VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR0/HWACCMR0.cpp@ 43150

Last change on this file since 43150 was 42407, checked in by vboxsync, 12 years ago

VMM: Futher work on dealing with hidden segment register, esp. when going stale.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 72.6 KB
Line 
1/* $Id: HWACCMR0.cpp 42407 2012-07-26 11:41:35Z vboxsync $ */
2/** @file
3 * Hardware Assisted Virtualization Manager (HM) - Host Context Ring-0.
4 */
5
6/*
7 * Copyright (C) 2006-2011 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*******************************************************************************
20* Header Files *
21*******************************************************************************/
22#define LOG_GROUP LOG_GROUP_HWACCM
23#include <VBox/vmm/hwaccm.h>
24#include <VBox/vmm/pgm.h>
25#include "HWACCMInternal.h"
26#include <VBox/vmm/vm.h>
27#include <VBox/vmm/hwacc_vmx.h>
28#include <VBox/vmm/hwacc_svm.h>
29#include <VBox/err.h>
30#include <VBox/log.h>
31#include <iprt/assert.h>
32#include <iprt/asm.h>
33#include <iprt/asm-amd64-x86.h>
34#include <iprt/cpuset.h>
35#include <iprt/mem.h>
36#include <iprt/memobj.h>
37#include <iprt/once.h>
38#include <iprt/param.h>
39#include <iprt/power.h>
40#include <iprt/string.h>
41#include <iprt/thread.h>
42#include <iprt/x86.h>
43#include "HWVMXR0.h"
44#include "HWSVMR0.h"
45
46
47/*******************************************************************************
48* Internal Functions *
49*******************************************************************************/
50static DECLCALLBACK(void) hmR0EnableCpuCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2);
51static DECLCALLBACK(void) hmR0DisableCpuCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2);
52static DECLCALLBACK(void) hmR0InitIntelCpu(RTCPUID idCpu, void *pvUser1, void *pvUser2);
53static DECLCALLBACK(void) hmR0InitAmdCpu(RTCPUID idCpu, void *pvUser1, void *pvUser2);
54static DECLCALLBACK(void) hmR0PowerCallback(RTPOWEREVENT enmEvent, void *pvUser);
55static DECLCALLBACK(void) hmR0MpEventCallback(RTMPEVENT enmEvent, RTCPUID idCpu, void *pvData);
56
57
58/*******************************************************************************
59* Structures and Typedefs *
60*******************************************************************************/
61/**
62 * This is used to manage the status code of a RTMpOnAll in HM.
63 */
64typedef struct HMR0FIRSTRC
65{
66 /** The status code. */
67 int32_t volatile rc;
68 /** The ID of the CPU reporting the first failure. */
69 RTCPUID volatile idCpu;
70} HMR0FIRSTRC;
71/** Pointer to a first return code structure. */
72typedef HMR0FIRSTRC *PHMR0FIRSTRC;
73
74
75/*******************************************************************************
76* Global Variables *
77*******************************************************************************/
78/**
79 * Global data.
80 */
81static struct
82{
83 /** Per CPU globals. */
84 HMGLOBLCPUINFO aCpuInfo[RTCPUSET_MAX_CPUS];
85
86 /** @name Ring-0 method table for AMD-V and VT-x specific operations.
87 * @{ */
88 DECLR0CALLBACKMEMBER(int, pfnEnterSession,(PVM pVM, PVMCPU pVCpu, PHMGLOBLCPUINFO pCpu));
89 DECLR0CALLBACKMEMBER(int, pfnLeaveSession,(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx));
90 DECLR0CALLBACKMEMBER(int, pfnSaveHostState,(PVM pVM, PVMCPU pVCpu));
91 DECLR0CALLBACKMEMBER(int, pfnLoadGuestState,(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx));
92 DECLR0CALLBACKMEMBER(int, pfnRunGuestCode,(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx));
93 DECLR0CALLBACKMEMBER(int, pfnEnableCpu,(PHMGLOBLCPUINFO pCpu, PVM pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage));
94 DECLR0CALLBACKMEMBER(int, pfnDisableCpu,(PHMGLOBLCPUINFO pCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage));
95 DECLR0CALLBACKMEMBER(int, pfnInitVM,(PVM pVM));
96 DECLR0CALLBACKMEMBER(int, pfnTermVM,(PVM pVM));
97 DECLR0CALLBACKMEMBER(int, pfnSetupVM,(PVM pVM));
98 /** @} */
99
100 /** Maximum ASID allowed. */
101 uint32_t uMaxASID;
102
103 /** VT-x data. */
104 struct
105 {
106 /** Set to by us to indicate VMX is supported by the CPU. */
107 bool fSupported;
108 /** Whether we're using SUPR0EnableVTx or not. */
109 bool fUsingSUPR0EnableVTx;
110 /** Whether we're using the preemption timer or not. */
111 bool fUsePreemptTimer;
112 /** The shift mask employed by the VMX-Preemption timer. */
113 uint8_t cPreemptTimerShift;
114
115 /** Host CR4 value (set by ring-0 VMX init) */
116 uint64_t hostCR4;
117
118 /** Host EFER value (set by ring-0 VMX init) */
119 uint64_t hostEFER;
120
121 /** VMX MSR values */
122 struct
123 {
124 uint64_t feature_ctrl;
125 uint64_t vmx_basic_info;
126 VMX_CAPABILITY vmx_pin_ctls;
127 VMX_CAPABILITY vmx_proc_ctls;
128 VMX_CAPABILITY vmx_proc_ctls2;
129 VMX_CAPABILITY vmx_exit;
130 VMX_CAPABILITY vmx_entry;
131 uint64_t vmx_misc;
132 uint64_t vmx_cr0_fixed0;
133 uint64_t vmx_cr0_fixed1;
134 uint64_t vmx_cr4_fixed0;
135 uint64_t vmx_cr4_fixed1;
136 uint64_t vmx_vmcs_enum;
137 uint64_t vmx_eptcaps;
138 } msr;
139 /* Last instruction error */
140 uint32_t ulLastInstrError;
141 } vmx;
142
143 /** AMD-V information. */
144 struct
145 {
146 /* HWCR msr (for diagnostics) */
147 uint64_t msrHWCR;
148
149 /** SVM revision. */
150 uint32_t u32Rev;
151
152 /** SVM feature bits from cpuid 0x8000000a */
153 uint32_t u32Features;
154
155 /** Set by us to indicate SVM is supported by the CPU. */
156 bool fSupported;
157 } svm;
158 /** Saved error from detection */
159 int32_t lLastError;
160
161 struct
162 {
163 uint32_t u32AMDFeatureECX;
164 uint32_t u32AMDFeatureEDX;
165 } cpuid;
166
167 /** If set, VT-x/AMD-V is enabled globally at init time, otherwise it's
168 * enabled and disabled each time it's used to execute guest code. */
169 bool fGlobalInit;
170 /** Indicates whether the host is suspending or not. We'll refuse a few
171 * actions when the host is being suspended to speed up the suspending and
172 * avoid trouble. */
173 volatile bool fSuspended;
174
175 /** Whether we've already initialized all CPUs.
176 * @remarks We could check the EnableAllCpusOnce state, but this is
177 * simpler and hopefully easier to understand. */
178 bool fEnabled;
179 /** Serialize initialization in HWACCMR0EnableAllCpus. */
180 RTONCE EnableAllCpusOnce;
181} g_HvmR0;
182
183
184
185/**
186 * Initializes a first return code structure.
187 *
188 * @param pFirstRc The structure to init.
189 */
190static void hmR0FirstRcInit(PHMR0FIRSTRC pFirstRc)
191{
192 pFirstRc->rc = VINF_SUCCESS;
193 pFirstRc->idCpu = NIL_RTCPUID;
194}
195
196
197/**
198 * Try se the status code (success ignored).
199 *
200 * @param pFirstRc The first return code structure.
201 * @param rc The status code.
202 */
203static void hmR0FirstRcSetStatus(PHMR0FIRSTRC pFirstRc, int rc)
204{
205 if ( RT_FAILURE(rc)
206 && ASMAtomicCmpXchgS32(&pFirstRc->rc, rc, VINF_SUCCESS))
207 pFirstRc->idCpu = RTMpCpuId();
208}
209
210
211/**
212 * Get the status code of a first return code structure.
213 *
214 * @returns The status code; VINF_SUCCESS or error status, no informational or
215 * warning errors.
216 * @param pFirstRc The first return code structure.
217 */
218static int hmR0FirstRcGetStatus(PHMR0FIRSTRC pFirstRc)
219{
220 return pFirstRc->rc;
221}
222
223
224#ifdef VBOX_STRICT
225/**
226 * Get the CPU ID on which the failure status code was reported.
227 *
228 * @returns The CPU ID, NIL_RTCPUID if no failure was reported.
229 * @param pFirstRc The first return code structure.
230 */
231static RTCPUID hmR0FirstRcGetCpuId(PHMR0FIRSTRC pFirstRc)
232{
233 return pFirstRc->idCpu;
234}
235#endif /* VBOX_STRICT */
236
237
238/** @name Dummy callback handlers.
239 * @{ */
240
241static DECLCALLBACK(int) hmR0DummyEnter(PVM pVM, PVMCPU pVCpu, PHMGLOBLCPUINFO pCpu)
242{
243 NOREF(pVM); NOREF(pVCpu); NOREF(pCpu);
244 return VINF_SUCCESS;
245}
246
247static DECLCALLBACK(int) hmR0DummyLeave(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
248{
249 NOREF(pVM); NOREF(pVCpu); NOREF(pCtx);
250 return VINF_SUCCESS;
251}
252
253static DECLCALLBACK(int) hmR0DummyEnableCpu(PHMGLOBLCPUINFO pCpu, PVM pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage)
254{
255 NOREF(pCpu); NOREF(pVM); NOREF(pvCpuPage); NOREF(HCPhysCpuPage);
256 return VINF_SUCCESS;
257}
258
259static DECLCALLBACK(int) hmR0DummyDisableCpu(PHMGLOBLCPUINFO pCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage)
260{
261 NOREF(pCpu); NOREF(pvCpuPage); NOREF(HCPhysCpuPage);
262 return VINF_SUCCESS;
263}
264
265static DECLCALLBACK(int) hmR0DummyInitVM(PVM pVM)
266{
267 NOREF(pVM);
268 return VINF_SUCCESS;
269}
270
271static DECLCALLBACK(int) hmR0DummyTermVM(PVM pVM)
272{
273 NOREF(pVM);
274 return VINF_SUCCESS;
275}
276
277static DECLCALLBACK(int) hmR0DummySetupVM(PVM pVM)
278{
279 NOREF(pVM);
280 return VINF_SUCCESS;
281}
282
283static DECLCALLBACK(int) hmR0DummyRunGuestCode(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
284{
285 NOREF(pVM); NOREF(pVCpu); NOREF(pCtx);
286 return VINF_SUCCESS;
287}
288
289static DECLCALLBACK(int) hmR0DummySaveHostState(PVM pVM, PVMCPU pVCpu)
290{
291 NOREF(pVM); NOREF(pVCpu);
292 return VINF_SUCCESS;
293}
294
295static DECLCALLBACK(int) hmR0DummyLoadGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
296{
297 NOREF(pVM); NOREF(pVCpu); NOREF(pCtx);
298 return VINF_SUCCESS;
299}
300
301/** @} */
302
303
304/**
305 * Checks if the CPU is subject to the "VMX-Preemption Timer Does Not Count
306 * Down at the Rate Specified" erratum.
307 *
308 * Errata names and related steppings:
309 * - BA86 - D0.
310 * - AAX65 - C2.
311 * - AAU65 - C2, K0.
312 * - AAO95 - B1.
313 * - AAT59 - C2.
314 * - AAK139 - D0.
315 * - AAM126 - C0, C1, D0.
316 * - AAN92 - B1.
317 * - AAJ124 - C0, D0.
318 *
319 * - AAP86 - B1.
320 *
321 * Steppings: B1, C0, C1, C2, D0, K0.
322 *
323 * @returns true if subject to it, false if not.
324 */
325static bool hmR0InitIntelIsSubjectToVmxPreemptionTimerErratum(void)
326{
327 uint32_t u = ASMCpuId_EAX(1);
328 u &= ~(RT_BIT_32(14) | RT_BIT_32(15) | RT_BIT_32(28) | RT_BIT_32(29) | RT_BIT_32(30) | RT_BIT_32(31));
329 if ( u == UINT32_C(0x000206E6) /* 323344.pdf - BA86 - D0 - Intel Xeon Processor 7500 Series */
330 || u == UINT32_C(0x00020652) /* 323056.pdf - AAX65 - C2 - Intel Xeon Processor L3406 */
331 || u == UINT32_C(0x00020652) /* 322814.pdf - AAT59 - C2 - Intel CoreTM i7-600, i5-500, i5-400 and i3-300 Mobile Processor Series */
332 || u == UINT32_C(0x00020652) /* 322911.pdf - AAU65 - C2 - Intel CoreTM i5-600, i3-500 Desktop Processor Series and Intel Pentium Processor G6950 */
333 || u == UINT32_C(0x00020655) /* 322911.pdf - AAU65 - K0 - Intel CoreTM i5-600, i3-500 Desktop Processor Series and Intel Pentium Processor G6950 */
334 || u == UINT32_C(0x000106E5) /* 322373.pdf - AAO95 - B1 - Intel Xeon Processor 3400 Series */
335 || u == UINT32_C(0x000106E5) /* 322166.pdf - AAN92 - B1 - Intel CoreTM i7-800 and i5-700 Desktop Processor Series */
336 || u == UINT32_C(0x000106E5) /* 320767.pdf - AAP86 - B1 - Intel Core i7-900 Mobile Processor Extreme Edition Series, Intel Core i7-800 and i7-700 Mobile Processor Series */
337 || u == UINT32_C(0x000106A0) /*?321333.pdf - AAM126 - C0 - Intel Xeon Processor 3500 Series Specification */
338 || u == UINT32_C(0x000106A1) /*?321333.pdf - AAM126 - C1 - Intel Xeon Processor 3500 Series Specification */
339 || u == UINT32_C(0x000106A4) /* 320836.pdf - AAJ124 - C0 - Intel Core i7-900 Desktop Processor Extreme Edition Series and Intel Core i7-900 Desktop Processor Series */
340 || u == UINT32_C(0x000106A5) /* 321333.pdf - AAM126 - D0 - Intel Xeon Processor 3500 Series Specification */
341 || u == UINT32_C(0x000106A5) /* 321324.pdf - AAK139 - D0 - Intel Xeon Processor 5500 Series Specification */
342 || u == UINT32_C(0x000106A5) /* 320836.pdf - AAJ124 - D0 - Intel Core i7-900 Desktop Processor Extreme Edition Series and Intel Core i7-900 Desktop Processor Series */
343 )
344 return true;
345 return false;
346}
347
348
349/**
350 * Intel specific initialization code.
351 *
352 * @returns VBox status code (will only fail if out of memory).
353 */
354static int hmR0InitIntel(uint32_t u32FeaturesECX, uint32_t u32FeaturesEDX)
355{
356 /*
357 * Check that all the required VT-x features are present.
358 * We also assume all VT-x-enabled CPUs support fxsave/fxrstor.
359 */
360 if ( (u32FeaturesECX & X86_CPUID_FEATURE_ECX_VMX)
361 && (u32FeaturesEDX & X86_CPUID_FEATURE_EDX_MSR)
362 && (u32FeaturesEDX & X86_CPUID_FEATURE_EDX_FXSR)
363 )
364 {
365 /** @todo move this into a separate function. */
366 g_HvmR0.vmx.msr.feature_ctrl = ASMRdMsr(MSR_IA32_FEATURE_CONTROL);
367
368 /*
369 * First try use native kernel API for controlling VT-x.
370 * (This is only supported by some Mac OS X kernels atm.)
371 */
372 int rc = g_HvmR0.lLastError = SUPR0EnableVTx(true /* fEnable */);
373 g_HvmR0.vmx.fUsingSUPR0EnableVTx = rc != VERR_NOT_SUPPORTED;
374 if (g_HvmR0.vmx.fUsingSUPR0EnableVTx)
375 {
376 AssertMsg(rc == VINF_SUCCESS || rc == VERR_VMX_IN_VMX_ROOT_MODE || rc == VERR_VMX_NO_VMX, ("%Rrc\n", rc));
377 if (RT_SUCCESS(rc))
378 {
379 g_HvmR0.vmx.fSupported = true;
380 rc = SUPR0EnableVTx(false /* fEnable */);
381 AssertRC(rc);
382 }
383 }
384 else
385 {
386 /* We need to check if VT-x has been properly initialized on all
387 CPUs. Some BIOSes do a lousy job. */
388 HMR0FIRSTRC FirstRc;
389 hmR0FirstRcInit(&FirstRc);
390 g_HvmR0.lLastError = RTMpOnAll(hmR0InitIntelCpu, &FirstRc, NULL);
391 if (RT_SUCCESS(g_HvmR0.lLastError))
392 g_HvmR0.lLastError = hmR0FirstRcGetStatus(&FirstRc);
393 }
394 if (RT_SUCCESS(g_HvmR0.lLastError))
395 {
396 /* Reread in case we've changed it. */
397 g_HvmR0.vmx.msr.feature_ctrl = ASMRdMsr(MSR_IA32_FEATURE_CONTROL);
398
399 if ( (g_HvmR0.vmx.msr.feature_ctrl & (MSR_IA32_FEATURE_CONTROL_VMXON | MSR_IA32_FEATURE_CONTROL_LOCK))
400 == (MSR_IA32_FEATURE_CONTROL_VMXON | MSR_IA32_FEATURE_CONTROL_LOCK))
401 {
402 /*
403 * Read all relevant MSR.
404 */
405 g_HvmR0.vmx.msr.vmx_basic_info = ASMRdMsr(MSR_IA32_VMX_BASIC_INFO);
406 g_HvmR0.vmx.msr.vmx_pin_ctls.u = ASMRdMsr(MSR_IA32_VMX_PINBASED_CTLS);
407 g_HvmR0.vmx.msr.vmx_proc_ctls.u = ASMRdMsr(MSR_IA32_VMX_PROCBASED_CTLS);
408 g_HvmR0.vmx.msr.vmx_exit.u = ASMRdMsr(MSR_IA32_VMX_EXIT_CTLS);
409 g_HvmR0.vmx.msr.vmx_entry.u = ASMRdMsr(MSR_IA32_VMX_ENTRY_CTLS);
410 g_HvmR0.vmx.msr.vmx_misc = ASMRdMsr(MSR_IA32_VMX_MISC);
411 g_HvmR0.vmx.msr.vmx_cr0_fixed0 = ASMRdMsr(MSR_IA32_VMX_CR0_FIXED0);
412 g_HvmR0.vmx.msr.vmx_cr0_fixed1 = ASMRdMsr(MSR_IA32_VMX_CR0_FIXED1);
413 g_HvmR0.vmx.msr.vmx_cr4_fixed0 = ASMRdMsr(MSR_IA32_VMX_CR4_FIXED0);
414 g_HvmR0.vmx.msr.vmx_cr4_fixed1 = ASMRdMsr(MSR_IA32_VMX_CR4_FIXED1);
415 g_HvmR0.vmx.msr.vmx_vmcs_enum = ASMRdMsr(MSR_IA32_VMX_VMCS_ENUM);
416 g_HvmR0.vmx.hostCR4 = ASMGetCR4();
417 g_HvmR0.vmx.hostEFER = ASMRdMsr(MSR_K6_EFER);
418 /* VPID 16 bits ASID. */
419 g_HvmR0.uMaxASID = 0x10000; /* exclusive */
420
421 if (g_HvmR0.vmx.msr.vmx_proc_ctls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL)
422 {
423 g_HvmR0.vmx.msr.vmx_proc_ctls2.u = ASMRdMsr(MSR_IA32_VMX_PROCBASED_CTLS2);
424 if ( g_HvmR0.vmx.msr.vmx_proc_ctls2.n.allowed1
425 & (VMX_VMCS_CTRL_PROC_EXEC2_EPT | VMX_VMCS_CTRL_PROC_EXEC2_VPID))
426 g_HvmR0.vmx.msr.vmx_eptcaps = ASMRdMsr(MSR_IA32_VMX_EPT_CAPS);
427 }
428
429 if (!g_HvmR0.vmx.fUsingSUPR0EnableVTx)
430 {
431 /*
432 * Enter root mode
433 */
434 RTR0MEMOBJ hScatchMemObj;
435 rc = RTR0MemObjAllocCont(&hScatchMemObj, PAGE_SIZE, true /* executable R0 mapping */);
436 if (RT_FAILURE(rc))
437 return rc;
438
439 void *pvScatchPage = RTR0MemObjAddress(hScatchMemObj);
440 RTHCPHYS HCPhysScratchPage = RTR0MemObjGetPagePhysAddr(hScatchMemObj, 0);
441 ASMMemZeroPage(pvScatchPage);
442
443 /* Set revision dword at the beginning of the structure. */
444 *(uint32_t *)pvScatchPage = MSR_IA32_VMX_BASIC_INFO_VMCS_ID(g_HvmR0.vmx.msr.vmx_basic_info);
445
446 /* Make sure we don't get rescheduled to another cpu during this probe. */
447 RTCCUINTREG fFlags = ASMIntDisableFlags();
448
449 /*
450 * Check CR4.VMXE
451 */
452 g_HvmR0.vmx.hostCR4 = ASMGetCR4();
453 if (!(g_HvmR0.vmx.hostCR4 & X86_CR4_VMXE))
454 {
455 /* In theory this bit could be cleared behind our back. Which would cause
456 #UD faults when we try to execute the VMX instructions... */
457 ASMSetCR4(g_HvmR0.vmx.hostCR4 | X86_CR4_VMXE);
458 }
459
460 /* Enter VMX Root Mode */
461 rc = VMXEnable(HCPhysScratchPage);
462 if (RT_SUCCESS(rc))
463 {
464 g_HvmR0.vmx.fSupported = true;
465 VMXDisable();
466
467 /*
468 * Check for the VMX-Preemption Timer and adjust for the * "VMX-Preemption
469 * Timer Does Not Count Down at the Rate Specified" erratum.
470 */
471 if ( g_HvmR0.vmx.msr.vmx_pin_ctls.n.allowed1
472 & VMX_VMCS_CTRL_PIN_EXEC_CONTROLS_PREEMPT_TIMER)
473 {
474 g_HvmR0.vmx.fUsePreemptTimer = true;
475 g_HvmR0.vmx.cPreemptTimerShift = MSR_IA32_VMX_MISC_PREEMPT_TSC_BIT(g_HvmR0.vmx.msr.vmx_misc);
476 if (hmR0InitIntelIsSubjectToVmxPreemptionTimerErratum())
477 g_HvmR0.vmx.cPreemptTimerShift = 0; /* This is about right most of the time here. */
478 }
479 }
480 else
481 {
482 /*
483 * KVM leaves the CPU in VMX root mode. Not only is this not allowed,
484 * it will crash the host when we enter raw mode, because:
485 *
486 * (a) clearing X86_CR4_VMXE in CR4 causes a #GP (we no longer modify
487 * this bit), and
488 * (b) turning off paging causes a #GP (unavoidable when switching
489 * from long to 32 bits mode or 32 bits to PAE).
490 *
491 * They should fix their code, but until they do we simply refuse to run.
492 */
493 g_HvmR0.lLastError = VERR_VMX_IN_VMX_ROOT_MODE;
494 }
495
496 /* Restore CR4 again; don't leave the X86_CR4_VMXE flag set
497 if it wasn't so before (some software could incorrectly
498 think it's in VMX mode). */
499 ASMSetCR4(g_HvmR0.vmx.hostCR4);
500 ASMSetFlags(fFlags);
501
502 RTR0MemObjFree(hScatchMemObj, false);
503 }
504 }
505 else
506 {
507 AssertFailed(); /* can't hit this case anymore */
508 g_HvmR0.lLastError = VERR_VMX_ILLEGAL_FEATURE_CONTROL_MSR;
509 }
510
511 /*
512 * Install the VT-x methods.
513 */
514 if (g_HvmR0.vmx.fSupported)
515 {
516 g_HvmR0.pfnEnterSession = VMXR0Enter;
517 g_HvmR0.pfnLeaveSession = VMXR0Leave;
518 g_HvmR0.pfnSaveHostState = VMXR0SaveHostState;
519 g_HvmR0.pfnLoadGuestState = VMXR0LoadGuestState;
520 g_HvmR0.pfnRunGuestCode = VMXR0RunGuestCode;
521 g_HvmR0.pfnEnableCpu = VMXR0EnableCpu;
522 g_HvmR0.pfnDisableCpu = VMXR0DisableCpu;
523 g_HvmR0.pfnInitVM = VMXR0InitVM;
524 g_HvmR0.pfnTermVM = VMXR0TermVM;
525 g_HvmR0.pfnSetupVM = VMXR0SetupVM;
526 }
527 }
528#ifdef LOG_ENABLED
529 else
530 SUPR0Printf("hmR0InitIntelCpu failed with rc=%d\n", g_HvmR0.lLastError);
531#endif
532 }
533 else
534 g_HvmR0.lLastError = VERR_VMX_NO_VMX;
535 return VINF_SUCCESS;
536}
537
538
539/**
540 * AMD-specific initialization code.
541 */
542static void hmR0InitAmd(uint32_t u32FeaturesEDX)
543{
544 /*
545 * Read all SVM MSRs if SVM is available. (same goes for RDMSR/WRMSR)
546 * We also assume all SVM-enabled CPUs support fxsave/fxrstor.
547 */
548 if ( (g_HvmR0.cpuid.u32AMDFeatureECX & X86_CPUID_AMD_FEATURE_ECX_SVM)
549 && (u32FeaturesEDX & X86_CPUID_FEATURE_EDX_MSR)
550 && (u32FeaturesEDX & X86_CPUID_FEATURE_EDX_FXSR)
551 )
552 {
553 g_HvmR0.pfnEnterSession = SVMR0Enter;
554 g_HvmR0.pfnLeaveSession = SVMR0Leave;
555 g_HvmR0.pfnSaveHostState = SVMR0SaveHostState;
556 g_HvmR0.pfnLoadGuestState = SVMR0LoadGuestState;
557 g_HvmR0.pfnRunGuestCode = SVMR0RunGuestCode;
558 g_HvmR0.pfnEnableCpu = SVMR0EnableCpu;
559 g_HvmR0.pfnDisableCpu = SVMR0DisableCpu;
560 g_HvmR0.pfnInitVM = SVMR0InitVM;
561 g_HvmR0.pfnTermVM = SVMR0TermVM;
562 g_HvmR0.pfnSetupVM = SVMR0SetupVM;
563
564 /* Query AMD features. */
565 uint32_t u32Dummy;
566 ASMCpuId(0x8000000A, &g_HvmR0.svm.u32Rev, &g_HvmR0.uMaxASID,
567 &u32Dummy, &g_HvmR0.svm.u32Features);
568
569 /*
570 * We need to check if AMD-V has been properly initialized on all CPUs.
571 * Some BIOSes might do a poor job.
572 */
573 HMR0FIRSTRC FirstRc;
574 hmR0FirstRcInit(&FirstRc);
575 int rc = RTMpOnAll(hmR0InitAmdCpu, &FirstRc, NULL);
576 AssertRC(rc);
577 if (RT_SUCCESS(rc))
578 rc = hmR0FirstRcGetStatus(&FirstRc);
579#ifndef DEBUG_bird
580 AssertMsg(rc == VINF_SUCCESS || rc == VERR_SVM_IN_USE,
581 ("hmR0InitAmdCpu failed for cpu %d with rc=%Rrc\n", hmR0FirstRcGetCpuId(&FirstRc), rc));
582#endif
583 if (RT_SUCCESS(rc))
584 {
585 /* Read the HWCR msr for diagnostics. */
586 g_HvmR0.svm.msrHWCR = ASMRdMsr(MSR_K8_HWCR);
587 g_HvmR0.svm.fSupported = true;
588 }
589 else
590 g_HvmR0.lLastError = rc;
591 }
592 else
593 g_HvmR0.lLastError = VERR_SVM_NO_SVM;
594}
595
596
597/**
598 * Does global Ring-0 HM initialization (at module init).
599 *
600 * @returns VBox status code.
601 */
602VMMR0DECL(int) HWACCMR0Init(void)
603{
604 /*
605 * Initialize the globals.
606 */
607 g_HvmR0.fEnabled = false;
608 static RTONCE s_OnceInit = RTONCE_INITIALIZER;
609 g_HvmR0.EnableAllCpusOnce = s_OnceInit;
610 for (unsigned i = 0; i < RT_ELEMENTS(g_HvmR0.aCpuInfo); i++)
611 g_HvmR0.aCpuInfo[i].hMemObj = NIL_RTR0MEMOBJ;
612
613 /* Fill in all callbacks with placeholders. */
614 g_HvmR0.pfnEnterSession = hmR0DummyEnter;
615 g_HvmR0.pfnLeaveSession = hmR0DummyLeave;
616 g_HvmR0.pfnSaveHostState = hmR0DummySaveHostState;
617 g_HvmR0.pfnLoadGuestState = hmR0DummyLoadGuestState;
618 g_HvmR0.pfnRunGuestCode = hmR0DummyRunGuestCode;
619 g_HvmR0.pfnEnableCpu = hmR0DummyEnableCpu;
620 g_HvmR0.pfnDisableCpu = hmR0DummyDisableCpu;
621 g_HvmR0.pfnInitVM = hmR0DummyInitVM;
622 g_HvmR0.pfnTermVM = hmR0DummyTermVM;
623 g_HvmR0.pfnSetupVM = hmR0DummySetupVM;
624
625 /* Default is global VT-x/AMD-V init. */
626 g_HvmR0.fGlobalInit = true;
627
628 /*
629 * Make sure aCpuInfo is big enough for all the CPUs on this system.
630 */
631 if (RTMpGetArraySize() > RT_ELEMENTS(g_HvmR0.aCpuInfo))
632 {
633 LogRel(("HM: Too many real CPUs/cores/threads - %u, max %u\n", RTMpGetArraySize(), RT_ELEMENTS(g_HvmR0.aCpuInfo)));
634 return VERR_TOO_MANY_CPUS;
635 }
636
637 /*
638 * Check for VT-x and AMD-V capabilities.
639 */
640 int rc;
641 if (ASMHasCpuId())
642 {
643 uint32_t u32FeaturesECX, u32FeaturesEDX;
644 uint32_t u32VendorEBX, u32VendorECX, u32VendorEDX;
645 uint32_t u32Dummy;
646
647 /* Standard features. */
648 ASMCpuId(0, &u32Dummy, &u32VendorEBX, &u32VendorECX, &u32VendorEDX);
649 ASMCpuId(1, &u32Dummy, &u32Dummy, &u32FeaturesECX, &u32FeaturesEDX);
650
651 /* Query AMD features. */
652 ASMCpuId(0x80000001, &u32Dummy, &u32Dummy,
653 &g_HvmR0.cpuid.u32AMDFeatureECX,
654 &g_HvmR0.cpuid.u32AMDFeatureEDX);
655
656 /* Go to CPU specific initialization code. */
657 if ( ( u32VendorEBX == X86_CPUID_VENDOR_INTEL_EBX
658 && u32VendorECX == X86_CPUID_VENDOR_INTEL_ECX
659 && u32VendorEDX == X86_CPUID_VENDOR_INTEL_EDX)
660 || ( u32VendorEBX == X86_CPUID_VENDOR_VIA_EBX
661 && u32VendorECX == X86_CPUID_VENDOR_VIA_ECX
662 && u32VendorEDX == X86_CPUID_VENDOR_VIA_EDX))
663 {
664 rc = hmR0InitIntel(u32FeaturesECX, u32FeaturesEDX);
665 if (RT_FAILURE(rc))
666 return rc;
667 }
668 else if ( u32VendorEBX == X86_CPUID_VENDOR_AMD_EBX
669 && u32VendorECX == X86_CPUID_VENDOR_AMD_ECX
670 && u32VendorEDX == X86_CPUID_VENDOR_AMD_EDX)
671 hmR0InitAmd(u32FeaturesEDX);
672 else
673 g_HvmR0.lLastError = VERR_HWACCM_UNKNOWN_CPU;
674 }
675 else
676 g_HvmR0.lLastError = VERR_HWACCM_NO_CPUID;
677
678 /*
679 * Register notification callbacks that we can use to disable/enable CPUs
680 * when brought offline/online or suspending/resuming.
681 */
682 if (!g_HvmR0.vmx.fUsingSUPR0EnableVTx)
683 {
684 rc = RTMpNotificationRegister(hmR0MpEventCallback, NULL);
685 AssertRC(rc);
686
687 rc = RTPowerNotificationRegister(hmR0PowerCallback, NULL);
688 AssertRC(rc);
689 }
690
691 /* We return success here because module init shall not fail if HM
692 fails to initialize. */
693 return VINF_SUCCESS;
694}
695
696
697/**
698 * Does global Ring-0 HM termination (at module termination).
699 *
700 * @returns VBox status code.
701 */
702VMMR0DECL(int) HWACCMR0Term(void)
703{
704 int rc;
705 if ( g_HvmR0.vmx.fSupported
706 && g_HvmR0.vmx.fUsingSUPR0EnableVTx)
707 {
708 /*
709 * Simple if the host OS manages VT-x.
710 */
711 Assert(g_HvmR0.fGlobalInit);
712 rc = SUPR0EnableVTx(false /* fEnable */);
713
714 for (unsigned iCpu = 0; iCpu < RT_ELEMENTS(g_HvmR0.aCpuInfo); iCpu++)
715 {
716 g_HvmR0.aCpuInfo[iCpu].fConfigured = false;
717 Assert(g_HvmR0.aCpuInfo[iCpu].hMemObj == NIL_RTR0MEMOBJ);
718 }
719 }
720 else
721 {
722 Assert(!g_HvmR0.vmx.fUsingSUPR0EnableVTx);
723 if (!g_HvmR0.vmx.fUsingSUPR0EnableVTx)
724 {
725 /* Doesn't really matter if this fails. */
726 rc = RTMpNotificationDeregister(hmR0MpEventCallback, NULL); AssertRC(rc);
727 rc = RTPowerNotificationDeregister(hmR0PowerCallback, NULL); AssertRC(rc);
728 }
729 else
730 rc = VINF_SUCCESS;
731
732 /*
733 * Disable VT-x/AMD-V on all CPUs if we enabled it before.
734 */
735 if (g_HvmR0.fGlobalInit)
736 {
737 HMR0FIRSTRC FirstRc;
738 hmR0FirstRcInit(&FirstRc);
739 rc = RTMpOnAll(hmR0DisableCpuCallback, NULL, &FirstRc);
740 Assert(RT_SUCCESS(rc) || rc == VERR_NOT_SUPPORTED);
741 if (RT_SUCCESS(rc))
742 {
743 rc = hmR0FirstRcGetStatus(&FirstRc);
744 AssertMsgRC(rc, ("%u: %Rrc\n", hmR0FirstRcGetCpuId(&FirstRc), rc));
745 }
746 }
747
748 /*
749 * Free the per-cpu pages used for VT-x and AMD-V.
750 */
751 for (unsigned i = 0; i < RT_ELEMENTS(g_HvmR0.aCpuInfo); i++)
752 {
753 if (g_HvmR0.aCpuInfo[i].hMemObj != NIL_RTR0MEMOBJ)
754 {
755 RTR0MemObjFree(g_HvmR0.aCpuInfo[i].hMemObj, false);
756 g_HvmR0.aCpuInfo[i].hMemObj = NIL_RTR0MEMOBJ;
757 }
758 }
759 }
760 return rc;
761}
762
763
764/**
765 * Worker function used by hmR0PowerCallback and HWACCMR0Init to initalize
766 * VT-x on a CPU.
767 *
768 * @param idCpu The identifier for the CPU the function is called on.
769 * @param pvUser1 Pointer to the first RC structure.
770 * @param pvUser2 Ignored.
771 */
772static DECLCALLBACK(void) hmR0InitIntelCpu(RTCPUID idCpu, void *pvUser1, void *pvUser2)
773{
774 PHMR0FIRSTRC pFirstRc = (PHMR0FIRSTRC)pvUser1;
775 Assert(idCpu == (RTCPUID)RTMpCpuIdToSetIndex(idCpu)); /// @todo fix idCpu == index assumption (rainy day)
776 NOREF(pvUser2);
777
778 /*
779 * Both the LOCK and VMXON bit must be set; otherwise VMXON will generate a #GP.
780 * Once the lock bit is set, this MSR can no longer be modified.
781 */
782 uint64_t fFC = ASMRdMsr(MSR_IA32_FEATURE_CONTROL);
783 if ( !(fFC & (MSR_IA32_FEATURE_CONTROL_VMXON | MSR_IA32_FEATURE_CONTROL_LOCK))
784 || ( (fFC & (MSR_IA32_FEATURE_CONTROL_VMXON | MSR_IA32_FEATURE_CONTROL_LOCK))
785 == MSR_IA32_FEATURE_CONTROL_VMXON ) /* Some BIOSes forget to set the locked bit. */
786 )
787 {
788 /* MSR is not yet locked; we can change it ourselves here. */
789 ASMWrMsr(MSR_IA32_FEATURE_CONTROL,
790 g_HvmR0.vmx.msr.feature_ctrl | MSR_IA32_FEATURE_CONTROL_VMXON | MSR_IA32_FEATURE_CONTROL_LOCK);
791 fFC = ASMRdMsr(MSR_IA32_FEATURE_CONTROL);
792 }
793
794 int rc;
795 if ( (fFC & (MSR_IA32_FEATURE_CONTROL_VMXON | MSR_IA32_FEATURE_CONTROL_LOCK))
796 == (MSR_IA32_FEATURE_CONTROL_VMXON | MSR_IA32_FEATURE_CONTROL_LOCK))
797 rc = VINF_SUCCESS;
798 else
799 rc = VERR_VMX_MSR_LOCKED_OR_DISABLED;
800
801 hmR0FirstRcSetStatus(pFirstRc, rc);
802}
803
804
805/**
806 * Worker function used by hmR0PowerCallback and HWACCMR0Init to initalize
807 * VT-x / AMD-V on a CPU.
808 *
809 * @param idCpu The identifier for the CPU the function is called on.
810 * @param pvUser1 Pointer to the first RC structure.
811 * @param pvUser2 Ignored.
812 */
813static DECLCALLBACK(void) hmR0InitAmdCpu(RTCPUID idCpu, void *pvUser1, void *pvUser2)
814{
815 PHMR0FIRSTRC pFirstRc = (PHMR0FIRSTRC)pvUser1;
816 Assert(idCpu == (RTCPUID)RTMpCpuIdToSetIndex(idCpu)); /// @todo fix idCpu == index assumption (rainy day)
817 NOREF(pvUser2);
818
819 /* Check if SVM is disabled. */
820 int rc;
821 uint64_t fVmCr = ASMRdMsr(MSR_K8_VM_CR);
822 if (!(fVmCr & MSR_K8_VM_CR_SVM_DISABLE))
823 {
824 /* Turn on SVM in the EFER MSR. */
825 uint64_t fEfer = ASMRdMsr(MSR_K6_EFER);
826 if (fEfer & MSR_K6_EFER_SVME)
827 rc = VERR_SVM_IN_USE;
828 else
829 {
830 ASMWrMsr(MSR_K6_EFER, fEfer | MSR_K6_EFER_SVME);
831
832 /* Paranoia. */
833 fEfer = ASMRdMsr(MSR_K6_EFER);
834 if (fEfer & MSR_K6_EFER_SVME)
835 {
836 /* Restore previous value. */
837 ASMWrMsr(MSR_K6_EFER, fEfer & ~MSR_K6_EFER_SVME);
838 rc = VINF_SUCCESS;
839 }
840 else
841 rc = VERR_SVM_ILLEGAL_EFER_MSR;
842 }
843 }
844 else
845 rc = VERR_SVM_DISABLED;
846
847 hmR0FirstRcSetStatus(pFirstRc, rc);
848}
849
850
851
852/**
853 * Disable VT-x or AMD-V on the current CPU
854 *
855 * @returns VBox status code.
856 * @param pVM Pointer to the VM (can be 0).
857 * @param idCpu The identifier for the CPU the function is called on.
858 */
859static int hmR0EnableCpu(PVM pVM, RTCPUID idCpu)
860{
861 PHMGLOBLCPUINFO pCpu = &g_HvmR0.aCpuInfo[idCpu];
862
863 Assert(!g_HvmR0.vmx.fSupported || !g_HvmR0.vmx.fUsingSUPR0EnableVTx);
864 Assert(idCpu == (RTCPUID)RTMpCpuIdToSetIndex(idCpu)); /// @todo fix idCpu == index assumption (rainy day)
865 Assert(idCpu < RT_ELEMENTS(g_HvmR0.aCpuInfo));
866 Assert(!pCpu->fConfigured);
867 Assert(!g_HvmR0.fGlobalInit || ASMAtomicReadBool(&pCpu->fInUse) == false);
868
869 pCpu->idCpu = idCpu;
870 pCpu->uCurrentASID = 0; /* we'll aways increment this the first time (host uses ASID 0) */
871 /* Do NOT reset cTLBFlushes here, see @bugref{6255}. */
872
873 /* Should never happen */
874 AssertLogRelMsgReturn(pCpu->hMemObj != NIL_RTR0MEMOBJ, ("hmR0EnableCpu failed idCpu=%u.\n", idCpu), VERR_HM_IPE_1);
875
876 void *pvCpuPage = RTR0MemObjAddress(pCpu->hMemObj);
877 RTHCPHYS HCPhysCpuPage = RTR0MemObjGetPagePhysAddr(pCpu->hMemObj, 0);
878
879 int rc = g_HvmR0.pfnEnableCpu(pCpu, pVM, pvCpuPage, HCPhysCpuPage);
880 AssertRC(rc);
881 if (RT_SUCCESS(rc))
882 pCpu->fConfigured = true;
883
884 return rc;
885}
886
887
888/**
889 * Worker function passed to RTMpOnAll, RTMpOnOthers and RTMpOnSpecific that
890 * is to be called on the target cpus.
891 *
892 * @param idCpu The identifier for the CPU the function is called on.
893 * @param pvUser1 The 1st user argument.
894 * @param pvUser2 The 2nd user argument.
895 */
896static DECLCALLBACK(void) hmR0EnableCpuCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2)
897{
898 PVM pVM = (PVM)pvUser1; /* can be NULL! */
899 PHMR0FIRSTRC pFirstRc = (PHMR0FIRSTRC)pvUser2;
900 AssertReturnVoid(g_HvmR0.fGlobalInit);
901 hmR0FirstRcSetStatus(pFirstRc, hmR0EnableCpu(pVM, idCpu));
902}
903
904
905/**
906 * RTOnce callback employed by HWACCMR0EnableAllCpus.
907 *
908 * @returns VBox status code.
909 * @param pvUser Pointer to the VM.
910 * @param pvUserIgnore NULL, ignored.
911 */
912static DECLCALLBACK(int32_t) hmR0EnableAllCpuOnce(void *pvUser, void *pvUserIgnore)
913{
914 PVM pVM = (PVM)pvUser;
915 NOREF(pvUserIgnore);
916
917 /*
918 * Indicate that we've initialized.
919 *
920 * Note! There is a potential race between this function and the suspend
921 * notification. Kind of unlikely though, so ignored for now.
922 */
923 AssertReturn(!g_HvmR0.fEnabled, VERR_HM_ALREADY_ENABLED_IPE);
924 ASMAtomicWriteBool(&g_HvmR0.fEnabled, true);
925
926 /*
927 * The global init variable is set by the first VM.
928 */
929 g_HvmR0.fGlobalInit = pVM->hwaccm.s.fGlobalInit;
930
931 int rc;
932 if ( g_HvmR0.vmx.fSupported
933 && g_HvmR0.vmx.fUsingSUPR0EnableVTx)
934 {
935 /*
936 * Global VT-x initialization API (only darwin for now).
937 */
938 rc = SUPR0EnableVTx(true /* fEnable */);
939 if (RT_SUCCESS(rc))
940 {
941 for (unsigned iCpu = 0; iCpu < RT_ELEMENTS(g_HvmR0.aCpuInfo); iCpu++)
942 {
943 g_HvmR0.aCpuInfo[iCpu].fConfigured = true;
944 g_HvmR0.aCpuInfo[iCpu].cTLBFlushes = 0;
945 Assert(g_HvmR0.aCpuInfo[iCpu].hMemObj == NIL_RTR0MEMOBJ);
946 }
947
948 /* If the host provides a VT-x init API, then we'll rely on that for global init. */
949 g_HvmR0.fGlobalInit = pVM->hwaccm.s.fGlobalInit = true;
950 }
951 else
952 AssertMsgFailed(("hmR0EnableAllCpuOnce/SUPR0EnableVTx: rc=%Rrc\n", rc));
953 }
954 else
955 {
956 /*
957 * We're doing the job ourselves.
958 */
959 /* Allocate one page per cpu for the global vt-x and amd-v pages */
960 for (unsigned i = 0; i < RT_ELEMENTS(g_HvmR0.aCpuInfo); i++)
961 {
962 Assert(g_HvmR0.aCpuInfo[i].hMemObj == NIL_RTR0MEMOBJ);
963
964 if (RTMpIsCpuPossible(RTMpCpuIdFromSetIndex(i)))
965 {
966 rc = RTR0MemObjAllocCont(&g_HvmR0.aCpuInfo[i].hMemObj, PAGE_SIZE, true /* executable R0 mapping */);
967 AssertLogRelRCReturn(rc, rc);
968
969 void *pvR0 = RTR0MemObjAddress(g_HvmR0.aCpuInfo[i].hMemObj); Assert(pvR0);
970 ASMMemZeroPage(pvR0);
971 }
972 g_HvmR0.aCpuInfo[i].fConfigured = false;
973 g_HvmR0.aCpuInfo[i].cTLBFlushes = 0;
974 }
975
976 if (g_HvmR0.fGlobalInit)
977 {
978 /* First time, so initialize each cpu/core. */
979 HMR0FIRSTRC FirstRc;
980 hmR0FirstRcInit(&FirstRc);
981 rc = RTMpOnAll(hmR0EnableCpuCallback, (void *)pVM, &FirstRc);
982 if (RT_SUCCESS(rc))
983 rc = hmR0FirstRcGetStatus(&FirstRc);
984 AssertMsgRC(rc, ("hmR0EnableAllCpuOnce failed for cpu %d with rc=%d\n", hmR0FirstRcGetCpuId(&FirstRc), rc));
985 }
986 else
987 rc = VINF_SUCCESS;
988 }
989
990 return rc;
991}
992
993
994/**
995 * Sets up HWACCM on all cpus.
996 *
997 * @returns VBox status code.
998 * @param pVM Pointer to the VM.
999 */
1000VMMR0DECL(int) HWACCMR0EnableAllCpus(PVM pVM)
1001{
1002 /* Make sure we don't touch hwaccm after we've disabled hwaccm in
1003 preparation of a suspend. */
1004 if (ASMAtomicReadBool(&g_HvmR0.fSuspended))
1005 return VERR_HWACCM_SUSPEND_PENDING;
1006
1007 return RTOnce(&g_HvmR0.EnableAllCpusOnce, hmR0EnableAllCpuOnce, pVM, NULL);
1008}
1009
1010
1011/**
1012 * Disable VT-x or AMD-V on the current CPU.
1013 *
1014 * @returns VBox status code.
1015 * @param idCpu The identifier for the CPU the function is called on.
1016 */
1017static int hmR0DisableCpu(RTCPUID idCpu)
1018{
1019 PHMGLOBLCPUINFO pCpu = &g_HvmR0.aCpuInfo[idCpu];
1020
1021 Assert(!g_HvmR0.vmx.fSupported || !g_HvmR0.vmx.fUsingSUPR0EnableVTx);
1022 Assert(idCpu == (RTCPUID)RTMpCpuIdToSetIndex(idCpu)); /// @todo fix idCpu == index assumption (rainy day)
1023 Assert(idCpu < RT_ELEMENTS(g_HvmR0.aCpuInfo));
1024 Assert(!g_HvmR0.fGlobalInit || ASMAtomicReadBool(&pCpu->fInUse) == false);
1025 Assert(!pCpu->fConfigured || pCpu->hMemObj != NIL_RTR0MEMOBJ);
1026
1027 if (pCpu->hMemObj == NIL_RTR0MEMOBJ)
1028 return pCpu->fConfigured ? VERR_NO_MEMORY : VINF_SUCCESS /* not initialized. */;
1029
1030 int rc;
1031 if (pCpu->fConfigured)
1032 {
1033 void *pvCpuPage = RTR0MemObjAddress(pCpu->hMemObj);
1034 RTHCPHYS HCPhysCpuPage = RTR0MemObjGetPagePhysAddr(pCpu->hMemObj, 0);
1035 if (idCpu == RTMpCpuId())
1036 {
1037 rc = g_HvmR0.pfnDisableCpu(pCpu, pvCpuPage, HCPhysCpuPage);
1038 AssertRC(rc);
1039 }
1040 else
1041 {
1042 pCpu->fIgnoreAMDVInUseError = true;
1043 rc = VINF_SUCCESS;
1044 }
1045
1046 pCpu->fConfigured = false;
1047 }
1048 else
1049 rc = VINF_SUCCESS; /* nothing to do */
1050
1051 pCpu->uCurrentASID = 0;
1052 return rc;
1053}
1054
1055
1056/**
1057 * Worker function passed to RTMpOnAll, RTMpOnOthers and RTMpOnSpecific that
1058 * is to be called on the target cpus.
1059 *
1060 * @param idCpu The identifier for the CPU the function is called on.
1061 * @param pvUser1 The 1st user argument.
1062 * @param pvUser2 The 2nd user argument.
1063 */
1064static DECLCALLBACK(void) hmR0DisableCpuCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2)
1065{
1066 PHMR0FIRSTRC pFirstRc = (PHMR0FIRSTRC)pvUser2; NOREF(pvUser1);
1067 AssertReturnVoid(g_HvmR0.fGlobalInit);
1068 hmR0FirstRcSetStatus(pFirstRc, hmR0DisableCpu(idCpu));
1069}
1070
1071
1072/**
1073 * Callback function invoked when a cpu goes online or offline.
1074 *
1075 * @param enmEvent The Mp event.
1076 * @param idCpu The identifier for the CPU the function is called on.
1077 * @param pvData Opaque data (PVM pointer).
1078 */
1079static DECLCALLBACK(void) hmR0MpEventCallback(RTMPEVENT enmEvent, RTCPUID idCpu, void *pvData)
1080{
1081 NOREF(pvData);
1082
1083 /*
1084 * We only care about uninitializing a CPU that is going offline. When a
1085 * CPU comes online, the initialization is done lazily in HWACCMR0Enter().
1086 */
1087 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1088 switch (enmEvent)
1089 {
1090 case RTMPEVENT_OFFLINE:
1091 {
1092 int rc = hmR0DisableCpu(idCpu);
1093 AssertRC(rc);
1094 break;
1095 }
1096
1097 default:
1098 break;
1099 }
1100}
1101
1102
1103/**
1104 * Called whenever a system power state change occurs.
1105 *
1106 * @param enmEvent The Power event.
1107 * @param pvUser User argument.
1108 */
1109static DECLCALLBACK(void) hmR0PowerCallback(RTPOWEREVENT enmEvent, void *pvUser)
1110{
1111 NOREF(pvUser);
1112 Assert(!g_HvmR0.vmx.fSupported || !g_HvmR0.vmx.fUsingSUPR0EnableVTx);
1113
1114#ifdef LOG_ENABLED
1115 if (enmEvent == RTPOWEREVENT_SUSPEND)
1116 SUPR0Printf("hmR0PowerCallback RTPOWEREVENT_SUSPEND\n");
1117 else
1118 SUPR0Printf("hmR0PowerCallback RTPOWEREVENT_RESUME\n");
1119#endif
1120
1121 if (enmEvent == RTPOWEREVENT_SUSPEND)
1122 ASMAtomicWriteBool(&g_HvmR0.fSuspended, true);
1123
1124 if (g_HvmR0.fEnabled)
1125 {
1126 int rc;
1127 HMR0FIRSTRC FirstRc;
1128 hmR0FirstRcInit(&FirstRc);
1129
1130 if (enmEvent == RTPOWEREVENT_SUSPEND)
1131 {
1132 if (g_HvmR0.fGlobalInit)
1133 {
1134 /* Turn off VT-x or AMD-V on all CPUs. */
1135 rc = RTMpOnAll(hmR0DisableCpuCallback, NULL, &FirstRc);
1136 Assert(RT_SUCCESS(rc) || rc == VERR_NOT_SUPPORTED);
1137 }
1138 /* else nothing to do here for the local init case */
1139 }
1140 else
1141 {
1142 /* Reinit the CPUs from scratch as the suspend state might have
1143 messed with the MSRs. (lousy BIOSes as usual) */
1144 if (g_HvmR0.vmx.fSupported)
1145 rc = RTMpOnAll(hmR0InitIntelCpu, &FirstRc, NULL);
1146 else
1147 rc = RTMpOnAll(hmR0InitAmdCpu, &FirstRc, NULL);
1148 Assert(RT_SUCCESS(rc) || rc == VERR_NOT_SUPPORTED);
1149 if (RT_SUCCESS(rc))
1150 rc = hmR0FirstRcGetStatus(&FirstRc);
1151#ifdef LOG_ENABLED
1152 if (RT_FAILURE(rc))
1153 SUPR0Printf("hmR0PowerCallback hmR0InitXxxCpu failed with %Rc\n", rc);
1154#endif
1155 if (g_HvmR0.fGlobalInit)
1156 {
1157 /* Turn VT-x or AMD-V back on on all CPUs. */
1158 rc = RTMpOnAll(hmR0EnableCpuCallback, NULL, &FirstRc /* output ignored */);
1159 Assert(RT_SUCCESS(rc) || rc == VERR_NOT_SUPPORTED);
1160 }
1161 /* else nothing to do here for the local init case */
1162 }
1163 }
1164
1165 if (enmEvent == RTPOWEREVENT_RESUME)
1166 ASMAtomicWriteBool(&g_HvmR0.fSuspended, false);
1167}
1168
1169
1170/**
1171 * Does Ring-0 per VM HM initialization.
1172 *
1173 * This will copy HM global into the VM structure and call the CPU specific
1174 * init routine which will allocate resources for each virtual CPU and such.
1175 *
1176 * @returns VBox status code.
1177 * @param pVM Pointer to the VM.
1178 */
1179VMMR0DECL(int) HWACCMR0InitVM(PVM pVM)
1180{
1181 AssertReturn(pVM, VERR_INVALID_PARAMETER);
1182
1183#ifdef LOG_ENABLED
1184 SUPR0Printf("HWACCMR0InitVM: %p\n", pVM);
1185#endif
1186
1187 /* Make sure we don't touch hwaccm after we've disabled hwaccm in preparation of a suspend. */
1188 if (ASMAtomicReadBool(&g_HvmR0.fSuspended))
1189 return VERR_HWACCM_SUSPEND_PENDING;
1190
1191 /*
1192 * Copy globals to the VM structure.
1193 */
1194 pVM->hwaccm.s.vmx.fSupported = g_HvmR0.vmx.fSupported;
1195 pVM->hwaccm.s.svm.fSupported = g_HvmR0.svm.fSupported;
1196
1197 pVM->hwaccm.s.vmx.fUsePreemptTimer = g_HvmR0.vmx.fUsePreemptTimer;
1198 pVM->hwaccm.s.vmx.cPreemptTimerShift = g_HvmR0.vmx.cPreemptTimerShift;
1199 pVM->hwaccm.s.vmx.msr.feature_ctrl = g_HvmR0.vmx.msr.feature_ctrl;
1200 pVM->hwaccm.s.vmx.hostCR4 = g_HvmR0.vmx.hostCR4;
1201 pVM->hwaccm.s.vmx.hostEFER = g_HvmR0.vmx.hostEFER;
1202 pVM->hwaccm.s.vmx.msr.vmx_basic_info = g_HvmR0.vmx.msr.vmx_basic_info;
1203 pVM->hwaccm.s.vmx.msr.vmx_pin_ctls = g_HvmR0.vmx.msr.vmx_pin_ctls;
1204 pVM->hwaccm.s.vmx.msr.vmx_proc_ctls = g_HvmR0.vmx.msr.vmx_proc_ctls;
1205 pVM->hwaccm.s.vmx.msr.vmx_proc_ctls2 = g_HvmR0.vmx.msr.vmx_proc_ctls2;
1206 pVM->hwaccm.s.vmx.msr.vmx_exit = g_HvmR0.vmx.msr.vmx_exit;
1207 pVM->hwaccm.s.vmx.msr.vmx_entry = g_HvmR0.vmx.msr.vmx_entry;
1208 pVM->hwaccm.s.vmx.msr.vmx_misc = g_HvmR0.vmx.msr.vmx_misc;
1209 pVM->hwaccm.s.vmx.msr.vmx_cr0_fixed0 = g_HvmR0.vmx.msr.vmx_cr0_fixed0;
1210 pVM->hwaccm.s.vmx.msr.vmx_cr0_fixed1 = g_HvmR0.vmx.msr.vmx_cr0_fixed1;
1211 pVM->hwaccm.s.vmx.msr.vmx_cr4_fixed0 = g_HvmR0.vmx.msr.vmx_cr4_fixed0;
1212 pVM->hwaccm.s.vmx.msr.vmx_cr4_fixed1 = g_HvmR0.vmx.msr.vmx_cr4_fixed1;
1213 pVM->hwaccm.s.vmx.msr.vmx_vmcs_enum = g_HvmR0.vmx.msr.vmx_vmcs_enum;
1214 pVM->hwaccm.s.vmx.msr.vmx_eptcaps = g_HvmR0.vmx.msr.vmx_eptcaps;
1215 pVM->hwaccm.s.svm.msrHWCR = g_HvmR0.svm.msrHWCR;
1216 pVM->hwaccm.s.svm.u32Rev = g_HvmR0.svm.u32Rev;
1217 pVM->hwaccm.s.svm.u32Features = g_HvmR0.svm.u32Features;
1218 pVM->hwaccm.s.cpuid.u32AMDFeatureECX = g_HvmR0.cpuid.u32AMDFeatureECX;
1219 pVM->hwaccm.s.cpuid.u32AMDFeatureEDX = g_HvmR0.cpuid.u32AMDFeatureEDX;
1220 pVM->hwaccm.s.lLastError = g_HvmR0.lLastError;
1221
1222 pVM->hwaccm.s.uMaxASID = g_HvmR0.uMaxASID;
1223
1224
1225 if (!pVM->hwaccm.s.cMaxResumeLoops) /* allow ring-3 overrides */
1226 {
1227 pVM->hwaccm.s.cMaxResumeLoops = 1024;
1228#ifdef VBOX_WITH_VMMR0_DISABLE_PREEMPTION
1229 if (RTThreadPreemptIsPendingTrusty())
1230 pVM->hwaccm.s.cMaxResumeLoops = 8192;
1231#endif
1232 }
1233
1234 /*
1235 * Initialize some per CPU fields.
1236 */
1237 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1238 {
1239 PVMCPU pVCpu = &pVM->aCpus[i];
1240
1241 pVCpu->hwaccm.s.idEnteredCpu = NIL_RTCPUID;
1242
1243 /* Invalidate the last cpu we were running on. */
1244 pVCpu->hwaccm.s.idLastCpu = NIL_RTCPUID;
1245
1246 /* We'll aways increment this the first time (host uses ASID 0) */
1247 pVCpu->hwaccm.s.uCurrentASID = 0;
1248 }
1249
1250 /*
1251 * Call the hardware specific initialization method.
1252 *
1253 * Note! The fInUse handling here isn't correct as we can we can be
1254 * rescheduled to a different cpu, but the fInUse case is mostly for
1255 * debugging... Disabling preemption isn't an option when allocating
1256 * memory, so we'll let it slip for now.
1257 */
1258 RTCCUINTREG fFlags = ASMIntDisableFlags();
1259 PHMGLOBLCPUINFO pCpu = HWACCMR0GetCurrentCpu();
1260 ASMAtomicWriteBool(&pCpu->fInUse, true);
1261 ASMSetFlags(fFlags);
1262
1263 int rc = g_HvmR0.pfnInitVM(pVM);
1264
1265 ASMAtomicWriteBool(&pCpu->fInUse, false);
1266 return rc;
1267}
1268
1269
1270/**
1271 * Does Ring-0 per VM HM termination.
1272 *
1273 * @returns VBox status code.
1274 * @param pVM Pointer to the VM.
1275 */
1276VMMR0DECL(int) HWACCMR0TermVM(PVM pVM)
1277{
1278 Log(("HWACCMR0TermVM: %p\n", pVM));
1279 AssertReturn(pVM, VERR_INVALID_PARAMETER);
1280
1281 /* Make sure we don't touch hm after we've disabled hwaccm in preparation
1282 of a suspend. */
1283 /** @todo r=bird: This cannot be right, the termination functions are
1284 * just freeing memory and resetting pVM/pVCpu members...
1285 * ==> memory leak. */
1286 AssertReturn(!ASMAtomicReadBool(&g_HvmR0.fSuspended), VERR_HWACCM_SUSPEND_PENDING);
1287
1288 /*
1289 * Call the hardware specific method.
1290 *
1291 * Note! Not correct as we can be rescheduled to a different cpu, but the
1292 * fInUse case is mostly for debugging.
1293 */
1294 RTCCUINTREG fFlags = ASMIntDisableFlags();
1295 PHMGLOBLCPUINFO pCpu = HWACCMR0GetCurrentCpu();
1296 ASMAtomicWriteBool(&pCpu->fInUse, true);
1297 ASMSetFlags(fFlags);
1298
1299 int rc = g_HvmR0.pfnTermVM(pVM);
1300
1301 ASMAtomicWriteBool(&pCpu->fInUse, false);
1302 return rc;
1303}
1304
1305
1306/**
1307 * Sets up a VT-x or AMD-V session.
1308 *
1309 * This is mostly about setting up the hardware VM state.
1310 *
1311 * @returns VBox status code.
1312 * @param pVM Pointer to the VM.
1313 */
1314VMMR0DECL(int) HWACCMR0SetupVM(PVM pVM)
1315{
1316 Log(("HWACCMR0SetupVM: %p\n", pVM));
1317 AssertReturn(pVM, VERR_INVALID_PARAMETER);
1318
1319 /* Make sure we don't touch hwaccm after we've disabled hwaccm in
1320 preparation of a suspend. */
1321 AssertReturn(!ASMAtomicReadBool(&g_HvmR0.fSuspended), VERR_HWACCM_SUSPEND_PENDING);
1322
1323
1324 /*
1325 * Call the hardware specific setup VM method. This requires the CPU to be
1326 * enabled for AMD-V/VT-x and preemption to be prevented.
1327 */
1328 RTCCUINTREG fFlags = ASMIntDisableFlags();
1329 RTCPUID idCpu = RTMpCpuId();
1330 PHMGLOBLCPUINFO pCpu = &g_HvmR0.aCpuInfo[idCpu];
1331 ASMAtomicWriteBool(&pCpu->fInUse, true);
1332
1333 /* On first entry we'll sync everything. */
1334 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1335 pVM->aCpus[i].hwaccm.s.fContextUseFlags = HWACCM_CHANGED_ALL;
1336
1337 /* Enable VT-x or AMD-V if local init is required. */
1338 int rc;
1339 if (!g_HvmR0.fGlobalInit)
1340 {
1341 rc = hmR0EnableCpu(pVM, idCpu);
1342 AssertReturnStmt(RT_SUCCESS_NP(rc), ASMSetFlags(fFlags), rc);
1343 }
1344
1345 /* Setup VT-x or AMD-V. */
1346 rc = g_HvmR0.pfnSetupVM(pVM);
1347
1348 /* Disable VT-x or AMD-V if local init was done before. */
1349 if (!g_HvmR0.fGlobalInit)
1350 {
1351 int rc2 = hmR0DisableCpu(idCpu);
1352 AssertRC(rc2);
1353 }
1354
1355 ASMAtomicWriteBool(&pCpu->fInUse, false);
1356 ASMSetFlags(fFlags);
1357
1358 return rc;
1359}
1360
1361
1362/**
1363 * Enters the VT-x or AMD-V session.
1364 *
1365 * @returns VBox status code.
1366 * @param pVM Pointer to the VM.
1367 * @param pVCpu Pointer to the VMCPU.
1368 *
1369 * @remarks This is called with preemption disabled.
1370 */
1371VMMR0DECL(int) HWACCMR0Enter(PVM pVM, PVMCPU pVCpu)
1372{
1373 RTCPUID idCpu = RTMpCpuId();
1374 PHMGLOBLCPUINFO pCpu = &g_HvmR0.aCpuInfo[idCpu];
1375
1376 /* Make sure we can't enter a session after we've disabled HM in preparation of a suspend. */
1377 AssertReturn(!ASMAtomicReadBool(&g_HvmR0.fSuspended), VERR_HWACCM_SUSPEND_PENDING);
1378 ASMAtomicWriteBool(&pCpu->fInUse, true);
1379
1380 AssertMsg(pVCpu->hwaccm.s.idEnteredCpu == NIL_RTCPUID, ("%d", (int)pVCpu->hwaccm.s.idEnteredCpu));
1381 pVCpu->hwaccm.s.idEnteredCpu = idCpu;
1382
1383 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1384
1385 /* Always load the guest's FPU/XMM state on-demand. */
1386 CPUMDeactivateGuestFPUState(pVCpu);
1387
1388 /* Always load the guest's debug state on-demand. */
1389 CPUMDeactivateGuestDebugState(pVCpu);
1390
1391 /* Always reload the host context and the guest's CR0 register. (!!!!) */
1392 pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_GUEST_CR0 | HWACCM_CHANGED_HOST_CONTEXT;
1393
1394 /* Setup the register and mask according to the current execution mode. */
1395 if (pCtx->msrEFER & MSR_K6_EFER_LMA)
1396 pVM->hwaccm.s.u64RegisterMask = UINT64_C(0xFFFFFFFFFFFFFFFF);
1397 else
1398 pVM->hwaccm.s.u64RegisterMask = UINT64_C(0xFFFFFFFF);
1399
1400 /* Enable VT-x or AMD-V if local init is required, or enable if it's a
1401 freshly onlined CPU. */
1402 int rc;
1403 if ( !pCpu->fConfigured
1404 || !g_HvmR0.fGlobalInit)
1405 {
1406 rc = hmR0EnableCpu(pVM, idCpu);
1407 AssertRCReturn(rc, rc);
1408 }
1409
1410#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1411 bool fStartedSet = PGMR0DynMapStartOrMigrateAutoSet(pVCpu);
1412#endif
1413
1414 rc = g_HvmR0.pfnEnterSession(pVM, pVCpu, pCpu);
1415 AssertRC(rc);
1416 /* We must save the host context here (VT-x) as we might be rescheduled on
1417 a different cpu after a long jump back to ring 3. */
1418 rc |= g_HvmR0.pfnSaveHostState(pVM, pVCpu);
1419 AssertRC(rc);
1420 rc |= g_HvmR0.pfnLoadGuestState(pVM, pVCpu, pCtx);
1421 AssertRC(rc);
1422
1423#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1424 if (fStartedSet)
1425 PGMRZDynMapReleaseAutoSet(pVCpu);
1426#endif
1427
1428 /* Keep track of the CPU owning the VMCS for debugging scheduling weirdness
1429 and ring-3 calls. */
1430 if (RT_FAILURE(rc))
1431 pVCpu->hwaccm.s.idEnteredCpu = NIL_RTCPUID;
1432 return rc;
1433}
1434
1435
1436/**
1437 * Leaves the VT-x or AMD-V session.
1438 *
1439 * @returns VBox status code.
1440 * @param pVM Pointer to the VM.
1441 * @param pVCpu Pointer to the VMCPU.
1442 *
1443 * @remarks Called with preemption disabled just like HWACCMR0Enter, our
1444 * counterpart.
1445 */
1446VMMR0DECL(int) HWACCMR0Leave(PVM pVM, PVMCPU pVCpu)
1447{
1448 int rc;
1449 RTCPUID idCpu = RTMpCpuId();
1450 PHMGLOBLCPUINFO pCpu = &g_HvmR0.aCpuInfo[idCpu];
1451 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1452
1453 /** @todo r=bird: This can't be entirely right? */
1454 AssertReturn(!ASMAtomicReadBool(&g_HvmR0.fSuspended), VERR_HWACCM_SUSPEND_PENDING);
1455
1456 /*
1457 * Save the guest FPU and XMM state if necessary.
1458 *
1459 * Note! It's rather tricky with longjmps done by e.g. Log statements or
1460 * the page fault handler. We must restore the host FPU here to make
1461 * absolutely sure we don't leave the guest FPU state active or trash
1462 * somebody else's FPU state.
1463 */
1464 if (CPUMIsGuestFPUStateActive(pVCpu))
1465 {
1466 Log2(("CPUMR0SaveGuestFPU\n"));
1467 CPUMR0SaveGuestFPU(pVM, pVCpu, pCtx);
1468
1469 pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_GUEST_CR0;
1470 Assert(!CPUMIsGuestFPUStateActive(pVCpu));
1471 }
1472
1473 rc = g_HvmR0.pfnLeaveSession(pVM, pVCpu, pCtx);
1474
1475 /* We don't pass on invlpg information to the recompiler for nested paging
1476 guests, so we must make sure the recompiler flushes its TLB the next
1477 time it executes code. */
1478 if ( pVM->hwaccm.s.fNestedPaging
1479 && CPUMIsGuestInPagedProtectedModeEx(pCtx))
1480 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_GLOBAL_TLB_FLUSH);
1481
1482 /* Keep track of the CPU owning the VMCS for debugging scheduling weirdness
1483 and ring-3 calls. */
1484 AssertMsgStmt( pVCpu->hwaccm.s.idEnteredCpu == idCpu
1485 || RT_FAILURE_NP(rc),
1486 ("Owner is %u, I'm %u", pVCpu->hwaccm.s.idEnteredCpu, idCpu),
1487 rc = VERR_HM_WRONG_CPU_1);
1488 pVCpu->hwaccm.s.idEnteredCpu = NIL_RTCPUID;
1489
1490 /*
1491 * Disable VT-x or AMD-V if local init was done before.
1492 */
1493 if (!g_HvmR0.fGlobalInit)
1494 {
1495 rc = hmR0DisableCpu(idCpu);
1496 AssertRC(rc);
1497
1498 /* Reset these to force a TLB flush for the next entry. (-> EXPENSIVE) */
1499 pVCpu->hwaccm.s.idLastCpu = NIL_RTCPUID;
1500 pVCpu->hwaccm.s.uCurrentASID = 0;
1501 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
1502 }
1503
1504 ASMAtomicWriteBool(&pCpu->fInUse, false);
1505 return rc;
1506}
1507
1508
1509/**
1510 * Runs guest code in a hardware accelerated VM.
1511 *
1512 * @returns VBox status code.
1513 * @param pVM Pointer to the VM.
1514 * @param pVCpu Pointer to the VMCPU.
1515 *
1516 * @remarks Called with preemption disabled and after first having called
1517 * HWACCMR0Enter.
1518 */
1519VMMR0DECL(int) HWACCMR0RunGuestCode(PVM pVM, PVMCPU pVCpu)
1520{
1521#ifdef VBOX_STRICT
1522 PHMGLOBLCPUINFO pCpu = &g_HvmR0.aCpuInfo[RTMpCpuId()];
1523 Assert(!VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL));
1524 Assert(pCpu->fConfigured);
1525 AssertReturn(!ASMAtomicReadBool(&g_HvmR0.fSuspended), VERR_HWACCM_SUSPEND_PENDING);
1526 Assert(ASMAtomicReadBool(&pCpu->fInUse) == true);
1527#endif
1528
1529#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1530 PGMRZDynMapStartAutoSet(pVCpu);
1531#endif
1532
1533 int rc = g_HvmR0.pfnRunGuestCode(pVM, pVCpu, CPUMQueryGuestCtxPtr(pVCpu));
1534
1535#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1536 PGMRZDynMapReleaseAutoSet(pVCpu);
1537#endif
1538 return rc;
1539}
1540
1541#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
1542
1543/**
1544 * Save guest FPU/XMM state (64 bits guest mode & 32 bits host only)
1545 *
1546 * @returns VBox status code.
1547 * @param pVM Pointer to the VM.
1548 * @param pVCpu Pointer to the VMCPU.
1549 * @param pCtx Pointer to the guest CPU context.
1550 */
1551VMMR0DECL(int) HWACCMR0SaveFPUState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
1552{
1553 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatFpu64SwitchBack);
1554 if (pVM->hwaccm.s.vmx.fSupported)
1555 return VMXR0Execute64BitsHandler(pVM, pVCpu, pCtx, pVM->hwaccm.s.pfnSaveGuestFPU64, 0, NULL);
1556 return SVMR0Execute64BitsHandler(pVM, pVCpu, pCtx, pVM->hwaccm.s.pfnSaveGuestFPU64, 0, NULL);
1557}
1558
1559
1560/**
1561 * Save guest debug state (64 bits guest mode & 32 bits host only)
1562 *
1563 * @returns VBox status code.
1564 * @param pVM Pointer to the VM.
1565 * @param pVCpu Pointer to the VMCPU.
1566 * @param pCtx Pointer to the guest CPU context.
1567 */
1568VMMR0DECL(int) HWACCMR0SaveDebugState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
1569{
1570 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatDebug64SwitchBack);
1571 if (pVM->hwaccm.s.vmx.fSupported)
1572 return VMXR0Execute64BitsHandler(pVM, pVCpu, pCtx, pVM->hwaccm.s.pfnSaveGuestDebug64, 0, NULL);
1573 return SVMR0Execute64BitsHandler(pVM, pVCpu, pCtx, pVM->hwaccm.s.pfnSaveGuestDebug64, 0, NULL);
1574}
1575
1576
1577/**
1578 * Test the 32->64 bits switcher.
1579 *
1580 * @returns VBox status code.
1581 * @param pVM Pointer to the VM.
1582 */
1583VMMR0DECL(int) HWACCMR0TestSwitcher3264(PVM pVM)
1584{
1585 PVMCPU pVCpu = &pVM->aCpus[0];
1586 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1587 uint32_t aParam[5] = {0, 1, 2, 3, 4};
1588 int rc;
1589
1590 STAM_PROFILE_ADV_START(&pVCpu->hwaccm.s.StatWorldSwitch3264, z);
1591 if (pVM->hwaccm.s.vmx.fSupported)
1592 rc = VMXR0Execute64BitsHandler(pVM, pVCpu, pCtx, pVM->hwaccm.s.pfnTest64, 5, &aParam[0]);
1593 else
1594 rc = SVMR0Execute64BitsHandler(pVM, pVCpu, pCtx, pVM->hwaccm.s.pfnTest64, 5, &aParam[0]);
1595 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatWorldSwitch3264, z);
1596
1597 return rc;
1598}
1599
1600#endif /* HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL) */
1601
1602/**
1603 * Returns suspend status of the host.
1604 *
1605 * @returns Suspend pending or not.
1606 */
1607VMMR0DECL(bool) HWACCMR0SuspendPending(void)
1608{
1609 return ASMAtomicReadBool(&g_HvmR0.fSuspended);
1610}
1611
1612
1613/**
1614 * Returns the cpu structure for the current cpu.
1615 * Keep in mind that there is no guarantee it will stay the same (long jumps to ring 3!!!).
1616 *
1617 * @returns The cpu structure pointer.
1618 */
1619VMMR0DECL(PHMGLOBLCPUINFO) HWACCMR0GetCurrentCpu(void)
1620{
1621 RTCPUID idCpu = RTMpCpuId();
1622 Assert(idCpu < RT_ELEMENTS(g_HvmR0.aCpuInfo));
1623 return &g_HvmR0.aCpuInfo[idCpu];
1624}
1625
1626
1627/**
1628 * Returns the cpu structure for the current cpu.
1629 * Keep in mind that there is no guarantee it will stay the same (long jumps to ring 3!!!).
1630 *
1631 * @returns The cpu structure pointer.
1632 * @param idCpu id of the VCPU.
1633 */
1634VMMR0DECL(PHMGLOBLCPUINFO) HWACCMR0GetCurrentCpuEx(RTCPUID idCpu)
1635{
1636 Assert(idCpu < RT_ELEMENTS(g_HvmR0.aCpuInfo));
1637 return &g_HvmR0.aCpuInfo[idCpu];
1638}
1639
1640
1641/**
1642 * Save a pending IO read.
1643 *
1644 * @param pVCpu Pointer to the VMCPU.
1645 * @param GCPtrRip Address of IO instruction.
1646 * @param GCPtrRipNext Address of the next instruction.
1647 * @param uPort Port address.
1648 * @param uAndVal AND mask for saving the result in eax.
1649 * @param cbSize Read size.
1650 */
1651VMMR0DECL(void) HWACCMR0SavePendingIOPortRead(PVMCPU pVCpu, RTGCPTR GCPtrRip, RTGCPTR GCPtrRipNext, unsigned uPort, unsigned uAndVal, unsigned cbSize)
1652{
1653 pVCpu->hwaccm.s.PendingIO.enmType = HWACCMPENDINGIO_PORT_READ;
1654 pVCpu->hwaccm.s.PendingIO.GCPtrRip = GCPtrRip;
1655 pVCpu->hwaccm.s.PendingIO.GCPtrRipNext = GCPtrRipNext;
1656 pVCpu->hwaccm.s.PendingIO.s.Port.uPort = uPort;
1657 pVCpu->hwaccm.s.PendingIO.s.Port.uAndVal = uAndVal;
1658 pVCpu->hwaccm.s.PendingIO.s.Port.cbSize = cbSize;
1659 return;
1660}
1661
1662
1663/**
1664 * Save a pending IO write.
1665 *
1666 * @param pVCpu Pointer to the VMCPU.
1667 * @param GCPtrRIP Address of IO instruction.
1668 * @param uPort Port address.
1669 * @param uAndVal AND mask for fetching the result from eax.
1670 * @param cbSize Read size.
1671 */
1672VMMR0DECL(void) HWACCMR0SavePendingIOPortWrite(PVMCPU pVCpu, RTGCPTR GCPtrRip, RTGCPTR GCPtrRipNext, unsigned uPort, unsigned uAndVal, unsigned cbSize)
1673{
1674 pVCpu->hwaccm.s.PendingIO.enmType = HWACCMPENDINGIO_PORT_WRITE;
1675 pVCpu->hwaccm.s.PendingIO.GCPtrRip = GCPtrRip;
1676 pVCpu->hwaccm.s.PendingIO.GCPtrRipNext = GCPtrRipNext;
1677 pVCpu->hwaccm.s.PendingIO.s.Port.uPort = uPort;
1678 pVCpu->hwaccm.s.PendingIO.s.Port.uAndVal = uAndVal;
1679 pVCpu->hwaccm.s.PendingIO.s.Port.cbSize = cbSize;
1680 return;
1681}
1682
1683
1684/**
1685 * Raw-mode switcher hook - disable VT-x if it's active *and* the current
1686 * switcher turns off paging.
1687 *
1688 * @returns VBox status code.
1689 * @param pVM Pointer to the VM.
1690 * @param pfVTxDisabled Where to store whether VT-x was disabled or not.
1691 */
1692VMMR0DECL(int) HWACCMR0EnterSwitcher(PVM pVM, bool *pfVTxDisabled)
1693{
1694 Assert(!(ASMGetFlags() & X86_EFL_IF) || !RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1695
1696 *pfVTxDisabled = false;
1697
1698 if ( !g_HvmR0.fEnabled
1699 || !g_HvmR0.vmx.fSupported /* no such issues with AMD-V */
1700 || !g_HvmR0.fGlobalInit /* Local init implies the CPU is currently not in VMX root mode. */)
1701 return VINF_SUCCESS; /* nothing to do */
1702
1703 switch (VMMGetSwitcher(pVM))
1704 {
1705 case VMMSWITCHER_32_TO_32:
1706 case VMMSWITCHER_PAE_TO_PAE:
1707 return VINF_SUCCESS; /* safe switchers as they don't turn off paging */
1708
1709 case VMMSWITCHER_32_TO_PAE:
1710 case VMMSWITCHER_PAE_TO_32: /* is this one actually used?? */
1711 case VMMSWITCHER_AMD64_TO_32:
1712 case VMMSWITCHER_AMD64_TO_PAE:
1713 break; /* unsafe switchers */
1714
1715 default:
1716 AssertFailedReturn(VERR_HM_WRONG_SWITCHER);
1717 }
1718
1719 PHMGLOBLCPUINFO pCpu = HWACCMR0GetCurrentCpu();
1720 AssertReturn(pCpu && pCpu->hMemObj != NIL_RTR0MEMOBJ, VERR_HM_IPE_2);
1721
1722 *pfVTxDisabled = true;
1723 void *pvCpuPage = RTR0MemObjAddress(pCpu->hMemObj);
1724 RTHCPHYS HCPhysCpuPage = RTR0MemObjGetPagePhysAddr(pCpu->hMemObj, 0);
1725 return VMXR0DisableCpu(pCpu, pvCpuPage, HCPhysCpuPage);
1726}
1727
1728
1729/**
1730 * Raw-mode switcher hook - re-enable VT-x if was active *and* the current
1731 * switcher turned off paging.
1732 *
1733 * @returns VBox status code.
1734 * @param pVM Pointer to the VM.
1735 * @param fVTxDisabled Whether VT-x was disabled or not.
1736 */
1737VMMR0DECL(int) HWACCMR0LeaveSwitcher(PVM pVM, bool fVTxDisabled)
1738{
1739 Assert(!(ASMGetFlags() & X86_EFL_IF));
1740
1741 if (!fVTxDisabled)
1742 return VINF_SUCCESS; /* nothing to do */
1743
1744 Assert(g_HvmR0.fEnabled);
1745 Assert(g_HvmR0.vmx.fSupported);
1746 Assert(g_HvmR0.fGlobalInit);
1747
1748 PHMGLOBLCPUINFO pCpu = HWACCMR0GetCurrentCpu();
1749 AssertReturn(pCpu && pCpu->hMemObj != NIL_RTR0MEMOBJ, VERR_HM_IPE_2);
1750
1751 void *pvCpuPage = RTR0MemObjAddress(pCpu->hMemObj);
1752 RTHCPHYS HCPhysCpuPage = RTR0MemObjGetPagePhysAddr(pCpu->hMemObj, 0);
1753 return VMXR0EnableCpu(pCpu, pVM, pvCpuPage, HCPhysCpuPage);
1754}
1755
1756#ifdef VBOX_STRICT
1757
1758/**
1759 * Dumps a descriptor.
1760 *
1761 * @param pDesc Descriptor to dump.
1762 * @param Sel Selector number.
1763 * @param pszMsg Message to prepend the log entry with.
1764 */
1765VMMR0DECL(void) HWACCMR0DumpDescriptor(PCX86DESCHC pDesc, RTSEL Sel, const char *pszMsg)
1766{
1767 /*
1768 * Make variable description string.
1769 */
1770 static struct
1771 {
1772 unsigned cch;
1773 const char *psz;
1774 } const s_aTypes[32] =
1775 {
1776# define STRENTRY(str) { sizeof(str) - 1, str }
1777
1778 /* system */
1779# if HC_ARCH_BITS == 64
1780 STRENTRY("Reserved0 "), /* 0x00 */
1781 STRENTRY("Reserved1 "), /* 0x01 */
1782 STRENTRY("LDT "), /* 0x02 */
1783 STRENTRY("Reserved3 "), /* 0x03 */
1784 STRENTRY("Reserved4 "), /* 0x04 */
1785 STRENTRY("Reserved5 "), /* 0x05 */
1786 STRENTRY("Reserved6 "), /* 0x06 */
1787 STRENTRY("Reserved7 "), /* 0x07 */
1788 STRENTRY("Reserved8 "), /* 0x08 */
1789 STRENTRY("TSS64Avail "), /* 0x09 */
1790 STRENTRY("ReservedA "), /* 0x0a */
1791 STRENTRY("TSS64Busy "), /* 0x0b */
1792 STRENTRY("Call64 "), /* 0x0c */
1793 STRENTRY("ReservedD "), /* 0x0d */
1794 STRENTRY("Int64 "), /* 0x0e */
1795 STRENTRY("Trap64 "), /* 0x0f */
1796# else
1797 STRENTRY("Reserved0 "), /* 0x00 */
1798 STRENTRY("TSS16Avail "), /* 0x01 */
1799 STRENTRY("LDT "), /* 0x02 */
1800 STRENTRY("TSS16Busy "), /* 0x03 */
1801 STRENTRY("Call16 "), /* 0x04 */
1802 STRENTRY("Task "), /* 0x05 */
1803 STRENTRY("Int16 "), /* 0x06 */
1804 STRENTRY("Trap16 "), /* 0x07 */
1805 STRENTRY("Reserved8 "), /* 0x08 */
1806 STRENTRY("TSS32Avail "), /* 0x09 */
1807 STRENTRY("ReservedA "), /* 0x0a */
1808 STRENTRY("TSS32Busy "), /* 0x0b */
1809 STRENTRY("Call32 "), /* 0x0c */
1810 STRENTRY("ReservedD "), /* 0x0d */
1811 STRENTRY("Int32 "), /* 0x0e */
1812 STRENTRY("Trap32 "), /* 0x0f */
1813# endif
1814 /* non system */
1815 STRENTRY("DataRO "), /* 0x10 */
1816 STRENTRY("DataRO Accessed "), /* 0x11 */
1817 STRENTRY("DataRW "), /* 0x12 */
1818 STRENTRY("DataRW Accessed "), /* 0x13 */
1819 STRENTRY("DataDownRO "), /* 0x14 */
1820 STRENTRY("DataDownRO Accessed "), /* 0x15 */
1821 STRENTRY("DataDownRW "), /* 0x16 */
1822 STRENTRY("DataDownRW Accessed "), /* 0x17 */
1823 STRENTRY("CodeEO "), /* 0x18 */
1824 STRENTRY("CodeEO Accessed "), /* 0x19 */
1825 STRENTRY("CodeER "), /* 0x1a */
1826 STRENTRY("CodeER Accessed "), /* 0x1b */
1827 STRENTRY("CodeConfEO "), /* 0x1c */
1828 STRENTRY("CodeConfEO Accessed "), /* 0x1d */
1829 STRENTRY("CodeConfER "), /* 0x1e */
1830 STRENTRY("CodeConfER Accessed ") /* 0x1f */
1831# undef SYSENTRY
1832 };
1833# define ADD_STR(psz, pszAdd) do { strcpy(psz, pszAdd); psz += strlen(pszAdd); } while (0)
1834 char szMsg[128];
1835 char *psz = &szMsg[0];
1836 unsigned i = pDesc->Gen.u1DescType << 4 | pDesc->Gen.u4Type;
1837 memcpy(psz, s_aTypes[i].psz, s_aTypes[i].cch);
1838 psz += s_aTypes[i].cch;
1839
1840 if (pDesc->Gen.u1Present)
1841 ADD_STR(psz, "Present ");
1842 else
1843 ADD_STR(psz, "Not-Present ");
1844# if HC_ARCH_BITS == 64
1845 if (pDesc->Gen.u1Long)
1846 ADD_STR(psz, "64-bit ");
1847 else
1848 ADD_STR(psz, "Comp ");
1849# else
1850 if (pDesc->Gen.u1Granularity)
1851 ADD_STR(psz, "Page ");
1852 if (pDesc->Gen.u1DefBig)
1853 ADD_STR(psz, "32-bit ");
1854 else
1855 ADD_STR(psz, "16-bit ");
1856# endif
1857# undef ADD_STR
1858 *psz = '\0';
1859
1860 /*
1861 * Limit and Base and format the output.
1862 */
1863 uint32_t u32Limit = X86DESC_LIMIT_G(pDesc);
1864
1865# if HC_ARCH_BITS == 64
1866 uint64_t u32Base = X86DESC64_BASE(pDesc);
1867
1868 Log(("%s %04x - %RX64 %RX64 - base=%RX64 limit=%08x dpl=%d %s\n", pszMsg,
1869 Sel, pDesc->au64[0], pDesc->au64[1], u32Base, u32Limit, pDesc->Gen.u2Dpl, szMsg));
1870# else
1871 uint32_t u32Base = X86DESC_BASE(pDesc);
1872
1873 Log(("%s %04x - %08x %08x - base=%08x limit=%08x dpl=%d %s\n", pszMsg,
1874 Sel, pDesc->au32[0], pDesc->au32[1], u32Base, u32Limit, pDesc->Gen.u2Dpl, szMsg));
1875# endif
1876}
1877
1878
1879/**
1880 * Formats a full register dump.
1881 *
1882 * @param pVM Pointer to the VM.
1883 * @param pVCpu Pointer to the VMCPU.
1884 * @param pCtx Pointer to the CPU context.
1885 */
1886VMMR0DECL(void) HWACCMDumpRegs(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
1887{
1888 NOREF(pVM);
1889
1890 /*
1891 * Format the flags.
1892 */
1893 static struct
1894 {
1895 const char *pszSet; const char *pszClear; uint32_t fFlag;
1896 } const s_aFlags[] =
1897 {
1898 { "vip",NULL, X86_EFL_VIP },
1899 { "vif",NULL, X86_EFL_VIF },
1900 { "ac", NULL, X86_EFL_AC },
1901 { "vm", NULL, X86_EFL_VM },
1902 { "rf", NULL, X86_EFL_RF },
1903 { "nt", NULL, X86_EFL_NT },
1904 { "ov", "nv", X86_EFL_OF },
1905 { "dn", "up", X86_EFL_DF },
1906 { "ei", "di", X86_EFL_IF },
1907 { "tf", NULL, X86_EFL_TF },
1908 { "nt", "pl", X86_EFL_SF },
1909 { "nz", "zr", X86_EFL_ZF },
1910 { "ac", "na", X86_EFL_AF },
1911 { "po", "pe", X86_EFL_PF },
1912 { "cy", "nc", X86_EFL_CF },
1913 };
1914 char szEFlags[80];
1915 char *psz = szEFlags;
1916 uint32_t efl = pCtx->eflags.u32;
1917 for (unsigned i = 0; i < RT_ELEMENTS(s_aFlags); i++)
1918 {
1919 const char *pszAdd = s_aFlags[i].fFlag & efl ? s_aFlags[i].pszSet : s_aFlags[i].pszClear;
1920 if (pszAdd)
1921 {
1922 strcpy(psz, pszAdd);
1923 psz += strlen(pszAdd);
1924 *psz++ = ' ';
1925 }
1926 }
1927 psz[-1] = '\0';
1928
1929
1930 /*
1931 * Format the registers.
1932 */
1933 if (CPUMIsGuestIn64BitCode(pVCpu))
1934 {
1935 Log(("rax=%016RX64 rbx=%016RX64 rcx=%016RX64 rdx=%016RX64\n"
1936 "rsi=%016RX64 rdi=%016RX64 r8 =%016RX64 r9 =%016RX64\n"
1937 "r10=%016RX64 r11=%016RX64 r12=%016RX64 r13=%016RX64\n"
1938 "r14=%016RX64 r15=%016RX64\n"
1939 "rip=%016RX64 rsp=%016RX64 rbp=%016RX64 iopl=%d %*s\n"
1940 "cs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1941 "ds={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1942 "es={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1943 "fs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1944 "gs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1945 "ss={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1946 "cr0=%016RX64 cr2=%016RX64 cr3=%016RX64 cr4=%016RX64\n"
1947 "dr0=%016RX64 dr1=%016RX64 dr2=%016RX64 dr3=%016RX64\n"
1948 "dr4=%016RX64 dr5=%016RX64 dr6=%016RX64 dr7=%016RX64\n"
1949 "gdtr=%016RX64:%04x idtr=%016RX64:%04x eflags=%08x\n"
1950 "ldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
1951 "tr ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
1952 "SysEnter={cs=%04llx eip=%08llx esp=%08llx}\n"
1953 ,
1954 pCtx->rax, pCtx->rbx, pCtx->rcx, pCtx->rdx, pCtx->rsi, pCtx->rdi,
1955 pCtx->r8, pCtx->r9, pCtx->r10, pCtx->r11, pCtx->r12, pCtx->r13,
1956 pCtx->r14, pCtx->r15,
1957 pCtx->rip, pCtx->rsp, pCtx->rbp, X86_EFL_GET_IOPL(efl), 31, szEFlags,
1958 pCtx->cs.Sel, pCtx->cs.u64Base, pCtx->cs.u32Limit, pCtx->cs.Attr.u,
1959 pCtx->ds.Sel, pCtx->ds.u64Base, pCtx->ds.u32Limit, pCtx->ds.Attr.u,
1960 pCtx->es.Sel, pCtx->es.u64Base, pCtx->es.u32Limit, pCtx->es.Attr.u,
1961 pCtx->fs.Sel, pCtx->fs.u64Base, pCtx->fs.u32Limit, pCtx->fs.Attr.u,
1962 pCtx->gs.Sel, pCtx->gs.u64Base, pCtx->gs.u32Limit, pCtx->gs.Attr.u,
1963 pCtx->ss.Sel, pCtx->ss.u64Base, pCtx->ss.u32Limit, pCtx->ss.Attr.u,
1964 pCtx->cr0, pCtx->cr2, pCtx->cr3, pCtx->cr4,
1965 pCtx->dr[0], pCtx->dr[1], pCtx->dr[2], pCtx->dr[3],
1966 pCtx->dr[4], pCtx->dr[5], pCtx->dr[6], pCtx->dr[7],
1967 pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, efl,
1968 pCtx->ldtr.Sel, pCtx->ldtr.u64Base, pCtx->ldtr.u32Limit, pCtx->ldtr.Attr.u,
1969 pCtx->tr.Sel, pCtx->tr.u64Base, pCtx->tr.u32Limit, pCtx->tr.Attr.u,
1970 pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp));
1971 }
1972 else
1973 Log(("eax=%08x ebx=%08x ecx=%08x edx=%08x esi=%08x edi=%08x\n"
1974 "eip=%08x esp=%08x ebp=%08x iopl=%d %*s\n"
1975 "cs={%04x base=%016RX64 limit=%08x flags=%08x} dr0=%08RX64 dr1=%08RX64\n"
1976 "ds={%04x base=%016RX64 limit=%08x flags=%08x} dr2=%08RX64 dr3=%08RX64\n"
1977 "es={%04x base=%016RX64 limit=%08x flags=%08x} dr4=%08RX64 dr5=%08RX64\n"
1978 "fs={%04x base=%016RX64 limit=%08x flags=%08x} dr6=%08RX64 dr7=%08RX64\n"
1979 "gs={%04x base=%016RX64 limit=%08x flags=%08x} cr0=%08RX64 cr2=%08RX64\n"
1980 "ss={%04x base=%016RX64 limit=%08x flags=%08x} cr3=%08RX64 cr4=%08RX64\n"
1981 "gdtr=%016RX64:%04x idtr=%016RX64:%04x eflags=%08x\n"
1982 "ldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
1983 "tr ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
1984 "SysEnter={cs=%04llx eip=%08llx esp=%08llx}\n"
1985 ,
1986 pCtx->eax, pCtx->ebx, pCtx->ecx, pCtx->edx, pCtx->esi, pCtx->edi,
1987 pCtx->eip, pCtx->esp, pCtx->ebp, X86_EFL_GET_IOPL(efl), 31, szEFlags,
1988 pCtx->cs.Sel, pCtx->cs.u64Base, pCtx->cs.u32Limit, pCtx->cs.Attr.u, pCtx->dr[0], pCtx->dr[1],
1989 pCtx->ds.Sel, pCtx->ds.u64Base, pCtx->ds.u32Limit, pCtx->ds.Attr.u, pCtx->dr[2], pCtx->dr[3],
1990 pCtx->es.Sel, pCtx->es.u64Base, pCtx->es.u32Limit, pCtx->es.Attr.u, pCtx->dr[4], pCtx->dr[5],
1991 pCtx->fs.Sel, pCtx->fs.u64Base, pCtx->fs.u32Limit, pCtx->fs.Attr.u, pCtx->dr[6], pCtx->dr[7],
1992 pCtx->gs.Sel, pCtx->gs.u64Base, pCtx->gs.u32Limit, pCtx->gs.Attr.u, pCtx->cr0, pCtx->cr2,
1993 pCtx->ss.Sel, pCtx->ss.u64Base, pCtx->ss.u32Limit, pCtx->ss.Attr.u, pCtx->cr3, pCtx->cr4,
1994 pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, efl,
1995 pCtx->ldtr.Sel, pCtx->ldtr.u64Base, pCtx->ldtr.u32Limit, pCtx->ldtr.Attr.u,
1996 pCtx->tr.Sel, pCtx->tr.u64Base, pCtx->tr.u32Limit, pCtx->tr.Attr.u,
1997 pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp));
1998
1999 Log(("FPU:\n"
2000 "FCW=%04x FSW=%04x FTW=%02x\n"
2001 "FOP=%04x FPUIP=%08x CS=%04x Rsrvd1=%04x\n"
2002 "FPUDP=%04x DS=%04x Rsvrd2=%04x MXCSR=%08x MXCSR_MASK=%08x\n"
2003 ,
2004 pCtx->fpu.FCW, pCtx->fpu.FSW, pCtx->fpu.FTW,
2005 pCtx->fpu.FOP, pCtx->fpu.FPUIP, pCtx->fpu.CS, pCtx->fpu.Rsrvd1,
2006 pCtx->fpu.FPUDP, pCtx->fpu.DS, pCtx->fpu.Rsrvd2,
2007 pCtx->fpu.MXCSR, pCtx->fpu.MXCSR_MASK));
2008
2009
2010 Log(("MSR:\n"
2011 "EFER =%016RX64\n"
2012 "PAT =%016RX64\n"
2013 "STAR =%016RX64\n"
2014 "CSTAR =%016RX64\n"
2015 "LSTAR =%016RX64\n"
2016 "SFMASK =%016RX64\n"
2017 "KERNELGSBASE =%016RX64\n",
2018 pCtx->msrEFER,
2019 pCtx->msrPAT,
2020 pCtx->msrSTAR,
2021 pCtx->msrCSTAR,
2022 pCtx->msrLSTAR,
2023 pCtx->msrSFMASK,
2024 pCtx->msrKERNELGSBASE));
2025
2026}
2027
2028#endif /* VBOX_STRICT */
2029
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette