VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR0/HWSVMR0.cpp@ 20876

Last change on this file since 20876 was 20846, checked in by vboxsync, 16 years ago

If an active trap is already pending, then we must forward it first!

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 112.1 KB
Line 
1/* $Id: HWSVMR0.cpp 20846 2009-06-23 14:57:46Z vboxsync $ */
2/** @file
3 * HWACCM SVM - Host Context Ring 0.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/*******************************************************************************
24* Header Files *
25*******************************************************************************/
26#define LOG_GROUP LOG_GROUP_HWACCM
27#include <VBox/hwaccm.h>
28#include "HWACCMInternal.h"
29#include <VBox/vm.h>
30#include <VBox/x86.h>
31#include <VBox/hwacc_svm.h>
32#include <VBox/pgm.h>
33#include <VBox/pdm.h>
34#include <VBox/err.h>
35#include <VBox/log.h>
36#include <VBox/selm.h>
37#include <VBox/iom.h>
38#include <VBox/dis.h>
39#include <VBox/dbgf.h>
40#include <VBox/disopcode.h>
41#include <iprt/param.h>
42#include <iprt/assert.h>
43#include <iprt/asm.h>
44#include <iprt/cpuset.h>
45#include <iprt/mp.h>
46#include <iprt/time.h>
47#ifdef VBOX_WITH_VMMR0_DISABLE_PREEMPTION
48# include <iprt/thread.h>
49#endif
50#include "HWSVMR0.h"
51
52/*******************************************************************************
53* Internal Functions *
54*******************************************************************************/
55static int svmR0InterpretInvpg(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, uint32_t uASID);
56static int svmR0ReplaceTprInstr(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx);
57
58/*******************************************************************************
59* Global Variables *
60*******************************************************************************/
61/* IO operation lookup arrays. */
62static uint32_t const g_aIOSize[4] = {1, 2, 0, 4};
63
64/**
65 * Sets up and activates AMD-V on the current CPU
66 *
67 * @returns VBox status code.
68 * @param pCpu CPU info struct
69 * @param pVM The VM to operate on. (can be NULL after a resume!!)
70 * @param pvPageCpu Pointer to the global cpu page
71 * @param pPageCpuPhys Physical address of the global cpu page
72 */
73VMMR0DECL(int) SVMR0EnableCpu(PHWACCM_CPUINFO pCpu, PVM pVM, void *pvPageCpu, RTHCPHYS pPageCpuPhys)
74{
75 AssertReturn(pPageCpuPhys, VERR_INVALID_PARAMETER);
76 AssertReturn(pvPageCpu, VERR_INVALID_PARAMETER);
77
78 /* We must turn on AMD-V and setup the host state physical address, as those MSRs are per-cpu/core. */
79
80#if defined(LOG_ENABLED) && !defined(DEBUG_bird)
81 SUPR0Printf("SVMR0EnableCpu cpu %d page (%x) %x\n", pCpu->idCpu, pvPageCpu, (uint32_t)pPageCpuPhys);
82#endif
83
84 /* Turn on AMD-V in the EFER MSR. */
85 uint64_t val = ASMRdMsr(MSR_K6_EFER);
86 if (!(val & MSR_K6_EFER_SVME))
87 ASMWrMsr(MSR_K6_EFER, val | MSR_K6_EFER_SVME);
88
89 /* Write the physical page address where the CPU will store the host state while executing the VM. */
90 ASMWrMsr(MSR_K8_VM_HSAVE_PA, pPageCpuPhys);
91
92 return VINF_SUCCESS;
93}
94
95/**
96 * Deactivates AMD-V on the current CPU
97 *
98 * @returns VBox status code.
99 * @param pCpu CPU info struct
100 * @param pvPageCpu Pointer to the global cpu page
101 * @param pPageCpuPhys Physical address of the global cpu page
102 */
103VMMR0DECL(int) SVMR0DisableCpu(PHWACCM_CPUINFO pCpu, void *pvPageCpu, RTHCPHYS pPageCpuPhys)
104{
105 AssertReturn(pPageCpuPhys, VERR_INVALID_PARAMETER);
106 AssertReturn(pvPageCpu, VERR_INVALID_PARAMETER);
107
108#if defined(LOG_ENABLED) && !defined(DEBUG_bird)
109 SUPR0Printf("SVMR0DisableCpu cpu %d\n", pCpu->idCpu);
110#endif
111
112 /* Turn off AMD-V in the EFER MSR. */
113 uint64_t val = ASMRdMsr(MSR_K6_EFER);
114 ASMWrMsr(MSR_K6_EFER, val & ~MSR_K6_EFER_SVME);
115
116 /* Invalidate host state physical address. */
117 ASMWrMsr(MSR_K8_VM_HSAVE_PA, 0);
118
119 return VINF_SUCCESS;
120}
121
122/**
123 * Does Ring-0 per VM AMD-V init.
124 *
125 * @returns VBox status code.
126 * @param pVM The VM to operate on.
127 */
128VMMR0DECL(int) SVMR0InitVM(PVM pVM)
129{
130 int rc;
131
132 pVM->hwaccm.s.svm.pMemObjIOBitmap = NIL_RTR0MEMOBJ;
133 pVM->hwaccm.s.svm.pMemObjMSRBitmap = NIL_RTR0MEMOBJ;
134
135 /* Allocate 12 KB for the IO bitmap (doesn't seem to be a way to convince SVM not to use it) */
136 rc = RTR0MemObjAllocCont(&pVM->hwaccm.s.svm.pMemObjIOBitmap, 3 << PAGE_SHIFT, true /* executable R0 mapping */);
137 if (RT_FAILURE(rc))
138 return rc;
139
140 pVM->hwaccm.s.svm.pIOBitmap = RTR0MemObjAddress(pVM->hwaccm.s.svm.pMemObjIOBitmap);
141 pVM->hwaccm.s.svm.pIOBitmapPhys = RTR0MemObjGetPagePhysAddr(pVM->hwaccm.s.svm.pMemObjIOBitmap, 0);
142 /* Set all bits to intercept all IO accesses. */
143 ASMMemFill32(pVM->hwaccm.s.svm.pIOBitmap, PAGE_SIZE*3, 0xffffffff);
144
145 /* Allocate 8 KB for the MSR bitmap (doesn't seem to be a way to convince SVM not to use it) */
146 rc = RTR0MemObjAllocCont(&pVM->hwaccm.s.svm.pMemObjMSRBitmap, 2 << PAGE_SHIFT, true /* executable R0 mapping */);
147 if (RT_FAILURE(rc))
148 return rc;
149
150 pVM->hwaccm.s.svm.pMSRBitmap = RTR0MemObjAddress(pVM->hwaccm.s.svm.pMemObjMSRBitmap);
151 pVM->hwaccm.s.svm.pMSRBitmapPhys = RTR0MemObjGetPagePhysAddr(pVM->hwaccm.s.svm.pMemObjMSRBitmap, 0);
152 /* Set all bits to intercept all MSR accesses. */
153 ASMMemFill32(pVM->hwaccm.s.svm.pMSRBitmap, PAGE_SIZE*2, 0xffffffff);
154
155 /* Erratum 170 which requires a forced TLB flush for each world switch:
156 * See http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/33610.pdf
157 *
158 * All BH-G1/2 and DH-G1/2 models include a fix:
159 * Athlon X2: 0x6b 1/2
160 * 0x68 1/2
161 * Athlon 64: 0x7f 1
162 * 0x6f 2
163 * Sempron: 0x7f 1/2
164 * 0x6f 2
165 * 0x6c 2
166 * 0x7c 2
167 * Turion 64: 0x68 2
168 *
169 */
170 uint32_t u32Dummy;
171 uint32_t u32Version, u32Family, u32Model, u32Stepping, u32BaseFamily;
172 ASMCpuId(1, &u32Version, &u32Dummy, &u32Dummy, &u32Dummy);
173 u32BaseFamily= (u32Version >> 8) & 0xf;
174 u32Family = u32BaseFamily + (u32BaseFamily == 0xf ? ((u32Version >> 20) & 0x7f) : 0);
175 u32Model = ((u32Version >> 4) & 0xf);
176 u32Model = u32Model | ((u32BaseFamily == 0xf ? (u32Version >> 16) & 0x0f : 0) << 4);
177 u32Stepping = u32Version & 0xf;
178 if ( u32Family == 0xf
179 && !((u32Model == 0x68 || u32Model == 0x6b || u32Model == 0x7f) && u32Stepping >= 1)
180 && !((u32Model == 0x6f || u32Model == 0x6c || u32Model == 0x7c) && u32Stepping >= 2))
181 {
182 Log(("SVMR0InitVM: AMD cpu with erratum 170 family %x model %x stepping %x\n", u32Family, u32Model, u32Stepping));
183 pVM->hwaccm.s.svm.fAlwaysFlushTLB = true;
184 }
185
186 /* Allocate VMCBs for all guest CPUs. */
187 for (unsigned i=0;i<pVM->cCPUs;i++)
188 {
189 PVMCPU pVCpu = &pVM->aCpus[i];
190
191 pVCpu->hwaccm.s.svm.pMemObjVMCBHost = NIL_RTR0MEMOBJ;
192 pVCpu->hwaccm.s.svm.pMemObjVMCB = NIL_RTR0MEMOBJ;
193
194 /* Allocate one page for the host context */
195 rc = RTR0MemObjAllocCont(&pVCpu->hwaccm.s.svm.pMemObjVMCBHost, 1 << PAGE_SHIFT, true /* executable R0 mapping */);
196 if (RT_FAILURE(rc))
197 return rc;
198
199 pVCpu->hwaccm.s.svm.pVMCBHost = RTR0MemObjAddress(pVCpu->hwaccm.s.svm.pMemObjVMCBHost);
200 pVCpu->hwaccm.s.svm.pVMCBHostPhys = RTR0MemObjGetPagePhysAddr(pVCpu->hwaccm.s.svm.pMemObjVMCBHost, 0);
201 ASMMemZeroPage(pVCpu->hwaccm.s.svm.pVMCBHost);
202
203 /* Allocate one page for the VM control block (VMCB). */
204 rc = RTR0MemObjAllocCont(&pVCpu->hwaccm.s.svm.pMemObjVMCB, 1 << PAGE_SHIFT, true /* executable R0 mapping */);
205 if (RT_FAILURE(rc))
206 return rc;
207
208 pVCpu->hwaccm.s.svm.pVMCB = RTR0MemObjAddress(pVCpu->hwaccm.s.svm.pMemObjVMCB);
209 pVCpu->hwaccm.s.svm.pVMCBPhys = RTR0MemObjGetPagePhysAddr(pVCpu->hwaccm.s.svm.pMemObjVMCB, 0);
210 ASMMemZeroPage(pVCpu->hwaccm.s.svm.pVMCB);
211 }
212
213 return VINF_SUCCESS;
214}
215
216/**
217 * Does Ring-0 per VM AMD-V termination.
218 *
219 * @returns VBox status code.
220 * @param pVM The VM to operate on.
221 */
222VMMR0DECL(int) SVMR0TermVM(PVM pVM)
223{
224 for (unsigned i=0;i<pVM->cCPUs;i++)
225 {
226 PVMCPU pVCpu = &pVM->aCpus[i];
227
228 if (pVCpu->hwaccm.s.svm.pMemObjVMCBHost != NIL_RTR0MEMOBJ)
229 {
230 RTR0MemObjFree(pVCpu->hwaccm.s.svm.pMemObjVMCBHost, false);
231 pVCpu->hwaccm.s.svm.pVMCBHost = 0;
232 pVCpu->hwaccm.s.svm.pVMCBHostPhys = 0;
233 pVCpu->hwaccm.s.svm.pMemObjVMCBHost = NIL_RTR0MEMOBJ;
234 }
235
236 if (pVCpu->hwaccm.s.svm.pMemObjVMCB != NIL_RTR0MEMOBJ)
237 {
238 RTR0MemObjFree(pVCpu->hwaccm.s.svm.pMemObjVMCB, false);
239 pVCpu->hwaccm.s.svm.pVMCB = 0;
240 pVCpu->hwaccm.s.svm.pVMCBPhys = 0;
241 pVCpu->hwaccm.s.svm.pMemObjVMCB = NIL_RTR0MEMOBJ;
242 }
243 }
244 if (pVM->hwaccm.s.svm.pMemObjIOBitmap != NIL_RTR0MEMOBJ)
245 {
246 RTR0MemObjFree(pVM->hwaccm.s.svm.pMemObjIOBitmap, false);
247 pVM->hwaccm.s.svm.pIOBitmap = 0;
248 pVM->hwaccm.s.svm.pIOBitmapPhys = 0;
249 pVM->hwaccm.s.svm.pMemObjIOBitmap = NIL_RTR0MEMOBJ;
250 }
251 if (pVM->hwaccm.s.svm.pMemObjMSRBitmap != NIL_RTR0MEMOBJ)
252 {
253 RTR0MemObjFree(pVM->hwaccm.s.svm.pMemObjMSRBitmap, false);
254 pVM->hwaccm.s.svm.pMSRBitmap = 0;
255 pVM->hwaccm.s.svm.pMSRBitmapPhys = 0;
256 pVM->hwaccm.s.svm.pMemObjMSRBitmap = NIL_RTR0MEMOBJ;
257 }
258 return VINF_SUCCESS;
259}
260
261/**
262 * Sets up AMD-V for the specified VM
263 *
264 * @returns VBox status code.
265 * @param pVM The VM to operate on.
266 */
267VMMR0DECL(int) SVMR0SetupVM(PVM pVM)
268{
269 int rc = VINF_SUCCESS;
270 SVM_VMCB *pVMCB;
271
272 AssertReturn(pVM, VERR_INVALID_PARAMETER);
273
274 Assert(pVM->hwaccm.s.svm.fSupported);
275
276 for (unsigned i=0;i<pVM->cCPUs;i++)
277 {
278 pVMCB = (SVM_VMCB *)pVM->aCpus[i].hwaccm.s.svm.pVMCB;
279 AssertMsgReturn(pVMCB, ("Invalid pVMCB\n"), VERR_EM_INTERNAL_ERROR);
280
281 /* Program the control fields. Most of them never have to be changed again. */
282 /* CR0/3/4 reads must be intercepted, our shadow values are not necessarily the same as the guest's. */
283 /* Note: CR0 & CR4 can be safely read when guest and shadow copies are identical. */
284 if (!pVM->hwaccm.s.fNestedPaging)
285 pVMCB->ctrl.u16InterceptRdCRx = RT_BIT(0) | RT_BIT(3) | RT_BIT(4);
286 else
287 pVMCB->ctrl.u16InterceptRdCRx = RT_BIT(0) | RT_BIT(4);
288
289 /*
290 * CR0/3/4 writes must be intercepted for obvious reasons.
291 */
292 if (!pVM->hwaccm.s.fNestedPaging)
293 pVMCB->ctrl.u16InterceptWrCRx = RT_BIT(0) | RT_BIT(3) | RT_BIT(4);
294 else
295 pVMCB->ctrl.u16InterceptWrCRx = RT_BIT(0) | RT_BIT(4) | RT_BIT(8);
296
297 /* Intercept all DRx reads and writes by default. Changed later on. */
298 pVMCB->ctrl.u16InterceptRdDRx = 0xFFFF;
299 pVMCB->ctrl.u16InterceptWrDRx = 0xFFFF;
300
301 /* Currently we don't care about DRx reads or writes. DRx registers are trashed.
302 * All breakpoints are automatically cleared when the VM exits.
303 */
304
305 pVMCB->ctrl.u32InterceptException = HWACCM_SVM_TRAP_MASK;
306#ifndef DEBUG
307 if (pVM->hwaccm.s.fNestedPaging)
308 pVMCB->ctrl.u32InterceptException &= ~RT_BIT(X86_XCPT_PF); /* no longer need to intercept #PF. */
309#endif
310
311 pVMCB->ctrl.u32InterceptCtrl1 = SVM_CTRL1_INTERCEPT_INTR
312 | SVM_CTRL1_INTERCEPT_VINTR
313 | SVM_CTRL1_INTERCEPT_NMI
314 | SVM_CTRL1_INTERCEPT_SMI
315 | SVM_CTRL1_INTERCEPT_INIT
316 | SVM_CTRL1_INTERCEPT_RDPMC
317 | SVM_CTRL1_INTERCEPT_CPUID
318 | SVM_CTRL1_INTERCEPT_RSM
319 | SVM_CTRL1_INTERCEPT_HLT
320 | SVM_CTRL1_INTERCEPT_INOUT_BITMAP
321 | SVM_CTRL1_INTERCEPT_MSR_SHADOW
322 | SVM_CTRL1_INTERCEPT_INVLPG
323 | SVM_CTRL1_INTERCEPT_INVLPGA /* AMD only */
324 | SVM_CTRL1_INTERCEPT_TASK_SWITCH
325 | SVM_CTRL1_INTERCEPT_SHUTDOWN /* fatal */
326 | SVM_CTRL1_INTERCEPT_FERR_FREEZE; /* Legacy FPU FERR handling. */
327 ;
328 /* With nested paging we don't care about invlpg anymore. */
329 if (pVM->hwaccm.s.fNestedPaging)
330 pVMCB->ctrl.u32InterceptCtrl1 &= ~SVM_CTRL1_INTERCEPT_INVLPG;
331
332 pVMCB->ctrl.u32InterceptCtrl2 = SVM_CTRL2_INTERCEPT_VMRUN /* required */
333 | SVM_CTRL2_INTERCEPT_VMMCALL
334 | SVM_CTRL2_INTERCEPT_VMLOAD
335 | SVM_CTRL2_INTERCEPT_VMSAVE
336 | SVM_CTRL2_INTERCEPT_STGI
337 | SVM_CTRL2_INTERCEPT_CLGI
338 | SVM_CTRL2_INTERCEPT_SKINIT
339 | SVM_CTRL2_INTERCEPT_WBINVD
340 | SVM_CTRL2_INTERCEPT_MWAIT_UNCOND; /* don't execute mwait or else we'll idle inside the guest (host thinks the cpu load is high) */
341 ;
342 Log(("pVMCB->ctrl.u32InterceptException = %x\n", pVMCB->ctrl.u32InterceptException));
343 Log(("pVMCB->ctrl.u32InterceptCtrl1 = %x\n", pVMCB->ctrl.u32InterceptCtrl1));
344 Log(("pVMCB->ctrl.u32InterceptCtrl2 = %x\n", pVMCB->ctrl.u32InterceptCtrl2));
345
346 /* Virtualize masking of INTR interrupts. (reads/writes from/to CR8 go to the V_TPR register) */
347 pVMCB->ctrl.IntCtrl.n.u1VIrqMasking = 1;
348 /* Ignore the priority in the TPR; just deliver it when we tell it to. */
349 pVMCB->ctrl.IntCtrl.n.u1IgnoreTPR = 1;
350
351 /* Set IO and MSR bitmap addresses. */
352 pVMCB->ctrl.u64IOPMPhysAddr = pVM->hwaccm.s.svm.pIOBitmapPhys;
353 pVMCB->ctrl.u64MSRPMPhysAddr = pVM->hwaccm.s.svm.pMSRBitmapPhys;
354
355 /* No LBR virtualization. */
356 pVMCB->ctrl.u64LBRVirt = 0;
357
358 /** The ASID must start at 1; the host uses 0. */
359 pVMCB->ctrl.TLBCtrl.n.u32ASID = 1;
360
361 /** Setup the PAT msr (nested paging only) */
362 pVMCB->guest.u64GPAT = 0x0007040600070406ULL;
363 }
364 return rc;
365}
366
367
368/**
369 * Injects an event (trap or external interrupt)
370 *
371 * @param pVCpu The VMCPU to operate on.
372 * @param pVMCB SVM control block
373 * @param pCtx CPU Context
374 * @param pIntInfo SVM interrupt info
375 */
376inline void SVMR0InjectEvent(PVMCPU pVCpu, SVM_VMCB *pVMCB, CPUMCTX *pCtx, SVM_EVENT* pEvent)
377{
378#ifdef VBOX_WITH_STATISTICS
379 STAM_COUNTER_INC(&pVCpu->hwaccm.s.paStatInjectedIrqsR0[pEvent->n.u8Vector & MASK_INJECT_IRQ_STAT]);
380#endif
381
382#ifdef VBOX_STRICT
383 if (pEvent->n.u8Vector == 0xE)
384 Log(("SVM: Inject int %d at %RGv error code=%02x CR2=%RGv intInfo=%08x\n", pEvent->n.u8Vector, (RTGCPTR)pCtx->rip, pEvent->n.u32ErrorCode, (RTGCPTR)pCtx->cr2, pEvent->au64[0]));
385 else
386 if (pEvent->n.u8Vector < 0x20)
387 Log(("SVM: Inject int %d at %RGv error code=%08x\n", pEvent->n.u8Vector, (RTGCPTR)pCtx->rip, pEvent->n.u32ErrorCode));
388 else
389 {
390 Log(("INJ-EI: %x at %RGv\n", pEvent->n.u8Vector, (RTGCPTR)pCtx->rip));
391 Assert(!VMCPU_FF_ISSET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS));
392 Assert(pCtx->eflags.u32 & X86_EFL_IF);
393 }
394#endif
395
396 /* Set event injection state. */
397 pVMCB->ctrl.EventInject.au64[0] = pEvent->au64[0];
398}
399
400
401/**
402 * Checks for pending guest interrupts and injects them
403 *
404 * @returns VBox status code.
405 * @param pVM The VM to operate on.
406 * @param pVCpu The VM CPU to operate on.
407 * @param pVMCB SVM control block
408 * @param pCtx CPU Context
409 */
410static int SVMR0CheckPendingInterrupt(PVM pVM, PVMCPU pVCpu, SVM_VMCB *pVMCB, CPUMCTX *pCtx)
411{
412 int rc;
413
414 /* Dispatch any pending interrupts. (injected before, but a VM exit occurred prematurely) */
415 if (pVCpu->hwaccm.s.Event.fPending)
416 {
417 SVM_EVENT Event;
418
419 Log(("Reinjecting event %08x %08x at %RGv\n", pVCpu->hwaccm.s.Event.intInfo, pVCpu->hwaccm.s.Event.errCode, (RTGCPTR)pCtx->rip));
420 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatIntReinject);
421 Event.au64[0] = pVCpu->hwaccm.s.Event.intInfo;
422 SVMR0InjectEvent(pVCpu, pVMCB, pCtx, &Event);
423
424 pVCpu->hwaccm.s.Event.fPending = false;
425 return VINF_SUCCESS;
426 }
427
428 /* If an active trap is already pending, then we must forward it first! */
429 if (!TRPMHasTrap(pVCpu))
430 {
431 if (VMCPU_FF_TESTANDCLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI_BIT))
432 {
433 SVM_EVENT Event;
434
435 Log(("CPU%d: injecting #NMI\n", pVCpu->idCpu));
436 Event.n.u8Vector = X86_XCPT_NMI;
437 Event.n.u1Valid = 1;
438 Event.n.u32ErrorCode = 0;
439 Event.n.u3Type = SVM_EVENT_NMI;
440
441 SVMR0InjectEvent(pVCpu, pVMCB, pCtx, &Event);
442 return VINF_SUCCESS;
443 }
444
445 /* @todo SMI interrupts. */
446
447 /* When external interrupts are pending, we should exit the VM when IF is set. */
448 if (VMCPU_FF_ISPENDING(pVCpu, (VMCPU_FF_INTERRUPT_APIC|VMCPU_FF_INTERRUPT_PIC)))
449 {
450 if ( !(pCtx->eflags.u32 & X86_EFL_IF)
451 || VMCPU_FF_ISSET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
452 {
453 if (!pVMCB->ctrl.IntCtrl.n.u1VIrqValid)
454 {
455 if (!VMCPU_FF_ISSET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
456 LogFlow(("Enable irq window exit!\n"));
457 else
458 Log(("Pending interrupt blocked at %RGv by VM_FF_INHIBIT_INTERRUPTS -> irq window exit\n", (RTGCPTR)pCtx->rip));
459
460 /** @todo use virtual interrupt method to inject a pending irq; dispatched as soon as guest.IF is set. */
461 pVMCB->ctrl.u32InterceptCtrl1 |= SVM_CTRL1_INTERCEPT_VINTR;
462 pVMCB->ctrl.IntCtrl.n.u1VIrqValid = 1;
463 pVMCB->ctrl.IntCtrl.n.u8VIrqVector = 0; /* don't care */
464 }
465 }
466 else
467 {
468 uint8_t u8Interrupt;
469
470 rc = PDMGetInterrupt(pVCpu, &u8Interrupt);
471 Log(("Dispatch interrupt: u8Interrupt=%x (%d) rc=%Rrc\n", u8Interrupt, u8Interrupt, rc));
472 if (RT_SUCCESS(rc))
473 {
474 rc = TRPMAssertTrap(pVCpu, u8Interrupt, TRPM_HARDWARE_INT);
475 AssertRC(rc);
476 }
477 else
478 {
479 /* Can only happen in rare cases where a pending interrupt is cleared behind our back */
480 Assert(!VMCPU_FF_ISPENDING(pVCpu, (VMCPU_FF_INTERRUPT_APIC|VMCPU_FF_INTERRUPT_PIC)));
481 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatSwitchGuestIrq);
482 /* Just continue */
483 }
484 }
485 }
486 }
487
488#ifdef VBOX_STRICT
489 if (TRPMHasTrap(pVCpu))
490 {
491 uint8_t u8Vector;
492 rc = TRPMQueryTrapAll(pVCpu, &u8Vector, 0, 0, 0);
493 AssertRC(rc);
494 }
495#endif
496
497 if ( (pCtx->eflags.u32 & X86_EFL_IF)
498 && (!VMCPU_FF_ISSET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
499 && TRPMHasTrap(pVCpu)
500 )
501 {
502 uint8_t u8Vector;
503 int rc;
504 TRPMEVENT enmType;
505 SVM_EVENT Event;
506 RTGCUINT u32ErrorCode;
507
508 Event.au64[0] = 0;
509
510 /* If a new event is pending, then dispatch it now. */
511 rc = TRPMQueryTrapAll(pVCpu, &u8Vector, &enmType, &u32ErrorCode, 0);
512 AssertRC(rc);
513 Assert(pCtx->eflags.Bits.u1IF == 1 || enmType == TRPM_TRAP);
514 Assert(enmType != TRPM_SOFTWARE_INT);
515
516 /* Clear the pending trap. */
517 rc = TRPMResetTrap(pVCpu);
518 AssertRC(rc);
519
520 Event.n.u8Vector = u8Vector;
521 Event.n.u1Valid = 1;
522 Event.n.u32ErrorCode = u32ErrorCode;
523
524 if (enmType == TRPM_TRAP)
525 {
526 switch (u8Vector) {
527 case 8:
528 case 10:
529 case 11:
530 case 12:
531 case 13:
532 case 14:
533 case 17:
534 /* Valid error codes. */
535 Event.n.u1ErrorCodeValid = 1;
536 break;
537 default:
538 break;
539 }
540 if (u8Vector == X86_XCPT_NMI)
541 Event.n.u3Type = SVM_EVENT_NMI;
542 else
543 Event.n.u3Type = SVM_EVENT_EXCEPTION;
544 }
545 else
546 Event.n.u3Type = SVM_EVENT_EXTERNAL_IRQ;
547
548 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatIntInject);
549 SVMR0InjectEvent(pVCpu, pVMCB, pCtx, &Event);
550 } /* if (interrupts can be dispatched) */
551
552 return VINF_SUCCESS;
553}
554
555/**
556 * Save the host state
557 *
558 * @returns VBox status code.
559 * @param pVM The VM to operate on.
560 * @param pVCpu The VM CPU to operate on.
561 */
562VMMR0DECL(int) SVMR0SaveHostState(PVM pVM, PVMCPU pVCpu)
563{
564 NOREF(pVM);
565 NOREF(pVCpu);
566 /* Nothing to do here. */
567 return VINF_SUCCESS;
568}
569
570/**
571 * Loads the guest state
572 *
573 * NOTE: Don't do anything here that can cause a jump back to ring 3!!!!!
574 *
575 * @returns VBox status code.
576 * @param pVM The VM to operate on.
577 * @param pVCpu The VM CPU to operate on.
578 * @param pCtx Guest context
579 */
580VMMR0DECL(int) SVMR0LoadGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
581{
582 RTGCUINTPTR val;
583 SVM_VMCB *pVMCB;
584
585 if (pVM == NULL)
586 return VERR_INVALID_PARAMETER;
587
588 /* Setup AMD SVM. */
589 Assert(pVM->hwaccm.s.svm.fSupported);
590
591 pVMCB = (SVM_VMCB *)pVCpu->hwaccm.s.svm.pVMCB;
592 AssertMsgReturn(pVMCB, ("Invalid pVMCB\n"), VERR_EM_INTERNAL_ERROR);
593
594 /* Guest CPU context: ES, CS, SS, DS, FS, GS. */
595 if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_SEGMENT_REGS)
596 {
597 SVM_WRITE_SELREG(CS, cs);
598 SVM_WRITE_SELREG(SS, ss);
599 SVM_WRITE_SELREG(DS, ds);
600 SVM_WRITE_SELREG(ES, es);
601 SVM_WRITE_SELREG(FS, fs);
602 SVM_WRITE_SELREG(GS, gs);
603 }
604
605 /* Guest CPU context: LDTR. */
606 if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_LDTR)
607 {
608 SVM_WRITE_SELREG(LDTR, ldtr);
609 }
610
611 /* Guest CPU context: TR. */
612 if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_TR)
613 {
614 SVM_WRITE_SELREG(TR, tr);
615 }
616
617 /* Guest CPU context: GDTR. */
618 if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_GDTR)
619 {
620 pVMCB->guest.GDTR.u32Limit = pCtx->gdtr.cbGdt;
621 pVMCB->guest.GDTR.u64Base = pCtx->gdtr.pGdt;
622 }
623
624 /* Guest CPU context: IDTR. */
625 if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_IDTR)
626 {
627 pVMCB->guest.IDTR.u32Limit = pCtx->idtr.cbIdt;
628 pVMCB->guest.IDTR.u64Base = pCtx->idtr.pIdt;
629 }
630
631 /*
632 * Sysenter MSRs (unconditional)
633 */
634 pVMCB->guest.u64SysEnterCS = pCtx->SysEnter.cs;
635 pVMCB->guest.u64SysEnterEIP = pCtx->SysEnter.eip;
636 pVMCB->guest.u64SysEnterESP = pCtx->SysEnter.esp;
637
638 /* Control registers */
639 if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_CR0)
640 {
641 val = pCtx->cr0;
642 if (!CPUMIsGuestFPUStateActive(pVCpu))
643 {
644 /* Always use #NM exceptions to load the FPU/XMM state on demand. */
645 val |= X86_CR0_TS | X86_CR0_ET | X86_CR0_NE | X86_CR0_MP;
646 }
647 else
648 {
649 /** @todo check if we support the old style mess correctly. */
650 if (!(val & X86_CR0_NE))
651 {
652 Log(("Forcing X86_CR0_NE!!!\n"));
653
654 /* Also catch floating point exceptions as we need to report them to the guest in a different way. */
655 if (!pVCpu->hwaccm.s.fFPUOldStyleOverride)
656 {
657 pVMCB->ctrl.u32InterceptException |= RT_BIT(X86_XCPT_MF);
658 pVCpu->hwaccm.s.fFPUOldStyleOverride = true;
659 }
660 }
661 val |= X86_CR0_NE; /* always turn on the native mechanism to report FPU errors (old style uses interrupts) */
662 }
663 /* Always enable caching. */
664 val &= ~(X86_CR0_CD|X86_CR0_NW);
665
666 /* Note: WP is not relevant in nested paging mode as we catch accesses on the (guest) physical level. */
667 /* Note: In nested paging mode the guest is allowed to run with paging disabled; the guest physical to host physical translation will remain active. */
668 if (!pVM->hwaccm.s.fNestedPaging)
669 {
670 val |= X86_CR0_PG; /* Paging is always enabled; even when the guest is running in real mode or PE without paging. */
671 val |= X86_CR0_WP; /* Must set this as we rely on protect various pages and supervisor writes must be caught. */
672 }
673 pVMCB->guest.u64CR0 = val;
674 }
675 /* CR2 as well */
676 pVMCB->guest.u64CR2 = pCtx->cr2;
677
678 if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_CR3)
679 {
680 /* Save our shadow CR3 register. */
681 if (pVM->hwaccm.s.fNestedPaging)
682 {
683 PGMMODE enmShwPagingMode;
684
685#if HC_ARCH_BITS == 32
686 if (CPUMIsGuestInLongModeEx(pCtx))
687 enmShwPagingMode = PGMMODE_AMD64_NX;
688 else
689#endif
690 enmShwPagingMode = PGMGetHostMode(pVM);
691
692 pVMCB->ctrl.u64NestedPagingCR3 = PGMGetNestedCR3(pVCpu, enmShwPagingMode);
693 Assert(pVMCB->ctrl.u64NestedPagingCR3);
694 pVMCB->guest.u64CR3 = pCtx->cr3;
695 }
696 else
697 {
698 pVMCB->guest.u64CR3 = PGMGetHyperCR3(pVCpu);
699 Assert(pVMCB->guest.u64CR3 || VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL));
700 }
701 }
702
703 if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_CR4)
704 {
705 val = pCtx->cr4;
706 if (!pVM->hwaccm.s.fNestedPaging)
707 {
708 switch(pVCpu->hwaccm.s.enmShadowMode)
709 {
710 case PGMMODE_REAL:
711 case PGMMODE_PROTECTED: /* Protected mode, no paging. */
712 AssertFailed();
713 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
714
715 case PGMMODE_32_BIT: /* 32-bit paging. */
716 val &= ~X86_CR4_PAE;
717 break;
718
719 case PGMMODE_PAE: /* PAE paging. */
720 case PGMMODE_PAE_NX: /* PAE paging with NX enabled. */
721 /** @todo use normal 32 bits paging */
722 val |= X86_CR4_PAE;
723 break;
724
725 case PGMMODE_AMD64: /* 64-bit AMD paging (long mode). */
726 case PGMMODE_AMD64_NX: /* 64-bit AMD paging (long mode) with NX enabled. */
727#ifdef VBOX_ENABLE_64_BITS_GUESTS
728 break;
729#else
730 AssertFailed();
731 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
732#endif
733
734 default: /* shut up gcc */
735 AssertFailed();
736 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
737 }
738 }
739 pVMCB->guest.u64CR4 = val;
740 }
741
742 /* Debug registers. */
743 if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_DEBUG)
744 {
745 pCtx->dr[6] |= X86_DR6_INIT_VAL; /* set all reserved bits to 1. */
746 pCtx->dr[6] &= ~RT_BIT(12); /* must be zero. */
747
748 pCtx->dr[7] &= 0xffffffff; /* upper 32 bits reserved */
749 pCtx->dr[7] &= ~(RT_BIT(11) | RT_BIT(12) | RT_BIT(14) | RT_BIT(15)); /* must be zero */
750 pCtx->dr[7] |= 0x400; /* must be one */
751
752 pVMCB->guest.u64DR7 = pCtx->dr[7];
753 pVMCB->guest.u64DR6 = pCtx->dr[6];
754
755 /* Sync the debug state now if any breakpoint is armed. */
756 if ( (pCtx->dr[7] & (X86_DR7_ENABLED_MASK|X86_DR7_GD))
757 && !CPUMIsGuestDebugStateActive(pVCpu)
758 && !DBGFIsStepping(pVCpu))
759 {
760 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatDRxArmed);
761
762 /* Disable drx move intercepts. */
763 pVMCB->ctrl.u16InterceptRdDRx = 0;
764 pVMCB->ctrl.u16InterceptWrDRx = 0;
765
766 /* Save the host and load the guest debug state. */
767 int rc = CPUMR0LoadGuestDebugState(pVM, pVCpu, pCtx, false /* exclude DR6 */);
768 AssertRC(rc);
769 }
770 }
771
772 /* EIP, ESP and EFLAGS */
773 pVMCB->guest.u64RIP = pCtx->rip;
774 pVMCB->guest.u64RSP = pCtx->rsp;
775 pVMCB->guest.u64RFlags = pCtx->eflags.u32;
776
777 /* Set CPL */
778 pVMCB->guest.u8CPL = pCtx->csHid.Attr.n.u2Dpl;
779
780 /* RAX/EAX too, as VMRUN uses RAX as an implicit parameter. */
781 pVMCB->guest.u64RAX = pCtx->rax;
782
783 /* vmrun will fail without MSR_K6_EFER_SVME. */
784 pVMCB->guest.u64EFER = pCtx->msrEFER | MSR_K6_EFER_SVME;
785
786 /* 64 bits guest mode? */
787 if (CPUMIsGuestInLongModeEx(pCtx))
788 {
789#if !defined(VBOX_ENABLE_64_BITS_GUESTS)
790 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
791#elif HC_ARCH_BITS == 32 && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
792 pVCpu->hwaccm.s.svm.pfnVMRun = SVMR0VMSwitcherRun64;
793#else
794# ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
795 if (!pVM->hwaccm.s.fAllow64BitGuests)
796 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
797# endif
798 pVCpu->hwaccm.s.svm.pfnVMRun = SVMR0VMRun64;
799#endif
800 /* Unconditionally update these as wrmsr might have changed them. (HWACCM_CHANGED_GUEST_SEGMENT_REGS will not be set) */
801 pVMCB->guest.FS.u64Base = pCtx->fsHid.u64Base;
802 pVMCB->guest.GS.u64Base = pCtx->gsHid.u64Base;
803 }
804 else
805 {
806 /* Filter out the MSR_K6_LME bit or else AMD-V expects amd64 shadow paging. */
807 pVMCB->guest.u64EFER &= ~MSR_K6_EFER_LME;
808
809 pVCpu->hwaccm.s.svm.pfnVMRun = SVMR0VMRun;
810 }
811
812 /* TSC offset. */
813 if (TMCpuTickCanUseRealTSC(pVCpu, &pVMCB->ctrl.u64TSCOffset))
814 {
815 pVMCB->ctrl.u32InterceptCtrl1 &= ~SVM_CTRL1_INTERCEPT_RDTSC;
816 pVMCB->ctrl.u32InterceptCtrl2 &= ~SVM_CTRL2_INTERCEPT_RDTSCP;
817 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatTSCOffset);
818 }
819 else
820 {
821 pVMCB->ctrl.u32InterceptCtrl1 |= SVM_CTRL1_INTERCEPT_RDTSC;
822 pVMCB->ctrl.u32InterceptCtrl2 |= SVM_CTRL2_INTERCEPT_RDTSCP;
823 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatTSCIntercept);
824 }
825
826 /* Sync the various msrs for 64 bits mode. */
827 pVMCB->guest.u64STAR = pCtx->msrSTAR; /* legacy syscall eip, cs & ss */
828 pVMCB->guest.u64LSTAR = pCtx->msrLSTAR; /* 64 bits mode syscall rip */
829 pVMCB->guest.u64CSTAR = pCtx->msrCSTAR; /* compatibility mode syscall rip */
830 pVMCB->guest.u64SFMASK = pCtx->msrSFMASK; /* syscall flag mask */
831 pVMCB->guest.u64KernelGSBase = pCtx->msrKERNELGSBASE; /* swapgs exchange value */
832
833#ifdef DEBUG
834 /* Intercept X86_XCPT_DB if stepping is enabled */
835 if (DBGFIsStepping(pVCpu))
836 pVMCB->ctrl.u32InterceptException |= RT_BIT(X86_XCPT_DB);
837 else
838 pVMCB->ctrl.u32InterceptException &= ~RT_BIT(X86_XCPT_DB);
839#endif
840
841 /* Done. */
842 pVCpu->hwaccm.s.fContextUseFlags &= ~HWACCM_CHANGED_ALL_GUEST;
843
844 return VINF_SUCCESS;
845}
846
847
848/**
849 * Runs guest code in an AMD-V VM.
850 *
851 * @returns VBox status code.
852 * @param pVM The VM to operate on.
853 * @param pVCpu The VM CPU to operate on.
854 * @param pCtx Guest context
855 */
856VMMR0DECL(int) SVMR0RunGuestCode(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
857{
858 int rc = VINF_SUCCESS;
859 uint64_t exitCode = (uint64_t)SVM_EXIT_INVALID;
860 SVM_VMCB *pVMCB;
861 bool fSyncTPR = false;
862 unsigned cResume = 0;
863 uint8_t u8LastTPR;
864 PHWACCM_CPUINFO pCpu = 0;
865 RTCCUINTREG uOldEFlags = ~(RTCCUINTREG)0;
866#ifdef VBOX_STRICT
867 RTCPUID idCpuCheck;
868#endif
869#ifdef VBOX_HIGH_RES_TIMERS_HACK_IN_RING0
870 uint64_t u64LastTime = RTTimeMilliTS();
871#endif
872
873 STAM_PROFILE_ADV_START(&pVCpu->hwaccm.s.StatEntry, x);
874
875 pVMCB = (SVM_VMCB *)pVCpu->hwaccm.s.svm.pVMCB;
876 AssertMsgReturn(pVMCB, ("Invalid pVMCB\n"), VERR_EM_INTERNAL_ERROR);
877
878 /* We can jump to this point to resume execution after determining that a VM-exit is innocent.
879 */
880ResumeExecution:
881 Assert(!HWACCMR0SuspendPending());
882
883 /* Safety precaution; looping for too long here can have a very bad effect on the host */
884 if (RT_UNLIKELY(++cResume > pVM->hwaccm.s.cMaxResumeLoops))
885 {
886 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitMaxResume);
887 rc = VINF_EM_RAW_INTERRUPT;
888 goto end;
889 }
890
891 /* Check for irq inhibition due to instruction fusing (sti, mov ss). */
892 if (VMCPU_FF_ISSET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
893 {
894 Log(("VM_FF_INHIBIT_INTERRUPTS at %RGv successor %RGv\n", (RTGCPTR)pCtx->rip, EMGetInhibitInterruptsPC(pVCpu)));
895 if (pCtx->rip != EMGetInhibitInterruptsPC(pVCpu))
896 {
897 /* Note: we intentionally don't clear VM_FF_INHIBIT_INTERRUPTS here.
898 * Before we are able to execute this instruction in raw mode (iret to guest code) an external interrupt might
899 * force a world switch again. Possibly allowing a guest interrupt to be dispatched in the process. This could
900 * break the guest. Sounds very unlikely, but such timing sensitive problems are not as rare as you might think.
901 */
902 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
903 /* Irq inhibition is no longer active; clear the corresponding SVM state. */
904 pVMCB->ctrl.u64IntShadow = 0;
905 }
906 }
907 else
908 {
909 /* Irq inhibition is no longer active; clear the corresponding SVM state. */
910 pVMCB->ctrl.u64IntShadow = 0;
911 }
912
913#ifdef VBOX_HIGH_RES_TIMERS_HACK_IN_RING0
914 if (RT_UNLIKELY(cResume & 0xf) == 0)
915 {
916 uint64_t u64CurTime = RTTimeMilliTS();
917
918 if (RT_UNLIKELY(u64CurTime > u64LastTime))
919 {
920 u64LastTime = u64CurTime;
921 TMTimerPollVoid(pVM, pVCpu);
922 }
923 }
924#endif
925
926 /* Check for pending actions that force us to go back to ring 3. */
927#ifdef DEBUG
928 /* Intercept X86_XCPT_DB if stepping is enabled */
929 if (!DBGFIsStepping(pVCpu))
930#endif
931 {
932 if ( VM_FF_ISPENDING(pVM, VM_FF_HWACCM_TO_R3_MASK)
933 || VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_HWACCM_TO_R3_MASK))
934 {
935 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TO_R3);
936 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatSwitchToR3);
937 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatEntry, x);
938 rc = RT_UNLIKELY(VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY)) ? VINF_EM_NO_MEMORY : VINF_EM_RAW_TO_R3;
939 goto end;
940 }
941 }
942
943 /* Pending request packets might contain actions that need immediate attention, such as pending hardware interrupts. */
944 if ( VM_FF_ISPENDING(pVM, VM_FF_REQUEST)
945 || VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_REQUEST))
946 {
947 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatEntry, x);
948 rc = VINF_EM_PENDING_REQUEST;
949 goto end;
950 }
951
952#ifdef VBOX_WITH_VMMR0_DISABLE_PREEMPTION
953 /*
954 * Exit to ring-3 preemption/work is pending.
955 *
956 * Interrupts are disabled before the call to make sure we don't miss any interrupt
957 * that would flag preemption (IPI, timer tick, ++). (Would've been nice to do this
958 * further down, but SVMR0CheckPendingInterrupt makes that impossible.)
959 *
960 * Note! Interrupts must be disabled done *before* we check for TLB flushes; TLB
961 * shootdowns rely on this.
962 */
963 uOldEFlags = ASMIntDisableFlags();
964 if (RTThreadPreemptIsPending(NIL_RTTHREAD))
965 {
966 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitPreemptPending);
967 rc = VINF_EM_RAW_INTERRUPT;
968 goto end;
969 }
970 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC);
971#endif
972
973 /* When external interrupts are pending, we should exit the VM when IF is set. */
974 /* Note! *After* VM_FF_INHIBIT_INTERRUPTS check!!! */
975 rc = SVMR0CheckPendingInterrupt(pVM, pVCpu, pVMCB, pCtx);
976 if (RT_FAILURE(rc))
977 {
978 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatEntry, x);
979 goto end;
980 }
981
982 /* TPR caching using CR8 is only available in 64 bits mode or with 32 bits guests when X86_CPUID_AMD_FEATURE_ECX_CR8L is supported. */
983 /* Note: we can't do this in LoadGuestState as PDMApicGetTPR can jump back to ring 3 (lock)!!!!!!!!
984 * @todo query and update the TPR only when it could have been changed (mmio access)
985 */
986 if (pVM->hwaccm.s.fHasIoApic)
987 {
988 bool fPending;
989
990 /* TPR caching in CR8 */
991 int rc = PDMApicGetTPR(pVCpu, &u8LastTPR, &fPending);
992 AssertRC(rc);
993 pVMCB->ctrl.IntCtrl.n.u8VTPR = (u8LastTPR >> 4); /* cr8 bits 3-0 correspond to bits 7-4 of the task priority mmio register. */
994
995 if (fPending)
996 {
997 /* A TPR change could activate a pending interrupt, so catch cr8 writes. */
998 pVMCB->ctrl.u16InterceptWrCRx |= RT_BIT(8);
999 }
1000 else
1001 /* No interrupts are pending, so we don't need to be explicitely notified.
1002 * There are enough world switches for detecting pending interrupts.
1003 */
1004 pVMCB->ctrl.u16InterceptWrCRx &= ~RT_BIT(8);
1005
1006 fSyncTPR = !fPending;
1007 }
1008
1009 /* All done! Let's start VM execution. */
1010 STAM_PROFILE_ADV_START(&pVCpu->hwaccm.s.StatInGC, x);
1011
1012 /* Enable nested paging if necessary (disabled each time after #VMEXIT). */
1013 pVMCB->ctrl.NestedPaging.n.u1NestedPaging = pVM->hwaccm.s.fNestedPaging;
1014
1015#ifdef LOG_ENABLED
1016 pCpu = HWACCMR0GetCurrentCpu();
1017 if ( pVCpu->hwaccm.s.idLastCpu != pCpu->idCpu
1018 || pVCpu->hwaccm.s.cTLBFlushes != pCpu->cTLBFlushes)
1019 {
1020 if (pVCpu->hwaccm.s.idLastCpu != pCpu->idCpu)
1021 Log(("Force TLB flush due to rescheduling to a different cpu (%d vs %d)\n", pVCpu->hwaccm.s.idLastCpu, pCpu->idCpu));
1022 else
1023 Log(("Force TLB flush due to changed TLB flush count (%x vs %x)\n", pVCpu->hwaccm.s.cTLBFlushes, pCpu->cTLBFlushes));
1024 }
1025 if (pCpu->fFlushTLB)
1026 Log(("Force TLB flush: first time cpu %d is used -> flush\n", pCpu->idCpu));
1027#endif
1028
1029 /*
1030 * NOTE: DO NOT DO ANYTHING AFTER THIS POINT THAT MIGHT JUMP BACK TO RING 3!
1031 * (until the actual world switch)
1032 */
1033#ifdef VBOX_STRICT
1034 idCpuCheck = RTMpCpuId();
1035#endif
1036 VMMR0LogFlushDisable(pVCpu);
1037
1038 /* Load the guest state; *must* be here as it sets up the shadow cr0 for lazy fpu syncing! */
1039 rc = SVMR0LoadGuestState(pVM, pVCpu, pCtx);
1040 if (RT_UNLIKELY(rc != VINF_SUCCESS))
1041 {
1042 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatEntry, x);
1043 VMMR0LogFlushEnable(pVCpu);
1044 goto end;
1045 }
1046
1047#ifndef VBOX_WITH_VMMR0_DISABLE_PREEMPTION
1048 /* Disable interrupts to make sure a poke will interrupt execution.
1049 * This must be done *before* we check for TLB flushes; TLB shootdowns rely on this.
1050 */
1051 uOldEFlags = ASMIntDisableFlags();
1052 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC);
1053#endif
1054
1055 pCpu = HWACCMR0GetCurrentCpu();
1056 /* Force a TLB flush for the first world switch if the current cpu differs from the one we ran on last. */
1057 /* Note that this can happen both for start and resume due to long jumps back to ring 3. */
1058 if ( pVCpu->hwaccm.s.idLastCpu != pCpu->idCpu
1059 /* if the tlb flush count has changed, another VM has flushed the TLB of this cpu, so we can't use our current ASID anymore. */
1060 || pVCpu->hwaccm.s.cTLBFlushes != pCpu->cTLBFlushes)
1061 {
1062 /* Force a TLB flush on VM entry. */
1063 pVCpu->hwaccm.s.fForceTLBFlush = true;
1064 }
1065 else
1066 Assert(!pCpu->fFlushTLB || pVM->hwaccm.s.svm.fAlwaysFlushTLB);
1067
1068 pVCpu->hwaccm.s.idLastCpu = pCpu->idCpu;
1069
1070 /* Check for tlb shootdown flushes. */
1071 if (VMCPU_FF_TESTANDCLEAR(pVCpu, VMCPU_FF_TLB_FLUSH_BIT))
1072 pVCpu->hwaccm.s.fForceTLBFlush = true;
1073
1074 /* Make sure we flush the TLB when required. Switch ASID to achieve the same thing, but without actually flushing the whole TLB (which is expensive). */
1075 if ( pVCpu->hwaccm.s.fForceTLBFlush
1076 && !pVM->hwaccm.s.svm.fAlwaysFlushTLB)
1077 {
1078 if ( ++pCpu->uCurrentASID >= pVM->hwaccm.s.uMaxASID
1079 || pCpu->fFlushTLB)
1080 {
1081 pCpu->fFlushTLB = false;
1082 pCpu->uCurrentASID = 1; /* start at 1; host uses 0 */
1083 pVMCB->ctrl.TLBCtrl.n.u1TLBFlush = 1; /* wrap around; flush TLB */
1084 pCpu->cTLBFlushes++;
1085 }
1086 else
1087 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatFlushASID);
1088
1089 pVCpu->hwaccm.s.cTLBFlushes = pCpu->cTLBFlushes;
1090 pVCpu->hwaccm.s.uCurrentASID = pCpu->uCurrentASID;
1091 }
1092 else
1093 {
1094 Assert(!pCpu->fFlushTLB || pVM->hwaccm.s.svm.fAlwaysFlushTLB);
1095
1096 /* We never increase uCurrentASID in the fAlwaysFlushTLB (erratum 170) case. */
1097 if (!pCpu->uCurrentASID || !pVCpu->hwaccm.s.uCurrentASID)
1098 pVCpu->hwaccm.s.uCurrentASID = pCpu->uCurrentASID = 1;
1099
1100 Assert(!pVM->hwaccm.s.svm.fAlwaysFlushTLB || pVCpu->hwaccm.s.fForceTLBFlush);
1101 pVMCB->ctrl.TLBCtrl.n.u1TLBFlush = pVCpu->hwaccm.s.fForceTLBFlush;
1102
1103 if ( !pVM->hwaccm.s.svm.fAlwaysFlushTLB
1104 && VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_TLB_SHOOTDOWN))
1105 {
1106 /* Deal with pending TLB shootdown actions which were queued when we were not executing code. */
1107 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatTlbShootdown);
1108 for (unsigned i=0;i<pVCpu->hwaccm.s.TlbShootdown.cPages;i++)
1109 SVMR0InvlpgA(pVCpu->hwaccm.s.TlbShootdown.aPages[i], pVMCB->ctrl.TLBCtrl.n.u32ASID);
1110 }
1111 }
1112 pVCpu->hwaccm.s.TlbShootdown.cPages = 0;
1113 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_SHOOTDOWN);
1114
1115 AssertMsg(pVCpu->hwaccm.s.cTLBFlushes == pCpu->cTLBFlushes, ("Flush count mismatch for cpu %d (%x vs %x)\n", pCpu->idCpu, pVCpu->hwaccm.s.cTLBFlushes, pCpu->cTLBFlushes));
1116 AssertMsg(pCpu->uCurrentASID >= 1 && pCpu->uCurrentASID < pVM->hwaccm.s.uMaxASID, ("cpu%d uCurrentASID = %x\n", pCpu->idCpu, pCpu->uCurrentASID));
1117 AssertMsg(pVCpu->hwaccm.s.uCurrentASID >= 1 && pVCpu->hwaccm.s.uCurrentASID < pVM->hwaccm.s.uMaxASID, ("cpu%d VM uCurrentASID = %x\n", pCpu->idCpu, pVCpu->hwaccm.s.uCurrentASID));
1118 pVMCB->ctrl.TLBCtrl.n.u32ASID = pVCpu->hwaccm.s.uCurrentASID;
1119
1120#ifdef VBOX_WITH_STATISTICS
1121 if (pVMCB->ctrl.TLBCtrl.n.u1TLBFlush)
1122 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatFlushTLBWorldSwitch);
1123 else
1124 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatNoFlushTLBWorldSwitch);
1125#endif
1126
1127 /* In case we execute a goto ResumeExecution later on. */
1128 pVCpu->hwaccm.s.fResumeVM = true;
1129 pVCpu->hwaccm.s.fForceTLBFlush = pVM->hwaccm.s.svm.fAlwaysFlushTLB;
1130
1131 Assert(sizeof(pVCpu->hwaccm.s.svm.pVMCBPhys) == 8);
1132 Assert(pVMCB->ctrl.IntCtrl.n.u1VIrqMasking);
1133 Assert(pVMCB->ctrl.u64IOPMPhysAddr == pVM->hwaccm.s.svm.pIOBitmapPhys);
1134 Assert(pVMCB->ctrl.u64MSRPMPhysAddr == pVM->hwaccm.s.svm.pMSRBitmapPhys);
1135 Assert(pVMCB->ctrl.u64LBRVirt == 0);
1136
1137#ifdef VBOX_STRICT
1138 Assert(idCpuCheck == RTMpCpuId());
1139#endif
1140 TMNotifyStartOfExecution(pVCpu);
1141 pVCpu->hwaccm.s.svm.pfnVMRun(pVCpu->hwaccm.s.svm.pVMCBHostPhys, pVCpu->hwaccm.s.svm.pVMCBPhys, pCtx, pVM, pVCpu);
1142 TMNotifyEndOfExecution(pVCpu);
1143 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED);
1144 ASMSetFlags(uOldEFlags);
1145#ifdef VBOX_WITH_VMMR0_DISABLE_PREEMPTION
1146 uOldEFlags = ~(RTCCUINTREG)0;
1147#endif
1148 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatInGC, x);
1149
1150 /*
1151 * !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1152 * IMPORTANT: WE CAN'T DO ANY LOGGING OR OPERATIONS THAT CAN DO A LONGJMP BACK TO RING 3 *BEFORE* WE'VE SYNCED BACK (MOST OF) THE GUEST STATE
1153 * !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1154 */
1155
1156 STAM_PROFILE_ADV_START(&pVCpu->hwaccm.s.StatExit1, x);
1157
1158 /* Reason for the VM exit */
1159 exitCode = pVMCB->ctrl.u64ExitCode;
1160
1161 if (RT_UNLIKELY(exitCode == (uint64_t)SVM_EXIT_INVALID)) /* Invalid guest state. */
1162 {
1163 HWACCMDumpRegs(pVM, pVCpu, pCtx);
1164#ifdef DEBUG
1165 Log(("ctrl.u16InterceptRdCRx %x\n", pVMCB->ctrl.u16InterceptRdCRx));
1166 Log(("ctrl.u16InterceptWrCRx %x\n", pVMCB->ctrl.u16InterceptWrCRx));
1167 Log(("ctrl.u16InterceptRdDRx %x\n", pVMCB->ctrl.u16InterceptRdDRx));
1168 Log(("ctrl.u16InterceptWrDRx %x\n", pVMCB->ctrl.u16InterceptWrDRx));
1169 Log(("ctrl.u32InterceptException %x\n", pVMCB->ctrl.u32InterceptException));
1170 Log(("ctrl.u32InterceptCtrl1 %x\n", pVMCB->ctrl.u32InterceptCtrl1));
1171 Log(("ctrl.u32InterceptCtrl2 %x\n", pVMCB->ctrl.u32InterceptCtrl2));
1172 Log(("ctrl.u64IOPMPhysAddr %RX64\n", pVMCB->ctrl.u64IOPMPhysAddr));
1173 Log(("ctrl.u64MSRPMPhysAddr %RX64\n", pVMCB->ctrl.u64MSRPMPhysAddr));
1174 Log(("ctrl.u64TSCOffset %RX64\n", pVMCB->ctrl.u64TSCOffset));
1175
1176 Log(("ctrl.TLBCtrl.u32ASID %x\n", pVMCB->ctrl.TLBCtrl.n.u32ASID));
1177 Log(("ctrl.TLBCtrl.u1TLBFlush %x\n", pVMCB->ctrl.TLBCtrl.n.u1TLBFlush));
1178 Log(("ctrl.TLBCtrl.u7Reserved %x\n", pVMCB->ctrl.TLBCtrl.n.u7Reserved));
1179 Log(("ctrl.TLBCtrl.u24Reserved %x\n", pVMCB->ctrl.TLBCtrl.n.u24Reserved));
1180
1181 Log(("ctrl.IntCtrl.u8VTPR %x\n", pVMCB->ctrl.IntCtrl.n.u8VTPR));
1182 Log(("ctrl.IntCtrl.u1VIrqValid %x\n", pVMCB->ctrl.IntCtrl.n.u1VIrqValid));
1183 Log(("ctrl.IntCtrl.u7Reserved %x\n", pVMCB->ctrl.IntCtrl.n.u7Reserved));
1184 Log(("ctrl.IntCtrl.u4VIrqPriority %x\n", pVMCB->ctrl.IntCtrl.n.u4VIrqPriority));
1185 Log(("ctrl.IntCtrl.u1IgnoreTPR %x\n", pVMCB->ctrl.IntCtrl.n.u1IgnoreTPR));
1186 Log(("ctrl.IntCtrl.u3Reserved %x\n", pVMCB->ctrl.IntCtrl.n.u3Reserved));
1187 Log(("ctrl.IntCtrl.u1VIrqMasking %x\n", pVMCB->ctrl.IntCtrl.n.u1VIrqMasking));
1188 Log(("ctrl.IntCtrl.u7Reserved2 %x\n", pVMCB->ctrl.IntCtrl.n.u7Reserved2));
1189 Log(("ctrl.IntCtrl.u8VIrqVector %x\n", pVMCB->ctrl.IntCtrl.n.u8VIrqVector));
1190 Log(("ctrl.IntCtrl.u24Reserved %x\n", pVMCB->ctrl.IntCtrl.n.u24Reserved));
1191
1192 Log(("ctrl.u64IntShadow %RX64\n", pVMCB->ctrl.u64IntShadow));
1193 Log(("ctrl.u64ExitCode %RX64\n", pVMCB->ctrl.u64ExitCode));
1194 Log(("ctrl.u64ExitInfo1 %RX64\n", pVMCB->ctrl.u64ExitInfo1));
1195 Log(("ctrl.u64ExitInfo2 %RX64\n", pVMCB->ctrl.u64ExitInfo2));
1196 Log(("ctrl.ExitIntInfo.u8Vector %x\n", pVMCB->ctrl.ExitIntInfo.n.u8Vector));
1197 Log(("ctrl.ExitIntInfo.u3Type %x\n", pVMCB->ctrl.ExitIntInfo.n.u3Type));
1198 Log(("ctrl.ExitIntInfo.u1ErrorCodeValid %x\n", pVMCB->ctrl.ExitIntInfo.n.u1ErrorCodeValid));
1199 Log(("ctrl.ExitIntInfo.u19Reserved %x\n", pVMCB->ctrl.ExitIntInfo.n.u19Reserved));
1200 Log(("ctrl.ExitIntInfo.u1Valid %x\n", pVMCB->ctrl.ExitIntInfo.n.u1Valid));
1201 Log(("ctrl.ExitIntInfo.u32ErrorCode %x\n", pVMCB->ctrl.ExitIntInfo.n.u32ErrorCode));
1202 Log(("ctrl.NestedPaging %RX64\n", pVMCB->ctrl.NestedPaging.au64));
1203 Log(("ctrl.EventInject.u8Vector %x\n", pVMCB->ctrl.EventInject.n.u8Vector));
1204 Log(("ctrl.EventInject.u3Type %x\n", pVMCB->ctrl.EventInject.n.u3Type));
1205 Log(("ctrl.EventInject.u1ErrorCodeValid %x\n", pVMCB->ctrl.EventInject.n.u1ErrorCodeValid));
1206 Log(("ctrl.EventInject.u19Reserved %x\n", pVMCB->ctrl.EventInject.n.u19Reserved));
1207 Log(("ctrl.EventInject.u1Valid %x\n", pVMCB->ctrl.EventInject.n.u1Valid));
1208 Log(("ctrl.EventInject.u32ErrorCode %x\n", pVMCB->ctrl.EventInject.n.u32ErrorCode));
1209
1210 Log(("ctrl.u64NestedPagingCR3 %RX64\n", pVMCB->ctrl.u64NestedPagingCR3));
1211 Log(("ctrl.u64LBRVirt %RX64\n", pVMCB->ctrl.u64LBRVirt));
1212
1213 Log(("guest.CS.u16Sel %04X\n", pVMCB->guest.CS.u16Sel));
1214 Log(("guest.CS.u16Attr %04X\n", pVMCB->guest.CS.u16Attr));
1215 Log(("guest.CS.u32Limit %X\n", pVMCB->guest.CS.u32Limit));
1216 Log(("guest.CS.u64Base %RX64\n", pVMCB->guest.CS.u64Base));
1217 Log(("guest.DS.u16Sel %04X\n", pVMCB->guest.DS.u16Sel));
1218 Log(("guest.DS.u16Attr %04X\n", pVMCB->guest.DS.u16Attr));
1219 Log(("guest.DS.u32Limit %X\n", pVMCB->guest.DS.u32Limit));
1220 Log(("guest.DS.u64Base %RX64\n", pVMCB->guest.DS.u64Base));
1221 Log(("guest.ES.u16Sel %04X\n", pVMCB->guest.ES.u16Sel));
1222 Log(("guest.ES.u16Attr %04X\n", pVMCB->guest.ES.u16Attr));
1223 Log(("guest.ES.u32Limit %X\n", pVMCB->guest.ES.u32Limit));
1224 Log(("guest.ES.u64Base %RX64\n", pVMCB->guest.ES.u64Base));
1225 Log(("guest.FS.u16Sel %04X\n", pVMCB->guest.FS.u16Sel));
1226 Log(("guest.FS.u16Attr %04X\n", pVMCB->guest.FS.u16Attr));
1227 Log(("guest.FS.u32Limit %X\n", pVMCB->guest.FS.u32Limit));
1228 Log(("guest.FS.u64Base %RX64\n", pVMCB->guest.FS.u64Base));
1229 Log(("guest.GS.u16Sel %04X\n", pVMCB->guest.GS.u16Sel));
1230 Log(("guest.GS.u16Attr %04X\n", pVMCB->guest.GS.u16Attr));
1231 Log(("guest.GS.u32Limit %X\n", pVMCB->guest.GS.u32Limit));
1232 Log(("guest.GS.u64Base %RX64\n", pVMCB->guest.GS.u64Base));
1233
1234 Log(("guest.GDTR.u32Limit %X\n", pVMCB->guest.GDTR.u32Limit));
1235 Log(("guest.GDTR.u64Base %RX64\n", pVMCB->guest.GDTR.u64Base));
1236
1237 Log(("guest.LDTR.u16Sel %04X\n", pVMCB->guest.LDTR.u16Sel));
1238 Log(("guest.LDTR.u16Attr %04X\n", pVMCB->guest.LDTR.u16Attr));
1239 Log(("guest.LDTR.u32Limit %X\n", pVMCB->guest.LDTR.u32Limit));
1240 Log(("guest.LDTR.u64Base %RX64\n", pVMCB->guest.LDTR.u64Base));
1241
1242 Log(("guest.IDTR.u32Limit %X\n", pVMCB->guest.IDTR.u32Limit));
1243 Log(("guest.IDTR.u64Base %RX64\n", pVMCB->guest.IDTR.u64Base));
1244
1245 Log(("guest.TR.u16Sel %04X\n", pVMCB->guest.TR.u16Sel));
1246 Log(("guest.TR.u16Attr %04X\n", pVMCB->guest.TR.u16Attr));
1247 Log(("guest.TR.u32Limit %X\n", pVMCB->guest.TR.u32Limit));
1248 Log(("guest.TR.u64Base %RX64\n", pVMCB->guest.TR.u64Base));
1249
1250 Log(("guest.u8CPL %X\n", pVMCB->guest.u8CPL));
1251 Log(("guest.u64CR0 %RX64\n", pVMCB->guest.u64CR0));
1252 Log(("guest.u64CR2 %RX64\n", pVMCB->guest.u64CR2));
1253 Log(("guest.u64CR3 %RX64\n", pVMCB->guest.u64CR3));
1254 Log(("guest.u64CR4 %RX64\n", pVMCB->guest.u64CR4));
1255 Log(("guest.u64DR6 %RX64\n", pVMCB->guest.u64DR6));
1256 Log(("guest.u64DR7 %RX64\n", pVMCB->guest.u64DR7));
1257
1258 Log(("guest.u64RIP %RX64\n", pVMCB->guest.u64RIP));
1259 Log(("guest.u64RSP %RX64\n", pVMCB->guest.u64RSP));
1260 Log(("guest.u64RAX %RX64\n", pVMCB->guest.u64RAX));
1261 Log(("guest.u64RFlags %RX64\n", pVMCB->guest.u64RFlags));
1262
1263 Log(("guest.u64SysEnterCS %RX64\n", pVMCB->guest.u64SysEnterCS));
1264 Log(("guest.u64SysEnterEIP %RX64\n", pVMCB->guest.u64SysEnterEIP));
1265 Log(("guest.u64SysEnterESP %RX64\n", pVMCB->guest.u64SysEnterESP));
1266
1267 Log(("guest.u64EFER %RX64\n", pVMCB->guest.u64EFER));
1268 Log(("guest.u64STAR %RX64\n", pVMCB->guest.u64STAR));
1269 Log(("guest.u64LSTAR %RX64\n", pVMCB->guest.u64LSTAR));
1270 Log(("guest.u64CSTAR %RX64\n", pVMCB->guest.u64CSTAR));
1271 Log(("guest.u64SFMASK %RX64\n", pVMCB->guest.u64SFMASK));
1272 Log(("guest.u64KernelGSBase %RX64\n", pVMCB->guest.u64KernelGSBase));
1273 Log(("guest.u64GPAT %RX64\n", pVMCB->guest.u64GPAT));
1274 Log(("guest.u64DBGCTL %RX64\n", pVMCB->guest.u64DBGCTL));
1275 Log(("guest.u64BR_FROM %RX64\n", pVMCB->guest.u64BR_FROM));
1276 Log(("guest.u64BR_TO %RX64\n", pVMCB->guest.u64BR_TO));
1277 Log(("guest.u64LASTEXCPFROM %RX64\n", pVMCB->guest.u64LASTEXCPFROM));
1278 Log(("guest.u64LASTEXCPTO %RX64\n", pVMCB->guest.u64LASTEXCPTO));
1279
1280#endif
1281 rc = VERR_SVM_UNABLE_TO_START_VM;
1282 VMMR0LogFlushEnable(pVCpu);
1283 goto end;
1284 }
1285
1286 /* Let's first sync back eip, esp, and eflags. */
1287 pCtx->rip = pVMCB->guest.u64RIP;
1288 pCtx->rsp = pVMCB->guest.u64RSP;
1289 pCtx->eflags.u32 = pVMCB->guest.u64RFlags;
1290 /* eax is saved/restore across the vmrun instruction */
1291 pCtx->rax = pVMCB->guest.u64RAX;
1292
1293 pCtx->msrKERNELGSBASE = pVMCB->guest.u64KernelGSBase; /* swapgs exchange value */
1294
1295 /* Can be updated behind our back in the nested paging case. */
1296 pCtx->cr2 = pVMCB->guest.u64CR2;
1297
1298 /* Guest CPU context: ES, CS, SS, DS, FS, GS. */
1299 SVM_READ_SELREG(SS, ss);
1300 SVM_READ_SELREG(CS, cs);
1301 SVM_READ_SELREG(DS, ds);
1302 SVM_READ_SELREG(ES, es);
1303 SVM_READ_SELREG(FS, fs);
1304 SVM_READ_SELREG(GS, gs);
1305
1306 /*
1307 * System MSRs
1308 */
1309 pCtx->SysEnter.cs = pVMCB->guest.u64SysEnterCS;
1310 pCtx->SysEnter.eip = pVMCB->guest.u64SysEnterEIP;
1311 pCtx->SysEnter.esp = pVMCB->guest.u64SysEnterESP;
1312
1313 /* Remaining guest CPU context: TR, IDTR, GDTR, LDTR; must sync everything otherwise we can get out of sync when jumping to ring 3. */
1314 SVM_READ_SELREG(LDTR, ldtr);
1315 SVM_READ_SELREG(TR, tr);
1316
1317 pCtx->gdtr.cbGdt = pVMCB->guest.GDTR.u32Limit;
1318 pCtx->gdtr.pGdt = pVMCB->guest.GDTR.u64Base;
1319
1320 pCtx->idtr.cbIdt = pVMCB->guest.IDTR.u32Limit;
1321 pCtx->idtr.pIdt = pVMCB->guest.IDTR.u64Base;
1322
1323 /* Note: no reason to sync back the CRx and DRx registers. They can't be changed by the guest. */
1324 /* Note: only in the nested paging case can CR3 & CR4 be changed by the guest. */
1325 if ( pVM->hwaccm.s.fNestedPaging
1326 && pCtx->cr3 != pVMCB->guest.u64CR3)
1327 {
1328 CPUMSetGuestCR3(pVCpu, pVMCB->guest.u64CR3);
1329 PGMUpdateCR3(pVCpu, pVMCB->guest.u64CR3);
1330 }
1331
1332 /* Note! NOW IT'S SAFE FOR LOGGING! */
1333 VMMR0LogFlushEnable(pVCpu);
1334
1335 /* Take care of instruction fusing (sti, mov ss) (see 15.20.5 Interrupt Shadows) */
1336 if (pVMCB->ctrl.u64IntShadow & SVM_INTERRUPT_SHADOW_ACTIVE)
1337 {
1338 Log(("uInterruptState %x rip=%RGv\n", pVMCB->ctrl.u64IntShadow, (RTGCPTR)pCtx->rip));
1339 EMSetInhibitInterruptsPC(pVCpu, pCtx->rip);
1340 }
1341 else
1342 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
1343
1344 Log2(("exitCode = %x\n", exitCode));
1345
1346 /* Sync back DR6 as it could have been changed by hitting breakpoints. */
1347 pCtx->dr[6] = pVMCB->guest.u64DR6;
1348 /* DR7.GD can be cleared by debug exceptions, so sync it back as well. */
1349 pCtx->dr[7] = pVMCB->guest.u64DR7;
1350
1351 /* Check if an injected event was interrupted prematurely. */
1352 pVCpu->hwaccm.s.Event.intInfo = pVMCB->ctrl.ExitIntInfo.au64[0];
1353 if ( pVMCB->ctrl.ExitIntInfo.n.u1Valid
1354 && pVMCB->ctrl.ExitIntInfo.n.u3Type != SVM_EVENT_SOFTWARE_INT /* we don't care about 'int xx' as the instruction will be restarted. */)
1355 {
1356 Log(("Pending inject %RX64 at %RGv exit=%08x\n", pVCpu->hwaccm.s.Event.intInfo, (RTGCPTR)pCtx->rip, exitCode));
1357
1358#ifdef LOG_ENABLED
1359 SVM_EVENT Event;
1360 Event.au64[0] = pVCpu->hwaccm.s.Event.intInfo;
1361
1362 if ( exitCode == SVM_EXIT_EXCEPTION_E
1363 && Event.n.u8Vector == 0xE)
1364 {
1365 Log(("Double fault!\n"));
1366 }
1367#endif
1368
1369 pVCpu->hwaccm.s.Event.fPending = true;
1370 /* Error code present? (redundant) */
1371 if (pVMCB->ctrl.ExitIntInfo.n.u1ErrorCodeValid)
1372 pVCpu->hwaccm.s.Event.errCode = pVMCB->ctrl.ExitIntInfo.n.u32ErrorCode;
1373 else
1374 pVCpu->hwaccm.s.Event.errCode = 0;
1375 }
1376#ifdef VBOX_WITH_STATISTICS
1377 if (exitCode == SVM_EXIT_NPF)
1378 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitReasonNPF);
1379 else
1380 STAM_COUNTER_INC(&pVCpu->hwaccm.s.paStatExitReasonR0[exitCode & MASK_EXITREASON_STAT]);
1381#endif
1382
1383 /* Sync back the TPR if it was changed. */
1384 if ( fSyncTPR
1385 && (u8LastTPR >> 4) != pVMCB->ctrl.IntCtrl.n.u8VTPR)
1386 {
1387 rc = PDMApicSetTPR(pVCpu, pVMCB->ctrl.IntCtrl.n.u8VTPR << 4); /* cr8 bits 3-0 correspond to bits 7-4 of the task priority mmio register. */
1388 AssertRC(rc);
1389 }
1390
1391 /* Deal with the reason of the VM-exit. */
1392 switch (exitCode)
1393 {
1394 case SVM_EXIT_EXCEPTION_0: case SVM_EXIT_EXCEPTION_1: case SVM_EXIT_EXCEPTION_2: case SVM_EXIT_EXCEPTION_3:
1395 case SVM_EXIT_EXCEPTION_4: case SVM_EXIT_EXCEPTION_5: case SVM_EXIT_EXCEPTION_6: case SVM_EXIT_EXCEPTION_7:
1396 case SVM_EXIT_EXCEPTION_8: case SVM_EXIT_EXCEPTION_9: case SVM_EXIT_EXCEPTION_A: case SVM_EXIT_EXCEPTION_B:
1397 case SVM_EXIT_EXCEPTION_C: case SVM_EXIT_EXCEPTION_D: case SVM_EXIT_EXCEPTION_E: case SVM_EXIT_EXCEPTION_F:
1398 case SVM_EXIT_EXCEPTION_10: case SVM_EXIT_EXCEPTION_11: case SVM_EXIT_EXCEPTION_12: case SVM_EXIT_EXCEPTION_13:
1399 case SVM_EXIT_EXCEPTION_14: case SVM_EXIT_EXCEPTION_15: case SVM_EXIT_EXCEPTION_16: case SVM_EXIT_EXCEPTION_17:
1400 case SVM_EXIT_EXCEPTION_18: case SVM_EXIT_EXCEPTION_19: case SVM_EXIT_EXCEPTION_1A: case SVM_EXIT_EXCEPTION_1B:
1401 case SVM_EXIT_EXCEPTION_1C: case SVM_EXIT_EXCEPTION_1D: case SVM_EXIT_EXCEPTION_1E: case SVM_EXIT_EXCEPTION_1F:
1402 {
1403 /* Pending trap. */
1404 SVM_EVENT Event;
1405 uint32_t vector = exitCode - SVM_EXIT_EXCEPTION_0;
1406
1407 Log2(("Hardware/software interrupt %d\n", vector));
1408 switch (vector)
1409 {
1410 case X86_XCPT_DB:
1411 {
1412 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestDB);
1413
1414 /* Note that we don't support guest and host-initiated debugging at the same time. */
1415 Assert(DBGFIsStepping(pVCpu));
1416
1417 rc = DBGFRZTrap01Handler(pVM, pVCpu, CPUMCTX2CORE(pCtx), pCtx->dr[6]);
1418 if (rc == VINF_EM_RAW_GUEST_TRAP)
1419 {
1420 Log(("Trap %x (debug) at %016RX64\n", vector, pCtx->rip));
1421
1422 /* Reinject the exception. */
1423 Event.au64[0] = 0;
1424 Event.n.u3Type = SVM_EVENT_EXCEPTION; /* trap or fault */
1425 Event.n.u1Valid = 1;
1426 Event.n.u8Vector = X86_XCPT_DB;
1427
1428 SVMR0InjectEvent(pVCpu, pVMCB, pCtx, &Event);
1429
1430 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit1, x);
1431 goto ResumeExecution;
1432 }
1433 /* Return to ring 3 to deal with the debug exit code. */
1434 break;
1435 }
1436
1437 case X86_XCPT_NM:
1438 {
1439 Log(("#NM fault at %RGv\n", (RTGCPTR)pCtx->rip));
1440
1441 /** @todo don't intercept #NM exceptions anymore when we've activated the guest FPU state. */
1442 /* If we sync the FPU/XMM state on-demand, then we can continue execution as if nothing has happened. */
1443 rc = CPUMR0LoadGuestFPU(pVM, pVCpu, pCtx);
1444 if (rc == VINF_SUCCESS)
1445 {
1446 Assert(CPUMIsGuestFPUStateActive(pVCpu));
1447 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitShadowNM);
1448
1449 /* Continue execution. */
1450 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit1, x);
1451 pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_GUEST_CR0;
1452
1453 goto ResumeExecution;
1454 }
1455
1456 Log(("Forward #NM fault to the guest\n"));
1457 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestNM);
1458
1459 Event.au64[0] = 0;
1460 Event.n.u3Type = SVM_EVENT_EXCEPTION;
1461 Event.n.u1Valid = 1;
1462 Event.n.u8Vector = X86_XCPT_NM;
1463
1464 SVMR0InjectEvent(pVCpu, pVMCB, pCtx, &Event);
1465 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit1, x);
1466 goto ResumeExecution;
1467 }
1468
1469 case X86_XCPT_PF: /* Page fault */
1470 {
1471 uint32_t errCode = pVMCB->ctrl.u64ExitInfo1; /* EXITINFO1 = error code */
1472 RTGCUINTPTR uFaultAddress = pVMCB->ctrl.u64ExitInfo2; /* EXITINFO2 = fault address */
1473
1474#ifdef DEBUG
1475 if (pVM->hwaccm.s.fNestedPaging)
1476 { /* A genuine pagefault.
1477 * Forward the trap to the guest by injecting the exception and resuming execution.
1478 */
1479 Log(("Guest page fault at %04X:%RGv cr2=%RGv error code %x rsp=%RGv\n", pCtx->cs, (RTGCPTR)pCtx->rip, uFaultAddress, errCode, (RTGCPTR)pCtx->rsp));
1480 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestPF);
1481
1482 /* Now we must update CR2. */
1483 pCtx->cr2 = uFaultAddress;
1484
1485 Event.au64[0] = 0;
1486 Event.n.u3Type = SVM_EVENT_EXCEPTION;
1487 Event.n.u1Valid = 1;
1488 Event.n.u8Vector = X86_XCPT_PF;
1489 Event.n.u1ErrorCodeValid = 1;
1490 Event.n.u32ErrorCode = errCode;
1491
1492 SVMR0InjectEvent(pVCpu, pVMCB, pCtx, &Event);
1493
1494 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit1, x);
1495 goto ResumeExecution;
1496 }
1497#endif
1498 Assert(!pVM->hwaccm.s.fNestedPaging);
1499
1500#if 0
1501 /* Shortcut for APIC TPR reads and writes; 32 bits guests only */
1502 if ( (uFaultAddress & 0xfff) == 0x080
1503 && pVM->hwaccm.s.fHasIoApic
1504 && !(errCode & X86_TRAP_PF_P) /* not present */
1505 && !CPUMIsGuestInLongModeEx(pCtx))
1506 {
1507 RTGCPHYS GCPhysApicBase, GCPhys;
1508 PDMApicGetBase(pVM, &GCPhysApicBase); /* @todo cache this */
1509 GCPhysApicBase &= PAGE_BASE_GC_MASK;
1510
1511 rc = PGMGstGetPage(pVCpu, (RTGCPTR)uFaultAddress, NULL, &GCPhys);
1512 if ( rc == VINF_SUCCESS
1513 && GCPhys == GCPhysApicBase)
1514 {
1515 Log(("Replace TPR access at %RGv\n", pCtx->rip));
1516
1517 DISCPUSTATE Cpu;
1518 unsigned cbOp;
1519 rc = EMInterpretDisasOne(pVM, pVCpu, CPUMCTX2CORE(pCtx), &Cpu, &cbOp);
1520 AssertRC(rc);
1521 if ( rc == VINF_SUCCESS
1522 && Cpu.pCurInstr->opcode == OP_MOV
1523 && (cbOp == 5 || cbOp == 6))
1524 {
1525 uint8_t szInstr[15];
1526 if ( (errCode & X86_TRAP_PF_RW)
1527 && Cpu.param1.disp32 == (uint32_t)uFaultAddress
1528 && Cpu.param2.flags == USE_REG_GEN32)
1529 {
1530 /* 0xF0, 0x0F, 0x22, 0xC0 = mov cr8, eax */
1531 szInstr[0] = 0xF0;
1532 szInstr[1] = 0x0F;
1533 szInstr[2] = 0x22;
1534 szInstr[3] = 0xC0 | Cpu.param2.base.reg_gen;
1535 for (unsigned i = 4; i < cbOp; i++)
1536 szInstr[i] = 0x90; /* nop */
1537
1538 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pCtx->rip, szInstr, cbOp);
1539 AssertRC(rc);
1540
1541 Log(("Acceptable write candidate!\n"));
1542 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit1, x);
1543 goto ResumeExecution;
1544 }
1545 else
1546 if ( Cpu.param2.disp32 == (uint32_t)uFaultAddress
1547 && Cpu.param1.flags == USE_REG_GEN32)
1548 {
1549 /* 0xF0, 0x0F, 0x20, 0xC0 = mov eax, cr8 */
1550 szInstr[0] = 0xF0;
1551 szInstr[1] = 0x0F;
1552 szInstr[2] = 0x20;
1553 szInstr[3] = 0xC0 | Cpu.param1.base.reg_gen;
1554 for (unsigned i = 4; i < cbOp; i++)
1555 szInstr[i] = 0x90; /* nop */
1556
1557 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pCtx->rip, szInstr, cbOp);
1558 AssertRC(rc);
1559
1560 Log(("Acceptable read candidate!\n"));
1561 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit1, x);
1562 goto ResumeExecution;
1563 }
1564 }
1565 }
1566 }
1567#endif
1568
1569 Log2(("Page fault at %RGv cr2=%RGv error code %x\n", (RTGCPTR)pCtx->rip, uFaultAddress, errCode));
1570 /* Exit qualification contains the linear address of the page fault. */
1571 TRPMAssertTrap(pVCpu, X86_XCPT_PF, TRPM_TRAP);
1572 TRPMSetErrorCode(pVCpu, errCode);
1573 TRPMSetFaultAddress(pVCpu, uFaultAddress);
1574
1575 /* Forward it to our trap handler first, in case our shadow pages are out of sync. */
1576 rc = PGMTrap0eHandler(pVCpu, errCode, CPUMCTX2CORE(pCtx), (RTGCPTR)uFaultAddress);
1577 Log2(("PGMTrap0eHandler %RGv returned %Rrc\n", (RTGCPTR)pCtx->rip, rc));
1578 if (rc == VINF_SUCCESS)
1579 { /* We've successfully synced our shadow pages, so let's just continue execution. */
1580 Log2(("Shadow page fault at %RGv cr2=%RGv error code %x\n", (RTGCPTR)pCtx->rip, uFaultAddress, errCode));
1581 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitShadowPF);
1582
1583 TRPMResetTrap(pVCpu);
1584
1585 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit1, x);
1586 goto ResumeExecution;
1587 }
1588 else
1589 if (rc == VINF_EM_RAW_GUEST_TRAP)
1590 { /* A genuine pagefault.
1591 * Forward the trap to the guest by injecting the exception and resuming execution.
1592 */
1593 Log2(("Forward page fault to the guest\n"));
1594 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestPF);
1595 /* The error code might have been changed. */
1596 errCode = TRPMGetErrorCode(pVCpu);
1597
1598 TRPMResetTrap(pVCpu);
1599
1600 /* Now we must update CR2. */
1601 pCtx->cr2 = uFaultAddress;
1602
1603 Event.au64[0] = 0;
1604 Event.n.u3Type = SVM_EVENT_EXCEPTION;
1605 Event.n.u1Valid = 1;
1606 Event.n.u8Vector = X86_XCPT_PF;
1607 Event.n.u1ErrorCodeValid = 1;
1608 Event.n.u32ErrorCode = errCode;
1609
1610 SVMR0InjectEvent(pVCpu, pVMCB, pCtx, &Event);
1611
1612 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit1, x);
1613 goto ResumeExecution;
1614 }
1615#ifdef VBOX_STRICT
1616 if (rc != VINF_EM_RAW_EMULATE_INSTR && rc != VINF_EM_RAW_EMULATE_IO_BLOCK)
1617 LogFlow(("PGMTrap0eHandler failed with %d\n", rc));
1618#endif
1619 /* Need to go back to the recompiler to emulate the instruction. */
1620 TRPMResetTrap(pVCpu);
1621 break;
1622 }
1623
1624 case X86_XCPT_MF: /* Floating point exception. */
1625 {
1626 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestMF);
1627 if (!(pCtx->cr0 & X86_CR0_NE))
1628 {
1629 /* old style FPU error reporting needs some extra work. */
1630 /** @todo don't fall back to the recompiler, but do it manually. */
1631 rc = VINF_EM_RAW_EMULATE_INSTR;
1632 break;
1633 }
1634 Log(("Trap %x at %RGv\n", vector, (RTGCPTR)pCtx->rip));
1635
1636 Event.au64[0] = 0;
1637 Event.n.u3Type = SVM_EVENT_EXCEPTION;
1638 Event.n.u1Valid = 1;
1639 Event.n.u8Vector = X86_XCPT_MF;
1640
1641 SVMR0InjectEvent(pVCpu, pVMCB, pCtx, &Event);
1642
1643 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit1, x);
1644 goto ResumeExecution;
1645 }
1646
1647#ifdef VBOX_STRICT
1648 case X86_XCPT_GP: /* General protection failure exception.*/
1649 case X86_XCPT_UD: /* Unknown opcode exception. */
1650 case X86_XCPT_DE: /* Divide error. */
1651 case X86_XCPT_SS: /* Stack segment exception. */
1652 case X86_XCPT_NP: /* Segment not present exception. */
1653 {
1654 Event.au64[0] = 0;
1655 Event.n.u3Type = SVM_EVENT_EXCEPTION;
1656 Event.n.u1Valid = 1;
1657 Event.n.u8Vector = vector;
1658
1659 switch(vector)
1660 {
1661 case X86_XCPT_GP:
1662 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestGP);
1663 Event.n.u1ErrorCodeValid = 1;
1664 Event.n.u32ErrorCode = pVMCB->ctrl.u64ExitInfo1; /* EXITINFO1 = error code */
1665 break;
1666 case X86_XCPT_DE:
1667 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestDE);
1668 break;
1669 case X86_XCPT_UD:
1670 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestUD);
1671 break;
1672 case X86_XCPT_SS:
1673 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestSS);
1674 Event.n.u1ErrorCodeValid = 1;
1675 Event.n.u32ErrorCode = pVMCB->ctrl.u64ExitInfo1; /* EXITINFO1 = error code */
1676 break;
1677 case X86_XCPT_NP:
1678 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestNP);
1679 Event.n.u1ErrorCodeValid = 1;
1680 Event.n.u32ErrorCode = pVMCB->ctrl.u64ExitInfo1; /* EXITINFO1 = error code */
1681 break;
1682 }
1683 Log(("Trap %x at %04x:%RGv esi=%x\n", vector, pCtx->cs, (RTGCPTR)pCtx->rip, pCtx->esi));
1684 SVMR0InjectEvent(pVCpu, pVMCB, pCtx, &Event);
1685
1686 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit1, x);
1687 goto ResumeExecution;
1688 }
1689#endif
1690 default:
1691 AssertMsgFailed(("Unexpected vm-exit caused by exception %x\n", vector));
1692 rc = VERR_EM_INTERNAL_ERROR;
1693 break;
1694
1695 } /* switch (vector) */
1696 break;
1697 }
1698
1699 case SVM_EXIT_NPF:
1700 {
1701 /* EXITINFO1 contains fault errorcode; EXITINFO2 contains the guest physical address causing the fault. */
1702 uint32_t errCode = pVMCB->ctrl.u64ExitInfo1; /* EXITINFO1 = error code */
1703 RTGCPHYS uFaultAddress = pVMCB->ctrl.u64ExitInfo2; /* EXITINFO2 = fault address */
1704 PGMMODE enmShwPagingMode;
1705
1706 Assert(pVM->hwaccm.s.fNestedPaging);
1707 LogFlow(("Nested page fault at %RGv cr2=%RGp error code %x\n", (RTGCPTR)pCtx->rip, uFaultAddress, errCode));
1708
1709#if 0
1710 /* Shortcut for APIC TPR reads and writes; 32 bits guests only */
1711 if ( (uFaultAddress & 0xfff) == 0x080
1712 && pVM->hwaccm.s.fHasIoApic
1713 && !(errCode & X86_TRAP_PF_P) /* not present */
1714 && CPUMGetGuestCPL(pVCpu, CPUMCTX2CORE(pCtx)) == 0
1715 && !CPUMIsGuestInLongModeEx(pCtx))
1716 {
1717 RTGCPHYS GCPhysApicBase;
1718 PDMApicGetBase(pVM, &GCPhysApicBase); /* @todo cache this */
1719 GCPhysApicBase &= PAGE_BASE_GC_MASK;
1720
1721 if (uFaultAddress == GCPhysApicBase + 0x80)
1722 {
1723 rc = svmR0ReplaceTprInstr(pVM, pVCpu, pCtx);
1724 if (rc == VINF_SUCCESS)
1725 {
1726 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit1, x);
1727 goto ResumeExecution;
1728 }
1729
1730 rc = IOMMMIOPhysHandler(pVM, errCode, CPUMCTX2CORE(pCtx), uFaultAddress);
1731 if (rc == VINF_SUCCESS)
1732 {
1733 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit1, x);
1734 goto ResumeExecution; /* rip already updated */
1735 }
1736 }
1737 }
1738#endif
1739
1740 /* Exit qualification contains the linear address of the page fault. */
1741 TRPMAssertTrap(pVCpu, X86_XCPT_PF, TRPM_TRAP);
1742 TRPMSetErrorCode(pVCpu, errCode);
1743 TRPMSetFaultAddress(pVCpu, uFaultAddress);
1744
1745 /* Handle the pagefault trap for the nested shadow table. */
1746#if HC_ARCH_BITS == 32
1747 if (CPUMIsGuestInLongModeEx(pCtx))
1748 enmShwPagingMode = PGMMODE_AMD64_NX;
1749 else
1750#endif
1751 enmShwPagingMode = PGMGetHostMode(pVM);
1752
1753 rc = PGMR0Trap0eHandlerNestedPaging(pVM, pVCpu, enmShwPagingMode, errCode, CPUMCTX2CORE(pCtx), uFaultAddress);
1754 Log2(("PGMR0Trap0eHandlerNestedPaging %RGv returned %Rrc\n", (RTGCPTR)pCtx->rip, rc));
1755 if (rc == VINF_SUCCESS)
1756 { /* We've successfully synced our shadow pages, so let's just continue execution. */
1757 Log2(("Shadow page fault at %RGv cr2=%RGp error code %x\n", (RTGCPTR)pCtx->rip, uFaultAddress, errCode));
1758 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitShadowPF);
1759
1760 TRPMResetTrap(pVCpu);
1761
1762 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit1, x);
1763 goto ResumeExecution;
1764 }
1765
1766#ifdef VBOX_STRICT
1767 if (rc != VINF_EM_RAW_EMULATE_INSTR)
1768 LogFlow(("PGMTrap0eHandlerNestedPaging failed with %d\n", rc));
1769#endif
1770 /* Need to go back to the recompiler to emulate the instruction. */
1771 TRPMResetTrap(pVCpu);
1772 break;
1773 }
1774
1775 case SVM_EXIT_VINTR:
1776 /* A virtual interrupt is about to be delivered, which means IF=1. */
1777 Log(("SVM_EXIT_VINTR IF=%d\n", pCtx->eflags.Bits.u1IF));
1778 pVMCB->ctrl.IntCtrl.n.u1VIrqValid = 0;
1779 pVMCB->ctrl.IntCtrl.n.u8VIrqVector = 0;
1780 goto ResumeExecution;
1781
1782 case SVM_EXIT_FERR_FREEZE:
1783 case SVM_EXIT_INTR:
1784 case SVM_EXIT_NMI:
1785 case SVM_EXIT_SMI:
1786 case SVM_EXIT_INIT:
1787 /* External interrupt; leave to allow it to be dispatched again. */
1788 rc = VINF_EM_RAW_INTERRUPT;
1789 break;
1790
1791 case SVM_EXIT_WBINVD:
1792 case SVM_EXIT_INVD: /* Guest software attempted to execute INVD. */
1793 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitInvd);
1794 /* Skip instruction and continue directly. */
1795 pCtx->rip += 2; /* Note! hardcoded opcode size! */
1796 /* Continue execution.*/
1797 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit1, x);
1798 goto ResumeExecution;
1799
1800 case SVM_EXIT_CPUID: /* Guest software attempted to execute CPUID. */
1801 {
1802 Log2(("SVM: Cpuid at %RGv for %x\n", (RTGCPTR)pCtx->rip, pCtx->eax));
1803 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitCpuid);
1804 rc = EMInterpretCpuId(pVM, pVCpu, CPUMCTX2CORE(pCtx));
1805 if (rc == VINF_SUCCESS)
1806 {
1807 /* Update EIP and continue execution. */
1808 pCtx->rip += 2; /* Note! hardcoded opcode size! */
1809 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit1, x);
1810 goto ResumeExecution;
1811 }
1812 AssertMsgFailed(("EMU: cpuid failed with %Rrc\n", rc));
1813 rc = VINF_EM_RAW_EMULATE_INSTR;
1814 break;
1815 }
1816
1817 case SVM_EXIT_RDTSC: /* Guest software attempted to execute RDTSC. */
1818 {
1819 Log2(("SVM: Rdtsc\n"));
1820 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitRdtsc);
1821 rc = EMInterpretRdtsc(pVM, pVCpu, CPUMCTX2CORE(pCtx));
1822 if (rc == VINF_SUCCESS)
1823 {
1824 /* Update EIP and continue execution. */
1825 pCtx->rip += 2; /* Note! hardcoded opcode size! */
1826 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit1, x);
1827 goto ResumeExecution;
1828 }
1829 rc = VINF_EM_RAW_EMULATE_INSTR;
1830 break;
1831 }
1832
1833 case SVM_EXIT_RDPMC: /* Guest software attempted to execute RDPMC. */
1834 {
1835 Log2(("SVM: Rdpmc %x\n", pCtx->ecx));
1836 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitRdpmc);
1837 rc = EMInterpretRdpmc(pVM, pVCpu, CPUMCTX2CORE(pCtx));
1838 if (rc == VINF_SUCCESS)
1839 {
1840 /* Update EIP and continue execution. */
1841 pCtx->rip += 2; /* Note! hardcoded opcode size! */
1842 goto ResumeExecution;
1843 }
1844 rc = VINF_EM_RAW_EMULATE_INSTR;
1845 break;
1846 }
1847
1848 case SVM_EXIT_RDTSCP: /* Guest software attempted to execute RDTSCP. */
1849 {
1850 Log2(("SVM: Rdtscp\n"));
1851 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitRdtsc);
1852 rc = EMInterpretRdtscp(pVM, pVCpu, pCtx);
1853 if (rc == VINF_SUCCESS)
1854 {
1855 /* Update EIP and continue execution. */
1856 pCtx->rip += 3; /* Note! hardcoded opcode size! */
1857 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit1, x);
1858 goto ResumeExecution;
1859 }
1860 AssertMsgFailed(("EMU: rdtscp failed with %Rrc\n", rc));
1861 rc = VINF_EM_RAW_EMULATE_INSTR;
1862 break;
1863 }
1864
1865 case SVM_EXIT_INVLPG: /* Guest software attempted to execute INVPG. */
1866 {
1867 Log2(("SVM: invlpg\n"));
1868 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitInvpg);
1869
1870 Assert(!pVM->hwaccm.s.fNestedPaging);
1871
1872 /* Truly a pita. Why can't SVM give the same information as VT-x? */
1873 rc = svmR0InterpretInvpg(pVM, pVCpu, CPUMCTX2CORE(pCtx), pVMCB->ctrl.TLBCtrl.n.u32ASID);
1874 if (rc == VINF_SUCCESS)
1875 {
1876 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatFlushPageInvlpg);
1877 goto ResumeExecution; /* eip already updated */
1878 }
1879 break;
1880 }
1881
1882 case SVM_EXIT_WRITE_CR0: case SVM_EXIT_WRITE_CR1: case SVM_EXIT_WRITE_CR2: case SVM_EXIT_WRITE_CR3:
1883 case SVM_EXIT_WRITE_CR4: case SVM_EXIT_WRITE_CR5: case SVM_EXIT_WRITE_CR6: case SVM_EXIT_WRITE_CR7:
1884 case SVM_EXIT_WRITE_CR8: case SVM_EXIT_WRITE_CR9: case SVM_EXIT_WRITE_CR10: case SVM_EXIT_WRITE_CR11:
1885 case SVM_EXIT_WRITE_CR12: case SVM_EXIT_WRITE_CR13: case SVM_EXIT_WRITE_CR14: case SVM_EXIT_WRITE_CR15:
1886 {
1887 uint32_t cbSize;
1888
1889 Log2(("SVM: %RGv mov cr%d, \n", (RTGCPTR)pCtx->rip, exitCode - SVM_EXIT_WRITE_CR0));
1890 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitCRxWrite[exitCode - SVM_EXIT_WRITE_CR0]);
1891 rc = EMInterpretInstruction(pVM, pVCpu, CPUMCTX2CORE(pCtx), 0, &cbSize);
1892
1893 switch (exitCode - SVM_EXIT_WRITE_CR0)
1894 {
1895 case 0:
1896 pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_GUEST_CR0;
1897 break;
1898 case 2:
1899 break;
1900 case 3:
1901 Assert(!pVM->hwaccm.s.fNestedPaging);
1902 pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_GUEST_CR3;
1903 break;
1904 case 4:
1905 pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_GUEST_CR4;
1906 break;
1907 case 8:
1908 break;
1909 default:
1910 AssertFailed();
1911 }
1912 /* Check if a sync operation is pending. */
1913 if ( rc == VINF_SUCCESS /* don't bother if we are going to ring 3 anyway */
1914 && VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL))
1915 {
1916 rc = PGMSyncCR3(pVCpu, pCtx->cr0, pCtx->cr3, pCtx->cr4, VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
1917 AssertRC(rc);
1918
1919 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatFlushTLBCRxChange);
1920
1921 /* Must be set by PGMSyncCR3 */
1922 AssertMsg(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3 || PGMGetGuestMode(pVCpu) <= PGMMODE_PROTECTED || pVCpu->hwaccm.s.fForceTLBFlush,
1923 ("rc=%Rrc mode=%d fForceTLBFlush=%RTbool\n", rc, PGMGetGuestMode(pVCpu), pVCpu->hwaccm.s.fForceTLBFlush));
1924 }
1925 if (rc == VINF_SUCCESS)
1926 {
1927 /* EIP has been updated already. */
1928
1929 /* Only resume if successful. */
1930 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit1, x);
1931 goto ResumeExecution;
1932 }
1933 Assert(rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_PGM_SYNC_CR3);
1934 break;
1935 }
1936
1937 case SVM_EXIT_READ_CR0: case SVM_EXIT_READ_CR1: case SVM_EXIT_READ_CR2: case SVM_EXIT_READ_CR3:
1938 case SVM_EXIT_READ_CR4: case SVM_EXIT_READ_CR5: case SVM_EXIT_READ_CR6: case SVM_EXIT_READ_CR7:
1939 case SVM_EXIT_READ_CR8: case SVM_EXIT_READ_CR9: case SVM_EXIT_READ_CR10: case SVM_EXIT_READ_CR11:
1940 case SVM_EXIT_READ_CR12: case SVM_EXIT_READ_CR13: case SVM_EXIT_READ_CR14: case SVM_EXIT_READ_CR15:
1941 {
1942 uint32_t cbSize;
1943
1944 Log2(("SVM: %RGv mov x, cr%d\n", (RTGCPTR)pCtx->rip, exitCode - SVM_EXIT_READ_CR0));
1945 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitCRxRead[exitCode - SVM_EXIT_READ_CR0]);
1946 rc = EMInterpretInstruction(pVM, pVCpu, CPUMCTX2CORE(pCtx), 0, &cbSize);
1947 if (rc == VINF_SUCCESS)
1948 {
1949 /* EIP has been updated already. */
1950
1951 /* Only resume if successful. */
1952 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit1, x);
1953 goto ResumeExecution;
1954 }
1955 Assert(rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_PGM_SYNC_CR3);
1956 break;
1957 }
1958
1959 case SVM_EXIT_WRITE_DR0: case SVM_EXIT_WRITE_DR1: case SVM_EXIT_WRITE_DR2: case SVM_EXIT_WRITE_DR3:
1960 case SVM_EXIT_WRITE_DR4: case SVM_EXIT_WRITE_DR5: case SVM_EXIT_WRITE_DR6: case SVM_EXIT_WRITE_DR7:
1961 case SVM_EXIT_WRITE_DR8: case SVM_EXIT_WRITE_DR9: case SVM_EXIT_WRITE_DR10: case SVM_EXIT_WRITE_DR11:
1962 case SVM_EXIT_WRITE_DR12: case SVM_EXIT_WRITE_DR13: case SVM_EXIT_WRITE_DR14: case SVM_EXIT_WRITE_DR15:
1963 {
1964 uint32_t cbSize;
1965
1966 Log2(("SVM: %RGv mov dr%d, x\n", (RTGCPTR)pCtx->rip, exitCode - SVM_EXIT_WRITE_DR0));
1967 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitDRxWrite);
1968
1969 if (!DBGFIsStepping(pVCpu))
1970 {
1971 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatDRxContextSwitch);
1972
1973 /* Disable drx move intercepts. */
1974 pVMCB->ctrl.u16InterceptRdDRx = 0;
1975 pVMCB->ctrl.u16InterceptWrDRx = 0;
1976
1977 /* Save the host and load the guest debug state. */
1978 rc = CPUMR0LoadGuestDebugState(pVM, pVCpu, pCtx, false /* exclude DR6 */);
1979 AssertRC(rc);
1980
1981 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit1, x);
1982 goto ResumeExecution;
1983 }
1984
1985 rc = EMInterpretInstruction(pVM, pVCpu, CPUMCTX2CORE(pCtx), 0, &cbSize);
1986 if (rc == VINF_SUCCESS)
1987 {
1988 /* EIP has been updated already. */
1989 pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_GUEST_DEBUG;
1990
1991 /* Only resume if successful. */
1992 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit1, x);
1993 goto ResumeExecution;
1994 }
1995 Assert(rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_PGM_SYNC_CR3);
1996 break;
1997 }
1998
1999 case SVM_EXIT_READ_DR0: case SVM_EXIT_READ_DR1: case SVM_EXIT_READ_DR2: case SVM_EXIT_READ_DR3:
2000 case SVM_EXIT_READ_DR4: case SVM_EXIT_READ_DR5: case SVM_EXIT_READ_DR6: case SVM_EXIT_READ_DR7:
2001 case SVM_EXIT_READ_DR8: case SVM_EXIT_READ_DR9: case SVM_EXIT_READ_DR10: case SVM_EXIT_READ_DR11:
2002 case SVM_EXIT_READ_DR12: case SVM_EXIT_READ_DR13: case SVM_EXIT_READ_DR14: case SVM_EXIT_READ_DR15:
2003 {
2004 uint32_t cbSize;
2005
2006 Log2(("SVM: %RGv mov x, dr%d\n", (RTGCPTR)pCtx->rip, exitCode - SVM_EXIT_READ_DR0));
2007 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitDRxRead);
2008
2009 if (!DBGFIsStepping(pVCpu))
2010 {
2011 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatDRxContextSwitch);
2012
2013 /* Disable drx move intercepts. */
2014 pVMCB->ctrl.u16InterceptRdDRx = 0;
2015 pVMCB->ctrl.u16InterceptWrDRx = 0;
2016
2017 /* Save the host and load the guest debug state. */
2018 rc = CPUMR0LoadGuestDebugState(pVM, pVCpu, pCtx, false /* exclude DR6 */);
2019 AssertRC(rc);
2020
2021 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit1, x);
2022 goto ResumeExecution;
2023 }
2024
2025 rc = EMInterpretInstruction(pVM, pVCpu, CPUMCTX2CORE(pCtx), 0, &cbSize);
2026 if (rc == VINF_SUCCESS)
2027 {
2028 /* EIP has been updated already. */
2029
2030 /* Only resume if successful. */
2031 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit1, x);
2032 goto ResumeExecution;
2033 }
2034 Assert(rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_PGM_SYNC_CR3);
2035 break;
2036 }
2037
2038 /* Note: We'll get a #GP if the IO instruction isn't allowed (IOPL or TSS bitmap); no need to double check. */
2039 case SVM_EXIT_IOIO: /* I/O instruction. */
2040 {
2041 SVM_IOIO_EXIT IoExitInfo;
2042 uint32_t uIOSize, uAndVal;
2043
2044 IoExitInfo.au32[0] = pVMCB->ctrl.u64ExitInfo1;
2045
2046 /** @todo could use a lookup table here */
2047 if (IoExitInfo.n.u1OP8)
2048 {
2049 uIOSize = 1;
2050 uAndVal = 0xff;
2051 }
2052 else
2053 if (IoExitInfo.n.u1OP16)
2054 {
2055 uIOSize = 2;
2056 uAndVal = 0xffff;
2057 }
2058 else
2059 if (IoExitInfo.n.u1OP32)
2060 {
2061 uIOSize = 4;
2062 uAndVal = 0xffffffff;
2063 }
2064 else
2065 {
2066 AssertFailed(); /* should be fatal. */
2067 rc = VINF_EM_RAW_EMULATE_INSTR;
2068 break;
2069 }
2070
2071 if (IoExitInfo.n.u1STR)
2072 {
2073 /* ins/outs */
2074 PDISCPUSTATE pDis = &pVCpu->hwaccm.s.DisState;
2075
2076 /* Disassemble manually to deal with segment prefixes. */
2077 rc = EMInterpretDisasOne(pVM, pVCpu, CPUMCTX2CORE(pCtx), pDis, NULL);
2078 if (rc == VINF_SUCCESS)
2079 {
2080 if (IoExitInfo.n.u1Type == 0)
2081 {
2082 Log2(("IOMInterpretOUTSEx %RGv %x size=%d\n", (RTGCPTR)pCtx->rip, IoExitInfo.n.u16Port, uIOSize));
2083 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitIOStringWrite);
2084 rc = IOMInterpretOUTSEx(pVM, CPUMCTX2CORE(pCtx), IoExitInfo.n.u16Port, pDis->prefix, uIOSize);
2085 }
2086 else
2087 {
2088 Log2(("IOMInterpretINSEx %RGv %x size=%d\n", (RTGCPTR)pCtx->rip, IoExitInfo.n.u16Port, uIOSize));
2089 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitIOStringRead);
2090 rc = IOMInterpretINSEx(pVM, CPUMCTX2CORE(pCtx), IoExitInfo.n.u16Port, pDis->prefix, uIOSize);
2091 }
2092 }
2093 else
2094 rc = VINF_EM_RAW_EMULATE_INSTR;
2095 }
2096 else
2097 {
2098 /* normal in/out */
2099 Assert(!IoExitInfo.n.u1REP);
2100
2101 if (IoExitInfo.n.u1Type == 0)
2102 {
2103 Log2(("IOMIOPortWrite %RGv %x %x size=%d\n", (RTGCPTR)pCtx->rip, IoExitInfo.n.u16Port, pCtx->eax & uAndVal, uIOSize));
2104 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitIOWrite);
2105 rc = IOMIOPortWrite(pVM, IoExitInfo.n.u16Port, pCtx->eax & uAndVal, uIOSize);
2106 }
2107 else
2108 {
2109 uint32_t u32Val = 0;
2110
2111 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitIORead);
2112 rc = IOMIOPortRead(pVM, IoExitInfo.n.u16Port, &u32Val, uIOSize);
2113 if (IOM_SUCCESS(rc))
2114 {
2115 /* Write back to the EAX register. */
2116 pCtx->eax = (pCtx->eax & ~uAndVal) | (u32Val & uAndVal);
2117 Log2(("IOMIOPortRead %RGv %x %x size=%d\n", (RTGCPTR)pCtx->rip, IoExitInfo.n.u16Port, u32Val & uAndVal, uIOSize));
2118 }
2119 }
2120 }
2121 /*
2122 * Handled the I/O return codes.
2123 * (The unhandled cases end up with rc == VINF_EM_RAW_EMULATE_INSTR.)
2124 */
2125 if (IOM_SUCCESS(rc))
2126 {
2127 /* Update EIP and continue execution. */
2128 pCtx->rip = pVMCB->ctrl.u64ExitInfo2; /* RIP/EIP of the next instruction is saved in EXITINFO2. */
2129 if (RT_LIKELY(rc == VINF_SUCCESS))
2130 {
2131 /* If any IO breakpoints are armed, then we should check if a debug trap needs to be generated. */
2132 if (pCtx->dr[7] & X86_DR7_ENABLED_MASK)
2133 {
2134 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatDRxIOCheck);
2135 for (unsigned i=0;i<4;i++)
2136 {
2137 unsigned uBPLen = g_aIOSize[X86_DR7_GET_LEN(pCtx->dr[7], i)];
2138
2139 if ( (IoExitInfo.n.u16Port >= pCtx->dr[i] && IoExitInfo.n.u16Port < pCtx->dr[i] + uBPLen)
2140 && (pCtx->dr[7] & (X86_DR7_L(i) | X86_DR7_G(i)))
2141 && (pCtx->dr[7] & X86_DR7_RW(i, X86_DR7_RW_IO)) == X86_DR7_RW(i, X86_DR7_RW_IO))
2142 {
2143 SVM_EVENT Event;
2144
2145 Assert(CPUMIsGuestDebugStateActive(pVCpu));
2146
2147 /* Clear all breakpoint status flags and set the one we just hit. */
2148 pCtx->dr[6] &= ~(X86_DR6_B0|X86_DR6_B1|X86_DR6_B2|X86_DR6_B3);
2149 pCtx->dr[6] |= (uint64_t)RT_BIT(i);
2150
2151 /* Note: AMD64 Architecture Programmer's Manual 13.1:
2152 * Bits 15:13 of the DR6 register is never cleared by the processor and must be cleared by software after
2153 * the contents have been read.
2154 */
2155 pVMCB->guest.u64DR6 = pCtx->dr[6];
2156
2157 /* X86_DR7_GD will be cleared if drx accesses should be trapped inside the guest. */
2158 pCtx->dr[7] &= ~X86_DR7_GD;
2159
2160 /* Paranoia. */
2161 pCtx->dr[7] &= 0xffffffff; /* upper 32 bits reserved */
2162 pCtx->dr[7] &= ~(RT_BIT(11) | RT_BIT(12) | RT_BIT(14) | RT_BIT(15)); /* must be zero */
2163 pCtx->dr[7] |= 0x400; /* must be one */
2164
2165 pVMCB->guest.u64DR7 = pCtx->dr[7];
2166
2167 /* Inject the exception. */
2168 Log(("Inject IO debug trap at %RGv\n", (RTGCPTR)pCtx->rip));
2169
2170 Event.au64[0] = 0;
2171 Event.n.u3Type = SVM_EVENT_EXCEPTION; /* trap or fault */
2172 Event.n.u1Valid = 1;
2173 Event.n.u8Vector = X86_XCPT_DB;
2174
2175 SVMR0InjectEvent(pVCpu, pVMCB, pCtx, &Event);
2176
2177 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit1, x);
2178 goto ResumeExecution;
2179 }
2180 }
2181 }
2182
2183 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit1, x);
2184 goto ResumeExecution;
2185 }
2186 Log2(("EM status from IO at %RGv %x size %d: %Rrc\n", (RTGCPTR)pCtx->rip, IoExitInfo.n.u16Port, uIOSize, rc));
2187 break;
2188 }
2189
2190#ifdef VBOX_STRICT
2191 if (rc == VINF_IOM_HC_IOPORT_READ)
2192 Assert(IoExitInfo.n.u1Type != 0);
2193 else if (rc == VINF_IOM_HC_IOPORT_WRITE)
2194 Assert(IoExitInfo.n.u1Type == 0);
2195 else
2196 AssertMsg(RT_FAILURE(rc) || rc == VINF_EM_RAW_EMULATE_INSTR || rc == VINF_EM_RAW_GUEST_TRAP || rc == VINF_TRPM_XCPT_DISPATCHED, ("%Rrc\n", rc));
2197#endif
2198 Log2(("Failed IO at %RGv %x size %d\n", (RTGCPTR)pCtx->rip, IoExitInfo.n.u16Port, uIOSize));
2199 break;
2200 }
2201
2202 case SVM_EXIT_HLT:
2203 /** Check if external interrupts are pending; if so, don't switch back. */
2204 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitHlt);
2205 pCtx->rip++; /* skip hlt */
2206 if ( pCtx->eflags.Bits.u1IF
2207 && VMCPU_FF_ISPENDING(pVCpu, (VMCPU_FF_INTERRUPT_APIC|VMCPU_FF_INTERRUPT_PIC)))
2208 goto ResumeExecution;
2209
2210 rc = VINF_EM_HALT;
2211 break;
2212
2213 case SVM_EXIT_MWAIT_UNCOND:
2214 Log2(("SVM: mwait\n"));
2215 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitMwait);
2216 rc = EMInterpretMWait(pVM, pVCpu, CPUMCTX2CORE(pCtx));
2217 if ( rc == VINF_EM_HALT
2218 || rc == VINF_SUCCESS)
2219 {
2220 /* Update EIP and continue execution. */
2221 pCtx->rip += 3; /* Note: hardcoded opcode size assumption! */
2222
2223 /** Check if external interrupts are pending; if so, don't switch back. */
2224 if ( rc == VINF_SUCCESS
2225 || ( rc == VINF_EM_HALT
2226 && pCtx->eflags.Bits.u1IF
2227 && VMCPU_FF_ISPENDING(pVCpu, (VMCPU_FF_INTERRUPT_APIC|VMCPU_FF_INTERRUPT_PIC)))
2228 )
2229 goto ResumeExecution;
2230 }
2231 AssertMsg(rc == VERR_EM_INTERPRETER || rc == VINF_EM_HALT, ("EMU: mwait failed with %Rrc\n", rc));
2232 break;
2233
2234 case SVM_EXIT_RSM:
2235 case SVM_EXIT_INVLPGA:
2236 case SVM_EXIT_VMRUN:
2237 case SVM_EXIT_VMMCALL:
2238 case SVM_EXIT_VMLOAD:
2239 case SVM_EXIT_VMSAVE:
2240 case SVM_EXIT_STGI:
2241 case SVM_EXIT_CLGI:
2242 case SVM_EXIT_SKINIT:
2243 {
2244 /* Unsupported instructions. */
2245 SVM_EVENT Event;
2246
2247 Event.au64[0] = 0;
2248 Event.n.u3Type = SVM_EVENT_EXCEPTION;
2249 Event.n.u1Valid = 1;
2250 Event.n.u8Vector = X86_XCPT_UD;
2251
2252 Log(("Forced #UD trap at %RGv\n", (RTGCPTR)pCtx->rip));
2253 SVMR0InjectEvent(pVCpu, pVMCB, pCtx, &Event);
2254
2255 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit1, x);
2256 goto ResumeExecution;
2257 }
2258
2259 /* Emulate in ring 3. */
2260 case SVM_EXIT_MSR:
2261 {
2262 uint32_t cbSize;
2263
2264 /* Note: the intel manual claims there's a REX version of RDMSR that's slightly different, so we play safe by completely disassembling the instruction. */
2265 STAM_COUNTER_INC((pVMCB->ctrl.u64ExitInfo1 == 0) ? &pVCpu->hwaccm.s.StatExitRdmsr : &pVCpu->hwaccm.s.StatExitWrmsr);
2266 Log(("SVM: %s\n", (pVMCB->ctrl.u64ExitInfo1 == 0) ? "rdmsr" : "wrmsr"));
2267 rc = EMInterpretInstruction(pVM, pVCpu, CPUMCTX2CORE(pCtx), 0, &cbSize);
2268 if (rc == VINF_SUCCESS)
2269 {
2270 /* EIP has been updated already. */
2271
2272 /* Only resume if successful. */
2273 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit1, x);
2274 goto ResumeExecution;
2275 }
2276 AssertMsg(rc == VERR_EM_INTERPRETER, ("EMU: %s failed with %Rrc\n", (pVMCB->ctrl.u64ExitInfo1 == 0) ? "rdmsr" : "wrmsr", rc));
2277 break;
2278 }
2279
2280 case SVM_EXIT_MONITOR:
2281 case SVM_EXIT_PAUSE:
2282 case SVM_EXIT_MWAIT_ARMED:
2283 case SVM_EXIT_TASK_SWITCH: /* can change CR3; emulate */
2284 rc = VINF_EM_RAW_EXCEPTION_PRIVILEGED;
2285 break;
2286
2287 case SVM_EXIT_SHUTDOWN:
2288 rc = VINF_EM_RESET; /* Triple fault equals a reset. */
2289 break;
2290
2291 case SVM_EXIT_IDTR_READ:
2292 case SVM_EXIT_GDTR_READ:
2293 case SVM_EXIT_LDTR_READ:
2294 case SVM_EXIT_TR_READ:
2295 case SVM_EXIT_IDTR_WRITE:
2296 case SVM_EXIT_GDTR_WRITE:
2297 case SVM_EXIT_LDTR_WRITE:
2298 case SVM_EXIT_TR_WRITE:
2299 case SVM_EXIT_CR0_SEL_WRITE:
2300 default:
2301 /* Unexpected exit codes. */
2302 rc = VERR_EM_INTERNAL_ERROR;
2303 AssertMsgFailed(("Unexpected exit code %x\n", exitCode)); /* Can't happen. */
2304 break;
2305 }
2306
2307end:
2308
2309 /* Signal changes for the recompiler. */
2310 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_SYSENTER_MSR | CPUM_CHANGED_LDTR | CPUM_CHANGED_GDTR | CPUM_CHANGED_IDTR | CPUM_CHANGED_TR | CPUM_CHANGED_HIDDEN_SEL_REGS);
2311
2312 /* If we executed vmrun and an external irq was pending, then we don't have to do a full sync the next time. */
2313 if (exitCode == SVM_EXIT_INTR)
2314 {
2315 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatPendingHostIrq);
2316 /* On the next entry we'll only sync the host context. */
2317 pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_HOST_CONTEXT;
2318 }
2319 else
2320 {
2321 /* On the next entry we'll sync everything. */
2322 /** @todo we can do better than this */
2323 /* Not in the VINF_PGM_CHANGE_MODE though! */
2324 pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_ALL;
2325 }
2326
2327 /* translate into a less severe return code */
2328 if (rc == VERR_EM_INTERPRETER)
2329 rc = VINF_EM_RAW_EMULATE_INSTR;
2330
2331 /* Just set the correct state here instead of trying to catch every goto above. */
2332 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED, VMCPUSTATE_STARTED_EXEC);
2333
2334#ifdef VBOX_WITH_VMMR0_DISABLE_PREEMPTION
2335 /* Restore interrupts if we exitted after disabling them. */
2336 if (uOldEFlags != ~(RTCCUINTREG)0)
2337 ASMSetFlags(uOldEFlags);
2338#endif
2339
2340 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit1, x);
2341 return rc;
2342}
2343
2344/**
2345 * Emulate simple mov tpr instruction
2346 *
2347 * @returns VBox status code.
2348 * @param pVCpu The VM CPU to operate on.
2349 * @param pDis Disassembly state
2350 * @param pCtx CPU context
2351 * @param cbOp Opcode size
2352 */
2353static int svmR0EmulateTprMov(PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTX pCtx, unsigned cbOp)
2354{
2355 int rc;
2356
2357 if (pDis->param1.flags == USE_DISPLACEMENT32)
2358 {
2359 /* write */
2360 uint8_t u8Tpr;
2361
2362 /* Fetch the new TPR value */
2363 if (pDis->param2.flags == USE_REG_GEN32)
2364 {
2365 uint32_t val;
2366
2367 rc = DISFetchReg32(CPUMCTX2CORE(pCtx), pDis->param2.base.reg_gen, &val);
2368 AssertRC(rc);
2369 u8Tpr = val;
2370 }
2371 else
2372 if (pDis->param2.flags == USE_IMMEDIATE32)
2373 {
2374 u8Tpr = (uint8_t)pDis->param2.parval;
2375 }
2376 else
2377 return VERR_EM_INTERPRETER;
2378
2379 rc = PDMApicSetTPR(pVCpu, u8Tpr);
2380 AssertRC(rc);
2381
2382 Log(("Emulated write successfully\n"));
2383 pCtx->rip += cbOp;
2384 return VINF_SUCCESS;
2385 }
2386 else
2387 if (pDis->param2.flags == USE_DISPLACEMENT32)
2388 {
2389 /* read */
2390 bool fPending;
2391 uint8_t u8Tpr;
2392
2393 /* TPR caching in CR8 */
2394 rc = PDMApicGetTPR(pVCpu, &u8Tpr, &fPending);
2395 AssertRC(rc);
2396
2397 rc = DISWriteReg32(CPUMCTX2CORE(pCtx), pDis->param1.base.reg_gen, u8Tpr);
2398 AssertRC(rc);
2399
2400 Log(("Emulated read successfully\n"));
2401 pCtx->rip += cbOp;
2402 return VINF_SUCCESS;
2403 }
2404 return VERR_EM_INTERPRETER;
2405}
2406
2407/**
2408 * Attempt to patch TPR mmio instructions
2409 *
2410 * @returns VBox status code.
2411 * @param pVM The VM to operate on.
2412 * @param pVCpu The VM CPU to operate on.
2413 * @param pCtx CPU context
2414 */
2415static int svmR0ReplaceTprInstr(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
2416{
2417 RTGCPTR oldrip = pCtx->rip;
2418 PDISCPUSTATE pDis = &pVCpu->hwaccm.s.DisState;
2419 unsigned cbOp;
2420
2421 Log(("Replace TPR access at %RGv\n", pCtx->rip));
2422
2423 int rc = EMInterpretDisasOne(pVM, pVCpu, CPUMCTX2CORE(pCtx), pDis, &cbOp);
2424 AssertRC(rc);
2425 if ( rc == VINF_SUCCESS
2426 && pDis->pCurInstr->opcode == OP_MOV)
2427 {
2428#if 0
2429 uint8_t szInstr[15];
2430 if ( cbOp == 10
2431 && pDis->param1.flags == USE_DISPLACEMENT32
2432 && pDis->param2.flags == USE_IMMEDIATE32)
2433 {
2434 /* Found:
2435 * mov [fffe0080], immediate_dword (10 bytes)
2436 *
2437 * Replace with:
2438 * mov free_register, immediate_dword >> 4 (5 bytes)
2439 * mov cr8, free_register (4 bytes)
2440 * nop (1 byte)
2441 *
2442 */
2443 uint32_t u32tpr = (uint32_t)pDis->param2.parval;
2444
2445 u32tpr = (u32tpr >> 4) & 0xf;
2446
2447 /* Check if the next instruction overwrites a general purpose register. If
2448 * it does, then we can safely use it ourselves.
2449 */
2450 pCtx->rip += cbOp;
2451 rc = EMInterpretDisasOne(pVM, pVCpu, CPUMCTX2CORE(pCtx), pDis, &cbOp);
2452 pCtx->rip = oldrip;
2453 if ( rc == VINF_SUCCESS
2454 && pDis->pCurInstr->opcode == OP_MOV
2455 && pDis->param1.flags == USE_REG_GEN32)
2456 {
2457 /* 0xB8, dword immediate = mov eax, dword immediate */
2458 szInstr[0] = 0xB8 + pDis->param1.base.reg_gen;
2459 szInstr[1] = (uint8_t)u32tpr;
2460 szInstr[2] = 0;
2461 szInstr[3] = 0;
2462 szInstr[4] = 0;
2463
2464 /* 0xF0, 0x0F, 0x22, 0xC0 = mov cr8, eax */
2465 szInstr[5] = 0xF0;
2466 szInstr[6] = 0x0F;
2467 szInstr[7] = 0x22;
2468 szInstr[8] = 0xC0 | pDis->param1.base.reg_gen;
2469 szInstr[9] = 0x90; /* nop */
2470
2471 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pCtx->rip, szInstr, 10);
2472 AssertRC(rc);
2473
2474 Log(("Acceptable write candidate!\n"));
2475 return VINF_SUCCESS;
2476 }
2477 }
2478 else
2479 {
2480 if ( pDis->param2.flags == USE_REG_GEN32
2481 && cbOp == 6)
2482 {
2483 RTGCPTR GCPtrTpr = (uint32_t)pDis->param1.disp32;
2484 uint32_t uMmioReg = pDis->param2.base.reg_gen;
2485
2486 /* Found:
2487 * mov dword [fffe0080], eax (6 bytes)
2488 * Check if next instruction is a TPR read:
2489 * mov ecx, dword [fffe0080] (5 bytes)
2490 */
2491 pCtx->rip += cbOp;
2492 rc = EMInterpretDisasOne(pVM, pVCpu, CPUMCTX2CORE(pCtx), pDis, &cbOp);
2493 pCtx->rip = oldrip;
2494 if ( rc == VINF_SUCCESS
2495 && pDis->pCurInstr->opcode == OP_MOV
2496 && pDis->param1.flags == USE_REG_GEN32
2497 && pDis->param2.flags == USE_DISPLACEMENT32
2498 && pDis->param2.disp32 == (uint32_t)GCPtrTpr
2499 && cbOp == 5)
2500 {
2501 /* mov new_reg, uMmioReg */
2502 szInstr[0] = 0x89;
2503 szInstr[1] = MAKE_MODRM(3, uMmioReg, pDis->param1.base.reg_gen);
2504
2505 /* Let's hope the guest won't mind us trashing the source register...
2506 * shr uMmioReg, 4
2507 */
2508 szInstr[2] = 0xC1;
2509 szInstr[3] = 0xE8 | uMmioReg;
2510 szInstr[4] = 4;
2511
2512 /* 0xF0, 0x0F, 0x22, 0xC0 = mov cr8, eax */
2513 szInstr[5] = 0xF0;
2514 szInstr[6] = 0x0F;
2515 szInstr[7] = 0x22;
2516 szInstr[8] = 0xC0 | uMmioReg;
2517
2518 /* Two nop instructions */
2519 szInstr[9] = 0x90;
2520 szInstr[10] = 0x90;
2521
2522 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pCtx->rip, szInstr, 6+cbOp);
2523 AssertRC(rc);
2524
2525 Log(("Acceptable read/write candidate!\n"));
2526 return VINF_SUCCESS;
2527 }
2528 }
2529 else
2530 if ( pDis->param1.flags == USE_REG_GEN32
2531 && cbOp == 5)
2532 {
2533 uint32_t uMmioReg = pDis->param1.base.reg_gen;
2534
2535 /* Found:
2536 * mov eax, dword [fffe0080] (5 bytes)
2537 * Check if next instruction is:
2538 * shr eax, 4
2539 */
2540 pCtx->rip += cbOp;
2541 rc = EMInterpretDisasOne(pVM, pVCpu, CPUMCTX2CORE(pCtx), pDis, &cbOp);
2542 pCtx->rip = oldrip;
2543 if ( rc == VINF_SUCCESS
2544 && pDis->pCurInstr->opcode == OP_SHR
2545 && pDis->param1.flags == USE_REG_GEN32
2546 && pDis->param1.base.reg_gen == uMmioReg
2547 && pDis->param2.flags == USE_IMMEDIATE8
2548 && pDis->param2.parval == 4)
2549 {
2550 /* 0xF0, 0x0F, 0x20, 0xC0 = mov eax, cr8 */
2551 szInstr[0] = 0xF0;
2552 szInstr[1] = 0x0F;
2553 szInstr[2] = 0x20;
2554 szInstr[3] = 0xC0 | pDis->param1.base.reg_gen;
2555 for (unsigned i = 4; i < 5+cbOp; i++)
2556 szInstr[i] = 0x90; /* nop */
2557
2558 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pCtx->rip, szInstr, 5+cbOp);
2559 AssertRC(rc);
2560
2561 Log(("Acceptable read candidate!\n"));
2562 return VINF_SUCCESS;
2563 }
2564 }
2565 }
2566#endif
2567 rc = svmR0EmulateTprMov(pVCpu, pDis, pCtx, cbOp);
2568 if (rc != VINF_SUCCESS)
2569 return rc;
2570
2571 /* Emulated successfully, so continue. */
2572 return VINF_SUCCESS;
2573 }
2574 return VERR_ACCESS_DENIED;
2575}
2576
2577/**
2578 * Enters the AMD-V session
2579 *
2580 * @returns VBox status code.
2581 * @param pVM The VM to operate on.
2582 * @param pVCpu The VM CPU to operate on.
2583 * @param pCpu CPU info struct
2584 */
2585VMMR0DECL(int) SVMR0Enter(PVM pVM, PVMCPU pVCpu, PHWACCM_CPUINFO pCpu)
2586{
2587 Assert(pVM->hwaccm.s.svm.fSupported);
2588
2589 LogFlow(("SVMR0Enter cpu%d last=%d asid=%d\n", pCpu->idCpu, pVCpu->hwaccm.s.idLastCpu, pVCpu->hwaccm.s.uCurrentASID));
2590 pVCpu->hwaccm.s.fResumeVM = false;
2591
2592 /* Force to reload LDTR, so we'll execute VMLoad to load additional guest state. */
2593 pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_GUEST_LDTR;
2594
2595 return VINF_SUCCESS;
2596}
2597
2598
2599/**
2600 * Leaves the AMD-V session
2601 *
2602 * @returns VBox status code.
2603 * @param pVM The VM to operate on.
2604 * @param pVCpu The VM CPU to operate on.
2605 * @param pCtx CPU context
2606 */
2607VMMR0DECL(int) SVMR0Leave(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
2608{
2609 SVM_VMCB *pVMCB = (SVM_VMCB *)pVCpu->hwaccm.s.svm.pVMCB;
2610
2611 Assert(pVM->hwaccm.s.svm.fSupported);
2612
2613 /* Save the guest debug state if necessary. */
2614 if (CPUMIsGuestDebugStateActive(pVCpu))
2615 {
2616 CPUMR0SaveGuestDebugState(pVM, pVCpu, pCtx, false /* skip DR6 */);
2617
2618 /* Intercept all DRx reads and writes again. Changed later on. */
2619 pVMCB->ctrl.u16InterceptRdDRx = 0xFFFF;
2620 pVMCB->ctrl.u16InterceptWrDRx = 0xFFFF;
2621
2622 /* Resync the debug registers the next time. */
2623 pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_GUEST_DEBUG;
2624 }
2625 else
2626 Assert(pVMCB->ctrl.u16InterceptRdDRx == 0xFFFF && pVMCB->ctrl.u16InterceptWrDRx == 0xFFFF);
2627
2628 return VINF_SUCCESS;
2629}
2630
2631
2632static int svmR0InterpretInvlPg(PVMCPU pVCpu, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, uint32_t uASID)
2633{
2634 OP_PARAMVAL param1;
2635 RTGCPTR addr;
2636
2637 int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param1, &param1, PARAM_SOURCE);
2638 if(RT_FAILURE(rc))
2639 return VERR_EM_INTERPRETER;
2640
2641 switch(param1.type)
2642 {
2643 case PARMTYPE_IMMEDIATE:
2644 case PARMTYPE_ADDRESS:
2645 if(!(param1.flags & (PARAM_VAL32|PARAM_VAL64)))
2646 return VERR_EM_INTERPRETER;
2647 addr = param1.val.val64;
2648 break;
2649
2650 default:
2651 return VERR_EM_INTERPRETER;
2652 }
2653
2654 /** @todo is addr always a flat linear address or ds based
2655 * (in absence of segment override prefixes)????
2656 */
2657 rc = PGMInvalidatePage(pVCpu, addr);
2658 if (RT_SUCCESS(rc))
2659 {
2660 /* Manually invalidate the page for the VM's TLB. */
2661 Log(("SVMR0InvlpgA %RGv ASID=%d\n", addr, uASID));
2662 SVMR0InvlpgA(addr, uASID);
2663 return VINF_SUCCESS;
2664 }
2665 AssertRC(rc);
2666 return rc;
2667}
2668
2669/**
2670 * Interprets INVLPG
2671 *
2672 * @returns VBox status code.
2673 * @retval VINF_* Scheduling instructions.
2674 * @retval VERR_EM_INTERPRETER Something we can't cope with.
2675 * @retval VERR_* Fatal errors.
2676 *
2677 * @param pVM The VM handle.
2678 * @param pRegFrame The register frame.
2679 * @param ASID Tagged TLB id for the guest
2680 *
2681 * Updates the EIP if an instruction was executed successfully.
2682 */
2683static int svmR0InterpretInvpg(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, uint32_t uASID)
2684{
2685 /*
2686 * Only allow 32 & 64 bits code.
2687 */
2688 DISCPUMODE enmMode = SELMGetCpuModeFromSelector(pVM, pRegFrame->eflags, pRegFrame->cs, &pRegFrame->csHid);
2689 if (enmMode != CPUMODE_16BIT)
2690 {
2691 RTGCPTR pbCode;
2692 int rc = SELMValidateAndConvertCSAddr(pVM, pRegFrame->eflags, pRegFrame->ss, pRegFrame->cs, &pRegFrame->csHid, (RTGCPTR)pRegFrame->rip, &pbCode);
2693 if (RT_SUCCESS(rc))
2694 {
2695 uint32_t cbOp;
2696 PDISCPUSTATE pDis = &pVCpu->hwaccm.s.DisState;
2697
2698 pDis->mode = enmMode;
2699 rc = EMInterpretDisasOneEx(pVM, pVCpu, pbCode, pRegFrame, pDis, &cbOp);
2700 Assert(RT_FAILURE(rc) || pDis->pCurInstr->opcode == OP_INVLPG);
2701 if (RT_SUCCESS(rc) && pDis->pCurInstr->opcode == OP_INVLPG)
2702 {
2703 Assert(cbOp == pDis->opsize);
2704 rc = svmR0InterpretInvlPg(pVCpu, pDis, pRegFrame, uASID);
2705 if (RT_SUCCESS(rc))
2706 {
2707 pRegFrame->rip += cbOp; /* Move on to the next instruction. */
2708 }
2709 return rc;
2710 }
2711 }
2712 }
2713 return VERR_EM_INTERPRETER;
2714}
2715
2716
2717/**
2718 * Invalidates a guest page
2719 *
2720 * @returns VBox status code.
2721 * @param pVM The VM to operate on.
2722 * @param pVCpu The VM CPU to operate on.
2723 * @param GCVirt Page to invalidate
2724 */
2725VMMR0DECL(int) SVMR0InvalidatePage(PVM pVM, PVMCPU pVCpu, RTGCPTR GCVirt)
2726{
2727 bool fFlushPending = pVM->hwaccm.s.svm.fAlwaysFlushTLB | pVCpu->hwaccm.s.fForceTLBFlush;
2728
2729 /* Skip it if a TLB flush is already pending. */
2730 if (!fFlushPending)
2731 {
2732 SVM_VMCB *pVMCB;
2733
2734 Log2(("SVMR0InvalidatePage %RGv\n", GCVirt));
2735 AssertReturn(pVM, VERR_INVALID_PARAMETER);
2736 Assert(pVM->hwaccm.s.svm.fSupported);
2737
2738 /* @todo SMP */
2739 pVMCB = (SVM_VMCB *)pVM->aCpus[0].hwaccm.s.svm.pVMCB;
2740 AssertMsgReturn(pVMCB, ("Invalid pVMCB\n"), VERR_EM_INTERNAL_ERROR);
2741
2742#if HC_ARCH_BITS == 32
2743 /* If we get a flush in 64 bits guest mode, then force a full TLB flush. Invlpga takes only 32 bits addresses. */
2744 if (CPUMIsGuestInLongMode(pVCpu))
2745 pVCpu->hwaccm.s.fForceTLBFlush = true;
2746 else
2747#endif
2748 SVMR0InvlpgA(GCVirt, pVMCB->ctrl.TLBCtrl.n.u32ASID);
2749 }
2750 return VINF_SUCCESS;
2751}
2752
2753
2754#if 0 /* obsolete, but left here for clarification. */
2755/**
2756 * Invalidates a guest page by physical address
2757 *
2758 * @returns VBox status code.
2759 * @param pVM The VM to operate on.
2760 * @param pVCpu The VM CPU to operate on.
2761 * @param GCPhys Page to invalidate
2762 */
2763VMMR0DECL(int) SVMR0InvalidatePhysPage(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys)
2764{
2765 Assert(pVM->hwaccm.s.fNestedPaging);
2766 /* invlpga only invalidates TLB entries for guest virtual addresses; we have no choice but to force a TLB flush here. */
2767 pVCpu->hwaccm.s.fForceTLBFlush = true;
2768 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatFlushTLBInvlpga);
2769 return VINF_SUCCESS;
2770}
2771#endif
2772
2773#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
2774/**
2775 * Prepares for and executes VMRUN (64 bits guests from a 32 bits hosts).
2776 *
2777 * @returns VBox status code.
2778 * @param pVMCBHostPhys Physical address of host VMCB.
2779 * @param pVMCBPhys Physical address of the VMCB.
2780 * @param pCtx Guest context.
2781 * @param pVM The VM to operate on.
2782 * @param pVCpu The VMCPU to operate on.
2783 */
2784DECLASM(int) SVMR0VMSwitcherRun64(RTHCPHYS pVMCBHostPhys, RTHCPHYS pVMCBPhys, PCPUMCTX pCtx, PVM pVM, PVMCPU pVCpu)
2785{
2786 uint32_t aParam[4];
2787
2788 aParam[0] = (uint32_t)(pVMCBHostPhys); /* Param 1: pVMCBHostPhys - Lo. */
2789 aParam[1] = (uint32_t)(pVMCBHostPhys >> 32); /* Param 1: pVMCBHostPhys - Hi. */
2790 aParam[2] = (uint32_t)(pVMCBPhys); /* Param 2: pVMCBPhys - Lo. */
2791 aParam[3] = (uint32_t)(pVMCBPhys >> 32); /* Param 2: pVMCBPhys - Hi. */
2792
2793 return SVMR0Execute64BitsHandler(pVM, pVCpu, pCtx, pVM->hwaccm.s.pfnSVMGCVMRun64, 4, &aParam[0]);
2794}
2795
2796/**
2797 * Executes the specified handler in 64 mode
2798 *
2799 * @returns VBox status code.
2800 * @param pVM The VM to operate on.
2801 * @param pVCpu The VMCPU to operate on.
2802 * @param pCtx Guest context
2803 * @param pfnHandler RC handler
2804 * @param cbParam Number of parameters
2805 * @param paParam Array of 32 bits parameters
2806 */
2807VMMR0DECL(int) SVMR0Execute64BitsHandler(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, RTRCPTR pfnHandler, uint32_t cbParam, uint32_t *paParam)
2808{
2809 int rc;
2810 RTHCUINTREG uOldEFlags;
2811
2812 /* @todo This code is not guest SMP safe (hyper stack and switchers) */
2813 AssertReturn(pVM->cCPUs == 1, VERR_TOO_MANY_CPUS);
2814 Assert(pfnHandler);
2815
2816 uOldEFlags = ASMIntDisableFlags();
2817
2818 CPUMSetHyperESP(pVCpu, VMMGetStackRC(pVM));
2819 CPUMSetHyperEIP(pVCpu, pfnHandler);
2820 for (int i=(int)cbParam-1;i>=0;i--)
2821 CPUMPushHyper(pVCpu, paParam[i]);
2822
2823 STAM_PROFILE_ADV_START(&pVCpu->hwaccm.s.StatWorldSwitch3264, z);
2824 /* Call switcher. */
2825 rc = pVM->hwaccm.s.pfnHost32ToGuest64R0(pVM);
2826 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatWorldSwitch3264, z);
2827
2828 ASMSetFlags(uOldEFlags);
2829 return rc;
2830}
2831
2832#endif /* HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) */
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette