/* $Id: NEMR0Native-win.cpp 91692 2021-10-12 13:31:34Z vboxsync $ */ /** @file * NEM - Native execution manager, native ring-0 Windows backend. */ /* * Copyright (C) 2018-2020 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. */ /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ #define LOG_GROUP LOG_GROUP_NEM #define VMCPU_INCL_CPUM_GST_CTX #include #include #include #include #include #include #include #include #include #include #include "NEMInternal.h" #include #include #include #include #include #include #include #include #include #include #include #define PIMAGE_NT_HEADERS32 PIMAGE_NT_HEADERS32_PECOFF #include /* Assert compile context sanity. */ #ifndef RT_OS_WINDOWS # error "Windows only file!" #endif #ifndef RT_ARCH_AMD64 # error "AMD64 only file!" #endif /********************************************************************************************************************************* * Internal Functions * *********************************************************************************************************************************/ typedef uint32_t DWORD; /* for winerror.h constants */ /********************************************************************************************************************************* * Global Variables * *********************************************************************************************************************************/ #ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES static uint64_t (*g_pfnHvlInvokeHypercall)(uint64_t uCallInfo, uint64_t HCPhysInput, uint64_t HCPhysOutput); /** * WinHvr.sys!WinHvDepositMemory * * This API will try allocates cPages on IdealNode and deposit it to the * hypervisor for use with the given partition. The memory will be freed when * VID.SYS calls WinHvWithdrawAllMemory when the partition is cleanedup. * * Apparently node numbers above 64 has a different meaning. */ static NTSTATUS (*g_pfnWinHvDepositMemory)(uintptr_t idPartition, size_t cPages, uintptr_t IdealNode, size_t *pcActuallyAdded); RT_C_DECLS_BEGIN /** * The WinHvGetPartitionProperty function we intercept in VID.SYS to get the * Hyper-V partition ID. * * This is used from assembly. */ NTSTATUS WinHvGetPartitionProperty(uintptr_t idPartition, HV_PARTITION_PROPERTY_CODE enmProperty, PHV_PARTITION_PROPERTY puValue); decltype(WinHvGetPartitionProperty) *g_pfnWinHvGetPartitionProperty; RT_C_DECLS_END #endif /** @name VID.SYS image details. * @{ */ #ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES static uint8_t *g_pbVidSys = NULL; static uintptr_t g_cbVidSys = 0; static PIMAGE_NT_HEADERS g_pVidSysHdrs = NULL; /** Pointer to the import thunk entry in VID.SYS for WinHvGetPartitionProperty if we found it. */ static decltype(WinHvGetPartitionProperty) **g_ppfnVidSysWinHvGetPartitionProperty = NULL; /** Critical section protecting the WinHvGetPartitionProperty hacking. */ static RTCRITSECT g_VidSysCritSect; #endif /* NEM_WIN_USE_HYPERCALLS_FOR_PAGES */ RT_C_DECLS_BEGIN /** The partition ID passed to WinHvGetPartitionProperty by VID.SYS. */ HV_PARTITION_ID g_idVidSysFoundPartition = HV_PARTITION_ID_INVALID; /** The thread which is currently looking for a partition ID. */ RTNATIVETHREAD g_hVidSysMatchThread = NIL_RTNATIVETHREAD; /** The property code we expect in WinHvGetPartitionProperty. */ VID_PARTITION_PROPERTY_CODE g_enmVidSysMatchProperty = INT64_MAX; /* NEMR0NativeA-win.asm: */ extern uint8_t g_abNemR0WinHvrWinHvGetPartitionProperty_OriginalProlog[64]; RT_C_DECLS_END /** @} */ /********************************************************************************************************************************* * Internal Functions * *********************************************************************************************************************************/ NEM_TMPL_STATIC int nemR0WinMapPages(PGVM pGVM, PGVMCPU pGVCpu, RTGCPHYS GCPhysSrc, RTGCPHYS GCPhysDst, uint32_t cPages, uint32_t fFlags); NEM_TMPL_STATIC int nemR0WinUnmapPages(PGVM pGVM, PGVMCPU pGVCpu, RTGCPHYS GCPhys, uint32_t cPages); #if defined(NEM_WIN_WITH_RING0_RUNLOOP) || defined(NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS) NEM_TMPL_STATIC int nemR0WinExportState(PGVM pGVM, PGVMCPU pGVCpu, PCPUMCTX pCtx); NEM_TMPL_STATIC int nemR0WinImportState(PGVM pGVM, PGVMCPU pGVCpu, PCPUMCTX pCtx, uint64_t fWhat, bool fCanUpdateCr3); NEM_TMPL_STATIC int nemR0WinQueryCpuTick(PGVM pGVM, PGVMCPU pGVCpu, uint64_t *pcTicks, uint32_t *pcAux); NEM_TMPL_STATIC int nemR0WinResumeCpuTickOnAll(PGVM pGVM, PGVMCPU pGVCpu, uint64_t uPausedTscValue); #endif DECLINLINE(NTSTATUS) nemR0NtPerformIoControl(PGVM pGVM, PGVMCPU pGVCpu, uint32_t uFunction, void *pvInput, uint32_t cbInput, void *pvOutput, uint32_t cbOutput); /* NEMR0NativeA-win.asm: */ DECLASM(NTSTATUS) nemR0VidSysWinHvGetPartitionProperty(uintptr_t idPartition, HV_PARTITION_PROPERTY_CODE enmProperty, PHV_PARTITION_PROPERTY puValue); DECLASM(NTSTATUS) nemR0WinHvrWinHvGetPartitionProperty(uintptr_t idPartition, HV_PARTITION_PROPERTY_CODE enmProperty, PHV_PARTITION_PROPERTY puValue); /* * Instantate the code we share with ring-0. */ #ifdef NEM_WIN_WITH_RING0_RUNLOOP # define NEM_WIN_TEMPLATE_MODE_OWN_RUN_API #else # undef NEM_WIN_TEMPLATE_MODE_OWN_RUN_API #endif #include "../VMMAll/NEMAllNativeTemplate-win.cpp.h" /** * Module initialization for NEM. */ VMMR0_INT_DECL(int) NEMR0Init(void) { return RTCritSectInit(&g_VidSysCritSect); } /** * Module termination for NEM. */ VMMR0_INT_DECL(void) NEMR0Term(void) { RTCritSectDelete(&g_VidSysCritSect); } /** * Worker for NEMR0InitVM that allocates a hypercall page. * * @returns VBox status code. * @param pHypercallData The hypercall data page to initialize. */ static int nemR0InitHypercallData(PNEMR0HYPERCALLDATA pHypercallData) { int rc = RTR0MemObjAllocPage(&pHypercallData->hMemObj, PAGE_SIZE, false /*fExecutable*/); if (RT_SUCCESS(rc)) { pHypercallData->HCPhysPage = RTR0MemObjGetPagePhysAddr(pHypercallData->hMemObj, 0 /*iPage*/); AssertStmt(pHypercallData->HCPhysPage != NIL_RTHCPHYS, rc = VERR_INTERNAL_ERROR_3); pHypercallData->pbPage = (uint8_t *)RTR0MemObjAddress(pHypercallData->hMemObj); AssertStmt(pHypercallData->pbPage, rc = VERR_INTERNAL_ERROR_3); if (RT_SUCCESS(rc)) return VINF_SUCCESS; /* bail out */ RTR0MemObjFree(pHypercallData->hMemObj, true /*fFreeMappings*/); } pHypercallData->hMemObj = NIL_RTR0MEMOBJ; pHypercallData->HCPhysPage = NIL_RTHCPHYS; pHypercallData->pbPage = NULL; return rc; } /** * Worker for NEMR0CleanupVM and NEMR0InitVM that cleans up a hypercall page. * * @param pHypercallData The hypercall data page to uninitialize. */ static void nemR0DeleteHypercallData(PNEMR0HYPERCALLDATA pHypercallData) { /* Check pbPage here since it's NULL, whereas the hMemObj can be either NIL_RTR0MEMOBJ or 0 (they aren't necessarily the same). */ if (pHypercallData->pbPage != NULL) { RTR0MemObjFree(pHypercallData->hMemObj, true /*fFreeMappings*/); pHypercallData->pbPage = NULL; } pHypercallData->hMemObj = NIL_RTR0MEMOBJ; pHypercallData->HCPhysPage = NIL_RTHCPHYS; } static int nemR0StrICmp(const char *psz1, const char *psz2) { for (;;) { char ch1 = *psz1++; char ch2 = *psz2++; if ( ch1 != ch2 && RT_C_TO_LOWER(ch1) != RT_C_TO_LOWER(ch2)) return ch1 - ch2; if (!ch1) return 0; } } /** * Worker for nemR0PrepareForVidSysIntercept(). */ static void nemR0PrepareForVidSysInterceptInner(void) { uint32_t const cbImage = g_cbVidSys; uint8_t * const pbImage = g_pbVidSys; PIMAGE_NT_HEADERS const pNtHdrs = g_pVidSysHdrs; uintptr_t const offEndNtHdrs = (uintptr_t)(pNtHdrs + 1) - (uintptr_t)pbImage; #define CHECK_LOG_RET(a_Expr, a_LogRel) do { \ if (RT_LIKELY(a_Expr)) { /* likely */ } \ else \ { \ LogRel(a_LogRel); \ return; \ } \ } while (0) //__try { /* * Get and validate the import directory entry. */ CHECK_LOG_RET( pNtHdrs->OptionalHeader.NumberOfRvaAndSizes > IMAGE_DIRECTORY_ENTRY_IMPORT || pNtHdrs->OptionalHeader.NumberOfRvaAndSizes <= IMAGE_NUMBEROF_DIRECTORY_ENTRIES * 4, ("NEMR0: vid.sys: NumberOfRvaAndSizes is out of range: %#x\n", pNtHdrs->OptionalHeader.NumberOfRvaAndSizes)); IMAGE_DATA_DIRECTORY const ImportDir = pNtHdrs->OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_IMPORT]; CHECK_LOG_RET( ImportDir.Size >= sizeof(IMAGE_IMPORT_DESCRIPTOR) && ImportDir.VirtualAddress >= offEndNtHdrs /* ASSUMES NT headers before imports */ && (uint64_t)ImportDir.VirtualAddress + ImportDir.Size <= cbImage, ("NEMR0: vid.sys: Bad import directory entry: %#x LB %#x (cbImage=%#x, offEndNtHdrs=%#zx)\n", ImportDir.VirtualAddress, ImportDir.Size, cbImage, offEndNtHdrs)); /* * Walk the import descriptor table looking for NTDLL.DLL. */ for (PIMAGE_IMPORT_DESCRIPTOR pImps = (PIMAGE_IMPORT_DESCRIPTOR)&pbImage[ImportDir.VirtualAddress]; pImps->Name != 0 && pImps->FirstThunk != 0; pImps++) { CHECK_LOG_RET(pImps->Name < cbImage, ("NEMR0: vid.sys: Bad import directory entry name: %#x", pImps->Name)); const char *pszModName = (const char *)&pbImage[pImps->Name]; if (nemR0StrICmp(pszModName, "winhvr.sys")) continue; CHECK_LOG_RET(pImps->FirstThunk < cbImage && pImps->FirstThunk >= offEndNtHdrs, ("NEMR0: vid.sys: Bad FirstThunk: %#x", pImps->FirstThunk)); CHECK_LOG_RET( pImps->u.OriginalFirstThunk == 0 || (pImps->u.OriginalFirstThunk >= offEndNtHdrs && pImps->u.OriginalFirstThunk < cbImage), ("NEMR0: vid.sys: Bad OriginalFirstThunk: %#x", pImps->u.OriginalFirstThunk)); /* * Walk the thunks table(s) looking for WinHvGetPartitionProperty. */ uintptr_t *puFirstThunk = (uintptr_t *)&pbImage[pImps->FirstThunk]; /* update this. */ if ( pImps->u.OriginalFirstThunk != 0 && pImps->u.OriginalFirstThunk != pImps->FirstThunk) { uintptr_t const *puOrgThunk = (uintptr_t const *)&pbImage[pImps->u.OriginalFirstThunk]; /* read from this. */ uintptr_t cLeft = (cbImage - (RT_MAX(pImps->FirstThunk, pImps->u.OriginalFirstThunk))) / sizeof(*puFirstThunk); while (cLeft-- > 0 && *puOrgThunk != 0) { if (!(*puOrgThunk & IMAGE_ORDINAL_FLAG64)) { CHECK_LOG_RET(*puOrgThunk >= offEndNtHdrs && *puOrgThunk < cbImage, ("NEMR0: vid.sys: Bad thunk entry: %#x", *puOrgThunk)); const char *pszSymbol = (const char *)&pbImage[*puOrgThunk + 2]; if (strcmp(pszSymbol, "WinHvGetPartitionProperty") == 0) g_ppfnVidSysWinHvGetPartitionProperty = (decltype(WinHvGetPartitionProperty) **)puFirstThunk; } puOrgThunk++; puFirstThunk++; } } else { /* No original thunk table, so scan the resolved symbols for a match with the WinHvGetPartitionProperty address. */ uintptr_t const uNeedle = (uintptr_t)g_pfnWinHvGetPartitionProperty; uintptr_t cLeft = (cbImage - pImps->FirstThunk) / sizeof(*puFirstThunk); while (cLeft-- > 0 && *puFirstThunk != 0) { if (*puFirstThunk == uNeedle) g_ppfnVidSysWinHvGetPartitionProperty = (decltype(WinHvGetPartitionProperty) **)puFirstThunk; puFirstThunk++; } } } /* Report the findings: */ if (g_ppfnVidSysWinHvGetPartitionProperty) LogRel(("NEMR0: vid.sys: Found WinHvGetPartitionProperty import thunk at %p (value %p vs %p)\n", g_ppfnVidSysWinHvGetPartitionProperty,*g_ppfnVidSysWinHvGetPartitionProperty, g_pfnWinHvGetPartitionProperty)); else LogRel(("NEMR0: vid.sys: Did not find WinHvGetPartitionProperty!\n")); } //__except(EXCEPTION_EXECUTE_HANDLER) //{ // return; //} #undef CHECK_LOG_RET } /** * Worker for NEMR0InitVM that prepares for intercepting stuff in VID.SYS. */ static void nemR0PrepareForVidSysIntercept(RTDBGKRNLINFO hKrnlInfo) { /* * Resolve the symbols we need first. */ int rc = RTR0DbgKrnlInfoQuerySymbol(hKrnlInfo, "vid.sys", "__ImageBase", (void **)&g_pbVidSys); if (RT_SUCCESS(rc)) { rc = RTR0DbgKrnlInfoQuerySymbol(hKrnlInfo, "vid.sys", "__ImageSize", (void **)&g_cbVidSys); if (RT_SUCCESS(rc)) { rc = RTR0DbgKrnlInfoQuerySymbol(hKrnlInfo, "vid.sys", "__ImageNtHdrs", (void **)&g_pVidSysHdrs); if (RT_SUCCESS(rc)) { rc = RTR0DbgKrnlInfoQuerySymbol(hKrnlInfo, "winhvr.sys", "WinHvGetPartitionProperty", (void **)&g_pfnWinHvGetPartitionProperty); if (RT_SUCCESS(rc)) { /* * Now locate the import thunk entry for WinHvGetPartitionProperty in vid.sys. */ nemR0PrepareForVidSysInterceptInner(); } else LogRel(("NEMR0: Failed to find winhvr.sys!WinHvGetPartitionProperty (%Rrc)\n", rc)); } else LogRel(("NEMR0: Failed to find vid.sys!__ImageNtHdrs (%Rrc)\n", rc)); } else LogRel(("NEMR0: Failed to find vid.sys!__ImageSize (%Rrc)\n", rc)); } else LogRel(("NEMR0: Failed to find vid.sys!__ImageBase (%Rrc)\n", rc)); } /** * Called by NEMR3Init to make sure we've got what we need. * * @returns VBox status code. * @param pGVM The ring-0 VM handle. * @thread EMT(0) */ VMMR0_INT_DECL(int) NEMR0InitVM(PGVM pGVM) { AssertCompile(sizeof(pGVM->nemr0.s) <= sizeof(pGVM->nemr0.padding)); AssertCompile(sizeof(pGVM->aCpus[0].nemr0.s) <= sizeof(pGVM->aCpus[0].nemr0.padding)); int rc = GVMMR0ValidateGVMandEMT(pGVM, 0); AssertRCReturn(rc, rc); #ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES /* * We want to perform hypercalls here. The NT kernel started to expose a very low * level interface to do this thru somewhere between build 14271 and 16299. Since * we need build 17134 to get anywhere at all, the exact build is not relevant here. * * We also need to deposit memory to the hypervisor for use with partition (page * mapping structures, stuff). */ RTDBGKRNLINFO hKrnlInfo; rc = RTR0DbgKrnlInfoOpen(&hKrnlInfo, 0); if (RT_SUCCESS(rc)) { rc = RTR0DbgKrnlInfoQuerySymbol(hKrnlInfo, NULL, "HvlInvokeHypercall", (void **)&g_pfnHvlInvokeHypercall); if (RT_FAILURE(rc)) rc = VERR_NEM_MISSING_KERNEL_API_1; if (RT_SUCCESS(rc)) { rc = RTR0DbgKrnlInfoQuerySymbol(hKrnlInfo, "winhvr.sys", "WinHvDepositMemory", (void **)&g_pfnWinHvDepositMemory); if (RT_FAILURE(rc)) rc = rc == VERR_MODULE_NOT_FOUND ? VERR_NEM_MISSING_KERNEL_API_2 : VERR_NEM_MISSING_KERNEL_API_3; } /* * Since late 2021 we may also need to do some nasty trickery with vid.sys to get * the partition ID. So, ge the necessary info while we have a hKrnlInfo instance. */ if (RT_SUCCESS(rc)) nemR0PrepareForVidSysIntercept(hKrnlInfo); RTR0DbgKrnlInfoRelease(hKrnlInfo); if (RT_SUCCESS(rc)) { /* * Allocate a page for non-EMT threads to use for hypercalls (update * statistics and such) and a critical section protecting it. */ rc = RTCritSectInit(&pGVM->nemr0.s.HypercallDataCritSect); if (RT_SUCCESS(rc)) { rc = nemR0InitHypercallData(&pGVM->nemr0.s.HypercallData); if (RT_SUCCESS(rc)) { /* * Allocate a page for each VCPU to place hypercall data on. */ for (VMCPUID i = 0; i < pGVM->cCpus; i++) { rc = nemR0InitHypercallData(&pGVM->aCpus[i].nemr0.s.HypercallData); if (RT_FAILURE(rc)) { while (i-- > 0) nemR0DeleteHypercallData(&pGVM->aCpus[i].nemr0.s.HypercallData); break; } } if (RT_SUCCESS(rc)) { /* * So far, so good. */ return rc; } /* * Bail out. */ nemR0DeleteHypercallData(&pGVM->nemr0.s.HypercallData); } RTCritSectDelete(&pGVM->nemr0.s.HypercallDataCritSect); } } } #endif /* NEM_WIN_USE_HYPERCALLS_FOR_PAGES */ return rc; } #ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES /** * Perform an I/O control operation on the partition handle (VID.SYS). * * @returns NT status code. * @param pGVM The ring-0 VM structure. * @param pGVCpu The global (ring-0) CPU structure of the calling EMT. * @param uFunction The function to perform. * @param pvInput The input buffer. This must point within the VM * structure so we can easily convert to a ring-3 * pointer if necessary. * @param cbInput The size of the input. @a pvInput must be NULL when * zero. * @param pvOutput The output buffer. This must also point within the * VM structure for ring-3 pointer magic. * @param cbOutput The size of the output. @a pvOutput must be NULL * when zero. * @thread EMT(pGVCpu) */ DECLINLINE(NTSTATUS) nemR0NtPerformIoControl(PGVM pGVM, PGVMCPU pGVCpu, uint32_t uFunction, void *pvInput, uint32_t cbInput, void *pvOutput, uint32_t cbOutput) { # ifdef RT_STRICT /* * Input and output parameters are part of the VM CPU structure. */ VMCPU_ASSERT_EMT(pGVCpu); if (pvInput) AssertReturn(((uintptr_t)pvInput + cbInput) - (uintptr_t)pGVCpu <= sizeof(*pGVCpu), VERR_INVALID_PARAMETER); if (pvOutput) AssertReturn(((uintptr_t)pvOutput + cbOutput) - (uintptr_t)pGVCpu <= sizeof(*pGVCpu), VERR_INVALID_PARAMETER); # endif int32_t rcNt = STATUS_UNSUCCESSFUL; int rc = SUPR0IoCtlPerform(pGVM->nemr0.s.pIoCtlCtx, uFunction, pvInput, pvInput ? (uintptr_t)pvInput + pGVCpu->nemr0.s.offRing3ConversionDelta : NIL_RTR3PTR, cbInput, pvOutput, pvOutput ? (uintptr_t)pvOutput + pGVCpu->nemr0.s.offRing3ConversionDelta : NIL_RTR3PTR, cbOutput, &rcNt); if (RT_SUCCESS(rc) || !NT_SUCCESS((NTSTATUS)rcNt)) return (NTSTATUS)rcNt; return STATUS_UNSUCCESSFUL; } /** * Here is something that we really do not wish to do, but find us force do to * right now as we cannot rewrite the memory management of VBox 6.1 in time for * windows 11. * * @returns VBox status code. * @param pGVM The ring-0 VM structure. * @param pahMemObjs Array of 6 memory objects that the caller will release. * ASSUMES that they are initialized to NIL. */ static int nemR0InitVMPart2DontWannaDoTheseUglyPartitionIdFallbacks(PGVM pGVM, PRTR0MEMOBJ pahMemObjs) { /* * Check preconditions: */ if ( !g_ppfnVidSysWinHvGetPartitionProperty || (uintptr_t)g_ppfnVidSysWinHvGetPartitionProperty & (sizeof(uintptr_t) - 1)) { LogRel(("NEMR0: g_ppfnVidSysWinHvGetPartitionProperty is NULL or misaligned (%p), partition ID fallback not possible.\n", g_ppfnVidSysWinHvGetPartitionProperty)); return VERR_NEM_INIT_FAILED; } if (!g_pfnWinHvGetPartitionProperty) { LogRel(("NEMR0: g_pfnWinHvGetPartitionProperty is NULL, partition ID fallback not possible.\n")); return VERR_NEM_INIT_FAILED; } if (!pGVM->nem.s.IoCtlGetPartitionProperty.uFunction) { LogRel(("NEMR0: IoCtlGetPartitionProperty.uFunction is 0, partition ID fallback not possible.\n")); return VERR_NEM_INIT_FAILED; } /* * Create an alias for the thunk table entry because its very likely to be read-only. */ int rc = RTR0MemObjLockKernel(&pahMemObjs[0], g_ppfnVidSysWinHvGetPartitionProperty, sizeof(uintptr_t), RTMEM_PROT_READ); if (RT_FAILURE(rc)) { LogRel(("NEMR0: RTR0MemObjLockKernel failed on VID.SYS thunk table entry: %Rrc\n", rc)); return rc; } rc = RTR0MemObjEnterPhys(&pahMemObjs[1], RTR0MemObjGetPagePhysAddr(pahMemObjs[0], 0), PAGE_SIZE, RTMEM_CACHE_POLICY_DONT_CARE); if (RT_FAILURE(rc)) { LogRel(("NEMR0: RTR0MemObjEnterPhys failed on VID.SYS thunk table entry: %Rrc\n", rc)); return rc; } rc = RTR0MemObjMapKernel(&pahMemObjs[2], pahMemObjs[1], (void *)-1, 0, RTMEM_PROT_READ | RTMEM_PROT_WRITE); if (RT_FAILURE(rc)) { LogRel(("NEMR0: RTR0MemObjMapKernel failed on VID.SYS thunk table entry: %Rrc\n", rc)); return rc; } decltype(WinHvGetPartitionProperty) **ppfnThunkAlias = (decltype(WinHvGetPartitionProperty) **)( (uintptr_t)RTR0MemObjAddress(pahMemObjs[2]) | ((uintptr_t)g_ppfnVidSysWinHvGetPartitionProperty & PAGE_OFFSET_MASK)); LogRel(("NEMR0: ppfnThunkAlias=%p *ppfnThunkAlias=%p; original: %p & %p, phys %RHp\n", ppfnThunkAlias, *ppfnThunkAlias, g_ppfnVidSysWinHvGetPartitionProperty, *g_ppfnVidSysWinHvGetPartitionProperty, RTR0MemObjGetPagePhysAddr(pahMemObjs[0], 0) )); /* * Create an alias for the target code in WinHvr.sys as there is a very decent * chance we have to patch it. */ rc = RTR0MemObjLockKernel(&pahMemObjs[3], g_pfnWinHvGetPartitionProperty, sizeof(uintptr_t), RTMEM_PROT_READ); if (RT_FAILURE(rc)) { LogRel(("NEMR0: RTR0MemObjLockKernel failed on WinHvGetPartitionProperty (%p): %Rrc\n", g_pfnWinHvGetPartitionProperty, rc)); return rc; } rc = RTR0MemObjEnterPhys(&pahMemObjs[4], RTR0MemObjGetPagePhysAddr(pahMemObjs[3], 0), PAGE_SIZE, RTMEM_CACHE_POLICY_DONT_CARE); if (RT_FAILURE(rc)) { LogRel(("NEMR0: RTR0MemObjEnterPhys failed on WinHvGetPartitionProperty: %Rrc\n", rc)); return rc; } rc = RTR0MemObjMapKernel(&pahMemObjs[5], pahMemObjs[4], (void *)-1, 0, RTMEM_PROT_READ | RTMEM_PROT_WRITE); if (RT_FAILURE(rc)) { LogRel(("NEMR0: RTR0MemObjMapKernel failed on WinHvGetPartitionProperty: %Rrc\n", rc)); return rc; } uint8_t *pbTargetAlias = (uint8_t *)( (uintptr_t)RTR0MemObjAddress(pahMemObjs[5]) | ((uintptr_t)g_pfnWinHvGetPartitionProperty & PAGE_OFFSET_MASK)); LogRel(("NEMR0: pbTargetAlias=%p %.16Rhxs; original: %p %.16Rhxs, phys %RHp\n", pbTargetAlias, pbTargetAlias, g_pfnWinHvGetPartitionProperty, g_pfnWinHvGetPartitionProperty, RTR0MemObjGetPagePhysAddr(pahMemObjs[3], 0) )); /* * Analyse the target functions prologue to figure out how much we should copy * when patching it. We repeat this every time because we don't want to get * tripped up by someone else doing the same stuff as we're doing here. * We need at least 12 bytes for the patch sequence (MOV RAX, QWORD; JMP RAX) */ union { uint8_t ab[48]; /**< Must be equal or smallar than g_abNemR0WinHvrWinHvGetPartitionProperty_OriginalProlog */ int64_t ai64[6]; } Org; memcpy(Org.ab, g_pfnWinHvGetPartitionProperty, sizeof(Org)); /** @todo ASSUMES 48 valid bytes start at function... */ uint32_t offJmpBack = 0; uint32_t const cbMinJmpPatch = 12; DISSTATE Dis; while (offJmpBack < cbMinJmpPatch && offJmpBack < sizeof(Org) - 16) { uint32_t cbInstr = 1; rc = DISInstr(&Org.ab[offJmpBack], DISCPUMODE_64BIT, &Dis, &cbInstr); if (RT_FAILURE(rc)) { LogRel(("NEMR0: DISInstr failed %#x bytes into WinHvGetPartitionProperty: %Rrc (%.48Rhxs)\n", offJmpBack, rc, Org.ab)); break; } if (Dis.pCurInstr->fOpType & DISOPTYPE_CONTROLFLOW) { LogRel(("NEMR0: Control flow instruction %#x bytes into WinHvGetPartitionProperty prologue: %.48Rhxs\n", offJmpBack, Org.ab)); break; } if (Dis.ModRM.Bits.Mod == 0 && Dis.ModRM.Bits.Rm == 5 /* wrt RIP */) { LogRel(("NEMR0: RIP relative addressing %#x bytes into WinHvGetPartitionProperty prologue: %.48Rhxs\n", offJmpBack, Org.ab)); break; } offJmpBack += cbInstr; } uintptr_t const cbLeftInPage = PAGE_SIZE - ((uintptr_t)g_pfnWinHvGetPartitionProperty & PAGE_OFFSET_MASK); if (cbLeftInPage < 16 && offJmpBack >= cbMinJmpPatch) { LogRel(("NEMR0: WinHvGetPartitionProperty patching not possible do the page crossing: %p (%#zx)\n", g_pfnWinHvGetPartitionProperty, cbLeftInPage)); offJmpBack = 0; } if (offJmpBack >= cbMinJmpPatch) LogRel(("NEMR0: offJmpBack=%#x for WinHvGetPartitionProperty (%p: %.48Rhxs)\n", offJmpBack, g_pfnWinHvGetPartitionProperty, Org.ab)); else offJmpBack = 0; rc = VINF_SUCCESS; /* * Now enter serialization lock and get on with it... */ PVMCPUCC const pVCpu0 = &pGVM->aCpus[0]; NTSTATUS rcNt; RTCritSectEnter(&g_VidSysCritSect); /* * First attempt, patching the import table entry. */ g_idVidSysFoundPartition = HV_PARTITION_ID_INVALID; g_hVidSysMatchThread = RTThreadNativeSelf(); g_enmVidSysMatchProperty = pVCpu0->nem.s.uIoCtlBuf.GetProp.enmProperty = HvPartitionPropertyProcessorVendor; pVCpu0->nem.s.uIoCtlBuf.GetProp.uValue = 0; void *pvOld = NULL; if (ASMAtomicCmpXchgExPtr(ppfnThunkAlias, (void *)(uintptr_t)nemR0VidSysWinHvGetPartitionProperty, (void *)(uintptr_t)g_pfnWinHvGetPartitionProperty, &pvOld)) { LogRel(("NEMR0: after switch to %p: ppfnThunkAlias=%p *ppfnThunkAlias=%p; original: %p & %p\n", nemR0VidSysWinHvGetPartitionProperty, ppfnThunkAlias, *ppfnThunkAlias, g_ppfnVidSysWinHvGetPartitionProperty, *g_ppfnVidSysWinHvGetPartitionProperty)); rcNt = nemR0NtPerformIoControl(pGVM, pVCpu0, pGVM->nemr0.s.IoCtlGetPartitionProperty.uFunction, &pVCpu0->nem.s.uIoCtlBuf.GetProp.enmProperty, sizeof(pVCpu0->nem.s.uIoCtlBuf.GetProp.enmProperty), &pVCpu0->nem.s.uIoCtlBuf.GetProp.uValue, sizeof(pVCpu0->nem.s.uIoCtlBuf.GetProp.uValue)); ASMAtomicWritePtr(ppfnThunkAlias, (void *)(uintptr_t)g_pfnWinHvGetPartitionProperty); HV_PARTITION_ID idHvPartition = g_idVidSysFoundPartition; LogRel(("NEMR0: WinHvGetPartitionProperty trick #1 yielded: rcNt=%#x idHvPartition=%#RX64 uValue=%#RX64\n", rcNt, idHvPartition, pVCpu0->nem.s.uIoCtlBuf.GetProp.uValue)); pGVM->nemr0.s.idHvPartition = idHvPartition; } else { LogRel(("NEMR0: Unexpected WinHvGetPartitionProperty pointer in VID.SYS: %p, expected %p\n", pvOld, g_pfnWinHvGetPartitionProperty)); rc = VERR_NEM_INIT_FAILED; } /* * If that didn't succeed, try patching the winhvr.sys code. */ if ( pGVM->nemr0.s.idHvPartition == HV_PARTITION_ID_INVALID && offJmpBack >= cbMinJmpPatch) { g_idVidSysFoundPartition = HV_PARTITION_ID_INVALID; g_hVidSysMatchThread = RTThreadNativeSelf(); g_enmVidSysMatchProperty = pVCpu0->nem.s.uIoCtlBuf.GetProp.enmProperty = HvPartitionPropertyProcessorVendor; pVCpu0->nem.s.uIoCtlBuf.GetProp.uValue = 0; /* * Prepare the hook area. */ uint8_t *pbDst = g_abNemR0WinHvrWinHvGetPartitionProperty_OriginalProlog; memcpy(pbDst, (uint8_t const *)(uintptr_t)g_pfnWinHvGetPartitionProperty, offJmpBack); pbDst += offJmpBack; *pbDst++ = 0x48; /* mov rax, imm64 */ *pbDst++ = 0xb8; *(uint64_t *)pbDst = (uintptr_t)g_pfnWinHvGetPartitionProperty + offJmpBack; pbDst += sizeof(uint64_t); *pbDst++ = 0xff; /* jmp rax */ *pbDst++ = 0xe0; *pbDst++ = 0xcc; /* int3 */ /* * Patch the original. We use cmpxchg16b here to avoid concurrency problems * (this also makes sure we don't trample over someone else doing similar * patching at the same time). */ union { uint8_t ab[16]; uint64_t au64[2]; } Patch; memcpy(Patch.ab, Org.ab, sizeof(Patch)); pbDst = Patch.ab; *pbDst++ = 0x48; /* mov rax, imm64 */ *pbDst++ = 0xb8; *(uint64_t *)pbDst = (uintptr_t)nemR0WinHvrWinHvGetPartitionProperty; pbDst += sizeof(uint64_t); *pbDst++ = 0xff; /* jmp rax */ *pbDst++ = 0xe0; int64_t ai64CmpCopy[2] = { Org.ai64[0], Org.ai64[1] }; /* paranoia */ if (_InterlockedCompareExchange128((__int64 volatile *)pbTargetAlias, Patch.au64[1], Patch.au64[0], ai64CmpCopy) != 0) { rcNt = nemR0NtPerformIoControl(pGVM, pVCpu0, pGVM->nemr0.s.IoCtlGetPartitionProperty.uFunction, &pVCpu0->nem.s.uIoCtlBuf.GetProp.enmProperty, sizeof(pVCpu0->nem.s.uIoCtlBuf.GetProp.enmProperty), &pVCpu0->nem.s.uIoCtlBuf.GetProp.uValue, sizeof(pVCpu0->nem.s.uIoCtlBuf.GetProp.uValue)); for (uint32_t cFailures = 0; cFailures < 10; cFailures++) { ai64CmpCopy[0] = Patch.au64[0]; /* paranoia */ ai64CmpCopy[1] = Patch.au64[1]; if (_InterlockedCompareExchange128((__int64 volatile *)pbTargetAlias, Org.ai64[1], Org.ai64[0], ai64CmpCopy) != 0) { if (cFailures > 0) LogRel(("NEMR0: Succeeded on try #%u.\n", cFailures)); break; } LogRel(("NEMR0: Patch restore failure #%u: %.16Rhxs, expected %.16Rhxs\n", cFailures + 1, &ai64CmpCopy[0], &Patch.au64[0])); RTThreadSleep(1000); } HV_PARTITION_ID idHvPartition = g_idVidSysFoundPartition; LogRel(("NEMR0: WinHvGetPartitionProperty trick #2 yielded: rcNt=%#x idHvPartition=%#RX64 uValue=%#RX64\n", rcNt, idHvPartition, pVCpu0->nem.s.uIoCtlBuf.GetProp.uValue)); pGVM->nemr0.s.idHvPartition = idHvPartition; } else { LogRel(("NEMR0: Failed to install WinHvGetPartitionProperty patch: %.16Rhxs, expected %.16Rhxs\n", &ai64CmpCopy[0], &Org.ai64[0])); rc = VERR_NEM_INIT_FAILED; } } RTCritSectLeave(&g_VidSysCritSect); return rc; } #endif /* NEM_WIN_USE_HYPERCALLS_FOR_PAGES */ /** * 2nd part of the initialization, after we've got a partition handle. * * @returns VBox status code. * @param pGVM The ring-0 VM handle. * @thread EMT(0) */ VMMR0_INT_DECL(int) NEMR0InitVMPart2(PGVM pGVM) { int rc = GVMMR0ValidateGVMandEMT(pGVM, 0); AssertRCReturn(rc, rc); SUPR0Printf("NEMR0InitVMPart2\n"); LogRel(("2: NEMR0InitVMPart2\n")); #ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES # ifdef NEM_WIN_WITH_RING0_RUNLOOP Assert(pGVM->nemr0.s.fMayUseRing0Runloop == false); # endif /* * Copy and validate the I/O control information from ring-3. */ NEMWINIOCTL Copy = pGVM->nem.s.IoCtlGetHvPartitionId; AssertLogRelReturn(Copy.uFunction != 0, VERR_NEM_INIT_FAILED); AssertLogRelReturn(Copy.cbInput == 0, VERR_NEM_INIT_FAILED); AssertLogRelReturn(Copy.cbOutput == sizeof(HV_PARTITION_ID), VERR_NEM_INIT_FAILED); pGVM->nemr0.s.IoCtlGetHvPartitionId = Copy; Copy = pGVM->nem.s.IoCtlGetPartitionProperty; AssertLogRelReturn(Copy.uFunction != 0, VERR_NEM_INIT_FAILED); AssertLogRelReturn(Copy.cbInput == sizeof(VID_PARTITION_PROPERTY_CODE), VERR_NEM_INIT_FAILED); AssertLogRelReturn(Copy.cbOutput == sizeof(HV_PARTITION_PROPERTY), VERR_NEM_INIT_FAILED); pGVM->nemr0.s.IoCtlGetPartitionProperty = Copy; # ifdef NEM_WIN_WITH_RING0_RUNLOOP pGVM->nemr0.s.fMayUseRing0Runloop = pGVM->nem.s.fUseRing0Runloop; Copy = pGVM->nem.s.IoCtlStartVirtualProcessor; AssertLogRelStmt(Copy.uFunction != 0, rc = VERR_NEM_INIT_FAILED); AssertLogRelStmt(Copy.cbInput == sizeof(HV_VP_INDEX), rc = VERR_NEM_INIT_FAILED); AssertLogRelStmt(Copy.cbOutput == 0, rc = VERR_NEM_INIT_FAILED); AssertLogRelStmt(Copy.uFunction != pGVM->nemr0.s.IoCtlGetHvPartitionId.uFunction, rc = VERR_NEM_INIT_FAILED); if (RT_SUCCESS(rc)) pGVM->nemr0.s.IoCtlStartVirtualProcessor = Copy; Copy = pGVM->nem.s.IoCtlStopVirtualProcessor; AssertLogRelStmt(Copy.uFunction != 0, rc = VERR_NEM_INIT_FAILED); AssertLogRelStmt(Copy.cbInput == sizeof(HV_VP_INDEX), rc = VERR_NEM_INIT_FAILED); AssertLogRelStmt(Copy.cbOutput == 0, rc = VERR_NEM_INIT_FAILED); AssertLogRelStmt(Copy.uFunction != pGVM->nemr0.s.IoCtlGetHvPartitionId.uFunction, rc = VERR_NEM_INIT_FAILED); AssertLogRelStmt(Copy.uFunction != pGVM->nemr0.s.IoCtlStartVirtualProcessor.uFunction, rc = VERR_NEM_INIT_FAILED); if (RT_SUCCESS(rc)) pGVM->nemr0.s.IoCtlStopVirtualProcessor = Copy; Copy = pGVM->nem.s.IoCtlMessageSlotHandleAndGetNext; AssertLogRelStmt(Copy.uFunction != 0, rc = VERR_NEM_INIT_FAILED); AssertLogRelStmt( Copy.cbInput == sizeof(VID_IOCTL_INPUT_MESSAGE_SLOT_HANDLE_AND_GET_NEXT) || Copy.cbInput == RT_OFFSETOF(VID_IOCTL_INPUT_MESSAGE_SLOT_HANDLE_AND_GET_NEXT, cMillies), rc = VERR_NEM_INIT_FAILED); AssertLogRelStmt(Copy.cbOutput == 0, VERR_NEM_INIT_FAILED); AssertLogRelStmt(Copy.uFunction != pGVM->nemr0.s.IoCtlGetHvPartitionId.uFunction, rc = VERR_NEM_INIT_FAILED); AssertLogRelStmt(Copy.uFunction != pGVM->nemr0.s.IoCtlStartVirtualProcessor.uFunction, rc = VERR_NEM_INIT_FAILED); AssertLogRelStmt(Copy.uFunction != pGVM->nemr0.s.IoCtlStopVirtualProcessor.uFunction, rc = VERR_NEM_INIT_FAILED); if (RT_SUCCESS(rc)) pGVM->nemr0.s.IoCtlMessageSlotHandleAndGetNext = Copy; # endif if ( RT_SUCCESS(rc) || !pGVM->nem.s.fUseRing0Runloop) { /* * Setup of an I/O control context for the partition handle for later use. */ rc = SUPR0IoCtlSetupForHandle(pGVM->pSession, pGVM->nem.s.hPartitionDevice, 0, &pGVM->nemr0.s.pIoCtlCtx); AssertLogRelRCReturn(rc, rc); for (VMCPUID idCpu = 0; idCpu < pGVM->cCpus; idCpu++) { PGVMCPU pGVCpu = &pGVM->aCpus[idCpu]; pGVCpu->nemr0.s.offRing3ConversionDelta = (uintptr_t)pGVM->aCpus[idCpu].pVCpuR3 - (uintptr_t)pGVCpu; } /* * Get the partition ID. */ PVMCPUCC pVCpu0 = &pGVM->aCpus[0]; NTSTATUS rcNt = nemR0NtPerformIoControl(pGVM, pVCpu0, pGVM->nemr0.s.IoCtlGetHvPartitionId.uFunction, NULL, 0, &pVCpu0->nem.s.uIoCtlBuf.idPartition, sizeof(pVCpu0->nem.s.uIoCtlBuf.idPartition)); # if 0 AssertLogRelMsgReturn(NT_SUCCESS(rcNt), ("IoCtlGetHvPartitionId failed: %#x\n", rcNt), VERR_NEM_INIT_FAILED); pGVM->nemr0.s.idHvPartition = pVCpu0->nem.s.uIoCtlBuf.idPartition; # else /* * Since 2021 (Win11) the above I/O control doesn't work on exo-partitions * so we have to go to extremes to get at it. Sigh. */ if ( !NT_SUCCESS(rcNt) || pVCpu0->nem.s.uIoCtlBuf.idPartition == HV_PARTITION_ID_INVALID) { LogRel(("IoCtlGetHvPartitionId failed: r0=%#RX64, r3=%#RX64, rcNt=%#x\n", pGVM->nemr0.s.idHvPartition, pGVM->nem.s.idHvPartition, rcNt)); RTR0MEMOBJ ahMemObjs[6] = { NIL_RTR0MEMOBJ, NIL_RTR0MEMOBJ, NIL_RTR0MEMOBJ, NIL_RTR0MEMOBJ, NIL_RTR0MEMOBJ, NIL_RTR0MEMOBJ }; rc = nemR0InitVMPart2DontWannaDoTheseUglyPartitionIdFallbacks(pGVM, ahMemObjs); size_t i = RT_ELEMENTS(ahMemObjs); while (i-- > 0) RTR0MemObjFree(ahMemObjs[i], false /*fFreeMappings*/); } if (pGVM->nem.s.idHvPartition == HV_PARTITION_ID_INVALID) pGVM->nem.s.idHvPartition = pGVM->nemr0.s.idHvPartition; # endif AssertLogRelMsgReturn(pGVM->nemr0.s.idHvPartition == pGVM->nem.s.idHvPartition, ("idHvPartition mismatch: r0=%#RX64, r3=%#RX64\n", pGVM->nemr0.s.idHvPartition, pGVM->nem.s.idHvPartition), VERR_NEM_INIT_FAILED); if (RT_SUCCESS(rc) && pGVM->nemr0.s.idHvPartition == HV_PARTITION_ID_INVALID) rc = VERR_NEM_INIT_FAILED; } #endif /* NEM_WIN_USE_HYPERCALLS_FOR_PAGES */ return rc; } /** * Cleanup the NEM parts of the VM in ring-0. * * This is always called and must deal the state regardless of whether * NEMR0InitVM() was called or not. So, take care here. * * @param pGVM The ring-0 VM handle. */ VMMR0_INT_DECL(void) NEMR0CleanupVM(PGVM pGVM) { #ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES pGVM->nemr0.s.idHvPartition = HV_PARTITION_ID_INVALID; /* Clean up I/O control context. */ if (pGVM->nemr0.s.pIoCtlCtx) { int rc = SUPR0IoCtlCleanup(pGVM->nemr0.s.pIoCtlCtx); AssertRC(rc); pGVM->nemr0.s.pIoCtlCtx = NULL; } /* Free the hypercall pages. */ VMCPUID i = pGVM->cCpus; while (i-- > 0) nemR0DeleteHypercallData(&pGVM->aCpus[i].nemr0.s.HypercallData); /* The non-EMT one too. */ if (RTCritSectIsInitialized(&pGVM->nemr0.s.HypercallDataCritSect)) RTCritSectDelete(&pGVM->nemr0.s.HypercallDataCritSect); nemR0DeleteHypercallData(&pGVM->nemr0.s.HypercallData); #else RT_NOREF(pGVM); #endif } #if 0 /* for debugging GPA unmapping. */ static int nemR3WinDummyReadGpa(PGVM pGVM, PGVMCPU pGVCpu, RTGCPHYS GCPhys) { PHV_INPUT_READ_GPA pIn = (PHV_INPUT_READ_GPA)pGVCpu->nemr0.s.pbHypercallData; PHV_OUTPUT_READ_GPA pOut = (PHV_OUTPUT_READ_GPA)(pIn + 1); pIn->PartitionId = pGVM->nemr0.s.idHvPartition; pIn->VpIndex = pGVCpu->idCpu; pIn->ByteCount = 0x10; pIn->BaseGpa = GCPhys; pIn->ControlFlags.AsUINT64 = 0; pIn->ControlFlags.CacheType = HvCacheTypeX64WriteCombining; memset(pOut, 0xfe, sizeof(*pOut)); uint64_t volatile uResult = g_pfnHvlInvokeHypercall(HvCallReadGpa, pGVCpu->nemr0.s.HCPhysHypercallData, pGVCpu->nemr0.s.HCPhysHypercallData + sizeof(*pIn)); LogRel(("nemR3WinDummyReadGpa: %RGp -> %#RX64; code=%u rsvd=%u abData=%.16Rhxs\n", GCPhys, uResult, pOut->AccessResult.ResultCode, pOut->AccessResult.Reserved, pOut->Data)); __debugbreak(); return uResult != 0 ? VERR_READ_ERROR : VINF_SUCCESS; } #endif #ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES /** * Worker for NEMR0MapPages and others. */ NEM_TMPL_STATIC int nemR0WinMapPages(PGVM pGVM, PGVMCPU pGVCpu, RTGCPHYS GCPhysSrc, RTGCPHYS GCPhysDst, uint32_t cPages, uint32_t fFlags) { /* * Validate. */ AssertReturn(g_pfnHvlInvokeHypercall, VERR_NEM_MISSING_KERNEL_API_1); AssertReturn(cPages > 0, VERR_OUT_OF_RANGE); AssertReturn(cPages <= NEM_MAX_MAP_PAGES, VERR_OUT_OF_RANGE); AssertReturn(!(fFlags & ~(HV_MAP_GPA_MAYBE_ACCESS_MASK & ~HV_MAP_GPA_DUNNO_ACCESS)), VERR_INVALID_FLAGS); AssertMsgReturn(!(GCPhysDst & X86_PAGE_OFFSET_MASK), ("GCPhysDst=%RGp\n", GCPhysDst), VERR_OUT_OF_RANGE); AssertReturn(GCPhysDst < _1E, VERR_OUT_OF_RANGE); if (GCPhysSrc != GCPhysDst) { AssertMsgReturn(!(GCPhysSrc & X86_PAGE_OFFSET_MASK), ("GCPhysSrc=%RGp\n", GCPhysSrc), VERR_OUT_OF_RANGE); AssertReturn(GCPhysSrc < _1E, VERR_OUT_OF_RANGE); } /* * Compose and make the hypercall. * Ring-3 is not allowed to fill in the host physical addresses of the call. */ for (uint32_t iTries = 0;; iTries++) { RTGCPHYS GCPhysSrcTmp = GCPhysSrc; HV_INPUT_MAP_GPA_PAGES *pMapPages = (HV_INPUT_MAP_GPA_PAGES *)pGVCpu->nemr0.s.HypercallData.pbPage; AssertPtrReturn(pMapPages, VERR_INTERNAL_ERROR_3); pMapPages->TargetPartitionId = pGVM->nemr0.s.idHvPartition; pMapPages->TargetGpaBase = GCPhysDst >> X86_PAGE_SHIFT; pMapPages->MapFlags = fFlags; pMapPages->u32ExplicitPadding = 0; for (uint32_t iPage = 0; iPage < cPages; iPage++, GCPhysSrcTmp += X86_PAGE_SIZE) { RTHCPHYS HCPhys = NIL_RTGCPHYS; int rc = PGMPhysGCPhys2HCPhys(pGVM, GCPhysSrcTmp, &HCPhys); AssertRCReturn(rc, rc); pMapPages->PageList[iPage] = HCPhys >> X86_PAGE_SHIFT; } uint64_t uResult = g_pfnHvlInvokeHypercall(HvCallMapGpaPages | ((uint64_t)cPages << 32), pGVCpu->nemr0.s.HypercallData.HCPhysPage, 0); Log6(("NEMR0MapPages: %RGp/%RGp L %u prot %#x -> %#RX64\n", GCPhysDst, GCPhysSrcTmp - cPages * X86_PAGE_SIZE, cPages, fFlags, uResult)); if (uResult == ((uint64_t)cPages << 32)) return VINF_SUCCESS; /* * If the partition is out of memory, try donate another 512 pages to * it (2MB). VID.SYS does multiples of 512 pages, nothing smaller. */ if ( uResult != HV_STATUS_INSUFFICIENT_MEMORY || iTries > 16 || g_pfnWinHvDepositMemory == NULL) { LogRel(("g_pfnHvlInvokeHypercall/MapGpaPages -> %#RX64\n", uResult)); return VERR_NEM_MAP_PAGES_FAILED; } size_t cPagesAdded = 0; NTSTATUS rcNt = g_pfnWinHvDepositMemory(pGVM->nemr0.s.idHvPartition, 512, 0, &cPagesAdded); if (!cPagesAdded) { LogRel(("g_pfnWinHvDepositMemory -> %#x / %#RX64\n", rcNt, uResult)); return VERR_NEM_MAP_PAGES_FAILED; } } } #endif /* NEM_WIN_USE_HYPERCALLS_FOR_PAGES */ /** * Maps pages into the guest physical address space. * * Generally the caller will be under the PGM lock already, so no extra effort * is needed to make sure all changes happens under it. * * @returns VBox status code. * @param pGVM The ring-0 VM handle. * @param idCpu The calling EMT. Necessary for getting the * hypercall page and arguments. * @thread EMT(idCpu) */ VMMR0_INT_DECL(int) NEMR0MapPages(PGVM pGVM, VMCPUID idCpu) { #ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES /* * Unpack the call. */ int rc = GVMMR0ValidateGVMandEMT(pGVM, idCpu); if (RT_SUCCESS(rc)) { PGVMCPU pGVCpu = &pGVM->aCpus[idCpu]; RTGCPHYS const GCPhysSrc = pGVCpu->nem.s.Hypercall.MapPages.GCPhysSrc; RTGCPHYS const GCPhysDst = pGVCpu->nem.s.Hypercall.MapPages.GCPhysDst; uint32_t const cPages = pGVCpu->nem.s.Hypercall.MapPages.cPages; HV_MAP_GPA_FLAGS const fFlags = pGVCpu->nem.s.Hypercall.MapPages.fFlags; /* * Do the work. */ rc = nemR0WinMapPages(pGVM, pGVCpu, GCPhysSrc, GCPhysDst, cPages, fFlags); } return rc; #else RT_NOREF(pGVM, idCpu); return VERR_NOT_IMPLEMENTED; #endif } #ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES /** * Worker for NEMR0UnmapPages and others. */ NEM_TMPL_STATIC int nemR0WinUnmapPages(PGVM pGVM, PGVMCPU pGVCpu, RTGCPHYS GCPhys, uint32_t cPages) { /* * Validate input. */ AssertReturn(g_pfnHvlInvokeHypercall, VERR_NEM_MISSING_KERNEL_API_1); AssertReturn(cPages > 0, VERR_OUT_OF_RANGE); AssertReturn(cPages <= NEM_MAX_UNMAP_PAGES, VERR_OUT_OF_RANGE); AssertMsgReturn(!(GCPhys & X86_PAGE_OFFSET_MASK), ("%RGp\n", GCPhys), VERR_OUT_OF_RANGE); AssertReturn(GCPhys < _1E, VERR_OUT_OF_RANGE); /* * Compose and make the hypercall. */ HV_INPUT_UNMAP_GPA_PAGES *pUnmapPages = (HV_INPUT_UNMAP_GPA_PAGES *)pGVCpu->nemr0.s.HypercallData.pbPage; AssertPtrReturn(pUnmapPages, VERR_INTERNAL_ERROR_3); pUnmapPages->TargetPartitionId = pGVM->nemr0.s.idHvPartition; pUnmapPages->TargetGpaBase = GCPhys >> X86_PAGE_SHIFT; pUnmapPages->fFlags = 0; uint64_t uResult = g_pfnHvlInvokeHypercall(HvCallUnmapGpaPages | ((uint64_t)cPages << 32), pGVCpu->nemr0.s.HypercallData.HCPhysPage, 0); Log6(("NEMR0UnmapPages: %RGp L %u -> %#RX64\n", GCPhys, cPages, uResult)); if (uResult == ((uint64_t)cPages << 32)) { # if 1 /* Do we need to do this? Hopefully not... */ uint64_t volatile uR = g_pfnHvlInvokeHypercall(HvCallUncommitGpaPages | ((uint64_t)cPages << 32), pGVCpu->nemr0.s.HypercallData.HCPhysPage, 0); AssertMsg(uR == ((uint64_t)cPages << 32), ("uR=%#RX64\n", uR)); NOREF(uR); # endif return VINF_SUCCESS; } LogRel(("g_pfnHvlInvokeHypercall/UnmapGpaPages -> %#RX64\n", uResult)); return VERR_NEM_UNMAP_PAGES_FAILED; } #endif /* NEM_WIN_USE_HYPERCALLS_FOR_PAGES */ /** * Unmaps pages from the guest physical address space. * * Generally the caller will be under the PGM lock already, so no extra effort * is needed to make sure all changes happens under it. * * @returns VBox status code. * @param pGVM The ring-0 VM handle. * @param idCpu The calling EMT. Necessary for getting the * hypercall page and arguments. * @thread EMT(idCpu) */ VMMR0_INT_DECL(int) NEMR0UnmapPages(PGVM pGVM, VMCPUID idCpu) { #ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES /* * Unpack the call. */ int rc = GVMMR0ValidateGVMandEMT(pGVM, idCpu); if (RT_SUCCESS(rc)) { PGVMCPU pGVCpu = &pGVM->aCpus[idCpu]; RTGCPHYS const GCPhys = pGVCpu->nem.s.Hypercall.UnmapPages.GCPhys; uint32_t const cPages = pGVCpu->nem.s.Hypercall.UnmapPages.cPages; /* * Do the work. */ rc = nemR0WinUnmapPages(pGVM, pGVCpu, GCPhys, cPages); } return rc; #else RT_NOREF(pGVM, idCpu); return VERR_NOT_IMPLEMENTED; #endif } #if defined(NEM_WIN_WITH_RING0_RUNLOOP) || defined(NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS) /** * Worker for NEMR0ExportState. * * Intention is to use it internally later. * * @returns VBox status code. * @param pGVM The ring-0 VM handle. * @param pGVCpu The ring-0 VCPU handle. * @param pCtx The CPU context structure to import into. */ NEM_TMPL_STATIC int nemR0WinExportState(PGVM pGVM, PGVMCPU pGVCpu, PCPUMCTX pCtx) { HV_INPUT_SET_VP_REGISTERS *pInput = (HV_INPUT_SET_VP_REGISTERS *)pGVCpu->nemr0.s.HypercallData.pbPage; AssertPtrReturn(pInput, VERR_INTERNAL_ERROR_3); AssertReturn(g_pfnHvlInvokeHypercall, VERR_NEM_MISSING_KERNEL_API_1); pInput->PartitionId = pGVM->nemr0.s.idHvPartition; pInput->VpIndex = pGVCpu->idCpu; pInput->RsvdZ = 0; uint64_t const fWhat = ~pCtx->fExtrn & (CPUMCTX_EXTRN_ALL | CPUMCTX_EXTRN_NEM_WIN_MASK); if ( !fWhat && pGVCpu->nem.s.fCurrentInterruptWindows == pGVCpu->nem.s.fDesiredInterruptWindows) return VINF_SUCCESS; uintptr_t iReg = 0; /* GPRs */ if (fWhat & CPUMCTX_EXTRN_GPRS_MASK) { if (fWhat & CPUMCTX_EXTRN_RAX) { HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); pInput->Elements[iReg].Name = HvX64RegisterRax; pInput->Elements[iReg].Value.Reg64 = pCtx->rax; iReg++; } if (fWhat & CPUMCTX_EXTRN_RCX) { HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); pInput->Elements[iReg].Name = HvX64RegisterRcx; pInput->Elements[iReg].Value.Reg64 = pCtx->rcx; iReg++; } if (fWhat & CPUMCTX_EXTRN_RDX) { HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); pInput->Elements[iReg].Name = HvX64RegisterRdx; pInput->Elements[iReg].Value.Reg64 = pCtx->rdx; iReg++; } if (fWhat & CPUMCTX_EXTRN_RBX) { HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); pInput->Elements[iReg].Name = HvX64RegisterRbx; pInput->Elements[iReg].Value.Reg64 = pCtx->rbx; iReg++; } if (fWhat & CPUMCTX_EXTRN_RSP) { HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); pInput->Elements[iReg].Name = HvX64RegisterRsp; pInput->Elements[iReg].Value.Reg64 = pCtx->rsp; iReg++; } if (fWhat & CPUMCTX_EXTRN_RBP) { HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); pInput->Elements[iReg].Name = HvX64RegisterRbp; pInput->Elements[iReg].Value.Reg64 = pCtx->rbp; iReg++; } if (fWhat & CPUMCTX_EXTRN_RSI) { HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); pInput->Elements[iReg].Name = HvX64RegisterRsi; pInput->Elements[iReg].Value.Reg64 = pCtx->rsi; iReg++; } if (fWhat & CPUMCTX_EXTRN_RDI) { HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); pInput->Elements[iReg].Name = HvX64RegisterRdi; pInput->Elements[iReg].Value.Reg64 = pCtx->rdi; iReg++; } if (fWhat & CPUMCTX_EXTRN_R8_R15) { HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); pInput->Elements[iReg].Name = HvX64RegisterR8; pInput->Elements[iReg].Value.Reg64 = pCtx->r8; iReg++; HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); pInput->Elements[iReg].Name = HvX64RegisterR9; pInput->Elements[iReg].Value.Reg64 = pCtx->r9; iReg++; HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); pInput->Elements[iReg].Name = HvX64RegisterR10; pInput->Elements[iReg].Value.Reg64 = pCtx->r10; iReg++; HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); pInput->Elements[iReg].Name = HvX64RegisterR11; pInput->Elements[iReg].Value.Reg64 = pCtx->r11; iReg++; HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); pInput->Elements[iReg].Name = HvX64RegisterR12; pInput->Elements[iReg].Value.Reg64 = pCtx->r12; iReg++; HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); pInput->Elements[iReg].Name = HvX64RegisterR13; pInput->Elements[iReg].Value.Reg64 = pCtx->r13; iReg++; HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); pInput->Elements[iReg].Name = HvX64RegisterR14; pInput->Elements[iReg].Value.Reg64 = pCtx->r14; iReg++; HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); pInput->Elements[iReg].Name = HvX64RegisterR15; pInput->Elements[iReg].Value.Reg64 = pCtx->r15; iReg++; } } /* RIP & Flags */ if (fWhat & CPUMCTX_EXTRN_RIP) { HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); pInput->Elements[iReg].Name = HvX64RegisterRip; pInput->Elements[iReg].Value.Reg64 = pCtx->rip; iReg++; } if (fWhat & CPUMCTX_EXTRN_RFLAGS) { HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); pInput->Elements[iReg].Name = HvX64RegisterRflags; pInput->Elements[iReg].Value.Reg64 = pCtx->rflags.u; iReg++; } /* Segments */ # define COPY_OUT_SEG(a_idx, a_enmName, a_SReg) \ do { \ HV_REGISTER_ASSOC_ZERO_PADDING(&pInput->Elements[a_idx]); \ pInput->Elements[a_idx].Name = a_enmName; \ pInput->Elements[a_idx].Value.Segment.Base = (a_SReg).u64Base; \ pInput->Elements[a_idx].Value.Segment.Limit = (a_SReg).u32Limit; \ pInput->Elements[a_idx].Value.Segment.Selector = (a_SReg).Sel; \ pInput->Elements[a_idx].Value.Segment.Attributes = (a_SReg).Attr.u; \ } while (0) if (fWhat & CPUMCTX_EXTRN_SREG_MASK) { if (fWhat & CPUMCTX_EXTRN_CS) { COPY_OUT_SEG(iReg, HvX64RegisterCs, pCtx->cs); iReg++; } if (fWhat & CPUMCTX_EXTRN_ES) { COPY_OUT_SEG(iReg, HvX64RegisterEs, pCtx->es); iReg++; } if (fWhat & CPUMCTX_EXTRN_SS) { COPY_OUT_SEG(iReg, HvX64RegisterSs, pCtx->ss); iReg++; } if (fWhat & CPUMCTX_EXTRN_DS) { COPY_OUT_SEG(iReg, HvX64RegisterDs, pCtx->ds); iReg++; } if (fWhat & CPUMCTX_EXTRN_FS) { COPY_OUT_SEG(iReg, HvX64RegisterFs, pCtx->fs); iReg++; } if (fWhat & CPUMCTX_EXTRN_GS) { COPY_OUT_SEG(iReg, HvX64RegisterGs, pCtx->gs); iReg++; } } /* Descriptor tables & task segment. */ if (fWhat & CPUMCTX_EXTRN_TABLE_MASK) { if (fWhat & CPUMCTX_EXTRN_LDTR) { COPY_OUT_SEG(iReg, HvX64RegisterLdtr, pCtx->ldtr); iReg++; } if (fWhat & CPUMCTX_EXTRN_TR) { COPY_OUT_SEG(iReg, HvX64RegisterTr, pCtx->tr); iReg++; } if (fWhat & CPUMCTX_EXTRN_IDTR) { HV_REGISTER_ASSOC_ZERO_PADDING(&pInput->Elements[iReg]); pInput->Elements[iReg].Value.Table.Pad[0] = 0; pInput->Elements[iReg].Value.Table.Pad[1] = 0; pInput->Elements[iReg].Value.Table.Pad[2] = 0; pInput->Elements[iReg].Name = HvX64RegisterIdtr; pInput->Elements[iReg].Value.Table.Limit = pCtx->idtr.cbIdt; pInput->Elements[iReg].Value.Table.Base = pCtx->idtr.pIdt; iReg++; } if (fWhat & CPUMCTX_EXTRN_GDTR) { HV_REGISTER_ASSOC_ZERO_PADDING(&pInput->Elements[iReg]); pInput->Elements[iReg].Value.Table.Pad[0] = 0; pInput->Elements[iReg].Value.Table.Pad[1] = 0; pInput->Elements[iReg].Value.Table.Pad[2] = 0; pInput->Elements[iReg].Name = HvX64RegisterGdtr; pInput->Elements[iReg].Value.Table.Limit = pCtx->gdtr.cbGdt; pInput->Elements[iReg].Value.Table.Base = pCtx->gdtr.pGdt; iReg++; } } /* Control registers. */ if (fWhat & CPUMCTX_EXTRN_CR_MASK) { if (fWhat & CPUMCTX_EXTRN_CR0) { HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); pInput->Elements[iReg].Name = HvX64RegisterCr0; pInput->Elements[iReg].Value.Reg64 = pCtx->cr0; iReg++; } if (fWhat & CPUMCTX_EXTRN_CR2) { HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); pInput->Elements[iReg].Name = HvX64RegisterCr2; pInput->Elements[iReg].Value.Reg64 = pCtx->cr2; iReg++; } if (fWhat & CPUMCTX_EXTRN_CR3) { HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); pInput->Elements[iReg].Name = HvX64RegisterCr3; pInput->Elements[iReg].Value.Reg64 = pCtx->cr3; iReg++; } if (fWhat & CPUMCTX_EXTRN_CR4) { HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); pInput->Elements[iReg].Name = HvX64RegisterCr4; pInput->Elements[iReg].Value.Reg64 = pCtx->cr4; iReg++; } } if (fWhat & CPUMCTX_EXTRN_APIC_TPR) { HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); pInput->Elements[iReg].Name = HvX64RegisterCr8; pInput->Elements[iReg].Value.Reg64 = CPUMGetGuestCR8(pGVCpu); iReg++; } /** @todo does HvX64RegisterXfem mean XCR0? What about the related MSR. */ /* Debug registers. */ /** @todo fixme. Figure out what the hyper-v version of KVM_SET_GUEST_DEBUG would be. */ if (fWhat & CPUMCTX_EXTRN_DR0_DR3) { HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); pInput->Elements[iReg].Name = HvX64RegisterDr0; //pInput->Elements[iReg].Value.Reg64 = CPUMGetHyperDR0(pGVCpu); pInput->Elements[iReg].Value.Reg64 = pCtx->dr[0]; iReg++; HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); pInput->Elements[iReg].Name = HvX64RegisterDr1; //pInput->Elements[iReg].Value.Reg64 = CPUMGetHyperDR1(pGVCpu); pInput->Elements[iReg].Value.Reg64 = pCtx->dr[1]; iReg++; HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); pInput->Elements[iReg].Name = HvX64RegisterDr2; //pInput->Elements[iReg].Value.Reg64 = CPUMGetHyperDR2(pGVCpu); pInput->Elements[iReg].Value.Reg64 = pCtx->dr[2]; iReg++; HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); pInput->Elements[iReg].Name = HvX64RegisterDr3; //pInput->Elements[iReg].Value.Reg64 = CPUMGetHyperDR3(pGVCpu); pInput->Elements[iReg].Value.Reg64 = pCtx->dr[3]; iReg++; } if (fWhat & CPUMCTX_EXTRN_DR6) { HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); pInput->Elements[iReg].Name = HvX64RegisterDr6; //pInput->Elements[iReg].Value.Reg64 = CPUMGetHyperDR6(pGVCpu); pInput->Elements[iReg].Value.Reg64 = pCtx->dr[6]; iReg++; } if (fWhat & CPUMCTX_EXTRN_DR7) { HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); pInput->Elements[iReg].Name = HvX64RegisterDr7; //pInput->Elements[iReg].Value.Reg64 = CPUMGetHyperDR7(pGVCpu); pInput->Elements[iReg].Value.Reg64 = pCtx->dr[7]; iReg++; } /* Floating point state. */ if (fWhat & CPUMCTX_EXTRN_X87) { HV_REGISTER_ASSOC_ZERO_PADDING(&pInput->Elements[iReg]); pInput->Elements[iReg].Name = HvX64RegisterFpMmx0; pInput->Elements[iReg].Value.Fp.AsUINT128.Low64 = pCtx->XState.x87.aRegs[0].au64[0]; pInput->Elements[iReg].Value.Fp.AsUINT128.High64 = pCtx->XState.x87.aRegs[0].au64[1]; iReg++; HV_REGISTER_ASSOC_ZERO_PADDING(&pInput->Elements[iReg]); pInput->Elements[iReg].Name = HvX64RegisterFpMmx1; pInput->Elements[iReg].Value.Fp.AsUINT128.Low64 = pCtx->XState.x87.aRegs[1].au64[0]; pInput->Elements[iReg].Value.Fp.AsUINT128.High64 = pCtx->XState.x87.aRegs[1].au64[1]; iReg++; HV_REGISTER_ASSOC_ZERO_PADDING(&pInput->Elements[iReg]); pInput->Elements[iReg].Name = HvX64RegisterFpMmx2; pInput->Elements[iReg].Value.Fp.AsUINT128.Low64 = pCtx->XState.x87.aRegs[2].au64[0]; pInput->Elements[iReg].Value.Fp.AsUINT128.High64 = pCtx->XState.x87.aRegs[2].au64[1]; iReg++; HV_REGISTER_ASSOC_ZERO_PADDING(&pInput->Elements[iReg]); pInput->Elements[iReg].Name = HvX64RegisterFpMmx3; pInput->Elements[iReg].Value.Fp.AsUINT128.Low64 = pCtx->XState.x87.aRegs[3].au64[0]; pInput->Elements[iReg].Value.Fp.AsUINT128.High64 = pCtx->XState.x87.aRegs[3].au64[1]; iReg++; HV_REGISTER_ASSOC_ZERO_PADDING(&pInput->Elements[iReg]); pInput->Elements[iReg].Name = HvX64RegisterFpMmx4; pInput->Elements[iReg].Value.Fp.AsUINT128.Low64 = pCtx->XState.x87.aRegs[4].au64[0]; pInput->Elements[iReg].Value.Fp.AsUINT128.High64 = pCtx->XState.x87.aRegs[4].au64[1]; iReg++; HV_REGISTER_ASSOC_ZERO_PADDING(&pInput->Elements[iReg]); pInput->Elements[iReg].Name = HvX64RegisterFpMmx5; pInput->Elements[iReg].Value.Fp.AsUINT128.Low64 = pCtx->XState.x87.aRegs[5].au64[0]; pInput->Elements[iReg].Value.Fp.AsUINT128.High64 = pCtx->XState.x87.aRegs[5].au64[1]; iReg++; HV_REGISTER_ASSOC_ZERO_PADDING(&pInput->Elements[iReg]); pInput->Elements[iReg].Name = HvX64RegisterFpMmx6; pInput->Elements[iReg].Value.Fp.AsUINT128.Low64 = pCtx->XState.x87.aRegs[6].au64[0]; pInput->Elements[iReg].Value.Fp.AsUINT128.High64 = pCtx->XState.x87.aRegs[6].au64[1]; iReg++; HV_REGISTER_ASSOC_ZERO_PADDING(&pInput->Elements[iReg]); pInput->Elements[iReg].Name = HvX64RegisterFpMmx7; pInput->Elements[iReg].Value.Fp.AsUINT128.Low64 = pCtx->XState.x87.aRegs[7].au64[0]; pInput->Elements[iReg].Value.Fp.AsUINT128.High64 = pCtx->XState.x87.aRegs[7].au64[1]; iReg++; HV_REGISTER_ASSOC_ZERO_PADDING(&pInput->Elements[iReg]); pInput->Elements[iReg].Name = HvX64RegisterFpControlStatus; pInput->Elements[iReg].Value.FpControlStatus.FpControl = pCtx->XState.x87.FCW; pInput->Elements[iReg].Value.FpControlStatus.FpStatus = pCtx->XState.x87.FSW; pInput->Elements[iReg].Value.FpControlStatus.FpTag = pCtx->XState.x87.FTW; pInput->Elements[iReg].Value.FpControlStatus.Reserved = pCtx->XState.x87.FTW >> 8; pInput->Elements[iReg].Value.FpControlStatus.LastFpOp = pCtx->XState.x87.FOP; pInput->Elements[iReg].Value.FpControlStatus.LastFpRip = (pCtx->XState.x87.FPUIP) | ((uint64_t)pCtx->XState.x87.CS << 32) | ((uint64_t)pCtx->XState.x87.Rsrvd1 << 48); iReg++; /** @todo we've got trouble if if we try write just SSE w/o X87. */ HV_REGISTER_ASSOC_ZERO_PADDING(&pInput->Elements[iReg]); pInput->Elements[iReg].Name = HvX64RegisterXmmControlStatus; pInput->Elements[iReg].Value.XmmControlStatus.LastFpRdp = (pCtx->XState.x87.FPUDP) | ((uint64_t)pCtx->XState.x87.DS << 32) | ((uint64_t)pCtx->XState.x87.Rsrvd2 << 48); pInput->Elements[iReg].Value.XmmControlStatus.XmmStatusControl = pCtx->XState.x87.MXCSR; pInput->Elements[iReg].Value.XmmControlStatus.XmmStatusControlMask = pCtx->XState.x87.MXCSR_MASK; /** @todo ??? (Isn't this an output field?) */ iReg++; } /* Vector state. */ if (fWhat & CPUMCTX_EXTRN_SSE_AVX) { HV_REGISTER_ASSOC_ZERO_PADDING(&pInput->Elements[iReg]); pInput->Elements[iReg].Name = HvX64RegisterXmm0; pInput->Elements[iReg].Value.Reg128.Low64 = pCtx->XState.x87.aXMM[0].uXmm.s.Lo; pInput->Elements[iReg].Value.Reg128.High64 = pCtx->XState.x87.aXMM[0].uXmm.s.Hi; iReg++; HV_REGISTER_ASSOC_ZERO_PADDING(&pInput->Elements[iReg]); pInput->Elements[iReg].Name = HvX64RegisterXmm1; pInput->Elements[iReg].Value.Reg128.Low64 = pCtx->XState.x87.aXMM[1].uXmm.s.Lo; pInput->Elements[iReg].Value.Reg128.High64 = pCtx->XState.x87.aXMM[1].uXmm.s.Hi; iReg++; HV_REGISTER_ASSOC_ZERO_PADDING(&pInput->Elements[iReg]); pInput->Elements[iReg].Name = HvX64RegisterXmm2; pInput->Elements[iReg].Value.Reg128.Low64 = pCtx->XState.x87.aXMM[2].uXmm.s.Lo; pInput->Elements[iReg].Value.Reg128.High64 = pCtx->XState.x87.aXMM[2].uXmm.s.Hi; iReg++; HV_REGISTER_ASSOC_ZERO_PADDING(&pInput->Elements[iReg]); pInput->Elements[iReg].Name = HvX64RegisterXmm3; pInput->Elements[iReg].Value.Reg128.Low64 = pCtx->XState.x87.aXMM[3].uXmm.s.Lo; pInput->Elements[iReg].Value.Reg128.High64 = pCtx->XState.x87.aXMM[3].uXmm.s.Hi; iReg++; HV_REGISTER_ASSOC_ZERO_PADDING(&pInput->Elements[iReg]); pInput->Elements[iReg].Name = HvX64RegisterXmm4; pInput->Elements[iReg].Value.Reg128.Low64 = pCtx->XState.x87.aXMM[4].uXmm.s.Lo; pInput->Elements[iReg].Value.Reg128.High64 = pCtx->XState.x87.aXMM[4].uXmm.s.Hi; iReg++; HV_REGISTER_ASSOC_ZERO_PADDING(&pInput->Elements[iReg]); pInput->Elements[iReg].Name = HvX64RegisterXmm5; pInput->Elements[iReg].Value.Reg128.Low64 = pCtx->XState.x87.aXMM[5].uXmm.s.Lo; pInput->Elements[iReg].Value.Reg128.High64 = pCtx->XState.x87.aXMM[5].uXmm.s.Hi; iReg++; HV_REGISTER_ASSOC_ZERO_PADDING(&pInput->Elements[iReg]); pInput->Elements[iReg].Name = HvX64RegisterXmm6; pInput->Elements[iReg].Value.Reg128.Low64 = pCtx->XState.x87.aXMM[6].uXmm.s.Lo; pInput->Elements[iReg].Value.Reg128.High64 = pCtx->XState.x87.aXMM[6].uXmm.s.Hi; iReg++; HV_REGISTER_ASSOC_ZERO_PADDING(&pInput->Elements[iReg]); pInput->Elements[iReg].Name = HvX64RegisterXmm7; pInput->Elements[iReg].Value.Reg128.Low64 = pCtx->XState.x87.aXMM[7].uXmm.s.Lo; pInput->Elements[iReg].Value.Reg128.High64 = pCtx->XState.x87.aXMM[7].uXmm.s.Hi; iReg++; HV_REGISTER_ASSOC_ZERO_PADDING(&pInput->Elements[iReg]); pInput->Elements[iReg].Name = HvX64RegisterXmm8; pInput->Elements[iReg].Value.Reg128.Low64 = pCtx->XState.x87.aXMM[8].uXmm.s.Lo; pInput->Elements[iReg].Value.Reg128.High64 = pCtx->XState.x87.aXMM[8].uXmm.s.Hi; iReg++; HV_REGISTER_ASSOC_ZERO_PADDING(&pInput->Elements[iReg]); pInput->Elements[iReg].Name = HvX64RegisterXmm9; pInput->Elements[iReg].Value.Reg128.Low64 = pCtx->XState.x87.aXMM[9].uXmm.s.Lo; pInput->Elements[iReg].Value.Reg128.High64 = pCtx->XState.x87.aXMM[9].uXmm.s.Hi; iReg++; HV_REGISTER_ASSOC_ZERO_PADDING(&pInput->Elements[iReg]); pInput->Elements[iReg].Name = HvX64RegisterXmm10; pInput->Elements[iReg].Value.Reg128.Low64 = pCtx->XState.x87.aXMM[10].uXmm.s.Lo; pInput->Elements[iReg].Value.Reg128.High64 = pCtx->XState.x87.aXMM[10].uXmm.s.Hi; iReg++; HV_REGISTER_ASSOC_ZERO_PADDING(&pInput->Elements[iReg]); pInput->Elements[iReg].Name = HvX64RegisterXmm11; pInput->Elements[iReg].Value.Reg128.Low64 = pCtx->XState.x87.aXMM[11].uXmm.s.Lo; pInput->Elements[iReg].Value.Reg128.High64 = pCtx->XState.x87.aXMM[11].uXmm.s.Hi; iReg++; HV_REGISTER_ASSOC_ZERO_PADDING(&pInput->Elements[iReg]); pInput->Elements[iReg].Name = HvX64RegisterXmm12; pInput->Elements[iReg].Value.Reg128.Low64 = pCtx->XState.x87.aXMM[12].uXmm.s.Lo; pInput->Elements[iReg].Value.Reg128.High64 = pCtx->XState.x87.aXMM[12].uXmm.s.Hi; iReg++; HV_REGISTER_ASSOC_ZERO_PADDING(&pInput->Elements[iReg]); pInput->Elements[iReg].Name = HvX64RegisterXmm13; pInput->Elements[iReg].Value.Reg128.Low64 = pCtx->XState.x87.aXMM[13].uXmm.s.Lo; pInput->Elements[iReg].Value.Reg128.High64 = pCtx->XState.x87.aXMM[13].uXmm.s.Hi; iReg++; HV_REGISTER_ASSOC_ZERO_PADDING(&pInput->Elements[iReg]); pInput->Elements[iReg].Name = HvX64RegisterXmm14; pInput->Elements[iReg].Value.Reg128.Low64 = pCtx->XState.x87.aXMM[14].uXmm.s.Lo; pInput->Elements[iReg].Value.Reg128.High64 = pCtx->XState.x87.aXMM[14].uXmm.s.Hi; iReg++; HV_REGISTER_ASSOC_ZERO_PADDING(&pInput->Elements[iReg]); pInput->Elements[iReg].Name = HvX64RegisterXmm15; pInput->Elements[iReg].Value.Reg128.Low64 = pCtx->XState.x87.aXMM[15].uXmm.s.Lo; pInput->Elements[iReg].Value.Reg128.High64 = pCtx->XState.x87.aXMM[15].uXmm.s.Hi; iReg++; } /* MSRs */ // HvX64RegisterTsc - don't touch if (fWhat & CPUMCTX_EXTRN_EFER) { HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); pInput->Elements[iReg].Name = HvX64RegisterEfer; pInput->Elements[iReg].Value.Reg64 = pCtx->msrEFER; iReg++; } if (fWhat & CPUMCTX_EXTRN_KERNEL_GS_BASE) { HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); pInput->Elements[iReg].Name = HvX64RegisterKernelGsBase; pInput->Elements[iReg].Value.Reg64 = pCtx->msrKERNELGSBASE; iReg++; } if (fWhat & CPUMCTX_EXTRN_SYSENTER_MSRS) { HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); pInput->Elements[iReg].Name = HvX64RegisterSysenterCs; pInput->Elements[iReg].Value.Reg64 = pCtx->SysEnter.cs; iReg++; HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); pInput->Elements[iReg].Name = HvX64RegisterSysenterEip; pInput->Elements[iReg].Value.Reg64 = pCtx->SysEnter.eip; iReg++; HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); pInput->Elements[iReg].Name = HvX64RegisterSysenterEsp; pInput->Elements[iReg].Value.Reg64 = pCtx->SysEnter.esp; iReg++; } if (fWhat & CPUMCTX_EXTRN_SYSCALL_MSRS) { HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); pInput->Elements[iReg].Name = HvX64RegisterStar; pInput->Elements[iReg].Value.Reg64 = pCtx->msrSTAR; iReg++; HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); pInput->Elements[iReg].Name = HvX64RegisterLstar; pInput->Elements[iReg].Value.Reg64 = pCtx->msrLSTAR; iReg++; HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); pInput->Elements[iReg].Name = HvX64RegisterCstar; pInput->Elements[iReg].Value.Reg64 = pCtx->msrCSTAR; iReg++; HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); pInput->Elements[iReg].Name = HvX64RegisterSfmask; pInput->Elements[iReg].Value.Reg64 = pCtx->msrSFMASK; iReg++; } if (fWhat & CPUMCTX_EXTRN_OTHER_MSRS) { HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); pInput->Elements[iReg].Name = HvX64RegisterApicBase; pInput->Elements[iReg].Value.Reg64 = APICGetBaseMsrNoCheck(pGVCpu); iReg++; HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); pInput->Elements[iReg].Name = HvX64RegisterPat; pInput->Elements[iReg].Value.Reg64 = pCtx->msrPAT; iReg++; # if 0 /** @todo HvX64RegisterMtrrCap is read only? Seems it's not even readable. */ HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); pInput->Elements[iReg].Name = HvX64RegisterMtrrCap; pInput->Elements[iReg].Value.Reg64 = CPUMGetGuestIa32MtrrCap(pGVCpu); iReg++; # endif PCPUMCTXMSRS pCtxMsrs = CPUMQueryGuestCtxMsrsPtr(pGVCpu); HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); pInput->Elements[iReg].Name = HvX64RegisterMtrrDefType; pInput->Elements[iReg].Value.Reg64 = pCtxMsrs->msr.MtrrDefType; iReg++; /** @todo we dont keep state for HvX64RegisterMtrrPhysBaseX and HvX64RegisterMtrrPhysMaskX */ HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); pInput->Elements[iReg].Name = HvX64RegisterMtrrFix64k00000; pInput->Elements[iReg].Value.Reg64 = pCtxMsrs->msr.MtrrFix64K_00000; iReg++; HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); pInput->Elements[iReg].Name = HvX64RegisterMtrrFix16k80000; pInput->Elements[iReg].Value.Reg64 = pCtxMsrs->msr.MtrrFix16K_80000; iReg++; HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); pInput->Elements[iReg].Name = HvX64RegisterMtrrFix16kA0000; pInput->Elements[iReg].Value.Reg64 = pCtxMsrs->msr.MtrrFix16K_A0000; iReg++; HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); pInput->Elements[iReg].Name = HvX64RegisterMtrrFix4kC0000; pInput->Elements[iReg].Value.Reg64 = pCtxMsrs->msr.MtrrFix4K_C0000; iReg++; HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); pInput->Elements[iReg].Name = HvX64RegisterMtrrFix4kC8000; pInput->Elements[iReg].Value.Reg64 = pCtxMsrs->msr.MtrrFix4K_C8000; iReg++; HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); pInput->Elements[iReg].Name = HvX64RegisterMtrrFix4kD0000; pInput->Elements[iReg].Value.Reg64 = pCtxMsrs->msr.MtrrFix4K_D0000; iReg++; HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); pInput->Elements[iReg].Name = HvX64RegisterMtrrFix4kD8000; pInput->Elements[iReg].Value.Reg64 = pCtxMsrs->msr.MtrrFix4K_D8000; iReg++; HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); pInput->Elements[iReg].Name = HvX64RegisterMtrrFix4kE0000; pInput->Elements[iReg].Value.Reg64 = pCtxMsrs->msr.MtrrFix4K_E0000; iReg++; HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); pInput->Elements[iReg].Name = HvX64RegisterMtrrFix4kE8000; pInput->Elements[iReg].Value.Reg64 = pCtxMsrs->msr.MtrrFix4K_E8000; iReg++; HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); pInput->Elements[iReg].Name = HvX64RegisterMtrrFix4kF0000; pInput->Elements[iReg].Value.Reg64 = pCtxMsrs->msr.MtrrFix4K_F0000; iReg++; HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); pInput->Elements[iReg].Name = HvX64RegisterMtrrFix4kF8000; pInput->Elements[iReg].Value.Reg64 = pCtxMsrs->msr.MtrrFix4K_F8000; iReg++; HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); pInput->Elements[iReg].Name = HvX64RegisterTscAux; pInput->Elements[iReg].Value.Reg64 = pCtxMsrs->msr.TscAux; iReg++; # if 0 /** @todo Why can't we write these on Intel systems? Not that we really care... */ const CPUMCPUVENDOR enmCpuVendor = CPUMGetHostCpuVendor(pGVM); if (enmCpuVendor != CPUMCPUVENDOR_AMD) { HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); pInput->Elements[iReg].Name = HvX64RegisterIa32MiscEnable; pInput->Elements[iReg].Value.Reg64 = pCtxMsrs->msr.MiscEnable; iReg++; HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); pInput->Elements[iReg].Name = HvX64RegisterIa32FeatureControl; pInput->Elements[iReg].Value.Reg64 = CPUMGetGuestIa32FeatureControl(pGVCpu); iReg++; } # endif } /* event injection (clear it). */ if (fWhat & CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT) { HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); pInput->Elements[iReg].Name = HvRegisterPendingInterruption; pInput->Elements[iReg].Value.Reg64 = 0; iReg++; } /* Interruptibility state. This can get a little complicated since we get half of the state via HV_X64_VP_EXECUTION_STATE. */ if ( (fWhat & (CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT | CPUMCTX_EXTRN_NEM_WIN_INHIBIT_NMI)) == (CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT | CPUMCTX_EXTRN_NEM_WIN_INHIBIT_NMI) ) { HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); pInput->Elements[iReg].Name = HvRegisterInterruptState; pInput->Elements[iReg].Value.Reg64 = 0; if ( VMCPU_FF_IS_SET(pGVCpu, VMCPU_FF_INHIBIT_INTERRUPTS) && EMGetInhibitInterruptsPC(pGVCpu) == pCtx->rip) pInput->Elements[iReg].Value.InterruptState.InterruptShadow = 1; if (VMCPU_FF_IS_SET(pGVCpu, VMCPU_FF_BLOCK_NMIS)) pInput->Elements[iReg].Value.InterruptState.NmiMasked = 1; iReg++; } else if (fWhat & CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT) { if ( pGVCpu->nem.s.fLastInterruptShadow || ( VMCPU_FF_IS_SET(pGVCpu, VMCPU_FF_INHIBIT_INTERRUPTS) && EMGetInhibitInterruptsPC(pGVCpu) == pCtx->rip)) { HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); pInput->Elements[iReg].Name = HvRegisterInterruptState; pInput->Elements[iReg].Value.Reg64 = 0; if ( VMCPU_FF_IS_SET(pGVCpu, VMCPU_FF_INHIBIT_INTERRUPTS) && EMGetInhibitInterruptsPC(pGVCpu) == pCtx->rip) pInput->Elements[iReg].Value.InterruptState.InterruptShadow = 1; /** @todo Retrieve NMI state, currently assuming it's zero. (yes this may happen on I/O) */ //if (VMCPU_FF_IS_ANY_SET(pGVCpu, VMCPU_FF_BLOCK_NMIS)) // pInput->Elements[iReg].Value.InterruptState.NmiMasked = 1; iReg++; } } else Assert(!(fWhat & CPUMCTX_EXTRN_NEM_WIN_INHIBIT_NMI)); /* Interrupt windows. Always set if active as Hyper-V seems to be forgetful. */ uint8_t const fDesiredIntWin = pGVCpu->nem.s.fDesiredInterruptWindows; if ( fDesiredIntWin || pGVCpu->nem.s.fCurrentInterruptWindows != fDesiredIntWin) { pGVCpu->nem.s.fCurrentInterruptWindows = pGVCpu->nem.s.fDesiredInterruptWindows; HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); pInput->Elements[iReg].Name = HvX64RegisterDeliverabilityNotifications; pInput->Elements[iReg].Value.DeliverabilityNotifications.AsUINT64 = fDesiredIntWin; Assert(pInput->Elements[iReg].Value.DeliverabilityNotifications.NmiNotification == RT_BOOL(fDesiredIntWin & NEM_WIN_INTW_F_NMI)); Assert(pInput->Elements[iReg].Value.DeliverabilityNotifications.InterruptNotification == RT_BOOL(fDesiredIntWin & NEM_WIN_INTW_F_REGULAR)); Assert(pInput->Elements[iReg].Value.DeliverabilityNotifications.InterruptPriority == (fDesiredIntWin & NEM_WIN_INTW_F_PRIO_MASK) >> NEM_WIN_INTW_F_PRIO_SHIFT); iReg++; } /// @todo HvRegisterPendingEvent0 /// @todo HvRegisterPendingEvent1 /* * Set the registers. */ Assert((uintptr_t)&pInput->Elements[iReg] - (uintptr_t)pGVCpu->nemr0.s.HypercallData.pbPage < PAGE_SIZE); /* max is 127 */ /* * Make the hypercall. */ uint64_t uResult = g_pfnHvlInvokeHypercall(HV_MAKE_CALL_INFO(HvCallSetVpRegisters, iReg), pGVCpu->nemr0.s.HypercallData.HCPhysPage, 0 /*GCPhysOutput*/); AssertLogRelMsgReturn(uResult == HV_MAKE_CALL_REP_RET(iReg), ("uResult=%RX64 iRegs=%#x\n", uResult, iReg), VERR_NEM_SET_REGISTERS_FAILED); //LogFlow(("nemR0WinExportState: uResult=%#RX64 iReg=%zu fWhat=%#018RX64 fExtrn=%#018RX64 -> %#018RX64\n", uResult, iReg, fWhat, pCtx->fExtrn, // pCtx->fExtrn | CPUMCTX_EXTRN_ALL | CPUMCTX_EXTRN_NEM_WIN_MASK | CPUMCTX_EXTRN_KEEPER_NEM )); pCtx->fExtrn |= CPUMCTX_EXTRN_ALL | CPUMCTX_EXTRN_NEM_WIN_MASK | CPUMCTX_EXTRN_KEEPER_NEM; return VINF_SUCCESS; } #endif /* NEM_WIN_WITH_RING0_RUNLOOP || NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS */ /** * Export the state to the native API (out of CPUMCTX). * * @returns VBox status code * @param pGVM The ring-0 VM handle. * @param idCpu The calling EMT. Necessary for getting the * hypercall page and arguments. */ VMMR0_INT_DECL(int) NEMR0ExportState(PGVM pGVM, VMCPUID idCpu) { #if defined(NEM_WIN_WITH_RING0_RUNLOOP) || defined(NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS) /* * Validate the call. */ int rc = GVMMR0ValidateGVMandEMT(pGVM, idCpu); if (RT_SUCCESS(rc)) { PGVMCPU pGVCpu = &pGVM->aCpus[idCpu]; AssertReturn(g_pfnHvlInvokeHypercall, VERR_NEM_MISSING_KERNEL_API_1); /* * Call worker. */ rc = nemR0WinExportState(pGVM, pGVCpu, &pGVCpu->cpum.GstCtx); } return rc; #else RT_NOREF(pGVM, idCpu); return VERR_NOT_IMPLEMENTED; #endif } #if defined(NEM_WIN_WITH_RING0_RUNLOOP) || defined(NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS) /** * Worker for NEMR0ImportState. * * Intention is to use it internally later. * * @returns VBox status code. * @param pGVM The ring-0 VM handle. * @param pGVCpu The ring-0 VCPU handle. * @param pCtx The CPU context structure to import into. * @param fWhat What to import, CPUMCTX_EXTRN_XXX. * @param fCanUpdateCr3 Whether it's safe to update CR3 or not. */ NEM_TMPL_STATIC int nemR0WinImportState(PGVM pGVM, PGVMCPU pGVCpu, PCPUMCTX pCtx, uint64_t fWhat, bool fCanUpdateCr3) { HV_INPUT_GET_VP_REGISTERS *pInput = (HV_INPUT_GET_VP_REGISTERS *)pGVCpu->nemr0.s.HypercallData.pbPage; AssertPtrReturn(pInput, VERR_INTERNAL_ERROR_3); AssertReturn(g_pfnHvlInvokeHypercall, VERR_NEM_MISSING_KERNEL_API_1); Assert(pCtx == &pGVCpu->cpum.GstCtx); fWhat &= pCtx->fExtrn; pInput->PartitionId = pGVM->nemr0.s.idHvPartition; pInput->VpIndex = pGVCpu->idCpu; pInput->fFlags = 0; /* GPRs */ uintptr_t iReg = 0; if (fWhat & CPUMCTX_EXTRN_GPRS_MASK) { if (fWhat & CPUMCTX_EXTRN_RAX) pInput->Names[iReg++] = HvX64RegisterRax; if (fWhat & CPUMCTX_EXTRN_RCX) pInput->Names[iReg++] = HvX64RegisterRcx; if (fWhat & CPUMCTX_EXTRN_RDX) pInput->Names[iReg++] = HvX64RegisterRdx; if (fWhat & CPUMCTX_EXTRN_RBX) pInput->Names[iReg++] = HvX64RegisterRbx; if (fWhat & CPUMCTX_EXTRN_RSP) pInput->Names[iReg++] = HvX64RegisterRsp; if (fWhat & CPUMCTX_EXTRN_RBP) pInput->Names[iReg++] = HvX64RegisterRbp; if (fWhat & CPUMCTX_EXTRN_RSI) pInput->Names[iReg++] = HvX64RegisterRsi; if (fWhat & CPUMCTX_EXTRN_RDI) pInput->Names[iReg++] = HvX64RegisterRdi; if (fWhat & CPUMCTX_EXTRN_R8_R15) { pInput->Names[iReg++] = HvX64RegisterR8; pInput->Names[iReg++] = HvX64RegisterR9; pInput->Names[iReg++] = HvX64RegisterR10; pInput->Names[iReg++] = HvX64RegisterR11; pInput->Names[iReg++] = HvX64RegisterR12; pInput->Names[iReg++] = HvX64RegisterR13; pInput->Names[iReg++] = HvX64RegisterR14; pInput->Names[iReg++] = HvX64RegisterR15; } } /* RIP & Flags */ if (fWhat & CPUMCTX_EXTRN_RIP) pInput->Names[iReg++] = HvX64RegisterRip; if (fWhat & CPUMCTX_EXTRN_RFLAGS) pInput->Names[iReg++] = HvX64RegisterRflags; /* Segments */ if (fWhat & CPUMCTX_EXTRN_SREG_MASK) { if (fWhat & CPUMCTX_EXTRN_CS) pInput->Names[iReg++] = HvX64RegisterCs; if (fWhat & CPUMCTX_EXTRN_ES) pInput->Names[iReg++] = HvX64RegisterEs; if (fWhat & CPUMCTX_EXTRN_SS) pInput->Names[iReg++] = HvX64RegisterSs; if (fWhat & CPUMCTX_EXTRN_DS) pInput->Names[iReg++] = HvX64RegisterDs; if (fWhat & CPUMCTX_EXTRN_FS) pInput->Names[iReg++] = HvX64RegisterFs; if (fWhat & CPUMCTX_EXTRN_GS) pInput->Names[iReg++] = HvX64RegisterGs; } /* Descriptor tables and the task segment. */ if (fWhat & CPUMCTX_EXTRN_TABLE_MASK) { if (fWhat & CPUMCTX_EXTRN_LDTR) pInput->Names[iReg++] = HvX64RegisterLdtr; if (fWhat & CPUMCTX_EXTRN_TR) pInput->Names[iReg++] = HvX64RegisterTr; if (fWhat & CPUMCTX_EXTRN_IDTR) pInput->Names[iReg++] = HvX64RegisterIdtr; if (fWhat & CPUMCTX_EXTRN_GDTR) pInput->Names[iReg++] = HvX64RegisterGdtr; } /* Control registers. */ if (fWhat & CPUMCTX_EXTRN_CR_MASK) { if (fWhat & CPUMCTX_EXTRN_CR0) pInput->Names[iReg++] = HvX64RegisterCr0; if (fWhat & CPUMCTX_EXTRN_CR2) pInput->Names[iReg++] = HvX64RegisterCr2; if (fWhat & CPUMCTX_EXTRN_CR3) pInput->Names[iReg++] = HvX64RegisterCr3; if (fWhat & CPUMCTX_EXTRN_CR4) pInput->Names[iReg++] = HvX64RegisterCr4; } if (fWhat & CPUMCTX_EXTRN_APIC_TPR) pInput->Names[iReg++] = HvX64RegisterCr8; /* Debug registers. */ if (fWhat & CPUMCTX_EXTRN_DR7) pInput->Names[iReg++] = HvX64RegisterDr7; if (fWhat & CPUMCTX_EXTRN_DR0_DR3) { if (!(fWhat & CPUMCTX_EXTRN_DR7) && (pCtx->fExtrn & CPUMCTX_EXTRN_DR7)) { fWhat |= CPUMCTX_EXTRN_DR7; pInput->Names[iReg++] = HvX64RegisterDr7; } pInput->Names[iReg++] = HvX64RegisterDr0; pInput->Names[iReg++] = HvX64RegisterDr1; pInput->Names[iReg++] = HvX64RegisterDr2; pInput->Names[iReg++] = HvX64RegisterDr3; } if (fWhat & CPUMCTX_EXTRN_DR6) pInput->Names[iReg++] = HvX64RegisterDr6; /* Floating point state. */ if (fWhat & CPUMCTX_EXTRN_X87) { pInput->Names[iReg++] = HvX64RegisterFpMmx0; pInput->Names[iReg++] = HvX64RegisterFpMmx1; pInput->Names[iReg++] = HvX64RegisterFpMmx2; pInput->Names[iReg++] = HvX64RegisterFpMmx3; pInput->Names[iReg++] = HvX64RegisterFpMmx4; pInput->Names[iReg++] = HvX64RegisterFpMmx5; pInput->Names[iReg++] = HvX64RegisterFpMmx6; pInput->Names[iReg++] = HvX64RegisterFpMmx7; pInput->Names[iReg++] = HvX64RegisterFpControlStatus; } if (fWhat & (CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX)) pInput->Names[iReg++] = HvX64RegisterXmmControlStatus; /* Vector state. */ if (fWhat & CPUMCTX_EXTRN_SSE_AVX) { pInput->Names[iReg++] = HvX64RegisterXmm0; pInput->Names[iReg++] = HvX64RegisterXmm1; pInput->Names[iReg++] = HvX64RegisterXmm2; pInput->Names[iReg++] = HvX64RegisterXmm3; pInput->Names[iReg++] = HvX64RegisterXmm4; pInput->Names[iReg++] = HvX64RegisterXmm5; pInput->Names[iReg++] = HvX64RegisterXmm6; pInput->Names[iReg++] = HvX64RegisterXmm7; pInput->Names[iReg++] = HvX64RegisterXmm8; pInput->Names[iReg++] = HvX64RegisterXmm9; pInput->Names[iReg++] = HvX64RegisterXmm10; pInput->Names[iReg++] = HvX64RegisterXmm11; pInput->Names[iReg++] = HvX64RegisterXmm12; pInput->Names[iReg++] = HvX64RegisterXmm13; pInput->Names[iReg++] = HvX64RegisterXmm14; pInput->Names[iReg++] = HvX64RegisterXmm15; } /* MSRs */ // HvX64RegisterTsc - don't touch if (fWhat & CPUMCTX_EXTRN_EFER) pInput->Names[iReg++] = HvX64RegisterEfer; if (fWhat & CPUMCTX_EXTRN_KERNEL_GS_BASE) pInput->Names[iReg++] = HvX64RegisterKernelGsBase; if (fWhat & CPUMCTX_EXTRN_SYSENTER_MSRS) { pInput->Names[iReg++] = HvX64RegisterSysenterCs; pInput->Names[iReg++] = HvX64RegisterSysenterEip; pInput->Names[iReg++] = HvX64RegisterSysenterEsp; } if (fWhat & CPUMCTX_EXTRN_SYSCALL_MSRS) { pInput->Names[iReg++] = HvX64RegisterStar; pInput->Names[iReg++] = HvX64RegisterLstar; pInput->Names[iReg++] = HvX64RegisterCstar; pInput->Names[iReg++] = HvX64RegisterSfmask; } # ifdef LOG_ENABLED const CPUMCPUVENDOR enmCpuVendor = CPUMGetHostCpuVendor(pGVM); # endif if (fWhat & CPUMCTX_EXTRN_OTHER_MSRS) { pInput->Names[iReg++] = HvX64RegisterApicBase; /// @todo APIC BASE pInput->Names[iReg++] = HvX64RegisterPat; # if 0 /*def LOG_ENABLED*/ /** @todo something's wrong with HvX64RegisterMtrrCap? (AMD) */ pInput->Names[iReg++] = HvX64RegisterMtrrCap; # endif pInput->Names[iReg++] = HvX64RegisterMtrrDefType; pInput->Names[iReg++] = HvX64RegisterMtrrFix64k00000; pInput->Names[iReg++] = HvX64RegisterMtrrFix16k80000; pInput->Names[iReg++] = HvX64RegisterMtrrFix16kA0000; pInput->Names[iReg++] = HvX64RegisterMtrrFix4kC0000; pInput->Names[iReg++] = HvX64RegisterMtrrFix4kC8000; pInput->Names[iReg++] = HvX64RegisterMtrrFix4kD0000; pInput->Names[iReg++] = HvX64RegisterMtrrFix4kD8000; pInput->Names[iReg++] = HvX64RegisterMtrrFix4kE0000; pInput->Names[iReg++] = HvX64RegisterMtrrFix4kE8000; pInput->Names[iReg++] = HvX64RegisterMtrrFix4kF0000; pInput->Names[iReg++] = HvX64RegisterMtrrFix4kF8000; pInput->Names[iReg++] = HvX64RegisterTscAux; # if 0 /** @todo why can't we read HvX64RegisterIa32MiscEnable? */ if (enmCpuVendor != CPUMCPUVENDOR_AMD) pInput->Names[iReg++] = HvX64RegisterIa32MiscEnable; # endif # ifdef LOG_ENABLED if (enmCpuVendor != CPUMCPUVENDOR_AMD && enmCpuVendor != CPUMCPUVENDOR_HYGON) pInput->Names[iReg++] = HvX64RegisterIa32FeatureControl; # endif } /* Interruptibility. */ if (fWhat & (CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT | CPUMCTX_EXTRN_NEM_WIN_INHIBIT_NMI)) { pInput->Names[iReg++] = HvRegisterInterruptState; pInput->Names[iReg++] = HvX64RegisterRip; } /* event injection */ pInput->Names[iReg++] = HvRegisterPendingInterruption; pInput->Names[iReg++] = HvRegisterPendingEvent0; pInput->Names[iReg++] = HvRegisterPendingEvent1; size_t const cRegs = iReg; size_t const cbInput = RT_ALIGN_Z(RT_UOFFSETOF_DYN(HV_INPUT_GET_VP_REGISTERS, Names[cRegs]), 32); HV_REGISTER_VALUE *paValues = (HV_REGISTER_VALUE *)((uint8_t *)pInput + cbInput); Assert((uintptr_t)&paValues[cRegs] - (uintptr_t)pGVCpu->nemr0.s.HypercallData.pbPage < PAGE_SIZE); /* (max is around 168 registers) */ RT_BZERO(paValues, cRegs * sizeof(paValues[0])); /* * Make the hypercall. */ uint64_t uResult = g_pfnHvlInvokeHypercall(HV_MAKE_CALL_INFO(HvCallGetVpRegisters, cRegs), pGVCpu->nemr0.s.HypercallData.HCPhysPage, pGVCpu->nemr0.s.HypercallData.HCPhysPage + cbInput); AssertLogRelMsgReturn(uResult == HV_MAKE_CALL_REP_RET(cRegs), ("uResult=%RX64 cRegs=%#x\n", uResult, cRegs), VERR_NEM_GET_REGISTERS_FAILED); //LogFlow(("nemR0WinImportState: uResult=%#RX64 iReg=%zu fWhat=%#018RX64 fExtr=%#018RX64\n", uResult, cRegs, fWhat, pCtx->fExtrn)); /* * Copy information to the CPUM context. */ iReg = 0; /* GPRs */ if (fWhat & CPUMCTX_EXTRN_GPRS_MASK) { if (fWhat & CPUMCTX_EXTRN_RAX) { Assert(pInput->Names[iReg] == HvX64RegisterRax); pCtx->rax = paValues[iReg++].Reg64; } if (fWhat & CPUMCTX_EXTRN_RCX) { Assert(pInput->Names[iReg] == HvX64RegisterRcx); pCtx->rcx = paValues[iReg++].Reg64; } if (fWhat & CPUMCTX_EXTRN_RDX) { Assert(pInput->Names[iReg] == HvX64RegisterRdx); pCtx->rdx = paValues[iReg++].Reg64; } if (fWhat & CPUMCTX_EXTRN_RBX) { Assert(pInput->Names[iReg] == HvX64RegisterRbx); pCtx->rbx = paValues[iReg++].Reg64; } if (fWhat & CPUMCTX_EXTRN_RSP) { Assert(pInput->Names[iReg] == HvX64RegisterRsp); pCtx->rsp = paValues[iReg++].Reg64; } if (fWhat & CPUMCTX_EXTRN_RBP) { Assert(pInput->Names[iReg] == HvX64RegisterRbp); pCtx->rbp = paValues[iReg++].Reg64; } if (fWhat & CPUMCTX_EXTRN_RSI) { Assert(pInput->Names[iReg] == HvX64RegisterRsi); pCtx->rsi = paValues[iReg++].Reg64; } if (fWhat & CPUMCTX_EXTRN_RDI) { Assert(pInput->Names[iReg] == HvX64RegisterRdi); pCtx->rdi = paValues[iReg++].Reg64; } if (fWhat & CPUMCTX_EXTRN_R8_R15) { Assert(pInput->Names[iReg] == HvX64RegisterR8); Assert(pInput->Names[iReg + 7] == HvX64RegisterR15); pCtx->r8 = paValues[iReg++].Reg64; pCtx->r9 = paValues[iReg++].Reg64; pCtx->r10 = paValues[iReg++].Reg64; pCtx->r11 = paValues[iReg++].Reg64; pCtx->r12 = paValues[iReg++].Reg64; pCtx->r13 = paValues[iReg++].Reg64; pCtx->r14 = paValues[iReg++].Reg64; pCtx->r15 = paValues[iReg++].Reg64; } } /* RIP & Flags */ if (fWhat & CPUMCTX_EXTRN_RIP) { Assert(pInput->Names[iReg] == HvX64RegisterRip); pCtx->rip = paValues[iReg++].Reg64; } if (fWhat & CPUMCTX_EXTRN_RFLAGS) { Assert(pInput->Names[iReg] == HvX64RegisterRflags); pCtx->rflags.u = paValues[iReg++].Reg64; } /* Segments */ # define COPY_BACK_SEG(a_idx, a_enmName, a_SReg) \ do { \ Assert(pInput->Names[a_idx] == a_enmName); \ (a_SReg).u64Base = paValues[a_idx].Segment.Base; \ (a_SReg).u32Limit = paValues[a_idx].Segment.Limit; \ (a_SReg).ValidSel = (a_SReg).Sel = paValues[a_idx].Segment.Selector; \ (a_SReg).Attr.u = paValues[a_idx].Segment.Attributes; \ (a_SReg).fFlags = CPUMSELREG_FLAGS_VALID; \ } while (0) if (fWhat & CPUMCTX_EXTRN_SREG_MASK) { if (fWhat & CPUMCTX_EXTRN_CS) { COPY_BACK_SEG(iReg, HvX64RegisterCs, pCtx->cs); iReg++; } if (fWhat & CPUMCTX_EXTRN_ES) { COPY_BACK_SEG(iReg, HvX64RegisterEs, pCtx->es); iReg++; } if (fWhat & CPUMCTX_EXTRN_SS) { COPY_BACK_SEG(iReg, HvX64RegisterSs, pCtx->ss); iReg++; } if (fWhat & CPUMCTX_EXTRN_DS) { COPY_BACK_SEG(iReg, HvX64RegisterDs, pCtx->ds); iReg++; } if (fWhat & CPUMCTX_EXTRN_FS) { COPY_BACK_SEG(iReg, HvX64RegisterFs, pCtx->fs); iReg++; } if (fWhat & CPUMCTX_EXTRN_GS) { COPY_BACK_SEG(iReg, HvX64RegisterGs, pCtx->gs); iReg++; } } /* Descriptor tables and the task segment. */ if (fWhat & CPUMCTX_EXTRN_TABLE_MASK) { if (fWhat & CPUMCTX_EXTRN_LDTR) { COPY_BACK_SEG(iReg, HvX64RegisterLdtr, pCtx->ldtr); iReg++; } if (fWhat & CPUMCTX_EXTRN_TR) { /* AMD-V likes loading TR with in AVAIL state, whereas intel insists on BUSY. So, avoid to trigger sanity assertions around the code, always fix this. */ COPY_BACK_SEG(iReg, HvX64RegisterTr, pCtx->tr); switch (pCtx->tr.Attr.n.u4Type) { case X86_SEL_TYPE_SYS_386_TSS_BUSY: case X86_SEL_TYPE_SYS_286_TSS_BUSY: break; case X86_SEL_TYPE_SYS_386_TSS_AVAIL: pCtx->tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY; break; case X86_SEL_TYPE_SYS_286_TSS_AVAIL: pCtx->tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_286_TSS_BUSY; break; } iReg++; } if (fWhat & CPUMCTX_EXTRN_IDTR) { Assert(pInput->Names[iReg] == HvX64RegisterIdtr); pCtx->idtr.cbIdt = paValues[iReg].Table.Limit; pCtx->idtr.pIdt = paValues[iReg].Table.Base; iReg++; } if (fWhat & CPUMCTX_EXTRN_GDTR) { Assert(pInput->Names[iReg] == HvX64RegisterGdtr); pCtx->gdtr.cbGdt = paValues[iReg].Table.Limit; pCtx->gdtr.pGdt = paValues[iReg].Table.Base; iReg++; } } /* Control registers. */ bool fMaybeChangedMode = false; bool fUpdateCr3 = false; if (fWhat & CPUMCTX_EXTRN_CR_MASK) { if (fWhat & CPUMCTX_EXTRN_CR0) { Assert(pInput->Names[iReg] == HvX64RegisterCr0); if (pCtx->cr0 != paValues[iReg].Reg64) { CPUMSetGuestCR0(pGVCpu, paValues[iReg].Reg64); fMaybeChangedMode = true; } iReg++; } if (fWhat & CPUMCTX_EXTRN_CR2) { Assert(pInput->Names[iReg] == HvX64RegisterCr2); pCtx->cr2 = paValues[iReg].Reg64; iReg++; } if (fWhat & CPUMCTX_EXTRN_CR3) { Assert(pInput->Names[iReg] == HvX64RegisterCr3); if (pCtx->cr3 != paValues[iReg].Reg64) { CPUMSetGuestCR3(pGVCpu, paValues[iReg].Reg64); fUpdateCr3 = true; } iReg++; } if (fWhat & CPUMCTX_EXTRN_CR4) { Assert(pInput->Names[iReg] == HvX64RegisterCr4); if (pCtx->cr4 != paValues[iReg].Reg64) { CPUMSetGuestCR4(pGVCpu, paValues[iReg].Reg64); fMaybeChangedMode = true; } iReg++; } } if (fWhat & CPUMCTX_EXTRN_APIC_TPR) { Assert(pInput->Names[iReg] == HvX64RegisterCr8); APICSetTpr(pGVCpu, (uint8_t)paValues[iReg].Reg64 << 4); iReg++; } /* Debug registers. */ if (fWhat & CPUMCTX_EXTRN_DR7) { Assert(pInput->Names[iReg] == HvX64RegisterDr7); if (pCtx->dr[7] != paValues[iReg].Reg64) CPUMSetGuestDR7(pGVCpu, paValues[iReg].Reg64); pCtx->fExtrn &= ~CPUMCTX_EXTRN_DR7; /* Hack alert! Avoids asserting when processing CPUMCTX_EXTRN_DR0_DR3. */ iReg++; } if (fWhat & CPUMCTX_EXTRN_DR0_DR3) { Assert(pInput->Names[iReg] == HvX64RegisterDr0); Assert(pInput->Names[iReg+3] == HvX64RegisterDr3); if (pCtx->dr[0] != paValues[iReg].Reg64) CPUMSetGuestDR0(pGVCpu, paValues[iReg].Reg64); iReg++; if (pCtx->dr[1] != paValues[iReg].Reg64) CPUMSetGuestDR1(pGVCpu, paValues[iReg].Reg64); iReg++; if (pCtx->dr[2] != paValues[iReg].Reg64) CPUMSetGuestDR2(pGVCpu, paValues[iReg].Reg64); iReg++; if (pCtx->dr[3] != paValues[iReg].Reg64) CPUMSetGuestDR3(pGVCpu, paValues[iReg].Reg64); iReg++; } if (fWhat & CPUMCTX_EXTRN_DR6) { Assert(pInput->Names[iReg] == HvX64RegisterDr6); if (pCtx->dr[6] != paValues[iReg].Reg64) CPUMSetGuestDR6(pGVCpu, paValues[iReg].Reg64); iReg++; } /* Floating point state. */ if (fWhat & CPUMCTX_EXTRN_X87) { Assert(pInput->Names[iReg] == HvX64RegisterFpMmx0); Assert(pInput->Names[iReg + 7] == HvX64RegisterFpMmx7); pCtx->XState.x87.aRegs[0].au64[0] = paValues[iReg].Fp.AsUINT128.Low64; pCtx->XState.x87.aRegs[0].au64[1] = paValues[iReg].Fp.AsUINT128.High64; iReg++; pCtx->XState.x87.aRegs[1].au64[0] = paValues[iReg].Fp.AsUINT128.Low64; pCtx->XState.x87.aRegs[1].au64[1] = paValues[iReg].Fp.AsUINT128.High64; iReg++; pCtx->XState.x87.aRegs[2].au64[0] = paValues[iReg].Fp.AsUINT128.Low64; pCtx->XState.x87.aRegs[2].au64[1] = paValues[iReg].Fp.AsUINT128.High64; iReg++; pCtx->XState.x87.aRegs[3].au64[0] = paValues[iReg].Fp.AsUINT128.Low64; pCtx->XState.x87.aRegs[3].au64[1] = paValues[iReg].Fp.AsUINT128.High64; iReg++; pCtx->XState.x87.aRegs[4].au64[0] = paValues[iReg].Fp.AsUINT128.Low64; pCtx->XState.x87.aRegs[4].au64[1] = paValues[iReg].Fp.AsUINT128.High64; iReg++; pCtx->XState.x87.aRegs[5].au64[0] = paValues[iReg].Fp.AsUINT128.Low64; pCtx->XState.x87.aRegs[5].au64[1] = paValues[iReg].Fp.AsUINT128.High64; iReg++; pCtx->XState.x87.aRegs[6].au64[0] = paValues[iReg].Fp.AsUINT128.Low64; pCtx->XState.x87.aRegs[6].au64[1] = paValues[iReg].Fp.AsUINT128.High64; iReg++; pCtx->XState.x87.aRegs[7].au64[0] = paValues[iReg].Fp.AsUINT128.Low64; pCtx->XState.x87.aRegs[7].au64[1] = paValues[iReg].Fp.AsUINT128.High64; iReg++; Assert(pInput->Names[iReg] == HvX64RegisterFpControlStatus); pCtx->XState.x87.FCW = paValues[iReg].FpControlStatus.FpControl; pCtx->XState.x87.FSW = paValues[iReg].FpControlStatus.FpStatus; pCtx->XState.x87.FTW = paValues[iReg].FpControlStatus.FpTag /*| (paValues[iReg].FpControlStatus.Reserved << 8)*/; pCtx->XState.x87.FOP = paValues[iReg].FpControlStatus.LastFpOp; pCtx->XState.x87.FPUIP = (uint32_t)paValues[iReg].FpControlStatus.LastFpRip; pCtx->XState.x87.CS = (uint16_t)(paValues[iReg].FpControlStatus.LastFpRip >> 32); pCtx->XState.x87.Rsrvd1 = (uint16_t)(paValues[iReg].FpControlStatus.LastFpRip >> 48); iReg++; } if (fWhat & (CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX)) { Assert(pInput->Names[iReg] == HvX64RegisterXmmControlStatus); if (fWhat & CPUMCTX_EXTRN_X87) { pCtx->XState.x87.FPUDP = (uint32_t)paValues[iReg].XmmControlStatus.LastFpRdp; pCtx->XState.x87.DS = (uint16_t)(paValues[iReg].XmmControlStatus.LastFpRdp >> 32); pCtx->XState.x87.Rsrvd2 = (uint16_t)(paValues[iReg].XmmControlStatus.LastFpRdp >> 48); } pCtx->XState.x87.MXCSR = paValues[iReg].XmmControlStatus.XmmStatusControl; pCtx->XState.x87.MXCSR_MASK = paValues[iReg].XmmControlStatus.XmmStatusControlMask; /** @todo ??? (Isn't this an output field?) */ iReg++; } /* Vector state. */ if (fWhat & CPUMCTX_EXTRN_SSE_AVX) { Assert(pInput->Names[iReg] == HvX64RegisterXmm0); Assert(pInput->Names[iReg+15] == HvX64RegisterXmm15); pCtx->XState.x87.aXMM[0].uXmm.s.Lo = paValues[iReg].Reg128.Low64; pCtx->XState.x87.aXMM[0].uXmm.s.Hi = paValues[iReg].Reg128.High64; iReg++; pCtx->XState.x87.aXMM[1].uXmm.s.Lo = paValues[iReg].Reg128.Low64; pCtx->XState.x87.aXMM[1].uXmm.s.Hi = paValues[iReg].Reg128.High64; iReg++; pCtx->XState.x87.aXMM[2].uXmm.s.Lo = paValues[iReg].Reg128.Low64; pCtx->XState.x87.aXMM[2].uXmm.s.Hi = paValues[iReg].Reg128.High64; iReg++; pCtx->XState.x87.aXMM[3].uXmm.s.Lo = paValues[iReg].Reg128.Low64; pCtx->XState.x87.aXMM[3].uXmm.s.Hi = paValues[iReg].Reg128.High64; iReg++; pCtx->XState.x87.aXMM[4].uXmm.s.Lo = paValues[iReg].Reg128.Low64; pCtx->XState.x87.aXMM[4].uXmm.s.Hi = paValues[iReg].Reg128.High64; iReg++; pCtx->XState.x87.aXMM[5].uXmm.s.Lo = paValues[iReg].Reg128.Low64; pCtx->XState.x87.aXMM[5].uXmm.s.Hi = paValues[iReg].Reg128.High64; iReg++; pCtx->XState.x87.aXMM[6].uXmm.s.Lo = paValues[iReg].Reg128.Low64; pCtx->XState.x87.aXMM[6].uXmm.s.Hi = paValues[iReg].Reg128.High64; iReg++; pCtx->XState.x87.aXMM[7].uXmm.s.Lo = paValues[iReg].Reg128.Low64; pCtx->XState.x87.aXMM[7].uXmm.s.Hi = paValues[iReg].Reg128.High64; iReg++; pCtx->XState.x87.aXMM[8].uXmm.s.Lo = paValues[iReg].Reg128.Low64; pCtx->XState.x87.aXMM[8].uXmm.s.Hi = paValues[iReg].Reg128.High64; iReg++; pCtx->XState.x87.aXMM[9].uXmm.s.Lo = paValues[iReg].Reg128.Low64; pCtx->XState.x87.aXMM[9].uXmm.s.Hi = paValues[iReg].Reg128.High64; iReg++; pCtx->XState.x87.aXMM[10].uXmm.s.Lo = paValues[iReg].Reg128.Low64; pCtx->XState.x87.aXMM[10].uXmm.s.Hi = paValues[iReg].Reg128.High64; iReg++; pCtx->XState.x87.aXMM[11].uXmm.s.Lo = paValues[iReg].Reg128.Low64; pCtx->XState.x87.aXMM[11].uXmm.s.Hi = paValues[iReg].Reg128.High64; iReg++; pCtx->XState.x87.aXMM[12].uXmm.s.Lo = paValues[iReg].Reg128.Low64; pCtx->XState.x87.aXMM[12].uXmm.s.Hi = paValues[iReg].Reg128.High64; iReg++; pCtx->XState.x87.aXMM[13].uXmm.s.Lo = paValues[iReg].Reg128.Low64; pCtx->XState.x87.aXMM[13].uXmm.s.Hi = paValues[iReg].Reg128.High64; iReg++; pCtx->XState.x87.aXMM[14].uXmm.s.Lo = paValues[iReg].Reg128.Low64; pCtx->XState.x87.aXMM[14].uXmm.s.Hi = paValues[iReg].Reg128.High64; iReg++; pCtx->XState.x87.aXMM[15].uXmm.s.Lo = paValues[iReg].Reg128.Low64; pCtx->XState.x87.aXMM[15].uXmm.s.Hi = paValues[iReg].Reg128.High64; iReg++; } /* MSRs */ // HvX64RegisterTsc - don't touch if (fWhat & CPUMCTX_EXTRN_EFER) { Assert(pInput->Names[iReg] == HvX64RegisterEfer); if (paValues[iReg].Reg64 != pCtx->msrEFER) { Log7(("NEM/%u: MSR EFER changed %RX64 -> %RX64\n", pGVCpu->idCpu, pCtx->msrEFER, paValues[iReg].Reg64)); if ((paValues[iReg].Reg64 ^ pCtx->msrEFER) & MSR_K6_EFER_NXE) PGMNotifyNxeChanged(pGVCpu, RT_BOOL(paValues[iReg].Reg64 & MSR_K6_EFER_NXE)); pCtx->msrEFER = paValues[iReg].Reg64; fMaybeChangedMode = true; } iReg++; } if (fWhat & CPUMCTX_EXTRN_KERNEL_GS_BASE) { Assert(pInput->Names[iReg] == HvX64RegisterKernelGsBase); if (pCtx->msrKERNELGSBASE != paValues[iReg].Reg64) Log7(("NEM/%u: MSR KERNELGSBASE changed %RX64 -> %RX64\n", pGVCpu->idCpu, pCtx->msrKERNELGSBASE, paValues[iReg].Reg64)); pCtx->msrKERNELGSBASE = paValues[iReg].Reg64; iReg++; } if (fWhat & CPUMCTX_EXTRN_SYSENTER_MSRS) { Assert(pInput->Names[iReg] == HvX64RegisterSysenterCs); if (pCtx->SysEnter.cs != paValues[iReg].Reg64) Log7(("NEM/%u: MSR SYSENTER.CS changed %RX64 -> %RX64\n", pGVCpu->idCpu, pCtx->SysEnter.cs, paValues[iReg].Reg64)); pCtx->SysEnter.cs = paValues[iReg].Reg64; iReg++; Assert(pInput->Names[iReg] == HvX64RegisterSysenterEip); if (pCtx->SysEnter.eip != paValues[iReg].Reg64) Log7(("NEM/%u: MSR SYSENTER.EIP changed %RX64 -> %RX64\n", pGVCpu->idCpu, pCtx->SysEnter.eip, paValues[iReg].Reg64)); pCtx->SysEnter.eip = paValues[iReg].Reg64; iReg++; Assert(pInput->Names[iReg] == HvX64RegisterSysenterEsp); if (pCtx->SysEnter.esp != paValues[iReg].Reg64) Log7(("NEM/%u: MSR SYSENTER.ESP changed %RX64 -> %RX64\n", pGVCpu->idCpu, pCtx->SysEnter.esp, paValues[iReg].Reg64)); pCtx->SysEnter.esp = paValues[iReg].Reg64; iReg++; } if (fWhat & CPUMCTX_EXTRN_SYSCALL_MSRS) { Assert(pInput->Names[iReg] == HvX64RegisterStar); if (pCtx->msrSTAR != paValues[iReg].Reg64) Log7(("NEM/%u: MSR STAR changed %RX64 -> %RX64\n", pGVCpu->idCpu, pCtx->msrSTAR, paValues[iReg].Reg64)); pCtx->msrSTAR = paValues[iReg].Reg64; iReg++; Assert(pInput->Names[iReg] == HvX64RegisterLstar); if (pCtx->msrLSTAR != paValues[iReg].Reg64) Log7(("NEM/%u: MSR LSTAR changed %RX64 -> %RX64\n", pGVCpu->idCpu, pCtx->msrLSTAR, paValues[iReg].Reg64)); pCtx->msrLSTAR = paValues[iReg].Reg64; iReg++; Assert(pInput->Names[iReg] == HvX64RegisterCstar); if (pCtx->msrCSTAR != paValues[iReg].Reg64) Log7(("NEM/%u: MSR CSTAR changed %RX64 -> %RX64\n", pGVCpu->idCpu, pCtx->msrCSTAR, paValues[iReg].Reg64)); pCtx->msrCSTAR = paValues[iReg].Reg64; iReg++; Assert(pInput->Names[iReg] == HvX64RegisterSfmask); if (pCtx->msrSFMASK != paValues[iReg].Reg64) Log7(("NEM/%u: MSR SFMASK changed %RX64 -> %RX64\n", pGVCpu->idCpu, pCtx->msrSFMASK, paValues[iReg].Reg64)); pCtx->msrSFMASK = paValues[iReg].Reg64; iReg++; } if (fWhat & CPUMCTX_EXTRN_OTHER_MSRS) { Assert(pInput->Names[iReg] == HvX64RegisterApicBase); const uint64_t uOldBase = APICGetBaseMsrNoCheck(pGVCpu); if (paValues[iReg].Reg64 != uOldBase) { Log7(("NEM/%u: MSR APICBase changed %RX64 -> %RX64 (%RX64)\n", pGVCpu->idCpu, uOldBase, paValues[iReg].Reg64, paValues[iReg].Reg64 ^ uOldBase)); int rc2 = APICSetBaseMsr(pGVCpu, paValues[iReg].Reg64); AssertLogRelMsg(rc2 == VINF_SUCCESS, ("rc2=%Rrc [%#RX64]\n", rc2, paValues[iReg].Reg64)); } iReg++; Assert(pInput->Names[iReg] == HvX64RegisterPat); if (pCtx->msrPAT != paValues[iReg].Reg64) Log7(("NEM/%u: MSR PAT changed %RX64 -> %RX64\n", pGVCpu->idCpu, pCtx->msrPAT, paValues[iReg].Reg64)); pCtx->msrPAT = paValues[iReg].Reg64; iReg++; # if 0 /*def LOG_ENABLED*/ /** @todo something's wrong with HvX64RegisterMtrrCap? (AMD) */ Assert(pInput->Names[iReg] == HvX64RegisterMtrrCap); if (paValues[iReg].Reg64 != CPUMGetGuestIa32MtrrCap(pGVCpu)) Log7(("NEM/%u: MSR MTRR_CAP changed %RX64 -> %RX64 (!!)\n", pGVCpu->idCpu, CPUMGetGuestIa32MtrrCap(pGVCpu), paValues[iReg].Reg64)); iReg++; # endif PCPUMCTXMSRS pCtxMsrs = CPUMQueryGuestCtxMsrsPtr(pGVCpu); Assert(pInput->Names[iReg] == HvX64RegisterMtrrDefType); if (paValues[iReg].Reg64 != pCtxMsrs->msr.MtrrDefType ) Log7(("NEM/%u: MSR MTRR_DEF_TYPE changed %RX64 -> %RX64\n", pGVCpu->idCpu, pCtxMsrs->msr.MtrrDefType, paValues[iReg].Reg64)); pCtxMsrs->msr.MtrrDefType = paValues[iReg].Reg64; iReg++; /** @todo we dont keep state for HvX64RegisterMtrrPhysBaseX and HvX64RegisterMtrrPhysMaskX */ Assert(pInput->Names[iReg] == HvX64RegisterMtrrFix64k00000); if (paValues[iReg].Reg64 != pCtxMsrs->msr.MtrrFix64K_00000 ) Log7(("NEM/%u: MSR MTRR_FIX16K_00000 changed %RX64 -> %RX64\n", pGVCpu->idCpu, pCtxMsrs->msr.MtrrFix64K_00000, paValues[iReg].Reg64)); pCtxMsrs->msr.MtrrFix64K_00000 = paValues[iReg].Reg64; iReg++; Assert(pInput->Names[iReg] == HvX64RegisterMtrrFix16k80000); if (paValues[iReg].Reg64 != pCtxMsrs->msr.MtrrFix16K_80000 ) Log7(("NEM/%u: MSR MTRR_FIX16K_80000 changed %RX64 -> %RX64\n", pGVCpu->idCpu, pCtxMsrs->msr.MtrrFix16K_80000, paValues[iReg].Reg64)); pCtxMsrs->msr.MtrrFix16K_80000 = paValues[iReg].Reg64; iReg++; Assert(pInput->Names[iReg] == HvX64RegisterMtrrFix16kA0000); if (paValues[iReg].Reg64 != pCtxMsrs->msr.MtrrFix16K_A0000 ) Log7(("NEM/%u: MSR MTRR_FIX16K_A0000 changed %RX64 -> %RX64\n", pGVCpu->idCpu, pCtxMsrs->msr.MtrrFix16K_A0000, paValues[iReg].Reg64)); pCtxMsrs->msr.MtrrFix16K_A0000 = paValues[iReg].Reg64; iReg++; Assert(pInput->Names[iReg] == HvX64RegisterMtrrFix4kC0000); if (paValues[iReg].Reg64 != pCtxMsrs->msr.MtrrFix4K_C0000 ) Log7(("NEM/%u: MSR MTRR_FIX16K_C0000 changed %RX64 -> %RX64\n", pGVCpu->idCpu, pCtxMsrs->msr.MtrrFix4K_C0000, paValues[iReg].Reg64)); pCtxMsrs->msr.MtrrFix4K_C0000 = paValues[iReg].Reg64; iReg++; Assert(pInput->Names[iReg] == HvX64RegisterMtrrFix4kC8000); if (paValues[iReg].Reg64 != pCtxMsrs->msr.MtrrFix4K_C8000 ) Log7(("NEM/%u: MSR MTRR_FIX16K_C8000 changed %RX64 -> %RX64\n", pGVCpu->idCpu, pCtxMsrs->msr.MtrrFix4K_C8000, paValues[iReg].Reg64)); pCtxMsrs->msr.MtrrFix4K_C8000 = paValues[iReg].Reg64; iReg++; Assert(pInput->Names[iReg] == HvX64RegisterMtrrFix4kD0000); if (paValues[iReg].Reg64 != pCtxMsrs->msr.MtrrFix4K_D0000 ) Log7(("NEM/%u: MSR MTRR_FIX16K_D0000 changed %RX64 -> %RX64\n", pGVCpu->idCpu, pCtxMsrs->msr.MtrrFix4K_D0000, paValues[iReg].Reg64)); pCtxMsrs->msr.MtrrFix4K_D0000 = paValues[iReg].Reg64; iReg++; Assert(pInput->Names[iReg] == HvX64RegisterMtrrFix4kD8000); if (paValues[iReg].Reg64 != pCtxMsrs->msr.MtrrFix4K_D8000 ) Log7(("NEM/%u: MSR MTRR_FIX16K_D8000 changed %RX64 -> %RX64\n", pGVCpu->idCpu, pCtxMsrs->msr.MtrrFix4K_D8000, paValues[iReg].Reg64)); pCtxMsrs->msr.MtrrFix4K_D8000 = paValues[iReg].Reg64; iReg++; Assert(pInput->Names[iReg] == HvX64RegisterMtrrFix4kE0000); if (paValues[iReg].Reg64 != pCtxMsrs->msr.MtrrFix4K_E0000 ) Log7(("NEM/%u: MSR MTRR_FIX16K_E0000 changed %RX64 -> %RX64\n", pGVCpu->idCpu, pCtxMsrs->msr.MtrrFix4K_E0000, paValues[iReg].Reg64)); pCtxMsrs->msr.MtrrFix4K_E0000 = paValues[iReg].Reg64; iReg++; Assert(pInput->Names[iReg] == HvX64RegisterMtrrFix4kE8000); if (paValues[iReg].Reg64 != pCtxMsrs->msr.MtrrFix4K_E8000 ) Log7(("NEM/%u: MSR MTRR_FIX16K_E8000 changed %RX64 -> %RX64\n", pGVCpu->idCpu, pCtxMsrs->msr.MtrrFix4K_E8000, paValues[iReg].Reg64)); pCtxMsrs->msr.MtrrFix4K_E8000 = paValues[iReg].Reg64; iReg++; Assert(pInput->Names[iReg] == HvX64RegisterMtrrFix4kF0000); if (paValues[iReg].Reg64 != pCtxMsrs->msr.MtrrFix4K_F0000 ) Log7(("NEM/%u: MSR MTRR_FIX16K_F0000 changed %RX64 -> %RX64\n", pGVCpu->idCpu, pCtxMsrs->msr.MtrrFix4K_F0000, paValues[iReg].Reg64)); pCtxMsrs->msr.MtrrFix4K_F0000 = paValues[iReg].Reg64; iReg++; Assert(pInput->Names[iReg] == HvX64RegisterMtrrFix4kF8000); if (paValues[iReg].Reg64 != pCtxMsrs->msr.MtrrFix4K_F8000 ) Log7(("NEM/%u: MSR MTRR_FIX16K_F8000 changed %RX64 -> %RX64\n", pGVCpu->idCpu, pCtxMsrs->msr.MtrrFix4K_F8000, paValues[iReg].Reg64)); pCtxMsrs->msr.MtrrFix4K_F8000 = paValues[iReg].Reg64; iReg++; Assert(pInput->Names[iReg] == HvX64RegisterTscAux); if (paValues[iReg].Reg64 != pCtxMsrs->msr.TscAux ) Log7(("NEM/%u: MSR TSC_AUX changed %RX64 -> %RX64\n", pGVCpu->idCpu, pCtxMsrs->msr.TscAux, paValues[iReg].Reg64)); pCtxMsrs->msr.TscAux = paValues[iReg].Reg64; iReg++; # if 0 /** @todo why can't we even read HvX64RegisterIa32MiscEnable? */ if (enmCpuVendor != CPUMCPUVENDOR_AMD) { Assert(pInput->Names[iReg] == HvX64RegisterIa32MiscEnable); if (paValues[iReg].Reg64 != pCtxMsrs->msr.MiscEnable) Log7(("NEM/%u: MSR MISC_ENABLE changed %RX64 -> %RX64\n", pGVCpu->idCpu, pCtxMsrs->msr.MiscEnable, paValues[iReg].Reg64)); pCtxMsrs->msr.MiscEnable = paValues[iReg].Reg64; iReg++; } # endif # ifdef LOG_ENABLED if (enmCpuVendor != CPUMCPUVENDOR_AMD && enmCpuVendor != CPUMCPUVENDOR_HYGON) { Assert(pInput->Names[iReg] == HvX64RegisterIa32FeatureControl); uint64_t const uFeatCtrl = CPUMGetGuestIa32FeatCtrl(pVCpu); if (paValues[iReg].Reg64 != uFeatCtrl) Log7(("NEM/%u: MSR FEATURE_CONTROL changed %RX64 -> %RX64 (!!)\n", pGVCpu->idCpu, uFeatCtrl, paValues[iReg].Reg64)); iReg++; } # endif } /* Interruptibility. */ if (fWhat & (CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT | CPUMCTX_EXTRN_NEM_WIN_INHIBIT_NMI)) { Assert(pInput->Names[iReg] == HvRegisterInterruptState); Assert(pInput->Names[iReg + 1] == HvX64RegisterRip); if (!(pCtx->fExtrn & CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT)) { pGVCpu->nem.s.fLastInterruptShadow = paValues[iReg].InterruptState.InterruptShadow; if (paValues[iReg].InterruptState.InterruptShadow) EMSetInhibitInterruptsPC(pGVCpu, paValues[iReg + 1].Reg64); else VMCPU_FF_CLEAR(pGVCpu, VMCPU_FF_INHIBIT_INTERRUPTS); } if (!(pCtx->fExtrn & CPUMCTX_EXTRN_NEM_WIN_INHIBIT_NMI)) { if (paValues[iReg].InterruptState.NmiMasked) VMCPU_FF_SET(pGVCpu, VMCPU_FF_BLOCK_NMIS); else VMCPU_FF_CLEAR(pGVCpu, VMCPU_FF_BLOCK_NMIS); } fWhat |= CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT | CPUMCTX_EXTRN_NEM_WIN_INHIBIT_NMI; iReg += 2; } /* Event injection. */ /// @todo HvRegisterPendingInterruption Assert(pInput->Names[iReg] == HvRegisterPendingInterruption); if (paValues[iReg].PendingInterruption.InterruptionPending) { Log7(("PendingInterruption: type=%u vector=%#x errcd=%RTbool/%#x instr-len=%u nested=%u\n", paValues[iReg].PendingInterruption.InterruptionType, paValues[iReg].PendingInterruption.InterruptionVector, paValues[iReg].PendingInterruption.DeliverErrorCode, paValues[iReg].PendingInterruption.ErrorCode, paValues[iReg].PendingInterruption.InstructionLength, paValues[iReg].PendingInterruption.NestedEvent)); AssertMsg((paValues[iReg].PendingInterruption.AsUINT64 & UINT64_C(0xfc00)) == 0, ("%#RX64\n", paValues[iReg].PendingInterruption.AsUINT64)); } /// @todo HvRegisterPendingEvent0 /// @todo HvRegisterPendingEvent1 /* Almost done, just update extrn flags and maybe change PGM mode. */ pCtx->fExtrn &= ~fWhat; if (!(pCtx->fExtrn & (CPUMCTX_EXTRN_ALL | (CPUMCTX_EXTRN_NEM_WIN_MASK & ~CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT)))) pCtx->fExtrn = 0; /* Typical. */ if (!fMaybeChangedMode && !fUpdateCr3) return VINF_SUCCESS; /* * Slow. */ int rc = VINF_SUCCESS; if (fMaybeChangedMode) { rc = PGMChangeMode(pGVCpu, pCtx->cr0, pCtx->cr4, pCtx->msrEFER); AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_NEM_IPE_1); } if (fUpdateCr3) { if (fCanUpdateCr3) { LogFlow(("nemR0WinImportState: -> PGMUpdateCR3!\n")); rc = PGMUpdateCR3(pGVCpu, pCtx->cr3, false /*fPdpesMapped*/); if (rc == VINF_SUCCESS) { /* likely */ } else AssertMsgFailedReturn(("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_NEM_IPE_2); } else { LogFlow(("nemR0WinImportState: -> VERR_NEM_FLUSH_TLB!\n")); rc = VERR_NEM_FLUSH_TLB; /* Calling PGMFlushTLB w/o long jump setup doesn't work, ring-3 does it. */ } } return rc; } #endif /* NEM_WIN_WITH_RING0_RUNLOOP || NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS */ /** * Import the state from the native API (back to CPUMCTX). * * @returns VBox status code * @param pGVM The ring-0 VM handle. * @param idCpu The calling EMT. Necessary for getting the * hypercall page and arguments. * @param fWhat What to import, CPUMCTX_EXTRN_XXX. Set * CPUMCTX_EXTERN_ALL for everything. */ VMMR0_INT_DECL(int) NEMR0ImportState(PGVM pGVM, VMCPUID idCpu, uint64_t fWhat) { #if defined(NEM_WIN_WITH_RING0_RUNLOOP) || defined(NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS) /* * Validate the call. */ int rc = GVMMR0ValidateGVMandEMT(pGVM, idCpu); if (RT_SUCCESS(rc)) { PGVMCPU pGVCpu = &pGVM->aCpus[idCpu]; AssertReturn(g_pfnHvlInvokeHypercall, VERR_NEM_MISSING_KERNEL_API_1); /* * Call worker. */ rc = nemR0WinImportState(pGVM, pGVCpu, &pGVCpu->cpum.GstCtx, fWhat, false /*fCanUpdateCr3*/); } return rc; #else RT_NOREF(pGVM, idCpu, fWhat); return VERR_NOT_IMPLEMENTED; #endif } #if defined(NEM_WIN_WITH_RING0_RUNLOOP) || defined(NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS) /** * Worker for NEMR0QueryCpuTick and the ring-0 NEMHCQueryCpuTick. * * @returns VBox status code. * @param pGVM The ring-0 VM handle. * @param pGVCpu The ring-0 VCPU handle. * @param pcTicks Where to return the current CPU tick count. * @param pcAux Where to return the hyper-V TSC_AUX value. Optional. */ NEM_TMPL_STATIC int nemR0WinQueryCpuTick(PGVM pGVM, PGVMCPU pGVCpu, uint64_t *pcTicks, uint32_t *pcAux) { /* * Hypercall parameters. */ HV_INPUT_GET_VP_REGISTERS *pInput = (HV_INPUT_GET_VP_REGISTERS *)pGVCpu->nemr0.s.HypercallData.pbPage; AssertPtrReturn(pInput, VERR_INTERNAL_ERROR_3); AssertReturn(g_pfnHvlInvokeHypercall, VERR_NEM_MISSING_KERNEL_API_1); pInput->PartitionId = pGVM->nemr0.s.idHvPartition; pInput->VpIndex = pGVCpu->idCpu; pInput->fFlags = 0; pInput->Names[0] = HvX64RegisterTsc; pInput->Names[1] = HvX64RegisterTscAux; size_t const cbInput = RT_ALIGN_Z(RT_UOFFSETOF(HV_INPUT_GET_VP_REGISTERS, Names[2]), 32); HV_REGISTER_VALUE *paValues = (HV_REGISTER_VALUE *)((uint8_t *)pInput + cbInput); RT_BZERO(paValues, sizeof(paValues[0]) * 2); /* * Make the hypercall. */ uint64_t uResult = g_pfnHvlInvokeHypercall(HV_MAKE_CALL_INFO(HvCallGetVpRegisters, 2), pGVCpu->nemr0.s.HypercallData.HCPhysPage, pGVCpu->nemr0.s.HypercallData.HCPhysPage + cbInput); AssertLogRelMsgReturn(uResult == HV_MAKE_CALL_REP_RET(2), ("uResult=%RX64 cRegs=%#x\n", uResult, 2), VERR_NEM_GET_REGISTERS_FAILED); /* * Get results. */ *pcTicks = paValues[0].Reg64; if (pcAux) *pcAux = paValues[0].Reg32; return VINF_SUCCESS; } #endif /* NEM_WIN_WITH_RING0_RUNLOOP || NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS */ /** * Queries the TSC and TSC_AUX values, putting the results in . * * @returns VBox status code * @param pGVM The ring-0 VM handle. * @param idCpu The calling EMT. Necessary for getting the * hypercall page and arguments. */ VMMR0_INT_DECL(int) NEMR0QueryCpuTick(PGVM pGVM, VMCPUID idCpu) { #if defined(NEM_WIN_WITH_RING0_RUNLOOP) || defined(NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS) /* * Validate the call. */ int rc = GVMMR0ValidateGVMandEMT(pGVM, idCpu); if (RT_SUCCESS(rc)) { PGVMCPU pGVCpu = &pGVM->aCpus[idCpu]; AssertReturn(g_pfnHvlInvokeHypercall, VERR_NEM_MISSING_KERNEL_API_1); /* * Call worker. */ pGVCpu->nem.s.Hypercall.QueryCpuTick.cTicks = 0; pGVCpu->nem.s.Hypercall.QueryCpuTick.uAux = 0; rc = nemR0WinQueryCpuTick(pGVM, pGVCpu, &pGVCpu->nem.s.Hypercall.QueryCpuTick.cTicks, &pGVCpu->nem.s.Hypercall.QueryCpuTick.uAux); } return rc; #else RT_NOREF(pGVM, idCpu); return VERR_NOT_IMPLEMENTED; #endif } #if defined(NEM_WIN_WITH_RING0_RUNLOOP) || defined(NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS) /** * Worker for NEMR0ResumeCpuTickOnAll and the ring-0 NEMHCResumeCpuTickOnAll. * * @returns VBox status code. * @param pGVM The ring-0 VM handle. * @param pGVCpu The ring-0 VCPU handle. * @param uPausedTscValue The TSC value at the time of pausing. */ NEM_TMPL_STATIC int nemR0WinResumeCpuTickOnAll(PGVM pGVM, PGVMCPU pGVCpu, uint64_t uPausedTscValue) { AssertReturn(g_pfnHvlInvokeHypercall, VERR_NEM_MISSING_KERNEL_API_1); /* * Set up the hypercall parameters. */ HV_INPUT_SET_VP_REGISTERS *pInput = (HV_INPUT_SET_VP_REGISTERS *)pGVCpu->nemr0.s.HypercallData.pbPage; AssertPtrReturn(pInput, VERR_INTERNAL_ERROR_3); pInput->PartitionId = pGVM->nemr0.s.idHvPartition; pInput->VpIndex = 0; pInput->RsvdZ = 0; pInput->Elements[0].Name = HvX64RegisterTsc; pInput->Elements[0].Pad0 = 0; pInput->Elements[0].Pad1 = 0; pInput->Elements[0].Value.Reg128.High64 = 0; pInput->Elements[0].Value.Reg64 = uPausedTscValue; /* * Disable interrupts and do the first virtual CPU. */ RTCCINTREG const fSavedFlags = ASMIntDisableFlags(); uint64_t const uFirstTsc = ASMReadTSC(); uint64_t uResult = g_pfnHvlInvokeHypercall(HV_MAKE_CALL_INFO(HvCallSetVpRegisters, 1), pGVCpu->nemr0.s.HypercallData.HCPhysPage, 0 /* no output */); AssertLogRelMsgReturnStmt(uResult == HV_MAKE_CALL_REP_RET(1), ("uResult=%RX64 uTsc=%#RX64\n", uResult, uPausedTscValue), ASMSetFlags(fSavedFlags), VERR_NEM_SET_TSC); /* * Do secondary processors, adjusting for elapsed TSC and keeping finger crossed * that we don't introduce too much drift here. */ for (VMCPUID iCpu = 1; iCpu < pGVM->cCpus; iCpu++) { Assert(pInput->PartitionId == pGVM->nemr0.s.idHvPartition); Assert(pInput->RsvdZ == 0); Assert(pInput->Elements[0].Name == HvX64RegisterTsc); Assert(pInput->Elements[0].Pad0 == 0); Assert(pInput->Elements[0].Pad1 == 0); Assert(pInput->Elements[0].Value.Reg128.High64 == 0); pInput->VpIndex = iCpu; const uint64_t offDelta = (ASMReadTSC() - uFirstTsc); pInput->Elements[0].Value.Reg64 = uPausedTscValue + offDelta; uResult = g_pfnHvlInvokeHypercall(HV_MAKE_CALL_INFO(HvCallSetVpRegisters, 1), pGVCpu->nemr0.s.HypercallData.HCPhysPage, 0 /* no output */); AssertLogRelMsgReturnStmt(uResult == HV_MAKE_CALL_REP_RET(1), ("uResult=%RX64 uTsc=%#RX64 + %#RX64\n", uResult, uPausedTscValue, offDelta), ASMSetFlags(fSavedFlags), VERR_NEM_SET_TSC); } /* * Done. */ ASMSetFlags(fSavedFlags); return VINF_SUCCESS; } #endif /* NEM_WIN_WITH_RING0_RUNLOOP || NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS */ /** * Sets the TSC register to @a uPausedTscValue on all CPUs. * * @returns VBox status code * @param pGVM The ring-0 VM handle. * @param idCpu The calling EMT. Necessary for getting the * hypercall page and arguments. * @param uPausedTscValue The TSC value at the time of pausing. */ VMMR0_INT_DECL(int) NEMR0ResumeCpuTickOnAll(PGVM pGVM, VMCPUID idCpu, uint64_t uPausedTscValue) { #if defined(NEM_WIN_WITH_RING0_RUNLOOP) || defined(NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS) /* * Validate the call. */ int rc = GVMMR0ValidateGVMandEMT(pGVM, idCpu); if (RT_SUCCESS(rc)) { PGVMCPU pGVCpu = &pGVM->aCpus[idCpu]; AssertReturn(g_pfnHvlInvokeHypercall, VERR_NEM_MISSING_KERNEL_API_1); /* * Call worker. */ pGVCpu->nem.s.Hypercall.QueryCpuTick.cTicks = 0; pGVCpu->nem.s.Hypercall.QueryCpuTick.uAux = 0; rc = nemR0WinResumeCpuTickOnAll(pGVM, pGVCpu, uPausedTscValue); } return rc; #else RT_NOREF(pGVM, idCpu, uPausedTscValue); return VERR_NOT_IMPLEMENTED; #endif } VMMR0_INT_DECL(VBOXSTRICTRC) NEMR0RunGuestCode(PGVM pGVM, VMCPUID idCpu) { #ifdef NEM_WIN_WITH_RING0_RUNLOOP if (pGVM->nemr0.s.fMayUseRing0Runloop) return nemHCWinRunGC(pGVM, &pGVM->aCpus[idCpu]); return VERR_NEM_RING3_ONLY; #else RT_NOREF(pGVM, idCpu); return VERR_NOT_IMPLEMENTED; #endif } /** * Updates statistics in the VM structure. * * @returns VBox status code. * @param pGVM The ring-0 VM handle. * @param idCpu The calling EMT, or NIL. Necessary for getting the hypercall * page and arguments. */ VMMR0_INT_DECL(int) NEMR0UpdateStatistics(PGVM pGVM, VMCPUID idCpu) { #ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES /* * Validate the call. */ int rc; if (idCpu == NIL_VMCPUID) rc = GVMMR0ValidateGVM(pGVM); else rc = GVMMR0ValidateGVMandEMT(pGVM, idCpu); if (RT_SUCCESS(rc)) { AssertReturn(g_pfnHvlInvokeHypercall, VERR_NEM_MISSING_KERNEL_API_1); PNEMR0HYPERCALLDATA pHypercallData = idCpu != NIL_VMCPUID ? &pGVM->aCpus[idCpu].nemr0.s.HypercallData : &pGVM->nemr0.s.HypercallData; if ( RT_VALID_PTR(pHypercallData->pbPage) && pHypercallData->HCPhysPage != NIL_RTHCPHYS) { if (idCpu == NIL_VMCPUID) rc = RTCritSectEnter(&pGVM->nemr0.s.HypercallDataCritSect); if (RT_SUCCESS(rc)) { /* * Query the memory statistics for the partition. */ HV_INPUT_GET_MEMORY_BALANCE *pInput = (HV_INPUT_GET_MEMORY_BALANCE *)pHypercallData->pbPage; pInput->TargetPartitionId = pGVM->nemr0.s.idHvPartition; pInput->ProximityDomainInfo.Flags.ProximityPreferred = 0; pInput->ProximityDomainInfo.Flags.ProxyimityInfoValid = 0; pInput->ProximityDomainInfo.Flags.Reserved = 0; pInput->ProximityDomainInfo.Id = 0; HV_OUTPUT_GET_MEMORY_BALANCE *pOutput = (HV_OUTPUT_GET_MEMORY_BALANCE *)(pInput + 1); RT_ZERO(*pOutput); uint64_t uResult = g_pfnHvlInvokeHypercall(HvCallGetMemoryBalance, pHypercallData->HCPhysPage, pHypercallData->HCPhysPage + sizeof(*pInput)); if (uResult == HV_STATUS_SUCCESS) { pGVM->nem.s.R0Stats.cPagesAvailable = pOutput->PagesAvailable; pGVM->nem.s.R0Stats.cPagesInUse = pOutput->PagesInUse; rc = VINF_SUCCESS; } else { LogRel(("HvCallGetMemoryBalance -> %#RX64 (%#RX64 %#RX64)!!\n", uResult, pOutput->PagesAvailable, pOutput->PagesInUse)); rc = VERR_NEM_IPE_0; } if (idCpu == NIL_VMCPUID) RTCritSectLeave(&pGVM->nemr0.s.HypercallDataCritSect); } } else rc = VERR_WRONG_ORDER; } return rc; #else RT_NOREF(pGVM, idCpu); return VINF_SUCCESS; #endif } /** * Debug only interface for poking around and exploring Hyper-V stuff. * * @param pGVM The ring-0 VM handle. * @param idCpu The calling EMT. * @param u64Arg What to query. 0 == registers. */ VMMR0_INT_DECL(int) NEMR0DoExperiment(PGVM pGVM, VMCPUID idCpu, uint64_t u64Arg) { #if defined(DEBUG_bird) && defined(NEM_WIN_USE_HYPERCALLS_FOR_PAGES) /* * Resolve CPU structures. */ int rc = GVMMR0ValidateGVMandEMT(pGVM, idCpu); if (RT_SUCCESS(rc)) { AssertReturn(g_pfnHvlInvokeHypercall, VERR_NEM_MISSING_KERNEL_API_1); PGVMCPU pGVCpu = &pGVM->aCpus[idCpu]; if (u64Arg == 0) { /* * Query register. */ HV_INPUT_GET_VP_REGISTERS *pInput = (HV_INPUT_GET_VP_REGISTERS *)pGVCpu->nemr0.s.HypercallData.pbPage; AssertPtrReturn(pInput, VERR_INTERNAL_ERROR_3); size_t const cbInput = RT_ALIGN_Z(RT_UOFFSETOF(HV_INPUT_GET_VP_REGISTERS, Names[1]), 32); HV_REGISTER_VALUE *paValues = (HV_REGISTER_VALUE *)((uint8_t *)pInput + cbInput); RT_BZERO(paValues, sizeof(paValues[0]) * 1); pInput->PartitionId = pGVM->nemr0.s.idHvPartition; pInput->VpIndex = pGVCpu->idCpu; pInput->fFlags = 0; pInput->Names[0] = (HV_REGISTER_NAME)pGVCpu->nem.s.Hypercall.Experiment.uItem; uint64_t uResult = g_pfnHvlInvokeHypercall(HV_MAKE_CALL_INFO(HvCallGetVpRegisters, 1), pGVCpu->nemr0.s.HypercallData.HCPhysPage, pGVCpu->nemr0.s.HypercallData.HCPhysPage + cbInput); pGVCpu->nem.s.Hypercall.Experiment.fSuccess = uResult == HV_MAKE_CALL_REP_RET(1); pGVCpu->nem.s.Hypercall.Experiment.uStatus = uResult; pGVCpu->nem.s.Hypercall.Experiment.uLoValue = paValues[0].Reg128.Low64; pGVCpu->nem.s.Hypercall.Experiment.uHiValue = paValues[0].Reg128.High64; rc = VINF_SUCCESS; } else if (u64Arg == 1) { /* * Query partition property. */ HV_INPUT_GET_PARTITION_PROPERTY *pInput = (HV_INPUT_GET_PARTITION_PROPERTY *)pGVCpu->nemr0.s.HypercallData.pbPage; AssertPtrReturn(pInput, VERR_INTERNAL_ERROR_3); size_t const cbInput = RT_ALIGN_Z(sizeof(*pInput), 32); HV_OUTPUT_GET_PARTITION_PROPERTY *pOutput = (HV_OUTPUT_GET_PARTITION_PROPERTY *)((uint8_t *)pInput + cbInput); pOutput->PropertyValue = 0; pInput->PartitionId = pGVM->nemr0.s.idHvPartition; pInput->PropertyCode = (HV_PARTITION_PROPERTY_CODE)pGVCpu->nem.s.Hypercall.Experiment.uItem; pInput->uPadding = 0; uint64_t uResult = g_pfnHvlInvokeHypercall(HvCallGetPartitionProperty, pGVCpu->nemr0.s.HypercallData.HCPhysPage, pGVCpu->nemr0.s.HypercallData.HCPhysPage + cbInput); pGVCpu->nem.s.Hypercall.Experiment.fSuccess = uResult == HV_STATUS_SUCCESS; pGVCpu->nem.s.Hypercall.Experiment.uStatus = uResult; pGVCpu->nem.s.Hypercall.Experiment.uLoValue = pOutput->PropertyValue; pGVCpu->nem.s.Hypercall.Experiment.uHiValue = 0; rc = VINF_SUCCESS; } else if (u64Arg == 2) { /* * Set register. */ HV_INPUT_SET_VP_REGISTERS *pInput = (HV_INPUT_SET_VP_REGISTERS *)pGVCpu->nemr0.s.HypercallData.pbPage; AssertPtrReturn(pInput, VERR_INTERNAL_ERROR_3); RT_BZERO(pInput, RT_UOFFSETOF(HV_INPUT_SET_VP_REGISTERS, Elements[1])); pInput->PartitionId = pGVM->nemr0.s.idHvPartition; pInput->VpIndex = pGVCpu->idCpu; pInput->RsvdZ = 0; pInput->Elements[0].Name = (HV_REGISTER_NAME)pGVCpu->nem.s.Hypercall.Experiment.uItem; pInput->Elements[0].Value.Reg128.High64 = pGVCpu->nem.s.Hypercall.Experiment.uHiValue; pInput->Elements[0].Value.Reg128.Low64 = pGVCpu->nem.s.Hypercall.Experiment.uLoValue; uint64_t uResult = g_pfnHvlInvokeHypercall(HV_MAKE_CALL_INFO(HvCallSetVpRegisters, 1), pGVCpu->nemr0.s.HypercallData.HCPhysPage, 0); pGVCpu->nem.s.Hypercall.Experiment.fSuccess = uResult == HV_MAKE_CALL_REP_RET(1); pGVCpu->nem.s.Hypercall.Experiment.uStatus = uResult; rc = VINF_SUCCESS; } else rc = VERR_INVALID_FUNCTION; } return rc; #else /* !DEBUG_bird */ RT_NOREF(pGVM, idCpu, u64Arg); return VERR_NOT_SUPPORTED; #endif /* !DEBUG_bird */ }