VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR0/HWSVMR0.cpp@ 42640

Last change on this file since 42640 was 42402, checked in by vboxsync, 12 years ago

VMM: indent.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 122.7 KB
Line 
1/* $Id: HWSVMR0.cpp 42402 2012-07-26 04:52:09Z vboxsync $ */
2/** @file
3 * HM SVM (AMD-V) - Host Context Ring-0.
4 */
5
6/*
7 * Copyright (C) 2006-2012 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/*******************************************************************************
19* Header Files *
20*******************************************************************************/
21#define LOG_GROUP LOG_GROUP_HWACCM
22#include <VBox/vmm/hwaccm.h>
23#include <VBox/vmm/pgm.h>
24#include <VBox/vmm/selm.h>
25#include <VBox/vmm/iom.h>
26#include <VBox/vmm/dbgf.h>
27#include <VBox/vmm/dbgftrace.h>
28#include <VBox/vmm/tm.h>
29#include <VBox/vmm/pdmapi.h>
30#include "HWACCMInternal.h"
31#include <VBox/vmm/vm.h>
32#include <VBox/vmm/hwacc_svm.h>
33#include <VBox/err.h>
34#include <VBox/log.h>
35#include <VBox/dis.h>
36#include <VBox/disopcode.h>
37#include <iprt/param.h>
38#include <iprt/assert.h>
39#include <iprt/asm.h>
40#include <iprt/asm-amd64-x86.h>
41#include <iprt/cpuset.h>
42#include <iprt/mp.h>
43#include <iprt/time.h>
44#ifdef VBOX_WITH_VMMR0_DISABLE_PREEMPTION
45# include <iprt/thread.h>
46#endif
47#include <iprt/x86.h>
48#include "HWSVMR0.h"
49
50#include "dtrace/VBoxVMM.h"
51
52
53/*******************************************************************************
54* Internal Functions *
55*******************************************************************************/
56static int hmR0SvmInterpretInvlpg(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame);
57static int hmR0SvmEmulateTprVMMCall(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx);
58static void hmR0SvmSetMSRPermission(PVMCPU pVCpu, unsigned ulMSR, bool fRead, bool fWrite);
59
60
61/*******************************************************************************
62* Global Variables *
63*******************************************************************************/
64
65/**
66 * Sets up and activates AMD-V on the current CPU.
67 *
68 * @returns VBox status code.
69 * @param pCpu Pointer to the CPU info struct.
70 * @param pVM Pointer to the VM (can be NULL after a resume!).
71 * @param pvCpuPage Pointer to the global CPU page.
72 * @param HCPhysCpuPage Physical address of the global CPU page.
73 */
74VMMR0DECL(int) SVMR0EnableCpu(PHMGLOBLCPUINFO pCpu, PVM pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage)
75{
76 AssertReturn(HCPhysCpuPage != 0 && HCPhysCpuPage != NIL_RTHCPHYS, VERR_INVALID_PARAMETER);
77 AssertReturn(pvCpuPage, VERR_INVALID_PARAMETER);
78
79 /*
80 * We must turn on AMD-V and setup the host state physical address, as those MSRs are per cpu/core.
81 */
82 uint64_t fEfer = ASMRdMsr(MSR_K6_EFER);
83 if (fEfer & MSR_K6_EFER_SVME)
84 {
85 /*
86 * If the VBOX_HWVIRTEX_IGNORE_SVM_IN_USE is active, then we blindly use AMD-V.
87 */
88 if ( pVM
89 && pVM->hwaccm.s.svm.fIgnoreInUseError)
90 {
91 pCpu->fIgnoreAMDVInUseError = true;
92 }
93
94 if (!pCpu->fIgnoreAMDVInUseError)
95 return VERR_SVM_IN_USE;
96 }
97
98 /* Turn on AMD-V in the EFER MSR. */
99 ASMWrMsr(MSR_K6_EFER, fEfer | MSR_K6_EFER_SVME);
100
101 /* Write the physical page address where the CPU will store the host state while executing the VM. */
102 ASMWrMsr(MSR_K8_VM_HSAVE_PA, HCPhysCpuPage);
103
104 /*
105 * Theoretically, other hypervisors may have used ASIDs, ideally we should flush all non-zero ASIDs
106 * when enabling SVM. AMD doesn't have an SVM instruction to flush all ASIDs (flushing is done
107 * upon VMRUN). Therefore, just set the fFlushASIDBeforeUse flag which instructs hmR0SvmSetupTLB()
108 * to flush the TLB with before using a new ASID.
109 */
110 pCpu->fFlushASIDBeforeUse = true;
111
112 /*
113 * Ensure each VCPU scheduled on this CPU gets a new VPID on resume. See @bugref{6255}.
114 */
115 ++pCpu->cTLBFlushes;
116
117 return VINF_SUCCESS;
118}
119
120
121/**
122 * Deactivates AMD-V on the current CPU.
123 *
124 * @returns VBox status code.
125 * @param pCpu Pointer to the CPU info struct.
126 * @param pvCpuPage Pointer to the global CPU page.
127 * @param HCPhysCpuPage Physical address of the global CPU page.
128 */
129VMMR0DECL(int) SVMR0DisableCpu(PHMGLOBLCPUINFO pCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage)
130{
131 AssertReturn(HCPhysCpuPage != 0 && HCPhysCpuPage != NIL_RTHCPHYS, VERR_INVALID_PARAMETER);
132 AssertReturn(pvCpuPage, VERR_INVALID_PARAMETER);
133 NOREF(pCpu);
134
135 /* Turn off AMD-V in the EFER MSR. */
136 uint64_t fEfer = ASMRdMsr(MSR_K6_EFER);
137 ASMWrMsr(MSR_K6_EFER, fEfer & ~MSR_K6_EFER_SVME);
138
139 /* Invalidate host state physical address. */
140 ASMWrMsr(MSR_K8_VM_HSAVE_PA, 0);
141
142 return VINF_SUCCESS;
143}
144
145
146/**
147 * Does Ring-0 per VM AMD-V init.
148 *
149 * @returns VBox status code.
150 * @param pVM Pointer to the VM.
151 */
152VMMR0DECL(int) SVMR0InitVM(PVM pVM)
153{
154 int rc;
155
156 pVM->hwaccm.s.svm.pMemObjIOBitmap = NIL_RTR0MEMOBJ;
157
158 /* Allocate 12 KB for the IO bitmap (doesn't seem to be a way to convince SVM not to use it) */
159 rc = RTR0MemObjAllocCont(&pVM->hwaccm.s.svm.pMemObjIOBitmap, 3 << PAGE_SHIFT, true /* executable R0 mapping */);
160 if (RT_FAILURE(rc))
161 return rc;
162
163 pVM->hwaccm.s.svm.pIOBitmap = RTR0MemObjAddress(pVM->hwaccm.s.svm.pMemObjIOBitmap);
164 pVM->hwaccm.s.svm.pIOBitmapPhys = RTR0MemObjGetPagePhysAddr(pVM->hwaccm.s.svm.pMemObjIOBitmap, 0);
165 /* Set all bits to intercept all IO accesses. */
166 ASMMemFill32(pVM->hwaccm.s.svm.pIOBitmap, PAGE_SIZE*3, 0xffffffff);
167
168 /*
169 * Erratum 170 which requires a forced TLB flush for each world switch:
170 * See http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/33610.pdf
171 *
172 * All BH-G1/2 and DH-G1/2 models include a fix:
173 * Athlon X2: 0x6b 1/2
174 * 0x68 1/2
175 * Athlon 64: 0x7f 1
176 * 0x6f 2
177 * Sempron: 0x7f 1/2
178 * 0x6f 2
179 * 0x6c 2
180 * 0x7c 2
181 * Turion 64: 0x68 2
182 */
183 uint32_t u32Dummy;
184 uint32_t u32Version, u32Family, u32Model, u32Stepping, u32BaseFamily;
185 ASMCpuId(1, &u32Version, &u32Dummy, &u32Dummy, &u32Dummy);
186 u32BaseFamily = (u32Version >> 8) & 0xf;
187 u32Family = u32BaseFamily + (u32BaseFamily == 0xf ? ((u32Version >> 20) & 0x7f) : 0);
188 u32Model = ((u32Version >> 4) & 0xf);
189 u32Model = u32Model | ((u32BaseFamily == 0xf ? (u32Version >> 16) & 0x0f : 0) << 4);
190 u32Stepping = u32Version & 0xf;
191 if ( u32Family == 0xf
192 && !((u32Model == 0x68 || u32Model == 0x6b || u32Model == 0x7f) && u32Stepping >= 1)
193 && !((u32Model == 0x6f || u32Model == 0x6c || u32Model == 0x7c) && u32Stepping >= 2))
194 {
195 Log(("SVMR0InitVM: AMD cpu with erratum 170 family %x model %x stepping %x\n", u32Family, u32Model, u32Stepping));
196 pVM->hwaccm.s.svm.fAlwaysFlushTLB = true;
197 }
198
199 /* Allocate VMCBs for all guest CPUs. */
200 for (VMCPUID i = 0; i < pVM->cCpus; i++)
201 {
202 PVMCPU pVCpu = &pVM->aCpus[i];
203
204 pVCpu->hwaccm.s.svm.pMemObjVMCBHost = NIL_RTR0MEMOBJ;
205 pVCpu->hwaccm.s.svm.pMemObjVMCB = NIL_RTR0MEMOBJ;
206 pVCpu->hwaccm.s.svm.pMemObjMSRBitmap = NIL_RTR0MEMOBJ;
207
208 /* Allocate one page for the host context */
209 rc = RTR0MemObjAllocCont(&pVCpu->hwaccm.s.svm.pMemObjVMCBHost, 1 << PAGE_SHIFT, true /* executable R0 mapping */);
210 if (RT_FAILURE(rc))
211 return rc;
212
213 pVCpu->hwaccm.s.svm.pVMCBHost = RTR0MemObjAddress(pVCpu->hwaccm.s.svm.pMemObjVMCBHost);
214 pVCpu->hwaccm.s.svm.pVMCBHostPhys = RTR0MemObjGetPagePhysAddr(pVCpu->hwaccm.s.svm.pMemObjVMCBHost, 0);
215 Assert(pVCpu->hwaccm.s.svm.pVMCBHostPhys < _4G);
216 ASMMemZeroPage(pVCpu->hwaccm.s.svm.pVMCBHost);
217
218 /* Allocate one page for the VM control block (VMCB). */
219 rc = RTR0MemObjAllocCont(&pVCpu->hwaccm.s.svm.pMemObjVMCB, 1 << PAGE_SHIFT, true /* executable R0 mapping */);
220 if (RT_FAILURE(rc))
221 return rc;
222
223 pVCpu->hwaccm.s.svm.pVMCB = RTR0MemObjAddress(pVCpu->hwaccm.s.svm.pMemObjVMCB);
224 pVCpu->hwaccm.s.svm.pVMCBPhys = RTR0MemObjGetPagePhysAddr(pVCpu->hwaccm.s.svm.pMemObjVMCB, 0);
225 Assert(pVCpu->hwaccm.s.svm.pVMCBPhys < _4G);
226 ASMMemZeroPage(pVCpu->hwaccm.s.svm.pVMCB);
227
228 /* Allocate 8 KB for the MSR bitmap (doesn't seem to be a way to convince SVM not to use it) */
229 rc = RTR0MemObjAllocCont(&pVCpu->hwaccm.s.svm.pMemObjMSRBitmap, 2 << PAGE_SHIFT, true /* executable R0 mapping */);
230 if (RT_FAILURE(rc))
231 return rc;
232
233 pVCpu->hwaccm.s.svm.pMSRBitmap = RTR0MemObjAddress(pVCpu->hwaccm.s.svm.pMemObjMSRBitmap);
234 pVCpu->hwaccm.s.svm.pMSRBitmapPhys = RTR0MemObjGetPagePhysAddr(pVCpu->hwaccm.s.svm.pMemObjMSRBitmap, 0);
235 /* Set all bits to intercept all MSR accesses. */
236 ASMMemFill32(pVCpu->hwaccm.s.svm.pMSRBitmap, PAGE_SIZE * 2, 0xffffffff);
237 }
238
239 return VINF_SUCCESS;
240}
241
242
243/**
244 * Does Ring-0 per VM AMD-V termination.
245 *
246 * @returns VBox status code.
247 * @param pVM Pointer to the VM.
248 */
249VMMR0DECL(int) SVMR0TermVM(PVM pVM)
250{
251 for (VMCPUID i = 0; i < pVM->cCpus; i++)
252 {
253 PVMCPU pVCpu = &pVM->aCpus[i];
254
255 if (pVCpu->hwaccm.s.svm.pMemObjVMCBHost != NIL_RTR0MEMOBJ)
256 {
257 RTR0MemObjFree(pVCpu->hwaccm.s.svm.pMemObjVMCBHost, false);
258 pVCpu->hwaccm.s.svm.pVMCBHost = 0;
259 pVCpu->hwaccm.s.svm.pVMCBHostPhys = 0;
260 pVCpu->hwaccm.s.svm.pMemObjVMCBHost = NIL_RTR0MEMOBJ;
261 }
262
263 if (pVCpu->hwaccm.s.svm.pMemObjVMCB != NIL_RTR0MEMOBJ)
264 {
265 RTR0MemObjFree(pVCpu->hwaccm.s.svm.pMemObjVMCB, false);
266 pVCpu->hwaccm.s.svm.pVMCB = 0;
267 pVCpu->hwaccm.s.svm.pVMCBPhys = 0;
268 pVCpu->hwaccm.s.svm.pMemObjVMCB = NIL_RTR0MEMOBJ;
269 }
270 if (pVCpu->hwaccm.s.svm.pMemObjMSRBitmap != NIL_RTR0MEMOBJ)
271 {
272 RTR0MemObjFree(pVCpu->hwaccm.s.svm.pMemObjMSRBitmap, false);
273 pVCpu->hwaccm.s.svm.pMSRBitmap = 0;
274 pVCpu->hwaccm.s.svm.pMSRBitmapPhys = 0;
275 pVCpu->hwaccm.s.svm.pMemObjMSRBitmap = NIL_RTR0MEMOBJ;
276 }
277 }
278 if (pVM->hwaccm.s.svm.pMemObjIOBitmap != NIL_RTR0MEMOBJ)
279 {
280 RTR0MemObjFree(pVM->hwaccm.s.svm.pMemObjIOBitmap, false);
281 pVM->hwaccm.s.svm.pIOBitmap = 0;
282 pVM->hwaccm.s.svm.pIOBitmapPhys = 0;
283 pVM->hwaccm.s.svm.pMemObjIOBitmap = NIL_RTR0MEMOBJ;
284 }
285 return VINF_SUCCESS;
286}
287
288
289/**
290 * Sets up AMD-V for the specified VM.
291 *
292 * @returns VBox status code.
293 * @param pVM Pointer to the VM.
294 */
295VMMR0DECL(int) SVMR0SetupVM(PVM pVM)
296{
297 int rc = VINF_SUCCESS;
298
299 AssertReturn(pVM, VERR_INVALID_PARAMETER);
300 Assert(pVM->hwaccm.s.svm.fSupported);
301
302 for (VMCPUID i = 0; i < pVM->cCpus; i++)
303 {
304 PVMCPU pVCpu = &pVM->aCpus[i];
305 SVM_VMCB *pVMCB = (SVM_VMCB *)pVM->aCpus[i].hwaccm.s.svm.pVMCB;
306
307 AssertMsgReturn(pVMCB, ("Invalid pVMCB\n"), VERR_HMSVM_INVALID_PVMCB);
308
309 /*
310 * Program the control fields. Most of them never have to be changed again.
311 * CR0/4 reads must be intercepted, our shadow values are not necessarily the same as the guest's.
312 * Note: CR0 & CR4 can be safely read when guest and shadow copies are identical.
313 */
314 pVMCB->ctrl.u16InterceptRdCRx = RT_BIT(0) | RT_BIT(4);
315
316 /* CR0/4 writes must be intercepted for obvious reasons. */
317 pVMCB->ctrl.u16InterceptWrCRx = RT_BIT(0) | RT_BIT(4);
318
319 /* Intercept all DRx reads and writes by default. Changed later on. */
320 pVMCB->ctrl.u16InterceptRdDRx = 0xFFFF;
321 pVMCB->ctrl.u16InterceptWrDRx = 0xFFFF;
322
323 /* Intercept traps; only #NM is always intercepted. */
324 pVMCB->ctrl.u32InterceptException = RT_BIT(X86_XCPT_NM);
325#ifdef VBOX_ALWAYS_TRAP_PF
326 pVMCB->ctrl.u32InterceptException |= RT_BIT(X86_XCPT_PF);
327#endif
328#ifdef VBOX_STRICT
329 pVMCB->ctrl.u32InterceptException |= RT_BIT(X86_XCPT_BP)
330 | RT_BIT(X86_XCPT_DB)
331 | RT_BIT(X86_XCPT_DE)
332 | RT_BIT(X86_XCPT_UD)
333 | RT_BIT(X86_XCPT_NP)
334 | RT_BIT(X86_XCPT_SS)
335 | RT_BIT(X86_XCPT_GP)
336 | RT_BIT(X86_XCPT_MF)
337 ;
338#endif
339
340 /* Set up instruction and miscellaneous intercepts. */
341 pVMCB->ctrl.u32InterceptCtrl1 = SVM_CTRL1_INTERCEPT_INTR
342 | SVM_CTRL1_INTERCEPT_VINTR
343 | SVM_CTRL1_INTERCEPT_NMI
344 | SVM_CTRL1_INTERCEPT_SMI
345 | SVM_CTRL1_INTERCEPT_INIT
346 | SVM_CTRL1_INTERCEPT_RDPMC
347 | SVM_CTRL1_INTERCEPT_CPUID
348 | SVM_CTRL1_INTERCEPT_RSM
349 | SVM_CTRL1_INTERCEPT_HLT
350 | SVM_CTRL1_INTERCEPT_INOUT_BITMAP
351 | SVM_CTRL1_INTERCEPT_MSR_SHADOW
352 | SVM_CTRL1_INTERCEPT_INVLPGA /* AMD only */
353 | SVM_CTRL1_INTERCEPT_SHUTDOWN /* fatal */
354 | SVM_CTRL1_INTERCEPT_FERR_FREEZE; /* Legacy FPU FERR handling. */
355 ;
356 pVMCB->ctrl.u32InterceptCtrl2 = SVM_CTRL2_INTERCEPT_VMRUN /* required */
357 | SVM_CTRL2_INTERCEPT_VMMCALL
358 | SVM_CTRL2_INTERCEPT_VMLOAD
359 | SVM_CTRL2_INTERCEPT_VMSAVE
360 | SVM_CTRL2_INTERCEPT_STGI
361 | SVM_CTRL2_INTERCEPT_CLGI
362 | SVM_CTRL2_INTERCEPT_SKINIT
363 | SVM_CTRL2_INTERCEPT_WBINVD
364 | SVM_CTRL2_INTERCEPT_MONITOR
365 | SVM_CTRL2_INTERCEPT_MWAIT_UNCOND; /* don't execute mwait or else we'll idle inside the
366 guest (host thinks the cpu load is high) */
367
368 Log(("pVMCB->ctrl.u32InterceptException = %x\n", pVMCB->ctrl.u32InterceptException));
369 Log(("pVMCB->ctrl.u32InterceptCtrl1 = %x\n", pVMCB->ctrl.u32InterceptCtrl1));
370 Log(("pVMCB->ctrl.u32InterceptCtrl2 = %x\n", pVMCB->ctrl.u32InterceptCtrl2));
371
372 /* Virtualize masking of INTR interrupts. (reads/writes from/to CR8 go to the V_TPR register) */
373 pVMCB->ctrl.IntCtrl.n.u1VIrqMasking = 1;
374
375 /* Ignore the priority in the TPR; just deliver it when we tell it to. */
376 pVMCB->ctrl.IntCtrl.n.u1IgnoreTPR = 1;
377
378 /* Set IO and MSR bitmap addresses. */
379 pVMCB->ctrl.u64IOPMPhysAddr = pVM->hwaccm.s.svm.pIOBitmapPhys;
380 pVMCB->ctrl.u64MSRPMPhysAddr = pVCpu->hwaccm.s.svm.pMSRBitmapPhys;
381
382 /* No LBR virtualization. */
383 pVMCB->ctrl.u64LBRVirt = 0;
384
385 /* The ASID must start at 1; the host uses 0. */
386 pVMCB->ctrl.TLBCtrl.n.u32ASID = 1;
387
388 /*
389 * Setup the PAT MSR (nested paging only)
390 * The default value should be 0x0007040600070406ULL, but we want to treat all guest memory as WB,
391 * so choose type 6 for all PAT slots.
392 */
393 pVMCB->guest.u64GPAT = 0x0006060606060606ULL;
394
395 /* If nested paging is not in use, additional intercepts have to be set up. */
396 if (!pVM->hwaccm.s.fNestedPaging)
397 {
398 /* CR3 reads/writes must be intercepted; our shadow values are different from guest's. */
399 pVMCB->ctrl.u16InterceptRdCRx |= RT_BIT(3);
400 pVMCB->ctrl.u16InterceptWrCRx |= RT_BIT(3);
401
402 /*
403 * We must also intercept:
404 * - INVLPG (must go through shadow paging)
405 * - task switches (may change CR3/EFLAGS/LDT)
406 */
407 pVMCB->ctrl.u32InterceptCtrl1 |= SVM_CTRL1_INTERCEPT_INVLPG
408 | SVM_CTRL1_INTERCEPT_TASK_SWITCH;
409
410 /* Page faults must be intercepted to implement shadow paging. */
411 pVMCB->ctrl.u32InterceptException |= RT_BIT(X86_XCPT_PF);
412 }
413
414 /*
415 * The following MSRs are saved automatically by vmload/vmsave, so we allow the guest
416 * to modify them directly.
417 */
418 hmR0SvmSetMSRPermission(pVCpu, MSR_K8_LSTAR, true, true);
419 hmR0SvmSetMSRPermission(pVCpu, MSR_K8_CSTAR, true, true);
420 hmR0SvmSetMSRPermission(pVCpu, MSR_K6_STAR, true, true);
421 hmR0SvmSetMSRPermission(pVCpu, MSR_K8_SF_MASK, true, true);
422 hmR0SvmSetMSRPermission(pVCpu, MSR_K8_FS_BASE, true, true);
423 hmR0SvmSetMSRPermission(pVCpu, MSR_K8_GS_BASE, true, true);
424 hmR0SvmSetMSRPermission(pVCpu, MSR_K8_KERNEL_GS_BASE, true, true);
425 hmR0SvmSetMSRPermission(pVCpu, MSR_IA32_SYSENTER_CS, true, true);
426 hmR0SvmSetMSRPermission(pVCpu, MSR_IA32_SYSENTER_ESP, true, true);
427 hmR0SvmSetMSRPermission(pVCpu, MSR_IA32_SYSENTER_EIP, true, true);
428 }
429
430 return rc;
431}
432
433
434/**
435 * Sets the permission bits for the specified MSR.
436 *
437 * @param pVCpu Pointer to the VMCPU.
438 * @param ulMSR MSR value.
439 * @param fRead Whether reading is allowed.
440 * @param fWrite Whether writing is allowed.
441 */
442static void hmR0SvmSetMSRPermission(PVMCPU pVCpu, unsigned ulMSR, bool fRead, bool fWrite)
443{
444 unsigned ulBit;
445 uint8_t *pMSRBitmap = (uint8_t *)pVCpu->hwaccm.s.svm.pMSRBitmap;
446
447 if (ulMSR <= 0x00001FFF)
448 {
449 /* Pentium-compatible MSRs */
450 ulBit = ulMSR * 2;
451 }
452 else if ( ulMSR >= 0xC0000000
453 && ulMSR <= 0xC0001FFF)
454 {
455 /* AMD Sixth Generation x86 Processor MSRs and SYSCALL */
456 ulBit = (ulMSR - 0xC0000000) * 2;
457 pMSRBitmap += 0x800;
458 }
459 else if ( ulMSR >= 0xC0010000
460 && ulMSR <= 0xC0011FFF)
461 {
462 /* AMD Seventh and Eighth Generation Processor MSRs */
463 ulBit = (ulMSR - 0xC0001000) * 2;
464 pMSRBitmap += 0x1000;
465 }
466 else
467 {
468 AssertFailed();
469 return;
470 }
471 Assert(ulBit < 16 * 1024 - 1);
472 if (fRead)
473 ASMBitClear(pMSRBitmap, ulBit);
474 else
475 ASMBitSet(pMSRBitmap, ulBit);
476
477 if (fWrite)
478 ASMBitClear(pMSRBitmap, ulBit + 1);
479 else
480 ASMBitSet(pMSRBitmap, ulBit + 1);
481}
482
483
484/**
485 * Injects an event (trap or external interrupt).
486 *
487 * @param pVCpu Pointer to the VMCPU.
488 * @param pVMCB Pointer to the VMCB.
489 * @param pCtx Pointer to the guest CPU context.
490 * @param pIntInfo Pointer to the SVM interrupt info.
491 */
492DECLINLINE(void) hmR0SvmInjectEvent(PVMCPU pVCpu, SVM_VMCB *pVMCB, CPUMCTX *pCtx, SVM_EVENT *pEvent)
493{
494#ifdef VBOX_WITH_STATISTICS
495 STAM_COUNTER_INC(&pVCpu->hwaccm.s.paStatInjectedIrqsR0[pEvent->n.u8Vector & MASK_INJECT_IRQ_STAT]);
496#endif
497
498#ifdef VBOX_STRICT
499 if (pEvent->n.u8Vector == 0xE)
500 {
501 Log(("SVM: Inject int %d at %RGv error code=%02x CR2=%RGv intInfo=%08x\n", pEvent->n.u8Vector,
502 (RTGCPTR)pCtx->rip, pEvent->n.u32ErrorCode, (RTGCPTR)pCtx->cr2, pEvent->au64[0]));
503 }
504 else if (pEvent->n.u8Vector < 0x20)
505 Log(("SVM: Inject int %d at %RGv error code=%08x\n", pEvent->n.u8Vector, (RTGCPTR)pCtx->rip, pEvent->n.u32ErrorCode));
506 else
507 {
508 Log(("INJ-EI: %x at %RGv\n", pEvent->n.u8Vector, (RTGCPTR)pCtx->rip));
509 Assert(!VMCPU_FF_ISSET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS));
510 Assert(pCtx->eflags.u32 & X86_EFL_IF);
511 }
512#endif
513
514 /* Set event injection state. */
515 pVMCB->ctrl.EventInject.au64[0] = pEvent->au64[0];
516}
517
518
519/**
520 * Checks for pending guest interrupts and injects them.
521 *
522 * @returns VBox status code.
523 * @param pVM Pointer to the VM.
524 * @param pVCpu Pointer to the VMCPU.
525 * @param pVMCB Pointer to the VMCB.
526 * @param pCtx Pointer to the guest CPU Context.
527 */
528static int hmR0SvmCheckPendingInterrupt(PVM pVM, PVMCPU pVCpu, SVM_VMCB *pVMCB, CPUMCTX *pCtx)
529{
530 int rc;
531 NOREF(pVM);
532
533 /*
534 * Dispatch any pending interrupts (injected before, but a VM-exit occurred prematurely).
535 */
536 if (pVCpu->hwaccm.s.Event.fPending)
537 {
538 SVM_EVENT Event;
539
540 Log(("Reinjecting event %08x %08x at %RGv\n", pVCpu->hwaccm.s.Event.intInfo, pVCpu->hwaccm.s.Event.errCode,
541 (RTGCPTR)pCtx->rip));
542 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatIntReinject);
543 Event.au64[0] = pVCpu->hwaccm.s.Event.intInfo;
544 hmR0SvmInjectEvent(pVCpu, pVMCB, pCtx, &Event);
545
546 pVCpu->hwaccm.s.Event.fPending = false;
547 return VINF_SUCCESS;
548 }
549
550 /*
551 * If an active trap is already pending, we must forward it first!
552 */
553 if (!TRPMHasTrap(pVCpu))
554 {
555 if (VMCPU_FF_TESTANDCLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI))
556 {
557 SVM_EVENT Event;
558
559 Log(("CPU%d: injecting #NMI\n", pVCpu->idCpu));
560 Event.n.u8Vector = X86_XCPT_NMI;
561 Event.n.u1Valid = 1;
562 Event.n.u32ErrorCode = 0;
563 Event.n.u3Type = SVM_EVENT_NMI;
564
565 hmR0SvmInjectEvent(pVCpu, pVMCB, pCtx, &Event);
566 return VINF_SUCCESS;
567 }
568
569 /** @todo SMI interrupts. */
570
571 /*
572 * When external interrupts are pending, we should exit the VM when IF is set.
573 */
574 if (VMCPU_FF_ISPENDING(pVCpu, (VMCPU_FF_INTERRUPT_APIC|VMCPU_FF_INTERRUPT_PIC)))
575 {
576 if ( !(pCtx->eflags.u32 & X86_EFL_IF)
577 || VMCPU_FF_ISSET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
578 {
579 if (!pVMCB->ctrl.IntCtrl.n.u1VIrqValid)
580 {
581 if (!VMCPU_FF_ISSET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
582 LogFlow(("Enable irq window exit!\n"));
583 else
584 {
585 Log(("Pending interrupt blocked at %RGv by VM_FF_INHIBIT_INTERRUPTS -> irq window exit\n",
586 (RTGCPTR)pCtx->rip));
587 }
588
589 /** @todo Use virtual interrupt method to inject a pending IRQ; dispatched as
590 * soon as guest.IF is set. */
591 pVMCB->ctrl.u32InterceptCtrl1 |= SVM_CTRL1_INTERCEPT_VINTR;
592 pVMCB->ctrl.IntCtrl.n.u1VIrqValid = 1;
593 pVMCB->ctrl.IntCtrl.n.u8VIrqVector = 0; /* don't care */
594 }
595 }
596 else
597 {
598 uint8_t u8Interrupt;
599
600 rc = PDMGetInterrupt(pVCpu, &u8Interrupt);
601 Log(("Dispatch interrupt: u8Interrupt=%x (%d) rc=%Rrc\n", u8Interrupt, u8Interrupt, rc));
602 if (RT_SUCCESS(rc))
603 {
604 rc = TRPMAssertTrap(pVCpu, u8Interrupt, TRPM_HARDWARE_INT);
605 AssertRC(rc);
606 }
607 else
608 {
609 /* Can only happen in rare cases where a pending interrupt is cleared behind our back */
610 Assert(!VMCPU_FF_ISPENDING(pVCpu, (VMCPU_FF_INTERRUPT_APIC|VMCPU_FF_INTERRUPT_PIC)));
611 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatSwitchGuestIrq);
612 /* Just continue */
613 }
614 }
615 }
616 }
617
618#ifdef VBOX_STRICT
619 if (TRPMHasTrap(pVCpu))
620 {
621 uint8_t u8Vector;
622 rc = TRPMQueryTrapAll(pVCpu, &u8Vector, 0, 0, 0);
623 AssertRC(rc);
624 }
625#endif
626
627 if ( (pCtx->eflags.u32 & X86_EFL_IF)
628 && (!VMCPU_FF_ISSET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
629 && TRPMHasTrap(pVCpu)
630 )
631 {
632 uint8_t u8Vector;
633 TRPMEVENT enmType;
634 SVM_EVENT Event;
635 RTGCUINT u32ErrorCode;
636
637 Event.au64[0] = 0;
638
639 /* If a new event is pending, then dispatch it now. */
640 rc = TRPMQueryTrapAll(pVCpu, &u8Vector, &enmType, &u32ErrorCode, 0);
641 AssertRC(rc);
642 Assert(pCtx->eflags.Bits.u1IF == 1 || enmType == TRPM_TRAP);
643 Assert(enmType != TRPM_SOFTWARE_INT);
644
645 /* Clear the pending trap. */
646 rc = TRPMResetTrap(pVCpu);
647 AssertRC(rc);
648
649 Event.n.u8Vector = u8Vector;
650 Event.n.u1Valid = 1;
651 Event.n.u32ErrorCode = u32ErrorCode;
652
653 if (enmType == TRPM_TRAP)
654 {
655 switch (u8Vector)
656 {
657 case X86_XCPT_DF:
658 case X86_XCPT_TS:
659 case X86_XCPT_NP:
660 case X86_XCPT_SS:
661 case X86_XCPT_GP:
662 case X86_XCPT_PF:
663 case X86_XCPT_AC:
664 /* Valid error codes. */
665 Event.n.u1ErrorCodeValid = 1;
666 break;
667 default:
668 break;
669 }
670 if (u8Vector == X86_XCPT_NMI)
671 Event.n.u3Type = SVM_EVENT_NMI;
672 else
673 Event.n.u3Type = SVM_EVENT_EXCEPTION;
674 }
675 else
676 Event.n.u3Type = SVM_EVENT_EXTERNAL_IRQ;
677
678 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatIntInject);
679 hmR0SvmInjectEvent(pVCpu, pVMCB, pCtx, &Event);
680 } /* if (interrupts can be dispatched) */
681
682 return VINF_SUCCESS;
683}
684
685
686/**
687 * Save the host state.
688 *
689 * @returns VBox status code.
690 * @param pVM Pointer to the VM.
691 * @param pVCpu Pointer to the VMCPU.
692 */
693VMMR0DECL(int) SVMR0SaveHostState(PVM pVM, PVMCPU pVCpu)
694{
695 NOREF(pVM);
696 NOREF(pVCpu);
697 /* Nothing to do here. */
698 return VINF_SUCCESS;
699}
700
701
702/**
703 * Loads the guest state.
704 *
705 * NOTE: Don't do anything here that can cause a jump back to ring-3!!!
706 *
707 * @returns VBox status code.
708 * @param pVM Pointer to the VM.
709 * @param pVCpu Pointer to the VMCPU.
710 * @param pCtx Pointer to the guest CPU context.
711 */
712VMMR0DECL(int) SVMR0LoadGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
713{
714 RTGCUINTPTR val;
715 SVM_VMCB *pVMCB;
716
717 if (pVM == NULL)
718 return VERR_INVALID_PARAMETER;
719
720 /* Setup AMD SVM. */
721 Assert(pVM->hwaccm.s.svm.fSupported);
722
723 pVMCB = (SVM_VMCB *)pVCpu->hwaccm.s.svm.pVMCB;
724 AssertMsgReturn(pVMCB, ("Invalid pVMCB\n"), VERR_HMSVM_INVALID_PVMCB);
725
726 /* Guest CPU context: ES, CS, SS, DS, FS, GS. */
727 if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_SEGMENT_REGS)
728 {
729 SVM_WRITE_SELREG(CS, cs);
730 SVM_WRITE_SELREG(SS, ss);
731 SVM_WRITE_SELREG(DS, ds);
732 SVM_WRITE_SELREG(ES, es);
733 SVM_WRITE_SELREG(FS, fs);
734 SVM_WRITE_SELREG(GS, gs);
735 }
736
737 /* Guest CPU context: LDTR. */
738 if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_LDTR)
739 {
740 SVM_WRITE_SELREG(LDTR, ldtr);
741 }
742
743 /* Guest CPU context: TR. */
744 if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_TR)
745 {
746 SVM_WRITE_SELREG(TR, tr);
747 }
748
749 /* Guest CPU context: GDTR. */
750 if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_GDTR)
751 {
752 pVMCB->guest.GDTR.u32Limit = pCtx->gdtr.cbGdt;
753 pVMCB->guest.GDTR.u64Base = pCtx->gdtr.pGdt;
754 }
755
756 /* Guest CPU context: IDTR. */
757 if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_IDTR)
758 {
759 pVMCB->guest.IDTR.u32Limit = pCtx->idtr.cbIdt;
760 pVMCB->guest.IDTR.u64Base = pCtx->idtr.pIdt;
761 }
762
763 /*
764 * Sysenter MSRs (unconditional)
765 */
766 pVMCB->guest.u64SysEnterCS = pCtx->SysEnter.cs;
767 pVMCB->guest.u64SysEnterEIP = pCtx->SysEnter.eip;
768 pVMCB->guest.u64SysEnterESP = pCtx->SysEnter.esp;
769
770 /* Control registers */
771 if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_CR0)
772 {
773 val = pCtx->cr0;
774 if (!CPUMIsGuestFPUStateActive(pVCpu))
775 {
776 /* Always use #NM exceptions to load the FPU/XMM state on demand. */
777 val |= X86_CR0_TS | X86_CR0_ET | X86_CR0_NE | X86_CR0_MP;
778 }
779 else
780 {
781 /** @todo check if we support the old style mess correctly. */
782 if (!(val & X86_CR0_NE))
783 {
784 Log(("Forcing X86_CR0_NE!!!\n"));
785
786 /* Also catch floating point exceptions as we need to report them to the guest in a different way. */
787 if (!pVCpu->hwaccm.s.fFPUOldStyleOverride)
788 {
789 pVMCB->ctrl.u32InterceptException |= RT_BIT(X86_XCPT_MF);
790 pVCpu->hwaccm.s.fFPUOldStyleOverride = true;
791 }
792 }
793 val |= X86_CR0_NE; /* always turn on the native mechanism to report FPU errors (old style uses interrupts) */
794 }
795 /* Always enable caching. */
796 val &= ~(X86_CR0_CD|X86_CR0_NW);
797
798 /*
799 * Note: WP is not relevant in nested paging mode as we catch accesses on the (guest) physical level.
800 * Note: In nested paging mode, the guest is allowed to run with paging disabled; the guest-physical to host-physical
801 * translation will remain active.
802 */
803 if (!pVM->hwaccm.s.fNestedPaging)
804 {
805 val |= X86_CR0_PG; /* Paging is always enabled; even when the guest is running in real mode or PE without paging. */
806 val |= X86_CR0_WP; /* Must set this as we rely on protecting various pages and supervisor writes must be caught. */
807 }
808 pVMCB->guest.u64CR0 = val;
809 }
810 /* CR2 as well */
811 pVMCB->guest.u64CR2 = pCtx->cr2;
812
813 if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_CR3)
814 {
815 /* Save our shadow CR3 register. */
816 if (pVM->hwaccm.s.fNestedPaging)
817 {
818 PGMMODE enmShwPagingMode;
819
820#if HC_ARCH_BITS == 32
821 if (CPUMIsGuestInLongModeEx(pCtx))
822 enmShwPagingMode = PGMMODE_AMD64_NX;
823 else
824#endif
825 enmShwPagingMode = PGMGetHostMode(pVM);
826
827 pVMCB->ctrl.u64NestedPagingCR3 = PGMGetNestedCR3(pVCpu, enmShwPagingMode);
828 Assert(pVMCB->ctrl.u64NestedPagingCR3);
829 pVMCB->guest.u64CR3 = pCtx->cr3;
830 }
831 else
832 {
833 pVMCB->guest.u64CR3 = PGMGetHyperCR3(pVCpu);
834 Assert(pVMCB->guest.u64CR3 || VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL));
835 }
836 }
837
838 if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_CR4)
839 {
840 val = pCtx->cr4;
841 if (!pVM->hwaccm.s.fNestedPaging)
842 {
843 switch (pVCpu->hwaccm.s.enmShadowMode)
844 {
845 case PGMMODE_REAL:
846 case PGMMODE_PROTECTED: /* Protected mode, no paging. */
847 AssertFailed();
848 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
849
850 case PGMMODE_32_BIT: /* 32-bit paging. */
851 val &= ~X86_CR4_PAE;
852 break;
853
854 case PGMMODE_PAE: /* PAE paging. */
855 case PGMMODE_PAE_NX: /* PAE paging with NX enabled. */
856 /** Must use PAE paging as we could use physical memory > 4 GB */
857 val |= X86_CR4_PAE;
858 break;
859
860 case PGMMODE_AMD64: /* 64-bit AMD paging (long mode). */
861 case PGMMODE_AMD64_NX: /* 64-bit AMD paging (long mode) with NX enabled. */
862#ifdef VBOX_ENABLE_64_BITS_GUESTS
863 break;
864#else
865 AssertFailed();
866 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
867#endif
868
869 default: /* shut up gcc */
870 AssertFailed();
871 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
872 }
873 }
874 pVMCB->guest.u64CR4 = val;
875 }
876
877 /* Debug registers. */
878 if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_DEBUG)
879 {
880 pCtx->dr[6] |= X86_DR6_INIT_VAL; /* set all reserved bits to 1. */
881 pCtx->dr[6] &= ~RT_BIT(12); /* must be zero. */
882
883 pCtx->dr[7] &= 0xffffffff; /* upper 32 bits reserved */
884 pCtx->dr[7] &= ~(RT_BIT(11) | RT_BIT(12) | RT_BIT(14) | RT_BIT(15)); /* must be zero */
885 pCtx->dr[7] |= 0x400; /* must be one */
886
887 pVMCB->guest.u64DR7 = pCtx->dr[7];
888 pVMCB->guest.u64DR6 = pCtx->dr[6];
889
890#ifdef DEBUG
891 /* Sync the hypervisor debug state now if any breakpoint is armed. */
892 if ( CPUMGetHyperDR7(pVCpu) & (X86_DR7_ENABLED_MASK|X86_DR7_GD)
893 && !CPUMIsHyperDebugStateActive(pVCpu)
894 && !DBGFIsStepping(pVCpu))
895 {
896 /* Save the host and load the hypervisor debug state. */
897 int rc = CPUMR0LoadHyperDebugState(pVM, pVCpu, pCtx, false /* exclude DR6 */);
898 AssertRC(rc);
899
900 /* DRx intercepts remain enabled. */
901
902 /* Override dr6 & dr7 with the hypervisor values. */
903 pVMCB->guest.u64DR7 = CPUMGetHyperDR7(pVCpu);
904 pVMCB->guest.u64DR6 = CPUMGetHyperDR6(pVCpu);
905 }
906 else
907#endif
908 /* Sync the debug state now if any breakpoint is armed. */
909 if ( (pCtx->dr[7] & (X86_DR7_ENABLED_MASK|X86_DR7_GD))
910 && !CPUMIsGuestDebugStateActive(pVCpu)
911 && !DBGFIsStepping(pVCpu))
912 {
913 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatDRxArmed);
914
915 /* Disable drx move intercepts. */
916 pVMCB->ctrl.u16InterceptRdDRx = 0;
917 pVMCB->ctrl.u16InterceptWrDRx = 0;
918
919 /* Save the host and load the guest debug state. */
920 int rc = CPUMR0LoadGuestDebugState(pVM, pVCpu, pCtx, false /* exclude DR6 */);
921 AssertRC(rc);
922 }
923 }
924
925 /* EIP, ESP and EFLAGS */
926 pVMCB->guest.u64RIP = pCtx->rip;
927 pVMCB->guest.u64RSP = pCtx->rsp;
928 pVMCB->guest.u64RFlags = pCtx->eflags.u32;
929
930 /* Set CPL */
931 pVMCB->guest.u8CPL = pCtx->ss.Attr.n.u2Dpl;
932
933 /* RAX/EAX too, as VMRUN uses RAX as an implicit parameter. */
934 pVMCB->guest.u64RAX = pCtx->rax;
935
936 /* vmrun will fail without MSR_K6_EFER_SVME. */
937 pVMCB->guest.u64EFER = pCtx->msrEFER | MSR_K6_EFER_SVME;
938
939 /* 64 bits guest mode? */
940 if (CPUMIsGuestInLongModeEx(pCtx))
941 {
942#if !defined(VBOX_ENABLE_64_BITS_GUESTS)
943 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
944#elif HC_ARCH_BITS == 32 && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
945 pVCpu->hwaccm.s.svm.pfnVMRun = SVMR0VMSwitcherRun64;
946#else
947# ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
948 if (!pVM->hwaccm.s.fAllow64BitGuests)
949 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
950# endif
951 pVCpu->hwaccm.s.svm.pfnVMRun = SVMR0VMRun64;
952#endif
953 /* Unconditionally update these as wrmsr might have changed them. (HWACCM_CHANGED_GUEST_SEGMENT_REGS will not be set) */
954 pVMCB->guest.FS.u64Base = pCtx->fs.u64Base;
955 pVMCB->guest.GS.u64Base = pCtx->gs.u64Base;
956 }
957 else
958 {
959 /* Filter out the MSR_K6_LME bit or else AMD-V expects amd64 shadow paging. */
960 pVMCB->guest.u64EFER &= ~MSR_K6_EFER_LME;
961
962 pVCpu->hwaccm.s.svm.pfnVMRun = SVMR0VMRun;
963 }
964
965 /* TSC offset. */
966 if (TMCpuTickCanUseRealTSC(pVCpu, &pVMCB->ctrl.u64TSCOffset))
967 {
968 uint64_t u64CurTSC = ASMReadTSC();
969 if (u64CurTSC + pVMCB->ctrl.u64TSCOffset >= TMCpuTickGetLastSeen(pVCpu))
970 {
971 pVMCB->ctrl.u32InterceptCtrl1 &= ~SVM_CTRL1_INTERCEPT_RDTSC;
972 pVMCB->ctrl.u32InterceptCtrl2 &= ~SVM_CTRL2_INTERCEPT_RDTSCP;
973 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatTSCOffset);
974 }
975 else
976 {
977 /* Fall back to rdtsc emulation as we would otherwise pass decreasing tsc values to the guest. */
978 LogFlow(("TSC %RX64 offset %RX64 time=%RX64 last=%RX64 (diff=%RX64, virt_tsc=%RX64)\n", u64CurTSC,
979 pVMCB->ctrl.u64TSCOffset, u64CurTSC + pVMCB->ctrl.u64TSCOffset, TMCpuTickGetLastSeen(pVCpu),
980 TMCpuTickGetLastSeen(pVCpu) - u64CurTSC - pVMCB->ctrl.u64TSCOffset, TMCpuTickGet(pVCpu)));
981 pVMCB->ctrl.u32InterceptCtrl1 |= SVM_CTRL1_INTERCEPT_RDTSC;
982 pVMCB->ctrl.u32InterceptCtrl2 |= SVM_CTRL2_INTERCEPT_RDTSCP;
983 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatTSCInterceptOverFlow);
984 }
985 }
986 else
987 {
988 pVMCB->ctrl.u32InterceptCtrl1 |= SVM_CTRL1_INTERCEPT_RDTSC;
989 pVMCB->ctrl.u32InterceptCtrl2 |= SVM_CTRL2_INTERCEPT_RDTSCP;
990 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatTSCIntercept);
991 }
992
993 /* Sync the various MSRs for 64-bit mode. */
994 pVMCB->guest.u64STAR = pCtx->msrSTAR; /* legacy syscall eip, cs & ss */
995 pVMCB->guest.u64LSTAR = pCtx->msrLSTAR; /* 64-bit mode syscall rip */
996 pVMCB->guest.u64CSTAR = pCtx->msrCSTAR; /* compatibility mode syscall rip */
997 pVMCB->guest.u64SFMASK = pCtx->msrSFMASK; /* syscall flag mask */
998 pVMCB->guest.u64KernelGSBase = pCtx->msrKERNELGSBASE; /* SWAPGS exchange value */
999
1000#ifdef DEBUG
1001 /* Intercept X86_XCPT_DB if stepping is enabled */
1002 if ( DBGFIsStepping(pVCpu)
1003 || CPUMIsHyperDebugStateActive(pVCpu))
1004 pVMCB->ctrl.u32InterceptException |= RT_BIT(X86_XCPT_DB);
1005 else
1006 pVMCB->ctrl.u32InterceptException &= ~RT_BIT(X86_XCPT_DB);
1007#endif
1008
1009 /* Done. */
1010 pVCpu->hwaccm.s.fContextUseFlags &= ~HWACCM_CHANGED_ALL_GUEST;
1011
1012 return VINF_SUCCESS;
1013}
1014
1015
1016/**
1017 * Setup TLB for ASID.
1018 *
1019 * @param pVM Pointer to the VM.
1020 * @param pVCpu Pointer to the VMCPU.
1021 */
1022static void hmR0SvmSetupTLB(PVM pVM, PVMCPU pVCpu)
1023{
1024 PHMGLOBLCPUINFO pCpu;
1025
1026 AssertPtr(pVM);
1027 AssertPtr(pVCpu);
1028
1029 SVM_VMCB *pVMCB = (SVM_VMCB *)pVCpu->hwaccm.s.svm.pVMCB;
1030 pCpu = HWACCMR0GetCurrentCpu();
1031
1032 /*
1033 * Force a TLB flush for the first world switch if the current CPU differs from the one we ran on last.
1034 * This can happen both for start & resume due to long jumps back to ring-3.
1035 * If the TLB flush count changed, another VM (VCPU rather) has hit the ASID limit while flushing the TLB,
1036 * so we cannot reuse the ASIDs without flushing.
1037 */
1038 bool fNewASID = false;
1039 if ( pVCpu->hwaccm.s.idLastCpu != pCpu->idCpu
1040 || pVCpu->hwaccm.s.cTLBFlushes != pCpu->cTLBFlushes)
1041 {
1042 pVCpu->hwaccm.s.fForceTLBFlush = true;
1043 fNewASID = true;
1044 }
1045
1046 /*
1047 * Set TLB flush state as checked until we return from the world switch.
1048 */
1049 ASMAtomicWriteBool(&pVCpu->hwaccm.s.fCheckedTLBFlush, true);
1050
1051 /*
1052 * Check for TLB shootdown flushes.
1053 */
1054 if (VMCPU_FF_TESTANDCLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
1055 pVCpu->hwaccm.s.fForceTLBFlush = true;
1056
1057 pVCpu->hwaccm.s.idLastCpu = pCpu->idCpu;
1058 pVMCB->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_NOTHING;
1059
1060 if (RT_UNLIKELY(pVM->hwaccm.s.svm.fAlwaysFlushTLB))
1061 {
1062 /*
1063 * This is the AMD erratum 170. We need to flush the entire TLB for each world switch. Sad.
1064 */
1065 pCpu->uCurrentASID = 1;
1066 pVCpu->hwaccm.s.uCurrentASID = 1;
1067 pVMCB->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
1068 }
1069 else if (pVCpu->hwaccm.s.fForceTLBFlush)
1070 {
1071 if (fNewASID)
1072 {
1073 ++pCpu->uCurrentASID;
1074 bool fHitASIDLimit = false;
1075 if (pCpu->uCurrentASID >= pVM->hwaccm.s.uMaxASID)
1076 {
1077 pCpu->uCurrentASID = 1; /* start at 1; host uses 0 */
1078 pCpu->cTLBFlushes++;
1079 fHitASIDLimit = true;
1080
1081 if (pVM->hwaccm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID)
1082 {
1083 pVMCB->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_SINGLE_CONTEXT;
1084 pCpu->fFlushASIDBeforeUse = true;
1085 }
1086 else
1087 {
1088 pVMCB->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
1089 pCpu->fFlushASIDBeforeUse = false;
1090 }
1091 }
1092
1093 if ( !fHitASIDLimit
1094 && pCpu->fFlushASIDBeforeUse)
1095 {
1096 if (pVM->hwaccm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID)
1097 pVMCB->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_SINGLE_CONTEXT;
1098 else
1099 {
1100 pVMCB->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
1101 pCpu->fFlushASIDBeforeUse = false;
1102 }
1103 }
1104
1105 pVCpu->hwaccm.s.uCurrentASID = pCpu->uCurrentASID;
1106 pVCpu->hwaccm.s.cTLBFlushes = pCpu->cTLBFlushes;
1107 }
1108 else
1109 {
1110 if (pVM->hwaccm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID)
1111 pVMCB->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_SINGLE_CONTEXT;
1112 else
1113 pVMCB->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
1114 }
1115
1116 pVCpu->hwaccm.s.fForceTLBFlush = false;
1117 }
1118 else
1119 {
1120 /** @todo We never set VMCPU_FF_TLB_SHOOTDOWN anywhere so this path should
1121 * not be executed. See hwaccmQueueInvlPage() where it is commented
1122 * out. Support individual entry flushing someday. */
1123 if (VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_TLB_SHOOTDOWN))
1124 {
1125 /* Deal with pending TLB shootdown actions which were queued when we were not executing code. */
1126 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatTlbShootdown);
1127 for (unsigned i = 0; i < pVCpu->hwaccm.s.TlbShootdown.cPages; i++)
1128 SVMR0InvlpgA(pVCpu->hwaccm.s.TlbShootdown.aPages[i], pVMCB->ctrl.TLBCtrl.n.u32ASID);
1129 }
1130 }
1131
1132 pVCpu->hwaccm.s.TlbShootdown.cPages = 0;
1133 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_SHOOTDOWN);
1134
1135 /* Update VMCB with the ASID. */
1136 pVMCB->ctrl.TLBCtrl.n.u32ASID = pVCpu->hwaccm.s.uCurrentASID;
1137
1138 AssertMsg(pVCpu->hwaccm.s.cTLBFlushes == pCpu->cTLBFlushes,
1139 ("Flush count mismatch for cpu %d (%x vs %x)\n", pCpu->idCpu, pVCpu->hwaccm.s.cTLBFlushes, pCpu->cTLBFlushes));
1140 AssertMsg(pCpu->uCurrentASID >= 1 && pCpu->uCurrentASID < pVM->hwaccm.s.uMaxASID,
1141 ("cpu%d uCurrentASID = %x\n", pCpu->idCpu, pCpu->uCurrentASID));
1142 AssertMsg(pVCpu->hwaccm.s.uCurrentASID >= 1 && pVCpu->hwaccm.s.uCurrentASID < pVM->hwaccm.s.uMaxASID,
1143 ("cpu%d VM uCurrentASID = %x\n", pCpu->idCpu, pVCpu->hwaccm.s.uCurrentASID));
1144
1145#ifdef VBOX_WITH_STATISTICS
1146 if (pVMCB->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_NOTHING)
1147 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatNoFlushTLBWorldSwitch);
1148 else if ( pVMCB->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT
1149 || pVMCB->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT_RETAIN_GLOBALS)
1150 {
1151 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatFlushASID);
1152 }
1153 else
1154 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatFlushTLBWorldSwitch);
1155#endif
1156}
1157
1158
1159/**
1160 * Runs guest code in an AMD-V VM.
1161 *
1162 * @returns VBox status code.
1163 * @param pVM Pointer to the VM.
1164 * @param pVCpu Pointer to the VMCPU.
1165 * @param pCtx Pointer to the guest CPU context.
1166 */
1167VMMR0DECL(int) SVMR0RunGuestCode(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
1168{
1169 STAM_PROFILE_ADV_START(&pVCpu->hwaccm.s.StatEntry, x);
1170 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hwaccm.s.StatExit1);
1171 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hwaccm.s.StatExit2);
1172
1173 VBOXSTRICTRC rc = VINF_SUCCESS;
1174 int rc2;
1175 uint64_t exitCode = (uint64_t)SVM_EXIT_INVALID;
1176 SVM_VMCB *pVMCB = NULL;
1177 bool fSyncTPR = false;
1178 unsigned cResume = 0;
1179 uint8_t u8LastTPR = 0; /* Initialized for potentially stupid compilers. */
1180 uint32_t u32HostExtFeatures = 0;
1181 PHMGLOBLCPUINFO pCpu = 0;
1182 RTCCUINTREG uOldEFlags = ~(RTCCUINTREG)0;
1183#ifdef VBOX_STRICT
1184 RTCPUID idCpuCheck;
1185#endif
1186#ifdef VBOX_HIGH_RES_TIMERS_HACK_IN_RING0
1187 uint64_t u64LastTime = RTTimeMilliTS();
1188#endif
1189
1190 pVMCB = (SVM_VMCB *)pVCpu->hwaccm.s.svm.pVMCB;
1191 AssertMsgReturn(pVMCB, ("Invalid pVMCB\n"), VERR_HMSVM_INVALID_PVMCB);
1192
1193 /*
1194 * We can jump to this point to resume execution after determining that a VM-exit is innocent.
1195 */
1196ResumeExecution:
1197 if (!STAM_PROFILE_ADV_IS_RUNNING(&pVCpu->hwaccm.s.StatEntry))
1198 STAM_PROFILE_ADV_STOP_START(&pVCpu->hwaccm.s.StatExit2, &pVCpu->hwaccm.s.StatEntry, x);
1199 Assert(!HWACCMR0SuspendPending());
1200
1201 /*
1202 * Safety precaution; looping for too long here can have a very bad effect on the host.
1203 */
1204 if (RT_UNLIKELY(++cResume > pVM->hwaccm.s.cMaxResumeLoops))
1205 {
1206 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitMaxResume);
1207 rc = VINF_EM_RAW_INTERRUPT;
1208 goto end;
1209 }
1210
1211 /*
1212 * Check for IRQ inhibition due to instruction fusing (sti, mov ss).
1213 */
1214 if (VMCPU_FF_ISSET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
1215 {
1216 Log(("VM_FF_INHIBIT_INTERRUPTS at %RGv successor %RGv\n", (RTGCPTR)pCtx->rip, EMGetInhibitInterruptsPC(pVCpu)));
1217 if (pCtx->rip != EMGetInhibitInterruptsPC(pVCpu))
1218 {
1219 /*
1220 * Note: we intentionally don't clear VM_FF_INHIBIT_INTERRUPTS here.
1221 * Before we are able to execute this instruction in raw mode (iret to guest code) an external interrupt might
1222 * force a world switch again. Possibly allowing a guest interrupt to be dispatched in the process. This could
1223 * break the guest. Sounds very unlikely, but such timing sensitive problems are not as rare as you might think.
1224 */
1225 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
1226 /* Irq inhibition is no longer active; clear the corresponding SVM state. */
1227 pVMCB->ctrl.u64IntShadow = 0;
1228 }
1229 }
1230 else
1231 {
1232 /* Irq inhibition is no longer active; clear the corresponding SVM state. */
1233 pVMCB->ctrl.u64IntShadow = 0;
1234 }
1235
1236#ifdef VBOX_HIGH_RES_TIMERS_HACK_IN_RING0
1237 if (RT_UNLIKELY((cResume & 0xf) == 0))
1238 {
1239 uint64_t u64CurTime = RTTimeMilliTS();
1240
1241 if (RT_UNLIKELY(u64CurTime > u64LastTime))
1242 {
1243 u64LastTime = u64CurTime;
1244 TMTimerPollVoid(pVM, pVCpu);
1245 }
1246 }
1247#endif
1248
1249 /*
1250 * Check for pending actions that force us to go back to ring-3.
1251 */
1252 if ( VM_FF_ISPENDING(pVM, VM_FF_HWACCM_TO_R3_MASK | VM_FF_REQUEST | VM_FF_PGM_POOL_FLUSH_PENDING | VM_FF_PDM_DMA)
1253 || VMCPU_FF_ISPENDING(pVCpu,
1254 VMCPU_FF_HWACCM_TO_R3_MASK
1255 | VMCPU_FF_PGM_SYNC_CR3
1256 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL
1257 | VMCPU_FF_REQUEST))
1258 {
1259 /* Check if a sync operation is pending. */
1260 if (VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL))
1261 {
1262 rc = PGMSyncCR3(pVCpu, pCtx->cr0, pCtx->cr3, pCtx->cr4, VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
1263 AssertRC(VBOXSTRICTRC_VAL(rc));
1264 if (rc != VINF_SUCCESS)
1265 {
1266 Log(("Pending pool sync is forcing us back to ring 3; rc=%d\n", VBOXSTRICTRC_VAL(rc)));
1267 goto end;
1268 }
1269 }
1270
1271#ifdef DEBUG
1272 /* Intercept X86_XCPT_DB if stepping is enabled */
1273 if (!DBGFIsStepping(pVCpu))
1274#endif
1275 {
1276 if ( VM_FF_ISPENDING(pVM, VM_FF_HWACCM_TO_R3_MASK)
1277 || VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_HWACCM_TO_R3_MASK))
1278 {
1279 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatSwitchToR3);
1280 rc = RT_UNLIKELY(VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY)) ? VINF_EM_NO_MEMORY : VINF_EM_RAW_TO_R3;
1281 goto end;
1282 }
1283 }
1284
1285 /* Pending request packets might contain actions that need immediate attention, such as pending hardware interrupts. */
1286 if ( VM_FF_ISPENDING(pVM, VM_FF_REQUEST)
1287 || VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_REQUEST))
1288 {
1289 rc = VINF_EM_PENDING_REQUEST;
1290 goto end;
1291 }
1292
1293 /* Check if a pgm pool flush is in progress. */
1294 if (VM_FF_ISPENDING(pVM, VM_FF_PGM_POOL_FLUSH_PENDING))
1295 {
1296 rc = VINF_PGM_POOL_FLUSH_PENDING;
1297 goto end;
1298 }
1299
1300 /* Check if DMA work is pending (2nd+ run). */
1301 if (VM_FF_ISPENDING(pVM, VM_FF_PDM_DMA) && cResume > 1)
1302 {
1303 rc = VINF_EM_RAW_TO_R3;
1304 goto end;
1305 }
1306 }
1307
1308#ifdef VBOX_WITH_VMMR0_DISABLE_PREEMPTION
1309 /*
1310 * Exit to ring-3 preemption/work is pending.
1311 *
1312 * Interrupts are disabled before the call to make sure we don't miss any interrupt
1313 * that would flag preemption (IPI, timer tick, ++). (Would've been nice to do this
1314 * further down, but hmR0SvmCheckPendingInterrupt makes that impossible.)
1315 *
1316 * Note! Interrupts must be disabled done *before* we check for TLB flushes; TLB
1317 * shootdowns rely on this.
1318 */
1319 uOldEFlags = ASMIntDisableFlags();
1320 if (RTThreadPreemptIsPending(NIL_RTTHREAD))
1321 {
1322 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitPreemptPending);
1323 rc = VINF_EM_RAW_INTERRUPT;
1324 goto end;
1325 }
1326 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC);
1327#endif
1328
1329 /*
1330 * When external interrupts are pending, we should exit the VM when IF is set.
1331 * Note: *After* VM_FF_INHIBIT_INTERRUPTS check!!
1332 */
1333 rc = hmR0SvmCheckPendingInterrupt(pVM, pVCpu, pVMCB, pCtx);
1334 if (RT_FAILURE(rc))
1335 goto end;
1336
1337 /*
1338 * TPR caching using CR8 is only available in 64-bit mode or with 32-bit guests when X86_CPUID_AMD_FEATURE_ECX_CR8L is
1339 * supported.
1340 * Note: we can't do this in LoddGuestState as PDMApicGetTPR can jump back to ring 3 (lock)! (no longer true)
1341 */
1342 /** @todo query and update the TPR only when it could have been changed (mmio access)
1343 */
1344 if (pVM->hwaccm.s.fHasIoApic)
1345 {
1346 /* TPR caching in CR8 */
1347 bool fPending;
1348 rc2 = PDMApicGetTPR(pVCpu, &u8LastTPR, &fPending);
1349 AssertRC(rc2);
1350
1351 if (pVM->hwaccm.s.fTPRPatchingActive)
1352 {
1353 /* Our patch code uses LSTAR for TPR caching. */
1354 pCtx->msrLSTAR = u8LastTPR;
1355
1356 if (fPending)
1357 {
1358 /* A TPR change could activate a pending interrupt, so catch lstar writes. */
1359 hmR0SvmSetMSRPermission(pVCpu, MSR_K8_LSTAR, true, false);
1360 }
1361 else
1362 {
1363 /*
1364 * No interrupts are pending, so we don't need to be explicitely notified.
1365 * There are enough world switches for detecting pending interrupts.
1366 */
1367 hmR0SvmSetMSRPermission(pVCpu, MSR_K8_LSTAR, true, true);
1368 }
1369 }
1370 else
1371 {
1372 /* cr8 bits 3-0 correspond to bits 7-4 of the task priority mmio register. */
1373 pVMCB->ctrl.IntCtrl.n.u8VTPR = (u8LastTPR >> 4);
1374
1375 if (fPending)
1376 {
1377 /* A TPR change could activate a pending interrupt, so catch cr8 writes. */
1378 pVMCB->ctrl.u16InterceptWrCRx |= RT_BIT(8);
1379 }
1380 else
1381 {
1382 /*
1383 * No interrupts are pending, so we don't need to be explicitly notified.
1384 * There are enough world switches for detecting pending interrupts.
1385 */
1386 pVMCB->ctrl.u16InterceptWrCRx &= ~RT_BIT(8);
1387 }
1388 }
1389 fSyncTPR = !fPending;
1390 }
1391
1392 /* All done! Let's start VM execution. */
1393
1394 /* Enable nested paging if necessary (disabled each time after #VMEXIT). */
1395 pVMCB->ctrl.NestedPaging.n.u1NestedPaging = pVM->hwaccm.s.fNestedPaging;
1396
1397#ifdef LOG_ENABLED
1398 pCpu = HWACCMR0GetCurrentCpu();
1399 if (pVCpu->hwaccm.s.idLastCpu != pCpu->idCpu)
1400 LogFlow(("Force TLB flush due to rescheduling to a different cpu (%d vs %d)\n", pVCpu->hwaccm.s.idLastCpu, pCpu->idCpu));
1401 else if (pVCpu->hwaccm.s.cTLBFlushes != pCpu->cTLBFlushes)
1402 LogFlow(("Force TLB flush due to changed TLB flush count (%x vs %x)\n", pVCpu->hwaccm.s.cTLBFlushes, pCpu->cTLBFlushes));
1403 else if (VMCPU_FF_ISSET(pVCpu, VMCPU_FF_TLB_FLUSH))
1404 LogFlow(("Manual TLB flush\n"));
1405#endif
1406
1407 /*
1408 * NOTE: DO NOT DO ANYTHING AFTER THIS POINT THAT MIGHT JUMP BACK TO RING 3!
1409 * (until the actual world switch)
1410 */
1411#ifdef VBOX_STRICT
1412 idCpuCheck = RTMpCpuId();
1413#endif
1414 VMMR0LogFlushDisable(pVCpu);
1415
1416 /*
1417 * Load the guest state; *must* be here as it sets up the shadow CR0 for lazy FPU syncing!
1418 */
1419 rc = SVMR0LoadGuestState(pVM, pVCpu, pCtx);
1420 if (RT_UNLIKELY(rc != VINF_SUCCESS))
1421 {
1422 VMMR0LogFlushEnable(pVCpu);
1423 goto end;
1424 }
1425
1426#ifndef VBOX_WITH_VMMR0_DISABLE_PREEMPTION
1427 /*
1428 * Disable interrupts to make sure a poke will interrupt execution.
1429 * This must be done *before* we check for TLB flushes; TLB shootdowns rely on this.
1430 */
1431 uOldEFlags = ASMIntDisableFlags();
1432 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC);
1433#endif
1434 STAM_PROFILE_ADV_STOP_START(&pVCpu->hwaccm.s.StatEntry, &pVCpu->hwaccm.s.StatInGC, x);
1435
1436 /* Setup TLB control and ASID in the VMCB. */
1437 hmR0SvmSetupTLB(pVM, pVCpu);
1438
1439 /* In case we execute a goto ResumeExecution later on. */
1440 pVCpu->hwaccm.s.fResumeVM = true;
1441 pVCpu->hwaccm.s.fForceTLBFlush = pVM->hwaccm.s.svm.fAlwaysFlushTLB;
1442
1443 Assert(sizeof(pVCpu->hwaccm.s.svm.pVMCBPhys) == 8);
1444 Assert(pVMCB->ctrl.IntCtrl.n.u1VIrqMasking);
1445 Assert(pVMCB->ctrl.u64IOPMPhysAddr == pVM->hwaccm.s.svm.pIOBitmapPhys);
1446 Assert(pVMCB->ctrl.u64MSRPMPhysAddr == pVCpu->hwaccm.s.svm.pMSRBitmapPhys);
1447 Assert(pVMCB->ctrl.u64LBRVirt == 0);
1448
1449#ifdef VBOX_STRICT
1450 Assert(idCpuCheck == RTMpCpuId());
1451#endif
1452 TMNotifyStartOfExecution(pVCpu);
1453
1454 /*
1455 * Save the current Host TSC_AUX and write the guest TSC_AUX to the host, so that
1456 * RDTSCPs (that don't cause exits) reads the guest MSR. See @bugref{3324}.
1457 */
1458 u32HostExtFeatures = ASMCpuId_EDX(0x80000001); /** @todo Move this elsewhere, not needed on every world switch */
1459 if ( (u32HostExtFeatures & X86_CPUID_EXT_FEATURE_EDX_RDTSCP)
1460 && !(pVMCB->ctrl.u32InterceptCtrl2 & SVM_CTRL2_INTERCEPT_RDTSCP))
1461 {
1462 pVCpu->hwaccm.s.u64HostTSCAux = ASMRdMsr(MSR_K8_TSC_AUX);
1463 uint64_t u64GuestTSCAux = 0;
1464 rc2 = CPUMQueryGuestMsr(pVCpu, MSR_K8_TSC_AUX, &u64GuestTSCAux);
1465 AssertRC(rc2);
1466 ASMWrMsr(MSR_K8_TSC_AUX, u64GuestTSCAux);
1467 }
1468
1469#ifdef VBOX_WITH_KERNEL_USING_XMM
1470 hwaccmR0SVMRunWrapXMM(pVCpu->hwaccm.s.svm.pVMCBHostPhys, pVCpu->hwaccm.s.svm.pVMCBPhys, pCtx, pVM, pVCpu,
1471 pVCpu->hwaccm.s.svm.pfnVMRun);
1472#else
1473 pVCpu->hwaccm.s.svm.pfnVMRun(pVCpu->hwaccm.s.svm.pVMCBHostPhys, pVCpu->hwaccm.s.svm.pVMCBPhys, pCtx, pVM, pVCpu);
1474#endif
1475 ASMAtomicWriteBool(&pVCpu->hwaccm.s.fCheckedTLBFlush, false);
1476 ASMAtomicIncU32(&pVCpu->hwaccm.s.cWorldSwitchExits);
1477 /* Possibly the last TSC value seen by the guest (too high) (only when we're in TSC offset mode). */
1478 if (!(pVMCB->ctrl.u32InterceptCtrl1 & SVM_CTRL1_INTERCEPT_RDTSC))
1479 {
1480 /* Restore host's TSC_AUX. */
1481 if (u32HostExtFeatures & X86_CPUID_EXT_FEATURE_EDX_RDTSCP)
1482 ASMWrMsr(MSR_K8_TSC_AUX, pVCpu->hwaccm.s.u64HostTSCAux);
1483
1484 TMCpuTickSetLastSeen(pVCpu, ASMReadTSC() +
1485 pVMCB->ctrl.u64TSCOffset - 0x400 /* guestimate of world switch overhead in clock ticks */);
1486 }
1487 TMNotifyEndOfExecution(pVCpu);
1488 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED);
1489 STAM_PROFILE_ADV_STOP_START(&pVCpu->hwaccm.s.StatInGC, &pVCpu->hwaccm.s.StatExit1, x);
1490 ASMSetFlags(uOldEFlags);
1491#ifdef VBOX_WITH_VMMR0_DISABLE_PREEMPTION
1492 uOldEFlags = ~(RTCCUINTREG)0;
1493#endif
1494
1495 /*
1496 * !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1497 * IMPORTANT: WE CAN'T DO ANY LOGGING OR OPERATIONS THAT CAN DO A LONGJMP BACK TO RING-3 *BEFORE* WE'VE SYNCED BACK (MOST OF) THE GUEST STATE
1498 * !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1499 */
1500
1501 /* Reason for the VM exit */
1502 exitCode = pVMCB->ctrl.u64ExitCode;
1503
1504 if (RT_UNLIKELY(exitCode == (uint64_t)SVM_EXIT_INVALID)) /* Invalid guest state. */
1505 {
1506 HWACCMDumpRegs(pVM, pVCpu, pCtx);
1507#ifdef DEBUG
1508 Log(("ctrl.u16InterceptRdCRx %x\n", pVMCB->ctrl.u16InterceptRdCRx));
1509 Log(("ctrl.u16InterceptWrCRx %x\n", pVMCB->ctrl.u16InterceptWrCRx));
1510 Log(("ctrl.u16InterceptRdDRx %x\n", pVMCB->ctrl.u16InterceptRdDRx));
1511 Log(("ctrl.u16InterceptWrDRx %x\n", pVMCB->ctrl.u16InterceptWrDRx));
1512 Log(("ctrl.u32InterceptException %x\n", pVMCB->ctrl.u32InterceptException));
1513 Log(("ctrl.u32InterceptCtrl1 %x\n", pVMCB->ctrl.u32InterceptCtrl1));
1514 Log(("ctrl.u32InterceptCtrl2 %x\n", pVMCB->ctrl.u32InterceptCtrl2));
1515 Log(("ctrl.u64IOPMPhysAddr %RX64\n", pVMCB->ctrl.u64IOPMPhysAddr));
1516 Log(("ctrl.u64MSRPMPhysAddr %RX64\n", pVMCB->ctrl.u64MSRPMPhysAddr));
1517 Log(("ctrl.u64TSCOffset %RX64\n", pVMCB->ctrl.u64TSCOffset));
1518
1519 Log(("ctrl.TLBCtrl.u32ASID %x\n", pVMCB->ctrl.TLBCtrl.n.u32ASID));
1520 Log(("ctrl.TLBCtrl.u8TLBFlush %x\n", pVMCB->ctrl.TLBCtrl.n.u8TLBFlush));
1521 Log(("ctrl.TLBCtrl.u24Reserved %x\n", pVMCB->ctrl.TLBCtrl.n.u24Reserved));
1522
1523 Log(("ctrl.IntCtrl.u8VTPR %x\n", pVMCB->ctrl.IntCtrl.n.u8VTPR));
1524 Log(("ctrl.IntCtrl.u1VIrqValid %x\n", pVMCB->ctrl.IntCtrl.n.u1VIrqValid));
1525 Log(("ctrl.IntCtrl.u7Reserved %x\n", pVMCB->ctrl.IntCtrl.n.u7Reserved));
1526 Log(("ctrl.IntCtrl.u4VIrqPriority %x\n", pVMCB->ctrl.IntCtrl.n.u4VIrqPriority));
1527 Log(("ctrl.IntCtrl.u1IgnoreTPR %x\n", pVMCB->ctrl.IntCtrl.n.u1IgnoreTPR));
1528 Log(("ctrl.IntCtrl.u3Reserved %x\n", pVMCB->ctrl.IntCtrl.n.u3Reserved));
1529 Log(("ctrl.IntCtrl.u1VIrqMasking %x\n", pVMCB->ctrl.IntCtrl.n.u1VIrqMasking));
1530 Log(("ctrl.IntCtrl.u7Reserved2 %x\n", pVMCB->ctrl.IntCtrl.n.u7Reserved2));
1531 Log(("ctrl.IntCtrl.u8VIrqVector %x\n", pVMCB->ctrl.IntCtrl.n.u8VIrqVector));
1532 Log(("ctrl.IntCtrl.u24Reserved %x\n", pVMCB->ctrl.IntCtrl.n.u24Reserved));
1533
1534 Log(("ctrl.u64IntShadow %RX64\n", pVMCB->ctrl.u64IntShadow));
1535 Log(("ctrl.u64ExitCode %RX64\n", pVMCB->ctrl.u64ExitCode));
1536 Log(("ctrl.u64ExitInfo1 %RX64\n", pVMCB->ctrl.u64ExitInfo1));
1537 Log(("ctrl.u64ExitInfo2 %RX64\n", pVMCB->ctrl.u64ExitInfo2));
1538 Log(("ctrl.ExitIntInfo.u8Vector %x\n", pVMCB->ctrl.ExitIntInfo.n.u8Vector));
1539 Log(("ctrl.ExitIntInfo.u3Type %x\n", pVMCB->ctrl.ExitIntInfo.n.u3Type));
1540 Log(("ctrl.ExitIntInfo.u1ErrorCodeValid %x\n", pVMCB->ctrl.ExitIntInfo.n.u1ErrorCodeValid));
1541 Log(("ctrl.ExitIntInfo.u19Reserved %x\n", pVMCB->ctrl.ExitIntInfo.n.u19Reserved));
1542 Log(("ctrl.ExitIntInfo.u1Valid %x\n", pVMCB->ctrl.ExitIntInfo.n.u1Valid));
1543 Log(("ctrl.ExitIntInfo.u32ErrorCode %x\n", pVMCB->ctrl.ExitIntInfo.n.u32ErrorCode));
1544 Log(("ctrl.NestedPaging %RX64\n", pVMCB->ctrl.NestedPaging.au64));
1545 Log(("ctrl.EventInject.u8Vector %x\n", pVMCB->ctrl.EventInject.n.u8Vector));
1546 Log(("ctrl.EventInject.u3Type %x\n", pVMCB->ctrl.EventInject.n.u3Type));
1547 Log(("ctrl.EventInject.u1ErrorCodeValid %x\n", pVMCB->ctrl.EventInject.n.u1ErrorCodeValid));
1548 Log(("ctrl.EventInject.u19Reserved %x\n", pVMCB->ctrl.EventInject.n.u19Reserved));
1549 Log(("ctrl.EventInject.u1Valid %x\n", pVMCB->ctrl.EventInject.n.u1Valid));
1550 Log(("ctrl.EventInject.u32ErrorCode %x\n", pVMCB->ctrl.EventInject.n.u32ErrorCode));
1551
1552 Log(("ctrl.u64NestedPagingCR3 %RX64\n", pVMCB->ctrl.u64NestedPagingCR3));
1553 Log(("ctrl.u64LBRVirt %RX64\n", pVMCB->ctrl.u64LBRVirt));
1554
1555 Log(("guest.CS.u16Sel %04X\n", pVMCB->guest.CS.u16Sel));
1556 Log(("guest.CS.u16Attr %04X\n", pVMCB->guest.CS.u16Attr));
1557 Log(("guest.CS.u32Limit %X\n", pVMCB->guest.CS.u32Limit));
1558 Log(("guest.CS.u64Base %RX64\n", pVMCB->guest.CS.u64Base));
1559 Log(("guest.DS.u16Sel %04X\n", pVMCB->guest.DS.u16Sel));
1560 Log(("guest.DS.u16Attr %04X\n", pVMCB->guest.DS.u16Attr));
1561 Log(("guest.DS.u32Limit %X\n", pVMCB->guest.DS.u32Limit));
1562 Log(("guest.DS.u64Base %RX64\n", pVMCB->guest.DS.u64Base));
1563 Log(("guest.ES.u16Sel %04X\n", pVMCB->guest.ES.u16Sel));
1564 Log(("guest.ES.u16Attr %04X\n", pVMCB->guest.ES.u16Attr));
1565 Log(("guest.ES.u32Limit %X\n", pVMCB->guest.ES.u32Limit));
1566 Log(("guest.ES.u64Base %RX64\n", pVMCB->guest.ES.u64Base));
1567 Log(("guest.FS.u16Sel %04X\n", pVMCB->guest.FS.u16Sel));
1568 Log(("guest.FS.u16Attr %04X\n", pVMCB->guest.FS.u16Attr));
1569 Log(("guest.FS.u32Limit %X\n", pVMCB->guest.FS.u32Limit));
1570 Log(("guest.FS.u64Base %RX64\n", pVMCB->guest.FS.u64Base));
1571 Log(("guest.GS.u16Sel %04X\n", pVMCB->guest.GS.u16Sel));
1572 Log(("guest.GS.u16Attr %04X\n", pVMCB->guest.GS.u16Attr));
1573 Log(("guest.GS.u32Limit %X\n", pVMCB->guest.GS.u32Limit));
1574 Log(("guest.GS.u64Base %RX64\n", pVMCB->guest.GS.u64Base));
1575
1576 Log(("guest.GDTR.u32Limit %X\n", pVMCB->guest.GDTR.u32Limit));
1577 Log(("guest.GDTR.u64Base %RX64\n", pVMCB->guest.GDTR.u64Base));
1578
1579 Log(("guest.LDTR.u16Sel %04X\n", pVMCB->guest.LDTR.u16Sel));
1580 Log(("guest.LDTR.u16Attr %04X\n", pVMCB->guest.LDTR.u16Attr));
1581 Log(("guest.LDTR.u32Limit %X\n", pVMCB->guest.LDTR.u32Limit));
1582 Log(("guest.LDTR.u64Base %RX64\n", pVMCB->guest.LDTR.u64Base));
1583
1584 Log(("guest.IDTR.u32Limit %X\n", pVMCB->guest.IDTR.u32Limit));
1585 Log(("guest.IDTR.u64Base %RX64\n", pVMCB->guest.IDTR.u64Base));
1586
1587 Log(("guest.TR.u16Sel %04X\n", pVMCB->guest.TR.u16Sel));
1588 Log(("guest.TR.u16Attr %04X\n", pVMCB->guest.TR.u16Attr));
1589 Log(("guest.TR.u32Limit %X\n", pVMCB->guest.TR.u32Limit));
1590 Log(("guest.TR.u64Base %RX64\n", pVMCB->guest.TR.u64Base));
1591
1592 Log(("guest.u8CPL %X\n", pVMCB->guest.u8CPL));
1593 Log(("guest.u64CR0 %RX64\n", pVMCB->guest.u64CR0));
1594 Log(("guest.u64CR2 %RX64\n", pVMCB->guest.u64CR2));
1595 Log(("guest.u64CR3 %RX64\n", pVMCB->guest.u64CR3));
1596 Log(("guest.u64CR4 %RX64\n", pVMCB->guest.u64CR4));
1597 Log(("guest.u64DR6 %RX64\n", pVMCB->guest.u64DR6));
1598 Log(("guest.u64DR7 %RX64\n", pVMCB->guest.u64DR7));
1599
1600 Log(("guest.u64RIP %RX64\n", pVMCB->guest.u64RIP));
1601 Log(("guest.u64RSP %RX64\n", pVMCB->guest.u64RSP));
1602 Log(("guest.u64RAX %RX64\n", pVMCB->guest.u64RAX));
1603 Log(("guest.u64RFlags %RX64\n", pVMCB->guest.u64RFlags));
1604
1605 Log(("guest.u64SysEnterCS %RX64\n", pVMCB->guest.u64SysEnterCS));
1606 Log(("guest.u64SysEnterEIP %RX64\n", pVMCB->guest.u64SysEnterEIP));
1607 Log(("guest.u64SysEnterESP %RX64\n", pVMCB->guest.u64SysEnterESP));
1608
1609 Log(("guest.u64EFER %RX64\n", pVMCB->guest.u64EFER));
1610 Log(("guest.u64STAR %RX64\n", pVMCB->guest.u64STAR));
1611 Log(("guest.u64LSTAR %RX64\n", pVMCB->guest.u64LSTAR));
1612 Log(("guest.u64CSTAR %RX64\n", pVMCB->guest.u64CSTAR));
1613 Log(("guest.u64SFMASK %RX64\n", pVMCB->guest.u64SFMASK));
1614 Log(("guest.u64KernelGSBase %RX64\n", pVMCB->guest.u64KernelGSBase));
1615 Log(("guest.u64GPAT %RX64\n", pVMCB->guest.u64GPAT));
1616 Log(("guest.u64DBGCTL %RX64\n", pVMCB->guest.u64DBGCTL));
1617 Log(("guest.u64BR_FROM %RX64\n", pVMCB->guest.u64BR_FROM));
1618 Log(("guest.u64BR_TO %RX64\n", pVMCB->guest.u64BR_TO));
1619 Log(("guest.u64LASTEXCPFROM %RX64\n", pVMCB->guest.u64LASTEXCPFROM));
1620 Log(("guest.u64LASTEXCPTO %RX64\n", pVMCB->guest.u64LASTEXCPTO));
1621#endif
1622 rc = VERR_SVM_UNABLE_TO_START_VM;
1623 VMMR0LogFlushEnable(pVCpu);
1624 goto end;
1625 }
1626
1627 /* Let's first sync back EIP, ESP, and EFLAGS. */
1628 pCtx->rip = pVMCB->guest.u64RIP;
1629 pCtx->rsp = pVMCB->guest.u64RSP;
1630 pCtx->eflags.u32 = pVMCB->guest.u64RFlags;
1631 /* eax is saved/restore across the vmrun instruction */
1632 pCtx->rax = pVMCB->guest.u64RAX;
1633
1634 /*
1635 * Save all the MSRs that can be changed by the guest without causing a world switch.
1636 * FS & GS base are saved with SVM_READ_SELREG.
1637 */
1638 pCtx->msrSTAR = pVMCB->guest.u64STAR; /* legacy syscall eip, cs & ss */
1639 pCtx->msrLSTAR = pVMCB->guest.u64LSTAR; /* 64-bit mode syscall rip */
1640 pCtx->msrCSTAR = pVMCB->guest.u64CSTAR; /* compatibility mode syscall rip */
1641 pCtx->msrSFMASK = pVMCB->guest.u64SFMASK; /* syscall flag mask */
1642 pCtx->msrKERNELGSBASE = pVMCB->guest.u64KernelGSBase; /* swapgs exchange value */
1643 pCtx->SysEnter.cs = pVMCB->guest.u64SysEnterCS;
1644 pCtx->SysEnter.eip = pVMCB->guest.u64SysEnterEIP;
1645 pCtx->SysEnter.esp = pVMCB->guest.u64SysEnterESP;
1646
1647 /* Can be updated behind our back in the nested paging case. */
1648 pCtx->cr2 = pVMCB->guest.u64CR2;
1649
1650 /* Guest CPU context: ES, CS, SS, DS, FS, GS. */
1651 SVM_READ_SELREG(SS, ss);
1652 SVM_READ_SELREG(CS, cs);
1653 SVM_READ_SELREG(DS, ds);
1654 SVM_READ_SELREG(ES, es);
1655 SVM_READ_SELREG(FS, fs);
1656 SVM_READ_SELREG(GS, gs);
1657
1658 /*
1659 * Correct the hidden CS granularity flag. Haven't seen it being wrong in any other
1660 * register (yet).
1661 */
1662 if ( !pCtx->cs.Attr.n.u1Granularity
1663 && pCtx->cs.Attr.n.u1Present
1664 && pCtx->cs.u32Limit > UINT32_C(0xfffff))
1665 {
1666 Assert((pCtx->cs.u32Limit & 0xfff) == 0xfff);
1667 pCtx->cs.Attr.n.u1Granularity = 1;
1668 }
1669#define SVM_ASSERT_SEL_GRANULARITY(reg) \
1670 AssertMsg( !pCtx->reg.Attr.n.u1Present \
1671 || ( pCtx->reg.Attr.n.u1Granularity \
1672 ? (pCtx->reg.u32Limit & 0xfff) == 0xfff \
1673 : pCtx->reg.u32Limit <= 0xfffff), \
1674 ("%#x %#x %#llx\n", pCtx->reg.u32Limit, pCtx->reg.Attr.u, pCtx->reg.u64Base))
1675 SVM_ASSERT_SEL_GRANULARITY(ss);
1676 SVM_ASSERT_SEL_GRANULARITY(cs);
1677 SVM_ASSERT_SEL_GRANULARITY(ds);
1678 SVM_ASSERT_SEL_GRANULARITY(es);
1679 SVM_ASSERT_SEL_GRANULARITY(fs);
1680 SVM_ASSERT_SEL_GRANULARITY(gs);
1681#undef SVM_ASSERT_SEL_GRANULARITY
1682
1683 /*
1684 * Correct the hidden SS DPL field. It can be wrong on certain CPUs
1685 * sometimes (seen it on AMD Fusion CPUs with 64-bit guests). The CPU
1686 * always uses the CPL field in the VMCB instead of the DPL in the hidden
1687 * SS (chapter AMD spec. 15.5.1 Basic operation).
1688 */
1689 Assert(!(pVMCB->guest.u8CPL & ~0x3));
1690 pCtx->ss.Attr.n.u2Dpl = pVMCB->guest.u8CPL & 0x3;
1691
1692 /*
1693 * Remaining guest CPU context: TR, IDTR, GDTR, LDTR;
1694 * must sync everything otherwise we can get out of sync when jumping back to ring-3.
1695 */
1696 SVM_READ_SELREG(LDTR, ldtr);
1697 SVM_READ_SELREG(TR, tr);
1698
1699 pCtx->gdtr.cbGdt = pVMCB->guest.GDTR.u32Limit;
1700 pCtx->gdtr.pGdt = pVMCB->guest.GDTR.u64Base;
1701
1702 pCtx->idtr.cbIdt = pVMCB->guest.IDTR.u32Limit;
1703 pCtx->idtr.pIdt = pVMCB->guest.IDTR.u64Base;
1704
1705 /*
1706 * No reason to sync back the CRx and DRx registers as they cannot be changed by the guest
1707 * unless in the nested paging case where CR3 can be changed by the guest.
1708 */
1709 if ( pVM->hwaccm.s.fNestedPaging
1710 && pCtx->cr3 != pVMCB->guest.u64CR3)
1711 {
1712 CPUMSetGuestCR3(pVCpu, pVMCB->guest.u64CR3);
1713 PGMUpdateCR3(pVCpu, pVMCB->guest.u64CR3);
1714 }
1715
1716 /* Note! NOW IT'S SAFE FOR LOGGING! */
1717 VMMR0LogFlushEnable(pVCpu);
1718
1719 /* Take care of instruction fusing (sti, mov ss) (see AMD spec. 15.20.5 Interrupt Shadows) */
1720 if (pVMCB->ctrl.u64IntShadow & SVM_INTERRUPT_SHADOW_ACTIVE)
1721 {
1722 Log(("uInterruptState %x rip=%RGv\n", pVMCB->ctrl.u64IntShadow, (RTGCPTR)pCtx->rip));
1723 EMSetInhibitInterruptsPC(pVCpu, pCtx->rip);
1724 }
1725 else
1726 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
1727
1728 Log2(("exitCode = %x\n", exitCode));
1729
1730 /* Sync back DR6 as it could have been changed by hitting breakpoints. */
1731 pCtx->dr[6] = pVMCB->guest.u64DR6;
1732 /* DR7.GD can be cleared by debug exceptions, so sync it back as well. */
1733 pCtx->dr[7] = pVMCB->guest.u64DR7;
1734
1735 /* Check if an injected event was interrupted prematurely. */
1736 pVCpu->hwaccm.s.Event.intInfo = pVMCB->ctrl.ExitIntInfo.au64[0];
1737 if ( pVMCB->ctrl.ExitIntInfo.n.u1Valid
1738 /* we don't care about 'int xx' as the instruction will be restarted. */
1739 && pVMCB->ctrl.ExitIntInfo.n.u3Type != SVM_EVENT_SOFTWARE_INT)
1740 {
1741 Log(("Pending inject %RX64 at %RGv exit=%08x\n", pVCpu->hwaccm.s.Event.intInfo, (RTGCPTR)pCtx->rip, exitCode));
1742
1743#ifdef LOG_ENABLED
1744 SVM_EVENT Event;
1745 Event.au64[0] = pVCpu->hwaccm.s.Event.intInfo;
1746
1747 if ( exitCode == SVM_EXIT_EXCEPTION_E
1748 && Event.n.u8Vector == 0xE)
1749 {
1750 Log(("Double fault!\n"));
1751 }
1752#endif
1753
1754 pVCpu->hwaccm.s.Event.fPending = true;
1755 /* Error code present? (redundant) */
1756 if (pVMCB->ctrl.ExitIntInfo.n.u1ErrorCodeValid)
1757 pVCpu->hwaccm.s.Event.errCode = pVMCB->ctrl.ExitIntInfo.n.u32ErrorCode;
1758 else
1759 pVCpu->hwaccm.s.Event.errCode = 0;
1760 }
1761#ifdef VBOX_WITH_STATISTICS
1762 if (exitCode == SVM_EXIT_NPF)
1763 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitReasonNPF);
1764 else
1765 STAM_COUNTER_INC(&pVCpu->hwaccm.s.paStatExitReasonR0[exitCode & MASK_EXITREASON_STAT]);
1766#endif
1767
1768 /* Sync back the TPR if it was changed. */
1769 if (fSyncTPR)
1770 {
1771 if (pVM->hwaccm.s.fTPRPatchingActive)
1772 {
1773 if ((pCtx->msrLSTAR & 0xff) != u8LastTPR)
1774 {
1775 /* Our patch code uses LSTAR for TPR caching. */
1776 rc2 = PDMApicSetTPR(pVCpu, pCtx->msrLSTAR & 0xff);
1777 AssertRC(rc2);
1778 }
1779 }
1780 else
1781 {
1782 if ((uint8_t)(u8LastTPR >> 4) != pVMCB->ctrl.IntCtrl.n.u8VTPR)
1783 {
1784 /* cr8 bits 3-0 correspond to bits 7-4 of the task priority mmio register. */
1785 rc2 = PDMApicSetTPR(pVCpu, pVMCB->ctrl.IntCtrl.n.u8VTPR << 4);
1786 AssertRC(rc2);
1787 }
1788 }
1789 }
1790
1791#ifdef DBGFTRACE_ENABLED /** @todo DTrace */
1792 RTTraceBufAddMsgF(pVM->CTX_SUFF(hTraceBuf), "vmexit %08x at %04:%08RX64 %RX64 %RX64 %RX64",
1793 exitCode, pCtx->cs.Sel, pCtx->rip,
1794 pVMCB->ctrl.u64ExitInfo1, pVMCB->ctrl.u64ExitInfo2, pVMCB->ctrl.ExitIntInfo.au64[0]);
1795#endif
1796#if ARCH_BITS == 64 /* for the time being */
1797 VBOXVMM_R0_HMSVM_VMEXIT(pVCpu, pCtx, exitCode, pVMCB->ctrl.u64ExitInfo1, pVMCB->ctrl.u64ExitInfo2,
1798 pVMCB->ctrl.ExitIntInfo.au64[0], UINT64_MAX);
1799#endif
1800 STAM_PROFILE_ADV_STOP_START(&pVCpu->hwaccm.s.StatExit1, &pVCpu->hwaccm.s.StatExit2, x);
1801
1802 /* Deal with the reason of the VM-exit. */
1803 switch (exitCode)
1804 {
1805 case SVM_EXIT_EXCEPTION_0: case SVM_EXIT_EXCEPTION_1: case SVM_EXIT_EXCEPTION_2: case SVM_EXIT_EXCEPTION_3:
1806 case SVM_EXIT_EXCEPTION_4: case SVM_EXIT_EXCEPTION_5: case SVM_EXIT_EXCEPTION_6: case SVM_EXIT_EXCEPTION_7:
1807 case SVM_EXIT_EXCEPTION_8: case SVM_EXIT_EXCEPTION_9: case SVM_EXIT_EXCEPTION_A: case SVM_EXIT_EXCEPTION_B:
1808 case SVM_EXIT_EXCEPTION_C: case SVM_EXIT_EXCEPTION_D: case SVM_EXIT_EXCEPTION_E: case SVM_EXIT_EXCEPTION_F:
1809 case SVM_EXIT_EXCEPTION_10: case SVM_EXIT_EXCEPTION_11: case SVM_EXIT_EXCEPTION_12: case SVM_EXIT_EXCEPTION_13:
1810 case SVM_EXIT_EXCEPTION_14: case SVM_EXIT_EXCEPTION_15: case SVM_EXIT_EXCEPTION_16: case SVM_EXIT_EXCEPTION_17:
1811 case SVM_EXIT_EXCEPTION_18: case SVM_EXIT_EXCEPTION_19: case SVM_EXIT_EXCEPTION_1A: case SVM_EXIT_EXCEPTION_1B:
1812 case SVM_EXIT_EXCEPTION_1C: case SVM_EXIT_EXCEPTION_1D: case SVM_EXIT_EXCEPTION_1E: case SVM_EXIT_EXCEPTION_1F:
1813 {
1814 /* Pending trap. */
1815 SVM_EVENT Event;
1816 uint32_t vector = exitCode - SVM_EXIT_EXCEPTION_0;
1817
1818 Log2(("Hardware/software interrupt %d\n", vector));
1819 switch (vector)
1820 {
1821 case X86_XCPT_DB:
1822 {
1823 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestDB);
1824
1825 /* Note that we don't support guest and host-initiated debugging at the same time. */
1826 Assert(DBGFIsStepping(pVCpu) || CPUMIsHyperDebugStateActive(pVCpu));
1827
1828 rc = DBGFRZTrap01Handler(pVM, pVCpu, CPUMCTX2CORE(pCtx), pCtx->dr[6]);
1829 if (rc == VINF_EM_RAW_GUEST_TRAP)
1830 {
1831 Log(("Trap %x (debug) at %016RX64\n", vector, pCtx->rip));
1832
1833 /* Reinject the exception. */
1834 Event.au64[0] = 0;
1835 Event.n.u3Type = SVM_EVENT_EXCEPTION; /* trap or fault */
1836 Event.n.u1Valid = 1;
1837 Event.n.u8Vector = X86_XCPT_DB;
1838
1839 hmR0SvmInjectEvent(pVCpu, pVMCB, pCtx, &Event);
1840 goto ResumeExecution;
1841 }
1842 /* Return to ring 3 to deal with the debug exit code. */
1843 Log(("Debugger hardware BP at %04x:%RGv (rc=%Rrc)\n", pCtx->cs.Sel, pCtx->rip, VBOXSTRICTRC_VAL(rc)));
1844 break;
1845 }
1846
1847 case X86_XCPT_NM:
1848 {
1849 Log(("#NM fault at %RGv\n", (RTGCPTR)pCtx->rip));
1850
1851 /** @todo don't intercept #NM exceptions anymore when we've activated the guest FPU state. */
1852 /* If we sync the FPU/XMM state on-demand, then we can continue execution as if nothing has happened. */
1853 rc = CPUMR0LoadGuestFPU(pVM, pVCpu, pCtx);
1854 if (rc == VINF_SUCCESS)
1855 {
1856 Assert(CPUMIsGuestFPUStateActive(pVCpu));
1857 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitShadowNM);
1858
1859 /* Continue execution. */
1860 pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_GUEST_CR0;
1861
1862 goto ResumeExecution;
1863 }
1864
1865 Log(("Forward #NM fault to the guest\n"));
1866 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestNM);
1867
1868 Event.au64[0] = 0;
1869 Event.n.u3Type = SVM_EVENT_EXCEPTION;
1870 Event.n.u1Valid = 1;
1871 Event.n.u8Vector = X86_XCPT_NM;
1872
1873 hmR0SvmInjectEvent(pVCpu, pVMCB, pCtx, &Event);
1874 goto ResumeExecution;
1875 }
1876
1877 case X86_XCPT_PF: /* Page fault */
1878 {
1879 uint32_t errCode = pVMCB->ctrl.u64ExitInfo1; /* EXITINFO1 = error code */
1880 RTGCUINTPTR uFaultAddress = pVMCB->ctrl.u64ExitInfo2; /* EXITINFO2 = fault address */
1881
1882#ifdef VBOX_ALWAYS_TRAP_PF
1883 if (pVM->hwaccm.s.fNestedPaging)
1884 {
1885 /*
1886 * A genuine pagefault. Forward the trap to the guest by injecting the exception and resuming execution.
1887 */
1888 Log(("Guest page fault at %04X:%RGv cr2=%RGv error code %x rsp=%RGv\n", pCtx->cs, (RTGCPTR)pCtx->rip,
1889 uFaultAddress, errCode, (RTGCPTR)pCtx->rsp));
1890 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestPF);
1891
1892 /* Now we must update CR2. */
1893 pCtx->cr2 = uFaultAddress;
1894
1895 Event.au64[0] = 0;
1896 Event.n.u3Type = SVM_EVENT_EXCEPTION;
1897 Event.n.u1Valid = 1;
1898 Event.n.u8Vector = X86_XCPT_PF;
1899 Event.n.u1ErrorCodeValid = 1;
1900 Event.n.u32ErrorCode = errCode;
1901
1902 hmR0SvmInjectEvent(pVCpu, pVMCB, pCtx, &Event);
1903 goto ResumeExecution;
1904 }
1905#endif
1906 Assert(!pVM->hwaccm.s.fNestedPaging);
1907
1908#ifdef VBOX_HWACCM_WITH_GUEST_PATCHING
1909 /* Shortcut for APIC TPR reads and writes; 32 bits guests only */
1910 if ( pVM->hwaccm.s.fTRPPatchingAllowed
1911 && (uFaultAddress & 0xfff) == 0x080
1912 && !(errCode & X86_TRAP_PF_P) /* not present */
1913 && CPUMGetGuestCPL(pVCpu) == 0
1914 && !CPUMIsGuestInLongModeEx(pCtx)
1915 && pVM->hwaccm.s.cPatches < RT_ELEMENTS(pVM->hwaccm.s.aPatches))
1916 {
1917 RTGCPHYS GCPhysApicBase, GCPhys;
1918 PDMApicGetBase(pVM, &GCPhysApicBase); /** @todo cache this */
1919 GCPhysApicBase &= PAGE_BASE_GC_MASK;
1920
1921 rc = PGMGstGetPage(pVCpu, (RTGCPTR)uFaultAddress, NULL, &GCPhys);
1922 if ( rc == VINF_SUCCESS
1923 && GCPhys == GCPhysApicBase)
1924 {
1925 /* Only attempt to patch the instruction once. */
1926 PHWACCMTPRPATCH pPatch = (PHWACCMTPRPATCH)RTAvloU32Get(&pVM->hwaccm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
1927 if (!pPatch)
1928 {
1929 rc = VINF_EM_HWACCM_PATCH_TPR_INSTR;
1930 break;
1931 }
1932 }
1933 }
1934#endif
1935
1936 Log2(("Page fault at %RGv cr2=%RGv error code %x\n", (RTGCPTR)pCtx->rip, uFaultAddress, errCode));
1937 /* Exit qualification contains the linear address of the page fault. */
1938 TRPMAssertTrap(pVCpu, X86_XCPT_PF, TRPM_TRAP);
1939 TRPMSetErrorCode(pVCpu, errCode);
1940 TRPMSetFaultAddress(pVCpu, uFaultAddress);
1941
1942 /* Forward it to our trap handler first, in case our shadow pages are out of sync. */
1943 rc = PGMTrap0eHandler(pVCpu, errCode, CPUMCTX2CORE(pCtx), (RTGCPTR)uFaultAddress);
1944 Log2(("PGMTrap0eHandler %RGv returned %Rrc\n", (RTGCPTR)pCtx->rip, VBOXSTRICTRC_VAL(rc)));
1945 if (rc == VINF_SUCCESS)
1946 {
1947 /* We've successfully synced our shadow pages, so let's just continue execution. */
1948 Log2(("Shadow page fault at %RGv cr2=%RGv error code %x\n", (RTGCPTR)pCtx->rip, uFaultAddress, errCode));
1949 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitShadowPF);
1950
1951 TRPMResetTrap(pVCpu);
1952 goto ResumeExecution;
1953 }
1954 else if (rc == VINF_EM_RAW_GUEST_TRAP)
1955 {
1956 /*
1957 * A genuine pagefault. Forward the trap to the guest by injecting the exception and resuming execution.
1958 */
1959 Log2(("Forward page fault to the guest\n"));
1960 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestPF);
1961 /* The error code might have been changed. */
1962 errCode = TRPMGetErrorCode(pVCpu);
1963
1964 TRPMResetTrap(pVCpu);
1965
1966 /* Now we must update CR2. */
1967 pCtx->cr2 = uFaultAddress;
1968
1969 Event.au64[0] = 0;
1970 Event.n.u3Type = SVM_EVENT_EXCEPTION;
1971 Event.n.u1Valid = 1;
1972 Event.n.u8Vector = X86_XCPT_PF;
1973 Event.n.u1ErrorCodeValid = 1;
1974 Event.n.u32ErrorCode = errCode;
1975
1976 hmR0SvmInjectEvent(pVCpu, pVMCB, pCtx, &Event);
1977 goto ResumeExecution;
1978 }
1979#ifdef VBOX_STRICT
1980 if (rc != VINF_EM_RAW_EMULATE_INSTR && rc != VINF_EM_RAW_EMULATE_IO_BLOCK)
1981 LogFlow(("PGMTrap0eHandler failed with %d\n", VBOXSTRICTRC_VAL(rc)));
1982#endif
1983 /* Need to go back to the recompiler to emulate the instruction. */
1984 TRPMResetTrap(pVCpu);
1985 break;
1986 }
1987
1988 case X86_XCPT_MF: /* Floating point exception. */
1989 {
1990 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestMF);
1991 if (!(pCtx->cr0 & X86_CR0_NE))
1992 {
1993 /* old style FPU error reporting needs some extra work. */
1994 /** @todo don't fall back to the recompiler, but do it manually. */
1995 rc = VINF_EM_RAW_EMULATE_INSTR;
1996 break;
1997 }
1998 Log(("Trap %x at %RGv\n", vector, (RTGCPTR)pCtx->rip));
1999
2000 Event.au64[0] = 0;
2001 Event.n.u3Type = SVM_EVENT_EXCEPTION;
2002 Event.n.u1Valid = 1;
2003 Event.n.u8Vector = X86_XCPT_MF;
2004
2005 hmR0SvmInjectEvent(pVCpu, pVMCB, pCtx, &Event);
2006 goto ResumeExecution;
2007 }
2008
2009#ifdef VBOX_STRICT
2010 case X86_XCPT_BP: /* Breakpoint. */
2011 case X86_XCPT_GP: /* General protection failure exception.*/
2012 case X86_XCPT_UD: /* Unknown opcode exception. */
2013 case X86_XCPT_DE: /* Divide error. */
2014 case X86_XCPT_SS: /* Stack segment exception. */
2015 case X86_XCPT_NP: /* Segment not present exception. */
2016 {
2017 Event.au64[0] = 0;
2018 Event.n.u3Type = SVM_EVENT_EXCEPTION;
2019 Event.n.u1Valid = 1;
2020 Event.n.u8Vector = vector;
2021
2022 switch (vector)
2023 {
2024 case X86_XCPT_GP:
2025 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestGP);
2026 Event.n.u1ErrorCodeValid = 1;
2027 Event.n.u32ErrorCode = pVMCB->ctrl.u64ExitInfo1; /* EXITINFO1 = error code */
2028 break;
2029 case X86_XCPT_BP:
2030 /** Saves the wrong EIP on the stack (pointing to the int3 instead of the next instruction. */
2031 break;
2032 case X86_XCPT_DE:
2033 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestDE);
2034 break;
2035 case X86_XCPT_UD:
2036 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestUD);
2037 break;
2038 case X86_XCPT_SS:
2039 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestSS);
2040 Event.n.u1ErrorCodeValid = 1;
2041 Event.n.u32ErrorCode = pVMCB->ctrl.u64ExitInfo1; /* EXITINFO1 = error code */
2042 break;
2043 case X86_XCPT_NP:
2044 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestNP);
2045 Event.n.u1ErrorCodeValid = 1;
2046 Event.n.u32ErrorCode = pVMCB->ctrl.u64ExitInfo1; /* EXITINFO1 = error code */
2047 break;
2048 }
2049 Log(("Trap %x at %04x:%RGv esi=%x\n", vector, pCtx->cs.Sel, (RTGCPTR)pCtx->rip, pCtx->esi));
2050 hmR0SvmInjectEvent(pVCpu, pVMCB, pCtx, &Event);
2051 goto ResumeExecution;
2052 }
2053#endif
2054 default:
2055 AssertMsgFailed(("Unexpected vm-exit caused by exception %x\n", vector));
2056 rc = VERR_HMSVM_UNEXPECTED_XCPT_EXIT;
2057 break;
2058
2059 } /* switch (vector) */
2060 break;
2061 }
2062
2063 case SVM_EXIT_NPF:
2064 {
2065 /* EXITINFO1 contains fault errorcode; EXITINFO2 contains the guest physical address causing the fault. */
2066 uint32_t errCode = pVMCB->ctrl.u64ExitInfo1; /* EXITINFO1 = error code */
2067 RTGCPHYS GCPhysFault = pVMCB->ctrl.u64ExitInfo2; /* EXITINFO2 = fault address */
2068 PGMMODE enmShwPagingMode;
2069
2070 Assert(pVM->hwaccm.s.fNestedPaging);
2071 LogFlow(("Nested page fault at %RGv cr2=%RGp error code %x\n", (RTGCPTR)pCtx->rip, GCPhysFault, errCode));
2072
2073#ifdef VBOX_HWACCM_WITH_GUEST_PATCHING
2074 /* Shortcut for APIC TPR reads and writes; 32 bits guests only */
2075 if ( pVM->hwaccm.s.fTRPPatchingAllowed
2076 && (GCPhysFault & PAGE_OFFSET_MASK) == 0x080
2077 && ( !(errCode & X86_TRAP_PF_P) /* not present */
2078 || (errCode & (X86_TRAP_PF_P | X86_TRAP_PF_RSVD)) == (X86_TRAP_PF_P | X86_TRAP_PF_RSVD) /* mmio optimization */)
2079 && CPUMGetGuestCPL(pVCpu) == 0
2080 && !CPUMIsGuestInLongModeEx(pCtx)
2081 && pVM->hwaccm.s.cPatches < RT_ELEMENTS(pVM->hwaccm.s.aPatches))
2082 {
2083 RTGCPHYS GCPhysApicBase;
2084 PDMApicGetBase(pVM, &GCPhysApicBase); /** @todo cache this */
2085 GCPhysApicBase &= PAGE_BASE_GC_MASK;
2086
2087 if (GCPhysFault == GCPhysApicBase + 0x80)
2088 {
2089 /* Only attempt to patch the instruction once. */
2090 PHWACCMTPRPATCH pPatch = (PHWACCMTPRPATCH)RTAvloU32Get(&pVM->hwaccm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
2091 if (!pPatch)
2092 {
2093 rc = VINF_EM_HWACCM_PATCH_TPR_INSTR;
2094 break;
2095 }
2096 }
2097 }
2098#endif
2099
2100 /* Handle the pagefault trap for the nested shadow table. */
2101#if HC_ARCH_BITS == 32 /** @todo shadow this in a variable. */
2102 if (CPUMIsGuestInLongModeEx(pCtx))
2103 enmShwPagingMode = PGMMODE_AMD64_NX;
2104 else
2105#endif
2106 enmShwPagingMode = PGMGetHostMode(pVM);
2107
2108 /* MMIO optimization */
2109 Assert((errCode & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) != X86_TRAP_PF_RSVD);
2110 if ((errCode & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) == (X86_TRAP_PF_RSVD | X86_TRAP_PF_P))
2111 {
2112 rc = PGMR0Trap0eHandlerNPMisconfig(pVM, pVCpu, enmShwPagingMode, CPUMCTX2CORE(pCtx), GCPhysFault, errCode);
2113
2114 /*
2115 * If we succeed, resume execution.
2116 * Or, if fail in interpreting the instruction because we couldn't get the guest physical address
2117 * of the page containing the instruction via the guest's page tables (we would invalidate the guest page
2118 * in the host TLB), resume execution which would cause a guest page fault to let the guest handle this
2119 * weird case. See @bugref{6043}.
2120 */
2121 if ( rc == VINF_SUCCESS
2122 || rc == VERR_PAGE_TABLE_NOT_PRESENT
2123 || rc == VERR_PAGE_NOT_PRESENT)
2124 {
2125 Log2(("PGMR0Trap0eHandlerNPMisconfig(,,,%RGp) at %RGv -> resume\n", GCPhysFault, (RTGCPTR)pCtx->rip));
2126 goto ResumeExecution;
2127 }
2128 Log2(("PGMR0Trap0eHandlerNPMisconfig(,,,%RGp) at %RGv -> resume\n", GCPhysFault, (RTGCPTR)pCtx->rip));
2129 break;
2130 }
2131
2132 /* Exit qualification contains the linear address of the page fault. */
2133 TRPMAssertTrap(pVCpu, X86_XCPT_PF, TRPM_TRAP);
2134 TRPMSetErrorCode(pVCpu, errCode);
2135 TRPMSetFaultAddress(pVCpu, GCPhysFault);
2136
2137 rc = PGMR0Trap0eHandlerNestedPaging(pVM, pVCpu, enmShwPagingMode, errCode, CPUMCTX2CORE(pCtx), GCPhysFault);
2138 Log2(("PGMR0Trap0eHandlerNestedPaging %RGv returned %Rrc\n", (RTGCPTR)pCtx->rip, VBOXSTRICTRC_VAL(rc)));
2139
2140 /*
2141 * Same case as PGMR0Trap0eHandlerNPMisconfig(). See comment above, @bugref{6043}.
2142 */
2143 if ( rc == VINF_SUCCESS
2144 || rc == VERR_PAGE_TABLE_NOT_PRESENT
2145 || rc == VERR_PAGE_NOT_PRESENT)
2146 {
2147 /* We've successfully synced our shadow pages, so let's just continue execution. */
2148 Log2(("Shadow page fault at %RGv cr2=%RGp error code %x\n", (RTGCPTR)pCtx->rip, GCPhysFault, errCode));
2149 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitShadowPF);
2150
2151 TRPMResetTrap(pVCpu);
2152 goto ResumeExecution;
2153 }
2154
2155#ifdef VBOX_STRICT
2156 if (rc != VINF_EM_RAW_EMULATE_INSTR)
2157 LogFlow(("PGMTrap0eHandlerNestedPaging failed with %d\n", VBOXSTRICTRC_VAL(rc)));
2158#endif
2159 /* Need to go back to the recompiler to emulate the instruction. */
2160 TRPMResetTrap(pVCpu);
2161 break;
2162 }
2163
2164 case SVM_EXIT_VINTR:
2165 /* A virtual interrupt is about to be delivered, which means IF=1. */
2166 Log(("SVM_EXIT_VINTR IF=%d\n", pCtx->eflags.Bits.u1IF));
2167 pVMCB->ctrl.IntCtrl.n.u1VIrqValid = 0;
2168 pVMCB->ctrl.IntCtrl.n.u8VIrqVector = 0;
2169 goto ResumeExecution;
2170
2171 case SVM_EXIT_FERR_FREEZE:
2172 case SVM_EXIT_INTR:
2173 case SVM_EXIT_NMI:
2174 case SVM_EXIT_SMI:
2175 case SVM_EXIT_INIT:
2176 /* External interrupt; leave to allow it to be dispatched again. */
2177 rc = VINF_EM_RAW_INTERRUPT;
2178 break;
2179
2180 case SVM_EXIT_WBINVD:
2181 case SVM_EXIT_INVD: /* Guest software attempted to execute INVD. */
2182 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitInvd);
2183 /* Skip instruction and continue directly. */
2184 pCtx->rip += 2; /* Note! hardcoded opcode size! */
2185 /* Continue execution.*/
2186 goto ResumeExecution;
2187
2188 case SVM_EXIT_CPUID: /* Guest software attempted to execute CPUID. */
2189 {
2190 Log2(("SVM: Cpuid at %RGv for %x\n", (RTGCPTR)pCtx->rip, pCtx->eax));
2191 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitCpuid);
2192 rc = EMInterpretCpuId(pVM, pVCpu, CPUMCTX2CORE(pCtx));
2193 if (rc == VINF_SUCCESS)
2194 {
2195 /* Update EIP and continue execution. */
2196 pCtx->rip += 2; /* Note! hardcoded opcode size! */
2197 goto ResumeExecution;
2198 }
2199 AssertMsgFailed(("EMU: cpuid failed with %Rrc\n", VBOXSTRICTRC_VAL(rc)));
2200 rc = VINF_EM_RAW_EMULATE_INSTR;
2201 break;
2202 }
2203
2204 case SVM_EXIT_RDTSC: /* Guest software attempted to execute RDTSC. */
2205 {
2206 Log2(("SVM: Rdtsc\n"));
2207 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitRdtsc);
2208 rc = EMInterpretRdtsc(pVM, pVCpu, CPUMCTX2CORE(pCtx));
2209 if (rc == VINF_SUCCESS)
2210 {
2211 /* Update EIP and continue execution. */
2212 pCtx->rip += 2; /* Note! hardcoded opcode size! */
2213 goto ResumeExecution;
2214 }
2215 rc = VINF_EM_RAW_EMULATE_INSTR;
2216 break;
2217 }
2218
2219 case SVM_EXIT_RDPMC: /* Guest software attempted to execute RDPMC. */
2220 {
2221 Log2(("SVM: Rdpmc %x\n", pCtx->ecx));
2222 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitRdpmc);
2223 rc = EMInterpretRdpmc(pVM, pVCpu, CPUMCTX2CORE(pCtx));
2224 if (rc == VINF_SUCCESS)
2225 {
2226 /* Update EIP and continue execution. */
2227 pCtx->rip += 2; /* Note! hardcoded opcode size! */
2228 goto ResumeExecution;
2229 }
2230 rc = VINF_EM_RAW_EMULATE_INSTR;
2231 break;
2232 }
2233
2234 case SVM_EXIT_RDTSCP: /* Guest software attempted to execute RDTSCP. */
2235 {
2236 Log2(("SVM: Rdtscp\n"));
2237 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitRdtscp);
2238 rc = EMInterpretRdtscp(pVM, pVCpu, pCtx);
2239 if (rc == VINF_SUCCESS)
2240 {
2241 /* Update EIP and continue execution. */
2242 pCtx->rip += 3; /* Note! hardcoded opcode size! */
2243 goto ResumeExecution;
2244 }
2245 AssertMsgFailed(("EMU: rdtscp failed with %Rrc\n", VBOXSTRICTRC_VAL(rc)));
2246 rc = VINF_EM_RAW_EMULATE_INSTR;
2247 break;
2248 }
2249
2250 case SVM_EXIT_INVLPG: /* Guest software attempted to execute INVLPG. */
2251 {
2252 Log2(("SVM: invlpg\n"));
2253 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitInvlpg);
2254
2255 Assert(!pVM->hwaccm.s.fNestedPaging);
2256
2257 /* Truly a pita. Why can't SVM give the same information as VT-x? */
2258 rc = hmR0SvmInterpretInvlpg(pVM, pVCpu, CPUMCTX2CORE(pCtx));
2259 if (rc == VINF_SUCCESS)
2260 {
2261 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatFlushPageInvlpg);
2262 goto ResumeExecution; /* eip already updated */
2263 }
2264 break;
2265 }
2266
2267 case SVM_EXIT_WRITE_CR0: case SVM_EXIT_WRITE_CR1: case SVM_EXIT_WRITE_CR2: case SVM_EXIT_WRITE_CR3:
2268 case SVM_EXIT_WRITE_CR4: case SVM_EXIT_WRITE_CR5: case SVM_EXIT_WRITE_CR6: case SVM_EXIT_WRITE_CR7:
2269 case SVM_EXIT_WRITE_CR8: case SVM_EXIT_WRITE_CR9: case SVM_EXIT_WRITE_CR10: case SVM_EXIT_WRITE_CR11:
2270 case SVM_EXIT_WRITE_CR12: case SVM_EXIT_WRITE_CR13: case SVM_EXIT_WRITE_CR14: case SVM_EXIT_WRITE_CR15:
2271 {
2272 Log2(("SVM: %RGv mov cr%d, \n", (RTGCPTR)pCtx->rip, exitCode - SVM_EXIT_WRITE_CR0));
2273 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitCRxWrite[exitCode - SVM_EXIT_WRITE_CR0]);
2274 rc = EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0);
2275
2276 switch (exitCode - SVM_EXIT_WRITE_CR0)
2277 {
2278 case 0:
2279 pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_GUEST_CR0;
2280 break;
2281 case 2:
2282 break;
2283 case 3:
2284 Assert(!pVM->hwaccm.s.fNestedPaging);
2285 pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_GUEST_CR3;
2286 break;
2287 case 4:
2288 pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_GUEST_CR4;
2289 break;
2290 case 8:
2291 break;
2292 default:
2293 AssertFailed();
2294 }
2295 if (rc == VINF_SUCCESS)
2296 {
2297 /* EIP has been updated already. */
2298 /* Only resume if successful. */
2299 goto ResumeExecution;
2300 }
2301 Assert(rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_PGM_SYNC_CR3);
2302 break;
2303 }
2304
2305 case SVM_EXIT_READ_CR0: case SVM_EXIT_READ_CR1: case SVM_EXIT_READ_CR2: case SVM_EXIT_READ_CR3:
2306 case SVM_EXIT_READ_CR4: case SVM_EXIT_READ_CR5: case SVM_EXIT_READ_CR6: case SVM_EXIT_READ_CR7:
2307 case SVM_EXIT_READ_CR8: case SVM_EXIT_READ_CR9: case SVM_EXIT_READ_CR10: case SVM_EXIT_READ_CR11:
2308 case SVM_EXIT_READ_CR12: case SVM_EXIT_READ_CR13: case SVM_EXIT_READ_CR14: case SVM_EXIT_READ_CR15:
2309 {
2310 Log2(("SVM: %RGv mov x, cr%d\n", (RTGCPTR)pCtx->rip, exitCode - SVM_EXIT_READ_CR0));
2311 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitCRxRead[exitCode - SVM_EXIT_READ_CR0]);
2312 rc = EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0);
2313 if (rc == VINF_SUCCESS)
2314 {
2315 /* EIP has been updated already. */
2316 /* Only resume if successful. */
2317 goto ResumeExecution;
2318 }
2319 Assert(rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_PGM_SYNC_CR3);
2320 break;
2321 }
2322
2323 case SVM_EXIT_WRITE_DR0: case SVM_EXIT_WRITE_DR1: case SVM_EXIT_WRITE_DR2: case SVM_EXIT_WRITE_DR3:
2324 case SVM_EXIT_WRITE_DR4: case SVM_EXIT_WRITE_DR5: case SVM_EXIT_WRITE_DR6: case SVM_EXIT_WRITE_DR7:
2325 case SVM_EXIT_WRITE_DR8: case SVM_EXIT_WRITE_DR9: case SVM_EXIT_WRITE_DR10: case SVM_EXIT_WRITE_DR11:
2326 case SVM_EXIT_WRITE_DR12: case SVM_EXIT_WRITE_DR13: case SVM_EXIT_WRITE_DR14: case SVM_EXIT_WRITE_DR15:
2327 {
2328 Log2(("SVM: %RGv mov dr%d, x\n", (RTGCPTR)pCtx->rip, exitCode - SVM_EXIT_WRITE_DR0));
2329 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitDRxWrite);
2330
2331 if ( !DBGFIsStepping(pVCpu)
2332 && !CPUMIsHyperDebugStateActive(pVCpu))
2333 {
2334 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatDRxContextSwitch);
2335
2336 /* Disable drx move intercepts. */
2337 pVMCB->ctrl.u16InterceptRdDRx = 0;
2338 pVMCB->ctrl.u16InterceptWrDRx = 0;
2339
2340 /* Save the host and load the guest debug state. */
2341 rc2 = CPUMR0LoadGuestDebugState(pVM, pVCpu, pCtx, false /* exclude DR6 */);
2342 AssertRC(rc2);
2343 goto ResumeExecution;
2344 }
2345
2346 rc = EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0);
2347 if (rc == VINF_SUCCESS)
2348 {
2349 /* EIP has been updated already. */
2350 pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_GUEST_DEBUG;
2351
2352 /* Only resume if successful. */
2353 goto ResumeExecution;
2354 }
2355 Assert(rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_PGM_SYNC_CR3);
2356 break;
2357 }
2358
2359 case SVM_EXIT_READ_DR0: case SVM_EXIT_READ_DR1: case SVM_EXIT_READ_DR2: case SVM_EXIT_READ_DR3:
2360 case SVM_EXIT_READ_DR4: case SVM_EXIT_READ_DR5: case SVM_EXIT_READ_DR6: case SVM_EXIT_READ_DR7:
2361 case SVM_EXIT_READ_DR8: case SVM_EXIT_READ_DR9: case SVM_EXIT_READ_DR10: case SVM_EXIT_READ_DR11:
2362 case SVM_EXIT_READ_DR12: case SVM_EXIT_READ_DR13: case SVM_EXIT_READ_DR14: case SVM_EXIT_READ_DR15:
2363 {
2364 Log2(("SVM: %RGv mov x, dr%d\n", (RTGCPTR)pCtx->rip, exitCode - SVM_EXIT_READ_DR0));
2365 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitDRxRead);
2366
2367 if (!DBGFIsStepping(pVCpu))
2368 {
2369 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatDRxContextSwitch);
2370
2371 /* Disable DRx move intercepts. */
2372 pVMCB->ctrl.u16InterceptRdDRx = 0;
2373 pVMCB->ctrl.u16InterceptWrDRx = 0;
2374
2375 /* Save the host and load the guest debug state. */
2376 rc2 = CPUMR0LoadGuestDebugState(pVM, pVCpu, pCtx, false /* exclude DR6 */);
2377 AssertRC(rc2);
2378 goto ResumeExecution;
2379 }
2380
2381 rc = EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0);
2382 if (rc == VINF_SUCCESS)
2383 {
2384 /* EIP has been updated already. */
2385 /* Only resume if successful. */
2386 goto ResumeExecution;
2387 }
2388 Assert(rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_PGM_SYNC_CR3);
2389 break;
2390 }
2391
2392 /* Note: We'll get a #GP if the IO instruction isn't allowed (IOPL or TSS bitmap); no need to double check. */
2393 case SVM_EXIT_IOIO: /* I/O instruction. */
2394 {
2395 SVM_IOIO_EXIT IoExitInfo;
2396 uint32_t uIOSize, uAndVal;
2397
2398 IoExitInfo.au32[0] = pVMCB->ctrl.u64ExitInfo1;
2399
2400 /** @todo could use a lookup table here */
2401 if (IoExitInfo.n.u1OP8)
2402 {
2403 uIOSize = 1;
2404 uAndVal = 0xff;
2405 }
2406 else if (IoExitInfo.n.u1OP16)
2407 {
2408 uIOSize = 2;
2409 uAndVal = 0xffff;
2410 }
2411 else if (IoExitInfo.n.u1OP32)
2412 {
2413 uIOSize = 4;
2414 uAndVal = 0xffffffff;
2415 }
2416 else
2417 {
2418 AssertFailed(); /* should be fatal. */
2419 rc = VINF_EM_RAW_EMULATE_INSTR;
2420 break;
2421 }
2422
2423 if (IoExitInfo.n.u1STR)
2424 {
2425 /* ins/outs */
2426 PDISCPUSTATE pDis = &pVCpu->hwaccm.s.DisState;
2427
2428 /* Disassemble manually to deal with segment prefixes. */
2429 rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, NULL);
2430 if (rc == VINF_SUCCESS)
2431 {
2432 if (IoExitInfo.n.u1Type == 0)
2433 {
2434 Log2(("IOMInterpretOUTSEx %RGv %x size=%d\n", (RTGCPTR)pCtx->rip, IoExitInfo.n.u16Port, uIOSize));
2435 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitIOStringWrite);
2436 rc = IOMInterpretOUTSEx(pVM, CPUMCTX2CORE(pCtx), IoExitInfo.n.u16Port, pDis->fPrefix,
2437 (DISCPUMODE)pDis->uAddrMode, uIOSize);
2438 }
2439 else
2440 {
2441 Log2(("IOMInterpretINSEx %RGv %x size=%d\n", (RTGCPTR)pCtx->rip, IoExitInfo.n.u16Port, uIOSize));
2442 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitIOStringRead);
2443 rc = IOMInterpretINSEx(pVM, CPUMCTX2CORE(pCtx), IoExitInfo.n.u16Port, pDis->fPrefix,
2444 (DISCPUMODE)pDis->uAddrMode, uIOSize);
2445 }
2446 }
2447 else
2448 rc = VINF_EM_RAW_EMULATE_INSTR;
2449 }
2450 else
2451 {
2452 /* Normal in/out */
2453 Assert(!IoExitInfo.n.u1REP);
2454
2455 if (IoExitInfo.n.u1Type == 0)
2456 {
2457 Log2(("IOMIOPortWrite %RGv %x %x size=%d\n", (RTGCPTR)pCtx->rip, IoExitInfo.n.u16Port, pCtx->eax & uAndVal,
2458 uIOSize));
2459 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitIOWrite);
2460 rc = IOMIOPortWrite(pVM, IoExitInfo.n.u16Port, pCtx->eax & uAndVal, uIOSize);
2461 if (rc == VINF_IOM_R3_IOPORT_WRITE)
2462 {
2463 HWACCMR0SavePendingIOPortWrite(pVCpu, pCtx->rip, pVMCB->ctrl.u64ExitInfo2, IoExitInfo.n.u16Port,
2464 uAndVal, uIOSize);
2465 }
2466 }
2467 else
2468 {
2469 uint32_t u32Val = 0;
2470
2471 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitIORead);
2472 rc = IOMIOPortRead(pVM, IoExitInfo.n.u16Port, &u32Val, uIOSize);
2473 if (IOM_SUCCESS(rc))
2474 {
2475 /* Write back to the EAX register. */
2476 pCtx->eax = (pCtx->eax & ~uAndVal) | (u32Val & uAndVal);
2477 Log2(("IOMIOPortRead %RGv %x %x size=%d\n", (RTGCPTR)pCtx->rip, IoExitInfo.n.u16Port, u32Val & uAndVal,
2478 uIOSize));
2479 }
2480 else if (rc == VINF_IOM_R3_IOPORT_READ)
2481 {
2482 HWACCMR0SavePendingIOPortRead(pVCpu, pCtx->rip, pVMCB->ctrl.u64ExitInfo2, IoExitInfo.n.u16Port,
2483 uAndVal, uIOSize);
2484 }
2485 }
2486 }
2487
2488 /*
2489 * Handled the I/O return codes.
2490 * (The unhandled cases end up with rc == VINF_EM_RAW_EMULATE_INSTR.)
2491 */
2492 if (IOM_SUCCESS(rc))
2493 {
2494 /* Update EIP and continue execution. */
2495 pCtx->rip = pVMCB->ctrl.u64ExitInfo2; /* RIP/EIP of the next instruction is saved in EXITINFO2. */
2496 if (RT_LIKELY(rc == VINF_SUCCESS))
2497 {
2498 /* If any IO breakpoints are armed, then we should check if a debug trap needs to be generated. */
2499 if (pCtx->dr[7] & X86_DR7_ENABLED_MASK)
2500 {
2501 /* IO operation lookup arrays. */
2502 static uint32_t const aIOSize[4] = { 1, 2, 0, 4 };
2503
2504 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatDRxIOCheck);
2505 for (unsigned i = 0; i < 4; i++)
2506 {
2507 unsigned uBPLen = aIOSize[X86_DR7_GET_LEN(pCtx->dr[7], i)];
2508
2509 if ( (IoExitInfo.n.u16Port >= pCtx->dr[i] && IoExitInfo.n.u16Port < pCtx->dr[i] + uBPLen)
2510 && (pCtx->dr[7] & (X86_DR7_L(i) | X86_DR7_G(i)))
2511 && (pCtx->dr[7] & X86_DR7_RW(i, X86_DR7_RW_IO)) == X86_DR7_RW(i, X86_DR7_RW_IO))
2512 {
2513 SVM_EVENT Event;
2514
2515 Assert(CPUMIsGuestDebugStateActive(pVCpu));
2516
2517 /* Clear all breakpoint status flags and set the one we just hit. */
2518 pCtx->dr[6] &= ~(X86_DR6_B0|X86_DR6_B1|X86_DR6_B2|X86_DR6_B3);
2519 pCtx->dr[6] |= (uint64_t)RT_BIT(i);
2520
2521 /*
2522 * Note: AMD64 Architecture Programmer's Manual 13.1:
2523 * Bits 15:13 of the DR6 register is never cleared by the processor and must be cleared
2524 * by software after the contents have been read.
2525 */
2526 pVMCB->guest.u64DR6 = pCtx->dr[6];
2527
2528 /* X86_DR7_GD will be cleared if drx accesses should be trapped inside the guest. */
2529 pCtx->dr[7] &= ~X86_DR7_GD;
2530
2531 /* Paranoia. */
2532 pCtx->dr[7] &= 0xffffffff; /* upper 32 bits reserved */
2533 pCtx->dr[7] &= ~(RT_BIT(11) | RT_BIT(12) | RT_BIT(14) | RT_BIT(15)); /* must be zero */
2534 pCtx->dr[7] |= 0x400; /* must be one */
2535
2536 pVMCB->guest.u64DR7 = pCtx->dr[7];
2537
2538 /* Inject the exception. */
2539 Log(("Inject IO debug trap at %RGv\n", (RTGCPTR)pCtx->rip));
2540
2541 Event.au64[0] = 0;
2542 Event.n.u3Type = SVM_EVENT_EXCEPTION; /* trap or fault */
2543 Event.n.u1Valid = 1;
2544 Event.n.u8Vector = X86_XCPT_DB;
2545
2546 hmR0SvmInjectEvent(pVCpu, pVMCB, pCtx, &Event);
2547 goto ResumeExecution;
2548 }
2549 }
2550 }
2551 goto ResumeExecution;
2552 }
2553 Log2(("EM status from IO at %RGv %x size %d: %Rrc\n", (RTGCPTR)pCtx->rip, IoExitInfo.n.u16Port, uIOSize,
2554 VBOXSTRICTRC_VAL(rc)));
2555 break;
2556 }
2557
2558#ifdef VBOX_STRICT
2559 if (rc == VINF_IOM_R3_IOPORT_READ)
2560 Assert(IoExitInfo.n.u1Type != 0);
2561 else if (rc == VINF_IOM_R3_IOPORT_WRITE)
2562 Assert(IoExitInfo.n.u1Type == 0);
2563 else
2564 {
2565 AssertMsg( RT_FAILURE(rc)
2566 || rc == VINF_EM_RAW_EMULATE_INSTR
2567 || rc == VINF_EM_RAW_GUEST_TRAP
2568 || rc == VINF_TRPM_XCPT_DISPATCHED, ("%Rrc\n", VBOXSTRICTRC_VAL(rc)));
2569 }
2570#endif
2571 Log2(("Failed IO at %RGv %x size %d\n", (RTGCPTR)pCtx->rip, IoExitInfo.n.u16Port, uIOSize));
2572 break;
2573 }
2574
2575 case SVM_EXIT_HLT:
2576 /* Check if external interrupts are pending; if so, don't switch back. */
2577 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitHlt);
2578 pCtx->rip++; /* skip hlt */
2579 if (EMShouldContinueAfterHalt(pVCpu, pCtx))
2580 goto ResumeExecution;
2581
2582 rc = VINF_EM_HALT;
2583 break;
2584
2585 case SVM_EXIT_MWAIT_UNCOND:
2586 Log2(("SVM: mwait\n"));
2587 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitMwait);
2588 rc = EMInterpretMWait(pVM, pVCpu, CPUMCTX2CORE(pCtx));
2589 if ( rc == VINF_EM_HALT
2590 || rc == VINF_SUCCESS)
2591 {
2592 /* Update EIP and continue execution. */
2593 pCtx->rip += 3; /* Note: hardcoded opcode size assumption! */
2594
2595 /* Check if external interrupts are pending; if so, don't switch back. */
2596 if ( rc == VINF_SUCCESS
2597 || ( rc == VINF_EM_HALT
2598 && EMShouldContinueAfterHalt(pVCpu, pCtx))
2599 )
2600 goto ResumeExecution;
2601 }
2602 AssertMsg(rc == VERR_EM_INTERPRETER || rc == VINF_EM_HALT, ("EMU: mwait failed with %Rrc\n", VBOXSTRICTRC_VAL(rc)));
2603 break;
2604
2605 case SVM_EXIT_MONITOR:
2606 {
2607 Log2(("SVM: monitor\n"));
2608
2609 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitMonitor);
2610 rc = EMInterpretMonitor(pVM, pVCpu, CPUMCTX2CORE(pCtx));
2611 if (rc == VINF_SUCCESS)
2612 {
2613 /* Update EIP and continue execution. */
2614 pCtx->rip += 3; /* Note: hardcoded opcode size assumption! */
2615 goto ResumeExecution;
2616 }
2617 AssertMsg(rc == VERR_EM_INTERPRETER, ("EMU: monitor failed with %Rrc\n", VBOXSTRICTRC_VAL(rc)));
2618 break;
2619 }
2620
2621 case SVM_EXIT_VMMCALL:
2622 rc = hmR0SvmEmulateTprVMMCall(pVM, pVCpu, pCtx);
2623 if (rc == VINF_SUCCESS)
2624 {
2625 goto ResumeExecution; /* rip already updated. */
2626 }
2627 /* no break */
2628
2629 case SVM_EXIT_RSM:
2630 case SVM_EXIT_INVLPGA:
2631 case SVM_EXIT_VMRUN:
2632 case SVM_EXIT_VMLOAD:
2633 case SVM_EXIT_VMSAVE:
2634 case SVM_EXIT_STGI:
2635 case SVM_EXIT_CLGI:
2636 case SVM_EXIT_SKINIT:
2637 {
2638 /* Unsupported instructions. */
2639 SVM_EVENT Event;
2640
2641 Event.au64[0] = 0;
2642 Event.n.u3Type = SVM_EVENT_EXCEPTION;
2643 Event.n.u1Valid = 1;
2644 Event.n.u8Vector = X86_XCPT_UD;
2645
2646 Log(("Forced #UD trap at %RGv\n", (RTGCPTR)pCtx->rip));
2647 hmR0SvmInjectEvent(pVCpu, pVMCB, pCtx, &Event);
2648 goto ResumeExecution;
2649 }
2650
2651 /* Emulate in ring-3. */
2652 case SVM_EXIT_MSR:
2653 {
2654 /* When an interrupt is pending, we'll let MSR_K8_LSTAR writes fault in our TPR patch code. */
2655 if ( pVM->hwaccm.s.fTPRPatchingActive
2656 && pCtx->ecx == MSR_K8_LSTAR
2657 && pVMCB->ctrl.u64ExitInfo1 == 1 /* wrmsr */)
2658 {
2659 if ((pCtx->eax & 0xff) != u8LastTPR)
2660 {
2661 Log(("SVM: Faulting MSR_K8_LSTAR write with new TPR value %x\n", pCtx->eax & 0xff));
2662
2663 /* Our patch code uses LSTAR for TPR caching. */
2664 rc2 = PDMApicSetTPR(pVCpu, pCtx->eax & 0xff);
2665 AssertRC(rc2);
2666 }
2667
2668 /* Skip the instruction and continue. */
2669 pCtx->rip += 2; /* wrmsr = [0F 30] */
2670
2671 /* Only resume if successful. */
2672 goto ResumeExecution;
2673 }
2674
2675 /*
2676 * The Intel spec. claims there's an REX version of RDMSR that's slightly different,
2677 * so we play safe by completely disassembling the instruction.
2678 */
2679 STAM_COUNTER_INC((pVMCB->ctrl.u64ExitInfo1 == 0) ? &pVCpu->hwaccm.s.StatExitRdmsr : &pVCpu->hwaccm.s.StatExitWrmsr);
2680 Log(("SVM: %s\n", (pVMCB->ctrl.u64ExitInfo1 == 0) ? "rdmsr" : "wrmsr"));
2681 rc = EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0);
2682 if (rc == VINF_SUCCESS)
2683 {
2684 /* EIP has been updated already. */
2685 /* Only resume if successful. */
2686 goto ResumeExecution;
2687 }
2688 AssertMsg(rc == VERR_EM_INTERPRETER, ("EMU: %s failed with %Rrc\n", (pVMCB->ctrl.u64ExitInfo1 == 0) ? "rdmsr" : "wrmsr",
2689 VBOXSTRICTRC_VAL(rc)));
2690 break;
2691 }
2692
2693 case SVM_EXIT_TASK_SWITCH: /* too complicated to emulate, so fall back to the recompiler */
2694 Log(("SVM_EXIT_TASK_SWITCH: exit2=%RX64\n", pVMCB->ctrl.u64ExitInfo2));
2695 if ( !(pVMCB->ctrl.u64ExitInfo2 & (SVM_EXIT2_TASK_SWITCH_IRET | SVM_EXIT2_TASK_SWITCH_JMP))
2696 && pVCpu->hwaccm.s.Event.fPending)
2697 {
2698 SVM_EVENT Event;
2699 Event.au64[0] = pVCpu->hwaccm.s.Event.intInfo;
2700
2701 /* Caused by an injected interrupt. */
2702 pVCpu->hwaccm.s.Event.fPending = false;
2703 switch (Event.n.u3Type)
2704 {
2705 case SVM_EVENT_EXTERNAL_IRQ:
2706 case SVM_EVENT_NMI:
2707 Log(("SVM_EXIT_TASK_SWITCH: reassert trap %d\n", Event.n.u8Vector));
2708 Assert(!Event.n.u1ErrorCodeValid);
2709 rc2 = TRPMAssertTrap(pVCpu, Event.n.u8Vector, TRPM_HARDWARE_INT);
2710 AssertRC(rc2);
2711 break;
2712
2713 default:
2714 /* Exceptions and software interrupts can just be restarted. */
2715 break;
2716 }
2717 }
2718 rc = VERR_EM_INTERPRETER;
2719 break;
2720
2721 case SVM_EXIT_PAUSE:
2722 case SVM_EXIT_MWAIT_ARMED:
2723 rc = VERR_EM_INTERPRETER;
2724 break;
2725
2726 case SVM_EXIT_SHUTDOWN:
2727 rc = VINF_EM_RESET; /* Triple fault equals a reset. */
2728 break;
2729
2730 case SVM_EXIT_IDTR_READ:
2731 case SVM_EXIT_GDTR_READ:
2732 case SVM_EXIT_LDTR_READ:
2733 case SVM_EXIT_TR_READ:
2734 case SVM_EXIT_IDTR_WRITE:
2735 case SVM_EXIT_GDTR_WRITE:
2736 case SVM_EXIT_LDTR_WRITE:
2737 case SVM_EXIT_TR_WRITE:
2738 case SVM_EXIT_CR0_SEL_WRITE:
2739 default:
2740 /* Unexpected exit codes. */
2741 rc = VERR_HMSVM_UNEXPECTED_EXIT;
2742 AssertMsgFailed(("Unexpected exit code %x\n", exitCode)); /* Can't happen. */
2743 break;
2744 }
2745
2746end:
2747
2748 /*
2749 * We are now going back to ring-3, so clear the forced action flag.
2750 */
2751 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TO_R3);
2752
2753 /*
2754 * Signal changes to the recompiler.
2755 */
2756 CPUMSetChangedFlags(pVCpu,
2757 CPUM_CHANGED_SYSENTER_MSR
2758 | CPUM_CHANGED_LDTR
2759 | CPUM_CHANGED_GDTR
2760 | CPUM_CHANGED_IDTR
2761 | CPUM_CHANGED_TR
2762 | CPUM_CHANGED_HIDDEN_SEL_REGS);
2763
2764 /*
2765 * If we executed vmrun and an external IRQ was pending, then we don't have to do a full sync the next time.
2766 */
2767 if (exitCode == SVM_EXIT_INTR)
2768 {
2769 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatPendingHostIrq);
2770 /* On the next entry we'll only sync the host context. */
2771 pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_HOST_CONTEXT;
2772 }
2773 else
2774 {
2775 /* On the next entry we'll sync everything. */
2776 /** @todo we can do better than this */
2777 /* Not in the VINF_PGM_CHANGE_MODE though! */
2778 pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_ALL;
2779 }
2780
2781 /* Translate into a less severe return code */
2782 if (rc == VERR_EM_INTERPRETER)
2783 rc = VINF_EM_RAW_EMULATE_INSTR;
2784
2785 /* Just set the correct state here instead of trying to catch every goto above. */
2786 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED, VMCPUSTATE_STARTED_EXEC);
2787
2788#ifdef VBOX_WITH_VMMR0_DISABLE_PREEMPTION
2789 /* Restore interrupts if we exitted after disabling them. */
2790 if (uOldEFlags != ~(RTCCUINTREG)0)
2791 ASMSetFlags(uOldEFlags);
2792#endif
2793
2794 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit2, x);
2795 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit1, x);
2796 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatEntry, x);
2797 return VBOXSTRICTRC_TODO(rc);
2798}
2799
2800
2801/**
2802 * Emulate simple mov tpr instruction.
2803 *
2804 * @returns VBox status code.
2805 * @param pVM Pointer to the VM.
2806 * @param pVCpu Pointer to the VMCPU.
2807 * @param pCtx Pointer to the guest CPU context.
2808 */
2809static int hmR0SvmEmulateTprVMMCall(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
2810{
2811 int rc;
2812
2813 LogFlow(("Emulated VMMCall TPR access replacement at %RGv\n", pCtx->rip));
2814
2815 for (;;)
2816 {
2817 bool fPending;
2818 uint8_t u8Tpr;
2819
2820 PHWACCMTPRPATCH pPatch = (PHWACCMTPRPATCH)RTAvloU32Get(&pVM->hwaccm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
2821 if (!pPatch)
2822 break;
2823
2824 switch(pPatch->enmType)
2825 {
2826 case HWACCMTPRINSTR_READ:
2827 /* TPR caching in CR8 */
2828 rc = PDMApicGetTPR(pVCpu, &u8Tpr, &fPending);
2829 AssertRC(rc);
2830
2831 rc = DISWriteReg32(CPUMCTX2CORE(pCtx), pPatch->uDstOperand, u8Tpr);
2832 AssertRC(rc);
2833
2834 LogFlow(("Emulated read successfully\n"));
2835 pCtx->rip += pPatch->cbOp;
2836 break;
2837
2838 case HWACCMTPRINSTR_WRITE_REG:
2839 case HWACCMTPRINSTR_WRITE_IMM:
2840 /* Fetch the new TPR value */
2841 if (pPatch->enmType == HWACCMTPRINSTR_WRITE_REG)
2842 {
2843 uint32_t val;
2844
2845 rc = DISFetchReg32(CPUMCTX2CORE(pCtx), pPatch->uSrcOperand, &val);
2846 AssertRC(rc);
2847 u8Tpr = val;
2848 }
2849 else
2850 u8Tpr = (uint8_t)pPatch->uSrcOperand;
2851
2852 rc = PDMApicSetTPR(pVCpu, u8Tpr);
2853 AssertRC(rc);
2854 LogFlow(("Emulated write successfully\n"));
2855 pCtx->rip += pPatch->cbOp;
2856 break;
2857
2858 default:
2859 AssertMsgFailedReturn(("Unexpected type %d\n", pPatch->enmType), VERR_HMSVM_UNEXPECTED_PATCH_TYPE);
2860 }
2861 }
2862 return VINF_SUCCESS;
2863}
2864
2865
2866/**
2867 * Enters the AMD-V session.
2868 *
2869 * @returns VBox status code.
2870 * @param pVM Pointer to the VM.
2871 * @param pVCpu Pointer to the VMCPU.
2872 * @param pCpu Pointer to the CPU info struct.
2873 */
2874VMMR0DECL(int) SVMR0Enter(PVM pVM, PVMCPU pVCpu, PHMGLOBLCPUINFO pCpu)
2875{
2876 Assert(pVM->hwaccm.s.svm.fSupported);
2877
2878 LogFlow(("SVMR0Enter cpu%d last=%d asid=%d\n", pCpu->idCpu, pVCpu->hwaccm.s.idLastCpu, pVCpu->hwaccm.s.uCurrentASID));
2879 pVCpu->hwaccm.s.fResumeVM = false;
2880
2881 /* Force to reload LDTR, so we'll execute VMLoad to load additional guest state. */
2882 pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_GUEST_LDTR;
2883
2884 return VINF_SUCCESS;
2885}
2886
2887
2888/**
2889 * Leaves the AMD-V session.
2890 *
2891 * @returns VBox status code.
2892 * @param pVM Pointer to the VM.
2893 * @param pVCpu Pointer to the VMCPU.
2894 * @param pCtx Pointer to the guest CPU context.
2895 */
2896VMMR0DECL(int) SVMR0Leave(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
2897{
2898 SVM_VMCB *pVMCB = (SVM_VMCB *)pVCpu->hwaccm.s.svm.pVMCB;
2899
2900 Assert(pVM->hwaccm.s.svm.fSupported);
2901
2902#ifdef DEBUG
2903 if (CPUMIsHyperDebugStateActive(pVCpu))
2904 {
2905 CPUMR0LoadHostDebugState(pVM, pVCpu);
2906 }
2907 else
2908#endif
2909 /* Save the guest debug state if necessary. */
2910 if (CPUMIsGuestDebugStateActive(pVCpu))
2911 {
2912 CPUMR0SaveGuestDebugState(pVM, pVCpu, pCtx, false /* skip DR6 */);
2913
2914 /* Intercept all DRx reads and writes again. Changed later on. */
2915 pVMCB->ctrl.u16InterceptRdDRx = 0xFFFF;
2916 pVMCB->ctrl.u16InterceptWrDRx = 0xFFFF;
2917
2918 /* Resync the debug registers the next time. */
2919 pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_GUEST_DEBUG;
2920 }
2921 else
2922 Assert(pVMCB->ctrl.u16InterceptRdDRx == 0xFFFF && pVMCB->ctrl.u16InterceptWrDRx == 0xFFFF);
2923
2924 return VINF_SUCCESS;
2925}
2926
2927
2928/**
2929 * Worker for Interprets INVLPG.
2930 *
2931 * @return VBox status code.
2932 * @param pVCpu Pointer to the VMCPU.
2933 * @param pCpu Pointer to the CPU info struct.
2934 * @param pRegFrame Pointer to the register frame.
2935 */
2936static int hmR0svmInterpretInvlPgEx(PVMCPU pVCpu, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame)
2937{
2938 DISQPVPARAMVAL param1;
2939 RTGCPTR addr;
2940
2941 int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->Param1, &param1, DISQPVWHICH_SRC);
2942 if (RT_FAILURE(rc))
2943 return VERR_EM_INTERPRETER;
2944
2945 switch (param1.type)
2946 {
2947 case DISQPV_TYPE_IMMEDIATE:
2948 case DISQPV_TYPE_ADDRESS:
2949 if (!(param1.flags & (DISQPV_FLAG_32 | DISQPV_FLAG_64)))
2950 return VERR_EM_INTERPRETER;
2951 addr = param1.val.val64;
2952 break;
2953
2954 default:
2955 return VERR_EM_INTERPRETER;
2956 }
2957
2958 /** @todo is addr always a flat linear address or ds based
2959 * (in absence of segment override prefixes)????
2960 */
2961 rc = PGMInvalidatePage(pVCpu, addr);
2962 if (RT_SUCCESS(rc))
2963 return VINF_SUCCESS;
2964
2965 AssertRC(rc);
2966 return rc;
2967}
2968
2969
2970/**
2971 * Interprets INVLPG.
2972 *
2973 * @returns VBox status code.
2974 * @retval VINF_* Scheduling instructions.
2975 * @retval VERR_EM_INTERPRETER Something we can't cope with.
2976 * @retval VERR_* Fatal errors.
2977 *
2978 * @param pVM Pointer to the VM.
2979 * @param pRegFrame Pointer to the register frame.
2980 *
2981 * @remarks Updates the EIP if an instruction was executed successfully.
2982 */
2983static int hmR0SvmInterpretInvlpg(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame)
2984{
2985 /*
2986 * Only allow 32 & 64 bit code.
2987 */
2988 if (CPUMGetGuestCodeBits(pVCpu) != 16)
2989 {
2990 PDISSTATE pDis = &pVCpu->hwaccm.s.DisState;
2991 int rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, NULL);
2992 if (RT_SUCCESS(rc) && pDis->pCurInstr->uOpcode == OP_INVLPG)
2993 {
2994 rc = hmR0svmInterpretInvlPgEx(pVCpu, pDis, pRegFrame);
2995 if (RT_SUCCESS(rc))
2996 pRegFrame->rip += pDis->cbInstr; /* Move on to the next instruction. */
2997 return rc;
2998 }
2999 }
3000 return VERR_EM_INTERPRETER;
3001}
3002
3003
3004/**
3005 * Invalidates a guest page by guest virtual address.
3006 *
3007 * @returns VBox status code.
3008 * @param pVM Pointer to the VM.
3009 * @param pVCpu Pointer to the VMCPU.
3010 * @param GCVirt Guest virtual address of the page to invalidate.
3011 */
3012VMMR0DECL(int) SVMR0InvalidatePage(PVM pVM, PVMCPU pVCpu, RTGCPTR GCVirt)
3013{
3014 bool fFlushPending = pVM->hwaccm.s.svm.fAlwaysFlushTLB | VMCPU_FF_ISSET(pVCpu, VMCPU_FF_TLB_FLUSH);
3015
3016 /* Skip it if a TLB flush is already pending. */
3017 if (!fFlushPending)
3018 {
3019 SVM_VMCB *pVMCB;
3020
3021 Log2(("SVMR0InvalidatePage %RGv\n", GCVirt));
3022 AssertReturn(pVM, VERR_INVALID_PARAMETER);
3023 Assert(pVM->hwaccm.s.svm.fSupported);
3024
3025 pVMCB = (SVM_VMCB *)pVCpu->hwaccm.s.svm.pVMCB;
3026 AssertMsgReturn(pVMCB, ("Invalid pVMCB\n"), VERR_HMSVM_INVALID_PVMCB);
3027
3028#if HC_ARCH_BITS == 32
3029 /* If we get a flush in 64 bits guest mode, then force a full TLB flush. Invlpga takes only 32 bits addresses. */
3030 if (CPUMIsGuestInLongMode(pVCpu))
3031 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
3032 else
3033#endif
3034 SVMR0InvlpgA(GCVirt, pVMCB->ctrl.TLBCtrl.n.u32ASID);
3035 }
3036 return VINF_SUCCESS;
3037}
3038
3039
3040#if 0 /* obsolete, but left here for clarification. */
3041/**
3042 * Invalidates a guest page by physical address.
3043 *
3044 * @returns VBox status code.
3045 * @param pVM Pointer to the VM.
3046 * @param pVCpu Pointer to the VMCPU.
3047 * @param GCPhys Guest physical address of the page to invalidate.
3048 */
3049VMMR0DECL(int) SVMR0InvalidatePhysPage(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys)
3050{
3051 Assert(pVM->hwaccm.s.fNestedPaging);
3052 /* invlpga only invalidates TLB entries for guest virtual addresses; we have no choice but to force a TLB flush here. */
3053 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
3054 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatFlushTLBInvlpga);
3055 return VINF_SUCCESS;
3056}
3057#endif
3058
3059
3060#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
3061/**
3062 * Prepares for and executes VMRUN (64-bit guests from a 32-bit host).
3063 *
3064 * @returns VBox status code.
3065 * @param pVMCBHostPhys Physical address of host VMCB.
3066 * @param pVMCBPhys Physical address of the VMCB.
3067 * @param pCtx Pointer to the guest CPU context.
3068 * @param pVM Pointer to the VM.
3069 * @param pVCpu Pointer to the VMCPU.
3070 */
3071DECLASM(int) SVMR0VMSwitcherRun64(RTHCPHYS pVMCBHostPhys, RTHCPHYS pVMCBPhys, PCPUMCTX pCtx, PVM pVM, PVMCPU pVCpu)
3072{
3073 uint32_t aParam[4];
3074
3075 aParam[0] = (uint32_t)(pVMCBHostPhys); /* Param 1: pVMCBHostPhys - Lo. */
3076 aParam[1] = (uint32_t)(pVMCBHostPhys >> 32); /* Param 1: pVMCBHostPhys - Hi. */
3077 aParam[2] = (uint32_t)(pVMCBPhys); /* Param 2: pVMCBPhys - Lo. */
3078 aParam[3] = (uint32_t)(pVMCBPhys >> 32); /* Param 2: pVMCBPhys - Hi. */
3079
3080 return SVMR0Execute64BitsHandler(pVM, pVCpu, pCtx, pVM->hwaccm.s.pfnSVMGCVMRun64, 4, &aParam[0]);
3081}
3082
3083
3084/**
3085 * Executes the specified handler in 64-bit mode.
3086 *
3087 * @returns VBox status code.
3088 * @param pVM Pointer to the VM.
3089 * @param pVCpu Pointer to the VMCPU.
3090 * @param pCtx Pointer to the guest CPU context.
3091 * @param pfnHandler Pointer to the RC handler function.
3092 * @param cbParam Number of parameters.
3093 * @param paParam Array of 32-bit parameters.
3094 */
3095VMMR0DECL(int) SVMR0Execute64BitsHandler(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, RTRCPTR pfnHandler, uint32_t cbParam,
3096 uint32_t *paParam)
3097{
3098 int rc;
3099 RTHCUINTREG uOldEFlags;
3100
3101 Assert(pfnHandler);
3102
3103 /* Disable interrupts. */
3104 uOldEFlags = ASMIntDisableFlags();
3105
3106#ifdef VBOX_WITH_VMMR0_DISABLE_LAPIC_NMI
3107 RTCPUID idHostCpu = RTMpCpuId();
3108 CPUMR0SetLApic(pVM, idHostCpu);
3109#endif
3110
3111 CPUMSetHyperESP(pVCpu, VMMGetStackRC(pVCpu));
3112 CPUMSetHyperEIP(pVCpu, pfnHandler);
3113 for (int i = (int)cbParam - 1; i >= 0; i--)
3114 CPUMPushHyper(pVCpu, paParam[i]);
3115
3116 STAM_PROFILE_ADV_START(&pVCpu->hwaccm.s.StatWorldSwitch3264, z);
3117 /* Call switcher. */
3118 rc = pVM->hwaccm.s.pfnHost32ToGuest64R0(pVM, RT_OFFSETOF(VM, aCpus[pVCpu->idCpu].cpum) - RT_OFFSETOF(VM, cpum));
3119 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatWorldSwitch3264, z);
3120
3121 ASMSetFlags(uOldEFlags);
3122 return rc;
3123}
3124
3125#endif /* HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) */
3126
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette