/* $Id: HWVMXR0.cpp 46218 2013-05-22 13:31:26Z vboxsync $ */ /** @file * HM VMX (VT-x) - Host Context Ring-0. */ /* * Copyright (C) 2006-2013 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. */ /******************************************************************************* * Header Files * *******************************************************************************/ #define LOG_GROUP LOG_GROUP_HM #include #include #include #include #include #include #include #ifdef VBOX_WITH_REM # include #endif #include #include "HMInternal.h" #include #include #include #include #include #include #include #include #ifdef VBOX_WITH_VMMR0_DISABLE_PREEMPTION # include #endif #include #include "HWVMXR0.h" #include "dtrace/VBoxVMM.h" /******************************************************************************* * Defined Constants And Macros * *******************************************************************************/ #if defined(RT_ARCH_AMD64) # define VMX_IS_64BIT_HOST_MODE() (true) #elif defined(VBOX_WITH_HYBRID_32BIT_KERNEL) # define VMX_IS_64BIT_HOST_MODE() (g_fVMXIs64bitHost != 0) #else # define VMX_IS_64BIT_HOST_MODE() (false) #endif # define VMX_WRITE_SELREG(REG, reg) \ do \ { \ rc = VMXWriteVmcs(VMX_VMCS16_GUEST_FIELD_##REG, pCtx->reg.Sel); \ rc |= VMXWriteVmcs(VMX_VMCS32_GUEST_##REG##_LIMIT, pCtx->reg.u32Limit); \ rc |= VMXWriteVmcs64(VMX_VMCS_GUEST_##REG##_BASE, pCtx->reg.u64Base); \ if ((pCtx->eflags.u32 & X86_EFL_VM)) \ { \ /* Must override this or else VT-x will fail with invalid guest state errors. */ \ /* DPL=3, present, code/data, r/w/accessed. */ \ /** @todo we shouldn't have to do this, if it is not 0xf3 it means we screwed up elsewhere (recompiler). */ \ /** @todo VT-x docs explicitly mentions 0xF3. Why not just val = 0xf3 ??. */ \ val = (pCtx->reg.Attr.u & ~0xFF) | 0xF3; \ } \ else \ if ( CPUMIsGuestInRealModeEx(pCtx) \ && !pVM->hm.s.vmx.fUnrestrictedGuest) \ { \ /** @todo shouldn't the 'if' condition above check for 'pRealModeTSS' ? */ \ /* Must override this or else VT-x will fail with invalid guest state errors. */ \ /* DPL=3, present, code/data, r/w/accessed. */ \ val = 0xf3; \ } \ else \ if ( ( pCtx->reg.Sel \ || !CPUMIsGuestInPagedProtectedModeEx(pCtx) \ || (!pCtx->cs.Attr.n.u1DefBig && !CPUMIsGuestIn64BitCodeEx(pCtx)) \ ) \ && pCtx->reg.Attr.n.u1Present == 1) \ { \ val = pCtx->reg.Attr.u | X86_SEL_TYPE_ACCESSED; \ } \ else \ val = 0x10000; /* Invalid guest state error otherwise. (BIT(16) = Unusable) */ \ \ rc |= VMXWriteVmcs(VMX_VMCS32_GUEST_##REG##_ACCESS_RIGHTS, val); \ } while (0) # define VMX_READ_SELREG(REG, reg) \ do \ { \ VMXReadCachedVmcs(VMX_VMCS16_GUEST_FIELD_##REG, &val); \ pCtx->reg.Sel = val; \ pCtx->reg.ValidSel = val; \ pCtx->reg.fFlags = CPUMSELREG_FLAGS_VALID; \ VMXReadCachedVmcs(VMX_VMCS32_GUEST_##REG##_LIMIT, &val); \ pCtx->reg.u32Limit = val; \ VMXReadCachedVmcs(VMX_VMCS_GUEST_##REG##_BASE, &val); \ pCtx->reg.u64Base = val; \ VMXReadCachedVmcs(VMX_VMCS32_GUEST_##REG##_ACCESS_RIGHTS, &val); \ pCtx->reg.Attr.u = val; \ } while (0) /* Don't read from the cache in this macro; used only in case of failure where the cache is out of sync. */ # define VMX_LOG_SELREG(REG, szSelReg, val) \ do \ { \ VMXReadVmcs(VMX_VMCS16_GUEST_FIELD_##REG, &(val)); \ Log(("%s Selector %x\n", szSelReg, (val))); \ VMXReadVmcs(VMX_VMCS32_GUEST_##REG##_LIMIT, &(val)); \ Log(("%s Limit %x\n", szSelReg, (val))); \ VMXReadVmcs(VMX_VMCS_GUEST_##REG##_BASE, &(val)); \ Log(("%s Base %RX64\n", szSelReg, (uint64_t)(val))); \ VMXReadVmcs(VMX_VMCS32_GUEST_##REG##_ACCESS_RIGHTS, &(val)); \ Log(("%s Attributes %x\n", szSelReg, (val))); \ } while (0) #define VMXSetupCachedReadVmcs(pCache, idxField) \ { \ Assert(pCache->Read.aField[idxField##_CACHE_IDX] == 0); \ pCache->Read.aField[idxField##_CACHE_IDX] = idxField; \ pCache->Read.aFieldVal[idxField##_CACHE_IDX] = 0; \ } #define VMX_SETUP_SELREG(REG, pCache) \ { \ VMXSetupCachedReadVmcs(pCache, VMX_VMCS16_GUEST_FIELD_##REG); \ VMXSetupCachedReadVmcs(pCache, VMX_VMCS32_GUEST_##REG##_LIMIT); \ VMXSetupCachedReadVmcs(pCache, VMX_VMCS_GUEST_##REG##_BASE); \ VMXSetupCachedReadVmcs(pCache, VMX_VMCS32_GUEST_##REG##_ACCESS_RIGHTS); \ } /******************************************************************************* * Global Variables * *******************************************************************************/ /* IO operation lookup arrays. */ static uint32_t const g_aIOSize[4] = {1, 2, 0, 4}; static uint32_t const g_aIOOpAnd[4] = {0xff, 0xffff, 0, 0xffffffff}; #ifdef VBOX_WITH_HYBRID_32BIT_KERNEL /** See HMR0A.asm. */ extern "C" uint32_t g_fVMXIs64bitHost; #endif /******************************************************************************* * Local Functions * *******************************************************************************/ static DECLCALLBACK(void) hmR0VmxSetupTLBEPT(PVM pVM, PVMCPU pVCpu); static DECLCALLBACK(void) hmR0VmxSetupTLBVPID(PVM pVM, PVMCPU pVCpu); static DECLCALLBACK(void) hmR0VmxSetupTLBBoth(PVM pVM, PVMCPU pVCpu); static DECLCALLBACK(void) hmR0VmxSetupTLBDummy(PVM pVM, PVMCPU pVCpu); static void hmR0VmxFlushEPT(PVM pVM, PVMCPU pVCpu, VMX_FLUSH_EPT enmFlush); static void hmR0VmxFlushVPID(PVM pVM, PVMCPU pVCpu, VMX_FLUSH_VPID enmFlush, RTGCPTR GCPtr); static void hmR0VmxUpdateExceptionBitmap(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx); static void hmR0VmxSetMSRPermission(PVMCPU pVCpu, unsigned ulMSR, bool fRead, bool fWrite); static void hmR0VmxReportWorldSwitchError(PVM pVM, PVMCPU pVCpu, VBOXSTRICTRC rc, PCPUMCTX pCtx); /** * Updates error from VMCS to HMCPU's lasterror record. * * @param pVM Pointer to the VM. * @param pVCpu Pointer to the VMCPU. * @param rc The error code. */ static void hmR0VmxCheckError(PVM pVM, PVMCPU pVCpu, int rc) { if ( rc == VERR_VMX_UNABLE_TO_START_VM || rc == VERR_VMX_INVALID_VMCS_FIELD) { RTCCUINTREG instrError; VMXReadVmcs(VMX_VMCS32_RO_VM_INSTR_ERROR, &instrError); pVCpu->hm.s.vmx.lasterror.u32InstrError = instrError; } pVM->hm.s.lLastError = rc; } /** * Sets up and activates VT-x on the current CPU. * * @returns VBox status code. * @param pCpu Pointer to the CPU info struct. * @param pVM Pointer to the VM. (can be NULL after a resume!!) * @param pvCpuPage Pointer to the global CPU page. * @param HCPhysCpuPage Physical address of the global CPU page. * @param fEnabledByHost Set if SUPR0EnableVTx or similar was used to enable * VT-x/AMD-V on the host. */ VMMR0DECL(int) VMXR0EnableCpu(PHMGLOBLCPUINFO pCpu, PVM pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage, bool fEnabledByHost) { if (!fEnabledByHost) { AssertReturn(HCPhysCpuPage != 0 && HCPhysCpuPage != NIL_RTHCPHYS, VERR_INVALID_PARAMETER); AssertReturn(pvCpuPage, VERR_INVALID_PARAMETER); if (pVM) { /* Set revision dword at the beginning of the VMXON structure. */ *(uint32_t *)pvCpuPage = MSR_IA32_VMX_BASIC_INFO_VMCS_ID(pVM->hm.s.vmx.msr.vmx_basic_info); } /** @todo we should unmap the two pages from the virtual address space in order to prevent accidental corruption. * (which can have very bad consequences!!!) */ /** @todo r=bird: Why is this code different than the probing code earlier * on? It just sets VMXE if needed and doesn't check that it isn't * set. Mac OS X host_vmxoff may leave this set and we'll fail here * and debug-assert in the calling code. This is what caused the * "regression" after backing out the SUPR0EnableVTx code hours before * 4.2.0GA (reboot fixed the issue). I've changed here to do the same * as the init code. */ uint64_t uCr4 = ASMGetCR4(); if (!(uCr4 & X86_CR4_VMXE)) ASMSetCR4(ASMGetCR4() | X86_CR4_VMXE); /* Make sure the VMX instructions don't cause #UD faults. */ /* * Enter VM root mode. */ int rc = VMXEnable(HCPhysCpuPage); if (RT_FAILURE(rc)) { ASMSetCR4(uCr4); return VERR_VMX_VMXON_FAILED; } } /* * Flush all VPIDs (in case we or any other hypervisor have been using VPIDs) so that * we can avoid an explicit flush while using new VPIDs. We would still need to flush * each time while reusing a VPID after hitting the MaxASID limit once. */ if ( pVM && pVM->hm.s.vmx.fVpid && (pVM->hm.s.vmx.msr.vmx_ept_vpid_caps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_ALL_CONTEXTS)) { hmR0VmxFlushVPID(pVM, NULL /* pvCpu */, VMX_FLUSH_VPID_ALL_CONTEXTS, 0 /* GCPtr */); pCpu->fFlushAsidBeforeUse = false; } else pCpu->fFlushAsidBeforeUse = true; /* * Ensure each VCPU scheduled on this CPU gets a new VPID on resume. See @bugref{6255}. */ ++pCpu->cTlbFlushes; return VINF_SUCCESS; } /** * Deactivates VT-x on the current CPU. * * @returns VBox status code. * @param pCpu Pointer to the CPU info struct. * @param pvCpuPage Pointer to the global CPU page. * @param HCPhysCpuPage Physical address of the global CPU page. */ VMMR0DECL(int) VMXR0DisableCpu(PHMGLOBLCPUINFO pCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage) { AssertReturn(HCPhysCpuPage != 0 && HCPhysCpuPage != NIL_RTHCPHYS, VERR_INVALID_PARAMETER); AssertReturn(pvCpuPage, VERR_INVALID_PARAMETER); NOREF(pCpu); /* If we're somehow not in VMX root mode, then we shouldn't dare leaving it. */ if (!(ASMGetCR4() & X86_CR4_VMXE)) return VERR_VMX_NOT_IN_VMX_ROOT_MODE; /* Leave VMX Root Mode. */ VMXDisable(); /* And clear the X86_CR4_VMXE bit. */ ASMSetCR4(ASMGetCR4() & ~X86_CR4_VMXE); return VINF_SUCCESS; } VMMR0DECL(int) VMXR0GlobalInit(void) { /* Nothing to do. */ return VINF_SUCCESS; } VMMR0DECL(void) VMXR0GlobalTerm(void) { /* Nothing to do. */ } /** * Does Ring-0 per VM VT-x initialization. * * @returns VBox status code. * @param pVM Pointer to the VM. */ VMMR0DECL(int) VMXR0InitVM(PVM pVM) { int rc; #ifdef LOG_ENABLED SUPR0Printf("VMXR0InitVM %p\n", pVM); #endif pVM->hm.s.vmx.hMemObjApicAccess = NIL_RTR0MEMOBJ; if (pVM->hm.s.vmx.msr.vmx_proc_ctls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW) { /* Allocate one page for the APIC physical page (serves for filtering accesses). */ rc = RTR0MemObjAllocCont(&pVM->hm.s.vmx.hMemObjApicAccess, PAGE_SIZE, false /* fExecutable */); AssertRC(rc); if (RT_FAILURE(rc)) return rc; pVM->hm.s.vmx.pbApicAccess = (uint8_t *)RTR0MemObjAddress(pVM->hm.s.vmx.hMemObjApicAccess); pVM->hm.s.vmx.HCPhysApicAccess = RTR0MemObjGetPagePhysAddr(pVM->hm.s.vmx.hMemObjApicAccess, 0); ASMMemZero32(pVM->hm.s.vmx.pbApicAccess, PAGE_SIZE); } else { pVM->hm.s.vmx.hMemObjApicAccess = 0; pVM->hm.s.vmx.pbApicAccess = 0; pVM->hm.s.vmx.HCPhysApicAccess = 0; } #ifdef VBOX_WITH_CRASHDUMP_MAGIC { rc = RTR0MemObjAllocCont(&pVM->hm.s.vmx.hMemObjScratch, PAGE_SIZE, false /* fExecutable */); AssertRC(rc); if (RT_FAILURE(rc)) return rc; pVM->hm.s.vmx.pScratch = (uint8_t *)RTR0MemObjAddress(pVM->hm.s.vmx.hMemObjScratch); pVM->hm.s.vmx.pScratchPhys = RTR0MemObjGetPagePhysAddr(pVM->hm.s.vmx.hMemObjScratch, 0); ASMMemZero32(pVM->hm.s.vmx.pbScratch, PAGE_SIZE); strcpy((char *)pVM->hm.s.vmx.pbScratch, "SCRATCH Magic"); *(uint64_t *)(pVM->hm.s.vmx.pbScratch + 16) = UINT64_C(0xDEADBEEFDEADBEEF); } #endif /* Allocate VMCSs for all guest CPUs. */ for (VMCPUID i = 0; i < pVM->cCpus; i++) { PVMCPU pVCpu = &pVM->aCpus[i]; pVCpu->hm.s.vmx.hMemObjVmcs = NIL_RTR0MEMOBJ; /* Allocate one page for the VM control structure (VMCS). */ rc = RTR0MemObjAllocCont(&pVCpu->hm.s.vmx.hMemObjVmcs, PAGE_SIZE, false /* fExecutable */); AssertRC(rc); if (RT_FAILURE(rc)) return rc; pVCpu->hm.s.vmx.pvVmcs = RTR0MemObjAddress(pVCpu->hm.s.vmx.hMemObjVmcs); pVCpu->hm.s.vmx.HCPhysVmcs = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.vmx.hMemObjVmcs, 0); ASMMemZeroPage(pVCpu->hm.s.vmx.pvVmcs); pVCpu->hm.s.vmx.u32CR0Mask = 0; pVCpu->hm.s.vmx.u32CR4Mask = 0; /* Allocate one page for the virtual APIC page for TPR caching. */ rc = RTR0MemObjAllocCont(&pVCpu->hm.s.vmx.hMemObjVirtApic, PAGE_SIZE, false /* fExecutable */); AssertRC(rc); if (RT_FAILURE(rc)) return rc; pVCpu->hm.s.vmx.pbVirtApic = (uint8_t *)RTR0MemObjAddress(pVCpu->hm.s.vmx.hMemObjVirtApic); pVCpu->hm.s.vmx.HCPhysVirtApic = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.vmx.hMemObjVirtApic, 0); ASMMemZeroPage(pVCpu->hm.s.vmx.pbVirtApic); /* Allocate the MSR bitmap if this feature is supported. */ if (pVM->hm.s.vmx.msr.vmx_proc_ctls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS) { rc = RTR0MemObjAllocCont(&pVCpu->hm.s.vmx.hMemObjMsrBitmap, PAGE_SIZE, false /* fExecutable */); AssertRC(rc); if (RT_FAILURE(rc)) return rc; pVCpu->hm.s.vmx.pvMsrBitmap = (uint8_t *)RTR0MemObjAddress(pVCpu->hm.s.vmx.hMemObjMsrBitmap); pVCpu->hm.s.vmx.HCPhysMsrBitmap = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.vmx.hMemObjMsrBitmap, 0); memset(pVCpu->hm.s.vmx.pvMsrBitmap, 0xff, PAGE_SIZE); } #ifdef VBOX_WITH_AUTO_MSR_LOAD_RESTORE /* Allocate one page for the guest MSR load area (for preloading guest MSRs during the world switch). */ rc = RTR0MemObjAllocCont(&pVCpu->hm.s.vmx.hMemObjGuestMsr, PAGE_SIZE, false /* fExecutable */); AssertRC(rc); if (RT_FAILURE(rc)) return rc; pVCpu->hm.s.vmx.pvGuestMsr = (uint8_t *)RTR0MemObjAddress(pVCpu->hm.s.vmx.hMemObjGuestMsr); pVCpu->hm.s.vmx.HCPhysGuestMsr = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.vmx.hMemObjGuestMsr, 0); Assert(!(pVCpu->hm.s.vmx.HCPhysGuestMsr & 0xf)); memset(pVCpu->hm.s.vmx.pvGuestMsr, 0, PAGE_SIZE); /* Allocate one page for the host MSR load area (for restoring host MSRs after the world switch back). */ rc = RTR0MemObjAllocCont(&pVCpu->hm.s.vmx.hMemObjHostMsr, PAGE_SIZE, false /* fExecutable */); AssertRC(rc); if (RT_FAILURE(rc)) return rc; pVCpu->hm.s.vmx.pvHostMsr = (uint8_t *)RTR0MemObjAddress(pVCpu->hm.s.vmx.hMemObjHostMsr); pVCpu->hm.s.vmx.HCPhysHostMsr = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.vmx.hMemObjHostMsr, 0); Assert(!(pVCpu->hm.s.vmx.HCPhysHostMsr & 0xf)); memset(pVCpu->hm.s.vmx.pvHostMsr, 0, PAGE_SIZE); #endif /* VBOX_WITH_AUTO_MSR_LOAD_RESTORE */ /* Current guest paging mode. */ pVCpu->hm.s.vmx.enmLastSeenGuestMode = PGMMODE_REAL; #ifdef LOG_ENABLED SUPR0Printf("VMXR0InitVM %x VMCS=%x (%x)\n", pVM, pVCpu->hm.s.vmx.pvVmcs, (uint32_t)pVCpu->hm.s.vmx.HCPhysVmcs); #endif } return VINF_SUCCESS; } /** * Does Ring-0 per VM VT-x termination. * * @returns VBox status code. * @param pVM Pointer to the VM. */ VMMR0DECL(int) VMXR0TermVM(PVM pVM) { for (VMCPUID i = 0; i < pVM->cCpus; i++) { PVMCPU pVCpu = &pVM->aCpus[i]; if (pVCpu->hm.s.vmx.hMemObjVmcs != NIL_RTR0MEMOBJ) { RTR0MemObjFree(pVCpu->hm.s.vmx.hMemObjVmcs, false); pVCpu->hm.s.vmx.hMemObjVmcs = NIL_RTR0MEMOBJ; pVCpu->hm.s.vmx.pvVmcs = 0; pVCpu->hm.s.vmx.HCPhysVmcs = 0; } if (pVCpu->hm.s.vmx.hMemObjVirtApic != NIL_RTR0MEMOBJ) { RTR0MemObjFree(pVCpu->hm.s.vmx.hMemObjVirtApic, false); pVCpu->hm.s.vmx.hMemObjVirtApic = NIL_RTR0MEMOBJ; pVCpu->hm.s.vmx.pbVirtApic = 0; pVCpu->hm.s.vmx.HCPhysVirtApic = 0; } if (pVCpu->hm.s.vmx.hMemObjMsrBitmap != NIL_RTR0MEMOBJ) { RTR0MemObjFree(pVCpu->hm.s.vmx.hMemObjMsrBitmap, false); pVCpu->hm.s.vmx.hMemObjMsrBitmap = NIL_RTR0MEMOBJ; pVCpu->hm.s.vmx.pvMsrBitmap = 0; pVCpu->hm.s.vmx.HCPhysMsrBitmap = 0; } #ifdef VBOX_WITH_AUTO_MSR_LOAD_RESTORE if (pVCpu->hm.s.vmx.hMemObjHostMsr != NIL_RTR0MEMOBJ) { RTR0MemObjFree(pVCpu->hm.s.vmx.hMemObjHostMsr, false); pVCpu->hm.s.vmx.hMemObjHostMsr = NIL_RTR0MEMOBJ; pVCpu->hm.s.vmx.pvHostMsr = 0; pVCpu->hm.s.vmx.HCPhysHostMsr = 0; } if (pVCpu->hm.s.vmx.hMemObjGuestMsr != NIL_RTR0MEMOBJ) { RTR0MemObjFree(pVCpu->hm.s.vmx.hMemObjGuestMsr, false); pVCpu->hm.s.vmx.hMemObjGuestMsr = NIL_RTR0MEMOBJ; pVCpu->hm.s.vmx.pvGuestMsr = 0; pVCpu->hm.s.vmx.HCPhysGuestMsr = 0; } #endif /* VBOX_WITH_AUTO_MSR_LOAD_RESTORE */ } if (pVM->hm.s.vmx.hMemObjApicAccess != NIL_RTR0MEMOBJ) { RTR0MemObjFree(pVM->hm.s.vmx.hMemObjApicAccess, false); pVM->hm.s.vmx.hMemObjApicAccess = NIL_RTR0MEMOBJ; pVM->hm.s.vmx.pbApicAccess = 0; pVM->hm.s.vmx.HCPhysApicAccess = 0; } #ifdef VBOX_WITH_CRASHDUMP_MAGIC if (pVM->hm.s.vmx.hMemObjScratch != NIL_RTR0MEMOBJ) { ASMMemZero32(pVM->hm.s.vmx.pScratch, PAGE_SIZE); RTR0MemObjFree(pVM->hm.s.vmx.hMemObjScratch, false); pVM->hm.s.vmx.hMemObjScratch = NIL_RTR0MEMOBJ; pVM->hm.s.vmx.pScratch = 0; pVM->hm.s.vmx.pScratchPhys = 0; } #endif return VINF_SUCCESS; } /** * Sets up VT-x for the specified VM. * * @returns VBox status code. * @param pVM Pointer to the VM. */ VMMR0DECL(int) VMXR0SetupVM(PVM pVM) { int rc = VINF_SUCCESS; uint32_t val; AssertReturn(pVM, VERR_INVALID_PARAMETER); /* Initialize these always, see hmR3InitFinalizeR0().*/ pVM->hm.s.vmx.enmFlushEpt = VMX_FLUSH_EPT_NONE; pVM->hm.s.vmx.enmFlushVpid = VMX_FLUSH_VPID_NONE; /* Determine optimal flush type for EPT. */ if (pVM->hm.s.fNestedPaging) { if (pVM->hm.s.vmx.msr.vmx_ept_vpid_caps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT) { if (pVM->hm.s.vmx.msr.vmx_ept_vpid_caps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_SINGLE_CONTEXT) pVM->hm.s.vmx.enmFlushEpt = VMX_FLUSH_EPT_SINGLE_CONTEXT; else if (pVM->hm.s.vmx.msr.vmx_ept_vpid_caps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_ALL_CONTEXTS) pVM->hm.s.vmx.enmFlushEpt = VMX_FLUSH_EPT_ALL_CONTEXTS; else { /* * Should never really happen. EPT is supported but no suitable flush types supported. * We cannot ignore EPT at this point as we've already setup Unrestricted Guest execution. */ pVM->hm.s.vmx.enmFlushEpt = VMX_FLUSH_EPT_NOT_SUPPORTED; return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO; } } else { /* * Should never really happen. EPT is supported but INVEPT instruction is not supported. */ pVM->hm.s.vmx.enmFlushEpt = VMX_FLUSH_EPT_NOT_SUPPORTED; return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO; } } /* Determine optimal flush type for VPID. */ if (pVM->hm.s.vmx.fVpid) { if (pVM->hm.s.vmx.msr.vmx_ept_vpid_caps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID) { if (pVM->hm.s.vmx.msr.vmx_ept_vpid_caps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT) pVM->hm.s.vmx.enmFlushVpid = VMX_FLUSH_VPID_SINGLE_CONTEXT; else if (pVM->hm.s.vmx.msr.vmx_ept_vpid_caps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_ALL_CONTEXTS) pVM->hm.s.vmx.enmFlushVpid = VMX_FLUSH_VPID_ALL_CONTEXTS; else { /* * Neither SINGLE nor ALL context flush types for VPID supported by the CPU. * We do not handle other flush type combinations, ignore VPID capabilities. */ if (pVM->hm.s.vmx.msr.vmx_ept_vpid_caps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR) Log(("VMXR0SetupVM: Only VMX_FLUSH_VPID_INDIV_ADDR supported. Ignoring VPID.\n")); if (pVM->hm.s.vmx.msr.vmx_ept_vpid_caps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT_RETAIN_GLOBALS) Log(("VMXR0SetupVM: Only VMX_FLUSH_VPID_SINGLE_CONTEXT_RETAIN_GLOBALS supported. Ignoring VPID.\n")); pVM->hm.s.vmx.enmFlushVpid = VMX_FLUSH_VPID_NOT_SUPPORTED; pVM->hm.s.vmx.fVpid = false; } } else { /* * Should not really happen. EPT is supported but INVEPT is not supported. * Ignore VPID capabilities as our code relies on using INVEPT for selective flushing. */ Log(("VMXR0SetupVM: VPID supported without INVEPT support. Ignoring VPID.\n")); pVM->hm.s.vmx.enmFlushVpid = VMX_FLUSH_VPID_NOT_SUPPORTED; pVM->hm.s.vmx.fVpid = false; } } for (VMCPUID i = 0; i < pVM->cCpus; i++) { PVMCPU pVCpu = &pVM->aCpus[i]; AssertPtr(pVCpu->hm.s.vmx.pvVmcs); /* Set revision dword at the beginning of the VMCS structure. */ *(uint32_t *)pVCpu->hm.s.vmx.pvVmcs = MSR_IA32_VMX_BASIC_INFO_VMCS_ID(pVM->hm.s.vmx.msr.vmx_basic_info); /* * Clear and activate the VMCS. */ Log(("HCPhysVmcs = %RHp\n", pVCpu->hm.s.vmx.HCPhysVmcs)); rc = VMXClearVMCS(pVCpu->hm.s.vmx.HCPhysVmcs); if (RT_FAILURE(rc)) goto vmx_end; rc = VMXActivateVMCS(pVCpu->hm.s.vmx.HCPhysVmcs); if (RT_FAILURE(rc)) goto vmx_end; /* * VMX_VMCS_CTRL_PIN_EXEC * Set required bits to one and zero according to the MSR capabilities. */ val = pVM->hm.s.vmx.msr.vmx_pin_ctls.n.disallowed0; val |= VMX_VMCS_CTRL_PIN_EXEC_EXT_INT_EXIT /* External interrupts */ | VMX_VMCS_CTRL_PIN_EXEC_NMI_EXIT; /* Non-maskable interrupts */ /* * Enable the VMX preemption timer. */ if (pVM->hm.s.vmx.fUsePreemptTimer) val |= VMX_VMCS_CTRL_PIN_EXEC_PREEMPT_TIMER; val &= pVM->hm.s.vmx.msr.vmx_pin_ctls.n.allowed1; rc = VMXWriteVmcs(VMX_VMCS32_CTRL_PIN_EXEC, val); AssertRC(rc); pVCpu->hm.s.vmx.u32PinCtls = val; /* * VMX_VMCS_CTRL_PROC_EXEC * Set required bits to one and zero according to the MSR capabilities. */ val = pVM->hm.s.vmx.msr.vmx_proc_ctls.n.disallowed0; /* Program which event cause VM-exits and which features we want to use. */ val |= VMX_VMCS_CTRL_PROC_EXEC_HLT_EXIT | VMX_VMCS_CTRL_PROC_EXEC_USE_TSC_OFFSETTING | VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT | VMX_VMCS_CTRL_PROC_EXEC_UNCOND_IO_EXIT | VMX_VMCS_CTRL_PROC_EXEC_RDPMC_EXIT | VMX_VMCS_CTRL_PROC_EXEC_MONITOR_EXIT | VMX_VMCS_CTRL_PROC_EXEC_MWAIT_EXIT; /* don't execute mwait or else we'll idle inside the guest (host thinks the cpu load is high) */ /* Without nested paging we should intercept invlpg and cr3 mov instructions. */ if (!pVM->hm.s.fNestedPaging) { val |= VMX_VMCS_CTRL_PROC_EXEC_INVLPG_EXIT | VMX_VMCS_CTRL_PROC_EXEC_CR3_LOAD_EXIT | VMX_VMCS_CTRL_PROC_EXEC_CR3_STORE_EXIT; } /* * VMX_VMCS_CTRL_PROC_EXEC_MWAIT_EXIT might cause a vmlaunch * failure with an invalid control fields error. (combined with some other exit reasons) */ if (pVM->hm.s.vmx.msr.vmx_proc_ctls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW) { /* CR8 reads from the APIC shadow page; writes cause an exit is they lower the TPR below the threshold */ val |= VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW; Assert(pVM->hm.s.vmx.pbApicAccess); } else /* Exit on CR8 reads & writes in case the TPR shadow feature isn't present. */ val |= VMX_VMCS_CTRL_PROC_EXEC_CR8_STORE_EXIT | VMX_VMCS_CTRL_PROC_EXEC_CR8_LOAD_EXIT; if (pVM->hm.s.vmx.msr.vmx_proc_ctls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS) { Assert(pVCpu->hm.s.vmx.HCPhysMsrBitmap); val |= VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS; } /* We will use the secondary control if it's present. */ val |= VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL; /* Mask away the bits that the CPU doesn't support */ /** @todo make sure they don't conflict with the above requirements. */ val &= pVM->hm.s.vmx.msr.vmx_proc_ctls.n.allowed1; pVCpu->hm.s.vmx.u32ProcCtls = val; rc = VMXWriteVmcs(VMX_VMCS32_CTRL_PROC_EXEC, val); AssertRC(rc); if (pVM->hm.s.vmx.msr.vmx_proc_ctls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL) { /* * VMX_VMCS_CTRL_PROC_EXEC2 * Set required bits to one and zero according to the MSR capabilities. */ val = pVM->hm.s.vmx.msr.vmx_proc_ctls2.n.disallowed0; val |= VMX_VMCS_CTRL_PROC_EXEC2_WBINVD_EXIT; if (pVM->hm.s.fNestedPaging) val |= VMX_VMCS_CTRL_PROC_EXEC2_EPT; if (pVM->hm.s.vmx.fVpid) val |= VMX_VMCS_CTRL_PROC_EXEC2_VPID; if (pVM->hm.s.fHasIoApic) val |= VMX_VMCS_CTRL_PROC_EXEC2_VIRT_APIC; if (pVM->hm.s.vmx.fUnrestrictedGuest) val |= VMX_VMCS_CTRL_PROC_EXEC2_UNRESTRICTED_GUEST; if (pVM->hm.s.vmx.msr.vmx_proc_ctls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_RDTSCP) val |= VMX_VMCS_CTRL_PROC_EXEC2_RDTSCP; /* Mask away the bits that the CPU doesn't support */ /** @todo make sure they don't conflict with the above requirements. */ val &= pVM->hm.s.vmx.msr.vmx_proc_ctls2.n.allowed1; pVCpu->hm.s.vmx.u32ProcCtls2 = val; rc = VMXWriteVmcs(VMX_VMCS32_CTRL_PROC_EXEC2, val); AssertRC(rc); } /* * VMX_VMCS_CTRL_CR3_TARGET_COUNT * Set required bits to one and zero according to the MSR capabilities. */ rc = VMXWriteVmcs(VMX_VMCS32_CTRL_CR3_TARGET_COUNT, 0); AssertRC(rc); /* * Forward all exception except #NM & #PF to the guest. * We always need to check pagefaults since our shadow page table can be out of sync. * And we always lazily sync the FPU & XMM state. . */ /** @todo Possible optimization: * Keep the FPU and XMM state current in the EM thread. That way there's no need to * lazily sync anything, but the downside is that we can't use the FPU stack or XMM * registers ourselves of course. * * Note: only possible if the current state is actually ours (X86_CR0_TS flag) */ /* * Don't filter page faults, all of them should cause a world switch. */ rc = VMXWriteVmcs(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK, 0); AssertRC(rc); rc = VMXWriteVmcs(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH, 0); AssertRC(rc); rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_TSC_OFFSET_FULL, 0); AssertRC(rc); rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_IO_BITMAP_A_FULL, 0); AssertRC(rc); rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_IO_BITMAP_B_FULL, 0); AssertRC(rc); /* * Set the MSR bitmap address. */ if (pVM->hm.s.vmx.msr.vmx_proc_ctls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS) { Assert(pVCpu->hm.s.vmx.HCPhysMsrBitmap); rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_MSR_BITMAP_FULL, pVCpu->hm.s.vmx.HCPhysMsrBitmap); AssertRC(rc); /* * Allow the guest to directly modify these MSRs; they are loaded/stored automatically * using MSR-load/store areas in the VMCS. */ hmR0VmxSetMSRPermission(pVCpu, MSR_IA32_SYSENTER_CS, true, true); hmR0VmxSetMSRPermission(pVCpu, MSR_IA32_SYSENTER_ESP, true, true); hmR0VmxSetMSRPermission(pVCpu, MSR_IA32_SYSENTER_EIP, true, true); hmR0VmxSetMSRPermission(pVCpu, MSR_K8_LSTAR, true, true); hmR0VmxSetMSRPermission(pVCpu, MSR_K6_STAR, true, true); hmR0VmxSetMSRPermission(pVCpu, MSR_K8_SF_MASK, true, true); hmR0VmxSetMSRPermission(pVCpu, MSR_K8_KERNEL_GS_BASE, true, true); hmR0VmxSetMSRPermission(pVCpu, MSR_K8_GS_BASE, true, true); hmR0VmxSetMSRPermission(pVCpu, MSR_K8_FS_BASE, true, true); if (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_VMCS_CTRL_PROC_EXEC2_RDTSCP) hmR0VmxSetMSRPermission(pVCpu, MSR_K8_TSC_AUX, true, true); } #ifdef VBOX_WITH_AUTO_MSR_LOAD_RESTORE /* * Set the guest & host MSR load/store physical addresses. */ Assert(pVCpu->hm.s.vmx.HCPhysGuestMsr); rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_FULL, pVCpu->hm.s.vmx.HCPhysGuestMsr); AssertRC(rc); rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_EXIT_MSR_STORE_FULL, pVCpu->hm.s.vmx.HCPhysGuestMsr); AssertRC(rc); Assert(pVCpu->hm.s.vmx.HCPhysHostMsr); rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_EXIT_MSR_LOAD_FULL, pVCpu->hm.s.vmx.HCPhysHostMsr); AssertRC(rc); #endif /* VBOX_WITH_AUTO_MSR_LOAD_RESTORE */ rc = VMXWriteVmcs(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, 0); AssertRC(rc); rc = VMXWriteVmcs(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, 0); AssertRC(rc); rc = VMXWriteVmcs(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, 0); AssertRC(rc); if (pVM->hm.s.vmx.msr.vmx_proc_ctls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW) { Assert(pVM->hm.s.vmx.hMemObjApicAccess); /* Optional */ rc = VMXWriteVmcs(VMX_VMCS32_CTRL_TPR_THRESHOLD, 0); rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_VAPIC_PAGEADDR_FULL, pVCpu->hm.s.vmx.HCPhysVirtApic); if (pVM->hm.s.vmx.msr.vmx_proc_ctls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_VIRT_APIC) rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL, pVM->hm.s.vmx.HCPhysApicAccess); AssertRC(rc); } /* Set link pointer to -1. Not currently used. */ rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL, 0xFFFFFFFFFFFFFFFFULL); AssertRC(rc); /* * Clear VMCS, marking it inactive. Clear implementation specific data and writing back * VMCS data back to memory. */ rc = VMXClearVMCS(pVCpu->hm.s.vmx.HCPhysVmcs); AssertRC(rc); /* * Configure the VMCS read cache. */ PVMCSCACHE pCache = &pVCpu->hm.s.vmx.VMCSCache; VMXSetupCachedReadVmcs(pCache, VMX_VMCS_GUEST_RIP); VMXSetupCachedReadVmcs(pCache, VMX_VMCS_GUEST_RSP); VMXSetupCachedReadVmcs(pCache, VMX_VMCS_GUEST_RFLAGS); VMXSetupCachedReadVmcs(pCache, VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE); VMXSetupCachedReadVmcs(pCache, VMX_VMCS_CTRL_CR0_READ_SHADOW); VMXSetupCachedReadVmcs(pCache, VMX_VMCS_GUEST_CR0); VMXSetupCachedReadVmcs(pCache, VMX_VMCS_CTRL_CR4_READ_SHADOW); VMXSetupCachedReadVmcs(pCache, VMX_VMCS_GUEST_CR4); VMXSetupCachedReadVmcs(pCache, VMX_VMCS_GUEST_DR7); VMXSetupCachedReadVmcs(pCache, VMX_VMCS32_GUEST_SYSENTER_CS); VMXSetupCachedReadVmcs(pCache, VMX_VMCS_GUEST_SYSENTER_EIP); VMXSetupCachedReadVmcs(pCache, VMX_VMCS_GUEST_SYSENTER_ESP); VMXSetupCachedReadVmcs(pCache, VMX_VMCS32_GUEST_GDTR_LIMIT); VMXSetupCachedReadVmcs(pCache, VMX_VMCS_GUEST_GDTR_BASE); VMXSetupCachedReadVmcs(pCache, VMX_VMCS32_GUEST_IDTR_LIMIT); VMXSetupCachedReadVmcs(pCache, VMX_VMCS_GUEST_IDTR_BASE); VMX_SETUP_SELREG(ES, pCache); VMX_SETUP_SELREG(SS, pCache); VMX_SETUP_SELREG(CS, pCache); VMX_SETUP_SELREG(DS, pCache); VMX_SETUP_SELREG(FS, pCache); VMX_SETUP_SELREG(GS, pCache); VMX_SETUP_SELREG(LDTR, pCache); VMX_SETUP_SELREG(TR, pCache); /* * Status code VMCS reads. */ VMXSetupCachedReadVmcs(pCache, VMX_VMCS32_RO_EXIT_REASON); VMXSetupCachedReadVmcs(pCache, VMX_VMCS32_RO_VM_INSTR_ERROR); VMXSetupCachedReadVmcs(pCache, VMX_VMCS32_RO_EXIT_INSTR_LENGTH); VMXSetupCachedReadVmcs(pCache, VMX_VMCS32_RO_EXIT_INTERRUPTION_ERROR_CODE); VMXSetupCachedReadVmcs(pCache, VMX_VMCS32_RO_EXIT_INTERRUPTION_INFO); VMXSetupCachedReadVmcs(pCache, VMX_VMCS32_RO_EXIT_INSTR_INFO); VMXSetupCachedReadVmcs(pCache, VMX_VMCS_RO_EXIT_QUALIFICATION); VMXSetupCachedReadVmcs(pCache, VMX_VMCS32_RO_IDT_INFO); VMXSetupCachedReadVmcs(pCache, VMX_VMCS32_RO_IDT_ERROR_CODE); if (pVM->hm.s.fNestedPaging) { VMXSetupCachedReadVmcs(pCache, VMX_VMCS_GUEST_CR3); VMXSetupCachedReadVmcs(pCache, VMX_VMCS64_EXIT_GUEST_PHYS_ADDR_FULL); pCache->Read.cValidEntries = VMX_VMCS_MAX_NESTED_PAGING_CACHE_IDX; } else pCache->Read.cValidEntries = VMX_VMCS_MAX_CACHE_IDX; } /* for each VMCPU */ /* * Setup the right TLB function based on CPU capabilities. */ if (pVM->hm.s.fNestedPaging && pVM->hm.s.vmx.fVpid) pVM->hm.s.vmx.pfnFlushTaggedTlb = hmR0VmxSetupTLBBoth; else if (pVM->hm.s.fNestedPaging) pVM->hm.s.vmx.pfnFlushTaggedTlb = hmR0VmxSetupTLBEPT; else if (pVM->hm.s.vmx.fVpid) pVM->hm.s.vmx.pfnFlushTaggedTlb = hmR0VmxSetupTLBVPID; else pVM->hm.s.vmx.pfnFlushTaggedTlb = hmR0VmxSetupTLBDummy; vmx_end: hmR0VmxCheckError(pVM, &pVM->aCpus[0], rc); return rc; } /** * Sets the permission bits for the specified MSR. * * @param pVCpu Pointer to the VMCPU. * @param ulMSR The MSR value. * @param fRead Whether reading is allowed. * @param fWrite Whether writing is allowed. */ static void hmR0VmxSetMSRPermission(PVMCPU pVCpu, unsigned ulMSR, bool fRead, bool fWrite) { unsigned ulBit; uint8_t *pvMsrBitmap = (uint8_t *)pVCpu->hm.s.vmx.pvMsrBitmap; /* * Layout: * 0x000 - 0x3ff - Low MSR read bits * 0x400 - 0x7ff - High MSR read bits * 0x800 - 0xbff - Low MSR write bits * 0xc00 - 0xfff - High MSR write bits */ if (ulMSR <= 0x00001FFF) { /* Pentium-compatible MSRs */ ulBit = ulMSR; } else if ( ulMSR >= 0xC0000000 && ulMSR <= 0xC0001FFF) { /* AMD Sixth Generation x86 Processor MSRs */ ulBit = (ulMSR - 0xC0000000); pvMsrBitmap += 0x400; } else { AssertFailed(); return; } Assert(ulBit <= 0x1fff); if (fRead) ASMBitClear(pvMsrBitmap, ulBit); else ASMBitSet(pvMsrBitmap, ulBit); if (fWrite) ASMBitClear(pvMsrBitmap + 0x800, ulBit); else ASMBitSet(pvMsrBitmap + 0x800, ulBit); } /** * Injects an event (trap or external interrupt). * * @returns VBox status code. Note that it may return VINF_EM_RESET to * indicate a triple fault when injecting X86_XCPT_DF. * * @param pVM Pointer to the VM. * @param pVCpu Pointer to the VMCPU. * @param pCtx Pointer to the guest CPU Context. * @param intInfo VMX interrupt info. * @param cbInstr Opcode length of faulting instruction. * @param errCode Error code (optional). */ static int hmR0VmxInjectEvent(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, uint32_t intInfo, uint32_t cbInstr, uint32_t errCode) { int rc; uint32_t iGate = VMX_EXIT_INTERRUPTION_INFO_VECTOR(intInfo); #ifdef VBOX_WITH_STATISTICS STAM_COUNTER_INC(&pVCpu->hm.s.paStatInjectedIrqsR0[iGate & MASK_INJECT_IRQ_STAT]); #endif #ifdef VBOX_STRICT if (iGate == 0xE) { LogFlow(("hmR0VmxInjectEvent: Injecting interrupt %d at %RGv error code=%08x CR2=%RGv intInfo=%08x\n", iGate, (RTGCPTR)pCtx->rip, errCode, pCtx->cr2, intInfo)); } else if (iGate < 0x20) { LogFlow(("hmR0VmxInjectEvent: Injecting interrupt %d at %RGv error code=%08x\n", iGate, (RTGCPTR)pCtx->rip, errCode)); } else { LogFlow(("INJ-EI: %x at %RGv\n", iGate, (RTGCPTR)pCtx->rip)); Assert( VMX_EXIT_INTERRUPTION_INFO_TYPE(intInfo) == VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_INT || !VMCPU_FF_ISSET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)); Assert( VMX_EXIT_INTERRUPTION_INFO_TYPE(intInfo) == VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_INT || pCtx->eflags.u32 & X86_EFL_IF); } #endif if ( CPUMIsGuestInRealModeEx(pCtx) && pVM->hm.s.vmx.pRealModeTSS) { RTGCPHYS GCPhysHandler; uint16_t offset, ip; RTSEL sel; /* * Injecting events doesn't work right with real mode emulation. * (#GP if we try to inject external hardware interrupts) * Inject the interrupt or trap directly instead. * * ASSUMES no access handlers for the bits we read or write below (should be safe). */ Log(("Manual interrupt/trap '%x' inject (real mode)\n", iGate)); /* * Check if the interrupt handler is present. */ if (iGate * 4 + 3 > pCtx->idtr.cbIdt) { Log(("IDT cbIdt violation\n")); if (iGate != X86_XCPT_DF) { uint32_t intInfo2; intInfo2 = (iGate == X86_XCPT_GP) ? (uint32_t)X86_XCPT_DF : (uint32_t)X86_XCPT_GP; intInfo2 |= (1 << VMX_EXIT_INTERRUPTION_INFO_VALID_SHIFT); intInfo2 |= VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID; intInfo2 |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT); return hmR0VmxInjectEvent(pVM, pVCpu, pCtx, intInfo2, 0, 0 /* no error code according to the Intel docs */); } Log(("Triple fault -> reset the VM!\n")); return VINF_EM_RESET; } if ( VMX_EXIT_INTERRUPTION_INFO_TYPE(intInfo) == VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_INT || iGate == 3 /* Both #BP and #OF point to the instruction after. */ || iGate == 4) { ip = pCtx->ip + cbInstr; } else ip = pCtx->ip; /* * Read the selector:offset pair of the interrupt handler. */ GCPhysHandler = (RTGCPHYS)pCtx->idtr.pIdt + iGate * 4; rc = PGMPhysSimpleReadGCPhys(pVM, &offset, GCPhysHandler, sizeof(offset)); AssertRC(rc); rc = PGMPhysSimpleReadGCPhys(pVM, &sel, GCPhysHandler + 2, sizeof(sel)); AssertRC(rc); LogFlow(("IDT handler %04X:%04X\n", sel, offset)); /* * Construct the stack frame. */ /** @todo Check stack limit. */ pCtx->sp -= 2; LogFlow(("ss:sp %04X:%04X eflags=%x\n", pCtx->ss.Sel, pCtx->sp, pCtx->eflags.u)); rc = PGMPhysSimpleWriteGCPhys(pVM, pCtx->ss.u64Base + pCtx->sp, &pCtx->eflags, sizeof(uint16_t)); AssertRC(rc); pCtx->sp -= 2; LogFlow(("ss:sp %04X:%04X cs=%x\n", pCtx->ss.Sel, pCtx->sp, pCtx->cs.Sel)); rc = PGMPhysSimpleWriteGCPhys(pVM, pCtx->ss.u64Base + pCtx->sp, &pCtx->cs, sizeof(uint16_t)); AssertRC(rc); pCtx->sp -= 2; LogFlow(("ss:sp %04X:%04X ip=%x\n", pCtx->ss.Sel, pCtx->sp, ip)); rc = PGMPhysSimpleWriteGCPhys(pVM, pCtx->ss.u64Base + pCtx->sp, &ip, sizeof(ip)); AssertRC(rc); /* * Update the CPU state for executing the handler. */ pCtx->rip = offset; pCtx->cs.Sel = sel; pCtx->cs.u64Base = sel << 4; pCtx->eflags.u &= ~(X86_EFL_IF | X86_EFL_TF | X86_EFL_RF | X86_EFL_AC); pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_SEGMENT_REGS; return VINF_SUCCESS; } /* * Set event injection state. */ rc = VMXWriteVmcs(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, intInfo | (1 << VMX_EXIT_INTERRUPTION_INFO_VALID_SHIFT)); rc |= VMXWriteVmcs(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, cbInstr); rc |= VMXWriteVmcs(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, errCode); AssertRC(rc); return rc; } /** * Checks for pending guest interrupts and injects them. * * @returns VBox status code. * @param pVM Pointer to the VM. * @param pVCpu Pointer to the VMCPU. * @param pCtx Pointer to the guest CPU context. */ static int hmR0VmxCheckPendingInterrupt(PVM pVM, PVMCPU pVCpu, CPUMCTX *pCtx) { int rc; /* * Dispatch any pending interrupts (injected before, but a VM exit occurred prematurely). */ if (pVCpu->hm.s.Event.fPending) { Log(("CPU%d: Reinjecting event %RX64 %08x at %RGv cr2=%RX64\n", pVCpu->idCpu, pVCpu->hm.s.Event.u64IntrInfo, pVCpu->hm.s.Event.u32ErrCode, (RTGCPTR)pCtx->rip, pCtx->cr2)); STAM_COUNTER_INC(&pVCpu->hm.s.StatIntReinject); rc = hmR0VmxInjectEvent(pVM, pVCpu, pCtx, pVCpu->hm.s.Event.u64IntrInfo, 0, pVCpu->hm.s.Event.u32ErrCode); AssertRC(rc); pVCpu->hm.s.Event.fPending = false; return VINF_SUCCESS; } /* * If an active trap is already pending, we must forward it first! */ if (!TRPMHasTrap(pVCpu)) { if (VMCPU_FF_TESTANDCLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI)) { RTGCUINTPTR intInfo; Log(("CPU%d: injecting #NMI\n", pVCpu->idCpu)); intInfo = X86_XCPT_NMI; intInfo |= (1 << VMX_EXIT_INTERRUPTION_INFO_VALID_SHIFT); intInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT); rc = hmR0VmxInjectEvent(pVM, pVCpu, pCtx, intInfo, 0, 0); AssertRC(rc); return VINF_SUCCESS; } /** @todo SMI interrupts. */ /* * When external interrupts are pending, we should exit the VM when IF is set. */ if (VMCPU_FF_ISPENDING(pVCpu, (VMCPU_FF_INTERRUPT_APIC|VMCPU_FF_INTERRUPT_PIC))) { if (!(pCtx->eflags.u32 & X86_EFL_IF)) { if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT)) { LogFlow(("Enable irq window exit!\n")); pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT; rc = VMXWriteVmcs(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls); AssertRC(rc); } /* else nothing to do but wait */ } else if (!VMCPU_FF_ISSET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)) { uint8_t u8Interrupt; rc = PDMGetInterrupt(pVCpu, &u8Interrupt); Log(("CPU%d: Dispatch interrupt: u8Interrupt=%x (%d) rc=%Rrc cs:rip=%04X:%RGv\n", pVCpu->idCpu, u8Interrupt, u8Interrupt, rc, pCtx->cs.Sel, (RTGCPTR)pCtx->rip)); if (RT_SUCCESS(rc)) { rc = TRPMAssertTrap(pVCpu, u8Interrupt, TRPM_HARDWARE_INT); AssertRC(rc); } else { /* Can only happen in rare cases where a pending interrupt is cleared behind our back */ Assert(!VMCPU_FF_ISPENDING(pVCpu, (VMCPU_FF_INTERRUPT_APIC|VMCPU_FF_INTERRUPT_PIC))); STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchGuestIrq); /* Just continue */ } } else Log(("Pending interrupt blocked at %RGv by VM_FF_INHIBIT_INTERRUPTS!!\n", (RTGCPTR)pCtx->rip)); } } #ifdef VBOX_STRICT if (TRPMHasTrap(pVCpu)) { uint8_t u8Vector; rc = TRPMQueryTrapAll(pVCpu, &u8Vector, 0, NULL, NULL, NULL); AssertRC(rc); } #endif if ( (pCtx->eflags.u32 & X86_EFL_IF) && (!VMCPU_FF_ISSET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)) && TRPMHasTrap(pVCpu) ) { uint8_t u8Vector; TRPMEVENT enmType; RTGCUINTPTR intInfo; RTGCUINT errCode; /* * If a new event is pending, dispatch it now. */ rc = TRPMQueryTrapAll(pVCpu, &u8Vector, &enmType, &errCode, NULL, NULL); AssertRC(rc); Assert(pCtx->eflags.Bits.u1IF == 1 || enmType == TRPM_TRAP); Assert(enmType != TRPM_SOFTWARE_INT); /* * Clear the pending trap. */ rc = TRPMResetTrap(pVCpu); AssertRC(rc); intInfo = u8Vector; intInfo |= (1 << VMX_EXIT_INTERRUPTION_INFO_VALID_SHIFT); if (enmType == TRPM_TRAP) { switch (u8Vector) { case X86_XCPT_DF: case X86_XCPT_TS: case X86_XCPT_NP: case X86_XCPT_SS: case X86_XCPT_GP: case X86_XCPT_PF: case X86_XCPT_AC: { /** @todo r=ramshankar: setting this bit would blow up for real-mode guests with * unrestricted guest execution. */ /* Valid error codes. */ intInfo |= VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID; break; } default: break; } if ( u8Vector == X86_XCPT_BP || u8Vector == X86_XCPT_OF) { intInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT); } else intInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT); } else intInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT); STAM_COUNTER_INC(&pVCpu->hm.s.StatIntInject); rc = hmR0VmxInjectEvent(pVM, pVCpu, pCtx, intInfo, 0, errCode); AssertRC(rc); } /* if (interrupts can be dispatched) */ return VINF_SUCCESS; } /** * Checks for pending VMX events and converts them to TRPM. Before we execute any instruction * outside of VMX, any pending VMX event must be converted so that it can be delivered properly. * * @returns VBox status code. * @param pVCpu Pointer to the VMCPU. */ static int hmR0VmxCheckPendingEvent(PVMCPU pVCpu) { if (pVCpu->hm.s.Event.fPending) { TRPMEVENT enmTrapType; /* If a trap was already pending, we did something wrong! */ Assert((TRPMQueryTrap(pVCpu, NULL, NULL) == VERR_TRPM_NO_ACTIVE_TRAP)); /* * Clear the pending event and move it over to TRPM for the rest * of the world to see. */ pVCpu->hm.s.Event.fPending = false; switch (VMX_EXIT_INTERRUPTION_INFO_TYPE(pVCpu->hm.s.Event.u64IntrInfo)) { case VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT: case VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI: enmTrapType = TRPM_HARDWARE_INT; break; case VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_INT: case VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_XCPT: /** @todo Is classifying #BP, #OF as TRPM_SOFTWARE_INT correct? */ case VMX_EXIT_INTERRUPTION_INFO_TYPE_DB_XCPT: enmTrapType = TRPM_SOFTWARE_INT; break; case VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT: enmTrapType = TRPM_TRAP; break; default: enmTrapType = TRPM_32BIT_HACK; /* Can't get here. */ AssertFailed(); } TRPMAssertTrap(pVCpu, VMX_EXIT_INTERRUPTION_INFO_VECTOR(pVCpu->hm.s.Event.u64IntrInfo), enmTrapType); if (VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_IS_VALID(pVCpu->hm.s.Event.u64IntrInfo)) TRPMSetErrorCode(pVCpu, pVCpu->hm.s.Event.u32ErrCode); //@todo: Is there any situation where we need to call TRPMSetFaultAddress()? } return VINF_SUCCESS; } /** * Save the host state into the VMCS. * * @returns VBox status code. * @param pVM Pointer to the VM. * @param pVCpu Pointer to the VMCPU. */ VMMR0DECL(int) VMXR0SaveHostState(PVM pVM, PVMCPU pVCpu) { int rc = VINF_SUCCESS; NOREF(pVM); /* * Host CPU Context. */ if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_HOST_CONTEXT) { RTIDTR idtr; RTGDTR gdtr; RTSEL SelTR; PCX86DESCHC pDesc; uintptr_t trBase; RTSEL cs; RTSEL ss; uint64_t cr3; /* * Control registers. */ rc = VMXWriteVmcs(VMX_VMCS_HOST_CR0, ASMGetCR0()); Log2(("VMX_VMCS_HOST_CR0 %08x\n", ASMGetCR0())); #ifdef VBOX_WITH_HYBRID_32BIT_KERNEL if (VMX_IS_64BIT_HOST_MODE()) { cr3 = HMR0Get64bitCR3(); rc |= VMXWriteVmcs64(VMX_VMCS_HOST_CR3, cr3); } else #endif { cr3 = ASMGetCR3(); rc |= VMXWriteVmcs(VMX_VMCS_HOST_CR3, cr3); } Log2(("VMX_VMCS_HOST_CR3 %08RX64\n", cr3)); rc |= VMXWriteVmcs(VMX_VMCS_HOST_CR4, ASMGetCR4()); Log2(("VMX_VMCS_HOST_CR4 %08x\n", ASMGetCR4())); AssertRC(rc); /* * Selector registers. */ #ifdef VBOX_WITH_HYBRID_32BIT_KERNEL if (VMX_IS_64BIT_HOST_MODE()) { cs = (RTSEL)(uintptr_t)&SUPR0Abs64bitKernelCS; ss = (RTSEL)(uintptr_t)&SUPR0Abs64bitKernelSS; } else { /* sysenter loads LDT cs & ss, VMX doesn't like this. Load the GDT ones (safe). */ cs = (RTSEL)(uintptr_t)&SUPR0AbsKernelCS; ss = (RTSEL)(uintptr_t)&SUPR0AbsKernelSS; } #else cs = ASMGetCS(); ss = ASMGetSS(); #endif Assert(!(cs & X86_SEL_LDT)); Assert((cs & X86_SEL_RPL) == 0); Assert(!(ss & X86_SEL_LDT)); Assert((ss & X86_SEL_RPL) == 0); rc = VMXWriteVmcs(VMX_VMCS16_HOST_FIELD_CS, cs); /* Note: VMX is (again) very picky about the RPL of the selectors here; we'll restore them manually. */ rc |= VMXWriteVmcs(VMX_VMCS16_HOST_FIELD_DS, 0); rc |= VMXWriteVmcs(VMX_VMCS16_HOST_FIELD_ES, 0); #if HC_ARCH_BITS == 32 if (!VMX_IS_64BIT_HOST_MODE()) { rc |= VMXWriteVmcs(VMX_VMCS16_HOST_FIELD_FS, 0); rc |= VMXWriteVmcs(VMX_VMCS16_HOST_FIELD_GS, 0); } #endif rc |= VMXWriteVmcs(VMX_VMCS16_HOST_FIELD_SS, ss); SelTR = ASMGetTR(); rc |= VMXWriteVmcs(VMX_VMCS16_HOST_FIELD_TR, SelTR); AssertRC(rc); Log2(("VMX_VMCS_HOST_FIELD_CS %08x (%08x)\n", cs, ASMGetSS())); Log2(("VMX_VMCS_HOST_FIELD_DS 00000000 (%08x)\n", ASMGetDS())); Log2(("VMX_VMCS_HOST_FIELD_ES 00000000 (%08x)\n", ASMGetES())); Log2(("VMX_VMCS_HOST_FIELD_FS 00000000 (%08x)\n", ASMGetFS())); Log2(("VMX_VMCS_HOST_FIELD_GS 00000000 (%08x)\n", ASMGetGS())); Log2(("VMX_VMCS_HOST_FIELD_SS %08x (%08x)\n", ss, ASMGetSS())); Log2(("VMX_VMCS_HOST_FIELD_TR %08x\n", ASMGetTR())); /* * GDTR & IDTR. */ #ifdef VBOX_WITH_HYBRID_32BIT_KERNEL if (VMX_IS_64BIT_HOST_MODE()) { X86XDTR64 gdtr64, idtr64; HMR0Get64bitGdtrAndIdtr(&gdtr64, &idtr64); rc = VMXWriteVmcs64(VMX_VMCS_HOST_GDTR_BASE, gdtr64.uAddr); rc |= VMXWriteVmcs64(VMX_VMCS_HOST_IDTR_BASE, idtr64.uAddr); AssertRC(rc); Log2(("VMX_VMCS_HOST_GDTR_BASE %RX64\n", gdtr64.uAddr)); Log2(("VMX_VMCS_HOST_IDTR_BASE %RX64\n", idtr64.uAddr)); gdtr.cbGdt = gdtr64.cb; gdtr.pGdt = (uintptr_t)gdtr64.uAddr; } else #endif { ASMGetGDTR(&gdtr); rc = VMXWriteVmcs(VMX_VMCS_HOST_GDTR_BASE, gdtr.pGdt); ASMGetIDTR(&idtr); rc |= VMXWriteVmcs(VMX_VMCS_HOST_IDTR_BASE, idtr.pIdt); AssertRC(rc); Log2(("VMX_VMCS_HOST_GDTR_BASE %RHv\n", gdtr.pGdt)); Log2(("VMX_VMCS_HOST_IDTR_BASE %RHv\n", idtr.pIdt)); } /* * Save the base address of the TR selector. */ if (SelTR > gdtr.cbGdt) { AssertMsgFailed(("Invalid TR selector %x. GDTR.cbGdt=%x\n", SelTR, gdtr.cbGdt)); return VERR_VMX_INVALID_HOST_STATE; } pDesc = (PCX86DESCHC)(gdtr.pGdt + (SelTR & X86_SEL_MASK)); #ifdef VBOX_WITH_HYBRID_32BIT_KERNEL if (VMX_IS_64BIT_HOST_MODE()) { uint64_t trBase64 = X86DESC64_BASE((PX86DESC64)pDesc); rc = VMXWriteVmcs64(VMX_VMCS_HOST_TR_BASE, trBase64); Log2(("VMX_VMCS_HOST_TR_BASE %RX64\n", trBase64)); AssertRC(rc); } else #endif { #if HC_ARCH_BITS == 64 trBase = X86DESC64_BASE(pDesc); #else trBase = X86DESC_BASE(pDesc); #endif rc = VMXWriteVmcs(VMX_VMCS_HOST_TR_BASE, trBase); AssertRC(rc); Log2(("VMX_VMCS_HOST_TR_BASE %RHv\n", trBase)); } /* * FS base and GS base. */ #if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL) if (VMX_IS_64BIT_HOST_MODE()) { Log2(("MSR_K8_FS_BASE = %RX64\n", ASMRdMsr(MSR_K8_FS_BASE))); Log2(("MSR_K8_GS_BASE = %RX64\n", ASMRdMsr(MSR_K8_GS_BASE))); rc = VMXWriteVmcs64(VMX_VMCS_HOST_FS_BASE, ASMRdMsr(MSR_K8_FS_BASE)); rc |= VMXWriteVmcs64(VMX_VMCS_HOST_GS_BASE, ASMRdMsr(MSR_K8_GS_BASE)); } #endif AssertRC(rc); /* * Sysenter MSRs. */ /** @todo expensive!! */ rc = VMXWriteVmcs(VMX_VMCS32_HOST_SYSENTER_CS, ASMRdMsr_Low(MSR_IA32_SYSENTER_CS)); Log2(("VMX_VMCS_HOST_SYSENTER_CS %08x\n", ASMRdMsr_Low(MSR_IA32_SYSENTER_CS))); #ifdef VBOX_WITH_HYBRID_32BIT_KERNEL if (VMX_IS_64BIT_HOST_MODE()) { Log2(("VMX_VMCS_HOST_SYSENTER_EIP %RX64\n", ASMRdMsr(MSR_IA32_SYSENTER_EIP))); Log2(("VMX_VMCS_HOST_SYSENTER_ESP %RX64\n", ASMRdMsr(MSR_IA32_SYSENTER_ESP))); rc |= VMXWriteVmcs64(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr(MSR_IA32_SYSENTER_ESP)); rc |= VMXWriteVmcs64(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr(MSR_IA32_SYSENTER_EIP)); } else { rc |= VMXWriteVmcs(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr_Low(MSR_IA32_SYSENTER_ESP)); rc |= VMXWriteVmcs(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr_Low(MSR_IA32_SYSENTER_EIP)); Log2(("VMX_VMCS_HOST_SYSENTER_EIP %RX32\n", ASMRdMsr_Low(MSR_IA32_SYSENTER_EIP))); Log2(("VMX_VMCS_HOST_SYSENTER_ESP %RX32\n", ASMRdMsr_Low(MSR_IA32_SYSENTER_ESP))); } #elif HC_ARCH_BITS == 32 rc |= VMXWriteVmcs(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr_Low(MSR_IA32_SYSENTER_ESP)); rc |= VMXWriteVmcs(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr_Low(MSR_IA32_SYSENTER_EIP)); Log2(("VMX_VMCS_HOST_SYSENTER_EIP %RX32\n", ASMRdMsr_Low(MSR_IA32_SYSENTER_EIP))); Log2(("VMX_VMCS_HOST_SYSENTER_ESP %RX32\n", ASMRdMsr_Low(MSR_IA32_SYSENTER_ESP))); #else Log2(("VMX_VMCS_HOST_SYSENTER_EIP %RX64\n", ASMRdMsr(MSR_IA32_SYSENTER_EIP))); Log2(("VMX_VMCS_HOST_SYSENTER_ESP %RX64\n", ASMRdMsr(MSR_IA32_SYSENTER_ESP))); rc |= VMXWriteVmcs64(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr(MSR_IA32_SYSENTER_ESP)); rc |= VMXWriteVmcs64(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr(MSR_IA32_SYSENTER_EIP)); #endif AssertRC(rc); #ifdef VBOX_WITH_AUTO_MSR_LOAD_RESTORE /* * Store all host MSRs in the VM-Exit load area, so they will be reloaded after * the world switch back to the host. */ PVMXMSR pMsr = (PVMXMSR)pVCpu->hm.s.vmx.pvHostMsr; unsigned idxMsr = 0; uint32_t u32HostExtFeatures = ASMCpuId_EDX(0x80000001); if (u32HostExtFeatures & (X86_CPUID_EXT_FEATURE_EDX_NX | X86_CPUID_EXT_FEATURE_EDX_LONG_MODE)) { pMsr->u32IndexMSR = MSR_K6_EFER; pMsr->u32Reserved = 0; # if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL) if (CPUMIsGuestInLongMode(pVCpu)) { /* Must match the EFER value in our 64 bits switcher. */ pMsr->u64Value = ASMRdMsr(MSR_K6_EFER) | MSR_K6_EFER_LME | MSR_K6_EFER_SCE | MSR_K6_EFER_NXE; } else # endif pMsr->u64Value = ASMRdMsr(MSR_K6_EFER); pMsr++; idxMsr++; } # if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL) if (VMX_IS_64BIT_HOST_MODE()) { pMsr->u32IndexMSR = MSR_K6_STAR; pMsr->u32Reserved = 0; pMsr->u64Value = ASMRdMsr(MSR_K6_STAR); /* legacy syscall eip, cs & ss */ pMsr++; idxMsr++; pMsr->u32IndexMSR = MSR_K8_LSTAR; pMsr->u32Reserved = 0; pMsr->u64Value = ASMRdMsr(MSR_K8_LSTAR); /* 64 bits mode syscall rip */ pMsr++; idxMsr++; pMsr->u32IndexMSR = MSR_K8_SF_MASK; pMsr->u32Reserved = 0; pMsr->u64Value = ASMRdMsr(MSR_K8_SF_MASK); /* syscall flag mask */ pMsr++; idxMsr++; # if 0 /* The KERNEL_GS_BASE MSR does not work reliably with auto load/store. See @bugref{6208} */ pMsr->u32IndexMSR = MSR_K8_KERNEL_GS_BASE; pMsr->u32Reserved = 0; pMsr->u64Value = ASMRdMsr(MSR_K8_KERNEL_GS_BASE); /* swapgs exchange value */ pMsr++; idxMsr++; # endif } # endif if (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_VMCS_CTRL_PROC_EXEC2_RDTSCP) { pMsr->u32IndexMSR = MSR_K8_TSC_AUX; pMsr->u32Reserved = 0; pMsr->u64Value = ASMRdMsr(MSR_K8_TSC_AUX); pMsr++; idxMsr++; } /** @todo r=ramshankar: check IA32_VMX_MISC bits 27:25 for valid idxMsr * range. */ rc = VMXWriteVmcs(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, idxMsr); AssertRC(rc); #endif /* VBOX_WITH_AUTO_MSR_LOAD_RESTORE */ pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_HOST_CONTEXT; } return rc; } /** * Loads the 4 PDPEs into the guest state when nested paging is used and the * guest operates in PAE mode. * * @returns VBox status code. * @param pVCpu Pointer to the VMCPU. * @param pCtx Pointer to the guest CPU context. */ static int hmR0VmxLoadPaePdpes(PVMCPU pVCpu, PCPUMCTX pCtx) { if (CPUMIsGuestInPAEModeEx(pCtx)) { X86PDPE aPdpes[4]; int rc = PGMGstGetPaePdpes(pVCpu, &aPdpes[0]); AssertRCReturn(rc, rc); rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, aPdpes[0].u); AssertRCReturn(rc, rc); rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, aPdpes[1].u); AssertRCReturn(rc, rc); rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, aPdpes[2].u); AssertRCReturn(rc, rc); rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, aPdpes[3].u); AssertRCReturn(rc, rc); } return VINF_SUCCESS; } /** * Saves the 4 PDPEs into the guest state when nested paging is used and the * guest operates in PAE mode. * * @returns VBox status code. * @param pVCpu Pointer to the VM CPU. * @param pCtx Pointer to the guest CPU context. * * @remarks Tell PGM about CR3 changes before calling this helper. */ static int hmR0VmxSavePaePdpes(PVMCPU pVCpu, PCPUMCTX pCtx) { if (CPUMIsGuestInPAEModeEx(pCtx)) { int rc; X86PDPE aPdpes[4]; rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, &aPdpes[0].u); AssertRCReturn(rc, rc); rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, &aPdpes[1].u); AssertRCReturn(rc, rc); rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, &aPdpes[2].u); AssertRCReturn(rc, rc); rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, &aPdpes[3].u); AssertRCReturn(rc, rc); rc = PGMGstUpdatePaePdpes(pVCpu, &aPdpes[0]); AssertRCReturn(rc, rc); } return VINF_SUCCESS; } /** * Update the exception bitmap according to the current CPU state. * * @param pVM Pointer to the VM. * @param pVCpu Pointer to the VMCPU. * @param pCtx Pointer to the guest CPU context. */ static void hmR0VmxUpdateExceptionBitmap(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx) { uint32_t u32TrapMask; Assert(pCtx); /* * Set up a mask for intercepting traps. */ /** @todo Do we really need to always intercept #DB? */ u32TrapMask = RT_BIT(X86_XCPT_DB) | RT_BIT(X86_XCPT_NM) #ifdef VBOX_ALWAYS_TRAP_PF | RT_BIT(X86_XCPT_PF) #endif #ifdef VBOX_STRICT | RT_BIT(X86_XCPT_BP) | RT_BIT(X86_XCPT_DB) | RT_BIT(X86_XCPT_DE) | RT_BIT(X86_XCPT_NM) | RT_BIT(X86_XCPT_UD) | RT_BIT(X86_XCPT_NP) | RT_BIT(X86_XCPT_SS) | RT_BIT(X86_XCPT_GP) | RT_BIT(X86_XCPT_MF) #endif ; /* * Without nested paging, #PF must be intercepted to implement shadow paging. */ /** @todo NP state won't change so maybe we should build the initial trap mask up front? */ if (!pVM->hm.s.fNestedPaging) u32TrapMask |= RT_BIT(X86_XCPT_PF); /* Catch floating point exceptions if we need to report them to the guest in a different way. */ if (!(pCtx->cr0 & X86_CR0_NE)) u32TrapMask |= RT_BIT(X86_XCPT_MF); #ifdef VBOX_STRICT Assert(u32TrapMask & RT_BIT(X86_XCPT_GP)); #endif /* * Intercept all exceptions in real mode as none of them can be injected directly (#GP otherwise). */ /** @todo Despite the claim to intercept everything, with NP we do not intercept #PF. Should we? */ if ( CPUMIsGuestInRealModeEx(pCtx) && pVM->hm.s.vmx.pRealModeTSS) { u32TrapMask |= RT_BIT(X86_XCPT_DE) | RT_BIT(X86_XCPT_DB) | RT_BIT(X86_XCPT_NMI) | RT_BIT(X86_XCPT_BP) | RT_BIT(X86_XCPT_OF) | RT_BIT(X86_XCPT_BR) | RT_BIT(X86_XCPT_UD) | RT_BIT(X86_XCPT_DF) | RT_BIT(X86_XCPT_CO_SEG_OVERRUN) | RT_BIT(X86_XCPT_TS) | RT_BIT(X86_XCPT_NP) | RT_BIT(X86_XCPT_SS) | RT_BIT(X86_XCPT_GP) | RT_BIT(X86_XCPT_MF) | RT_BIT(X86_XCPT_AC) | RT_BIT(X86_XCPT_MC) | RT_BIT(X86_XCPT_XF) ; } int rc = VMXWriteVmcs(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, u32TrapMask); AssertRC(rc); } /** * Loads a minimal guest state. * * NOTE: Don't do anything here that can cause a jump back to ring 3!!!!! * * @param pVM Pointer to the VM. * @param pVCpu Pointer to the VMCPU. * @param pCtx Pointer to the guest CPU context. */ VMMR0DECL(void) VMXR0LoadMinimalGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx) { int rc; X86EFLAGS eflags; Assert(!(pVCpu->hm.s.fContextUseFlags & HM_CHANGED_ALL_GUEST)); /* * Load EIP, ESP and EFLAGS. */ rc = VMXWriteVmcs64(VMX_VMCS_GUEST_RIP, pCtx->rip); rc |= VMXWriteVmcs64(VMX_VMCS_GUEST_RSP, pCtx->rsp); AssertRC(rc); /* * Bits 22-31, 15, 5 & 3 must be zero. Bit 1 must be 1. */ eflags = pCtx->eflags; eflags.u32 &= VMX_EFLAGS_RESERVED_0; eflags.u32 |= VMX_EFLAGS_RESERVED_1; /* * Check if real mode emulation using v86 mode. */ if ( CPUMIsGuestInRealModeEx(pCtx) && pVM->hm.s.vmx.pRealModeTSS) { pVCpu->hm.s.vmx.RealMode.eflags = eflags; eflags.Bits.u1VM = 1; eflags.Bits.u2IOPL = 0; /* must always be 0 or else certain instructions won't cause faults. */ } rc = VMXWriteVmcs(VMX_VMCS_GUEST_RFLAGS, eflags.u32); AssertRC(rc); } /** * Sets up TSC offsetting and VMX preemption, if supported/configured/available. * * NOTE: This function reads the host TSC value. Therefore it must be executed very * shortly before a VM entry and execution MUST NOT be rescheduled between a call to * this function and a VM entry without calling this function again. * * @returns VBox status code. * @param pVM Pointer to the VM. * @param pVCpu Pointer to the VMCPU. */ VMMR0DECL(int) VMXR0SetupTscOffsetAndPreemption(PVM pVM, PVMCPU pVCpu) { int rc = VINF_SUCCESS; bool fOffsettedTsc; if (pVM->hm.s.vmx.fUsePreemptTimer) { uint64_t cTicksToDeadline = TMCpuTickGetDeadlineAndTscOffset(pVCpu, &fOffsettedTsc, &pVCpu->hm.s.vmx.u64TSCOffset); /* Make sure the returned values have sane upper and lower boundaries. */ uint64_t u64CpuHz = SUPGetCpuHzFromGIP(g_pSUPGlobalInfoPage); cTicksToDeadline = RT_MIN(cTicksToDeadline, u64CpuHz / 64); /* 1/64 of a second */ cTicksToDeadline = RT_MAX(cTicksToDeadline, u64CpuHz / 2048); /* 1/2048th of a second */ cTicksToDeadline >>= pVM->hm.s.vmx.cPreemptTimerShift; uint32_t cPreemptionTickCount = (uint32_t)RT_MIN(cTicksToDeadline, UINT32_MAX - 16); rc = VMXWriteVmcs(VMX_VMCS32_GUEST_PREEMPT_TIMER_VALUE, cPreemptionTickCount); AssertRC(rc); } else fOffsettedTsc = TMCpuTickCanUseRealTSC(pVCpu, &pVCpu->hm.s.vmx.u64TSCOffset); if (fOffsettedTsc) { uint64_t u64CurTSC = ASMReadTSC(); if (u64CurTSC + pVCpu->hm.s.vmx.u64TSCOffset > TMCpuTickGetLastSeen(pVCpu)) { /* Note: VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT takes precedence over TSC_OFFSET, applies to RDTSCP too. */ rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_TSC_OFFSET_FULL, pVCpu->hm.s.vmx.u64TSCOffset); AssertRC(rc); pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT; rc = VMXWriteVmcs(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls); AssertRC(rc); STAM_COUNTER_INC(&pVCpu->hm.s.StatTscOffset); } else { /* Fall back to rdtsc, rdtscp emulation as we would otherwise pass decreasing tsc values to the guest. */ LogFlow(("TSC %RX64 offset %RX64 time=%RX64 last=%RX64 (diff=%RX64, virt_tsc=%RX64)\n", u64CurTSC, pVCpu->hm.s.vmx.u64TSCOffset, u64CurTSC + pVCpu->hm.s.vmx.u64TSCOffset, TMCpuTickGetLastSeen(pVCpu), TMCpuTickGetLastSeen(pVCpu) - u64CurTSC - pVCpu->hm.s.vmx.u64TSCOffset, TMCpuTickGet(pVCpu))); pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT; rc = VMXWriteVmcs(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls); AssertRC(rc); STAM_COUNTER_INC(&pVCpu->hm.s.StatTscInterceptOverFlow); } } else { pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT; rc = VMXWriteVmcs(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls); AssertRC(rc); STAM_COUNTER_INC(&pVCpu->hm.s.StatTscIntercept); } return rc; } /** * Loads the guest state. * * NOTE: Don't do anything here that can cause a jump back to ring 3!!!!! * * @returns VBox status code. * @param pVM Pointer to the VM. * @param pVCpu Pointer to the VMCPU. * @param pCtx Pointer to the guest CPU context. */ VMMR0DECL(int) VMXR0LoadGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx) { int rc = VINF_SUCCESS; RTGCUINTPTR val; STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatLoadGuestState, x); /* * VMX_VMCS_CTRL_ENTRY * Set required bits to one and zero according to the MSR capabilities. */ val = pVM->hm.s.vmx.msr.vmx_entry.n.disallowed0; /* * Load guest debug controls (DR7 & IA32_DEBUGCTL_MSR). * Forced to 1 on the 'first' VT-x capable CPUs; this actually includes the newest Nehalem CPUs */ val |= VMX_VMCS_CTRL_ENTRY_LOAD_DEBUG; if (CPUMIsGuestInLongModeEx(pCtx)) val |= VMX_VMCS_CTRL_ENTRY_IA32E_MODE_GUEST; /* else Must be zero when AMD64 is not available. */ /* * Mask away the bits that the CPU doesn't support. */ val &= pVM->hm.s.vmx.msr.vmx_entry.n.allowed1; rc = VMXWriteVmcs(VMX_VMCS32_CTRL_ENTRY, val); AssertRC(rc); /* * VMX_VMCS_CTRL_EXIT * Set required bits to one and zero according to the MSR capabilities. */ val = pVM->hm.s.vmx.msr.vmx_exit.n.disallowed0; /* * Save debug controls (DR7 & IA32_DEBUGCTL_MSR) * Forced to 1 on the 'first' VT-x capable CPUs; this actually includes the newest Nehalem CPUs */ val |= VMX_VMCS_CTRL_EXIT_SAVE_DEBUG; #if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL) if (VMX_IS_64BIT_HOST_MODE()) val |= VMX_VMCS_CTRL_EXIT_HOST_ADDR_SPACE_SIZE; /* else Must be zero when AMD64 is not available. */ #elif HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) if (CPUMIsGuestInLongModeEx(pCtx)) val |= VMX_VMCS_CTRL_EXIT_HOST_ADDR_SPACE_SIZE; /* our switcher goes to long mode */ else Assert(!(val & VMX_VMCS_CTRL_EXIT_HOST_ADDR_SPACE_SIZE)); #endif val &= pVM->hm.s.vmx.msr.vmx_exit.n.allowed1; /* * Don't acknowledge external interrupts on VM-exit. */ rc = VMXWriteVmcs(VMX_VMCS32_CTRL_EXIT, val); AssertRC(rc); /* * Guest CPU context: ES, CS, SS, DS, FS, GS. */ if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_SEGMENT_REGS) { if (pVM->hm.s.vmx.pRealModeTSS) { PGMMODE enmGuestMode = PGMGetGuestMode(pVCpu); if (pVCpu->hm.s.vmx.enmLastSeenGuestMode != enmGuestMode) { /* * Correct weird requirements for switching to protected mode. */ if ( pVCpu->hm.s.vmx.enmLastSeenGuestMode == PGMMODE_REAL && enmGuestMode >= PGMMODE_PROTECTED) { #ifdef VBOX_WITH_REM /* * Flush the recompiler code cache as it's not unlikely the guest will rewrite code * it will later execute in real mode (OpenBSD 4.0 is one such example) */ REMFlushTBs(pVM); #endif /* * DPL of all hidden selector registers must match the current CPL (0). */ pCtx->cs.Attr.n.u2Dpl = 0; pCtx->cs.Attr.n.u4Type = X86_SEL_TYPE_CODE | X86_SEL_TYPE_RW_ACC; pCtx->ds.Attr.n.u2Dpl = 0; pCtx->es.Attr.n.u2Dpl = 0; pCtx->fs.Attr.n.u2Dpl = 0; pCtx->gs.Attr.n.u2Dpl = 0; pCtx->ss.Attr.n.u2Dpl = 0; } pVCpu->hm.s.vmx.enmLastSeenGuestMode = enmGuestMode; } } VMX_WRITE_SELREG(ES, es); AssertRC(rc); VMX_WRITE_SELREG(CS, cs); AssertRC(rc); VMX_WRITE_SELREG(SS, ss); AssertRC(rc); VMX_WRITE_SELREG(DS, ds); AssertRC(rc); VMX_WRITE_SELREG(FS, fs); AssertRC(rc); VMX_WRITE_SELREG(GS, gs); AssertRC(rc); } /* * Guest CPU context: LDTR. */ if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_LDTR) { if (pCtx->ldtr.Sel == 0) { rc = VMXWriteVmcs(VMX_VMCS16_GUEST_FIELD_LDTR, 0); rc |= VMXWriteVmcs(VMX_VMCS32_GUEST_LDTR_LIMIT, 0); rc |= VMXWriteVmcs64(VMX_VMCS_GUEST_LDTR_BASE, 0); /* @todo removing "64" in the function should be the same. */ /* Note: vmlaunch will fail with 0 or just 0x02. No idea why. */ rc |= VMXWriteVmcs(VMX_VMCS32_GUEST_LDTR_ACCESS_RIGHTS, 0x82 /* present, LDT */); } else { rc = VMXWriteVmcs(VMX_VMCS16_GUEST_FIELD_LDTR, pCtx->ldtr.Sel); rc |= VMXWriteVmcs(VMX_VMCS32_GUEST_LDTR_LIMIT, pCtx->ldtr.u32Limit); rc |= VMXWriteVmcs64(VMX_VMCS_GUEST_LDTR_BASE, pCtx->ldtr.u64Base); /* @todo removing "64" and it should be the same */ rc |= VMXWriteVmcs(VMX_VMCS32_GUEST_LDTR_ACCESS_RIGHTS, pCtx->ldtr.Attr.u); } AssertRC(rc); } /* * Guest CPU context: TR. */ if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_TR) { /* * Real mode emulation using v86 mode with CR4.VME (interrupt redirection * using the int bitmap in the TSS). */ if ( CPUMIsGuestInRealModeEx(pCtx) && pVM->hm.s.vmx.pRealModeTSS) { RTGCPHYS GCPhys; /* We convert it here every time as PCI regions could be reconfigured. */ rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pRealModeTSS, &GCPhys); AssertRC(rc); rc = VMXWriteVmcs(VMX_VMCS16_GUEST_FIELD_TR, 0); rc |= VMXWriteVmcs(VMX_VMCS32_GUEST_TR_LIMIT, HM_VTX_TSS_SIZE); rc |= VMXWriteVmcs64(VMX_VMCS_GUEST_TR_BASE, GCPhys /* phys = virt in this mode */); X86DESCATTR attr; attr.u = 0; attr.n.u1Present = 1; attr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY; val = attr.u; } else { rc = VMXWriteVmcs(VMX_VMCS16_GUEST_FIELD_TR, pCtx->tr.Sel); rc |= VMXWriteVmcs(VMX_VMCS32_GUEST_TR_LIMIT, pCtx->tr.u32Limit); rc |= VMXWriteVmcs64(VMX_VMCS_GUEST_TR_BASE, pCtx->tr.u64Base); val = pCtx->tr.Attr.u; /* The TSS selector must be busy (REM bugs? see defect #XXXX). */ if (!(val & X86_SEL_TYPE_SYS_TSS_BUSY_MASK)) { if (val & 0xf) val |= X86_SEL_TYPE_SYS_TSS_BUSY_MASK; else /* Default if no TR selector has been set (otherwise vmlaunch will fail!) */ val = (val & ~0xF) | X86_SEL_TYPE_SYS_386_TSS_BUSY; } AssertMsg((val & 0xf) == X86_SEL_TYPE_SYS_386_TSS_BUSY || (val & 0xf) == X86_SEL_TYPE_SYS_286_TSS_BUSY, ("%#x\n", val)); } rc |= VMXWriteVmcs(VMX_VMCS32_GUEST_TR_ACCESS_RIGHTS, val); AssertRC(rc); } /* * Guest CPU context: GDTR. */ if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_GDTR) { rc = VMXWriteVmcs(VMX_VMCS32_GUEST_GDTR_LIMIT, pCtx->gdtr.cbGdt); rc |= VMXWriteVmcs64(VMX_VMCS_GUEST_GDTR_BASE, pCtx->gdtr.pGdt); AssertRC(rc); } /* * Guest CPU context: IDTR. */ if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_IDTR) { rc = VMXWriteVmcs(VMX_VMCS32_GUEST_IDTR_LIMIT, pCtx->idtr.cbIdt); rc |= VMXWriteVmcs64(VMX_VMCS_GUEST_IDTR_BASE, pCtx->idtr.pIdt); AssertRC(rc); } /* * Sysenter MSRs. */ if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_MSR) { rc = VMXWriteVmcs(VMX_VMCS32_GUEST_SYSENTER_CS, pCtx->SysEnter.cs); rc |= VMXWriteVmcs64(VMX_VMCS_GUEST_SYSENTER_EIP, pCtx->SysEnter.eip); rc |= VMXWriteVmcs64(VMX_VMCS_GUEST_SYSENTER_ESP, pCtx->SysEnter.esp); AssertRC(rc); } /* * Guest CPU context: Control registers. */ if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_CR0) { val = pCtx->cr0; rc = VMXWriteVmcs(VMX_VMCS_CTRL_CR0_READ_SHADOW, val); Log2(("Guest CR0-shadow %08x\n", val)); if (CPUMIsGuestFPUStateActive(pVCpu) == false) { /* Always use #NM exceptions to load the FPU/XMM state on demand. */ val |= X86_CR0_TS | X86_CR0_ET | X86_CR0_NE | X86_CR0_MP; } else { /** @todo check if we support the old style mess correctly. */ if (!(val & X86_CR0_NE)) Log(("Forcing X86_CR0_NE!!!\n")); val |= X86_CR0_NE; /* always turn on the native mechanism to report FPU errors (old style uses interrupts) */ } /* Protected mode & paging are always enabled; we use them for emulating real and protected mode without paging too. */ if (!pVM->hm.s.vmx.fUnrestrictedGuest) val |= X86_CR0_PE | X86_CR0_PG; if (pVM->hm.s.fNestedPaging) { if (CPUMIsGuestInPagedProtectedModeEx(pCtx)) { /* Disable CR3 read/write monitoring as we don't need it for EPT. */ pVCpu->hm.s.vmx.u32ProcCtls &= ~( VMX_VMCS_CTRL_PROC_EXEC_CR3_LOAD_EXIT | VMX_VMCS_CTRL_PROC_EXEC_CR3_STORE_EXIT); } else { /* Reenable CR3 read/write monitoring as our identity mapped page table is active. */ pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_CR3_LOAD_EXIT | VMX_VMCS_CTRL_PROC_EXEC_CR3_STORE_EXIT; } rc = VMXWriteVmcs(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls); AssertRC(rc); } else { /* Note: We must also set this as we rely on protecting various pages for which supervisor writes must be caught. */ val |= X86_CR0_WP; } /* Always enable caching. */ val &= ~(X86_CR0_CD|X86_CR0_NW); rc |= VMXWriteVmcs64(VMX_VMCS_GUEST_CR0, val); Log2(("Guest CR0 %08x\n", val)); /* * CR0 flags owned by the host; if the guests attempts to change them, then the VM will exit. */ val = X86_CR0_PE /* Must monitor this bit (assumptions are made for real mode emulation) */ | X86_CR0_WP /* Must monitor this bit (it must always be enabled). */ | X86_CR0_PG /* Must monitor this bit (assumptions are made for real mode & protected mode without paging emulation) */ | X86_CR0_CD /* Bit not restored during VM-exit! */ | X86_CR0_NW /* Bit not restored during VM-exit! */ | X86_CR0_NE; /* * When the guest's FPU state is active, then we no longer care about the FPU related bits. */ if (CPUMIsGuestFPUStateActive(pVCpu) == false) val |= X86_CR0_TS | X86_CR0_ET | X86_CR0_MP; pVCpu->hm.s.vmx.u32CR0Mask = val; rc |= VMXWriteVmcs(VMX_VMCS_CTRL_CR0_MASK, val); Log2(("Guest CR0-mask %08x\n", val)); AssertRC(rc); } if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_CR4) { rc = VMXWriteVmcs(VMX_VMCS_CTRL_CR4_READ_SHADOW, pCtx->cr4); Log2(("Guest CR4-shadow %08x\n", pCtx->cr4)); /* Set the required bits in cr4 too (currently X86_CR4_VMXE). */ val = pCtx->cr4 | (uint32_t)pVM->hm.s.vmx.msr.vmx_cr4_fixed0; if (!pVM->hm.s.fNestedPaging) { switch (pVCpu->hm.s.enmShadowMode) { case PGMMODE_REAL: /* Real mode -> emulated using v86 mode */ case PGMMODE_PROTECTED: /* Protected mode, no paging -> emulated using identity mapping. */ case PGMMODE_32_BIT: /* 32-bit paging. */ val &= ~X86_CR4_PAE; break; case PGMMODE_PAE: /* PAE paging. */ case PGMMODE_PAE_NX: /* PAE paging with NX enabled. */ /** Must use PAE paging as we could use physical memory > 4 GB */ val |= X86_CR4_PAE; break; case PGMMODE_AMD64: /* 64-bit AMD paging (long mode). */ case PGMMODE_AMD64_NX: /* 64-bit AMD paging (long mode) with NX enabled. */ #ifdef VBOX_ENABLE_64_BITS_GUESTS break; #else AssertFailed(); return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE; #endif default: /* shut up gcc */ AssertFailed(); return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE; } } else if ( !CPUMIsGuestInPagedProtectedModeEx(pCtx) && !pVM->hm.s.vmx.fUnrestrictedGuest) { /* We use 4 MB pages in our identity mapping page table for real and protected mode without paging. */ val |= X86_CR4_PSE; /* Our identity mapping is a 32 bits page directory. */ val &= ~X86_CR4_PAE; } /* * Turn off VME if we're in emulated real mode. */ if ( CPUMIsGuestInRealModeEx(pCtx) && pVM->hm.s.vmx.pRealModeTSS) { val &= ~X86_CR4_VME; } rc |= VMXWriteVmcs64(VMX_VMCS_GUEST_CR4, val); Log2(("Guest CR4 %08x\n", val)); /* * CR4 flags owned by the host; if the guests attempts to change them, then the VM will exit. */ val = 0 | X86_CR4_VME | X86_CR4_PAE | X86_CR4_PGE | X86_CR4_PSE | X86_CR4_VMXE; pVCpu->hm.s.vmx.u32CR4Mask = val; rc |= VMXWriteVmcs(VMX_VMCS_CTRL_CR4_MASK, val); Log2(("Guest CR4-mask %08x\n", val)); AssertRC(rc); } #if 0 /* Enable single stepping if requested and CPU supports it. */ if (pVM->hm.s.vmx.msr.vmx_proc_ctls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_MONITOR_TRAP_FLAG) if (DBGFIsStepping(pVCpu)) { pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_MONITOR_TRAP_FLAG; rc = VMXWriteVmcs(VMX_VMCS_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls); AssertRC(rc); } #endif if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_CR3) { if (pVM->hm.s.fNestedPaging) { Assert(PGMGetHyperCR3(pVCpu)); pVCpu->hm.s.vmx.HCPhysEPTP = PGMGetHyperCR3(pVCpu); Assert(!(pVCpu->hm.s.vmx.HCPhysEPTP & 0xfff)); /** @todo Check the IA32_VMX_EPT_VPID_CAP MSR for other supported memory types. */ pVCpu->hm.s.vmx.HCPhysEPTP |= VMX_EPT_MEMTYPE_WB | (VMX_EPT_PAGE_WALK_LENGTH_DEFAULT << VMX_EPT_PAGE_WALK_LENGTH_SHIFT); rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, pVCpu->hm.s.vmx.HCPhysEPTP); AssertRC(rc); if ( !CPUMIsGuestInPagedProtectedModeEx(pCtx) && !pVM->hm.s.vmx.fUnrestrictedGuest) { RTGCPHYS GCPhys; /* We convert it here every time as PCI regions could be reconfigured. */ rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pNonPagingModeEPTPageTable, &GCPhys); AssertMsgRC(rc, ("pNonPagingModeEPTPageTable = %RGv\n", pVM->hm.s.vmx.pNonPagingModeEPTPageTable)); /* * We use our identity mapping page table here as we need to map guest virtual to * guest physical addresses; EPT will take care of the translation to host physical addresses. */ val = GCPhys; } else { /* Save the real guest CR3 in VMX_VMCS_GUEST_CR3 */ val = pCtx->cr3; rc = hmR0VmxLoadPaePdpes(pVCpu, pCtx); AssertRCReturn(rc, rc); } } else { val = PGMGetHyperCR3(pVCpu); Assert(val || VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL)); } /* Save our shadow CR3 register. */ rc = VMXWriteVmcs64(VMX_VMCS_GUEST_CR3, val); AssertRC(rc); } /* * Guest CPU context: Debug registers. */ if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_DEBUG) { pCtx->dr[6] |= X86_DR6_INIT_VAL; /* set all reserved bits to 1. */ pCtx->dr[6] &= ~RT_BIT(12); /* must be zero. */ pCtx->dr[7] &= 0xffffffff; /* upper 32 bits reserved */ pCtx->dr[7] &= ~(RT_BIT(11) | RT_BIT(12) | RT_BIT(14) | RT_BIT(15)); /* must be zero */ pCtx->dr[7] |= 0x400; /* must be one */ /* Resync DR7 */ rc = VMXWriteVmcs64(VMX_VMCS_GUEST_DR7, pCtx->dr[7]); AssertRC(rc); #ifdef DEBUG /* Sync the hypervisor debug state now if any breakpoint is armed. */ if ( CPUMGetHyperDR7(pVCpu) & (X86_DR7_ENABLED_MASK|X86_DR7_GD) && !CPUMIsHyperDebugStateActive(pVCpu) && !DBGFIsStepping(pVCpu)) { /* Save the host and load the hypervisor debug state. */ rc = CPUMR0LoadHyperDebugState(pVM, pVCpu, pCtx, true /* include DR6 */); AssertRC(rc); /* DRx intercepts remain enabled. */ /* Override dr7 with the hypervisor value. */ rc = VMXWriteVmcs64(VMX_VMCS_GUEST_DR7, CPUMGetHyperDR7(pVCpu)); AssertRC(rc); } else #endif /* Sync the debug state now if any breakpoint is armed. */ if ( (pCtx->dr[7] & (X86_DR7_ENABLED_MASK|X86_DR7_GD)) && !CPUMIsGuestDebugStateActive(pVCpu) && !DBGFIsStepping(pVCpu)) { STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed); /* Disable DRx move intercepts. */ pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT; rc = VMXWriteVmcs(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls); AssertRC(rc); /* Save the host and load the guest debug state. */ rc = CPUMR0LoadGuestDebugState(pVM, pVCpu, pCtx, true /* include DR6 */); AssertRC(rc); } /* IA32_DEBUGCTL MSR. */ rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_DEBUGCTL_FULL, 0); AssertRC(rc); /** @todo do we really ever need this? */ rc |= VMXWriteVmcs(VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS, 0); AssertRC(rc); } /* * 64-bit guest mode. */ if (CPUMIsGuestInLongModeEx(pCtx)) { #if !defined(VBOX_ENABLE_64_BITS_GUESTS) return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE; #elif HC_ARCH_BITS == 32 && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL) pVCpu->hm.s.vmx.pfnStartVM = VMXR0SwitcherStartVM64; #else # ifdef VBOX_WITH_HYBRID_32BIT_KERNEL if (!pVM->hm.s.fAllow64BitGuests) return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE; # endif pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM64; #endif if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_MSR) { /* Update these as wrmsr might have changed them. */ rc = VMXWriteVmcs64(VMX_VMCS_GUEST_FS_BASE, pCtx->fs.u64Base); AssertRC(rc); rc = VMXWriteVmcs64(VMX_VMCS_GUEST_GS_BASE, pCtx->gs.u64Base); AssertRC(rc); } } else { pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM32; } hmR0VmxUpdateExceptionBitmap(pVM, pVCpu, pCtx); #ifdef VBOX_WITH_AUTO_MSR_LOAD_RESTORE /* * Store all guest MSRs in the VM-entry load area, so they will be loaded * during VM-entry and restored into the VM-exit store area during VM-exit. */ PVMXMSR pMsr = (PVMXMSR)pVCpu->hm.s.vmx.pvGuestMsr; unsigned idxMsr = 0; uint32_t u32GstExtFeatures; uint32_t u32Temp; CPUMGetGuestCpuId(pVCpu, 0x80000001, &u32Temp, &u32Temp, &u32Temp, &u32GstExtFeatures); if (u32GstExtFeatures & (X86_CPUID_EXT_FEATURE_EDX_NX | X86_CPUID_EXT_FEATURE_EDX_LONG_MODE)) { pMsr->u32IndexMSR = MSR_K6_EFER; pMsr->u32Reserved = 0; pMsr->u64Value = pCtx->msrEFER; /* VT-x will complain if only MSR_K6_EFER_LME is set. */ if (!CPUMIsGuestInLongModeEx(pCtx)) pMsr->u64Value &= ~(MSR_K6_EFER_LMA | MSR_K6_EFER_LME); pMsr++; idxMsr++; if (u32GstExtFeatures & X86_CPUID_EXT_FEATURE_EDX_LONG_MODE) { pMsr->u32IndexMSR = MSR_K8_LSTAR; pMsr->u32Reserved = 0; pMsr->u64Value = pCtx->msrLSTAR; /* 64 bits mode syscall rip */ pMsr++; idxMsr++; pMsr->u32IndexMSR = MSR_K6_STAR; pMsr->u32Reserved = 0; pMsr->u64Value = pCtx->msrSTAR; /* legacy syscall eip, cs & ss */ pMsr++; idxMsr++; pMsr->u32IndexMSR = MSR_K8_SF_MASK; pMsr->u32Reserved = 0; pMsr->u64Value = pCtx->msrSFMASK; /* syscall flag mask */ pMsr++; idxMsr++; #if 0 /* The KERNEL_GS_BASE MSR does not work reliably with auto load/store. See @bugref{6208} */ pMsr->u32IndexMSR = MSR_K8_KERNEL_GS_BASE; pMsr->u32Reserved = 0; pMsr->u64Value = pCtx->msrKERNELGSBASE; /* swapgs exchange value */ pMsr++; idxMsr++; #endif } } if ( pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_VMCS_CTRL_PROC_EXEC2_RDTSCP && (u32GstExtFeatures & X86_CPUID_EXT_FEATURE_EDX_RDTSCP)) { pMsr->u32IndexMSR = MSR_K8_TSC_AUX; pMsr->u32Reserved = 0; rc = CPUMQueryGuestMsr(pVCpu, MSR_K8_TSC_AUX, &pMsr->u64Value); AssertRC(rc); pMsr++; idxMsr++; } pVCpu->hm.s.vmx.cGuestMsrs = idxMsr; rc = VMXWriteVmcs(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, idxMsr); AssertRC(rc); rc = VMXWriteVmcs(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, idxMsr); AssertRC(rc); #endif /* VBOX_WITH_AUTO_MSR_LOAD_RESTORE */ /* Done with the major changes */ pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_ALL_GUEST; /* Minimal guest state update (ESP, EIP, EFLAGS mostly) */ VMXR0LoadMinimalGuestState(pVM, pVCpu, pCtx); STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatLoadGuestState, x); return rc; } /** * Syncs back the guest state from VMCS. * * @returns VBox status code. * @param pVM Pointer to the VM. * @param pVCpu Pointer to the VMCPU. * @param pCtx Pointer to the guest CPU context. */ DECLINLINE(int) VMXR0SaveGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx) { RTGCUINTREG val, valShadow; RTGCUINTPTR uInterruptState; int rc; /* First sync back EIP, ESP, and EFLAGS. */ rc = VMXReadCachedVmcs(VMX_VMCS_GUEST_RIP, &val); AssertRC(rc); pCtx->rip = val; rc = VMXReadCachedVmcs(VMX_VMCS_GUEST_RSP, &val); AssertRC(rc); pCtx->rsp = val; rc = VMXReadCachedVmcs(VMX_VMCS_GUEST_RFLAGS, &val); AssertRC(rc); pCtx->eflags.u32 = val; /* Take care of instruction fusing (sti, mov ss) */ rc |= VMXReadCachedVmcs(VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE, &val); uInterruptState = val; if (uInterruptState != 0) { Assert(uInterruptState <= 2); /* only sti & mov ss */ Log(("uInterruptState %x eip=%RGv\n", (uint32_t)uInterruptState, pCtx->rip)); EMSetInhibitInterruptsPC(pVCpu, pCtx->rip); } else VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS); /* Control registers. */ VMXReadCachedVmcs(VMX_VMCS_CTRL_CR0_READ_SHADOW, &valShadow); VMXReadCachedVmcs(VMX_VMCS_GUEST_CR0, &val); val = (valShadow & pVCpu->hm.s.vmx.u32CR0Mask) | (val & ~pVCpu->hm.s.vmx.u32CR0Mask); CPUMSetGuestCR0(pVCpu, val); VMXReadCachedVmcs(VMX_VMCS_CTRL_CR4_READ_SHADOW, &valShadow); VMXReadCachedVmcs(VMX_VMCS_GUEST_CR4, &val); val = (valShadow & pVCpu->hm.s.vmx.u32CR4Mask) | (val & ~pVCpu->hm.s.vmx.u32CR4Mask); CPUMSetGuestCR4(pVCpu, val); /* * No reason to sync back the CRx registers. They can't be changed by the guest unless in * the nested paging case where CR3 & CR4 can be changed by the guest. */ if ( pVM->hm.s.fNestedPaging && CPUMIsGuestInPagedProtectedModeEx(pCtx)) /** @todo check if we will always catch mode switches and such... */ { PVMCSCACHE pCache = &pVCpu->hm.s.vmx.VMCSCache; /* Can be updated behind our back in the nested paging case. */ CPUMSetGuestCR2(pVCpu, pCache->cr2); VMXReadCachedVmcs(VMX_VMCS_GUEST_CR3, &val); if (val != pCtx->cr3) { CPUMSetGuestCR3(pVCpu, val); PGMUpdateCR3(pVCpu, val); } rc = hmR0VmxSavePaePdpes(pVCpu, pCtx); AssertRCReturn(rc, rc); } /* Sync back DR7. */ VMXReadCachedVmcs(VMX_VMCS_GUEST_DR7, &val); pCtx->dr[7] = val; /* Guest CPU context: ES, CS, SS, DS, FS, GS. */ VMX_READ_SELREG(ES, es); VMX_READ_SELREG(SS, ss); VMX_READ_SELREG(CS, cs); VMX_READ_SELREG(DS, ds); VMX_READ_SELREG(FS, fs); VMX_READ_SELREG(GS, gs); /* System MSRs */ VMXReadCachedVmcs(VMX_VMCS32_GUEST_SYSENTER_CS, &val); pCtx->SysEnter.cs = val; VMXReadCachedVmcs(VMX_VMCS_GUEST_SYSENTER_EIP, &val); pCtx->SysEnter.eip = val; VMXReadCachedVmcs(VMX_VMCS_GUEST_SYSENTER_ESP, &val); pCtx->SysEnter.esp = val; /* Misc. registers; must sync everything otherwise we can get out of sync when jumping to ring 3. */ VMX_READ_SELREG(LDTR, ldtr); VMXReadCachedVmcs(VMX_VMCS32_GUEST_GDTR_LIMIT, &val); pCtx->gdtr.cbGdt = val; VMXReadCachedVmcs(VMX_VMCS_GUEST_GDTR_BASE, &val); pCtx->gdtr.pGdt = val; VMXReadCachedVmcs(VMX_VMCS32_GUEST_IDTR_LIMIT, &val); pCtx->idtr.cbIdt = val; VMXReadCachedVmcs(VMX_VMCS_GUEST_IDTR_BASE, &val); pCtx->idtr.pIdt = val; /* Real mode emulation using v86 mode. */ if ( CPUMIsGuestInRealModeEx(pCtx) && pVM->hm.s.vmx.pRealModeTSS) { /* Hide our emulation flags */ pCtx->eflags.Bits.u1VM = 0; /* Restore original IOPL setting as we always use 0. */ pCtx->eflags.Bits.u2IOPL = pVCpu->hm.s.vmx.RealMode.eflags.Bits.u2IOPL; /* Force a TR resync every time in case we switch modes. */ pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_TR; } else { /* In real mode we have a fake TSS, so only sync it back when it's supposed to be valid. */ VMX_READ_SELREG(TR, tr); } #ifdef VBOX_WITH_AUTO_MSR_LOAD_RESTORE /* * Save the possibly changed MSRs that we automatically restore and save during a world switch. */ for (unsigned i = 0; i < pVCpu->hm.s.vmx.cGuestMsrs; i++) { PVMXMSR pMsr = (PVMXMSR)pVCpu->hm.s.vmx.pvGuestMsr; pMsr += i; switch (pMsr->u32IndexMSR) { case MSR_K8_LSTAR: pCtx->msrLSTAR = pMsr->u64Value; break; case MSR_K6_STAR: pCtx->msrSTAR = pMsr->u64Value; break; case MSR_K8_SF_MASK: pCtx->msrSFMASK = pMsr->u64Value; break; #if 0 /* The KERNEL_GS_BASE MSR does not work reliably with auto load/store. See @bugref{6208} */ case MSR_K8_KERNEL_GS_BASE: pCtx->msrKERNELGSBASE = pMsr->u64Value; break; #endif case MSR_K8_TSC_AUX: CPUMSetGuestMsr(pVCpu, MSR_K8_TSC_AUX, pMsr->u64Value); break; case MSR_K6_EFER: /* EFER can't be changed without causing a VM-exit. */ /* Assert(pCtx->msrEFER == pMsr->u64Value); */ break; default: AssertFailed(); return VERR_HM_UNEXPECTED_LD_ST_MSR; } } #endif /* VBOX_WITH_AUTO_MSR_LOAD_RESTORE */ return VINF_SUCCESS; } /** * Dummy placeholder for TLB flush handling before VM-entry. Used in the case * where neither EPT nor VPID is supported by the CPU. * * @param pVM Pointer to the VM. * @param pVCpu Pointer to the VMCPU. */ static DECLCALLBACK(void) hmR0VmxSetupTLBDummy(PVM pVM, PVMCPU pVCpu) { NOREF(pVM); VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH); VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_SHOOTDOWN); pVCpu->hm.s.TlbShootdown.cPages = 0; } /** * Setup the tagged TLB for EPT+VPID. * * @param pVM Pointer to the VM. * @param pVCpu Pointer to the VMCPU. */ static DECLCALLBACK(void) hmR0VmxSetupTLBBoth(PVM pVM, PVMCPU pVCpu) { PHMGLOBLCPUINFO pCpu; Assert(pVM->hm.s.fNestedPaging && pVM->hm.s.vmx.fVpid); pCpu = HMR0GetCurrentCpu(); /* * Force a TLB flush for the first world switch if the current CPU differs from the one we ran on last * This can happen both for start & resume due to long jumps back to ring-3. * If the TLB flush count changed, another VM (VCPU rather) has hit the ASID limit while flushing the TLB * or the host Cpu is online after a suspend/resume, so we cannot reuse the current ASID anymore. */ bool fNewAsid = false; if ( pVCpu->hm.s.idLastCpu != pCpu->idCpu || pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes) { pVCpu->hm.s.fForceTLBFlush = true; fNewAsid = true; } /* * Check for explicit TLB shootdowns. */ if (VMCPU_FF_TESTANDCLEAR(pVCpu, VMCPU_FF_TLB_FLUSH)) pVCpu->hm.s.fForceTLBFlush = true; pVCpu->hm.s.idLastCpu = pCpu->idCpu; if (pVCpu->hm.s.fForceTLBFlush) { if (fNewAsid) { ++pCpu->uCurrentAsid; if (pCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid) { pCpu->uCurrentAsid = 1; /* start at 1; host uses 0 */ pCpu->cTlbFlushes++; pCpu->fFlushAsidBeforeUse = true; } pVCpu->hm.s.uCurrentAsid = pCpu->uCurrentAsid; if (pCpu->fFlushAsidBeforeUse) hmR0VmxFlushVPID(pVM, pVCpu, pVM->hm.s.vmx.enmFlushVpid, 0 /* GCPtr */); } else { if (pVM->hm.s.vmx.msr.vmx_ept_vpid_caps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT) hmR0VmxFlushVPID(pVM, pVCpu, VMX_FLUSH_VPID_SINGLE_CONTEXT, 0 /* GCPtr */); else hmR0VmxFlushEPT(pVM, pVCpu, pVM->hm.s.vmx.enmFlushEpt); } pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes; pVCpu->hm.s.fForceTLBFlush = false; } else { AssertMsg(pVCpu->hm.s.uCurrentAsid && pCpu->uCurrentAsid, ("hm->uCurrentAsid=%lu hm->cTlbFlushes=%lu cpu->uCurrentAsid=%lu cpu->cTlbFlushes=%lu\n", pVCpu->hm.s.uCurrentAsid, pVCpu->hm.s.cTlbFlushes, pCpu->uCurrentAsid, pCpu->cTlbFlushes)); /** @todo We never set VMCPU_FF_TLB_SHOOTDOWN anywhere so this path should * not be executed. See hmQueueInvlPage() where it is commented * out. Support individual entry flushing someday. */ if (VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_TLB_SHOOTDOWN)) { STAM_COUNTER_INC(&pVCpu->hm.s.StatTlbShootdown); /* * Flush individual guest entries using VPID from the TLB or as little as possible with EPT * as supported by the CPU. */ if (pVM->hm.s.vmx.msr.vmx_ept_vpid_caps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR) { for (uint32_t i = 0; i < pVCpu->hm.s.TlbShootdown.cPages; i++) hmR0VmxFlushVPID(pVM, pVCpu, VMX_FLUSH_VPID_INDIV_ADDR, pVCpu->hm.s.TlbShootdown.aPages[i]); } else hmR0VmxFlushEPT(pVM, pVCpu, pVM->hm.s.vmx.enmFlushEpt); } else STAM_COUNTER_INC(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch); } pVCpu->hm.s.TlbShootdown.cPages = 0; VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_SHOOTDOWN); AssertMsg(pVCpu->hm.s.cTlbFlushes == pCpu->cTlbFlushes, ("Flush count mismatch for cpu %d (%x vs %x)\n", pCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pCpu->cTlbFlushes)); AssertMsg(pCpu->uCurrentAsid >= 1 && pCpu->uCurrentAsid < pVM->hm.s.uMaxAsid, ("cpu%d uCurrentAsid = %x\n", pCpu->idCpu, pCpu->uCurrentAsid)); AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid, ("cpu%d VM uCurrentAsid = %x\n", pCpu->idCpu, pVCpu->hm.s.uCurrentAsid)); /* Update VMCS with the VPID. */ int rc = VMXWriteVmcs(VMX_VMCS16_GUEST_FIELD_VPID, pVCpu->hm.s.uCurrentAsid); AssertRC(rc); } /** * Setup the tagged TLB for EPT only. * * @returns VBox status code. * @param pVM Pointer to the VM. * @param pVCpu Pointer to the VMCPU. */ static DECLCALLBACK(void) hmR0VmxSetupTLBEPT(PVM pVM, PVMCPU pVCpu) { PHMGLOBLCPUINFO pCpu; Assert(pVM->hm.s.fNestedPaging); Assert(!pVM->hm.s.vmx.fVpid); pCpu = HMR0GetCurrentCpu(); /* * Force a TLB flush for the first world switch if the current CPU differs from the one we ran on last * This can happen both for start & resume due to long jumps back to ring-3. * A change in the TLB flush count implies the host Cpu is online after a suspend/resume. */ if ( pVCpu->hm.s.idLastCpu != pCpu->idCpu || pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes) { pVCpu->hm.s.fForceTLBFlush = true; } /* * Check for explicit TLB shootdown flushes. */ if (VMCPU_FF_TESTANDCLEAR(pVCpu, VMCPU_FF_TLB_FLUSH)) pVCpu->hm.s.fForceTLBFlush = true; pVCpu->hm.s.idLastCpu = pCpu->idCpu; pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes; if (pVCpu->hm.s.fForceTLBFlush) hmR0VmxFlushEPT(pVM, pVCpu, pVM->hm.s.vmx.enmFlushEpt); else { /** @todo We never set VMCPU_FF_TLB_SHOOTDOWN anywhere so this path should * not be executed. See hmQueueInvlPage() where it is commented * out. Support individual entry flushing someday. */ if (VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_TLB_SHOOTDOWN)) { /* * We cannot flush individual entries without VPID support. Flush using EPT. */ STAM_COUNTER_INC(&pVCpu->hm.s.StatTlbShootdown); hmR0VmxFlushEPT(pVM, pVCpu, pVM->hm.s.vmx.enmFlushEpt); } } pVCpu->hm.s.TlbShootdown.cPages = 0; VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_SHOOTDOWN); #ifdef VBOX_WITH_STATISTICS /** @todo r=ramshankar: this is not accurate anymore with the VPID+EPT * handling. Should be fixed later. */ if (pVCpu->hm.s.fForceTLBFlush) STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch); else STAM_COUNTER_INC(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch); #endif } /** * Setup the tagged TLB for VPID. * * @returns VBox status code. * @param pVM Pointer to the VM. * @param pVCpu Pointer to the VMCPU. */ static DECLCALLBACK(void) hmR0VmxSetupTLBVPID(PVM pVM, PVMCPU pVCpu) { PHMGLOBLCPUINFO pCpu; Assert(pVM->hm.s.vmx.fVpid); Assert(!pVM->hm.s.fNestedPaging); pCpu = HMR0GetCurrentCpu(); /* * Force a TLB flush for the first world switch if the current CPU differs from the one we ran on last * This can happen both for start & resume due to long jumps back to ring-3. * If the TLB flush count changed, another VM (VCPU rather) has hit the ASID limit while flushing the TLB * or the host Cpu is online after a suspend/resume, so we cannot reuse the current ASID anymore. */ if ( pVCpu->hm.s.idLastCpu != pCpu->idCpu || pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes) { /* Force a TLB flush on VM entry. */ pVCpu->hm.s.fForceTLBFlush = true; } /* * Check for explicit TLB shootdown flushes. */ if (VMCPU_FF_TESTANDCLEAR(pVCpu, VMCPU_FF_TLB_FLUSH)) pVCpu->hm.s.fForceTLBFlush = true; pVCpu->hm.s.idLastCpu = pCpu->idCpu; if (pVCpu->hm.s.fForceTLBFlush) { ++pCpu->uCurrentAsid; if (pCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid) { pCpu->uCurrentAsid = 1; /* start at 1; host uses 0 */ pCpu->cTlbFlushes++; pCpu->fFlushAsidBeforeUse = true; } pVCpu->hm.s.fForceTLBFlush = false; pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes; pVCpu->hm.s.uCurrentAsid = pCpu->uCurrentAsid; if (pCpu->fFlushAsidBeforeUse) hmR0VmxFlushVPID(pVM, pVCpu, pVM->hm.s.vmx.enmFlushVpid, 0 /* GCPtr */); } else { AssertMsg(pVCpu->hm.s.uCurrentAsid && pCpu->uCurrentAsid, ("hm->uCurrentAsid=%lu hm->cTlbFlushes=%lu cpu->uCurrentAsid=%lu cpu->cTlbFlushes=%lu\n", pVCpu->hm.s.uCurrentAsid, pVCpu->hm.s.cTlbFlushes, pCpu->uCurrentAsid, pCpu->cTlbFlushes)); /** @todo We never set VMCPU_FF_TLB_SHOOTDOWN anywhere so this path should * not be executed. See hmQueueInvlPage() where it is commented * out. Support individual entry flushing someday. */ if (VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_TLB_SHOOTDOWN)) { /* * Flush individual guest entries using VPID from the TLB or as little as possible with EPT * as supported by the CPU. */ if (pVM->hm.s.vmx.msr.vmx_ept_vpid_caps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR) { for (uint32_t i = 0; i < pVCpu->hm.s.TlbShootdown.cPages; i++) hmR0VmxFlushVPID(pVM, pVCpu, VMX_FLUSH_VPID_INDIV_ADDR, pVCpu->hm.s.TlbShootdown.aPages[i]); } else hmR0VmxFlushVPID(pVM, pVCpu, pVM->hm.s.vmx.enmFlushVpid, 0 /* GCPtr */); } } pVCpu->hm.s.TlbShootdown.cPages = 0; VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_SHOOTDOWN); AssertMsg(pVCpu->hm.s.cTlbFlushes == pCpu->cTlbFlushes, ("Flush count mismatch for cpu %d (%x vs %x)\n", pCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pCpu->cTlbFlushes)); AssertMsg(pCpu->uCurrentAsid >= 1 && pCpu->uCurrentAsid < pVM->hm.s.uMaxAsid, ("cpu%d uCurrentAsid = %x\n", pCpu->idCpu, pCpu->uCurrentAsid)); AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid, ("cpu%d VM uCurrentAsid = %x\n", pCpu->idCpu, pVCpu->hm.s.uCurrentAsid)); int rc = VMXWriteVmcs(VMX_VMCS16_GUEST_FIELD_VPID, pVCpu->hm.s.uCurrentAsid); AssertRC(rc); # ifdef VBOX_WITH_STATISTICS /** @todo r=ramshankar: this is not accurate anymore with EPT+VPID handling. * Should be fixed later. */ if (pVCpu->hm.s.fForceTLBFlush) STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch); else STAM_COUNTER_INC(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch); # endif } /** * Runs guest code in a VT-x VM. * * @returns VBox status code. * @param pVM Pointer to the VM. * @param pVCpu Pointer to the VMCPU. * @param pCtx Pointer to the guest CPU context. */ VMMR0DECL(int) VMXR0RunGuestCode(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx) { STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x); STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExit1); STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExit2); VBOXSTRICTRC rc = VINF_SUCCESS; int rc2; RTGCUINTREG val; RTGCUINTREG exitReason = (RTGCUINTREG)VMX_EXIT_INVALID; RTGCUINTREG instrError, cbInstr; RTGCUINTPTR exitQualification = 0; RTGCUINTPTR intInfo = 0; /* shut up buggy gcc 4 */ RTGCUINTPTR errCode, instrInfo; bool fSetupTPRCaching = false; bool fNeedTscSetup = true; uint64_t u64OldLSTAR = 0; uint8_t u8LastTPR = 0; RTCCUINTREG uOldEFlags = ~(RTCCUINTREG)0; unsigned cResume = 0; #ifdef VBOX_STRICT RTCPUID idCpuCheck; bool fWasInLongMode = false; #endif #ifdef VBOX_HIGH_RES_TIMERS_HACK_IN_RING0 uint64_t u64LastTime = RTTimeMilliTS(); #endif Assert(!(pVM->hm.s.vmx.msr.vmx_proc_ctls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_VIRT_APIC) || (pVCpu->hm.s.vmx.pbVirtApic && pVM->hm.s.vmx.pbApicAccess)); /* * Check if we need to use TPR shadowing. */ if ( CPUMIsGuestInLongModeEx(pCtx) || ( (( pVM->hm.s.vmx.msr.vmx_proc_ctls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_VIRT_APIC) || pVM->hm.s.fTRPPatchingAllowed) && pVM->hm.s.fHasIoApic) ) { fSetupTPRCaching = true; } Log2(("\n")); /* This is not ideal, but if we don't clear the event injection in the VMCS right here, * we may end up injecting some stale event into a VM, including injecting an event that * originated before a VM reset *after* the VM has been reset. See @bugref{6220}. */ VMXWriteVmcs(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, 0); #ifdef VBOX_STRICT { RTCCUINTREG val2; rc2 = VMXReadVmcs(VMX_VMCS32_CTRL_PIN_EXEC, &val2); AssertRC(rc2); Log2(("VMX_VMCS_CTRL_PIN_EXEC = %08x\n", val2)); /* allowed zero */ if ((val2 & pVM->hm.s.vmx.msr.vmx_pin_ctls.n.disallowed0) != pVM->hm.s.vmx.msr.vmx_pin_ctls.n.disallowed0) Log(("Invalid VMX_VMCS_CTRL_PIN_EXEC: zero\n")); /* allowed one */ if ((val2 & ~pVM->hm.s.vmx.msr.vmx_pin_ctls.n.allowed1) != 0) Log(("Invalid VMX_VMCS_CTRL_PIN_EXEC: one\n")); rc2 = VMXReadVmcs(VMX_VMCS32_CTRL_PROC_EXEC, &val2); AssertRC(rc2); Log2(("VMX_VMCS_CTRL_PROC_EXEC = %08x\n", val2)); /* * Must be set according to the MSR, but can be cleared if nested paging is used. */ if (pVM->hm.s.fNestedPaging) { val2 |= VMX_VMCS_CTRL_PROC_EXEC_INVLPG_EXIT | VMX_VMCS_CTRL_PROC_EXEC_CR3_LOAD_EXIT | VMX_VMCS_CTRL_PROC_EXEC_CR3_STORE_EXIT; } /* allowed zero */ if ((val2 & pVM->hm.s.vmx.msr.vmx_proc_ctls.n.disallowed0) != pVM->hm.s.vmx.msr.vmx_proc_ctls.n.disallowed0) Log(("Invalid VMX_VMCS_CTRL_PROC_EXEC: zero\n")); /* allowed one */ if ((val2 & ~pVM->hm.s.vmx.msr.vmx_proc_ctls.n.allowed1) != 0) Log(("Invalid VMX_VMCS_CTRL_PROC_EXEC: one\n")); rc2 = VMXReadVmcs(VMX_VMCS32_CTRL_ENTRY, &val2); AssertRC(rc2); Log2(("VMX_VMCS_CTRL_ENTRY = %08x\n", val2)); /* allowed zero */ if ((val2 & pVM->hm.s.vmx.msr.vmx_entry.n.disallowed0) != pVM->hm.s.vmx.msr.vmx_entry.n.disallowed0) Log(("Invalid VMX_VMCS_CTRL_ENTRY: zero\n")); /* allowed one */ if ((val2 & ~pVM->hm.s.vmx.msr.vmx_entry.n.allowed1) != 0) Log(("Invalid VMX_VMCS_CTRL_ENTRY: one\n")); rc2 = VMXReadVmcs(VMX_VMCS32_CTRL_EXIT, &val2); AssertRC(rc2); Log2(("VMX_VMCS_CTRL_EXIT = %08x\n", val2)); /* allowed zero */ if ((val2 & pVM->hm.s.vmx.msr.vmx_exit.n.disallowed0) != pVM->hm.s.vmx.msr.vmx_exit.n.disallowed0) Log(("Invalid VMX_VMCS_CTRL_EXIT: zero\n")); /* allowed one */ if ((val2 & ~pVM->hm.s.vmx.msr.vmx_exit.n.allowed1) != 0) Log(("Invalid VMX_VMCS_CTRL_EXIT: one\n")); } fWasInLongMode = CPUMIsGuestInLongModeEx(pCtx); #endif /* VBOX_STRICT */ #ifdef VBOX_WITH_CRASHDUMP_MAGIC pVCpu->hm.s.vmx.VMCSCache.u64TimeEntry = RTTimeNanoTS(); #endif /* * We can jump to this point to resume execution after determining that a VM-exit is innocent. */ ResumeExecution: if (!STAM_REL_PROFILE_ADV_IS_RUNNING(&pVCpu->hm.s.StatEntry)) STAM_REL_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatExit2, &pVCpu->hm.s.StatEntry, x); AssertMsg(pVCpu->hm.s.idEnteredCpu == RTMpCpuId(), ("Expected %d, I'm %d; cResume=%d exitReason=%RGv exitQualification=%RGv\n", (int)pVCpu->hm.s.idEnteredCpu, (int)RTMpCpuId(), cResume, exitReason, exitQualification)); Assert(!HMR0SuspendPending()); /* Not allowed to switch modes without reloading the host state (32->64 switcher)!! */ Assert(fWasInLongMode == CPUMIsGuestInLongModeEx(pCtx)); /* * Safety precaution; looping for too long here can have a very bad effect on the host. */ if (RT_UNLIKELY(++cResume > pVM->hm.s.cMaxResumeLoops)) { STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMaxResume); rc = VINF_EM_RAW_INTERRUPT; goto end; } /* * Check for IRQ inhibition due to instruction fusing (sti, mov ss). */ if (VMCPU_FF_ISSET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)) { Log(("VM_FF_INHIBIT_INTERRUPTS at %RGv successor %RGv\n", (RTGCPTR)pCtx->rip, EMGetInhibitInterruptsPC(pVCpu))); if (pCtx->rip != EMGetInhibitInterruptsPC(pVCpu)) { /* * Note: we intentionally don't clear VM_FF_INHIBIT_INTERRUPTS here. * Before we are able to execute this instruction in raw mode (iret to guest code) an external interrupt might * force a world switch again. Possibly allowing a guest interrupt to be dispatched in the process. This could * break the guest. Sounds very unlikely, but such timing sensitive problems are not as rare as you might think. */ VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS); /* Irq inhibition is no longer active; clear the corresponding VMX state. */ rc2 = VMXWriteVmcs(VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE, 0); AssertRC(rc2); } } else { /* Irq inhibition is no longer active; clear the corresponding VMX state. */ rc2 = VMXWriteVmcs(VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE, 0); AssertRC(rc2); } #ifdef VBOX_HIGH_RES_TIMERS_HACK_IN_RING0 if (RT_UNLIKELY((cResume & 0xf) == 0)) { uint64_t u64CurTime = RTTimeMilliTS(); if (RT_UNLIKELY(u64CurTime > u64LastTime)) { u64LastTime = u64CurTime; TMTimerPollVoid(pVM, pVCpu); } } #endif /* * Check for pending actions that force us to go back to ring-3. */ if ( VM_FF_ISPENDING(pVM, VM_FF_HM_TO_R3_MASK | VM_FF_REQUEST | VM_FF_PGM_POOL_FLUSH_PENDING | VM_FF_PDM_DMA) || VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK | VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL | VMCPU_FF_REQUEST)) { /* Check if a sync operation is pending. */ if (VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL)) { rc = PGMSyncCR3(pVCpu, pCtx->cr0, pCtx->cr3, pCtx->cr4, VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3)); if (rc != VINF_SUCCESS) { AssertRC(VBOXSTRICTRC_VAL(rc)); Log(("Pending pool sync is forcing us back to ring 3; rc=%d\n", VBOXSTRICTRC_VAL(rc))); goto end; } } #ifdef DEBUG /* Intercept X86_XCPT_DB if stepping is enabled */ if (!DBGFIsStepping(pVCpu)) #endif { if ( VM_FF_ISPENDING(pVM, VM_FF_HM_TO_R3_MASK) || VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK)) { STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF); rc = RT_UNLIKELY(VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY)) ? VINF_EM_NO_MEMORY : VINF_EM_RAW_TO_R3; goto end; } } /* Pending request packets might contain actions that need immediate attention, such as pending hardware interrupts. */ if ( VM_FF_ISPENDING(pVM, VM_FF_REQUEST) || VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_REQUEST)) { rc = VINF_EM_PENDING_REQUEST; goto end; } /* Check if a pgm pool flush is in progress. */ if (VM_FF_ISPENDING(pVM, VM_FF_PGM_POOL_FLUSH_PENDING)) { rc = VINF_PGM_POOL_FLUSH_PENDING; goto end; } /* Check if DMA work is pending (2nd+ run). */ if (VM_FF_ISPENDING(pVM, VM_FF_PDM_DMA) && cResume > 1) { rc = VINF_EM_RAW_TO_R3; goto end; } } #ifdef VBOX_WITH_VMMR0_DISABLE_PREEMPTION /* * Exit to ring-3 preemption/work is pending. * * Interrupts are disabled before the call to make sure we don't miss any interrupt * that would flag preemption (IPI, timer tick, ++). (Would've been nice to do this * further down, but hmR0VmxCheckPendingInterrupt makes that impossible.) * * Note! Interrupts must be disabled done *before* we check for TLB flushes; TLB * shootdowns rely on this. */ uOldEFlags = ASMIntDisableFlags(); if (RTThreadPreemptIsPending(NIL_RTTHREAD)) { STAM_COUNTER_INC(&pVCpu->hm.s.StatPendingHostIrq); rc = VINF_EM_RAW_INTERRUPT; goto end; } VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC); #endif /* * When external interrupts are pending, we should exit the VM when IF is set. * Note: *After* VM_FF_INHIBIT_INTERRUPTS check! */ rc = hmR0VmxCheckPendingInterrupt(pVM, pVCpu, pCtx); if (RT_FAILURE(rc)) goto end; /** @todo check timers?? */ /* * TPR caching using CR8 is only available in 64-bit mode. * Note: The 32-bit exception for AMD (X86_CPUID_AMD_FEATURE_ECX_CR8L), but this appears missing in Intel CPUs. * Note: We can't do this in LoadGuestState() as PDMApicGetTPR can jump back to ring-3 (lock)!! (no longer true) . */ /** @todo query and update the TPR only when it could have been changed (mmio * access & wrsmr (x2apic) */ if (fSetupTPRCaching) { /* TPR caching in CR8 */ bool fPending; rc2 = PDMApicGetTPR(pVCpu, &u8LastTPR, &fPending, NULL /* pu8PendingIrq */); AssertRC(rc2); /* The TPR can be found at offset 0x80 in the APIC mmio page. */ pVCpu->hm.s.vmx.pbVirtApic[0x80] = u8LastTPR; /* * Two options here: * - external interrupt pending, but masked by the TPR value. * -> a CR8 update that lower the current TPR value should cause an exit * - no pending interrupts * -> We don't need to be explicitely notified. There are enough world switches for detecting pending interrupts. */ /* cr8 bits 3-0 correspond to bits 7-4 of the task priority mmio register. */ rc = VMXWriteVmcs(VMX_VMCS32_CTRL_TPR_THRESHOLD, (fPending) ? (u8LastTPR >> 4) : 0); AssertRC(VBOXSTRICTRC_VAL(rc)); if (pVM->hm.s.fTPRPatchingActive) { Assert(!CPUMIsGuestInLongModeEx(pCtx)); /* Our patch code uses LSTAR for TPR caching. */ pCtx->msrLSTAR = u8LastTPR; /** @todo r=ramshankar: we should check for MSR-bitmap support here. */ if (fPending) { /* A TPR change could activate a pending interrupt, so catch lstar writes. */ hmR0VmxSetMSRPermission(pVCpu, MSR_K8_LSTAR, true, false); } else { /* * No interrupts are pending, so we don't need to be explicitely notified. * There are enough world switches for detecting pending interrupts. */ hmR0VmxSetMSRPermission(pVCpu, MSR_K8_LSTAR, true, true); } } } #ifdef LOG_ENABLED if ( pVM->hm.s.fNestedPaging || pVM->hm.s.vmx.fVpid) { PHMGLOBLCPUINFO pCpu = HMR0GetCurrentCpu(); if (pVCpu->hm.s.idLastCpu != pCpu->idCpu) { LogFlow(("Force TLB flush due to rescheduling to a different cpu (%d vs %d)\n", pVCpu->hm.s.idLastCpu, pCpu->idCpu)); } else if (pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes) { LogFlow(("Force TLB flush due to changed TLB flush count (%x vs %x)\n", pVCpu->hm.s.cTlbFlushes, pCpu->cTlbFlushes)); } else if (VMCPU_FF_ISSET(pVCpu, VMCPU_FF_TLB_FLUSH)) LogFlow(("Manual TLB flush\n")); } #endif #ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0 PGMRZDynMapFlushAutoSet(pVCpu); #endif /* * NOTE: DO NOT DO ANYTHING AFTER THIS POINT THAT MIGHT JUMP BACK TO RING-3! * (until the actual world switch) */ #ifdef VBOX_STRICT idCpuCheck = RTMpCpuId(); #endif #ifdef LOG_ENABLED VMMR0LogFlushDisable(pVCpu); #endif /* * Save the host state first. */ if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_HOST_CONTEXT) { rc = VMXR0SaveHostState(pVM, pVCpu); if (RT_UNLIKELY(rc != VINF_SUCCESS)) { VMMR0LogFlushEnable(pVCpu); goto end; } } /* * Load the guest state. */ if (!pVCpu->hm.s.fContextUseFlags) { VMXR0LoadMinimalGuestState(pVM, pVCpu, pCtx); STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadMinimal); if (fNeedTscSetup) { VMXR0SetupTscOffsetAndPreemption(pVM, pVCpu); fNeedTscSetup = false; } } else { rc = VMXR0LoadGuestState(pVM, pVCpu, pCtx); if (RT_UNLIKELY(rc != VINF_SUCCESS)) { VMMR0LogFlushEnable(pVCpu); goto end; } STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadFull); VMXR0SetupTscOffsetAndPreemption(pVM, pVCpu); } #ifndef VBOX_WITH_VMMR0_DISABLE_PREEMPTION /* * Disable interrupts to make sure a poke will interrupt execution. * This must be done *before* we check for TLB flushes; TLB shootdowns rely on this. */ uOldEFlags = ASMIntDisableFlags(); VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC); #endif /* Non-register state Guest Context */ /** @todo change me according to cpu state */ rc2 = VMXWriteVmcs(VMX_VMCS32_GUEST_ACTIVITY_STATE, VMX_VMCS_GUEST_ACTIVITY_ACTIVE); AssertRC(rc2); /* Set TLB flush state as checked until we return from the world switch. */ ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true); /* Deal with tagged TLB setup and invalidation. */ pVM->hm.s.vmx.pfnFlushTaggedTlb(pVM, pVCpu); /* * Manual save and restore: * - General purpose registers except RIP, RSP * * Trashed: * - CR2 (we don't care) * - LDTR (reset to 0) * - DRx (presumably not changed at all) * - DR7 (reset to 0x400) * - EFLAGS (reset to RT_BIT(1); not relevant) */ /* All done! Let's start VM execution. */ Assert(idCpuCheck == RTMpCpuId()); #ifdef VBOX_WITH_CRASHDUMP_MAGIC pVCpu->hm.s.vmx.VMCSCache.cResume = cResume; pVCpu->hm.s.vmx.VMCSCache.u64TimeSwitch = RTTimeNanoTS(); #endif /* * Save the current TPR value in the LSTAR MSR so our patches can access it. */ if (pVM->hm.s.fTPRPatchingActive) { Assert(pVM->hm.s.fTPRPatchingActive); u64OldLSTAR = ASMRdMsr(MSR_K8_LSTAR); ASMWrMsr(MSR_K8_LSTAR, u8LastTPR); } TMNotifyStartOfExecution(pVCpu); #ifndef VBOX_WITH_AUTO_MSR_LOAD_RESTORE /* * Save the current Host TSC_AUX and write the guest TSC_AUX to the host, so that * RDTSCPs (that don't cause exits) reads the guest MSR. See @bugref{3324}. */ if ( (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_VMCS_CTRL_PROC_EXEC2_RDTSCP) && !(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT)) { pVCpu->hm.s.u64HostTscAux = ASMRdMsr(MSR_K8_TSC_AUX); uint64_t u64HostTscAux = 0; rc2 = CPUMQueryGuestMsr(pVCpu, MSR_K8_TSC_AUX, &u64HostTscAux); AssertRC(rc2); ASMWrMsr(MSR_K8_TSC_AUX, u64HostTscAux); } #endif STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatEntry, &pVCpu->hm.s.StatInGC, x); #ifdef VBOX_WITH_KERNEL_USING_XMM rc = HMR0VMXStartVMWrapXMM(pVCpu->hm.s.fResumeVM, pCtx, &pVCpu->hm.s.vmx.VMCSCache, pVM, pVCpu, pVCpu->hm.s.vmx.pfnStartVM); #else rc = pVCpu->hm.s.vmx.pfnStartVM(pVCpu->hm.s.fResumeVM, pCtx, &pVCpu->hm.s.vmx.VMCSCache, pVM, pVCpu); #endif STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatInGC, &pVCpu->hm.s.StatExit1, x); ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, false); ASMAtomicIncU32(&pVCpu->hm.s.cWorldSwitchExits); /* Possibly the last TSC value seen by the guest (too high) (only when we're in TSC offset mode). */ if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT)) { #ifndef VBOX_WITH_AUTO_MSR_LOAD_RESTORE /* Restore host's TSC_AUX. */ if (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_VMCS_CTRL_PROC_EXEC2_RDTSCP) ASMWrMsr(MSR_K8_TSC_AUX, pVCpu->hm.s.u64HostTscAux); #endif TMCpuTickSetLastSeen(pVCpu, ASMReadTSC() + pVCpu->hm.s.vmx.u64TSCOffset - 0x400 /* guestimate of world switch overhead in clock ticks */); } TMNotifyEndOfExecution(pVCpu); VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_HM); Assert(!(ASMGetFlags() & X86_EFL_IF)); /* * Restore the host LSTAR MSR if the guest could have changed it. */ if (pVM->hm.s.fTPRPatchingActive) { Assert(pVM->hm.s.fTPRPatchingActive); pVCpu->hm.s.vmx.pbVirtApic[0x80] = pCtx->msrLSTAR = ASMRdMsr(MSR_K8_LSTAR); ASMWrMsr(MSR_K8_LSTAR, u64OldLSTAR); } ASMSetFlags(uOldEFlags); #ifdef VBOX_WITH_VMMR0_DISABLE_PREEMPTION uOldEFlags = ~(RTCCUINTREG)0; #endif AssertMsg(!pVCpu->hm.s.vmx.VMCSCache.Write.cValidEntries, ("pVCpu->hm.s.vmx.VMCSCache.Write.cValidEntries=%d\n", pVCpu->hm.s.vmx.VMCSCache.Write.cValidEntries)); /* In case we execute a goto ResumeExecution later on. */ pVCpu->hm.s.fResumeVM = true; pVCpu->hm.s.fForceTLBFlush = false; /* * !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! * IMPORTANT: WE CAN'T DO ANY LOGGING OR OPERATIONS THAT CAN DO A LONGJMP BACK TO RING 3 *BEFORE* WE'VE SYNCED BACK (MOST OF) THE GUEST STATE * !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! */ if (RT_UNLIKELY(rc != VINF_SUCCESS)) { hmR0VmxReportWorldSwitchError(pVM, pVCpu, rc, pCtx); VMMR0LogFlushEnable(pVCpu); goto end; } /* Success. Query the guest state and figure out what has happened. */ /* Investigate why there was a VM-exit. */ rc2 = VMXReadCachedVmcs(VMX_VMCS32_RO_EXIT_REASON, &exitReason); STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[exitReason & MASK_EXITREASON_STAT]); exitReason &= 0xffff; /* bit 0-15 contain the exit code. */ rc2 |= VMXReadCachedVmcs(VMX_VMCS32_RO_VM_INSTR_ERROR, &instrError); rc2 |= VMXReadCachedVmcs(VMX_VMCS32_RO_EXIT_INSTR_LENGTH, &cbInstr); rc2 |= VMXReadCachedVmcs(VMX_VMCS32_RO_EXIT_INTERRUPTION_INFO, &intInfo); /* might not be valid; depends on VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_IS_VALID. */ rc2 |= VMXReadCachedVmcs(VMX_VMCS32_RO_EXIT_INTERRUPTION_ERROR_CODE, &errCode); rc2 |= VMXReadCachedVmcs(VMX_VMCS32_RO_EXIT_INSTR_INFO, &instrInfo); rc2 |= VMXReadCachedVmcs(VMX_VMCS_RO_EXIT_QUALIFICATION, &exitQualification); AssertRC(rc2); /* * Sync back the guest state. */ rc2 = VMXR0SaveGuestState(pVM, pVCpu, pCtx); AssertRC(rc2); /* Note! NOW IT'S SAFE FOR LOGGING! */ VMMR0LogFlushEnable(pVCpu); Log2(("Raw exit reason %08x\n", exitReason)); #if ARCH_BITS == 64 /* for the time being */ VBOXVMM_R0_HMVMX_VMEXIT(pVCpu, pCtx, exitReason); #endif /* * Check if an injected event was interrupted prematurely. */ rc2 = VMXReadCachedVmcs(VMX_VMCS32_RO_IDT_INFO, &val); AssertRC(rc2); pVCpu->hm.s.Event.u64IntrInfo = VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(val); if ( VMX_EXIT_INTERRUPTION_INFO_IS_VALID(pVCpu->hm.s.Event.u64IntrInfo) /* Ignore 'int xx' as they'll be restarted anyway. */ && VMX_EXIT_INTERRUPTION_INFO_TYPE(pVCpu->hm.s.Event.u64IntrInfo) != VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_INT /* Ignore software exceptions (such as int3) as they'll reoccur when we restart the instruction anyway. */ && VMX_EXIT_INTERRUPTION_INFO_TYPE(pVCpu->hm.s.Event.u64IntrInfo) != VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_XCPT) { Assert(!pVCpu->hm.s.Event.fPending); pVCpu->hm.s.Event.fPending = true; /* Error code present? */ if (VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_IS_VALID(pVCpu->hm.s.Event.u64IntrInfo)) { rc2 = VMXReadCachedVmcs(VMX_VMCS32_RO_IDT_ERROR_CODE, &val); AssertRC(rc2); pVCpu->hm.s.Event.u32ErrCode = val; Log(("Pending inject %RX64 at %RGv exit=%08x intInfo=%08x exitQualification=%RGv pending error=%RX64\n", pVCpu->hm.s.Event.u64IntrInfo, (RTGCPTR)pCtx->rip, exitReason, intInfo, exitQualification, val)); } else { Log(("Pending inject %RX64 at %RGv exit=%08x intInfo=%08x exitQualification=%RGv\n", pVCpu->hm.s.Event.u64IntrInfo, (RTGCPTR)pCtx->rip, exitReason, intInfo, exitQualification)); pVCpu->hm.s.Event.u32ErrCode = 0; } } #ifdef VBOX_STRICT else if ( VMX_EXIT_INTERRUPTION_INFO_IS_VALID(pVCpu->hm.s.Event.u64IntrInfo) /* Ignore software exceptions (such as int3) as they're reoccur when we restart the instruction anyway. */ && VMX_EXIT_INTERRUPTION_INFO_TYPE(pVCpu->hm.s.Event.u64IntrInfo) == VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_XCPT) { Log(("Ignore pending inject %RX64 at %RGv exit=%08x intInfo=%08x exitQualification=%RGv\n", pVCpu->hm.s.Event.u64IntrInfo, (RTGCPTR)pCtx->rip, exitReason, intInfo, exitQualification)); } if (exitReason == VMX_EXIT_ERR_INVALID_GUEST_STATE) HMDumpRegs(pVM, pVCpu, pCtx); #endif Log2(("E%d: New EIP=%x:%RGv\n", (uint32_t)exitReason, pCtx->cs.Sel, (RTGCPTR)pCtx->rip)); Log2(("Exit reason %d, exitQualification %RGv\n", (uint32_t)exitReason, exitQualification)); Log2(("instrInfo=%d instrError=%d instr length=%d\n", (uint32_t)instrInfo, (uint32_t)instrError, (uint32_t)cbInstr)); Log2(("Interruption error code %d\n", (uint32_t)errCode)); Log2(("IntInfo = %08x\n", (uint32_t)intInfo)); /* * Sync back the TPR if it was changed. */ if ( fSetupTPRCaching && u8LastTPR != pVCpu->hm.s.vmx.pbVirtApic[0x80]) { rc2 = PDMApicSetTPR(pVCpu, pVCpu->hm.s.vmx.pbVirtApic[0x80]); AssertRC(rc2); } #ifdef DBGFTRACE_ENABLED /** @todo DTrace later. */ RTTraceBufAddMsgF(pVM->CTX_SUFF(hTraceBuf), "vmexit %08x %016RX64 at %04:%08RX64 %RX64", exitReason, (uint64_t)exitQualification, pCtx->cs.Sel, pCtx->rip, (uint64_t)intInfo); #endif STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatExit1, &pVCpu->hm.s.StatExit2, x); /* Some cases don't need a complete resync of the guest CPU state; handle them here. */ Assert(rc == VINF_SUCCESS); /* might consider VERR_IPE_UNINITIALIZED_STATUS here later... */ switch (exitReason) { case VMX_EXIT_XCPT_NMI: /* 0 Exception or non-maskable interrupt (NMI). */ case VMX_EXIT_EXT_INT: /* 1 External interrupt. */ { uint32_t vector = VMX_EXIT_INTERRUPTION_INFO_VECTOR(intInfo); if (!VMX_EXIT_INTERRUPTION_INFO_IS_VALID(intInfo)) { Assert(exitReason == VMX_EXIT_EXT_INT); /* External interrupt; leave to allow it to be dispatched again. */ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitExtInt); rc = VINF_EM_RAW_INTERRUPT; break; } STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitXcptNmi, y3); switch (VMX_EXIT_INTERRUPTION_INFO_TYPE(intInfo)) { case VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI: /* Non-maskable interrupt. */ /* External interrupt; leave to allow it to be dispatched again. */ rc = VINF_EM_RAW_INTERRUPT; break; case VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT: /* External hardware interrupt. */ AssertFailed(); /* can't come here; fails the first check. */ break; case VMX_EXIT_INTERRUPTION_INFO_TYPE_DB_XCPT: /* Unknown why we get this type for #DB */ case VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_XCPT: /* Software exception. (#BP or #OF) */ Assert(vector == 1 || vector == 3 || vector == 4); /* no break */ case VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT: /* Hardware exception. */ Log2(("Hardware/software interrupt %d\n", vector)); switch (vector) { case X86_XCPT_NM: { Log(("#NM fault at %RGv error code %x\n", (RTGCPTR)pCtx->rip, errCode)); /** @todo don't intercept #NM exceptions anymore when we've activated the guest FPU state. */ /* If we sync the FPU/XMM state on-demand, then we can continue execution as if nothing has happened. */ rc = CPUMR0LoadGuestFPU(pVM, pVCpu, pCtx); if (rc == VINF_SUCCESS) { Assert(CPUMIsGuestFPUStateActive(pVCpu)); STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowNM); /* Continue execution. */ pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR0; STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3); goto ResumeExecution; } Log(("Forward #NM fault to the guest\n")); STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNM); rc2 = hmR0VmxInjectEvent(pVM, pVCpu, pCtx, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(intInfo), cbInstr, 0); AssertRC(rc2); STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3); goto ResumeExecution; } case X86_XCPT_PF: /* Page fault */ { #ifdef VBOX_ALWAYS_TRAP_PF if (pVM->hm.s.fNestedPaging) { /* * A genuine pagefault. Forward the trap to the guest by injecting the exception and resuming execution. */ Log(("Guest page fault at %RGv cr2=%RGv error code %RGv rsp=%RGv\n", (RTGCPTR)pCtx->rip, exitQualification, errCode, (RTGCPTR)pCtx->rsp)); Assert(CPUMIsGuestInPagedProtectedModeEx(pCtx)); STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF); /* Now we must update CR2. */ pCtx->cr2 = exitQualification; rc2 = hmR0VmxInjectEvent(pVM, pVCpu, pCtx, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(intInfo), cbInstr, errCode); AssertRC(rc2); STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3); goto ResumeExecution; } #else Assert(!pVM->hm.s.fNestedPaging); #endif #ifdef VBOX_HM_WITH_GUEST_PATCHING /* Shortcut for APIC TPR reads and writes; 32 bits guests only */ if ( pVM->hm.s.fTRPPatchingAllowed && pVM->hm.s.pGuestPatchMem && (exitQualification & 0xfff) == 0x080 && !(errCode & X86_TRAP_PF_P) /* not present */ && CPUMGetGuestCPL(pVCpu) == 0 && !CPUMIsGuestInLongModeEx(pCtx) && pVM->hm.s.cPatches < RT_ELEMENTS(pVM->hm.s.aPatches)) { RTGCPHYS GCPhysApicBase, GCPhys; GCPhysApicBase = pCtx->msrApicBase; GCPhysApicBase &= PAGE_BASE_GC_MASK; rc = PGMGstGetPage(pVCpu, (RTGCPTR)exitQualification, NULL, &GCPhys); if ( rc == VINF_SUCCESS && GCPhys == GCPhysApicBase) { /* Only attempt to patch the instruction once. */ PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip); if (!pPatch) { rc = VINF_EM_HM_PATCH_TPR_INSTR; break; } } } #endif Log2(("Page fault at %RGv error code %x\n", exitQualification, errCode)); /* Exit qualification contains the linear address of the page fault. */ TRPMAssertTrap(pVCpu, X86_XCPT_PF, TRPM_TRAP); TRPMSetErrorCode(pVCpu, errCode); TRPMSetFaultAddress(pVCpu, exitQualification); /* Shortcut for APIC TPR reads and writes. */ if ( (exitQualification & 0xfff) == 0x080 && !(errCode & X86_TRAP_PF_P) /* not present */ && fSetupTPRCaching && (pVM->hm.s.vmx.msr.vmx_proc_ctls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_VIRT_APIC)) { RTGCPHYS GCPhysApicBase, GCPhys; GCPhysApicBase = pCtx->msrApicBase; GCPhysApicBase &= PAGE_BASE_GC_MASK; rc = PGMGstGetPage(pVCpu, (RTGCPTR)exitQualification, NULL, &GCPhys); if ( rc == VINF_SUCCESS && GCPhys == GCPhysApicBase) { Log(("Enable VT-x virtual APIC access filtering\n")); rc2 = IOMMMIOMapMMIOHCPage(pVM, pVCpu, GCPhysApicBase, pVM->hm.s.vmx.HCPhysApicAccess, X86_PTE_RW | X86_PTE_P); AssertRC(rc2); } } /* Forward it to our trap handler first, in case our shadow pages are out of sync. */ rc = PGMTrap0eHandler(pVCpu, errCode, CPUMCTX2CORE(pCtx), (RTGCPTR)exitQualification); Log2(("PGMTrap0eHandler %RGv returned %Rrc\n", (RTGCPTR)pCtx->rip, VBOXSTRICTRC_VAL(rc))); if (rc == VINF_SUCCESS) { /* We've successfully synced our shadow pages, so let's just continue execution. */ Log2(("Shadow page fault at %RGv cr2=%RGv error code %x\n", (RTGCPTR)pCtx->rip, exitQualification ,errCode)); STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF); TRPMResetTrap(pVCpu); STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3); goto ResumeExecution; } else if (rc == VINF_EM_RAW_GUEST_TRAP) { /* * A genuine pagefault. Forward the trap to the guest by injecting the exception and resuming execution. */ Log2(("Forward page fault to the guest\n")); STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF); /* The error code might have been changed. */ errCode = TRPMGetErrorCode(pVCpu); TRPMResetTrap(pVCpu); /* Now we must update CR2. */ pCtx->cr2 = exitQualification; rc2 = hmR0VmxInjectEvent(pVM, pVCpu, pCtx, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(intInfo), cbInstr, errCode); AssertRC(rc2); STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3); goto ResumeExecution; } #ifdef VBOX_STRICT if (rc != VINF_EM_RAW_EMULATE_INSTR && rc != VINF_EM_RAW_EMULATE_IO_BLOCK) Log2(("PGMTrap0eHandler failed with %d\n", VBOXSTRICTRC_VAL(rc))); #endif /* Need to go back to the recompiler to emulate the instruction. */ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPFEM); TRPMResetTrap(pVCpu); /* If event delivery caused the #PF (shadow or not), tell TRPM. */ hmR0VmxCheckPendingEvent(pVCpu); break; } case X86_XCPT_MF: /* Floating point exception. */ { STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestMF); if (!(pCtx->cr0 & X86_CR0_NE)) { /* old style FPU error reporting needs some extra work. */ /** @todo don't fall back to the recompiler, but do it manually. */ rc = VINF_EM_RAW_EMULATE_INSTR; break; } Log(("Trap %x at %04X:%RGv\n", vector, pCtx->cs.Sel, (RTGCPTR)pCtx->rip)); rc2 = hmR0VmxInjectEvent(pVM, pVCpu, pCtx, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(intInfo), cbInstr, errCode); AssertRC(rc2); STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3); goto ResumeExecution; } case X86_XCPT_DB: /* Debug exception. */ { uint64_t uDR6; /* * DR6, DR7.GD and IA32_DEBUGCTL.LBR are not updated yet. * * Exit qualification bits: * 3:0 B0-B3 which breakpoint condition was met * 12:4 Reserved (0) * 13 BD - debug register access detected * 14 BS - single step execution or branch taken * 63:15 Reserved (0) */ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDB); /* Note that we don't support guest and host-initiated debugging at the same time. */ uDR6 = X86_DR6_INIT_VAL; uDR6 |= (exitQualification & (X86_DR6_B0|X86_DR6_B1|X86_DR6_B2|X86_DR6_B3|X86_DR6_BD|X86_DR6_BS)); rc = DBGFRZTrap01Handler(pVM, pVCpu, CPUMCTX2CORE(pCtx), uDR6); if (rc == VINF_EM_RAW_GUEST_TRAP) { /* Update DR6 here. */ pCtx->dr[6] = uDR6; /* Resync DR6 if the debug state is active. */ if (CPUMIsGuestDebugStateActive(pVCpu)) ASMSetDR6(pCtx->dr[6]); /* X86_DR7_GD will be cleared if DRx accesses should be trapped inside the guest. */ pCtx->dr[7] &= ~X86_DR7_GD; /* Paranoia. */ pCtx->dr[7] &= 0xffffffff; /* upper 32 bits reserved */ pCtx->dr[7] &= ~(RT_BIT(11) | RT_BIT(12) | RT_BIT(14) | RT_BIT(15)); /* must be zero */ pCtx->dr[7] |= 0x400; /* must be one */ /* Resync DR7 */ rc2 = VMXWriteVmcs64(VMX_VMCS_GUEST_DR7, pCtx->dr[7]); AssertRC(rc2); Log(("Trap %x (debug) at %RGv exit qualification %RX64 dr6=%x dr7=%x\n", vector, (RTGCPTR)pCtx->rip, exitQualification, (uint32_t)pCtx->dr[6], (uint32_t)pCtx->dr[7])); rc2 = hmR0VmxInjectEvent(pVM, pVCpu, pCtx, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(intInfo), cbInstr, errCode); AssertRC(rc2); STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3); goto ResumeExecution; } /* Return to ring 3 to deal with the debug exit code. */ Log(("Debugger hardware BP at %04x:%RGv (rc=%Rrc)\n", pCtx->cs.Sel, pCtx->rip, VBOXSTRICTRC_VAL(rc))); break; } case X86_XCPT_BP: /* Breakpoint. */ { STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestBP); rc = DBGFRZTrap03Handler(pVM, pVCpu, CPUMCTX2CORE(pCtx)); if (rc == VINF_EM_RAW_GUEST_TRAP) { Log(("Guest #BP at %04x:%RGv\n", pCtx->cs.Sel, pCtx->rip)); rc2 = hmR0VmxInjectEvent(pVM, pVCpu, pCtx, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(intInfo), cbInstr, errCode); AssertRC(rc2); STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3); goto ResumeExecution; } if (rc == VINF_SUCCESS) { STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3); goto ResumeExecution; } Log(("Debugger BP at %04x:%RGv (rc=%Rrc)\n", pCtx->cs.Sel, pCtx->rip, VBOXSTRICTRC_VAL(rc))); break; } case X86_XCPT_GP: /* General protection failure exception. */ { uint32_t cbOp; PDISCPUSTATE pDis = &pVCpu->hm.s.DisState; STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestGP); #ifdef VBOX_STRICT if ( !CPUMIsGuestInRealModeEx(pCtx) || !pVM->hm.s.vmx.pRealModeTSS) { Log(("Trap %x at %04X:%RGv errorCode=%RGv\n", vector, pCtx->cs.Sel, (RTGCPTR)pCtx->rip, errCode)); rc2 = hmR0VmxInjectEvent(pVM, pVCpu, pCtx, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(intInfo), cbInstr, errCode); AssertRC(rc2); STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3); goto ResumeExecution; } #endif Assert(CPUMIsGuestInRealModeEx(pCtx)); LogFlow(("Real mode X86_XCPT_GP instruction emulation at %x:%RGv\n", pCtx->cs.Sel, (RTGCPTR)pCtx->rip)); rc2 = EMInterpretDisasCurrent(pVM, pVCpu, pDis, &cbOp); if (RT_SUCCESS(rc2)) { bool fUpdateRIP = true; rc = VINF_SUCCESS; Assert(cbOp == pDis->cbInstr); switch (pDis->pCurInstr->uOpcode) { case OP_CLI: pCtx->eflags.Bits.u1IF = 0; STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCli); break; case OP_STI: pCtx->eflags.Bits.u1IF = 1; EMSetInhibitInterruptsPC(pVCpu, pCtx->rip + pDis->cbInstr); Assert(VMCPU_FF_ISSET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)); rc2 = VMXWriteVmcs(VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE, VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI); AssertRC(rc2); STAM_COUNTER_INC(&pVCpu->hm.s.StatExitSti); break; case OP_HLT: fUpdateRIP = false; rc = VINF_EM_HALT; pCtx->rip += pDis->cbInstr; STAM_COUNTER_INC(&pVCpu->hm.s.StatExitHlt); break; case OP_POPF: { RTGCPTR GCPtrStack; uint32_t cbParm; uint32_t uMask; X86EFLAGS eflags; if (pDis->fPrefix & DISPREFIX_OPSIZE) { cbParm = 4; uMask = 0xffffffff; } else { cbParm = 2; uMask = 0xffff; } rc2 = SELMToFlatEx(pVCpu, DISSELREG_SS, CPUMCTX2CORE(pCtx), pCtx->esp & uMask, 0, &GCPtrStack); if (RT_FAILURE(rc2)) { rc = VERR_EM_INTERPRETER; break; } eflags.u = 0; rc2 = PGMPhysRead(pVM, (RTGCPHYS)GCPtrStack, &eflags.u, cbParm); if (RT_FAILURE(rc2)) { rc = VERR_EM_INTERPRETER; break; } LogFlow(("POPF %x -> %RGv mask=%x\n", eflags.u, pCtx->rsp, uMask)); pCtx->eflags.u = (pCtx->eflags.u & ~(X86_EFL_POPF_BITS & uMask)) | (eflags.u & X86_EFL_POPF_BITS & uMask); /* RF cleared when popped in real mode; see pushf description in AMD manual. */ pCtx->eflags.Bits.u1RF = 0; pCtx->esp += cbParm; pCtx->esp &= uMask; STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPopf); break; } case OP_PUSHF: { RTGCPTR GCPtrStack; uint32_t cbParm; uint32_t uMask; X86EFLAGS eflags; if (pDis->fPrefix & DISPREFIX_OPSIZE) { cbParm = 4; uMask = 0xffffffff; } else { cbParm = 2; uMask = 0xffff; } rc2 = SELMToFlatEx(pVCpu, DISSELREG_SS, CPUMCTX2CORE(pCtx), (pCtx->esp - cbParm) & uMask, 0, &GCPtrStack); if (RT_FAILURE(rc2)) { rc = VERR_EM_INTERPRETER; break; } eflags = pCtx->eflags; /* RF & VM cleared when pushed in real mode; see pushf description in AMD manual. */ eflags.Bits.u1RF = 0; eflags.Bits.u1VM = 0; rc2 = PGMPhysWrite(pVM, (RTGCPHYS)GCPtrStack, &eflags.u, cbParm); if (RT_FAILURE(rc2)) { rc = VERR_EM_INTERPRETER; break; } LogFlow(("PUSHF %x -> %RGv\n", eflags.u, GCPtrStack)); pCtx->esp -= cbParm; pCtx->esp &= uMask; STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPushf); break; } case OP_IRET: { RTGCPTR GCPtrStack; uint32_t uMask = 0xffff; uint16_t aIretFrame[3]; if (pDis->fPrefix & (DISPREFIX_OPSIZE | DISPREFIX_ADDRSIZE)) { rc = VERR_EM_INTERPRETER; break; } rc2 = SELMToFlatEx(pVCpu, DISSELREG_SS, CPUMCTX2CORE(pCtx), pCtx->esp & uMask, 0, &GCPtrStack); if (RT_FAILURE(rc2)) { rc = VERR_EM_INTERPRETER; break; } rc2 = PGMPhysRead(pVM, (RTGCPHYS)GCPtrStack, &aIretFrame[0], sizeof(aIretFrame)); if (RT_FAILURE(rc2)) { rc = VERR_EM_INTERPRETER; break; } pCtx->ip = aIretFrame[0]; pCtx->cs.Sel = aIretFrame[1]; pCtx->cs.ValidSel = aIretFrame[1]; pCtx->cs.u64Base = (uint32_t)pCtx->cs.Sel << 4; pCtx->eflags.u = (pCtx->eflags.u & ~(X86_EFL_POPF_BITS & uMask)) | (aIretFrame[2] & X86_EFL_POPF_BITS & uMask); pCtx->sp += sizeof(aIretFrame); LogFlow(("iret to %04x:%x\n", pCtx->cs.Sel, pCtx->ip)); fUpdateRIP = false; STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIret); break; } case OP_INT: { uint32_t intInfo2; LogFlow(("Realmode: INT %x\n", pDis->Param1.uValue & 0xff)); intInfo2 = pDis->Param1.uValue & 0xff; intInfo2 |= (1 << VMX_EXIT_INTERRUPTION_INFO_VALID_SHIFT); intInfo2 |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_INT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT); rc = hmR0VmxInjectEvent(pVM, pVCpu, pCtx, intInfo2, cbOp, 0); AssertRC(VBOXSTRICTRC_VAL(rc)); fUpdateRIP = false; STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInt); break; } case OP_INTO: { if (pCtx->eflags.Bits.u1OF) { uint32_t intInfo2; LogFlow(("Realmode: INTO\n")); intInfo2 = X86_XCPT_OF; intInfo2 |= (1 << VMX_EXIT_INTERRUPTION_INFO_VALID_SHIFT); intInfo2 |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_INT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT); rc = hmR0VmxInjectEvent(pVM, pVCpu, pCtx, intInfo2, cbOp, 0); AssertRC(VBOXSTRICTRC_VAL(rc)); fUpdateRIP = false; STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInt); } break; } case OP_INT3: { uint32_t intInfo2; LogFlow(("Realmode: INT 3\n")); intInfo2 = 3; intInfo2 |= (1 << VMX_EXIT_INTERRUPTION_INFO_VALID_SHIFT); intInfo2 |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_INT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT); rc = hmR0VmxInjectEvent(pVM, pVCpu, pCtx, intInfo2, cbOp, 0); AssertRC(VBOXSTRICTRC_VAL(rc)); fUpdateRIP = false; STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInt); break; } default: rc = EMInterpretInstructionDisasState(pVCpu, pDis, CPUMCTX2CORE(pCtx), 0, EMCODETYPE_SUPERVISOR); fUpdateRIP = false; break; } if (rc == VINF_SUCCESS) { if (fUpdateRIP) pCtx->rip += cbOp; /* Move on to the next instruction. */ /* * LIDT, LGDT can end up here. In the future CRx changes as well. Just reload the * whole context to be done with it. */ pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_ALL; /* Only resume if successful. */ STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3); goto ResumeExecution; } } else rc = VERR_EM_INTERPRETER; AssertMsg(rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_EM_HALT, ("Unexpected rc=%Rrc\n", VBOXSTRICTRC_VAL(rc))); break; } #ifdef VBOX_STRICT case X86_XCPT_XF: /* SIMD exception. */ case X86_XCPT_DE: /* Divide error. */ case X86_XCPT_UD: /* Unknown opcode exception. */ case X86_XCPT_SS: /* Stack segment exception. */ case X86_XCPT_NP: /* Segment not present exception. */ { switch (vector) { case X86_XCPT_DE: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDE); break; case X86_XCPT_UD: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestUD); break; case X86_XCPT_SS: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestSS); break; case X86_XCPT_NP: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNP); break; case X86_XCPT_XF: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestXF); break; } Log(("Trap %x at %04X:%RGv\n", vector, pCtx->cs.Sel, (RTGCPTR)pCtx->rip)); rc2 = hmR0VmxInjectEvent(pVM, pVCpu, pCtx, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(intInfo), cbInstr, errCode); AssertRC(rc2); STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3); goto ResumeExecution; } #endif default: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestXcpUnk); if ( CPUMIsGuestInRealModeEx(pCtx) && pVM->hm.s.vmx.pRealModeTSS) { Log(("Real Mode Trap %x at %04x:%04X error code %x\n", vector, pCtx->cs.Sel, pCtx->eip, errCode)); rc = hmR0VmxInjectEvent(pVM, pVCpu, pCtx, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(intInfo), cbInstr, errCode); AssertRC(VBOXSTRICTRC_VAL(rc)); /* Strict RC check below. */ /* Go back to ring-3 in case of a triple fault. */ if ( vector == X86_XCPT_DF && rc == VINF_EM_RESET) { break; } STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3); goto ResumeExecution; } AssertMsgFailed(("Unexpected vm-exit caused by exception %x\n", vector)); rc = VERR_VMX_UNEXPECTED_EXCEPTION; break; } /* switch (vector) */ break; default: rc = VERR_VMX_UNEXPECTED_INTERRUPTION_EXIT_CODE; AssertMsgFailed(("Unexpected interruption code %x\n", intInfo)); break; } STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3); break; } /* * 48 EPT violation. An attempt to access memory with a guest-physical address was disallowed * by the configuration of the EPT paging structures. */ case VMX_EXIT_EPT_VIOLATION: { RTGCPHYS GCPhys; Assert(pVM->hm.s.fNestedPaging); rc2 = VMXReadVmcs64(VMX_VMCS64_EXIT_GUEST_PHYS_ADDR_FULL, &GCPhys); AssertRC(rc2); Assert(((exitQualification >> 7) & 3) != 2); /* Determine the kind of violation. */ errCode = 0; if (exitQualification & VMX_EXIT_QUALIFICATION_EPT_INSTR_FETCH) errCode |= X86_TRAP_PF_ID; if (exitQualification & VMX_EXIT_QUALIFICATION_EPT_DATA_WRITE) errCode |= X86_TRAP_PF_RW; /* If the page is present, then it's a page level protection fault. */ if (exitQualification & VMX_EXIT_QUALIFICATION_EPT_ENTRY_PRESENT) errCode |= X86_TRAP_PF_P; else { /* Shortcut for APIC TPR reads and writes. */ if ( (GCPhys & 0xfff) == 0x080 && GCPhys > 0x1000000 /* to skip VGA frame buffer accesses */ && fSetupTPRCaching && (pVM->hm.s.vmx.msr.vmx_proc_ctls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_VIRT_APIC)) { RTGCPHYS GCPhysApicBase; GCPhysApicBase = pCtx->msrApicBase; GCPhysApicBase &= PAGE_BASE_GC_MASK; if (GCPhys == GCPhysApicBase + 0x80) { Log(("Enable VT-x virtual APIC access filtering\n")); rc2 = IOMMMIOMapMMIOHCPage(pVM, pVCpu, GCPhysApicBase, pVM->hm.s.vmx.HCPhysApicAccess, X86_PTE_RW | X86_PTE_P); AssertRC(rc2); } } } Log(("EPT Page fault %x at %RGp error code %x\n", (uint32_t)exitQualification, GCPhys, errCode)); /* GCPhys contains the guest physical address of the page fault. */ TRPMAssertTrap(pVCpu, X86_XCPT_PF, TRPM_TRAP); TRPMSetErrorCode(pVCpu, errCode); TRPMSetFaultAddress(pVCpu, GCPhys); /* Handle the pagefault trap for the nested shadow table. */ rc = PGMR0Trap0eHandlerNestedPaging(pVM, pVCpu, PGMMODE_EPT, errCode, CPUMCTX2CORE(pCtx), GCPhys); /* * Same case as PGMR0Trap0eHandlerNPMisconfig(). See comment below, @bugref{6043}. */ if ( rc == VINF_SUCCESS || rc == VERR_PAGE_TABLE_NOT_PRESENT || rc == VERR_PAGE_NOT_PRESENT) { /* We've successfully synced our shadow pages, so let's just continue execution. */ Log2(("Shadow page fault at %RGv cr2=%RGp error code %x\n", (RTGCPTR)pCtx->rip, exitQualification , errCode)); STAM_COUNTER_INC(&pVCpu->hm.s.StatExitReasonNpf); TRPMResetTrap(pVCpu); goto ResumeExecution; } #ifdef VBOX_STRICT if (rc != VINF_EM_RAW_EMULATE_INSTR) LogFlow(("PGMTrap0eHandlerNestedPaging at %RGv failed with %Rrc\n", (RTGCPTR)pCtx->rip, VBOXSTRICTRC_VAL(rc))); #endif /* Need to go back to the recompiler to emulate the instruction. */ TRPMResetTrap(pVCpu); break; } case VMX_EXIT_EPT_MISCONFIG: { RTGCPHYS GCPhys; Assert(pVM->hm.s.fNestedPaging); rc2 = VMXReadVmcs64(VMX_VMCS64_EXIT_GUEST_PHYS_ADDR_FULL, &GCPhys); AssertRC(rc2); Log(("VMX_EXIT_EPT_MISCONFIG for %RGp\n", GCPhys)); /* Shortcut for APIC TPR reads and writes. */ if ( (GCPhys & 0xfff) == 0x080 && GCPhys > 0x1000000 /* to skip VGA frame buffer accesses */ && fSetupTPRCaching && (pVM->hm.s.vmx.msr.vmx_proc_ctls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_VIRT_APIC)) { RTGCPHYS GCPhysApicBase = pCtx->msrApicBase; GCPhysApicBase &= PAGE_BASE_GC_MASK; if (GCPhys == GCPhysApicBase + 0x80) { Log(("Enable VT-x virtual APIC access filtering\n")); rc2 = IOMMMIOMapMMIOHCPage(pVM, pVCpu, GCPhysApicBase, pVM->hm.s.vmx.HCPhysApicAccess, X86_PTE_RW | X86_PTE_P); AssertRC(rc2); } } rc = PGMR0Trap0eHandlerNPMisconfig(pVM, pVCpu, PGMMODE_EPT, CPUMCTX2CORE(pCtx), GCPhys, UINT32_MAX); /* * If we succeed, resume execution. * Or, if fail in interpreting the instruction because we couldn't get the guest physical address * of the page containing the instruction via the guest's page tables (we would invalidate the guest page * in the host TLB), resume execution which would cause a guest page fault to let the guest handle this * weird case. See @bugref{6043}. */ if ( rc == VINF_SUCCESS || rc == VERR_PAGE_TABLE_NOT_PRESENT || rc == VERR_PAGE_NOT_PRESENT) { Log2(("PGMR0Trap0eHandlerNPMisconfig(,,,%RGp) at %RGv -> resume\n", GCPhys, (RTGCPTR)pCtx->rip)); goto ResumeExecution; } Log2(("PGMR0Trap0eHandlerNPMisconfig(,,,%RGp) at %RGv -> %Rrc\n", GCPhys, (RTGCPTR)pCtx->rip, VBOXSTRICTRC_VAL(rc))); break; } case VMX_EXIT_INT_WINDOW: /* 7 Interrupt window exiting. */ /* Clear VM-exit on IF=1 change. */ LogFlow(("VMX_EXIT_INT_WINDOW %RGv pending=%d IF=%d\n", (RTGCPTR)pCtx->rip, VMCPU_FF_ISPENDING(pVCpu, (VMCPU_FF_INTERRUPT_APIC|VMCPU_FF_INTERRUPT_PIC)), pCtx->eflags.Bits.u1IF)); pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT; rc2 = VMXWriteVmcs(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls); AssertRC(rc2); STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIntWindow); goto ResumeExecution; /* we check for pending guest interrupts there */ case VMX_EXIT_WBINVD: /* 54 Guest software attempted to execute WBINVD. (conditional) */ case VMX_EXIT_INVD: /* 13 Guest software attempted to execute INVD. (unconditional) */ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInvd); /* Skip instruction and continue directly. */ pCtx->rip += cbInstr; /* Continue execution.*/ goto ResumeExecution; case VMX_EXIT_CPUID: /* 10 Guest software attempted to execute CPUID. */ { Log2(("VMX: Cpuid %x\n", pCtx->eax)); STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCpuid); rc = EMInterpretCpuId(pVM, pVCpu, CPUMCTX2CORE(pCtx)); if (rc == VINF_SUCCESS) { /* Update EIP and continue execution. */ Assert(cbInstr == 2); pCtx->rip += cbInstr; goto ResumeExecution; } AssertMsgFailed(("EMU: cpuid failed with %Rrc\n", VBOXSTRICTRC_VAL(rc))); rc = VINF_EM_RAW_EMULATE_INSTR; break; } case VMX_EXIT_RDPMC: /* 15 Guest software attempted to execute RDPMC. */ { Log2(("VMX: Rdpmc %x\n", pCtx->ecx)); STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdpmc); rc = EMInterpretRdpmc(pVM, pVCpu, CPUMCTX2CORE(pCtx)); if (rc == VINF_SUCCESS) { /* Update EIP and continue execution. */ Assert(cbInstr == 2); pCtx->rip += cbInstr; goto ResumeExecution; } rc = VINF_EM_RAW_EMULATE_INSTR; break; } case VMX_EXIT_RDTSC: /* 16 Guest software attempted to execute RDTSC. */ { Log2(("VMX: Rdtsc\n")); STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdtsc); rc = EMInterpretRdtsc(pVM, pVCpu, CPUMCTX2CORE(pCtx)); if (rc == VINF_SUCCESS) { /* Update EIP and continue execution. */ Assert(cbInstr == 2); pCtx->rip += cbInstr; fNeedTscSetup = true; /* See @bugref{6634}. */ goto ResumeExecution; } rc = VINF_EM_RAW_EMULATE_INSTR; break; } case VMX_EXIT_RDTSCP: /* 51 Guest software attempted to execute RDTSCP. */ { Log2(("VMX: Rdtscp\n")); STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdtscp); rc = EMInterpretRdtscp(pVM, pVCpu, pCtx); if (rc == VINF_SUCCESS) { /* Update EIP and continue execution. */ Assert(cbInstr == 3); pCtx->rip += cbInstr; fNeedTscSetup = true; /* See @bugref{6634}. */ goto ResumeExecution; } rc = VINF_EM_RAW_EMULATE_INSTR; break; } case VMX_EXIT_INVLPG: /* 14 Guest software attempted to execute INVLPG. */ { Log2(("VMX: invlpg\n")); Assert(!pVM->hm.s.fNestedPaging); STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInvlpg); rc = EMInterpretInvlpg(pVM, pVCpu, CPUMCTX2CORE(pCtx), exitQualification); if (rc == VINF_SUCCESS) { /* Update EIP and continue execution. */ pCtx->rip += cbInstr; goto ResumeExecution; } AssertMsg(rc == VERR_EM_INTERPRETER, ("EMU: invlpg %RGv failed with %Rrc\n", exitQualification, VBOXSTRICTRC_VAL(rc))); break; } case VMX_EXIT_MONITOR: /* 39 Guest software attempted to execute MONITOR. */ { Log2(("VMX: monitor\n")); STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMonitor); rc = EMInterpretMonitor(pVM, pVCpu, CPUMCTX2CORE(pCtx)); if (rc == VINF_SUCCESS) { /* Update EIP and continue execution. */ pCtx->rip += cbInstr; goto ResumeExecution; } AssertMsg(rc == VERR_EM_INTERPRETER, ("EMU: monitor failed with %Rrc\n", VBOXSTRICTRC_VAL(rc))); break; } case VMX_EXIT_WRMSR: /* 32 WRMSR. Guest software attempted to execute WRMSR. */ /* When an interrupt is pending, we'll let MSR_K8_LSTAR writes fault in our TPR patch code. */ if ( pVM->hm.s.fTPRPatchingActive && pCtx->ecx == MSR_K8_LSTAR) { Assert(!CPUMIsGuestInLongModeEx(pCtx)); if ((pCtx->eax & 0xff) != u8LastTPR) { Log(("VMX: Faulting MSR_K8_LSTAR write with new TPR value %x\n", pCtx->eax & 0xff)); /* Our patch code uses LSTAR for TPR caching. */ rc2 = PDMApicSetTPR(pVCpu, pCtx->eax & 0xff); AssertRC(rc2); } /* Skip the instruction and continue. */ pCtx->rip += cbInstr; /* wrmsr = [0F 30] */ /* Only resume if successful. */ goto ResumeExecution; } pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_MSR; /* no break */ case VMX_EXIT_RDMSR: /* 31 RDMSR. Guest software attempted to execute RDMSR. */ { STAM_COUNTER_INC((exitReason == VMX_EXIT_RDMSR) ? &pVCpu->hm.s.StatExitRdmsr : &pVCpu->hm.s.StatExitWrmsr); Log2(("VMX: %s\n", (exitReason == VMX_EXIT_RDMSR) ? "rdmsr" : "wrmsr")); rc = EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0); if (rc == VINF_SUCCESS) { /* EIP has been updated already. */ /* Only resume if successful. */ goto ResumeExecution; } AssertMsg(rc == VERR_EM_INTERPRETER, ("EMU: %s failed with %Rrc\n", (exitReason == VMX_EXIT_RDMSR) ? "rdmsr" : "wrmsr", VBOXSTRICTRC_VAL(rc))); break; } case VMX_EXIT_MOV_CRX: /* 28 Control-register accesses. */ { STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitMovCRx, y2); switch (VMX_EXIT_QUALIFICATION_CRX_ACCESS(exitQualification)) { case VMX_EXIT_QUALIFICATION_CRX_ACCESS_WRITE: { Log2(("VMX: %RGv mov cr%d, x\n", (RTGCPTR)pCtx->rip, VMX_EXIT_QUALIFICATION_CRX_REGISTER(exitQualification))); STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCRxWrite[VMX_EXIT_QUALIFICATION_CRX_REGISTER(exitQualification)]); rc = EMInterpretCRxWrite(pVM, pVCpu, CPUMCTX2CORE(pCtx), VMX_EXIT_QUALIFICATION_CRX_REGISTER(exitQualification), VMX_EXIT_QUALIFICATION_CRX_GENREG(exitQualification)); switch (VMX_EXIT_QUALIFICATION_CRX_REGISTER(exitQualification)) { case 0: pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR0 | HM_CHANGED_GUEST_CR3; break; case 2: break; case 3: Assert(!pVM->hm.s.fNestedPaging || !CPUMIsGuestInPagedProtectedModeEx(pCtx)); pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR3; break; case 4: pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR4; break; case 8: /* CR8 contains the APIC TPR */ Assert(!(pVM->hm.s.vmx.msr.vmx_proc_ctls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW)); break; default: AssertFailed(); break; } break; } case VMX_EXIT_QUALIFICATION_CRX_ACCESS_READ: { Log2(("VMX: mov x, crx\n")); STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCRxRead[VMX_EXIT_QUALIFICATION_CRX_REGISTER(exitQualification)]); Assert( !pVM->hm.s.fNestedPaging || !CPUMIsGuestInPagedProtectedModeEx(pCtx) || VMX_EXIT_QUALIFICATION_CRX_REGISTER(exitQualification) != DISCREG_CR3); /* CR8 reads only cause an exit when the TPR shadow feature isn't present. */ Assert( VMX_EXIT_QUALIFICATION_CRX_REGISTER(exitQualification) != 8 || !(pVM->hm.s.vmx.msr.vmx_proc_ctls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW)); rc = EMInterpretCRxRead(pVM, pVCpu, CPUMCTX2CORE(pCtx), VMX_EXIT_QUALIFICATION_CRX_GENREG(exitQualification), VMX_EXIT_QUALIFICATION_CRX_REGISTER(exitQualification)); break; } case VMX_EXIT_QUALIFICATION_CRX_ACCESS_CLTS: { Log2(("VMX: clts\n")); STAM_COUNTER_INC(&pVCpu->hm.s.StatExitClts); rc = EMInterpretCLTS(pVM, pVCpu); pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR0; break; } case VMX_EXIT_QUALIFICATION_CRX_ACCESS_LMSW: { Log2(("VMX: lmsw %x\n", VMX_EXIT_QUALIFICATION_CRX_LMSW_DATA(exitQualification))); STAM_COUNTER_INC(&pVCpu->hm.s.StatExitLmsw); rc = EMInterpretLMSW(pVM, pVCpu, CPUMCTX2CORE(pCtx), VMX_EXIT_QUALIFICATION_CRX_LMSW_DATA(exitQualification)); pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR0; break; } } /* Update EIP if no error occurred. */ if (RT_SUCCESS(rc)) pCtx->rip += cbInstr; if (rc == VINF_SUCCESS) { /* Only resume if successful. */ STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitMovCRx, y2); goto ResumeExecution; } Assert(rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_PGM_SYNC_CR3); STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitMovCRx, y2); break; } case VMX_EXIT_MOV_DRX: /* 29 Debug-register accesses. */ { if ( !DBGFIsStepping(pVCpu) && !CPUMIsHyperDebugStateActive(pVCpu)) { /* Disable DRx move intercepts. */ pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT; rc2 = VMXWriteVmcs(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls); AssertRC(rc2); /* Save the host and load the guest debug state. */ rc2 = CPUMR0LoadGuestDebugState(pVM, pVCpu, pCtx, true /* include DR6 */); AssertRC(rc2); #ifdef LOG_ENABLED if (VMX_EXIT_QUALIFICATION_DRX_DIRECTION(exitQualification) == VMX_EXIT_QUALIFICATION_DRX_DIRECTION_WRITE) { Log(("VMX_EXIT_MOV_DRX: write DR%d genreg %d\n", VMX_EXIT_QUALIFICATION_DRX_REGISTER(exitQualification), VMX_EXIT_QUALIFICATION_DRX_GENREG(exitQualification))); } else Log(("VMX_EXIT_MOV_DRX: read DR%d\n", VMX_EXIT_QUALIFICATION_DRX_REGISTER(exitQualification))); #endif #ifdef VBOX_WITH_STATISTICS STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxContextSwitch); if (VMX_EXIT_QUALIFICATION_DRX_DIRECTION(exitQualification) == VMX_EXIT_QUALIFICATION_DRX_DIRECTION_WRITE) STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite); else STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead); #endif goto ResumeExecution; } /** @todo clear VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT after the first * time and restore DRx registers afterwards */ if (VMX_EXIT_QUALIFICATION_DRX_DIRECTION(exitQualification) == VMX_EXIT_QUALIFICATION_DRX_DIRECTION_WRITE) { Log2(("VMX: mov DRx%d, genreg%d\n", VMX_EXIT_QUALIFICATION_DRX_REGISTER(exitQualification), VMX_EXIT_QUALIFICATION_DRX_GENREG(exitQualification))); STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite); rc = EMInterpretDRxWrite(pVM, pVCpu, CPUMCTX2CORE(pCtx), VMX_EXIT_QUALIFICATION_DRX_REGISTER(exitQualification), VMX_EXIT_QUALIFICATION_DRX_GENREG(exitQualification)); pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_DEBUG; Log2(("DR7=%08x\n", pCtx->dr[7])); } else { Log2(("VMX: mov x, DRx\n")); STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead); rc = EMInterpretDRxRead(pVM, pVCpu, CPUMCTX2CORE(pCtx), VMX_EXIT_QUALIFICATION_DRX_GENREG(exitQualification), VMX_EXIT_QUALIFICATION_DRX_REGISTER(exitQualification)); } /* Update EIP if no error occurred. */ if (RT_SUCCESS(rc)) pCtx->rip += cbInstr; if (rc == VINF_SUCCESS) { /* Only resume if successful. */ goto ResumeExecution; } Assert(rc == VERR_EM_INTERPRETER); break; } /* Note: We'll get a #GP if the IO instruction isn't allowed (IOPL or TSS bitmap); no need to double check. */ case VMX_EXIT_IO_INSTR: /* 30 I/O instruction. */ { STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitIO, y1); uint32_t uPort; uint32_t uIOWidth = VMX_EXIT_QUALIFICATION_IO_WIDTH(exitQualification); bool fIOWrite = (VMX_EXIT_QUALIFICATION_IO_DIRECTION(exitQualification) == VMX_EXIT_QUALIFICATION_IO_DIRECTION_OUT); /** @todo necessary to make the distinction? */ if (VMX_EXIT_QUALIFICATION_IO_ENCODING(exitQualification) == VMX_EXIT_QUALIFICATION_IO_ENCODING_DX) uPort = pCtx->edx & 0xffff; else uPort = VMX_EXIT_QUALIFICATION_IO_PORT(exitQualification); /* Immediate encoding. */ if (RT_UNLIKELY(uIOWidth == 2 || uIOWidth >= 4)) /* paranoia */ { rc = fIOWrite ? VINF_IOM_R3_IOPORT_WRITE : VINF_IOM_R3_IOPORT_READ; STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitIO, y1); break; } uint32_t cbSize = g_aIOSize[uIOWidth]; if (VMX_EXIT_QUALIFICATION_IO_STRING(exitQualification)) { /* ins/outs */ PDISCPUSTATE pDis = &pVCpu->hm.s.DisState; /* Disassemble manually to deal with segment prefixes. */ /** @todo VMX_VMCS_RO_EXIT_GUEST_LINEAR_ADDR contains the flat pointer * operand of the instruction. */ /** @todo VMX_VMCS32_RO_EXIT_INSTR_INFO also contains segment prefix info. */ rc2 = EMInterpretDisasCurrent(pVM, pVCpu, pDis, NULL); if (RT_SUCCESS(rc)) { if (fIOWrite) { Log2(("IOMInterpretOUTSEx %RGv %x size=%d\n", (RTGCPTR)pCtx->rip, uPort, cbSize)); STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringWrite); rc = IOMInterpretOUTSEx(pVM, pVCpu, CPUMCTX2CORE(pCtx), uPort, pDis->fPrefix, (DISCPUMODE)pDis->uAddrMode, cbSize); } else { Log2(("IOMInterpretINSEx %RGv %x size=%d\n", (RTGCPTR)pCtx->rip, uPort, cbSize)); STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringRead); rc = IOMInterpretINSEx(pVM, pVCpu, CPUMCTX2CORE(pCtx), uPort, pDis->fPrefix, (DISCPUMODE)pDis->uAddrMode, cbSize); } } else rc = VINF_EM_RAW_EMULATE_INSTR; } else { /* Normal in/out */ uint32_t uAndVal = g_aIOOpAnd[uIOWidth]; Assert(!VMX_EXIT_QUALIFICATION_IO_REP(exitQualification)); if (fIOWrite) { STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOWrite); rc = IOMIOPortWrite(pVM, pVCpu, uPort, pCtx->eax & uAndVal, cbSize); if (rc == VINF_IOM_R3_IOPORT_WRITE) HMR0SavePendingIOPortWrite(pVCpu, pCtx->rip, pCtx->rip + cbInstr, uPort, uAndVal, cbSize); } else { uint32_t u32Val = 0; STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIORead); rc = IOMIOPortRead(pVM, pVCpu, uPort, &u32Val, cbSize); if (IOM_SUCCESS(rc)) { /* Write back to the EAX register. */ pCtx->eax = (pCtx->eax & ~uAndVal) | (u32Val & uAndVal); } else if (rc == VINF_IOM_R3_IOPORT_READ) HMR0SavePendingIOPortRead(pVCpu, pCtx->rip, pCtx->rip + cbInstr, uPort, uAndVal, cbSize); } } /* * Handled the I/O return codes. * (The unhandled cases end up with rc == VINF_EM_RAW_EMULATE_INSTR.) */ if (IOM_SUCCESS(rc)) { /* Update EIP and continue execution. */ pCtx->rip += cbInstr; if (RT_LIKELY(rc == VINF_SUCCESS)) { /* If any IO breakpoints are armed, then we should check if a debug trap needs to be generated. */ if (pCtx->dr[7] & X86_DR7_ENABLED_MASK) { STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxIoCheck); for (unsigned i = 0; i < 4; i++) { unsigned uBPLen = g_aIOSize[X86_DR7_GET_LEN(pCtx->dr[7], i)]; if ( (uPort >= pCtx->dr[i] && uPort < pCtx->dr[i] + uBPLen) && (pCtx->dr[7] & (X86_DR7_L(i) | X86_DR7_G(i))) && (pCtx->dr[7] & X86_DR7_RW(i, X86_DR7_RW_IO)) == X86_DR7_RW(i, X86_DR7_RW_IO)) { uint64_t uDR6; Assert(CPUMIsGuestDebugStateActive(pVCpu)); uDR6 = ASMGetDR6(); /* Clear all breakpoint status flags and set the one we just hit. */ uDR6 &= ~(X86_DR6_B0|X86_DR6_B1|X86_DR6_B2|X86_DR6_B3); uDR6 |= (uint64_t)RT_BIT(i); /* * Note: AMD64 Architecture Programmer's Manual 13.1: * Bits 15:13 of the DR6 register is never cleared by the processor and must * be cleared by software after the contents have been read. */ ASMSetDR6(uDR6); /* X86_DR7_GD will be cleared if DRx accesses should be trapped inside the guest. */ pCtx->dr[7] &= ~X86_DR7_GD; /* Paranoia. */ pCtx->dr[7] &= 0xffffffff; /* upper 32 bits reserved */ pCtx->dr[7] &= ~(RT_BIT(11) | RT_BIT(12) | RT_BIT(14) | RT_BIT(15)); /* must be zero */ pCtx->dr[7] |= 0x400; /* must be one */ /* Resync DR7 */ rc2 = VMXWriteVmcs64(VMX_VMCS_GUEST_DR7, pCtx->dr[7]); AssertRC(rc2); /* Construct inject info. */ intInfo = X86_XCPT_DB; intInfo |= (1 << VMX_EXIT_INTERRUPTION_INFO_VALID_SHIFT); intInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT); Log(("Inject IO debug trap at %RGv\n", (RTGCPTR)pCtx->rip)); rc2 = hmR0VmxInjectEvent(pVM, pVCpu, pCtx, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(intInfo), 0 /* cbInstr */, 0 /* errCode */); AssertRC(rc2); STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitIO, y1); goto ResumeExecution; } } } STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitIO, y1); goto ResumeExecution; } STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitIO, y1); break; } #ifdef VBOX_STRICT if (rc == VINF_IOM_R3_IOPORT_READ) Assert(!fIOWrite); else if (rc == VINF_IOM_R3_IOPORT_WRITE) Assert(fIOWrite); else { AssertMsg( RT_FAILURE(rc) || rc == VINF_EM_RAW_EMULATE_INSTR || rc == VINF_EM_RAW_GUEST_TRAP || rc == VINF_TRPM_XCPT_DISPATCHED, ("%Rrc\n", VBOXSTRICTRC_VAL(rc))); } #endif STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitIO, y1); break; } case VMX_EXIT_TPR_BELOW_THRESHOLD: /* 43 TPR below threshold. Guest software executed MOV to CR8. */ LogFlow(("VMX_EXIT_TPR_BELOW_THRESHOLD\n")); /* RIP is already set to the next instruction and the TPR has been synced back. Just resume. */ goto ResumeExecution; case VMX_EXIT_APIC_ACCESS: /* 44 APIC access. Guest software attempted to access memory at a physical address on the APIC-access page. */ { LogFlow(("VMX_EXIT_APIC_ACCESS\n")); unsigned uAccessType = VMX_EXIT_QUALIFICATION_APIC_ACCESS_TYPE(exitQualification); switch (uAccessType) { case VMX_APIC_ACCESS_TYPE_LINEAR_READ: case VMX_APIC_ACCESS_TYPE_LINEAR_WRITE: { RTGCPHYS GCPhys = pCtx->msrApicBase; GCPhys &= PAGE_BASE_GC_MASK; GCPhys += VMX_EXIT_QUALIFICATION_APIC_ACCESS_OFFSET(exitQualification); LogFlow(("Apic access at %RGp\n", GCPhys)); rc = IOMMMIOPhysHandler(pVM, pVCpu, (uAccessType == VMX_APIC_ACCESS_TYPE_LINEAR_READ) ? 0 : X86_TRAP_PF_RW, CPUMCTX2CORE(pCtx), GCPhys); if (rc == VINF_SUCCESS) goto ResumeExecution; /* rip already updated */ break; } default: rc = VINF_EM_RAW_EMULATE_INSTR; break; } break; } case VMX_EXIT_PREEMPT_TIMER: /* 52 VMX-preemption timer expired. The preemption timer counted down to zero. */ if (!TMTimerPollBool(pVM, pVCpu)) goto ResumeExecution; rc = VINF_EM_RAW_TIMER_PENDING; break; default: /* The rest is handled after syncing the entire CPU state. */ break; } /* * Note: The guest state is not entirely synced back at this stage! */ /* Investigate why there was a VM-exit. (part 2) */ switch (exitReason) { case VMX_EXIT_XCPT_NMI: /* 0 Exception or non-maskable interrupt (NMI). */ case VMX_EXIT_EXT_INT: /* 1 External interrupt. */ case VMX_EXIT_EPT_VIOLATION: case VMX_EXIT_EPT_MISCONFIG: /* 49 EPT misconfig is used by the PGM/MMIO optimizations. */ case VMX_EXIT_PREEMPT_TIMER: /* 52 VMX-preemption timer expired. The preemption timer counted down to zero. */ /* Already handled above. */ break; case VMX_EXIT_TRIPLE_FAULT: /* 2 Triple fault. */ rc = VINF_EM_RESET; /* Triple fault equals a reset. */ break; case VMX_EXIT_INIT_SIGNAL: /* 3 INIT signal. */ case VMX_EXIT_SIPI: /* 4 Start-up IPI (SIPI). */ rc = VINF_EM_RAW_INTERRUPT; AssertFailed(); /* Can't happen. Yet. */ break; case VMX_EXIT_IO_SMI: /* 5 I/O system-management interrupt (SMI). */ case VMX_EXIT_SMI: /* 6 Other SMI. */ rc = VINF_EM_RAW_INTERRUPT; AssertFailed(); /* Can't happen afaik. */ break; case VMX_EXIT_TASK_SWITCH: /* 9 Task switch: too complicated to emulate, so fall back to the recompiler */ Log(("VMX_EXIT_TASK_SWITCH: exit=%RX64\n", exitQualification)); if ( (VMX_EXIT_QUALIFICATION_TASK_SWITCH_TYPE(exitQualification) == VMX_EXIT_QUALIFICATION_TASK_SWITCH_TYPE_IDT) && pVCpu->hm.s.Event.fPending) { /* Caused by an injected interrupt. */ pVCpu->hm.s.Event.fPending = false; Log(("VMX_EXIT_TASK_SWITCH: reassert trap %d\n", VMX_EXIT_INTERRUPTION_INFO_VECTOR(pVCpu->hm.s.Event.u64IntrInfo))); Assert(!VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_IS_VALID(pVCpu->hm.s.Event.u64IntrInfo)); //@todo: Why do we assume this had to be a hardware interrupt? What about software interrupts or exceptions? rc2 = TRPMAssertTrap(pVCpu, VMX_EXIT_INTERRUPTION_INFO_VECTOR(pVCpu->hm.s.Event.u64IntrInfo), TRPM_HARDWARE_INT); AssertRC(rc2); } /* else Exceptions and software interrupts can just be restarted. */ rc = VERR_EM_INTERPRETER; break; case VMX_EXIT_HLT: /* 12 Guest software attempted to execute HLT. */ /* Check if external interrupts are pending; if so, don't switch back. */ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitHlt); pCtx->rip++; /* skip hlt */ if (EMShouldContinueAfterHalt(pVCpu, pCtx)) goto ResumeExecution; rc = VINF_EM_HALT; break; case VMX_EXIT_MWAIT: /* 36 Guest software executed MWAIT. */ Log2(("VMX: mwait\n")); STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMwait); rc = EMInterpretMWait(pVM, pVCpu, CPUMCTX2CORE(pCtx)); if ( rc == VINF_EM_HALT || rc == VINF_SUCCESS) { /* Update EIP and continue execution. */ pCtx->rip += cbInstr; /* Check if external interrupts are pending; if so, don't switch back. */ if ( rc == VINF_SUCCESS || ( rc == VINF_EM_HALT && EMShouldContinueAfterHalt(pVCpu, pCtx)) ) goto ResumeExecution; } AssertMsg(rc == VERR_EM_INTERPRETER || rc == VINF_EM_HALT, ("EMU: mwait failed with %Rrc\n", VBOXSTRICTRC_VAL(rc))); break; case VMX_EXIT_RSM: /* 17 Guest software attempted to execute RSM in SMM. */ AssertFailed(); /* can't happen. */ rc = VERR_EM_INTERPRETER; break; case VMX_EXIT_MTF: /* 37 Exit due to Monitor Trap Flag. */ LogFlow(("VMX_EXIT_MTF at %RGv\n", (RTGCPTR)pCtx->rip)); pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_MONITOR_TRAP_FLAG; rc2 = VMXWriteVmcs(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls); AssertRC(rc2); STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMtf); #if 0 DBGFDoneStepping(pVCpu); #endif rc = VINF_EM_DBG_STOP; break; case VMX_EXIT_VMCALL: /* 18 Guest software executed VMCALL. */ case VMX_EXIT_VMCLEAR: /* 19 Guest software executed VMCLEAR. */ case VMX_EXIT_VMLAUNCH: /* 20 Guest software executed VMLAUNCH. */ case VMX_EXIT_VMPTRLD: /* 21 Guest software executed VMPTRLD. */ case VMX_EXIT_VMPTRST: /* 22 Guest software executed VMPTRST. */ case VMX_EXIT_VMREAD: /* 23 Guest software executed VMREAD. */ case VMX_EXIT_VMRESUME: /* 24 Guest software executed VMRESUME. */ case VMX_EXIT_VMWRITE: /* 25 Guest software executed VMWRITE. */ case VMX_EXIT_VMXOFF: /* 26 Guest software executed VMXOFF. */ case VMX_EXIT_VMXON: /* 27 Guest software executed VMXON. */ /** @todo inject #UD immediately */ rc = VERR_EM_INTERPRETER; break; case VMX_EXIT_CPUID: /* 10 Guest software attempted to execute CPUID. */ case VMX_EXIT_RDTSC: /* 16 Guest software attempted to execute RDTSC. */ case VMX_EXIT_INVLPG: /* 14 Guest software attempted to execute INVLPG. */ case VMX_EXIT_MOV_CRX: /* 28 Control-register accesses. */ case VMX_EXIT_MOV_DRX: /* 29 Debug-register accesses. */ case VMX_EXIT_IO_INSTR: /* 30 I/O instruction. */ case VMX_EXIT_RDPMC: /* 15 Guest software attempted to execute RDPMC. */ case VMX_EXIT_RDTSCP: /* 51 Guest software attempted to execute RDTSCP. */ /* already handled above */ AssertMsg( rc == VINF_PGM_CHANGE_MODE || rc == VINF_EM_RAW_INTERRUPT || rc == VERR_EM_INTERPRETER || rc == VINF_EM_RAW_EMULATE_INSTR || rc == VINF_PGM_SYNC_CR3 || rc == VINF_IOM_R3_IOPORT_READ || rc == VINF_IOM_R3_IOPORT_WRITE || rc == VINF_EM_RAW_GUEST_TRAP || rc == VINF_TRPM_XCPT_DISPATCHED || rc == VINF_EM_RESCHEDULE_REM, ("rc = %d\n", VBOXSTRICTRC_VAL(rc))); break; case VMX_EXIT_TPR_BELOW_THRESHOLD: /* 43 TPR below threshold. Guest software executed MOV to CR8. */ case VMX_EXIT_RDMSR: /* 31 RDMSR. Guest software attempted to execute RDMSR. */ case VMX_EXIT_WRMSR: /* 32 WRMSR. Guest software attempted to execute WRMSR. */ case VMX_EXIT_PAUSE: /* 40 Guest software attempted to execute PAUSE. */ case VMX_EXIT_MONITOR: /* 39 Guest software attempted to execute MONITOR. */ case VMX_EXIT_APIC_ACCESS: /* 44 APIC access. Guest software attempted to access memory at a physical address on the APIC-access page. */ { /* * If we decided to emulate them here, then we must sync the MSRs that could have been changed (sysenter, FS/GS base) */ rc = VERR_EM_INTERPRETER; break; } case VMX_EXIT_INT_WINDOW: /* 7 Interrupt window. */ Assert(rc == VINF_EM_RAW_INTERRUPT); break; case VMX_EXIT_ERR_INVALID_GUEST_STATE: /* 33 VM-entry failure due to invalid guest state. */ { #ifdef VBOX_STRICT RTCCUINTREG val2 = 0; Log(("VMX_EXIT_ERR_INVALID_GUEST_STATE\n")); VMXReadVmcs(VMX_VMCS_GUEST_RIP, &val2); Log(("Old eip %RGv new %RGv\n", (RTGCPTR)pCtx->rip, (RTGCPTR)val2)); VMXReadVmcs(VMX_VMCS_GUEST_CR0, &val2); Log(("VMX_VMCS_GUEST_CR0 %RX64\n", (uint64_t)val2)); VMXReadVmcs(VMX_VMCS_GUEST_CR3, &val2); Log(("VMX_VMCS_GUEST_CR3 %RX64\n", (uint64_t)val2)); VMXReadVmcs(VMX_VMCS_GUEST_CR4, &val2); Log(("VMX_VMCS_GUEST_CR4 %RX64\n", (uint64_t)val2)); VMXReadVmcs(VMX_VMCS_GUEST_RFLAGS, &val2); Log(("VMX_VMCS_GUEST_RFLAGS %08x\n", val2)); VMX_LOG_SELREG(CS, "CS", val2); VMX_LOG_SELREG(DS, "DS", val2); VMX_LOG_SELREG(ES, "ES", val2); VMX_LOG_SELREG(FS, "FS", val2); VMX_LOG_SELREG(GS, "GS", val2); VMX_LOG_SELREG(SS, "SS", val2); VMX_LOG_SELREG(TR, "TR", val2); VMX_LOG_SELREG(LDTR, "LDTR", val2); VMXReadVmcs(VMX_VMCS_GUEST_GDTR_BASE, &val2); Log(("VMX_VMCS_GUEST_GDTR_BASE %RX64\n", (uint64_t)val2)); VMXReadVmcs(VMX_VMCS_GUEST_IDTR_BASE, &val2); Log(("VMX_VMCS_GUEST_IDTR_BASE %RX64\n", (uint64_t)val2)); #endif /* VBOX_STRICT */ rc = VERR_VMX_INVALID_GUEST_STATE; break; } case VMX_EXIT_ERR_MSR_LOAD: /* 34 VM-entry failure due to MSR loading. */ case VMX_EXIT_ERR_MACHINE_CHECK: /* 41 VM-entry failure due to machine-check. */ default: rc = VERR_VMX_UNEXPECTED_EXIT_CODE; AssertMsgFailed(("Unexpected exit code %d\n", exitReason)); /* Can't happen. */ break; } end: /* We now going back to ring-3, so clear the action flag. */ VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TO_R3); /* * Signal changes for the recompiler. */ CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_SYSENTER_MSR | CPUM_CHANGED_LDTR | CPUM_CHANGED_GDTR | CPUM_CHANGED_IDTR | CPUM_CHANGED_TR | CPUM_CHANGED_HIDDEN_SEL_REGS); /* * If we executed vmlaunch/vmresume and an external IRQ was pending, then we don't have to do a full sync the next time. */ if ( exitReason == VMX_EXIT_EXT_INT && !VMX_EXIT_INTERRUPTION_INFO_IS_VALID(intInfo)) { STAM_COUNTER_INC(&pVCpu->hm.s.StatPendingHostIrq); /* On the next entry we'll only sync the host context. */ pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_HOST_CONTEXT; } else { /* On the next entry we'll sync everything. */ /** @todo we can do better than this */ /* Not in the VINF_PGM_CHANGE_MODE though! */ pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_ALL; } /* Translate into a less severe return code */ if (rc == VERR_EM_INTERPRETER) rc = VINF_EM_RAW_EMULATE_INSTR; else if (rc == VERR_VMX_INVALID_VMCS_PTR) { /* Try to extract more information about what might have gone wrong here. */ VMXGetActivateVMCS(&pVCpu->hm.s.vmx.lasterror.u64VMCSPhys); pVCpu->hm.s.vmx.lasterror.u32VMCSRevision = *(uint32_t *)pVCpu->hm.s.vmx.pvVmcs; pVCpu->hm.s.vmx.lasterror.idEnteredCpu = pVCpu->hm.s.idEnteredCpu; pVCpu->hm.s.vmx.lasterror.idCurrentCpu = RTMpCpuId(); } /* Just set the correct state here instead of trying to catch every goto above. */ VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC); #ifdef VBOX_WITH_VMMR0_DISABLE_PREEMPTION /* Restore interrupts if we exited after disabling them. */ if (uOldEFlags != ~(RTCCUINTREG)0) ASMSetFlags(uOldEFlags); #endif STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2, x); STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit1, x); STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x); STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchExitToR3); Log2(("X")); return VBOXSTRICTRC_TODO(rc); } /** * Enters the VT-x session. * * @returns VBox status code. * @param pVM Pointer to the VM. * @param pVCpu Pointer to the VMCPU. * @param pCpu Pointer to the CPU info struct. */ VMMR0DECL(int) VMXR0Enter(PVM pVM, PVMCPU pVCpu, PHMGLOBLCPUINFO pCpu) { Assert(pVM->hm.s.vmx.fSupported); NOREF(pCpu); unsigned cr4 = ASMGetCR4(); if (!(cr4 & X86_CR4_VMXE)) { AssertMsgFailed(("X86_CR4_VMXE should be set!\n")); return VERR_VMX_X86_CR4_VMXE_CLEARED; } /* Activate the VMCS. */ int rc = VMXActivateVMCS(pVCpu->hm.s.vmx.HCPhysVmcs); if (RT_FAILURE(rc)) return rc; pVCpu->hm.s.fResumeVM = false; return VINF_SUCCESS; } /** * Leaves the VT-x session. * * @returns VBox status code. * @param pVM Pointer to the VM. * @param pVCpu Pointer to the VMCPU. * @param pCtx Pointer to the guests CPU context. */ VMMR0DECL(int) VMXR0Leave(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx) { Assert(pVM->hm.s.vmx.fSupported); #ifdef DEBUG if (CPUMIsHyperDebugStateActive(pVCpu)) { CPUMR0LoadHostDebugState(pVM, pVCpu); Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT); } else #endif /* * Save the guest debug state if necessary. */ if (CPUMIsGuestDebugStateActive(pVCpu)) { CPUMR0SaveGuestDebugState(pVM, pVCpu, pCtx, true /* save DR6 */); /* Enable DRx move intercepts again. */ pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT; int rc = VMXWriteVmcs(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls); AssertRC(rc); /* Resync the debug registers the next time. */ pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_DEBUG; } else Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT); /* * Clear VMCS, marking it inactive, clearing implementation-specific data and writing * VMCS data back to memory. */ int rc = VMXClearVMCS(pVCpu->hm.s.vmx.HCPhysVmcs); AssertRC(rc); STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2, x); STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitIO, y1); STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitMovCRx, y2); STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3); return VINF_SUCCESS; } /** * Flush the TLB using EPT. * * @returns VBox status code. * @param pVM Pointer to the VM. * @param pVCpu Pointer to the VMCPU. * @param enmFlush Type of flush. */ static void hmR0VmxFlushEPT(PVM pVM, PVMCPU pVCpu, VMX_FLUSH_EPT enmFlush) { uint64_t descriptor[2]; LogFlow(("hmR0VmxFlushEPT %d\n", enmFlush)); Assert(pVM->hm.s.fNestedPaging); descriptor[0] = pVCpu->hm.s.vmx.HCPhysEPTP; descriptor[1] = 0; /* MBZ. Intel spec. 33.3 VMX Instructions */ int rc = VMXR0InvEPT(enmFlush, &descriptor[0]); AssertMsg(rc == VINF_SUCCESS, ("VMXR0InvEPT %x %RGv failed with %d\n", enmFlush, pVCpu->hm.s.vmx.HCPhysEPTP, rc)); #ifdef VBOX_WITH_STATISTICS STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushNestedPaging); #endif } /** * Flush the TLB using VPID. * * @returns VBox status code. * @param pVM Pointer to the VM. * @param pVCpu Pointer to the VMCPU (can be NULL depending on @a * enmFlush). * @param enmFlush Type of flush. * @param GCPtr Virtual address of the page to flush (can be 0 depending * on @a enmFlush). */ static void hmR0VmxFlushVPID(PVM pVM, PVMCPU pVCpu, VMX_FLUSH_VPID enmFlush, RTGCPTR GCPtr) { uint64_t descriptor[2]; Assert(pVM->hm.s.vmx.fVpid); if (enmFlush == VMX_FLUSH_VPID_ALL_CONTEXTS) { descriptor[0] = 0; descriptor[1] = 0; } else { AssertPtr(pVCpu); AssertMsg(pVCpu->hm.s.uCurrentAsid != 0, ("VMXR0InvVPID invalid ASID %lu\n", pVCpu->hm.s.uCurrentAsid)); AssertMsg(pVCpu->hm.s.uCurrentAsid <= UINT16_MAX, ("VMXR0InvVPID invalid ASID %lu\n", pVCpu->hm.s.uCurrentAsid)); descriptor[0] = pVCpu->hm.s.uCurrentAsid; descriptor[1] = GCPtr; } int rc = VMXR0InvVPID(enmFlush, &descriptor[0]); NOREF(rc); AssertMsg(rc == VINF_SUCCESS, ("VMXR0InvVPID %x %x %RGv failed with %d\n", enmFlush, pVCpu ? pVCpu->hm.s.uCurrentAsid : 0, GCPtr, rc)); #ifdef VBOX_WITH_STATISTICS if (pVCpu) STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushAsid); #endif } /** * Invalidates a guest page by guest virtual address. Only relevant for * EPT/VPID, otherwise there is nothing really to invalidate. * * @returns VBox status code. * @param pVM Pointer to the VM. * @param pVCpu Pointer to the VMCPU. * @param GCVirt Guest virtual address of the page to invalidate. */ VMMR0DECL(int) VMXR0InvalidatePage(PVM pVM, PVMCPU pVCpu, RTGCPTR GCVirt) { bool fFlushPending = VMCPU_FF_ISSET(pVCpu, VMCPU_FF_TLB_FLUSH); Log2(("VMXR0InvalidatePage %RGv\n", GCVirt)); if (!fFlushPending) { /* * We must invalidate the guest TLB entry in either case, we cannot ignore it even for the EPT case * See @bugref{6043} and @bugref{6177} * * Set the VMCPU_FF_TLB_FLUSH force flag and flush before VMENTRY in hmR0VmxSetupTLB*() as this * function maybe called in a loop with individual addresses. */ if (pVM->hm.s.vmx.fVpid) { /* If we can flush just this page do it, otherwise flush as little as possible. */ if (pVM->hm.s.vmx.msr.vmx_ept_vpid_caps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR) hmR0VmxFlushVPID(pVM, pVCpu, VMX_FLUSH_VPID_INDIV_ADDR, GCVirt); else VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH); } else if (pVM->hm.s.fNestedPaging) VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH); } return VINF_SUCCESS; } /** * Invalidates a guest page by physical address. Only relevant for EPT/VPID, * otherwise there is nothing really to invalidate. * * NOTE: Assumes the current instruction references this physical page though a virtual address!! * * @returns VBox status code. * @param pVM Pointer to the VM. * @param pVCpu Pointer to the VMCPU. * @param GCPhys Guest physical address of the page to invalidate. */ VMMR0DECL(int) VMXR0InvalidatePhysPage(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys) { LogFlow(("VMXR0InvalidatePhysPage %RGp\n", GCPhys)); /* * We cannot flush a page by guest-physical address. invvpid takes only a linear address * while invept only flushes by EPT not individual addresses. We update the force flag here * and flush before VMENTRY in hmR0VmxSetupTLB*(). This function might be called in a loop. */ VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH); return VINF_SUCCESS; } /** * Report world switch error and dump some useful debug info. * * @param pVM Pointer to the VM. * @param pVCpu Pointer to the VMCPU. * @param rc Return code. * @param pCtx Pointer to the current guest CPU context (not updated). */ static void hmR0VmxReportWorldSwitchError(PVM pVM, PVMCPU pVCpu, VBOXSTRICTRC rc, PCPUMCTX pCtx) { NOREF(pVM); switch (VBOXSTRICTRC_VAL(rc)) { case VERR_VMX_INVALID_VMXON_PTR: AssertFailed(); break; case VERR_VMX_UNABLE_TO_START_VM: { int rc2; RTCCUINTREG exitReason, instrError; rc2 = VMXReadVmcs(VMX_VMCS32_RO_EXIT_REASON, &exitReason); rc2 |= VMXReadVmcs(VMX_VMCS32_RO_VM_INSTR_ERROR, &instrError); AssertRC(rc2); if (rc2 == VINF_SUCCESS) { Log(("Unable to start/resume VM for reason: %x. Instruction error %x\n", (uint32_t)exitReason, (uint32_t)instrError)); Log(("Current stack %08x\n", &rc2)); pVCpu->hm.s.vmx.lasterror.u32InstrError = instrError; pVCpu->hm.s.vmx.lasterror.u32ExitReason = exitReason; #ifdef VBOX_STRICT RTGDTR gdtr; PCX86DESCHC pDesc; RTCCUINTREG val; ASMGetGDTR(&gdtr); VMXReadVmcs(VMX_VMCS_GUEST_RIP, &val); Log(("Old eip %RGv new %RGv\n", (RTGCPTR)pCtx->rip, (RTGCPTR)val)); VMXReadVmcs(VMX_VMCS32_CTRL_PIN_EXEC, &val); Log(("VMX_VMCS_CTRL_PIN_EXEC %08x\n", val)); VMXReadVmcs(VMX_VMCS32_CTRL_PROC_EXEC, &val); Log(("VMX_VMCS_CTRL_PROC_EXEC %08x\n", val)); VMXReadVmcs(VMX_VMCS32_CTRL_ENTRY, &val); Log(("VMX_VMCS_CTRL_ENTRY %08x\n", val)); VMXReadVmcs(VMX_VMCS32_CTRL_EXIT, &val); Log(("VMX_VMCS_CTRL_EXIT %08x\n", val)); VMXReadVmcs(VMX_VMCS_HOST_CR0, &val); Log(("VMX_VMCS_HOST_CR0 %08x\n", val)); VMXReadVmcs(VMX_VMCS_HOST_CR3, &val); Log(("VMX_VMCS_HOST_CR3 %08x\n", val)); VMXReadVmcs(VMX_VMCS_HOST_CR4, &val); Log(("VMX_VMCS_HOST_CR4 %08x\n", val)); VMXReadVmcs(VMX_VMCS16_HOST_FIELD_CS, &val); Log(("VMX_VMCS_HOST_FIELD_CS %08x\n", val)); VMXReadVmcs(VMX_VMCS_GUEST_RFLAGS, &val); Log(("VMX_VMCS_GUEST_RFLAGS %08x\n", val)); if (val < gdtr.cbGdt) { pDesc = (PCX86DESCHC)(gdtr.pGdt + (val & X86_SEL_MASK)); HMR0DumpDescriptor(pDesc, val, "CS: "); } VMXReadVmcs(VMX_VMCS16_HOST_FIELD_DS, &val); Log(("VMX_VMCS_HOST_FIELD_DS %08x\n", val)); if (val < gdtr.cbGdt) { pDesc = (PCX86DESCHC)(gdtr.pGdt + (val & X86_SEL_MASK)); HMR0DumpDescriptor(pDesc, val, "DS: "); } VMXReadVmcs(VMX_VMCS16_HOST_FIELD_ES, &val); Log(("VMX_VMCS_HOST_FIELD_ES %08x\n", val)); if (val < gdtr.cbGdt) { pDesc = (PCX86DESCHC)(gdtr.pGdt + (val & X86_SEL_MASK)); HMR0DumpDescriptor(pDesc, val, "ES: "); } VMXReadVmcs(VMX_VMCS16_HOST_FIELD_FS, &val); Log(("VMX_VMCS16_HOST_FIELD_FS %08x\n", val)); if (val < gdtr.cbGdt) { pDesc = (PCX86DESCHC)(gdtr.pGdt + (val & X86_SEL_MASK)); HMR0DumpDescriptor(pDesc, val, "FS: "); } VMXReadVmcs(VMX_VMCS16_HOST_FIELD_GS, &val); Log(("VMX_VMCS16_HOST_FIELD_GS %08x\n", val)); if (val < gdtr.cbGdt) { pDesc = (PCX86DESCHC)(gdtr.pGdt + (val & X86_SEL_MASK)); HMR0DumpDescriptor(pDesc, val, "GS: "); } VMXReadVmcs(VMX_VMCS16_HOST_FIELD_SS, &val); Log(("VMX_VMCS16_HOST_FIELD_SS %08x\n", val)); if (val < gdtr.cbGdt) { pDesc = (PCX86DESCHC)(gdtr.pGdt + (val & X86_SEL_MASK)); HMR0DumpDescriptor(pDesc, val, "SS: "); } VMXReadVmcs(VMX_VMCS16_HOST_FIELD_TR, &val); Log(("VMX_VMCS16_HOST_FIELD_TR %08x\n", val)); if (val < gdtr.cbGdt) { pDesc = (PCX86DESCHC)(gdtr.pGdt + (val & X86_SEL_MASK)); HMR0DumpDescriptor(pDesc, val, "TR: "); } VMXReadVmcs(VMX_VMCS_HOST_TR_BASE, &val); Log(("VMX_VMCS_HOST_TR_BASE %RHv\n", val)); VMXReadVmcs(VMX_VMCS_HOST_GDTR_BASE, &val); Log(("VMX_VMCS_HOST_GDTR_BASE %RHv\n", val)); VMXReadVmcs(VMX_VMCS_HOST_IDTR_BASE, &val); Log(("VMX_VMCS_HOST_IDTR_BASE %RHv\n", val)); VMXReadVmcs(VMX_VMCS32_HOST_SYSENTER_CS, &val); Log(("VMX_VMCS_HOST_SYSENTER_CS %08x\n", val)); VMXReadVmcs(VMX_VMCS_HOST_SYSENTER_EIP, &val); Log(("VMX_VMCS_HOST_SYSENTER_EIP %RHv\n", val)); VMXReadVmcs(VMX_VMCS_HOST_SYSENTER_ESP, &val); Log(("VMX_VMCS_HOST_SYSENTER_ESP %RHv\n", val)); VMXReadVmcs(VMX_VMCS_HOST_RSP, &val); Log(("VMX_VMCS_HOST_RSP %RHv\n", val)); VMXReadVmcs(VMX_VMCS_HOST_RIP, &val); Log(("VMX_VMCS_HOST_RIP %RHv\n", val)); # if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL) if (VMX_IS_64BIT_HOST_MODE()) { Log(("MSR_K6_EFER = %RX64\n", ASMRdMsr(MSR_K6_EFER))); Log(("MSR_K6_STAR = %RX64\n", ASMRdMsr(MSR_K6_STAR))); Log(("MSR_K8_LSTAR = %RX64\n", ASMRdMsr(MSR_K8_LSTAR))); Log(("MSR_K8_CSTAR = %RX64\n", ASMRdMsr(MSR_K8_CSTAR))); Log(("MSR_K8_SF_MASK = %RX64\n", ASMRdMsr(MSR_K8_SF_MASK))); Log(("MSR_K8_KERNEL_GS_BASE = %RX64\n", ASMRdMsr(MSR_K8_KERNEL_GS_BASE))); } # endif #endif /* VBOX_STRICT */ } break; } default: /* impossible */ AssertMsgFailed(("%Rrc (%#x)\n", VBOXSTRICTRC_VAL(rc), VBOXSTRICTRC_VAL(rc))); break; } } #if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL) /** * Prepares for and executes VMLAUNCH (64 bits guest mode). * * @returns VBox status code. * @param fResume Whether to vmlauch/vmresume. * @param pCtx Pointer to the guest CPU context. * @param pCache Pointer to the VMCS cache. * @param pVM Pointer to the VM. * @param pVCpu Pointer to the VMCPU. */ DECLASM(int) VMXR0SwitcherStartVM64(RTHCUINT fResume, PCPUMCTX pCtx, PVMCSCACHE pCache, PVM pVM, PVMCPU pVCpu) { uint32_t aParam[6]; PHMGLOBLCPUINFO pCpu; RTHCPHYS HCPhysCpuPage; int rc; pCpu = HMR0GetCurrentCpu(); HCPhysCpuPage = RTR0MemObjGetPagePhysAddr(pCpu->hMemObj, 0); #ifdef VBOX_WITH_CRASHDUMP_MAGIC pCache->uPos = 1; pCache->interPD = PGMGetInterPaeCR3(pVM); pCache->pSwitcher = (uint64_t)pVM->hm.s.pfnHost32ToGuest64R0; #endif #ifdef DEBUG pCache->TestIn.HCPhysCpuPage= 0; pCache->TestIn.HCPhysVmcs = 0; pCache->TestIn.pCache = 0; pCache->TestOut.HCPhysVmcs = 0; pCache->TestOut.pCache = 0; pCache->TestOut.pCtx = 0; pCache->TestOut.eflags = 0; #endif aParam[0] = (uint32_t)(HCPhysCpuPage); /* Param 1: VMXON physical address - Lo. */ aParam[1] = (uint32_t)(HCPhysCpuPage >> 32); /* Param 1: VMXON physical address - Hi. */ aParam[2] = (uint32_t)(pVCpu->hm.s.vmx.HCPhysVmcs); /* Param 2: VMCS physical address - Lo. */ aParam[3] = (uint32_t)(pVCpu->hm.s.vmx.HCPhysVmcs >> 32); /* Param 2: VMCS physical address - Hi. */ aParam[4] = VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hm.s.vmx.VMCSCache); aParam[5] = 0; #ifdef VBOX_WITH_CRASHDUMP_MAGIC pCtx->dr[4] = pVM->hm.s.vmx.pScratchPhys + 16 + 8; *(uint32_t *)(pVM->hm.s.vmx.pScratch + 16 + 8) = 1; #endif rc = VMXR0Execute64BitsHandler(pVM, pVCpu, pCtx, HM64ON32OP_VMXRCStartVM64, 6, &aParam[0]); #ifdef VBOX_WITH_CRASHDUMP_MAGIC Assert(*(uint32_t *)(pVM->hm.s.vmx.pScratch + 16 + 8) == 5); Assert(pCtx->dr[4] == 10); *(uint32_t *)(pVM->hm.s.vmx.pScratch + 16 + 8) = 0xff; #endif #ifdef DEBUG AssertMsg(pCache->TestIn.HCPhysCpuPage== HCPhysCpuPage, ("%RHp vs %RHp\n", pCache->TestIn.HCPhysCpuPage, HCPhysCpuPage)); AssertMsg(pCache->TestIn.HCPhysVmcs == pVCpu->hm.s.vmx.HCPhysVmcs, ("%RHp vs %RHp\n", pCache->TestIn.HCPhysVmcs, pVCpu->hm.s.vmx.HCPhysVmcs)); AssertMsg(pCache->TestIn.HCPhysVmcs == pCache->TestOut.HCPhysVmcs, ("%RHp vs %RHp\n", pCache->TestIn.HCPhysVmcs, pCache->TestOut.HCPhysVmcs)); AssertMsg(pCache->TestIn.pCache == pCache->TestOut.pCache, ("%RGv vs %RGv\n", pCache->TestIn.pCache, pCache->TestOut.pCache)); AssertMsg(pCache->TestIn.pCache == VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hm.s.vmx.VMCSCache), ("%RGv vs %RGv\n", pCache->TestIn.pCache, VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hm.s.vmx.VMCSCache))); AssertMsg(pCache->TestIn.pCtx == pCache->TestOut.pCtx, ("%RGv vs %RGv\n", pCache->TestIn.pCtx, pCache->TestOut.pCtx)); Assert(!(pCache->TestOut.eflags & X86_EFL_IF)); #endif return rc; } #ifdef VBOX_STRICT static bool hmR0VmxIsValidReadField(uint32_t idxField) { switch (idxField) { case VMX_VMCS_GUEST_RIP: case VMX_VMCS_GUEST_RSP: case VMX_VMCS_GUEST_RFLAGS: case VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE: case VMX_VMCS_CTRL_CR0_READ_SHADOW: case VMX_VMCS_GUEST_CR0: case VMX_VMCS_CTRL_CR4_READ_SHADOW: case VMX_VMCS_GUEST_CR4: case VMX_VMCS_GUEST_DR7: case VMX_VMCS32_GUEST_SYSENTER_CS: case VMX_VMCS_GUEST_SYSENTER_EIP: case VMX_VMCS_GUEST_SYSENTER_ESP: case VMX_VMCS32_GUEST_GDTR_LIMIT: case VMX_VMCS_GUEST_GDTR_BASE: case VMX_VMCS32_GUEST_IDTR_LIMIT: case VMX_VMCS_GUEST_IDTR_BASE: case VMX_VMCS16_GUEST_FIELD_CS: case VMX_VMCS32_GUEST_CS_LIMIT: case VMX_VMCS_GUEST_CS_BASE: case VMX_VMCS32_GUEST_CS_ACCESS_RIGHTS: case VMX_VMCS16_GUEST_FIELD_DS: case VMX_VMCS32_GUEST_DS_LIMIT: case VMX_VMCS_GUEST_DS_BASE: case VMX_VMCS32_GUEST_DS_ACCESS_RIGHTS: case VMX_VMCS16_GUEST_FIELD_ES: case VMX_VMCS32_GUEST_ES_LIMIT: case VMX_VMCS_GUEST_ES_BASE: case VMX_VMCS32_GUEST_ES_ACCESS_RIGHTS: case VMX_VMCS16_GUEST_FIELD_FS: case VMX_VMCS32_GUEST_FS_LIMIT: case VMX_VMCS_GUEST_FS_BASE: case VMX_VMCS32_GUEST_FS_ACCESS_RIGHTS: case VMX_VMCS16_GUEST_FIELD_GS: case VMX_VMCS32_GUEST_GS_LIMIT: case VMX_VMCS_GUEST_GS_BASE: case VMX_VMCS32_GUEST_GS_ACCESS_RIGHTS: case VMX_VMCS16_GUEST_FIELD_SS: case VMX_VMCS32_GUEST_SS_LIMIT: case VMX_VMCS_GUEST_SS_BASE: case VMX_VMCS32_GUEST_SS_ACCESS_RIGHTS: case VMX_VMCS16_GUEST_FIELD_LDTR: case VMX_VMCS32_GUEST_LDTR_LIMIT: case VMX_VMCS_GUEST_LDTR_BASE: case VMX_VMCS32_GUEST_LDTR_ACCESS_RIGHTS: case VMX_VMCS16_GUEST_FIELD_TR: case VMX_VMCS32_GUEST_TR_LIMIT: case VMX_VMCS_GUEST_TR_BASE: case VMX_VMCS32_GUEST_TR_ACCESS_RIGHTS: case VMX_VMCS32_RO_EXIT_REASON: case VMX_VMCS32_RO_VM_INSTR_ERROR: case VMX_VMCS32_RO_EXIT_INSTR_LENGTH: case VMX_VMCS32_RO_EXIT_INTERRUPTION_ERROR_CODE: case VMX_VMCS32_RO_EXIT_INTERRUPTION_INFO: case VMX_VMCS32_RO_EXIT_INSTR_INFO: case VMX_VMCS_RO_EXIT_QUALIFICATION: case VMX_VMCS32_RO_IDT_INFO: case VMX_VMCS32_RO_IDT_ERROR_CODE: case VMX_VMCS_GUEST_CR3: case VMX_VMCS64_EXIT_GUEST_PHYS_ADDR_FULL: return true; } return false; } static bool hmR0VmxIsValidWriteField(uint32_t idxField) { switch (idxField) { case VMX_VMCS_GUEST_LDTR_BASE: case VMX_VMCS_GUEST_TR_BASE: case VMX_VMCS_GUEST_GDTR_BASE: case VMX_VMCS_GUEST_IDTR_BASE: case VMX_VMCS_GUEST_SYSENTER_EIP: case VMX_VMCS_GUEST_SYSENTER_ESP: case VMX_VMCS_GUEST_CR0: case VMX_VMCS_GUEST_CR4: case VMX_VMCS_GUEST_CR3: case VMX_VMCS_GUEST_DR7: case VMX_VMCS_GUEST_RIP: case VMX_VMCS_GUEST_RSP: case VMX_VMCS_GUEST_CS_BASE: case VMX_VMCS_GUEST_DS_BASE: case VMX_VMCS_GUEST_ES_BASE: case VMX_VMCS_GUEST_FS_BASE: case VMX_VMCS_GUEST_GS_BASE: case VMX_VMCS_GUEST_SS_BASE: return true; } return false; } #endif /* VBOX_STRICT */ /** * Executes the specified handler in 64-bit mode. * * @returns VBox status code. * @param pVM Pointer to the VM. * @param pVCpu Pointer to the VMCPU. * @param pCtx Pointer to the guest CPU context. * @param enmOp The operation to perform. * @param cbParam Number of parameters. * @param paParam Array of 32-bit parameters. */ VMMR0DECL(int) VMXR0Execute64BitsHandler(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, HM64ON32OP enmOp, uint32_t cbParam, uint32_t *paParam) { int rc, rc2; PHMGLOBLCPUINFO pCpu; RTHCPHYS HCPhysCpuPage; RTHCUINTREG uOldEFlags; AssertReturn(pVM->hm.s.pfnHost32ToGuest64R0, VERR_HM_NO_32_TO_64_SWITCHER); Assert(enmOp > HM64ON32OP_INVALID && enmOp < HM64ON32OP_END); Assert(pVCpu->hm.s.vmx.VMCSCache.Write.cValidEntries <= RT_ELEMENTS(pVCpu->hm.s.vmx.VMCSCache.Write.aField)); Assert(pVCpu->hm.s.vmx.VMCSCache.Read.cValidEntries <= RT_ELEMENTS(pVCpu->hm.s.vmx.VMCSCache.Read.aField)); #ifdef VBOX_STRICT for (unsigned i=0;ihm.s.vmx.VMCSCache.Write.cValidEntries;i++) Assert(hmR0VmxIsValidWriteField(pVCpu->hm.s.vmx.VMCSCache.Write.aField[i])); for (unsigned i=0;ihm.s.vmx.VMCSCache.Read.cValidEntries;i++) Assert(hmR0VmxIsValidReadField(pVCpu->hm.s.vmx.VMCSCache.Read.aField[i])); #endif /* Disable interrupts. */ uOldEFlags = ASMIntDisableFlags(); #ifdef VBOX_WITH_VMMR0_DISABLE_LAPIC_NMI RTCPUID idHostCpu = RTMpCpuId(); CPUMR0SetLApic(pVM, idHostCpu); #endif pCpu = HMR0GetCurrentCpu(); HCPhysCpuPage = RTR0MemObjGetPagePhysAddr(pCpu->hMemObj, 0); /* Clear VMCS. Marking it inactive, clearing implementation-specific data and writing VMCS data back to memory. */ VMXClearVMCS(pVCpu->hm.s.vmx.HCPhysVmcs); /* Leave VMX Root Mode. */ VMXDisable(); ASMSetCR4(ASMGetCR4() & ~X86_CR4_VMXE); CPUMSetHyperESP(pVCpu, VMMGetStackRC(pVCpu)); CPUMSetHyperEIP(pVCpu, enmOp); for (int i=(int)cbParam-1;i>=0;i--) CPUMPushHyper(pVCpu, paParam[i]); STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatWorldSwitch3264, z); /* Call switcher. */ rc = pVM->hm.s.pfnHost32ToGuest64R0(pVM, RT_OFFSETOF(VM, aCpus[pVCpu->idCpu].cpum) - RT_OFFSETOF(VM, cpum)); STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatWorldSwitch3264, z); /* Make sure the VMX instructions don't cause #UD faults. */ ASMSetCR4(ASMGetCR4() | X86_CR4_VMXE); /* Enter VMX Root Mode */ rc2 = VMXEnable(HCPhysCpuPage); if (RT_FAILURE(rc2)) { ASMSetCR4(ASMGetCR4() & ~X86_CR4_VMXE); ASMSetFlags(uOldEFlags); return VERR_VMX_VMXON_FAILED; } rc2 = VMXActivateVMCS(pVCpu->hm.s.vmx.HCPhysVmcs); AssertRC(rc2); Assert(!(ASMGetFlags() & X86_EFL_IF)); ASMSetFlags(uOldEFlags); return rc; } #endif /* HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL) */ #if HC_ARCH_BITS == 32 && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL) /** * Executes VMWRITE. * * @returns VBox status code * @param pVCpu Pointer to the VMCPU. * @param idxField VMCS field index. * @param u64Val 16, 32 or 64 bits value. */ VMMR0DECL(int) VMXWriteVmcs64Ex(PVMCPU pVCpu, uint32_t idxField, uint64_t u64Val) { int rc; switch (idxField) { case VMX_VMCS64_CTRL_TSC_OFFSET_FULL: case VMX_VMCS64_CTRL_IO_BITMAP_A_FULL: case VMX_VMCS64_CTRL_IO_BITMAP_B_FULL: case VMX_VMCS64_CTRL_MSR_BITMAP_FULL: case VMX_VMCS64_CTRL_EXIT_MSR_STORE_FULL: case VMX_VMCS64_CTRL_EXIT_MSR_LOAD_FULL: case VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_FULL: case VMX_VMCS64_CTRL_VAPIC_PAGEADDR_FULL: case VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL: case VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL: case VMX_VMCS64_GUEST_PDPTE0_FULL: case VMX_VMCS64_GUEST_PDPTE1_FULL: case VMX_VMCS64_GUEST_PDPTE2_FULL: case VMX_VMCS64_GUEST_PDPTE3_FULL: case VMX_VMCS64_GUEST_DEBUGCTL_FULL: case VMX_VMCS64_GUEST_EFER_FULL: case VMX_VMCS64_CTRL_EPTP_FULL: /* These fields consist of two parts, which are both writable in 32 bits mode. */ rc = VMXWriteVmcs32(idxField, u64Val); rc |= VMXWriteVmcs32(idxField + 1, (uint32_t)(u64Val >> 32ULL)); AssertRC(rc); return rc; case VMX_VMCS_GUEST_LDTR_BASE: case VMX_VMCS_GUEST_TR_BASE: case VMX_VMCS_GUEST_GDTR_BASE: case VMX_VMCS_GUEST_IDTR_BASE: case VMX_VMCS_GUEST_SYSENTER_EIP: case VMX_VMCS_GUEST_SYSENTER_ESP: case VMX_VMCS_GUEST_CR0: case VMX_VMCS_GUEST_CR4: case VMX_VMCS_GUEST_CR3: case VMX_VMCS_GUEST_DR7: case VMX_VMCS_GUEST_RIP: case VMX_VMCS_GUEST_RSP: case VMX_VMCS_GUEST_CS_BASE: case VMX_VMCS_GUEST_DS_BASE: case VMX_VMCS_GUEST_ES_BASE: case VMX_VMCS_GUEST_FS_BASE: case VMX_VMCS_GUEST_GS_BASE: case VMX_VMCS_GUEST_SS_BASE: /* Queue a 64 bits value as we can't set it in 32 bits host mode. */ if (u64Val >> 32ULL) rc = VMXWriteCachedVmcsEx(pVCpu, idxField, u64Val); else rc = VMXWriteVmcs32(idxField, (uint32_t)u64Val); return rc; default: AssertMsgFailed(("Unexpected field %x\n", idxField)); return VERR_INVALID_PARAMETER; } } /** * Cache VMCS writes for running 64 bits guests on 32 bits hosts. * * @param pVCpu Pointer to the VMCPU. * @param idxField VMCS field index. * @param u64Val 16, 32 or 64 bits value. */ VMMR0DECL(int) VMXWriteCachedVmcsEx(PVMCPU pVCpu, uint32_t idxField, uint64_t u64Val) { PVMCSCACHE pCache = &pVCpu->hm.s.vmx.VMCSCache; AssertMsgReturn(pCache->Write.cValidEntries < VMCSCACHE_MAX_ENTRY - 1, ("entries=%x\n", pCache->Write.cValidEntries), VERR_ACCESS_DENIED); /* Make sure there are no duplicates. */ for (unsigned i = 0; i < pCache->Write.cValidEntries; i++) { if (pCache->Write.aField[i] == idxField) { pCache->Write.aFieldVal[i] = u64Val; return VINF_SUCCESS; } } pCache->Write.aField[pCache->Write.cValidEntries] = idxField; pCache->Write.aFieldVal[pCache->Write.cValidEntries] = u64Val; pCache->Write.cValidEntries++; return VINF_SUCCESS; } #endif /* HC_ARCH_BITS == 32 && !VBOX_WITH_HYBRID_32BIT_KERNEL */