VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR0/HWSVMR0.cpp@ 37655

Last change on this file since 37655 was 37386, checked in by vboxsync, 14 years ago

VMM/HM: more paranoid poking code.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 115.1 KB
Line 
1/* $Id: HWSVMR0.cpp 37386 2011-06-08 15:15:11Z vboxsync $ */
2/** @file
3 * HWACCM SVM - Host Context Ring 0.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/*******************************************************************************
19* Header Files *
20*******************************************************************************/
21#define LOG_GROUP LOG_GROUP_HWACCM
22#include <VBox/vmm/hwaccm.h>
23#include <VBox/vmm/pgm.h>
24#include <VBox/vmm/selm.h>
25#include <VBox/vmm/iom.h>
26#include <VBox/vmm/dbgf.h>
27#include <VBox/vmm/tm.h>
28#include <VBox/vmm/pdmapi.h>
29#include "HWACCMInternal.h"
30#include <VBox/vmm/vm.h>
31#include <VBox/x86.h>
32#include <VBox/vmm/hwacc_svm.h>
33#include <VBox/err.h>
34#include <VBox/log.h>
35#include <VBox/dis.h>
36#include <VBox/disopcode.h>
37#include <iprt/param.h>
38#include <iprt/assert.h>
39#include <iprt/asm.h>
40#include <iprt/asm-amd64-x86.h>
41#include <iprt/cpuset.h>
42#include <iprt/mp.h>
43#include <iprt/time.h>
44#ifdef VBOX_WITH_VMMR0_DISABLE_PREEMPTION
45# include <iprt/thread.h>
46#endif
47#include "HWSVMR0.h"
48
49/*******************************************************************************
50* Internal Functions *
51*******************************************************************************/
52static int svmR0InterpretInvpg(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, uint32_t uASID);
53static int svmR0EmulateTprVMMCall(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx);
54static void svmR0SetMSRPermission(PVMCPU pVCpu, unsigned ulMSR, bool fRead, bool fWrite);
55
56/*******************************************************************************
57* Global Variables *
58*******************************************************************************/
59
60/**
61 * Sets up and activates AMD-V on the current CPU
62 *
63 * @returns VBox status code.
64 * @param pCpu CPU info struct
65 * @param pVM The VM to operate on. (can be NULL after a resume!!)
66 * @param pvCpuPage Pointer to the global cpu page.
67 * @param HCPhysCpuPage Physical address of the global cpu page.
68 */
69VMMR0DECL(int) SVMR0EnableCpu(PHMGLOBLCPUINFO pCpu, PVM pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage)
70{
71 AssertReturn(HCPhysCpuPage != 0 && HCPhysCpuPage != NIL_RTHCPHYS, VERR_INVALID_PARAMETER);
72 AssertReturn(pvCpuPage, VERR_INVALID_PARAMETER);
73
74 /* We must turn on AMD-V and setup the host state physical address, as
75 those MSRs are per-cpu/core. */
76 uint64_t fEfer = ASMRdMsr(MSR_K6_EFER);
77 if (fEfer & MSR_K6_EFER_SVME)
78 {
79 /* If the VBOX_HWVIRTEX_IGNORE_SVM_IN_USE hack is active, then we
80 blindly use AMD-V. */
81 if ( pVM
82 && pVM->hwaccm.s.svm.fIgnoreInUseError)
83 pCpu->fIgnoreAMDVInUseError = true;
84 if (!pCpu->fIgnoreAMDVInUseError)
85 return VERR_SVM_IN_USE;
86 }
87
88 /* Turn on AMD-V in the EFER MSR. */
89 ASMWrMsr(MSR_K6_EFER, fEfer | MSR_K6_EFER_SVME);
90
91 /* Write the physical page address where the CPU will store the host state
92 while executing the VM. */
93 ASMWrMsr(MSR_K8_VM_HSAVE_PA, HCPhysCpuPage);
94
95 return VINF_SUCCESS;
96}
97
98/**
99 * Deactivates AMD-V on the current CPU
100 *
101 * @returns VBox status code.
102 * @param pCpu CPU info struct
103 * @param pvCpuPage Pointer to the global cpu page.
104 * @param HCPhysCpuPage Physical address of the global cpu page.
105 */
106VMMR0DECL(int) SVMR0DisableCpu(PHMGLOBLCPUINFO pCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage)
107{
108 AssertReturn(HCPhysCpuPage != 0 && HCPhysCpuPage != NIL_RTHCPHYS, VERR_INVALID_PARAMETER);
109 AssertReturn(pvCpuPage, VERR_INVALID_PARAMETER);
110
111 /* Turn off AMD-V in the EFER MSR. */
112 uint64_t fEfer = ASMRdMsr(MSR_K6_EFER);
113 ASMWrMsr(MSR_K6_EFER, fEfer & ~MSR_K6_EFER_SVME);
114
115 /* Invalidate host state physical address. */
116 ASMWrMsr(MSR_K8_VM_HSAVE_PA, 0);
117
118 return VINF_SUCCESS;
119}
120
121/**
122 * Does Ring-0 per VM AMD-V init.
123 *
124 * @returns VBox status code.
125 * @param pVM The VM to operate on.
126 */
127VMMR0DECL(int) SVMR0InitVM(PVM pVM)
128{
129 int rc;
130
131 pVM->hwaccm.s.svm.pMemObjIOBitmap = NIL_RTR0MEMOBJ;
132
133 /* Allocate 12 KB for the IO bitmap (doesn't seem to be a way to convince SVM not to use it) */
134 rc = RTR0MemObjAllocCont(&pVM->hwaccm.s.svm.pMemObjIOBitmap, 3 << PAGE_SHIFT, true /* executable R0 mapping */);
135 if (RT_FAILURE(rc))
136 return rc;
137
138 pVM->hwaccm.s.svm.pIOBitmap = RTR0MemObjAddress(pVM->hwaccm.s.svm.pMemObjIOBitmap);
139 pVM->hwaccm.s.svm.pIOBitmapPhys = RTR0MemObjGetPagePhysAddr(pVM->hwaccm.s.svm.pMemObjIOBitmap, 0);
140 /* Set all bits to intercept all IO accesses. */
141 ASMMemFill32(pVM->hwaccm.s.svm.pIOBitmap, PAGE_SIZE*3, 0xffffffff);
142
143 /* Erratum 170 which requires a forced TLB flush for each world switch:
144 * See http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/33610.pdf
145 *
146 * All BH-G1/2 and DH-G1/2 models include a fix:
147 * Athlon X2: 0x6b 1/2
148 * 0x68 1/2
149 * Athlon 64: 0x7f 1
150 * 0x6f 2
151 * Sempron: 0x7f 1/2
152 * 0x6f 2
153 * 0x6c 2
154 * 0x7c 2
155 * Turion 64: 0x68 2
156 *
157 */
158 uint32_t u32Dummy;
159 uint32_t u32Version, u32Family, u32Model, u32Stepping, u32BaseFamily;
160 ASMCpuId(1, &u32Version, &u32Dummy, &u32Dummy, &u32Dummy);
161 u32BaseFamily= (u32Version >> 8) & 0xf;
162 u32Family = u32BaseFamily + (u32BaseFamily == 0xf ? ((u32Version >> 20) & 0x7f) : 0);
163 u32Model = ((u32Version >> 4) & 0xf);
164 u32Model = u32Model | ((u32BaseFamily == 0xf ? (u32Version >> 16) & 0x0f : 0) << 4);
165 u32Stepping = u32Version & 0xf;
166 if ( u32Family == 0xf
167 && !((u32Model == 0x68 || u32Model == 0x6b || u32Model == 0x7f) && u32Stepping >= 1)
168 && !((u32Model == 0x6f || u32Model == 0x6c || u32Model == 0x7c) && u32Stepping >= 2))
169 {
170 Log(("SVMR0InitVM: AMD cpu with erratum 170 family %x model %x stepping %x\n", u32Family, u32Model, u32Stepping));
171 pVM->hwaccm.s.svm.fAlwaysFlushTLB = true;
172 }
173
174 /* Allocate VMCBs for all guest CPUs. */
175 for (VMCPUID i = 0; i < pVM->cCpus; i++)
176 {
177 PVMCPU pVCpu = &pVM->aCpus[i];
178
179 pVCpu->hwaccm.s.svm.pMemObjVMCBHost = NIL_RTR0MEMOBJ;
180 pVCpu->hwaccm.s.svm.pMemObjVMCB = NIL_RTR0MEMOBJ;
181 pVCpu->hwaccm.s.svm.pMemObjMSRBitmap = NIL_RTR0MEMOBJ;
182
183 /* Allocate one page for the host context */
184 rc = RTR0MemObjAllocCont(&pVCpu->hwaccm.s.svm.pMemObjVMCBHost, 1 << PAGE_SHIFT, true /* executable R0 mapping */);
185 if (RT_FAILURE(rc))
186 return rc;
187
188 pVCpu->hwaccm.s.svm.pVMCBHost = RTR0MemObjAddress(pVCpu->hwaccm.s.svm.pMemObjVMCBHost);
189 pVCpu->hwaccm.s.svm.pVMCBHostPhys = RTR0MemObjGetPagePhysAddr(pVCpu->hwaccm.s.svm.pMemObjVMCBHost, 0);
190 Assert(pVCpu->hwaccm.s.svm.pVMCBHostPhys < _4G);
191 ASMMemZeroPage(pVCpu->hwaccm.s.svm.pVMCBHost);
192
193 /* Allocate one page for the VM control block (VMCB). */
194 rc = RTR0MemObjAllocCont(&pVCpu->hwaccm.s.svm.pMemObjVMCB, 1 << PAGE_SHIFT, true /* executable R0 mapping */);
195 if (RT_FAILURE(rc))
196 return rc;
197
198 pVCpu->hwaccm.s.svm.pVMCB = RTR0MemObjAddress(pVCpu->hwaccm.s.svm.pMemObjVMCB);
199 pVCpu->hwaccm.s.svm.pVMCBPhys = RTR0MemObjGetPagePhysAddr(pVCpu->hwaccm.s.svm.pMemObjVMCB, 0);
200 Assert(pVCpu->hwaccm.s.svm.pVMCBPhys < _4G);
201 ASMMemZeroPage(pVCpu->hwaccm.s.svm.pVMCB);
202
203 /* Allocate 8 KB for the MSR bitmap (doesn't seem to be a way to convince SVM not to use it) */
204 rc = RTR0MemObjAllocCont(&pVCpu->hwaccm.s.svm.pMemObjMSRBitmap, 2 << PAGE_SHIFT, true /* executable R0 mapping */);
205 if (RT_FAILURE(rc))
206 return rc;
207
208 pVCpu->hwaccm.s.svm.pMSRBitmap = RTR0MemObjAddress(pVCpu->hwaccm.s.svm.pMemObjMSRBitmap);
209 pVCpu->hwaccm.s.svm.pMSRBitmapPhys = RTR0MemObjGetPagePhysAddr(pVCpu->hwaccm.s.svm.pMemObjMSRBitmap, 0);
210 /* Set all bits to intercept all MSR accesses. */
211 ASMMemFill32(pVCpu->hwaccm.s.svm.pMSRBitmap, PAGE_SIZE*2, 0xffffffff);
212 }
213
214 return VINF_SUCCESS;
215}
216
217/**
218 * Does Ring-0 per VM AMD-V termination.
219 *
220 * @returns VBox status code.
221 * @param pVM The VM to operate on.
222 */
223VMMR0DECL(int) SVMR0TermVM(PVM pVM)
224{
225 for (VMCPUID i = 0; i < pVM->cCpus; i++)
226 {
227 PVMCPU pVCpu = &pVM->aCpus[i];
228
229 if (pVCpu->hwaccm.s.svm.pMemObjVMCBHost != NIL_RTR0MEMOBJ)
230 {
231 RTR0MemObjFree(pVCpu->hwaccm.s.svm.pMemObjVMCBHost, false);
232 pVCpu->hwaccm.s.svm.pVMCBHost = 0;
233 pVCpu->hwaccm.s.svm.pVMCBHostPhys = 0;
234 pVCpu->hwaccm.s.svm.pMemObjVMCBHost = NIL_RTR0MEMOBJ;
235 }
236
237 if (pVCpu->hwaccm.s.svm.pMemObjVMCB != NIL_RTR0MEMOBJ)
238 {
239 RTR0MemObjFree(pVCpu->hwaccm.s.svm.pMemObjVMCB, false);
240 pVCpu->hwaccm.s.svm.pVMCB = 0;
241 pVCpu->hwaccm.s.svm.pVMCBPhys = 0;
242 pVCpu->hwaccm.s.svm.pMemObjVMCB = NIL_RTR0MEMOBJ;
243 }
244 if (pVCpu->hwaccm.s.svm.pMemObjMSRBitmap != NIL_RTR0MEMOBJ)
245 {
246 RTR0MemObjFree(pVCpu->hwaccm.s.svm.pMemObjMSRBitmap, false);
247 pVCpu->hwaccm.s.svm.pMSRBitmap = 0;
248 pVCpu->hwaccm.s.svm.pMSRBitmapPhys = 0;
249 pVCpu->hwaccm.s.svm.pMemObjMSRBitmap = NIL_RTR0MEMOBJ;
250 }
251 }
252 if (pVM->hwaccm.s.svm.pMemObjIOBitmap != NIL_RTR0MEMOBJ)
253 {
254 RTR0MemObjFree(pVM->hwaccm.s.svm.pMemObjIOBitmap, false);
255 pVM->hwaccm.s.svm.pIOBitmap = 0;
256 pVM->hwaccm.s.svm.pIOBitmapPhys = 0;
257 pVM->hwaccm.s.svm.pMemObjIOBitmap = NIL_RTR0MEMOBJ;
258 }
259 return VINF_SUCCESS;
260}
261
262/**
263 * Sets up AMD-V for the specified VM
264 *
265 * @returns VBox status code.
266 * @param pVM The VM to operate on.
267 */
268VMMR0DECL(int) SVMR0SetupVM(PVM pVM)
269{
270 int rc = VINF_SUCCESS;
271
272 AssertReturn(pVM, VERR_INVALID_PARAMETER);
273
274 Assert(pVM->hwaccm.s.svm.fSupported);
275
276 for (VMCPUID i = 0; i < pVM->cCpus; i++)
277 {
278 PVMCPU pVCpu = &pVM->aCpus[i];
279 SVM_VMCB *pVMCB = (SVM_VMCB *)pVM->aCpus[i].hwaccm.s.svm.pVMCB;
280
281 AssertMsgReturn(pVMCB, ("Invalid pVMCB\n"), VERR_EM_INTERNAL_ERROR);
282
283 /* Program the control fields. Most of them never have to be changed again. */
284 /* CR0/3/4 reads must be intercepted, our shadow values are not necessarily the same as the guest's. */
285 /* Note: CR0 & CR4 can be safely read when guest and shadow copies are identical. */
286 if (!pVM->hwaccm.s.fNestedPaging)
287 pVMCB->ctrl.u16InterceptRdCRx = RT_BIT(0) | RT_BIT(3) | RT_BIT(4);
288 else
289 pVMCB->ctrl.u16InterceptRdCRx = RT_BIT(0) | RT_BIT(4);
290
291 /*
292 * CR0/3/4 writes must be intercepted for obvious reasons.
293 */
294 if (!pVM->hwaccm.s.fNestedPaging)
295 pVMCB->ctrl.u16InterceptWrCRx = RT_BIT(0) | RT_BIT(3) | RT_BIT(4);
296 else
297 pVMCB->ctrl.u16InterceptWrCRx = RT_BIT(0) | RT_BIT(4);
298
299 /* Intercept all DRx reads and writes by default. Changed later on. */
300 pVMCB->ctrl.u16InterceptRdDRx = 0xFFFF;
301 pVMCB->ctrl.u16InterceptWrDRx = 0xFFFF;
302
303 /* Currently we don't care about DRx reads or writes. DRx registers are trashed.
304 * All breakpoints are automatically cleared when the VM exits.
305 */
306
307 pVMCB->ctrl.u32InterceptException = HWACCM_SVM_TRAP_MASK;
308#ifndef DEBUG
309 if (pVM->hwaccm.s.fNestedPaging)
310 pVMCB->ctrl.u32InterceptException &= ~RT_BIT(X86_XCPT_PF); /* no longer need to intercept #PF. */
311#endif
312
313 pVMCB->ctrl.u32InterceptCtrl1 = SVM_CTRL1_INTERCEPT_INTR
314 | SVM_CTRL1_INTERCEPT_VINTR
315 | SVM_CTRL1_INTERCEPT_NMI
316 | SVM_CTRL1_INTERCEPT_SMI
317 | SVM_CTRL1_INTERCEPT_INIT
318 | SVM_CTRL1_INTERCEPT_RDPMC
319 | SVM_CTRL1_INTERCEPT_CPUID
320 | SVM_CTRL1_INTERCEPT_RSM
321 | SVM_CTRL1_INTERCEPT_HLT
322 | SVM_CTRL1_INTERCEPT_INOUT_BITMAP
323 | SVM_CTRL1_INTERCEPT_MSR_SHADOW
324 | SVM_CTRL1_INTERCEPT_INVLPG
325 | SVM_CTRL1_INTERCEPT_INVLPGA /* AMD only */
326 | SVM_CTRL1_INTERCEPT_TASK_SWITCH
327 | SVM_CTRL1_INTERCEPT_SHUTDOWN /* fatal */
328 | SVM_CTRL1_INTERCEPT_FERR_FREEZE; /* Legacy FPU FERR handling. */
329 ;
330 /* With nested paging we don't care about invlpg anymore. */
331 if (pVM->hwaccm.s.fNestedPaging)
332 pVMCB->ctrl.u32InterceptCtrl1 &= ~SVM_CTRL1_INTERCEPT_INVLPG;
333
334 pVMCB->ctrl.u32InterceptCtrl2 = SVM_CTRL2_INTERCEPT_VMRUN /* required */
335 | SVM_CTRL2_INTERCEPT_VMMCALL
336 | SVM_CTRL2_INTERCEPT_VMLOAD
337 | SVM_CTRL2_INTERCEPT_VMSAVE
338 | SVM_CTRL2_INTERCEPT_STGI
339 | SVM_CTRL2_INTERCEPT_CLGI
340 | SVM_CTRL2_INTERCEPT_SKINIT
341 | SVM_CTRL2_INTERCEPT_WBINVD
342 | SVM_CTRL2_INTERCEPT_MONITOR
343 | SVM_CTRL2_INTERCEPT_MWAIT_UNCOND; /* don't execute mwait or else we'll idle inside the guest (host thinks the cpu load is high) */
344 ;
345 Log(("pVMCB->ctrl.u32InterceptException = %x\n", pVMCB->ctrl.u32InterceptException));
346 Log(("pVMCB->ctrl.u32InterceptCtrl1 = %x\n", pVMCB->ctrl.u32InterceptCtrl1));
347 Log(("pVMCB->ctrl.u32InterceptCtrl2 = %x\n", pVMCB->ctrl.u32InterceptCtrl2));
348
349 /* Virtualize masking of INTR interrupts. (reads/writes from/to CR8 go to the V_TPR register) */
350 pVMCB->ctrl.IntCtrl.n.u1VIrqMasking = 1;
351 /* Ignore the priority in the TPR; just deliver it when we tell it to. */
352 pVMCB->ctrl.IntCtrl.n.u1IgnoreTPR = 1;
353
354 /* Set IO and MSR bitmap addresses. */
355 pVMCB->ctrl.u64IOPMPhysAddr = pVM->hwaccm.s.svm.pIOBitmapPhys;
356 pVMCB->ctrl.u64MSRPMPhysAddr = pVCpu->hwaccm.s.svm.pMSRBitmapPhys;
357
358 /* No LBR virtualization. */
359 pVMCB->ctrl.u64LBRVirt = 0;
360
361 /** The ASID must start at 1; the host uses 0. */
362 pVMCB->ctrl.TLBCtrl.n.u32ASID = 1;
363
364 /** Setup the PAT msr (nested paging only) */
365 /* The default value should be 0x0007040600070406ULL, but we want to treat all guest memory as WB, so choose type 6 for all PAT slots. */
366 pVMCB->guest.u64GPAT = 0x0006060606060606ULL;
367
368 /* The following MSRs are saved automatically by vmload/vmsave, so we allow the guest
369 * to modify them directly.
370 */
371 svmR0SetMSRPermission(pVCpu, MSR_K8_LSTAR, true, true);
372 svmR0SetMSRPermission(pVCpu, MSR_K8_CSTAR, true, true);
373 svmR0SetMSRPermission(pVCpu, MSR_K6_STAR, true, true);
374 svmR0SetMSRPermission(pVCpu, MSR_K8_SF_MASK, true, true);
375 svmR0SetMSRPermission(pVCpu, MSR_K8_FS_BASE, true, true);
376 svmR0SetMSRPermission(pVCpu, MSR_K8_GS_BASE, true, true);
377 svmR0SetMSRPermission(pVCpu, MSR_K8_KERNEL_GS_BASE, true, true);
378 svmR0SetMSRPermission(pVCpu, MSR_IA32_SYSENTER_CS, true, true);
379 svmR0SetMSRPermission(pVCpu, MSR_IA32_SYSENTER_ESP, true, true);
380 svmR0SetMSRPermission(pVCpu, MSR_IA32_SYSENTER_EIP, true, true);
381 }
382
383 return rc;
384}
385
386
387/**
388 * Sets the permission bits for the specified MSR
389 *
390 * @param pVCpu The VMCPU to operate on.
391 * @param ulMSR MSR value
392 * @param fRead Reading allowed/disallowed
393 * @param fWrite Writing allowed/disallowed
394 */
395static void svmR0SetMSRPermission(PVMCPU pVCpu, unsigned ulMSR, bool fRead, bool fWrite)
396{
397 unsigned ulBit;
398 uint8_t *pMSRBitmap = (uint8_t *)pVCpu->hwaccm.s.svm.pMSRBitmap;
399
400 if (ulMSR <= 0x00001FFF)
401 {
402 /* Pentium-compatible MSRs */
403 ulBit = ulMSR * 2;
404 }
405 else
406 if ( ulMSR >= 0xC0000000
407 && ulMSR <= 0xC0001FFF)
408 {
409 /* AMD Sixth Generation x86 Processor MSRs and SYSCALL */
410 ulBit = (ulMSR - 0xC0000000) * 2;
411 pMSRBitmap += 0x800;
412 }
413 else
414 if ( ulMSR >= 0xC0010000
415 && ulMSR <= 0xC0011FFF)
416 {
417 /* AMD Seventh and Eighth Generation Processor MSRs */
418 ulBit = (ulMSR - 0xC0001000) * 2;
419 pMSRBitmap += 0x1000;
420 }
421 else
422 {
423 AssertFailed();
424 return;
425 }
426 Assert(ulBit < 16 * 1024 - 1);
427 if (fRead)
428 ASMBitClear(pMSRBitmap, ulBit);
429 else
430 ASMBitSet(pMSRBitmap, ulBit);
431
432 if (fWrite)
433 ASMBitClear(pMSRBitmap, ulBit + 1);
434 else
435 ASMBitSet(pMSRBitmap, ulBit + 1);
436}
437
438/**
439 * Injects an event (trap or external interrupt)
440 *
441 * @param pVCpu The VMCPU to operate on.
442 * @param pVMCB SVM control block
443 * @param pCtx CPU Context
444 * @param pIntInfo SVM interrupt info
445 */
446inline void SVMR0InjectEvent(PVMCPU pVCpu, SVM_VMCB *pVMCB, CPUMCTX *pCtx, SVM_EVENT* pEvent)
447{
448#ifdef VBOX_WITH_STATISTICS
449 STAM_COUNTER_INC(&pVCpu->hwaccm.s.paStatInjectedIrqsR0[pEvent->n.u8Vector & MASK_INJECT_IRQ_STAT]);
450#endif
451
452#ifdef VBOX_STRICT
453 if (pEvent->n.u8Vector == 0xE)
454 Log(("SVM: Inject int %d at %RGv error code=%02x CR2=%RGv intInfo=%08x\n", pEvent->n.u8Vector, (RTGCPTR)pCtx->rip, pEvent->n.u32ErrorCode, (RTGCPTR)pCtx->cr2, pEvent->au64[0]));
455 else
456 if (pEvent->n.u8Vector < 0x20)
457 Log(("SVM: Inject int %d at %RGv error code=%08x\n", pEvent->n.u8Vector, (RTGCPTR)pCtx->rip, pEvent->n.u32ErrorCode));
458 else
459 {
460 Log(("INJ-EI: %x at %RGv\n", pEvent->n.u8Vector, (RTGCPTR)pCtx->rip));
461 Assert(!VMCPU_FF_ISSET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS));
462 Assert(pCtx->eflags.u32 & X86_EFL_IF);
463 }
464#endif
465
466 /* Set event injection state. */
467 pVMCB->ctrl.EventInject.au64[0] = pEvent->au64[0];
468}
469
470
471/**
472 * Checks for pending guest interrupts and injects them
473 *
474 * @returns VBox status code.
475 * @param pVM The VM to operate on.
476 * @param pVCpu The VM CPU to operate on.
477 * @param pVMCB SVM control block
478 * @param pCtx CPU Context
479 */
480static int SVMR0CheckPendingInterrupt(PVM pVM, PVMCPU pVCpu, SVM_VMCB *pVMCB, CPUMCTX *pCtx)
481{
482 int rc;
483
484 /* Dispatch any pending interrupts. (injected before, but a VM exit occurred prematurely) */
485 if (pVCpu->hwaccm.s.Event.fPending)
486 {
487 SVM_EVENT Event;
488
489 Log(("Reinjecting event %08x %08x at %RGv\n", pVCpu->hwaccm.s.Event.intInfo, pVCpu->hwaccm.s.Event.errCode, (RTGCPTR)pCtx->rip));
490 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatIntReinject);
491 Event.au64[0] = pVCpu->hwaccm.s.Event.intInfo;
492 SVMR0InjectEvent(pVCpu, pVMCB, pCtx, &Event);
493
494 pVCpu->hwaccm.s.Event.fPending = false;
495 return VINF_SUCCESS;
496 }
497
498 /* If an active trap is already pending, then we must forward it first! */
499 if (!TRPMHasTrap(pVCpu))
500 {
501 if (VMCPU_FF_TESTANDCLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI))
502 {
503 SVM_EVENT Event;
504
505 Log(("CPU%d: injecting #NMI\n", pVCpu->idCpu));
506 Event.n.u8Vector = X86_XCPT_NMI;
507 Event.n.u1Valid = 1;
508 Event.n.u32ErrorCode = 0;
509 Event.n.u3Type = SVM_EVENT_NMI;
510
511 SVMR0InjectEvent(pVCpu, pVMCB, pCtx, &Event);
512 return VINF_SUCCESS;
513 }
514
515 /* @todo SMI interrupts. */
516
517 /* When external interrupts are pending, we should exit the VM when IF is set. */
518 if (VMCPU_FF_ISPENDING(pVCpu, (VMCPU_FF_INTERRUPT_APIC|VMCPU_FF_INTERRUPT_PIC)))
519 {
520 if ( !(pCtx->eflags.u32 & X86_EFL_IF)
521 || VMCPU_FF_ISSET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
522 {
523 if (!pVMCB->ctrl.IntCtrl.n.u1VIrqValid)
524 {
525 if (!VMCPU_FF_ISSET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
526 LogFlow(("Enable irq window exit!\n"));
527 else
528 Log(("Pending interrupt blocked at %RGv by VM_FF_INHIBIT_INTERRUPTS -> irq window exit\n", (RTGCPTR)pCtx->rip));
529
530 /** @todo use virtual interrupt method to inject a pending irq; dispatched as soon as guest.IF is set. */
531 pVMCB->ctrl.u32InterceptCtrl1 |= SVM_CTRL1_INTERCEPT_VINTR;
532 pVMCB->ctrl.IntCtrl.n.u1VIrqValid = 1;
533 pVMCB->ctrl.IntCtrl.n.u8VIrqVector = 0; /* don't care */
534 }
535 }
536 else
537 {
538 uint8_t u8Interrupt;
539
540 rc = PDMGetInterrupt(pVCpu, &u8Interrupt);
541 Log(("Dispatch interrupt: u8Interrupt=%x (%d) rc=%Rrc\n", u8Interrupt, u8Interrupt, rc));
542 if (RT_SUCCESS(rc))
543 {
544 rc = TRPMAssertTrap(pVCpu, u8Interrupt, TRPM_HARDWARE_INT);
545 AssertRC(rc);
546 }
547 else
548 {
549 /* Can only happen in rare cases where a pending interrupt is cleared behind our back */
550 Assert(!VMCPU_FF_ISPENDING(pVCpu, (VMCPU_FF_INTERRUPT_APIC|VMCPU_FF_INTERRUPT_PIC)));
551 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatSwitchGuestIrq);
552 /* Just continue */
553 }
554 }
555 }
556 }
557
558#ifdef VBOX_STRICT
559 if (TRPMHasTrap(pVCpu))
560 {
561 uint8_t u8Vector;
562 rc = TRPMQueryTrapAll(pVCpu, &u8Vector, 0, 0, 0);
563 AssertRC(rc);
564 }
565#endif
566
567 if ( (pCtx->eflags.u32 & X86_EFL_IF)
568 && (!VMCPU_FF_ISSET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
569 && TRPMHasTrap(pVCpu)
570 )
571 {
572 uint8_t u8Vector;
573 TRPMEVENT enmType;
574 SVM_EVENT Event;
575 RTGCUINT u32ErrorCode;
576
577 Event.au64[0] = 0;
578
579 /* If a new event is pending, then dispatch it now. */
580 rc = TRPMQueryTrapAll(pVCpu, &u8Vector, &enmType, &u32ErrorCode, 0);
581 AssertRC(rc);
582 Assert(pCtx->eflags.Bits.u1IF == 1 || enmType == TRPM_TRAP);
583 Assert(enmType != TRPM_SOFTWARE_INT);
584
585 /* Clear the pending trap. */
586 rc = TRPMResetTrap(pVCpu);
587 AssertRC(rc);
588
589 Event.n.u8Vector = u8Vector;
590 Event.n.u1Valid = 1;
591 Event.n.u32ErrorCode = u32ErrorCode;
592
593 if (enmType == TRPM_TRAP)
594 {
595 switch (u8Vector) {
596 case 8:
597 case 10:
598 case 11:
599 case 12:
600 case 13:
601 case 14:
602 case 17:
603 /* Valid error codes. */
604 Event.n.u1ErrorCodeValid = 1;
605 break;
606 default:
607 break;
608 }
609 if (u8Vector == X86_XCPT_NMI)
610 Event.n.u3Type = SVM_EVENT_NMI;
611 else
612 Event.n.u3Type = SVM_EVENT_EXCEPTION;
613 }
614 else
615 Event.n.u3Type = SVM_EVENT_EXTERNAL_IRQ;
616
617 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatIntInject);
618 SVMR0InjectEvent(pVCpu, pVMCB, pCtx, &Event);
619 } /* if (interrupts can be dispatched) */
620
621 return VINF_SUCCESS;
622}
623
624/**
625 * Save the host state
626 *
627 * @returns VBox status code.
628 * @param pVM The VM to operate on.
629 * @param pVCpu The VM CPU to operate on.
630 */
631VMMR0DECL(int) SVMR0SaveHostState(PVM pVM, PVMCPU pVCpu)
632{
633 NOREF(pVM);
634 NOREF(pVCpu);
635 /* Nothing to do here. */
636 return VINF_SUCCESS;
637}
638
639/**
640 * Loads the guest state
641 *
642 * NOTE: Don't do anything here that can cause a jump back to ring 3!!!!!
643 *
644 * @returns VBox status code.
645 * @param pVM The VM to operate on.
646 * @param pVCpu The VM CPU to operate on.
647 * @param pCtx Guest context
648 */
649VMMR0DECL(int) SVMR0LoadGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
650{
651 RTGCUINTPTR val;
652 SVM_VMCB *pVMCB;
653
654 if (pVM == NULL)
655 return VERR_INVALID_PARAMETER;
656
657 /* Setup AMD SVM. */
658 Assert(pVM->hwaccm.s.svm.fSupported);
659
660 pVMCB = (SVM_VMCB *)pVCpu->hwaccm.s.svm.pVMCB;
661 AssertMsgReturn(pVMCB, ("Invalid pVMCB\n"), VERR_EM_INTERNAL_ERROR);
662
663 /* Guest CPU context: ES, CS, SS, DS, FS, GS. */
664 if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_SEGMENT_REGS)
665 {
666 SVM_WRITE_SELREG(CS, cs);
667 SVM_WRITE_SELREG(SS, ss);
668 SVM_WRITE_SELREG(DS, ds);
669 SVM_WRITE_SELREG(ES, es);
670 SVM_WRITE_SELREG(FS, fs);
671 SVM_WRITE_SELREG(GS, gs);
672 }
673
674 /* Guest CPU context: LDTR. */
675 if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_LDTR)
676 {
677 SVM_WRITE_SELREG(LDTR, ldtr);
678 }
679
680 /* Guest CPU context: TR. */
681 if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_TR)
682 {
683 SVM_WRITE_SELREG(TR, tr);
684 }
685
686 /* Guest CPU context: GDTR. */
687 if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_GDTR)
688 {
689 pVMCB->guest.GDTR.u32Limit = pCtx->gdtr.cbGdt;
690 pVMCB->guest.GDTR.u64Base = pCtx->gdtr.pGdt;
691 }
692
693 /* Guest CPU context: IDTR. */
694 if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_IDTR)
695 {
696 pVMCB->guest.IDTR.u32Limit = pCtx->idtr.cbIdt;
697 pVMCB->guest.IDTR.u64Base = pCtx->idtr.pIdt;
698 }
699
700 /*
701 * Sysenter MSRs (unconditional)
702 */
703 pVMCB->guest.u64SysEnterCS = pCtx->SysEnter.cs;
704 pVMCB->guest.u64SysEnterEIP = pCtx->SysEnter.eip;
705 pVMCB->guest.u64SysEnterESP = pCtx->SysEnter.esp;
706
707 /* Control registers */
708 if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_CR0)
709 {
710 val = pCtx->cr0;
711 if (!CPUMIsGuestFPUStateActive(pVCpu))
712 {
713 /* Always use #NM exceptions to load the FPU/XMM state on demand. */
714 val |= X86_CR0_TS | X86_CR0_ET | X86_CR0_NE | X86_CR0_MP;
715 }
716 else
717 {
718 /** @todo check if we support the old style mess correctly. */
719 if (!(val & X86_CR0_NE))
720 {
721 Log(("Forcing X86_CR0_NE!!!\n"));
722
723 /* Also catch floating point exceptions as we need to report them to the guest in a different way. */
724 if (!pVCpu->hwaccm.s.fFPUOldStyleOverride)
725 {
726 pVMCB->ctrl.u32InterceptException |= RT_BIT(X86_XCPT_MF);
727 pVCpu->hwaccm.s.fFPUOldStyleOverride = true;
728 }
729 }
730 val |= X86_CR0_NE; /* always turn on the native mechanism to report FPU errors (old style uses interrupts) */
731 }
732 /* Always enable caching. */
733 val &= ~(X86_CR0_CD|X86_CR0_NW);
734
735 /* Note: WP is not relevant in nested paging mode as we catch accesses on the (guest) physical level. */
736 /* Note: In nested paging mode the guest is allowed to run with paging disabled; the guest physical to host physical translation will remain active. */
737 if (!pVM->hwaccm.s.fNestedPaging)
738 {
739 val |= X86_CR0_PG; /* Paging is always enabled; even when the guest is running in real mode or PE without paging. */
740 val |= X86_CR0_WP; /* Must set this as we rely on protecting various pages and supervisor writes must be caught. */
741 }
742 pVMCB->guest.u64CR0 = val;
743 }
744 /* CR2 as well */
745 pVMCB->guest.u64CR2 = pCtx->cr2;
746
747 if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_CR3)
748 {
749 /* Save our shadow CR3 register. */
750 if (pVM->hwaccm.s.fNestedPaging)
751 {
752 PGMMODE enmShwPagingMode;
753
754#if HC_ARCH_BITS == 32
755 if (CPUMIsGuestInLongModeEx(pCtx))
756 enmShwPagingMode = PGMMODE_AMD64_NX;
757 else
758#endif
759 enmShwPagingMode = PGMGetHostMode(pVM);
760
761 pVMCB->ctrl.u64NestedPagingCR3 = PGMGetNestedCR3(pVCpu, enmShwPagingMode);
762 Assert(pVMCB->ctrl.u64NestedPagingCR3);
763 pVMCB->guest.u64CR3 = pCtx->cr3;
764 }
765 else
766 {
767 pVMCB->guest.u64CR3 = PGMGetHyperCR3(pVCpu);
768 Assert(pVMCB->guest.u64CR3 || VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL));
769 }
770 }
771
772 if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_CR4)
773 {
774 val = pCtx->cr4;
775 if (!pVM->hwaccm.s.fNestedPaging)
776 {
777 switch(pVCpu->hwaccm.s.enmShadowMode)
778 {
779 case PGMMODE_REAL:
780 case PGMMODE_PROTECTED: /* Protected mode, no paging. */
781 AssertFailed();
782 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
783
784 case PGMMODE_32_BIT: /* 32-bit paging. */
785 val &= ~X86_CR4_PAE;
786 break;
787
788 case PGMMODE_PAE: /* PAE paging. */
789 case PGMMODE_PAE_NX: /* PAE paging with NX enabled. */
790 /** Must use PAE paging as we could use physical memory > 4 GB */
791 val |= X86_CR4_PAE;
792 break;
793
794 case PGMMODE_AMD64: /* 64-bit AMD paging (long mode). */
795 case PGMMODE_AMD64_NX: /* 64-bit AMD paging (long mode) with NX enabled. */
796#ifdef VBOX_ENABLE_64_BITS_GUESTS
797 break;
798#else
799 AssertFailed();
800 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
801#endif
802
803 default: /* shut up gcc */
804 AssertFailed();
805 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
806 }
807 }
808 pVMCB->guest.u64CR4 = val;
809 }
810
811 /* Debug registers. */
812 if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_DEBUG)
813 {
814 pCtx->dr[6] |= X86_DR6_INIT_VAL; /* set all reserved bits to 1. */
815 pCtx->dr[6] &= ~RT_BIT(12); /* must be zero. */
816
817 pCtx->dr[7] &= 0xffffffff; /* upper 32 bits reserved */
818 pCtx->dr[7] &= ~(RT_BIT(11) | RT_BIT(12) | RT_BIT(14) | RT_BIT(15)); /* must be zero */
819 pCtx->dr[7] |= 0x400; /* must be one */
820
821 pVMCB->guest.u64DR7 = pCtx->dr[7];
822 pVMCB->guest.u64DR6 = pCtx->dr[6];
823
824#ifdef DEBUG
825 /* Sync the hypervisor debug state now if any breakpoint is armed. */
826 if ( CPUMGetHyperDR7(pVCpu) & (X86_DR7_ENABLED_MASK|X86_DR7_GD)
827 && !CPUMIsHyperDebugStateActive(pVCpu)
828 && !DBGFIsStepping(pVCpu))
829 {
830 /* Save the host and load the hypervisor debug state. */
831 int rc = CPUMR0LoadHyperDebugState(pVM, pVCpu, pCtx, false /* exclude DR6 */);
832 AssertRC(rc);
833
834 /* DRx intercepts remain enabled. */
835
836 /* Override dr6 & dr7 with the hypervisor values. */
837 pVMCB->guest.u64DR7 = CPUMGetHyperDR7(pVCpu);
838 pVMCB->guest.u64DR6 = CPUMGetHyperDR6(pVCpu);
839 }
840 else
841#endif
842 /* Sync the debug state now if any breakpoint is armed. */
843 if ( (pCtx->dr[7] & (X86_DR7_ENABLED_MASK|X86_DR7_GD))
844 && !CPUMIsGuestDebugStateActive(pVCpu)
845 && !DBGFIsStepping(pVCpu))
846 {
847 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatDRxArmed);
848
849 /* Disable drx move intercepts. */
850 pVMCB->ctrl.u16InterceptRdDRx = 0;
851 pVMCB->ctrl.u16InterceptWrDRx = 0;
852
853 /* Save the host and load the guest debug state. */
854 int rc = CPUMR0LoadGuestDebugState(pVM, pVCpu, pCtx, false /* exclude DR6 */);
855 AssertRC(rc);
856 }
857 }
858
859 /* EIP, ESP and EFLAGS */
860 pVMCB->guest.u64RIP = pCtx->rip;
861 pVMCB->guest.u64RSP = pCtx->rsp;
862 pVMCB->guest.u64RFlags = pCtx->eflags.u32;
863
864 /* Set CPL */
865 pVMCB->guest.u8CPL = pCtx->csHid.Attr.n.u2Dpl;
866
867 /* RAX/EAX too, as VMRUN uses RAX as an implicit parameter. */
868 pVMCB->guest.u64RAX = pCtx->rax;
869
870 /* vmrun will fail without MSR_K6_EFER_SVME. */
871 pVMCB->guest.u64EFER = pCtx->msrEFER | MSR_K6_EFER_SVME;
872
873 /* 64 bits guest mode? */
874 if (CPUMIsGuestInLongModeEx(pCtx))
875 {
876#if !defined(VBOX_ENABLE_64_BITS_GUESTS)
877 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
878#elif HC_ARCH_BITS == 32 && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
879 pVCpu->hwaccm.s.svm.pfnVMRun = SVMR0VMSwitcherRun64;
880#else
881# ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
882 if (!pVM->hwaccm.s.fAllow64BitGuests)
883 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
884# endif
885 pVCpu->hwaccm.s.svm.pfnVMRun = SVMR0VMRun64;
886#endif
887 /* Unconditionally update these as wrmsr might have changed them. (HWACCM_CHANGED_GUEST_SEGMENT_REGS will not be set) */
888 pVMCB->guest.FS.u64Base = pCtx->fsHid.u64Base;
889 pVMCB->guest.GS.u64Base = pCtx->gsHid.u64Base;
890 }
891 else
892 {
893 /* Filter out the MSR_K6_LME bit or else AMD-V expects amd64 shadow paging. */
894 pVMCB->guest.u64EFER &= ~MSR_K6_EFER_LME;
895
896 pVCpu->hwaccm.s.svm.pfnVMRun = SVMR0VMRun;
897 }
898
899 /* TSC offset. */
900 if (TMCpuTickCanUseRealTSC(pVCpu, &pVMCB->ctrl.u64TSCOffset))
901 {
902 uint64_t u64CurTSC = ASMReadTSC();
903 if (u64CurTSC + pVMCB->ctrl.u64TSCOffset >= TMCpuTickGetLastSeen(pVCpu))
904 {
905 pVMCB->ctrl.u32InterceptCtrl1 &= ~SVM_CTRL1_INTERCEPT_RDTSC;
906 pVMCB->ctrl.u32InterceptCtrl2 &= ~SVM_CTRL2_INTERCEPT_RDTSCP;
907 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatTSCOffset);
908 }
909 else
910 {
911 /* Fall back to rdtsc emulation as we would otherwise pass decreasing tsc values to the guest. */
912 LogFlow(("TSC %RX64 offset %RX64 time=%RX64 last=%RX64 (diff=%RX64, virt_tsc=%RX64)\n", u64CurTSC, pVMCB->ctrl.u64TSCOffset, u64CurTSC + pVMCB->ctrl.u64TSCOffset, TMCpuTickGetLastSeen(pVCpu), TMCpuTickGetLastSeen(pVCpu) - u64CurTSC - pVMCB->ctrl.u64TSCOffset, TMCpuTickGet(pVCpu)));
913 pVMCB->ctrl.u32InterceptCtrl1 |= SVM_CTRL1_INTERCEPT_RDTSC;
914 pVMCB->ctrl.u32InterceptCtrl2 |= SVM_CTRL2_INTERCEPT_RDTSCP;
915 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatTSCInterceptOverFlow);
916 }
917 }
918 else
919 {
920 pVMCB->ctrl.u32InterceptCtrl1 |= SVM_CTRL1_INTERCEPT_RDTSC;
921 pVMCB->ctrl.u32InterceptCtrl2 |= SVM_CTRL2_INTERCEPT_RDTSCP;
922 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatTSCIntercept);
923 }
924
925 /* Sync the various msrs for 64 bits mode. */
926 pVMCB->guest.u64STAR = pCtx->msrSTAR; /* legacy syscall eip, cs & ss */
927 pVMCB->guest.u64LSTAR = pCtx->msrLSTAR; /* 64 bits mode syscall rip */
928 pVMCB->guest.u64CSTAR = pCtx->msrCSTAR; /* compatibility mode syscall rip */
929 pVMCB->guest.u64SFMASK = pCtx->msrSFMASK; /* syscall flag mask */
930 pVMCB->guest.u64KernelGSBase = pCtx->msrKERNELGSBASE; /* swapgs exchange value */
931
932#ifdef DEBUG
933 /* Intercept X86_XCPT_DB if stepping is enabled */
934 if ( DBGFIsStepping(pVCpu)
935 || CPUMIsHyperDebugStateActive(pVCpu))
936 pVMCB->ctrl.u32InterceptException |= RT_BIT(X86_XCPT_DB);
937 else
938 pVMCB->ctrl.u32InterceptException &= ~RT_BIT(X86_XCPT_DB);
939#endif
940
941 /* Done. */
942 pVCpu->hwaccm.s.fContextUseFlags &= ~HWACCM_CHANGED_ALL_GUEST;
943
944 return VINF_SUCCESS;
945}
946
947
948/**
949 * Runs guest code in an AMD-V VM.
950 *
951 * @returns VBox status code.
952 * @param pVM The VM to operate on.
953 * @param pVCpu The VM CPU to operate on.
954 * @param pCtx Guest context
955 */
956VMMR0DECL(int) SVMR0RunGuestCode(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
957{
958 STAM_PROFILE_ADV_START(&pVCpu->hwaccm.s.StatEntry, x);
959 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hwaccm.s.StatExit1);
960 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hwaccm.s.StatExit2);
961
962 VBOXSTRICTRC rc = VINF_SUCCESS;
963 int rc2;
964 uint64_t exitCode = (uint64_t)SVM_EXIT_INVALID;
965 SVM_VMCB *pVMCB;
966 bool fSyncTPR = false;
967 unsigned cResume = 0;
968 uint8_t u8LastTPR;
969 PHMGLOBLCPUINFO pCpu = 0;
970 RTCCUINTREG uOldEFlags = ~(RTCCUINTREG)0;
971#ifdef VBOX_STRICT
972 RTCPUID idCpuCheck;
973#endif
974#ifdef VBOX_HIGH_RES_TIMERS_HACK_IN_RING0
975 uint64_t u64LastTime = RTTimeMilliTS();
976#endif
977
978 pVMCB = (SVM_VMCB *)pVCpu->hwaccm.s.svm.pVMCB;
979 AssertMsgReturn(pVMCB, ("Invalid pVMCB\n"), VERR_EM_INTERNAL_ERROR);
980
981 /* We can jump to this point to resume execution after determining that a VM-exit is innocent.
982 */
983ResumeExecution:
984 if (!STAM_PROFILE_ADV_IS_RUNNING(&pVCpu->hwaccm.s.StatEntry))
985 STAM_PROFILE_ADV_STOP_START(&pVCpu->hwaccm.s.StatExit2, &pVCpu->hwaccm.s.StatEntry, x);
986 Assert(!HWACCMR0SuspendPending());
987
988 /* Safety precaution; looping for too long here can have a very bad effect on the host */
989 if (RT_UNLIKELY(++cResume > pVM->hwaccm.s.cMaxResumeLoops))
990 {
991 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitMaxResume);
992 rc = VINF_EM_RAW_INTERRUPT;
993 goto end;
994 }
995
996 /* Check for irq inhibition due to instruction fusing (sti, mov ss). */
997 if (VMCPU_FF_ISSET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
998 {
999 Log(("VM_FF_INHIBIT_INTERRUPTS at %RGv successor %RGv\n", (RTGCPTR)pCtx->rip, EMGetInhibitInterruptsPC(pVCpu)));
1000 if (pCtx->rip != EMGetInhibitInterruptsPC(pVCpu))
1001 {
1002 /* Note: we intentionally don't clear VM_FF_INHIBIT_INTERRUPTS here.
1003 * Before we are able to execute this instruction in raw mode (iret to guest code) an external interrupt might
1004 * force a world switch again. Possibly allowing a guest interrupt to be dispatched in the process. This could
1005 * break the guest. Sounds very unlikely, but such timing sensitive problems are not as rare as you might think.
1006 */
1007 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
1008 /* Irq inhibition is no longer active; clear the corresponding SVM state. */
1009 pVMCB->ctrl.u64IntShadow = 0;
1010 }
1011 }
1012 else
1013 {
1014 /* Irq inhibition is no longer active; clear the corresponding SVM state. */
1015 pVMCB->ctrl.u64IntShadow = 0;
1016 }
1017
1018#ifdef VBOX_HIGH_RES_TIMERS_HACK_IN_RING0
1019 if (RT_UNLIKELY((cResume & 0xf) == 0))
1020 {
1021 uint64_t u64CurTime = RTTimeMilliTS();
1022
1023 if (RT_UNLIKELY(u64CurTime > u64LastTime))
1024 {
1025 u64LastTime = u64CurTime;
1026 TMTimerPollVoid(pVM, pVCpu);
1027 }
1028 }
1029#endif
1030
1031 /* Check for pending actions that force us to go back to ring 3. */
1032 if ( VM_FF_ISPENDING(pVM, VM_FF_HWACCM_TO_R3_MASK | VM_FF_REQUEST | VM_FF_PGM_POOL_FLUSH_PENDING | VM_FF_PDM_DMA)
1033 || VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_HWACCM_TO_R3_MASK | VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL | VMCPU_FF_REQUEST))
1034 {
1035 /* Check if a sync operation is pending. */
1036 if (VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL))
1037 {
1038 rc = PGMSyncCR3(pVCpu, pCtx->cr0, pCtx->cr3, pCtx->cr4, VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
1039 AssertRC(VBOXSTRICTRC_VAL(rc));
1040 if (rc != VINF_SUCCESS)
1041 {
1042 Log(("Pending pool sync is forcing us back to ring 3; rc=%d\n", VBOXSTRICTRC_VAL(rc)));
1043 goto end;
1044 }
1045 }
1046
1047#ifdef DEBUG
1048 /* Intercept X86_XCPT_DB if stepping is enabled */
1049 if (!DBGFIsStepping(pVCpu))
1050#endif
1051 {
1052 if ( VM_FF_ISPENDING(pVM, VM_FF_HWACCM_TO_R3_MASK)
1053 || VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_HWACCM_TO_R3_MASK))
1054 {
1055 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatSwitchToR3);
1056 rc = RT_UNLIKELY(VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY)) ? VINF_EM_NO_MEMORY : VINF_EM_RAW_TO_R3;
1057 goto end;
1058 }
1059 }
1060
1061 /* Pending request packets might contain actions that need immediate attention, such as pending hardware interrupts. */
1062 if ( VM_FF_ISPENDING(pVM, VM_FF_REQUEST)
1063 || VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_REQUEST))
1064 {
1065 rc = VINF_EM_PENDING_REQUEST;
1066 goto end;
1067 }
1068
1069 /* Check if a pgm pool flush is in progress. */
1070 if (VM_FF_ISPENDING(pVM, VM_FF_PGM_POOL_FLUSH_PENDING))
1071 {
1072 rc = VINF_PGM_POOL_FLUSH_PENDING;
1073 goto end;
1074 }
1075
1076 /* Check if DMA work is pending (2nd+ run). */
1077 if (VM_FF_ISPENDING(pVM, VM_FF_PDM_DMA) && cResume > 1)
1078 {
1079 rc = VINF_EM_RAW_TO_R3;
1080 goto end;
1081 }
1082 }
1083
1084#ifdef VBOX_WITH_VMMR0_DISABLE_PREEMPTION
1085 /*
1086 * Exit to ring-3 preemption/work is pending.
1087 *
1088 * Interrupts are disabled before the call to make sure we don't miss any interrupt
1089 * that would flag preemption (IPI, timer tick, ++). (Would've been nice to do this
1090 * further down, but SVMR0CheckPendingInterrupt makes that impossible.)
1091 *
1092 * Note! Interrupts must be disabled done *before* we check for TLB flushes; TLB
1093 * shootdowns rely on this.
1094 */
1095 uOldEFlags = ASMIntDisableFlags();
1096 if (RTThreadPreemptIsPending(NIL_RTTHREAD))
1097 {
1098 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitPreemptPending);
1099 rc = VINF_EM_RAW_INTERRUPT;
1100 goto end;
1101 }
1102 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC);
1103#endif
1104
1105 /* When external interrupts are pending, we should exit the VM when IF is set. */
1106 /* Note! *After* VM_FF_INHIBIT_INTERRUPTS check!!! */
1107 rc = SVMR0CheckPendingInterrupt(pVM, pVCpu, pVMCB, pCtx);
1108 if (RT_FAILURE(rc))
1109 goto end;
1110
1111 /* TPR caching using CR8 is only available in 64 bits mode or with 32 bits guests when X86_CPUID_AMD_FEATURE_ECX_CR8L is supported. */
1112 /* Note: we can't do this in LoadGuestState as PDMApicGetTPR can jump back to ring 3 (lock)!!!!!!!! (no longer true)
1113 * @todo query and update the TPR only when it could have been changed (mmio access)
1114 */
1115 if (pVM->hwaccm.s.fHasIoApic)
1116 {
1117 bool fPending;
1118
1119 /* TPR caching in CR8 */
1120 rc2 = PDMApicGetTPR(pVCpu, &u8LastTPR, &fPending);
1121 AssertRC(rc2);
1122
1123 if (pVM->hwaccm.s.fTPRPatchingActive)
1124 {
1125 /* Our patch code uses LSTAR for TPR caching. */
1126 pCtx->msrLSTAR = u8LastTPR;
1127
1128 if (fPending)
1129 {
1130 /* A TPR change could activate a pending interrupt, so catch lstar writes. */
1131 svmR0SetMSRPermission(pVCpu, MSR_K8_LSTAR, true, false);
1132 }
1133 else
1134 /* No interrupts are pending, so we don't need to be explicitely notified.
1135 * There are enough world switches for detecting pending interrupts.
1136 */
1137 svmR0SetMSRPermission(pVCpu, MSR_K8_LSTAR, true, true);
1138 }
1139 else
1140 {
1141 pVMCB->ctrl.IntCtrl.n.u8VTPR = (u8LastTPR >> 4); /* cr8 bits 3-0 correspond to bits 7-4 of the task priority mmio register. */
1142
1143 if (fPending)
1144 {
1145 /* A TPR change could activate a pending interrupt, so catch cr8 writes. */
1146 pVMCB->ctrl.u16InterceptWrCRx |= RT_BIT(8);
1147 }
1148 else
1149 /* No interrupts are pending, so we don't need to be explicitely notified.
1150 * There are enough world switches for detecting pending interrupts.
1151 */
1152 pVMCB->ctrl.u16InterceptWrCRx &= ~RT_BIT(8);
1153 }
1154 fSyncTPR = !fPending;
1155 }
1156
1157 /* All done! Let's start VM execution. */
1158
1159 /* Enable nested paging if necessary (disabled each time after #VMEXIT). */
1160 pVMCB->ctrl.NestedPaging.n.u1NestedPaging = pVM->hwaccm.s.fNestedPaging;
1161
1162#ifdef LOG_ENABLED
1163 pCpu = HWACCMR0GetCurrentCpu();
1164 if ( pVCpu->hwaccm.s.idLastCpu != pCpu->idCpu
1165 || pVCpu->hwaccm.s.cTLBFlushes != pCpu->cTLBFlushes)
1166 {
1167 if (pVCpu->hwaccm.s.idLastCpu != pCpu->idCpu)
1168 LogFlow(("Force TLB flush due to rescheduling to a different cpu (%d vs %d)\n", pVCpu->hwaccm.s.idLastCpu, pCpu->idCpu));
1169 else
1170 LogFlow(("Force TLB flush due to changed TLB flush count (%x vs %x)\n", pVCpu->hwaccm.s.cTLBFlushes, pCpu->cTLBFlushes));
1171 }
1172 if (pCpu->fFlushTLB)
1173 LogFlow(("Force TLB flush: first time cpu %d is used -> flush\n", pCpu->idCpu));
1174#endif
1175
1176 /*
1177 * NOTE: DO NOT DO ANYTHING AFTER THIS POINT THAT MIGHT JUMP BACK TO RING 3!
1178 * (until the actual world switch)
1179 */
1180#ifdef VBOX_STRICT
1181 idCpuCheck = RTMpCpuId();
1182#endif
1183 VMMR0LogFlushDisable(pVCpu);
1184
1185 /* Load the guest state; *must* be here as it sets up the shadow cr0 for lazy fpu syncing! */
1186 rc = SVMR0LoadGuestState(pVM, pVCpu, pCtx);
1187 if (RT_UNLIKELY(rc != VINF_SUCCESS))
1188 {
1189 VMMR0LogFlushEnable(pVCpu);
1190 goto end;
1191 }
1192
1193#ifndef VBOX_WITH_VMMR0_DISABLE_PREEMPTION
1194 /* Disable interrupts to make sure a poke will interrupt execution.
1195 * This must be done *before* we check for TLB flushes; TLB shootdowns rely on this.
1196 */
1197 uOldEFlags = ASMIntDisableFlags();
1198 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC);
1199#endif
1200 STAM_PROFILE_ADV_STOP_START(&pVCpu->hwaccm.s.StatEntry, &pVCpu->hwaccm.s.StatInGC, x);
1201
1202 pCpu = HWACCMR0GetCurrentCpu();
1203 /* Force a TLB flush for the first world switch if the current cpu differs from the one we ran on last. */
1204 /* Note that this can happen both for start and resume due to long jumps back to ring 3. */
1205 if ( pVCpu->hwaccm.s.idLastCpu != pCpu->idCpu
1206 /* if the tlb flush count has changed, another VM has flushed the TLB of this cpu, so we can't use our current ASID anymore. */
1207 || pVCpu->hwaccm.s.cTLBFlushes != pCpu->cTLBFlushes)
1208 {
1209 /* Force a TLB flush on VM entry. */
1210 pVCpu->hwaccm.s.fForceTLBFlush = true;
1211 }
1212 else
1213 Assert(!pCpu->fFlushTLB || pVM->hwaccm.s.svm.fAlwaysFlushTLB);
1214
1215 pVCpu->hwaccm.s.idLastCpu = pCpu->idCpu;
1216
1217 /* Set TLB flush state as checked until we return from the world switch. */
1218 ASMAtomicWriteBool(&pVCpu->hwaccm.s.fCheckedTLBFlush, true);
1219
1220 /* Check for tlb shootdown flushes. */
1221 if (VMCPU_FF_TESTANDCLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
1222 pVCpu->hwaccm.s.fForceTLBFlush = true;
1223
1224 /* Make sure we flush the TLB when required. Switch ASID to achieve the
1225 same thing, but without actually flushing the whole TLB (which is
1226 expensive). */
1227 if ( pVCpu->hwaccm.s.fForceTLBFlush
1228 && !pVM->hwaccm.s.svm.fAlwaysFlushTLB)
1229 {
1230 if ( ++pCpu->uCurrentASID >= pVM->hwaccm.s.uMaxASID
1231 || pCpu->fFlushTLB)
1232 {
1233 pCpu->fFlushTLB = false;
1234 pCpu->uCurrentASID = 1; /* start at 1; host uses 0 */
1235 pVMCB->ctrl.TLBCtrl.n.u1TLBFlush = 1; /* wrap around; flush TLB */
1236 pCpu->cTLBFlushes++;
1237 }
1238 else
1239 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatFlushASID);
1240
1241 pVCpu->hwaccm.s.cTLBFlushes = pCpu->cTLBFlushes;
1242 pVCpu->hwaccm.s.uCurrentASID = pCpu->uCurrentASID;
1243 }
1244 else
1245 {
1246 Assert(!pCpu->fFlushTLB || pVM->hwaccm.s.svm.fAlwaysFlushTLB);
1247
1248 /* We never increase uCurrentASID in the fAlwaysFlushTLB (erratum 170) case. */
1249 if (!pCpu->uCurrentASID || !pVCpu->hwaccm.s.uCurrentASID)
1250 pVCpu->hwaccm.s.uCurrentASID = pCpu->uCurrentASID = 1;
1251
1252 Assert(!pVM->hwaccm.s.svm.fAlwaysFlushTLB || pVCpu->hwaccm.s.fForceTLBFlush);
1253 pVMCB->ctrl.TLBCtrl.n.u1TLBFlush = pVCpu->hwaccm.s.fForceTLBFlush;
1254
1255 if ( !pVM->hwaccm.s.svm.fAlwaysFlushTLB
1256 && VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_TLB_SHOOTDOWN))
1257 {
1258 /* Deal with pending TLB shootdown actions which were queued when we were not executing code. */
1259 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatTlbShootdown);
1260 for (unsigned i=0;i<pVCpu->hwaccm.s.TlbShootdown.cPages;i++)
1261 SVMR0InvlpgA(pVCpu->hwaccm.s.TlbShootdown.aPages[i], pVMCB->ctrl.TLBCtrl.n.u32ASID);
1262 }
1263 }
1264 pVCpu->hwaccm.s.TlbShootdown.cPages = 0;
1265 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_SHOOTDOWN);
1266
1267 AssertMsg(pVCpu->hwaccm.s.cTLBFlushes == pCpu->cTLBFlushes, ("Flush count mismatch for cpu %d (%x vs %x)\n", pCpu->idCpu, pVCpu->hwaccm.s.cTLBFlushes, pCpu->cTLBFlushes));
1268 AssertMsg(pCpu->uCurrentASID >= 1 && pCpu->uCurrentASID < pVM->hwaccm.s.uMaxASID, ("cpu%d uCurrentASID = %x\n", pCpu->idCpu, pCpu->uCurrentASID));
1269 AssertMsg(pVCpu->hwaccm.s.uCurrentASID >= 1 && pVCpu->hwaccm.s.uCurrentASID < pVM->hwaccm.s.uMaxASID, ("cpu%d VM uCurrentASID = %x\n", pCpu->idCpu, pVCpu->hwaccm.s.uCurrentASID));
1270 pVMCB->ctrl.TLBCtrl.n.u32ASID = pVCpu->hwaccm.s.uCurrentASID;
1271
1272#ifdef VBOX_WITH_STATISTICS
1273 if (pVMCB->ctrl.TLBCtrl.n.u1TLBFlush)
1274 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatFlushTLBWorldSwitch);
1275 else
1276 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatNoFlushTLBWorldSwitch);
1277#endif
1278
1279 /* In case we execute a goto ResumeExecution later on. */
1280 pVCpu->hwaccm.s.fResumeVM = true;
1281 pVCpu->hwaccm.s.fForceTLBFlush = pVM->hwaccm.s.svm.fAlwaysFlushTLB;
1282
1283 Assert(sizeof(pVCpu->hwaccm.s.svm.pVMCBPhys) == 8);
1284 Assert(pVMCB->ctrl.IntCtrl.n.u1VIrqMasking);
1285 Assert(pVMCB->ctrl.u64IOPMPhysAddr == pVM->hwaccm.s.svm.pIOBitmapPhys);
1286 Assert(pVMCB->ctrl.u64MSRPMPhysAddr == pVCpu->hwaccm.s.svm.pMSRBitmapPhys);
1287 Assert(pVMCB->ctrl.u64LBRVirt == 0);
1288
1289#ifdef VBOX_STRICT
1290 Assert(idCpuCheck == RTMpCpuId());
1291#endif
1292 TMNotifyStartOfExecution(pVCpu);
1293#ifdef VBOX_WITH_KERNEL_USING_XMM
1294 hwaccmR0SVMRunWrapXMM(pVCpu->hwaccm.s.svm.pVMCBHostPhys, pVCpu->hwaccm.s.svm.pVMCBPhys, pCtx, pVM, pVCpu, pVCpu->hwaccm.s.svm.pfnVMRun);
1295#else
1296 pVCpu->hwaccm.s.svm.pfnVMRun(pVCpu->hwaccm.s.svm.pVMCBHostPhys, pVCpu->hwaccm.s.svm.pVMCBPhys, pCtx, pVM, pVCpu);
1297#endif
1298 ASMAtomicWriteBool(&pVCpu->hwaccm.s.fCheckedTLBFlush, false);
1299 ASMAtomicIncU32(&pVCpu->hwaccm.s.cWorldSwitchExits);
1300 /* Possibly the last TSC value seen by the guest (too high) (only when we're in tsc offset mode). */
1301 if (!(pVMCB->ctrl.u32InterceptCtrl1 & SVM_CTRL1_INTERCEPT_RDTSC))
1302 TMCpuTickSetLastSeen(pVCpu, ASMReadTSC() + pVMCB->ctrl.u64TSCOffset - 0x400 /* guestimate of world switch overhead in clock ticks */);
1303 TMNotifyEndOfExecution(pVCpu);
1304 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED);
1305 STAM_PROFILE_ADV_STOP_START(&pVCpu->hwaccm.s.StatInGC, &pVCpu->hwaccm.s.StatExit1, x);
1306 ASMSetFlags(uOldEFlags);
1307#ifdef VBOX_WITH_VMMR0_DISABLE_PREEMPTION
1308 uOldEFlags = ~(RTCCUINTREG)0;
1309#endif
1310
1311 /*
1312 * !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1313 * IMPORTANT: WE CAN'T DO ANY LOGGING OR OPERATIONS THAT CAN DO A LONGJMP BACK TO RING 3 *BEFORE* WE'VE SYNCED BACK (MOST OF) THE GUEST STATE
1314 * !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1315 */
1316
1317 /* Reason for the VM exit */
1318 exitCode = pVMCB->ctrl.u64ExitCode;
1319
1320 if (RT_UNLIKELY(exitCode == (uint64_t)SVM_EXIT_INVALID)) /* Invalid guest state. */
1321 {
1322 HWACCMDumpRegs(pVM, pVCpu, pCtx);
1323#ifdef DEBUG
1324 Log(("ctrl.u16InterceptRdCRx %x\n", pVMCB->ctrl.u16InterceptRdCRx));
1325 Log(("ctrl.u16InterceptWrCRx %x\n", pVMCB->ctrl.u16InterceptWrCRx));
1326 Log(("ctrl.u16InterceptRdDRx %x\n", pVMCB->ctrl.u16InterceptRdDRx));
1327 Log(("ctrl.u16InterceptWrDRx %x\n", pVMCB->ctrl.u16InterceptWrDRx));
1328 Log(("ctrl.u32InterceptException %x\n", pVMCB->ctrl.u32InterceptException));
1329 Log(("ctrl.u32InterceptCtrl1 %x\n", pVMCB->ctrl.u32InterceptCtrl1));
1330 Log(("ctrl.u32InterceptCtrl2 %x\n", pVMCB->ctrl.u32InterceptCtrl2));
1331 Log(("ctrl.u64IOPMPhysAddr %RX64\n", pVMCB->ctrl.u64IOPMPhysAddr));
1332 Log(("ctrl.u64MSRPMPhysAddr %RX64\n", pVMCB->ctrl.u64MSRPMPhysAddr));
1333 Log(("ctrl.u64TSCOffset %RX64\n", pVMCB->ctrl.u64TSCOffset));
1334
1335 Log(("ctrl.TLBCtrl.u32ASID %x\n", pVMCB->ctrl.TLBCtrl.n.u32ASID));
1336 Log(("ctrl.TLBCtrl.u1TLBFlush %x\n", pVMCB->ctrl.TLBCtrl.n.u1TLBFlush));
1337 Log(("ctrl.TLBCtrl.u7Reserved %x\n", pVMCB->ctrl.TLBCtrl.n.u7Reserved));
1338 Log(("ctrl.TLBCtrl.u24Reserved %x\n", pVMCB->ctrl.TLBCtrl.n.u24Reserved));
1339
1340 Log(("ctrl.IntCtrl.u8VTPR %x\n", pVMCB->ctrl.IntCtrl.n.u8VTPR));
1341 Log(("ctrl.IntCtrl.u1VIrqValid %x\n", pVMCB->ctrl.IntCtrl.n.u1VIrqValid));
1342 Log(("ctrl.IntCtrl.u7Reserved %x\n", pVMCB->ctrl.IntCtrl.n.u7Reserved));
1343 Log(("ctrl.IntCtrl.u4VIrqPriority %x\n", pVMCB->ctrl.IntCtrl.n.u4VIrqPriority));
1344 Log(("ctrl.IntCtrl.u1IgnoreTPR %x\n", pVMCB->ctrl.IntCtrl.n.u1IgnoreTPR));
1345 Log(("ctrl.IntCtrl.u3Reserved %x\n", pVMCB->ctrl.IntCtrl.n.u3Reserved));
1346 Log(("ctrl.IntCtrl.u1VIrqMasking %x\n", pVMCB->ctrl.IntCtrl.n.u1VIrqMasking));
1347 Log(("ctrl.IntCtrl.u7Reserved2 %x\n", pVMCB->ctrl.IntCtrl.n.u7Reserved2));
1348 Log(("ctrl.IntCtrl.u8VIrqVector %x\n", pVMCB->ctrl.IntCtrl.n.u8VIrqVector));
1349 Log(("ctrl.IntCtrl.u24Reserved %x\n", pVMCB->ctrl.IntCtrl.n.u24Reserved));
1350
1351 Log(("ctrl.u64IntShadow %RX64\n", pVMCB->ctrl.u64IntShadow));
1352 Log(("ctrl.u64ExitCode %RX64\n", pVMCB->ctrl.u64ExitCode));
1353 Log(("ctrl.u64ExitInfo1 %RX64\n", pVMCB->ctrl.u64ExitInfo1));
1354 Log(("ctrl.u64ExitInfo2 %RX64\n", pVMCB->ctrl.u64ExitInfo2));
1355 Log(("ctrl.ExitIntInfo.u8Vector %x\n", pVMCB->ctrl.ExitIntInfo.n.u8Vector));
1356 Log(("ctrl.ExitIntInfo.u3Type %x\n", pVMCB->ctrl.ExitIntInfo.n.u3Type));
1357 Log(("ctrl.ExitIntInfo.u1ErrorCodeValid %x\n", pVMCB->ctrl.ExitIntInfo.n.u1ErrorCodeValid));
1358 Log(("ctrl.ExitIntInfo.u19Reserved %x\n", pVMCB->ctrl.ExitIntInfo.n.u19Reserved));
1359 Log(("ctrl.ExitIntInfo.u1Valid %x\n", pVMCB->ctrl.ExitIntInfo.n.u1Valid));
1360 Log(("ctrl.ExitIntInfo.u32ErrorCode %x\n", pVMCB->ctrl.ExitIntInfo.n.u32ErrorCode));
1361 Log(("ctrl.NestedPaging %RX64\n", pVMCB->ctrl.NestedPaging.au64));
1362 Log(("ctrl.EventInject.u8Vector %x\n", pVMCB->ctrl.EventInject.n.u8Vector));
1363 Log(("ctrl.EventInject.u3Type %x\n", pVMCB->ctrl.EventInject.n.u3Type));
1364 Log(("ctrl.EventInject.u1ErrorCodeValid %x\n", pVMCB->ctrl.EventInject.n.u1ErrorCodeValid));
1365 Log(("ctrl.EventInject.u19Reserved %x\n", pVMCB->ctrl.EventInject.n.u19Reserved));
1366 Log(("ctrl.EventInject.u1Valid %x\n", pVMCB->ctrl.EventInject.n.u1Valid));
1367 Log(("ctrl.EventInject.u32ErrorCode %x\n", pVMCB->ctrl.EventInject.n.u32ErrorCode));
1368
1369 Log(("ctrl.u64NestedPagingCR3 %RX64\n", pVMCB->ctrl.u64NestedPagingCR3));
1370 Log(("ctrl.u64LBRVirt %RX64\n", pVMCB->ctrl.u64LBRVirt));
1371
1372 Log(("guest.CS.u16Sel %04X\n", pVMCB->guest.CS.u16Sel));
1373 Log(("guest.CS.u16Attr %04X\n", pVMCB->guest.CS.u16Attr));
1374 Log(("guest.CS.u32Limit %X\n", pVMCB->guest.CS.u32Limit));
1375 Log(("guest.CS.u64Base %RX64\n", pVMCB->guest.CS.u64Base));
1376 Log(("guest.DS.u16Sel %04X\n", pVMCB->guest.DS.u16Sel));
1377 Log(("guest.DS.u16Attr %04X\n", pVMCB->guest.DS.u16Attr));
1378 Log(("guest.DS.u32Limit %X\n", pVMCB->guest.DS.u32Limit));
1379 Log(("guest.DS.u64Base %RX64\n", pVMCB->guest.DS.u64Base));
1380 Log(("guest.ES.u16Sel %04X\n", pVMCB->guest.ES.u16Sel));
1381 Log(("guest.ES.u16Attr %04X\n", pVMCB->guest.ES.u16Attr));
1382 Log(("guest.ES.u32Limit %X\n", pVMCB->guest.ES.u32Limit));
1383 Log(("guest.ES.u64Base %RX64\n", pVMCB->guest.ES.u64Base));
1384 Log(("guest.FS.u16Sel %04X\n", pVMCB->guest.FS.u16Sel));
1385 Log(("guest.FS.u16Attr %04X\n", pVMCB->guest.FS.u16Attr));
1386 Log(("guest.FS.u32Limit %X\n", pVMCB->guest.FS.u32Limit));
1387 Log(("guest.FS.u64Base %RX64\n", pVMCB->guest.FS.u64Base));
1388 Log(("guest.GS.u16Sel %04X\n", pVMCB->guest.GS.u16Sel));
1389 Log(("guest.GS.u16Attr %04X\n", pVMCB->guest.GS.u16Attr));
1390 Log(("guest.GS.u32Limit %X\n", pVMCB->guest.GS.u32Limit));
1391 Log(("guest.GS.u64Base %RX64\n", pVMCB->guest.GS.u64Base));
1392
1393 Log(("guest.GDTR.u32Limit %X\n", pVMCB->guest.GDTR.u32Limit));
1394 Log(("guest.GDTR.u64Base %RX64\n", pVMCB->guest.GDTR.u64Base));
1395
1396 Log(("guest.LDTR.u16Sel %04X\n", pVMCB->guest.LDTR.u16Sel));
1397 Log(("guest.LDTR.u16Attr %04X\n", pVMCB->guest.LDTR.u16Attr));
1398 Log(("guest.LDTR.u32Limit %X\n", pVMCB->guest.LDTR.u32Limit));
1399 Log(("guest.LDTR.u64Base %RX64\n", pVMCB->guest.LDTR.u64Base));
1400
1401 Log(("guest.IDTR.u32Limit %X\n", pVMCB->guest.IDTR.u32Limit));
1402 Log(("guest.IDTR.u64Base %RX64\n", pVMCB->guest.IDTR.u64Base));
1403
1404 Log(("guest.TR.u16Sel %04X\n", pVMCB->guest.TR.u16Sel));
1405 Log(("guest.TR.u16Attr %04X\n", pVMCB->guest.TR.u16Attr));
1406 Log(("guest.TR.u32Limit %X\n", pVMCB->guest.TR.u32Limit));
1407 Log(("guest.TR.u64Base %RX64\n", pVMCB->guest.TR.u64Base));
1408
1409 Log(("guest.u8CPL %X\n", pVMCB->guest.u8CPL));
1410 Log(("guest.u64CR0 %RX64\n", pVMCB->guest.u64CR0));
1411 Log(("guest.u64CR2 %RX64\n", pVMCB->guest.u64CR2));
1412 Log(("guest.u64CR3 %RX64\n", pVMCB->guest.u64CR3));
1413 Log(("guest.u64CR4 %RX64\n", pVMCB->guest.u64CR4));
1414 Log(("guest.u64DR6 %RX64\n", pVMCB->guest.u64DR6));
1415 Log(("guest.u64DR7 %RX64\n", pVMCB->guest.u64DR7));
1416
1417 Log(("guest.u64RIP %RX64\n", pVMCB->guest.u64RIP));
1418 Log(("guest.u64RSP %RX64\n", pVMCB->guest.u64RSP));
1419 Log(("guest.u64RAX %RX64\n", pVMCB->guest.u64RAX));
1420 Log(("guest.u64RFlags %RX64\n", pVMCB->guest.u64RFlags));
1421
1422 Log(("guest.u64SysEnterCS %RX64\n", pVMCB->guest.u64SysEnterCS));
1423 Log(("guest.u64SysEnterEIP %RX64\n", pVMCB->guest.u64SysEnterEIP));
1424 Log(("guest.u64SysEnterESP %RX64\n", pVMCB->guest.u64SysEnterESP));
1425
1426 Log(("guest.u64EFER %RX64\n", pVMCB->guest.u64EFER));
1427 Log(("guest.u64STAR %RX64\n", pVMCB->guest.u64STAR));
1428 Log(("guest.u64LSTAR %RX64\n", pVMCB->guest.u64LSTAR));
1429 Log(("guest.u64CSTAR %RX64\n", pVMCB->guest.u64CSTAR));
1430 Log(("guest.u64SFMASK %RX64\n", pVMCB->guest.u64SFMASK));
1431 Log(("guest.u64KernelGSBase %RX64\n", pVMCB->guest.u64KernelGSBase));
1432 Log(("guest.u64GPAT %RX64\n", pVMCB->guest.u64GPAT));
1433 Log(("guest.u64DBGCTL %RX64\n", pVMCB->guest.u64DBGCTL));
1434 Log(("guest.u64BR_FROM %RX64\n", pVMCB->guest.u64BR_FROM));
1435 Log(("guest.u64BR_TO %RX64\n", pVMCB->guest.u64BR_TO));
1436 Log(("guest.u64LASTEXCPFROM %RX64\n", pVMCB->guest.u64LASTEXCPFROM));
1437 Log(("guest.u64LASTEXCPTO %RX64\n", pVMCB->guest.u64LASTEXCPTO));
1438
1439#endif
1440 rc = VERR_SVM_UNABLE_TO_START_VM;
1441 VMMR0LogFlushEnable(pVCpu);
1442 goto end;
1443 }
1444
1445 /* Let's first sync back eip, esp, and eflags. */
1446 pCtx->rip = pVMCB->guest.u64RIP;
1447 pCtx->rsp = pVMCB->guest.u64RSP;
1448 pCtx->eflags.u32 = pVMCB->guest.u64RFlags;
1449 /* eax is saved/restore across the vmrun instruction */
1450 pCtx->rax = pVMCB->guest.u64RAX;
1451
1452 /* Save all the MSRs that can be changed by the guest without causing a world switch. (fs & gs base are saved with SVM_READ_SELREG) */
1453 pCtx->msrSTAR = pVMCB->guest.u64STAR; /* legacy syscall eip, cs & ss */
1454 pCtx->msrLSTAR = pVMCB->guest.u64LSTAR; /* 64 bits mode syscall rip */
1455 pCtx->msrCSTAR = pVMCB->guest.u64CSTAR; /* compatibility mode syscall rip */
1456 pCtx->msrSFMASK = pVMCB->guest.u64SFMASK; /* syscall flag mask */
1457 pCtx->msrKERNELGSBASE = pVMCB->guest.u64KernelGSBase; /* swapgs exchange value */
1458 pCtx->SysEnter.cs = pVMCB->guest.u64SysEnterCS;
1459 pCtx->SysEnter.eip = pVMCB->guest.u64SysEnterEIP;
1460 pCtx->SysEnter.esp = pVMCB->guest.u64SysEnterESP;
1461
1462 /* Can be updated behind our back in the nested paging case. */
1463 pCtx->cr2 = pVMCB->guest.u64CR2;
1464
1465 /* Guest CPU context: ES, CS, SS, DS, FS, GS. */
1466 SVM_READ_SELREG(SS, ss);
1467 SVM_READ_SELREG(CS, cs);
1468 SVM_READ_SELREG(DS, ds);
1469 SVM_READ_SELREG(ES, es);
1470 SVM_READ_SELREG(FS, fs);
1471 SVM_READ_SELREG(GS, gs);
1472
1473 /* Correct the hidden CS granularity flag. Haven't seen it being wrong in
1474 any other register (yet). */
1475 if ( !pCtx->csHid.Attr.n.u1Granularity
1476 && pCtx->csHid.Attr.n.u1Present
1477 && pCtx->csHid.u32Limit > UINT32_C(0xfffff))
1478 {
1479 Assert((pCtx->csHid.u32Limit & 0xfff) == 0xfff);
1480 pCtx->csHid.Attr.n.u1Granularity = 1;
1481 }
1482#define SVM_ASSERT_SEL_GRANULARITY(reg) \
1483 AssertMsg( !pCtx->reg##Hid.Attr.n.u1Present \
1484 || ( pCtx->reg##Hid.Attr.n.u1Granularity \
1485 ? (pCtx->reg##Hid.u32Limit & 0xfff) == 0xfff \
1486 : pCtx->reg##Hid.u32Limit <= 0xfffff), \
1487 ("%#x %#x %#llx\n", pCtx->reg##Hid.u32Limit, pCtx->reg##Hid.Attr.u, pCtx->reg##Hid.u64Base))
1488 SVM_ASSERT_SEL_GRANULARITY(ss);
1489 SVM_ASSERT_SEL_GRANULARITY(cs);
1490 SVM_ASSERT_SEL_GRANULARITY(ds);
1491 SVM_ASSERT_SEL_GRANULARITY(es);
1492 SVM_ASSERT_SEL_GRANULARITY(fs);
1493 SVM_ASSERT_SEL_GRANULARITY(gs);
1494#undef SVM_ASSERT_SEL_GRANULARITY
1495
1496 /* Remaining guest CPU context: TR, IDTR, GDTR, LDTR; must sync everything otherwise we can get out of sync when jumping to ring 3. */
1497 SVM_READ_SELREG(LDTR, ldtr);
1498 SVM_READ_SELREG(TR, tr);
1499
1500 pCtx->gdtr.cbGdt = pVMCB->guest.GDTR.u32Limit;
1501 pCtx->gdtr.pGdt = pVMCB->guest.GDTR.u64Base;
1502
1503 pCtx->idtr.cbIdt = pVMCB->guest.IDTR.u32Limit;
1504 pCtx->idtr.pIdt = pVMCB->guest.IDTR.u64Base;
1505
1506 /* Note: no reason to sync back the CRx and DRx registers. They can't be changed by the guest. */
1507 /* Note: only in the nested paging case can CR3 & CR4 be changed by the guest. */
1508 if ( pVM->hwaccm.s.fNestedPaging
1509 && pCtx->cr3 != pVMCB->guest.u64CR3)
1510 {
1511 CPUMSetGuestCR3(pVCpu, pVMCB->guest.u64CR3);
1512 PGMUpdateCR3(pVCpu, pVMCB->guest.u64CR3);
1513 }
1514
1515 /* Note! NOW IT'S SAFE FOR LOGGING! */
1516 VMMR0LogFlushEnable(pVCpu);
1517
1518 /* Take care of instruction fusing (sti, mov ss) (see 15.20.5 Interrupt Shadows) */
1519 if (pVMCB->ctrl.u64IntShadow & SVM_INTERRUPT_SHADOW_ACTIVE)
1520 {
1521 Log(("uInterruptState %x rip=%RGv\n", pVMCB->ctrl.u64IntShadow, (RTGCPTR)pCtx->rip));
1522 EMSetInhibitInterruptsPC(pVCpu, pCtx->rip);
1523 }
1524 else
1525 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
1526
1527 Log2(("exitCode = %x\n", exitCode));
1528
1529 /* Sync back DR6 as it could have been changed by hitting breakpoints. */
1530 pCtx->dr[6] = pVMCB->guest.u64DR6;
1531 /* DR7.GD can be cleared by debug exceptions, so sync it back as well. */
1532 pCtx->dr[7] = pVMCB->guest.u64DR7;
1533
1534 /* Check if an injected event was interrupted prematurely. */
1535 pVCpu->hwaccm.s.Event.intInfo = pVMCB->ctrl.ExitIntInfo.au64[0];
1536 if ( pVMCB->ctrl.ExitIntInfo.n.u1Valid
1537 && pVMCB->ctrl.ExitIntInfo.n.u3Type != SVM_EVENT_SOFTWARE_INT /* we don't care about 'int xx' as the instruction will be restarted. */)
1538 {
1539 Log(("Pending inject %RX64 at %RGv exit=%08x\n", pVCpu->hwaccm.s.Event.intInfo, (RTGCPTR)pCtx->rip, exitCode));
1540
1541#ifdef LOG_ENABLED
1542 SVM_EVENT Event;
1543 Event.au64[0] = pVCpu->hwaccm.s.Event.intInfo;
1544
1545 if ( exitCode == SVM_EXIT_EXCEPTION_E
1546 && Event.n.u8Vector == 0xE)
1547 {
1548 Log(("Double fault!\n"));
1549 }
1550#endif
1551
1552 pVCpu->hwaccm.s.Event.fPending = true;
1553 /* Error code present? (redundant) */
1554 if (pVMCB->ctrl.ExitIntInfo.n.u1ErrorCodeValid)
1555 pVCpu->hwaccm.s.Event.errCode = pVMCB->ctrl.ExitIntInfo.n.u32ErrorCode;
1556 else
1557 pVCpu->hwaccm.s.Event.errCode = 0;
1558 }
1559#ifdef VBOX_WITH_STATISTICS
1560 if (exitCode == SVM_EXIT_NPF)
1561 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitReasonNPF);
1562 else
1563 STAM_COUNTER_INC(&pVCpu->hwaccm.s.paStatExitReasonR0[exitCode & MASK_EXITREASON_STAT]);
1564#endif
1565
1566 /* Sync back the TPR if it was changed. */
1567 if (fSyncTPR)
1568 {
1569 if (pVM->hwaccm.s.fTPRPatchingActive)
1570 {
1571 if ((pCtx->msrLSTAR & 0xff) != u8LastTPR)
1572 {
1573 /* Our patch code uses LSTAR for TPR caching. */
1574 rc2 = PDMApicSetTPR(pVCpu, pCtx->msrLSTAR & 0xff);
1575 AssertRC(rc2);
1576 }
1577 }
1578 else
1579 {
1580 if ((u8LastTPR >> 4) != pVMCB->ctrl.IntCtrl.n.u8VTPR)
1581 {
1582 rc2 = PDMApicSetTPR(pVCpu, pVMCB->ctrl.IntCtrl.n.u8VTPR << 4); /* cr8 bits 3-0 correspond to bits 7-4 of the task priority mmio register. */
1583 AssertRC(rc2);
1584 }
1585 }
1586 }
1587
1588 STAM_PROFILE_ADV_STOP_START(&pVCpu->hwaccm.s.StatExit1, &pVCpu->hwaccm.s.StatExit2, x);
1589
1590 /* Deal with the reason of the VM-exit. */
1591 switch (exitCode)
1592 {
1593 case SVM_EXIT_EXCEPTION_0: case SVM_EXIT_EXCEPTION_1: case SVM_EXIT_EXCEPTION_2: case SVM_EXIT_EXCEPTION_3:
1594 case SVM_EXIT_EXCEPTION_4: case SVM_EXIT_EXCEPTION_5: case SVM_EXIT_EXCEPTION_6: case SVM_EXIT_EXCEPTION_7:
1595 case SVM_EXIT_EXCEPTION_8: case SVM_EXIT_EXCEPTION_9: case SVM_EXIT_EXCEPTION_A: case SVM_EXIT_EXCEPTION_B:
1596 case SVM_EXIT_EXCEPTION_C: case SVM_EXIT_EXCEPTION_D: case SVM_EXIT_EXCEPTION_E: case SVM_EXIT_EXCEPTION_F:
1597 case SVM_EXIT_EXCEPTION_10: case SVM_EXIT_EXCEPTION_11: case SVM_EXIT_EXCEPTION_12: case SVM_EXIT_EXCEPTION_13:
1598 case SVM_EXIT_EXCEPTION_14: case SVM_EXIT_EXCEPTION_15: case SVM_EXIT_EXCEPTION_16: case SVM_EXIT_EXCEPTION_17:
1599 case SVM_EXIT_EXCEPTION_18: case SVM_EXIT_EXCEPTION_19: case SVM_EXIT_EXCEPTION_1A: case SVM_EXIT_EXCEPTION_1B:
1600 case SVM_EXIT_EXCEPTION_1C: case SVM_EXIT_EXCEPTION_1D: case SVM_EXIT_EXCEPTION_1E: case SVM_EXIT_EXCEPTION_1F:
1601 {
1602 /* Pending trap. */
1603 SVM_EVENT Event;
1604 uint32_t vector = exitCode - SVM_EXIT_EXCEPTION_0;
1605
1606 Log2(("Hardware/software interrupt %d\n", vector));
1607 switch (vector)
1608 {
1609 case X86_XCPT_DB:
1610 {
1611 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestDB);
1612
1613 /* Note that we don't support guest and host-initiated debugging at the same time. */
1614 Assert(DBGFIsStepping(pVCpu) || CPUMIsHyperDebugStateActive(pVCpu));
1615
1616 rc = DBGFRZTrap01Handler(pVM, pVCpu, CPUMCTX2CORE(pCtx), pCtx->dr[6]);
1617 if (rc == VINF_EM_RAW_GUEST_TRAP)
1618 {
1619 Log(("Trap %x (debug) at %016RX64\n", vector, pCtx->rip));
1620
1621 /* Reinject the exception. */
1622 Event.au64[0] = 0;
1623 Event.n.u3Type = SVM_EVENT_EXCEPTION; /* trap or fault */
1624 Event.n.u1Valid = 1;
1625 Event.n.u8Vector = X86_XCPT_DB;
1626
1627 SVMR0InjectEvent(pVCpu, pVMCB, pCtx, &Event);
1628 goto ResumeExecution;
1629 }
1630 /* Return to ring 3 to deal with the debug exit code. */
1631 Log(("Debugger hardware BP at %04x:%RGv (rc=%Rrc)\n", pCtx->cs, pCtx->rip, VBOXSTRICTRC_VAL(rc)));
1632 break;
1633 }
1634
1635 case X86_XCPT_NM:
1636 {
1637 Log(("#NM fault at %RGv\n", (RTGCPTR)pCtx->rip));
1638
1639 /** @todo don't intercept #NM exceptions anymore when we've activated the guest FPU state. */
1640 /* If we sync the FPU/XMM state on-demand, then we can continue execution as if nothing has happened. */
1641 rc = CPUMR0LoadGuestFPU(pVM, pVCpu, pCtx);
1642 if (rc == VINF_SUCCESS)
1643 {
1644 Assert(CPUMIsGuestFPUStateActive(pVCpu));
1645 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitShadowNM);
1646
1647 /* Continue execution. */
1648 pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_GUEST_CR0;
1649
1650 goto ResumeExecution;
1651 }
1652
1653 Log(("Forward #NM fault to the guest\n"));
1654 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestNM);
1655
1656 Event.au64[0] = 0;
1657 Event.n.u3Type = SVM_EVENT_EXCEPTION;
1658 Event.n.u1Valid = 1;
1659 Event.n.u8Vector = X86_XCPT_NM;
1660
1661 SVMR0InjectEvent(pVCpu, pVMCB, pCtx, &Event);
1662 goto ResumeExecution;
1663 }
1664
1665 case X86_XCPT_PF: /* Page fault */
1666 {
1667 uint32_t errCode = pVMCB->ctrl.u64ExitInfo1; /* EXITINFO1 = error code */
1668 RTGCUINTPTR uFaultAddress = pVMCB->ctrl.u64ExitInfo2; /* EXITINFO2 = fault address */
1669
1670#ifdef DEBUG
1671 if (pVM->hwaccm.s.fNestedPaging)
1672 { /* A genuine pagefault.
1673 * Forward the trap to the guest by injecting the exception and resuming execution.
1674 */
1675 Log(("Guest page fault at %04X:%RGv cr2=%RGv error code %x rsp=%RGv\n", pCtx->cs, (RTGCPTR)pCtx->rip, uFaultAddress, errCode, (RTGCPTR)pCtx->rsp));
1676 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestPF);
1677
1678 /* Now we must update CR2. */
1679 pCtx->cr2 = uFaultAddress;
1680
1681 Event.au64[0] = 0;
1682 Event.n.u3Type = SVM_EVENT_EXCEPTION;
1683 Event.n.u1Valid = 1;
1684 Event.n.u8Vector = X86_XCPT_PF;
1685 Event.n.u1ErrorCodeValid = 1;
1686 Event.n.u32ErrorCode = errCode;
1687
1688 SVMR0InjectEvent(pVCpu, pVMCB, pCtx, &Event);
1689 goto ResumeExecution;
1690 }
1691#endif
1692 Assert(!pVM->hwaccm.s.fNestedPaging);
1693
1694#ifdef VBOX_HWACCM_WITH_GUEST_PATCHING
1695 /* Shortcut for APIC TPR reads and writes; 32 bits guests only */
1696 if ( pVM->hwaccm.s.fTRPPatchingAllowed
1697 && (uFaultAddress & 0xfff) == 0x080
1698 && !(errCode & X86_TRAP_PF_P) /* not present */
1699 && CPUMGetGuestCPL(pVCpu, CPUMCTX2CORE(pCtx)) == 0
1700 && !CPUMIsGuestInLongModeEx(pCtx)
1701 && pVM->hwaccm.s.cPatches < RT_ELEMENTS(pVM->hwaccm.s.aPatches))
1702 {
1703 RTGCPHYS GCPhysApicBase, GCPhys;
1704 PDMApicGetBase(pVM, &GCPhysApicBase); /* @todo cache this */
1705 GCPhysApicBase &= PAGE_BASE_GC_MASK;
1706
1707 rc = PGMGstGetPage(pVCpu, (RTGCPTR)uFaultAddress, NULL, &GCPhys);
1708 if ( rc == VINF_SUCCESS
1709 && GCPhys == GCPhysApicBase)
1710 {
1711 /* Only attempt to patch the instruction once. */
1712 PHWACCMTPRPATCH pPatch = (PHWACCMTPRPATCH)RTAvloU32Get(&pVM->hwaccm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
1713 if (!pPatch)
1714 {
1715 rc = VINF_EM_HWACCM_PATCH_TPR_INSTR;
1716 break;
1717 }
1718 }
1719 }
1720#endif
1721
1722 Log2(("Page fault at %RGv cr2=%RGv error code %x\n", (RTGCPTR)pCtx->rip, uFaultAddress, errCode));
1723 /* Exit qualification contains the linear address of the page fault. */
1724 TRPMAssertTrap(pVCpu, X86_XCPT_PF, TRPM_TRAP);
1725 TRPMSetErrorCode(pVCpu, errCode);
1726 TRPMSetFaultAddress(pVCpu, uFaultAddress);
1727
1728 /* Forward it to our trap handler first, in case our shadow pages are out of sync. */
1729 rc = PGMTrap0eHandler(pVCpu, errCode, CPUMCTX2CORE(pCtx), (RTGCPTR)uFaultAddress);
1730 Log2(("PGMTrap0eHandler %RGv returned %Rrc\n", (RTGCPTR)pCtx->rip, VBOXSTRICTRC_VAL(rc)));
1731 if (rc == VINF_SUCCESS)
1732 { /* We've successfully synced our shadow pages, so let's just continue execution. */
1733 Log2(("Shadow page fault at %RGv cr2=%RGv error code %x\n", (RTGCPTR)pCtx->rip, uFaultAddress, errCode));
1734 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitShadowPF);
1735
1736 TRPMResetTrap(pVCpu);
1737 goto ResumeExecution;
1738 }
1739 else
1740 if (rc == VINF_EM_RAW_GUEST_TRAP)
1741 { /* A genuine pagefault.
1742 * Forward the trap to the guest by injecting the exception and resuming execution.
1743 */
1744 Log2(("Forward page fault to the guest\n"));
1745 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestPF);
1746 /* The error code might have been changed. */
1747 errCode = TRPMGetErrorCode(pVCpu);
1748
1749 TRPMResetTrap(pVCpu);
1750
1751 /* Now we must update CR2. */
1752 pCtx->cr2 = uFaultAddress;
1753
1754 Event.au64[0] = 0;
1755 Event.n.u3Type = SVM_EVENT_EXCEPTION;
1756 Event.n.u1Valid = 1;
1757 Event.n.u8Vector = X86_XCPT_PF;
1758 Event.n.u1ErrorCodeValid = 1;
1759 Event.n.u32ErrorCode = errCode;
1760
1761 SVMR0InjectEvent(pVCpu, pVMCB, pCtx, &Event);
1762 goto ResumeExecution;
1763 }
1764#ifdef VBOX_STRICT
1765 if (rc != VINF_EM_RAW_EMULATE_INSTR && rc != VINF_EM_RAW_EMULATE_IO_BLOCK)
1766 LogFlow(("PGMTrap0eHandler failed with %d\n", VBOXSTRICTRC_VAL(rc)));
1767#endif
1768 /* Need to go back to the recompiler to emulate the instruction. */
1769 TRPMResetTrap(pVCpu);
1770 break;
1771 }
1772
1773 case X86_XCPT_MF: /* Floating point exception. */
1774 {
1775 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestMF);
1776 if (!(pCtx->cr0 & X86_CR0_NE))
1777 {
1778 /* old style FPU error reporting needs some extra work. */
1779 /** @todo don't fall back to the recompiler, but do it manually. */
1780 rc = VINF_EM_RAW_EMULATE_INSTR;
1781 break;
1782 }
1783 Log(("Trap %x at %RGv\n", vector, (RTGCPTR)pCtx->rip));
1784
1785 Event.au64[0] = 0;
1786 Event.n.u3Type = SVM_EVENT_EXCEPTION;
1787 Event.n.u1Valid = 1;
1788 Event.n.u8Vector = X86_XCPT_MF;
1789
1790 SVMR0InjectEvent(pVCpu, pVMCB, pCtx, &Event);
1791 goto ResumeExecution;
1792 }
1793
1794#ifdef VBOX_STRICT
1795 case X86_XCPT_BP: /* Breakpoint. */
1796 case X86_XCPT_GP: /* General protection failure exception.*/
1797 case X86_XCPT_UD: /* Unknown opcode exception. */
1798 case X86_XCPT_DE: /* Divide error. */
1799 case X86_XCPT_SS: /* Stack segment exception. */
1800 case X86_XCPT_NP: /* Segment not present exception. */
1801 {
1802 Event.au64[0] = 0;
1803 Event.n.u3Type = SVM_EVENT_EXCEPTION;
1804 Event.n.u1Valid = 1;
1805 Event.n.u8Vector = vector;
1806
1807 switch(vector)
1808 {
1809 case X86_XCPT_GP:
1810 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestGP);
1811 Event.n.u1ErrorCodeValid = 1;
1812 Event.n.u32ErrorCode = pVMCB->ctrl.u64ExitInfo1; /* EXITINFO1 = error code */
1813 break;
1814 case X86_XCPT_BP:
1815 /** Saves the wrong EIP on the stack (pointing to the int3 instead of the next instruction. */
1816 break;
1817 case X86_XCPT_DE:
1818 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestDE);
1819 break;
1820 case X86_XCPT_UD:
1821 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestUD);
1822 break;
1823 case X86_XCPT_SS:
1824 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestSS);
1825 Event.n.u1ErrorCodeValid = 1;
1826 Event.n.u32ErrorCode = pVMCB->ctrl.u64ExitInfo1; /* EXITINFO1 = error code */
1827 break;
1828 case X86_XCPT_NP:
1829 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestNP);
1830 Event.n.u1ErrorCodeValid = 1;
1831 Event.n.u32ErrorCode = pVMCB->ctrl.u64ExitInfo1; /* EXITINFO1 = error code */
1832 break;
1833 }
1834 Log(("Trap %x at %04x:%RGv esi=%x\n", vector, pCtx->cs, (RTGCPTR)pCtx->rip, pCtx->esi));
1835 SVMR0InjectEvent(pVCpu, pVMCB, pCtx, &Event);
1836 goto ResumeExecution;
1837 }
1838#endif
1839 default:
1840 AssertMsgFailed(("Unexpected vm-exit caused by exception %x\n", vector));
1841 rc = VERR_EM_INTERNAL_ERROR;
1842 break;
1843
1844 } /* switch (vector) */
1845 break;
1846 }
1847
1848 case SVM_EXIT_NPF:
1849 {
1850 /* EXITINFO1 contains fault errorcode; EXITINFO2 contains the guest physical address causing the fault. */
1851 uint32_t errCode = pVMCB->ctrl.u64ExitInfo1; /* EXITINFO1 = error code */
1852 RTGCPHYS GCPhysFault = pVMCB->ctrl.u64ExitInfo2; /* EXITINFO2 = fault address */
1853 PGMMODE enmShwPagingMode;
1854
1855 Assert(pVM->hwaccm.s.fNestedPaging);
1856 LogFlow(("Nested page fault at %RGv cr2=%RGp error code %x\n", (RTGCPTR)pCtx->rip, GCPhysFault, errCode));
1857
1858#ifdef VBOX_HWACCM_WITH_GUEST_PATCHING
1859 /* Shortcut for APIC TPR reads and writes; 32 bits guests only */
1860 if ( pVM->hwaccm.s.fTRPPatchingAllowed
1861 && (GCPhysFault & PAGE_OFFSET_MASK) == 0x080
1862 && ( !(errCode & X86_TRAP_PF_P) /* not present */
1863 || (errCode & (X86_TRAP_PF_P | X86_TRAP_PF_RSVD)) == (X86_TRAP_PF_P | X86_TRAP_PF_RSVD) /* mmio optimization */)
1864 && CPUMGetGuestCPL(pVCpu, CPUMCTX2CORE(pCtx)) == 0
1865 && !CPUMIsGuestInLongModeEx(pCtx)
1866 && pVM->hwaccm.s.cPatches < RT_ELEMENTS(pVM->hwaccm.s.aPatches))
1867 {
1868 RTGCPHYS GCPhysApicBase;
1869 PDMApicGetBase(pVM, &GCPhysApicBase); /* @todo cache this */
1870 GCPhysApicBase &= PAGE_BASE_GC_MASK;
1871
1872 if (GCPhysFault == GCPhysApicBase + 0x80)
1873 {
1874 /* Only attempt to patch the instruction once. */
1875 PHWACCMTPRPATCH pPatch = (PHWACCMTPRPATCH)RTAvloU32Get(&pVM->hwaccm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
1876 if (!pPatch)
1877 {
1878 rc = VINF_EM_HWACCM_PATCH_TPR_INSTR;
1879 break;
1880 }
1881 }
1882 }
1883#endif
1884
1885 /* Handle the pagefault trap for the nested shadow table. */
1886#if HC_ARCH_BITS == 32 /** @todo shadow this in a variable. */
1887 if (CPUMIsGuestInLongModeEx(pCtx))
1888 enmShwPagingMode = PGMMODE_AMD64_NX;
1889 else
1890#endif
1891 enmShwPagingMode = PGMGetHostMode(pVM);
1892
1893 /* MMIO optimization */
1894 Assert((errCode & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) != X86_TRAP_PF_RSVD);
1895 if ((errCode & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) == (X86_TRAP_PF_RSVD | X86_TRAP_PF_P))
1896 {
1897 rc = PGMR0Trap0eHandlerNPMisconfig(pVM, pVCpu, enmShwPagingMode, CPUMCTX2CORE(pCtx), GCPhysFault, errCode);
1898 if (rc == VINF_SUCCESS)
1899 {
1900 Log2(("PGMR0Trap0eHandlerNPMisconfig(,,,%RGp) at %RGv -> resume\n", GCPhysFault, (RTGCPTR)pCtx->rip));
1901 goto ResumeExecution;
1902 }
1903 Log2(("PGMR0Trap0eHandlerNPMisconfig(,,,%RGp) at %RGv -> resume\n", GCPhysFault, (RTGCPTR)pCtx->rip));
1904 break;
1905 }
1906
1907 /* Exit qualification contains the linear address of the page fault. */
1908 TRPMAssertTrap(pVCpu, X86_XCPT_PF, TRPM_TRAP);
1909 TRPMSetErrorCode(pVCpu, errCode);
1910 TRPMSetFaultAddress(pVCpu, GCPhysFault);
1911
1912 rc = PGMR0Trap0eHandlerNestedPaging(pVM, pVCpu, enmShwPagingMode, errCode, CPUMCTX2CORE(pCtx), GCPhysFault);
1913 Log2(("PGMR0Trap0eHandlerNestedPaging %RGv returned %Rrc\n", (RTGCPTR)pCtx->rip, VBOXSTRICTRC_VAL(rc)));
1914 if (rc == VINF_SUCCESS)
1915 { /* We've successfully synced our shadow pages, so let's just continue execution. */
1916 Log2(("Shadow page fault at %RGv cr2=%RGp error code %x\n", (RTGCPTR)pCtx->rip, GCPhysFault, errCode));
1917 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitShadowPF);
1918
1919 TRPMResetTrap(pVCpu);
1920 goto ResumeExecution;
1921 }
1922
1923#ifdef VBOX_STRICT
1924 if (rc != VINF_EM_RAW_EMULATE_INSTR)
1925 LogFlow(("PGMTrap0eHandlerNestedPaging failed with %d\n", VBOXSTRICTRC_VAL(rc)));
1926#endif
1927 /* Need to go back to the recompiler to emulate the instruction. */
1928 TRPMResetTrap(pVCpu);
1929 break;
1930 }
1931
1932 case SVM_EXIT_VINTR:
1933 /* A virtual interrupt is about to be delivered, which means IF=1. */
1934 Log(("SVM_EXIT_VINTR IF=%d\n", pCtx->eflags.Bits.u1IF));
1935 pVMCB->ctrl.IntCtrl.n.u1VIrqValid = 0;
1936 pVMCB->ctrl.IntCtrl.n.u8VIrqVector = 0;
1937 goto ResumeExecution;
1938
1939 case SVM_EXIT_FERR_FREEZE:
1940 case SVM_EXIT_INTR:
1941 case SVM_EXIT_NMI:
1942 case SVM_EXIT_SMI:
1943 case SVM_EXIT_INIT:
1944 /* External interrupt; leave to allow it to be dispatched again. */
1945 rc = VINF_EM_RAW_INTERRUPT;
1946 break;
1947
1948 case SVM_EXIT_WBINVD:
1949 case SVM_EXIT_INVD: /* Guest software attempted to execute INVD. */
1950 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitInvd);
1951 /* Skip instruction and continue directly. */
1952 pCtx->rip += 2; /* Note! hardcoded opcode size! */
1953 /* Continue execution.*/
1954 goto ResumeExecution;
1955
1956 case SVM_EXIT_CPUID: /* Guest software attempted to execute CPUID. */
1957 {
1958 Log2(("SVM: Cpuid at %RGv for %x\n", (RTGCPTR)pCtx->rip, pCtx->eax));
1959 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitCpuid);
1960 rc = EMInterpretCpuId(pVM, pVCpu, CPUMCTX2CORE(pCtx));
1961 if (rc == VINF_SUCCESS)
1962 {
1963 /* Update EIP and continue execution. */
1964 pCtx->rip += 2; /* Note! hardcoded opcode size! */
1965 goto ResumeExecution;
1966 }
1967 AssertMsgFailed(("EMU: cpuid failed with %Rrc\n", VBOXSTRICTRC_VAL(rc)));
1968 rc = VINF_EM_RAW_EMULATE_INSTR;
1969 break;
1970 }
1971
1972 case SVM_EXIT_RDTSC: /* Guest software attempted to execute RDTSC. */
1973 {
1974 Log2(("SVM: Rdtsc\n"));
1975 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitRdtsc);
1976 rc = EMInterpretRdtsc(pVM, pVCpu, CPUMCTX2CORE(pCtx));
1977 if (rc == VINF_SUCCESS)
1978 {
1979 /* Update EIP and continue execution. */
1980 pCtx->rip += 2; /* Note! hardcoded opcode size! */
1981 goto ResumeExecution;
1982 }
1983 rc = VINF_EM_RAW_EMULATE_INSTR;
1984 break;
1985 }
1986
1987 case SVM_EXIT_RDPMC: /* Guest software attempted to execute RDPMC. */
1988 {
1989 Log2(("SVM: Rdpmc %x\n", pCtx->ecx));
1990 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitRdpmc);
1991 rc = EMInterpretRdpmc(pVM, pVCpu, CPUMCTX2CORE(pCtx));
1992 if (rc == VINF_SUCCESS)
1993 {
1994 /* Update EIP and continue execution. */
1995 pCtx->rip += 2; /* Note! hardcoded opcode size! */
1996 goto ResumeExecution;
1997 }
1998 rc = VINF_EM_RAW_EMULATE_INSTR;
1999 break;
2000 }
2001
2002 case SVM_EXIT_RDTSCP: /* Guest software attempted to execute RDTSCP. */
2003 {
2004 Log2(("SVM: Rdtscp\n"));
2005 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitRdtsc);
2006 rc = EMInterpretRdtscp(pVM, pVCpu, pCtx);
2007 if (rc == VINF_SUCCESS)
2008 {
2009 /* Update EIP and continue execution. */
2010 pCtx->rip += 3; /* Note! hardcoded opcode size! */
2011 goto ResumeExecution;
2012 }
2013 AssertMsgFailed(("EMU: rdtscp failed with %Rrc\n", VBOXSTRICTRC_VAL(rc)));
2014 rc = VINF_EM_RAW_EMULATE_INSTR;
2015 break;
2016 }
2017
2018 case SVM_EXIT_INVLPG: /* Guest software attempted to execute INVPG. */
2019 {
2020 Log2(("SVM: invlpg\n"));
2021 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitInvpg);
2022
2023 Assert(!pVM->hwaccm.s.fNestedPaging);
2024
2025 /* Truly a pita. Why can't SVM give the same information as VT-x? */
2026 rc = svmR0InterpretInvpg(pVM, pVCpu, CPUMCTX2CORE(pCtx), pVMCB->ctrl.TLBCtrl.n.u32ASID);
2027 if (rc == VINF_SUCCESS)
2028 {
2029 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatFlushPageInvlpg);
2030 goto ResumeExecution; /* eip already updated */
2031 }
2032 break;
2033 }
2034
2035 case SVM_EXIT_WRITE_CR0: case SVM_EXIT_WRITE_CR1: case SVM_EXIT_WRITE_CR2: case SVM_EXIT_WRITE_CR3:
2036 case SVM_EXIT_WRITE_CR4: case SVM_EXIT_WRITE_CR5: case SVM_EXIT_WRITE_CR6: case SVM_EXIT_WRITE_CR7:
2037 case SVM_EXIT_WRITE_CR8: case SVM_EXIT_WRITE_CR9: case SVM_EXIT_WRITE_CR10: case SVM_EXIT_WRITE_CR11:
2038 case SVM_EXIT_WRITE_CR12: case SVM_EXIT_WRITE_CR13: case SVM_EXIT_WRITE_CR14: case SVM_EXIT_WRITE_CR15:
2039 {
2040 uint32_t cbSize;
2041
2042 Log2(("SVM: %RGv mov cr%d, \n", (RTGCPTR)pCtx->rip, exitCode - SVM_EXIT_WRITE_CR0));
2043 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitCRxWrite[exitCode - SVM_EXIT_WRITE_CR0]);
2044 rc = EMInterpretInstruction(pVM, pVCpu, CPUMCTX2CORE(pCtx), 0, &cbSize);
2045
2046 switch (exitCode - SVM_EXIT_WRITE_CR0)
2047 {
2048 case 0:
2049 pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_GUEST_CR0;
2050 break;
2051 case 2:
2052 break;
2053 case 3:
2054 Assert(!pVM->hwaccm.s.fNestedPaging);
2055 pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_GUEST_CR3;
2056 break;
2057 case 4:
2058 pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_GUEST_CR4;
2059 break;
2060 case 8:
2061 break;
2062 default:
2063 AssertFailed();
2064 }
2065 if (rc == VINF_SUCCESS)
2066 {
2067 /* EIP has been updated already. */
2068
2069 /* Only resume if successful. */
2070 goto ResumeExecution;
2071 }
2072 Assert(rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_PGM_SYNC_CR3);
2073 break;
2074 }
2075
2076 case SVM_EXIT_READ_CR0: case SVM_EXIT_READ_CR1: case SVM_EXIT_READ_CR2: case SVM_EXIT_READ_CR3:
2077 case SVM_EXIT_READ_CR4: case SVM_EXIT_READ_CR5: case SVM_EXIT_READ_CR6: case SVM_EXIT_READ_CR7:
2078 case SVM_EXIT_READ_CR8: case SVM_EXIT_READ_CR9: case SVM_EXIT_READ_CR10: case SVM_EXIT_READ_CR11:
2079 case SVM_EXIT_READ_CR12: case SVM_EXIT_READ_CR13: case SVM_EXIT_READ_CR14: case SVM_EXIT_READ_CR15:
2080 {
2081 uint32_t cbSize;
2082
2083 Log2(("SVM: %RGv mov x, cr%d\n", (RTGCPTR)pCtx->rip, exitCode - SVM_EXIT_READ_CR0));
2084 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitCRxRead[exitCode - SVM_EXIT_READ_CR0]);
2085 rc = EMInterpretInstruction(pVM, pVCpu, CPUMCTX2CORE(pCtx), 0, &cbSize);
2086 if (rc == VINF_SUCCESS)
2087 {
2088 /* EIP has been updated already. */
2089
2090 /* Only resume if successful. */
2091 goto ResumeExecution;
2092 }
2093 Assert(rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_PGM_SYNC_CR3);
2094 break;
2095 }
2096
2097 case SVM_EXIT_WRITE_DR0: case SVM_EXIT_WRITE_DR1: case SVM_EXIT_WRITE_DR2: case SVM_EXIT_WRITE_DR3:
2098 case SVM_EXIT_WRITE_DR4: case SVM_EXIT_WRITE_DR5: case SVM_EXIT_WRITE_DR6: case SVM_EXIT_WRITE_DR7:
2099 case SVM_EXIT_WRITE_DR8: case SVM_EXIT_WRITE_DR9: case SVM_EXIT_WRITE_DR10: case SVM_EXIT_WRITE_DR11:
2100 case SVM_EXIT_WRITE_DR12: case SVM_EXIT_WRITE_DR13: case SVM_EXIT_WRITE_DR14: case SVM_EXIT_WRITE_DR15:
2101 {
2102 uint32_t cbSize;
2103
2104 Log2(("SVM: %RGv mov dr%d, x\n", (RTGCPTR)pCtx->rip, exitCode - SVM_EXIT_WRITE_DR0));
2105 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitDRxWrite);
2106
2107 if ( !DBGFIsStepping(pVCpu)
2108 && !CPUMIsHyperDebugStateActive(pVCpu))
2109 {
2110 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatDRxContextSwitch);
2111
2112 /* Disable drx move intercepts. */
2113 pVMCB->ctrl.u16InterceptRdDRx = 0;
2114 pVMCB->ctrl.u16InterceptWrDRx = 0;
2115
2116 /* Save the host and load the guest debug state. */
2117 rc2 = CPUMR0LoadGuestDebugState(pVM, pVCpu, pCtx, false /* exclude DR6 */);
2118 AssertRC(rc2);
2119 goto ResumeExecution;
2120 }
2121
2122 rc = EMInterpretInstruction(pVM, pVCpu, CPUMCTX2CORE(pCtx), 0, &cbSize);
2123 if (rc == VINF_SUCCESS)
2124 {
2125 /* EIP has been updated already. */
2126 pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_GUEST_DEBUG;
2127
2128 /* Only resume if successful. */
2129 goto ResumeExecution;
2130 }
2131 Assert(rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_PGM_SYNC_CR3);
2132 break;
2133 }
2134
2135 case SVM_EXIT_READ_DR0: case SVM_EXIT_READ_DR1: case SVM_EXIT_READ_DR2: case SVM_EXIT_READ_DR3:
2136 case SVM_EXIT_READ_DR4: case SVM_EXIT_READ_DR5: case SVM_EXIT_READ_DR6: case SVM_EXIT_READ_DR7:
2137 case SVM_EXIT_READ_DR8: case SVM_EXIT_READ_DR9: case SVM_EXIT_READ_DR10: case SVM_EXIT_READ_DR11:
2138 case SVM_EXIT_READ_DR12: case SVM_EXIT_READ_DR13: case SVM_EXIT_READ_DR14: case SVM_EXIT_READ_DR15:
2139 {
2140 uint32_t cbSize;
2141
2142 Log2(("SVM: %RGv mov x, dr%d\n", (RTGCPTR)pCtx->rip, exitCode - SVM_EXIT_READ_DR0));
2143 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitDRxRead);
2144
2145 if (!DBGFIsStepping(pVCpu))
2146 {
2147 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatDRxContextSwitch);
2148
2149 /* Disable drx move intercepts. */
2150 pVMCB->ctrl.u16InterceptRdDRx = 0;
2151 pVMCB->ctrl.u16InterceptWrDRx = 0;
2152
2153 /* Save the host and load the guest debug state. */
2154 rc2 = CPUMR0LoadGuestDebugState(pVM, pVCpu, pCtx, false /* exclude DR6 */);
2155 AssertRC(rc2);
2156 goto ResumeExecution;
2157 }
2158
2159 rc = EMInterpretInstruction(pVM, pVCpu, CPUMCTX2CORE(pCtx), 0, &cbSize);
2160 if (rc == VINF_SUCCESS)
2161 {
2162 /* EIP has been updated already. */
2163
2164 /* Only resume if successful. */
2165 goto ResumeExecution;
2166 }
2167 Assert(rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_PGM_SYNC_CR3);
2168 break;
2169 }
2170
2171 /* Note: We'll get a #GP if the IO instruction isn't allowed (IOPL or TSS bitmap); no need to double check. */
2172 case SVM_EXIT_IOIO: /* I/O instruction. */
2173 {
2174 SVM_IOIO_EXIT IoExitInfo;
2175 uint32_t uIOSize, uAndVal;
2176
2177 IoExitInfo.au32[0] = pVMCB->ctrl.u64ExitInfo1;
2178
2179 /** @todo could use a lookup table here */
2180 if (IoExitInfo.n.u1OP8)
2181 {
2182 uIOSize = 1;
2183 uAndVal = 0xff;
2184 }
2185 else
2186 if (IoExitInfo.n.u1OP16)
2187 {
2188 uIOSize = 2;
2189 uAndVal = 0xffff;
2190 }
2191 else
2192 if (IoExitInfo.n.u1OP32)
2193 {
2194 uIOSize = 4;
2195 uAndVal = 0xffffffff;
2196 }
2197 else
2198 {
2199 AssertFailed(); /* should be fatal. */
2200 rc = VINF_EM_RAW_EMULATE_INSTR;
2201 break;
2202 }
2203
2204 if (IoExitInfo.n.u1STR)
2205 {
2206 /* ins/outs */
2207 PDISCPUSTATE pDis = &pVCpu->hwaccm.s.DisState;
2208
2209 /* Disassemble manually to deal with segment prefixes. */
2210 rc = EMInterpretDisasOne(pVM, pVCpu, CPUMCTX2CORE(pCtx), pDis, NULL);
2211 if (rc == VINF_SUCCESS)
2212 {
2213 if (IoExitInfo.n.u1Type == 0)
2214 {
2215 Log2(("IOMInterpretOUTSEx %RGv %x size=%d\n", (RTGCPTR)pCtx->rip, IoExitInfo.n.u16Port, uIOSize));
2216 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitIOStringWrite);
2217 rc = IOMInterpretOUTSEx(pVM, CPUMCTX2CORE(pCtx), IoExitInfo.n.u16Port, pDis->prefix, uIOSize);
2218 }
2219 else
2220 {
2221 Log2(("IOMInterpretINSEx %RGv %x size=%d\n", (RTGCPTR)pCtx->rip, IoExitInfo.n.u16Port, uIOSize));
2222 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitIOStringRead);
2223 rc = IOMInterpretINSEx(pVM, CPUMCTX2CORE(pCtx), IoExitInfo.n.u16Port, pDis->prefix, uIOSize);
2224 }
2225 }
2226 else
2227 rc = VINF_EM_RAW_EMULATE_INSTR;
2228 }
2229 else
2230 {
2231 /* normal in/out */
2232 Assert(!IoExitInfo.n.u1REP);
2233
2234 if (IoExitInfo.n.u1Type == 0)
2235 {
2236 Log2(("IOMIOPortWrite %RGv %x %x size=%d\n", (RTGCPTR)pCtx->rip, IoExitInfo.n.u16Port, pCtx->eax & uAndVal, uIOSize));
2237 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitIOWrite);
2238 rc = IOMIOPortWrite(pVM, IoExitInfo.n.u16Port, pCtx->eax & uAndVal, uIOSize);
2239 if (rc == VINF_IOM_HC_IOPORT_WRITE)
2240 HWACCMR0SavePendingIOPortWrite(pVCpu, pCtx->rip, pVMCB->ctrl.u64ExitInfo2, IoExitInfo.n.u16Port, uAndVal, uIOSize);
2241 }
2242 else
2243 {
2244 uint32_t u32Val = 0;
2245
2246 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitIORead);
2247 rc = IOMIOPortRead(pVM, IoExitInfo.n.u16Port, &u32Val, uIOSize);
2248 if (IOM_SUCCESS(rc))
2249 {
2250 /* Write back to the EAX register. */
2251 pCtx->eax = (pCtx->eax & ~uAndVal) | (u32Val & uAndVal);
2252 Log2(("IOMIOPortRead %RGv %x %x size=%d\n", (RTGCPTR)pCtx->rip, IoExitInfo.n.u16Port, u32Val & uAndVal, uIOSize));
2253 }
2254 else
2255 if (rc == VINF_IOM_HC_IOPORT_READ)
2256 HWACCMR0SavePendingIOPortRead(pVCpu, pCtx->rip, pVMCB->ctrl.u64ExitInfo2, IoExitInfo.n.u16Port, uAndVal, uIOSize);
2257 }
2258 }
2259 /*
2260 * Handled the I/O return codes.
2261 * (The unhandled cases end up with rc == VINF_EM_RAW_EMULATE_INSTR.)
2262 */
2263 if (IOM_SUCCESS(rc))
2264 {
2265 /* Update EIP and continue execution. */
2266 pCtx->rip = pVMCB->ctrl.u64ExitInfo2; /* RIP/EIP of the next instruction is saved in EXITINFO2. */
2267 if (RT_LIKELY(rc == VINF_SUCCESS))
2268 {
2269 /* If any IO breakpoints are armed, then we should check if a debug trap needs to be generated. */
2270 if (pCtx->dr[7] & X86_DR7_ENABLED_MASK)
2271 {
2272 /* IO operation lookup arrays. */
2273 static uint32_t const aIOSize[4] = {1, 2, 0, 4};
2274
2275 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatDRxIOCheck);
2276 for (unsigned i=0;i<4;i++)
2277 {
2278 unsigned uBPLen = aIOSize[X86_DR7_GET_LEN(pCtx->dr[7], i)];
2279
2280 if ( (IoExitInfo.n.u16Port >= pCtx->dr[i] && IoExitInfo.n.u16Port < pCtx->dr[i] + uBPLen)
2281 && (pCtx->dr[7] & (X86_DR7_L(i) | X86_DR7_G(i)))
2282 && (pCtx->dr[7] & X86_DR7_RW(i, X86_DR7_RW_IO)) == X86_DR7_RW(i, X86_DR7_RW_IO))
2283 {
2284 SVM_EVENT Event;
2285
2286 Assert(CPUMIsGuestDebugStateActive(pVCpu));
2287
2288 /* Clear all breakpoint status flags and set the one we just hit. */
2289 pCtx->dr[6] &= ~(X86_DR6_B0|X86_DR6_B1|X86_DR6_B2|X86_DR6_B3);
2290 pCtx->dr[6] |= (uint64_t)RT_BIT(i);
2291
2292 /* Note: AMD64 Architecture Programmer's Manual 13.1:
2293 * Bits 15:13 of the DR6 register is never cleared by the processor and must be cleared by software after
2294 * the contents have been read.
2295 */
2296 pVMCB->guest.u64DR6 = pCtx->dr[6];
2297
2298 /* X86_DR7_GD will be cleared if drx accesses should be trapped inside the guest. */
2299 pCtx->dr[7] &= ~X86_DR7_GD;
2300
2301 /* Paranoia. */
2302 pCtx->dr[7] &= 0xffffffff; /* upper 32 bits reserved */
2303 pCtx->dr[7] &= ~(RT_BIT(11) | RT_BIT(12) | RT_BIT(14) | RT_BIT(15)); /* must be zero */
2304 pCtx->dr[7] |= 0x400; /* must be one */
2305
2306 pVMCB->guest.u64DR7 = pCtx->dr[7];
2307
2308 /* Inject the exception. */
2309 Log(("Inject IO debug trap at %RGv\n", (RTGCPTR)pCtx->rip));
2310
2311 Event.au64[0] = 0;
2312 Event.n.u3Type = SVM_EVENT_EXCEPTION; /* trap or fault */
2313 Event.n.u1Valid = 1;
2314 Event.n.u8Vector = X86_XCPT_DB;
2315
2316 SVMR0InjectEvent(pVCpu, pVMCB, pCtx, &Event);
2317 goto ResumeExecution;
2318 }
2319 }
2320 }
2321 goto ResumeExecution;
2322 }
2323 Log2(("EM status from IO at %RGv %x size %d: %Rrc\n", (RTGCPTR)pCtx->rip, IoExitInfo.n.u16Port, uIOSize, VBOXSTRICTRC_VAL(rc)));
2324 break;
2325 }
2326
2327#ifdef VBOX_STRICT
2328 if (rc == VINF_IOM_HC_IOPORT_READ)
2329 Assert(IoExitInfo.n.u1Type != 0);
2330 else if (rc == VINF_IOM_HC_IOPORT_WRITE)
2331 Assert(IoExitInfo.n.u1Type == 0);
2332 else
2333 AssertMsg(RT_FAILURE(rc) || rc == VINF_EM_RAW_EMULATE_INSTR || rc == VINF_EM_RAW_GUEST_TRAP || rc == VINF_TRPM_XCPT_DISPATCHED, ("%Rrc\n", VBOXSTRICTRC_VAL(rc)));
2334#endif
2335 Log2(("Failed IO at %RGv %x size %d\n", (RTGCPTR)pCtx->rip, IoExitInfo.n.u16Port, uIOSize));
2336 break;
2337 }
2338
2339 case SVM_EXIT_HLT:
2340 /** Check if external interrupts are pending; if so, don't switch back. */
2341 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitHlt);
2342 pCtx->rip++; /* skip hlt */
2343 if (EMShouldContinueAfterHalt(pVCpu, pCtx))
2344 goto ResumeExecution;
2345
2346 rc = VINF_EM_HALT;
2347 break;
2348
2349 case SVM_EXIT_MWAIT_UNCOND:
2350 Log2(("SVM: mwait\n"));
2351 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitMwait);
2352 rc = EMInterpretMWait(pVM, pVCpu, CPUMCTX2CORE(pCtx));
2353 if ( rc == VINF_EM_HALT
2354 || rc == VINF_SUCCESS)
2355 {
2356 /* Update EIP and continue execution. */
2357 pCtx->rip += 3; /* Note: hardcoded opcode size assumption! */
2358
2359 /** Check if external interrupts are pending; if so, don't switch back. */
2360 if ( rc == VINF_SUCCESS
2361 || ( rc == VINF_EM_HALT
2362 && EMShouldContinueAfterHalt(pVCpu, pCtx))
2363 )
2364 goto ResumeExecution;
2365 }
2366 AssertMsg(rc == VERR_EM_INTERPRETER || rc == VINF_EM_HALT, ("EMU: mwait failed with %Rrc\n", VBOXSTRICTRC_VAL(rc)));
2367 break;
2368
2369 case SVM_EXIT_MONITOR:
2370 {
2371 Log2(("SVM: monitor\n"));
2372
2373 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitMonitor);
2374 rc = EMInterpretMonitor(pVM, pVCpu, CPUMCTX2CORE(pCtx));
2375 if (rc == VINF_SUCCESS)
2376 {
2377 /* Update EIP and continue execution. */
2378 pCtx->rip += 3; /* Note: hardcoded opcode size assumption! */
2379 goto ResumeExecution;
2380 }
2381 AssertMsg(rc == VERR_EM_INTERPRETER, ("EMU: monitor failed with %Rrc\n", VBOXSTRICTRC_VAL(rc)));
2382 break;
2383 }
2384
2385
2386 case SVM_EXIT_VMMCALL:
2387 rc = svmR0EmulateTprVMMCall(pVM, pVCpu, pCtx);
2388 if (rc == VINF_SUCCESS)
2389 {
2390 goto ResumeExecution; /* rip already updated. */
2391 }
2392 /* no break */
2393
2394 case SVM_EXIT_RSM:
2395 case SVM_EXIT_INVLPGA:
2396 case SVM_EXIT_VMRUN:
2397 case SVM_EXIT_VMLOAD:
2398 case SVM_EXIT_VMSAVE:
2399 case SVM_EXIT_STGI:
2400 case SVM_EXIT_CLGI:
2401 case SVM_EXIT_SKINIT:
2402 {
2403 /* Unsupported instructions. */
2404 SVM_EVENT Event;
2405
2406 Event.au64[0] = 0;
2407 Event.n.u3Type = SVM_EVENT_EXCEPTION;
2408 Event.n.u1Valid = 1;
2409 Event.n.u8Vector = X86_XCPT_UD;
2410
2411 Log(("Forced #UD trap at %RGv\n", (RTGCPTR)pCtx->rip));
2412 SVMR0InjectEvent(pVCpu, pVMCB, pCtx, &Event);
2413 goto ResumeExecution;
2414 }
2415
2416 /* Emulate in ring 3. */
2417 case SVM_EXIT_MSR:
2418 {
2419 uint32_t cbSize;
2420
2421 /* When an interrupt is pending, we'll let MSR_K8_LSTAR writes fault in our TPR patch code. */
2422 if ( pVM->hwaccm.s.fTPRPatchingActive
2423 && pCtx->ecx == MSR_K8_LSTAR
2424 && pVMCB->ctrl.u64ExitInfo1 == 1 /* wrmsr */)
2425 {
2426 if ((pCtx->eax & 0xff) != u8LastTPR)
2427 {
2428 Log(("SVM: Faulting MSR_K8_LSTAR write with new TPR value %x\n", pCtx->eax & 0xff));
2429
2430 /* Our patch code uses LSTAR for TPR caching. */
2431 rc2 = PDMApicSetTPR(pVCpu, pCtx->eax & 0xff);
2432 AssertRC(rc2);
2433 }
2434
2435 /* Skip the instruction and continue. */
2436 pCtx->rip += 2; /* wrmsr = [0F 30] */
2437
2438 /* Only resume if successful. */
2439 goto ResumeExecution;
2440 }
2441
2442 /* Note: the intel manual claims there's a REX version of RDMSR that's slightly different, so we play safe by completely disassembling the instruction. */
2443 STAM_COUNTER_INC((pVMCB->ctrl.u64ExitInfo1 == 0) ? &pVCpu->hwaccm.s.StatExitRdmsr : &pVCpu->hwaccm.s.StatExitWrmsr);
2444 Log(("SVM: %s\n", (pVMCB->ctrl.u64ExitInfo1 == 0) ? "rdmsr" : "wrmsr"));
2445 rc = EMInterpretInstruction(pVM, pVCpu, CPUMCTX2CORE(pCtx), 0, &cbSize);
2446 if (rc == VINF_SUCCESS)
2447 {
2448 /* EIP has been updated already. */
2449
2450 /* Only resume if successful. */
2451 goto ResumeExecution;
2452 }
2453 AssertMsg(rc == VERR_EM_INTERPRETER, ("EMU: %s failed with %Rrc\n", (pVMCB->ctrl.u64ExitInfo1 == 0) ? "rdmsr" : "wrmsr", VBOXSTRICTRC_VAL(rc)));
2454 break;
2455 }
2456
2457 case SVM_EXIT_TASK_SWITCH: /* too complicated to emulate, so fall back to the recompiler*/
2458 Log(("SVM_EXIT_TASK_SWITCH: exit2=%RX64\n", pVMCB->ctrl.u64ExitInfo2));
2459 if ( !(pVMCB->ctrl.u64ExitInfo2 & (SVM_EXIT2_TASK_SWITCH_IRET | SVM_EXIT2_TASK_SWITCH_JMP))
2460 && pVCpu->hwaccm.s.Event.fPending)
2461 {
2462 SVM_EVENT Event;
2463
2464 Event.au64[0] = pVCpu->hwaccm.s.Event.intInfo;
2465
2466 /* Caused by an injected interrupt. */
2467 pVCpu->hwaccm.s.Event.fPending = false;
2468
2469 switch (Event.n.u3Type)
2470 {
2471 case SVM_EVENT_EXTERNAL_IRQ:
2472 case SVM_EVENT_NMI:
2473 Log(("SVM_EXIT_TASK_SWITCH: reassert trap %d\n", Event.n.u8Vector));
2474 Assert(!Event.n.u1ErrorCodeValid);
2475 rc2 = TRPMAssertTrap(pVCpu, Event.n.u8Vector, TRPM_HARDWARE_INT);
2476 AssertRC(rc2);
2477 break;
2478
2479 default:
2480 /* Exceptions and software interrupts can just be restarted. */
2481 break;
2482 }
2483 }
2484 rc = VERR_EM_INTERPRETER;
2485 break;
2486
2487 case SVM_EXIT_PAUSE:
2488 case SVM_EXIT_MWAIT_ARMED:
2489 rc = VERR_EM_INTERPRETER;
2490 break;
2491
2492 case SVM_EXIT_SHUTDOWN:
2493 rc = VINF_EM_RESET; /* Triple fault equals a reset. */
2494 break;
2495
2496 case SVM_EXIT_IDTR_READ:
2497 case SVM_EXIT_GDTR_READ:
2498 case SVM_EXIT_LDTR_READ:
2499 case SVM_EXIT_TR_READ:
2500 case SVM_EXIT_IDTR_WRITE:
2501 case SVM_EXIT_GDTR_WRITE:
2502 case SVM_EXIT_LDTR_WRITE:
2503 case SVM_EXIT_TR_WRITE:
2504 case SVM_EXIT_CR0_SEL_WRITE:
2505 default:
2506 /* Unexpected exit codes. */
2507 rc = VERR_EM_INTERNAL_ERROR;
2508 AssertMsgFailed(("Unexpected exit code %x\n", exitCode)); /* Can't happen. */
2509 break;
2510 }
2511
2512end:
2513
2514 /* We now going back to ring-3, so clear the action flag. */
2515 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TO_R3);
2516
2517 /* Signal changes for the recompiler. */
2518 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_SYSENTER_MSR | CPUM_CHANGED_LDTR | CPUM_CHANGED_GDTR | CPUM_CHANGED_IDTR | CPUM_CHANGED_TR | CPUM_CHANGED_HIDDEN_SEL_REGS);
2519
2520 /* If we executed vmrun and an external irq was pending, then we don't have to do a full sync the next time. */
2521 if (exitCode == SVM_EXIT_INTR)
2522 {
2523 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatPendingHostIrq);
2524 /* On the next entry we'll only sync the host context. */
2525 pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_HOST_CONTEXT;
2526 }
2527 else
2528 {
2529 /* On the next entry we'll sync everything. */
2530 /** @todo we can do better than this */
2531 /* Not in the VINF_PGM_CHANGE_MODE though! */
2532 pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_ALL;
2533 }
2534
2535 /* translate into a less severe return code */
2536 if (rc == VERR_EM_INTERPRETER)
2537 rc = VINF_EM_RAW_EMULATE_INSTR;
2538
2539 /* Just set the correct state here instead of trying to catch every goto above. */
2540 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED, VMCPUSTATE_STARTED_EXEC);
2541
2542#ifdef VBOX_WITH_VMMR0_DISABLE_PREEMPTION
2543 /* Restore interrupts if we exitted after disabling them. */
2544 if (uOldEFlags != ~(RTCCUINTREG)0)
2545 ASMSetFlags(uOldEFlags);
2546#endif
2547
2548 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit2, x);
2549 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit1, x);
2550 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatEntry, x);
2551 return VBOXSTRICTRC_TODO(rc);
2552}
2553
2554/**
2555 * Emulate simple mov tpr instruction
2556 *
2557 * @returns VBox status code.
2558 * @param pVM The VM to operate on.
2559 * @param pVCpu The VM CPU to operate on.
2560 * @param pCtx CPU context
2561 */
2562static int svmR0EmulateTprVMMCall(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
2563{
2564 int rc;
2565
2566 LogFlow(("Emulated VMMCall TPR access replacement at %RGv\n", pCtx->rip));
2567
2568 while (true)
2569 {
2570 bool fPending;
2571 uint8_t u8Tpr;
2572
2573 PHWACCMTPRPATCH pPatch = (PHWACCMTPRPATCH)RTAvloU32Get(&pVM->hwaccm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
2574 if (!pPatch)
2575 break;
2576
2577 switch(pPatch->enmType)
2578 {
2579 case HWACCMTPRINSTR_READ:
2580 /* TPR caching in CR8 */
2581 rc = PDMApicGetTPR(pVCpu, &u8Tpr, &fPending);
2582 AssertRC(rc);
2583
2584 rc = DISWriteReg32(CPUMCTX2CORE(pCtx), pPatch->uDstOperand, u8Tpr);
2585 AssertRC(rc);
2586
2587 LogFlow(("Emulated read successfully\n"));
2588 pCtx->rip += pPatch->cbOp;
2589 break;
2590
2591 case HWACCMTPRINSTR_WRITE_REG:
2592 case HWACCMTPRINSTR_WRITE_IMM:
2593 /* Fetch the new TPR value */
2594 if (pPatch->enmType == HWACCMTPRINSTR_WRITE_REG)
2595 {
2596 uint32_t val;
2597
2598 rc = DISFetchReg32(CPUMCTX2CORE(pCtx), pPatch->uSrcOperand, &val);
2599 AssertRC(rc);
2600 u8Tpr = val;
2601 }
2602 else
2603 u8Tpr = (uint8_t)pPatch->uSrcOperand;
2604
2605 rc = PDMApicSetTPR(pVCpu, u8Tpr);
2606 AssertRC(rc);
2607 LogFlow(("Emulated write successfully\n"));
2608 pCtx->rip += pPatch->cbOp;
2609 break;
2610 default:
2611 AssertMsgFailedReturn(("Unexpected type %d\n", pPatch->enmType), VERR_INTERNAL_ERROR);
2612 }
2613 }
2614 return VINF_SUCCESS;
2615}
2616
2617
2618/**
2619 * Enters the AMD-V session
2620 *
2621 * @returns VBox status code.
2622 * @param pVM The VM to operate on.
2623 * @param pVCpu The VM CPU to operate on.
2624 * @param pCpu CPU info struct
2625 */
2626VMMR0DECL(int) SVMR0Enter(PVM pVM, PVMCPU pVCpu, PHMGLOBLCPUINFO pCpu)
2627{
2628 Assert(pVM->hwaccm.s.svm.fSupported);
2629
2630 LogFlow(("SVMR0Enter cpu%d last=%d asid=%d\n", pCpu->idCpu, pVCpu->hwaccm.s.idLastCpu, pVCpu->hwaccm.s.uCurrentASID));
2631 pVCpu->hwaccm.s.fResumeVM = false;
2632
2633 /* Force to reload LDTR, so we'll execute VMLoad to load additional guest state. */
2634 pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_GUEST_LDTR;
2635
2636 return VINF_SUCCESS;
2637}
2638
2639
2640/**
2641 * Leaves the AMD-V session
2642 *
2643 * @returns VBox status code.
2644 * @param pVM The VM to operate on.
2645 * @param pVCpu The VM CPU to operate on.
2646 * @param pCtx CPU context
2647 */
2648VMMR0DECL(int) SVMR0Leave(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
2649{
2650 SVM_VMCB *pVMCB = (SVM_VMCB *)pVCpu->hwaccm.s.svm.pVMCB;
2651
2652 Assert(pVM->hwaccm.s.svm.fSupported);
2653
2654#ifdef DEBUG
2655 if (CPUMIsHyperDebugStateActive(pVCpu))
2656 {
2657 CPUMR0LoadHostDebugState(pVM, pVCpu);
2658 }
2659 else
2660#endif
2661 /* Save the guest debug state if necessary. */
2662 if (CPUMIsGuestDebugStateActive(pVCpu))
2663 {
2664 CPUMR0SaveGuestDebugState(pVM, pVCpu, pCtx, false /* skip DR6 */);
2665
2666 /* Intercept all DRx reads and writes again. Changed later on. */
2667 pVMCB->ctrl.u16InterceptRdDRx = 0xFFFF;
2668 pVMCB->ctrl.u16InterceptWrDRx = 0xFFFF;
2669
2670 /* Resync the debug registers the next time. */
2671 pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_GUEST_DEBUG;
2672 }
2673 else
2674 Assert(pVMCB->ctrl.u16InterceptRdDRx == 0xFFFF && pVMCB->ctrl.u16InterceptWrDRx == 0xFFFF);
2675
2676 return VINF_SUCCESS;
2677}
2678
2679
2680static int svmR0InterpretInvlPg(PVMCPU pVCpu, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, uint32_t uASID)
2681{
2682 OP_PARAMVAL param1;
2683 RTGCPTR addr;
2684
2685 int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param1, &param1, PARAM_SOURCE);
2686 if(RT_FAILURE(rc))
2687 return VERR_EM_INTERPRETER;
2688
2689 switch(param1.type)
2690 {
2691 case PARMTYPE_IMMEDIATE:
2692 case PARMTYPE_ADDRESS:
2693 if(!(param1.flags & (PARAM_VAL32|PARAM_VAL64)))
2694 return VERR_EM_INTERPRETER;
2695 addr = param1.val.val64;
2696 break;
2697
2698 default:
2699 return VERR_EM_INTERPRETER;
2700 }
2701
2702 /** @todo is addr always a flat linear address or ds based
2703 * (in absence of segment override prefixes)????
2704 */
2705 rc = PGMInvalidatePage(pVCpu, addr);
2706 if (RT_SUCCESS(rc))
2707 return VINF_SUCCESS;
2708
2709 AssertRC(rc);
2710 return rc;
2711}
2712
2713/**
2714 * Interprets INVLPG
2715 *
2716 * @returns VBox status code.
2717 * @retval VINF_* Scheduling instructions.
2718 * @retval VERR_EM_INTERPRETER Something we can't cope with.
2719 * @retval VERR_* Fatal errors.
2720 *
2721 * @param pVM The VM handle.
2722 * @param pRegFrame The register frame.
2723 * @param ASID Tagged TLB id for the guest
2724 *
2725 * Updates the EIP if an instruction was executed successfully.
2726 */
2727static int svmR0InterpretInvpg(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, uint32_t uASID)
2728{
2729 /*
2730 * Only allow 32 & 64 bits code.
2731 */
2732 DISCPUMODE enmMode = SELMGetCpuModeFromSelector(pVM, pRegFrame->eflags, pRegFrame->cs, &pRegFrame->csHid);
2733 if (enmMode != CPUMODE_16BIT)
2734 {
2735 RTGCPTR pbCode;
2736 int rc = SELMValidateAndConvertCSAddr(pVM, pRegFrame->eflags, pRegFrame->ss, pRegFrame->cs,
2737 &pRegFrame->csHid, (RTGCPTR)pRegFrame->rip, &pbCode);
2738 if (RT_SUCCESS(rc))
2739 {
2740 uint32_t cbOp;
2741 PDISCPUSTATE pDis = &pVCpu->hwaccm.s.DisState;
2742
2743 pDis->mode = enmMode;
2744 rc = EMInterpretDisasOneEx(pVM, pVCpu, pbCode, pRegFrame, pDis, &cbOp);
2745 Assert(RT_FAILURE(rc) || pDis->pCurInstr->opcode == OP_INVLPG);
2746 if (RT_SUCCESS(rc) && pDis->pCurInstr->opcode == OP_INVLPG)
2747 {
2748 Assert(cbOp == pDis->opsize);
2749 rc = svmR0InterpretInvlPg(pVCpu, pDis, pRegFrame, uASID);
2750 if (RT_SUCCESS(rc))
2751 pRegFrame->rip += cbOp; /* Move on to the next instruction. */
2752
2753 return rc;
2754 }
2755 }
2756 }
2757 return VERR_EM_INTERPRETER;
2758}
2759
2760
2761/**
2762 * Invalidates a guest page
2763 *
2764 * @returns VBox status code.
2765 * @param pVM The VM to operate on.
2766 * @param pVCpu The VM CPU to operate on.
2767 * @param GCVirt Page to invalidate
2768 */
2769VMMR0DECL(int) SVMR0InvalidatePage(PVM pVM, PVMCPU pVCpu, RTGCPTR GCVirt)
2770{
2771 bool fFlushPending = pVM->hwaccm.s.svm.fAlwaysFlushTLB | VMCPU_FF_ISSET(pVCpu, VMCPU_FF_TLB_FLUSH);
2772
2773 /* Skip it if a TLB flush is already pending. */
2774 if (!fFlushPending)
2775 {
2776 SVM_VMCB *pVMCB;
2777
2778 Log2(("SVMR0InvalidatePage %RGv\n", GCVirt));
2779 AssertReturn(pVM, VERR_INVALID_PARAMETER);
2780 Assert(pVM->hwaccm.s.svm.fSupported);
2781
2782 pVMCB = (SVM_VMCB *)pVCpu->hwaccm.s.svm.pVMCB;
2783 AssertMsgReturn(pVMCB, ("Invalid pVMCB\n"), VERR_EM_INTERNAL_ERROR);
2784
2785#if HC_ARCH_BITS == 32
2786 /* If we get a flush in 64 bits guest mode, then force a full TLB flush. Invlpga takes only 32 bits addresses. */
2787 if (CPUMIsGuestInLongMode(pVCpu))
2788 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
2789 else
2790#endif
2791 SVMR0InvlpgA(GCVirt, pVMCB->ctrl.TLBCtrl.n.u32ASID);
2792 }
2793 return VINF_SUCCESS;
2794}
2795
2796
2797#if 0 /* obsolete, but left here for clarification. */
2798/**
2799 * Invalidates a guest page by physical address
2800 *
2801 * @returns VBox status code.
2802 * @param pVM The VM to operate on.
2803 * @param pVCpu The VM CPU to operate on.
2804 * @param GCPhys Page to invalidate
2805 */
2806VMMR0DECL(int) SVMR0InvalidatePhysPage(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys)
2807{
2808 Assert(pVM->hwaccm.s.fNestedPaging);
2809 /* invlpga only invalidates TLB entries for guest virtual addresses; we have no choice but to force a TLB flush here. */
2810 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
2811 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatFlushTLBInvlpga);
2812 return VINF_SUCCESS;
2813}
2814#endif
2815
2816#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
2817/**
2818 * Prepares for and executes VMRUN (64 bits guests from a 32 bits hosts).
2819 *
2820 * @returns VBox status code.
2821 * @param pVMCBHostPhys Physical address of host VMCB.
2822 * @param pVMCBPhys Physical address of the VMCB.
2823 * @param pCtx Guest context.
2824 * @param pVM The VM to operate on.
2825 * @param pVCpu The VMCPU to operate on.
2826 */
2827DECLASM(int) SVMR0VMSwitcherRun64(RTHCPHYS pVMCBHostPhys, RTHCPHYS pVMCBPhys, PCPUMCTX pCtx, PVM pVM, PVMCPU pVCpu)
2828{
2829 uint32_t aParam[4];
2830
2831 aParam[0] = (uint32_t)(pVMCBHostPhys); /* Param 1: pVMCBHostPhys - Lo. */
2832 aParam[1] = (uint32_t)(pVMCBHostPhys >> 32); /* Param 1: pVMCBHostPhys - Hi. */
2833 aParam[2] = (uint32_t)(pVMCBPhys); /* Param 2: pVMCBPhys - Lo. */
2834 aParam[3] = (uint32_t)(pVMCBPhys >> 32); /* Param 2: pVMCBPhys - Hi. */
2835
2836 return SVMR0Execute64BitsHandler(pVM, pVCpu, pCtx, pVM->hwaccm.s.pfnSVMGCVMRun64, 4, &aParam[0]);
2837}
2838
2839/**
2840 * Executes the specified handler in 64 mode
2841 *
2842 * @returns VBox status code.
2843 * @param pVM The VM to operate on.
2844 * @param pVCpu The VMCPU to operate on.
2845 * @param pCtx Guest context
2846 * @param pfnHandler RC handler
2847 * @param cbParam Number of parameters
2848 * @param paParam Array of 32 bits parameters
2849 */
2850VMMR0DECL(int) SVMR0Execute64BitsHandler(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, RTRCPTR pfnHandler, uint32_t cbParam, uint32_t *paParam)
2851{
2852 int rc;
2853 RTHCUINTREG uOldEFlags;
2854
2855 Assert(pfnHandler);
2856
2857 /* Disable interrupts. */
2858 uOldEFlags = ASMIntDisableFlags();
2859
2860 CPUMSetHyperESP(pVCpu, VMMGetStackRC(pVCpu));
2861 CPUMSetHyperEIP(pVCpu, pfnHandler);
2862 for (int i=(int)cbParam-1;i>=0;i--)
2863 CPUMPushHyper(pVCpu, paParam[i]);
2864
2865 STAM_PROFILE_ADV_START(&pVCpu->hwaccm.s.StatWorldSwitch3264, z);
2866 /* Call switcher. */
2867 rc = pVM->hwaccm.s.pfnHost32ToGuest64R0(pVM, RT_OFFSETOF(VM, aCpus[pVCpu->idCpu].cpum) - RT_OFFSETOF(VM, cpum));
2868 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatWorldSwitch3264, z);
2869
2870 ASMSetFlags(uOldEFlags);
2871 return rc;
2872}
2873
2874#endif /* HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) */
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette