VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR0/VMMR0.cpp@ 88750

Last change on this file since 88750 was 88347, checked in by vboxsync, 4 years ago

Forward ported r143576 from 6.1: VMM: Re-enabled vmmR0DoHalt and added more statistics to it. ​oem2ticketref:40

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 103.7 KB
Line 
1/* $Id: VMMR0.cpp 88347 2021-04-01 13:17:16Z vboxsync $ */
2/** @file
3 * VMM - Host Context Ring 0.
4 */
5
6/*
7 * Copyright (C) 2006-2020 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_VMM
23#include <VBox/vmm/vmm.h>
24#include <VBox/sup.h>
25#include <VBox/vmm/iom.h>
26#include <VBox/vmm/trpm.h>
27#include <VBox/vmm/cpum.h>
28#include <VBox/vmm/pdmapi.h>
29#include <VBox/vmm/pgm.h>
30#ifdef VBOX_WITH_NEM_R0
31# include <VBox/vmm/nem.h>
32#endif
33#include <VBox/vmm/em.h>
34#include <VBox/vmm/stam.h>
35#include <VBox/vmm/tm.h>
36#include "VMMInternal.h"
37#include <VBox/vmm/vmcc.h>
38#include <VBox/vmm/gvm.h>
39#ifdef VBOX_WITH_PCI_PASSTHROUGH
40# include <VBox/vmm/pdmpci.h>
41#endif
42#include <VBox/vmm/apic.h>
43
44#include <VBox/vmm/gvmm.h>
45#include <VBox/vmm/gmm.h>
46#include <VBox/vmm/gim.h>
47#include <VBox/intnet.h>
48#include <VBox/vmm/hm.h>
49#include <VBox/param.h>
50#include <VBox/err.h>
51#include <VBox/version.h>
52#include <VBox/log.h>
53
54#include <iprt/asm-amd64-x86.h>
55#include <iprt/assert.h>
56#include <iprt/crc.h>
57#include <iprt/mp.h>
58#include <iprt/once.h>
59#include <iprt/stdarg.h>
60#include <iprt/string.h>
61#include <iprt/thread.h>
62#include <iprt/timer.h>
63#include <iprt/time.h>
64
65#include "dtrace/VBoxVMM.h"
66
67
68#if defined(_MSC_VER) && defined(RT_ARCH_AMD64) /** @todo check this with with VC7! */
69# pragma intrinsic(_AddressOfReturnAddress)
70#endif
71
72#if defined(RT_OS_DARWIN) && ARCH_BITS == 32
73# error "32-bit darwin is no longer supported. Go back to 4.3 or earlier!"
74#endif
75
76
77
78/*********************************************************************************************************************************
79* Defined Constants And Macros *
80*********************************************************************************************************************************/
81/** @def VMM_CHECK_SMAP_SETUP
82 * SMAP check setup. */
83/** @def VMM_CHECK_SMAP_CHECK
84 * Checks that the AC flag is set if SMAP is enabled. If AC is not set,
85 * it will be logged and @a a_BadExpr is executed. */
86/** @def VMM_CHECK_SMAP_CHECK2
87 * Checks that the AC flag is set if SMAP is enabled. If AC is not set, it will
88 * be logged, written to the VMs assertion text buffer, and @a a_BadExpr is
89 * executed. */
90#if (defined(VBOX_STRICT) || 1) && !defined(VBOX_WITH_RAM_IN_KERNEL)
91# define VMM_CHECK_SMAP_SETUP() uint32_t const fKernelFeatures = SUPR0GetKernelFeatures()
92# define VMM_CHECK_SMAP_CHECK(a_BadExpr) \
93 do { \
94 if (fKernelFeatures & SUPKERNELFEATURES_SMAP) \
95 { \
96 RTCCUINTREG fEflCheck = ASMGetFlags(); \
97 if (RT_LIKELY(fEflCheck & X86_EFL_AC)) \
98 { /* likely */ } \
99 else \
100 { \
101 SUPR0Printf("%s, line %d: EFLAGS.AC is clear! (%#x)\n", __FUNCTION__, __LINE__, (uint32_t)fEflCheck); \
102 a_BadExpr; \
103 } \
104 } \
105 } while (0)
106# define VMM_CHECK_SMAP_CHECK2(a_pGVM, a_BadExpr) \
107 do { \
108 if (fKernelFeatures & SUPKERNELFEATURES_SMAP) \
109 { \
110 RTCCUINTREG fEflCheck = ASMGetFlags(); \
111 if (RT_LIKELY(fEflCheck & X86_EFL_AC)) \
112 { /* likely */ } \
113 else if (a_pGVM) \
114 { \
115 SUPR0BadContext((a_pGVM)->pSession, __FILE__, __LINE__, "EFLAGS.AC is zero!"); \
116 RTStrPrintf((a_pGVM)->vmm.s.szRing0AssertMsg1, sizeof((a_pGVM)->vmm.s.szRing0AssertMsg1), \
117 "%s, line %d: EFLAGS.AC is clear! (%#x)\n", __FUNCTION__, __LINE__, (uint32_t)fEflCheck); \
118 a_BadExpr; \
119 } \
120 else \
121 { \
122 SUPR0Printf("%s, line %d: EFLAGS.AC is clear! (%#x)\n", __FUNCTION__, __LINE__, (uint32_t)fEflCheck); \
123 a_BadExpr; \
124 } \
125 } \
126 } while (0)
127#else
128# define VMM_CHECK_SMAP_SETUP() uint32_t const fKernelFeatures = 0
129# define VMM_CHECK_SMAP_CHECK(a_BadExpr) NOREF(fKernelFeatures)
130# define VMM_CHECK_SMAP_CHECK2(a_pGVM, a_BadExpr) NOREF(fKernelFeatures)
131#endif
132
133
134/*********************************************************************************************************************************
135* Internal Functions *
136*********************************************************************************************************************************/
137RT_C_DECLS_BEGIN
138#if defined(RT_ARCH_X86) && (defined(RT_OS_SOLARIS) || defined(RT_OS_FREEBSD))
139extern uint64_t __udivdi3(uint64_t, uint64_t);
140extern uint64_t __umoddi3(uint64_t, uint64_t);
141#endif
142RT_C_DECLS_END
143
144
145/*********************************************************************************************************************************
146* Global Variables *
147*********************************************************************************************************************************/
148/** Drag in necessary library bits.
149 * The runtime lives here (in VMMR0.r0) and VBoxDD*R0.r0 links against us. */
150struct CLANG11WEIRDNOTHROW { PFNRT pfn; } g_VMMR0Deps[] =
151{
152 { (PFNRT)RTCrc32 },
153 { (PFNRT)RTOnce },
154#if defined(RT_ARCH_X86) && (defined(RT_OS_SOLARIS) || defined(RT_OS_FREEBSD))
155 { (PFNRT)__udivdi3 },
156 { (PFNRT)__umoddi3 },
157#endif
158 { NULL }
159};
160
161#ifdef RT_OS_SOLARIS
162/* Dependency information for the native solaris loader. */
163extern "C" { char _depends_on[] = "vboxdrv"; }
164#endif
165
166
167/**
168 * Initialize the module.
169 * This is called when we're first loaded.
170 *
171 * @returns 0 on success.
172 * @returns VBox status on failure.
173 * @param hMod Image handle for use in APIs.
174 */
175DECLEXPORT(int) ModuleInit(void *hMod)
176{
177 VMM_CHECK_SMAP_SETUP();
178 VMM_CHECK_SMAP_CHECK(RT_NOTHING);
179
180#ifdef VBOX_WITH_DTRACE_R0
181 /*
182 * The first thing to do is register the static tracepoints.
183 * (Deregistration is automatic.)
184 */
185 int rc2 = SUPR0TracerRegisterModule(hMod, &g_VTGObjHeader);
186 if (RT_FAILURE(rc2))
187 return rc2;
188#endif
189 LogFlow(("ModuleInit:\n"));
190
191#ifdef VBOX_WITH_64ON32_CMOS_DEBUG
192 /*
193 * Display the CMOS debug code.
194 */
195 ASMOutU8(0x72, 0x03);
196 uint8_t bDebugCode = ASMInU8(0x73);
197 LogRel(("CMOS Debug Code: %#x (%d)\n", bDebugCode, bDebugCode));
198 RTLogComPrintf("CMOS Debug Code: %#x (%d)\n", bDebugCode, bDebugCode);
199#endif
200
201 /*
202 * Initialize the VMM, GVMM, GMM, HM, PGM (Darwin) and INTNET.
203 */
204 int rc = vmmInitFormatTypes();
205 if (RT_SUCCESS(rc))
206 {
207 VMM_CHECK_SMAP_CHECK(RT_NOTHING);
208 rc = GVMMR0Init();
209 if (RT_SUCCESS(rc))
210 {
211 VMM_CHECK_SMAP_CHECK(RT_NOTHING);
212 rc = GMMR0Init();
213 if (RT_SUCCESS(rc))
214 {
215 VMM_CHECK_SMAP_CHECK(RT_NOTHING);
216 rc = HMR0Init();
217 if (RT_SUCCESS(rc))
218 {
219 VMM_CHECK_SMAP_CHECK(RT_NOTHING);
220
221 PDMR0Init(hMod);
222 VMM_CHECK_SMAP_CHECK(RT_NOTHING);
223
224 rc = PGMRegisterStringFormatTypes();
225 if (RT_SUCCESS(rc))
226 {
227 VMM_CHECK_SMAP_CHECK(RT_NOTHING);
228#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
229 rc = PGMR0DynMapInit();
230#endif
231 if (RT_SUCCESS(rc))
232 {
233 VMM_CHECK_SMAP_CHECK(RT_NOTHING);
234 rc = IntNetR0Init();
235 if (RT_SUCCESS(rc))
236 {
237#ifdef VBOX_WITH_PCI_PASSTHROUGH
238 VMM_CHECK_SMAP_CHECK(RT_NOTHING);
239 rc = PciRawR0Init();
240#endif
241 if (RT_SUCCESS(rc))
242 {
243 VMM_CHECK_SMAP_CHECK(RT_NOTHING);
244 rc = CPUMR0ModuleInit();
245 if (RT_SUCCESS(rc))
246 {
247#ifdef VBOX_WITH_TRIPLE_FAULT_HACK
248 VMM_CHECK_SMAP_CHECK(RT_NOTHING);
249 rc = vmmR0TripleFaultHackInit();
250 if (RT_SUCCESS(rc))
251#endif
252 {
253 VMM_CHECK_SMAP_CHECK(rc = VERR_VMM_SMAP_BUT_AC_CLEAR);
254 if (RT_SUCCESS(rc))
255 {
256 LogFlow(("ModuleInit: returns success\n"));
257 return VINF_SUCCESS;
258 }
259 }
260
261 /*
262 * Bail out.
263 */
264#ifdef VBOX_WITH_TRIPLE_FAULT_HACK
265 vmmR0TripleFaultHackTerm();
266#endif
267 }
268 else
269 LogRel(("ModuleInit: CPUMR0ModuleInit -> %Rrc\n", rc));
270#ifdef VBOX_WITH_PCI_PASSTHROUGH
271 PciRawR0Term();
272#endif
273 }
274 else
275 LogRel(("ModuleInit: PciRawR0Init -> %Rrc\n", rc));
276 IntNetR0Term();
277 }
278 else
279 LogRel(("ModuleInit: IntNetR0Init -> %Rrc\n", rc));
280#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
281 PGMR0DynMapTerm();
282#endif
283 }
284 else
285 LogRel(("ModuleInit: PGMR0DynMapInit -> %Rrc\n", rc));
286 PGMDeregisterStringFormatTypes();
287 }
288 else
289 LogRel(("ModuleInit: PGMRegisterStringFormatTypes -> %Rrc\n", rc));
290 HMR0Term();
291 }
292 else
293 LogRel(("ModuleInit: HMR0Init -> %Rrc\n", rc));
294 GMMR0Term();
295 }
296 else
297 LogRel(("ModuleInit: GMMR0Init -> %Rrc\n", rc));
298 GVMMR0Term();
299 }
300 else
301 LogRel(("ModuleInit: GVMMR0Init -> %Rrc\n", rc));
302 vmmTermFormatTypes();
303 }
304 else
305 LogRel(("ModuleInit: vmmInitFormatTypes -> %Rrc\n", rc));
306
307 LogFlow(("ModuleInit: failed %Rrc\n", rc));
308 return rc;
309}
310
311
312/**
313 * Terminate the module.
314 * This is called when we're finally unloaded.
315 *
316 * @param hMod Image handle for use in APIs.
317 */
318DECLEXPORT(void) ModuleTerm(void *hMod)
319{
320 NOREF(hMod);
321 LogFlow(("ModuleTerm:\n"));
322
323 /*
324 * Terminate the CPUM module (Local APIC cleanup).
325 */
326 CPUMR0ModuleTerm();
327
328 /*
329 * Terminate the internal network service.
330 */
331 IntNetR0Term();
332
333 /*
334 * PGM (Darwin), HM and PciRaw global cleanup.
335 */
336#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
337 PGMR0DynMapTerm();
338#endif
339#ifdef VBOX_WITH_PCI_PASSTHROUGH
340 PciRawR0Term();
341#endif
342 PGMDeregisterStringFormatTypes();
343 HMR0Term();
344#ifdef VBOX_WITH_TRIPLE_FAULT_HACK
345 vmmR0TripleFaultHackTerm();
346#endif
347
348 /*
349 * Destroy the GMM and GVMM instances.
350 */
351 GMMR0Term();
352 GVMMR0Term();
353
354 vmmTermFormatTypes();
355
356 LogFlow(("ModuleTerm: returns\n"));
357}
358
359
360/**
361 * Initiates the R0 driver for a particular VM instance.
362 *
363 * @returns VBox status code.
364 *
365 * @param pGVM The global (ring-0) VM structure.
366 * @param uSvnRev The SVN revision of the ring-3 part.
367 * @param uBuildType Build type indicator.
368 * @thread EMT(0)
369 */
370static int vmmR0InitVM(PGVM pGVM, uint32_t uSvnRev, uint32_t uBuildType)
371{
372 VMM_CHECK_SMAP_SETUP();
373 VMM_CHECK_SMAP_CHECK(return VERR_VMM_SMAP_BUT_AC_CLEAR);
374
375 /*
376 * Match the SVN revisions and build type.
377 */
378 if (uSvnRev != VMMGetSvnRev())
379 {
380 LogRel(("VMMR0InitVM: Revision mismatch, r3=%d r0=%d\n", uSvnRev, VMMGetSvnRev()));
381 SUPR0Printf("VMMR0InitVM: Revision mismatch, r3=%d r0=%d\n", uSvnRev, VMMGetSvnRev());
382 return VERR_VMM_R0_VERSION_MISMATCH;
383 }
384 if (uBuildType != vmmGetBuildType())
385 {
386 LogRel(("VMMR0InitVM: Build type mismatch, r3=%#x r0=%#x\n", uBuildType, vmmGetBuildType()));
387 SUPR0Printf("VMMR0InitVM: Build type mismatch, r3=%#x r0=%#x\n", uBuildType, vmmGetBuildType());
388 return VERR_VMM_R0_VERSION_MISMATCH;
389 }
390
391 int rc = GVMMR0ValidateGVMandEMT(pGVM, 0 /*idCpu*/);
392 if (RT_FAILURE(rc))
393 return rc;
394
395#ifdef LOG_ENABLED
396 /*
397 * Register the EMT R0 logger instance for VCPU 0.
398 */
399 PVMCPUCC pVCpu = VMCC_GET_CPU_0(pGVM);
400
401 PVMMR0LOGGER pR0Logger = pVCpu->vmm.s.pR0LoggerR0;
402 if (pR0Logger)
403 {
404# if 0 /* testing of the logger. */
405 LogCom(("vmmR0InitVM: before %p\n", RTLogDefaultInstance()));
406 LogCom(("vmmR0InitVM: pfnFlush=%p actual=%p\n", pR0Logger->Logger.pfnFlush, vmmR0LoggerFlush));
407 LogCom(("vmmR0InitVM: pfnLogger=%p actual=%p\n", pR0Logger->Logger.pfnLogger, vmmR0LoggerWrapper));
408 LogCom(("vmmR0InitVM: offScratch=%d fFlags=%#x fDestFlags=%#x\n", pR0Logger->Logger.offScratch, pR0Logger->Logger.fFlags, pR0Logger->Logger.fDestFlags));
409
410 RTLogSetDefaultInstanceThread(&pR0Logger->Logger, (uintptr_t)pGVM->pSession);
411 LogCom(("vmmR0InitVM: after %p reg\n", RTLogDefaultInstance()));
412 RTLogSetDefaultInstanceThread(NULL, pGVM->pSession);
413 LogCom(("vmmR0InitVM: after %p dereg\n", RTLogDefaultInstance()));
414
415 pR0Logger->Logger.pfnLogger("hello ring-0 logger\n");
416 LogCom(("vmmR0InitVM: returned successfully from direct logger call.\n"));
417 pR0Logger->Logger.pfnFlush(&pR0Logger->Logger);
418 LogCom(("vmmR0InitVM: returned successfully from direct flush call.\n"));
419
420 RTLogSetDefaultInstanceThread(&pR0Logger->Logger, (uintptr_t)pGVM->pSession);
421 LogCom(("vmmR0InitVM: after %p reg2\n", RTLogDefaultInstance()));
422 pR0Logger->Logger.pfnLogger("hello ring-0 logger\n");
423 LogCom(("vmmR0InitVM: returned successfully from direct logger call (2). offScratch=%d\n", pR0Logger->Logger.offScratch));
424 RTLogSetDefaultInstanceThread(NULL, pGVM->pSession);
425 LogCom(("vmmR0InitVM: after %p dereg2\n", RTLogDefaultInstance()));
426
427 RTLogLoggerEx(&pR0Logger->Logger, 0, ~0U, "hello ring-0 logger (RTLogLoggerEx)\n");
428 LogCom(("vmmR0InitVM: RTLogLoggerEx returned fine offScratch=%d\n", pR0Logger->Logger.offScratch));
429
430 RTLogSetDefaultInstanceThread(&pR0Logger->Logger, (uintptr_t)pGVM->pSession);
431 RTLogPrintf("hello ring-0 logger (RTLogPrintf)\n");
432 LogCom(("vmmR0InitVM: RTLogPrintf returned fine offScratch=%d\n", pR0Logger->Logger.offScratch));
433# endif
434 Log(("Switching to per-thread logging instance %p (key=%p)\n", &pR0Logger->Logger, pGVM->pSession));
435 RTLogSetDefaultInstanceThread(&pR0Logger->Logger, (uintptr_t)pGVM->pSession);
436 pR0Logger->fRegistered = true;
437 }
438#endif /* LOG_ENABLED */
439
440 /*
441 * Check if the host supports high resolution timers or not.
442 */
443 if ( pGVM->vmm.s.fUsePeriodicPreemptionTimers
444 && !RTTimerCanDoHighResolution())
445 pGVM->vmm.s.fUsePeriodicPreemptionTimers = false;
446
447 /*
448 * Initialize the per VM data for GVMM and GMM.
449 */
450 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
451 rc = GVMMR0InitVM(pGVM);
452 if (RT_SUCCESS(rc))
453 {
454 /*
455 * Init HM, CPUM and PGM (Darwin only).
456 */
457 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
458 rc = HMR0InitVM(pGVM);
459 if (RT_SUCCESS(rc))
460 VMM_CHECK_SMAP_CHECK2(pGVM, rc = VERR_VMM_RING0_ASSERTION); /* CPUR0InitVM will otherwise panic the host */
461 if (RT_SUCCESS(rc))
462 {
463 rc = CPUMR0InitVM(pGVM);
464 if (RT_SUCCESS(rc))
465 {
466 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
467 rc = PGMR0InitVM(pGVM);
468 if (RT_SUCCESS(rc))
469 {
470 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
471 rc = EMR0InitVM(pGVM);
472 if (RT_SUCCESS(rc))
473 {
474 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
475#ifdef VBOX_WITH_PCI_PASSTHROUGH
476 rc = PciRawR0InitVM(pGVM);
477#endif
478 if (RT_SUCCESS(rc))
479 {
480 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
481 rc = GIMR0InitVM(pGVM);
482 if (RT_SUCCESS(rc))
483 {
484 VMM_CHECK_SMAP_CHECK2(pGVM, rc = VERR_VMM_RING0_ASSERTION);
485 if (RT_SUCCESS(rc))
486 {
487 GVMMR0DoneInitVM(pGVM);
488
489 /*
490 * Collect a bit of info for the VM release log.
491 */
492 pGVM->vmm.s.fIsPreemptPendingApiTrusty = RTThreadPreemptIsPendingTrusty();
493 pGVM->vmm.s.fIsPreemptPossible = RTThreadPreemptIsPossible();;
494
495 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
496 return rc;
497 }
498
499 /* bail out*/
500 GIMR0TermVM(pGVM);
501 }
502#ifdef VBOX_WITH_PCI_PASSTHROUGH
503 PciRawR0TermVM(pGVM);
504#endif
505 }
506 }
507 }
508 }
509 HMR0TermVM(pGVM);
510 }
511 }
512
513 RTLogSetDefaultInstanceThread(NULL, (uintptr_t)pGVM->pSession);
514 return rc;
515}
516
517
518/**
519 * Does EMT specific VM initialization.
520 *
521 * @returns VBox status code.
522 * @param pGVM The ring-0 VM structure.
523 * @param idCpu The EMT that's calling.
524 */
525static int vmmR0InitVMEmt(PGVM pGVM, VMCPUID idCpu)
526{
527 /* Paranoia (caller checked these already). */
528 AssertReturn(idCpu < pGVM->cCpus, VERR_INVALID_CPU_ID);
529 AssertReturn(pGVM->aCpus[idCpu].hEMT == RTThreadNativeSelf(), VERR_INVALID_CPU_ID);
530
531#ifdef LOG_ENABLED
532 /*
533 * Registration of ring 0 loggers.
534 */
535 PVMCPUCC pVCpu = &pGVM->aCpus[idCpu];
536 PVMMR0LOGGER pR0Logger = pVCpu->vmm.s.pR0LoggerR0;
537 if ( pR0Logger
538 && !pR0Logger->fRegistered)
539 {
540 RTLogSetDefaultInstanceThread(&pR0Logger->Logger, (uintptr_t)pGVM->pSession);
541 pR0Logger->fRegistered = true;
542 }
543#endif
544
545 return VINF_SUCCESS;
546}
547
548
549
550/**
551 * Terminates the R0 bits for a particular VM instance.
552 *
553 * This is normally called by ring-3 as part of the VM termination process, but
554 * may alternatively be called during the support driver session cleanup when
555 * the VM object is destroyed (see GVMM).
556 *
557 * @returns VBox status code.
558 *
559 * @param pGVM The global (ring-0) VM structure.
560 * @param idCpu Set to 0 if EMT(0) or NIL_VMCPUID if session cleanup
561 * thread.
562 * @thread EMT(0) or session clean up thread.
563 */
564VMMR0_INT_DECL(int) VMMR0TermVM(PGVM pGVM, VMCPUID idCpu)
565{
566 /*
567 * Check EMT(0) claim if we're called from userland.
568 */
569 if (idCpu != NIL_VMCPUID)
570 {
571 AssertReturn(idCpu == 0, VERR_INVALID_CPU_ID);
572 int rc = GVMMR0ValidateGVMandEMT(pGVM, idCpu);
573 if (RT_FAILURE(rc))
574 return rc;
575 }
576
577#ifdef VBOX_WITH_PCI_PASSTHROUGH
578 PciRawR0TermVM(pGVM);
579#endif
580
581 /*
582 * Tell GVMM what we're up to and check that we only do this once.
583 */
584 if (GVMMR0DoingTermVM(pGVM))
585 {
586 GIMR0TermVM(pGVM);
587
588 /** @todo I wish to call PGMR0PhysFlushHandyPages(pGVM, &pGVM->aCpus[idCpu])
589 * here to make sure we don't leak any shared pages if we crash... */
590#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
591 PGMR0DynMapTermVM(pGVM);
592#endif
593 HMR0TermVM(pGVM);
594 }
595
596 /*
597 * Deregister the logger.
598 */
599 RTLogSetDefaultInstanceThread(NULL, (uintptr_t)pGVM->pSession);
600 return VINF_SUCCESS;
601}
602
603
604/**
605 * An interrupt or unhalt force flag is set, deal with it.
606 *
607 * @returns VINF_SUCCESS (or VINF_EM_HALT).
608 * @param pVCpu The cross context virtual CPU structure.
609 * @param uMWait Result from EMMonitorWaitIsActive().
610 * @param enmInterruptibility Guest CPU interruptbility level.
611 */
612static int vmmR0DoHaltInterrupt(PVMCPUCC pVCpu, unsigned uMWait, CPUMINTERRUPTIBILITY enmInterruptibility)
613{
614 Assert(!TRPMHasTrap(pVCpu));
615 Assert( enmInterruptibility > CPUMINTERRUPTIBILITY_INVALID
616 && enmInterruptibility < CPUMINTERRUPTIBILITY_END);
617
618 /*
619 * Pending interrupts w/o any SMIs or NMIs? That the usual case.
620 */
621 if ( VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)
622 && !VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_SMI | VMCPU_FF_INTERRUPT_NMI))
623 {
624 if (enmInterruptibility <= CPUMINTERRUPTIBILITY_UNRESTRAINED)
625 {
626 uint8_t u8Interrupt = 0;
627 int rc = PDMGetInterrupt(pVCpu, &u8Interrupt);
628 Log(("vmmR0DoHaltInterrupt: CPU%d u8Interrupt=%d (%#x) rc=%Rrc\n", pVCpu->idCpu, u8Interrupt, u8Interrupt, rc));
629 if (RT_SUCCESS(rc))
630 {
631 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_UNHALT);
632
633 rc = TRPMAssertTrap(pVCpu, u8Interrupt, TRPM_HARDWARE_INT);
634 AssertRCSuccess(rc);
635 STAM_REL_COUNTER_INC(&pVCpu->vmm.s.StatR0HaltExec);
636 return rc;
637 }
638 }
639 }
640 /*
641 * SMI is not implemented yet, at least not here.
642 */
643 else if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_SMI))
644 {
645 Log12(("vmmR0DoHaltInterrupt: CPU%d failed #3\n", pVCpu->idCpu));
646 STAM_REL_COUNTER_INC(&pVCpu->vmm.s.StatR0HaltToR3);
647 return VINF_EM_HALT;
648 }
649 /*
650 * NMI.
651 */
652 else if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NMI))
653 {
654 if (enmInterruptibility < CPUMINTERRUPTIBILITY_NMI_INHIBIT)
655 {
656 /** @todo later. */
657 Log12(("vmmR0DoHaltInterrupt: CPU%d failed #2 (uMWait=%u enmInt=%d)\n", pVCpu->idCpu, uMWait, enmInterruptibility));
658 STAM_REL_COUNTER_INC(&pVCpu->vmm.s.StatR0HaltToR3);
659 return VINF_EM_HALT;
660 }
661 }
662 /*
663 * Nested-guest virtual interrupt.
664 */
665 else if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST))
666 {
667 if (enmInterruptibility < CPUMINTERRUPTIBILITY_VIRT_INT_DISABLED)
668 {
669 /** @todo NSTVMX: NSTSVM: Remember, we might have to check and perform VM-exits
670 * here before injecting the virtual interrupt. See emR3ForcedActions
671 * for details. */
672 Log12(("vmmR0DoHaltInterrupt: CPU%d failed #1 (uMWait=%u enmInt=%d)\n", pVCpu->idCpu, uMWait, enmInterruptibility));
673 STAM_REL_COUNTER_INC(&pVCpu->vmm.s.StatR0HaltToR3);
674 return VINF_EM_HALT;
675 }
676 }
677
678 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_UNHALT))
679 {
680 STAM_REL_COUNTER_INC(&pVCpu->vmm.s.StatR0HaltExec);
681 Log11(("vmmR0DoHaltInterrupt: CPU%d success VINF_SUCCESS (UNHALT)\n", pVCpu->idCpu));
682 return VINF_SUCCESS;
683 }
684 if (uMWait > 1)
685 {
686 STAM_REL_COUNTER_INC(&pVCpu->vmm.s.StatR0HaltExec);
687 Log11(("vmmR0DoHaltInterrupt: CPU%d success VINF_SUCCESS (uMWait=%u > 1)\n", pVCpu->idCpu, uMWait));
688 return VINF_SUCCESS;
689 }
690
691 Log12(("vmmR0DoHaltInterrupt: CPU%d failed #0 (uMWait=%u enmInt=%d)\n", pVCpu->idCpu, uMWait, enmInterruptibility));
692 STAM_REL_COUNTER_INC(&pVCpu->vmm.s.StatR0HaltToR3);
693 return VINF_EM_HALT;
694}
695
696
697/**
698 * This does one round of vmR3HaltGlobal1Halt().
699 *
700 * The rational here is that we'll reduce latency in interrupt situations if we
701 * don't go to ring-3 immediately on a VINF_EM_HALT (guest executed HLT or
702 * MWAIT), but do one round of blocking here instead and hope the interrupt is
703 * raised in the meanwhile.
704 *
705 * If we go to ring-3 we'll quit the inner HM/NEM loop in EM and end up in the
706 * outer loop, which will then call VMR3WaitHalted() and that in turn will do a
707 * ring-0 call (unless we're too close to a timer event). When the interrupt
708 * wakes us up, we'll return from ring-0 and EM will by instinct do a
709 * rescheduling (because of raw-mode) before it resumes the HM/NEM loop and gets
710 * back to VMMR0EntryFast().
711 *
712 * @returns VINF_SUCCESS or VINF_EM_HALT.
713 * @param pGVM The ring-0 VM structure.
714 * @param pGVCpu The ring-0 virtual CPU structure.
715 *
716 * @todo r=bird: All the blocking/waiting and EMT managment should move out of
717 * the VM module, probably to VMM. Then this would be more weird wrt
718 * parameters and statistics.
719 */
720static int vmmR0DoHalt(PGVM pGVM, PGVMCPU pGVCpu)
721{
722 /*
723 * Do spin stat historization.
724 */
725 if (++pGVCpu->vmm.s.cR0Halts & 0xff)
726 { /* likely */ }
727 else if (pGVCpu->vmm.s.cR0HaltsSucceeded > pGVCpu->vmm.s.cR0HaltsToRing3)
728 {
729 pGVCpu->vmm.s.cR0HaltsSucceeded = 2;
730 pGVCpu->vmm.s.cR0HaltsToRing3 = 0;
731 }
732 else
733 {
734 pGVCpu->vmm.s.cR0HaltsSucceeded = 0;
735 pGVCpu->vmm.s.cR0HaltsToRing3 = 2;
736 }
737
738 /*
739 * Flags that makes us go to ring-3.
740 */
741 uint32_t const fVmFFs = VM_FF_TM_VIRTUAL_SYNC | VM_FF_PDM_QUEUES | VM_FF_PDM_DMA
742 | VM_FF_DBGF | VM_FF_REQUEST | VM_FF_CHECK_VM_STATE
743 | VM_FF_RESET | VM_FF_EMT_RENDEZVOUS | VM_FF_PGM_NEED_HANDY_PAGES
744 | VM_FF_PGM_NO_MEMORY | VM_FF_DEBUG_SUSPEND;
745 uint64_t const fCpuFFs = VMCPU_FF_TIMER | VMCPU_FF_PDM_CRITSECT | VMCPU_FF_IEM
746 | VMCPU_FF_REQUEST | VMCPU_FF_DBGF | VMCPU_FF_HM_UPDATE_CR3
747 | VMCPU_FF_HM_UPDATE_PAE_PDPES | VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL
748 | VMCPU_FF_TO_R3 | VMCPU_FF_IOM;
749
750 /*
751 * Check preconditions.
752 */
753 unsigned const uMWait = EMMonitorWaitIsActive(pGVCpu);
754 CPUMINTERRUPTIBILITY const enmInterruptibility = CPUMGetGuestInterruptibility(pGVCpu);
755 if ( pGVCpu->vmm.s.fMayHaltInRing0
756 && !TRPMHasTrap(pGVCpu)
757 && ( enmInterruptibility == CPUMINTERRUPTIBILITY_UNRESTRAINED
758 || uMWait > 1))
759 {
760 if ( !VM_FF_IS_ANY_SET(pGVM, fVmFFs)
761 && !VMCPU_FF_IS_ANY_SET(pGVCpu, fCpuFFs))
762 {
763 /*
764 * Interrupts pending already?
765 */
766 if (VMCPU_FF_TEST_AND_CLEAR(pGVCpu, VMCPU_FF_UPDATE_APIC))
767 APICUpdatePendingInterrupts(pGVCpu);
768
769 /*
770 * Flags that wake up from the halted state.
771 */
772 uint64_t const fIntMask = VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC | VMCPU_FF_INTERRUPT_NESTED_GUEST
773 | VMCPU_FF_INTERRUPT_NMI | VMCPU_FF_INTERRUPT_SMI | VMCPU_FF_UNHALT;
774
775 if (VMCPU_FF_IS_ANY_SET(pGVCpu, fIntMask))
776 return vmmR0DoHaltInterrupt(pGVCpu, uMWait, enmInterruptibility);
777 ASMNopPause();
778
779 /*
780 * Check out how long till the next timer event.
781 */
782 uint64_t u64Delta;
783 uint64_t u64GipTime = TMTimerPollGIP(pGVM, pGVCpu, &u64Delta);
784
785 if ( !VM_FF_IS_ANY_SET(pGVM, fVmFFs)
786 && !VMCPU_FF_IS_ANY_SET(pGVCpu, fCpuFFs))
787 {
788 if (VMCPU_FF_TEST_AND_CLEAR(pGVCpu, VMCPU_FF_UPDATE_APIC))
789 APICUpdatePendingInterrupts(pGVCpu);
790
791 if (VMCPU_FF_IS_ANY_SET(pGVCpu, fIntMask))
792 return vmmR0DoHaltInterrupt(pGVCpu, uMWait, enmInterruptibility);
793
794 /*
795 * Wait if there is enough time to the next timer event.
796 */
797 if (u64Delta >= pGVCpu->vmm.s.cNsSpinBlockThreshold)
798 {
799 /* If there are few other CPU cores around, we will procrastinate a
800 little before going to sleep, hoping for some device raising an
801 interrupt or similar. Though, the best thing here would be to
802 dynamically adjust the spin count according to its usfulness or
803 something... */
804 if ( pGVCpu->vmm.s.cR0HaltsSucceeded > pGVCpu->vmm.s.cR0HaltsToRing3
805 && RTMpGetOnlineCount() >= 4)
806 {
807 /** @todo Figure out how we can skip this if it hasn't help recently...
808 * @bugref{9172#c12} */
809 uint32_t cSpinLoops = 42;
810 while (cSpinLoops-- > 0)
811 {
812 ASMNopPause();
813 if (VMCPU_FF_TEST_AND_CLEAR(pGVCpu, VMCPU_FF_UPDATE_APIC))
814 APICUpdatePendingInterrupts(pGVCpu);
815 ASMNopPause();
816 if (VM_FF_IS_ANY_SET(pGVM, fVmFFs))
817 {
818 STAM_REL_COUNTER_INC(&pGVCpu->vmm.s.StatR0HaltToR3FromSpin);
819 STAM_REL_COUNTER_INC(&pGVCpu->vmm.s.StatR0HaltToR3);
820 return VINF_EM_HALT;
821 }
822 ASMNopPause();
823 if (VMCPU_FF_IS_ANY_SET(pGVCpu, fCpuFFs))
824 {
825 STAM_REL_COUNTER_INC(&pGVCpu->vmm.s.StatR0HaltToR3FromSpin);
826 STAM_REL_COUNTER_INC(&pGVCpu->vmm.s.StatR0HaltToR3);
827 return VINF_EM_HALT;
828 }
829 ASMNopPause();
830 if (VMCPU_FF_IS_ANY_SET(pGVCpu, fIntMask))
831 {
832 STAM_REL_COUNTER_INC(&pGVCpu->vmm.s.StatR0HaltExecFromSpin);
833 return vmmR0DoHaltInterrupt(pGVCpu, uMWait, enmInterruptibility);
834 }
835 ASMNopPause();
836 }
837 }
838
839 /*
840 * We have to set the state to VMCPUSTATE_STARTED_HALTED here so ring-3
841 * knows when to notify us (cannot access VMINTUSERPERVMCPU::fWait from here).
842 * After changing the state we must recheck the force flags of course.
843 */
844 if (VMCPU_CMPXCHG_STATE(pGVCpu, VMCPUSTATE_STARTED_HALTED, VMCPUSTATE_STARTED))
845 {
846 if ( !VM_FF_IS_ANY_SET(pGVM, fVmFFs)
847 && !VMCPU_FF_IS_ANY_SET(pGVCpu, fCpuFFs))
848 {
849 if (VMCPU_FF_TEST_AND_CLEAR(pGVCpu, VMCPU_FF_UPDATE_APIC))
850 APICUpdatePendingInterrupts(pGVCpu);
851
852 if (VMCPU_FF_IS_ANY_SET(pGVCpu, fIntMask))
853 {
854 VMCPU_CMPXCHG_STATE(pGVCpu, VMCPUSTATE_STARTED, VMCPUSTATE_STARTED_HALTED);
855 return vmmR0DoHaltInterrupt(pGVCpu, uMWait, enmInterruptibility);
856 }
857
858 /* Okay, block! */
859 uint64_t const u64StartSchedHalt = RTTimeNanoTS();
860 int rc = GVMMR0SchedHalt(pGVM, pGVCpu, u64GipTime);
861 uint64_t const u64EndSchedHalt = RTTimeNanoTS();
862 uint64_t const cNsElapsedSchedHalt = u64EndSchedHalt - u64StartSchedHalt;
863 Log10(("vmmR0DoHalt: CPU%d: halted %llu ns\n", pGVCpu->idCpu, cNsElapsedSchedHalt));
864
865 VMCPU_CMPXCHG_STATE(pGVCpu, VMCPUSTATE_STARTED, VMCPUSTATE_STARTED_HALTED);
866 STAM_REL_PROFILE_ADD_PERIOD(&pGVCpu->vmm.s.StatR0HaltBlock, cNsElapsedSchedHalt);
867 if ( rc == VINF_SUCCESS
868 || rc == VERR_INTERRUPTED)
869 {
870 /* Keep some stats like ring-3 does. */
871 int64_t const cNsOverslept = u64EndSchedHalt - u64GipTime;
872 if (cNsOverslept > 50000)
873 STAM_REL_PROFILE_ADD_PERIOD(&pGVCpu->vmm.s.StatR0HaltBlockOverslept, cNsOverslept);
874 else if (cNsOverslept < -50000)
875 STAM_REL_PROFILE_ADD_PERIOD(&pGVCpu->vmm.s.StatR0HaltBlockInsomnia, cNsElapsedSchedHalt);
876 else
877 STAM_REL_PROFILE_ADD_PERIOD(&pGVCpu->vmm.s.StatR0HaltBlockOnTime, cNsElapsedSchedHalt);
878
879 /*
880 * Recheck whether we can resume execution or have to go to ring-3.
881 */
882 if ( !VM_FF_IS_ANY_SET(pGVM, fVmFFs)
883 && !VMCPU_FF_IS_ANY_SET(pGVCpu, fCpuFFs))
884 {
885 if (VMCPU_FF_TEST_AND_CLEAR(pGVCpu, VMCPU_FF_UPDATE_APIC))
886 APICUpdatePendingInterrupts(pGVCpu);
887 if (VMCPU_FF_IS_ANY_SET(pGVCpu, fIntMask))
888 {
889 STAM_REL_COUNTER_INC(&pGVCpu->vmm.s.StatR0HaltExecFromBlock);
890 return vmmR0DoHaltInterrupt(pGVCpu, uMWait, enmInterruptibility);
891 }
892 STAM_REL_COUNTER_INC(&pGVCpu->vmm.s.StatR0HaltToR3PostNoInt);
893 Log12(("vmmR0DoHalt: CPU%d post #2 - No pending interrupt\n", pGVCpu->idCpu));
894 }
895 else
896 {
897 STAM_REL_COUNTER_INC(&pGVCpu->vmm.s.StatR0HaltToR3PostPendingFF);
898 Log12(("vmmR0DoHalt: CPU%d post #1 - Pending FF\n", pGVCpu->idCpu));
899 }
900 }
901 else
902 {
903 STAM_REL_COUNTER_INC(&pGVCpu->vmm.s.StatR0HaltToR3Other);
904 Log12(("vmmR0DoHalt: CPU%d GVMMR0SchedHalt failed: %Rrc\n", pGVCpu->idCpu, rc));
905 }
906 }
907 else
908 {
909 VMCPU_CMPXCHG_STATE(pGVCpu, VMCPUSTATE_STARTED, VMCPUSTATE_STARTED_HALTED);
910 STAM_REL_COUNTER_INC(&pGVCpu->vmm.s.StatR0HaltToR3PendingFF);
911 Log12(("vmmR0DoHalt: CPU%d failed #5 - Pending FF\n", pGVCpu->idCpu));
912 }
913 }
914 else
915 {
916 STAM_REL_COUNTER_INC(&pGVCpu->vmm.s.StatR0HaltToR3Other);
917 Log12(("vmmR0DoHalt: CPU%d failed #4 - enmState=%d\n", pGVCpu->idCpu, VMCPU_GET_STATE(pGVCpu)));
918 }
919 }
920 else
921 {
922 STAM_REL_COUNTER_INC(&pGVCpu->vmm.s.StatR0HaltToR3SmallDelta);
923 Log12(("vmmR0DoHalt: CPU%d failed #3 - delta too small: %RU64\n", pGVCpu->idCpu, u64Delta));
924 }
925 }
926 else
927 {
928 STAM_REL_COUNTER_INC(&pGVCpu->vmm.s.StatR0HaltToR3PendingFF);
929 Log12(("vmmR0DoHalt: CPU%d failed #2 - Pending FF\n", pGVCpu->idCpu));
930 }
931 }
932 else
933 {
934 STAM_REL_COUNTER_INC(&pGVCpu->vmm.s.StatR0HaltToR3PendingFF);
935 Log12(("vmmR0DoHalt: CPU%d failed #1 - Pending FF\n", pGVCpu->idCpu));
936 }
937 }
938 else
939 {
940 STAM_REL_COUNTER_INC(&pGVCpu->vmm.s.StatR0HaltToR3Other);
941 Log12(("vmmR0DoHalt: CPU%d failed #0 - fMayHaltInRing0=%d TRPMHasTrap=%d enmInt=%d uMWait=%u\n",
942 pGVCpu->idCpu, pGVCpu->vmm.s.fMayHaltInRing0, TRPMHasTrap(pGVCpu), enmInterruptibility, uMWait));
943 }
944
945 STAM_REL_COUNTER_INC(&pGVCpu->vmm.s.StatR0HaltToR3);
946 return VINF_EM_HALT;
947}
948
949
950/**
951 * VMM ring-0 thread-context callback.
952 *
953 * This does common HM state updating and calls the HM-specific thread-context
954 * callback.
955 *
956 * @param enmEvent The thread-context event.
957 * @param pvUser Opaque pointer to the VMCPU.
958 *
959 * @thread EMT(pvUser)
960 */
961static DECLCALLBACK(void) vmmR0ThreadCtxCallback(RTTHREADCTXEVENT enmEvent, void *pvUser)
962{
963 PVMCPUCC pVCpu = (PVMCPUCC)pvUser;
964
965 switch (enmEvent)
966 {
967 case RTTHREADCTXEVENT_IN:
968 {
969 /*
970 * Linux may call us with preemption enabled (really!) but technically we
971 * cannot get preempted here, otherwise we end up in an infinite recursion
972 * scenario (i.e. preempted in resume hook -> preempt hook -> resume hook...
973 * ad infinitum). Let's just disable preemption for now...
974 */
975 /** @todo r=bird: I don't believe the above. The linux code is clearly enabling
976 * preemption after doing the callout (one or two functions up the
977 * call chain). */
978 /** @todo r=ramshankar: See @bugref{5313#c30}. */
979 RTTHREADPREEMPTSTATE ParanoidPreemptState = RTTHREADPREEMPTSTATE_INITIALIZER;
980 RTThreadPreemptDisable(&ParanoidPreemptState);
981
982 /* We need to update the VCPU <-> host CPU mapping. */
983 RTCPUID idHostCpu;
984 uint32_t iHostCpuSet = RTMpCurSetIndexAndId(&idHostCpu);
985 pVCpu->iHostCpuSet = iHostCpuSet;
986 ASMAtomicWriteU32(&pVCpu->idHostCpu, idHostCpu);
987
988 /* In the very unlikely event that the GIP delta for the CPU we're
989 rescheduled needs calculating, try force a return to ring-3.
990 We unfortunately cannot do the measurements right here. */
991 if (RT_UNLIKELY(SUPIsTscDeltaAvailableForCpuSetIndex(iHostCpuSet)))
992 VMCPU_FF_SET(pVCpu, VMCPU_FF_TO_R3);
993
994 /* Invoke the HM-specific thread-context callback. */
995 HMR0ThreadCtxCallback(enmEvent, pvUser);
996
997 /* Restore preemption. */
998 RTThreadPreemptRestore(&ParanoidPreemptState);
999 break;
1000 }
1001
1002 case RTTHREADCTXEVENT_OUT:
1003 {
1004 /* Invoke the HM-specific thread-context callback. */
1005 HMR0ThreadCtxCallback(enmEvent, pvUser);
1006
1007 /*
1008 * Sigh. See VMMGetCpu() used by VMCPU_ASSERT_EMT(). We cannot let several VCPUs
1009 * have the same host CPU associated with it.
1010 */
1011 pVCpu->iHostCpuSet = UINT32_MAX;
1012 ASMAtomicWriteU32(&pVCpu->idHostCpu, NIL_RTCPUID);
1013 break;
1014 }
1015
1016 default:
1017 /* Invoke the HM-specific thread-context callback. */
1018 HMR0ThreadCtxCallback(enmEvent, pvUser);
1019 break;
1020 }
1021}
1022
1023
1024/**
1025 * Creates thread switching hook for the current EMT thread.
1026 *
1027 * This is called by GVMMR0CreateVM and GVMMR0RegisterVCpu. If the host
1028 * platform does not implement switcher hooks, no hooks will be create and the
1029 * member set to NIL_RTTHREADCTXHOOK.
1030 *
1031 * @returns VBox status code.
1032 * @param pVCpu The cross context virtual CPU structure.
1033 * @thread EMT(pVCpu)
1034 */
1035VMMR0_INT_DECL(int) VMMR0ThreadCtxHookCreateForEmt(PVMCPUCC pVCpu)
1036{
1037 VMCPU_ASSERT_EMT(pVCpu);
1038 Assert(pVCpu->vmm.s.hCtxHook == NIL_RTTHREADCTXHOOK);
1039
1040#if 1 /* To disable this stuff change to zero. */
1041 int rc = RTThreadCtxHookCreate(&pVCpu->vmm.s.hCtxHook, 0, vmmR0ThreadCtxCallback, pVCpu);
1042 if (RT_SUCCESS(rc))
1043 return rc;
1044#else
1045 RT_NOREF(vmmR0ThreadCtxCallback);
1046 int rc = VERR_NOT_SUPPORTED;
1047#endif
1048
1049 pVCpu->vmm.s.hCtxHook = NIL_RTTHREADCTXHOOK;
1050 if (rc == VERR_NOT_SUPPORTED)
1051 return VINF_SUCCESS;
1052
1053 LogRelMax(32, ("RTThreadCtxHookCreate failed! rc=%Rrc pVCpu=%p idCpu=%RU32\n", rc, pVCpu, pVCpu->idCpu));
1054 return VINF_SUCCESS; /* Just ignore it, we can live without context hooks. */
1055}
1056
1057
1058/**
1059 * Destroys the thread switching hook for the specified VCPU.
1060 *
1061 * @param pVCpu The cross context virtual CPU structure.
1062 * @remarks Can be called from any thread.
1063 */
1064VMMR0_INT_DECL(void) VMMR0ThreadCtxHookDestroyForEmt(PVMCPUCC pVCpu)
1065{
1066 int rc = RTThreadCtxHookDestroy(pVCpu->vmm.s.hCtxHook);
1067 AssertRC(rc);
1068 pVCpu->vmm.s.hCtxHook = NIL_RTTHREADCTXHOOK;
1069}
1070
1071
1072/**
1073 * Disables the thread switching hook for this VCPU (if we got one).
1074 *
1075 * @param pVCpu The cross context virtual CPU structure.
1076 * @thread EMT(pVCpu)
1077 *
1078 * @remarks This also clears VMCPU::idHostCpu, so the mapping is invalid after
1079 * this call. This means you have to be careful with what you do!
1080 */
1081VMMR0_INT_DECL(void) VMMR0ThreadCtxHookDisable(PVMCPUCC pVCpu)
1082{
1083 /*
1084 * Clear the VCPU <-> host CPU mapping as we've left HM context.
1085 * @bugref{7726#c19} explains the need for this trick:
1086 *
1087 * VMXR0CallRing3Callback/SVMR0CallRing3Callback &
1088 * hmR0VmxLeaveSession/hmR0SvmLeaveSession disables context hooks during
1089 * longjmp & normal return to ring-3, which opens a window where we may be
1090 * rescheduled without changing VMCPUID::idHostCpu and cause confusion if
1091 * the CPU starts executing a different EMT. Both functions first disables
1092 * preemption and then calls HMR0LeaveCpu which invalids idHostCpu, leaving
1093 * an opening for getting preempted.
1094 */
1095 /** @todo Make HM not need this API! Then we could leave the hooks enabled
1096 * all the time. */
1097 /** @todo move this into the context hook disabling if(). */
1098 ASMAtomicWriteU32(&pVCpu->idHostCpu, NIL_RTCPUID);
1099
1100 /*
1101 * Disable the context hook, if we got one.
1102 */
1103 if (pVCpu->vmm.s.hCtxHook != NIL_RTTHREADCTXHOOK)
1104 {
1105 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1106 int rc = RTThreadCtxHookDisable(pVCpu->vmm.s.hCtxHook);
1107 AssertRC(rc);
1108 }
1109}
1110
1111
1112/**
1113 * Internal version of VMMR0ThreadCtxHooksAreRegistered.
1114 *
1115 * @returns true if registered, false otherwise.
1116 * @param pVCpu The cross context virtual CPU structure.
1117 */
1118DECLINLINE(bool) vmmR0ThreadCtxHookIsEnabled(PVMCPUCC pVCpu)
1119{
1120 return RTThreadCtxHookIsEnabled(pVCpu->vmm.s.hCtxHook);
1121}
1122
1123
1124/**
1125 * Whether thread-context hooks are registered for this VCPU.
1126 *
1127 * @returns true if registered, false otherwise.
1128 * @param pVCpu The cross context virtual CPU structure.
1129 */
1130VMMR0_INT_DECL(bool) VMMR0ThreadCtxHookIsEnabled(PVMCPUCC pVCpu)
1131{
1132 return vmmR0ThreadCtxHookIsEnabled(pVCpu);
1133}
1134
1135
1136/**
1137 * Returns the ring-0 release logger instance.
1138 *
1139 * @returns Pointer to release logger, NULL if not configured.
1140 * @param pVCpu The cross context virtual CPU structure of the caller.
1141 * @thread EMT(pVCpu)
1142 */
1143VMMR0_INT_DECL(PRTLOGGER) VMMR0GetReleaseLogger(PVMCPUCC pVCpu)
1144{
1145 PVMMR0LOGGER pLogger = pVCpu->vmm.s.pR0RelLoggerR0;
1146 if (pLogger)
1147 return &pLogger->Logger;
1148 return NULL;
1149}
1150
1151
1152#ifdef VBOX_WITH_STATISTICS
1153/**
1154 * Record return code statistics
1155 * @param pVM The cross context VM structure.
1156 * @param pVCpu The cross context virtual CPU structure.
1157 * @param rc The status code.
1158 */
1159static void vmmR0RecordRC(PVMCC pVM, PVMCPUCC pVCpu, int rc)
1160{
1161 /*
1162 * Collect statistics.
1163 */
1164 switch (rc)
1165 {
1166 case VINF_SUCCESS:
1167 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetNormal);
1168 break;
1169 case VINF_EM_RAW_INTERRUPT:
1170 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetInterrupt);
1171 break;
1172 case VINF_EM_RAW_INTERRUPT_HYPER:
1173 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetInterruptHyper);
1174 break;
1175 case VINF_EM_RAW_GUEST_TRAP:
1176 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetGuestTrap);
1177 break;
1178 case VINF_EM_RAW_RING_SWITCH:
1179 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetRingSwitch);
1180 break;
1181 case VINF_EM_RAW_RING_SWITCH_INT:
1182 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetRingSwitchInt);
1183 break;
1184 case VINF_EM_RAW_STALE_SELECTOR:
1185 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetStaleSelector);
1186 break;
1187 case VINF_EM_RAW_IRET_TRAP:
1188 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetIRETTrap);
1189 break;
1190 case VINF_IOM_R3_IOPORT_READ:
1191 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetIORead);
1192 break;
1193 case VINF_IOM_R3_IOPORT_WRITE:
1194 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetIOWrite);
1195 break;
1196 case VINF_IOM_R3_IOPORT_COMMIT_WRITE:
1197 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetIOCommitWrite);
1198 break;
1199 case VINF_IOM_R3_MMIO_READ:
1200 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetMMIORead);
1201 break;
1202 case VINF_IOM_R3_MMIO_WRITE:
1203 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetMMIOWrite);
1204 break;
1205 case VINF_IOM_R3_MMIO_COMMIT_WRITE:
1206 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetMMIOCommitWrite);
1207 break;
1208 case VINF_IOM_R3_MMIO_READ_WRITE:
1209 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetMMIOReadWrite);
1210 break;
1211 case VINF_PATM_HC_MMIO_PATCH_READ:
1212 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetMMIOPatchRead);
1213 break;
1214 case VINF_PATM_HC_MMIO_PATCH_WRITE:
1215 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetMMIOPatchWrite);
1216 break;
1217 case VINF_CPUM_R3_MSR_READ:
1218 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetMSRRead);
1219 break;
1220 case VINF_CPUM_R3_MSR_WRITE:
1221 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetMSRWrite);
1222 break;
1223 case VINF_EM_RAW_EMULATE_INSTR:
1224 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetEmulate);
1225 break;
1226 case VINF_PATCH_EMULATE_INSTR:
1227 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetPatchEmulate);
1228 break;
1229 case VINF_EM_RAW_EMULATE_INSTR_LDT_FAULT:
1230 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetLDTFault);
1231 break;
1232 case VINF_EM_RAW_EMULATE_INSTR_GDT_FAULT:
1233 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetGDTFault);
1234 break;
1235 case VINF_EM_RAW_EMULATE_INSTR_IDT_FAULT:
1236 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetIDTFault);
1237 break;
1238 case VINF_EM_RAW_EMULATE_INSTR_TSS_FAULT:
1239 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetTSSFault);
1240 break;
1241 case VINF_CSAM_PENDING_ACTION:
1242 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetCSAMTask);
1243 break;
1244 case VINF_PGM_SYNC_CR3:
1245 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetSyncCR3);
1246 break;
1247 case VINF_PATM_PATCH_INT3:
1248 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetPatchInt3);
1249 break;
1250 case VINF_PATM_PATCH_TRAP_PF:
1251 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetPatchPF);
1252 break;
1253 case VINF_PATM_PATCH_TRAP_GP:
1254 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetPatchGP);
1255 break;
1256 case VINF_PATM_PENDING_IRQ_AFTER_IRET:
1257 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetPatchIretIRQ);
1258 break;
1259 case VINF_EM_RESCHEDULE_REM:
1260 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetRescheduleREM);
1261 break;
1262 case VINF_EM_RAW_TO_R3:
1263 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetToR3Total);
1264 if (VM_FF_IS_SET(pVM, VM_FF_TM_VIRTUAL_SYNC))
1265 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetToR3TMVirt);
1266 else if (VM_FF_IS_SET(pVM, VM_FF_PGM_NEED_HANDY_PAGES))
1267 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetToR3HandyPages);
1268 else if (VM_FF_IS_SET(pVM, VM_FF_PDM_QUEUES))
1269 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetToR3PDMQueues);
1270 else if (VM_FF_IS_SET(pVM, VM_FF_EMT_RENDEZVOUS))
1271 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetToR3Rendezvous);
1272 else if (VM_FF_IS_SET(pVM, VM_FF_PDM_DMA))
1273 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetToR3DMA);
1274 else if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_TIMER))
1275 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetToR3Timer);
1276 else if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PDM_CRITSECT))
1277 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetToR3CritSect);
1278 else if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_TO_R3))
1279 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetToR3FF);
1280 else if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_IEM))
1281 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetToR3Iem);
1282 else if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_IOM))
1283 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetToR3Iom);
1284 else
1285 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetToR3Unknown);
1286 break;
1287
1288 case VINF_EM_RAW_TIMER_PENDING:
1289 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetTimerPending);
1290 break;
1291 case VINF_EM_RAW_INTERRUPT_PENDING:
1292 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetInterruptPending);
1293 break;
1294 case VINF_VMM_CALL_HOST:
1295 switch (pVCpu->vmm.s.enmCallRing3Operation)
1296 {
1297 case VMMCALLRING3_PDM_CRIT_SECT_ENTER:
1298 STAM_COUNTER_INC(&pVM->vmm.s.StatRZCallPDMCritSectEnter);
1299 break;
1300 case VMMCALLRING3_PDM_LOCK:
1301 STAM_COUNTER_INC(&pVM->vmm.s.StatRZCallPDMLock);
1302 break;
1303 case VMMCALLRING3_PGM_POOL_GROW:
1304 STAM_COUNTER_INC(&pVM->vmm.s.StatRZCallPGMPoolGrow);
1305 break;
1306 case VMMCALLRING3_PGM_LOCK:
1307 STAM_COUNTER_INC(&pVM->vmm.s.StatRZCallPGMLock);
1308 break;
1309 case VMMCALLRING3_PGM_MAP_CHUNK:
1310 STAM_COUNTER_INC(&pVM->vmm.s.StatRZCallPGMMapChunk);
1311 break;
1312 case VMMCALLRING3_PGM_ALLOCATE_HANDY_PAGES:
1313 STAM_COUNTER_INC(&pVM->vmm.s.StatRZCallPGMAllocHandy);
1314 break;
1315 case VMMCALLRING3_VMM_LOGGER_FLUSH:
1316 STAM_COUNTER_INC(&pVM->vmm.s.StatRZCallLogFlush);
1317 break;
1318 case VMMCALLRING3_VM_SET_ERROR:
1319 STAM_COUNTER_INC(&pVM->vmm.s.StatRZCallVMSetError);
1320 break;
1321 case VMMCALLRING3_VM_SET_RUNTIME_ERROR:
1322 STAM_COUNTER_INC(&pVM->vmm.s.StatRZCallVMSetRuntimeError);
1323 break;
1324 case VMMCALLRING3_VM_R0_ASSERTION:
1325 default:
1326 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetCallRing3);
1327 break;
1328 }
1329 break;
1330 case VINF_PATM_DUPLICATE_FUNCTION:
1331 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetPATMDuplicateFn);
1332 break;
1333 case VINF_PGM_CHANGE_MODE:
1334 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetPGMChangeMode);
1335 break;
1336 case VINF_PGM_POOL_FLUSH_PENDING:
1337 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetPGMFlushPending);
1338 break;
1339 case VINF_EM_PENDING_REQUEST:
1340 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetPendingRequest);
1341 break;
1342 case VINF_EM_HM_PATCH_TPR_INSTR:
1343 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetPatchTPR);
1344 break;
1345 default:
1346 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetMisc);
1347 break;
1348 }
1349}
1350#endif /* VBOX_WITH_STATISTICS */
1351
1352
1353/**
1354 * The Ring 0 entry point, called by the fast-ioctl path.
1355 *
1356 * @param pGVM The global (ring-0) VM structure.
1357 * @param pVMIgnored The cross context VM structure. The return code is
1358 * stored in pVM->vmm.s.iLastGZRc.
1359 * @param idCpu The Virtual CPU ID of the calling EMT.
1360 * @param enmOperation Which operation to execute.
1361 * @remarks Assume called with interrupts _enabled_.
1362 */
1363VMMR0DECL(void) VMMR0EntryFast(PGVM pGVM, PVMCC pVMIgnored, VMCPUID idCpu, VMMR0OPERATION enmOperation)
1364{
1365 RT_NOREF(pVMIgnored);
1366
1367 /*
1368 * Validation.
1369 */
1370 if ( idCpu < pGVM->cCpus
1371 && pGVM->cCpus == pGVM->cCpusUnsafe)
1372 { /*likely*/ }
1373 else
1374 {
1375 SUPR0Printf("VMMR0EntryFast: Bad idCpu=%#x cCpus=%#x cCpusUnsafe=%#x\n", idCpu, pGVM->cCpus, pGVM->cCpusUnsafe);
1376 return;
1377 }
1378
1379 PGVMCPU pGVCpu = &pGVM->aCpus[idCpu];
1380 RTNATIVETHREAD const hNativeThread = RTThreadNativeSelf();
1381 if (RT_LIKELY( pGVCpu->hEMT == hNativeThread
1382 && pGVCpu->hNativeThreadR0 == hNativeThread))
1383 { /* likely */ }
1384 else
1385 {
1386 SUPR0Printf("VMMR0EntryFast: Bad thread idCpu=%#x hNativeSelf=%p pGVCpu->hEmt=%p pGVCpu->hNativeThreadR0=%p\n",
1387 idCpu, hNativeThread, pGVCpu->hEMT, pGVCpu->hNativeThreadR0);
1388 return;
1389 }
1390
1391 /*
1392 * SMAP fun.
1393 */
1394 VMM_CHECK_SMAP_SETUP();
1395 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
1396
1397 /*
1398 * Perform requested operation.
1399 */
1400 switch (enmOperation)
1401 {
1402 /*
1403 * Run guest code using the available hardware acceleration technology.
1404 */
1405 case VMMR0_DO_HM_RUN:
1406 {
1407 for (;;) /* hlt loop */
1408 {
1409 /*
1410 * Disable preemption.
1411 */
1412 Assert(!vmmR0ThreadCtxHookIsEnabled(pGVCpu));
1413 RTTHREADPREEMPTSTATE PreemptState = RTTHREADPREEMPTSTATE_INITIALIZER;
1414 RTThreadPreemptDisable(&PreemptState);
1415
1416 /*
1417 * Get the host CPU identifiers, make sure they are valid and that
1418 * we've got a TSC delta for the CPU.
1419 */
1420 RTCPUID idHostCpu;
1421 uint32_t iHostCpuSet = RTMpCurSetIndexAndId(&idHostCpu);
1422 if (RT_LIKELY( iHostCpuSet < RTCPUSET_MAX_CPUS
1423 && SUPIsTscDeltaAvailableForCpuSetIndex(iHostCpuSet)))
1424 {
1425 pGVCpu->iHostCpuSet = iHostCpuSet;
1426 ASMAtomicWriteU32(&pGVCpu->idHostCpu, idHostCpu);
1427
1428 /*
1429 * Update the periodic preemption timer if it's active.
1430 */
1431 if (pGVM->vmm.s.fUsePeriodicPreemptionTimers)
1432 GVMMR0SchedUpdatePeriodicPreemptionTimer(pGVM, pGVCpu->idHostCpu, TMCalcHostTimerFrequency(pGVM, pGVCpu));
1433 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
1434
1435#ifdef VMM_R0_TOUCH_FPU
1436 /*
1437 * Make sure we've got the FPU state loaded so and we don't need to clear
1438 * CR0.TS and get out of sync with the host kernel when loading the guest
1439 * FPU state. @ref sec_cpum_fpu (CPUM.cpp) and @bugref{4053}.
1440 */
1441 CPUMR0TouchHostFpu();
1442#endif
1443 int rc;
1444 bool fPreemptRestored = false;
1445 if (!HMR0SuspendPending())
1446 {
1447 /*
1448 * Enable the context switching hook.
1449 */
1450 if (pGVCpu->vmm.s.hCtxHook != NIL_RTTHREADCTXHOOK)
1451 {
1452 Assert(!RTThreadCtxHookIsEnabled(pGVCpu->vmm.s.hCtxHook));
1453 int rc2 = RTThreadCtxHookEnable(pGVCpu->vmm.s.hCtxHook); AssertRC(rc2);
1454 }
1455
1456 /*
1457 * Enter HM context.
1458 */
1459 rc = HMR0Enter(pGVCpu);
1460 if (RT_SUCCESS(rc))
1461 {
1462 VMCPU_SET_STATE(pGVCpu, VMCPUSTATE_STARTED_HM);
1463
1464 /*
1465 * When preemption hooks are in place, enable preemption now that
1466 * we're in HM context.
1467 */
1468 if (vmmR0ThreadCtxHookIsEnabled(pGVCpu))
1469 {
1470 fPreemptRestored = true;
1471 RTThreadPreemptRestore(&PreemptState);
1472 }
1473
1474 /*
1475 * Setup the longjmp machinery and execute guest code (calls HMR0RunGuestCode).
1476 */
1477 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
1478 rc = vmmR0CallRing3SetJmp(&pGVCpu->vmm.s.CallRing3JmpBufR0, HMR0RunGuestCode, pGVM, pGVCpu);
1479 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
1480
1481 /*
1482 * Assert sanity on the way out. Using manual assertions code here as normal
1483 * assertions are going to panic the host since we're outside the setjmp/longjmp zone.
1484 */
1485 if (RT_UNLIKELY( VMCPU_GET_STATE(pGVCpu) != VMCPUSTATE_STARTED_HM
1486 && RT_SUCCESS_NP(rc) && rc != VINF_VMM_CALL_HOST ))
1487 {
1488 pGVM->vmm.s.szRing0AssertMsg1[0] = '\0';
1489 RTStrPrintf(pGVM->vmm.s.szRing0AssertMsg2, sizeof(pGVM->vmm.s.szRing0AssertMsg2),
1490 "Got VMCPU state %d expected %d.\n", VMCPU_GET_STATE(pGVCpu), VMCPUSTATE_STARTED_HM);
1491 rc = VERR_VMM_WRONG_HM_VMCPU_STATE;
1492 }
1493 /** @todo Get rid of this. HM shouldn't disable the context hook. */
1494 else if (RT_UNLIKELY(vmmR0ThreadCtxHookIsEnabled(pGVCpu)))
1495 {
1496 pGVM->vmm.s.szRing0AssertMsg1[0] = '\0';
1497 RTStrPrintf(pGVM->vmm.s.szRing0AssertMsg2, sizeof(pGVM->vmm.s.szRing0AssertMsg2),
1498 "Thread-context hooks still enabled! VCPU=%p Id=%u rc=%d.\n", pGVCpu, pGVCpu->idCpu, rc);
1499 rc = VERR_INVALID_STATE;
1500 }
1501
1502 VMCPU_SET_STATE(pGVCpu, VMCPUSTATE_STARTED);
1503 }
1504 STAM_COUNTER_INC(&pGVM->vmm.s.StatRunGC);
1505
1506 /*
1507 * Invalidate the host CPU identifiers before we disable the context
1508 * hook / restore preemption.
1509 */
1510 pGVCpu->iHostCpuSet = UINT32_MAX;
1511 ASMAtomicWriteU32(&pGVCpu->idHostCpu, NIL_RTCPUID);
1512
1513 /*
1514 * Disable context hooks. Due to unresolved cleanup issues, we
1515 * cannot leave the hooks enabled when we return to ring-3.
1516 *
1517 * Note! At the moment HM may also have disabled the hook
1518 * when we get here, but the IPRT API handles that.
1519 */
1520 if (pGVCpu->vmm.s.hCtxHook != NIL_RTTHREADCTXHOOK)
1521 {
1522 ASMAtomicWriteU32(&pGVCpu->idHostCpu, NIL_RTCPUID);
1523 RTThreadCtxHookDisable(pGVCpu->vmm.s.hCtxHook);
1524 }
1525 }
1526 /*
1527 * The system is about to go into suspend mode; go back to ring 3.
1528 */
1529 else
1530 {
1531 rc = VINF_EM_RAW_INTERRUPT;
1532 pGVCpu->iHostCpuSet = UINT32_MAX;
1533 ASMAtomicWriteU32(&pGVCpu->idHostCpu, NIL_RTCPUID);
1534 }
1535
1536 /** @todo When HM stops messing with the context hook state, we'll disable
1537 * preemption again before the RTThreadCtxHookDisable call. */
1538 if (!fPreemptRestored)
1539 RTThreadPreemptRestore(&PreemptState);
1540
1541 pGVCpu->vmm.s.iLastGZRc = rc;
1542
1543 /* Fire dtrace probe and collect statistics. */
1544 VBOXVMM_R0_VMM_RETURN_TO_RING3_HM(pGVCpu, CPUMQueryGuestCtxPtr(pGVCpu), rc);
1545#ifdef VBOX_WITH_STATISTICS
1546 vmmR0RecordRC(pGVM, pGVCpu, rc);
1547#endif
1548 /*
1549 * If this is a halt.
1550 */
1551 if (rc != VINF_EM_HALT)
1552 { /* we're not in a hurry for a HLT, so prefer this path */ }
1553 else
1554 {
1555 pGVCpu->vmm.s.iLastGZRc = rc = vmmR0DoHalt(pGVM, pGVCpu);
1556 if (rc == VINF_SUCCESS)
1557 {
1558 pGVCpu->vmm.s.cR0HaltsSucceeded++;
1559 continue;
1560 }
1561 pGVCpu->vmm.s.cR0HaltsToRing3++;
1562 }
1563 }
1564 /*
1565 * Invalid CPU set index or TSC delta in need of measuring.
1566 */
1567 else
1568 {
1569 pGVCpu->iHostCpuSet = UINT32_MAX;
1570 ASMAtomicWriteU32(&pGVCpu->idHostCpu, NIL_RTCPUID);
1571 RTThreadPreemptRestore(&PreemptState);
1572 if (iHostCpuSet < RTCPUSET_MAX_CPUS)
1573 {
1574 int rc = SUPR0TscDeltaMeasureBySetIndex(pGVM->pSession, iHostCpuSet, 0 /*fFlags*/,
1575 2 /*cMsWaitRetry*/, 5*RT_MS_1SEC /*cMsWaitThread*/,
1576 0 /*default cTries*/);
1577 if (RT_SUCCESS(rc) || rc == VERR_CPU_OFFLINE)
1578 pGVCpu->vmm.s.iLastGZRc = VINF_EM_RAW_TO_R3;
1579 else
1580 pGVCpu->vmm.s.iLastGZRc = rc;
1581 }
1582 else
1583 pGVCpu->vmm.s.iLastGZRc = VERR_INVALID_CPU_INDEX;
1584 }
1585 break;
1586
1587 } /* halt loop. */
1588 break;
1589 }
1590
1591#ifdef VBOX_WITH_NEM_R0
1592# if defined(RT_ARCH_AMD64) && defined(RT_OS_WINDOWS)
1593 case VMMR0_DO_NEM_RUN:
1594 {
1595 /*
1596 * Setup the longjmp machinery and execute guest code (calls NEMR0RunGuestCode).
1597 */
1598 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
1599# ifdef VBOXSTRICTRC_STRICT_ENABLED
1600 int rc = vmmR0CallRing3SetJmp2(&pGVCpu->vmm.s.CallRing3JmpBufR0, (PFNVMMR0SETJMP2)NEMR0RunGuestCode, pGVM, idCpu);
1601# else
1602 int rc = vmmR0CallRing3SetJmp2(&pGVCpu->vmm.s.CallRing3JmpBufR0, NEMR0RunGuestCode, pGVM, idCpu);
1603# endif
1604 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
1605 STAM_COUNTER_INC(&pGVM->vmm.s.StatRunGC);
1606
1607 pGVCpu->vmm.s.iLastGZRc = rc;
1608
1609 /*
1610 * Fire dtrace probe and collect statistics.
1611 */
1612 VBOXVMM_R0_VMM_RETURN_TO_RING3_NEM(pGVCpu, CPUMQueryGuestCtxPtr(pGVCpu), rc);
1613# ifdef VBOX_WITH_STATISTICS
1614 vmmR0RecordRC(pGVM, pGVCpu, rc);
1615# endif
1616 break;
1617 }
1618# endif
1619#endif
1620
1621 /*
1622 * For profiling.
1623 */
1624 case VMMR0_DO_NOP:
1625 pGVCpu->vmm.s.iLastGZRc = VINF_SUCCESS;
1626 break;
1627
1628 /*
1629 * Shouldn't happen.
1630 */
1631 default:
1632 AssertMsgFailed(("%#x\n", enmOperation));
1633 pGVCpu->vmm.s.iLastGZRc = VERR_NOT_SUPPORTED;
1634 break;
1635 }
1636 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
1637}
1638
1639
1640/**
1641 * Validates a session or VM session argument.
1642 *
1643 * @returns true / false accordingly.
1644 * @param pGVM The global (ring-0) VM structure.
1645 * @param pClaimedSession The session claim to validate.
1646 * @param pSession The session argument.
1647 */
1648DECLINLINE(bool) vmmR0IsValidSession(PGVM pGVM, PSUPDRVSESSION pClaimedSession, PSUPDRVSESSION pSession)
1649{
1650 /* This must be set! */
1651 if (!pSession)
1652 return false;
1653
1654 /* Only one out of the two. */
1655 if (pGVM && pClaimedSession)
1656 return false;
1657 if (pGVM)
1658 pClaimedSession = pGVM->pSession;
1659 return pClaimedSession == pSession;
1660}
1661
1662
1663/**
1664 * VMMR0EntryEx worker function, either called directly or when ever possible
1665 * called thru a longjmp so we can exit safely on failure.
1666 *
1667 * @returns VBox status code.
1668 * @param pGVM The global (ring-0) VM structure.
1669 * @param idCpu Virtual CPU ID argument. Must be NIL_VMCPUID if pVM
1670 * is NIL_RTR0PTR, and may be NIL_VMCPUID if it isn't
1671 * @param enmOperation Which operation to execute.
1672 * @param pReqHdr This points to a SUPVMMR0REQHDR packet. Optional.
1673 * The support driver validates this if it's present.
1674 * @param u64Arg Some simple constant argument.
1675 * @param pSession The session of the caller.
1676 *
1677 * @remarks Assume called with interrupts _enabled_.
1678 */
1679static int vmmR0EntryExWorker(PGVM pGVM, VMCPUID idCpu, VMMR0OPERATION enmOperation,
1680 PSUPVMMR0REQHDR pReqHdr, uint64_t u64Arg, PSUPDRVSESSION pSession)
1681{
1682 /*
1683 * Validate pGVM and idCpu for consistency and validity.
1684 */
1685 if (pGVM != NULL)
1686 {
1687 if (RT_LIKELY(((uintptr_t)pGVM & PAGE_OFFSET_MASK) == 0))
1688 { /* likely */ }
1689 else
1690 {
1691 SUPR0Printf("vmmR0EntryExWorker: Invalid pGVM=%p! (op=%d)\n", pGVM, enmOperation);
1692 return VERR_INVALID_POINTER;
1693 }
1694
1695 if (RT_LIKELY(idCpu == NIL_VMCPUID || idCpu < pGVM->cCpus))
1696 { /* likely */ }
1697 else
1698 {
1699 SUPR0Printf("vmmR0EntryExWorker: Invalid idCpu %#x (cCpus=%#x)\n", idCpu, pGVM->cCpus);
1700 return VERR_INVALID_PARAMETER;
1701 }
1702
1703 if (RT_LIKELY( pGVM->enmVMState >= VMSTATE_CREATING
1704 && pGVM->enmVMState <= VMSTATE_TERMINATED
1705 && pGVM->pSession == pSession
1706 && pGVM->pSelf == pGVM))
1707 { /* likely */ }
1708 else
1709 {
1710 SUPR0Printf("vmmR0EntryExWorker: Invalid pGVM=%p:{.enmVMState=%d, .cCpus=%#x, .pSession=%p(==%p), .pSelf=%p(==%p)}! (op=%d)\n",
1711 pGVM, pGVM->enmVMState, pGVM->cCpus, pGVM->pSession, pSession, pGVM->pSelf, pGVM, enmOperation);
1712 return VERR_INVALID_POINTER;
1713 }
1714 }
1715 else if (RT_LIKELY(idCpu == NIL_VMCPUID))
1716 { /* likely */ }
1717 else
1718 {
1719 SUPR0Printf("vmmR0EntryExWorker: Invalid idCpu=%u\n", idCpu);
1720 return VERR_INVALID_PARAMETER;
1721 }
1722
1723 /*
1724 * SMAP fun.
1725 */
1726 VMM_CHECK_SMAP_SETUP();
1727 VMM_CHECK_SMAP_CHECK(RT_NOTHING);
1728
1729 /*
1730 * Process the request.
1731 */
1732 int rc;
1733 switch (enmOperation)
1734 {
1735 /*
1736 * GVM requests
1737 */
1738 case VMMR0_DO_GVMM_CREATE_VM:
1739 if (pGVM == NULL && u64Arg == 0 && idCpu == NIL_VMCPUID)
1740 rc = GVMMR0CreateVMReq((PGVMMCREATEVMREQ)pReqHdr, pSession);
1741 else
1742 rc = VERR_INVALID_PARAMETER;
1743 VMM_CHECK_SMAP_CHECK(RT_NOTHING);
1744 break;
1745
1746 case VMMR0_DO_GVMM_DESTROY_VM:
1747 if (pReqHdr == NULL && u64Arg == 0)
1748 rc = GVMMR0DestroyVM(pGVM);
1749 else
1750 rc = VERR_INVALID_PARAMETER;
1751 VMM_CHECK_SMAP_CHECK(RT_NOTHING);
1752 break;
1753
1754 case VMMR0_DO_GVMM_REGISTER_VMCPU:
1755 if (pGVM != NULL)
1756 rc = GVMMR0RegisterVCpu(pGVM, idCpu);
1757 else
1758 rc = VERR_INVALID_PARAMETER;
1759 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
1760 break;
1761
1762 case VMMR0_DO_GVMM_DEREGISTER_VMCPU:
1763 if (pGVM != NULL)
1764 rc = GVMMR0DeregisterVCpu(pGVM, idCpu);
1765 else
1766 rc = VERR_INVALID_PARAMETER;
1767 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
1768 break;
1769
1770 case VMMR0_DO_GVMM_SCHED_HALT:
1771 if (pReqHdr)
1772 return VERR_INVALID_PARAMETER;
1773 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
1774 rc = GVMMR0SchedHaltReq(pGVM, idCpu, u64Arg);
1775 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
1776 break;
1777
1778 case VMMR0_DO_GVMM_SCHED_WAKE_UP:
1779 if (pReqHdr || u64Arg)
1780 return VERR_INVALID_PARAMETER;
1781 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
1782 rc = GVMMR0SchedWakeUp(pGVM, idCpu);
1783 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
1784 break;
1785
1786 case VMMR0_DO_GVMM_SCHED_POKE:
1787 if (pReqHdr || u64Arg)
1788 return VERR_INVALID_PARAMETER;
1789 rc = GVMMR0SchedPoke(pGVM, idCpu);
1790 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
1791 break;
1792
1793 case VMMR0_DO_GVMM_SCHED_WAKE_UP_AND_POKE_CPUS:
1794 if (u64Arg)
1795 return VERR_INVALID_PARAMETER;
1796 rc = GVMMR0SchedWakeUpAndPokeCpusReq(pGVM, (PGVMMSCHEDWAKEUPANDPOKECPUSREQ)pReqHdr);
1797 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
1798 break;
1799
1800 case VMMR0_DO_GVMM_SCHED_POLL:
1801 if (pReqHdr || u64Arg > 1)
1802 return VERR_INVALID_PARAMETER;
1803 rc = GVMMR0SchedPoll(pGVM, idCpu, !!u64Arg);
1804 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
1805 break;
1806
1807 case VMMR0_DO_GVMM_QUERY_STATISTICS:
1808 if (u64Arg)
1809 return VERR_INVALID_PARAMETER;
1810 rc = GVMMR0QueryStatisticsReq(pGVM, (PGVMMQUERYSTATISTICSSREQ)pReqHdr, pSession);
1811 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
1812 break;
1813
1814 case VMMR0_DO_GVMM_RESET_STATISTICS:
1815 if (u64Arg)
1816 return VERR_INVALID_PARAMETER;
1817 rc = GVMMR0ResetStatisticsReq(pGVM, (PGVMMRESETSTATISTICSSREQ)pReqHdr, pSession);
1818 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
1819 break;
1820
1821 /*
1822 * Initialize the R0 part of a VM instance.
1823 */
1824 case VMMR0_DO_VMMR0_INIT:
1825 rc = vmmR0InitVM(pGVM, RT_LODWORD(u64Arg), RT_HIDWORD(u64Arg));
1826 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
1827 break;
1828
1829 /*
1830 * Does EMT specific ring-0 init.
1831 */
1832 case VMMR0_DO_VMMR0_INIT_EMT:
1833 rc = vmmR0InitVMEmt(pGVM, idCpu);
1834 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
1835 break;
1836
1837 /*
1838 * Terminate the R0 part of a VM instance.
1839 */
1840 case VMMR0_DO_VMMR0_TERM:
1841 rc = VMMR0TermVM(pGVM, 0 /*idCpu*/);
1842 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
1843 break;
1844
1845 /*
1846 * Attempt to enable hm mode and check the current setting.
1847 */
1848 case VMMR0_DO_HM_ENABLE:
1849 rc = HMR0EnableAllCpus(pGVM);
1850 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
1851 break;
1852
1853 /*
1854 * Setup the hardware accelerated session.
1855 */
1856 case VMMR0_DO_HM_SETUP_VM:
1857 rc = HMR0SetupVM(pGVM);
1858 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
1859 break;
1860
1861 /*
1862 * PGM wrappers.
1863 */
1864 case VMMR0_DO_PGM_ALLOCATE_HANDY_PAGES:
1865 if (idCpu == NIL_VMCPUID)
1866 return VERR_INVALID_CPU_ID;
1867 rc = PGMR0PhysAllocateHandyPages(pGVM, idCpu);
1868 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
1869 break;
1870
1871 case VMMR0_DO_PGM_FLUSH_HANDY_PAGES:
1872 if (idCpu == NIL_VMCPUID)
1873 return VERR_INVALID_CPU_ID;
1874 rc = PGMR0PhysFlushHandyPages(pGVM, idCpu);
1875 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
1876 break;
1877
1878 case VMMR0_DO_PGM_ALLOCATE_LARGE_HANDY_PAGE:
1879 if (idCpu == NIL_VMCPUID)
1880 return VERR_INVALID_CPU_ID;
1881 rc = PGMR0PhysAllocateLargeHandyPage(pGVM, idCpu);
1882 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
1883 break;
1884
1885 case VMMR0_DO_PGM_PHYS_SETUP_IOMMU:
1886 if (idCpu != 0)
1887 return VERR_INVALID_CPU_ID;
1888 rc = PGMR0PhysSetupIoMmu(pGVM);
1889 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
1890 break;
1891
1892 case VMMR0_DO_PGM_POOL_GROW:
1893 if (idCpu == NIL_VMCPUID)
1894 return VERR_INVALID_CPU_ID;
1895 rc = PGMR0PoolGrow(pGVM);
1896 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
1897 break;
1898
1899 /*
1900 * GMM wrappers.
1901 */
1902 case VMMR0_DO_GMM_INITIAL_RESERVATION:
1903 if (u64Arg)
1904 return VERR_INVALID_PARAMETER;
1905 rc = GMMR0InitialReservationReq(pGVM, idCpu, (PGMMINITIALRESERVATIONREQ)pReqHdr);
1906 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
1907 break;
1908
1909 case VMMR0_DO_GMM_UPDATE_RESERVATION:
1910 if (u64Arg)
1911 return VERR_INVALID_PARAMETER;
1912 rc = GMMR0UpdateReservationReq(pGVM, idCpu, (PGMMUPDATERESERVATIONREQ)pReqHdr);
1913 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
1914 break;
1915
1916 case VMMR0_DO_GMM_ALLOCATE_PAGES:
1917 if (u64Arg)
1918 return VERR_INVALID_PARAMETER;
1919 rc = GMMR0AllocatePagesReq(pGVM, idCpu, (PGMMALLOCATEPAGESREQ)pReqHdr);
1920 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
1921 break;
1922
1923 case VMMR0_DO_GMM_FREE_PAGES:
1924 if (u64Arg)
1925 return VERR_INVALID_PARAMETER;
1926 rc = GMMR0FreePagesReq(pGVM, idCpu, (PGMMFREEPAGESREQ)pReqHdr);
1927 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
1928 break;
1929
1930 case VMMR0_DO_GMM_FREE_LARGE_PAGE:
1931 if (u64Arg)
1932 return VERR_INVALID_PARAMETER;
1933 rc = GMMR0FreeLargePageReq(pGVM, idCpu, (PGMMFREELARGEPAGEREQ)pReqHdr);
1934 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
1935 break;
1936
1937 case VMMR0_DO_GMM_QUERY_HYPERVISOR_MEM_STATS:
1938 if (u64Arg)
1939 return VERR_INVALID_PARAMETER;
1940 rc = GMMR0QueryHypervisorMemoryStatsReq((PGMMMEMSTATSREQ)pReqHdr);
1941 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
1942 break;
1943
1944 case VMMR0_DO_GMM_QUERY_MEM_STATS:
1945 if (idCpu == NIL_VMCPUID)
1946 return VERR_INVALID_CPU_ID;
1947 if (u64Arg)
1948 return VERR_INVALID_PARAMETER;
1949 rc = GMMR0QueryMemoryStatsReq(pGVM, idCpu, (PGMMMEMSTATSREQ)pReqHdr);
1950 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
1951 break;
1952
1953 case VMMR0_DO_GMM_BALLOONED_PAGES:
1954 if (u64Arg)
1955 return VERR_INVALID_PARAMETER;
1956 rc = GMMR0BalloonedPagesReq(pGVM, idCpu, (PGMMBALLOONEDPAGESREQ)pReqHdr);
1957 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
1958 break;
1959
1960 case VMMR0_DO_GMM_MAP_UNMAP_CHUNK:
1961 if (u64Arg)
1962 return VERR_INVALID_PARAMETER;
1963 rc = GMMR0MapUnmapChunkReq(pGVM, (PGMMMAPUNMAPCHUNKREQ)pReqHdr);
1964 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
1965 break;
1966
1967 case VMMR0_DO_GMM_SEED_CHUNK:
1968 if (pReqHdr)
1969 return VERR_INVALID_PARAMETER;
1970 rc = GMMR0SeedChunk(pGVM, idCpu, (RTR3PTR)u64Arg);
1971 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
1972 break;
1973
1974 case VMMR0_DO_GMM_REGISTER_SHARED_MODULE:
1975 if (idCpu == NIL_VMCPUID)
1976 return VERR_INVALID_CPU_ID;
1977 if (u64Arg)
1978 return VERR_INVALID_PARAMETER;
1979 rc = GMMR0RegisterSharedModuleReq(pGVM, idCpu, (PGMMREGISTERSHAREDMODULEREQ)pReqHdr);
1980 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
1981 break;
1982
1983 case VMMR0_DO_GMM_UNREGISTER_SHARED_MODULE:
1984 if (idCpu == NIL_VMCPUID)
1985 return VERR_INVALID_CPU_ID;
1986 if (u64Arg)
1987 return VERR_INVALID_PARAMETER;
1988 rc = GMMR0UnregisterSharedModuleReq(pGVM, idCpu, (PGMMUNREGISTERSHAREDMODULEREQ)pReqHdr);
1989 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
1990 break;
1991
1992 case VMMR0_DO_GMM_RESET_SHARED_MODULES:
1993 if (idCpu == NIL_VMCPUID)
1994 return VERR_INVALID_CPU_ID;
1995 if ( u64Arg
1996 || pReqHdr)
1997 return VERR_INVALID_PARAMETER;
1998 rc = GMMR0ResetSharedModules(pGVM, idCpu);
1999 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
2000 break;
2001
2002#ifdef VBOX_WITH_PAGE_SHARING
2003 case VMMR0_DO_GMM_CHECK_SHARED_MODULES:
2004 {
2005 if (idCpu == NIL_VMCPUID)
2006 return VERR_INVALID_CPU_ID;
2007 if ( u64Arg
2008 || pReqHdr)
2009 return VERR_INVALID_PARAMETER;
2010 rc = GMMR0CheckSharedModules(pGVM, idCpu);
2011 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
2012 break;
2013 }
2014#endif
2015
2016#if defined(VBOX_STRICT) && HC_ARCH_BITS == 64
2017 case VMMR0_DO_GMM_FIND_DUPLICATE_PAGE:
2018 if (u64Arg)
2019 return VERR_INVALID_PARAMETER;
2020 rc = GMMR0FindDuplicatePageReq(pGVM, (PGMMFINDDUPLICATEPAGEREQ)pReqHdr);
2021 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
2022 break;
2023#endif
2024
2025 case VMMR0_DO_GMM_QUERY_STATISTICS:
2026 if (u64Arg)
2027 return VERR_INVALID_PARAMETER;
2028 rc = GMMR0QueryStatisticsReq(pGVM, (PGMMQUERYSTATISTICSSREQ)pReqHdr);
2029 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
2030 break;
2031
2032 case VMMR0_DO_GMM_RESET_STATISTICS:
2033 if (u64Arg)
2034 return VERR_INVALID_PARAMETER;
2035 rc = GMMR0ResetStatisticsReq(pGVM, (PGMMRESETSTATISTICSSREQ)pReqHdr);
2036 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
2037 break;
2038
2039 /*
2040 * A quick GCFGM mock-up.
2041 */
2042 /** @todo GCFGM with proper access control, ring-3 management interface and all that. */
2043 case VMMR0_DO_GCFGM_SET_VALUE:
2044 case VMMR0_DO_GCFGM_QUERY_VALUE:
2045 {
2046 if (pGVM || !pReqHdr || u64Arg || idCpu != NIL_VMCPUID)
2047 return VERR_INVALID_PARAMETER;
2048 PGCFGMVALUEREQ pReq = (PGCFGMVALUEREQ)pReqHdr;
2049 if (pReq->Hdr.cbReq != sizeof(*pReq))
2050 return VERR_INVALID_PARAMETER;
2051 if (enmOperation == VMMR0_DO_GCFGM_SET_VALUE)
2052 {
2053 rc = GVMMR0SetConfig(pReq->pSession, &pReq->szName[0], pReq->u64Value);
2054 //if (rc == VERR_CFGM_VALUE_NOT_FOUND)
2055 // rc = GMMR0SetConfig(pReq->pSession, &pReq->szName[0], pReq->u64Value);
2056 }
2057 else
2058 {
2059 rc = GVMMR0QueryConfig(pReq->pSession, &pReq->szName[0], &pReq->u64Value);
2060 //if (rc == VERR_CFGM_VALUE_NOT_FOUND)
2061 // rc = GMMR0QueryConfig(pReq->pSession, &pReq->szName[0], &pReq->u64Value);
2062 }
2063 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
2064 break;
2065 }
2066
2067 /*
2068 * PDM Wrappers.
2069 */
2070 case VMMR0_DO_PDM_DRIVER_CALL_REQ_HANDLER:
2071 {
2072 if (!pReqHdr || u64Arg || idCpu != NIL_VMCPUID)
2073 return VERR_INVALID_PARAMETER;
2074 rc = PDMR0DriverCallReqHandler(pGVM, (PPDMDRIVERCALLREQHANDLERREQ)pReqHdr);
2075 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
2076 break;
2077 }
2078
2079 case VMMR0_DO_PDM_DEVICE_CREATE:
2080 {
2081 if (!pReqHdr || u64Arg || idCpu != 0)
2082 return VERR_INVALID_PARAMETER;
2083 rc = PDMR0DeviceCreateReqHandler(pGVM, (PPDMDEVICECREATEREQ)pReqHdr);
2084 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
2085 break;
2086 }
2087
2088 case VMMR0_DO_PDM_DEVICE_GEN_CALL:
2089 {
2090 if (!pReqHdr || u64Arg)
2091 return VERR_INVALID_PARAMETER;
2092 rc = PDMR0DeviceGenCallReqHandler(pGVM, (PPDMDEVICEGENCALLREQ)pReqHdr, idCpu);
2093 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
2094 break;
2095 }
2096
2097 /** @todo Remove the once all devices has been converted to new style! @bugref{9218} */
2098 case VMMR0_DO_PDM_DEVICE_COMPAT_SET_CRITSECT:
2099 {
2100 if (!pReqHdr || u64Arg || idCpu != 0)
2101 return VERR_INVALID_PARAMETER;
2102 rc = PDMR0DeviceCompatSetCritSectReqHandler(pGVM, (PPDMDEVICECOMPATSETCRITSECTREQ)pReqHdr);
2103 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
2104 break;
2105 }
2106
2107 /*
2108 * Requests to the internal networking service.
2109 */
2110 case VMMR0_DO_INTNET_OPEN:
2111 {
2112 PINTNETOPENREQ pReq = (PINTNETOPENREQ)pReqHdr;
2113 if (u64Arg || !pReq || !vmmR0IsValidSession(pGVM, pReq->pSession, pSession) || idCpu != NIL_VMCPUID)
2114 return VERR_INVALID_PARAMETER;
2115 rc = IntNetR0OpenReq(pSession, pReq);
2116 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
2117 break;
2118 }
2119
2120 case VMMR0_DO_INTNET_IF_CLOSE:
2121 if (u64Arg || !pReqHdr || !vmmR0IsValidSession(pGVM, ((PINTNETIFCLOSEREQ)pReqHdr)->pSession, pSession) || idCpu != NIL_VMCPUID)
2122 return VERR_INVALID_PARAMETER;
2123 rc = IntNetR0IfCloseReq(pSession, (PINTNETIFCLOSEREQ)pReqHdr);
2124 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
2125 break;
2126
2127
2128 case VMMR0_DO_INTNET_IF_GET_BUFFER_PTRS:
2129 if (u64Arg || !pReqHdr || !vmmR0IsValidSession(pGVM, ((PINTNETIFGETBUFFERPTRSREQ)pReqHdr)->pSession, pSession) || idCpu != NIL_VMCPUID)
2130 return VERR_INVALID_PARAMETER;
2131 rc = IntNetR0IfGetBufferPtrsReq(pSession, (PINTNETIFGETBUFFERPTRSREQ)pReqHdr);
2132 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
2133 break;
2134
2135 case VMMR0_DO_INTNET_IF_SET_PROMISCUOUS_MODE:
2136 if (u64Arg || !pReqHdr || !vmmR0IsValidSession(pGVM, ((PINTNETIFSETPROMISCUOUSMODEREQ)pReqHdr)->pSession, pSession) || idCpu != NIL_VMCPUID)
2137 return VERR_INVALID_PARAMETER;
2138 rc = IntNetR0IfSetPromiscuousModeReq(pSession, (PINTNETIFSETPROMISCUOUSMODEREQ)pReqHdr);
2139 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
2140 break;
2141
2142 case VMMR0_DO_INTNET_IF_SET_MAC_ADDRESS:
2143 if (u64Arg || !pReqHdr || !vmmR0IsValidSession(pGVM, ((PINTNETIFSETMACADDRESSREQ)pReqHdr)->pSession, pSession) || idCpu != NIL_VMCPUID)
2144 return VERR_INVALID_PARAMETER;
2145 rc = IntNetR0IfSetMacAddressReq(pSession, (PINTNETIFSETMACADDRESSREQ)pReqHdr);
2146 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
2147 break;
2148
2149 case VMMR0_DO_INTNET_IF_SET_ACTIVE:
2150 if (u64Arg || !pReqHdr || !vmmR0IsValidSession(pGVM, ((PINTNETIFSETACTIVEREQ)pReqHdr)->pSession, pSession) || idCpu != NIL_VMCPUID)
2151 return VERR_INVALID_PARAMETER;
2152 rc = IntNetR0IfSetActiveReq(pSession, (PINTNETIFSETACTIVEREQ)pReqHdr);
2153 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
2154 break;
2155
2156 case VMMR0_DO_INTNET_IF_SEND:
2157 if (u64Arg || !pReqHdr || !vmmR0IsValidSession(pGVM, ((PINTNETIFSENDREQ)pReqHdr)->pSession, pSession) || idCpu != NIL_VMCPUID)
2158 return VERR_INVALID_PARAMETER;
2159 rc = IntNetR0IfSendReq(pSession, (PINTNETIFSENDREQ)pReqHdr);
2160 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
2161 break;
2162
2163 case VMMR0_DO_INTNET_IF_WAIT:
2164 if (u64Arg || !pReqHdr || !vmmR0IsValidSession(pGVM, ((PINTNETIFWAITREQ)pReqHdr)->pSession, pSession) || idCpu != NIL_VMCPUID)
2165 return VERR_INVALID_PARAMETER;
2166 rc = IntNetR0IfWaitReq(pSession, (PINTNETIFWAITREQ)pReqHdr);
2167 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
2168 break;
2169
2170 case VMMR0_DO_INTNET_IF_ABORT_WAIT:
2171 if (u64Arg || !pReqHdr || !vmmR0IsValidSession(pGVM, ((PINTNETIFWAITREQ)pReqHdr)->pSession, pSession) || idCpu != NIL_VMCPUID)
2172 return VERR_INVALID_PARAMETER;
2173 rc = IntNetR0IfAbortWaitReq(pSession, (PINTNETIFABORTWAITREQ)pReqHdr);
2174 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
2175 break;
2176
2177#if 0 //def VBOX_WITH_PCI_PASSTHROUGH
2178 /*
2179 * Requests to host PCI driver service.
2180 */
2181 case VMMR0_DO_PCIRAW_REQ:
2182 if (u64Arg || !pReqHdr || !vmmR0IsValidSession(pGVM, ((PPCIRAWSENDREQ)pReqHdr)->pSession, pSession) || idCpu != NIL_VMCPUID)
2183 return VERR_INVALID_PARAMETER;
2184 rc = PciRawR0ProcessReq(pGVM, pSession, (PPCIRAWSENDREQ)pReqHdr);
2185 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
2186 break;
2187#endif
2188
2189 /*
2190 * NEM requests.
2191 */
2192#ifdef VBOX_WITH_NEM_R0
2193# if defined(RT_ARCH_AMD64) && defined(RT_OS_WINDOWS)
2194 case VMMR0_DO_NEM_INIT_VM:
2195 if (u64Arg || pReqHdr || idCpu != 0)
2196 return VERR_INVALID_PARAMETER;
2197 rc = NEMR0InitVM(pGVM);
2198 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
2199 break;
2200
2201 case VMMR0_DO_NEM_INIT_VM_PART_2:
2202 if (u64Arg || pReqHdr || idCpu != 0)
2203 return VERR_INVALID_PARAMETER;
2204 rc = NEMR0InitVMPart2(pGVM);
2205 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
2206 break;
2207
2208 case VMMR0_DO_NEM_MAP_PAGES:
2209 if (u64Arg || pReqHdr || idCpu == NIL_VMCPUID)
2210 return VERR_INVALID_PARAMETER;
2211 rc = NEMR0MapPages(pGVM, idCpu);
2212 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
2213 break;
2214
2215 case VMMR0_DO_NEM_UNMAP_PAGES:
2216 if (u64Arg || pReqHdr || idCpu == NIL_VMCPUID)
2217 return VERR_INVALID_PARAMETER;
2218 rc = NEMR0UnmapPages(pGVM, idCpu);
2219 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
2220 break;
2221
2222 case VMMR0_DO_NEM_EXPORT_STATE:
2223 if (u64Arg || pReqHdr || idCpu == NIL_VMCPUID)
2224 return VERR_INVALID_PARAMETER;
2225 rc = NEMR0ExportState(pGVM, idCpu);
2226 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
2227 break;
2228
2229 case VMMR0_DO_NEM_IMPORT_STATE:
2230 if (pReqHdr || idCpu == NIL_VMCPUID)
2231 return VERR_INVALID_PARAMETER;
2232 rc = NEMR0ImportState(pGVM, idCpu, u64Arg);
2233 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
2234 break;
2235
2236 case VMMR0_DO_NEM_QUERY_CPU_TICK:
2237 if (u64Arg || pReqHdr || idCpu == NIL_VMCPUID)
2238 return VERR_INVALID_PARAMETER;
2239 rc = NEMR0QueryCpuTick(pGVM, idCpu);
2240 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
2241 break;
2242
2243 case VMMR0_DO_NEM_RESUME_CPU_TICK_ON_ALL:
2244 if (pReqHdr || idCpu == NIL_VMCPUID)
2245 return VERR_INVALID_PARAMETER;
2246 rc = NEMR0ResumeCpuTickOnAll(pGVM, idCpu, u64Arg);
2247 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
2248 break;
2249
2250 case VMMR0_DO_NEM_UPDATE_STATISTICS:
2251 if (u64Arg || pReqHdr)
2252 return VERR_INVALID_PARAMETER;
2253 rc = NEMR0UpdateStatistics(pGVM, idCpu);
2254 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
2255 break;
2256
2257# if 1 && defined(DEBUG_bird)
2258 case VMMR0_DO_NEM_EXPERIMENT:
2259 if (pReqHdr)
2260 return VERR_INVALID_PARAMETER;
2261 rc = NEMR0DoExperiment(pGVM, idCpu, u64Arg);
2262 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
2263 break;
2264# endif
2265# endif
2266#endif
2267
2268 /*
2269 * IOM requests.
2270 */
2271 case VMMR0_DO_IOM_GROW_IO_PORTS:
2272 {
2273 if (pReqHdr || idCpu != 0)
2274 return VERR_INVALID_PARAMETER;
2275 rc = IOMR0IoPortGrowRegistrationTables(pGVM, u64Arg);
2276 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
2277 break;
2278 }
2279
2280 case VMMR0_DO_IOM_GROW_IO_PORT_STATS:
2281 {
2282 if (pReqHdr || idCpu != 0)
2283 return VERR_INVALID_PARAMETER;
2284 rc = IOMR0IoPortGrowStatisticsTable(pGVM, u64Arg);
2285 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
2286 break;
2287 }
2288
2289 case VMMR0_DO_IOM_GROW_MMIO_REGS:
2290 {
2291 if (pReqHdr || idCpu != 0)
2292 return VERR_INVALID_PARAMETER;
2293 rc = IOMR0MmioGrowRegistrationTables(pGVM, u64Arg);
2294 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
2295 break;
2296 }
2297
2298 case VMMR0_DO_IOM_GROW_MMIO_STATS:
2299 {
2300 if (pReqHdr || idCpu != 0)
2301 return VERR_INVALID_PARAMETER;
2302 rc = IOMR0MmioGrowStatisticsTable(pGVM, u64Arg);
2303 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
2304 break;
2305 }
2306
2307 case VMMR0_DO_IOM_SYNC_STATS_INDICES:
2308 {
2309 if (pReqHdr || idCpu != 0)
2310 return VERR_INVALID_PARAMETER;
2311 rc = IOMR0IoPortSyncStatisticsIndices(pGVM);
2312 if (RT_SUCCESS(rc))
2313 rc = IOMR0MmioSyncStatisticsIndices(pGVM);
2314 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
2315 break;
2316 }
2317
2318 /*
2319 * DBGF requests.
2320 */
2321#ifdef VBOX_WITH_DBGF_TRACING
2322 case VMMR0_DO_DBGF_TRACER_CREATE:
2323 {
2324 if (!pReqHdr || u64Arg || idCpu != 0)
2325 return VERR_INVALID_PARAMETER;
2326 rc = DBGFR0TracerCreateReqHandler(pGVM, (PDBGFTRACERCREATEREQ)pReqHdr);
2327 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
2328 break;
2329 }
2330
2331 case VMMR0_DO_DBGF_TRACER_CALL_REQ_HANDLER:
2332 {
2333 if (!pReqHdr || u64Arg)
2334 return VERR_INVALID_PARAMETER;
2335# if 0 /** @todo */
2336 rc = DBGFR0TracerGenCallReqHandler(pGVM, (PDBGFTRACERGENCALLREQ)pReqHdr, idCpu);
2337# else
2338 rc = VERR_NOT_IMPLEMENTED;
2339# endif
2340 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
2341 break;
2342 }
2343#endif
2344
2345 case VMMR0_DO_DBGF_BP_INIT:
2346 {
2347 if (!pReqHdr || u64Arg || idCpu != 0)
2348 return VERR_INVALID_PARAMETER;
2349 rc = DBGFR0BpInitReqHandler(pGVM, (PDBGFBPINITREQ)pReqHdr);
2350 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
2351 break;
2352 }
2353
2354 case VMMR0_DO_DBGF_BP_CHUNK_ALLOC:
2355 {
2356 if (!pReqHdr || u64Arg || idCpu != 0)
2357 return VERR_INVALID_PARAMETER;
2358 rc = DBGFR0BpChunkAllocReqHandler(pGVM, (PDBGFBPCHUNKALLOCREQ)pReqHdr);
2359 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
2360 break;
2361 }
2362
2363 case VMMR0_DO_DBGF_BP_L2_TBL_CHUNK_ALLOC:
2364 {
2365 if (!pReqHdr || u64Arg || idCpu != 0)
2366 return VERR_INVALID_PARAMETER;
2367 rc = DBGFR0BpL2TblChunkAllocReqHandler(pGVM, (PDBGFBPL2TBLCHUNKALLOCREQ)pReqHdr);
2368 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
2369 break;
2370 }
2371
2372 case VMMR0_DO_DBGF_BP_OWNER_INIT:
2373 {
2374 if (!pReqHdr || u64Arg || idCpu != 0)
2375 return VERR_INVALID_PARAMETER;
2376 rc = DBGFR0BpOwnerInitReqHandler(pGVM, (PDBGFBPOWNERINITREQ)pReqHdr);
2377 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
2378 break;
2379 }
2380
2381 /*
2382 * TM requests.
2383 */
2384 case VMMR0_DO_TM_GROW_TIMER_QUEUE:
2385 {
2386 if (pReqHdr || idCpu == NIL_VMCPUID)
2387 return VERR_INVALID_PARAMETER;
2388 rc = TMR0TimerQueueGrow(pGVM, RT_HI_U32(u64Arg), RT_LO_U32(u64Arg));
2389 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
2390 break;
2391 }
2392
2393 /*
2394 * For profiling.
2395 */
2396 case VMMR0_DO_NOP:
2397 case VMMR0_DO_SLOW_NOP:
2398 return VINF_SUCCESS;
2399
2400 /*
2401 * For testing Ring-0 APIs invoked in this environment.
2402 */
2403 case VMMR0_DO_TESTS:
2404 /** @todo make new test */
2405 return VINF_SUCCESS;
2406
2407 default:
2408 /*
2409 * We're returning VERR_NOT_SUPPORT here so we've got something else
2410 * than -1 which the interrupt gate glue code might return.
2411 */
2412 Log(("operation %#x is not supported\n", enmOperation));
2413 return VERR_NOT_SUPPORTED;
2414 }
2415 return rc;
2416}
2417
2418
2419/**
2420 * Argument for vmmR0EntryExWrapper containing the arguments for VMMR0EntryEx.
2421 */
2422typedef struct VMMR0ENTRYEXARGS
2423{
2424 PGVM pGVM;
2425 VMCPUID idCpu;
2426 VMMR0OPERATION enmOperation;
2427 PSUPVMMR0REQHDR pReq;
2428 uint64_t u64Arg;
2429 PSUPDRVSESSION pSession;
2430} VMMR0ENTRYEXARGS;
2431/** Pointer to a vmmR0EntryExWrapper argument package. */
2432typedef VMMR0ENTRYEXARGS *PVMMR0ENTRYEXARGS;
2433
2434/**
2435 * This is just a longjmp wrapper function for VMMR0EntryEx calls.
2436 *
2437 * @returns VBox status code.
2438 * @param pvArgs The argument package
2439 */
2440static DECLCALLBACK(int) vmmR0EntryExWrapper(void *pvArgs)
2441{
2442 return vmmR0EntryExWorker(((PVMMR0ENTRYEXARGS)pvArgs)->pGVM,
2443 ((PVMMR0ENTRYEXARGS)pvArgs)->idCpu,
2444 ((PVMMR0ENTRYEXARGS)pvArgs)->enmOperation,
2445 ((PVMMR0ENTRYEXARGS)pvArgs)->pReq,
2446 ((PVMMR0ENTRYEXARGS)pvArgs)->u64Arg,
2447 ((PVMMR0ENTRYEXARGS)pvArgs)->pSession);
2448}
2449
2450
2451/**
2452 * The Ring 0 entry point, called by the support library (SUP).
2453 *
2454 * @returns VBox status code.
2455 * @param pGVM The global (ring-0) VM structure.
2456 * @param pVM The cross context VM structure.
2457 * @param idCpu Virtual CPU ID argument. Must be NIL_VMCPUID if pVM
2458 * is NIL_RTR0PTR, and may be NIL_VMCPUID if it isn't
2459 * @param enmOperation Which operation to execute.
2460 * @param pReq Pointer to the SUPVMMR0REQHDR packet. Optional.
2461 * @param u64Arg Some simple constant argument.
2462 * @param pSession The session of the caller.
2463 * @remarks Assume called with interrupts _enabled_.
2464 */
2465VMMR0DECL(int) VMMR0EntryEx(PGVM pGVM, PVMCC pVM, VMCPUID idCpu, VMMR0OPERATION enmOperation,
2466 PSUPVMMR0REQHDR pReq, uint64_t u64Arg, PSUPDRVSESSION pSession)
2467{
2468 /*
2469 * Requests that should only happen on the EMT thread will be
2470 * wrapped in a setjmp so we can assert without causing trouble.
2471 */
2472 if ( pVM != NULL
2473 && pGVM != NULL
2474 && pVM == pGVM /** @todo drop pVM or pGVM */
2475 && idCpu < pGVM->cCpus
2476 && pGVM->pSession == pSession
2477 && pGVM->pSelf == pVM)
2478 {
2479 switch (enmOperation)
2480 {
2481 /* These might/will be called before VMMR3Init. */
2482 case VMMR0_DO_GMM_INITIAL_RESERVATION:
2483 case VMMR0_DO_GMM_UPDATE_RESERVATION:
2484 case VMMR0_DO_GMM_ALLOCATE_PAGES:
2485 case VMMR0_DO_GMM_FREE_PAGES:
2486 case VMMR0_DO_GMM_BALLOONED_PAGES:
2487 /* On the mac we might not have a valid jmp buf, so check these as well. */
2488 case VMMR0_DO_VMMR0_INIT:
2489 case VMMR0_DO_VMMR0_TERM:
2490
2491 case VMMR0_DO_PDM_DEVICE_CREATE:
2492 case VMMR0_DO_PDM_DEVICE_GEN_CALL:
2493 case VMMR0_DO_IOM_GROW_IO_PORTS:
2494 case VMMR0_DO_IOM_GROW_IO_PORT_STATS:
2495 case VMMR0_DO_DBGF_BP_INIT:
2496 case VMMR0_DO_DBGF_BP_CHUNK_ALLOC:
2497 case VMMR0_DO_DBGF_BP_L2_TBL_CHUNK_ALLOC:
2498 {
2499 PGVMCPU pGVCpu = &pGVM->aCpus[idCpu];
2500 RTNATIVETHREAD hNativeThread = RTThreadNativeSelf();
2501 if (RT_LIKELY( pGVCpu->hEMT == hNativeThread
2502 && pGVCpu->hNativeThreadR0 == hNativeThread))
2503 {
2504 if (!pGVCpu->vmm.s.CallRing3JmpBufR0.pvSavedStack)
2505 break;
2506
2507 /** @todo validate this EMT claim... GVM knows. */
2508 VMMR0ENTRYEXARGS Args;
2509 Args.pGVM = pGVM;
2510 Args.idCpu = idCpu;
2511 Args.enmOperation = enmOperation;
2512 Args.pReq = pReq;
2513 Args.u64Arg = u64Arg;
2514 Args.pSession = pSession;
2515 return vmmR0CallRing3SetJmpEx(&pGVCpu->vmm.s.CallRing3JmpBufR0, vmmR0EntryExWrapper, &Args);
2516 }
2517 return VERR_VM_THREAD_NOT_EMT;
2518 }
2519
2520 default:
2521 case VMMR0_DO_PGM_POOL_GROW:
2522 break;
2523 }
2524 }
2525 return vmmR0EntryExWorker(pGVM, idCpu, enmOperation, pReq, u64Arg, pSession);
2526}
2527
2528
2529/**
2530 * Checks whether we've armed the ring-0 long jump machinery.
2531 *
2532 * @returns @c true / @c false
2533 * @param pVCpu The cross context virtual CPU structure.
2534 * @thread EMT
2535 * @sa VMMIsLongJumpArmed
2536 */
2537VMMR0_INT_DECL(bool) VMMR0IsLongJumpArmed(PVMCPUCC pVCpu)
2538{
2539#ifdef RT_ARCH_X86
2540 return pVCpu->vmm.s.CallRing3JmpBufR0.eip
2541 && !pVCpu->vmm.s.CallRing3JmpBufR0.fInRing3Call;
2542#else
2543 return pVCpu->vmm.s.CallRing3JmpBufR0.rip
2544 && !pVCpu->vmm.s.CallRing3JmpBufR0.fInRing3Call;
2545#endif
2546}
2547
2548
2549/**
2550 * Checks whether we've done a ring-3 long jump.
2551 *
2552 * @returns @c true / @c false
2553 * @param pVCpu The cross context virtual CPU structure.
2554 * @thread EMT
2555 */
2556VMMR0_INT_DECL(bool) VMMR0IsInRing3LongJump(PVMCPUCC pVCpu)
2557{
2558 return pVCpu->vmm.s.CallRing3JmpBufR0.fInRing3Call;
2559}
2560
2561
2562/**
2563 * Internal R0 logger worker: Flush logger.
2564 *
2565 * @param pLogger The logger instance to flush.
2566 * @remark This function must be exported!
2567 */
2568VMMR0DECL(void) vmmR0LoggerFlush(PRTLOGGER pLogger)
2569{
2570#ifdef LOG_ENABLED
2571 /*
2572 * Convert the pLogger into a VM handle and 'call' back to Ring-3.
2573 * (This is a bit paranoid code.)
2574 */
2575 PVMMR0LOGGER pR0Logger = (PVMMR0LOGGER)((uintptr_t)pLogger - RT_UOFFSETOF(VMMR0LOGGER, Logger));
2576 if ( !VALID_PTR(pR0Logger)
2577 || !VALID_PTR(pR0Logger + 1)
2578 || pLogger->u32Magic != RTLOGGER_MAGIC)
2579 {
2580# ifdef DEBUG
2581 SUPR0Printf("vmmR0LoggerFlush: pLogger=%p!\n", pLogger);
2582# endif
2583 return;
2584 }
2585 if (pR0Logger->fFlushingDisabled)
2586 return; /* quietly */
2587
2588 PVMCC pVM = pR0Logger->pVM;
2589 if ( !VALID_PTR(pVM)
2590 || pVM->pSelf != pVM)
2591 {
2592# ifdef DEBUG
2593 SUPR0Printf("vmmR0LoggerFlush: pVM=%p! pSelf=%p! pLogger=%p\n", pVM, pVM->pSelf, pLogger);
2594# endif
2595 return;
2596 }
2597
2598 PVMCPUCC pVCpu = VMMGetCpu(pVM);
2599 if (pVCpu)
2600 {
2601 /*
2602 * Check that the jump buffer is armed.
2603 */
2604# ifdef RT_ARCH_X86
2605 if ( !pVCpu->vmm.s.CallRing3JmpBufR0.eip
2606 || pVCpu->vmm.s.CallRing3JmpBufR0.fInRing3Call)
2607# else
2608 if ( !pVCpu->vmm.s.CallRing3JmpBufR0.rip
2609 || pVCpu->vmm.s.CallRing3JmpBufR0.fInRing3Call)
2610# endif
2611 {
2612# ifdef DEBUG
2613 SUPR0Printf("vmmR0LoggerFlush: Jump buffer isn't armed!\n");
2614# endif
2615 return;
2616 }
2617 VMMRZCallRing3(pVM, pVCpu, VMMCALLRING3_VMM_LOGGER_FLUSH, 0);
2618 }
2619# ifdef DEBUG
2620 else
2621 SUPR0Printf("vmmR0LoggerFlush: invalid VCPU context!\n");
2622# endif
2623#else
2624 NOREF(pLogger);
2625#endif /* LOG_ENABLED */
2626}
2627
2628#ifdef LOG_ENABLED
2629
2630/**
2631 * Disables flushing of the ring-0 debug log.
2632 *
2633 * @param pVCpu The cross context virtual CPU structure.
2634 */
2635VMMR0_INT_DECL(void) VMMR0LogFlushDisable(PVMCPUCC pVCpu)
2636{
2637 if (pVCpu->vmm.s.pR0LoggerR0)
2638 pVCpu->vmm.s.pR0LoggerR0->fFlushingDisabled = true;
2639 if (pVCpu->vmm.s.pR0RelLoggerR0)
2640 pVCpu->vmm.s.pR0RelLoggerR0->fFlushingDisabled = true;
2641}
2642
2643
2644/**
2645 * Enables flushing of the ring-0 debug log.
2646 *
2647 * @param pVCpu The cross context virtual CPU structure.
2648 */
2649VMMR0_INT_DECL(void) VMMR0LogFlushEnable(PVMCPUCC pVCpu)
2650{
2651 if (pVCpu->vmm.s.pR0LoggerR0)
2652 pVCpu->vmm.s.pR0LoggerR0->fFlushingDisabled = false;
2653 if (pVCpu->vmm.s.pR0RelLoggerR0)
2654 pVCpu->vmm.s.pR0RelLoggerR0->fFlushingDisabled = false;
2655}
2656
2657
2658/**
2659 * Checks if log flushing is disabled or not.
2660 *
2661 * @param pVCpu The cross context virtual CPU structure.
2662 */
2663VMMR0_INT_DECL(bool) VMMR0IsLogFlushDisabled(PVMCPUCC pVCpu)
2664{
2665 if (pVCpu->vmm.s.pR0LoggerR0)
2666 return pVCpu->vmm.s.pR0LoggerR0->fFlushingDisabled;
2667 if (pVCpu->vmm.s.pR0RelLoggerR0)
2668 return pVCpu->vmm.s.pR0RelLoggerR0->fFlushingDisabled;
2669 return true;
2670}
2671
2672#endif /* LOG_ENABLED */
2673
2674/*
2675 * Override RTLogRelGetDefaultInstanceEx so we can do LogRel to VBox.log from EMTs in ring-0.
2676 */
2677DECLEXPORT(PRTLOGGER) RTLogRelGetDefaultInstanceEx(uint32_t fFlagsAndGroup)
2678{
2679 PGVMCPU pGVCpu = GVMMR0GetGVCpuByEMT(NIL_RTNATIVETHREAD);
2680 if (pGVCpu)
2681 {
2682 PVMCPUCC pVCpu = pGVCpu;
2683 if (RT_VALID_PTR(pVCpu))
2684 {
2685 PVMMR0LOGGER pVmmLogger = pVCpu->vmm.s.pR0RelLoggerR0;
2686 if (RT_VALID_PTR(pVmmLogger))
2687 {
2688 if ( pVmmLogger->fCreated
2689 && pVmmLogger->pVM == pGVCpu->pGVM)
2690 {
2691 if (pVmmLogger->Logger.fFlags & RTLOGFLAGS_DISABLED)
2692 return NULL;
2693 uint16_t const fFlags = RT_LO_U16(fFlagsAndGroup);
2694 uint16_t const iGroup = RT_HI_U16(fFlagsAndGroup);
2695 if ( iGroup != UINT16_MAX
2696 && ( ( pVmmLogger->Logger.afGroups[iGroup < pVmmLogger->Logger.cGroups ? iGroup : 0]
2697 & (fFlags | (uint32_t)RTLOGGRPFLAGS_ENABLED))
2698 != (fFlags | (uint32_t)RTLOGGRPFLAGS_ENABLED)))
2699 return NULL;
2700 return &pVmmLogger->Logger;
2701 }
2702 }
2703 }
2704 }
2705 return SUPR0GetDefaultLogRelInstanceEx(fFlagsAndGroup);
2706}
2707
2708
2709/*
2710 * Jump back to ring-3 if we're the EMT and the longjmp is armed.
2711 *
2712 * @returns true if the breakpoint should be hit, false if it should be ignored.
2713 */
2714DECLEXPORT(bool) RTCALL RTAssertShouldPanic(void)
2715{
2716#if 0
2717 return true;
2718#else
2719 PVMCC pVM = GVMMR0GetVMByEMT(NIL_RTNATIVETHREAD);
2720 if (pVM)
2721 {
2722 PVMCPUCC pVCpu = VMMGetCpu(pVM);
2723
2724 if (pVCpu)
2725 {
2726# ifdef RT_ARCH_X86
2727 if ( pVCpu->vmm.s.CallRing3JmpBufR0.eip
2728 && !pVCpu->vmm.s.CallRing3JmpBufR0.fInRing3Call)
2729# else
2730 if ( pVCpu->vmm.s.CallRing3JmpBufR0.rip
2731 && !pVCpu->vmm.s.CallRing3JmpBufR0.fInRing3Call)
2732# endif
2733 {
2734 int rc = VMMRZCallRing3(pVM, pVCpu, VMMCALLRING3_VM_R0_ASSERTION, 0);
2735 return RT_FAILURE_NP(rc);
2736 }
2737 }
2738 }
2739# ifdef RT_OS_LINUX
2740 return true;
2741# else
2742 return false;
2743# endif
2744#endif
2745}
2746
2747
2748/*
2749 * Override this so we can push it up to ring-3.
2750 */
2751DECLEXPORT(void) RTCALL RTAssertMsg1Weak(const char *pszExpr, unsigned uLine, const char *pszFile, const char *pszFunction)
2752{
2753 /*
2754 * To the log.
2755 */
2756 LogAlways(("\n!!R0-Assertion Failed!!\n"
2757 "Expression: %s\n"
2758 "Location : %s(%d) %s\n",
2759 pszExpr, pszFile, uLine, pszFunction));
2760
2761 /*
2762 * To the global VMM buffer.
2763 */
2764 PVMCC pVM = GVMMR0GetVMByEMT(NIL_RTNATIVETHREAD);
2765 if (pVM)
2766 RTStrPrintf(pVM->vmm.s.szRing0AssertMsg1, sizeof(pVM->vmm.s.szRing0AssertMsg1),
2767 "\n!!R0-Assertion Failed!!\n"
2768 "Expression: %.*s\n"
2769 "Location : %s(%d) %s\n",
2770 sizeof(pVM->vmm.s.szRing0AssertMsg1) / 4 * 3, pszExpr,
2771 pszFile, uLine, pszFunction);
2772
2773 /*
2774 * Continue the normal way.
2775 */
2776 RTAssertMsg1(pszExpr, uLine, pszFile, pszFunction);
2777}
2778
2779
2780/**
2781 * Callback for RTLogFormatV which writes to the ring-3 log port.
2782 * See PFNLOGOUTPUT() for details.
2783 */
2784static DECLCALLBACK(size_t) rtLogOutput(void *pv, const char *pachChars, size_t cbChars)
2785{
2786 for (size_t i = 0; i < cbChars; i++)
2787 {
2788 LogAlways(("%c", pachChars[i])); NOREF(pachChars);
2789 }
2790
2791 NOREF(pv);
2792 return cbChars;
2793}
2794
2795
2796/*
2797 * Override this so we can push it up to ring-3.
2798 */
2799DECLEXPORT(void) RTCALL RTAssertMsg2WeakV(const char *pszFormat, va_list va)
2800{
2801 va_list vaCopy;
2802
2803 /*
2804 * Push the message to the loggers.
2805 */
2806 PRTLOGGER pLog = RTLogGetDefaultInstance(); /* Don't initialize it here... */
2807 if (pLog)
2808 {
2809 va_copy(vaCopy, va);
2810 RTLogFormatV(rtLogOutput, pLog, pszFormat, vaCopy);
2811 va_end(vaCopy);
2812 }
2813 pLog = RTLogRelGetDefaultInstance();
2814 if (pLog)
2815 {
2816 va_copy(vaCopy, va);
2817 RTLogFormatV(rtLogOutput, pLog, pszFormat, vaCopy);
2818 va_end(vaCopy);
2819 }
2820
2821 /*
2822 * Push it to the global VMM buffer.
2823 */
2824 PVMCC pVM = GVMMR0GetVMByEMT(NIL_RTNATIVETHREAD);
2825 if (pVM)
2826 {
2827 va_copy(vaCopy, va);
2828 RTStrPrintfV(pVM->vmm.s.szRing0AssertMsg2, sizeof(pVM->vmm.s.szRing0AssertMsg2), pszFormat, vaCopy);
2829 va_end(vaCopy);
2830 }
2831
2832 /*
2833 * Continue the normal way.
2834 */
2835 RTAssertMsg2V(pszFormat, va);
2836}
2837
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette