VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR0/HWVMXR0.cpp@ 15507

Last change on this file since 15507 was 15507, checked in by vboxsync, 16 years ago

VT-x: keep track of missed paging mode changes

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 147.2 KB
Line 
1/* $Id: HWVMXR0.cpp 15507 2008-12-15 14:51:45Z vboxsync $ */
2/** @file
3 * HWACCM VMX - Host Context Ring 0.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/*******************************************************************************
24* Header Files *
25*******************************************************************************/
26#define LOG_GROUP LOG_GROUP_HWACCM
27#include <VBox/hwaccm.h>
28#include "HWACCMInternal.h"
29#include <VBox/vm.h>
30#include <VBox/x86.h>
31#include <VBox/pgm.h>
32#include <VBox/pdm.h>
33#include <VBox/err.h>
34#include <VBox/log.h>
35#include <VBox/selm.h>
36#include <VBox/iom.h>
37#include <iprt/param.h>
38#include <iprt/assert.h>
39#include <iprt/asm.h>
40#include <iprt/string.h>
41#include "HWVMXR0.h"
42
43/*******************************************************************************
44* Defined Constants And Macros *
45*******************************************************************************/
46#if defined(RT_ARCH_AMD64)
47# define VMX_IS_64BIT_HOST_MODE() (true)
48#elif defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
49# define VMX_IS_64BIT_HOST_MODE() (g_fVMXIs64bitHost != 0)
50#else
51# define VMX_IS_64BIT_HOST_MODE() (false)
52#endif
53
54/*******************************************************************************
55* Global Variables *
56*******************************************************************************/
57/* IO operation lookup arrays. */
58static uint32_t const g_aIOSize[4] = {1, 2, 0, 4};
59static uint32_t const g_aIOOpAnd[4] = {0xff, 0xffff, 0, 0xffffffff};
60
61#ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
62/** See HWACCMR0A.asm. */
63extern "C" uint32_t g_fVMXIs64bitHost;
64#endif
65
66/*******************************************************************************
67* Local Functions *
68*******************************************************************************/
69static void VMXR0ReportWorldSwitchError(PVM pVM, PVMCPU pVCpu, int rc, PCPUMCTX pCtx);
70static void vmxR0SetupTLBEPT(PVM pVM, PVMCPU pVCpu);
71static void vmxR0SetupTLBVPID(PVM pVM, PVMCPU pVCpu);
72static void vmxR0SetupTLBDummy(PVM pVM, PVMCPU pVCpu);
73static void vmxR0FlushEPT(PVM pVM, PVMCPU pVCpu, VMX_FLUSH enmFlush, RTGCPHYS GCPhys);
74static void vmxR0FlushVPID(PVM pVM, PVMCPU pVCpu, VMX_FLUSH enmFlush, RTGCPTR GCPtr);
75static void vmxR0UpdateExceptionBitmap(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx);
76
77
78static void VMXR0CheckError(PVM pVM, PVMCPU pVCpu, int rc)
79{
80 if (rc == VERR_VMX_GENERIC)
81 {
82 RTCCUINTREG instrError;
83
84 VMXReadVMCS(VMX_VMCS32_RO_VM_INSTR_ERROR, &instrError);
85 pVCpu->hwaccm.s.vmx.lasterror.ulInstrError = instrError;
86 }
87 pVM->hwaccm.s.lLastError = rc;
88}
89
90/**
91 * Sets up and activates VT-x on the current CPU
92 *
93 * @returns VBox status code.
94 * @param pCpu CPU info struct
95 * @param pVM The VM to operate on. (can be NULL after a resume!!)
96 * @param pvPageCpu Pointer to the global cpu page
97 * @param pPageCpuPhys Physical address of the global cpu page
98 */
99VMMR0DECL(int) VMXR0EnableCpu(PHWACCM_CPUINFO pCpu, PVM pVM, void *pvPageCpu, RTHCPHYS pPageCpuPhys)
100{
101 AssertReturn(pPageCpuPhys, VERR_INVALID_PARAMETER);
102 AssertReturn(pvPageCpu, VERR_INVALID_PARAMETER);
103
104#ifdef LOG_ENABLED
105 SUPR0Printf("VMXR0EnableCpu cpu %d page (%x) %x\n", pCpu->idCpu, pvPageCpu, (uint32_t)pPageCpuPhys);
106#endif
107 if (pVM)
108 {
109 /* Set revision dword at the beginning of the VMXON structure. */
110 *(uint32_t *)pvPageCpu = MSR_IA32_VMX_BASIC_INFO_VMCS_ID(pVM->hwaccm.s.vmx.msr.vmx_basic_info);
111 }
112
113 /** @todo we should unmap the two pages from the virtual address space in order to prevent accidental corruption.
114 * (which can have very bad consequences!!!)
115 */
116
117 /* Make sure the VMX instructions don't cause #UD faults. */
118 ASMSetCR4(ASMGetCR4() | X86_CR4_VMXE);
119
120 /* Enter VMX Root Mode */
121 int rc = VMXEnable(pPageCpuPhys);
122 if (RT_FAILURE(rc))
123 {
124 if (pVM)
125 VMXR0CheckError(pVM, &pVM->aCpus[0], rc);
126 ASMSetCR4(ASMGetCR4() & ~X86_CR4_VMXE);
127 return VERR_VMX_VMXON_FAILED;
128 }
129 return VINF_SUCCESS;
130}
131
132/**
133 * Deactivates VT-x on the current CPU
134 *
135 * @returns VBox status code.
136 * @param pCpu CPU info struct
137 * @param pvPageCpu Pointer to the global cpu page
138 * @param pPageCpuPhys Physical address of the global cpu page
139 */
140VMMR0DECL(int) VMXR0DisableCpu(PHWACCM_CPUINFO pCpu, void *pvPageCpu, RTHCPHYS pPageCpuPhys)
141{
142 AssertReturn(pPageCpuPhys, VERR_INVALID_PARAMETER);
143 AssertReturn(pvPageCpu, VERR_INVALID_PARAMETER);
144
145 /* Leave VMX Root Mode. */
146 VMXDisable();
147
148 /* And clear the X86_CR4_VMXE bit */
149 ASMSetCR4(ASMGetCR4() & ~X86_CR4_VMXE);
150
151#ifdef LOG_ENABLED
152 SUPR0Printf("VMXR0DisableCpu cpu %d\n", pCpu->idCpu);
153#endif
154 return VINF_SUCCESS;
155}
156
157/**
158 * Does Ring-0 per VM VT-x init.
159 *
160 * @returns VBox status code.
161 * @param pVM The VM to operate on.
162 */
163VMMR0DECL(int) VMXR0InitVM(PVM pVM)
164{
165 int rc;
166
167#ifdef LOG_ENABLED
168 SUPR0Printf("VMXR0InitVM %x\n", pVM);
169#endif
170
171 pVM->hwaccm.s.vmx.pMemObjAPIC = NIL_RTR0MEMOBJ;
172
173 if (pVM->hwaccm.s.vmx.msr.vmx_proc_ctls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_USE_TPR_SHADOW)
174 {
175 /* Allocate one page for the virtual APIC mmio cache. */
176 rc = RTR0MemObjAllocCont(&pVM->hwaccm.s.vmx.pMemObjAPIC, 1 << PAGE_SHIFT, true /* executable R0 mapping */);
177 AssertRC(rc);
178 if (RT_FAILURE(rc))
179 return rc;
180
181 pVM->hwaccm.s.vmx.pAPIC = (uint8_t *)RTR0MemObjAddress(pVM->hwaccm.s.vmx.pMemObjAPIC);
182 pVM->hwaccm.s.vmx.pAPICPhys = RTR0MemObjGetPagePhysAddr(pVM->hwaccm.s.vmx.pMemObjAPIC, 0);
183 ASMMemZero32(pVM->hwaccm.s.vmx.pAPIC, PAGE_SIZE);
184 }
185 else
186 {
187 pVM->hwaccm.s.vmx.pMemObjAPIC = 0;
188 pVM->hwaccm.s.vmx.pAPIC = 0;
189 pVM->hwaccm.s.vmx.pAPICPhys = 0;
190 }
191
192 /* Allocate the MSR bitmap if this feature is supported. */
193 if (pVM->hwaccm.s.vmx.msr.vmx_proc_ctls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_USE_MSR_BITMAPS)
194 {
195 rc = RTR0MemObjAllocCont(&pVM->hwaccm.s.vmx.pMemObjMSRBitmap, 1 << PAGE_SHIFT, true /* executable R0 mapping */);
196 AssertRC(rc);
197 if (RT_FAILURE(rc))
198 return rc;
199
200 pVM->hwaccm.s.vmx.pMSRBitmap = (uint8_t *)RTR0MemObjAddress(pVM->hwaccm.s.vmx.pMemObjMSRBitmap);
201 pVM->hwaccm.s.vmx.pMSRBitmapPhys = RTR0MemObjGetPagePhysAddr(pVM->hwaccm.s.vmx.pMemObjMSRBitmap, 0);
202 memset(pVM->hwaccm.s.vmx.pMSRBitmap, 0xff, PAGE_SIZE);
203 }
204
205 /* Allocate VMCBs for all guest CPUs. */
206 for (unsigned i=0;i<pVM->cCPUs;i++)
207 {
208 PVMCPU pVCpu = &pVM->aCpus[i];
209
210 pVCpu->hwaccm.s.vmx.pMemObjVMCS = NIL_RTR0MEMOBJ;
211
212 /* Allocate one page for the VM control structure (VMCS). */
213 rc = RTR0MemObjAllocCont(&pVCpu->hwaccm.s.vmx.pMemObjVMCS, 1 << PAGE_SHIFT, true /* executable R0 mapping */);
214 AssertRC(rc);
215 if (RT_FAILURE(rc))
216 return rc;
217
218 pVCpu->hwaccm.s.vmx.pVMCS = RTR0MemObjAddress(pVCpu->hwaccm.s.vmx.pMemObjVMCS);
219 pVCpu->hwaccm.s.vmx.pVMCSPhys = RTR0MemObjGetPagePhysAddr(pVCpu->hwaccm.s.vmx.pMemObjVMCS, 0);
220 ASMMemZero32(pVCpu->hwaccm.s.vmx.pVMCS, PAGE_SIZE);
221
222 pVCpu->hwaccm.s.vmx.cr0_mask = 0;
223 pVCpu->hwaccm.s.vmx.cr4_mask = 0;
224
225 /* Current guest paging mode. */
226 pVCpu->hwaccm.s.vmx.enmLastSeenGuestMode = PGMMODE_REAL;
227
228#ifdef LOG_ENABLED
229 SUPR0Printf("VMXR0InitVM %x VMCS=%x (%x)\n", pVM, pVCpu->hwaccm.s.vmx.pVMCS, (uint32_t)pVCpu->hwaccm.s.vmx.pVMCSPhys);
230#endif
231 }
232
233 return VINF_SUCCESS;
234}
235
236/**
237 * Does Ring-0 per VM VT-x termination.
238 *
239 * @returns VBox status code.
240 * @param pVM The VM to operate on.
241 */
242VMMR0DECL(int) VMXR0TermVM(PVM pVM)
243{
244 for (unsigned i=0;i<pVM->cCPUs;i++)
245 {
246 if (pVM->aCpus[i].hwaccm.s.vmx.pMemObjVMCS != NIL_RTR0MEMOBJ)
247 {
248 RTR0MemObjFree(pVM->aCpus[i].hwaccm.s.vmx.pMemObjVMCS, false);
249 pVM->aCpus[i].hwaccm.s.vmx.pMemObjVMCS = NIL_RTR0MEMOBJ;
250 pVM->aCpus[i].hwaccm.s.vmx.pVMCS = 0;
251 pVM->aCpus[i].hwaccm.s.vmx.pVMCSPhys = 0;
252 }
253 }
254 if (pVM->hwaccm.s.vmx.pMemObjAPIC != NIL_RTR0MEMOBJ)
255 {
256 RTR0MemObjFree(pVM->hwaccm.s.vmx.pMemObjAPIC, false);
257 pVM->hwaccm.s.vmx.pMemObjAPIC = NIL_RTR0MEMOBJ;
258 pVM->hwaccm.s.vmx.pAPIC = 0;
259 pVM->hwaccm.s.vmx.pAPICPhys = 0;
260 }
261 if (pVM->hwaccm.s.vmx.pMemObjMSRBitmap != NIL_RTR0MEMOBJ)
262 {
263 RTR0MemObjFree(pVM->hwaccm.s.vmx.pMemObjMSRBitmap, false);
264 pVM->hwaccm.s.vmx.pMemObjMSRBitmap = NIL_RTR0MEMOBJ;
265 pVM->hwaccm.s.vmx.pMSRBitmap = 0;
266 pVM->hwaccm.s.vmx.pMSRBitmapPhys = 0;
267 }
268 return VINF_SUCCESS;
269}
270
271/**
272 * Sets up VT-x for the specified VM
273 *
274 * @returns VBox status code.
275 * @param pVM The VM to operate on.
276 */
277VMMR0DECL(int) VMXR0SetupVM(PVM pVM)
278{
279 int rc = VINF_SUCCESS;
280 uint32_t val;
281
282 AssertReturn(pVM, VERR_INVALID_PARAMETER);
283
284 for (unsigned i=0;i<pVM->cCPUs;i++)
285 {
286 PVMCPU pVCpu = &pVM->aCpus[i];
287
288 Assert(pVCpu->hwaccm.s.vmx.pVMCS);
289
290 /* Set revision dword at the beginning of the VMCS structure. */
291 *(uint32_t *)pVCpu->hwaccm.s.vmx.pVMCS = MSR_IA32_VMX_BASIC_INFO_VMCS_ID(pVM->hwaccm.s.vmx.msr.vmx_basic_info);
292
293 /* Clear VM Control Structure. */
294 Log(("pVMCSPhys = %RHp\n", pVCpu->hwaccm.s.vmx.pVMCSPhys));
295 rc = VMXClearVMCS(pVCpu->hwaccm.s.vmx.pVMCSPhys);
296 if (RT_FAILURE(rc))
297 goto vmx_end;
298
299 /* Activate the VM Control Structure. */
300 rc = VMXActivateVMCS(pVCpu->hwaccm.s.vmx.pVMCSPhys);
301 if (RT_FAILURE(rc))
302 goto vmx_end;
303
304 /* VMX_VMCS_CTRL_PIN_EXEC_CONTROLS
305 * Set required bits to one and zero according to the MSR capabilities.
306 */
307 val = pVM->hwaccm.s.vmx.msr.vmx_pin_ctls.n.disallowed0;
308 /* External and non-maskable interrupts cause VM-exits. */
309 val = val | VMX_VMCS_CTRL_PIN_EXEC_CONTROLS_EXT_INT_EXIT | VMX_VMCS_CTRL_PIN_EXEC_CONTROLS_NMI_EXIT;
310 val &= pVM->hwaccm.s.vmx.msr.vmx_pin_ctls.n.allowed1;
311
312 rc = VMXWriteVMCS(VMX_VMCS_CTRL_PIN_EXEC_CONTROLS, val);
313 AssertRC(rc);
314
315 /* VMX_VMCS_CTRL_PROC_EXEC_CONTROLS
316 * Set required bits to one and zero according to the MSR capabilities.
317 */
318 val = pVM->hwaccm.s.vmx.msr.vmx_proc_ctls.n.disallowed0;
319 /* Program which event cause VM-exits and which features we want to use. */
320 val = val | VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_HLT_EXIT
321 | VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_TSC_OFFSET
322 | VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_MOV_DR_EXIT
323 | VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_UNCOND_IO_EXIT
324 | VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_MWAIT_EXIT; /* don't execute mwait or else we'll idle inside the guest (host thinks the cpu load is high) */
325
326 /* Without nested paging we should intercept invlpg and cr3 mov instructions. */
327 if (!pVM->hwaccm.s.fNestedPaging)
328 val |= VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_INVLPG_EXIT
329 | VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_CR3_LOAD_EXIT
330 | VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_CR3_STORE_EXIT;
331
332 /* Note: VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_MWAIT_EXIT might cause a vmlaunch failure with an invalid control fields error. (combined with some other exit reasons) */
333 if (pVM->hwaccm.s.vmx.msr.vmx_proc_ctls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_USE_TPR_SHADOW)
334 {
335 /* CR8 reads from the APIC shadow page; writes cause an exit is they lower the TPR below the threshold */
336 val |= VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_USE_TPR_SHADOW;
337 Assert(pVM->hwaccm.s.vmx.pAPIC);
338 }
339 else
340 /* Exit on CR8 reads & writes in case the TPR shadow feature isn't present. */
341 val |= VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_CR8_STORE_EXIT | VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_CR8_LOAD_EXIT;
342
343#ifdef VBOX_WITH_VTX_MSR_BITMAPS
344 if (pVM->hwaccm.s.vmx.msr.vmx_proc_ctls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_USE_MSR_BITMAPS)
345 {
346 Assert(pVM->hwaccm.s.vmx.pMSRBitmapPhys);
347 val |= VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_USE_MSR_BITMAPS;
348 }
349#endif
350
351 /* We will use the secondary control if it's present. */
352 val |= VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL;
353
354 /* Mask away the bits that the CPU doesn't support */
355 /** @todo make sure they don't conflict with the above requirements. */
356 val &= pVM->hwaccm.s.vmx.msr.vmx_proc_ctls.n.allowed1;
357 pVCpu->hwaccm.s.vmx.proc_ctls = val;
358
359 rc = VMXWriteVMCS(VMX_VMCS_CTRL_PROC_EXEC_CONTROLS, val);
360 AssertRC(rc);
361
362 if (pVM->hwaccm.s.vmx.msr.vmx_proc_ctls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL)
363 {
364 /* VMX_VMCS_CTRL_PROC_EXEC_CONTROLS2
365 * Set required bits to one and zero according to the MSR capabilities.
366 */
367 val = pVM->hwaccm.s.vmx.msr.vmx_proc_ctls2.n.disallowed0;
368 val |= VMX_VMCS_CTRL_PROC_EXEC2_WBINVD_EXIT;
369
370#ifdef HWACCM_VTX_WITH_EPT
371 if (pVM->hwaccm.s.fNestedPaging)
372 val |= VMX_VMCS_CTRL_PROC_EXEC2_EPT;
373#endif /* HWACCM_VTX_WITH_EPT */
374#ifdef HWACCM_VTX_WITH_VPID
375 else
376 if (pVM->hwaccm.s.vmx.fVPID)
377 val |= VMX_VMCS_CTRL_PROC_EXEC2_VPID;
378#endif /* HWACCM_VTX_WITH_VPID */
379
380 /* Mask away the bits that the CPU doesn't support */
381 /** @todo make sure they don't conflict with the above requirements. */
382 val &= pVM->hwaccm.s.vmx.msr.vmx_proc_ctls2.n.allowed1;
383
384 rc = VMXWriteVMCS(VMX_VMCS_CTRL_PROC_EXEC_CONTROLS2, val);
385 AssertRC(rc);
386 }
387
388 /* VMX_VMCS_CTRL_CR3_TARGET_COUNT
389 * Set required bits to one and zero according to the MSR capabilities.
390 */
391 rc = VMXWriteVMCS(VMX_VMCS_CTRL_CR3_TARGET_COUNT, 0);
392 AssertRC(rc);
393
394 /* Forward all exception except #NM & #PF to the guest.
395 * We always need to check pagefaults since our shadow page table can be out of sync.
396 * And we always lazily sync the FPU & XMM state.
397 */
398
399 /** @todo Possible optimization:
400 * Keep the FPU and XMM state current in the EM thread. That way there's no need to
401 * lazily sync anything, but the downside is that we can't use the FPU stack or XMM
402 * registers ourselves of course.
403 *
404 * Note: only possible if the current state is actually ours (X86_CR0_TS flag)
405 */
406
407 /* Don't filter page faults; all of them should cause a switch. */
408 rc = VMXWriteVMCS(VMX_VMCS_CTRL_PAGEFAULT_ERROR_MASK, 0);
409 rc |= VMXWriteVMCS(VMX_VMCS_CTRL_PAGEFAULT_ERROR_MATCH, 0);
410 AssertRC(rc);
411
412 /* Init TSC offset to zero. */
413 rc = VMXWriteVMCS64(VMX_VMCS_CTRL_TSC_OFFSET_FULL, 0);
414 AssertRC(rc);
415
416 rc = VMXWriteVMCS64(VMX_VMCS_CTRL_IO_BITMAP_A_FULL, 0);
417 AssertRC(rc);
418
419 rc = VMXWriteVMCS64(VMX_VMCS_CTRL_IO_BITMAP_B_FULL, 0);
420 AssertRC(rc);
421
422 /* Set the MSR bitmap address. */
423 if (pVM->hwaccm.s.vmx.msr.vmx_proc_ctls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_USE_MSR_BITMAPS)
424 {
425 /* Optional */
426 rc = VMXWriteVMCS64(VMX_VMCS_CTRL_MSR_BITMAP_FULL, pVM->hwaccm.s.vmx.pMSRBitmapPhys);
427 AssertRC(rc);
428 }
429
430 /* Clear MSR controls. */
431 rc = VMXWriteVMCS64(VMX_VMCS_CTRL_VMEXIT_MSR_STORE_FULL, 0);
432 rc |= VMXWriteVMCS64(VMX_VMCS_CTRL_VMEXIT_MSR_LOAD_FULL, 0);
433 rc |= VMXWriteVMCS64(VMX_VMCS_CTRL_VMENTRY_MSR_LOAD_FULL, 0);
434 rc |= VMXWriteVMCS(VMX_VMCS_CTRL_EXIT_MSR_STORE_COUNT, 0);
435 rc |= VMXWriteVMCS(VMX_VMCS_CTRL_EXIT_MSR_LOAD_COUNT, 0);
436 AssertRC(rc);
437
438 if (pVM->hwaccm.s.vmx.msr.vmx_proc_ctls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_USE_TPR_SHADOW)
439 {
440 Assert(pVM->hwaccm.s.vmx.pMemObjAPIC);
441 /* Optional */
442 rc = VMXWriteVMCS(VMX_VMCS_CTRL_TPR_THRESHOLD, 0);
443 rc |= VMXWriteVMCS64(VMX_VMCS_CTRL_VAPIC_PAGEADDR_FULL, pVM->hwaccm.s.vmx.pAPICPhys);
444 AssertRC(rc);
445 }
446
447 /* Set link pointer to -1. Not currently used. */
448 rc = VMXWriteVMCS64(VMX_VMCS_GUEST_LINK_PTR_FULL, 0xFFFFFFFFFFFFFFFFULL);
449 AssertRC(rc);
450
451 /* Clear VM Control Structure. Marking it inactive, clearing implementation specific data and writing back VMCS data to memory. */
452 rc = VMXClearVMCS(pVCpu->hwaccm.s.vmx.pVMCSPhys);
453 AssertRC(rc);
454
455 /* Configure the VMCS read cache. */
456 PVMCSCACHE pCache = &pVCpu->hwaccm.s.vmx.VMCSCache;
457
458 VMXSetupCachedReadVMCS(pCache, VMX_VMCS64_GUEST_RIP);
459 VMXSetupCachedReadVMCS(pCache, VMX_VMCS64_GUEST_RSP);
460 VMXSetupCachedReadVMCS(pCache, VMX_VMCS_GUEST_RFLAGS);
461 VMXSetupCachedReadVMCS(pCache, VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE);
462 VMXSetupCachedReadVMCS(pCache, VMX_VMCS_CTRL_CR0_READ_SHADOW);
463 VMXSetupCachedReadVMCS(pCache, VMX_VMCS64_GUEST_CR0);
464 VMXSetupCachedReadVMCS(pCache, VMX_VMCS_CTRL_CR4_READ_SHADOW);
465 VMXSetupCachedReadVMCS(pCache, VMX_VMCS64_GUEST_CR4);
466 VMXSetupCachedReadVMCS(pCache, VMX_VMCS64_GUEST_DR7);
467 VMXSetupCachedReadVMCS(pCache, VMX_VMCS32_GUEST_SYSENTER_CS);
468 VMXSetupCachedReadVMCS(pCache, VMX_VMCS64_GUEST_SYSENTER_EIP);
469 VMXSetupCachedReadVMCS(pCache, VMX_VMCS64_GUEST_SYSENTER_ESP);
470 VMXSetupCachedReadVMCS(pCache, VMX_VMCS32_GUEST_GDTR_LIMIT);
471 VMXSetupCachedReadVMCS(pCache, VMX_VMCS64_GUEST_GDTR_BASE);
472 VMXSetupCachedReadVMCS(pCache, VMX_VMCS32_GUEST_IDTR_LIMIT);
473 VMXSetupCachedReadVMCS(pCache, VMX_VMCS64_GUEST_IDTR_BASE);
474
475 VMX_SETUP_SELREG(ES, pCache);
476 VMX_SETUP_SELREG(SS, pCache);
477 VMX_SETUP_SELREG(CS, pCache);
478 VMX_SETUP_SELREG(DS, pCache);
479 VMX_SETUP_SELREG(FS, pCache);
480 VMX_SETUP_SELREG(GS, pCache);
481 VMX_SETUP_SELREG(LDTR, pCache);
482 VMX_SETUP_SELREG(TR, pCache);
483
484 /* Status code VMCS reads. */
485 VMXSetupCachedReadVMCS(pCache, VMX_VMCS32_RO_EXIT_REASON);
486 VMXSetupCachedReadVMCS(pCache, VMX_VMCS32_RO_VM_INSTR_ERROR);
487 VMXSetupCachedReadVMCS(pCache, VMX_VMCS32_RO_EXIT_INSTR_LENGTH);
488 VMXSetupCachedReadVMCS(pCache, VMX_VMCS32_RO_EXIT_INTERRUPTION_ERRCODE);
489 VMXSetupCachedReadVMCS(pCache, VMX_VMCS32_RO_EXIT_INTERRUPTION_INFO);
490 VMXSetupCachedReadVMCS(pCache, VMX_VMCS32_RO_EXIT_INSTR_INFO);
491 VMXSetupCachedReadVMCS(pCache, VMX_VMCS_RO_EXIT_QUALIFICATION);
492 VMXSetupCachedReadVMCS(pCache, VMX_VMCS32_RO_IDT_INFO);
493 VMXSetupCachedReadVMCS(pCache, VMX_VMCS32_RO_IDT_ERRCODE);
494
495 if (pVM->hwaccm.s.fNestedPaging)
496 {
497 VMXSetupCachedReadVMCS(pCache, VMX_VMCS64_GUEST_CR3);
498 VMXSetupCachedReadVMCS(pCache, VMX_VMCS_EXIT_PHYS_ADDR_FULL);
499 pCache->Read.cValidEntries = VMX_VMCS_MAX_NESTED_PAGING_CACHE_IDX;
500 }
501 else
502 pCache->Read.cValidEntries = VMX_VMCS_MAX_CACHE_IDX;
503 } /* for each VMCPU */
504
505 /* Choose the right TLB setup function. */
506 if (pVM->hwaccm.s.fNestedPaging)
507 {
508 pVM->hwaccm.s.vmx.pfnSetupTaggedTLB = vmxR0SetupTLBEPT;
509
510 /* Default values for flushing. */
511 pVM->hwaccm.s.vmx.enmFlushPage = VMX_FLUSH_ALL_CONTEXTS;
512 pVM->hwaccm.s.vmx.enmFlushContext = VMX_FLUSH_ALL_CONTEXTS;
513
514 /* If the capabilities specify we can do more, then make use of it. */
515 if (pVM->hwaccm.s.vmx.msr.vmx_eptcaps & MSR_IA32_VMX_EPT_CAPS_INVEPT_CAPS_INDIV)
516 pVM->hwaccm.s.vmx.enmFlushPage = VMX_FLUSH_PAGE;
517 else
518 if (pVM->hwaccm.s.vmx.msr.vmx_eptcaps & MSR_IA32_VMX_EPT_CAPS_INVEPT_CAPS_CONTEXT)
519 pVM->hwaccm.s.vmx.enmFlushPage = VMX_FLUSH_SINGLE_CONTEXT;
520
521 if (pVM->hwaccm.s.vmx.msr.vmx_eptcaps & MSR_IA32_VMX_EPT_CAPS_INVEPT_CAPS_CONTEXT)
522 pVM->hwaccm.s.vmx.enmFlushContext = VMX_FLUSH_SINGLE_CONTEXT;
523 }
524#ifdef HWACCM_VTX_WITH_VPID
525 else
526 if (pVM->hwaccm.s.vmx.fVPID)
527 {
528 pVM->hwaccm.s.vmx.pfnSetupTaggedTLB = vmxR0SetupTLBVPID;
529
530 /* Default values for flushing. */
531 pVM->hwaccm.s.vmx.enmFlushPage = VMX_FLUSH_ALL_CONTEXTS;
532 pVM->hwaccm.s.vmx.enmFlushContext = VMX_FLUSH_ALL_CONTEXTS;
533
534 /* If the capabilities specify we can do more, then make use of it. */
535 if (pVM->hwaccm.s.vmx.msr.vmx_eptcaps & MSR_IA32_VMX_EPT_CAPS_INVVPID_CAPS_INDIV)
536 pVM->hwaccm.s.vmx.enmFlushPage = VMX_FLUSH_PAGE;
537 else
538 if (pVM->hwaccm.s.vmx.msr.vmx_eptcaps & MSR_IA32_VMX_EPT_CAPS_INVVPID_CAPS_CONTEXT)
539 pVM->hwaccm.s.vmx.enmFlushPage = VMX_FLUSH_SINGLE_CONTEXT;
540
541 if (pVM->hwaccm.s.vmx.msr.vmx_eptcaps & MSR_IA32_VMX_EPT_CAPS_INVVPID_CAPS_CONTEXT)
542 pVM->hwaccm.s.vmx.enmFlushContext = VMX_FLUSH_SINGLE_CONTEXT;
543 }
544#endif /* HWACCM_VTX_WITH_VPID */
545 else
546 pVM->hwaccm.s.vmx.pfnSetupTaggedTLB = vmxR0SetupTLBDummy;
547
548vmx_end:
549 VMXR0CheckError(pVM, &pVM->aCpus[0], rc);
550 return rc;
551}
552
553
554/**
555 * Injects an event (trap or external interrupt)
556 *
557 * @returns VBox status code.
558 * @param pVM The VM to operate on.
559 * @param pVCpu The VMCPU to operate on.
560 * @param pCtx CPU Context
561 * @param intInfo VMX interrupt info
562 * @param cbInstr Opcode length of faulting instruction
563 * @param errCode Error code (optional)
564 */
565static int VMXR0InjectEvent(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, uint32_t intInfo, uint32_t cbInstr, uint32_t errCode)
566{
567 int rc;
568 uint32_t iGate = VMX_EXIT_INTERRUPTION_INFO_VECTOR(intInfo);
569
570#ifdef VBOX_STRICT
571 if (iGate == 0xE)
572 LogFlow(("VMXR0InjectEvent: Injecting interrupt %d at %RGv error code=%08x CR2=%08x intInfo=%08x\n", iGate, (RTGCPTR)pCtx->rip, errCode, pCtx->cr2, intInfo));
573 else
574 if (iGate < 0x20)
575 LogFlow(("VMXR0InjectEvent: Injecting interrupt %d at %RGv error code=%08x\n", iGate, (RTGCPTR)pCtx->rip, errCode));
576 else
577 {
578 LogFlow(("INJ-EI: %x at %RGv\n", iGate, (RTGCPTR)pCtx->rip));
579 Assert(!VM_FF_ISSET(pVM, VM_FF_INHIBIT_INTERRUPTS));
580 Assert(pCtx->eflags.u32 & X86_EFL_IF);
581 }
582#endif
583
584#ifdef HWACCM_VMX_EMULATE_REALMODE
585 if (CPUMIsGuestInRealModeEx(pCtx))
586 {
587 RTGCPHYS GCPhysHandler;
588 uint16_t offset, ip;
589 RTSEL sel;
590
591 /* Injecting events doesn't work right with real mode emulation.
592 * (#GP if we try to inject external hardware interrupts)
593 * Inject the interrupt or trap directly instead.
594 */
595 Log(("Manual interrupt/trap '%x' inject (real mode)\n", iGate));
596
597 /* Check if the interrupt handler is present. */
598 if (iGate * 4 + 3 > pCtx->idtr.cbIdt)
599 {
600 Log(("IDT cbIdt violation\n"));
601 if (iGate != X86_XCPT_DF)
602 {
603 RTGCUINTPTR intInfo;
604
605 intInfo = (iGate == X86_XCPT_GP) ? (uint32_t)X86_XCPT_DF : iGate;
606 intInfo |= (1 << VMX_EXIT_INTERRUPTION_INFO_VALID_SHIFT);
607 intInfo |= VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID;
608 intInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HWEXCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
609
610 return VMXR0InjectEvent(pVM, pVCpu, pCtx, intInfo, 0, 0 /* no error code according to the Intel docs */);
611 }
612 Log(("Triple fault -> reset the VM!\n"));
613 return VINF_EM_RESET;
614 }
615 if ( VMX_EXIT_INTERRUPTION_INFO_TYPE(intInfo) == VMX_EXIT_INTERRUPTION_INFO_TYPE_SW
616 || iGate == 3 /* Both #BP and #OF point to the instruction after. */
617 || iGate == 4)
618 {
619 ip = pCtx->ip + cbInstr;
620 }
621 else
622 ip = pCtx->ip;
623
624 /* Read the selector:offset pair of the interrupt handler. */
625 GCPhysHandler = (RTGCPHYS)pCtx->idtr.pIdt + iGate * 4;
626 PGMPhysRead(pVM, GCPhysHandler, &offset, sizeof(offset));
627 PGMPhysRead(pVM, GCPhysHandler + 2, &sel, sizeof(sel));
628
629 LogFlow(("IDT handler %04X:%04X\n", sel, offset));
630
631 /* Construct the stack frame. */
632 /** @todo should check stack limit. */
633 pCtx->sp -= 2;
634 LogFlow(("ss:sp %04X:%04X eflags=%x\n", pCtx->ss, pCtx->sp, pCtx->eflags.u));
635 PGMPhysWrite(pVM, pCtx->ssHid.u64Base + pCtx->sp, &pCtx->eflags, sizeof(uint16_t));
636 pCtx->sp -= 2;
637 LogFlow(("ss:sp %04X:%04X cs=%x\n", pCtx->ss, pCtx->sp, pCtx->cs));
638 PGMPhysWrite(pVM, pCtx->ssHid.u64Base + pCtx->sp, &pCtx->cs, sizeof(uint16_t));
639 pCtx->sp -= 2;
640 LogFlow(("ss:sp %04X:%04X ip=%x\n", pCtx->ss, pCtx->sp, ip));
641 PGMPhysWrite(pVM, pCtx->ssHid.u64Base + pCtx->sp, &ip, sizeof(ip));
642
643 /* Update the CPU state for executing the handler. */
644 pCtx->rip = offset;
645 pCtx->cs = sel;
646 pCtx->csHid.u64Base = sel << 4;
647 pCtx->eflags.u &= ~(X86_EFL_IF|X86_EFL_TF|X86_EFL_RF|X86_EFL_AC);
648
649 pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_GUEST_SEGMENT_REGS;
650 return VINF_SUCCESS;
651 }
652#endif /* HWACCM_VMX_EMULATE_REALMODE */
653
654 /* Set event injection state. */
655 rc = VMXWriteVMCS(VMX_VMCS_CTRL_ENTRY_IRQ_INFO, intInfo | (1 << VMX_EXIT_INTERRUPTION_INFO_VALID_SHIFT));
656
657 rc |= VMXWriteVMCS(VMX_VMCS_CTRL_ENTRY_INSTR_LENGTH, cbInstr);
658 rc |= VMXWriteVMCS(VMX_VMCS_CTRL_ENTRY_EXCEPTION_ERRCODE, errCode);
659
660 AssertRC(rc);
661 return rc;
662}
663
664
665/**
666 * Checks for pending guest interrupts and injects them
667 *
668 * @returns VBox status code.
669 * @param pVM The VM to operate on.
670 * @param pVCpu The VMCPU to operate on.
671 * @param pCtx CPU Context
672 */
673static int VMXR0CheckPendingInterrupt(PVM pVM, PVMCPU pVCpu, CPUMCTX *pCtx)
674{
675 int rc;
676
677 /* Dispatch any pending interrupts. (injected before, but a VM exit occurred prematurely) */
678 if (pVCpu->hwaccm.s.Event.fPending)
679 {
680 Log(("Reinjecting event %RX64 %08x at %RGv cr2=%RX64\n", pVCpu->hwaccm.s.Event.intInfo, pVCpu->hwaccm.s.Event.errCode, (RTGCPTR)pCtx->rip, pCtx->cr2));
681 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatIntReinject);
682 rc = VMXR0InjectEvent(pVM, pVCpu, pCtx, pVCpu->hwaccm.s.Event.intInfo, 0, pVCpu->hwaccm.s.Event.errCode);
683 AssertRC(rc);
684
685 pVCpu->hwaccm.s.Event.fPending = false;
686 return VINF_SUCCESS;
687 }
688
689 if (pVM->hwaccm.s.fInjectNMI)
690 {
691 RTGCUINTPTR intInfo;
692
693 intInfo = X86_XCPT_NMI;
694 intInfo |= (1 << VMX_EXIT_INTERRUPTION_INFO_VALID_SHIFT);
695 intInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
696
697 rc = VMXR0InjectEvent(pVM, pVCpu, pCtx, intInfo, 0, 0);
698 AssertRC(rc);
699
700 pVM->hwaccm.s.fInjectNMI = false;
701 return VINF_SUCCESS;
702 }
703
704 /* When external interrupts are pending, we should exit the VM when IF is set. */
705 if ( !TRPMHasTrap(pVM)
706 && VM_FF_ISPENDING(pVM, (VM_FF_INTERRUPT_APIC|VM_FF_INTERRUPT_PIC)))
707 {
708 if (!(pCtx->eflags.u32 & X86_EFL_IF))
709 {
710 if (!(pVCpu->hwaccm.s.vmx.proc_ctls & VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_IRQ_WINDOW_EXIT))
711 {
712 LogFlow(("Enable irq window exit!\n"));
713 pVCpu->hwaccm.s.vmx.proc_ctls |= VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_IRQ_WINDOW_EXIT;
714 rc = VMXWriteVMCS(VMX_VMCS_CTRL_PROC_EXEC_CONTROLS, pVCpu->hwaccm.s.vmx.proc_ctls);
715 AssertRC(rc);
716 }
717 /* else nothing to do but wait */
718 }
719 else
720 if (!VM_FF_ISSET(pVM, VM_FF_INHIBIT_INTERRUPTS))
721 {
722 uint8_t u8Interrupt;
723
724 rc = PDMGetInterrupt(pVM, &u8Interrupt);
725 Log(("Dispatch interrupt: u8Interrupt=%x (%d) rc=%Rrc cs:rip=%04X:%RGv\n", u8Interrupt, u8Interrupt, rc, pCtx->cs, (RTGCPTR)pCtx->rip));
726 if (RT_SUCCESS(rc))
727 {
728 rc = TRPMAssertTrap(pVM, u8Interrupt, TRPM_HARDWARE_INT);
729 AssertRC(rc);
730 }
731 else
732 {
733 /* Can only happen in rare cases where a pending interrupt is cleared behind our back */
734 Assert(!VM_FF_ISPENDING(pVM, (VM_FF_INTERRUPT_APIC|VM_FF_INTERRUPT_PIC)));
735 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatSwitchGuestIrq);
736 /* Just continue */
737 }
738 }
739 else
740 Log(("Pending interrupt blocked at %RGv by VM_FF_INHIBIT_INTERRUPTS!!\n", (RTGCPTR)pCtx->rip));
741 }
742
743#ifdef VBOX_STRICT
744 if (TRPMHasTrap(pVM))
745 {
746 uint8_t u8Vector;
747 rc = TRPMQueryTrapAll(pVM, &u8Vector, 0, 0, 0);
748 AssertRC(rc);
749 }
750#endif
751
752 if ( pCtx->eflags.u32 & X86_EFL_IF
753 && (!VM_FF_ISSET(pVM, VM_FF_INHIBIT_INTERRUPTS))
754 && TRPMHasTrap(pVM)
755 )
756 {
757 uint8_t u8Vector;
758 int rc;
759 TRPMEVENT enmType;
760 RTGCUINTPTR intInfo;
761 RTGCUINT errCode;
762
763 /* If a new event is pending, then dispatch it now. */
764 rc = TRPMQueryTrapAll(pVM, &u8Vector, &enmType, &errCode, 0);
765 AssertRC(rc);
766 Assert(pCtx->eflags.Bits.u1IF == 1 || enmType == TRPM_TRAP);
767 Assert(enmType != TRPM_SOFTWARE_INT);
768
769 /* Clear the pending trap. */
770 rc = TRPMResetTrap(pVM);
771 AssertRC(rc);
772
773 intInfo = u8Vector;
774 intInfo |= (1 << VMX_EXIT_INTERRUPTION_INFO_VALID_SHIFT);
775
776 if (enmType == TRPM_TRAP)
777 {
778 switch (u8Vector) {
779 case 8:
780 case 10:
781 case 11:
782 case 12:
783 case 13:
784 case 14:
785 case 17:
786 /* Valid error codes. */
787 intInfo |= VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID;
788 break;
789 default:
790 break;
791 }
792 if (u8Vector == X86_XCPT_BP || u8Vector == X86_XCPT_OF)
793 intInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_SWEXCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
794 else
795 intInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HWEXCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
796 }
797 else
798 intInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
799
800 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatIntInject);
801 rc = VMXR0InjectEvent(pVM, pVCpu, pCtx, intInfo, 0, errCode);
802 AssertRC(rc);
803 } /* if (interrupts can be dispatched) */
804
805 return VINF_SUCCESS;
806}
807
808/**
809 * Save the host state
810 *
811 * @returns VBox status code.
812 * @param pVM The VM to operate on.
813 * @param pVCpu The VMCPU to operate on.
814 */
815VMMR0DECL(int) VMXR0SaveHostState(PVM pVM, PVMCPU pVCpu)
816{
817 int rc = VINF_SUCCESS;
818
819 /*
820 * Host CPU Context
821 */
822 if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_HOST_CONTEXT)
823 {
824 RTIDTR idtr;
825 RTGDTR gdtr;
826 RTSEL SelTR;
827 PX86DESCHC pDesc;
828 uintptr_t trBase;
829 RTSEL cs;
830 RTSEL ss;
831 uint64_t cr3;
832
833 /* Control registers */
834 rc = VMXWriteVMCS(VMX_VMCS_HOST_CR0, ASMGetCR0());
835#ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
836 if (VMX_IS_64BIT_HOST_MODE())
837 {
838 cr3 = hwaccmR0Get64bitCR3();
839 rc |= VMXWriteVMCS64(VMX_VMCS_HOST_CR3, cr3);
840 }
841 else
842#endif
843 {
844 cr3 = ASMGetCR3();
845 rc |= VMXWriteVMCS(VMX_VMCS_HOST_CR3, cr3);
846 }
847 rc |= VMXWriteVMCS(VMX_VMCS_HOST_CR4, ASMGetCR4());
848 AssertRC(rc);
849 Log2(("VMX_VMCS_HOST_CR0 %08x\n", ASMGetCR0()));
850 Log2(("VMX_VMCS_HOST_CR3 %08RX64\n", cr3));
851 Log2(("VMX_VMCS_HOST_CR4 %08x\n", ASMGetCR4()));
852
853 /* Selector registers. */
854#ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
855 if (VMX_IS_64BIT_HOST_MODE())
856 {
857 cs = (RTSEL)(uintptr_t)&SUPR0Abs64bitKernelCS;
858 ss = (RTSEL)(uintptr_t)&SUPR0Abs64bitKernelSS;
859 }
860 else
861 {
862 /* sysenter loads LDT cs & ss, VMX doesn't like this. Load the GDT ones (safe). */
863 cs = (RTSEL)(uintptr_t)&SUPR0AbsKernelCS;
864 ss = (RTSEL)(uintptr_t)&SUPR0AbsKernelSS;
865 }
866#else
867 cs = ASMGetCS();
868 ss = ASMGetSS();
869#endif
870 Assert(!(cs & X86_SEL_LDT)); Assert((cs & X86_SEL_RPL) == 0);
871 Assert(!(ss & X86_SEL_LDT)); Assert((ss & X86_SEL_RPL) == 0);
872 rc = VMXWriteVMCS(VMX_VMCS16_HOST_FIELD_CS, cs);
873 /* Note: VMX is (again) very picky about the RPL of the selectors here; we'll restore them manually. */
874 rc |= VMXWriteVMCS(VMX_VMCS16_HOST_FIELD_DS, 0);
875 rc |= VMXWriteVMCS(VMX_VMCS16_HOST_FIELD_ES, 0);
876#if HC_ARCH_BITS == 32
877 if (!VMX_IS_64BIT_HOST_MODE())
878 {
879 rc |= VMXWriteVMCS(VMX_VMCS16_HOST_FIELD_FS, 0);
880 rc |= VMXWriteVMCS(VMX_VMCS16_HOST_FIELD_GS, 0);
881 }
882#endif
883 rc |= VMXWriteVMCS(VMX_VMCS16_HOST_FIELD_SS, ss);
884 SelTR = ASMGetTR();
885 rc |= VMXWriteVMCS(VMX_VMCS16_HOST_FIELD_TR, SelTR);
886 AssertRC(rc);
887 Log2(("VMX_VMCS_HOST_FIELD_CS %08x (%08x)\n", cs, ASMGetSS()));
888 Log2(("VMX_VMCS_HOST_FIELD_DS 00000000 (%08x)\n", ASMGetDS()));
889 Log2(("VMX_VMCS_HOST_FIELD_ES 00000000 (%08x)\n", ASMGetES()));
890 Log2(("VMX_VMCS_HOST_FIELD_FS 00000000 (%08x)\n", ASMGetFS()));
891 Log2(("VMX_VMCS_HOST_FIELD_GS 00000000 (%08x)\n", ASMGetGS()));
892 Log2(("VMX_VMCS_HOST_FIELD_SS %08x (%08x)\n", ss, ASMGetSS()));
893 Log2(("VMX_VMCS_HOST_FIELD_TR %08x\n", ASMGetTR()));
894
895 /* GDTR & IDTR */
896#ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
897 if (VMX_IS_64BIT_HOST_MODE())
898 {
899 X86XDTR64 gdtr64, idtr64;
900 hwaccmR0Get64bitGDTRandIDTR(&gdtr64, &idtr64);
901 rc = VMXWriteVMCS64(VMX_VMCS_HOST_GDTR_BASE, gdtr64.uAddr);
902 rc |= VMXWriteVMCS64(VMX_VMCS_HOST_IDTR_BASE, gdtr64.uAddr);
903 AssertRC(rc);
904 Log2(("VMX_VMCS_HOST_GDTR_BASE %RX64\n", gdtr64.uAddr));
905 Log2(("VMX_VMCS_HOST_IDTR_BASE %RX64\n", idtr64.uAddr));
906 gdtr.cbGdt = gdtr64.cb;
907 gdtr.pGdt = (uintptr_t)gdtr64.uAddr;
908 }
909 else
910#endif
911 {
912 ASMGetGDTR(&gdtr);
913 rc = VMXWriteVMCS(VMX_VMCS_HOST_GDTR_BASE, gdtr.pGdt);
914 ASMGetIDTR(&idtr);
915 rc |= VMXWriteVMCS(VMX_VMCS_HOST_IDTR_BASE, idtr.pIdt);
916 AssertRC(rc);
917 Log2(("VMX_VMCS_HOST_GDTR_BASE %RHv\n", gdtr.pGdt));
918 Log2(("VMX_VMCS_HOST_IDTR_BASE %RHv\n", idtr.pIdt));
919 }
920
921
922 /* Save the base address of the TR selector. */
923 if (SelTR > gdtr.cbGdt)
924 {
925 AssertMsgFailed(("Invalid TR selector %x. GDTR.cbGdt=%x\n", SelTR, gdtr.cbGdt));
926 return VERR_VMX_INVALID_HOST_STATE;
927 }
928
929#ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
930 if (VMX_IS_64BIT_HOST_MODE())
931 {
932 pDesc = &((PX86DESCHC)gdtr.pGdt)[SelTR >> X86_SEL_SHIFT_HC]; /// ????
933 uint64_t trBase64 = X86DESC64_BASE(*(PX86DESC64)pDesc);
934 rc = VMXWriteVMCS64(VMX_VMCS_HOST_TR_BASE, trBase64);
935 Log2(("VMX_VMCS_HOST_TR_BASE %RX64\n", trBase64));
936 AssertRC(rc);
937 }
938 else
939#endif
940 {
941 pDesc = &((PX86DESCHC)gdtr.pGdt)[SelTR >> X86_SEL_SHIFT_HC];
942#if HC_ARCH_BITS == 64
943 trBase = X86DESC64_BASE(*pDesc);
944#else
945 trBase = X86DESC_BASE(*pDesc);
946#endif
947 rc = VMXWriteVMCS(VMX_VMCS_HOST_TR_BASE, trBase);
948 AssertRC(rc);
949 Log2(("VMX_VMCS_HOST_TR_BASE %RHv\n", trBase));
950 }
951
952 /* FS and GS base. */
953#if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
954 if (VMX_IS_64BIT_HOST_MODE())
955 {
956 Log2(("MSR_K8_FS_BASE = %RX64\n", ASMRdMsr(MSR_K8_FS_BASE)));
957 Log2(("MSR_K8_GS_BASE = %RX64\n", ASMRdMsr(MSR_K8_GS_BASE)));
958 rc = VMXWriteVMCS64(VMX_VMCS_HOST_FS_BASE, ASMRdMsr(MSR_K8_FS_BASE));
959 rc |= VMXWriteVMCS64(VMX_VMCS_HOST_GS_BASE, ASMRdMsr(MSR_K8_GS_BASE));
960 }
961#endif
962 AssertRC(rc);
963
964 /* Sysenter MSRs. */
965 /** @todo expensive!! */
966 rc = VMXWriteVMCS(VMX_VMCS32_HOST_SYSENTER_CS, ASMRdMsr_Low(MSR_IA32_SYSENTER_CS));
967 Log2(("VMX_VMCS_HOST_SYSENTER_CS %08x\n", ASMRdMsr_Low(MSR_IA32_SYSENTER_CS)));
968#ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
969 if (VMX_IS_64BIT_HOST_MODE())
970 {
971 Log2(("VMX_VMCS_HOST_SYSENTER_EIP %RX64\n", ASMRdMsr(MSR_IA32_SYSENTER_EIP)));
972 Log2(("VMX_VMCS_HOST_SYSENTER_ESP %RX64\n", ASMRdMsr(MSR_IA32_SYSENTER_ESP)));
973 rc |= VMXWriteVMCS64(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr(MSR_IA32_SYSENTER_ESP));
974 rc |= VMXWriteVMCS64(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr(MSR_IA32_SYSENTER_EIP));
975 }
976 else
977 {
978 rc |= VMXWriteVMCS(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr_Low(MSR_IA32_SYSENTER_ESP));
979 rc |= VMXWriteVMCS(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr_Low(MSR_IA32_SYSENTER_EIP));
980 Log2(("VMX_VMCS_HOST_SYSENTER_EIP %RX32\n", ASMRdMsr_Low(MSR_IA32_SYSENTER_EIP)));
981 Log2(("VMX_VMCS_HOST_SYSENTER_ESP %RX32\n", ASMRdMsr_Low(MSR_IA32_SYSENTER_ESP)));
982 }
983#elif HC_ARCH_BITS == 32
984 rc |= VMXWriteVMCS(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr_Low(MSR_IA32_SYSENTER_ESP));
985 rc |= VMXWriteVMCS(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr_Low(MSR_IA32_SYSENTER_EIP));
986 Log2(("VMX_VMCS_HOST_SYSENTER_EIP %RX32\n", ASMRdMsr_Low(MSR_IA32_SYSENTER_EIP)));
987 Log2(("VMX_VMCS_HOST_SYSENTER_ESP %RX32\n", ASMRdMsr_Low(MSR_IA32_SYSENTER_ESP)));
988#else
989 Log2(("VMX_VMCS_HOST_SYSENTER_EIP %RX64\n", ASMRdMsr(MSR_IA32_SYSENTER_EIP)));
990 Log2(("VMX_VMCS_HOST_SYSENTER_ESP %RX64\n", ASMRdMsr(MSR_IA32_SYSENTER_ESP)));
991 rc |= VMXWriteVMCS64(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr(MSR_IA32_SYSENTER_ESP));
992 rc |= VMXWriteVMCS64(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr(MSR_IA32_SYSENTER_EIP));
993#endif
994 AssertRC(rc);
995
996#if 0 /* @todo deal with 32/64 */
997 /* Restore the host EFER - on CPUs that support it. */
998 if (pVM->hwaccm.s.vmx.msr.vmx_exit.n.allowed1 & VMX_VMCS_CTRL_EXIT_CONTROLS_LOAD_HOST_EFER_MSR)
999 {
1000 uint64_t msrEFER = ASMRdMsr(MSR_IA32_EFER);
1001 rc = VMXWriteVMCS64(VMX_VMCS_HOST_FIELD_EFER_FULL, msrEFER);
1002 AssertRC(rc);
1003 }
1004#endif
1005 pVCpu->hwaccm.s.fContextUseFlags &= ~HWACCM_CHANGED_HOST_CONTEXT;
1006 }
1007 return rc;
1008}
1009
1010/**
1011 * Prefetch the 4 PDPT pointers (PAE and nested paging only)
1012 *
1013 * @param pVM The VM to operate on.
1014 * @param pVCpu The VMCPU to operate on.
1015 * @param pCtx Guest context
1016 */
1017static void vmxR0PrefetchPAEPdptrs(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
1018{
1019 if (CPUMIsGuestInPAEModeEx(pCtx))
1020 {
1021 X86PDPE Pdpe;
1022
1023 for (unsigned i=0;i<4;i++)
1024 {
1025 Pdpe = PGMGstGetPaePDPtr(pVM, i);
1026 int rc = VMXWriteVMCS64(VMX_VMCS_GUEST_PDPTR0_FULL + i*2, Pdpe.u);
1027 AssertRC(rc);
1028 }
1029 }
1030}
1031
1032/**
1033 * Update the exception bitmap according to the current CPU state
1034 *
1035 * @param pVM The VM to operate on.
1036 * @param pVCpu The VMCPU to operate on.
1037 * @param pCtx Guest context
1038 */
1039static void vmxR0UpdateExceptionBitmap(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
1040{
1041 uint32_t u32TrapMask;
1042 Assert(pCtx);
1043
1044 u32TrapMask = HWACCM_VMX_TRAP_MASK;
1045#ifndef DEBUG
1046 if (pVM->hwaccm.s.fNestedPaging)
1047 u32TrapMask &= ~RT_BIT(X86_XCPT_PF); /* no longer need to intercept #PF. */
1048#endif
1049
1050 /* Also catch floating point exceptions as we need to report them to the guest in a different way. */
1051 if ( CPUMIsGuestFPUStateActive(pVCpu) == true
1052 && !(pCtx->cr0 & X86_CR0_NE)
1053 && !pVCpu->hwaccm.s.fFPUOldStyleOverride)
1054 {
1055 u32TrapMask |= RT_BIT(X86_XCPT_MF);
1056 pVCpu->hwaccm.s.fFPUOldStyleOverride = true;
1057 }
1058
1059#ifdef DEBUG
1060 /* Intercept X86_XCPT_DB if stepping is enabled */
1061 if (DBGFIsStepping(pVM))
1062 u32TrapMask |= RT_BIT(X86_XCPT_DB);
1063#endif
1064
1065#ifdef VBOX_STRICT
1066 Assert(u32TrapMask & RT_BIT(X86_XCPT_GP));
1067#endif
1068
1069# ifdef HWACCM_VMX_EMULATE_REALMODE
1070 /* Intercept all exceptions in real mode as none of them can be injected directly (#GP otherwise). */
1071 if (CPUMIsGuestInRealModeEx(pCtx))
1072 u32TrapMask |= HWACCM_VMX_TRAP_MASK_REALMODE;
1073# endif /* HWACCM_VMX_EMULATE_REALMODE */
1074
1075 int rc = VMXWriteVMCS(VMX_VMCS_CTRL_EXCEPTION_BITMAP, u32TrapMask);
1076 AssertRC(rc);
1077}
1078
1079/**
1080 * Loads the guest state
1081 *
1082 * NOTE: Don't do anything here that can cause a jump back to ring 3!!!!!
1083 *
1084 * @returns VBox status code.
1085 * @param pVM The VM to operate on.
1086 * @param pVCpu The VMCPU to operate on.
1087 * @param pCtx Guest context
1088 */
1089VMMR0DECL(int) VMXR0LoadGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
1090{
1091 int rc = VINF_SUCCESS;
1092 RTGCUINTPTR val;
1093 X86EFLAGS eflags;
1094
1095 /* VMX_VMCS_CTRL_ENTRY_CONTROLS
1096 * Set required bits to one and zero according to the MSR capabilities.
1097 */
1098 val = pVM->hwaccm.s.vmx.msr.vmx_entry.n.disallowed0;
1099 /* Load guest debug controls (dr7 & IA32_DEBUGCTL_MSR) (forced to 1 on the 'first' VT-x capable CPUs; this actually includes the newest Nehalem CPUs) */
1100 val |= VMX_VMCS_CTRL_ENTRY_CONTROLS_LOAD_DEBUG;
1101#if 0 /* @todo deal with 32/64 */
1102 /* Required for the EFER write below, not supported on all CPUs. */
1103 val |= VMX_VMCS_CTRL_ENTRY_CONTROLS_LOAD_GUEST_EFER_MSR;
1104#endif
1105 /* 64 bits guest mode? */
1106 if (pCtx->msrEFER & MSR_K6_EFER_LMA)
1107 val |= VMX_VMCS_CTRL_ENTRY_CONTROLS_IA64_MODE;
1108 /* else Must be zero when AMD64 is not available. */
1109
1110 /* Mask away the bits that the CPU doesn't support */
1111 val &= pVM->hwaccm.s.vmx.msr.vmx_entry.n.allowed1;
1112 rc = VMXWriteVMCS(VMX_VMCS_CTRL_ENTRY_CONTROLS, val);
1113 AssertRC(rc);
1114
1115 /* VMX_VMCS_CTRL_EXIT_CONTROLS
1116 * Set required bits to one and zero according to the MSR capabilities.
1117 */
1118 val = pVM->hwaccm.s.vmx.msr.vmx_exit.n.disallowed0;
1119
1120 /* Save debug controls (dr7 & IA32_DEBUGCTL_MSR) (forced to 1 on the 'first' VT-x capable CPUs; this actually includes the newest Nehalem CPUs) */
1121#if 0 /* @todo deal with 32/64 */
1122 val |= VMX_VMCS_CTRL_EXIT_CONTROLS_SAVE_DEBUG | VMX_VMCS_CTRL_EXIT_CONTROLS_LOAD_HOST_EFER_MSR;
1123#else
1124 val |= VMX_VMCS_CTRL_EXIT_CONTROLS_SAVE_DEBUG;
1125#endif
1126
1127#if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
1128 if (VMX_IS_64BIT_HOST_MODE())
1129 val |= VMX_VMCS_CTRL_EXIT_CONTROLS_HOST_AMD64;
1130 /* else: Must be zero when AMD64 is not available. */
1131#elif HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
1132 if (pCtx->msrEFER & MSR_K6_EFER_LMA)
1133 val |= VMX_VMCS_CTRL_EXIT_CONTROLS_HOST_AMD64; /* our switcher goes to long mode */
1134 else
1135 Assert(!(val & VMX_VMCS_CTRL_EXIT_CONTROLS_HOST_AMD64));
1136#endif
1137 val &= pVM->hwaccm.s.vmx.msr.vmx_exit.n.allowed1;
1138 /* Don't acknowledge external interrupts on VM-exit. */
1139 rc = VMXWriteVMCS(VMX_VMCS_CTRL_EXIT_CONTROLS, val);
1140 AssertRC(rc);
1141
1142 /* Guest CPU context: ES, CS, SS, DS, FS, GS. */
1143 if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_SEGMENT_REGS)
1144 {
1145#ifdef HWACCM_VMX_EMULATE_REALMODE
1146 PGMMODE enmGuestMode = PGMGetGuestMode(pVM);
1147 if (pVCpu->hwaccm.s.vmx.enmLastSeenGuestMode != enmGuestMode)
1148 {
1149 /* Correct weird requirements for switching to protected mode. */
1150 if ( pVCpu->hwaccm.s.vmx.enmLastSeenGuestMode == PGMMODE_REAL
1151 && enmGuestMode >= PGMMODE_PROTECTED)
1152 {
1153 /* DPL of all hidden selector registers must match the current CPL (0). */
1154 pCtx->csHid.Attr.n.u2Dpl = 0;
1155 pCtx->csHid.Attr.n.u4Type = X86_SEL_TYPE_CODE | X86_SEL_TYPE_RW_ACC;
1156
1157 pCtx->dsHid.Attr.n.u2Dpl = 0;
1158 pCtx->esHid.Attr.n.u2Dpl = 0;
1159 pCtx->fsHid.Attr.n.u2Dpl = 0;
1160 pCtx->gsHid.Attr.n.u2Dpl = 0;
1161 pCtx->ssHid.Attr.n.u2Dpl = 0;
1162 }
1163 else
1164 /* Switching from protected mode to real mode. */
1165 if ( pVCpu->hwaccm.s.vmx.enmLastSeenGuestMode >= PGMMODE_PROTECTED
1166 && enmGuestMode == PGMMODE_REAL)
1167 {
1168 /* The limit must also be adjusted. */
1169 pCtx->csHid.u32Limit &= 0xffff;
1170 pCtx->dsHid.u32Limit &= 0xffff;
1171 pCtx->esHid.u32Limit &= 0xffff;
1172 pCtx->fsHid.u32Limit &= 0xffff;
1173 pCtx->gsHid.u32Limit &= 0xffff;
1174 pCtx->ssHid.u32Limit &= 0xffff;
1175
1176 Assert(pCtx->csHid.u64Base <= 0xfffff);
1177 Assert(pCtx->dsHid.u64Base <= 0xfffff);
1178 Assert(pCtx->esHid.u64Base <= 0xfffff);
1179 Assert(pCtx->fsHid.u64Base <= 0xfffff);
1180 Assert(pCtx->gsHid.u64Base <= 0xfffff);
1181 }
1182 pVCpu->hwaccm.s.vmx.enmLastSeenGuestMode = enmGuestMode;
1183 }
1184 else
1185 /* VT-x will fail with a guest invalid state otherwise... (CPU state after a reset) */
1186 if ( CPUMIsGuestInRealModeEx(pCtx)
1187 && pCtx->csHid.u64Base == 0xffff0000)
1188 {
1189 pCtx->csHid.u64Base = 0xf0000;
1190 pCtx->cs = 0xf000;
1191 }
1192#endif /* HWACCM_VMX_EMULATE_REALMODE */
1193
1194 VMX_WRITE_SELREG(ES, es);
1195 AssertRC(rc);
1196
1197 VMX_WRITE_SELREG(CS, cs);
1198 AssertRC(rc);
1199
1200 VMX_WRITE_SELREG(SS, ss);
1201 AssertRC(rc);
1202
1203 VMX_WRITE_SELREG(DS, ds);
1204 AssertRC(rc);
1205
1206 /* The base values in the hidden fs & gs registers are not in sync with the msrs; they are cut to 32 bits. */
1207 VMX_WRITE_SELREG(FS, fs);
1208 AssertRC(rc);
1209
1210 VMX_WRITE_SELREG(GS, gs);
1211 AssertRC(rc);
1212 }
1213
1214 /* Guest CPU context: LDTR. */
1215 if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_LDTR)
1216 {
1217 if (pCtx->ldtr == 0)
1218 {
1219 rc = VMXWriteVMCS(VMX_VMCS16_GUEST_FIELD_LDTR, 0);
1220 rc |= VMXWriteVMCS(VMX_VMCS32_GUEST_LDTR_LIMIT, 0);
1221 rc |= VMXWriteVMCS64(VMX_VMCS64_GUEST_LDTR_BASE, 0);
1222 /* Note: vmlaunch will fail with 0 or just 0x02. No idea why. */
1223 rc |= VMXWriteVMCS(VMX_VMCS32_GUEST_LDTR_ACCESS_RIGHTS, 0x82 /* present, LDT */);
1224 }
1225 else
1226 {
1227 rc = VMXWriteVMCS(VMX_VMCS16_GUEST_FIELD_LDTR, pCtx->ldtr);
1228 rc |= VMXWriteVMCS(VMX_VMCS32_GUEST_LDTR_LIMIT, pCtx->ldtrHid.u32Limit);
1229 rc |= VMXWriteVMCS64(VMX_VMCS64_GUEST_LDTR_BASE, pCtx->ldtrHid.u64Base);
1230 rc |= VMXWriteVMCS(VMX_VMCS32_GUEST_LDTR_ACCESS_RIGHTS, pCtx->ldtrHid.Attr.u);
1231 }
1232 AssertRC(rc);
1233 }
1234 /* Guest CPU context: TR. */
1235 if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_TR)
1236 {
1237#ifdef HWACCM_VMX_EMULATE_REALMODE
1238 /* Real mode emulation using v86 mode with CR4.VME (interrupt redirection using the int bitmap in the TSS) */
1239 if (CPUMIsGuestInRealModeEx(pCtx))
1240 {
1241 RTGCPHYS GCPhys;
1242
1243 /* We convert it here every time as pci regions could be reconfigured. */
1244 rc = PDMVMMDevHeapR3ToGCPhys(pVM, pVM->hwaccm.s.vmx.pRealModeTSS, &GCPhys);
1245 AssertRC(rc);
1246
1247 rc = VMXWriteVMCS(VMX_VMCS16_GUEST_FIELD_TR, 0);
1248 rc |= VMXWriteVMCS(VMX_VMCS32_GUEST_TR_LIMIT, HWACCM_VTX_TSS_SIZE);
1249 rc |= VMXWriteVMCS64(VMX_VMCS64_GUEST_TR_BASE, GCPhys /* phys = virt in this mode */);
1250
1251 X86DESCATTR attr;
1252
1253 attr.u = 0;
1254 attr.n.u1Present = 1;
1255 attr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY;
1256 val = attr.u;
1257 }
1258 else
1259#endif /* HWACCM_VMX_EMULATE_REALMODE */
1260 {
1261 rc = VMXWriteVMCS(VMX_VMCS16_GUEST_FIELD_TR, pCtx->tr);
1262 rc |= VMXWriteVMCS(VMX_VMCS32_GUEST_TR_LIMIT, pCtx->trHid.u32Limit);
1263 rc |= VMXWriteVMCS64(VMX_VMCS64_GUEST_TR_BASE, pCtx->trHid.u64Base);
1264
1265 val = pCtx->trHid.Attr.u;
1266
1267 /* The TSS selector must be busy. */
1268 if ((val & 0xF) == X86_SEL_TYPE_SYS_286_TSS_AVAIL)
1269 val = (val & ~0xF) | X86_SEL_TYPE_SYS_286_TSS_BUSY;
1270 else
1271 /* Default even if no TR selector has been set (otherwise vmlaunch will fail!) */
1272 val = (val & ~0xF) | X86_SEL_TYPE_SYS_386_TSS_BUSY;
1273
1274 }
1275 rc |= VMXWriteVMCS(VMX_VMCS32_GUEST_TR_ACCESS_RIGHTS, val);
1276 AssertRC(rc);
1277 }
1278 /* Guest CPU context: GDTR. */
1279 if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_GDTR)
1280 {
1281 rc = VMXWriteVMCS(VMX_VMCS32_GUEST_GDTR_LIMIT, pCtx->gdtr.cbGdt);
1282 rc |= VMXWriteVMCS64(VMX_VMCS64_GUEST_GDTR_BASE, pCtx->gdtr.pGdt);
1283 AssertRC(rc);
1284 }
1285 /* Guest CPU context: IDTR. */
1286 if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_IDTR)
1287 {
1288 rc = VMXWriteVMCS(VMX_VMCS32_GUEST_IDTR_LIMIT, pCtx->idtr.cbIdt);
1289 rc |= VMXWriteVMCS64(VMX_VMCS64_GUEST_IDTR_BASE, pCtx->idtr.pIdt);
1290 AssertRC(rc);
1291 }
1292
1293 /*
1294 * Sysenter MSRs (unconditional)
1295 */
1296 rc = VMXWriteVMCS(VMX_VMCS32_GUEST_SYSENTER_CS, pCtx->SysEnter.cs);
1297 rc |= VMXWriteVMCS64(VMX_VMCS64_GUEST_SYSENTER_EIP, pCtx->SysEnter.eip);
1298 rc |= VMXWriteVMCS64(VMX_VMCS64_GUEST_SYSENTER_ESP, pCtx->SysEnter.esp);
1299 AssertRC(rc);
1300
1301 /* Control registers */
1302 if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_CR0)
1303 {
1304 val = pCtx->cr0;
1305 rc = VMXWriteVMCS(VMX_VMCS_CTRL_CR0_READ_SHADOW, val);
1306 Log2(("Guest CR0-shadow %08x\n", val));
1307 if (CPUMIsGuestFPUStateActive(pVCpu) == false)
1308 {
1309 /* Always use #NM exceptions to load the FPU/XMM state on demand. */
1310 val |= X86_CR0_TS | X86_CR0_ET | X86_CR0_NE | X86_CR0_MP;
1311 }
1312 else
1313 {
1314 /** @todo check if we support the old style mess correctly. */
1315 if (!(val & X86_CR0_NE))
1316 Log(("Forcing X86_CR0_NE!!!\n"));
1317
1318 val |= X86_CR0_NE; /* always turn on the native mechanism to report FPU errors (old style uses interrupts) */
1319 }
1320 /* Note: protected mode & paging are always enabled; we use them for emulating real and protected mode without paging too. */
1321 val |= X86_CR0_PE | X86_CR0_PG;
1322 if (pVM->hwaccm.s.fNestedPaging)
1323 {
1324 if (CPUMIsGuestInPagedProtectedModeEx(pCtx))
1325 {
1326 /* Disable cr3 read/write monitoring as we don't need it for EPT. */
1327 pVCpu->hwaccm.s.vmx.proc_ctls &= ~( VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_CR3_LOAD_EXIT
1328 | VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_CR3_STORE_EXIT);
1329 }
1330 else
1331 {
1332 /* Reenable cr3 read/write monitoring as our identity mapped page table is active. */
1333 pVCpu->hwaccm.s.vmx.proc_ctls |= VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_CR3_LOAD_EXIT
1334 | VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_CR3_STORE_EXIT;
1335 }
1336 rc = VMXWriteVMCS(VMX_VMCS_CTRL_PROC_EXEC_CONTROLS, pVCpu->hwaccm.s.vmx.proc_ctls);
1337 AssertRC(rc);
1338 }
1339 else
1340 {
1341 /* Note: We must also set this as we rely on protecting various pages for which supervisor writes must be caught. */
1342 val |= X86_CR0_WP;
1343 }
1344
1345 /* Always enable caching. */
1346 val &= ~(X86_CR0_CD|X86_CR0_NW);
1347
1348 rc |= VMXWriteVMCS64(VMX_VMCS64_GUEST_CR0, val);
1349 Log2(("Guest CR0 %08x\n", val));
1350 /* CR0 flags owned by the host; if the guests attempts to change them, then
1351 * the VM will exit.
1352 */
1353 val = X86_CR0_PE /* Must monitor this bit (assumptions are made for real mode emulation) */
1354 | X86_CR0_WP /* Must monitor this bit (it must always be enabled). */
1355 | X86_CR0_PG /* Must monitor this bit (assumptions are made for real mode & protected mode without paging emulation) */
1356 | X86_CR0_TS
1357 | X86_CR0_ET /* Bit not restored during VM-exit! */
1358 | X86_CR0_CD /* Bit not restored during VM-exit! */
1359 | X86_CR0_NW /* Bit not restored during VM-exit! */
1360 | X86_CR0_NE
1361 | X86_CR0_MP;
1362 pVCpu->hwaccm.s.vmx.cr0_mask = val;
1363
1364 rc |= VMXWriteVMCS(VMX_VMCS_CTRL_CR0_MASK, val);
1365 Log2(("Guest CR0-mask %08x\n", val));
1366 AssertRC(rc);
1367 }
1368 if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_CR4)
1369 {
1370 /* CR4 */
1371 rc = VMXWriteVMCS(VMX_VMCS_CTRL_CR4_READ_SHADOW, pCtx->cr4);
1372 Log2(("Guest CR4-shadow %08x\n", pCtx->cr4));
1373 /* Set the required bits in cr4 too (currently X86_CR4_VMXE). */
1374 val = pCtx->cr4 | (uint32_t)pVM->hwaccm.s.vmx.msr.vmx_cr4_fixed0;
1375
1376 if (!pVM->hwaccm.s.fNestedPaging)
1377 {
1378 switch(pVCpu->hwaccm.s.enmShadowMode)
1379 {
1380 case PGMMODE_REAL: /* Real mode -> emulated using v86 mode */
1381 case PGMMODE_PROTECTED: /* Protected mode, no paging -> emulated using identity mapping. */
1382 case PGMMODE_32_BIT: /* 32-bit paging. */
1383 break;
1384
1385 case PGMMODE_PAE: /* PAE paging. */
1386 case PGMMODE_PAE_NX: /* PAE paging with NX enabled. */
1387 /** @todo use normal 32 bits paging */
1388 val |= X86_CR4_PAE;
1389 break;
1390
1391 case PGMMODE_AMD64: /* 64-bit AMD paging (long mode). */
1392 case PGMMODE_AMD64_NX: /* 64-bit AMD paging (long mode) with NX enabled. */
1393#ifdef VBOX_ENABLE_64_BITS_GUESTS
1394 break;
1395#else
1396 AssertFailed();
1397 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1398#endif
1399 default: /* shut up gcc */
1400 AssertFailed();
1401 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1402 }
1403 }
1404 else
1405 if (!CPUMIsGuestInPagedProtectedModeEx(pCtx))
1406 {
1407 /* We use 4 MB pages in our identity mapping page table for real and protected mode without paging. */
1408 val |= X86_CR4_PSE;
1409 /* Our identity mapping is a 32 bits page directory. */
1410 val &= ~X86_CR4_PAE;
1411 }
1412
1413#ifdef HWACCM_VMX_EMULATE_REALMODE
1414 /* Real mode emulation using v86 mode with CR4.VME (interrupt redirection using the int bitmap in the TSS) */
1415 if (CPUMIsGuestInRealModeEx(pCtx))
1416 val |= X86_CR4_VME;
1417#endif /* HWACCM_VMX_EMULATE_REALMODE */
1418
1419 rc |= VMXWriteVMCS64(VMX_VMCS64_GUEST_CR4, val);
1420 Log2(("Guest CR4 %08x\n", val));
1421 /* CR4 flags owned by the host; if the guests attempts to change them, then
1422 * the VM will exit.
1423 */
1424 val = 0
1425#ifdef HWACCM_VMX_EMULATE_REALMODE
1426 | X86_CR4_VME
1427#endif
1428 | X86_CR4_PAE
1429 | X86_CR4_PGE
1430 | X86_CR4_PSE
1431 | X86_CR4_VMXE;
1432 pVCpu->hwaccm.s.vmx.cr4_mask = val;
1433
1434 rc |= VMXWriteVMCS(VMX_VMCS_CTRL_CR4_MASK, val);
1435 Log2(("Guest CR4-mask %08x\n", val));
1436 AssertRC(rc);
1437 }
1438
1439 if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_CR3)
1440 {
1441 if (pVM->hwaccm.s.fNestedPaging)
1442 {
1443 AssertMsg( PGMGetEPTCR3(pVM) == PGMGetHyperCR3(pVM)
1444 || VM_FF_ISPENDING(pVM, VM_FF_PGM_SYNC_CR3 | VM_FF_PGM_SYNC_CR3_NON_GLOBAL),
1445 ("%RHp vs %RHp\n", PGMGetEPTCR3(pVM), PGMGetHyperCR3(pVM)));
1446 pVCpu->hwaccm.s.vmx.GCPhysEPTP = PGMGetEPTCR3(pVM);
1447
1448 Assert(!(pVCpu->hwaccm.s.vmx.GCPhysEPTP & 0xfff));
1449 /** @todo Check the IA32_VMX_EPT_VPID_CAP MSR for other supported memory types. */
1450 pVCpu->hwaccm.s.vmx.GCPhysEPTP |= VMX_EPT_MEMTYPE_WB
1451 | (VMX_EPT_PAGE_WALK_LENGTH_DEFAULT << VMX_EPT_PAGE_WALK_LENGTH_SHIFT);
1452
1453 rc = VMXWriteVMCS64(VMX_VMCS_CTRL_EPTP_FULL, pVCpu->hwaccm.s.vmx.GCPhysEPTP);
1454 AssertRC(rc);
1455
1456 if (!CPUMIsGuestInPagedProtectedModeEx(pCtx))
1457 {
1458 RTGCPHYS GCPhys;
1459
1460 /* We convert it here every time as pci regions could be reconfigured. */
1461 rc = PDMVMMDevHeapR3ToGCPhys(pVM, pVM->hwaccm.s.vmx.pNonPagingModeEPTPageTable, &GCPhys);
1462 AssertRC(rc);
1463
1464 /* We use our identity mapping page table here as we need to map guest virtual to guest physical addresses; EPT will
1465 * take care of the translation to host physical addresses.
1466 */
1467 val = GCPhys;
1468 }
1469 else
1470 {
1471 /* Save the real guest CR3 in VMX_VMCS_GUEST_CR3 */
1472 val = pCtx->cr3;
1473 /* Prefetch the four PDPT entries in PAE mode. */
1474 vmxR0PrefetchPAEPdptrs(pVM, pVCpu, pCtx);
1475 }
1476 }
1477 else
1478 {
1479 val = PGMGetHyperCR3(pVM);
1480 Assert(val || VM_FF_ISPENDING(pVM, VM_FF_PGM_SYNC_CR3 | VM_FF_PGM_SYNC_CR3_NON_GLOBAL));
1481 }
1482
1483 /* Save our shadow CR3 register. */
1484 rc = VMXWriteVMCS64(VMX_VMCS64_GUEST_CR3, val);
1485 AssertRC(rc);
1486 }
1487
1488 /* Debug registers. */
1489 if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_DEBUG)
1490 {
1491 pCtx->dr[6] |= X86_DR6_INIT_VAL; /* set all reserved bits to 1. */
1492 pCtx->dr[6] &= ~RT_BIT(12); /* must be zero. */
1493
1494 pCtx->dr[7] &= 0xffffffff; /* upper 32 bits reserved */
1495 pCtx->dr[7] &= ~(RT_BIT(11) | RT_BIT(12) | RT_BIT(14) | RT_BIT(15)); /* must be zero */
1496 pCtx->dr[7] |= 0x400; /* must be one */
1497
1498 /* Resync DR7 */
1499 rc = VMXWriteVMCS64(VMX_VMCS64_GUEST_DR7, pCtx->dr[7]);
1500 AssertRC(rc);
1501
1502 /* Sync the debug state now if any breakpoint is armed. */
1503 if ( (pCtx->dr[7] & (X86_DR7_ENABLED_MASK|X86_DR7_GD))
1504 && !CPUMIsGuestDebugStateActive(pVM)
1505 && !DBGFIsStepping(pVM))
1506 {
1507 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatDRxArmed);
1508
1509 /* Disable drx move intercepts. */
1510 pVCpu->hwaccm.s.vmx.proc_ctls &= ~VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_MOV_DR_EXIT;
1511 rc = VMXWriteVMCS(VMX_VMCS_CTRL_PROC_EXEC_CONTROLS, pVCpu->hwaccm.s.vmx.proc_ctls);
1512 AssertRC(rc);
1513
1514 /* Save the host and load the guest debug state. */
1515 rc = CPUMR0LoadGuestDebugState(pVM, pVCpu, pCtx, true /* include DR6 */);
1516 AssertRC(rc);
1517 }
1518
1519 /* IA32_DEBUGCTL MSR. */
1520 rc = VMXWriteVMCS64(VMX_VMCS_GUEST_DEBUGCTL_FULL, 0);
1521 AssertRC(rc);
1522
1523 /** @todo do we really ever need this? */
1524 rc |= VMXWriteVMCS(VMX_VMCS_GUEST_DEBUG_EXCEPTIONS, 0);
1525 AssertRC(rc);
1526 }
1527
1528 /* EIP, ESP and EFLAGS */
1529 rc = VMXWriteVMCS64(VMX_VMCS64_GUEST_RIP, pCtx->rip);
1530 rc |= VMXWriteVMCS64(VMX_VMCS64_GUEST_RSP, pCtx->rsp);
1531 AssertRC(rc);
1532
1533 /* Bits 22-31, 15, 5 & 3 must be zero. Bit 1 must be 1. */
1534 eflags = pCtx->eflags;
1535 eflags.u32 &= VMX_EFLAGS_RESERVED_0;
1536 eflags.u32 |= VMX_EFLAGS_RESERVED_1;
1537
1538#ifdef HWACCM_VMX_EMULATE_REALMODE
1539 /* Real mode emulation using v86 mode with CR4.VME (interrupt redirection using the int bitmap in the TSS) */
1540 if (CPUMIsGuestInRealModeEx(pCtx))
1541 {
1542 pVCpu->hwaccm.s.vmx.RealMode.eflags = eflags;
1543
1544 eflags.Bits.u1VM = 1;
1545 eflags.Bits.u2IOPL = 3;
1546 }
1547#endif /* HWACCM_VMX_EMULATE_REALMODE */
1548 rc = VMXWriteVMCS(VMX_VMCS_GUEST_RFLAGS, eflags.u32);
1549 AssertRC(rc);
1550
1551 /* TSC offset. */
1552 uint64_t u64TSCOffset;
1553
1554 if (TMCpuTickCanUseRealTSC(pVM, &u64TSCOffset))
1555 {
1556 /* Note: VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_RDTSC_EXIT takes precedence over TSC_OFFSET */
1557 rc = VMXWriteVMCS64(VMX_VMCS_CTRL_TSC_OFFSET_FULL, u64TSCOffset);
1558 AssertRC(rc);
1559
1560 pVCpu->hwaccm.s.vmx.proc_ctls &= ~VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_RDTSC_EXIT;
1561 rc = VMXWriteVMCS(VMX_VMCS_CTRL_PROC_EXEC_CONTROLS, pVCpu->hwaccm.s.vmx.proc_ctls);
1562 AssertRC(rc);
1563 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatTSCOffset);
1564 }
1565 else
1566 {
1567 pVCpu->hwaccm.s.vmx.proc_ctls |= VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_RDTSC_EXIT;
1568 rc = VMXWriteVMCS(VMX_VMCS_CTRL_PROC_EXEC_CONTROLS, pVCpu->hwaccm.s.vmx.proc_ctls);
1569 AssertRC(rc);
1570 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatTSCIntercept);
1571 }
1572
1573 /* 64 bits guest mode? */
1574 if (pCtx->msrEFER & MSR_K6_EFER_LMA)
1575 {
1576#if !defined(VBOX_ENABLE_64_BITS_GUESTS)
1577 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1578#elif HC_ARCH_BITS == 32 && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
1579 pVCpu->hwaccm.s.vmx.pfnStartVM = VMXR0SwitcherStartVM64;
1580#else
1581# ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
1582 if (!pVM->hwaccm.s.fAllow64BitGuests)
1583 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1584# endif
1585 pVCpu->hwaccm.s.vmx.pfnStartVM = VMXR0StartVM64;
1586#endif
1587 /* Unconditionally update these as wrmsr might have changed them. */
1588 rc = VMXWriteVMCS64(VMX_VMCS64_GUEST_FS_BASE, pCtx->fsHid.u64Base);
1589 AssertRC(rc);
1590 rc = VMXWriteVMCS64(VMX_VMCS64_GUEST_GS_BASE, pCtx->gsHid.u64Base);
1591 AssertRC(rc);
1592 }
1593 else
1594 {
1595 pVCpu->hwaccm.s.vmx.pfnStartVM = VMXR0StartVM32;
1596 }
1597
1598#if 0 /* @todo deal with 32/64 */
1599 /* Unconditionally update the guest EFER - on CPUs that supports it. */
1600 if (pVM->hwaccm.s.vmx.msr.vmx_entry.n.allowed1 & VMX_VMCS_CTRL_ENTRY_CONTROLS_LOAD_GUEST_EFER_MSR)
1601 {
1602 rc = VMXWriteVMCS64(VMX_VMCS_GUEST_EFER_FULL, pCtx->msrEFER);
1603 AssertRC(rc);
1604 }
1605#endif
1606
1607 vmxR0UpdateExceptionBitmap(pVM, pVCpu, pCtx);
1608
1609 /* Done. */
1610 pVCpu->hwaccm.s.fContextUseFlags &= ~HWACCM_CHANGED_ALL_GUEST;
1611
1612 return rc;
1613}
1614
1615/**
1616 * Syncs back the guest state
1617 *
1618 * @returns VBox status code.
1619 * @param pVM The VM to operate on.
1620 * @param pVCpu The VMCPU to operate on.
1621 * @param pCtx Guest context
1622 */
1623DECLINLINE(int) VMXR0SaveGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
1624{
1625 RTGCUINTREG val, valShadow;
1626 RTGCUINTPTR uInterruptState;
1627 int rc;
1628
1629 /* Let's first sync back eip, esp, and eflags. */
1630 rc = VMXReadCachedVMCS(VMX_VMCS64_GUEST_RIP, &val);
1631 AssertRC(rc);
1632 pCtx->rip = val;
1633 rc = VMXReadCachedVMCS(VMX_VMCS64_GUEST_RSP, &val);
1634 AssertRC(rc);
1635 pCtx->rsp = val;
1636 rc = VMXReadCachedVMCS(VMX_VMCS_GUEST_RFLAGS, &val);
1637 AssertRC(rc);
1638 pCtx->eflags.u32 = val;
1639
1640 /* Take care of instruction fusing (sti, mov ss) */
1641 rc |= VMXReadCachedVMCS(VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE, &val);
1642 uInterruptState = val;
1643 if (uInterruptState != 0)
1644 {
1645 Assert(uInterruptState <= 2); /* only sti & mov ss */
1646 Log(("uInterruptState %x eip=%RGv\n", uInterruptState, pCtx->rip));
1647 EMSetInhibitInterruptsPC(pVM, pCtx->rip);
1648 }
1649 else
1650 VM_FF_CLEAR(pVM, VM_FF_INHIBIT_INTERRUPTS);
1651
1652 /* Control registers. */
1653 VMXReadCachedVMCS(VMX_VMCS_CTRL_CR0_READ_SHADOW, &valShadow);
1654 VMXReadCachedVMCS(VMX_VMCS64_GUEST_CR0, &val);
1655 val = (valShadow & pVCpu->hwaccm.s.vmx.cr0_mask) | (val & ~pVCpu->hwaccm.s.vmx.cr0_mask);
1656 CPUMSetGuestCR0(pVM, val);
1657
1658 VMXReadCachedVMCS(VMX_VMCS_CTRL_CR4_READ_SHADOW, &valShadow);
1659 VMXReadCachedVMCS(VMX_VMCS64_GUEST_CR4, &val);
1660 val = (valShadow & pVCpu->hwaccm.s.vmx.cr4_mask) | (val & ~pVCpu->hwaccm.s.vmx.cr4_mask);
1661 CPUMSetGuestCR4(pVM, val);
1662
1663 /* Note: no reason to sync back the CRx registers. They can't be changed by the guest. */
1664 /* Note: only in the nested paging case can CR3 & CR4 be changed by the guest. */
1665 if ( pVM->hwaccm.s.fNestedPaging
1666 && CPUMIsGuestInPagedProtectedModeEx(pCtx))
1667 {
1668 PVMCSCACHE pCache = &pVCpu->hwaccm.s.vmx.VMCSCache;
1669
1670 /* Can be updated behind our back in the nested paging case. */
1671 CPUMSetGuestCR2(pVM, pCache->cr2);
1672
1673 VMXReadCachedVMCS(VMX_VMCS64_GUEST_CR3, &val);
1674
1675 if (val != pCtx->cr3)
1676 {
1677 CPUMSetGuestCR3(pVM, val);
1678 PGMUpdateCR3(pVM, val);
1679 }
1680 /* Prefetch the four PDPT entries in PAE mode. */
1681 vmxR0PrefetchPAEPdptrs(pVM, pVCpu, pCtx);
1682 }
1683
1684 /* Sync back DR7 here. */
1685 VMXReadCachedVMCS(VMX_VMCS64_GUEST_DR7, &val);
1686 pCtx->dr[7] = val;
1687
1688 /* Guest CPU context: ES, CS, SS, DS, FS, GS. */
1689 VMX_READ_SELREG(ES, es);
1690 VMX_READ_SELREG(SS, ss);
1691 VMX_READ_SELREG(CS, cs);
1692 VMX_READ_SELREG(DS, ds);
1693 VMX_READ_SELREG(FS, fs);
1694 VMX_READ_SELREG(GS, gs);
1695
1696 /*
1697 * System MSRs
1698 */
1699 VMXReadCachedVMCS(VMX_VMCS32_GUEST_SYSENTER_CS, &val);
1700 pCtx->SysEnter.cs = val;
1701 VMXReadCachedVMCS(VMX_VMCS64_GUEST_SYSENTER_EIP, &val);
1702 pCtx->SysEnter.eip = val;
1703 VMXReadCachedVMCS(VMX_VMCS64_GUEST_SYSENTER_ESP, &val);
1704 pCtx->SysEnter.esp = val;
1705
1706 /* Misc. registers; must sync everything otherwise we can get out of sync when jumping to ring 3. */
1707 VMX_READ_SELREG(LDTR, ldtr);
1708
1709 VMXReadCachedVMCS(VMX_VMCS32_GUEST_GDTR_LIMIT, &val);
1710 pCtx->gdtr.cbGdt = val;
1711 VMXReadCachedVMCS(VMX_VMCS64_GUEST_GDTR_BASE, &val);
1712 pCtx->gdtr.pGdt = val;
1713
1714 VMXReadCachedVMCS(VMX_VMCS32_GUEST_IDTR_LIMIT, &val);
1715 pCtx->idtr.cbIdt = val;
1716 VMXReadCachedVMCS(VMX_VMCS64_GUEST_IDTR_BASE, &val);
1717 pCtx->idtr.pIdt = val;
1718
1719#ifdef HWACCM_VMX_EMULATE_REALMODE
1720 /* Real mode emulation using v86 mode with CR4.VME (interrupt redirection using the int bitmap in the TSS) */
1721 if (CPUMIsGuestInRealModeEx(pCtx))
1722 {
1723 /* Hide our emulation flags */
1724 pCtx->eflags.Bits.u1VM = 0;
1725 pCtx->eflags.Bits.u2IOPL = pVCpu->hwaccm.s.vmx.RealMode.eflags.Bits.u2IOPL;
1726
1727 /* Force a TR resync every time in case we switch modes. */
1728 pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_GUEST_TR;
1729 }
1730 else
1731#endif /* HWACCM_VMX_EMULATE_REALMODE */
1732 {
1733 /* In real mode we have a fake TSS, so only sync it back when it's supposed to be valid. */
1734 VMX_READ_SELREG(TR, tr);
1735 }
1736 return VINF_SUCCESS;
1737}
1738
1739/**
1740 * Dummy placeholder
1741 *
1742 * @param pVM The VM to operate on.
1743 * @param pVCpu The VMCPU to operate on.
1744 */
1745static void vmxR0SetupTLBDummy(PVM pVM, PVMCPU pVCpu)
1746{
1747 NOREF(pVM);
1748 NOREF(pVCpu);
1749 return;
1750}
1751
1752/**
1753 * Setup the tagged TLB for EPT
1754 *
1755 * @returns VBox status code.
1756 * @param pVM The VM to operate on.
1757 * @param pVCpu The VMCPU to operate on.
1758 */
1759static void vmxR0SetupTLBEPT(PVM pVM, PVMCPU pVCpu)
1760{
1761 PHWACCM_CPUINFO pCpu;
1762
1763 Assert(pVM->hwaccm.s.fNestedPaging);
1764 Assert(!pVM->hwaccm.s.vmx.fVPID);
1765
1766 /* Deal with tagged TLBs if VPID or EPT is supported. */
1767 pCpu = HWACCMR0GetCurrentCpu();
1768 /* Force a TLB flush for the first world switch if the current cpu differs from the one we ran on last. */
1769 /* Note that this can happen both for start and resume due to long jumps back to ring 3. */
1770 if ( pVCpu->hwaccm.s.idLastCpu != pCpu->idCpu
1771 /* if the tlb flush count has changed, another VM has flushed the TLB of this cpu, so we can't use our current ASID anymore. */
1772 || pVCpu->hwaccm.s.cTLBFlushes != pCpu->cTLBFlushes)
1773 {
1774 /* Force a TLB flush on VM entry. */
1775 pVCpu->hwaccm.s.fForceTLBFlush = true;
1776 }
1777 else
1778 Assert(!pCpu->fFlushTLB);
1779
1780 pVCpu->hwaccm.s.idLastCpu = pCpu->idCpu;
1781 pCpu->fFlushTLB = false;
1782
1783 if (pVCpu->hwaccm.s.fForceTLBFlush)
1784 vmxR0FlushEPT(pVM, pVCpu, pVM->hwaccm.s.vmx.enmFlushContext, 0);
1785
1786#ifdef VBOX_WITH_STATISTICS
1787 if (pVCpu->hwaccm.s.fForceTLBFlush)
1788 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatFlushTLBWorldSwitch);
1789 else
1790 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatNoFlushTLBWorldSwitch);
1791#endif
1792}
1793
1794#ifdef HWACCM_VTX_WITH_VPID
1795/**
1796 * Setup the tagged TLB for VPID
1797 *
1798 * @returns VBox status code.
1799 * @param pVM The VM to operate on.
1800 * @param pVCpu The VMCPU to operate on.
1801 */
1802static void vmxR0SetupTLBVPID(PVM pVM, PVMCPU pVCpu)
1803{
1804 PHWACCM_CPUINFO pCpu;
1805
1806 Assert(pVM->hwaccm.s.vmx.fVPID);
1807 Assert(!pVM->hwaccm.s.fNestedPaging);
1808
1809 /* Deal with tagged TLBs if VPID or EPT is supported. */
1810 pCpu = HWACCMR0GetCurrentCpu();
1811 /* Force a TLB flush for the first world switch if the current cpu differs from the one we ran on last. */
1812 /* Note that this can happen both for start and resume due to long jumps back to ring 3. */
1813 if ( pVCpu->hwaccm.s.idLastCpu != pCpu->idCpu
1814 /* if the tlb flush count has changed, another VM has flushed the TLB of this cpu, so we can't use our current ASID anymore. */
1815 || pVCpu->hwaccm.s.cTLBFlushes != pCpu->cTLBFlushes)
1816 {
1817 /* Force a TLB flush on VM entry. */
1818 pVCpu->hwaccm.s.fForceTLBFlush = true;
1819 }
1820 else
1821 Assert(!pCpu->fFlushTLB);
1822
1823 pVCpu->hwaccm.s.idLastCpu = pCpu->idCpu;
1824
1825 /* Make sure we flush the TLB when required. Switch ASID to achieve the same thing, but without actually flushing the whole TLB (which is expensive). */
1826 if (pVCpu->hwaccm.s.fForceTLBFlush)
1827 {
1828 if ( ++pCpu->uCurrentASID >= pVM->hwaccm.s.uMaxASID
1829 || pCpu->fFlushTLB)
1830 {
1831 pCpu->fFlushTLB = false;
1832 pCpu->uCurrentASID = 1; /* start at 1; host uses 0 */
1833 pCpu->cTLBFlushes++;
1834 }
1835 else
1836 {
1837 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatFlushASID);
1838 pVCpu->hwaccm.s.fForceTLBFlush = false;
1839 }
1840
1841 pVCpu->hwaccm.s.cTLBFlushes = pCpu->cTLBFlushes;
1842 pVCpu->hwaccm.s.uCurrentASID = pCpu->uCurrentASID;
1843 }
1844 else
1845 {
1846 Assert(!pCpu->fFlushTLB);
1847
1848 if (!pCpu->uCurrentASID || !pVCpu->hwaccm.s.uCurrentASID)
1849 pVCpu->hwaccm.s.uCurrentASID = pCpu->uCurrentASID = 1;
1850 }
1851 AssertMsg(pVCpu->hwaccm.s.cTLBFlushes == pCpu->cTLBFlushes, ("Flush count mismatch for cpu %d (%x vs %x)\n", pCpu->idCpu, pVCpu->hwaccm.s.cTLBFlushes, pCpu->cTLBFlushes));
1852 AssertMsg(pCpu->uCurrentASID >= 1 && pCpu->uCurrentASID < pVM->hwaccm.s.uMaxASID, ("cpu%d uCurrentASID = %x\n", pCpu->idCpu, pCpu->uCurrentASID));
1853 AssertMsg(pVCpu->hwaccm.s.uCurrentASID >= 1 && pVCpu->hwaccm.s.uCurrentASID < pVM->hwaccm.s.uMaxASID, ("cpu%d VM uCurrentASID = %x\n", pCpu->idCpu, pVCpu->hwaccm.s.uCurrentASID));
1854
1855 int rc = VMXWriteVMCS(VMX_VMCS16_GUEST_FIELD_VPID, pVCpu->hwaccm.s.uCurrentASID);
1856 AssertRC(rc);
1857
1858 if (pVCpu->hwaccm.s.fForceTLBFlush)
1859 vmxR0FlushVPID(pVM, pVCpu, pVM->hwaccm.s.vmx.enmFlushContext, 0);
1860
1861#ifdef VBOX_WITH_STATISTICS
1862 if (pVCpu->hwaccm.s.fForceTLBFlush)
1863 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatFlushTLBWorldSwitch);
1864 else
1865 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatNoFlushTLBWorldSwitch);
1866#endif
1867}
1868#endif /* HWACCM_VTX_WITH_VPID */
1869
1870/**
1871 * Runs guest code in a VT-x VM.
1872 *
1873 * @returns VBox status code.
1874 * @param pVM The VM to operate on.
1875 * @param pVCpu The VMCPU to operate on.
1876 * @param pCtx Guest context
1877 */
1878VMMR0DECL(int) VMXR0RunGuestCode(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
1879{
1880 int rc = VINF_SUCCESS;
1881 RTGCUINTREG val;
1882 RTGCUINTREG exitReason, instrError, cbInstr;
1883 RTGCUINTPTR exitQualification;
1884 RTGCUINTPTR intInfo = 0; /* shut up buggy gcc 4 */
1885 RTGCUINTPTR errCode, instrInfo;
1886 bool fSyncTPR = false;
1887 PHWACCM_CPUINFO pCpu = 0;
1888 unsigned cResume = 0;
1889#ifdef VBOX_STRICT
1890 RTCPUID idCpuCheck;
1891#endif
1892#ifdef VBOX_WITH_STATISTICS
1893 bool fStatEntryStarted = true;
1894 bool fStatExit2Started = false;
1895#endif
1896
1897 Log2(("\nE"));
1898
1899 STAM_PROFILE_ADV_START(&pVCpu->hwaccm.s.StatEntry, x);
1900
1901#ifdef VBOX_STRICT
1902 {
1903 RTCCUINTREG val;
1904
1905 rc = VMXReadVMCS(VMX_VMCS_CTRL_PIN_EXEC_CONTROLS, &val);
1906 AssertRC(rc);
1907 Log2(("VMX_VMCS_CTRL_PIN_EXEC_CONTROLS = %08x\n", val));
1908
1909 /* allowed zero */
1910 if ((val & pVM->hwaccm.s.vmx.msr.vmx_pin_ctls.n.disallowed0) != pVM->hwaccm.s.vmx.msr.vmx_pin_ctls.n.disallowed0)
1911 Log(("Invalid VMX_VMCS_CTRL_PIN_EXEC_CONTROLS: zero\n"));
1912
1913 /* allowed one */
1914 if ((val & ~pVM->hwaccm.s.vmx.msr.vmx_pin_ctls.n.allowed1) != 0)
1915 Log(("Invalid VMX_VMCS_CTRL_PIN_EXEC_CONTROLS: one\n"));
1916
1917 rc = VMXReadVMCS(VMX_VMCS_CTRL_PROC_EXEC_CONTROLS, &val);
1918 AssertRC(rc);
1919 Log2(("VMX_VMCS_CTRL_PROC_EXEC_CONTROLS = %08x\n", val));
1920
1921 /* Must be set according to the MSR, but can be cleared in case of EPT. */
1922 if (pVM->hwaccm.s.fNestedPaging)
1923 val |= VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_INVLPG_EXIT
1924 | VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_CR3_LOAD_EXIT
1925 | VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_CR3_STORE_EXIT;
1926
1927 /* allowed zero */
1928 if ((val & pVM->hwaccm.s.vmx.msr.vmx_proc_ctls.n.disallowed0) != pVM->hwaccm.s.vmx.msr.vmx_proc_ctls.n.disallowed0)
1929 Log(("Invalid VMX_VMCS_CTRL_PROC_EXEC_CONTROLS: zero\n"));
1930
1931 /* allowed one */
1932 if ((val & ~pVM->hwaccm.s.vmx.msr.vmx_proc_ctls.n.allowed1) != 0)
1933 Log(("Invalid VMX_VMCS_CTRL_PROC_EXEC_CONTROLS: one\n"));
1934
1935 rc = VMXReadVMCS(VMX_VMCS_CTRL_ENTRY_CONTROLS, &val);
1936 AssertRC(rc);
1937 Log2(("VMX_VMCS_CTRL_ENTRY_CONTROLS = %08x\n", val));
1938
1939 /* allowed zero */
1940 if ((val & pVM->hwaccm.s.vmx.msr.vmx_entry.n.disallowed0) != pVM->hwaccm.s.vmx.msr.vmx_entry.n.disallowed0)
1941 Log(("Invalid VMX_VMCS_CTRL_ENTRY_CONTROLS: zero\n"));
1942
1943 /* allowed one */
1944 if ((val & ~pVM->hwaccm.s.vmx.msr.vmx_entry.n.allowed1) != 0)
1945 Log(("Invalid VMX_VMCS_CTRL_ENTRY_CONTROLS: one\n"));
1946
1947 rc = VMXReadVMCS(VMX_VMCS_CTRL_EXIT_CONTROLS, &val);
1948 AssertRC(rc);
1949 Log2(("VMX_VMCS_CTRL_EXIT_CONTROLS = %08x\n", val));
1950
1951 /* allowed zero */
1952 if ((val & pVM->hwaccm.s.vmx.msr.vmx_exit.n.disallowed0) != pVM->hwaccm.s.vmx.msr.vmx_exit.n.disallowed0)
1953 Log(("Invalid VMX_VMCS_CTRL_EXIT_CONTROLS: zero\n"));
1954
1955 /* allowed one */
1956 if ((val & ~pVM->hwaccm.s.vmx.msr.vmx_exit.n.allowed1) != 0)
1957 Log(("Invalid VMX_VMCS_CTRL_EXIT_CONTROLS: one\n"));
1958 }
1959#endif
1960
1961 /* We can jump to this point to resume execution after determining that a VM-exit is innocent.
1962 */
1963ResumeExecution:
1964 STAM_STATS({
1965 if (fStatExit2Started) { STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit2, y); fStatExit2Started = false; }
1966 if (!fStatEntryStarted) { STAM_PROFILE_ADV_START(&pVCpu->hwaccm.s.StatEntry, x); fStatEntryStarted = true; }
1967 });
1968 AssertMsg(pVCpu->hwaccm.s.idEnteredCpu == RTMpCpuId(),
1969 ("Expected %d, I'm %d; cResume=%d exitReason=%RGv exitQualification=%RGv\n",
1970 (int)pVCpu->hwaccm.s.idEnteredCpu, (int)RTMpCpuId(), cResume, exitReason, exitQualification));
1971 Assert(!HWACCMR0SuspendPending());
1972
1973 /* Safety precaution; looping for too long here can have a very bad effect on the host */
1974 if (++cResume > HWACCM_MAX_RESUME_LOOPS)
1975 {
1976 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitMaxResume);
1977 rc = VINF_EM_RAW_INTERRUPT;
1978 goto end;
1979 }
1980
1981 /* Check for irq inhibition due to instruction fusing (sti, mov ss). */
1982 if (VM_FF_ISSET(pVM, VM_FF_INHIBIT_INTERRUPTS))
1983 {
1984 Log(("VM_FF_INHIBIT_INTERRUPTS at %RGv successor %RGv\n", (RTGCPTR)pCtx->rip, EMGetInhibitInterruptsPC(pVM)));
1985 if (pCtx->rip != EMGetInhibitInterruptsPC(pVM))
1986 {
1987 /* Note: we intentionally don't clear VM_FF_INHIBIT_INTERRUPTS here.
1988 * Before we are able to execute this instruction in raw mode (iret to guest code) an external interrupt might
1989 * force a world switch again. Possibly allowing a guest interrupt to be dispatched in the process. This could
1990 * break the guest. Sounds very unlikely, but such timing sensitive problems are not as rare as you might think.
1991 */
1992 VM_FF_CLEAR(pVM, VM_FF_INHIBIT_INTERRUPTS);
1993 /* Irq inhibition is no longer active; clear the corresponding VMX state. */
1994 rc = VMXWriteVMCS(VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE, 0);
1995 AssertRC(rc);
1996 }
1997 }
1998 else
1999 {
2000 /* Irq inhibition is no longer active; clear the corresponding VMX state. */
2001 rc = VMXWriteVMCS(VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE, 0);
2002 AssertRC(rc);
2003 }
2004
2005 /* Check for pending actions that force us to go back to ring 3. */
2006 if (VM_FF_ISPENDING(pVM, VM_FF_TO_R3 | VM_FF_TIMER))
2007 {
2008 VM_FF_CLEAR(pVM, VM_FF_TO_R3);
2009 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatSwitchToR3);
2010 rc = VINF_EM_RAW_TO_R3;
2011 goto end;
2012 }
2013 /* Pending request packets might contain actions that need immediate attention, such as pending hardware interrupts. */
2014 if (VM_FF_ISPENDING(pVM, VM_FF_REQUEST))
2015 {
2016 rc = VINF_EM_PENDING_REQUEST;
2017 goto end;
2018 }
2019
2020 /* When external interrupts are pending, we should exit the VM when IF is set. */
2021 /* Note! *After* VM_FF_INHIBIT_INTERRUPTS check!!! */
2022 rc = VMXR0CheckPendingInterrupt(pVM, pVCpu, pCtx);
2023 if (RT_FAILURE(rc))
2024 goto end;
2025
2026 /** @todo check timers?? */
2027
2028 /* TPR caching using CR8 is only available in 64 bits mode */
2029 /* Note the 32 bits exception for AMD (X86_CPUID_AMD_FEATURE_ECX_CR8L), but that appears missing in Intel CPUs */
2030 /* Note: we can't do this in LoadGuestState as PDMApicGetTPR can jump back to ring 3 (lock)!!!!! */
2031 /**
2032 * @todo reduce overhead
2033 */
2034 if ( (pCtx->msrEFER & MSR_K6_EFER_LMA)
2035 && pVM->hwaccm.s.vmx.pAPIC)
2036 {
2037 /* TPR caching in CR8 */
2038 uint8_t u8TPR;
2039 bool fPending;
2040
2041 int rc = PDMApicGetTPR(pVM, &u8TPR, &fPending);
2042 AssertRC(rc);
2043 /* The TPR can be found at offset 0x80 in the APIC mmio page. */
2044 pVM->hwaccm.s.vmx.pAPIC[0x80] = u8TPR << 4; /* bits 7-4 contain the task priority */
2045
2046 /* Two options here:
2047 * - external interrupt pending, but masked by the TPR value.
2048 * -> a CR8 update that lower the current TPR value should cause an exit
2049 * - no pending interrupts
2050 * -> We don't need to be explicitely notified. There are enough world switches for detecting pending interrupts.
2051 */
2052 rc = VMXWriteVMCS(VMX_VMCS_CTRL_TPR_THRESHOLD, (fPending) ? u8TPR : 0);
2053 AssertRC(rc);
2054
2055 /* Always sync back the TPR; we should optimize this though */ /** @todo optimize TPR sync. */
2056 fSyncTPR = true;
2057 }
2058
2059#if defined(HWACCM_VTX_WITH_EPT) && defined(LOG_ENABLED)
2060 if ( pVM->hwaccm.s.fNestedPaging
2061# ifdef HWACCM_VTX_WITH_VPID
2062 || pVM->hwaccm.s.vmx.fVPID
2063# endif /* HWACCM_VTX_WITH_VPID */
2064 )
2065 {
2066 pCpu = HWACCMR0GetCurrentCpu();
2067 if ( pVCpu->hwaccm.s.idLastCpu != pCpu->idCpu
2068 || pVCpu->hwaccm.s.cTLBFlushes != pCpu->cTLBFlushes)
2069 {
2070 if (pVCpu->hwaccm.s.idLastCpu != pCpu->idCpu)
2071 Log(("Force TLB flush due to rescheduling to a different cpu (%d vs %d)\n", pVCpu->hwaccm.s.idLastCpu, pCpu->idCpu));
2072 else
2073 Log(("Force TLB flush due to changed TLB flush count (%x vs %x)\n", pVCpu->hwaccm.s.cTLBFlushes, pCpu->cTLBFlushes));
2074 }
2075 if (pCpu->fFlushTLB)
2076 Log(("Force TLB flush: first time cpu %d is used -> flush\n", pCpu->idCpu));
2077 else
2078 if (pVCpu->hwaccm.s.fForceTLBFlush)
2079 LogFlow(("Manual TLB flush\n"));
2080 }
2081#endif
2082#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
2083 PGMDynMapFlushAutoSet(pVCpu);
2084#endif
2085
2086 /*
2087 * NOTE: DO NOT DO ANYTHING AFTER THIS POINT THAT MIGHT JUMP BACK TO RING 3!
2088 * (until the actual world switch)
2089 */
2090#ifdef VBOX_STRICT
2091 idCpuCheck = RTMpCpuId();
2092#endif
2093#ifdef LOG_LOGGING
2094 VMMR0LogFlushDisable(pVCpu);
2095#endif
2096 /* Save the host state first. */
2097 rc = VMXR0SaveHostState(pVM, pVCpu);
2098 if (rc != VINF_SUCCESS)
2099 goto end;
2100 /* Load the guest state */
2101 rc = VMXR0LoadGuestState(pVM, pVCpu, pCtx);
2102 if (rc != VINF_SUCCESS)
2103 goto end;
2104
2105 /* Deal with tagged TLB setup and invalidation. */
2106 pVM->hwaccm.s.vmx.pfnSetupTaggedTLB(pVM, pVCpu);
2107
2108 /* Non-register state Guest Context */
2109 /** @todo change me according to cpu state */
2110 rc = VMXWriteVMCS(VMX_VMCS32_GUEST_ACTIVITY_STATE, VMX_CMS_GUEST_ACTIVITY_ACTIVE);
2111 AssertRC(rc);
2112
2113 STAM_STATS({ STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatEntry, x); fStatEntryStarted = false; });
2114
2115 /* Manual save and restore:
2116 * - General purpose registers except RIP, RSP
2117 *
2118 * Trashed:
2119 * - CR2 (we don't care)
2120 * - LDTR (reset to 0)
2121 * - DRx (presumably not changed at all)
2122 * - DR7 (reset to 0x400)
2123 * - EFLAGS (reset to RT_BIT(1); not relevant)
2124 *
2125 */
2126
2127 /* All done! Let's start VM execution. */
2128 STAM_PROFILE_ADV_START(&pVCpu->hwaccm.s.StatInGC, z);
2129#ifdef VBOX_STRICT
2130 Assert(idCpuCheck == RTMpCpuId());
2131#endif
2132 TMNotifyStartOfExecution(pVM);
2133 rc = pVCpu->hwaccm.s.vmx.pfnStartVM(pVCpu->hwaccm.s.fResumeVM, pCtx, &pVCpu->hwaccm.s.vmx.VMCSCache, pVM, pVCpu);
2134 TMNotifyEndOfExecution(pVM);
2135
2136 AssertMsg(!pVCpu->hwaccm.s.vmx.VMCSCache.Write.cValidEntries, ("pVCpu->hwaccm.s.vmx.VMCSCache.Write.cValidEntries=%d\n", pVCpu->hwaccm.s.vmx.VMCSCache.Write.cValidEntries));
2137
2138 /* In case we execute a goto ResumeExecution later on. */
2139 pVCpu->hwaccm.s.fResumeVM = true;
2140 pVCpu->hwaccm.s.fForceTLBFlush = false;
2141
2142 /*
2143 * !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
2144 * IMPORTANT: WE CAN'T DO ANY LOGGING OR OPERATIONS THAT CAN DO A LONGJMP BACK TO RING 3 *BEFORE* WE'VE SYNCED BACK (MOST OF) THE GUEST STATE
2145 * !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
2146 */
2147
2148 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatInGC, z);
2149 STAM_PROFILE_ADV_START(&pVCpu->hwaccm.s.StatExit1, v);
2150
2151 if (rc != VINF_SUCCESS)
2152 {
2153 VMXR0ReportWorldSwitchError(pVM, pVCpu, rc, pCtx);
2154 goto end;
2155 }
2156 /* Success. Query the guest state and figure out what has happened. */
2157
2158 /* Investigate why there was a VM-exit. */
2159 rc = VMXReadCachedVMCS(VMX_VMCS32_RO_EXIT_REASON, &exitReason);
2160 STAM_COUNTER_INC(&pVCpu->hwaccm.s.paStatExitReasonR0[exitReason & MASK_EXITREASON_STAT]);
2161
2162 exitReason &= 0xffff; /* bit 0-15 contain the exit code. */
2163 rc |= VMXReadCachedVMCS(VMX_VMCS32_RO_VM_INSTR_ERROR, &instrError);
2164 rc |= VMXReadCachedVMCS(VMX_VMCS32_RO_EXIT_INSTR_LENGTH, &cbInstr);
2165 rc |= VMXReadCachedVMCS(VMX_VMCS32_RO_EXIT_INTERRUPTION_INFO, &intInfo);
2166 /* might not be valid; depends on VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_IS_VALID. */
2167 rc |= VMXReadCachedVMCS(VMX_VMCS32_RO_EXIT_INTERRUPTION_ERRCODE, &errCode);
2168 rc |= VMXReadCachedVMCS(VMX_VMCS32_RO_EXIT_INSTR_INFO, &instrInfo);
2169 rc |= VMXReadCachedVMCS(VMX_VMCS_RO_EXIT_QUALIFICATION, &exitQualification);
2170 AssertRC(rc);
2171
2172 /* Sync back the guest state */
2173 rc = VMXR0SaveGuestState(pVM, pVCpu, pCtx);
2174 AssertRC(rc);
2175
2176 /* Note! NOW IT'S SAFE FOR LOGGING! */
2177#ifdef LOG_LOGGING
2178 VMMR0LogFlushEnable(pVCpu);
2179#endif
2180 Log2(("Raw exit reason %08x\n", exitReason));
2181
2182 /* Check if an injected event was interrupted prematurely. */
2183 rc = VMXReadCachedVMCS(VMX_VMCS32_RO_IDT_INFO, &val);
2184 AssertRC(rc);
2185 pVCpu->hwaccm.s.Event.intInfo = VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(val);
2186 if ( VMX_EXIT_INTERRUPTION_INFO_VALID(pVCpu->hwaccm.s.Event.intInfo)
2187 /* Ignore 'int xx' as they'll be restarted anyway. */
2188 && VMX_EXIT_INTERRUPTION_INFO_TYPE(pVCpu->hwaccm.s.Event.intInfo) != VMX_EXIT_INTERRUPTION_INFO_TYPE_SW
2189 /* Ignore software exceptions (such as int3) as they're reoccur when we restart the instruction anyway. */
2190 && VMX_EXIT_INTERRUPTION_INFO_TYPE(pVCpu->hwaccm.s.Event.intInfo) != VMX_EXIT_INTERRUPTION_INFO_TYPE_SWEXCPT)
2191 {
2192 pVCpu->hwaccm.s.Event.fPending = true;
2193 /* Error code present? */
2194 if (VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_IS_VALID(pVCpu->hwaccm.s.Event.intInfo))
2195 {
2196 rc = VMXReadCachedVMCS(VMX_VMCS32_RO_IDT_ERRCODE, &val);
2197 AssertRC(rc);
2198 pVCpu->hwaccm.s.Event.errCode = val;
2199 Log(("Pending inject %RX64 at %RGv exit=%08x intInfo=%08x exitQualification=%RGv pending error=%RX64\n", pVCpu->hwaccm.s.Event.intInfo, (RTGCPTR)pCtx->rip, exitReason, intInfo, exitQualification, val));
2200 }
2201 else
2202 {
2203 Log(("Pending inject %RX64 at %RGv exit=%08x intInfo=%08x exitQualification=%RGv\n", pVCpu->hwaccm.s.Event.intInfo, (RTGCPTR)pCtx->rip, exitReason, intInfo, exitQualification));
2204 pVCpu->hwaccm.s.Event.errCode = 0;
2205 }
2206 }
2207#ifdef VBOX_STRICT
2208 else
2209 if ( VMX_EXIT_INTERRUPTION_INFO_VALID(pVCpu->hwaccm.s.Event.intInfo)
2210 /* Ignore software exceptions (such as int3) as they're reoccur when we restart the instruction anyway. */
2211 && VMX_EXIT_INTERRUPTION_INFO_TYPE(pVCpu->hwaccm.s.Event.intInfo) == VMX_EXIT_INTERRUPTION_INFO_TYPE_SWEXCPT)
2212 {
2213 Log(("Ignore pending inject %RX64 at %RGv exit=%08x intInfo=%08x exitQualification=%RGv\n", pVCpu->hwaccm.s.Event.intInfo, (RTGCPTR)pCtx->rip, exitReason, intInfo, exitQualification));
2214 }
2215
2216 if (exitReason == VMX_EXIT_ERR_INVALID_GUEST_STATE)
2217 HWACCMDumpRegs(pVM, pCtx);
2218#endif
2219
2220 Log2(("E%d", exitReason));
2221 Log2(("Exit reason %d, exitQualification %RGv\n", (uint32_t)exitReason, exitQualification));
2222 Log2(("instrInfo=%d instrError=%d instr length=%d\n", (uint32_t)instrInfo, (uint32_t)instrError, (uint32_t)cbInstr));
2223 Log2(("Interruption error code %d\n", (uint32_t)errCode));
2224 Log2(("IntInfo = %08x\n", (uint32_t)intInfo));
2225 Log2(("New EIP=%RGv\n", (RTGCPTR)pCtx->rip));
2226
2227 if (fSyncTPR)
2228 {
2229 rc = PDMApicSetTPR(pVM, pVM->hwaccm.s.vmx.pAPIC[0x80] >> 4);
2230 AssertRC(rc);
2231 }
2232
2233 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit1, v);
2234 STAM_STATS({ STAM_PROFILE_ADV_START(&pVCpu->hwaccm.s.StatExit2, y); fStatExit2Started = true; });
2235
2236 /* Some cases don't need a complete resync of the guest CPU state; handle them here. */
2237 switch (exitReason)
2238 {
2239 case VMX_EXIT_EXCEPTION: /* 0 Exception or non-maskable interrupt (NMI). */
2240 case VMX_EXIT_EXTERNAL_IRQ: /* 1 External interrupt. */
2241 {
2242 uint32_t vector = VMX_EXIT_INTERRUPTION_INFO_VECTOR(intInfo);
2243
2244 if (!VMX_EXIT_INTERRUPTION_INFO_VALID(intInfo))
2245 {
2246 Assert(exitReason == VMX_EXIT_EXTERNAL_IRQ);
2247 /* External interrupt; leave to allow it to be dispatched again. */
2248 rc = VINF_EM_RAW_INTERRUPT;
2249 break;
2250 }
2251 STAM_PROFILE_ADV_START(&pVCpu->hwaccm.s.StatExit2Sub3, y3);
2252 switch (VMX_EXIT_INTERRUPTION_INFO_TYPE(intInfo))
2253 {
2254 case VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI: /* Non-maskable interrupt. */
2255 /* External interrupt; leave to allow it to be dispatched again. */
2256 rc = VINF_EM_RAW_INTERRUPT;
2257 break;
2258
2259 case VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT: /* External hardware interrupt. */
2260 AssertFailed(); /* can't come here; fails the first check. */
2261 break;
2262
2263 case VMX_EXIT_INTERRUPTION_INFO_TYPE_DBEXCPT: /* Unknown why we get this type for #DB */
2264 case VMX_EXIT_INTERRUPTION_INFO_TYPE_SWEXCPT: /* Software exception. (#BP or #OF) */
2265 Assert(vector == 1 || vector == 3 || vector == 4);
2266 /* no break */
2267 case VMX_EXIT_INTERRUPTION_INFO_TYPE_HWEXCPT: /* Hardware exception. */
2268 Log2(("Hardware/software interrupt %d\n", vector));
2269 switch (vector)
2270 {
2271 case X86_XCPT_NM:
2272 {
2273 Log(("#NM fault at %RGv error code %x\n", (RTGCPTR)pCtx->rip, errCode));
2274
2275 /** @todo don't intercept #NM exceptions anymore when we've activated the guest FPU state. */
2276 /* If we sync the FPU/XMM state on-demand, then we can continue execution as if nothing has happened. */
2277 rc = CPUMR0LoadGuestFPU(pVM, pVCpu, pCtx);
2278 if (rc == VINF_SUCCESS)
2279 {
2280 Assert(CPUMIsGuestFPUStateActive(pVCpu));
2281
2282 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitShadowNM);
2283
2284 /* Continue execution. */
2285 pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_GUEST_CR0;
2286
2287 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit2Sub3, y3);
2288 goto ResumeExecution;
2289 }
2290
2291 Log(("Forward #NM fault to the guest\n"));
2292 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestNM);
2293 rc = VMXR0InjectEvent(pVM, pVCpu, pCtx, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(intInfo), cbInstr, 0);
2294 AssertRC(rc);
2295 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit2Sub3, y3);
2296 goto ResumeExecution;
2297 }
2298
2299 case X86_XCPT_PF: /* Page fault */
2300 {
2301#ifdef DEBUG
2302 if (pVM->hwaccm.s.fNestedPaging)
2303 { /* A genuine pagefault.
2304 * Forward the trap to the guest by injecting the exception and resuming execution.
2305 */
2306 Log(("Guest page fault at %RGv cr2=%RGv error code %x rsp=%RGv\n", (RTGCPTR)pCtx->rip, exitQualification, errCode, (RTGCPTR)pCtx->rsp));
2307
2308 Assert(CPUMIsGuestInPagedProtectedModeEx(pCtx));
2309
2310 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestPF);
2311
2312 /* Now we must update CR2. */
2313 pCtx->cr2 = exitQualification;
2314 rc = VMXR0InjectEvent(pVM, pVCpu, pCtx, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(intInfo), cbInstr, errCode);
2315 AssertRC(rc);
2316
2317 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit2Sub3, y3);
2318 goto ResumeExecution;
2319 }
2320#endif
2321 Assert(!pVM->hwaccm.s.fNestedPaging);
2322
2323 Log2(("Page fault at %RGv error code %x\n", exitQualification, errCode));
2324 /* Exit qualification contains the linear address of the page fault. */
2325 TRPMAssertTrap(pVM, X86_XCPT_PF, TRPM_TRAP);
2326 TRPMSetErrorCode(pVM, errCode);
2327 TRPMSetFaultAddress(pVM, exitQualification);
2328
2329 /* Forward it to our trap handler first, in case our shadow pages are out of sync. */
2330 rc = PGMTrap0eHandler(pVM, errCode, CPUMCTX2CORE(pCtx), (RTGCPTR)exitQualification);
2331 Log2(("PGMTrap0eHandler %RGv returned %Rrc\n", (RTGCPTR)pCtx->rip, rc));
2332 if (rc == VINF_SUCCESS)
2333 { /* We've successfully synced our shadow pages, so let's just continue execution. */
2334 Log2(("Shadow page fault at %RGv cr2=%RGv error code %x\n", (RTGCPTR)pCtx->rip, exitQualification ,errCode));
2335 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitShadowPF);
2336
2337 TRPMResetTrap(pVM);
2338
2339 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit2Sub3, y3);
2340 goto ResumeExecution;
2341 }
2342 else
2343 if (rc == VINF_EM_RAW_GUEST_TRAP)
2344 { /* A genuine pagefault.
2345 * Forward the trap to the guest by injecting the exception and resuming execution.
2346 */
2347 Log2(("Forward page fault to the guest\n"));
2348
2349 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestPF);
2350 /* The error code might have been changed. */
2351 errCode = TRPMGetErrorCode(pVM);
2352
2353 TRPMResetTrap(pVM);
2354
2355 /* Now we must update CR2. */
2356 pCtx->cr2 = exitQualification;
2357 rc = VMXR0InjectEvent(pVM, pVCpu, pCtx, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(intInfo), cbInstr, errCode);
2358 AssertRC(rc);
2359
2360 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit2Sub3, y3);
2361 goto ResumeExecution;
2362 }
2363#ifdef VBOX_STRICT
2364 if (rc != VINF_EM_RAW_EMULATE_INSTR)
2365 Log2(("PGMTrap0eHandler failed with %d\n", rc));
2366#endif
2367 /* Need to go back to the recompiler to emulate the instruction. */
2368 TRPMResetTrap(pVM);
2369 break;
2370 }
2371
2372 case X86_XCPT_MF: /* Floating point exception. */
2373 {
2374 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestMF);
2375 if (!(pCtx->cr0 & X86_CR0_NE))
2376 {
2377 /* old style FPU error reporting needs some extra work. */
2378 /** @todo don't fall back to the recompiler, but do it manually. */
2379 rc = VINF_EM_RAW_EMULATE_INSTR;
2380 break;
2381 }
2382 Log(("Trap %x at %04X:%RGv\n", vector, pCtx->cs, (RTGCPTR)pCtx->rip));
2383 rc = VMXR0InjectEvent(pVM, pVCpu, pCtx, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(intInfo), cbInstr, errCode);
2384 AssertRC(rc);
2385
2386 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit2Sub3, y3);
2387 goto ResumeExecution;
2388 }
2389
2390 case X86_XCPT_DB: /* Debug exception. */
2391 {
2392 uint64_t uDR6;
2393
2394 /* DR6, DR7.GD and IA32_DEBUGCTL.LBR are not updated yet.
2395 *
2396 * Exit qualification bits:
2397 * 3:0 B0-B3 which breakpoint condition was met
2398 * 12:4 Reserved (0)
2399 * 13 BD - debug register access detected
2400 * 14 BS - single step execution or branch taken
2401 * 63:15 Reserved (0)
2402 */
2403 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestDB);
2404
2405 /* Note that we don't support guest and host-initiated debugging at the same time. */
2406 Assert(DBGFIsStepping(pVM) || CPUMIsGuestInRealModeEx(pCtx));
2407
2408 uDR6 = X86_DR6_INIT_VAL;
2409 uDR6 |= (exitQualification & (X86_DR6_B0|X86_DR6_B1|X86_DR6_B2|X86_DR6_B3|X86_DR6_BD|X86_DR6_BS));
2410 rc = DBGFR0Trap01Handler(pVM, CPUMCTX2CORE(pCtx), uDR6);
2411 if (rc == VINF_EM_RAW_GUEST_TRAP)
2412 {
2413 /** @todo this isn't working, but we'll never get here normally. */
2414
2415 /* Update DR6 here. */
2416 pCtx->dr[6] = uDR6;
2417
2418 /* X86_DR7_GD will be cleared if drx accesses should be trapped inside the guest. */
2419 pCtx->dr[7] &= ~X86_DR7_GD;
2420
2421 /* Paranoia. */
2422 pCtx->dr[7] &= 0xffffffff; /* upper 32 bits reserved */
2423 pCtx->dr[7] &= ~(RT_BIT(11) | RT_BIT(12) | RT_BIT(14) | RT_BIT(15)); /* must be zero */
2424 pCtx->dr[7] |= 0x400; /* must be one */
2425
2426 /* Resync DR7 */
2427 rc = VMXWriteVMCS64(VMX_VMCS64_GUEST_DR7, pCtx->dr[7]);
2428 AssertRC(rc);
2429
2430 Log(("Trap %x (debug) at %RGv exit qualification %RX64\n", vector, (RTGCPTR)pCtx->rip, exitQualification));
2431 rc = VMXR0InjectEvent(pVM, pVCpu, pCtx, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(intInfo), cbInstr, errCode);
2432 AssertRC(rc);
2433
2434 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit2Sub3, y3);
2435 goto ResumeExecution;
2436 }
2437 /* Return to ring 3 to deal with the debug exit code. */
2438 break;
2439 }
2440
2441 case X86_XCPT_GP: /* General protection failure exception.*/
2442 {
2443 uint32_t cbSize;
2444
2445 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestGP);
2446#ifdef VBOX_STRICT
2447 if (!CPUMIsGuestInRealModeEx(pCtx))
2448 {
2449 Log(("Trap %x at %04X:%RGv errorCode=%x\n", vector, pCtx->cs, (RTGCPTR)pCtx->rip, errCode));
2450 rc = VMXR0InjectEvent(pVM, pVCpu, pCtx, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(intInfo), cbInstr, errCode);
2451 AssertRC(rc);
2452 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit2Sub3, y3);
2453 goto ResumeExecution;
2454 }
2455#endif
2456 Assert(CPUMIsGuestInRealModeEx(pCtx));
2457
2458 LogFlow(("Real mode X86_XCPT_GP instruction emulation at %RGv\n", (RTGCPTR)pCtx->rip));
2459 rc = EMInterpretInstruction(pVM, CPUMCTX2CORE(pCtx), 0, &cbSize);
2460 if (rc == VINF_SUCCESS)
2461 {
2462 /* EIP has been updated already. */
2463
2464 /* lidt, lgdt can end up here. In the future crx changes as well. Just reload the whole context to be done with it. */
2465 pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_ALL;
2466
2467 /* Only resume if successful. */
2468 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit2Sub3, y3);
2469 goto ResumeExecution;
2470 }
2471 AssertMsg(rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_EM_HALT, ("Unexpected rc=%Rrc\n", rc));
2472 break;
2473 }
2474
2475#ifdef VBOX_STRICT
2476 case X86_XCPT_DE: /* Divide error. */
2477 case X86_XCPT_UD: /* Unknown opcode exception. */
2478 case X86_XCPT_SS: /* Stack segment exception. */
2479 case X86_XCPT_NP: /* Segment not present exception. */
2480 {
2481 switch(vector)
2482 {
2483 case X86_XCPT_DE:
2484 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestDE);
2485 break;
2486 case X86_XCPT_UD:
2487 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestUD);
2488 break;
2489 case X86_XCPT_SS:
2490 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestSS);
2491 break;
2492 case X86_XCPT_NP:
2493 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestNP);
2494 break;
2495 }
2496
2497 Log(("Trap %x at %04X:%RGv\n", vector, pCtx->cs, (RTGCPTR)pCtx->rip));
2498 rc = VMXR0InjectEvent(pVM, pVCpu, pCtx, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(intInfo), cbInstr, errCode);
2499 AssertRC(rc);
2500
2501 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit2Sub3, y3);
2502 goto ResumeExecution;
2503 }
2504#endif
2505 default:
2506#ifdef HWACCM_VMX_EMULATE_REALMODE
2507 if (CPUMIsGuestInRealModeEx(pCtx))
2508 {
2509 Log(("Real Mode Trap %x at %04x:%04X error code %x\n", vector, pCtx->cs, pCtx->eip, errCode));
2510 rc = VMXR0InjectEvent(pVM, pVCpu, pCtx, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(intInfo), cbInstr, errCode);
2511 AssertRC(rc);
2512
2513 /* Go back to ring 3 in case of a triple fault. */
2514 if ( vector == X86_XCPT_DF
2515 && rc == VINF_EM_RESET)
2516 break;
2517
2518 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit2Sub3, y3);
2519 goto ResumeExecution;
2520 }
2521#endif
2522 AssertMsgFailed(("Unexpected vm-exit caused by exception %x\n", vector));
2523 rc = VERR_VMX_UNEXPECTED_EXCEPTION;
2524 break;
2525 } /* switch (vector) */
2526
2527 break;
2528
2529 default:
2530 rc = VERR_VMX_UNEXPECTED_INTERRUPTION_EXIT_CODE;
2531 AssertMsgFailed(("Unexpected interuption code %x\n", intInfo));
2532 break;
2533 }
2534
2535 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit2Sub3, y3);
2536 break;
2537 }
2538
2539 case VMX_EXIT_EPT_VIOLATION: /* 48 EPT violation. An attempt to access memory with a guest-physical address was disallowed by the configuration of the EPT paging structures. */
2540 {
2541 RTGCPHYS GCPhys;
2542
2543 Assert(pVM->hwaccm.s.fNestedPaging);
2544
2545 rc = VMXReadVMCS64(VMX_VMCS_EXIT_PHYS_ADDR_FULL, &GCPhys);
2546 AssertRC(rc);
2547 Assert(((exitQualification >> 7) & 3) != 2);
2548
2549 /* Determine the kind of violation. */
2550 errCode = 0;
2551 if (exitQualification & VMX_EXIT_QUALIFICATION_EPT_INSTR_FETCH)
2552 errCode |= X86_TRAP_PF_ID;
2553
2554 if (exitQualification & VMX_EXIT_QUALIFICATION_EPT_DATA_WRITE)
2555 errCode |= X86_TRAP_PF_RW;
2556
2557 /* If the page is present, then it's a page level protection fault. */
2558 if (exitQualification & VMX_EXIT_QUALIFICATION_EPT_ENTRY_PRESENT)
2559 errCode |= X86_TRAP_PF_P;
2560
2561 Log(("EPT Page fault %x at %RGp error code %x\n", (uint32_t)exitQualification, GCPhys, errCode));
2562
2563 /* GCPhys contains the guest physical address of the page fault. */
2564 TRPMAssertTrap(pVM, X86_XCPT_PF, TRPM_TRAP);
2565 TRPMSetErrorCode(pVM, errCode);
2566 TRPMSetFaultAddress(pVM, GCPhys);
2567
2568 /* Handle the pagefault trap for the nested shadow table. */
2569 rc = PGMR0Trap0eHandlerNestedPaging(pVM, PGMMODE_EPT, errCode, CPUMCTX2CORE(pCtx), GCPhys);
2570 Log2(("PGMR0Trap0eHandlerNestedPaging %RGv returned %Rrc\n", (RTGCPTR)pCtx->rip, rc));
2571 if (rc == VINF_SUCCESS)
2572 { /* We've successfully synced our shadow pages, so let's just continue execution. */
2573 Log2(("Shadow page fault at %RGv cr2=%RGp error code %x\n", (RTGCPTR)pCtx->rip, exitQualification , errCode));
2574 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitReasonNPF);
2575
2576 TRPMResetTrap(pVM);
2577
2578 goto ResumeExecution;
2579 }
2580
2581#ifdef VBOX_STRICT
2582 if (rc != VINF_EM_RAW_EMULATE_INSTR)
2583 LogFlow(("PGMTrap0eHandlerNestedPaging failed with %d\n", rc));
2584#endif
2585 /* Need to go back to the recompiler to emulate the instruction. */
2586 TRPMResetTrap(pVM);
2587 break;
2588 }
2589
2590 case VMX_EXIT_EPT_MISCONFIG:
2591 {
2592 RTGCPHYS GCPhys;
2593
2594 Assert(pVM->hwaccm.s.fNestedPaging);
2595
2596 rc = VMXReadVMCS64(VMX_VMCS_EXIT_PHYS_ADDR_FULL, &GCPhys);
2597 AssertRC(rc);
2598
2599 Log(("VMX_EXIT_EPT_MISCONFIG for %VGp\n", GCPhys));
2600 break;
2601 }
2602
2603 case VMX_EXIT_IRQ_WINDOW: /* 7 Interrupt window. */
2604 /* Clear VM-exit on IF=1 change. */
2605 LogFlow(("VMX_EXIT_IRQ_WINDOW %RGv pending=%d IF=%d\n", (RTGCPTR)pCtx->rip, VM_FF_ISPENDING(pVM, (VM_FF_INTERRUPT_APIC|VM_FF_INTERRUPT_PIC)), pCtx->eflags.Bits.u1IF));
2606 pVCpu->hwaccm.s.vmx.proc_ctls &= ~VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_IRQ_WINDOW_EXIT;
2607 rc = VMXWriteVMCS(VMX_VMCS_CTRL_PROC_EXEC_CONTROLS, pVCpu->hwaccm.s.vmx.proc_ctls);
2608 AssertRC(rc);
2609 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitIrqWindow);
2610 goto ResumeExecution; /* we check for pending guest interrupts there */
2611
2612 case VMX_EXIT_WBINVD: /* 54 Guest software attempted to execute WBINVD. (conditional) */
2613 case VMX_EXIT_INVD: /* 13 Guest software attempted to execute INVD. (unconditional) */
2614 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitInvd);
2615 /* Skip instruction and continue directly. */
2616 pCtx->rip += cbInstr;
2617 /* Continue execution.*/
2618 goto ResumeExecution;
2619
2620 case VMX_EXIT_CPUID: /* 10 Guest software attempted to execute CPUID. */
2621 {
2622 Log2(("VMX: Cpuid %x\n", pCtx->eax));
2623 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitCpuid);
2624 rc = EMInterpretCpuId(pVM, CPUMCTX2CORE(pCtx));
2625 if (rc == VINF_SUCCESS)
2626 {
2627 /* Update EIP and continue execution. */
2628 Assert(cbInstr == 2);
2629 pCtx->rip += cbInstr;
2630 goto ResumeExecution;
2631 }
2632 AssertMsgFailed(("EMU: cpuid failed with %Rrc\n", rc));
2633 rc = VINF_EM_RAW_EMULATE_INSTR;
2634 break;
2635 }
2636
2637 case VMX_EXIT_RDTSC: /* 16 Guest software attempted to execute RDTSC. */
2638 {
2639 Log2(("VMX: Rdtsc\n"));
2640 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitRdtsc);
2641 rc = EMInterpretRdtsc(pVM, CPUMCTX2CORE(pCtx));
2642 if (rc == VINF_SUCCESS)
2643 {
2644 /* Update EIP and continue execution. */
2645 Assert(cbInstr == 2);
2646 pCtx->rip += cbInstr;
2647 goto ResumeExecution;
2648 }
2649 AssertMsgFailed(("EMU: rdtsc failed with %Rrc\n", rc));
2650 rc = VINF_EM_RAW_EMULATE_INSTR;
2651 break;
2652 }
2653
2654 case VMX_EXIT_INVPG: /* 14 Guest software attempted to execute INVPG. */
2655 {
2656 Log2(("VMX: invlpg\n"));
2657 Assert(!pVM->hwaccm.s.fNestedPaging);
2658
2659 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitInvpg);
2660 rc = EMInterpretInvlpg(pVM, CPUMCTX2CORE(pCtx), exitQualification);
2661 if (rc == VINF_SUCCESS)
2662 {
2663 /* Update EIP and continue execution. */
2664 pCtx->rip += cbInstr;
2665 goto ResumeExecution;
2666 }
2667 AssertMsg(rc == VERR_EM_INTERPRETER, ("EMU: invlpg %RGv failed with %Rrc\n", exitQualification, rc));
2668 break;
2669 }
2670
2671 case VMX_EXIT_RDMSR: /* 31 RDMSR. Guest software attempted to execute RDMSR. */
2672 case VMX_EXIT_WRMSR: /* 32 WRMSR. Guest software attempted to execute WRMSR. */
2673 {
2674 uint32_t cbSize;
2675
2676 /* Note: the intel manual claims there's a REX version of RDMSR that's slightly different, so we play safe by completely disassembling the instruction. */
2677 Log2(("VMX: %s\n", (exitReason == VMX_EXIT_RDMSR) ? "rdmsr" : "wrmsr"));
2678 rc = EMInterpretInstruction(pVM, CPUMCTX2CORE(pCtx), 0, &cbSize);
2679 if (rc == VINF_SUCCESS)
2680 {
2681 /* EIP has been updated already. */
2682
2683 /* Only resume if successful. */
2684 goto ResumeExecution;
2685 }
2686 AssertMsg(rc == VERR_EM_INTERPRETER, ("EMU: %s failed with %Rrc\n", (exitReason == VMX_EXIT_RDMSR) ? "rdmsr" : "wrmsr", rc));
2687 break;
2688 }
2689
2690 case VMX_EXIT_CRX_MOVE: /* 28 Control-register accesses. */
2691 {
2692 STAM_PROFILE_ADV_START(&pVCpu->hwaccm.s.StatExit2Sub2, y2);
2693
2694 switch (VMX_EXIT_QUALIFICATION_CRX_ACCESS(exitQualification))
2695 {
2696 case VMX_EXIT_QUALIFICATION_CRX_ACCESS_WRITE:
2697 Log2(("VMX: %RGv mov cr%d, x\n", (RTGCPTR)pCtx->rip, VMX_EXIT_QUALIFICATION_CRX_REGISTER(exitQualification)));
2698 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitCRxWrite[VMX_EXIT_QUALIFICATION_CRX_REGISTER(exitQualification)]);
2699 rc = EMInterpretCRxWrite(pVM, CPUMCTX2CORE(pCtx),
2700 VMX_EXIT_QUALIFICATION_CRX_REGISTER(exitQualification),
2701 VMX_EXIT_QUALIFICATION_CRX_GENREG(exitQualification));
2702
2703 switch (VMX_EXIT_QUALIFICATION_CRX_REGISTER(exitQualification))
2704 {
2705 case 0:
2706 pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_GUEST_CR0 | HWACCM_CHANGED_GUEST_CR3;
2707 break;
2708 case 2:
2709 break;
2710 case 3:
2711 Assert(!pVM->hwaccm.s.fNestedPaging || !CPUMIsGuestInPagedProtectedModeEx(pCtx));
2712 pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_GUEST_CR3;
2713 break;
2714 case 4:
2715 pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_GUEST_CR4;
2716 break;
2717 case 8:
2718 /* CR8 contains the APIC TPR */
2719 Assert(!(pVM->hwaccm.s.vmx.msr.vmx_proc_ctls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_USE_TPR_SHADOW));
2720 break;
2721
2722 default:
2723 AssertFailed();
2724 break;
2725 }
2726 /* Check if a sync operation is pending. */
2727 if ( rc == VINF_SUCCESS /* don't bother if we are going to ring 3 anyway */
2728 && VM_FF_ISPENDING(pVM, VM_FF_PGM_SYNC_CR3 | VM_FF_PGM_SYNC_CR3_NON_GLOBAL))
2729 {
2730 rc = PGMSyncCR3(pVM, CPUMGetGuestCR0(pVM), CPUMGetGuestCR3(pVM), CPUMGetGuestCR4(pVM), VM_FF_ISSET(pVM, VM_FF_PGM_SYNC_CR3));
2731 AssertRC(rc);
2732 }
2733 break;
2734
2735 case VMX_EXIT_QUALIFICATION_CRX_ACCESS_READ:
2736 Log2(("VMX: mov x, crx\n"));
2737 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitCRxRead[VMX_EXIT_QUALIFICATION_CRX_REGISTER(exitQualification)]);
2738
2739 Assert(!pVM->hwaccm.s.fNestedPaging || !CPUMIsGuestInPagedProtectedModeEx(pCtx) || VMX_EXIT_QUALIFICATION_CRX_REGISTER(exitQualification) != USE_REG_CR3);
2740
2741 /* CR8 reads only cause an exit when the TPR shadow feature isn't present. */
2742 Assert(VMX_EXIT_QUALIFICATION_CRX_REGISTER(exitQualification) != 8 || !(pVM->hwaccm.s.vmx.msr.vmx_proc_ctls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_USE_TPR_SHADOW));
2743
2744 rc = EMInterpretCRxRead(pVM, CPUMCTX2CORE(pCtx),
2745 VMX_EXIT_QUALIFICATION_CRX_GENREG(exitQualification),
2746 VMX_EXIT_QUALIFICATION_CRX_REGISTER(exitQualification));
2747 break;
2748
2749 case VMX_EXIT_QUALIFICATION_CRX_ACCESS_CLTS:
2750 Log2(("VMX: clts\n"));
2751 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitCLTS);
2752 rc = EMInterpretCLTS(pVM);
2753 pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_GUEST_CR0;
2754 break;
2755
2756 case VMX_EXIT_QUALIFICATION_CRX_ACCESS_LMSW:
2757 Log2(("VMX: lmsw %x\n", VMX_EXIT_QUALIFICATION_CRX_LMSW_DATA(exitQualification)));
2758 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitLMSW);
2759 rc = EMInterpretLMSW(pVM, CPUMCTX2CORE(pCtx), VMX_EXIT_QUALIFICATION_CRX_LMSW_DATA(exitQualification));
2760 pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_GUEST_CR0;
2761 break;
2762 }
2763
2764 /* Update EIP if no error occurred. */
2765 if (RT_SUCCESS(rc))
2766 pCtx->rip += cbInstr;
2767
2768 if (rc == VINF_SUCCESS)
2769 {
2770 /* Only resume if successful. */
2771 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit2Sub2, y2);
2772 goto ResumeExecution;
2773 }
2774 Assert(rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_PGM_SYNC_CR3);
2775 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit2Sub2, y2);
2776 break;
2777 }
2778
2779 case VMX_EXIT_DRX_MOVE: /* 29 Debug-register accesses. */
2780 {
2781 if (!DBGFIsStepping(pVM))
2782 {
2783 /* Disable drx move intercepts. */
2784 pVCpu->hwaccm.s.vmx.proc_ctls &= ~VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_MOV_DR_EXIT;
2785 rc = VMXWriteVMCS(VMX_VMCS_CTRL_PROC_EXEC_CONTROLS, pVCpu->hwaccm.s.vmx.proc_ctls);
2786 AssertRC(rc);
2787
2788 /* Save the host and load the guest debug state. */
2789 rc = CPUMR0LoadGuestDebugState(pVM, pVCpu, pCtx, true /* include DR6 */);
2790 AssertRC(rc);
2791
2792#ifdef VBOX_WITH_STATISTICS
2793 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatDRxContextSwitch);
2794 if (VMX_EXIT_QUALIFICATION_DRX_DIRECTION(exitQualification) == VMX_EXIT_QUALIFICATION_DRX_DIRECTION_WRITE)
2795 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitDRxWrite);
2796 else
2797 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitDRxRead);
2798#endif
2799
2800 goto ResumeExecution;
2801 }
2802
2803 /** @todo clear VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_MOV_DR_EXIT after the first time and restore drx registers afterwards */
2804 if (VMX_EXIT_QUALIFICATION_DRX_DIRECTION(exitQualification) == VMX_EXIT_QUALIFICATION_DRX_DIRECTION_WRITE)
2805 {
2806 Log2(("VMX: mov drx%d, genreg%d\n", VMX_EXIT_QUALIFICATION_DRX_REGISTER(exitQualification), VMX_EXIT_QUALIFICATION_DRX_GENREG(exitQualification)));
2807 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitDRxWrite);
2808 rc = EMInterpretDRxWrite(pVM, CPUMCTX2CORE(pCtx),
2809 VMX_EXIT_QUALIFICATION_DRX_REGISTER(exitQualification),
2810 VMX_EXIT_QUALIFICATION_DRX_GENREG(exitQualification));
2811 pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_GUEST_DEBUG;
2812 Log2(("DR7=%08x\n", pCtx->dr[7]));
2813 }
2814 else
2815 {
2816 Log2(("VMX: mov x, drx\n"));
2817 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitDRxRead);
2818 rc = EMInterpretDRxRead(pVM, CPUMCTX2CORE(pCtx),
2819 VMX_EXIT_QUALIFICATION_DRX_GENREG(exitQualification),
2820 VMX_EXIT_QUALIFICATION_DRX_REGISTER(exitQualification));
2821 }
2822 /* Update EIP if no error occurred. */
2823 if (RT_SUCCESS(rc))
2824 pCtx->rip += cbInstr;
2825
2826 if (rc == VINF_SUCCESS)
2827 {
2828 /* Only resume if successful. */
2829 goto ResumeExecution;
2830 }
2831 Assert(rc == VERR_EM_INTERPRETER);
2832 break;
2833 }
2834
2835 /* Note: We'll get a #GP if the IO instruction isn't allowed (IOPL or TSS bitmap); no need to double check. */
2836 case VMX_EXIT_PORT_IO: /* 30 I/O instruction. */
2837 {
2838 STAM_PROFILE_ADV_START(&pVCpu->hwaccm.s.StatExit2Sub1, y1);
2839 uint32_t uIOWidth = VMX_EXIT_QUALIFICATION_IO_WIDTH(exitQualification);
2840 uint32_t uPort;
2841 bool fIOWrite = (VMX_EXIT_QUALIFICATION_IO_DIRECTION(exitQualification) == VMX_EXIT_QUALIFICATION_IO_DIRECTION_OUT);
2842
2843 /** @todo necessary to make the distinction? */
2844 if (VMX_EXIT_QUALIFICATION_IO_ENCODING(exitQualification) == VMX_EXIT_QUALIFICATION_IO_ENCODING_DX)
2845 {
2846 uPort = pCtx->edx & 0xffff;
2847 }
2848 else
2849 uPort = VMX_EXIT_QUALIFICATION_IO_PORT(exitQualification); /* Immediate encoding. */
2850
2851 /* paranoia */
2852 if (RT_UNLIKELY(uIOWidth == 2 || uIOWidth >= 4))
2853 {
2854 rc = fIOWrite ? VINF_IOM_HC_IOPORT_WRITE : VINF_IOM_HC_IOPORT_READ;
2855 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit2Sub1, y1);
2856 break;
2857 }
2858
2859 uint32_t cbSize = g_aIOSize[uIOWidth];
2860
2861 if (VMX_EXIT_QUALIFICATION_IO_STRING(exitQualification))
2862 {
2863 /* ins/outs */
2864 DISCPUSTATE Cpu;
2865
2866 /* Disassemble manually to deal with segment prefixes. */
2867 /** @todo VMX_VMCS_EXIT_GUEST_LINEAR_ADDR contains the flat pointer operand of the instruction. */
2868 /** @todo VMX_VMCS32_RO_EXIT_INSTR_INFO also contains segment prefix info. */
2869 rc = EMInterpretDisasOne(pVM, CPUMCTX2CORE(pCtx), &Cpu, NULL);
2870 if (rc == VINF_SUCCESS)
2871 {
2872 if (fIOWrite)
2873 {
2874 Log2(("IOMInterpretOUTSEx %RGv %x size=%d\n", (RTGCPTR)pCtx->rip, uPort, cbSize));
2875 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitIOStringWrite);
2876 rc = IOMInterpretOUTSEx(pVM, CPUMCTX2CORE(pCtx), uPort, Cpu.prefix, cbSize);
2877 }
2878 else
2879 {
2880 Log2(("IOMInterpretINSEx %RGv %x size=%d\n", (RTGCPTR)pCtx->rip, uPort, cbSize));
2881 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitIOStringRead);
2882 rc = IOMInterpretINSEx(pVM, CPUMCTX2CORE(pCtx), uPort, Cpu.prefix, cbSize);
2883 }
2884 }
2885 else
2886 rc = VINF_EM_RAW_EMULATE_INSTR;
2887 }
2888 else
2889 {
2890 /* normal in/out */
2891 uint32_t uAndVal = g_aIOOpAnd[uIOWidth];
2892
2893 Assert(!VMX_EXIT_QUALIFICATION_IO_REP(exitQualification));
2894
2895 if (fIOWrite)
2896 {
2897 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitIOWrite);
2898 rc = IOMIOPortWrite(pVM, uPort, pCtx->eax & uAndVal, cbSize);
2899 }
2900 else
2901 {
2902 uint32_t u32Val = 0;
2903
2904 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitIORead);
2905 rc = IOMIOPortRead(pVM, uPort, &u32Val, cbSize);
2906 if (IOM_SUCCESS(rc))
2907 {
2908 /* Write back to the EAX register. */
2909 pCtx->eax = (pCtx->eax & ~uAndVal) | (u32Val & uAndVal);
2910 }
2911 }
2912 }
2913 /*
2914 * Handled the I/O return codes.
2915 * (The unhandled cases end up with rc == VINF_EM_RAW_EMULATE_INSTR.)
2916 */
2917 if (IOM_SUCCESS(rc))
2918 {
2919 /* Update EIP and continue execution. */
2920 pCtx->rip += cbInstr;
2921 if (RT_LIKELY(rc == VINF_SUCCESS))
2922 {
2923 /* If any IO breakpoints are armed, then we should check if a debug trap needs to be generated. */
2924 if (pCtx->dr[7] & X86_DR7_ENABLED_MASK)
2925 {
2926 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatDRxIOCheck);
2927 for (unsigned i=0;i<4;i++)
2928 {
2929 unsigned uBPLen = g_aIOSize[X86_DR7_GET_LEN(pCtx->dr[7], i)];
2930
2931 if ( (uPort >= pCtx->dr[i] && uPort < pCtx->dr[i] + uBPLen)
2932 && (pCtx->dr[7] & (X86_DR7_L(i) | X86_DR7_G(i)))
2933 && (pCtx->dr[7] & X86_DR7_RW(i, X86_DR7_RW_IO)) == X86_DR7_RW(i, X86_DR7_RW_IO))
2934 {
2935 uint64_t uDR6;
2936
2937 Assert(CPUMIsGuestDebugStateActive(pVM));
2938
2939 uDR6 = ASMGetDR6();
2940
2941 /* Clear all breakpoint status flags and set the one we just hit. */
2942 uDR6 &= ~(X86_DR6_B0|X86_DR6_B1|X86_DR6_B2|X86_DR6_B3);
2943 uDR6 |= (uint64_t)RT_BIT(i);
2944
2945 /* Note: AMD64 Architecture Programmer's Manual 13.1:
2946 * Bits 15:13 of the DR6 register is never cleared by the processor and must be cleared by software after
2947 * the contents have been read.
2948 */
2949 ASMSetDR6(uDR6);
2950
2951 /* X86_DR7_GD will be cleared if drx accesses should be trapped inside the guest. */
2952 pCtx->dr[7] &= ~X86_DR7_GD;
2953
2954 /* Paranoia. */
2955 pCtx->dr[7] &= 0xffffffff; /* upper 32 bits reserved */
2956 pCtx->dr[7] &= ~(RT_BIT(11) | RT_BIT(12) | RT_BIT(14) | RT_BIT(15)); /* must be zero */
2957 pCtx->dr[7] |= 0x400; /* must be one */
2958
2959 /* Resync DR7 */
2960 rc = VMXWriteVMCS64(VMX_VMCS64_GUEST_DR7, pCtx->dr[7]);
2961 AssertRC(rc);
2962
2963 /* Construct inject info. */
2964 intInfo = X86_XCPT_DB;
2965 intInfo |= (1 << VMX_EXIT_INTERRUPTION_INFO_VALID_SHIFT);
2966 intInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HWEXCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
2967
2968 Log(("Inject IO debug trap at %RGv\n", (RTGCPTR)pCtx->rip));
2969 rc = VMXR0InjectEvent(pVM, pVCpu, pCtx, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(intInfo), 0, 0);
2970 AssertRC(rc);
2971
2972 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit2Sub1, y1);
2973 goto ResumeExecution;
2974 }
2975 }
2976 }
2977
2978 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit2Sub1, y1);
2979 goto ResumeExecution;
2980 }
2981 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit2Sub1, y1);
2982 break;
2983 }
2984
2985#ifdef VBOX_STRICT
2986 if (rc == VINF_IOM_HC_IOPORT_READ)
2987 Assert(!fIOWrite);
2988 else if (rc == VINF_IOM_HC_IOPORT_WRITE)
2989 Assert(fIOWrite);
2990 else
2991 AssertMsg(RT_FAILURE(rc) || rc == VINF_EM_RAW_EMULATE_INSTR || rc == VINF_EM_RAW_GUEST_TRAP || rc == VINF_TRPM_XCPT_DISPATCHED, ("%Rrc\n", rc));
2992#endif
2993 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit2Sub1, y1);
2994 break;
2995 }
2996
2997 case VMX_EXIT_TPR: /* 43 TPR below threshold. Guest software executed MOV to CR8. */
2998 LogFlow(("VMX_EXIT_TPR\n"));
2999 /* RIP is already set to the next instruction and the TPR has been synced back. Just resume. */
3000 goto ResumeExecution;
3001
3002 default:
3003 /* The rest is handled after syncing the entire CPU state. */
3004 break;
3005 }
3006
3007 /* Note: the guest state isn't entirely synced back at this stage. */
3008
3009 /* Investigate why there was a VM-exit. (part 2) */
3010 switch (exitReason)
3011 {
3012 case VMX_EXIT_EXCEPTION: /* 0 Exception or non-maskable interrupt (NMI). */
3013 case VMX_EXIT_EXTERNAL_IRQ: /* 1 External interrupt. */
3014 case VMX_EXIT_EPT_VIOLATION:
3015 /* Already handled above. */
3016 break;
3017
3018 case VMX_EXIT_TRIPLE_FAULT: /* 2 Triple fault. */
3019 rc = VINF_EM_RESET; /* Triple fault equals a reset. */
3020 break;
3021
3022 case VMX_EXIT_INIT_SIGNAL: /* 3 INIT signal. */
3023 case VMX_EXIT_SIPI: /* 4 Start-up IPI (SIPI). */
3024 rc = VINF_EM_RAW_INTERRUPT;
3025 AssertFailed(); /* Can't happen. Yet. */
3026 break;
3027
3028 case VMX_EXIT_IO_SMI_IRQ: /* 5 I/O system-management interrupt (SMI). */
3029 case VMX_EXIT_SMI_IRQ: /* 6 Other SMI. */
3030 rc = VINF_EM_RAW_INTERRUPT;
3031 AssertFailed(); /* Can't happen afaik. */
3032 break;
3033
3034 case VMX_EXIT_TASK_SWITCH: /* 9 Task switch. */
3035 rc = VERR_EM_INTERPRETER;
3036 break;
3037
3038 case VMX_EXIT_HLT: /* 12 Guest software attempted to execute HLT. */
3039 /** Check if external interrupts are pending; if so, don't switch back. */
3040 pCtx->rip++; /* skip hlt */
3041 if ( pCtx->eflags.Bits.u1IF
3042 && VM_FF_ISPENDING(pVM, (VM_FF_INTERRUPT_APIC|VM_FF_INTERRUPT_PIC)))
3043 goto ResumeExecution;
3044
3045 rc = VINF_EM_HALT;
3046 break;
3047
3048 case VMX_EXIT_RSM: /* 17 Guest software attempted to execute RSM in SMM. */
3049 AssertFailed(); /* can't happen. */
3050 rc = VINF_EM_RAW_EXCEPTION_PRIVILEGED;
3051 break;
3052
3053 case VMX_EXIT_VMCALL: /* 18 Guest software executed VMCALL. */
3054 case VMX_EXIT_VMCLEAR: /* 19 Guest software executed VMCLEAR. */
3055 case VMX_EXIT_VMLAUNCH: /* 20 Guest software executed VMLAUNCH. */
3056 case VMX_EXIT_VMPTRLD: /* 21 Guest software executed VMPTRLD. */
3057 case VMX_EXIT_VMPTRST: /* 22 Guest software executed VMPTRST. */
3058 case VMX_EXIT_VMREAD: /* 23 Guest software executed VMREAD. */
3059 case VMX_EXIT_VMRESUME: /* 24 Guest software executed VMRESUME. */
3060 case VMX_EXIT_VMWRITE: /* 25 Guest software executed VMWRITE. */
3061 case VMX_EXIT_VMXOFF: /* 26 Guest software executed VMXOFF. */
3062 case VMX_EXIT_VMXON: /* 27 Guest software executed VMXON. */
3063 /** @todo inject #UD immediately */
3064 rc = VINF_EM_RAW_EXCEPTION_PRIVILEGED;
3065 break;
3066
3067 case VMX_EXIT_CPUID: /* 10 Guest software attempted to execute CPUID. */
3068 case VMX_EXIT_RDTSC: /* 16 Guest software attempted to execute RDTSC. */
3069 case VMX_EXIT_INVPG: /* 14 Guest software attempted to execute INVPG. */
3070 case VMX_EXIT_CRX_MOVE: /* 28 Control-register accesses. */
3071 case VMX_EXIT_DRX_MOVE: /* 29 Debug-register accesses. */
3072 case VMX_EXIT_PORT_IO: /* 30 I/O instruction. */
3073 /* already handled above */
3074 AssertMsg( rc == VINF_PGM_CHANGE_MODE
3075 || rc == VINF_EM_RAW_INTERRUPT
3076 || rc == VERR_EM_INTERPRETER
3077 || rc == VINF_EM_RAW_EMULATE_INSTR
3078 || rc == VINF_PGM_SYNC_CR3
3079 || rc == VINF_IOM_HC_IOPORT_READ
3080 || rc == VINF_IOM_HC_IOPORT_WRITE
3081 || rc == VINF_EM_RAW_GUEST_TRAP
3082 || rc == VINF_TRPM_XCPT_DISPATCHED
3083 || rc == VINF_EM_RESCHEDULE_REM,
3084 ("rc = %d\n", rc));
3085 break;
3086
3087 case VMX_EXIT_TPR: /* 43 TPR below threshold. Guest software executed MOV to CR8. */
3088 case VMX_EXIT_RDMSR: /* 31 RDMSR. Guest software attempted to execute RDMSR. */
3089 case VMX_EXIT_WRMSR: /* 32 WRMSR. Guest software attempted to execute WRMSR. */
3090 /* Note: If we decide to emulate them here, then we must sync the MSRs that could have been changed (sysenter, fs/gs base)!!! */
3091 rc = VERR_EM_INTERPRETER;
3092 break;
3093
3094 case VMX_EXIT_RDPMC: /* 15 Guest software attempted to execute RDPMC. */
3095 case VMX_EXIT_MWAIT: /* 36 Guest software executed MWAIT. */
3096 case VMX_EXIT_MONITOR: /* 39 Guest software attempted to execute MONITOR. */
3097 case VMX_EXIT_PAUSE: /* 40 Guest software attempted to execute PAUSE. */
3098 rc = VINF_EM_RAW_EXCEPTION_PRIVILEGED;
3099 break;
3100
3101 case VMX_EXIT_IRQ_WINDOW: /* 7 Interrupt window. */
3102 Assert(rc == VINF_EM_RAW_INTERRUPT);
3103 break;
3104
3105 case VMX_EXIT_ERR_INVALID_GUEST_STATE: /* 33 VM-entry failure due to invalid guest state. */
3106 {
3107#ifdef VBOX_STRICT
3108 RTCCUINTREG val = 0;
3109
3110 Log(("VMX_EXIT_ERR_INVALID_GUEST_STATE\n"));
3111
3112 VMXReadVMCS(VMX_VMCS64_GUEST_RIP, &val);
3113 Log(("Old eip %RGv new %RGv\n", (RTGCPTR)pCtx->rip, (RTGCPTR)val));
3114
3115 VMXReadVMCS(VMX_VMCS64_GUEST_CR0, &val);
3116 Log(("VMX_VMCS_GUEST_CR0 %RX64\n", val));
3117
3118 VMXReadVMCS(VMX_VMCS64_GUEST_CR3, &val);
3119 Log(("VMX_VMCS_GUEST_CR3 %RGp\n", val));
3120
3121 VMXReadVMCS(VMX_VMCS64_GUEST_CR4, &val);
3122 Log(("VMX_VMCS_GUEST_CR4 %RX64\n", val));
3123
3124 VMXReadVMCS(VMX_VMCS_GUEST_RFLAGS, &val);
3125 Log(("VMX_VMCS_GUEST_RFLAGS %08x\n", val));
3126
3127 VMX_LOG_SELREG(CS, "CS");
3128 VMX_LOG_SELREG(DS, "DS");
3129 VMX_LOG_SELREG(ES, "ES");
3130 VMX_LOG_SELREG(FS, "FS");
3131 VMX_LOG_SELREG(GS, "GS");
3132 VMX_LOG_SELREG(SS, "SS");
3133 VMX_LOG_SELREG(TR, "TR");
3134 VMX_LOG_SELREG(LDTR, "LDTR");
3135
3136 VMXReadVMCS(VMX_VMCS64_GUEST_GDTR_BASE, &val);
3137 Log(("VMX_VMCS_GUEST_GDTR_BASE %RGv\n", val));
3138 VMXReadVMCS(VMX_VMCS64_GUEST_IDTR_BASE, &val);
3139 Log(("VMX_VMCS_GUEST_IDTR_BASE %RGv\n", val));
3140#endif /* VBOX_STRICT */
3141 rc = VERR_VMX_INVALID_GUEST_STATE;
3142 break;
3143 }
3144
3145 case VMX_EXIT_ERR_MSR_LOAD: /* 34 VM-entry failure due to MSR loading. */
3146 case VMX_EXIT_ERR_MACHINE_CHECK: /* 41 VM-entry failure due to machine-check. */
3147 default:
3148 rc = VERR_VMX_UNEXPECTED_EXIT_CODE;
3149 AssertMsgFailed(("Unexpected exit code %d\n", exitReason)); /* Can't happen. */
3150 break;
3151
3152 }
3153end:
3154
3155 /* Signal changes for the recompiler. */
3156 CPUMSetChangedFlags(pVM, CPUM_CHANGED_SYSENTER_MSR | CPUM_CHANGED_LDTR | CPUM_CHANGED_GDTR | CPUM_CHANGED_IDTR | CPUM_CHANGED_TR | CPUM_CHANGED_HIDDEN_SEL_REGS);
3157
3158 /* If we executed vmlaunch/vmresume and an external irq was pending, then we don't have to do a full sync the next time. */
3159 if ( exitReason == VMX_EXIT_EXTERNAL_IRQ
3160 && !VMX_EXIT_INTERRUPTION_INFO_VALID(intInfo))
3161 {
3162 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatPendingHostIrq);
3163 /* On the next entry we'll only sync the host context. */
3164 pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_HOST_CONTEXT;
3165 }
3166 else
3167 {
3168 /* On the next entry we'll sync everything. */
3169 /** @todo we can do better than this */
3170 /* Not in the VINF_PGM_CHANGE_MODE though! */
3171 pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_ALL;
3172 }
3173
3174 /* translate into a less severe return code */
3175 if (rc == VERR_EM_INTERPRETER)
3176 rc = VINF_EM_RAW_EMULATE_INSTR;
3177 else
3178 /* Try to extract more information about what might have gone wrong here. */
3179 if (rc == VERR_VMX_INVALID_VMCS_PTR)
3180 {
3181 VMXGetActivateVMCS(&pVCpu->hwaccm.s.vmx.lasterror.u64VMCSPhys);
3182 pVCpu->hwaccm.s.vmx.lasterror.ulVMCSRevision = *(uint32_t *)pVCpu->hwaccm.s.vmx.pVMCS;
3183 pVCpu->hwaccm.s.vmx.lasterror.idEnteredCpu = pVCpu->hwaccm.s.idEnteredCpu;
3184 pVCpu->hwaccm.s.vmx.lasterror.idCurrentCpu = RTMpCpuId();
3185 }
3186
3187 STAM_STATS({
3188 if (fStatExit2Started) STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit2, y);
3189 else if (fStatEntryStarted) STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatEntry, x);
3190 });
3191 Log2(("X"));
3192 return rc;
3193}
3194
3195
3196/**
3197 * Enters the VT-x session
3198 *
3199 * @returns VBox status code.
3200 * @param pVM The VM to operate on.
3201 * @param pVCpu The VMCPU to operate on.
3202 * @param pCpu CPU info struct
3203 */
3204VMMR0DECL(int) VMXR0Enter(PVM pVM, PVMCPU pVCpu, PHWACCM_CPUINFO pCpu)
3205{
3206 Assert(pVM->hwaccm.s.vmx.fSupported);
3207
3208 unsigned cr4 = ASMGetCR4();
3209 if (!(cr4 & X86_CR4_VMXE))
3210 {
3211 AssertMsgFailed(("X86_CR4_VMXE should be set!\n"));
3212 return VERR_VMX_X86_CR4_VMXE_CLEARED;
3213 }
3214
3215 /* Activate the VM Control Structure. */
3216 int rc = VMXActivateVMCS(pVCpu->hwaccm.s.vmx.pVMCSPhys);
3217 if (RT_FAILURE(rc))
3218 return rc;
3219
3220 pVCpu->hwaccm.s.fResumeVM = false;
3221 return VINF_SUCCESS;
3222}
3223
3224
3225/**
3226 * Leaves the VT-x session
3227 *
3228 * @returns VBox status code.
3229 * @param pVM The VM to operate on.
3230 * @param pVCpu The VMCPU to operate on.
3231 * @param pCtx CPU context
3232 */
3233VMMR0DECL(int) VMXR0Leave(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
3234{
3235 Assert(pVM->hwaccm.s.vmx.fSupported);
3236
3237 /* Save the guest debug state if necessary. */
3238 if (CPUMIsGuestDebugStateActive(pVM))
3239 {
3240 CPUMR0SaveGuestDebugState(pVM, pVCpu, pCtx, true /* save DR6 */);
3241
3242 /* Enable drx move intercepts again. */
3243 pVCpu->hwaccm.s.vmx.proc_ctls |= VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_MOV_DR_EXIT;
3244 int rc = VMXWriteVMCS(VMX_VMCS_CTRL_PROC_EXEC_CONTROLS, pVCpu->hwaccm.s.vmx.proc_ctls);
3245 AssertRC(rc);
3246
3247 /* Resync the debug registers the next time. */
3248 pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_GUEST_DEBUG;
3249 }
3250 else
3251 Assert(pVCpu->hwaccm.s.vmx.proc_ctls & VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_MOV_DR_EXIT);
3252
3253 /* Clear VM Control Structure. Marking it inactive, clearing implementation specific data and writing back VMCS data to memory. */
3254 int rc = VMXClearVMCS(pVCpu->hwaccm.s.vmx.pVMCSPhys);
3255 AssertRC(rc);
3256
3257 return VINF_SUCCESS;
3258}
3259
3260/**
3261 * Flush the TLB (EPT)
3262 *
3263 * @returns VBox status code.
3264 * @param pVM The VM to operate on.
3265 * @param pVCpu The VM CPU to operate on.
3266 * @param enmFlush Type of flush
3267 * @param GCPhys Physical address of the page to flush
3268 */
3269static void vmxR0FlushEPT(PVM pVM, PVMCPU pVCpu, VMX_FLUSH enmFlush, RTGCPHYS GCPhys)
3270{
3271 uint64_t descriptor[2];
3272
3273 LogFlow(("vmxR0FlushEPT %d %RGv\n", enmFlush, GCPhys));
3274 Assert(pVM->hwaccm.s.fNestedPaging);
3275 descriptor[0] = pVCpu->hwaccm.s.vmx.GCPhysEPTP;
3276 descriptor[1] = GCPhys;
3277 int rc = VMXR0InvEPT(enmFlush, &descriptor[0]);
3278 AssertRC(rc);
3279}
3280
3281#ifdef HWACCM_VTX_WITH_VPID
3282/**
3283 * Flush the TLB (EPT)
3284 *
3285 * @returns VBox status code.
3286 * @param pVM The VM to operate on.
3287 * @param pVCpu The VM CPU to operate on.
3288 * @param enmFlush Type of flush
3289 * @param GCPtr Virtual address of the page to flush
3290 */
3291static void vmxR0FlushVPID(PVM pVM, PVMCPU pVCpu, VMX_FLUSH enmFlush, RTGCPTR GCPtr)
3292{
3293#if HC_ARCH_BITS == 32
3294 /* If we get a flush in 64 bits guest mode, then force a full TLB flush. Invvpid probably takes only 32 bits addresses. (@todo) */
3295 if ( CPUMIsGuestInLongMode(pVM)
3296 && !VMX_IS_64BIT_HOST_MODE())
3297 {
3298 pVCpu->hwaccm.s.fForceTLBFlush = true;
3299 }
3300 else
3301#endif
3302 {
3303 uint64_t descriptor[2];
3304
3305 Assert(pVM->hwaccm.s.vmx.fVPID);
3306 descriptor[0] = pVCpu->hwaccm.s.uCurrentASID;
3307 descriptor[1] = GCPtr;
3308 int rc = VMXR0InvVPID(enmFlush, &descriptor[0]);
3309 AssertRC(rc);
3310 }
3311}
3312#endif /* HWACCM_VTX_WITH_VPID */
3313
3314/**
3315 * Invalidates a guest page
3316 *
3317 * @returns VBox status code.
3318 * @param pVM The VM to operate on.
3319 * @param pVCpu The VM CPU to operate on.
3320 * @param GCVirt Page to invalidate
3321 */
3322VMMR0DECL(int) VMXR0InvalidatePage(PVM pVM, PVMCPU pVCpu, RTGCPTR GCVirt)
3323{
3324 bool fFlushPending = pVCpu->hwaccm.s.fForceTLBFlush;
3325
3326 LogFlow(("VMXR0InvalidatePage %RGv\n", GCVirt));
3327
3328 /* Only relevant if we want to use VPID.
3329 * In the nested paging case we still see such calls, but
3330 * can safely ignore them. (e.g. after cr3 updates)
3331 */
3332#ifdef HWACCM_VTX_WITH_VPID
3333 /* Skip it if a TLB flush is already pending. */
3334 if ( !fFlushPending
3335 && pVM->hwaccm.s.vmx.fVPID)
3336 vmxR0FlushVPID(pVM, pVCpu, pVM->hwaccm.s.vmx.enmFlushPage, GCVirt);
3337#endif /* HWACCM_VTX_WITH_VPID */
3338
3339 return VINF_SUCCESS;
3340}
3341
3342/**
3343 * Invalidates a guest page by physical address
3344 *
3345 * NOTE: Assumes the current instruction references this physical page though a virtual address!!
3346 *
3347 * @returns VBox status code.
3348 * @param pVM The VM to operate on.
3349 * @param pVCpu The VM CPU to operate on.
3350 * @param GCPhys Page to invalidate
3351 */
3352VMMR0DECL(int) VMXR0InvalidatePhysPage(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys)
3353{
3354 bool fFlushPending = pVCpu->hwaccm.s.fForceTLBFlush;
3355
3356 Assert(pVM->hwaccm.s.fNestedPaging);
3357
3358 LogFlow(("VMXR0InvalidatePhysPage %RGp\n", GCPhys));
3359
3360 /* Skip it if a TLB flush is already pending. */
3361 if (!fFlushPending)
3362 vmxR0FlushEPT(pVM, pVCpu, pVM->hwaccm.s.vmx.enmFlushPage, GCPhys);
3363
3364 return VINF_SUCCESS;
3365}
3366
3367/**
3368 * Report world switch error and dump some useful debug info
3369 *
3370 * @param pVM The VM to operate on.
3371 * @param pVCpu The VMCPU to operate on.
3372 * @param rc Return code
3373 * @param pCtx Current CPU context (not updated)
3374 */
3375static void VMXR0ReportWorldSwitchError(PVM pVM, PVMCPU pVCpu, int rc, PCPUMCTX pCtx)
3376{
3377 switch (rc)
3378 {
3379 case VERR_VMX_INVALID_VMXON_PTR:
3380 AssertFailed();
3381 break;
3382
3383 case VERR_VMX_UNABLE_TO_START_VM:
3384 case VERR_VMX_UNABLE_TO_RESUME_VM:
3385 {
3386 int rc;
3387 RTCCUINTREG exitReason, instrError, val;
3388
3389 rc = VMXReadVMCS(VMX_VMCS32_RO_EXIT_REASON, &exitReason);
3390 rc |= VMXReadVMCS(VMX_VMCS32_RO_VM_INSTR_ERROR, &instrError);
3391 AssertRC(rc);
3392 if (rc == VINF_SUCCESS)
3393 {
3394 Log(("Unable to start/resume VM for reason: %x. Instruction error %x\n", (uint32_t)exitReason, (uint32_t)instrError));
3395 Log(("Current stack %08x\n", &rc));
3396
3397 pVCpu->hwaccm.s.vmx.lasterror.ulInstrError = instrError;
3398 pVCpu->hwaccm.s.vmx.lasterror.ulExitReason = exitReason;
3399
3400#ifdef VBOX_STRICT
3401 RTGDTR gdtr;
3402 PX86DESCHC pDesc;
3403
3404 ASMGetGDTR(&gdtr);
3405
3406 VMXReadVMCS(VMX_VMCS64_GUEST_RIP, &val);
3407 Log(("Old eip %RGv new %RGv\n", (RTGCPTR)pCtx->rip, (RTGCPTR)val));
3408 VMXReadVMCS(VMX_VMCS_CTRL_PIN_EXEC_CONTROLS, &val);
3409 Log(("VMX_VMCS_CTRL_PIN_EXEC_CONTROLS %08x\n", val));
3410 VMXReadVMCS(VMX_VMCS_CTRL_PROC_EXEC_CONTROLS, &val);
3411 Log(("VMX_VMCS_CTRL_PROC_EXEC_CONTROLS %08x\n", val));
3412 VMXReadVMCS(VMX_VMCS_CTRL_ENTRY_CONTROLS, &val);
3413 Log(("VMX_VMCS_CTRL_ENTRY_CONTROLS %08x\n", val));
3414 VMXReadVMCS(VMX_VMCS_CTRL_EXIT_CONTROLS, &val);
3415 Log(("VMX_VMCS_CTRL_EXIT_CONTROLS %08x\n", val));
3416
3417 VMXReadVMCS(VMX_VMCS_HOST_CR0, &val);
3418 Log(("VMX_VMCS_HOST_CR0 %08x\n", val));
3419
3420 VMXReadVMCS(VMX_VMCS_HOST_CR3, &val);
3421 Log(("VMX_VMCS_HOST_CR3 %08x\n", val));
3422
3423 VMXReadVMCS(VMX_VMCS_HOST_CR4, &val);
3424 Log(("VMX_VMCS_HOST_CR4 %08x\n", val));
3425
3426 VMXReadVMCS(VMX_VMCS16_HOST_FIELD_CS, &val);
3427 Log(("VMX_VMCS_HOST_FIELD_CS %08x\n", val));
3428
3429 VMXReadVMCS(VMX_VMCS_GUEST_RFLAGS, &val);
3430 Log(("VMX_VMCS_GUEST_RFLAGS %08x\n", val));
3431
3432 if (val < gdtr.cbGdt)
3433 {
3434 pDesc = &((PX86DESCHC)gdtr.pGdt)[val >> X86_SEL_SHIFT_HC];
3435 HWACCMR0DumpDescriptor(pDesc, val, "CS: ");
3436 }
3437
3438 VMXReadVMCS(VMX_VMCS16_HOST_FIELD_DS, &val);
3439 Log(("VMX_VMCS_HOST_FIELD_DS %08x\n", val));
3440 if (val < gdtr.cbGdt)
3441 {
3442 pDesc = &((PX86DESCHC)gdtr.pGdt)[val >> X86_SEL_SHIFT_HC];
3443 HWACCMR0DumpDescriptor(pDesc, val, "DS: ");
3444 }
3445
3446 VMXReadVMCS(VMX_VMCS16_HOST_FIELD_ES, &val);
3447 Log(("VMX_VMCS_HOST_FIELD_ES %08x\n", val));
3448 if (val < gdtr.cbGdt)
3449 {
3450 pDesc = &((PX86DESCHC)gdtr.pGdt)[val >> X86_SEL_SHIFT_HC];
3451 HWACCMR0DumpDescriptor(pDesc, val, "ES: ");
3452 }
3453
3454 VMXReadVMCS(VMX_VMCS16_HOST_FIELD_FS, &val);
3455 Log(("VMX_VMCS16_HOST_FIELD_FS %08x\n", val));
3456 if (val < gdtr.cbGdt)
3457 {
3458 pDesc = &((PX86DESCHC)gdtr.pGdt)[val >> X86_SEL_SHIFT_HC];
3459 HWACCMR0DumpDescriptor(pDesc, val, "FS: ");
3460 }
3461
3462 VMXReadVMCS(VMX_VMCS16_HOST_FIELD_GS, &val);
3463 Log(("VMX_VMCS16_HOST_FIELD_GS %08x\n", val));
3464 if (val < gdtr.cbGdt)
3465 {
3466 pDesc = &((PX86DESCHC)gdtr.pGdt)[val >> X86_SEL_SHIFT_HC];
3467 HWACCMR0DumpDescriptor(pDesc, val, "GS: ");
3468 }
3469
3470 VMXReadVMCS(VMX_VMCS16_HOST_FIELD_SS, &val);
3471 Log(("VMX_VMCS16_HOST_FIELD_SS %08x\n", val));
3472 if (val < gdtr.cbGdt)
3473 {
3474 pDesc = &((PX86DESCHC)gdtr.pGdt)[val >> X86_SEL_SHIFT_HC];
3475 HWACCMR0DumpDescriptor(pDesc, val, "SS: ");
3476 }
3477
3478 VMXReadVMCS(VMX_VMCS16_HOST_FIELD_TR, &val);
3479 Log(("VMX_VMCS16_HOST_FIELD_TR %08x\n", val));
3480 if (val < gdtr.cbGdt)
3481 {
3482 pDesc = &((PX86DESCHC)gdtr.pGdt)[val >> X86_SEL_SHIFT_HC];
3483 HWACCMR0DumpDescriptor(pDesc, val, "TR: ");
3484 }
3485
3486 VMXReadVMCS(VMX_VMCS_HOST_TR_BASE, &val);
3487 Log(("VMX_VMCS_HOST_TR_BASE %RHv\n", val));
3488
3489 VMXReadVMCS(VMX_VMCS_HOST_GDTR_BASE, &val);
3490 Log(("VMX_VMCS_HOST_GDTR_BASE %RHv\n", val));
3491 VMXReadVMCS(VMX_VMCS_HOST_IDTR_BASE, &val);
3492 Log(("VMX_VMCS_HOST_IDTR_BASE %RHv\n", val));
3493
3494 VMXReadVMCS(VMX_VMCS32_HOST_SYSENTER_CS, &val);
3495 Log(("VMX_VMCS_HOST_SYSENTER_CS %08x\n", val));
3496
3497 VMXReadVMCS(VMX_VMCS_HOST_SYSENTER_EIP, &val);
3498 Log(("VMX_VMCS_HOST_SYSENTER_EIP %RHv\n", val));
3499
3500 VMXReadVMCS(VMX_VMCS_HOST_SYSENTER_ESP, &val);
3501 Log(("VMX_VMCS_HOST_SYSENTER_ESP %RHv\n", val));
3502
3503 VMXReadVMCS(VMX_VMCS_HOST_RSP, &val);
3504 Log(("VMX_VMCS_HOST_RSP %RHv\n", val));
3505 VMXReadVMCS(VMX_VMCS_HOST_RIP, &val);
3506 Log(("VMX_VMCS_HOST_RIP %RHv\n", val));
3507
3508# if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
3509 if (VMX_IS_64BIT_HOST_MODE())
3510 {
3511 Log(("MSR_K6_EFER = %RX64\n", ASMRdMsr(MSR_K6_EFER)));
3512 Log(("MSR_K6_STAR = %RX64\n", ASMRdMsr(MSR_K6_STAR)));
3513 Log(("MSR_K8_LSTAR = %RX64\n", ASMRdMsr(MSR_K8_LSTAR)));
3514 Log(("MSR_K8_CSTAR = %RX64\n", ASMRdMsr(MSR_K8_CSTAR)));
3515 Log(("MSR_K8_SF_MASK = %RX64\n", ASMRdMsr(MSR_K8_SF_MASK)));
3516 }
3517# endif
3518#endif /* VBOX_STRICT */
3519 }
3520 break;
3521 }
3522
3523 default:
3524 /* impossible */
3525 AssertMsgFailed(("%Rrc (%#x)\n", rc, rc));
3526 break;
3527 }
3528}
3529
3530#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
3531/**
3532 * Prepares for and executes VMLAUNCH (64 bits guest mode)
3533 *
3534 * @returns VBox status code
3535 * @param fResume vmlauch/vmresume
3536 * @param pCtx Guest context
3537 * @param pCache VMCS cache
3538 * @param pVM The VM to operate on.
3539 * @param pVCpu The VMCPU to operate on.
3540 */
3541DECLASM(int) VMXR0SwitcherStartVM64(RTHCUINT fResume, PCPUMCTX pCtx, PVMCSCACHE pCache, PVM pVM, PVMCPU pVCpu)
3542{
3543 uint32_t aParam[6];
3544 PHWACCM_CPUINFO pCpu;
3545 RTHCPHYS pPageCpuPhys;
3546 int rc;
3547
3548 pCpu = HWACCMR0GetCurrentCpu();
3549 pPageCpuPhys = RTR0MemObjGetPagePhysAddr(pCpu->pMemObj, 0);
3550
3551#ifdef DEBUG
3552 pCache->TestIn.pPageCpuPhys = 0;
3553 pCache->TestIn.pVMCSPhys = 0;
3554 pCache->TestIn.pCache = 0;
3555 pCache->TestOut.pVMCSPhys = 0;
3556 pCache->TestOut.pCache = 0;
3557 pCache->TestOut.pCtx = 0;
3558#endif
3559
3560 aParam[0] = (uint32_t)(pPageCpuPhys); /* Param 1: VMXON physical address - Lo. */
3561 aParam[1] = (uint32_t)(pPageCpuPhys >> 32); /* Param 1: VMXON physical address - Hi. */
3562 aParam[2] = (uint32_t)(pVCpu->hwaccm.s.vmx.pVMCSPhys); /* Param 2: VMCS physical address - Lo. */
3563 aParam[3] = (uint32_t)(pVCpu->hwaccm.s.vmx.pVMCSPhys >> 32); /* Param 2: VMCS physical address - Hi. */
3564 aParam[4] = VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hwaccm.s.vmx.VMCSCache);
3565 aParam[5] = 0;
3566
3567 rc = VMXR0Execute64BitsHandler(pVM, pVCpu, pCtx, pVM->hwaccm.s.pfnVMXGCStartVM64, 6, &aParam[0]);
3568
3569#ifdef DEBUG
3570 AssertMsg(pCache->TestIn.pPageCpuPhys == pPageCpuPhys, ("%RHp vs %RHp\n", pCache->TestIn.pPageCpuPhys, pPageCpuPhys));
3571 AssertMsg(pCache->TestIn.pVMCSPhys == pVCpu->hwaccm.s.vmx.pVMCSPhys, ("%RHp vs %RHp\n", pCache->TestIn.pVMCSPhys, pVCpu->hwaccm.s.vmx.pVMCSPhys));
3572 AssertMsg(pCache->TestIn.pVMCSPhys == pCache->TestOut.pVMCSPhys, ("%RHp vs %RHp\n", pCache->TestIn.pVMCSPhys, pCache->TestOut.pVMCSPhys));
3573 AssertMsg(pCache->TestIn.pCache == pCache->TestOut.pCache, ("%RGv vs %RGv\n", pCache->TestIn.pCache, pCache->TestOut.pCache));
3574 AssertMsg(pCache->TestIn.pCache == VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hwaccm.s.vmx.VMCSCache), ("%RGv vs %RGv\n", pCache->TestIn.pCache, VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hwaccm.s.vmx.VMCSCache)));
3575 AssertMsg(pCache->TestIn.pCtx == pCache->TestOut.pCtx, ("%RGv vs %RGv\n", pCache->TestIn.pCtx, pCache->TestOut.pCtx));
3576#endif
3577
3578 return rc;
3579}
3580
3581/**
3582 * Executes the specified handler in 64 mode
3583 *
3584 * @returns VBox status code.
3585 * @param pVM The VM to operate on.
3586 * @param pVCpu The VMCPU to operate on.
3587 * @param pCtx Guest context
3588 * @param pfnHandler RC handler
3589 * @param cbParam Number of parameters
3590 * @param paParam Array of 32 bits parameters
3591 */
3592VMMR0DECL(int) VMXR0Execute64BitsHandler(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, RTRCPTR pfnHandler, uint32_t cbParam, uint32_t *paParam)
3593{
3594 int rc, rc2;
3595 RTHCUINTREG uFlags;
3596 PHWACCM_CPUINFO pCpu;
3597 RTHCPHYS pPageCpuPhys;
3598
3599 /* @todo This code is not guest SMP safe (hyper context) */
3600 AssertReturn(pVM->cCPUs == 1, VERR_ACCESS_DENIED);
3601 AssertReturn(pVM->hwaccm.s.pfnHost32ToGuest64R0, VERR_INTERNAL_ERROR);
3602 Assert(pVCpu->hwaccm.s.vmx.VMCSCache.Write.cValidEntries <= RT_ELEMENTS(pVCpu->hwaccm.s.vmx.VMCSCache.Write.aField));
3603 Assert(pVCpu->hwaccm.s.vmx.VMCSCache.Read.cValidEntries <= RT_ELEMENTS(pVCpu->hwaccm.s.vmx.VMCSCache.Read.aField));
3604
3605 pCpu = HWACCMR0GetCurrentCpu();
3606 pPageCpuPhys = RTR0MemObjGetPagePhysAddr(pCpu->pMemObj, 0);
3607
3608 /* Clear VM Control Structure. Marking it inactive, clearing implementation specific data and writing back VMCS data to memory. */
3609 VMXClearVMCS(pVCpu->hwaccm.s.vmx.pVMCSPhys);
3610
3611 /* Leave VMX Root Mode. */
3612 VMXDisable();
3613
3614 uFlags = ASMIntDisableFlags();
3615
3616 CPUMSetHyperESP(pVM, VMMGetStackRC(pVM));
3617 CPUMSetHyperEIP(pVM, pfnHandler);
3618 for (int i=(int)cbParam-1;i>=0;i--)
3619 CPUMPushHyper(pVM, paParam[i]);
3620
3621 /* Call switcher. */
3622 rc = pVM->hwaccm.s.pfnHost32ToGuest64R0(pVM);
3623
3624#ifdef VBOX_STRICT
3625 RTHCUINTREG uFlagsTest = ASMGetFlags();
3626#endif
3627
3628 ASMSetFlags(uFlags);
3629
3630 /* Make sure the VMX instructions don't cause #UD faults. */
3631 ASMSetCR4(ASMGetCR4() | X86_CR4_VMXE);
3632
3633 /* Enter VMX Root Mode */
3634 rc2 = VMXEnable(pPageCpuPhys);
3635 if (RT_FAILURE(rc2))
3636 {
3637 if (pVM)
3638 VMXR0CheckError(pVM, pVCpu, rc2);
3639 ASMSetCR4(ASMGetCR4() & ~X86_CR4_VMXE);
3640 return VERR_VMX_VMXON_FAILED;
3641 }
3642
3643 VMXActivateVMCS(pVCpu->hwaccm.s.vmx.pVMCSPhys);
3644 Assert(!(uFlagsTest & X86_EFL_IF));
3645
3646 return rc;
3647}
3648
3649#endif /* HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL) */
3650
3651
3652#if HC_ARCH_BITS == 32 && !defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
3653/**
3654 * Executes VMWRITE
3655 *
3656 * @returns VBox status code
3657 * @param pVCpu The VMCPU to operate on.
3658 * @param idxField VMCS index
3659 * @param u64Val 16, 32 or 64 bits value
3660 */
3661VMMR0DECL(int) VMXWriteVMCS64Ex(PVMCPU pVCpu, uint32_t idxField, uint64_t u64Val)
3662{
3663 int rc;
3664
3665 switch (idxField)
3666 {
3667 case VMX_VMCS_CTRL_TSC_OFFSET_FULL:
3668 case VMX_VMCS_CTRL_IO_BITMAP_A_FULL:
3669 case VMX_VMCS_CTRL_IO_BITMAP_B_FULL:
3670 case VMX_VMCS_CTRL_MSR_BITMAP_FULL:
3671 case VMX_VMCS_CTRL_VMEXIT_MSR_STORE_FULL:
3672 case VMX_VMCS_CTRL_VMEXIT_MSR_LOAD_FULL:
3673 case VMX_VMCS_CTRL_VMENTRY_MSR_LOAD_FULL:
3674 case VMX_VMCS_CTRL_VAPIC_PAGEADDR_FULL:
3675 case VMX_VMCS_GUEST_LINK_PTR_FULL:
3676 case VMX_VMCS_GUEST_PDPTR0_FULL:
3677 case VMX_VMCS_GUEST_PDPTR1_FULL:
3678 case VMX_VMCS_GUEST_PDPTR2_FULL:
3679 case VMX_VMCS_GUEST_PDPTR3_FULL:
3680 case VMX_VMCS_GUEST_DEBUGCTL_FULL:
3681 case VMX_VMCS_GUEST_EFER_FULL:
3682 case VMX_VMCS_CTRL_EPTP_FULL:
3683 /* These fields consist of two parts, which are both writable in 32 bits mode. */
3684 rc = VMXWriteVMCS32(idxField, u64Val);
3685 rc |= VMXWriteVMCS32(idxField + 1, (uint32_t)(u64Val >> 32ULL));
3686 AssertRC(rc);
3687 return rc;
3688
3689 case VMX_VMCS64_GUEST_LDTR_BASE:
3690 case VMX_VMCS64_GUEST_TR_BASE:
3691 case VMX_VMCS64_GUEST_GDTR_BASE:
3692 case VMX_VMCS64_GUEST_IDTR_BASE:
3693 case VMX_VMCS64_GUEST_SYSENTER_EIP:
3694 case VMX_VMCS64_GUEST_SYSENTER_ESP:
3695 case VMX_VMCS64_GUEST_CR0:
3696 case VMX_VMCS64_GUEST_CR4:
3697 case VMX_VMCS64_GUEST_CR3:
3698 case VMX_VMCS64_GUEST_DR7:
3699 case VMX_VMCS64_GUEST_RIP:
3700 case VMX_VMCS64_GUEST_RSP:
3701 case VMX_VMCS64_GUEST_CS_BASE:
3702 case VMX_VMCS64_GUEST_DS_BASE:
3703 case VMX_VMCS64_GUEST_ES_BASE:
3704 case VMX_VMCS64_GUEST_FS_BASE:
3705 case VMX_VMCS64_GUEST_GS_BASE:
3706 case VMX_VMCS64_GUEST_SS_BASE:
3707 /* Queue a 64 bits value as we can't set it in 32 bits host mode. */
3708 if (u64Val >> 32ULL)
3709 rc = VMXWriteCachedVMCSEx(pVCpu, idxField, u64Val);
3710 else
3711 rc = VMXWriteVMCS32(idxField, (uint32_t)u64Val);
3712
3713 return rc;
3714
3715 default:
3716 AssertMsgFailed(("Unexpected field %x\n", idxField));
3717 return VERR_INVALID_PARAMETER;
3718 }
3719}
3720
3721/**
3722 * Cache VMCS writes for performance reasons (Darwin) and for running 64 bits guests on 32 bits hosts.
3723 *
3724 * @param pVCpu The VMCPU to operate on.
3725 * @param idxField VMCS field
3726 * @param u64Val Value
3727 */
3728VMMR0DECL(int) VMXWriteCachedVMCSEx(PVMCPU pVCpu, uint32_t idxField, uint64_t u64Val)
3729{
3730 PVMCSCACHE pCache = &pVCpu->hwaccm.s.vmx.VMCSCache;
3731
3732 AssertMsgReturn(pCache->Write.cValidEntries < VMCSCACHE_MAX_ENTRY - 1, ("entries=%x\n", pCache->Write.cValidEntries), VERR_ACCESS_DENIED);
3733
3734 /* Make sure there are no duplicates. */
3735 for (unsigned i=0;i<pCache->Write.cValidEntries;i++)
3736 {
3737 if (pCache->Write.aField[i] == idxField)
3738 {
3739 pCache->Write.aFieldVal[i] = u64Val;
3740 return VINF_SUCCESS;
3741 }
3742 }
3743
3744 pCache->Write.aField[pCache->Write.cValidEntries] = idxField;
3745 pCache->Write.aFieldVal[pCache->Write.cValidEntries] = u64Val;
3746 pCache->Write.cValidEntries++;
3747 return VINF_SUCCESS;
3748}
3749
3750#endif /* HC_ARCH_BITS == 32 && !VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0 */
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette