VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR0/HWSVMR0.cpp@ 13972

Last change on this file since 13972 was 13960, checked in by vboxsync, 16 years ago

Moved guest and host CPU contexts into per-VCPU array.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 90.1 KB
Line 
1/* $Id: HWSVMR0.cpp 13960 2008-11-07 13:04:45Z vboxsync $ */
2/** @file
3 * HWACCM SVM - Host Context Ring 0.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/*******************************************************************************
24* Header Files *
25*******************************************************************************/
26#define LOG_GROUP LOG_GROUP_HWACCM
27#include <VBox/hwaccm.h>
28#include "HWACCMInternal.h"
29#include <VBox/vm.h>
30#include <VBox/x86.h>
31#include <VBox/hwacc_svm.h>
32#include <VBox/pgm.h>
33#include <VBox/pdm.h>
34#include <VBox/err.h>
35#include <VBox/log.h>
36#include <VBox/selm.h>
37#include <VBox/iom.h>
38#include <VBox/dis.h>
39#include <VBox/dbgf.h>
40#include <VBox/disopcode.h>
41#include <iprt/param.h>
42#include <iprt/assert.h>
43#include <iprt/asm.h>
44#include <iprt/cpuset.h>
45#include <iprt/mp.h>
46#include "HWSVMR0.h"
47
48/*******************************************************************************
49* Internal Functions *
50*******************************************************************************/
51static int SVMR0InterpretInvpg(PVM pVM, PCPUMCTXCORE pRegFrame, uint32_t uASID);
52
53/*******************************************************************************
54* Global Variables *
55*******************************************************************************/
56/* IO operation lookup arrays. */
57static uint32_t const g_aIOSize[4] = {1, 2, 0, 4};
58
59/**
60 * Sets up and activates AMD-V on the current CPU
61 *
62 * @returns VBox status code.
63 * @param pCpu CPU info struct
64 * @param pVM The VM to operate on. (can be NULL after a resume!!)
65 * @param pvPageCpu Pointer to the global cpu page
66 * @param pPageCpuPhys Physical address of the global cpu page
67 */
68VMMR0DECL(int) SVMR0EnableCpu(PHWACCM_CPUINFO pCpu, PVM pVM, void *pvPageCpu, RTHCPHYS pPageCpuPhys)
69{
70 AssertReturn(pPageCpuPhys, VERR_INVALID_PARAMETER);
71 AssertReturn(pvPageCpu, VERR_INVALID_PARAMETER);
72
73 /* We must turn on AMD-V and setup the host state physical address, as those MSRs are per-cpu/core. */
74
75#ifdef LOG_ENABLED
76 SUPR0Printf("SVMR0EnableCpu cpu %d page (%x) %x\n", pCpu->idCpu, pvPageCpu, (uint32_t)pPageCpuPhys);
77#endif
78
79 /* Turn on AMD-V in the EFER MSR. */
80 uint64_t val = ASMRdMsr(MSR_K6_EFER);
81 if (!(val & MSR_K6_EFER_SVME))
82 ASMWrMsr(MSR_K6_EFER, val | MSR_K6_EFER_SVME);
83
84 /* Write the physical page address where the CPU will store the host state while executing the VM. */
85 ASMWrMsr(MSR_K8_VM_HSAVE_PA, pPageCpuPhys);
86
87 return VINF_SUCCESS;
88}
89
90/**
91 * Deactivates AMD-V on the current CPU
92 *
93 * @returns VBox status code.
94 * @param pCpu CPU info struct
95 * @param pvPageCpu Pointer to the global cpu page
96 * @param pPageCpuPhys Physical address of the global cpu page
97 */
98VMMR0DECL(int) SVMR0DisableCpu(PHWACCM_CPUINFO pCpu, void *pvPageCpu, RTHCPHYS pPageCpuPhys)
99{
100 AssertReturn(pPageCpuPhys, VERR_INVALID_PARAMETER);
101 AssertReturn(pvPageCpu, VERR_INVALID_PARAMETER);
102
103#ifdef LOG_ENABLED
104 SUPR0Printf("SVMR0DisableCpu cpu %d\n", pCpu->idCpu);
105#endif
106
107 /* Turn off AMD-V in the EFER MSR. */
108 uint64_t val = ASMRdMsr(MSR_K6_EFER);
109 ASMWrMsr(MSR_K6_EFER, val & ~MSR_K6_EFER_SVME);
110
111 /* Invalidate host state physical address. */
112 ASMWrMsr(MSR_K8_VM_HSAVE_PA, 0);
113
114 return VINF_SUCCESS;
115}
116
117/**
118 * Does Ring-0 per VM AMD-V init.
119 *
120 * @returns VBox status code.
121 * @param pVM The VM to operate on.
122 */
123VMMR0DECL(int) SVMR0InitVM(PVM pVM)
124{
125 int rc;
126
127 pVM->hwaccm.s.svm.pMemObjVMCBHost = NIL_RTR0MEMOBJ;
128 pVM->hwaccm.s.svm.pMemObjIOBitmap = NIL_RTR0MEMOBJ;
129 pVM->hwaccm.s.svm.pMemObjMSRBitmap = NIL_RTR0MEMOBJ;
130
131 /* Allocate one page for the host context */
132 rc = RTR0MemObjAllocCont(&pVM->hwaccm.s.svm.pMemObjVMCBHost, 1 << PAGE_SHIFT, true /* executable R0 mapping */);
133 if (RT_FAILURE(rc))
134 return rc;
135
136 pVM->hwaccm.s.svm.pVMCBHost = RTR0MemObjAddress(pVM->hwaccm.s.svm.pMemObjVMCBHost);
137 pVM->hwaccm.s.svm.pVMCBHostPhys = RTR0MemObjGetPagePhysAddr(pVM->hwaccm.s.svm.pMemObjVMCBHost, 0);
138 ASMMemZeroPage(pVM->hwaccm.s.svm.pVMCBHost);
139
140 /* Allocate 12 KB for the IO bitmap (doesn't seem to be a way to convince SVM not to use it) */
141 rc = RTR0MemObjAllocCont(&pVM->hwaccm.s.svm.pMemObjIOBitmap, 3 << PAGE_SHIFT, true /* executable R0 mapping */);
142 if (RT_FAILURE(rc))
143 return rc;
144
145 pVM->hwaccm.s.svm.pIOBitmap = RTR0MemObjAddress(pVM->hwaccm.s.svm.pMemObjIOBitmap);
146 pVM->hwaccm.s.svm.pIOBitmapPhys = RTR0MemObjGetPagePhysAddr(pVM->hwaccm.s.svm.pMemObjIOBitmap, 0);
147 /* Set all bits to intercept all IO accesses. */
148 ASMMemFill32(pVM->hwaccm.s.svm.pIOBitmap, PAGE_SIZE*3, 0xffffffff);
149
150 /* Allocate 8 KB for the MSR bitmap (doesn't seem to be a way to convince SVM not to use it) */
151 rc = RTR0MemObjAllocCont(&pVM->hwaccm.s.svm.pMemObjMSRBitmap, 2 << PAGE_SHIFT, true /* executable R0 mapping */);
152 if (RT_FAILURE(rc))
153 return rc;
154
155 pVM->hwaccm.s.svm.pMSRBitmap = RTR0MemObjAddress(pVM->hwaccm.s.svm.pMemObjMSRBitmap);
156 pVM->hwaccm.s.svm.pMSRBitmapPhys = RTR0MemObjGetPagePhysAddr(pVM->hwaccm.s.svm.pMemObjMSRBitmap, 0);
157 /* Set all bits to intercept all MSR accesses. */
158 ASMMemFill32(pVM->hwaccm.s.svm.pMSRBitmap, PAGE_SIZE*2, 0xffffffff);
159
160 /* Erratum 170 which requires a forced TLB flush for each world switch:
161 * See http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/33610.pdf
162 *
163 * All BH-G1/2 and DH-G1/2 models include a fix:
164 * Athlon X2: 0x6b 1/2
165 * 0x68 1/2
166 * Athlon 64: 0x7f 1
167 * 0x6f 2
168 * Sempron: 0x7f 1/2
169 * 0x6f 2
170 * 0x6c 2
171 * 0x7c 2
172 * Turion 64: 0x68 2
173 *
174 */
175 uint32_t u32Dummy;
176 uint32_t u32Version, u32Family, u32Model, u32Stepping, u32BaseFamily;
177 ASMCpuId(1, &u32Version, &u32Dummy, &u32Dummy, &u32Dummy);
178 u32BaseFamily= (u32Version >> 8) & 0xf;
179 u32Family = u32BaseFamily + (u32BaseFamily == 0xf ? ((u32Version >> 20) & 0x7f) : 0);
180 u32Model = ((u32Version >> 4) & 0xf);
181 u32Model = u32Model | ((u32BaseFamily == 0xf ? (u32Version >> 16) & 0x0f : 0) << 4);
182 u32Stepping = u32Version & 0xf;
183 if ( u32Family == 0xf
184 && !((u32Model == 0x68 || u32Model == 0x6b || u32Model == 0x7f) && u32Stepping >= 1)
185 && !((u32Model == 0x6f || u32Model == 0x6c || u32Model == 0x7c) && u32Stepping >= 2))
186 {
187 Log(("SVMR0InitVM: AMD cpu with erratum 170 family %x model %x stepping %x\n", u32Family, u32Model, u32Stepping));
188 pVM->hwaccm.s.svm.fAlwaysFlushTLB = true;
189 }
190
191 /* Allocate VMCBs for all guest CPUs. */
192 for (unsigned i=0;i<pVM->cCPUs;i++)
193 {
194 pVM->aCpus[i].hwaccm.s.svm.pMemObjVMCB = NIL_RTR0MEMOBJ;
195
196 /* Allocate one page for the VM control block (VMCB). */
197 rc = RTR0MemObjAllocCont(&pVM->aCpus[i].hwaccm.s.svm.pMemObjVMCB, 1 << PAGE_SHIFT, true /* executable R0 mapping */);
198 if (RT_FAILURE(rc))
199 return rc;
200
201 pVM->aCpus[i].hwaccm.s.svm.pVMCB = RTR0MemObjAddress(pVM->aCpus[i].hwaccm.s.svm.pMemObjVMCB);
202 pVM->aCpus[i].hwaccm.s.svm.pVMCBPhys = RTR0MemObjGetPagePhysAddr(pVM->aCpus[i].hwaccm.s.svm.pMemObjVMCB, 0);
203 ASMMemZeroPage(pVM->aCpus[i].hwaccm.s.svm.pVMCB);
204 }
205
206 return VINF_SUCCESS;
207}
208
209/**
210 * Does Ring-0 per VM AMD-V termination.
211 *
212 * @returns VBox status code.
213 * @param pVM The VM to operate on.
214 */
215VMMR0DECL(int) SVMR0TermVM(PVM pVM)
216{
217 for (unsigned i=0;i<pVM->cCPUs;i++)
218 {
219 if (pVM->aCpus[i].hwaccm.s.svm.pMemObjVMCB != NIL_RTR0MEMOBJ)
220 {
221 RTR0MemObjFree(pVM->aCpus[i].hwaccm.s.svm.pMemObjVMCB, false);
222 pVM->aCpus[i].hwaccm.s.svm.pVMCB = 0;
223 pVM->aCpus[i].hwaccm.s.svm.pVMCBPhys = 0;
224 pVM->aCpus[i].hwaccm.s.svm.pMemObjVMCB = NIL_RTR0MEMOBJ;
225 }
226 }
227 if (pVM->hwaccm.s.svm.pMemObjVMCBHost != NIL_RTR0MEMOBJ)
228 {
229 RTR0MemObjFree(pVM->hwaccm.s.svm.pMemObjVMCBHost, false);
230 pVM->hwaccm.s.svm.pVMCBHost = 0;
231 pVM->hwaccm.s.svm.pVMCBHostPhys = 0;
232 pVM->hwaccm.s.svm.pMemObjVMCBHost = NIL_RTR0MEMOBJ;
233 }
234 if (pVM->hwaccm.s.svm.pMemObjIOBitmap != NIL_RTR0MEMOBJ)
235 {
236 RTR0MemObjFree(pVM->hwaccm.s.svm.pMemObjIOBitmap, false);
237 pVM->hwaccm.s.svm.pIOBitmap = 0;
238 pVM->hwaccm.s.svm.pIOBitmapPhys = 0;
239 pVM->hwaccm.s.svm.pMemObjIOBitmap = NIL_RTR0MEMOBJ;
240 }
241 if (pVM->hwaccm.s.svm.pMemObjMSRBitmap != NIL_RTR0MEMOBJ)
242 {
243 RTR0MemObjFree(pVM->hwaccm.s.svm.pMemObjMSRBitmap, false);
244 pVM->hwaccm.s.svm.pMSRBitmap = 0;
245 pVM->hwaccm.s.svm.pMSRBitmapPhys = 0;
246 pVM->hwaccm.s.svm.pMemObjMSRBitmap = NIL_RTR0MEMOBJ;
247 }
248 return VINF_SUCCESS;
249}
250
251/**
252 * Sets up AMD-V for the specified VM
253 *
254 * @returns VBox status code.
255 * @param pVM The VM to operate on.
256 */
257VMMR0DECL(int) SVMR0SetupVM(PVM pVM)
258{
259 int rc = VINF_SUCCESS;
260 SVM_VMCB *pVMCB;
261
262 AssertReturn(pVM, VERR_INVALID_PARAMETER);
263
264 Assert(pVM->hwaccm.s.svm.fSupported);
265
266 for (unsigned i=0;i<pVM->cCPUs;i++)
267 {
268 pVMCB = (SVM_VMCB *)pVM->aCpus[i].hwaccm.s.svm.pVMCB;
269 AssertMsgReturn(pVMCB, ("Invalid pVMCB\n"), VERR_EM_INTERNAL_ERROR);
270
271 /* Program the control fields. Most of them never have to be changed again. */
272 /* CR0/3/4 reads must be intercepted, our shadow values are not necessarily the same as the guest's. */
273 /* Note: CR0 & CR4 can be safely read when guest and shadow copies are identical. */
274 if (!pVM->hwaccm.s.fNestedPaging)
275 pVMCB->ctrl.u16InterceptRdCRx = RT_BIT(0) | RT_BIT(3) | RT_BIT(4);
276 else
277 pVMCB->ctrl.u16InterceptRdCRx = RT_BIT(0) | RT_BIT(4);
278
279 /*
280 * CR0/3/4 writes must be intercepted for obvious reasons.
281 */
282 if (!pVM->hwaccm.s.fNestedPaging)
283 pVMCB->ctrl.u16InterceptWrCRx = RT_BIT(0) | RT_BIT(3) | RT_BIT(4);
284 else
285 pVMCB->ctrl.u16InterceptWrCRx = RT_BIT(0) | RT_BIT(4) | RT_BIT(8);
286
287 /* Intercept all DRx reads and writes by default. Changed later on. */
288 pVMCB->ctrl.u16InterceptRdDRx = 0xFFFF;
289 pVMCB->ctrl.u16InterceptWrDRx = 0xFFFF;
290
291 /* Currently we don't care about DRx reads or writes. DRx registers are trashed.
292 * All breakpoints are automatically cleared when the VM exits.
293 */
294
295 pVMCB->ctrl.u32InterceptException = HWACCM_SVM_TRAP_MASK;
296#ifndef DEBUG
297 if (pVM->hwaccm.s.fNestedPaging)
298 pVMCB->ctrl.u32InterceptException &= ~RT_BIT(X86_XCPT_PF); /* no longer need to intercept #PF. */
299#endif
300
301 pVMCB->ctrl.u32InterceptCtrl1 = SVM_CTRL1_INTERCEPT_INTR
302 | SVM_CTRL1_INTERCEPT_VINTR
303 | SVM_CTRL1_INTERCEPT_NMI
304 | SVM_CTRL1_INTERCEPT_SMI
305 | SVM_CTRL1_INTERCEPT_INIT
306 | SVM_CTRL1_INTERCEPT_RDPMC
307 | SVM_CTRL1_INTERCEPT_CPUID
308 | SVM_CTRL1_INTERCEPT_RSM
309 | SVM_CTRL1_INTERCEPT_HLT
310 | SVM_CTRL1_INTERCEPT_INOUT_BITMAP
311 | SVM_CTRL1_INTERCEPT_MSR_SHADOW
312 | SVM_CTRL1_INTERCEPT_INVLPG
313 | SVM_CTRL1_INTERCEPT_INVLPGA /* AMD only */
314 | SVM_CTRL1_INTERCEPT_TASK_SWITCH
315 | SVM_CTRL1_INTERCEPT_SHUTDOWN /* fatal */
316 | SVM_CTRL1_INTERCEPT_FERR_FREEZE; /* Legacy FPU FERR handling. */
317 ;
318 /* With nested paging we don't care about invlpg anymore. */
319 if (pVM->hwaccm.s.fNestedPaging)
320 pVMCB->ctrl.u32InterceptCtrl1 &= ~SVM_CTRL1_INTERCEPT_INVLPG;
321
322 pVMCB->ctrl.u32InterceptCtrl2 = SVM_CTRL2_INTERCEPT_VMRUN /* required */
323 | SVM_CTRL2_INTERCEPT_VMMCALL
324 | SVM_CTRL2_INTERCEPT_VMLOAD
325 | SVM_CTRL2_INTERCEPT_VMSAVE
326 | SVM_CTRL2_INTERCEPT_STGI
327 | SVM_CTRL2_INTERCEPT_CLGI
328 | SVM_CTRL2_INTERCEPT_SKINIT
329 | SVM_CTRL2_INTERCEPT_RDTSCP /* AMD only; we don't support this one */
330 | SVM_CTRL2_INTERCEPT_WBINVD
331 | SVM_CTRL2_INTERCEPT_MWAIT_UNCOND; /* don't execute mwait or else we'll idle inside the guest (host thinks the cpu load is high) */
332 ;
333 Log(("pVMCB->ctrl.u32InterceptException = %x\n", pVMCB->ctrl.u32InterceptException));
334 Log(("pVMCB->ctrl.u32InterceptCtrl1 = %x\n", pVMCB->ctrl.u32InterceptCtrl1));
335 Log(("pVMCB->ctrl.u32InterceptCtrl2 = %x\n", pVMCB->ctrl.u32InterceptCtrl2));
336
337 /* Virtualize masking of INTR interrupts. (reads/writes from/to CR8 go to the V_TPR register) */
338 pVMCB->ctrl.IntCtrl.n.u1VIrqMasking = 1;
339 /* Ignore the priority in the TPR; just deliver it when we tell it to. */
340 pVMCB->ctrl.IntCtrl.n.u1IgnoreTPR = 1;
341
342 /* Set IO and MSR bitmap addresses. */
343 pVMCB->ctrl.u64IOPMPhysAddr = pVM->hwaccm.s.svm.pIOBitmapPhys;
344 pVMCB->ctrl.u64MSRPMPhysAddr = pVM->hwaccm.s.svm.pMSRBitmapPhys;
345
346 /* No LBR virtualization. */
347 pVMCB->ctrl.u64LBRVirt = 0;
348
349 /** The ASID must start at 1; the host uses 0. */
350 pVMCB->ctrl.TLBCtrl.n.u32ASID = 1;
351
352 /** Setup the PAT msr (nested paging only) */
353 pVMCB->guest.u64GPAT = 0x0007040600070406ULL;
354 }
355 return rc;
356}
357
358
359/**
360 * Injects an event (trap or external interrupt)
361 *
362 * @param pVM The VM to operate on.
363 * @param pVMCB SVM control block
364 * @param pCtx CPU Context
365 * @param pIntInfo SVM interrupt info
366 */
367inline void SVMR0InjectEvent(PVM pVM, SVM_VMCB *pVMCB, CPUMCTX *pCtx, SVM_EVENT* pEvent)
368{
369#ifdef VBOX_STRICT
370 if (pEvent->n.u8Vector == 0xE)
371 Log(("SVM: Inject int %d at %RGv error code=%02x CR2=%RGv intInfo=%08x\n", pEvent->n.u8Vector, (RTGCPTR)pCtx->rip, pEvent->n.u32ErrorCode, (RTGCPTR)pCtx->cr2, pEvent->au64[0]));
372 else
373 if (pEvent->n.u8Vector < 0x20)
374 Log(("SVM: Inject int %d at %RGv error code=%08x\n", pEvent->n.u8Vector, (RTGCPTR)pCtx->rip, pEvent->n.u32ErrorCode));
375 else
376 {
377 Log(("INJ-EI: %x at %RGv\n", pEvent->n.u8Vector, (RTGCPTR)pCtx->rip));
378 Assert(!VM_FF_ISSET(pVM, VM_FF_INHIBIT_INTERRUPTS));
379 Assert(pCtx->eflags.u32 & X86_EFL_IF);
380 }
381#endif
382
383 /* Set event injection state. */
384 pVMCB->ctrl.EventInject.au64[0] = pEvent->au64[0];
385}
386
387
388/**
389 * Checks for pending guest interrupts and injects them
390 *
391 * @returns VBox status code.
392 * @param pVM The VM to operate on.
393 * @param pVCpu The VM CPU to operate on.
394 * @param pVMCB SVM control block
395 * @param pCtx CPU Context
396 */
397static int SVMR0CheckPendingInterrupt(PVM pVM, PVMCPU pVCpu, SVM_VMCB *pVMCB, CPUMCTX *pCtx)
398{
399 int rc;
400
401 /* Dispatch any pending interrupts. (injected before, but a VM exit occurred prematurely) */
402 if (pVCpu->hwaccm.s.Event.fPending)
403 {
404 SVM_EVENT Event;
405
406 Log(("Reinjecting event %08x %08x at %RGv\n", pVCpu->hwaccm.s.Event.intInfo, pVCpu->hwaccm.s.Event.errCode, (RTGCPTR)pCtx->rip));
407 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatIntReinject);
408 Event.au64[0] = pVCpu->hwaccm.s.Event.intInfo;
409 SVMR0InjectEvent(pVM, pVMCB, pCtx, &Event);
410
411 pVCpu->hwaccm.s.Event.fPending = false;
412 return VINF_SUCCESS;
413 }
414
415 /* When external interrupts are pending, we should exit the VM when IF is set. */
416 if ( !TRPMHasTrap(pVM)
417 && VM_FF_ISPENDING(pVM, (VM_FF_INTERRUPT_APIC|VM_FF_INTERRUPT_PIC)))
418 {
419 if ( !(pCtx->eflags.u32 & X86_EFL_IF)
420 || VM_FF_ISSET(pVM, VM_FF_INHIBIT_INTERRUPTS))
421 {
422 if (!pVMCB->ctrl.IntCtrl.n.u1VIrqValid)
423 {
424 if (!VM_FF_ISSET(pVM, VM_FF_INHIBIT_INTERRUPTS))
425 LogFlow(("Enable irq window exit!\n"));
426 else
427 Log(("Pending interrupt blocked at %RGv by VM_FF_INHIBIT_INTERRUPTS -> irq window exit\n", (RTGCPTR)pCtx->rip));
428
429 /** @todo use virtual interrupt method to inject a pending irq; dispatched as soon as guest.IF is set. */
430 pVMCB->ctrl.u32InterceptCtrl1 |= SVM_CTRL1_INTERCEPT_VINTR;
431 pVMCB->ctrl.IntCtrl.n.u1VIrqValid = 1;
432 pVMCB->ctrl.IntCtrl.n.u8VIrqVector = 0; /* don't care */
433 }
434 }
435 else
436 {
437 uint8_t u8Interrupt;
438
439 rc = PDMGetInterrupt(pVM, &u8Interrupt);
440 Log(("Dispatch interrupt: u8Interrupt=%x (%d) rc=%Rrc\n", u8Interrupt, u8Interrupt, rc));
441 if (RT_SUCCESS(rc))
442 {
443 rc = TRPMAssertTrap(pVM, u8Interrupt, TRPM_HARDWARE_INT);
444 AssertRC(rc);
445 }
446 else
447 {
448 /* Can only happen in rare cases where a pending interrupt is cleared behind our back */
449 Assert(!VM_FF_ISPENDING(pVM, (VM_FF_INTERRUPT_APIC|VM_FF_INTERRUPT_PIC)));
450 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatSwitchGuestIrq);
451 /* Just continue */
452 }
453 }
454 }
455
456#ifdef VBOX_STRICT
457 if (TRPMHasTrap(pVM))
458 {
459 uint8_t u8Vector;
460 rc = TRPMQueryTrapAll(pVM, &u8Vector, 0, 0, 0);
461 AssertRC(rc);
462 }
463#endif
464
465 if ( pCtx->eflags.u32 & X86_EFL_IF
466 && (!VM_FF_ISSET(pVM, VM_FF_INHIBIT_INTERRUPTS))
467 && TRPMHasTrap(pVM)
468 )
469 {
470 uint8_t u8Vector;
471 int rc;
472 TRPMEVENT enmType;
473 SVM_EVENT Event;
474 RTGCUINT u32ErrorCode;
475
476 Event.au64[0] = 0;
477
478 /* If a new event is pending, then dispatch it now. */
479 rc = TRPMQueryTrapAll(pVM, &u8Vector, &enmType, &u32ErrorCode, 0);
480 AssertRC(rc);
481 Assert(pCtx->eflags.Bits.u1IF == 1 || enmType == TRPM_TRAP);
482 Assert(enmType != TRPM_SOFTWARE_INT);
483
484 /* Clear the pending trap. */
485 rc = TRPMResetTrap(pVM);
486 AssertRC(rc);
487
488 Event.n.u8Vector = u8Vector;
489 Event.n.u1Valid = 1;
490 Event.n.u32ErrorCode = u32ErrorCode;
491
492 if (enmType == TRPM_TRAP)
493 {
494 switch (u8Vector) {
495 case 8:
496 case 10:
497 case 11:
498 case 12:
499 case 13:
500 case 14:
501 case 17:
502 /* Valid error codes. */
503 Event.n.u1ErrorCodeValid = 1;
504 break;
505 default:
506 break;
507 }
508 if (u8Vector == X86_XCPT_NMI)
509 Event.n.u3Type = SVM_EVENT_NMI;
510 else
511 Event.n.u3Type = SVM_EVENT_EXCEPTION;
512 }
513 else
514 Event.n.u3Type = SVM_EVENT_EXTERNAL_IRQ;
515
516 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatIntInject);
517 SVMR0InjectEvent(pVM, pVMCB, pCtx, &Event);
518 } /* if (interrupts can be dispatched) */
519
520 return VINF_SUCCESS;
521}
522
523/**
524 * Save the host state
525 *
526 * @returns VBox status code.
527 * @param pVM The VM to operate on.
528 * @param pVCpu The VM CPU to operate on.
529 */
530VMMR0DECL(int) SVMR0SaveHostState(PVM pVM, PVMCPU pVCpu)
531{
532 NOREF(pVM);
533 NOREF(pVCpu);
534 /* Nothing to do here. */
535 return VINF_SUCCESS;
536}
537
538/**
539 * Loads the guest state
540 *
541 * NOTE: Don't do anything here that can cause a jump back to ring 3!!!!!
542 *
543 * @returns VBox status code.
544 * @param pVM The VM to operate on.
545 * @param pVCpu The VM CPU to operate on.
546 * @param pCtx Guest context
547 */
548VMMR0DECL(int) SVMR0LoadGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
549{
550 RTGCUINTPTR val;
551 SVM_VMCB *pVMCB;
552
553 if (pVM == NULL)
554 return VERR_INVALID_PARAMETER;
555
556 /* Setup AMD SVM. */
557 Assert(pVM->hwaccm.s.svm.fSupported);
558
559 pVMCB = (SVM_VMCB *)pVCpu->hwaccm.s.svm.pVMCB;
560 AssertMsgReturn(pVMCB, ("Invalid pVMCB\n"), VERR_EM_INTERNAL_ERROR);
561
562 /* Guest CPU context: ES, CS, SS, DS, FS, GS. */
563 if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_SEGMENT_REGS)
564 {
565 SVM_WRITE_SELREG(CS, cs);
566 SVM_WRITE_SELREG(SS, ss);
567 SVM_WRITE_SELREG(DS, ds);
568 SVM_WRITE_SELREG(ES, es);
569 SVM_WRITE_SELREG(FS, fs);
570 SVM_WRITE_SELREG(GS, gs);
571 }
572
573 /* Guest CPU context: LDTR. */
574 if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_LDTR)
575 {
576 SVM_WRITE_SELREG(LDTR, ldtr);
577 }
578
579 /* Guest CPU context: TR. */
580 if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_TR)
581 {
582 SVM_WRITE_SELREG(TR, tr);
583 }
584
585 /* Guest CPU context: GDTR. */
586 if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_GDTR)
587 {
588 pVMCB->guest.GDTR.u32Limit = pCtx->gdtr.cbGdt;
589 pVMCB->guest.GDTR.u64Base = pCtx->gdtr.pGdt;
590 }
591
592 /* Guest CPU context: IDTR. */
593 if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_IDTR)
594 {
595 pVMCB->guest.IDTR.u32Limit = pCtx->idtr.cbIdt;
596 pVMCB->guest.IDTR.u64Base = pCtx->idtr.pIdt;
597 }
598
599 /*
600 * Sysenter MSRs (unconditional)
601 */
602 pVMCB->guest.u64SysEnterCS = pCtx->SysEnter.cs;
603 pVMCB->guest.u64SysEnterEIP = pCtx->SysEnter.eip;
604 pVMCB->guest.u64SysEnterESP = pCtx->SysEnter.esp;
605
606 /* Control registers */
607 if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_CR0)
608 {
609 val = pCtx->cr0;
610 if (!CPUMIsGuestFPUStateActive(pVCpu))
611 {
612 /* Always use #NM exceptions to load the FPU/XMM state on demand. */
613 val |= X86_CR0_TS | X86_CR0_ET | X86_CR0_NE | X86_CR0_MP;
614 }
615 else
616 {
617 /** @todo check if we support the old style mess correctly. */
618 if (!(val & X86_CR0_NE))
619 {
620 Log(("Forcing X86_CR0_NE!!!\n"));
621
622 /* Also catch floating point exceptions as we need to report them to the guest in a different way. */
623 if (!pVCpu->hwaccm.s.fFPUOldStyleOverride)
624 {
625 pVMCB->ctrl.u32InterceptException |= RT_BIT(X86_XCPT_MF);
626 pVCpu->hwaccm.s.fFPUOldStyleOverride = true;
627 }
628 }
629 val |= X86_CR0_NE; /* always turn on the native mechanism to report FPU errors (old style uses interrupts) */
630 }
631 /* Always enable caching. */
632 val &= ~(X86_CR0_CD|X86_CR0_NW);
633
634 /* Note: WP is not relevant in nested paging mode as we catch accesses on the (guest) physical level. */
635 /* Note: In nested paging mode the guest is allowed to run with paging disabled; the guest physical to host physical translation will remain active. */
636 if (!pVM->hwaccm.s.fNestedPaging)
637 {
638 val |= X86_CR0_PG; /* Paging is always enabled; even when the guest is running in real mode or PE without paging. */
639 val |= X86_CR0_WP; /* Must set this as we rely on protect various pages and supervisor writes must be caught. */
640 }
641 pVMCB->guest.u64CR0 = val;
642 }
643 /* CR2 as well */
644 pVMCB->guest.u64CR2 = pCtx->cr2;
645
646 if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_CR3)
647 {
648 /* Save our shadow CR3 register. */
649 if (pVM->hwaccm.s.fNestedPaging)
650 {
651 pVMCB->ctrl.u64NestedPagingCR3 = PGMGetNestedCR3(pVM, PGMGetHostMode(pVM));
652 Assert(pVMCB->ctrl.u64NestedPagingCR3);
653 pVMCB->guest.u64CR3 = pCtx->cr3;
654 }
655 else
656 {
657 pVMCB->guest.u64CR3 = PGMGetHyperCR3(pVM);
658 Assert(pVMCB->guest.u64CR3);
659 }
660 }
661
662 if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_CR4)
663 {
664 val = pCtx->cr4;
665 if (!pVM->hwaccm.s.fNestedPaging)
666 {
667 switch(pVCpu->hwaccm.s.enmShadowMode)
668 {
669 case PGMMODE_REAL:
670 case PGMMODE_PROTECTED: /* Protected mode, no paging. */
671 AssertFailed();
672 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
673
674 case PGMMODE_32_BIT: /* 32-bit paging. */
675 break;
676
677 case PGMMODE_PAE: /* PAE paging. */
678 case PGMMODE_PAE_NX: /* PAE paging with NX enabled. */
679 /** @todo use normal 32 bits paging */
680 val |= X86_CR4_PAE;
681 break;
682
683 case PGMMODE_AMD64: /* 64-bit AMD paging (long mode). */
684 case PGMMODE_AMD64_NX: /* 64-bit AMD paging (long mode) with NX enabled. */
685#ifdef VBOX_ENABLE_64_BITS_GUESTS
686 break;
687#else
688 AssertFailed();
689 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
690#endif
691
692 default: /* shut up gcc */
693 AssertFailed();
694 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
695 }
696 }
697 pVMCB->guest.u64CR4 = val;
698 }
699
700 /* Debug registers. */
701 if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_DEBUG)
702 {
703 pCtx->dr[6] |= X86_DR6_INIT_VAL; /* set all reserved bits to 1. */
704 pCtx->dr[6] &= ~RT_BIT(12); /* must be zero. */
705
706 pCtx->dr[7] &= 0xffffffff; /* upper 32 bits reserved */
707 pCtx->dr[7] &= ~(RT_BIT(11) | RT_BIT(12) | RT_BIT(14) | RT_BIT(15)); /* must be zero */
708 pCtx->dr[7] |= 0x400; /* must be one */
709
710 pVMCB->guest.u64DR7 = pCtx->dr[7];
711 pVMCB->guest.u64DR6 = pCtx->dr[6];
712
713 /* Sync the debug state now if any breakpoint is armed. */
714 if ( (pCtx->dr[7] & (X86_DR7_ENABLED_MASK|X86_DR7_GD))
715 && !CPUMIsGuestDebugStateActive(pVM)
716 && !DBGFIsStepping(pVM))
717 {
718 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatDRxArmed);
719
720 /* Disable drx move intercepts. */
721 pVMCB->ctrl.u16InterceptRdDRx = 0;
722 pVMCB->ctrl.u16InterceptWrDRx = 0;
723
724 /* Save the host and load the guest debug state. */
725 int rc = CPUMR0LoadGuestDebugState(pVM, pVCpu, pCtx, false /* exclude DR6 */);
726 AssertRC(rc);
727 }
728 }
729
730 /* EIP, ESP and EFLAGS */
731 pVMCB->guest.u64RIP = pCtx->rip;
732 pVMCB->guest.u64RSP = pCtx->rsp;
733 pVMCB->guest.u64RFlags = pCtx->eflags.u32;
734
735 /* Set CPL */
736 pVMCB->guest.u8CPL = pCtx->csHid.Attr.n.u2Dpl;
737
738 /* RAX/EAX too, as VMRUN uses RAX as an implicit parameter. */
739 pVMCB->guest.u64RAX = pCtx->rax;
740
741 /* vmrun will fail without MSR_K6_EFER_SVME. */
742 pVMCB->guest.u64EFER = pCtx->msrEFER | MSR_K6_EFER_SVME;
743
744 /* 64 bits guest mode? */
745 if (pCtx->msrEFER & MSR_K6_EFER_LMA)
746 {
747#if !defined(VBOX_WITH_64_BITS_GUESTS) || HC_ARCH_BITS != 64
748 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
749#else
750 pVCpu->hwaccm.s.svm.pfnVMRun = SVMVMRun64;
751#endif
752 /* Unconditionally update these as wrmsr might have changed them. (HWACCM_CHANGED_GUEST_SEGMENT_REGS will not be set) */
753 pVMCB->guest.FS.u64Base = pCtx->fsHid.u64Base;
754 pVMCB->guest.GS.u64Base = pCtx->gsHid.u64Base;
755 }
756 else
757 {
758 /* Filter out the MSR_K6_LME bit or else AMD-V expects amd64 shadow paging. */
759 pVMCB->guest.u64EFER &= ~MSR_K6_EFER_LME;
760
761 pVCpu->hwaccm.s.svm.pfnVMRun = SVMVMRun;
762 }
763
764 /* TSC offset. */
765 if (TMCpuTickCanUseRealTSC(pVM, &pVMCB->ctrl.u64TSCOffset))
766 {
767 pVMCB->ctrl.u32InterceptCtrl1 &= ~SVM_CTRL1_INTERCEPT_RDTSC;
768 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatTSCOffset);
769 }
770 else
771 {
772 pVMCB->ctrl.u32InterceptCtrl1 |= SVM_CTRL1_INTERCEPT_RDTSC;
773 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatTSCIntercept);
774 }
775
776 /* Sync the various msrs for 64 bits mode. */
777 pVMCB->guest.u64STAR = pCtx->msrSTAR; /* legacy syscall eip, cs & ss */
778 pVMCB->guest.u64LSTAR = pCtx->msrLSTAR; /* 64 bits mode syscall rip */
779 pVMCB->guest.u64CSTAR = pCtx->msrCSTAR; /* compatibility mode syscall rip */
780 pVMCB->guest.u64SFMASK = pCtx->msrSFMASK; /* syscall flag mask */
781 pVMCB->guest.u64KernelGSBase = pCtx->msrKERNELGSBASE; /* swapgs exchange value */
782
783#ifdef DEBUG
784 /* Intercept X86_XCPT_DB if stepping is enabled */
785 if (DBGFIsStepping(pVM))
786 pVMCB->ctrl.u32InterceptException |= RT_BIT(X86_XCPT_DB);
787 else
788 pVMCB->ctrl.u32InterceptException &= ~RT_BIT(X86_XCPT_DB);
789#endif
790
791 /* Done. */
792 pVCpu->hwaccm.s.fContextUseFlags &= ~HWACCM_CHANGED_ALL_GUEST;
793
794 return VINF_SUCCESS;
795}
796
797
798/**
799 * Runs guest code in an AMD-V VM.
800 *
801 * @returns VBox status code.
802 * @param pVM The VM to operate on.
803 * @param pVCpu The VM CPU to operate on.
804 * @param pCtx Guest context
805 */
806VMMR0DECL(int) SVMR0RunGuestCode(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
807{
808 int rc = VINF_SUCCESS;
809 uint64_t exitCode = (uint64_t)SVM_EXIT_INVALID;
810 SVM_VMCB *pVMCB;
811 bool fSyncTPR = false;
812 unsigned cResume = 0;
813 uint8_t u8LastVTPR;
814 PHWACCM_CPUINFO pCpu = 0;
815#ifdef VBOX_STRICT
816 RTCPUID idCpuCheck;
817#endif
818
819 STAM_PROFILE_ADV_START(&pVCpu->hwaccm.s.StatEntry, x);
820
821 pVMCB = (SVM_VMCB *)pVCpu->hwaccm.s.svm.pVMCB;
822 AssertMsgReturn(pVMCB, ("Invalid pVMCB\n"), VERR_EM_INTERNAL_ERROR);
823
824 /* We can jump to this point to resume execution after determining that a VM-exit is innocent.
825 */
826ResumeExecution:
827 Assert(!HWACCMR0SuspendPending());
828
829 /* Safety precaution; looping for too long here can have a very bad effect on the host */
830 if (++cResume > HWACCM_MAX_RESUME_LOOPS)
831 {
832 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitMaxResume);
833 rc = VINF_EM_RAW_INTERRUPT;
834 goto end;
835 }
836
837 /* Check for irq inhibition due to instruction fusing (sti, mov ss). */
838 if (VM_FF_ISSET(pVM, VM_FF_INHIBIT_INTERRUPTS))
839 {
840 Log(("VM_FF_INHIBIT_INTERRUPTS at %RGv successor %RGv\n", (RTGCPTR)pCtx->rip, EMGetInhibitInterruptsPC(pVM)));
841 if (pCtx->rip != EMGetInhibitInterruptsPC(pVM))
842 {
843 /* Note: we intentionally don't clear VM_FF_INHIBIT_INTERRUPTS here.
844 * Before we are able to execute this instruction in raw mode (iret to guest code) an external interrupt might
845 * force a world switch again. Possibly allowing a guest interrupt to be dispatched in the process. This could
846 * break the guest. Sounds very unlikely, but such timing sensitive problem are not as rare as you might think.
847 */
848 VM_FF_CLEAR(pVM, VM_FF_INHIBIT_INTERRUPTS);
849 /* Irq inhibition is no longer active; clear the corresponding SVM state. */
850 pVMCB->ctrl.u64IntShadow = 0;
851 }
852 }
853 else
854 {
855 /* Irq inhibition is no longer active; clear the corresponding SVM state. */
856 pVMCB->ctrl.u64IntShadow = 0;
857 }
858
859 /* Check for pending actions that force us to go back to ring 3. */
860#ifdef DEBUG
861 /* Intercept X86_XCPT_DB if stepping is enabled */
862 if (!DBGFIsStepping(pVM))
863#endif
864 {
865 if (VM_FF_ISPENDING(pVM, VM_FF_TO_R3 | VM_FF_TIMER))
866 {
867 VM_FF_CLEAR(pVM, VM_FF_TO_R3);
868 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatSwitchToR3);
869 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatEntry, x);
870 rc = VINF_EM_RAW_TO_R3;
871 goto end;
872 }
873 }
874
875 /* Pending request packets might contain actions that need immediate attention, such as pending hardware interrupts. */
876 if (VM_FF_ISPENDING(pVM, VM_FF_REQUEST))
877 {
878 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatEntry, x);
879 rc = VINF_EM_PENDING_REQUEST;
880 goto end;
881 }
882
883 /* When external interrupts are pending, we should exit the VM when IF is set. */
884 /* Note! *After* VM_FF_INHIBIT_INTERRUPTS check!!! */
885 rc = SVMR0CheckPendingInterrupt(pVM, pVCpu, pVMCB, pCtx);
886 if (RT_FAILURE(rc))
887 {
888 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatEntry, x);
889 goto end;
890 }
891
892 /* TPR caching using CR8 is only available in 64 bits mode */
893 /* Note the 32 bits exception for AMD (X86_CPUID_AMD_FEATURE_ECX_CR8L), but that appears missing in Intel CPUs */
894 /* Note: we can't do this in LoadGuestState as PDMApicGetTPR can jump back to ring 3 (lock)!!!!!!!! */
895 if (pCtx->msrEFER & MSR_K6_EFER_LMA)
896 {
897 bool fPending;
898
899 /* TPR caching in CR8 */
900 int rc = PDMApicGetTPR(pVM, &u8LastVTPR, &fPending);
901 AssertRC(rc);
902 pVMCB->ctrl.IntCtrl.n.u8VTPR = u8LastVTPR;
903
904 if (fPending)
905 {
906 /* A TPR change could activate a pending interrupt, so catch cr8 writes. */
907 pVMCB->ctrl.u16InterceptWrCRx |= RT_BIT(8);
908 }
909 else
910 /* No interrupts are pending, so we don't need to be explicitely notified.
911 * There are enough world switches for detecting pending interrupts.
912 */
913 pVMCB->ctrl.u16InterceptWrCRx &= ~RT_BIT(8);
914
915 fSyncTPR = !fPending;
916 }
917
918 /* All done! Let's start VM execution. */
919 STAM_PROFILE_ADV_START(&pVCpu->hwaccm.s.StatInGC, x);
920
921 /* Enable nested paging if necessary (disabled each time after #VMEXIT). */
922 pVMCB->ctrl.NestedPaging.n.u1NestedPaging = pVM->hwaccm.s.fNestedPaging;
923
924#ifdef LOG_ENABLED
925 pCpu = HWACCMR0GetCurrentCpu();
926 if ( pVCpu->hwaccm.s.idLastCpu != pCpu->idCpu
927 || pVCpu->hwaccm.s.cTLBFlushes != pCpu->cTLBFlushes)
928 {
929 if (pVCpu->hwaccm.s.idLastCpu != pCpu->idCpu)
930 Log(("Force TLB flush due to rescheduling to a different cpu (%d vs %d)\n", pVCpu->hwaccm.s.idLastCpu, pCpu->idCpu));
931 else
932 Log(("Force TLB flush due to changed TLB flush count (%x vs %x)\n", pVCpu->hwaccm.s.cTLBFlushes, pCpu->cTLBFlushes));
933 }
934 if (pCpu->fFlushTLB)
935 Log(("Force TLB flush: first time cpu %d is used -> flush\n", pCpu->idCpu));
936#endif
937
938 /*
939 * NOTE: DO NOT DO ANYTHING AFTER THIS POINT THAT MIGHT JUMP BACK TO RING 3!
940 * (until the actual world switch)
941 */
942
943#ifdef VBOX_STRICT
944 idCpuCheck = RTMpCpuId();
945#endif
946
947 /* Load the guest state; *must* be here as it sets up the shadow cr0 for lazy fpu syncing! */
948 rc = SVMR0LoadGuestState(pVM, pVCpu, pCtx);
949 if (rc != VINF_SUCCESS)
950 {
951 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatEntry, x);
952 goto end;
953 }
954
955 pCpu = HWACCMR0GetCurrentCpu();
956 /* Force a TLB flush for the first world switch if the current cpu differs from the one we ran on last. */
957 /* Note that this can happen both for start and resume due to long jumps back to ring 3. */
958 if ( pVCpu->hwaccm.s.idLastCpu != pCpu->idCpu
959 /* if the tlb flush count has changed, another VM has flushed the TLB of this cpu, so we can't use our current ASID anymore. */
960 || pVCpu->hwaccm.s.cTLBFlushes != pCpu->cTLBFlushes)
961 {
962 /* Force a TLB flush on VM entry. */
963 pVCpu->hwaccm.s.fForceTLBFlush = true;
964 }
965 else
966 Assert(!pCpu->fFlushTLB || pVM->hwaccm.s.svm.fAlwaysFlushTLB);
967
968 pVCpu->hwaccm.s.idLastCpu = pCpu->idCpu;
969
970 /* Make sure we flush the TLB when required. Switch ASID to achieve the same thing, but without actually flushing the whole TLB (which is expensive). */
971 if ( pVCpu->hwaccm.s.fForceTLBFlush
972 && !pVM->hwaccm.s.svm.fAlwaysFlushTLB)
973 {
974 if ( ++pCpu->uCurrentASID >= pVM->hwaccm.s.uMaxASID
975 || pCpu->fFlushTLB)
976 {
977 pCpu->fFlushTLB = false;
978 pCpu->uCurrentASID = 1; /* start at 1; host uses 0 */
979 pVMCB->ctrl.TLBCtrl.n.u1TLBFlush = 1; /* wrap around; flush TLB */
980 pCpu->cTLBFlushes++;
981 }
982 else
983 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatFlushASID);
984
985 pVCpu->hwaccm.s.cTLBFlushes = pCpu->cTLBFlushes;
986 pVCpu->hwaccm.s.uCurrentASID = pCpu->uCurrentASID;
987 }
988 else
989 {
990 Assert(!pCpu->fFlushTLB || pVM->hwaccm.s.svm.fAlwaysFlushTLB);
991
992 /* We never increase uCurrentASID in the fAlwaysFlushTLB (erratum 170) case. */
993 if (!pCpu->uCurrentASID || !pVCpu->hwaccm.s.uCurrentASID)
994 pVCpu->hwaccm.s.uCurrentASID = pCpu->uCurrentASID = 1;
995
996 Assert(!pVM->hwaccm.s.svm.fAlwaysFlushTLB || pVCpu->hwaccm.s.fForceTLBFlush);
997 pVMCB->ctrl.TLBCtrl.n.u1TLBFlush = pVCpu->hwaccm.s.fForceTLBFlush;
998 }
999 AssertMsg(pVCpu->hwaccm.s.cTLBFlushes == pCpu->cTLBFlushes, ("Flush count mismatch for cpu %d (%x vs %x)\n", pCpu->idCpu, pVCpu->hwaccm.s.cTLBFlushes, pCpu->cTLBFlushes));
1000 AssertMsg(pCpu->uCurrentASID >= 1 && pCpu->uCurrentASID < pVM->hwaccm.s.uMaxASID, ("cpu%d uCurrentASID = %x\n", pCpu->idCpu, pCpu->uCurrentASID));
1001 AssertMsg(pVCpu->hwaccm.s.uCurrentASID >= 1 && pVCpu->hwaccm.s.uCurrentASID < pVM->hwaccm.s.uMaxASID, ("cpu%d VM uCurrentASID = %x\n", pCpu->idCpu, pVCpu->hwaccm.s.uCurrentASID));
1002 pVMCB->ctrl.TLBCtrl.n.u32ASID = pVCpu->hwaccm.s.uCurrentASID;
1003
1004#ifdef VBOX_WITH_STATISTICS
1005 if (pVMCB->ctrl.TLBCtrl.n.u1TLBFlush)
1006 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatFlushTLBWorldSwitch);
1007 else
1008 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatNoFlushTLBWorldSwitch);
1009#endif
1010
1011 /* In case we execute a goto ResumeExecution later on. */
1012 pVCpu->hwaccm.s.fResumeVM = true;
1013 pVCpu->hwaccm.s.fForceTLBFlush = pVM->hwaccm.s.svm.fAlwaysFlushTLB;
1014
1015 Assert(sizeof(pVCpu->hwaccm.s.svm.pVMCBPhys) == 8);
1016 Assert(pVMCB->ctrl.u32InterceptCtrl2 == ( SVM_CTRL2_INTERCEPT_VMRUN /* required */
1017 | SVM_CTRL2_INTERCEPT_VMMCALL
1018 | SVM_CTRL2_INTERCEPT_VMLOAD
1019 | SVM_CTRL2_INTERCEPT_VMSAVE
1020 | SVM_CTRL2_INTERCEPT_STGI
1021 | SVM_CTRL2_INTERCEPT_CLGI
1022 | SVM_CTRL2_INTERCEPT_SKINIT
1023 | SVM_CTRL2_INTERCEPT_RDTSCP /* AMD only; we don't support this one */
1024 | SVM_CTRL2_INTERCEPT_WBINVD
1025 | SVM_CTRL2_INTERCEPT_MWAIT_UNCOND /* don't execute mwait or else we'll idle inside the guest (host thinks the cpu load is high) */
1026 ));
1027 Assert(pVMCB->ctrl.IntCtrl.n.u1VIrqMasking);
1028 Assert(pVMCB->ctrl.u64IOPMPhysAddr == pVM->hwaccm.s.svm.pIOBitmapPhys);
1029 Assert(pVMCB->ctrl.u64MSRPMPhysAddr == pVM->hwaccm.s.svm.pMSRBitmapPhys);
1030 Assert(pVMCB->ctrl.u64LBRVirt == 0);
1031
1032#ifdef VBOX_STRICT
1033 Assert(idCpuCheck == RTMpCpuId());
1034#endif
1035 TMNotifyStartOfExecution(pVM);
1036 pVCpu->hwaccm.s.svm.pfnVMRun(pVM->hwaccm.s.svm.pVMCBHostPhys, pVCpu->hwaccm.s.svm.pVMCBPhys, pCtx);
1037 TMNotifyEndOfExecution(pVM);
1038 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatInGC, x);
1039
1040 /*
1041 * !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1042 * IMPORTANT: WE CAN'T DO ANY LOGGING OR OPERATIONS THAT CAN DO A LONGJMP BACK TO RING 3 *BEFORE* WE'VE SYNCED BACK (MOST OF) THE GUEST STATE
1043 * !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1044 */
1045
1046 STAM_PROFILE_ADV_START(&pVCpu->hwaccm.s.StatExit, x);
1047
1048 /* Reason for the VM exit */
1049 exitCode = pVMCB->ctrl.u64ExitCode;
1050
1051 if (exitCode == (uint64_t)SVM_EXIT_INVALID) /* Invalid guest state. */
1052 {
1053 HWACCMDumpRegs(pVM, pCtx);
1054#ifdef DEBUG
1055 Log(("ctrl.u16InterceptRdCRx %x\n", pVMCB->ctrl.u16InterceptRdCRx));
1056 Log(("ctrl.u16InterceptWrCRx %x\n", pVMCB->ctrl.u16InterceptWrCRx));
1057 Log(("ctrl.u16InterceptRdDRx %x\n", pVMCB->ctrl.u16InterceptRdDRx));
1058 Log(("ctrl.u16InterceptWrDRx %x\n", pVMCB->ctrl.u16InterceptWrDRx));
1059 Log(("ctrl.u32InterceptException %x\n", pVMCB->ctrl.u32InterceptException));
1060 Log(("ctrl.u32InterceptCtrl1 %x\n", pVMCB->ctrl.u32InterceptCtrl1));
1061 Log(("ctrl.u32InterceptCtrl2 %x\n", pVMCB->ctrl.u32InterceptCtrl2));
1062 Log(("ctrl.u64IOPMPhysAddr %RX64\n", pVMCB->ctrl.u64IOPMPhysAddr));
1063 Log(("ctrl.u64MSRPMPhysAddr %RX64\n", pVMCB->ctrl.u64MSRPMPhysAddr));
1064 Log(("ctrl.u64TSCOffset %RX64\n", pVMCB->ctrl.u64TSCOffset));
1065
1066 Log(("ctrl.TLBCtrl.u32ASID %x\n", pVMCB->ctrl.TLBCtrl.n.u32ASID));
1067 Log(("ctrl.TLBCtrl.u1TLBFlush %x\n", pVMCB->ctrl.TLBCtrl.n.u1TLBFlush));
1068 Log(("ctrl.TLBCtrl.u7Reserved %x\n", pVMCB->ctrl.TLBCtrl.n.u7Reserved));
1069 Log(("ctrl.TLBCtrl.u24Reserved %x\n", pVMCB->ctrl.TLBCtrl.n.u24Reserved));
1070
1071 Log(("ctrl.IntCtrl.u8VTPR %x\n", pVMCB->ctrl.IntCtrl.n.u8VTPR));
1072 Log(("ctrl.IntCtrl.u1VIrqValid %x\n", pVMCB->ctrl.IntCtrl.n.u1VIrqValid));
1073 Log(("ctrl.IntCtrl.u7Reserved %x\n", pVMCB->ctrl.IntCtrl.n.u7Reserved));
1074 Log(("ctrl.IntCtrl.u4VIrqPriority %x\n", pVMCB->ctrl.IntCtrl.n.u4VIrqPriority));
1075 Log(("ctrl.IntCtrl.u1IgnoreTPR %x\n", pVMCB->ctrl.IntCtrl.n.u1IgnoreTPR));
1076 Log(("ctrl.IntCtrl.u3Reserved %x\n", pVMCB->ctrl.IntCtrl.n.u3Reserved));
1077 Log(("ctrl.IntCtrl.u1VIrqMasking %x\n", pVMCB->ctrl.IntCtrl.n.u1VIrqMasking));
1078 Log(("ctrl.IntCtrl.u7Reserved2 %x\n", pVMCB->ctrl.IntCtrl.n.u7Reserved2));
1079 Log(("ctrl.IntCtrl.u8VIrqVector %x\n", pVMCB->ctrl.IntCtrl.n.u8VIrqVector));
1080 Log(("ctrl.IntCtrl.u24Reserved %x\n", pVMCB->ctrl.IntCtrl.n.u24Reserved));
1081
1082 Log(("ctrl.u64IntShadow %RX64\n", pVMCB->ctrl.u64IntShadow));
1083 Log(("ctrl.u64ExitCode %RX64\n", pVMCB->ctrl.u64ExitCode));
1084 Log(("ctrl.u64ExitInfo1 %RX64\n", pVMCB->ctrl.u64ExitInfo1));
1085 Log(("ctrl.u64ExitInfo2 %RX64\n", pVMCB->ctrl.u64ExitInfo2));
1086 Log(("ctrl.ExitIntInfo.u8Vector %x\n", pVMCB->ctrl.ExitIntInfo.n.u8Vector));
1087 Log(("ctrl.ExitIntInfo.u3Type %x\n", pVMCB->ctrl.ExitIntInfo.n.u3Type));
1088 Log(("ctrl.ExitIntInfo.u1ErrorCodeValid %x\n", pVMCB->ctrl.ExitIntInfo.n.u1ErrorCodeValid));
1089 Log(("ctrl.ExitIntInfo.u19Reserved %x\n", pVMCB->ctrl.ExitIntInfo.n.u19Reserved));
1090 Log(("ctrl.ExitIntInfo.u1Valid %x\n", pVMCB->ctrl.ExitIntInfo.n.u1Valid));
1091 Log(("ctrl.ExitIntInfo.u32ErrorCode %x\n", pVMCB->ctrl.ExitIntInfo.n.u32ErrorCode));
1092 Log(("ctrl.NestedPaging %RX64\n", pVMCB->ctrl.NestedPaging.au64));
1093 Log(("ctrl.EventInject.u8Vector %x\n", pVMCB->ctrl.EventInject.n.u8Vector));
1094 Log(("ctrl.EventInject.u3Type %x\n", pVMCB->ctrl.EventInject.n.u3Type));
1095 Log(("ctrl.EventInject.u1ErrorCodeValid %x\n", pVMCB->ctrl.EventInject.n.u1ErrorCodeValid));
1096 Log(("ctrl.EventInject.u19Reserved %x\n", pVMCB->ctrl.EventInject.n.u19Reserved));
1097 Log(("ctrl.EventInject.u1Valid %x\n", pVMCB->ctrl.EventInject.n.u1Valid));
1098 Log(("ctrl.EventInject.u32ErrorCode %x\n", pVMCB->ctrl.EventInject.n.u32ErrorCode));
1099
1100 Log(("ctrl.u64NestedPagingCR3 %RX64\n", pVMCB->ctrl.u64NestedPagingCR3));
1101 Log(("ctrl.u64LBRVirt %RX64\n", pVMCB->ctrl.u64LBRVirt));
1102
1103 Log(("guest.CS.u16Sel %04X\n", pVMCB->guest.CS.u16Sel));
1104 Log(("guest.CS.u16Attr %04X\n", pVMCB->guest.CS.u16Attr));
1105 Log(("guest.CS.u32Limit %X\n", pVMCB->guest.CS.u32Limit));
1106 Log(("guest.CS.u64Base %RX64\n", pVMCB->guest.CS.u64Base));
1107 Log(("guest.DS.u16Sel %04X\n", pVMCB->guest.DS.u16Sel));
1108 Log(("guest.DS.u16Attr %04X\n", pVMCB->guest.DS.u16Attr));
1109 Log(("guest.DS.u32Limit %X\n", pVMCB->guest.DS.u32Limit));
1110 Log(("guest.DS.u64Base %RX64\n", pVMCB->guest.DS.u64Base));
1111 Log(("guest.ES.u16Sel %04X\n", pVMCB->guest.ES.u16Sel));
1112 Log(("guest.ES.u16Attr %04X\n", pVMCB->guest.ES.u16Attr));
1113 Log(("guest.ES.u32Limit %X\n", pVMCB->guest.ES.u32Limit));
1114 Log(("guest.ES.u64Base %RX64\n", pVMCB->guest.ES.u64Base));
1115 Log(("guest.FS.u16Sel %04X\n", pVMCB->guest.FS.u16Sel));
1116 Log(("guest.FS.u16Attr %04X\n", pVMCB->guest.FS.u16Attr));
1117 Log(("guest.FS.u32Limit %X\n", pVMCB->guest.FS.u32Limit));
1118 Log(("guest.FS.u64Base %RX64\n", pVMCB->guest.FS.u64Base));
1119 Log(("guest.GS.u16Sel %04X\n", pVMCB->guest.GS.u16Sel));
1120 Log(("guest.GS.u16Attr %04X\n", pVMCB->guest.GS.u16Attr));
1121 Log(("guest.GS.u32Limit %X\n", pVMCB->guest.GS.u32Limit));
1122 Log(("guest.GS.u64Base %RX64\n", pVMCB->guest.GS.u64Base));
1123
1124 Log(("guest.GDTR.u32Limit %X\n", pVMCB->guest.GDTR.u32Limit));
1125 Log(("guest.GDTR.u64Base %RX64\n", pVMCB->guest.GDTR.u64Base));
1126
1127 Log(("guest.LDTR.u16Sel %04X\n", pVMCB->guest.LDTR.u16Sel));
1128 Log(("guest.LDTR.u16Attr %04X\n", pVMCB->guest.LDTR.u16Attr));
1129 Log(("guest.LDTR.u32Limit %X\n", pVMCB->guest.LDTR.u32Limit));
1130 Log(("guest.LDTR.u64Base %RX64\n", pVMCB->guest.LDTR.u64Base));
1131
1132 Log(("guest.IDTR.u32Limit %X\n", pVMCB->guest.IDTR.u32Limit));
1133 Log(("guest.IDTR.u64Base %RX64\n", pVMCB->guest.IDTR.u64Base));
1134
1135 Log(("guest.TR.u16Sel %04X\n", pVMCB->guest.TR.u16Sel));
1136 Log(("guest.TR.u16Attr %04X\n", pVMCB->guest.TR.u16Attr));
1137 Log(("guest.TR.u32Limit %X\n", pVMCB->guest.TR.u32Limit));
1138 Log(("guest.TR.u64Base %RX64\n", pVMCB->guest.TR.u64Base));
1139
1140 Log(("guest.u8CPL %X\n", pVMCB->guest.u8CPL));
1141 Log(("guest.u64CR0 %RX64\n", pVMCB->guest.u64CR0));
1142 Log(("guest.u64CR2 %RX64\n", pVMCB->guest.u64CR2));
1143 Log(("guest.u64CR3 %RX64\n", pVMCB->guest.u64CR3));
1144 Log(("guest.u64CR4 %RX64\n", pVMCB->guest.u64CR4));
1145 Log(("guest.u64DR6 %RX64\n", pVMCB->guest.u64DR6));
1146 Log(("guest.u64DR7 %RX64\n", pVMCB->guest.u64DR7));
1147
1148 Log(("guest.u64RIP %RX64\n", pVMCB->guest.u64RIP));
1149 Log(("guest.u64RSP %RX64\n", pVMCB->guest.u64RSP));
1150 Log(("guest.u64RAX %RX64\n", pVMCB->guest.u64RAX));
1151 Log(("guest.u64RFlags %RX64\n", pVMCB->guest.u64RFlags));
1152
1153 Log(("guest.u64SysEnterCS %RX64\n", pVMCB->guest.u64SysEnterCS));
1154 Log(("guest.u64SysEnterEIP %RX64\n", pVMCB->guest.u64SysEnterEIP));
1155 Log(("guest.u64SysEnterESP %RX64\n", pVMCB->guest.u64SysEnterESP));
1156
1157 Log(("guest.u64EFER %RX64\n", pVMCB->guest.u64EFER));
1158 Log(("guest.u64STAR %RX64\n", pVMCB->guest.u64STAR));
1159 Log(("guest.u64LSTAR %RX64\n", pVMCB->guest.u64LSTAR));
1160 Log(("guest.u64CSTAR %RX64\n", pVMCB->guest.u64CSTAR));
1161 Log(("guest.u64SFMASK %RX64\n", pVMCB->guest.u64SFMASK));
1162 Log(("guest.u64KernelGSBase %RX64\n", pVMCB->guest.u64KernelGSBase));
1163 Log(("guest.u64GPAT %RX64\n", pVMCB->guest.u64GPAT));
1164 Log(("guest.u64DBGCTL %RX64\n", pVMCB->guest.u64DBGCTL));
1165 Log(("guest.u64BR_FROM %RX64\n", pVMCB->guest.u64BR_FROM));
1166 Log(("guest.u64BR_TO %RX64\n", pVMCB->guest.u64BR_TO));
1167 Log(("guest.u64LASTEXCPFROM %RX64\n", pVMCB->guest.u64LASTEXCPFROM));
1168 Log(("guest.u64LASTEXCPTO %RX64\n", pVMCB->guest.u64LASTEXCPTO));
1169
1170#endif
1171 rc = VERR_SVM_UNABLE_TO_START_VM;
1172 goto end;
1173 }
1174
1175 /* Let's first sync back eip, esp, and eflags. */
1176 pCtx->rip = pVMCB->guest.u64RIP;
1177 pCtx->rsp = pVMCB->guest.u64RSP;
1178 pCtx->eflags.u32 = pVMCB->guest.u64RFlags;
1179 /* eax is saved/restore across the vmrun instruction */
1180 pCtx->rax = pVMCB->guest.u64RAX;
1181
1182 pCtx->msrKERNELGSBASE = pVMCB->guest.u64KernelGSBase; /* swapgs exchange value */
1183
1184 /* Can be updated behind our back in the nested paging case. */
1185 pCtx->cr2 = pVMCB->guest.u64CR2;
1186
1187 /* Guest CPU context: ES, CS, SS, DS, FS, GS. */
1188 SVM_READ_SELREG(SS, ss);
1189 SVM_READ_SELREG(CS, cs);
1190 SVM_READ_SELREG(DS, ds);
1191 SVM_READ_SELREG(ES, es);
1192 SVM_READ_SELREG(FS, fs);
1193 SVM_READ_SELREG(GS, gs);
1194
1195 /*
1196 * System MSRs
1197 */
1198 pCtx->SysEnter.cs = pVMCB->guest.u64SysEnterCS;
1199 pCtx->SysEnter.eip = pVMCB->guest.u64SysEnterEIP;
1200 pCtx->SysEnter.esp = pVMCB->guest.u64SysEnterESP;
1201
1202 /* Remaining guest CPU context: TR, IDTR, GDTR, LDTR; must sync everything otherwise we can get out of sync when jumping to ring 3. */
1203 SVM_READ_SELREG(LDTR, ldtr);
1204 SVM_READ_SELREG(TR, tr);
1205
1206 pCtx->gdtr.cbGdt = pVMCB->guest.GDTR.u32Limit;
1207 pCtx->gdtr.pGdt = pVMCB->guest.GDTR.u64Base;
1208
1209 pCtx->idtr.cbIdt = pVMCB->guest.IDTR.u32Limit;
1210 pCtx->idtr.pIdt = pVMCB->guest.IDTR.u64Base;
1211
1212 /* Note: no reason to sync back the CRx and DRx registers. They can't be changed by the guest. */
1213 /* Note: only in the nested paging case can CR3 & CR4 be changed by the guest. */
1214 if ( pVM->hwaccm.s.fNestedPaging
1215 && pCtx->cr3 != pVMCB->guest.u64CR3)
1216 {
1217 CPUMSetGuestCR3(pVM, pVMCB->guest.u64CR3);
1218 PGMUpdateCR3(pVM, pVMCB->guest.u64CR3);
1219 }
1220
1221 /* Note! NOW IT'S SAFE FOR LOGGING! */
1222
1223 /* Take care of instruction fusing (sti, mov ss) (see 15.20.5 Interrupt Shadows) */
1224 if (pVMCB->ctrl.u64IntShadow & SVM_INTERRUPT_SHADOW_ACTIVE)
1225 {
1226 Log(("uInterruptState %x rip=%RGv\n", pVMCB->ctrl.u64IntShadow, (RTGCPTR)pCtx->rip));
1227 EMSetInhibitInterruptsPC(pVM, pCtx->rip);
1228 }
1229 else
1230 VM_FF_CLEAR(pVM, VM_FF_INHIBIT_INTERRUPTS);
1231
1232 Log2(("exitCode = %x\n", exitCode));
1233
1234 /* Sync back DR6 as it could have been changed by hitting breakpoints. */
1235 pCtx->dr[6] = pVMCB->guest.u64DR6;
1236 /* DR7.GD can be cleared by debug exceptions, so sync it back as well. */
1237 pCtx->dr[7] = pVMCB->guest.u64DR7;
1238
1239 /* Check if an injected event was interrupted prematurely. */
1240 pVCpu->hwaccm.s.Event.intInfo = pVMCB->ctrl.ExitIntInfo.au64[0];
1241 if ( pVMCB->ctrl.ExitIntInfo.n.u1Valid
1242 && pVMCB->ctrl.ExitIntInfo.n.u3Type != SVM_EVENT_SOFTWARE_INT /* we don't care about 'int xx' as the instruction will be restarted. */)
1243 {
1244 Log(("Pending inject %RX64 at %RGv exit=%08x\n", pVCpu->hwaccm.s.Event.intInfo, (RTGCPTR)pCtx->rip, exitCode));
1245
1246#ifdef LOG_ENABLED
1247 SVM_EVENT Event;
1248 Event.au64[0] = pVCpu->hwaccm.s.Event.intInfo;
1249
1250 if ( exitCode == SVM_EXIT_EXCEPTION_E
1251 && Event.n.u8Vector == 0xE)
1252 {
1253 Log(("Double fault!\n"));
1254 }
1255#endif
1256
1257 pVCpu->hwaccm.s.Event.fPending = true;
1258 /* Error code present? (redundant) */
1259 if (pVMCB->ctrl.ExitIntInfo.n.u1ErrorCodeValid)
1260 {
1261 pVCpu->hwaccm.s.Event.errCode = pVMCB->ctrl.ExitIntInfo.n.u32ErrorCode;
1262 }
1263 else
1264 pVCpu->hwaccm.s.Event.errCode = 0;
1265 }
1266#ifdef VBOX_WITH_STATISTICS
1267 if (exitCode == SVM_EXIT_NPF)
1268 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitReasonNPF);
1269 else
1270 STAM_COUNTER_INC(&pVCpu->hwaccm.s.paStatExitReasonR0[exitCode & MASK_EXITREASON_STAT]);
1271#endif
1272
1273 if (fSyncTPR)
1274 {
1275 rc = PDMApicSetTPR(pVM, pVMCB->ctrl.IntCtrl.n.u8VTPR);
1276 AssertRC(rc);
1277 }
1278
1279 /* Deal with the reason of the VM-exit. */
1280 switch (exitCode)
1281 {
1282 case SVM_EXIT_EXCEPTION_0: case SVM_EXIT_EXCEPTION_1: case SVM_EXIT_EXCEPTION_2: case SVM_EXIT_EXCEPTION_3:
1283 case SVM_EXIT_EXCEPTION_4: case SVM_EXIT_EXCEPTION_5: case SVM_EXIT_EXCEPTION_6: case SVM_EXIT_EXCEPTION_7:
1284 case SVM_EXIT_EXCEPTION_8: case SVM_EXIT_EXCEPTION_9: case SVM_EXIT_EXCEPTION_A: case SVM_EXIT_EXCEPTION_B:
1285 case SVM_EXIT_EXCEPTION_C: case SVM_EXIT_EXCEPTION_D: case SVM_EXIT_EXCEPTION_E: case SVM_EXIT_EXCEPTION_F:
1286 case SVM_EXIT_EXCEPTION_10: case SVM_EXIT_EXCEPTION_11: case SVM_EXIT_EXCEPTION_12: case SVM_EXIT_EXCEPTION_13:
1287 case SVM_EXIT_EXCEPTION_14: case SVM_EXIT_EXCEPTION_15: case SVM_EXIT_EXCEPTION_16: case SVM_EXIT_EXCEPTION_17:
1288 case SVM_EXIT_EXCEPTION_18: case SVM_EXIT_EXCEPTION_19: case SVM_EXIT_EXCEPTION_1A: case SVM_EXIT_EXCEPTION_1B:
1289 case SVM_EXIT_EXCEPTION_1C: case SVM_EXIT_EXCEPTION_1D: case SVM_EXIT_EXCEPTION_1E: case SVM_EXIT_EXCEPTION_1F:
1290 {
1291 /* Pending trap. */
1292 SVM_EVENT Event;
1293 uint32_t vector = exitCode - SVM_EXIT_EXCEPTION_0;
1294
1295 Log2(("Hardware/software interrupt %d\n", vector));
1296 switch (vector)
1297 {
1298 case X86_XCPT_DB:
1299 {
1300 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestDB);
1301
1302 /* Note that we don't support guest and host-initiated debugging at the same time. */
1303 Assert(DBGFIsStepping(pVM));
1304
1305 rc = DBGFR0Trap01Handler(pVM, CPUMCTX2CORE(pCtx), pCtx->dr[6]);
1306 if (rc == VINF_EM_RAW_GUEST_TRAP)
1307 {
1308 Log(("Trap %x (debug) at %016RX64\n", vector, pCtx->rip));
1309
1310 /* Reinject the exception. */
1311 Event.au64[0] = 0;
1312 Event.n.u3Type = SVM_EVENT_EXCEPTION; /* trap or fault */
1313 Event.n.u1Valid = 1;
1314 Event.n.u8Vector = X86_XCPT_DB;
1315
1316 SVMR0InjectEvent(pVM, pVMCB, pCtx, &Event);
1317
1318 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit, x);
1319 goto ResumeExecution;
1320 }
1321 /* Return to ring 3 to deal with the debug exit code. */
1322 break;
1323 }
1324
1325 case X86_XCPT_NM:
1326 {
1327 Log(("#NM fault at %RGv\n", (RTGCPTR)pCtx->rip));
1328
1329 /** @todo don't intercept #NM exceptions anymore when we've activated the guest FPU state. */
1330 /* If we sync the FPU/XMM state on-demand, then we can continue execution as if nothing has happened. */
1331 rc = CPUMR0LoadGuestFPU(pVM, pVCpu, pCtx);
1332 if (rc == VINF_SUCCESS)
1333 {
1334 Assert(CPUMIsGuestFPUStateActive(pVCpu));
1335 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitShadowNM);
1336
1337 /* Continue execution. */
1338 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit, x);
1339 pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_GUEST_CR0;
1340
1341 goto ResumeExecution;
1342 }
1343
1344 Log(("Forward #NM fault to the guest\n"));
1345 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestNM);
1346
1347 Event.au64[0] = 0;
1348 Event.n.u3Type = SVM_EVENT_EXCEPTION;
1349 Event.n.u1Valid = 1;
1350 Event.n.u8Vector = X86_XCPT_NM;
1351
1352 SVMR0InjectEvent(pVM, pVMCB, pCtx, &Event);
1353 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit, x);
1354 goto ResumeExecution;
1355 }
1356
1357 case X86_XCPT_PF: /* Page fault */
1358 {
1359 uint32_t errCode = pVMCB->ctrl.u64ExitInfo1; /* EXITINFO1 = error code */
1360 RTGCUINTPTR uFaultAddress = pVMCB->ctrl.u64ExitInfo2; /* EXITINFO2 = fault address */
1361
1362#ifdef DEBUG
1363 if (pVM->hwaccm.s.fNestedPaging)
1364 { /* A genuine pagefault.
1365 * Forward the trap to the guest by injecting the exception and resuming execution.
1366 */
1367 Log(("Guest page fault at %RGv cr2=%RGv error code %x rsp=%RGv\n", (RTGCPTR)pCtx->rip, uFaultAddress, errCode, (RTGCPTR)pCtx->rsp));
1368 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestPF);
1369
1370 /* Now we must update CR2. */
1371 pCtx->cr2 = uFaultAddress;
1372
1373 Event.au64[0] = 0;
1374 Event.n.u3Type = SVM_EVENT_EXCEPTION;
1375 Event.n.u1Valid = 1;
1376 Event.n.u8Vector = X86_XCPT_PF;
1377 Event.n.u1ErrorCodeValid = 1;
1378 Event.n.u32ErrorCode = errCode;
1379
1380 SVMR0InjectEvent(pVM, pVMCB, pCtx, &Event);
1381
1382 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit, x);
1383 goto ResumeExecution;
1384 }
1385#endif
1386 Assert(!pVM->hwaccm.s.fNestedPaging);
1387
1388 Log2(("Page fault at %RGv cr2=%RGv error code %x\n", (RTGCPTR)pCtx->rip, uFaultAddress, errCode));
1389 /* Exit qualification contains the linear address of the page fault. */
1390 TRPMAssertTrap(pVM, X86_XCPT_PF, TRPM_TRAP);
1391 TRPMSetErrorCode(pVM, errCode);
1392 TRPMSetFaultAddress(pVM, uFaultAddress);
1393
1394 /* Forward it to our trap handler first, in case our shadow pages are out of sync. */
1395 rc = PGMTrap0eHandler(pVM, errCode, CPUMCTX2CORE(pCtx), (RTGCPTR)uFaultAddress);
1396 Log2(("PGMTrap0eHandler %RGv returned %Rrc\n", (RTGCPTR)pCtx->rip, rc));
1397 if (rc == VINF_SUCCESS)
1398 { /* We've successfully synced our shadow pages, so let's just continue execution. */
1399 Log2(("Shadow page fault at %RGv cr2=%RGv error code %x\n", (RTGCPTR)pCtx->rip, uFaultAddress, errCode));
1400 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitShadowPF);
1401
1402 TRPMResetTrap(pVM);
1403
1404 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit, x);
1405 goto ResumeExecution;
1406 }
1407 else
1408 if (rc == VINF_EM_RAW_GUEST_TRAP)
1409 { /* A genuine pagefault.
1410 * Forward the trap to the guest by injecting the exception and resuming execution.
1411 */
1412 Log2(("Forward page fault to the guest\n"));
1413 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestPF);
1414 /* The error code might have been changed. */
1415 errCode = TRPMGetErrorCode(pVM);
1416
1417 TRPMResetTrap(pVM);
1418
1419 /* Now we must update CR2. */
1420 pCtx->cr2 = uFaultAddress;
1421
1422 Event.au64[0] = 0;
1423 Event.n.u3Type = SVM_EVENT_EXCEPTION;
1424 Event.n.u1Valid = 1;
1425 Event.n.u8Vector = X86_XCPT_PF;
1426 Event.n.u1ErrorCodeValid = 1;
1427 Event.n.u32ErrorCode = errCode;
1428
1429 SVMR0InjectEvent(pVM, pVMCB, pCtx, &Event);
1430
1431 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit, x);
1432 goto ResumeExecution;
1433 }
1434#ifdef VBOX_STRICT
1435 if (rc != VINF_EM_RAW_EMULATE_INSTR)
1436 LogFlow(("PGMTrap0eHandler failed with %d\n", rc));
1437#endif
1438 /* Need to go back to the recompiler to emulate the instruction. */
1439 TRPMResetTrap(pVM);
1440 break;
1441 }
1442
1443 case X86_XCPT_MF: /* Floating point exception. */
1444 {
1445 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestMF);
1446 if (!(pCtx->cr0 & X86_CR0_NE))
1447 {
1448 /* old style FPU error reporting needs some extra work. */
1449 /** @todo don't fall back to the recompiler, but do it manually. */
1450 rc = VINF_EM_RAW_EMULATE_INSTR;
1451 break;
1452 }
1453 Log(("Trap %x at %RGv\n", vector, (RTGCPTR)pCtx->rip));
1454
1455 Event.au64[0] = 0;
1456 Event.n.u3Type = SVM_EVENT_EXCEPTION;
1457 Event.n.u1Valid = 1;
1458 Event.n.u8Vector = X86_XCPT_MF;
1459
1460 SVMR0InjectEvent(pVM, pVMCB, pCtx, &Event);
1461
1462 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit, x);
1463 goto ResumeExecution;
1464 }
1465
1466#ifdef VBOX_STRICT
1467 case X86_XCPT_GP: /* General protection failure exception.*/
1468 case X86_XCPT_UD: /* Unknown opcode exception. */
1469 case X86_XCPT_DE: /* Divide error. */
1470 case X86_XCPT_SS: /* Stack segment exception. */
1471 case X86_XCPT_NP: /* Segment not present exception. */
1472 {
1473 Event.au64[0] = 0;
1474 Event.n.u3Type = SVM_EVENT_EXCEPTION;
1475 Event.n.u1Valid = 1;
1476 Event.n.u8Vector = vector;
1477
1478 switch(vector)
1479 {
1480 case X86_XCPT_GP:
1481 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestGP);
1482 Event.n.u1ErrorCodeValid = 1;
1483 Event.n.u32ErrorCode = pVMCB->ctrl.u64ExitInfo1; /* EXITINFO1 = error code */
1484 break;
1485 case X86_XCPT_DE:
1486 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestDE);
1487 break;
1488 case X86_XCPT_UD:
1489 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestUD);
1490 break;
1491 case X86_XCPT_SS:
1492 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestSS);
1493 Event.n.u1ErrorCodeValid = 1;
1494 Event.n.u32ErrorCode = pVMCB->ctrl.u64ExitInfo1; /* EXITINFO1 = error code */
1495 break;
1496 case X86_XCPT_NP:
1497 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestNP);
1498 Event.n.u1ErrorCodeValid = 1;
1499 Event.n.u32ErrorCode = pVMCB->ctrl.u64ExitInfo1; /* EXITINFO1 = error code */
1500 break;
1501 }
1502 Log(("Trap %x at %RGv esi=%x\n", vector, (RTGCPTR)pCtx->rip, pCtx->esi));
1503 SVMR0InjectEvent(pVM, pVMCB, pCtx, &Event);
1504
1505 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit, x);
1506 goto ResumeExecution;
1507 }
1508#endif
1509 default:
1510 AssertMsgFailed(("Unexpected vm-exit caused by exception %x\n", vector));
1511 rc = VERR_EM_INTERNAL_ERROR;
1512 break;
1513
1514 } /* switch (vector) */
1515 break;
1516 }
1517
1518 case SVM_EXIT_NPF:
1519 {
1520 /* EXITINFO1 contains fault errorcode; EXITINFO2 contains the guest physical address causing the fault. */
1521 uint32_t errCode = pVMCB->ctrl.u64ExitInfo1; /* EXITINFO1 = error code */
1522 RTGCPHYS uFaultAddress = pVMCB->ctrl.u64ExitInfo2; /* EXITINFO2 = fault address */
1523
1524 Assert(pVM->hwaccm.s.fNestedPaging);
1525 Log(("Nested page fault at %RGv cr2=%RGp error code %x\n", (RTGCPTR)pCtx->rip, uFaultAddress, errCode));
1526 /* Exit qualification contains the linear address of the page fault. */
1527 TRPMAssertTrap(pVM, X86_XCPT_PF, TRPM_TRAP);
1528 TRPMSetErrorCode(pVM, errCode);
1529 TRPMSetFaultAddress(pVM, uFaultAddress);
1530
1531 /* Handle the pagefault trap for the nested shadow table. */
1532 rc = PGMR0Trap0eHandlerNestedPaging(pVM, PGMGetHostMode(pVM), errCode, CPUMCTX2CORE(pCtx), uFaultAddress);
1533 Log2(("PGMR0Trap0eHandlerNestedPaging %RGv returned %Rrc\n", (RTGCPTR)pCtx->rip, rc));
1534 if (rc == VINF_SUCCESS)
1535 { /* We've successfully synced our shadow pages, so let's just continue execution. */
1536 Log2(("Shadow page fault at %RGv cr2=%RGp error code %x\n", (RTGCPTR)pCtx->rip, uFaultAddress, errCode));
1537 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitShadowPF);
1538
1539 TRPMResetTrap(pVM);
1540
1541 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit, x);
1542 goto ResumeExecution;
1543 }
1544
1545#ifdef VBOX_STRICT
1546 if (rc != VINF_EM_RAW_EMULATE_INSTR)
1547 LogFlow(("PGMTrap0eHandlerNestedPaging failed with %d\n", rc));
1548#endif
1549 /* Need to go back to the recompiler to emulate the instruction. */
1550 TRPMResetTrap(pVM);
1551 break;
1552 }
1553
1554 case SVM_EXIT_VINTR:
1555 /* A virtual interrupt is about to be delivered, which means IF=1. */
1556 Log(("SVM_EXIT_VINTR IF=%d\n", pCtx->eflags.Bits.u1IF));
1557 pVMCB->ctrl.IntCtrl.n.u1VIrqValid = 0;
1558 pVMCB->ctrl.IntCtrl.n.u8VIrqVector = 0;
1559 goto ResumeExecution;
1560
1561 case SVM_EXIT_FERR_FREEZE:
1562 case SVM_EXIT_INTR:
1563 case SVM_EXIT_NMI:
1564 case SVM_EXIT_SMI:
1565 case SVM_EXIT_INIT:
1566 /* External interrupt; leave to allow it to be dispatched again. */
1567 rc = VINF_EM_RAW_INTERRUPT;
1568 break;
1569
1570 case SVM_EXIT_WBINVD:
1571 case SVM_EXIT_INVD: /* Guest software attempted to execute INVD. */
1572 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitInvd);
1573 /* Skip instruction and continue directly. */
1574 pCtx->rip += 2; /* Note! hardcoded opcode size! */
1575 /* Continue execution.*/
1576 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit, x);
1577 goto ResumeExecution;
1578
1579 case SVM_EXIT_CPUID: /* Guest software attempted to execute CPUID. */
1580 {
1581 Log2(("SVM: Cpuid at %RGv for %x\n", (RTGCPTR)pCtx->rip, pCtx->eax));
1582 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitCpuid);
1583 rc = EMInterpretCpuId(pVM, CPUMCTX2CORE(pCtx));
1584 if (rc == VINF_SUCCESS)
1585 {
1586 /* Update EIP and continue execution. */
1587 pCtx->rip += 2; /* Note! hardcoded opcode size! */
1588 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit, x);
1589 goto ResumeExecution;
1590 }
1591 AssertMsgFailed(("EMU: cpuid failed with %Rrc\n", rc));
1592 rc = VINF_EM_RAW_EMULATE_INSTR;
1593 break;
1594 }
1595
1596 case SVM_EXIT_RDTSC: /* Guest software attempted to execute RDTSC. */
1597 {
1598 Log2(("SVM: Rdtsc\n"));
1599 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitRdtsc);
1600 rc = EMInterpretRdtsc(pVM, CPUMCTX2CORE(pCtx));
1601 if (rc == VINF_SUCCESS)
1602 {
1603 /* Update EIP and continue execution. */
1604 pCtx->rip += 2; /* Note! hardcoded opcode size! */
1605 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit, x);
1606 goto ResumeExecution;
1607 }
1608 AssertMsgFailed(("EMU: rdtsc failed with %Rrc\n", rc));
1609 rc = VINF_EM_RAW_EMULATE_INSTR;
1610 break;
1611 }
1612
1613 case SVM_EXIT_INVLPG: /* Guest software attempted to execute INVPG. */
1614 {
1615 Log2(("SVM: invlpg\n"));
1616 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitInvpg);
1617
1618 Assert(!pVM->hwaccm.s.fNestedPaging);
1619
1620 /* Truly a pita. Why can't SVM give the same information as VT-x? */
1621 rc = SVMR0InterpretInvpg(pVM, CPUMCTX2CORE(pCtx), pVMCB->ctrl.TLBCtrl.n.u32ASID);
1622 if (rc == VINF_SUCCESS)
1623 {
1624 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatFlushPageInvlpg);
1625 goto ResumeExecution; /* eip already updated */
1626 }
1627 break;
1628 }
1629
1630 case SVM_EXIT_WRITE_CR0: case SVM_EXIT_WRITE_CR1: case SVM_EXIT_WRITE_CR2: case SVM_EXIT_WRITE_CR3:
1631 case SVM_EXIT_WRITE_CR4: case SVM_EXIT_WRITE_CR5: case SVM_EXIT_WRITE_CR6: case SVM_EXIT_WRITE_CR7:
1632 case SVM_EXIT_WRITE_CR8: case SVM_EXIT_WRITE_CR9: case SVM_EXIT_WRITE_CR10: case SVM_EXIT_WRITE_CR11:
1633 case SVM_EXIT_WRITE_CR12: case SVM_EXIT_WRITE_CR13: case SVM_EXIT_WRITE_CR14: case SVM_EXIT_WRITE_CR15:
1634 {
1635 uint32_t cbSize;
1636
1637 Log2(("SVM: %RGv mov cr%d, \n", (RTGCPTR)pCtx->rip, exitCode - SVM_EXIT_WRITE_CR0));
1638 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitCRxWrite);
1639 rc = EMInterpretInstruction(pVM, CPUMCTX2CORE(pCtx), 0, &cbSize);
1640
1641 switch (exitCode - SVM_EXIT_WRITE_CR0)
1642 {
1643 case 0:
1644 pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_GUEST_CR0;
1645 break;
1646 case 2:
1647 break;
1648 case 3:
1649 Assert(!pVM->hwaccm.s.fNestedPaging);
1650 pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_GUEST_CR3;
1651 break;
1652 case 4:
1653 pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_GUEST_CR4;
1654 break;
1655 case 8:
1656 break;
1657 default:
1658 AssertFailed();
1659 }
1660 /* Check if a sync operation is pending. */
1661 if ( rc == VINF_SUCCESS /* don't bother if we are going to ring 3 anyway */
1662 && VM_FF_ISPENDING(pVM, VM_FF_PGM_SYNC_CR3 | VM_FF_PGM_SYNC_CR3_NON_GLOBAL))
1663 {
1664 rc = PGMSyncCR3(pVM, CPUMGetGuestCR0(pVM), CPUMGetGuestCR3(pVM), CPUMGetGuestCR4(pVM), VM_FF_ISSET(pVM, VM_FF_PGM_SYNC_CR3));
1665 AssertRC(rc);
1666
1667 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatFlushTLBCRxChange);
1668
1669 /* Must be set by PGMSyncCR3 */
1670 Assert(PGMGetGuestMode(pVM) <= PGMMODE_PROTECTED || pVCpu->hwaccm.s.fForceTLBFlush);
1671 }
1672 if (rc == VINF_SUCCESS)
1673 {
1674 /* EIP has been updated already. */
1675
1676 /* Only resume if successful. */
1677 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit, x);
1678 goto ResumeExecution;
1679 }
1680 Assert(rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_PGM_SYNC_CR3);
1681 break;
1682 }
1683
1684 case SVM_EXIT_READ_CR0: case SVM_EXIT_READ_CR1: case SVM_EXIT_READ_CR2: case SVM_EXIT_READ_CR3:
1685 case SVM_EXIT_READ_CR4: case SVM_EXIT_READ_CR5: case SVM_EXIT_READ_CR6: case SVM_EXIT_READ_CR7:
1686 case SVM_EXIT_READ_CR8: case SVM_EXIT_READ_CR9: case SVM_EXIT_READ_CR10: case SVM_EXIT_READ_CR11:
1687 case SVM_EXIT_READ_CR12: case SVM_EXIT_READ_CR13: case SVM_EXIT_READ_CR14: case SVM_EXIT_READ_CR15:
1688 {
1689 uint32_t cbSize;
1690
1691 Log2(("SVM: %RGv mov x, cr%d\n", (RTGCPTR)pCtx->rip, exitCode - SVM_EXIT_READ_CR0));
1692 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitCRxRead);
1693 rc = EMInterpretInstruction(pVM, CPUMCTX2CORE(pCtx), 0, &cbSize);
1694 if (rc == VINF_SUCCESS)
1695 {
1696 /* EIP has been updated already. */
1697
1698 /* Only resume if successful. */
1699 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit, x);
1700 goto ResumeExecution;
1701 }
1702 Assert(rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_PGM_SYNC_CR3);
1703 break;
1704 }
1705
1706 case SVM_EXIT_WRITE_DR0: case SVM_EXIT_WRITE_DR1: case SVM_EXIT_WRITE_DR2: case SVM_EXIT_WRITE_DR3:
1707 case SVM_EXIT_WRITE_DR4: case SVM_EXIT_WRITE_DR5: case SVM_EXIT_WRITE_DR6: case SVM_EXIT_WRITE_DR7:
1708 case SVM_EXIT_WRITE_DR8: case SVM_EXIT_WRITE_DR9: case SVM_EXIT_WRITE_DR10: case SVM_EXIT_WRITE_DR11:
1709 case SVM_EXIT_WRITE_DR12: case SVM_EXIT_WRITE_DR13: case SVM_EXIT_WRITE_DR14: case SVM_EXIT_WRITE_DR15:
1710 {
1711 uint32_t cbSize;
1712
1713 Log2(("SVM: %RGv mov dr%d, x\n", (RTGCPTR)pCtx->rip, exitCode - SVM_EXIT_WRITE_DR0));
1714 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitDRxRead);
1715
1716 if (!DBGFIsStepping(pVM))
1717 {
1718 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatDRxContextSwitch);
1719
1720 /* Disable drx move intercepts. */
1721 pVMCB->ctrl.u16InterceptRdDRx = 0;
1722 pVMCB->ctrl.u16InterceptWrDRx = 0;
1723
1724 /* Save the host and load the guest debug state. */
1725 rc = CPUMR0LoadGuestDebugState(pVM, pVCpu, pCtx, false /* exclude DR6 */);
1726 AssertRC(rc);
1727
1728 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit, x);
1729 goto ResumeExecution;
1730 }
1731
1732 rc = EMInterpretInstruction(pVM, CPUMCTX2CORE(pCtx), 0, &cbSize);
1733 if (rc == VINF_SUCCESS)
1734 {
1735 /* EIP has been updated already. */
1736 pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_GUEST_DEBUG;
1737
1738 /* Only resume if successful. */
1739 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit, x);
1740 goto ResumeExecution;
1741 }
1742 Assert(rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_PGM_SYNC_CR3);
1743 break;
1744 }
1745
1746 case SVM_EXIT_READ_DR0: case SVM_EXIT_READ_DR1: case SVM_EXIT_READ_DR2: case SVM_EXIT_READ_DR3:
1747 case SVM_EXIT_READ_DR4: case SVM_EXIT_READ_DR5: case SVM_EXIT_READ_DR6: case SVM_EXIT_READ_DR7:
1748 case SVM_EXIT_READ_DR8: case SVM_EXIT_READ_DR9: case SVM_EXIT_READ_DR10: case SVM_EXIT_READ_DR11:
1749 case SVM_EXIT_READ_DR12: case SVM_EXIT_READ_DR13: case SVM_EXIT_READ_DR14: case SVM_EXIT_READ_DR15:
1750 {
1751 uint32_t cbSize;
1752
1753 Log2(("SVM: %RGv mov dr%d, x\n", (RTGCPTR)pCtx->rip, exitCode - SVM_EXIT_READ_DR0));
1754 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitDRxRead);
1755
1756 if (!DBGFIsStepping(pVM))
1757 {
1758 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatDRxContextSwitch);
1759
1760 /* Disable drx move intercepts. */
1761 pVMCB->ctrl.u16InterceptRdDRx = 0;
1762 pVMCB->ctrl.u16InterceptWrDRx = 0;
1763
1764 /* Save the host and load the guest debug state. */
1765 rc = CPUMR0LoadGuestDebugState(pVM, pVCpu, pCtx, false /* exclude DR6 */);
1766 AssertRC(rc);
1767
1768 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit, x);
1769 goto ResumeExecution;
1770 }
1771
1772 rc = EMInterpretInstruction(pVM, CPUMCTX2CORE(pCtx), 0, &cbSize);
1773 if (rc == VINF_SUCCESS)
1774 {
1775 /* EIP has been updated already. */
1776
1777 /* Only resume if successful. */
1778 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit, x);
1779 goto ResumeExecution;
1780 }
1781 Assert(rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_PGM_SYNC_CR3);
1782 break;
1783 }
1784
1785 /* Note: We'll get a #GP if the IO instruction isn't allowed (IOPL or TSS bitmap); no need to double check. */
1786 case SVM_EXIT_IOIO: /* I/O instruction. */
1787 {
1788 SVM_IOIO_EXIT IoExitInfo;
1789 uint32_t uIOSize, uAndVal;
1790
1791 IoExitInfo.au32[0] = pVMCB->ctrl.u64ExitInfo1;
1792
1793 /** @todo could use a lookup table here */
1794 if (IoExitInfo.n.u1OP8)
1795 {
1796 uIOSize = 1;
1797 uAndVal = 0xff;
1798 }
1799 else
1800 if (IoExitInfo.n.u1OP16)
1801 {
1802 uIOSize = 2;
1803 uAndVal = 0xffff;
1804 }
1805 else
1806 if (IoExitInfo.n.u1OP32)
1807 {
1808 uIOSize = 4;
1809 uAndVal = 0xffffffff;
1810 }
1811 else
1812 {
1813 AssertFailed(); /* should be fatal. */
1814 rc = VINF_EM_RAW_EMULATE_INSTR;
1815 break;
1816 }
1817
1818 if (IoExitInfo.n.u1STR)
1819 {
1820 /* ins/outs */
1821 uint32_t prefix = 0;
1822 if (IoExitInfo.n.u1REP)
1823 prefix |= PREFIX_REP;
1824
1825 if (IoExitInfo.n.u1Type == 0)
1826 {
1827 Log2(("IOMInterpretOUTSEx %RGv %x size=%d\n", (RTGCPTR)pCtx->rip, IoExitInfo.n.u16Port, uIOSize));
1828 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitIOStringWrite);
1829 rc = IOMInterpretOUTSEx(pVM, CPUMCTX2CORE(pCtx), IoExitInfo.n.u16Port, prefix, uIOSize);
1830 }
1831 else
1832 {
1833 Log2(("IOMInterpretINSEx %RGv %x size=%d\n", (RTGCPTR)pCtx->rip, IoExitInfo.n.u16Port, uIOSize));
1834 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitIOStringRead);
1835 rc = IOMInterpretINSEx(pVM, CPUMCTX2CORE(pCtx), IoExitInfo.n.u16Port, prefix, uIOSize);
1836 }
1837 }
1838 else
1839 {
1840 /* normal in/out */
1841 Assert(!IoExitInfo.n.u1REP);
1842
1843 if (IoExitInfo.n.u1Type == 0)
1844 {
1845 Log2(("IOMIOPortWrite %RGv %x %x size=%d\n", (RTGCPTR)pCtx->rip, IoExitInfo.n.u16Port, pCtx->eax & uAndVal, uIOSize));
1846 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitIOWrite);
1847 rc = IOMIOPortWrite(pVM, IoExitInfo.n.u16Port, pCtx->eax & uAndVal, uIOSize);
1848 }
1849 else
1850 {
1851 uint32_t u32Val = 0;
1852
1853 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitIORead);
1854 rc = IOMIOPortRead(pVM, IoExitInfo.n.u16Port, &u32Val, uIOSize);
1855 if (IOM_SUCCESS(rc))
1856 {
1857 /* Write back to the EAX register. */
1858 pCtx->eax = (pCtx->eax & ~uAndVal) | (u32Val & uAndVal);
1859 Log2(("IOMIOPortRead %RGv %x %x size=%d\n", (RTGCPTR)pCtx->rip, IoExitInfo.n.u16Port, u32Val & uAndVal, uIOSize));
1860 }
1861 }
1862 }
1863 /*
1864 * Handled the I/O return codes.
1865 * (The unhandled cases end up with rc == VINF_EM_RAW_EMULATE_INSTR.)
1866 */
1867 if (IOM_SUCCESS(rc))
1868 {
1869 /* Update EIP and continue execution. */
1870 pCtx->rip = pVMCB->ctrl.u64ExitInfo2; /* RIP/EIP of the next instruction is saved in EXITINFO2. */
1871 if (RT_LIKELY(rc == VINF_SUCCESS))
1872 {
1873 /* If any IO breakpoints are armed, then we should check if a debug trap needs to be generated. */
1874 if (pCtx->dr[7] & X86_DR7_ENABLED_MASK)
1875 {
1876 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatDRxIOCheck);
1877 for (unsigned i=0;i<4;i++)
1878 {
1879 unsigned uBPLen = g_aIOSize[X86_DR7_GET_LEN(pCtx->dr[7], i)];
1880
1881 if ( (IoExitInfo.n.u16Port >= pCtx->dr[i] && IoExitInfo.n.u16Port < pCtx->dr[i] + uBPLen)
1882 && (pCtx->dr[7] & (X86_DR7_L(i) | X86_DR7_G(i)))
1883 && (pCtx->dr[7] & X86_DR7_RW(i, X86_DR7_RW_IO)) == X86_DR7_RW(i, X86_DR7_RW_IO))
1884 {
1885 SVM_EVENT Event;
1886
1887 Assert(CPUMIsGuestDebugStateActive(pVM));
1888
1889 /* Clear all breakpoint status flags and set the one we just hit. */
1890 pCtx->dr[6] &= ~(X86_DR6_B0|X86_DR6_B1|X86_DR6_B2|X86_DR6_B3);
1891 pCtx->dr[6] |= (uint64_t)RT_BIT(i);
1892
1893 /* Note: AMD64 Architecture Programmer's Manual 13.1:
1894 * Bits 15:13 of the DR6 register is never cleared by the processor and must be cleared by software after
1895 * the contents have been read.
1896 */
1897 pVMCB->guest.u64DR6 = pCtx->dr[6];
1898
1899 /* X86_DR7_GD will be cleared if drx accesses should be trapped inside the guest. */
1900 pCtx->dr[7] &= ~X86_DR7_GD;
1901
1902 /* Paranoia. */
1903 pCtx->dr[7] &= 0xffffffff; /* upper 32 bits reserved */
1904 pCtx->dr[7] &= ~(RT_BIT(11) | RT_BIT(12) | RT_BIT(14) | RT_BIT(15)); /* must be zero */
1905 pCtx->dr[7] |= 0x400; /* must be one */
1906
1907 pVMCB->guest.u64DR7 = pCtx->dr[7];
1908
1909 /* Inject the exception. */
1910 Log(("Inject IO debug trap at %RGv\n", (RTGCPTR)pCtx->rip));
1911
1912 Event.au64[0] = 0;
1913 Event.n.u3Type = SVM_EVENT_EXCEPTION; /* trap or fault */
1914 Event.n.u1Valid = 1;
1915 Event.n.u8Vector = X86_XCPT_DB;
1916
1917 SVMR0InjectEvent(pVM, pVMCB, pCtx, &Event);
1918
1919 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit, x);
1920 goto ResumeExecution;
1921 }
1922 }
1923 }
1924
1925 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit, x);
1926 goto ResumeExecution;
1927 }
1928 Log2(("EM status from IO at %RGv %x size %d: %Rrc\n", (RTGCPTR)pCtx->rip, IoExitInfo.n.u16Port, uIOSize, rc));
1929 break;
1930 }
1931
1932#ifdef VBOX_STRICT
1933 if (rc == VINF_IOM_HC_IOPORT_READ)
1934 Assert(IoExitInfo.n.u1Type != 0);
1935 else if (rc == VINF_IOM_HC_IOPORT_WRITE)
1936 Assert(IoExitInfo.n.u1Type == 0);
1937 else
1938 AssertMsg(RT_FAILURE(rc) || rc == VINF_EM_RAW_EMULATE_INSTR || rc == VINF_EM_RAW_GUEST_TRAP || rc == VINF_TRPM_XCPT_DISPATCHED, ("%Rrc\n", rc));
1939#endif
1940 Log2(("Failed IO at %RGv %x size %d\n", (RTGCPTR)pCtx->rip, IoExitInfo.n.u16Port, uIOSize));
1941 break;
1942 }
1943
1944 case SVM_EXIT_HLT:
1945 /** Check if external interrupts are pending; if so, don't switch back. */
1946 pCtx->rip++; /* skip hlt */
1947 if ( pCtx->eflags.Bits.u1IF
1948 && VM_FF_ISPENDING(pVM, (VM_FF_INTERRUPT_APIC|VM_FF_INTERRUPT_PIC)))
1949 goto ResumeExecution;
1950
1951 rc = VINF_EM_HALT;
1952 break;
1953
1954 case SVM_EXIT_RSM:
1955 case SVM_EXIT_INVLPGA:
1956 case SVM_EXIT_VMRUN:
1957 case SVM_EXIT_VMMCALL:
1958 case SVM_EXIT_VMLOAD:
1959 case SVM_EXIT_VMSAVE:
1960 case SVM_EXIT_STGI:
1961 case SVM_EXIT_CLGI:
1962 case SVM_EXIT_SKINIT:
1963 case SVM_EXIT_RDTSCP:
1964 {
1965 /* Unsupported instructions. */
1966 SVM_EVENT Event;
1967
1968 Event.au64[0] = 0;
1969 Event.n.u3Type = SVM_EVENT_EXCEPTION;
1970 Event.n.u1Valid = 1;
1971 Event.n.u8Vector = X86_XCPT_UD;
1972
1973 Log(("Forced #UD trap at %RGv\n", (RTGCPTR)pCtx->rip));
1974 SVMR0InjectEvent(pVM, pVMCB, pCtx, &Event);
1975
1976 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit, x);
1977 goto ResumeExecution;
1978 }
1979
1980 /* Emulate in ring 3. */
1981 case SVM_EXIT_MSR:
1982 {
1983 uint32_t cbSize;
1984
1985 /* Note: the intel manual claims there's a REX version of RDMSR that's slightly different, so we play safe by completely disassembling the instruction. */
1986 Log(("SVM: %s\n", (pVMCB->ctrl.u64ExitInfo1 == 0) ? "rdmsr" : "wrmsr"));
1987 rc = EMInterpretInstruction(pVM, CPUMCTX2CORE(pCtx), 0, &cbSize);
1988 if (rc == VINF_SUCCESS)
1989 {
1990 /* EIP has been updated already. */
1991
1992 /* Only resume if successful. */
1993 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit, x);
1994 goto ResumeExecution;
1995 }
1996 AssertMsg(rc == VERR_EM_INTERPRETER, ("EMU: %s failed with %Rrc\n", (pVMCB->ctrl.u64ExitInfo1 == 0) ? "rdmsr" : "wrmsr", rc));
1997 break;
1998 }
1999
2000 case SVM_EXIT_MONITOR:
2001 case SVM_EXIT_RDPMC:
2002 case SVM_EXIT_PAUSE:
2003 case SVM_EXIT_MWAIT_UNCOND:
2004 case SVM_EXIT_MWAIT_ARMED:
2005 case SVM_EXIT_TASK_SWITCH: /* can change CR3; emulate */
2006 rc = VINF_EM_RAW_EXCEPTION_PRIVILEGED;
2007 break;
2008
2009 case SVM_EXIT_SHUTDOWN:
2010 rc = VINF_EM_RESET; /* Triple fault equals a reset. */
2011 break;
2012
2013 case SVM_EXIT_IDTR_READ:
2014 case SVM_EXIT_GDTR_READ:
2015 case SVM_EXIT_LDTR_READ:
2016 case SVM_EXIT_TR_READ:
2017 case SVM_EXIT_IDTR_WRITE:
2018 case SVM_EXIT_GDTR_WRITE:
2019 case SVM_EXIT_LDTR_WRITE:
2020 case SVM_EXIT_TR_WRITE:
2021 case SVM_EXIT_CR0_SEL_WRITE:
2022 default:
2023 /* Unexpected exit codes. */
2024 rc = VERR_EM_INTERNAL_ERROR;
2025 AssertMsgFailed(("Unexpected exit code %x\n", exitCode)); /* Can't happen. */
2026 break;
2027 }
2028
2029end:
2030
2031 /* Signal changes for the recompiler. */
2032 CPUMSetChangedFlags(pVM, CPUM_CHANGED_SYSENTER_MSR | CPUM_CHANGED_LDTR | CPUM_CHANGED_GDTR | CPUM_CHANGED_IDTR | CPUM_CHANGED_TR | CPUM_CHANGED_HIDDEN_SEL_REGS);
2033
2034 /* If we executed vmrun and an external irq was pending, then we don't have to do a full sync the next time. */
2035 if (exitCode == SVM_EXIT_INTR)
2036 {
2037 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatPendingHostIrq);
2038 /* On the next entry we'll only sync the host context. */
2039 pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_HOST_CONTEXT;
2040 }
2041 else
2042 {
2043 /* On the next entry we'll sync everything. */
2044 /** @todo we can do better than this */
2045 /* Not in the VINF_PGM_CHANGE_MODE though! */
2046 pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_ALL;
2047 }
2048
2049 /* translate into a less severe return code */
2050 if (rc == VERR_EM_INTERPRETER)
2051 rc = VINF_EM_RAW_EMULATE_INSTR;
2052
2053 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit, x);
2054 return rc;
2055}
2056
2057/**
2058 * Enters the AMD-V session
2059 *
2060 * @returns VBox status code.
2061 * @param pVM The VM to operate on.
2062 * @param pVCpu The VM CPU to operate on.
2063 * @param pCpu CPU info struct
2064 */
2065VMMR0DECL(int) SVMR0Enter(PVM pVM, PVMCPU pVCpu, PHWACCM_CPUINFO pCpu)
2066{
2067 Assert(pVM->hwaccm.s.svm.fSupported);
2068
2069 LogFlow(("SVMR0Enter cpu%d last=%d asid=%d\n", pCpu->idCpu, pVCpu->hwaccm.s.idLastCpu, pVCpu->hwaccm.s.uCurrentASID));
2070 pVCpu->hwaccm.s.fResumeVM = false;
2071
2072 /* Force to reload LDTR, so we'll execute VMLoad to load additional guest state. */
2073 pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_GUEST_LDTR;
2074
2075 return VINF_SUCCESS;
2076}
2077
2078
2079/**
2080 * Leaves the AMD-V session
2081 *
2082 * @returns VBox status code.
2083 * @param pVM The VM to operate on.
2084 * @param pVCpu The VM CPU to operate on.
2085 * @param pCtx CPU context
2086 */
2087VMMR0DECL(int) SVMR0Leave(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
2088{
2089 SVM_VMCB *pVMCB = (SVM_VMCB *)pVCpu->hwaccm.s.svm.pVMCB;
2090
2091 Assert(pVM->hwaccm.s.svm.fSupported);
2092
2093 /* Save the guest debug state if necessary. */
2094 if (CPUMIsGuestDebugStateActive(pVM))
2095 {
2096 CPUMR0SaveGuestDebugState(pVM, pVCpu, pCtx, false /* skip DR6 */);
2097
2098 /* Intercept all DRx reads and writes again. Changed later on. */
2099 pVMCB->ctrl.u16InterceptRdDRx = 0xFFFF;
2100 pVMCB->ctrl.u16InterceptWrDRx = 0xFFFF;
2101
2102 /* Resync the debug registers the next time. */
2103 pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_GUEST_DEBUG;
2104 }
2105 else
2106 Assert(pVMCB->ctrl.u16InterceptRdDRx == 0xFFFF && pVMCB->ctrl.u16InterceptWrDRx == 0xFFFF);
2107
2108 return VINF_SUCCESS;
2109}
2110
2111
2112static int svmR0InterpretInvlPg(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, uint32_t uASID)
2113{
2114 OP_PARAMVAL param1;
2115 RTGCPTR addr;
2116
2117 int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param1, &param1, PARAM_SOURCE);
2118 if(RT_FAILURE(rc))
2119 return VERR_EM_INTERPRETER;
2120
2121 switch(param1.type)
2122 {
2123 case PARMTYPE_IMMEDIATE:
2124 case PARMTYPE_ADDRESS:
2125 if(!(param1.flags & (PARAM_VAL32|PARAM_VAL64)))
2126 return VERR_EM_INTERPRETER;
2127 addr = param1.val.val64;
2128 break;
2129
2130 default:
2131 return VERR_EM_INTERPRETER;
2132 }
2133
2134 /** @todo is addr always a flat linear address or ds based
2135 * (in absence of segment override prefixes)????
2136 */
2137 rc = PGMInvalidatePage(pVM, addr);
2138 if (RT_SUCCESS(rc))
2139 {
2140 /* Manually invalidate the page for the VM's TLB. */
2141 Log(("SVMInvlpgA %RGv ASID=%d\n", addr, uASID));
2142 SVMInvlpgA(addr, uASID);
2143 return VINF_SUCCESS;
2144 }
2145 Assert(rc == VERR_REM_FLUSHED_PAGES_OVERFLOW);
2146 return rc;
2147}
2148
2149/**
2150 * Interprets INVLPG
2151 *
2152 * @returns VBox status code.
2153 * @retval VINF_* Scheduling instructions.
2154 * @retval VERR_EM_INTERPRETER Something we can't cope with.
2155 * @retval VERR_* Fatal errors.
2156 *
2157 * @param pVM The VM handle.
2158 * @param pRegFrame The register frame.
2159 * @param ASID Tagged TLB id for the guest
2160 *
2161 * Updates the EIP if an instruction was executed successfully.
2162 */
2163static int SVMR0InterpretInvpg(PVM pVM, PCPUMCTXCORE pRegFrame, uint32_t uASID)
2164{
2165 /*
2166 * Only allow 32 & 64 bits code.
2167 */
2168 DISCPUMODE enmMode = SELMGetCpuModeFromSelector(pVM, pRegFrame->eflags, pRegFrame->cs, &pRegFrame->csHid);
2169 if (enmMode != CPUMODE_16BIT)
2170 {
2171 RTGCPTR pbCode;
2172 int rc = SELMValidateAndConvertCSAddr(pVM, pRegFrame->eflags, pRegFrame->ss, pRegFrame->cs, &pRegFrame->csHid, (RTGCPTR)pRegFrame->rip, &pbCode);
2173 if (RT_SUCCESS(rc))
2174 {
2175 uint32_t cbOp;
2176 DISCPUSTATE Cpu;
2177
2178 Cpu.mode = enmMode;
2179 rc = EMInterpretDisasOneEx(pVM, pbCode, pRegFrame, &Cpu, &cbOp);
2180 Assert(RT_FAILURE(rc) || Cpu.pCurInstr->opcode == OP_INVLPG);
2181 if (RT_SUCCESS(rc) && Cpu.pCurInstr->opcode == OP_INVLPG)
2182 {
2183 Assert(cbOp == Cpu.opsize);
2184 rc = svmR0InterpretInvlPg(pVM, &Cpu, pRegFrame, uASID);
2185 if (RT_SUCCESS(rc))
2186 {
2187 pRegFrame->rip += cbOp; /* Move on to the next instruction. */
2188 }
2189 return rc;
2190 }
2191 }
2192 }
2193 return VERR_EM_INTERPRETER;
2194}
2195
2196
2197/**
2198 * Invalidates a guest page
2199 *
2200 * @returns VBox status code.
2201 * @param pVM The VM to operate on.
2202 * @param pVCpu The VM CPU to operate on.
2203 * @param GCVirt Page to invalidate
2204 */
2205VMMR0DECL(int) SVMR0InvalidatePage(PVM pVM, PVMCPU pVCpu, RTGCPTR GCVirt)
2206{
2207 bool fFlushPending = pVM->hwaccm.s.svm.fAlwaysFlushTLB | pVCpu->hwaccm.s.fForceTLBFlush;
2208
2209 /* Skip it if a TLB flush is already pending. */
2210 if (!fFlushPending)
2211 {
2212 SVM_VMCB *pVMCB;
2213
2214 Log2(("SVMR0InvalidatePage %RGv\n", GCVirt));
2215 AssertReturn(pVM, VERR_INVALID_PARAMETER);
2216 Assert(pVM->hwaccm.s.svm.fSupported);
2217
2218 /* @todo SMP */
2219 pVMCB = (SVM_VMCB *)pVM->aCpus[0].hwaccm.s.svm.pVMCB;
2220 AssertMsgReturn(pVMCB, ("Invalid pVMCB\n"), VERR_EM_INTERNAL_ERROR);
2221
2222 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatFlushPageManual);
2223 SVMInvlpgA(GCVirt, pVMCB->ctrl.TLBCtrl.n.u32ASID);
2224 }
2225 return VINF_SUCCESS;
2226}
2227
2228
2229/**
2230 * Invalidates a guest page by physical address
2231 *
2232 * @returns VBox status code.
2233 * @param pVM The VM to operate on.
2234 * @param pVCpu The VM CPU to operate on.
2235 * @param GCPhys Page to invalidate
2236 */
2237VMMR0DECL(int) SVMR0InvalidatePhysPage(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys)
2238{
2239 Assert(pVM->hwaccm.s.fNestedPaging);
2240 /* invlpga only invalidates TLB entries for guest virtual addresses; we have no choice but to force a TLB flush here. */
2241 pVCpu->hwaccm.s.fForceTLBFlush = true;
2242 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatFlushTLBInvlpga);
2243 return VINF_SUCCESS;
2244}
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette