VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR0/HWSVMR0.cpp@ 43746

Last change on this file since 43746 was 43746, checked in by vboxsync, 12 years ago

VMM: Some naming adjustments.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 123.1 KB
Line 
1/* $Id: HWSVMR0.cpp 43746 2012-10-25 16:35:37Z vboxsync $ */
2/** @file
3 * HM SVM (AMD-V) - Host Context Ring-0.
4 */
5
6/*
7 * Copyright (C) 2006-2012 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/*******************************************************************************
19* Header Files *
20*******************************************************************************/
21#define LOG_GROUP LOG_GROUP_HM
22#include <VBox/vmm/hm.h>
23#include <VBox/vmm/pgm.h>
24#include <VBox/vmm/selm.h>
25#include <VBox/vmm/iom.h>
26#include <VBox/vmm/dbgf.h>
27#include <VBox/vmm/dbgftrace.h>
28#include <VBox/vmm/tm.h>
29#include <VBox/vmm/pdmapi.h>
30#include "HMInternal.h"
31#include <VBox/vmm/vm.h>
32#include <VBox/vmm/hm_svm.h>
33#include <VBox/err.h>
34#include <VBox/log.h>
35#include <VBox/dis.h>
36#include <VBox/disopcode.h>
37#include <iprt/param.h>
38#include <iprt/assert.h>
39#include <iprt/asm.h>
40#include <iprt/asm-amd64-x86.h>
41#include <iprt/cpuset.h>
42#include <iprt/mp.h>
43#include <iprt/time.h>
44#ifdef VBOX_WITH_VMMR0_DISABLE_PREEMPTION
45# include <iprt/thread.h>
46#endif
47#include <iprt/x86.h>
48#include "HWSVMR0.h"
49
50#include "dtrace/VBoxVMM.h"
51
52
53/*******************************************************************************
54* Internal Functions *
55*******************************************************************************/
56static int hmR0SvmInterpretInvlpg(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame);
57static int hmR0SvmEmulateTprVMMCall(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx);
58static void hmR0SvmSetMSRPermission(PVMCPU pVCpu, unsigned ulMSR, bool fRead, bool fWrite);
59
60/*******************************************************************************
61* Defined Constants And Macros *
62*******************************************************************************/
63/** Convert hidden selector attribute word between VMX and SVM formats. */
64#define SVM_HIDSEGATTR_VMX2SVM(a) (a & 0xFF) | ((a & 0xF000) >> 4)
65#define SVM_HIDSEGATTR_SVM2VMX(a) (a & 0xFF) | ((a & 0x0F00) << 4)
66
67#define SVM_WRITE_SELREG(REG, reg) \
68 do \
69 { \
70 Assert(pCtx->reg.fFlags & CPUMSELREG_FLAGS_VALID); \
71 Assert(pCtx->reg.ValidSel == pCtx->reg.Sel); \
72 pvVMCB->guest.REG.u16Sel = pCtx->reg.Sel; \
73 pvVMCB->guest.REG.u32Limit = pCtx->reg.u32Limit; \
74 pvVMCB->guest.REG.u64Base = pCtx->reg.u64Base; \
75 pvVMCB->guest.REG.u16Attr = SVM_HIDSEGATTR_VMX2SVM(pCtx->reg.Attr.u); \
76 } while (0)
77
78#define SVM_READ_SELREG(REG, reg) \
79 do \
80 { \
81 pCtx->reg.Sel = pvVMCB->guest.REG.u16Sel; \
82 pCtx->reg.ValidSel = pvVMCB->guest.REG.u16Sel; \
83 pCtx->reg.fFlags = CPUMSELREG_FLAGS_VALID; \
84 pCtx->reg.u32Limit = pvVMCB->guest.REG.u32Limit; \
85 pCtx->reg.u64Base = pvVMCB->guest.REG.u64Base; \
86 pCtx->reg.Attr.u = SVM_HIDSEGATTR_SVM2VMX(pvVMCB->guest.REG.u16Attr); \
87 } while (0)
88
89/*******************************************************************************
90* Global Variables *
91*******************************************************************************/
92/* IO operation lookup arrays. */
93static uint32_t const g_aIOSize[8] = {0, 1, 2, 0, 4, 0, 0, 0};
94static uint32_t const g_aIOOpAnd[8] = {0, 0xff, 0xffff, 0, 0xffffffff, 0, 0, 0};
95
96
97/**
98 * Sets up and activates AMD-V on the current CPU.
99 *
100 * @returns VBox status code.
101 * @param pCpu Pointer to the CPU info struct.
102 * @param pVM Pointer to the VM (can be NULL after a resume!).
103 * @param pvCpuPage Pointer to the global CPU page.
104 * @param HCPhysCpuPage Physical address of the global CPU page.
105 */
106VMMR0DECL(int) SVMR0EnableCpu(PHMGLOBLCPUINFO pCpu, PVM pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage, bool fEnabledByHost)
107{
108 AssertReturn(!fEnabledByHost, VERR_INVALID_PARAMETER);
109 AssertReturn(HCPhysCpuPage != 0 && HCPhysCpuPage != NIL_RTHCPHYS, VERR_INVALID_PARAMETER);
110 AssertReturn(pvCpuPage, VERR_INVALID_PARAMETER);
111
112 /*
113 * We must turn on AMD-V and setup the host state physical address, as those MSRs are per cpu/core.
114 */
115 uint64_t fEfer = ASMRdMsr(MSR_K6_EFER);
116 if (fEfer & MSR_K6_EFER_SVME)
117 {
118 /*
119 * If the VBOX_HWVIRTEX_IGNORE_SVM_IN_USE is active, then we blindly use AMD-V.
120 */
121 if ( pVM
122 && pVM->hm.s.svm.fIgnoreInUseError)
123 {
124 pCpu->fIgnoreAMDVInUseError = true;
125 }
126
127 if (!pCpu->fIgnoreAMDVInUseError)
128 return VERR_SVM_IN_USE;
129 }
130
131 /* Turn on AMD-V in the EFER MSR. */
132 ASMWrMsr(MSR_K6_EFER, fEfer | MSR_K6_EFER_SVME);
133
134 /* Write the physical page address where the CPU will store the host state while executing the VM. */
135 ASMWrMsr(MSR_K8_VM_HSAVE_PA, HCPhysCpuPage);
136
137 /*
138 * Theoretically, other hypervisors may have used ASIDs, ideally we should flush all non-zero ASIDs
139 * when enabling SVM. AMD doesn't have an SVM instruction to flush all ASIDs (flushing is done
140 * upon VMRUN). Therefore, just set the fFlushAsidBeforeUse flag which instructs hmR0SvmSetupTLB()
141 * to flush the TLB with before using a new ASID.
142 */
143 pCpu->fFlushAsidBeforeUse = true;
144
145 /*
146 * Ensure each VCPU scheduled on this CPU gets a new VPID on resume. See @bugref{6255}.
147 */
148 ++pCpu->cTlbFlushes;
149
150 return VINF_SUCCESS;
151}
152
153
154/**
155 * Deactivates AMD-V on the current CPU.
156 *
157 * @returns VBox status code.
158 * @param pCpu Pointer to the CPU info struct.
159 * @param pvCpuPage Pointer to the global CPU page.
160 * @param HCPhysCpuPage Physical address of the global CPU page.
161 */
162VMMR0DECL(int) SVMR0DisableCpu(PHMGLOBLCPUINFO pCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage)
163{
164 AssertReturn(HCPhysCpuPage != 0 && HCPhysCpuPage != NIL_RTHCPHYS, VERR_INVALID_PARAMETER);
165 AssertReturn(pvCpuPage, VERR_INVALID_PARAMETER);
166 NOREF(pCpu);
167
168 /* Turn off AMD-V in the EFER MSR. */
169 uint64_t fEfer = ASMRdMsr(MSR_K6_EFER);
170 ASMWrMsr(MSR_K6_EFER, fEfer & ~MSR_K6_EFER_SVME);
171
172 /* Invalidate host state physical address. */
173 ASMWrMsr(MSR_K8_VM_HSAVE_PA, 0);
174
175 return VINF_SUCCESS;
176}
177
178
179/**
180 * Does Ring-0 per VM AMD-V init.
181 *
182 * @returns VBox status code.
183 * @param pVM Pointer to the VM.
184 */
185VMMR0DECL(int) SVMR0InitVM(PVM pVM)
186{
187 int rc;
188
189 pVM->hm.s.svm.hMemObjIOBitmap = NIL_RTR0MEMOBJ;
190
191 /* Allocate 12 KB for the IO bitmap (doesn't seem to be a way to convince SVM not to use it) */
192 rc = RTR0MemObjAllocCont(&pVM->hm.s.svm.hMemObjIOBitmap, 3 << PAGE_SHIFT, false /* fExecutable */);
193 if (RT_FAILURE(rc))
194 return rc;
195
196 pVM->hm.s.svm.pvIOBitmap = RTR0MemObjAddress(pVM->hm.s.svm.hMemObjIOBitmap);
197 pVM->hm.s.svm.HCPhysIOBitmap = RTR0MemObjGetPagePhysAddr(pVM->hm.s.svm.hMemObjIOBitmap, 0);
198 /* Set all bits to intercept all IO accesses. */
199 ASMMemFill32(pVM->hm.s.svm.pvIOBitmap, 3 << PAGE_SHIFT, 0xffffffff);
200
201 /*
202 * Erratum 170 which requires a forced TLB flush for each world switch:
203 * See http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/33610.pdf
204 *
205 * All BH-G1/2 and DH-G1/2 models include a fix:
206 * Athlon X2: 0x6b 1/2
207 * 0x68 1/2
208 * Athlon 64: 0x7f 1
209 * 0x6f 2
210 * Sempron: 0x7f 1/2
211 * 0x6f 2
212 * 0x6c 2
213 * 0x7c 2
214 * Turion 64: 0x68 2
215 */
216 uint32_t u32Dummy;
217 uint32_t u32Version, u32Family, u32Model, u32Stepping, u32BaseFamily;
218 ASMCpuId(1, &u32Version, &u32Dummy, &u32Dummy, &u32Dummy);
219 u32BaseFamily = (u32Version >> 8) & 0xf;
220 u32Family = u32BaseFamily + (u32BaseFamily == 0xf ? ((u32Version >> 20) & 0x7f) : 0);
221 u32Model = ((u32Version >> 4) & 0xf);
222 u32Model = u32Model | ((u32BaseFamily == 0xf ? (u32Version >> 16) & 0x0f : 0) << 4);
223 u32Stepping = u32Version & 0xf;
224 if ( u32Family == 0xf
225 && !((u32Model == 0x68 || u32Model == 0x6b || u32Model == 0x7f) && u32Stepping >= 1)
226 && !((u32Model == 0x6f || u32Model == 0x6c || u32Model == 0x7c) && u32Stepping >= 2))
227 {
228 Log(("SVMR0InitVM: AMD cpu with erratum 170 family %x model %x stepping %x\n", u32Family, u32Model, u32Stepping));
229 pVM->hm.s.svm.fAlwaysFlushTLB = true;
230 }
231
232 /* Allocate VMCBs for all guest CPUs. */
233 for (VMCPUID i = 0; i < pVM->cCpus; i++)
234 {
235 PVMCPU pVCpu = &pVM->aCpus[i];
236
237 pVCpu->hm.s.svm.hMemObjVMCBHost = NIL_RTR0MEMOBJ;
238 pVCpu->hm.s.svm.hMemObjVMCB = NIL_RTR0MEMOBJ;
239 pVCpu->hm.s.svm.hMemObjMsrBitmap = NIL_RTR0MEMOBJ;
240
241 /* Allocate one page for the host context */
242 rc = RTR0MemObjAllocCont(&pVCpu->hm.s.svm.hMemObjVMCBHost, 1 << PAGE_SHIFT, false /* fExecutable */);
243 if (RT_FAILURE(rc))
244 return rc;
245
246 pVCpu->hm.s.svm.pvVMCBHost = RTR0MemObjAddress(pVCpu->hm.s.svm.hMemObjVMCBHost);
247 pVCpu->hm.s.svm.HCPhysVMCBHost = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.svm.hMemObjVMCBHost, 0);
248 Assert(pVCpu->hm.s.svm.HCPhysVMCBHost < _4G);
249 ASMMemZeroPage(pVCpu->hm.s.svm.pvVMCBHost);
250
251 /* Allocate one page for the VM control block (VMCB). */
252 rc = RTR0MemObjAllocCont(&pVCpu->hm.s.svm.hMemObjVMCB, 1 << PAGE_SHIFT, false /* fExecutable */);
253 if (RT_FAILURE(rc))
254 return rc;
255
256 pVCpu->hm.s.svm.pvVMCB = RTR0MemObjAddress(pVCpu->hm.s.svm.hMemObjVMCB);
257 pVCpu->hm.s.svm.HCPhysVMCB = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.svm.hMemObjVMCB, 0);
258 Assert(pVCpu->hm.s.svm.HCPhysVMCB < _4G);
259 ASMMemZeroPage(pVCpu->hm.s.svm.pvVMCB);
260
261 /* Allocate 8 KB for the MSR bitmap (doesn't seem to be a way to convince SVM not to use it) */
262 rc = RTR0MemObjAllocCont(&pVCpu->hm.s.svm.hMemObjMsrBitmap, 2 << PAGE_SHIFT, false /* fExecutable */);
263 if (RT_FAILURE(rc))
264 return rc;
265
266 pVCpu->hm.s.svm.pvMsrBitmap = RTR0MemObjAddress(pVCpu->hm.s.svm.hMemObjMsrBitmap);
267 pVCpu->hm.s.svm.HCPhysMsrBitmap = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.svm.hMemObjMsrBitmap, 0);
268 /* Set all bits to intercept all MSR accesses. */
269 ASMMemFill32(pVCpu->hm.s.svm.pvMsrBitmap, 2 << PAGE_SHIFT, 0xffffffff);
270 }
271
272 return VINF_SUCCESS;
273}
274
275
276/**
277 * Does Ring-0 per VM AMD-V termination.
278 *
279 * @returns VBox status code.
280 * @param pVM Pointer to the VM.
281 */
282VMMR0DECL(int) SVMR0TermVM(PVM pVM)
283{
284 for (VMCPUID i = 0; i < pVM->cCpus; i++)
285 {
286 PVMCPU pVCpu = &pVM->aCpus[i];
287
288 if (pVCpu->hm.s.svm.hMemObjVMCBHost != NIL_RTR0MEMOBJ)
289 {
290 RTR0MemObjFree(pVCpu->hm.s.svm.hMemObjVMCBHost, false);
291 pVCpu->hm.s.svm.pvVMCBHost = 0;
292 pVCpu->hm.s.svm.HCPhysVMCBHost = 0;
293 pVCpu->hm.s.svm.hMemObjVMCBHost = NIL_RTR0MEMOBJ;
294 }
295
296 if (pVCpu->hm.s.svm.hMemObjVMCB != NIL_RTR0MEMOBJ)
297 {
298 RTR0MemObjFree(pVCpu->hm.s.svm.hMemObjVMCB, false);
299 pVCpu->hm.s.svm.pvVMCB = 0;
300 pVCpu->hm.s.svm.HCPhysVMCB = 0;
301 pVCpu->hm.s.svm.hMemObjVMCB = NIL_RTR0MEMOBJ;
302 }
303 if (pVCpu->hm.s.svm.hMemObjMsrBitmap != NIL_RTR0MEMOBJ)
304 {
305 RTR0MemObjFree(pVCpu->hm.s.svm.hMemObjMsrBitmap, false);
306 pVCpu->hm.s.svm.pvMsrBitmap = 0;
307 pVCpu->hm.s.svm.HCPhysMsrBitmap = 0;
308 pVCpu->hm.s.svm.hMemObjMsrBitmap = NIL_RTR0MEMOBJ;
309 }
310 }
311 if (pVM->hm.s.svm.hMemObjIOBitmap != NIL_RTR0MEMOBJ)
312 {
313 RTR0MemObjFree(pVM->hm.s.svm.hMemObjIOBitmap, false);
314 pVM->hm.s.svm.pvIOBitmap = 0;
315 pVM->hm.s.svm.HCPhysIOBitmap = 0;
316 pVM->hm.s.svm.hMemObjIOBitmap = NIL_RTR0MEMOBJ;
317 }
318 return VINF_SUCCESS;
319}
320
321
322/**
323 * Sets up AMD-V for the specified VM.
324 *
325 * @returns VBox status code.
326 * @param pVM Pointer to the VM.
327 */
328VMMR0DECL(int) SVMR0SetupVM(PVM pVM)
329{
330 int rc = VINF_SUCCESS;
331
332 AssertReturn(pVM, VERR_INVALID_PARAMETER);
333 Assert(pVM->hm.s.svm.fSupported);
334
335 for (VMCPUID i = 0; i < pVM->cCpus; i++)
336 {
337 PVMCPU pVCpu = &pVM->aCpus[i];
338 SVM_VMCB *pvVMCB = (SVM_VMCB *)pVM->aCpus[i].hm.s.svm.pvVMCB;
339
340 AssertMsgReturn(pvVMCB, ("Invalid pvVMCB\n"), VERR_SVM_INVALID_PVMCB);
341
342 /*
343 * Program the control fields. Most of them never have to be changed again.
344 * CR0/4 reads must be intercepted, our shadow values are not necessarily the same as the guest's.
345 * Note: CR0 & CR4 can be safely read when guest and shadow copies are identical.
346 */
347 pvVMCB->ctrl.u16InterceptRdCRx = RT_BIT(0) | RT_BIT(4);
348
349 /* CR0/4 writes must be intercepted for obvious reasons. */
350 pvVMCB->ctrl.u16InterceptWrCRx = RT_BIT(0) | RT_BIT(4);
351
352 /* Intercept all DRx reads and writes by default. Changed later on. */
353 pvVMCB->ctrl.u16InterceptRdDRx = 0xFFFF;
354 pvVMCB->ctrl.u16InterceptWrDRx = 0xFFFF;
355
356 /* Intercept traps; only #NM is always intercepted. */
357 pvVMCB->ctrl.u32InterceptException = RT_BIT(X86_XCPT_NM);
358#ifdef VBOX_ALWAYS_TRAP_PF
359 pvVMCB->ctrl.u32InterceptException |= RT_BIT(X86_XCPT_PF);
360#endif
361#ifdef VBOX_STRICT
362 pvVMCB->ctrl.u32InterceptException |= RT_BIT(X86_XCPT_BP)
363 | RT_BIT(X86_XCPT_DB)
364 | RT_BIT(X86_XCPT_DE)
365 | RT_BIT(X86_XCPT_UD)
366 | RT_BIT(X86_XCPT_NP)
367 | RT_BIT(X86_XCPT_SS)
368 | RT_BIT(X86_XCPT_GP)
369 | RT_BIT(X86_XCPT_MF)
370 ;
371#endif
372
373 /* Set up instruction and miscellaneous intercepts. */
374 pvVMCB->ctrl.u32InterceptCtrl1 = SVM_CTRL1_INTERCEPT_INTR
375 | SVM_CTRL1_INTERCEPT_VINTR
376 | SVM_CTRL1_INTERCEPT_NMI
377 | SVM_CTRL1_INTERCEPT_SMI
378 | SVM_CTRL1_INTERCEPT_INIT
379 | SVM_CTRL1_INTERCEPT_RDPMC
380 | SVM_CTRL1_INTERCEPT_CPUID
381 | SVM_CTRL1_INTERCEPT_RSM
382 | SVM_CTRL1_INTERCEPT_HLT
383 | SVM_CTRL1_INTERCEPT_INOUT_BITMAP
384 | SVM_CTRL1_INTERCEPT_MSR_SHADOW
385 | SVM_CTRL1_INTERCEPT_INVLPGA /* AMD only */
386 | SVM_CTRL1_INTERCEPT_SHUTDOWN /* fatal */
387 | SVM_CTRL1_INTERCEPT_FERR_FREEZE; /* Legacy FPU FERR handling. */
388 ;
389 pvVMCB->ctrl.u32InterceptCtrl2 = SVM_CTRL2_INTERCEPT_VMRUN /* required */
390 | SVM_CTRL2_INTERCEPT_VMMCALL
391 | SVM_CTRL2_INTERCEPT_VMLOAD
392 | SVM_CTRL2_INTERCEPT_VMSAVE
393 | SVM_CTRL2_INTERCEPT_STGI
394 | SVM_CTRL2_INTERCEPT_CLGI
395 | SVM_CTRL2_INTERCEPT_SKINIT
396 | SVM_CTRL2_INTERCEPT_WBINVD
397 | SVM_CTRL2_INTERCEPT_MONITOR
398 | SVM_CTRL2_INTERCEPT_MWAIT_UNCOND; /* don't execute mwait or else we'll idle inside the
399 guest (host thinks the cpu load is high) */
400
401 Log(("pvVMCB->ctrl.u32InterceptException = %x\n", pvVMCB->ctrl.u32InterceptException));
402 Log(("pvVMCB->ctrl.u32InterceptCtrl1 = %x\n", pvVMCB->ctrl.u32InterceptCtrl1));
403 Log(("pvVMCB->ctrl.u32InterceptCtrl2 = %x\n", pvVMCB->ctrl.u32InterceptCtrl2));
404
405 /* Virtualize masking of INTR interrupts. (reads/writes from/to CR8 go to the V_TPR register) */
406 pvVMCB->ctrl.IntCtrl.n.u1VIrqMasking = 1;
407
408 /* Ignore the priority in the TPR; just deliver it when we tell it to. */
409 pvVMCB->ctrl.IntCtrl.n.u1IgnoreTPR = 1;
410
411 /* Set IO and MSR bitmap addresses. */
412 pvVMCB->ctrl.u64IOPMPhysAddr = pVM->hm.s.svm.HCPhysIOBitmap;
413 pvVMCB->ctrl.u64MSRPMPhysAddr = pVCpu->hm.s.svm.HCPhysMsrBitmap;
414
415 /* No LBR virtualization. */
416 pvVMCB->ctrl.u64LBRVirt = 0;
417
418 /* The ASID must start at 1; the host uses 0. */
419 pvVMCB->ctrl.TLBCtrl.n.u32ASID = 1;
420
421 /*
422 * Setup the PAT MSR (nested paging only)
423 * The default value should be 0x0007040600070406ULL, but we want to treat all guest memory as WB,
424 * so choose type 6 for all PAT slots.
425 */
426 pvVMCB->guest.u64GPAT = 0x0006060606060606ULL;
427
428 /* If nested paging is not in use, additional intercepts have to be set up. */
429 if (!pVM->hm.s.fNestedPaging)
430 {
431 /* CR3 reads/writes must be intercepted; our shadow values are different from guest's. */
432 pvVMCB->ctrl.u16InterceptRdCRx |= RT_BIT(3);
433 pvVMCB->ctrl.u16InterceptWrCRx |= RT_BIT(3);
434
435 /*
436 * We must also intercept:
437 * - INVLPG (must go through shadow paging)
438 * - task switches (may change CR3/EFLAGS/LDT)
439 */
440 pvVMCB->ctrl.u32InterceptCtrl1 |= SVM_CTRL1_INTERCEPT_INVLPG
441 | SVM_CTRL1_INTERCEPT_TASK_SWITCH;
442
443 /* Page faults must be intercepted to implement shadow paging. */
444 pvVMCB->ctrl.u32InterceptException |= RT_BIT(X86_XCPT_PF);
445 }
446
447 /*
448 * The following MSRs are saved automatically by vmload/vmsave, so we allow the guest
449 * to modify them directly.
450 */
451 hmR0SvmSetMSRPermission(pVCpu, MSR_K8_LSTAR, true, true);
452 hmR0SvmSetMSRPermission(pVCpu, MSR_K8_CSTAR, true, true);
453 hmR0SvmSetMSRPermission(pVCpu, MSR_K6_STAR, true, true);
454 hmR0SvmSetMSRPermission(pVCpu, MSR_K8_SF_MASK, true, true);
455 hmR0SvmSetMSRPermission(pVCpu, MSR_K8_FS_BASE, true, true);
456 hmR0SvmSetMSRPermission(pVCpu, MSR_K8_GS_BASE, true, true);
457 hmR0SvmSetMSRPermission(pVCpu, MSR_K8_KERNEL_GS_BASE, true, true);
458 hmR0SvmSetMSRPermission(pVCpu, MSR_IA32_SYSENTER_CS, true, true);
459 hmR0SvmSetMSRPermission(pVCpu, MSR_IA32_SYSENTER_ESP, true, true);
460 hmR0SvmSetMSRPermission(pVCpu, MSR_IA32_SYSENTER_EIP, true, true);
461 }
462
463 return rc;
464}
465
466
467/**
468 * Sets the permission bits for the specified MSR.
469 *
470 * @param pVCpu Pointer to the VMCPU.
471 * @param ulMSR MSR value.
472 * @param fRead Whether reading is allowed.
473 * @param fWrite Whether writing is allowed.
474 */
475static void hmR0SvmSetMSRPermission(PVMCPU pVCpu, unsigned ulMSR, bool fRead, bool fWrite)
476{
477 unsigned ulBit;
478 uint8_t *pvMsrBitmap = (uint8_t *)pVCpu->hm.s.svm.pvMsrBitmap;
479
480 if (ulMSR <= 0x00001FFF)
481 {
482 /* Pentium-compatible MSRs */
483 ulBit = ulMSR * 2;
484 }
485 else if ( ulMSR >= 0xC0000000
486 && ulMSR <= 0xC0001FFF)
487 {
488 /* AMD Sixth Generation x86 Processor MSRs and SYSCALL */
489 ulBit = (ulMSR - 0xC0000000) * 2;
490 pvMsrBitmap += 0x800;
491 }
492 else if ( ulMSR >= 0xC0010000
493 && ulMSR <= 0xC0011FFF)
494 {
495 /* AMD Seventh and Eighth Generation Processor MSRs */
496 ulBit = (ulMSR - 0xC0001000) * 2;
497 pvMsrBitmap += 0x1000;
498 }
499 else
500 {
501 AssertFailed();
502 return;
503 }
504 Assert(ulBit < 16 * 1024 - 1);
505 if (fRead)
506 ASMBitClear(pvMsrBitmap, ulBit);
507 else
508 ASMBitSet(pvMsrBitmap, ulBit);
509
510 if (fWrite)
511 ASMBitClear(pvMsrBitmap, ulBit + 1);
512 else
513 ASMBitSet(pvMsrBitmap, ulBit + 1);
514}
515
516
517/**
518 * Injects an event (trap or external interrupt).
519 *
520 * @param pVCpu Pointer to the VMCPU.
521 * @param pvVMCB Pointer to the VMCB.
522 * @param pCtx Pointer to the guest CPU context.
523 * @param pIntInfo Pointer to the SVM interrupt info.
524 */
525DECLINLINE(void) hmR0SvmInjectEvent(PVMCPU pVCpu, SVM_VMCB *pvVMCB, CPUMCTX *pCtx, SVM_EVENT *pEvent)
526{
527#ifdef VBOX_WITH_STATISTICS
528 STAM_COUNTER_INC(&pVCpu->hm.s.paStatInjectedIrqsR0[pEvent->n.u8Vector & MASK_INJECT_IRQ_STAT]);
529#endif
530
531#ifdef VBOX_STRICT
532 if (pEvent->n.u8Vector == 0xE)
533 {
534 Log(("SVM: Inject int %d at %RGv error code=%02x CR2=%RGv intInfo=%08x\n", pEvent->n.u8Vector,
535 (RTGCPTR)pCtx->rip, pEvent->n.u32ErrorCode, (RTGCPTR)pCtx->cr2, pEvent->au64[0]));
536 }
537 else if (pEvent->n.u8Vector < 0x20)
538 Log(("SVM: Inject int %d at %RGv error code=%08x\n", pEvent->n.u8Vector, (RTGCPTR)pCtx->rip, pEvent->n.u32ErrorCode));
539 else
540 {
541 Log(("INJ-EI: %x at %RGv\n", pEvent->n.u8Vector, (RTGCPTR)pCtx->rip));
542 Assert(!VMCPU_FF_ISSET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS));
543 Assert(pCtx->eflags.u32 & X86_EFL_IF);
544 }
545#endif
546
547 /* Set event injection state. */
548 pvVMCB->ctrl.EventInject.au64[0] = pEvent->au64[0];
549}
550
551
552/**
553 * Checks for pending guest interrupts and injects them.
554 *
555 * @returns VBox status code.
556 * @param pVM Pointer to the VM.
557 * @param pVCpu Pointer to the VMCPU.
558 * @param pvVMCB Pointer to the VMCB.
559 * @param pCtx Pointer to the guest CPU Context.
560 */
561static int hmR0SvmCheckPendingInterrupt(PVM pVM, PVMCPU pVCpu, SVM_VMCB *pvVMCB, CPUMCTX *pCtx)
562{
563 int rc;
564 NOREF(pVM);
565
566 /*
567 * Dispatch any pending interrupts (injected before, but a VM-exit occurred prematurely).
568 */
569 if (pVCpu->hm.s.Event.fPending)
570 {
571 SVM_EVENT Event;
572
573 Log(("Reinjecting event %08x %08x at %RGv\n", pVCpu->hm.s.Event.intInfo, pVCpu->hm.s.Event.errCode,
574 (RTGCPTR)pCtx->rip));
575 STAM_COUNTER_INC(&pVCpu->hm.s.StatIntReinject);
576 Event.au64[0] = pVCpu->hm.s.Event.intInfo;
577 hmR0SvmInjectEvent(pVCpu, pvVMCB, pCtx, &Event);
578
579 pVCpu->hm.s.Event.fPending = false;
580 return VINF_SUCCESS;
581 }
582
583 /*
584 * If an active trap is already pending, we must forward it first!
585 */
586 if (!TRPMHasTrap(pVCpu))
587 {
588 if (VMCPU_FF_TESTANDCLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI))
589 {
590 SVM_EVENT Event;
591
592 Log(("CPU%d: injecting #NMI\n", pVCpu->idCpu));
593 Event.n.u8Vector = X86_XCPT_NMI;
594 Event.n.u1Valid = 1;
595 Event.n.u32ErrorCode = 0;
596 Event.n.u3Type = SVM_EVENT_NMI;
597
598 hmR0SvmInjectEvent(pVCpu, pvVMCB, pCtx, &Event);
599 return VINF_SUCCESS;
600 }
601
602 /** @todo SMI interrupts. */
603
604 /*
605 * When external interrupts are pending, we should exit the VM when IF is set.
606 */
607 if (VMCPU_FF_ISPENDING(pVCpu, (VMCPU_FF_INTERRUPT_APIC|VMCPU_FF_INTERRUPT_PIC)))
608 {
609 if ( !(pCtx->eflags.u32 & X86_EFL_IF)
610 || VMCPU_FF_ISSET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
611 {
612 if (!pvVMCB->ctrl.IntCtrl.n.u1VIrqValid)
613 {
614 if (!VMCPU_FF_ISSET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
615 LogFlow(("Enable irq window exit!\n"));
616 else
617 {
618 Log(("Pending interrupt blocked at %RGv by VM_FF_INHIBIT_INTERRUPTS -> irq window exit\n",
619 (RTGCPTR)pCtx->rip));
620 }
621
622 /** @todo Use virtual interrupt method to inject a pending IRQ; dispatched as
623 * soon as guest.IF is set. */
624 pvVMCB->ctrl.u32InterceptCtrl1 |= SVM_CTRL1_INTERCEPT_VINTR;
625 pvVMCB->ctrl.IntCtrl.n.u1VIrqValid = 1;
626 pvVMCB->ctrl.IntCtrl.n.u8VIrqVector = 0; /* don't care */
627 }
628 }
629 else
630 {
631 uint8_t u8Interrupt;
632
633 rc = PDMGetInterrupt(pVCpu, &u8Interrupt);
634 Log(("Dispatch interrupt: u8Interrupt=%x (%d) rc=%Rrc\n", u8Interrupt, u8Interrupt, rc));
635 if (RT_SUCCESS(rc))
636 {
637 rc = TRPMAssertTrap(pVCpu, u8Interrupt, TRPM_HARDWARE_INT);
638 AssertRC(rc);
639 }
640 else
641 {
642 /* Can only happen in rare cases where a pending interrupt is cleared behind our back */
643 Assert(!VMCPU_FF_ISPENDING(pVCpu, (VMCPU_FF_INTERRUPT_APIC|VMCPU_FF_INTERRUPT_PIC)));
644 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchGuestIrq);
645 /* Just continue */
646 }
647 }
648 }
649 }
650
651#ifdef VBOX_STRICT
652 if (TRPMHasTrap(pVCpu))
653 {
654 uint8_t u8Vector;
655 rc = TRPMQueryTrapAll(pVCpu, &u8Vector, 0, 0, 0);
656 AssertRC(rc);
657 }
658#endif
659
660 if ( (pCtx->eflags.u32 & X86_EFL_IF)
661 && (!VMCPU_FF_ISSET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
662 && TRPMHasTrap(pVCpu)
663 )
664 {
665 uint8_t u8Vector;
666 TRPMEVENT enmType;
667 SVM_EVENT Event;
668 RTGCUINT u32ErrorCode;
669
670 Event.au64[0] = 0;
671
672 /* If a new event is pending, then dispatch it now. */
673 rc = TRPMQueryTrapAll(pVCpu, &u8Vector, &enmType, &u32ErrorCode, 0);
674 AssertRC(rc);
675 Assert(pCtx->eflags.Bits.u1IF == 1 || enmType == TRPM_TRAP);
676 Assert(enmType != TRPM_SOFTWARE_INT);
677
678 /* Clear the pending trap. */
679 rc = TRPMResetTrap(pVCpu);
680 AssertRC(rc);
681
682 Event.n.u8Vector = u8Vector;
683 Event.n.u1Valid = 1;
684 Event.n.u32ErrorCode = u32ErrorCode;
685
686 if (enmType == TRPM_TRAP)
687 {
688 switch (u8Vector)
689 {
690 case X86_XCPT_DF:
691 case X86_XCPT_TS:
692 case X86_XCPT_NP:
693 case X86_XCPT_SS:
694 case X86_XCPT_GP:
695 case X86_XCPT_PF:
696 case X86_XCPT_AC:
697 /* Valid error codes. */
698 Event.n.u1ErrorCodeValid = 1;
699 break;
700 default:
701 break;
702 }
703 if (u8Vector == X86_XCPT_NMI)
704 Event.n.u3Type = SVM_EVENT_NMI;
705 else
706 Event.n.u3Type = SVM_EVENT_EXCEPTION;
707 }
708 else
709 Event.n.u3Type = SVM_EVENT_EXTERNAL_IRQ;
710
711 STAM_COUNTER_INC(&pVCpu->hm.s.StatIntInject);
712 hmR0SvmInjectEvent(pVCpu, pvVMCB, pCtx, &Event);
713 } /* if (interrupts can be dispatched) */
714
715 return VINF_SUCCESS;
716}
717
718
719/**
720 * Save the host state.
721 *
722 * @returns VBox status code.
723 * @param pVM Pointer to the VM.
724 * @param pVCpu Pointer to the VMCPU.
725 */
726VMMR0DECL(int) SVMR0SaveHostState(PVM pVM, PVMCPU pVCpu)
727{
728 NOREF(pVM);
729 NOREF(pVCpu);
730 /* Nothing to do here. */
731 return VINF_SUCCESS;
732}
733
734
735/**
736 * Loads the guest state.
737 *
738 * NOTE: Don't do anything here that can cause a jump back to ring-3!!!
739 *
740 * @returns VBox status code.
741 * @param pVM Pointer to the VM.
742 * @param pVCpu Pointer to the VMCPU.
743 * @param pCtx Pointer to the guest CPU context.
744 */
745VMMR0DECL(int) SVMR0LoadGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
746{
747 RTGCUINTPTR val;
748 SVM_VMCB *pvVMCB;
749
750 if (pVM == NULL)
751 return VERR_INVALID_PARAMETER;
752
753 /* Setup AMD SVM. */
754 Assert(pVM->hm.s.svm.fSupported);
755
756 pvVMCB = (SVM_VMCB *)pVCpu->hm.s.svm.pvVMCB;
757 AssertMsgReturn(pvVMCB, ("Invalid pvVMCB\n"), VERR_SVM_INVALID_PVMCB);
758
759 /* Guest CPU context: ES, CS, SS, DS, FS, GS. */
760 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_SEGMENT_REGS)
761 {
762 SVM_WRITE_SELREG(CS, cs);
763 SVM_WRITE_SELREG(SS, ss);
764 SVM_WRITE_SELREG(DS, ds);
765 SVM_WRITE_SELREG(ES, es);
766 SVM_WRITE_SELREG(FS, fs);
767 SVM_WRITE_SELREG(GS, gs);
768 }
769
770 /* Guest CPU context: LDTR. */
771 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_LDTR)
772 {
773 SVM_WRITE_SELREG(LDTR, ldtr);
774 }
775
776 /* Guest CPU context: TR. */
777 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_TR)
778 {
779 SVM_WRITE_SELREG(TR, tr);
780 }
781
782 /* Guest CPU context: GDTR. */
783 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_GDTR)
784 {
785 pvVMCB->guest.GDTR.u32Limit = pCtx->gdtr.cbGdt;
786 pvVMCB->guest.GDTR.u64Base = pCtx->gdtr.pGdt;
787 }
788
789 /* Guest CPU context: IDTR. */
790 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_IDTR)
791 {
792 pvVMCB->guest.IDTR.u32Limit = pCtx->idtr.cbIdt;
793 pvVMCB->guest.IDTR.u64Base = pCtx->idtr.pIdt;
794 }
795
796 /*
797 * Sysenter MSRs (unconditional)
798 */
799 pvVMCB->guest.u64SysEnterCS = pCtx->SysEnter.cs;
800 pvVMCB->guest.u64SysEnterEIP = pCtx->SysEnter.eip;
801 pvVMCB->guest.u64SysEnterESP = pCtx->SysEnter.esp;
802
803 /* Control registers */
804 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_CR0)
805 {
806 val = pCtx->cr0;
807 if (!CPUMIsGuestFPUStateActive(pVCpu))
808 {
809 /* Always use #NM exceptions to load the FPU/XMM state on demand. */
810 val |= X86_CR0_TS | X86_CR0_ET | X86_CR0_NE | X86_CR0_MP;
811 }
812 else
813 {
814 /** @todo check if we support the old style mess correctly. */
815 if (!(val & X86_CR0_NE))
816 {
817 Log(("Forcing X86_CR0_NE!!!\n"));
818
819 /* Also catch floating point exceptions as we need to report them to the guest in a different way. */
820 if (!pVCpu->hm.s.fFPUOldStyleOverride)
821 {
822 pvVMCB->ctrl.u32InterceptException |= RT_BIT(X86_XCPT_MF);
823 pVCpu->hm.s.fFPUOldStyleOverride = true;
824 }
825 }
826 val |= X86_CR0_NE; /* always turn on the native mechanism to report FPU errors (old style uses interrupts) */
827 }
828 /* Always enable caching. */
829 val &= ~(X86_CR0_CD|X86_CR0_NW);
830
831 /*
832 * Note: WP is not relevant in nested paging mode as we catch accesses on the (guest) physical level.
833 * Note: In nested paging mode, the guest is allowed to run with paging disabled; the guest-physical to host-physical
834 * translation will remain active.
835 */
836 if (!pVM->hm.s.fNestedPaging)
837 {
838 val |= X86_CR0_PG; /* Paging is always enabled; even when the guest is running in real mode or PE without paging. */
839 val |= X86_CR0_WP; /* Must set this as we rely on protecting various pages and supervisor writes must be caught. */
840 }
841 pvVMCB->guest.u64CR0 = val;
842 }
843 /* CR2 as well */
844 pvVMCB->guest.u64CR2 = pCtx->cr2;
845
846 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_CR3)
847 {
848 /* Save our shadow CR3 register. */
849 if (pVM->hm.s.fNestedPaging)
850 {
851 PGMMODE enmShwPagingMode;
852
853#if HC_ARCH_BITS == 32
854 if (CPUMIsGuestInLongModeEx(pCtx))
855 enmShwPagingMode = PGMMODE_AMD64_NX;
856 else
857#endif
858 enmShwPagingMode = PGMGetHostMode(pVM);
859
860 pvVMCB->ctrl.u64NestedPagingCR3 = PGMGetNestedCR3(pVCpu, enmShwPagingMode);
861 Assert(pvVMCB->ctrl.u64NestedPagingCR3);
862 pvVMCB->guest.u64CR3 = pCtx->cr3;
863 }
864 else
865 {
866 pvVMCB->guest.u64CR3 = PGMGetHyperCR3(pVCpu);
867 Assert(pvVMCB->guest.u64CR3 || VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL));
868 }
869 }
870
871 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_CR4)
872 {
873 val = pCtx->cr4;
874 if (!pVM->hm.s.fNestedPaging)
875 {
876 switch (pVCpu->hm.s.enmShadowMode)
877 {
878 case PGMMODE_REAL:
879 case PGMMODE_PROTECTED: /* Protected mode, no paging. */
880 AssertFailed();
881 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
882
883 case PGMMODE_32_BIT: /* 32-bit paging. */
884 val &= ~X86_CR4_PAE;
885 break;
886
887 case PGMMODE_PAE: /* PAE paging. */
888 case PGMMODE_PAE_NX: /* PAE paging with NX enabled. */
889 /** Must use PAE paging as we could use physical memory > 4 GB */
890 val |= X86_CR4_PAE;
891 break;
892
893 case PGMMODE_AMD64: /* 64-bit AMD paging (long mode). */
894 case PGMMODE_AMD64_NX: /* 64-bit AMD paging (long mode) with NX enabled. */
895#ifdef VBOX_ENABLE_64_BITS_GUESTS
896 break;
897#else
898 AssertFailed();
899 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
900#endif
901
902 default: /* shut up gcc */
903 AssertFailed();
904 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
905 }
906 }
907 pvVMCB->guest.u64CR4 = val;
908 }
909
910 /* Debug registers. */
911 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_DEBUG)
912 {
913 pCtx->dr[6] |= X86_DR6_INIT_VAL; /* set all reserved bits to 1. */
914 pCtx->dr[6] &= ~RT_BIT(12); /* must be zero. */
915
916 pCtx->dr[7] &= 0xffffffff; /* upper 32 bits reserved */
917 pCtx->dr[7] &= ~(RT_BIT(11) | RT_BIT(12) | RT_BIT(14) | RT_BIT(15)); /* must be zero */
918 pCtx->dr[7] |= 0x400; /* must be one */
919
920 pvVMCB->guest.u64DR7 = pCtx->dr[7];
921 pvVMCB->guest.u64DR6 = pCtx->dr[6];
922
923#ifdef DEBUG
924 /* Sync the hypervisor debug state now if any breakpoint is armed. */
925 if ( CPUMGetHyperDR7(pVCpu) & (X86_DR7_ENABLED_MASK|X86_DR7_GD)
926 && !CPUMIsHyperDebugStateActive(pVCpu)
927 && !DBGFIsStepping(pVCpu))
928 {
929 /* Save the host and load the hypervisor debug state. */
930 int rc = CPUMR0LoadHyperDebugState(pVM, pVCpu, pCtx, false /* exclude DR6 */);
931 AssertRC(rc);
932
933 /* DRx intercepts remain enabled. */
934
935 /* Override dr6 & dr7 with the hypervisor values. */
936 pvVMCB->guest.u64DR7 = CPUMGetHyperDR7(pVCpu);
937 pvVMCB->guest.u64DR6 = CPUMGetHyperDR6(pVCpu);
938 }
939 else
940#endif
941 /* Sync the debug state now if any breakpoint is armed. */
942 if ( (pCtx->dr[7] & (X86_DR7_ENABLED_MASK|X86_DR7_GD))
943 && !CPUMIsGuestDebugStateActive(pVCpu)
944 && !DBGFIsStepping(pVCpu))
945 {
946 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
947
948 /* Disable drx move intercepts. */
949 pvVMCB->ctrl.u16InterceptRdDRx = 0;
950 pvVMCB->ctrl.u16InterceptWrDRx = 0;
951
952 /* Save the host and load the guest debug state. */
953 int rc = CPUMR0LoadGuestDebugState(pVM, pVCpu, pCtx, false /* exclude DR6 */);
954 AssertRC(rc);
955 }
956 }
957
958 /* EIP, ESP and EFLAGS */
959 pvVMCB->guest.u64RIP = pCtx->rip;
960 pvVMCB->guest.u64RSP = pCtx->rsp;
961 pvVMCB->guest.u64RFlags = pCtx->eflags.u32;
962
963 /* Set CPL */
964 pvVMCB->guest.u8CPL = pCtx->ss.Attr.n.u2Dpl;
965
966 /* RAX/EAX too, as VMRUN uses RAX as an implicit parameter. */
967 pvVMCB->guest.u64RAX = pCtx->rax;
968
969 /* vmrun will fail without MSR_K6_EFER_SVME. */
970 pvVMCB->guest.u64EFER = pCtx->msrEFER | MSR_K6_EFER_SVME;
971
972 /* 64 bits guest mode? */
973 if (CPUMIsGuestInLongModeEx(pCtx))
974 {
975#if !defined(VBOX_ENABLE_64_BITS_GUESTS)
976 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
977#elif HC_ARCH_BITS == 32 && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
978 pVCpu->hm.s.svm.pfnVMRun = SVMR0VMSwitcherRun64;
979#else
980# ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
981 if (!pVM->hm.s.fAllow64BitGuests)
982 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
983# endif
984 pVCpu->hm.s.svm.pfnVMRun = SVMR0VMRun64;
985#endif
986 /* Unconditionally update these as wrmsr might have changed them. (HM_CHANGED_GUEST_SEGMENT_REGS will not be set) */
987 pvVMCB->guest.FS.u64Base = pCtx->fs.u64Base;
988 pvVMCB->guest.GS.u64Base = pCtx->gs.u64Base;
989 }
990 else
991 {
992 /* Filter out the MSR_K6_LME bit or else AMD-V expects amd64 shadow paging. */
993 pvVMCB->guest.u64EFER &= ~MSR_K6_EFER_LME;
994
995 pVCpu->hm.s.svm.pfnVMRun = SVMR0VMRun;
996 }
997
998 /* TSC offset. */
999 if (TMCpuTickCanUseRealTSC(pVCpu, &pvVMCB->ctrl.u64TSCOffset))
1000 {
1001 uint64_t u64CurTSC = ASMReadTSC();
1002 if (u64CurTSC + pvVMCB->ctrl.u64TSCOffset >= TMCpuTickGetLastSeen(pVCpu))
1003 {
1004 pvVMCB->ctrl.u32InterceptCtrl1 &= ~SVM_CTRL1_INTERCEPT_RDTSC;
1005 pvVMCB->ctrl.u32InterceptCtrl2 &= ~SVM_CTRL2_INTERCEPT_RDTSCP;
1006 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscOffset);
1007 }
1008 else
1009 {
1010 /* Fall back to rdtsc emulation as we would otherwise pass decreasing tsc values to the guest. */
1011 LogFlow(("TSC %RX64 offset %RX64 time=%RX64 last=%RX64 (diff=%RX64, virt_tsc=%RX64)\n", u64CurTSC,
1012 pvVMCB->ctrl.u64TSCOffset, u64CurTSC + pvVMCB->ctrl.u64TSCOffset, TMCpuTickGetLastSeen(pVCpu),
1013 TMCpuTickGetLastSeen(pVCpu) - u64CurTSC - pvVMCB->ctrl.u64TSCOffset, TMCpuTickGet(pVCpu)));
1014 pvVMCB->ctrl.u32InterceptCtrl1 |= SVM_CTRL1_INTERCEPT_RDTSC;
1015 pvVMCB->ctrl.u32InterceptCtrl2 |= SVM_CTRL2_INTERCEPT_RDTSCP;
1016 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscInterceptOverFlow);
1017 }
1018 }
1019 else
1020 {
1021 pvVMCB->ctrl.u32InterceptCtrl1 |= SVM_CTRL1_INTERCEPT_RDTSC;
1022 pvVMCB->ctrl.u32InterceptCtrl2 |= SVM_CTRL2_INTERCEPT_RDTSCP;
1023 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscIntercept);
1024 }
1025
1026 /* Sync the various MSRs for 64-bit mode. */
1027 pvVMCB->guest.u64STAR = pCtx->msrSTAR; /* legacy syscall eip, cs & ss */
1028 pvVMCB->guest.u64LSTAR = pCtx->msrLSTAR; /* 64-bit mode syscall rip */
1029 pvVMCB->guest.u64CSTAR = pCtx->msrCSTAR; /* compatibility mode syscall rip */
1030 pvVMCB->guest.u64SFMASK = pCtx->msrSFMASK; /* syscall flag mask */
1031 pvVMCB->guest.u64KernelGSBase = pCtx->msrKERNELGSBASE; /* SWAPGS exchange value */
1032
1033#ifdef DEBUG
1034 /* Intercept X86_XCPT_DB if stepping is enabled */
1035 if ( DBGFIsStepping(pVCpu)
1036 || CPUMIsHyperDebugStateActive(pVCpu))
1037 pvVMCB->ctrl.u32InterceptException |= RT_BIT(X86_XCPT_DB);
1038 else
1039 pvVMCB->ctrl.u32InterceptException &= ~RT_BIT(X86_XCPT_DB);
1040#endif
1041
1042 /* Done. */
1043 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_ALL_GUEST;
1044
1045 return VINF_SUCCESS;
1046}
1047
1048
1049/**
1050 * Setup TLB for ASID.
1051 *
1052 * @param pVM Pointer to the VM.
1053 * @param pVCpu Pointer to the VMCPU.
1054 */
1055static void hmR0SvmSetupTLB(PVM pVM, PVMCPU pVCpu)
1056{
1057 PHMGLOBLCPUINFO pCpu;
1058
1059 AssertPtr(pVM);
1060 AssertPtr(pVCpu);
1061
1062 SVM_VMCB *pvVMCB = (SVM_VMCB *)pVCpu->hm.s.svm.pvVMCB;
1063 pCpu = HMR0GetCurrentCpu();
1064
1065 /*
1066 * Force a TLB flush for the first world switch if the current CPU differs from the one we ran on last.
1067 * This can happen both for start & resume due to long jumps back to ring-3.
1068 * If the TLB flush count changed, another VM (VCPU rather) has hit the ASID limit while flushing the TLB,
1069 * so we cannot reuse the ASIDs without flushing.
1070 */
1071 bool fNewAsid = false;
1072 if ( pVCpu->hm.s.idLastCpu != pCpu->idCpu
1073 || pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes)
1074 {
1075 pVCpu->hm.s.fForceTLBFlush = true;
1076 fNewAsid = true;
1077 }
1078
1079 /*
1080 * Set TLB flush state as checked until we return from the world switch.
1081 */
1082 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true);
1083
1084 /*
1085 * Check for TLB shootdown flushes.
1086 */
1087 if (VMCPU_FF_TESTANDCLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
1088 pVCpu->hm.s.fForceTLBFlush = true;
1089
1090 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
1091 pvVMCB->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_NOTHING;
1092
1093 if (RT_UNLIKELY(pVM->hm.s.svm.fAlwaysFlushTLB))
1094 {
1095 /*
1096 * This is the AMD erratum 170. We need to flush the entire TLB for each world switch. Sad.
1097 */
1098 pCpu->uCurrentAsid = 1;
1099 pVCpu->hm.s.uCurrentAsid = 1;
1100 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
1101 pvVMCB->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
1102 }
1103 else if (pVCpu->hm.s.fForceTLBFlush)
1104 {
1105 if (fNewAsid)
1106 {
1107 ++pCpu->uCurrentAsid;
1108 bool fHitASIDLimit = false;
1109 if (pCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid)
1110 {
1111 pCpu->uCurrentAsid = 1; /* start at 1; host uses 0 */
1112 pCpu->cTlbFlushes++;
1113 fHitASIDLimit = true;
1114
1115 if (pVM->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID)
1116 {
1117 pvVMCB->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_SINGLE_CONTEXT;
1118 pCpu->fFlushAsidBeforeUse = true;
1119 }
1120 else
1121 {
1122 pvVMCB->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
1123 pCpu->fFlushAsidBeforeUse = false;
1124 }
1125 }
1126
1127 if ( !fHitASIDLimit
1128 && pCpu->fFlushAsidBeforeUse)
1129 {
1130 if (pVM->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID)
1131 pvVMCB->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_SINGLE_CONTEXT;
1132 else
1133 {
1134 pvVMCB->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
1135 pCpu->fFlushAsidBeforeUse = false;
1136 }
1137 }
1138
1139 pVCpu->hm.s.uCurrentAsid = pCpu->uCurrentAsid;
1140 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
1141 }
1142 else
1143 {
1144 if (pVM->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID)
1145 pvVMCB->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_SINGLE_CONTEXT;
1146 else
1147 pvVMCB->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
1148 }
1149
1150 pVCpu->hm.s.fForceTLBFlush = false;
1151 }
1152 else
1153 {
1154 /** @todo We never set VMCPU_FF_TLB_SHOOTDOWN anywhere so this path should
1155 * not be executed. See hmQueueInvlPage() where it is commented
1156 * out. Support individual entry flushing someday. */
1157 if (VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_TLB_SHOOTDOWN))
1158 {
1159 /* Deal with pending TLB shootdown actions which were queued when we were not executing code. */
1160 STAM_COUNTER_INC(&pVCpu->hm.s.StatTlbShootdown);
1161 for (unsigned i = 0; i < pVCpu->hm.s.TlbShootdown.cPages; i++)
1162 SVMR0InvlpgA(pVCpu->hm.s.TlbShootdown.aPages[i], pvVMCB->ctrl.TLBCtrl.n.u32ASID);
1163 }
1164 }
1165
1166 pVCpu->hm.s.TlbShootdown.cPages = 0;
1167 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_SHOOTDOWN);
1168
1169 /* Update VMCB with the ASID. */
1170 pvVMCB->ctrl.TLBCtrl.n.u32ASID = pVCpu->hm.s.uCurrentAsid;
1171
1172 AssertMsg(pVCpu->hm.s.cTlbFlushes == pCpu->cTlbFlushes,
1173 ("Flush count mismatch for cpu %d (%x vs %x)\n", pCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pCpu->cTlbFlushes));
1174 AssertMsg(pCpu->uCurrentAsid >= 1 && pCpu->uCurrentAsid < pVM->hm.s.uMaxAsid,
1175 ("cpu%d uCurrentAsid = %x\n", pCpu->idCpu, pCpu->uCurrentAsid));
1176 AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid,
1177 ("cpu%d VM uCurrentAsid = %x\n", pCpu->idCpu, pVCpu->hm.s.uCurrentAsid));
1178
1179#ifdef VBOX_WITH_STATISTICS
1180 if (pvVMCB->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_NOTHING)
1181 STAM_COUNTER_INC(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch);
1182 else if ( pvVMCB->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT
1183 || pvVMCB->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT_RETAIN_GLOBALS)
1184 {
1185 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushAsid);
1186 }
1187 else
1188 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
1189#endif
1190}
1191
1192
1193/**
1194 * Runs guest code in an AMD-V VM.
1195 *
1196 * @returns VBox status code.
1197 * @param pVM Pointer to the VM.
1198 * @param pVCpu Pointer to the VMCPU.
1199 * @param pCtx Pointer to the guest CPU context.
1200 */
1201VMMR0DECL(int) SVMR0RunGuestCode(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
1202{
1203 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
1204 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExit1);
1205 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExit2);
1206
1207 VBOXSTRICTRC rc = VINF_SUCCESS;
1208 int rc2;
1209 uint64_t exitCode = (uint64_t)SVM_EXIT_INVALID;
1210 SVM_VMCB *pvVMCB = NULL;
1211 bool fSyncTPR = false;
1212 unsigned cResume = 0;
1213 uint8_t u8LastTPR = 0; /* Initialized for potentially stupid compilers. */
1214 uint32_t u32HostExtFeatures = 0;
1215 PHMGLOBLCPUINFO pCpu = 0;
1216 RTCCUINTREG uOldEFlags = ~(RTCCUINTREG)0;
1217#ifdef VBOX_STRICT
1218 RTCPUID idCpuCheck;
1219#endif
1220#ifdef VBOX_HIGH_RES_TIMERS_HACK_IN_RING0
1221 uint64_t u64LastTime = RTTimeMilliTS();
1222#endif
1223
1224 pvVMCB = (SVM_VMCB *)pVCpu->hm.s.svm.pvVMCB;
1225 AssertMsgReturn(pvVMCB, ("Invalid pvVMCB\n"), VERR_SVM_INVALID_PVMCB);
1226
1227 /*
1228 * We can jump to this point to resume execution after determining that a VM-exit is innocent.
1229 */
1230ResumeExecution:
1231 if (!STAM_PROFILE_ADV_IS_RUNNING(&pVCpu->hm.s.StatEntry))
1232 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatExit2, &pVCpu->hm.s.StatEntry, x);
1233 Assert(!HMR0SuspendPending());
1234
1235 /*
1236 * Safety precaution; looping for too long here can have a very bad effect on the host.
1237 */
1238 if (RT_UNLIKELY(++cResume > pVM->hm.s.cMaxResumeLoops))
1239 {
1240 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMaxResume);
1241 rc = VINF_EM_RAW_INTERRUPT;
1242 goto end;
1243 }
1244
1245 /*
1246 * Check for IRQ inhibition due to instruction fusing (sti, mov ss).
1247 */
1248 if (VMCPU_FF_ISSET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
1249 {
1250 Log(("VM_FF_INHIBIT_INTERRUPTS at %RGv successor %RGv\n", (RTGCPTR)pCtx->rip, EMGetInhibitInterruptsPC(pVCpu)));
1251 if (pCtx->rip != EMGetInhibitInterruptsPC(pVCpu))
1252 {
1253 /*
1254 * Note: we intentionally don't clear VM_FF_INHIBIT_INTERRUPTS here.
1255 * Before we are able to execute this instruction in raw mode (iret to guest code) an external interrupt might
1256 * force a world switch again. Possibly allowing a guest interrupt to be dispatched in the process. This could
1257 * break the guest. Sounds very unlikely, but such timing sensitive problems are not as rare as you might think.
1258 */
1259 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
1260 /* Irq inhibition is no longer active; clear the corresponding SVM state. */
1261 pvVMCB->ctrl.u64IntShadow = 0;
1262 }
1263 }
1264 else
1265 {
1266 /* Irq inhibition is no longer active; clear the corresponding SVM state. */
1267 pvVMCB->ctrl.u64IntShadow = 0;
1268 }
1269
1270#ifdef VBOX_HIGH_RES_TIMERS_HACK_IN_RING0
1271 if (RT_UNLIKELY((cResume & 0xf) == 0))
1272 {
1273 uint64_t u64CurTime = RTTimeMilliTS();
1274
1275 if (RT_UNLIKELY(u64CurTime > u64LastTime))
1276 {
1277 u64LastTime = u64CurTime;
1278 TMTimerPollVoid(pVM, pVCpu);
1279 }
1280 }
1281#endif
1282
1283 /*
1284 * Check for pending actions that force us to go back to ring-3.
1285 */
1286 if ( VM_FF_ISPENDING(pVM, VM_FF_HM_TO_R3_MASK | VM_FF_REQUEST | VM_FF_PGM_POOL_FLUSH_PENDING | VM_FF_PDM_DMA)
1287 || VMCPU_FF_ISPENDING(pVCpu,
1288 VMCPU_FF_HM_TO_R3_MASK
1289 | VMCPU_FF_PGM_SYNC_CR3
1290 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL
1291 | VMCPU_FF_REQUEST))
1292 {
1293 /* Check if a sync operation is pending. */
1294 if (VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL))
1295 {
1296 rc = PGMSyncCR3(pVCpu, pCtx->cr0, pCtx->cr3, pCtx->cr4, VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
1297 AssertRC(VBOXSTRICTRC_VAL(rc));
1298 if (rc != VINF_SUCCESS)
1299 {
1300 Log(("Pending pool sync is forcing us back to ring 3; rc=%d\n", VBOXSTRICTRC_VAL(rc)));
1301 goto end;
1302 }
1303 }
1304
1305#ifdef DEBUG
1306 /* Intercept X86_XCPT_DB if stepping is enabled */
1307 if (!DBGFIsStepping(pVCpu))
1308#endif
1309 {
1310 if ( VM_FF_ISPENDING(pVM, VM_FF_HM_TO_R3_MASK)
1311 || VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
1312 {
1313 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchToR3);
1314 rc = RT_UNLIKELY(VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY)) ? VINF_EM_NO_MEMORY : VINF_EM_RAW_TO_R3;
1315 goto end;
1316 }
1317 }
1318
1319 /* Pending request packets might contain actions that need immediate attention, such as pending hardware interrupts. */
1320 if ( VM_FF_ISPENDING(pVM, VM_FF_REQUEST)
1321 || VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_REQUEST))
1322 {
1323 rc = VINF_EM_PENDING_REQUEST;
1324 goto end;
1325 }
1326
1327 /* Check if a pgm pool flush is in progress. */
1328 if (VM_FF_ISPENDING(pVM, VM_FF_PGM_POOL_FLUSH_PENDING))
1329 {
1330 rc = VINF_PGM_POOL_FLUSH_PENDING;
1331 goto end;
1332 }
1333
1334 /* Check if DMA work is pending (2nd+ run). */
1335 if (VM_FF_ISPENDING(pVM, VM_FF_PDM_DMA) && cResume > 1)
1336 {
1337 rc = VINF_EM_RAW_TO_R3;
1338 goto end;
1339 }
1340 }
1341
1342#ifdef VBOX_WITH_VMMR0_DISABLE_PREEMPTION
1343 /*
1344 * Exit to ring-3 preemption/work is pending.
1345 *
1346 * Interrupts are disabled before the call to make sure we don't miss any interrupt
1347 * that would flag preemption (IPI, timer tick, ++). (Would've been nice to do this
1348 * further down, but hmR0SvmCheckPendingInterrupt makes that impossible.)
1349 *
1350 * Note! Interrupts must be disabled done *before* we check for TLB flushes; TLB
1351 * shootdowns rely on this.
1352 */
1353 uOldEFlags = ASMIntDisableFlags();
1354 if (RTThreadPreemptIsPending(NIL_RTTHREAD))
1355 {
1356 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPreemptPending);
1357 rc = VINF_EM_RAW_INTERRUPT;
1358 goto end;
1359 }
1360 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC);
1361#endif
1362
1363 /*
1364 * When external interrupts are pending, we should exit the VM when IF is set.
1365 * Note: *After* VM_FF_INHIBIT_INTERRUPTS check!!
1366 */
1367 rc = hmR0SvmCheckPendingInterrupt(pVM, pVCpu, pvVMCB, pCtx);
1368 if (RT_FAILURE(rc))
1369 goto end;
1370
1371 /*
1372 * TPR caching using CR8 is only available in 64-bit mode or with 32-bit guests when X86_CPUID_AMD_FEATURE_ECX_CR8L is
1373 * supported.
1374 * Note: we can't do this in LoddGuestState as PDMApicGetTPR can jump back to ring 3 (lock)! (no longer true)
1375 */
1376 /** @todo query and update the TPR only when it could have been changed (mmio access)
1377 */
1378 if (pVM->hm.s.fHasIoApic)
1379 {
1380 /* TPR caching in CR8 */
1381 bool fPending;
1382 rc2 = PDMApicGetTPR(pVCpu, &u8LastTPR, &fPending);
1383 AssertRC(rc2);
1384
1385 if (pVM->hm.s.fTPRPatchingActive)
1386 {
1387 /* Our patch code uses LSTAR for TPR caching. */
1388 pCtx->msrLSTAR = u8LastTPR;
1389
1390 if (fPending)
1391 {
1392 /* A TPR change could activate a pending interrupt, so catch lstar writes. */
1393 hmR0SvmSetMSRPermission(pVCpu, MSR_K8_LSTAR, true, false);
1394 }
1395 else
1396 {
1397 /*
1398 * No interrupts are pending, so we don't need to be explicitely notified.
1399 * There are enough world switches for detecting pending interrupts.
1400 */
1401 hmR0SvmSetMSRPermission(pVCpu, MSR_K8_LSTAR, true, true);
1402 }
1403 }
1404 else
1405 {
1406 /* cr8 bits 3-0 correspond to bits 7-4 of the task priority mmio register. */
1407 pvVMCB->ctrl.IntCtrl.n.u8VTPR = (u8LastTPR >> 4);
1408
1409 if (fPending)
1410 {
1411 /* A TPR change could activate a pending interrupt, so catch cr8 writes. */
1412 pvVMCB->ctrl.u16InterceptWrCRx |= RT_BIT(8);
1413 }
1414 else
1415 {
1416 /*
1417 * No interrupts are pending, so we don't need to be explicitly notified.
1418 * There are enough world switches for detecting pending interrupts.
1419 */
1420 pvVMCB->ctrl.u16InterceptWrCRx &= ~RT_BIT(8);
1421 }
1422 }
1423 fSyncTPR = !fPending;
1424 }
1425
1426 /* All done! Let's start VM execution. */
1427
1428 /* Enable nested paging if necessary (disabled each time after #VMEXIT). */
1429 pvVMCB->ctrl.NestedPaging.n.u1NestedPaging = pVM->hm.s.fNestedPaging;
1430
1431#ifdef LOG_ENABLED
1432 pCpu = HMR0GetCurrentCpu();
1433 if (pVCpu->hm.s.idLastCpu != pCpu->idCpu)
1434 LogFlow(("Force TLB flush due to rescheduling to a different cpu (%d vs %d)\n", pVCpu->hm.s.idLastCpu, pCpu->idCpu));
1435 else if (pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes)
1436 LogFlow(("Force TLB flush due to changed TLB flush count (%x vs %x)\n", pVCpu->hm.s.cTlbFlushes, pCpu->cTlbFlushes));
1437 else if (VMCPU_FF_ISSET(pVCpu, VMCPU_FF_TLB_FLUSH))
1438 LogFlow(("Manual TLB flush\n"));
1439#endif
1440
1441 /*
1442 * NOTE: DO NOT DO ANYTHING AFTER THIS POINT THAT MIGHT JUMP BACK TO RING 3!
1443 * (until the actual world switch)
1444 */
1445#ifdef VBOX_STRICT
1446 idCpuCheck = RTMpCpuId();
1447#endif
1448 VMMR0LogFlushDisable(pVCpu);
1449
1450 /*
1451 * Load the guest state; *must* be here as it sets up the shadow CR0 for lazy FPU syncing!
1452 */
1453 rc = SVMR0LoadGuestState(pVM, pVCpu, pCtx);
1454 if (RT_UNLIKELY(rc != VINF_SUCCESS))
1455 {
1456 VMMR0LogFlushEnable(pVCpu);
1457 goto end;
1458 }
1459
1460#ifndef VBOX_WITH_VMMR0_DISABLE_PREEMPTION
1461 /*
1462 * Disable interrupts to make sure a poke will interrupt execution.
1463 * This must be done *before* we check for TLB flushes; TLB shootdowns rely on this.
1464 */
1465 uOldEFlags = ASMIntDisableFlags();
1466 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC);
1467#endif
1468 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatEntry, &pVCpu->hm.s.StatInGC, x);
1469
1470 /* Setup TLB control and ASID in the VMCB. */
1471 hmR0SvmSetupTLB(pVM, pVCpu);
1472
1473 /* In case we execute a goto ResumeExecution later on. */
1474 pVCpu->hm.s.fResumeVM = true;
1475 pVCpu->hm.s.fForceTLBFlush = pVM->hm.s.svm.fAlwaysFlushTLB;
1476
1477 Assert(sizeof(pVCpu->hm.s.svm.HCPhysVMCB) == 8);
1478 Assert(pvVMCB->ctrl.IntCtrl.n.u1VIrqMasking);
1479 Assert(pvVMCB->ctrl.u64IOPMPhysAddr == pVM->hm.s.svm.HCPhysIOBitmap);
1480 Assert(pvVMCB->ctrl.u64MSRPMPhysAddr == pVCpu->hm.s.svm.HCPhysMsrBitmap);
1481 Assert(pvVMCB->ctrl.u64LBRVirt == 0);
1482
1483#ifdef VBOX_STRICT
1484 Assert(idCpuCheck == RTMpCpuId());
1485#endif
1486 TMNotifyStartOfExecution(pVCpu);
1487
1488 /*
1489 * Save the current Host TSC_AUX and write the guest TSC_AUX to the host, so that
1490 * RDTSCPs (that don't cause exits) reads the guest MSR. See @bugref{3324}.
1491 */
1492 u32HostExtFeatures = pVM->hm.s.cpuid.u32AMDFeatureEDX;
1493 if ( (u32HostExtFeatures & X86_CPUID_EXT_FEATURE_EDX_RDTSCP)
1494 && !(pvVMCB->ctrl.u32InterceptCtrl2 & SVM_CTRL2_INTERCEPT_RDTSCP))
1495 {
1496 pVCpu->hm.s.u64HostTscAux = ASMRdMsr(MSR_K8_TSC_AUX);
1497 uint64_t u64GuestTscAux = 0;
1498 rc2 = CPUMQueryGuestMsr(pVCpu, MSR_K8_TSC_AUX, &u64GuestTscAux);
1499 AssertRC(rc2);
1500 ASMWrMsr(MSR_K8_TSC_AUX, u64GuestTscAux);
1501 }
1502
1503#ifdef VBOX_WITH_KERNEL_USING_XMM
1504 hmR0SVMRunWrapXMM(pVCpu->hm.s.svm.HCPhysVMCBHost, pVCpu->hm.s.svm.HCPhysVMCB, pCtx, pVM, pVCpu,
1505 pVCpu->hm.s.svm.pfnVMRun);
1506#else
1507 pVCpu->hm.s.svm.pfnVMRun(pVCpu->hm.s.svm.HCPhysVMCBHost, pVCpu->hm.s.svm.HCPhysVMCB, pCtx, pVM, pVCpu);
1508#endif
1509
1510 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, false);
1511 ASMAtomicIncU32(&pVCpu->hm.s.cWorldSwitchExits);
1512 /* Possibly the last TSC value seen by the guest (too high) (only when we're in TSC offset mode). */
1513 if (!(pvVMCB->ctrl.u32InterceptCtrl1 & SVM_CTRL1_INTERCEPT_RDTSC))
1514 {
1515 /* Restore host's TSC_AUX. */
1516 if (u32HostExtFeatures & X86_CPUID_EXT_FEATURE_EDX_RDTSCP)
1517 ASMWrMsr(MSR_K8_TSC_AUX, pVCpu->hm.s.u64HostTscAux);
1518
1519 TMCpuTickSetLastSeen(pVCpu, ASMReadTSC() +
1520 pvVMCB->ctrl.u64TSCOffset - 0x400 /* guestimate of world switch overhead in clock ticks */);
1521 }
1522
1523 TMNotifyEndOfExecution(pVCpu);
1524 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED);
1525 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatInGC, &pVCpu->hm.s.StatExit1, x);
1526 ASMSetFlags(uOldEFlags);
1527#ifdef VBOX_WITH_VMMR0_DISABLE_PREEMPTION
1528 uOldEFlags = ~(RTCCUINTREG)0;
1529#endif
1530
1531 /*
1532 * !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1533 * IMPORTANT: WE CAN'T DO ANY LOGGING OR OPERATIONS THAT CAN DO A LONGJMP BACK TO RING-3 *BEFORE* WE'VE SYNCED BACK (MOST OF) THE GUEST STATE
1534 * !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1535 */
1536
1537 /* Reason for the VM exit */
1538 exitCode = pvVMCB->ctrl.u64ExitCode;
1539
1540 if (RT_UNLIKELY(exitCode == (uint64_t)SVM_EXIT_INVALID)) /* Invalid guest state. */
1541 {
1542 HMDumpRegs(pVM, pVCpu, pCtx);
1543#ifdef DEBUG
1544 Log(("ctrl.u16InterceptRdCRx %x\n", pvVMCB->ctrl.u16InterceptRdCRx));
1545 Log(("ctrl.u16InterceptWrCRx %x\n", pvVMCB->ctrl.u16InterceptWrCRx));
1546 Log(("ctrl.u16InterceptRdDRx %x\n", pvVMCB->ctrl.u16InterceptRdDRx));
1547 Log(("ctrl.u16InterceptWrDRx %x\n", pvVMCB->ctrl.u16InterceptWrDRx));
1548 Log(("ctrl.u32InterceptException %x\n", pvVMCB->ctrl.u32InterceptException));
1549 Log(("ctrl.u32InterceptCtrl1 %x\n", pvVMCB->ctrl.u32InterceptCtrl1));
1550 Log(("ctrl.u32InterceptCtrl2 %x\n", pvVMCB->ctrl.u32InterceptCtrl2));
1551 Log(("ctrl.u64IOPMPhysAddr %RX64\n", pvVMCB->ctrl.u64IOPMPhysAddr));
1552 Log(("ctrl.u64MSRPMPhysAddr %RX64\n", pvVMCB->ctrl.u64MSRPMPhysAddr));
1553 Log(("ctrl.u64TSCOffset %RX64\n", pvVMCB->ctrl.u64TSCOffset));
1554
1555 Log(("ctrl.TLBCtrl.u32ASID %x\n", pvVMCB->ctrl.TLBCtrl.n.u32ASID));
1556 Log(("ctrl.TLBCtrl.u8TLBFlush %x\n", pvVMCB->ctrl.TLBCtrl.n.u8TLBFlush));
1557 Log(("ctrl.TLBCtrl.u24Reserved %x\n", pvVMCB->ctrl.TLBCtrl.n.u24Reserved));
1558
1559 Log(("ctrl.IntCtrl.u8VTPR %x\n", pvVMCB->ctrl.IntCtrl.n.u8VTPR));
1560 Log(("ctrl.IntCtrl.u1VIrqValid %x\n", pvVMCB->ctrl.IntCtrl.n.u1VIrqValid));
1561 Log(("ctrl.IntCtrl.u7Reserved %x\n", pvVMCB->ctrl.IntCtrl.n.u7Reserved));
1562 Log(("ctrl.IntCtrl.u4VIrqPriority %x\n", pvVMCB->ctrl.IntCtrl.n.u4VIrqPriority));
1563 Log(("ctrl.IntCtrl.u1IgnoreTPR %x\n", pvVMCB->ctrl.IntCtrl.n.u1IgnoreTPR));
1564 Log(("ctrl.IntCtrl.u3Reserved %x\n", pvVMCB->ctrl.IntCtrl.n.u3Reserved));
1565 Log(("ctrl.IntCtrl.u1VIrqMasking %x\n", pvVMCB->ctrl.IntCtrl.n.u1VIrqMasking));
1566 Log(("ctrl.IntCtrl.u7Reserved2 %x\n", pvVMCB->ctrl.IntCtrl.n.u7Reserved2));
1567 Log(("ctrl.IntCtrl.u8VIrqVector %x\n", pvVMCB->ctrl.IntCtrl.n.u8VIrqVector));
1568 Log(("ctrl.IntCtrl.u24Reserved %x\n", pvVMCB->ctrl.IntCtrl.n.u24Reserved));
1569
1570 Log(("ctrl.u64IntShadow %RX64\n", pvVMCB->ctrl.u64IntShadow));
1571 Log(("ctrl.u64ExitCode %RX64\n", pvVMCB->ctrl.u64ExitCode));
1572 Log(("ctrl.u64ExitInfo1 %RX64\n", pvVMCB->ctrl.u64ExitInfo1));
1573 Log(("ctrl.u64ExitInfo2 %RX64\n", pvVMCB->ctrl.u64ExitInfo2));
1574 Log(("ctrl.ExitIntInfo.u8Vector %x\n", pvVMCB->ctrl.ExitIntInfo.n.u8Vector));
1575 Log(("ctrl.ExitIntInfo.u3Type %x\n", pvVMCB->ctrl.ExitIntInfo.n.u3Type));
1576 Log(("ctrl.ExitIntInfo.u1ErrorCodeValid %x\n", pvVMCB->ctrl.ExitIntInfo.n.u1ErrorCodeValid));
1577 Log(("ctrl.ExitIntInfo.u19Reserved %x\n", pvVMCB->ctrl.ExitIntInfo.n.u19Reserved));
1578 Log(("ctrl.ExitIntInfo.u1Valid %x\n", pvVMCB->ctrl.ExitIntInfo.n.u1Valid));
1579 Log(("ctrl.ExitIntInfo.u32ErrorCode %x\n", pvVMCB->ctrl.ExitIntInfo.n.u32ErrorCode));
1580 Log(("ctrl.NestedPaging %RX64\n", pvVMCB->ctrl.NestedPaging.au64));
1581 Log(("ctrl.EventInject.u8Vector %x\n", pvVMCB->ctrl.EventInject.n.u8Vector));
1582 Log(("ctrl.EventInject.u3Type %x\n", pvVMCB->ctrl.EventInject.n.u3Type));
1583 Log(("ctrl.EventInject.u1ErrorCodeValid %x\n", pvVMCB->ctrl.EventInject.n.u1ErrorCodeValid));
1584 Log(("ctrl.EventInject.u19Reserved %x\n", pvVMCB->ctrl.EventInject.n.u19Reserved));
1585 Log(("ctrl.EventInject.u1Valid %x\n", pvVMCB->ctrl.EventInject.n.u1Valid));
1586 Log(("ctrl.EventInject.u32ErrorCode %x\n", pvVMCB->ctrl.EventInject.n.u32ErrorCode));
1587
1588 Log(("ctrl.u64NestedPagingCR3 %RX64\n", pvVMCB->ctrl.u64NestedPagingCR3));
1589 Log(("ctrl.u64LBRVirt %RX64\n", pvVMCB->ctrl.u64LBRVirt));
1590
1591 Log(("guest.CS.u16Sel %04X\n", pvVMCB->guest.CS.u16Sel));
1592 Log(("guest.CS.u16Attr %04X\n", pvVMCB->guest.CS.u16Attr));
1593 Log(("guest.CS.u32Limit %X\n", pvVMCB->guest.CS.u32Limit));
1594 Log(("guest.CS.u64Base %RX64\n", pvVMCB->guest.CS.u64Base));
1595 Log(("guest.DS.u16Sel %04X\n", pvVMCB->guest.DS.u16Sel));
1596 Log(("guest.DS.u16Attr %04X\n", pvVMCB->guest.DS.u16Attr));
1597 Log(("guest.DS.u32Limit %X\n", pvVMCB->guest.DS.u32Limit));
1598 Log(("guest.DS.u64Base %RX64\n", pvVMCB->guest.DS.u64Base));
1599 Log(("guest.ES.u16Sel %04X\n", pvVMCB->guest.ES.u16Sel));
1600 Log(("guest.ES.u16Attr %04X\n", pvVMCB->guest.ES.u16Attr));
1601 Log(("guest.ES.u32Limit %X\n", pvVMCB->guest.ES.u32Limit));
1602 Log(("guest.ES.u64Base %RX64\n", pvVMCB->guest.ES.u64Base));
1603 Log(("guest.FS.u16Sel %04X\n", pvVMCB->guest.FS.u16Sel));
1604 Log(("guest.FS.u16Attr %04X\n", pvVMCB->guest.FS.u16Attr));
1605 Log(("guest.FS.u32Limit %X\n", pvVMCB->guest.FS.u32Limit));
1606 Log(("guest.FS.u64Base %RX64\n", pvVMCB->guest.FS.u64Base));
1607 Log(("guest.GS.u16Sel %04X\n", pvVMCB->guest.GS.u16Sel));
1608 Log(("guest.GS.u16Attr %04X\n", pvVMCB->guest.GS.u16Attr));
1609 Log(("guest.GS.u32Limit %X\n", pvVMCB->guest.GS.u32Limit));
1610 Log(("guest.GS.u64Base %RX64\n", pvVMCB->guest.GS.u64Base));
1611
1612 Log(("guest.GDTR.u32Limit %X\n", pvVMCB->guest.GDTR.u32Limit));
1613 Log(("guest.GDTR.u64Base %RX64\n", pvVMCB->guest.GDTR.u64Base));
1614
1615 Log(("guest.LDTR.u16Sel %04X\n", pvVMCB->guest.LDTR.u16Sel));
1616 Log(("guest.LDTR.u16Attr %04X\n", pvVMCB->guest.LDTR.u16Attr));
1617 Log(("guest.LDTR.u32Limit %X\n", pvVMCB->guest.LDTR.u32Limit));
1618 Log(("guest.LDTR.u64Base %RX64\n", pvVMCB->guest.LDTR.u64Base));
1619
1620 Log(("guest.IDTR.u32Limit %X\n", pvVMCB->guest.IDTR.u32Limit));
1621 Log(("guest.IDTR.u64Base %RX64\n", pvVMCB->guest.IDTR.u64Base));
1622
1623 Log(("guest.TR.u16Sel %04X\n", pvVMCB->guest.TR.u16Sel));
1624 Log(("guest.TR.u16Attr %04X\n", pvVMCB->guest.TR.u16Attr));
1625 Log(("guest.TR.u32Limit %X\n", pvVMCB->guest.TR.u32Limit));
1626 Log(("guest.TR.u64Base %RX64\n", pvVMCB->guest.TR.u64Base));
1627
1628 Log(("guest.u8CPL %X\n", pvVMCB->guest.u8CPL));
1629 Log(("guest.u64CR0 %RX64\n", pvVMCB->guest.u64CR0));
1630 Log(("guest.u64CR2 %RX64\n", pvVMCB->guest.u64CR2));
1631 Log(("guest.u64CR3 %RX64\n", pvVMCB->guest.u64CR3));
1632 Log(("guest.u64CR4 %RX64\n", pvVMCB->guest.u64CR4));
1633 Log(("guest.u64DR6 %RX64\n", pvVMCB->guest.u64DR6));
1634 Log(("guest.u64DR7 %RX64\n", pvVMCB->guest.u64DR7));
1635
1636 Log(("guest.u64RIP %RX64\n", pvVMCB->guest.u64RIP));
1637 Log(("guest.u64RSP %RX64\n", pvVMCB->guest.u64RSP));
1638 Log(("guest.u64RAX %RX64\n", pvVMCB->guest.u64RAX));
1639 Log(("guest.u64RFlags %RX64\n", pvVMCB->guest.u64RFlags));
1640
1641 Log(("guest.u64SysEnterCS %RX64\n", pvVMCB->guest.u64SysEnterCS));
1642 Log(("guest.u64SysEnterEIP %RX64\n", pvVMCB->guest.u64SysEnterEIP));
1643 Log(("guest.u64SysEnterESP %RX64\n", pvVMCB->guest.u64SysEnterESP));
1644
1645 Log(("guest.u64EFER %RX64\n", pvVMCB->guest.u64EFER));
1646 Log(("guest.u64STAR %RX64\n", pvVMCB->guest.u64STAR));
1647 Log(("guest.u64LSTAR %RX64\n", pvVMCB->guest.u64LSTAR));
1648 Log(("guest.u64CSTAR %RX64\n", pvVMCB->guest.u64CSTAR));
1649 Log(("guest.u64SFMASK %RX64\n", pvVMCB->guest.u64SFMASK));
1650 Log(("guest.u64KernelGSBase %RX64\n", pvVMCB->guest.u64KernelGSBase));
1651 Log(("guest.u64GPAT %RX64\n", pvVMCB->guest.u64GPAT));
1652 Log(("guest.u64DBGCTL %RX64\n", pvVMCB->guest.u64DBGCTL));
1653 Log(("guest.u64BR_FROM %RX64\n", pvVMCB->guest.u64BR_FROM));
1654 Log(("guest.u64BR_TO %RX64\n", pvVMCB->guest.u64BR_TO));
1655 Log(("guest.u64LASTEXCPFROM %RX64\n", pvVMCB->guest.u64LASTEXCPFROM));
1656 Log(("guest.u64LASTEXCPTO %RX64\n", pvVMCB->guest.u64LASTEXCPTO));
1657#endif
1658 rc = VERR_SVM_UNABLE_TO_START_VM;
1659 VMMR0LogFlushEnable(pVCpu);
1660 goto end;
1661 }
1662
1663 /* Let's first sync back EIP, ESP, and EFLAGS. */
1664 pCtx->rip = pvVMCB->guest.u64RIP;
1665 pCtx->rsp = pvVMCB->guest.u64RSP;
1666 pCtx->eflags.u32 = pvVMCB->guest.u64RFlags;
1667 /* eax is saved/restore across the vmrun instruction */
1668 pCtx->rax = pvVMCB->guest.u64RAX;
1669
1670 /*
1671 * Save all the MSRs that can be changed by the guest without causing a world switch.
1672 * FS & GS base are saved with SVM_READ_SELREG.
1673 */
1674 pCtx->msrSTAR = pvVMCB->guest.u64STAR; /* legacy syscall eip, cs & ss */
1675 pCtx->msrLSTAR = pvVMCB->guest.u64LSTAR; /* 64-bit mode syscall rip */
1676 pCtx->msrCSTAR = pvVMCB->guest.u64CSTAR; /* compatibility mode syscall rip */
1677 pCtx->msrSFMASK = pvVMCB->guest.u64SFMASK; /* syscall flag mask */
1678 pCtx->msrKERNELGSBASE = pvVMCB->guest.u64KernelGSBase; /* swapgs exchange value */
1679 pCtx->SysEnter.cs = pvVMCB->guest.u64SysEnterCS;
1680 pCtx->SysEnter.eip = pvVMCB->guest.u64SysEnterEIP;
1681 pCtx->SysEnter.esp = pvVMCB->guest.u64SysEnterESP;
1682
1683 /* Can be updated behind our back in the nested paging case. */
1684 pCtx->cr2 = pvVMCB->guest.u64CR2;
1685
1686 /* Guest CPU context: ES, CS, SS, DS, FS, GS. */
1687 SVM_READ_SELREG(SS, ss);
1688 SVM_READ_SELREG(CS, cs);
1689 SVM_READ_SELREG(DS, ds);
1690 SVM_READ_SELREG(ES, es);
1691 SVM_READ_SELREG(FS, fs);
1692 SVM_READ_SELREG(GS, gs);
1693
1694 /*
1695 * Correct the hidden CS granularity flag. Haven't seen it being wrong in any other
1696 * register (yet).
1697 */
1698 if ( !pCtx->cs.Attr.n.u1Granularity
1699 && pCtx->cs.Attr.n.u1Present
1700 && pCtx->cs.u32Limit > UINT32_C(0xfffff))
1701 {
1702 Assert((pCtx->cs.u32Limit & 0xfff) == 0xfff);
1703 pCtx->cs.Attr.n.u1Granularity = 1;
1704 }
1705#define SVM_ASSERT_SEL_GRANULARITY(reg) \
1706 AssertMsg( !pCtx->reg.Attr.n.u1Present \
1707 || ( pCtx->reg.Attr.n.u1Granularity \
1708 ? (pCtx->reg.u32Limit & 0xfff) == 0xfff \
1709 : pCtx->reg.u32Limit <= 0xfffff), \
1710 ("%#x %#x %#llx\n", pCtx->reg.u32Limit, pCtx->reg.Attr.u, pCtx->reg.u64Base))
1711 SVM_ASSERT_SEL_GRANULARITY(ss);
1712 SVM_ASSERT_SEL_GRANULARITY(cs);
1713 SVM_ASSERT_SEL_GRANULARITY(ds);
1714 SVM_ASSERT_SEL_GRANULARITY(es);
1715 SVM_ASSERT_SEL_GRANULARITY(fs);
1716 SVM_ASSERT_SEL_GRANULARITY(gs);
1717#undef SVM_ASSERT_SEL_GRANULARITY
1718
1719 /*
1720 * Correct the hidden SS DPL field. It can be wrong on certain CPUs
1721 * sometimes (seen it on AMD Fusion CPUs with 64-bit guests). The CPU
1722 * always uses the CPL field in the VMCB instead of the DPL in the hidden
1723 * SS (chapter AMD spec. 15.5.1 Basic operation).
1724 */
1725 Assert(!(pvVMCB->guest.u8CPL & ~0x3));
1726 pCtx->ss.Attr.n.u2Dpl = pvVMCB->guest.u8CPL & 0x3;
1727
1728 /*
1729 * Remaining guest CPU context: TR, IDTR, GDTR, LDTR;
1730 * must sync everything otherwise we can get out of sync when jumping back to ring-3.
1731 */
1732 SVM_READ_SELREG(LDTR, ldtr);
1733 SVM_READ_SELREG(TR, tr);
1734
1735 pCtx->gdtr.cbGdt = pvVMCB->guest.GDTR.u32Limit;
1736 pCtx->gdtr.pGdt = pvVMCB->guest.GDTR.u64Base;
1737
1738 pCtx->idtr.cbIdt = pvVMCB->guest.IDTR.u32Limit;
1739 pCtx->idtr.pIdt = pvVMCB->guest.IDTR.u64Base;
1740
1741 /*
1742 * No reason to sync back the CRx and DRx registers as they cannot be changed by the guest
1743 * unless in the nested paging case where CR3 can be changed by the guest.
1744 */
1745 if ( pVM->hm.s.fNestedPaging
1746 && pCtx->cr3 != pvVMCB->guest.u64CR3)
1747 {
1748 CPUMSetGuestCR3(pVCpu, pvVMCB->guest.u64CR3);
1749 PGMUpdateCR3(pVCpu, pvVMCB->guest.u64CR3);
1750 }
1751
1752 /* Note! NOW IT'S SAFE FOR LOGGING! */
1753 VMMR0LogFlushEnable(pVCpu);
1754
1755 /* Take care of instruction fusing (sti, mov ss) (see AMD spec. 15.20.5 Interrupt Shadows) */
1756 if (pvVMCB->ctrl.u64IntShadow & SVM_INTERRUPT_SHADOW_ACTIVE)
1757 {
1758 Log(("uInterruptState %x rip=%RGv\n", pvVMCB->ctrl.u64IntShadow, (RTGCPTR)pCtx->rip));
1759 EMSetInhibitInterruptsPC(pVCpu, pCtx->rip);
1760 }
1761 else
1762 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
1763
1764 Log2(("exitCode = %x\n", exitCode));
1765
1766 /* Sync back DR6 as it could have been changed by hitting breakpoints. */
1767 pCtx->dr[6] = pvVMCB->guest.u64DR6;
1768 /* DR7.GD can be cleared by debug exceptions, so sync it back as well. */
1769 pCtx->dr[7] = pvVMCB->guest.u64DR7;
1770
1771 /* Check if an injected event was interrupted prematurely. */
1772 pVCpu->hm.s.Event.intInfo = pvVMCB->ctrl.ExitIntInfo.au64[0];
1773 if ( pvVMCB->ctrl.ExitIntInfo.n.u1Valid
1774 /* we don't care about 'int xx' as the instruction will be restarted. */
1775 && pvVMCB->ctrl.ExitIntInfo.n.u3Type != SVM_EVENT_SOFTWARE_INT)
1776 {
1777 Log(("Pending inject %RX64 at %RGv exit=%08x\n", pVCpu->hm.s.Event.intInfo, (RTGCPTR)pCtx->rip, exitCode));
1778
1779#ifdef LOG_ENABLED
1780 SVM_EVENT Event;
1781 Event.au64[0] = pVCpu->hm.s.Event.intInfo;
1782
1783 if ( exitCode == SVM_EXIT_EXCEPTION_E
1784 && Event.n.u8Vector == 0xE)
1785 {
1786 Log(("Double fault!\n"));
1787 }
1788#endif
1789
1790 pVCpu->hm.s.Event.fPending = true;
1791 /* Error code present? (redundant) */
1792 if (pvVMCB->ctrl.ExitIntInfo.n.u1ErrorCodeValid)
1793 pVCpu->hm.s.Event.errCode = pvVMCB->ctrl.ExitIntInfo.n.u32ErrorCode;
1794 else
1795 pVCpu->hm.s.Event.errCode = 0;
1796 }
1797#ifdef VBOX_WITH_STATISTICS
1798 if (exitCode == SVM_EXIT_NPF)
1799 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitReasonNpf);
1800 else
1801 STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[exitCode & MASK_EXITREASON_STAT]);
1802#endif
1803
1804 /* Sync back the TPR if it was changed. */
1805 if (fSyncTPR)
1806 {
1807 if (pVM->hm.s.fTPRPatchingActive)
1808 {
1809 if ((pCtx->msrLSTAR & 0xff) != u8LastTPR)
1810 {
1811 /* Our patch code uses LSTAR for TPR caching. */
1812 rc2 = PDMApicSetTPR(pVCpu, pCtx->msrLSTAR & 0xff);
1813 AssertRC(rc2);
1814 }
1815 }
1816 else
1817 {
1818 if ((uint8_t)(u8LastTPR >> 4) != pvVMCB->ctrl.IntCtrl.n.u8VTPR)
1819 {
1820 /* cr8 bits 3-0 correspond to bits 7-4 of the task priority mmio register. */
1821 rc2 = PDMApicSetTPR(pVCpu, pvVMCB->ctrl.IntCtrl.n.u8VTPR << 4);
1822 AssertRC(rc2);
1823 }
1824 }
1825 }
1826
1827#ifdef DBGFTRACE_ENABLED /** @todo DTrace */
1828 RTTraceBufAddMsgF(pVM->CTX_SUFF(hTraceBuf), "vmexit %08x at %04:%08RX64 %RX64 %RX64 %RX64",
1829 exitCode, pCtx->cs.Sel, pCtx->rip,
1830 pvVMCB->ctrl.u64ExitInfo1, pvVMCB->ctrl.u64ExitInfo2, pvVMCB->ctrl.ExitIntInfo.au64[0]);
1831#endif
1832#if ARCH_BITS == 64 /* for the time being */
1833 VBOXVMM_R0_HMSVM_VMEXIT(pVCpu, pCtx, exitCode, pvVMCB->ctrl.u64ExitInfo1, pvVMCB->ctrl.u64ExitInfo2,
1834 pvVMCB->ctrl.ExitIntInfo.au64[0], UINT64_MAX);
1835#endif
1836 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatExit1, &pVCpu->hm.s.StatExit2, x);
1837
1838 /* Deal with the reason of the VM-exit. */
1839 switch (exitCode)
1840 {
1841 case SVM_EXIT_EXCEPTION_0: case SVM_EXIT_EXCEPTION_1: case SVM_EXIT_EXCEPTION_2: case SVM_EXIT_EXCEPTION_3:
1842 case SVM_EXIT_EXCEPTION_4: case SVM_EXIT_EXCEPTION_5: case SVM_EXIT_EXCEPTION_6: case SVM_EXIT_EXCEPTION_7:
1843 case SVM_EXIT_EXCEPTION_8: case SVM_EXIT_EXCEPTION_9: case SVM_EXIT_EXCEPTION_A: case SVM_EXIT_EXCEPTION_B:
1844 case SVM_EXIT_EXCEPTION_C: case SVM_EXIT_EXCEPTION_D: case SVM_EXIT_EXCEPTION_E: case SVM_EXIT_EXCEPTION_F:
1845 case SVM_EXIT_EXCEPTION_10: case SVM_EXIT_EXCEPTION_11: case SVM_EXIT_EXCEPTION_12: case SVM_EXIT_EXCEPTION_13:
1846 case SVM_EXIT_EXCEPTION_14: case SVM_EXIT_EXCEPTION_15: case SVM_EXIT_EXCEPTION_16: case SVM_EXIT_EXCEPTION_17:
1847 case SVM_EXIT_EXCEPTION_18: case SVM_EXIT_EXCEPTION_19: case SVM_EXIT_EXCEPTION_1A: case SVM_EXIT_EXCEPTION_1B:
1848 case SVM_EXIT_EXCEPTION_1C: case SVM_EXIT_EXCEPTION_1D: case SVM_EXIT_EXCEPTION_1E: case SVM_EXIT_EXCEPTION_1F:
1849 {
1850 /* Pending trap. */
1851 SVM_EVENT Event;
1852 uint32_t vector = exitCode - SVM_EXIT_EXCEPTION_0;
1853
1854 Log2(("Hardware/software interrupt %d\n", vector));
1855 switch (vector)
1856 {
1857 case X86_XCPT_DB:
1858 {
1859 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDB);
1860
1861 /* Note that we don't support guest and host-initiated debugging at the same time. */
1862 Assert(DBGFIsStepping(pVCpu) || CPUMIsHyperDebugStateActive(pVCpu));
1863
1864 rc = DBGFRZTrap01Handler(pVM, pVCpu, CPUMCTX2CORE(pCtx), pCtx->dr[6]);
1865 if (rc == VINF_EM_RAW_GUEST_TRAP)
1866 {
1867 Log(("Trap %x (debug) at %016RX64\n", vector, pCtx->rip));
1868
1869 /* Reinject the exception. */
1870 Event.au64[0] = 0;
1871 Event.n.u3Type = SVM_EVENT_EXCEPTION; /* trap or fault */
1872 Event.n.u1Valid = 1;
1873 Event.n.u8Vector = X86_XCPT_DB;
1874
1875 hmR0SvmInjectEvent(pVCpu, pvVMCB, pCtx, &Event);
1876 goto ResumeExecution;
1877 }
1878 /* Return to ring 3 to deal with the debug exit code. */
1879 Log(("Debugger hardware BP at %04x:%RGv (rc=%Rrc)\n", pCtx->cs.Sel, pCtx->rip, VBOXSTRICTRC_VAL(rc)));
1880 break;
1881 }
1882
1883 case X86_XCPT_NM:
1884 {
1885 Log(("#NM fault at %RGv\n", (RTGCPTR)pCtx->rip));
1886
1887 /** @todo don't intercept #NM exceptions anymore when we've activated the guest FPU state. */
1888 /* If we sync the FPU/XMM state on-demand, then we can continue execution as if nothing has happened. */
1889 rc = CPUMR0LoadGuestFPU(pVM, pVCpu, pCtx);
1890 if (rc == VINF_SUCCESS)
1891 {
1892 Assert(CPUMIsGuestFPUStateActive(pVCpu));
1893 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowNM);
1894
1895 /* Continue execution. */
1896 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR0;
1897
1898 goto ResumeExecution;
1899 }
1900
1901 Log(("Forward #NM fault to the guest\n"));
1902 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNM);
1903
1904 Event.au64[0] = 0;
1905 Event.n.u3Type = SVM_EVENT_EXCEPTION;
1906 Event.n.u1Valid = 1;
1907 Event.n.u8Vector = X86_XCPT_NM;
1908
1909 hmR0SvmInjectEvent(pVCpu, pvVMCB, pCtx, &Event);
1910 goto ResumeExecution;
1911 }
1912
1913 case X86_XCPT_PF: /* Page fault */
1914 {
1915 uint32_t errCode = pvVMCB->ctrl.u64ExitInfo1; /* EXITINFO1 = error code */
1916 RTGCUINTPTR uFaultAddress = pvVMCB->ctrl.u64ExitInfo2; /* EXITINFO2 = fault address */
1917
1918#ifdef VBOX_ALWAYS_TRAP_PF
1919 if (pVM->hm.s.fNestedPaging)
1920 {
1921 /*
1922 * A genuine pagefault. Forward the trap to the guest by injecting the exception and resuming execution.
1923 */
1924 Log(("Guest page fault at %04X:%RGv cr2=%RGv error code %x rsp=%RGv\n", pCtx->cs, (RTGCPTR)pCtx->rip,
1925 uFaultAddress, errCode, (RTGCPTR)pCtx->rsp));
1926 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
1927
1928 /* Now we must update CR2. */
1929 pCtx->cr2 = uFaultAddress;
1930
1931 Event.au64[0] = 0;
1932 Event.n.u3Type = SVM_EVENT_EXCEPTION;
1933 Event.n.u1Valid = 1;
1934 Event.n.u8Vector = X86_XCPT_PF;
1935 Event.n.u1ErrorCodeValid = 1;
1936 Event.n.u32ErrorCode = errCode;
1937
1938 hmR0SvmInjectEvent(pVCpu, pvVMCB, pCtx, &Event);
1939 goto ResumeExecution;
1940 }
1941#endif
1942 Assert(!pVM->hm.s.fNestedPaging);
1943
1944#ifdef VBOX_HM_WITH_GUEST_PATCHING
1945 /* Shortcut for APIC TPR reads and writes; 32 bits guests only */
1946 if ( pVM->hm.s.fTRPPatchingAllowed
1947 && (uFaultAddress & 0xfff) == 0x080
1948 && !(errCode & X86_TRAP_PF_P) /* not present */
1949 && CPUMGetGuestCPL(pVCpu) == 0
1950 && !CPUMIsGuestInLongModeEx(pCtx)
1951 && pVM->hm.s.cPatches < RT_ELEMENTS(pVM->hm.s.aPatches))
1952 {
1953 RTGCPHYS GCPhysApicBase, GCPhys;
1954 GCPhysApicBase = pCtx->msrApicBase;
1955 GCPhysApicBase &= PAGE_BASE_GC_MASK;
1956
1957 rc = PGMGstGetPage(pVCpu, (RTGCPTR)uFaultAddress, NULL, &GCPhys);
1958 if ( rc == VINF_SUCCESS
1959 && GCPhys == GCPhysApicBase)
1960 {
1961 /* Only attempt to patch the instruction once. */
1962 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
1963 if (!pPatch)
1964 {
1965 rc = VINF_EM_HM_PATCH_TPR_INSTR;
1966 break;
1967 }
1968 }
1969 }
1970#endif
1971
1972 Log2(("Page fault at %RGv cr2=%RGv error code %x\n", (RTGCPTR)pCtx->rip, uFaultAddress, errCode));
1973 /* Exit qualification contains the linear address of the page fault. */
1974 TRPMAssertTrap(pVCpu, X86_XCPT_PF, TRPM_TRAP);
1975 TRPMSetErrorCode(pVCpu, errCode);
1976 TRPMSetFaultAddress(pVCpu, uFaultAddress);
1977
1978 /* Forward it to our trap handler first, in case our shadow pages are out of sync. */
1979 rc = PGMTrap0eHandler(pVCpu, errCode, CPUMCTX2CORE(pCtx), (RTGCPTR)uFaultAddress);
1980 Log2(("PGMTrap0eHandler %RGv returned %Rrc\n", (RTGCPTR)pCtx->rip, VBOXSTRICTRC_VAL(rc)));
1981 if (rc == VINF_SUCCESS)
1982 {
1983 /* We've successfully synced our shadow pages, so let's just continue execution. */
1984 Log2(("Shadow page fault at %RGv cr2=%RGv error code %x\n", (RTGCPTR)pCtx->rip, uFaultAddress, errCode));
1985 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
1986
1987 TRPMResetTrap(pVCpu);
1988 goto ResumeExecution;
1989 }
1990 else if (rc == VINF_EM_RAW_GUEST_TRAP)
1991 {
1992 /*
1993 * A genuine pagefault. Forward the trap to the guest by injecting the exception and resuming execution.
1994 */
1995 Log2(("Forward page fault to the guest\n"));
1996 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
1997 /* The error code might have been changed. */
1998 errCode = TRPMGetErrorCode(pVCpu);
1999
2000 TRPMResetTrap(pVCpu);
2001
2002 /* Now we must update CR2. */
2003 pCtx->cr2 = uFaultAddress;
2004
2005 Event.au64[0] = 0;
2006 Event.n.u3Type = SVM_EVENT_EXCEPTION;
2007 Event.n.u1Valid = 1;
2008 Event.n.u8Vector = X86_XCPT_PF;
2009 Event.n.u1ErrorCodeValid = 1;
2010 Event.n.u32ErrorCode = errCode;
2011
2012 hmR0SvmInjectEvent(pVCpu, pvVMCB, pCtx, &Event);
2013 goto ResumeExecution;
2014 }
2015#ifdef VBOX_STRICT
2016 if (rc != VINF_EM_RAW_EMULATE_INSTR && rc != VINF_EM_RAW_EMULATE_IO_BLOCK)
2017 LogFlow(("PGMTrap0eHandler failed with %d\n", VBOXSTRICTRC_VAL(rc)));
2018#endif
2019 /* Need to go back to the recompiler to emulate the instruction. */
2020 TRPMResetTrap(pVCpu);
2021 break;
2022 }
2023
2024 case X86_XCPT_MF: /* Floating point exception. */
2025 {
2026 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestMF);
2027 if (!(pCtx->cr0 & X86_CR0_NE))
2028 {
2029 /* old style FPU error reporting needs some extra work. */
2030 /** @todo don't fall back to the recompiler, but do it manually. */
2031 rc = VINF_EM_RAW_EMULATE_INSTR;
2032 break;
2033 }
2034 Log(("Trap %x at %RGv\n", vector, (RTGCPTR)pCtx->rip));
2035
2036 Event.au64[0] = 0;
2037 Event.n.u3Type = SVM_EVENT_EXCEPTION;
2038 Event.n.u1Valid = 1;
2039 Event.n.u8Vector = X86_XCPT_MF;
2040
2041 hmR0SvmInjectEvent(pVCpu, pvVMCB, pCtx, &Event);
2042 goto ResumeExecution;
2043 }
2044
2045#ifdef VBOX_STRICT
2046 case X86_XCPT_BP: /* Breakpoint. */
2047 case X86_XCPT_GP: /* General protection failure exception.*/
2048 case X86_XCPT_UD: /* Unknown opcode exception. */
2049 case X86_XCPT_DE: /* Divide error. */
2050 case X86_XCPT_SS: /* Stack segment exception. */
2051 case X86_XCPT_NP: /* Segment not present exception. */
2052 {
2053 Event.au64[0] = 0;
2054 Event.n.u3Type = SVM_EVENT_EXCEPTION;
2055 Event.n.u1Valid = 1;
2056 Event.n.u8Vector = vector;
2057
2058 switch (vector)
2059 {
2060 case X86_XCPT_GP:
2061 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestGP);
2062 Event.n.u1ErrorCodeValid = 1;
2063 Event.n.u32ErrorCode = pvVMCB->ctrl.u64ExitInfo1; /* EXITINFO1 = error code */
2064 break;
2065 case X86_XCPT_BP:
2066 /** Saves the wrong EIP on the stack (pointing to the int3 instead of the next instruction. */
2067 break;
2068 case X86_XCPT_DE:
2069 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDE);
2070 break;
2071 case X86_XCPT_UD:
2072 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestUD);
2073 break;
2074 case X86_XCPT_SS:
2075 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestSS);
2076 Event.n.u1ErrorCodeValid = 1;
2077 Event.n.u32ErrorCode = pvVMCB->ctrl.u64ExitInfo1; /* EXITINFO1 = error code */
2078 break;
2079 case X86_XCPT_NP:
2080 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNP);
2081 Event.n.u1ErrorCodeValid = 1;
2082 Event.n.u32ErrorCode = pvVMCB->ctrl.u64ExitInfo1; /* EXITINFO1 = error code */
2083 break;
2084 }
2085 Log(("Trap %x at %04x:%RGv esi=%x\n", vector, pCtx->cs.Sel, (RTGCPTR)pCtx->rip, pCtx->esi));
2086 hmR0SvmInjectEvent(pVCpu, pvVMCB, pCtx, &Event);
2087 goto ResumeExecution;
2088 }
2089#endif
2090 default:
2091 AssertMsgFailed(("Unexpected vm-exit caused by exception %x\n", vector));
2092 rc = VERR_SVM_UNEXPECTED_XCPT_EXIT;
2093 break;
2094
2095 } /* switch (vector) */
2096 break;
2097 }
2098
2099 case SVM_EXIT_NPF:
2100 {
2101 /* EXITINFO1 contains fault errorcode; EXITINFO2 contains the guest physical address causing the fault. */
2102 uint32_t errCode = pvVMCB->ctrl.u64ExitInfo1; /* EXITINFO1 = error code */
2103 RTGCPHYS GCPhysFault = pvVMCB->ctrl.u64ExitInfo2; /* EXITINFO2 = fault address */
2104 PGMMODE enmShwPagingMode;
2105
2106 Assert(pVM->hm.s.fNestedPaging);
2107 LogFlow(("Nested page fault at %RGv cr2=%RGp error code %x\n", (RTGCPTR)pCtx->rip, GCPhysFault, errCode));
2108
2109#ifdef VBOX_HM_WITH_GUEST_PATCHING
2110 /* Shortcut for APIC TPR reads and writes; 32 bits guests only */
2111 if ( pVM->hm.s.fTRPPatchingAllowed
2112 && (GCPhysFault & PAGE_OFFSET_MASK) == 0x080
2113 && ( !(errCode & X86_TRAP_PF_P) /* not present */
2114 || (errCode & (X86_TRAP_PF_P | X86_TRAP_PF_RSVD)) == (X86_TRAP_PF_P | X86_TRAP_PF_RSVD) /* mmio optimization */)
2115 && CPUMGetGuestCPL(pVCpu) == 0
2116 && !CPUMIsGuestInLongModeEx(pCtx)
2117 && pVM->hm.s.cPatches < RT_ELEMENTS(pVM->hm.s.aPatches))
2118 {
2119 RTGCPHYS GCPhysApicBase = pCtx->msrApicBase;
2120 GCPhysApicBase &= PAGE_BASE_GC_MASK;
2121
2122 if (GCPhysFault == GCPhysApicBase + 0x80)
2123 {
2124 /* Only attempt to patch the instruction once. */
2125 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
2126 if (!pPatch)
2127 {
2128 rc = VINF_EM_HM_PATCH_TPR_INSTR;
2129 break;
2130 }
2131 }
2132 }
2133#endif
2134
2135 /* Handle the pagefault trap for the nested shadow table. */
2136#if HC_ARCH_BITS == 32 /** @todo shadow this in a variable. */
2137 if (CPUMIsGuestInLongModeEx(pCtx))
2138 enmShwPagingMode = PGMMODE_AMD64_NX;
2139 else
2140#endif
2141 enmShwPagingMode = PGMGetHostMode(pVM);
2142
2143 /* MMIO optimization */
2144 Assert((errCode & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) != X86_TRAP_PF_RSVD);
2145 if ((errCode & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) == (X86_TRAP_PF_RSVD | X86_TRAP_PF_P))
2146 {
2147 rc = PGMR0Trap0eHandlerNPMisconfig(pVM, pVCpu, enmShwPagingMode, CPUMCTX2CORE(pCtx), GCPhysFault, errCode);
2148
2149 /*
2150 * If we succeed, resume execution.
2151 * Or, if fail in interpreting the instruction because we couldn't get the guest physical address
2152 * of the page containing the instruction via the guest's page tables (we would invalidate the guest page
2153 * in the host TLB), resume execution which would cause a guest page fault to let the guest handle this
2154 * weird case. See @bugref{6043}.
2155 */
2156 if ( rc == VINF_SUCCESS
2157 || rc == VERR_PAGE_TABLE_NOT_PRESENT
2158 || rc == VERR_PAGE_NOT_PRESENT)
2159 {
2160 Log2(("PGMR0Trap0eHandlerNPMisconfig(,,,%RGp) at %RGv -> resume\n", GCPhysFault, (RTGCPTR)pCtx->rip));
2161 goto ResumeExecution;
2162 }
2163 Log2(("PGMR0Trap0eHandlerNPMisconfig(,,,%RGp) at %RGv -> resume\n", GCPhysFault, (RTGCPTR)pCtx->rip));
2164 break;
2165 }
2166
2167 /* Exit qualification contains the linear address of the page fault. */
2168 TRPMAssertTrap(pVCpu, X86_XCPT_PF, TRPM_TRAP);
2169 TRPMSetErrorCode(pVCpu, errCode);
2170 TRPMSetFaultAddress(pVCpu, GCPhysFault);
2171
2172 rc = PGMR0Trap0eHandlerNestedPaging(pVM, pVCpu, enmShwPagingMode, errCode, CPUMCTX2CORE(pCtx), GCPhysFault);
2173 Log2(("PGMR0Trap0eHandlerNestedPaging %RGv returned %Rrc\n", (RTGCPTR)pCtx->rip, VBOXSTRICTRC_VAL(rc)));
2174
2175 /*
2176 * Same case as PGMR0Trap0eHandlerNPMisconfig(). See comment above, @bugref{6043}.
2177 */
2178 if ( rc == VINF_SUCCESS
2179 || rc == VERR_PAGE_TABLE_NOT_PRESENT
2180 || rc == VERR_PAGE_NOT_PRESENT)
2181 {
2182 /* We've successfully synced our shadow pages, so let's just continue execution. */
2183 Log2(("Shadow page fault at %RGv cr2=%RGp error code %x\n", (RTGCPTR)pCtx->rip, GCPhysFault, errCode));
2184 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
2185
2186 TRPMResetTrap(pVCpu);
2187 goto ResumeExecution;
2188 }
2189
2190#ifdef VBOX_STRICT
2191 if (rc != VINF_EM_RAW_EMULATE_INSTR)
2192 LogFlow(("PGMTrap0eHandlerNestedPaging failed with %d\n", VBOXSTRICTRC_VAL(rc)));
2193#endif
2194 /* Need to go back to the recompiler to emulate the instruction. */
2195 TRPMResetTrap(pVCpu);
2196 break;
2197 }
2198
2199 case SVM_EXIT_VINTR:
2200 /* A virtual interrupt is about to be delivered, which means IF=1. */
2201 Log(("SVM_EXIT_VINTR IF=%d\n", pCtx->eflags.Bits.u1IF));
2202 pvVMCB->ctrl.IntCtrl.n.u1VIrqValid = 0;
2203 pvVMCB->ctrl.IntCtrl.n.u8VIrqVector = 0;
2204 goto ResumeExecution;
2205
2206 case SVM_EXIT_FERR_FREEZE:
2207 case SVM_EXIT_INTR:
2208 case SVM_EXIT_NMI:
2209 case SVM_EXIT_SMI:
2210 case SVM_EXIT_INIT:
2211 /* External interrupt; leave to allow it to be dispatched again. */
2212 rc = VINF_EM_RAW_INTERRUPT;
2213 break;
2214
2215 case SVM_EXIT_WBINVD:
2216 case SVM_EXIT_INVD: /* Guest software attempted to execute INVD. */
2217 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInvd);
2218 /* Skip instruction and continue directly. */
2219 pCtx->rip += 2; /* Note! hardcoded opcode size! */
2220 /* Continue execution.*/
2221 goto ResumeExecution;
2222
2223 case SVM_EXIT_CPUID: /* Guest software attempted to execute CPUID. */
2224 {
2225 Log2(("SVM: Cpuid at %RGv for %x\n", (RTGCPTR)pCtx->rip, pCtx->eax));
2226 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCpuid);
2227 rc = EMInterpretCpuId(pVM, pVCpu, CPUMCTX2CORE(pCtx));
2228 if (rc == VINF_SUCCESS)
2229 {
2230 /* Update EIP and continue execution. */
2231 pCtx->rip += 2; /* Note! hardcoded opcode size! */
2232 goto ResumeExecution;
2233 }
2234 AssertMsgFailed(("EMU: cpuid failed with %Rrc\n", VBOXSTRICTRC_VAL(rc)));
2235 rc = VINF_EM_RAW_EMULATE_INSTR;
2236 break;
2237 }
2238
2239 case SVM_EXIT_RDTSC: /* Guest software attempted to execute RDTSC. */
2240 {
2241 Log2(("SVM: Rdtsc\n"));
2242 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdtsc);
2243 rc = EMInterpretRdtsc(pVM, pVCpu, CPUMCTX2CORE(pCtx));
2244 if (rc == VINF_SUCCESS)
2245 {
2246 /* Update EIP and continue execution. */
2247 pCtx->rip += 2; /* Note! hardcoded opcode size! */
2248 goto ResumeExecution;
2249 }
2250 rc = VINF_EM_RAW_EMULATE_INSTR;
2251 break;
2252 }
2253
2254 case SVM_EXIT_RDPMC: /* Guest software attempted to execute RDPMC. */
2255 {
2256 Log2(("SVM: Rdpmc %x\n", pCtx->ecx));
2257 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdpmc);
2258 rc = EMInterpretRdpmc(pVM, pVCpu, CPUMCTX2CORE(pCtx));
2259 if (rc == VINF_SUCCESS)
2260 {
2261 /* Update EIP and continue execution. */
2262 pCtx->rip += 2; /* Note! hardcoded opcode size! */
2263 goto ResumeExecution;
2264 }
2265 rc = VINF_EM_RAW_EMULATE_INSTR;
2266 break;
2267 }
2268
2269 case SVM_EXIT_RDTSCP: /* Guest software attempted to execute RDTSCP. */
2270 {
2271 Log2(("SVM: Rdtscp\n"));
2272 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdtscp);
2273 rc = EMInterpretRdtscp(pVM, pVCpu, pCtx);
2274 if (rc == VINF_SUCCESS)
2275 {
2276 /* Update EIP and continue execution. */
2277 pCtx->rip += 3; /* Note! hardcoded opcode size! */
2278 goto ResumeExecution;
2279 }
2280 AssertMsgFailed(("EMU: rdtscp failed with %Rrc\n", VBOXSTRICTRC_VAL(rc)));
2281 rc = VINF_EM_RAW_EMULATE_INSTR;
2282 break;
2283 }
2284
2285 case SVM_EXIT_INVLPG: /* Guest software attempted to execute INVLPG. */
2286 {
2287 Log2(("SVM: invlpg\n"));
2288 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInvlpg);
2289
2290 Assert(!pVM->hm.s.fNestedPaging);
2291
2292 /* Truly a pita. Why can't SVM give the same information as VT-x? */
2293 rc = hmR0SvmInterpretInvlpg(pVM, pVCpu, CPUMCTX2CORE(pCtx));
2294 if (rc == VINF_SUCCESS)
2295 {
2296 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushPageInvlpg);
2297 goto ResumeExecution; /* eip already updated */
2298 }
2299 break;
2300 }
2301
2302 case SVM_EXIT_WRITE_CR0: case SVM_EXIT_WRITE_CR1: case SVM_EXIT_WRITE_CR2: case SVM_EXIT_WRITE_CR3:
2303 case SVM_EXIT_WRITE_CR4: case SVM_EXIT_WRITE_CR5: case SVM_EXIT_WRITE_CR6: case SVM_EXIT_WRITE_CR7:
2304 case SVM_EXIT_WRITE_CR8: case SVM_EXIT_WRITE_CR9: case SVM_EXIT_WRITE_CR10: case SVM_EXIT_WRITE_CR11:
2305 case SVM_EXIT_WRITE_CR12: case SVM_EXIT_WRITE_CR13: case SVM_EXIT_WRITE_CR14: case SVM_EXIT_WRITE_CR15:
2306 {
2307 Log2(("SVM: %RGv mov cr%d, \n", (RTGCPTR)pCtx->rip, exitCode - SVM_EXIT_WRITE_CR0));
2308 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCRxWrite[exitCode - SVM_EXIT_WRITE_CR0]);
2309 rc = EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0);
2310
2311 switch (exitCode - SVM_EXIT_WRITE_CR0)
2312 {
2313 case 0:
2314 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR0;
2315 break;
2316 case 2:
2317 break;
2318 case 3:
2319 Assert(!pVM->hm.s.fNestedPaging);
2320 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR3;
2321 break;
2322 case 4:
2323 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR4;
2324 break;
2325 case 8:
2326 break;
2327 default:
2328 AssertFailed();
2329 }
2330 if (rc == VINF_SUCCESS)
2331 {
2332 /* EIP has been updated already. */
2333 /* Only resume if successful. */
2334 goto ResumeExecution;
2335 }
2336 Assert(rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_PGM_SYNC_CR3);
2337 break;
2338 }
2339
2340 case SVM_EXIT_READ_CR0: case SVM_EXIT_READ_CR1: case SVM_EXIT_READ_CR2: case SVM_EXIT_READ_CR3:
2341 case SVM_EXIT_READ_CR4: case SVM_EXIT_READ_CR5: case SVM_EXIT_READ_CR6: case SVM_EXIT_READ_CR7:
2342 case SVM_EXIT_READ_CR8: case SVM_EXIT_READ_CR9: case SVM_EXIT_READ_CR10: case SVM_EXIT_READ_CR11:
2343 case SVM_EXIT_READ_CR12: case SVM_EXIT_READ_CR13: case SVM_EXIT_READ_CR14: case SVM_EXIT_READ_CR15:
2344 {
2345 Log2(("SVM: %RGv mov x, cr%d\n", (RTGCPTR)pCtx->rip, exitCode - SVM_EXIT_READ_CR0));
2346 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCRxRead[exitCode - SVM_EXIT_READ_CR0]);
2347 rc = EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0);
2348 if (rc == VINF_SUCCESS)
2349 {
2350 /* EIP has been updated already. */
2351 /* Only resume if successful. */
2352 goto ResumeExecution;
2353 }
2354 Assert(rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_PGM_SYNC_CR3);
2355 break;
2356 }
2357
2358 case SVM_EXIT_WRITE_DR0: case SVM_EXIT_WRITE_DR1: case SVM_EXIT_WRITE_DR2: case SVM_EXIT_WRITE_DR3:
2359 case SVM_EXIT_WRITE_DR4: case SVM_EXIT_WRITE_DR5: case SVM_EXIT_WRITE_DR6: case SVM_EXIT_WRITE_DR7:
2360 case SVM_EXIT_WRITE_DR8: case SVM_EXIT_WRITE_DR9: case SVM_EXIT_WRITE_DR10: case SVM_EXIT_WRITE_DR11:
2361 case SVM_EXIT_WRITE_DR12: case SVM_EXIT_WRITE_DR13: case SVM_EXIT_WRITE_DR14: case SVM_EXIT_WRITE_DR15:
2362 {
2363 Log2(("SVM: %RGv mov dr%d, x\n", (RTGCPTR)pCtx->rip, exitCode - SVM_EXIT_WRITE_DR0));
2364 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
2365
2366 if ( !DBGFIsStepping(pVCpu)
2367 && !CPUMIsHyperDebugStateActive(pVCpu))
2368 {
2369 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxContextSwitch);
2370
2371 /* Disable drx move intercepts. */
2372 pvVMCB->ctrl.u16InterceptRdDRx = 0;
2373 pvVMCB->ctrl.u16InterceptWrDRx = 0;
2374
2375 /* Save the host and load the guest debug state. */
2376 rc2 = CPUMR0LoadGuestDebugState(pVM, pVCpu, pCtx, false /* exclude DR6 */);
2377 AssertRC(rc2);
2378 goto ResumeExecution;
2379 }
2380
2381 rc = EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0);
2382 if (rc == VINF_SUCCESS)
2383 {
2384 /* EIP has been updated already. */
2385 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_DEBUG;
2386
2387 /* Only resume if successful. */
2388 goto ResumeExecution;
2389 }
2390 Assert(rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_PGM_SYNC_CR3);
2391 break;
2392 }
2393
2394 case SVM_EXIT_READ_DR0: case SVM_EXIT_READ_DR1: case SVM_EXIT_READ_DR2: case SVM_EXIT_READ_DR3:
2395 case SVM_EXIT_READ_DR4: case SVM_EXIT_READ_DR5: case SVM_EXIT_READ_DR6: case SVM_EXIT_READ_DR7:
2396 case SVM_EXIT_READ_DR8: case SVM_EXIT_READ_DR9: case SVM_EXIT_READ_DR10: case SVM_EXIT_READ_DR11:
2397 case SVM_EXIT_READ_DR12: case SVM_EXIT_READ_DR13: case SVM_EXIT_READ_DR14: case SVM_EXIT_READ_DR15:
2398 {
2399 Log2(("SVM: %RGv mov x, dr%d\n", (RTGCPTR)pCtx->rip, exitCode - SVM_EXIT_READ_DR0));
2400 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
2401
2402 if (!DBGFIsStepping(pVCpu))
2403 {
2404 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxContextSwitch);
2405
2406 /* Disable DRx move intercepts. */
2407 pvVMCB->ctrl.u16InterceptRdDRx = 0;
2408 pvVMCB->ctrl.u16InterceptWrDRx = 0;
2409
2410 /* Save the host and load the guest debug state. */
2411 rc2 = CPUMR0LoadGuestDebugState(pVM, pVCpu, pCtx, false /* exclude DR6 */);
2412 AssertRC(rc2);
2413 goto ResumeExecution;
2414 }
2415
2416 rc = EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0);
2417 if (rc == VINF_SUCCESS)
2418 {
2419 /* EIP has been updated already. */
2420 /* Only resume if successful. */
2421 goto ResumeExecution;
2422 }
2423 Assert(rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_PGM_SYNC_CR3);
2424 break;
2425 }
2426
2427 /* Note: We'll get a #GP if the IO instruction isn't allowed (IOPL or TSS bitmap); no need to double check. */
2428 case SVM_EXIT_IOIO: /* I/O instruction. */
2429 {
2430 SVM_IOIO_EXIT IoExitInfo;
2431
2432 IoExitInfo.au32[0] = pvVMCB->ctrl.u64ExitInfo1;
2433 unsigned uIdx = (IoExitInfo.au32[0] >> 4) & 0x7;
2434 uint32_t uIOSize = g_aIOSize[uIdx];
2435 uint32_t uAndVal = g_aIOOpAnd[uIdx];
2436 if (RT_UNLIKELY(!uIOSize))
2437 {
2438 AssertFailed(); /* should be fatal. */
2439 rc = VINF_EM_RAW_EMULATE_INSTR; /** @todo r=ramshankar: would this really fall back to the recompiler and work? */
2440 break;
2441 }
2442
2443 if (IoExitInfo.n.u1STR)
2444 {
2445 /* ins/outs */
2446 PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
2447
2448 /* Disassemble manually to deal with segment prefixes. */
2449 rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, NULL);
2450 if (rc == VINF_SUCCESS)
2451 {
2452 if (IoExitInfo.n.u1Type == 0)
2453 {
2454 Log2(("IOMInterpretOUTSEx %RGv %x size=%d\n", (RTGCPTR)pCtx->rip, IoExitInfo.n.u16Port, uIOSize));
2455 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringWrite);
2456 rc = IOMInterpretOUTSEx(pVM, CPUMCTX2CORE(pCtx), IoExitInfo.n.u16Port, pDis->fPrefix,
2457 (DISCPUMODE)pDis->uAddrMode, uIOSize);
2458 }
2459 else
2460 {
2461 Log2(("IOMInterpretINSEx %RGv %x size=%d\n", (RTGCPTR)pCtx->rip, IoExitInfo.n.u16Port, uIOSize));
2462 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringRead);
2463 rc = IOMInterpretINSEx(pVM, CPUMCTX2CORE(pCtx), IoExitInfo.n.u16Port, pDis->fPrefix,
2464 (DISCPUMODE)pDis->uAddrMode, uIOSize);
2465 }
2466 }
2467 else
2468 rc = VINF_EM_RAW_EMULATE_INSTR;
2469 }
2470 else
2471 {
2472 /* Normal in/out */
2473 Assert(!IoExitInfo.n.u1REP);
2474
2475 if (IoExitInfo.n.u1Type == 0)
2476 {
2477 Log2(("IOMIOPortWrite %RGv %x %x size=%d\n", (RTGCPTR)pCtx->rip, IoExitInfo.n.u16Port, pCtx->eax & uAndVal,
2478 uIOSize));
2479 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOWrite);
2480 rc = IOMIOPortWrite(pVM, IoExitInfo.n.u16Port, pCtx->eax & uAndVal, uIOSize);
2481 if (rc == VINF_IOM_R3_IOPORT_WRITE)
2482 {
2483 HMR0SavePendingIOPortWrite(pVCpu, pCtx->rip, pvVMCB->ctrl.u64ExitInfo2, IoExitInfo.n.u16Port,
2484 uAndVal, uIOSize);
2485 }
2486 }
2487 else
2488 {
2489 uint32_t u32Val = 0;
2490
2491 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIORead);
2492 rc = IOMIOPortRead(pVM, IoExitInfo.n.u16Port, &u32Val, uIOSize);
2493 if (IOM_SUCCESS(rc))
2494 {
2495 /* Write back to the EAX register. */
2496 pCtx->eax = (pCtx->eax & ~uAndVal) | (u32Val & uAndVal);
2497 Log2(("IOMIOPortRead %RGv %x %x size=%d\n", (RTGCPTR)pCtx->rip, IoExitInfo.n.u16Port, u32Val & uAndVal,
2498 uIOSize));
2499 }
2500 else if (rc == VINF_IOM_R3_IOPORT_READ)
2501 {
2502 HMR0SavePendingIOPortRead(pVCpu, pCtx->rip, pvVMCB->ctrl.u64ExitInfo2, IoExitInfo.n.u16Port,
2503 uAndVal, uIOSize);
2504 }
2505 }
2506 }
2507
2508 /*
2509 * Handled the I/O return codes.
2510 * (The unhandled cases end up with rc == VINF_EM_RAW_EMULATE_INSTR.)
2511 */
2512 if (IOM_SUCCESS(rc))
2513 {
2514 /* Update EIP and continue execution. */
2515 pCtx->rip = pvVMCB->ctrl.u64ExitInfo2; /* RIP/EIP of the next instruction is saved in EXITINFO2. */
2516 if (RT_LIKELY(rc == VINF_SUCCESS))
2517 {
2518 /* If any IO breakpoints are armed, then we should check if a debug trap needs to be generated. */
2519 if (pCtx->dr[7] & X86_DR7_ENABLED_MASK)
2520 {
2521 /* IO operation lookup arrays. */
2522 static uint32_t const aIOSize[4] = { 1, 2, 0, 4 };
2523
2524 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxIoCheck);
2525 for (unsigned i = 0; i < 4; i++)
2526 {
2527 unsigned uBPLen = aIOSize[X86_DR7_GET_LEN(pCtx->dr[7], i)];
2528
2529 if ( (IoExitInfo.n.u16Port >= pCtx->dr[i] && IoExitInfo.n.u16Port < pCtx->dr[i] + uBPLen)
2530 && (pCtx->dr[7] & (X86_DR7_L(i) | X86_DR7_G(i)))
2531 && (pCtx->dr[7] & X86_DR7_RW(i, X86_DR7_RW_IO)) == X86_DR7_RW(i, X86_DR7_RW_IO))
2532 {
2533 SVM_EVENT Event;
2534
2535 Assert(CPUMIsGuestDebugStateActive(pVCpu));
2536
2537 /* Clear all breakpoint status flags and set the one we just hit. */
2538 pCtx->dr[6] &= ~(X86_DR6_B0|X86_DR6_B1|X86_DR6_B2|X86_DR6_B3);
2539 pCtx->dr[6] |= (uint64_t)RT_BIT(i);
2540
2541 /*
2542 * Note: AMD64 Architecture Programmer's Manual 13.1:
2543 * Bits 15:13 of the DR6 register is never cleared by the processor and must be cleared
2544 * by software after the contents have been read.
2545 */
2546 pvVMCB->guest.u64DR6 = pCtx->dr[6];
2547
2548 /* X86_DR7_GD will be cleared if drx accesses should be trapped inside the guest. */
2549 pCtx->dr[7] &= ~X86_DR7_GD;
2550
2551 /* Paranoia. */
2552 pCtx->dr[7] &= 0xffffffff; /* upper 32 bits reserved */
2553 pCtx->dr[7] &= ~(RT_BIT(11) | RT_BIT(12) | RT_BIT(14) | RT_BIT(15)); /* must be zero */
2554 pCtx->dr[7] |= 0x400; /* must be one */
2555
2556 pvVMCB->guest.u64DR7 = pCtx->dr[7];
2557
2558 /* Inject the exception. */
2559 Log(("Inject IO debug trap at %RGv\n", (RTGCPTR)pCtx->rip));
2560
2561 Event.au64[0] = 0;
2562 Event.n.u3Type = SVM_EVENT_EXCEPTION; /* trap or fault */
2563 Event.n.u1Valid = 1;
2564 Event.n.u8Vector = X86_XCPT_DB;
2565
2566 hmR0SvmInjectEvent(pVCpu, pvVMCB, pCtx, &Event);
2567 goto ResumeExecution;
2568 }
2569 }
2570 }
2571 goto ResumeExecution;
2572 }
2573 Log2(("EM status from IO at %RGv %x size %d: %Rrc\n", (RTGCPTR)pCtx->rip, IoExitInfo.n.u16Port, uIOSize,
2574 VBOXSTRICTRC_VAL(rc)));
2575 break;
2576 }
2577
2578#ifdef VBOX_STRICT
2579 if (rc == VINF_IOM_R3_IOPORT_READ)
2580 Assert(IoExitInfo.n.u1Type != 0);
2581 else if (rc == VINF_IOM_R3_IOPORT_WRITE)
2582 Assert(IoExitInfo.n.u1Type == 0);
2583 else
2584 {
2585 AssertMsg( RT_FAILURE(rc)
2586 || rc == VINF_EM_RAW_EMULATE_INSTR
2587 || rc == VINF_EM_RAW_GUEST_TRAP
2588 || rc == VINF_TRPM_XCPT_DISPATCHED, ("%Rrc\n", VBOXSTRICTRC_VAL(rc)));
2589 }
2590#endif
2591 Log2(("Failed IO at %RGv %x size %d\n", (RTGCPTR)pCtx->rip, IoExitInfo.n.u16Port, uIOSize));
2592 break;
2593 }
2594
2595 case SVM_EXIT_HLT:
2596 /* Check if external interrupts are pending; if so, don't switch back. */
2597 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitHlt);
2598 pCtx->rip++; /* skip hlt */
2599 if (EMShouldContinueAfterHalt(pVCpu, pCtx))
2600 goto ResumeExecution;
2601
2602 rc = VINF_EM_HALT;
2603 break;
2604
2605 case SVM_EXIT_MWAIT_UNCOND:
2606 Log2(("SVM: mwait\n"));
2607 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMwait);
2608 rc = EMInterpretMWait(pVM, pVCpu, CPUMCTX2CORE(pCtx));
2609 if ( rc == VINF_EM_HALT
2610 || rc == VINF_SUCCESS)
2611 {
2612 /* Update EIP and continue execution. */
2613 pCtx->rip += 3; /* Note: hardcoded opcode size assumption! */
2614
2615 /* Check if external interrupts are pending; if so, don't switch back. */
2616 if ( rc == VINF_SUCCESS
2617 || ( rc == VINF_EM_HALT
2618 && EMShouldContinueAfterHalt(pVCpu, pCtx))
2619 )
2620 goto ResumeExecution;
2621 }
2622 AssertMsg(rc == VERR_EM_INTERPRETER || rc == VINF_EM_HALT, ("EMU: mwait failed with %Rrc\n", VBOXSTRICTRC_VAL(rc)));
2623 break;
2624
2625 case SVM_EXIT_MONITOR:
2626 {
2627 Log2(("SVM: monitor\n"));
2628
2629 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMonitor);
2630 rc = EMInterpretMonitor(pVM, pVCpu, CPUMCTX2CORE(pCtx));
2631 if (rc == VINF_SUCCESS)
2632 {
2633 /* Update EIP and continue execution. */
2634 pCtx->rip += 3; /* Note: hardcoded opcode size assumption! */
2635 goto ResumeExecution;
2636 }
2637 AssertMsg(rc == VERR_EM_INTERPRETER, ("EMU: monitor failed with %Rrc\n", VBOXSTRICTRC_VAL(rc)));
2638 break;
2639 }
2640
2641 case SVM_EXIT_VMMCALL:
2642 rc = hmR0SvmEmulateTprVMMCall(pVM, pVCpu, pCtx);
2643 if (rc == VINF_SUCCESS)
2644 {
2645 goto ResumeExecution; /* rip already updated. */
2646 }
2647 /* no break */
2648
2649 case SVM_EXIT_RSM:
2650 case SVM_EXIT_INVLPGA:
2651 case SVM_EXIT_VMRUN:
2652 case SVM_EXIT_VMLOAD:
2653 case SVM_EXIT_VMSAVE:
2654 case SVM_EXIT_STGI:
2655 case SVM_EXIT_CLGI:
2656 case SVM_EXIT_SKINIT:
2657 {
2658 /* Unsupported instructions. */
2659 SVM_EVENT Event;
2660
2661 Event.au64[0] = 0;
2662 Event.n.u3Type = SVM_EVENT_EXCEPTION;
2663 Event.n.u1Valid = 1;
2664 Event.n.u8Vector = X86_XCPT_UD;
2665
2666 Log(("Forced #UD trap at %RGv\n", (RTGCPTR)pCtx->rip));
2667 hmR0SvmInjectEvent(pVCpu, pvVMCB, pCtx, &Event);
2668 goto ResumeExecution;
2669 }
2670
2671 /* Emulate in ring-3. */
2672 case SVM_EXIT_MSR:
2673 {
2674 /* When an interrupt is pending, we'll let MSR_K8_LSTAR writes fault in our TPR patch code. */
2675 if ( pVM->hm.s.fTPRPatchingActive
2676 && pCtx->ecx == MSR_K8_LSTAR
2677 && pvVMCB->ctrl.u64ExitInfo1 == 1 /* wrmsr */)
2678 {
2679 if ((pCtx->eax & 0xff) != u8LastTPR)
2680 {
2681 Log(("SVM: Faulting MSR_K8_LSTAR write with new TPR value %x\n", pCtx->eax & 0xff));
2682
2683 /* Our patch code uses LSTAR for TPR caching. */
2684 rc2 = PDMApicSetTPR(pVCpu, pCtx->eax & 0xff);
2685 AssertRC(rc2);
2686 }
2687
2688 /* Skip the instruction and continue. */
2689 pCtx->rip += 2; /* wrmsr = [0F 30] */
2690
2691 /* Only resume if successful. */
2692 goto ResumeExecution;
2693 }
2694
2695 /*
2696 * The Intel spec. claims there's an REX version of RDMSR that's slightly different,
2697 * so we play safe by completely disassembling the instruction.
2698 */
2699 STAM_COUNTER_INC((pvVMCB->ctrl.u64ExitInfo1 == 0) ? &pVCpu->hm.s.StatExitRdmsr : &pVCpu->hm.s.StatExitWrmsr);
2700 Log(("SVM: %s\n", (pvVMCB->ctrl.u64ExitInfo1 == 0) ? "rdmsr" : "wrmsr"));
2701 rc = EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0);
2702 if (rc == VINF_SUCCESS)
2703 {
2704 /* EIP has been updated already. */
2705 /* Only resume if successful. */
2706 goto ResumeExecution;
2707 }
2708 AssertMsg(rc == VERR_EM_INTERPRETER, ("EMU: %s failed with %Rrc\n", (pvVMCB->ctrl.u64ExitInfo1 == 0) ? "rdmsr" : "wrmsr",
2709 VBOXSTRICTRC_VAL(rc)));
2710 break;
2711 }
2712
2713 case SVM_EXIT_TASK_SWITCH: /* too complicated to emulate, so fall back to the recompiler */
2714 Log(("SVM_EXIT_TASK_SWITCH: exit2=%RX64\n", pvVMCB->ctrl.u64ExitInfo2));
2715 if ( !(pvVMCB->ctrl.u64ExitInfo2 & (SVM_EXIT2_TASK_SWITCH_IRET | SVM_EXIT2_TASK_SWITCH_JMP))
2716 && pVCpu->hm.s.Event.fPending)
2717 {
2718 SVM_EVENT Event;
2719 Event.au64[0] = pVCpu->hm.s.Event.intInfo;
2720
2721 /* Caused by an injected interrupt. */
2722 pVCpu->hm.s.Event.fPending = false;
2723 switch (Event.n.u3Type)
2724 {
2725 case SVM_EVENT_EXTERNAL_IRQ:
2726 case SVM_EVENT_NMI:
2727 Log(("SVM_EXIT_TASK_SWITCH: reassert trap %d\n", Event.n.u8Vector));
2728 Assert(!Event.n.u1ErrorCodeValid);
2729 rc2 = TRPMAssertTrap(pVCpu, Event.n.u8Vector, TRPM_HARDWARE_INT);
2730 AssertRC(rc2);
2731 break;
2732
2733 default:
2734 /* Exceptions and software interrupts can just be restarted. */
2735 break;
2736 }
2737 }
2738 rc = VERR_EM_INTERPRETER;
2739 break;
2740
2741 case SVM_EXIT_PAUSE:
2742 case SVM_EXIT_MWAIT_ARMED:
2743 rc = VERR_EM_INTERPRETER;
2744 break;
2745
2746 case SVM_EXIT_SHUTDOWN:
2747 rc = VINF_EM_RESET; /* Triple fault equals a reset. */
2748 break;
2749
2750 case SVM_EXIT_IDTR_READ:
2751 case SVM_EXIT_GDTR_READ:
2752 case SVM_EXIT_LDTR_READ:
2753 case SVM_EXIT_TR_READ:
2754 case SVM_EXIT_IDTR_WRITE:
2755 case SVM_EXIT_GDTR_WRITE:
2756 case SVM_EXIT_LDTR_WRITE:
2757 case SVM_EXIT_TR_WRITE:
2758 case SVM_EXIT_CR0_SEL_WRITE:
2759 default:
2760 /* Unexpected exit codes. */
2761 rc = VERR_SVM_UNEXPECTED_EXIT;
2762 AssertMsgFailed(("Unexpected exit code %x\n", exitCode)); /* Can't happen. */
2763 break;
2764 }
2765
2766end:
2767
2768 /*
2769 * We are now going back to ring-3, so clear the forced action flag.
2770 */
2771 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TO_R3);
2772
2773 /*
2774 * Signal changes to the recompiler.
2775 */
2776 CPUMSetChangedFlags(pVCpu,
2777 CPUM_CHANGED_SYSENTER_MSR
2778 | CPUM_CHANGED_LDTR
2779 | CPUM_CHANGED_GDTR
2780 | CPUM_CHANGED_IDTR
2781 | CPUM_CHANGED_TR
2782 | CPUM_CHANGED_HIDDEN_SEL_REGS);
2783
2784 /*
2785 * If we executed vmrun and an external IRQ was pending, then we don't have to do a full sync the next time.
2786 */
2787 if (exitCode == SVM_EXIT_INTR)
2788 {
2789 STAM_COUNTER_INC(&pVCpu->hm.s.StatPendingHostIrq);
2790 /* On the next entry we'll only sync the host context. */
2791 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_HOST_CONTEXT;
2792 }
2793 else
2794 {
2795 /* On the next entry we'll sync everything. */
2796 /** @todo we can do better than this */
2797 /* Not in the VINF_PGM_CHANGE_MODE though! */
2798 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_ALL;
2799 }
2800
2801 /* Translate into a less severe return code */
2802 if (rc == VERR_EM_INTERPRETER)
2803 rc = VINF_EM_RAW_EMULATE_INSTR;
2804
2805 /* Just set the correct state here instead of trying to catch every goto above. */
2806 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED, VMCPUSTATE_STARTED_EXEC);
2807
2808#ifdef VBOX_WITH_VMMR0_DISABLE_PREEMPTION
2809 /* Restore interrupts if we exitted after disabling them. */
2810 if (uOldEFlags != ~(RTCCUINTREG)0)
2811 ASMSetFlags(uOldEFlags);
2812#endif
2813
2814 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2, x);
2815 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit1, x);
2816 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
2817 return VBOXSTRICTRC_TODO(rc);
2818}
2819
2820
2821/**
2822 * Emulate simple mov tpr instruction.
2823 *
2824 * @returns VBox status code.
2825 * @param pVM Pointer to the VM.
2826 * @param pVCpu Pointer to the VMCPU.
2827 * @param pCtx Pointer to the guest CPU context.
2828 */
2829static int hmR0SvmEmulateTprVMMCall(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
2830{
2831 int rc;
2832
2833 LogFlow(("Emulated VMMCall TPR access replacement at %RGv\n", pCtx->rip));
2834
2835 for (;;)
2836 {
2837 bool fPending;
2838 uint8_t u8Tpr;
2839
2840 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
2841 if (!pPatch)
2842 break;
2843
2844 switch (pPatch->enmType)
2845 {
2846 case HMTPRINSTR_READ:
2847 /* TPR caching in CR8 */
2848 rc = PDMApicGetTPR(pVCpu, &u8Tpr, &fPending);
2849 AssertRC(rc);
2850
2851 rc = DISWriteReg32(CPUMCTX2CORE(pCtx), pPatch->uDstOperand, u8Tpr);
2852 AssertRC(rc);
2853
2854 LogFlow(("Emulated read successfully\n"));
2855 pCtx->rip += pPatch->cbOp;
2856 break;
2857
2858 case HMTPRINSTR_WRITE_REG:
2859 case HMTPRINSTR_WRITE_IMM:
2860 /* Fetch the new TPR value */
2861 if (pPatch->enmType == HMTPRINSTR_WRITE_REG)
2862 {
2863 uint32_t val;
2864
2865 rc = DISFetchReg32(CPUMCTX2CORE(pCtx), pPatch->uSrcOperand, &val);
2866 AssertRC(rc);
2867 u8Tpr = val;
2868 }
2869 else
2870 u8Tpr = (uint8_t)pPatch->uSrcOperand;
2871
2872 rc = PDMApicSetTPR(pVCpu, u8Tpr);
2873 AssertRC(rc);
2874 LogFlow(("Emulated write successfully\n"));
2875 pCtx->rip += pPatch->cbOp;
2876 break;
2877
2878 default:
2879 AssertMsgFailedReturn(("Unexpected type %d\n", pPatch->enmType), VERR_SVM_UNEXPECTED_PATCH_TYPE);
2880 }
2881 }
2882 return VINF_SUCCESS;
2883}
2884
2885
2886/**
2887 * Enters the AMD-V session.
2888 *
2889 * @returns VBox status code.
2890 * @param pVM Pointer to the VM.
2891 * @param pVCpu Pointer to the VMCPU.
2892 * @param pCpu Pointer to the CPU info struct.
2893 */
2894VMMR0DECL(int) SVMR0Enter(PVM pVM, PVMCPU pVCpu, PHMGLOBLCPUINFO pCpu)
2895{
2896 Assert(pVM->hm.s.svm.fSupported);
2897
2898 LogFlow(("SVMR0Enter cpu%d last=%d asid=%d\n", pCpu->idCpu, pVCpu->hm.s.idLastCpu, pVCpu->hm.s.uCurrentAsid));
2899 pVCpu->hm.s.fResumeVM = false;
2900
2901 /* Force to reload LDTR, so we'll execute VMLoad to load additional guest state. */
2902 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_LDTR;
2903
2904 return VINF_SUCCESS;
2905}
2906
2907
2908/**
2909 * Leaves the AMD-V session.
2910 *
2911 * @returns VBox status code.
2912 * @param pVM Pointer to the VM.
2913 * @param pVCpu Pointer to the VMCPU.
2914 * @param pCtx Pointer to the guest CPU context.
2915 */
2916VMMR0DECL(int) SVMR0Leave(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
2917{
2918 SVM_VMCB *pvVMCB = (SVM_VMCB *)pVCpu->hm.s.svm.pvVMCB;
2919
2920 Assert(pVM->hm.s.svm.fSupported);
2921
2922#ifdef DEBUG
2923 if (CPUMIsHyperDebugStateActive(pVCpu))
2924 {
2925 CPUMR0LoadHostDebugState(pVM, pVCpu);
2926 }
2927 else
2928#endif
2929 /* Save the guest debug state if necessary. */
2930 if (CPUMIsGuestDebugStateActive(pVCpu))
2931 {
2932 CPUMR0SaveGuestDebugState(pVM, pVCpu, pCtx, false /* skip DR6 */);
2933
2934 /* Intercept all DRx reads and writes again. Changed later on. */
2935 pvVMCB->ctrl.u16InterceptRdDRx = 0xFFFF;
2936 pvVMCB->ctrl.u16InterceptWrDRx = 0xFFFF;
2937
2938 /* Resync the debug registers the next time. */
2939 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_DEBUG;
2940 }
2941 else
2942 Assert(pvVMCB->ctrl.u16InterceptRdDRx == 0xFFFF && pvVMCB->ctrl.u16InterceptWrDRx == 0xFFFF);
2943
2944 return VINF_SUCCESS;
2945}
2946
2947
2948/**
2949 * Worker for Interprets INVLPG.
2950 *
2951 * @return VBox status code.
2952 * @param pVCpu Pointer to the VMCPU.
2953 * @param pCpu Pointer to the CPU info struct.
2954 * @param pRegFrame Pointer to the register frame.
2955 */
2956static int hmR0svmInterpretInvlPgEx(PVMCPU pVCpu, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame)
2957{
2958 DISQPVPARAMVAL param1;
2959 RTGCPTR addr;
2960
2961 int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->Param1, &param1, DISQPVWHICH_SRC);
2962 if (RT_FAILURE(rc))
2963 return VERR_EM_INTERPRETER;
2964
2965 switch (param1.type)
2966 {
2967 case DISQPV_TYPE_IMMEDIATE:
2968 case DISQPV_TYPE_ADDRESS:
2969 if (!(param1.flags & (DISQPV_FLAG_32 | DISQPV_FLAG_64)))
2970 return VERR_EM_INTERPRETER;
2971 addr = param1.val.val64;
2972 break;
2973
2974 default:
2975 return VERR_EM_INTERPRETER;
2976 }
2977
2978 /** @todo is addr always a flat linear address or ds based
2979 * (in absence of segment override prefixes)????
2980 */
2981 rc = PGMInvalidatePage(pVCpu, addr);
2982 if (RT_SUCCESS(rc))
2983 return VINF_SUCCESS;
2984
2985 AssertRC(rc);
2986 return rc;
2987}
2988
2989
2990/**
2991 * Interprets INVLPG.
2992 *
2993 * @returns VBox status code.
2994 * @retval VINF_* Scheduling instructions.
2995 * @retval VERR_EM_INTERPRETER Something we can't cope with.
2996 * @retval VERR_* Fatal errors.
2997 *
2998 * @param pVM Pointer to the VM.
2999 * @param pRegFrame Pointer to the register frame.
3000 *
3001 * @remarks Updates the EIP if an instruction was executed successfully.
3002 */
3003static int hmR0SvmInterpretInvlpg(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame)
3004{
3005 /*
3006 * Only allow 32 & 64 bit code.
3007 */
3008 if (CPUMGetGuestCodeBits(pVCpu) != 16)
3009 {
3010 PDISSTATE pDis = &pVCpu->hm.s.DisState;
3011 int rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, NULL);
3012 if (RT_SUCCESS(rc) && pDis->pCurInstr->uOpcode == OP_INVLPG)
3013 {
3014 rc = hmR0svmInterpretInvlPgEx(pVCpu, pDis, pRegFrame);
3015 if (RT_SUCCESS(rc))
3016 pRegFrame->rip += pDis->cbInstr; /* Move on to the next instruction. */
3017 return rc;
3018 }
3019 }
3020 return VERR_EM_INTERPRETER;
3021}
3022
3023
3024/**
3025 * Invalidates a guest page by guest virtual address.
3026 *
3027 * @returns VBox status code.
3028 * @param pVM Pointer to the VM.
3029 * @param pVCpu Pointer to the VMCPU.
3030 * @param GCVirt Guest virtual address of the page to invalidate.
3031 */
3032VMMR0DECL(int) SVMR0InvalidatePage(PVM pVM, PVMCPU pVCpu, RTGCPTR GCVirt)
3033{
3034 bool fFlushPending = pVM->hm.s.svm.fAlwaysFlushTLB | VMCPU_FF_ISSET(pVCpu, VMCPU_FF_TLB_FLUSH);
3035
3036 /* Skip it if a TLB flush is already pending. */
3037 if (!fFlushPending)
3038 {
3039 SVM_VMCB *pvVMCB;
3040
3041 Log2(("SVMR0InvalidatePage %RGv\n", GCVirt));
3042 AssertReturn(pVM, VERR_INVALID_PARAMETER);
3043 Assert(pVM->hm.s.svm.fSupported);
3044
3045 pvVMCB = (SVM_VMCB *)pVCpu->hm.s.svm.pvVMCB;
3046 AssertMsgReturn(pvVMCB, ("Invalid pvVMCB\n"), VERR_SVM_INVALID_PVMCB);
3047
3048#if HC_ARCH_BITS == 32
3049 /* If we get a flush in 64 bits guest mode, then force a full TLB flush. Invlpga takes only 32 bits addresses. */
3050 if (CPUMIsGuestInLongMode(pVCpu))
3051 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
3052 else
3053#endif
3054 SVMR0InvlpgA(GCVirt, pvVMCB->ctrl.TLBCtrl.n.u32ASID);
3055 }
3056 return VINF_SUCCESS;
3057}
3058
3059
3060#if 0 /* obsolete, but left here for clarification. */
3061/**
3062 * Invalidates a guest page by physical address.
3063 *
3064 * @returns VBox status code.
3065 * @param pVM Pointer to the VM.
3066 * @param pVCpu Pointer to the VMCPU.
3067 * @param GCPhys Guest physical address of the page to invalidate.
3068 */
3069VMMR0DECL(int) SVMR0InvalidatePhysPage(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys)
3070{
3071 Assert(pVM->hm.s.fNestedPaging);
3072 /* invlpga only invalidates TLB entries for guest virtual addresses; we have no choice but to force a TLB flush here. */
3073 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
3074 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbInvlpga);
3075 return VINF_SUCCESS;
3076}
3077#endif
3078
3079
3080#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
3081/**
3082 * Prepares for and executes VMRUN (64-bit guests from a 32-bit host).
3083 *
3084 * @returns VBox status code.
3085 * @param HCPhysVMCBHost Physical address of host VMCB.
3086 * @param HCPhysVMCB Physical address of the VMCB.
3087 * @param pCtx Pointer to the guest CPU context.
3088 * @param pVM Pointer to the VM.
3089 * @param pVCpu Pointer to the VMCPU.
3090 */
3091DECLASM(int) SVMR0VMSwitcherRun64(RTHCPHYS HCPhysVMCBHost, RTHCPHYS HCPhysVMCB, PCPUMCTX pCtx, PVM pVM, PVMCPU pVCpu)
3092{
3093 uint32_t aParam[4];
3094
3095 aParam[0] = (uint32_t)(HCPhysVMCBHost); /* Param 1: HCPhysVMCBHost - Lo. */
3096 aParam[1] = (uint32_t)(HCPhysVMCBHost >> 32); /* Param 1: HCPhysVMCBHost - Hi. */
3097 aParam[2] = (uint32_t)(HCPhysVMCB); /* Param 2: HCPhysVMCB - Lo. */
3098 aParam[3] = (uint32_t)(HCPhysVMCB >> 32); /* Param 2: HCPhysVMCB - Hi. */
3099
3100 return SVMR0Execute64BitsHandler(pVM, pVCpu, pCtx, pVM->hm.s.pfnSVMGCVMRun64, 4, &aParam[0]);
3101}
3102
3103
3104/**
3105 * Executes the specified handler in 64-bit mode.
3106 *
3107 * @returns VBox status code.
3108 * @param pVM Pointer to the VM.
3109 * @param pVCpu Pointer to the VMCPU.
3110 * @param pCtx Pointer to the guest CPU context.
3111 * @param pfnHandler Pointer to the RC handler function.
3112 * @param cbParam Number of parameters.
3113 * @param paParam Array of 32-bit parameters.
3114 */
3115VMMR0DECL(int) SVMR0Execute64BitsHandler(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, RTRCPTR pfnHandler, uint32_t cbParam,
3116 uint32_t *paParam)
3117{
3118 int rc;
3119 RTHCUINTREG uOldEFlags;
3120
3121 Assert(pfnHandler);
3122
3123 /* Disable interrupts. */
3124 uOldEFlags = ASMIntDisableFlags();
3125
3126#ifdef VBOX_WITH_VMMR0_DISABLE_LAPIC_NMI
3127 RTCPUID idHostCpu = RTMpCpuId();
3128 CPUMR0SetLApic(pVM, idHostCpu);
3129#endif
3130
3131 CPUMSetHyperESP(pVCpu, VMMGetStackRC(pVCpu));
3132 CPUMSetHyperEIP(pVCpu, pfnHandler);
3133 for (int i = (int)cbParam - 1; i >= 0; i--)
3134 CPUMPushHyper(pVCpu, paParam[i]);
3135
3136 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatWorldSwitch3264, z);
3137 /* Call switcher. */
3138 rc = pVM->hm.s.pfnHost32ToGuest64R0(pVM, RT_OFFSETOF(VM, aCpus[pVCpu->idCpu].cpum) - RT_OFFSETOF(VM, cpum));
3139 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatWorldSwitch3264, z);
3140
3141 ASMSetFlags(uOldEFlags);
3142 return rc;
3143}
3144
3145#endif /* HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) */
3146
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette