VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR0/HWSVMR0.cpp@ 15189

Last change on this file since 15189 was 15154, checked in by vboxsync, 16 years ago

Always use amd64 paging if the guest is in amd64 mode (nested paging).

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 93.3 KB
Line 
1/* $Id: HWSVMR0.cpp 15154 2008-12-09 10:56:22Z vboxsync $ */
2/** @file
3 * HWACCM SVM - Host Context Ring 0.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/*******************************************************************************
24* Header Files *
25*******************************************************************************/
26#define LOG_GROUP LOG_GROUP_HWACCM
27#include <VBox/hwaccm.h>
28#include "HWACCMInternal.h"
29#include <VBox/vm.h>
30#include <VBox/x86.h>
31#include <VBox/hwacc_svm.h>
32#include <VBox/pgm.h>
33#include <VBox/pdm.h>
34#include <VBox/err.h>
35#include <VBox/log.h>
36#include <VBox/selm.h>
37#include <VBox/iom.h>
38#include <VBox/dis.h>
39#include <VBox/dbgf.h>
40#include <VBox/disopcode.h>
41#include <iprt/param.h>
42#include <iprt/assert.h>
43#include <iprt/asm.h>
44#include <iprt/cpuset.h>
45#include <iprt/mp.h>
46#include "HWSVMR0.h"
47
48/*******************************************************************************
49* Internal Functions *
50*******************************************************************************/
51static int SVMR0InterpretInvpg(PVM pVM, PCPUMCTXCORE pRegFrame, uint32_t uASID);
52
53/*******************************************************************************
54* Global Variables *
55*******************************************************************************/
56/* IO operation lookup arrays. */
57static uint32_t const g_aIOSize[4] = {1, 2, 0, 4};
58
59/**
60 * Sets up and activates AMD-V on the current CPU
61 *
62 * @returns VBox status code.
63 * @param pCpu CPU info struct
64 * @param pVM The VM to operate on. (can be NULL after a resume!!)
65 * @param pvPageCpu Pointer to the global cpu page
66 * @param pPageCpuPhys Physical address of the global cpu page
67 */
68VMMR0DECL(int) SVMR0EnableCpu(PHWACCM_CPUINFO pCpu, PVM pVM, void *pvPageCpu, RTHCPHYS pPageCpuPhys)
69{
70 AssertReturn(pPageCpuPhys, VERR_INVALID_PARAMETER);
71 AssertReturn(pvPageCpu, VERR_INVALID_PARAMETER);
72
73 /* We must turn on AMD-V and setup the host state physical address, as those MSRs are per-cpu/core. */
74
75#ifdef LOG_ENABLED
76 SUPR0Printf("SVMR0EnableCpu cpu %d page (%x) %x\n", pCpu->idCpu, pvPageCpu, (uint32_t)pPageCpuPhys);
77#endif
78
79 /* Turn on AMD-V in the EFER MSR. */
80 uint64_t val = ASMRdMsr(MSR_K6_EFER);
81 if (!(val & MSR_K6_EFER_SVME))
82 ASMWrMsr(MSR_K6_EFER, val | MSR_K6_EFER_SVME);
83
84 /* Write the physical page address where the CPU will store the host state while executing the VM. */
85 ASMWrMsr(MSR_K8_VM_HSAVE_PA, pPageCpuPhys);
86
87 return VINF_SUCCESS;
88}
89
90/**
91 * Deactivates AMD-V on the current CPU
92 *
93 * @returns VBox status code.
94 * @param pCpu CPU info struct
95 * @param pvPageCpu Pointer to the global cpu page
96 * @param pPageCpuPhys Physical address of the global cpu page
97 */
98VMMR0DECL(int) SVMR0DisableCpu(PHWACCM_CPUINFO pCpu, void *pvPageCpu, RTHCPHYS pPageCpuPhys)
99{
100 AssertReturn(pPageCpuPhys, VERR_INVALID_PARAMETER);
101 AssertReturn(pvPageCpu, VERR_INVALID_PARAMETER);
102
103#ifdef LOG_ENABLED
104 SUPR0Printf("SVMR0DisableCpu cpu %d\n", pCpu->idCpu);
105#endif
106
107 /* Turn off AMD-V in the EFER MSR. */
108 uint64_t val = ASMRdMsr(MSR_K6_EFER);
109 ASMWrMsr(MSR_K6_EFER, val & ~MSR_K6_EFER_SVME);
110
111 /* Invalidate host state physical address. */
112 ASMWrMsr(MSR_K8_VM_HSAVE_PA, 0);
113
114 return VINF_SUCCESS;
115}
116
117/**
118 * Does Ring-0 per VM AMD-V init.
119 *
120 * @returns VBox status code.
121 * @param pVM The VM to operate on.
122 */
123VMMR0DECL(int) SVMR0InitVM(PVM pVM)
124{
125 int rc;
126
127 pVM->hwaccm.s.svm.pMemObjVMCBHost = NIL_RTR0MEMOBJ;
128 pVM->hwaccm.s.svm.pMemObjIOBitmap = NIL_RTR0MEMOBJ;
129 pVM->hwaccm.s.svm.pMemObjMSRBitmap = NIL_RTR0MEMOBJ;
130
131 /* Allocate one page for the host context */
132 rc = RTR0MemObjAllocCont(&pVM->hwaccm.s.svm.pMemObjVMCBHost, 1 << PAGE_SHIFT, true /* executable R0 mapping */);
133 if (RT_FAILURE(rc))
134 return rc;
135
136 pVM->hwaccm.s.svm.pVMCBHost = RTR0MemObjAddress(pVM->hwaccm.s.svm.pMemObjVMCBHost);
137 pVM->hwaccm.s.svm.pVMCBHostPhys = RTR0MemObjGetPagePhysAddr(pVM->hwaccm.s.svm.pMemObjVMCBHost, 0);
138 ASMMemZeroPage(pVM->hwaccm.s.svm.pVMCBHost);
139
140 /* Allocate 12 KB for the IO bitmap (doesn't seem to be a way to convince SVM not to use it) */
141 rc = RTR0MemObjAllocCont(&pVM->hwaccm.s.svm.pMemObjIOBitmap, 3 << PAGE_SHIFT, true /* executable R0 mapping */);
142 if (RT_FAILURE(rc))
143 return rc;
144
145 pVM->hwaccm.s.svm.pIOBitmap = RTR0MemObjAddress(pVM->hwaccm.s.svm.pMemObjIOBitmap);
146 pVM->hwaccm.s.svm.pIOBitmapPhys = RTR0MemObjGetPagePhysAddr(pVM->hwaccm.s.svm.pMemObjIOBitmap, 0);
147 /* Set all bits to intercept all IO accesses. */
148 ASMMemFill32(pVM->hwaccm.s.svm.pIOBitmap, PAGE_SIZE*3, 0xffffffff);
149
150 /* Allocate 8 KB for the MSR bitmap (doesn't seem to be a way to convince SVM not to use it) */
151 rc = RTR0MemObjAllocCont(&pVM->hwaccm.s.svm.pMemObjMSRBitmap, 2 << PAGE_SHIFT, true /* executable R0 mapping */);
152 if (RT_FAILURE(rc))
153 return rc;
154
155 pVM->hwaccm.s.svm.pMSRBitmap = RTR0MemObjAddress(pVM->hwaccm.s.svm.pMemObjMSRBitmap);
156 pVM->hwaccm.s.svm.pMSRBitmapPhys = RTR0MemObjGetPagePhysAddr(pVM->hwaccm.s.svm.pMemObjMSRBitmap, 0);
157 /* Set all bits to intercept all MSR accesses. */
158 ASMMemFill32(pVM->hwaccm.s.svm.pMSRBitmap, PAGE_SIZE*2, 0xffffffff);
159
160 /* Erratum 170 which requires a forced TLB flush for each world switch:
161 * See http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/33610.pdf
162 *
163 * All BH-G1/2 and DH-G1/2 models include a fix:
164 * Athlon X2: 0x6b 1/2
165 * 0x68 1/2
166 * Athlon 64: 0x7f 1
167 * 0x6f 2
168 * Sempron: 0x7f 1/2
169 * 0x6f 2
170 * 0x6c 2
171 * 0x7c 2
172 * Turion 64: 0x68 2
173 *
174 */
175 uint32_t u32Dummy;
176 uint32_t u32Version, u32Family, u32Model, u32Stepping, u32BaseFamily;
177 ASMCpuId(1, &u32Version, &u32Dummy, &u32Dummy, &u32Dummy);
178 u32BaseFamily= (u32Version >> 8) & 0xf;
179 u32Family = u32BaseFamily + (u32BaseFamily == 0xf ? ((u32Version >> 20) & 0x7f) : 0);
180 u32Model = ((u32Version >> 4) & 0xf);
181 u32Model = u32Model | ((u32BaseFamily == 0xf ? (u32Version >> 16) & 0x0f : 0) << 4);
182 u32Stepping = u32Version & 0xf;
183 if ( u32Family == 0xf
184 && !((u32Model == 0x68 || u32Model == 0x6b || u32Model == 0x7f) && u32Stepping >= 1)
185 && !((u32Model == 0x6f || u32Model == 0x6c || u32Model == 0x7c) && u32Stepping >= 2))
186 {
187 Log(("SVMR0InitVM: AMD cpu with erratum 170 family %x model %x stepping %x\n", u32Family, u32Model, u32Stepping));
188 pVM->hwaccm.s.svm.fAlwaysFlushTLB = true;
189 }
190
191 /* Allocate VMCBs for all guest CPUs. */
192 for (unsigned i=0;i<pVM->cCPUs;i++)
193 {
194 pVM->aCpus[i].hwaccm.s.svm.pMemObjVMCB = NIL_RTR0MEMOBJ;
195
196 /* Allocate one page for the VM control block (VMCB). */
197 rc = RTR0MemObjAllocCont(&pVM->aCpus[i].hwaccm.s.svm.pMemObjVMCB, 1 << PAGE_SHIFT, true /* executable R0 mapping */);
198 if (RT_FAILURE(rc))
199 return rc;
200
201 pVM->aCpus[i].hwaccm.s.svm.pVMCB = RTR0MemObjAddress(pVM->aCpus[i].hwaccm.s.svm.pMemObjVMCB);
202 pVM->aCpus[i].hwaccm.s.svm.pVMCBPhys = RTR0MemObjGetPagePhysAddr(pVM->aCpus[i].hwaccm.s.svm.pMemObjVMCB, 0);
203 ASMMemZeroPage(pVM->aCpus[i].hwaccm.s.svm.pVMCB);
204 }
205
206 return VINF_SUCCESS;
207}
208
209/**
210 * Does Ring-0 per VM AMD-V termination.
211 *
212 * @returns VBox status code.
213 * @param pVM The VM to operate on.
214 */
215VMMR0DECL(int) SVMR0TermVM(PVM pVM)
216{
217 for (unsigned i=0;i<pVM->cCPUs;i++)
218 {
219 if (pVM->aCpus[i].hwaccm.s.svm.pMemObjVMCB != NIL_RTR0MEMOBJ)
220 {
221 RTR0MemObjFree(pVM->aCpus[i].hwaccm.s.svm.pMemObjVMCB, false);
222 pVM->aCpus[i].hwaccm.s.svm.pVMCB = 0;
223 pVM->aCpus[i].hwaccm.s.svm.pVMCBPhys = 0;
224 pVM->aCpus[i].hwaccm.s.svm.pMemObjVMCB = NIL_RTR0MEMOBJ;
225 }
226 }
227 if (pVM->hwaccm.s.svm.pMemObjVMCBHost != NIL_RTR0MEMOBJ)
228 {
229 RTR0MemObjFree(pVM->hwaccm.s.svm.pMemObjVMCBHost, false);
230 pVM->hwaccm.s.svm.pVMCBHost = 0;
231 pVM->hwaccm.s.svm.pVMCBHostPhys = 0;
232 pVM->hwaccm.s.svm.pMemObjVMCBHost = NIL_RTR0MEMOBJ;
233 }
234 if (pVM->hwaccm.s.svm.pMemObjIOBitmap != NIL_RTR0MEMOBJ)
235 {
236 RTR0MemObjFree(pVM->hwaccm.s.svm.pMemObjIOBitmap, false);
237 pVM->hwaccm.s.svm.pIOBitmap = 0;
238 pVM->hwaccm.s.svm.pIOBitmapPhys = 0;
239 pVM->hwaccm.s.svm.pMemObjIOBitmap = NIL_RTR0MEMOBJ;
240 }
241 if (pVM->hwaccm.s.svm.pMemObjMSRBitmap != NIL_RTR0MEMOBJ)
242 {
243 RTR0MemObjFree(pVM->hwaccm.s.svm.pMemObjMSRBitmap, false);
244 pVM->hwaccm.s.svm.pMSRBitmap = 0;
245 pVM->hwaccm.s.svm.pMSRBitmapPhys = 0;
246 pVM->hwaccm.s.svm.pMemObjMSRBitmap = NIL_RTR0MEMOBJ;
247 }
248 return VINF_SUCCESS;
249}
250
251/**
252 * Sets up AMD-V for the specified VM
253 *
254 * @returns VBox status code.
255 * @param pVM The VM to operate on.
256 */
257VMMR0DECL(int) SVMR0SetupVM(PVM pVM)
258{
259 int rc = VINF_SUCCESS;
260 SVM_VMCB *pVMCB;
261
262 AssertReturn(pVM, VERR_INVALID_PARAMETER);
263
264 Assert(pVM->hwaccm.s.svm.fSupported);
265
266 for (unsigned i=0;i<pVM->cCPUs;i++)
267 {
268 pVMCB = (SVM_VMCB *)pVM->aCpus[i].hwaccm.s.svm.pVMCB;
269 AssertMsgReturn(pVMCB, ("Invalid pVMCB\n"), VERR_EM_INTERNAL_ERROR);
270
271 /* Program the control fields. Most of them never have to be changed again. */
272 /* CR0/3/4 reads must be intercepted, our shadow values are not necessarily the same as the guest's. */
273 /* Note: CR0 & CR4 can be safely read when guest and shadow copies are identical. */
274 if (!pVM->hwaccm.s.fNestedPaging)
275 pVMCB->ctrl.u16InterceptRdCRx = RT_BIT(0) | RT_BIT(3) | RT_BIT(4);
276 else
277 pVMCB->ctrl.u16InterceptRdCRx = RT_BIT(0) | RT_BIT(4);
278
279 /*
280 * CR0/3/4 writes must be intercepted for obvious reasons.
281 */
282 if (!pVM->hwaccm.s.fNestedPaging)
283 pVMCB->ctrl.u16InterceptWrCRx = RT_BIT(0) | RT_BIT(3) | RT_BIT(4);
284 else
285 pVMCB->ctrl.u16InterceptWrCRx = RT_BIT(0) | RT_BIT(4) | RT_BIT(8);
286
287 /* Intercept all DRx reads and writes by default. Changed later on. */
288 pVMCB->ctrl.u16InterceptRdDRx = 0xFFFF;
289 pVMCB->ctrl.u16InterceptWrDRx = 0xFFFF;
290
291 /* Currently we don't care about DRx reads or writes. DRx registers are trashed.
292 * All breakpoints are automatically cleared when the VM exits.
293 */
294
295 pVMCB->ctrl.u32InterceptException = HWACCM_SVM_TRAP_MASK;
296#ifndef DEBUG
297 if (pVM->hwaccm.s.fNestedPaging)
298 pVMCB->ctrl.u32InterceptException &= ~RT_BIT(X86_XCPT_PF); /* no longer need to intercept #PF. */
299#endif
300
301 pVMCB->ctrl.u32InterceptCtrl1 = SVM_CTRL1_INTERCEPT_INTR
302 | SVM_CTRL1_INTERCEPT_VINTR
303 | SVM_CTRL1_INTERCEPT_NMI
304 | SVM_CTRL1_INTERCEPT_SMI
305 | SVM_CTRL1_INTERCEPT_INIT
306 | SVM_CTRL1_INTERCEPT_RDPMC
307 | SVM_CTRL1_INTERCEPT_CPUID
308 | SVM_CTRL1_INTERCEPT_RSM
309 | SVM_CTRL1_INTERCEPT_HLT
310 | SVM_CTRL1_INTERCEPT_INOUT_BITMAP
311 | SVM_CTRL1_INTERCEPT_MSR_SHADOW
312 | SVM_CTRL1_INTERCEPT_INVLPG
313 | SVM_CTRL1_INTERCEPT_INVLPGA /* AMD only */
314 | SVM_CTRL1_INTERCEPT_TASK_SWITCH
315 | SVM_CTRL1_INTERCEPT_SHUTDOWN /* fatal */
316 | SVM_CTRL1_INTERCEPT_FERR_FREEZE; /* Legacy FPU FERR handling. */
317 ;
318 /* With nested paging we don't care about invlpg anymore. */
319 if (pVM->hwaccm.s.fNestedPaging)
320 pVMCB->ctrl.u32InterceptCtrl1 &= ~SVM_CTRL1_INTERCEPT_INVLPG;
321
322 pVMCB->ctrl.u32InterceptCtrl2 = SVM_CTRL2_INTERCEPT_VMRUN /* required */
323 | SVM_CTRL2_INTERCEPT_VMMCALL
324 | SVM_CTRL2_INTERCEPT_VMLOAD
325 | SVM_CTRL2_INTERCEPT_VMSAVE
326 | SVM_CTRL2_INTERCEPT_STGI
327 | SVM_CTRL2_INTERCEPT_CLGI
328 | SVM_CTRL2_INTERCEPT_SKINIT
329 | SVM_CTRL2_INTERCEPT_WBINVD
330 | SVM_CTRL2_INTERCEPT_MWAIT_UNCOND; /* don't execute mwait or else we'll idle inside the guest (host thinks the cpu load is high) */
331 ;
332 Log(("pVMCB->ctrl.u32InterceptException = %x\n", pVMCB->ctrl.u32InterceptException));
333 Log(("pVMCB->ctrl.u32InterceptCtrl1 = %x\n", pVMCB->ctrl.u32InterceptCtrl1));
334 Log(("pVMCB->ctrl.u32InterceptCtrl2 = %x\n", pVMCB->ctrl.u32InterceptCtrl2));
335
336 /* Virtualize masking of INTR interrupts. (reads/writes from/to CR8 go to the V_TPR register) */
337 pVMCB->ctrl.IntCtrl.n.u1VIrqMasking = 1;
338 /* Ignore the priority in the TPR; just deliver it when we tell it to. */
339 pVMCB->ctrl.IntCtrl.n.u1IgnoreTPR = 1;
340
341 /* Set IO and MSR bitmap addresses. */
342 pVMCB->ctrl.u64IOPMPhysAddr = pVM->hwaccm.s.svm.pIOBitmapPhys;
343 pVMCB->ctrl.u64MSRPMPhysAddr = pVM->hwaccm.s.svm.pMSRBitmapPhys;
344
345 /* No LBR virtualization. */
346 pVMCB->ctrl.u64LBRVirt = 0;
347
348 /** The ASID must start at 1; the host uses 0. */
349 pVMCB->ctrl.TLBCtrl.n.u32ASID = 1;
350
351 /** Setup the PAT msr (nested paging only) */
352 pVMCB->guest.u64GPAT = 0x0007040600070406ULL;
353 }
354 return rc;
355}
356
357
358/**
359 * Injects an event (trap or external interrupt)
360 *
361 * @param pVM The VM to operate on.
362 * @param pVMCB SVM control block
363 * @param pCtx CPU Context
364 * @param pIntInfo SVM interrupt info
365 */
366inline void SVMR0InjectEvent(PVM pVM, SVM_VMCB *pVMCB, CPUMCTX *pCtx, SVM_EVENT* pEvent)
367{
368#ifdef VBOX_STRICT
369 if (pEvent->n.u8Vector == 0xE)
370 Log(("SVM: Inject int %d at %RGv error code=%02x CR2=%RGv intInfo=%08x\n", pEvent->n.u8Vector, (RTGCPTR)pCtx->rip, pEvent->n.u32ErrorCode, (RTGCPTR)pCtx->cr2, pEvent->au64[0]));
371 else
372 if (pEvent->n.u8Vector < 0x20)
373 Log(("SVM: Inject int %d at %RGv error code=%08x\n", pEvent->n.u8Vector, (RTGCPTR)pCtx->rip, pEvent->n.u32ErrorCode));
374 else
375 {
376 Log(("INJ-EI: %x at %RGv\n", pEvent->n.u8Vector, (RTGCPTR)pCtx->rip));
377 Assert(!VM_FF_ISSET(pVM, VM_FF_INHIBIT_INTERRUPTS));
378 Assert(pCtx->eflags.u32 & X86_EFL_IF);
379 }
380#endif
381
382 /* Set event injection state. */
383 pVMCB->ctrl.EventInject.au64[0] = pEvent->au64[0];
384}
385
386
387/**
388 * Checks for pending guest interrupts and injects them
389 *
390 * @returns VBox status code.
391 * @param pVM The VM to operate on.
392 * @param pVCpu The VM CPU to operate on.
393 * @param pVMCB SVM control block
394 * @param pCtx CPU Context
395 */
396static int SVMR0CheckPendingInterrupt(PVM pVM, PVMCPU pVCpu, SVM_VMCB *pVMCB, CPUMCTX *pCtx)
397{
398 int rc;
399
400 /* Dispatch any pending interrupts. (injected before, but a VM exit occurred prematurely) */
401 if (pVCpu->hwaccm.s.Event.fPending)
402 {
403 SVM_EVENT Event;
404
405 Log(("Reinjecting event %08x %08x at %RGv\n", pVCpu->hwaccm.s.Event.intInfo, pVCpu->hwaccm.s.Event.errCode, (RTGCPTR)pCtx->rip));
406 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatIntReinject);
407 Event.au64[0] = pVCpu->hwaccm.s.Event.intInfo;
408 SVMR0InjectEvent(pVM, pVMCB, pCtx, &Event);
409
410 pVCpu->hwaccm.s.Event.fPending = false;
411 return VINF_SUCCESS;
412 }
413
414 if (pVM->hwaccm.s.fInjectNMI)
415 {
416 SVM_EVENT Event;
417
418 Event.n.u8Vector = X86_XCPT_NMI;
419 Event.n.u1Valid = 1;
420 Event.n.u32ErrorCode = 0;
421 Event.n.u3Type = SVM_EVENT_NMI;
422
423 SVMR0InjectEvent(pVM, pVMCB, pCtx, &Event);
424 pVM->hwaccm.s.fInjectNMI = false;
425 return VINF_SUCCESS;
426 }
427
428 /* When external interrupts are pending, we should exit the VM when IF is set. */
429 if ( !TRPMHasTrap(pVM)
430 && VM_FF_ISPENDING(pVM, (VM_FF_INTERRUPT_APIC|VM_FF_INTERRUPT_PIC)))
431 {
432 if ( !(pCtx->eflags.u32 & X86_EFL_IF)
433 || VM_FF_ISSET(pVM, VM_FF_INHIBIT_INTERRUPTS))
434 {
435 if (!pVMCB->ctrl.IntCtrl.n.u1VIrqValid)
436 {
437 if (!VM_FF_ISSET(pVM, VM_FF_INHIBIT_INTERRUPTS))
438 LogFlow(("Enable irq window exit!\n"));
439 else
440 Log(("Pending interrupt blocked at %RGv by VM_FF_INHIBIT_INTERRUPTS -> irq window exit\n", (RTGCPTR)pCtx->rip));
441
442 /** @todo use virtual interrupt method to inject a pending irq; dispatched as soon as guest.IF is set. */
443 pVMCB->ctrl.u32InterceptCtrl1 |= SVM_CTRL1_INTERCEPT_VINTR;
444 pVMCB->ctrl.IntCtrl.n.u1VIrqValid = 1;
445 pVMCB->ctrl.IntCtrl.n.u8VIrqVector = 0; /* don't care */
446 }
447 }
448 else
449 {
450 uint8_t u8Interrupt;
451
452 rc = PDMGetInterrupt(pVM, &u8Interrupt);
453 Log(("Dispatch interrupt: u8Interrupt=%x (%d) rc=%Rrc\n", u8Interrupt, u8Interrupt, rc));
454 if (RT_SUCCESS(rc))
455 {
456 rc = TRPMAssertTrap(pVM, u8Interrupt, TRPM_HARDWARE_INT);
457 AssertRC(rc);
458 }
459 else
460 {
461 /* Can only happen in rare cases where a pending interrupt is cleared behind our back */
462 Assert(!VM_FF_ISPENDING(pVM, (VM_FF_INTERRUPT_APIC|VM_FF_INTERRUPT_PIC)));
463 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatSwitchGuestIrq);
464 /* Just continue */
465 }
466 }
467 }
468
469#ifdef VBOX_STRICT
470 if (TRPMHasTrap(pVM))
471 {
472 uint8_t u8Vector;
473 rc = TRPMQueryTrapAll(pVM, &u8Vector, 0, 0, 0);
474 AssertRC(rc);
475 }
476#endif
477
478 if ( pCtx->eflags.u32 & X86_EFL_IF
479 && (!VM_FF_ISSET(pVM, VM_FF_INHIBIT_INTERRUPTS))
480 && TRPMHasTrap(pVM)
481 )
482 {
483 uint8_t u8Vector;
484 int rc;
485 TRPMEVENT enmType;
486 SVM_EVENT Event;
487 RTGCUINT u32ErrorCode;
488
489 Event.au64[0] = 0;
490
491 /* If a new event is pending, then dispatch it now. */
492 rc = TRPMQueryTrapAll(pVM, &u8Vector, &enmType, &u32ErrorCode, 0);
493 AssertRC(rc);
494 Assert(pCtx->eflags.Bits.u1IF == 1 || enmType == TRPM_TRAP);
495 Assert(enmType != TRPM_SOFTWARE_INT);
496
497 /* Clear the pending trap. */
498 rc = TRPMResetTrap(pVM);
499 AssertRC(rc);
500
501 Event.n.u8Vector = u8Vector;
502 Event.n.u1Valid = 1;
503 Event.n.u32ErrorCode = u32ErrorCode;
504
505 if (enmType == TRPM_TRAP)
506 {
507 switch (u8Vector) {
508 case 8:
509 case 10:
510 case 11:
511 case 12:
512 case 13:
513 case 14:
514 case 17:
515 /* Valid error codes. */
516 Event.n.u1ErrorCodeValid = 1;
517 break;
518 default:
519 break;
520 }
521 if (u8Vector == X86_XCPT_NMI)
522 Event.n.u3Type = SVM_EVENT_NMI;
523 else
524 Event.n.u3Type = SVM_EVENT_EXCEPTION;
525 }
526 else
527 Event.n.u3Type = SVM_EVENT_EXTERNAL_IRQ;
528
529 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatIntInject);
530 SVMR0InjectEvent(pVM, pVMCB, pCtx, &Event);
531 } /* if (interrupts can be dispatched) */
532
533 return VINF_SUCCESS;
534}
535
536/**
537 * Save the host state
538 *
539 * @returns VBox status code.
540 * @param pVM The VM to operate on.
541 * @param pVCpu The VM CPU to operate on.
542 */
543VMMR0DECL(int) SVMR0SaveHostState(PVM pVM, PVMCPU pVCpu)
544{
545 NOREF(pVM);
546 NOREF(pVCpu);
547 /* Nothing to do here. */
548 return VINF_SUCCESS;
549}
550
551/**
552 * Loads the guest state
553 *
554 * NOTE: Don't do anything here that can cause a jump back to ring 3!!!!!
555 *
556 * @returns VBox status code.
557 * @param pVM The VM to operate on.
558 * @param pVCpu The VM CPU to operate on.
559 * @param pCtx Guest context
560 */
561VMMR0DECL(int) SVMR0LoadGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
562{
563 RTGCUINTPTR val;
564 SVM_VMCB *pVMCB;
565
566 if (pVM == NULL)
567 return VERR_INVALID_PARAMETER;
568
569 /* Setup AMD SVM. */
570 Assert(pVM->hwaccm.s.svm.fSupported);
571
572 pVMCB = (SVM_VMCB *)pVCpu->hwaccm.s.svm.pVMCB;
573 AssertMsgReturn(pVMCB, ("Invalid pVMCB\n"), VERR_EM_INTERNAL_ERROR);
574
575 /* Guest CPU context: ES, CS, SS, DS, FS, GS. */
576 if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_SEGMENT_REGS)
577 {
578 SVM_WRITE_SELREG(CS, cs);
579 SVM_WRITE_SELREG(SS, ss);
580 SVM_WRITE_SELREG(DS, ds);
581 SVM_WRITE_SELREG(ES, es);
582 SVM_WRITE_SELREG(FS, fs);
583 SVM_WRITE_SELREG(GS, gs);
584 }
585
586 /* Guest CPU context: LDTR. */
587 if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_LDTR)
588 {
589 SVM_WRITE_SELREG(LDTR, ldtr);
590 }
591
592 /* Guest CPU context: TR. */
593 if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_TR)
594 {
595 SVM_WRITE_SELREG(TR, tr);
596 }
597
598 /* Guest CPU context: GDTR. */
599 if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_GDTR)
600 {
601 pVMCB->guest.GDTR.u32Limit = pCtx->gdtr.cbGdt;
602 pVMCB->guest.GDTR.u64Base = pCtx->gdtr.pGdt;
603 }
604
605 /* Guest CPU context: IDTR. */
606 if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_IDTR)
607 {
608 pVMCB->guest.IDTR.u32Limit = pCtx->idtr.cbIdt;
609 pVMCB->guest.IDTR.u64Base = pCtx->idtr.pIdt;
610 }
611
612 /*
613 * Sysenter MSRs (unconditional)
614 */
615 pVMCB->guest.u64SysEnterCS = pCtx->SysEnter.cs;
616 pVMCB->guest.u64SysEnterEIP = pCtx->SysEnter.eip;
617 pVMCB->guest.u64SysEnterESP = pCtx->SysEnter.esp;
618
619 /* Control registers */
620 if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_CR0)
621 {
622 val = pCtx->cr0;
623 if (!CPUMIsGuestFPUStateActive(pVCpu))
624 {
625 /* Always use #NM exceptions to load the FPU/XMM state on demand. */
626 val |= X86_CR0_TS | X86_CR0_ET | X86_CR0_NE | X86_CR0_MP;
627 }
628 else
629 {
630 /** @todo check if we support the old style mess correctly. */
631 if (!(val & X86_CR0_NE))
632 {
633 Log(("Forcing X86_CR0_NE!!!\n"));
634
635 /* Also catch floating point exceptions as we need to report them to the guest in a different way. */
636 if (!pVCpu->hwaccm.s.fFPUOldStyleOverride)
637 {
638 pVMCB->ctrl.u32InterceptException |= RT_BIT(X86_XCPT_MF);
639 pVCpu->hwaccm.s.fFPUOldStyleOverride = true;
640 }
641 }
642 val |= X86_CR0_NE; /* always turn on the native mechanism to report FPU errors (old style uses interrupts) */
643 }
644 /* Always enable caching. */
645 val &= ~(X86_CR0_CD|X86_CR0_NW);
646
647 /* Note: WP is not relevant in nested paging mode as we catch accesses on the (guest) physical level. */
648 /* Note: In nested paging mode the guest is allowed to run with paging disabled; the guest physical to host physical translation will remain active. */
649 if (!pVM->hwaccm.s.fNestedPaging)
650 {
651 val |= X86_CR0_PG; /* Paging is always enabled; even when the guest is running in real mode or PE without paging. */
652 val |= X86_CR0_WP; /* Must set this as we rely on protect various pages and supervisor writes must be caught. */
653 }
654 pVMCB->guest.u64CR0 = val;
655 }
656 /* CR2 as well */
657 pVMCB->guest.u64CR2 = pCtx->cr2;
658
659 if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_CR3)
660 {
661 /* Save our shadow CR3 register. */
662 if (pVM->hwaccm.s.fNestedPaging)
663 {
664 PGMMODE enmShwPagingMode;
665
666#if HC_ARCH_BITS == 32
667 if (CPUMIsGuestInLongModeEx(pCtx))
668 enmShwPagingMode = PGMMODE_AMD64_NX;
669 else
670#endif
671 enmShwPagingMode = PGMGetHostMode(pVM);
672
673 pVMCB->ctrl.u64NestedPagingCR3 = PGMGetNestedCR3(pVM, enmShwPagingMode);
674 Assert(pVMCB->ctrl.u64NestedPagingCR3);
675 pVMCB->guest.u64CR3 = pCtx->cr3;
676 }
677 else
678 {
679 pVMCB->guest.u64CR3 = PGMGetHyperCR3(pVM);
680 Assert(pVMCB->guest.u64CR3);
681 }
682 }
683
684 if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_CR4)
685 {
686 val = pCtx->cr4;
687 if (!pVM->hwaccm.s.fNestedPaging)
688 {
689 switch(pVCpu->hwaccm.s.enmShadowMode)
690 {
691 case PGMMODE_REAL:
692 case PGMMODE_PROTECTED: /* Protected mode, no paging. */
693 AssertFailed();
694 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
695
696 case PGMMODE_32_BIT: /* 32-bit paging. */
697 break;
698
699 case PGMMODE_PAE: /* PAE paging. */
700 case PGMMODE_PAE_NX: /* PAE paging with NX enabled. */
701 /** @todo use normal 32 bits paging */
702 val |= X86_CR4_PAE;
703 break;
704
705 case PGMMODE_AMD64: /* 64-bit AMD paging (long mode). */
706 case PGMMODE_AMD64_NX: /* 64-bit AMD paging (long mode) with NX enabled. */
707#ifdef VBOX_ENABLE_64_BITS_GUESTS
708 break;
709#else
710 AssertFailed();
711 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
712#endif
713
714 default: /* shut up gcc */
715 AssertFailed();
716 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
717 }
718 }
719 pVMCB->guest.u64CR4 = val;
720 }
721
722 /* Debug registers. */
723 if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_DEBUG)
724 {
725 pCtx->dr[6] |= X86_DR6_INIT_VAL; /* set all reserved bits to 1. */
726 pCtx->dr[6] &= ~RT_BIT(12); /* must be zero. */
727
728 pCtx->dr[7] &= 0xffffffff; /* upper 32 bits reserved */
729 pCtx->dr[7] &= ~(RT_BIT(11) | RT_BIT(12) | RT_BIT(14) | RT_BIT(15)); /* must be zero */
730 pCtx->dr[7] |= 0x400; /* must be one */
731
732 pVMCB->guest.u64DR7 = pCtx->dr[7];
733 pVMCB->guest.u64DR6 = pCtx->dr[6];
734
735 /* Sync the debug state now if any breakpoint is armed. */
736 if ( (pCtx->dr[7] & (X86_DR7_ENABLED_MASK|X86_DR7_GD))
737 && !CPUMIsGuestDebugStateActive(pVM)
738 && !DBGFIsStepping(pVM))
739 {
740 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatDRxArmed);
741
742 /* Disable drx move intercepts. */
743 pVMCB->ctrl.u16InterceptRdDRx = 0;
744 pVMCB->ctrl.u16InterceptWrDRx = 0;
745
746 /* Save the host and load the guest debug state. */
747 int rc = CPUMR0LoadGuestDebugState(pVM, pVCpu, pCtx, false /* exclude DR6 */);
748 AssertRC(rc);
749 }
750 }
751
752 /* EIP, ESP and EFLAGS */
753 pVMCB->guest.u64RIP = pCtx->rip;
754 pVMCB->guest.u64RSP = pCtx->rsp;
755 pVMCB->guest.u64RFlags = pCtx->eflags.u32;
756
757 /* Set CPL */
758 pVMCB->guest.u8CPL = pCtx->csHid.Attr.n.u2Dpl;
759
760 /* RAX/EAX too, as VMRUN uses RAX as an implicit parameter. */
761 pVMCB->guest.u64RAX = pCtx->rax;
762
763 /* vmrun will fail without MSR_K6_EFER_SVME. */
764 pVMCB->guest.u64EFER = pCtx->msrEFER | MSR_K6_EFER_SVME;
765
766 /* 64 bits guest mode? */
767 if (pCtx->msrEFER & MSR_K6_EFER_LMA)
768 {
769#if !defined(VBOX_ENABLE_64_BITS_GUESTS)
770 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
771#elif HC_ARCH_BITS == 32
772 pVCpu->hwaccm.s.svm.pfnVMRun = SVMR0VMSwitcherRun64;
773#else
774 pVCpu->hwaccm.s.svm.pfnVMRun = SVMR0VMRun64;
775#endif
776 /* Unconditionally update these as wrmsr might have changed them. (HWACCM_CHANGED_GUEST_SEGMENT_REGS will not be set) */
777 pVMCB->guest.FS.u64Base = pCtx->fsHid.u64Base;
778 pVMCB->guest.GS.u64Base = pCtx->gsHid.u64Base;
779 }
780 else
781 {
782 /* Filter out the MSR_K6_LME bit or else AMD-V expects amd64 shadow paging. */
783 pVMCB->guest.u64EFER &= ~MSR_K6_EFER_LME;
784
785 pVCpu->hwaccm.s.svm.pfnVMRun = SVMR0VMRun;
786 }
787
788 /* TSC offset. */
789 if (TMCpuTickCanUseRealTSC(pVM, &pVMCB->ctrl.u64TSCOffset))
790 {
791 pVMCB->ctrl.u32InterceptCtrl1 &= ~SVM_CTRL1_INTERCEPT_RDTSC;
792 pVMCB->ctrl.u32InterceptCtrl2 &= ~SVM_CTRL2_INTERCEPT_RDTSCP;
793 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatTSCOffset);
794 }
795 else
796 {
797 pVMCB->ctrl.u32InterceptCtrl1 |= SVM_CTRL1_INTERCEPT_RDTSC;
798 pVMCB->ctrl.u32InterceptCtrl2 |= SVM_CTRL2_INTERCEPT_RDTSCP;
799 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatTSCIntercept);
800 }
801
802 /* Sync the various msrs for 64 bits mode. */
803 pVMCB->guest.u64STAR = pCtx->msrSTAR; /* legacy syscall eip, cs & ss */
804 pVMCB->guest.u64LSTAR = pCtx->msrLSTAR; /* 64 bits mode syscall rip */
805 pVMCB->guest.u64CSTAR = pCtx->msrCSTAR; /* compatibility mode syscall rip */
806 pVMCB->guest.u64SFMASK = pCtx->msrSFMASK; /* syscall flag mask */
807 pVMCB->guest.u64KernelGSBase = pCtx->msrKERNELGSBASE; /* swapgs exchange value */
808
809#ifdef DEBUG
810 /* Intercept X86_XCPT_DB if stepping is enabled */
811 if (DBGFIsStepping(pVM))
812 pVMCB->ctrl.u32InterceptException |= RT_BIT(X86_XCPT_DB);
813 else
814 pVMCB->ctrl.u32InterceptException &= ~RT_BIT(X86_XCPT_DB);
815#endif
816
817 /* Done. */
818 pVCpu->hwaccm.s.fContextUseFlags &= ~HWACCM_CHANGED_ALL_GUEST;
819
820 return VINF_SUCCESS;
821}
822
823
824/**
825 * Runs guest code in an AMD-V VM.
826 *
827 * @returns VBox status code.
828 * @param pVM The VM to operate on.
829 * @param pVCpu The VM CPU to operate on.
830 * @param pCtx Guest context
831 */
832VMMR0DECL(int) SVMR0RunGuestCode(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
833{
834 int rc = VINF_SUCCESS;
835 uint64_t exitCode = (uint64_t)SVM_EXIT_INVALID;
836 SVM_VMCB *pVMCB;
837 bool fSyncTPR = false;
838 unsigned cResume = 0;
839 uint8_t u8LastVTPR;
840 PHWACCM_CPUINFO pCpu = 0;
841#ifdef VBOX_STRICT
842 RTCPUID idCpuCheck;
843#endif
844
845 STAM_PROFILE_ADV_START(&pVCpu->hwaccm.s.StatEntry, x);
846
847 pVMCB = (SVM_VMCB *)pVCpu->hwaccm.s.svm.pVMCB;
848 AssertMsgReturn(pVMCB, ("Invalid pVMCB\n"), VERR_EM_INTERNAL_ERROR);
849
850 /* We can jump to this point to resume execution after determining that a VM-exit is innocent.
851 */
852ResumeExecution:
853 Assert(!HWACCMR0SuspendPending());
854
855 /* Safety precaution; looping for too long here can have a very bad effect on the host */
856 if (++cResume > HWACCM_MAX_RESUME_LOOPS)
857 {
858 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitMaxResume);
859 rc = VINF_EM_RAW_INTERRUPT;
860 goto end;
861 }
862
863 /* Check for irq inhibition due to instruction fusing (sti, mov ss). */
864 if (VM_FF_ISSET(pVM, VM_FF_INHIBIT_INTERRUPTS))
865 {
866 Log(("VM_FF_INHIBIT_INTERRUPTS at %RGv successor %RGv\n", (RTGCPTR)pCtx->rip, EMGetInhibitInterruptsPC(pVM)));
867 if (pCtx->rip != EMGetInhibitInterruptsPC(pVM))
868 {
869 /* Note: we intentionally don't clear VM_FF_INHIBIT_INTERRUPTS here.
870 * Before we are able to execute this instruction in raw mode (iret to guest code) an external interrupt might
871 * force a world switch again. Possibly allowing a guest interrupt to be dispatched in the process. This could
872 * break the guest. Sounds very unlikely, but such timing sensitive problems are not as rare as you might think.
873 */
874 VM_FF_CLEAR(pVM, VM_FF_INHIBIT_INTERRUPTS);
875 /* Irq inhibition is no longer active; clear the corresponding SVM state. */
876 pVMCB->ctrl.u64IntShadow = 0;
877 }
878 }
879 else
880 {
881 /* Irq inhibition is no longer active; clear the corresponding SVM state. */
882 pVMCB->ctrl.u64IntShadow = 0;
883 }
884
885 /* Check for pending actions that force us to go back to ring 3. */
886#ifdef DEBUG
887 /* Intercept X86_XCPT_DB if stepping is enabled */
888 if (!DBGFIsStepping(pVM))
889#endif
890 {
891 if (VM_FF_ISPENDING(pVM, VM_FF_TO_R3 | VM_FF_TIMER))
892 {
893 VM_FF_CLEAR(pVM, VM_FF_TO_R3);
894 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatSwitchToR3);
895 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatEntry, x);
896 rc = VINF_EM_RAW_TO_R3;
897 goto end;
898 }
899 }
900
901 /* Pending request packets might contain actions that need immediate attention, such as pending hardware interrupts. */
902 if (VM_FF_ISPENDING(pVM, VM_FF_REQUEST))
903 {
904 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatEntry, x);
905 rc = VINF_EM_PENDING_REQUEST;
906 goto end;
907 }
908
909 /* When external interrupts are pending, we should exit the VM when IF is set. */
910 /* Note! *After* VM_FF_INHIBIT_INTERRUPTS check!!! */
911 rc = SVMR0CheckPendingInterrupt(pVM, pVCpu, pVMCB, pCtx);
912 if (RT_FAILURE(rc))
913 {
914 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatEntry, x);
915 goto end;
916 }
917
918 /* TPR caching using CR8 is only available in 64 bits mode */
919 /* Note the 32 bits exception for AMD (X86_CPUID_AMD_FEATURE_ECX_CR8L), but that appears missing in Intel CPUs */
920 /* Note: we can't do this in LoadGuestState as PDMApicGetTPR can jump back to ring 3 (lock)!!!!!!!! */
921 if (pCtx->msrEFER & MSR_K6_EFER_LMA)
922 {
923 bool fPending;
924
925 /* TPR caching in CR8 */
926 int rc = PDMApicGetTPR(pVM, &u8LastVTPR, &fPending);
927 AssertRC(rc);
928 pVMCB->ctrl.IntCtrl.n.u8VTPR = u8LastVTPR;
929
930 if (fPending)
931 {
932 /* A TPR change could activate a pending interrupt, so catch cr8 writes. */
933 pVMCB->ctrl.u16InterceptWrCRx |= RT_BIT(8);
934 }
935 else
936 /* No interrupts are pending, so we don't need to be explicitely notified.
937 * There are enough world switches for detecting pending interrupts.
938 */
939 pVMCB->ctrl.u16InterceptWrCRx &= ~RT_BIT(8);
940
941 fSyncTPR = !fPending;
942 }
943
944 /* All done! Let's start VM execution. */
945 STAM_PROFILE_ADV_START(&pVCpu->hwaccm.s.StatInGC, x);
946
947 /* Enable nested paging if necessary (disabled each time after #VMEXIT). */
948 pVMCB->ctrl.NestedPaging.n.u1NestedPaging = pVM->hwaccm.s.fNestedPaging;
949
950#ifdef LOG_ENABLED
951 pCpu = HWACCMR0GetCurrentCpu();
952 if ( pVCpu->hwaccm.s.idLastCpu != pCpu->idCpu
953 || pVCpu->hwaccm.s.cTLBFlushes != pCpu->cTLBFlushes)
954 {
955 if (pVCpu->hwaccm.s.idLastCpu != pCpu->idCpu)
956 Log(("Force TLB flush due to rescheduling to a different cpu (%d vs %d)\n", pVCpu->hwaccm.s.idLastCpu, pCpu->idCpu));
957 else
958 Log(("Force TLB flush due to changed TLB flush count (%x vs %x)\n", pVCpu->hwaccm.s.cTLBFlushes, pCpu->cTLBFlushes));
959 }
960 if (pCpu->fFlushTLB)
961 Log(("Force TLB flush: first time cpu %d is used -> flush\n", pCpu->idCpu));
962#endif
963
964 /*
965 * NOTE: DO NOT DO ANYTHING AFTER THIS POINT THAT MIGHT JUMP BACK TO RING 3!
966 * (until the actual world switch)
967 */
968
969#ifdef VBOX_STRICT
970 idCpuCheck = RTMpCpuId();
971#endif
972
973 /* Load the guest state; *must* be here as it sets up the shadow cr0 for lazy fpu syncing! */
974 rc = SVMR0LoadGuestState(pVM, pVCpu, pCtx);
975 if (rc != VINF_SUCCESS)
976 {
977 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatEntry, x);
978 goto end;
979 }
980
981 pCpu = HWACCMR0GetCurrentCpu();
982 /* Force a TLB flush for the first world switch if the current cpu differs from the one we ran on last. */
983 /* Note that this can happen both for start and resume due to long jumps back to ring 3. */
984 if ( pVCpu->hwaccm.s.idLastCpu != pCpu->idCpu
985 /* if the tlb flush count has changed, another VM has flushed the TLB of this cpu, so we can't use our current ASID anymore. */
986 || pVCpu->hwaccm.s.cTLBFlushes != pCpu->cTLBFlushes)
987 {
988 /* Force a TLB flush on VM entry. */
989 pVCpu->hwaccm.s.fForceTLBFlush = true;
990 }
991 else
992 Assert(!pCpu->fFlushTLB || pVM->hwaccm.s.svm.fAlwaysFlushTLB);
993
994 pVCpu->hwaccm.s.idLastCpu = pCpu->idCpu;
995
996 /* Make sure we flush the TLB when required. Switch ASID to achieve the same thing, but without actually flushing the whole TLB (which is expensive). */
997 if ( pVCpu->hwaccm.s.fForceTLBFlush
998 && !pVM->hwaccm.s.svm.fAlwaysFlushTLB)
999 {
1000 if ( ++pCpu->uCurrentASID >= pVM->hwaccm.s.uMaxASID
1001 || pCpu->fFlushTLB)
1002 {
1003 pCpu->fFlushTLB = false;
1004 pCpu->uCurrentASID = 1; /* start at 1; host uses 0 */
1005 pVMCB->ctrl.TLBCtrl.n.u1TLBFlush = 1; /* wrap around; flush TLB */
1006 pCpu->cTLBFlushes++;
1007 }
1008 else
1009 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatFlushASID);
1010
1011 pVCpu->hwaccm.s.cTLBFlushes = pCpu->cTLBFlushes;
1012 pVCpu->hwaccm.s.uCurrentASID = pCpu->uCurrentASID;
1013 }
1014 else
1015 {
1016 Assert(!pCpu->fFlushTLB || pVM->hwaccm.s.svm.fAlwaysFlushTLB);
1017
1018 /* We never increase uCurrentASID in the fAlwaysFlushTLB (erratum 170) case. */
1019 if (!pCpu->uCurrentASID || !pVCpu->hwaccm.s.uCurrentASID)
1020 pVCpu->hwaccm.s.uCurrentASID = pCpu->uCurrentASID = 1;
1021
1022 Assert(!pVM->hwaccm.s.svm.fAlwaysFlushTLB || pVCpu->hwaccm.s.fForceTLBFlush);
1023 pVMCB->ctrl.TLBCtrl.n.u1TLBFlush = pVCpu->hwaccm.s.fForceTLBFlush;
1024 }
1025 AssertMsg(pVCpu->hwaccm.s.cTLBFlushes == pCpu->cTLBFlushes, ("Flush count mismatch for cpu %d (%x vs %x)\n", pCpu->idCpu, pVCpu->hwaccm.s.cTLBFlushes, pCpu->cTLBFlushes));
1026 AssertMsg(pCpu->uCurrentASID >= 1 && pCpu->uCurrentASID < pVM->hwaccm.s.uMaxASID, ("cpu%d uCurrentASID = %x\n", pCpu->idCpu, pCpu->uCurrentASID));
1027 AssertMsg(pVCpu->hwaccm.s.uCurrentASID >= 1 && pVCpu->hwaccm.s.uCurrentASID < pVM->hwaccm.s.uMaxASID, ("cpu%d VM uCurrentASID = %x\n", pCpu->idCpu, pVCpu->hwaccm.s.uCurrentASID));
1028 pVMCB->ctrl.TLBCtrl.n.u32ASID = pVCpu->hwaccm.s.uCurrentASID;
1029
1030#ifdef VBOX_WITH_STATISTICS
1031 if (pVMCB->ctrl.TLBCtrl.n.u1TLBFlush)
1032 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatFlushTLBWorldSwitch);
1033 else
1034 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatNoFlushTLBWorldSwitch);
1035#endif
1036
1037 /* In case we execute a goto ResumeExecution later on. */
1038 pVCpu->hwaccm.s.fResumeVM = true;
1039 pVCpu->hwaccm.s.fForceTLBFlush = pVM->hwaccm.s.svm.fAlwaysFlushTLB;
1040
1041 Assert(sizeof(pVCpu->hwaccm.s.svm.pVMCBPhys) == 8);
1042 Assert(pVMCB->ctrl.IntCtrl.n.u1VIrqMasking);
1043 Assert(pVMCB->ctrl.u64IOPMPhysAddr == pVM->hwaccm.s.svm.pIOBitmapPhys);
1044 Assert(pVMCB->ctrl.u64MSRPMPhysAddr == pVM->hwaccm.s.svm.pMSRBitmapPhys);
1045 Assert(pVMCB->ctrl.u64LBRVirt == 0);
1046
1047#ifdef VBOX_STRICT
1048 Assert(idCpuCheck == RTMpCpuId());
1049#endif
1050 TMNotifyStartOfExecution(pVM);
1051 pVCpu->hwaccm.s.svm.pfnVMRun(pVM->hwaccm.s.svm.pVMCBHostPhys, pVCpu->hwaccm.s.svm.pVMCBPhys, pCtx, pVM, pVCpu);
1052 TMNotifyEndOfExecution(pVM);
1053 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatInGC, x);
1054
1055 /*
1056 * !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1057 * IMPORTANT: WE CAN'T DO ANY LOGGING OR OPERATIONS THAT CAN DO A LONGJMP BACK TO RING 3 *BEFORE* WE'VE SYNCED BACK (MOST OF) THE GUEST STATE
1058 * !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1059 */
1060
1061 STAM_PROFILE_ADV_START(&pVCpu->hwaccm.s.StatExit, x);
1062
1063 /* Reason for the VM exit */
1064 exitCode = pVMCB->ctrl.u64ExitCode;
1065
1066 if (exitCode == (uint64_t)SVM_EXIT_INVALID) /* Invalid guest state. */
1067 {
1068 HWACCMDumpRegs(pVM, pCtx);
1069#ifdef DEBUG
1070 Log(("ctrl.u16InterceptRdCRx %x\n", pVMCB->ctrl.u16InterceptRdCRx));
1071 Log(("ctrl.u16InterceptWrCRx %x\n", pVMCB->ctrl.u16InterceptWrCRx));
1072 Log(("ctrl.u16InterceptRdDRx %x\n", pVMCB->ctrl.u16InterceptRdDRx));
1073 Log(("ctrl.u16InterceptWrDRx %x\n", pVMCB->ctrl.u16InterceptWrDRx));
1074 Log(("ctrl.u32InterceptException %x\n", pVMCB->ctrl.u32InterceptException));
1075 Log(("ctrl.u32InterceptCtrl1 %x\n", pVMCB->ctrl.u32InterceptCtrl1));
1076 Log(("ctrl.u32InterceptCtrl2 %x\n", pVMCB->ctrl.u32InterceptCtrl2));
1077 Log(("ctrl.u64IOPMPhysAddr %RX64\n", pVMCB->ctrl.u64IOPMPhysAddr));
1078 Log(("ctrl.u64MSRPMPhysAddr %RX64\n", pVMCB->ctrl.u64MSRPMPhysAddr));
1079 Log(("ctrl.u64TSCOffset %RX64\n", pVMCB->ctrl.u64TSCOffset));
1080
1081 Log(("ctrl.TLBCtrl.u32ASID %x\n", pVMCB->ctrl.TLBCtrl.n.u32ASID));
1082 Log(("ctrl.TLBCtrl.u1TLBFlush %x\n", pVMCB->ctrl.TLBCtrl.n.u1TLBFlush));
1083 Log(("ctrl.TLBCtrl.u7Reserved %x\n", pVMCB->ctrl.TLBCtrl.n.u7Reserved));
1084 Log(("ctrl.TLBCtrl.u24Reserved %x\n", pVMCB->ctrl.TLBCtrl.n.u24Reserved));
1085
1086 Log(("ctrl.IntCtrl.u8VTPR %x\n", pVMCB->ctrl.IntCtrl.n.u8VTPR));
1087 Log(("ctrl.IntCtrl.u1VIrqValid %x\n", pVMCB->ctrl.IntCtrl.n.u1VIrqValid));
1088 Log(("ctrl.IntCtrl.u7Reserved %x\n", pVMCB->ctrl.IntCtrl.n.u7Reserved));
1089 Log(("ctrl.IntCtrl.u4VIrqPriority %x\n", pVMCB->ctrl.IntCtrl.n.u4VIrqPriority));
1090 Log(("ctrl.IntCtrl.u1IgnoreTPR %x\n", pVMCB->ctrl.IntCtrl.n.u1IgnoreTPR));
1091 Log(("ctrl.IntCtrl.u3Reserved %x\n", pVMCB->ctrl.IntCtrl.n.u3Reserved));
1092 Log(("ctrl.IntCtrl.u1VIrqMasking %x\n", pVMCB->ctrl.IntCtrl.n.u1VIrqMasking));
1093 Log(("ctrl.IntCtrl.u7Reserved2 %x\n", pVMCB->ctrl.IntCtrl.n.u7Reserved2));
1094 Log(("ctrl.IntCtrl.u8VIrqVector %x\n", pVMCB->ctrl.IntCtrl.n.u8VIrqVector));
1095 Log(("ctrl.IntCtrl.u24Reserved %x\n", pVMCB->ctrl.IntCtrl.n.u24Reserved));
1096
1097 Log(("ctrl.u64IntShadow %RX64\n", pVMCB->ctrl.u64IntShadow));
1098 Log(("ctrl.u64ExitCode %RX64\n", pVMCB->ctrl.u64ExitCode));
1099 Log(("ctrl.u64ExitInfo1 %RX64\n", pVMCB->ctrl.u64ExitInfo1));
1100 Log(("ctrl.u64ExitInfo2 %RX64\n", pVMCB->ctrl.u64ExitInfo2));
1101 Log(("ctrl.ExitIntInfo.u8Vector %x\n", pVMCB->ctrl.ExitIntInfo.n.u8Vector));
1102 Log(("ctrl.ExitIntInfo.u3Type %x\n", pVMCB->ctrl.ExitIntInfo.n.u3Type));
1103 Log(("ctrl.ExitIntInfo.u1ErrorCodeValid %x\n", pVMCB->ctrl.ExitIntInfo.n.u1ErrorCodeValid));
1104 Log(("ctrl.ExitIntInfo.u19Reserved %x\n", pVMCB->ctrl.ExitIntInfo.n.u19Reserved));
1105 Log(("ctrl.ExitIntInfo.u1Valid %x\n", pVMCB->ctrl.ExitIntInfo.n.u1Valid));
1106 Log(("ctrl.ExitIntInfo.u32ErrorCode %x\n", pVMCB->ctrl.ExitIntInfo.n.u32ErrorCode));
1107 Log(("ctrl.NestedPaging %RX64\n", pVMCB->ctrl.NestedPaging.au64));
1108 Log(("ctrl.EventInject.u8Vector %x\n", pVMCB->ctrl.EventInject.n.u8Vector));
1109 Log(("ctrl.EventInject.u3Type %x\n", pVMCB->ctrl.EventInject.n.u3Type));
1110 Log(("ctrl.EventInject.u1ErrorCodeValid %x\n", pVMCB->ctrl.EventInject.n.u1ErrorCodeValid));
1111 Log(("ctrl.EventInject.u19Reserved %x\n", pVMCB->ctrl.EventInject.n.u19Reserved));
1112 Log(("ctrl.EventInject.u1Valid %x\n", pVMCB->ctrl.EventInject.n.u1Valid));
1113 Log(("ctrl.EventInject.u32ErrorCode %x\n", pVMCB->ctrl.EventInject.n.u32ErrorCode));
1114
1115 Log(("ctrl.u64NestedPagingCR3 %RX64\n", pVMCB->ctrl.u64NestedPagingCR3));
1116 Log(("ctrl.u64LBRVirt %RX64\n", pVMCB->ctrl.u64LBRVirt));
1117
1118 Log(("guest.CS.u16Sel %04X\n", pVMCB->guest.CS.u16Sel));
1119 Log(("guest.CS.u16Attr %04X\n", pVMCB->guest.CS.u16Attr));
1120 Log(("guest.CS.u32Limit %X\n", pVMCB->guest.CS.u32Limit));
1121 Log(("guest.CS.u64Base %RX64\n", pVMCB->guest.CS.u64Base));
1122 Log(("guest.DS.u16Sel %04X\n", pVMCB->guest.DS.u16Sel));
1123 Log(("guest.DS.u16Attr %04X\n", pVMCB->guest.DS.u16Attr));
1124 Log(("guest.DS.u32Limit %X\n", pVMCB->guest.DS.u32Limit));
1125 Log(("guest.DS.u64Base %RX64\n", pVMCB->guest.DS.u64Base));
1126 Log(("guest.ES.u16Sel %04X\n", pVMCB->guest.ES.u16Sel));
1127 Log(("guest.ES.u16Attr %04X\n", pVMCB->guest.ES.u16Attr));
1128 Log(("guest.ES.u32Limit %X\n", pVMCB->guest.ES.u32Limit));
1129 Log(("guest.ES.u64Base %RX64\n", pVMCB->guest.ES.u64Base));
1130 Log(("guest.FS.u16Sel %04X\n", pVMCB->guest.FS.u16Sel));
1131 Log(("guest.FS.u16Attr %04X\n", pVMCB->guest.FS.u16Attr));
1132 Log(("guest.FS.u32Limit %X\n", pVMCB->guest.FS.u32Limit));
1133 Log(("guest.FS.u64Base %RX64\n", pVMCB->guest.FS.u64Base));
1134 Log(("guest.GS.u16Sel %04X\n", pVMCB->guest.GS.u16Sel));
1135 Log(("guest.GS.u16Attr %04X\n", pVMCB->guest.GS.u16Attr));
1136 Log(("guest.GS.u32Limit %X\n", pVMCB->guest.GS.u32Limit));
1137 Log(("guest.GS.u64Base %RX64\n", pVMCB->guest.GS.u64Base));
1138
1139 Log(("guest.GDTR.u32Limit %X\n", pVMCB->guest.GDTR.u32Limit));
1140 Log(("guest.GDTR.u64Base %RX64\n", pVMCB->guest.GDTR.u64Base));
1141
1142 Log(("guest.LDTR.u16Sel %04X\n", pVMCB->guest.LDTR.u16Sel));
1143 Log(("guest.LDTR.u16Attr %04X\n", pVMCB->guest.LDTR.u16Attr));
1144 Log(("guest.LDTR.u32Limit %X\n", pVMCB->guest.LDTR.u32Limit));
1145 Log(("guest.LDTR.u64Base %RX64\n", pVMCB->guest.LDTR.u64Base));
1146
1147 Log(("guest.IDTR.u32Limit %X\n", pVMCB->guest.IDTR.u32Limit));
1148 Log(("guest.IDTR.u64Base %RX64\n", pVMCB->guest.IDTR.u64Base));
1149
1150 Log(("guest.TR.u16Sel %04X\n", pVMCB->guest.TR.u16Sel));
1151 Log(("guest.TR.u16Attr %04X\n", pVMCB->guest.TR.u16Attr));
1152 Log(("guest.TR.u32Limit %X\n", pVMCB->guest.TR.u32Limit));
1153 Log(("guest.TR.u64Base %RX64\n", pVMCB->guest.TR.u64Base));
1154
1155 Log(("guest.u8CPL %X\n", pVMCB->guest.u8CPL));
1156 Log(("guest.u64CR0 %RX64\n", pVMCB->guest.u64CR0));
1157 Log(("guest.u64CR2 %RX64\n", pVMCB->guest.u64CR2));
1158 Log(("guest.u64CR3 %RX64\n", pVMCB->guest.u64CR3));
1159 Log(("guest.u64CR4 %RX64\n", pVMCB->guest.u64CR4));
1160 Log(("guest.u64DR6 %RX64\n", pVMCB->guest.u64DR6));
1161 Log(("guest.u64DR7 %RX64\n", pVMCB->guest.u64DR7));
1162
1163 Log(("guest.u64RIP %RX64\n", pVMCB->guest.u64RIP));
1164 Log(("guest.u64RSP %RX64\n", pVMCB->guest.u64RSP));
1165 Log(("guest.u64RAX %RX64\n", pVMCB->guest.u64RAX));
1166 Log(("guest.u64RFlags %RX64\n", pVMCB->guest.u64RFlags));
1167
1168 Log(("guest.u64SysEnterCS %RX64\n", pVMCB->guest.u64SysEnterCS));
1169 Log(("guest.u64SysEnterEIP %RX64\n", pVMCB->guest.u64SysEnterEIP));
1170 Log(("guest.u64SysEnterESP %RX64\n", pVMCB->guest.u64SysEnterESP));
1171
1172 Log(("guest.u64EFER %RX64\n", pVMCB->guest.u64EFER));
1173 Log(("guest.u64STAR %RX64\n", pVMCB->guest.u64STAR));
1174 Log(("guest.u64LSTAR %RX64\n", pVMCB->guest.u64LSTAR));
1175 Log(("guest.u64CSTAR %RX64\n", pVMCB->guest.u64CSTAR));
1176 Log(("guest.u64SFMASK %RX64\n", pVMCB->guest.u64SFMASK));
1177 Log(("guest.u64KernelGSBase %RX64\n", pVMCB->guest.u64KernelGSBase));
1178 Log(("guest.u64GPAT %RX64\n", pVMCB->guest.u64GPAT));
1179 Log(("guest.u64DBGCTL %RX64\n", pVMCB->guest.u64DBGCTL));
1180 Log(("guest.u64BR_FROM %RX64\n", pVMCB->guest.u64BR_FROM));
1181 Log(("guest.u64BR_TO %RX64\n", pVMCB->guest.u64BR_TO));
1182 Log(("guest.u64LASTEXCPFROM %RX64\n", pVMCB->guest.u64LASTEXCPFROM));
1183 Log(("guest.u64LASTEXCPTO %RX64\n", pVMCB->guest.u64LASTEXCPTO));
1184
1185#endif
1186 rc = VERR_SVM_UNABLE_TO_START_VM;
1187 goto end;
1188 }
1189
1190 /* Let's first sync back eip, esp, and eflags. */
1191 pCtx->rip = pVMCB->guest.u64RIP;
1192 pCtx->rsp = pVMCB->guest.u64RSP;
1193 pCtx->eflags.u32 = pVMCB->guest.u64RFlags;
1194 /* eax is saved/restore across the vmrun instruction */
1195 pCtx->rax = pVMCB->guest.u64RAX;
1196
1197 pCtx->msrKERNELGSBASE = pVMCB->guest.u64KernelGSBase; /* swapgs exchange value */
1198
1199 /* Can be updated behind our back in the nested paging case. */
1200 pCtx->cr2 = pVMCB->guest.u64CR2;
1201
1202 /* Guest CPU context: ES, CS, SS, DS, FS, GS. */
1203 SVM_READ_SELREG(SS, ss);
1204 SVM_READ_SELREG(CS, cs);
1205 SVM_READ_SELREG(DS, ds);
1206 SVM_READ_SELREG(ES, es);
1207 SVM_READ_SELREG(FS, fs);
1208 SVM_READ_SELREG(GS, gs);
1209
1210 /*
1211 * System MSRs
1212 */
1213 pCtx->SysEnter.cs = pVMCB->guest.u64SysEnterCS;
1214 pCtx->SysEnter.eip = pVMCB->guest.u64SysEnterEIP;
1215 pCtx->SysEnter.esp = pVMCB->guest.u64SysEnterESP;
1216
1217 /* Remaining guest CPU context: TR, IDTR, GDTR, LDTR; must sync everything otherwise we can get out of sync when jumping to ring 3. */
1218 SVM_READ_SELREG(LDTR, ldtr);
1219 SVM_READ_SELREG(TR, tr);
1220
1221 pCtx->gdtr.cbGdt = pVMCB->guest.GDTR.u32Limit;
1222 pCtx->gdtr.pGdt = pVMCB->guest.GDTR.u64Base;
1223
1224 pCtx->idtr.cbIdt = pVMCB->guest.IDTR.u32Limit;
1225 pCtx->idtr.pIdt = pVMCB->guest.IDTR.u64Base;
1226
1227 /* Note: no reason to sync back the CRx and DRx registers. They can't be changed by the guest. */
1228 /* Note: only in the nested paging case can CR3 & CR4 be changed by the guest. */
1229 if ( pVM->hwaccm.s.fNestedPaging
1230 && pCtx->cr3 != pVMCB->guest.u64CR3)
1231 {
1232 CPUMSetGuestCR3(pVM, pVMCB->guest.u64CR3);
1233 PGMUpdateCR3(pVM, pVMCB->guest.u64CR3);
1234 }
1235
1236 /* Note! NOW IT'S SAFE FOR LOGGING! */
1237
1238 /* Take care of instruction fusing (sti, mov ss) (see 15.20.5 Interrupt Shadows) */
1239 if (pVMCB->ctrl.u64IntShadow & SVM_INTERRUPT_SHADOW_ACTIVE)
1240 {
1241 Log(("uInterruptState %x rip=%RGv\n", pVMCB->ctrl.u64IntShadow, (RTGCPTR)pCtx->rip));
1242 EMSetInhibitInterruptsPC(pVM, pCtx->rip);
1243 }
1244 else
1245 VM_FF_CLEAR(pVM, VM_FF_INHIBIT_INTERRUPTS);
1246
1247 Log2(("exitCode = %x\n", exitCode));
1248
1249 /* Sync back DR6 as it could have been changed by hitting breakpoints. */
1250 pCtx->dr[6] = pVMCB->guest.u64DR6;
1251 /* DR7.GD can be cleared by debug exceptions, so sync it back as well. */
1252 pCtx->dr[7] = pVMCB->guest.u64DR7;
1253
1254 /* Check if an injected event was interrupted prematurely. */
1255 pVCpu->hwaccm.s.Event.intInfo = pVMCB->ctrl.ExitIntInfo.au64[0];
1256 if ( pVMCB->ctrl.ExitIntInfo.n.u1Valid
1257 && pVMCB->ctrl.ExitIntInfo.n.u3Type != SVM_EVENT_SOFTWARE_INT /* we don't care about 'int xx' as the instruction will be restarted. */)
1258 {
1259 Log(("Pending inject %RX64 at %RGv exit=%08x\n", pVCpu->hwaccm.s.Event.intInfo, (RTGCPTR)pCtx->rip, exitCode));
1260
1261#ifdef LOG_ENABLED
1262 SVM_EVENT Event;
1263 Event.au64[0] = pVCpu->hwaccm.s.Event.intInfo;
1264
1265 if ( exitCode == SVM_EXIT_EXCEPTION_E
1266 && Event.n.u8Vector == 0xE)
1267 {
1268 Log(("Double fault!\n"));
1269 }
1270#endif
1271
1272 pVCpu->hwaccm.s.Event.fPending = true;
1273 /* Error code present? (redundant) */
1274 if (pVMCB->ctrl.ExitIntInfo.n.u1ErrorCodeValid)
1275 {
1276 pVCpu->hwaccm.s.Event.errCode = pVMCB->ctrl.ExitIntInfo.n.u32ErrorCode;
1277 }
1278 else
1279 pVCpu->hwaccm.s.Event.errCode = 0;
1280 }
1281#ifdef VBOX_WITH_STATISTICS
1282 if (exitCode == SVM_EXIT_NPF)
1283 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitReasonNPF);
1284 else
1285 STAM_COUNTER_INC(&pVCpu->hwaccm.s.paStatExitReasonR0[exitCode & MASK_EXITREASON_STAT]);
1286#endif
1287
1288 if (fSyncTPR)
1289 {
1290 rc = PDMApicSetTPR(pVM, pVMCB->ctrl.IntCtrl.n.u8VTPR);
1291 AssertRC(rc);
1292 }
1293
1294 /* Deal with the reason of the VM-exit. */
1295 switch (exitCode)
1296 {
1297 case SVM_EXIT_EXCEPTION_0: case SVM_EXIT_EXCEPTION_1: case SVM_EXIT_EXCEPTION_2: case SVM_EXIT_EXCEPTION_3:
1298 case SVM_EXIT_EXCEPTION_4: case SVM_EXIT_EXCEPTION_5: case SVM_EXIT_EXCEPTION_6: case SVM_EXIT_EXCEPTION_7:
1299 case SVM_EXIT_EXCEPTION_8: case SVM_EXIT_EXCEPTION_9: case SVM_EXIT_EXCEPTION_A: case SVM_EXIT_EXCEPTION_B:
1300 case SVM_EXIT_EXCEPTION_C: case SVM_EXIT_EXCEPTION_D: case SVM_EXIT_EXCEPTION_E: case SVM_EXIT_EXCEPTION_F:
1301 case SVM_EXIT_EXCEPTION_10: case SVM_EXIT_EXCEPTION_11: case SVM_EXIT_EXCEPTION_12: case SVM_EXIT_EXCEPTION_13:
1302 case SVM_EXIT_EXCEPTION_14: case SVM_EXIT_EXCEPTION_15: case SVM_EXIT_EXCEPTION_16: case SVM_EXIT_EXCEPTION_17:
1303 case SVM_EXIT_EXCEPTION_18: case SVM_EXIT_EXCEPTION_19: case SVM_EXIT_EXCEPTION_1A: case SVM_EXIT_EXCEPTION_1B:
1304 case SVM_EXIT_EXCEPTION_1C: case SVM_EXIT_EXCEPTION_1D: case SVM_EXIT_EXCEPTION_1E: case SVM_EXIT_EXCEPTION_1F:
1305 {
1306 /* Pending trap. */
1307 SVM_EVENT Event;
1308 uint32_t vector = exitCode - SVM_EXIT_EXCEPTION_0;
1309
1310 Log2(("Hardware/software interrupt %d\n", vector));
1311 switch (vector)
1312 {
1313 case X86_XCPT_DB:
1314 {
1315 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestDB);
1316
1317 /* Note that we don't support guest and host-initiated debugging at the same time. */
1318 Assert(DBGFIsStepping(pVM));
1319
1320 rc = DBGFR0Trap01Handler(pVM, CPUMCTX2CORE(pCtx), pCtx->dr[6]);
1321 if (rc == VINF_EM_RAW_GUEST_TRAP)
1322 {
1323 Log(("Trap %x (debug) at %016RX64\n", vector, pCtx->rip));
1324
1325 /* Reinject the exception. */
1326 Event.au64[0] = 0;
1327 Event.n.u3Type = SVM_EVENT_EXCEPTION; /* trap or fault */
1328 Event.n.u1Valid = 1;
1329 Event.n.u8Vector = X86_XCPT_DB;
1330
1331 SVMR0InjectEvent(pVM, pVMCB, pCtx, &Event);
1332
1333 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit, x);
1334 goto ResumeExecution;
1335 }
1336 /* Return to ring 3 to deal with the debug exit code. */
1337 break;
1338 }
1339
1340 case X86_XCPT_NM:
1341 {
1342 Log(("#NM fault at %RGv\n", (RTGCPTR)pCtx->rip));
1343
1344 /** @todo don't intercept #NM exceptions anymore when we've activated the guest FPU state. */
1345 /* If we sync the FPU/XMM state on-demand, then we can continue execution as if nothing has happened. */
1346 rc = CPUMR0LoadGuestFPU(pVM, pVCpu, pCtx);
1347 if (rc == VINF_SUCCESS)
1348 {
1349 Assert(CPUMIsGuestFPUStateActive(pVCpu));
1350 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitShadowNM);
1351
1352 /* Continue execution. */
1353 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit, x);
1354 pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_GUEST_CR0;
1355
1356 goto ResumeExecution;
1357 }
1358
1359 Log(("Forward #NM fault to the guest\n"));
1360 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestNM);
1361
1362 Event.au64[0] = 0;
1363 Event.n.u3Type = SVM_EVENT_EXCEPTION;
1364 Event.n.u1Valid = 1;
1365 Event.n.u8Vector = X86_XCPT_NM;
1366
1367 SVMR0InjectEvent(pVM, pVMCB, pCtx, &Event);
1368 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit, x);
1369 goto ResumeExecution;
1370 }
1371
1372 case X86_XCPT_PF: /* Page fault */
1373 {
1374 uint32_t errCode = pVMCB->ctrl.u64ExitInfo1; /* EXITINFO1 = error code */
1375 RTGCUINTPTR uFaultAddress = pVMCB->ctrl.u64ExitInfo2; /* EXITINFO2 = fault address */
1376
1377#ifdef DEBUG
1378 if (pVM->hwaccm.s.fNestedPaging)
1379 { /* A genuine pagefault.
1380 * Forward the trap to the guest by injecting the exception and resuming execution.
1381 */
1382 Log(("Guest page fault at %RGv cr2=%RGv error code %x rsp=%RGv\n", (RTGCPTR)pCtx->rip, uFaultAddress, errCode, (RTGCPTR)pCtx->rsp));
1383 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestPF);
1384
1385 /* Now we must update CR2. */
1386 pCtx->cr2 = uFaultAddress;
1387
1388 Event.au64[0] = 0;
1389 Event.n.u3Type = SVM_EVENT_EXCEPTION;
1390 Event.n.u1Valid = 1;
1391 Event.n.u8Vector = X86_XCPT_PF;
1392 Event.n.u1ErrorCodeValid = 1;
1393 Event.n.u32ErrorCode = errCode;
1394
1395 SVMR0InjectEvent(pVM, pVMCB, pCtx, &Event);
1396
1397 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit, x);
1398 goto ResumeExecution;
1399 }
1400#endif
1401 Assert(!pVM->hwaccm.s.fNestedPaging);
1402
1403 Log2(("Page fault at %RGv cr2=%RGv error code %x\n", (RTGCPTR)pCtx->rip, uFaultAddress, errCode));
1404 /* Exit qualification contains the linear address of the page fault. */
1405 TRPMAssertTrap(pVM, X86_XCPT_PF, TRPM_TRAP);
1406 TRPMSetErrorCode(pVM, errCode);
1407 TRPMSetFaultAddress(pVM, uFaultAddress);
1408
1409 /* Forward it to our trap handler first, in case our shadow pages are out of sync. */
1410 rc = PGMTrap0eHandler(pVM, errCode, CPUMCTX2CORE(pCtx), (RTGCPTR)uFaultAddress);
1411 Log2(("PGMTrap0eHandler %RGv returned %Rrc\n", (RTGCPTR)pCtx->rip, rc));
1412 if (rc == VINF_SUCCESS)
1413 { /* We've successfully synced our shadow pages, so let's just continue execution. */
1414 Log2(("Shadow page fault at %RGv cr2=%RGv error code %x\n", (RTGCPTR)pCtx->rip, uFaultAddress, errCode));
1415 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitShadowPF);
1416
1417 TRPMResetTrap(pVM);
1418
1419 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit, x);
1420 goto ResumeExecution;
1421 }
1422 else
1423 if (rc == VINF_EM_RAW_GUEST_TRAP)
1424 { /* A genuine pagefault.
1425 * Forward the trap to the guest by injecting the exception and resuming execution.
1426 */
1427 Log2(("Forward page fault to the guest\n"));
1428 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestPF);
1429 /* The error code might have been changed. */
1430 errCode = TRPMGetErrorCode(pVM);
1431
1432 TRPMResetTrap(pVM);
1433
1434 /* Now we must update CR2. */
1435 pCtx->cr2 = uFaultAddress;
1436
1437 Event.au64[0] = 0;
1438 Event.n.u3Type = SVM_EVENT_EXCEPTION;
1439 Event.n.u1Valid = 1;
1440 Event.n.u8Vector = X86_XCPT_PF;
1441 Event.n.u1ErrorCodeValid = 1;
1442 Event.n.u32ErrorCode = errCode;
1443
1444 SVMR0InjectEvent(pVM, pVMCB, pCtx, &Event);
1445
1446 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit, x);
1447 goto ResumeExecution;
1448 }
1449#ifdef VBOX_STRICT
1450 if (rc != VINF_EM_RAW_EMULATE_INSTR)
1451 LogFlow(("PGMTrap0eHandler failed with %d\n", rc));
1452#endif
1453 /* Need to go back to the recompiler to emulate the instruction. */
1454 TRPMResetTrap(pVM);
1455 break;
1456 }
1457
1458 case X86_XCPT_MF: /* Floating point exception. */
1459 {
1460 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestMF);
1461 if (!(pCtx->cr0 & X86_CR0_NE))
1462 {
1463 /* old style FPU error reporting needs some extra work. */
1464 /** @todo don't fall back to the recompiler, but do it manually. */
1465 rc = VINF_EM_RAW_EMULATE_INSTR;
1466 break;
1467 }
1468 Log(("Trap %x at %RGv\n", vector, (RTGCPTR)pCtx->rip));
1469
1470 Event.au64[0] = 0;
1471 Event.n.u3Type = SVM_EVENT_EXCEPTION;
1472 Event.n.u1Valid = 1;
1473 Event.n.u8Vector = X86_XCPT_MF;
1474
1475 SVMR0InjectEvent(pVM, pVMCB, pCtx, &Event);
1476
1477 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit, x);
1478 goto ResumeExecution;
1479 }
1480
1481#ifdef VBOX_STRICT
1482 case X86_XCPT_GP: /* General protection failure exception.*/
1483 case X86_XCPT_UD: /* Unknown opcode exception. */
1484 case X86_XCPT_DE: /* Divide error. */
1485 case X86_XCPT_SS: /* Stack segment exception. */
1486 case X86_XCPT_NP: /* Segment not present exception. */
1487 {
1488 Event.au64[0] = 0;
1489 Event.n.u3Type = SVM_EVENT_EXCEPTION;
1490 Event.n.u1Valid = 1;
1491 Event.n.u8Vector = vector;
1492
1493 switch(vector)
1494 {
1495 case X86_XCPT_GP:
1496 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestGP);
1497 Event.n.u1ErrorCodeValid = 1;
1498 Event.n.u32ErrorCode = pVMCB->ctrl.u64ExitInfo1; /* EXITINFO1 = error code */
1499 break;
1500 case X86_XCPT_DE:
1501 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestDE);
1502 break;
1503 case X86_XCPT_UD:
1504 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestUD);
1505 break;
1506 case X86_XCPT_SS:
1507 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestSS);
1508 Event.n.u1ErrorCodeValid = 1;
1509 Event.n.u32ErrorCode = pVMCB->ctrl.u64ExitInfo1; /* EXITINFO1 = error code */
1510 break;
1511 case X86_XCPT_NP:
1512 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestNP);
1513 Event.n.u1ErrorCodeValid = 1;
1514 Event.n.u32ErrorCode = pVMCB->ctrl.u64ExitInfo1; /* EXITINFO1 = error code */
1515 break;
1516 }
1517 Log(("Trap %x at %RGv esi=%x\n", vector, (RTGCPTR)pCtx->rip, pCtx->esi));
1518 SVMR0InjectEvent(pVM, pVMCB, pCtx, &Event);
1519
1520 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit, x);
1521 goto ResumeExecution;
1522 }
1523#endif
1524 default:
1525 AssertMsgFailed(("Unexpected vm-exit caused by exception %x\n", vector));
1526 rc = VERR_EM_INTERNAL_ERROR;
1527 break;
1528
1529 } /* switch (vector) */
1530 break;
1531 }
1532
1533 case SVM_EXIT_NPF:
1534 {
1535 /* EXITINFO1 contains fault errorcode; EXITINFO2 contains the guest physical address causing the fault. */
1536 uint32_t errCode = pVMCB->ctrl.u64ExitInfo1; /* EXITINFO1 = error code */
1537 RTGCPHYS uFaultAddress = pVMCB->ctrl.u64ExitInfo2; /* EXITINFO2 = fault address */
1538 PGMMODE enmShwPagingMode;
1539
1540 Assert(pVM->hwaccm.s.fNestedPaging);
1541 Log(("Nested page fault at %RGv cr2=%RGp error code %x\n", (RTGCPTR)pCtx->rip, uFaultAddress, errCode));
1542 /* Exit qualification contains the linear address of the page fault. */
1543 TRPMAssertTrap(pVM, X86_XCPT_PF, TRPM_TRAP);
1544 TRPMSetErrorCode(pVM, errCode);
1545 TRPMSetFaultAddress(pVM, uFaultAddress);
1546
1547 /* Handle the pagefault trap for the nested shadow table. */
1548#if HC_ARCH_BITS == 32
1549 if (CPUMIsGuestInLongModeEx(pCtx))
1550 enmShwPagingMode = PGMMODE_AMD64_NX;
1551 else
1552#endif
1553 enmShwPagingMode = PGMGetHostMode(pVM);
1554
1555 rc = PGMR0Trap0eHandlerNestedPaging(pVM, enmShwPagingMode, errCode, CPUMCTX2CORE(pCtx), uFaultAddress);
1556 Log2(("PGMR0Trap0eHandlerNestedPaging %RGv returned %Rrc\n", (RTGCPTR)pCtx->rip, rc));
1557 if (rc == VINF_SUCCESS)
1558 { /* We've successfully synced our shadow pages, so let's just continue execution. */
1559 Log2(("Shadow page fault at %RGv cr2=%RGp error code %x\n", (RTGCPTR)pCtx->rip, uFaultAddress, errCode));
1560 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitShadowPF);
1561
1562 TRPMResetTrap(pVM);
1563
1564 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit, x);
1565 goto ResumeExecution;
1566 }
1567
1568#ifdef VBOX_STRICT
1569 if (rc != VINF_EM_RAW_EMULATE_INSTR)
1570 LogFlow(("PGMTrap0eHandlerNestedPaging failed with %d\n", rc));
1571#endif
1572 /* Need to go back to the recompiler to emulate the instruction. */
1573 TRPMResetTrap(pVM);
1574 break;
1575 }
1576
1577 case SVM_EXIT_VINTR:
1578 /* A virtual interrupt is about to be delivered, which means IF=1. */
1579 Log(("SVM_EXIT_VINTR IF=%d\n", pCtx->eflags.Bits.u1IF));
1580 pVMCB->ctrl.IntCtrl.n.u1VIrqValid = 0;
1581 pVMCB->ctrl.IntCtrl.n.u8VIrqVector = 0;
1582 goto ResumeExecution;
1583
1584 case SVM_EXIT_FERR_FREEZE:
1585 case SVM_EXIT_INTR:
1586 case SVM_EXIT_NMI:
1587 case SVM_EXIT_SMI:
1588 case SVM_EXIT_INIT:
1589 /* External interrupt; leave to allow it to be dispatched again. */
1590 rc = VINF_EM_RAW_INTERRUPT;
1591 break;
1592
1593 case SVM_EXIT_WBINVD:
1594 case SVM_EXIT_INVD: /* Guest software attempted to execute INVD. */
1595 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitInvd);
1596 /* Skip instruction and continue directly. */
1597 pCtx->rip += 2; /* Note! hardcoded opcode size! */
1598 /* Continue execution.*/
1599 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit, x);
1600 goto ResumeExecution;
1601
1602 case SVM_EXIT_CPUID: /* Guest software attempted to execute CPUID. */
1603 {
1604 Log2(("SVM: Cpuid at %RGv for %x\n", (RTGCPTR)pCtx->rip, pCtx->eax));
1605 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitCpuid);
1606 rc = EMInterpretCpuId(pVM, CPUMCTX2CORE(pCtx));
1607 if (rc == VINF_SUCCESS)
1608 {
1609 /* Update EIP and continue execution. */
1610 pCtx->rip += 2; /* Note! hardcoded opcode size! */
1611 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit, x);
1612 goto ResumeExecution;
1613 }
1614 AssertMsgFailed(("EMU: cpuid failed with %Rrc\n", rc));
1615 rc = VINF_EM_RAW_EMULATE_INSTR;
1616 break;
1617 }
1618
1619 case SVM_EXIT_RDTSC: /* Guest software attempted to execute RDTSC. */
1620 {
1621 Log2(("SVM: Rdtsc\n"));
1622 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitRdtsc);
1623 rc = EMInterpretRdtsc(pVM, CPUMCTX2CORE(pCtx));
1624 if (rc == VINF_SUCCESS)
1625 {
1626 /* Update EIP and continue execution. */
1627 pCtx->rip += 2; /* Note! hardcoded opcode size! */
1628 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit, x);
1629 goto ResumeExecution;
1630 }
1631 AssertMsgFailed(("EMU: rdtsc failed with %Rrc\n", rc));
1632 rc = VINF_EM_RAW_EMULATE_INSTR;
1633 break;
1634 }
1635
1636 case SVM_EXIT_RDTSCP: /* Guest software attempted to execute RDTSCP. */
1637 {
1638 Log2(("SVM: Rdtscp\n"));
1639 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitRdtsc);
1640 rc = EMInterpretRdtscp(pVM, pCtx);
1641 if (rc == VINF_SUCCESS)
1642 {
1643 /* Update EIP and continue execution. */
1644 pCtx->rip += 3; /* Note! hardcoded opcode size! */
1645 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit, x);
1646 goto ResumeExecution;
1647 }
1648 AssertMsgFailed(("EMU: rdtscp failed with %Rrc\n", rc));
1649 rc = VINF_EM_RAW_EMULATE_INSTR;
1650 break;
1651 }
1652
1653 case SVM_EXIT_INVLPG: /* Guest software attempted to execute INVPG. */
1654 {
1655 Log2(("SVM: invlpg\n"));
1656 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitInvpg);
1657
1658 Assert(!pVM->hwaccm.s.fNestedPaging);
1659
1660 /* Truly a pita. Why can't SVM give the same information as VT-x? */
1661 rc = SVMR0InterpretInvpg(pVM, CPUMCTX2CORE(pCtx), pVMCB->ctrl.TLBCtrl.n.u32ASID);
1662 if (rc == VINF_SUCCESS)
1663 {
1664 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatFlushPageInvlpg);
1665 goto ResumeExecution; /* eip already updated */
1666 }
1667 break;
1668 }
1669
1670 case SVM_EXIT_WRITE_CR0: case SVM_EXIT_WRITE_CR1: case SVM_EXIT_WRITE_CR2: case SVM_EXIT_WRITE_CR3:
1671 case SVM_EXIT_WRITE_CR4: case SVM_EXIT_WRITE_CR5: case SVM_EXIT_WRITE_CR6: case SVM_EXIT_WRITE_CR7:
1672 case SVM_EXIT_WRITE_CR8: case SVM_EXIT_WRITE_CR9: case SVM_EXIT_WRITE_CR10: case SVM_EXIT_WRITE_CR11:
1673 case SVM_EXIT_WRITE_CR12: case SVM_EXIT_WRITE_CR13: case SVM_EXIT_WRITE_CR14: case SVM_EXIT_WRITE_CR15:
1674 {
1675 uint32_t cbSize;
1676
1677 Log2(("SVM: %RGv mov cr%d, \n", (RTGCPTR)pCtx->rip, exitCode - SVM_EXIT_WRITE_CR0));
1678 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitCRxWrite[exitCode - SVM_EXIT_WRITE_CR0]);
1679 rc = EMInterpretInstruction(pVM, CPUMCTX2CORE(pCtx), 0, &cbSize);
1680
1681 switch (exitCode - SVM_EXIT_WRITE_CR0)
1682 {
1683 case 0:
1684 pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_GUEST_CR0;
1685 break;
1686 case 2:
1687 break;
1688 case 3:
1689 Assert(!pVM->hwaccm.s.fNestedPaging);
1690 pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_GUEST_CR3;
1691 break;
1692 case 4:
1693 pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_GUEST_CR4;
1694 break;
1695 case 8:
1696 break;
1697 default:
1698 AssertFailed();
1699 }
1700 /* Check if a sync operation is pending. */
1701 if ( rc == VINF_SUCCESS /* don't bother if we are going to ring 3 anyway */
1702 && VM_FF_ISPENDING(pVM, VM_FF_PGM_SYNC_CR3 | VM_FF_PGM_SYNC_CR3_NON_GLOBAL))
1703 {
1704 rc = PGMSyncCR3(pVM, CPUMGetGuestCR0(pVM), CPUMGetGuestCR3(pVM), CPUMGetGuestCR4(pVM), VM_FF_ISSET(pVM, VM_FF_PGM_SYNC_CR3));
1705 AssertRC(rc);
1706
1707 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatFlushTLBCRxChange);
1708
1709 /* Must be set by PGMSyncCR3 */
1710 Assert(PGMGetGuestMode(pVM) <= PGMMODE_PROTECTED || pVCpu->hwaccm.s.fForceTLBFlush);
1711 }
1712 if (rc == VINF_SUCCESS)
1713 {
1714 /* EIP has been updated already. */
1715
1716 /* Only resume if successful. */
1717 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit, x);
1718 goto ResumeExecution;
1719 }
1720 Assert(rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_PGM_SYNC_CR3);
1721 break;
1722 }
1723
1724 case SVM_EXIT_READ_CR0: case SVM_EXIT_READ_CR1: case SVM_EXIT_READ_CR2: case SVM_EXIT_READ_CR3:
1725 case SVM_EXIT_READ_CR4: case SVM_EXIT_READ_CR5: case SVM_EXIT_READ_CR6: case SVM_EXIT_READ_CR7:
1726 case SVM_EXIT_READ_CR8: case SVM_EXIT_READ_CR9: case SVM_EXIT_READ_CR10: case SVM_EXIT_READ_CR11:
1727 case SVM_EXIT_READ_CR12: case SVM_EXIT_READ_CR13: case SVM_EXIT_READ_CR14: case SVM_EXIT_READ_CR15:
1728 {
1729 uint32_t cbSize;
1730
1731 Log2(("SVM: %RGv mov x, cr%d\n", (RTGCPTR)pCtx->rip, exitCode - SVM_EXIT_READ_CR0));
1732 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitCRxRead[exitCode - SVM_EXIT_WRITE_CR0]);
1733 rc = EMInterpretInstruction(pVM, CPUMCTX2CORE(pCtx), 0, &cbSize);
1734 if (rc == VINF_SUCCESS)
1735 {
1736 /* EIP has been updated already. */
1737
1738 /* Only resume if successful. */
1739 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit, x);
1740 goto ResumeExecution;
1741 }
1742 Assert(rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_PGM_SYNC_CR3);
1743 break;
1744 }
1745
1746 case SVM_EXIT_WRITE_DR0: case SVM_EXIT_WRITE_DR1: case SVM_EXIT_WRITE_DR2: case SVM_EXIT_WRITE_DR3:
1747 case SVM_EXIT_WRITE_DR4: case SVM_EXIT_WRITE_DR5: case SVM_EXIT_WRITE_DR6: case SVM_EXIT_WRITE_DR7:
1748 case SVM_EXIT_WRITE_DR8: case SVM_EXIT_WRITE_DR9: case SVM_EXIT_WRITE_DR10: case SVM_EXIT_WRITE_DR11:
1749 case SVM_EXIT_WRITE_DR12: case SVM_EXIT_WRITE_DR13: case SVM_EXIT_WRITE_DR14: case SVM_EXIT_WRITE_DR15:
1750 {
1751 uint32_t cbSize;
1752
1753 Log2(("SVM: %RGv mov dr%d, x\n", (RTGCPTR)pCtx->rip, exitCode - SVM_EXIT_WRITE_DR0));
1754 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitDRxRead);
1755
1756 if (!DBGFIsStepping(pVM))
1757 {
1758 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatDRxContextSwitch);
1759
1760 /* Disable drx move intercepts. */
1761 pVMCB->ctrl.u16InterceptRdDRx = 0;
1762 pVMCB->ctrl.u16InterceptWrDRx = 0;
1763
1764 /* Save the host and load the guest debug state. */
1765 rc = CPUMR0LoadGuestDebugState(pVM, pVCpu, pCtx, false /* exclude DR6 */);
1766 AssertRC(rc);
1767
1768 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit, x);
1769 goto ResumeExecution;
1770 }
1771
1772 rc = EMInterpretInstruction(pVM, CPUMCTX2CORE(pCtx), 0, &cbSize);
1773 if (rc == VINF_SUCCESS)
1774 {
1775 /* EIP has been updated already. */
1776 pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_GUEST_DEBUG;
1777
1778 /* Only resume if successful. */
1779 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit, x);
1780 goto ResumeExecution;
1781 }
1782 Assert(rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_PGM_SYNC_CR3);
1783 break;
1784 }
1785
1786 case SVM_EXIT_READ_DR0: case SVM_EXIT_READ_DR1: case SVM_EXIT_READ_DR2: case SVM_EXIT_READ_DR3:
1787 case SVM_EXIT_READ_DR4: case SVM_EXIT_READ_DR5: case SVM_EXIT_READ_DR6: case SVM_EXIT_READ_DR7:
1788 case SVM_EXIT_READ_DR8: case SVM_EXIT_READ_DR9: case SVM_EXIT_READ_DR10: case SVM_EXIT_READ_DR11:
1789 case SVM_EXIT_READ_DR12: case SVM_EXIT_READ_DR13: case SVM_EXIT_READ_DR14: case SVM_EXIT_READ_DR15:
1790 {
1791 uint32_t cbSize;
1792
1793 Log2(("SVM: %RGv mov dr%d, x\n", (RTGCPTR)pCtx->rip, exitCode - SVM_EXIT_READ_DR0));
1794 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitDRxRead);
1795
1796 if (!DBGFIsStepping(pVM))
1797 {
1798 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatDRxContextSwitch);
1799
1800 /* Disable drx move intercepts. */
1801 pVMCB->ctrl.u16InterceptRdDRx = 0;
1802 pVMCB->ctrl.u16InterceptWrDRx = 0;
1803
1804 /* Save the host and load the guest debug state. */
1805 rc = CPUMR0LoadGuestDebugState(pVM, pVCpu, pCtx, false /* exclude DR6 */);
1806 AssertRC(rc);
1807
1808 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit, x);
1809 goto ResumeExecution;
1810 }
1811
1812 rc = EMInterpretInstruction(pVM, CPUMCTX2CORE(pCtx), 0, &cbSize);
1813 if (rc == VINF_SUCCESS)
1814 {
1815 /* EIP has been updated already. */
1816
1817 /* Only resume if successful. */
1818 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit, x);
1819 goto ResumeExecution;
1820 }
1821 Assert(rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_PGM_SYNC_CR3);
1822 break;
1823 }
1824
1825 /* Note: We'll get a #GP if the IO instruction isn't allowed (IOPL or TSS bitmap); no need to double check. */
1826 case SVM_EXIT_IOIO: /* I/O instruction. */
1827 {
1828 SVM_IOIO_EXIT IoExitInfo;
1829 uint32_t uIOSize, uAndVal;
1830
1831 IoExitInfo.au32[0] = pVMCB->ctrl.u64ExitInfo1;
1832
1833 /** @todo could use a lookup table here */
1834 if (IoExitInfo.n.u1OP8)
1835 {
1836 uIOSize = 1;
1837 uAndVal = 0xff;
1838 }
1839 else
1840 if (IoExitInfo.n.u1OP16)
1841 {
1842 uIOSize = 2;
1843 uAndVal = 0xffff;
1844 }
1845 else
1846 if (IoExitInfo.n.u1OP32)
1847 {
1848 uIOSize = 4;
1849 uAndVal = 0xffffffff;
1850 }
1851 else
1852 {
1853 AssertFailed(); /* should be fatal. */
1854 rc = VINF_EM_RAW_EMULATE_INSTR;
1855 break;
1856 }
1857
1858 if (IoExitInfo.n.u1STR)
1859 {
1860 /* ins/outs */
1861 DISCPUSTATE Cpu;
1862
1863 /* Disassemble manually to deal with segment prefixes. */
1864 rc = EMInterpretDisasOne(pVM, CPUMCTX2CORE(pCtx), &Cpu, NULL);
1865 if (rc == VINF_SUCCESS)
1866 {
1867 if (IoExitInfo.n.u1Type == 0)
1868 {
1869 Log2(("IOMInterpretOUTSEx %RGv %x size=%d\n", (RTGCPTR)pCtx->rip, IoExitInfo.n.u16Port, uIOSize));
1870 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitIOStringWrite);
1871 rc = IOMInterpretOUTSEx(pVM, CPUMCTX2CORE(pCtx), IoExitInfo.n.u16Port, Cpu.prefix, uIOSize);
1872 }
1873 else
1874 {
1875 Log2(("IOMInterpretINSEx %RGv %x size=%d\n", (RTGCPTR)pCtx->rip, IoExitInfo.n.u16Port, uIOSize));
1876 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitIOStringRead);
1877 rc = IOMInterpretINSEx(pVM, CPUMCTX2CORE(pCtx), IoExitInfo.n.u16Port, Cpu.prefix, uIOSize);
1878 }
1879 }
1880 else
1881 rc = VINF_EM_RAW_EMULATE_INSTR;
1882 }
1883 else
1884 {
1885 /* normal in/out */
1886 Assert(!IoExitInfo.n.u1REP);
1887
1888 if (IoExitInfo.n.u1Type == 0)
1889 {
1890 Log2(("IOMIOPortWrite %RGv %x %x size=%d\n", (RTGCPTR)pCtx->rip, IoExitInfo.n.u16Port, pCtx->eax & uAndVal, uIOSize));
1891 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitIOWrite);
1892 rc = IOMIOPortWrite(pVM, IoExitInfo.n.u16Port, pCtx->eax & uAndVal, uIOSize);
1893 }
1894 else
1895 {
1896 uint32_t u32Val = 0;
1897
1898 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitIORead);
1899 rc = IOMIOPortRead(pVM, IoExitInfo.n.u16Port, &u32Val, uIOSize);
1900 if (IOM_SUCCESS(rc))
1901 {
1902 /* Write back to the EAX register. */
1903 pCtx->eax = (pCtx->eax & ~uAndVal) | (u32Val & uAndVal);
1904 Log2(("IOMIOPortRead %RGv %x %x size=%d\n", (RTGCPTR)pCtx->rip, IoExitInfo.n.u16Port, u32Val & uAndVal, uIOSize));
1905 }
1906 }
1907 }
1908 /*
1909 * Handled the I/O return codes.
1910 * (The unhandled cases end up with rc == VINF_EM_RAW_EMULATE_INSTR.)
1911 */
1912 if (IOM_SUCCESS(rc))
1913 {
1914 /* Update EIP and continue execution. */
1915 pCtx->rip = pVMCB->ctrl.u64ExitInfo2; /* RIP/EIP of the next instruction is saved in EXITINFO2. */
1916 if (RT_LIKELY(rc == VINF_SUCCESS))
1917 {
1918 /* If any IO breakpoints are armed, then we should check if a debug trap needs to be generated. */
1919 if (pCtx->dr[7] & X86_DR7_ENABLED_MASK)
1920 {
1921 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatDRxIOCheck);
1922 for (unsigned i=0;i<4;i++)
1923 {
1924 unsigned uBPLen = g_aIOSize[X86_DR7_GET_LEN(pCtx->dr[7], i)];
1925
1926 if ( (IoExitInfo.n.u16Port >= pCtx->dr[i] && IoExitInfo.n.u16Port < pCtx->dr[i] + uBPLen)
1927 && (pCtx->dr[7] & (X86_DR7_L(i) | X86_DR7_G(i)))
1928 && (pCtx->dr[7] & X86_DR7_RW(i, X86_DR7_RW_IO)) == X86_DR7_RW(i, X86_DR7_RW_IO))
1929 {
1930 SVM_EVENT Event;
1931
1932 Assert(CPUMIsGuestDebugStateActive(pVM));
1933
1934 /* Clear all breakpoint status flags and set the one we just hit. */
1935 pCtx->dr[6] &= ~(X86_DR6_B0|X86_DR6_B1|X86_DR6_B2|X86_DR6_B3);
1936 pCtx->dr[6] |= (uint64_t)RT_BIT(i);
1937
1938 /* Note: AMD64 Architecture Programmer's Manual 13.1:
1939 * Bits 15:13 of the DR6 register is never cleared by the processor and must be cleared by software after
1940 * the contents have been read.
1941 */
1942 pVMCB->guest.u64DR6 = pCtx->dr[6];
1943
1944 /* X86_DR7_GD will be cleared if drx accesses should be trapped inside the guest. */
1945 pCtx->dr[7] &= ~X86_DR7_GD;
1946
1947 /* Paranoia. */
1948 pCtx->dr[7] &= 0xffffffff; /* upper 32 bits reserved */
1949 pCtx->dr[7] &= ~(RT_BIT(11) | RT_BIT(12) | RT_BIT(14) | RT_BIT(15)); /* must be zero */
1950 pCtx->dr[7] |= 0x400; /* must be one */
1951
1952 pVMCB->guest.u64DR7 = pCtx->dr[7];
1953
1954 /* Inject the exception. */
1955 Log(("Inject IO debug trap at %RGv\n", (RTGCPTR)pCtx->rip));
1956
1957 Event.au64[0] = 0;
1958 Event.n.u3Type = SVM_EVENT_EXCEPTION; /* trap or fault */
1959 Event.n.u1Valid = 1;
1960 Event.n.u8Vector = X86_XCPT_DB;
1961
1962 SVMR0InjectEvent(pVM, pVMCB, pCtx, &Event);
1963
1964 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit, x);
1965 goto ResumeExecution;
1966 }
1967 }
1968 }
1969
1970 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit, x);
1971 goto ResumeExecution;
1972 }
1973 Log2(("EM status from IO at %RGv %x size %d: %Rrc\n", (RTGCPTR)pCtx->rip, IoExitInfo.n.u16Port, uIOSize, rc));
1974 break;
1975 }
1976
1977#ifdef VBOX_STRICT
1978 if (rc == VINF_IOM_HC_IOPORT_READ)
1979 Assert(IoExitInfo.n.u1Type != 0);
1980 else if (rc == VINF_IOM_HC_IOPORT_WRITE)
1981 Assert(IoExitInfo.n.u1Type == 0);
1982 else
1983 AssertMsg(RT_FAILURE(rc) || rc == VINF_EM_RAW_EMULATE_INSTR || rc == VINF_EM_RAW_GUEST_TRAP || rc == VINF_TRPM_XCPT_DISPATCHED, ("%Rrc\n", rc));
1984#endif
1985 Log2(("Failed IO at %RGv %x size %d\n", (RTGCPTR)pCtx->rip, IoExitInfo.n.u16Port, uIOSize));
1986 break;
1987 }
1988
1989 case SVM_EXIT_HLT:
1990 /** Check if external interrupts are pending; if so, don't switch back. */
1991 pCtx->rip++; /* skip hlt */
1992 if ( pCtx->eflags.Bits.u1IF
1993 && VM_FF_ISPENDING(pVM, (VM_FF_INTERRUPT_APIC|VM_FF_INTERRUPT_PIC)))
1994 goto ResumeExecution;
1995
1996 rc = VINF_EM_HALT;
1997 break;
1998
1999 case SVM_EXIT_RSM:
2000 case SVM_EXIT_INVLPGA:
2001 case SVM_EXIT_VMRUN:
2002 case SVM_EXIT_VMMCALL:
2003 case SVM_EXIT_VMLOAD:
2004 case SVM_EXIT_VMSAVE:
2005 case SVM_EXIT_STGI:
2006 case SVM_EXIT_CLGI:
2007 case SVM_EXIT_SKINIT:
2008 {
2009 /* Unsupported instructions. */
2010 SVM_EVENT Event;
2011
2012 Event.au64[0] = 0;
2013 Event.n.u3Type = SVM_EVENT_EXCEPTION;
2014 Event.n.u1Valid = 1;
2015 Event.n.u8Vector = X86_XCPT_UD;
2016
2017 Log(("Forced #UD trap at %RGv\n", (RTGCPTR)pCtx->rip));
2018 SVMR0InjectEvent(pVM, pVMCB, pCtx, &Event);
2019
2020 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit, x);
2021 goto ResumeExecution;
2022 }
2023
2024 /* Emulate in ring 3. */
2025 case SVM_EXIT_MSR:
2026 {
2027 uint32_t cbSize;
2028
2029 /* Note: the intel manual claims there's a REX version of RDMSR that's slightly different, so we play safe by completely disassembling the instruction. */
2030 Log(("SVM: %s\n", (pVMCB->ctrl.u64ExitInfo1 == 0) ? "rdmsr" : "wrmsr"));
2031 rc = EMInterpretInstruction(pVM, CPUMCTX2CORE(pCtx), 0, &cbSize);
2032 if (rc == VINF_SUCCESS)
2033 {
2034 /* EIP has been updated already. */
2035
2036 /* Only resume if successful. */
2037 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit, x);
2038 goto ResumeExecution;
2039 }
2040 AssertMsg(rc == VERR_EM_INTERPRETER, ("EMU: %s failed with %Rrc\n", (pVMCB->ctrl.u64ExitInfo1 == 0) ? "rdmsr" : "wrmsr", rc));
2041 break;
2042 }
2043
2044 case SVM_EXIT_MONITOR:
2045 case SVM_EXIT_RDPMC:
2046 case SVM_EXIT_PAUSE:
2047 case SVM_EXIT_MWAIT_UNCOND:
2048 case SVM_EXIT_MWAIT_ARMED:
2049 case SVM_EXIT_TASK_SWITCH: /* can change CR3; emulate */
2050 rc = VINF_EM_RAW_EXCEPTION_PRIVILEGED;
2051 break;
2052
2053 case SVM_EXIT_SHUTDOWN:
2054 rc = VINF_EM_RESET; /* Triple fault equals a reset. */
2055 break;
2056
2057 case SVM_EXIT_IDTR_READ:
2058 case SVM_EXIT_GDTR_READ:
2059 case SVM_EXIT_LDTR_READ:
2060 case SVM_EXIT_TR_READ:
2061 case SVM_EXIT_IDTR_WRITE:
2062 case SVM_EXIT_GDTR_WRITE:
2063 case SVM_EXIT_LDTR_WRITE:
2064 case SVM_EXIT_TR_WRITE:
2065 case SVM_EXIT_CR0_SEL_WRITE:
2066 default:
2067 /* Unexpected exit codes. */
2068 rc = VERR_EM_INTERNAL_ERROR;
2069 AssertMsgFailed(("Unexpected exit code %x\n", exitCode)); /* Can't happen. */
2070 break;
2071 }
2072
2073end:
2074
2075 /* Signal changes for the recompiler. */
2076 CPUMSetChangedFlags(pVM, CPUM_CHANGED_SYSENTER_MSR | CPUM_CHANGED_LDTR | CPUM_CHANGED_GDTR | CPUM_CHANGED_IDTR | CPUM_CHANGED_TR | CPUM_CHANGED_HIDDEN_SEL_REGS);
2077
2078 /* If we executed vmrun and an external irq was pending, then we don't have to do a full sync the next time. */
2079 if (exitCode == SVM_EXIT_INTR)
2080 {
2081 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatPendingHostIrq);
2082 /* On the next entry we'll only sync the host context. */
2083 pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_HOST_CONTEXT;
2084 }
2085 else
2086 {
2087 /* On the next entry we'll sync everything. */
2088 /** @todo we can do better than this */
2089 /* Not in the VINF_PGM_CHANGE_MODE though! */
2090 pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_ALL;
2091 }
2092
2093 /* translate into a less severe return code */
2094 if (rc == VERR_EM_INTERPRETER)
2095 rc = VINF_EM_RAW_EMULATE_INSTR;
2096
2097 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit, x);
2098 return rc;
2099}
2100
2101/**
2102 * Enters the AMD-V session
2103 *
2104 * @returns VBox status code.
2105 * @param pVM The VM to operate on.
2106 * @param pVCpu The VM CPU to operate on.
2107 * @param pCpu CPU info struct
2108 */
2109VMMR0DECL(int) SVMR0Enter(PVM pVM, PVMCPU pVCpu, PHWACCM_CPUINFO pCpu)
2110{
2111 Assert(pVM->hwaccm.s.svm.fSupported);
2112
2113 LogFlow(("SVMR0Enter cpu%d last=%d asid=%d\n", pCpu->idCpu, pVCpu->hwaccm.s.idLastCpu, pVCpu->hwaccm.s.uCurrentASID));
2114 pVCpu->hwaccm.s.fResumeVM = false;
2115
2116 /* Force to reload LDTR, so we'll execute VMLoad to load additional guest state. */
2117 pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_GUEST_LDTR;
2118
2119 return VINF_SUCCESS;
2120}
2121
2122
2123/**
2124 * Leaves the AMD-V session
2125 *
2126 * @returns VBox status code.
2127 * @param pVM The VM to operate on.
2128 * @param pVCpu The VM CPU to operate on.
2129 * @param pCtx CPU context
2130 */
2131VMMR0DECL(int) SVMR0Leave(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
2132{
2133 SVM_VMCB *pVMCB = (SVM_VMCB *)pVCpu->hwaccm.s.svm.pVMCB;
2134
2135 Assert(pVM->hwaccm.s.svm.fSupported);
2136
2137 /* Save the guest debug state if necessary. */
2138 if (CPUMIsGuestDebugStateActive(pVM))
2139 {
2140 CPUMR0SaveGuestDebugState(pVM, pVCpu, pCtx, false /* skip DR6 */);
2141
2142 /* Intercept all DRx reads and writes again. Changed later on. */
2143 pVMCB->ctrl.u16InterceptRdDRx = 0xFFFF;
2144 pVMCB->ctrl.u16InterceptWrDRx = 0xFFFF;
2145
2146 /* Resync the debug registers the next time. */
2147 pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_GUEST_DEBUG;
2148 }
2149 else
2150 Assert(pVMCB->ctrl.u16InterceptRdDRx == 0xFFFF && pVMCB->ctrl.u16InterceptWrDRx == 0xFFFF);
2151
2152 return VINF_SUCCESS;
2153}
2154
2155
2156static int svmR0InterpretInvlPg(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, uint32_t uASID)
2157{
2158 OP_PARAMVAL param1;
2159 RTGCPTR addr;
2160
2161 int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param1, &param1, PARAM_SOURCE);
2162 if(RT_FAILURE(rc))
2163 return VERR_EM_INTERPRETER;
2164
2165 switch(param1.type)
2166 {
2167 case PARMTYPE_IMMEDIATE:
2168 case PARMTYPE_ADDRESS:
2169 if(!(param1.flags & (PARAM_VAL32|PARAM_VAL64)))
2170 return VERR_EM_INTERPRETER;
2171 addr = param1.val.val64;
2172 break;
2173
2174 default:
2175 return VERR_EM_INTERPRETER;
2176 }
2177
2178 /** @todo is addr always a flat linear address or ds based
2179 * (in absence of segment override prefixes)????
2180 */
2181 rc = PGMInvalidatePage(pVM, addr);
2182 if (RT_SUCCESS(rc))
2183 {
2184 /* Manually invalidate the page for the VM's TLB. */
2185 Log(("SVMR0InvlpgA %RGv ASID=%d\n", addr, uASID));
2186 SVMR0InvlpgA(addr, uASID);
2187 return VINF_SUCCESS;
2188 }
2189 Assert(rc == VERR_REM_FLUSHED_PAGES_OVERFLOW);
2190 return rc;
2191}
2192
2193/**
2194 * Interprets INVLPG
2195 *
2196 * @returns VBox status code.
2197 * @retval VINF_* Scheduling instructions.
2198 * @retval VERR_EM_INTERPRETER Something we can't cope with.
2199 * @retval VERR_* Fatal errors.
2200 *
2201 * @param pVM The VM handle.
2202 * @param pRegFrame The register frame.
2203 * @param ASID Tagged TLB id for the guest
2204 *
2205 * Updates the EIP if an instruction was executed successfully.
2206 */
2207static int SVMR0InterpretInvpg(PVM pVM, PCPUMCTXCORE pRegFrame, uint32_t uASID)
2208{
2209 /*
2210 * Only allow 32 & 64 bits code.
2211 */
2212 DISCPUMODE enmMode = SELMGetCpuModeFromSelector(pVM, pRegFrame->eflags, pRegFrame->cs, &pRegFrame->csHid);
2213 if (enmMode != CPUMODE_16BIT)
2214 {
2215 RTGCPTR pbCode;
2216 int rc = SELMValidateAndConvertCSAddr(pVM, pRegFrame->eflags, pRegFrame->ss, pRegFrame->cs, &pRegFrame->csHid, (RTGCPTR)pRegFrame->rip, &pbCode);
2217 if (RT_SUCCESS(rc))
2218 {
2219 uint32_t cbOp;
2220 DISCPUSTATE Cpu;
2221
2222 Cpu.mode = enmMode;
2223 rc = EMInterpretDisasOneEx(pVM, pbCode, pRegFrame, &Cpu, &cbOp);
2224 Assert(RT_FAILURE(rc) || Cpu.pCurInstr->opcode == OP_INVLPG);
2225 if (RT_SUCCESS(rc) && Cpu.pCurInstr->opcode == OP_INVLPG)
2226 {
2227 Assert(cbOp == Cpu.opsize);
2228 rc = svmR0InterpretInvlPg(pVM, &Cpu, pRegFrame, uASID);
2229 if (RT_SUCCESS(rc))
2230 {
2231 pRegFrame->rip += cbOp; /* Move on to the next instruction. */
2232 }
2233 return rc;
2234 }
2235 }
2236 }
2237 return VERR_EM_INTERPRETER;
2238}
2239
2240
2241/**
2242 * Invalidates a guest page
2243 *
2244 * @returns VBox status code.
2245 * @param pVM The VM to operate on.
2246 * @param pVCpu The VM CPU to operate on.
2247 * @param GCVirt Page to invalidate
2248 */
2249VMMR0DECL(int) SVMR0InvalidatePage(PVM pVM, PVMCPU pVCpu, RTGCPTR GCVirt)
2250{
2251 bool fFlushPending = pVM->hwaccm.s.svm.fAlwaysFlushTLB | pVCpu->hwaccm.s.fForceTLBFlush;
2252
2253 /* Skip it if a TLB flush is already pending. */
2254 if (!fFlushPending)
2255 {
2256 SVM_VMCB *pVMCB;
2257
2258 Log2(("SVMR0InvalidatePage %RGv\n", GCVirt));
2259 AssertReturn(pVM, VERR_INVALID_PARAMETER);
2260 Assert(pVM->hwaccm.s.svm.fSupported);
2261
2262 /* @todo SMP */
2263 pVMCB = (SVM_VMCB *)pVM->aCpus[0].hwaccm.s.svm.pVMCB;
2264 AssertMsgReturn(pVMCB, ("Invalid pVMCB\n"), VERR_EM_INTERNAL_ERROR);
2265
2266 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatFlushPageManual);
2267#if HC_ARCH_BITS == 32
2268 /* If we get a flush in 64 bits guest mode, then force a full TLB flush. Invlpga takes only 32 bits addresses. */
2269 if (CPUMIsGuestInLongMode(pVM))
2270 pVCpu->hwaccm.s.fForceTLBFlush = true;
2271 else
2272#endif
2273 SVMR0InvlpgA(GCVirt, pVMCB->ctrl.TLBCtrl.n.u32ASID);
2274 }
2275 return VINF_SUCCESS;
2276}
2277
2278
2279/**
2280 * Invalidates a guest page by physical address
2281 *
2282 * @returns VBox status code.
2283 * @param pVM The VM to operate on.
2284 * @param pVCpu The VM CPU to operate on.
2285 * @param GCPhys Page to invalidate
2286 */
2287VMMR0DECL(int) SVMR0InvalidatePhysPage(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys)
2288{
2289 Assert(pVM->hwaccm.s.fNestedPaging);
2290 /* invlpga only invalidates TLB entries for guest virtual addresses; we have no choice but to force a TLB flush here. */
2291 pVCpu->hwaccm.s.fForceTLBFlush = true;
2292 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatFlushTLBInvlpga);
2293 return VINF_SUCCESS;
2294}
2295
2296#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
2297/**
2298 * Prepares for and executes VMRUN (64 bits guests from a 32 bits hosts).
2299 *
2300 * @returns VBox status code.
2301 * @param pVMCBHostPhys Physical address of host VMCB.
2302 * @param pVMCBPhys Physical address of the VMCB.
2303 * @param pCtx Guest context.
2304 * @param pVM The VM to operate on.
2305 * @param pVCpu The VMCPU to operate on.
2306 */
2307DECLASM(int) SVMR0VMSwitcherRun64(RTHCPHYS pVMCBHostPhys, RTHCPHYS pVMCBPhys, PCPUMCTX pCtx, PVM pVM, PVMCPU pVCpu)
2308{
2309 uint32_t aParam[4];
2310
2311 aParam[0] = (uint32_t)(pVMCBHostPhys); /* Param 1: pVMCBHostPhys - Lo. */
2312 aParam[1] = (uint32_t)(pVMCBHostPhys >> 32); /* Param 1: pVMCBHostPhys - Hi. */
2313 aParam[2] = (uint32_t)(pVMCBPhys); /* Param 2: pVMCBPhys - Lo. */
2314 aParam[3] = (uint32_t)(pVMCBPhys >> 32); /* Param 2: pVMCBPhys - Hi. */
2315
2316 return SVMR0Execute64BitsHandler(pVM, pVCpu, pCtx, pVM->hwaccm.s.pfnSVMGCVMRun64, 4, &aParam[0]);
2317}
2318
2319/**
2320 * Executes the specified handler in 64 mode
2321 *
2322 * @returns VBox status code.
2323 * @param pVM The VM to operate on.
2324 * @param pVCpu The VMCPU to operate on.
2325 * @param pCtx Guest context
2326 * @param pfnHandler RC handler
2327 * @param cbParam Number of parameters
2328 * @param paParam Array of 32 bits parameters
2329 */
2330VMMR0DECL(int) SVMR0Execute64BitsHandler(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, RTRCPTR pfnHandler, uint32_t cbParam, uint32_t *paParam)
2331{
2332 int rc;
2333 RTCCUINTREG uFlags;
2334
2335 /* @todo This code is not guest SMP safe (hyper context) */
2336 AssertReturn(pVM->cCPUs == 1, VERR_ACCESS_DENIED);
2337 Assert(pfnHandler);
2338
2339 uFlags = ASMIntDisableFlags();
2340
2341 CPUMSetHyperESP(pVM, VMMGetStackRC(pVM));
2342 CPUMSetHyperEIP(pVM, pfnHandler);
2343 for (int i=(int)cbParam-1;i>=0;i--)
2344 CPUMPushHyper(pVM, paParam[i]);
2345
2346 /* Call switcher. */
2347 rc = pVM->hwaccm.s.pfnHost32ToGuest64R0(pVM);
2348
2349 ASMSetFlags(uFlags);
2350 return rc;
2351}
2352
2353#endif /* HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS) */
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette