VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR0/HWSVMR0.cpp@ 14299

Last change on this file since 14299 was 14109, checked in by vboxsync, 16 years ago

Implemented NMI injection.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 90.4 KB
Line 
1/* $Id: HWSVMR0.cpp 14109 2008-11-11 19:39:53Z vboxsync $ */
2/** @file
3 * HWACCM SVM - Host Context Ring 0.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/*******************************************************************************
24* Header Files *
25*******************************************************************************/
26#define LOG_GROUP LOG_GROUP_HWACCM
27#include <VBox/hwaccm.h>
28#include "HWACCMInternal.h"
29#include <VBox/vm.h>
30#include <VBox/x86.h>
31#include <VBox/hwacc_svm.h>
32#include <VBox/pgm.h>
33#include <VBox/pdm.h>
34#include <VBox/err.h>
35#include <VBox/log.h>
36#include <VBox/selm.h>
37#include <VBox/iom.h>
38#include <VBox/dis.h>
39#include <VBox/dbgf.h>
40#include <VBox/disopcode.h>
41#include <iprt/param.h>
42#include <iprt/assert.h>
43#include <iprt/asm.h>
44#include <iprt/cpuset.h>
45#include <iprt/mp.h>
46#include "HWSVMR0.h"
47
48/*******************************************************************************
49* Internal Functions *
50*******************************************************************************/
51static int SVMR0InterpretInvpg(PVM pVM, PCPUMCTXCORE pRegFrame, uint32_t uASID);
52
53/*******************************************************************************
54* Global Variables *
55*******************************************************************************/
56/* IO operation lookup arrays. */
57static uint32_t const g_aIOSize[4] = {1, 2, 0, 4};
58
59/**
60 * Sets up and activates AMD-V on the current CPU
61 *
62 * @returns VBox status code.
63 * @param pCpu CPU info struct
64 * @param pVM The VM to operate on. (can be NULL after a resume!!)
65 * @param pvPageCpu Pointer to the global cpu page
66 * @param pPageCpuPhys Physical address of the global cpu page
67 */
68VMMR0DECL(int) SVMR0EnableCpu(PHWACCM_CPUINFO pCpu, PVM pVM, void *pvPageCpu, RTHCPHYS pPageCpuPhys)
69{
70 AssertReturn(pPageCpuPhys, VERR_INVALID_PARAMETER);
71 AssertReturn(pvPageCpu, VERR_INVALID_PARAMETER);
72
73 /* We must turn on AMD-V and setup the host state physical address, as those MSRs are per-cpu/core. */
74
75#ifdef LOG_ENABLED
76 SUPR0Printf("SVMR0EnableCpu cpu %d page (%x) %x\n", pCpu->idCpu, pvPageCpu, (uint32_t)pPageCpuPhys);
77#endif
78
79 /* Turn on AMD-V in the EFER MSR. */
80 uint64_t val = ASMRdMsr(MSR_K6_EFER);
81 if (!(val & MSR_K6_EFER_SVME))
82 ASMWrMsr(MSR_K6_EFER, val | MSR_K6_EFER_SVME);
83
84 /* Write the physical page address where the CPU will store the host state while executing the VM. */
85 ASMWrMsr(MSR_K8_VM_HSAVE_PA, pPageCpuPhys);
86
87 return VINF_SUCCESS;
88}
89
90/**
91 * Deactivates AMD-V on the current CPU
92 *
93 * @returns VBox status code.
94 * @param pCpu CPU info struct
95 * @param pvPageCpu Pointer to the global cpu page
96 * @param pPageCpuPhys Physical address of the global cpu page
97 */
98VMMR0DECL(int) SVMR0DisableCpu(PHWACCM_CPUINFO pCpu, void *pvPageCpu, RTHCPHYS pPageCpuPhys)
99{
100 AssertReturn(pPageCpuPhys, VERR_INVALID_PARAMETER);
101 AssertReturn(pvPageCpu, VERR_INVALID_PARAMETER);
102
103#ifdef LOG_ENABLED
104 SUPR0Printf("SVMR0DisableCpu cpu %d\n", pCpu->idCpu);
105#endif
106
107 /* Turn off AMD-V in the EFER MSR. */
108 uint64_t val = ASMRdMsr(MSR_K6_EFER);
109 ASMWrMsr(MSR_K6_EFER, val & ~MSR_K6_EFER_SVME);
110
111 /* Invalidate host state physical address. */
112 ASMWrMsr(MSR_K8_VM_HSAVE_PA, 0);
113
114 return VINF_SUCCESS;
115}
116
117/**
118 * Does Ring-0 per VM AMD-V init.
119 *
120 * @returns VBox status code.
121 * @param pVM The VM to operate on.
122 */
123VMMR0DECL(int) SVMR0InitVM(PVM pVM)
124{
125 int rc;
126
127 pVM->hwaccm.s.svm.pMemObjVMCBHost = NIL_RTR0MEMOBJ;
128 pVM->hwaccm.s.svm.pMemObjIOBitmap = NIL_RTR0MEMOBJ;
129 pVM->hwaccm.s.svm.pMemObjMSRBitmap = NIL_RTR0MEMOBJ;
130
131 /* Allocate one page for the host context */
132 rc = RTR0MemObjAllocCont(&pVM->hwaccm.s.svm.pMemObjVMCBHost, 1 << PAGE_SHIFT, true /* executable R0 mapping */);
133 if (RT_FAILURE(rc))
134 return rc;
135
136 pVM->hwaccm.s.svm.pVMCBHost = RTR0MemObjAddress(pVM->hwaccm.s.svm.pMemObjVMCBHost);
137 pVM->hwaccm.s.svm.pVMCBHostPhys = RTR0MemObjGetPagePhysAddr(pVM->hwaccm.s.svm.pMemObjVMCBHost, 0);
138 ASMMemZeroPage(pVM->hwaccm.s.svm.pVMCBHost);
139
140 /* Allocate 12 KB for the IO bitmap (doesn't seem to be a way to convince SVM not to use it) */
141 rc = RTR0MemObjAllocCont(&pVM->hwaccm.s.svm.pMemObjIOBitmap, 3 << PAGE_SHIFT, true /* executable R0 mapping */);
142 if (RT_FAILURE(rc))
143 return rc;
144
145 pVM->hwaccm.s.svm.pIOBitmap = RTR0MemObjAddress(pVM->hwaccm.s.svm.pMemObjIOBitmap);
146 pVM->hwaccm.s.svm.pIOBitmapPhys = RTR0MemObjGetPagePhysAddr(pVM->hwaccm.s.svm.pMemObjIOBitmap, 0);
147 /* Set all bits to intercept all IO accesses. */
148 ASMMemFill32(pVM->hwaccm.s.svm.pIOBitmap, PAGE_SIZE*3, 0xffffffff);
149
150 /* Allocate 8 KB for the MSR bitmap (doesn't seem to be a way to convince SVM not to use it) */
151 rc = RTR0MemObjAllocCont(&pVM->hwaccm.s.svm.pMemObjMSRBitmap, 2 << PAGE_SHIFT, true /* executable R0 mapping */);
152 if (RT_FAILURE(rc))
153 return rc;
154
155 pVM->hwaccm.s.svm.pMSRBitmap = RTR0MemObjAddress(pVM->hwaccm.s.svm.pMemObjMSRBitmap);
156 pVM->hwaccm.s.svm.pMSRBitmapPhys = RTR0MemObjGetPagePhysAddr(pVM->hwaccm.s.svm.pMemObjMSRBitmap, 0);
157 /* Set all bits to intercept all MSR accesses. */
158 ASMMemFill32(pVM->hwaccm.s.svm.pMSRBitmap, PAGE_SIZE*2, 0xffffffff);
159
160 /* Erratum 170 which requires a forced TLB flush for each world switch:
161 * See http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/33610.pdf
162 *
163 * All BH-G1/2 and DH-G1/2 models include a fix:
164 * Athlon X2: 0x6b 1/2
165 * 0x68 1/2
166 * Athlon 64: 0x7f 1
167 * 0x6f 2
168 * Sempron: 0x7f 1/2
169 * 0x6f 2
170 * 0x6c 2
171 * 0x7c 2
172 * Turion 64: 0x68 2
173 *
174 */
175 uint32_t u32Dummy;
176 uint32_t u32Version, u32Family, u32Model, u32Stepping, u32BaseFamily;
177 ASMCpuId(1, &u32Version, &u32Dummy, &u32Dummy, &u32Dummy);
178 u32BaseFamily= (u32Version >> 8) & 0xf;
179 u32Family = u32BaseFamily + (u32BaseFamily == 0xf ? ((u32Version >> 20) & 0x7f) : 0);
180 u32Model = ((u32Version >> 4) & 0xf);
181 u32Model = u32Model | ((u32BaseFamily == 0xf ? (u32Version >> 16) & 0x0f : 0) << 4);
182 u32Stepping = u32Version & 0xf;
183 if ( u32Family == 0xf
184 && !((u32Model == 0x68 || u32Model == 0x6b || u32Model == 0x7f) && u32Stepping >= 1)
185 && !((u32Model == 0x6f || u32Model == 0x6c || u32Model == 0x7c) && u32Stepping >= 2))
186 {
187 Log(("SVMR0InitVM: AMD cpu with erratum 170 family %x model %x stepping %x\n", u32Family, u32Model, u32Stepping));
188 pVM->hwaccm.s.svm.fAlwaysFlushTLB = true;
189 }
190
191 /* Allocate VMCBs for all guest CPUs. */
192 for (unsigned i=0;i<pVM->cCPUs;i++)
193 {
194 pVM->aCpus[i].hwaccm.s.svm.pMemObjVMCB = NIL_RTR0MEMOBJ;
195
196 /* Allocate one page for the VM control block (VMCB). */
197 rc = RTR0MemObjAllocCont(&pVM->aCpus[i].hwaccm.s.svm.pMemObjVMCB, 1 << PAGE_SHIFT, true /* executable R0 mapping */);
198 if (RT_FAILURE(rc))
199 return rc;
200
201 pVM->aCpus[i].hwaccm.s.svm.pVMCB = RTR0MemObjAddress(pVM->aCpus[i].hwaccm.s.svm.pMemObjVMCB);
202 pVM->aCpus[i].hwaccm.s.svm.pVMCBPhys = RTR0MemObjGetPagePhysAddr(pVM->aCpus[i].hwaccm.s.svm.pMemObjVMCB, 0);
203 ASMMemZeroPage(pVM->aCpus[i].hwaccm.s.svm.pVMCB);
204 }
205
206 return VINF_SUCCESS;
207}
208
209/**
210 * Does Ring-0 per VM AMD-V termination.
211 *
212 * @returns VBox status code.
213 * @param pVM The VM to operate on.
214 */
215VMMR0DECL(int) SVMR0TermVM(PVM pVM)
216{
217 for (unsigned i=0;i<pVM->cCPUs;i++)
218 {
219 if (pVM->aCpus[i].hwaccm.s.svm.pMemObjVMCB != NIL_RTR0MEMOBJ)
220 {
221 RTR0MemObjFree(pVM->aCpus[i].hwaccm.s.svm.pMemObjVMCB, false);
222 pVM->aCpus[i].hwaccm.s.svm.pVMCB = 0;
223 pVM->aCpus[i].hwaccm.s.svm.pVMCBPhys = 0;
224 pVM->aCpus[i].hwaccm.s.svm.pMemObjVMCB = NIL_RTR0MEMOBJ;
225 }
226 }
227 if (pVM->hwaccm.s.svm.pMemObjVMCBHost != NIL_RTR0MEMOBJ)
228 {
229 RTR0MemObjFree(pVM->hwaccm.s.svm.pMemObjVMCBHost, false);
230 pVM->hwaccm.s.svm.pVMCBHost = 0;
231 pVM->hwaccm.s.svm.pVMCBHostPhys = 0;
232 pVM->hwaccm.s.svm.pMemObjVMCBHost = NIL_RTR0MEMOBJ;
233 }
234 if (pVM->hwaccm.s.svm.pMemObjIOBitmap != NIL_RTR0MEMOBJ)
235 {
236 RTR0MemObjFree(pVM->hwaccm.s.svm.pMemObjIOBitmap, false);
237 pVM->hwaccm.s.svm.pIOBitmap = 0;
238 pVM->hwaccm.s.svm.pIOBitmapPhys = 0;
239 pVM->hwaccm.s.svm.pMemObjIOBitmap = NIL_RTR0MEMOBJ;
240 }
241 if (pVM->hwaccm.s.svm.pMemObjMSRBitmap != NIL_RTR0MEMOBJ)
242 {
243 RTR0MemObjFree(pVM->hwaccm.s.svm.pMemObjMSRBitmap, false);
244 pVM->hwaccm.s.svm.pMSRBitmap = 0;
245 pVM->hwaccm.s.svm.pMSRBitmapPhys = 0;
246 pVM->hwaccm.s.svm.pMemObjMSRBitmap = NIL_RTR0MEMOBJ;
247 }
248 return VINF_SUCCESS;
249}
250
251/**
252 * Sets up AMD-V for the specified VM
253 *
254 * @returns VBox status code.
255 * @param pVM The VM to operate on.
256 */
257VMMR0DECL(int) SVMR0SetupVM(PVM pVM)
258{
259 int rc = VINF_SUCCESS;
260 SVM_VMCB *pVMCB;
261
262 AssertReturn(pVM, VERR_INVALID_PARAMETER);
263
264 Assert(pVM->hwaccm.s.svm.fSupported);
265
266 for (unsigned i=0;i<pVM->cCPUs;i++)
267 {
268 pVMCB = (SVM_VMCB *)pVM->aCpus[i].hwaccm.s.svm.pVMCB;
269 AssertMsgReturn(pVMCB, ("Invalid pVMCB\n"), VERR_EM_INTERNAL_ERROR);
270
271 /* Program the control fields. Most of them never have to be changed again. */
272 /* CR0/3/4 reads must be intercepted, our shadow values are not necessarily the same as the guest's. */
273 /* Note: CR0 & CR4 can be safely read when guest and shadow copies are identical. */
274 if (!pVM->hwaccm.s.fNestedPaging)
275 pVMCB->ctrl.u16InterceptRdCRx = RT_BIT(0) | RT_BIT(3) | RT_BIT(4);
276 else
277 pVMCB->ctrl.u16InterceptRdCRx = RT_BIT(0) | RT_BIT(4);
278
279 /*
280 * CR0/3/4 writes must be intercepted for obvious reasons.
281 */
282 if (!pVM->hwaccm.s.fNestedPaging)
283 pVMCB->ctrl.u16InterceptWrCRx = RT_BIT(0) | RT_BIT(3) | RT_BIT(4);
284 else
285 pVMCB->ctrl.u16InterceptWrCRx = RT_BIT(0) | RT_BIT(4) | RT_BIT(8);
286
287 /* Intercept all DRx reads and writes by default. Changed later on. */
288 pVMCB->ctrl.u16InterceptRdDRx = 0xFFFF;
289 pVMCB->ctrl.u16InterceptWrDRx = 0xFFFF;
290
291 /* Currently we don't care about DRx reads or writes. DRx registers are trashed.
292 * All breakpoints are automatically cleared when the VM exits.
293 */
294
295 pVMCB->ctrl.u32InterceptException = HWACCM_SVM_TRAP_MASK;
296#ifndef DEBUG
297 if (pVM->hwaccm.s.fNestedPaging)
298 pVMCB->ctrl.u32InterceptException &= ~RT_BIT(X86_XCPT_PF); /* no longer need to intercept #PF. */
299#endif
300
301 pVMCB->ctrl.u32InterceptCtrl1 = SVM_CTRL1_INTERCEPT_INTR
302 | SVM_CTRL1_INTERCEPT_VINTR
303 | SVM_CTRL1_INTERCEPT_NMI
304 | SVM_CTRL1_INTERCEPT_SMI
305 | SVM_CTRL1_INTERCEPT_INIT
306 | SVM_CTRL1_INTERCEPT_RDPMC
307 | SVM_CTRL1_INTERCEPT_CPUID
308 | SVM_CTRL1_INTERCEPT_RSM
309 | SVM_CTRL1_INTERCEPT_HLT
310 | SVM_CTRL1_INTERCEPT_INOUT_BITMAP
311 | SVM_CTRL1_INTERCEPT_MSR_SHADOW
312 | SVM_CTRL1_INTERCEPT_INVLPG
313 | SVM_CTRL1_INTERCEPT_INVLPGA /* AMD only */
314 | SVM_CTRL1_INTERCEPT_TASK_SWITCH
315 | SVM_CTRL1_INTERCEPT_SHUTDOWN /* fatal */
316 | SVM_CTRL1_INTERCEPT_FERR_FREEZE; /* Legacy FPU FERR handling. */
317 ;
318 /* With nested paging we don't care about invlpg anymore. */
319 if (pVM->hwaccm.s.fNestedPaging)
320 pVMCB->ctrl.u32InterceptCtrl1 &= ~SVM_CTRL1_INTERCEPT_INVLPG;
321
322 pVMCB->ctrl.u32InterceptCtrl2 = SVM_CTRL2_INTERCEPT_VMRUN /* required */
323 | SVM_CTRL2_INTERCEPT_VMMCALL
324 | SVM_CTRL2_INTERCEPT_VMLOAD
325 | SVM_CTRL2_INTERCEPT_VMSAVE
326 | SVM_CTRL2_INTERCEPT_STGI
327 | SVM_CTRL2_INTERCEPT_CLGI
328 | SVM_CTRL2_INTERCEPT_SKINIT
329 | SVM_CTRL2_INTERCEPT_RDTSCP /* AMD only; we don't support this one */
330 | SVM_CTRL2_INTERCEPT_WBINVD
331 | SVM_CTRL2_INTERCEPT_MWAIT_UNCOND; /* don't execute mwait or else we'll idle inside the guest (host thinks the cpu load is high) */
332 ;
333 Log(("pVMCB->ctrl.u32InterceptException = %x\n", pVMCB->ctrl.u32InterceptException));
334 Log(("pVMCB->ctrl.u32InterceptCtrl1 = %x\n", pVMCB->ctrl.u32InterceptCtrl1));
335 Log(("pVMCB->ctrl.u32InterceptCtrl2 = %x\n", pVMCB->ctrl.u32InterceptCtrl2));
336
337 /* Virtualize masking of INTR interrupts. (reads/writes from/to CR8 go to the V_TPR register) */
338 pVMCB->ctrl.IntCtrl.n.u1VIrqMasking = 1;
339 /* Ignore the priority in the TPR; just deliver it when we tell it to. */
340 pVMCB->ctrl.IntCtrl.n.u1IgnoreTPR = 1;
341
342 /* Set IO and MSR bitmap addresses. */
343 pVMCB->ctrl.u64IOPMPhysAddr = pVM->hwaccm.s.svm.pIOBitmapPhys;
344 pVMCB->ctrl.u64MSRPMPhysAddr = pVM->hwaccm.s.svm.pMSRBitmapPhys;
345
346 /* No LBR virtualization. */
347 pVMCB->ctrl.u64LBRVirt = 0;
348
349 /** The ASID must start at 1; the host uses 0. */
350 pVMCB->ctrl.TLBCtrl.n.u32ASID = 1;
351
352 /** Setup the PAT msr (nested paging only) */
353 pVMCB->guest.u64GPAT = 0x0007040600070406ULL;
354 }
355 return rc;
356}
357
358
359/**
360 * Injects an event (trap or external interrupt)
361 *
362 * @param pVM The VM to operate on.
363 * @param pVMCB SVM control block
364 * @param pCtx CPU Context
365 * @param pIntInfo SVM interrupt info
366 */
367inline void SVMR0InjectEvent(PVM pVM, SVM_VMCB *pVMCB, CPUMCTX *pCtx, SVM_EVENT* pEvent)
368{
369#ifdef VBOX_STRICT
370 if (pEvent->n.u8Vector == 0xE)
371 Log(("SVM: Inject int %d at %RGv error code=%02x CR2=%RGv intInfo=%08x\n", pEvent->n.u8Vector, (RTGCPTR)pCtx->rip, pEvent->n.u32ErrorCode, (RTGCPTR)pCtx->cr2, pEvent->au64[0]));
372 else
373 if (pEvent->n.u8Vector < 0x20)
374 Log(("SVM: Inject int %d at %RGv error code=%08x\n", pEvent->n.u8Vector, (RTGCPTR)pCtx->rip, pEvent->n.u32ErrorCode));
375 else
376 {
377 Log(("INJ-EI: %x at %RGv\n", pEvent->n.u8Vector, (RTGCPTR)pCtx->rip));
378 Assert(!VM_FF_ISSET(pVM, VM_FF_INHIBIT_INTERRUPTS));
379 Assert(pCtx->eflags.u32 & X86_EFL_IF);
380 }
381#endif
382
383 /* Set event injection state. */
384 pVMCB->ctrl.EventInject.au64[0] = pEvent->au64[0];
385}
386
387
388/**
389 * Checks for pending guest interrupts and injects them
390 *
391 * @returns VBox status code.
392 * @param pVM The VM to operate on.
393 * @param pVCpu The VM CPU to operate on.
394 * @param pVMCB SVM control block
395 * @param pCtx CPU Context
396 */
397static int SVMR0CheckPendingInterrupt(PVM pVM, PVMCPU pVCpu, SVM_VMCB *pVMCB, CPUMCTX *pCtx)
398{
399 int rc;
400
401 /* Dispatch any pending interrupts. (injected before, but a VM exit occurred prematurely) */
402 if (pVCpu->hwaccm.s.Event.fPending)
403 {
404 SVM_EVENT Event;
405
406 Log(("Reinjecting event %08x %08x at %RGv\n", pVCpu->hwaccm.s.Event.intInfo, pVCpu->hwaccm.s.Event.errCode, (RTGCPTR)pCtx->rip));
407 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatIntReinject);
408 Event.au64[0] = pVCpu->hwaccm.s.Event.intInfo;
409 SVMR0InjectEvent(pVM, pVMCB, pCtx, &Event);
410
411 pVCpu->hwaccm.s.Event.fPending = false;
412 return VINF_SUCCESS;
413 }
414
415 if (pVM->hwaccm.s.fInjectNMI)
416 {
417 SVM_EVENT Event;
418
419 Event.n.u8Vector = X86_XCPT_NMI;
420 Event.n.u1Valid = 1;
421 Event.n.u32ErrorCode = 0;
422 Event.n.u3Type = SVM_EVENT_NMI;
423
424 SVMR0InjectEvent(pVM, pVMCB, pCtx, &Event);
425 pVM->hwaccm.s.fInjectNMI = false;
426 return VINF_SUCCESS;
427 }
428
429 /* When external interrupts are pending, we should exit the VM when IF is set. */
430 if ( !TRPMHasTrap(pVM)
431 && VM_FF_ISPENDING(pVM, (VM_FF_INTERRUPT_APIC|VM_FF_INTERRUPT_PIC)))
432 {
433 if ( !(pCtx->eflags.u32 & X86_EFL_IF)
434 || VM_FF_ISSET(pVM, VM_FF_INHIBIT_INTERRUPTS))
435 {
436 if (!pVMCB->ctrl.IntCtrl.n.u1VIrqValid)
437 {
438 if (!VM_FF_ISSET(pVM, VM_FF_INHIBIT_INTERRUPTS))
439 LogFlow(("Enable irq window exit!\n"));
440 else
441 Log(("Pending interrupt blocked at %RGv by VM_FF_INHIBIT_INTERRUPTS -> irq window exit\n", (RTGCPTR)pCtx->rip));
442
443 /** @todo use virtual interrupt method to inject a pending irq; dispatched as soon as guest.IF is set. */
444 pVMCB->ctrl.u32InterceptCtrl1 |= SVM_CTRL1_INTERCEPT_VINTR;
445 pVMCB->ctrl.IntCtrl.n.u1VIrqValid = 1;
446 pVMCB->ctrl.IntCtrl.n.u8VIrqVector = 0; /* don't care */
447 }
448 }
449 else
450 {
451 uint8_t u8Interrupt;
452
453 rc = PDMGetInterrupt(pVM, &u8Interrupt);
454 Log(("Dispatch interrupt: u8Interrupt=%x (%d) rc=%Rrc\n", u8Interrupt, u8Interrupt, rc));
455 if (RT_SUCCESS(rc))
456 {
457 rc = TRPMAssertTrap(pVM, u8Interrupt, TRPM_HARDWARE_INT);
458 AssertRC(rc);
459 }
460 else
461 {
462 /* Can only happen in rare cases where a pending interrupt is cleared behind our back */
463 Assert(!VM_FF_ISPENDING(pVM, (VM_FF_INTERRUPT_APIC|VM_FF_INTERRUPT_PIC)));
464 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatSwitchGuestIrq);
465 /* Just continue */
466 }
467 }
468 }
469
470#ifdef VBOX_STRICT
471 if (TRPMHasTrap(pVM))
472 {
473 uint8_t u8Vector;
474 rc = TRPMQueryTrapAll(pVM, &u8Vector, 0, 0, 0);
475 AssertRC(rc);
476 }
477#endif
478
479 if ( pCtx->eflags.u32 & X86_EFL_IF
480 && (!VM_FF_ISSET(pVM, VM_FF_INHIBIT_INTERRUPTS))
481 && TRPMHasTrap(pVM)
482 )
483 {
484 uint8_t u8Vector;
485 int rc;
486 TRPMEVENT enmType;
487 SVM_EVENT Event;
488 RTGCUINT u32ErrorCode;
489
490 Event.au64[0] = 0;
491
492 /* If a new event is pending, then dispatch it now. */
493 rc = TRPMQueryTrapAll(pVM, &u8Vector, &enmType, &u32ErrorCode, 0);
494 AssertRC(rc);
495 Assert(pCtx->eflags.Bits.u1IF == 1 || enmType == TRPM_TRAP);
496 Assert(enmType != TRPM_SOFTWARE_INT);
497
498 /* Clear the pending trap. */
499 rc = TRPMResetTrap(pVM);
500 AssertRC(rc);
501
502 Event.n.u8Vector = u8Vector;
503 Event.n.u1Valid = 1;
504 Event.n.u32ErrorCode = u32ErrorCode;
505
506 if (enmType == TRPM_TRAP)
507 {
508 switch (u8Vector) {
509 case 8:
510 case 10:
511 case 11:
512 case 12:
513 case 13:
514 case 14:
515 case 17:
516 /* Valid error codes. */
517 Event.n.u1ErrorCodeValid = 1;
518 break;
519 default:
520 break;
521 }
522 if (u8Vector == X86_XCPT_NMI)
523 Event.n.u3Type = SVM_EVENT_NMI;
524 else
525 Event.n.u3Type = SVM_EVENT_EXCEPTION;
526 }
527 else
528 Event.n.u3Type = SVM_EVENT_EXTERNAL_IRQ;
529
530 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatIntInject);
531 SVMR0InjectEvent(pVM, pVMCB, pCtx, &Event);
532 } /* if (interrupts can be dispatched) */
533
534 return VINF_SUCCESS;
535}
536
537/**
538 * Save the host state
539 *
540 * @returns VBox status code.
541 * @param pVM The VM to operate on.
542 * @param pVCpu The VM CPU to operate on.
543 */
544VMMR0DECL(int) SVMR0SaveHostState(PVM pVM, PVMCPU pVCpu)
545{
546 NOREF(pVM);
547 NOREF(pVCpu);
548 /* Nothing to do here. */
549 return VINF_SUCCESS;
550}
551
552/**
553 * Loads the guest state
554 *
555 * NOTE: Don't do anything here that can cause a jump back to ring 3!!!!!
556 *
557 * @returns VBox status code.
558 * @param pVM The VM to operate on.
559 * @param pVCpu The VM CPU to operate on.
560 * @param pCtx Guest context
561 */
562VMMR0DECL(int) SVMR0LoadGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
563{
564 RTGCUINTPTR val;
565 SVM_VMCB *pVMCB;
566
567 if (pVM == NULL)
568 return VERR_INVALID_PARAMETER;
569
570 /* Setup AMD SVM. */
571 Assert(pVM->hwaccm.s.svm.fSupported);
572
573 pVMCB = (SVM_VMCB *)pVCpu->hwaccm.s.svm.pVMCB;
574 AssertMsgReturn(pVMCB, ("Invalid pVMCB\n"), VERR_EM_INTERNAL_ERROR);
575
576 /* Guest CPU context: ES, CS, SS, DS, FS, GS. */
577 if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_SEGMENT_REGS)
578 {
579 SVM_WRITE_SELREG(CS, cs);
580 SVM_WRITE_SELREG(SS, ss);
581 SVM_WRITE_SELREG(DS, ds);
582 SVM_WRITE_SELREG(ES, es);
583 SVM_WRITE_SELREG(FS, fs);
584 SVM_WRITE_SELREG(GS, gs);
585 }
586
587 /* Guest CPU context: LDTR. */
588 if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_LDTR)
589 {
590 SVM_WRITE_SELREG(LDTR, ldtr);
591 }
592
593 /* Guest CPU context: TR. */
594 if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_TR)
595 {
596 SVM_WRITE_SELREG(TR, tr);
597 }
598
599 /* Guest CPU context: GDTR. */
600 if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_GDTR)
601 {
602 pVMCB->guest.GDTR.u32Limit = pCtx->gdtr.cbGdt;
603 pVMCB->guest.GDTR.u64Base = pCtx->gdtr.pGdt;
604 }
605
606 /* Guest CPU context: IDTR. */
607 if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_IDTR)
608 {
609 pVMCB->guest.IDTR.u32Limit = pCtx->idtr.cbIdt;
610 pVMCB->guest.IDTR.u64Base = pCtx->idtr.pIdt;
611 }
612
613 /*
614 * Sysenter MSRs (unconditional)
615 */
616 pVMCB->guest.u64SysEnterCS = pCtx->SysEnter.cs;
617 pVMCB->guest.u64SysEnterEIP = pCtx->SysEnter.eip;
618 pVMCB->guest.u64SysEnterESP = pCtx->SysEnter.esp;
619
620 /* Control registers */
621 if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_CR0)
622 {
623 val = pCtx->cr0;
624 if (!CPUMIsGuestFPUStateActive(pVCpu))
625 {
626 /* Always use #NM exceptions to load the FPU/XMM state on demand. */
627 val |= X86_CR0_TS | X86_CR0_ET | X86_CR0_NE | X86_CR0_MP;
628 }
629 else
630 {
631 /** @todo check if we support the old style mess correctly. */
632 if (!(val & X86_CR0_NE))
633 {
634 Log(("Forcing X86_CR0_NE!!!\n"));
635
636 /* Also catch floating point exceptions as we need to report them to the guest in a different way. */
637 if (!pVCpu->hwaccm.s.fFPUOldStyleOverride)
638 {
639 pVMCB->ctrl.u32InterceptException |= RT_BIT(X86_XCPT_MF);
640 pVCpu->hwaccm.s.fFPUOldStyleOverride = true;
641 }
642 }
643 val |= X86_CR0_NE; /* always turn on the native mechanism to report FPU errors (old style uses interrupts) */
644 }
645 /* Always enable caching. */
646 val &= ~(X86_CR0_CD|X86_CR0_NW);
647
648 /* Note: WP is not relevant in nested paging mode as we catch accesses on the (guest) physical level. */
649 /* Note: In nested paging mode the guest is allowed to run with paging disabled; the guest physical to host physical translation will remain active. */
650 if (!pVM->hwaccm.s.fNestedPaging)
651 {
652 val |= X86_CR0_PG; /* Paging is always enabled; even when the guest is running in real mode or PE without paging. */
653 val |= X86_CR0_WP; /* Must set this as we rely on protect various pages and supervisor writes must be caught. */
654 }
655 pVMCB->guest.u64CR0 = val;
656 }
657 /* CR2 as well */
658 pVMCB->guest.u64CR2 = pCtx->cr2;
659
660 if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_CR3)
661 {
662 /* Save our shadow CR3 register. */
663 if (pVM->hwaccm.s.fNestedPaging)
664 {
665 pVMCB->ctrl.u64NestedPagingCR3 = PGMGetNestedCR3(pVM, PGMGetHostMode(pVM));
666 Assert(pVMCB->ctrl.u64NestedPagingCR3);
667 pVMCB->guest.u64CR3 = pCtx->cr3;
668 }
669 else
670 {
671 pVMCB->guest.u64CR3 = PGMGetHyperCR3(pVM);
672 Assert(pVMCB->guest.u64CR3);
673 }
674 }
675
676 if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_CR4)
677 {
678 val = pCtx->cr4;
679 if (!pVM->hwaccm.s.fNestedPaging)
680 {
681 switch(pVCpu->hwaccm.s.enmShadowMode)
682 {
683 case PGMMODE_REAL:
684 case PGMMODE_PROTECTED: /* Protected mode, no paging. */
685 AssertFailed();
686 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
687
688 case PGMMODE_32_BIT: /* 32-bit paging. */
689 break;
690
691 case PGMMODE_PAE: /* PAE paging. */
692 case PGMMODE_PAE_NX: /* PAE paging with NX enabled. */
693 /** @todo use normal 32 bits paging */
694 val |= X86_CR4_PAE;
695 break;
696
697 case PGMMODE_AMD64: /* 64-bit AMD paging (long mode). */
698 case PGMMODE_AMD64_NX: /* 64-bit AMD paging (long mode) with NX enabled. */
699#ifdef VBOX_ENABLE_64_BITS_GUESTS
700 break;
701#else
702 AssertFailed();
703 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
704#endif
705
706 default: /* shut up gcc */
707 AssertFailed();
708 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
709 }
710 }
711 pVMCB->guest.u64CR4 = val;
712 }
713
714 /* Debug registers. */
715 if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_DEBUG)
716 {
717 pCtx->dr[6] |= X86_DR6_INIT_VAL; /* set all reserved bits to 1. */
718 pCtx->dr[6] &= ~RT_BIT(12); /* must be zero. */
719
720 pCtx->dr[7] &= 0xffffffff; /* upper 32 bits reserved */
721 pCtx->dr[7] &= ~(RT_BIT(11) | RT_BIT(12) | RT_BIT(14) | RT_BIT(15)); /* must be zero */
722 pCtx->dr[7] |= 0x400; /* must be one */
723
724 pVMCB->guest.u64DR7 = pCtx->dr[7];
725 pVMCB->guest.u64DR6 = pCtx->dr[6];
726
727 /* Sync the debug state now if any breakpoint is armed. */
728 if ( (pCtx->dr[7] & (X86_DR7_ENABLED_MASK|X86_DR7_GD))
729 && !CPUMIsGuestDebugStateActive(pVM)
730 && !DBGFIsStepping(pVM))
731 {
732 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatDRxArmed);
733
734 /* Disable drx move intercepts. */
735 pVMCB->ctrl.u16InterceptRdDRx = 0;
736 pVMCB->ctrl.u16InterceptWrDRx = 0;
737
738 /* Save the host and load the guest debug state. */
739 int rc = CPUMR0LoadGuestDebugState(pVM, pVCpu, pCtx, false /* exclude DR6 */);
740 AssertRC(rc);
741 }
742 }
743
744 /* EIP, ESP and EFLAGS */
745 pVMCB->guest.u64RIP = pCtx->rip;
746 pVMCB->guest.u64RSP = pCtx->rsp;
747 pVMCB->guest.u64RFlags = pCtx->eflags.u32;
748
749 /* Set CPL */
750 pVMCB->guest.u8CPL = pCtx->csHid.Attr.n.u2Dpl;
751
752 /* RAX/EAX too, as VMRUN uses RAX as an implicit parameter. */
753 pVMCB->guest.u64RAX = pCtx->rax;
754
755 /* vmrun will fail without MSR_K6_EFER_SVME. */
756 pVMCB->guest.u64EFER = pCtx->msrEFER | MSR_K6_EFER_SVME;
757
758 /* 64 bits guest mode? */
759 if (pCtx->msrEFER & MSR_K6_EFER_LMA)
760 {
761#if !defined(VBOX_WITH_64_BITS_GUESTS) || HC_ARCH_BITS != 64
762 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
763#else
764 pVCpu->hwaccm.s.svm.pfnVMRun = SVMVMRun64;
765#endif
766 /* Unconditionally update these as wrmsr might have changed them. (HWACCM_CHANGED_GUEST_SEGMENT_REGS will not be set) */
767 pVMCB->guest.FS.u64Base = pCtx->fsHid.u64Base;
768 pVMCB->guest.GS.u64Base = pCtx->gsHid.u64Base;
769 }
770 else
771 {
772 /* Filter out the MSR_K6_LME bit or else AMD-V expects amd64 shadow paging. */
773 pVMCB->guest.u64EFER &= ~MSR_K6_EFER_LME;
774
775 pVCpu->hwaccm.s.svm.pfnVMRun = SVMVMRun;
776 }
777
778 /* TSC offset. */
779 if (TMCpuTickCanUseRealTSC(pVM, &pVMCB->ctrl.u64TSCOffset))
780 {
781 pVMCB->ctrl.u32InterceptCtrl1 &= ~SVM_CTRL1_INTERCEPT_RDTSC;
782 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatTSCOffset);
783 }
784 else
785 {
786 pVMCB->ctrl.u32InterceptCtrl1 |= SVM_CTRL1_INTERCEPT_RDTSC;
787 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatTSCIntercept);
788 }
789
790 /* Sync the various msrs for 64 bits mode. */
791 pVMCB->guest.u64STAR = pCtx->msrSTAR; /* legacy syscall eip, cs & ss */
792 pVMCB->guest.u64LSTAR = pCtx->msrLSTAR; /* 64 bits mode syscall rip */
793 pVMCB->guest.u64CSTAR = pCtx->msrCSTAR; /* compatibility mode syscall rip */
794 pVMCB->guest.u64SFMASK = pCtx->msrSFMASK; /* syscall flag mask */
795 pVMCB->guest.u64KernelGSBase = pCtx->msrKERNELGSBASE; /* swapgs exchange value */
796
797#ifdef DEBUG
798 /* Intercept X86_XCPT_DB if stepping is enabled */
799 if (DBGFIsStepping(pVM))
800 pVMCB->ctrl.u32InterceptException |= RT_BIT(X86_XCPT_DB);
801 else
802 pVMCB->ctrl.u32InterceptException &= ~RT_BIT(X86_XCPT_DB);
803#endif
804
805 /* Done. */
806 pVCpu->hwaccm.s.fContextUseFlags &= ~HWACCM_CHANGED_ALL_GUEST;
807
808 return VINF_SUCCESS;
809}
810
811
812/**
813 * Runs guest code in an AMD-V VM.
814 *
815 * @returns VBox status code.
816 * @param pVM The VM to operate on.
817 * @param pVCpu The VM CPU to operate on.
818 * @param pCtx Guest context
819 */
820VMMR0DECL(int) SVMR0RunGuestCode(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
821{
822 int rc = VINF_SUCCESS;
823 uint64_t exitCode = (uint64_t)SVM_EXIT_INVALID;
824 SVM_VMCB *pVMCB;
825 bool fSyncTPR = false;
826 unsigned cResume = 0;
827 uint8_t u8LastVTPR;
828 PHWACCM_CPUINFO pCpu = 0;
829#ifdef VBOX_STRICT
830 RTCPUID idCpuCheck;
831#endif
832
833 STAM_PROFILE_ADV_START(&pVCpu->hwaccm.s.StatEntry, x);
834
835 pVMCB = (SVM_VMCB *)pVCpu->hwaccm.s.svm.pVMCB;
836 AssertMsgReturn(pVMCB, ("Invalid pVMCB\n"), VERR_EM_INTERNAL_ERROR);
837
838 /* We can jump to this point to resume execution after determining that a VM-exit is innocent.
839 */
840ResumeExecution:
841 Assert(!HWACCMR0SuspendPending());
842
843 /* Safety precaution; looping for too long here can have a very bad effect on the host */
844 if (++cResume > HWACCM_MAX_RESUME_LOOPS)
845 {
846 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitMaxResume);
847 rc = VINF_EM_RAW_INTERRUPT;
848 goto end;
849 }
850
851 /* Check for irq inhibition due to instruction fusing (sti, mov ss). */
852 if (VM_FF_ISSET(pVM, VM_FF_INHIBIT_INTERRUPTS))
853 {
854 Log(("VM_FF_INHIBIT_INTERRUPTS at %RGv successor %RGv\n", (RTGCPTR)pCtx->rip, EMGetInhibitInterruptsPC(pVM)));
855 if (pCtx->rip != EMGetInhibitInterruptsPC(pVM))
856 {
857 /* Note: we intentionally don't clear VM_FF_INHIBIT_INTERRUPTS here.
858 * Before we are able to execute this instruction in raw mode (iret to guest code) an external interrupt might
859 * force a world switch again. Possibly allowing a guest interrupt to be dispatched in the process. This could
860 * break the guest. Sounds very unlikely, but such timing sensitive problem are not as rare as you might think.
861 */
862 VM_FF_CLEAR(pVM, VM_FF_INHIBIT_INTERRUPTS);
863 /* Irq inhibition is no longer active; clear the corresponding SVM state. */
864 pVMCB->ctrl.u64IntShadow = 0;
865 }
866 }
867 else
868 {
869 /* Irq inhibition is no longer active; clear the corresponding SVM state. */
870 pVMCB->ctrl.u64IntShadow = 0;
871 }
872
873 /* Check for pending actions that force us to go back to ring 3. */
874#ifdef DEBUG
875 /* Intercept X86_XCPT_DB if stepping is enabled */
876 if (!DBGFIsStepping(pVM))
877#endif
878 {
879 if (VM_FF_ISPENDING(pVM, VM_FF_TO_R3 | VM_FF_TIMER))
880 {
881 VM_FF_CLEAR(pVM, VM_FF_TO_R3);
882 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatSwitchToR3);
883 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatEntry, x);
884 rc = VINF_EM_RAW_TO_R3;
885 goto end;
886 }
887 }
888
889 /* Pending request packets might contain actions that need immediate attention, such as pending hardware interrupts. */
890 if (VM_FF_ISPENDING(pVM, VM_FF_REQUEST))
891 {
892 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatEntry, x);
893 rc = VINF_EM_PENDING_REQUEST;
894 goto end;
895 }
896
897 /* When external interrupts are pending, we should exit the VM when IF is set. */
898 /* Note! *After* VM_FF_INHIBIT_INTERRUPTS check!!! */
899 rc = SVMR0CheckPendingInterrupt(pVM, pVCpu, pVMCB, pCtx);
900 if (RT_FAILURE(rc))
901 {
902 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatEntry, x);
903 goto end;
904 }
905
906 /* TPR caching using CR8 is only available in 64 bits mode */
907 /* Note the 32 bits exception for AMD (X86_CPUID_AMD_FEATURE_ECX_CR8L), but that appears missing in Intel CPUs */
908 /* Note: we can't do this in LoadGuestState as PDMApicGetTPR can jump back to ring 3 (lock)!!!!!!!! */
909 if (pCtx->msrEFER & MSR_K6_EFER_LMA)
910 {
911 bool fPending;
912
913 /* TPR caching in CR8 */
914 int rc = PDMApicGetTPR(pVM, &u8LastVTPR, &fPending);
915 AssertRC(rc);
916 pVMCB->ctrl.IntCtrl.n.u8VTPR = u8LastVTPR;
917
918 if (fPending)
919 {
920 /* A TPR change could activate a pending interrupt, so catch cr8 writes. */
921 pVMCB->ctrl.u16InterceptWrCRx |= RT_BIT(8);
922 }
923 else
924 /* No interrupts are pending, so we don't need to be explicitely notified.
925 * There are enough world switches for detecting pending interrupts.
926 */
927 pVMCB->ctrl.u16InterceptWrCRx &= ~RT_BIT(8);
928
929 fSyncTPR = !fPending;
930 }
931
932 /* All done! Let's start VM execution. */
933 STAM_PROFILE_ADV_START(&pVCpu->hwaccm.s.StatInGC, x);
934
935 /* Enable nested paging if necessary (disabled each time after #VMEXIT). */
936 pVMCB->ctrl.NestedPaging.n.u1NestedPaging = pVM->hwaccm.s.fNestedPaging;
937
938#ifdef LOG_ENABLED
939 pCpu = HWACCMR0GetCurrentCpu();
940 if ( pVCpu->hwaccm.s.idLastCpu != pCpu->idCpu
941 || pVCpu->hwaccm.s.cTLBFlushes != pCpu->cTLBFlushes)
942 {
943 if (pVCpu->hwaccm.s.idLastCpu != pCpu->idCpu)
944 Log(("Force TLB flush due to rescheduling to a different cpu (%d vs %d)\n", pVCpu->hwaccm.s.idLastCpu, pCpu->idCpu));
945 else
946 Log(("Force TLB flush due to changed TLB flush count (%x vs %x)\n", pVCpu->hwaccm.s.cTLBFlushes, pCpu->cTLBFlushes));
947 }
948 if (pCpu->fFlushTLB)
949 Log(("Force TLB flush: first time cpu %d is used -> flush\n", pCpu->idCpu));
950#endif
951
952 /*
953 * NOTE: DO NOT DO ANYTHING AFTER THIS POINT THAT MIGHT JUMP BACK TO RING 3!
954 * (until the actual world switch)
955 */
956
957#ifdef VBOX_STRICT
958 idCpuCheck = RTMpCpuId();
959#endif
960
961 /* Load the guest state; *must* be here as it sets up the shadow cr0 for lazy fpu syncing! */
962 rc = SVMR0LoadGuestState(pVM, pVCpu, pCtx);
963 if (rc != VINF_SUCCESS)
964 {
965 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatEntry, x);
966 goto end;
967 }
968
969 pCpu = HWACCMR0GetCurrentCpu();
970 /* Force a TLB flush for the first world switch if the current cpu differs from the one we ran on last. */
971 /* Note that this can happen both for start and resume due to long jumps back to ring 3. */
972 if ( pVCpu->hwaccm.s.idLastCpu != pCpu->idCpu
973 /* if the tlb flush count has changed, another VM has flushed the TLB of this cpu, so we can't use our current ASID anymore. */
974 || pVCpu->hwaccm.s.cTLBFlushes != pCpu->cTLBFlushes)
975 {
976 /* Force a TLB flush on VM entry. */
977 pVCpu->hwaccm.s.fForceTLBFlush = true;
978 }
979 else
980 Assert(!pCpu->fFlushTLB || pVM->hwaccm.s.svm.fAlwaysFlushTLB);
981
982 pVCpu->hwaccm.s.idLastCpu = pCpu->idCpu;
983
984 /* Make sure we flush the TLB when required. Switch ASID to achieve the same thing, but without actually flushing the whole TLB (which is expensive). */
985 if ( pVCpu->hwaccm.s.fForceTLBFlush
986 && !pVM->hwaccm.s.svm.fAlwaysFlushTLB)
987 {
988 if ( ++pCpu->uCurrentASID >= pVM->hwaccm.s.uMaxASID
989 || pCpu->fFlushTLB)
990 {
991 pCpu->fFlushTLB = false;
992 pCpu->uCurrentASID = 1; /* start at 1; host uses 0 */
993 pVMCB->ctrl.TLBCtrl.n.u1TLBFlush = 1; /* wrap around; flush TLB */
994 pCpu->cTLBFlushes++;
995 }
996 else
997 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatFlushASID);
998
999 pVCpu->hwaccm.s.cTLBFlushes = pCpu->cTLBFlushes;
1000 pVCpu->hwaccm.s.uCurrentASID = pCpu->uCurrentASID;
1001 }
1002 else
1003 {
1004 Assert(!pCpu->fFlushTLB || pVM->hwaccm.s.svm.fAlwaysFlushTLB);
1005
1006 /* We never increase uCurrentASID in the fAlwaysFlushTLB (erratum 170) case. */
1007 if (!pCpu->uCurrentASID || !pVCpu->hwaccm.s.uCurrentASID)
1008 pVCpu->hwaccm.s.uCurrentASID = pCpu->uCurrentASID = 1;
1009
1010 Assert(!pVM->hwaccm.s.svm.fAlwaysFlushTLB || pVCpu->hwaccm.s.fForceTLBFlush);
1011 pVMCB->ctrl.TLBCtrl.n.u1TLBFlush = pVCpu->hwaccm.s.fForceTLBFlush;
1012 }
1013 AssertMsg(pVCpu->hwaccm.s.cTLBFlushes == pCpu->cTLBFlushes, ("Flush count mismatch for cpu %d (%x vs %x)\n", pCpu->idCpu, pVCpu->hwaccm.s.cTLBFlushes, pCpu->cTLBFlushes));
1014 AssertMsg(pCpu->uCurrentASID >= 1 && pCpu->uCurrentASID < pVM->hwaccm.s.uMaxASID, ("cpu%d uCurrentASID = %x\n", pCpu->idCpu, pCpu->uCurrentASID));
1015 AssertMsg(pVCpu->hwaccm.s.uCurrentASID >= 1 && pVCpu->hwaccm.s.uCurrentASID < pVM->hwaccm.s.uMaxASID, ("cpu%d VM uCurrentASID = %x\n", pCpu->idCpu, pVCpu->hwaccm.s.uCurrentASID));
1016 pVMCB->ctrl.TLBCtrl.n.u32ASID = pVCpu->hwaccm.s.uCurrentASID;
1017
1018#ifdef VBOX_WITH_STATISTICS
1019 if (pVMCB->ctrl.TLBCtrl.n.u1TLBFlush)
1020 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatFlushTLBWorldSwitch);
1021 else
1022 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatNoFlushTLBWorldSwitch);
1023#endif
1024
1025 /* In case we execute a goto ResumeExecution later on. */
1026 pVCpu->hwaccm.s.fResumeVM = true;
1027 pVCpu->hwaccm.s.fForceTLBFlush = pVM->hwaccm.s.svm.fAlwaysFlushTLB;
1028
1029 Assert(sizeof(pVCpu->hwaccm.s.svm.pVMCBPhys) == 8);
1030 Assert(pVMCB->ctrl.u32InterceptCtrl2 == ( SVM_CTRL2_INTERCEPT_VMRUN /* required */
1031 | SVM_CTRL2_INTERCEPT_VMMCALL
1032 | SVM_CTRL2_INTERCEPT_VMLOAD
1033 | SVM_CTRL2_INTERCEPT_VMSAVE
1034 | SVM_CTRL2_INTERCEPT_STGI
1035 | SVM_CTRL2_INTERCEPT_CLGI
1036 | SVM_CTRL2_INTERCEPT_SKINIT
1037 | SVM_CTRL2_INTERCEPT_RDTSCP /* AMD only; we don't support this one */
1038 | SVM_CTRL2_INTERCEPT_WBINVD
1039 | SVM_CTRL2_INTERCEPT_MWAIT_UNCOND /* don't execute mwait or else we'll idle inside the guest (host thinks the cpu load is high) */
1040 ));
1041 Assert(pVMCB->ctrl.IntCtrl.n.u1VIrqMasking);
1042 Assert(pVMCB->ctrl.u64IOPMPhysAddr == pVM->hwaccm.s.svm.pIOBitmapPhys);
1043 Assert(pVMCB->ctrl.u64MSRPMPhysAddr == pVM->hwaccm.s.svm.pMSRBitmapPhys);
1044 Assert(pVMCB->ctrl.u64LBRVirt == 0);
1045
1046#ifdef VBOX_STRICT
1047 Assert(idCpuCheck == RTMpCpuId());
1048#endif
1049 TMNotifyStartOfExecution(pVM);
1050 pVCpu->hwaccm.s.svm.pfnVMRun(pVM->hwaccm.s.svm.pVMCBHostPhys, pVCpu->hwaccm.s.svm.pVMCBPhys, pCtx);
1051 TMNotifyEndOfExecution(pVM);
1052 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatInGC, x);
1053
1054 /*
1055 * !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1056 * IMPORTANT: WE CAN'T DO ANY LOGGING OR OPERATIONS THAT CAN DO A LONGJMP BACK TO RING 3 *BEFORE* WE'VE SYNCED BACK (MOST OF) THE GUEST STATE
1057 * !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1058 */
1059
1060 STAM_PROFILE_ADV_START(&pVCpu->hwaccm.s.StatExit, x);
1061
1062 /* Reason for the VM exit */
1063 exitCode = pVMCB->ctrl.u64ExitCode;
1064
1065 if (exitCode == (uint64_t)SVM_EXIT_INVALID) /* Invalid guest state. */
1066 {
1067 HWACCMDumpRegs(pVM, pCtx);
1068#ifdef DEBUG
1069 Log(("ctrl.u16InterceptRdCRx %x\n", pVMCB->ctrl.u16InterceptRdCRx));
1070 Log(("ctrl.u16InterceptWrCRx %x\n", pVMCB->ctrl.u16InterceptWrCRx));
1071 Log(("ctrl.u16InterceptRdDRx %x\n", pVMCB->ctrl.u16InterceptRdDRx));
1072 Log(("ctrl.u16InterceptWrDRx %x\n", pVMCB->ctrl.u16InterceptWrDRx));
1073 Log(("ctrl.u32InterceptException %x\n", pVMCB->ctrl.u32InterceptException));
1074 Log(("ctrl.u32InterceptCtrl1 %x\n", pVMCB->ctrl.u32InterceptCtrl1));
1075 Log(("ctrl.u32InterceptCtrl2 %x\n", pVMCB->ctrl.u32InterceptCtrl2));
1076 Log(("ctrl.u64IOPMPhysAddr %RX64\n", pVMCB->ctrl.u64IOPMPhysAddr));
1077 Log(("ctrl.u64MSRPMPhysAddr %RX64\n", pVMCB->ctrl.u64MSRPMPhysAddr));
1078 Log(("ctrl.u64TSCOffset %RX64\n", pVMCB->ctrl.u64TSCOffset));
1079
1080 Log(("ctrl.TLBCtrl.u32ASID %x\n", pVMCB->ctrl.TLBCtrl.n.u32ASID));
1081 Log(("ctrl.TLBCtrl.u1TLBFlush %x\n", pVMCB->ctrl.TLBCtrl.n.u1TLBFlush));
1082 Log(("ctrl.TLBCtrl.u7Reserved %x\n", pVMCB->ctrl.TLBCtrl.n.u7Reserved));
1083 Log(("ctrl.TLBCtrl.u24Reserved %x\n", pVMCB->ctrl.TLBCtrl.n.u24Reserved));
1084
1085 Log(("ctrl.IntCtrl.u8VTPR %x\n", pVMCB->ctrl.IntCtrl.n.u8VTPR));
1086 Log(("ctrl.IntCtrl.u1VIrqValid %x\n", pVMCB->ctrl.IntCtrl.n.u1VIrqValid));
1087 Log(("ctrl.IntCtrl.u7Reserved %x\n", pVMCB->ctrl.IntCtrl.n.u7Reserved));
1088 Log(("ctrl.IntCtrl.u4VIrqPriority %x\n", pVMCB->ctrl.IntCtrl.n.u4VIrqPriority));
1089 Log(("ctrl.IntCtrl.u1IgnoreTPR %x\n", pVMCB->ctrl.IntCtrl.n.u1IgnoreTPR));
1090 Log(("ctrl.IntCtrl.u3Reserved %x\n", pVMCB->ctrl.IntCtrl.n.u3Reserved));
1091 Log(("ctrl.IntCtrl.u1VIrqMasking %x\n", pVMCB->ctrl.IntCtrl.n.u1VIrqMasking));
1092 Log(("ctrl.IntCtrl.u7Reserved2 %x\n", pVMCB->ctrl.IntCtrl.n.u7Reserved2));
1093 Log(("ctrl.IntCtrl.u8VIrqVector %x\n", pVMCB->ctrl.IntCtrl.n.u8VIrqVector));
1094 Log(("ctrl.IntCtrl.u24Reserved %x\n", pVMCB->ctrl.IntCtrl.n.u24Reserved));
1095
1096 Log(("ctrl.u64IntShadow %RX64\n", pVMCB->ctrl.u64IntShadow));
1097 Log(("ctrl.u64ExitCode %RX64\n", pVMCB->ctrl.u64ExitCode));
1098 Log(("ctrl.u64ExitInfo1 %RX64\n", pVMCB->ctrl.u64ExitInfo1));
1099 Log(("ctrl.u64ExitInfo2 %RX64\n", pVMCB->ctrl.u64ExitInfo2));
1100 Log(("ctrl.ExitIntInfo.u8Vector %x\n", pVMCB->ctrl.ExitIntInfo.n.u8Vector));
1101 Log(("ctrl.ExitIntInfo.u3Type %x\n", pVMCB->ctrl.ExitIntInfo.n.u3Type));
1102 Log(("ctrl.ExitIntInfo.u1ErrorCodeValid %x\n", pVMCB->ctrl.ExitIntInfo.n.u1ErrorCodeValid));
1103 Log(("ctrl.ExitIntInfo.u19Reserved %x\n", pVMCB->ctrl.ExitIntInfo.n.u19Reserved));
1104 Log(("ctrl.ExitIntInfo.u1Valid %x\n", pVMCB->ctrl.ExitIntInfo.n.u1Valid));
1105 Log(("ctrl.ExitIntInfo.u32ErrorCode %x\n", pVMCB->ctrl.ExitIntInfo.n.u32ErrorCode));
1106 Log(("ctrl.NestedPaging %RX64\n", pVMCB->ctrl.NestedPaging.au64));
1107 Log(("ctrl.EventInject.u8Vector %x\n", pVMCB->ctrl.EventInject.n.u8Vector));
1108 Log(("ctrl.EventInject.u3Type %x\n", pVMCB->ctrl.EventInject.n.u3Type));
1109 Log(("ctrl.EventInject.u1ErrorCodeValid %x\n", pVMCB->ctrl.EventInject.n.u1ErrorCodeValid));
1110 Log(("ctrl.EventInject.u19Reserved %x\n", pVMCB->ctrl.EventInject.n.u19Reserved));
1111 Log(("ctrl.EventInject.u1Valid %x\n", pVMCB->ctrl.EventInject.n.u1Valid));
1112 Log(("ctrl.EventInject.u32ErrorCode %x\n", pVMCB->ctrl.EventInject.n.u32ErrorCode));
1113
1114 Log(("ctrl.u64NestedPagingCR3 %RX64\n", pVMCB->ctrl.u64NestedPagingCR3));
1115 Log(("ctrl.u64LBRVirt %RX64\n", pVMCB->ctrl.u64LBRVirt));
1116
1117 Log(("guest.CS.u16Sel %04X\n", pVMCB->guest.CS.u16Sel));
1118 Log(("guest.CS.u16Attr %04X\n", pVMCB->guest.CS.u16Attr));
1119 Log(("guest.CS.u32Limit %X\n", pVMCB->guest.CS.u32Limit));
1120 Log(("guest.CS.u64Base %RX64\n", pVMCB->guest.CS.u64Base));
1121 Log(("guest.DS.u16Sel %04X\n", pVMCB->guest.DS.u16Sel));
1122 Log(("guest.DS.u16Attr %04X\n", pVMCB->guest.DS.u16Attr));
1123 Log(("guest.DS.u32Limit %X\n", pVMCB->guest.DS.u32Limit));
1124 Log(("guest.DS.u64Base %RX64\n", pVMCB->guest.DS.u64Base));
1125 Log(("guest.ES.u16Sel %04X\n", pVMCB->guest.ES.u16Sel));
1126 Log(("guest.ES.u16Attr %04X\n", pVMCB->guest.ES.u16Attr));
1127 Log(("guest.ES.u32Limit %X\n", pVMCB->guest.ES.u32Limit));
1128 Log(("guest.ES.u64Base %RX64\n", pVMCB->guest.ES.u64Base));
1129 Log(("guest.FS.u16Sel %04X\n", pVMCB->guest.FS.u16Sel));
1130 Log(("guest.FS.u16Attr %04X\n", pVMCB->guest.FS.u16Attr));
1131 Log(("guest.FS.u32Limit %X\n", pVMCB->guest.FS.u32Limit));
1132 Log(("guest.FS.u64Base %RX64\n", pVMCB->guest.FS.u64Base));
1133 Log(("guest.GS.u16Sel %04X\n", pVMCB->guest.GS.u16Sel));
1134 Log(("guest.GS.u16Attr %04X\n", pVMCB->guest.GS.u16Attr));
1135 Log(("guest.GS.u32Limit %X\n", pVMCB->guest.GS.u32Limit));
1136 Log(("guest.GS.u64Base %RX64\n", pVMCB->guest.GS.u64Base));
1137
1138 Log(("guest.GDTR.u32Limit %X\n", pVMCB->guest.GDTR.u32Limit));
1139 Log(("guest.GDTR.u64Base %RX64\n", pVMCB->guest.GDTR.u64Base));
1140
1141 Log(("guest.LDTR.u16Sel %04X\n", pVMCB->guest.LDTR.u16Sel));
1142 Log(("guest.LDTR.u16Attr %04X\n", pVMCB->guest.LDTR.u16Attr));
1143 Log(("guest.LDTR.u32Limit %X\n", pVMCB->guest.LDTR.u32Limit));
1144 Log(("guest.LDTR.u64Base %RX64\n", pVMCB->guest.LDTR.u64Base));
1145
1146 Log(("guest.IDTR.u32Limit %X\n", pVMCB->guest.IDTR.u32Limit));
1147 Log(("guest.IDTR.u64Base %RX64\n", pVMCB->guest.IDTR.u64Base));
1148
1149 Log(("guest.TR.u16Sel %04X\n", pVMCB->guest.TR.u16Sel));
1150 Log(("guest.TR.u16Attr %04X\n", pVMCB->guest.TR.u16Attr));
1151 Log(("guest.TR.u32Limit %X\n", pVMCB->guest.TR.u32Limit));
1152 Log(("guest.TR.u64Base %RX64\n", pVMCB->guest.TR.u64Base));
1153
1154 Log(("guest.u8CPL %X\n", pVMCB->guest.u8CPL));
1155 Log(("guest.u64CR0 %RX64\n", pVMCB->guest.u64CR0));
1156 Log(("guest.u64CR2 %RX64\n", pVMCB->guest.u64CR2));
1157 Log(("guest.u64CR3 %RX64\n", pVMCB->guest.u64CR3));
1158 Log(("guest.u64CR4 %RX64\n", pVMCB->guest.u64CR4));
1159 Log(("guest.u64DR6 %RX64\n", pVMCB->guest.u64DR6));
1160 Log(("guest.u64DR7 %RX64\n", pVMCB->guest.u64DR7));
1161
1162 Log(("guest.u64RIP %RX64\n", pVMCB->guest.u64RIP));
1163 Log(("guest.u64RSP %RX64\n", pVMCB->guest.u64RSP));
1164 Log(("guest.u64RAX %RX64\n", pVMCB->guest.u64RAX));
1165 Log(("guest.u64RFlags %RX64\n", pVMCB->guest.u64RFlags));
1166
1167 Log(("guest.u64SysEnterCS %RX64\n", pVMCB->guest.u64SysEnterCS));
1168 Log(("guest.u64SysEnterEIP %RX64\n", pVMCB->guest.u64SysEnterEIP));
1169 Log(("guest.u64SysEnterESP %RX64\n", pVMCB->guest.u64SysEnterESP));
1170
1171 Log(("guest.u64EFER %RX64\n", pVMCB->guest.u64EFER));
1172 Log(("guest.u64STAR %RX64\n", pVMCB->guest.u64STAR));
1173 Log(("guest.u64LSTAR %RX64\n", pVMCB->guest.u64LSTAR));
1174 Log(("guest.u64CSTAR %RX64\n", pVMCB->guest.u64CSTAR));
1175 Log(("guest.u64SFMASK %RX64\n", pVMCB->guest.u64SFMASK));
1176 Log(("guest.u64KernelGSBase %RX64\n", pVMCB->guest.u64KernelGSBase));
1177 Log(("guest.u64GPAT %RX64\n", pVMCB->guest.u64GPAT));
1178 Log(("guest.u64DBGCTL %RX64\n", pVMCB->guest.u64DBGCTL));
1179 Log(("guest.u64BR_FROM %RX64\n", pVMCB->guest.u64BR_FROM));
1180 Log(("guest.u64BR_TO %RX64\n", pVMCB->guest.u64BR_TO));
1181 Log(("guest.u64LASTEXCPFROM %RX64\n", pVMCB->guest.u64LASTEXCPFROM));
1182 Log(("guest.u64LASTEXCPTO %RX64\n", pVMCB->guest.u64LASTEXCPTO));
1183
1184#endif
1185 rc = VERR_SVM_UNABLE_TO_START_VM;
1186 goto end;
1187 }
1188
1189 /* Let's first sync back eip, esp, and eflags. */
1190 pCtx->rip = pVMCB->guest.u64RIP;
1191 pCtx->rsp = pVMCB->guest.u64RSP;
1192 pCtx->eflags.u32 = pVMCB->guest.u64RFlags;
1193 /* eax is saved/restore across the vmrun instruction */
1194 pCtx->rax = pVMCB->guest.u64RAX;
1195
1196 pCtx->msrKERNELGSBASE = pVMCB->guest.u64KernelGSBase; /* swapgs exchange value */
1197
1198 /* Can be updated behind our back in the nested paging case. */
1199 pCtx->cr2 = pVMCB->guest.u64CR2;
1200
1201 /* Guest CPU context: ES, CS, SS, DS, FS, GS. */
1202 SVM_READ_SELREG(SS, ss);
1203 SVM_READ_SELREG(CS, cs);
1204 SVM_READ_SELREG(DS, ds);
1205 SVM_READ_SELREG(ES, es);
1206 SVM_READ_SELREG(FS, fs);
1207 SVM_READ_SELREG(GS, gs);
1208
1209 /*
1210 * System MSRs
1211 */
1212 pCtx->SysEnter.cs = pVMCB->guest.u64SysEnterCS;
1213 pCtx->SysEnter.eip = pVMCB->guest.u64SysEnterEIP;
1214 pCtx->SysEnter.esp = pVMCB->guest.u64SysEnterESP;
1215
1216 /* Remaining guest CPU context: TR, IDTR, GDTR, LDTR; must sync everything otherwise we can get out of sync when jumping to ring 3. */
1217 SVM_READ_SELREG(LDTR, ldtr);
1218 SVM_READ_SELREG(TR, tr);
1219
1220 pCtx->gdtr.cbGdt = pVMCB->guest.GDTR.u32Limit;
1221 pCtx->gdtr.pGdt = pVMCB->guest.GDTR.u64Base;
1222
1223 pCtx->idtr.cbIdt = pVMCB->guest.IDTR.u32Limit;
1224 pCtx->idtr.pIdt = pVMCB->guest.IDTR.u64Base;
1225
1226 /* Note: no reason to sync back the CRx and DRx registers. They can't be changed by the guest. */
1227 /* Note: only in the nested paging case can CR3 & CR4 be changed by the guest. */
1228 if ( pVM->hwaccm.s.fNestedPaging
1229 && pCtx->cr3 != pVMCB->guest.u64CR3)
1230 {
1231 CPUMSetGuestCR3(pVM, pVMCB->guest.u64CR3);
1232 PGMUpdateCR3(pVM, pVMCB->guest.u64CR3);
1233 }
1234
1235 /* Note! NOW IT'S SAFE FOR LOGGING! */
1236
1237 /* Take care of instruction fusing (sti, mov ss) (see 15.20.5 Interrupt Shadows) */
1238 if (pVMCB->ctrl.u64IntShadow & SVM_INTERRUPT_SHADOW_ACTIVE)
1239 {
1240 Log(("uInterruptState %x rip=%RGv\n", pVMCB->ctrl.u64IntShadow, (RTGCPTR)pCtx->rip));
1241 EMSetInhibitInterruptsPC(pVM, pCtx->rip);
1242 }
1243 else
1244 VM_FF_CLEAR(pVM, VM_FF_INHIBIT_INTERRUPTS);
1245
1246 Log2(("exitCode = %x\n", exitCode));
1247
1248 /* Sync back DR6 as it could have been changed by hitting breakpoints. */
1249 pCtx->dr[6] = pVMCB->guest.u64DR6;
1250 /* DR7.GD can be cleared by debug exceptions, so sync it back as well. */
1251 pCtx->dr[7] = pVMCB->guest.u64DR7;
1252
1253 /* Check if an injected event was interrupted prematurely. */
1254 pVCpu->hwaccm.s.Event.intInfo = pVMCB->ctrl.ExitIntInfo.au64[0];
1255 if ( pVMCB->ctrl.ExitIntInfo.n.u1Valid
1256 && pVMCB->ctrl.ExitIntInfo.n.u3Type != SVM_EVENT_SOFTWARE_INT /* we don't care about 'int xx' as the instruction will be restarted. */)
1257 {
1258 Log(("Pending inject %RX64 at %RGv exit=%08x\n", pVCpu->hwaccm.s.Event.intInfo, (RTGCPTR)pCtx->rip, exitCode));
1259
1260#ifdef LOG_ENABLED
1261 SVM_EVENT Event;
1262 Event.au64[0] = pVCpu->hwaccm.s.Event.intInfo;
1263
1264 if ( exitCode == SVM_EXIT_EXCEPTION_E
1265 && Event.n.u8Vector == 0xE)
1266 {
1267 Log(("Double fault!\n"));
1268 }
1269#endif
1270
1271 pVCpu->hwaccm.s.Event.fPending = true;
1272 /* Error code present? (redundant) */
1273 if (pVMCB->ctrl.ExitIntInfo.n.u1ErrorCodeValid)
1274 {
1275 pVCpu->hwaccm.s.Event.errCode = pVMCB->ctrl.ExitIntInfo.n.u32ErrorCode;
1276 }
1277 else
1278 pVCpu->hwaccm.s.Event.errCode = 0;
1279 }
1280#ifdef VBOX_WITH_STATISTICS
1281 if (exitCode == SVM_EXIT_NPF)
1282 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitReasonNPF);
1283 else
1284 STAM_COUNTER_INC(&pVCpu->hwaccm.s.paStatExitReasonR0[exitCode & MASK_EXITREASON_STAT]);
1285#endif
1286
1287 if (fSyncTPR)
1288 {
1289 rc = PDMApicSetTPR(pVM, pVMCB->ctrl.IntCtrl.n.u8VTPR);
1290 AssertRC(rc);
1291 }
1292
1293 /* Deal with the reason of the VM-exit. */
1294 switch (exitCode)
1295 {
1296 case SVM_EXIT_EXCEPTION_0: case SVM_EXIT_EXCEPTION_1: case SVM_EXIT_EXCEPTION_2: case SVM_EXIT_EXCEPTION_3:
1297 case SVM_EXIT_EXCEPTION_4: case SVM_EXIT_EXCEPTION_5: case SVM_EXIT_EXCEPTION_6: case SVM_EXIT_EXCEPTION_7:
1298 case SVM_EXIT_EXCEPTION_8: case SVM_EXIT_EXCEPTION_9: case SVM_EXIT_EXCEPTION_A: case SVM_EXIT_EXCEPTION_B:
1299 case SVM_EXIT_EXCEPTION_C: case SVM_EXIT_EXCEPTION_D: case SVM_EXIT_EXCEPTION_E: case SVM_EXIT_EXCEPTION_F:
1300 case SVM_EXIT_EXCEPTION_10: case SVM_EXIT_EXCEPTION_11: case SVM_EXIT_EXCEPTION_12: case SVM_EXIT_EXCEPTION_13:
1301 case SVM_EXIT_EXCEPTION_14: case SVM_EXIT_EXCEPTION_15: case SVM_EXIT_EXCEPTION_16: case SVM_EXIT_EXCEPTION_17:
1302 case SVM_EXIT_EXCEPTION_18: case SVM_EXIT_EXCEPTION_19: case SVM_EXIT_EXCEPTION_1A: case SVM_EXIT_EXCEPTION_1B:
1303 case SVM_EXIT_EXCEPTION_1C: case SVM_EXIT_EXCEPTION_1D: case SVM_EXIT_EXCEPTION_1E: case SVM_EXIT_EXCEPTION_1F:
1304 {
1305 /* Pending trap. */
1306 SVM_EVENT Event;
1307 uint32_t vector = exitCode - SVM_EXIT_EXCEPTION_0;
1308
1309 Log2(("Hardware/software interrupt %d\n", vector));
1310 switch (vector)
1311 {
1312 case X86_XCPT_DB:
1313 {
1314 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestDB);
1315
1316 /* Note that we don't support guest and host-initiated debugging at the same time. */
1317 Assert(DBGFIsStepping(pVM));
1318
1319 rc = DBGFR0Trap01Handler(pVM, CPUMCTX2CORE(pCtx), pCtx->dr[6]);
1320 if (rc == VINF_EM_RAW_GUEST_TRAP)
1321 {
1322 Log(("Trap %x (debug) at %016RX64\n", vector, pCtx->rip));
1323
1324 /* Reinject the exception. */
1325 Event.au64[0] = 0;
1326 Event.n.u3Type = SVM_EVENT_EXCEPTION; /* trap or fault */
1327 Event.n.u1Valid = 1;
1328 Event.n.u8Vector = X86_XCPT_DB;
1329
1330 SVMR0InjectEvent(pVM, pVMCB, pCtx, &Event);
1331
1332 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit, x);
1333 goto ResumeExecution;
1334 }
1335 /* Return to ring 3 to deal with the debug exit code. */
1336 break;
1337 }
1338
1339 case X86_XCPT_NM:
1340 {
1341 Log(("#NM fault at %RGv\n", (RTGCPTR)pCtx->rip));
1342
1343 /** @todo don't intercept #NM exceptions anymore when we've activated the guest FPU state. */
1344 /* If we sync the FPU/XMM state on-demand, then we can continue execution as if nothing has happened. */
1345 rc = CPUMR0LoadGuestFPU(pVM, pVCpu, pCtx);
1346 if (rc == VINF_SUCCESS)
1347 {
1348 Assert(CPUMIsGuestFPUStateActive(pVCpu));
1349 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitShadowNM);
1350
1351 /* Continue execution. */
1352 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit, x);
1353 pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_GUEST_CR0;
1354
1355 goto ResumeExecution;
1356 }
1357
1358 Log(("Forward #NM fault to the guest\n"));
1359 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestNM);
1360
1361 Event.au64[0] = 0;
1362 Event.n.u3Type = SVM_EVENT_EXCEPTION;
1363 Event.n.u1Valid = 1;
1364 Event.n.u8Vector = X86_XCPT_NM;
1365
1366 SVMR0InjectEvent(pVM, pVMCB, pCtx, &Event);
1367 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit, x);
1368 goto ResumeExecution;
1369 }
1370
1371 case X86_XCPT_PF: /* Page fault */
1372 {
1373 uint32_t errCode = pVMCB->ctrl.u64ExitInfo1; /* EXITINFO1 = error code */
1374 RTGCUINTPTR uFaultAddress = pVMCB->ctrl.u64ExitInfo2; /* EXITINFO2 = fault address */
1375
1376#ifdef DEBUG
1377 if (pVM->hwaccm.s.fNestedPaging)
1378 { /* A genuine pagefault.
1379 * Forward the trap to the guest by injecting the exception and resuming execution.
1380 */
1381 Log(("Guest page fault at %RGv cr2=%RGv error code %x rsp=%RGv\n", (RTGCPTR)pCtx->rip, uFaultAddress, errCode, (RTGCPTR)pCtx->rsp));
1382 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestPF);
1383
1384 /* Now we must update CR2. */
1385 pCtx->cr2 = uFaultAddress;
1386
1387 Event.au64[0] = 0;
1388 Event.n.u3Type = SVM_EVENT_EXCEPTION;
1389 Event.n.u1Valid = 1;
1390 Event.n.u8Vector = X86_XCPT_PF;
1391 Event.n.u1ErrorCodeValid = 1;
1392 Event.n.u32ErrorCode = errCode;
1393
1394 SVMR0InjectEvent(pVM, pVMCB, pCtx, &Event);
1395
1396 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit, x);
1397 goto ResumeExecution;
1398 }
1399#endif
1400 Assert(!pVM->hwaccm.s.fNestedPaging);
1401
1402 Log2(("Page fault at %RGv cr2=%RGv error code %x\n", (RTGCPTR)pCtx->rip, uFaultAddress, errCode));
1403 /* Exit qualification contains the linear address of the page fault. */
1404 TRPMAssertTrap(pVM, X86_XCPT_PF, TRPM_TRAP);
1405 TRPMSetErrorCode(pVM, errCode);
1406 TRPMSetFaultAddress(pVM, uFaultAddress);
1407
1408 /* Forward it to our trap handler first, in case our shadow pages are out of sync. */
1409 rc = PGMTrap0eHandler(pVM, errCode, CPUMCTX2CORE(pCtx), (RTGCPTR)uFaultAddress);
1410 Log2(("PGMTrap0eHandler %RGv returned %Rrc\n", (RTGCPTR)pCtx->rip, rc));
1411 if (rc == VINF_SUCCESS)
1412 { /* We've successfully synced our shadow pages, so let's just continue execution. */
1413 Log2(("Shadow page fault at %RGv cr2=%RGv error code %x\n", (RTGCPTR)pCtx->rip, uFaultAddress, errCode));
1414 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitShadowPF);
1415
1416 TRPMResetTrap(pVM);
1417
1418 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit, x);
1419 goto ResumeExecution;
1420 }
1421 else
1422 if (rc == VINF_EM_RAW_GUEST_TRAP)
1423 { /* A genuine pagefault.
1424 * Forward the trap to the guest by injecting the exception and resuming execution.
1425 */
1426 Log2(("Forward page fault to the guest\n"));
1427 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestPF);
1428 /* The error code might have been changed. */
1429 errCode = TRPMGetErrorCode(pVM);
1430
1431 TRPMResetTrap(pVM);
1432
1433 /* Now we must update CR2. */
1434 pCtx->cr2 = uFaultAddress;
1435
1436 Event.au64[0] = 0;
1437 Event.n.u3Type = SVM_EVENT_EXCEPTION;
1438 Event.n.u1Valid = 1;
1439 Event.n.u8Vector = X86_XCPT_PF;
1440 Event.n.u1ErrorCodeValid = 1;
1441 Event.n.u32ErrorCode = errCode;
1442
1443 SVMR0InjectEvent(pVM, pVMCB, pCtx, &Event);
1444
1445 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit, x);
1446 goto ResumeExecution;
1447 }
1448#ifdef VBOX_STRICT
1449 if (rc != VINF_EM_RAW_EMULATE_INSTR)
1450 LogFlow(("PGMTrap0eHandler failed with %d\n", rc));
1451#endif
1452 /* Need to go back to the recompiler to emulate the instruction. */
1453 TRPMResetTrap(pVM);
1454 break;
1455 }
1456
1457 case X86_XCPT_MF: /* Floating point exception. */
1458 {
1459 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestMF);
1460 if (!(pCtx->cr0 & X86_CR0_NE))
1461 {
1462 /* old style FPU error reporting needs some extra work. */
1463 /** @todo don't fall back to the recompiler, but do it manually. */
1464 rc = VINF_EM_RAW_EMULATE_INSTR;
1465 break;
1466 }
1467 Log(("Trap %x at %RGv\n", vector, (RTGCPTR)pCtx->rip));
1468
1469 Event.au64[0] = 0;
1470 Event.n.u3Type = SVM_EVENT_EXCEPTION;
1471 Event.n.u1Valid = 1;
1472 Event.n.u8Vector = X86_XCPT_MF;
1473
1474 SVMR0InjectEvent(pVM, pVMCB, pCtx, &Event);
1475
1476 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit, x);
1477 goto ResumeExecution;
1478 }
1479
1480#ifdef VBOX_STRICT
1481 case X86_XCPT_GP: /* General protection failure exception.*/
1482 case X86_XCPT_UD: /* Unknown opcode exception. */
1483 case X86_XCPT_DE: /* Divide error. */
1484 case X86_XCPT_SS: /* Stack segment exception. */
1485 case X86_XCPT_NP: /* Segment not present exception. */
1486 {
1487 Event.au64[0] = 0;
1488 Event.n.u3Type = SVM_EVENT_EXCEPTION;
1489 Event.n.u1Valid = 1;
1490 Event.n.u8Vector = vector;
1491
1492 switch(vector)
1493 {
1494 case X86_XCPT_GP:
1495 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestGP);
1496 Event.n.u1ErrorCodeValid = 1;
1497 Event.n.u32ErrorCode = pVMCB->ctrl.u64ExitInfo1; /* EXITINFO1 = error code */
1498 break;
1499 case X86_XCPT_DE:
1500 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestDE);
1501 break;
1502 case X86_XCPT_UD:
1503 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestUD);
1504 break;
1505 case X86_XCPT_SS:
1506 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestSS);
1507 Event.n.u1ErrorCodeValid = 1;
1508 Event.n.u32ErrorCode = pVMCB->ctrl.u64ExitInfo1; /* EXITINFO1 = error code */
1509 break;
1510 case X86_XCPT_NP:
1511 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestNP);
1512 Event.n.u1ErrorCodeValid = 1;
1513 Event.n.u32ErrorCode = pVMCB->ctrl.u64ExitInfo1; /* EXITINFO1 = error code */
1514 break;
1515 }
1516 Log(("Trap %x at %RGv esi=%x\n", vector, (RTGCPTR)pCtx->rip, pCtx->esi));
1517 SVMR0InjectEvent(pVM, pVMCB, pCtx, &Event);
1518
1519 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit, x);
1520 goto ResumeExecution;
1521 }
1522#endif
1523 default:
1524 AssertMsgFailed(("Unexpected vm-exit caused by exception %x\n", vector));
1525 rc = VERR_EM_INTERNAL_ERROR;
1526 break;
1527
1528 } /* switch (vector) */
1529 break;
1530 }
1531
1532 case SVM_EXIT_NPF:
1533 {
1534 /* EXITINFO1 contains fault errorcode; EXITINFO2 contains the guest physical address causing the fault. */
1535 uint32_t errCode = pVMCB->ctrl.u64ExitInfo1; /* EXITINFO1 = error code */
1536 RTGCPHYS uFaultAddress = pVMCB->ctrl.u64ExitInfo2; /* EXITINFO2 = fault address */
1537
1538 Assert(pVM->hwaccm.s.fNestedPaging);
1539 Log(("Nested page fault at %RGv cr2=%RGp error code %x\n", (RTGCPTR)pCtx->rip, uFaultAddress, errCode));
1540 /* Exit qualification contains the linear address of the page fault. */
1541 TRPMAssertTrap(pVM, X86_XCPT_PF, TRPM_TRAP);
1542 TRPMSetErrorCode(pVM, errCode);
1543 TRPMSetFaultAddress(pVM, uFaultAddress);
1544
1545 /* Handle the pagefault trap for the nested shadow table. */
1546 rc = PGMR0Trap0eHandlerNestedPaging(pVM, PGMGetHostMode(pVM), errCode, CPUMCTX2CORE(pCtx), uFaultAddress);
1547 Log2(("PGMR0Trap0eHandlerNestedPaging %RGv returned %Rrc\n", (RTGCPTR)pCtx->rip, rc));
1548 if (rc == VINF_SUCCESS)
1549 { /* We've successfully synced our shadow pages, so let's just continue execution. */
1550 Log2(("Shadow page fault at %RGv cr2=%RGp error code %x\n", (RTGCPTR)pCtx->rip, uFaultAddress, errCode));
1551 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitShadowPF);
1552
1553 TRPMResetTrap(pVM);
1554
1555 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit, x);
1556 goto ResumeExecution;
1557 }
1558
1559#ifdef VBOX_STRICT
1560 if (rc != VINF_EM_RAW_EMULATE_INSTR)
1561 LogFlow(("PGMTrap0eHandlerNestedPaging failed with %d\n", rc));
1562#endif
1563 /* Need to go back to the recompiler to emulate the instruction. */
1564 TRPMResetTrap(pVM);
1565 break;
1566 }
1567
1568 case SVM_EXIT_VINTR:
1569 /* A virtual interrupt is about to be delivered, which means IF=1. */
1570 Log(("SVM_EXIT_VINTR IF=%d\n", pCtx->eflags.Bits.u1IF));
1571 pVMCB->ctrl.IntCtrl.n.u1VIrqValid = 0;
1572 pVMCB->ctrl.IntCtrl.n.u8VIrqVector = 0;
1573 goto ResumeExecution;
1574
1575 case SVM_EXIT_FERR_FREEZE:
1576 case SVM_EXIT_INTR:
1577 case SVM_EXIT_NMI:
1578 case SVM_EXIT_SMI:
1579 case SVM_EXIT_INIT:
1580 /* External interrupt; leave to allow it to be dispatched again. */
1581 rc = VINF_EM_RAW_INTERRUPT;
1582 break;
1583
1584 case SVM_EXIT_WBINVD:
1585 case SVM_EXIT_INVD: /* Guest software attempted to execute INVD. */
1586 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitInvd);
1587 /* Skip instruction and continue directly. */
1588 pCtx->rip += 2; /* Note! hardcoded opcode size! */
1589 /* Continue execution.*/
1590 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit, x);
1591 goto ResumeExecution;
1592
1593 case SVM_EXIT_CPUID: /* Guest software attempted to execute CPUID. */
1594 {
1595 Log2(("SVM: Cpuid at %RGv for %x\n", (RTGCPTR)pCtx->rip, pCtx->eax));
1596 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitCpuid);
1597 rc = EMInterpretCpuId(pVM, CPUMCTX2CORE(pCtx));
1598 if (rc == VINF_SUCCESS)
1599 {
1600 /* Update EIP and continue execution. */
1601 pCtx->rip += 2; /* Note! hardcoded opcode size! */
1602 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit, x);
1603 goto ResumeExecution;
1604 }
1605 AssertMsgFailed(("EMU: cpuid failed with %Rrc\n", rc));
1606 rc = VINF_EM_RAW_EMULATE_INSTR;
1607 break;
1608 }
1609
1610 case SVM_EXIT_RDTSC: /* Guest software attempted to execute RDTSC. */
1611 {
1612 Log2(("SVM: Rdtsc\n"));
1613 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitRdtsc);
1614 rc = EMInterpretRdtsc(pVM, CPUMCTX2CORE(pCtx));
1615 if (rc == VINF_SUCCESS)
1616 {
1617 /* Update EIP and continue execution. */
1618 pCtx->rip += 2; /* Note! hardcoded opcode size! */
1619 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit, x);
1620 goto ResumeExecution;
1621 }
1622 AssertMsgFailed(("EMU: rdtsc failed with %Rrc\n", rc));
1623 rc = VINF_EM_RAW_EMULATE_INSTR;
1624 break;
1625 }
1626
1627 case SVM_EXIT_INVLPG: /* Guest software attempted to execute INVPG. */
1628 {
1629 Log2(("SVM: invlpg\n"));
1630 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitInvpg);
1631
1632 Assert(!pVM->hwaccm.s.fNestedPaging);
1633
1634 /* Truly a pita. Why can't SVM give the same information as VT-x? */
1635 rc = SVMR0InterpretInvpg(pVM, CPUMCTX2CORE(pCtx), pVMCB->ctrl.TLBCtrl.n.u32ASID);
1636 if (rc == VINF_SUCCESS)
1637 {
1638 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatFlushPageInvlpg);
1639 goto ResumeExecution; /* eip already updated */
1640 }
1641 break;
1642 }
1643
1644 case SVM_EXIT_WRITE_CR0: case SVM_EXIT_WRITE_CR1: case SVM_EXIT_WRITE_CR2: case SVM_EXIT_WRITE_CR3:
1645 case SVM_EXIT_WRITE_CR4: case SVM_EXIT_WRITE_CR5: case SVM_EXIT_WRITE_CR6: case SVM_EXIT_WRITE_CR7:
1646 case SVM_EXIT_WRITE_CR8: case SVM_EXIT_WRITE_CR9: case SVM_EXIT_WRITE_CR10: case SVM_EXIT_WRITE_CR11:
1647 case SVM_EXIT_WRITE_CR12: case SVM_EXIT_WRITE_CR13: case SVM_EXIT_WRITE_CR14: case SVM_EXIT_WRITE_CR15:
1648 {
1649 uint32_t cbSize;
1650
1651 Log2(("SVM: %RGv mov cr%d, \n", (RTGCPTR)pCtx->rip, exitCode - SVM_EXIT_WRITE_CR0));
1652 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitCRxWrite);
1653 rc = EMInterpretInstruction(pVM, CPUMCTX2CORE(pCtx), 0, &cbSize);
1654
1655 switch (exitCode - SVM_EXIT_WRITE_CR0)
1656 {
1657 case 0:
1658 pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_GUEST_CR0;
1659 break;
1660 case 2:
1661 break;
1662 case 3:
1663 Assert(!pVM->hwaccm.s.fNestedPaging);
1664 pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_GUEST_CR3;
1665 break;
1666 case 4:
1667 pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_GUEST_CR4;
1668 break;
1669 case 8:
1670 break;
1671 default:
1672 AssertFailed();
1673 }
1674 /* Check if a sync operation is pending. */
1675 if ( rc == VINF_SUCCESS /* don't bother if we are going to ring 3 anyway */
1676 && VM_FF_ISPENDING(pVM, VM_FF_PGM_SYNC_CR3 | VM_FF_PGM_SYNC_CR3_NON_GLOBAL))
1677 {
1678 rc = PGMSyncCR3(pVM, CPUMGetGuestCR0(pVM), CPUMGetGuestCR3(pVM), CPUMGetGuestCR4(pVM), VM_FF_ISSET(pVM, VM_FF_PGM_SYNC_CR3));
1679 AssertRC(rc);
1680
1681 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatFlushTLBCRxChange);
1682
1683 /* Must be set by PGMSyncCR3 */
1684 Assert(PGMGetGuestMode(pVM) <= PGMMODE_PROTECTED || pVCpu->hwaccm.s.fForceTLBFlush);
1685 }
1686 if (rc == VINF_SUCCESS)
1687 {
1688 /* EIP has been updated already. */
1689
1690 /* Only resume if successful. */
1691 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit, x);
1692 goto ResumeExecution;
1693 }
1694 Assert(rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_PGM_SYNC_CR3);
1695 break;
1696 }
1697
1698 case SVM_EXIT_READ_CR0: case SVM_EXIT_READ_CR1: case SVM_EXIT_READ_CR2: case SVM_EXIT_READ_CR3:
1699 case SVM_EXIT_READ_CR4: case SVM_EXIT_READ_CR5: case SVM_EXIT_READ_CR6: case SVM_EXIT_READ_CR7:
1700 case SVM_EXIT_READ_CR8: case SVM_EXIT_READ_CR9: case SVM_EXIT_READ_CR10: case SVM_EXIT_READ_CR11:
1701 case SVM_EXIT_READ_CR12: case SVM_EXIT_READ_CR13: case SVM_EXIT_READ_CR14: case SVM_EXIT_READ_CR15:
1702 {
1703 uint32_t cbSize;
1704
1705 Log2(("SVM: %RGv mov x, cr%d\n", (RTGCPTR)pCtx->rip, exitCode - SVM_EXIT_READ_CR0));
1706 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitCRxRead);
1707 rc = EMInterpretInstruction(pVM, CPUMCTX2CORE(pCtx), 0, &cbSize);
1708 if (rc == VINF_SUCCESS)
1709 {
1710 /* EIP has been updated already. */
1711
1712 /* Only resume if successful. */
1713 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit, x);
1714 goto ResumeExecution;
1715 }
1716 Assert(rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_PGM_SYNC_CR3);
1717 break;
1718 }
1719
1720 case SVM_EXIT_WRITE_DR0: case SVM_EXIT_WRITE_DR1: case SVM_EXIT_WRITE_DR2: case SVM_EXIT_WRITE_DR3:
1721 case SVM_EXIT_WRITE_DR4: case SVM_EXIT_WRITE_DR5: case SVM_EXIT_WRITE_DR6: case SVM_EXIT_WRITE_DR7:
1722 case SVM_EXIT_WRITE_DR8: case SVM_EXIT_WRITE_DR9: case SVM_EXIT_WRITE_DR10: case SVM_EXIT_WRITE_DR11:
1723 case SVM_EXIT_WRITE_DR12: case SVM_EXIT_WRITE_DR13: case SVM_EXIT_WRITE_DR14: case SVM_EXIT_WRITE_DR15:
1724 {
1725 uint32_t cbSize;
1726
1727 Log2(("SVM: %RGv mov dr%d, x\n", (RTGCPTR)pCtx->rip, exitCode - SVM_EXIT_WRITE_DR0));
1728 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitDRxRead);
1729
1730 if (!DBGFIsStepping(pVM))
1731 {
1732 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatDRxContextSwitch);
1733
1734 /* Disable drx move intercepts. */
1735 pVMCB->ctrl.u16InterceptRdDRx = 0;
1736 pVMCB->ctrl.u16InterceptWrDRx = 0;
1737
1738 /* Save the host and load the guest debug state. */
1739 rc = CPUMR0LoadGuestDebugState(pVM, pVCpu, pCtx, false /* exclude DR6 */);
1740 AssertRC(rc);
1741
1742 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit, x);
1743 goto ResumeExecution;
1744 }
1745
1746 rc = EMInterpretInstruction(pVM, CPUMCTX2CORE(pCtx), 0, &cbSize);
1747 if (rc == VINF_SUCCESS)
1748 {
1749 /* EIP has been updated already. */
1750 pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_GUEST_DEBUG;
1751
1752 /* Only resume if successful. */
1753 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit, x);
1754 goto ResumeExecution;
1755 }
1756 Assert(rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_PGM_SYNC_CR3);
1757 break;
1758 }
1759
1760 case SVM_EXIT_READ_DR0: case SVM_EXIT_READ_DR1: case SVM_EXIT_READ_DR2: case SVM_EXIT_READ_DR3:
1761 case SVM_EXIT_READ_DR4: case SVM_EXIT_READ_DR5: case SVM_EXIT_READ_DR6: case SVM_EXIT_READ_DR7:
1762 case SVM_EXIT_READ_DR8: case SVM_EXIT_READ_DR9: case SVM_EXIT_READ_DR10: case SVM_EXIT_READ_DR11:
1763 case SVM_EXIT_READ_DR12: case SVM_EXIT_READ_DR13: case SVM_EXIT_READ_DR14: case SVM_EXIT_READ_DR15:
1764 {
1765 uint32_t cbSize;
1766
1767 Log2(("SVM: %RGv mov dr%d, x\n", (RTGCPTR)pCtx->rip, exitCode - SVM_EXIT_READ_DR0));
1768 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitDRxRead);
1769
1770 if (!DBGFIsStepping(pVM))
1771 {
1772 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatDRxContextSwitch);
1773
1774 /* Disable drx move intercepts. */
1775 pVMCB->ctrl.u16InterceptRdDRx = 0;
1776 pVMCB->ctrl.u16InterceptWrDRx = 0;
1777
1778 /* Save the host and load the guest debug state. */
1779 rc = CPUMR0LoadGuestDebugState(pVM, pVCpu, pCtx, false /* exclude DR6 */);
1780 AssertRC(rc);
1781
1782 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit, x);
1783 goto ResumeExecution;
1784 }
1785
1786 rc = EMInterpretInstruction(pVM, CPUMCTX2CORE(pCtx), 0, &cbSize);
1787 if (rc == VINF_SUCCESS)
1788 {
1789 /* EIP has been updated already. */
1790
1791 /* Only resume if successful. */
1792 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit, x);
1793 goto ResumeExecution;
1794 }
1795 Assert(rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_PGM_SYNC_CR3);
1796 break;
1797 }
1798
1799 /* Note: We'll get a #GP if the IO instruction isn't allowed (IOPL or TSS bitmap); no need to double check. */
1800 case SVM_EXIT_IOIO: /* I/O instruction. */
1801 {
1802 SVM_IOIO_EXIT IoExitInfo;
1803 uint32_t uIOSize, uAndVal;
1804
1805 IoExitInfo.au32[0] = pVMCB->ctrl.u64ExitInfo1;
1806
1807 /** @todo could use a lookup table here */
1808 if (IoExitInfo.n.u1OP8)
1809 {
1810 uIOSize = 1;
1811 uAndVal = 0xff;
1812 }
1813 else
1814 if (IoExitInfo.n.u1OP16)
1815 {
1816 uIOSize = 2;
1817 uAndVal = 0xffff;
1818 }
1819 else
1820 if (IoExitInfo.n.u1OP32)
1821 {
1822 uIOSize = 4;
1823 uAndVal = 0xffffffff;
1824 }
1825 else
1826 {
1827 AssertFailed(); /* should be fatal. */
1828 rc = VINF_EM_RAW_EMULATE_INSTR;
1829 break;
1830 }
1831
1832 if (IoExitInfo.n.u1STR)
1833 {
1834 /* ins/outs */
1835 uint32_t prefix = 0;
1836 if (IoExitInfo.n.u1REP)
1837 prefix |= PREFIX_REP;
1838
1839 if (IoExitInfo.n.u1Type == 0)
1840 {
1841 Log2(("IOMInterpretOUTSEx %RGv %x size=%d\n", (RTGCPTR)pCtx->rip, IoExitInfo.n.u16Port, uIOSize));
1842 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitIOStringWrite);
1843 rc = IOMInterpretOUTSEx(pVM, CPUMCTX2CORE(pCtx), IoExitInfo.n.u16Port, prefix, uIOSize);
1844 }
1845 else
1846 {
1847 Log2(("IOMInterpretINSEx %RGv %x size=%d\n", (RTGCPTR)pCtx->rip, IoExitInfo.n.u16Port, uIOSize));
1848 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitIOStringRead);
1849 rc = IOMInterpretINSEx(pVM, CPUMCTX2CORE(pCtx), IoExitInfo.n.u16Port, prefix, uIOSize);
1850 }
1851 }
1852 else
1853 {
1854 /* normal in/out */
1855 Assert(!IoExitInfo.n.u1REP);
1856
1857 if (IoExitInfo.n.u1Type == 0)
1858 {
1859 Log2(("IOMIOPortWrite %RGv %x %x size=%d\n", (RTGCPTR)pCtx->rip, IoExitInfo.n.u16Port, pCtx->eax & uAndVal, uIOSize));
1860 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitIOWrite);
1861 rc = IOMIOPortWrite(pVM, IoExitInfo.n.u16Port, pCtx->eax & uAndVal, uIOSize);
1862 }
1863 else
1864 {
1865 uint32_t u32Val = 0;
1866
1867 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitIORead);
1868 rc = IOMIOPortRead(pVM, IoExitInfo.n.u16Port, &u32Val, uIOSize);
1869 if (IOM_SUCCESS(rc))
1870 {
1871 /* Write back to the EAX register. */
1872 pCtx->eax = (pCtx->eax & ~uAndVal) | (u32Val & uAndVal);
1873 Log2(("IOMIOPortRead %RGv %x %x size=%d\n", (RTGCPTR)pCtx->rip, IoExitInfo.n.u16Port, u32Val & uAndVal, uIOSize));
1874 }
1875 }
1876 }
1877 /*
1878 * Handled the I/O return codes.
1879 * (The unhandled cases end up with rc == VINF_EM_RAW_EMULATE_INSTR.)
1880 */
1881 if (IOM_SUCCESS(rc))
1882 {
1883 /* Update EIP and continue execution. */
1884 pCtx->rip = pVMCB->ctrl.u64ExitInfo2; /* RIP/EIP of the next instruction is saved in EXITINFO2. */
1885 if (RT_LIKELY(rc == VINF_SUCCESS))
1886 {
1887 /* If any IO breakpoints are armed, then we should check if a debug trap needs to be generated. */
1888 if (pCtx->dr[7] & X86_DR7_ENABLED_MASK)
1889 {
1890 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatDRxIOCheck);
1891 for (unsigned i=0;i<4;i++)
1892 {
1893 unsigned uBPLen = g_aIOSize[X86_DR7_GET_LEN(pCtx->dr[7], i)];
1894
1895 if ( (IoExitInfo.n.u16Port >= pCtx->dr[i] && IoExitInfo.n.u16Port < pCtx->dr[i] + uBPLen)
1896 && (pCtx->dr[7] & (X86_DR7_L(i) | X86_DR7_G(i)))
1897 && (pCtx->dr[7] & X86_DR7_RW(i, X86_DR7_RW_IO)) == X86_DR7_RW(i, X86_DR7_RW_IO))
1898 {
1899 SVM_EVENT Event;
1900
1901 Assert(CPUMIsGuestDebugStateActive(pVM));
1902
1903 /* Clear all breakpoint status flags and set the one we just hit. */
1904 pCtx->dr[6] &= ~(X86_DR6_B0|X86_DR6_B1|X86_DR6_B2|X86_DR6_B3);
1905 pCtx->dr[6] |= (uint64_t)RT_BIT(i);
1906
1907 /* Note: AMD64 Architecture Programmer's Manual 13.1:
1908 * Bits 15:13 of the DR6 register is never cleared by the processor and must be cleared by software after
1909 * the contents have been read.
1910 */
1911 pVMCB->guest.u64DR6 = pCtx->dr[6];
1912
1913 /* X86_DR7_GD will be cleared if drx accesses should be trapped inside the guest. */
1914 pCtx->dr[7] &= ~X86_DR7_GD;
1915
1916 /* Paranoia. */
1917 pCtx->dr[7] &= 0xffffffff; /* upper 32 bits reserved */
1918 pCtx->dr[7] &= ~(RT_BIT(11) | RT_BIT(12) | RT_BIT(14) | RT_BIT(15)); /* must be zero */
1919 pCtx->dr[7] |= 0x400; /* must be one */
1920
1921 pVMCB->guest.u64DR7 = pCtx->dr[7];
1922
1923 /* Inject the exception. */
1924 Log(("Inject IO debug trap at %RGv\n", (RTGCPTR)pCtx->rip));
1925
1926 Event.au64[0] = 0;
1927 Event.n.u3Type = SVM_EVENT_EXCEPTION; /* trap or fault */
1928 Event.n.u1Valid = 1;
1929 Event.n.u8Vector = X86_XCPT_DB;
1930
1931 SVMR0InjectEvent(pVM, pVMCB, pCtx, &Event);
1932
1933 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit, x);
1934 goto ResumeExecution;
1935 }
1936 }
1937 }
1938
1939 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit, x);
1940 goto ResumeExecution;
1941 }
1942 Log2(("EM status from IO at %RGv %x size %d: %Rrc\n", (RTGCPTR)pCtx->rip, IoExitInfo.n.u16Port, uIOSize, rc));
1943 break;
1944 }
1945
1946#ifdef VBOX_STRICT
1947 if (rc == VINF_IOM_HC_IOPORT_READ)
1948 Assert(IoExitInfo.n.u1Type != 0);
1949 else if (rc == VINF_IOM_HC_IOPORT_WRITE)
1950 Assert(IoExitInfo.n.u1Type == 0);
1951 else
1952 AssertMsg(RT_FAILURE(rc) || rc == VINF_EM_RAW_EMULATE_INSTR || rc == VINF_EM_RAW_GUEST_TRAP || rc == VINF_TRPM_XCPT_DISPATCHED, ("%Rrc\n", rc));
1953#endif
1954 Log2(("Failed IO at %RGv %x size %d\n", (RTGCPTR)pCtx->rip, IoExitInfo.n.u16Port, uIOSize));
1955 break;
1956 }
1957
1958 case SVM_EXIT_HLT:
1959 /** Check if external interrupts are pending; if so, don't switch back. */
1960 pCtx->rip++; /* skip hlt */
1961 if ( pCtx->eflags.Bits.u1IF
1962 && VM_FF_ISPENDING(pVM, (VM_FF_INTERRUPT_APIC|VM_FF_INTERRUPT_PIC)))
1963 goto ResumeExecution;
1964
1965 rc = VINF_EM_HALT;
1966 break;
1967
1968 case SVM_EXIT_RSM:
1969 case SVM_EXIT_INVLPGA:
1970 case SVM_EXIT_VMRUN:
1971 case SVM_EXIT_VMMCALL:
1972 case SVM_EXIT_VMLOAD:
1973 case SVM_EXIT_VMSAVE:
1974 case SVM_EXIT_STGI:
1975 case SVM_EXIT_CLGI:
1976 case SVM_EXIT_SKINIT:
1977 case SVM_EXIT_RDTSCP:
1978 {
1979 /* Unsupported instructions. */
1980 SVM_EVENT Event;
1981
1982 Event.au64[0] = 0;
1983 Event.n.u3Type = SVM_EVENT_EXCEPTION;
1984 Event.n.u1Valid = 1;
1985 Event.n.u8Vector = X86_XCPT_UD;
1986
1987 Log(("Forced #UD trap at %RGv\n", (RTGCPTR)pCtx->rip));
1988 SVMR0InjectEvent(pVM, pVMCB, pCtx, &Event);
1989
1990 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit, x);
1991 goto ResumeExecution;
1992 }
1993
1994 /* Emulate in ring 3. */
1995 case SVM_EXIT_MSR:
1996 {
1997 uint32_t cbSize;
1998
1999 /* Note: the intel manual claims there's a REX version of RDMSR that's slightly different, so we play safe by completely disassembling the instruction. */
2000 Log(("SVM: %s\n", (pVMCB->ctrl.u64ExitInfo1 == 0) ? "rdmsr" : "wrmsr"));
2001 rc = EMInterpretInstruction(pVM, CPUMCTX2CORE(pCtx), 0, &cbSize);
2002 if (rc == VINF_SUCCESS)
2003 {
2004 /* EIP has been updated already. */
2005
2006 /* Only resume if successful. */
2007 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit, x);
2008 goto ResumeExecution;
2009 }
2010 AssertMsg(rc == VERR_EM_INTERPRETER, ("EMU: %s failed with %Rrc\n", (pVMCB->ctrl.u64ExitInfo1 == 0) ? "rdmsr" : "wrmsr", rc));
2011 break;
2012 }
2013
2014 case SVM_EXIT_MONITOR:
2015 case SVM_EXIT_RDPMC:
2016 case SVM_EXIT_PAUSE:
2017 case SVM_EXIT_MWAIT_UNCOND:
2018 case SVM_EXIT_MWAIT_ARMED:
2019 case SVM_EXIT_TASK_SWITCH: /* can change CR3; emulate */
2020 rc = VINF_EM_RAW_EXCEPTION_PRIVILEGED;
2021 break;
2022
2023 case SVM_EXIT_SHUTDOWN:
2024 rc = VINF_EM_RESET; /* Triple fault equals a reset. */
2025 break;
2026
2027 case SVM_EXIT_IDTR_READ:
2028 case SVM_EXIT_GDTR_READ:
2029 case SVM_EXIT_LDTR_READ:
2030 case SVM_EXIT_TR_READ:
2031 case SVM_EXIT_IDTR_WRITE:
2032 case SVM_EXIT_GDTR_WRITE:
2033 case SVM_EXIT_LDTR_WRITE:
2034 case SVM_EXIT_TR_WRITE:
2035 case SVM_EXIT_CR0_SEL_WRITE:
2036 default:
2037 /* Unexpected exit codes. */
2038 rc = VERR_EM_INTERNAL_ERROR;
2039 AssertMsgFailed(("Unexpected exit code %x\n", exitCode)); /* Can't happen. */
2040 break;
2041 }
2042
2043end:
2044
2045 /* Signal changes for the recompiler. */
2046 CPUMSetChangedFlags(pVM, CPUM_CHANGED_SYSENTER_MSR | CPUM_CHANGED_LDTR | CPUM_CHANGED_GDTR | CPUM_CHANGED_IDTR | CPUM_CHANGED_TR | CPUM_CHANGED_HIDDEN_SEL_REGS);
2047
2048 /* If we executed vmrun and an external irq was pending, then we don't have to do a full sync the next time. */
2049 if (exitCode == SVM_EXIT_INTR)
2050 {
2051 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatPendingHostIrq);
2052 /* On the next entry we'll only sync the host context. */
2053 pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_HOST_CONTEXT;
2054 }
2055 else
2056 {
2057 /* On the next entry we'll sync everything. */
2058 /** @todo we can do better than this */
2059 /* Not in the VINF_PGM_CHANGE_MODE though! */
2060 pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_ALL;
2061 }
2062
2063 /* translate into a less severe return code */
2064 if (rc == VERR_EM_INTERPRETER)
2065 rc = VINF_EM_RAW_EMULATE_INSTR;
2066
2067 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit, x);
2068 return rc;
2069}
2070
2071/**
2072 * Enters the AMD-V session
2073 *
2074 * @returns VBox status code.
2075 * @param pVM The VM to operate on.
2076 * @param pVCpu The VM CPU to operate on.
2077 * @param pCpu CPU info struct
2078 */
2079VMMR0DECL(int) SVMR0Enter(PVM pVM, PVMCPU pVCpu, PHWACCM_CPUINFO pCpu)
2080{
2081 Assert(pVM->hwaccm.s.svm.fSupported);
2082
2083 LogFlow(("SVMR0Enter cpu%d last=%d asid=%d\n", pCpu->idCpu, pVCpu->hwaccm.s.idLastCpu, pVCpu->hwaccm.s.uCurrentASID));
2084 pVCpu->hwaccm.s.fResumeVM = false;
2085
2086 /* Force to reload LDTR, so we'll execute VMLoad to load additional guest state. */
2087 pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_GUEST_LDTR;
2088
2089 return VINF_SUCCESS;
2090}
2091
2092
2093/**
2094 * Leaves the AMD-V session
2095 *
2096 * @returns VBox status code.
2097 * @param pVM The VM to operate on.
2098 * @param pVCpu The VM CPU to operate on.
2099 * @param pCtx CPU context
2100 */
2101VMMR0DECL(int) SVMR0Leave(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
2102{
2103 SVM_VMCB *pVMCB = (SVM_VMCB *)pVCpu->hwaccm.s.svm.pVMCB;
2104
2105 Assert(pVM->hwaccm.s.svm.fSupported);
2106
2107 /* Save the guest debug state if necessary. */
2108 if (CPUMIsGuestDebugStateActive(pVM))
2109 {
2110 CPUMR0SaveGuestDebugState(pVM, pVCpu, pCtx, false /* skip DR6 */);
2111
2112 /* Intercept all DRx reads and writes again. Changed later on. */
2113 pVMCB->ctrl.u16InterceptRdDRx = 0xFFFF;
2114 pVMCB->ctrl.u16InterceptWrDRx = 0xFFFF;
2115
2116 /* Resync the debug registers the next time. */
2117 pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_GUEST_DEBUG;
2118 }
2119 else
2120 Assert(pVMCB->ctrl.u16InterceptRdDRx == 0xFFFF && pVMCB->ctrl.u16InterceptWrDRx == 0xFFFF);
2121
2122 return VINF_SUCCESS;
2123}
2124
2125
2126static int svmR0InterpretInvlPg(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, uint32_t uASID)
2127{
2128 OP_PARAMVAL param1;
2129 RTGCPTR addr;
2130
2131 int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param1, &param1, PARAM_SOURCE);
2132 if(RT_FAILURE(rc))
2133 return VERR_EM_INTERPRETER;
2134
2135 switch(param1.type)
2136 {
2137 case PARMTYPE_IMMEDIATE:
2138 case PARMTYPE_ADDRESS:
2139 if(!(param1.flags & (PARAM_VAL32|PARAM_VAL64)))
2140 return VERR_EM_INTERPRETER;
2141 addr = param1.val.val64;
2142 break;
2143
2144 default:
2145 return VERR_EM_INTERPRETER;
2146 }
2147
2148 /** @todo is addr always a flat linear address or ds based
2149 * (in absence of segment override prefixes)????
2150 */
2151 rc = PGMInvalidatePage(pVM, addr);
2152 if (RT_SUCCESS(rc))
2153 {
2154 /* Manually invalidate the page for the VM's TLB. */
2155 Log(("SVMInvlpgA %RGv ASID=%d\n", addr, uASID));
2156 SVMInvlpgA(addr, uASID);
2157 return VINF_SUCCESS;
2158 }
2159 Assert(rc == VERR_REM_FLUSHED_PAGES_OVERFLOW);
2160 return rc;
2161}
2162
2163/**
2164 * Interprets INVLPG
2165 *
2166 * @returns VBox status code.
2167 * @retval VINF_* Scheduling instructions.
2168 * @retval VERR_EM_INTERPRETER Something we can't cope with.
2169 * @retval VERR_* Fatal errors.
2170 *
2171 * @param pVM The VM handle.
2172 * @param pRegFrame The register frame.
2173 * @param ASID Tagged TLB id for the guest
2174 *
2175 * Updates the EIP if an instruction was executed successfully.
2176 */
2177static int SVMR0InterpretInvpg(PVM pVM, PCPUMCTXCORE pRegFrame, uint32_t uASID)
2178{
2179 /*
2180 * Only allow 32 & 64 bits code.
2181 */
2182 DISCPUMODE enmMode = SELMGetCpuModeFromSelector(pVM, pRegFrame->eflags, pRegFrame->cs, &pRegFrame->csHid);
2183 if (enmMode != CPUMODE_16BIT)
2184 {
2185 RTGCPTR pbCode;
2186 int rc = SELMValidateAndConvertCSAddr(pVM, pRegFrame->eflags, pRegFrame->ss, pRegFrame->cs, &pRegFrame->csHid, (RTGCPTR)pRegFrame->rip, &pbCode);
2187 if (RT_SUCCESS(rc))
2188 {
2189 uint32_t cbOp;
2190 DISCPUSTATE Cpu;
2191
2192 Cpu.mode = enmMode;
2193 rc = EMInterpretDisasOneEx(pVM, pbCode, pRegFrame, &Cpu, &cbOp);
2194 Assert(RT_FAILURE(rc) || Cpu.pCurInstr->opcode == OP_INVLPG);
2195 if (RT_SUCCESS(rc) && Cpu.pCurInstr->opcode == OP_INVLPG)
2196 {
2197 Assert(cbOp == Cpu.opsize);
2198 rc = svmR0InterpretInvlPg(pVM, &Cpu, pRegFrame, uASID);
2199 if (RT_SUCCESS(rc))
2200 {
2201 pRegFrame->rip += cbOp; /* Move on to the next instruction. */
2202 }
2203 return rc;
2204 }
2205 }
2206 }
2207 return VERR_EM_INTERPRETER;
2208}
2209
2210
2211/**
2212 * Invalidates a guest page
2213 *
2214 * @returns VBox status code.
2215 * @param pVM The VM to operate on.
2216 * @param pVCpu The VM CPU to operate on.
2217 * @param GCVirt Page to invalidate
2218 */
2219VMMR0DECL(int) SVMR0InvalidatePage(PVM pVM, PVMCPU pVCpu, RTGCPTR GCVirt)
2220{
2221 bool fFlushPending = pVM->hwaccm.s.svm.fAlwaysFlushTLB | pVCpu->hwaccm.s.fForceTLBFlush;
2222
2223 /* Skip it if a TLB flush is already pending. */
2224 if (!fFlushPending)
2225 {
2226 SVM_VMCB *pVMCB;
2227
2228 Log2(("SVMR0InvalidatePage %RGv\n", GCVirt));
2229 AssertReturn(pVM, VERR_INVALID_PARAMETER);
2230 Assert(pVM->hwaccm.s.svm.fSupported);
2231
2232 /* @todo SMP */
2233 pVMCB = (SVM_VMCB *)pVM->aCpus[0].hwaccm.s.svm.pVMCB;
2234 AssertMsgReturn(pVMCB, ("Invalid pVMCB\n"), VERR_EM_INTERNAL_ERROR);
2235
2236 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatFlushPageManual);
2237 SVMInvlpgA(GCVirt, pVMCB->ctrl.TLBCtrl.n.u32ASID);
2238 }
2239 return VINF_SUCCESS;
2240}
2241
2242
2243/**
2244 * Invalidates a guest page by physical address
2245 *
2246 * @returns VBox status code.
2247 * @param pVM The VM to operate on.
2248 * @param pVCpu The VM CPU to operate on.
2249 * @param GCPhys Page to invalidate
2250 */
2251VMMR0DECL(int) SVMR0InvalidatePhysPage(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys)
2252{
2253 Assert(pVM->hwaccm.s.fNestedPaging);
2254 /* invlpga only invalidates TLB entries for guest virtual addresses; we have no choice but to force a TLB flush here. */
2255 pVCpu->hwaccm.s.fForceTLBFlush = true;
2256 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatFlushTLBInvlpga);
2257 return VINF_SUCCESS;
2258}
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette