VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR0/VMMR0.cpp@ 99725

Last change on this file since 99725 was 98103, checked in by vboxsync, 2 years ago

Copyright year updates by scm.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 136.3 KB
Line 
1/* $Id: VMMR0.cpp 98103 2023-01-17 14:15:46Z vboxsync $ */
2/** @file
3 * VMM - Host Context Ring 0.
4 */
5
6/*
7 * Copyright (C) 2006-2023 Oracle and/or its affiliates.
8 *
9 * This file is part of VirtualBox base platform packages, as
10 * available from https://www.virtualbox.org.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation, in version 3 of the
15 * License.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, see <https://www.gnu.org/licenses>.
24 *
25 * SPDX-License-Identifier: GPL-3.0-only
26 */
27
28
29/*********************************************************************************************************************************
30* Header Files *
31*********************************************************************************************************************************/
32#define LOG_GROUP LOG_GROUP_VMM
33#include <VBox/vmm/vmm.h>
34#include <VBox/sup.h>
35#include <VBox/vmm/iem.h>
36#include <VBox/vmm/iom.h>
37#include <VBox/vmm/trpm.h>
38#include <VBox/vmm/cpum.h>
39#include <VBox/vmm/pdmapi.h>
40#include <VBox/vmm/pgm.h>
41#ifdef VBOX_WITH_NEM_R0
42# include <VBox/vmm/nem.h>
43#endif
44#include <VBox/vmm/em.h>
45#include <VBox/vmm/stam.h>
46#include <VBox/vmm/tm.h>
47#include "VMMInternal.h"
48#include <VBox/vmm/vmcc.h>
49#include <VBox/vmm/gvm.h>
50#ifdef VBOX_WITH_PCI_PASSTHROUGH
51# include <VBox/vmm/pdmpci.h>
52#endif
53#include <VBox/vmm/apic.h>
54
55#include <VBox/vmm/gvmm.h>
56#include <VBox/vmm/gmm.h>
57#include <VBox/vmm/gim.h>
58#include <VBox/intnet.h>
59#include <VBox/vmm/hm.h>
60#include <VBox/param.h>
61#include <VBox/err.h>
62#include <VBox/version.h>
63#include <VBox/log.h>
64
65#include <iprt/asm-amd64-x86.h>
66#include <iprt/assert.h>
67#include <iprt/crc.h>
68#include <iprt/initterm.h>
69#include <iprt/mem.h>
70#include <iprt/memobj.h>
71#include <iprt/mp.h>
72#include <iprt/once.h>
73#include <iprt/semaphore.h>
74#include <iprt/spinlock.h>
75#include <iprt/stdarg.h>
76#include <iprt/string.h>
77#include <iprt/thread.h>
78#include <iprt/timer.h>
79#include <iprt/time.h>
80
81#include "dtrace/VBoxVMM.h"
82
83
84#if defined(_MSC_VER) && defined(RT_ARCH_AMD64) /** @todo check this with with VC7! */
85# pragma intrinsic(_AddressOfReturnAddress)
86#endif
87
88#if defined(RT_OS_DARWIN) && ARCH_BITS == 32
89# error "32-bit darwin is no longer supported. Go back to 4.3 or earlier!"
90#endif
91
92
93/*********************************************************************************************************************************
94* Internal Functions *
95*********************************************************************************************************************************/
96RT_C_DECLS_BEGIN
97#if defined(RT_ARCH_X86) && (defined(RT_OS_SOLARIS) || defined(RT_OS_FREEBSD))
98extern uint64_t __udivdi3(uint64_t, uint64_t);
99extern uint64_t __umoddi3(uint64_t, uint64_t);
100#endif
101RT_C_DECLS_END
102static int vmmR0UpdateLoggers(PGVM pGVM, VMCPUID idCpu, PVMMR0UPDATELOGGERSREQ pReq, uint64_t fFlags);
103static int vmmR0LogFlusher(PGVM pGVM);
104static int vmmR0LogWaitFlushed(PGVM pGVM, VMCPUID idCpu, size_t idxLogger);
105static int vmmR0InitLoggers(PGVM pGVM);
106static void vmmR0CleanupLoggers(PGVM pGVM);
107
108
109/*********************************************************************************************************************************
110* Global Variables *
111*********************************************************************************************************************************/
112/** Drag in necessary library bits.
113 * The runtime lives here (in VMMR0.r0) and VBoxDD*R0.r0 links against us. */
114struct CLANG11WEIRDNOTHROW { PFNRT pfn; } g_VMMR0Deps[] =
115{
116 { (PFNRT)RTCrc32 },
117 { (PFNRT)RTOnce },
118#if defined(RT_ARCH_X86) && (defined(RT_OS_SOLARIS) || defined(RT_OS_FREEBSD))
119 { (PFNRT)__udivdi3 },
120 { (PFNRT)__umoddi3 },
121#endif
122 { NULL }
123};
124
125#ifdef RT_OS_SOLARIS
126/* Dependency information for the native solaris loader. */
127extern "C" { char _depends_on[] = "vboxdrv"; }
128#endif
129
130
131/**
132 * Initialize the module.
133 * This is called when we're first loaded.
134 *
135 * @returns 0 on success.
136 * @returns VBox status on failure.
137 * @param hMod Image handle for use in APIs.
138 */
139DECLEXPORT(int) ModuleInit(void *hMod)
140{
141#ifdef VBOX_WITH_DTRACE_R0
142 /*
143 * The first thing to do is register the static tracepoints.
144 * (Deregistration is automatic.)
145 */
146 int rc2 = SUPR0TracerRegisterModule(hMod, &g_VTGObjHeader);
147 if (RT_FAILURE(rc2))
148 return rc2;
149#endif
150 LogFlow(("ModuleInit:\n"));
151
152#ifdef VBOX_WITH_64ON32_CMOS_DEBUG
153 /*
154 * Display the CMOS debug code.
155 */
156 ASMOutU8(0x72, 0x03);
157 uint8_t bDebugCode = ASMInU8(0x73);
158 LogRel(("CMOS Debug Code: %#x (%d)\n", bDebugCode, bDebugCode));
159 RTLogComPrintf("CMOS Debug Code: %#x (%d)\n", bDebugCode, bDebugCode);
160#endif
161
162 /*
163 * Initialize the VMM, GVMM, GMM, HM, PGM (Darwin) and INTNET.
164 */
165 int rc = vmmInitFormatTypes();
166 if (RT_SUCCESS(rc))
167 {
168 rc = GVMMR0Init();
169 if (RT_SUCCESS(rc))
170 {
171 rc = GMMR0Init();
172 if (RT_SUCCESS(rc))
173 {
174 rc = HMR0Init();
175 if (RT_SUCCESS(rc))
176 {
177 PDMR0Init(hMod);
178
179 rc = PGMRegisterStringFormatTypes();
180 if (RT_SUCCESS(rc))
181 {
182 rc = IntNetR0Init();
183 if (RT_SUCCESS(rc))
184 {
185#ifdef VBOX_WITH_PCI_PASSTHROUGH
186 rc = PciRawR0Init();
187#endif
188 if (RT_SUCCESS(rc))
189 {
190 rc = CPUMR0ModuleInit();
191 if (RT_SUCCESS(rc))
192 {
193#ifdef VBOX_WITH_TRIPLE_FAULT_HACK
194 rc = vmmR0TripleFaultHackInit();
195 if (RT_SUCCESS(rc))
196#endif
197 {
198#ifdef VBOX_WITH_NEM_R0
199 rc = NEMR0Init();
200 if (RT_SUCCESS(rc))
201#endif
202 {
203 LogFlow(("ModuleInit: returns success\n"));
204 return VINF_SUCCESS;
205 }
206 }
207
208 /*
209 * Bail out.
210 */
211#ifdef VBOX_WITH_TRIPLE_FAULT_HACK
212 vmmR0TripleFaultHackTerm();
213#endif
214 }
215 else
216 LogRel(("ModuleInit: CPUMR0ModuleInit -> %Rrc\n", rc));
217#ifdef VBOX_WITH_PCI_PASSTHROUGH
218 PciRawR0Term();
219#endif
220 }
221 else
222 LogRel(("ModuleInit: PciRawR0Init -> %Rrc\n", rc));
223 IntNetR0Term();
224 }
225 else
226 LogRel(("ModuleInit: IntNetR0Init -> %Rrc\n", rc));
227 PGMDeregisterStringFormatTypes();
228 }
229 else
230 LogRel(("ModuleInit: PGMRegisterStringFormatTypes -> %Rrc\n", rc));
231 HMR0Term();
232 }
233 else
234 LogRel(("ModuleInit: HMR0Init -> %Rrc\n", rc));
235 GMMR0Term();
236 }
237 else
238 LogRel(("ModuleInit: GMMR0Init -> %Rrc\n", rc));
239 GVMMR0Term();
240 }
241 else
242 LogRel(("ModuleInit: GVMMR0Init -> %Rrc\n", rc));
243 vmmTermFormatTypes();
244 }
245 else
246 LogRel(("ModuleInit: vmmInitFormatTypes -> %Rrc\n", rc));
247
248 LogFlow(("ModuleInit: failed %Rrc\n", rc));
249 return rc;
250}
251
252
253/**
254 * Terminate the module.
255 * This is called when we're finally unloaded.
256 *
257 * @param hMod Image handle for use in APIs.
258 */
259DECLEXPORT(void) ModuleTerm(void *hMod)
260{
261 NOREF(hMod);
262 LogFlow(("ModuleTerm:\n"));
263
264 /*
265 * Terminate the CPUM module (Local APIC cleanup).
266 */
267 CPUMR0ModuleTerm();
268
269 /*
270 * Terminate the internal network service.
271 */
272 IntNetR0Term();
273
274 /*
275 * PGM (Darwin), HM and PciRaw global cleanup.
276 */
277#ifdef VBOX_WITH_PCI_PASSTHROUGH
278 PciRawR0Term();
279#endif
280 PGMDeregisterStringFormatTypes();
281 HMR0Term();
282#ifdef VBOX_WITH_TRIPLE_FAULT_HACK
283 vmmR0TripleFaultHackTerm();
284#endif
285#ifdef VBOX_WITH_NEM_R0
286 NEMR0Term();
287#endif
288
289 /*
290 * Destroy the GMM and GVMM instances.
291 */
292 GMMR0Term();
293 GVMMR0Term();
294
295 vmmTermFormatTypes();
296 RTTermRunCallbacks(RTTERMREASON_UNLOAD, 0);
297
298 LogFlow(("ModuleTerm: returns\n"));
299}
300
301
302/**
303 * Initializes VMM specific members when the GVM structure is created,
304 * allocating loggers and stuff.
305 *
306 * The loggers are allocated here so that we can update their settings before
307 * doing VMMR0_DO_VMMR0_INIT and have correct logging at that time.
308 *
309 * @returns VBox status code.
310 * @param pGVM The global (ring-0) VM structure.
311 */
312VMMR0_INT_DECL(int) VMMR0InitPerVMData(PGVM pGVM)
313{
314 AssertCompile(sizeof(pGVM->vmmr0.s) <= sizeof(pGVM->vmmr0.padding));
315
316 /*
317 * Initialize all members first.
318 */
319 pGVM->vmmr0.s.fCalledInitVm = false;
320 pGVM->vmmr0.s.hMemObjLogger = NIL_RTR0MEMOBJ;
321 pGVM->vmmr0.s.hMapObjLogger = NIL_RTR0MEMOBJ;
322 pGVM->vmmr0.s.hMemObjReleaseLogger = NIL_RTR0MEMOBJ;
323 pGVM->vmmr0.s.hMapObjReleaseLogger = NIL_RTR0MEMOBJ;
324 pGVM->vmmr0.s.LogFlusher.hSpinlock = NIL_RTSPINLOCK;
325 pGVM->vmmr0.s.LogFlusher.hThread = NIL_RTNATIVETHREAD;
326 pGVM->vmmr0.s.LogFlusher.hEvent = NIL_RTSEMEVENT;
327 pGVM->vmmr0.s.LogFlusher.idxRingHead = 0;
328 pGVM->vmmr0.s.LogFlusher.idxRingTail = 0;
329 pGVM->vmmr0.s.LogFlusher.fThreadWaiting = false;
330
331 for (VMCPUID idCpu = 0; idCpu < pGVM->cCpus; idCpu++)
332 {
333 PGVMCPU pGVCpu = &pGVM->aCpus[idCpu];
334 Assert(pGVCpu->idHostCpu == NIL_RTCPUID);
335 Assert(pGVCpu->iHostCpuSet == UINT32_MAX);
336 pGVCpu->vmmr0.s.pPreemptState = NULL;
337 pGVCpu->vmmr0.s.hCtxHook = NIL_RTTHREADCTXHOOK;
338 pGVCpu->vmmr0.s.AssertJmpBuf.pMirrorBuf = &pGVCpu->vmm.s.AssertJmpBuf;
339 pGVCpu->vmmr0.s.AssertJmpBuf.pvStackBuf = &pGVCpu->vmm.s.abAssertStack[0];
340 pGVCpu->vmmr0.s.AssertJmpBuf.cbStackBuf = sizeof(pGVCpu->vmm.s.abAssertStack);
341
342 for (size_t iLogger = 0; iLogger < RT_ELEMENTS(pGVCpu->vmmr0.s.u.aLoggers); iLogger++)
343 pGVCpu->vmmr0.s.u.aLoggers[iLogger].hEventFlushWait = NIL_RTSEMEVENT;
344 }
345
346 /*
347 * Create the loggers.
348 */
349 return vmmR0InitLoggers(pGVM);
350}
351
352
353/**
354 * Initiates the R0 driver for a particular VM instance.
355 *
356 * @returns VBox status code.
357 *
358 * @param pGVM The global (ring-0) VM structure.
359 * @param uSvnRev The SVN revision of the ring-3 part.
360 * @param uBuildType Build type indicator.
361 * @thread EMT(0)
362 */
363static int vmmR0InitVM(PGVM pGVM, uint32_t uSvnRev, uint32_t uBuildType)
364{
365 /*
366 * Match the SVN revisions and build type.
367 */
368 if (uSvnRev != VMMGetSvnRev())
369 {
370 LogRel(("VMMR0InitVM: Revision mismatch, r3=%d r0=%d\n", uSvnRev, VMMGetSvnRev()));
371 SUPR0Printf("VMMR0InitVM: Revision mismatch, r3=%d r0=%d\n", uSvnRev, VMMGetSvnRev());
372 return VERR_VMM_R0_VERSION_MISMATCH;
373 }
374 if (uBuildType != vmmGetBuildType())
375 {
376 LogRel(("VMMR0InitVM: Build type mismatch, r3=%#x r0=%#x\n", uBuildType, vmmGetBuildType()));
377 SUPR0Printf("VMMR0InitVM: Build type mismatch, r3=%#x r0=%#x\n", uBuildType, vmmGetBuildType());
378 return VERR_VMM_R0_VERSION_MISMATCH;
379 }
380
381 int rc = GVMMR0ValidateGVMandEMT(pGVM, 0 /*idCpu*/);
382 if (RT_FAILURE(rc))
383 return rc;
384
385 /* Don't allow this to be called more than once. */
386 if (!pGVM->vmmr0.s.fCalledInitVm)
387 pGVM->vmmr0.s.fCalledInitVm = true;
388 else
389 return VERR_ALREADY_INITIALIZED;
390
391#ifdef LOG_ENABLED
392
393 /*
394 * Register the EMT R0 logger instance for VCPU 0.
395 */
396 PVMCPUCC pVCpu = VMCC_GET_CPU_0(pGVM);
397 if (pVCpu->vmmr0.s.u.s.Logger.pLogger)
398 {
399# if 0 /* testing of the logger. */
400 LogCom(("vmmR0InitVM: before %p\n", RTLogDefaultInstance()));
401 LogCom(("vmmR0InitVM: pfnFlush=%p actual=%p\n", pR0Logger->Logger.pfnFlush, vmmR0LoggerFlush));
402 LogCom(("vmmR0InitVM: pfnLogger=%p actual=%p\n", pR0Logger->Logger.pfnLogger, vmmR0LoggerWrapper));
403 LogCom(("vmmR0InitVM: offScratch=%d fFlags=%#x fDestFlags=%#x\n", pR0Logger->Logger.offScratch, pR0Logger->Logger.fFlags, pR0Logger->Logger.fDestFlags));
404
405 RTLogSetDefaultInstanceThread(&pR0Logger->Logger, (uintptr_t)pGVM->pSession);
406 LogCom(("vmmR0InitVM: after %p reg\n", RTLogDefaultInstance()));
407 RTLogSetDefaultInstanceThread(NULL, pGVM->pSession);
408 LogCom(("vmmR0InitVM: after %p dereg\n", RTLogDefaultInstance()));
409
410 pR0Logger->Logger.pfnLogger("hello ring-0 logger\n");
411 LogCom(("vmmR0InitVM: returned successfully from direct logger call.\n"));
412 pR0Logger->Logger.pfnFlush(&pR0Logger->Logger);
413 LogCom(("vmmR0InitVM: returned successfully from direct flush call.\n"));
414
415 RTLogSetDefaultInstanceThread(&pR0Logger->Logger, (uintptr_t)pGVM->pSession);
416 LogCom(("vmmR0InitVM: after %p reg2\n", RTLogDefaultInstance()));
417 pR0Logger->Logger.pfnLogger("hello ring-0 logger\n");
418 LogCom(("vmmR0InitVM: returned successfully from direct logger call (2). offScratch=%d\n", pR0Logger->Logger.offScratch));
419 RTLogSetDefaultInstanceThread(NULL, pGVM->pSession);
420 LogCom(("vmmR0InitVM: after %p dereg2\n", RTLogDefaultInstance()));
421
422 RTLogLoggerEx(&pR0Logger->Logger, 0, ~0U, "hello ring-0 logger (RTLogLoggerEx)\n");
423 LogCom(("vmmR0InitVM: RTLogLoggerEx returned fine offScratch=%d\n", pR0Logger->Logger.offScratch));
424
425 RTLogSetDefaultInstanceThread(&pR0Logger->Logger, (uintptr_t)pGVM->pSession);
426 RTLogPrintf("hello ring-0 logger (RTLogPrintf)\n");
427 LogCom(("vmmR0InitVM: RTLogPrintf returned fine offScratch=%d\n", pR0Logger->Logger.offScratch));
428# endif
429# ifdef VBOX_WITH_R0_LOGGING
430 Log(("Switching to per-thread logging instance %p (key=%p)\n", pVCpu->vmmr0.s.u.s.Logger.pLogger, pGVM->pSession));
431 RTLogSetDefaultInstanceThread(pVCpu->vmmr0.s.u.s.Logger.pLogger, (uintptr_t)pGVM->pSession);
432 pVCpu->vmmr0.s.u.s.Logger.fRegistered = true;
433# endif
434 }
435#endif /* LOG_ENABLED */
436
437 /*
438 * Check if the host supports high resolution timers or not.
439 */
440 if ( pGVM->vmm.s.fUsePeriodicPreemptionTimers
441 && !RTTimerCanDoHighResolution())
442 pGVM->vmm.s.fUsePeriodicPreemptionTimers = false;
443
444 /*
445 * Initialize the per VM data for GVMM and GMM.
446 */
447 rc = GVMMR0InitVM(pGVM);
448 if (RT_SUCCESS(rc))
449 {
450 /*
451 * Init HM, CPUM and PGM.
452 */
453 rc = HMR0InitVM(pGVM);
454 if (RT_SUCCESS(rc))
455 {
456 rc = CPUMR0InitVM(pGVM);
457 if (RT_SUCCESS(rc))
458 {
459 rc = PGMR0InitVM(pGVM);
460 if (RT_SUCCESS(rc))
461 {
462 rc = EMR0InitVM(pGVM);
463 if (RT_SUCCESS(rc))
464 {
465 rc = IEMR0InitVM(pGVM);
466 if (RT_SUCCESS(rc))
467 {
468 rc = IOMR0InitVM(pGVM);
469 if (RT_SUCCESS(rc))
470 {
471#ifdef VBOX_WITH_PCI_PASSTHROUGH
472 rc = PciRawR0InitVM(pGVM);
473#endif
474 if (RT_SUCCESS(rc))
475 {
476 rc = GIMR0InitVM(pGVM);
477 if (RT_SUCCESS(rc))
478 {
479 GVMMR0DoneInitVM(pGVM);
480 PGMR0DoneInitVM(pGVM);
481
482 /*
483 * Collect a bit of info for the VM release log.
484 */
485 pGVM->vmm.s.fIsPreemptPendingApiTrusty = RTThreadPreemptIsPendingTrusty();
486 pGVM->vmm.s.fIsPreemptPossible = RTThreadPreemptIsPossible();;
487 return rc;
488
489 /* bail out*/
490 //GIMR0TermVM(pGVM);
491 }
492#ifdef VBOX_WITH_PCI_PASSTHROUGH
493 PciRawR0TermVM(pGVM);
494#endif
495 }
496 }
497 }
498 }
499 }
500 }
501 HMR0TermVM(pGVM);
502 }
503 }
504
505 RTLogSetDefaultInstanceThread(NULL, (uintptr_t)pGVM->pSession);
506 return rc;
507}
508
509
510/**
511 * Does EMT specific VM initialization.
512 *
513 * @returns VBox status code.
514 * @param pGVM The ring-0 VM structure.
515 * @param idCpu The EMT that's calling.
516 */
517static int vmmR0InitVMEmt(PGVM pGVM, VMCPUID idCpu)
518{
519 /* Paranoia (caller checked these already). */
520 AssertReturn(idCpu < pGVM->cCpus, VERR_INVALID_CPU_ID);
521 AssertReturn(pGVM->aCpus[idCpu].hEMT == RTThreadNativeSelf(), VERR_INVALID_CPU_ID);
522
523#if defined(LOG_ENABLED) && defined(VBOX_WITH_R0_LOGGING)
524 /*
525 * Registration of ring 0 loggers.
526 */
527 PVMCPUCC pVCpu = &pGVM->aCpus[idCpu];
528 if ( pVCpu->vmmr0.s.u.s.Logger.pLogger
529 && !pVCpu->vmmr0.s.u.s.Logger.fRegistered)
530 {
531 RTLogSetDefaultInstanceThread(pVCpu->vmmr0.s.u.s.Logger.pLogger, (uintptr_t)pGVM->pSession);
532 pVCpu->vmmr0.s.u.s.Logger.fRegistered = true;
533 }
534#endif
535
536 return VINF_SUCCESS;
537}
538
539
540
541/**
542 * Terminates the R0 bits for a particular VM instance.
543 *
544 * This is normally called by ring-3 as part of the VM termination process, but
545 * may alternatively be called during the support driver session cleanup when
546 * the VM object is destroyed (see GVMM).
547 *
548 * @returns VBox status code.
549 *
550 * @param pGVM The global (ring-0) VM structure.
551 * @param idCpu Set to 0 if EMT(0) or NIL_VMCPUID if session cleanup
552 * thread.
553 * @thread EMT(0) or session clean up thread.
554 */
555VMMR0_INT_DECL(int) VMMR0TermVM(PGVM pGVM, VMCPUID idCpu)
556{
557 /*
558 * Check EMT(0) claim if we're called from userland.
559 */
560 if (idCpu != NIL_VMCPUID)
561 {
562 AssertReturn(idCpu == 0, VERR_INVALID_CPU_ID);
563 int rc = GVMMR0ValidateGVMandEMT(pGVM, idCpu);
564 if (RT_FAILURE(rc))
565 return rc;
566 }
567
568#ifdef VBOX_WITH_PCI_PASSTHROUGH
569 PciRawR0TermVM(pGVM);
570#endif
571
572 /*
573 * Tell GVMM what we're up to and check that we only do this once.
574 */
575 if (GVMMR0DoingTermVM(pGVM))
576 {
577 GIMR0TermVM(pGVM);
578
579 /** @todo I wish to call PGMR0PhysFlushHandyPages(pGVM, &pGVM->aCpus[idCpu])
580 * here to make sure we don't leak any shared pages if we crash... */
581 HMR0TermVM(pGVM);
582 }
583
584 /*
585 * Deregister the logger for this EMT.
586 */
587 RTLogSetDefaultInstanceThread(NULL, (uintptr_t)pGVM->pSession);
588
589 /*
590 * Start log flusher thread termination.
591 */
592 ASMAtomicWriteBool(&pGVM->vmmr0.s.LogFlusher.fThreadShutdown, true);
593 if (pGVM->vmmr0.s.LogFlusher.hEvent != NIL_RTSEMEVENT)
594 RTSemEventSignal(pGVM->vmmr0.s.LogFlusher.hEvent);
595
596 return VINF_SUCCESS;
597}
598
599
600/**
601 * This is called at the end of gvmmR0CleanupVM().
602 *
603 * @param pGVM The global (ring-0) VM structure.
604 */
605VMMR0_INT_DECL(void) VMMR0CleanupVM(PGVM pGVM)
606{
607 AssertCompile(NIL_RTTHREADCTXHOOK == (RTTHREADCTXHOOK)0); /* Depends on zero initialized memory working for NIL at the moment. */
608 for (VMCPUID idCpu = 0; idCpu < pGVM->cCpus; idCpu++)
609 {
610 PGVMCPU pGVCpu = &pGVM->aCpus[idCpu];
611
612 /** @todo Can we busy wait here for all thread-context hooks to be
613 * deregistered before releasing (destroying) it? Only until we find a
614 * solution for not deregistering hooks everytime we're leaving HMR0
615 * context. */
616 VMMR0ThreadCtxHookDestroyForEmt(pGVCpu);
617 }
618
619 vmmR0CleanupLoggers(pGVM);
620}
621
622
623/**
624 * An interrupt or unhalt force flag is set, deal with it.
625 *
626 * @returns VINF_SUCCESS (or VINF_EM_HALT).
627 * @param pVCpu The cross context virtual CPU structure.
628 * @param uMWait Result from EMMonitorWaitIsActive().
629 * @param enmInterruptibility Guest CPU interruptbility level.
630 */
631static int vmmR0DoHaltInterrupt(PVMCPUCC pVCpu, unsigned uMWait, CPUMINTERRUPTIBILITY enmInterruptibility)
632{
633 Assert(!TRPMHasTrap(pVCpu));
634 Assert( enmInterruptibility > CPUMINTERRUPTIBILITY_INVALID
635 && enmInterruptibility < CPUMINTERRUPTIBILITY_END);
636
637 /*
638 * Pending interrupts w/o any SMIs or NMIs? That the usual case.
639 */
640 if ( VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)
641 && !VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_SMI | VMCPU_FF_INTERRUPT_NMI))
642 {
643 if (enmInterruptibility <= CPUMINTERRUPTIBILITY_UNRESTRAINED)
644 {
645 uint8_t u8Interrupt = 0;
646 int rc = PDMGetInterrupt(pVCpu, &u8Interrupt);
647 Log(("vmmR0DoHaltInterrupt: CPU%d u8Interrupt=%d (%#x) rc=%Rrc\n", pVCpu->idCpu, u8Interrupt, u8Interrupt, rc));
648 if (RT_SUCCESS(rc))
649 {
650 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_UNHALT);
651
652 rc = TRPMAssertTrap(pVCpu, u8Interrupt, TRPM_HARDWARE_INT);
653 AssertRCSuccess(rc);
654 STAM_REL_COUNTER_INC(&pVCpu->vmm.s.StatR0HaltExec);
655 return rc;
656 }
657 }
658 }
659 /*
660 * SMI is not implemented yet, at least not here.
661 */
662 else if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_SMI))
663 {
664 Log12(("vmmR0DoHaltInterrupt: CPU%d failed #3\n", pVCpu->idCpu));
665 STAM_REL_COUNTER_INC(&pVCpu->vmm.s.StatR0HaltToR3);
666 return VINF_EM_HALT;
667 }
668 /*
669 * NMI.
670 */
671 else if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NMI))
672 {
673 if (enmInterruptibility < CPUMINTERRUPTIBILITY_NMI_INHIBIT)
674 {
675 /** @todo later. */
676 Log12(("vmmR0DoHaltInterrupt: CPU%d failed #2 (uMWait=%u enmInt=%d)\n", pVCpu->idCpu, uMWait, enmInterruptibility));
677 STAM_REL_COUNTER_INC(&pVCpu->vmm.s.StatR0HaltToR3);
678 return VINF_EM_HALT;
679 }
680 }
681 /*
682 * Nested-guest virtual interrupt.
683 */
684 else if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST))
685 {
686 if (enmInterruptibility < CPUMINTERRUPTIBILITY_VIRT_INT_DISABLED)
687 {
688 /** @todo NSTVMX: NSTSVM: Remember, we might have to check and perform VM-exits
689 * here before injecting the virtual interrupt. See emR3ForcedActions
690 * for details. */
691 Log12(("vmmR0DoHaltInterrupt: CPU%d failed #1 (uMWait=%u enmInt=%d)\n", pVCpu->idCpu, uMWait, enmInterruptibility));
692 STAM_REL_COUNTER_INC(&pVCpu->vmm.s.StatR0HaltToR3);
693 return VINF_EM_HALT;
694 }
695 }
696
697 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_UNHALT))
698 {
699 STAM_REL_COUNTER_INC(&pVCpu->vmm.s.StatR0HaltExec);
700 Log11(("vmmR0DoHaltInterrupt: CPU%d success VINF_SUCCESS (UNHALT)\n", pVCpu->idCpu));
701 return VINF_SUCCESS;
702 }
703 if (uMWait > 1)
704 {
705 STAM_REL_COUNTER_INC(&pVCpu->vmm.s.StatR0HaltExec);
706 Log11(("vmmR0DoHaltInterrupt: CPU%d success VINF_SUCCESS (uMWait=%u > 1)\n", pVCpu->idCpu, uMWait));
707 return VINF_SUCCESS;
708 }
709
710 Log12(("vmmR0DoHaltInterrupt: CPU%d failed #0 (uMWait=%u enmInt=%d)\n", pVCpu->idCpu, uMWait, enmInterruptibility));
711 STAM_REL_COUNTER_INC(&pVCpu->vmm.s.StatR0HaltToR3);
712 return VINF_EM_HALT;
713}
714
715
716/**
717 * This does one round of vmR3HaltGlobal1Halt().
718 *
719 * The rational here is that we'll reduce latency in interrupt situations if we
720 * don't go to ring-3 immediately on a VINF_EM_HALT (guest executed HLT or
721 * MWAIT), but do one round of blocking here instead and hope the interrupt is
722 * raised in the meanwhile.
723 *
724 * If we go to ring-3 we'll quit the inner HM/NEM loop in EM and end up in the
725 * outer loop, which will then call VMR3WaitHalted() and that in turn will do a
726 * ring-0 call (unless we're too close to a timer event). When the interrupt
727 * wakes us up, we'll return from ring-0 and EM will by instinct do a
728 * rescheduling (because of raw-mode) before it resumes the HM/NEM loop and gets
729 * back to VMMR0EntryFast().
730 *
731 * @returns VINF_SUCCESS or VINF_EM_HALT.
732 * @param pGVM The ring-0 VM structure.
733 * @param pGVCpu The ring-0 virtual CPU structure.
734 *
735 * @todo r=bird: All the blocking/waiting and EMT managment should move out of
736 * the VM module, probably to VMM. Then this would be more weird wrt
737 * parameters and statistics.
738 */
739static int vmmR0DoHalt(PGVM pGVM, PGVMCPU pGVCpu)
740{
741 /*
742 * Do spin stat historization.
743 */
744 if (++pGVCpu->vmm.s.cR0Halts & 0xff)
745 { /* likely */ }
746 else if (pGVCpu->vmm.s.cR0HaltsSucceeded > pGVCpu->vmm.s.cR0HaltsToRing3)
747 {
748 pGVCpu->vmm.s.cR0HaltsSucceeded = 2;
749 pGVCpu->vmm.s.cR0HaltsToRing3 = 0;
750 }
751 else
752 {
753 pGVCpu->vmm.s.cR0HaltsSucceeded = 0;
754 pGVCpu->vmm.s.cR0HaltsToRing3 = 2;
755 }
756
757 /*
758 * Flags that makes us go to ring-3.
759 */
760 uint32_t const fVmFFs = VM_FF_TM_VIRTUAL_SYNC | VM_FF_PDM_QUEUES | VM_FF_PDM_DMA
761 | VM_FF_DBGF | VM_FF_REQUEST | VM_FF_CHECK_VM_STATE
762 | VM_FF_RESET | VM_FF_EMT_RENDEZVOUS | VM_FF_PGM_NEED_HANDY_PAGES
763 | VM_FF_PGM_NO_MEMORY | VM_FF_DEBUG_SUSPEND;
764 uint64_t const fCpuFFs = VMCPU_FF_TIMER | VMCPU_FF_PDM_CRITSECT | VMCPU_FF_IEM
765 | VMCPU_FF_REQUEST | VMCPU_FF_DBGF | VMCPU_FF_HM_UPDATE_CR3
766 | VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL
767 | VMCPU_FF_TO_R3 | VMCPU_FF_IOM;
768
769 /*
770 * Check preconditions.
771 */
772 unsigned const uMWait = EMMonitorWaitIsActive(pGVCpu);
773 CPUMINTERRUPTIBILITY const enmInterruptibility = CPUMGetGuestInterruptibility(pGVCpu);
774 if ( pGVCpu->vmm.s.fMayHaltInRing0
775 && !TRPMHasTrap(pGVCpu)
776 && ( enmInterruptibility == CPUMINTERRUPTIBILITY_UNRESTRAINED
777 || uMWait > 1))
778 {
779 if ( !VM_FF_IS_ANY_SET(pGVM, fVmFFs)
780 && !VMCPU_FF_IS_ANY_SET(pGVCpu, fCpuFFs))
781 {
782 /*
783 * Interrupts pending already?
784 */
785 if (VMCPU_FF_TEST_AND_CLEAR(pGVCpu, VMCPU_FF_UPDATE_APIC))
786 APICUpdatePendingInterrupts(pGVCpu);
787
788 /*
789 * Flags that wake up from the halted state.
790 */
791 uint64_t const fIntMask = VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC | VMCPU_FF_INTERRUPT_NESTED_GUEST
792 | VMCPU_FF_INTERRUPT_NMI | VMCPU_FF_INTERRUPT_SMI | VMCPU_FF_UNHALT;
793
794 if (VMCPU_FF_IS_ANY_SET(pGVCpu, fIntMask))
795 return vmmR0DoHaltInterrupt(pGVCpu, uMWait, enmInterruptibility);
796 ASMNopPause();
797
798 /*
799 * Check out how long till the next timer event.
800 */
801 uint64_t u64Delta;
802 uint64_t u64GipTime = TMTimerPollGIP(pGVM, pGVCpu, &u64Delta);
803
804 if ( !VM_FF_IS_ANY_SET(pGVM, fVmFFs)
805 && !VMCPU_FF_IS_ANY_SET(pGVCpu, fCpuFFs))
806 {
807 if (VMCPU_FF_TEST_AND_CLEAR(pGVCpu, VMCPU_FF_UPDATE_APIC))
808 APICUpdatePendingInterrupts(pGVCpu);
809
810 if (VMCPU_FF_IS_ANY_SET(pGVCpu, fIntMask))
811 return vmmR0DoHaltInterrupt(pGVCpu, uMWait, enmInterruptibility);
812
813 /*
814 * Wait if there is enough time to the next timer event.
815 */
816 if (u64Delta >= pGVCpu->vmm.s.cNsSpinBlockThreshold)
817 {
818 /* If there are few other CPU cores around, we will procrastinate a
819 little before going to sleep, hoping for some device raising an
820 interrupt or similar. Though, the best thing here would be to
821 dynamically adjust the spin count according to its usfulness or
822 something... */
823 if ( pGVCpu->vmm.s.cR0HaltsSucceeded > pGVCpu->vmm.s.cR0HaltsToRing3
824 && RTMpGetOnlineCount() >= 4)
825 {
826 /** @todo Figure out how we can skip this if it hasn't help recently...
827 * @bugref{9172#c12} */
828 uint32_t cSpinLoops = 42;
829 while (cSpinLoops-- > 0)
830 {
831 ASMNopPause();
832 if (VMCPU_FF_TEST_AND_CLEAR(pGVCpu, VMCPU_FF_UPDATE_APIC))
833 APICUpdatePendingInterrupts(pGVCpu);
834 ASMNopPause();
835 if (VM_FF_IS_ANY_SET(pGVM, fVmFFs))
836 {
837 STAM_REL_COUNTER_INC(&pGVCpu->vmm.s.StatR0HaltToR3FromSpin);
838 STAM_REL_COUNTER_INC(&pGVCpu->vmm.s.StatR0HaltToR3);
839 return VINF_EM_HALT;
840 }
841 ASMNopPause();
842 if (VMCPU_FF_IS_ANY_SET(pGVCpu, fCpuFFs))
843 {
844 STAM_REL_COUNTER_INC(&pGVCpu->vmm.s.StatR0HaltToR3FromSpin);
845 STAM_REL_COUNTER_INC(&pGVCpu->vmm.s.StatR0HaltToR3);
846 return VINF_EM_HALT;
847 }
848 ASMNopPause();
849 if (VMCPU_FF_IS_ANY_SET(pGVCpu, fIntMask))
850 {
851 STAM_REL_COUNTER_INC(&pGVCpu->vmm.s.StatR0HaltExecFromSpin);
852 return vmmR0DoHaltInterrupt(pGVCpu, uMWait, enmInterruptibility);
853 }
854 ASMNopPause();
855 }
856 }
857
858 /*
859 * We have to set the state to VMCPUSTATE_STARTED_HALTED here so ring-3
860 * knows when to notify us (cannot access VMINTUSERPERVMCPU::fWait from here).
861 * After changing the state we must recheck the force flags of course.
862 */
863 if (VMCPU_CMPXCHG_STATE(pGVCpu, VMCPUSTATE_STARTED_HALTED, VMCPUSTATE_STARTED))
864 {
865 if ( !VM_FF_IS_ANY_SET(pGVM, fVmFFs)
866 && !VMCPU_FF_IS_ANY_SET(pGVCpu, fCpuFFs))
867 {
868 if (VMCPU_FF_TEST_AND_CLEAR(pGVCpu, VMCPU_FF_UPDATE_APIC))
869 APICUpdatePendingInterrupts(pGVCpu);
870
871 if (VMCPU_FF_IS_ANY_SET(pGVCpu, fIntMask))
872 {
873 VMCPU_CMPXCHG_STATE(pGVCpu, VMCPUSTATE_STARTED, VMCPUSTATE_STARTED_HALTED);
874 return vmmR0DoHaltInterrupt(pGVCpu, uMWait, enmInterruptibility);
875 }
876
877 /* Okay, block! */
878 uint64_t const u64StartSchedHalt = RTTimeNanoTS();
879 int rc = GVMMR0SchedHalt(pGVM, pGVCpu, u64GipTime);
880 uint64_t const u64EndSchedHalt = RTTimeNanoTS();
881 uint64_t const cNsElapsedSchedHalt = u64EndSchedHalt - u64StartSchedHalt;
882 Log10(("vmmR0DoHalt: CPU%d: halted %llu ns\n", pGVCpu->idCpu, cNsElapsedSchedHalt));
883
884 VMCPU_CMPXCHG_STATE(pGVCpu, VMCPUSTATE_STARTED, VMCPUSTATE_STARTED_HALTED);
885 STAM_REL_PROFILE_ADD_PERIOD(&pGVCpu->vmm.s.StatR0HaltBlock, cNsElapsedSchedHalt);
886 if ( rc == VINF_SUCCESS
887 || rc == VERR_INTERRUPTED)
888 {
889 /* Keep some stats like ring-3 does. */
890 int64_t const cNsOverslept = u64EndSchedHalt - u64GipTime;
891 if (cNsOverslept > 50000)
892 STAM_REL_PROFILE_ADD_PERIOD(&pGVCpu->vmm.s.StatR0HaltBlockOverslept, cNsOverslept);
893 else if (cNsOverslept < -50000)
894 STAM_REL_PROFILE_ADD_PERIOD(&pGVCpu->vmm.s.StatR0HaltBlockInsomnia, cNsElapsedSchedHalt);
895 else
896 STAM_REL_PROFILE_ADD_PERIOD(&pGVCpu->vmm.s.StatR0HaltBlockOnTime, cNsElapsedSchedHalt);
897
898 /*
899 * Recheck whether we can resume execution or have to go to ring-3.
900 */
901 if ( !VM_FF_IS_ANY_SET(pGVM, fVmFFs)
902 && !VMCPU_FF_IS_ANY_SET(pGVCpu, fCpuFFs))
903 {
904 if (VMCPU_FF_TEST_AND_CLEAR(pGVCpu, VMCPU_FF_UPDATE_APIC))
905 APICUpdatePendingInterrupts(pGVCpu);
906 if (VMCPU_FF_IS_ANY_SET(pGVCpu, fIntMask))
907 {
908 STAM_REL_COUNTER_INC(&pGVCpu->vmm.s.StatR0HaltExecFromBlock);
909 return vmmR0DoHaltInterrupt(pGVCpu, uMWait, enmInterruptibility);
910 }
911 STAM_REL_COUNTER_INC(&pGVCpu->vmm.s.StatR0HaltToR3PostNoInt);
912 Log12(("vmmR0DoHalt: CPU%d post #2 - No pending interrupt\n", pGVCpu->idCpu));
913 }
914 else
915 {
916 STAM_REL_COUNTER_INC(&pGVCpu->vmm.s.StatR0HaltToR3PostPendingFF);
917 Log12(("vmmR0DoHalt: CPU%d post #1 - Pending FF\n", pGVCpu->idCpu));
918 }
919 }
920 else
921 {
922 STAM_REL_COUNTER_INC(&pGVCpu->vmm.s.StatR0HaltToR3Other);
923 Log12(("vmmR0DoHalt: CPU%d GVMMR0SchedHalt failed: %Rrc\n", pGVCpu->idCpu, rc));
924 }
925 }
926 else
927 {
928 VMCPU_CMPXCHG_STATE(pGVCpu, VMCPUSTATE_STARTED, VMCPUSTATE_STARTED_HALTED);
929 STAM_REL_COUNTER_INC(&pGVCpu->vmm.s.StatR0HaltToR3PendingFF);
930 Log12(("vmmR0DoHalt: CPU%d failed #5 - Pending FF\n", pGVCpu->idCpu));
931 }
932 }
933 else
934 {
935 STAM_REL_COUNTER_INC(&pGVCpu->vmm.s.StatR0HaltToR3Other);
936 Log12(("vmmR0DoHalt: CPU%d failed #4 - enmState=%d\n", pGVCpu->idCpu, VMCPU_GET_STATE(pGVCpu)));
937 }
938 }
939 else
940 {
941 STAM_REL_COUNTER_INC(&pGVCpu->vmm.s.StatR0HaltToR3SmallDelta);
942 Log12(("vmmR0DoHalt: CPU%d failed #3 - delta too small: %RU64\n", pGVCpu->idCpu, u64Delta));
943 }
944 }
945 else
946 {
947 STAM_REL_COUNTER_INC(&pGVCpu->vmm.s.StatR0HaltToR3PendingFF);
948 Log12(("vmmR0DoHalt: CPU%d failed #2 - Pending FF\n", pGVCpu->idCpu));
949 }
950 }
951 else
952 {
953 STAM_REL_COUNTER_INC(&pGVCpu->vmm.s.StatR0HaltToR3PendingFF);
954 Log12(("vmmR0DoHalt: CPU%d failed #1 - Pending FF\n", pGVCpu->idCpu));
955 }
956 }
957 else
958 {
959 STAM_REL_COUNTER_INC(&pGVCpu->vmm.s.StatR0HaltToR3Other);
960 Log12(("vmmR0DoHalt: CPU%d failed #0 - fMayHaltInRing0=%d TRPMHasTrap=%d enmInt=%d uMWait=%u\n",
961 pGVCpu->idCpu, pGVCpu->vmm.s.fMayHaltInRing0, TRPMHasTrap(pGVCpu), enmInterruptibility, uMWait));
962 }
963
964 STAM_REL_COUNTER_INC(&pGVCpu->vmm.s.StatR0HaltToR3);
965 return VINF_EM_HALT;
966}
967
968
969/**
970 * VMM ring-0 thread-context callback.
971 *
972 * This does common HM state updating and calls the HM-specific thread-context
973 * callback.
974 *
975 * This is used together with RTThreadCtxHookCreate() on platforms which
976 * supports it, and directly from VMMR0EmtPrepareForBlocking() and
977 * VMMR0EmtResumeAfterBlocking() on platforms which don't.
978 *
979 * @param enmEvent The thread-context event.
980 * @param pvUser Opaque pointer to the VMCPU.
981 *
982 * @thread EMT(pvUser)
983 */
984static DECLCALLBACK(void) vmmR0ThreadCtxCallback(RTTHREADCTXEVENT enmEvent, void *pvUser)
985{
986 PVMCPUCC pVCpu = (PVMCPUCC)pvUser;
987
988 switch (enmEvent)
989 {
990 case RTTHREADCTXEVENT_IN:
991 {
992 /*
993 * Linux may call us with preemption enabled (really!) but technically we
994 * cannot get preempted here, otherwise we end up in an infinite recursion
995 * scenario (i.e. preempted in resume hook -> preempt hook -> resume hook...
996 * ad infinitum). Let's just disable preemption for now...
997 */
998 /** @todo r=bird: I don't believe the above. The linux code is clearly enabling
999 * preemption after doing the callout (one or two functions up the
1000 * call chain). */
1001 /** @todo r=ramshankar: See @bugref{5313#c30}. */
1002 RTTHREADPREEMPTSTATE ParanoidPreemptState = RTTHREADPREEMPTSTATE_INITIALIZER;
1003 RTThreadPreemptDisable(&ParanoidPreemptState);
1004
1005 /* We need to update the VCPU <-> host CPU mapping. */
1006 RTCPUID idHostCpu;
1007 uint32_t iHostCpuSet = RTMpCurSetIndexAndId(&idHostCpu);
1008 pVCpu->iHostCpuSet = iHostCpuSet;
1009 ASMAtomicWriteU32(&pVCpu->idHostCpu, idHostCpu);
1010
1011 /* In the very unlikely event that the GIP delta for the CPU we're
1012 rescheduled needs calculating, try force a return to ring-3.
1013 We unfortunately cannot do the measurements right here. */
1014 if (RT_LIKELY(!SUPIsTscDeltaAvailableForCpuSetIndex(iHostCpuSet)))
1015 { /* likely */ }
1016 else
1017 VMCPU_FF_SET(pVCpu, VMCPU_FF_TO_R3);
1018
1019 /* Invoke the HM-specific thread-context callback. */
1020 HMR0ThreadCtxCallback(enmEvent, pvUser);
1021
1022 /* Restore preemption. */
1023 RTThreadPreemptRestore(&ParanoidPreemptState);
1024 break;
1025 }
1026
1027 case RTTHREADCTXEVENT_OUT:
1028 {
1029 /* Invoke the HM-specific thread-context callback. */
1030 HMR0ThreadCtxCallback(enmEvent, pvUser);
1031
1032 /*
1033 * Sigh. See VMMGetCpu() used by VMCPU_ASSERT_EMT(). We cannot let several VCPUs
1034 * have the same host CPU associated with it.
1035 */
1036 pVCpu->iHostCpuSet = UINT32_MAX;
1037 ASMAtomicWriteU32(&pVCpu->idHostCpu, NIL_RTCPUID);
1038 break;
1039 }
1040
1041 default:
1042 /* Invoke the HM-specific thread-context callback. */
1043 HMR0ThreadCtxCallback(enmEvent, pvUser);
1044 break;
1045 }
1046}
1047
1048
1049/**
1050 * Creates thread switching hook for the current EMT thread.
1051 *
1052 * This is called by GVMMR0CreateVM and GVMMR0RegisterVCpu. If the host
1053 * platform does not implement switcher hooks, no hooks will be create and the
1054 * member set to NIL_RTTHREADCTXHOOK.
1055 *
1056 * @returns VBox status code.
1057 * @param pVCpu The cross context virtual CPU structure.
1058 * @thread EMT(pVCpu)
1059 */
1060VMMR0_INT_DECL(int) VMMR0ThreadCtxHookCreateForEmt(PVMCPUCC pVCpu)
1061{
1062 VMCPU_ASSERT_EMT(pVCpu);
1063 Assert(pVCpu->vmmr0.s.hCtxHook == NIL_RTTHREADCTXHOOK);
1064
1065#if 1 /* To disable this stuff change to zero. */
1066 int rc = RTThreadCtxHookCreate(&pVCpu->vmmr0.s.hCtxHook, 0, vmmR0ThreadCtxCallback, pVCpu);
1067 if (RT_SUCCESS(rc))
1068 {
1069 pVCpu->pGVM->vmm.s.fIsUsingContextHooks = true;
1070 return rc;
1071 }
1072#else
1073 RT_NOREF(vmmR0ThreadCtxCallback);
1074 int rc = VERR_NOT_SUPPORTED;
1075#endif
1076
1077 pVCpu->vmmr0.s.hCtxHook = NIL_RTTHREADCTXHOOK;
1078 pVCpu->pGVM->vmm.s.fIsUsingContextHooks = false;
1079 if (rc == VERR_NOT_SUPPORTED)
1080 return VINF_SUCCESS;
1081
1082 LogRelMax(32, ("RTThreadCtxHookCreate failed! rc=%Rrc pVCpu=%p idCpu=%RU32\n", rc, pVCpu, pVCpu->idCpu));
1083 return VINF_SUCCESS; /* Just ignore it, we can live without context hooks. */
1084}
1085
1086
1087/**
1088 * Destroys the thread switching hook for the specified VCPU.
1089 *
1090 * @param pVCpu The cross context virtual CPU structure.
1091 * @remarks Can be called from any thread.
1092 */
1093VMMR0_INT_DECL(void) VMMR0ThreadCtxHookDestroyForEmt(PVMCPUCC pVCpu)
1094{
1095 int rc = RTThreadCtxHookDestroy(pVCpu->vmmr0.s.hCtxHook);
1096 AssertRC(rc);
1097 pVCpu->vmmr0.s.hCtxHook = NIL_RTTHREADCTXHOOK;
1098}
1099
1100
1101/**
1102 * Disables the thread switching hook for this VCPU (if we got one).
1103 *
1104 * @param pVCpu The cross context virtual CPU structure.
1105 * @thread EMT(pVCpu)
1106 *
1107 * @remarks This also clears GVMCPU::idHostCpu, so the mapping is invalid after
1108 * this call. This means you have to be careful with what you do!
1109 */
1110VMMR0_INT_DECL(void) VMMR0ThreadCtxHookDisable(PVMCPUCC pVCpu)
1111{
1112 /*
1113 * Clear the VCPU <-> host CPU mapping as we've left HM context.
1114 * @bugref{7726#c19} explains the need for this trick:
1115 *
1116 * VMXR0CallRing3Callback/SVMR0CallRing3Callback &
1117 * hmR0VmxLeaveSession/hmR0SvmLeaveSession disables context hooks during
1118 * longjmp & normal return to ring-3, which opens a window where we may be
1119 * rescheduled without changing GVMCPUID::idHostCpu and cause confusion if
1120 * the CPU starts executing a different EMT. Both functions first disables
1121 * preemption and then calls HMR0LeaveCpu which invalids idHostCpu, leaving
1122 * an opening for getting preempted.
1123 */
1124 /** @todo Make HM not need this API! Then we could leave the hooks enabled
1125 * all the time. */
1126
1127 /*
1128 * Disable the context hook, if we got one.
1129 */
1130 if (pVCpu->vmmr0.s.hCtxHook != NIL_RTTHREADCTXHOOK)
1131 {
1132 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1133 ASMAtomicWriteU32(&pVCpu->idHostCpu, NIL_RTCPUID);
1134 int rc = RTThreadCtxHookDisable(pVCpu->vmmr0.s.hCtxHook);
1135 AssertRC(rc);
1136 }
1137}
1138
1139
1140/**
1141 * Internal version of VMMR0ThreadCtxHooksAreRegistered.
1142 *
1143 * @returns true if registered, false otherwise.
1144 * @param pVCpu The cross context virtual CPU structure.
1145 */
1146DECLINLINE(bool) vmmR0ThreadCtxHookIsEnabled(PVMCPUCC pVCpu)
1147{
1148 return RTThreadCtxHookIsEnabled(pVCpu->vmmr0.s.hCtxHook);
1149}
1150
1151
1152/**
1153 * Whether thread-context hooks are registered for this VCPU.
1154 *
1155 * @returns true if registered, false otherwise.
1156 * @param pVCpu The cross context virtual CPU structure.
1157 */
1158VMMR0_INT_DECL(bool) VMMR0ThreadCtxHookIsEnabled(PVMCPUCC pVCpu)
1159{
1160 return vmmR0ThreadCtxHookIsEnabled(pVCpu);
1161}
1162
1163
1164/**
1165 * Returns the ring-0 release logger instance.
1166 *
1167 * @returns Pointer to release logger, NULL if not configured.
1168 * @param pVCpu The cross context virtual CPU structure of the caller.
1169 * @thread EMT(pVCpu)
1170 */
1171VMMR0_INT_DECL(PRTLOGGER) VMMR0GetReleaseLogger(PVMCPUCC pVCpu)
1172{
1173 return pVCpu->vmmr0.s.u.s.RelLogger.pLogger;
1174}
1175
1176
1177#ifdef VBOX_WITH_STATISTICS
1178/**
1179 * Record return code statistics
1180 * @param pVM The cross context VM structure.
1181 * @param pVCpu The cross context virtual CPU structure.
1182 * @param rc The status code.
1183 */
1184static void vmmR0RecordRC(PVMCC pVM, PVMCPUCC pVCpu, int rc)
1185{
1186 /*
1187 * Collect statistics.
1188 */
1189 switch (rc)
1190 {
1191 case VINF_SUCCESS:
1192 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetNormal);
1193 break;
1194 case VINF_EM_RAW_INTERRUPT:
1195 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetInterrupt);
1196 break;
1197 case VINF_EM_RAW_INTERRUPT_HYPER:
1198 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetInterruptHyper);
1199 break;
1200 case VINF_EM_RAW_GUEST_TRAP:
1201 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetGuestTrap);
1202 break;
1203 case VINF_EM_RAW_RING_SWITCH:
1204 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetRingSwitch);
1205 break;
1206 case VINF_EM_RAW_RING_SWITCH_INT:
1207 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetRingSwitchInt);
1208 break;
1209 case VINF_EM_RAW_STALE_SELECTOR:
1210 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetStaleSelector);
1211 break;
1212 case VINF_EM_RAW_IRET_TRAP:
1213 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetIRETTrap);
1214 break;
1215 case VINF_IOM_R3_IOPORT_READ:
1216 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetIORead);
1217 break;
1218 case VINF_IOM_R3_IOPORT_WRITE:
1219 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetIOWrite);
1220 break;
1221 case VINF_IOM_R3_IOPORT_COMMIT_WRITE:
1222 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetIOCommitWrite);
1223 break;
1224 case VINF_IOM_R3_MMIO_READ:
1225 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetMMIORead);
1226 break;
1227 case VINF_IOM_R3_MMIO_WRITE:
1228 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetMMIOWrite);
1229 break;
1230 case VINF_IOM_R3_MMIO_COMMIT_WRITE:
1231 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetMMIOCommitWrite);
1232 break;
1233 case VINF_IOM_R3_MMIO_READ_WRITE:
1234 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetMMIOReadWrite);
1235 break;
1236 case VINF_PATM_HC_MMIO_PATCH_READ:
1237 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetMMIOPatchRead);
1238 break;
1239 case VINF_PATM_HC_MMIO_PATCH_WRITE:
1240 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetMMIOPatchWrite);
1241 break;
1242 case VINF_CPUM_R3_MSR_READ:
1243 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetMSRRead);
1244 break;
1245 case VINF_CPUM_R3_MSR_WRITE:
1246 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetMSRWrite);
1247 break;
1248 case VINF_EM_RAW_EMULATE_INSTR:
1249 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetEmulate);
1250 break;
1251 case VINF_PATCH_EMULATE_INSTR:
1252 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetPatchEmulate);
1253 break;
1254 case VINF_EM_RAW_EMULATE_INSTR_LDT_FAULT:
1255 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetLDTFault);
1256 break;
1257 case VINF_EM_RAW_EMULATE_INSTR_GDT_FAULT:
1258 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetGDTFault);
1259 break;
1260 case VINF_EM_RAW_EMULATE_INSTR_IDT_FAULT:
1261 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetIDTFault);
1262 break;
1263 case VINF_EM_RAW_EMULATE_INSTR_TSS_FAULT:
1264 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetTSSFault);
1265 break;
1266 case VINF_CSAM_PENDING_ACTION:
1267 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetCSAMTask);
1268 break;
1269 case VINF_PGM_SYNC_CR3:
1270 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetSyncCR3);
1271 break;
1272 case VINF_PATM_PATCH_INT3:
1273 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetPatchInt3);
1274 break;
1275 case VINF_PATM_PATCH_TRAP_PF:
1276 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetPatchPF);
1277 break;
1278 case VINF_PATM_PATCH_TRAP_GP:
1279 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetPatchGP);
1280 break;
1281 case VINF_PATM_PENDING_IRQ_AFTER_IRET:
1282 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetPatchIretIRQ);
1283 break;
1284 case VINF_EM_RESCHEDULE_REM:
1285 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetRescheduleREM);
1286 break;
1287 case VINF_EM_RAW_TO_R3:
1288 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetToR3Total);
1289 if (VM_FF_IS_SET(pVM, VM_FF_TM_VIRTUAL_SYNC))
1290 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetToR3TMVirt);
1291 else if (VM_FF_IS_SET(pVM, VM_FF_PGM_NEED_HANDY_PAGES))
1292 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetToR3HandyPages);
1293 else if (VM_FF_IS_SET(pVM, VM_FF_PDM_QUEUES))
1294 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetToR3PDMQueues);
1295 else if (VM_FF_IS_SET(pVM, VM_FF_EMT_RENDEZVOUS))
1296 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetToR3Rendezvous);
1297 else if (VM_FF_IS_SET(pVM, VM_FF_PDM_DMA))
1298 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetToR3DMA);
1299 else if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_TIMER))
1300 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetToR3Timer);
1301 else if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PDM_CRITSECT))
1302 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetToR3CritSect);
1303 else if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_TO_R3))
1304 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetToR3FF);
1305 else if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_IEM))
1306 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetToR3Iem);
1307 else if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_IOM))
1308 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetToR3Iom);
1309 else
1310 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetToR3Unknown);
1311 break;
1312
1313 case VINF_EM_RAW_TIMER_PENDING:
1314 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetTimerPending);
1315 break;
1316 case VINF_EM_RAW_INTERRUPT_PENDING:
1317 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetInterruptPending);
1318 break;
1319 case VINF_PATM_DUPLICATE_FUNCTION:
1320 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetPATMDuplicateFn);
1321 break;
1322 case VINF_PGM_POOL_FLUSH_PENDING:
1323 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetPGMFlushPending);
1324 break;
1325 case VINF_EM_PENDING_REQUEST:
1326 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetPendingRequest);
1327 break;
1328 case VINF_EM_HM_PATCH_TPR_INSTR:
1329 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetPatchTPR);
1330 break;
1331 default:
1332 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetMisc);
1333 break;
1334 }
1335}
1336#endif /* VBOX_WITH_STATISTICS */
1337
1338
1339/**
1340 * The Ring 0 entry point, called by the fast-ioctl path.
1341 *
1342 * @param pGVM The global (ring-0) VM structure.
1343 * @param pVMIgnored The cross context VM structure. The return code is
1344 * stored in pVM->vmm.s.iLastGZRc.
1345 * @param idCpu The Virtual CPU ID of the calling EMT.
1346 * @param enmOperation Which operation to execute.
1347 * @remarks Assume called with interrupts _enabled_.
1348 */
1349VMMR0DECL(void) VMMR0EntryFast(PGVM pGVM, PVMCC pVMIgnored, VMCPUID idCpu, VMMR0OPERATION enmOperation)
1350{
1351 RT_NOREF(pVMIgnored);
1352
1353 /*
1354 * Validation.
1355 */
1356 if ( idCpu < pGVM->cCpus
1357 && pGVM->cCpus == pGVM->cCpusUnsafe)
1358 { /*likely*/ }
1359 else
1360 {
1361 SUPR0Printf("VMMR0EntryFast: Bad idCpu=%#x cCpus=%#x cCpusUnsafe=%#x\n", idCpu, pGVM->cCpus, pGVM->cCpusUnsafe);
1362 return;
1363 }
1364
1365 PGVMCPU pGVCpu = &pGVM->aCpus[idCpu];
1366 RTNATIVETHREAD const hNativeThread = RTThreadNativeSelf();
1367 if (RT_LIKELY( pGVCpu->hEMT == hNativeThread
1368 && pGVCpu->hNativeThreadR0 == hNativeThread))
1369 { /* likely */ }
1370 else
1371 {
1372 SUPR0Printf("VMMR0EntryFast: Bad thread idCpu=%#x hNativeSelf=%p pGVCpu->hEmt=%p pGVCpu->hNativeThreadR0=%p\n",
1373 idCpu, hNativeThread, pGVCpu->hEMT, pGVCpu->hNativeThreadR0);
1374 return;
1375 }
1376
1377 /*
1378 * Perform requested operation.
1379 */
1380 switch (enmOperation)
1381 {
1382 /*
1383 * Run guest code using the available hardware acceleration technology.
1384 */
1385 case VMMR0_DO_HM_RUN:
1386 {
1387 for (;;) /* hlt loop */
1388 {
1389 /*
1390 * Disable ring-3 calls & blocking till we've successfully entered HM.
1391 * Otherwise we sometimes end up blocking at the finall Log4 statement
1392 * in VMXR0Enter, while still in a somewhat inbetween state.
1393 */
1394 VMMRZCallRing3Disable(pGVCpu);
1395
1396 /*
1397 * Disable preemption.
1398 */
1399 Assert(!vmmR0ThreadCtxHookIsEnabled(pGVCpu));
1400 RTTHREADPREEMPTSTATE PreemptState = RTTHREADPREEMPTSTATE_INITIALIZER;
1401 RTThreadPreemptDisable(&PreemptState);
1402 pGVCpu->vmmr0.s.pPreemptState = &PreemptState;
1403
1404 /*
1405 * Get the host CPU identifiers, make sure they are valid and that
1406 * we've got a TSC delta for the CPU.
1407 */
1408 RTCPUID idHostCpu;
1409 uint32_t iHostCpuSet = RTMpCurSetIndexAndId(&idHostCpu);
1410 if (RT_LIKELY( iHostCpuSet < RTCPUSET_MAX_CPUS
1411 && SUPIsTscDeltaAvailableForCpuSetIndex(iHostCpuSet)))
1412 {
1413 pGVCpu->iHostCpuSet = iHostCpuSet;
1414 ASMAtomicWriteU32(&pGVCpu->idHostCpu, idHostCpu);
1415
1416 /*
1417 * Update the periodic preemption timer if it's active.
1418 */
1419 if (pGVM->vmm.s.fUsePeriodicPreemptionTimers)
1420 GVMMR0SchedUpdatePeriodicPreemptionTimer(pGVM, pGVCpu->idHostCpu, TMCalcHostTimerFrequency(pGVM, pGVCpu));
1421
1422#ifdef VMM_R0_TOUCH_FPU
1423 /*
1424 * Make sure we've got the FPU state loaded so and we don't need to clear
1425 * CR0.TS and get out of sync with the host kernel when loading the guest
1426 * FPU state. @ref sec_cpum_fpu (CPUM.cpp) and @bugref{4053}.
1427 */
1428 CPUMR0TouchHostFpu();
1429#endif
1430 int rc;
1431 bool fPreemptRestored = false;
1432 if (!HMR0SuspendPending())
1433 {
1434 /*
1435 * Enable the context switching hook.
1436 */
1437 if (pGVCpu->vmmr0.s.hCtxHook != NIL_RTTHREADCTXHOOK)
1438 {
1439 Assert(!RTThreadCtxHookIsEnabled(pGVCpu->vmmr0.s.hCtxHook));
1440 int rc2 = RTThreadCtxHookEnable(pGVCpu->vmmr0.s.hCtxHook); AssertRC(rc2);
1441 }
1442
1443 /*
1444 * Enter HM context.
1445 */
1446 rc = HMR0Enter(pGVCpu);
1447 if (RT_SUCCESS(rc))
1448 {
1449 VMCPU_SET_STATE(pGVCpu, VMCPUSTATE_STARTED_HM);
1450
1451 /*
1452 * When preemption hooks are in place, enable preemption now that
1453 * we're in HM context.
1454 */
1455 if (vmmR0ThreadCtxHookIsEnabled(pGVCpu))
1456 {
1457 fPreemptRestored = true;
1458 pGVCpu->vmmr0.s.pPreemptState = NULL;
1459 RTThreadPreemptRestore(&PreemptState);
1460 }
1461 VMMRZCallRing3Enable(pGVCpu);
1462
1463 /*
1464 * Setup the longjmp machinery and execute guest code (calls HMR0RunGuestCode).
1465 */
1466 rc = vmmR0CallRing3SetJmp(&pGVCpu->vmmr0.s.AssertJmpBuf, HMR0RunGuestCode, pGVM, pGVCpu);
1467
1468 /*
1469 * Assert sanity on the way out. Using manual assertions code here as normal
1470 * assertions are going to panic the host since we're outside the setjmp/longjmp zone.
1471 */
1472 if (RT_UNLIKELY( VMCPU_GET_STATE(pGVCpu) != VMCPUSTATE_STARTED_HM
1473 && RT_SUCCESS_NP(rc)
1474 && rc != VERR_VMM_RING0_ASSERTION ))
1475 {
1476 pGVM->vmm.s.szRing0AssertMsg1[0] = '\0';
1477 RTStrPrintf(pGVM->vmm.s.szRing0AssertMsg2, sizeof(pGVM->vmm.s.szRing0AssertMsg2),
1478 "Got VMCPU state %d expected %d.\n", VMCPU_GET_STATE(pGVCpu), VMCPUSTATE_STARTED_HM);
1479 rc = VERR_VMM_WRONG_HM_VMCPU_STATE;
1480 }
1481#if 0
1482 /** @todo Get rid of this. HM shouldn't disable the context hook. */
1483 else if (RT_UNLIKELY(vmmR0ThreadCtxHookIsEnabled(pGVCpu)))
1484 {
1485 pGVM->vmm.s.szRing0AssertMsg1[0] = '\0';
1486 RTStrPrintf(pGVM->vmm.s.szRing0AssertMsg2, sizeof(pGVM->vmm.s.szRing0AssertMsg2),
1487 "Thread-context hooks still enabled! VCPU=%p Id=%u rc=%d.\n", pGVCpu, pGVCpu->idCpu, rc);
1488 rc = VERR_VMM_CONTEXT_HOOK_STILL_ENABLED;
1489 }
1490#endif
1491
1492 VMMRZCallRing3Disable(pGVCpu); /* Lazy bird: Simpler just disabling it again... */
1493 VMCPU_SET_STATE(pGVCpu, VMCPUSTATE_STARTED);
1494 }
1495 STAM_COUNTER_INC(&pGVM->vmm.s.StatRunGC);
1496
1497 /*
1498 * Invalidate the host CPU identifiers before we disable the context
1499 * hook / restore preemption.
1500 */
1501 pGVCpu->iHostCpuSet = UINT32_MAX;
1502 ASMAtomicWriteU32(&pGVCpu->idHostCpu, NIL_RTCPUID);
1503
1504 /*
1505 * Disable context hooks. Due to unresolved cleanup issues, we
1506 * cannot leave the hooks enabled when we return to ring-3.
1507 *
1508 * Note! At the moment HM may also have disabled the hook
1509 * when we get here, but the IPRT API handles that.
1510 */
1511 if (pGVCpu->vmmr0.s.hCtxHook != NIL_RTTHREADCTXHOOK)
1512 RTThreadCtxHookDisable(pGVCpu->vmmr0.s.hCtxHook);
1513 }
1514 /*
1515 * The system is about to go into suspend mode; go back to ring 3.
1516 */
1517 else
1518 {
1519 pGVCpu->iHostCpuSet = UINT32_MAX;
1520 ASMAtomicWriteU32(&pGVCpu->idHostCpu, NIL_RTCPUID);
1521 rc = VINF_EM_RAW_INTERRUPT;
1522 }
1523
1524 /** @todo When HM stops messing with the context hook state, we'll disable
1525 * preemption again before the RTThreadCtxHookDisable call. */
1526 if (!fPreemptRestored)
1527 {
1528 pGVCpu->vmmr0.s.pPreemptState = NULL;
1529 RTThreadPreemptRestore(&PreemptState);
1530 }
1531
1532 pGVCpu->vmm.s.iLastGZRc = rc;
1533
1534 /* Fire dtrace probe and collect statistics. */
1535 VBOXVMM_R0_VMM_RETURN_TO_RING3_HM(pGVCpu, CPUMQueryGuestCtxPtr(pGVCpu), rc);
1536#ifdef VBOX_WITH_STATISTICS
1537 vmmR0RecordRC(pGVM, pGVCpu, rc);
1538#endif
1539 VMMRZCallRing3Enable(pGVCpu);
1540
1541 /*
1542 * If this is a halt.
1543 */
1544 if (rc != VINF_EM_HALT)
1545 { /* we're not in a hurry for a HLT, so prefer this path */ }
1546 else
1547 {
1548 pGVCpu->vmm.s.iLastGZRc = rc = vmmR0DoHalt(pGVM, pGVCpu);
1549 if (rc == VINF_SUCCESS)
1550 {
1551 pGVCpu->vmm.s.cR0HaltsSucceeded++;
1552 continue;
1553 }
1554 pGVCpu->vmm.s.cR0HaltsToRing3++;
1555 }
1556 }
1557 /*
1558 * Invalid CPU set index or TSC delta in need of measuring.
1559 */
1560 else
1561 {
1562 pGVCpu->vmmr0.s.pPreemptState = NULL;
1563 pGVCpu->iHostCpuSet = UINT32_MAX;
1564 ASMAtomicWriteU32(&pGVCpu->idHostCpu, NIL_RTCPUID);
1565 RTThreadPreemptRestore(&PreemptState);
1566
1567 VMMRZCallRing3Enable(pGVCpu);
1568
1569 if (iHostCpuSet < RTCPUSET_MAX_CPUS)
1570 {
1571 int rc = SUPR0TscDeltaMeasureBySetIndex(pGVM->pSession, iHostCpuSet, 0 /*fFlags*/,
1572 2 /*cMsWaitRetry*/, 5*RT_MS_1SEC /*cMsWaitThread*/,
1573 0 /*default cTries*/);
1574 if (RT_SUCCESS(rc) || rc == VERR_CPU_OFFLINE)
1575 pGVCpu->vmm.s.iLastGZRc = VINF_EM_RAW_TO_R3;
1576 else
1577 pGVCpu->vmm.s.iLastGZRc = rc;
1578 }
1579 else
1580 pGVCpu->vmm.s.iLastGZRc = VERR_INVALID_CPU_INDEX;
1581 }
1582 break;
1583 } /* halt loop. */
1584 break;
1585 }
1586
1587#ifdef VBOX_WITH_NEM_R0
1588# if defined(RT_ARCH_AMD64) && defined(RT_OS_WINDOWS)
1589 case VMMR0_DO_NEM_RUN:
1590 {
1591 /*
1592 * Setup the longjmp machinery and execute guest code (calls NEMR0RunGuestCode).
1593 */
1594# ifdef VBOXSTRICTRC_STRICT_ENABLED
1595 int rc = vmmR0CallRing3SetJmp2(&pGVCpu->vmmr0.s.AssertJmpBuf, (PFNVMMR0SETJMP2)NEMR0RunGuestCode, pGVM, idCpu);
1596# else
1597 int rc = vmmR0CallRing3SetJmp2(&pGVCpu->vmmr0.s.AssertJmpBuf, NEMR0RunGuestCode, pGVM, idCpu);
1598# endif
1599 STAM_COUNTER_INC(&pGVM->vmm.s.StatRunGC);
1600
1601 pGVCpu->vmm.s.iLastGZRc = rc;
1602
1603 /*
1604 * Fire dtrace probe and collect statistics.
1605 */
1606 VBOXVMM_R0_VMM_RETURN_TO_RING3_NEM(pGVCpu, CPUMQueryGuestCtxPtr(pGVCpu), rc);
1607# ifdef VBOX_WITH_STATISTICS
1608 vmmR0RecordRC(pGVM, pGVCpu, rc);
1609# endif
1610 break;
1611 }
1612# endif
1613#endif
1614
1615 /*
1616 * For profiling.
1617 */
1618 case VMMR0_DO_NOP:
1619 pGVCpu->vmm.s.iLastGZRc = VINF_SUCCESS;
1620 break;
1621
1622 /*
1623 * Shouldn't happen.
1624 */
1625 default:
1626 AssertMsgFailed(("%#x\n", enmOperation));
1627 pGVCpu->vmm.s.iLastGZRc = VERR_NOT_SUPPORTED;
1628 break;
1629 }
1630}
1631
1632
1633/**
1634 * Validates a session or VM session argument.
1635 *
1636 * @returns true / false accordingly.
1637 * @param pGVM The global (ring-0) VM structure.
1638 * @param pClaimedSession The session claim to validate.
1639 * @param pSession The session argument.
1640 */
1641DECLINLINE(bool) vmmR0IsValidSession(PGVM pGVM, PSUPDRVSESSION pClaimedSession, PSUPDRVSESSION pSession)
1642{
1643 /* This must be set! */
1644 if (!pSession)
1645 return false;
1646
1647 /* Only one out of the two. */
1648 if (pGVM && pClaimedSession)
1649 return false;
1650 if (pGVM)
1651 pClaimedSession = pGVM->pSession;
1652 return pClaimedSession == pSession;
1653}
1654
1655
1656/**
1657 * VMMR0EntryEx worker function, either called directly or when ever possible
1658 * called thru a longjmp so we can exit safely on failure.
1659 *
1660 * @returns VBox status code.
1661 * @param pGVM The global (ring-0) VM structure.
1662 * @param idCpu Virtual CPU ID argument. Must be NIL_VMCPUID if pVM
1663 * is NIL_RTR0PTR, and may be NIL_VMCPUID if it isn't
1664 * @param enmOperation Which operation to execute.
1665 * @param pReqHdr This points to a SUPVMMR0REQHDR packet. Optional.
1666 * The support driver validates this if it's present.
1667 * @param u64Arg Some simple constant argument.
1668 * @param pSession The session of the caller.
1669 *
1670 * @remarks Assume called with interrupts _enabled_.
1671 */
1672DECL_NO_INLINE(static, int) vmmR0EntryExWorker(PGVM pGVM, VMCPUID idCpu, VMMR0OPERATION enmOperation,
1673 PSUPVMMR0REQHDR pReqHdr, uint64_t u64Arg, PSUPDRVSESSION pSession)
1674{
1675 /*
1676 * Validate pGVM and idCpu for consistency and validity.
1677 */
1678 if (pGVM != NULL)
1679 {
1680 if (RT_LIKELY(((uintptr_t)pGVM & HOST_PAGE_OFFSET_MASK) == 0))
1681 { /* likely */ }
1682 else
1683 {
1684 SUPR0Printf("vmmR0EntryExWorker: Invalid pGVM=%p! (op=%d)\n", pGVM, enmOperation);
1685 return VERR_INVALID_POINTER;
1686 }
1687
1688 if (RT_LIKELY(idCpu == NIL_VMCPUID || idCpu < pGVM->cCpus))
1689 { /* likely */ }
1690 else
1691 {
1692 SUPR0Printf("vmmR0EntryExWorker: Invalid idCpu %#x (cCpus=%#x)\n", idCpu, pGVM->cCpus);
1693 return VERR_INVALID_PARAMETER;
1694 }
1695
1696 if (RT_LIKELY( pGVM->enmVMState >= VMSTATE_CREATING
1697 && pGVM->enmVMState <= VMSTATE_TERMINATED
1698 && pGVM->pSession == pSession
1699 && pGVM->pSelf == pGVM))
1700 { /* likely */ }
1701 else
1702 {
1703 SUPR0Printf("vmmR0EntryExWorker: Invalid pGVM=%p:{.enmVMState=%d, .cCpus=%#x, .pSession=%p(==%p), .pSelf=%p(==%p)}! (op=%d)\n",
1704 pGVM, pGVM->enmVMState, pGVM->cCpus, pGVM->pSession, pSession, pGVM->pSelf, pGVM, enmOperation);
1705 return VERR_INVALID_POINTER;
1706 }
1707 }
1708 else if (RT_LIKELY(idCpu == NIL_VMCPUID))
1709 { /* likely */ }
1710 else
1711 {
1712 SUPR0Printf("vmmR0EntryExWorker: Invalid idCpu=%u\n", idCpu);
1713 return VERR_INVALID_PARAMETER;
1714 }
1715
1716 /*
1717 * Process the request.
1718 */
1719 int rc;
1720 switch (enmOperation)
1721 {
1722 /*
1723 * GVM requests
1724 */
1725 case VMMR0_DO_GVMM_CREATE_VM:
1726 if (pGVM == NULL && u64Arg == 0 && idCpu == NIL_VMCPUID)
1727 rc = GVMMR0CreateVMReq((PGVMMCREATEVMREQ)pReqHdr, pSession);
1728 else
1729 rc = VERR_INVALID_PARAMETER;
1730 break;
1731
1732 case VMMR0_DO_GVMM_DESTROY_VM:
1733 if (pReqHdr == NULL && u64Arg == 0)
1734 rc = GVMMR0DestroyVM(pGVM);
1735 else
1736 rc = VERR_INVALID_PARAMETER;
1737 break;
1738
1739 case VMMR0_DO_GVMM_REGISTER_VMCPU:
1740 if (pGVM != NULL)
1741 rc = GVMMR0RegisterVCpu(pGVM, idCpu);
1742 else
1743 rc = VERR_INVALID_PARAMETER;
1744 break;
1745
1746 case VMMR0_DO_GVMM_DEREGISTER_VMCPU:
1747 if (pGVM != NULL)
1748 rc = GVMMR0DeregisterVCpu(pGVM, idCpu);
1749 else
1750 rc = VERR_INVALID_PARAMETER;
1751 break;
1752
1753 case VMMR0_DO_GVMM_REGISTER_WORKER_THREAD:
1754 if (pGVM != NULL && pReqHdr && pReqHdr->cbReq == sizeof(GVMMREGISTERWORKERTHREADREQ))
1755 rc = GVMMR0RegisterWorkerThread(pGVM, (GVMMWORKERTHREAD)(unsigned)u64Arg,
1756 ((PGVMMREGISTERWORKERTHREADREQ)(pReqHdr))->hNativeThreadR3);
1757 else
1758 rc = VERR_INVALID_PARAMETER;
1759 break;
1760
1761 case VMMR0_DO_GVMM_DEREGISTER_WORKER_THREAD:
1762 if (pGVM != NULL)
1763 rc = GVMMR0DeregisterWorkerThread(pGVM, (GVMMWORKERTHREAD)(unsigned)u64Arg);
1764 else
1765 rc = VERR_INVALID_PARAMETER;
1766 break;
1767
1768 case VMMR0_DO_GVMM_SCHED_HALT:
1769 if (pReqHdr)
1770 return VERR_INVALID_PARAMETER;
1771 rc = GVMMR0SchedHaltReq(pGVM, idCpu, u64Arg);
1772 break;
1773
1774 case VMMR0_DO_GVMM_SCHED_WAKE_UP:
1775 if (pReqHdr || u64Arg)
1776 return VERR_INVALID_PARAMETER;
1777 rc = GVMMR0SchedWakeUp(pGVM, idCpu);
1778 break;
1779
1780 case VMMR0_DO_GVMM_SCHED_POKE:
1781 if (pReqHdr || u64Arg)
1782 return VERR_INVALID_PARAMETER;
1783 rc = GVMMR0SchedPoke(pGVM, idCpu);
1784 break;
1785
1786 case VMMR0_DO_GVMM_SCHED_WAKE_UP_AND_POKE_CPUS:
1787 if (u64Arg)
1788 return VERR_INVALID_PARAMETER;
1789 rc = GVMMR0SchedWakeUpAndPokeCpusReq(pGVM, (PGVMMSCHEDWAKEUPANDPOKECPUSREQ)pReqHdr);
1790 break;
1791
1792 case VMMR0_DO_GVMM_SCHED_POLL:
1793 if (pReqHdr || u64Arg > 1)
1794 return VERR_INVALID_PARAMETER;
1795 rc = GVMMR0SchedPoll(pGVM, idCpu, !!u64Arg);
1796 break;
1797
1798 case VMMR0_DO_GVMM_QUERY_STATISTICS:
1799 if (u64Arg)
1800 return VERR_INVALID_PARAMETER;
1801 rc = GVMMR0QueryStatisticsReq(pGVM, (PGVMMQUERYSTATISTICSSREQ)pReqHdr, pSession);
1802 break;
1803
1804 case VMMR0_DO_GVMM_RESET_STATISTICS:
1805 if (u64Arg)
1806 return VERR_INVALID_PARAMETER;
1807 rc = GVMMR0ResetStatisticsReq(pGVM, (PGVMMRESETSTATISTICSSREQ)pReqHdr, pSession);
1808 break;
1809
1810 /*
1811 * Initialize the R0 part of a VM instance.
1812 */
1813 case VMMR0_DO_VMMR0_INIT:
1814 rc = vmmR0InitVM(pGVM, RT_LODWORD(u64Arg), RT_HIDWORD(u64Arg));
1815 break;
1816
1817 /*
1818 * Does EMT specific ring-0 init.
1819 */
1820 case VMMR0_DO_VMMR0_INIT_EMT:
1821 if (idCpu == NIL_VMCPUID)
1822 return VERR_INVALID_CPU_ID;
1823 rc = vmmR0InitVMEmt(pGVM, idCpu);
1824 break;
1825
1826 /*
1827 * Terminate the R0 part of a VM instance.
1828 */
1829 case VMMR0_DO_VMMR0_TERM:
1830 rc = VMMR0TermVM(pGVM, 0 /*idCpu*/);
1831 break;
1832
1833 /*
1834 * Update release or debug logger instances.
1835 */
1836 case VMMR0_DO_VMMR0_UPDATE_LOGGERS:
1837 if (idCpu == NIL_VMCPUID)
1838 return VERR_INVALID_CPU_ID;
1839 if (!(u64Arg & ~VMMR0UPDATELOGGER_F_VALID_MASK) && pReqHdr != NULL)
1840 rc = vmmR0UpdateLoggers(pGVM, idCpu /*idCpu*/, (PVMMR0UPDATELOGGERSREQ)pReqHdr, u64Arg);
1841 else
1842 return VERR_INVALID_PARAMETER;
1843 break;
1844
1845 /*
1846 * Log flusher thread.
1847 */
1848 case VMMR0_DO_VMMR0_LOG_FLUSHER:
1849 if (idCpu != NIL_VMCPUID)
1850 return VERR_INVALID_CPU_ID;
1851 if (pReqHdr == NULL && pGVM != NULL)
1852 rc = vmmR0LogFlusher(pGVM);
1853 else
1854 return VERR_INVALID_PARAMETER;
1855 break;
1856
1857 /*
1858 * Wait for the flush to finish with all the buffers for the given logger.
1859 */
1860 case VMMR0_DO_VMMR0_LOG_WAIT_FLUSHED:
1861 if (idCpu == NIL_VMCPUID)
1862 return VERR_INVALID_CPU_ID;
1863 if (u64Arg < VMMLOGGER_IDX_MAX && pReqHdr == NULL)
1864 rc = vmmR0LogWaitFlushed(pGVM, idCpu /*idCpu*/, (size_t)u64Arg);
1865 else
1866 return VERR_INVALID_PARAMETER;
1867 break;
1868
1869 /*
1870 * Attempt to enable hm mode and check the current setting.
1871 */
1872 case VMMR0_DO_HM_ENABLE:
1873 rc = HMR0EnableAllCpus(pGVM);
1874 break;
1875
1876 /*
1877 * Setup the hardware accelerated session.
1878 */
1879 case VMMR0_DO_HM_SETUP_VM:
1880 rc = HMR0SetupVM(pGVM);
1881 break;
1882
1883 /*
1884 * PGM wrappers.
1885 */
1886 case VMMR0_DO_PGM_ALLOCATE_HANDY_PAGES:
1887 if (idCpu == NIL_VMCPUID)
1888 return VERR_INVALID_CPU_ID;
1889 rc = PGMR0PhysAllocateHandyPages(pGVM, idCpu);
1890 break;
1891
1892 case VMMR0_DO_PGM_FLUSH_HANDY_PAGES:
1893 if (idCpu == NIL_VMCPUID)
1894 return VERR_INVALID_CPU_ID;
1895 rc = PGMR0PhysFlushHandyPages(pGVM, idCpu);
1896 break;
1897
1898 case VMMR0_DO_PGM_ALLOCATE_LARGE_PAGE:
1899 if (idCpu == NIL_VMCPUID)
1900 return VERR_INVALID_CPU_ID;
1901 rc = PGMR0PhysAllocateLargePage(pGVM, idCpu, u64Arg);
1902 break;
1903
1904 case VMMR0_DO_PGM_PHYS_SETUP_IOMMU:
1905 if (idCpu != 0)
1906 return VERR_INVALID_CPU_ID;
1907 rc = PGMR0PhysSetupIoMmu(pGVM);
1908 break;
1909
1910 case VMMR0_DO_PGM_POOL_GROW:
1911 if (idCpu == NIL_VMCPUID)
1912 return VERR_INVALID_CPU_ID;
1913 rc = PGMR0PoolGrow(pGVM, idCpu);
1914 break;
1915
1916 case VMMR0_DO_PGM_PHYS_HANDLER_INIT:
1917 if (idCpu != 0 || pReqHdr != NULL || u64Arg > UINT32_MAX)
1918 return VERR_INVALID_PARAMETER;
1919 rc = PGMR0PhysHandlerInitReqHandler(pGVM, (uint32_t)u64Arg);
1920 break;
1921
1922 /*
1923 * GMM wrappers.
1924 */
1925 case VMMR0_DO_GMM_INITIAL_RESERVATION:
1926 if (u64Arg)
1927 return VERR_INVALID_PARAMETER;
1928 rc = GMMR0InitialReservationReq(pGVM, idCpu, (PGMMINITIALRESERVATIONREQ)pReqHdr);
1929 break;
1930
1931 case VMMR0_DO_GMM_UPDATE_RESERVATION:
1932 if (u64Arg)
1933 return VERR_INVALID_PARAMETER;
1934 rc = GMMR0UpdateReservationReq(pGVM, idCpu, (PGMMUPDATERESERVATIONREQ)pReqHdr);
1935 break;
1936
1937 case VMMR0_DO_GMM_ALLOCATE_PAGES:
1938 if (u64Arg)
1939 return VERR_INVALID_PARAMETER;
1940 rc = GMMR0AllocatePagesReq(pGVM, idCpu, (PGMMALLOCATEPAGESREQ)pReqHdr);
1941 break;
1942
1943 case VMMR0_DO_GMM_FREE_PAGES:
1944 if (u64Arg)
1945 return VERR_INVALID_PARAMETER;
1946 rc = GMMR0FreePagesReq(pGVM, idCpu, (PGMMFREEPAGESREQ)pReqHdr);
1947 break;
1948
1949 case VMMR0_DO_GMM_FREE_LARGE_PAGE:
1950 if (u64Arg)
1951 return VERR_INVALID_PARAMETER;
1952 rc = GMMR0FreeLargePageReq(pGVM, idCpu, (PGMMFREELARGEPAGEREQ)pReqHdr);
1953 break;
1954
1955 case VMMR0_DO_GMM_QUERY_HYPERVISOR_MEM_STATS:
1956 if (u64Arg)
1957 return VERR_INVALID_PARAMETER;
1958 rc = GMMR0QueryHypervisorMemoryStatsReq((PGMMMEMSTATSREQ)pReqHdr);
1959 break;
1960
1961 case VMMR0_DO_GMM_QUERY_MEM_STATS:
1962 if (idCpu == NIL_VMCPUID)
1963 return VERR_INVALID_CPU_ID;
1964 if (u64Arg)
1965 return VERR_INVALID_PARAMETER;
1966 rc = GMMR0QueryMemoryStatsReq(pGVM, idCpu, (PGMMMEMSTATSREQ)pReqHdr);
1967 break;
1968
1969 case VMMR0_DO_GMM_BALLOONED_PAGES:
1970 if (u64Arg)
1971 return VERR_INVALID_PARAMETER;
1972 rc = GMMR0BalloonedPagesReq(pGVM, idCpu, (PGMMBALLOONEDPAGESREQ)pReqHdr);
1973 break;
1974
1975 case VMMR0_DO_GMM_MAP_UNMAP_CHUNK:
1976 if (u64Arg)
1977 return VERR_INVALID_PARAMETER;
1978 rc = GMMR0MapUnmapChunkReq(pGVM, (PGMMMAPUNMAPCHUNKREQ)pReqHdr);
1979 break;
1980
1981 case VMMR0_DO_GMM_REGISTER_SHARED_MODULE:
1982 if (idCpu == NIL_VMCPUID)
1983 return VERR_INVALID_CPU_ID;
1984 if (u64Arg)
1985 return VERR_INVALID_PARAMETER;
1986 rc = GMMR0RegisterSharedModuleReq(pGVM, idCpu, (PGMMREGISTERSHAREDMODULEREQ)pReqHdr);
1987 break;
1988
1989 case VMMR0_DO_GMM_UNREGISTER_SHARED_MODULE:
1990 if (idCpu == NIL_VMCPUID)
1991 return VERR_INVALID_CPU_ID;
1992 if (u64Arg)
1993 return VERR_INVALID_PARAMETER;
1994 rc = GMMR0UnregisterSharedModuleReq(pGVM, idCpu, (PGMMUNREGISTERSHAREDMODULEREQ)pReqHdr);
1995 break;
1996
1997 case VMMR0_DO_GMM_RESET_SHARED_MODULES:
1998 if (idCpu == NIL_VMCPUID)
1999 return VERR_INVALID_CPU_ID;
2000 if ( u64Arg
2001 || pReqHdr)
2002 return VERR_INVALID_PARAMETER;
2003 rc = GMMR0ResetSharedModules(pGVM, idCpu);
2004 break;
2005
2006#ifdef VBOX_WITH_PAGE_SHARING
2007 case VMMR0_DO_GMM_CHECK_SHARED_MODULES:
2008 {
2009 if (idCpu == NIL_VMCPUID)
2010 return VERR_INVALID_CPU_ID;
2011 if ( u64Arg
2012 || pReqHdr)
2013 return VERR_INVALID_PARAMETER;
2014 rc = GMMR0CheckSharedModules(pGVM, idCpu);
2015 break;
2016 }
2017#endif
2018
2019#if defined(VBOX_STRICT) && HC_ARCH_BITS == 64
2020 case VMMR0_DO_GMM_FIND_DUPLICATE_PAGE:
2021 if (u64Arg)
2022 return VERR_INVALID_PARAMETER;
2023 rc = GMMR0FindDuplicatePageReq(pGVM, (PGMMFINDDUPLICATEPAGEREQ)pReqHdr);
2024 break;
2025#endif
2026
2027 case VMMR0_DO_GMM_QUERY_STATISTICS:
2028 if (u64Arg)
2029 return VERR_INVALID_PARAMETER;
2030 rc = GMMR0QueryStatisticsReq(pGVM, (PGMMQUERYSTATISTICSSREQ)pReqHdr);
2031 break;
2032
2033 case VMMR0_DO_GMM_RESET_STATISTICS:
2034 if (u64Arg)
2035 return VERR_INVALID_PARAMETER;
2036 rc = GMMR0ResetStatisticsReq(pGVM, (PGMMRESETSTATISTICSSREQ)pReqHdr);
2037 break;
2038
2039 /*
2040 * A quick GCFGM mock-up.
2041 */
2042 /** @todo GCFGM with proper access control, ring-3 management interface and all that. */
2043 case VMMR0_DO_GCFGM_SET_VALUE:
2044 case VMMR0_DO_GCFGM_QUERY_VALUE:
2045 {
2046 if (pGVM || !pReqHdr || u64Arg || idCpu != NIL_VMCPUID)
2047 return VERR_INVALID_PARAMETER;
2048 PGCFGMVALUEREQ pReq = (PGCFGMVALUEREQ)pReqHdr;
2049 if (pReq->Hdr.cbReq != sizeof(*pReq))
2050 return VERR_INVALID_PARAMETER;
2051 if (enmOperation == VMMR0_DO_GCFGM_SET_VALUE)
2052 {
2053 rc = GVMMR0SetConfig(pReq->pSession, &pReq->szName[0], pReq->u64Value);
2054 //if (rc == VERR_CFGM_VALUE_NOT_FOUND)
2055 // rc = GMMR0SetConfig(pReq->pSession, &pReq->szName[0], pReq->u64Value);
2056 }
2057 else
2058 {
2059 rc = GVMMR0QueryConfig(pReq->pSession, &pReq->szName[0], &pReq->u64Value);
2060 //if (rc == VERR_CFGM_VALUE_NOT_FOUND)
2061 // rc = GMMR0QueryConfig(pReq->pSession, &pReq->szName[0], &pReq->u64Value);
2062 }
2063 break;
2064 }
2065
2066 /*
2067 * PDM Wrappers.
2068 */
2069 case VMMR0_DO_PDM_DRIVER_CALL_REQ_HANDLER:
2070 {
2071 if (!pReqHdr || u64Arg || idCpu != NIL_VMCPUID)
2072 return VERR_INVALID_PARAMETER;
2073 rc = PDMR0DriverCallReqHandler(pGVM, (PPDMDRIVERCALLREQHANDLERREQ)pReqHdr);
2074 break;
2075 }
2076
2077 case VMMR0_DO_PDM_DEVICE_CREATE:
2078 {
2079 if (!pReqHdr || u64Arg || idCpu != 0)
2080 return VERR_INVALID_PARAMETER;
2081 rc = PDMR0DeviceCreateReqHandler(pGVM, (PPDMDEVICECREATEREQ)pReqHdr);
2082 break;
2083 }
2084
2085 case VMMR0_DO_PDM_DEVICE_GEN_CALL:
2086 {
2087 if (!pReqHdr || u64Arg)
2088 return VERR_INVALID_PARAMETER;
2089 rc = PDMR0DeviceGenCallReqHandler(pGVM, (PPDMDEVICEGENCALLREQ)pReqHdr, idCpu);
2090 break;
2091 }
2092
2093 /** @todo Remove the once all devices has been converted to new style! @bugref{9218} */
2094 case VMMR0_DO_PDM_DEVICE_COMPAT_SET_CRITSECT:
2095 {
2096 if (!pReqHdr || u64Arg || idCpu != 0)
2097 return VERR_INVALID_PARAMETER;
2098 rc = PDMR0DeviceCompatSetCritSectReqHandler(pGVM, (PPDMDEVICECOMPATSETCRITSECTREQ)pReqHdr);
2099 break;
2100 }
2101
2102 case VMMR0_DO_PDM_QUEUE_CREATE:
2103 {
2104 if (!pReqHdr || u64Arg || idCpu != 0)
2105 return VERR_INVALID_PARAMETER;
2106 rc = PDMR0QueueCreateReqHandler(pGVM, (PPDMQUEUECREATEREQ)pReqHdr);
2107 break;
2108 }
2109
2110 /*
2111 * Requests to the internal networking service.
2112 */
2113 case VMMR0_DO_INTNET_OPEN:
2114 {
2115 PINTNETOPENREQ pReq = (PINTNETOPENREQ)pReqHdr;
2116 if (u64Arg || !pReq || !vmmR0IsValidSession(pGVM, pReq->pSession, pSession) || idCpu != NIL_VMCPUID)
2117 return VERR_INVALID_PARAMETER;
2118 rc = IntNetR0OpenReq(pSession, pReq);
2119 break;
2120 }
2121
2122 case VMMR0_DO_INTNET_IF_CLOSE:
2123 if (u64Arg || !pReqHdr || !vmmR0IsValidSession(pGVM, ((PINTNETIFCLOSEREQ)pReqHdr)->pSession, pSession) || idCpu != NIL_VMCPUID)
2124 return VERR_INVALID_PARAMETER;
2125 rc = IntNetR0IfCloseReq(pSession, (PINTNETIFCLOSEREQ)pReqHdr);
2126 break;
2127
2128
2129 case VMMR0_DO_INTNET_IF_GET_BUFFER_PTRS:
2130 if (u64Arg || !pReqHdr || !vmmR0IsValidSession(pGVM, ((PINTNETIFGETBUFFERPTRSREQ)pReqHdr)->pSession, pSession) || idCpu != NIL_VMCPUID)
2131 return VERR_INVALID_PARAMETER;
2132 rc = IntNetR0IfGetBufferPtrsReq(pSession, (PINTNETIFGETBUFFERPTRSREQ)pReqHdr);
2133 break;
2134
2135 case VMMR0_DO_INTNET_IF_SET_PROMISCUOUS_MODE:
2136 if (u64Arg || !pReqHdr || !vmmR0IsValidSession(pGVM, ((PINTNETIFSETPROMISCUOUSMODEREQ)pReqHdr)->pSession, pSession) || idCpu != NIL_VMCPUID)
2137 return VERR_INVALID_PARAMETER;
2138 rc = IntNetR0IfSetPromiscuousModeReq(pSession, (PINTNETIFSETPROMISCUOUSMODEREQ)pReqHdr);
2139 break;
2140
2141 case VMMR0_DO_INTNET_IF_SET_MAC_ADDRESS:
2142 if (u64Arg || !pReqHdr || !vmmR0IsValidSession(pGVM, ((PINTNETIFSETMACADDRESSREQ)pReqHdr)->pSession, pSession) || idCpu != NIL_VMCPUID)
2143 return VERR_INVALID_PARAMETER;
2144 rc = IntNetR0IfSetMacAddressReq(pSession, (PINTNETIFSETMACADDRESSREQ)pReqHdr);
2145 break;
2146
2147 case VMMR0_DO_INTNET_IF_SET_ACTIVE:
2148 if (u64Arg || !pReqHdr || !vmmR0IsValidSession(pGVM, ((PINTNETIFSETACTIVEREQ)pReqHdr)->pSession, pSession) || idCpu != NIL_VMCPUID)
2149 return VERR_INVALID_PARAMETER;
2150 rc = IntNetR0IfSetActiveReq(pSession, (PINTNETIFSETACTIVEREQ)pReqHdr);
2151 break;
2152
2153 case VMMR0_DO_INTNET_IF_SEND:
2154 if (u64Arg || !pReqHdr || !vmmR0IsValidSession(pGVM, ((PINTNETIFSENDREQ)pReqHdr)->pSession, pSession) || idCpu != NIL_VMCPUID)
2155 return VERR_INVALID_PARAMETER;
2156 rc = IntNetR0IfSendReq(pSession, (PINTNETIFSENDREQ)pReqHdr);
2157 break;
2158
2159 case VMMR0_DO_INTNET_IF_WAIT:
2160 if (u64Arg || !pReqHdr || !vmmR0IsValidSession(pGVM, ((PINTNETIFWAITREQ)pReqHdr)->pSession, pSession) || idCpu != NIL_VMCPUID)
2161 return VERR_INVALID_PARAMETER;
2162 rc = IntNetR0IfWaitReq(pSession, (PINTNETIFWAITREQ)pReqHdr);
2163 break;
2164
2165 case VMMR0_DO_INTNET_IF_ABORT_WAIT:
2166 if (u64Arg || !pReqHdr || !vmmR0IsValidSession(pGVM, ((PINTNETIFWAITREQ)pReqHdr)->pSession, pSession) || idCpu != NIL_VMCPUID)
2167 return VERR_INVALID_PARAMETER;
2168 rc = IntNetR0IfAbortWaitReq(pSession, (PINTNETIFABORTWAITREQ)pReqHdr);
2169 break;
2170
2171#if 0 //def VBOX_WITH_PCI_PASSTHROUGH
2172 /*
2173 * Requests to host PCI driver service.
2174 */
2175 case VMMR0_DO_PCIRAW_REQ:
2176 if (u64Arg || !pReqHdr || !vmmR0IsValidSession(pGVM, ((PPCIRAWSENDREQ)pReqHdr)->pSession, pSession) || idCpu != NIL_VMCPUID)
2177 return VERR_INVALID_PARAMETER;
2178 rc = PciRawR0ProcessReq(pGVM, pSession, (PPCIRAWSENDREQ)pReqHdr);
2179 break;
2180#endif
2181
2182 /*
2183 * NEM requests.
2184 */
2185#ifdef VBOX_WITH_NEM_R0
2186# if defined(RT_ARCH_AMD64) && defined(RT_OS_WINDOWS)
2187 case VMMR0_DO_NEM_INIT_VM:
2188 if (u64Arg || pReqHdr || idCpu != 0)
2189 return VERR_INVALID_PARAMETER;
2190 rc = NEMR0InitVM(pGVM);
2191 break;
2192
2193 case VMMR0_DO_NEM_INIT_VM_PART_2:
2194 if (u64Arg || pReqHdr || idCpu != 0)
2195 return VERR_INVALID_PARAMETER;
2196 rc = NEMR0InitVMPart2(pGVM);
2197 break;
2198
2199 case VMMR0_DO_NEM_MAP_PAGES:
2200 if (u64Arg || pReqHdr || idCpu == NIL_VMCPUID)
2201 return VERR_INVALID_PARAMETER;
2202 rc = NEMR0MapPages(pGVM, idCpu);
2203 break;
2204
2205 case VMMR0_DO_NEM_UNMAP_PAGES:
2206 if (u64Arg || pReqHdr || idCpu == NIL_VMCPUID)
2207 return VERR_INVALID_PARAMETER;
2208 rc = NEMR0UnmapPages(pGVM, idCpu);
2209 break;
2210
2211 case VMMR0_DO_NEM_EXPORT_STATE:
2212 if (u64Arg || pReqHdr || idCpu == NIL_VMCPUID)
2213 return VERR_INVALID_PARAMETER;
2214 rc = NEMR0ExportState(pGVM, idCpu);
2215 break;
2216
2217 case VMMR0_DO_NEM_IMPORT_STATE:
2218 if (pReqHdr || idCpu == NIL_VMCPUID)
2219 return VERR_INVALID_PARAMETER;
2220 rc = NEMR0ImportState(pGVM, idCpu, u64Arg);
2221 break;
2222
2223 case VMMR0_DO_NEM_QUERY_CPU_TICK:
2224 if (u64Arg || pReqHdr || idCpu == NIL_VMCPUID)
2225 return VERR_INVALID_PARAMETER;
2226 rc = NEMR0QueryCpuTick(pGVM, idCpu);
2227 break;
2228
2229 case VMMR0_DO_NEM_RESUME_CPU_TICK_ON_ALL:
2230 if (pReqHdr || idCpu == NIL_VMCPUID)
2231 return VERR_INVALID_PARAMETER;
2232 rc = NEMR0ResumeCpuTickOnAll(pGVM, idCpu, u64Arg);
2233 break;
2234
2235 case VMMR0_DO_NEM_UPDATE_STATISTICS:
2236 if (u64Arg || pReqHdr)
2237 return VERR_INVALID_PARAMETER;
2238 rc = NEMR0UpdateStatistics(pGVM, idCpu);
2239 break;
2240
2241# if 1 && defined(DEBUG_bird)
2242 case VMMR0_DO_NEM_EXPERIMENT:
2243 if (pReqHdr)
2244 return VERR_INVALID_PARAMETER;
2245 rc = NEMR0DoExperiment(pGVM, idCpu, u64Arg);
2246 break;
2247# endif
2248# endif
2249#endif
2250
2251 /*
2252 * IOM requests.
2253 */
2254 case VMMR0_DO_IOM_GROW_IO_PORTS:
2255 {
2256 if (pReqHdr || idCpu != 0)
2257 return VERR_INVALID_PARAMETER;
2258 rc = IOMR0IoPortGrowRegistrationTables(pGVM, u64Arg);
2259 break;
2260 }
2261
2262 case VMMR0_DO_IOM_GROW_IO_PORT_STATS:
2263 {
2264 if (pReqHdr || idCpu != 0)
2265 return VERR_INVALID_PARAMETER;
2266 rc = IOMR0IoPortGrowStatisticsTable(pGVM, u64Arg);
2267 break;
2268 }
2269
2270 case VMMR0_DO_IOM_GROW_MMIO_REGS:
2271 {
2272 if (pReqHdr || idCpu != 0)
2273 return VERR_INVALID_PARAMETER;
2274 rc = IOMR0MmioGrowRegistrationTables(pGVM, u64Arg);
2275 break;
2276 }
2277
2278 case VMMR0_DO_IOM_GROW_MMIO_STATS:
2279 {
2280 if (pReqHdr || idCpu != 0)
2281 return VERR_INVALID_PARAMETER;
2282 rc = IOMR0MmioGrowStatisticsTable(pGVM, u64Arg);
2283 break;
2284 }
2285
2286 case VMMR0_DO_IOM_SYNC_STATS_INDICES:
2287 {
2288 if (pReqHdr || idCpu != 0)
2289 return VERR_INVALID_PARAMETER;
2290 rc = IOMR0IoPortSyncStatisticsIndices(pGVM);
2291 if (RT_SUCCESS(rc))
2292 rc = IOMR0MmioSyncStatisticsIndices(pGVM);
2293 break;
2294 }
2295
2296 /*
2297 * DBGF requests.
2298 */
2299#ifdef VBOX_WITH_DBGF_TRACING
2300 case VMMR0_DO_DBGF_TRACER_CREATE:
2301 {
2302 if (!pReqHdr || u64Arg || idCpu != 0)
2303 return VERR_INVALID_PARAMETER;
2304 rc = DBGFR0TracerCreateReqHandler(pGVM, (PDBGFTRACERCREATEREQ)pReqHdr);
2305 break;
2306 }
2307
2308 case VMMR0_DO_DBGF_TRACER_CALL_REQ_HANDLER:
2309 {
2310 if (!pReqHdr || u64Arg)
2311 return VERR_INVALID_PARAMETER;
2312# if 0 /** @todo */
2313 rc = DBGFR0TracerGenCallReqHandler(pGVM, (PDBGFTRACERGENCALLREQ)pReqHdr, idCpu);
2314# else
2315 rc = VERR_NOT_IMPLEMENTED;
2316# endif
2317 break;
2318 }
2319#endif
2320
2321 case VMMR0_DO_DBGF_BP_INIT:
2322 {
2323 if (!pReqHdr || u64Arg || idCpu != 0)
2324 return VERR_INVALID_PARAMETER;
2325 rc = DBGFR0BpInitReqHandler(pGVM, (PDBGFBPINITREQ)pReqHdr);
2326 break;
2327 }
2328
2329 case VMMR0_DO_DBGF_BP_CHUNK_ALLOC:
2330 {
2331 if (!pReqHdr || u64Arg || idCpu != 0)
2332 return VERR_INVALID_PARAMETER;
2333 rc = DBGFR0BpChunkAllocReqHandler(pGVM, (PDBGFBPCHUNKALLOCREQ)pReqHdr);
2334 break;
2335 }
2336
2337 case VMMR0_DO_DBGF_BP_L2_TBL_CHUNK_ALLOC:
2338 {
2339 if (!pReqHdr || u64Arg || idCpu != 0)
2340 return VERR_INVALID_PARAMETER;
2341 rc = DBGFR0BpL2TblChunkAllocReqHandler(pGVM, (PDBGFBPL2TBLCHUNKALLOCREQ)pReqHdr);
2342 break;
2343 }
2344
2345 case VMMR0_DO_DBGF_BP_OWNER_INIT:
2346 {
2347 if (!pReqHdr || u64Arg || idCpu != 0)
2348 return VERR_INVALID_PARAMETER;
2349 rc = DBGFR0BpOwnerInitReqHandler(pGVM, (PDBGFBPOWNERINITREQ)pReqHdr);
2350 break;
2351 }
2352
2353 case VMMR0_DO_DBGF_BP_PORTIO_INIT:
2354 {
2355 if (!pReqHdr || u64Arg || idCpu != 0)
2356 return VERR_INVALID_PARAMETER;
2357 rc = DBGFR0BpPortIoInitReqHandler(pGVM, (PDBGFBPINITREQ)pReqHdr);
2358 break;
2359 }
2360
2361
2362 /*
2363 * TM requests.
2364 */
2365 case VMMR0_DO_TM_GROW_TIMER_QUEUE:
2366 {
2367 if (pReqHdr || idCpu == NIL_VMCPUID)
2368 return VERR_INVALID_PARAMETER;
2369 rc = TMR0TimerQueueGrow(pGVM, RT_HI_U32(u64Arg), RT_LO_U32(u64Arg));
2370 break;
2371 }
2372
2373 /*
2374 * For profiling.
2375 */
2376 case VMMR0_DO_NOP:
2377 case VMMR0_DO_SLOW_NOP:
2378 return VINF_SUCCESS;
2379
2380 /*
2381 * For testing Ring-0 APIs invoked in this environment.
2382 */
2383 case VMMR0_DO_TESTS:
2384 /** @todo make new test */
2385 return VINF_SUCCESS;
2386
2387 default:
2388 /*
2389 * We're returning VERR_NOT_SUPPORT here so we've got something else
2390 * than -1 which the interrupt gate glue code might return.
2391 */
2392 Log(("operation %#x is not supported\n", enmOperation));
2393 return VERR_NOT_SUPPORTED;
2394 }
2395 return rc;
2396}
2397
2398
2399/**
2400 * This is just a longjmp wrapper function for VMMR0EntryEx calls.
2401 *
2402 * @returns VBox status code.
2403 * @param pvArgs The argument package
2404 */
2405static DECLCALLBACK(int) vmmR0EntryExWrapper(void *pvArgs)
2406{
2407 PGVMCPU pGVCpu = (PGVMCPU)pvArgs;
2408 return vmmR0EntryExWorker(pGVCpu->vmmr0.s.pGVM,
2409 pGVCpu->vmmr0.s.idCpu,
2410 pGVCpu->vmmr0.s.enmOperation,
2411 pGVCpu->vmmr0.s.pReq,
2412 pGVCpu->vmmr0.s.u64Arg,
2413 pGVCpu->vmmr0.s.pSession);
2414}
2415
2416
2417/**
2418 * The Ring 0 entry point, called by the support library (SUP).
2419 *
2420 * @returns VBox status code.
2421 * @param pGVM The global (ring-0) VM structure.
2422 * @param pVM The cross context VM structure.
2423 * @param idCpu Virtual CPU ID argument. Must be NIL_VMCPUID if pVM
2424 * is NIL_RTR0PTR, and may be NIL_VMCPUID if it isn't
2425 * @param enmOperation Which operation to execute.
2426 * @param pReq Pointer to the SUPVMMR0REQHDR packet. Optional.
2427 * @param u64Arg Some simple constant argument.
2428 * @param pSession The session of the caller.
2429 * @remarks Assume called with interrupts _enabled_.
2430 */
2431VMMR0DECL(int) VMMR0EntryEx(PGVM pGVM, PVMCC pVM, VMCPUID idCpu, VMMR0OPERATION enmOperation,
2432 PSUPVMMR0REQHDR pReq, uint64_t u64Arg, PSUPDRVSESSION pSession)
2433{
2434 /*
2435 * Requests that should only happen on the EMT thread will be
2436 * wrapped in a setjmp so we can assert without causing too much trouble.
2437 */
2438 if ( pVM != NULL
2439 && pGVM != NULL
2440 && pVM == pGVM /** @todo drop pVM or pGVM */
2441 && idCpu < pGVM->cCpus
2442 && pGVM->pSession == pSession
2443 && pGVM->pSelf == pGVM
2444 && enmOperation != VMMR0_DO_GVMM_DESTROY_VM
2445 && enmOperation != VMMR0_DO_GVMM_REGISTER_VMCPU
2446 && enmOperation != VMMR0_DO_GVMM_SCHED_WAKE_UP /* idCpu is not caller but target. Sigh. */ /** @todo fix*/
2447 && enmOperation != VMMR0_DO_GVMM_SCHED_POKE /* idCpu is not caller but target. Sigh. */ /** @todo fix*/
2448 )
2449 {
2450 PGVMCPU pGVCpu = &pGVM->aCpus[idCpu];
2451 RTNATIVETHREAD hNativeThread = RTThreadNativeSelf();
2452 if (RT_LIKELY( pGVCpu->hEMT == hNativeThread
2453 && pGVCpu->hNativeThreadR0 == hNativeThread))
2454 {
2455 pGVCpu->vmmr0.s.pGVM = pGVM;
2456 pGVCpu->vmmr0.s.idCpu = idCpu;
2457 pGVCpu->vmmr0.s.enmOperation = enmOperation;
2458 pGVCpu->vmmr0.s.pReq = pReq;
2459 pGVCpu->vmmr0.s.u64Arg = u64Arg;
2460 pGVCpu->vmmr0.s.pSession = pSession;
2461 return vmmR0CallRing3SetJmpEx(&pGVCpu->vmmr0.s.AssertJmpBuf, vmmR0EntryExWrapper, pGVCpu,
2462 ((uintptr_t)u64Arg << 16) | (uintptr_t)enmOperation);
2463 }
2464 return VERR_VM_THREAD_NOT_EMT;
2465 }
2466 return vmmR0EntryExWorker(pGVM, idCpu, enmOperation, pReq, u64Arg, pSession);
2467}
2468
2469
2470/*********************************************************************************************************************************
2471* EMT Blocking *
2472*********************************************************************************************************************************/
2473
2474/**
2475 * Checks whether we've armed the ring-0 long jump machinery.
2476 *
2477 * @returns @c true / @c false
2478 * @param pVCpu The cross context virtual CPU structure.
2479 * @thread EMT
2480 * @sa VMMIsLongJumpArmed
2481 */
2482VMMR0_INT_DECL(bool) VMMR0IsLongJumpArmed(PVMCPUCC pVCpu)
2483{
2484#ifdef RT_ARCH_X86
2485 return pVCpu->vmmr0.s.AssertJmpBuf.eip != 0;
2486#else
2487 return pVCpu->vmmr0.s.AssertJmpBuf.rip != 0;
2488#endif
2489}
2490
2491
2492/**
2493 * Locking helper that deals with HM context and checks if the thread can block.
2494 *
2495 * @returns VINF_SUCCESS if we can block. Returns @a rcBusy or
2496 * VERR_VMM_CANNOT_BLOCK if not able to block.
2497 * @param pVCpu The cross context virtual CPU structure of the calling
2498 * thread.
2499 * @param rcBusy What to return in case of a blocking problem. Will IPE
2500 * if VINF_SUCCESS and we cannot block.
2501 * @param pszCaller The caller (for logging problems).
2502 * @param pvLock The lock address (for logging problems).
2503 * @param pCtx Where to return context info for the resume call.
2504 * @thread EMT(pVCpu)
2505 */
2506VMMR0_INT_DECL(int) VMMR0EmtPrepareToBlock(PVMCPUCC pVCpu, int rcBusy, const char *pszCaller, void *pvLock,
2507 PVMMR0EMTBLOCKCTX pCtx)
2508{
2509 const char *pszMsg;
2510
2511 /*
2512 * Check that we are allowed to block.
2513 */
2514 if (RT_LIKELY(VMMRZCallRing3IsEnabled(pVCpu)))
2515 {
2516 /*
2517 * Are we in HM context and w/o a context hook? If so work the context hook.
2518 */
2519 if (pVCpu->idHostCpu != NIL_RTCPUID)
2520 {
2521 Assert(pVCpu->iHostCpuSet != UINT32_MAX);
2522
2523 if (pVCpu->vmmr0.s.hCtxHook == NIL_RTTHREADCTXHOOK)
2524 {
2525 vmmR0ThreadCtxCallback(RTTHREADCTXEVENT_OUT, pVCpu);
2526 if (pVCpu->vmmr0.s.pPreemptState)
2527 RTThreadPreemptRestore(pVCpu->vmmr0.s.pPreemptState);
2528
2529 pCtx->uMagic = VMMR0EMTBLOCKCTX_MAGIC;
2530 pCtx->fWasInHmContext = true;
2531 return VINF_SUCCESS;
2532 }
2533 }
2534
2535 if (RT_LIKELY(!pVCpu->vmmr0.s.pPreemptState))
2536 {
2537 /*
2538 * Not in HM context or we've got hooks, so just check that preemption
2539 * is enabled.
2540 */
2541 if (RT_LIKELY(RTThreadPreemptIsEnabled(NIL_RTTHREAD)))
2542 {
2543 pCtx->uMagic = VMMR0EMTBLOCKCTX_MAGIC;
2544 pCtx->fWasInHmContext = false;
2545 return VINF_SUCCESS;
2546 }
2547 pszMsg = "Preemption is disabled!";
2548 }
2549 else
2550 pszMsg = "Preemption state w/o HM state!";
2551 }
2552 else
2553 pszMsg = "Ring-3 calls are disabled!";
2554
2555 static uint32_t volatile s_cWarnings = 0;
2556 if (++s_cWarnings < 50)
2557 SUPR0Printf("VMMR0EmtPrepareToBlock: %s pvLock=%p pszCaller=%s rcBusy=%p\n", pszMsg, pvLock, pszCaller, rcBusy);
2558 pCtx->uMagic = VMMR0EMTBLOCKCTX_MAGIC_DEAD;
2559 pCtx->fWasInHmContext = false;
2560 return rcBusy != VINF_SUCCESS ? rcBusy : VERR_VMM_CANNOT_BLOCK;
2561}
2562
2563
2564/**
2565 * Counterpart to VMMR0EmtPrepareToBlock.
2566 *
2567 * @param pVCpu The cross context virtual CPU structure of the calling
2568 * thread.
2569 * @param pCtx The context structure used with VMMR0EmtPrepareToBlock.
2570 * @thread EMT(pVCpu)
2571 */
2572VMMR0_INT_DECL(void) VMMR0EmtResumeAfterBlocking(PVMCPUCC pVCpu, PVMMR0EMTBLOCKCTX pCtx)
2573{
2574 AssertReturnVoid(pCtx->uMagic == VMMR0EMTBLOCKCTX_MAGIC);
2575 if (pCtx->fWasInHmContext)
2576 {
2577 if (pVCpu->vmmr0.s.pPreemptState)
2578 RTThreadPreemptDisable(pVCpu->vmmr0.s.pPreemptState);
2579
2580 pCtx->fWasInHmContext = false;
2581 vmmR0ThreadCtxCallback(RTTHREADCTXEVENT_IN, pVCpu);
2582 }
2583 pCtx->uMagic = VMMR0EMTBLOCKCTX_MAGIC_DEAD;
2584}
2585
2586
2587/**
2588 * Helper for waiting on an RTSEMEVENT, caller did VMMR0EmtPrepareToBlock.
2589 *
2590 * @returns
2591 * @retval VERR_THREAD_IS_TERMINATING
2592 * @retval VERR_TIMEOUT if we ended up waiting too long, either according to
2593 * @a cMsTimeout or to maximum wait values.
2594 *
2595 * @param pGVCpu The ring-0 virtual CPU structure.
2596 * @param fFlags VMMR0EMTWAIT_F_XXX.
2597 * @param hEvent The event to wait on.
2598 * @param cMsTimeout The timeout or RT_INDEFINITE_WAIT.
2599 */
2600VMMR0_INT_DECL(int) VMMR0EmtWaitEventInner(PGVMCPU pGVCpu, uint32_t fFlags, RTSEMEVENT hEvent, RTMSINTERVAL cMsTimeout)
2601{
2602 AssertReturn(pGVCpu->hEMT == RTThreadNativeSelf(), VERR_VM_THREAD_NOT_EMT);
2603
2604 /*
2605 * Note! Similar code is found in the PDM critical sections too.
2606 */
2607 uint64_t const nsStart = RTTimeNanoTS();
2608 uint64_t cNsMaxTotal = cMsTimeout == RT_INDEFINITE_WAIT
2609 ? RT_NS_5MIN : RT_MIN(RT_NS_5MIN, RT_NS_1MS_64 * cMsTimeout);
2610 uint32_t cMsMaxOne = RT_MS_5SEC;
2611 bool fNonInterruptible = false;
2612 for (;;)
2613 {
2614 /* Wait. */
2615 int rcWait = !fNonInterruptible
2616 ? RTSemEventWaitNoResume(hEvent, cMsMaxOne)
2617 : RTSemEventWait(hEvent, cMsMaxOne);
2618 if (RT_SUCCESS(rcWait))
2619 return rcWait;
2620
2621 if (rcWait == VERR_TIMEOUT || rcWait == VERR_INTERRUPTED)
2622 {
2623 uint64_t const cNsElapsed = RTTimeNanoTS() - nsStart;
2624
2625 /*
2626 * Check the thread termination status.
2627 */
2628 int const rcTerm = RTThreadQueryTerminationStatus(NIL_RTTHREAD);
2629 AssertMsg(rcTerm == VINF_SUCCESS || rcTerm == VERR_NOT_SUPPORTED || rcTerm == VINF_THREAD_IS_TERMINATING,
2630 ("rcTerm=%Rrc\n", rcTerm));
2631 if ( rcTerm == VERR_NOT_SUPPORTED
2632 && !fNonInterruptible
2633 && cNsMaxTotal > RT_NS_1MIN)
2634 cNsMaxTotal = RT_NS_1MIN;
2635
2636 /* We return immediately if it looks like the thread is terminating. */
2637 if (rcTerm == VINF_THREAD_IS_TERMINATING)
2638 return VERR_THREAD_IS_TERMINATING;
2639
2640 /* We may suppress VERR_INTERRUPTED if VMMR0EMTWAIT_F_TRY_SUPPRESS_INTERRUPTED was
2641 specified, otherwise we'll just return it. */
2642 if (rcWait == VERR_INTERRUPTED)
2643 {
2644 if (!(fFlags & VMMR0EMTWAIT_F_TRY_SUPPRESS_INTERRUPTED))
2645 return VERR_INTERRUPTED;
2646 if (!fNonInterruptible)
2647 {
2648 /* First time: Adjust down the wait parameters and make sure we get at least
2649 one non-interruptible wait before timing out. */
2650 fNonInterruptible = true;
2651 cMsMaxOne = 32;
2652 uint64_t const cNsLeft = cNsMaxTotal - cNsElapsed;
2653 if (cNsLeft > RT_NS_10SEC)
2654 cNsMaxTotal = cNsElapsed + RT_NS_10SEC;
2655 continue;
2656 }
2657 }
2658
2659 /* Check for timeout. */
2660 if (cNsElapsed > cNsMaxTotal)
2661 return VERR_TIMEOUT;
2662 }
2663 else
2664 return rcWait;
2665 }
2666 /* not reached */
2667}
2668
2669
2670/**
2671 * Helper for signalling an SUPSEMEVENT.
2672 *
2673 * This may temporarily leave the HM context if the host requires that for
2674 * signalling SUPSEMEVENT objects.
2675 *
2676 * @returns VBox status code (see VMMR0EmtPrepareToBlock)
2677 * @param pGVM The ring-0 VM structure.
2678 * @param pGVCpu The ring-0 virtual CPU structure.
2679 * @param hEvent The event to signal.
2680 */
2681VMMR0_INT_DECL(int) VMMR0EmtSignalSupEvent(PGVM pGVM, PGVMCPU pGVCpu, SUPSEMEVENT hEvent)
2682{
2683 AssertReturn(pGVCpu->hEMT == RTThreadNativeSelf(), VERR_VM_THREAD_NOT_EMT);
2684 if (RTSemEventIsSignalSafe())
2685 return SUPSemEventSignal(pGVM->pSession, hEvent);
2686
2687 VMMR0EMTBLOCKCTX Ctx;
2688 int rc = VMMR0EmtPrepareToBlock(pGVCpu, VINF_SUCCESS, __FUNCTION__, (void *)(uintptr_t)hEvent, &Ctx);
2689 if (RT_SUCCESS(rc))
2690 {
2691 rc = SUPSemEventSignal(pGVM->pSession, hEvent);
2692 VMMR0EmtResumeAfterBlocking(pGVCpu, &Ctx);
2693 }
2694 return rc;
2695}
2696
2697
2698/**
2699 * Helper for signalling an SUPSEMEVENT, variant supporting non-EMTs.
2700 *
2701 * This may temporarily leave the HM context if the host requires that for
2702 * signalling SUPSEMEVENT objects.
2703 *
2704 * @returns VBox status code (see VMMR0EmtPrepareToBlock)
2705 * @param pGVM The ring-0 VM structure.
2706 * @param hEvent The event to signal.
2707 */
2708VMMR0_INT_DECL(int) VMMR0EmtSignalSupEventByGVM(PGVM pGVM, SUPSEMEVENT hEvent)
2709{
2710 if (!RTSemEventIsSignalSafe())
2711 {
2712 PGVMCPU pGVCpu = GVMMR0GetGVCpuByGVMandEMT(pGVM, NIL_RTNATIVETHREAD);
2713 if (pGVCpu)
2714 {
2715 VMMR0EMTBLOCKCTX Ctx;
2716 int rc = VMMR0EmtPrepareToBlock(pGVCpu, VINF_SUCCESS, __FUNCTION__, (void *)(uintptr_t)hEvent, &Ctx);
2717 if (RT_SUCCESS(rc))
2718 {
2719 rc = SUPSemEventSignal(pGVM->pSession, hEvent);
2720 VMMR0EmtResumeAfterBlocking(pGVCpu, &Ctx);
2721 }
2722 return rc;
2723 }
2724 }
2725 return SUPSemEventSignal(pGVM->pSession, hEvent);
2726}
2727
2728
2729/*********************************************************************************************************************************
2730* Logging. *
2731*********************************************************************************************************************************/
2732
2733/**
2734 * VMMR0_DO_VMMR0_UPDATE_LOGGERS: Updates the EMT loggers for the VM.
2735 *
2736 * @returns VBox status code.
2737 * @param pGVM The global (ring-0) VM structure.
2738 * @param idCpu The ID of the calling EMT.
2739 * @param pReq The request data.
2740 * @param fFlags Flags, see VMMR0UPDATELOGGER_F_XXX.
2741 * @thread EMT(idCpu)
2742 */
2743static int vmmR0UpdateLoggers(PGVM pGVM, VMCPUID idCpu, PVMMR0UPDATELOGGERSREQ pReq, uint64_t fFlags)
2744{
2745 /*
2746 * Check sanity. First we require EMT to be calling us.
2747 */
2748 AssertReturn(idCpu < pGVM->cCpus, VERR_INVALID_CPU_ID);
2749 AssertReturn(pGVM->aCpus[idCpu].hEMT == RTThreadNativeSelf(), VERR_INVALID_CPU_ID);
2750
2751 AssertReturn(pReq->Hdr.cbReq >= RT_UOFFSETOF_DYN(VMMR0UPDATELOGGERSREQ, afGroups[0]), VERR_INVALID_PARAMETER);
2752 AssertReturn(pReq->cGroups < _8K, VERR_INVALID_PARAMETER);
2753 AssertReturn(pReq->Hdr.cbReq == RT_UOFFSETOF_DYN(VMMR0UPDATELOGGERSREQ, afGroups[pReq->cGroups]), VERR_INVALID_PARAMETER);
2754
2755 size_t const idxLogger = (size_t)(fFlags & VMMR0UPDATELOGGER_F_LOGGER_MASK);
2756 AssertReturn(idxLogger < VMMLOGGER_IDX_MAX, VERR_OUT_OF_RANGE);
2757
2758 /*
2759 * Adjust flags.
2760 */
2761 /* Always buffered, unless logging directly to parent VMM: */
2762 if (!(fFlags & (VMMR0UPDATELOGGER_F_TO_PARENT_VMM_DBG | VMMR0UPDATELOGGER_F_TO_PARENT_VMM_REL)))
2763 pReq->fFlags |= RTLOGFLAGS_BUFFERED;
2764 /* These doesn't make sense at present: */
2765 pReq->fFlags &= ~(RTLOGFLAGS_FLUSH | RTLOGFLAGS_WRITE_THROUGH);
2766 /* We've traditionally skipped the group restrictions. */
2767 pReq->fFlags &= ~RTLOGFLAGS_RESTRICT_GROUPS;
2768
2769 /*
2770 * Do the updating.
2771 */
2772 int rc = VINF_SUCCESS;
2773 for (idCpu = 0; idCpu < pGVM->cCpus; idCpu++)
2774 {
2775 PGVMCPU pGVCpu = &pGVM->aCpus[idCpu];
2776 PRTLOGGER pLogger = pGVCpu->vmmr0.s.u.aLoggers[idxLogger].pLogger;
2777 if (pLogger)
2778 {
2779 pGVCpu->vmmr0.s.u.aLoggers[idxLogger].fFlushToParentVmmDbg = RT_BOOL(fFlags & VMMR0UPDATELOGGER_F_TO_PARENT_VMM_DBG);
2780 pGVCpu->vmmr0.s.u.aLoggers[idxLogger].fFlushToParentVmmRel = RT_BOOL(fFlags & VMMR0UPDATELOGGER_F_TO_PARENT_VMM_REL);
2781
2782 RTLogSetR0ProgramStart(pLogger, pGVM->vmm.s.nsProgramStart);
2783 rc = RTLogBulkUpdate(pLogger, pReq->fFlags, pReq->uGroupCrc32, pReq->cGroups, pReq->afGroups);
2784 }
2785 }
2786
2787 return rc;
2788}
2789
2790
2791/**
2792 * VMMR0_DO_VMMR0_LOG_FLUSHER: Get the next log flushing job.
2793 *
2794 * The job info is copied into VMM::LogFlusherItem.
2795 *
2796 * @returns VBox status code.
2797 * @retval VERR_OBJECT_DESTROYED if we're shutting down.
2798 * @retval VERR_NOT_OWNER if the calling thread is not the flusher thread.
2799 * @param pGVM The global (ring-0) VM structure.
2800 * @thread The log flusher thread (first caller automatically becomes the log
2801 * flusher).
2802 */
2803static int vmmR0LogFlusher(PGVM pGVM)
2804{
2805 /*
2806 * Check that this really is the flusher thread.
2807 */
2808 RTNATIVETHREAD const hNativeSelf = RTThreadNativeSelf();
2809 AssertReturn(hNativeSelf != NIL_RTNATIVETHREAD, VERR_INTERNAL_ERROR_3);
2810 if (RT_LIKELY(pGVM->vmmr0.s.LogFlusher.hThread == hNativeSelf))
2811 { /* likely */ }
2812 else
2813 {
2814 /* The first caller becomes the flusher thread. */
2815 bool fOk;
2816 ASMAtomicCmpXchgHandle(&pGVM->vmmr0.s.LogFlusher.hThread, hNativeSelf, NIL_RTNATIVETHREAD, fOk);
2817 if (!fOk)
2818 return VERR_NOT_OWNER;
2819 pGVM->vmmr0.s.LogFlusher.fThreadRunning = true;
2820 }
2821
2822 /*
2823 * Acknowledge flush, waking up waiting EMT.
2824 */
2825 RTSpinlockAcquire(pGVM->vmmr0.s.LogFlusher.hSpinlock);
2826
2827 uint32_t idxTail = pGVM->vmmr0.s.LogFlusher.idxRingTail % RT_ELEMENTS(pGVM->vmmr0.s.LogFlusher.aRing);
2828 uint32_t idxHead = pGVM->vmmr0.s.LogFlusher.idxRingHead % RT_ELEMENTS(pGVM->vmmr0.s.LogFlusher.aRing);
2829 if ( idxTail != idxHead
2830 && pGVM->vmmr0.s.LogFlusher.aRing[idxHead].s.fProcessing)
2831 {
2832 /* Pop the head off the ring buffer. */
2833 uint32_t const idCpu = pGVM->vmmr0.s.LogFlusher.aRing[idxHead].s.idCpu;
2834 uint32_t const idxLogger = pGVM->vmmr0.s.LogFlusher.aRing[idxHead].s.idxLogger;
2835 uint32_t const idxBuffer = pGVM->vmmr0.s.LogFlusher.aRing[idxHead].s.idxBuffer;
2836
2837 pGVM->vmmr0.s.LogFlusher.aRing[idxHead].u32 = UINT32_MAX >> 1; /* invalidate the entry */
2838 pGVM->vmmr0.s.LogFlusher.idxRingHead = (idxHead + 1) % RT_ELEMENTS(pGVM->vmmr0.s.LogFlusher.aRing);
2839
2840 /* Validate content. */
2841 if ( idCpu < pGVM->cCpus
2842 && idxLogger < VMMLOGGER_IDX_MAX
2843 && idxBuffer < VMMLOGGER_BUFFER_COUNT)
2844 {
2845 PGVMCPU pGVCpu = &pGVM->aCpus[idCpu];
2846 PVMMR0PERVCPULOGGER pR0Log = &pGVCpu->vmmr0.s.u.aLoggers[idxLogger];
2847 PVMMR3CPULOGGER pShared = &pGVCpu->vmm.s.u.aLoggers[idxLogger];
2848
2849 /*
2850 * Accounting.
2851 */
2852 uint32_t cFlushing = pR0Log->cFlushing - 1;
2853 if (RT_LIKELY(cFlushing < VMMLOGGER_BUFFER_COUNT))
2854 { /*likely*/ }
2855 else
2856 cFlushing = 0;
2857 pR0Log->cFlushing = cFlushing;
2858 ASMAtomicWriteU32(&pShared->cFlushing, cFlushing);
2859
2860 /*
2861 * Wake up the EMT if it's waiting.
2862 */
2863 if (!pR0Log->fEmtWaiting)
2864 RTSpinlockRelease(pGVM->vmmr0.s.LogFlusher.hSpinlock);
2865 else
2866 {
2867 pR0Log->fEmtWaiting = false;
2868 RTSpinlockRelease(pGVM->vmmr0.s.LogFlusher.hSpinlock);
2869
2870 int rc = RTSemEventSignal(pR0Log->hEventFlushWait);
2871 if (RT_FAILURE(rc))
2872 LogRelMax(64, ("vmmR0LogFlusher: RTSemEventSignal failed ACKing entry #%u (%u/%u/%u): %Rrc!\n",
2873 idxHead, idCpu, idxLogger, idxBuffer, rc));
2874 }
2875 }
2876 else
2877 {
2878 RTSpinlockRelease(pGVM->vmmr0.s.LogFlusher.hSpinlock);
2879 LogRelMax(64, ("vmmR0LogFlusher: Bad ACK entry #%u: %u/%u/%u!\n", idxHead, idCpu, idxLogger, idxBuffer));
2880 }
2881
2882 RTSpinlockAcquire(pGVM->vmmr0.s.LogFlusher.hSpinlock);
2883 }
2884
2885 /*
2886 * The wait loop.
2887 */
2888 int rc;
2889 for (;;)
2890 {
2891 /*
2892 * Work pending?
2893 */
2894 idxTail = pGVM->vmmr0.s.LogFlusher.idxRingTail % RT_ELEMENTS(pGVM->vmmr0.s.LogFlusher.aRing);
2895 idxHead = pGVM->vmmr0.s.LogFlusher.idxRingHead % RT_ELEMENTS(pGVM->vmmr0.s.LogFlusher.aRing);
2896 if (idxTail != idxHead)
2897 {
2898 pGVM->vmmr0.s.LogFlusher.aRing[idxHead].s.fProcessing = true;
2899 pGVM->vmm.s.LogFlusherItem.u32 = pGVM->vmmr0.s.LogFlusher.aRing[idxHead].u32;
2900
2901 RTSpinlockRelease(pGVM->vmmr0.s.LogFlusher.hSpinlock);
2902 return VINF_SUCCESS;
2903 }
2904
2905 /*
2906 * Nothing to do, so, check for termination and go to sleep.
2907 */
2908 if (!pGVM->vmmr0.s.LogFlusher.fThreadShutdown)
2909 { /* likely */ }
2910 else
2911 {
2912 rc = VERR_OBJECT_DESTROYED;
2913 break;
2914 }
2915
2916 pGVM->vmmr0.s.LogFlusher.fThreadWaiting = true;
2917 RTSpinlockRelease(pGVM->vmmr0.s.LogFlusher.hSpinlock);
2918
2919 rc = RTSemEventWaitNoResume(pGVM->vmmr0.s.LogFlusher.hEvent, RT_MS_5MIN);
2920
2921 RTSpinlockAcquire(pGVM->vmmr0.s.LogFlusher.hSpinlock);
2922 pGVM->vmmr0.s.LogFlusher.fThreadWaiting = false;
2923
2924 if (RT_SUCCESS(rc) || rc == VERR_TIMEOUT)
2925 { /* likely */ }
2926 else if (rc == VERR_INTERRUPTED)
2927 {
2928 RTSpinlockRelease(pGVM->vmmr0.s.LogFlusher.hSpinlock);
2929 return rc;
2930 }
2931 else if (rc == VERR_SEM_DESTROYED || rc == VERR_INVALID_HANDLE)
2932 break;
2933 else
2934 {
2935 LogRel(("vmmR0LogFlusher: RTSemEventWaitNoResume returned unexpected status %Rrc\n", rc));
2936 break;
2937 }
2938 }
2939
2940 /*
2941 * Terminating - prevent further calls and indicate to the EMTs that we're no longer around.
2942 */
2943 pGVM->vmmr0.s.LogFlusher.hThread = ~pGVM->vmmr0.s.LogFlusher.hThread; /* (should be reasonably safe) */
2944 pGVM->vmmr0.s.LogFlusher.fThreadRunning = false;
2945
2946 RTSpinlockRelease(pGVM->vmmr0.s.LogFlusher.hSpinlock);
2947 return rc;
2948}
2949
2950
2951/**
2952 * VMMR0_DO_VMMR0_LOG_WAIT_FLUSHED: Waits for the flusher thread to finish all
2953 * buffers for logger @a idxLogger.
2954 *
2955 * @returns VBox status code.
2956 * @param pGVM The global (ring-0) VM structure.
2957 * @param idCpu The ID of the calling EMT.
2958 * @param idxLogger Which logger to wait on.
2959 * @thread EMT(idCpu)
2960 */
2961static int vmmR0LogWaitFlushed(PGVM pGVM, VMCPUID idCpu, size_t idxLogger)
2962{
2963 /*
2964 * Check sanity. First we require EMT to be calling us.
2965 */
2966 AssertReturn(idCpu < pGVM->cCpus, VERR_INVALID_CPU_ID);
2967 PGVMCPU pGVCpu = &pGVM->aCpus[idCpu];
2968 AssertReturn(pGVCpu->hEMT == RTThreadNativeSelf(), VERR_INVALID_CPU_ID);
2969 AssertReturn(idxLogger < VMMLOGGER_IDX_MAX, VERR_OUT_OF_RANGE);
2970 PVMMR0PERVCPULOGGER const pR0Log = &pGVCpu->vmmr0.s.u.aLoggers[idxLogger];
2971
2972 /*
2973 * Do the waiting.
2974 */
2975 int rc = VINF_SUCCESS;
2976 RTSpinlockAcquire(pGVM->vmmr0.s.LogFlusher.hSpinlock);
2977 uint32_t cFlushing = pR0Log->cFlushing;
2978 while (cFlushing > 0)
2979 {
2980 pR0Log->fEmtWaiting = true;
2981 RTSpinlockRelease(pGVM->vmmr0.s.LogFlusher.hSpinlock);
2982
2983 rc = RTSemEventWaitNoResume(pR0Log->hEventFlushWait, RT_MS_5MIN);
2984
2985 RTSpinlockAcquire(pGVM->vmmr0.s.LogFlusher.hSpinlock);
2986 pR0Log->fEmtWaiting = false;
2987 if (RT_SUCCESS(rc))
2988 {
2989 /* Read the new count, make sure it decreased before looping. That
2990 way we can guarentee that we will only wait more than 5 min * buffers. */
2991 uint32_t const cPrevFlushing = cFlushing;
2992 cFlushing = pR0Log->cFlushing;
2993 if (cFlushing < cPrevFlushing)
2994 continue;
2995 rc = VERR_INTERNAL_ERROR_3;
2996 }
2997 break;
2998 }
2999 RTSpinlockRelease(pGVM->vmmr0.s.LogFlusher.hSpinlock);
3000 return rc;
3001}
3002
3003
3004/**
3005 * Inner worker for vmmR0LoggerFlushCommon for flushing to ring-3.
3006 */
3007static bool vmmR0LoggerFlushInnerToRing3(PGVM pGVM, PGVMCPU pGVCpu, uint32_t idxLogger, size_t idxBuffer, uint32_t cbToFlush)
3008{
3009 PVMMR0PERVCPULOGGER const pR0Log = &pGVCpu->vmmr0.s.u.aLoggers[idxLogger];
3010 PVMMR3CPULOGGER const pShared = &pGVCpu->vmm.s.u.aLoggers[idxLogger];
3011
3012 /*
3013 * Figure out what we need to do and whether we can.
3014 */
3015 enum { kJustSignal, kPrepAndSignal, kPrepSignalAndWait } enmAction;
3016#if VMMLOGGER_BUFFER_COUNT >= 2
3017 if (pR0Log->cFlushing < VMMLOGGER_BUFFER_COUNT - 1)
3018 {
3019 if (RTSemEventIsSignalSafe())
3020 enmAction = kJustSignal;
3021 else if (VMMRZCallRing3IsEnabled(pGVCpu))
3022 enmAction = kPrepAndSignal;
3023 else
3024 {
3025 /** @todo This is a bit simplistic. We could introduce a FF to signal the
3026 * thread or similar. */
3027 STAM_REL_COUNTER_INC(&pShared->StatCannotBlock);
3028# if defined(RT_OS_LINUX)
3029 SUP_DPRINTF(("vmmR0LoggerFlush: Signalling not safe and EMT blocking disabled! (%u bytes)\n", cbToFlush));
3030# endif
3031 pShared->cbDropped += cbToFlush;
3032 return true;
3033 }
3034 }
3035 else
3036#endif
3037 if (VMMRZCallRing3IsEnabled(pGVCpu))
3038 enmAction = kPrepSignalAndWait;
3039 else
3040 {
3041 STAM_REL_COUNTER_INC(&pShared->StatCannotBlock);
3042# if defined(RT_OS_LINUX)
3043 SUP_DPRINTF(("vmmR0LoggerFlush: EMT blocking disabled! (%u bytes)\n", cbToFlush));
3044# endif
3045 pShared->cbDropped += cbToFlush;
3046 return true;
3047 }
3048
3049 /*
3050 * Prepare for blocking if necessary.
3051 */
3052 VMMR0EMTBLOCKCTX Ctx;
3053 if (enmAction != kJustSignal)
3054 {
3055 int rc = VMMR0EmtPrepareToBlock(pGVCpu, VINF_SUCCESS, "vmmR0LoggerFlushInnerToRing3", pR0Log->hEventFlushWait, &Ctx);
3056 if (RT_SUCCESS(rc))
3057 { /* likely */ }
3058 else
3059 {
3060 STAM_REL_COUNTER_INC(&pShared->StatCannotBlock);
3061 SUP_DPRINTF(("vmmR0LoggerFlush: VMMR0EmtPrepareToBlock failed! rc=%d\n", rc));
3062 return false;
3063 }
3064 }
3065
3066 /*
3067 * Queue the flush job.
3068 */
3069 bool fFlushedBuffer;
3070 RTSpinlockAcquire(pGVM->vmmr0.s.LogFlusher.hSpinlock);
3071 if (pGVM->vmmr0.s.LogFlusher.fThreadRunning)
3072 {
3073 uint32_t const idxHead = pGVM->vmmr0.s.LogFlusher.idxRingHead % RT_ELEMENTS(pGVM->vmmr0.s.LogFlusher.aRing);
3074 uint32_t const idxTail = pGVM->vmmr0.s.LogFlusher.idxRingTail % RT_ELEMENTS(pGVM->vmmr0.s.LogFlusher.aRing);
3075 uint32_t const idxNewTail = (idxTail + 1) % RT_ELEMENTS(pGVM->vmmr0.s.LogFlusher.aRing);
3076 if (idxNewTail != idxHead)
3077 {
3078 /* Queue it. */
3079 pGVM->vmmr0.s.LogFlusher.aRing[idxTail].s.idCpu = pGVCpu->idCpu;
3080 pGVM->vmmr0.s.LogFlusher.aRing[idxTail].s.idxLogger = idxLogger;
3081 pGVM->vmmr0.s.LogFlusher.aRing[idxTail].s.idxBuffer = (uint32_t)idxBuffer;
3082 pGVM->vmmr0.s.LogFlusher.aRing[idxTail].s.fProcessing = 0;
3083 pGVM->vmmr0.s.LogFlusher.idxRingTail = idxNewTail;
3084
3085 /* Update the number of buffers currently being flushed. */
3086 uint32_t cFlushing = pR0Log->cFlushing;
3087 cFlushing = RT_MIN(cFlushing + 1, VMMLOGGER_BUFFER_COUNT);
3088 pShared->cFlushing = pR0Log->cFlushing = cFlushing;
3089
3090 /* We must wait if all buffers are currently being flushed. */
3091 bool const fEmtWaiting = cFlushing >= VMMLOGGER_BUFFER_COUNT && enmAction != kJustSignal /* paranoia */;
3092 pR0Log->fEmtWaiting = fEmtWaiting;
3093
3094 /* Stats. */
3095 STAM_REL_COUNTER_INC(&pShared->StatFlushes);
3096 STAM_REL_COUNTER_INC(&pGVM->vmm.s.StatLogFlusherFlushes);
3097
3098 /* Signal the worker thread. */
3099 if (pGVM->vmmr0.s.LogFlusher.fThreadWaiting)
3100 {
3101 RTSpinlockRelease(pGVM->vmmr0.s.LogFlusher.hSpinlock);
3102 RTSemEventSignal(pGVM->vmmr0.s.LogFlusher.hEvent);
3103 }
3104 else
3105 {
3106 STAM_REL_COUNTER_INC(&pGVM->vmm.s.StatLogFlusherNoWakeUp);
3107 RTSpinlockRelease(pGVM->vmmr0.s.LogFlusher.hSpinlock);
3108 }
3109
3110 /*
3111 * Wait for a buffer to finish flushing.
3112 *
3113 * Note! Lazy bird is ignoring the status code here. The result is
3114 * that we might end up with an extra even signalling and the
3115 * next time we need to wait we won't and end up with some log
3116 * corruption. However, it's too much hazzle right now for
3117 * a scenario which would most likely end the process rather
3118 * than causing log corruption.
3119 */
3120 if (fEmtWaiting)
3121 {
3122 STAM_REL_PROFILE_START(&pShared->StatWait, a);
3123 VMMR0EmtWaitEventInner(pGVCpu, VMMR0EMTWAIT_F_TRY_SUPPRESS_INTERRUPTED,
3124 pR0Log->hEventFlushWait, RT_INDEFINITE_WAIT);
3125 STAM_REL_PROFILE_STOP(&pShared->StatWait, a);
3126 }
3127
3128 /*
3129 * We always switch buffer if we have more than one.
3130 */
3131#if VMMLOGGER_BUFFER_COUNT == 1
3132 fFlushedBuffer = true;
3133#else
3134 AssertCompile(VMMLOGGER_BUFFER_COUNT >= 1);
3135 pShared->idxBuf = (idxBuffer + 1) % VMMLOGGER_BUFFER_COUNT;
3136 fFlushedBuffer = false;
3137#endif
3138 }
3139 else
3140 {
3141 RTSpinlockRelease(pGVM->vmmr0.s.LogFlusher.hSpinlock);
3142 SUP_DPRINTF(("vmmR0LoggerFlush: ring buffer is full!\n"));
3143 fFlushedBuffer = true;
3144 }
3145 }
3146 else
3147 {
3148 RTSpinlockRelease(pGVM->vmmr0.s.LogFlusher.hSpinlock);
3149 SUP_DPRINTF(("vmmR0LoggerFlush: flusher not active - dropping %u bytes\n", cbToFlush));
3150 fFlushedBuffer = true;
3151 }
3152
3153 /*
3154 * Restore the HM context.
3155 */
3156 if (enmAction != kJustSignal)
3157 VMMR0EmtResumeAfterBlocking(pGVCpu, &Ctx);
3158
3159 return fFlushedBuffer;
3160}
3161
3162
3163/**
3164 * Inner worker for vmmR0LoggerFlushCommon when only flushing to the parent
3165 * VMM's logs.
3166 */
3167static bool vmmR0LoggerFlushInnerToParent(PVMMR0PERVCPULOGGER pR0Log, PRTLOGBUFFERDESC pBufDesc)
3168{
3169 uint32_t const cbToFlush = pBufDesc->offBuf;
3170 if (pR0Log->fFlushToParentVmmDbg)
3171 RTLogWriteVmm(pBufDesc->pchBuf, cbToFlush, false /*fRelease*/);
3172 if (pR0Log->fFlushToParentVmmRel)
3173 RTLogWriteVmm(pBufDesc->pchBuf, cbToFlush, true /*fRelease*/);
3174 return true;
3175}
3176
3177
3178
3179/**
3180 * Common worker for vmmR0LogFlush and vmmR0LogRelFlush.
3181 */
3182static bool vmmR0LoggerFlushCommon(PRTLOGGER pLogger, PRTLOGBUFFERDESC pBufDesc, uint32_t idxLogger)
3183{
3184 /*
3185 * Convert the pLogger into a GVMCPU handle and 'call' back to Ring-3.
3186 * (This is a bit paranoid code.)
3187 */
3188 if (RT_VALID_PTR(pLogger))
3189 {
3190 if ( pLogger->u32Magic == RTLOGGER_MAGIC
3191 && (pLogger->u32UserValue1 & VMMR0_LOGGER_FLAGS_MAGIC_MASK) == VMMR0_LOGGER_FLAGS_MAGIC_VALUE
3192 && pLogger->u64UserValue2 == pLogger->u64UserValue3)
3193 {
3194 PGVMCPU const pGVCpu = (PGVMCPU)(uintptr_t)pLogger->u64UserValue2;
3195 if ( RT_VALID_PTR(pGVCpu)
3196 && ((uintptr_t)pGVCpu & HOST_PAGE_OFFSET_MASK) == 0)
3197 {
3198 RTNATIVETHREAD const hNativeSelf = RTThreadNativeSelf();
3199 PGVM const pGVM = pGVCpu->pGVM;
3200 if ( hNativeSelf == pGVCpu->hEMT
3201 && RT_VALID_PTR(pGVM))
3202 {
3203 PVMMR0PERVCPULOGGER const pR0Log = &pGVCpu->vmmr0.s.u.aLoggers[idxLogger];
3204 size_t const idxBuffer = pBufDesc - &pR0Log->aBufDescs[0];
3205 if (idxBuffer < VMMLOGGER_BUFFER_COUNT)
3206 {
3207 /*
3208 * Make sure we don't recurse forever here should something in the
3209 * following code trigger logging or an assertion. Do the rest in
3210 * an inner work to avoid hitting the right margin too hard.
3211 */
3212 if (!pR0Log->fFlushing)
3213 {
3214 pR0Log->fFlushing = true;
3215 bool fFlushed;
3216 if ( !pR0Log->fFlushToParentVmmDbg
3217 && !pR0Log->fFlushToParentVmmRel)
3218 fFlushed = vmmR0LoggerFlushInnerToRing3(pGVM, pGVCpu, idxLogger, idxBuffer, pBufDesc->offBuf);
3219 else
3220 fFlushed = vmmR0LoggerFlushInnerToParent(pR0Log, pBufDesc);
3221 pR0Log->fFlushing = false;
3222 return fFlushed;
3223 }
3224
3225 SUP_DPRINTF(("vmmR0LoggerFlush: Recursive flushing!\n"));
3226 }
3227 else
3228 SUP_DPRINTF(("vmmR0LoggerFlush: pLogger=%p pGVCpu=%p: idxBuffer=%#zx\n", pLogger, pGVCpu, idxBuffer));
3229 }
3230 else
3231 SUP_DPRINTF(("vmmR0LoggerFlush: pLogger=%p pGVCpu=%p hEMT=%p hNativeSelf=%p!\n",
3232 pLogger, pGVCpu, pGVCpu->hEMT, hNativeSelf));
3233 }
3234 else
3235 SUP_DPRINTF(("vmmR0LoggerFlush: pLogger=%p pGVCpu=%p!\n", pLogger, pGVCpu));
3236 }
3237 else
3238 SUP_DPRINTF(("vmmR0LoggerFlush: pLogger=%p u32Magic=%#x u32UserValue1=%#x u64UserValue2=%#RX64 u64UserValue3=%#RX64!\n",
3239 pLogger, pLogger->u32Magic, pLogger->u32UserValue1, pLogger->u64UserValue2, pLogger->u64UserValue3));
3240 }
3241 else
3242 SUP_DPRINTF(("vmmR0LoggerFlush: pLogger=%p!\n", pLogger));
3243 return true;
3244}
3245
3246
3247/**
3248 * @callback_method_impl{FNRTLOGFLUSH, Release logger buffer flush callback.}
3249 */
3250static DECLCALLBACK(bool) vmmR0LogRelFlush(PRTLOGGER pLogger, PRTLOGBUFFERDESC pBufDesc)
3251{
3252 return vmmR0LoggerFlushCommon(pLogger, pBufDesc, VMMLOGGER_IDX_RELEASE);
3253}
3254
3255
3256/**
3257 * @callback_method_impl{FNRTLOGFLUSH, Logger (debug) buffer flush callback.}
3258 */
3259static DECLCALLBACK(bool) vmmR0LogFlush(PRTLOGGER pLogger, PRTLOGBUFFERDESC pBufDesc)
3260{
3261#ifdef LOG_ENABLED
3262 return vmmR0LoggerFlushCommon(pLogger, pBufDesc, VMMLOGGER_IDX_REGULAR);
3263#else
3264 RT_NOREF(pLogger, pBufDesc);
3265 return true;
3266#endif
3267}
3268
3269
3270/*
3271 * Override RTLogDefaultInstanceEx so we can do logging from EMTs in ring-0.
3272 */
3273DECLEXPORT(PRTLOGGER) RTLogDefaultInstanceEx(uint32_t fFlagsAndGroup)
3274{
3275#ifdef LOG_ENABLED
3276 PGVMCPU pGVCpu = GVMMR0GetGVCpuByEMT(NIL_RTNATIVETHREAD);
3277 if (pGVCpu)
3278 {
3279 PRTLOGGER pLogger = pGVCpu->vmmr0.s.u.s.Logger.pLogger;
3280 if (RT_VALID_PTR(pLogger))
3281 {
3282 if ( pLogger->u64UserValue2 == (uintptr_t)pGVCpu
3283 && pLogger->u64UserValue3 == (uintptr_t)pGVCpu)
3284 {
3285 if (!pGVCpu->vmmr0.s.u.s.Logger.fFlushing)
3286 return RTLogCheckGroupFlags(pLogger, fFlagsAndGroup);
3287
3288 /*
3289 * When we're flushing we _must_ return NULL here to suppress any
3290 * attempts at using the logger while in vmmR0LoggerFlushCommon.
3291 * The VMMR0EmtPrepareToBlock code may trigger logging in HM,
3292 * which will reset the buffer content before we even get to queue
3293 * the flush request. (Only an issue when VBOX_WITH_R0_LOGGING
3294 * is enabled.)
3295 */
3296 return NULL;
3297 }
3298 }
3299 }
3300#endif
3301 return SUPR0DefaultLogInstanceEx(fFlagsAndGroup);
3302}
3303
3304
3305/*
3306 * Override RTLogRelGetDefaultInstanceEx so we can do LogRel to VBox.log from EMTs in ring-0.
3307 */
3308DECLEXPORT(PRTLOGGER) RTLogRelGetDefaultInstanceEx(uint32_t fFlagsAndGroup)
3309{
3310 PGVMCPU pGVCpu = GVMMR0GetGVCpuByEMT(NIL_RTNATIVETHREAD);
3311 if (pGVCpu)
3312 {
3313 PRTLOGGER pLogger = pGVCpu->vmmr0.s.u.s.RelLogger.pLogger;
3314 if (RT_VALID_PTR(pLogger))
3315 {
3316 if ( pLogger->u64UserValue2 == (uintptr_t)pGVCpu
3317 && pLogger->u64UserValue3 == (uintptr_t)pGVCpu)
3318 {
3319 if (!pGVCpu->vmmr0.s.u.s.RelLogger.fFlushing)
3320 return RTLogCheckGroupFlags(pLogger, fFlagsAndGroup);
3321
3322 /* ASSUMES no LogRels hidden within the VMMR0EmtPrepareToBlock code
3323 path, so we don't return NULL here like for the debug logger... */
3324 }
3325 }
3326 }
3327 return SUPR0GetDefaultLogRelInstanceEx(fFlagsAndGroup);
3328}
3329
3330
3331/**
3332 * Helper for vmmR0InitLoggerSet
3333 */
3334static int vmmR0InitLoggerOne(PGVMCPU pGVCpu, bool fRelease, PVMMR0PERVCPULOGGER pR0Log, PVMMR3CPULOGGER pShared,
3335 uint32_t cbBuf, char *pchBuf, RTR3PTR pchBufR3)
3336{
3337 /*
3338 * Create and configure the logger.
3339 */
3340 for (size_t i = 0; i < VMMLOGGER_BUFFER_COUNT; i++)
3341 {
3342 pR0Log->aBufDescs[i].u32Magic = RTLOGBUFFERDESC_MAGIC;
3343 pR0Log->aBufDescs[i].uReserved = 0;
3344 pR0Log->aBufDescs[i].cbBuf = cbBuf;
3345 pR0Log->aBufDescs[i].offBuf = 0;
3346 pR0Log->aBufDescs[i].pchBuf = pchBuf + i * cbBuf;
3347 pR0Log->aBufDescs[i].pAux = &pShared->aBufs[i].AuxDesc;
3348
3349 pShared->aBufs[i].AuxDesc.fFlushedIndicator = false;
3350 pShared->aBufs[i].AuxDesc.afPadding[0] = 0;
3351 pShared->aBufs[i].AuxDesc.afPadding[1] = 0;
3352 pShared->aBufs[i].AuxDesc.afPadding[2] = 0;
3353 pShared->aBufs[i].AuxDesc.offBuf = 0;
3354 pShared->aBufs[i].pchBufR3 = pchBufR3 + i * cbBuf;
3355 }
3356 pShared->cbBuf = cbBuf;
3357
3358 static const char * const s_apszGroups[] = VBOX_LOGGROUP_NAMES;
3359 int rc = RTLogCreateEx(&pR0Log->pLogger, fRelease ? "VBOX_RELEASE_LOG" : "VBOX_LOG", RTLOG_F_NO_LOCKING | RTLOGFLAGS_BUFFERED,
3360 "all", RT_ELEMENTS(s_apszGroups), s_apszGroups, UINT32_MAX,
3361 VMMLOGGER_BUFFER_COUNT, pR0Log->aBufDescs, RTLOGDEST_DUMMY,
3362 NULL /*pfnPhase*/, 0 /*cHistory*/, 0 /*cbHistoryFileMax*/, 0 /*cSecsHistoryTimeSlot*/,
3363 NULL /*pOutputIf*/, NULL /*pvOutputIfUser*/,
3364 NULL /*pErrInfo*/, NULL /*pszFilenameFmt*/);
3365 if (RT_SUCCESS(rc))
3366 {
3367 PRTLOGGER pLogger = pR0Log->pLogger;
3368 pLogger->u32UserValue1 = VMMR0_LOGGER_FLAGS_MAGIC_VALUE;
3369 pLogger->u64UserValue2 = (uintptr_t)pGVCpu;
3370 pLogger->u64UserValue3 = (uintptr_t)pGVCpu;
3371
3372 rc = RTLogSetFlushCallback(pLogger, fRelease ? vmmR0LogRelFlush : vmmR0LogFlush);
3373 if (RT_SUCCESS(rc))
3374 {
3375 RTLogSetR0ThreadNameF(pLogger, "EMT-%u-R0", pGVCpu->idCpu);
3376
3377 /*
3378 * Create the event sem the EMT waits on while flushing is happening.
3379 */
3380 rc = RTSemEventCreate(&pR0Log->hEventFlushWait);
3381 if (RT_SUCCESS(rc))
3382 return VINF_SUCCESS;
3383 pR0Log->hEventFlushWait = NIL_RTSEMEVENT;
3384 }
3385 RTLogDestroy(pLogger);
3386 }
3387 pR0Log->pLogger = NULL;
3388 return rc;
3389}
3390
3391
3392/**
3393 * Worker for VMMR0CleanupVM and vmmR0InitLoggerSet that destroys one logger.
3394 */
3395static void vmmR0TermLoggerOne(PVMMR0PERVCPULOGGER pR0Log, PVMMR3CPULOGGER pShared)
3396{
3397 RTLogDestroy(pR0Log->pLogger);
3398 pR0Log->pLogger = NULL;
3399
3400 for (size_t i = 0; i < VMMLOGGER_BUFFER_COUNT; i++)
3401 pShared->aBufs[i].pchBufR3 = NIL_RTR3PTR;
3402
3403 RTSemEventDestroy(pR0Log->hEventFlushWait);
3404 pR0Log->hEventFlushWait = NIL_RTSEMEVENT;
3405}
3406
3407
3408/**
3409 * Initializes one type of loggers for each EMT.
3410 */
3411static int vmmR0InitLoggerSet(PGVM pGVM, uint8_t idxLogger, uint32_t cbBuf, PRTR0MEMOBJ phMemObj, PRTR0MEMOBJ phMapObj)
3412{
3413 /* Allocate buffers first. */
3414 int rc = RTR0MemObjAllocPage(phMemObj, cbBuf * pGVM->cCpus * VMMLOGGER_BUFFER_COUNT, false /*fExecutable*/);
3415 if (RT_SUCCESS(rc))
3416 {
3417 rc = RTR0MemObjMapUser(phMapObj, *phMemObj, (RTR3PTR)-1, 0 /*uAlignment*/, RTMEM_PROT_READ, NIL_RTR0PROCESS);
3418 if (RT_SUCCESS(rc))
3419 {
3420 char * const pchBuf = (char *)RTR0MemObjAddress(*phMemObj);
3421 AssertPtrReturn(pchBuf, VERR_INTERNAL_ERROR_2);
3422
3423 RTR3PTR const pchBufR3 = RTR0MemObjAddressR3(*phMapObj);
3424 AssertReturn(pchBufR3 != NIL_RTR3PTR, VERR_INTERNAL_ERROR_3);
3425
3426 /* Initialize the per-CPU loggers. */
3427 for (uint32_t i = 0; i < pGVM->cCpus; i++)
3428 {
3429 PGVMCPU pGVCpu = &pGVM->aCpus[i];
3430 PVMMR0PERVCPULOGGER pR0Log = &pGVCpu->vmmr0.s.u.aLoggers[idxLogger];
3431 PVMMR3CPULOGGER pShared = &pGVCpu->vmm.s.u.aLoggers[idxLogger];
3432 rc = vmmR0InitLoggerOne(pGVCpu, idxLogger == VMMLOGGER_IDX_RELEASE, pR0Log, pShared, cbBuf,
3433 pchBuf + i * cbBuf * VMMLOGGER_BUFFER_COUNT,
3434 pchBufR3 + i * cbBuf * VMMLOGGER_BUFFER_COUNT);
3435 if (RT_FAILURE(rc))
3436 {
3437 vmmR0TermLoggerOne(pR0Log, pShared);
3438 while (i-- > 0)
3439 {
3440 pGVCpu = &pGVM->aCpus[i];
3441 vmmR0TermLoggerOne(&pGVCpu->vmmr0.s.u.aLoggers[idxLogger], &pGVCpu->vmm.s.u.aLoggers[idxLogger]);
3442 }
3443 break;
3444 }
3445 }
3446 if (RT_SUCCESS(rc))
3447 return VINF_SUCCESS;
3448
3449 /* Bail out. */
3450 RTR0MemObjFree(*phMapObj, false /*fFreeMappings*/);
3451 *phMapObj = NIL_RTR0MEMOBJ;
3452 }
3453 RTR0MemObjFree(*phMemObj, true /*fFreeMappings*/);
3454 *phMemObj = NIL_RTR0MEMOBJ;
3455 }
3456 return rc;
3457}
3458
3459
3460/**
3461 * Worker for VMMR0InitPerVMData that initializes all the logging related stuff.
3462 *
3463 * @returns VBox status code.
3464 * @param pGVM The global (ring-0) VM structure.
3465 */
3466static int vmmR0InitLoggers(PGVM pGVM)
3467{
3468 /*
3469 * Invalidate the ring buffer (not really necessary).
3470 */
3471 for (size_t idx = 0; idx < RT_ELEMENTS(pGVM->vmmr0.s.LogFlusher.aRing); idx++)
3472 pGVM->vmmr0.s.LogFlusher.aRing[idx].u32 = UINT32_MAX >> 1; /* (all bits except fProcessing set) */
3473
3474 /*
3475 * Create the spinlock and flusher event semaphore.
3476 */
3477 int rc = RTSpinlockCreate(&pGVM->vmmr0.s.LogFlusher.hSpinlock, RTSPINLOCK_FLAGS_INTERRUPT_SAFE, "VM-Log-Flusher");
3478 if (RT_SUCCESS(rc))
3479 {
3480 rc = RTSemEventCreate(&pGVM->vmmr0.s.LogFlusher.hEvent);
3481 if (RT_SUCCESS(rc))
3482 {
3483 /*
3484 * Create the ring-0 release loggers.
3485 */
3486 rc = vmmR0InitLoggerSet(pGVM, VMMLOGGER_IDX_RELEASE, _4K,
3487 &pGVM->vmmr0.s.hMemObjReleaseLogger, &pGVM->vmmr0.s.hMapObjReleaseLogger);
3488#ifdef LOG_ENABLED
3489 if (RT_SUCCESS(rc))
3490 {
3491 /*
3492 * Create debug loggers.
3493 */
3494 rc = vmmR0InitLoggerSet(pGVM, VMMLOGGER_IDX_REGULAR, _64K,
3495 &pGVM->vmmr0.s.hMemObjLogger, &pGVM->vmmr0.s.hMapObjLogger);
3496 }
3497#endif
3498 }
3499 }
3500 return rc;
3501}
3502
3503
3504/**
3505 * Worker for VMMR0InitPerVMData that initializes all the logging related stuff.
3506 *
3507 * @param pGVM The global (ring-0) VM structure.
3508 */
3509static void vmmR0CleanupLoggers(PGVM pGVM)
3510{
3511 for (VMCPUID idCpu = 0; idCpu < pGVM->cCpus; idCpu++)
3512 {
3513 PGVMCPU pGVCpu = &pGVM->aCpus[idCpu];
3514 for (size_t iLogger = 0; iLogger < RT_ELEMENTS(pGVCpu->vmmr0.s.u.aLoggers); iLogger++)
3515 vmmR0TermLoggerOne(&pGVCpu->vmmr0.s.u.aLoggers[iLogger], &pGVCpu->vmm.s.u.aLoggers[iLogger]);
3516 }
3517
3518 /*
3519 * Free logger buffer memory.
3520 */
3521 RTR0MemObjFree(pGVM->vmmr0.s.hMapObjReleaseLogger, false /*fFreeMappings*/);
3522 pGVM->vmmr0.s.hMapObjReleaseLogger = NIL_RTR0MEMOBJ;
3523 RTR0MemObjFree(pGVM->vmmr0.s.hMemObjReleaseLogger, true /*fFreeMappings*/);
3524 pGVM->vmmr0.s.hMemObjReleaseLogger = NIL_RTR0MEMOBJ;
3525
3526 RTR0MemObjFree(pGVM->vmmr0.s.hMapObjLogger, false /*fFreeMappings*/);
3527 pGVM->vmmr0.s.hMapObjLogger = NIL_RTR0MEMOBJ;
3528 RTR0MemObjFree(pGVM->vmmr0.s.hMemObjLogger, true /*fFreeMappings*/);
3529 pGVM->vmmr0.s.hMemObjLogger = NIL_RTR0MEMOBJ;
3530
3531 /*
3532 * Free log flusher related stuff.
3533 */
3534 RTSpinlockDestroy(pGVM->vmmr0.s.LogFlusher.hSpinlock);
3535 pGVM->vmmr0.s.LogFlusher.hSpinlock = NIL_RTSPINLOCK;
3536 RTSemEventDestroy(pGVM->vmmr0.s.LogFlusher.hEvent);
3537 pGVM->vmmr0.s.LogFlusher.hEvent = NIL_RTSEMEVENT;
3538}
3539
3540
3541/*********************************************************************************************************************************
3542* Assertions *
3543*********************************************************************************************************************************/
3544
3545/**
3546 * Installs a notification callback for ring-0 assertions.
3547 *
3548 * @param pVCpu The cross context virtual CPU structure.
3549 * @param pfnCallback Pointer to the callback.
3550 * @param pvUser The user argument.
3551 *
3552 * @return VBox status code.
3553 */
3554VMMR0_INT_DECL(int) VMMR0AssertionSetNotification(PVMCPUCC pVCpu, PFNVMMR0ASSERTIONNOTIFICATION pfnCallback, RTR0PTR pvUser)
3555{
3556 AssertPtrReturn(pVCpu, VERR_INVALID_POINTER);
3557 AssertPtrReturn(pfnCallback, VERR_INVALID_POINTER);
3558
3559 if (!pVCpu->vmmr0.s.pfnAssertCallback)
3560 {
3561 pVCpu->vmmr0.s.pfnAssertCallback = pfnCallback;
3562 pVCpu->vmmr0.s.pvAssertCallbackUser = pvUser;
3563 return VINF_SUCCESS;
3564 }
3565 return VERR_ALREADY_EXISTS;
3566}
3567
3568
3569/**
3570 * Removes the ring-0 callback.
3571 *
3572 * @param pVCpu The cross context virtual CPU structure.
3573 */
3574VMMR0_INT_DECL(void) VMMR0AssertionRemoveNotification(PVMCPUCC pVCpu)
3575{
3576 pVCpu->vmmr0.s.pfnAssertCallback = NULL;
3577 pVCpu->vmmr0.s.pvAssertCallbackUser = NULL;
3578}
3579
3580
3581/**
3582 * Checks whether there is a ring-0 callback notification active.
3583 *
3584 * @param pVCpu The cross context virtual CPU structure.
3585 * @returns true if there the notification is active, false otherwise.
3586 */
3587VMMR0_INT_DECL(bool) VMMR0AssertionIsNotificationSet(PVMCPUCC pVCpu)
3588{
3589 return pVCpu->vmmr0.s.pfnAssertCallback != NULL;
3590}
3591
3592
3593/*
3594 * Jump back to ring-3 if we're the EMT and the longjmp is armed.
3595 *
3596 * @returns true if the breakpoint should be hit, false if it should be ignored.
3597 */
3598DECLEXPORT(bool) RTCALL RTAssertShouldPanic(void)
3599{
3600#if 0
3601 return true;
3602#else
3603 PVMCC pVM = GVMMR0GetVMByEMT(NIL_RTNATIVETHREAD);
3604 if (pVM)
3605 {
3606 PVMCPUCC pVCpu = VMMGetCpu(pVM);
3607
3608 if (pVCpu)
3609 {
3610# ifdef RT_ARCH_X86
3611 if (pVCpu->vmmr0.s.AssertJmpBuf.eip)
3612# else
3613 if (pVCpu->vmmr0.s.AssertJmpBuf.rip)
3614# endif
3615 {
3616 if (pVCpu->vmmr0.s.pfnAssertCallback)
3617 pVCpu->vmmr0.s.pfnAssertCallback(pVCpu, pVCpu->vmmr0.s.pvAssertCallbackUser);
3618 int rc = vmmR0CallRing3LongJmp(&pVCpu->vmmr0.s.AssertJmpBuf, VERR_VMM_RING0_ASSERTION);
3619 return RT_FAILURE_NP(rc);
3620 }
3621 }
3622 }
3623# ifdef RT_OS_LINUX
3624 return true;
3625# else
3626 return false;
3627# endif
3628#endif
3629}
3630
3631
3632/*
3633 * Override this so we can push it up to ring-3.
3634 */
3635DECLEXPORT(void) RTCALL RTAssertMsg1Weak(const char *pszExpr, unsigned uLine, const char *pszFile, const char *pszFunction)
3636{
3637 /*
3638 * To host kernel log/whatever.
3639 */
3640 SUPR0Printf("!!R0-Assertion Failed!!\n"
3641 "Expression: %s\n"
3642 "Location : %s(%d) %s\n",
3643 pszExpr, pszFile, uLine, pszFunction);
3644
3645 /*
3646 * To the log.
3647 */
3648 LogAlways(("\n!!R0-Assertion Failed!!\n"
3649 "Expression: %s\n"
3650 "Location : %s(%d) %s\n",
3651 pszExpr, pszFile, uLine, pszFunction));
3652
3653 /*
3654 * To the global VMM buffer.
3655 */
3656 PVMCC pVM = GVMMR0GetVMByEMT(NIL_RTNATIVETHREAD);
3657 if (pVM)
3658 RTStrPrintf(pVM->vmm.s.szRing0AssertMsg1, sizeof(pVM->vmm.s.szRing0AssertMsg1),
3659 "\n!!R0-Assertion Failed!!\n"
3660 "Expression: %.*s\n"
3661 "Location : %s(%d) %s\n",
3662 sizeof(pVM->vmm.s.szRing0AssertMsg1) / 4 * 3, pszExpr,
3663 pszFile, uLine, pszFunction);
3664
3665 /*
3666 * Continue the normal way.
3667 */
3668 RTAssertMsg1(pszExpr, uLine, pszFile, pszFunction);
3669}
3670
3671
3672/**
3673 * Callback for RTLogFormatV which writes to the ring-3 log port.
3674 * See PFNLOGOUTPUT() for details.
3675 */
3676static DECLCALLBACK(size_t) rtLogOutput(void *pv, const char *pachChars, size_t cbChars)
3677{
3678 for (size_t i = 0; i < cbChars; i++)
3679 {
3680 LogAlways(("%c", pachChars[i])); NOREF(pachChars);
3681 }
3682
3683 NOREF(pv);
3684 return cbChars;
3685}
3686
3687
3688/*
3689 * Override this so we can push it up to ring-3.
3690 */
3691DECLEXPORT(void) RTCALL RTAssertMsg2WeakV(const char *pszFormat, va_list va)
3692{
3693 va_list vaCopy;
3694
3695 /*
3696 * Push the message to the loggers.
3697 */
3698 PRTLOGGER pLog = RTLogRelGetDefaultInstance();
3699 if (pLog)
3700 {
3701 va_copy(vaCopy, va);
3702 RTLogFormatV(rtLogOutput, pLog, pszFormat, vaCopy);
3703 va_end(vaCopy);
3704 }
3705 pLog = RTLogGetDefaultInstance(); /* Don't initialize it here... */
3706 if (pLog)
3707 {
3708 va_copy(vaCopy, va);
3709 RTLogFormatV(rtLogOutput, pLog, pszFormat, vaCopy);
3710 va_end(vaCopy);
3711 }
3712
3713 /*
3714 * Push it to the global VMM buffer.
3715 */
3716 PVMCC pVM = GVMMR0GetVMByEMT(NIL_RTNATIVETHREAD);
3717 if (pVM)
3718 {
3719 va_copy(vaCopy, va);
3720 RTStrPrintfV(pVM->vmm.s.szRing0AssertMsg2, sizeof(pVM->vmm.s.szRing0AssertMsg2), pszFormat, vaCopy);
3721 va_end(vaCopy);
3722 }
3723
3724 /*
3725 * Continue the normal way.
3726 */
3727 RTAssertMsg2V(pszFormat, va);
3728}
3729
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette