/* $Id: PGMR0Pool.cpp 86473 2020-10-07 17:30:25Z vboxsync $ */ /** @file * PGM Shadow Page Pool, ring-0 specific bits. */ /* * Copyright (C) 2006-2020 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. */ /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ #define LOG_GROUP LOG_GROUP_PGM_POOL #define VBOX_WITHOUT_PAGING_BIT_FIELDS /* 64-bit bitfields are just asking for trouble. See @bugref{9841} and others. */ #include #include #include "PGMInternal.h" #include #include "PGMInline.h" #include #include #include #include /** * Grows the shadow page pool. * * I.e. adds more pages to it, assuming that hasn't reached cMaxPages yet. * * @returns VBox status code. * @param pGVM The ring-0 VM structure. */ VMMR0_INT_DECL(int) PGMR0PoolGrow(PGVM pGVM) { PPGMPOOL pPool = pGVM->pgm.s.pPoolR0; AssertReturn(pPool->cCurPages < pPool->cMaxPages, VERR_PGM_POOL_MAXED_OUT_ALREADY); AssertReturn(pPool->pVMR3 == pGVM->pVMR3, VERR_PGM_POOL_IPE); AssertReturn(pPool->pVMR0 == pGVM, VERR_PGM_POOL_IPE); /* With 32-bit guests and no EPT, the CR3 limits the root pages to low (below 4 GB) memory. */ /** @todo change the pool to handle ROOT page allocations specially when * required. */ bool const fCanUseHighMemory = HMIsNestedPagingActive(pGVM); STAM_REL_PROFILE_START(&pPool->StatGrow, a); int rc = RTCritSectEnter(&pGVM->pgmr0.s.PoolGrowCritSect); AssertRCReturn(rc, rc); /* * Figure out how many pages should allocate. */ uint32_t const cMaxPages = RT_MIN(pPool->cMaxPages, PGMPOOL_IDX_LAST); uint32_t const cCurPages = RT_MIN(pPool->cCurPages, cMaxPages); if (cCurPages < cMaxPages) { uint32_t cNewPages = cMaxPages - cCurPages; if (cNewPages > PGMPOOL_CFG_MAX_GROW) cNewPages = PGMPOOL_CFG_MAX_GROW; LogFlow(("PGMR3PoolGrow: Growing the pool by %u (%#x) pages to %u (%#x) pages. fCanUseHighMemory=%RTbool\n", cNewPages, cNewPages, cCurPages + cNewPages, cCurPages + cNewPages, fCanUseHighMemory)); /* Check that the handles in the arrays entry are both NIL. */ uintptr_t const idxMemHandle = cCurPages / (PGMPOOL_CFG_MAX_GROW); AssertCompile( (PGMPOOL_IDX_LAST + (PGMPOOL_CFG_MAX_GROW - 1)) / PGMPOOL_CFG_MAX_GROW <= RT_ELEMENTS(pGVM->pgmr0.s.ahPoolMemObjs)); AssertCompile(RT_ELEMENTS(pGVM->pgmr0.s.ahPoolMemObjs) == RT_ELEMENTS(pGVM->pgmr0.s.ahPoolMapObjs)); AssertLogRelMsgReturnStmt( pGVM->pgmr0.s.ahPoolMemObjs[idxMemHandle] == NIL_RTR0MEMOBJ && pGVM->pgmr0.s.ahPoolMapObjs[idxMemHandle] == NIL_RTR0MEMOBJ, ("idxMemHandle=%#x\n", idxMemHandle), RTCritSectLeave(&pGVM->pgmr0.s.PoolGrowCritSect), VERR_PGM_POOL_IPE); /* * Allocate the new pages and map them into ring-3. */ RTR0MEMOBJ hMemObj = NIL_RTR0MEMOBJ; if (fCanUseHighMemory) rc = RTR0MemObjAllocPage(&hMemObj, cNewPages * PAGE_SIZE, false /*fExecutable*/); else rc = RTR0MemObjAllocLow(&hMemObj, cNewPages * PAGE_SIZE, false /*fExecutable*/); if (RT_SUCCESS(rc)) { RTR0MEMOBJ hMapObj = NIL_RTR0MEMOBJ; rc = RTR0MemObjMapUser(&hMapObj, hMemObj, (RTR3PTR)-1, 0, RTMEM_PROT_READ | RTMEM_PROT_WRITE, NIL_RTR0PROCESS); if (RT_SUCCESS(rc)) { pGVM->pgmr0.s.ahPoolMemObjs[idxMemHandle] = hMemObj; pGVM->pgmr0.s.ahPoolMapObjs[idxMemHandle] = hMapObj; uint8_t *pbRing0 = (uint8_t *)RTR0MemObjAddress(hMemObj); RTR3PTR pbRing3 = RTR0MemObjAddressR3(hMapObj); AssertPtr(pbRing0); Assert(((uintptr_t)pbRing0 & PAGE_OFFSET_MASK) == 0); Assert(pbRing3 != NIL_RTR3PTR); Assert((pbRing3 & PAGE_OFFSET_MASK) == 0); /* * Initialize the new pages. */ for (unsigned iNewPage = 0; iNewPage < cNewPages; iNewPage++) { PPGMPOOLPAGE pPage = &pPool->aPages[cCurPages + iNewPage]; pPage->pvPageR0 = &pbRing0[iNewPage * PAGE_SIZE]; pPage->pvPageR3 = pbRing3 + iNewPage * PAGE_SIZE; pPage->Core.Key = RTR0MemObjGetPagePhysAddr(hMemObj, iNewPage); AssertFatal(pPage->Core.Key < _4G || fCanUseHighMemory); pPage->GCPhys = NIL_RTGCPHYS; pPage->enmKind = PGMPOOLKIND_FREE; pPage->idx = pPage - &pPool->aPages[0]; LogFlow(("PGMR3PoolGrow: insert page #%#x - %RHp\n", pPage->idx, pPage->Core.Key)); pPage->iNext = pPool->iFreeHead; pPage->iUserHead = NIL_PGMPOOL_USER_INDEX; pPage->iModifiedNext = NIL_PGMPOOL_IDX; pPage->iModifiedPrev = NIL_PGMPOOL_IDX; pPage->iMonitoredNext = NIL_PGMPOOL_IDX; pPage->iMonitoredPrev = NIL_PGMPOOL_IDX; pPage->iAgeNext = NIL_PGMPOOL_IDX; pPage->iAgePrev = NIL_PGMPOOL_IDX; /* commit it */ bool fRc = RTAvloHCPhysInsert(&pPool->HCPhysTree, &pPage->Core); Assert(fRc); NOREF(fRc); pPool->iFreeHead = cCurPages + iNewPage; pPool->cCurPages = cCurPages + iNewPage + 1; } STAM_REL_PROFILE_STOP(&pPool->StatGrow, a); RTCritSectLeave(&pGVM->pgmr0.s.PoolGrowCritSect); return VINF_SUCCESS; } RTR0MemObjFree(hMemObj, true /*fFreeMappings*/); } if (cCurPages > 64) LogRelMax(5, ("PGMR0PoolGrow: rc=%Rrc cNewPages=%#x cCurPages=%#x cMaxPages=%#x fCanUseHighMemory=%d\n", rc, cNewPages, cCurPages, cMaxPages, fCanUseHighMemory)); else LogRel(("PGMR0PoolGrow: rc=%Rrc cNewPages=%#x cCurPages=%#x cMaxPages=%#x fCanUseHighMemory=%d\n", rc, cNewPages, cCurPages, cMaxPages, fCanUseHighMemory)); } RTCritSectLeave(&pGVM->pgmr0.s.PoolGrowCritSect); return rc; }