VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR0/HWSVMR0.cpp@ 43387

Last change on this file since 43387 was 43387, checked in by vboxsync, 12 years ago

VMM: HM cleanup.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 121.6 KB
Line 
1/* $Id: HWSVMR0.cpp 43387 2012-09-21 09:40:25Z vboxsync $ */
2/** @file
3 * HM SVM (AMD-V) - Host Context Ring-0.
4 */
5
6/*
7 * Copyright (C) 2006-2012 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/*******************************************************************************
19* Header Files *
20*******************************************************************************/
21#define LOG_GROUP LOG_GROUP_HM
22#include <VBox/vmm/hm.h>
23#include <VBox/vmm/pgm.h>
24#include <VBox/vmm/selm.h>
25#include <VBox/vmm/iom.h>
26#include <VBox/vmm/dbgf.h>
27#include <VBox/vmm/dbgftrace.h>
28#include <VBox/vmm/tm.h>
29#include <VBox/vmm/pdmapi.h>
30#include "HMInternal.h"
31#include <VBox/vmm/vm.h>
32#include <VBox/vmm/hm_svm.h>
33#include <VBox/err.h>
34#include <VBox/log.h>
35#include <VBox/dis.h>
36#include <VBox/disopcode.h>
37#include <iprt/param.h>
38#include <iprt/assert.h>
39#include <iprt/asm.h>
40#include <iprt/asm-amd64-x86.h>
41#include <iprt/cpuset.h>
42#include <iprt/mp.h>
43#include <iprt/time.h>
44#ifdef VBOX_WITH_VMMR0_DISABLE_PREEMPTION
45# include <iprt/thread.h>
46#endif
47#include <iprt/x86.h>
48#include "HWSVMR0.h"
49
50#include "dtrace/VBoxVMM.h"
51
52
53/*******************************************************************************
54* Internal Functions *
55*******************************************************************************/
56static int hmR0SvmInterpretInvlpg(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame);
57static int hmR0SvmEmulateTprVMMCall(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx);
58static void hmR0SvmSetMSRPermission(PVMCPU pVCpu, unsigned ulMSR, bool fRead, bool fWrite);
59
60
61/*******************************************************************************
62* Global Variables *
63*******************************************************************************/
64/* IO operation lookup arrays. */
65static uint32_t const g_aIOSize[8] = {0, 1, 2, 0, 4, 0, 0, 0};
66static uint32_t const g_aIOOpAnd[8] = {0, 0xff, 0xffff, 0, 0xffffffff, 0, 0, 0};
67
68
69/**
70 * Sets up and activates AMD-V on the current CPU.
71 *
72 * @returns VBox status code.
73 * @param pCpu Pointer to the CPU info struct.
74 * @param pVM Pointer to the VM (can be NULL after a resume!).
75 * @param pvCpuPage Pointer to the global CPU page.
76 * @param HCPhysCpuPage Physical address of the global CPU page.
77 */
78VMMR0DECL(int) SVMR0EnableCpu(PHMGLOBLCPUINFO pCpu, PVM pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage, bool fEnabledByHost)
79{
80 AssertReturn(!fEnabledByHost, VERR_INVALID_PARAMETER);
81 AssertReturn(HCPhysCpuPage != 0 && HCPhysCpuPage != NIL_RTHCPHYS, VERR_INVALID_PARAMETER);
82 AssertReturn(pvCpuPage, VERR_INVALID_PARAMETER);
83
84 /*
85 * We must turn on AMD-V and setup the host state physical address, as those MSRs are per cpu/core.
86 */
87 uint64_t fEfer = ASMRdMsr(MSR_K6_EFER);
88 if (fEfer & MSR_K6_EFER_SVME)
89 {
90 /*
91 * If the VBOX_HWVIRTEX_IGNORE_SVM_IN_USE is active, then we blindly use AMD-V.
92 */
93 if ( pVM
94 && pVM->hm.s.svm.fIgnoreInUseError)
95 {
96 pCpu->fIgnoreAMDVInUseError = true;
97 }
98
99 if (!pCpu->fIgnoreAMDVInUseError)
100 return VERR_SVM_IN_USE;
101 }
102
103 /* Turn on AMD-V in the EFER MSR. */
104 ASMWrMsr(MSR_K6_EFER, fEfer | MSR_K6_EFER_SVME);
105
106 /* Write the physical page address where the CPU will store the host state while executing the VM. */
107 ASMWrMsr(MSR_K8_VM_HSAVE_PA, HCPhysCpuPage);
108
109 /*
110 * Theoretically, other hypervisors may have used ASIDs, ideally we should flush all non-zero ASIDs
111 * when enabling SVM. AMD doesn't have an SVM instruction to flush all ASIDs (flushing is done
112 * upon VMRUN). Therefore, just set the fFlushASIDBeforeUse flag which instructs hmR0SvmSetupTLB()
113 * to flush the TLB with before using a new ASID.
114 */
115 pCpu->fFlushASIDBeforeUse = true;
116
117 /*
118 * Ensure each VCPU scheduled on this CPU gets a new VPID on resume. See @bugref{6255}.
119 */
120 ++pCpu->cTLBFlushes;
121
122 return VINF_SUCCESS;
123}
124
125
126/**
127 * Deactivates AMD-V on the current CPU.
128 *
129 * @returns VBox status code.
130 * @param pCpu Pointer to the CPU info struct.
131 * @param pvCpuPage Pointer to the global CPU page.
132 * @param HCPhysCpuPage Physical address of the global CPU page.
133 */
134VMMR0DECL(int) SVMR0DisableCpu(PHMGLOBLCPUINFO pCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage)
135{
136 AssertReturn(HCPhysCpuPage != 0 && HCPhysCpuPage != NIL_RTHCPHYS, VERR_INVALID_PARAMETER);
137 AssertReturn(pvCpuPage, VERR_INVALID_PARAMETER);
138 NOREF(pCpu);
139
140 /* Turn off AMD-V in the EFER MSR. */
141 uint64_t fEfer = ASMRdMsr(MSR_K6_EFER);
142 ASMWrMsr(MSR_K6_EFER, fEfer & ~MSR_K6_EFER_SVME);
143
144 /* Invalidate host state physical address. */
145 ASMWrMsr(MSR_K8_VM_HSAVE_PA, 0);
146
147 return VINF_SUCCESS;
148}
149
150
151/**
152 * Does Ring-0 per VM AMD-V init.
153 *
154 * @returns VBox status code.
155 * @param pVM Pointer to the VM.
156 */
157VMMR0DECL(int) SVMR0InitVM(PVM pVM)
158{
159 int rc;
160
161 pVM->hm.s.svm.pMemObjIOBitmap = NIL_RTR0MEMOBJ;
162
163 /* Allocate 12 KB for the IO bitmap (doesn't seem to be a way to convince SVM not to use it) */
164 rc = RTR0MemObjAllocCont(&pVM->hm.s.svm.pMemObjIOBitmap, 3 << PAGE_SHIFT, false /* executable R0 mapping */);
165 if (RT_FAILURE(rc))
166 return rc;
167
168 pVM->hm.s.svm.pIOBitmap = RTR0MemObjAddress(pVM->hm.s.svm.pMemObjIOBitmap);
169 pVM->hm.s.svm.pIOBitmapPhys = RTR0MemObjGetPagePhysAddr(pVM->hm.s.svm.pMemObjIOBitmap, 0);
170 /* Set all bits to intercept all IO accesses. */
171 ASMMemFill32(pVM->hm.s.svm.pIOBitmap, 3 << PAGE_SHIFT, 0xffffffff);
172
173 /*
174 * Erratum 170 which requires a forced TLB flush for each world switch:
175 * See http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/33610.pdf
176 *
177 * All BH-G1/2 and DH-G1/2 models include a fix:
178 * Athlon X2: 0x6b 1/2
179 * 0x68 1/2
180 * Athlon 64: 0x7f 1
181 * 0x6f 2
182 * Sempron: 0x7f 1/2
183 * 0x6f 2
184 * 0x6c 2
185 * 0x7c 2
186 * Turion 64: 0x68 2
187 */
188 uint32_t u32Dummy;
189 uint32_t u32Version, u32Family, u32Model, u32Stepping, u32BaseFamily;
190 ASMCpuId(1, &u32Version, &u32Dummy, &u32Dummy, &u32Dummy);
191 u32BaseFamily = (u32Version >> 8) & 0xf;
192 u32Family = u32BaseFamily + (u32BaseFamily == 0xf ? ((u32Version >> 20) & 0x7f) : 0);
193 u32Model = ((u32Version >> 4) & 0xf);
194 u32Model = u32Model | ((u32BaseFamily == 0xf ? (u32Version >> 16) & 0x0f : 0) << 4);
195 u32Stepping = u32Version & 0xf;
196 if ( u32Family == 0xf
197 && !((u32Model == 0x68 || u32Model == 0x6b || u32Model == 0x7f) && u32Stepping >= 1)
198 && !((u32Model == 0x6f || u32Model == 0x6c || u32Model == 0x7c) && u32Stepping >= 2))
199 {
200 Log(("SVMR0InitVM: AMD cpu with erratum 170 family %x model %x stepping %x\n", u32Family, u32Model, u32Stepping));
201 pVM->hm.s.svm.fAlwaysFlushTLB = true;
202 }
203
204 /* Allocate VMCBs for all guest CPUs. */
205 for (VMCPUID i = 0; i < pVM->cCpus; i++)
206 {
207 PVMCPU pVCpu = &pVM->aCpus[i];
208
209 pVCpu->hm.s.svm.pMemObjVMCBHost = NIL_RTR0MEMOBJ;
210 pVCpu->hm.s.svm.pMemObjVMCB = NIL_RTR0MEMOBJ;
211 pVCpu->hm.s.svm.pMemObjMSRBitmap = NIL_RTR0MEMOBJ;
212
213 /* Allocate one page for the host context */
214 rc = RTR0MemObjAllocCont(&pVCpu->hm.s.svm.pMemObjVMCBHost, 1 << PAGE_SHIFT, false /* executable R0 mapping */);
215 if (RT_FAILURE(rc))
216 return rc;
217
218 pVCpu->hm.s.svm.pVMCBHost = RTR0MemObjAddress(pVCpu->hm.s.svm.pMemObjVMCBHost);
219 pVCpu->hm.s.svm.pVMCBHostPhys = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.svm.pMemObjVMCBHost, 0);
220 Assert(pVCpu->hm.s.svm.pVMCBHostPhys < _4G);
221 ASMMemZeroPage(pVCpu->hm.s.svm.pVMCBHost);
222
223 /* Allocate one page for the VM control block (VMCB). */
224 rc = RTR0MemObjAllocCont(&pVCpu->hm.s.svm.pMemObjVMCB, 1 << PAGE_SHIFT, false /* executable R0 mapping */);
225 if (RT_FAILURE(rc))
226 return rc;
227
228 pVCpu->hm.s.svm.pVMCB = RTR0MemObjAddress(pVCpu->hm.s.svm.pMemObjVMCB);
229 pVCpu->hm.s.svm.pVMCBPhys = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.svm.pMemObjVMCB, 0);
230 Assert(pVCpu->hm.s.svm.pVMCBPhys < _4G);
231 ASMMemZeroPage(pVCpu->hm.s.svm.pVMCB);
232
233 /* Allocate 8 KB for the MSR bitmap (doesn't seem to be a way to convince SVM not to use it) */
234 rc = RTR0MemObjAllocCont(&pVCpu->hm.s.svm.pMemObjMSRBitmap, 2 << PAGE_SHIFT, false /* executable R0 mapping */);
235 if (RT_FAILURE(rc))
236 return rc;
237
238 pVCpu->hm.s.svm.pMSRBitmap = RTR0MemObjAddress(pVCpu->hm.s.svm.pMemObjMSRBitmap);
239 pVCpu->hm.s.svm.pMSRBitmapPhys = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.svm.pMemObjMSRBitmap, 0);
240 /* Set all bits to intercept all MSR accesses. */
241 ASMMemFill32(pVCpu->hm.s.svm.pMSRBitmap, 2 << PAGE_SHIFT, 0xffffffff);
242 }
243
244 return VINF_SUCCESS;
245}
246
247
248/**
249 * Does Ring-0 per VM AMD-V termination.
250 *
251 * @returns VBox status code.
252 * @param pVM Pointer to the VM.
253 */
254VMMR0DECL(int) SVMR0TermVM(PVM pVM)
255{
256 for (VMCPUID i = 0; i < pVM->cCpus; i++)
257 {
258 PVMCPU pVCpu = &pVM->aCpus[i];
259
260 if (pVCpu->hm.s.svm.pMemObjVMCBHost != NIL_RTR0MEMOBJ)
261 {
262 RTR0MemObjFree(pVCpu->hm.s.svm.pMemObjVMCBHost, false);
263 pVCpu->hm.s.svm.pVMCBHost = 0;
264 pVCpu->hm.s.svm.pVMCBHostPhys = 0;
265 pVCpu->hm.s.svm.pMemObjVMCBHost = NIL_RTR0MEMOBJ;
266 }
267
268 if (pVCpu->hm.s.svm.pMemObjVMCB != NIL_RTR0MEMOBJ)
269 {
270 RTR0MemObjFree(pVCpu->hm.s.svm.pMemObjVMCB, false);
271 pVCpu->hm.s.svm.pVMCB = 0;
272 pVCpu->hm.s.svm.pVMCBPhys = 0;
273 pVCpu->hm.s.svm.pMemObjVMCB = NIL_RTR0MEMOBJ;
274 }
275 if (pVCpu->hm.s.svm.pMemObjMSRBitmap != NIL_RTR0MEMOBJ)
276 {
277 RTR0MemObjFree(pVCpu->hm.s.svm.pMemObjMSRBitmap, false);
278 pVCpu->hm.s.svm.pMSRBitmap = 0;
279 pVCpu->hm.s.svm.pMSRBitmapPhys = 0;
280 pVCpu->hm.s.svm.pMemObjMSRBitmap = NIL_RTR0MEMOBJ;
281 }
282 }
283 if (pVM->hm.s.svm.pMemObjIOBitmap != NIL_RTR0MEMOBJ)
284 {
285 RTR0MemObjFree(pVM->hm.s.svm.pMemObjIOBitmap, false);
286 pVM->hm.s.svm.pIOBitmap = 0;
287 pVM->hm.s.svm.pIOBitmapPhys = 0;
288 pVM->hm.s.svm.pMemObjIOBitmap = NIL_RTR0MEMOBJ;
289 }
290 return VINF_SUCCESS;
291}
292
293
294/**
295 * Sets up AMD-V for the specified VM.
296 *
297 * @returns VBox status code.
298 * @param pVM Pointer to the VM.
299 */
300VMMR0DECL(int) SVMR0SetupVM(PVM pVM)
301{
302 int rc = VINF_SUCCESS;
303
304 AssertReturn(pVM, VERR_INVALID_PARAMETER);
305 Assert(pVM->hm.s.svm.fSupported);
306
307 for (VMCPUID i = 0; i < pVM->cCpus; i++)
308 {
309 PVMCPU pVCpu = &pVM->aCpus[i];
310 SVM_VMCB *pVMCB = (SVM_VMCB *)pVM->aCpus[i].hm.s.svm.pVMCB;
311
312 AssertMsgReturn(pVMCB, ("Invalid pVMCB\n"), VERR_HMSVM_INVALID_PVMCB);
313
314 /*
315 * Program the control fields. Most of them never have to be changed again.
316 * CR0/4 reads must be intercepted, our shadow values are not necessarily the same as the guest's.
317 * Note: CR0 & CR4 can be safely read when guest and shadow copies are identical.
318 */
319 pVMCB->ctrl.u16InterceptRdCRx = RT_BIT(0) | RT_BIT(4);
320
321 /* CR0/4 writes must be intercepted for obvious reasons. */
322 pVMCB->ctrl.u16InterceptWrCRx = RT_BIT(0) | RT_BIT(4);
323
324 /* Intercept all DRx reads and writes by default. Changed later on. */
325 pVMCB->ctrl.u16InterceptRdDRx = 0xFFFF;
326 pVMCB->ctrl.u16InterceptWrDRx = 0xFFFF;
327
328 /* Intercept traps; only #NM is always intercepted. */
329 pVMCB->ctrl.u32InterceptException = RT_BIT(X86_XCPT_NM);
330#ifdef VBOX_ALWAYS_TRAP_PF
331 pVMCB->ctrl.u32InterceptException |= RT_BIT(X86_XCPT_PF);
332#endif
333#ifdef VBOX_STRICT
334 pVMCB->ctrl.u32InterceptException |= RT_BIT(X86_XCPT_BP)
335 | RT_BIT(X86_XCPT_DB)
336 | RT_BIT(X86_XCPT_DE)
337 | RT_BIT(X86_XCPT_UD)
338 | RT_BIT(X86_XCPT_NP)
339 | RT_BIT(X86_XCPT_SS)
340 | RT_BIT(X86_XCPT_GP)
341 | RT_BIT(X86_XCPT_MF)
342 ;
343#endif
344
345 /* Set up instruction and miscellaneous intercepts. */
346 pVMCB->ctrl.u32InterceptCtrl1 = SVM_CTRL1_INTERCEPT_INTR
347 | SVM_CTRL1_INTERCEPT_VINTR
348 | SVM_CTRL1_INTERCEPT_NMI
349 | SVM_CTRL1_INTERCEPT_SMI
350 | SVM_CTRL1_INTERCEPT_INIT
351 | SVM_CTRL1_INTERCEPT_RDPMC
352 | SVM_CTRL1_INTERCEPT_CPUID
353 | SVM_CTRL1_INTERCEPT_RSM
354 | SVM_CTRL1_INTERCEPT_HLT
355 | SVM_CTRL1_INTERCEPT_INOUT_BITMAP
356 | SVM_CTRL1_INTERCEPT_MSR_SHADOW
357 | SVM_CTRL1_INTERCEPT_INVLPGA /* AMD only */
358 | SVM_CTRL1_INTERCEPT_SHUTDOWN /* fatal */
359 | SVM_CTRL1_INTERCEPT_FERR_FREEZE; /* Legacy FPU FERR handling. */
360 ;
361 pVMCB->ctrl.u32InterceptCtrl2 = SVM_CTRL2_INTERCEPT_VMRUN /* required */
362 | SVM_CTRL2_INTERCEPT_VMMCALL
363 | SVM_CTRL2_INTERCEPT_VMLOAD
364 | SVM_CTRL2_INTERCEPT_VMSAVE
365 | SVM_CTRL2_INTERCEPT_STGI
366 | SVM_CTRL2_INTERCEPT_CLGI
367 | SVM_CTRL2_INTERCEPT_SKINIT
368 | SVM_CTRL2_INTERCEPT_WBINVD
369 | SVM_CTRL2_INTERCEPT_MONITOR
370 | SVM_CTRL2_INTERCEPT_MWAIT_UNCOND; /* don't execute mwait or else we'll idle inside the
371 guest (host thinks the cpu load is high) */
372
373 Log(("pVMCB->ctrl.u32InterceptException = %x\n", pVMCB->ctrl.u32InterceptException));
374 Log(("pVMCB->ctrl.u32InterceptCtrl1 = %x\n", pVMCB->ctrl.u32InterceptCtrl1));
375 Log(("pVMCB->ctrl.u32InterceptCtrl2 = %x\n", pVMCB->ctrl.u32InterceptCtrl2));
376
377 /* Virtualize masking of INTR interrupts. (reads/writes from/to CR8 go to the V_TPR register) */
378 pVMCB->ctrl.IntCtrl.n.u1VIrqMasking = 1;
379
380 /* Ignore the priority in the TPR; just deliver it when we tell it to. */
381 pVMCB->ctrl.IntCtrl.n.u1IgnoreTPR = 1;
382
383 /* Set IO and MSR bitmap addresses. */
384 pVMCB->ctrl.u64IOPMPhysAddr = pVM->hm.s.svm.pIOBitmapPhys;
385 pVMCB->ctrl.u64MSRPMPhysAddr = pVCpu->hm.s.svm.pMSRBitmapPhys;
386
387 /* No LBR virtualization. */
388 pVMCB->ctrl.u64LBRVirt = 0;
389
390 /* The ASID must start at 1; the host uses 0. */
391 pVMCB->ctrl.TLBCtrl.n.u32ASID = 1;
392
393 /*
394 * Setup the PAT MSR (nested paging only)
395 * The default value should be 0x0007040600070406ULL, but we want to treat all guest memory as WB,
396 * so choose type 6 for all PAT slots.
397 */
398 pVMCB->guest.u64GPAT = 0x0006060606060606ULL;
399
400 /* If nested paging is not in use, additional intercepts have to be set up. */
401 if (!pVM->hm.s.fNestedPaging)
402 {
403 /* CR3 reads/writes must be intercepted; our shadow values are different from guest's. */
404 pVMCB->ctrl.u16InterceptRdCRx |= RT_BIT(3);
405 pVMCB->ctrl.u16InterceptWrCRx |= RT_BIT(3);
406
407 /*
408 * We must also intercept:
409 * - INVLPG (must go through shadow paging)
410 * - task switches (may change CR3/EFLAGS/LDT)
411 */
412 pVMCB->ctrl.u32InterceptCtrl1 |= SVM_CTRL1_INTERCEPT_INVLPG
413 | SVM_CTRL1_INTERCEPT_TASK_SWITCH;
414
415 /* Page faults must be intercepted to implement shadow paging. */
416 pVMCB->ctrl.u32InterceptException |= RT_BIT(X86_XCPT_PF);
417 }
418
419 /*
420 * The following MSRs are saved automatically by vmload/vmsave, so we allow the guest
421 * to modify them directly.
422 */
423 hmR0SvmSetMSRPermission(pVCpu, MSR_K8_LSTAR, true, true);
424 hmR0SvmSetMSRPermission(pVCpu, MSR_K8_CSTAR, true, true);
425 hmR0SvmSetMSRPermission(pVCpu, MSR_K6_STAR, true, true);
426 hmR0SvmSetMSRPermission(pVCpu, MSR_K8_SF_MASK, true, true);
427 hmR0SvmSetMSRPermission(pVCpu, MSR_K8_FS_BASE, true, true);
428 hmR0SvmSetMSRPermission(pVCpu, MSR_K8_GS_BASE, true, true);
429 hmR0SvmSetMSRPermission(pVCpu, MSR_K8_KERNEL_GS_BASE, true, true);
430 hmR0SvmSetMSRPermission(pVCpu, MSR_IA32_SYSENTER_CS, true, true);
431 hmR0SvmSetMSRPermission(pVCpu, MSR_IA32_SYSENTER_ESP, true, true);
432 hmR0SvmSetMSRPermission(pVCpu, MSR_IA32_SYSENTER_EIP, true, true);
433 }
434
435 return rc;
436}
437
438
439/**
440 * Sets the permission bits for the specified MSR.
441 *
442 * @param pVCpu Pointer to the VMCPU.
443 * @param ulMSR MSR value.
444 * @param fRead Whether reading is allowed.
445 * @param fWrite Whether writing is allowed.
446 */
447static void hmR0SvmSetMSRPermission(PVMCPU pVCpu, unsigned ulMSR, bool fRead, bool fWrite)
448{
449 unsigned ulBit;
450 uint8_t *pMSRBitmap = (uint8_t *)pVCpu->hm.s.svm.pMSRBitmap;
451
452 if (ulMSR <= 0x00001FFF)
453 {
454 /* Pentium-compatible MSRs */
455 ulBit = ulMSR * 2;
456 }
457 else if ( ulMSR >= 0xC0000000
458 && ulMSR <= 0xC0001FFF)
459 {
460 /* AMD Sixth Generation x86 Processor MSRs and SYSCALL */
461 ulBit = (ulMSR - 0xC0000000) * 2;
462 pMSRBitmap += 0x800;
463 }
464 else if ( ulMSR >= 0xC0010000
465 && ulMSR <= 0xC0011FFF)
466 {
467 /* AMD Seventh and Eighth Generation Processor MSRs */
468 ulBit = (ulMSR - 0xC0001000) * 2;
469 pMSRBitmap += 0x1000;
470 }
471 else
472 {
473 AssertFailed();
474 return;
475 }
476 Assert(ulBit < 16 * 1024 - 1);
477 if (fRead)
478 ASMBitClear(pMSRBitmap, ulBit);
479 else
480 ASMBitSet(pMSRBitmap, ulBit);
481
482 if (fWrite)
483 ASMBitClear(pMSRBitmap, ulBit + 1);
484 else
485 ASMBitSet(pMSRBitmap, ulBit + 1);
486}
487
488
489/**
490 * Injects an event (trap or external interrupt).
491 *
492 * @param pVCpu Pointer to the VMCPU.
493 * @param pVMCB Pointer to the VMCB.
494 * @param pCtx Pointer to the guest CPU context.
495 * @param pIntInfo Pointer to the SVM interrupt info.
496 */
497DECLINLINE(void) hmR0SvmInjectEvent(PVMCPU pVCpu, SVM_VMCB *pVMCB, CPUMCTX *pCtx, SVM_EVENT *pEvent)
498{
499#ifdef VBOX_WITH_STATISTICS
500 STAM_COUNTER_INC(&pVCpu->hm.s.paStatInjectedIrqsR0[pEvent->n.u8Vector & MASK_INJECT_IRQ_STAT]);
501#endif
502
503#ifdef VBOX_STRICT
504 if (pEvent->n.u8Vector == 0xE)
505 {
506 Log(("SVM: Inject int %d at %RGv error code=%02x CR2=%RGv intInfo=%08x\n", pEvent->n.u8Vector,
507 (RTGCPTR)pCtx->rip, pEvent->n.u32ErrorCode, (RTGCPTR)pCtx->cr2, pEvent->au64[0]));
508 }
509 else if (pEvent->n.u8Vector < 0x20)
510 Log(("SVM: Inject int %d at %RGv error code=%08x\n", pEvent->n.u8Vector, (RTGCPTR)pCtx->rip, pEvent->n.u32ErrorCode));
511 else
512 {
513 Log(("INJ-EI: %x at %RGv\n", pEvent->n.u8Vector, (RTGCPTR)pCtx->rip));
514 Assert(!VMCPU_FF_ISSET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS));
515 Assert(pCtx->eflags.u32 & X86_EFL_IF);
516 }
517#endif
518
519 /* Set event injection state. */
520 pVMCB->ctrl.EventInject.au64[0] = pEvent->au64[0];
521}
522
523
524/**
525 * Checks for pending guest interrupts and injects them.
526 *
527 * @returns VBox status code.
528 * @param pVM Pointer to the VM.
529 * @param pVCpu Pointer to the VMCPU.
530 * @param pVMCB Pointer to the VMCB.
531 * @param pCtx Pointer to the guest CPU Context.
532 */
533static int hmR0SvmCheckPendingInterrupt(PVM pVM, PVMCPU pVCpu, SVM_VMCB *pVMCB, CPUMCTX *pCtx)
534{
535 int rc;
536 NOREF(pVM);
537
538 /*
539 * Dispatch any pending interrupts (injected before, but a VM-exit occurred prematurely).
540 */
541 if (pVCpu->hm.s.Event.fPending)
542 {
543 SVM_EVENT Event;
544
545 Log(("Reinjecting event %08x %08x at %RGv\n", pVCpu->hm.s.Event.intInfo, pVCpu->hm.s.Event.errCode,
546 (RTGCPTR)pCtx->rip));
547 STAM_COUNTER_INC(&pVCpu->hm.s.StatIntReinject);
548 Event.au64[0] = pVCpu->hm.s.Event.intInfo;
549 hmR0SvmInjectEvent(pVCpu, pVMCB, pCtx, &Event);
550
551 pVCpu->hm.s.Event.fPending = false;
552 return VINF_SUCCESS;
553 }
554
555 /*
556 * If an active trap is already pending, we must forward it first!
557 */
558 if (!TRPMHasTrap(pVCpu))
559 {
560 if (VMCPU_FF_TESTANDCLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI))
561 {
562 SVM_EVENT Event;
563
564 Log(("CPU%d: injecting #NMI\n", pVCpu->idCpu));
565 Event.n.u8Vector = X86_XCPT_NMI;
566 Event.n.u1Valid = 1;
567 Event.n.u32ErrorCode = 0;
568 Event.n.u3Type = SVM_EVENT_NMI;
569
570 hmR0SvmInjectEvent(pVCpu, pVMCB, pCtx, &Event);
571 return VINF_SUCCESS;
572 }
573
574 /** @todo SMI interrupts. */
575
576 /*
577 * When external interrupts are pending, we should exit the VM when IF is set.
578 */
579 if (VMCPU_FF_ISPENDING(pVCpu, (VMCPU_FF_INTERRUPT_APIC|VMCPU_FF_INTERRUPT_PIC)))
580 {
581 if ( !(pCtx->eflags.u32 & X86_EFL_IF)
582 || VMCPU_FF_ISSET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
583 {
584 if (!pVMCB->ctrl.IntCtrl.n.u1VIrqValid)
585 {
586 if (!VMCPU_FF_ISSET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
587 LogFlow(("Enable irq window exit!\n"));
588 else
589 {
590 Log(("Pending interrupt blocked at %RGv by VM_FF_INHIBIT_INTERRUPTS -> irq window exit\n",
591 (RTGCPTR)pCtx->rip));
592 }
593
594 /** @todo Use virtual interrupt method to inject a pending IRQ; dispatched as
595 * soon as guest.IF is set. */
596 pVMCB->ctrl.u32InterceptCtrl1 |= SVM_CTRL1_INTERCEPT_VINTR;
597 pVMCB->ctrl.IntCtrl.n.u1VIrqValid = 1;
598 pVMCB->ctrl.IntCtrl.n.u8VIrqVector = 0; /* don't care */
599 }
600 }
601 else
602 {
603 uint8_t u8Interrupt;
604
605 rc = PDMGetInterrupt(pVCpu, &u8Interrupt);
606 Log(("Dispatch interrupt: u8Interrupt=%x (%d) rc=%Rrc\n", u8Interrupt, u8Interrupt, rc));
607 if (RT_SUCCESS(rc))
608 {
609 rc = TRPMAssertTrap(pVCpu, u8Interrupt, TRPM_HARDWARE_INT);
610 AssertRC(rc);
611 }
612 else
613 {
614 /* Can only happen in rare cases where a pending interrupt is cleared behind our back */
615 Assert(!VMCPU_FF_ISPENDING(pVCpu, (VMCPU_FF_INTERRUPT_APIC|VMCPU_FF_INTERRUPT_PIC)));
616 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchGuestIrq);
617 /* Just continue */
618 }
619 }
620 }
621 }
622
623#ifdef VBOX_STRICT
624 if (TRPMHasTrap(pVCpu))
625 {
626 uint8_t u8Vector;
627 rc = TRPMQueryTrapAll(pVCpu, &u8Vector, 0, 0, 0);
628 AssertRC(rc);
629 }
630#endif
631
632 if ( (pCtx->eflags.u32 & X86_EFL_IF)
633 && (!VMCPU_FF_ISSET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
634 && TRPMHasTrap(pVCpu)
635 )
636 {
637 uint8_t u8Vector;
638 TRPMEVENT enmType;
639 SVM_EVENT Event;
640 RTGCUINT u32ErrorCode;
641
642 Event.au64[0] = 0;
643
644 /* If a new event is pending, then dispatch it now. */
645 rc = TRPMQueryTrapAll(pVCpu, &u8Vector, &enmType, &u32ErrorCode, 0);
646 AssertRC(rc);
647 Assert(pCtx->eflags.Bits.u1IF == 1 || enmType == TRPM_TRAP);
648 Assert(enmType != TRPM_SOFTWARE_INT);
649
650 /* Clear the pending trap. */
651 rc = TRPMResetTrap(pVCpu);
652 AssertRC(rc);
653
654 Event.n.u8Vector = u8Vector;
655 Event.n.u1Valid = 1;
656 Event.n.u32ErrorCode = u32ErrorCode;
657
658 if (enmType == TRPM_TRAP)
659 {
660 switch (u8Vector)
661 {
662 case X86_XCPT_DF:
663 case X86_XCPT_TS:
664 case X86_XCPT_NP:
665 case X86_XCPT_SS:
666 case X86_XCPT_GP:
667 case X86_XCPT_PF:
668 case X86_XCPT_AC:
669 /* Valid error codes. */
670 Event.n.u1ErrorCodeValid = 1;
671 break;
672 default:
673 break;
674 }
675 if (u8Vector == X86_XCPT_NMI)
676 Event.n.u3Type = SVM_EVENT_NMI;
677 else
678 Event.n.u3Type = SVM_EVENT_EXCEPTION;
679 }
680 else
681 Event.n.u3Type = SVM_EVENT_EXTERNAL_IRQ;
682
683 STAM_COUNTER_INC(&pVCpu->hm.s.StatIntInject);
684 hmR0SvmInjectEvent(pVCpu, pVMCB, pCtx, &Event);
685 } /* if (interrupts can be dispatched) */
686
687 return VINF_SUCCESS;
688}
689
690
691/**
692 * Save the host state.
693 *
694 * @returns VBox status code.
695 * @param pVM Pointer to the VM.
696 * @param pVCpu Pointer to the VMCPU.
697 */
698VMMR0DECL(int) SVMR0SaveHostState(PVM pVM, PVMCPU pVCpu)
699{
700 NOREF(pVM);
701 NOREF(pVCpu);
702 /* Nothing to do here. */
703 return VINF_SUCCESS;
704}
705
706
707/**
708 * Loads the guest state.
709 *
710 * NOTE: Don't do anything here that can cause a jump back to ring-3!!!
711 *
712 * @returns VBox status code.
713 * @param pVM Pointer to the VM.
714 * @param pVCpu Pointer to the VMCPU.
715 * @param pCtx Pointer to the guest CPU context.
716 */
717VMMR0DECL(int) SVMR0LoadGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
718{
719 RTGCUINTPTR val;
720 SVM_VMCB *pVMCB;
721
722 if (pVM == NULL)
723 return VERR_INVALID_PARAMETER;
724
725 /* Setup AMD SVM. */
726 Assert(pVM->hm.s.svm.fSupported);
727
728 pVMCB = (SVM_VMCB *)pVCpu->hm.s.svm.pVMCB;
729 AssertMsgReturn(pVMCB, ("Invalid pVMCB\n"), VERR_HMSVM_INVALID_PVMCB);
730
731 /* Guest CPU context: ES, CS, SS, DS, FS, GS. */
732 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_SEGMENT_REGS)
733 {
734 SVM_WRITE_SELREG(CS, cs);
735 SVM_WRITE_SELREG(SS, ss);
736 SVM_WRITE_SELREG(DS, ds);
737 SVM_WRITE_SELREG(ES, es);
738 SVM_WRITE_SELREG(FS, fs);
739 SVM_WRITE_SELREG(GS, gs);
740 }
741
742 /* Guest CPU context: LDTR. */
743 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_LDTR)
744 {
745 SVM_WRITE_SELREG(LDTR, ldtr);
746 }
747
748 /* Guest CPU context: TR. */
749 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_TR)
750 {
751 SVM_WRITE_SELREG(TR, tr);
752 }
753
754 /* Guest CPU context: GDTR. */
755 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_GDTR)
756 {
757 pVMCB->guest.GDTR.u32Limit = pCtx->gdtr.cbGdt;
758 pVMCB->guest.GDTR.u64Base = pCtx->gdtr.pGdt;
759 }
760
761 /* Guest CPU context: IDTR. */
762 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_IDTR)
763 {
764 pVMCB->guest.IDTR.u32Limit = pCtx->idtr.cbIdt;
765 pVMCB->guest.IDTR.u64Base = pCtx->idtr.pIdt;
766 }
767
768 /*
769 * Sysenter MSRs (unconditional)
770 */
771 pVMCB->guest.u64SysEnterCS = pCtx->SysEnter.cs;
772 pVMCB->guest.u64SysEnterEIP = pCtx->SysEnter.eip;
773 pVMCB->guest.u64SysEnterESP = pCtx->SysEnter.esp;
774
775 /* Control registers */
776 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_CR0)
777 {
778 val = pCtx->cr0;
779 if (!CPUMIsGuestFPUStateActive(pVCpu))
780 {
781 /* Always use #NM exceptions to load the FPU/XMM state on demand. */
782 val |= X86_CR0_TS | X86_CR0_ET | X86_CR0_NE | X86_CR0_MP;
783 }
784 else
785 {
786 /** @todo check if we support the old style mess correctly. */
787 if (!(val & X86_CR0_NE))
788 {
789 Log(("Forcing X86_CR0_NE!!!\n"));
790
791 /* Also catch floating point exceptions as we need to report them to the guest in a different way. */
792 if (!pVCpu->hm.s.fFPUOldStyleOverride)
793 {
794 pVMCB->ctrl.u32InterceptException |= RT_BIT(X86_XCPT_MF);
795 pVCpu->hm.s.fFPUOldStyleOverride = true;
796 }
797 }
798 val |= X86_CR0_NE; /* always turn on the native mechanism to report FPU errors (old style uses interrupts) */
799 }
800 /* Always enable caching. */
801 val &= ~(X86_CR0_CD|X86_CR0_NW);
802
803 /*
804 * Note: WP is not relevant in nested paging mode as we catch accesses on the (guest) physical level.
805 * Note: In nested paging mode, the guest is allowed to run with paging disabled; the guest-physical to host-physical
806 * translation will remain active.
807 */
808 if (!pVM->hm.s.fNestedPaging)
809 {
810 val |= X86_CR0_PG; /* Paging is always enabled; even when the guest is running in real mode or PE without paging. */
811 val |= X86_CR0_WP; /* Must set this as we rely on protecting various pages and supervisor writes must be caught. */
812 }
813 pVMCB->guest.u64CR0 = val;
814 }
815 /* CR2 as well */
816 pVMCB->guest.u64CR2 = pCtx->cr2;
817
818 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_CR3)
819 {
820 /* Save our shadow CR3 register. */
821 if (pVM->hm.s.fNestedPaging)
822 {
823 PGMMODE enmShwPagingMode;
824
825#if HC_ARCH_BITS == 32
826 if (CPUMIsGuestInLongModeEx(pCtx))
827 enmShwPagingMode = PGMMODE_AMD64_NX;
828 else
829#endif
830 enmShwPagingMode = PGMGetHostMode(pVM);
831
832 pVMCB->ctrl.u64NestedPagingCR3 = PGMGetNestedCR3(pVCpu, enmShwPagingMode);
833 Assert(pVMCB->ctrl.u64NestedPagingCR3);
834 pVMCB->guest.u64CR3 = pCtx->cr3;
835 }
836 else
837 {
838 pVMCB->guest.u64CR3 = PGMGetHyperCR3(pVCpu);
839 Assert(pVMCB->guest.u64CR3 || VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL));
840 }
841 }
842
843 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_CR4)
844 {
845 val = pCtx->cr4;
846 if (!pVM->hm.s.fNestedPaging)
847 {
848 switch (pVCpu->hm.s.enmShadowMode)
849 {
850 case PGMMODE_REAL:
851 case PGMMODE_PROTECTED: /* Protected mode, no paging. */
852 AssertFailed();
853 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
854
855 case PGMMODE_32_BIT: /* 32-bit paging. */
856 val &= ~X86_CR4_PAE;
857 break;
858
859 case PGMMODE_PAE: /* PAE paging. */
860 case PGMMODE_PAE_NX: /* PAE paging with NX enabled. */
861 /** Must use PAE paging as we could use physical memory > 4 GB */
862 val |= X86_CR4_PAE;
863 break;
864
865 case PGMMODE_AMD64: /* 64-bit AMD paging (long mode). */
866 case PGMMODE_AMD64_NX: /* 64-bit AMD paging (long mode) with NX enabled. */
867#ifdef VBOX_ENABLE_64_BITS_GUESTS
868 break;
869#else
870 AssertFailed();
871 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
872#endif
873
874 default: /* shut up gcc */
875 AssertFailed();
876 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
877 }
878 }
879 pVMCB->guest.u64CR4 = val;
880 }
881
882 /* Debug registers. */
883 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_DEBUG)
884 {
885 pCtx->dr[6] |= X86_DR6_INIT_VAL; /* set all reserved bits to 1. */
886 pCtx->dr[6] &= ~RT_BIT(12); /* must be zero. */
887
888 pCtx->dr[7] &= 0xffffffff; /* upper 32 bits reserved */
889 pCtx->dr[7] &= ~(RT_BIT(11) | RT_BIT(12) | RT_BIT(14) | RT_BIT(15)); /* must be zero */
890 pCtx->dr[7] |= 0x400; /* must be one */
891
892 pVMCB->guest.u64DR7 = pCtx->dr[7];
893 pVMCB->guest.u64DR6 = pCtx->dr[6];
894
895#ifdef DEBUG
896 /* Sync the hypervisor debug state now if any breakpoint is armed. */
897 if ( CPUMGetHyperDR7(pVCpu) & (X86_DR7_ENABLED_MASK|X86_DR7_GD)
898 && !CPUMIsHyperDebugStateActive(pVCpu)
899 && !DBGFIsStepping(pVCpu))
900 {
901 /* Save the host and load the hypervisor debug state. */
902 int rc = CPUMR0LoadHyperDebugState(pVM, pVCpu, pCtx, false /* exclude DR6 */);
903 AssertRC(rc);
904
905 /* DRx intercepts remain enabled. */
906
907 /* Override dr6 & dr7 with the hypervisor values. */
908 pVMCB->guest.u64DR7 = CPUMGetHyperDR7(pVCpu);
909 pVMCB->guest.u64DR6 = CPUMGetHyperDR6(pVCpu);
910 }
911 else
912#endif
913 /* Sync the debug state now if any breakpoint is armed. */
914 if ( (pCtx->dr[7] & (X86_DR7_ENABLED_MASK|X86_DR7_GD))
915 && !CPUMIsGuestDebugStateActive(pVCpu)
916 && !DBGFIsStepping(pVCpu))
917 {
918 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
919
920 /* Disable drx move intercepts. */
921 pVMCB->ctrl.u16InterceptRdDRx = 0;
922 pVMCB->ctrl.u16InterceptWrDRx = 0;
923
924 /* Save the host and load the guest debug state. */
925 int rc = CPUMR0LoadGuestDebugState(pVM, pVCpu, pCtx, false /* exclude DR6 */);
926 AssertRC(rc);
927 }
928 }
929
930 /* EIP, ESP and EFLAGS */
931 pVMCB->guest.u64RIP = pCtx->rip;
932 pVMCB->guest.u64RSP = pCtx->rsp;
933 pVMCB->guest.u64RFlags = pCtx->eflags.u32;
934
935 /* Set CPL */
936 pVMCB->guest.u8CPL = pCtx->ss.Attr.n.u2Dpl;
937
938 /* RAX/EAX too, as VMRUN uses RAX as an implicit parameter. */
939 pVMCB->guest.u64RAX = pCtx->rax;
940
941 /* vmrun will fail without MSR_K6_EFER_SVME. */
942 pVMCB->guest.u64EFER = pCtx->msrEFER | MSR_K6_EFER_SVME;
943
944 /* 64 bits guest mode? */
945 if (CPUMIsGuestInLongModeEx(pCtx))
946 {
947#if !defined(VBOX_ENABLE_64_BITS_GUESTS)
948 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
949#elif HC_ARCH_BITS == 32 && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
950 pVCpu->hm.s.svm.pfnVMRun = SVMR0VMSwitcherRun64;
951#else
952# ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
953 if (!pVM->hm.s.fAllow64BitGuests)
954 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
955# endif
956 pVCpu->hm.s.svm.pfnVMRun = SVMR0VMRun64;
957#endif
958 /* Unconditionally update these as wrmsr might have changed them. (HM_CHANGED_GUEST_SEGMENT_REGS will not be set) */
959 pVMCB->guest.FS.u64Base = pCtx->fs.u64Base;
960 pVMCB->guest.GS.u64Base = pCtx->gs.u64Base;
961 }
962 else
963 {
964 /* Filter out the MSR_K6_LME bit or else AMD-V expects amd64 shadow paging. */
965 pVMCB->guest.u64EFER &= ~MSR_K6_EFER_LME;
966
967 pVCpu->hm.s.svm.pfnVMRun = SVMR0VMRun;
968 }
969
970 /* TSC offset. */
971 if (TMCpuTickCanUseRealTSC(pVCpu, &pVMCB->ctrl.u64TSCOffset))
972 {
973 uint64_t u64CurTSC = ASMReadTSC();
974 if (u64CurTSC + pVMCB->ctrl.u64TSCOffset >= TMCpuTickGetLastSeen(pVCpu))
975 {
976 pVMCB->ctrl.u32InterceptCtrl1 &= ~SVM_CTRL1_INTERCEPT_RDTSC;
977 pVMCB->ctrl.u32InterceptCtrl2 &= ~SVM_CTRL2_INTERCEPT_RDTSCP;
978 STAM_COUNTER_INC(&pVCpu->hm.s.StatTSCOffset);
979 }
980 else
981 {
982 /* Fall back to rdtsc emulation as we would otherwise pass decreasing tsc values to the guest. */
983 LogFlow(("TSC %RX64 offset %RX64 time=%RX64 last=%RX64 (diff=%RX64, virt_tsc=%RX64)\n", u64CurTSC,
984 pVMCB->ctrl.u64TSCOffset, u64CurTSC + pVMCB->ctrl.u64TSCOffset, TMCpuTickGetLastSeen(pVCpu),
985 TMCpuTickGetLastSeen(pVCpu) - u64CurTSC - pVMCB->ctrl.u64TSCOffset, TMCpuTickGet(pVCpu)));
986 pVMCB->ctrl.u32InterceptCtrl1 |= SVM_CTRL1_INTERCEPT_RDTSC;
987 pVMCB->ctrl.u32InterceptCtrl2 |= SVM_CTRL2_INTERCEPT_RDTSCP;
988 STAM_COUNTER_INC(&pVCpu->hm.s.StatTSCInterceptOverFlow);
989 }
990 }
991 else
992 {
993 pVMCB->ctrl.u32InterceptCtrl1 |= SVM_CTRL1_INTERCEPT_RDTSC;
994 pVMCB->ctrl.u32InterceptCtrl2 |= SVM_CTRL2_INTERCEPT_RDTSCP;
995 STAM_COUNTER_INC(&pVCpu->hm.s.StatTSCIntercept);
996 }
997
998 /* Sync the various MSRs for 64-bit mode. */
999 pVMCB->guest.u64STAR = pCtx->msrSTAR; /* legacy syscall eip, cs & ss */
1000 pVMCB->guest.u64LSTAR = pCtx->msrLSTAR; /* 64-bit mode syscall rip */
1001 pVMCB->guest.u64CSTAR = pCtx->msrCSTAR; /* compatibility mode syscall rip */
1002 pVMCB->guest.u64SFMASK = pCtx->msrSFMASK; /* syscall flag mask */
1003 pVMCB->guest.u64KernelGSBase = pCtx->msrKERNELGSBASE; /* SWAPGS exchange value */
1004
1005#ifdef DEBUG
1006 /* Intercept X86_XCPT_DB if stepping is enabled */
1007 if ( DBGFIsStepping(pVCpu)
1008 || CPUMIsHyperDebugStateActive(pVCpu))
1009 pVMCB->ctrl.u32InterceptException |= RT_BIT(X86_XCPT_DB);
1010 else
1011 pVMCB->ctrl.u32InterceptException &= ~RT_BIT(X86_XCPT_DB);
1012#endif
1013
1014 /* Done. */
1015 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_ALL_GUEST;
1016
1017 return VINF_SUCCESS;
1018}
1019
1020
1021/**
1022 * Setup TLB for ASID.
1023 *
1024 * @param pVM Pointer to the VM.
1025 * @param pVCpu Pointer to the VMCPU.
1026 */
1027static void hmR0SvmSetupTLB(PVM pVM, PVMCPU pVCpu)
1028{
1029 PHMGLOBLCPUINFO pCpu;
1030
1031 AssertPtr(pVM);
1032 AssertPtr(pVCpu);
1033
1034 SVM_VMCB *pVMCB = (SVM_VMCB *)pVCpu->hm.s.svm.pVMCB;
1035 pCpu = HMR0GetCurrentCpu();
1036
1037 /*
1038 * Force a TLB flush for the first world switch if the current CPU differs from the one we ran on last.
1039 * This can happen both for start & resume due to long jumps back to ring-3.
1040 * If the TLB flush count changed, another VM (VCPU rather) has hit the ASID limit while flushing the TLB,
1041 * so we cannot reuse the ASIDs without flushing.
1042 */
1043 bool fNewASID = false;
1044 if ( pVCpu->hm.s.idLastCpu != pCpu->idCpu
1045 || pVCpu->hm.s.cTLBFlushes != pCpu->cTLBFlushes)
1046 {
1047 pVCpu->hm.s.fForceTLBFlush = true;
1048 fNewASID = true;
1049 }
1050
1051 /*
1052 * Set TLB flush state as checked until we return from the world switch.
1053 */
1054 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true);
1055
1056 /*
1057 * Check for TLB shootdown flushes.
1058 */
1059 if (VMCPU_FF_TESTANDCLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
1060 pVCpu->hm.s.fForceTLBFlush = true;
1061
1062 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
1063 pVMCB->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_NOTHING;
1064
1065 if (RT_UNLIKELY(pVM->hm.s.svm.fAlwaysFlushTLB))
1066 {
1067 /*
1068 * This is the AMD erratum 170. We need to flush the entire TLB for each world switch. Sad.
1069 */
1070 pCpu->uCurrentASID = 1;
1071 pVCpu->hm.s.uCurrentASID = 1;
1072 pVCpu->hm.s.cTLBFlushes = pCpu->cTLBFlushes;
1073 pVMCB->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
1074 }
1075 else if (pVCpu->hm.s.fForceTLBFlush)
1076 {
1077 if (fNewASID)
1078 {
1079 ++pCpu->uCurrentASID;
1080 bool fHitASIDLimit = false;
1081 if (pCpu->uCurrentASID >= pVM->hm.s.uMaxASID)
1082 {
1083 pCpu->uCurrentASID = 1; /* start at 1; host uses 0 */
1084 pCpu->cTLBFlushes++;
1085 fHitASIDLimit = true;
1086
1087 if (pVM->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID)
1088 {
1089 pVMCB->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_SINGLE_CONTEXT;
1090 pCpu->fFlushASIDBeforeUse = true;
1091 }
1092 else
1093 {
1094 pVMCB->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
1095 pCpu->fFlushASIDBeforeUse = false;
1096 }
1097 }
1098
1099 if ( !fHitASIDLimit
1100 && pCpu->fFlushASIDBeforeUse)
1101 {
1102 if (pVM->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID)
1103 pVMCB->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_SINGLE_CONTEXT;
1104 else
1105 {
1106 pVMCB->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
1107 pCpu->fFlushASIDBeforeUse = false;
1108 }
1109 }
1110
1111 pVCpu->hm.s.uCurrentASID = pCpu->uCurrentASID;
1112 pVCpu->hm.s.cTLBFlushes = pCpu->cTLBFlushes;
1113 }
1114 else
1115 {
1116 if (pVM->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID)
1117 pVMCB->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_SINGLE_CONTEXT;
1118 else
1119 pVMCB->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
1120 }
1121
1122 pVCpu->hm.s.fForceTLBFlush = false;
1123 }
1124 else
1125 {
1126 /** @todo We never set VMCPU_FF_TLB_SHOOTDOWN anywhere so this path should
1127 * not be executed. See hmQueueInvlPage() where it is commented
1128 * out. Support individual entry flushing someday. */
1129 if (VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_TLB_SHOOTDOWN))
1130 {
1131 /* Deal with pending TLB shootdown actions which were queued when we were not executing code. */
1132 STAM_COUNTER_INC(&pVCpu->hm.s.StatTlbShootdown);
1133 for (unsigned i = 0; i < pVCpu->hm.s.TlbShootdown.cPages; i++)
1134 SVMR0InvlpgA(pVCpu->hm.s.TlbShootdown.aPages[i], pVMCB->ctrl.TLBCtrl.n.u32ASID);
1135 }
1136 }
1137
1138 pVCpu->hm.s.TlbShootdown.cPages = 0;
1139 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_SHOOTDOWN);
1140
1141 /* Update VMCB with the ASID. */
1142 pVMCB->ctrl.TLBCtrl.n.u32ASID = pVCpu->hm.s.uCurrentASID;
1143
1144 AssertMsg(pVCpu->hm.s.cTLBFlushes == pCpu->cTLBFlushes,
1145 ("Flush count mismatch for cpu %d (%x vs %x)\n", pCpu->idCpu, pVCpu->hm.s.cTLBFlushes, pCpu->cTLBFlushes));
1146 AssertMsg(pCpu->uCurrentASID >= 1 && pCpu->uCurrentASID < pVM->hm.s.uMaxASID,
1147 ("cpu%d uCurrentASID = %x\n", pCpu->idCpu, pCpu->uCurrentASID));
1148 AssertMsg(pVCpu->hm.s.uCurrentASID >= 1 && pVCpu->hm.s.uCurrentASID < pVM->hm.s.uMaxASID,
1149 ("cpu%d VM uCurrentASID = %x\n", pCpu->idCpu, pVCpu->hm.s.uCurrentASID));
1150
1151#ifdef VBOX_WITH_STATISTICS
1152 if (pVMCB->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_NOTHING)
1153 STAM_COUNTER_INC(&pVCpu->hm.s.StatNoFlushTLBWorldSwitch);
1154 else if ( pVMCB->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT
1155 || pVMCB->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT_RETAIN_GLOBALS)
1156 {
1157 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushASID);
1158 }
1159 else
1160 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTLBWorldSwitch);
1161#endif
1162}
1163
1164
1165/**
1166 * Runs guest code in an AMD-V VM.
1167 *
1168 * @returns VBox status code.
1169 * @param pVM Pointer to the VM.
1170 * @param pVCpu Pointer to the VMCPU.
1171 * @param pCtx Pointer to the guest CPU context.
1172 */
1173VMMR0DECL(int) SVMR0RunGuestCode(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
1174{
1175 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
1176 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExit1);
1177 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExit2);
1178
1179 VBOXSTRICTRC rc = VINF_SUCCESS;
1180 int rc2;
1181 uint64_t exitCode = (uint64_t)SVM_EXIT_INVALID;
1182 SVM_VMCB *pVMCB = NULL;
1183 bool fSyncTPR = false;
1184 unsigned cResume = 0;
1185 uint8_t u8LastTPR = 0; /* Initialized for potentially stupid compilers. */
1186 uint32_t u32HostExtFeatures = 0;
1187 PHMGLOBLCPUINFO pCpu = 0;
1188 RTCCUINTREG uOldEFlags = ~(RTCCUINTREG)0;
1189#ifdef VBOX_STRICT
1190 RTCPUID idCpuCheck;
1191#endif
1192#ifdef VBOX_HIGH_RES_TIMERS_HACK_IN_RING0
1193 uint64_t u64LastTime = RTTimeMilliTS();
1194#endif
1195
1196 pVMCB = (SVM_VMCB *)pVCpu->hm.s.svm.pVMCB;
1197 AssertMsgReturn(pVMCB, ("Invalid pVMCB\n"), VERR_HMSVM_INVALID_PVMCB);
1198
1199 /*
1200 * We can jump to this point to resume execution after determining that a VM-exit is innocent.
1201 */
1202ResumeExecution:
1203 if (!STAM_PROFILE_ADV_IS_RUNNING(&pVCpu->hm.s.StatEntry))
1204 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatExit2, &pVCpu->hm.s.StatEntry, x);
1205 Assert(!HMR0SuspendPending());
1206
1207 /*
1208 * Safety precaution; looping for too long here can have a very bad effect on the host.
1209 */
1210 if (RT_UNLIKELY(++cResume > pVM->hm.s.cMaxResumeLoops))
1211 {
1212 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMaxResume);
1213 rc = VINF_EM_RAW_INTERRUPT;
1214 goto end;
1215 }
1216
1217 /*
1218 * Check for IRQ inhibition due to instruction fusing (sti, mov ss).
1219 */
1220 if (VMCPU_FF_ISSET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
1221 {
1222 Log(("VM_FF_INHIBIT_INTERRUPTS at %RGv successor %RGv\n", (RTGCPTR)pCtx->rip, EMGetInhibitInterruptsPC(pVCpu)));
1223 if (pCtx->rip != EMGetInhibitInterruptsPC(pVCpu))
1224 {
1225 /*
1226 * Note: we intentionally don't clear VM_FF_INHIBIT_INTERRUPTS here.
1227 * Before we are able to execute this instruction in raw mode (iret to guest code) an external interrupt might
1228 * force a world switch again. Possibly allowing a guest interrupt to be dispatched in the process. This could
1229 * break the guest. Sounds very unlikely, but such timing sensitive problems are not as rare as you might think.
1230 */
1231 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
1232 /* Irq inhibition is no longer active; clear the corresponding SVM state. */
1233 pVMCB->ctrl.u64IntShadow = 0;
1234 }
1235 }
1236 else
1237 {
1238 /* Irq inhibition is no longer active; clear the corresponding SVM state. */
1239 pVMCB->ctrl.u64IntShadow = 0;
1240 }
1241
1242#ifdef VBOX_HIGH_RES_TIMERS_HACK_IN_RING0
1243 if (RT_UNLIKELY((cResume & 0xf) == 0))
1244 {
1245 uint64_t u64CurTime = RTTimeMilliTS();
1246
1247 if (RT_UNLIKELY(u64CurTime > u64LastTime))
1248 {
1249 u64LastTime = u64CurTime;
1250 TMTimerPollVoid(pVM, pVCpu);
1251 }
1252 }
1253#endif
1254
1255 /*
1256 * Check for pending actions that force us to go back to ring-3.
1257 */
1258 if ( VM_FF_ISPENDING(pVM, VM_FF_HM_TO_R3_MASK | VM_FF_REQUEST | VM_FF_PGM_POOL_FLUSH_PENDING | VM_FF_PDM_DMA)
1259 || VMCPU_FF_ISPENDING(pVCpu,
1260 VMCPU_FF_HM_TO_R3_MASK
1261 | VMCPU_FF_PGM_SYNC_CR3
1262 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL
1263 | VMCPU_FF_REQUEST))
1264 {
1265 /* Check if a sync operation is pending. */
1266 if (VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL))
1267 {
1268 rc = PGMSyncCR3(pVCpu, pCtx->cr0, pCtx->cr3, pCtx->cr4, VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
1269 AssertRC(VBOXSTRICTRC_VAL(rc));
1270 if (rc != VINF_SUCCESS)
1271 {
1272 Log(("Pending pool sync is forcing us back to ring 3; rc=%d\n", VBOXSTRICTRC_VAL(rc)));
1273 goto end;
1274 }
1275 }
1276
1277#ifdef DEBUG
1278 /* Intercept X86_XCPT_DB if stepping is enabled */
1279 if (!DBGFIsStepping(pVCpu))
1280#endif
1281 {
1282 if ( VM_FF_ISPENDING(pVM, VM_FF_HM_TO_R3_MASK)
1283 || VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
1284 {
1285 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchToR3);
1286 rc = RT_UNLIKELY(VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY)) ? VINF_EM_NO_MEMORY : VINF_EM_RAW_TO_R3;
1287 goto end;
1288 }
1289 }
1290
1291 /* Pending request packets might contain actions that need immediate attention, such as pending hardware interrupts. */
1292 if ( VM_FF_ISPENDING(pVM, VM_FF_REQUEST)
1293 || VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_REQUEST))
1294 {
1295 rc = VINF_EM_PENDING_REQUEST;
1296 goto end;
1297 }
1298
1299 /* Check if a pgm pool flush is in progress. */
1300 if (VM_FF_ISPENDING(pVM, VM_FF_PGM_POOL_FLUSH_PENDING))
1301 {
1302 rc = VINF_PGM_POOL_FLUSH_PENDING;
1303 goto end;
1304 }
1305
1306 /* Check if DMA work is pending (2nd+ run). */
1307 if (VM_FF_ISPENDING(pVM, VM_FF_PDM_DMA) && cResume > 1)
1308 {
1309 rc = VINF_EM_RAW_TO_R3;
1310 goto end;
1311 }
1312 }
1313
1314#ifdef VBOX_WITH_VMMR0_DISABLE_PREEMPTION
1315 /*
1316 * Exit to ring-3 preemption/work is pending.
1317 *
1318 * Interrupts are disabled before the call to make sure we don't miss any interrupt
1319 * that would flag preemption (IPI, timer tick, ++). (Would've been nice to do this
1320 * further down, but hmR0SvmCheckPendingInterrupt makes that impossible.)
1321 *
1322 * Note! Interrupts must be disabled done *before* we check for TLB flushes; TLB
1323 * shootdowns rely on this.
1324 */
1325 uOldEFlags = ASMIntDisableFlags();
1326 if (RTThreadPreemptIsPending(NIL_RTTHREAD))
1327 {
1328 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPreemptPending);
1329 rc = VINF_EM_RAW_INTERRUPT;
1330 goto end;
1331 }
1332 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC);
1333#endif
1334
1335 /*
1336 * When external interrupts are pending, we should exit the VM when IF is set.
1337 * Note: *After* VM_FF_INHIBIT_INTERRUPTS check!!
1338 */
1339 rc = hmR0SvmCheckPendingInterrupt(pVM, pVCpu, pVMCB, pCtx);
1340 if (RT_FAILURE(rc))
1341 goto end;
1342
1343 /*
1344 * TPR caching using CR8 is only available in 64-bit mode or with 32-bit guests when X86_CPUID_AMD_FEATURE_ECX_CR8L is
1345 * supported.
1346 * Note: we can't do this in LoddGuestState as PDMApicGetTPR can jump back to ring 3 (lock)! (no longer true)
1347 */
1348 /** @todo query and update the TPR only when it could have been changed (mmio access)
1349 */
1350 if (pVM->hm.s.fHasIoApic)
1351 {
1352 /* TPR caching in CR8 */
1353 bool fPending;
1354 rc2 = PDMApicGetTPR(pVCpu, &u8LastTPR, &fPending);
1355 AssertRC(rc2);
1356
1357 if (pVM->hm.s.fTPRPatchingActive)
1358 {
1359 /* Our patch code uses LSTAR for TPR caching. */
1360 pCtx->msrLSTAR = u8LastTPR;
1361
1362 if (fPending)
1363 {
1364 /* A TPR change could activate a pending interrupt, so catch lstar writes. */
1365 hmR0SvmSetMSRPermission(pVCpu, MSR_K8_LSTAR, true, false);
1366 }
1367 else
1368 {
1369 /*
1370 * No interrupts are pending, so we don't need to be explicitely notified.
1371 * There are enough world switches for detecting pending interrupts.
1372 */
1373 hmR0SvmSetMSRPermission(pVCpu, MSR_K8_LSTAR, true, true);
1374 }
1375 }
1376 else
1377 {
1378 /* cr8 bits 3-0 correspond to bits 7-4 of the task priority mmio register. */
1379 pVMCB->ctrl.IntCtrl.n.u8VTPR = (u8LastTPR >> 4);
1380
1381 if (fPending)
1382 {
1383 /* A TPR change could activate a pending interrupt, so catch cr8 writes. */
1384 pVMCB->ctrl.u16InterceptWrCRx |= RT_BIT(8);
1385 }
1386 else
1387 {
1388 /*
1389 * No interrupts are pending, so we don't need to be explicitly notified.
1390 * There are enough world switches for detecting pending interrupts.
1391 */
1392 pVMCB->ctrl.u16InterceptWrCRx &= ~RT_BIT(8);
1393 }
1394 }
1395 fSyncTPR = !fPending;
1396 }
1397
1398 /* All done! Let's start VM execution. */
1399
1400 /* Enable nested paging if necessary (disabled each time after #VMEXIT). */
1401 pVMCB->ctrl.NestedPaging.n.u1NestedPaging = pVM->hm.s.fNestedPaging;
1402
1403#ifdef LOG_ENABLED
1404 pCpu = HMR0GetCurrentCpu();
1405 if (pVCpu->hm.s.idLastCpu != pCpu->idCpu)
1406 LogFlow(("Force TLB flush due to rescheduling to a different cpu (%d vs %d)\n", pVCpu->hm.s.idLastCpu, pCpu->idCpu));
1407 else if (pVCpu->hm.s.cTLBFlushes != pCpu->cTLBFlushes)
1408 LogFlow(("Force TLB flush due to changed TLB flush count (%x vs %x)\n", pVCpu->hm.s.cTLBFlushes, pCpu->cTLBFlushes));
1409 else if (VMCPU_FF_ISSET(pVCpu, VMCPU_FF_TLB_FLUSH))
1410 LogFlow(("Manual TLB flush\n"));
1411#endif
1412
1413 /*
1414 * NOTE: DO NOT DO ANYTHING AFTER THIS POINT THAT MIGHT JUMP BACK TO RING 3!
1415 * (until the actual world switch)
1416 */
1417#ifdef VBOX_STRICT
1418 idCpuCheck = RTMpCpuId();
1419#endif
1420 VMMR0LogFlushDisable(pVCpu);
1421
1422 /*
1423 * Load the guest state; *must* be here as it sets up the shadow CR0 for lazy FPU syncing!
1424 */
1425 rc = SVMR0LoadGuestState(pVM, pVCpu, pCtx);
1426 if (RT_UNLIKELY(rc != VINF_SUCCESS))
1427 {
1428 VMMR0LogFlushEnable(pVCpu);
1429 goto end;
1430 }
1431
1432#ifndef VBOX_WITH_VMMR0_DISABLE_PREEMPTION
1433 /*
1434 * Disable interrupts to make sure a poke will interrupt execution.
1435 * This must be done *before* we check for TLB flushes; TLB shootdowns rely on this.
1436 */
1437 uOldEFlags = ASMIntDisableFlags();
1438 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC);
1439#endif
1440 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatEntry, &pVCpu->hm.s.StatInGC, x);
1441
1442 /* Setup TLB control and ASID in the VMCB. */
1443 hmR0SvmSetupTLB(pVM, pVCpu);
1444
1445 /* In case we execute a goto ResumeExecution later on. */
1446 pVCpu->hm.s.fResumeVM = true;
1447 pVCpu->hm.s.fForceTLBFlush = pVM->hm.s.svm.fAlwaysFlushTLB;
1448
1449 Assert(sizeof(pVCpu->hm.s.svm.pVMCBPhys) == 8);
1450 Assert(pVMCB->ctrl.IntCtrl.n.u1VIrqMasking);
1451 Assert(pVMCB->ctrl.u64IOPMPhysAddr == pVM->hm.s.svm.pIOBitmapPhys);
1452 Assert(pVMCB->ctrl.u64MSRPMPhysAddr == pVCpu->hm.s.svm.pMSRBitmapPhys);
1453 Assert(pVMCB->ctrl.u64LBRVirt == 0);
1454
1455#ifdef VBOX_STRICT
1456 Assert(idCpuCheck == RTMpCpuId());
1457#endif
1458 TMNotifyStartOfExecution(pVCpu);
1459
1460 /*
1461 * Save the current Host TSC_AUX and write the guest TSC_AUX to the host, so that
1462 * RDTSCPs (that don't cause exits) reads the guest MSR. See @bugref{3324}.
1463 */
1464 u32HostExtFeatures = pVM->hm.s.cpuid.u32AMDFeatureEDX;
1465 if ( (u32HostExtFeatures & X86_CPUID_EXT_FEATURE_EDX_RDTSCP)
1466 && !(pVMCB->ctrl.u32InterceptCtrl2 & SVM_CTRL2_INTERCEPT_RDTSCP))
1467 {
1468 pVCpu->hm.s.u64HostTSCAux = ASMRdMsr(MSR_K8_TSC_AUX);
1469 uint64_t u64GuestTSCAux = 0;
1470 rc2 = CPUMQueryGuestMsr(pVCpu, MSR_K8_TSC_AUX, &u64GuestTSCAux);
1471 AssertRC(rc2);
1472 ASMWrMsr(MSR_K8_TSC_AUX, u64GuestTSCAux);
1473 }
1474
1475#ifdef VBOX_WITH_KERNEL_USING_XMM
1476 hmR0SVMRunWrapXMM(pVCpu->hm.s.svm.pVMCBHostPhys, pVCpu->hm.s.svm.pVMCBPhys, pCtx, pVM, pVCpu,
1477 pVCpu->hm.s.svm.pfnVMRun);
1478#else
1479 pVCpu->hm.s.svm.pfnVMRun(pVCpu->hm.s.svm.pVMCBHostPhys, pVCpu->hm.s.svm.pVMCBPhys, pCtx, pVM, pVCpu);
1480#endif
1481 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, false);
1482 ASMAtomicIncU32(&pVCpu->hm.s.cWorldSwitchExits);
1483 /* Possibly the last TSC value seen by the guest (too high) (only when we're in TSC offset mode). */
1484 if (!(pVMCB->ctrl.u32InterceptCtrl1 & SVM_CTRL1_INTERCEPT_RDTSC))
1485 {
1486 /* Restore host's TSC_AUX. */
1487 if (u32HostExtFeatures & X86_CPUID_EXT_FEATURE_EDX_RDTSCP)
1488 ASMWrMsr(MSR_K8_TSC_AUX, pVCpu->hm.s.u64HostTSCAux);
1489
1490 TMCpuTickSetLastSeen(pVCpu, ASMReadTSC() +
1491 pVMCB->ctrl.u64TSCOffset - 0x400 /* guestimate of world switch overhead in clock ticks */);
1492 }
1493 TMNotifyEndOfExecution(pVCpu);
1494 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED);
1495 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatInGC, &pVCpu->hm.s.StatExit1, x);
1496 ASMSetFlags(uOldEFlags);
1497#ifdef VBOX_WITH_VMMR0_DISABLE_PREEMPTION
1498 uOldEFlags = ~(RTCCUINTREG)0;
1499#endif
1500
1501 /*
1502 * !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1503 * IMPORTANT: WE CAN'T DO ANY LOGGING OR OPERATIONS THAT CAN DO A LONGJMP BACK TO RING-3 *BEFORE* WE'VE SYNCED BACK (MOST OF) THE GUEST STATE
1504 * !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1505 */
1506
1507 /* Reason for the VM exit */
1508 exitCode = pVMCB->ctrl.u64ExitCode;
1509
1510 if (RT_UNLIKELY(exitCode == (uint64_t)SVM_EXIT_INVALID)) /* Invalid guest state. */
1511 {
1512 HMDumpRegs(pVM, pVCpu, pCtx);
1513#ifdef DEBUG
1514 Log(("ctrl.u16InterceptRdCRx %x\n", pVMCB->ctrl.u16InterceptRdCRx));
1515 Log(("ctrl.u16InterceptWrCRx %x\n", pVMCB->ctrl.u16InterceptWrCRx));
1516 Log(("ctrl.u16InterceptRdDRx %x\n", pVMCB->ctrl.u16InterceptRdDRx));
1517 Log(("ctrl.u16InterceptWrDRx %x\n", pVMCB->ctrl.u16InterceptWrDRx));
1518 Log(("ctrl.u32InterceptException %x\n", pVMCB->ctrl.u32InterceptException));
1519 Log(("ctrl.u32InterceptCtrl1 %x\n", pVMCB->ctrl.u32InterceptCtrl1));
1520 Log(("ctrl.u32InterceptCtrl2 %x\n", pVMCB->ctrl.u32InterceptCtrl2));
1521 Log(("ctrl.u64IOPMPhysAddr %RX64\n", pVMCB->ctrl.u64IOPMPhysAddr));
1522 Log(("ctrl.u64MSRPMPhysAddr %RX64\n", pVMCB->ctrl.u64MSRPMPhysAddr));
1523 Log(("ctrl.u64TSCOffset %RX64\n", pVMCB->ctrl.u64TSCOffset));
1524
1525 Log(("ctrl.TLBCtrl.u32ASID %x\n", pVMCB->ctrl.TLBCtrl.n.u32ASID));
1526 Log(("ctrl.TLBCtrl.u8TLBFlush %x\n", pVMCB->ctrl.TLBCtrl.n.u8TLBFlush));
1527 Log(("ctrl.TLBCtrl.u24Reserved %x\n", pVMCB->ctrl.TLBCtrl.n.u24Reserved));
1528
1529 Log(("ctrl.IntCtrl.u8VTPR %x\n", pVMCB->ctrl.IntCtrl.n.u8VTPR));
1530 Log(("ctrl.IntCtrl.u1VIrqValid %x\n", pVMCB->ctrl.IntCtrl.n.u1VIrqValid));
1531 Log(("ctrl.IntCtrl.u7Reserved %x\n", pVMCB->ctrl.IntCtrl.n.u7Reserved));
1532 Log(("ctrl.IntCtrl.u4VIrqPriority %x\n", pVMCB->ctrl.IntCtrl.n.u4VIrqPriority));
1533 Log(("ctrl.IntCtrl.u1IgnoreTPR %x\n", pVMCB->ctrl.IntCtrl.n.u1IgnoreTPR));
1534 Log(("ctrl.IntCtrl.u3Reserved %x\n", pVMCB->ctrl.IntCtrl.n.u3Reserved));
1535 Log(("ctrl.IntCtrl.u1VIrqMasking %x\n", pVMCB->ctrl.IntCtrl.n.u1VIrqMasking));
1536 Log(("ctrl.IntCtrl.u7Reserved2 %x\n", pVMCB->ctrl.IntCtrl.n.u7Reserved2));
1537 Log(("ctrl.IntCtrl.u8VIrqVector %x\n", pVMCB->ctrl.IntCtrl.n.u8VIrqVector));
1538 Log(("ctrl.IntCtrl.u24Reserved %x\n", pVMCB->ctrl.IntCtrl.n.u24Reserved));
1539
1540 Log(("ctrl.u64IntShadow %RX64\n", pVMCB->ctrl.u64IntShadow));
1541 Log(("ctrl.u64ExitCode %RX64\n", pVMCB->ctrl.u64ExitCode));
1542 Log(("ctrl.u64ExitInfo1 %RX64\n", pVMCB->ctrl.u64ExitInfo1));
1543 Log(("ctrl.u64ExitInfo2 %RX64\n", pVMCB->ctrl.u64ExitInfo2));
1544 Log(("ctrl.ExitIntInfo.u8Vector %x\n", pVMCB->ctrl.ExitIntInfo.n.u8Vector));
1545 Log(("ctrl.ExitIntInfo.u3Type %x\n", pVMCB->ctrl.ExitIntInfo.n.u3Type));
1546 Log(("ctrl.ExitIntInfo.u1ErrorCodeValid %x\n", pVMCB->ctrl.ExitIntInfo.n.u1ErrorCodeValid));
1547 Log(("ctrl.ExitIntInfo.u19Reserved %x\n", pVMCB->ctrl.ExitIntInfo.n.u19Reserved));
1548 Log(("ctrl.ExitIntInfo.u1Valid %x\n", pVMCB->ctrl.ExitIntInfo.n.u1Valid));
1549 Log(("ctrl.ExitIntInfo.u32ErrorCode %x\n", pVMCB->ctrl.ExitIntInfo.n.u32ErrorCode));
1550 Log(("ctrl.NestedPaging %RX64\n", pVMCB->ctrl.NestedPaging.au64));
1551 Log(("ctrl.EventInject.u8Vector %x\n", pVMCB->ctrl.EventInject.n.u8Vector));
1552 Log(("ctrl.EventInject.u3Type %x\n", pVMCB->ctrl.EventInject.n.u3Type));
1553 Log(("ctrl.EventInject.u1ErrorCodeValid %x\n", pVMCB->ctrl.EventInject.n.u1ErrorCodeValid));
1554 Log(("ctrl.EventInject.u19Reserved %x\n", pVMCB->ctrl.EventInject.n.u19Reserved));
1555 Log(("ctrl.EventInject.u1Valid %x\n", pVMCB->ctrl.EventInject.n.u1Valid));
1556 Log(("ctrl.EventInject.u32ErrorCode %x\n", pVMCB->ctrl.EventInject.n.u32ErrorCode));
1557
1558 Log(("ctrl.u64NestedPagingCR3 %RX64\n", pVMCB->ctrl.u64NestedPagingCR3));
1559 Log(("ctrl.u64LBRVirt %RX64\n", pVMCB->ctrl.u64LBRVirt));
1560
1561 Log(("guest.CS.u16Sel %04X\n", pVMCB->guest.CS.u16Sel));
1562 Log(("guest.CS.u16Attr %04X\n", pVMCB->guest.CS.u16Attr));
1563 Log(("guest.CS.u32Limit %X\n", pVMCB->guest.CS.u32Limit));
1564 Log(("guest.CS.u64Base %RX64\n", pVMCB->guest.CS.u64Base));
1565 Log(("guest.DS.u16Sel %04X\n", pVMCB->guest.DS.u16Sel));
1566 Log(("guest.DS.u16Attr %04X\n", pVMCB->guest.DS.u16Attr));
1567 Log(("guest.DS.u32Limit %X\n", pVMCB->guest.DS.u32Limit));
1568 Log(("guest.DS.u64Base %RX64\n", pVMCB->guest.DS.u64Base));
1569 Log(("guest.ES.u16Sel %04X\n", pVMCB->guest.ES.u16Sel));
1570 Log(("guest.ES.u16Attr %04X\n", pVMCB->guest.ES.u16Attr));
1571 Log(("guest.ES.u32Limit %X\n", pVMCB->guest.ES.u32Limit));
1572 Log(("guest.ES.u64Base %RX64\n", pVMCB->guest.ES.u64Base));
1573 Log(("guest.FS.u16Sel %04X\n", pVMCB->guest.FS.u16Sel));
1574 Log(("guest.FS.u16Attr %04X\n", pVMCB->guest.FS.u16Attr));
1575 Log(("guest.FS.u32Limit %X\n", pVMCB->guest.FS.u32Limit));
1576 Log(("guest.FS.u64Base %RX64\n", pVMCB->guest.FS.u64Base));
1577 Log(("guest.GS.u16Sel %04X\n", pVMCB->guest.GS.u16Sel));
1578 Log(("guest.GS.u16Attr %04X\n", pVMCB->guest.GS.u16Attr));
1579 Log(("guest.GS.u32Limit %X\n", pVMCB->guest.GS.u32Limit));
1580 Log(("guest.GS.u64Base %RX64\n", pVMCB->guest.GS.u64Base));
1581
1582 Log(("guest.GDTR.u32Limit %X\n", pVMCB->guest.GDTR.u32Limit));
1583 Log(("guest.GDTR.u64Base %RX64\n", pVMCB->guest.GDTR.u64Base));
1584
1585 Log(("guest.LDTR.u16Sel %04X\n", pVMCB->guest.LDTR.u16Sel));
1586 Log(("guest.LDTR.u16Attr %04X\n", pVMCB->guest.LDTR.u16Attr));
1587 Log(("guest.LDTR.u32Limit %X\n", pVMCB->guest.LDTR.u32Limit));
1588 Log(("guest.LDTR.u64Base %RX64\n", pVMCB->guest.LDTR.u64Base));
1589
1590 Log(("guest.IDTR.u32Limit %X\n", pVMCB->guest.IDTR.u32Limit));
1591 Log(("guest.IDTR.u64Base %RX64\n", pVMCB->guest.IDTR.u64Base));
1592
1593 Log(("guest.TR.u16Sel %04X\n", pVMCB->guest.TR.u16Sel));
1594 Log(("guest.TR.u16Attr %04X\n", pVMCB->guest.TR.u16Attr));
1595 Log(("guest.TR.u32Limit %X\n", pVMCB->guest.TR.u32Limit));
1596 Log(("guest.TR.u64Base %RX64\n", pVMCB->guest.TR.u64Base));
1597
1598 Log(("guest.u8CPL %X\n", pVMCB->guest.u8CPL));
1599 Log(("guest.u64CR0 %RX64\n", pVMCB->guest.u64CR0));
1600 Log(("guest.u64CR2 %RX64\n", pVMCB->guest.u64CR2));
1601 Log(("guest.u64CR3 %RX64\n", pVMCB->guest.u64CR3));
1602 Log(("guest.u64CR4 %RX64\n", pVMCB->guest.u64CR4));
1603 Log(("guest.u64DR6 %RX64\n", pVMCB->guest.u64DR6));
1604 Log(("guest.u64DR7 %RX64\n", pVMCB->guest.u64DR7));
1605
1606 Log(("guest.u64RIP %RX64\n", pVMCB->guest.u64RIP));
1607 Log(("guest.u64RSP %RX64\n", pVMCB->guest.u64RSP));
1608 Log(("guest.u64RAX %RX64\n", pVMCB->guest.u64RAX));
1609 Log(("guest.u64RFlags %RX64\n", pVMCB->guest.u64RFlags));
1610
1611 Log(("guest.u64SysEnterCS %RX64\n", pVMCB->guest.u64SysEnterCS));
1612 Log(("guest.u64SysEnterEIP %RX64\n", pVMCB->guest.u64SysEnterEIP));
1613 Log(("guest.u64SysEnterESP %RX64\n", pVMCB->guest.u64SysEnterESP));
1614
1615 Log(("guest.u64EFER %RX64\n", pVMCB->guest.u64EFER));
1616 Log(("guest.u64STAR %RX64\n", pVMCB->guest.u64STAR));
1617 Log(("guest.u64LSTAR %RX64\n", pVMCB->guest.u64LSTAR));
1618 Log(("guest.u64CSTAR %RX64\n", pVMCB->guest.u64CSTAR));
1619 Log(("guest.u64SFMASK %RX64\n", pVMCB->guest.u64SFMASK));
1620 Log(("guest.u64KernelGSBase %RX64\n", pVMCB->guest.u64KernelGSBase));
1621 Log(("guest.u64GPAT %RX64\n", pVMCB->guest.u64GPAT));
1622 Log(("guest.u64DBGCTL %RX64\n", pVMCB->guest.u64DBGCTL));
1623 Log(("guest.u64BR_FROM %RX64\n", pVMCB->guest.u64BR_FROM));
1624 Log(("guest.u64BR_TO %RX64\n", pVMCB->guest.u64BR_TO));
1625 Log(("guest.u64LASTEXCPFROM %RX64\n", pVMCB->guest.u64LASTEXCPFROM));
1626 Log(("guest.u64LASTEXCPTO %RX64\n", pVMCB->guest.u64LASTEXCPTO));
1627#endif
1628 rc = VERR_SVM_UNABLE_TO_START_VM;
1629 VMMR0LogFlushEnable(pVCpu);
1630 goto end;
1631 }
1632
1633 /* Let's first sync back EIP, ESP, and EFLAGS. */
1634 pCtx->rip = pVMCB->guest.u64RIP;
1635 pCtx->rsp = pVMCB->guest.u64RSP;
1636 pCtx->eflags.u32 = pVMCB->guest.u64RFlags;
1637 /* eax is saved/restore across the vmrun instruction */
1638 pCtx->rax = pVMCB->guest.u64RAX;
1639
1640 /*
1641 * Save all the MSRs that can be changed by the guest without causing a world switch.
1642 * FS & GS base are saved with SVM_READ_SELREG.
1643 */
1644 pCtx->msrSTAR = pVMCB->guest.u64STAR; /* legacy syscall eip, cs & ss */
1645 pCtx->msrLSTAR = pVMCB->guest.u64LSTAR; /* 64-bit mode syscall rip */
1646 pCtx->msrCSTAR = pVMCB->guest.u64CSTAR; /* compatibility mode syscall rip */
1647 pCtx->msrSFMASK = pVMCB->guest.u64SFMASK; /* syscall flag mask */
1648 pCtx->msrKERNELGSBASE = pVMCB->guest.u64KernelGSBase; /* swapgs exchange value */
1649 pCtx->SysEnter.cs = pVMCB->guest.u64SysEnterCS;
1650 pCtx->SysEnter.eip = pVMCB->guest.u64SysEnterEIP;
1651 pCtx->SysEnter.esp = pVMCB->guest.u64SysEnterESP;
1652
1653 /* Can be updated behind our back in the nested paging case. */
1654 pCtx->cr2 = pVMCB->guest.u64CR2;
1655
1656 /* Guest CPU context: ES, CS, SS, DS, FS, GS. */
1657 SVM_READ_SELREG(SS, ss);
1658 SVM_READ_SELREG(CS, cs);
1659 SVM_READ_SELREG(DS, ds);
1660 SVM_READ_SELREG(ES, es);
1661 SVM_READ_SELREG(FS, fs);
1662 SVM_READ_SELREG(GS, gs);
1663
1664 /*
1665 * Correct the hidden CS granularity flag. Haven't seen it being wrong in any other
1666 * register (yet).
1667 */
1668 if ( !pCtx->cs.Attr.n.u1Granularity
1669 && pCtx->cs.Attr.n.u1Present
1670 && pCtx->cs.u32Limit > UINT32_C(0xfffff))
1671 {
1672 Assert((pCtx->cs.u32Limit & 0xfff) == 0xfff);
1673 pCtx->cs.Attr.n.u1Granularity = 1;
1674 }
1675#define SVM_ASSERT_SEL_GRANULARITY(reg) \
1676 AssertMsg( !pCtx->reg.Attr.n.u1Present \
1677 || ( pCtx->reg.Attr.n.u1Granularity \
1678 ? (pCtx->reg.u32Limit & 0xfff) == 0xfff \
1679 : pCtx->reg.u32Limit <= 0xfffff), \
1680 ("%#x %#x %#llx\n", pCtx->reg.u32Limit, pCtx->reg.Attr.u, pCtx->reg.u64Base))
1681 SVM_ASSERT_SEL_GRANULARITY(ss);
1682 SVM_ASSERT_SEL_GRANULARITY(cs);
1683 SVM_ASSERT_SEL_GRANULARITY(ds);
1684 SVM_ASSERT_SEL_GRANULARITY(es);
1685 SVM_ASSERT_SEL_GRANULARITY(fs);
1686 SVM_ASSERT_SEL_GRANULARITY(gs);
1687#undef SVM_ASSERT_SEL_GRANULARITY
1688
1689 /*
1690 * Correct the hidden SS DPL field. It can be wrong on certain CPUs
1691 * sometimes (seen it on AMD Fusion CPUs with 64-bit guests). The CPU
1692 * always uses the CPL field in the VMCB instead of the DPL in the hidden
1693 * SS (chapter AMD spec. 15.5.1 Basic operation).
1694 */
1695 Assert(!(pVMCB->guest.u8CPL & ~0x3));
1696 pCtx->ss.Attr.n.u2Dpl = pVMCB->guest.u8CPL & 0x3;
1697
1698 /*
1699 * Remaining guest CPU context: TR, IDTR, GDTR, LDTR;
1700 * must sync everything otherwise we can get out of sync when jumping back to ring-3.
1701 */
1702 SVM_READ_SELREG(LDTR, ldtr);
1703 SVM_READ_SELREG(TR, tr);
1704
1705 pCtx->gdtr.cbGdt = pVMCB->guest.GDTR.u32Limit;
1706 pCtx->gdtr.pGdt = pVMCB->guest.GDTR.u64Base;
1707
1708 pCtx->idtr.cbIdt = pVMCB->guest.IDTR.u32Limit;
1709 pCtx->idtr.pIdt = pVMCB->guest.IDTR.u64Base;
1710
1711 /*
1712 * No reason to sync back the CRx and DRx registers as they cannot be changed by the guest
1713 * unless in the nested paging case where CR3 can be changed by the guest.
1714 */
1715 if ( pVM->hm.s.fNestedPaging
1716 && pCtx->cr3 != pVMCB->guest.u64CR3)
1717 {
1718 CPUMSetGuestCR3(pVCpu, pVMCB->guest.u64CR3);
1719 PGMUpdateCR3(pVCpu, pVMCB->guest.u64CR3);
1720 }
1721
1722 /* Note! NOW IT'S SAFE FOR LOGGING! */
1723 VMMR0LogFlushEnable(pVCpu);
1724
1725 /* Take care of instruction fusing (sti, mov ss) (see AMD spec. 15.20.5 Interrupt Shadows) */
1726 if (pVMCB->ctrl.u64IntShadow & SVM_INTERRUPT_SHADOW_ACTIVE)
1727 {
1728 Log(("uInterruptState %x rip=%RGv\n", pVMCB->ctrl.u64IntShadow, (RTGCPTR)pCtx->rip));
1729 EMSetInhibitInterruptsPC(pVCpu, pCtx->rip);
1730 }
1731 else
1732 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
1733
1734 Log2(("exitCode = %x\n", exitCode));
1735
1736 /* Sync back DR6 as it could have been changed by hitting breakpoints. */
1737 pCtx->dr[6] = pVMCB->guest.u64DR6;
1738 /* DR7.GD can be cleared by debug exceptions, so sync it back as well. */
1739 pCtx->dr[7] = pVMCB->guest.u64DR7;
1740
1741 /* Check if an injected event was interrupted prematurely. */
1742 pVCpu->hm.s.Event.intInfo = pVMCB->ctrl.ExitIntInfo.au64[0];
1743 if ( pVMCB->ctrl.ExitIntInfo.n.u1Valid
1744 /* we don't care about 'int xx' as the instruction will be restarted. */
1745 && pVMCB->ctrl.ExitIntInfo.n.u3Type != SVM_EVENT_SOFTWARE_INT)
1746 {
1747 Log(("Pending inject %RX64 at %RGv exit=%08x\n", pVCpu->hm.s.Event.intInfo, (RTGCPTR)pCtx->rip, exitCode));
1748
1749#ifdef LOG_ENABLED
1750 SVM_EVENT Event;
1751 Event.au64[0] = pVCpu->hm.s.Event.intInfo;
1752
1753 if ( exitCode == SVM_EXIT_EXCEPTION_E
1754 && Event.n.u8Vector == 0xE)
1755 {
1756 Log(("Double fault!\n"));
1757 }
1758#endif
1759
1760 pVCpu->hm.s.Event.fPending = true;
1761 /* Error code present? (redundant) */
1762 if (pVMCB->ctrl.ExitIntInfo.n.u1ErrorCodeValid)
1763 pVCpu->hm.s.Event.errCode = pVMCB->ctrl.ExitIntInfo.n.u32ErrorCode;
1764 else
1765 pVCpu->hm.s.Event.errCode = 0;
1766 }
1767#ifdef VBOX_WITH_STATISTICS
1768 if (exitCode == SVM_EXIT_NPF)
1769 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitReasonNPF);
1770 else
1771 STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[exitCode & MASK_EXITREASON_STAT]);
1772#endif
1773
1774 /* Sync back the TPR if it was changed. */
1775 if (fSyncTPR)
1776 {
1777 if (pVM->hm.s.fTPRPatchingActive)
1778 {
1779 if ((pCtx->msrLSTAR & 0xff) != u8LastTPR)
1780 {
1781 /* Our patch code uses LSTAR for TPR caching. */
1782 rc2 = PDMApicSetTPR(pVCpu, pCtx->msrLSTAR & 0xff);
1783 AssertRC(rc2);
1784 }
1785 }
1786 else
1787 {
1788 if ((uint8_t)(u8LastTPR >> 4) != pVMCB->ctrl.IntCtrl.n.u8VTPR)
1789 {
1790 /* cr8 bits 3-0 correspond to bits 7-4 of the task priority mmio register. */
1791 rc2 = PDMApicSetTPR(pVCpu, pVMCB->ctrl.IntCtrl.n.u8VTPR << 4);
1792 AssertRC(rc2);
1793 }
1794 }
1795 }
1796
1797#ifdef DBGFTRACE_ENABLED /** @todo DTrace */
1798 RTTraceBufAddMsgF(pVM->CTX_SUFF(hTraceBuf), "vmexit %08x at %04:%08RX64 %RX64 %RX64 %RX64",
1799 exitCode, pCtx->cs.Sel, pCtx->rip,
1800 pVMCB->ctrl.u64ExitInfo1, pVMCB->ctrl.u64ExitInfo2, pVMCB->ctrl.ExitIntInfo.au64[0]);
1801#endif
1802#if ARCH_BITS == 64 /* for the time being */
1803 VBOXVMM_R0_HMSVM_VMEXIT(pVCpu, pCtx, exitCode, pVMCB->ctrl.u64ExitInfo1, pVMCB->ctrl.u64ExitInfo2,
1804 pVMCB->ctrl.ExitIntInfo.au64[0], UINT64_MAX);
1805#endif
1806 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatExit1, &pVCpu->hm.s.StatExit2, x);
1807
1808 /* Deal with the reason of the VM-exit. */
1809 switch (exitCode)
1810 {
1811 case SVM_EXIT_EXCEPTION_0: case SVM_EXIT_EXCEPTION_1: case SVM_EXIT_EXCEPTION_2: case SVM_EXIT_EXCEPTION_3:
1812 case SVM_EXIT_EXCEPTION_4: case SVM_EXIT_EXCEPTION_5: case SVM_EXIT_EXCEPTION_6: case SVM_EXIT_EXCEPTION_7:
1813 case SVM_EXIT_EXCEPTION_8: case SVM_EXIT_EXCEPTION_9: case SVM_EXIT_EXCEPTION_A: case SVM_EXIT_EXCEPTION_B:
1814 case SVM_EXIT_EXCEPTION_C: case SVM_EXIT_EXCEPTION_D: case SVM_EXIT_EXCEPTION_E: case SVM_EXIT_EXCEPTION_F:
1815 case SVM_EXIT_EXCEPTION_10: case SVM_EXIT_EXCEPTION_11: case SVM_EXIT_EXCEPTION_12: case SVM_EXIT_EXCEPTION_13:
1816 case SVM_EXIT_EXCEPTION_14: case SVM_EXIT_EXCEPTION_15: case SVM_EXIT_EXCEPTION_16: case SVM_EXIT_EXCEPTION_17:
1817 case SVM_EXIT_EXCEPTION_18: case SVM_EXIT_EXCEPTION_19: case SVM_EXIT_EXCEPTION_1A: case SVM_EXIT_EXCEPTION_1B:
1818 case SVM_EXIT_EXCEPTION_1C: case SVM_EXIT_EXCEPTION_1D: case SVM_EXIT_EXCEPTION_1E: case SVM_EXIT_EXCEPTION_1F:
1819 {
1820 /* Pending trap. */
1821 SVM_EVENT Event;
1822 uint32_t vector = exitCode - SVM_EXIT_EXCEPTION_0;
1823
1824 Log2(("Hardware/software interrupt %d\n", vector));
1825 switch (vector)
1826 {
1827 case X86_XCPT_DB:
1828 {
1829 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDB);
1830
1831 /* Note that we don't support guest and host-initiated debugging at the same time. */
1832 Assert(DBGFIsStepping(pVCpu) || CPUMIsHyperDebugStateActive(pVCpu));
1833
1834 rc = DBGFRZTrap01Handler(pVM, pVCpu, CPUMCTX2CORE(pCtx), pCtx->dr[6]);
1835 if (rc == VINF_EM_RAW_GUEST_TRAP)
1836 {
1837 Log(("Trap %x (debug) at %016RX64\n", vector, pCtx->rip));
1838
1839 /* Reinject the exception. */
1840 Event.au64[0] = 0;
1841 Event.n.u3Type = SVM_EVENT_EXCEPTION; /* trap or fault */
1842 Event.n.u1Valid = 1;
1843 Event.n.u8Vector = X86_XCPT_DB;
1844
1845 hmR0SvmInjectEvent(pVCpu, pVMCB, pCtx, &Event);
1846 goto ResumeExecution;
1847 }
1848 /* Return to ring 3 to deal with the debug exit code. */
1849 Log(("Debugger hardware BP at %04x:%RGv (rc=%Rrc)\n", pCtx->cs.Sel, pCtx->rip, VBOXSTRICTRC_VAL(rc)));
1850 break;
1851 }
1852
1853 case X86_XCPT_NM:
1854 {
1855 Log(("#NM fault at %RGv\n", (RTGCPTR)pCtx->rip));
1856
1857 /** @todo don't intercept #NM exceptions anymore when we've activated the guest FPU state. */
1858 /* If we sync the FPU/XMM state on-demand, then we can continue execution as if nothing has happened. */
1859 rc = CPUMR0LoadGuestFPU(pVM, pVCpu, pCtx);
1860 if (rc == VINF_SUCCESS)
1861 {
1862 Assert(CPUMIsGuestFPUStateActive(pVCpu));
1863 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowNM);
1864
1865 /* Continue execution. */
1866 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR0;
1867
1868 goto ResumeExecution;
1869 }
1870
1871 Log(("Forward #NM fault to the guest\n"));
1872 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNM);
1873
1874 Event.au64[0] = 0;
1875 Event.n.u3Type = SVM_EVENT_EXCEPTION;
1876 Event.n.u1Valid = 1;
1877 Event.n.u8Vector = X86_XCPT_NM;
1878
1879 hmR0SvmInjectEvent(pVCpu, pVMCB, pCtx, &Event);
1880 goto ResumeExecution;
1881 }
1882
1883 case X86_XCPT_PF: /* Page fault */
1884 {
1885 uint32_t errCode = pVMCB->ctrl.u64ExitInfo1; /* EXITINFO1 = error code */
1886 RTGCUINTPTR uFaultAddress = pVMCB->ctrl.u64ExitInfo2; /* EXITINFO2 = fault address */
1887
1888#ifdef VBOX_ALWAYS_TRAP_PF
1889 if (pVM->hm.s.fNestedPaging)
1890 {
1891 /*
1892 * A genuine pagefault. Forward the trap to the guest by injecting the exception and resuming execution.
1893 */
1894 Log(("Guest page fault at %04X:%RGv cr2=%RGv error code %x rsp=%RGv\n", pCtx->cs, (RTGCPTR)pCtx->rip,
1895 uFaultAddress, errCode, (RTGCPTR)pCtx->rsp));
1896 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
1897
1898 /* Now we must update CR2. */
1899 pCtx->cr2 = uFaultAddress;
1900
1901 Event.au64[0] = 0;
1902 Event.n.u3Type = SVM_EVENT_EXCEPTION;
1903 Event.n.u1Valid = 1;
1904 Event.n.u8Vector = X86_XCPT_PF;
1905 Event.n.u1ErrorCodeValid = 1;
1906 Event.n.u32ErrorCode = errCode;
1907
1908 hmR0SvmInjectEvent(pVCpu, pVMCB, pCtx, &Event);
1909 goto ResumeExecution;
1910 }
1911#endif
1912 Assert(!pVM->hm.s.fNestedPaging);
1913
1914#ifdef VBOX_HM_WITH_GUEST_PATCHING
1915 /* Shortcut for APIC TPR reads and writes; 32 bits guests only */
1916 if ( pVM->hm.s.fTRPPatchingAllowed
1917 && (uFaultAddress & 0xfff) == 0x080
1918 && !(errCode & X86_TRAP_PF_P) /* not present */
1919 && CPUMGetGuestCPL(pVCpu) == 0
1920 && !CPUMIsGuestInLongModeEx(pCtx)
1921 && pVM->hm.s.cPatches < RT_ELEMENTS(pVM->hm.s.aPatches))
1922 {
1923 RTGCPHYS GCPhysApicBase, GCPhys;
1924 PDMApicGetBase(pVM, &GCPhysApicBase); /** @todo cache this */
1925 GCPhysApicBase &= PAGE_BASE_GC_MASK;
1926
1927 rc = PGMGstGetPage(pVCpu, (RTGCPTR)uFaultAddress, NULL, &GCPhys);
1928 if ( rc == VINF_SUCCESS
1929 && GCPhys == GCPhysApicBase)
1930 {
1931 /* Only attempt to patch the instruction once. */
1932 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
1933 if (!pPatch)
1934 {
1935 rc = VINF_EM_HM_PATCH_TPR_INSTR;
1936 break;
1937 }
1938 }
1939 }
1940#endif
1941
1942 Log2(("Page fault at %RGv cr2=%RGv error code %x\n", (RTGCPTR)pCtx->rip, uFaultAddress, errCode));
1943 /* Exit qualification contains the linear address of the page fault. */
1944 TRPMAssertTrap(pVCpu, X86_XCPT_PF, TRPM_TRAP);
1945 TRPMSetErrorCode(pVCpu, errCode);
1946 TRPMSetFaultAddress(pVCpu, uFaultAddress);
1947
1948 /* Forward it to our trap handler first, in case our shadow pages are out of sync. */
1949 rc = PGMTrap0eHandler(pVCpu, errCode, CPUMCTX2CORE(pCtx), (RTGCPTR)uFaultAddress);
1950 Log2(("PGMTrap0eHandler %RGv returned %Rrc\n", (RTGCPTR)pCtx->rip, VBOXSTRICTRC_VAL(rc)));
1951 if (rc == VINF_SUCCESS)
1952 {
1953 /* We've successfully synced our shadow pages, so let's just continue execution. */
1954 Log2(("Shadow page fault at %RGv cr2=%RGv error code %x\n", (RTGCPTR)pCtx->rip, uFaultAddress, errCode));
1955 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
1956
1957 TRPMResetTrap(pVCpu);
1958 goto ResumeExecution;
1959 }
1960 else if (rc == VINF_EM_RAW_GUEST_TRAP)
1961 {
1962 /*
1963 * A genuine pagefault. Forward the trap to the guest by injecting the exception and resuming execution.
1964 */
1965 Log2(("Forward page fault to the guest\n"));
1966 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
1967 /* The error code might have been changed. */
1968 errCode = TRPMGetErrorCode(pVCpu);
1969
1970 TRPMResetTrap(pVCpu);
1971
1972 /* Now we must update CR2. */
1973 pCtx->cr2 = uFaultAddress;
1974
1975 Event.au64[0] = 0;
1976 Event.n.u3Type = SVM_EVENT_EXCEPTION;
1977 Event.n.u1Valid = 1;
1978 Event.n.u8Vector = X86_XCPT_PF;
1979 Event.n.u1ErrorCodeValid = 1;
1980 Event.n.u32ErrorCode = errCode;
1981
1982 hmR0SvmInjectEvent(pVCpu, pVMCB, pCtx, &Event);
1983 goto ResumeExecution;
1984 }
1985#ifdef VBOX_STRICT
1986 if (rc != VINF_EM_RAW_EMULATE_INSTR && rc != VINF_EM_RAW_EMULATE_IO_BLOCK)
1987 LogFlow(("PGMTrap0eHandler failed with %d\n", VBOXSTRICTRC_VAL(rc)));
1988#endif
1989 /* Need to go back to the recompiler to emulate the instruction. */
1990 TRPMResetTrap(pVCpu);
1991 break;
1992 }
1993
1994 case X86_XCPT_MF: /* Floating point exception. */
1995 {
1996 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestMF);
1997 if (!(pCtx->cr0 & X86_CR0_NE))
1998 {
1999 /* old style FPU error reporting needs some extra work. */
2000 /** @todo don't fall back to the recompiler, but do it manually. */
2001 rc = VINF_EM_RAW_EMULATE_INSTR;
2002 break;
2003 }
2004 Log(("Trap %x at %RGv\n", vector, (RTGCPTR)pCtx->rip));
2005
2006 Event.au64[0] = 0;
2007 Event.n.u3Type = SVM_EVENT_EXCEPTION;
2008 Event.n.u1Valid = 1;
2009 Event.n.u8Vector = X86_XCPT_MF;
2010
2011 hmR0SvmInjectEvent(pVCpu, pVMCB, pCtx, &Event);
2012 goto ResumeExecution;
2013 }
2014
2015#ifdef VBOX_STRICT
2016 case X86_XCPT_BP: /* Breakpoint. */
2017 case X86_XCPT_GP: /* General protection failure exception.*/
2018 case X86_XCPT_UD: /* Unknown opcode exception. */
2019 case X86_XCPT_DE: /* Divide error. */
2020 case X86_XCPT_SS: /* Stack segment exception. */
2021 case X86_XCPT_NP: /* Segment not present exception. */
2022 {
2023 Event.au64[0] = 0;
2024 Event.n.u3Type = SVM_EVENT_EXCEPTION;
2025 Event.n.u1Valid = 1;
2026 Event.n.u8Vector = vector;
2027
2028 switch (vector)
2029 {
2030 case X86_XCPT_GP:
2031 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestGP);
2032 Event.n.u1ErrorCodeValid = 1;
2033 Event.n.u32ErrorCode = pVMCB->ctrl.u64ExitInfo1; /* EXITINFO1 = error code */
2034 break;
2035 case X86_XCPT_BP:
2036 /** Saves the wrong EIP on the stack (pointing to the int3 instead of the next instruction. */
2037 break;
2038 case X86_XCPT_DE:
2039 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDE);
2040 break;
2041 case X86_XCPT_UD:
2042 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestUD);
2043 break;
2044 case X86_XCPT_SS:
2045 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestSS);
2046 Event.n.u1ErrorCodeValid = 1;
2047 Event.n.u32ErrorCode = pVMCB->ctrl.u64ExitInfo1; /* EXITINFO1 = error code */
2048 break;
2049 case X86_XCPT_NP:
2050 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNP);
2051 Event.n.u1ErrorCodeValid = 1;
2052 Event.n.u32ErrorCode = pVMCB->ctrl.u64ExitInfo1; /* EXITINFO1 = error code */
2053 break;
2054 }
2055 Log(("Trap %x at %04x:%RGv esi=%x\n", vector, pCtx->cs.Sel, (RTGCPTR)pCtx->rip, pCtx->esi));
2056 hmR0SvmInjectEvent(pVCpu, pVMCB, pCtx, &Event);
2057 goto ResumeExecution;
2058 }
2059#endif
2060 default:
2061 AssertMsgFailed(("Unexpected vm-exit caused by exception %x\n", vector));
2062 rc = VERR_HMSVM_UNEXPECTED_XCPT_EXIT;
2063 break;
2064
2065 } /* switch (vector) */
2066 break;
2067 }
2068
2069 case SVM_EXIT_NPF:
2070 {
2071 /* EXITINFO1 contains fault errorcode; EXITINFO2 contains the guest physical address causing the fault. */
2072 uint32_t errCode = pVMCB->ctrl.u64ExitInfo1; /* EXITINFO1 = error code */
2073 RTGCPHYS GCPhysFault = pVMCB->ctrl.u64ExitInfo2; /* EXITINFO2 = fault address */
2074 PGMMODE enmShwPagingMode;
2075
2076 Assert(pVM->hm.s.fNestedPaging);
2077 LogFlow(("Nested page fault at %RGv cr2=%RGp error code %x\n", (RTGCPTR)pCtx->rip, GCPhysFault, errCode));
2078
2079#ifdef VBOX_HM_WITH_GUEST_PATCHING
2080 /* Shortcut for APIC TPR reads and writes; 32 bits guests only */
2081 if ( pVM->hm.s.fTRPPatchingAllowed
2082 && (GCPhysFault & PAGE_OFFSET_MASK) == 0x080
2083 && ( !(errCode & X86_TRAP_PF_P) /* not present */
2084 || (errCode & (X86_TRAP_PF_P | X86_TRAP_PF_RSVD)) == (X86_TRAP_PF_P | X86_TRAP_PF_RSVD) /* mmio optimization */)
2085 && CPUMGetGuestCPL(pVCpu) == 0
2086 && !CPUMIsGuestInLongModeEx(pCtx)
2087 && pVM->hm.s.cPatches < RT_ELEMENTS(pVM->hm.s.aPatches))
2088 {
2089 RTGCPHYS GCPhysApicBase;
2090 PDMApicGetBase(pVM, &GCPhysApicBase); /** @todo cache this */
2091 GCPhysApicBase &= PAGE_BASE_GC_MASK;
2092
2093 if (GCPhysFault == GCPhysApicBase + 0x80)
2094 {
2095 /* Only attempt to patch the instruction once. */
2096 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
2097 if (!pPatch)
2098 {
2099 rc = VINF_EM_HM_PATCH_TPR_INSTR;
2100 break;
2101 }
2102 }
2103 }
2104#endif
2105
2106 /* Handle the pagefault trap for the nested shadow table. */
2107#if HC_ARCH_BITS == 32 /** @todo shadow this in a variable. */
2108 if (CPUMIsGuestInLongModeEx(pCtx))
2109 enmShwPagingMode = PGMMODE_AMD64_NX;
2110 else
2111#endif
2112 enmShwPagingMode = PGMGetHostMode(pVM);
2113
2114 /* MMIO optimization */
2115 Assert((errCode & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) != X86_TRAP_PF_RSVD);
2116 if ((errCode & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) == (X86_TRAP_PF_RSVD | X86_TRAP_PF_P))
2117 {
2118 rc = PGMR0Trap0eHandlerNPMisconfig(pVM, pVCpu, enmShwPagingMode, CPUMCTX2CORE(pCtx), GCPhysFault, errCode);
2119
2120 /*
2121 * If we succeed, resume execution.
2122 * Or, if fail in interpreting the instruction because we couldn't get the guest physical address
2123 * of the page containing the instruction via the guest's page tables (we would invalidate the guest page
2124 * in the host TLB), resume execution which would cause a guest page fault to let the guest handle this
2125 * weird case. See @bugref{6043}.
2126 */
2127 if ( rc == VINF_SUCCESS
2128 || rc == VERR_PAGE_TABLE_NOT_PRESENT
2129 || rc == VERR_PAGE_NOT_PRESENT)
2130 {
2131 Log2(("PGMR0Trap0eHandlerNPMisconfig(,,,%RGp) at %RGv -> resume\n", GCPhysFault, (RTGCPTR)pCtx->rip));
2132 goto ResumeExecution;
2133 }
2134 Log2(("PGMR0Trap0eHandlerNPMisconfig(,,,%RGp) at %RGv -> resume\n", GCPhysFault, (RTGCPTR)pCtx->rip));
2135 break;
2136 }
2137
2138 /* Exit qualification contains the linear address of the page fault. */
2139 TRPMAssertTrap(pVCpu, X86_XCPT_PF, TRPM_TRAP);
2140 TRPMSetErrorCode(pVCpu, errCode);
2141 TRPMSetFaultAddress(pVCpu, GCPhysFault);
2142
2143 rc = PGMR0Trap0eHandlerNestedPaging(pVM, pVCpu, enmShwPagingMode, errCode, CPUMCTX2CORE(pCtx), GCPhysFault);
2144 Log2(("PGMR0Trap0eHandlerNestedPaging %RGv returned %Rrc\n", (RTGCPTR)pCtx->rip, VBOXSTRICTRC_VAL(rc)));
2145
2146 /*
2147 * Same case as PGMR0Trap0eHandlerNPMisconfig(). See comment above, @bugref{6043}.
2148 */
2149 if ( rc == VINF_SUCCESS
2150 || rc == VERR_PAGE_TABLE_NOT_PRESENT
2151 || rc == VERR_PAGE_NOT_PRESENT)
2152 {
2153 /* We've successfully synced our shadow pages, so let's just continue execution. */
2154 Log2(("Shadow page fault at %RGv cr2=%RGp error code %x\n", (RTGCPTR)pCtx->rip, GCPhysFault, errCode));
2155 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
2156
2157 TRPMResetTrap(pVCpu);
2158 goto ResumeExecution;
2159 }
2160
2161#ifdef VBOX_STRICT
2162 if (rc != VINF_EM_RAW_EMULATE_INSTR)
2163 LogFlow(("PGMTrap0eHandlerNestedPaging failed with %d\n", VBOXSTRICTRC_VAL(rc)));
2164#endif
2165 /* Need to go back to the recompiler to emulate the instruction. */
2166 TRPMResetTrap(pVCpu);
2167 break;
2168 }
2169
2170 case SVM_EXIT_VINTR:
2171 /* A virtual interrupt is about to be delivered, which means IF=1. */
2172 Log(("SVM_EXIT_VINTR IF=%d\n", pCtx->eflags.Bits.u1IF));
2173 pVMCB->ctrl.IntCtrl.n.u1VIrqValid = 0;
2174 pVMCB->ctrl.IntCtrl.n.u8VIrqVector = 0;
2175 goto ResumeExecution;
2176
2177 case SVM_EXIT_FERR_FREEZE:
2178 case SVM_EXIT_INTR:
2179 case SVM_EXIT_NMI:
2180 case SVM_EXIT_SMI:
2181 case SVM_EXIT_INIT:
2182 /* External interrupt; leave to allow it to be dispatched again. */
2183 rc = VINF_EM_RAW_INTERRUPT;
2184 break;
2185
2186 case SVM_EXIT_WBINVD:
2187 case SVM_EXIT_INVD: /* Guest software attempted to execute INVD. */
2188 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInvd);
2189 /* Skip instruction and continue directly. */
2190 pCtx->rip += 2; /* Note! hardcoded opcode size! */
2191 /* Continue execution.*/
2192 goto ResumeExecution;
2193
2194 case SVM_EXIT_CPUID: /* Guest software attempted to execute CPUID. */
2195 {
2196 Log2(("SVM: Cpuid at %RGv for %x\n", (RTGCPTR)pCtx->rip, pCtx->eax));
2197 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCpuid);
2198 rc = EMInterpretCpuId(pVM, pVCpu, CPUMCTX2CORE(pCtx));
2199 if (rc == VINF_SUCCESS)
2200 {
2201 /* Update EIP and continue execution. */
2202 pCtx->rip += 2; /* Note! hardcoded opcode size! */
2203 goto ResumeExecution;
2204 }
2205 AssertMsgFailed(("EMU: cpuid failed with %Rrc\n", VBOXSTRICTRC_VAL(rc)));
2206 rc = VINF_EM_RAW_EMULATE_INSTR;
2207 break;
2208 }
2209
2210 case SVM_EXIT_RDTSC: /* Guest software attempted to execute RDTSC. */
2211 {
2212 Log2(("SVM: Rdtsc\n"));
2213 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdtsc);
2214 rc = EMInterpretRdtsc(pVM, pVCpu, CPUMCTX2CORE(pCtx));
2215 if (rc == VINF_SUCCESS)
2216 {
2217 /* Update EIP and continue execution. */
2218 pCtx->rip += 2; /* Note! hardcoded opcode size! */
2219 goto ResumeExecution;
2220 }
2221 rc = VINF_EM_RAW_EMULATE_INSTR;
2222 break;
2223 }
2224
2225 case SVM_EXIT_RDPMC: /* Guest software attempted to execute RDPMC. */
2226 {
2227 Log2(("SVM: Rdpmc %x\n", pCtx->ecx));
2228 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdpmc);
2229 rc = EMInterpretRdpmc(pVM, pVCpu, CPUMCTX2CORE(pCtx));
2230 if (rc == VINF_SUCCESS)
2231 {
2232 /* Update EIP and continue execution. */
2233 pCtx->rip += 2; /* Note! hardcoded opcode size! */
2234 goto ResumeExecution;
2235 }
2236 rc = VINF_EM_RAW_EMULATE_INSTR;
2237 break;
2238 }
2239
2240 case SVM_EXIT_RDTSCP: /* Guest software attempted to execute RDTSCP. */
2241 {
2242 Log2(("SVM: Rdtscp\n"));
2243 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdtscp);
2244 rc = EMInterpretRdtscp(pVM, pVCpu, pCtx);
2245 if (rc == VINF_SUCCESS)
2246 {
2247 /* Update EIP and continue execution. */
2248 pCtx->rip += 3; /* Note! hardcoded opcode size! */
2249 goto ResumeExecution;
2250 }
2251 AssertMsgFailed(("EMU: rdtscp failed with %Rrc\n", VBOXSTRICTRC_VAL(rc)));
2252 rc = VINF_EM_RAW_EMULATE_INSTR;
2253 break;
2254 }
2255
2256 case SVM_EXIT_INVLPG: /* Guest software attempted to execute INVLPG. */
2257 {
2258 Log2(("SVM: invlpg\n"));
2259 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInvlpg);
2260
2261 Assert(!pVM->hm.s.fNestedPaging);
2262
2263 /* Truly a pita. Why can't SVM give the same information as VT-x? */
2264 rc = hmR0SvmInterpretInvlpg(pVM, pVCpu, CPUMCTX2CORE(pCtx));
2265 if (rc == VINF_SUCCESS)
2266 {
2267 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushPageInvlpg);
2268 goto ResumeExecution; /* eip already updated */
2269 }
2270 break;
2271 }
2272
2273 case SVM_EXIT_WRITE_CR0: case SVM_EXIT_WRITE_CR1: case SVM_EXIT_WRITE_CR2: case SVM_EXIT_WRITE_CR3:
2274 case SVM_EXIT_WRITE_CR4: case SVM_EXIT_WRITE_CR5: case SVM_EXIT_WRITE_CR6: case SVM_EXIT_WRITE_CR7:
2275 case SVM_EXIT_WRITE_CR8: case SVM_EXIT_WRITE_CR9: case SVM_EXIT_WRITE_CR10: case SVM_EXIT_WRITE_CR11:
2276 case SVM_EXIT_WRITE_CR12: case SVM_EXIT_WRITE_CR13: case SVM_EXIT_WRITE_CR14: case SVM_EXIT_WRITE_CR15:
2277 {
2278 Log2(("SVM: %RGv mov cr%d, \n", (RTGCPTR)pCtx->rip, exitCode - SVM_EXIT_WRITE_CR0));
2279 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCRxWrite[exitCode - SVM_EXIT_WRITE_CR0]);
2280 rc = EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0);
2281
2282 switch (exitCode - SVM_EXIT_WRITE_CR0)
2283 {
2284 case 0:
2285 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR0;
2286 break;
2287 case 2:
2288 break;
2289 case 3:
2290 Assert(!pVM->hm.s.fNestedPaging);
2291 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR3;
2292 break;
2293 case 4:
2294 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR4;
2295 break;
2296 case 8:
2297 break;
2298 default:
2299 AssertFailed();
2300 }
2301 if (rc == VINF_SUCCESS)
2302 {
2303 /* EIP has been updated already. */
2304 /* Only resume if successful. */
2305 goto ResumeExecution;
2306 }
2307 Assert(rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_PGM_SYNC_CR3);
2308 break;
2309 }
2310
2311 case SVM_EXIT_READ_CR0: case SVM_EXIT_READ_CR1: case SVM_EXIT_READ_CR2: case SVM_EXIT_READ_CR3:
2312 case SVM_EXIT_READ_CR4: case SVM_EXIT_READ_CR5: case SVM_EXIT_READ_CR6: case SVM_EXIT_READ_CR7:
2313 case SVM_EXIT_READ_CR8: case SVM_EXIT_READ_CR9: case SVM_EXIT_READ_CR10: case SVM_EXIT_READ_CR11:
2314 case SVM_EXIT_READ_CR12: case SVM_EXIT_READ_CR13: case SVM_EXIT_READ_CR14: case SVM_EXIT_READ_CR15:
2315 {
2316 Log2(("SVM: %RGv mov x, cr%d\n", (RTGCPTR)pCtx->rip, exitCode - SVM_EXIT_READ_CR0));
2317 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCRxRead[exitCode - SVM_EXIT_READ_CR0]);
2318 rc = EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0);
2319 if (rc == VINF_SUCCESS)
2320 {
2321 /* EIP has been updated already. */
2322 /* Only resume if successful. */
2323 goto ResumeExecution;
2324 }
2325 Assert(rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_PGM_SYNC_CR3);
2326 break;
2327 }
2328
2329 case SVM_EXIT_WRITE_DR0: case SVM_EXIT_WRITE_DR1: case SVM_EXIT_WRITE_DR2: case SVM_EXIT_WRITE_DR3:
2330 case SVM_EXIT_WRITE_DR4: case SVM_EXIT_WRITE_DR5: case SVM_EXIT_WRITE_DR6: case SVM_EXIT_WRITE_DR7:
2331 case SVM_EXIT_WRITE_DR8: case SVM_EXIT_WRITE_DR9: case SVM_EXIT_WRITE_DR10: case SVM_EXIT_WRITE_DR11:
2332 case SVM_EXIT_WRITE_DR12: case SVM_EXIT_WRITE_DR13: case SVM_EXIT_WRITE_DR14: case SVM_EXIT_WRITE_DR15:
2333 {
2334 Log2(("SVM: %RGv mov dr%d, x\n", (RTGCPTR)pCtx->rip, exitCode - SVM_EXIT_WRITE_DR0));
2335 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
2336
2337 if ( !DBGFIsStepping(pVCpu)
2338 && !CPUMIsHyperDebugStateActive(pVCpu))
2339 {
2340 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxContextSwitch);
2341
2342 /* Disable drx move intercepts. */
2343 pVMCB->ctrl.u16InterceptRdDRx = 0;
2344 pVMCB->ctrl.u16InterceptWrDRx = 0;
2345
2346 /* Save the host and load the guest debug state. */
2347 rc2 = CPUMR0LoadGuestDebugState(pVM, pVCpu, pCtx, false /* exclude DR6 */);
2348 AssertRC(rc2);
2349 goto ResumeExecution;
2350 }
2351
2352 rc = EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0);
2353 if (rc == VINF_SUCCESS)
2354 {
2355 /* EIP has been updated already. */
2356 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_DEBUG;
2357
2358 /* Only resume if successful. */
2359 goto ResumeExecution;
2360 }
2361 Assert(rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_PGM_SYNC_CR3);
2362 break;
2363 }
2364
2365 case SVM_EXIT_READ_DR0: case SVM_EXIT_READ_DR1: case SVM_EXIT_READ_DR2: case SVM_EXIT_READ_DR3:
2366 case SVM_EXIT_READ_DR4: case SVM_EXIT_READ_DR5: case SVM_EXIT_READ_DR6: case SVM_EXIT_READ_DR7:
2367 case SVM_EXIT_READ_DR8: case SVM_EXIT_READ_DR9: case SVM_EXIT_READ_DR10: case SVM_EXIT_READ_DR11:
2368 case SVM_EXIT_READ_DR12: case SVM_EXIT_READ_DR13: case SVM_EXIT_READ_DR14: case SVM_EXIT_READ_DR15:
2369 {
2370 Log2(("SVM: %RGv mov x, dr%d\n", (RTGCPTR)pCtx->rip, exitCode - SVM_EXIT_READ_DR0));
2371 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
2372
2373 if (!DBGFIsStepping(pVCpu))
2374 {
2375 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxContextSwitch);
2376
2377 /* Disable DRx move intercepts. */
2378 pVMCB->ctrl.u16InterceptRdDRx = 0;
2379 pVMCB->ctrl.u16InterceptWrDRx = 0;
2380
2381 /* Save the host and load the guest debug state. */
2382 rc2 = CPUMR0LoadGuestDebugState(pVM, pVCpu, pCtx, false /* exclude DR6 */);
2383 AssertRC(rc2);
2384 goto ResumeExecution;
2385 }
2386
2387 rc = EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0);
2388 if (rc == VINF_SUCCESS)
2389 {
2390 /* EIP has been updated already. */
2391 /* Only resume if successful. */
2392 goto ResumeExecution;
2393 }
2394 Assert(rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_PGM_SYNC_CR3);
2395 break;
2396 }
2397
2398 /* Note: We'll get a #GP if the IO instruction isn't allowed (IOPL or TSS bitmap); no need to double check. */
2399 case SVM_EXIT_IOIO: /* I/O instruction. */
2400 {
2401 SVM_IOIO_EXIT IoExitInfo;
2402
2403 IoExitInfo.au32[0] = pVMCB->ctrl.u64ExitInfo1;
2404 unsigned uIdx = (IoExitInfo.au32[0] >> 4) & 0x7;
2405 uint32_t uIOSize = g_aIOSize[uIdx];
2406 uint32_t uAndVal = g_aIOOpAnd[uIdx];
2407 if (RT_UNLIKELY(!uIOSize))
2408 {
2409 AssertFailed(); /* should be fatal. */
2410 rc = VINF_EM_RAW_EMULATE_INSTR; /** @todo r=ramshankar: would this really fall back to the recompiler and work? */
2411 break;
2412 }
2413
2414 if (IoExitInfo.n.u1STR)
2415 {
2416 /* ins/outs */
2417 PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
2418
2419 /* Disassemble manually to deal with segment prefixes. */
2420 rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, NULL);
2421 if (rc == VINF_SUCCESS)
2422 {
2423 if (IoExitInfo.n.u1Type == 0)
2424 {
2425 Log2(("IOMInterpretOUTSEx %RGv %x size=%d\n", (RTGCPTR)pCtx->rip, IoExitInfo.n.u16Port, uIOSize));
2426 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringWrite);
2427 rc = IOMInterpretOUTSEx(pVM, CPUMCTX2CORE(pCtx), IoExitInfo.n.u16Port, pDis->fPrefix,
2428 (DISCPUMODE)pDis->uAddrMode, uIOSize);
2429 }
2430 else
2431 {
2432 Log2(("IOMInterpretINSEx %RGv %x size=%d\n", (RTGCPTR)pCtx->rip, IoExitInfo.n.u16Port, uIOSize));
2433 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringRead);
2434 rc = IOMInterpretINSEx(pVM, CPUMCTX2CORE(pCtx), IoExitInfo.n.u16Port, pDis->fPrefix,
2435 (DISCPUMODE)pDis->uAddrMode, uIOSize);
2436 }
2437 }
2438 else
2439 rc = VINF_EM_RAW_EMULATE_INSTR;
2440 }
2441 else
2442 {
2443 /* Normal in/out */
2444 Assert(!IoExitInfo.n.u1REP);
2445
2446 if (IoExitInfo.n.u1Type == 0)
2447 {
2448 Log2(("IOMIOPortWrite %RGv %x %x size=%d\n", (RTGCPTR)pCtx->rip, IoExitInfo.n.u16Port, pCtx->eax & uAndVal,
2449 uIOSize));
2450 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOWrite);
2451 rc = IOMIOPortWrite(pVM, IoExitInfo.n.u16Port, pCtx->eax & uAndVal, uIOSize);
2452 if (rc == VINF_IOM_R3_IOPORT_WRITE)
2453 {
2454 HMR0SavePendingIOPortWrite(pVCpu, pCtx->rip, pVMCB->ctrl.u64ExitInfo2, IoExitInfo.n.u16Port,
2455 uAndVal, uIOSize);
2456 }
2457 }
2458 else
2459 {
2460 uint32_t u32Val = 0;
2461
2462 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIORead);
2463 rc = IOMIOPortRead(pVM, IoExitInfo.n.u16Port, &u32Val, uIOSize);
2464 if (IOM_SUCCESS(rc))
2465 {
2466 /* Write back to the EAX register. */
2467 pCtx->eax = (pCtx->eax & ~uAndVal) | (u32Val & uAndVal);
2468 Log2(("IOMIOPortRead %RGv %x %x size=%d\n", (RTGCPTR)pCtx->rip, IoExitInfo.n.u16Port, u32Val & uAndVal,
2469 uIOSize));
2470 }
2471 else if (rc == VINF_IOM_R3_IOPORT_READ)
2472 {
2473 HMR0SavePendingIOPortRead(pVCpu, pCtx->rip, pVMCB->ctrl.u64ExitInfo2, IoExitInfo.n.u16Port,
2474 uAndVal, uIOSize);
2475 }
2476 }
2477 }
2478
2479 /*
2480 * Handled the I/O return codes.
2481 * (The unhandled cases end up with rc == VINF_EM_RAW_EMULATE_INSTR.)
2482 */
2483 if (IOM_SUCCESS(rc))
2484 {
2485 /* Update EIP and continue execution. */
2486 pCtx->rip = pVMCB->ctrl.u64ExitInfo2; /* RIP/EIP of the next instruction is saved in EXITINFO2. */
2487 if (RT_LIKELY(rc == VINF_SUCCESS))
2488 {
2489 /* If any IO breakpoints are armed, then we should check if a debug trap needs to be generated. */
2490 if (pCtx->dr[7] & X86_DR7_ENABLED_MASK)
2491 {
2492 /* IO operation lookup arrays. */
2493 static uint32_t const aIOSize[4] = { 1, 2, 0, 4 };
2494
2495 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxIOCheck);
2496 for (unsigned i = 0; i < 4; i++)
2497 {
2498 unsigned uBPLen = aIOSize[X86_DR7_GET_LEN(pCtx->dr[7], i)];
2499
2500 if ( (IoExitInfo.n.u16Port >= pCtx->dr[i] && IoExitInfo.n.u16Port < pCtx->dr[i] + uBPLen)
2501 && (pCtx->dr[7] & (X86_DR7_L(i) | X86_DR7_G(i)))
2502 && (pCtx->dr[7] & X86_DR7_RW(i, X86_DR7_RW_IO)) == X86_DR7_RW(i, X86_DR7_RW_IO))
2503 {
2504 SVM_EVENT Event;
2505
2506 Assert(CPUMIsGuestDebugStateActive(pVCpu));
2507
2508 /* Clear all breakpoint status flags and set the one we just hit. */
2509 pCtx->dr[6] &= ~(X86_DR6_B0|X86_DR6_B1|X86_DR6_B2|X86_DR6_B3);
2510 pCtx->dr[6] |= (uint64_t)RT_BIT(i);
2511
2512 /*
2513 * Note: AMD64 Architecture Programmer's Manual 13.1:
2514 * Bits 15:13 of the DR6 register is never cleared by the processor and must be cleared
2515 * by software after the contents have been read.
2516 */
2517 pVMCB->guest.u64DR6 = pCtx->dr[6];
2518
2519 /* X86_DR7_GD will be cleared if drx accesses should be trapped inside the guest. */
2520 pCtx->dr[7] &= ~X86_DR7_GD;
2521
2522 /* Paranoia. */
2523 pCtx->dr[7] &= 0xffffffff; /* upper 32 bits reserved */
2524 pCtx->dr[7] &= ~(RT_BIT(11) | RT_BIT(12) | RT_BIT(14) | RT_BIT(15)); /* must be zero */
2525 pCtx->dr[7] |= 0x400; /* must be one */
2526
2527 pVMCB->guest.u64DR7 = pCtx->dr[7];
2528
2529 /* Inject the exception. */
2530 Log(("Inject IO debug trap at %RGv\n", (RTGCPTR)pCtx->rip));
2531
2532 Event.au64[0] = 0;
2533 Event.n.u3Type = SVM_EVENT_EXCEPTION; /* trap or fault */
2534 Event.n.u1Valid = 1;
2535 Event.n.u8Vector = X86_XCPT_DB;
2536
2537 hmR0SvmInjectEvent(pVCpu, pVMCB, pCtx, &Event);
2538 goto ResumeExecution;
2539 }
2540 }
2541 }
2542 goto ResumeExecution;
2543 }
2544 Log2(("EM status from IO at %RGv %x size %d: %Rrc\n", (RTGCPTR)pCtx->rip, IoExitInfo.n.u16Port, uIOSize,
2545 VBOXSTRICTRC_VAL(rc)));
2546 break;
2547 }
2548
2549#ifdef VBOX_STRICT
2550 if (rc == VINF_IOM_R3_IOPORT_READ)
2551 Assert(IoExitInfo.n.u1Type != 0);
2552 else if (rc == VINF_IOM_R3_IOPORT_WRITE)
2553 Assert(IoExitInfo.n.u1Type == 0);
2554 else
2555 {
2556 AssertMsg( RT_FAILURE(rc)
2557 || rc == VINF_EM_RAW_EMULATE_INSTR
2558 || rc == VINF_EM_RAW_GUEST_TRAP
2559 || rc == VINF_TRPM_XCPT_DISPATCHED, ("%Rrc\n", VBOXSTRICTRC_VAL(rc)));
2560 }
2561#endif
2562 Log2(("Failed IO at %RGv %x size %d\n", (RTGCPTR)pCtx->rip, IoExitInfo.n.u16Port, uIOSize));
2563 break;
2564 }
2565
2566 case SVM_EXIT_HLT:
2567 /* Check if external interrupts are pending; if so, don't switch back. */
2568 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitHlt);
2569 pCtx->rip++; /* skip hlt */
2570 if (EMShouldContinueAfterHalt(pVCpu, pCtx))
2571 goto ResumeExecution;
2572
2573 rc = VINF_EM_HALT;
2574 break;
2575
2576 case SVM_EXIT_MWAIT_UNCOND:
2577 Log2(("SVM: mwait\n"));
2578 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMwait);
2579 rc = EMInterpretMWait(pVM, pVCpu, CPUMCTX2CORE(pCtx));
2580 if ( rc == VINF_EM_HALT
2581 || rc == VINF_SUCCESS)
2582 {
2583 /* Update EIP and continue execution. */
2584 pCtx->rip += 3; /* Note: hardcoded opcode size assumption! */
2585
2586 /* Check if external interrupts are pending; if so, don't switch back. */
2587 if ( rc == VINF_SUCCESS
2588 || ( rc == VINF_EM_HALT
2589 && EMShouldContinueAfterHalt(pVCpu, pCtx))
2590 )
2591 goto ResumeExecution;
2592 }
2593 AssertMsg(rc == VERR_EM_INTERPRETER || rc == VINF_EM_HALT, ("EMU: mwait failed with %Rrc\n", VBOXSTRICTRC_VAL(rc)));
2594 break;
2595
2596 case SVM_EXIT_MONITOR:
2597 {
2598 Log2(("SVM: monitor\n"));
2599
2600 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMonitor);
2601 rc = EMInterpretMonitor(pVM, pVCpu, CPUMCTX2CORE(pCtx));
2602 if (rc == VINF_SUCCESS)
2603 {
2604 /* Update EIP and continue execution. */
2605 pCtx->rip += 3; /* Note: hardcoded opcode size assumption! */
2606 goto ResumeExecution;
2607 }
2608 AssertMsg(rc == VERR_EM_INTERPRETER, ("EMU: monitor failed with %Rrc\n", VBOXSTRICTRC_VAL(rc)));
2609 break;
2610 }
2611
2612 case SVM_EXIT_VMMCALL:
2613 rc = hmR0SvmEmulateTprVMMCall(pVM, pVCpu, pCtx);
2614 if (rc == VINF_SUCCESS)
2615 {
2616 goto ResumeExecution; /* rip already updated. */
2617 }
2618 /* no break */
2619
2620 case SVM_EXIT_RSM:
2621 case SVM_EXIT_INVLPGA:
2622 case SVM_EXIT_VMRUN:
2623 case SVM_EXIT_VMLOAD:
2624 case SVM_EXIT_VMSAVE:
2625 case SVM_EXIT_STGI:
2626 case SVM_EXIT_CLGI:
2627 case SVM_EXIT_SKINIT:
2628 {
2629 /* Unsupported instructions. */
2630 SVM_EVENT Event;
2631
2632 Event.au64[0] = 0;
2633 Event.n.u3Type = SVM_EVENT_EXCEPTION;
2634 Event.n.u1Valid = 1;
2635 Event.n.u8Vector = X86_XCPT_UD;
2636
2637 Log(("Forced #UD trap at %RGv\n", (RTGCPTR)pCtx->rip));
2638 hmR0SvmInjectEvent(pVCpu, pVMCB, pCtx, &Event);
2639 goto ResumeExecution;
2640 }
2641
2642 /* Emulate in ring-3. */
2643 case SVM_EXIT_MSR:
2644 {
2645 /* When an interrupt is pending, we'll let MSR_K8_LSTAR writes fault in our TPR patch code. */
2646 if ( pVM->hm.s.fTPRPatchingActive
2647 && pCtx->ecx == MSR_K8_LSTAR
2648 && pVMCB->ctrl.u64ExitInfo1 == 1 /* wrmsr */)
2649 {
2650 if ((pCtx->eax & 0xff) != u8LastTPR)
2651 {
2652 Log(("SVM: Faulting MSR_K8_LSTAR write with new TPR value %x\n", pCtx->eax & 0xff));
2653
2654 /* Our patch code uses LSTAR for TPR caching. */
2655 rc2 = PDMApicSetTPR(pVCpu, pCtx->eax & 0xff);
2656 AssertRC(rc2);
2657 }
2658
2659 /* Skip the instruction and continue. */
2660 pCtx->rip += 2; /* wrmsr = [0F 30] */
2661
2662 /* Only resume if successful. */
2663 goto ResumeExecution;
2664 }
2665
2666 /*
2667 * The Intel spec. claims there's an REX version of RDMSR that's slightly different,
2668 * so we play safe by completely disassembling the instruction.
2669 */
2670 STAM_COUNTER_INC((pVMCB->ctrl.u64ExitInfo1 == 0) ? &pVCpu->hm.s.StatExitRdmsr : &pVCpu->hm.s.StatExitWrmsr);
2671 Log(("SVM: %s\n", (pVMCB->ctrl.u64ExitInfo1 == 0) ? "rdmsr" : "wrmsr"));
2672 rc = EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0);
2673 if (rc == VINF_SUCCESS)
2674 {
2675 /* EIP has been updated already. */
2676 /* Only resume if successful. */
2677 goto ResumeExecution;
2678 }
2679 AssertMsg(rc == VERR_EM_INTERPRETER, ("EMU: %s failed with %Rrc\n", (pVMCB->ctrl.u64ExitInfo1 == 0) ? "rdmsr" : "wrmsr",
2680 VBOXSTRICTRC_VAL(rc)));
2681 break;
2682 }
2683
2684 case SVM_EXIT_TASK_SWITCH: /* too complicated to emulate, so fall back to the recompiler */
2685 Log(("SVM_EXIT_TASK_SWITCH: exit2=%RX64\n", pVMCB->ctrl.u64ExitInfo2));
2686 if ( !(pVMCB->ctrl.u64ExitInfo2 & (SVM_EXIT2_TASK_SWITCH_IRET | SVM_EXIT2_TASK_SWITCH_JMP))
2687 && pVCpu->hm.s.Event.fPending)
2688 {
2689 SVM_EVENT Event;
2690 Event.au64[0] = pVCpu->hm.s.Event.intInfo;
2691
2692 /* Caused by an injected interrupt. */
2693 pVCpu->hm.s.Event.fPending = false;
2694 switch (Event.n.u3Type)
2695 {
2696 case SVM_EVENT_EXTERNAL_IRQ:
2697 case SVM_EVENT_NMI:
2698 Log(("SVM_EXIT_TASK_SWITCH: reassert trap %d\n", Event.n.u8Vector));
2699 Assert(!Event.n.u1ErrorCodeValid);
2700 rc2 = TRPMAssertTrap(pVCpu, Event.n.u8Vector, TRPM_HARDWARE_INT);
2701 AssertRC(rc2);
2702 break;
2703
2704 default:
2705 /* Exceptions and software interrupts can just be restarted. */
2706 break;
2707 }
2708 }
2709 rc = VERR_EM_INTERPRETER;
2710 break;
2711
2712 case SVM_EXIT_PAUSE:
2713 case SVM_EXIT_MWAIT_ARMED:
2714 rc = VERR_EM_INTERPRETER;
2715 break;
2716
2717 case SVM_EXIT_SHUTDOWN:
2718 rc = VINF_EM_RESET; /* Triple fault equals a reset. */
2719 break;
2720
2721 case SVM_EXIT_IDTR_READ:
2722 case SVM_EXIT_GDTR_READ:
2723 case SVM_EXIT_LDTR_READ:
2724 case SVM_EXIT_TR_READ:
2725 case SVM_EXIT_IDTR_WRITE:
2726 case SVM_EXIT_GDTR_WRITE:
2727 case SVM_EXIT_LDTR_WRITE:
2728 case SVM_EXIT_TR_WRITE:
2729 case SVM_EXIT_CR0_SEL_WRITE:
2730 default:
2731 /* Unexpected exit codes. */
2732 rc = VERR_HMSVM_UNEXPECTED_EXIT;
2733 AssertMsgFailed(("Unexpected exit code %x\n", exitCode)); /* Can't happen. */
2734 break;
2735 }
2736
2737end:
2738
2739 /*
2740 * We are now going back to ring-3, so clear the forced action flag.
2741 */
2742 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TO_R3);
2743
2744 /*
2745 * Signal changes to the recompiler.
2746 */
2747 CPUMSetChangedFlags(pVCpu,
2748 CPUM_CHANGED_SYSENTER_MSR
2749 | CPUM_CHANGED_LDTR
2750 | CPUM_CHANGED_GDTR
2751 | CPUM_CHANGED_IDTR
2752 | CPUM_CHANGED_TR
2753 | CPUM_CHANGED_HIDDEN_SEL_REGS);
2754
2755 /*
2756 * If we executed vmrun and an external IRQ was pending, then we don't have to do a full sync the next time.
2757 */
2758 if (exitCode == SVM_EXIT_INTR)
2759 {
2760 STAM_COUNTER_INC(&pVCpu->hm.s.StatPendingHostIrq);
2761 /* On the next entry we'll only sync the host context. */
2762 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_HOST_CONTEXT;
2763 }
2764 else
2765 {
2766 /* On the next entry we'll sync everything. */
2767 /** @todo we can do better than this */
2768 /* Not in the VINF_PGM_CHANGE_MODE though! */
2769 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_ALL;
2770 }
2771
2772 /* Translate into a less severe return code */
2773 if (rc == VERR_EM_INTERPRETER)
2774 rc = VINF_EM_RAW_EMULATE_INSTR;
2775
2776 /* Just set the correct state here instead of trying to catch every goto above. */
2777 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED, VMCPUSTATE_STARTED_EXEC);
2778
2779#ifdef VBOX_WITH_VMMR0_DISABLE_PREEMPTION
2780 /* Restore interrupts if we exitted after disabling them. */
2781 if (uOldEFlags != ~(RTCCUINTREG)0)
2782 ASMSetFlags(uOldEFlags);
2783#endif
2784
2785 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2, x);
2786 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit1, x);
2787 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
2788 return VBOXSTRICTRC_TODO(rc);
2789}
2790
2791
2792/**
2793 * Emulate simple mov tpr instruction.
2794 *
2795 * @returns VBox status code.
2796 * @param pVM Pointer to the VM.
2797 * @param pVCpu Pointer to the VMCPU.
2798 * @param pCtx Pointer to the guest CPU context.
2799 */
2800static int hmR0SvmEmulateTprVMMCall(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
2801{
2802 int rc;
2803
2804 LogFlow(("Emulated VMMCall TPR access replacement at %RGv\n", pCtx->rip));
2805
2806 for (;;)
2807 {
2808 bool fPending;
2809 uint8_t u8Tpr;
2810
2811 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
2812 if (!pPatch)
2813 break;
2814
2815 switch (pPatch->enmType)
2816 {
2817 case HMTPRINSTR_READ:
2818 /* TPR caching in CR8 */
2819 rc = PDMApicGetTPR(pVCpu, &u8Tpr, &fPending);
2820 AssertRC(rc);
2821
2822 rc = DISWriteReg32(CPUMCTX2CORE(pCtx), pPatch->uDstOperand, u8Tpr);
2823 AssertRC(rc);
2824
2825 LogFlow(("Emulated read successfully\n"));
2826 pCtx->rip += pPatch->cbOp;
2827 break;
2828
2829 case HMTPRINSTR_WRITE_REG:
2830 case HMTPRINSTR_WRITE_IMM:
2831 /* Fetch the new TPR value */
2832 if (pPatch->enmType == HMTPRINSTR_WRITE_REG)
2833 {
2834 uint32_t val;
2835
2836 rc = DISFetchReg32(CPUMCTX2CORE(pCtx), pPatch->uSrcOperand, &val);
2837 AssertRC(rc);
2838 u8Tpr = val;
2839 }
2840 else
2841 u8Tpr = (uint8_t)pPatch->uSrcOperand;
2842
2843 rc = PDMApicSetTPR(pVCpu, u8Tpr);
2844 AssertRC(rc);
2845 LogFlow(("Emulated write successfully\n"));
2846 pCtx->rip += pPatch->cbOp;
2847 break;
2848
2849 default:
2850 AssertMsgFailedReturn(("Unexpected type %d\n", pPatch->enmType), VERR_HMSVM_UNEXPECTED_PATCH_TYPE);
2851 }
2852 }
2853 return VINF_SUCCESS;
2854}
2855
2856
2857/**
2858 * Enters the AMD-V session.
2859 *
2860 * @returns VBox status code.
2861 * @param pVM Pointer to the VM.
2862 * @param pVCpu Pointer to the VMCPU.
2863 * @param pCpu Pointer to the CPU info struct.
2864 */
2865VMMR0DECL(int) SVMR0Enter(PVM pVM, PVMCPU pVCpu, PHMGLOBLCPUINFO pCpu)
2866{
2867 Assert(pVM->hm.s.svm.fSupported);
2868
2869 LogFlow(("SVMR0Enter cpu%d last=%d asid=%d\n", pCpu->idCpu, pVCpu->hm.s.idLastCpu, pVCpu->hm.s.uCurrentASID));
2870 pVCpu->hm.s.fResumeVM = false;
2871
2872 /* Force to reload LDTR, so we'll execute VMLoad to load additional guest state. */
2873 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_LDTR;
2874
2875 return VINF_SUCCESS;
2876}
2877
2878
2879/**
2880 * Leaves the AMD-V session.
2881 *
2882 * @returns VBox status code.
2883 * @param pVM Pointer to the VM.
2884 * @param pVCpu Pointer to the VMCPU.
2885 * @param pCtx Pointer to the guest CPU context.
2886 */
2887VMMR0DECL(int) SVMR0Leave(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
2888{
2889 SVM_VMCB *pVMCB = (SVM_VMCB *)pVCpu->hm.s.svm.pVMCB;
2890
2891 Assert(pVM->hm.s.svm.fSupported);
2892
2893#ifdef DEBUG
2894 if (CPUMIsHyperDebugStateActive(pVCpu))
2895 {
2896 CPUMR0LoadHostDebugState(pVM, pVCpu);
2897 }
2898 else
2899#endif
2900 /* Save the guest debug state if necessary. */
2901 if (CPUMIsGuestDebugStateActive(pVCpu))
2902 {
2903 CPUMR0SaveGuestDebugState(pVM, pVCpu, pCtx, false /* skip DR6 */);
2904
2905 /* Intercept all DRx reads and writes again. Changed later on. */
2906 pVMCB->ctrl.u16InterceptRdDRx = 0xFFFF;
2907 pVMCB->ctrl.u16InterceptWrDRx = 0xFFFF;
2908
2909 /* Resync the debug registers the next time. */
2910 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_DEBUG;
2911 }
2912 else
2913 Assert(pVMCB->ctrl.u16InterceptRdDRx == 0xFFFF && pVMCB->ctrl.u16InterceptWrDRx == 0xFFFF);
2914
2915 return VINF_SUCCESS;
2916}
2917
2918
2919/**
2920 * Worker for Interprets INVLPG.
2921 *
2922 * @return VBox status code.
2923 * @param pVCpu Pointer to the VMCPU.
2924 * @param pCpu Pointer to the CPU info struct.
2925 * @param pRegFrame Pointer to the register frame.
2926 */
2927static int hmR0svmInterpretInvlPgEx(PVMCPU pVCpu, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame)
2928{
2929 DISQPVPARAMVAL param1;
2930 RTGCPTR addr;
2931
2932 int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->Param1, &param1, DISQPVWHICH_SRC);
2933 if (RT_FAILURE(rc))
2934 return VERR_EM_INTERPRETER;
2935
2936 switch (param1.type)
2937 {
2938 case DISQPV_TYPE_IMMEDIATE:
2939 case DISQPV_TYPE_ADDRESS:
2940 if (!(param1.flags & (DISQPV_FLAG_32 | DISQPV_FLAG_64)))
2941 return VERR_EM_INTERPRETER;
2942 addr = param1.val.val64;
2943 break;
2944
2945 default:
2946 return VERR_EM_INTERPRETER;
2947 }
2948
2949 /** @todo is addr always a flat linear address or ds based
2950 * (in absence of segment override prefixes)????
2951 */
2952 rc = PGMInvalidatePage(pVCpu, addr);
2953 if (RT_SUCCESS(rc))
2954 return VINF_SUCCESS;
2955
2956 AssertRC(rc);
2957 return rc;
2958}
2959
2960
2961/**
2962 * Interprets INVLPG.
2963 *
2964 * @returns VBox status code.
2965 * @retval VINF_* Scheduling instructions.
2966 * @retval VERR_EM_INTERPRETER Something we can't cope with.
2967 * @retval VERR_* Fatal errors.
2968 *
2969 * @param pVM Pointer to the VM.
2970 * @param pRegFrame Pointer to the register frame.
2971 *
2972 * @remarks Updates the EIP if an instruction was executed successfully.
2973 */
2974static int hmR0SvmInterpretInvlpg(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame)
2975{
2976 /*
2977 * Only allow 32 & 64 bit code.
2978 */
2979 if (CPUMGetGuestCodeBits(pVCpu) != 16)
2980 {
2981 PDISSTATE pDis = &pVCpu->hm.s.DisState;
2982 int rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, NULL);
2983 if (RT_SUCCESS(rc) && pDis->pCurInstr->uOpcode == OP_INVLPG)
2984 {
2985 rc = hmR0svmInterpretInvlPgEx(pVCpu, pDis, pRegFrame);
2986 if (RT_SUCCESS(rc))
2987 pRegFrame->rip += pDis->cbInstr; /* Move on to the next instruction. */
2988 return rc;
2989 }
2990 }
2991 return VERR_EM_INTERPRETER;
2992}
2993
2994
2995/**
2996 * Invalidates a guest page by guest virtual address.
2997 *
2998 * @returns VBox status code.
2999 * @param pVM Pointer to the VM.
3000 * @param pVCpu Pointer to the VMCPU.
3001 * @param GCVirt Guest virtual address of the page to invalidate.
3002 */
3003VMMR0DECL(int) SVMR0InvalidatePage(PVM pVM, PVMCPU pVCpu, RTGCPTR GCVirt)
3004{
3005 bool fFlushPending = pVM->hm.s.svm.fAlwaysFlushTLB | VMCPU_FF_ISSET(pVCpu, VMCPU_FF_TLB_FLUSH);
3006
3007 /* Skip it if a TLB flush is already pending. */
3008 if (!fFlushPending)
3009 {
3010 SVM_VMCB *pVMCB;
3011
3012 Log2(("SVMR0InvalidatePage %RGv\n", GCVirt));
3013 AssertReturn(pVM, VERR_INVALID_PARAMETER);
3014 Assert(pVM->hm.s.svm.fSupported);
3015
3016 pVMCB = (SVM_VMCB *)pVCpu->hm.s.svm.pVMCB;
3017 AssertMsgReturn(pVMCB, ("Invalid pVMCB\n"), VERR_HMSVM_INVALID_PVMCB);
3018
3019#if HC_ARCH_BITS == 32
3020 /* If we get a flush in 64 bits guest mode, then force a full TLB flush. Invlpga takes only 32 bits addresses. */
3021 if (CPUMIsGuestInLongMode(pVCpu))
3022 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
3023 else
3024#endif
3025 SVMR0InvlpgA(GCVirt, pVMCB->ctrl.TLBCtrl.n.u32ASID);
3026 }
3027 return VINF_SUCCESS;
3028}
3029
3030
3031#if 0 /* obsolete, but left here for clarification. */
3032/**
3033 * Invalidates a guest page by physical address.
3034 *
3035 * @returns VBox status code.
3036 * @param pVM Pointer to the VM.
3037 * @param pVCpu Pointer to the VMCPU.
3038 * @param GCPhys Guest physical address of the page to invalidate.
3039 */
3040VMMR0DECL(int) SVMR0InvalidatePhysPage(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys)
3041{
3042 Assert(pVM->hm.s.fNestedPaging);
3043 /* invlpga only invalidates TLB entries for guest virtual addresses; we have no choice but to force a TLB flush here. */
3044 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
3045 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTLBInvlpga);
3046 return VINF_SUCCESS;
3047}
3048#endif
3049
3050
3051#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
3052/**
3053 * Prepares for and executes VMRUN (64-bit guests from a 32-bit host).
3054 *
3055 * @returns VBox status code.
3056 * @param pVMCBHostPhys Physical address of host VMCB.
3057 * @param pVMCBPhys Physical address of the VMCB.
3058 * @param pCtx Pointer to the guest CPU context.
3059 * @param pVM Pointer to the VM.
3060 * @param pVCpu Pointer to the VMCPU.
3061 */
3062DECLASM(int) SVMR0VMSwitcherRun64(RTHCPHYS pVMCBHostPhys, RTHCPHYS pVMCBPhys, PCPUMCTX pCtx, PVM pVM, PVMCPU pVCpu)
3063{
3064 uint32_t aParam[4];
3065
3066 aParam[0] = (uint32_t)(pVMCBHostPhys); /* Param 1: pVMCBHostPhys - Lo. */
3067 aParam[1] = (uint32_t)(pVMCBHostPhys >> 32); /* Param 1: pVMCBHostPhys - Hi. */
3068 aParam[2] = (uint32_t)(pVMCBPhys); /* Param 2: pVMCBPhys - Lo. */
3069 aParam[3] = (uint32_t)(pVMCBPhys >> 32); /* Param 2: pVMCBPhys - Hi. */
3070
3071 return SVMR0Execute64BitsHandler(pVM, pVCpu, pCtx, pVM->hm.s.pfnSVMGCVMRun64, 4, &aParam[0]);
3072}
3073
3074
3075/**
3076 * Executes the specified handler in 64-bit mode.
3077 *
3078 * @returns VBox status code.
3079 * @param pVM Pointer to the VM.
3080 * @param pVCpu Pointer to the VMCPU.
3081 * @param pCtx Pointer to the guest CPU context.
3082 * @param pfnHandler Pointer to the RC handler function.
3083 * @param cbParam Number of parameters.
3084 * @param paParam Array of 32-bit parameters.
3085 */
3086VMMR0DECL(int) SVMR0Execute64BitsHandler(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, RTRCPTR pfnHandler, uint32_t cbParam,
3087 uint32_t *paParam)
3088{
3089 int rc;
3090 RTHCUINTREG uOldEFlags;
3091
3092 Assert(pfnHandler);
3093
3094 /* Disable interrupts. */
3095 uOldEFlags = ASMIntDisableFlags();
3096
3097#ifdef VBOX_WITH_VMMR0_DISABLE_LAPIC_NMI
3098 RTCPUID idHostCpu = RTMpCpuId();
3099 CPUMR0SetLApic(pVM, idHostCpu);
3100#endif
3101
3102 CPUMSetHyperESP(pVCpu, VMMGetStackRC(pVCpu));
3103 CPUMSetHyperEIP(pVCpu, pfnHandler);
3104 for (int i = (int)cbParam - 1; i >= 0; i--)
3105 CPUMPushHyper(pVCpu, paParam[i]);
3106
3107 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatWorldSwitch3264, z);
3108 /* Call switcher. */
3109 rc = pVM->hm.s.pfnHost32ToGuest64R0(pVM, RT_OFFSETOF(VM, aCpus[pVCpu->idCpu].cpum) - RT_OFFSETOF(VM, cpum));
3110 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatWorldSwitch3264, z);
3111
3112 ASMSetFlags(uOldEFlags);
3113 return rc;
3114}
3115
3116#endif /* HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) */
3117
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette