hmr0.s.vmx.pfnStartVm(pVmcsInfo, pVCpu, fResumeVM);
|
---|
4127 | AssertMsg(rc <= VINF_SUCCESS, ("%Rrc\n", rc));
|
---|
4128 | return rc;
|
---|
4129 | }
|
---|
4130 |
|
---|
4131 |
|
---|
4132 | /**
|
---|
4133 | * Reports world-switch error and dumps some useful debug info.
|
---|
4134 | *
|
---|
4135 | * @param pVCpu The cross context virtual CPU structure.
|
---|
4136 | * @param rcVMRun The return code from VMLAUNCH/VMRESUME.
|
---|
4137 | * @param pVmxTransient The VMX-transient structure (only
|
---|
4138 | * exitReason updated).
|
---|
4139 | */
|
---|
4140 | static void hmR0VmxReportWorldSwitchError(PVMCPUCC pVCpu, int rcVMRun, PVMXTRANSIENT pVmxTransient)
|
---|
4141 | {
|
---|
4142 | Assert(pVCpu);
|
---|
4143 | Assert(pVmxTransient);
|
---|
4144 | HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
|
---|
4145 |
|
---|
4146 | Log4Func(("VM-entry failure: %Rrc\n", rcVMRun));
|
---|
4147 | switch (rcVMRun)
|
---|
4148 | {
|
---|
4149 | case VERR_VMX_INVALID_VMXON_PTR:
|
---|
4150 | AssertFailed();
|
---|
4151 | break;
|
---|
4152 | case VINF_SUCCESS: /* VMLAUNCH/VMRESUME succeeded but VM-entry failed... yeah, true story. */
|
---|
4153 | case VERR_VMX_UNABLE_TO_START_VM: /* VMLAUNCH/VMRESUME itself failed. */
|
---|
4154 | {
|
---|
4155 | int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_REASON, &pVCpu->hm.s.vmx.LastError.u32ExitReason);
|
---|
4156 | rc |= VMXReadVmcs32(VMX_VMCS32_RO_VM_INSTR_ERROR, &pVCpu->hm.s.vmx.LastError.u32InstrError);
|
---|
4157 | AssertRC(rc);
|
---|
4158 | vmxHCReadExitQualVmcs(pVCpu, pVmxTransient);
|
---|
4159 |
|
---|
4160 | pVCpu->hm.s.vmx.LastError.idEnteredCpu = pVCpu->hmr0.s.idEnteredCpu;
|
---|
4161 | /* LastError.idCurrentCpu was already updated in hmR0VmxPreRunGuestCommitted().
|
---|
4162 | Cannot do it here as we may have been long preempted. */
|
---|
4163 |
|
---|
4164 | #ifdef VBOX_STRICT
|
---|
4165 | PVMXVMCSINFO pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
|
---|
4166 | Log4(("uExitReason %#RX32 (VmxTransient %#RX16)\n", pVCpu->hm.s.vmx.LastError.u32ExitReason,
|
---|
4167 | pVmxTransient->uExitReason));
|
---|
4168 | Log4(("Exit Qualification %#RX64\n", pVmxTransient->uExitQual));
|
---|
4169 | Log4(("InstrError %#RX32\n", pVCpu->hm.s.vmx.LastError.u32InstrError));
|
---|
4170 | if (pVCpu->hm.s.vmx.LastError.u32InstrError <= HMVMX_INSTR_ERROR_MAX)
|
---|
4171 | Log4(("InstrError Desc. \"%s\"\n", g_apszVmxInstrErrors[pVCpu->hm.s.vmx.LastError.u32InstrError]));
|
---|
4172 | else
|
---|
4173 | Log4(("InstrError Desc. Range exceeded %u\n", HMVMX_INSTR_ERROR_MAX));
|
---|
4174 | Log4(("Entered host CPU %u\n", pVCpu->hm.s.vmx.LastError.idEnteredCpu));
|
---|
4175 | Log4(("Current host CPU %u\n", pVCpu->hm.s.vmx.LastError.idCurrentCpu));
|
---|
4176 |
|
---|
4177 | static struct
|
---|
4178 | {
|
---|
4179 | /** Name of the field to log. */
|
---|
4180 | const char *pszName;
|
---|
4181 | /** The VMCS field. */
|
---|
4182 | uint32_t uVmcsField;
|
---|
4183 | /** Whether host support of this field needs to be checked. */
|
---|
4184 | bool fCheckSupport;
|
---|
4185 | } const s_aVmcsFields[] =
|
---|
4186 | {
|
---|
4187 | { "VMX_VMCS32_CTRL_PIN_EXEC", VMX_VMCS32_CTRL_PIN_EXEC, false },
|
---|
4188 | { "VMX_VMCS32_CTRL_PROC_EXEC", VMX_VMCS32_CTRL_PROC_EXEC, false },
|
---|
4189 | { "VMX_VMCS32_CTRL_PROC_EXEC2", VMX_VMCS32_CTRL_PROC_EXEC2, true },
|
---|
4190 | { "VMX_VMCS32_CTRL_ENTRY", VMX_VMCS32_CTRL_ENTRY, false },
|
---|
4191 | { "VMX_VMCS32_CTRL_EXIT", VMX_VMCS32_CTRL_EXIT, false },
|
---|
4192 | { "VMX_VMCS32_CTRL_CR3_TARGET_COUNT", VMX_VMCS32_CTRL_CR3_TARGET_COUNT, false },
|
---|
4193 | { "VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO", VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, false },
|
---|
4194 | { "VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE", VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, false },
|
---|
4195 | { "VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH", VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, false },
|
---|
4196 | { "VMX_VMCS32_CTRL_TPR_THRESHOLD", VMX_VMCS32_CTRL_TPR_THRESHOLD, false },
|
---|
4197 | { "VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT", VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, false },
|
---|
4198 | { "VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT", VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, false },
|
---|
4199 | { "VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT", VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, false },
|
---|
4200 | { "VMX_VMCS32_CTRL_EXCEPTION_BITMAP", VMX_VMCS32_CTRL_EXCEPTION_BITMAP, false },
|
---|
4201 | { "VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK", VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK, false },
|
---|
4202 | { "VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH", VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH, false },
|
---|
4203 | { "VMX_VMCS_CTRL_CR0_MASK", VMX_VMCS_CTRL_CR0_MASK, false },
|
---|
4204 | { "VMX_VMCS_CTRL_CR0_READ_SHADOW", VMX_VMCS_CTRL_CR0_READ_SHADOW, false },
|
---|
4205 | { "VMX_VMCS_CTRL_CR4_MASK", VMX_VMCS_CTRL_CR4_MASK, false },
|
---|
4206 | { "VMX_VMCS_CTRL_CR4_READ_SHADOW", VMX_VMCS_CTRL_CR4_READ_SHADOW, false },
|
---|
4207 | { "VMX_VMCS64_CTRL_EPTP_FULL", VMX_VMCS64_CTRL_EPTP_FULL, true },
|
---|
4208 | { "VMX_VMCS_GUEST_RIP", VMX_VMCS_GUEST_RIP, false },
|
---|
4209 | { "VMX_VMCS_GUEST_RSP", VMX_VMCS_GUEST_RSP, false },
|
---|
4210 | { "VMX_VMCS_GUEST_RFLAGS", VMX_VMCS_GUEST_RFLAGS, false },
|
---|
4211 | { "VMX_VMCS16_VPID", VMX_VMCS16_VPID, true, },
|
---|
4212 | { "VMX_VMCS_HOST_CR0", VMX_VMCS_HOST_CR0, false },
|
---|
4213 | { "VMX_VMCS_HOST_CR3", VMX_VMCS_HOST_CR3, false },
|
---|
4214 | { "VMX_VMCS_HOST_CR4", VMX_VMCS_HOST_CR4, false },
|
---|
4215 | /* The order of selector fields below are fixed! */
|
---|
4216 | { "VMX_VMCS16_HOST_ES_SEL", VMX_VMCS16_HOST_ES_SEL, false },
|
---|
4217 | { "VMX_VMCS16_HOST_CS_SEL", VMX_VMCS16_HOST_CS_SEL, false },
|
---|
4218 | { "VMX_VMCS16_HOST_SS_SEL", VMX_VMCS16_HOST_SS_SEL, false },
|
---|
4219 | { "VMX_VMCS16_HOST_DS_SEL", VMX_VMCS16_HOST_DS_SEL, false },
|
---|
4220 | { "VMX_VMCS16_HOST_FS_SEL", VMX_VMCS16_HOST_FS_SEL, false },
|
---|
4221 | { "VMX_VMCS16_HOST_GS_SEL", VMX_VMCS16_HOST_GS_SEL, false },
|
---|
4222 | { "VMX_VMCS16_HOST_TR_SEL", VMX_VMCS16_HOST_TR_SEL, false },
|
---|
4223 | /* End of ordered selector fields. */
|
---|
4224 | { "VMX_VMCS_HOST_TR_BASE", VMX_VMCS_HOST_TR_BASE, false },
|
---|
4225 | { "VMX_VMCS_HOST_GDTR_BASE", VMX_VMCS_HOST_GDTR_BASE, false },
|
---|
4226 | { "VMX_VMCS_HOST_IDTR_BASE", VMX_VMCS_HOST_IDTR_BASE, false },
|
---|
4227 | { "VMX_VMCS32_HOST_SYSENTER_CS", VMX_VMCS32_HOST_SYSENTER_CS, false },
|
---|
4228 | { "VMX_VMCS_HOST_SYSENTER_EIP", VMX_VMCS_HOST_SYSENTER_EIP, false },
|
---|
4229 | { "VMX_VMCS_HOST_SYSENTER_ESP", VMX_VMCS_HOST_SYSENTER_ESP, false },
|
---|
4230 | { "VMX_VMCS_HOST_RSP", VMX_VMCS_HOST_RSP, false },
|
---|
4231 | { "VMX_VMCS_HOST_RIP", VMX_VMCS_HOST_RIP, false }
|
---|
4232 | };
|
---|
4233 |
|
---|
4234 | RTGDTR HostGdtr;
|
---|
4235 | ASMGetGDTR(&HostGdtr);
|
---|
4236 |
|
---|
4237 | uint32_t const cVmcsFields = RT_ELEMENTS(s_aVmcsFields);
|
---|
4238 | for (uint32_t i = 0; i < cVmcsFields; i++)
|
---|
4239 | {
|
---|
4240 | uint32_t const uVmcsField = s_aVmcsFields[i].uVmcsField;
|
---|
4241 |
|
---|
4242 | bool fSupported;
|
---|
4243 | if (!s_aVmcsFields[i].fCheckSupport)
|
---|
4244 | fSupported = true;
|
---|
4245 | else
|
---|
4246 | {
|
---|
4247 | PVMCC pVM = pVCpu->CTX_SUFF(pVM);
|
---|
4248 | switch (uVmcsField)
|
---|
4249 | {
|
---|
4250 | case VMX_VMCS64_CTRL_EPTP_FULL: fSupported = pVM->hmr0.s.fNestedPaging; break;
|
---|
4251 | case VMX_VMCS16_VPID: fSupported = pVM->hmr0.s.vmx.fVpid; break;
|
---|
4252 | case VMX_VMCS32_CTRL_PROC_EXEC2:
|
---|
4253 | fSupported = RT_BOOL(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_SECONDARY_CTLS);
|
---|
4254 | break;
|
---|
4255 | default:
|
---|
4256 | AssertMsgFailedReturnVoid(("Failed to provide VMCS field support for %#RX32\n", uVmcsField));
|
---|
4257 | }
|
---|
4258 | }
|
---|
4259 |
|
---|
4260 | if (fSupported)
|
---|
4261 | {
|
---|
4262 | uint8_t const uWidth = RT_BF_GET(uVmcsField, VMX_BF_VMCSFIELD_WIDTH);
|
---|
4263 | switch (uWidth)
|
---|
4264 | {
|
---|
4265 | case VMX_VMCSFIELD_WIDTH_16BIT:
|
---|
4266 | {
|
---|
4267 | uint16_t u16Val;
|
---|
4268 | rc = VMXReadVmcs16(uVmcsField, &u16Val);
|
---|
4269 | AssertRC(rc);
|
---|
4270 | Log4(("%-40s = %#RX16\n", s_aVmcsFields[i].pszName, u16Val));
|
---|
4271 |
|
---|
4272 | if ( uVmcsField >= VMX_VMCS16_HOST_ES_SEL
|
---|
4273 | && uVmcsField <= VMX_VMCS16_HOST_TR_SEL)
|
---|
4274 | {
|
---|
4275 | if (u16Val < HostGdtr.cbGdt)
|
---|
4276 | {
|
---|
4277 | /* Order of selectors in s_apszSel is fixed and matches the order in s_aVmcsFields. */
|
---|
4278 | static const char * const s_apszSel[] = { "Host ES", "Host CS", "Host SS", "Host DS",
|
---|
4279 | "Host FS", "Host GS", "Host TR" };
|
---|
4280 | uint8_t const idxSel = RT_BF_GET(uVmcsField, VMX_BF_VMCSFIELD_INDEX);
|
---|
4281 | Assert(idxSel < RT_ELEMENTS(s_apszSel));
|
---|
4282 | PCX86DESCHC pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u16Val & X86_SEL_MASK));
|
---|
4283 | hmR0DumpDescriptor(pDesc, u16Val, s_apszSel[idxSel]);
|
---|
4284 | }
|
---|
4285 | else
|
---|
4286 | Log4((" Selector value exceeds GDT limit!\n"));
|
---|
4287 | }
|
---|
4288 | break;
|
---|
4289 | }
|
---|
4290 |
|
---|
4291 | case VMX_VMCSFIELD_WIDTH_32BIT:
|
---|
4292 | {
|
---|
4293 | uint32_t u32Val;
|
---|
4294 | rc = VMXReadVmcs32(uVmcsField, &u32Val);
|
---|
4295 | AssertRC(rc);
|
---|
4296 | Log4(("%-40s = %#RX32\n", s_aVmcsFields[i].pszName, u32Val));
|
---|
4297 | break;
|
---|
4298 | }
|
---|
4299 |
|
---|
4300 | case VMX_VMCSFIELD_WIDTH_64BIT:
|
---|
4301 | case VMX_VMCSFIELD_WIDTH_NATURAL:
|
---|
4302 | {
|
---|
4303 | uint64_t u64Val;
|
---|
4304 | rc = VMXReadVmcs64(uVmcsField, &u64Val);
|
---|
4305 | AssertRC(rc);
|
---|
4306 | Log4(("%-40s = %#RX64\n", s_aVmcsFields[i].pszName, u64Val));
|
---|
4307 | break;
|
---|
4308 | }
|
---|
4309 | }
|
---|
4310 | }
|
---|
4311 | }
|
---|
4312 |
|
---|
4313 | Log4(("MSR_K6_EFER = %#RX64\n", ASMRdMsr(MSR_K6_EFER)));
|
---|
4314 | Log4(("MSR_K8_CSTAR = %#RX64\n", ASMRdMsr(MSR_K8_CSTAR)));
|
---|
4315 | Log4(("MSR_K8_LSTAR = %#RX64\n", ASMRdMsr(MSR_K8_LSTAR)));
|
---|
4316 | Log4(("MSR_K6_STAR = %#RX64\n", ASMRdMsr(MSR_K6_STAR)));
|
---|
4317 | Log4(("MSR_K8_SF_MASK = %#RX64\n", ASMRdMsr(MSR_K8_SF_MASK)));
|
---|
4318 | Log4(("MSR_K8_KERNEL_GS_BASE = %#RX64\n", ASMRdMsr(MSR_K8_KERNEL_GS_BASE)));
|
---|
4319 | #endif /* VBOX_STRICT */
|
---|
4320 | break;
|
---|
4321 | }
|
---|
4322 |
|
---|
4323 | default:
|
---|
4324 | /* Impossible */
|
---|
4325 | AssertMsgFailed(("hmR0VmxReportWorldSwitchError %Rrc (%#x)\n", rcVMRun, rcVMRun));
|
---|
4326 | break;
|
---|
4327 | }
|
---|
4328 | }
|
---|
4329 |
|
---|
4330 |
|
---|
4331 | /**
|
---|
4332 | * Sets up the usage of TSC-offsetting and updates the VMCS.
|
---|
4333 | *
|
---|
4334 | * If offsetting is not possible, cause VM-exits on RDTSC(P)s. Also sets up the
|
---|
4335 | * VMX-preemption timer.
|
---|
4336 | *
|
---|
4337 | * @returns VBox status code.
|
---|
4338 | * @param pVCpu The cross context virtual CPU structure.
|
---|
4339 | * @param pVmxTransient The VMX-transient structure.
|
---|
4340 | * @param idCurrentCpu The current CPU number.
|
---|
4341 | *
|
---|
4342 | * @remarks No-long-jump zone!!!
|
---|
4343 | */
|
---|
4344 | static void hmR0VmxUpdateTscOffsettingAndPreemptTimer(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient, RTCPUID idCurrentCpu)
|
---|
4345 | {
|
---|
4346 | bool fOffsettedTsc;
|
---|
4347 | bool fParavirtTsc;
|
---|
4348 | uint64_t uTscOffset;
|
---|
4349 | PVMCC pVM = pVCpu->CTX_SUFF(pVM);
|
---|
4350 | PVMXVMCSINFO pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
|
---|
4351 |
|
---|
4352 | if (pVM->hmr0.s.vmx.fUsePreemptTimer)
|
---|
4353 | {
|
---|
4354 | /* The TMCpuTickGetDeadlineAndTscOffset function is expensive (calling it on
|
---|
4355 | every entry slowed down the bs2-test1 CPUID testcase by ~33% (on an 10980xe). */
|
---|
4356 | uint64_t cTicksToDeadline;
|
---|
4357 | if ( idCurrentCpu == pVCpu->hmr0.s.idLastCpu
|
---|
4358 | && TMVirtualSyncIsCurrentDeadlineVersion(pVM, pVCpu->hmr0.s.vmx.uTscDeadlineVersion))
|
---|
4359 | {
|
---|
4360 | STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatVmxPreemptionReusingDeadline);
|
---|
4361 | fOffsettedTsc = TMCpuTickCanUseRealTSC(pVM, pVCpu, &uTscOffset, &fParavirtTsc);
|
---|
4362 | cTicksToDeadline = pVCpu->hmr0.s.vmx.uTscDeadline - SUPReadTsc();
|
---|
4363 | if ((int64_t)cTicksToDeadline > 0)
|
---|
4364 | { /* hopefully */ }
|
---|
4365 | else
|
---|
4366 | {
|
---|
4367 | STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatVmxPreemptionReusingDeadlineExpired);
|
---|
4368 | cTicksToDeadline = 0;
|
---|
4369 | }
|
---|
4370 | }
|
---|
4371 | else
|
---|
4372 | {
|
---|
4373 | STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatVmxPreemptionRecalcingDeadline);
|
---|
4374 | cTicksToDeadline = TMCpuTickGetDeadlineAndTscOffset(pVM, pVCpu, &uTscOffset, &fOffsettedTsc, &fParavirtTsc,
|
---|
4375 | &pVCpu->hmr0.s.vmx.uTscDeadline,
|
---|
4376 | &pVCpu->hmr0.s.vmx.uTscDeadlineVersion);
|
---|
4377 | pVCpu->hmr0.s.vmx.uTscDeadline += cTicksToDeadline;
|
---|
4378 | if (cTicksToDeadline >= 128)
|
---|
4379 | { /* hopefully */ }
|
---|
4380 | else
|
---|
4381 | STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatVmxPreemptionRecalcingDeadlineExpired);
|
---|
4382 | }
|
---|
4383 |
|
---|
4384 | /* Make sure the returned values have sane upper and lower boundaries. */
|
---|
4385 | uint64_t const u64CpuHz = SUPGetCpuHzFromGipBySetIndex(g_pSUPGlobalInfoPage, pVCpu->iHostCpuSet);
|
---|
4386 | cTicksToDeadline = RT_MIN(cTicksToDeadline, u64CpuHz / 64); /* 1/64th of a second, 15.625ms. */ /** @todo r=bird: Once real+virtual timers move to separate thread, we can raise the upper limit (16ms isn't much). ASSUMES working poke cpu function. */
|
---|
4387 | cTicksToDeadline = RT_MAX(cTicksToDeadline, u64CpuHz / 32678); /* 1/32768th of a second, ~30us. */
|
---|
4388 | cTicksToDeadline >>= pVM->hm.s.vmx.cPreemptTimerShift;
|
---|
4389 |
|
---|
4390 | /** @todo r=ramshankar: We need to find a way to integrate nested-guest
|
---|
4391 | * preemption timers here. We probably need to clamp the preemption timer,
|
---|
4392 | * after converting the timer value to the host. */
|
---|
4393 | uint32_t const cPreemptionTickCount = (uint32_t)RT_MIN(cTicksToDeadline, UINT32_MAX - 16);
|
---|
4394 | int rc = VMXWriteVmcs32(VMX_VMCS32_PREEMPT_TIMER_VALUE, cPreemptionTickCount);
|
---|
4395 | AssertRC(rc);
|
---|
4396 | }
|
---|
4397 | else
|
---|
4398 | fOffsettedTsc = TMCpuTickCanUseRealTSC(pVM, pVCpu, &uTscOffset, &fParavirtTsc);
|
---|
4399 |
|
---|
4400 | if (fParavirtTsc)
|
---|
4401 | {
|
---|
4402 | /* Currently neither Hyper-V nor KVM need to update their paravirt. TSC
|
---|
4403 | information before every VM-entry, hence disable it for performance sake. */
|
---|
4404 | #if 0
|
---|
4405 | int rc = GIMR0UpdateParavirtTsc(pVM, 0 /* u64Offset */);
|
---|
4406 | AssertRC(rc);
|
---|
4407 | #endif
|
---|
4408 | STAM_COUNTER_INC(&pVCpu->hm.s.StatTscParavirt);
|
---|
4409 | }
|
---|
4410 |
|
---|
4411 | if ( fOffsettedTsc
|
---|
4412 | && RT_LIKELY(!pVCpu->hmr0.s.fDebugWantRdTscExit))
|
---|
4413 | {
|
---|
4414 | if (pVmxTransient->fIsNestedGuest)
|
---|
4415 | uTscOffset = CPUMApplyNestedGuestTscOffset(pVCpu, uTscOffset);
|
---|
4416 | hmR0VmxSetTscOffsetVmcs(pVmcsInfo, uTscOffset);
|
---|
4417 | hmR0VmxRemoveProcCtlsVmcs(pVCpu, pVmxTransient, VMX_PROC_CTLS_RDTSC_EXIT);
|
---|
4418 | }
|
---|
4419 | else
|
---|
4420 | {
|
---|
4421 | /* We can't use TSC-offsetting (non-fixed TSC, warp drive active etc.), VM-exit on RDTSC(P). */
|
---|
4422 | hmR0VmxSetProcCtlsVmcs(pVmxTransient, VMX_PROC_CTLS_RDTSC_EXIT);
|
---|
4423 | }
|
---|
4424 | }
|
---|
4425 |
|
---|
4426 |
|
---|
4427 | /**
|
---|
4428 | * Worker for VMXR0ImportStateOnDemand.
|
---|
4429 | *
|
---|
4430 | * @returns VBox status code.
|
---|
4431 | * @param pVCpu The cross context virtual CPU structure.
|
---|
4432 | * @param pVmcsInfo The VMCS info. object.
|
---|
4433 | * @param fWhat What to import, CPUMCTX_EXTRN_XXX.
|
---|
4434 | */
|
---|
4435 | static int hmR0VmxImportGuestState(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo, uint64_t fWhat)
|
---|
4436 | {
|
---|
4437 | int rc = VINF_SUCCESS;
|
---|
4438 | PVMCC pVM = pVCpu->CTX_SUFF(pVM);
|
---|
4439 | PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
|
---|
4440 | uint32_t u32Val;
|
---|
4441 |
|
---|
4442 | /*
|
---|
4443 | * Note! This is hack to workaround a mysterious BSOD observed with release builds
|
---|
4444 | * on Windows 10 64-bit hosts. Profile and debug builds are not affected and
|
---|
4445 | * neither are other host platforms.
|
---|
4446 | *
|
---|
4447 | * Committing this temporarily as it prevents BSOD.
|
---|
4448 | *
|
---|
4449 | * Update: This is very likely a compiler optimization bug, see @bugref{9180}.
|
---|
4450 | */
|
---|
4451 | #ifdef RT_OS_WINDOWS
|
---|
4452 | if (pVM == 0 || pVM == (void *)(uintptr_t)-1)
|
---|
4453 | return VERR_HM_IPE_1;
|
---|
4454 | #endif
|
---|
4455 |
|
---|
4456 | STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatImportGuestState, x);
|
---|
4457 |
|
---|
4458 | /*
|
---|
4459 | * We disable interrupts to make the updating of the state and in particular
|
---|
4460 | * the fExtrn modification atomic wrt to preemption hooks.
|
---|
4461 | */
|
---|
4462 | RTCCUINTREG const fEFlags = ASMIntDisableFlags();
|
---|
4463 |
|
---|
4464 | fWhat &= pCtx->fExtrn;
|
---|
4465 | if (fWhat)
|
---|
4466 | {
|
---|
4467 | do
|
---|
4468 | {
|
---|
4469 | if (fWhat & CPUMCTX_EXTRN_RIP)
|
---|
4470 | vmxHCImportGuestRip(pVCpu);
|
---|
4471 |
|
---|
4472 | if (fWhat & CPUMCTX_EXTRN_RFLAGS)
|
---|
4473 | vmxHCImportGuestRFlags(pVCpu, pVmcsInfo);
|
---|
4474 |
|
---|
4475 | if (fWhat & (CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI))
|
---|
4476 | vmxHCImportGuestIntrState(pVCpu, pVmcsInfo);
|
---|
4477 |
|
---|
4478 | if (fWhat & CPUMCTX_EXTRN_RSP)
|
---|
4479 | {
|
---|
4480 | rc = VMXReadVmcsNw(VMX_VMCS_GUEST_RSP, &pCtx->rsp);
|
---|
4481 | AssertRC(rc);
|
---|
4482 | }
|
---|
4483 |
|
---|
4484 | if (fWhat & CPUMCTX_EXTRN_SREG_MASK)
|
---|
4485 | {
|
---|
4486 | PVMXVMCSINFOSHARED pVmcsInfoShared = pVmcsInfo->pShared;
|
---|
4487 | bool const fRealOnV86Active = pVmcsInfoShared->RealMode.fRealOnV86Active;
|
---|
4488 | if (fWhat & CPUMCTX_EXTRN_CS)
|
---|
4489 | {
|
---|
4490 | vmxHCImportGuestSegReg(pVCpu, X86_SREG_CS);
|
---|
4491 | vmxHCImportGuestRip(pVCpu);
|
---|
4492 | if (fRealOnV86Active)
|
---|
4493 | pCtx->cs.Attr.u = pVmcsInfoShared->RealMode.AttrCS.u;
|
---|
4494 | EMHistoryUpdatePC(pVCpu, pCtx->cs.u64Base + pCtx->rip, true /* fFlattened */);
|
---|
4495 | }
|
---|
4496 | if (fWhat & CPUMCTX_EXTRN_SS)
|
---|
4497 | {
|
---|
4498 | vmxHCImportGuestSegReg(pVCpu, X86_SREG_SS);
|
---|
4499 | if (fRealOnV86Active)
|
---|
4500 | pCtx->ss.Attr.u = pVmcsInfoShared->RealMode.AttrSS.u;
|
---|
4501 | }
|
---|
4502 | if (fWhat & CPUMCTX_EXTRN_DS)
|
---|
4503 | {
|
---|
4504 | vmxHCImportGuestSegReg(pVCpu, X86_SREG_DS);
|
---|
4505 | if (fRealOnV86Active)
|
---|
4506 | pCtx->ds.Attr.u = pVmcsInfoShared->RealMode.AttrDS.u;
|
---|
4507 | }
|
---|
4508 | if (fWhat & CPUMCTX_EXTRN_ES)
|
---|
4509 | {
|
---|
4510 | vmxHCImportGuestSegReg(pVCpu, X86_SREG_ES);
|
---|
4511 | if (fRealOnV86Active)
|
---|
4512 | pCtx->es.Attr.u = pVmcsInfoShared->RealMode.AttrES.u;
|
---|
4513 | }
|
---|
4514 | if (fWhat & CPUMCTX_EXTRN_FS)
|
---|
4515 | {
|
---|
4516 | vmxHCImportGuestSegReg(pVCpu, X86_SREG_FS);
|
---|
4517 | if (fRealOnV86Active)
|
---|
4518 | pCtx->fs.Attr.u = pVmcsInfoShared->RealMode.AttrFS.u;
|
---|
4519 | }
|
---|
4520 | if (fWhat & CPUMCTX_EXTRN_GS)
|
---|
4521 | {
|
---|
4522 | vmxHCImportGuestSegReg(pVCpu, X86_SREG_GS);
|
---|
4523 | if (fRealOnV86Active)
|
---|
4524 | pCtx->gs.Attr.u = pVmcsInfoShared->RealMode.AttrGS.u;
|
---|
4525 | }
|
---|
4526 | }
|
---|
4527 |
|
---|
4528 | if (fWhat & CPUMCTX_EXTRN_TABLE_MASK)
|
---|
4529 | {
|
---|
4530 | if (fWhat & CPUMCTX_EXTRN_LDTR)
|
---|
4531 | vmxHCImportGuestLdtr(pVCpu);
|
---|
4532 |
|
---|
4533 | if (fWhat & CPUMCTX_EXTRN_GDTR)
|
---|
4534 | {
|
---|
4535 | rc = VMXReadVmcsNw(VMX_VMCS_GUEST_GDTR_BASE, &pCtx->gdtr.pGdt); AssertRC(rc);
|
---|
4536 | rc = VMXReadVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, &u32Val); AssertRC(rc);
|
---|
4537 | pCtx->gdtr.cbGdt = u32Val;
|
---|
4538 | }
|
---|
4539 |
|
---|
4540 | /* Guest IDTR. */
|
---|
4541 | if (fWhat & CPUMCTX_EXTRN_IDTR)
|
---|
4542 | {
|
---|
4543 | rc = VMXReadVmcsNw(VMX_VMCS_GUEST_IDTR_BASE, &pCtx->idtr.pIdt); AssertRC(rc);
|
---|
4544 | rc = VMXReadVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, &u32Val); AssertRC(rc);
|
---|
4545 | pCtx->idtr.cbIdt = u32Val;
|
---|
4546 | }
|
---|
4547 |
|
---|
4548 | /* Guest TR. */
|
---|
4549 | if (fWhat & CPUMCTX_EXTRN_TR)
|
---|
4550 | {
|
---|
4551 | /* Real-mode emulation using virtual-8086 mode has the fake TSS (pRealModeTSS) in TR,
|
---|
4552 | don't need to import that one. */
|
---|
4553 | if (!pVmcsInfo->pShared->RealMode.fRealOnV86Active)
|
---|
4554 | vmxHCImportGuestTr(pVCpu);
|
---|
4555 | }
|
---|
4556 | }
|
---|
4557 |
|
---|
4558 | if (fWhat & CPUMCTX_EXTRN_DR7)
|
---|
4559 | {
|
---|
4560 | if (!pVCpu->hmr0.s.fUsingHyperDR7)
|
---|
4561 | {
|
---|
4562 | rc = VMXReadVmcsNw(VMX_VMCS_GUEST_DR7, &pCtx->dr[7]);
|
---|
4563 | AssertRC(rc);
|
---|
4564 | }
|
---|
4565 | }
|
---|
4566 |
|
---|
4567 | if (fWhat & CPUMCTX_EXTRN_SYSENTER_MSRS)
|
---|
4568 | {
|
---|
4569 | rc = VMXReadVmcsNw(VMX_VMCS_GUEST_SYSENTER_EIP, &pCtx->SysEnter.eip); AssertRC(rc);
|
---|
4570 | rc = VMXReadVmcsNw(VMX_VMCS_GUEST_SYSENTER_ESP, &pCtx->SysEnter.esp); AssertRC(rc);
|
---|
4571 | rc = VMXReadVmcs32(VMX_VMCS32_GUEST_SYSENTER_CS, &u32Val); AssertRC(rc);
|
---|
4572 | pCtx->SysEnter.cs = u32Val;
|
---|
4573 | }
|
---|
4574 |
|
---|
4575 | if (fWhat & CPUMCTX_EXTRN_KERNEL_GS_BASE)
|
---|
4576 | {
|
---|
4577 | if ( pVM->hmr0.s.fAllow64BitGuests
|
---|
4578 | && (pVCpu->hmr0.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST))
|
---|
4579 | pCtx->msrKERNELGSBASE = ASMRdMsr(MSR_K8_KERNEL_GS_BASE);
|
---|
4580 | }
|
---|
4581 |
|
---|
4582 | if (fWhat & CPUMCTX_EXTRN_SYSCALL_MSRS)
|
---|
4583 | {
|
---|
4584 | if ( pVM->hmr0.s.fAllow64BitGuests
|
---|
4585 | && (pVCpu->hmr0.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST))
|
---|
4586 | {
|
---|
4587 | pCtx->msrLSTAR = ASMRdMsr(MSR_K8_LSTAR);
|
---|
4588 | pCtx->msrSTAR = ASMRdMsr(MSR_K6_STAR);
|
---|
4589 | pCtx->msrSFMASK = ASMRdMsr(MSR_K8_SF_MASK);
|
---|
4590 | }
|
---|
4591 | }
|
---|
4592 |
|
---|
4593 | if (fWhat & (CPUMCTX_EXTRN_TSC_AUX | CPUMCTX_EXTRN_OTHER_MSRS))
|
---|
4594 | {
|
---|
4595 | PVMXVMCSINFOSHARED pVmcsInfoShared = pVmcsInfo->pShared;
|
---|
4596 | PCVMXAUTOMSR pMsrs = (PCVMXAUTOMSR)pVmcsInfo->pvGuestMsrStore;
|
---|
4597 | uint32_t const cMsrs = pVmcsInfo->cExitMsrStore;
|
---|
4598 | Assert(pMsrs);
|
---|
4599 | Assert(cMsrs <= VMX_MISC_MAX_MSRS(g_HmMsrs.u.vmx.u64Misc));
|
---|
4600 | Assert(sizeof(*pMsrs) * cMsrs <= X86_PAGE_4K_SIZE);
|
---|
4601 | for (uint32_t i = 0; i < cMsrs; i++)
|
---|
4602 | {
|
---|
4603 | uint32_t const idMsr = pMsrs[i].u32Msr;
|
---|
4604 | switch (idMsr)
|
---|
4605 | {
|
---|
4606 | case MSR_K8_TSC_AUX: CPUMSetGuestTscAux(pVCpu, pMsrs[i].u64Value); break;
|
---|
4607 | case MSR_IA32_SPEC_CTRL: CPUMSetGuestSpecCtrl(pVCpu, pMsrs[i].u64Value); break;
|
---|
4608 | case MSR_K6_EFER: /* Can't be changed without causing a VM-exit */ break;
|
---|
4609 | default:
|
---|
4610 | {
|
---|
4611 | uint32_t idxLbrMsr;
|
---|
4612 | if (pVM->hmr0.s.vmx.fLbr)
|
---|
4613 | {
|
---|
4614 | if (hmR0VmxIsLbrBranchFromMsr(pVM, idMsr, &idxLbrMsr))
|
---|
4615 | {
|
---|
4616 | Assert(idxLbrMsr < RT_ELEMENTS(pVmcsInfoShared->au64LbrFromIpMsr));
|
---|
4617 | pVmcsInfoShared->au64LbrFromIpMsr[idxLbrMsr] = pMsrs[i].u64Value;
|
---|
4618 | break;
|
---|
4619 | }
|
---|
4620 | if (hmR0VmxIsLbrBranchToMsr(pVM, idMsr, &idxLbrMsr))
|
---|
4621 | {
|
---|
4622 | Assert(idxLbrMsr < RT_ELEMENTS(pVmcsInfoShared->au64LbrFromIpMsr));
|
---|
4623 | pVmcsInfoShared->au64LbrToIpMsr[idxLbrMsr] = pMsrs[i].u64Value;
|
---|
4624 | break;
|
---|
4625 | }
|
---|
4626 | if (idMsr == pVM->hmr0.s.vmx.idLbrTosMsr)
|
---|
4627 | {
|
---|
4628 | pVmcsInfoShared->u64LbrTosMsr = pMsrs[i].u64Value;
|
---|
4629 | break;
|
---|
4630 | }
|
---|
4631 | /* Fallthru (no break) */
|
---|
4632 | }
|
---|
4633 | pCtx->fExtrn = 0;
|
---|
4634 | pVCpu->hm.s.u32HMError = pMsrs->u32Msr;
|
---|
4635 | ASMSetFlags(fEFlags);
|
---|
4636 | AssertMsgFailed(("Unexpected MSR in auto-load/store area. idMsr=%#RX32 cMsrs=%u\n", idMsr, cMsrs));
|
---|
4637 | return VERR_HM_UNEXPECTED_LD_ST_MSR;
|
---|
4638 | }
|
---|
4639 | }
|
---|
4640 | }
|
---|
4641 | }
|
---|
4642 |
|
---|
4643 | if (fWhat & CPUMCTX_EXTRN_CR_MASK)
|
---|
4644 | {
|
---|
4645 | if (fWhat & CPUMCTX_EXTRN_CR0)
|
---|
4646 | {
|
---|
4647 | uint64_t u64Cr0;
|
---|
4648 | uint64_t u64Shadow;
|
---|
4649 | rc = VMXReadVmcsNw(VMX_VMCS_GUEST_CR0, &u64Cr0); AssertRC(rc);
|
---|
4650 | rc = VMXReadVmcsNw(VMX_VMCS_CTRL_CR0_READ_SHADOW, &u64Shadow); AssertRC(rc);
|
---|
4651 | #ifndef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
4652 | u64Cr0 = (u64Cr0 & ~pVmcsInfo->u64Cr0Mask)
|
---|
4653 | | (u64Shadow & pVmcsInfo->u64Cr0Mask);
|
---|
4654 | #else
|
---|
4655 | if (!CPUMIsGuestInVmxNonRootMode(pCtx))
|
---|
4656 | {
|
---|
4657 | u64Cr0 = (u64Cr0 & ~pVmcsInfo->u64Cr0Mask)
|
---|
4658 | | (u64Shadow & pVmcsInfo->u64Cr0Mask);
|
---|
4659 | }
|
---|
4660 | else
|
---|
4661 | {
|
---|
4662 | /*
|
---|
4663 | * We've merged the guest and nested-guest's CR0 guest/host mask while executing
|
---|
4664 | * the nested-guest using hardware-assisted VMX. Accordingly we need to
|
---|
4665 | * re-construct CR0. See @bugref{9180#c95} for details.
|
---|
4666 | */
|
---|
4667 | PCVMXVMCSINFO const pVmcsInfoGst = &pVCpu->hmr0.s.vmx.VmcsInfo;
|
---|
4668 | PVMXVVMCS const pVmcsNstGst = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
|
---|
4669 | u64Cr0 = (u64Cr0 & ~pVmcsInfo->u64Cr0Mask)
|
---|
4670 | | (pVmcsNstGst->u64GuestCr0.u & pVmcsNstGst->u64Cr0Mask.u)
|
---|
4671 | | (u64Shadow & (pVmcsInfoGst->u64Cr0Mask & ~pVmcsNstGst->u64Cr0Mask.u));
|
---|
4672 | }
|
---|
4673 | #endif
|
---|
4674 | VMMRZCallRing3Disable(pVCpu); /* May call into PGM which has Log statements. */
|
---|
4675 | CPUMSetGuestCR0(pVCpu, u64Cr0);
|
---|
4676 | VMMRZCallRing3Enable(pVCpu);
|
---|
4677 | }
|
---|
4678 |
|
---|
4679 | if (fWhat & CPUMCTX_EXTRN_CR4)
|
---|
4680 | {
|
---|
4681 | uint64_t u64Cr4;
|
---|
4682 | uint64_t u64Shadow;
|
---|
4683 | rc = VMXReadVmcsNw(VMX_VMCS_GUEST_CR4, &u64Cr4); AssertRC(rc);
|
---|
4684 | rc |= VMXReadVmcsNw(VMX_VMCS_CTRL_CR4_READ_SHADOW, &u64Shadow); AssertRC(rc);
|
---|
4685 | #ifndef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
4686 | u64Cr4 = (u64Cr4 & ~pVmcsInfo->u64Cr4Mask)
|
---|
4687 | | (u64Shadow & pVmcsInfo->u64Cr4Mask);
|
---|
4688 | #else
|
---|
4689 | if (!CPUMIsGuestInVmxNonRootMode(pCtx))
|
---|
4690 | {
|
---|
4691 | u64Cr4 = (u64Cr4 & ~pVmcsInfo->u64Cr4Mask)
|
---|
4692 | | (u64Shadow & pVmcsInfo->u64Cr4Mask);
|
---|
4693 | }
|
---|
4694 | else
|
---|
4695 | {
|
---|
4696 | /*
|
---|
4697 | * We've merged the guest and nested-guest's CR4 guest/host mask while executing
|
---|
4698 | * the nested-guest using hardware-assisted VMX. Accordingly we need to
|
---|
4699 | * re-construct CR4. See @bugref{9180#c95} for details.
|
---|
4700 | */
|
---|
4701 | PCVMXVMCSINFO const pVmcsInfoGst = &pVCpu->hmr0.s.vmx.VmcsInfo;
|
---|
4702 | PVMXVVMCS const pVmcsNstGst = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
|
---|
4703 | u64Cr4 = (u64Cr4 & ~pVmcsInfo->u64Cr4Mask)
|
---|
4704 | | (pVmcsNstGst->u64GuestCr4.u & pVmcsNstGst->u64Cr4Mask.u)
|
---|
4705 | | (u64Shadow & (pVmcsInfoGst->u64Cr4Mask & ~pVmcsNstGst->u64Cr4Mask.u));
|
---|
4706 | }
|
---|
4707 | #endif
|
---|
4708 | pCtx->cr4 = u64Cr4;
|
---|
4709 | }
|
---|
4710 |
|
---|
4711 | if (fWhat & CPUMCTX_EXTRN_CR3)
|
---|
4712 | {
|
---|
4713 | /* CR0.PG bit changes are always intercepted, so it's up to date. */
|
---|
4714 | if ( pVM->hmr0.s.vmx.fUnrestrictedGuest
|
---|
4715 | || ( pVM->hmr0.s.fNestedPaging
|
---|
4716 | && CPUMIsGuestPagingEnabledEx(pCtx)))
|
---|
4717 | {
|
---|
4718 | uint64_t u64Cr3;
|
---|
4719 | rc = VMXReadVmcsNw(VMX_VMCS_GUEST_CR3, &u64Cr3); AssertRC(rc);
|
---|
4720 | if (pCtx->cr3 != u64Cr3)
|
---|
4721 | {
|
---|
4722 | pCtx->cr3 = u64Cr3;
|
---|
4723 | VMCPU_FF_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3);
|
---|
4724 | }
|
---|
4725 |
|
---|
4726 | /*
|
---|
4727 | * If the guest is in PAE mode, sync back the PDPE's into the guest state.
|
---|
4728 | * CR4.PAE, CR0.PG, EFER MSR changes are always intercepted, so they're up to date.
|
---|
4729 | */
|
---|
4730 | if (CPUMIsGuestInPAEModeEx(pCtx))
|
---|
4731 | {
|
---|
4732 | X86PDPE aPaePdpes[4];
|
---|
4733 | rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, &aPaePdpes[0].u); AssertRC(rc);
|
---|
4734 | rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, &aPaePdpes[1].u); AssertRC(rc);
|
---|
4735 | rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, &aPaePdpes[2].u); AssertRC(rc);
|
---|
4736 | rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, &aPaePdpes[3].u); AssertRC(rc);
|
---|
4737 | if (memcmp(&aPaePdpes[0], &pCtx->aPaePdpes[0], sizeof(aPaePdpes)))
|
---|
4738 | {
|
---|
4739 | memcpy(&pCtx->aPaePdpes[0], &aPaePdpes[0], sizeof(aPaePdpes));
|
---|
4740 | /* PGM now updates PAE PDPTEs while updating CR3. */
|
---|
4741 | VMCPU_FF_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3);
|
---|
4742 | }
|
---|
4743 | }
|
---|
4744 | }
|
---|
4745 | }
|
---|
4746 | }
|
---|
4747 |
|
---|
4748 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
4749 | if (fWhat & CPUMCTX_EXTRN_HWVIRT)
|
---|
4750 | {
|
---|
4751 | if ( (pVmcsInfo->u32ProcCtls2 & VMX_PROC_CTLS2_VMCS_SHADOWING)
|
---|
4752 | && !CPUMIsGuestInVmxNonRootMode(pCtx))
|
---|
4753 | {
|
---|
4754 | Assert(CPUMIsGuestInVmxRootMode(pCtx));
|
---|
4755 | rc = vmxHCCopyShadowToNstGstVmcs(pVCpu, pVmcsInfo);
|
---|
4756 | if (RT_SUCCESS(rc))
|
---|
4757 | { /* likely */ }
|
---|
4758 | else
|
---|
4759 | break;
|
---|
4760 | }
|
---|
4761 | }
|
---|
4762 | #endif
|
---|
4763 | } while (0);
|
---|
4764 |
|
---|
4765 | if (RT_SUCCESS(rc))
|
---|
4766 | {
|
---|
4767 | /* Update fExtrn. */
|
---|
4768 | pCtx->fExtrn &= ~fWhat;
|
---|
4769 |
|
---|
4770 | /* If everything has been imported, clear the HM keeper bit. */
|
---|
4771 | if (!(pCtx->fExtrn & HMVMX_CPUMCTX_EXTRN_ALL))
|
---|
4772 | {
|
---|
4773 | pCtx->fExtrn &= ~CPUMCTX_EXTRN_KEEPER_HM;
|
---|
4774 | Assert(!pCtx->fExtrn);
|
---|
4775 | }
|
---|
4776 | }
|
---|
4777 | }
|
---|
4778 | else
|
---|
4779 | AssertMsg(!pCtx->fExtrn || (pCtx->fExtrn & HMVMX_CPUMCTX_EXTRN_ALL), ("%#RX64\n", pCtx->fExtrn));
|
---|
4780 |
|
---|
4781 | /*
|
---|
4782 | * Restore interrupts.
|
---|
4783 | */
|
---|
4784 | ASMSetFlags(fEFlags);
|
---|
4785 |
|
---|
4786 | STAM_PROFILE_ADV_STOP(& pVCpu->hm.s.StatImportGuestState, x);
|
---|
4787 |
|
---|
4788 | if (RT_SUCCESS(rc))
|
---|
4789 | { /* likely */ }
|
---|
4790 | else
|
---|
4791 | return rc;
|
---|
4792 |
|
---|
4793 | /*
|
---|
4794 | * Honor any pending CR3 updates.
|
---|
4795 | *
|
---|
4796 | * Consider this scenario: VM-exit -> VMMRZCallRing3Enable() -> do stuff that causes a longjmp -> VMXR0CallRing3Callback()
|
---|
4797 | * -> VMMRZCallRing3Disable() -> hmR0VmxImportGuestState() -> Sets VMCPU_FF_HM_UPDATE_CR3 pending -> return from the longjmp
|
---|
4798 | * -> continue with VM-exit handling -> hmR0VmxImportGuestState() and here we are.
|
---|
4799 | *
|
---|
4800 | * The reason for such complicated handling is because VM-exits that call into PGM expect CR3 to be up-to-date and thus
|
---|
4801 | * if any CR3-saves -before- the VM-exit (longjmp) postponed the CR3 update via the force-flag, any VM-exit handler that
|
---|
4802 | * calls into PGM when it re-saves CR3 will end up here and we call PGMUpdateCR3(). This is why the code below should
|
---|
4803 | * -NOT- check if CPUMCTX_EXTRN_CR3 is set!
|
---|
4804 | *
|
---|
4805 | * The longjmp exit path can't check these CR3 force-flags and call code that takes a lock again. We cover for it here.
|
---|
4806 | *
|
---|
4807 | * The force-flag is checked first as it's cheaper for potential superfluous calls to this function.
|
---|
4808 | */
|
---|
4809 | if ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3)
|
---|
4810 | && VMMRZCallRing3IsEnabled(pVCpu))
|
---|
4811 | {
|
---|
4812 | Assert(!(ASMAtomicUoReadU64(&pCtx->fExtrn) & CPUMCTX_EXTRN_CR3));
|
---|
4813 | PGMUpdateCR3(pVCpu, CPUMGetGuestCR3(pVCpu));
|
---|
4814 | Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
|
---|
4815 | }
|
---|
4816 |
|
---|
4817 | return VINF_SUCCESS;
|
---|
4818 | }
|
---|
4819 |
|
---|
4820 |
|
---|
4821 | /**
|
---|
4822 | * Saves the guest state from the VMCS into the guest-CPU context.
|
---|
4823 | *
|
---|
4824 | * @returns VBox status code.
|
---|
4825 | * @param pVCpu The cross context virtual CPU structure.
|
---|
4826 | * @param fWhat What to import, CPUMCTX_EXTRN_XXX.
|
---|
4827 | */
|
---|
4828 | VMMR0DECL(int) VMXR0ImportStateOnDemand(PVMCPUCC pVCpu, uint64_t fWhat)
|
---|
4829 | {
|
---|
4830 | AssertPtr(pVCpu);
|
---|
4831 | PVMXVMCSINFO pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
|
---|
4832 | return hmR0VmxImportGuestState(pVCpu, pVmcsInfo, fWhat);
|
---|
4833 | }
|
---|
4834 |
|
---|
4835 |
|
---|
4836 | /**
|
---|
4837 | * Gets VMX VM-exit auxiliary information.
|
---|
4838 | *
|
---|
4839 | * @returns VBox status code.
|
---|
4840 | * @param pVCpu The cross context virtual CPU structure.
|
---|
4841 | * @param pVmxExitAux Where to store the VM-exit auxiliary info.
|
---|
4842 | * @param fWhat What to fetch, HMVMX_READ_XXX.
|
---|
4843 | */
|
---|
4844 | VMMR0DECL(int) VMXR0GetExitAuxInfo(PVMCPUCC pVCpu, PVMXEXITAUX pVmxExitAux, uint32_t fWhat)
|
---|
4845 | {
|
---|
4846 | PVMXTRANSIENT pVmxTransient = pVCpu->hmr0.s.vmx.pVmxTransient;
|
---|
4847 | if (RT_LIKELY(pVmxTransient))
|
---|
4848 | {
|
---|
4849 | AssertCompile(sizeof(fWhat) == sizeof(pVmxTransient->fVmcsFieldsRead));
|
---|
4850 | fWhat &= ~pVmxTransient->fVmcsFieldsRead;
|
---|
4851 |
|
---|
4852 | /* The exit reason is always available. */
|
---|
4853 | pVmxExitAux->uReason = pVmxTransient->uExitReason;
|
---|
4854 |
|
---|
4855 | if (fWhat & HMVMX_READ_EXIT_QUALIFICATION)
|
---|
4856 | {
|
---|
4857 | vmxHCReadExitQualVmcs(pVCpu, pVmxTransient);
|
---|
4858 | fWhat &= ~HMVMX_READ_EXIT_QUALIFICATION;
|
---|
4859 | pVmxExitAux->u64Qual = pVmxTransient->uExitQual;
|
---|
4860 | }
|
---|
4861 |
|
---|
4862 | if (fWhat & HMVMX_READ_IDT_VECTORING_INFO)
|
---|
4863 | {
|
---|
4864 | vmxHCReadIdtVectoringInfoVmcs(pVCpu, pVmxTransient);
|
---|
4865 | fWhat &= ~HMVMX_READ_IDT_VECTORING_INFO;
|
---|
4866 | pVmxExitAux->uIdtVectoringInfo = pVmxTransient->uIdtVectoringInfo;
|
---|
4867 | }
|
---|
4868 |
|
---|
4869 | if (fWhat & HMVMX_READ_IDT_VECTORING_ERROR_CODE)
|
---|
4870 | {
|
---|
4871 | vmxHCReadIdtVectoringErrorCodeVmcs(pVCpu, pVmxTransient);
|
---|
4872 | fWhat &= ~HMVMX_READ_IDT_VECTORING_ERROR_CODE;
|
---|
4873 | pVmxExitAux->uIdtVectoringErrCode = pVmxTransient->uIdtVectoringErrorCode;
|
---|
4874 | }
|
---|
4875 |
|
---|
4876 | if (fWhat & HMVMX_READ_EXIT_INSTR_LEN)
|
---|
4877 | {
|
---|
4878 | vmxHCReadExitInstrLenVmcs(pVCpu, pVmxTransient);
|
---|
4879 | fWhat &= ~HMVMX_READ_EXIT_INSTR_LEN;
|
---|
4880 | pVmxExitAux->cbInstr = pVmxTransient->cbExitInstr;
|
---|
4881 | }
|
---|
4882 |
|
---|
4883 | if (fWhat & HMVMX_READ_EXIT_INTERRUPTION_INFO)
|
---|
4884 | {
|
---|
4885 | vmxHCReadExitIntInfoVmcs(pVCpu, pVmxTransient);
|
---|
4886 | fWhat &= ~HMVMX_READ_EXIT_INTERRUPTION_INFO;
|
---|
4887 | pVmxExitAux->uExitIntInfo = pVmxTransient->uExitIntInfo;
|
---|
4888 | }
|
---|
4889 |
|
---|
4890 | if (fWhat & HMVMX_READ_EXIT_INTERRUPTION_ERROR_CODE)
|
---|
4891 | {
|
---|
4892 | vmxHCReadExitIntErrorCodeVmcs(pVCpu, pVmxTransient);
|
---|
4893 | fWhat &= ~HMVMX_READ_EXIT_INTERRUPTION_ERROR_CODE;
|
---|
4894 | pVmxExitAux->uExitIntErrCode = pVmxTransient->uExitIntErrorCode;
|
---|
4895 | }
|
---|
4896 |
|
---|
4897 | if (fWhat & HMVMX_READ_EXIT_INSTR_INFO)
|
---|
4898 | {
|
---|
4899 | vmxHCReadExitInstrInfoVmcs(pVCpu, pVmxTransient);
|
---|
4900 | fWhat &= ~HMVMX_READ_EXIT_INSTR_INFO;
|
---|
4901 | pVmxExitAux->InstrInfo.u = pVmxTransient->ExitInstrInfo.u;
|
---|
4902 | }
|
---|
4903 |
|
---|
4904 | if (fWhat & HMVMX_READ_GUEST_LINEAR_ADDR)
|
---|
4905 | {
|
---|
4906 | vmxHCReadGuestLinearAddrVmcs(pVCpu, pVmxTransient);
|
---|
4907 | fWhat &= ~HMVMX_READ_GUEST_LINEAR_ADDR;
|
---|
4908 | pVmxExitAux->u64GuestLinearAddr = pVmxTransient->uGuestLinearAddr;
|
---|
4909 | }
|
---|
4910 |
|
---|
4911 | if (fWhat & HMVMX_READ_GUEST_PHYSICAL_ADDR)
|
---|
4912 | {
|
---|
4913 | vmxHCReadGuestPhysicalAddrVmcs(pVCpu, pVmxTransient);
|
---|
4914 | fWhat &= ~HMVMX_READ_GUEST_PHYSICAL_ADDR;
|
---|
4915 | pVmxExitAux->u64GuestPhysAddr = pVmxTransient->uGuestPhysicalAddr;
|
---|
4916 | }
|
---|
4917 |
|
---|
4918 | if (fWhat & HMVMX_READ_GUEST_PENDING_DBG_XCPTS)
|
---|
4919 | {
|
---|
4920 | fWhat &= ~HMVMX_READ_GUEST_PENDING_DBG_XCPTS;
|
---|
4921 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
4922 | vmxHCReadGuestPendingDbgXctps(pVCpu, pVmxTransient);
|
---|
4923 | pVmxExitAux->u64GuestPendingDbgXcpts = pVmxTransient->uGuestPendingDbgXcpts;
|
---|
4924 | #else
|
---|
4925 | pVmxExitAux->u64GuestPendingDbgXcpts = 0;
|
---|
4926 | #endif
|
---|
4927 | }
|
---|
4928 |
|
---|
4929 | AssertMsg(!fWhat, ("fWhat=%#RX32 fVmcsFieldsRead=%#RX32\n", fWhat, pVmxTransient->fVmcsFieldsRead));
|
---|
4930 | return VINF_SUCCESS;
|
---|
4931 | }
|
---|
4932 | return VERR_NOT_AVAILABLE;
|
---|
4933 | }
|
---|
4934 |
|
---|
4935 |
|
---|
4936 | /**
|
---|
4937 | * Does the necessary state syncing before returning to ring-3 for any reason
|
---|
4938 | * (longjmp, preemption, voluntary exits to ring-3) from VT-x.
|
---|
4939 | *
|
---|
4940 | * @returns VBox status code.
|
---|
4941 | * @param pVCpu The cross context virtual CPU structure.
|
---|
4942 | * @param fImportState Whether to import the guest state from the VMCS back
|
---|
4943 | * to the guest-CPU context.
|
---|
4944 | *
|
---|
4945 | * @remarks No-long-jmp zone!!!
|
---|
4946 | */
|
---|
4947 | static int hmR0VmxLeave(PVMCPUCC pVCpu, bool fImportState)
|
---|
4948 | {
|
---|
4949 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
4950 | Assert(!VMMRZCallRing3IsEnabled(pVCpu));
|
---|
4951 |
|
---|
4952 | RTCPUID const idCpu = RTMpCpuId();
|
---|
4953 | Log4Func(("HostCpuId=%u\n", idCpu));
|
---|
4954 |
|
---|
4955 | /*
|
---|
4956 | * !!! IMPORTANT !!!
|
---|
4957 | * If you modify code here, check whether VMXR0CallRing3Callback() needs to be updated too.
|
---|
4958 | */
|
---|
4959 |
|
---|
4960 | /* Save the guest state if necessary. */
|
---|
4961 | PVMXVMCSINFO pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
|
---|
4962 | if (fImportState)
|
---|
4963 | {
|
---|
4964 | int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
|
---|
4965 | AssertRCReturn(rc, rc);
|
---|
4966 | }
|
---|
4967 |
|
---|
4968 | /* Restore host FPU state if necessary. We will resync on next R0 reentry. */
|
---|
4969 | CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu);
|
---|
4970 | Assert(!CPUMIsGuestFPUStateActive(pVCpu));
|
---|
4971 |
|
---|
4972 | /* Restore host debug registers if necessary. We will resync on next R0 reentry. */
|
---|
4973 | #ifdef VBOX_STRICT
|
---|
4974 | if (CPUMIsHyperDebugStateActive(pVCpu))
|
---|
4975 | Assert(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_MOV_DR_EXIT);
|
---|
4976 | #endif
|
---|
4977 | CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, true /* save DR6 */);
|
---|
4978 | Assert(!CPUMIsGuestDebugStateActive(pVCpu));
|
---|
4979 | Assert(!CPUMIsHyperDebugStateActive(pVCpu));
|
---|
4980 |
|
---|
4981 | /* Restore host-state bits that VT-x only restores partially. */
|
---|
4982 | if (pVCpu->hmr0.s.vmx.fRestoreHostFlags > VMX_RESTORE_HOST_REQUIRED)
|
---|
4983 | {
|
---|
4984 | Log4Func(("Restoring Host State: fRestoreHostFlags=%#RX32 HostCpuId=%u\n", pVCpu->hmr0.s.vmx.fRestoreHostFlags, idCpu));
|
---|
4985 | VMXRestoreHostState(pVCpu->hmr0.s.vmx.fRestoreHostFlags, &pVCpu->hmr0.s.vmx.RestoreHost);
|
---|
4986 | }
|
---|
4987 | pVCpu->hmr0.s.vmx.fRestoreHostFlags = 0;
|
---|
4988 |
|
---|
4989 | /* Restore the lazy host MSRs as we're leaving VT-x context. */
|
---|
4990 | if (pVCpu->hmr0.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
|
---|
4991 | {
|
---|
4992 | /* We shouldn't restore the host MSRs without saving the guest MSRs first. */
|
---|
4993 | if (!fImportState)
|
---|
4994 | {
|
---|
4995 | int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_KERNEL_GS_BASE | CPUMCTX_EXTRN_SYSCALL_MSRS);
|
---|
4996 | AssertRCReturn(rc, rc);
|
---|
4997 | }
|
---|
4998 | hmR0VmxLazyRestoreHostMsrs(pVCpu);
|
---|
4999 | Assert(!pVCpu->hmr0.s.vmx.fLazyMsrs);
|
---|
5000 | }
|
---|
5001 | else
|
---|
5002 | pVCpu->hmr0.s.vmx.fLazyMsrs = 0;
|
---|
5003 |
|
---|
5004 | /* Update auto-load/store host MSRs values when we re-enter VT-x (as we could be on a different CPU). */
|
---|
5005 | pVCpu->hmr0.s.vmx.fUpdatedHostAutoMsrs = false;
|
---|
5006 |
|
---|
5007 | STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatEntry);
|
---|
5008 | STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatImportGuestState);
|
---|
5009 | STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExportGuestState);
|
---|
5010 | STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatPreExit);
|
---|
5011 | STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitHandling);
|
---|
5012 | STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitIO);
|
---|
5013 | STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitMovCRx);
|
---|
5014 | STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitXcptNmi);
|
---|
5015 | STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitVmentry);
|
---|
5016 | STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
|
---|
5017 |
|
---|
5018 | VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
|
---|
5019 |
|
---|
5020 | /** @todo This partially defeats the purpose of having preemption hooks.
|
---|
5021 | * The problem is, deregistering the hooks should be moved to a place that
|
---|
5022 | * lasts until the EMT is about to be destroyed not everytime while leaving HM
|
---|
5023 | * context.
|
---|
5024 | */
|
---|
5025 | int rc = hmR0VmxClearVmcs(pVmcsInfo);
|
---|
5026 | AssertRCReturn(rc, rc);
|
---|
5027 |
|
---|
5028 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
5029 | /*
|
---|
5030 | * A valid shadow VMCS is made active as part of VM-entry. It is necessary to
|
---|
5031 | * clear a shadow VMCS before allowing that VMCS to become active on another
|
---|
5032 | * logical processor. We may or may not be importing guest state which clears
|
---|
5033 | * it, so cover for it here.
|
---|
5034 | *
|
---|
5035 | * See Intel spec. 24.11.1 "Software Use of Virtual-Machine Control Structures".
|
---|
5036 | */
|
---|
5037 | if ( pVmcsInfo->pvShadowVmcs
|
---|
5038 | && pVmcsInfo->fShadowVmcsState != VMX_V_VMCS_LAUNCH_STATE_CLEAR)
|
---|
5039 | {
|
---|
5040 | rc = vmxHCClearShadowVmcs(pVmcsInfo);
|
---|
5041 | AssertRCReturn(rc, rc);
|
---|
5042 | }
|
---|
5043 |
|
---|
5044 | /*
|
---|
5045 | * Flag that we need to re-export the host state if we switch to this VMCS before
|
---|
5046 | * executing guest or nested-guest code.
|
---|
5047 | */
|
---|
5048 | pVmcsInfo->idHostCpuState = NIL_RTCPUID;
|
---|
5049 | #endif
|
---|
5050 |
|
---|
5051 | Log4Func(("Cleared Vmcs. HostCpuId=%u\n", idCpu));
|
---|
5052 | NOREF(idCpu);
|
---|
5053 | return VINF_SUCCESS;
|
---|
5054 | }
|
---|
5055 |
|
---|
5056 |
|
---|
5057 | /**
|
---|
5058 | * Leaves the VT-x session.
|
---|
5059 | *
|
---|
5060 | * @returns VBox status code.
|
---|
5061 | * @param pVCpu The cross context virtual CPU structure.
|
---|
5062 | *
|
---|
5063 | * @remarks No-long-jmp zone!!!
|
---|
5064 | */
|
---|
5065 | static int hmR0VmxLeaveSession(PVMCPUCC pVCpu)
|
---|
5066 | {
|
---|
5067 | HM_DISABLE_PREEMPT(pVCpu);
|
---|
5068 | HMVMX_ASSERT_CPU_SAFE(pVCpu);
|
---|
5069 | Assert(!VMMRZCallRing3IsEnabled(pVCpu));
|
---|
5070 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
5071 |
|
---|
5072 | /* When thread-context hooks are used, we can avoid doing the leave again if we had been preempted before
|
---|
5073 | and done this from the VMXR0ThreadCtxCallback(). */
|
---|
5074 | if (!pVCpu->hmr0.s.fLeaveDone)
|
---|
5075 | {
|
---|
5076 | int rc2 = hmR0VmxLeave(pVCpu, true /* fImportState */);
|
---|
5077 | AssertRCReturnStmt(rc2, HM_RESTORE_PREEMPT(), rc2);
|
---|
5078 | pVCpu->hmr0.s.fLeaveDone = true;
|
---|
5079 | }
|
---|
5080 | Assert(!pVCpu->cpum.GstCtx.fExtrn);
|
---|
5081 |
|
---|
5082 | /*
|
---|
5083 | * !!! IMPORTANT !!!
|
---|
5084 | * If you modify code here, make sure to check whether VMXR0CallRing3Callback() needs to be updated too.
|
---|
5085 | */
|
---|
5086 |
|
---|
5087 | /* Deregister hook now that we've left HM context before re-enabling preemption. */
|
---|
5088 | /** @todo Deregistering here means we need to VMCLEAR always
|
---|
5089 | * (longjmp/exit-to-r3) in VT-x which is not efficient, eliminate need
|
---|
5090 | * for calling VMMR0ThreadCtxHookDisable here! */
|
---|
5091 | VMMR0ThreadCtxHookDisable(pVCpu);
|
---|
5092 |
|
---|
5093 | /* Leave HM context. This takes care of local init (term) and deregistering the longjmp-to-ring-3 callback. */
|
---|
5094 | int rc = HMR0LeaveCpu(pVCpu);
|
---|
5095 | HM_RESTORE_PREEMPT();
|
---|
5096 | return rc;
|
---|
5097 | }
|
---|
5098 |
|
---|
5099 |
|
---|
5100 | /**
|
---|
5101 | * Take necessary actions before going back to ring-3.
|
---|
5102 | *
|
---|
5103 | * An action requires us to go back to ring-3. This function does the necessary
|
---|
5104 | * steps before we can safely return to ring-3. This is not the same as longjmps
|
---|
5105 | * to ring-3, this is voluntary and prepares the guest so it may continue
|
---|
5106 | * executing outside HM (recompiler/IEM).
|
---|
5107 | *
|
---|
5108 | * @returns VBox status code.
|
---|
5109 | * @param pVCpu The cross context virtual CPU structure.
|
---|
5110 | * @param rcExit The reason for exiting to ring-3. Can be
|
---|
5111 | * VINF_VMM_UNKNOWN_RING3_CALL.
|
---|
5112 | */
|
---|
5113 | static int hmR0VmxExitToRing3(PVMCPUCC pVCpu, VBOXSTRICTRC rcExit)
|
---|
5114 | {
|
---|
5115 | HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
|
---|
5116 |
|
---|
5117 | PVMXVMCSINFO pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
|
---|
5118 | if (RT_UNLIKELY(rcExit == VERR_VMX_INVALID_VMCS_PTR))
|
---|
5119 | {
|
---|
5120 | VMXGetCurrentVmcs(&pVCpu->hm.s.vmx.LastError.HCPhysCurrentVmcs);
|
---|
5121 | pVCpu->hm.s.vmx.LastError.u32VmcsRev = *(uint32_t *)pVmcsInfo->pvVmcs;
|
---|
5122 | pVCpu->hm.s.vmx.LastError.idEnteredCpu = pVCpu->hmr0.s.idEnteredCpu;
|
---|
5123 | /* LastError.idCurrentCpu was updated in hmR0VmxPreRunGuestCommitted(). */
|
---|
5124 | }
|
---|
5125 |
|
---|
5126 | /* Please, no longjumps here (any logging shouldn't flush jump back to ring-3). NO LOGGING BEFORE THIS POINT! */
|
---|
5127 | VMMRZCallRing3Disable(pVCpu);
|
---|
5128 | Log4Func(("rcExit=%d\n", VBOXSTRICTRC_VAL(rcExit)));
|
---|
5129 |
|
---|
5130 | /*
|
---|
5131 | * Convert any pending HM events back to TRPM due to premature exits to ring-3.
|
---|
5132 | * We need to do this only on returns to ring-3 and not for longjmps to ring3.
|
---|
5133 | *
|
---|
5134 | * This is because execution may continue from ring-3 and we would need to inject
|
---|
5135 | * the event from there (hence place it back in TRPM).
|
---|
5136 | */
|
---|
5137 | if (pVCpu->hm.s.Event.fPending)
|
---|
5138 | {
|
---|
5139 | vmxHCPendingEventToTrpmTrap(pVCpu);
|
---|
5140 | Assert(!pVCpu->hm.s.Event.fPending);
|
---|
5141 |
|
---|
5142 | /* Clear the events from the VMCS. */
|
---|
5143 | int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, 0); AssertRC(rc);
|
---|
5144 | rc = VMXWriteVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS, 0); AssertRC(rc);
|
---|
5145 | }
|
---|
5146 | #ifdef VBOX_STRICT
|
---|
5147 | /*
|
---|
5148 | * We check for rcExit here since for errors like VERR_VMX_UNABLE_TO_START_VM (which are
|
---|
5149 | * fatal), we don't care about verifying duplicate injection of events. Errors like
|
---|
5150 | * VERR_EM_INTERPRET are converted to their VINF_* counterparts -prior- to calling this
|
---|
5151 | * function so those should and will be checked below.
|
---|
5152 | */
|
---|
5153 | else if (RT_SUCCESS(rcExit))
|
---|
5154 | {
|
---|
5155 | /*
|
---|
5156 | * Ensure we don't accidentally clear a pending HM event without clearing the VMCS.
|
---|
5157 | * This can be pretty hard to debug otherwise, interrupts might get injected twice
|
---|
5158 | * occasionally, see @bugref{9180#c42}.
|
---|
5159 | *
|
---|
5160 | * However, if the VM-entry failed, any VM entry-interruption info. field would
|
---|
5161 | * be left unmodified as the event would not have been injected to the guest. In
|
---|
5162 | * such cases, don't assert, we're not going to continue guest execution anyway.
|
---|
5163 | */
|
---|
5164 | uint32_t uExitReason;
|
---|
5165 | uint32_t uEntryIntInfo;
|
---|
5166 | int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_REASON, &uExitReason);
|
---|
5167 | rc |= VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &uEntryIntInfo);
|
---|
5168 | AssertRC(rc);
|
---|
5169 | AssertMsg(VMX_EXIT_REASON_HAS_ENTRY_FAILED(uExitReason) || !VMX_ENTRY_INT_INFO_IS_VALID(uEntryIntInfo),
|
---|
5170 | ("uExitReason=%#RX32 uEntryIntInfo=%#RX32 rcExit=%d\n", uExitReason, uEntryIntInfo, VBOXSTRICTRC_VAL(rcExit)));
|
---|
5171 | }
|
---|
5172 | #endif
|
---|
5173 |
|
---|
5174 | /*
|
---|
5175 | * Clear the interrupt-window and NMI-window VMCS controls as we could have got
|
---|
5176 | * a VM-exit with higher priority than interrupt-window or NMI-window VM-exits
|
---|
5177 | * (e.g. TPR below threshold).
|
---|
5178 | */
|
---|
5179 | if (!CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx))
|
---|
5180 | {
|
---|
5181 | vmxHCClearIntWindowExitVmcs(pVCpu, pVmcsInfo);
|
---|
5182 | vmxHCClearNmiWindowExitVmcs(pVCpu, pVmcsInfo);
|
---|
5183 | }
|
---|
5184 |
|
---|
5185 | /* If we're emulating an instruction, we shouldn't have any TRPM traps pending
|
---|
5186 | and if we're injecting an event we should have a TRPM trap pending. */
|
---|
5187 | AssertMsg(rcExit != VINF_EM_RAW_INJECT_TRPM_EVENT || TRPMHasTrap(pVCpu), ("%Rrc\n", VBOXSTRICTRC_VAL(rcExit)));
|
---|
5188 | #ifndef DEBUG_bird /* Triggered after firing an NMI against NT4SP1, possibly a triple fault in progress. */
|
---|
5189 | AssertMsg(rcExit != VINF_EM_RAW_EMULATE_INSTR || !TRPMHasTrap(pVCpu), ("%Rrc\n", VBOXSTRICTRC_VAL(rcExit)));
|
---|
5190 | #endif
|
---|
5191 |
|
---|
5192 | /* Save guest state and restore host state bits. */
|
---|
5193 | int rc = hmR0VmxLeaveSession(pVCpu);
|
---|
5194 | AssertRCReturn(rc, rc);
|
---|
5195 | STAM_COUNTER_DEC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
|
---|
5196 |
|
---|
5197 | /* Thread-context hooks are unregistered at this point!!! */
|
---|
5198 | /* Ring-3 callback notifications are unregistered at this point!!! */
|
---|
5199 |
|
---|
5200 | /* Sync recompiler state. */
|
---|
5201 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TO_R3);
|
---|
5202 | CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_SYSENTER_MSR
|
---|
5203 | | CPUM_CHANGED_LDTR
|
---|
5204 | | CPUM_CHANGED_GDTR
|
---|
5205 | | CPUM_CHANGED_IDTR
|
---|
5206 | | CPUM_CHANGED_TR
|
---|
5207 | | CPUM_CHANGED_HIDDEN_SEL_REGS);
|
---|
5208 | if ( pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging
|
---|
5209 | && CPUMIsGuestPagingEnabledEx(&pVCpu->cpum.GstCtx))
|
---|
5210 | CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_GLOBAL_TLB_FLUSH);
|
---|
5211 |
|
---|
5212 | Assert(!pVCpu->hmr0.s.fClearTrapFlag);
|
---|
5213 |
|
---|
5214 | /* Update the exit-to-ring 3 reason. */
|
---|
5215 | pVCpu->hm.s.rcLastExitToR3 = VBOXSTRICTRC_VAL(rcExit);
|
---|
5216 |
|
---|
5217 | /* On our way back from ring-3 reload the guest state if there is a possibility of it being changed. */
|
---|
5218 | if ( rcExit != VINF_EM_RAW_INTERRUPT
|
---|
5219 | || CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx))
|
---|
5220 | {
|
---|
5221 | Assert(!(pVCpu->cpum.GstCtx.fExtrn & HMVMX_CPUMCTX_EXTRN_ALL));
|
---|
5222 | ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
|
---|
5223 | }
|
---|
5224 |
|
---|
5225 | STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchExitToR3);
|
---|
5226 | VMMRZCallRing3Enable(pVCpu);
|
---|
5227 | return rc;
|
---|
5228 | }
|
---|
5229 |
|
---|
5230 |
|
---|
5231 | /**
|
---|
5232 | * VMMRZCallRing3() callback wrapper which saves the guest state before we
|
---|
5233 | * longjump due to a ring-0 assertion.
|
---|
5234 | *
|
---|
5235 | * @returns VBox status code.
|
---|
5236 | * @param pVCpu The cross context virtual CPU structure.
|
---|
5237 | */
|
---|
5238 | VMMR0DECL(int) VMXR0AssertionCallback(PVMCPUCC pVCpu)
|
---|
5239 | {
|
---|
5240 | /*
|
---|
5241 | * !!! IMPORTANT !!!
|
---|
5242 | * If you modify code here, check whether hmR0VmxLeave() and hmR0VmxLeaveSession() needs to be updated too.
|
---|
5243 | * This is a stripped down version which gets out ASAP, trying to not trigger any further assertions.
|
---|
5244 | */
|
---|
5245 | VMMR0AssertionRemoveNotification(pVCpu);
|
---|
5246 | VMMRZCallRing3Disable(pVCpu);
|
---|
5247 | HM_DISABLE_PREEMPT(pVCpu);
|
---|
5248 |
|
---|
5249 | PVMXVMCSINFO pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
|
---|
5250 | vmxHCImportGuestState(pVCpu, pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
|
---|
5251 | CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu);
|
---|
5252 | CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, true /* save DR6 */);
|
---|
5253 |
|
---|
5254 | /* Restore host-state bits that VT-x only restores partially. */
|
---|
5255 | if (pVCpu->hmr0.s.vmx.fRestoreHostFlags > VMX_RESTORE_HOST_REQUIRED)
|
---|
5256 | VMXRestoreHostState(pVCpu->hmr0.s.vmx.fRestoreHostFlags, &pVCpu->hmr0.s.vmx.RestoreHost);
|
---|
5257 | pVCpu->hmr0.s.vmx.fRestoreHostFlags = 0;
|
---|
5258 |
|
---|
5259 | /* Restore the lazy host MSRs as we're leaving VT-x context. */
|
---|
5260 | if (pVCpu->hmr0.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
|
---|
5261 | hmR0VmxLazyRestoreHostMsrs(pVCpu);
|
---|
5262 |
|
---|
5263 | /* Update auto-load/store host MSRs values when we re-enter VT-x (as we could be on a different CPU). */
|
---|
5264 | pVCpu->hmr0.s.vmx.fUpdatedHostAutoMsrs = false;
|
---|
5265 | VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
|
---|
5266 |
|
---|
5267 | /* Clear the current VMCS data back to memory (shadow VMCS if any would have been
|
---|
5268 | cleared as part of importing the guest state above. */
|
---|
5269 | hmR0VmxClearVmcs(pVmcsInfo);
|
---|
5270 |
|
---|
5271 | /** @todo eliminate the need for calling VMMR0ThreadCtxHookDisable here! */
|
---|
5272 | VMMR0ThreadCtxHookDisable(pVCpu);
|
---|
5273 |
|
---|
5274 | /* Leave HM context. This takes care of local init (term). */
|
---|
5275 | HMR0LeaveCpu(pVCpu);
|
---|
5276 | HM_RESTORE_PREEMPT();
|
---|
5277 | return VINF_SUCCESS;
|
---|
5278 | }
|
---|
5279 |
|
---|
5280 |
|
---|
5281 | /**
|
---|
5282 | * Enters the VT-x session.
|
---|
5283 | *
|
---|
5284 | * @returns VBox status code.
|
---|
5285 | * @param pVCpu The cross context virtual CPU structure.
|
---|
5286 | */
|
---|
5287 | VMMR0DECL(int) VMXR0Enter(PVMCPUCC pVCpu)
|
---|
5288 | {
|
---|
5289 | AssertPtr(pVCpu);
|
---|
5290 | Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fSupported);
|
---|
5291 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
5292 |
|
---|
5293 | LogFlowFunc(("pVCpu=%p\n", pVCpu));
|
---|
5294 | Assert((pVCpu->hm.s.fCtxChanged & (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE))
|
---|
5295 | == (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE));
|
---|
5296 |
|
---|
5297 | #ifdef VBOX_STRICT
|
---|
5298 | /* At least verify VMX is enabled, since we can't check if we're in VMX root mode without #GP'ing. */
|
---|
5299 | RTCCUINTREG uHostCr4 = ASMGetCR4();
|
---|
5300 | if (!(uHostCr4 & X86_CR4_VMXE))
|
---|
5301 | {
|
---|
5302 | LogRelFunc(("X86_CR4_VMXE bit in CR4 is not set!\n"));
|
---|
5303 | return VERR_VMX_X86_CR4_VMXE_CLEARED;
|
---|
5304 | }
|
---|
5305 | #endif
|
---|
5306 |
|
---|
5307 | /*
|
---|
5308 | * Do the EMT scheduled L1D and MDS flush here if needed.
|
---|
5309 | */
|
---|
5310 | if (pVCpu->hmr0.s.fWorldSwitcher & HM_WSF_L1D_SCHED)
|
---|
5311 | ASMWrMsr(MSR_IA32_FLUSH_CMD, MSR_IA32_FLUSH_CMD_F_L1D);
|
---|
5312 | else if (pVCpu->hmr0.s.fWorldSwitcher & HM_WSF_MDS_SCHED)
|
---|
5313 | hmR0MdsClear();
|
---|
5314 |
|
---|
5315 | /*
|
---|
5316 | * Load the appropriate VMCS as the current and active one.
|
---|
5317 | */
|
---|
5318 | PVMXVMCSINFO pVmcsInfo;
|
---|
5319 | bool const fInNestedGuestMode = CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx);
|
---|
5320 | if (!fInNestedGuestMode)
|
---|
5321 | pVmcsInfo = &pVCpu->hmr0.s.vmx.VmcsInfo;
|
---|
5322 | else
|
---|
5323 | pVmcsInfo = &pVCpu->hmr0.s.vmx.VmcsInfoNstGst;
|
---|
5324 | int rc = hmR0VmxLoadVmcs(pVmcsInfo);
|
---|
5325 | if (RT_SUCCESS(rc))
|
---|
5326 | {
|
---|
5327 | pVCpu->hmr0.s.vmx.fSwitchedToNstGstVmcs = fInNestedGuestMode;
|
---|
5328 | pVCpu->hm.s.vmx.fSwitchedToNstGstVmcsCopyForRing3 = fInNestedGuestMode;
|
---|
5329 | pVCpu->hmr0.s.fLeaveDone = false;
|
---|
5330 | Log4Func(("Loaded Vmcs. HostCpuId=%u\n", RTMpCpuId()));
|
---|
5331 | }
|
---|
5332 | return rc;
|
---|
5333 | }
|
---|
5334 |
|
---|
5335 |
|
---|
5336 | /**
|
---|
5337 | * The thread-context callback.
|
---|
5338 | *
|
---|
5339 | * This is used together with RTThreadCtxHookCreate() on platforms which
|
---|
5340 | * supports it, and directly from VMMR0EmtPrepareForBlocking() and
|
---|
5341 | * VMMR0EmtResumeAfterBlocking() on platforms which don't.
|
---|
5342 | *
|
---|
5343 | * @param enmEvent The thread-context event.
|
---|
5344 | * @param pVCpu The cross context virtual CPU structure.
|
---|
5345 | * @param fGlobalInit Whether global VT-x/AMD-V init. was used.
|
---|
5346 | * @thread EMT(pVCpu)
|
---|
5347 | */
|
---|
5348 | VMMR0DECL(void) VMXR0ThreadCtxCallback(RTTHREADCTXEVENT enmEvent, PVMCPUCC pVCpu, bool fGlobalInit)
|
---|
5349 | {
|
---|
5350 | AssertPtr(pVCpu);
|
---|
5351 | RT_NOREF1(fGlobalInit);
|
---|
5352 |
|
---|
5353 | switch (enmEvent)
|
---|
5354 | {
|
---|
5355 | case RTTHREADCTXEVENT_OUT:
|
---|
5356 | {
|
---|
5357 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
5358 | VMCPU_ASSERT_EMT(pVCpu);
|
---|
5359 |
|
---|
5360 | /* No longjmps (logger flushes, locks) in this fragile context. */
|
---|
5361 | VMMRZCallRing3Disable(pVCpu);
|
---|
5362 | Log4Func(("Preempting: HostCpuId=%u\n", RTMpCpuId()));
|
---|
5363 |
|
---|
5364 | /* Restore host-state (FPU, debug etc.) */
|
---|
5365 | if (!pVCpu->hmr0.s.fLeaveDone)
|
---|
5366 | {
|
---|
5367 | /*
|
---|
5368 | * Do -not- import the guest-state here as we might already be in the middle of importing
|
---|
5369 | * it, esp. bad if we're holding the PGM lock, see comment in hmR0VmxImportGuestState().
|
---|
5370 | */
|
---|
5371 | hmR0VmxLeave(pVCpu, false /* fImportState */);
|
---|
5372 | pVCpu->hmr0.s.fLeaveDone = true;
|
---|
5373 | }
|
---|
5374 |
|
---|
5375 | /* Leave HM context, takes care of local init (term). */
|
---|
5376 | int rc = HMR0LeaveCpu(pVCpu);
|
---|
5377 | AssertRC(rc);
|
---|
5378 |
|
---|
5379 | /* Restore longjmp state. */
|
---|
5380 | VMMRZCallRing3Enable(pVCpu);
|
---|
5381 | STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatSwitchPreempt);
|
---|
5382 | break;
|
---|
5383 | }
|
---|
5384 |
|
---|
5385 | case RTTHREADCTXEVENT_IN:
|
---|
5386 | {
|
---|
5387 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
5388 | VMCPU_ASSERT_EMT(pVCpu);
|
---|
5389 |
|
---|
5390 | /* Do the EMT scheduled L1D and MDS flush here if needed. */
|
---|
5391 | if (pVCpu->hmr0.s.fWorldSwitcher & HM_WSF_L1D_SCHED)
|
---|
5392 | ASMWrMsr(MSR_IA32_FLUSH_CMD, MSR_IA32_FLUSH_CMD_F_L1D);
|
---|
5393 | else if (pVCpu->hmr0.s.fWorldSwitcher & HM_WSF_MDS_SCHED)
|
---|
5394 | hmR0MdsClear();
|
---|
5395 |
|
---|
5396 | /* No longjmps here, as we don't want to trigger preemption (& its hook) while resuming. */
|
---|
5397 | VMMRZCallRing3Disable(pVCpu);
|
---|
5398 | Log4Func(("Resumed: HostCpuId=%u\n", RTMpCpuId()));
|
---|
5399 |
|
---|
5400 | /* Initialize the bare minimum state required for HM. This takes care of
|
---|
5401 | initializing VT-x if necessary (onlined CPUs, local init etc.) */
|
---|
5402 | int rc = hmR0EnterCpu(pVCpu);
|
---|
5403 | AssertRC(rc);
|
---|
5404 | Assert( (pVCpu->hm.s.fCtxChanged & (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE))
|
---|
5405 | == (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE));
|
---|
5406 |
|
---|
5407 | /* Load the active VMCS as the current one. */
|
---|
5408 | PVMXVMCSINFO pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
|
---|
5409 | rc = hmR0VmxLoadVmcs(pVmcsInfo);
|
---|
5410 | AssertRC(rc);
|
---|
5411 | Log4Func(("Resumed: Loaded Vmcs. HostCpuId=%u\n", RTMpCpuId()));
|
---|
5412 | pVCpu->hmr0.s.fLeaveDone = false;
|
---|
5413 |
|
---|
5414 | /* Restore longjmp state. */
|
---|
5415 | VMMRZCallRing3Enable(pVCpu);
|
---|
5416 | break;
|
---|
5417 | }
|
---|
5418 |
|
---|
5419 | default:
|
---|
5420 | break;
|
---|
5421 | }
|
---|
5422 | }
|
---|
5423 |
|
---|
5424 |
|
---|
5425 | /**
|
---|
5426 | * Exports the host state into the VMCS host-state area.
|
---|
5427 | * Sets up the VM-exit MSR-load area.
|
---|
5428 | *
|
---|
5429 | * The CPU state will be loaded from these fields on every successful VM-exit.
|
---|
5430 | *
|
---|
5431 | * @returns VBox status code.
|
---|
5432 | * @param pVCpu The cross context virtual CPU structure.
|
---|
5433 | *
|
---|
5434 | * @remarks No-long-jump zone!!!
|
---|
5435 | */
|
---|
5436 | static int hmR0VmxExportHostState(PVMCPUCC pVCpu)
|
---|
5437 | {
|
---|
5438 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
5439 |
|
---|
5440 | int rc = VINF_SUCCESS;
|
---|
5441 | if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_HOST_CONTEXT)
|
---|
5442 | {
|
---|
5443 | uint64_t uHostCr4 = hmR0VmxExportHostControlRegs();
|
---|
5444 |
|
---|
5445 | rc = hmR0VmxExportHostSegmentRegs(pVCpu, uHostCr4);
|
---|
5446 | AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
|
---|
5447 |
|
---|
5448 | hmR0VmxExportHostMsrs(pVCpu);
|
---|
5449 |
|
---|
5450 | pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_HOST_CONTEXT;
|
---|
5451 | }
|
---|
5452 | return rc;
|
---|
5453 | }
|
---|
5454 |
|
---|
5455 |
|
---|
5456 | /**
|
---|
5457 | * Saves the host state in the VMCS host-state.
|
---|
5458 | *
|
---|
5459 | * @returns VBox status code.
|
---|
5460 | * @param pVCpu The cross context virtual CPU structure.
|
---|
5461 | *
|
---|
5462 | * @remarks No-long-jump zone!!!
|
---|
5463 | */
|
---|
5464 | VMMR0DECL(int) VMXR0ExportHostState(PVMCPUCC pVCpu)
|
---|
5465 | {
|
---|
5466 | AssertPtr(pVCpu);
|
---|
5467 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
5468 |
|
---|
5469 | /*
|
---|
5470 | * Export the host state here while entering HM context.
|
---|
5471 | * When thread-context hooks are used, we might get preempted and have to re-save the host
|
---|
5472 | * state but most of the time we won't be, so do it here before we disable interrupts.
|
---|
5473 | */
|
---|
5474 | return hmR0VmxExportHostState(pVCpu);
|
---|
5475 | }
|
---|
5476 |
|
---|
5477 |
|
---|
5478 | /**
|
---|
5479 | * Exports the guest state into the VMCS guest-state area.
|
---|
5480 | *
|
---|
5481 | * The will typically be done before VM-entry when the guest-CPU state and the
|
---|
5482 | * VMCS state may potentially be out of sync.
|
---|
5483 | *
|
---|
5484 | * Sets up the VM-entry MSR-load and VM-exit MSR-store areas. Sets up the
|
---|
5485 | * VM-entry controls.
|
---|
5486 | * Sets up the appropriate VMX non-root function to execute guest code based on
|
---|
5487 | * the guest CPU mode.
|
---|
5488 | *
|
---|
5489 | * @returns VBox strict status code.
|
---|
5490 | * @retval VINF_EM_RESCHEDULE_REM if we try to emulate non-paged guest code
|
---|
5491 | * without unrestricted guest execution and the VMMDev is not presently
|
---|
5492 | * mapped (e.g. EFI32).
|
---|
5493 | *
|
---|
5494 | * @param pVCpu The cross context virtual CPU structure.
|
---|
5495 | * @param pVmxTransient The VMX-transient structure.
|
---|
5496 | *
|
---|
5497 | * @remarks No-long-jump zone!!!
|
---|
5498 | */
|
---|
5499 | static VBOXSTRICTRC hmR0VmxExportGuestState(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
5500 | {
|
---|
5501 | AssertPtr(pVCpu);
|
---|
5502 | HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
|
---|
5503 | LogFlowFunc(("pVCpu=%p\n", pVCpu));
|
---|
5504 |
|
---|
5505 | STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExportGuestState, x);
|
---|
5506 |
|
---|
5507 | /*
|
---|
5508 | * Determine real-on-v86 mode.
|
---|
5509 | * Used when the guest is in real-mode and unrestricted guest execution is not used.
|
---|
5510 | */
|
---|
5511 | PVMXVMCSINFOSHARED pVmcsInfoShared = pVmxTransient->pVmcsInfo->pShared;
|
---|
5512 | if ( pVCpu->CTX_SUFF(pVM)->hmr0.s.vmx.fUnrestrictedGuest
|
---|
5513 | || !CPUMIsGuestInRealModeEx(&pVCpu->cpum.GstCtx))
|
---|
5514 | pVmcsInfoShared->RealMode.fRealOnV86Active = false;
|
---|
5515 | else
|
---|
5516 | {
|
---|
5517 | Assert(!pVmxTransient->fIsNestedGuest);
|
---|
5518 | pVmcsInfoShared->RealMode.fRealOnV86Active = true;
|
---|
5519 | }
|
---|
5520 |
|
---|
5521 | /*
|
---|
5522 | * Any ordering dependency among the sub-functions below must be explicitly stated using comments.
|
---|
5523 | * Ideally, assert that the cross-dependent bits are up-to-date at the point of using it.
|
---|
5524 | */
|
---|
5525 | int rc = vmxHCExportGuestEntryExitCtls(pVCpu, pVmxTransient);
|
---|
5526 | AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
|
---|
5527 |
|
---|
5528 | rc = vmxHCExportGuestCR0(pVCpu, pVmxTransient);
|
---|
5529 | AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
|
---|
5530 |
|
---|
5531 | VBOXSTRICTRC rcStrict = vmxHCExportGuestCR3AndCR4(pVCpu, pVmxTransient);
|
---|
5532 | if (rcStrict == VINF_SUCCESS)
|
---|
5533 | { /* likely */ }
|
---|
5534 | else
|
---|
5535 | {
|
---|
5536 | Assert(rcStrict == VINF_EM_RESCHEDULE_REM || RT_FAILURE_NP(rcStrict));
|
---|
5537 | return rcStrict;
|
---|
5538 | }
|
---|
5539 |
|
---|
5540 | rc = vmxHCExportGuestSegRegsXdtr(pVCpu, pVmxTransient);
|
---|
5541 | AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
|
---|
5542 |
|
---|
5543 | rc = hmR0VmxExportGuestMsrs(pVCpu, pVmxTransient);
|
---|
5544 | AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
|
---|
5545 |
|
---|
5546 | vmxHCExportGuestApicTpr(pVCpu, pVmxTransient);
|
---|
5547 | vmxHCExportGuestXcptIntercepts(pVCpu, pVmxTransient);
|
---|
5548 | vmxHCExportGuestRip(pVCpu);
|
---|
5549 | hmR0VmxExportGuestRsp(pVCpu);
|
---|
5550 | vmxHCExportGuestRflags(pVCpu, pVmxTransient);
|
---|
5551 |
|
---|
5552 | rc = hmR0VmxExportGuestHwvirtState(pVCpu, pVmxTransient);
|
---|
5553 | AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
|
---|
5554 |
|
---|
5555 | /* Clear any bits that may be set but exported unconditionally or unused/reserved bits. */
|
---|
5556 | ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~( (HM_CHANGED_GUEST_GPRS_MASK & ~HM_CHANGED_GUEST_RSP)
|
---|
5557 | | HM_CHANGED_GUEST_CR2
|
---|
5558 | | (HM_CHANGED_GUEST_DR_MASK & ~HM_CHANGED_GUEST_DR7)
|
---|
5559 | | HM_CHANGED_GUEST_X87
|
---|
5560 | | HM_CHANGED_GUEST_SSE_AVX
|
---|
5561 | | HM_CHANGED_GUEST_OTHER_XSAVE
|
---|
5562 | | HM_CHANGED_GUEST_XCRx
|
---|
5563 | | HM_CHANGED_GUEST_KERNEL_GS_BASE /* Part of lazy or auto load-store MSRs. */
|
---|
5564 | | HM_CHANGED_GUEST_SYSCALL_MSRS /* Part of lazy or auto load-store MSRs. */
|
---|
5565 | | HM_CHANGED_GUEST_TSC_AUX
|
---|
5566 | | HM_CHANGED_GUEST_OTHER_MSRS
|
---|
5567 | | (HM_CHANGED_KEEPER_STATE_MASK & ~HM_CHANGED_VMX_MASK)));
|
---|
5568 |
|
---|
5569 | STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExportGuestState, x);
|
---|
5570 | return rc;
|
---|
5571 | }
|
---|
5572 |
|
---|
5573 |
|
---|
5574 | /**
|
---|
5575 | * Exports the state shared between the host and guest into the VMCS.
|
---|
5576 | *
|
---|
5577 | * @param pVCpu The cross context virtual CPU structure.
|
---|
5578 | * @param pVmxTransient The VMX-transient structure.
|
---|
5579 | *
|
---|
5580 | * @remarks No-long-jump zone!!!
|
---|
5581 | */
|
---|
5582 | static void hmR0VmxExportSharedState(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
5583 | {
|
---|
5584 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
5585 | Assert(!VMMRZCallRing3IsEnabled(pVCpu));
|
---|
5586 |
|
---|
5587 | if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_DR_MASK)
|
---|
5588 | {
|
---|
5589 | int rc = hmR0VmxExportSharedDebugState(pVCpu, pVmxTransient);
|
---|
5590 | AssertRC(rc);
|
---|
5591 | pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_GUEST_DR_MASK;
|
---|
5592 |
|
---|
5593 | /* Loading shared debug bits might have changed eflags.TF bit for debugging purposes. */
|
---|
5594 | if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_RFLAGS)
|
---|
5595 | vmxHCExportGuestRflags(pVCpu, pVmxTransient);
|
---|
5596 | }
|
---|
5597 |
|
---|
5598 | if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_VMX_GUEST_LAZY_MSRS)
|
---|
5599 | {
|
---|
5600 | hmR0VmxLazyLoadGuestMsrs(pVCpu);
|
---|
5601 | pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_VMX_GUEST_LAZY_MSRS;
|
---|
5602 | }
|
---|
5603 |
|
---|
5604 | AssertMsg(!(pVCpu->hm.s.fCtxChanged & HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE),
|
---|
5605 | ("fCtxChanged=%#RX64\n", pVCpu->hm.s.fCtxChanged));
|
---|
5606 | }
|
---|
5607 |
|
---|
5608 |
|
---|
5609 | /**
|
---|
5610 | * Worker for loading the guest-state bits in the inner VT-x execution loop.
|
---|
5611 | *
|
---|
5612 | * @returns Strict VBox status code (i.e. informational status codes too).
|
---|
5613 | * @retval VINF_EM_RESCHEDULE_REM if we try to emulate non-paged guest code
|
---|
5614 | * without unrestricted guest execution and the VMMDev is not presently
|
---|
5615 | * mapped (e.g. EFI32).
|
---|
5616 | *
|
---|
5617 | * @param pVCpu The cross context virtual CPU structure.
|
---|
5618 | * @param pVmxTransient The VMX-transient structure.
|
---|
5619 | *
|
---|
5620 | * @remarks No-long-jump zone!!!
|
---|
5621 | */
|
---|
5622 | static VBOXSTRICTRC hmR0VmxExportGuestStateOptimal(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
5623 | {
|
---|
5624 | HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
|
---|
5625 | Assert(!VMMRZCallRing3IsEnabled(pVCpu));
|
---|
5626 |
|
---|
5627 | #ifdef HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE
|
---|
5628 | ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
|
---|
5629 | #endif
|
---|
5630 |
|
---|
5631 | /*
|
---|
5632 | * For many VM-exits only RIP/RSP/RFLAGS (and HWVIRT state when executing a nested-guest)
|
---|
5633 | * changes. First try to export only these without going through all other changed-flag checks.
|
---|
5634 | */
|
---|
5635 | VBOXSTRICTRC rcStrict;
|
---|
5636 | uint64_t const fCtxMask = HM_CHANGED_ALL_GUEST & ~HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE;
|
---|
5637 | uint64_t const fMinimalMask = HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RSP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_HWVIRT;
|
---|
5638 | uint64_t const fCtxChanged = ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged);
|
---|
5639 |
|
---|
5640 | /* If only RIP/RSP/RFLAGS/HWVIRT changed, export only those (quicker, happens more often).*/
|
---|
5641 | if ( (fCtxChanged & fMinimalMask)
|
---|
5642 | && !(fCtxChanged & (fCtxMask & ~fMinimalMask)))
|
---|
5643 | {
|
---|
5644 | vmxHCExportGuestRip(pVCpu);
|
---|
5645 | hmR0VmxExportGuestRsp(pVCpu);
|
---|
5646 | vmxHCExportGuestRflags(pVCpu, pVmxTransient);
|
---|
5647 | rcStrict = hmR0VmxExportGuestHwvirtState(pVCpu, pVmxTransient);
|
---|
5648 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExportMinimal);
|
---|
5649 | }
|
---|
5650 | /* If anything else also changed, go through the full export routine and export as required. */
|
---|
5651 | else if (fCtxChanged & fCtxMask)
|
---|
5652 | {
|
---|
5653 | rcStrict = hmR0VmxExportGuestState(pVCpu, pVmxTransient);
|
---|
5654 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
5655 | { /* likely */}
|
---|
5656 | else
|
---|
5657 | {
|
---|
5658 | AssertMsg(rcStrict == VINF_EM_RESCHEDULE_REM, ("Failed to export guest state! rc=%Rrc\n",
|
---|
5659 | VBOXSTRICTRC_VAL(rcStrict)));
|
---|
5660 | Assert(!VMMRZCallRing3IsEnabled(pVCpu));
|
---|
5661 | return rcStrict;
|
---|
5662 | }
|
---|
5663 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExportFull);
|
---|
5664 | }
|
---|
5665 | /* Nothing changed, nothing to load here. */
|
---|
5666 | else
|
---|
5667 | rcStrict = VINF_SUCCESS;
|
---|
5668 |
|
---|
5669 | #ifdef VBOX_STRICT
|
---|
5670 | /* All the guest state bits should be loaded except maybe the host context and/or the shared host/guest bits. */
|
---|
5671 | uint64_t const fCtxChangedCur = ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged);
|
---|
5672 | AssertMsg(!(fCtxChangedCur & fCtxMask), ("fCtxChangedCur=%#RX64\n", fCtxChangedCur));
|
---|
5673 | #endif
|
---|
5674 | return rcStrict;
|
---|
5675 | }
|
---|
5676 |
|
---|
5677 |
|
---|
5678 | /**
|
---|
5679 | * Map the APIC-access page for virtualizing APIC accesses.
|
---|
5680 | *
|
---|
5681 | * This can cause a longjumps to R3 due to the acquisition of the PGM lock. Hence,
|
---|
5682 | * this not done as part of exporting guest state, see @bugref{8721}.
|
---|
5683 | *
|
---|
5684 | * @returns VBox status code.
|
---|
5685 | * @param pVCpu The cross context virtual CPU structure.
|
---|
5686 | * @param GCPhysApicBase The guest-physical address of the APIC access page.
|
---|
5687 | */
|
---|
5688 | static int hmR0VmxMapHCApicAccessPage(PVMCPUCC pVCpu, RTGCPHYS GCPhysApicBase)
|
---|
5689 | {
|
---|
5690 | PVMCC pVM = pVCpu->CTX_SUFF(pVM);
|
---|
5691 | Assert(GCPhysApicBase);
|
---|
5692 |
|
---|
5693 | LogFunc(("Mappping HC APIC-access page at %#RGp\n", GCPhysApicBase));
|
---|
5694 |
|
---|
5695 | /* Unalias the existing mapping. */
|
---|
5696 | int rc = PGMHandlerPhysicalReset(pVM, GCPhysApicBase);
|
---|
5697 | AssertRCReturn(rc, rc);
|
---|
5698 |
|
---|
5699 | /* Map the HC APIC-access page in place of the MMIO page, also updates the shadow page tables if necessary. */
|
---|
5700 | Assert(pVM->hmr0.s.vmx.HCPhysApicAccess != NIL_RTHCPHYS);
|
---|
5701 | rc = IOMR0MmioMapMmioHCPage(pVM, pVCpu, GCPhysApicBase, pVM->hmr0.s.vmx.HCPhysApicAccess, X86_PTE_RW | X86_PTE_P);
|
---|
5702 | AssertRCReturn(rc, rc);
|
---|
5703 |
|
---|
5704 | return VINF_SUCCESS;
|
---|
5705 | }
|
---|
5706 |
|
---|
5707 |
|
---|
5708 | /**
|
---|
5709 | * Worker function passed to RTMpOnSpecific() that is to be called on the target
|
---|
5710 | * CPU.
|
---|
5711 | *
|
---|
5712 | * @param idCpu The ID for the CPU the function is called on.
|
---|
5713 | * @param pvUser1 Null, not used.
|
---|
5714 | * @param pvUser2 Null, not used.
|
---|
5715 | */
|
---|
5716 | static DECLCALLBACK(void) hmR0DispatchHostNmi(RTCPUID idCpu, void *pvUser1, void *pvUser2)
|
---|
5717 | {
|
---|
5718 | RT_NOREF3(idCpu, pvUser1, pvUser2);
|
---|
5719 | VMXDispatchHostNmi();
|
---|
5720 | }
|
---|
5721 |
|
---|
5722 |
|
---|
5723 | /**
|
---|
5724 | * Dispatching an NMI on the host CPU that received it.
|
---|
5725 | *
|
---|
5726 | * @returns VBox status code.
|
---|
5727 | * @param pVCpu The cross context virtual CPU structure.
|
---|
5728 | * @param pVmcsInfo The VMCS info. object corresponding to the VMCS that was
|
---|
5729 | * executing when receiving the host NMI in VMX non-root
|
---|
5730 | * operation.
|
---|
5731 | */
|
---|
5732 | static int hmR0VmxExitHostNmi(PVMCPUCC pVCpu, PCVMXVMCSINFO pVmcsInfo)
|
---|
5733 | {
|
---|
5734 | RTCPUID const idCpu = pVmcsInfo->idHostCpuExec;
|
---|
5735 | Assert(idCpu != NIL_RTCPUID);
|
---|
5736 |
|
---|
5737 | /*
|
---|
5738 | * We don't want to delay dispatching the NMI any more than we have to. However,
|
---|
5739 | * we have already chosen -not- to dispatch NMIs when interrupts were still disabled
|
---|
5740 | * after executing guest or nested-guest code for the following reasons:
|
---|
5741 | *
|
---|
5742 | * - We would need to perform VMREADs with interrupts disabled and is orders of
|
---|
5743 | * magnitude worse when we run as a nested hypervisor without VMCS shadowing
|
---|
5744 | * supported by the host hypervisor.
|
---|
5745 | *
|
---|
5746 | * - It affects the common VM-exit scenario and keeps interrupts disabled for a
|
---|
5747 | * longer period of time just for handling an edge case like host NMIs which do
|
---|
5748 | * not occur nearly as frequently as other VM-exits.
|
---|
5749 | *
|
---|
5750 | * Let's cover the most likely scenario first. Check if we are on the target CPU
|
---|
5751 | * and dispatch the NMI right away. This should be much faster than calling into
|
---|
5752 | * RTMpOnSpecific() machinery.
|
---|
5753 | */
|
---|
5754 | bool fDispatched = false;
|
---|
5755 | RTCCUINTREG const fEFlags = ASMIntDisableFlags();
|
---|
5756 | if (idCpu == RTMpCpuId())
|
---|
5757 | {
|
---|
5758 | VMXDispatchHostNmi();
|
---|
5759 | fDispatched = true;
|
---|
5760 | }
|
---|
5761 | ASMSetFlags(fEFlags);
|
---|
5762 | if (fDispatched)
|
---|
5763 | {
|
---|
5764 | STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatExitHostNmiInGC);
|
---|
5765 | return VINF_SUCCESS;
|
---|
5766 | }
|
---|
5767 |
|
---|
5768 | /*
|
---|
5769 | * RTMpOnSpecific() waits until the worker function has run on the target CPU. So
|
---|
5770 | * there should be no race or recursion even if we are unlucky enough to be preempted
|
---|
5771 | * (to the target CPU) without dispatching the host NMI above.
|
---|
5772 | */
|
---|
5773 | STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatExitHostNmiInGCIpi);
|
---|
5774 | return RTMpOnSpecific(idCpu, &hmR0DispatchHostNmi, NULL /* pvUser1 */, NULL /* pvUser2 */);
|
---|
5775 | }
|
---|
5776 |
|
---|
5777 |
|
---|
5778 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
5779 | /**
|
---|
5780 | * Merges the guest with the nested-guest MSR bitmap in preparation of executing the
|
---|
5781 | * nested-guest using hardware-assisted VMX.
|
---|
5782 | *
|
---|
5783 | * @param pVCpu The cross context virtual CPU structure.
|
---|
5784 | * @param pVmcsInfoNstGst The nested-guest VMCS info. object.
|
---|
5785 | * @param pVmcsInfoGst The guest VMCS info. object.
|
---|
5786 | */
|
---|
5787 | static void hmR0VmxMergeMsrBitmapNested(PCVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfoNstGst, PCVMXVMCSINFO pVmcsInfoGst)
|
---|
5788 | {
|
---|
5789 | uint32_t const cbMsrBitmap = X86_PAGE_4K_SIZE;
|
---|
5790 | uint64_t *pu64MsrBitmap = (uint64_t *)pVmcsInfoNstGst->pvMsrBitmap;
|
---|
5791 | Assert(pu64MsrBitmap);
|
---|
5792 |
|
---|
5793 | /*
|
---|
5794 | * We merge the guest MSR bitmap with the nested-guest MSR bitmap such that any
|
---|
5795 | * MSR that is intercepted by the guest is also intercepted while executing the
|
---|
5796 | * nested-guest using hardware-assisted VMX.
|
---|
5797 | *
|
---|
5798 | * Note! If the nested-guest is not using an MSR bitmap, every MSR must cause a
|
---|
5799 | * nested-guest VM-exit even if the outer guest is not intercepting some
|
---|
5800 | * MSRs. We cannot assume the caller has initialized the nested-guest
|
---|
5801 | * MSR bitmap in this case.
|
---|
5802 | *
|
---|
5803 | * The nested hypervisor may also switch whether it uses MSR bitmaps for
|
---|
5804 | * each of its VM-entry, hence initializing it once per-VM while setting
|
---|
5805 | * up the nested-guest VMCS is not sufficient.
|
---|
5806 | */
|
---|
5807 | PCVMXVVMCS const pVmcsNstGst = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
|
---|
5808 | if (pVmcsNstGst->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
|
---|
5809 | {
|
---|
5810 | uint64_t const *pu64MsrBitmapNstGst = (uint64_t const *)&pVCpu->cpum.GstCtx.hwvirt.vmx.abMsrBitmap[0];
|
---|
5811 | uint64_t const *pu64MsrBitmapGst = (uint64_t const *)pVmcsInfoGst->pvMsrBitmap;
|
---|
5812 | Assert(pu64MsrBitmapNstGst);
|
---|
5813 | Assert(pu64MsrBitmapGst);
|
---|
5814 |
|
---|
5815 | /** @todo Detect and use EVEX.POR? */
|
---|
5816 | uint32_t const cFrags = cbMsrBitmap / sizeof(uint64_t);
|
---|
5817 | for (uint32_t i = 0; i < cFrags; i++)
|
---|
5818 | pu64MsrBitmap[i] = pu64MsrBitmapNstGst[i] | pu64MsrBitmapGst[i];
|
---|
5819 | }
|
---|
5820 | else
|
---|
5821 | ASMMemFill32(pu64MsrBitmap, cbMsrBitmap, UINT32_C(0xffffffff));
|
---|
5822 | }
|
---|
5823 |
|
---|
5824 |
|
---|
5825 | /**
|
---|
5826 | * Merges the guest VMCS in to the nested-guest VMCS controls in preparation of
|
---|
5827 | * hardware-assisted VMX execution of the nested-guest.
|
---|
5828 | *
|
---|
5829 | * For a guest, we don't modify these controls once we set up the VMCS and hence
|
---|
5830 | * this function is never called.
|
---|
5831 | *
|
---|
5832 | * For nested-guests since the nested hypervisor provides these controls on every
|
---|
5833 | * nested-guest VM-entry and could potentially change them everytime we need to
|
---|
5834 | * merge them before every nested-guest VM-entry.
|
---|
5835 | *
|
---|
5836 | * @returns VBox status code.
|
---|
5837 | * @param pVCpu The cross context virtual CPU structure.
|
---|
5838 | */
|
---|
5839 | static int hmR0VmxMergeVmcsNested(PVMCPUCC pVCpu)
|
---|
5840 | {
|
---|
5841 | PVMCC const pVM = pVCpu->CTX_SUFF(pVM);
|
---|
5842 | PCVMXVMCSINFO const pVmcsInfoGst = &pVCpu->hmr0.s.vmx.VmcsInfo;
|
---|
5843 | PCVMXVVMCS const pVmcsNstGst = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
|
---|
5844 |
|
---|
5845 | /*
|
---|
5846 | * Merge the controls with the requirements of the guest VMCS.
|
---|
5847 | *
|
---|
5848 | * We do not need to validate the nested-guest VMX features specified in the nested-guest
|
---|
5849 | * VMCS with the features supported by the physical CPU as it's already done by the
|
---|
5850 | * VMLAUNCH/VMRESUME instruction emulation.
|
---|
5851 | *
|
---|
5852 | * This is because the VMX features exposed by CPUM (through CPUID/MSRs) to the guest are
|
---|
5853 | * derived from the VMX features supported by the physical CPU.
|
---|
5854 | */
|
---|
5855 |
|
---|
5856 | /* Pin-based VM-execution controls. */
|
---|
5857 | uint32_t const u32PinCtls = pVmcsNstGst->u32PinCtls | pVmcsInfoGst->u32PinCtls;
|
---|
5858 |
|
---|
5859 | /* Processor-based VM-execution controls. */
|
---|
5860 | uint32_t u32ProcCtls = (pVmcsNstGst->u32ProcCtls & ~VMX_PROC_CTLS_USE_IO_BITMAPS)
|
---|
5861 | | (pVmcsInfoGst->u32ProcCtls & ~( VMX_PROC_CTLS_INT_WINDOW_EXIT
|
---|
5862 | | VMX_PROC_CTLS_NMI_WINDOW_EXIT
|
---|
5863 | | VMX_PROC_CTLS_MOV_DR_EXIT
|
---|
5864 | | VMX_PROC_CTLS_USE_TPR_SHADOW
|
---|
5865 | | VMX_PROC_CTLS_MONITOR_TRAP_FLAG));
|
---|
5866 |
|
---|
5867 | /* Secondary processor-based VM-execution controls. */
|
---|
5868 | uint32_t const u32ProcCtls2 = (pVmcsNstGst->u32ProcCtls2 & ~VMX_PROC_CTLS2_VPID)
|
---|
5869 | | (pVmcsInfoGst->u32ProcCtls2 & ~( VMX_PROC_CTLS2_VIRT_APIC_ACCESS
|
---|
5870 | | VMX_PROC_CTLS2_INVPCID
|
---|
5871 | | VMX_PROC_CTLS2_VMCS_SHADOWING
|
---|
5872 | | VMX_PROC_CTLS2_RDTSCP
|
---|
5873 | | VMX_PROC_CTLS2_XSAVES_XRSTORS
|
---|
5874 | | VMX_PROC_CTLS2_APIC_REG_VIRT
|
---|
5875 | | VMX_PROC_CTLS2_VIRT_INT_DELIVERY
|
---|
5876 | | VMX_PROC_CTLS2_VMFUNC));
|
---|
5877 |
|
---|
5878 | /*
|
---|
5879 | * VM-entry controls:
|
---|
5880 | * These controls contains state that depends on the nested-guest state (primarily
|
---|
5881 | * EFER MSR) and is thus not constant between VMLAUNCH/VMRESUME and the nested-guest
|
---|
5882 | * VM-exit. Although the nested hypervisor cannot change it, we need to in order to
|
---|
5883 | * properly continue executing the nested-guest if the EFER MSR changes but does not
|
---|
5884 | * cause a nested-guest VM-exits.
|
---|
5885 | *
|
---|
5886 | * VM-exit controls:
|
---|
5887 | * These controls specify the host state on return. We cannot use the controls from
|
---|
5888 | * the nested hypervisor state as is as it would contain the guest state rather than
|
---|
5889 | * the host state. Since the host state is subject to change (e.g. preemption, trips
|
---|
5890 | * to ring-3, longjmp and rescheduling to a different host CPU) they are not constant
|
---|
5891 | * through VMLAUNCH/VMRESUME and the nested-guest VM-exit.
|
---|
5892 | *
|
---|
5893 | * VM-entry MSR-load:
|
---|
5894 | * The guest MSRs from the VM-entry MSR-load area are already loaded into the guest-CPU
|
---|
5895 | * context by the VMLAUNCH/VMRESUME instruction emulation.
|
---|
5896 | *
|
---|
5897 | * VM-exit MSR-store:
|
---|
5898 | * The VM-exit emulation will take care of populating the MSRs from the guest-CPU context
|
---|
5899 | * back into the VM-exit MSR-store area.
|
---|
5900 | *
|
---|
5901 | * VM-exit MSR-load areas:
|
---|
5902 | * This must contain the real host MSRs with hardware-assisted VMX execution. Hence, we
|
---|
5903 | * can entirely ignore what the nested hypervisor wants to load here.
|
---|
5904 | */
|
---|
5905 |
|
---|
5906 | /*
|
---|
5907 | * Exception bitmap.
|
---|
5908 | *
|
---|
5909 | * We could remove #UD from the guest bitmap and merge it with the nested-guest bitmap
|
---|
5910 | * here (and avoid doing anything while exporting nested-guest state), but to keep the
|
---|
5911 | * code more flexible if intercepting exceptions become more dynamic in the future we do
|
---|
5912 | * it as part of exporting the nested-guest state.
|
---|
5913 | */
|
---|
5914 | uint32_t const u32XcptBitmap = pVmcsNstGst->u32XcptBitmap | pVmcsInfoGst->u32XcptBitmap;
|
---|
5915 |
|
---|
5916 | /*
|
---|
5917 | * CR0/CR4 guest/host mask.
|
---|
5918 | *
|
---|
5919 | * Modifications by the nested-guest to CR0/CR4 bits owned by the host and the guest must
|
---|
5920 | * cause VM-exits, so we need to merge them here.
|
---|
5921 | */
|
---|
5922 | uint64_t const u64Cr0Mask = pVmcsNstGst->u64Cr0Mask.u | pVmcsInfoGst->u64Cr0Mask;
|
---|
5923 | uint64_t const u64Cr4Mask = pVmcsNstGst->u64Cr4Mask.u | pVmcsInfoGst->u64Cr4Mask;
|
---|
5924 |
|
---|
5925 | /*
|
---|
5926 | * Page-fault error-code mask and match.
|
---|
5927 | *
|
---|
5928 | * Although we require unrestricted guest execution (and thereby nested-paging) for
|
---|
5929 | * hardware-assisted VMX execution of nested-guests and thus the outer guest doesn't
|
---|
5930 | * normally intercept #PFs, it might intercept them for debugging purposes.
|
---|
5931 | *
|
---|
5932 | * If the outer guest is not intercepting #PFs, we can use the nested-guest #PF filters.
|
---|
5933 | * If the outer guest is intercepting #PFs, we must intercept all #PFs.
|
---|
5934 | */
|
---|
5935 | uint32_t u32XcptPFMask;
|
---|
5936 | uint32_t u32XcptPFMatch;
|
---|
5937 | if (!(pVmcsInfoGst->u32XcptBitmap & RT_BIT(X86_XCPT_PF)))
|
---|
5938 | {
|
---|
5939 | u32XcptPFMask = pVmcsNstGst->u32XcptPFMask;
|
---|
5940 | u32XcptPFMatch = pVmcsNstGst->u32XcptPFMatch;
|
---|
5941 | }
|
---|
5942 | else
|
---|
5943 | {
|
---|
5944 | u32XcptPFMask = 0;
|
---|
5945 | u32XcptPFMatch = 0;
|
---|
5946 | }
|
---|
5947 |
|
---|
5948 | /*
|
---|
5949 | * Pause-Loop exiting.
|
---|
5950 | */
|
---|
5951 | /** @todo r=bird: given that both pVM->hm.s.vmx.cPleGapTicks and
|
---|
5952 | * pVM->hm.s.vmx.cPleWindowTicks defaults to zero, I cannot see how
|
---|
5953 | * this will work... */
|
---|
5954 | uint32_t const cPleGapTicks = RT_MIN(pVM->hm.s.vmx.cPleGapTicks, pVmcsNstGst->u32PleGap);
|
---|
5955 | uint32_t const cPleWindowTicks = RT_MIN(pVM->hm.s.vmx.cPleWindowTicks, pVmcsNstGst->u32PleWindow);
|
---|
5956 |
|
---|
5957 | /*
|
---|
5958 | * Pending debug exceptions.
|
---|
5959 | * Currently just copy whatever the nested-guest provides us.
|
---|
5960 | */
|
---|
5961 | uint64_t const uPendingDbgXcpts = pVmcsNstGst->u64GuestPendingDbgXcpts.u;
|
---|
5962 |
|
---|
5963 | /*
|
---|
5964 | * I/O Bitmap.
|
---|
5965 | *
|
---|
5966 | * We do not use the I/O bitmap that may be provided by the nested hypervisor as we always
|
---|
5967 | * intercept all I/O port accesses.
|
---|
5968 | */
|
---|
5969 | Assert(u32ProcCtls & VMX_PROC_CTLS_UNCOND_IO_EXIT);
|
---|
5970 | Assert(!(u32ProcCtls & VMX_PROC_CTLS_USE_IO_BITMAPS));
|
---|
5971 |
|
---|
5972 | /*
|
---|
5973 | * VMCS shadowing.
|
---|
5974 | *
|
---|
5975 | * We do not yet expose VMCS shadowing to the guest and thus VMCS shadowing should not be
|
---|
5976 | * enabled while executing the nested-guest.
|
---|
5977 | */
|
---|
5978 | Assert(!(u32ProcCtls2 & VMX_PROC_CTLS2_VMCS_SHADOWING));
|
---|
5979 |
|
---|
5980 | /*
|
---|
5981 | * APIC-access page.
|
---|
5982 | */
|
---|
5983 | RTHCPHYS HCPhysApicAccess;
|
---|
5984 | if (u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
|
---|
5985 | {
|
---|
5986 | Assert(g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS);
|
---|
5987 | RTGCPHYS const GCPhysApicAccess = pVmcsNstGst->u64AddrApicAccess.u;
|
---|
5988 |
|
---|
5989 | /** @todo NSTVMX: This is not really correct but currently is required to make
|
---|
5990 | * things work. We need to re-enable the page handler when we fallback to
|
---|
5991 | * IEM execution of the nested-guest! */
|
---|
5992 | PGMHandlerPhysicalPageTempOff(pVM, GCPhysApicAccess, GCPhysApicAccess);
|
---|
5993 |
|
---|
5994 | void *pvPage;
|
---|
5995 | PGMPAGEMAPLOCK PgLockApicAccess;
|
---|
5996 | int rc = PGMPhysGCPhys2CCPtr(pVM, GCPhysApicAccess, &pvPage, &PgLockApicAccess);
|
---|
5997 | if (RT_SUCCESS(rc))
|
---|
5998 | {
|
---|
5999 | rc = PGMPhysGCPhys2HCPhys(pVM, GCPhysApicAccess, &HCPhysApicAccess);
|
---|
6000 | AssertMsgRCReturn(rc, ("Failed to get host-physical address for APIC-access page at %#RGp\n", GCPhysApicAccess), rc);
|
---|
6001 |
|
---|
6002 | /** @todo Handle proper releasing of page-mapping lock later. */
|
---|
6003 | PGMPhysReleasePageMappingLock(pVCpu->CTX_SUFF(pVM), &PgLockApicAccess);
|
---|
6004 | }
|
---|
6005 | else
|
---|
6006 | return rc;
|
---|
6007 | }
|
---|
6008 | else
|
---|
6009 | HCPhysApicAccess = 0;
|
---|
6010 |
|
---|
6011 | /*
|
---|
6012 | * Virtual-APIC page and TPR threshold.
|
---|
6013 | */
|
---|
6014 | RTHCPHYS HCPhysVirtApic;
|
---|
6015 | uint32_t u32TprThreshold;
|
---|
6016 | if (u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
|
---|
6017 | {
|
---|
6018 | Assert(g_HmMsrs.u.vmx.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_TPR_SHADOW);
|
---|
6019 | RTGCPHYS const GCPhysVirtApic = pVmcsNstGst->u64AddrVirtApic.u;
|
---|
6020 |
|
---|
6021 | void *pvPage;
|
---|
6022 | PGMPAGEMAPLOCK PgLockVirtApic;
|
---|
6023 | int rc = PGMPhysGCPhys2CCPtr(pVM, GCPhysVirtApic, &pvPage, &PgLockVirtApic);
|
---|
6024 | if (RT_SUCCESS(rc))
|
---|
6025 | {
|
---|
6026 | rc = PGMPhysGCPhys2HCPhys(pVM, GCPhysVirtApic, &HCPhysVirtApic);
|
---|
6027 | AssertMsgRCReturn(rc, ("Failed to get host-physical address for virtual-APIC page at %#RGp\n", GCPhysVirtApic), rc);
|
---|
6028 |
|
---|
6029 | /** @todo Handle proper releasing of page-mapping lock later. */
|
---|
6030 | PGMPhysReleasePageMappingLock(pVCpu->CTX_SUFF(pVM), &PgLockVirtApic);
|
---|
6031 | }
|
---|
6032 | else
|
---|
6033 | return rc;
|
---|
6034 |
|
---|
6035 | u32TprThreshold = pVmcsNstGst->u32TprThreshold;
|
---|
6036 | }
|
---|
6037 | else
|
---|
6038 | {
|
---|
6039 | HCPhysVirtApic = 0;
|
---|
6040 | u32TprThreshold = 0;
|
---|
6041 |
|
---|
6042 | /*
|
---|
6043 | * We must make sure CR8 reads/write must cause VM-exits when TPR shadowing is not
|
---|
6044 | * used by the nested hypervisor. Preventing MMIO accesses to the physical APIC will
|
---|
6045 | * be taken care of by EPT/shadow paging.
|
---|
6046 | */
|
---|
6047 | if (pVM->hmr0.s.fAllow64BitGuests)
|
---|
6048 | u32ProcCtls |= VMX_PROC_CTLS_CR8_STORE_EXIT
|
---|
6049 | | VMX_PROC_CTLS_CR8_LOAD_EXIT;
|
---|
6050 | }
|
---|
6051 |
|
---|
6052 | /*
|
---|
6053 | * Validate basic assumptions.
|
---|
6054 | */
|
---|
6055 | PVMXVMCSINFO pVmcsInfoNstGst = &pVCpu->hmr0.s.vmx.VmcsInfoNstGst;
|
---|
6056 | Assert(pVM->hmr0.s.vmx.fUnrestrictedGuest);
|
---|
6057 | Assert(g_HmMsrs.u.vmx.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_SECONDARY_CTLS);
|
---|
6058 | Assert(hmGetVmxActiveVmcsInfo(pVCpu) == pVmcsInfoNstGst);
|
---|
6059 |
|
---|
6060 | /*
|
---|
6061 | * Commit it to the nested-guest VMCS.
|
---|
6062 | */
|
---|
6063 | int rc = VINF_SUCCESS;
|
---|
6064 | if (pVmcsInfoNstGst->u32PinCtls != u32PinCtls)
|
---|
6065 | rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, u32PinCtls);
|
---|
6066 | if (pVmcsInfoNstGst->u32ProcCtls != u32ProcCtls)
|
---|
6067 | rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, u32ProcCtls);
|
---|
6068 | if (pVmcsInfoNstGst->u32ProcCtls2 != u32ProcCtls2)
|
---|
6069 | rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, u32ProcCtls2);
|
---|
6070 | if (pVmcsInfoNstGst->u32XcptBitmap != u32XcptBitmap)
|
---|
6071 | rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, u32XcptBitmap);
|
---|
6072 | if (pVmcsInfoNstGst->u64Cr0Mask != u64Cr0Mask)
|
---|
6073 | rc |= VMXWriteVmcsNw(VMX_VMCS_CTRL_CR0_MASK, u64Cr0Mask);
|
---|
6074 | if (pVmcsInfoNstGst->u64Cr4Mask != u64Cr4Mask)
|
---|
6075 | rc |= VMXWriteVmcsNw(VMX_VMCS_CTRL_CR4_MASK, u64Cr4Mask);
|
---|
6076 | if (pVmcsInfoNstGst->u32XcptPFMask != u32XcptPFMask)
|
---|
6077 | rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK, u32XcptPFMask);
|
---|
6078 | if (pVmcsInfoNstGst->u32XcptPFMatch != u32XcptPFMatch)
|
---|
6079 | rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH, u32XcptPFMatch);
|
---|
6080 | if ( !(u32ProcCtls & VMX_PROC_CTLS_PAUSE_EXIT)
|
---|
6081 | && (u32ProcCtls2 & VMX_PROC_CTLS2_PAUSE_LOOP_EXIT))
|
---|
6082 | {
|
---|
6083 | Assert(g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_PAUSE_LOOP_EXIT);
|
---|
6084 | rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PLE_GAP, cPleGapTicks);
|
---|
6085 | rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PLE_WINDOW, cPleWindowTicks);
|
---|
6086 | }
|
---|
6087 | if (u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
|
---|
6088 | {
|
---|
6089 | rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_TPR_THRESHOLD, u32TprThreshold);
|
---|
6090 | rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_VIRT_APIC_PAGEADDR_FULL, HCPhysVirtApic);
|
---|
6091 | }
|
---|
6092 | if (u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
|
---|
6093 | rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL, HCPhysApicAccess);
|
---|
6094 | rc |= VMXWriteVmcsNw(VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS, uPendingDbgXcpts);
|
---|
6095 | AssertRC(rc);
|
---|
6096 |
|
---|
6097 | /*
|
---|
6098 | * Update the nested-guest VMCS cache.
|
---|
6099 | */
|
---|
6100 | pVmcsInfoNstGst->u32PinCtls = u32PinCtls;
|
---|
6101 | pVmcsInfoNstGst->u32ProcCtls = u32ProcCtls;
|
---|
6102 | pVmcsInfoNstGst->u32ProcCtls2 = u32ProcCtls2;
|
---|
6103 | pVmcsInfoNstGst->u32XcptBitmap = u32XcptBitmap;
|
---|
6104 | pVmcsInfoNstGst->u64Cr0Mask = u64Cr0Mask;
|
---|
6105 | pVmcsInfoNstGst->u64Cr4Mask = u64Cr4Mask;
|
---|
6106 | pVmcsInfoNstGst->u32XcptPFMask = u32XcptPFMask;
|
---|
6107 | pVmcsInfoNstGst->u32XcptPFMatch = u32XcptPFMatch;
|
---|
6108 | pVmcsInfoNstGst->HCPhysVirtApic = HCPhysVirtApic;
|
---|
6109 |
|
---|
6110 | /*
|
---|
6111 | * We need to flush the TLB if we are switching the APIC-access page address.
|
---|
6112 | * See Intel spec. 28.3.3.4 "Guidelines for Use of the INVEPT Instruction".
|
---|
6113 | */
|
---|
6114 | if (u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
|
---|
6115 | pVCpu->hm.s.vmx.fSwitchedNstGstFlushTlb = true;
|
---|
6116 |
|
---|
6117 | /*
|
---|
6118 | * MSR bitmap.
|
---|
6119 | *
|
---|
6120 | * The MSR bitmap address has already been initialized while setting up the nested-guest
|
---|
6121 | * VMCS, here we need to merge the MSR bitmaps.
|
---|
6122 | */
|
---|
6123 | if (u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
|
---|
6124 | hmR0VmxMergeMsrBitmapNested(pVCpu, pVmcsInfoNstGst, pVmcsInfoGst);
|
---|
6125 |
|
---|
6126 | return VINF_SUCCESS;
|
---|
6127 | }
|
---|
6128 | #endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
|
---|
6129 |
|
---|
6130 |
|
---|
6131 | /**
|
---|
6132 | * Does the preparations before executing guest code in VT-x.
|
---|
6133 | *
|
---|
6134 | * This may cause longjmps to ring-3 and may even result in rescheduling to the
|
---|
6135 | * recompiler/IEM. We must be cautious what we do here regarding committing
|
---|
6136 | * guest-state information into the VMCS assuming we assuredly execute the
|
---|
6137 | * guest in VT-x mode.
|
---|
6138 | *
|
---|
6139 | * If we fall back to the recompiler/IEM after updating the VMCS and clearing
|
---|
6140 | * the common-state (TRPM/forceflags), we must undo those changes so that the
|
---|
6141 | * recompiler/IEM can (and should) use them when it resumes guest execution.
|
---|
6142 | * Otherwise such operations must be done when we can no longer exit to ring-3.
|
---|
6143 | *
|
---|
6144 | * @returns Strict VBox status code (i.e. informational status codes too).
|
---|
6145 | * @retval VINF_SUCCESS if we can proceed with running the guest, interrupts
|
---|
6146 | * have been disabled.
|
---|
6147 | * @retval VINF_VMX_VMEXIT if a nested-guest VM-exit occurs (e.g., while evaluating
|
---|
6148 | * pending events).
|
---|
6149 | * @retval VINF_EM_RESET if a triple-fault occurs while injecting a
|
---|
6150 | * double-fault into the guest.
|
---|
6151 | * @retval VINF_EM_DBG_STEPPED if @a fStepping is true and an event was
|
---|
6152 | * dispatched directly.
|
---|
6153 | * @retval VINF_* scheduling changes, we have to go back to ring-3.
|
---|
6154 | *
|
---|
6155 | * @param pVCpu The cross context virtual CPU structure.
|
---|
6156 | * @param pVmxTransient The VMX-transient structure.
|
---|
6157 | * @param fStepping Whether we are single-stepping the guest in the
|
---|
6158 | * hypervisor debugger. Makes us ignore some of the reasons
|
---|
6159 | * for returning to ring-3, and return VINF_EM_DBG_STEPPED
|
---|
6160 | * if event dispatching took place.
|
---|
6161 | */
|
---|
6162 | static VBOXSTRICTRC hmR0VmxPreRunGuest(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient, bool fStepping)
|
---|
6163 | {
|
---|
6164 | Assert(VMMRZCallRing3IsEnabled(pVCpu));
|
---|
6165 |
|
---|
6166 | Log4Func(("fIsNested=%RTbool fStepping=%RTbool\n", pVmxTransient->fIsNestedGuest, fStepping));
|
---|
6167 |
|
---|
6168 | #ifdef VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM
|
---|
6169 | if (pVmxTransient->fIsNestedGuest)
|
---|
6170 | {
|
---|
6171 | RT_NOREF2(pVCpu, fStepping);
|
---|
6172 | Log2Func(("Rescheduling to IEM due to nested-hwvirt or forced IEM exec -> VINF_EM_RESCHEDULE_REM\n"));
|
---|
6173 | return VINF_EM_RESCHEDULE_REM;
|
---|
6174 | }
|
---|
6175 | #endif
|
---|
6176 |
|
---|
6177 | /*
|
---|
6178 | * Check and process force flag actions, some of which might require us to go back to ring-3.
|
---|
6179 | */
|
---|
6180 | VBOXSTRICTRC rcStrict = vmxHCCheckForceFlags(pVCpu, pVmxTransient->fIsNestedGuest, fStepping);
|
---|
6181 | if (rcStrict == VINF_SUCCESS)
|
---|
6182 | {
|
---|
6183 | /* FFs don't get set all the time. */
|
---|
6184 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
6185 | if ( pVmxTransient->fIsNestedGuest
|
---|
6186 | && !CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx))
|
---|
6187 | {
|
---|
6188 | STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchNstGstVmexit);
|
---|
6189 | return VINF_VMX_VMEXIT;
|
---|
6190 | }
|
---|
6191 | #endif
|
---|
6192 | }
|
---|
6193 | else
|
---|
6194 | return rcStrict;
|
---|
6195 |
|
---|
6196 | /*
|
---|
6197 | * Virtualize memory-mapped accesses to the physical APIC (may take locks).
|
---|
6198 | */
|
---|
6199 | PVMCC pVM = pVCpu->CTX_SUFF(pVM);
|
---|
6200 | if ( !pVCpu->hm.s.vmx.u64GstMsrApicBase
|
---|
6201 | && (g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
|
---|
6202 | && PDMHasApic(pVM))
|
---|
6203 | {
|
---|
6204 | /* Get the APIC base MSR from the virtual APIC device. */
|
---|
6205 | uint64_t const uApicBaseMsr = APICGetBaseMsrNoCheck(pVCpu);
|
---|
6206 |
|
---|
6207 | /* Map the APIC access page. */
|
---|
6208 | int rc = hmR0VmxMapHCApicAccessPage(pVCpu, uApicBaseMsr & ~(RTGCPHYS)GUEST_PAGE_OFFSET_MASK);
|
---|
6209 | AssertRCReturn(rc, rc);
|
---|
6210 |
|
---|
6211 | /* Update the per-VCPU cache of the APIC base MSR corresponding to the mapped APIC access page. */
|
---|
6212 | pVCpu->hm.s.vmx.u64GstMsrApicBase = uApicBaseMsr;
|
---|
6213 | }
|
---|
6214 |
|
---|
6215 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
6216 | /*
|
---|
6217 | * Merge guest VMCS controls with the nested-guest VMCS controls.
|
---|
6218 | *
|
---|
6219 | * Even if we have not executed the guest prior to this (e.g. when resuming from a
|
---|
6220 | * saved state), we should be okay with merging controls as we initialize the
|
---|
6221 | * guest VMCS controls as part of VM setup phase.
|
---|
6222 | */
|
---|
6223 | if ( pVmxTransient->fIsNestedGuest
|
---|
6224 | && !pVCpu->hm.s.vmx.fMergedNstGstCtls)
|
---|
6225 | {
|
---|
6226 | int rc = hmR0VmxMergeVmcsNested(pVCpu);
|
---|
6227 | AssertRCReturn(rc, rc);
|
---|
6228 | pVCpu->hm.s.vmx.fMergedNstGstCtls = true;
|
---|
6229 | }
|
---|
6230 | #endif
|
---|
6231 |
|
---|
6232 | /*
|
---|
6233 | * Evaluate events to be injected into the guest.
|
---|
6234 | *
|
---|
6235 | * Events in TRPM can be injected without inspecting the guest state.
|
---|
6236 | * If any new events (interrupts/NMI) are pending currently, we try to set up the
|
---|
6237 | * guest to cause a VM-exit the next time they are ready to receive the event.
|
---|
6238 | */
|
---|
6239 | if (TRPMHasTrap(pVCpu))
|
---|
6240 | vmxHCTrpmTrapToPendingEvent(pVCpu);
|
---|
6241 |
|
---|
6242 | uint32_t fIntrState;
|
---|
6243 | rcStrict = vmxHCEvaluatePendingEvent(pVCpu, pVmxTransient->pVmcsInfo, pVmxTransient->fIsNestedGuest,
|
---|
6244 | &fIntrState);
|
---|
6245 |
|
---|
6246 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
6247 | /*
|
---|
6248 | * While evaluating pending events if something failed (unlikely) or if we were
|
---|
6249 | * preparing to run a nested-guest but performed a nested-guest VM-exit, we should bail.
|
---|
6250 | */
|
---|
6251 | if (rcStrict != VINF_SUCCESS)
|
---|
6252 | return rcStrict;
|
---|
6253 | if ( pVmxTransient->fIsNestedGuest
|
---|
6254 | && !CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx))
|
---|
6255 | {
|
---|
6256 | STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchNstGstVmexit);
|
---|
6257 | return VINF_VMX_VMEXIT;
|
---|
6258 | }
|
---|
6259 | #else
|
---|
6260 | Assert(rcStrict == VINF_SUCCESS);
|
---|
6261 | #endif
|
---|
6262 |
|
---|
6263 | /*
|
---|
6264 | * Event injection may take locks (currently the PGM lock for real-on-v86 case) and thus
|
---|
6265 | * needs to be done with longjmps or interrupts + preemption enabled. Event injection might
|
---|
6266 | * also result in triple-faulting the VM.
|
---|
6267 | *
|
---|
6268 | * With nested-guests, the above does not apply since unrestricted guest execution is a
|
---|
6269 | * requirement. Regardless, we do this here to avoid duplicating code elsewhere.
|
---|
6270 | */
|
---|
6271 | rcStrict = vmxHCInjectPendingEvent(pVCpu, pVmxTransient->pVmcsInfo, pVmxTransient->fIsNestedGuest,
|
---|
6272 | fIntrState, fStepping);
|
---|
6273 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
6274 | { /* likely */ }
|
---|
6275 | else
|
---|
6276 | {
|
---|
6277 | AssertMsg(rcStrict == VINF_EM_RESET || (rcStrict == VINF_EM_DBG_STEPPED && fStepping),
|
---|
6278 | ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
|
---|
6279 | return rcStrict;
|
---|
6280 | }
|
---|
6281 |
|
---|
6282 | /*
|
---|
6283 | * A longjump might result in importing CR3 even for VM-exits that don't necessarily
|
---|
6284 | * import CR3 themselves. We will need to update them here, as even as late as the above
|
---|
6285 | * hmR0VmxInjectPendingEvent() call may lazily import guest-CPU state on demand causing
|
---|
6286 | * the below force flags to be set.
|
---|
6287 | */
|
---|
6288 | if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3))
|
---|
6289 | {
|
---|
6290 | Assert(!(ASMAtomicUoReadU64(&pVCpu->cpum.GstCtx.fExtrn) & CPUMCTX_EXTRN_CR3));
|
---|
6291 | int rc2 = PGMUpdateCR3(pVCpu, CPUMGetGuestCR3(pVCpu));
|
---|
6292 | AssertMsgReturn(rc2 == VINF_SUCCESS || rc2 == VINF_PGM_SYNC_CR3,
|
---|
6293 | ("%Rrc\n", rc2), RT_FAILURE_NP(rc2) ? rc2 : VERR_IPE_UNEXPECTED_INFO_STATUS);
|
---|
6294 | Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
|
---|
6295 | }
|
---|
6296 |
|
---|
6297 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
6298 | /* Paranoia. */
|
---|
6299 | Assert(!pVmxTransient->fIsNestedGuest || CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx));
|
---|
6300 | #endif
|
---|
6301 |
|
---|
6302 | /*
|
---|
6303 | * No longjmps to ring-3 from this point on!!!
|
---|
6304 | * Asserts() will still longjmp to ring-3 (but won't return), which is intentional, better than a kernel panic.
|
---|
6305 | * This also disables flushing of the R0-logger instance (if any).
|
---|
6306 | */
|
---|
6307 | VMMRZCallRing3Disable(pVCpu);
|
---|
6308 |
|
---|
6309 | /*
|
---|
6310 | * Export the guest state bits.
|
---|
6311 | *
|
---|
6312 | * We cannot perform longjmps while loading the guest state because we do not preserve the
|
---|
6313 | * host/guest state (although the VMCS will be preserved) across longjmps which can cause
|
---|
6314 | * CPU migration.
|
---|
6315 | *
|
---|
6316 | * If we are injecting events to a real-on-v86 mode guest, we would have updated RIP and some segment
|
---|
6317 | * registers. Hence, exporting of the guest state needs to be done -after- injection of events.
|
---|
6318 | */
|
---|
6319 | rcStrict = hmR0VmxExportGuestStateOptimal(pVCpu, pVmxTransient);
|
---|
6320 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
6321 | { /* likely */ }
|
---|
6322 | else
|
---|
6323 | {
|
---|
6324 | VMMRZCallRing3Enable(pVCpu);
|
---|
6325 | return rcStrict;
|
---|
6326 | }
|
---|
6327 |
|
---|
6328 | /*
|
---|
6329 | * We disable interrupts so that we don't miss any interrupts that would flag preemption
|
---|
6330 | * (IPI/timers etc.) when thread-context hooks aren't used and we've been running with
|
---|
6331 | * preemption disabled for a while. Since this is purely to aid the
|
---|
6332 | * RTThreadPreemptIsPending() code, it doesn't matter that it may temporarily reenable and
|
---|
6333 | * disable interrupt on NT.
|
---|
6334 | *
|
---|
6335 | * We need to check for force-flags that could've possible been altered since we last
|
---|
6336 | * checked them (e.g. by PDMGetInterrupt() leaving the PDM critical section,
|
---|
6337 | * see @bugref{6398}).
|
---|
6338 | *
|
---|
6339 | * We also check a couple of other force-flags as a last opportunity to get the EMT back
|
---|
6340 | * to ring-3 before executing guest code.
|
---|
6341 | */
|
---|
6342 | pVmxTransient->fEFlags = ASMIntDisableFlags();
|
---|
6343 |
|
---|
6344 | if ( ( !VM_FF_IS_ANY_SET(pVM, VM_FF_EMT_RENDEZVOUS | VM_FF_TM_VIRTUAL_SYNC)
|
---|
6345 | && !VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
|
---|
6346 | || ( fStepping /* Optimized for the non-stepping case, so a bit of unnecessary work when stepping. */
|
---|
6347 | && !VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HM_TO_R3_MASK & ~(VMCPU_FF_TIMER | VMCPU_FF_PDM_CRITSECT))) )
|
---|
6348 | {
|
---|
6349 | if (!RTThreadPreemptIsPending(NIL_RTTHREAD))
|
---|
6350 | {
|
---|
6351 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
6352 | /*
|
---|
6353 | * If we are executing a nested-guest make sure that we should intercept subsequent
|
---|
6354 | * events. The one we are injecting might be part of VM-entry. This is mainly to keep
|
---|
6355 | * the VM-exit instruction emulation happy.
|
---|
6356 | */
|
---|
6357 | if (pVmxTransient->fIsNestedGuest)
|
---|
6358 | CPUMSetGuestVmxInterceptEvents(&pVCpu->cpum.GstCtx, true);
|
---|
6359 | #endif
|
---|
6360 |
|
---|
6361 | /*
|
---|
6362 | * We've injected any pending events. This is really the point of no return (to ring-3).
|
---|
6363 | *
|
---|
6364 | * Note! The caller expects to continue with interrupts & longjmps disabled on successful
|
---|
6365 | * returns from this function, so do -not- enable them here.
|
---|
6366 | */
|
---|
6367 | pVCpu->hm.s.Event.fPending = false;
|
---|
6368 | return VINF_SUCCESS;
|
---|
6369 | }
|
---|
6370 |
|
---|
6371 | STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchPendingHostIrq);
|
---|
6372 | rcStrict = VINF_EM_RAW_INTERRUPT;
|
---|
6373 | }
|
---|
6374 | else
|
---|
6375 | {
|
---|
6376 | STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
|
---|
6377 | rcStrict = VINF_EM_RAW_TO_R3;
|
---|
6378 | }
|
---|
6379 |
|
---|
6380 | ASMSetFlags(pVmxTransient->fEFlags);
|
---|
6381 | VMMRZCallRing3Enable(pVCpu);
|
---|
6382 |
|
---|
6383 | return rcStrict;
|
---|
6384 | }
|
---|
6385 |
|
---|
6386 |
|
---|
6387 | /**
|
---|
6388 | * Final preparations before executing guest code using hardware-assisted VMX.
|
---|
6389 | *
|
---|
6390 | * We can no longer get preempted to a different host CPU and there are no returns
|
---|
6391 | * to ring-3. We ignore any errors that may happen from this point (e.g. VMWRITE
|
---|
6392 | * failures), this function is not intended to fail sans unrecoverable hardware
|
---|
6393 | * errors.
|
---|
6394 | *
|
---|
6395 | * @param pVCpu The cross context virtual CPU structure.
|
---|
6396 | * @param pVmxTransient The VMX-transient structure.
|
---|
6397 | *
|
---|
6398 | * @remarks Called with preemption disabled.
|
---|
6399 | * @remarks No-long-jump zone!!!
|
---|
6400 | */
|
---|
6401 | static void hmR0VmxPreRunGuestCommitted(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
6402 | {
|
---|
6403 | Assert(!VMMRZCallRing3IsEnabled(pVCpu));
|
---|
6404 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
6405 | Assert(!pVCpu->hm.s.Event.fPending);
|
---|
6406 |
|
---|
6407 | /*
|
---|
6408 | * Indicate start of guest execution and where poking EMT out of guest-context is recognized.
|
---|
6409 | */
|
---|
6410 | VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
|
---|
6411 | VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC);
|
---|
6412 |
|
---|
6413 | PVMCC pVM = pVCpu->CTX_SUFF(pVM);
|
---|
6414 | PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
|
---|
6415 | PHMPHYSCPU pHostCpu = hmR0GetCurrentCpu();
|
---|
6416 | RTCPUID const idCurrentCpu = pHostCpu->idCpu;
|
---|
6417 |
|
---|
6418 | if (!CPUMIsGuestFPUStateActive(pVCpu))
|
---|
6419 | {
|
---|
6420 | STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatLoadGuestFpuState, x);
|
---|
6421 | if (CPUMR0LoadGuestFPU(pVM, pVCpu) == VINF_CPUM_HOST_CR0_MODIFIED)
|
---|
6422 | pVCpu->hm.s.fCtxChanged |= HM_CHANGED_HOST_CONTEXT;
|
---|
6423 | STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatLoadGuestFpuState, x);
|
---|
6424 | STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadGuestFpu);
|
---|
6425 | }
|
---|
6426 |
|
---|
6427 | /*
|
---|
6428 | * Re-export the host state bits as we may've been preempted (only happens when
|
---|
6429 | * thread-context hooks are used or when the VM start function changes) or if
|
---|
6430 | * the host CR0 is modified while loading the guest FPU state above.
|
---|
6431 | *
|
---|
6432 | * The 64-on-32 switcher saves the (64-bit) host state into the VMCS and if we
|
---|
6433 | * changed the switcher back to 32-bit, we *must* save the 32-bit host state here,
|
---|
6434 | * see @bugref{8432}.
|
---|
6435 | *
|
---|
6436 | * This may also happen when switching to/from a nested-guest VMCS without leaving
|
---|
6437 | * ring-0.
|
---|
6438 | */
|
---|
6439 | if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_HOST_CONTEXT)
|
---|
6440 | {
|
---|
6441 | hmR0VmxExportHostState(pVCpu);
|
---|
6442 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExportHostState);
|
---|
6443 | }
|
---|
6444 | Assert(!(pVCpu->hm.s.fCtxChanged & HM_CHANGED_HOST_CONTEXT));
|
---|
6445 |
|
---|
6446 | /*
|
---|
6447 | * Export the state shared between host and guest (FPU, debug, lazy MSRs).
|
---|
6448 | */
|
---|
6449 | if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE)
|
---|
6450 | hmR0VmxExportSharedState(pVCpu, pVmxTransient);
|
---|
6451 | AssertMsg(!pVCpu->hm.s.fCtxChanged, ("fCtxChanged=%#RX64\n", pVCpu->hm.s.fCtxChanged));
|
---|
6452 |
|
---|
6453 | /*
|
---|
6454 | * Store status of the shared guest/host debug state at the time of VM-entry.
|
---|
6455 | */
|
---|
6456 | pVmxTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActive(pVCpu);
|
---|
6457 | pVmxTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActive(pVCpu);
|
---|
6458 |
|
---|
6459 | /*
|
---|
6460 | * Always cache the TPR-shadow if the virtual-APIC page exists, thereby skipping
|
---|
6461 | * more than one conditional check. The post-run side of our code shall determine
|
---|
6462 | * if it needs to sync. the virtual APIC TPR with the TPR-shadow.
|
---|
6463 | */
|
---|
6464 | if (pVmcsInfo->pbVirtApic)
|
---|
6465 | pVmxTransient->u8GuestTpr = pVmcsInfo->pbVirtApic[XAPIC_OFF_TPR];
|
---|
6466 |
|
---|
6467 | /*
|
---|
6468 | * Update the host MSRs values in the VM-exit MSR-load area.
|
---|
6469 | */
|
---|
6470 | if (!pVCpu->hmr0.s.vmx.fUpdatedHostAutoMsrs)
|
---|
6471 | {
|
---|
6472 | if (pVmcsInfo->cExitMsrLoad > 0)
|
---|
6473 | hmR0VmxUpdateAutoLoadHostMsrs(pVCpu, pVmcsInfo);
|
---|
6474 | pVCpu->hmr0.s.vmx.fUpdatedHostAutoMsrs = true;
|
---|
6475 | }
|
---|
6476 |
|
---|
6477 | /*
|
---|
6478 | * Evaluate if we need to intercept guest RDTSC/P accesses. Set up the
|
---|
6479 | * VMX-preemption timer based on the next virtual sync clock deadline.
|
---|
6480 | */
|
---|
6481 | if ( !pVmxTransient->fUpdatedTscOffsettingAndPreemptTimer
|
---|
6482 | || idCurrentCpu != pVCpu->hmr0.s.idLastCpu)
|
---|
6483 | {
|
---|
6484 | hmR0VmxUpdateTscOffsettingAndPreemptTimer(pVCpu, pVmxTransient, idCurrentCpu);
|
---|
6485 | pVmxTransient->fUpdatedTscOffsettingAndPreemptTimer = true;
|
---|
6486 | }
|
---|
6487 |
|
---|
6488 | /* Record statistics of how often we use TSC offsetting as opposed to intercepting RDTSC/P. */
|
---|
6489 | bool const fIsRdtscIntercepted = RT_BOOL(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_RDTSC_EXIT);
|
---|
6490 | if (!fIsRdtscIntercepted)
|
---|
6491 | STAM_COUNTER_INC(&pVCpu->hm.s.StatTscOffset);
|
---|
6492 | else
|
---|
6493 | STAM_COUNTER_INC(&pVCpu->hm.s.StatTscIntercept);
|
---|
6494 |
|
---|
6495 | ASMAtomicUoWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true); /* Used for TLB flushing, set this across the world switch. */
|
---|
6496 | hmR0VmxFlushTaggedTlb(pHostCpu, pVCpu, pVmcsInfo); /* Invalidate the appropriate guest entries from the TLB. */
|
---|
6497 | Assert(idCurrentCpu == pVCpu->hmr0.s.idLastCpu);
|
---|
6498 | pVCpu->hm.s.vmx.LastError.idCurrentCpu = idCurrentCpu; /* Record the error reporting info. with the current host CPU. */
|
---|
6499 | pVmcsInfo->idHostCpuState = idCurrentCpu; /* Record the CPU for which the host-state has been exported. */
|
---|
6500 | pVmcsInfo->idHostCpuExec = idCurrentCpu; /* Record the CPU on which we shall execute. */
|
---|
6501 |
|
---|
6502 | STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatEntry, &pVCpu->hm.s.StatInGC, x);
|
---|
6503 |
|
---|
6504 | TMNotifyStartOfExecution(pVM, pVCpu); /* Notify TM to resume its clocks when TSC is tied to execution,
|
---|
6505 | as we're about to start executing the guest. */
|
---|
6506 |
|
---|
6507 | /*
|
---|
6508 | * Load the guest TSC_AUX MSR when we are not intercepting RDTSCP.
|
---|
6509 | *
|
---|
6510 | * This is done this late as updating the TSC offsetting/preemption timer above
|
---|
6511 | * figures out if we can skip intercepting RDTSCP by calculating the number of
|
---|
6512 | * host CPU ticks till the next virtual sync deadline (for the dynamic case).
|
---|
6513 | */
|
---|
6514 | if ( (pVmcsInfo->u32ProcCtls2 & VMX_PROC_CTLS2_RDTSCP)
|
---|
6515 | && !fIsRdtscIntercepted)
|
---|
6516 | {
|
---|
6517 | vmxHCImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_TSC_AUX);
|
---|
6518 |
|
---|
6519 | /* NB: Because we call hmR0VmxAddAutoLoadStoreMsr with fUpdateHostMsr=true,
|
---|
6520 | it's safe even after hmR0VmxUpdateAutoLoadHostMsrs has already been done. */
|
---|
6521 | int rc = hmR0VmxAddAutoLoadStoreMsr(pVCpu, pVmxTransient, MSR_K8_TSC_AUX, CPUMGetGuestTscAux(pVCpu),
|
---|
6522 | true /* fSetReadWrite */, true /* fUpdateHostMsr */);
|
---|
6523 | AssertRC(rc);
|
---|
6524 | Assert(!pVmxTransient->fRemoveTscAuxMsr);
|
---|
6525 | pVmxTransient->fRemoveTscAuxMsr = true;
|
---|
6526 | }
|
---|
6527 |
|
---|
6528 | #ifdef VBOX_STRICT
|
---|
6529 | Assert(pVCpu->hmr0.s.vmx.fUpdatedHostAutoMsrs);
|
---|
6530 | hmR0VmxCheckAutoLoadStoreMsrs(pVCpu, pVmcsInfo, pVmxTransient->fIsNestedGuest);
|
---|
6531 | hmR0VmxCheckHostEferMsr(pVmcsInfo);
|
---|
6532 | AssertRC(vmxHCCheckCachedVmcsCtls(pVCpu, pVmcsInfo, pVmxTransient->fIsNestedGuest));
|
---|
6533 | #endif
|
---|
6534 |
|
---|
6535 | #ifdef HMVMX_ALWAYS_CHECK_GUEST_STATE
|
---|
6536 | /** @todo r=ramshankar: We can now probably use iemVmxVmentryCheckGuestState here.
|
---|
6537 | * Add a PVMXMSRS parameter to it, so that IEM can look at the host MSRs,
|
---|
6538 | * see @bugref{9180#c54}. */
|
---|
6539 | uint32_t const uInvalidReason = hmR0VmxCheckGuestState(pVCpu, pVmcsInfo);
|
---|
6540 | if (uInvalidReason != VMX_IGS_REASON_NOT_FOUND)
|
---|
6541 | Log4(("hmR0VmxCheckGuestState returned %#x\n", uInvalidReason));
|
---|
6542 | #endif
|
---|
6543 | }
|
---|
6544 |
|
---|
6545 |
|
---|
6546 | /**
|
---|
6547 | * First C routine invoked after running guest code using hardware-assisted VMX.
|
---|
6548 | *
|
---|
6549 | * @param pVCpu The cross context virtual CPU structure.
|
---|
6550 | * @param pVmxTransient The VMX-transient structure.
|
---|
6551 | * @param rcVMRun Return code of VMLAUNCH/VMRESUME.
|
---|
6552 | *
|
---|
6553 | * @remarks Called with interrupts disabled, and returns with interrupts enabled!
|
---|
6554 | *
|
---|
6555 | * @remarks No-long-jump zone!!! This function will however re-enable longjmps
|
---|
6556 | * unconditionally when it is safe to do so.
|
---|
6557 | */
|
---|
6558 | static void hmR0VmxPostRunGuest(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient, int rcVMRun)
|
---|
6559 | {
|
---|
6560 | ASMAtomicUoWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, false); /* See HMInvalidatePageOnAllVCpus(): used for TLB flushing. */
|
---|
6561 | ASMAtomicIncU32(&pVCpu->hmr0.s.cWorldSwitchExits); /* Initialized in vmR3CreateUVM(): used for EMT poking. */
|
---|
6562 | pVCpu->hm.s.fCtxChanged = 0; /* Exits/longjmps to ring-3 requires saving the guest state. */
|
---|
6563 | pVmxTransient->fVmcsFieldsRead = 0; /* Transient fields need to be read from the VMCS. */
|
---|
6564 | pVmxTransient->fVectoringPF = false; /* Vectoring page-fault needs to be determined later. */
|
---|
6565 | pVmxTransient->fVectoringDoublePF = false; /* Vectoring double page-fault needs to be determined later. */
|
---|
6566 |
|
---|
6567 | PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
|
---|
6568 | if (!(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_RDTSC_EXIT))
|
---|
6569 | {
|
---|
6570 | uint64_t uGstTsc;
|
---|
6571 | if (!pVmxTransient->fIsNestedGuest)
|
---|
6572 | uGstTsc = pVCpu->hmr0.s.uTscExit + pVmcsInfo->u64TscOffset;
|
---|
6573 | else
|
---|
6574 | {
|
---|
6575 | uint64_t const uNstGstTsc = pVCpu->hmr0.s.uTscExit + pVmcsInfo->u64TscOffset;
|
---|
6576 | uGstTsc = CPUMRemoveNestedGuestTscOffset(pVCpu, uNstGstTsc);
|
---|
6577 | }
|
---|
6578 | TMCpuTickSetLastSeen(pVCpu, uGstTsc); /* Update TM with the guest TSC. */
|
---|
6579 | }
|
---|
6580 |
|
---|
6581 | STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatInGC, &pVCpu->hm.s.StatPreExit, x);
|
---|
6582 | TMNotifyEndOfExecution(pVCpu->CTX_SUFF(pVM), pVCpu, pVCpu->hmr0.s.uTscExit); /* Notify TM that the guest is no longer running. */
|
---|
6583 | VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
|
---|
6584 |
|
---|
6585 | pVCpu->hmr0.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_REQUIRED; /* Some host state messed up by VMX needs restoring. */
|
---|
6586 | pVmcsInfo->fVmcsState |= VMX_V_VMCS_LAUNCH_STATE_LAUNCHED; /* Use VMRESUME instead of VMLAUNCH in the next run. */
|
---|
6587 | #ifdef VBOX_STRICT
|
---|
6588 | hmR0VmxCheckHostEferMsr(pVmcsInfo); /* Verify that the host EFER MSR wasn't modified. */
|
---|
6589 | #endif
|
---|
6590 | Assert(!ASMIntAreEnabled());
|
---|
6591 | ASMSetFlags(pVmxTransient->fEFlags); /* Enable interrupts. */
|
---|
6592 | Assert(!VMMRZCallRing3IsEnabled(pVCpu));
|
---|
6593 |
|
---|
6594 | #ifdef HMVMX_ALWAYS_CLEAN_TRANSIENT
|
---|
6595 | /*
|
---|
6596 | * Clean all the VMCS fields in the transient structure before reading
|
---|
6597 | * anything from the VMCS.
|
---|
6598 | */
|
---|
6599 | pVmxTransient->uExitReason = 0;
|
---|
6600 | pVmxTransient->uExitIntErrorCode = 0;
|
---|
6601 | pVmxTransient->uExitQual = 0;
|
---|
6602 | pVmxTransient->uGuestLinearAddr = 0;
|
---|
6603 | pVmxTransient->uExitIntInfo = 0;
|
---|
6604 | pVmxTransient->cbExitInstr = 0;
|
---|
6605 | pVmxTransient->ExitInstrInfo.u = 0;
|
---|
6606 | pVmxTransient->uEntryIntInfo = 0;
|
---|
6607 | pVmxTransient->uEntryXcptErrorCode = 0;
|
---|
6608 | pVmxTransient->cbEntryInstr = 0;
|
---|
6609 | pVmxTransient->uIdtVectoringInfo = 0;
|
---|
6610 | pVmxTransient->uIdtVectoringErrorCode = 0;
|
---|
6611 | #endif
|
---|
6612 |
|
---|
6613 | /*
|
---|
6614 | * Save the basic VM-exit reason and check if the VM-entry failed.
|
---|
6615 | * See Intel spec. 24.9.1 "Basic VM-exit Information".
|
---|
6616 | */
|
---|
6617 | uint32_t uExitReason;
|
---|
6618 | int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_REASON, &uExitReason);
|
---|
6619 | AssertRC(rc);
|
---|
6620 | pVmxTransient->uExitReason = VMX_EXIT_REASON_BASIC(uExitReason);
|
---|
6621 | pVmxTransient->fVMEntryFailed = VMX_EXIT_REASON_HAS_ENTRY_FAILED(uExitReason);
|
---|
6622 |
|
---|
6623 | /*
|
---|
6624 | * Log the VM-exit before logging anything else as otherwise it might be a
|
---|
6625 | * tad confusing what happens before and after the world-switch.
|
---|
6626 | */
|
---|
6627 | HMVMX_LOG_EXIT(pVCpu, uExitReason);
|
---|
6628 |
|
---|
6629 | /*
|
---|
6630 | * Remove the TSC_AUX MSR from the auto-load/store MSR area and reset any MSR
|
---|
6631 | * bitmap permissions, if it was added before VM-entry.
|
---|
6632 | */
|
---|
6633 | if (pVmxTransient->fRemoveTscAuxMsr)
|
---|
6634 | {
|
---|
6635 | hmR0VmxRemoveAutoLoadStoreMsr(pVCpu, pVmxTransient, MSR_K8_TSC_AUX);
|
---|
6636 | pVmxTransient->fRemoveTscAuxMsr = false;
|
---|
6637 | }
|
---|
6638 |
|
---|
6639 | /*
|
---|
6640 | * Check if VMLAUNCH/VMRESUME succeeded.
|
---|
6641 | * If this failed, we cause a guru meditation and cease further execution.
|
---|
6642 | */
|
---|
6643 | if (RT_LIKELY(rcVMRun == VINF_SUCCESS))
|
---|
6644 | {
|
---|
6645 | /*
|
---|
6646 | * Update the VM-exit history array here even if the VM-entry failed due to:
|
---|
6647 | * - Invalid guest state.
|
---|
6648 | * - MSR loading.
|
---|
6649 | * - Machine-check event.
|
---|
6650 | *
|
---|
6651 | * In any of the above cases we will still have a "valid" VM-exit reason
|
---|
6652 | * despite @a fVMEntryFailed being false.
|
---|
6653 | *
|
---|
6654 | * See Intel spec. 26.7 "VM-Entry failures during or after loading guest state".
|
---|
6655 | *
|
---|
6656 | * Note! We don't have CS or RIP at this point. Will probably address that later
|
---|
6657 | * by amending the history entry added here.
|
---|
6658 | */
|
---|
6659 | EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_VMX, pVmxTransient->uExitReason & EMEXIT_F_TYPE_MASK),
|
---|
6660 | UINT64_MAX, pVCpu->hmr0.s.uTscExit);
|
---|
6661 |
|
---|
6662 | if (RT_LIKELY(!pVmxTransient->fVMEntryFailed))
|
---|
6663 | {
|
---|
6664 | VMMRZCallRing3Enable(pVCpu);
|
---|
6665 | Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
|
---|
6666 |
|
---|
6667 | #ifdef HMVMX_ALWAYS_SAVE_RO_GUEST_STATE
|
---|
6668 | hmR0VmxReadAllRoFieldsVmcs(pVmxTransient);
|
---|
6669 | #endif
|
---|
6670 |
|
---|
6671 | /*
|
---|
6672 | * Always import the guest-interruptibility state as we need it while evaluating
|
---|
6673 | * injecting events on re-entry.
|
---|
6674 | *
|
---|
6675 | * We don't import CR0 (when unrestricted guest execution is unavailable) despite
|
---|
6676 | * checking for real-mode while exporting the state because all bits that cause
|
---|
6677 | * mode changes wrt CR0 are intercepted.
|
---|
6678 | */
|
---|
6679 | uint64_t const fImportMask = CPUMCTX_EXTRN_INHIBIT_INT
|
---|
6680 | | CPUMCTX_EXTRN_INHIBIT_NMI
|
---|
6681 | #if defined(HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE) || defined(HMVMX_ALWAYS_SAVE_FULL_GUEST_STATE)
|
---|
6682 | | HMVMX_CPUMCTX_EXTRN_ALL
|
---|
6683 | #elif defined(HMVMX_ALWAYS_SAVE_GUEST_RFLAGS)
|
---|
6684 | | CPUMCTX_EXTRN_RFLAGS
|
---|
6685 | #endif
|
---|
6686 | ;
|
---|
6687 | rc = vmxHCImportGuestState(pVCpu, pVmcsInfo, fImportMask);
|
---|
6688 | AssertRC(rc);
|
---|
6689 |
|
---|
6690 | /*
|
---|
6691 | * Sync the TPR shadow with our APIC state.
|
---|
6692 | */
|
---|
6693 | if ( !pVmxTransient->fIsNestedGuest
|
---|
6694 | && (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW))
|
---|
6695 | {
|
---|
6696 | Assert(pVmcsInfo->pbVirtApic);
|
---|
6697 | if (pVmxTransient->u8GuestTpr != pVmcsInfo->pbVirtApic[XAPIC_OFF_TPR])
|
---|
6698 | {
|
---|
6699 | rc = APICSetTpr(pVCpu, pVmcsInfo->pbVirtApic[XAPIC_OFF_TPR]);
|
---|
6700 | AssertRC(rc);
|
---|
6701 | ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
|
---|
6702 | }
|
---|
6703 | }
|
---|
6704 |
|
---|
6705 | Assert(VMMRZCallRing3IsEnabled(pVCpu));
|
---|
6706 | Assert( pVmxTransient->fWasGuestDebugStateActive == false
|
---|
6707 | || pVmxTransient->fWasHyperDebugStateActive == false);
|
---|
6708 | return;
|
---|
6709 | }
|
---|
6710 | }
|
---|
6711 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
6712 | else if (pVmxTransient->fIsNestedGuest)
|
---|
6713 | AssertMsgFailed(("VMLAUNCH/VMRESUME failed but shouldn't happen when VMLAUNCH/VMRESUME was emulated in IEM!\n"));
|
---|
6714 | #endif
|
---|
6715 | else
|
---|
6716 | Log4Func(("VM-entry failure: rcVMRun=%Rrc fVMEntryFailed=%RTbool\n", rcVMRun, pVmxTransient->fVMEntryFailed));
|
---|
6717 |
|
---|
6718 | VMMRZCallRing3Enable(pVCpu);
|
---|
6719 | }
|
---|
6720 |
|
---|
6721 |
|
---|
6722 | /**
|
---|
6723 | * Runs the guest code using hardware-assisted VMX the normal way.
|
---|
6724 | *
|
---|
6725 | * @returns VBox status code.
|
---|
6726 | * @param pVCpu The cross context virtual CPU structure.
|
---|
6727 | * @param pcLoops Pointer to the number of executed loops.
|
---|
6728 | */
|
---|
6729 | static VBOXSTRICTRC hmR0VmxRunGuestCodeNormal(PVMCPUCC pVCpu, uint32_t *pcLoops)
|
---|
6730 | {
|
---|
6731 | uint32_t const cMaxResumeLoops = pVCpu->CTX_SUFF(pVM)->hmr0.s.cMaxResumeLoops;
|
---|
6732 | Assert(pcLoops);
|
---|
6733 | Assert(*pcLoops <= cMaxResumeLoops);
|
---|
6734 | Assert(!CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx));
|
---|
6735 |
|
---|
6736 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
6737 | /*
|
---|
6738 | * Switch to the guest VMCS as we may have transitioned from executing the nested-guest
|
---|
6739 | * without leaving ring-0. Otherwise, if we came from ring-3 we would have loaded the
|
---|
6740 | * guest VMCS while entering the VMX ring-0 session.
|
---|
6741 | */
|
---|
6742 | if (pVCpu->hmr0.s.vmx.fSwitchedToNstGstVmcs)
|
---|
6743 | {
|
---|
6744 | int rc = vmxHCSwitchToGstOrNstGstVmcs(pVCpu, false /* fSwitchToNstGstVmcs */);
|
---|
6745 | if (RT_SUCCESS(rc))
|
---|
6746 | { /* likely */ }
|
---|
6747 | else
|
---|
6748 | {
|
---|
6749 | LogRelFunc(("Failed to switch to the guest VMCS. rc=%Rrc\n", rc));
|
---|
6750 | return rc;
|
---|
6751 | }
|
---|
6752 | }
|
---|
6753 | #endif
|
---|
6754 |
|
---|
6755 | VMXTRANSIENT VmxTransient;
|
---|
6756 | RT_ZERO(VmxTransient);
|
---|
6757 | VmxTransient.pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
|
---|
6758 |
|
---|
6759 | /* Paranoia. */
|
---|
6760 | Assert(VmxTransient.pVmcsInfo == &pVCpu->hmr0.s.vmx.VmcsInfo);
|
---|
6761 |
|
---|
6762 | VBOXSTRICTRC rcStrict = VERR_INTERNAL_ERROR_5;
|
---|
6763 | for (;;)
|
---|
6764 | {
|
---|
6765 | Assert(!HMR0SuspendPending());
|
---|
6766 | HMVMX_ASSERT_CPU_SAFE(pVCpu);
|
---|
6767 | STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
|
---|
6768 |
|
---|
6769 | /*
|
---|
6770 | * Preparatory work for running nested-guest code, this may force us to
|
---|
6771 | * return to ring-3.
|
---|
6772 | *
|
---|
6773 | * Warning! This bugger disables interrupts on VINF_SUCCESS!
|
---|
6774 | */
|
---|
6775 | rcStrict = hmR0VmxPreRunGuest(pVCpu, &VmxTransient, false /* fStepping */);
|
---|
6776 | if (rcStrict != VINF_SUCCESS)
|
---|
6777 | break;
|
---|
6778 |
|
---|
6779 | /* Interrupts are disabled at this point! */
|
---|
6780 | hmR0VmxPreRunGuestCommitted(pVCpu, &VmxTransient);
|
---|
6781 | int rcRun = hmR0VmxRunGuest(pVCpu, &VmxTransient);
|
---|
6782 | hmR0VmxPostRunGuest(pVCpu, &VmxTransient, rcRun);
|
---|
6783 | /* Interrupts are re-enabled at this point! */
|
---|
6784 |
|
---|
6785 | /*
|
---|
6786 | * Check for errors with running the VM (VMLAUNCH/VMRESUME).
|
---|
6787 | */
|
---|
6788 | if (RT_SUCCESS(rcRun))
|
---|
6789 | { /* very likely */ }
|
---|
6790 | else
|
---|
6791 | {
|
---|
6792 | STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatPreExit, x);
|
---|
6793 | hmR0VmxReportWorldSwitchError(pVCpu, rcRun, &VmxTransient);
|
---|
6794 | return rcRun;
|
---|
6795 | }
|
---|
6796 |
|
---|
6797 | /*
|
---|
6798 | * Profile the VM-exit.
|
---|
6799 | */
|
---|
6800 | AssertMsg(VmxTransient.uExitReason <= VMX_EXIT_MAX, ("%#x\n", VmxTransient.uExitReason));
|
---|
6801 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll);
|
---|
6802 | STAM_COUNTER_INC(&pVCpu->hm.s.aStatExitReason[VmxTransient.uExitReason & MASK_EXITREASON_STAT]);
|
---|
6803 | STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatPreExit, &pVCpu->hm.s.StatExitHandling, x);
|
---|
6804 | HMVMX_START_EXIT_DISPATCH_PROF();
|
---|
6805 |
|
---|
6806 | VBOXVMM_R0_HMVMX_VMEXIT_NOCTX(pVCpu, &pVCpu->cpum.GstCtx, VmxTransient.uExitReason);
|
---|
6807 |
|
---|
6808 | /*
|
---|
6809 | * Handle the VM-exit.
|
---|
6810 | */
|
---|
6811 | #ifdef HMVMX_USE_FUNCTION_TABLE
|
---|
6812 | rcStrict = g_aVMExitHandlers[VmxTransient.uExitReason].pfn(pVCpu, &VmxTransient);
|
---|
6813 | #else
|
---|
6814 | rcStrict = hmR0VmxHandleExit(pVCpu, &VmxTransient);
|
---|
6815 | #endif
|
---|
6816 | STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitHandling, x);
|
---|
6817 | if (rcStrict == VINF_SUCCESS)
|
---|
6818 | {
|
---|
6819 | if (++(*pcLoops) <= cMaxResumeLoops)
|
---|
6820 | continue;
|
---|
6821 | STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
|
---|
6822 | rcStrict = VINF_EM_RAW_INTERRUPT;
|
---|
6823 | }
|
---|
6824 | break;
|
---|
6825 | }
|
---|
6826 |
|
---|
6827 | STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
|
---|
6828 | return rcStrict;
|
---|
6829 | }
|
---|
6830 |
|
---|
6831 |
|
---|
6832 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
6833 | /**
|
---|
6834 | * Runs the nested-guest code using hardware-assisted VMX.
|
---|
6835 | *
|
---|
6836 | * @returns VBox status code.
|
---|
6837 | * @param pVCpu The cross context virtual CPU structure.
|
---|
6838 | * @param pcLoops Pointer to the number of executed loops.
|
---|
6839 | *
|
---|
6840 | * @sa hmR0VmxRunGuestCodeNormal.
|
---|
6841 | */
|
---|
6842 | static VBOXSTRICTRC hmR0VmxRunGuestCodeNested(PVMCPUCC pVCpu, uint32_t *pcLoops)
|
---|
6843 | {
|
---|
6844 | uint32_t const cMaxResumeLoops = pVCpu->CTX_SUFF(pVM)->hmr0.s.cMaxResumeLoops;
|
---|
6845 | Assert(pcLoops);
|
---|
6846 | Assert(*pcLoops <= cMaxResumeLoops);
|
---|
6847 | Assert(CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx));
|
---|
6848 |
|
---|
6849 | /*
|
---|
6850 | * Switch to the nested-guest VMCS as we may have transitioned from executing the
|
---|
6851 | * guest without leaving ring-0. Otherwise, if we came from ring-3 we would have
|
---|
6852 | * loaded the nested-guest VMCS while entering the VMX ring-0 session.
|
---|
6853 | */
|
---|
6854 | if (!pVCpu->hmr0.s.vmx.fSwitchedToNstGstVmcs)
|
---|
6855 | {
|
---|
6856 | int rc = vmxHCSwitchToGstOrNstGstVmcs(pVCpu, true /* fSwitchToNstGstVmcs */);
|
---|
6857 | if (RT_SUCCESS(rc))
|
---|
6858 | { /* likely */ }
|
---|
6859 | else
|
---|
6860 | {
|
---|
6861 | LogRelFunc(("Failed to switch to the nested-guest VMCS. rc=%Rrc\n", rc));
|
---|
6862 | return rc;
|
---|
6863 | }
|
---|
6864 | }
|
---|
6865 |
|
---|
6866 | VMXTRANSIENT VmxTransient;
|
---|
6867 | RT_ZERO(VmxTransient);
|
---|
6868 | VmxTransient.pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
|
---|
6869 | VmxTransient.fIsNestedGuest = true;
|
---|
6870 |
|
---|
6871 | /* Paranoia. */
|
---|
6872 | Assert(VmxTransient.pVmcsInfo == &pVCpu->hmr0.s.vmx.VmcsInfoNstGst);
|
---|
6873 |
|
---|
6874 | /* Setup pointer so PGM/IEM can query VM-exit auxiliary info. on demand in ring-0. */
|
---|
6875 | pVCpu->hmr0.s.vmx.pVmxTransient = &VmxTransient;
|
---|
6876 |
|
---|
6877 | VBOXSTRICTRC rcStrict = VERR_INTERNAL_ERROR_5;
|
---|
6878 | for (;;)
|
---|
6879 | {
|
---|
6880 | Assert(!HMR0SuspendPending());
|
---|
6881 | HMVMX_ASSERT_CPU_SAFE(pVCpu);
|
---|
6882 | STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
|
---|
6883 |
|
---|
6884 | /*
|
---|
6885 | * Preparatory work for running guest code, this may force us to
|
---|
6886 | * return to ring-3.
|
---|
6887 | *
|
---|
6888 | * Warning! This bugger disables interrupts on VINF_SUCCESS!
|
---|
6889 | */
|
---|
6890 | rcStrict = hmR0VmxPreRunGuest(pVCpu, &VmxTransient, false /* fStepping */);
|
---|
6891 | if (rcStrict != VINF_SUCCESS)
|
---|
6892 | break;
|
---|
6893 |
|
---|
6894 | /* Interrupts are disabled at this point! */
|
---|
6895 | hmR0VmxPreRunGuestCommitted(pVCpu, &VmxTransient);
|
---|
6896 | int rcRun = hmR0VmxRunGuest(pVCpu, &VmxTransient);
|
---|
6897 | hmR0VmxPostRunGuest(pVCpu, &VmxTransient, rcRun);
|
---|
6898 | /* Interrupts are re-enabled at this point! */
|
---|
6899 |
|
---|
6900 | /*
|
---|
6901 | * Check for errors with running the VM (VMLAUNCH/VMRESUME).
|
---|
6902 | */
|
---|
6903 | if (RT_SUCCESS(rcRun))
|
---|
6904 | { /* very likely */ }
|
---|
6905 | else
|
---|
6906 | {
|
---|
6907 | STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatPreExit, x);
|
---|
6908 | hmR0VmxReportWorldSwitchError(pVCpu, rcRun, &VmxTransient);
|
---|
6909 | rcStrict = rcRun;
|
---|
6910 | break;
|
---|
6911 | }
|
---|
6912 |
|
---|
6913 | /*
|
---|
6914 | * Undo temporary disabling of the APIC-access page monitoring we did in hmR0VmxMergeVmcsNested.
|
---|
6915 | * This is needed for NestedTrap0eHandler (and IEM) to cause nested-guest APIC-access VM-exits.
|
---|
6916 | */
|
---|
6917 | if (VmxTransient.pVmcsInfo->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
|
---|
6918 | {
|
---|
6919 | PVMXVVMCS const pVmcsNstGst = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
|
---|
6920 | RTGCPHYS const GCPhysApicAccess = pVmcsNstGst->u64AddrApicAccess.u;
|
---|
6921 | PGMHandlerPhysicalReset(pVCpu->CTX_SUFF(pVM), GCPhysApicAccess);
|
---|
6922 | }
|
---|
6923 |
|
---|
6924 | /*
|
---|
6925 | * Profile the VM-exit.
|
---|
6926 | */
|
---|
6927 | AssertMsg(VmxTransient.uExitReason <= VMX_EXIT_MAX, ("%#x\n", VmxTransient.uExitReason));
|
---|
6928 | STAM_COUNTER_INC(&pVCpu->hm.s.StatNestedExitAll);
|
---|
6929 | STAM_COUNTER_INC(&pVCpu->hm.s.aStatNestedExitReason[VmxTransient.uExitReason & MASK_EXITREASON_STAT]);
|
---|
6930 | STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatPreExit, &pVCpu->hm.s.StatExitHandling, x);
|
---|
6931 | HMVMX_START_EXIT_DISPATCH_PROF();
|
---|
6932 |
|
---|
6933 | VBOXVMM_R0_HMVMX_VMEXIT_NOCTX(pVCpu, &pVCpu->cpum.GstCtx, VmxTransient.uExitReason);
|
---|
6934 |
|
---|
6935 | /*
|
---|
6936 | * Handle the VM-exit.
|
---|
6937 | */
|
---|
6938 | rcStrict = vmxHCHandleExitNested(pVCpu, &VmxTransient);
|
---|
6939 | STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitHandling, x);
|
---|
6940 | if (rcStrict == VINF_SUCCESS)
|
---|
6941 | {
|
---|
6942 | if (!CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx))
|
---|
6943 | {
|
---|
6944 | STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchNstGstVmexit);
|
---|
6945 | rcStrict = VINF_VMX_VMEXIT;
|
---|
6946 | }
|
---|
6947 | else
|
---|
6948 | {
|
---|
6949 | if (++(*pcLoops) <= cMaxResumeLoops)
|
---|
6950 | continue;
|
---|
6951 | STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
|
---|
6952 | rcStrict = VINF_EM_RAW_INTERRUPT;
|
---|
6953 | }
|
---|
6954 | }
|
---|
6955 | else
|
---|
6956 | Assert(rcStrict != VINF_VMX_VMEXIT);
|
---|
6957 | break;
|
---|
6958 | }
|
---|
6959 |
|
---|
6960 | /* Ensure VM-exit auxiliary info. is no longer available. */
|
---|
6961 | pVCpu->hmr0.s.vmx.pVmxTransient = NULL;
|
---|
6962 |
|
---|
6963 | STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
|
---|
6964 | return rcStrict;
|
---|
6965 | }
|
---|
6966 | #endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
|
---|
6967 |
|
---|
6968 |
|
---|
6969 | /** @name Execution loop for single stepping, DBGF events and expensive Dtrace
|
---|
6970 | * probes.
|
---|
6971 | *
|
---|
6972 | * The following few functions and associated structure contains the bloat
|
---|
6973 | * necessary for providing detailed debug events and dtrace probes as well as
|
---|
6974 | * reliable host side single stepping. This works on the principle of
|
---|
6975 | * "subclassing" the normal execution loop and workers. We replace the loop
|
---|
6976 | * method completely and override selected helpers to add necessary adjustments
|
---|
6977 | * to their core operation.
|
---|
6978 | *
|
---|
6979 | * The goal is to keep the "parent" code lean and mean, so as not to sacrifice
|
---|
6980 | * any performance for debug and analysis features.
|
---|
6981 | *
|
---|
6982 | * @{
|
---|
6983 | */
|
---|
6984 |
|
---|
6985 | /**
|
---|
6986 | * Single steps guest code using hardware-assisted VMX.
|
---|
6987 | *
|
---|
6988 | * This is -not- the same as the guest single-stepping itself (say using EFLAGS.TF)
|
---|
6989 | * but single-stepping through the hypervisor debugger.
|
---|
6990 | *
|
---|
6991 | * @returns Strict VBox status code (i.e. informational status codes too).
|
---|
6992 | * @param pVCpu The cross context virtual CPU structure.
|
---|
6993 | * @param pcLoops Pointer to the number of executed loops.
|
---|
6994 | *
|
---|
6995 | * @note Mostly the same as hmR0VmxRunGuestCodeNormal().
|
---|
6996 | */
|
---|
6997 | static VBOXSTRICTRC hmR0VmxRunGuestCodeDebug(PVMCPUCC pVCpu, uint32_t *pcLoops)
|
---|
6998 | {
|
---|
6999 | uint32_t const cMaxResumeLoops = pVCpu->CTX_SUFF(pVM)->hmr0.s.cMaxResumeLoops;
|
---|
7000 | Assert(pcLoops);
|
---|
7001 | Assert(*pcLoops <= cMaxResumeLoops);
|
---|
7002 |
|
---|
7003 | VMXTRANSIENT VmxTransient;
|
---|
7004 | RT_ZERO(VmxTransient);
|
---|
7005 | VmxTransient.pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
|
---|
7006 |
|
---|
7007 | /* Set HMCPU indicators. */
|
---|
7008 | bool const fSavedSingleInstruction = pVCpu->hm.s.fSingleInstruction;
|
---|
7009 | pVCpu->hm.s.fSingleInstruction = pVCpu->hm.s.fSingleInstruction || DBGFIsStepping(pVCpu);
|
---|
7010 | pVCpu->hmr0.s.fDebugWantRdTscExit = false;
|
---|
7011 | pVCpu->hmr0.s.fUsingDebugLoop = true;
|
---|
7012 |
|
---|
7013 | /* State we keep to help modify and later restore the VMCS fields we alter, and for detecting steps. */
|
---|
7014 | VMXRUNDBGSTATE DbgState;
|
---|
7015 | vmxHCRunDebugStateInit(pVCpu, &VmxTransient, &DbgState);
|
---|
7016 | vmxHCPreRunGuestDebugStateUpdate(pVCpu, &VmxTransient, &DbgState);
|
---|
7017 |
|
---|
7018 | /*
|
---|
7019 | * The loop.
|
---|
7020 | */
|
---|
7021 | VBOXSTRICTRC rcStrict = VERR_INTERNAL_ERROR_5;
|
---|
7022 | for (;;)
|
---|
7023 | {
|
---|
7024 | Assert(!HMR0SuspendPending());
|
---|
7025 | HMVMX_ASSERT_CPU_SAFE(pVCpu);
|
---|
7026 | STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
|
---|
7027 | bool fStepping = pVCpu->hm.s.fSingleInstruction;
|
---|
7028 |
|
---|
7029 | /* Set up VM-execution controls the next two can respond to. */
|
---|
7030 | vmxHCPreRunGuestDebugStateApply(pVCpu, &VmxTransient, &DbgState);
|
---|
7031 |
|
---|
7032 | /*
|
---|
7033 | * Preparatory work for running guest code, this may force us to
|
---|
7034 | * return to ring-3.
|
---|
7035 | *
|
---|
7036 | * Warning! This bugger disables interrupts on VINF_SUCCESS!
|
---|
7037 | */
|
---|
7038 | rcStrict = hmR0VmxPreRunGuest(pVCpu, &VmxTransient, fStepping);
|
---|
7039 | if (rcStrict != VINF_SUCCESS)
|
---|
7040 | break;
|
---|
7041 |
|
---|
7042 | /* Interrupts are disabled at this point! */
|
---|
7043 | hmR0VmxPreRunGuestCommitted(pVCpu, &VmxTransient);
|
---|
7044 |
|
---|
7045 | /* Override any obnoxious code in the above two calls. */
|
---|
7046 | vmxHCPreRunGuestDebugStateApply(pVCpu, &VmxTransient, &DbgState);
|
---|
7047 |
|
---|
7048 | /*
|
---|
7049 | * Finally execute the guest.
|
---|
7050 | */
|
---|
7051 | int rcRun = hmR0VmxRunGuest(pVCpu, &VmxTransient);
|
---|
7052 |
|
---|
7053 | hmR0VmxPostRunGuest(pVCpu, &VmxTransient, rcRun);
|
---|
7054 | /* Interrupts are re-enabled at this point! */
|
---|
7055 |
|
---|
7056 | /* Check for errors with running the VM (VMLAUNCH/VMRESUME). */
|
---|
7057 | if (RT_SUCCESS(rcRun))
|
---|
7058 | { /* very likely */ }
|
---|
7059 | else
|
---|
7060 | {
|
---|
7061 | STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatPreExit, x);
|
---|
7062 | hmR0VmxReportWorldSwitchError(pVCpu, rcRun, &VmxTransient);
|
---|
7063 | return rcRun;
|
---|
7064 | }
|
---|
7065 |
|
---|
7066 | /* Profile the VM-exit. */
|
---|
7067 | AssertMsg(VmxTransient.uExitReason <= VMX_EXIT_MAX, ("%#x\n", VmxTransient.uExitReason));
|
---|
7068 | STAM_COUNTER_INC(&pVCpu->hm.s.StatDebugExitAll);
|
---|
7069 | STAM_COUNTER_INC(&pVCpu->hm.s.aStatExitReason[VmxTransient.uExitReason & MASK_EXITREASON_STAT]);
|
---|
7070 | STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatPreExit, &pVCpu->hm.s.StatExitHandling, x);
|
---|
7071 | HMVMX_START_EXIT_DISPATCH_PROF();
|
---|
7072 |
|
---|
7073 | VBOXVMM_R0_HMVMX_VMEXIT_NOCTX(pVCpu, &pVCpu->cpum.GstCtx, VmxTransient.uExitReason);
|
---|
7074 |
|
---|
7075 | /*
|
---|
7076 | * Handle the VM-exit - we quit earlier on certain VM-exits, see hmR0VmxHandleExitDebug().
|
---|
7077 | */
|
---|
7078 | rcStrict = vmxHCRunDebugHandleExit(pVCpu, &VmxTransient, &DbgState);
|
---|
7079 | STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitHandling, x);
|
---|
7080 | if (rcStrict != VINF_SUCCESS)
|
---|
7081 | break;
|
---|
7082 | if (++(*pcLoops) > cMaxResumeLoops)
|
---|
7083 | {
|
---|
7084 | STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
|
---|
7085 | rcStrict = VINF_EM_RAW_INTERRUPT;
|
---|
7086 | break;
|
---|
7087 | }
|
---|
7088 |
|
---|
7089 | /*
|
---|
7090 | * Stepping: Did the RIP change, if so, consider it a single step.
|
---|
7091 | * Otherwise, make sure one of the TFs gets set.
|
---|
7092 | */
|
---|
7093 | if (fStepping)
|
---|
7094 | {
|
---|
7095 | int rc = hmR0VmxImportGuestState(pVCpu, VmxTransient.pVmcsInfo, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
|
---|
7096 | AssertRC(rc);
|
---|
7097 | if ( pVCpu->cpum.GstCtx.rip != DbgState.uRipStart
|
---|
7098 | || pVCpu->cpum.GstCtx.cs.Sel != DbgState.uCsStart)
|
---|
7099 | {
|
---|
7100 | rcStrict = VINF_EM_DBG_STEPPED;
|
---|
7101 | break;
|
---|
7102 | }
|
---|
7103 | ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_DR7);
|
---|
7104 | }
|
---|
7105 |
|
---|
7106 | /*
|
---|
7107 | * Update when dtrace settings changes (DBGF kicks us, so no need to check).
|
---|
7108 | */
|
---|
7109 | if (VBOXVMM_GET_SETTINGS_SEQ_NO() != DbgState.uDtraceSettingsSeqNo)
|
---|
7110 | vmxHCPreRunGuestDebugStateUpdate(pVCpu, &VmxTransient, &DbgState);
|
---|
7111 |
|
---|
7112 | /* Restore all controls applied by hmR0VmxPreRunGuestDebugStateApply above. */
|
---|
7113 | rcStrict = vmxHCRunDebugStateRevert(pVCpu, &VmxTransient, &DbgState, rcStrict);
|
---|
7114 | Assert(rcStrict == VINF_SUCCESS);
|
---|
7115 | }
|
---|
7116 |
|
---|
7117 | /*
|
---|
7118 | * Clear the X86_EFL_TF if necessary.
|
---|
7119 | */
|
---|
7120 | if (pVCpu->hmr0.s.fClearTrapFlag)
|
---|
7121 | {
|
---|
7122 | int rc = hmR0VmxImportGuestState(pVCpu, VmxTransient.pVmcsInfo, CPUMCTX_EXTRN_RFLAGS);
|
---|
7123 | AssertRC(rc);
|
---|
7124 | pVCpu->hmr0.s.fClearTrapFlag = false;
|
---|
7125 | pVCpu->cpum.GstCtx.eflags.Bits.u1TF = 0;
|
---|
7126 | }
|
---|
7127 | /** @todo there seems to be issues with the resume flag when the monitor trap
|
---|
7128 | * flag is pending without being used. Seen early in bios init when
|
---|
7129 | * accessing APIC page in protected mode. */
|
---|
7130 |
|
---|
7131 | /** @todo we need to do hmR0VmxRunDebugStateRevert here too, in case we broke
|
---|
7132 | * out of the above loop. */
|
---|
7133 |
|
---|
7134 | /* Restore HMCPU indicators. */
|
---|
7135 | pVCpu->hmr0.s.fUsingDebugLoop = false;
|
---|
7136 | pVCpu->hmr0.s.fDebugWantRdTscExit = false;
|
---|
7137 | pVCpu->hm.s.fSingleInstruction = fSavedSingleInstruction;
|
---|
7138 |
|
---|
7139 | STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
|
---|
7140 | return rcStrict;
|
---|
7141 | }
|
---|
7142 |
|
---|
7143 | /** @} */
|
---|
7144 |
|
---|
7145 |
|
---|
7146 | /**
|
---|
7147 | * Checks if any expensive dtrace probes are enabled and we should go to the
|
---|
7148 | * debug loop.
|
---|
7149 | *
|
---|
7150 | * @returns true if we should use debug loop, false if not.
|
---|
7151 | */
|
---|
7152 | static bool hmR0VmxAnyExpensiveProbesEnabled(void)
|
---|
7153 | {
|
---|
7154 | /* It's probably faster to OR the raw 32-bit counter variables together.
|
---|
7155 | Since the variables are in an array and the probes are next to one
|
---|
7156 | another (more or less), we have good locality. So, better read
|
---|
7157 | eight-nine cache lines ever time and only have one conditional, than
|
---|
7158 | 128+ conditionals, right? */
|
---|
7159 | return ( VBOXVMM_R0_HMVMX_VMEXIT_ENABLED_RAW() /* expensive too due to context */
|
---|
7160 | | VBOXVMM_XCPT_DE_ENABLED_RAW()
|
---|
7161 | | VBOXVMM_XCPT_DB_ENABLED_RAW()
|
---|
7162 | | VBOXVMM_XCPT_BP_ENABLED_RAW()
|
---|
7163 | | VBOXVMM_XCPT_OF_ENABLED_RAW()
|
---|
7164 | | VBOXVMM_XCPT_BR_ENABLED_RAW()
|
---|
7165 | | VBOXVMM_XCPT_UD_ENABLED_RAW()
|
---|
7166 | | VBOXVMM_XCPT_NM_ENABLED_RAW()
|
---|
7167 | | VBOXVMM_XCPT_DF_ENABLED_RAW()
|
---|
7168 | | VBOXVMM_XCPT_TS_ENABLED_RAW()
|
---|
7169 | | VBOXVMM_XCPT_NP_ENABLED_RAW()
|
---|
7170 | | VBOXVMM_XCPT_SS_ENABLED_RAW()
|
---|
7171 | | VBOXVMM_XCPT_GP_ENABLED_RAW()
|
---|
7172 | | VBOXVMM_XCPT_PF_ENABLED_RAW()
|
---|
7173 | | VBOXVMM_XCPT_MF_ENABLED_RAW()
|
---|
7174 | | VBOXVMM_XCPT_AC_ENABLED_RAW()
|
---|
7175 | | VBOXVMM_XCPT_XF_ENABLED_RAW()
|
---|
7176 | | VBOXVMM_XCPT_VE_ENABLED_RAW()
|
---|
7177 | | VBOXVMM_XCPT_SX_ENABLED_RAW()
|
---|
7178 | | VBOXVMM_INT_SOFTWARE_ENABLED_RAW()
|
---|
7179 | | VBOXVMM_INT_HARDWARE_ENABLED_RAW()
|
---|
7180 | ) != 0
|
---|
7181 | || ( VBOXVMM_INSTR_HALT_ENABLED_RAW()
|
---|
7182 | | VBOXVMM_INSTR_MWAIT_ENABLED_RAW()
|
---|
7183 | | VBOXVMM_INSTR_MONITOR_ENABLED_RAW()
|
---|
7184 | | VBOXVMM_INSTR_CPUID_ENABLED_RAW()
|
---|
7185 | | VBOXVMM_INSTR_INVD_ENABLED_RAW()
|
---|
7186 | | VBOXVMM_INSTR_WBINVD_ENABLED_RAW()
|
---|
7187 | | VBOXVMM_INSTR_INVLPG_ENABLED_RAW()
|
---|
7188 | | VBOXVMM_INSTR_RDTSC_ENABLED_RAW()
|
---|
7189 | | VBOXVMM_INSTR_RDTSCP_ENABLED_RAW()
|
---|
7190 | | VBOXVMM_INSTR_RDPMC_ENABLED_RAW()
|
---|
7191 | | VBOXVMM_INSTR_RDMSR_ENABLED_RAW()
|
---|
7192 | | VBOXVMM_INSTR_WRMSR_ENABLED_RAW()
|
---|
7193 | | VBOXVMM_INSTR_CRX_READ_ENABLED_RAW()
|
---|
7194 | | VBOXVMM_INSTR_CRX_WRITE_ENABLED_RAW()
|
---|
7195 | | VBOXVMM_INSTR_DRX_READ_ENABLED_RAW()
|
---|
7196 | | VBOXVMM_INSTR_DRX_WRITE_ENABLED_RAW()
|
---|
7197 | | VBOXVMM_INSTR_PAUSE_ENABLED_RAW()
|
---|
7198 | | VBOXVMM_INSTR_XSETBV_ENABLED_RAW()
|
---|
7199 | | VBOXVMM_INSTR_SIDT_ENABLED_RAW()
|
---|
7200 | | VBOXVMM_INSTR_LIDT_ENABLED_RAW()
|
---|
7201 | | VBOXVMM_INSTR_SGDT_ENABLED_RAW()
|
---|
7202 | | VBOXVMM_INSTR_LGDT_ENABLED_RAW()
|
---|
7203 | | VBOXVMM_INSTR_SLDT_ENABLED_RAW()
|
---|
7204 | | VBOXVMM_INSTR_LLDT_ENABLED_RAW()
|
---|
7205 | | VBOXVMM_INSTR_STR_ENABLED_RAW()
|
---|
7206 | | VBOXVMM_INSTR_LTR_ENABLED_RAW()
|
---|
7207 | | VBOXVMM_INSTR_GETSEC_ENABLED_RAW()
|
---|
7208 | | VBOXVMM_INSTR_RSM_ENABLED_RAW()
|
---|
7209 | | VBOXVMM_INSTR_RDRAND_ENABLED_RAW()
|
---|
7210 | | VBOXVMM_INSTR_RDSEED_ENABLED_RAW()
|
---|
7211 | | VBOXVMM_INSTR_XSAVES_ENABLED_RAW()
|
---|
7212 | | VBOXVMM_INSTR_XRSTORS_ENABLED_RAW()
|
---|
7213 | | VBOXVMM_INSTR_VMM_CALL_ENABLED_RAW()
|
---|
7214 | | VBOXVMM_INSTR_VMX_VMCLEAR_ENABLED_RAW()
|
---|
7215 | | VBOXVMM_INSTR_VMX_VMLAUNCH_ENABLED_RAW()
|
---|
7216 | | VBOXVMM_INSTR_VMX_VMPTRLD_ENABLED_RAW()
|
---|
7217 | | VBOXVMM_INSTR_VMX_VMPTRST_ENABLED_RAW()
|
---|
7218 | | VBOXVMM_INSTR_VMX_VMREAD_ENABLED_RAW()
|
---|
7219 | | VBOXVMM_INSTR_VMX_VMRESUME_ENABLED_RAW()
|
---|
7220 | | VBOXVMM_INSTR_VMX_VMWRITE_ENABLED_RAW()
|
---|
7221 | | VBOXVMM_INSTR_VMX_VMXOFF_ENABLED_RAW()
|
---|
7222 | | VBOXVMM_INSTR_VMX_VMXON_ENABLED_RAW()
|
---|
7223 | | VBOXVMM_INSTR_VMX_VMFUNC_ENABLED_RAW()
|
---|
7224 | | VBOXVMM_INSTR_VMX_INVEPT_ENABLED_RAW()
|
---|
7225 | | VBOXVMM_INSTR_VMX_INVVPID_ENABLED_RAW()
|
---|
7226 | | VBOXVMM_INSTR_VMX_INVPCID_ENABLED_RAW()
|
---|
7227 | ) != 0
|
---|
7228 | || ( VBOXVMM_EXIT_TASK_SWITCH_ENABLED_RAW()
|
---|
7229 | | VBOXVMM_EXIT_HALT_ENABLED_RAW()
|
---|
7230 | | VBOXVMM_EXIT_MWAIT_ENABLED_RAW()
|
---|
7231 | | VBOXVMM_EXIT_MONITOR_ENABLED_RAW()
|
---|
7232 | | VBOXVMM_EXIT_CPUID_ENABLED_RAW()
|
---|
7233 | | VBOXVMM_EXIT_INVD_ENABLED_RAW()
|
---|
7234 | | VBOXVMM_EXIT_WBINVD_ENABLED_RAW()
|
---|
7235 | | VBOXVMM_EXIT_INVLPG_ENABLED_RAW()
|
---|
7236 | | VBOXVMM_EXIT_RDTSC_ENABLED_RAW()
|
---|
7237 | | VBOXVMM_EXIT_RDTSCP_ENABLED_RAW()
|
---|
7238 | | VBOXVMM_EXIT_RDPMC_ENABLED_RAW()
|
---|
7239 | | VBOXVMM_EXIT_RDMSR_ENABLED_RAW()
|
---|
7240 | | VBOXVMM_EXIT_WRMSR_ENABLED_RAW()
|
---|
7241 | | VBOXVMM_EXIT_CRX_READ_ENABLED_RAW()
|
---|
7242 | | VBOXVMM_EXIT_CRX_WRITE_ENABLED_RAW()
|
---|
7243 | | VBOXVMM_EXIT_DRX_READ_ENABLED_RAW()
|
---|
7244 | | VBOXVMM_EXIT_DRX_WRITE_ENABLED_RAW()
|
---|
7245 | | VBOXVMM_EXIT_PAUSE_ENABLED_RAW()
|
---|
7246 | | VBOXVMM_EXIT_XSETBV_ENABLED_RAW()
|
---|
7247 | | VBOXVMM_EXIT_SIDT_ENABLED_RAW()
|
---|
7248 | | VBOXVMM_EXIT_LIDT_ENABLED_RAW()
|
---|
7249 | | VBOXVMM_EXIT_SGDT_ENABLED_RAW()
|
---|
7250 | | VBOXVMM_EXIT_LGDT_ENABLED_RAW()
|
---|
7251 | | VBOXVMM_EXIT_SLDT_ENABLED_RAW()
|
---|
7252 | | VBOXVMM_EXIT_LLDT_ENABLED_RAW()
|
---|
7253 | | VBOXVMM_EXIT_STR_ENABLED_RAW()
|
---|
7254 | | VBOXVMM_EXIT_LTR_ENABLED_RAW()
|
---|
7255 | | VBOXVMM_EXIT_GETSEC_ENABLED_RAW()
|
---|
7256 | | VBOXVMM_EXIT_RSM_ENABLED_RAW()
|
---|
7257 | | VBOXVMM_EXIT_RDRAND_ENABLED_RAW()
|
---|
7258 | | VBOXVMM_EXIT_RDSEED_ENABLED_RAW()
|
---|
7259 | | VBOXVMM_EXIT_XSAVES_ENABLED_RAW()
|
---|
7260 | | VBOXVMM_EXIT_XRSTORS_ENABLED_RAW()
|
---|
7261 | | VBOXVMM_EXIT_VMM_CALL_ENABLED_RAW()
|
---|
7262 | | VBOXVMM_EXIT_VMX_VMCLEAR_ENABLED_RAW()
|
---|
7263 | | VBOXVMM_EXIT_VMX_VMLAUNCH_ENABLED_RAW()
|
---|
7264 | | VBOXVMM_EXIT_VMX_VMPTRLD_ENABLED_RAW()
|
---|
7265 | | VBOXVMM_EXIT_VMX_VMPTRST_ENABLED_RAW()
|
---|
7266 | | VBOXVMM_EXIT_VMX_VMREAD_ENABLED_RAW()
|
---|
7267 | | VBOXVMM_EXIT_VMX_VMRESUME_ENABLED_RAW()
|
---|
7268 | | VBOXVMM_EXIT_VMX_VMWRITE_ENABLED_RAW()
|
---|
7269 | | VBOXVMM_EXIT_VMX_VMXOFF_ENABLED_RAW()
|
---|
7270 | | VBOXVMM_EXIT_VMX_VMXON_ENABLED_RAW()
|
---|
7271 | | VBOXVMM_EXIT_VMX_VMFUNC_ENABLED_RAW()
|
---|
7272 | | VBOXVMM_EXIT_VMX_INVEPT_ENABLED_RAW()
|
---|
7273 | | VBOXVMM_EXIT_VMX_INVVPID_ENABLED_RAW()
|
---|
7274 | | VBOXVMM_EXIT_VMX_INVPCID_ENABLED_RAW()
|
---|
7275 | | VBOXVMM_EXIT_VMX_EPT_VIOLATION_ENABLED_RAW()
|
---|
7276 | | VBOXVMM_EXIT_VMX_EPT_MISCONFIG_ENABLED_RAW()
|
---|
7277 | | VBOXVMM_EXIT_VMX_VAPIC_ACCESS_ENABLED_RAW()
|
---|
7278 | | VBOXVMM_EXIT_VMX_VAPIC_WRITE_ENABLED_RAW()
|
---|
7279 | ) != 0;
|
---|
7280 | }
|
---|
7281 |
|
---|
7282 |
|
---|
7283 | /**
|
---|
7284 | * Runs the guest using hardware-assisted VMX.
|
---|
7285 | *
|
---|
7286 | * @returns Strict VBox status code (i.e. informational status codes too).
|
---|
7287 | * @param pVCpu The cross context virtual CPU structure.
|
---|
7288 | */
|
---|
7289 | VMMR0DECL(VBOXSTRICTRC) VMXR0RunGuestCode(PVMCPUCC pVCpu)
|
---|
7290 | {
|
---|
7291 | AssertPtr(pVCpu);
|
---|
7292 | PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
|
---|
7293 | Assert(VMMRZCallRing3IsEnabled(pVCpu));
|
---|
7294 | Assert(!ASMAtomicUoReadU64(&pCtx->fExtrn));
|
---|
7295 | HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
|
---|
7296 |
|
---|
7297 | VBOXSTRICTRC rcStrict;
|
---|
7298 | uint32_t cLoops = 0;
|
---|
7299 | for (;;)
|
---|
7300 | {
|
---|
7301 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
7302 | bool const fInNestedGuestMode = CPUMIsGuestInVmxNonRootMode(pCtx);
|
---|
7303 | #else
|
---|
7304 | NOREF(pCtx);
|
---|
7305 | bool const fInNestedGuestMode = false;
|
---|
7306 | #endif
|
---|
7307 | if (!fInNestedGuestMode)
|
---|
7308 | {
|
---|
7309 | if ( !pVCpu->hm.s.fUseDebugLoop
|
---|
7310 | && (!VBOXVMM_ANY_PROBES_ENABLED() || !hmR0VmxAnyExpensiveProbesEnabled())
|
---|
7311 | && !DBGFIsStepping(pVCpu)
|
---|
7312 | && !pVCpu->CTX_SUFF(pVM)->dbgf.ro.cEnabledInt3Breakpoints)
|
---|
7313 | rcStrict = hmR0VmxRunGuestCodeNormal(pVCpu, &cLoops);
|
---|
7314 | else
|
---|
7315 | rcStrict = hmR0VmxRunGuestCodeDebug(pVCpu, &cLoops);
|
---|
7316 | }
|
---|
7317 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
7318 | else
|
---|
7319 | rcStrict = hmR0VmxRunGuestCodeNested(pVCpu, &cLoops);
|
---|
7320 |
|
---|
7321 | if (rcStrict == VINF_VMX_VMLAUNCH_VMRESUME)
|
---|
7322 | {
|
---|
7323 | Assert(CPUMIsGuestInVmxNonRootMode(pCtx));
|
---|
7324 | continue;
|
---|
7325 | }
|
---|
7326 | if (rcStrict == VINF_VMX_VMEXIT)
|
---|
7327 | {
|
---|
7328 | Assert(!CPUMIsGuestInVmxNonRootMode(pCtx));
|
---|
7329 | continue;
|
---|
7330 | }
|
---|
7331 | #endif
|
---|
7332 | break;
|
---|
7333 | }
|
---|
7334 |
|
---|
7335 | int const rcLoop = VBOXSTRICTRC_VAL(rcStrict);
|
---|
7336 | switch (rcLoop)
|
---|
7337 | {
|
---|
7338 | case VERR_EM_INTERPRETER: rcStrict = VINF_EM_RAW_EMULATE_INSTR; break;
|
---|
7339 | case VINF_EM_RESET: rcStrict = VINF_EM_TRIPLE_FAULT; break;
|
---|
7340 | }
|
---|
7341 |
|
---|
7342 | int rc2 = hmR0VmxExitToRing3(pVCpu, rcStrict);
|
---|
7343 | if (RT_FAILURE(rc2))
|
---|
7344 | {
|
---|
7345 | pVCpu->hm.s.u32HMError = (uint32_t)VBOXSTRICTRC_VAL(rcStrict);
|
---|
7346 | rcStrict = rc2;
|
---|
7347 | }
|
---|
7348 | Assert(!ASMAtomicUoReadU64(&pCtx->fExtrn));
|
---|
7349 | Assert(!VMMR0AssertionIsNotificationSet(pVCpu));
|
---|
7350 | return rcStrict;
|
---|
7351 | }
|
---|
7352 |
|
---|