VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR0/PGMR0.cpp@ 99725

Last change on this file since 99725 was 98103, checked in by vboxsync, 2 years ago

Copyright year updates by scm.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 54.2 KB
Line 
1/* $Id: PGMR0.cpp 98103 2023-01-17 14:15:46Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor, Ring-0.
4 */
5
6/*
7 * Copyright (C) 2007-2023 Oracle and/or its affiliates.
8 *
9 * This file is part of VirtualBox base platform packages, as
10 * available from https://www.virtualbox.org.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation, in version 3 of the
15 * License.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, see <https://www.gnu.org/licenses>.
24 *
25 * SPDX-License-Identifier: GPL-3.0-only
26 */
27
28
29/*********************************************************************************************************************************
30* Header Files *
31*********************************************************************************************************************************/
32#define LOG_GROUP LOG_GROUP_PGM
33#define VBOX_WITHOUT_PAGING_BIT_FIELDS /* 64-bit bitfields are just asking for trouble. See @bugref{9841} and others. */
34#include <VBox/rawpci.h>
35#include <VBox/vmm/pgm.h>
36#include <VBox/vmm/iem.h>
37#include <VBox/vmm/gmm.h>
38#include "PGMInternal.h"
39#include <VBox/vmm/pdmdev.h>
40#include <VBox/vmm/vmcc.h>
41#include <VBox/vmm/gvm.h>
42#include "PGMInline.h"
43#include <VBox/log.h>
44#include <VBox/err.h>
45#include <iprt/assert.h>
46#include <iprt/mem.h>
47#include <iprt/memobj.h>
48#include <iprt/process.h>
49#include <iprt/rand.h>
50#include <iprt/string.h>
51#include <iprt/time.h>
52
53
54/*
55 * Instantiate the ring-0 header/code templates.
56 */
57/** @todo r=bird: Gotta love this nested paging hacking we're still carrying with us... (Split PGM_TYPE_NESTED.) */
58#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_PROT(name)
59#include "PGMR0Bth.h"
60#undef PGM_BTH_NAME
61
62#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PROT(name)
63#include "PGMR0Bth.h"
64#undef PGM_BTH_NAME
65
66#define PGM_BTH_NAME(name) PGM_BTH_NAME_AMD64_PROT(name)
67#include "PGMR0Bth.h"
68#undef PGM_BTH_NAME
69
70#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PROT(name)
71#include "PGMR0Bth.h"
72#undef PGM_BTH_NAME
73
74
75/**
76 * Initializes the per-VM data for the PGM.
77 *
78 * This is called from under the GVMM lock, so it should only initialize the
79 * data so PGMR0CleanupVM and others will work smoothly.
80 *
81 * @returns VBox status code.
82 * @param pGVM Pointer to the global VM structure.
83 * @param hMemObj Handle to the memory object backing pGVM.
84 */
85VMMR0_INT_DECL(int) PGMR0InitPerVMData(PGVM pGVM, RTR0MEMOBJ hMemObj)
86{
87 AssertCompile(sizeof(pGVM->pgm.s) <= sizeof(pGVM->pgm.padding));
88 AssertCompile(sizeof(pGVM->pgmr0.s) <= sizeof(pGVM->pgmr0.padding));
89
90 AssertCompile(RT_ELEMENTS(pGVM->pgmr0.s.ahPoolMemObjs) == RT_ELEMENTS(pGVM->pgmr0.s.ahPoolMapObjs));
91 for (uint32_t i = 0; i < RT_ELEMENTS(pGVM->pgmr0.s.ahPoolMemObjs); i++)
92 {
93 pGVM->pgmr0.s.ahPoolMemObjs[i] = NIL_RTR0MEMOBJ;
94 pGVM->pgmr0.s.ahPoolMapObjs[i] = NIL_RTR0MEMOBJ;
95 }
96 pGVM->pgmr0.s.hPhysHandlerMemObj = NIL_RTR0MEMOBJ;
97 pGVM->pgmr0.s.hPhysHandlerMapObj = NIL_RTR0MEMOBJ;
98
99 /*
100 * Initialize the handler type table with return to ring-3 callbacks so we
101 * don't have to do anything special for ring-3 only registrations.
102 *
103 * Note! The random bits of the hType value is mainly for prevent trouble
104 * with zero initialized handles w/o needing to sacrifice handle zero.
105 */
106 for (size_t i = 0; i < RT_ELEMENTS(pGVM->pgm.s.aPhysHandlerTypes); i++)
107 {
108 pGVM->pgmr0.s.aPhysHandlerTypes[i].hType = i | (RTRandU64() & ~(uint64_t)PGMPHYSHANDLERTYPE_IDX_MASK);
109 pGVM->pgmr0.s.aPhysHandlerTypes[i].enmKind = PGMPHYSHANDLERKIND_INVALID;
110 pGVM->pgmr0.s.aPhysHandlerTypes[i].pfnHandler = pgmR0HandlerPhysicalHandlerToRing3;
111 pGVM->pgmr0.s.aPhysHandlerTypes[i].pfnPfHandler = pgmR0HandlerPhysicalPfHandlerToRing3;
112
113 pGVM->pgm.s.aPhysHandlerTypes[i].hType = pGVM->pgmr0.s.aPhysHandlerTypes[i].hType;
114 pGVM->pgm.s.aPhysHandlerTypes[i].enmKind = PGMPHYSHANDLERKIND_INVALID;
115 }
116
117 /*
118 * Get the physical address of the ZERO and MMIO-dummy pages.
119 */
120 AssertReturn(((uintptr_t)&pGVM->pgm.s.abZeroPg[0] & HOST_PAGE_OFFSET_MASK) == 0, VERR_INTERNAL_ERROR_2);
121 pGVM->pgm.s.HCPhysZeroPg = RTR0MemObjGetPagePhysAddr(hMemObj, RT_UOFFSETOF_DYN(GVM, pgm.s.abZeroPg) >> HOST_PAGE_SHIFT);
122 AssertReturn(pGVM->pgm.s.HCPhysZeroPg != NIL_RTHCPHYS, VERR_INTERNAL_ERROR_3);
123
124 AssertReturn(((uintptr_t)&pGVM->pgm.s.abMmioPg[0] & HOST_PAGE_OFFSET_MASK) == 0, VERR_INTERNAL_ERROR_2);
125 pGVM->pgm.s.HCPhysMmioPg = RTR0MemObjGetPagePhysAddr(hMemObj, RT_UOFFSETOF_DYN(GVM, pgm.s.abMmioPg) >> HOST_PAGE_SHIFT);
126 AssertReturn(pGVM->pgm.s.HCPhysMmioPg != NIL_RTHCPHYS, VERR_INTERNAL_ERROR_3);
127
128 pGVM->pgm.s.HCPhysInvMmioPg = pGVM->pgm.s.HCPhysMmioPg;
129
130 return RTCritSectInit(&pGVM->pgmr0.s.PoolGrowCritSect);
131}
132
133
134/**
135 * Initalize the per-VM PGM for ring-0.
136 *
137 * @returns VBox status code.
138 * @param pGVM Pointer to the global VM structure.
139 */
140VMMR0_INT_DECL(int) PGMR0InitVM(PGVM pGVM)
141{
142 /*
143 * Set up the ring-0 context for our access handlers.
144 */
145 int rc = PGMR0HandlerPhysicalTypeSetUpContext(pGVM, PGMPHYSHANDLERKIND_WRITE, 0 /*fFlags*/,
146 pgmPhysRomWriteHandler, pgmPhysRomWritePfHandler,
147 "ROM write protection", pGVM->pgm.s.hRomPhysHandlerType);
148 AssertLogRelRCReturn(rc, rc);
149
150 /*
151 * Register the physical access handler doing dirty MMIO2 tracing.
152 */
153 rc = PGMR0HandlerPhysicalTypeSetUpContext(pGVM, PGMPHYSHANDLERKIND_WRITE, PGMPHYSHANDLER_F_KEEP_PGM_LOCK,
154 pgmPhysMmio2WriteHandler, pgmPhysMmio2WritePfHandler,
155 "MMIO2 dirty page tracing", pGVM->pgm.s.hMmio2DirtyPhysHandlerType);
156 AssertLogRelRCReturn(rc, rc);
157
158 /*
159 * The page pool.
160 */
161 return pgmR0PoolInitVM(pGVM);
162}
163
164
165/**
166 * Called at the end of the ring-0 initialization to seal access handler types.
167 *
168 * @returns VBox status code.
169 * @param pGVM Pointer to the global VM structure.
170 */
171VMMR0_INT_DECL(void) PGMR0DoneInitVM(PGVM pGVM)
172{
173 /*
174 * Seal all the access handler types. Does both ring-3 and ring-0.
175 *
176 * Note! Since this is a void function and we don't have any ring-0 state
177 * machinery for marking the VM as bogus, this code will just
178 * override corrupted values as best as it can.
179 */
180 AssertCompile(RT_ELEMENTS(pGVM->pgmr0.s.aPhysHandlerTypes) == RT_ELEMENTS(pGVM->pgm.s.aPhysHandlerTypes));
181 for (size_t i = 0; i < RT_ELEMENTS(pGVM->pgmr0.s.aPhysHandlerTypes); i++)
182 {
183 PPGMPHYSHANDLERTYPEINTR0 const pTypeR0 = &pGVM->pgmr0.s.aPhysHandlerTypes[i];
184 PPGMPHYSHANDLERTYPEINTR3 const pTypeR3 = &pGVM->pgm.s.aPhysHandlerTypes[i];
185 PGMPHYSHANDLERKIND const enmKindR3 = pTypeR3->enmKind;
186 PGMPHYSHANDLERKIND const enmKindR0 = pTypeR0->enmKind;
187 AssertLogRelMsgStmt(pTypeR0->hType == pTypeR3->hType,
188 ("i=%u %#RX64 vs %#RX64 %s\n", i, pTypeR0->hType, pTypeR3->hType, pTypeR0->pszDesc),
189 pTypeR3->hType = pTypeR0->hType);
190 switch (enmKindR3)
191 {
192 case PGMPHYSHANDLERKIND_ALL:
193 case PGMPHYSHANDLERKIND_MMIO:
194 if ( enmKindR0 == enmKindR3
195 || enmKindR0 == PGMPHYSHANDLERKIND_INVALID)
196 {
197 pTypeR3->fRing0Enabled = enmKindR0 == enmKindR3;
198 pTypeR0->uState = PGM_PAGE_HNDL_PHYS_STATE_ALL;
199 pTypeR3->uState = PGM_PAGE_HNDL_PHYS_STATE_ALL;
200 continue;
201 }
202 break;
203
204 case PGMPHYSHANDLERKIND_WRITE:
205 if ( enmKindR0 == enmKindR3
206 || enmKindR0 == PGMPHYSHANDLERKIND_INVALID)
207 {
208 pTypeR3->fRing0Enabled = enmKindR0 == enmKindR3;
209 pTypeR0->uState = PGM_PAGE_HNDL_PHYS_STATE_WRITE;
210 pTypeR3->uState = PGM_PAGE_HNDL_PHYS_STATE_WRITE;
211 continue;
212 }
213 break;
214
215 default:
216 AssertLogRelMsgFailed(("i=%u enmKindR3=%d\n", i, enmKindR3));
217 RT_FALL_THROUGH();
218 case PGMPHYSHANDLERKIND_INVALID:
219 AssertLogRelMsg(enmKindR0 == PGMPHYSHANDLERKIND_INVALID,
220 ("i=%u enmKind=%d %s\n", i, enmKindR0, pTypeR0->pszDesc));
221 AssertLogRelMsg(pTypeR0->pfnHandler == pgmR0HandlerPhysicalHandlerToRing3,
222 ("i=%u pfnHandler=%p %s\n", i, pTypeR0->pfnHandler, pTypeR0->pszDesc));
223 AssertLogRelMsg(pTypeR0->pfnPfHandler == pgmR0HandlerPhysicalPfHandlerToRing3,
224 ("i=%u pfnPfHandler=%p %s\n", i, pTypeR0->pfnPfHandler, pTypeR0->pszDesc));
225
226 /* Unused of bad ring-3 entry, make it and the ring-0 one harmless. */
227 pTypeR3->enmKind = PGMPHYSHANDLERKIND_END;
228 pTypeR3->fRing0DevInsIdx = false;
229 pTypeR3->fKeepPgmLock = false;
230 pTypeR3->uState = 0;
231 break;
232 }
233 pTypeR3->fRing0Enabled = false;
234
235 /* Make sure the entry is harmless and goes to ring-3. */
236 pTypeR0->enmKind = PGMPHYSHANDLERKIND_END;
237 pTypeR0->pfnHandler = pgmR0HandlerPhysicalHandlerToRing3;
238 pTypeR0->pfnPfHandler = pgmR0HandlerPhysicalPfHandlerToRing3;
239 pTypeR0->fRing0DevInsIdx = false;
240 pTypeR0->fKeepPgmLock = false;
241 pTypeR0->uState = 0;
242 pTypeR0->pszDesc = "invalid";
243 }
244}
245
246
247/**
248 * Cleans up any loose ends before the GVM structure is destroyed.
249 */
250VMMR0_INT_DECL(void) PGMR0CleanupVM(PGVM pGVM)
251{
252 for (uint32_t i = 0; i < RT_ELEMENTS(pGVM->pgmr0.s.ahPoolMemObjs); i++)
253 {
254 if (pGVM->pgmr0.s.ahPoolMapObjs[i] != NIL_RTR0MEMOBJ)
255 {
256 int rc = RTR0MemObjFree(pGVM->pgmr0.s.ahPoolMapObjs[i], true /*fFreeMappings*/);
257 AssertRC(rc);
258 pGVM->pgmr0.s.ahPoolMapObjs[i] = NIL_RTR0MEMOBJ;
259 }
260
261 if (pGVM->pgmr0.s.ahPoolMemObjs[i] != NIL_RTR0MEMOBJ)
262 {
263 int rc = RTR0MemObjFree(pGVM->pgmr0.s.ahPoolMemObjs[i], true /*fFreeMappings*/);
264 AssertRC(rc);
265 pGVM->pgmr0.s.ahPoolMemObjs[i] = NIL_RTR0MEMOBJ;
266 }
267 }
268
269 if (pGVM->pgmr0.s.hPhysHandlerMapObj != NIL_RTR0MEMOBJ)
270 {
271 int rc = RTR0MemObjFree(pGVM->pgmr0.s.hPhysHandlerMapObj, true /*fFreeMappings*/);
272 AssertRC(rc);
273 pGVM->pgmr0.s.hPhysHandlerMapObj = NIL_RTR0MEMOBJ;
274 }
275
276 if (pGVM->pgmr0.s.hPhysHandlerMemObj != NIL_RTR0MEMOBJ)
277 {
278 int rc = RTR0MemObjFree(pGVM->pgmr0.s.hPhysHandlerMemObj, true /*fFreeMappings*/);
279 AssertRC(rc);
280 pGVM->pgmr0.s.hPhysHandlerMemObj = NIL_RTR0MEMOBJ;
281 }
282
283 if (RTCritSectIsInitialized(&pGVM->pgmr0.s.PoolGrowCritSect))
284 RTCritSectDelete(&pGVM->pgmr0.s.PoolGrowCritSect);
285}
286
287
288/**
289 * Worker function for PGMR3PhysAllocateHandyPages and pgmPhysEnsureHandyPage.
290 *
291 * @returns The following VBox status codes.
292 * @retval VINF_SUCCESS on success. FF cleared.
293 * @retval VINF_EM_NO_MEMORY if we're out of memory. The FF is set in this case.
294 *
295 * @param pGVM The global (ring-0) VM structure.
296 * @param idCpu The ID of the calling EMT.
297 * @param fRing3 Set if the caller is ring-3. Determins whether to
298 * return VINF_EM_NO_MEMORY or not.
299 *
300 * @thread EMT(idCpu)
301 *
302 * @remarks Must be called from within the PGM critical section. The caller
303 * must clear the new pages.
304 */
305int pgmR0PhysAllocateHandyPages(PGVM pGVM, VMCPUID idCpu, bool fRing3)
306{
307 /*
308 * Validate inputs.
309 */
310 AssertReturn(idCpu < pGVM->cCpus, VERR_INVALID_CPU_ID); /* caller already checked this, but just to be sure. */
311 Assert(pGVM->aCpus[idCpu].hEMT == RTThreadNativeSelf());
312 PGM_LOCK_ASSERT_OWNER_EX(pGVM, &pGVM->aCpus[idCpu]);
313
314 /*
315 * Check for error injection.
316 */
317 if (RT_LIKELY(!pGVM->pgm.s.fErrInjHandyPages))
318 { /* likely */ }
319 else
320 return VERR_NO_MEMORY;
321
322 /*
323 * Try allocate a full set of handy pages.
324 */
325 uint32_t const iFirst = pGVM->pgm.s.cHandyPages;
326 AssertMsgReturn(iFirst <= RT_ELEMENTS(pGVM->pgm.s.aHandyPages), ("%#x\n", iFirst), VERR_PGM_HANDY_PAGE_IPE);
327
328 uint32_t const cPages = RT_ELEMENTS(pGVM->pgm.s.aHandyPages) - iFirst;
329 if (!cPages)
330 return VINF_SUCCESS;
331
332 int rc = GMMR0AllocateHandyPages(pGVM, idCpu, cPages, cPages, &pGVM->pgm.s.aHandyPages[iFirst]);
333 if (RT_SUCCESS(rc))
334 {
335 uint32_t const cHandyPages = RT_ELEMENTS(pGVM->pgm.s.aHandyPages); /** @todo allow allocating less... */
336 pGVM->pgm.s.cHandyPages = cHandyPages;
337 VM_FF_CLEAR(pGVM, VM_FF_PGM_NEED_HANDY_PAGES);
338 VM_FF_CLEAR(pGVM, VM_FF_PGM_NO_MEMORY);
339
340#ifdef VBOX_STRICT
341 for (uint32_t i = 0; i < cHandyPages; i++)
342 {
343 Assert(pGVM->pgm.s.aHandyPages[i].idPage != NIL_GMM_PAGEID);
344 Assert(pGVM->pgm.s.aHandyPages[i].idPage <= GMM_PAGEID_LAST);
345 Assert(pGVM->pgm.s.aHandyPages[i].idSharedPage == NIL_GMM_PAGEID);
346 Assert(pGVM->pgm.s.aHandyPages[i].HCPhysGCPhys != NIL_GMMPAGEDESC_PHYS);
347 Assert(!(pGVM->pgm.s.aHandyPages[i].HCPhysGCPhys & ~X86_PTE_PAE_PG_MASK));
348 }
349#endif
350
351 /*
352 * Clear the pages.
353 */
354 for (uint32_t iPage = iFirst; iPage < cHandyPages; iPage++)
355 {
356 PGMMPAGEDESC pPage = &pGVM->pgm.s.aHandyPages[iPage];
357 if (!pPage->fZeroed)
358 {
359 void *pv = NULL;
360#ifdef VBOX_WITH_LINEAR_HOST_PHYS_MEM
361 rc = SUPR0HCPhysToVirt(pPage->HCPhysGCPhys, &pv);
362#else
363 rc = GMMR0PageIdToVirt(pGVM, pPage->idPage, &pv);
364#endif
365 AssertMsgRCReturn(rc, ("idPage=%#x HCPhys=%RHp rc=%Rrc\n", pPage->idPage, pPage->HCPhysGCPhys, rc), rc);
366
367 RT_BZERO(pv, GUEST_PAGE_SIZE);
368 pPage->fZeroed = true;
369 }
370#ifdef VBOX_STRICT
371 else
372 {
373 void *pv = NULL;
374# ifdef VBOX_WITH_LINEAR_HOST_PHYS_MEM
375 rc = SUPR0HCPhysToVirt(pPage->HCPhysGCPhys, &pv);
376# else
377 rc = GMMR0PageIdToVirt(pGVM, pPage->idPage, &pv);
378# endif
379 AssertMsgRCReturn(rc, ("idPage=%#x HCPhys=%RHp rc=%Rrc\n", pPage->idPage, pPage->HCPhysGCPhys, rc), rc);
380 AssertReturn(ASMMemIsZero(pv, GUEST_PAGE_SIZE), VERR_PGM_HANDY_PAGE_IPE);
381 }
382#endif
383 Log3(("PGMR0PhysAllocateHandyPages: idPage=%#x HCPhys=%RGp\n", pPage->idPage, pPage->HCPhysGCPhys));
384 }
385 }
386 else
387 {
388 /*
389 * We should never get here unless there is a genuine shortage of
390 * memory (or some internal error). Flag the error so the VM can be
391 * suspended ASAP and the user informed. If we're totally out of
392 * handy pages we will return failure.
393 */
394 /* Report the failure. */
395 LogRel(("PGM: Failed to procure handy pages; rc=%Rrc cHandyPages=%#x\n"
396 " cAllPages=%#x cPrivatePages=%#x cSharedPages=%#x cZeroPages=%#x\n",
397 rc, pGVM->pgm.s.cHandyPages,
398 pGVM->pgm.s.cAllPages, pGVM->pgm.s.cPrivatePages, pGVM->pgm.s.cSharedPages, pGVM->pgm.s.cZeroPages));
399
400 GMMMEMSTATSREQ Stats = { { SUPVMMR0REQHDR_MAGIC, sizeof(Stats) }, 0, 0, 0, 0, 0 };
401 if (RT_SUCCESS(GMMR0QueryMemoryStatsReq(pGVM, idCpu, &Stats)))
402 LogRel(("GMM: Statistics:\n"
403 " Allocated pages: %RX64\n"
404 " Free pages: %RX64\n"
405 " Shared pages: %RX64\n"
406 " Maximum pages: %RX64\n"
407 " Ballooned pages: %RX64\n",
408 Stats.cAllocPages, Stats.cFreePages, Stats.cSharedPages, Stats.cMaxPages, Stats.cBalloonedPages));
409
410 if ( rc != VERR_NO_MEMORY
411 && rc != VERR_NO_PHYS_MEMORY
412 && rc != VERR_LOCK_FAILED)
413 for (uint32_t iPage = 0; iPage < RT_ELEMENTS(pGVM->pgm.s.aHandyPages); iPage++)
414 LogRel(("PGM: aHandyPages[#%#04x] = {.HCPhysGCPhys=%RHp, .idPage=%#08x, .idSharedPage=%#08x}\n",
415 iPage, pGVM->pgm.s.aHandyPages[iPage].HCPhysGCPhys, pGVM->pgm.s.aHandyPages[iPage].idPage,
416 pGVM->pgm.s.aHandyPages[iPage].idSharedPage));
417
418 /* Set the FFs and adjust rc. */
419 VM_FF_SET(pGVM, VM_FF_PGM_NEED_HANDY_PAGES);
420 VM_FF_SET(pGVM, VM_FF_PGM_NO_MEMORY);
421 if (!fRing3)
422 if ( rc == VERR_NO_MEMORY
423 || rc == VERR_NO_PHYS_MEMORY
424 || rc == VERR_LOCK_FAILED
425 || rc == VERR_MAP_FAILED)
426 rc = VINF_EM_NO_MEMORY;
427 }
428
429 LogFlow(("PGMR0PhysAllocateHandyPages: cPages=%d rc=%Rrc\n", cPages, rc));
430 return rc;
431}
432
433
434/**
435 * Worker function for PGMR3PhysAllocateHandyPages / VMMR0_DO_PGM_ALLOCATE_HANDY_PAGES.
436 *
437 * @returns The following VBox status codes.
438 * @retval VINF_SUCCESS on success. FF cleared.
439 * @retval VINF_EM_NO_MEMORY if we're out of memory. The FF is set in this case.
440 *
441 * @param pGVM The global (ring-0) VM structure.
442 * @param idCpu The ID of the calling EMT.
443 *
444 * @thread EMT(idCpu)
445 *
446 * @remarks Must be called from within the PGM critical section. The caller
447 * must clear the new pages.
448 */
449VMMR0_INT_DECL(int) PGMR0PhysAllocateHandyPages(PGVM pGVM, VMCPUID idCpu)
450{
451 /*
452 * Validate inputs.
453 */
454 AssertReturn(idCpu < pGVM->cCpus, VERR_INVALID_CPU_ID); /* caller already checked this, but just to be sure. */
455 AssertReturn(pGVM->aCpus[idCpu].hEMT == RTThreadNativeSelf(), VERR_NOT_OWNER);
456
457 /*
458 * Enter the PGM lock and call the worker.
459 */
460 int rc = PGM_LOCK(pGVM);
461 if (RT_SUCCESS(rc))
462 {
463 rc = pgmR0PhysAllocateHandyPages(pGVM, idCpu, true /*fRing3*/);
464 PGM_UNLOCK(pGVM);
465 }
466 return rc;
467}
468
469
470/**
471 * Flushes any changes pending in the handy page array.
472 *
473 * It is very important that this gets done when page sharing is enabled.
474 *
475 * @returns The following VBox status codes.
476 * @retval VINF_SUCCESS on success. FF cleared.
477 *
478 * @param pGVM The global (ring-0) VM structure.
479 * @param idCpu The ID of the calling EMT.
480 *
481 * @thread EMT(idCpu)
482 *
483 * @remarks Must be called from within the PGM critical section.
484 */
485VMMR0_INT_DECL(int) PGMR0PhysFlushHandyPages(PGVM pGVM, VMCPUID idCpu)
486{
487 /*
488 * Validate inputs.
489 */
490 AssertReturn(idCpu < pGVM->cCpus, VERR_INVALID_CPU_ID); /* caller already checked this, but just to be sure. */
491 AssertReturn(pGVM->aCpus[idCpu].hEMT == RTThreadNativeSelf(), VERR_NOT_OWNER);
492 PGM_LOCK_ASSERT_OWNER_EX(pGVM, &pGVM->aCpus[idCpu]);
493
494 /*
495 * Try allocate a full set of handy pages.
496 */
497 uint32_t iFirst = pGVM->pgm.s.cHandyPages;
498 AssertReturn(iFirst <= RT_ELEMENTS(pGVM->pgm.s.aHandyPages), VERR_PGM_HANDY_PAGE_IPE);
499 uint32_t cPages = RT_ELEMENTS(pGVM->pgm.s.aHandyPages) - iFirst;
500 if (!cPages)
501 return VINF_SUCCESS;
502 int rc = GMMR0AllocateHandyPages(pGVM, idCpu, cPages, 0, &pGVM->pgm.s.aHandyPages[iFirst]);
503
504 LogFlow(("PGMR0PhysFlushHandyPages: cPages=%d rc=%Rrc\n", cPages, rc));
505 return rc;
506}
507
508
509/**
510 * Allocate a large page at @a GCPhys.
511 *
512 * @returns The following VBox status codes.
513 * @retval VINF_SUCCESS on success.
514 * @retval VINF_EM_NO_MEMORY if we're out of memory.
515 *
516 * @param pGVM The global (ring-0) VM structure.
517 * @param idCpu The ID of the calling EMT.
518 * @param GCPhys The guest physical address of the page.
519 *
520 * @thread EMT(idCpu)
521 *
522 * @remarks Must be called from within the PGM critical section. The caller
523 * must clear the new pages.
524 */
525int pgmR0PhysAllocateLargePage(PGVM pGVM, VMCPUID idCpu, RTGCPHYS GCPhys)
526{
527 STAM_PROFILE_START(&pGVM->pgm.s.Stats.StatLargePageAlloc2, a);
528 PGM_LOCK_ASSERT_OWNER_EX(pGVM, &pGVM->aCpus[idCpu]);
529
530 /*
531 * Allocate a large page.
532 */
533 RTHCPHYS HCPhys = NIL_GMMPAGEDESC_PHYS;
534 uint32_t idPage = NIL_GMM_PAGEID;
535
536 if (true) /** @todo pre-allocate 2-3 pages on the allocation thread. */
537 {
538 uint64_t const nsAllocStart = RTTimeNanoTS();
539 if (nsAllocStart < pGVM->pgm.s.nsLargePageRetry)
540 {
541 LogFlowFunc(("returns VERR_TRY_AGAIN - %RU64 ns left of hold off period\n", pGVM->pgm.s.nsLargePageRetry - nsAllocStart));
542 return VERR_TRY_AGAIN;
543 }
544
545 int const rc = GMMR0AllocateLargePage(pGVM, idCpu, _2M, &idPage, &HCPhys);
546
547 uint64_t const nsAllocEnd = RTTimeNanoTS();
548 uint64_t const cNsElapsed = nsAllocEnd - nsAllocStart;
549 STAM_REL_PROFILE_ADD_PERIOD(&pGVM->pgm.s.StatLargePageAlloc, cNsElapsed);
550 if (cNsElapsed < RT_NS_100MS)
551 pGVM->pgm.s.cLargePageLongAllocRepeats = 0;
552 else
553 {
554 /* If a large page allocation takes more than 100ms back off for a
555 while so the host OS can reshuffle memory and make some more large
556 pages available. However if it took over a second, just disable it. */
557 STAM_REL_COUNTER_INC(&pGVM->pgm.s.StatLargePageOverflow);
558 pGVM->pgm.s.cLargePageLongAllocRepeats++;
559 if (cNsElapsed > RT_NS_1SEC)
560 {
561 LogRel(("PGMR0PhysAllocateLargePage: Disabling large pages after %'RU64 ns allocation time.\n", cNsElapsed));
562 PGMSetLargePageUsage(pGVM, false);
563 }
564 else
565 {
566 Log(("PGMR0PhysAllocateLargePage: Suspending large page allocations for %u sec after %'RU64 ns allocation time.\n",
567 30 * pGVM->pgm.s.cLargePageLongAllocRepeats, cNsElapsed));
568 pGVM->pgm.s.nsLargePageRetry = nsAllocEnd + RT_NS_30SEC * pGVM->pgm.s.cLargePageLongAllocRepeats;
569 }
570 }
571
572 if (RT_FAILURE(rc))
573 {
574 Log(("PGMR0PhysAllocateLargePage: Failed: %Rrc\n", rc));
575 STAM_REL_COUNTER_INC(&pGVM->pgm.s.StatLargePageAllocFailed);
576 if (rc == VERR_NOT_SUPPORTED)
577 {
578 LogRel(("PGM: Disabling large pages because of VERR_NOT_SUPPORTED status.\n"));
579 PGMSetLargePageUsage(pGVM, false);
580 }
581 return rc;
582 }
583 }
584
585 STAM_PROFILE_STOP_START(&pGVM->pgm.s.Stats.StatLargePageAlloc2, &pGVM->pgm.s.Stats.StatLargePageSetup, a);
586
587 /*
588 * Enter the pages into PGM.
589 */
590 bool fFlushTLBs = false;
591 VBOXSTRICTRC rc = VINF_SUCCESS;
592 unsigned cLeft = _2M / GUEST_PAGE_SIZE;
593 while (cLeft-- > 0)
594 {
595 PPGMPAGE const pPage = pgmPhysGetPage(pGVM, GCPhys);
596 AssertReturn(pPage && PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM && PGM_PAGE_IS_ZERO(pPage), VERR_PGM_UNEXPECTED_PAGE_STATE);
597
598 /* Make sure there are no zero mappings. */
599 uint16_t const u16Tracking = PGM_PAGE_GET_TRACKING(pPage);
600 if (u16Tracking == 0)
601 Assert(PGM_PAGE_GET_PTE_INDEX(pPage) == 0);
602 else
603 {
604 STAM_REL_COUNTER_INC(&pGVM->pgm.s.StatLargePageZeroEvict);
605 VBOXSTRICTRC rc3 = pgmPoolTrackUpdateGCPhys(pGVM, GCPhys, pPage, true /*fFlushPTEs*/, &fFlushTLBs);
606 Log(("PGMR0PhysAllocateLargePage: GCPhys=%RGp: tracking=%#x rc3=%Rrc\n", GCPhys, u16Tracking, VBOXSTRICTRC_VAL(rc3)));
607 if (rc3 != VINF_SUCCESS && rc == VINF_SUCCESS)
608 rc = rc3; /** @todo not perfect... */
609 PGM_PAGE_SET_PTE_INDEX(pGVM, pPage, 0);
610 PGM_PAGE_SET_TRACKING(pGVM, pPage, 0);
611 }
612
613 /* Setup the new page. */
614 PGM_PAGE_SET_HCPHYS(pGVM, pPage, HCPhys);
615 PGM_PAGE_SET_STATE(pGVM, pPage, PGM_PAGE_STATE_ALLOCATED);
616 PGM_PAGE_SET_PDE_TYPE(pGVM, pPage, PGM_PAGE_PDE_TYPE_PDE);
617 PGM_PAGE_SET_PAGEID(pGVM, pPage, idPage);
618 Log3(("PGMR0PhysAllocateLargePage: GCPhys=%RGp: idPage=%#x HCPhys=%RGp (old tracking=%#x)\n",
619 GCPhys, idPage, HCPhys, u16Tracking));
620
621 /* advance */
622 idPage++;
623 HCPhys += GUEST_PAGE_SIZE;
624 GCPhys += GUEST_PAGE_SIZE;
625 }
626
627 STAM_COUNTER_ADD(&pGVM->pgm.s.Stats.StatRZPageReplaceZero, _2M / GUEST_PAGE_SIZE);
628 pGVM->pgm.s.cZeroPages -= _2M / GUEST_PAGE_SIZE;
629 pGVM->pgm.s.cPrivatePages += _2M / GUEST_PAGE_SIZE;
630
631 /*
632 * Flush all TLBs.
633 */
634 if (!fFlushTLBs)
635 { /* likely as we shouldn't normally map zero pages */ }
636 else
637 {
638 STAM_REL_COUNTER_INC(&pGVM->pgm.s.StatLargePageTlbFlush);
639 PGM_INVL_ALL_VCPU_TLBS(pGVM);
640 }
641 /** @todo this is a little expensive (~3000 ticks) since we'll have to
642 * invalidate everything. Add a version to the TLB? */
643 pgmPhysInvalidatePageMapTLB(pGVM);
644 IEMTlbInvalidateAllPhysicalAllCpus(pGVM, idCpu);
645
646 STAM_PROFILE_STOP(&pGVM->pgm.s.Stats.StatLargePageSetup, a);
647#if 0 /** @todo returning info statuses here might not be a great idea... */
648 LogFlow(("PGMR0PhysAllocateLargePage: returns %Rrc\n", VBOXSTRICTRC_VAL(rc) ));
649 return VBOXSTRICTRC_TODO(rc);
650#else
651 LogFlow(("PGMR0PhysAllocateLargePage: returns VINF_SUCCESS (rc=%Rrc)\n", VBOXSTRICTRC_VAL(rc) ));
652 return VINF_SUCCESS;
653#endif
654}
655
656
657/**
658 * Allocate a large page at @a GCPhys.
659 *
660 * @returns The following VBox status codes.
661 * @retval VINF_SUCCESS on success.
662 * @retval VINF_EM_NO_MEMORY if we're out of memory.
663 *
664 * @param pGVM The global (ring-0) VM structure.
665 * @param idCpu The ID of the calling EMT.
666 * @param GCPhys The guest physical address of the page.
667 *
668 * @thread EMT(idCpu)
669 *
670 * @remarks Must be called from within the PGM critical section. The caller
671 * must clear the new pages.
672 */
673VMMR0_INT_DECL(int) PGMR0PhysAllocateLargePage(PGVM pGVM, VMCPUID idCpu, RTGCPHYS GCPhys)
674{
675 /*
676 * Validate inputs.
677 */
678 AssertReturn(idCpu < pGVM->cCpus, VERR_INVALID_CPU_ID);
679 AssertReturn(pGVM->aCpus[idCpu].hEMT == RTThreadNativeSelf(), VERR_NOT_OWNER);
680
681 int rc = PGM_LOCK(pGVM);
682 AssertRCReturn(rc, rc);
683
684 /* The caller might have done this already, but since we're ring-3 callable we
685 need to make sure everything is fine before starting the allocation here. */
686 for (unsigned i = 0; i < _2M / GUEST_PAGE_SIZE; i++)
687 {
688 PPGMPAGE pPage;
689 rc = pgmPhysGetPageEx(pGVM, GCPhys + i * GUEST_PAGE_SIZE, &pPage);
690 AssertRCReturnStmt(rc, PGM_UNLOCK(pGVM), rc);
691 AssertReturnStmt(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM, PGM_UNLOCK(pGVM), VERR_PGM_PHYS_NOT_RAM);
692 AssertReturnStmt(PGM_PAGE_IS_ZERO(pPage), PGM_UNLOCK(pGVM), VERR_PGM_UNEXPECTED_PAGE_STATE);
693 }
694
695 /*
696 * Call common code.
697 */
698 rc = pgmR0PhysAllocateLargePage(pGVM, idCpu, GCPhys);
699
700 PGM_UNLOCK(pGVM);
701 return rc;
702}
703
704
705/**
706 * Locate a MMIO2 range.
707 *
708 * @returns Pointer to the MMIO2 range.
709 * @param pGVM The global (ring-0) VM structure.
710 * @param pDevIns The device instance owning the region.
711 * @param hMmio2 Handle to look up.
712 */
713DECLINLINE(PPGMREGMMIO2RANGE) pgmR0PhysMmio2Find(PGVM pGVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2)
714{
715 /*
716 * We use the lookup table here as list walking is tedious in ring-0 when using
717 * ring-3 pointers and this probably will require some kind of refactoring anyway.
718 */
719 if (hMmio2 <= RT_ELEMENTS(pGVM->pgm.s.apMmio2RangesR0) && hMmio2 != 0)
720 {
721 PPGMREGMMIO2RANGE pCur = pGVM->pgm.s.apMmio2RangesR0[hMmio2 - 1];
722 if (pCur && pCur->pDevInsR3 == pDevIns->pDevInsForR3)
723 {
724 Assert(pCur->idMmio2 == hMmio2);
725 return pCur;
726 }
727 Assert(!pCur);
728 }
729 return NULL;
730}
731
732
733/**
734 * Worker for PDMDEVHLPR0::pfnMmio2SetUpContext.
735 *
736 * @returns VBox status code.
737 * @param pGVM The global (ring-0) VM structure.
738 * @param pDevIns The device instance.
739 * @param hMmio2 The MMIO2 region to map into ring-0 address space.
740 * @param offSub The offset into the region.
741 * @param cbSub The size of the mapping, zero meaning all the rest.
742 * @param ppvMapping Where to return the ring-0 mapping address.
743 */
744VMMR0_INT_DECL(int) PGMR0PhysMMIO2MapKernel(PGVM pGVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2,
745 size_t offSub, size_t cbSub, void **ppvMapping)
746{
747 AssertReturn(!(offSub & HOST_PAGE_OFFSET_MASK), VERR_UNSUPPORTED_ALIGNMENT);
748 AssertReturn(!(cbSub & HOST_PAGE_OFFSET_MASK), VERR_UNSUPPORTED_ALIGNMENT);
749
750 /*
751 * Translate hRegion into a range pointer.
752 */
753 PPGMREGMMIO2RANGE pFirstRegMmio = pgmR0PhysMmio2Find(pGVM, pDevIns, hMmio2);
754 AssertReturn(pFirstRegMmio, VERR_NOT_FOUND);
755#ifndef VBOX_WITH_LINEAR_HOST_PHYS_MEM
756 uint8_t * const pvR0 = (uint8_t *)pFirstRegMmio->pvR0;
757#else
758 RTR3PTR const pvR3 = pFirstRegMmio->pvR3;
759#endif
760 RTGCPHYS const cbReal = pFirstRegMmio->cbReal;
761 pFirstRegMmio = NULL;
762 ASMCompilerBarrier();
763
764 AssertReturn(offSub < cbReal, VERR_OUT_OF_RANGE);
765 if (cbSub == 0)
766 cbSub = cbReal - offSub;
767 else
768 AssertReturn(cbSub < cbReal && cbSub + offSub <= cbReal, VERR_OUT_OF_RANGE);
769
770 /*
771 * Do the mapping.
772 */
773#ifndef VBOX_WITH_LINEAR_HOST_PHYS_MEM
774 AssertPtr(pvR0);
775 *ppvMapping = pvR0 + offSub;
776 return VINF_SUCCESS;
777#else
778 return SUPR0PageMapKernel(pGVM->pSession, pvR3, (uint32_t)offSub, (uint32_t)cbSub, 0 /*fFlags*/, ppvMapping);
779#endif
780}
781
782
783/**
784 * This is called during PGMR3Init to init the physical access handler allocator
785 * and tree.
786 *
787 * @returns VBox status code.
788 * @param pGVM Pointer to the global VM structure.
789 * @param cEntries Desired number of physical access handlers to reserve
790 * space for (will be adjusted).
791 * @thread EMT(0)
792 */
793VMMR0_INT_DECL(int) PGMR0PhysHandlerInitReqHandler(PGVM pGVM, uint32_t cEntries)
794{
795 /*
796 * Validate the input and state.
797 */
798 int rc = GVMMR0ValidateGVMandEMT(pGVM, 0);
799 AssertRCReturn(rc, rc);
800 VM_ASSERT_STATE_RETURN(pGVM, VMSTATE_CREATING, VERR_VM_INVALID_VM_STATE); /** @todo ring-0 safe state check. */
801
802 AssertReturn(pGVM->pgmr0.s.PhysHandlerAllocator.m_paNodes == NULL, VERR_WRONG_ORDER);
803 AssertReturn(pGVM->pgm.s.PhysHandlerAllocator.m_paNodes == NULL, VERR_WRONG_ORDER);
804
805 AssertLogRelMsgReturn(cEntries <= _64K, ("%#x\n", cEntries), VERR_OUT_OF_RANGE);
806
807 /*
808 * Calculate the table size and allocate it.
809 */
810 uint32_t cbTreeAndBitmap = 0;
811 uint32_t const cbTotalAligned = pgmHandlerPhysicalCalcTableSizes(&cEntries, &cbTreeAndBitmap);
812 RTR0MEMOBJ hMemObj = NIL_RTR0MEMOBJ;
813 rc = RTR0MemObjAllocPage(&hMemObj, cbTotalAligned, false);
814 if (RT_SUCCESS(rc))
815 {
816 RTR0MEMOBJ hMapObj = NIL_RTR0MEMOBJ;
817 rc = RTR0MemObjMapUser(&hMapObj, hMemObj, (RTR3PTR)-1, 0, RTMEM_PROT_READ | RTMEM_PROT_WRITE, RTR0ProcHandleSelf());
818 if (RT_SUCCESS(rc))
819 {
820 uint8_t *pb = (uint8_t *)RTR0MemObjAddress(hMemObj);
821 if (!RTR0MemObjWasZeroInitialized(hMemObj))
822 RT_BZERO(pb, cbTotalAligned);
823
824 pGVM->pgmr0.s.PhysHandlerAllocator.initSlabAllocator(cEntries, (PPGMPHYSHANDLER)&pb[cbTreeAndBitmap],
825 (uint64_t *)&pb[sizeof(PGMPHYSHANDLERTREE)]);
826 pGVM->pgmr0.s.pPhysHandlerTree = (PPGMPHYSHANDLERTREE)pb;
827 pGVM->pgmr0.s.pPhysHandlerTree->initWithAllocator(&pGVM->pgmr0.s.PhysHandlerAllocator);
828 pGVM->pgmr0.s.hPhysHandlerMemObj = hMemObj;
829 pGVM->pgmr0.s.hPhysHandlerMapObj = hMapObj;
830
831 AssertCompile(sizeof(pGVM->pgm.s.PhysHandlerAllocator) == sizeof(pGVM->pgmr0.s.PhysHandlerAllocator));
832 RTR3PTR R3Ptr = RTR0MemObjAddressR3(hMapObj);
833 pGVM->pgm.s.pPhysHandlerTree = R3Ptr;
834 pGVM->pgm.s.PhysHandlerAllocator.m_paNodes = R3Ptr + cbTreeAndBitmap;
835 pGVM->pgm.s.PhysHandlerAllocator.m_pbmAlloc = R3Ptr + sizeof(PGMPHYSHANDLERTREE);
836 pGVM->pgm.s.PhysHandlerAllocator.m_cNodes = cEntries;
837 pGVM->pgm.s.PhysHandlerAllocator.m_cErrors = 0;
838 pGVM->pgm.s.PhysHandlerAllocator.m_idxAllocHint = 0;
839 pGVM->pgm.s.PhysHandlerAllocator.m_uPadding = 0;
840 return VINF_SUCCESS;
841 }
842
843 RTR0MemObjFree(hMemObj, true /*fFreeMappings*/);
844 }
845 return rc;
846}
847
848
849/**
850 * Updates a physical access handler type with ring-0 callback functions.
851 *
852 * The handler type must first have been registered in ring-3.
853 *
854 * @returns VBox status code.
855 * @param pGVM The global (ring-0) VM structure.
856 * @param enmKind The kind of access handler.
857 * @param fFlags PGMPHYSHANDLER_F_XXX
858 * @param pfnHandler Pointer to the ring-0 handler callback.
859 * @param pfnPfHandler Pointer to the ring-0 \#PF handler callback.
860 * callback. Can be NULL (not recommended though).
861 * @param pszDesc The type description.
862 * @param hType The handle to do ring-0 callback registrations for.
863 * @thread EMT(0)
864 */
865VMMR0_INT_DECL(int) PGMR0HandlerPhysicalTypeSetUpContext(PGVM pGVM, PGMPHYSHANDLERKIND enmKind, uint32_t fFlags,
866 PFNPGMPHYSHANDLER pfnHandler, PFNPGMRZPHYSPFHANDLER pfnPfHandler,
867 const char *pszDesc, PGMPHYSHANDLERTYPE hType)
868{
869 /*
870 * Validate input.
871 */
872 AssertPtrReturn(pfnHandler, VERR_INVALID_POINTER);
873 AssertPtrNullReturn(pfnPfHandler, VERR_INVALID_POINTER);
874
875 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
876 AssertReturn( enmKind == PGMPHYSHANDLERKIND_WRITE
877 || enmKind == PGMPHYSHANDLERKIND_ALL
878 || enmKind == PGMPHYSHANDLERKIND_MMIO,
879 VERR_INVALID_PARAMETER);
880 AssertMsgReturn(!(fFlags & ~PGMPHYSHANDLER_F_VALID_MASK), ("%#x\n", fFlags), VERR_INVALID_FLAGS);
881
882 PPGMPHYSHANDLERTYPEINTR0 const pTypeR0 = &pGVM->pgmr0.s.aPhysHandlerTypes[hType & PGMPHYSHANDLERTYPE_IDX_MASK];
883 AssertMsgReturn(hType == pTypeR0->hType, ("%#RX64, expected=%#RX64\n", hType, pTypeR0->hType), VERR_INVALID_HANDLE);
884 AssertCompile(RT_ELEMENTS(pGVM->pgmr0.s.aPhysHandlerTypes) == RT_ELEMENTS(pGVM->pgm.s.aPhysHandlerTypes));
885 AssertCompile(RT_ELEMENTS(pGVM->pgmr0.s.aPhysHandlerTypes) == PGMPHYSHANDLERTYPE_IDX_MASK + 1);
886 AssertReturn(pTypeR0->enmKind == PGMPHYSHANDLERKIND_INVALID, VERR_ALREADY_INITIALIZED);
887
888 int rc = GVMMR0ValidateGVMandEMT(pGVM, 0);
889 AssertRCReturn(rc, rc);
890 VM_ASSERT_STATE_RETURN(pGVM, VMSTATE_CREATING, VERR_VM_INVALID_VM_STATE); /** @todo ring-0 safe state check. */
891
892 PPGMPHYSHANDLERTYPEINTR3 const pTypeR3 = &pGVM->pgm.s.aPhysHandlerTypes[hType & PGMPHYSHANDLERTYPE_IDX_MASK];
893 AssertMsgReturn(pTypeR3->enmKind == enmKind,
894 ("%#x: %d, expected %d\n", hType, pTypeR3->enmKind, enmKind),
895 VERR_INVALID_HANDLE);
896 AssertMsgReturn(pTypeR3->fKeepPgmLock == RT_BOOL(fFlags & PGMPHYSHANDLER_F_KEEP_PGM_LOCK),
897 ("%#x: %d, fFlags=%#x\n", hType, pTypeR3->fKeepPgmLock, fFlags),
898 VERR_INVALID_HANDLE);
899 AssertMsgReturn(pTypeR3->fRing0DevInsIdx == RT_BOOL(fFlags & PGMPHYSHANDLER_F_R0_DEVINS_IDX),
900 ("%#x: %d, fFlags=%#x\n", hType, pTypeR3->fRing0DevInsIdx, fFlags),
901 VERR_INVALID_HANDLE);
902 AssertMsgReturn(pTypeR3->fNotInHm == RT_BOOL(fFlags & PGMPHYSHANDLER_F_NOT_IN_HM),
903 ("%#x: %d, fFlags=%#x\n", hType, pTypeR3->fNotInHm, fFlags),
904 VERR_INVALID_HANDLE);
905
906 /*
907 * Update the entry.
908 */
909 pTypeR0->enmKind = enmKind;
910 pTypeR0->uState = enmKind == PGMPHYSHANDLERKIND_WRITE
911 ? PGM_PAGE_HNDL_PHYS_STATE_WRITE : PGM_PAGE_HNDL_PHYS_STATE_ALL;
912 pTypeR0->fKeepPgmLock = RT_BOOL(fFlags & PGMPHYSHANDLER_F_KEEP_PGM_LOCK);
913 pTypeR0->fRing0DevInsIdx = RT_BOOL(fFlags & PGMPHYSHANDLER_F_R0_DEVINS_IDX);
914 pTypeR0->fNotInHm = RT_BOOL(fFlags & PGMPHYSHANDLER_F_NOT_IN_HM);
915 pTypeR0->pfnHandler = pfnHandler;
916 pTypeR0->pfnPfHandler = pfnPfHandler;
917 pTypeR0->pszDesc = pszDesc;
918
919 pTypeR3->fRing0Enabled = true;
920
921 LogFlow(("PGMR0HandlerPhysicalTypeRegister: hType=%#x: enmKind=%d fFlags=%#x pfnHandler=%p pfnPfHandler=%p pszDesc=%s\n",
922 hType, enmKind, fFlags, pfnHandler, pfnPfHandler, pszDesc));
923 return VINF_SUCCESS;
924}
925
926
927#ifdef VBOX_WITH_PCI_PASSTHROUGH
928/* Interface sketch. The interface belongs to a global PCI pass-through
929 manager. It shall use the global VM handle, not the user VM handle to
930 store the per-VM info (domain) since that is all ring-0 stuff, thus
931 passing pGVM here. I've tentitively prefixed the functions 'GPciRawR0',
932 we can discuss the PciRaw code re-organtization when I'm back from
933 vacation.
934
935 I've implemented the initial IOMMU set up below. For things to work
936 reliably, we will probably need add a whole bunch of checks and
937 GPciRawR0GuestPageUpdate call to the PGM code. For the present,
938 assuming nested paging (enforced) and prealloc (enforced), no
939 ballooning (check missing), page sharing (check missing) or live
940 migration (check missing), it might work fine. At least if some
941 VM power-off hook is present and can tear down the IOMMU page tables. */
942
943/**
944 * Tells the global PCI pass-through manager that we are about to set up the
945 * guest page to host page mappings for the specfied VM.
946 *
947 * @returns VBox status code.
948 *
949 * @param pGVM The ring-0 VM structure.
950 */
951VMMR0_INT_DECL(int) GPciRawR0GuestPageBeginAssignments(PGVM pGVM)
952{
953 NOREF(pGVM);
954 return VINF_SUCCESS;
955}
956
957
958/**
959 * Assigns a host page mapping for a guest page.
960 *
961 * This is only used when setting up the mappings, i.e. between
962 * GPciRawR0GuestPageBeginAssignments and GPciRawR0GuestPageEndAssignments.
963 *
964 * @returns VBox status code.
965 * @param pGVM The ring-0 VM structure.
966 * @param GCPhys The address of the guest page (page aligned).
967 * @param HCPhys The address of the host page (page aligned).
968 */
969VMMR0_INT_DECL(int) GPciRawR0GuestPageAssign(PGVM pGVM, RTGCPHYS GCPhys, RTHCPHYS HCPhys)
970{
971 AssertReturn(!(GCPhys & HOST_PAGE_OFFSET_MASK), VERR_INTERNAL_ERROR_3);
972 AssertReturn(!(HCPhys & HOST_PAGE_OFFSET_MASK), VERR_INTERNAL_ERROR_3);
973
974 if (pGVM->rawpci.s.pfnContigMemInfo)
975 /** @todo what do we do on failure? */
976 pGVM->rawpci.s.pfnContigMemInfo(&pGVM->rawpci.s, HCPhys, GCPhys, HOST_PAGE_SIZE, PCIRAW_MEMINFO_MAP);
977
978 return VINF_SUCCESS;
979}
980
981
982/**
983 * Indicates that the specified guest page doesn't exists but doesn't have host
984 * page mapping we trust PCI pass-through with.
985 *
986 * This is only used when setting up the mappings, i.e. between
987 * GPciRawR0GuestPageBeginAssignments and GPciRawR0GuestPageEndAssignments.
988 *
989 * @returns VBox status code.
990 * @param pGVM The ring-0 VM structure.
991 * @param GCPhys The address of the guest page (page aligned).
992 * @param HCPhys The address of the host page (page aligned).
993 */
994VMMR0_INT_DECL(int) GPciRawR0GuestPageUnassign(PGVM pGVM, RTGCPHYS GCPhys)
995{
996 AssertReturn(!(GCPhys & HOST_PAGE_OFFSET_MASK), VERR_INTERNAL_ERROR_3);
997
998 if (pGVM->rawpci.s.pfnContigMemInfo)
999 /** @todo what do we do on failure? */
1000 pGVM->rawpci.s.pfnContigMemInfo(&pGVM->rawpci.s, 0, GCPhys, HOST_PAGE_SIZE, PCIRAW_MEMINFO_UNMAP);
1001
1002 return VINF_SUCCESS;
1003}
1004
1005
1006/**
1007 * Tells the global PCI pass-through manager that we have completed setting up
1008 * the guest page to host page mappings for the specfied VM.
1009 *
1010 * This complements GPciRawR0GuestPageBeginAssignments and will be called even
1011 * if some page assignment failed.
1012 *
1013 * @returns VBox status code.
1014 *
1015 * @param pGVM The ring-0 VM structure.
1016 */
1017VMMR0_INT_DECL(int) GPciRawR0GuestPageEndAssignments(PGVM pGVM)
1018{
1019 NOREF(pGVM);
1020 return VINF_SUCCESS;
1021}
1022
1023
1024/**
1025 * Tells the global PCI pass-through manager that a guest page mapping has
1026 * changed after the initial setup.
1027 *
1028 * @returns VBox status code.
1029 * @param pGVM The ring-0 VM structure.
1030 * @param GCPhys The address of the guest page (page aligned).
1031 * @param HCPhys The new host page address or NIL_RTHCPHYS if
1032 * now unassigned.
1033 */
1034VMMR0_INT_DECL(int) GPciRawR0GuestPageUpdate(PGVM pGVM, RTGCPHYS GCPhys, RTHCPHYS HCPhys)
1035{
1036 AssertReturn(!(GCPhys & HOST_PAGE_OFFSET_MASK), VERR_INTERNAL_ERROR_4);
1037 AssertReturn(!(HCPhys & HOST_PAGE_OFFSET_MASK) || HCPhys == NIL_RTHCPHYS, VERR_INTERNAL_ERROR_4);
1038 NOREF(pGVM);
1039 return VINF_SUCCESS;
1040}
1041
1042#endif /* VBOX_WITH_PCI_PASSTHROUGH */
1043
1044
1045/**
1046 * Sets up the IOMMU when raw PCI device is enabled.
1047 *
1048 * @note This is a hack that will probably be remodelled and refined later!
1049 *
1050 * @returns VBox status code.
1051 *
1052 * @param pGVM The global (ring-0) VM structure.
1053 */
1054VMMR0_INT_DECL(int) PGMR0PhysSetupIoMmu(PGVM pGVM)
1055{
1056 int rc = GVMMR0ValidateGVM(pGVM);
1057 if (RT_FAILURE(rc))
1058 return rc;
1059
1060#ifdef VBOX_WITH_PCI_PASSTHROUGH
1061 if (pGVM->pgm.s.fPciPassthrough)
1062 {
1063 /*
1064 * The Simplistic Approach - Enumerate all the pages and call tell the
1065 * IOMMU about each of them.
1066 */
1067 PGM_LOCK_VOID(pGVM);
1068 rc = GPciRawR0GuestPageBeginAssignments(pGVM);
1069 if (RT_SUCCESS(rc))
1070 {
1071 for (PPGMRAMRANGE pRam = pGVM->pgm.s.pRamRangesXR0; RT_SUCCESS(rc) && pRam; pRam = pRam->pNextR0)
1072 {
1073 PPGMPAGE pPage = &pRam->aPages[0];
1074 RTGCPHYS GCPhys = pRam->GCPhys;
1075 uint32_t cLeft = pRam->cb >> GUEST_PAGE_SHIFT;
1076 while (cLeft-- > 0)
1077 {
1078 /* Only expose pages that are 100% safe for now. */
1079 if ( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
1080 && PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED
1081 && !PGM_PAGE_HAS_ANY_HANDLERS(pPage))
1082 rc = GPciRawR0GuestPageAssign(pGVM, GCPhys, PGM_PAGE_GET_HCPHYS(pPage));
1083 else
1084 rc = GPciRawR0GuestPageUnassign(pGVM, GCPhys);
1085
1086 /* next */
1087 pPage++;
1088 GCPhys += HOST_PAGE_SIZE;
1089 }
1090 }
1091
1092 int rc2 = GPciRawR0GuestPageEndAssignments(pGVM);
1093 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
1094 rc = rc2;
1095 }
1096 PGM_UNLOCK(pGVM);
1097 }
1098 else
1099#endif
1100 rc = VERR_NOT_SUPPORTED;
1101 return rc;
1102}
1103
1104
1105/**
1106 * \#PF Handler for nested paging.
1107 *
1108 * @returns VBox status code (appropriate for trap handling and GC return).
1109 * @param pGVM The global (ring-0) VM structure.
1110 * @param pGVCpu The global (ring-0) CPU structure of the calling
1111 * EMT.
1112 * @param enmShwPagingMode Paging mode for the nested page tables.
1113 * @param uErr The trap error code.
1114 * @param pCtx Pointer to the register context for the CPU.
1115 * @param GCPhysFault The fault address.
1116 */
1117VMMR0DECL(int) PGMR0Trap0eHandlerNestedPaging(PGVM pGVM, PGVMCPU pGVCpu, PGMMODE enmShwPagingMode, RTGCUINT uErr,
1118 PCPUMCTX pCtx, RTGCPHYS GCPhysFault)
1119{
1120 int rc;
1121
1122 LogFlow(("PGMTrap0eHandler: uErr=%RGx GCPhysFault=%RGp eip=%RGv\n", uErr, GCPhysFault, (RTGCPTR)pCtx->rip));
1123 STAM_PROFILE_START(&pGVCpu->pgm.s.StatRZTrap0e, a);
1124 STAM_STATS({ pGVCpu->pgmr0.s.pStatTrap0eAttributionR0 = NULL; } );
1125
1126 /* AMD uses the host's paging mode; Intel has a single mode (EPT). */
1127 AssertMsg( enmShwPagingMode == PGMMODE_32_BIT || enmShwPagingMode == PGMMODE_PAE || enmShwPagingMode == PGMMODE_PAE_NX
1128 || enmShwPagingMode == PGMMODE_AMD64 || enmShwPagingMode == PGMMODE_AMD64_NX || enmShwPagingMode == PGMMODE_EPT,
1129 ("enmShwPagingMode=%d\n", enmShwPagingMode));
1130
1131 /* Reserved shouldn't end up here. */
1132 Assert(!(uErr & X86_TRAP_PF_RSVD));
1133
1134#ifdef VBOX_WITH_STATISTICS
1135 /*
1136 * Error code stats.
1137 */
1138 if (uErr & X86_TRAP_PF_US)
1139 {
1140 if (!(uErr & X86_TRAP_PF_P))
1141 {
1142 if (uErr & X86_TRAP_PF_RW)
1143 STAM_COUNTER_INC(&pGVCpu->pgm.s.Stats.StatRZTrap0eUSNotPresentWrite);
1144 else
1145 STAM_COUNTER_INC(&pGVCpu->pgm.s.Stats.StatRZTrap0eUSNotPresentRead);
1146 }
1147 else if (uErr & X86_TRAP_PF_RW)
1148 STAM_COUNTER_INC(&pGVCpu->pgm.s.Stats.StatRZTrap0eUSWrite);
1149 else if (uErr & X86_TRAP_PF_RSVD)
1150 STAM_COUNTER_INC(&pGVCpu->pgm.s.Stats.StatRZTrap0eUSReserved);
1151 else if (uErr & X86_TRAP_PF_ID)
1152 STAM_COUNTER_INC(&pGVCpu->pgm.s.Stats.StatRZTrap0eUSNXE);
1153 else
1154 STAM_COUNTER_INC(&pGVCpu->pgm.s.Stats.StatRZTrap0eUSRead);
1155 }
1156 else
1157 { /* Supervisor */
1158 if (!(uErr & X86_TRAP_PF_P))
1159 {
1160 if (uErr & X86_TRAP_PF_RW)
1161 STAM_COUNTER_INC(&pGVCpu->pgm.s.Stats.StatRZTrap0eSVNotPresentWrite);
1162 else
1163 STAM_COUNTER_INC(&pGVCpu->pgm.s.Stats.StatRZTrap0eSVNotPresentRead);
1164 }
1165 else if (uErr & X86_TRAP_PF_RW)
1166 STAM_COUNTER_INC(&pGVCpu->pgm.s.Stats.StatRZTrap0eSVWrite);
1167 else if (uErr & X86_TRAP_PF_ID)
1168 STAM_COUNTER_INC(&pGVCpu->pgm.s.Stats.StatRZTrap0eSNXE);
1169 else if (uErr & X86_TRAP_PF_RSVD)
1170 STAM_COUNTER_INC(&pGVCpu->pgm.s.Stats.StatRZTrap0eSVReserved);
1171 }
1172#endif
1173
1174 /*
1175 * Call the worker.
1176 *
1177 * Note! We pretend the guest is in protected mode without paging, so we
1178 * can use existing code to build the nested page tables.
1179 */
1180/** @todo r=bird: Gotta love this nested paging hacking we're still carrying with us... (Split PGM_TYPE_NESTED.) */
1181 bool fLockTaken = false;
1182 switch (enmShwPagingMode)
1183 {
1184 case PGMMODE_32_BIT:
1185 rc = PGM_BTH_NAME_32BIT_PROT(Trap0eHandler)(pGVCpu, uErr, pCtx, GCPhysFault, &fLockTaken);
1186 break;
1187 case PGMMODE_PAE:
1188 case PGMMODE_PAE_NX:
1189 rc = PGM_BTH_NAME_PAE_PROT(Trap0eHandler)(pGVCpu, uErr, pCtx, GCPhysFault, &fLockTaken);
1190 break;
1191 case PGMMODE_AMD64:
1192 case PGMMODE_AMD64_NX:
1193 rc = PGM_BTH_NAME_AMD64_PROT(Trap0eHandler)(pGVCpu, uErr, pCtx, GCPhysFault, &fLockTaken);
1194 break;
1195 case PGMMODE_EPT:
1196 rc = PGM_BTH_NAME_EPT_PROT(Trap0eHandler)(pGVCpu, uErr, pCtx, GCPhysFault, &fLockTaken);
1197 break;
1198 default:
1199 AssertFailed();
1200 rc = VERR_INVALID_PARAMETER;
1201 break;
1202 }
1203 if (fLockTaken)
1204 {
1205 PGM_LOCK_ASSERT_OWNER(pGVM);
1206 PGM_UNLOCK(pGVM);
1207 }
1208
1209 if (rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE)
1210 rc = VINF_SUCCESS;
1211 /*
1212 * Handle the case where we cannot interpret the instruction because we cannot get the guest physical address
1213 * via its page tables, see @bugref{6043}.
1214 */
1215 else if ( rc == VERR_PAGE_NOT_PRESENT /* SMP only ; disassembly might fail. */
1216 || rc == VERR_PAGE_TABLE_NOT_PRESENT /* seen with UNI & SMP */
1217 || rc == VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT /* seen with SMP */
1218 || rc == VERR_PAGE_MAP_LEVEL4_NOT_PRESENT) /* precaution */
1219 {
1220 Log(("WARNING: Unexpected VERR_PAGE_TABLE_NOT_PRESENT (%d) for page fault at %RGp error code %x (rip=%RGv)\n", rc, GCPhysFault, uErr, pCtx->rip));
1221 /* Some kind of inconsistency in the SMP case; it's safe to just execute the instruction again; not sure about
1222 single VCPU VMs though. */
1223 rc = VINF_SUCCESS;
1224 }
1225
1226 STAM_STATS({ if (!pGVCpu->pgmr0.s.pStatTrap0eAttributionR0)
1227 pGVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pGVCpu->pgm.s.Stats.StatRZTrap0eTime2Misc; });
1228 STAM_PROFILE_STOP_EX(&pGVCpu->pgm.s.Stats.StatRZTrap0e, pGVCpu->pgmr0.s.pStatTrap0eAttributionR0, a);
1229 return rc;
1230}
1231
1232
1233#ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
1234/**
1235 * Nested \#PF Handler for nested-guest execution using nested paging.
1236 *
1237 * @returns Strict VBox status code (appropriate for trap handling and GC return).
1238 * @param pGVM The global (ring-0) VM structure.
1239 * @param pGVCpu The global (ring-0) CPU structure of the calling
1240 * EMT.
1241 * @param uErr The trap error code.
1242 * @param pCtx Pointer to the register context for the CPU.
1243 * @param GCPhysNestedFault The nested-guest physical address causing the fault.
1244 * @param fIsLinearAddrValid Whether translation of a nested-guest linear address
1245 * caused this fault. If @c false, GCPtrNestedFault
1246 * must be 0.
1247 * @param GCPtrNestedFault The nested-guest linear address that caused this
1248 * fault.
1249 * @param pWalk Where to store the SLAT walk result.
1250 */
1251VMMR0DECL(VBOXSTRICTRC) PGMR0NestedTrap0eHandlerNestedPaging(PGVMCPU pGVCpu, PGMMODE enmShwPagingMode, RTGCUINT uErr,
1252 PCPUMCTX pCtx, RTGCPHYS GCPhysNestedFault,
1253 bool fIsLinearAddrValid, RTGCPTR GCPtrNestedFault, PPGMPTWALK pWalk)
1254{
1255 Assert(enmShwPagingMode == PGMMODE_EPT);
1256 NOREF(enmShwPagingMode);
1257
1258 bool fLockTaken;
1259 VBOXSTRICTRC rcStrict = PGM_BTH_NAME_EPT_PROT(NestedTrap0eHandler)(pGVCpu, uErr, pCtx, GCPhysNestedFault,
1260 fIsLinearAddrValid, GCPtrNestedFault, pWalk, &fLockTaken);
1261 if (fLockTaken)
1262 {
1263 PGM_LOCK_ASSERT_OWNER(pGVCpu->CTX_SUFF(pVM));
1264 PGM_UNLOCK(pGVCpu->CTX_SUFF(pVM));
1265 }
1266 Assert(rcStrict != VINF_PGM_SYNCPAGE_MODIFIED_PDE); /* This rc isn't used with Nested Paging and nested-EPT. */
1267 return rcStrict;
1268}
1269#endif /* VBOX_WITH_NESTED_HWVIRT_VMX_EPT */
1270
1271
1272/**
1273 * \#PF Handler for deliberate nested paging misconfiguration (/reserved bit)
1274 * employed for MMIO pages.
1275 *
1276 * @returns VBox status code (appropriate for trap handling and GC return).
1277 * @param pGVM The global (ring-0) VM structure.
1278 * @param pGVCpu The global (ring-0) CPU structure of the calling
1279 * EMT.
1280 * @param enmShwPagingMode Paging mode for the nested page tables.
1281 * @param pCtx Pointer to the register context for the CPU.
1282 * @param GCPhysFault The fault address.
1283 * @param uErr The error code, UINT32_MAX if not available
1284 * (VT-x).
1285 */
1286VMMR0DECL(VBOXSTRICTRC) PGMR0Trap0eHandlerNPMisconfig(PGVM pGVM, PGVMCPU pGVCpu, PGMMODE enmShwPagingMode,
1287 PCPUMCTX pCtx, RTGCPHYS GCPhysFault, uint32_t uErr)
1288{
1289#ifdef PGM_WITH_MMIO_OPTIMIZATIONS
1290 STAM_PROFILE_START(&pGVCpu->CTX_SUFF(pStats)->StatR0NpMiscfg, a);
1291 VBOXSTRICTRC rc;
1292
1293 /*
1294 * Try lookup the all access physical handler for the address.
1295 */
1296 PGM_LOCK_VOID(pGVM);
1297 PPGMPHYSHANDLER pHandler;
1298 rc = pgmHandlerPhysicalLookup(pGVM, GCPhysFault, &pHandler);
1299 if (RT_SUCCESS(rc))
1300 {
1301 PCPGMPHYSHANDLERTYPEINT pHandlerType = PGMPHYSHANDLER_GET_TYPE_NO_NULL(pGVM, pHandler);
1302 if (RT_LIKELY( pHandlerType->enmKind != PGMPHYSHANDLERKIND_WRITE
1303 && !pHandlerType->fNotInHm /*paranoia*/ ))
1304 {
1305 /*
1306 * If the handle has aliases page or pages that have been temporarily
1307 * disabled, we'll have to take a detour to make sure we resync them
1308 * to avoid lots of unnecessary exits.
1309 */
1310 PPGMPAGE pPage;
1311 if ( ( pHandler->cAliasedPages
1312 || pHandler->cTmpOffPages)
1313 && ( (pPage = pgmPhysGetPage(pGVM, GCPhysFault)) == NULL
1314 || PGM_PAGE_GET_HNDL_PHYS_STATE(pPage) == PGM_PAGE_HNDL_PHYS_STATE_DISABLED)
1315 )
1316 {
1317 Log(("PGMR0Trap0eHandlerNPMisconfig: Resyncing aliases / tmp-off page at %RGp (uErr=%#x) %R[pgmpage]\n", GCPhysFault, uErr, pPage));
1318 STAM_COUNTER_INC(&pGVCpu->pgm.s.Stats.StatR0NpMiscfgSyncPage);
1319 rc = pgmShwSyncNestedPageLocked(pGVCpu, GCPhysFault, 1 /*cPages*/, enmShwPagingMode);
1320 PGM_UNLOCK(pGVM);
1321 }
1322 else
1323 {
1324 if (pHandlerType->pfnPfHandler)
1325 {
1326 uint64_t const uUser = !pHandlerType->fRing0DevInsIdx ? pHandler->uUser
1327 : (uintptr_t)PDMDeviceRing0IdxToInstance(pGVM, pHandler->uUser);
1328 STAM_PROFILE_START(&pHandler->Stat, h);
1329 PGM_UNLOCK(pGVM);
1330
1331 Log6(("PGMR0Trap0eHandlerNPMisconfig: calling %p(,%#x,,%RGp,%p)\n", pHandlerType->pfnPfHandler, uErr, GCPhysFault, uUser));
1332 rc = pHandlerType->pfnPfHandler(pGVM, pGVCpu, uErr == UINT32_MAX ? RTGCPTR_MAX : uErr, pCtx,
1333 GCPhysFault, GCPhysFault, uUser);
1334
1335 STAM_PROFILE_STOP(&pHandler->Stat, h); /* no locking needed, entry is unlikely reused before we get here. */
1336 }
1337 else
1338 {
1339 PGM_UNLOCK(pGVM);
1340 Log(("PGMR0Trap0eHandlerNPMisconfig: %RGp (uErr=%#x) -> R3\n", GCPhysFault, uErr));
1341 rc = VINF_EM_RAW_EMULATE_INSTR;
1342 }
1343 }
1344 STAM_PROFILE_STOP(&pGVCpu->pgm.s.Stats.StatR0NpMiscfg, a);
1345 return rc;
1346 }
1347 }
1348 else
1349 AssertMsgReturn(rc == VERR_NOT_FOUND, ("%Rrc GCPhysFault=%RGp\n", VBOXSTRICTRC_VAL(rc), GCPhysFault), rc);
1350
1351 /*
1352 * Must be out of sync, so do a SyncPage and restart the instruction.
1353 *
1354 * ASSUMES that ALL handlers are page aligned and covers whole pages
1355 * (assumption asserted in PGMHandlerPhysicalRegisterEx).
1356 */
1357 Log(("PGMR0Trap0eHandlerNPMisconfig: Out of sync page at %RGp (uErr=%#x)\n", GCPhysFault, uErr));
1358 STAM_COUNTER_INC(&pGVCpu->pgm.s.Stats.StatR0NpMiscfgSyncPage);
1359 rc = pgmShwSyncNestedPageLocked(pGVCpu, GCPhysFault, 1 /*cPages*/, enmShwPagingMode);
1360 PGM_UNLOCK(pGVM);
1361
1362 STAM_PROFILE_STOP(&pGVCpu->pgm.s.Stats.StatR0NpMiscfg, a);
1363 return rc;
1364
1365#else
1366 AssertLogRelFailed();
1367 return VERR_PGM_NOT_USED_IN_MODE;
1368#endif
1369}
1370
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette