/* $Id: HWVMXR0.cpp 10667 2008-07-15 14:52:51Z vboxsync $ */ /** @file * HWACCM VMX - Host Context Ring 0. */ /* * Copyright (C) 2006-2007 Sun Microsystems, Inc. * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa * Clara, CA 95054 USA or visit http://www.sun.com if you need * additional information or have any questions. */ /******************************************************************************* * Header Files * *******************************************************************************/ #define LOG_GROUP LOG_GROUP_HWACCM #include #include "HWACCMInternal.h" #include #include #include #include #include #include #include #include #include #include #include #include #include "HWVMXR0.h" /* IO operation lookup arrays. */ static uint32_t aIOSize[4] = {1, 2, 0, 4}; static uint32_t aIOOpAnd[4] = {0xff, 0xffff, 0, 0xffffffff}; static void VMXR0CheckError(PVM pVM, int rc) { if (rc == VERR_VMX_GENERIC) { RTCCUINTREG instrError; VMXReadVMCS(VMX_VMCS_RO_VM_INSTR_ERROR, &instrError); pVM->hwaccm.s.vmx.ulLastInstrError = instrError; } pVM->hwaccm.s.lLastError = rc; } /** * Sets up and activates VT-x on the current CPU * * @returns VBox status code. * @param pCpu CPU info struct * @param pVM The VM to operate on. * @param pvPageCpu Pointer to the global cpu page * @param pPageCpuPhys Physical address of the global cpu page */ HWACCMR0DECL(int) VMXR0EnableCpu(PHWACCM_CPUINFO pCpu, PVM pVM, void *pvPageCpu, RTHCPHYS pPageCpuPhys) { AssertReturn(pPageCpuPhys, VERR_INVALID_PARAMETER); AssertReturn(pVM, VERR_INVALID_PARAMETER); AssertReturn(pvPageCpu, VERR_INVALID_PARAMETER); /* Setup Intel VMX. */ Assert(pVM->hwaccm.s.vmx.fSupported); #ifdef LOG_ENABLED SUPR0Printf("VMXR0EnableCpu cpu %d page (%x) %x\n", pCpu->idCpu, pvPageCpu, (uint32_t)pPageCpuPhys); #endif /* Set revision dword at the beginning of the VMXON structure. */ *(uint32_t *)pvPageCpu = MSR_IA32_VMX_BASIC_INFO_VMCS_ID(pVM->hwaccm.s.vmx.msr.vmx_basic_info); /* @todo we should unmap the two pages from the virtual address space in order to prevent accidental corruption. * (which can have very bad consequences!!!) */ /* Make sure the VMX instructions don't cause #UD faults. */ ASMSetCR4(ASMGetCR4() | X86_CR4_VMXE); /* Enter VMX Root Mode */ int rc = VMXEnable(pPageCpuPhys); if (VBOX_FAILURE(rc)) { VMXR0CheckError(pVM, rc); ASMSetCR4(ASMGetCR4() & ~X86_CR4_VMXE); return VERR_VMX_VMXON_FAILED; } return VINF_SUCCESS; } /** * Deactivates VT-x on the current CPU * * @returns VBox status code. * @param pCpu CPU info struct * @param pvPageCpu Pointer to the global cpu page * @param pPageCpuPhys Physical address of the global cpu page */ HWACCMR0DECL(int) VMXR0DisableCpu(PHWACCM_CPUINFO pCpu, void *pvPageCpu, RTHCPHYS pPageCpuPhys) { AssertReturn(pPageCpuPhys, VERR_INVALID_PARAMETER); AssertReturn(pvPageCpu, VERR_INVALID_PARAMETER); /* Leave VMX Root Mode. */ VMXDisable(); /* And clear the X86_CR4_VMXE bit */ ASMSetCR4(ASMGetCR4() & ~X86_CR4_VMXE); #ifdef LOG_ENABLED SUPR0Printf("VMXR0DisableCpu cpu %d\n", pCpu->idCpu); #endif return VINF_SUCCESS; } /** * Does Ring-0 per VM VT-x init. * * @returns VBox status code. * @param pVM The VM to operate on. */ HWACCMR0DECL(int) VMXR0InitVM(PVM pVM) { int rc; #ifdef LOG_ENABLED SUPR0Printf("VMXR0InitVM %x\n", pVM); #endif pVM->hwaccm.s.vmx.pMemObjVMCS = NIL_RTR0MEMOBJ; pVM->hwaccm.s.vmx.pMemObjAPIC = NIL_RTR0MEMOBJ; pVM->hwaccm.s.vmx.pMemObjRealModeTSS = NIL_RTR0MEMOBJ; /* Allocate one page for the VM control structure (VMCS). */ rc = RTR0MemObjAllocCont(&pVM->hwaccm.s.vmx.pMemObjVMCS, 1 << PAGE_SHIFT, true /* executable R0 mapping */); AssertRC(rc); if (RT_FAILURE(rc)) return rc; pVM->hwaccm.s.vmx.pVMCS = RTR0MemObjAddress(pVM->hwaccm.s.vmx.pMemObjVMCS); pVM->hwaccm.s.vmx.pVMCSPhys = RTR0MemObjGetPagePhysAddr(pVM->hwaccm.s.vmx.pMemObjVMCS, 0); ASMMemZero32(pVM->hwaccm.s.vmx.pVMCS, PAGE_SIZE); /* Allocate one page for the TSS we need for real mode emulation. */ rc = RTR0MemObjAllocCont(&pVM->hwaccm.s.vmx.pMemObjRealModeTSS, 1 << PAGE_SHIFT, true /* executable R0 mapping */); AssertRC(rc); if (RT_FAILURE(rc)) return rc; pVM->hwaccm.s.vmx.pRealModeTSS = (PVBOXTSS)RTR0MemObjAddress(pVM->hwaccm.s.vmx.pMemObjRealModeTSS); pVM->hwaccm.s.vmx.pRealModeTSSPhys = RTR0MemObjGetPagePhysAddr(pVM->hwaccm.s.vmx.pMemObjRealModeTSS, 0); /* The I/O bitmap starts right after the virtual interrupt redirection bitmap. Outside the TSS on purpose; the CPU will not check it * for I/O operations. */ ASMMemZero32(pVM->hwaccm.s.vmx.pRealModeTSS, PAGE_SIZE); pVM->hwaccm.s.vmx.pRealModeTSS->offIoBitmap = sizeof(*pVM->hwaccm.s.vmx.pRealModeTSS); /* Bit set to 0 means redirection enabled. */ memset(pVM->hwaccm.s.vmx.pRealModeTSS->IntRedirBitmap, 0x0, sizeof(pVM->hwaccm.s.vmx.pRealModeTSS->IntRedirBitmap)); if (pVM->hwaccm.s.vmx.msr.vmx_proc_ctls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_USE_TPR_SHADOW) { /* Allocate one page for the virtual APIC mmio cache. */ rc = RTR0MemObjAllocCont(&pVM->hwaccm.s.vmx.pMemObjAPIC, 1 << PAGE_SHIFT, true /* executable R0 mapping */); AssertRC(rc); if (RT_FAILURE(rc)) return rc; pVM->hwaccm.s.vmx.pAPIC = (uint8_t *)RTR0MemObjAddress(pVM->hwaccm.s.vmx.pMemObjAPIC); pVM->hwaccm.s.vmx.pAPICPhys = RTR0MemObjGetPagePhysAddr(pVM->hwaccm.s.vmx.pMemObjAPIC, 0); ASMMemZero32(pVM->hwaccm.s.vmx.pAPIC, PAGE_SIZE); } else { pVM->hwaccm.s.vmx.pMemObjAPIC = 0; pVM->hwaccm.s.vmx.pAPIC = 0; pVM->hwaccm.s.vmx.pAPICPhys = 0; } #ifdef LOG_ENABLED SUPR0Printf("VMXR0InitVM %x VMCS=%x (%x) RealModeTSS=%x (%x)\n", pVM, pVM->hwaccm.s.vmx.pVMCS, (uint32_t)pVM->hwaccm.s.vmx.pVMCSPhys, pVM->hwaccm.s.vmx.pRealModeTSS, (uint32_t)pVM->hwaccm.s.vmx.pRealModeTSSPhys); #endif return VINF_SUCCESS; } /** * Does Ring-0 per VM VT-x termination. * * @returns VBox status code. * @param pVM The VM to operate on. */ HWACCMR0DECL(int) VMXR0TermVM(PVM pVM) { if (pVM->hwaccm.s.vmx.pMemObjVMCS != NIL_RTR0MEMOBJ) { RTR0MemObjFree(pVM->hwaccm.s.vmx.pMemObjVMCS, false); pVM->hwaccm.s.vmx.pMemObjVMCS = NIL_RTR0MEMOBJ; pVM->hwaccm.s.vmx.pVMCS = 0; pVM->hwaccm.s.vmx.pVMCSPhys = 0; } if (pVM->hwaccm.s.vmx.pMemObjRealModeTSS != NIL_RTR0MEMOBJ) { RTR0MemObjFree(pVM->hwaccm.s.vmx.pMemObjRealModeTSS, false); pVM->hwaccm.s.vmx.pMemObjRealModeTSS = NIL_RTR0MEMOBJ; pVM->hwaccm.s.vmx.pRealModeTSS = 0; pVM->hwaccm.s.vmx.pRealModeTSSPhys = 0; } if (pVM->hwaccm.s.vmx.pMemObjAPIC != NIL_RTR0MEMOBJ) { RTR0MemObjFree(pVM->hwaccm.s.vmx.pMemObjAPIC, false); pVM->hwaccm.s.vmx.pMemObjAPIC = NIL_RTR0MEMOBJ; pVM->hwaccm.s.vmx.pAPIC = 0; pVM->hwaccm.s.vmx.pAPICPhys = 0; } return VINF_SUCCESS; } /** * Sets up VT-x for the specified VM * * @returns VBox status code. * @param pVM The VM to operate on. */ HWACCMR0DECL(int) VMXR0SetupVM(PVM pVM) { int rc = VINF_SUCCESS; uint32_t val; AssertReturn(pVM, VERR_INVALID_PARAMETER); Assert(pVM->hwaccm.s.vmx.pVMCS); /* Set revision dword at the beginning of the VMCS structure. */ *(uint32_t *)pVM->hwaccm.s.vmx.pVMCS = MSR_IA32_VMX_BASIC_INFO_VMCS_ID(pVM->hwaccm.s.vmx.msr.vmx_basic_info); /* Clear VM Control Structure. */ Log(("pVMCSPhys = %VHp\n", pVM->hwaccm.s.vmx.pVMCSPhys)); rc = VMXClearVMCS(pVM->hwaccm.s.vmx.pVMCSPhys); if (VBOX_FAILURE(rc)) goto vmx_end; /* Activate the VM Control Structure. */ rc = VMXActivateVMCS(pVM->hwaccm.s.vmx.pVMCSPhys); if (VBOX_FAILURE(rc)) goto vmx_end; /* VMX_VMCS_CTRL_PIN_EXEC_CONTROLS * Set required bits to one and zero according to the MSR capabilities. */ val = pVM->hwaccm.s.vmx.msr.vmx_pin_ctls.n.disallowed0; /* External and non-maskable interrupts cause VM-exits. */ val = val | VMX_VMCS_CTRL_PIN_EXEC_CONTROLS_EXT_INT_EXIT | VMX_VMCS_CTRL_PIN_EXEC_CONTROLS_NMI_EXIT; val &= pVM->hwaccm.s.vmx.msr.vmx_pin_ctls.n.allowed1; rc = VMXWriteVMCS(VMX_VMCS_CTRL_PIN_EXEC_CONTROLS, val); AssertRC(rc); /* VMX_VMCS_CTRL_PROC_EXEC_CONTROLS * Set required bits to one and zero according to the MSR capabilities. */ val = pVM->hwaccm.s.vmx.msr.vmx_proc_ctls.n.disallowed0; /* Program which event cause VM-exits and which features we want to use. */ val = val | VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_HLT_EXIT | VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_TSC_OFFSET | VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_INVLPG_EXIT | VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_MOV_DR_EXIT | VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_UNCOND_IO_EXIT | VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_MWAIT_EXIT; /* don't execute mwait or else we'll idle inside the guest (host thinks the cpu load is high) */ /** @note VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_MWAIT_EXIT might cause a vmlaunch failure with an invalid control fields error. (combined with some other exit reasons) */ #if HC_ARCH_BITS == 64 if (pVM->hwaccm.s.vmx.msr.vmx_proc_ctls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_USE_TPR_SHADOW) { /* CR8 reads from the APIC shadow page; writes cause an exit is they lower the TPR below the threshold */ val |= VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_USE_TPR_SHADOW; Assert(pVM->hwaccm.s.vmx.pAPIC); } else /* Exit on CR8 reads & writes in case the TPR shadow feature isn't present. */ val |= VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_CR8_STORE_EXIT | VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_CR8_LOAD_EXIT; #endif /* Mask away the bits that the CPU doesn't support */ /** @todo make sure they don't conflict with the above requirements. */ val &= pVM->hwaccm.s.vmx.msr.vmx_proc_ctls.n.allowed1; pVM->hwaccm.s.vmx.proc_ctls = val; rc = VMXWriteVMCS(VMX_VMCS_CTRL_PROC_EXEC_CONTROLS, val); AssertRC(rc); /* VMX_VMCS_CTRL_CR3_TARGET_COUNT * Set required bits to one and zero according to the MSR capabilities. */ rc = VMXWriteVMCS(VMX_VMCS_CTRL_CR3_TARGET_COUNT, 0); AssertRC(rc); /* VMX_VMCS_CTRL_EXIT_CONTROLS * Set required bits to one and zero according to the MSR capabilities. */ val = pVM->hwaccm.s.vmx.msr.vmx_exit.n.disallowed0; #if HC_ARCH_BITS == 64 val |= VMX_VMCS_CTRL_EXIT_CONTROLS_HOST_AMD64; #else /* else Must be zero when AMD64 is not available. */ #endif val &= pVM->hwaccm.s.vmx.msr.vmx_exit.n.allowed1; /* Don't acknowledge external interrupts on VM-exit. */ rc = VMXWriteVMCS(VMX_VMCS_CTRL_EXIT_CONTROLS, val); AssertRC(rc); /* Forward all exception except #NM & #PF to the guest. * We always need to check pagefaults since our shadow page table can be out of sync. * And we always lazily sync the FPU & XMM state. */ /* * @todo Possible optimization: * Keep the FPU and XMM state current in the EM thread. That way there's no need to * lazily sync anything, but the downside is that we can't use the FPU stack or XMM * registers ourselves of course. * * @note only possible if the current state is actually ours (X86_CR0_TS flag) */ rc = VMXWriteVMCS(VMX_VMCS_CTRL_EXCEPTION_BITMAP, HWACCM_VMX_TRAP_MASK); AssertRC(rc); /* Don't filter page faults; all of them should cause a switch. */ rc = VMXWriteVMCS(VMX_VMCS_CTRL_PAGEFAULT_ERROR_MASK, 0); rc |= VMXWriteVMCS(VMX_VMCS_CTRL_PAGEFAULT_ERROR_MATCH, 0); AssertRC(rc); /* Init TSC offset to zero. */ rc = VMXWriteVMCS(VMX_VMCS_CTRL_TSC_OFFSET_FULL, 0); #if HC_ARCH_BITS == 32 rc |= VMXWriteVMCS(VMX_VMCS_CTRL_TSC_OFFSET_HIGH, 0); #endif AssertRC(rc); rc = VMXWriteVMCS(VMX_VMCS_CTRL_IO_BITMAP_A_FULL, 0); #if HC_ARCH_BITS == 32 rc |= VMXWriteVMCS(VMX_VMCS_CTRL_IO_BITMAP_A_HIGH, 0); #endif AssertRC(rc); rc = VMXWriteVMCS(VMX_VMCS_CTRL_IO_BITMAP_B_FULL, 0); #if HC_ARCH_BITS == 32 rc |= VMXWriteVMCS(VMX_VMCS_CTRL_IO_BITMAP_B_HIGH, 0); #endif AssertRC(rc); /* Clear MSR controls. */ if (pVM->hwaccm.s.vmx.msr.vmx_proc_ctls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_USE_MSR_BITMAPS) { /* Optional */ rc = VMXWriteVMCS(VMX_VMCS_CTRL_MSR_BITMAP_FULL, 0); #if HC_ARCH_BITS == 32 rc |= VMXWriteVMCS(VMX_VMCS_CTRL_MSR_BITMAP_HIGH, 0); #endif AssertRC(rc); } rc = VMXWriteVMCS(VMX_VMCS_CTRL_VMEXIT_MSR_STORE_FULL, 0); rc |= VMXWriteVMCS(VMX_VMCS_CTRL_VMEXIT_MSR_LOAD_FULL, 0); rc |= VMXWriteVMCS(VMX_VMCS_CTRL_VMENTRY_MSR_LOAD_FULL, 0); #if HC_ARCH_BITS == 32 rc |= VMXWriteVMCS(VMX_VMCS_CTRL_VMEXIT_MSR_STORE_HIGH, 0); rc |= VMXWriteVMCS(VMX_VMCS_CTRL_VMEXIT_MSR_LOAD_HIGH, 0); rc |= VMXWriteVMCS(VMX_VMCS_CTRL_VMEXIT_MSR_LOAD_HIGH, 0); #endif rc |= VMXWriteVMCS(VMX_VMCS_CTRL_EXIT_MSR_STORE_COUNT, 0); rc |= VMXWriteVMCS(VMX_VMCS_CTRL_EXIT_MSR_LOAD_COUNT, 0); AssertRC(rc); if (pVM->hwaccm.s.vmx.msr.vmx_proc_ctls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_USE_TPR_SHADOW) { Assert(pVM->hwaccm.s.vmx.pMemObjAPIC); /* Optional */ rc = VMXWriteVMCS(VMX_VMCS_CTRL_TPR_THRESHOLD, 0); rc |= VMXWriteVMCS(VMX_VMCS_CTRL_VAPIC_PAGEADDR_FULL, pVM->hwaccm.s.vmx.pAPICPhys); #if HC_ARCH_BITS == 32 rc |= VMXWriteVMCS(VMX_VMCS_CTRL_VAPIC_PAGEADDR_HIGH, pVM->hwaccm.s.vmx.pAPICPhys >> 32); #endif AssertRC(rc); } /* Set link pointer to -1. Not currently used. */ #if HC_ARCH_BITS == 32 rc = VMXWriteVMCS(VMX_VMCS_GUEST_LINK_PTR_FULL, 0xFFFFFFFF); rc |= VMXWriteVMCS(VMX_VMCS_GUEST_LINK_PTR_HIGH, 0xFFFFFFFF); #else rc = VMXWriteVMCS(VMX_VMCS_GUEST_LINK_PTR_FULL, 0xFFFFFFFFFFFFFFFF); #endif AssertRC(rc); /* Clear VM Control Structure. Marking it inactive, clearing implementation specific data and writing back VMCS data to memory. */ rc = VMXClearVMCS(pVM->hwaccm.s.vmx.pVMCSPhys); AssertRC(rc); vmx_end: VMXR0CheckError(pVM, rc); return rc; } /** * Injects an event (trap or external interrupt) * * @returns VBox status code. * @param pVM The VM to operate on. * @param pCtx CPU Context * @param intInfo VMX interrupt info * @param cbInstr Opcode length of faulting instruction * @param errCode Error code (optional) */ static int VMXR0InjectEvent(PVM pVM, CPUMCTX *pCtx, uint32_t intInfo, uint32_t cbInstr, uint32_t errCode) { int rc; #ifdef VBOX_STRICT uint32_t iGate = VMX_EXIT_INTERRUPTION_INFO_VECTOR(intInfo); if (iGate == 0xE) Log2(("VMXR0InjectEvent: Injecting interrupt %d at %VGv error code=%08x CR2=%08x intInfo=%08x\n", iGate, pCtx->rip, errCode, pCtx->cr2, intInfo)); else if (iGate < 0x20) Log2(("VMXR0InjectEvent: Injecting interrupt %d at %VGv error code=%08x\n", iGate, pCtx->rip, errCode)); else { Log2(("INJ-EI: %x at %VGv\n", iGate, pCtx->rip)); Assert(!VM_FF_ISSET(pVM, VM_FF_INHIBIT_INTERRUPTS)); Assert(pCtx->eflags.u32 & X86_EFL_IF); } #endif /* Set event injection state. */ rc = VMXWriteVMCS(VMX_VMCS_CTRL_ENTRY_IRQ_INFO, intInfo | (1 << VMX_EXIT_INTERRUPTION_INFO_VALID_SHIFT) ); rc |= VMXWriteVMCS(VMX_VMCS_CTRL_ENTRY_INSTR_LENGTH, cbInstr); rc |= VMXWriteVMCS(VMX_VMCS_CTRL_ENTRY_EXCEPTION_ERRCODE, errCode); AssertRC(rc); return rc; } /** * Checks for pending guest interrupts and injects them * * @returns VBox status code. * @param pVM The VM to operate on. * @param pCtx CPU Context */ static int VMXR0CheckPendingInterrupt(PVM pVM, CPUMCTX *pCtx) { int rc; /* Dispatch any pending interrupts. (injected before, but a VM exit occurred prematurely) */ if (pVM->hwaccm.s.Event.fPending) { Log(("Reinjecting event %VX64 %08x at %VGv cr2=%RX64\n", pVM->hwaccm.s.Event.intInfo, pVM->hwaccm.s.Event.errCode, pCtx->rip, pCtx->cr2)); STAM_COUNTER_INC(&pVM->hwaccm.s.StatIntReinject); rc = VMXR0InjectEvent(pVM, pCtx, pVM->hwaccm.s.Event.intInfo, 0, pVM->hwaccm.s.Event.errCode); AssertRC(rc); pVM->hwaccm.s.Event.fPending = false; return VINF_SUCCESS; } /* When external interrupts are pending, we should exit the VM when IF is set. */ if ( !TRPMHasTrap(pVM) && VM_FF_ISPENDING(pVM, (VM_FF_INTERRUPT_APIC|VM_FF_INTERRUPT_PIC))) { if (!(pCtx->eflags.u32 & X86_EFL_IF)) { Log2(("Enable irq window exit!\n")); pVM->hwaccm.s.vmx.proc_ctls |= VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_IRQ_WINDOW_EXIT; rc = VMXWriteVMCS(VMX_VMCS_CTRL_PROC_EXEC_CONTROLS, pVM->hwaccm.s.vmx.proc_ctls); AssertRC(rc); } else if (!VM_FF_ISSET(pVM, VM_FF_INHIBIT_INTERRUPTS)) { uint8_t u8Interrupt; rc = PDMGetInterrupt(pVM, &u8Interrupt); Log(("Dispatch interrupt: u8Interrupt=%x (%d) rc=%Vrc\n", u8Interrupt, u8Interrupt, rc)); if (VBOX_SUCCESS(rc)) { rc = TRPMAssertTrap(pVM, u8Interrupt, TRPM_HARDWARE_INT); AssertRC(rc); } else { /* Can only happen in rare cases where a pending interrupt is cleared behind our back */ Assert(!VM_FF_ISPENDING(pVM, (VM_FF_INTERRUPT_APIC|VM_FF_INTERRUPT_PIC))); STAM_COUNTER_INC(&pVM->hwaccm.s.StatSwitchGuestIrq); /* Just continue */ } } else Log(("Pending interrupt blocked at %VGv by VM_FF_INHIBIT_INTERRUPTS!!\n", pCtx->rip)); } #ifdef VBOX_STRICT if (TRPMHasTrap(pVM)) { uint8_t u8Vector; rc = TRPMQueryTrapAll(pVM, &u8Vector, 0, 0, 0); AssertRC(rc); } #endif if ( pCtx->eflags.u32 & X86_EFL_IF && (!VM_FF_ISSET(pVM, VM_FF_INHIBIT_INTERRUPTS)) && TRPMHasTrap(pVM) ) { uint8_t u8Vector; int rc; TRPMEVENT enmType; RTGCUINTPTR intInfo; RTGCUINT errCode; /* If a new event is pending, then dispatch it now. */ rc = TRPMQueryTrapAll(pVM, &u8Vector, &enmType, &errCode, 0); AssertRC(rc); Assert(pCtx->eflags.Bits.u1IF == 1 || enmType == TRPM_TRAP); Assert(enmType != TRPM_SOFTWARE_INT); /* Clear the pending trap. */ rc = TRPMResetTrap(pVM); AssertRC(rc); intInfo = u8Vector; intInfo |= (1 << VMX_EXIT_INTERRUPTION_INFO_VALID_SHIFT); if (enmType == TRPM_TRAP) { switch (u8Vector) { case 8: case 10: case 11: case 12: case 13: case 14: case 17: /* Valid error codes. */ intInfo |= VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID; break; default: break; } if (u8Vector == X86_XCPT_BP || u8Vector == X86_XCPT_OF) intInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_SWEXCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT); else intInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HWEXCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT); } else intInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT); STAM_COUNTER_INC(&pVM->hwaccm.s.StatIntInject); rc = VMXR0InjectEvent(pVM, pCtx, intInfo, 0, errCode); AssertRC(rc); } /* if (interrupts can be dispatched) */ return VINF_SUCCESS; } /** * Save the host state * * @returns VBox status code. * @param pVM The VM to operate on. */ HWACCMR0DECL(int) VMXR0SaveHostState(PVM pVM) { int rc = VINF_SUCCESS; /* * Host CPU Context */ if (pVM->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_HOST_CONTEXT) { RTIDTR idtr; RTGDTR gdtr; RTSEL SelTR; PX86DESCHC pDesc; uintptr_t trBase; /* Control registers */ rc = VMXWriteVMCS(VMX_VMCS_HOST_CR0, ASMGetCR0()); rc |= VMXWriteVMCS(VMX_VMCS_HOST_CR3, ASMGetCR3()); rc |= VMXWriteVMCS(VMX_VMCS_HOST_CR4, ASMGetCR4()); AssertRC(rc); Log2(("VMX_VMCS_HOST_CR0 %08x\n", ASMGetCR0())); Log2(("VMX_VMCS_HOST_CR3 %VHp\n", ASMGetCR3())); Log2(("VMX_VMCS_HOST_CR4 %08x\n", ASMGetCR4())); /* Selector registers. */ rc = VMXWriteVMCS(VMX_VMCS_HOST_FIELD_CS, ASMGetCS()); /** @note VMX is (again) very picky about the RPL of the selectors here; we'll restore them manually. */ rc |= VMXWriteVMCS(VMX_VMCS_HOST_FIELD_DS, 0); rc |= VMXWriteVMCS(VMX_VMCS_HOST_FIELD_ES, 0); #if HC_ARCH_BITS == 32 rc |= VMXWriteVMCS(VMX_VMCS_HOST_FIELD_FS, 0); rc |= VMXWriteVMCS(VMX_VMCS_HOST_FIELD_GS, 0); #endif rc |= VMXWriteVMCS(VMX_VMCS_HOST_FIELD_SS, ASMGetSS()); SelTR = ASMGetTR(); rc |= VMXWriteVMCS(VMX_VMCS_HOST_FIELD_TR, SelTR); AssertRC(rc); Log2(("VMX_VMCS_HOST_FIELD_CS %08x\n", ASMGetCS())); Log2(("VMX_VMCS_HOST_FIELD_DS %08x\n", ASMGetDS())); Log2(("VMX_VMCS_HOST_FIELD_ES %08x\n", ASMGetES())); Log2(("VMX_VMCS_HOST_FIELD_FS %08x\n", ASMGetFS())); Log2(("VMX_VMCS_HOST_FIELD_GS %08x\n", ASMGetGS())); Log2(("VMX_VMCS_HOST_FIELD_SS %08x\n", ASMGetSS())); Log2(("VMX_VMCS_HOST_FIELD_TR %08x\n", ASMGetTR())); /* GDTR & IDTR */ ASMGetGDTR(&gdtr); rc = VMXWriteVMCS(VMX_VMCS_HOST_GDTR_BASE, gdtr.pGdt); ASMGetIDTR(&idtr); rc |= VMXWriteVMCS(VMX_VMCS_HOST_IDTR_BASE, idtr.pIdt); AssertRC(rc); Log2(("VMX_VMCS_HOST_GDTR_BASE %VHv\n", gdtr.pGdt)); Log2(("VMX_VMCS_HOST_IDTR_BASE %VHv\n", idtr.pIdt)); /* Save the base address of the TR selector. */ if (SelTR > gdtr.cbGdt) { AssertMsgFailed(("Invalid TR selector %x. GDTR.cbGdt=%x\n", SelTR, gdtr.cbGdt)); return VERR_VMX_INVALID_HOST_STATE; } pDesc = &((PX86DESCHC)gdtr.pGdt)[SelTR >> X86_SEL_SHIFT_HC]; #if HC_ARCH_BITS == 64 trBase = X86DESC64_BASE(*pDesc); #else trBase = X86DESC_BASE(*pDesc); #endif rc = VMXWriteVMCS(VMX_VMCS_HOST_TR_BASE, trBase); AssertRC(rc); Log2(("VMX_VMCS_HOST_TR_BASE %VHv\n", trBase)); /* FS and GS base. */ #if HC_ARCH_BITS == 64 Log2(("MSR_K8_FS_BASE = %VHv\n", ASMRdMsr(MSR_K8_FS_BASE))); Log2(("MSR_K8_GS_BASE = %VHv\n", ASMRdMsr(MSR_K8_GS_BASE))); rc = VMXWriteVMCS64(VMX_VMCS_HOST_FS_BASE, ASMRdMsr(MSR_K8_FS_BASE)); rc |= VMXWriteVMCS64(VMX_VMCS_HOST_GS_BASE, ASMRdMsr(MSR_K8_GS_BASE)); #endif AssertRC(rc); /* Sysenter MSRs. */ /** @todo expensive!! */ rc = VMXWriteVMCS(VMX_VMCS_HOST_SYSENTER_CS, ASMRdMsr_Low(MSR_IA32_SYSENTER_CS)); Log2(("VMX_VMCS_HOST_SYSENTER_CS %08x\n", ASMRdMsr_Low(MSR_IA32_SYSENTER_CS))); #if HC_ARCH_BITS == 32 rc |= VMXWriteVMCS(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr_Low(MSR_IA32_SYSENTER_ESP)); rc |= VMXWriteVMCS(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr_Low(MSR_IA32_SYSENTER_EIP)); Log2(("VMX_VMCS_HOST_SYSENTER_EIP %VHv\n", ASMRdMsr_Low(MSR_IA32_SYSENTER_EIP))); Log2(("VMX_VMCS_HOST_SYSENTER_ESP %VHv\n", ASMRdMsr_Low(MSR_IA32_SYSENTER_ESP))); #else Log2(("VMX_VMCS_HOST_SYSENTER_EIP %VHv\n", ASMRdMsr(MSR_IA32_SYSENTER_EIP))); Log2(("VMX_VMCS_HOST_SYSENTER_ESP %VHv\n", ASMRdMsr(MSR_IA32_SYSENTER_ESP))); rc |= VMXWriteVMCS64(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr(MSR_IA32_SYSENTER_ESP)); rc |= VMXWriteVMCS64(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr(MSR_IA32_SYSENTER_EIP)); #endif AssertRC(rc); pVM->hwaccm.s.fContextUseFlags &= ~HWACCM_CHANGED_HOST_CONTEXT; } return rc; } /** * Loads the guest state * * NOTE: Don't do anything here that can cause a jump back to ring 3!!!!! * * @returns VBox status code. * @param pVM The VM to operate on. * @param pCtx Guest context */ HWACCMR0DECL(int) VMXR0LoadGuestState(PVM pVM, CPUMCTX *pCtx) { int rc = VINF_SUCCESS; RTGCUINTPTR val; X86EFLAGS eflags; /* Guest CPU context: ES, CS, SS, DS, FS, GS. */ if (pVM->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_SEGMENT_REGS) { VMX_WRITE_SELREG(ES, es); AssertRC(rc); VMX_WRITE_SELREG(CS, cs); AssertRC(rc); VMX_WRITE_SELREG(SS, ss); AssertRC(rc); VMX_WRITE_SELREG(DS, ds); AssertRC(rc); /* The base values in the hidden fs & gs registers are not in sync with the msrs; they are cut to 32 bits. */ VMX_WRITE_SELREG(FS, fs); AssertRC(rc); VMX_WRITE_SELREG(GS, gs); AssertRC(rc); } /* Guest CPU context: LDTR. */ if (pVM->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_LDTR) { if (pCtx->ldtr == 0) { rc = VMXWriteVMCS(VMX_VMCS_GUEST_FIELD_LDTR, 0); rc |= VMXWriteVMCS(VMX_VMCS_GUEST_LDTR_LIMIT, 0); rc |= VMXWriteVMCS(VMX_VMCS_GUEST_LDTR_BASE, 0); /** @note vmlaunch will fail with 0 or just 0x02. No idea why. */ rc |= VMXWriteVMCS(VMX_VMCS_GUEST_LDTR_ACCESS_RIGHTS, 0x82 /* present, LDT */); } else { rc = VMXWriteVMCS(VMX_VMCS_GUEST_FIELD_LDTR, pCtx->ldtr); rc |= VMXWriteVMCS(VMX_VMCS_GUEST_LDTR_LIMIT, pCtx->ldtrHid.u32Limit); rc |= VMXWriteVMCS(VMX_VMCS_GUEST_LDTR_BASE, pCtx->ldtrHid.u64Base); rc |= VMXWriteVMCS(VMX_VMCS_GUEST_LDTR_ACCESS_RIGHTS, pCtx->ldtrHid.Attr.u); } AssertRC(rc); } /* Guest CPU context: TR. */ if (pVM->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_TR) { rc = VMXWriteVMCS(VMX_VMCS_GUEST_FIELD_TR, pCtx->tr); /* Real mode emulation using v86 mode with CR4.VME (interrupt redirection using the int bitmap in the TSS) */ if (!(pCtx->cr0 & X86_CR0_PROTECTION_ENABLE)) { rc |= VMXWriteVMCS(VMX_VMCS_GUEST_TR_LIMIT, sizeof(*pVM->hwaccm.s.vmx.pRealModeTSS)); rc |= VMXWriteVMCS(VMX_VMCS_GUEST_TR_BASE, 0); } else { rc |= VMXWriteVMCS(VMX_VMCS_GUEST_TR_LIMIT, pCtx->trHid.u32Limit); rc |= VMXWriteVMCS(VMX_VMCS_GUEST_TR_BASE, pCtx->trHid.u64Base); } val = pCtx->trHid.Attr.u; /* The TSS selector must be busy. */ if ((val & 0xF) == X86_SEL_TYPE_SYS_286_TSS_AVAIL) val = (val & ~0xF) | X86_SEL_TYPE_SYS_286_TSS_BUSY; else /* Default even if no TR selector has been set (otherwise vmlaunch will fail!) */ val = (val & ~0xF) | X86_SEL_TYPE_SYS_386_TSS_BUSY; rc |= VMXWriteVMCS(VMX_VMCS_GUEST_TR_ACCESS_RIGHTS, val); AssertRC(rc); } /* Guest CPU context: GDTR. */ if (pVM->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_GDTR) { rc = VMXWriteVMCS(VMX_VMCS_GUEST_GDTR_LIMIT, pCtx->gdtr.cbGdt); rc |= VMXWriteVMCS(VMX_VMCS_GUEST_GDTR_BASE, pCtx->gdtr.pGdt); AssertRC(rc); } /* Guest CPU context: IDTR. */ if (pVM->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_IDTR) { rc = VMXWriteVMCS(VMX_VMCS_GUEST_IDTR_LIMIT, pCtx->idtr.cbIdt); rc |= VMXWriteVMCS(VMX_VMCS_GUEST_IDTR_BASE, pCtx->idtr.pIdt); AssertRC(rc); } /* * Sysenter MSRs (unconditional) */ rc = VMXWriteVMCS(VMX_VMCS_GUEST_SYSENTER_CS, pCtx->SysEnter.cs); rc |= VMXWriteVMCS(VMX_VMCS_GUEST_SYSENTER_EIP, pCtx->SysEnter.eip); rc |= VMXWriteVMCS(VMX_VMCS_GUEST_SYSENTER_ESP, pCtx->SysEnter.esp); AssertRC(rc); /* Control registers */ if (pVM->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_CR0) { val = pCtx->cr0; rc = VMXWriteVMCS(VMX_VMCS_CTRL_CR0_READ_SHADOW, val); Log2(("Guest CR0-shadow %08x\n", val)); if (CPUMIsGuestFPUStateActive(pVM) == false) { /* Always use #NM exceptions to load the FPU/XMM state on demand. */ val |= X86_CR0_TS | X86_CR0_ET | X86_CR0_NE | X86_CR0_MP; } else { /** @todo check if we support the old style mess correctly. */ if (!(val & X86_CR0_NE)) { Log(("Forcing X86_CR0_NE!!!\n")); /* Also catch floating point exceptions as we need to report them to the guest in a different way. */ if (!pVM->hwaccm.s.fFPUOldStyleOverride) { rc = VMXWriteVMCS(VMX_VMCS_CTRL_EXCEPTION_BITMAP, HWACCM_VMX_TRAP_MASK | RT_BIT(X86_XCPT_MF)); AssertRC(rc); pVM->hwaccm.s.fFPUOldStyleOverride = true; } } val |= X86_CR0_NE; /* always turn on the native mechanism to report FPU errors (old style uses interrupts) */ } /* Note: protected mode & paging are always enabled; we use them for emulating real and protected mode without paging too. */ val |= X86_CR0_PE | X86_CR0_PG; /* Note: We must also set this as we rely on protecting various pages for which supervisor writes must be caught. */ val |= X86_CR0_WP; rc |= VMXWriteVMCS(VMX_VMCS_GUEST_CR0, val); Log2(("Guest CR0 %08x\n", val)); /* CR0 flags owned by the host; if the guests attempts to change them, then * the VM will exit. */ val = X86_CR0_PE /* Must monitor this bit (assumptions are made for real mode emulation) */ | X86_CR0_WP /* Must monitor this bit (it must always be enabled). */ | X86_CR0_PG /* Must monitor this bit (assumptions are made for real mode & protected mode without paging emulation) */ | X86_CR0_TS | X86_CR0_ET | X86_CR0_NE | X86_CR0_MP; pVM->hwaccm.s.vmx.cr0_mask = val; rc |= VMXWriteVMCS(VMX_VMCS_CTRL_CR0_MASK, val); Log2(("Guest CR0-mask %08x\n", val)); AssertRC(rc); } if (pVM->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_CR4) { /* CR4 */ rc = VMXWriteVMCS(VMX_VMCS_CTRL_CR4_READ_SHADOW, pCtx->cr4); Log2(("Guest CR4-shadow %08x\n", pCtx->cr4)); /* Set the required bits in cr4 too (currently X86_CR4_VMXE). */ val = pCtx->cr4 | (uint32_t)pVM->hwaccm.s.vmx.msr.vmx_cr4_fixed0; switch(pVM->hwaccm.s.enmShadowMode) { case PGMMODE_REAL: /* Real mode -> emulated using v86 mode */ case PGMMODE_PROTECTED: /* Protected mode, no paging -> emulated using identity mapping. */ case PGMMODE_32_BIT: /* 32-bit paging. */ break; case PGMMODE_PAE: /* PAE paging. */ case PGMMODE_PAE_NX: /* PAE paging with NX enabled. */ /** @todo use normal 32 bits paging */ val |= X86_CR4_PAE; break; case PGMMODE_AMD64: /* 64-bit AMD paging (long mode). */ case PGMMODE_AMD64_NX: /* 64-bit AMD paging (long mode) with NX enabled. */ #ifdef VBOX_ENABLE_64_BITS_GUESTS break; #else AssertFailed(); return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE; #endif default: /* shut up gcc */ AssertFailed(); return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE; } /* Real mode emulation using v86 mode with CR4.VME (interrupt redirection using the int bitmap in the TSS) */ if (!(pCtx->cr0 & X86_CR0_PROTECTION_ENABLE)) val |= X86_CR4_VME; rc |= VMXWriteVMCS(VMX_VMCS_GUEST_CR4, val); Log2(("Guest CR4 %08x\n", val)); /* CR4 flags owned by the host; if the guests attempts to change them, then * the VM will exit. */ val = X86_CR4_PAE | X86_CR4_PGE | X86_CR4_PSE | X86_CR4_VMXE; pVM->hwaccm.s.vmx.cr4_mask = val; rc |= VMXWriteVMCS(VMX_VMCS_CTRL_CR4_MASK, val); Log2(("Guest CR4-mask %08x\n", val)); AssertRC(rc); } if (pVM->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_CR3) { /* Save our shadow CR3 register. */ val = PGMGetHyperCR3(pVM); Assert(val); rc = VMXWriteVMCS(VMX_VMCS_GUEST_CR3, val); AssertRC(rc); } /* Debug registers. */ if (pVM->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_DEBUG) { /** @todo DR0-6 */ val = pCtx->dr7; val &= ~(RT_BIT(11) | RT_BIT(12) | RT_BIT(14) | RT_BIT(15)); /* must be zero */ val |= 0x400; /* must be one */ #ifdef VBOX_STRICT val = 0x400; #endif rc |= VMXWriteVMCS(VMX_VMCS_GUEST_DR7, val); AssertRC(rc); /* IA32_DEBUGCTL MSR. */ rc = VMXWriteVMCS(VMX_VMCS_GUEST_DEBUGCTL_FULL, 0); rc |= VMXWriteVMCS(VMX_VMCS_GUEST_DEBUGCTL_HIGH, 0); AssertRC(rc); /** @todo */ rc |= VMXWriteVMCS(VMX_VMCS_GUEST_DEBUG_EXCEPTIONS, 0); AssertRC(rc); } /* EIP, ESP and EFLAGS */ rc = VMXWriteVMCS(VMX_VMCS_GUEST_RIP, pCtx->rip); rc |= VMXWriteVMCS(VMX_VMCS_GUEST_RSP, pCtx->rsp); AssertRC(rc); /* Bits 22-31, 15, 5 & 3 must be zero. Bit 1 must be 1. */ eflags = pCtx->eflags; eflags.u32 &= VMX_EFLAGS_RESERVED_0; eflags.u32 |= VMX_EFLAGS_RESERVED_1; /* Real mode emulation using v86 mode with CR4.VME (interrupt redirection using the int bitmap in the TSS) */ if (!(pCtx->cr0 & X86_CR0_PROTECTION_ENABLE)) { eflags.Bits.u1VM = 1; eflags.Bits.u1VIF = pCtx->eflags.Bits.u1IF; eflags.Bits.u2IOPL = 3; } rc = VMXWriteVMCS(VMX_VMCS_GUEST_RFLAGS, eflags.u32); AssertRC(rc); /** TSC offset. */ uint64_t u64TSCOffset; if (TMCpuTickCanUseRealTSC(pVM, &u64TSCOffset)) { /* Note: VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_RDTSC_EXIT takes precedence over TSC_OFFSET */ #if HC_ARCH_BITS == 64 rc = VMXWriteVMCS(VMX_VMCS_CTRL_TSC_OFFSET_FULL, u64TSCOffset); #else rc = VMXWriteVMCS(VMX_VMCS_CTRL_TSC_OFFSET_FULL, (uint32_t)u64TSCOffset); rc |= VMXWriteVMCS(VMX_VMCS_CTRL_TSC_OFFSET_HIGH, (uint32_t)(u64TSCOffset >> 32ULL)); #endif AssertRC(rc); pVM->hwaccm.s.vmx.proc_ctls &= ~VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_RDTSC_EXIT; rc = VMXWriteVMCS(VMX_VMCS_CTRL_PROC_EXEC_CONTROLS, pVM->hwaccm.s.vmx.proc_ctls); AssertRC(rc); STAM_COUNTER_INC(&pVM->hwaccm.s.StatTSCOffset); } else { pVM->hwaccm.s.vmx.proc_ctls |= VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_RDTSC_EXIT; rc = VMXWriteVMCS(VMX_VMCS_CTRL_PROC_EXEC_CONTROLS, pVM->hwaccm.s.vmx.proc_ctls); AssertRC(rc); STAM_COUNTER_INC(&pVM->hwaccm.s.StatTSCIntercept); } /* VMX_VMCS_CTRL_ENTRY_CONTROLS * Set required bits to one and zero according to the MSR capabilities. */ val = pVM->hwaccm.s.vmx.msr.vmx_entry.n.disallowed0; /* 64 bits guest mode? */ if (pCtx->msrEFER & MSR_K6_EFER_LMA) val |= VMX_VMCS_CTRL_ENTRY_CONTROLS_IA64_MODE; /* else Must be zero when AMD64 is not available. */ /* Mask away the bits that the CPU doesn't support */ val &= pVM->hwaccm.s.vmx.msr.vmx_entry.n.allowed1; rc = VMXWriteVMCS(VMX_VMCS_CTRL_ENTRY_CONTROLS, val); AssertRC(rc); /* 64 bits guest mode? */ if (pCtx->msrEFER & MSR_K6_EFER_LMA) { #if !defined(VBOX_WITH_64_BITS_GUESTS) || HC_ARCH_BITS != 64 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE; #else pVM->hwaccm.s.vmx.pfnStartVM = VMXR0StartVM64; #endif /* Unconditionally update these as wrmsr might have changed them. */ rc = VMXWriteVMCS(VMX_VMCS_GUEST_FS_BASE, pCtx->fsHid.u64Base); AssertRC(rc); rc = VMXWriteVMCS(VMX_VMCS_GUEST_GS_BASE, pCtx->gsHid.u64Base); AssertRC(rc); } else { pVM->hwaccm.s.vmx.pfnStartVM = VMXR0StartVM32; } /* Done. */ pVM->hwaccm.s.fContextUseFlags &= ~HWACCM_CHANGED_ALL_GUEST; return rc; } /** * Runs guest code in a VT-x VM. * * @note NEVER EVER turn on interrupts here. Due to our illegal entry into the kernel, it might mess things up. (XP kernel traps have been frequently observed) * * @returns VBox status code. * @param pVM The VM to operate on. * @param pCtx Guest context */ HWACCMR0DECL(int) VMXR0RunGuestCode(PVM pVM, CPUMCTX *pCtx) { int rc = VINF_SUCCESS; RTCCUINTREG val, valShadow; RTCCUINTREG exitReason, instrError, cbInstr; RTGCUINTPTR exitQualification; RTGCUINTPTR intInfo = 0; /* shut up buggy gcc 4 */ RTGCUINTPTR errCode, instrInfo, uInterruptState; bool fGuestStateSynced = false; bool fSyncTPR = false; unsigned cResume = 0; #ifdef VBOX_STRICT RTCPUID idCpuCheck; #endif Log2(("\nE")); STAM_PROFILE_ADV_START(&pVM->hwaccm.s.StatEntry, x); #ifdef VBOX_STRICT rc = VMXReadVMCS(VMX_VMCS_CTRL_PIN_EXEC_CONTROLS, &val); AssertRC(rc); Log2(("VMX_VMCS_CTRL_PIN_EXEC_CONTROLS = %08x\n", val)); /* allowed zero */ if ((val & pVM->hwaccm.s.vmx.msr.vmx_pin_ctls.n.disallowed0) != pVM->hwaccm.s.vmx.msr.vmx_pin_ctls.n.disallowed0) Log(("Invalid VMX_VMCS_CTRL_PIN_EXEC_CONTROLS: zero\n")); /* allowed one */ if ((val & ~pVM->hwaccm.s.vmx.msr.vmx_pin_ctls.n.allowed1) != 0) Log(("Invalid VMX_VMCS_CTRL_PIN_EXEC_CONTROLS: one\n")); rc = VMXReadVMCS(VMX_VMCS_CTRL_PROC_EXEC_CONTROLS, &val); AssertRC(rc); Log2(("VMX_VMCS_CTRL_PROC_EXEC_CONTROLS = %08x\n", val)); /* allowed zero */ if ((val & pVM->hwaccm.s.vmx.msr.vmx_proc_ctls.n.disallowed0) != pVM->hwaccm.s.vmx.msr.vmx_proc_ctls.n.disallowed0) Log(("Invalid VMX_VMCS_CTRL_PROC_EXEC_CONTROLS: zero\n")); /* allowed one */ if ((val & ~pVM->hwaccm.s.vmx.msr.vmx_proc_ctls.n.allowed1) != 0) Log(("Invalid VMX_VMCS_CTRL_PROC_EXEC_CONTROLS: one\n")); rc = VMXReadVMCS(VMX_VMCS_CTRL_ENTRY_CONTROLS, &val); AssertRC(rc); Log2(("VMX_VMCS_CTRL_ENTRY_CONTROLS = %08x\n", val)); /* allowed zero */ if ((val & pVM->hwaccm.s.vmx.msr.vmx_entry.n.disallowed0) != pVM->hwaccm.s.vmx.msr.vmx_entry.n.disallowed0) Log(("Invalid VMX_VMCS_CTRL_ENTRY_CONTROLS: zero\n")); /* allowed one */ if ((val & ~pVM->hwaccm.s.vmx.msr.vmx_entry.n.allowed1) != 0) Log(("Invalid VMX_VMCS_CTRL_ENTRY_CONTROLS: one\n")); rc = VMXReadVMCS(VMX_VMCS_CTRL_EXIT_CONTROLS, &val); AssertRC(rc); Log2(("VMX_VMCS_CTRL_EXIT_CONTROLS = %08x\n", val)); /* allowed zero */ if ((val & pVM->hwaccm.s.vmx.msr.vmx_exit.n.disallowed0) != pVM->hwaccm.s.vmx.msr.vmx_exit.n.disallowed0) Log(("Invalid VMX_VMCS_CTRL_EXIT_CONTROLS: zero\n")); /* allowed one */ if ((val & ~pVM->hwaccm.s.vmx.msr.vmx_exit.n.allowed1) != 0) Log(("Invalid VMX_VMCS_CTRL_EXIT_CONTROLS: one\n")); #endif #if 0 /* * Check if debug registers are armed. */ uint32_t u32DR7 = ASMGetDR7(); if (u32DR7 & X86_DR7_ENABLED_MASK) { pVM->cpum.s.fUseFlags |= CPUM_USE_DEBUG_REGS_HOST; } else pVM->cpum.s.fUseFlags &= ~CPUM_USE_DEBUG_REGS_HOST; #endif /* We can jump to this point to resume execution after determining that a VM-exit is innocent. */ ResumeExecution: /* Safety precaution; looping for too long here can have a very bad effect on the host */ if (++cResume > HWACCM_MAX_RESUME_LOOPS) { STAM_COUNTER_INC(&pVM->hwaccm.s.StatExitMaxResume); rc = VINF_EM_RAW_INTERRUPT; goto end; } /* Check for irq inhibition due to instruction fusing (sti, mov ss). */ if (VM_FF_ISSET(pVM, VM_FF_INHIBIT_INTERRUPTS)) { Log(("VM_FF_INHIBIT_INTERRUPTS at %VGv successor %VGv\n", pCtx->rip, EMGetInhibitInterruptsPC(pVM))); if (pCtx->rip != EMGetInhibitInterruptsPC(pVM)) { /** @note we intentionally don't clear VM_FF_INHIBIT_INTERRUPTS here. * Before we are able to execute this instruction in raw mode (iret to guest code) an external interrupt might * force a world switch again. Possibly allowing a guest interrupt to be dispatched in the process. This could * break the guest. Sounds very unlikely, but such timing sensitive problem are not as rare as you might think. */ VM_FF_CLEAR(pVM, VM_FF_INHIBIT_INTERRUPTS); /* Irq inhibition is no longer active; clear the corresponding VMX state. */ rc = VMXWriteVMCS(VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE, 0); AssertRC(rc); } } else { /* Irq inhibition is no longer active; clear the corresponding VMX state. */ rc = VMXWriteVMCS(VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE, 0); AssertRC(rc); } /* Check for pending actions that force us to go back to ring 3. */ if (VM_FF_ISPENDING(pVM, VM_FF_TO_R3 | VM_FF_TIMER)) { VM_FF_CLEAR(pVM, VM_FF_TO_R3); STAM_COUNTER_INC(&pVM->hwaccm.s.StatSwitchToR3); STAM_PROFILE_ADV_STOP(&pVM->hwaccm.s.StatEntry, x); rc = VINF_EM_RAW_TO_R3; goto end; } /* Pending request packets might contain actions that need immediate attention, such as pending hardware interrupts. */ if (VM_FF_ISPENDING(pVM, VM_FF_REQUEST)) { STAM_PROFILE_ADV_STOP(&pVM->hwaccm.s.StatEntry, x); rc = VINF_EM_PENDING_REQUEST; goto end; } /* When external interrupts are pending, we should exit the VM when IF is set. */ /** @note *after* VM_FF_INHIBIT_INTERRUPTS check!!! */ rc = VMXR0CheckPendingInterrupt(pVM, pCtx); if (VBOX_FAILURE(rc)) { STAM_PROFILE_ADV_STOP(&pVM->hwaccm.s.StatEntry, x); goto end; } /** @todo check timers?? */ /* TPR caching using CR8 is only available in 64 bits mode */ /* Note the 32 bits exception for AMD (X86_CPUID_AMD_FEATURE_ECX_CR8L), but that appears missing in Intel CPUs */ /* Note: we can't do this in LoadGuestState as PDMApicGetTPR can jump back to ring 3 (lock)!!!!! */ /* * @todo reduce overhead */ if ( pCtx->msrEFER & MSR_K6_EFER_LMA && pVM->hwaccm.s.vmx.pAPIC) { /* TPR caching in CR8 */ uint8_t u8TPR; bool fPending; int rc = PDMApicGetTPR(pVM, &u8TPR, &fPending); AssertRC(rc); /* The TPR can be found at offset 0x80 in the APIC mmio page. */ pVM->hwaccm.s.vmx.pAPIC[0x80] = u8TPR << 4; /* bits 7-4 contain the task priority */ /* Two options here: * - external interrupt pending, but masked by the TPR value. * -> CR8 updates that lower the TPR value to below the current value should cause an exit * - no pending interrupts * -> We don't need to be explicitely notified. There are enough world switches for detecting pending interrupts. */ rc = VMXWriteVMCS(VMX_VMCS_CTRL_TPR_THRESHOLD, (fPending) ? u8TPR : 0); AssertRC(rc); fSyncTPR = !fPending; } /* * NOTE: DO NOT DO ANYTHING AFTER THIS POINT THAT MIGHT JUMP BACK TO RING 3! * (until the actual world switch) */ #ifdef VBOX_STRICT idCpuCheck = RTMpCpuId(); #endif /* Save the host state first. */ rc = VMXR0SaveHostState(pVM); if (rc != VINF_SUCCESS) { STAM_PROFILE_ADV_STOP(&pVM->hwaccm.s.StatEntry, x); goto end; } /* Load the guest state */ rc = VMXR0LoadGuestState(pVM, pCtx); if (rc != VINF_SUCCESS) { STAM_PROFILE_ADV_STOP(&pVM->hwaccm.s.StatEntry, x); goto end; } fGuestStateSynced = true; /* Non-register state Guest Context */ /** @todo change me according to cpu state */ rc = VMXWriteVMCS(VMX_VMCS_GUEST_ACTIVITY_STATE, VMX_CMS_GUEST_ACTIVITY_ACTIVE); AssertRC(rc); STAM_PROFILE_ADV_STOP(&pVM->hwaccm.s.StatEntry, x); /* Manual save and restore: * - General purpose registers except RIP, RSP * * Trashed: * - CR2 (we don't care) * - LDTR (reset to 0) * - DRx (presumably not changed at all) * - DR7 (reset to 0x400) * - EFLAGS (reset to RT_BIT(1); not relevant) * */ /* All done! Let's start VM execution. */ STAM_PROFILE_ADV_START(&pVM->hwaccm.s.StatInGC, x); #ifdef VBOX_STRICT Assert(idCpuCheck == RTMpCpuId()); #endif rc = pVM->hwaccm.s.vmx.pfnStartVM(pVM->hwaccm.s.vmx.fResumeVM, pCtx); /* In case we execute a goto ResumeExecution later on. */ pVM->hwaccm.s.vmx.fResumeVM = true; /** * !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! * IMPORTANT: WE CAN'T DO ANY LOGGING OR OPERATIONS THAT CAN DO A LONGJMP BACK TO RING 3 *BEFORE* WE'VE SYNCED BACK (MOST OF) THE GUEST STATE * !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! */ STAM_PROFILE_ADV_STOP(&pVM->hwaccm.s.StatInGC, x); STAM_PROFILE_ADV_START(&pVM->hwaccm.s.StatExit, x); switch (rc) { case VINF_SUCCESS: break; case VERR_VMX_INVALID_VMXON_PTR: AssertFailed(); goto end; case VERR_VMX_UNABLE_TO_START_VM: case VERR_VMX_UNABLE_TO_RESUME_VM: { #ifdef VBOX_STRICT int rc1; rc1 = VMXReadVMCS(VMX_VMCS_RO_EXIT_REASON, &exitReason); rc1 |= VMXReadVMCS(VMX_VMCS_RO_VM_INSTR_ERROR, &instrError); AssertRC(rc1); if (rc1 == VINF_SUCCESS) { RTGDTR gdtr; PX86DESCHC pDesc; ASMGetGDTR(&gdtr); Log(("Unable to start/resume VM for reason: %x. Instruction error %x\n", (uint32_t)exitReason, (uint32_t)instrError)); Log(("Current stack %08x\n", &rc1)); VMXReadVMCS(VMX_VMCS_GUEST_RIP, &val); Log(("Old eip %VGv new %VGv\n", pCtx->rip, (RTGCPTR)val)); VMXReadVMCS(VMX_VMCS_CTRL_PIN_EXEC_CONTROLS, &val); Log(("VMX_VMCS_CTRL_PIN_EXEC_CONTROLS %08x\n", val)); VMXReadVMCS(VMX_VMCS_CTRL_PROC_EXEC_CONTROLS, &val); Log(("VMX_VMCS_CTRL_PROC_EXEC_CONTROLS %08x\n", val)); VMXReadVMCS(VMX_VMCS_CTRL_ENTRY_CONTROLS, &val); Log(("VMX_VMCS_CTRL_ENTRY_CONTROLS %08x\n", val)); VMXReadVMCS(VMX_VMCS_CTRL_EXIT_CONTROLS, &val); Log(("VMX_VMCS_CTRL_EXIT_CONTROLS %08x\n", val)); VMXReadVMCS(VMX_VMCS_HOST_CR0, &val); Log(("VMX_VMCS_HOST_CR0 %08x\n", val)); VMXReadVMCS(VMX_VMCS_HOST_CR3, &val); Log(("VMX_VMCS_HOST_CR3 %VHp\n", val)); VMXReadVMCS(VMX_VMCS_HOST_CR4, &val); Log(("VMX_VMCS_HOST_CR4 %08x\n", val)); VMXReadVMCS(VMX_VMCS_HOST_FIELD_CS, &val); Log(("VMX_VMCS_HOST_FIELD_CS %08x\n", val)); if (val < gdtr.cbGdt) { pDesc = &((PX86DESCHC)gdtr.pGdt)[val >> X86_SEL_SHIFT_HC]; HWACCMR0DumpDescriptor(pDesc, val, "CS: "); } VMXReadVMCS(VMX_VMCS_HOST_FIELD_DS, &val); Log(("VMX_VMCS_HOST_FIELD_DS %08x\n", val)); if (val < gdtr.cbGdt) { pDesc = &((PX86DESCHC)gdtr.pGdt)[val >> X86_SEL_SHIFT_HC]; HWACCMR0DumpDescriptor(pDesc, val, "DS: "); } VMXReadVMCS(VMX_VMCS_HOST_FIELD_ES, &val); Log(("VMX_VMCS_HOST_FIELD_ES %08x\n", val)); if (val < gdtr.cbGdt) { pDesc = &((PX86DESCHC)gdtr.pGdt)[val >> X86_SEL_SHIFT_HC]; HWACCMR0DumpDescriptor(pDesc, val, "ES: "); } VMXReadVMCS(VMX_VMCS_HOST_FIELD_FS, &val); Log(("VMX_VMCS_HOST_FIELD_FS %08x\n", val)); if (val < gdtr.cbGdt) { pDesc = &((PX86DESCHC)gdtr.pGdt)[val >> X86_SEL_SHIFT_HC]; HWACCMR0DumpDescriptor(pDesc, val, "FS: "); } VMXReadVMCS(VMX_VMCS_HOST_FIELD_GS, &val); Log(("VMX_VMCS_HOST_FIELD_GS %08x\n", val)); if (val < gdtr.cbGdt) { pDesc = &((PX86DESCHC)gdtr.pGdt)[val >> X86_SEL_SHIFT_HC]; HWACCMR0DumpDescriptor(pDesc, val, "GS: "); } VMXReadVMCS(VMX_VMCS_HOST_FIELD_SS, &val); Log(("VMX_VMCS_HOST_FIELD_SS %08x\n", val)); if (val < gdtr.cbGdt) { pDesc = &((PX86DESCHC)gdtr.pGdt)[val >> X86_SEL_SHIFT_HC]; HWACCMR0DumpDescriptor(pDesc, val, "SS: "); } VMXReadVMCS(VMX_VMCS_HOST_FIELD_TR, &val); Log(("VMX_VMCS_HOST_FIELD_TR %08x\n", val)); if (val < gdtr.cbGdt) { pDesc = &((PX86DESCHC)gdtr.pGdt)[val >> X86_SEL_SHIFT_HC]; HWACCMR0DumpDescriptor(pDesc, val, "TR: "); } VMXReadVMCS(VMX_VMCS_HOST_TR_BASE, &val); Log(("VMX_VMCS_HOST_TR_BASE %VHv\n", val)); VMXReadVMCS(VMX_VMCS_HOST_GDTR_BASE, &val); Log(("VMX_VMCS_HOST_GDTR_BASE %VHv\n", val)); VMXReadVMCS(VMX_VMCS_HOST_IDTR_BASE, &val); Log(("VMX_VMCS_HOST_IDTR_BASE %VHv\n", val)); VMXReadVMCS(VMX_VMCS_HOST_SYSENTER_CS, &val); Log(("VMX_VMCS_HOST_SYSENTER_CS %08x\n", val)); VMXReadVMCS(VMX_VMCS_HOST_SYSENTER_EIP, &val); Log(("VMX_VMCS_HOST_SYSENTER_EIP %VHv\n", val)); VMXReadVMCS(VMX_VMCS_HOST_SYSENTER_ESP, &val); Log(("VMX_VMCS_HOST_SYSENTER_ESP %VHv\n", val)); VMXReadVMCS(VMX_VMCS_HOST_RSP, &val); Log(("VMX_VMCS_HOST_RSP %VHv\n", val)); VMXReadVMCS(VMX_VMCS_HOST_RIP, &val); Log(("VMX_VMCS_HOST_RIP %VHv\n", val)); #if HC_ARCH_BITS == 64 Log(("MSR_K6_EFER = %VX64\n", ASMRdMsr(MSR_K6_EFER))); Log(("MSR_K6_STAR = %VX64\n", ASMRdMsr(MSR_K6_STAR))); Log(("MSR_K8_LSTAR = %VX64\n", ASMRdMsr(MSR_K8_LSTAR))); Log(("MSR_K8_CSTAR = %VX64\n", ASMRdMsr(MSR_K8_CSTAR))); Log(("MSR_K8_SF_MASK = %VX64\n", ASMRdMsr(MSR_K8_SF_MASK))); #endif } #endif /* VBOX_STRICT */ goto end; } default: /* impossible */ AssertFailed(); goto end; } /* Success. Query the guest state and figure out what has happened. */ /* Investigate why there was a VM-exit. */ rc = VMXReadVMCS(VMX_VMCS_RO_EXIT_REASON, &exitReason); STAM_COUNTER_INC(&pVM->hwaccm.s.pStatExitReasonR0[exitReason & MASK_EXITREASON_STAT]); exitReason &= 0xffff; /* bit 0-15 contain the exit code. */ rc |= VMXReadVMCS(VMX_VMCS_RO_VM_INSTR_ERROR, &instrError); rc |= VMXReadVMCS(VMX_VMCS_RO_EXIT_INSTR_LENGTH, &cbInstr); rc |= VMXReadVMCS(VMX_VMCS_RO_EXIT_INTERRUPTION_INFO, &val); intInfo = val; rc |= VMXReadVMCS(VMX_VMCS_RO_EXIT_INTERRUPTION_ERRCODE, &val); errCode = val; /* might not be valid; depends on VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_IS_VALID. */ rc |= VMXReadVMCS(VMX_VMCS_RO_EXIT_INSTR_INFO, &val); instrInfo = val; rc |= VMXReadVMCS(VMX_VMCS_RO_EXIT_QUALIFICATION, &val); exitQualification = val; AssertRC(rc); /* Let's first sync back eip, esp, and eflags. */ rc = VMXReadVMCS(VMX_VMCS_GUEST_RIP, &val); AssertRC(rc); pCtx->rip = val; rc = VMXReadVMCS(VMX_VMCS_GUEST_RSP, &val); AssertRC(rc); pCtx->rsp = val; rc = VMXReadVMCS(VMX_VMCS_GUEST_RFLAGS, &val); AssertRC(rc); pCtx->eflags.u32 = val; /* Update the APIC with the cached TPR value. * @todo reduce overhead */ if ( pCtx->msrEFER & MSR_K6_EFER_LMA && pVM->hwaccm.s.vmx.pAPIC) { rc = PDMApicSetTPR(pVM, pVM->hwaccm.s.vmx.pAPIC[0x80] >> 4); AssertRC(rc); } /* Take care of instruction fusing (sti, mov ss) */ rc |= VMXReadVMCS(VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE, &val); uInterruptState = val; if (uInterruptState != 0) { Assert(uInterruptState <= 2); /* only sti & mov ss */ Log(("uInterruptState %x eip=%VGv\n", uInterruptState, pCtx->rip)); EMSetInhibitInterruptsPC(pVM, pCtx->rip); } else VM_FF_CLEAR(pVM, VM_FF_INHIBIT_INTERRUPTS); /* Real mode emulation using v86 mode with CR4.VME (interrupt redirection using the int bitmap in the TSS) */ if (!(pCtx->cr0 & X86_CR0_PROTECTION_ENABLE)) { /* Hide our emulation flags */ pCtx->eflags.Bits.u1VM = 0; pCtx->eflags.Bits.u1IF = pCtx->eflags.Bits.u1VIF; pCtx->eflags.Bits.u1VIF = 0; pCtx->eflags.Bits.u2IOPL = 0; } /* Control registers. */ VMXReadVMCS(VMX_VMCS_CTRL_CR0_READ_SHADOW, &valShadow); VMXReadVMCS(VMX_VMCS_GUEST_CR0, &val); val = (valShadow & pVM->hwaccm.s.vmx.cr0_mask) | (val & ~pVM->hwaccm.s.vmx.cr0_mask); CPUMSetGuestCR0(pVM, val); VMXReadVMCS(VMX_VMCS_CTRL_CR4_READ_SHADOW, &valShadow); VMXReadVMCS(VMX_VMCS_GUEST_CR4, &val); val = (valShadow & pVM->hwaccm.s.vmx.cr4_mask) | (val & ~pVM->hwaccm.s.vmx.cr4_mask); CPUMSetGuestCR4(pVM, val); CPUMSetGuestCR2(pVM, ASMGetCR2()); VMXReadVMCS(VMX_VMCS_GUEST_DR7, &val); CPUMSetGuestDR7(pVM, val); /* Guest CPU context: ES, CS, SS, DS, FS, GS. */ VMX_READ_SELREG(ES, es); VMX_READ_SELREG(SS, ss); VMX_READ_SELREG(CS, cs); VMX_READ_SELREG(DS, ds); VMX_READ_SELREG(FS, fs); VMX_READ_SELREG(GS, gs); /** @note NOW IT'S SAFE FOR LOGGING! */ Log2(("Raw exit reason %08x\n", exitReason)); /* Check if an injected event was interrupted prematurely. */ rc = VMXReadVMCS(VMX_VMCS_RO_IDT_INFO, &val); AssertRC(rc); pVM->hwaccm.s.Event.intInfo = VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(val); if ( VMX_EXIT_INTERRUPTION_INFO_VALID(pVM->hwaccm.s.Event.intInfo) && VMX_EXIT_INTERRUPTION_INFO_TYPE(pVM->hwaccm.s.Event.intInfo) != VMX_EXIT_INTERRUPTION_INFO_TYPE_SW) { pVM->hwaccm.s.Event.fPending = true; /* Error code present? */ if (VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_IS_VALID(pVM->hwaccm.s.Event.intInfo)) { rc = VMXReadVMCS(VMX_VMCS_RO_IDT_ERRCODE, &val); AssertRC(rc); pVM->hwaccm.s.Event.errCode = val; Log(("Pending inject %VX64 at %VGv exit=%08x intInfo=%08x exitQualification=%08x pending error=%RX64\n", pVM->hwaccm.s.Event.intInfo, pCtx->rip, exitReason, intInfo, exitQualification, val)); } else { Log(("Pending inject %VX64 at %VGv exit=%08x intInfo=%08x exitQualification=%08x\n", pVM->hwaccm.s.Event.intInfo, pCtx->rip, exitReason, intInfo, exitQualification)); pVM->hwaccm.s.Event.errCode = 0; } } #ifdef VBOX_STRICT if (exitReason == VMX_EXIT_ERR_INVALID_GUEST_STATE) HWACCMDumpRegs(pVM, pCtx); #endif Log2(("E%d", exitReason)); Log2(("Exit reason %d, exitQualification %08x\n", exitReason, exitQualification)); Log2(("instrInfo=%d instrError=%d instr length=%d\n", instrInfo, instrError, cbInstr)); Log2(("Interruption error code %d\n", errCode)); Log2(("IntInfo = %08x\n", intInfo)); Log2(("New EIP=%VGv\n", pCtx->rip)); if (fSyncTPR) { rc = PDMApicSetTPR(pVM, pVM->hwaccm.s.vmx.pAPIC[0x80]); AssertRC(rc); } /* Some cases don't need a complete resync of the guest CPU state; handle them here. */ switch (exitReason) { case VMX_EXIT_EXCEPTION: /* 0 Exception or non-maskable interrupt (NMI). */ case VMX_EXIT_EXTERNAL_IRQ: /* 1 External interrupt. */ { uint32_t vector = VMX_EXIT_INTERRUPTION_INFO_VECTOR(intInfo); if (!VMX_EXIT_INTERRUPTION_INFO_VALID(intInfo)) { Assert(exitReason == VMX_EXIT_EXTERNAL_IRQ); /* External interrupt; leave to allow it to be dispatched again. */ rc = VINF_EM_RAW_INTERRUPT; break; } switch (VMX_EXIT_INTERRUPTION_INFO_TYPE(intInfo)) { case VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI: /* Non-maskable interrupt. */ /* External interrupt; leave to allow it to be dispatched again. */ rc = VINF_EM_RAW_INTERRUPT; break; case VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT: /* External hardware interrupt. */ AssertFailed(); /* can't come here; fails the first check. */ break; case VMX_EXIT_INTERRUPTION_INFO_TYPE_SWEXCPT: /* Software exception. (#BP or #OF) */ Assert(vector == 3 || vector == 4); /* no break */ case VMX_EXIT_INTERRUPTION_INFO_TYPE_HWEXCPT: /* Hardware exception. */ Log2(("Hardware/software interrupt %d\n", vector)); switch (vector) { case X86_XCPT_NM: { Log(("#NM fault at %VGv error code %x\n", pCtx->rip, errCode)); /** @todo don't intercept #NM exceptions anymore when we've activated the guest FPU state. */ /* If we sync the FPU/XMM state on-demand, then we can continue execution as if nothing has happened. */ rc = CPUMR0LoadGuestFPU(pVM, pCtx); if (rc == VINF_SUCCESS) { Assert(CPUMIsGuestFPUStateActive(pVM)); STAM_COUNTER_INC(&pVM->hwaccm.s.StatExitShadowNM); /* Continue execution. */ STAM_PROFILE_ADV_STOP(&pVM->hwaccm.s.StatExit, x); pVM->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_GUEST_CR0; goto ResumeExecution; } Log(("Forward #NM fault to the guest\n")); STAM_COUNTER_INC(&pVM->hwaccm.s.StatExitGuestNM); rc = VMXR0InjectEvent(pVM, pCtx, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(intInfo), cbInstr, 0); AssertRC(rc); STAM_PROFILE_ADV_STOP(&pVM->hwaccm.s.StatExit, x); goto ResumeExecution; } case X86_XCPT_PF: /* Page fault */ { Log2(("Page fault at %VGv error code %x\n", exitQualification ,errCode)); /* Exit qualification contains the linear address of the page fault. */ TRPMAssertTrap(pVM, X86_XCPT_PF, TRPM_TRAP); TRPMSetErrorCode(pVM, errCode); TRPMSetFaultAddress(pVM, exitQualification); /* Forward it to our trap handler first, in case our shadow pages are out of sync. */ rc = PGMTrap0eHandler(pVM, errCode, CPUMCTX2CORE(pCtx), (RTGCPTR)exitQualification); Log2(("PGMTrap0eHandler %VGv returned %Vrc\n", pCtx->rip, rc)); if (rc == VINF_SUCCESS) { /* We've successfully synced our shadow pages, so let's just continue execution. */ Log2(("Shadow page fault at %VGv cr2=%VGv error code %x\n", pCtx->rip, exitQualification ,errCode)); STAM_COUNTER_INC(&pVM->hwaccm.s.StatExitShadowPF); TRPMResetTrap(pVM); STAM_PROFILE_ADV_STOP(&pVM->hwaccm.s.StatExit, x); goto ResumeExecution; } else if (rc == VINF_EM_RAW_GUEST_TRAP) { /* A genuine pagefault. * Forward the trap to the guest by injecting the exception and resuming execution. */ Log2(("Forward page fault to the guest\n")); STAM_COUNTER_INC(&pVM->hwaccm.s.StatExitGuestPF); /* The error code might have been changed. */ errCode = TRPMGetErrorCode(pVM); TRPMResetTrap(pVM); /* Now we must update CR2. */ pCtx->cr2 = exitQualification; rc = VMXR0InjectEvent(pVM, pCtx, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(intInfo), cbInstr, errCode); AssertRC(rc); STAM_PROFILE_ADV_STOP(&pVM->hwaccm.s.StatExit, x); goto ResumeExecution; } #ifdef VBOX_STRICT if (rc != VINF_EM_RAW_EMULATE_INSTR) Log2(("PGMTrap0eHandler failed with %d\n", rc)); #endif /* Need to go back to the recompiler to emulate the instruction. */ TRPMResetTrap(pVM); break; } case X86_XCPT_MF: /* Floating point exception. */ { STAM_COUNTER_INC(&pVM->hwaccm.s.StatExitGuestMF); if (!(pCtx->cr0 & X86_CR0_NE)) { /* old style FPU error reporting needs some extra work. */ /** @todo don't fall back to the recompiler, but do it manually. */ rc = VINF_EM_RAW_EMULATE_INSTR; break; } Log(("Trap %x at %VGv\n", vector, pCtx->rip)); rc = VMXR0InjectEvent(pVM, pCtx, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(intInfo), cbInstr, errCode); AssertRC(rc); STAM_PROFILE_ADV_STOP(&pVM->hwaccm.s.StatExit, x); goto ResumeExecution; } #ifdef VBOX_STRICT case X86_XCPT_GP: /* General protection failure exception.*/ case X86_XCPT_UD: /* Unknown opcode exception. */ case X86_XCPT_DE: /* Debug exception. */ case X86_XCPT_SS: /* Stack segment exception. */ case X86_XCPT_NP: /* Segment not present exception. */ { switch(vector) { case X86_XCPT_DE: STAM_COUNTER_INC(&pVM->hwaccm.s.StatExitGuestDE); break; case X86_XCPT_UD: STAM_COUNTER_INC(&pVM->hwaccm.s.StatExitGuestUD); break; case X86_XCPT_SS: STAM_COUNTER_INC(&pVM->hwaccm.s.StatExitGuestSS); break; case X86_XCPT_NP: STAM_COUNTER_INC(&pVM->hwaccm.s.StatExitGuestNP); break; case X86_XCPT_GP: STAM_COUNTER_INC(&pVM->hwaccm.s.StatExitGuestGP); break; } Log(("Trap %x at %VGv\n", vector, pCtx->rip)); rc = VMXR0InjectEvent(pVM, pCtx, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(intInfo), cbInstr, errCode); AssertRC(rc); STAM_PROFILE_ADV_STOP(&pVM->hwaccm.s.StatExit, x); goto ResumeExecution; } #endif default: AssertMsgFailed(("Unexpected vm-exit caused by exception %x\n", vector)); rc = VERR_EM_INTERNAL_ERROR; break; } /* switch (vector) */ break; default: rc = VERR_EM_INTERNAL_ERROR; AssertFailed(); break; } break; } case VMX_EXIT_IRQ_WINDOW: /* 7 Interrupt window. */ /* Clear VM-exit on IF=1 change. */ Log2(("VMX_EXIT_IRQ_WINDOW %VGv\n", pCtx->rip)); pVM->hwaccm.s.vmx.proc_ctls &= ~VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_IRQ_WINDOW_EXIT; rc = VMXWriteVMCS(VMX_VMCS_CTRL_PROC_EXEC_CONTROLS, pVM->hwaccm.s.vmx.proc_ctls); AssertRC(rc); STAM_COUNTER_INC(&pVM->hwaccm.s.StatExitIrqWindow); goto ResumeExecution; /* we check for pending guest interrupts there */ case VMX_EXIT_INVD: /* 13 Guest software attempted to execute INVD. */ STAM_COUNTER_INC(&pVM->hwaccm.s.StatExitInvd); /* Skip instruction and continue directly. */ pCtx->rip += cbInstr; /* Continue execution.*/ STAM_PROFILE_ADV_STOP(&pVM->hwaccm.s.StatExit, x); goto ResumeExecution; case VMX_EXIT_CPUID: /* 10 Guest software attempted to execute CPUID. */ { Log2(("VMX: Cpuid %x\n", pCtx->eax)); STAM_COUNTER_INC(&pVM->hwaccm.s.StatExitCpuid); rc = EMInterpretCpuId(pVM, CPUMCTX2CORE(pCtx)); if (rc == VINF_SUCCESS) { /* Update EIP and continue execution. */ Assert(cbInstr == 2); pCtx->rip += cbInstr; STAM_PROFILE_ADV_STOP(&pVM->hwaccm.s.StatExit, x); goto ResumeExecution; } AssertMsgFailed(("EMU: cpuid failed with %Vrc\n", rc)); rc = VINF_EM_RAW_EMULATE_INSTR; break; } case VMX_EXIT_RDTSC: /* 16 Guest software attempted to execute RDTSC. */ { Log2(("VMX: Rdtsc\n")); STAM_COUNTER_INC(&pVM->hwaccm.s.StatExitRdtsc); rc = EMInterpretRdtsc(pVM, CPUMCTX2CORE(pCtx)); if (rc == VINF_SUCCESS) { /* Update EIP and continue execution. */ Assert(cbInstr == 2); pCtx->rip += cbInstr; STAM_PROFILE_ADV_STOP(&pVM->hwaccm.s.StatExit, x); goto ResumeExecution; } AssertMsgFailed(("EMU: rdtsc failed with %Vrc\n", rc)); rc = VINF_EM_RAW_EMULATE_INSTR; break; } case VMX_EXIT_INVPG: /* 14 Guest software attempted to execute INVPG. */ { Log2(("VMX: invlpg\n")); STAM_COUNTER_INC(&pVM->hwaccm.s.StatExitInvpg); rc = EMInterpretInvlpg(pVM, CPUMCTX2CORE(pCtx), exitQualification); if (rc == VINF_SUCCESS) { /* Update EIP and continue execution. */ pCtx->rip += cbInstr; STAM_PROFILE_ADV_STOP(&pVM->hwaccm.s.StatExit, x); goto ResumeExecution; } AssertMsg(rc == VERR_EM_INTERPRETER, ("EMU: invlpg %VGv failed with %Vrc\n", exitQualification, rc)); break; } case VMX_EXIT_RDMSR: /* 31 RDMSR. Guest software attempted to execute RDMSR. */ case VMX_EXIT_WRMSR: /* 32 WRMSR. Guest software attempted to execute WRMSR. */ { uint32_t cbSize; /* Note: the intel manual claims there's a REX version of RDMSR that's slightly different, so we play safe by completely disassembling the instruction. */ Log2(("VMX: %s\n", (exitReason == VMX_EXIT_RDMSR) ? "rdmsr" : "wrmsr")); rc = EMInterpretInstruction(pVM, CPUMCTX2CORE(pCtx), 0, &cbSize); if (rc == VINF_SUCCESS) { /* EIP has been updated already. */ /* Only resume if successful. */ STAM_PROFILE_ADV_STOP(&pVM->hwaccm.s.StatExit, x); goto ResumeExecution; } AssertMsg(rc == VERR_EM_INTERPRETER, ("EMU: %s failed with %Vrc\n", (exitReason == VMX_EXIT_RDMSR) ? "rdmsr" : "wrmsr", rc)); break; } case VMX_EXIT_CRX_MOVE: /* 28 Control-register accesses. */ { switch (VMX_EXIT_QUALIFICATION_CRX_ACCESS(exitQualification)) { case VMX_EXIT_QUALIFICATION_CRX_ACCESS_WRITE: Log2(("VMX: %VGv mov cr%d, x\n", pCtx->rip, VMX_EXIT_QUALIFICATION_CRX_REGISTER(exitQualification))); STAM_COUNTER_INC(&pVM->hwaccm.s.StatExitCRxWrite); rc = EMInterpretCRxWrite(pVM, CPUMCTX2CORE(pCtx), VMX_EXIT_QUALIFICATION_CRX_REGISTER(exitQualification), VMX_EXIT_QUALIFICATION_CRX_GENREG(exitQualification)); switch (VMX_EXIT_QUALIFICATION_CRX_REGISTER(exitQualification)) { case 0: pVM->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_GUEST_CR0; break; case 2: break; case 3: pVM->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_GUEST_CR3; break; case 4: pVM->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_GUEST_CR4; break; case 8: /* CR8 contains the APIC TPR */ Assert(!(pVM->hwaccm.s.vmx.msr.vmx_proc_ctls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_USE_TPR_SHADOW)); break; default: AssertFailed(); break; } /* Check if a sync operation is pending. */ if ( rc == VINF_SUCCESS /* don't bother if we are going to ring 3 anyway */ && VM_FF_ISPENDING(pVM, VM_FF_PGM_SYNC_CR3 | VM_FF_PGM_SYNC_CR3_NON_GLOBAL)) { rc = PGMSyncCR3(pVM, CPUMGetGuestCR0(pVM), CPUMGetGuestCR3(pVM), CPUMGetGuestCR4(pVM), VM_FF_ISSET(pVM, VM_FF_PGM_SYNC_CR3)); AssertRC(rc); } break; case VMX_EXIT_QUALIFICATION_CRX_ACCESS_READ: Log2(("VMX: mov x, crx\n")); STAM_COUNTER_INC(&pVM->hwaccm.s.StatExitCRxRead); /* CR8 reads only cause an exit when the TPR shadow feature isn't present. */ Assert(VMX_EXIT_QUALIFICATION_CRX_REGISTER(exitQualification) != 8 || !(pVM->hwaccm.s.vmx.msr.vmx_proc_ctls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_USE_TPR_SHADOW)); rc = EMInterpretCRxRead(pVM, CPUMCTX2CORE(pCtx), VMX_EXIT_QUALIFICATION_CRX_GENREG(exitQualification), VMX_EXIT_QUALIFICATION_CRX_REGISTER(exitQualification)); break; case VMX_EXIT_QUALIFICATION_CRX_ACCESS_CLTS: Log2(("VMX: clts\n")); STAM_COUNTER_INC(&pVM->hwaccm.s.StatExitCLTS); rc = EMInterpretCLTS(pVM); pVM->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_GUEST_CR0; break; case VMX_EXIT_QUALIFICATION_CRX_ACCESS_LMSW: Log2(("VMX: lmsw %x\n", VMX_EXIT_QUALIFICATION_CRX_LMSW_DATA(exitQualification))); STAM_COUNTER_INC(&pVM->hwaccm.s.StatExitLMSW); rc = EMInterpretLMSW(pVM, VMX_EXIT_QUALIFICATION_CRX_LMSW_DATA(exitQualification)); pVM->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_GUEST_CR0; break; } /* Update EIP if no error occurred. */ if (VBOX_SUCCESS(rc)) pCtx->rip += cbInstr; if (rc == VINF_SUCCESS) { /* Only resume if successful. */ STAM_PROFILE_ADV_STOP(&pVM->hwaccm.s.StatExit, x); goto ResumeExecution; } Assert(rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_PGM_SYNC_CR3); break; } case VMX_EXIT_DRX_MOVE: /* 29 Debug-register accesses. */ { /** @todo clear VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_MOV_DR_EXIT after the first time and restore drx registers afterwards */ if (VMX_EXIT_QUALIFICATION_DRX_DIRECTION(exitQualification) == VMX_EXIT_QUALIFICATION_DRX_DIRECTION_WRITE) { Log2(("VMX: mov drx%d, genreg%d\n", VMX_EXIT_QUALIFICATION_DRX_REGISTER(exitQualification), VMX_EXIT_QUALIFICATION_DRX_GENREG(exitQualification))); STAM_COUNTER_INC(&pVM->hwaccm.s.StatExitDRxWrite); rc = EMInterpretDRxWrite(pVM, CPUMCTX2CORE(pCtx), VMX_EXIT_QUALIFICATION_DRX_REGISTER(exitQualification), VMX_EXIT_QUALIFICATION_DRX_GENREG(exitQualification)); Log2(("DR7=%08x\n", pCtx->dr7)); } else { Log2(("VMX: mov x, drx\n")); STAM_COUNTER_INC(&pVM->hwaccm.s.StatExitDRxRead); rc = EMInterpretDRxRead(pVM, CPUMCTX2CORE(pCtx), VMX_EXIT_QUALIFICATION_DRX_GENREG(exitQualification), VMX_EXIT_QUALIFICATION_DRX_REGISTER(exitQualification)); } /* Update EIP if no error occurred. */ if (VBOX_SUCCESS(rc)) pCtx->rip += cbInstr; if (rc == VINF_SUCCESS) { /* Only resume if successful. */ STAM_PROFILE_ADV_STOP(&pVM->hwaccm.s.StatExit, x); goto ResumeExecution; } Assert(rc == VERR_EM_INTERPRETER); break; } /** @note We'll get a #GP if the IO instruction isn't allowed (IOPL or TSS bitmap); no need to double check. */ case VMX_EXIT_PORT_IO: /* 30 I/O instruction. */ { uint32_t uIOWidth = VMX_EXIT_QUALIFICATION_IO_WIDTH(exitQualification); uint32_t uPort; bool fIOWrite = (VMX_EXIT_QUALIFICATION_IO_DIRECTION(exitQualification) == VMX_EXIT_QUALIFICATION_IO_DIRECTION_OUT); /** @todo necessary to make the distinction? */ if (VMX_EXIT_QUALIFICATION_IO_ENCODING(exitQualification) == VMX_EXIT_QUALIFICATION_IO_ENCODING_DX) { uPort = pCtx->edx & 0xffff; } else uPort = VMX_EXIT_QUALIFICATION_IO_PORT(exitQualification); /* Immediate encoding. */ /* paranoia */ if (RT_UNLIKELY(uIOWidth == 2 || uIOWidth >= 4)) { rc = fIOWrite ? VINF_IOM_HC_IOPORT_WRITE : VINF_IOM_HC_IOPORT_READ; break; } uint32_t cbSize = aIOSize[uIOWidth]; if (VMX_EXIT_QUALIFICATION_IO_STRING(exitQualification)) { /* ins/outs */ uint32_t prefix = 0; if (VMX_EXIT_QUALIFICATION_IO_REP(exitQualification)) prefix |= PREFIX_REP; if (fIOWrite) { Log2(("IOMInterpretOUTSEx %VGv %x size=%d\n", pCtx->rip, uPort, cbSize)); STAM_COUNTER_INC(&pVM->hwaccm.s.StatExitIOStringWrite); rc = IOMInterpretOUTSEx(pVM, CPUMCTX2CORE(pCtx), uPort, prefix, cbSize); } else { Log2(("IOMInterpretINSEx %VGv %x size=%d\n", pCtx->rip, uPort, cbSize)); STAM_COUNTER_INC(&pVM->hwaccm.s.StatExitIOStringRead); rc = IOMInterpretINSEx(pVM, CPUMCTX2CORE(pCtx), uPort, prefix, cbSize); } } else { /* normal in/out */ uint32_t uAndVal = aIOOpAnd[uIOWidth]; Assert(!VMX_EXIT_QUALIFICATION_IO_REP(exitQualification)); if (fIOWrite) { STAM_COUNTER_INC(&pVM->hwaccm.s.StatExitIOWrite); rc = IOMIOPortWrite(pVM, uPort, pCtx->eax & uAndVal, cbSize); } else { uint32_t u32Val = 0; STAM_COUNTER_INC(&pVM->hwaccm.s.StatExitIORead); rc = IOMIOPortRead(pVM, uPort, &u32Val, cbSize); if (IOM_SUCCESS(rc)) { /* Write back to the EAX register. */ pCtx->eax = (pCtx->eax & ~uAndVal) | (u32Val & uAndVal); } } } /* * Handled the I/O return codes. * (The unhandled cases end up with rc == VINF_EM_RAW_EMULATE_INSTR.) */ if (IOM_SUCCESS(rc)) { /* Update EIP and continue execution. */ pCtx->rip += cbInstr; if (RT_LIKELY(rc == VINF_SUCCESS)) { STAM_PROFILE_ADV_STOP(&pVM->hwaccm.s.StatExit, x); goto ResumeExecution; } break; } #ifdef VBOX_STRICT if (rc == VINF_IOM_HC_IOPORT_READ) Assert(!fIOWrite); else if (rc == VINF_IOM_HC_IOPORT_WRITE) Assert(fIOWrite); else AssertMsg(VBOX_FAILURE(rc) || rc == VINF_EM_RAW_EMULATE_INSTR || rc == VINF_EM_RAW_GUEST_TRAP || rc == VINF_TRPM_XCPT_DISPATCHED, ("%Vrc\n", rc)); #endif break; } case VMX_EXIT_TPR: /* 43 TPR below threshold. Guest software executed MOV to CR8. */ LogFlow(("VMX_EXIT_TPR\n")); /* RIP is already set to the next instruction and the TPR has been synced back. Just resume. */ goto ResumeExecution; default: /* The rest is handled after syncing the entire CPU state. */ break; } /* Note: the guest state isn't entirely synced back at this stage. */ /* Investigate why there was a VM-exit. (part 2) */ switch (exitReason) { case VMX_EXIT_EXCEPTION: /* 0 Exception or non-maskable interrupt (NMI). */ case VMX_EXIT_EXTERNAL_IRQ: /* 1 External interrupt. */ /* Already handled above. */ break; case VMX_EXIT_TRIPLE_FAULT: /* 2 Triple fault. */ rc = VINF_EM_RESET; /* Triple fault equals a reset. */ break; case VMX_EXIT_INIT_SIGNAL: /* 3 INIT signal. */ case VMX_EXIT_SIPI: /* 4 Start-up IPI (SIPI). */ rc = VINF_EM_RAW_INTERRUPT; AssertFailed(); /* Can't happen. Yet. */ break; case VMX_EXIT_IO_SMI_IRQ: /* 5 I/O system-management interrupt (SMI). */ case VMX_EXIT_SMI_IRQ: /* 6 Other SMI. */ rc = VINF_EM_RAW_INTERRUPT; AssertFailed(); /* Can't happen afaik. */ break; case VMX_EXIT_TASK_SWITCH: /* 9 Task switch. */ rc = VERR_EM_INTERPRETER; break; case VMX_EXIT_HLT: /* 12 Guest software attempted to execute HLT. */ /** Check if external interrupts are pending; if so, don't switch back. */ pCtx->rip++; /* skip hlt */ if ( pCtx->eflags.Bits.u1IF && VM_FF_ISPENDING(pVM, (VM_FF_INTERRUPT_APIC|VM_FF_INTERRUPT_PIC))) goto ResumeExecution; rc = VINF_EM_HALT; break; case VMX_EXIT_RSM: /* 17 Guest software attempted to execute RSM in SMM. */ AssertFailed(); /* can't happen. */ rc = VINF_EM_RAW_EXCEPTION_PRIVILEGED; break; case VMX_EXIT_VMCALL: /* 18 Guest software executed VMCALL. */ case VMX_EXIT_VMCLEAR: /* 19 Guest software executed VMCLEAR. */ case VMX_EXIT_VMLAUNCH: /* 20 Guest software executed VMLAUNCH. */ case VMX_EXIT_VMPTRLD: /* 21 Guest software executed VMPTRLD. */ case VMX_EXIT_VMPTRST: /* 22 Guest software executed VMPTRST. */ case VMX_EXIT_VMREAD: /* 23 Guest software executed VMREAD. */ case VMX_EXIT_VMRESUME: /* 24 Guest software executed VMRESUME. */ case VMX_EXIT_VMWRITE: /* 25 Guest software executed VMWRITE. */ case VMX_EXIT_VMXOFF: /* 26 Guest software executed VMXOFF. */ case VMX_EXIT_VMXON: /* 27 Guest software executed VMXON. */ /** @todo inject #UD immediately */ rc = VINF_EM_RAW_EXCEPTION_PRIVILEGED; break; case VMX_EXIT_CPUID: /* 10 Guest software attempted to execute CPUID. */ case VMX_EXIT_RDTSC: /* 16 Guest software attempted to execute RDTSC. */ case VMX_EXIT_INVPG: /* 14 Guest software attempted to execute INVPG. */ case VMX_EXIT_CRX_MOVE: /* 28 Control-register accesses. */ case VMX_EXIT_DRX_MOVE: /* 29 Debug-register accesses. */ case VMX_EXIT_PORT_IO: /* 30 I/O instruction. */ /* already handled above */ AssertMsg( rc == VINF_PGM_CHANGE_MODE || rc == VINF_EM_RAW_INTERRUPT || rc == VERR_EM_INTERPRETER || rc == VINF_EM_RAW_EMULATE_INSTR || rc == VINF_PGM_SYNC_CR3 || rc == VINF_IOM_HC_IOPORT_READ || rc == VINF_IOM_HC_IOPORT_WRITE || rc == VINF_EM_RAW_GUEST_TRAP || rc == VINF_TRPM_XCPT_DISPATCHED || rc == VINF_EM_RESCHEDULE_REM, ("rc = %d\n", rc)); break; case VMX_EXIT_TPR: /* 43 TPR below threshold. Guest software executed MOV to CR8. */ case VMX_EXIT_RDMSR: /* 31 RDMSR. Guest software attempted to execute RDMSR. */ case VMX_EXIT_WRMSR: /* 32 WRMSR. Guest software attempted to execute WRMSR. */ /* Note: If we decide to emulate them here, then we must sync the MSRs that could have been changed (sysenter, fs/gs base)!!! */ rc = VERR_EM_INTERPRETER; break; case VMX_EXIT_RDPMC: /* 15 Guest software attempted to execute RDPMC. */ case VMX_EXIT_MWAIT: /* 36 Guest software executed MWAIT. */ case VMX_EXIT_MONITOR: /* 39 Guest software attempted to execute MONITOR. */ case VMX_EXIT_PAUSE: /* 40 Guest software attempted to execute PAUSE. */ rc = VINF_EM_RAW_EXCEPTION_PRIVILEGED; break; case VMX_EXIT_IRQ_WINDOW: /* 7 Interrupt window. */ Assert(rc == VINF_EM_RAW_INTERRUPT); break; case VMX_EXIT_ERR_INVALID_GUEST_STATE: /* 33 VM-entry failure due to invalid guest state. */ { #ifdef VBOX_STRICT Log(("VMX_EXIT_ERR_INVALID_GUEST_STATE\n")); VMXReadVMCS(VMX_VMCS_GUEST_RIP, &val); Log(("Old eip %VGv new %VGv\n", pCtx->rip, (RTGCPTR)val)); VMXReadVMCS(VMX_VMCS_GUEST_CR0, &val); Log(("VMX_VMCS_GUEST_CR0 %RX64\n", val)); VMXReadVMCS(VMX_VMCS_GUEST_CR3, &val); Log(("VMX_VMCS_HOST_CR3 %VGp\n", val)); VMXReadVMCS(VMX_VMCS_GUEST_CR4, &val); Log(("VMX_VMCS_GUEST_CR4 %RX64\n", val)); VMX_LOG_SELREG(CS, "CS"); VMX_LOG_SELREG(DS, "DS"); VMX_LOG_SELREG(ES, "ES"); VMX_LOG_SELREG(FS, "FS"); VMX_LOG_SELREG(GS, "GS"); VMX_LOG_SELREG(SS, "SS"); VMX_LOG_SELREG(TR, "TR"); VMX_LOG_SELREG(LDTR, "LDTR"); VMXReadVMCS(VMX_VMCS_GUEST_GDTR_BASE, &val); Log(("VMX_VMCS_GUEST_GDTR_BASE %VGv\n", val)); VMXReadVMCS(VMX_VMCS_GUEST_IDTR_BASE, &val); Log(("VMX_VMCS_GUEST_IDTR_BASE %VGv\n", val)); #endif /* VBOX_STRICT */ rc = VERR_EM_INTERNAL_ERROR; break; } case VMX_EXIT_ERR_MSR_LOAD: /* 34 VM-entry failure due to MSR loading. */ case VMX_EXIT_ERR_MACHINE_CHECK: /* 41 VM-entry failure due to machine-check. */ default: rc = VERR_EM_INTERNAL_ERROR; AssertMsgFailed(("Unexpected exit code %d\n", exitReason)); /* Can't happen. */ break; } end: if (fGuestStateSynced) { /* Remaining guest CPU context: TR, IDTR, GDTR, LDTR. */ VMX_READ_SELREG(LDTR, ldtr); VMX_READ_SELREG(TR, tr); VMXReadVMCS(VMX_VMCS_GUEST_GDTR_LIMIT, &val); pCtx->gdtr.cbGdt = val; VMXReadVMCS(VMX_VMCS_GUEST_GDTR_BASE, &val); pCtx->gdtr.pGdt = val; VMXReadVMCS(VMX_VMCS_GUEST_IDTR_LIMIT, &val); pCtx->idtr.cbIdt = val; VMXReadVMCS(VMX_VMCS_GUEST_IDTR_BASE, &val); pCtx->idtr.pIdt = val; /* * System MSRs */ VMXReadVMCS(VMX_VMCS_GUEST_SYSENTER_CS, &val); pCtx->SysEnter.cs = val; VMXReadVMCS(VMX_VMCS_GUEST_SYSENTER_EIP, &val); pCtx->SysEnter.eip = val; VMXReadVMCS(VMX_VMCS_GUEST_SYSENTER_ESP, &val); pCtx->SysEnter.esp = val; } /* Signal changes for the recompiler. */ CPUMSetChangedFlags(pVM, CPUM_CHANGED_SYSENTER_MSR | CPUM_CHANGED_LDTR | CPUM_CHANGED_GDTR | CPUM_CHANGED_IDTR | CPUM_CHANGED_TR | CPUM_CHANGED_HIDDEN_SEL_REGS); /* If we executed vmlaunch/vmresume and an external irq was pending, then we don't have to do a full sync the next time. */ if ( exitReason == VMX_EXIT_EXTERNAL_IRQ && !VMX_EXIT_INTERRUPTION_INFO_VALID(intInfo)) { STAM_COUNTER_INC(&pVM->hwaccm.s.StatPendingHostIrq); /* On the next entry we'll only sync the host context. */ pVM->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_HOST_CONTEXT; } else { /* On the next entry we'll sync everything. */ /** @todo we can do better than this */ pVM->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_ALL; } /* translate into a less severe return code */ if (rc == VERR_EM_INTERPRETER) rc = VINF_EM_RAW_EMULATE_INSTR; STAM_PROFILE_ADV_STOP(&pVM->hwaccm.s.StatExit, x); Log2(("X")); return rc; } /** * Enters the VT-x session * * @returns VBox status code. * @param pVM The VM to operate on. * @param pCpu CPU info struct */ HWACCMR0DECL(int) VMXR0Enter(PVM pVM, PHWACCM_CPUINFO pCpu) { Assert(pVM->hwaccm.s.vmx.fSupported); unsigned cr4 = ASMGetCR4(); if (!(cr4 & X86_CR4_VMXE)) { AssertMsgFailed(("X86_CR4_VMXE should be set!\n")); return VERR_VMX_X86_CR4_VMXE_CLEARED; } /* Activate the VM Control Structure. */ int rc = VMXActivateVMCS(pVM->hwaccm.s.vmx.pVMCSPhys); if (VBOX_FAILURE(rc)) return rc; pVM->hwaccm.s.vmx.fResumeVM = false; return VINF_SUCCESS; } /** * Leaves the VT-x session * * @returns VBox status code. * @param pVM The VM to operate on. */ HWACCMR0DECL(int) VMXR0Leave(PVM pVM) { Assert(pVM->hwaccm.s.vmx.fSupported); /* Clear VM Control Structure. Marking it inactive, clearing implementation specific data and writing back VMCS data to memory. */ int rc = VMXClearVMCS(pVM->hwaccm.s.vmx.pVMCSPhys); AssertRC(rc); return VINF_SUCCESS; }