VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR0/HWSVMR0.cpp@ 15141

Last change on this file since 15141 was 15141, checked in by vboxsync, 16 years ago

Cleaned up

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 92.8 KB
Line 
1/* $Id: HWSVMR0.cpp 15141 2008-12-09 09:19:20Z vboxsync $ */
2/** @file
3 * HWACCM SVM - Host Context Ring 0.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/*******************************************************************************
24* Header Files *
25*******************************************************************************/
26#define LOG_GROUP LOG_GROUP_HWACCM
27#include <VBox/hwaccm.h>
28#include "HWACCMInternal.h"
29#include <VBox/vm.h>
30#include <VBox/x86.h>
31#include <VBox/hwacc_svm.h>
32#include <VBox/pgm.h>
33#include <VBox/pdm.h>
34#include <VBox/err.h>
35#include <VBox/log.h>
36#include <VBox/selm.h>
37#include <VBox/iom.h>
38#include <VBox/dis.h>
39#include <VBox/dbgf.h>
40#include <VBox/disopcode.h>
41#include <iprt/param.h>
42#include <iprt/assert.h>
43#include <iprt/asm.h>
44#include <iprt/cpuset.h>
45#include <iprt/mp.h>
46#include "HWSVMR0.h"
47
48/*******************************************************************************
49* Internal Functions *
50*******************************************************************************/
51static int SVMR0InterpretInvpg(PVM pVM, PCPUMCTXCORE pRegFrame, uint32_t uASID);
52
53/*******************************************************************************
54* Global Variables *
55*******************************************************************************/
56/* IO operation lookup arrays. */
57static uint32_t const g_aIOSize[4] = {1, 2, 0, 4};
58
59/**
60 * Sets up and activates AMD-V on the current CPU
61 *
62 * @returns VBox status code.
63 * @param pCpu CPU info struct
64 * @param pVM The VM to operate on. (can be NULL after a resume!!)
65 * @param pvPageCpu Pointer to the global cpu page
66 * @param pPageCpuPhys Physical address of the global cpu page
67 */
68VMMR0DECL(int) SVMR0EnableCpu(PHWACCM_CPUINFO pCpu, PVM pVM, void *pvPageCpu, RTHCPHYS pPageCpuPhys)
69{
70 AssertReturn(pPageCpuPhys, VERR_INVALID_PARAMETER);
71 AssertReturn(pvPageCpu, VERR_INVALID_PARAMETER);
72
73 /* We must turn on AMD-V and setup the host state physical address, as those MSRs are per-cpu/core. */
74
75#ifdef LOG_ENABLED
76 SUPR0Printf("SVMR0EnableCpu cpu %d page (%x) %x\n", pCpu->idCpu, pvPageCpu, (uint32_t)pPageCpuPhys);
77#endif
78
79 /* Turn on AMD-V in the EFER MSR. */
80 uint64_t val = ASMRdMsr(MSR_K6_EFER);
81 if (!(val & MSR_K6_EFER_SVME))
82 ASMWrMsr(MSR_K6_EFER, val | MSR_K6_EFER_SVME);
83
84 /* Write the physical page address where the CPU will store the host state while executing the VM. */
85 ASMWrMsr(MSR_K8_VM_HSAVE_PA, pPageCpuPhys);
86
87 return VINF_SUCCESS;
88}
89
90/**
91 * Deactivates AMD-V on the current CPU
92 *
93 * @returns VBox status code.
94 * @param pCpu CPU info struct
95 * @param pvPageCpu Pointer to the global cpu page
96 * @param pPageCpuPhys Physical address of the global cpu page
97 */
98VMMR0DECL(int) SVMR0DisableCpu(PHWACCM_CPUINFO pCpu, void *pvPageCpu, RTHCPHYS pPageCpuPhys)
99{
100 AssertReturn(pPageCpuPhys, VERR_INVALID_PARAMETER);
101 AssertReturn(pvPageCpu, VERR_INVALID_PARAMETER);
102
103#ifdef LOG_ENABLED
104 SUPR0Printf("SVMR0DisableCpu cpu %d\n", pCpu->idCpu);
105#endif
106
107 /* Turn off AMD-V in the EFER MSR. */
108 uint64_t val = ASMRdMsr(MSR_K6_EFER);
109 ASMWrMsr(MSR_K6_EFER, val & ~MSR_K6_EFER_SVME);
110
111 /* Invalidate host state physical address. */
112 ASMWrMsr(MSR_K8_VM_HSAVE_PA, 0);
113
114 return VINF_SUCCESS;
115}
116
117/**
118 * Does Ring-0 per VM AMD-V init.
119 *
120 * @returns VBox status code.
121 * @param pVM The VM to operate on.
122 */
123VMMR0DECL(int) SVMR0InitVM(PVM pVM)
124{
125 int rc;
126
127 pVM->hwaccm.s.svm.pMemObjVMCBHost = NIL_RTR0MEMOBJ;
128 pVM->hwaccm.s.svm.pMemObjIOBitmap = NIL_RTR0MEMOBJ;
129 pVM->hwaccm.s.svm.pMemObjMSRBitmap = NIL_RTR0MEMOBJ;
130
131 /* Allocate one page for the host context */
132 rc = RTR0MemObjAllocCont(&pVM->hwaccm.s.svm.pMemObjVMCBHost, 1 << PAGE_SHIFT, true /* executable R0 mapping */);
133 if (RT_FAILURE(rc))
134 return rc;
135
136 pVM->hwaccm.s.svm.pVMCBHost = RTR0MemObjAddress(pVM->hwaccm.s.svm.pMemObjVMCBHost);
137 pVM->hwaccm.s.svm.pVMCBHostPhys = RTR0MemObjGetPagePhysAddr(pVM->hwaccm.s.svm.pMemObjVMCBHost, 0);
138 ASMMemZeroPage(pVM->hwaccm.s.svm.pVMCBHost);
139
140 /* Allocate 12 KB for the IO bitmap (doesn't seem to be a way to convince SVM not to use it) */
141 rc = RTR0MemObjAllocCont(&pVM->hwaccm.s.svm.pMemObjIOBitmap, 3 << PAGE_SHIFT, true /* executable R0 mapping */);
142 if (RT_FAILURE(rc))
143 return rc;
144
145 pVM->hwaccm.s.svm.pIOBitmap = RTR0MemObjAddress(pVM->hwaccm.s.svm.pMemObjIOBitmap);
146 pVM->hwaccm.s.svm.pIOBitmapPhys = RTR0MemObjGetPagePhysAddr(pVM->hwaccm.s.svm.pMemObjIOBitmap, 0);
147 /* Set all bits to intercept all IO accesses. */
148 ASMMemFill32(pVM->hwaccm.s.svm.pIOBitmap, PAGE_SIZE*3, 0xffffffff);
149
150 /* Allocate 8 KB for the MSR bitmap (doesn't seem to be a way to convince SVM not to use it) */
151 rc = RTR0MemObjAllocCont(&pVM->hwaccm.s.svm.pMemObjMSRBitmap, 2 << PAGE_SHIFT, true /* executable R0 mapping */);
152 if (RT_FAILURE(rc))
153 return rc;
154
155 pVM->hwaccm.s.svm.pMSRBitmap = RTR0MemObjAddress(pVM->hwaccm.s.svm.pMemObjMSRBitmap);
156 pVM->hwaccm.s.svm.pMSRBitmapPhys = RTR0MemObjGetPagePhysAddr(pVM->hwaccm.s.svm.pMemObjMSRBitmap, 0);
157 /* Set all bits to intercept all MSR accesses. */
158 ASMMemFill32(pVM->hwaccm.s.svm.pMSRBitmap, PAGE_SIZE*2, 0xffffffff);
159
160 /* Erratum 170 which requires a forced TLB flush for each world switch:
161 * See http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/33610.pdf
162 *
163 * All BH-G1/2 and DH-G1/2 models include a fix:
164 * Athlon X2: 0x6b 1/2
165 * 0x68 1/2
166 * Athlon 64: 0x7f 1
167 * 0x6f 2
168 * Sempron: 0x7f 1/2
169 * 0x6f 2
170 * 0x6c 2
171 * 0x7c 2
172 * Turion 64: 0x68 2
173 *
174 */
175 uint32_t u32Dummy;
176 uint32_t u32Version, u32Family, u32Model, u32Stepping, u32BaseFamily;
177 ASMCpuId(1, &u32Version, &u32Dummy, &u32Dummy, &u32Dummy);
178 u32BaseFamily= (u32Version >> 8) & 0xf;
179 u32Family = u32BaseFamily + (u32BaseFamily == 0xf ? ((u32Version >> 20) & 0x7f) : 0);
180 u32Model = ((u32Version >> 4) & 0xf);
181 u32Model = u32Model | ((u32BaseFamily == 0xf ? (u32Version >> 16) & 0x0f : 0) << 4);
182 u32Stepping = u32Version & 0xf;
183 if ( u32Family == 0xf
184 && !((u32Model == 0x68 || u32Model == 0x6b || u32Model == 0x7f) && u32Stepping >= 1)
185 && !((u32Model == 0x6f || u32Model == 0x6c || u32Model == 0x7c) && u32Stepping >= 2))
186 {
187 Log(("SVMR0InitVM: AMD cpu with erratum 170 family %x model %x stepping %x\n", u32Family, u32Model, u32Stepping));
188 pVM->hwaccm.s.svm.fAlwaysFlushTLB = true;
189 }
190
191 /* Allocate VMCBs for all guest CPUs. */
192 for (unsigned i=0;i<pVM->cCPUs;i++)
193 {
194 pVM->aCpus[i].hwaccm.s.svm.pMemObjVMCB = NIL_RTR0MEMOBJ;
195
196 /* Allocate one page for the VM control block (VMCB). */
197 rc = RTR0MemObjAllocCont(&pVM->aCpus[i].hwaccm.s.svm.pMemObjVMCB, 1 << PAGE_SHIFT, true /* executable R0 mapping */);
198 if (RT_FAILURE(rc))
199 return rc;
200
201 pVM->aCpus[i].hwaccm.s.svm.pVMCB = RTR0MemObjAddress(pVM->aCpus[i].hwaccm.s.svm.pMemObjVMCB);
202 pVM->aCpus[i].hwaccm.s.svm.pVMCBPhys = RTR0MemObjGetPagePhysAddr(pVM->aCpus[i].hwaccm.s.svm.pMemObjVMCB, 0);
203 ASMMemZeroPage(pVM->aCpus[i].hwaccm.s.svm.pVMCB);
204 }
205
206 return VINF_SUCCESS;
207}
208
209/**
210 * Does Ring-0 per VM AMD-V termination.
211 *
212 * @returns VBox status code.
213 * @param pVM The VM to operate on.
214 */
215VMMR0DECL(int) SVMR0TermVM(PVM pVM)
216{
217 for (unsigned i=0;i<pVM->cCPUs;i++)
218 {
219 if (pVM->aCpus[i].hwaccm.s.svm.pMemObjVMCB != NIL_RTR0MEMOBJ)
220 {
221 RTR0MemObjFree(pVM->aCpus[i].hwaccm.s.svm.pMemObjVMCB, false);
222 pVM->aCpus[i].hwaccm.s.svm.pVMCB = 0;
223 pVM->aCpus[i].hwaccm.s.svm.pVMCBPhys = 0;
224 pVM->aCpus[i].hwaccm.s.svm.pMemObjVMCB = NIL_RTR0MEMOBJ;
225 }
226 }
227 if (pVM->hwaccm.s.svm.pMemObjVMCBHost != NIL_RTR0MEMOBJ)
228 {
229 RTR0MemObjFree(pVM->hwaccm.s.svm.pMemObjVMCBHost, false);
230 pVM->hwaccm.s.svm.pVMCBHost = 0;
231 pVM->hwaccm.s.svm.pVMCBHostPhys = 0;
232 pVM->hwaccm.s.svm.pMemObjVMCBHost = NIL_RTR0MEMOBJ;
233 }
234 if (pVM->hwaccm.s.svm.pMemObjIOBitmap != NIL_RTR0MEMOBJ)
235 {
236 RTR0MemObjFree(pVM->hwaccm.s.svm.pMemObjIOBitmap, false);
237 pVM->hwaccm.s.svm.pIOBitmap = 0;
238 pVM->hwaccm.s.svm.pIOBitmapPhys = 0;
239 pVM->hwaccm.s.svm.pMemObjIOBitmap = NIL_RTR0MEMOBJ;
240 }
241 if (pVM->hwaccm.s.svm.pMemObjMSRBitmap != NIL_RTR0MEMOBJ)
242 {
243 RTR0MemObjFree(pVM->hwaccm.s.svm.pMemObjMSRBitmap, false);
244 pVM->hwaccm.s.svm.pMSRBitmap = 0;
245 pVM->hwaccm.s.svm.pMSRBitmapPhys = 0;
246 pVM->hwaccm.s.svm.pMemObjMSRBitmap = NIL_RTR0MEMOBJ;
247 }
248 return VINF_SUCCESS;
249}
250
251/**
252 * Sets up AMD-V for the specified VM
253 *
254 * @returns VBox status code.
255 * @param pVM The VM to operate on.
256 */
257VMMR0DECL(int) SVMR0SetupVM(PVM pVM)
258{
259 int rc = VINF_SUCCESS;
260 SVM_VMCB *pVMCB;
261
262 AssertReturn(pVM, VERR_INVALID_PARAMETER);
263
264 Assert(pVM->hwaccm.s.svm.fSupported);
265
266 for (unsigned i=0;i<pVM->cCPUs;i++)
267 {
268 pVMCB = (SVM_VMCB *)pVM->aCpus[i].hwaccm.s.svm.pVMCB;
269 AssertMsgReturn(pVMCB, ("Invalid pVMCB\n"), VERR_EM_INTERNAL_ERROR);
270
271 /* Program the control fields. Most of them never have to be changed again. */
272 /* CR0/3/4 reads must be intercepted, our shadow values are not necessarily the same as the guest's. */
273 /* Note: CR0 & CR4 can be safely read when guest and shadow copies are identical. */
274 if (!pVM->hwaccm.s.fNestedPaging)
275 pVMCB->ctrl.u16InterceptRdCRx = RT_BIT(0) | RT_BIT(3) | RT_BIT(4);
276 else
277 pVMCB->ctrl.u16InterceptRdCRx = RT_BIT(0) | RT_BIT(4);
278
279 /*
280 * CR0/3/4 writes must be intercepted for obvious reasons.
281 */
282 if (!pVM->hwaccm.s.fNestedPaging)
283 pVMCB->ctrl.u16InterceptWrCRx = RT_BIT(0) | RT_BIT(3) | RT_BIT(4);
284 else
285 pVMCB->ctrl.u16InterceptWrCRx = RT_BIT(0) | RT_BIT(4) | RT_BIT(8);
286
287 /* Intercept all DRx reads and writes by default. Changed later on. */
288 pVMCB->ctrl.u16InterceptRdDRx = 0xFFFF;
289 pVMCB->ctrl.u16InterceptWrDRx = 0xFFFF;
290
291 /* Currently we don't care about DRx reads or writes. DRx registers are trashed.
292 * All breakpoints are automatically cleared when the VM exits.
293 */
294
295 pVMCB->ctrl.u32InterceptException = HWACCM_SVM_TRAP_MASK;
296#ifndef DEBUG
297 if (pVM->hwaccm.s.fNestedPaging)
298 pVMCB->ctrl.u32InterceptException &= ~RT_BIT(X86_XCPT_PF); /* no longer need to intercept #PF. */
299#endif
300
301 pVMCB->ctrl.u32InterceptCtrl1 = SVM_CTRL1_INTERCEPT_INTR
302 | SVM_CTRL1_INTERCEPT_VINTR
303 | SVM_CTRL1_INTERCEPT_NMI
304 | SVM_CTRL1_INTERCEPT_SMI
305 | SVM_CTRL1_INTERCEPT_INIT
306 | SVM_CTRL1_INTERCEPT_RDPMC
307 | SVM_CTRL1_INTERCEPT_CPUID
308 | SVM_CTRL1_INTERCEPT_RSM
309 | SVM_CTRL1_INTERCEPT_HLT
310 | SVM_CTRL1_INTERCEPT_INOUT_BITMAP
311 | SVM_CTRL1_INTERCEPT_MSR_SHADOW
312 | SVM_CTRL1_INTERCEPT_INVLPG
313 | SVM_CTRL1_INTERCEPT_INVLPGA /* AMD only */
314 | SVM_CTRL1_INTERCEPT_TASK_SWITCH
315 | SVM_CTRL1_INTERCEPT_SHUTDOWN /* fatal */
316 | SVM_CTRL1_INTERCEPT_FERR_FREEZE; /* Legacy FPU FERR handling. */
317 ;
318 /* With nested paging we don't care about invlpg anymore. */
319 if (pVM->hwaccm.s.fNestedPaging)
320 pVMCB->ctrl.u32InterceptCtrl1 &= ~SVM_CTRL1_INTERCEPT_INVLPG;
321
322 pVMCB->ctrl.u32InterceptCtrl2 = SVM_CTRL2_INTERCEPT_VMRUN /* required */
323 | SVM_CTRL2_INTERCEPT_VMMCALL
324 | SVM_CTRL2_INTERCEPT_VMLOAD
325 | SVM_CTRL2_INTERCEPT_VMSAVE
326 | SVM_CTRL2_INTERCEPT_STGI
327 | SVM_CTRL2_INTERCEPT_CLGI
328 | SVM_CTRL2_INTERCEPT_SKINIT
329 | SVM_CTRL2_INTERCEPT_WBINVD
330 | SVM_CTRL2_INTERCEPT_MWAIT_UNCOND; /* don't execute mwait or else we'll idle inside the guest (host thinks the cpu load is high) */
331 ;
332 Log(("pVMCB->ctrl.u32InterceptException = %x\n", pVMCB->ctrl.u32InterceptException));
333 Log(("pVMCB->ctrl.u32InterceptCtrl1 = %x\n", pVMCB->ctrl.u32InterceptCtrl1));
334 Log(("pVMCB->ctrl.u32InterceptCtrl2 = %x\n", pVMCB->ctrl.u32InterceptCtrl2));
335
336 /* Virtualize masking of INTR interrupts. (reads/writes from/to CR8 go to the V_TPR register) */
337 pVMCB->ctrl.IntCtrl.n.u1VIrqMasking = 1;
338 /* Ignore the priority in the TPR; just deliver it when we tell it to. */
339 pVMCB->ctrl.IntCtrl.n.u1IgnoreTPR = 1;
340
341 /* Set IO and MSR bitmap addresses. */
342 pVMCB->ctrl.u64IOPMPhysAddr = pVM->hwaccm.s.svm.pIOBitmapPhys;
343 pVMCB->ctrl.u64MSRPMPhysAddr = pVM->hwaccm.s.svm.pMSRBitmapPhys;
344
345 /* No LBR virtualization. */
346 pVMCB->ctrl.u64LBRVirt = 0;
347
348 /** The ASID must start at 1; the host uses 0. */
349 pVMCB->ctrl.TLBCtrl.n.u32ASID = 1;
350
351 /** Setup the PAT msr (nested paging only) */
352 pVMCB->guest.u64GPAT = 0x0007040600070406ULL;
353 }
354 return rc;
355}
356
357
358/**
359 * Injects an event (trap or external interrupt)
360 *
361 * @param pVM The VM to operate on.
362 * @param pVMCB SVM control block
363 * @param pCtx CPU Context
364 * @param pIntInfo SVM interrupt info
365 */
366inline void SVMR0InjectEvent(PVM pVM, SVM_VMCB *pVMCB, CPUMCTX *pCtx, SVM_EVENT* pEvent)
367{
368#ifdef VBOX_STRICT
369 if (pEvent->n.u8Vector == 0xE)
370 Log(("SVM: Inject int %d at %RGv error code=%02x CR2=%RGv intInfo=%08x\n", pEvent->n.u8Vector, (RTGCPTR)pCtx->rip, pEvent->n.u32ErrorCode, (RTGCPTR)pCtx->cr2, pEvent->au64[0]));
371 else
372 if (pEvent->n.u8Vector < 0x20)
373 Log(("SVM: Inject int %d at %RGv error code=%08x\n", pEvent->n.u8Vector, (RTGCPTR)pCtx->rip, pEvent->n.u32ErrorCode));
374 else
375 {
376 Log(("INJ-EI: %x at %RGv\n", pEvent->n.u8Vector, (RTGCPTR)pCtx->rip));
377 Assert(!VM_FF_ISSET(pVM, VM_FF_INHIBIT_INTERRUPTS));
378 Assert(pCtx->eflags.u32 & X86_EFL_IF);
379 }
380#endif
381
382 /* Set event injection state. */
383 pVMCB->ctrl.EventInject.au64[0] = pEvent->au64[0];
384}
385
386
387/**
388 * Checks for pending guest interrupts and injects them
389 *
390 * @returns VBox status code.
391 * @param pVM The VM to operate on.
392 * @param pVCpu The VM CPU to operate on.
393 * @param pVMCB SVM control block
394 * @param pCtx CPU Context
395 */
396static int SVMR0CheckPendingInterrupt(PVM pVM, PVMCPU pVCpu, SVM_VMCB *pVMCB, CPUMCTX *pCtx)
397{
398 int rc;
399
400 /* Dispatch any pending interrupts. (injected before, but a VM exit occurred prematurely) */
401 if (pVCpu->hwaccm.s.Event.fPending)
402 {
403 SVM_EVENT Event;
404
405 Log(("Reinjecting event %08x %08x at %RGv\n", pVCpu->hwaccm.s.Event.intInfo, pVCpu->hwaccm.s.Event.errCode, (RTGCPTR)pCtx->rip));
406 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatIntReinject);
407 Event.au64[0] = pVCpu->hwaccm.s.Event.intInfo;
408 SVMR0InjectEvent(pVM, pVMCB, pCtx, &Event);
409
410 pVCpu->hwaccm.s.Event.fPending = false;
411 return VINF_SUCCESS;
412 }
413
414 if (pVM->hwaccm.s.fInjectNMI)
415 {
416 SVM_EVENT Event;
417
418 Event.n.u8Vector = X86_XCPT_NMI;
419 Event.n.u1Valid = 1;
420 Event.n.u32ErrorCode = 0;
421 Event.n.u3Type = SVM_EVENT_NMI;
422
423 SVMR0InjectEvent(pVM, pVMCB, pCtx, &Event);
424 pVM->hwaccm.s.fInjectNMI = false;
425 return VINF_SUCCESS;
426 }
427
428 /* When external interrupts are pending, we should exit the VM when IF is set. */
429 if ( !TRPMHasTrap(pVM)
430 && VM_FF_ISPENDING(pVM, (VM_FF_INTERRUPT_APIC|VM_FF_INTERRUPT_PIC)))
431 {
432 if ( !(pCtx->eflags.u32 & X86_EFL_IF)
433 || VM_FF_ISSET(pVM, VM_FF_INHIBIT_INTERRUPTS))
434 {
435 if (!pVMCB->ctrl.IntCtrl.n.u1VIrqValid)
436 {
437 if (!VM_FF_ISSET(pVM, VM_FF_INHIBIT_INTERRUPTS))
438 LogFlow(("Enable irq window exit!\n"));
439 else
440 Log(("Pending interrupt blocked at %RGv by VM_FF_INHIBIT_INTERRUPTS -> irq window exit\n", (RTGCPTR)pCtx->rip));
441
442 /** @todo use virtual interrupt method to inject a pending irq; dispatched as soon as guest.IF is set. */
443 pVMCB->ctrl.u32InterceptCtrl1 |= SVM_CTRL1_INTERCEPT_VINTR;
444 pVMCB->ctrl.IntCtrl.n.u1VIrqValid = 1;
445 pVMCB->ctrl.IntCtrl.n.u8VIrqVector = 0; /* don't care */
446 }
447 }
448 else
449 {
450 uint8_t u8Interrupt;
451
452 rc = PDMGetInterrupt(pVM, &u8Interrupt);
453 Log(("Dispatch interrupt: u8Interrupt=%x (%d) rc=%Rrc\n", u8Interrupt, u8Interrupt, rc));
454 if (RT_SUCCESS(rc))
455 {
456 rc = TRPMAssertTrap(pVM, u8Interrupt, TRPM_HARDWARE_INT);
457 AssertRC(rc);
458 }
459 else
460 {
461 /* Can only happen in rare cases where a pending interrupt is cleared behind our back */
462 Assert(!VM_FF_ISPENDING(pVM, (VM_FF_INTERRUPT_APIC|VM_FF_INTERRUPT_PIC)));
463 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatSwitchGuestIrq);
464 /* Just continue */
465 }
466 }
467 }
468
469#ifdef VBOX_STRICT
470 if (TRPMHasTrap(pVM))
471 {
472 uint8_t u8Vector;
473 rc = TRPMQueryTrapAll(pVM, &u8Vector, 0, 0, 0);
474 AssertRC(rc);
475 }
476#endif
477
478 if ( pCtx->eflags.u32 & X86_EFL_IF
479 && (!VM_FF_ISSET(pVM, VM_FF_INHIBIT_INTERRUPTS))
480 && TRPMHasTrap(pVM)
481 )
482 {
483 uint8_t u8Vector;
484 int rc;
485 TRPMEVENT enmType;
486 SVM_EVENT Event;
487 RTGCUINT u32ErrorCode;
488
489 Event.au64[0] = 0;
490
491 /* If a new event is pending, then dispatch it now. */
492 rc = TRPMQueryTrapAll(pVM, &u8Vector, &enmType, &u32ErrorCode, 0);
493 AssertRC(rc);
494 Assert(pCtx->eflags.Bits.u1IF == 1 || enmType == TRPM_TRAP);
495 Assert(enmType != TRPM_SOFTWARE_INT);
496
497 /* Clear the pending trap. */
498 rc = TRPMResetTrap(pVM);
499 AssertRC(rc);
500
501 Event.n.u8Vector = u8Vector;
502 Event.n.u1Valid = 1;
503 Event.n.u32ErrorCode = u32ErrorCode;
504
505 if (enmType == TRPM_TRAP)
506 {
507 switch (u8Vector) {
508 case 8:
509 case 10:
510 case 11:
511 case 12:
512 case 13:
513 case 14:
514 case 17:
515 /* Valid error codes. */
516 Event.n.u1ErrorCodeValid = 1;
517 break;
518 default:
519 break;
520 }
521 if (u8Vector == X86_XCPT_NMI)
522 Event.n.u3Type = SVM_EVENT_NMI;
523 else
524 Event.n.u3Type = SVM_EVENT_EXCEPTION;
525 }
526 else
527 Event.n.u3Type = SVM_EVENT_EXTERNAL_IRQ;
528
529 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatIntInject);
530 SVMR0InjectEvent(pVM, pVMCB, pCtx, &Event);
531 } /* if (interrupts can be dispatched) */
532
533 return VINF_SUCCESS;
534}
535
536/**
537 * Save the host state
538 *
539 * @returns VBox status code.
540 * @param pVM The VM to operate on.
541 * @param pVCpu The VM CPU to operate on.
542 */
543VMMR0DECL(int) SVMR0SaveHostState(PVM pVM, PVMCPU pVCpu)
544{
545 NOREF(pVM);
546 NOREF(pVCpu);
547 /* Nothing to do here. */
548 return VINF_SUCCESS;
549}
550
551/**
552 * Loads the guest state
553 *
554 * NOTE: Don't do anything here that can cause a jump back to ring 3!!!!!
555 *
556 * @returns VBox status code.
557 * @param pVM The VM to operate on.
558 * @param pVCpu The VM CPU to operate on.
559 * @param pCtx Guest context
560 */
561VMMR0DECL(int) SVMR0LoadGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
562{
563 RTGCUINTPTR val;
564 SVM_VMCB *pVMCB;
565
566 if (pVM == NULL)
567 return VERR_INVALID_PARAMETER;
568
569 /* Setup AMD SVM. */
570 Assert(pVM->hwaccm.s.svm.fSupported);
571
572 pVMCB = (SVM_VMCB *)pVCpu->hwaccm.s.svm.pVMCB;
573 AssertMsgReturn(pVMCB, ("Invalid pVMCB\n"), VERR_EM_INTERNAL_ERROR);
574
575 /* Guest CPU context: ES, CS, SS, DS, FS, GS. */
576 if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_SEGMENT_REGS)
577 {
578 SVM_WRITE_SELREG(CS, cs);
579 SVM_WRITE_SELREG(SS, ss);
580 SVM_WRITE_SELREG(DS, ds);
581 SVM_WRITE_SELREG(ES, es);
582 SVM_WRITE_SELREG(FS, fs);
583 SVM_WRITE_SELREG(GS, gs);
584 }
585
586 /* Guest CPU context: LDTR. */
587 if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_LDTR)
588 {
589 SVM_WRITE_SELREG(LDTR, ldtr);
590 }
591
592 /* Guest CPU context: TR. */
593 if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_TR)
594 {
595 SVM_WRITE_SELREG(TR, tr);
596 }
597
598 /* Guest CPU context: GDTR. */
599 if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_GDTR)
600 {
601 pVMCB->guest.GDTR.u32Limit = pCtx->gdtr.cbGdt;
602 pVMCB->guest.GDTR.u64Base = pCtx->gdtr.pGdt;
603 }
604
605 /* Guest CPU context: IDTR. */
606 if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_IDTR)
607 {
608 pVMCB->guest.IDTR.u32Limit = pCtx->idtr.cbIdt;
609 pVMCB->guest.IDTR.u64Base = pCtx->idtr.pIdt;
610 }
611
612 /*
613 * Sysenter MSRs (unconditional)
614 */
615 pVMCB->guest.u64SysEnterCS = pCtx->SysEnter.cs;
616 pVMCB->guest.u64SysEnterEIP = pCtx->SysEnter.eip;
617 pVMCB->guest.u64SysEnterESP = pCtx->SysEnter.esp;
618
619 /* Control registers */
620 if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_CR0)
621 {
622 val = pCtx->cr0;
623 if (!CPUMIsGuestFPUStateActive(pVCpu))
624 {
625 /* Always use #NM exceptions to load the FPU/XMM state on demand. */
626 val |= X86_CR0_TS | X86_CR0_ET | X86_CR0_NE | X86_CR0_MP;
627 }
628 else
629 {
630 /** @todo check if we support the old style mess correctly. */
631 if (!(val & X86_CR0_NE))
632 {
633 Log(("Forcing X86_CR0_NE!!!\n"));
634
635 /* Also catch floating point exceptions as we need to report them to the guest in a different way. */
636 if (!pVCpu->hwaccm.s.fFPUOldStyleOverride)
637 {
638 pVMCB->ctrl.u32InterceptException |= RT_BIT(X86_XCPT_MF);
639 pVCpu->hwaccm.s.fFPUOldStyleOverride = true;
640 }
641 }
642 val |= X86_CR0_NE; /* always turn on the native mechanism to report FPU errors (old style uses interrupts) */
643 }
644 /* Always enable caching. */
645 val &= ~(X86_CR0_CD|X86_CR0_NW);
646
647 /* Note: WP is not relevant in nested paging mode as we catch accesses on the (guest) physical level. */
648 /* Note: In nested paging mode the guest is allowed to run with paging disabled; the guest physical to host physical translation will remain active. */
649 if (!pVM->hwaccm.s.fNestedPaging)
650 {
651 val |= X86_CR0_PG; /* Paging is always enabled; even when the guest is running in real mode or PE without paging. */
652 val |= X86_CR0_WP; /* Must set this as we rely on protect various pages and supervisor writes must be caught. */
653 }
654 pVMCB->guest.u64CR0 = val;
655 }
656 /* CR2 as well */
657 pVMCB->guest.u64CR2 = pCtx->cr2;
658
659 if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_CR3)
660 {
661 /* Save our shadow CR3 register. */
662 if (pVM->hwaccm.s.fNestedPaging)
663 {
664 pVMCB->ctrl.u64NestedPagingCR3 = PGMGetNestedCR3(pVM, PGMGetHostMode(pVM));
665 Assert(pVMCB->ctrl.u64NestedPagingCR3);
666 pVMCB->guest.u64CR3 = pCtx->cr3;
667 }
668 else
669 {
670 pVMCB->guest.u64CR3 = PGMGetHyperCR3(pVM);
671 Assert(pVMCB->guest.u64CR3);
672 }
673 }
674
675 if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_CR4)
676 {
677 val = pCtx->cr4;
678 if (!pVM->hwaccm.s.fNestedPaging)
679 {
680 switch(pVCpu->hwaccm.s.enmShadowMode)
681 {
682 case PGMMODE_REAL:
683 case PGMMODE_PROTECTED: /* Protected mode, no paging. */
684 AssertFailed();
685 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
686
687 case PGMMODE_32_BIT: /* 32-bit paging. */
688 break;
689
690 case PGMMODE_PAE: /* PAE paging. */
691 case PGMMODE_PAE_NX: /* PAE paging with NX enabled. */
692 /** @todo use normal 32 bits paging */
693 val |= X86_CR4_PAE;
694 break;
695
696 case PGMMODE_AMD64: /* 64-bit AMD paging (long mode). */
697 case PGMMODE_AMD64_NX: /* 64-bit AMD paging (long mode) with NX enabled. */
698#ifdef VBOX_ENABLE_64_BITS_GUESTS
699 break;
700#else
701 AssertFailed();
702 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
703#endif
704
705 default: /* shut up gcc */
706 AssertFailed();
707 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
708 }
709 }
710 pVMCB->guest.u64CR4 = val;
711 }
712
713 /* Debug registers. */
714 if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_DEBUG)
715 {
716 pCtx->dr[6] |= X86_DR6_INIT_VAL; /* set all reserved bits to 1. */
717 pCtx->dr[6] &= ~RT_BIT(12); /* must be zero. */
718
719 pCtx->dr[7] &= 0xffffffff; /* upper 32 bits reserved */
720 pCtx->dr[7] &= ~(RT_BIT(11) | RT_BIT(12) | RT_BIT(14) | RT_BIT(15)); /* must be zero */
721 pCtx->dr[7] |= 0x400; /* must be one */
722
723 pVMCB->guest.u64DR7 = pCtx->dr[7];
724 pVMCB->guest.u64DR6 = pCtx->dr[6];
725
726 /* Sync the debug state now if any breakpoint is armed. */
727 if ( (pCtx->dr[7] & (X86_DR7_ENABLED_MASK|X86_DR7_GD))
728 && !CPUMIsGuestDebugStateActive(pVM)
729 && !DBGFIsStepping(pVM))
730 {
731 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatDRxArmed);
732
733 /* Disable drx move intercepts. */
734 pVMCB->ctrl.u16InterceptRdDRx = 0;
735 pVMCB->ctrl.u16InterceptWrDRx = 0;
736
737 /* Save the host and load the guest debug state. */
738 int rc = CPUMR0LoadGuestDebugState(pVM, pVCpu, pCtx, false /* exclude DR6 */);
739 AssertRC(rc);
740 }
741 }
742
743 /* EIP, ESP and EFLAGS */
744 pVMCB->guest.u64RIP = pCtx->rip;
745 pVMCB->guest.u64RSP = pCtx->rsp;
746 pVMCB->guest.u64RFlags = pCtx->eflags.u32;
747
748 /* Set CPL */
749 pVMCB->guest.u8CPL = pCtx->csHid.Attr.n.u2Dpl;
750
751 /* RAX/EAX too, as VMRUN uses RAX as an implicit parameter. */
752 pVMCB->guest.u64RAX = pCtx->rax;
753
754 /* vmrun will fail without MSR_K6_EFER_SVME. */
755 pVMCB->guest.u64EFER = pCtx->msrEFER | MSR_K6_EFER_SVME;
756
757 /* 64 bits guest mode? */
758 if (pCtx->msrEFER & MSR_K6_EFER_LMA)
759 {
760#if !defined(VBOX_ENABLE_64_BITS_GUESTS)
761 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
762#elif HC_ARCH_BITS == 32
763 pVCpu->hwaccm.s.svm.pfnVMRun = SVMR0VMSwitcherRun64;
764#else
765 pVCpu->hwaccm.s.svm.pfnVMRun = SVMR0VMRun64;
766#endif
767 /* Unconditionally update these as wrmsr might have changed them. (HWACCM_CHANGED_GUEST_SEGMENT_REGS will not be set) */
768 pVMCB->guest.FS.u64Base = pCtx->fsHid.u64Base;
769 pVMCB->guest.GS.u64Base = pCtx->gsHid.u64Base;
770 }
771 else
772 {
773 /* Filter out the MSR_K6_LME bit or else AMD-V expects amd64 shadow paging. */
774 pVMCB->guest.u64EFER &= ~MSR_K6_EFER_LME;
775
776 pVCpu->hwaccm.s.svm.pfnVMRun = SVMR0VMRun;
777 }
778
779 /* TSC offset. */
780 if (TMCpuTickCanUseRealTSC(pVM, &pVMCB->ctrl.u64TSCOffset))
781 {
782 pVMCB->ctrl.u32InterceptCtrl1 &= ~SVM_CTRL1_INTERCEPT_RDTSC;
783 pVMCB->ctrl.u32InterceptCtrl2 &= ~SVM_CTRL2_INTERCEPT_RDTSCP;
784 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatTSCOffset);
785 }
786 else
787 {
788 pVMCB->ctrl.u32InterceptCtrl1 |= SVM_CTRL1_INTERCEPT_RDTSC;
789 pVMCB->ctrl.u32InterceptCtrl2 |= SVM_CTRL2_INTERCEPT_RDTSCP;
790 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatTSCIntercept);
791 }
792
793 /* Sync the various msrs for 64 bits mode. */
794 pVMCB->guest.u64STAR = pCtx->msrSTAR; /* legacy syscall eip, cs & ss */
795 pVMCB->guest.u64LSTAR = pCtx->msrLSTAR; /* 64 bits mode syscall rip */
796 pVMCB->guest.u64CSTAR = pCtx->msrCSTAR; /* compatibility mode syscall rip */
797 pVMCB->guest.u64SFMASK = pCtx->msrSFMASK; /* syscall flag mask */
798 pVMCB->guest.u64KernelGSBase = pCtx->msrKERNELGSBASE; /* swapgs exchange value */
799
800#ifdef DEBUG
801 /* Intercept X86_XCPT_DB if stepping is enabled */
802 if (DBGFIsStepping(pVM))
803 pVMCB->ctrl.u32InterceptException |= RT_BIT(X86_XCPT_DB);
804 else
805 pVMCB->ctrl.u32InterceptException &= ~RT_BIT(X86_XCPT_DB);
806#endif
807
808 /* Done. */
809 pVCpu->hwaccm.s.fContextUseFlags &= ~HWACCM_CHANGED_ALL_GUEST;
810
811 return VINF_SUCCESS;
812}
813
814
815/**
816 * Runs guest code in an AMD-V VM.
817 *
818 * @returns VBox status code.
819 * @param pVM The VM to operate on.
820 * @param pVCpu The VM CPU to operate on.
821 * @param pCtx Guest context
822 */
823VMMR0DECL(int) SVMR0RunGuestCode(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
824{
825 int rc = VINF_SUCCESS;
826 uint64_t exitCode = (uint64_t)SVM_EXIT_INVALID;
827 SVM_VMCB *pVMCB;
828 bool fSyncTPR = false;
829 unsigned cResume = 0;
830 uint8_t u8LastVTPR;
831 PHWACCM_CPUINFO pCpu = 0;
832#ifdef VBOX_STRICT
833 RTCPUID idCpuCheck;
834#endif
835
836 STAM_PROFILE_ADV_START(&pVCpu->hwaccm.s.StatEntry, x);
837
838 pVMCB = (SVM_VMCB *)pVCpu->hwaccm.s.svm.pVMCB;
839 AssertMsgReturn(pVMCB, ("Invalid pVMCB\n"), VERR_EM_INTERNAL_ERROR);
840
841 /* We can jump to this point to resume execution after determining that a VM-exit is innocent.
842 */
843ResumeExecution:
844 Assert(!HWACCMR0SuspendPending());
845
846 /* Safety precaution; looping for too long here can have a very bad effect on the host */
847 if (++cResume > HWACCM_MAX_RESUME_LOOPS)
848 {
849 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitMaxResume);
850 rc = VINF_EM_RAW_INTERRUPT;
851 goto end;
852 }
853
854 /* Check for irq inhibition due to instruction fusing (sti, mov ss). */
855 if (VM_FF_ISSET(pVM, VM_FF_INHIBIT_INTERRUPTS))
856 {
857 Log(("VM_FF_INHIBIT_INTERRUPTS at %RGv successor %RGv\n", (RTGCPTR)pCtx->rip, EMGetInhibitInterruptsPC(pVM)));
858 if (pCtx->rip != EMGetInhibitInterruptsPC(pVM))
859 {
860 /* Note: we intentionally don't clear VM_FF_INHIBIT_INTERRUPTS here.
861 * Before we are able to execute this instruction in raw mode (iret to guest code) an external interrupt might
862 * force a world switch again. Possibly allowing a guest interrupt to be dispatched in the process. This could
863 * break the guest. Sounds very unlikely, but such timing sensitive problems are not as rare as you might think.
864 */
865 VM_FF_CLEAR(pVM, VM_FF_INHIBIT_INTERRUPTS);
866 /* Irq inhibition is no longer active; clear the corresponding SVM state. */
867 pVMCB->ctrl.u64IntShadow = 0;
868 }
869 }
870 else
871 {
872 /* Irq inhibition is no longer active; clear the corresponding SVM state. */
873 pVMCB->ctrl.u64IntShadow = 0;
874 }
875
876 /* Check for pending actions that force us to go back to ring 3. */
877#ifdef DEBUG
878 /* Intercept X86_XCPT_DB if stepping is enabled */
879 if (!DBGFIsStepping(pVM))
880#endif
881 {
882 if (VM_FF_ISPENDING(pVM, VM_FF_TO_R3 | VM_FF_TIMER))
883 {
884 VM_FF_CLEAR(pVM, VM_FF_TO_R3);
885 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatSwitchToR3);
886 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatEntry, x);
887 rc = VINF_EM_RAW_TO_R3;
888 goto end;
889 }
890 }
891
892 /* Pending request packets might contain actions that need immediate attention, such as pending hardware interrupts. */
893 if (VM_FF_ISPENDING(pVM, VM_FF_REQUEST))
894 {
895 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatEntry, x);
896 rc = VINF_EM_PENDING_REQUEST;
897 goto end;
898 }
899
900 /* When external interrupts are pending, we should exit the VM when IF is set. */
901 /* Note! *After* VM_FF_INHIBIT_INTERRUPTS check!!! */
902 rc = SVMR0CheckPendingInterrupt(pVM, pVCpu, pVMCB, pCtx);
903 if (RT_FAILURE(rc))
904 {
905 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatEntry, x);
906 goto end;
907 }
908
909 /* TPR caching using CR8 is only available in 64 bits mode */
910 /* Note the 32 bits exception for AMD (X86_CPUID_AMD_FEATURE_ECX_CR8L), but that appears missing in Intel CPUs */
911 /* Note: we can't do this in LoadGuestState as PDMApicGetTPR can jump back to ring 3 (lock)!!!!!!!! */
912 if (pCtx->msrEFER & MSR_K6_EFER_LMA)
913 {
914 bool fPending;
915
916 /* TPR caching in CR8 */
917 int rc = PDMApicGetTPR(pVM, &u8LastVTPR, &fPending);
918 AssertRC(rc);
919 pVMCB->ctrl.IntCtrl.n.u8VTPR = u8LastVTPR;
920
921 if (fPending)
922 {
923 /* A TPR change could activate a pending interrupt, so catch cr8 writes. */
924 pVMCB->ctrl.u16InterceptWrCRx |= RT_BIT(8);
925 }
926 else
927 /* No interrupts are pending, so we don't need to be explicitely notified.
928 * There are enough world switches for detecting pending interrupts.
929 */
930 pVMCB->ctrl.u16InterceptWrCRx &= ~RT_BIT(8);
931
932 fSyncTPR = !fPending;
933 }
934
935 /* All done! Let's start VM execution. */
936 STAM_PROFILE_ADV_START(&pVCpu->hwaccm.s.StatInGC, x);
937
938 /* Enable nested paging if necessary (disabled each time after #VMEXIT). */
939 pVMCB->ctrl.NestedPaging.n.u1NestedPaging = pVM->hwaccm.s.fNestedPaging;
940
941#ifdef LOG_ENABLED
942 pCpu = HWACCMR0GetCurrentCpu();
943 if ( pVCpu->hwaccm.s.idLastCpu != pCpu->idCpu
944 || pVCpu->hwaccm.s.cTLBFlushes != pCpu->cTLBFlushes)
945 {
946 if (pVCpu->hwaccm.s.idLastCpu != pCpu->idCpu)
947 Log(("Force TLB flush due to rescheduling to a different cpu (%d vs %d)\n", pVCpu->hwaccm.s.idLastCpu, pCpu->idCpu));
948 else
949 Log(("Force TLB flush due to changed TLB flush count (%x vs %x)\n", pVCpu->hwaccm.s.cTLBFlushes, pCpu->cTLBFlushes));
950 }
951 if (pCpu->fFlushTLB)
952 Log(("Force TLB flush: first time cpu %d is used -> flush\n", pCpu->idCpu));
953#endif
954
955 /*
956 * NOTE: DO NOT DO ANYTHING AFTER THIS POINT THAT MIGHT JUMP BACK TO RING 3!
957 * (until the actual world switch)
958 */
959
960#ifdef VBOX_STRICT
961 idCpuCheck = RTMpCpuId();
962#endif
963
964 /* Load the guest state; *must* be here as it sets up the shadow cr0 for lazy fpu syncing! */
965 rc = SVMR0LoadGuestState(pVM, pVCpu, pCtx);
966 if (rc != VINF_SUCCESS)
967 {
968 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatEntry, x);
969 goto end;
970 }
971
972 pCpu = HWACCMR0GetCurrentCpu();
973 /* Force a TLB flush for the first world switch if the current cpu differs from the one we ran on last. */
974 /* Note that this can happen both for start and resume due to long jumps back to ring 3. */
975 if ( pVCpu->hwaccm.s.idLastCpu != pCpu->idCpu
976 /* if the tlb flush count has changed, another VM has flushed the TLB of this cpu, so we can't use our current ASID anymore. */
977 || pVCpu->hwaccm.s.cTLBFlushes != pCpu->cTLBFlushes)
978 {
979 /* Force a TLB flush on VM entry. */
980 pVCpu->hwaccm.s.fForceTLBFlush = true;
981 }
982 else
983 Assert(!pCpu->fFlushTLB || pVM->hwaccm.s.svm.fAlwaysFlushTLB);
984
985 pVCpu->hwaccm.s.idLastCpu = pCpu->idCpu;
986
987 /* Make sure we flush the TLB when required. Switch ASID to achieve the same thing, but without actually flushing the whole TLB (which is expensive). */
988 if ( pVCpu->hwaccm.s.fForceTLBFlush
989 && !pVM->hwaccm.s.svm.fAlwaysFlushTLB)
990 {
991 if ( ++pCpu->uCurrentASID >= pVM->hwaccm.s.uMaxASID
992 || pCpu->fFlushTLB)
993 {
994 pCpu->fFlushTLB = false;
995 pCpu->uCurrentASID = 1; /* start at 1; host uses 0 */
996 pVMCB->ctrl.TLBCtrl.n.u1TLBFlush = 1; /* wrap around; flush TLB */
997 pCpu->cTLBFlushes++;
998 }
999 else
1000 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatFlushASID);
1001
1002 pVCpu->hwaccm.s.cTLBFlushes = pCpu->cTLBFlushes;
1003 pVCpu->hwaccm.s.uCurrentASID = pCpu->uCurrentASID;
1004 }
1005 else
1006 {
1007 Assert(!pCpu->fFlushTLB || pVM->hwaccm.s.svm.fAlwaysFlushTLB);
1008
1009 /* We never increase uCurrentASID in the fAlwaysFlushTLB (erratum 170) case. */
1010 if (!pCpu->uCurrentASID || !pVCpu->hwaccm.s.uCurrentASID)
1011 pVCpu->hwaccm.s.uCurrentASID = pCpu->uCurrentASID = 1;
1012
1013 Assert(!pVM->hwaccm.s.svm.fAlwaysFlushTLB || pVCpu->hwaccm.s.fForceTLBFlush);
1014 pVMCB->ctrl.TLBCtrl.n.u1TLBFlush = pVCpu->hwaccm.s.fForceTLBFlush;
1015 }
1016 AssertMsg(pVCpu->hwaccm.s.cTLBFlushes == pCpu->cTLBFlushes, ("Flush count mismatch for cpu %d (%x vs %x)\n", pCpu->idCpu, pVCpu->hwaccm.s.cTLBFlushes, pCpu->cTLBFlushes));
1017 AssertMsg(pCpu->uCurrentASID >= 1 && pCpu->uCurrentASID < pVM->hwaccm.s.uMaxASID, ("cpu%d uCurrentASID = %x\n", pCpu->idCpu, pCpu->uCurrentASID));
1018 AssertMsg(pVCpu->hwaccm.s.uCurrentASID >= 1 && pVCpu->hwaccm.s.uCurrentASID < pVM->hwaccm.s.uMaxASID, ("cpu%d VM uCurrentASID = %x\n", pCpu->idCpu, pVCpu->hwaccm.s.uCurrentASID));
1019 pVMCB->ctrl.TLBCtrl.n.u32ASID = pVCpu->hwaccm.s.uCurrentASID;
1020
1021#ifdef VBOX_WITH_STATISTICS
1022 if (pVMCB->ctrl.TLBCtrl.n.u1TLBFlush)
1023 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatFlushTLBWorldSwitch);
1024 else
1025 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatNoFlushTLBWorldSwitch);
1026#endif
1027
1028 /* In case we execute a goto ResumeExecution later on. */
1029 pVCpu->hwaccm.s.fResumeVM = true;
1030 pVCpu->hwaccm.s.fForceTLBFlush = pVM->hwaccm.s.svm.fAlwaysFlushTLB;
1031
1032 Assert(sizeof(pVCpu->hwaccm.s.svm.pVMCBPhys) == 8);
1033 Assert(pVMCB->ctrl.IntCtrl.n.u1VIrqMasking);
1034 Assert(pVMCB->ctrl.u64IOPMPhysAddr == pVM->hwaccm.s.svm.pIOBitmapPhys);
1035 Assert(pVMCB->ctrl.u64MSRPMPhysAddr == pVM->hwaccm.s.svm.pMSRBitmapPhys);
1036 Assert(pVMCB->ctrl.u64LBRVirt == 0);
1037
1038#ifdef VBOX_STRICT
1039 Assert(idCpuCheck == RTMpCpuId());
1040#endif
1041 TMNotifyStartOfExecution(pVM);
1042 pVCpu->hwaccm.s.svm.pfnVMRun(pVM->hwaccm.s.svm.pVMCBHostPhys, pVCpu->hwaccm.s.svm.pVMCBPhys, pCtx, pVM, pVCpu);
1043 TMNotifyEndOfExecution(pVM);
1044 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatInGC, x);
1045
1046 /*
1047 * !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1048 * IMPORTANT: WE CAN'T DO ANY LOGGING OR OPERATIONS THAT CAN DO A LONGJMP BACK TO RING 3 *BEFORE* WE'VE SYNCED BACK (MOST OF) THE GUEST STATE
1049 * !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1050 */
1051
1052 STAM_PROFILE_ADV_START(&pVCpu->hwaccm.s.StatExit, x);
1053
1054 /* Reason for the VM exit */
1055 exitCode = pVMCB->ctrl.u64ExitCode;
1056
1057 if (exitCode == (uint64_t)SVM_EXIT_INVALID) /* Invalid guest state. */
1058 {
1059 HWACCMDumpRegs(pVM, pCtx);
1060#ifdef DEBUG
1061 Log(("ctrl.u16InterceptRdCRx %x\n", pVMCB->ctrl.u16InterceptRdCRx));
1062 Log(("ctrl.u16InterceptWrCRx %x\n", pVMCB->ctrl.u16InterceptWrCRx));
1063 Log(("ctrl.u16InterceptRdDRx %x\n", pVMCB->ctrl.u16InterceptRdDRx));
1064 Log(("ctrl.u16InterceptWrDRx %x\n", pVMCB->ctrl.u16InterceptWrDRx));
1065 Log(("ctrl.u32InterceptException %x\n", pVMCB->ctrl.u32InterceptException));
1066 Log(("ctrl.u32InterceptCtrl1 %x\n", pVMCB->ctrl.u32InterceptCtrl1));
1067 Log(("ctrl.u32InterceptCtrl2 %x\n", pVMCB->ctrl.u32InterceptCtrl2));
1068 Log(("ctrl.u64IOPMPhysAddr %RX64\n", pVMCB->ctrl.u64IOPMPhysAddr));
1069 Log(("ctrl.u64MSRPMPhysAddr %RX64\n", pVMCB->ctrl.u64MSRPMPhysAddr));
1070 Log(("ctrl.u64TSCOffset %RX64\n", pVMCB->ctrl.u64TSCOffset));
1071
1072 Log(("ctrl.TLBCtrl.u32ASID %x\n", pVMCB->ctrl.TLBCtrl.n.u32ASID));
1073 Log(("ctrl.TLBCtrl.u1TLBFlush %x\n", pVMCB->ctrl.TLBCtrl.n.u1TLBFlush));
1074 Log(("ctrl.TLBCtrl.u7Reserved %x\n", pVMCB->ctrl.TLBCtrl.n.u7Reserved));
1075 Log(("ctrl.TLBCtrl.u24Reserved %x\n", pVMCB->ctrl.TLBCtrl.n.u24Reserved));
1076
1077 Log(("ctrl.IntCtrl.u8VTPR %x\n", pVMCB->ctrl.IntCtrl.n.u8VTPR));
1078 Log(("ctrl.IntCtrl.u1VIrqValid %x\n", pVMCB->ctrl.IntCtrl.n.u1VIrqValid));
1079 Log(("ctrl.IntCtrl.u7Reserved %x\n", pVMCB->ctrl.IntCtrl.n.u7Reserved));
1080 Log(("ctrl.IntCtrl.u4VIrqPriority %x\n", pVMCB->ctrl.IntCtrl.n.u4VIrqPriority));
1081 Log(("ctrl.IntCtrl.u1IgnoreTPR %x\n", pVMCB->ctrl.IntCtrl.n.u1IgnoreTPR));
1082 Log(("ctrl.IntCtrl.u3Reserved %x\n", pVMCB->ctrl.IntCtrl.n.u3Reserved));
1083 Log(("ctrl.IntCtrl.u1VIrqMasking %x\n", pVMCB->ctrl.IntCtrl.n.u1VIrqMasking));
1084 Log(("ctrl.IntCtrl.u7Reserved2 %x\n", pVMCB->ctrl.IntCtrl.n.u7Reserved2));
1085 Log(("ctrl.IntCtrl.u8VIrqVector %x\n", pVMCB->ctrl.IntCtrl.n.u8VIrqVector));
1086 Log(("ctrl.IntCtrl.u24Reserved %x\n", pVMCB->ctrl.IntCtrl.n.u24Reserved));
1087
1088 Log(("ctrl.u64IntShadow %RX64\n", pVMCB->ctrl.u64IntShadow));
1089 Log(("ctrl.u64ExitCode %RX64\n", pVMCB->ctrl.u64ExitCode));
1090 Log(("ctrl.u64ExitInfo1 %RX64\n", pVMCB->ctrl.u64ExitInfo1));
1091 Log(("ctrl.u64ExitInfo2 %RX64\n", pVMCB->ctrl.u64ExitInfo2));
1092 Log(("ctrl.ExitIntInfo.u8Vector %x\n", pVMCB->ctrl.ExitIntInfo.n.u8Vector));
1093 Log(("ctrl.ExitIntInfo.u3Type %x\n", pVMCB->ctrl.ExitIntInfo.n.u3Type));
1094 Log(("ctrl.ExitIntInfo.u1ErrorCodeValid %x\n", pVMCB->ctrl.ExitIntInfo.n.u1ErrorCodeValid));
1095 Log(("ctrl.ExitIntInfo.u19Reserved %x\n", pVMCB->ctrl.ExitIntInfo.n.u19Reserved));
1096 Log(("ctrl.ExitIntInfo.u1Valid %x\n", pVMCB->ctrl.ExitIntInfo.n.u1Valid));
1097 Log(("ctrl.ExitIntInfo.u32ErrorCode %x\n", pVMCB->ctrl.ExitIntInfo.n.u32ErrorCode));
1098 Log(("ctrl.NestedPaging %RX64\n", pVMCB->ctrl.NestedPaging.au64));
1099 Log(("ctrl.EventInject.u8Vector %x\n", pVMCB->ctrl.EventInject.n.u8Vector));
1100 Log(("ctrl.EventInject.u3Type %x\n", pVMCB->ctrl.EventInject.n.u3Type));
1101 Log(("ctrl.EventInject.u1ErrorCodeValid %x\n", pVMCB->ctrl.EventInject.n.u1ErrorCodeValid));
1102 Log(("ctrl.EventInject.u19Reserved %x\n", pVMCB->ctrl.EventInject.n.u19Reserved));
1103 Log(("ctrl.EventInject.u1Valid %x\n", pVMCB->ctrl.EventInject.n.u1Valid));
1104 Log(("ctrl.EventInject.u32ErrorCode %x\n", pVMCB->ctrl.EventInject.n.u32ErrorCode));
1105
1106 Log(("ctrl.u64NestedPagingCR3 %RX64\n", pVMCB->ctrl.u64NestedPagingCR3));
1107 Log(("ctrl.u64LBRVirt %RX64\n", pVMCB->ctrl.u64LBRVirt));
1108
1109 Log(("guest.CS.u16Sel %04X\n", pVMCB->guest.CS.u16Sel));
1110 Log(("guest.CS.u16Attr %04X\n", pVMCB->guest.CS.u16Attr));
1111 Log(("guest.CS.u32Limit %X\n", pVMCB->guest.CS.u32Limit));
1112 Log(("guest.CS.u64Base %RX64\n", pVMCB->guest.CS.u64Base));
1113 Log(("guest.DS.u16Sel %04X\n", pVMCB->guest.DS.u16Sel));
1114 Log(("guest.DS.u16Attr %04X\n", pVMCB->guest.DS.u16Attr));
1115 Log(("guest.DS.u32Limit %X\n", pVMCB->guest.DS.u32Limit));
1116 Log(("guest.DS.u64Base %RX64\n", pVMCB->guest.DS.u64Base));
1117 Log(("guest.ES.u16Sel %04X\n", pVMCB->guest.ES.u16Sel));
1118 Log(("guest.ES.u16Attr %04X\n", pVMCB->guest.ES.u16Attr));
1119 Log(("guest.ES.u32Limit %X\n", pVMCB->guest.ES.u32Limit));
1120 Log(("guest.ES.u64Base %RX64\n", pVMCB->guest.ES.u64Base));
1121 Log(("guest.FS.u16Sel %04X\n", pVMCB->guest.FS.u16Sel));
1122 Log(("guest.FS.u16Attr %04X\n", pVMCB->guest.FS.u16Attr));
1123 Log(("guest.FS.u32Limit %X\n", pVMCB->guest.FS.u32Limit));
1124 Log(("guest.FS.u64Base %RX64\n", pVMCB->guest.FS.u64Base));
1125 Log(("guest.GS.u16Sel %04X\n", pVMCB->guest.GS.u16Sel));
1126 Log(("guest.GS.u16Attr %04X\n", pVMCB->guest.GS.u16Attr));
1127 Log(("guest.GS.u32Limit %X\n", pVMCB->guest.GS.u32Limit));
1128 Log(("guest.GS.u64Base %RX64\n", pVMCB->guest.GS.u64Base));
1129
1130 Log(("guest.GDTR.u32Limit %X\n", pVMCB->guest.GDTR.u32Limit));
1131 Log(("guest.GDTR.u64Base %RX64\n", pVMCB->guest.GDTR.u64Base));
1132
1133 Log(("guest.LDTR.u16Sel %04X\n", pVMCB->guest.LDTR.u16Sel));
1134 Log(("guest.LDTR.u16Attr %04X\n", pVMCB->guest.LDTR.u16Attr));
1135 Log(("guest.LDTR.u32Limit %X\n", pVMCB->guest.LDTR.u32Limit));
1136 Log(("guest.LDTR.u64Base %RX64\n", pVMCB->guest.LDTR.u64Base));
1137
1138 Log(("guest.IDTR.u32Limit %X\n", pVMCB->guest.IDTR.u32Limit));
1139 Log(("guest.IDTR.u64Base %RX64\n", pVMCB->guest.IDTR.u64Base));
1140
1141 Log(("guest.TR.u16Sel %04X\n", pVMCB->guest.TR.u16Sel));
1142 Log(("guest.TR.u16Attr %04X\n", pVMCB->guest.TR.u16Attr));
1143 Log(("guest.TR.u32Limit %X\n", pVMCB->guest.TR.u32Limit));
1144 Log(("guest.TR.u64Base %RX64\n", pVMCB->guest.TR.u64Base));
1145
1146 Log(("guest.u8CPL %X\n", pVMCB->guest.u8CPL));
1147 Log(("guest.u64CR0 %RX64\n", pVMCB->guest.u64CR0));
1148 Log(("guest.u64CR2 %RX64\n", pVMCB->guest.u64CR2));
1149 Log(("guest.u64CR3 %RX64\n", pVMCB->guest.u64CR3));
1150 Log(("guest.u64CR4 %RX64\n", pVMCB->guest.u64CR4));
1151 Log(("guest.u64DR6 %RX64\n", pVMCB->guest.u64DR6));
1152 Log(("guest.u64DR7 %RX64\n", pVMCB->guest.u64DR7));
1153
1154 Log(("guest.u64RIP %RX64\n", pVMCB->guest.u64RIP));
1155 Log(("guest.u64RSP %RX64\n", pVMCB->guest.u64RSP));
1156 Log(("guest.u64RAX %RX64\n", pVMCB->guest.u64RAX));
1157 Log(("guest.u64RFlags %RX64\n", pVMCB->guest.u64RFlags));
1158
1159 Log(("guest.u64SysEnterCS %RX64\n", pVMCB->guest.u64SysEnterCS));
1160 Log(("guest.u64SysEnterEIP %RX64\n", pVMCB->guest.u64SysEnterEIP));
1161 Log(("guest.u64SysEnterESP %RX64\n", pVMCB->guest.u64SysEnterESP));
1162
1163 Log(("guest.u64EFER %RX64\n", pVMCB->guest.u64EFER));
1164 Log(("guest.u64STAR %RX64\n", pVMCB->guest.u64STAR));
1165 Log(("guest.u64LSTAR %RX64\n", pVMCB->guest.u64LSTAR));
1166 Log(("guest.u64CSTAR %RX64\n", pVMCB->guest.u64CSTAR));
1167 Log(("guest.u64SFMASK %RX64\n", pVMCB->guest.u64SFMASK));
1168 Log(("guest.u64KernelGSBase %RX64\n", pVMCB->guest.u64KernelGSBase));
1169 Log(("guest.u64GPAT %RX64\n", pVMCB->guest.u64GPAT));
1170 Log(("guest.u64DBGCTL %RX64\n", pVMCB->guest.u64DBGCTL));
1171 Log(("guest.u64BR_FROM %RX64\n", pVMCB->guest.u64BR_FROM));
1172 Log(("guest.u64BR_TO %RX64\n", pVMCB->guest.u64BR_TO));
1173 Log(("guest.u64LASTEXCPFROM %RX64\n", pVMCB->guest.u64LASTEXCPFROM));
1174 Log(("guest.u64LASTEXCPTO %RX64\n", pVMCB->guest.u64LASTEXCPTO));
1175
1176#endif
1177 rc = VERR_SVM_UNABLE_TO_START_VM;
1178 goto end;
1179 }
1180
1181 /* Let's first sync back eip, esp, and eflags. */
1182 pCtx->rip = pVMCB->guest.u64RIP;
1183 pCtx->rsp = pVMCB->guest.u64RSP;
1184 pCtx->eflags.u32 = pVMCB->guest.u64RFlags;
1185 /* eax is saved/restore across the vmrun instruction */
1186 pCtx->rax = pVMCB->guest.u64RAX;
1187
1188 pCtx->msrKERNELGSBASE = pVMCB->guest.u64KernelGSBase; /* swapgs exchange value */
1189
1190 /* Can be updated behind our back in the nested paging case. */
1191 pCtx->cr2 = pVMCB->guest.u64CR2;
1192
1193 /* Guest CPU context: ES, CS, SS, DS, FS, GS. */
1194 SVM_READ_SELREG(SS, ss);
1195 SVM_READ_SELREG(CS, cs);
1196 SVM_READ_SELREG(DS, ds);
1197 SVM_READ_SELREG(ES, es);
1198 SVM_READ_SELREG(FS, fs);
1199 SVM_READ_SELREG(GS, gs);
1200
1201 /*
1202 * System MSRs
1203 */
1204 pCtx->SysEnter.cs = pVMCB->guest.u64SysEnterCS;
1205 pCtx->SysEnter.eip = pVMCB->guest.u64SysEnterEIP;
1206 pCtx->SysEnter.esp = pVMCB->guest.u64SysEnterESP;
1207
1208 /* Remaining guest CPU context: TR, IDTR, GDTR, LDTR; must sync everything otherwise we can get out of sync when jumping to ring 3. */
1209 SVM_READ_SELREG(LDTR, ldtr);
1210 SVM_READ_SELREG(TR, tr);
1211
1212 pCtx->gdtr.cbGdt = pVMCB->guest.GDTR.u32Limit;
1213 pCtx->gdtr.pGdt = pVMCB->guest.GDTR.u64Base;
1214
1215 pCtx->idtr.cbIdt = pVMCB->guest.IDTR.u32Limit;
1216 pCtx->idtr.pIdt = pVMCB->guest.IDTR.u64Base;
1217
1218 /* Note: no reason to sync back the CRx and DRx registers. They can't be changed by the guest. */
1219 /* Note: only in the nested paging case can CR3 & CR4 be changed by the guest. */
1220 if ( pVM->hwaccm.s.fNestedPaging
1221 && pCtx->cr3 != pVMCB->guest.u64CR3)
1222 {
1223 CPUMSetGuestCR3(pVM, pVMCB->guest.u64CR3);
1224 PGMUpdateCR3(pVM, pVMCB->guest.u64CR3);
1225 }
1226
1227 /* Note! NOW IT'S SAFE FOR LOGGING! */
1228
1229 /* Take care of instruction fusing (sti, mov ss) (see 15.20.5 Interrupt Shadows) */
1230 if (pVMCB->ctrl.u64IntShadow & SVM_INTERRUPT_SHADOW_ACTIVE)
1231 {
1232 Log(("uInterruptState %x rip=%RGv\n", pVMCB->ctrl.u64IntShadow, (RTGCPTR)pCtx->rip));
1233 EMSetInhibitInterruptsPC(pVM, pCtx->rip);
1234 }
1235 else
1236 VM_FF_CLEAR(pVM, VM_FF_INHIBIT_INTERRUPTS);
1237
1238 Log2(("exitCode = %x\n", exitCode));
1239
1240 /* Sync back DR6 as it could have been changed by hitting breakpoints. */
1241 pCtx->dr[6] = pVMCB->guest.u64DR6;
1242 /* DR7.GD can be cleared by debug exceptions, so sync it back as well. */
1243 pCtx->dr[7] = pVMCB->guest.u64DR7;
1244
1245 /* Check if an injected event was interrupted prematurely. */
1246 pVCpu->hwaccm.s.Event.intInfo = pVMCB->ctrl.ExitIntInfo.au64[0];
1247 if ( pVMCB->ctrl.ExitIntInfo.n.u1Valid
1248 && pVMCB->ctrl.ExitIntInfo.n.u3Type != SVM_EVENT_SOFTWARE_INT /* we don't care about 'int xx' as the instruction will be restarted. */)
1249 {
1250 Log(("Pending inject %RX64 at %RGv exit=%08x\n", pVCpu->hwaccm.s.Event.intInfo, (RTGCPTR)pCtx->rip, exitCode));
1251
1252#ifdef LOG_ENABLED
1253 SVM_EVENT Event;
1254 Event.au64[0] = pVCpu->hwaccm.s.Event.intInfo;
1255
1256 if ( exitCode == SVM_EXIT_EXCEPTION_E
1257 && Event.n.u8Vector == 0xE)
1258 {
1259 Log(("Double fault!\n"));
1260 }
1261#endif
1262
1263 pVCpu->hwaccm.s.Event.fPending = true;
1264 /* Error code present? (redundant) */
1265 if (pVMCB->ctrl.ExitIntInfo.n.u1ErrorCodeValid)
1266 {
1267 pVCpu->hwaccm.s.Event.errCode = pVMCB->ctrl.ExitIntInfo.n.u32ErrorCode;
1268 }
1269 else
1270 pVCpu->hwaccm.s.Event.errCode = 0;
1271 }
1272#ifdef VBOX_WITH_STATISTICS
1273 if (exitCode == SVM_EXIT_NPF)
1274 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitReasonNPF);
1275 else
1276 STAM_COUNTER_INC(&pVCpu->hwaccm.s.paStatExitReasonR0[exitCode & MASK_EXITREASON_STAT]);
1277#endif
1278
1279 if (fSyncTPR)
1280 {
1281 rc = PDMApicSetTPR(pVM, pVMCB->ctrl.IntCtrl.n.u8VTPR);
1282 AssertRC(rc);
1283 }
1284
1285 /* Deal with the reason of the VM-exit. */
1286 switch (exitCode)
1287 {
1288 case SVM_EXIT_EXCEPTION_0: case SVM_EXIT_EXCEPTION_1: case SVM_EXIT_EXCEPTION_2: case SVM_EXIT_EXCEPTION_3:
1289 case SVM_EXIT_EXCEPTION_4: case SVM_EXIT_EXCEPTION_5: case SVM_EXIT_EXCEPTION_6: case SVM_EXIT_EXCEPTION_7:
1290 case SVM_EXIT_EXCEPTION_8: case SVM_EXIT_EXCEPTION_9: case SVM_EXIT_EXCEPTION_A: case SVM_EXIT_EXCEPTION_B:
1291 case SVM_EXIT_EXCEPTION_C: case SVM_EXIT_EXCEPTION_D: case SVM_EXIT_EXCEPTION_E: case SVM_EXIT_EXCEPTION_F:
1292 case SVM_EXIT_EXCEPTION_10: case SVM_EXIT_EXCEPTION_11: case SVM_EXIT_EXCEPTION_12: case SVM_EXIT_EXCEPTION_13:
1293 case SVM_EXIT_EXCEPTION_14: case SVM_EXIT_EXCEPTION_15: case SVM_EXIT_EXCEPTION_16: case SVM_EXIT_EXCEPTION_17:
1294 case SVM_EXIT_EXCEPTION_18: case SVM_EXIT_EXCEPTION_19: case SVM_EXIT_EXCEPTION_1A: case SVM_EXIT_EXCEPTION_1B:
1295 case SVM_EXIT_EXCEPTION_1C: case SVM_EXIT_EXCEPTION_1D: case SVM_EXIT_EXCEPTION_1E: case SVM_EXIT_EXCEPTION_1F:
1296 {
1297 /* Pending trap. */
1298 SVM_EVENT Event;
1299 uint32_t vector = exitCode - SVM_EXIT_EXCEPTION_0;
1300
1301 Log2(("Hardware/software interrupt %d\n", vector));
1302 switch (vector)
1303 {
1304 case X86_XCPT_DB:
1305 {
1306 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestDB);
1307
1308 /* Note that we don't support guest and host-initiated debugging at the same time. */
1309 Assert(DBGFIsStepping(pVM));
1310
1311 rc = DBGFR0Trap01Handler(pVM, CPUMCTX2CORE(pCtx), pCtx->dr[6]);
1312 if (rc == VINF_EM_RAW_GUEST_TRAP)
1313 {
1314 Log(("Trap %x (debug) at %016RX64\n", vector, pCtx->rip));
1315
1316 /* Reinject the exception. */
1317 Event.au64[0] = 0;
1318 Event.n.u3Type = SVM_EVENT_EXCEPTION; /* trap or fault */
1319 Event.n.u1Valid = 1;
1320 Event.n.u8Vector = X86_XCPT_DB;
1321
1322 SVMR0InjectEvent(pVM, pVMCB, pCtx, &Event);
1323
1324 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit, x);
1325 goto ResumeExecution;
1326 }
1327 /* Return to ring 3 to deal with the debug exit code. */
1328 break;
1329 }
1330
1331 case X86_XCPT_NM:
1332 {
1333 Log(("#NM fault at %RGv\n", (RTGCPTR)pCtx->rip));
1334
1335 /** @todo don't intercept #NM exceptions anymore when we've activated the guest FPU state. */
1336 /* If we sync the FPU/XMM state on-demand, then we can continue execution as if nothing has happened. */
1337 rc = CPUMR0LoadGuestFPU(pVM, pVCpu, pCtx);
1338 if (rc == VINF_SUCCESS)
1339 {
1340 Assert(CPUMIsGuestFPUStateActive(pVCpu));
1341 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitShadowNM);
1342
1343 /* Continue execution. */
1344 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit, x);
1345 pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_GUEST_CR0;
1346
1347 goto ResumeExecution;
1348 }
1349
1350 Log(("Forward #NM fault to the guest\n"));
1351 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestNM);
1352
1353 Event.au64[0] = 0;
1354 Event.n.u3Type = SVM_EVENT_EXCEPTION;
1355 Event.n.u1Valid = 1;
1356 Event.n.u8Vector = X86_XCPT_NM;
1357
1358 SVMR0InjectEvent(pVM, pVMCB, pCtx, &Event);
1359 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit, x);
1360 goto ResumeExecution;
1361 }
1362
1363 case X86_XCPT_PF: /* Page fault */
1364 {
1365 uint32_t errCode = pVMCB->ctrl.u64ExitInfo1; /* EXITINFO1 = error code */
1366 RTGCUINTPTR uFaultAddress = pVMCB->ctrl.u64ExitInfo2; /* EXITINFO2 = fault address */
1367
1368#ifdef DEBUG
1369 if (pVM->hwaccm.s.fNestedPaging)
1370 { /* A genuine pagefault.
1371 * Forward the trap to the guest by injecting the exception and resuming execution.
1372 */
1373 Log(("Guest page fault at %RGv cr2=%RGv error code %x rsp=%RGv\n", (RTGCPTR)pCtx->rip, uFaultAddress, errCode, (RTGCPTR)pCtx->rsp));
1374 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestPF);
1375
1376 /* Now we must update CR2. */
1377 pCtx->cr2 = uFaultAddress;
1378
1379 Event.au64[0] = 0;
1380 Event.n.u3Type = SVM_EVENT_EXCEPTION;
1381 Event.n.u1Valid = 1;
1382 Event.n.u8Vector = X86_XCPT_PF;
1383 Event.n.u1ErrorCodeValid = 1;
1384 Event.n.u32ErrorCode = errCode;
1385
1386 SVMR0InjectEvent(pVM, pVMCB, pCtx, &Event);
1387
1388 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit, x);
1389 goto ResumeExecution;
1390 }
1391#endif
1392 Assert(!pVM->hwaccm.s.fNestedPaging);
1393
1394 Log2(("Page fault at %RGv cr2=%RGv error code %x\n", (RTGCPTR)pCtx->rip, uFaultAddress, errCode));
1395 /* Exit qualification contains the linear address of the page fault. */
1396 TRPMAssertTrap(pVM, X86_XCPT_PF, TRPM_TRAP);
1397 TRPMSetErrorCode(pVM, errCode);
1398 TRPMSetFaultAddress(pVM, uFaultAddress);
1399
1400 /* Forward it to our trap handler first, in case our shadow pages are out of sync. */
1401 rc = PGMTrap0eHandler(pVM, errCode, CPUMCTX2CORE(pCtx), (RTGCPTR)uFaultAddress);
1402 Log2(("PGMTrap0eHandler %RGv returned %Rrc\n", (RTGCPTR)pCtx->rip, rc));
1403 if (rc == VINF_SUCCESS)
1404 { /* We've successfully synced our shadow pages, so let's just continue execution. */
1405 Log2(("Shadow page fault at %RGv cr2=%RGv error code %x\n", (RTGCPTR)pCtx->rip, uFaultAddress, errCode));
1406 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitShadowPF);
1407
1408 TRPMResetTrap(pVM);
1409
1410 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit, x);
1411 goto ResumeExecution;
1412 }
1413 else
1414 if (rc == VINF_EM_RAW_GUEST_TRAP)
1415 { /* A genuine pagefault.
1416 * Forward the trap to the guest by injecting the exception and resuming execution.
1417 */
1418 Log2(("Forward page fault to the guest\n"));
1419 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestPF);
1420 /* The error code might have been changed. */
1421 errCode = TRPMGetErrorCode(pVM);
1422
1423 TRPMResetTrap(pVM);
1424
1425 /* Now we must update CR2. */
1426 pCtx->cr2 = uFaultAddress;
1427
1428 Event.au64[0] = 0;
1429 Event.n.u3Type = SVM_EVENT_EXCEPTION;
1430 Event.n.u1Valid = 1;
1431 Event.n.u8Vector = X86_XCPT_PF;
1432 Event.n.u1ErrorCodeValid = 1;
1433 Event.n.u32ErrorCode = errCode;
1434
1435 SVMR0InjectEvent(pVM, pVMCB, pCtx, &Event);
1436
1437 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit, x);
1438 goto ResumeExecution;
1439 }
1440#ifdef VBOX_STRICT
1441 if (rc != VINF_EM_RAW_EMULATE_INSTR)
1442 LogFlow(("PGMTrap0eHandler failed with %d\n", rc));
1443#endif
1444 /* Need to go back to the recompiler to emulate the instruction. */
1445 TRPMResetTrap(pVM);
1446 break;
1447 }
1448
1449 case X86_XCPT_MF: /* Floating point exception. */
1450 {
1451 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestMF);
1452 if (!(pCtx->cr0 & X86_CR0_NE))
1453 {
1454 /* old style FPU error reporting needs some extra work. */
1455 /** @todo don't fall back to the recompiler, but do it manually. */
1456 rc = VINF_EM_RAW_EMULATE_INSTR;
1457 break;
1458 }
1459 Log(("Trap %x at %RGv\n", vector, (RTGCPTR)pCtx->rip));
1460
1461 Event.au64[0] = 0;
1462 Event.n.u3Type = SVM_EVENT_EXCEPTION;
1463 Event.n.u1Valid = 1;
1464 Event.n.u8Vector = X86_XCPT_MF;
1465
1466 SVMR0InjectEvent(pVM, pVMCB, pCtx, &Event);
1467
1468 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit, x);
1469 goto ResumeExecution;
1470 }
1471
1472#ifdef VBOX_STRICT
1473 case X86_XCPT_GP: /* General protection failure exception.*/
1474 case X86_XCPT_UD: /* Unknown opcode exception. */
1475 case X86_XCPT_DE: /* Divide error. */
1476 case X86_XCPT_SS: /* Stack segment exception. */
1477 case X86_XCPT_NP: /* Segment not present exception. */
1478 {
1479 Event.au64[0] = 0;
1480 Event.n.u3Type = SVM_EVENT_EXCEPTION;
1481 Event.n.u1Valid = 1;
1482 Event.n.u8Vector = vector;
1483
1484 switch(vector)
1485 {
1486 case X86_XCPT_GP:
1487 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestGP);
1488 Event.n.u1ErrorCodeValid = 1;
1489 Event.n.u32ErrorCode = pVMCB->ctrl.u64ExitInfo1; /* EXITINFO1 = error code */
1490 break;
1491 case X86_XCPT_DE:
1492 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestDE);
1493 break;
1494 case X86_XCPT_UD:
1495 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestUD);
1496 break;
1497 case X86_XCPT_SS:
1498 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestSS);
1499 Event.n.u1ErrorCodeValid = 1;
1500 Event.n.u32ErrorCode = pVMCB->ctrl.u64ExitInfo1; /* EXITINFO1 = error code */
1501 break;
1502 case X86_XCPT_NP:
1503 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestNP);
1504 Event.n.u1ErrorCodeValid = 1;
1505 Event.n.u32ErrorCode = pVMCB->ctrl.u64ExitInfo1; /* EXITINFO1 = error code */
1506 break;
1507 }
1508 Log(("Trap %x at %RGv esi=%x\n", vector, (RTGCPTR)pCtx->rip, pCtx->esi));
1509 SVMR0InjectEvent(pVM, pVMCB, pCtx, &Event);
1510
1511 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit, x);
1512 goto ResumeExecution;
1513 }
1514#endif
1515 default:
1516 AssertMsgFailed(("Unexpected vm-exit caused by exception %x\n", vector));
1517 rc = VERR_EM_INTERNAL_ERROR;
1518 break;
1519
1520 } /* switch (vector) */
1521 break;
1522 }
1523
1524 case SVM_EXIT_NPF:
1525 {
1526 /* EXITINFO1 contains fault errorcode; EXITINFO2 contains the guest physical address causing the fault. */
1527 uint32_t errCode = pVMCB->ctrl.u64ExitInfo1; /* EXITINFO1 = error code */
1528 RTGCPHYS uFaultAddress = pVMCB->ctrl.u64ExitInfo2; /* EXITINFO2 = fault address */
1529
1530 Assert(pVM->hwaccm.s.fNestedPaging);
1531 Log(("Nested page fault at %RGv cr2=%RGp error code %x\n", (RTGCPTR)pCtx->rip, uFaultAddress, errCode));
1532 /* Exit qualification contains the linear address of the page fault. */
1533 TRPMAssertTrap(pVM, X86_XCPT_PF, TRPM_TRAP);
1534 TRPMSetErrorCode(pVM, errCode);
1535 TRPMSetFaultAddress(pVM, uFaultAddress);
1536
1537 /* Handle the pagefault trap for the nested shadow table. */
1538 rc = PGMR0Trap0eHandlerNestedPaging(pVM, PGMGetHostMode(pVM), errCode, CPUMCTX2CORE(pCtx), uFaultAddress);
1539 Log2(("PGMR0Trap0eHandlerNestedPaging %RGv returned %Rrc\n", (RTGCPTR)pCtx->rip, rc));
1540 if (rc == VINF_SUCCESS)
1541 { /* We've successfully synced our shadow pages, so let's just continue execution. */
1542 Log2(("Shadow page fault at %RGv cr2=%RGp error code %x\n", (RTGCPTR)pCtx->rip, uFaultAddress, errCode));
1543 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitShadowPF);
1544
1545 TRPMResetTrap(pVM);
1546
1547 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit, x);
1548 goto ResumeExecution;
1549 }
1550
1551#ifdef VBOX_STRICT
1552 if (rc != VINF_EM_RAW_EMULATE_INSTR)
1553 LogFlow(("PGMTrap0eHandlerNestedPaging failed with %d\n", rc));
1554#endif
1555 /* Need to go back to the recompiler to emulate the instruction. */
1556 TRPMResetTrap(pVM);
1557 break;
1558 }
1559
1560 case SVM_EXIT_VINTR:
1561 /* A virtual interrupt is about to be delivered, which means IF=1. */
1562 Log(("SVM_EXIT_VINTR IF=%d\n", pCtx->eflags.Bits.u1IF));
1563 pVMCB->ctrl.IntCtrl.n.u1VIrqValid = 0;
1564 pVMCB->ctrl.IntCtrl.n.u8VIrqVector = 0;
1565 goto ResumeExecution;
1566
1567 case SVM_EXIT_FERR_FREEZE:
1568 case SVM_EXIT_INTR:
1569 case SVM_EXIT_NMI:
1570 case SVM_EXIT_SMI:
1571 case SVM_EXIT_INIT:
1572 /* External interrupt; leave to allow it to be dispatched again. */
1573 rc = VINF_EM_RAW_INTERRUPT;
1574 break;
1575
1576 case SVM_EXIT_WBINVD:
1577 case SVM_EXIT_INVD: /* Guest software attempted to execute INVD. */
1578 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitInvd);
1579 /* Skip instruction and continue directly. */
1580 pCtx->rip += 2; /* Note! hardcoded opcode size! */
1581 /* Continue execution.*/
1582 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit, x);
1583 goto ResumeExecution;
1584
1585 case SVM_EXIT_CPUID: /* Guest software attempted to execute CPUID. */
1586 {
1587 Log2(("SVM: Cpuid at %RGv for %x\n", (RTGCPTR)pCtx->rip, pCtx->eax));
1588 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitCpuid);
1589 rc = EMInterpretCpuId(pVM, CPUMCTX2CORE(pCtx));
1590 if (rc == VINF_SUCCESS)
1591 {
1592 /* Update EIP and continue execution. */
1593 pCtx->rip += 2; /* Note! hardcoded opcode size! */
1594 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit, x);
1595 goto ResumeExecution;
1596 }
1597 AssertMsgFailed(("EMU: cpuid failed with %Rrc\n", rc));
1598 rc = VINF_EM_RAW_EMULATE_INSTR;
1599 break;
1600 }
1601
1602 case SVM_EXIT_RDTSC: /* Guest software attempted to execute RDTSC. */
1603 {
1604 Log2(("SVM: Rdtsc\n"));
1605 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitRdtsc);
1606 rc = EMInterpretRdtsc(pVM, CPUMCTX2CORE(pCtx));
1607 if (rc == VINF_SUCCESS)
1608 {
1609 /* Update EIP and continue execution. */
1610 pCtx->rip += 2; /* Note! hardcoded opcode size! */
1611 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit, x);
1612 goto ResumeExecution;
1613 }
1614 AssertMsgFailed(("EMU: rdtsc failed with %Rrc\n", rc));
1615 rc = VINF_EM_RAW_EMULATE_INSTR;
1616 break;
1617 }
1618
1619 case SVM_EXIT_RDTSCP: /* Guest software attempted to execute RDTSCP. */
1620 {
1621 Log2(("SVM: Rdtscp\n"));
1622 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitRdtsc);
1623 rc = EMInterpretRdtscp(pVM, pCtx);
1624 if (rc == VINF_SUCCESS)
1625 {
1626 /* Update EIP and continue execution. */
1627 pCtx->rip += 3; /* Note! hardcoded opcode size! */
1628 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit, x);
1629 goto ResumeExecution;
1630 }
1631 AssertMsgFailed(("EMU: rdtscp failed with %Rrc\n", rc));
1632 rc = VINF_EM_RAW_EMULATE_INSTR;
1633 break;
1634 }
1635
1636 case SVM_EXIT_INVLPG: /* Guest software attempted to execute INVPG. */
1637 {
1638 Log2(("SVM: invlpg\n"));
1639 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitInvpg);
1640
1641 Assert(!pVM->hwaccm.s.fNestedPaging);
1642
1643 /* Truly a pita. Why can't SVM give the same information as VT-x? */
1644 rc = SVMR0InterpretInvpg(pVM, CPUMCTX2CORE(pCtx), pVMCB->ctrl.TLBCtrl.n.u32ASID);
1645 if (rc == VINF_SUCCESS)
1646 {
1647 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatFlushPageInvlpg);
1648 goto ResumeExecution; /* eip already updated */
1649 }
1650 break;
1651 }
1652
1653 case SVM_EXIT_WRITE_CR0: case SVM_EXIT_WRITE_CR1: case SVM_EXIT_WRITE_CR2: case SVM_EXIT_WRITE_CR3:
1654 case SVM_EXIT_WRITE_CR4: case SVM_EXIT_WRITE_CR5: case SVM_EXIT_WRITE_CR6: case SVM_EXIT_WRITE_CR7:
1655 case SVM_EXIT_WRITE_CR8: case SVM_EXIT_WRITE_CR9: case SVM_EXIT_WRITE_CR10: case SVM_EXIT_WRITE_CR11:
1656 case SVM_EXIT_WRITE_CR12: case SVM_EXIT_WRITE_CR13: case SVM_EXIT_WRITE_CR14: case SVM_EXIT_WRITE_CR15:
1657 {
1658 uint32_t cbSize;
1659
1660 Log2(("SVM: %RGv mov cr%d, \n", (RTGCPTR)pCtx->rip, exitCode - SVM_EXIT_WRITE_CR0));
1661 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitCRxWrite[exitCode - SVM_EXIT_WRITE_CR0]);
1662 rc = EMInterpretInstruction(pVM, CPUMCTX2CORE(pCtx), 0, &cbSize);
1663
1664 switch (exitCode - SVM_EXIT_WRITE_CR0)
1665 {
1666 case 0:
1667 pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_GUEST_CR0;
1668 break;
1669 case 2:
1670 break;
1671 case 3:
1672 Assert(!pVM->hwaccm.s.fNestedPaging);
1673 pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_GUEST_CR3;
1674 break;
1675 case 4:
1676 pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_GUEST_CR4;
1677 break;
1678 case 8:
1679 break;
1680 default:
1681 AssertFailed();
1682 }
1683 /* Check if a sync operation is pending. */
1684 if ( rc == VINF_SUCCESS /* don't bother if we are going to ring 3 anyway */
1685 && VM_FF_ISPENDING(pVM, VM_FF_PGM_SYNC_CR3 | VM_FF_PGM_SYNC_CR3_NON_GLOBAL))
1686 {
1687 rc = PGMSyncCR3(pVM, CPUMGetGuestCR0(pVM), CPUMGetGuestCR3(pVM), CPUMGetGuestCR4(pVM), VM_FF_ISSET(pVM, VM_FF_PGM_SYNC_CR3));
1688 AssertRC(rc);
1689
1690 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatFlushTLBCRxChange);
1691
1692 /* Must be set by PGMSyncCR3 */
1693 Assert(PGMGetGuestMode(pVM) <= PGMMODE_PROTECTED || pVCpu->hwaccm.s.fForceTLBFlush);
1694 }
1695 if (rc == VINF_SUCCESS)
1696 {
1697 /* EIP has been updated already. */
1698
1699 /* Only resume if successful. */
1700 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit, x);
1701 goto ResumeExecution;
1702 }
1703 Assert(rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_PGM_SYNC_CR3);
1704 break;
1705 }
1706
1707 case SVM_EXIT_READ_CR0: case SVM_EXIT_READ_CR1: case SVM_EXIT_READ_CR2: case SVM_EXIT_READ_CR3:
1708 case SVM_EXIT_READ_CR4: case SVM_EXIT_READ_CR5: case SVM_EXIT_READ_CR6: case SVM_EXIT_READ_CR7:
1709 case SVM_EXIT_READ_CR8: case SVM_EXIT_READ_CR9: case SVM_EXIT_READ_CR10: case SVM_EXIT_READ_CR11:
1710 case SVM_EXIT_READ_CR12: case SVM_EXIT_READ_CR13: case SVM_EXIT_READ_CR14: case SVM_EXIT_READ_CR15:
1711 {
1712 uint32_t cbSize;
1713
1714 Log2(("SVM: %RGv mov x, cr%d\n", (RTGCPTR)pCtx->rip, exitCode - SVM_EXIT_READ_CR0));
1715 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitCRxRead[exitCode - SVM_EXIT_WRITE_CR0]);
1716 rc = EMInterpretInstruction(pVM, CPUMCTX2CORE(pCtx), 0, &cbSize);
1717 if (rc == VINF_SUCCESS)
1718 {
1719 /* EIP has been updated already. */
1720
1721 /* Only resume if successful. */
1722 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit, x);
1723 goto ResumeExecution;
1724 }
1725 Assert(rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_PGM_SYNC_CR3);
1726 break;
1727 }
1728
1729 case SVM_EXIT_WRITE_DR0: case SVM_EXIT_WRITE_DR1: case SVM_EXIT_WRITE_DR2: case SVM_EXIT_WRITE_DR3:
1730 case SVM_EXIT_WRITE_DR4: case SVM_EXIT_WRITE_DR5: case SVM_EXIT_WRITE_DR6: case SVM_EXIT_WRITE_DR7:
1731 case SVM_EXIT_WRITE_DR8: case SVM_EXIT_WRITE_DR9: case SVM_EXIT_WRITE_DR10: case SVM_EXIT_WRITE_DR11:
1732 case SVM_EXIT_WRITE_DR12: case SVM_EXIT_WRITE_DR13: case SVM_EXIT_WRITE_DR14: case SVM_EXIT_WRITE_DR15:
1733 {
1734 uint32_t cbSize;
1735
1736 Log2(("SVM: %RGv mov dr%d, x\n", (RTGCPTR)pCtx->rip, exitCode - SVM_EXIT_WRITE_DR0));
1737 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitDRxRead);
1738
1739 if (!DBGFIsStepping(pVM))
1740 {
1741 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatDRxContextSwitch);
1742
1743 /* Disable drx move intercepts. */
1744 pVMCB->ctrl.u16InterceptRdDRx = 0;
1745 pVMCB->ctrl.u16InterceptWrDRx = 0;
1746
1747 /* Save the host and load the guest debug state. */
1748 rc = CPUMR0LoadGuestDebugState(pVM, pVCpu, pCtx, false /* exclude DR6 */);
1749 AssertRC(rc);
1750
1751 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit, x);
1752 goto ResumeExecution;
1753 }
1754
1755 rc = EMInterpretInstruction(pVM, CPUMCTX2CORE(pCtx), 0, &cbSize);
1756 if (rc == VINF_SUCCESS)
1757 {
1758 /* EIP has been updated already. */
1759 pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_GUEST_DEBUG;
1760
1761 /* Only resume if successful. */
1762 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit, x);
1763 goto ResumeExecution;
1764 }
1765 Assert(rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_PGM_SYNC_CR3);
1766 break;
1767 }
1768
1769 case SVM_EXIT_READ_DR0: case SVM_EXIT_READ_DR1: case SVM_EXIT_READ_DR2: case SVM_EXIT_READ_DR3:
1770 case SVM_EXIT_READ_DR4: case SVM_EXIT_READ_DR5: case SVM_EXIT_READ_DR6: case SVM_EXIT_READ_DR7:
1771 case SVM_EXIT_READ_DR8: case SVM_EXIT_READ_DR9: case SVM_EXIT_READ_DR10: case SVM_EXIT_READ_DR11:
1772 case SVM_EXIT_READ_DR12: case SVM_EXIT_READ_DR13: case SVM_EXIT_READ_DR14: case SVM_EXIT_READ_DR15:
1773 {
1774 uint32_t cbSize;
1775
1776 Log2(("SVM: %RGv mov dr%d, x\n", (RTGCPTR)pCtx->rip, exitCode - SVM_EXIT_READ_DR0));
1777 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitDRxRead);
1778
1779 if (!DBGFIsStepping(pVM))
1780 {
1781 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatDRxContextSwitch);
1782
1783 /* Disable drx move intercepts. */
1784 pVMCB->ctrl.u16InterceptRdDRx = 0;
1785 pVMCB->ctrl.u16InterceptWrDRx = 0;
1786
1787 /* Save the host and load the guest debug state. */
1788 rc = CPUMR0LoadGuestDebugState(pVM, pVCpu, pCtx, false /* exclude DR6 */);
1789 AssertRC(rc);
1790
1791 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit, x);
1792 goto ResumeExecution;
1793 }
1794
1795 rc = EMInterpretInstruction(pVM, CPUMCTX2CORE(pCtx), 0, &cbSize);
1796 if (rc == VINF_SUCCESS)
1797 {
1798 /* EIP has been updated already. */
1799
1800 /* Only resume if successful. */
1801 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit, x);
1802 goto ResumeExecution;
1803 }
1804 Assert(rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_PGM_SYNC_CR3);
1805 break;
1806 }
1807
1808 /* Note: We'll get a #GP if the IO instruction isn't allowed (IOPL or TSS bitmap); no need to double check. */
1809 case SVM_EXIT_IOIO: /* I/O instruction. */
1810 {
1811 SVM_IOIO_EXIT IoExitInfo;
1812 uint32_t uIOSize, uAndVal;
1813
1814 IoExitInfo.au32[0] = pVMCB->ctrl.u64ExitInfo1;
1815
1816 /** @todo could use a lookup table here */
1817 if (IoExitInfo.n.u1OP8)
1818 {
1819 uIOSize = 1;
1820 uAndVal = 0xff;
1821 }
1822 else
1823 if (IoExitInfo.n.u1OP16)
1824 {
1825 uIOSize = 2;
1826 uAndVal = 0xffff;
1827 }
1828 else
1829 if (IoExitInfo.n.u1OP32)
1830 {
1831 uIOSize = 4;
1832 uAndVal = 0xffffffff;
1833 }
1834 else
1835 {
1836 AssertFailed(); /* should be fatal. */
1837 rc = VINF_EM_RAW_EMULATE_INSTR;
1838 break;
1839 }
1840
1841 if (IoExitInfo.n.u1STR)
1842 {
1843 /* ins/outs */
1844 DISCPUSTATE Cpu;
1845
1846 /* Disassemble manually to deal with segment prefixes. */
1847 rc = EMInterpretDisasOne(pVM, CPUMCTX2CORE(pCtx), &Cpu, NULL);
1848 if (rc == VINF_SUCCESS)
1849 {
1850 if (IoExitInfo.n.u1Type == 0)
1851 {
1852 Log2(("IOMInterpretOUTSEx %RGv %x size=%d\n", (RTGCPTR)pCtx->rip, IoExitInfo.n.u16Port, uIOSize));
1853 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitIOStringWrite);
1854 rc = IOMInterpretOUTSEx(pVM, CPUMCTX2CORE(pCtx), IoExitInfo.n.u16Port, Cpu.prefix, uIOSize);
1855 }
1856 else
1857 {
1858 Log2(("IOMInterpretINSEx %RGv %x size=%d\n", (RTGCPTR)pCtx->rip, IoExitInfo.n.u16Port, uIOSize));
1859 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitIOStringRead);
1860 rc = IOMInterpretINSEx(pVM, CPUMCTX2CORE(pCtx), IoExitInfo.n.u16Port, Cpu.prefix, uIOSize);
1861 }
1862 }
1863 else
1864 rc = VINF_EM_RAW_EMULATE_INSTR;
1865 }
1866 else
1867 {
1868 /* normal in/out */
1869 Assert(!IoExitInfo.n.u1REP);
1870
1871 if (IoExitInfo.n.u1Type == 0)
1872 {
1873 Log2(("IOMIOPortWrite %RGv %x %x size=%d\n", (RTGCPTR)pCtx->rip, IoExitInfo.n.u16Port, pCtx->eax & uAndVal, uIOSize));
1874 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitIOWrite);
1875 rc = IOMIOPortWrite(pVM, IoExitInfo.n.u16Port, pCtx->eax & uAndVal, uIOSize);
1876 }
1877 else
1878 {
1879 uint32_t u32Val = 0;
1880
1881 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitIORead);
1882 rc = IOMIOPortRead(pVM, IoExitInfo.n.u16Port, &u32Val, uIOSize);
1883 if (IOM_SUCCESS(rc))
1884 {
1885 /* Write back to the EAX register. */
1886 pCtx->eax = (pCtx->eax & ~uAndVal) | (u32Val & uAndVal);
1887 Log2(("IOMIOPortRead %RGv %x %x size=%d\n", (RTGCPTR)pCtx->rip, IoExitInfo.n.u16Port, u32Val & uAndVal, uIOSize));
1888 }
1889 }
1890 }
1891 /*
1892 * Handled the I/O return codes.
1893 * (The unhandled cases end up with rc == VINF_EM_RAW_EMULATE_INSTR.)
1894 */
1895 if (IOM_SUCCESS(rc))
1896 {
1897 /* Update EIP and continue execution. */
1898 pCtx->rip = pVMCB->ctrl.u64ExitInfo2; /* RIP/EIP of the next instruction is saved in EXITINFO2. */
1899 if (RT_LIKELY(rc == VINF_SUCCESS))
1900 {
1901 /* If any IO breakpoints are armed, then we should check if a debug trap needs to be generated. */
1902 if (pCtx->dr[7] & X86_DR7_ENABLED_MASK)
1903 {
1904 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatDRxIOCheck);
1905 for (unsigned i=0;i<4;i++)
1906 {
1907 unsigned uBPLen = g_aIOSize[X86_DR7_GET_LEN(pCtx->dr[7], i)];
1908
1909 if ( (IoExitInfo.n.u16Port >= pCtx->dr[i] && IoExitInfo.n.u16Port < pCtx->dr[i] + uBPLen)
1910 && (pCtx->dr[7] & (X86_DR7_L(i) | X86_DR7_G(i)))
1911 && (pCtx->dr[7] & X86_DR7_RW(i, X86_DR7_RW_IO)) == X86_DR7_RW(i, X86_DR7_RW_IO))
1912 {
1913 SVM_EVENT Event;
1914
1915 Assert(CPUMIsGuestDebugStateActive(pVM));
1916
1917 /* Clear all breakpoint status flags and set the one we just hit. */
1918 pCtx->dr[6] &= ~(X86_DR6_B0|X86_DR6_B1|X86_DR6_B2|X86_DR6_B3);
1919 pCtx->dr[6] |= (uint64_t)RT_BIT(i);
1920
1921 /* Note: AMD64 Architecture Programmer's Manual 13.1:
1922 * Bits 15:13 of the DR6 register is never cleared by the processor and must be cleared by software after
1923 * the contents have been read.
1924 */
1925 pVMCB->guest.u64DR6 = pCtx->dr[6];
1926
1927 /* X86_DR7_GD will be cleared if drx accesses should be trapped inside the guest. */
1928 pCtx->dr[7] &= ~X86_DR7_GD;
1929
1930 /* Paranoia. */
1931 pCtx->dr[7] &= 0xffffffff; /* upper 32 bits reserved */
1932 pCtx->dr[7] &= ~(RT_BIT(11) | RT_BIT(12) | RT_BIT(14) | RT_BIT(15)); /* must be zero */
1933 pCtx->dr[7] |= 0x400; /* must be one */
1934
1935 pVMCB->guest.u64DR7 = pCtx->dr[7];
1936
1937 /* Inject the exception. */
1938 Log(("Inject IO debug trap at %RGv\n", (RTGCPTR)pCtx->rip));
1939
1940 Event.au64[0] = 0;
1941 Event.n.u3Type = SVM_EVENT_EXCEPTION; /* trap or fault */
1942 Event.n.u1Valid = 1;
1943 Event.n.u8Vector = X86_XCPT_DB;
1944
1945 SVMR0InjectEvent(pVM, pVMCB, pCtx, &Event);
1946
1947 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit, x);
1948 goto ResumeExecution;
1949 }
1950 }
1951 }
1952
1953 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit, x);
1954 goto ResumeExecution;
1955 }
1956 Log2(("EM status from IO at %RGv %x size %d: %Rrc\n", (RTGCPTR)pCtx->rip, IoExitInfo.n.u16Port, uIOSize, rc));
1957 break;
1958 }
1959
1960#ifdef VBOX_STRICT
1961 if (rc == VINF_IOM_HC_IOPORT_READ)
1962 Assert(IoExitInfo.n.u1Type != 0);
1963 else if (rc == VINF_IOM_HC_IOPORT_WRITE)
1964 Assert(IoExitInfo.n.u1Type == 0);
1965 else
1966 AssertMsg(RT_FAILURE(rc) || rc == VINF_EM_RAW_EMULATE_INSTR || rc == VINF_EM_RAW_GUEST_TRAP || rc == VINF_TRPM_XCPT_DISPATCHED, ("%Rrc\n", rc));
1967#endif
1968 Log2(("Failed IO at %RGv %x size %d\n", (RTGCPTR)pCtx->rip, IoExitInfo.n.u16Port, uIOSize));
1969 break;
1970 }
1971
1972 case SVM_EXIT_HLT:
1973 /** Check if external interrupts are pending; if so, don't switch back. */
1974 pCtx->rip++; /* skip hlt */
1975 if ( pCtx->eflags.Bits.u1IF
1976 && VM_FF_ISPENDING(pVM, (VM_FF_INTERRUPT_APIC|VM_FF_INTERRUPT_PIC)))
1977 goto ResumeExecution;
1978
1979 rc = VINF_EM_HALT;
1980 break;
1981
1982 case SVM_EXIT_RSM:
1983 case SVM_EXIT_INVLPGA:
1984 case SVM_EXIT_VMRUN:
1985 case SVM_EXIT_VMMCALL:
1986 case SVM_EXIT_VMLOAD:
1987 case SVM_EXIT_VMSAVE:
1988 case SVM_EXIT_STGI:
1989 case SVM_EXIT_CLGI:
1990 case SVM_EXIT_SKINIT:
1991 {
1992 /* Unsupported instructions. */
1993 SVM_EVENT Event;
1994
1995 Event.au64[0] = 0;
1996 Event.n.u3Type = SVM_EVENT_EXCEPTION;
1997 Event.n.u1Valid = 1;
1998 Event.n.u8Vector = X86_XCPT_UD;
1999
2000 Log(("Forced #UD trap at %RGv\n", (RTGCPTR)pCtx->rip));
2001 SVMR0InjectEvent(pVM, pVMCB, pCtx, &Event);
2002
2003 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit, x);
2004 goto ResumeExecution;
2005 }
2006
2007 /* Emulate in ring 3. */
2008 case SVM_EXIT_MSR:
2009 {
2010 uint32_t cbSize;
2011
2012 /* Note: the intel manual claims there's a REX version of RDMSR that's slightly different, so we play safe by completely disassembling the instruction. */
2013 Log(("SVM: %s\n", (pVMCB->ctrl.u64ExitInfo1 == 0) ? "rdmsr" : "wrmsr"));
2014 rc = EMInterpretInstruction(pVM, CPUMCTX2CORE(pCtx), 0, &cbSize);
2015 if (rc == VINF_SUCCESS)
2016 {
2017 /* EIP has been updated already. */
2018
2019 /* Only resume if successful. */
2020 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit, x);
2021 goto ResumeExecution;
2022 }
2023 AssertMsg(rc == VERR_EM_INTERPRETER, ("EMU: %s failed with %Rrc\n", (pVMCB->ctrl.u64ExitInfo1 == 0) ? "rdmsr" : "wrmsr", rc));
2024 break;
2025 }
2026
2027 case SVM_EXIT_MONITOR:
2028 case SVM_EXIT_RDPMC:
2029 case SVM_EXIT_PAUSE:
2030 case SVM_EXIT_MWAIT_UNCOND:
2031 case SVM_EXIT_MWAIT_ARMED:
2032 case SVM_EXIT_TASK_SWITCH: /* can change CR3; emulate */
2033 rc = VINF_EM_RAW_EXCEPTION_PRIVILEGED;
2034 break;
2035
2036 case SVM_EXIT_SHUTDOWN:
2037 rc = VINF_EM_RESET; /* Triple fault equals a reset. */
2038 break;
2039
2040 case SVM_EXIT_IDTR_READ:
2041 case SVM_EXIT_GDTR_READ:
2042 case SVM_EXIT_LDTR_READ:
2043 case SVM_EXIT_TR_READ:
2044 case SVM_EXIT_IDTR_WRITE:
2045 case SVM_EXIT_GDTR_WRITE:
2046 case SVM_EXIT_LDTR_WRITE:
2047 case SVM_EXIT_TR_WRITE:
2048 case SVM_EXIT_CR0_SEL_WRITE:
2049 default:
2050 /* Unexpected exit codes. */
2051 rc = VERR_EM_INTERNAL_ERROR;
2052 AssertMsgFailed(("Unexpected exit code %x\n", exitCode)); /* Can't happen. */
2053 break;
2054 }
2055
2056end:
2057
2058 /* Signal changes for the recompiler. */
2059 CPUMSetChangedFlags(pVM, CPUM_CHANGED_SYSENTER_MSR | CPUM_CHANGED_LDTR | CPUM_CHANGED_GDTR | CPUM_CHANGED_IDTR | CPUM_CHANGED_TR | CPUM_CHANGED_HIDDEN_SEL_REGS);
2060
2061 /* If we executed vmrun and an external irq was pending, then we don't have to do a full sync the next time. */
2062 if (exitCode == SVM_EXIT_INTR)
2063 {
2064 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatPendingHostIrq);
2065 /* On the next entry we'll only sync the host context. */
2066 pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_HOST_CONTEXT;
2067 }
2068 else
2069 {
2070 /* On the next entry we'll sync everything. */
2071 /** @todo we can do better than this */
2072 /* Not in the VINF_PGM_CHANGE_MODE though! */
2073 pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_ALL;
2074 }
2075
2076 /* translate into a less severe return code */
2077 if (rc == VERR_EM_INTERPRETER)
2078 rc = VINF_EM_RAW_EMULATE_INSTR;
2079
2080 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit, x);
2081 return rc;
2082}
2083
2084/**
2085 * Enters the AMD-V session
2086 *
2087 * @returns VBox status code.
2088 * @param pVM The VM to operate on.
2089 * @param pVCpu The VM CPU to operate on.
2090 * @param pCpu CPU info struct
2091 */
2092VMMR0DECL(int) SVMR0Enter(PVM pVM, PVMCPU pVCpu, PHWACCM_CPUINFO pCpu)
2093{
2094 Assert(pVM->hwaccm.s.svm.fSupported);
2095
2096 LogFlow(("SVMR0Enter cpu%d last=%d asid=%d\n", pCpu->idCpu, pVCpu->hwaccm.s.idLastCpu, pVCpu->hwaccm.s.uCurrentASID));
2097 pVCpu->hwaccm.s.fResumeVM = false;
2098
2099 /* Force to reload LDTR, so we'll execute VMLoad to load additional guest state. */
2100 pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_GUEST_LDTR;
2101
2102 return VINF_SUCCESS;
2103}
2104
2105
2106/**
2107 * Leaves the AMD-V session
2108 *
2109 * @returns VBox status code.
2110 * @param pVM The VM to operate on.
2111 * @param pVCpu The VM CPU to operate on.
2112 * @param pCtx CPU context
2113 */
2114VMMR0DECL(int) SVMR0Leave(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
2115{
2116 SVM_VMCB *pVMCB = (SVM_VMCB *)pVCpu->hwaccm.s.svm.pVMCB;
2117
2118 Assert(pVM->hwaccm.s.svm.fSupported);
2119
2120 /* Save the guest debug state if necessary. */
2121 if (CPUMIsGuestDebugStateActive(pVM))
2122 {
2123 CPUMR0SaveGuestDebugState(pVM, pVCpu, pCtx, false /* skip DR6 */);
2124
2125 /* Intercept all DRx reads and writes again. Changed later on. */
2126 pVMCB->ctrl.u16InterceptRdDRx = 0xFFFF;
2127 pVMCB->ctrl.u16InterceptWrDRx = 0xFFFF;
2128
2129 /* Resync the debug registers the next time. */
2130 pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_GUEST_DEBUG;
2131 }
2132 else
2133 Assert(pVMCB->ctrl.u16InterceptRdDRx == 0xFFFF && pVMCB->ctrl.u16InterceptWrDRx == 0xFFFF);
2134
2135 return VINF_SUCCESS;
2136}
2137
2138
2139static int svmR0InterpretInvlPg(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, uint32_t uASID)
2140{
2141 OP_PARAMVAL param1;
2142 RTGCPTR addr;
2143
2144 int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param1, &param1, PARAM_SOURCE);
2145 if(RT_FAILURE(rc))
2146 return VERR_EM_INTERPRETER;
2147
2148 switch(param1.type)
2149 {
2150 case PARMTYPE_IMMEDIATE:
2151 case PARMTYPE_ADDRESS:
2152 if(!(param1.flags & (PARAM_VAL32|PARAM_VAL64)))
2153 return VERR_EM_INTERPRETER;
2154 addr = param1.val.val64;
2155 break;
2156
2157 default:
2158 return VERR_EM_INTERPRETER;
2159 }
2160
2161 /** @todo is addr always a flat linear address or ds based
2162 * (in absence of segment override prefixes)????
2163 */
2164 rc = PGMInvalidatePage(pVM, addr);
2165 if (RT_SUCCESS(rc))
2166 {
2167 /* Manually invalidate the page for the VM's TLB. */
2168 Log(("SVMR0InvlpgA %RGv ASID=%d\n", addr, uASID));
2169 SVMR0InvlpgA(addr, uASID);
2170 return VINF_SUCCESS;
2171 }
2172 Assert(rc == VERR_REM_FLUSHED_PAGES_OVERFLOW);
2173 return rc;
2174}
2175
2176/**
2177 * Interprets INVLPG
2178 *
2179 * @returns VBox status code.
2180 * @retval VINF_* Scheduling instructions.
2181 * @retval VERR_EM_INTERPRETER Something we can't cope with.
2182 * @retval VERR_* Fatal errors.
2183 *
2184 * @param pVM The VM handle.
2185 * @param pRegFrame The register frame.
2186 * @param ASID Tagged TLB id for the guest
2187 *
2188 * Updates the EIP if an instruction was executed successfully.
2189 */
2190static int SVMR0InterpretInvpg(PVM pVM, PCPUMCTXCORE pRegFrame, uint32_t uASID)
2191{
2192 /*
2193 * Only allow 32 & 64 bits code.
2194 */
2195 DISCPUMODE enmMode = SELMGetCpuModeFromSelector(pVM, pRegFrame->eflags, pRegFrame->cs, &pRegFrame->csHid);
2196 if (enmMode != CPUMODE_16BIT)
2197 {
2198 RTGCPTR pbCode;
2199 int rc = SELMValidateAndConvertCSAddr(pVM, pRegFrame->eflags, pRegFrame->ss, pRegFrame->cs, &pRegFrame->csHid, (RTGCPTR)pRegFrame->rip, &pbCode);
2200 if (RT_SUCCESS(rc))
2201 {
2202 uint32_t cbOp;
2203 DISCPUSTATE Cpu;
2204
2205 Cpu.mode = enmMode;
2206 rc = EMInterpretDisasOneEx(pVM, pbCode, pRegFrame, &Cpu, &cbOp);
2207 Assert(RT_FAILURE(rc) || Cpu.pCurInstr->opcode == OP_INVLPG);
2208 if (RT_SUCCESS(rc) && Cpu.pCurInstr->opcode == OP_INVLPG)
2209 {
2210 Assert(cbOp == Cpu.opsize);
2211 rc = svmR0InterpretInvlPg(pVM, &Cpu, pRegFrame, uASID);
2212 if (RT_SUCCESS(rc))
2213 {
2214 pRegFrame->rip += cbOp; /* Move on to the next instruction. */
2215 }
2216 return rc;
2217 }
2218 }
2219 }
2220 return VERR_EM_INTERPRETER;
2221}
2222
2223
2224/**
2225 * Invalidates a guest page
2226 *
2227 * @returns VBox status code.
2228 * @param pVM The VM to operate on.
2229 * @param pVCpu The VM CPU to operate on.
2230 * @param GCVirt Page to invalidate
2231 */
2232VMMR0DECL(int) SVMR0InvalidatePage(PVM pVM, PVMCPU pVCpu, RTGCPTR GCVirt)
2233{
2234 bool fFlushPending = pVM->hwaccm.s.svm.fAlwaysFlushTLB | pVCpu->hwaccm.s.fForceTLBFlush;
2235
2236 /* Skip it if a TLB flush is already pending. */
2237 if (!fFlushPending)
2238 {
2239 SVM_VMCB *pVMCB;
2240
2241 Log2(("SVMR0InvalidatePage %RGv\n", GCVirt));
2242 AssertReturn(pVM, VERR_INVALID_PARAMETER);
2243 Assert(pVM->hwaccm.s.svm.fSupported);
2244
2245 /* @todo SMP */
2246 pVMCB = (SVM_VMCB *)pVM->aCpus[0].hwaccm.s.svm.pVMCB;
2247 AssertMsgReturn(pVMCB, ("Invalid pVMCB\n"), VERR_EM_INTERNAL_ERROR);
2248
2249 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatFlushPageManual);
2250#if HC_ARCH_BITS == 32
2251 /* If we get a flush in 64 bits guest mode, then force a full TLB flush. Invlpga takes only 32 bits addresses. */
2252 if (CPUMIsGuestInLongMode(pVM))
2253 pVCpu->hwaccm.s.fForceTLBFlush = true;
2254 else
2255#endif
2256 SVMR0InvlpgA(GCVirt, pVMCB->ctrl.TLBCtrl.n.u32ASID);
2257 }
2258 return VINF_SUCCESS;
2259}
2260
2261
2262/**
2263 * Invalidates a guest page by physical address
2264 *
2265 * @returns VBox status code.
2266 * @param pVM The VM to operate on.
2267 * @param pVCpu The VM CPU to operate on.
2268 * @param GCPhys Page to invalidate
2269 */
2270VMMR0DECL(int) SVMR0InvalidatePhysPage(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys)
2271{
2272 Assert(pVM->hwaccm.s.fNestedPaging);
2273 /* invlpga only invalidates TLB entries for guest virtual addresses; we have no choice but to force a TLB flush here. */
2274 pVCpu->hwaccm.s.fForceTLBFlush = true;
2275 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatFlushTLBInvlpga);
2276 return VINF_SUCCESS;
2277}
2278
2279#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
2280/**
2281 * Prepares for and executes VMRUN (64 bits guests from a 32 bits hosts).
2282 *
2283 * @returns VBox status code.
2284 * @param pVMCBHostPhys Physical address of host VMCB.
2285 * @param pVMCBPhys Physical address of the VMCB.
2286 * @param pCtx Guest context.
2287 * @param pVM The VM to operate on.
2288 * @param pVCpu The VMCPU to operate on.
2289 */
2290DECLASM(int) SVMR0VMSwitcherRun64(RTHCPHYS pVMCBHostPhys, RTHCPHYS pVMCBPhys, PCPUMCTX pCtx, PVM pVM, PVMCPU pVCpu)
2291{
2292 uint32_t aParam[4];
2293 int rc;
2294
2295 aParam[0] = (uint32_t)(pVMCBHostPhys >> 32); /* Param 1: pVMCBHostPhys - Hi. */
2296 aParam[1] = (uint32_t)(pVMCBHostPhys); /* Param 1: pVMCBHostPhys - Lo. */
2297 aParam[2] = (uint32_t)(pVMCBPhys >> 32); /* Param 2: pVMCBPhys - Hi. */
2298 aParam[3] = (uint32_t)(pVMCBPhys); /* Param 2: pVMCBPhys - Lo. */
2299
2300 return SVMR0Execute64BitsHandler(pVM, pVCpu, pCtx, pVM->hwaccm.s.pfnVMXGCStartVM64, 4, &aParam[0]);
2301}
2302
2303/**
2304 * Executes the specified handler in 64 mode
2305 *
2306 * @returns VBox status code.
2307 * @param pVM The VM to operate on.
2308 * @param pVCpu The VMCPU to operate on.
2309 * @param pCtx Guest context
2310 * @param pfnHandler RC handler
2311 * @param cbParam Number of parameters
2312 * @param paParam Array of 32 bits parameters
2313 */
2314VMMR0DECL(int) SVMR0Execute64BitsHandler(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, RTRCPTR pfnHandler, uint32_t cbParam, uint32_t *paParam)
2315{
2316 int rc;
2317 RTCCUINTREG uFlags;
2318
2319 /* @todo This code is not guest SMP safe (hyper context) */
2320 AssertReturn(pVM->cCPUs == 1, VERR_ACCESS_DENIED);
2321
2322 uFlags = ASMIntDisableFlags();
2323
2324 CPUMSetHyperESP(pVM, VMMGetStackRC(pVM));
2325 CPUMSetHyperEIP(pVM, pfnHandler);
2326 for (int i=(int)cbParam-1;i>=0;i++)
2327 CPUMPushHyper(pVM, paParam[i]);
2328
2329 /* Call switcher. */
2330 rc = pVM->hwaccm.s.pfnHost32ToGuest64R0(pVM);
2331
2332 ASMSetFlags(uFlags);
2333 return rc;
2334}
2335
2336#endif /* HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS) */
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette