VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/CPUM.cpp@ 35368

Last change on this file since 35368 was 35346, checked in by vboxsync, 14 years ago

VMM reorg: Moving the public include files from include/VBox to include/VBox/vmm.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 188.0 KB
Line 
1/* $Id: CPUM.cpp 35346 2010-12-27 16:13:13Z vboxsync $ */
2/** @file
3 * CPUM - CPU Monitor / Manager.
4 */
5
6/*
7 * Copyright (C) 2006-2010 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/** @page pg_cpum CPUM - CPU Monitor / Manager
19 *
20 * The CPU Monitor / Manager keeps track of all the CPU registers. It is
21 * also responsible for lazy FPU handling and some of the context loading
22 * in raw mode.
23 *
24 * There are three CPU contexts, the most important one is the guest one (GC).
25 * When running in raw-mode (RC) there is a special hyper context for the VMM
26 * part that floats around inside the guest address space. When running in
27 * raw-mode, CPUM also maintains a host context for saving and restoring
28 * registers across world switches. This latter is done in cooperation with the
29 * world switcher (@see pg_vmm).
30 *
31 * @see grp_cpum
32 */
33
34/*******************************************************************************
35* Header Files *
36*******************************************************************************/
37#define LOG_GROUP LOG_GROUP_CPUM
38#include <VBox/vmm/cpum.h>
39#include <VBox/vmm/cpumdis.h>
40#include <VBox/vmm/pgm.h>
41#include <VBox/vmm/mm.h>
42#include <VBox/vmm/selm.h>
43#include <VBox/vmm/dbgf.h>
44#include <VBox/vmm/patm.h>
45#include <VBox/vmm/hwaccm.h>
46#include <VBox/vmm/ssm.h>
47#include "CPUMInternal.h"
48#include <VBox/vmm/vm.h>
49
50#include <VBox/param.h>
51#include <VBox/dis.h>
52#include <VBox/err.h>
53#include <VBox/log.h>
54#include <iprt/assert.h>
55#include <iprt/asm-amd64-x86.h>
56#include <iprt/string.h>
57#include <iprt/mp.h>
58#include <iprt/cpuset.h>
59#include "internal/pgm.h"
60
61
62/*******************************************************************************
63* Defined Constants And Macros *
64*******************************************************************************/
65/** The current saved state version. */
66#define CPUM_SAVED_STATE_VERSION 12
67/** The saved state version of 3.2, 3.1 and 3.3 trunk before the hidden
68 * selector register change (CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID). */
69#define CPUM_SAVED_STATE_VERSION_VER3_2 11
70/** The saved state version of 3.0 and 3.1 trunk before the teleportation
71 * changes. */
72#define CPUM_SAVED_STATE_VERSION_VER3_0 10
73/** The saved state version for the 2.1 trunk before the MSR changes. */
74#define CPUM_SAVED_STATE_VERSION_VER2_1_NOMSR 9
75/** The saved state version of 2.0, used for backwards compatibility. */
76#define CPUM_SAVED_STATE_VERSION_VER2_0 8
77/** The saved state version of 1.6, used for backwards compatibility. */
78#define CPUM_SAVED_STATE_VERSION_VER1_6 6
79
80
81/*******************************************************************************
82* Structures and Typedefs *
83*******************************************************************************/
84
85/**
86 * What kind of cpu info dump to perform.
87 */
88typedef enum CPUMDUMPTYPE
89{
90 CPUMDUMPTYPE_TERSE,
91 CPUMDUMPTYPE_DEFAULT,
92 CPUMDUMPTYPE_VERBOSE
93} CPUMDUMPTYPE;
94/** Pointer to a cpu info dump type. */
95typedef CPUMDUMPTYPE *PCPUMDUMPTYPE;
96
97
98/*******************************************************************************
99* Internal Functions *
100*******************************************************************************/
101static CPUMCPUVENDOR cpumR3DetectVendor(uint32_t uEAX, uint32_t uEBX, uint32_t uECX, uint32_t uEDX);
102static int cpumR3CpuIdInit(PVM pVM);
103static DECLCALLBACK(int) cpumR3LiveExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uPass);
104static DECLCALLBACK(int) cpumR3SaveExec(PVM pVM, PSSMHANDLE pSSM);
105static DECLCALLBACK(int) cpumR3LoadPrep(PVM pVM, PSSMHANDLE pSSM);
106static DECLCALLBACK(int) cpumR3LoadExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
107static DECLCALLBACK(int) cpumR3LoadDone(PVM pVM, PSSMHANDLE pSSM);
108static DECLCALLBACK(void) cpumR3InfoAll(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
109static DECLCALLBACK(void) cpumR3InfoGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
110static DECLCALLBACK(void) cpumR3InfoGuestInstr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
111static DECLCALLBACK(void) cpumR3InfoHyper(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
112static DECLCALLBACK(void) cpumR3InfoHost(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
113static DECLCALLBACK(void) cpumR3CpuIdInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
114
115
116/**
117 * Initializes the CPUM.
118 *
119 * @returns VBox status code.
120 * @param pVM The VM to operate on.
121 */
122VMMR3DECL(int) CPUMR3Init(PVM pVM)
123{
124 LogFlow(("CPUMR3Init\n"));
125
126 /*
127 * Assert alignment and sizes.
128 */
129 AssertCompileMemberAlignment(VM, cpum.s, 32);
130 AssertCompile(sizeof(pVM->cpum.s) <= sizeof(pVM->cpum.padding));
131 AssertCompileSizeAlignment(CPUMCTX, 64);
132 AssertCompileSizeAlignment(CPUMCTXMSR, 64);
133 AssertCompileSizeAlignment(CPUMHOSTCTX, 64);
134 AssertCompileMemberAlignment(VM, cpum, 64);
135 AssertCompileMemberAlignment(VM, aCpus, 64);
136 AssertCompileMemberAlignment(VMCPU, cpum.s, 64);
137 AssertCompileMemberSizeAlignment(VM, aCpus[0].cpum.s, 64);
138
139 /* Calculate the offset from CPUM to CPUMCPU for the first CPU. */
140 pVM->cpum.s.offCPUMCPU0 = RT_OFFSETOF(VM, aCpus[0].cpum) - RT_OFFSETOF(VM, cpum);
141 Assert((uintptr_t)&pVM->cpum + pVM->cpum.s.offCPUMCPU0 == (uintptr_t)&pVM->aCpus[0].cpum);
142
143 /* Calculate the offset from CPUMCPU to CPUM. */
144 for (VMCPUID i = 0; i < pVM->cCpus; i++)
145 {
146 PVMCPU pVCpu = &pVM->aCpus[i];
147
148 /*
149 * Setup any fixed pointers and offsets.
150 */
151 pVCpu->cpum.s.pHyperCoreR3 = CPUMCTX2CORE(&pVCpu->cpum.s.Hyper);
152 pVCpu->cpum.s.pHyperCoreR0 = VM_R0_ADDR(pVM, CPUMCTX2CORE(&pVCpu->cpum.s.Hyper));
153
154 pVCpu->cpum.s.offCPUM = RT_OFFSETOF(VM, aCpus[i].cpum) - RT_OFFSETOF(VM, cpum);
155 Assert((uintptr_t)&pVCpu->cpum - pVCpu->cpum.s.offCPUM == (uintptr_t)&pVM->cpum);
156 }
157
158 /*
159 * Check that the CPU supports the minimum features we require.
160 */
161 if (!ASMHasCpuId())
162 {
163 Log(("The CPU doesn't support CPUID!\n"));
164 return VERR_UNSUPPORTED_CPU;
165 }
166 ASMCpuId_ECX_EDX(1, &pVM->cpum.s.CPUFeatures.ecx, &pVM->cpum.s.CPUFeatures.edx);
167 ASMCpuId_ECX_EDX(0x80000001, &pVM->cpum.s.CPUFeaturesExt.ecx, &pVM->cpum.s.CPUFeaturesExt.edx);
168
169 /* Setup the CR4 AND and OR masks used in the switcher */
170 /* Depends on the presence of FXSAVE(SSE) support on the host CPU */
171 if (!pVM->cpum.s.CPUFeatures.edx.u1FXSR)
172 {
173 Log(("The CPU doesn't support FXSAVE/FXRSTOR!\n"));
174 /* No FXSAVE implies no SSE */
175 pVM->cpum.s.CR4.AndMask = X86_CR4_PVI | X86_CR4_VME;
176 pVM->cpum.s.CR4.OrMask = 0;
177 }
178 else
179 {
180 pVM->cpum.s.CR4.AndMask = X86_CR4_OSXMMEEXCPT | X86_CR4_PVI | X86_CR4_VME;
181 pVM->cpum.s.CR4.OrMask = X86_CR4_OSFSXR;
182 }
183
184 if (!pVM->cpum.s.CPUFeatures.edx.u1MMX)
185 {
186 Log(("The CPU doesn't support MMX!\n"));
187 return VERR_UNSUPPORTED_CPU;
188 }
189 if (!pVM->cpum.s.CPUFeatures.edx.u1TSC)
190 {
191 Log(("The CPU doesn't support TSC!\n"));
192 return VERR_UNSUPPORTED_CPU;
193 }
194 /* Bogus on AMD? */
195 if (!pVM->cpum.s.CPUFeatures.edx.u1SEP)
196 Log(("The CPU doesn't support SYSENTER/SYSEXIT!\n"));
197
198 /*
199 * Detect the host CPU vendor.
200 * (The guest CPU vendor is re-detected later on.)
201 */
202 uint32_t uEAX, uEBX, uECX, uEDX;
203 ASMCpuId(0, &uEAX, &uEBX, &uECX, &uEDX);
204 pVM->cpum.s.enmHostCpuVendor = cpumR3DetectVendor(uEAX, uEBX, uECX, uEDX);
205 pVM->cpum.s.enmGuestCpuVendor = pVM->cpum.s.enmHostCpuVendor;
206
207 /*
208 * Setup hypervisor startup values.
209 */
210
211 /*
212 * Register saved state data item.
213 */
214 int rc = SSMR3RegisterInternal(pVM, "cpum", 1, CPUM_SAVED_STATE_VERSION, sizeof(CPUM),
215 NULL, cpumR3LiveExec, NULL,
216 NULL, cpumR3SaveExec, NULL,
217 cpumR3LoadPrep, cpumR3LoadExec, cpumR3LoadDone);
218 if (RT_FAILURE(rc))
219 return rc;
220
221 /*
222 * Register info handlers.
223 */
224 DBGFR3InfoRegisterInternal(pVM, "cpum", "Displays the all the cpu states.", &cpumR3InfoAll);
225 DBGFR3InfoRegisterInternal(pVM, "cpumguest", "Displays the guest cpu state.", &cpumR3InfoGuest);
226 DBGFR3InfoRegisterInternal(pVM, "cpumhyper", "Displays the hypervisor cpu state.", &cpumR3InfoHyper);
227 DBGFR3InfoRegisterInternal(pVM, "cpumhost", "Displays the host cpu state.", &cpumR3InfoHost);
228 DBGFR3InfoRegisterInternal(pVM, "cpuid", "Displays the guest cpuid leaves.", &cpumR3CpuIdInfo);
229 DBGFR3InfoRegisterInternal(pVM, "cpumguestinstr", "Displays the current guest instruction.", &cpumR3InfoGuestInstr);
230
231 /*
232 * Initialize the Guest CPUID state.
233 */
234 rc = cpumR3CpuIdInit(pVM);
235 if (RT_FAILURE(rc))
236 return rc;
237 CPUMR3Reset(pVM);
238 return VINF_SUCCESS;
239}
240
241
242/**
243 * Detect the CPU vendor give n the
244 *
245 * @returns The vendor.
246 * @param uEAX EAX from CPUID(0).
247 * @param uEBX EBX from CPUID(0).
248 * @param uECX ECX from CPUID(0).
249 * @param uEDX EDX from CPUID(0).
250 */
251static CPUMCPUVENDOR cpumR3DetectVendor(uint32_t uEAX, uint32_t uEBX, uint32_t uECX, uint32_t uEDX)
252{
253 if ( uEAX >= 1
254 && uEBX == X86_CPUID_VENDOR_AMD_EBX
255 && uECX == X86_CPUID_VENDOR_AMD_ECX
256 && uEDX == X86_CPUID_VENDOR_AMD_EDX)
257 return CPUMCPUVENDOR_AMD;
258
259 if ( uEAX >= 1
260 && uEBX == X86_CPUID_VENDOR_INTEL_EBX
261 && uECX == X86_CPUID_VENDOR_INTEL_ECX
262 && uEDX == X86_CPUID_VENDOR_INTEL_EDX)
263 return CPUMCPUVENDOR_INTEL;
264
265 /** @todo detect the other buggers... */
266 return CPUMCPUVENDOR_UNKNOWN;
267}
268
269
270/**
271 * Fetches overrides for a CPUID leaf.
272 *
273 * @returns VBox status code.
274 * @param pLeaf The leaf to load the overrides into.
275 * @param pCfgNode The CFGM node containing the overrides
276 * (/CPUM/HostCPUID/ or /CPUM/CPUID/).
277 * @param iLeaf The CPUID leaf number.
278 */
279static int cpumR3CpuIdFetchLeafOverride(PCPUMCPUID pLeaf, PCFGMNODE pCfgNode, uint32_t iLeaf)
280{
281 PCFGMNODE pLeafNode = CFGMR3GetChildF(pCfgNode, "%RX32", iLeaf);
282 if (pLeafNode)
283 {
284 uint32_t u32;
285 int rc = CFGMR3QueryU32(pLeafNode, "eax", &u32);
286 if (RT_SUCCESS(rc))
287 pLeaf->eax = u32;
288 else
289 AssertReturn(rc == VERR_CFGM_VALUE_NOT_FOUND, rc);
290
291 rc = CFGMR3QueryU32(pLeafNode, "ebx", &u32);
292 if (RT_SUCCESS(rc))
293 pLeaf->ebx = u32;
294 else
295 AssertReturn(rc == VERR_CFGM_VALUE_NOT_FOUND, rc);
296
297 rc = CFGMR3QueryU32(pLeafNode, "ecx", &u32);
298 if (RT_SUCCESS(rc))
299 pLeaf->ecx = u32;
300 else
301 AssertReturn(rc == VERR_CFGM_VALUE_NOT_FOUND, rc);
302
303 rc = CFGMR3QueryU32(pLeafNode, "edx", &u32);
304 if (RT_SUCCESS(rc))
305 pLeaf->edx = u32;
306 else
307 AssertReturn(rc == VERR_CFGM_VALUE_NOT_FOUND, rc);
308
309 }
310 return VINF_SUCCESS;
311}
312
313
314/**
315 * Load the overrides for a set of CPUID leaves.
316 *
317 * @returns VBox status code.
318 * @param paLeaves The leaf array.
319 * @param cLeaves The number of leaves.
320 * @param uStart The start leaf number.
321 * @param pCfgNode The CFGM node containing the overrides
322 * (/CPUM/HostCPUID/ or /CPUM/CPUID/).
323 */
324static int cpumR3CpuIdInitLoadOverrideSet(uint32_t uStart, PCPUMCPUID paLeaves, uint32_t cLeaves, PCFGMNODE pCfgNode)
325{
326 for (uint32_t i = 0; i < cLeaves; i++)
327 {
328 int rc = cpumR3CpuIdFetchLeafOverride(&paLeaves[i], pCfgNode, uStart + i);
329 if (RT_FAILURE(rc))
330 return rc;
331 }
332
333 return VINF_SUCCESS;
334}
335
336/**
337 * Init a set of host CPUID leaves.
338 *
339 * @returns VBox status code.
340 * @param paLeaves The leaf array.
341 * @param cLeaves The number of leaves.
342 * @param uStart The start leaf number.
343 * @param pCfgNode The /CPUM/HostCPUID/ node.
344 */
345static int cpumR3CpuIdInitHostSet(uint32_t uStart, PCPUMCPUID paLeaves, uint32_t cLeaves, PCFGMNODE pCfgNode)
346{
347 /* Using the ECX variant for all of them can't hurt... */
348 for (uint32_t i = 0; i < cLeaves; i++)
349 ASMCpuId_Idx_ECX(uStart + i, 0, &paLeaves[i].eax, &paLeaves[i].ebx, &paLeaves[i].ecx, &paLeaves[i].edx);
350
351 /* Load CPUID leaf override; we currently don't care if the user
352 specifies features the host CPU doesn't support. */
353 return cpumR3CpuIdInitLoadOverrideSet(uStart, paLeaves, cLeaves, pCfgNode);
354}
355
356
357/**
358 * Initializes the emulated CPU's cpuid information.
359 *
360 * @returns VBox status code.
361 * @param pVM The VM to operate on.
362 */
363static int cpumR3CpuIdInit(PVM pVM)
364{
365 PCPUM pCPUM = &pVM->cpum.s;
366 PCFGMNODE pCpumCfg = CFGMR3GetChild(CFGMR3GetRoot(pVM), "CPUM");
367 uint32_t i;
368 int rc;
369
370#define PORTABLE_CLEAR_BITS_WHEN(Lvl, LeafSuffReg, FeatNm, fMask, uValue) \
371 if (pCPUM->u8PortableCpuIdLevel >= (Lvl) && (pCPUM->aGuestCpuId##LeafSuffReg & (fMask)) == (uValue) ) \
372 { \
373 LogRel(("PortableCpuId: " #LeafSuffReg "[" #FeatNm "]: %#x -> 0\n", pCPUM->aGuestCpuId##LeafSuffReg & (fMask))); \
374 pCPUM->aGuestCpuId##LeafSuffReg &= ~(uint32_t)(fMask); \
375 }
376#define PORTABLE_DISABLE_FEATURE_BIT(Lvl, LeafSuffReg, FeatNm, fBitMask) \
377 if (pCPUM->u8PortableCpuIdLevel >= (Lvl) && (pCPUM->aGuestCpuId##LeafSuffReg & (fBitMask)) ) \
378 { \
379 LogRel(("PortableCpuId: " #LeafSuffReg "[" #FeatNm "]: 1 -> 0\n")); \
380 pCPUM->aGuestCpuId##LeafSuffReg &= ~(uint32_t)(fBitMask); \
381 }
382
383 /*
384 * Read the configuration.
385 */
386 /** @cfgm{CPUM/SyntheticCpu, boolean, false}
387 * Enables the Synthetic CPU. The Vendor ID and Processor Name are
388 * completely overridden by VirtualBox custom strings. Some
389 * CPUID information is withheld, like the cache info. */
390 rc = CFGMR3QueryBoolDef(pCpumCfg, "SyntheticCpu", &pCPUM->fSyntheticCpu, false);
391 AssertRCReturn(rc, rc);
392
393 /** @cfgm{CPUM/PortableCpuIdLevel, 8-bit, 0, 3, 0}
394 * When non-zero CPUID features that could cause portability issues will be
395 * stripped. The higher the value the more features gets stripped. Higher
396 * values should only be used when older CPUs are involved since it may
397 * harm performance and maybe also cause problems with specific guests. */
398 rc = CFGMR3QueryU8Def(pCpumCfg, "PortableCpuIdLevel", &pCPUM->u8PortableCpuIdLevel, 0);
399 AssertRCReturn(rc, rc);
400
401 AssertLogRelReturn(!pCPUM->fSyntheticCpu || !pCPUM->u8PortableCpuIdLevel, VERR_INTERNAL_ERROR_2);
402
403 /*
404 * Get the host CPUID leaves and redetect the guest CPU vendor (could've
405 * been overridden).
406 */
407 /** @cfgm{CPUM/HostCPUID/[000000xx|800000xx|c000000x]/[eax|ebx|ecx|edx],32-bit}
408 * Overrides the host CPUID leaf values used for calculating the guest CPUID
409 * leaves. This can be used to preserve the CPUID values when moving a VM
410 * to a different machine. Another use is restricting (or extending) the
411 * feature set exposed to the guest. */
412 PCFGMNODE pHostOverrideCfg = CFGMR3GetChild(pCpumCfg, "HostCPUID");
413 rc = cpumR3CpuIdInitHostSet(UINT32_C(0x00000000), &pCPUM->aGuestCpuIdStd[0], RT_ELEMENTS(pCPUM->aGuestCpuIdStd), pHostOverrideCfg);
414 AssertRCReturn(rc, rc);
415 rc = cpumR3CpuIdInitHostSet(UINT32_C(0x80000000), &pCPUM->aGuestCpuIdExt[0], RT_ELEMENTS(pCPUM->aGuestCpuIdExt), pHostOverrideCfg);
416 AssertRCReturn(rc, rc);
417 rc = cpumR3CpuIdInitHostSet(UINT32_C(0xc0000000), &pCPUM->aGuestCpuIdCentaur[0], RT_ELEMENTS(pCPUM->aGuestCpuIdCentaur), pHostOverrideCfg);
418 AssertRCReturn(rc, rc);
419
420 pCPUM->enmGuestCpuVendor = cpumR3DetectVendor(pCPUM->aGuestCpuIdStd[0].eax, pCPUM->aGuestCpuIdStd[0].ebx,
421 pCPUM->aGuestCpuIdStd[0].ecx, pCPUM->aGuestCpuIdStd[0].edx);
422
423 /*
424 * Determine the default leaf.
425 *
426 * Intel returns values of the highest standard function, while AMD
427 * returns zeros. VIA on the other hand seems to returning nothing or
428 * perhaps some random garbage, we don't try to duplicate this behavior.
429 */
430 ASMCpuId(pCPUM->aGuestCpuIdStd[0].eax + 10, /** @todo r=bird: Use the host value here in case of overrides and more than 10 leaves being stripped already. */
431 &pCPUM->GuestCpuIdDef.eax, &pCPUM->GuestCpuIdDef.ebx,
432 &pCPUM->GuestCpuIdDef.ecx, &pCPUM->GuestCpuIdDef.edx);
433
434
435 /* Cpuid 1 & 0x80000001:
436 * Only report features we can support.
437 *
438 * Note! When enabling new features the Synthetic CPU and Portable CPUID
439 * options may require adjusting (i.e. stripping what was enabled).
440 */
441 pCPUM->aGuestCpuIdStd[1].edx &= X86_CPUID_FEATURE_EDX_FPU
442 | X86_CPUID_FEATURE_EDX_VME
443 | X86_CPUID_FEATURE_EDX_DE
444 | X86_CPUID_FEATURE_EDX_PSE
445 | X86_CPUID_FEATURE_EDX_TSC
446 | X86_CPUID_FEATURE_EDX_MSR
447 //| X86_CPUID_FEATURE_EDX_PAE - set later if configured.
448 | X86_CPUID_FEATURE_EDX_MCE
449 | X86_CPUID_FEATURE_EDX_CX8
450 //| X86_CPUID_FEATURE_EDX_APIC - set by the APIC device if present.
451 /* Note! we don't report sysenter/sysexit support due to our inability to keep the IOPL part of eflags in sync while in ring 1 (see #1757) */
452 //| X86_CPUID_FEATURE_EDX_SEP
453 | X86_CPUID_FEATURE_EDX_MTRR
454 | X86_CPUID_FEATURE_EDX_PGE
455 | X86_CPUID_FEATURE_EDX_MCA
456 | X86_CPUID_FEATURE_EDX_CMOV
457 | X86_CPUID_FEATURE_EDX_PAT
458 | X86_CPUID_FEATURE_EDX_PSE36
459 //| X86_CPUID_FEATURE_EDX_PSN - no serial number.
460 | X86_CPUID_FEATURE_EDX_CLFSH
461 //| X86_CPUID_FEATURE_EDX_DS - no debug store.
462 //| X86_CPUID_FEATURE_EDX_ACPI - not virtualized yet.
463 | X86_CPUID_FEATURE_EDX_MMX
464 | X86_CPUID_FEATURE_EDX_FXSR
465 | X86_CPUID_FEATURE_EDX_SSE
466 | X86_CPUID_FEATURE_EDX_SSE2
467 //| X86_CPUID_FEATURE_EDX_SS - no self snoop.
468 //| X86_CPUID_FEATURE_EDX_HTT - no hyperthreading.
469 //| X86_CPUID_FEATURE_EDX_TM - no thermal monitor.
470 //| X86_CPUID_FEATURE_EDX_PBE - no pending break enabled.
471 | 0;
472 pCPUM->aGuestCpuIdStd[1].ecx &= 0
473 | X86_CPUID_FEATURE_ECX_SSE3
474 /* Can't properly emulate monitor & mwait with guest SMP; force the guest to use hlt for idling VCPUs. */
475 | ((pVM->cCpus == 1) ? X86_CPUID_FEATURE_ECX_MONITOR : 0)
476 //| X86_CPUID_FEATURE_ECX_CPLDS - no CPL qualified debug store.
477 //| X86_CPUID_FEATURE_ECX_VMX - not virtualized.
478 //| X86_CPUID_FEATURE_ECX_EST - no extended speed step.
479 //| X86_CPUID_FEATURE_ECX_TM2 - no thermal monitor 2.
480 | X86_CPUID_FEATURE_ECX_SSSE3
481 //| X86_CPUID_FEATURE_ECX_CNTXID - no L1 context id (MSR++).
482 //| X86_CPUID_FEATURE_ECX_CX16 - no cmpxchg16b
483 /* ECX Bit 14 - xTPR Update Control. Processor supports changing IA32_MISC_ENABLES[bit 23]. */
484 //| X86_CPUID_FEATURE_ECX_TPRUPDATE
485 /* ECX Bit 21 - x2APIC support - not yet. */
486 // | X86_CPUID_FEATURE_ECX_X2APIC
487 /* ECX Bit 23 - POPCNT instruction. */
488 //| X86_CPUID_FEATURE_ECX_POPCNT
489 | 0;
490 if (pCPUM->u8PortableCpuIdLevel > 0)
491 {
492 PORTABLE_CLEAR_BITS_WHEN(1, Std[1].eax, ProcessorType, (UINT32_C(3) << 12), (UINT32_C(2) << 12));
493 PORTABLE_DISABLE_FEATURE_BIT(1, Std[1].ecx, SSSE3, X86_CPUID_FEATURE_ECX_SSSE3);
494 PORTABLE_DISABLE_FEATURE_BIT(1, Std[1].ecx, SSE3, X86_CPUID_FEATURE_ECX_SSE3);
495 PORTABLE_DISABLE_FEATURE_BIT(2, Std[1].edx, SSE2, X86_CPUID_FEATURE_EDX_SSE2);
496 PORTABLE_DISABLE_FEATURE_BIT(3, Std[1].edx, SSE, X86_CPUID_FEATURE_EDX_SSE);
497 PORTABLE_DISABLE_FEATURE_BIT(3, Std[1].edx, CLFSH, X86_CPUID_FEATURE_EDX_CLFSH);
498 PORTABLE_DISABLE_FEATURE_BIT(3, Std[1].edx, CMOV, X86_CPUID_FEATURE_EDX_CMOV);
499
500 Assert(!(pCPUM->aGuestCpuIdStd[1].edx & ( X86_CPUID_FEATURE_EDX_SEP
501 | X86_CPUID_FEATURE_EDX_PSN
502 | X86_CPUID_FEATURE_EDX_DS
503 | X86_CPUID_FEATURE_EDX_ACPI
504 | X86_CPUID_FEATURE_EDX_SS
505 | X86_CPUID_FEATURE_EDX_TM
506 | X86_CPUID_FEATURE_EDX_PBE
507 )));
508 Assert(!(pCPUM->aGuestCpuIdStd[1].ecx & ( X86_CPUID_FEATURE_ECX_PCLMUL
509 | X86_CPUID_FEATURE_ECX_DTES64
510 | X86_CPUID_FEATURE_ECX_CPLDS
511 | X86_CPUID_FEATURE_ECX_VMX
512 | X86_CPUID_FEATURE_ECX_SMX
513 | X86_CPUID_FEATURE_ECX_EST
514 | X86_CPUID_FEATURE_ECX_TM2
515 | X86_CPUID_FEATURE_ECX_CNTXID
516 | X86_CPUID_FEATURE_ECX_FMA
517 | X86_CPUID_FEATURE_ECX_CX16
518 | X86_CPUID_FEATURE_ECX_TPRUPDATE
519 | X86_CPUID_FEATURE_ECX_PDCM
520 | X86_CPUID_FEATURE_ECX_DCA
521 | X86_CPUID_FEATURE_ECX_MOVBE
522 | X86_CPUID_FEATURE_ECX_AES
523 | X86_CPUID_FEATURE_ECX_POPCNT
524 | X86_CPUID_FEATURE_ECX_XSAVE
525 | X86_CPUID_FEATURE_ECX_OSXSAVE
526 | X86_CPUID_FEATURE_ECX_AVX
527 )));
528 }
529
530 /* Cpuid 0x80000001:
531 * Only report features we can support.
532 *
533 * Note! When enabling new features the Synthetic CPU and Portable CPUID
534 * options may require adjusting (i.e. stripping what was enabled).
535 *
536 * ASSUMES that this is ALWAYS the AMD defined feature set if present.
537 */
538 pCPUM->aGuestCpuIdExt[1].edx &= X86_CPUID_AMD_FEATURE_EDX_FPU
539 | X86_CPUID_AMD_FEATURE_EDX_VME
540 | X86_CPUID_AMD_FEATURE_EDX_DE
541 | X86_CPUID_AMD_FEATURE_EDX_PSE
542 | X86_CPUID_AMD_FEATURE_EDX_TSC
543 | X86_CPUID_AMD_FEATURE_EDX_MSR //?? this means AMD MSRs..
544 //| X86_CPUID_AMD_FEATURE_EDX_PAE - not implemented yet.
545 //| X86_CPUID_AMD_FEATURE_EDX_MCE - not virtualized yet.
546 | X86_CPUID_AMD_FEATURE_EDX_CX8
547 //| X86_CPUID_AMD_FEATURE_EDX_APIC - set by the APIC device if present.
548 /* Note! we don't report sysenter/sysexit support due to our inability to keep the IOPL part of eflags in sync while in ring 1 (see #1757) */
549 //| X86_CPUID_AMD_FEATURE_EDX_SEP
550 | X86_CPUID_AMD_FEATURE_EDX_MTRR
551 | X86_CPUID_AMD_FEATURE_EDX_PGE
552 | X86_CPUID_AMD_FEATURE_EDX_MCA
553 | X86_CPUID_AMD_FEATURE_EDX_CMOV
554 | X86_CPUID_AMD_FEATURE_EDX_PAT
555 | X86_CPUID_AMD_FEATURE_EDX_PSE36
556 //| X86_CPUID_AMD_FEATURE_EDX_NX - not virtualized, requires PAE.
557 //| X86_CPUID_AMD_FEATURE_EDX_AXMMX
558 | X86_CPUID_AMD_FEATURE_EDX_MMX
559 | X86_CPUID_AMD_FEATURE_EDX_FXSR
560 | X86_CPUID_AMD_FEATURE_EDX_FFXSR
561 //| X86_CPUID_AMD_FEATURE_EDX_PAGE1GB
562 //| X86_CPUID_AMD_FEATURE_EDX_RDTSCP - AMD only; turned on when necessary
563 //| X86_CPUID_AMD_FEATURE_EDX_LONG_MODE - turned on when necessary
564 | X86_CPUID_AMD_FEATURE_EDX_3DNOW_EX
565 | X86_CPUID_AMD_FEATURE_EDX_3DNOW
566 | 0;
567 pCPUM->aGuestCpuIdExt[1].ecx &= 0
568 //| X86_CPUID_AMD_FEATURE_ECX_LAHF_SAHF
569 //| X86_CPUID_AMD_FEATURE_ECX_CMPL
570 //| X86_CPUID_AMD_FEATURE_ECX_SVM - not virtualized.
571 //| X86_CPUID_AMD_FEATURE_ECX_EXT_APIC
572 /* Note: This could prevent teleporting from AMD to Intel CPUs! */
573 | X86_CPUID_AMD_FEATURE_ECX_CR8L /* expose lock mov cr0 = mov cr8 hack for guests that can use this feature to access the TPR. */
574 //| X86_CPUID_AMD_FEATURE_ECX_ABM
575 //| X86_CPUID_AMD_FEATURE_ECX_SSE4A
576 //| X86_CPUID_AMD_FEATURE_ECX_MISALNSSE
577 //| X86_CPUID_AMD_FEATURE_ECX_3DNOWPRF
578 //| X86_CPUID_AMD_FEATURE_ECX_OSVW
579 //| X86_CPUID_AMD_FEATURE_ECX_IBS
580 //| X86_CPUID_AMD_FEATURE_ECX_SSE5
581 //| X86_CPUID_AMD_FEATURE_ECX_SKINIT
582 //| X86_CPUID_AMD_FEATURE_ECX_WDT
583 | 0;
584 if (pCPUM->u8PortableCpuIdLevel > 0)
585 {
586 PORTABLE_DISABLE_FEATURE_BIT(1, Ext[1].ecx, CR8L, X86_CPUID_AMD_FEATURE_ECX_CR8L);
587 PORTABLE_DISABLE_FEATURE_BIT(1, Ext[1].edx, 3DNOW, X86_CPUID_AMD_FEATURE_EDX_3DNOW);
588 PORTABLE_DISABLE_FEATURE_BIT(1, Ext[1].edx, 3DNOW_EX, X86_CPUID_AMD_FEATURE_EDX_3DNOW_EX);
589 PORTABLE_DISABLE_FEATURE_BIT(1, Ext[1].edx, FFXSR, X86_CPUID_AMD_FEATURE_EDX_FFXSR);
590 PORTABLE_DISABLE_FEATURE_BIT(1, Ext[1].edx, RDTSCP, X86_CPUID_AMD_FEATURE_EDX_RDTSCP);
591 PORTABLE_DISABLE_FEATURE_BIT(2, Ext[1].ecx, LAHF_SAHF, X86_CPUID_AMD_FEATURE_ECX_LAHF_SAHF);
592 PORTABLE_DISABLE_FEATURE_BIT(3, Ext[1].ecx, CMOV, X86_CPUID_AMD_FEATURE_EDX_CMOV);
593
594 Assert(!(pCPUM->aGuestCpuIdExt[1].ecx & ( X86_CPUID_AMD_FEATURE_ECX_CMPL
595 | X86_CPUID_AMD_FEATURE_ECX_SVM
596 | X86_CPUID_AMD_FEATURE_ECX_EXT_APIC
597 | X86_CPUID_AMD_FEATURE_ECX_CR8L
598 | X86_CPUID_AMD_FEATURE_ECX_ABM
599 | X86_CPUID_AMD_FEATURE_ECX_SSE4A
600 | X86_CPUID_AMD_FEATURE_ECX_MISALNSSE
601 | X86_CPUID_AMD_FEATURE_ECX_3DNOWPRF
602 | X86_CPUID_AMD_FEATURE_ECX_OSVW
603 | X86_CPUID_AMD_FEATURE_ECX_IBS
604 | X86_CPUID_AMD_FEATURE_ECX_SSE5
605 | X86_CPUID_AMD_FEATURE_ECX_SKINIT
606 | X86_CPUID_AMD_FEATURE_ECX_WDT
607 | UINT32_C(0xffffc000)
608 )));
609 Assert(!(pCPUM->aGuestCpuIdExt[1].edx & ( RT_BIT(10)
610 | X86_CPUID_AMD_FEATURE_EDX_SEP
611 | RT_BIT(18)
612 | RT_BIT(19)
613 | RT_BIT(21)
614 | X86_CPUID_AMD_FEATURE_EDX_AXMMX
615 | X86_CPUID_AMD_FEATURE_EDX_PAGE1GB
616 | RT_BIT(28)
617 )));
618 }
619
620 /*
621 * Apply the Synthetic CPU modifications. (TODO: move this up)
622 */
623 if (pCPUM->fSyntheticCpu)
624 {
625 static const char s_szVendor[13] = "VirtualBox ";
626 static const char s_szProcessor[48] = "VirtualBox SPARCx86 Processor v1000 "; /* includes null terminator */
627
628 pCPUM->enmGuestCpuVendor = CPUMCPUVENDOR_SYNTHETIC;
629
630 /* Limit the nr of standard leaves; 5 for monitor/mwait */
631 pCPUM->aGuestCpuIdStd[0].eax = RT_MIN(pCPUM->aGuestCpuIdStd[0].eax, 5);
632
633 /* 0: Vendor */
634 pCPUM->aGuestCpuIdStd[0].ebx = pCPUM->aGuestCpuIdExt[0].ebx = ((uint32_t *)s_szVendor)[0];
635 pCPUM->aGuestCpuIdStd[0].ecx = pCPUM->aGuestCpuIdExt[0].ecx = ((uint32_t *)s_szVendor)[2];
636 pCPUM->aGuestCpuIdStd[0].edx = pCPUM->aGuestCpuIdExt[0].edx = ((uint32_t *)s_szVendor)[1];
637
638 /* 1.eax: Version information. family : model : stepping */
639 pCPUM->aGuestCpuIdStd[1].eax = (0xf << 8) + (0x1 << 4) + 1;
640
641 /* Leaves 2 - 4 are Intel only - zero them out */
642 memset(&pCPUM->aGuestCpuIdStd[2], 0, sizeof(pCPUM->aGuestCpuIdStd[2]));
643 memset(&pCPUM->aGuestCpuIdStd[3], 0, sizeof(pCPUM->aGuestCpuIdStd[3]));
644 memset(&pCPUM->aGuestCpuIdStd[4], 0, sizeof(pCPUM->aGuestCpuIdStd[4]));
645
646 /* Leaf 5 = monitor/mwait */
647
648 /* Limit the nr of extended leaves: 0x80000008 to include the max virtual and physical address size (64 bits guests). */
649 pCPUM->aGuestCpuIdExt[0].eax = RT_MIN(pCPUM->aGuestCpuIdExt[0].eax, 0x80000008);
650 /* AMD only - set to zero. */
651 pCPUM->aGuestCpuIdExt[0].ebx = pCPUM->aGuestCpuIdExt[0].ecx = pCPUM->aGuestCpuIdExt[0].edx = 0;
652
653 /* 0x800000001: AMD only; shared feature bits are set dynamically. */
654 memset(&pCPUM->aGuestCpuIdExt[1], 0, sizeof(pCPUM->aGuestCpuIdExt[1]));
655
656 /* 0x800000002-4: Processor Name String Identifier. */
657 pCPUM->aGuestCpuIdExt[2].eax = ((uint32_t *)s_szProcessor)[0];
658 pCPUM->aGuestCpuIdExt[2].ebx = ((uint32_t *)s_szProcessor)[1];
659 pCPUM->aGuestCpuIdExt[2].ecx = ((uint32_t *)s_szProcessor)[2];
660 pCPUM->aGuestCpuIdExt[2].edx = ((uint32_t *)s_szProcessor)[3];
661 pCPUM->aGuestCpuIdExt[3].eax = ((uint32_t *)s_szProcessor)[4];
662 pCPUM->aGuestCpuIdExt[3].ebx = ((uint32_t *)s_szProcessor)[5];
663 pCPUM->aGuestCpuIdExt[3].ecx = ((uint32_t *)s_szProcessor)[6];
664 pCPUM->aGuestCpuIdExt[3].edx = ((uint32_t *)s_szProcessor)[7];
665 pCPUM->aGuestCpuIdExt[4].eax = ((uint32_t *)s_szProcessor)[8];
666 pCPUM->aGuestCpuIdExt[4].ebx = ((uint32_t *)s_szProcessor)[9];
667 pCPUM->aGuestCpuIdExt[4].ecx = ((uint32_t *)s_szProcessor)[10];
668 pCPUM->aGuestCpuIdExt[4].edx = ((uint32_t *)s_szProcessor)[11];
669
670 /* 0x800000005-7 - reserved -> zero */
671 memset(&pCPUM->aGuestCpuIdExt[5], 0, sizeof(pCPUM->aGuestCpuIdExt[5]));
672 memset(&pCPUM->aGuestCpuIdExt[6], 0, sizeof(pCPUM->aGuestCpuIdExt[6]));
673 memset(&pCPUM->aGuestCpuIdExt[7], 0, sizeof(pCPUM->aGuestCpuIdExt[7]));
674
675 /* 0x800000008: only the max virtual and physical address size. */
676 pCPUM->aGuestCpuIdExt[8].ecx = pCPUM->aGuestCpuIdExt[8].ebx = pCPUM->aGuestCpuIdExt[8].edx = 0; /* reserved */
677 }
678
679 /*
680 * Hide HTT, multicode, SMP, whatever.
681 * (APIC-ID := 0 and #LogCpus := 0)
682 */
683 pCPUM->aGuestCpuIdStd[1].ebx &= 0x0000ffff;
684#ifdef VBOX_WITH_MULTI_CORE
685 if ( pCPUM->enmGuestCpuVendor != CPUMCPUVENDOR_SYNTHETIC
686 && pVM->cCpus > 1)
687 {
688 /* If CPUID Fn0000_0001_EDX[HTT] = 1 then LogicalProcessorCount is the number of threads per CPU core times the number of CPU cores per processor */
689 pCPUM->aGuestCpuIdStd[1].ebx |= (pVM->cCpus << 16);
690 pCPUM->aGuestCpuIdStd[1].edx |= X86_CPUID_FEATURE_EDX_HTT; /* necessary for hyper-threading *or* multi-core CPUs */
691 }
692#endif
693
694 /* Cpuid 2:
695 * Intel: Cache and TLB information
696 * AMD: Reserved
697 * Safe to expose; restrict the number of calls to 1 for the portable case.
698 */
699 if ( pCPUM->u8PortableCpuIdLevel > 0
700 && pCPUM->aGuestCpuIdStd[0].eax >= 2
701 && (pCPUM->aGuestCpuIdStd[2].eax & 0xff) > 1)
702 {
703 LogRel(("PortableCpuId: Std[2].al: %d -> 1\n", pCPUM->aGuestCpuIdStd[2].eax & 0xff));
704 pCPUM->aGuestCpuIdStd[2].eax &= UINT32_C(0xfffffffe);
705 }
706
707 /* Cpuid 3:
708 * Intel: EAX, EBX - reserved (transmeta uses these)
709 * ECX, EDX - Processor Serial Number if available, otherwise reserved
710 * AMD: Reserved
711 * Safe to expose
712 */
713 if (!(pCPUM->aGuestCpuIdStd[1].edx & X86_CPUID_FEATURE_EDX_PSN))
714 {
715 pCPUM->aGuestCpuIdStd[3].ecx = pCPUM->aGuestCpuIdStd[3].edx = 0;
716 if (pCPUM->u8PortableCpuIdLevel > 0)
717 pCPUM->aGuestCpuIdStd[3].eax = pCPUM->aGuestCpuIdStd[3].ebx = 0;
718 }
719
720 /* Cpuid 4:
721 * Intel: Deterministic Cache Parameters Leaf
722 * Note: Depends on the ECX input! -> Feeling rather lazy now, so we just return 0
723 * AMD: Reserved
724 * Safe to expose, except for EAX:
725 * Bits 25-14: Maximum number of addressable IDs for logical processors sharing this cache (see note)**
726 * Bits 31-26: Maximum number of processor cores in this physical package**
727 * Note: These SMP values are constant regardless of ECX
728 */
729 pCPUM->aGuestCpuIdStd[4].ecx = pCPUM->aGuestCpuIdStd[4].edx = 0;
730 pCPUM->aGuestCpuIdStd[4].eax = pCPUM->aGuestCpuIdStd[4].ebx = 0;
731#ifdef VBOX_WITH_MULTI_CORE
732 if ( pVM->cCpus > 1
733 && pVM->cpum.s.enmGuestCpuVendor == CPUMCPUVENDOR_INTEL)
734 {
735 AssertReturn(pVM->cCpus <= 64, VERR_TOO_MANY_CPUS);
736 /* One logical processor with possibly multiple cores. */
737 /* See http://www.intel.com/Assets/PDF/appnote/241618.pdf p. 29 */
738 pCPUM->aGuestCpuIdStd[4].eax |= ((pVM->cCpus - 1) << 26); /* 6 bits only -> 64 cores! */
739 }
740#endif
741
742 /* Cpuid 5: Monitor/mwait Leaf
743 * Intel: ECX, EDX - reserved
744 * EAX, EBX - Smallest and largest monitor line size
745 * AMD: EDX - reserved
746 * EAX, EBX - Smallest and largest monitor line size
747 * ECX - extensions (ignored for now)
748 * Safe to expose
749 */
750 if (!(pCPUM->aGuestCpuIdStd[1].ecx & X86_CPUID_FEATURE_ECX_MONITOR))
751 pCPUM->aGuestCpuIdStd[5].eax = pCPUM->aGuestCpuIdStd[5].ebx = 0;
752
753 pCPUM->aGuestCpuIdStd[5].ecx = pCPUM->aGuestCpuIdStd[5].edx = 0;
754 /** @cfgm{/CPUM/MWaitExtensions, boolean, false}
755 * Expose MWAIT extended features to the guest. For now we expose
756 * just MWAIT break on interrupt feature (bit 1).
757 */
758 bool fMWaitExtensions;
759 rc = CFGMR3QueryBoolDef(pCpumCfg, "MWaitExtensions", &fMWaitExtensions, false); AssertRCReturn(rc, rc);
760 if (fMWaitExtensions)
761 {
762 pCPUM->aGuestCpuIdStd[5].ecx = X86_CPUID_MWAIT_ECX_EXT | X86_CPUID_MWAIT_ECX_BREAKIRQIF0;
763 /* @todo: for now we just expose host's MWAIT C-states, although conceptually
764 it shall be part of our power management virtualization model */
765#if 0
766 /* MWAIT sub C-states */
767 pCPUM->aGuestCpuIdStd[5].edx =
768 (0 << 0) /* 0 in C0 */ |
769 (2 << 4) /* 2 in C1 */ |
770 (2 << 8) /* 2 in C2 */ |
771 (2 << 12) /* 2 in C3 */ |
772 (0 << 16) /* 0 in C4 */
773 ;
774#endif
775 }
776 else
777 pCPUM->aGuestCpuIdStd[5].ecx = pCPUM->aGuestCpuIdStd[5].edx = 0;
778
779 /* Cpuid 0x800000005 & 0x800000006 contain information about L1, L2 & L3 cache and TLB identifiers.
780 * Safe to pass on to the guest.
781 *
782 * Intel: 0x800000005 reserved
783 * 0x800000006 L2 cache information
784 * AMD: 0x800000005 L1 cache information
785 * 0x800000006 L2/L3 cache information
786 */
787
788 /* Cpuid 0x800000007:
789 * AMD: EAX, EBX, ECX - reserved
790 * EDX: Advanced Power Management Information
791 * Intel: Reserved
792 */
793 if (pCPUM->aGuestCpuIdExt[0].eax >= UINT32_C(0x80000007))
794 {
795 Assert(pVM->cpum.s.enmGuestCpuVendor != CPUMCPUVENDOR_INVALID);
796
797 pCPUM->aGuestCpuIdExt[7].eax = pCPUM->aGuestCpuIdExt[7].ebx = pCPUM->aGuestCpuIdExt[7].ecx = 0;
798
799 if (pVM->cpum.s.enmGuestCpuVendor == CPUMCPUVENDOR_AMD)
800 {
801 /* Only expose the TSC invariant capability bit to the guest. */
802 pCPUM->aGuestCpuIdExt[7].edx &= 0
803 //| X86_CPUID_AMD_ADVPOWER_EDX_TS
804 //| X86_CPUID_AMD_ADVPOWER_EDX_FID
805 //| X86_CPUID_AMD_ADVPOWER_EDX_VID
806 //| X86_CPUID_AMD_ADVPOWER_EDX_TTP
807 //| X86_CPUID_AMD_ADVPOWER_EDX_TM
808 //| X86_CPUID_AMD_ADVPOWER_EDX_STC
809 //| X86_CPUID_AMD_ADVPOWER_EDX_MC
810 //| X86_CPUID_AMD_ADVPOWER_EDX_HWPSTATE
811#if 0 /* We don't expose X86_CPUID_AMD_ADVPOWER_EDX_TSCINVAR, because newer
812 * Linux kernels blindly assume that the AMD performance counters work
813 * if this is set for 64 bits guests. (Can't really find a CPUID feature
814 * bit for them though.) */
815 | X86_CPUID_AMD_ADVPOWER_EDX_TSCINVAR
816#endif
817 | 0;
818 }
819 else
820 pCPUM->aGuestCpuIdExt[7].edx = 0;
821 }
822
823 /* Cpuid 0x800000008:
824 * AMD: EBX, EDX - reserved
825 * EAX: Virtual/Physical/Guest address Size
826 * ECX: Number of cores + APICIdCoreIdSize
827 * Intel: EAX: Virtual/Physical address Size
828 * EBX, ECX, EDX - reserved
829 */
830 if (pCPUM->aGuestCpuIdExt[0].eax >= UINT32_C(0x80000008))
831 {
832 /* Only expose the virtual and physical address sizes to the guest. */
833 pCPUM->aGuestCpuIdExt[8].eax &= UINT32_C(0x0000ffff);
834 pCPUM->aGuestCpuIdExt[8].ebx = pCPUM->aGuestCpuIdExt[8].edx = 0; /* reserved */
835 /* Set APICIdCoreIdSize to zero (use legacy method to determine the number of cores per cpu)
836 * NC (0-7) Number of cores; 0 equals 1 core */
837 pCPUM->aGuestCpuIdExt[8].ecx = 0;
838#ifdef VBOX_WITH_MULTI_CORE
839 if ( pVM->cCpus > 1
840 && pVM->cpum.s.enmGuestCpuVendor == CPUMCPUVENDOR_AMD)
841 {
842 /* Legacy method to determine the number of cores. */
843 pCPUM->aGuestCpuIdExt[1].ecx |= X86_CPUID_AMD_FEATURE_ECX_CMPL;
844 pCPUM->aGuestCpuIdExt[8].ecx |= (pVM->cCpus - 1); /* NC: Number of CPU cores - 1; 8 bits */
845 }
846#endif
847 }
848
849 /** @cfgm{/CPUM/NT4LeafLimit, boolean, false}
850 * Limit the number of standard CPUID leaves to 0..3 to prevent NT4 from
851 * bugchecking with MULTIPROCESSOR_CONFIGURATION_NOT_SUPPORTED (0x3e).
852 * This option corresponds somewhat to IA32_MISC_ENABLES.BOOT_NT4[bit 22].
853 */
854 bool fNt4LeafLimit;
855 rc = CFGMR3QueryBoolDef(pCpumCfg, "NT4LeafLimit", &fNt4LeafLimit, false); AssertRCReturn(rc, rc);
856 if (fNt4LeafLimit)
857 pCPUM->aGuestCpuIdStd[0].eax = 3; /** @todo r=bird: shouldn't we check if pCPUM->aGuestCpuIdStd[0].eax > 3 before setting it 3 here? */
858
859 /*
860 * Limit it the number of entries and fill the remaining with the defaults.
861 *
862 * The limits are masking off stuff about power saving and similar, this
863 * is perhaps a bit crudely done as there is probably some relatively harmless
864 * info too in these leaves (like words about having a constant TSC).
865 */
866 if (pCPUM->aGuestCpuIdStd[0].eax > 5)
867 pCPUM->aGuestCpuIdStd[0].eax = 5;
868 for (i = pCPUM->aGuestCpuIdStd[0].eax + 1; i < RT_ELEMENTS(pCPUM->aGuestCpuIdStd); i++)
869 pCPUM->aGuestCpuIdStd[i] = pCPUM->GuestCpuIdDef;
870
871 if (pCPUM->aGuestCpuIdExt[0].eax > UINT32_C(0x80000008))
872 pCPUM->aGuestCpuIdExt[0].eax = UINT32_C(0x80000008);
873 for (i = pCPUM->aGuestCpuIdExt[0].eax >= UINT32_C(0x80000000)
874 ? pCPUM->aGuestCpuIdExt[0].eax - UINT32_C(0x80000000) + 1
875 : 0;
876 i < RT_ELEMENTS(pCPUM->aGuestCpuIdExt);
877 i++)
878 pCPUM->aGuestCpuIdExt[i] = pCPUM->GuestCpuIdDef;
879
880 /*
881 * Centaur stuff (VIA).
882 *
883 * The important part here (we think) is to make sure the 0xc0000000
884 * function returns 0xc0000001. As for the features, we don't currently
885 * let on about any of those... 0xc0000002 seems to be some
886 * temperature/hz/++ stuff, include it as well (static).
887 */
888 if ( pCPUM->aGuestCpuIdCentaur[0].eax >= UINT32_C(0xc0000000)
889 && pCPUM->aGuestCpuIdCentaur[0].eax <= UINT32_C(0xc0000004))
890 {
891 pCPUM->aGuestCpuIdCentaur[0].eax = RT_MIN(pCPUM->aGuestCpuIdCentaur[0].eax, UINT32_C(0xc0000002));
892 pCPUM->aGuestCpuIdCentaur[1].edx = 0; /* all features hidden */
893 for (i = pCPUM->aGuestCpuIdCentaur[0].eax - UINT32_C(0xc0000000);
894 i < RT_ELEMENTS(pCPUM->aGuestCpuIdCentaur);
895 i++)
896 pCPUM->aGuestCpuIdCentaur[i] = pCPUM->GuestCpuIdDef;
897 }
898 else
899 for (i = 0; i < RT_ELEMENTS(pCPUM->aGuestCpuIdCentaur); i++)
900 pCPUM->aGuestCpuIdCentaur[i] = pCPUM->GuestCpuIdDef;
901
902
903 /*
904 * Load CPUID overrides from configuration.
905 * Note: Kind of redundant now, but allows unchanged overrides
906 */
907 /** @cfgm{CPUM/CPUID/[000000xx|800000xx|c000000x]/[eax|ebx|ecx|edx],32-bit}
908 * Overrides the CPUID leaf values. */
909 PCFGMNODE pOverrideCfg = CFGMR3GetChild(pCpumCfg, "CPUID");
910 rc = cpumR3CpuIdInitLoadOverrideSet(UINT32_C(0x00000000), &pCPUM->aGuestCpuIdStd[0], RT_ELEMENTS(pCPUM->aGuestCpuIdStd), pOverrideCfg);
911 AssertRCReturn(rc, rc);
912 rc = cpumR3CpuIdInitLoadOverrideSet(UINT32_C(0x80000000), &pCPUM->aGuestCpuIdExt[0], RT_ELEMENTS(pCPUM->aGuestCpuIdExt), pOverrideCfg);
913 AssertRCReturn(rc, rc);
914 rc = cpumR3CpuIdInitLoadOverrideSet(UINT32_C(0xc0000000), &pCPUM->aGuestCpuIdCentaur[0], RT_ELEMENTS(pCPUM->aGuestCpuIdCentaur), pOverrideCfg);
915 AssertRCReturn(rc, rc);
916
917 /*
918 * Check if PAE was explicitely enabled by the user.
919 */
920 bool fEnable;
921 rc = CFGMR3QueryBoolDef(CFGMR3GetRoot(pVM), "EnablePAE", &fEnable, false); AssertRCReturn(rc, rc);
922 if (fEnable)
923 CPUMSetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_PAE);
924
925 /*
926 * We don't normally enable NX for raw-mode, so give the user a chance to
927 * force it on.
928 */
929 rc = CFGMR3QueryBoolDef(pCpumCfg, "EnableNX", &fEnable, false); AssertRCReturn(rc, rc);
930 if (fEnable)
931 CPUMSetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_NXE);
932
933 /*
934 * Log the cpuid and we're good.
935 */
936 bool fOldBuffered = RTLogRelSetBuffering(true /*fBuffered*/);
937 RTCPUSET OnlineSet;
938 LogRel(("Logical host processors: %u present, %u max, %u online, online mask: %016RX64\n",
939 (unsigned)RTMpGetPresentCount(), (unsigned)RTMpGetCount(), (unsigned)RTMpGetOnlineCount(),
940 RTCpuSetToU64(RTMpGetOnlineSet(&OnlineSet)) ));
941 LogRel(("************************* CPUID dump ************************\n"));
942 DBGFR3Info(pVM, "cpuid", "verbose", DBGFR3InfoLogRelHlp());
943 LogRel(("\n"));
944 DBGFR3InfoLog(pVM, "cpuid", "verbose"); /* macro */
945 RTLogRelSetBuffering(fOldBuffered);
946 LogRel(("******************** End of CPUID dump **********************\n"));
947
948#undef PORTABLE_DISABLE_FEATURE_BIT
949#undef PORTABLE_CLEAR_BITS_WHEN
950
951 return VINF_SUCCESS;
952}
953
954
955/**
956 * Applies relocations to data and code managed by this
957 * component. This function will be called at init and
958 * whenever the VMM need to relocate it self inside the GC.
959 *
960 * The CPUM will update the addresses used by the switcher.
961 *
962 * @param pVM The VM.
963 */
964VMMR3DECL(void) CPUMR3Relocate(PVM pVM)
965{
966 LogFlow(("CPUMR3Relocate\n"));
967 for (VMCPUID i = 0; i < pVM->cCpus; i++)
968 {
969 /*
970 * Switcher pointers.
971 */
972 PVMCPU pVCpu = &pVM->aCpus[i];
973 pVCpu->cpum.s.pHyperCoreRC = MMHyperCCToRC(pVM, pVCpu->cpum.s.pHyperCoreR3);
974 Assert(pVCpu->cpum.s.pHyperCoreRC != NIL_RTRCPTR);
975
976 }
977}
978
979
980/**
981 * Apply late CPUM property changes based on the fHWVirtEx setting
982 *
983 * @param pVM The VM to operate on.
984 * @param fHWVirtExEnabled HWVirtEx enabled/disabled
985 */
986VMMR3DECL(void) CPUMR3SetHWVirtEx(PVM pVM, bool fHWVirtExEnabled)
987{
988 /*
989 * Workaround for missing cpuid(0) patches when leaf 4 returns GuestCpuIdDef:
990 * If we miss to patch a cpuid(0).eax then Linux tries to determine the number
991 * of processors from (cpuid(4).eax >> 26) + 1.
992 *
993 * Note: this code is obsolete, but let's keep it here for reference.
994 * Purpose is valid when we artificially cap the max std id to less than 4.
995 */
996 if (!fHWVirtExEnabled)
997 {
998 Assert(pVM->cpum.s.aGuestCpuIdStd[4].eax == 0);
999 pVM->cpum.s.aGuestCpuIdStd[4].eax = 0;
1000 }
1001}
1002
1003/**
1004 * Terminates the CPUM.
1005 *
1006 * Termination means cleaning up and freeing all resources,
1007 * the VM it self is at this point powered off or suspended.
1008 *
1009 * @returns VBox status code.
1010 * @param pVM The VM to operate on.
1011 */
1012VMMR3DECL(int) CPUMR3Term(PVM pVM)
1013{
1014#ifdef VBOX_WITH_CRASHDUMP_MAGIC
1015 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1016 {
1017 PVMCPU pVCpu = &pVM->aCpus[i];
1018 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1019
1020 memset(pVCpu->cpum.s.aMagic, 0, sizeof(pVCpu->cpum.s.aMagic));
1021 pVCpu->cpum.s.uMagic = 0;
1022 pCtx->dr[5] = 0;
1023 }
1024#endif
1025 return 0;
1026}
1027
1028
1029/**
1030 * Resets a virtual CPU.
1031 *
1032 * Used by CPUMR3Reset and CPU hot plugging.
1033 *
1034 * @param pVCpu The virtual CPU handle.
1035 */
1036VMMR3DECL(void) CPUMR3ResetCpu(PVMCPU pVCpu)
1037{
1038 /** @todo anything different for VCPU > 0? */
1039 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1040
1041 /*
1042 * Initialize everything to ZERO first.
1043 */
1044 uint32_t fUseFlags = pVCpu->cpum.s.fUseFlags & ~CPUM_USED_FPU_SINCE_REM;
1045 memset(pCtx, 0, sizeof(*pCtx));
1046 pVCpu->cpum.s.fUseFlags = fUseFlags;
1047
1048 pCtx->cr0 = X86_CR0_CD | X86_CR0_NW | X86_CR0_ET; //0x60000010
1049 pCtx->eip = 0x0000fff0;
1050 pCtx->edx = 0x00000600; /* P6 processor */
1051 pCtx->eflags.Bits.u1Reserved0 = 1;
1052
1053 pCtx->cs = 0xf000;
1054 pCtx->csHid.u64Base = UINT64_C(0xffff0000);
1055 pCtx->csHid.u32Limit = 0x0000ffff;
1056 pCtx->csHid.Attr.n.u1DescType = 1; /* code/data segment */
1057 pCtx->csHid.Attr.n.u1Present = 1;
1058 pCtx->csHid.Attr.n.u4Type = X86_SEL_TYPE_READ | X86_SEL_TYPE_CODE;
1059
1060 pCtx->dsHid.u32Limit = 0x0000ffff;
1061 pCtx->dsHid.Attr.n.u1DescType = 1; /* code/data segment */
1062 pCtx->dsHid.Attr.n.u1Present = 1;
1063 pCtx->dsHid.Attr.n.u4Type = X86_SEL_TYPE_RW;
1064
1065 pCtx->esHid.u32Limit = 0x0000ffff;
1066 pCtx->esHid.Attr.n.u1DescType = 1; /* code/data segment */
1067 pCtx->esHid.Attr.n.u1Present = 1;
1068 pCtx->esHid.Attr.n.u4Type = X86_SEL_TYPE_RW;
1069
1070 pCtx->fsHid.u32Limit = 0x0000ffff;
1071 pCtx->fsHid.Attr.n.u1DescType = 1; /* code/data segment */
1072 pCtx->fsHid.Attr.n.u1Present = 1;
1073 pCtx->fsHid.Attr.n.u4Type = X86_SEL_TYPE_RW;
1074
1075 pCtx->gsHid.u32Limit = 0x0000ffff;
1076 pCtx->gsHid.Attr.n.u1DescType = 1; /* code/data segment */
1077 pCtx->gsHid.Attr.n.u1Present = 1;
1078 pCtx->gsHid.Attr.n.u4Type = X86_SEL_TYPE_RW;
1079
1080 pCtx->ssHid.u32Limit = 0x0000ffff;
1081 pCtx->ssHid.Attr.n.u1Present = 1;
1082 pCtx->ssHid.Attr.n.u1DescType = 1; /* code/data segment */
1083 pCtx->ssHid.Attr.n.u4Type = X86_SEL_TYPE_RW;
1084
1085 pCtx->idtr.cbIdt = 0xffff;
1086 pCtx->gdtr.cbGdt = 0xffff;
1087
1088 pCtx->ldtrHid.u32Limit = 0xffff;
1089 pCtx->ldtrHid.Attr.n.u1Present = 1;
1090 pCtx->ldtrHid.Attr.n.u4Type = X86_SEL_TYPE_SYS_LDT;
1091
1092 pCtx->trHid.u32Limit = 0xffff;
1093 pCtx->trHid.Attr.n.u1Present = 1;
1094 pCtx->trHid.Attr.n.u4Type = X86_SEL_TYPE_SYS_286_TSS_BUSY;
1095
1096 pCtx->dr[6] = X86_DR6_INIT_VAL;
1097 pCtx->dr[7] = X86_DR7_INIT_VAL;
1098
1099 pCtx->fpu.FTW = 0xff; /* All tags are set, i.e. the regs are empty. */
1100 pCtx->fpu.FCW = 0x37f;
1101
1102 /* Intel 64 and IA-32 Architectures Software Developer's Manual Volume 3A, Table 8-1. IA-32 Processor States Following Power-up, Reset, or INIT */
1103 pCtx->fpu.MXCSR = 0x1F80;
1104
1105 /* Init PAT MSR */
1106 pCtx->msrPAT = UINT64_C(0x0007040600070406); /** @todo correct? */
1107
1108 /* Reset EFER; see AMD64 Architecture Programmer's Manual Volume 2: Table 14-1. Initial Processor State
1109 * The Intel docs don't mention it.
1110 */
1111 pCtx->msrEFER = 0;
1112}
1113
1114
1115/**
1116 * Resets the CPU.
1117 *
1118 * @returns VINF_SUCCESS.
1119 * @param pVM The VM handle.
1120 */
1121VMMR3DECL(void) CPUMR3Reset(PVM pVM)
1122{
1123 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1124 {
1125 CPUMR3ResetCpu(&pVM->aCpus[i]);
1126
1127#ifdef VBOX_WITH_CRASHDUMP_MAGIC
1128 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(&pVM->aCpus[i]);
1129
1130 /* Magic marker for searching in crash dumps. */
1131 strcpy((char *)pVM->aCpus[i].cpum.s.aMagic, "CPUMCPU Magic");
1132 pVM->aCpus[i].cpum.s.uMagic = UINT64_C(0xDEADBEEFDEADBEEF);
1133 pCtx->dr[5] = UINT64_C(0xDEADBEEFDEADBEEF);
1134#endif
1135 }
1136}
1137
1138
1139/**
1140 * Called both in pass 0 and the final pass.
1141 *
1142 * @param pVM The VM handle.
1143 * @param pSSM The saved state handle.
1144 */
1145static void cpumR3SaveCpuId(PVM pVM, PSSMHANDLE pSSM)
1146{
1147 /*
1148 * Save all the CPU ID leaves here so we can check them for compatibility
1149 * upon loading.
1150 */
1151 SSMR3PutU32(pSSM, RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdStd));
1152 SSMR3PutMem(pSSM, &pVM->cpum.s.aGuestCpuIdStd[0], sizeof(pVM->cpum.s.aGuestCpuIdStd));
1153
1154 SSMR3PutU32(pSSM, RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdExt));
1155 SSMR3PutMem(pSSM, &pVM->cpum.s.aGuestCpuIdExt[0], sizeof(pVM->cpum.s.aGuestCpuIdExt));
1156
1157 SSMR3PutU32(pSSM, RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdCentaur));
1158 SSMR3PutMem(pSSM, &pVM->cpum.s.aGuestCpuIdCentaur[0], sizeof(pVM->cpum.s.aGuestCpuIdCentaur));
1159
1160 SSMR3PutMem(pSSM, &pVM->cpum.s.GuestCpuIdDef, sizeof(pVM->cpum.s.GuestCpuIdDef));
1161
1162 /*
1163 * Save a good portion of the raw CPU IDs as well as they may come in
1164 * handy when validating features for raw mode.
1165 */
1166 CPUMCPUID aRawStd[16];
1167 for (unsigned i = 0; i < RT_ELEMENTS(aRawStd); i++)
1168 ASMCpuId(i, &aRawStd[i].eax, &aRawStd[i].ebx, &aRawStd[i].ecx, &aRawStd[i].edx);
1169 SSMR3PutU32(pSSM, RT_ELEMENTS(aRawStd));
1170 SSMR3PutMem(pSSM, &aRawStd[0], sizeof(aRawStd));
1171
1172 CPUMCPUID aRawExt[32];
1173 for (unsigned i = 0; i < RT_ELEMENTS(aRawExt); i++)
1174 ASMCpuId(i | UINT32_C(0x80000000), &aRawExt[i].eax, &aRawExt[i].ebx, &aRawExt[i].ecx, &aRawExt[i].edx);
1175 SSMR3PutU32(pSSM, RT_ELEMENTS(aRawExt));
1176 SSMR3PutMem(pSSM, &aRawExt[0], sizeof(aRawExt));
1177}
1178
1179
1180/**
1181 * Loads the CPU ID leaves saved by pass 0.
1182 *
1183 * @returns VBox status code.
1184 * @param pVM The VM handle.
1185 * @param pSSM The saved state handle.
1186 * @param uVersion The format version.
1187 */
1188static int cpumR3LoadCpuId(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion)
1189{
1190 AssertMsgReturn(uVersion >= CPUM_SAVED_STATE_VERSION_VER3_2, ("%u\n", uVersion), VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION);
1191
1192 /*
1193 * Define a bunch of macros for simplifying the code.
1194 */
1195 /* Generic expression + failure message. */
1196#define CPUID_CHECK_RET(expr, fmt) \
1197 do { \
1198 if (!(expr)) \
1199 { \
1200 char *pszMsg = RTStrAPrintf2 fmt; /* lack of variadic macros sucks */ \
1201 if (fStrictCpuIdChecks) \
1202 { \
1203 int rcCpuid = SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS, "%s", pszMsg); \
1204 RTStrFree(pszMsg); \
1205 return rcCpuid; \
1206 } \
1207 LogRel(("CPUM: %s\n", pszMsg)); \
1208 RTStrFree(pszMsg); \
1209 } \
1210 } while (0)
1211#define CPUID_CHECK_WRN(expr, fmt) \
1212 do { \
1213 if (!(expr)) \
1214 LogRel(fmt); \
1215 } while (0)
1216
1217 /* For comparing two values and bitch if they differs. */
1218#define CPUID_CHECK2_RET(what, host, saved) \
1219 do { \
1220 if ((host) != (saved)) \
1221 { \
1222 if (fStrictCpuIdChecks) \
1223 return SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS, \
1224 N_(#what " mismatch: host=%#x saved=%#x"), (host), (saved)); \
1225 LogRel(("CPUM: " #what " differs: host=%#x saved=%#x\n", (host), (saved))); \
1226 } \
1227 } while (0)
1228#define CPUID_CHECK2_WRN(what, host, saved) \
1229 do { \
1230 if ((host) != (saved)) \
1231 LogRel(("CPUM: " #what " differs: host=%#x saved=%#x\n", (host), (saved))); \
1232 } while (0)
1233
1234 /* For checking raw cpu features (raw mode). */
1235#define CPUID_RAW_FEATURE_RET(set, reg, bit) \
1236 do { \
1237 if ((aHostRaw##set [1].reg & bit) != (aRaw##set [1].reg & bit)) \
1238 { \
1239 if (fStrictCpuIdChecks) \
1240 return SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS, \
1241 N_(#bit " mismatch: host=%d saved=%d"), \
1242 !!(aHostRaw##set [1].reg & (bit)), !!(aRaw##set [1].reg & (bit)) ); \
1243 LogRel(("CPUM: " #bit" differs: host=%d saved=%d\n", \
1244 !!(aHostRaw##set [1].reg & (bit)), !!(aRaw##set [1].reg & (bit)) )); \
1245 } \
1246 } while (0)
1247#define CPUID_RAW_FEATURE_WRN(set, reg, bit) \
1248 do { \
1249 if ((aHostRaw##set [1].reg & bit) != (aRaw##set [1].reg & bit)) \
1250 LogRel(("CPUM: " #bit" differs: host=%d saved=%d\n", \
1251 !!(aHostRaw##set [1].reg & (bit)), !!(aRaw##set [1].reg & (bit)) )); \
1252 } while (0)
1253#define CPUID_RAW_FEATURE_IGN(set, reg, bit) do { } while (0)
1254
1255 /* For checking guest features. */
1256#define CPUID_GST_FEATURE_RET(set, reg, bit) \
1257 do { \
1258 if ( (aGuestCpuId##set [1].reg & bit) \
1259 && !(aHostRaw##set [1].reg & bit) \
1260 && !(aHostOverride##set [1].reg & bit) \
1261 && !(aGuestOverride##set [1].reg & bit) \
1262 ) \
1263 { \
1264 if (fStrictCpuIdChecks) \
1265 return SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS, \
1266 N_(#bit " is not supported by the host but has already exposed to the guest")); \
1267 LogRel(("CPUM: " #bit " is not supported by the host but has already exposed to the guest\n")); \
1268 } \
1269 } while (0)
1270#define CPUID_GST_FEATURE_WRN(set, reg, bit) \
1271 do { \
1272 if ( (aGuestCpuId##set [1].reg & bit) \
1273 && !(aHostRaw##set [1].reg & bit) \
1274 && !(aHostOverride##set [1].reg & bit) \
1275 && !(aGuestOverride##set [1].reg & bit) \
1276 ) \
1277 LogRel(("CPUM: " #bit " is not supported by the host but has already exposed to the guest\n")); \
1278 } while (0)
1279#define CPUID_GST_FEATURE_EMU(set, reg, bit) \
1280 do { \
1281 if ( (aGuestCpuId##set [1].reg & bit) \
1282 && !(aHostRaw##set [1].reg & bit) \
1283 && !(aHostOverride##set [1].reg & bit) \
1284 && !(aGuestOverride##set [1].reg & bit) \
1285 ) \
1286 LogRel(("CPUM: Warning - " #bit " is not supported by the host but already exposed to the guest. This may impact performance.\n")); \
1287 } while (0)
1288#define CPUID_GST_FEATURE_IGN(set, reg, bit) do { } while (0)
1289
1290 /* For checking guest features if AMD guest CPU. */
1291#define CPUID_GST_AMD_FEATURE_RET(set, reg, bit) \
1292 do { \
1293 if ( (aGuestCpuId##set [1].reg & bit) \
1294 && fGuestAmd \
1295 && (!fGuestAmd || !(aHostRaw##set [1].reg & bit)) \
1296 && !(aHostOverride##set [1].reg & bit) \
1297 && !(aGuestOverride##set [1].reg & bit) \
1298 ) \
1299 { \
1300 if (fStrictCpuIdChecks) \
1301 return SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS, \
1302 N_(#bit " is not supported by the host but has already exposed to the guest")); \
1303 LogRel(("CPUM: " #bit " is not supported by the host but has already exposed to the guest\n")); \
1304 } \
1305 } while (0)
1306#define CPUID_GST_AMD_FEATURE_WRN(set, reg, bit) \
1307 do { \
1308 if ( (aGuestCpuId##set [1].reg & bit) \
1309 && fGuestAmd \
1310 && (!fGuestAmd || !(aHostRaw##set [1].reg & bit)) \
1311 && !(aHostOverride##set [1].reg & bit) \
1312 && !(aGuestOverride##set [1].reg & bit) \
1313 ) \
1314 LogRel(("CPUM: " #bit " is not supported by the host but has already exposed to the guest\n")); \
1315 } while (0)
1316#define CPUID_GST_AMD_FEATURE_EMU(set, reg, bit) \
1317 do { \
1318 if ( (aGuestCpuId##set [1].reg & bit) \
1319 && fGuestAmd \
1320 && (!fGuestAmd || !(aHostRaw##set [1].reg & bit)) \
1321 && !(aHostOverride##set [1].reg & bit) \
1322 && !(aGuestOverride##set [1].reg & bit) \
1323 ) \
1324 LogRel(("CPUM: Warning - " #bit " is not supported by the host but already exposed to the guest. This may impact performance.\n")); \
1325 } while (0)
1326#define CPUID_GST_AMD_FEATURE_IGN(set, reg, bit) do { } while (0)
1327
1328 /* For checking AMD features which have a corresponding bit in the standard
1329 range. (Intel defines very few bits in the extended feature sets.) */
1330#define CPUID_GST_FEATURE2_RET(reg, ExtBit, StdBit) \
1331 do { \
1332 if ( (aGuestCpuIdExt [1].reg & (ExtBit)) \
1333 && !(fHostAmd \
1334 ? aHostRawExt[1].reg & (ExtBit) \
1335 : aHostRawStd[1].reg & (StdBit)) \
1336 && !(aHostOverrideExt[1].reg & (ExtBit)) \
1337 && !(aGuestOverrideExt[1].reg & (ExtBit)) \
1338 ) \
1339 { \
1340 if (fStrictCpuIdChecks) \
1341 return SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS, \
1342 N_(#ExtBit " is not supported by the host but has already exposed to the guest")); \
1343 LogRel(("CPUM: " #ExtBit " is not supported by the host but has already exposed to the guest\n")); \
1344 } \
1345 } while (0)
1346#define CPUID_GST_FEATURE2_WRN(reg, ExtBit, StdBit) \
1347 do { \
1348 if ( (aGuestCpuIdExt [1].reg & (ExtBit)) \
1349 && !(fHostAmd \
1350 ? aHostRawExt[1].reg & (ExtBit) \
1351 : aHostRawStd[1].reg & (StdBit)) \
1352 && !(aHostOverrideExt[1].reg & (ExtBit)) \
1353 && !(aGuestOverrideExt[1].reg & (ExtBit)) \
1354 ) \
1355 LogRel(("CPUM: " #ExtBit " is not supported by the host but has already exposed to the guest\n")); \
1356 } while (0)
1357#define CPUID_GST_FEATURE2_EMU(reg, ExtBit, StdBit) \
1358 do { \
1359 if ( (aGuestCpuIdExt [1].reg & (ExtBit)) \
1360 && !(fHostAmd \
1361 ? aHostRawExt[1].reg & (ExtBit) \
1362 : aHostRawStd[1].reg & (StdBit)) \
1363 && !(aHostOverrideExt[1].reg & (ExtBit)) \
1364 && !(aGuestOverrideExt[1].reg & (ExtBit)) \
1365 ) \
1366 LogRel(("CPUM: Warning - " #ExtBit " is not supported by the host but already exposed to the guest. This may impact performance.\n")); \
1367 } while (0)
1368#define CPUID_GST_FEATURE2_IGN(reg, ExtBit, StdBit) do { } while (0)
1369
1370 /*
1371 * Load them into stack buffers first.
1372 */
1373 CPUMCPUID aGuestCpuIdStd[RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdStd)];
1374 uint32_t cGuestCpuIdStd;
1375 int rc = SSMR3GetU32(pSSM, &cGuestCpuIdStd); AssertRCReturn(rc, rc);
1376 if (cGuestCpuIdStd > RT_ELEMENTS(aGuestCpuIdStd))
1377 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
1378 SSMR3GetMem(pSSM, &aGuestCpuIdStd[0], cGuestCpuIdStd * sizeof(aGuestCpuIdStd[0]));
1379
1380 CPUMCPUID aGuestCpuIdExt[RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdExt)];
1381 uint32_t cGuestCpuIdExt;
1382 rc = SSMR3GetU32(pSSM, &cGuestCpuIdExt); AssertRCReturn(rc, rc);
1383 if (cGuestCpuIdExt > RT_ELEMENTS(aGuestCpuIdExt))
1384 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
1385 SSMR3GetMem(pSSM, &aGuestCpuIdExt[0], cGuestCpuIdExt * sizeof(aGuestCpuIdExt[0]));
1386
1387 CPUMCPUID aGuestCpuIdCentaur[RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdCentaur)];
1388 uint32_t cGuestCpuIdCentaur;
1389 rc = SSMR3GetU32(pSSM, &cGuestCpuIdCentaur); AssertRCReturn(rc, rc);
1390 if (cGuestCpuIdCentaur > RT_ELEMENTS(aGuestCpuIdCentaur))
1391 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
1392 SSMR3GetMem(pSSM, &aGuestCpuIdCentaur[0], cGuestCpuIdCentaur * sizeof(aGuestCpuIdCentaur[0]));
1393
1394 CPUMCPUID GuestCpuIdDef;
1395 rc = SSMR3GetMem(pSSM, &GuestCpuIdDef, sizeof(GuestCpuIdDef));
1396 AssertRCReturn(rc, rc);
1397
1398 CPUMCPUID aRawStd[16];
1399 uint32_t cRawStd;
1400 rc = SSMR3GetU32(pSSM, &cRawStd); AssertRCReturn(rc, rc);
1401 if (cRawStd > RT_ELEMENTS(aRawStd))
1402 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
1403 SSMR3GetMem(pSSM, &aRawStd[0], cRawStd * sizeof(aRawStd[0]));
1404
1405 CPUMCPUID aRawExt[32];
1406 uint32_t cRawExt;
1407 rc = SSMR3GetU32(pSSM, &cRawExt); AssertRCReturn(rc, rc);
1408 if (cRawExt > RT_ELEMENTS(aRawExt))
1409 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
1410 rc = SSMR3GetMem(pSSM, &aRawExt[0], cRawExt * sizeof(aRawExt[0]));
1411 AssertRCReturn(rc, rc);
1412
1413 /*
1414 * Note that we support restoring less than the current amount of standard
1415 * leaves because we've been allowed more is newer version of VBox.
1416 *
1417 * So, pad new entries with the default.
1418 */
1419 for (uint32_t i = cGuestCpuIdStd; i < RT_ELEMENTS(aGuestCpuIdStd); i++)
1420 aGuestCpuIdStd[i] = GuestCpuIdDef;
1421
1422 for (uint32_t i = cGuestCpuIdExt; i < RT_ELEMENTS(aGuestCpuIdExt); i++)
1423 aGuestCpuIdExt[i] = GuestCpuIdDef;
1424
1425 for (uint32_t i = cGuestCpuIdCentaur; i < RT_ELEMENTS(aGuestCpuIdCentaur); i++)
1426 aGuestCpuIdCentaur[i] = GuestCpuIdDef;
1427
1428 for (uint32_t i = cRawStd; i < RT_ELEMENTS(aRawStd); i++)
1429 ASMCpuId(i, &aRawStd[i].eax, &aRawStd[i].ebx, &aRawStd[i].ecx, &aRawStd[i].edx);
1430
1431 for (uint32_t i = cRawExt; i < RT_ELEMENTS(aRawExt); i++)
1432 ASMCpuId(i | UINT32_C(0x80000000), &aRawExt[i].eax, &aRawExt[i].ebx, &aRawExt[i].ecx, &aRawExt[i].edx);
1433
1434 /*
1435 * Get the raw CPU IDs for the current host.
1436 */
1437 CPUMCPUID aHostRawStd[16];
1438 for (unsigned i = 0; i < RT_ELEMENTS(aHostRawStd); i++)
1439 ASMCpuId(i, &aHostRawStd[i].eax, &aHostRawStd[i].ebx, &aHostRawStd[i].ecx, &aHostRawStd[i].edx);
1440
1441 CPUMCPUID aHostRawExt[32];
1442 for (unsigned i = 0; i < RT_ELEMENTS(aHostRawExt); i++)
1443 ASMCpuId(i | UINT32_C(0x80000000), &aHostRawExt[i].eax, &aHostRawExt[i].ebx, &aHostRawExt[i].ecx, &aHostRawExt[i].edx);
1444
1445 /*
1446 * Get the host and guest overrides so we don't reject the state because
1447 * some feature was enabled thru these interfaces.
1448 * Note! We currently only need the feature leaves, so skip rest.
1449 */
1450 PCFGMNODE pOverrideCfg = CFGMR3GetChild(CFGMR3GetRoot(pVM), "CPUM/CPUID");
1451 CPUMCPUID aGuestOverrideStd[2];
1452 memcpy(&aGuestOverrideStd[0], &aHostRawStd[0], sizeof(aGuestOverrideStd));
1453 cpumR3CpuIdInitLoadOverrideSet(UINT32_C(0x00000000), &aGuestOverrideStd[0], RT_ELEMENTS(aGuestOverrideStd), pOverrideCfg);
1454
1455 CPUMCPUID aGuestOverrideExt[2];
1456 memcpy(&aGuestOverrideExt[0], &aHostRawExt[0], sizeof(aGuestOverrideExt));
1457 cpumR3CpuIdInitLoadOverrideSet(UINT32_C(0x80000000), &aGuestOverrideExt[0], RT_ELEMENTS(aGuestOverrideExt), pOverrideCfg);
1458
1459 pOverrideCfg = CFGMR3GetChild(CFGMR3GetRoot(pVM), "CPUM/HostCPUID");
1460 CPUMCPUID aHostOverrideStd[2];
1461 memcpy(&aHostOverrideStd[0], &aHostRawStd[0], sizeof(aHostOverrideStd));
1462 cpumR3CpuIdInitLoadOverrideSet(UINT32_C(0x00000000), &aHostOverrideStd[0], RT_ELEMENTS(aHostOverrideStd), pOverrideCfg);
1463
1464 CPUMCPUID aHostOverrideExt[2];
1465 memcpy(&aHostOverrideExt[0], &aHostRawExt[0], sizeof(aHostOverrideExt));
1466 cpumR3CpuIdInitLoadOverrideSet(UINT32_C(0x80000000), &aHostOverrideExt[0], RT_ELEMENTS(aHostOverrideExt), pOverrideCfg);
1467
1468 /*
1469 * This can be skipped.
1470 */
1471 bool fStrictCpuIdChecks;
1472 CFGMR3QueryBoolDef(CFGMR3GetChild(CFGMR3GetRoot(pVM), "CPUM"), "StrictCpuIdChecks", &fStrictCpuIdChecks, true);
1473
1474
1475
1476 /*
1477 * For raw-mode we'll require that the CPUs are very similar since we don't
1478 * intercept CPUID instructions for user mode applications.
1479 */
1480 if (!HWACCMIsEnabled(pVM))
1481 {
1482 /* CPUID(0) */
1483 CPUID_CHECK_RET( aHostRawStd[0].ebx == aRawStd[0].ebx
1484 && aHostRawStd[0].ecx == aRawStd[0].ecx
1485 && aHostRawStd[0].edx == aRawStd[0].edx,
1486 (N_("CPU vendor mismatch: host='%.4s%.4s%.4s' saved='%.4s%.4s%.4s'"),
1487 &aHostRawStd[0].ebx, &aHostRawStd[0].edx, &aHostRawStd[0].ecx,
1488 &aRawStd[0].ebx, &aRawStd[0].edx, &aRawStd[0].ecx));
1489 CPUID_CHECK2_WRN("Std CPUID max leaf", aHostRawStd[0].eax, aRawStd[0].eax);
1490 CPUID_CHECK2_WRN("Reserved bits 15:14", (aHostRawExt[1].eax >> 14) & 3, (aRawExt[1].eax >> 14) & 3);
1491 CPUID_CHECK2_WRN("Reserved bits 31:28", aHostRawExt[1].eax >> 28, aRawExt[1].eax >> 28);
1492
1493 bool const fIntel = ASMIsIntelCpuEx(aRawStd[0].ebx, aRawStd[0].ecx, aRawStd[0].edx);
1494
1495 /* CPUID(1).eax */
1496 CPUID_CHECK2_RET("CPU family", ASMGetCpuFamily(aHostRawStd[1].eax), ASMGetCpuFamily(aRawStd[1].eax));
1497 CPUID_CHECK2_RET("CPU model", ASMGetCpuModel(aHostRawStd[1].eax, fIntel), ASMGetCpuModel(aRawStd[1].eax, fIntel));
1498 CPUID_CHECK2_WRN("CPU type", (aHostRawStd[1].eax >> 12) & 3, (aRawStd[1].eax >> 12) & 3 );
1499
1500 /* CPUID(1).ebx - completely ignore CPU count and APIC ID. */
1501 CPUID_CHECK2_RET("CPU brand ID", aHostRawStd[1].ebx & 0xff, aRawStd[1].ebx & 0xff);
1502 CPUID_CHECK2_WRN("CLFLUSH chunk count", (aHostRawStd[1].ebx >> 8) & 0xff, (aRawStd[1].ebx >> 8) & 0xff);
1503
1504 /* CPUID(1).ecx */
1505 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSE3);
1506 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_PCLMUL);
1507 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_DTES64);
1508 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_MONITOR);
1509 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_CPLDS);
1510 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_VMX);
1511 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_SMX);
1512 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_EST);
1513 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_TM2);
1514 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSSE3);
1515 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_CNTXID);
1516 CPUID_RAW_FEATURE_RET(Std, ecx, RT_BIT_32(11) /*reserved*/ );
1517 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_FMA);
1518 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_CX16);
1519 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_TPRUPDATE);
1520 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_PDCM);
1521 CPUID_RAW_FEATURE_RET(Std, ecx, RT_BIT_32(16) /*reserved*/);
1522 CPUID_RAW_FEATURE_RET(Std, ecx, RT_BIT_32(17) /*reserved*/);
1523 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_DCA);
1524 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSE4_1);
1525 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSE4_2);
1526 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_X2APIC);
1527 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_MOVBE);
1528 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_POPCNT);
1529 CPUID_RAW_FEATURE_RET(Std, ecx, RT_BIT_32(24) /*reserved*/);
1530 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_AES);
1531 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_XSAVE);
1532 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_OSXSAVE);
1533 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_AVX);
1534 CPUID_RAW_FEATURE_RET(Std, ecx, RT_BIT_32(29) /*reserved*/);
1535 CPUID_RAW_FEATURE_RET(Std, ecx, RT_BIT_32(30) /*reserved*/);
1536 CPUID_RAW_FEATURE_RET(Std, ecx, RT_BIT_32(31) /*reserved*/);
1537
1538 /* CPUID(1).edx */
1539 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_FPU);
1540 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_VME);
1541 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_DE);
1542 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PSE);
1543 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_TSC);
1544 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_MSR);
1545 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PAE);
1546 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_MCE);
1547 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_CX8);
1548 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_APIC);
1549 CPUID_RAW_FEATURE_RET(Std, edx, RT_BIT_32(10) /*reserved*/);
1550 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_SEP);
1551 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_MTRR);
1552 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PGE);
1553 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_MCA);
1554 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_CMOV);
1555 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PAT);
1556 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PSE36);
1557 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PSN);
1558 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_CLFSH);
1559 CPUID_RAW_FEATURE_RET(Std, edx, RT_BIT_32(20) /*reserved*/);
1560 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_DS);
1561 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_ACPI);
1562 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_MMX);
1563 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_FXSR);
1564 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_SSE);
1565 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_SSE2);
1566 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_SS);
1567 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_HTT);
1568 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_TM);
1569 CPUID_RAW_FEATURE_RET(Std, edx, RT_BIT_32(30) /*JMPE/IA64*/);
1570 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PBE);
1571
1572 /* CPUID(2) - config, mostly about caches. ignore. */
1573 /* CPUID(3) - processor serial number. ignore. */
1574 /* CPUID(4) - config, cache and topology - takes ECX as input. ignore. */
1575 /* CPUID(5) - mwait/monitor config. ignore. */
1576 /* CPUID(6) - power management. ignore. */
1577 /* CPUID(7) - ???. ignore. */
1578 /* CPUID(8) - ???. ignore. */
1579 /* CPUID(9) - DCA. ignore for now. */
1580 /* CPUID(a) - PeMo info. ignore for now. */
1581 /* CPUID(b) - topology info - takes ECX as input. ignore. */
1582
1583 /* CPUID(d) - XCR0 stuff - takes ECX as input. We only warn about the main level (ECX=0) for now. */
1584 CPUID_CHECK_WRN( aRawStd[0].eax < UINT32_C(0x0000000d)
1585 || aHostRawStd[0].eax >= UINT32_C(0x0000000d),
1586 ("CPUM: Standard leaf D was present on saved state host, not present on current.\n"));
1587 if ( aRawStd[0].eax >= UINT32_C(0x0000000d)
1588 && aHostRawStd[0].eax >= UINT32_C(0x0000000d))
1589 {
1590 CPUID_CHECK2_WRN("Valid low XCR0 bits", aHostRawStd[0xd].eax, aRawStd[0xd].eax);
1591 CPUID_CHECK2_WRN("Valid high XCR0 bits", aHostRawStd[0xd].edx, aRawStd[0xd].edx);
1592 CPUID_CHECK2_WRN("Current XSAVE/XRSTOR area size", aHostRawStd[0xd].ebx, aRawStd[0xd].ebx);
1593 CPUID_CHECK2_WRN("Max XSAVE/XRSTOR area size", aHostRawStd[0xd].ecx, aRawStd[0xd].ecx);
1594 }
1595
1596 /* CPUID(0x80000000) - same as CPUID(0) except for eax.
1597 Note! Intel have/is marking many of the fields here as reserved. We
1598 will verify them as if it's an AMD CPU. */
1599 CPUID_CHECK_RET( (aHostRawExt[0].eax >= UINT32_C(0x80000001) && aHostRawExt[0].eax <= UINT32_C(0x8000007f))
1600 || !(aRawExt[0].eax >= UINT32_C(0x80000001) && aRawExt[0].eax <= UINT32_C(0x8000007f)),
1601 (N_("Extended leaves was present on saved state host, but is missing on the current\n")));
1602 if (aRawExt[0].eax >= UINT32_C(0x80000001) && aRawExt[0].eax <= UINT32_C(0x8000007f))
1603 {
1604 CPUID_CHECK_RET( aHostRawExt[0].ebx == aRawExt[0].ebx
1605 && aHostRawExt[0].ecx == aRawExt[0].ecx
1606 && aHostRawExt[0].edx == aRawExt[0].edx,
1607 (N_("CPU vendor mismatch: host='%.4s%.4s%.4s' saved='%.4s%.4s%.4s'"),
1608 &aHostRawExt[0].ebx, &aHostRawExt[0].edx, &aHostRawExt[0].ecx,
1609 &aRawExt[0].ebx, &aRawExt[0].edx, &aRawExt[0].ecx));
1610 CPUID_CHECK2_WRN("Ext CPUID max leaf", aHostRawExt[0].eax, aRawExt[0].eax);
1611
1612 /* CPUID(0x80000001).eax - same as CPUID(0).eax. */
1613 CPUID_CHECK2_RET("CPU family", ASMGetCpuFamily(aHostRawExt[1].eax), ASMGetCpuFamily(aRawExt[1].eax));
1614 CPUID_CHECK2_RET("CPU model", ASMGetCpuModel(aHostRawExt[1].eax, fIntel), ASMGetCpuModel(aRawExt[1].eax, fIntel));
1615 CPUID_CHECK2_WRN("CPU type", (aHostRawExt[1].eax >> 12) & 3, (aRawExt[1].eax >> 12) & 3 );
1616 CPUID_CHECK2_WRN("Reserved bits 15:14", (aHostRawExt[1].eax >> 14) & 3, (aRawExt[1].eax >> 14) & 3 );
1617 CPUID_CHECK2_WRN("Reserved bits 31:28", aHostRawExt[1].eax >> 28, aRawExt[1].eax >> 28);
1618
1619 /* CPUID(0x80000001).ebx - Brand ID (maybe), just warn if things differs. */
1620 CPUID_CHECK2_WRN("CPU BrandID", aHostRawExt[1].ebx & 0xffff, aRawExt[1].ebx & 0xffff);
1621 CPUID_CHECK2_WRN("Reserved bits 16:27", (aHostRawExt[1].ebx >> 16) & 0xfff, (aRawExt[1].ebx >> 16) & 0xfff);
1622 CPUID_CHECK2_WRN("PkgType", (aHostRawExt[1].ebx >> 28) & 0xf, (aRawExt[1].ebx >> 28) & 0xf);
1623
1624 /* CPUID(0x80000001).ecx */
1625 CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_LAHF_SAHF);
1626 CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_CMPL);
1627 CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SVM);
1628 CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_EXT_APIC);
1629 CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_CR8L);
1630 CPUID_RAW_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_ABM);
1631 CPUID_RAW_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SSE4A);
1632 CPUID_RAW_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_MISALNSSE);
1633 CPUID_RAW_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_3DNOWPRF);
1634 CPUID_RAW_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_OSVW);
1635 CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_IBS);
1636 CPUID_RAW_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SSE5);
1637 CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SKINIT);
1638 CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_WDT);
1639 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(14));
1640 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(15));
1641 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(16));
1642 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(17));
1643 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(18));
1644 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(19));
1645 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(20));
1646 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(21));
1647 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(22));
1648 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(23));
1649 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(24));
1650 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(25));
1651 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(26));
1652 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(27));
1653 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(28));
1654 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(29));
1655 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(30));
1656 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(31));
1657
1658 /* CPUID(0x80000001).edx */
1659 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_FPU);
1660 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_VME);
1661 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_DE);
1662 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_PSE);
1663 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_TSC);
1664 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_MSR);
1665 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_PAE);
1666 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_MCE);
1667 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_CX8);
1668 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_APIC);
1669 CPUID_RAW_FEATURE_IGN(Ext, edx, RT_BIT_32(10) /*reserved*/);
1670 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_SEP);
1671 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_MTRR);
1672 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_PGE);
1673 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_MCA);
1674 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_CMOV);
1675 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_PAT);
1676 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_PSE36);
1677 CPUID_RAW_FEATURE_IGN(Ext, edx, RT_BIT_32(18) /*reserved*/);
1678 CPUID_RAW_FEATURE_IGN(Ext, edx, RT_BIT_32(19) /*reserved*/);
1679 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_NX);
1680 CPUID_RAW_FEATURE_IGN(Ext, edx, RT_BIT_32(21) /*reserved*/);
1681 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_AXMMX);
1682 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_MMX);
1683 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_FXSR);
1684 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_FFXSR);
1685 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_PAGE1GB);
1686 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_RDTSCP);
1687 CPUID_RAW_FEATURE_IGN(Ext, edx, RT_BIT_32(28) /*reserved*/);
1688 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_LONG_MODE);
1689 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_3DNOW_EX);
1690 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_3DNOW);
1691
1692 /** @todo verify the rest as well. */
1693 }
1694 }
1695
1696
1697
1698 /*
1699 * Verify that we can support the features already exposed to the guest on
1700 * this host.
1701 *
1702 * Most of the features we're emulating requires intercepting instruction
1703 * and doing it the slow way, so there is no need to warn when they aren't
1704 * present in the host CPU. Thus we use IGN instead of EMU on these.
1705 *
1706 * Trailing comments:
1707 * "EMU" - Possible to emulate, could be lots of work and very slow.
1708 * "EMU?" - Can this be emulated?
1709 */
1710 /* CPUID(1).ecx */
1711 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSE3); // -> EMU
1712 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_PCLMUL); // -> EMU?
1713 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_DTES64); // -> EMU?
1714 CPUID_GST_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_MONITOR);
1715 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_CPLDS); // -> EMU?
1716 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_VMX); // -> EMU
1717 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SMX); // -> EMU
1718 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_EST); // -> EMU
1719 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_TM2); // -> EMU?
1720 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSSE3); // -> EMU
1721 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_CNTXID); // -> EMU
1722 CPUID_GST_FEATURE_RET(Std, ecx, RT_BIT_32(11) /*reserved*/ );
1723 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_FMA); // -> EMU? what's this?
1724 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_CX16); // -> EMU?
1725 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_TPRUPDATE);//-> EMU
1726 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_PDCM); // -> EMU
1727 CPUID_GST_FEATURE_RET(Std, ecx, RT_BIT_32(16) /*reserved*/);
1728 CPUID_GST_FEATURE_RET(Std, ecx, RT_BIT_32(17) /*reserved*/);
1729 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_DCA); // -> EMU?
1730 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSE4_1); // -> EMU
1731 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSE4_2); // -> EMU
1732 CPUID_GST_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_X2APIC);
1733 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_MOVBE); // -> EMU
1734 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_POPCNT); // -> EMU
1735 CPUID_GST_FEATURE_RET(Std, ecx, RT_BIT_32(24) /*reserved*/);
1736 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_AES); // -> EMU
1737 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_XSAVE); // -> EMU
1738 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_OSXSAVE); // -> EMU
1739 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_AVX); // -> EMU?
1740 CPUID_GST_FEATURE_RET(Std, ecx, RT_BIT_32(29) /*reserved*/);
1741 CPUID_GST_FEATURE_RET(Std, ecx, RT_BIT_32(30) /*reserved*/);
1742 CPUID_GST_FEATURE_RET(Std, ecx, RT_BIT_32(31) /*reserved*/);
1743
1744 /* CPUID(1).edx */
1745 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_FPU);
1746 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_VME);
1747 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_DE); // -> EMU?
1748 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PSE);
1749 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_TSC); // -> EMU
1750 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_MSR); // -> EMU
1751 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_PAE);
1752 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_MCE);
1753 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_CX8); // -> EMU?
1754 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_APIC);
1755 CPUID_GST_FEATURE_RET(Std, edx, RT_BIT_32(10) /*reserved*/);
1756 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_SEP);
1757 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_MTRR);
1758 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PGE);
1759 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_MCA);
1760 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_CMOV); // -> EMU
1761 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PAT);
1762 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PSE36);
1763 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PSN);
1764 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_CLFSH); // -> EMU
1765 CPUID_GST_FEATURE_RET(Std, edx, RT_BIT_32(20) /*reserved*/);
1766 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_DS); // -> EMU?
1767 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_ACPI); // -> EMU?
1768 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_MMX); // -> EMU
1769 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_FXSR); // -> EMU
1770 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_SSE); // -> EMU
1771 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_SSE2); // -> EMU
1772 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_SS); // -> EMU?
1773 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_HTT); // -> EMU?
1774 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_TM); // -> EMU?
1775 CPUID_GST_FEATURE_RET(Std, edx, RT_BIT_32(30) /*JMPE/IA64*/); // -> EMU
1776 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_PBE); // -> EMU?
1777
1778 /* CPUID(0x80000000). */
1779 if ( aGuestCpuIdExt[0].eax >= UINT32_C(0x80000001)
1780 && aGuestCpuIdExt[0].eax < UINT32_C(0x8000007f))
1781 {
1782 /** @todo deal with no 0x80000001 on the host. */
1783 bool const fHostAmd = ASMIsAmdCpuEx(aHostRawStd[0].ebx, aHostRawStd[0].ecx, aHostRawStd[0].edx);
1784 bool const fGuestAmd = ASMIsAmdCpuEx(aGuestCpuIdExt[0].ebx, aGuestCpuIdExt[0].ecx, aGuestCpuIdExt[0].edx);
1785
1786 /* CPUID(0x80000001).ecx */
1787 CPUID_GST_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_LAHF_SAHF); // -> EMU
1788 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_CMPL); // -> EMU
1789 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SVM); // -> EMU
1790 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_EXT_APIC);// ???
1791 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_CR8L); // -> EMU
1792 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_ABM); // -> EMU
1793 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SSE4A); // -> EMU
1794 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_MISALNSSE);//-> EMU
1795 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_3DNOWPRF);// -> EMU
1796 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_OSVW); // -> EMU?
1797 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_IBS); // -> EMU
1798 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SSE5); // -> EMU
1799 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SKINIT); // -> EMU
1800 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_WDT); // -> EMU
1801 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(14));
1802 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(15));
1803 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(16));
1804 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(17));
1805 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(18));
1806 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(19));
1807 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(20));
1808 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(21));
1809 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(22));
1810 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(23));
1811 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(24));
1812 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(25));
1813 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(26));
1814 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(27));
1815 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(28));
1816 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(29));
1817 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(30));
1818 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(31));
1819
1820 /* CPUID(0x80000001).edx */
1821 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_FPU, X86_CPUID_FEATURE_EDX_FPU); // -> EMU
1822 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_VME, X86_CPUID_FEATURE_EDX_VME); // -> EMU
1823 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_DE, X86_CPUID_FEATURE_EDX_DE); // -> EMU
1824 CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_PSE, X86_CPUID_FEATURE_EDX_PSE);
1825 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_TSC, X86_CPUID_FEATURE_EDX_TSC); // -> EMU
1826 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_MSR, X86_CPUID_FEATURE_EDX_MSR); // -> EMU
1827 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_PAE, X86_CPUID_FEATURE_EDX_PAE);
1828 CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_MCE, X86_CPUID_FEATURE_EDX_MCE);
1829 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_CX8, X86_CPUID_FEATURE_EDX_CX8); // -> EMU?
1830 CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_APIC, X86_CPUID_FEATURE_EDX_APIC);
1831 CPUID_GST_AMD_FEATURE_WRN(Ext, edx, RT_BIT_32(10) /*reserved*/);
1832 CPUID_GST_FEATURE_IGN( Ext, edx, X86_CPUID_AMD_FEATURE_EDX_SEP); // Intel: long mode only.
1833 CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_MTRR, X86_CPUID_FEATURE_EDX_MTRR);
1834 CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_PGE, X86_CPUID_FEATURE_EDX_PGE);
1835 CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_MCA, X86_CPUID_FEATURE_EDX_MCA);
1836 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_CMOV, X86_CPUID_FEATURE_EDX_CMOV); // -> EMU
1837 CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_PAT, X86_CPUID_FEATURE_EDX_PAT);
1838 CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_PSE36, X86_CPUID_FEATURE_EDX_PSE36);
1839 CPUID_GST_AMD_FEATURE_WRN(Ext, edx, RT_BIT_32(18) /*reserved*/);
1840 CPUID_GST_AMD_FEATURE_WRN(Ext, edx, RT_BIT_32(19) /*reserved*/);
1841 CPUID_GST_FEATURE_RET( Ext, edx, X86_CPUID_AMD_FEATURE_EDX_NX);
1842 CPUID_GST_FEATURE_WRN( Ext, edx, RT_BIT_32(21) /*reserved*/);
1843 CPUID_GST_FEATURE_RET( Ext, edx, X86_CPUID_AMD_FEATURE_EDX_AXMMX);
1844 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_MMX, X86_CPUID_FEATURE_EDX_MMX); // -> EMU
1845 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_FXSR, X86_CPUID_FEATURE_EDX_FXSR); // -> EMU
1846 CPUID_GST_AMD_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_FFXSR);
1847 CPUID_GST_AMD_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_PAGE1GB);
1848 CPUID_GST_AMD_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_RDTSCP);
1849 CPUID_GST_FEATURE_IGN( Ext, edx, RT_BIT_32(28) /*reserved*/);
1850 CPUID_GST_FEATURE_RET( Ext, edx, X86_CPUID_AMD_FEATURE_EDX_LONG_MODE);
1851 CPUID_GST_AMD_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_3DNOW_EX);
1852 CPUID_GST_AMD_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_3DNOW);
1853 }
1854
1855 /*
1856 * We're good, commit the CPU ID leaves.
1857 */
1858 memcpy(&pVM->cpum.s.aGuestCpuIdStd[0], &aGuestCpuIdStd[0], sizeof(aGuestCpuIdStd));
1859 memcpy(&pVM->cpum.s.aGuestCpuIdExt[0], &aGuestCpuIdExt[0], sizeof(aGuestCpuIdExt));
1860 memcpy(&pVM->cpum.s.aGuestCpuIdCentaur[0], &aGuestCpuIdCentaur[0], sizeof(aGuestCpuIdCentaur));
1861 pVM->cpum.s.GuestCpuIdDef = GuestCpuIdDef;
1862
1863#undef CPUID_CHECK_RET
1864#undef CPUID_CHECK_WRN
1865#undef CPUID_CHECK2_RET
1866#undef CPUID_CHECK2_WRN
1867#undef CPUID_RAW_FEATURE_RET
1868#undef CPUID_RAW_FEATURE_WRN
1869#undef CPUID_RAW_FEATURE_IGN
1870#undef CPUID_GST_FEATURE_RET
1871#undef CPUID_GST_FEATURE_WRN
1872#undef CPUID_GST_FEATURE_EMU
1873#undef CPUID_GST_FEATURE_IGN
1874#undef CPUID_GST_FEATURE2_RET
1875#undef CPUID_GST_FEATURE2_WRN
1876#undef CPUID_GST_FEATURE2_EMU
1877#undef CPUID_GST_FEATURE2_IGN
1878#undef CPUID_GST_AMD_FEATURE_RET
1879#undef CPUID_GST_AMD_FEATURE_WRN
1880#undef CPUID_GST_AMD_FEATURE_EMU
1881#undef CPUID_GST_AMD_FEATURE_IGN
1882
1883 return VINF_SUCCESS;
1884}
1885
1886
1887/**
1888 * Pass 0 live exec callback.
1889 *
1890 * @returns VINF_SSM_DONT_CALL_AGAIN.
1891 * @param pVM The VM handle.
1892 * @param pSSM The saved state handle.
1893 * @param uPass The pass (0).
1894 */
1895static DECLCALLBACK(int) cpumR3LiveExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uPass)
1896{
1897 AssertReturn(uPass == 0, VERR_INTERNAL_ERROR_4);
1898 cpumR3SaveCpuId(pVM, pSSM);
1899 return VINF_SSM_DONT_CALL_AGAIN;
1900}
1901
1902
1903/**
1904 * Execute state save operation.
1905 *
1906 * @returns VBox status code.
1907 * @param pVM VM Handle.
1908 * @param pSSM SSM operation handle.
1909 */
1910static DECLCALLBACK(int) cpumR3SaveExec(PVM pVM, PSSMHANDLE pSSM)
1911{
1912 /*
1913 * Save.
1914 */
1915 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1916 {
1917 PVMCPU pVCpu = &pVM->aCpus[i];
1918
1919 SSMR3PutMem(pSSM, &pVCpu->cpum.s.Hyper, sizeof(pVCpu->cpum.s.Hyper));
1920 }
1921
1922 SSMR3PutU32(pSSM, pVM->cCpus);
1923 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1924 {
1925 PVMCPU pVCpu = &pVM->aCpus[i];
1926
1927 SSMR3PutMem(pSSM, &pVCpu->cpum.s.Guest, sizeof(pVCpu->cpum.s.Guest));
1928 SSMR3PutU32(pSSM, pVCpu->cpum.s.fUseFlags);
1929 SSMR3PutU32(pSSM, pVCpu->cpum.s.fChanged);
1930 SSMR3PutMem(pSSM, &pVCpu->cpum.s.GuestMsr, sizeof(pVCpu->cpum.s.GuestMsr));
1931 }
1932
1933 cpumR3SaveCpuId(pVM, pSSM);
1934 return VINF_SUCCESS;
1935}
1936
1937
1938/**
1939 * Load a version 1.6 CPUMCTX structure.
1940 *
1941 * @returns VBox status code.
1942 * @param pVM VM Handle.
1943 * @param pCpumctx16 Version 1.6 CPUMCTX
1944 */
1945static void cpumR3LoadCPUM1_6(PVM pVM, CPUMCTX_VER1_6 *pCpumctx16)
1946{
1947#define CPUMCTX16_LOADREG(RegName) \
1948 pVM->aCpus[0].cpum.s.Guest.RegName = pCpumctx16->RegName;
1949
1950#define CPUMCTX16_LOADDRXREG(RegName) \
1951 pVM->aCpus[0].cpum.s.Guest.dr[RegName] = pCpumctx16->dr##RegName;
1952
1953#define CPUMCTX16_LOADHIDREG(RegName) \
1954 pVM->aCpus[0].cpum.s.Guest.RegName##Hid.u64Base = pCpumctx16->RegName##Hid.u32Base; \
1955 pVM->aCpus[0].cpum.s.Guest.RegName##Hid.u32Limit = pCpumctx16->RegName##Hid.u32Limit; \
1956 pVM->aCpus[0].cpum.s.Guest.RegName##Hid.Attr = pCpumctx16->RegName##Hid.Attr;
1957
1958#define CPUMCTX16_LOADSEGREG(RegName) \
1959 pVM->aCpus[0].cpum.s.Guest.RegName = pCpumctx16->RegName; \
1960 CPUMCTX16_LOADHIDREG(RegName);
1961
1962 pVM->aCpus[0].cpum.s.Guest.fpu = pCpumctx16->fpu;
1963
1964 CPUMCTX16_LOADREG(rax);
1965 CPUMCTX16_LOADREG(rbx);
1966 CPUMCTX16_LOADREG(rcx);
1967 CPUMCTX16_LOADREG(rdx);
1968 CPUMCTX16_LOADREG(rdi);
1969 CPUMCTX16_LOADREG(rsi);
1970 CPUMCTX16_LOADREG(rbp);
1971 CPUMCTX16_LOADREG(esp);
1972 CPUMCTX16_LOADREG(rip);
1973 CPUMCTX16_LOADREG(rflags);
1974
1975 CPUMCTX16_LOADSEGREG(cs);
1976 CPUMCTX16_LOADSEGREG(ds);
1977 CPUMCTX16_LOADSEGREG(es);
1978 CPUMCTX16_LOADSEGREG(fs);
1979 CPUMCTX16_LOADSEGREG(gs);
1980 CPUMCTX16_LOADSEGREG(ss);
1981
1982 CPUMCTX16_LOADREG(r8);
1983 CPUMCTX16_LOADREG(r9);
1984 CPUMCTX16_LOADREG(r10);
1985 CPUMCTX16_LOADREG(r11);
1986 CPUMCTX16_LOADREG(r12);
1987 CPUMCTX16_LOADREG(r13);
1988 CPUMCTX16_LOADREG(r14);
1989 CPUMCTX16_LOADREG(r15);
1990
1991 CPUMCTX16_LOADREG(cr0);
1992 CPUMCTX16_LOADREG(cr2);
1993 CPUMCTX16_LOADREG(cr3);
1994 CPUMCTX16_LOADREG(cr4);
1995
1996 CPUMCTX16_LOADDRXREG(0);
1997 CPUMCTX16_LOADDRXREG(1);
1998 CPUMCTX16_LOADDRXREG(2);
1999 CPUMCTX16_LOADDRXREG(3);
2000 CPUMCTX16_LOADDRXREG(4);
2001 CPUMCTX16_LOADDRXREG(5);
2002 CPUMCTX16_LOADDRXREG(6);
2003 CPUMCTX16_LOADDRXREG(7);
2004
2005 pVM->aCpus[0].cpum.s.Guest.gdtr.cbGdt = pCpumctx16->gdtr.cbGdt;
2006 pVM->aCpus[0].cpum.s.Guest.gdtr.pGdt = pCpumctx16->gdtr.pGdt;
2007 pVM->aCpus[0].cpum.s.Guest.idtr.cbIdt = pCpumctx16->idtr.cbIdt;
2008 pVM->aCpus[0].cpum.s.Guest.idtr.pIdt = pCpumctx16->idtr.pIdt;
2009
2010 CPUMCTX16_LOADREG(ldtr);
2011 CPUMCTX16_LOADREG(tr);
2012
2013 pVM->aCpus[0].cpum.s.Guest.SysEnter = pCpumctx16->SysEnter;
2014
2015 CPUMCTX16_LOADREG(msrEFER);
2016 CPUMCTX16_LOADREG(msrSTAR);
2017 CPUMCTX16_LOADREG(msrPAT);
2018 CPUMCTX16_LOADREG(msrLSTAR);
2019 CPUMCTX16_LOADREG(msrCSTAR);
2020 CPUMCTX16_LOADREG(msrSFMASK);
2021 CPUMCTX16_LOADREG(msrKERNELGSBASE);
2022
2023 CPUMCTX16_LOADHIDREG(ldtr);
2024 CPUMCTX16_LOADHIDREG(tr);
2025
2026#undef CPUMCTX16_LOADSEGREG
2027#undef CPUMCTX16_LOADHIDREG
2028#undef CPUMCTX16_LOADDRXREG
2029#undef CPUMCTX16_LOADREG
2030}
2031
2032
2033/**
2034 * @copydoc FNSSMINTLOADPREP
2035 */
2036static DECLCALLBACK(int) cpumR3LoadPrep(PVM pVM, PSSMHANDLE pSSM)
2037{
2038 pVM->cpum.s.fPendingRestore = true;
2039 return VINF_SUCCESS;
2040}
2041
2042
2043/**
2044 * @copydoc FNSSMINTLOADEXEC
2045 */
2046static DECLCALLBACK(int) cpumR3LoadExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
2047{
2048 /*
2049 * Validate version.
2050 */
2051 if ( uVersion != CPUM_SAVED_STATE_VERSION
2052 && uVersion != CPUM_SAVED_STATE_VERSION_VER3_2
2053 && uVersion != CPUM_SAVED_STATE_VERSION_VER3_0
2054 && uVersion != CPUM_SAVED_STATE_VERSION_VER2_1_NOMSR
2055 && uVersion != CPUM_SAVED_STATE_VERSION_VER2_0
2056 && uVersion != CPUM_SAVED_STATE_VERSION_VER1_6)
2057 {
2058 AssertMsgFailed(("cpumR3LoadExec: Invalid version uVersion=%d!\n", uVersion));
2059 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
2060 }
2061
2062 if (uPass == SSM_PASS_FINAL)
2063 {
2064 /*
2065 * Set the size of RTGCPTR for SSMR3GetGCPtr. (Only necessary for
2066 * really old SSM file versions.)
2067 */
2068 if (uVersion == CPUM_SAVED_STATE_VERSION_VER1_6)
2069 SSMR3HandleSetGCPtrSize(pSSM, sizeof(RTGCPTR32));
2070 else if (uVersion <= CPUM_SAVED_STATE_VERSION_VER3_0)
2071 SSMR3HandleSetGCPtrSize(pSSM, HC_ARCH_BITS == 32 ? sizeof(RTGCPTR32) : sizeof(RTGCPTR));
2072
2073 /*
2074 * Restore.
2075 */
2076 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2077 {
2078 PVMCPU pVCpu = &pVM->aCpus[i];
2079 uint32_t uCR3 = pVCpu->cpum.s.Hyper.cr3;
2080 uint32_t uESP = pVCpu->cpum.s.Hyper.esp; /* see VMMR3Relocate(). */
2081
2082 SSMR3GetMem(pSSM, &pVCpu->cpum.s.Hyper, sizeof(pVCpu->cpum.s.Hyper));
2083 pVCpu->cpum.s.Hyper.cr3 = uCR3;
2084 pVCpu->cpum.s.Hyper.esp = uESP;
2085 }
2086
2087 if (uVersion == CPUM_SAVED_STATE_VERSION_VER1_6)
2088 {
2089 CPUMCTX_VER1_6 cpumctx16;
2090 memset(&pVM->aCpus[0].cpum.s.Guest, 0, sizeof(pVM->aCpus[0].cpum.s.Guest));
2091 SSMR3GetMem(pSSM, &cpumctx16, sizeof(cpumctx16));
2092
2093 /* Save the old cpumctx state into the new one. */
2094 cpumR3LoadCPUM1_6(pVM, &cpumctx16);
2095
2096 SSMR3GetU32(pSSM, &pVM->aCpus[0].cpum.s.fUseFlags);
2097 SSMR3GetU32(pSSM, &pVM->aCpus[0].cpum.s.fChanged);
2098 }
2099 else
2100 {
2101 if (uVersion >= CPUM_SAVED_STATE_VERSION_VER2_1_NOMSR)
2102 {
2103 uint32_t cCpus;
2104 int rc = SSMR3GetU32(pSSM, &cCpus); AssertRCReturn(rc, rc);
2105 AssertLogRelMsgReturn(cCpus == pVM->cCpus, ("Mismatching CPU counts: saved: %u; configured: %u \n", cCpus, pVM->cCpus),
2106 VERR_SSM_UNEXPECTED_DATA);
2107 }
2108 AssertLogRelMsgReturn( uVersion != CPUM_SAVED_STATE_VERSION_VER2_0
2109 || pVM->cCpus == 1,
2110 ("cCpus=%u\n", pVM->cCpus),
2111 VERR_SSM_UNEXPECTED_DATA);
2112
2113 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2114 {
2115 SSMR3GetMem(pSSM, &pVM->aCpus[i].cpum.s.Guest, sizeof(pVM->aCpus[i].cpum.s.Guest));
2116 SSMR3GetU32(pSSM, &pVM->aCpus[i].cpum.s.fUseFlags);
2117 SSMR3GetU32(pSSM, &pVM->aCpus[i].cpum.s.fChanged);
2118 if (uVersion >= CPUM_SAVED_STATE_VERSION_VER3_0)
2119 SSMR3GetMem(pSSM, &pVM->aCpus[i].cpum.s.GuestMsr, sizeof(pVM->aCpus[i].cpum.s.GuestMsr));
2120 }
2121 }
2122
2123 /* Older states does not set CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID for
2124 raw-mode guest, so we have to do it ourselves. */
2125 if ( uVersion <= CPUM_SAVED_STATE_VERSION_VER3_2
2126 && !HWACCMIsEnabled(pVM))
2127 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
2128 pVM->aCpus[iCpu].cpum.s.fChanged |= CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID;
2129 }
2130
2131 pVM->cpum.s.fPendingRestore = false;
2132
2133 /*
2134 * Guest CPUIDs.
2135 */
2136 if (uVersion > CPUM_SAVED_STATE_VERSION_VER3_0)
2137 return cpumR3LoadCpuId(pVM, pSSM, uVersion);
2138
2139 /** @todo Merge the code below into cpumR3LoadCpuId when we've found out what is
2140 * actually required. */
2141
2142 /*
2143 * Restore the CPUID leaves.
2144 *
2145 * Note that we support restoring less than the current amount of standard
2146 * leaves because we've been allowed more is newer version of VBox.
2147 */
2148 uint32_t cElements;
2149 int rc = SSMR3GetU32(pSSM, &cElements); AssertRCReturn(rc, rc);
2150 if (cElements > RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdStd))
2151 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2152 SSMR3GetMem(pSSM, &pVM->cpum.s.aGuestCpuIdStd[0], cElements*sizeof(pVM->cpum.s.aGuestCpuIdStd[0]));
2153
2154 rc = SSMR3GetU32(pSSM, &cElements); AssertRCReturn(rc, rc);
2155 if (cElements != RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdExt))
2156 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2157 SSMR3GetMem(pSSM, &pVM->cpum.s.aGuestCpuIdExt[0], sizeof(pVM->cpum.s.aGuestCpuIdExt));
2158
2159 rc = SSMR3GetU32(pSSM, &cElements); AssertRCReturn(rc, rc);
2160 if (cElements != RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdCentaur))
2161 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2162 SSMR3GetMem(pSSM, &pVM->cpum.s.aGuestCpuIdCentaur[0], sizeof(pVM->cpum.s.aGuestCpuIdCentaur));
2163
2164 SSMR3GetMem(pSSM, &pVM->cpum.s.GuestCpuIdDef, sizeof(pVM->cpum.s.GuestCpuIdDef));
2165
2166 /*
2167 * Check that the basic cpuid id information is unchanged.
2168 */
2169 /** @todo we should check the 64 bits capabilities too! */
2170 uint32_t au32CpuId[8] = {0,0,0,0, 0,0,0,0};
2171 ASMCpuId(0, &au32CpuId[0], &au32CpuId[1], &au32CpuId[2], &au32CpuId[3]);
2172 ASMCpuId(1, &au32CpuId[4], &au32CpuId[5], &au32CpuId[6], &au32CpuId[7]);
2173 uint32_t au32CpuIdSaved[8];
2174 rc = SSMR3GetMem(pSSM, &au32CpuIdSaved[0], sizeof(au32CpuIdSaved));
2175 if (RT_SUCCESS(rc))
2176 {
2177 /* Ignore CPU stepping. */
2178 au32CpuId[4] &= 0xfffffff0;
2179 au32CpuIdSaved[4] &= 0xfffffff0;
2180
2181 /* Ignore APIC ID (AMD specs). */
2182 au32CpuId[5] &= ~0xff000000;
2183 au32CpuIdSaved[5] &= ~0xff000000;
2184
2185 /* Ignore the number of Logical CPUs (AMD specs). */
2186 au32CpuId[5] &= ~0x00ff0000;
2187 au32CpuIdSaved[5] &= ~0x00ff0000;
2188
2189 /* Ignore some advanced capability bits, that we don't expose to the guest. */
2190 au32CpuId[6] &= ~( X86_CPUID_FEATURE_ECX_DTES64
2191 | X86_CPUID_FEATURE_ECX_VMX
2192 | X86_CPUID_FEATURE_ECX_SMX
2193 | X86_CPUID_FEATURE_ECX_EST
2194 | X86_CPUID_FEATURE_ECX_TM2
2195 | X86_CPUID_FEATURE_ECX_CNTXID
2196 | X86_CPUID_FEATURE_ECX_TPRUPDATE
2197 | X86_CPUID_FEATURE_ECX_PDCM
2198 | X86_CPUID_FEATURE_ECX_DCA
2199 | X86_CPUID_FEATURE_ECX_X2APIC
2200 );
2201 au32CpuIdSaved[6] &= ~( X86_CPUID_FEATURE_ECX_DTES64
2202 | X86_CPUID_FEATURE_ECX_VMX
2203 | X86_CPUID_FEATURE_ECX_SMX
2204 | X86_CPUID_FEATURE_ECX_EST
2205 | X86_CPUID_FEATURE_ECX_TM2
2206 | X86_CPUID_FEATURE_ECX_CNTXID
2207 | X86_CPUID_FEATURE_ECX_TPRUPDATE
2208 | X86_CPUID_FEATURE_ECX_PDCM
2209 | X86_CPUID_FEATURE_ECX_DCA
2210 | X86_CPUID_FEATURE_ECX_X2APIC
2211 );
2212
2213 /* Make sure we don't forget to update the masks when enabling
2214 * features in the future.
2215 */
2216 AssertRelease(!(pVM->cpum.s.aGuestCpuIdStd[1].ecx &
2217 ( X86_CPUID_FEATURE_ECX_DTES64
2218 | X86_CPUID_FEATURE_ECX_VMX
2219 | X86_CPUID_FEATURE_ECX_SMX
2220 | X86_CPUID_FEATURE_ECX_EST
2221 | X86_CPUID_FEATURE_ECX_TM2
2222 | X86_CPUID_FEATURE_ECX_CNTXID
2223 | X86_CPUID_FEATURE_ECX_TPRUPDATE
2224 | X86_CPUID_FEATURE_ECX_PDCM
2225 | X86_CPUID_FEATURE_ECX_DCA
2226 | X86_CPUID_FEATURE_ECX_X2APIC
2227 )));
2228 /* do the compare */
2229 if (memcmp(au32CpuIdSaved, au32CpuId, sizeof(au32CpuIdSaved)))
2230 {
2231 if (SSMR3HandleGetAfter(pSSM) == SSMAFTER_DEBUG_IT)
2232 LogRel(("cpumR3LoadExec: CpuId mismatch! (ignored due to SSMAFTER_DEBUG_IT)\n"
2233 "Saved=%.*Rhxs\n"
2234 "Real =%.*Rhxs\n",
2235 sizeof(au32CpuIdSaved), au32CpuIdSaved,
2236 sizeof(au32CpuId), au32CpuId));
2237 else
2238 {
2239 LogRel(("cpumR3LoadExec: CpuId mismatch!\n"
2240 "Saved=%.*Rhxs\n"
2241 "Real =%.*Rhxs\n",
2242 sizeof(au32CpuIdSaved), au32CpuIdSaved,
2243 sizeof(au32CpuId), au32CpuId));
2244 rc = VERR_SSM_LOAD_CPUID_MISMATCH;
2245 }
2246 }
2247 }
2248
2249 return rc;
2250}
2251
2252
2253/**
2254 * @copydoc FNSSMINTLOADPREP
2255 */
2256static DECLCALLBACK(int) cpumR3LoadDone(PVM pVM, PSSMHANDLE pSSM)
2257{
2258 if (RT_FAILURE(SSMR3HandleGetStatus(pSSM)))
2259 return VINF_SUCCESS;
2260
2261 /* just check this since we can. */ /** @todo Add a SSM unit flag for indicating that it's mandatory during a restore. */
2262 if (pVM->cpum.s.fPendingRestore)
2263 {
2264 LogRel(("CPUM: Missing state!\n"));
2265 return VERR_INTERNAL_ERROR_2;
2266 }
2267
2268 /* Notify PGM of the NXE states in case they've changed. */
2269 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
2270 PGMNotifyNxeChanged(&pVM->aCpus[iCpu], !!(pVM->aCpus[iCpu].cpum.s.Guest.msrEFER & MSR_K6_EFER_NXE));
2271 return VINF_SUCCESS;
2272}
2273
2274
2275/**
2276 * Checks if the CPUM state restore is still pending.
2277 *
2278 * @returns true / false.
2279 * @param pVM The VM handle.
2280 */
2281VMMDECL(bool) CPUMR3IsStateRestorePending(PVM pVM)
2282{
2283 return pVM->cpum.s.fPendingRestore;
2284}
2285
2286
2287/**
2288 * Formats the EFLAGS value into mnemonics.
2289 *
2290 * @param pszEFlags Where to write the mnemonics. (Assumes sufficient buffer space.)
2291 * @param efl The EFLAGS value.
2292 */
2293static void cpumR3InfoFormatFlags(char *pszEFlags, uint32_t efl)
2294{
2295 /*
2296 * Format the flags.
2297 */
2298 static const struct
2299 {
2300 const char *pszSet; const char *pszClear; uint32_t fFlag;
2301 } s_aFlags[] =
2302 {
2303 { "vip",NULL, X86_EFL_VIP },
2304 { "vif",NULL, X86_EFL_VIF },
2305 { "ac", NULL, X86_EFL_AC },
2306 { "vm", NULL, X86_EFL_VM },
2307 { "rf", NULL, X86_EFL_RF },
2308 { "nt", NULL, X86_EFL_NT },
2309 { "ov", "nv", X86_EFL_OF },
2310 { "dn", "up", X86_EFL_DF },
2311 { "ei", "di", X86_EFL_IF },
2312 { "tf", NULL, X86_EFL_TF },
2313 { "nt", "pl", X86_EFL_SF },
2314 { "nz", "zr", X86_EFL_ZF },
2315 { "ac", "na", X86_EFL_AF },
2316 { "po", "pe", X86_EFL_PF },
2317 { "cy", "nc", X86_EFL_CF },
2318 };
2319 char *psz = pszEFlags;
2320 for (unsigned i = 0; i < RT_ELEMENTS(s_aFlags); i++)
2321 {
2322 const char *pszAdd = s_aFlags[i].fFlag & efl ? s_aFlags[i].pszSet : s_aFlags[i].pszClear;
2323 if (pszAdd)
2324 {
2325 strcpy(psz, pszAdd);
2326 psz += strlen(pszAdd);
2327 *psz++ = ' ';
2328 }
2329 }
2330 psz[-1] = '\0';
2331}
2332
2333
2334/**
2335 * Formats a full register dump.
2336 *
2337 * @param pVM VM Handle.
2338 * @param pCtx The context to format.
2339 * @param pCtxCore The context core to format.
2340 * @param pHlp Output functions.
2341 * @param enmType The dump type.
2342 * @param pszPrefix Register name prefix.
2343 */
2344static void cpumR3InfoOne(PVM pVM, PCPUMCTX pCtx, PCCPUMCTXCORE pCtxCore, PCDBGFINFOHLP pHlp, CPUMDUMPTYPE enmType, const char *pszPrefix)
2345{
2346 /*
2347 * Format the EFLAGS.
2348 */
2349 uint32_t efl = pCtxCore->eflags.u32;
2350 char szEFlags[80];
2351 cpumR3InfoFormatFlags(&szEFlags[0], efl);
2352
2353 /*
2354 * Format the registers.
2355 */
2356 switch (enmType)
2357 {
2358 case CPUMDUMPTYPE_TERSE:
2359 if (CPUMIsGuestIn64BitCodeEx(pCtx))
2360 pHlp->pfnPrintf(pHlp,
2361 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
2362 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
2363 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
2364 "%sr14=%016RX64 %sr15=%016RX64\n"
2365 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
2366 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %seflags=%08x\n",
2367 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
2368 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
2369 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
2370 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2371 pszPrefix, (RTSEL)pCtxCore->cs, pszPrefix, (RTSEL)pCtxCore->ss, pszPrefix, (RTSEL)pCtxCore->ds, pszPrefix, (RTSEL)pCtxCore->es,
2372 pszPrefix, (RTSEL)pCtxCore->fs, pszPrefix, (RTSEL)pCtxCore->gs, pszPrefix, efl);
2373 else
2374 pHlp->pfnPrintf(pHlp,
2375 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
2376 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
2377 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %seflags=%08x\n",
2378 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
2379 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2380 pszPrefix, (RTSEL)pCtxCore->cs, pszPrefix, (RTSEL)pCtxCore->ss, pszPrefix, (RTSEL)pCtxCore->ds, pszPrefix, (RTSEL)pCtxCore->es,
2381 pszPrefix, (RTSEL)pCtxCore->fs, pszPrefix, (RTSEL)pCtxCore->gs, pszPrefix, efl);
2382 break;
2383
2384 case CPUMDUMPTYPE_DEFAULT:
2385 if (CPUMIsGuestIn64BitCodeEx(pCtx))
2386 pHlp->pfnPrintf(pHlp,
2387 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
2388 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
2389 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
2390 "%sr14=%016RX64 %sr15=%016RX64\n"
2391 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
2392 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %str=%04x %seflags=%08x\n"
2393 "%scr0=%08RX64 %scr2=%08RX64 %scr3=%08RX64 %scr4=%08RX64 %sgdtr=%016RX64:%04x %sldtr=%04x\n"
2394 ,
2395 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
2396 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
2397 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
2398 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2399 pszPrefix, (RTSEL)pCtxCore->cs, pszPrefix, (RTSEL)pCtxCore->ss, pszPrefix, (RTSEL)pCtxCore->ds, pszPrefix, (RTSEL)pCtxCore->es,
2400 pszPrefix, (RTSEL)pCtxCore->fs, pszPrefix, (RTSEL)pCtxCore->gs, pszPrefix, (RTSEL)pCtx->tr, pszPrefix, efl,
2401 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
2402 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, (RTSEL)pCtx->ldtr);
2403 else
2404 pHlp->pfnPrintf(pHlp,
2405 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
2406 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
2407 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %str=%04x %seflags=%08x\n"
2408 "%scr0=%08RX64 %scr2=%08RX64 %scr3=%08RX64 %scr4=%08RX64 %sgdtr=%08RX64:%04x %sldtr=%04x\n"
2409 ,
2410 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
2411 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2412 pszPrefix, (RTSEL)pCtxCore->cs, pszPrefix, (RTSEL)pCtxCore->ss, pszPrefix, (RTSEL)pCtxCore->ds, pszPrefix, (RTSEL)pCtxCore->es,
2413 pszPrefix, (RTSEL)pCtxCore->fs, pszPrefix, (RTSEL)pCtxCore->gs, pszPrefix, (RTSEL)pCtx->tr, pszPrefix, efl,
2414 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
2415 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, (RTSEL)pCtx->ldtr);
2416 break;
2417
2418 case CPUMDUMPTYPE_VERBOSE:
2419 if (CPUMIsGuestIn64BitCodeEx(pCtx))
2420 pHlp->pfnPrintf(pHlp,
2421 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
2422 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
2423 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
2424 "%sr14=%016RX64 %sr15=%016RX64\n"
2425 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
2426 "%scs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2427 "%sds={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2428 "%ses={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2429 "%sfs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2430 "%sgs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2431 "%sss={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2432 "%scr0=%016RX64 %scr2=%016RX64 %scr3=%016RX64 %scr4=%016RX64\n"
2433 "%sdr0=%016RX64 %sdr1=%016RX64 %sdr2=%016RX64 %sdr3=%016RX64\n"
2434 "%sdr4=%016RX64 %sdr5=%016RX64 %sdr6=%016RX64 %sdr7=%016RX64\n"
2435 "%sgdtr=%016RX64:%04x %sidtr=%016RX64:%04x %seflags=%08x\n"
2436 "%sldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
2437 "%str ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
2438 "%sSysEnter={cs=%04llx eip=%016RX64 esp=%016RX64}\n"
2439 ,
2440 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
2441 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
2442 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
2443 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2444 pszPrefix, (RTSEL)pCtxCore->cs, pCtx->csHid.u64Base, pCtx->csHid.u32Limit, pCtx->csHid.Attr.u,
2445 pszPrefix, (RTSEL)pCtxCore->ds, pCtx->dsHid.u64Base, pCtx->dsHid.u32Limit, pCtx->dsHid.Attr.u,
2446 pszPrefix, (RTSEL)pCtxCore->es, pCtx->esHid.u64Base, pCtx->esHid.u32Limit, pCtx->esHid.Attr.u,
2447 pszPrefix, (RTSEL)pCtxCore->fs, pCtx->fsHid.u64Base, pCtx->fsHid.u32Limit, pCtx->fsHid.Attr.u,
2448 pszPrefix, (RTSEL)pCtxCore->gs, pCtx->gsHid.u64Base, pCtx->gsHid.u32Limit, pCtx->gsHid.Attr.u,
2449 pszPrefix, (RTSEL)pCtxCore->ss, pCtx->ssHid.u64Base, pCtx->ssHid.u32Limit, pCtx->ssHid.Attr.u,
2450 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
2451 pszPrefix, pCtx->dr[0], pszPrefix, pCtx->dr[1], pszPrefix, pCtx->dr[2], pszPrefix, pCtx->dr[3],
2452 pszPrefix, pCtx->dr[4], pszPrefix, pCtx->dr[5], pszPrefix, pCtx->dr[6], pszPrefix, pCtx->dr[7],
2453 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, pszPrefix, efl,
2454 pszPrefix, (RTSEL)pCtx->ldtr, pCtx->ldtrHid.u64Base, pCtx->ldtrHid.u32Limit, pCtx->ldtrHid.Attr.u,
2455 pszPrefix, (RTSEL)pCtx->tr, pCtx->trHid.u64Base, pCtx->trHid.u32Limit, pCtx->trHid.Attr.u,
2456 pszPrefix, pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
2457 else
2458 pHlp->pfnPrintf(pHlp,
2459 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
2460 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
2461 "%scs={%04x base=%016RX64 limit=%08x flags=%08x} %sdr0=%08RX64 %sdr1=%08RX64\n"
2462 "%sds={%04x base=%016RX64 limit=%08x flags=%08x} %sdr2=%08RX64 %sdr3=%08RX64\n"
2463 "%ses={%04x base=%016RX64 limit=%08x flags=%08x} %sdr4=%08RX64 %sdr5=%08RX64\n"
2464 "%sfs={%04x base=%016RX64 limit=%08x flags=%08x} %sdr6=%08RX64 %sdr7=%08RX64\n"
2465 "%sgs={%04x base=%016RX64 limit=%08x flags=%08x} %scr0=%08RX64 %scr2=%08RX64\n"
2466 "%sss={%04x base=%016RX64 limit=%08x flags=%08x} %scr3=%08RX64 %scr4=%08RX64\n"
2467 "%sgdtr=%016RX64:%04x %sidtr=%016RX64:%04x %seflags=%08x\n"
2468 "%sldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
2469 "%str ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
2470 "%sSysEnter={cs=%04llx eip=%08llx esp=%08llx}\n"
2471 ,
2472 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
2473 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2474 pszPrefix, (RTSEL)pCtxCore->cs, pCtx->csHid.u64Base, pCtx->csHid.u32Limit, pCtx->csHid.Attr.u, pszPrefix, pCtx->dr[0], pszPrefix, pCtx->dr[1],
2475 pszPrefix, (RTSEL)pCtxCore->ds, pCtx->dsHid.u64Base, pCtx->dsHid.u32Limit, pCtx->dsHid.Attr.u, pszPrefix, pCtx->dr[2], pszPrefix, pCtx->dr[3],
2476 pszPrefix, (RTSEL)pCtxCore->es, pCtx->esHid.u64Base, pCtx->esHid.u32Limit, pCtx->esHid.Attr.u, pszPrefix, pCtx->dr[4], pszPrefix, pCtx->dr[5],
2477 pszPrefix, (RTSEL)pCtxCore->fs, pCtx->fsHid.u64Base, pCtx->fsHid.u32Limit, pCtx->fsHid.Attr.u, pszPrefix, pCtx->dr[6], pszPrefix, pCtx->dr[7],
2478 pszPrefix, (RTSEL)pCtxCore->gs, pCtx->gsHid.u64Base, pCtx->gsHid.u32Limit, pCtx->gsHid.Attr.u, pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2,
2479 pszPrefix, (RTSEL)pCtxCore->ss, pCtx->ssHid.u64Base, pCtx->ssHid.u32Limit, pCtx->ssHid.Attr.u, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
2480 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, pszPrefix, efl,
2481 pszPrefix, (RTSEL)pCtx->ldtr, pCtx->ldtrHid.u64Base, pCtx->ldtrHid.u32Limit, pCtx->ldtrHid.Attr.u,
2482 pszPrefix, (RTSEL)pCtx->tr, pCtx->trHid.u64Base, pCtx->trHid.u32Limit, pCtx->trHid.Attr.u,
2483 pszPrefix, pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
2484
2485 pHlp->pfnPrintf(pHlp,
2486 "%sFCW=%04x %sFSW=%04x %sFTW=%04x %sFOP=%04x %sMXCSR=%08x %sMXCSR_MASK=%08x\n"
2487 "%sFPUIP=%08x %sCS=%04x %sRsvrd1=%04x %sFPUDP=%08x %sDS=%04x %sRsvrd2=%04x\n"
2488 ,
2489 pszPrefix, pCtx->fpu.FCW, pszPrefix, pCtx->fpu.FSW, pszPrefix, pCtx->fpu.FTW, pszPrefix, pCtx->fpu.FOP,
2490 pszPrefix, pCtx->fpu.MXCSR, pszPrefix, pCtx->fpu.MXCSR_MASK,
2491 pszPrefix, pCtx->fpu.FPUIP, pszPrefix, pCtx->fpu.CS, pszPrefix, pCtx->fpu.Rsvrd1,
2492 pszPrefix, pCtx->fpu.FPUDP, pszPrefix, pCtx->fpu.DS, pszPrefix, pCtx->fpu.Rsrvd2
2493 );
2494 unsigned iShift = (pCtx->fpu.FSW >> 11) & 7;
2495 for (unsigned iST = 0; iST < RT_ELEMENTS(pCtx->fpu.aRegs); iST++)
2496 {
2497 unsigned iFPR = (iST + iShift) % RT_ELEMENTS(pCtx->fpu.aRegs);
2498 unsigned uTag = pCtx->fpu.FTW & (1 << iFPR) ? 1 : 0;
2499 char chSign = pCtx->fpu.aRegs[0].au16[4] & 0x8000 ? '-' : '+';
2500 unsigned iInteger = (unsigned)(pCtx->fpu.aRegs[0].au64[0] >> 63);
2501 uint64_t u64Fraction = pCtx->fpu.aRegs[0].au64[0] & UINT64_C(0x7fffffffffffffff);
2502 unsigned uExponent = pCtx->fpu.aRegs[0].au16[4] & 0x7fff;
2503 /** @todo This isn't entirenly correct and needs more work! */
2504 pHlp->pfnPrintf(pHlp,
2505 "%sST(%u)=%sFPR%u={%04RX16'%08RX32'%08RX32} t%d %c%u.%022llu ^ %u",
2506 pszPrefix, iST, pszPrefix, iFPR,
2507 pCtx->fpu.aRegs[0].au16[4], pCtx->fpu.aRegs[0].au32[1], pCtx->fpu.aRegs[0].au32[0],
2508 uTag, chSign, iInteger, u64Fraction, uExponent);
2509 if (pCtx->fpu.aRegs[0].au16[5] || pCtx->fpu.aRegs[0].au16[6] || pCtx->fpu.aRegs[0].au16[7])
2510 pHlp->pfnPrintf(pHlp, " res={%04RX16,%04RX16,%04RX16}\n",
2511 pCtx->fpu.aRegs[0].au16[5], pCtx->fpu.aRegs[0].au16[6], pCtx->fpu.aRegs[0].au16[7]);
2512 else
2513 pHlp->pfnPrintf(pHlp, "\n");
2514 }
2515 for (unsigned iXMM = 0; iXMM < RT_ELEMENTS(pCtx->fpu.aXMM); iXMM++)
2516 pHlp->pfnPrintf(pHlp,
2517 iXMM & 1
2518 ? "%sXMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32\n"
2519 : "%sXMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32 ",
2520 pszPrefix, iXMM, iXMM < 10 ? " " : "",
2521 pCtx->fpu.aXMM[iXMM].au32[3],
2522 pCtx->fpu.aXMM[iXMM].au32[2],
2523 pCtx->fpu.aXMM[iXMM].au32[1],
2524 pCtx->fpu.aXMM[iXMM].au32[0]);
2525 for (unsigned i = 0; i < RT_ELEMENTS(pCtx->fpu.au32RsrvdRest); i++)
2526 if (pCtx->fpu.au32RsrvdRest[i])
2527 pHlp->pfnPrintf(pHlp, "%sRsrvdRest[i]=%RX32 (offset=%#x)\n",
2528 pszPrefix, i, pCtx->fpu.au32RsrvdRest[i], RT_OFFSETOF(X86FXSTATE, au32RsrvdRest[i]) );
2529
2530 pHlp->pfnPrintf(pHlp,
2531 "%sEFER =%016RX64\n"
2532 "%sPAT =%016RX64\n"
2533 "%sSTAR =%016RX64\n"
2534 "%sCSTAR =%016RX64\n"
2535 "%sLSTAR =%016RX64\n"
2536 "%sSFMASK =%016RX64\n"
2537 "%sKERNELGSBASE =%016RX64\n",
2538 pszPrefix, pCtx->msrEFER,
2539 pszPrefix, pCtx->msrPAT,
2540 pszPrefix, pCtx->msrSTAR,
2541 pszPrefix, pCtx->msrCSTAR,
2542 pszPrefix, pCtx->msrLSTAR,
2543 pszPrefix, pCtx->msrSFMASK,
2544 pszPrefix, pCtx->msrKERNELGSBASE);
2545 break;
2546 }
2547}
2548
2549
2550/**
2551 * Display all cpu states and any other cpum info.
2552 *
2553 * @param pVM VM Handle.
2554 * @param pHlp The info helper functions.
2555 * @param pszArgs Arguments, ignored.
2556 */
2557static DECLCALLBACK(void) cpumR3InfoAll(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2558{
2559 cpumR3InfoGuest(pVM, pHlp, pszArgs);
2560 cpumR3InfoGuestInstr(pVM, pHlp, pszArgs);
2561 cpumR3InfoHyper(pVM, pHlp, pszArgs);
2562 cpumR3InfoHost(pVM, pHlp, pszArgs);
2563}
2564
2565
2566/**
2567 * Parses the info argument.
2568 *
2569 * The argument starts with 'verbose', 'terse' or 'default' and then
2570 * continues with the comment string.
2571 *
2572 * @param pszArgs The pointer to the argument string.
2573 * @param penmType Where to store the dump type request.
2574 * @param ppszComment Where to store the pointer to the comment string.
2575 */
2576static void cpumR3InfoParseArg(const char *pszArgs, CPUMDUMPTYPE *penmType, const char **ppszComment)
2577{
2578 if (!pszArgs)
2579 {
2580 *penmType = CPUMDUMPTYPE_DEFAULT;
2581 *ppszComment = "";
2582 }
2583 else
2584 {
2585 if (!strncmp(pszArgs, "verbose", sizeof("verbose") - 1))
2586 {
2587 pszArgs += 5;
2588 *penmType = CPUMDUMPTYPE_VERBOSE;
2589 }
2590 else if (!strncmp(pszArgs, "terse", sizeof("terse") - 1))
2591 {
2592 pszArgs += 5;
2593 *penmType = CPUMDUMPTYPE_TERSE;
2594 }
2595 else if (!strncmp(pszArgs, "default", sizeof("default") - 1))
2596 {
2597 pszArgs += 7;
2598 *penmType = CPUMDUMPTYPE_DEFAULT;
2599 }
2600 else
2601 *penmType = CPUMDUMPTYPE_DEFAULT;
2602 *ppszComment = RTStrStripL(pszArgs);
2603 }
2604}
2605
2606
2607/**
2608 * Display the guest cpu state.
2609 *
2610 * @param pVM VM Handle.
2611 * @param pHlp The info helper functions.
2612 * @param pszArgs Arguments, ignored.
2613 */
2614static DECLCALLBACK(void) cpumR3InfoGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2615{
2616 CPUMDUMPTYPE enmType;
2617 const char *pszComment;
2618 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
2619
2620 /* @todo SMP support! */
2621 PVMCPU pVCpu = VMMGetCpu(pVM);
2622 if (!pVCpu)
2623 pVCpu = &pVM->aCpus[0];
2624
2625 pHlp->pfnPrintf(pHlp, "Guest CPUM (VCPU %d) state: %s\n", pVCpu->idCpu, pszComment);
2626
2627 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
2628 cpumR3InfoOne(pVM, pCtx, CPUMCTX2CORE(pCtx), pHlp, enmType, "");
2629}
2630
2631
2632/**
2633 * Display the current guest instruction
2634 *
2635 * @param pVM VM Handle.
2636 * @param pHlp The info helper functions.
2637 * @param pszArgs Arguments, ignored.
2638 */
2639static DECLCALLBACK(void) cpumR3InfoGuestInstr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2640{
2641 char szInstruction[256];
2642 /* @todo SMP support! */
2643 PVMCPU pVCpu = VMMGetCpu(pVM);
2644 if (!pVCpu)
2645 pVCpu = &pVM->aCpus[0];
2646
2647 int rc = DBGFR3DisasInstrCurrent(pVCpu, szInstruction, sizeof(szInstruction));
2648 if (RT_SUCCESS(rc))
2649 pHlp->pfnPrintf(pHlp, "\nCPUM: %s\n\n", szInstruction);
2650}
2651
2652
2653/**
2654 * Display the hypervisor cpu state.
2655 *
2656 * @param pVM VM Handle.
2657 * @param pHlp The info helper functions.
2658 * @param pszArgs Arguments, ignored.
2659 */
2660static DECLCALLBACK(void) cpumR3InfoHyper(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2661{
2662 CPUMDUMPTYPE enmType;
2663 const char *pszComment;
2664 /* @todo SMP */
2665 PVMCPU pVCpu = &pVM->aCpus[0];
2666
2667 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
2668 pHlp->pfnPrintf(pHlp, "Hypervisor CPUM state: %s\n", pszComment);
2669 cpumR3InfoOne(pVM, &pVCpu->cpum.s.Hyper, pVCpu->cpum.s.pHyperCoreR3, pHlp, enmType, ".");
2670 pHlp->pfnPrintf(pHlp, "CR4OrMask=%#x CR4AndMask=%#x\n", pVM->cpum.s.CR4.OrMask, pVM->cpum.s.CR4.AndMask);
2671}
2672
2673
2674/**
2675 * Display the host cpu state.
2676 *
2677 * @param pVM VM Handle.
2678 * @param pHlp The info helper functions.
2679 * @param pszArgs Arguments, ignored.
2680 */
2681static DECLCALLBACK(void) cpumR3InfoHost(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2682{
2683 CPUMDUMPTYPE enmType;
2684 const char *pszComment;
2685 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
2686 pHlp->pfnPrintf(pHlp, "Host CPUM state: %s\n", pszComment);
2687
2688 /*
2689 * Format the EFLAGS.
2690 */
2691 /* @todo SMP */
2692 PCPUMHOSTCTX pCtx = &pVM->aCpus[0].cpum.s.Host;
2693#if HC_ARCH_BITS == 32
2694 uint32_t efl = pCtx->eflags.u32;
2695#else
2696 uint64_t efl = pCtx->rflags;
2697#endif
2698 char szEFlags[80];
2699 cpumR3InfoFormatFlags(&szEFlags[0], efl);
2700
2701 /*
2702 * Format the registers.
2703 */
2704#if HC_ARCH_BITS == 32
2705# ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
2706 if (!(pCtx->efer & MSR_K6_EFER_LMA))
2707# endif
2708 {
2709 pHlp->pfnPrintf(pHlp,
2710 "eax=xxxxxxxx ebx=%08x ecx=xxxxxxxx edx=xxxxxxxx esi=%08x edi=%08x\n"
2711 "eip=xxxxxxxx esp=%08x ebp=%08x iopl=%d %31s\n"
2712 "cs=%04x ds=%04x es=%04x fs=%04x gs=%04x eflags=%08x\n"
2713 "cr0=%08RX64 cr2=xxxxxxxx cr3=%08RX64 cr4=%08RX64 gdtr=%08x:%04x ldtr=%04x\n"
2714 "dr[0]=%08RX64 dr[1]=%08RX64x dr[2]=%08RX64 dr[3]=%08RX64x dr[6]=%08RX64 dr[7]=%08RX64\n"
2715 "SysEnter={cs=%04x eip=%08x esp=%08x}\n"
2716 ,
2717 /*pCtx->eax,*/ pCtx->ebx, /*pCtx->ecx, pCtx->edx,*/ pCtx->esi, pCtx->edi,
2718 /*pCtx->eip,*/ pCtx->esp, pCtx->ebp, X86_EFL_GET_IOPL(efl), szEFlags,
2719 (RTSEL)pCtx->cs, (RTSEL)pCtx->ds, (RTSEL)pCtx->es, (RTSEL)pCtx->fs, (RTSEL)pCtx->gs, efl,
2720 pCtx->cr0, /*pCtx->cr2,*/ pCtx->cr3, pCtx->cr4,
2721 pCtx->dr0, pCtx->dr1, pCtx->dr2, pCtx->dr3, pCtx->dr6, pCtx->dr7,
2722 (uint32_t)pCtx->gdtr.uAddr, pCtx->gdtr.cb, (RTSEL)pCtx->ldtr,
2723 pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
2724 }
2725# ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
2726 else
2727# endif
2728#endif
2729#if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
2730 {
2731 pHlp->pfnPrintf(pHlp,
2732 "rax=xxxxxxxxxxxxxxxx rbx=%016RX64 rcx=xxxxxxxxxxxxxxxx\n"
2733 "rdx=xxxxxxxxxxxxxxxx rsi=%016RX64 rdi=%016RX64\n"
2734 "rip=xxxxxxxxxxxxxxxx rsp=%016RX64 rbp=%016RX64\n"
2735 " r8=xxxxxxxxxxxxxxxx r9=xxxxxxxxxxxxxxxx r10=%016RX64\n"
2736 "r11=%016RX64 r12=%016RX64 r13=%016RX64\n"
2737 "r14=%016RX64 r15=%016RX64\n"
2738 "iopl=%d %31s\n"
2739 "cs=%04x ds=%04x es=%04x fs=%04x gs=%04x eflags=%08RX64\n"
2740 "cr0=%016RX64 cr2=xxxxxxxxxxxxxxxx cr3=%016RX64\n"
2741 "cr4=%016RX64 ldtr=%04x tr=%04x\n"
2742 "dr[0]=%016RX64 dr[1]=%016RX64 dr[2]=%016RX64\n"
2743 "dr[3]=%016RX64 dr[6]=%016RX64 dr[7]=%016RX64\n"
2744 "gdtr=%016RX64:%04x idtr=%016RX64:%04x\n"
2745 "SysEnter={cs=%04x eip=%08x esp=%08x}\n"
2746 "FSbase=%016RX64 GSbase=%016RX64 efer=%08RX64\n"
2747 ,
2748 /*pCtx->rax,*/ pCtx->rbx, /*pCtx->rcx,
2749 pCtx->rdx,*/ pCtx->rsi, pCtx->rdi,
2750 /*pCtx->rip,*/ pCtx->rsp, pCtx->rbp,
2751 /*pCtx->r8, pCtx->r9,*/ pCtx->r10,
2752 pCtx->r11, pCtx->r12, pCtx->r13,
2753 pCtx->r14, pCtx->r15,
2754 X86_EFL_GET_IOPL(efl), szEFlags,
2755 (RTSEL)pCtx->cs, (RTSEL)pCtx->ds, (RTSEL)pCtx->es, (RTSEL)pCtx->fs, (RTSEL)pCtx->gs, efl,
2756 pCtx->cr0, /*pCtx->cr2,*/ pCtx->cr3,
2757 pCtx->cr4, pCtx->ldtr, pCtx->tr,
2758 pCtx->dr0, pCtx->dr1, pCtx->dr2,
2759 pCtx->dr3, pCtx->dr6, pCtx->dr7,
2760 pCtx->gdtr.uAddr, pCtx->gdtr.cb, pCtx->idtr.uAddr, pCtx->idtr.cb,
2761 pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp,
2762 pCtx->FSbase, pCtx->GSbase, pCtx->efer);
2763 }
2764#endif
2765}
2766
2767
2768/**
2769 * Get L1 cache / TLS associativity.
2770 */
2771static const char *getCacheAss(unsigned u, char *pszBuf)
2772{
2773 if (u == 0)
2774 return "res0 ";
2775 if (u == 1)
2776 return "direct";
2777 if (u == 255)
2778 return "fully";
2779 if (u >= 256)
2780 return "???";
2781
2782 RTStrPrintf(pszBuf, 16, "%d way", u);
2783 return pszBuf;
2784}
2785
2786
2787/**
2788 * Get L2 cache associativity.
2789 */
2790const char *getL2CacheAss(unsigned u)
2791{
2792 switch (u)
2793 {
2794 case 0: return "off ";
2795 case 1: return "direct";
2796 case 2: return "2 way ";
2797 case 3: return "res3 ";
2798 case 4: return "4 way ";
2799 case 5: return "res5 ";
2800 case 6: return "8 way ";
2801 case 7: return "res7 ";
2802 case 8: return "16 way";
2803 case 9: return "res9 ";
2804 case 10: return "res10 ";
2805 case 11: return "res11 ";
2806 case 12: return "res12 ";
2807 case 13: return "res13 ";
2808 case 14: return "res14 ";
2809 case 15: return "fully ";
2810 default: return "????";
2811 }
2812}
2813
2814
2815/**
2816 * Display the guest CpuId leaves.
2817 *
2818 * @param pVM VM Handle.
2819 * @param pHlp The info helper functions.
2820 * @param pszArgs "terse", "default" or "verbose".
2821 */
2822static DECLCALLBACK(void) cpumR3CpuIdInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2823{
2824 /*
2825 * Parse the argument.
2826 */
2827 unsigned iVerbosity = 1;
2828 if (pszArgs)
2829 {
2830 pszArgs = RTStrStripL(pszArgs);
2831 if (!strcmp(pszArgs, "terse"))
2832 iVerbosity--;
2833 else if (!strcmp(pszArgs, "verbose"))
2834 iVerbosity++;
2835 }
2836
2837 /*
2838 * Start cracking.
2839 */
2840 CPUMCPUID Host;
2841 CPUMCPUID Guest;
2842 unsigned cStdMax = pVM->cpum.s.aGuestCpuIdStd[0].eax;
2843
2844 pHlp->pfnPrintf(pHlp,
2845 " RAW Standard CPUIDs\n"
2846 " Function eax ebx ecx edx\n");
2847 for (unsigned i = 0; i < RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdStd); i++)
2848 {
2849 Guest = pVM->cpum.s.aGuestCpuIdStd[i];
2850 ASMCpuId_Idx_ECX(i, 0, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
2851
2852 pHlp->pfnPrintf(pHlp,
2853 "Gst: %08x %08x %08x %08x %08x%s\n"
2854 "Hst: %08x %08x %08x %08x\n",
2855 i, Guest.eax, Guest.ebx, Guest.ecx, Guest.edx,
2856 i <= cStdMax ? "" : "*",
2857 Host.eax, Host.ebx, Host.ecx, Host.edx);
2858 }
2859
2860 /*
2861 * If verbose, decode it.
2862 */
2863 if (iVerbosity)
2864 {
2865 Guest = pVM->cpum.s.aGuestCpuIdStd[0];
2866 pHlp->pfnPrintf(pHlp,
2867 "Name: %.04s%.04s%.04s\n"
2868 "Supports: 0-%x\n",
2869 &Guest.ebx, &Guest.edx, &Guest.ecx, Guest.eax);
2870 }
2871
2872 /*
2873 * Get Features.
2874 */
2875 bool const fIntel = ASMIsIntelCpuEx(pVM->cpum.s.aGuestCpuIdStd[0].ebx,
2876 pVM->cpum.s.aGuestCpuIdStd[0].ecx,
2877 pVM->cpum.s.aGuestCpuIdStd[0].edx);
2878 if (cStdMax >= 1 && iVerbosity)
2879 {
2880 static const char * const s_apszTypes[4] = { "primary", "overdrive", "MP", "reserved" };
2881
2882 Guest = pVM->cpum.s.aGuestCpuIdStd[1];
2883 uint32_t uEAX = Guest.eax;
2884
2885 pHlp->pfnPrintf(pHlp,
2886 "Family: %d \tExtended: %d \tEffective: %d\n"
2887 "Model: %d \tExtended: %d \tEffective: %d\n"
2888 "Stepping: %d\n"
2889 "Type: %d (%s)\n"
2890 "APIC ID: %#04x\n"
2891 "Logical CPUs: %d\n"
2892 "CLFLUSH Size: %d\n"
2893 "Brand ID: %#04x\n",
2894 (uEAX >> 8) & 0xf, (uEAX >> 20) & 0x7f, ASMGetCpuFamily(uEAX),
2895 (uEAX >> 4) & 0xf, (uEAX >> 16) & 0x0f, ASMGetCpuModel(uEAX, fIntel),
2896 ASMGetCpuStepping(uEAX),
2897 (uEAX >> 12) & 3, s_apszTypes[(uEAX >> 12) & 3],
2898 (Guest.ebx >> 24) & 0xff,
2899 (Guest.ebx >> 16) & 0xff,
2900 (Guest.ebx >> 8) & 0xff,
2901 (Guest.ebx >> 0) & 0xff);
2902 if (iVerbosity == 1)
2903 {
2904 uint32_t uEDX = Guest.edx;
2905 pHlp->pfnPrintf(pHlp, "Features EDX: ");
2906 if (uEDX & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " FPU");
2907 if (uEDX & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " VME");
2908 if (uEDX & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " DE");
2909 if (uEDX & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " PSE");
2910 if (uEDX & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " TSC");
2911 if (uEDX & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " MSR");
2912 if (uEDX & RT_BIT(6)) pHlp->pfnPrintf(pHlp, " PAE");
2913 if (uEDX & RT_BIT(7)) pHlp->pfnPrintf(pHlp, " MCE");
2914 if (uEDX & RT_BIT(8)) pHlp->pfnPrintf(pHlp, " CX8");
2915 if (uEDX & RT_BIT(9)) pHlp->pfnPrintf(pHlp, " APIC");
2916 if (uEDX & RT_BIT(10)) pHlp->pfnPrintf(pHlp, " 10");
2917 if (uEDX & RT_BIT(11)) pHlp->pfnPrintf(pHlp, " SEP");
2918 if (uEDX & RT_BIT(12)) pHlp->pfnPrintf(pHlp, " MTRR");
2919 if (uEDX & RT_BIT(13)) pHlp->pfnPrintf(pHlp, " PGE");
2920 if (uEDX & RT_BIT(14)) pHlp->pfnPrintf(pHlp, " MCA");
2921 if (uEDX & RT_BIT(15)) pHlp->pfnPrintf(pHlp, " CMOV");
2922 if (uEDX & RT_BIT(16)) pHlp->pfnPrintf(pHlp, " PAT");
2923 if (uEDX & RT_BIT(17)) pHlp->pfnPrintf(pHlp, " PSE36");
2924 if (uEDX & RT_BIT(18)) pHlp->pfnPrintf(pHlp, " PSN");
2925 if (uEDX & RT_BIT(19)) pHlp->pfnPrintf(pHlp, " CLFSH");
2926 if (uEDX & RT_BIT(20)) pHlp->pfnPrintf(pHlp, " 20");
2927 if (uEDX & RT_BIT(21)) pHlp->pfnPrintf(pHlp, " DS");
2928 if (uEDX & RT_BIT(22)) pHlp->pfnPrintf(pHlp, " ACPI");
2929 if (uEDX & RT_BIT(23)) pHlp->pfnPrintf(pHlp, " MMX");
2930 if (uEDX & RT_BIT(24)) pHlp->pfnPrintf(pHlp, " FXSR");
2931 if (uEDX & RT_BIT(25)) pHlp->pfnPrintf(pHlp, " SSE");
2932 if (uEDX & RT_BIT(26)) pHlp->pfnPrintf(pHlp, " SSE2");
2933 if (uEDX & RT_BIT(27)) pHlp->pfnPrintf(pHlp, " SS");
2934 if (uEDX & RT_BIT(28)) pHlp->pfnPrintf(pHlp, " HTT");
2935 if (uEDX & RT_BIT(29)) pHlp->pfnPrintf(pHlp, " TM");
2936 if (uEDX & RT_BIT(30)) pHlp->pfnPrintf(pHlp, " 30");
2937 if (uEDX & RT_BIT(31)) pHlp->pfnPrintf(pHlp, " PBE");
2938 pHlp->pfnPrintf(pHlp, "\n");
2939
2940 uint32_t uECX = Guest.ecx;
2941 pHlp->pfnPrintf(pHlp, "Features ECX: ");
2942 if (uECX & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " SSE3");
2943 if (uECX & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " PCLMUL");
2944 if (uECX & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " DTES64");
2945 if (uECX & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " MONITOR");
2946 if (uECX & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " DS-CPL");
2947 if (uECX & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " VMX");
2948 if (uECX & RT_BIT(6)) pHlp->pfnPrintf(pHlp, " SMX");
2949 if (uECX & RT_BIT(7)) pHlp->pfnPrintf(pHlp, " EST");
2950 if (uECX & RT_BIT(8)) pHlp->pfnPrintf(pHlp, " TM2");
2951 if (uECX & RT_BIT(9)) pHlp->pfnPrintf(pHlp, " SSSE3");
2952 if (uECX & RT_BIT(10)) pHlp->pfnPrintf(pHlp, " CNXT-ID");
2953 if (uECX & RT_BIT(11)) pHlp->pfnPrintf(pHlp, " 11");
2954 if (uECX & RT_BIT(12)) pHlp->pfnPrintf(pHlp, " FMA");
2955 if (uECX & RT_BIT(13)) pHlp->pfnPrintf(pHlp, " CX16");
2956 if (uECX & RT_BIT(14)) pHlp->pfnPrintf(pHlp, " TPRUPDATE");
2957 if (uECX & RT_BIT(15)) pHlp->pfnPrintf(pHlp, " PDCM");
2958 if (uECX & RT_BIT(16)) pHlp->pfnPrintf(pHlp, " 16");
2959 if (uECX & RT_BIT(17)) pHlp->pfnPrintf(pHlp, " PCID");
2960 if (uECX & RT_BIT(18)) pHlp->pfnPrintf(pHlp, " DCA");
2961 if (uECX & RT_BIT(19)) pHlp->pfnPrintf(pHlp, " SSE4.1");
2962 if (uECX & RT_BIT(20)) pHlp->pfnPrintf(pHlp, " SSE4.2");
2963 if (uECX & RT_BIT(21)) pHlp->pfnPrintf(pHlp, " X2APIC");
2964 if (uECX & RT_BIT(22)) pHlp->pfnPrintf(pHlp, " MOVBE");
2965 if (uECX & RT_BIT(23)) pHlp->pfnPrintf(pHlp, " POPCNT");
2966 if (uECX & RT_BIT(24)) pHlp->pfnPrintf(pHlp, " TSCDEADL");
2967 if (uECX & RT_BIT(25)) pHlp->pfnPrintf(pHlp, " AES");
2968 if (uECX & RT_BIT(26)) pHlp->pfnPrintf(pHlp, " XSAVE");
2969 if (uECX & RT_BIT(27)) pHlp->pfnPrintf(pHlp, " OSXSAVE");
2970 if (uECX & RT_BIT(28)) pHlp->pfnPrintf(pHlp, " AVX");
2971 if (uECX & RT_BIT(29)) pHlp->pfnPrintf(pHlp, " 29");
2972 if (uECX & RT_BIT(30)) pHlp->pfnPrintf(pHlp, " 30");
2973 if (uECX & RT_BIT(31)) pHlp->pfnPrintf(pHlp, " 31");
2974 pHlp->pfnPrintf(pHlp, "\n");
2975 }
2976 else
2977 {
2978 ASMCpuId(1, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
2979
2980 X86CPUIDFEATEDX EdxHost = *(PX86CPUIDFEATEDX)&Host.edx;
2981 X86CPUIDFEATECX EcxHost = *(PX86CPUIDFEATECX)&Host.ecx;
2982 X86CPUIDFEATEDX EdxGuest = *(PX86CPUIDFEATEDX)&Guest.edx;
2983 X86CPUIDFEATECX EcxGuest = *(PX86CPUIDFEATECX)&Guest.ecx;
2984
2985 pHlp->pfnPrintf(pHlp, "Mnemonic - Description = guest (host)\n");
2986 pHlp->pfnPrintf(pHlp, "FPU - x87 FPU on Chip = %d (%d)\n", EdxGuest.u1FPU, EdxHost.u1FPU);
2987 pHlp->pfnPrintf(pHlp, "VME - Virtual 8086 Mode Enhancements = %d (%d)\n", EdxGuest.u1VME, EdxHost.u1VME);
2988 pHlp->pfnPrintf(pHlp, "DE - Debugging extensions = %d (%d)\n", EdxGuest.u1DE, EdxHost.u1DE);
2989 pHlp->pfnPrintf(pHlp, "PSE - Page Size Extension = %d (%d)\n", EdxGuest.u1PSE, EdxHost.u1PSE);
2990 pHlp->pfnPrintf(pHlp, "TSC - Time Stamp Counter = %d (%d)\n", EdxGuest.u1TSC, EdxHost.u1TSC);
2991 pHlp->pfnPrintf(pHlp, "MSR - Model Specific Registers = %d (%d)\n", EdxGuest.u1MSR, EdxHost.u1MSR);
2992 pHlp->pfnPrintf(pHlp, "PAE - Physical Address Extension = %d (%d)\n", EdxGuest.u1PAE, EdxHost.u1PAE);
2993 pHlp->pfnPrintf(pHlp, "MCE - Machine Check Exception = %d (%d)\n", EdxGuest.u1MCE, EdxHost.u1MCE);
2994 pHlp->pfnPrintf(pHlp, "CX8 - CMPXCHG8B instruction = %d (%d)\n", EdxGuest.u1CX8, EdxHost.u1CX8);
2995 pHlp->pfnPrintf(pHlp, "APIC - APIC On-Chip = %d (%d)\n", EdxGuest.u1APIC, EdxHost.u1APIC);
2996 pHlp->pfnPrintf(pHlp, "10 - Reserved = %d (%d)\n", EdxGuest.u1Reserved1, EdxHost.u1Reserved1);
2997 pHlp->pfnPrintf(pHlp, "SEP - SYSENTER and SYSEXIT = %d (%d)\n", EdxGuest.u1SEP, EdxHost.u1SEP);
2998 pHlp->pfnPrintf(pHlp, "MTRR - Memory Type Range Registers = %d (%d)\n", EdxGuest.u1MTRR, EdxHost.u1MTRR);
2999 pHlp->pfnPrintf(pHlp, "PGE - PTE Global Bit = %d (%d)\n", EdxGuest.u1PGE, EdxHost.u1PGE);
3000 pHlp->pfnPrintf(pHlp, "MCA - Machine Check Architecture = %d (%d)\n", EdxGuest.u1MCA, EdxHost.u1MCA);
3001 pHlp->pfnPrintf(pHlp, "CMOV - Conditional Move Instructions = %d (%d)\n", EdxGuest.u1CMOV, EdxHost.u1CMOV);
3002 pHlp->pfnPrintf(pHlp, "PAT - Page Attribute Table = %d (%d)\n", EdxGuest.u1PAT, EdxHost.u1PAT);
3003 pHlp->pfnPrintf(pHlp, "PSE-36 - 36-bit Page Size Extention = %d (%d)\n", EdxGuest.u1PSE36, EdxHost.u1PSE36);
3004 pHlp->pfnPrintf(pHlp, "PSN - Processor Serial Number = %d (%d)\n", EdxGuest.u1PSN, EdxHost.u1PSN);
3005 pHlp->pfnPrintf(pHlp, "CLFSH - CLFLUSH Instruction. = %d (%d)\n", EdxGuest.u1CLFSH, EdxHost.u1CLFSH);
3006 pHlp->pfnPrintf(pHlp, "20 - Reserved = %d (%d)\n", EdxGuest.u1Reserved2, EdxHost.u1Reserved2);
3007 pHlp->pfnPrintf(pHlp, "DS - Debug Store = %d (%d)\n", EdxGuest.u1DS, EdxHost.u1DS);
3008 pHlp->pfnPrintf(pHlp, "ACPI - Thermal Mon. & Soft. Clock Ctrl.= %d (%d)\n", EdxGuest.u1ACPI, EdxHost.u1ACPI);
3009 pHlp->pfnPrintf(pHlp, "MMX - Intel MMX Technology = %d (%d)\n", EdxGuest.u1MMX, EdxHost.u1MMX);
3010 pHlp->pfnPrintf(pHlp, "FXSR - FXSAVE and FXRSTOR Instructions = %d (%d)\n", EdxGuest.u1FXSR, EdxHost.u1FXSR);
3011 pHlp->pfnPrintf(pHlp, "SSE - SSE Support = %d (%d)\n", EdxGuest.u1SSE, EdxHost.u1SSE);
3012 pHlp->pfnPrintf(pHlp, "SSE2 - SSE2 Support = %d (%d)\n", EdxGuest.u1SSE2, EdxHost.u1SSE2);
3013 pHlp->pfnPrintf(pHlp, "SS - Self Snoop = %d (%d)\n", EdxGuest.u1SS, EdxHost.u1SS);
3014 pHlp->pfnPrintf(pHlp, "HTT - Hyper-Threading Technology = %d (%d)\n", EdxGuest.u1HTT, EdxHost.u1HTT);
3015 pHlp->pfnPrintf(pHlp, "TM - Thermal Monitor = %d (%d)\n", EdxGuest.u1TM, EdxHost.u1TM);
3016 pHlp->pfnPrintf(pHlp, "30 - Reserved = %d (%d)\n", EdxGuest.u1Reserved3, EdxHost.u1Reserved3);
3017 pHlp->pfnPrintf(pHlp, "PBE - Pending Break Enable = %d (%d)\n", EdxGuest.u1PBE, EdxHost.u1PBE);
3018
3019 pHlp->pfnPrintf(pHlp, "Supports SSE3 = %d (%d)\n", EcxGuest.u1SSE3, EcxHost.u1SSE3);
3020 pHlp->pfnPrintf(pHlp, "PCLMULQDQ = %d (%d)\n", EcxGuest.u1PCLMULQDQ, EcxHost.u1PCLMULQDQ);
3021 pHlp->pfnPrintf(pHlp, "DS Area 64-bit layout = %d (%d)\n", EcxGuest.u1DTE64, EcxHost.u1DTE64);
3022 pHlp->pfnPrintf(pHlp, "Supports MONITOR/MWAIT = %d (%d)\n", EcxGuest.u1Monitor, EcxHost.u1Monitor);
3023 pHlp->pfnPrintf(pHlp, "CPL-DS - CPL Qualified Debug Store = %d (%d)\n", EcxGuest.u1CPLDS, EcxHost.u1CPLDS);
3024 pHlp->pfnPrintf(pHlp, "VMX - Virtual Machine Technology = %d (%d)\n", EcxGuest.u1VMX, EcxHost.u1VMX);
3025 pHlp->pfnPrintf(pHlp, "SMX - Safer Mode Extensions = %d (%d)\n", EcxGuest.u1SMX, EcxHost.u1SMX);
3026 pHlp->pfnPrintf(pHlp, "Enhanced SpeedStep Technology = %d (%d)\n", EcxGuest.u1EST, EcxHost.u1EST);
3027 pHlp->pfnPrintf(pHlp, "Terminal Monitor 2 = %d (%d)\n", EcxGuest.u1TM2, EcxHost.u1TM2);
3028 pHlp->pfnPrintf(pHlp, "Supplemental SSE3 instructions = %d (%d)\n", EcxGuest.u1SSSE3, EcxHost.u1SSSE3);
3029 pHlp->pfnPrintf(pHlp, "L1 Context ID = %d (%d)\n", EcxGuest.u1CNTXID, EcxHost.u1CNTXID);
3030 pHlp->pfnPrintf(pHlp, "11 - Reserved = %d (%d)\n", EcxGuest.u1Reserved1, EcxHost.u1Reserved1);
3031 pHlp->pfnPrintf(pHlp, "FMA extensions using YMM state = %d (%d)\n", EcxGuest.u1FMA, EcxHost.u1FMA);
3032 pHlp->pfnPrintf(pHlp, "CMPXCHG16B instruction = %d (%d)\n", EcxGuest.u1CX16, EcxHost.u1CX16);
3033 pHlp->pfnPrintf(pHlp, "xTPR Update Control = %d (%d)\n", EcxGuest.u1TPRUpdate, EcxHost.u1TPRUpdate);
3034 pHlp->pfnPrintf(pHlp, "Perf/Debug Capability MSR = %d (%d)\n", EcxGuest.u1PDCM, EcxHost.u1PDCM);
3035 pHlp->pfnPrintf(pHlp, "16 - Reserved = %d (%d)\n", EcxGuest.u1Reserved2, EcxHost.u1Reserved2);
3036 pHlp->pfnPrintf(pHlp, "PCID - Process-context identifiers = %d (%d)\n", EcxGuest.u1PCID, EcxHost.u1PCID);
3037 pHlp->pfnPrintf(pHlp, "DCA - Direct Cache Access = %d (%d)\n", EcxGuest.u1DCA, EcxHost.u1DCA);
3038 pHlp->pfnPrintf(pHlp, "SSE4.1 instruction extensions = %d (%d)\n", EcxGuest.u1SSE4_1, EcxHost.u1SSE4_1);
3039 pHlp->pfnPrintf(pHlp, "SSE4.2 instruction extensions = %d (%d)\n", EcxGuest.u1SSE4_2, EcxHost.u1SSE4_2);
3040 pHlp->pfnPrintf(pHlp, "Supports the x2APIC extensions = %d (%d)\n", EcxGuest.u1x2APIC, EcxHost.u1x2APIC);
3041 pHlp->pfnPrintf(pHlp, "MOVBE instruction = %d (%d)\n", EcxGuest.u1MOVBE, EcxHost.u1MOVBE);
3042 pHlp->pfnPrintf(pHlp, "POPCNT instruction = %d (%d)\n", EcxGuest.u1POPCNT, EcxHost.u1POPCNT);
3043 pHlp->pfnPrintf(pHlp, "TSC-Deadline LAPIC timer mode = %d (%d)\n", EcxGuest.u1TSCDEADLINE,EcxHost.u1TSCDEADLINE);
3044 pHlp->pfnPrintf(pHlp, "AESNI instruction extensions = %d (%d)\n", EcxGuest.u1AES, EcxHost.u1AES);
3045 pHlp->pfnPrintf(pHlp, "XSAVE/XRSTOR extended state feature = %d (%d)\n", EcxGuest.u1XSAVE, EcxHost.u1XSAVE);
3046 pHlp->pfnPrintf(pHlp, "Supports OSXSAVE = %d (%d)\n", EcxGuest.u1OSXSAVE, EcxHost.u1OSXSAVE);
3047 pHlp->pfnPrintf(pHlp, "AVX instruction extensions = %d (%d)\n", EcxGuest.u1AVX, EcxHost.u1AVX);
3048 pHlp->pfnPrintf(pHlp, "29/30 - Reserved = %#x (%#x)\n",EcxGuest.u2Reserved3, EcxHost.u2Reserved3);
3049 pHlp->pfnPrintf(pHlp, "31 - Reserved (always 0) = %d (%d)\n", EcxGuest.u1Reserved4, EcxHost.u1Reserved4);
3050 }
3051 }
3052 if (cStdMax >= 2 && iVerbosity)
3053 {
3054 /** @todo */
3055 }
3056
3057 /*
3058 * Extended.
3059 * Implemented after AMD specs.
3060 */
3061 unsigned cExtMax = pVM->cpum.s.aGuestCpuIdExt[0].eax & 0xffff;
3062
3063 pHlp->pfnPrintf(pHlp,
3064 "\n"
3065 " RAW Extended CPUIDs\n"
3066 " Function eax ebx ecx edx\n");
3067 for (unsigned i = 0; i < RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdExt); i++)
3068 {
3069 Guest = pVM->cpum.s.aGuestCpuIdExt[i];
3070 ASMCpuId(0x80000000 | i, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
3071
3072 pHlp->pfnPrintf(pHlp,
3073 "Gst: %08x %08x %08x %08x %08x%s\n"
3074 "Hst: %08x %08x %08x %08x\n",
3075 0x80000000 | i, Guest.eax, Guest.ebx, Guest.ecx, Guest.edx,
3076 i <= cExtMax ? "" : "*",
3077 Host.eax, Host.ebx, Host.ecx, Host.edx);
3078 }
3079
3080 /*
3081 * Understandable output
3082 */
3083 if (iVerbosity)
3084 {
3085 Guest = pVM->cpum.s.aGuestCpuIdExt[0];
3086 pHlp->pfnPrintf(pHlp,
3087 "Ext Name: %.4s%.4s%.4s\n"
3088 "Ext Supports: 0x80000000-%#010x\n",
3089 &Guest.ebx, &Guest.edx, &Guest.ecx, Guest.eax);
3090 }
3091
3092 if (iVerbosity && cExtMax >= 1)
3093 {
3094 Guest = pVM->cpum.s.aGuestCpuIdExt[1];
3095 uint32_t uEAX = Guest.eax;
3096 pHlp->pfnPrintf(pHlp,
3097 "Family: %d \tExtended: %d \tEffective: %d\n"
3098 "Model: %d \tExtended: %d \tEffective: %d\n"
3099 "Stepping: %d\n"
3100 "Brand ID: %#05x\n",
3101 (uEAX >> 8) & 0xf, (uEAX >> 20) & 0x7f, ASMGetCpuFamily(uEAX),
3102 (uEAX >> 4) & 0xf, (uEAX >> 16) & 0x0f, ASMGetCpuModel(uEAX, fIntel),
3103 ASMGetCpuStepping(uEAX),
3104 Guest.ebx & 0xfff);
3105
3106 if (iVerbosity == 1)
3107 {
3108 uint32_t uEDX = Guest.edx;
3109 pHlp->pfnPrintf(pHlp, "Features EDX: ");
3110 if (uEDX & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " FPU");
3111 if (uEDX & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " VME");
3112 if (uEDX & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " DE");
3113 if (uEDX & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " PSE");
3114 if (uEDX & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " TSC");
3115 if (uEDX & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " MSR");
3116 if (uEDX & RT_BIT(6)) pHlp->pfnPrintf(pHlp, " PAE");
3117 if (uEDX & RT_BIT(7)) pHlp->pfnPrintf(pHlp, " MCE");
3118 if (uEDX & RT_BIT(8)) pHlp->pfnPrintf(pHlp, " CX8");
3119 if (uEDX & RT_BIT(9)) pHlp->pfnPrintf(pHlp, " APIC");
3120 if (uEDX & RT_BIT(10)) pHlp->pfnPrintf(pHlp, " 10");
3121 if (uEDX & RT_BIT(11)) pHlp->pfnPrintf(pHlp, " SCR");
3122 if (uEDX & RT_BIT(12)) pHlp->pfnPrintf(pHlp, " MTRR");
3123 if (uEDX & RT_BIT(13)) pHlp->pfnPrintf(pHlp, " PGE");
3124 if (uEDX & RT_BIT(14)) pHlp->pfnPrintf(pHlp, " MCA");
3125 if (uEDX & RT_BIT(15)) pHlp->pfnPrintf(pHlp, " CMOV");
3126 if (uEDX & RT_BIT(16)) pHlp->pfnPrintf(pHlp, " PAT");
3127 if (uEDX & RT_BIT(17)) pHlp->pfnPrintf(pHlp, " PSE36");
3128 if (uEDX & RT_BIT(18)) pHlp->pfnPrintf(pHlp, " 18");
3129 if (uEDX & RT_BIT(19)) pHlp->pfnPrintf(pHlp, " 19");
3130 if (uEDX & RT_BIT(20)) pHlp->pfnPrintf(pHlp, " NX");
3131 if (uEDX & RT_BIT(21)) pHlp->pfnPrintf(pHlp, " 21");
3132 if (uEDX & RT_BIT(22)) pHlp->pfnPrintf(pHlp, " ExtMMX");
3133 if (uEDX & RT_BIT(23)) pHlp->pfnPrintf(pHlp, " MMX");
3134 if (uEDX & RT_BIT(24)) pHlp->pfnPrintf(pHlp, " FXSR");
3135 if (uEDX & RT_BIT(25)) pHlp->pfnPrintf(pHlp, " FastFXSR");
3136 if (uEDX & RT_BIT(26)) pHlp->pfnPrintf(pHlp, " Page1GB");
3137 if (uEDX & RT_BIT(27)) pHlp->pfnPrintf(pHlp, " RDTSCP");
3138 if (uEDX & RT_BIT(28)) pHlp->pfnPrintf(pHlp, " 28");
3139 if (uEDX & RT_BIT(29)) pHlp->pfnPrintf(pHlp, " LongMode");
3140 if (uEDX & RT_BIT(30)) pHlp->pfnPrintf(pHlp, " Ext3DNow");
3141 if (uEDX & RT_BIT(31)) pHlp->pfnPrintf(pHlp, " 3DNow");
3142 pHlp->pfnPrintf(pHlp, "\n");
3143
3144 uint32_t uECX = Guest.ecx;
3145 pHlp->pfnPrintf(pHlp, "Features ECX: ");
3146 if (uECX & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " LAHF/SAHF");
3147 if (uECX & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " CMPL");
3148 if (uECX & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " SVM");
3149 if (uECX & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " ExtAPIC");
3150 if (uECX & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " CR8L");
3151 if (uECX & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " ABM");
3152 if (uECX & RT_BIT(6)) pHlp->pfnPrintf(pHlp, " SSE4A");
3153 if (uECX & RT_BIT(7)) pHlp->pfnPrintf(pHlp, " MISALNSSE");
3154 if (uECX & RT_BIT(8)) pHlp->pfnPrintf(pHlp, " 3DNOWPRF");
3155 if (uECX & RT_BIT(9)) pHlp->pfnPrintf(pHlp, " OSVW");
3156 if (uECX & RT_BIT(10)) pHlp->pfnPrintf(pHlp, " IBS");
3157 if (uECX & RT_BIT(11)) pHlp->pfnPrintf(pHlp, " SSE5");
3158 if (uECX & RT_BIT(12)) pHlp->pfnPrintf(pHlp, " SKINIT");
3159 if (uECX & RT_BIT(13)) pHlp->pfnPrintf(pHlp, " WDT");
3160 for (unsigned iBit = 5; iBit < 32; iBit++)
3161 if (uECX & RT_BIT(iBit))
3162 pHlp->pfnPrintf(pHlp, " %d", iBit);
3163 pHlp->pfnPrintf(pHlp, "\n");
3164 }
3165 else
3166 {
3167 ASMCpuId(0x80000001, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
3168
3169 uint32_t uEdxGst = Guest.edx;
3170 uint32_t uEdxHst = Host.edx;
3171 pHlp->pfnPrintf(pHlp, "Mnemonic - Description = guest (host)\n");
3172 pHlp->pfnPrintf(pHlp, "FPU - x87 FPU on Chip = %d (%d)\n", !!(uEdxGst & RT_BIT( 0)), !!(uEdxHst & RT_BIT( 0)));
3173 pHlp->pfnPrintf(pHlp, "VME - Virtual 8086 Mode Enhancements = %d (%d)\n", !!(uEdxGst & RT_BIT( 1)), !!(uEdxHst & RT_BIT( 1)));
3174 pHlp->pfnPrintf(pHlp, "DE - Debugging extensions = %d (%d)\n", !!(uEdxGst & RT_BIT( 2)), !!(uEdxHst & RT_BIT( 2)));
3175 pHlp->pfnPrintf(pHlp, "PSE - Page Size Extension = %d (%d)\n", !!(uEdxGst & RT_BIT( 3)), !!(uEdxHst & RT_BIT( 3)));
3176 pHlp->pfnPrintf(pHlp, "TSC - Time Stamp Counter = %d (%d)\n", !!(uEdxGst & RT_BIT( 4)), !!(uEdxHst & RT_BIT( 4)));
3177 pHlp->pfnPrintf(pHlp, "MSR - K86 Model Specific Registers = %d (%d)\n", !!(uEdxGst & RT_BIT( 5)), !!(uEdxHst & RT_BIT( 5)));
3178 pHlp->pfnPrintf(pHlp, "PAE - Physical Address Extension = %d (%d)\n", !!(uEdxGst & RT_BIT( 6)), !!(uEdxHst & RT_BIT( 6)));
3179 pHlp->pfnPrintf(pHlp, "MCE - Machine Check Exception = %d (%d)\n", !!(uEdxGst & RT_BIT( 7)), !!(uEdxHst & RT_BIT( 7)));
3180 pHlp->pfnPrintf(pHlp, "CX8 - CMPXCHG8B instruction = %d (%d)\n", !!(uEdxGst & RT_BIT( 8)), !!(uEdxHst & RT_BIT( 8)));
3181 pHlp->pfnPrintf(pHlp, "APIC - APIC On-Chip = %d (%d)\n", !!(uEdxGst & RT_BIT( 9)), !!(uEdxHst & RT_BIT( 9)));
3182 pHlp->pfnPrintf(pHlp, "10 - Reserved = %d (%d)\n", !!(uEdxGst & RT_BIT(10)), !!(uEdxHst & RT_BIT(10)));
3183 pHlp->pfnPrintf(pHlp, "SEP - SYSCALL and SYSRET = %d (%d)\n", !!(uEdxGst & RT_BIT(11)), !!(uEdxHst & RT_BIT(11)));
3184 pHlp->pfnPrintf(pHlp, "MTRR - Memory Type Range Registers = %d (%d)\n", !!(uEdxGst & RT_BIT(12)), !!(uEdxHst & RT_BIT(12)));
3185 pHlp->pfnPrintf(pHlp, "PGE - PTE Global Bit = %d (%d)\n", !!(uEdxGst & RT_BIT(13)), !!(uEdxHst & RT_BIT(13)));
3186 pHlp->pfnPrintf(pHlp, "MCA - Machine Check Architecture = %d (%d)\n", !!(uEdxGst & RT_BIT(14)), !!(uEdxHst & RT_BIT(14)));
3187 pHlp->pfnPrintf(pHlp, "CMOV - Conditional Move Instructions = %d (%d)\n", !!(uEdxGst & RT_BIT(15)), !!(uEdxHst & RT_BIT(15)));
3188 pHlp->pfnPrintf(pHlp, "PAT - Page Attribute Table = %d (%d)\n", !!(uEdxGst & RT_BIT(16)), !!(uEdxHst & RT_BIT(16)));
3189 pHlp->pfnPrintf(pHlp, "PSE-36 - 36-bit Page Size Extention = %d (%d)\n", !!(uEdxGst & RT_BIT(17)), !!(uEdxHst & RT_BIT(17)));
3190 pHlp->pfnPrintf(pHlp, "18 - Reserved = %d (%d)\n", !!(uEdxGst & RT_BIT(18)), !!(uEdxHst & RT_BIT(18)));
3191 pHlp->pfnPrintf(pHlp, "19 - Reserved = %d (%d)\n", !!(uEdxGst & RT_BIT(19)), !!(uEdxHst & RT_BIT(19)));
3192 pHlp->pfnPrintf(pHlp, "NX - No-Execute Page Protection = %d (%d)\n", !!(uEdxGst & RT_BIT(20)), !!(uEdxHst & RT_BIT(20)));
3193 pHlp->pfnPrintf(pHlp, "DS - Debug Store = %d (%d)\n", !!(uEdxGst & RT_BIT(21)), !!(uEdxHst & RT_BIT(21)));
3194 pHlp->pfnPrintf(pHlp, "AXMMX - AMD Extensions to MMX Instr. = %d (%d)\n", !!(uEdxGst & RT_BIT(22)), !!(uEdxHst & RT_BIT(22)));
3195 pHlp->pfnPrintf(pHlp, "MMX - Intel MMX Technology = %d (%d)\n", !!(uEdxGst & RT_BIT(23)), !!(uEdxHst & RT_BIT(23)));
3196 pHlp->pfnPrintf(pHlp, "FXSR - FXSAVE and FXRSTOR Instructions = %d (%d)\n", !!(uEdxGst & RT_BIT(24)), !!(uEdxHst & RT_BIT(24)));
3197 pHlp->pfnPrintf(pHlp, "25 - AMD fast FXSAVE and FXRSTOR Instr.= %d (%d)\n", !!(uEdxGst & RT_BIT(25)), !!(uEdxHst & RT_BIT(25)));
3198 pHlp->pfnPrintf(pHlp, "26 - 1 GB large page support = %d (%d)\n", !!(uEdxGst & RT_BIT(26)), !!(uEdxHst & RT_BIT(26)));
3199 pHlp->pfnPrintf(pHlp, "27 - RDTSCP instruction = %d (%d)\n", !!(uEdxGst & RT_BIT(27)), !!(uEdxHst & RT_BIT(27)));
3200 pHlp->pfnPrintf(pHlp, "28 - Reserved = %d (%d)\n", !!(uEdxGst & RT_BIT(28)), !!(uEdxHst & RT_BIT(28)));
3201 pHlp->pfnPrintf(pHlp, "29 - AMD Long Mode = %d (%d)\n", !!(uEdxGst & RT_BIT(29)), !!(uEdxHst & RT_BIT(29)));
3202 pHlp->pfnPrintf(pHlp, "30 - AMD Extensions to 3DNow = %d (%d)\n", !!(uEdxGst & RT_BIT(30)), !!(uEdxHst & RT_BIT(30)));
3203 pHlp->pfnPrintf(pHlp, "31 - AMD 3DNow = %d (%d)\n", !!(uEdxGst & RT_BIT(31)), !!(uEdxHst & RT_BIT(31)));
3204
3205 uint32_t uEcxGst = Guest.ecx;
3206 uint32_t uEcxHst = Host.ecx;
3207 pHlp->pfnPrintf(pHlp, "LahfSahf - LAHF/SAHF in 64-bit mode = %d (%d)\n", !!(uEcxGst & RT_BIT( 0)), !!(uEcxHst & RT_BIT( 0)));
3208 pHlp->pfnPrintf(pHlp, "CmpLegacy - Core MP legacy mode (depr) = %d (%d)\n", !!(uEcxGst & RT_BIT( 1)), !!(uEcxHst & RT_BIT( 1)));
3209 pHlp->pfnPrintf(pHlp, "SVM - AMD VM Extensions = %d (%d)\n", !!(uEcxGst & RT_BIT( 2)), !!(uEcxHst & RT_BIT( 2)));
3210 pHlp->pfnPrintf(pHlp, "APIC registers starting at 0x400 = %d (%d)\n", !!(uEcxGst & RT_BIT( 3)), !!(uEcxHst & RT_BIT( 3)));
3211 pHlp->pfnPrintf(pHlp, "AltMovCR8 - LOCK MOV CR0 means MOV CR8 = %d (%d)\n", !!(uEcxGst & RT_BIT( 4)), !!(uEcxHst & RT_BIT( 4)));
3212 pHlp->pfnPrintf(pHlp, "Advanced bit manipulation = %d (%d)\n", !!(uEcxGst & RT_BIT( 5)), !!(uEcxHst & RT_BIT( 5)));
3213 pHlp->pfnPrintf(pHlp, "SSE4A instruction support = %d (%d)\n", !!(uEcxGst & RT_BIT( 6)), !!(uEcxHst & RT_BIT( 6)));
3214 pHlp->pfnPrintf(pHlp, "Misaligned SSE mode = %d (%d)\n", !!(uEcxGst & RT_BIT( 7)), !!(uEcxHst & RT_BIT( 7)));
3215 pHlp->pfnPrintf(pHlp, "PREFETCH and PREFETCHW instruction = %d (%d)\n", !!(uEcxGst & RT_BIT( 8)), !!(uEcxHst & RT_BIT( 8)));
3216 pHlp->pfnPrintf(pHlp, "OS visible workaround = %d (%d)\n", !!(uEcxGst & RT_BIT( 9)), !!(uEcxHst & RT_BIT( 9)));
3217 pHlp->pfnPrintf(pHlp, "Instruction based sampling = %d (%d)\n", !!(uEcxGst & RT_BIT(10)), !!(uEcxHst & RT_BIT(10)));
3218 pHlp->pfnPrintf(pHlp, "SSE5 support = %d (%d)\n", !!(uEcxGst & RT_BIT(11)), !!(uEcxHst & RT_BIT(11)));
3219 pHlp->pfnPrintf(pHlp, "SKINIT, STGI, and DEV support = %d (%d)\n", !!(uEcxGst & RT_BIT(12)), !!(uEcxHst & RT_BIT(12)));
3220 pHlp->pfnPrintf(pHlp, "Watchdog timer support. = %d (%d)\n", !!(uEcxGst & RT_BIT(13)), !!(uEcxHst & RT_BIT(13)));
3221 pHlp->pfnPrintf(pHlp, "31:14 - Reserved = %#x (%#x)\n", uEcxGst >> 14, uEcxHst >> 14);
3222 }
3223 }
3224
3225 if (iVerbosity && cExtMax >= 2)
3226 {
3227 char szString[4*4*3+1] = {0};
3228 uint32_t *pu32 = (uint32_t *)szString;
3229 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[2].eax;
3230 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[2].ebx;
3231 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[2].ecx;
3232 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[2].edx;
3233 if (cExtMax >= 3)
3234 {
3235 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[3].eax;
3236 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[3].ebx;
3237 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[3].ecx;
3238 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[3].edx;
3239 }
3240 if (cExtMax >= 4)
3241 {
3242 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[4].eax;
3243 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[4].ebx;
3244 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[4].ecx;
3245 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[4].edx;
3246 }
3247 pHlp->pfnPrintf(pHlp, "Full Name: %s\n", szString);
3248 }
3249
3250 if (iVerbosity && cExtMax >= 5)
3251 {
3252 uint32_t uEAX = pVM->cpum.s.aGuestCpuIdExt[5].eax;
3253 uint32_t uEBX = pVM->cpum.s.aGuestCpuIdExt[5].ebx;
3254 uint32_t uECX = pVM->cpum.s.aGuestCpuIdExt[5].ecx;
3255 uint32_t uEDX = pVM->cpum.s.aGuestCpuIdExt[5].edx;
3256 char sz1[32];
3257 char sz2[32];
3258
3259 pHlp->pfnPrintf(pHlp,
3260 "TLB 2/4M Instr/Uni: %s %3d entries\n"
3261 "TLB 2/4M Data: %s %3d entries\n",
3262 getCacheAss((uEAX >> 8) & 0xff, sz1), (uEAX >> 0) & 0xff,
3263 getCacheAss((uEAX >> 24) & 0xff, sz2), (uEAX >> 16) & 0xff);
3264 pHlp->pfnPrintf(pHlp,
3265 "TLB 4K Instr/Uni: %s %3d entries\n"
3266 "TLB 4K Data: %s %3d entries\n",
3267 getCacheAss((uEBX >> 8) & 0xff, sz1), (uEBX >> 0) & 0xff,
3268 getCacheAss((uEBX >> 24) & 0xff, sz2), (uEBX >> 16) & 0xff);
3269 pHlp->pfnPrintf(pHlp, "L1 Instr Cache Line Size: %d bytes\n"
3270 "L1 Instr Cache Lines Per Tag: %d\n"
3271 "L1 Instr Cache Associativity: %s\n"
3272 "L1 Instr Cache Size: %d KB\n",
3273 (uEDX >> 0) & 0xff,
3274 (uEDX >> 8) & 0xff,
3275 getCacheAss((uEDX >> 16) & 0xff, sz1),
3276 (uEDX >> 24) & 0xff);
3277 pHlp->pfnPrintf(pHlp,
3278 "L1 Data Cache Line Size: %d bytes\n"
3279 "L1 Data Cache Lines Per Tag: %d\n"
3280 "L1 Data Cache Associativity: %s\n"
3281 "L1 Data Cache Size: %d KB\n",
3282 (uECX >> 0) & 0xff,
3283 (uECX >> 8) & 0xff,
3284 getCacheAss((uECX >> 16) & 0xff, sz1),
3285 (uECX >> 24) & 0xff);
3286 }
3287
3288 if (iVerbosity && cExtMax >= 6)
3289 {
3290 uint32_t uEAX = pVM->cpum.s.aGuestCpuIdExt[6].eax;
3291 uint32_t uEBX = pVM->cpum.s.aGuestCpuIdExt[6].ebx;
3292 uint32_t uEDX = pVM->cpum.s.aGuestCpuIdExt[6].edx;
3293
3294 pHlp->pfnPrintf(pHlp,
3295 "L2 TLB 2/4M Instr/Uni: %s %4d entries\n"
3296 "L2 TLB 2/4M Data: %s %4d entries\n",
3297 getL2CacheAss((uEAX >> 12) & 0xf), (uEAX >> 0) & 0xfff,
3298 getL2CacheAss((uEAX >> 28) & 0xf), (uEAX >> 16) & 0xfff);
3299 pHlp->pfnPrintf(pHlp,
3300 "L2 TLB 4K Instr/Uni: %s %4d entries\n"
3301 "L2 TLB 4K Data: %s %4d entries\n",
3302 getL2CacheAss((uEBX >> 12) & 0xf), (uEBX >> 0) & 0xfff,
3303 getL2CacheAss((uEBX >> 28) & 0xf), (uEBX >> 16) & 0xfff);
3304 pHlp->pfnPrintf(pHlp,
3305 "L2 Cache Line Size: %d bytes\n"
3306 "L2 Cache Lines Per Tag: %d\n"
3307 "L2 Cache Associativity: %s\n"
3308 "L2 Cache Size: %d KB\n",
3309 (uEDX >> 0) & 0xff,
3310 (uEDX >> 8) & 0xf,
3311 getL2CacheAss((uEDX >> 12) & 0xf),
3312 (uEDX >> 16) & 0xffff);
3313 }
3314
3315 if (iVerbosity && cExtMax >= 7)
3316 {
3317 uint32_t uEDX = pVM->cpum.s.aGuestCpuIdExt[7].edx;
3318
3319 pHlp->pfnPrintf(pHlp, "APM Features: ");
3320 if (uEDX & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " TS");
3321 if (uEDX & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " FID");
3322 if (uEDX & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " VID");
3323 if (uEDX & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " TTP");
3324 if (uEDX & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " TM");
3325 if (uEDX & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " STC");
3326 for (unsigned iBit = 6; iBit < 32; iBit++)
3327 if (uEDX & RT_BIT(iBit))
3328 pHlp->pfnPrintf(pHlp, " %d", iBit);
3329 pHlp->pfnPrintf(pHlp, "\n");
3330 }
3331
3332 if (iVerbosity && cExtMax >= 8)
3333 {
3334 uint32_t uEAX = pVM->cpum.s.aGuestCpuIdExt[8].eax;
3335 uint32_t uECX = pVM->cpum.s.aGuestCpuIdExt[8].ecx;
3336
3337 pHlp->pfnPrintf(pHlp,
3338 "Physical Address Width: %d bits\n"
3339 "Virtual Address Width: %d bits\n"
3340 "Guest Physical Address Width: %d bits\n",
3341 (uEAX >> 0) & 0xff,
3342 (uEAX >> 8) & 0xff,
3343 (uEAX >> 16) & 0xff);
3344 pHlp->pfnPrintf(pHlp,
3345 "Physical Core Count: %d\n",
3346 (uECX >> 0) & 0xff);
3347 }
3348
3349
3350 /*
3351 * Centaur.
3352 */
3353 unsigned cCentaurMax = pVM->cpum.s.aGuestCpuIdCentaur[0].eax & 0xffff;
3354
3355 pHlp->pfnPrintf(pHlp,
3356 "\n"
3357 " RAW Centaur CPUIDs\n"
3358 " Function eax ebx ecx edx\n");
3359 for (unsigned i = 0; i < RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdCentaur); i++)
3360 {
3361 Guest = pVM->cpum.s.aGuestCpuIdCentaur[i];
3362 ASMCpuId(0xc0000000 | i, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
3363
3364 pHlp->pfnPrintf(pHlp,
3365 "Gst: %08x %08x %08x %08x %08x%s\n"
3366 "Hst: %08x %08x %08x %08x\n",
3367 0xc0000000 | i, Guest.eax, Guest.ebx, Guest.ecx, Guest.edx,
3368 i <= cCentaurMax ? "" : "*",
3369 Host.eax, Host.ebx, Host.ecx, Host.edx);
3370 }
3371
3372 /*
3373 * Understandable output
3374 */
3375 if (iVerbosity)
3376 {
3377 Guest = pVM->cpum.s.aGuestCpuIdCentaur[0];
3378 pHlp->pfnPrintf(pHlp,
3379 "Centaur Supports: 0xc0000000-%#010x\n",
3380 Guest.eax);
3381 }
3382
3383 if (iVerbosity && cCentaurMax >= 1)
3384 {
3385 ASMCpuId(0xc0000001, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
3386 uint32_t uEdxGst = pVM->cpum.s.aGuestCpuIdExt[1].edx;
3387 uint32_t uEdxHst = Host.edx;
3388
3389 if (iVerbosity == 1)
3390 {
3391 pHlp->pfnPrintf(pHlp, "Centaur Features EDX: ");
3392 if (uEdxGst & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " AIS");
3393 if (uEdxGst & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " AIS-E");
3394 if (uEdxGst & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " RNG");
3395 if (uEdxGst & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " RNG-E");
3396 if (uEdxGst & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " LH");
3397 if (uEdxGst & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " FEMMS");
3398 if (uEdxGst & RT_BIT(6)) pHlp->pfnPrintf(pHlp, " ACE");
3399 if (uEdxGst & RT_BIT(7)) pHlp->pfnPrintf(pHlp, " ACE-E");
3400 /* possibly indicating MM/HE and MM/HE-E on older chips... */
3401 if (uEdxGst & RT_BIT(8)) pHlp->pfnPrintf(pHlp, " ACE2");
3402 if (uEdxGst & RT_BIT(9)) pHlp->pfnPrintf(pHlp, " ACE2-E");
3403 if (uEdxGst & RT_BIT(10)) pHlp->pfnPrintf(pHlp, " PHE");
3404 if (uEdxGst & RT_BIT(11)) pHlp->pfnPrintf(pHlp, " PHE-E");
3405 if (uEdxGst & RT_BIT(12)) pHlp->pfnPrintf(pHlp, " PMM");
3406 if (uEdxGst & RT_BIT(13)) pHlp->pfnPrintf(pHlp, " PMM-E");
3407 for (unsigned iBit = 14; iBit < 32; iBit++)
3408 if (uEdxGst & RT_BIT(iBit))
3409 pHlp->pfnPrintf(pHlp, " %d", iBit);
3410 pHlp->pfnPrintf(pHlp, "\n");
3411 }
3412 else
3413 {
3414 pHlp->pfnPrintf(pHlp, "Mnemonic - Description = guest (host)\n");
3415 pHlp->pfnPrintf(pHlp, "AIS - Alternate Instruction Set = %d (%d)\n", !!(uEdxGst & RT_BIT( 0)), !!(uEdxHst & RT_BIT( 0)));
3416 pHlp->pfnPrintf(pHlp, "AIS-E - AIS enabled = %d (%d)\n", !!(uEdxGst & RT_BIT( 1)), !!(uEdxHst & RT_BIT( 1)));
3417 pHlp->pfnPrintf(pHlp, "RNG - Random Number Generator = %d (%d)\n", !!(uEdxGst & RT_BIT( 2)), !!(uEdxHst & RT_BIT( 2)));
3418 pHlp->pfnPrintf(pHlp, "RNG-E - RNG enabled = %d (%d)\n", !!(uEdxGst & RT_BIT( 3)), !!(uEdxHst & RT_BIT( 3)));
3419 pHlp->pfnPrintf(pHlp, "LH - LongHaul MSR 0000_110Ah = %d (%d)\n", !!(uEdxGst & RT_BIT( 4)), !!(uEdxHst & RT_BIT( 4)));
3420 pHlp->pfnPrintf(pHlp, "FEMMS - FEMMS = %d (%d)\n", !!(uEdxGst & RT_BIT( 5)), !!(uEdxHst & RT_BIT( 5)));
3421 pHlp->pfnPrintf(pHlp, "ACE - Advanced Cryptography Engine = %d (%d)\n", !!(uEdxGst & RT_BIT( 6)), !!(uEdxHst & RT_BIT( 6)));
3422 pHlp->pfnPrintf(pHlp, "ACE-E - ACE enabled = %d (%d)\n", !!(uEdxGst & RT_BIT( 7)), !!(uEdxHst & RT_BIT( 7)));
3423 /* possibly indicating MM/HE and MM/HE-E on older chips... */
3424 pHlp->pfnPrintf(pHlp, "ACE2 - Advanced Cryptography Engine 2 = %d (%d)\n", !!(uEdxGst & RT_BIT( 8)), !!(uEdxHst & RT_BIT( 8)));
3425 pHlp->pfnPrintf(pHlp, "ACE2-E - ACE enabled = %d (%d)\n", !!(uEdxGst & RT_BIT( 9)), !!(uEdxHst & RT_BIT( 9)));
3426 pHlp->pfnPrintf(pHlp, "PHE - Hash Engine = %d (%d)\n", !!(uEdxGst & RT_BIT(10)), !!(uEdxHst & RT_BIT(10)));
3427 pHlp->pfnPrintf(pHlp, "PHE-E - PHE enabled = %d (%d)\n", !!(uEdxGst & RT_BIT(11)), !!(uEdxHst & RT_BIT(11)));
3428 pHlp->pfnPrintf(pHlp, "PMM - Montgomery Multiplier = %d (%d)\n", !!(uEdxGst & RT_BIT(12)), !!(uEdxHst & RT_BIT(12)));
3429 pHlp->pfnPrintf(pHlp, "PMM-E - PMM enabled = %d (%d)\n", !!(uEdxGst & RT_BIT(13)), !!(uEdxHst & RT_BIT(13)));
3430 for (unsigned iBit = 14; iBit < 32; iBit++)
3431 if ((uEdxGst | uEdxHst) & RT_BIT(iBit))
3432 pHlp->pfnPrintf(pHlp, "Bit %d = %d (%d)\n", !!(uEdxGst & RT_BIT(iBit)), !!(uEdxHst & RT_BIT(iBit)));
3433 pHlp->pfnPrintf(pHlp, "\n");
3434 }
3435 }
3436}
3437
3438
3439/**
3440 * Structure used when disassembling and instructions in DBGF.
3441 * This is used so the reader function can get the stuff it needs.
3442 */
3443typedef struct CPUMDISASSTATE
3444{
3445 /** Pointer to the CPU structure. */
3446 PDISCPUSTATE pCpu;
3447 /** The VM handle. */
3448 PVM pVM;
3449 /** The VMCPU handle. */
3450 PVMCPU pVCpu;
3451 /** Pointer to the first byte in the segment. */
3452 RTGCUINTPTR GCPtrSegBase;
3453 /** Pointer to the byte after the end of the segment. (might have wrapped!) */
3454 RTGCUINTPTR GCPtrSegEnd;
3455 /** The size of the segment minus 1. */
3456 RTGCUINTPTR cbSegLimit;
3457 /** Pointer to the current page - R3 Ptr. */
3458 void const *pvPageR3;
3459 /** Pointer to the current page - GC Ptr. */
3460 RTGCPTR pvPageGC;
3461 /** The lock information that PGMPhysReleasePageMappingLock needs. */
3462 PGMPAGEMAPLOCK PageMapLock;
3463 /** Whether the PageMapLock is valid or not. */
3464 bool fLocked;
3465 /** 64 bits mode or not. */
3466 bool f64Bits;
3467} CPUMDISASSTATE, *PCPUMDISASSTATE;
3468
3469
3470/**
3471 * Instruction reader.
3472 *
3473 * @returns VBox status code.
3474 * @param PtrSrc Address to read from.
3475 * In our case this is relative to the selector pointed to by the 2nd user argument of uDisCpu.
3476 * @param pu8Dst Where to store the bytes.
3477 * @param cbRead Number of bytes to read.
3478 * @param uDisCpu Pointer to the disassembler cpu state.
3479 * In this context it's always pointer to the Core of a DBGFDISASSTATE.
3480 */
3481static DECLCALLBACK(int) cpumR3DisasInstrRead(RTUINTPTR PtrSrc, uint8_t *pu8Dst, unsigned cbRead, void *uDisCpu)
3482{
3483 PDISCPUSTATE pCpu = (PDISCPUSTATE)uDisCpu;
3484 PCPUMDISASSTATE pState = (PCPUMDISASSTATE)pCpu->apvUserData[0];
3485 Assert(cbRead > 0);
3486 for (;;)
3487 {
3488 RTGCUINTPTR GCPtr = PtrSrc + pState->GCPtrSegBase;
3489
3490 /* Need to update the page translation? */
3491 if ( !pState->pvPageR3
3492 || (GCPtr >> PAGE_SHIFT) != (pState->pvPageGC >> PAGE_SHIFT))
3493 {
3494 int rc = VINF_SUCCESS;
3495
3496 /* translate the address */
3497 pState->pvPageGC = GCPtr & PAGE_BASE_GC_MASK;
3498 if ( MMHyperIsInsideArea(pState->pVM, pState->pvPageGC)
3499 && !HWACCMIsEnabled(pState->pVM))
3500 {
3501 pState->pvPageR3 = MMHyperRCToR3(pState->pVM, (RTRCPTR)pState->pvPageGC);
3502 if (!pState->pvPageR3)
3503 rc = VERR_INVALID_POINTER;
3504 }
3505 else
3506 {
3507 /* Release mapping lock previously acquired. */
3508 if (pState->fLocked)
3509 PGMPhysReleasePageMappingLock(pState->pVM, &pState->PageMapLock);
3510 rc = PGMPhysGCPtr2CCPtrReadOnly(pState->pVCpu, pState->pvPageGC, &pState->pvPageR3, &pState->PageMapLock);
3511 pState->fLocked = RT_SUCCESS_NP(rc);
3512 }
3513 if (RT_FAILURE(rc))
3514 {
3515 pState->pvPageR3 = NULL;
3516 return rc;
3517 }
3518 }
3519
3520 /* check the segment limit */
3521 if (!pState->f64Bits && PtrSrc > pState->cbSegLimit)
3522 return VERR_OUT_OF_SELECTOR_BOUNDS;
3523
3524 /* calc how much we can read */
3525 uint32_t cb = PAGE_SIZE - (GCPtr & PAGE_OFFSET_MASK);
3526 if (!pState->f64Bits)
3527 {
3528 RTGCUINTPTR cbSeg = pState->GCPtrSegEnd - GCPtr;
3529 if (cb > cbSeg && cbSeg)
3530 cb = cbSeg;
3531 }
3532 if (cb > cbRead)
3533 cb = cbRead;
3534
3535 /* read and advance */
3536 memcpy(pu8Dst, (char *)pState->pvPageR3 + (GCPtr & PAGE_OFFSET_MASK), cb);
3537 cbRead -= cb;
3538 if (!cbRead)
3539 return VINF_SUCCESS;
3540 pu8Dst += cb;
3541 PtrSrc += cb;
3542 }
3543}
3544
3545
3546/**
3547 * Disassemble an instruction and return the information in the provided structure.
3548 *
3549 * @returns VBox status code.
3550 * @param pVM VM Handle
3551 * @param pVCpu VMCPU Handle
3552 * @param pCtx CPU context
3553 * @param GCPtrPC Program counter (relative to CS) to disassemble from.
3554 * @param pCpu Disassembly state
3555 * @param pszPrefix String prefix for logging (debug only)
3556 *
3557 */
3558VMMR3DECL(int) CPUMR3DisasmInstrCPU(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, RTGCPTR GCPtrPC, PDISCPUSTATE pCpu, const char *pszPrefix)
3559{
3560 CPUMDISASSTATE State;
3561 int rc;
3562
3563 const PGMMODE enmMode = PGMGetGuestMode(pVCpu);
3564 State.pCpu = pCpu;
3565 State.pvPageGC = 0;
3566 State.pvPageR3 = NULL;
3567 State.pVM = pVM;
3568 State.pVCpu = pVCpu;
3569 State.fLocked = false;
3570 State.f64Bits = false;
3571
3572 /*
3573 * Get selector information.
3574 */
3575 if ( (pCtx->cr0 & X86_CR0_PE)
3576 && pCtx->eflags.Bits.u1VM == 0)
3577 {
3578 if (CPUMAreHiddenSelRegsValid(pVCpu))
3579 {
3580 State.f64Bits = enmMode >= PGMMODE_AMD64 && pCtx->csHid.Attr.n.u1Long;
3581 State.GCPtrSegBase = pCtx->csHid.u64Base;
3582 State.GCPtrSegEnd = pCtx->csHid.u32Limit + 1 + (RTGCUINTPTR)pCtx->csHid.u64Base;
3583 State.cbSegLimit = pCtx->csHid.u32Limit;
3584 pCpu->mode = (State.f64Bits)
3585 ? CPUMODE_64BIT
3586 : pCtx->csHid.Attr.n.u1DefBig
3587 ? CPUMODE_32BIT
3588 : CPUMODE_16BIT;
3589 }
3590 else
3591 {
3592 DBGFSELINFO SelInfo;
3593
3594 rc = SELMR3GetShadowSelectorInfo(pVM, pCtx->cs, &SelInfo);
3595 if (RT_FAILURE(rc))
3596 {
3597 AssertMsgFailed(("SELMR3GetShadowSelectorInfo failed for %04X:%RGv rc=%d\n", pCtx->cs, GCPtrPC, rc));
3598 return rc;
3599 }
3600
3601 /*
3602 * Validate the selector.
3603 */
3604 rc = DBGFR3SelInfoValidateCS(&SelInfo, pCtx->ss);
3605 if (RT_FAILURE(rc))
3606 {
3607 AssertMsgFailed(("SELMSelInfoValidateCS failed for %04X:%RGv rc=%d\n", pCtx->cs, GCPtrPC, rc));
3608 return rc;
3609 }
3610 State.GCPtrSegBase = SelInfo.GCPtrBase;
3611 State.GCPtrSegEnd = SelInfo.cbLimit + 1 + (RTGCUINTPTR)SelInfo.GCPtrBase;
3612 State.cbSegLimit = SelInfo.cbLimit;
3613 pCpu->mode = SelInfo.u.Raw.Gen.u1DefBig ? CPUMODE_32BIT : CPUMODE_16BIT;
3614 }
3615 }
3616 else
3617 {
3618 /* real or V86 mode */
3619 pCpu->mode = CPUMODE_16BIT;
3620 State.GCPtrSegBase = pCtx->cs * 16;
3621 State.GCPtrSegEnd = 0xFFFFFFFF;
3622 State.cbSegLimit = 0xFFFFFFFF;
3623 }
3624
3625 /*
3626 * Disassemble the instruction.
3627 */
3628 pCpu->pfnReadBytes = cpumR3DisasInstrRead;
3629 pCpu->apvUserData[0] = &State;
3630
3631 uint32_t cbInstr;
3632#ifndef LOG_ENABLED
3633 rc = DISInstr(pCpu, GCPtrPC, 0, &cbInstr, NULL);
3634 if (RT_SUCCESS(rc))
3635 {
3636#else
3637 char szOutput[160];
3638 rc = DISInstr(pCpu, GCPtrPC, 0, &cbInstr, &szOutput[0]);
3639 if (RT_SUCCESS(rc))
3640 {
3641 /* log it */
3642 if (pszPrefix)
3643 Log(("%s-CPU%d: %s", pszPrefix, pVCpu->idCpu, szOutput));
3644 else
3645 Log(("%s", szOutput));
3646#endif
3647 rc = VINF_SUCCESS;
3648 }
3649 else
3650 Log(("CPUMR3DisasmInstrCPU: DISInstr failed for %04X:%RGv rc=%Rrc\n", pCtx->cs, GCPtrPC, rc));
3651
3652 /* Release mapping lock acquired in cpumR3DisasInstrRead. */
3653 if (State.fLocked)
3654 PGMPhysReleasePageMappingLock(pVM, &State.PageMapLock);
3655
3656 return rc;
3657}
3658
3659#ifdef DEBUG
3660
3661/**
3662 * Disassemble an instruction and dump it to the log
3663 *
3664 * @returns VBox status code.
3665 * @param pVM VM Handle
3666 * @param pVCpu VMCPU Handle
3667 * @param pCtx CPU context
3668 * @param pc GC instruction pointer
3669 * @param pszPrefix String prefix for logging
3670 *
3671 * @deprecated Use DBGFR3DisasInstrCurrentLog().
3672 */
3673VMMR3DECL(void) CPUMR3DisasmInstr(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, RTGCPTR pc, const char *pszPrefix)
3674{
3675 DISCPUSTATE Cpu;
3676 CPUMR3DisasmInstrCPU(pVM, pVCpu, pCtx, pc, &Cpu, pszPrefix);
3677}
3678
3679
3680/**
3681 * Debug helper - Saves guest context on raw mode entry (for fatal dump)
3682 *
3683 * @internal
3684 */
3685VMMR3DECL(void) CPUMR3SaveEntryCtx(PVM pVM)
3686{
3687 /** @todo SMP support!! */
3688 pVM->cpum.s.GuestEntry = *CPUMQueryGuestCtxPtr(VMMGetCpu(pVM));
3689}
3690
3691#endif /* DEBUG */
3692
3693/**
3694 * API for controlling a few of the CPU features found in CR4.
3695 *
3696 * Currently only X86_CR4_TSD is accepted as input.
3697 *
3698 * @returns VBox status code.
3699 *
3700 * @param pVM The VM handle.
3701 * @param fOr The CR4 OR mask.
3702 * @param fAnd The CR4 AND mask.
3703 */
3704VMMR3DECL(int) CPUMR3SetCR4Feature(PVM pVM, RTHCUINTREG fOr, RTHCUINTREG fAnd)
3705{
3706 AssertMsgReturn(!(fOr & ~(X86_CR4_TSD)), ("%#x\n", fOr), VERR_INVALID_PARAMETER);
3707 AssertMsgReturn((fAnd & ~(X86_CR4_TSD)) == ~(X86_CR4_TSD), ("%#x\n", fAnd), VERR_INVALID_PARAMETER);
3708
3709 pVM->cpum.s.CR4.OrMask &= fAnd;
3710 pVM->cpum.s.CR4.OrMask |= fOr;
3711
3712 return VINF_SUCCESS;
3713}
3714
3715
3716/**
3717 * Gets a pointer to the array of standard CPUID leaves.
3718 *
3719 * CPUMR3GetGuestCpuIdStdMax() give the size of the array.
3720 *
3721 * @returns Pointer to the standard CPUID leaves (read-only).
3722 * @param pVM The VM handle.
3723 * @remark Intended for PATM.
3724 */
3725VMMR3DECL(RCPTRTYPE(PCCPUMCPUID)) CPUMR3GetGuestCpuIdStdRCPtr(PVM pVM)
3726{
3727 return RCPTRTYPE(PCCPUMCPUID)VM_RC_ADDR(pVM, &pVM->cpum.s.aGuestCpuIdStd[0]);
3728}
3729
3730
3731/**
3732 * Gets a pointer to the array of extended CPUID leaves.
3733 *
3734 * CPUMGetGuestCpuIdExtMax() give the size of the array.
3735 *
3736 * @returns Pointer to the extended CPUID leaves (read-only).
3737 * @param pVM The VM handle.
3738 * @remark Intended for PATM.
3739 */
3740VMMR3DECL(RCPTRTYPE(PCCPUMCPUID)) CPUMR3GetGuestCpuIdExtRCPtr(PVM pVM)
3741{
3742 return (RCPTRTYPE(PCCPUMCPUID))VM_RC_ADDR(pVM, &pVM->cpum.s.aGuestCpuIdExt[0]);
3743}
3744
3745
3746/**
3747 * Gets a pointer to the array of centaur CPUID leaves.
3748 *
3749 * CPUMGetGuestCpuIdCentaurMax() give the size of the array.
3750 *
3751 * @returns Pointer to the centaur CPUID leaves (read-only).
3752 * @param pVM The VM handle.
3753 * @remark Intended for PATM.
3754 */
3755VMMR3DECL(RCPTRTYPE(PCCPUMCPUID)) CPUMR3GetGuestCpuIdCentaurRCPtr(PVM pVM)
3756{
3757 return (RCPTRTYPE(PCCPUMCPUID))VM_RC_ADDR(pVM, &pVM->cpum.s.aGuestCpuIdCentaur[0]);
3758}
3759
3760
3761/**
3762 * Gets a pointer to the default CPUID leaf.
3763 *
3764 * @returns Pointer to the default CPUID leaf (read-only).
3765 * @param pVM The VM handle.
3766 * @remark Intended for PATM.
3767 */
3768VMMR3DECL(RCPTRTYPE(PCCPUMCPUID)) CPUMR3GetGuestCpuIdDefRCPtr(PVM pVM)
3769{
3770 return (RCPTRTYPE(PCCPUMCPUID))VM_RC_ADDR(pVM, &pVM->cpum.s.GuestCpuIdDef);
3771}
3772
3773
3774/**
3775 * Transforms the guest CPU state to raw-ring mode.
3776 *
3777 * This function will change the any of the cs and ss register with DPL=0 to DPL=1.
3778 *
3779 * @returns VBox status. (recompiler failure)
3780 * @param pVCpu The VMCPU handle.
3781 * @param pCtxCore The context core (for trap usage).
3782 * @see @ref pg_raw
3783 */
3784VMMR3DECL(int) CPUMR3RawEnter(PVMCPU pVCpu, PCPUMCTXCORE pCtxCore)
3785{
3786 PVM pVM = pVCpu->CTX_SUFF(pVM);
3787
3788 Assert(!pVCpu->cpum.s.fRawEntered);
3789 Assert(!pVCpu->cpum.s.fRemEntered);
3790 if (!pCtxCore)
3791 pCtxCore = CPUMCTX2CORE(&pVCpu->cpum.s.Guest);
3792
3793 /*
3794 * Are we in Ring-0?
3795 */
3796 if ( pCtxCore->ss && (pCtxCore->ss & X86_SEL_RPL) == 0
3797 && !pCtxCore->eflags.Bits.u1VM)
3798 {
3799 /*
3800 * Enter execution mode.
3801 */
3802 PATMRawEnter(pVM, pCtxCore);
3803
3804 /*
3805 * Set CPL to Ring-1.
3806 */
3807 pCtxCore->ss |= 1;
3808 if (pCtxCore->cs && (pCtxCore->cs & X86_SEL_RPL) == 0)
3809 pCtxCore->cs |= 1;
3810 }
3811 else
3812 {
3813 AssertMsg((pCtxCore->ss & X86_SEL_RPL) >= 2 || pCtxCore->eflags.Bits.u1VM,
3814 ("ring-1 code not supported\n"));
3815 /*
3816 * PATM takes care of IOPL and IF flags for Ring-3 and Ring-2 code as well.
3817 */
3818 PATMRawEnter(pVM, pCtxCore);
3819 }
3820
3821 /*
3822 * Invalidate the hidden registers.
3823 */
3824 pVCpu->cpum.s.fChanged |= CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID;
3825
3826 /*
3827 * Assert sanity.
3828 */
3829 AssertMsg((pCtxCore->eflags.u32 & X86_EFL_IF), ("X86_EFL_IF is clear\n"));
3830 AssertReleaseMsg( pCtxCore->eflags.Bits.u2IOPL < (unsigned)(pCtxCore->ss & X86_SEL_RPL)
3831 || pCtxCore->eflags.Bits.u1VM,
3832 ("X86_EFL_IOPL=%d CPL=%d\n", pCtxCore->eflags.Bits.u2IOPL, pCtxCore->ss & X86_SEL_RPL));
3833 Assert((pVCpu->cpum.s.Guest.cr0 & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE)) == (X86_CR0_PG | X86_CR0_PE | X86_CR0_WP));
3834
3835 pCtxCore->eflags.u32 |= X86_EFL_IF; /* paranoia */
3836
3837 pVCpu->cpum.s.fRawEntered = true;
3838 return VINF_SUCCESS;
3839}
3840
3841
3842/**
3843 * Transforms the guest CPU state from raw-ring mode to correct values.
3844 *
3845 * This function will change any selector registers with DPL=1 to DPL=0.
3846 *
3847 * @returns Adjusted rc.
3848 * @param pVCpu The VMCPU handle.
3849 * @param rc Raw mode return code
3850 * @param pCtxCore The context core (for trap usage).
3851 * @see @ref pg_raw
3852 */
3853VMMR3DECL(int) CPUMR3RawLeave(PVMCPU pVCpu, PCPUMCTXCORE pCtxCore, int rc)
3854{
3855 PVM pVM = pVCpu->CTX_SUFF(pVM);
3856
3857 /*
3858 * Don't leave if we've already left (in GC).
3859 */
3860 Assert(pVCpu->cpum.s.fRawEntered);
3861 Assert(!pVCpu->cpum.s.fRemEntered);
3862 if (!pVCpu->cpum.s.fRawEntered)
3863 return rc;
3864 pVCpu->cpum.s.fRawEntered = false;
3865
3866 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
3867 if (!pCtxCore)
3868 pCtxCore = CPUMCTX2CORE(pCtx);
3869 Assert(pCtxCore->eflags.Bits.u1VM || (pCtxCore->ss & X86_SEL_RPL));
3870 AssertMsg(pCtxCore->eflags.Bits.u1VM || pCtxCore->eflags.Bits.u2IOPL < (unsigned)(pCtxCore->ss & X86_SEL_RPL),
3871 ("X86_EFL_IOPL=%d CPL=%d\n", pCtxCore->eflags.Bits.u2IOPL, pCtxCore->ss & X86_SEL_RPL));
3872
3873 /*
3874 * Are we executing in raw ring-1?
3875 */
3876 if ( (pCtxCore->ss & X86_SEL_RPL) == 1
3877 && !pCtxCore->eflags.Bits.u1VM)
3878 {
3879 /*
3880 * Leave execution mode.
3881 */
3882 PATMRawLeave(pVM, pCtxCore, rc);
3883 /* Not quite sure if this is really required, but shouldn't harm (too much anyways). */
3884 /** @todo See what happens if we remove this. */
3885 if ((pCtxCore->ds & X86_SEL_RPL) == 1)
3886 pCtxCore->ds &= ~X86_SEL_RPL;
3887 if ((pCtxCore->es & X86_SEL_RPL) == 1)
3888 pCtxCore->es &= ~X86_SEL_RPL;
3889 if ((pCtxCore->fs & X86_SEL_RPL) == 1)
3890 pCtxCore->fs &= ~X86_SEL_RPL;
3891 if ((pCtxCore->gs & X86_SEL_RPL) == 1)
3892 pCtxCore->gs &= ~X86_SEL_RPL;
3893
3894 /*
3895 * Ring-1 selector => Ring-0.
3896 */
3897 pCtxCore->ss &= ~X86_SEL_RPL;
3898 if ((pCtxCore->cs & X86_SEL_RPL) == 1)
3899 pCtxCore->cs &= ~X86_SEL_RPL;
3900 }
3901 else
3902 {
3903 /*
3904 * PATM is taking care of the IOPL and IF flags for us.
3905 */
3906 PATMRawLeave(pVM, pCtxCore, rc);
3907 if (!pCtxCore->eflags.Bits.u1VM)
3908 {
3909 /** @todo See what happens if we remove this. */
3910 if ((pCtxCore->ds & X86_SEL_RPL) == 1)
3911 pCtxCore->ds &= ~X86_SEL_RPL;
3912 if ((pCtxCore->es & X86_SEL_RPL) == 1)
3913 pCtxCore->es &= ~X86_SEL_RPL;
3914 if ((pCtxCore->fs & X86_SEL_RPL) == 1)
3915 pCtxCore->fs &= ~X86_SEL_RPL;
3916 if ((pCtxCore->gs & X86_SEL_RPL) == 1)
3917 pCtxCore->gs &= ~X86_SEL_RPL;
3918 }
3919 }
3920
3921 return rc;
3922}
3923
3924
3925/**
3926 * Enters REM, gets and resets the changed flags (CPUM_CHANGED_*).
3927 *
3928 * Only REM should ever call this function!
3929 *
3930 * @returns The changed flags.
3931 * @param pVCpu The VMCPU handle.
3932 * @param puCpl Where to return the current privilege level (CPL).
3933 */
3934VMMR3DECL(uint32_t) CPUMR3RemEnter(PVMCPU pVCpu, uint32_t *puCpl)
3935{
3936 Assert(!pVCpu->cpum.s.fRawEntered);
3937 Assert(!pVCpu->cpum.s.fRemEntered);
3938
3939 /*
3940 * Get the CPL first.
3941 */
3942 *puCpl = CPUMGetGuestCPL(pVCpu, CPUMCTX2CORE(&pVCpu->cpum.s.Guest));
3943
3944 /*
3945 * Get and reset the flags, leaving CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID set.
3946 */
3947 uint32_t fFlags = pVCpu->cpum.s.fChanged;
3948 pVCpu->cpum.s.fChanged &= CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID; /* leave it set */
3949
3950 /** @todo change the switcher to use the fChanged flags. */
3951 if (pVCpu->cpum.s.fUseFlags & CPUM_USED_FPU_SINCE_REM)
3952 {
3953 fFlags |= CPUM_CHANGED_FPU_REM;
3954 pVCpu->cpum.s.fUseFlags &= ~CPUM_USED_FPU_SINCE_REM;
3955 }
3956
3957 pVCpu->cpum.s.fRemEntered = true;
3958 return fFlags;
3959}
3960
3961
3962/**
3963 * Leaves REM and works the CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID flag.
3964 *
3965 * @param pVCpu The virtual CPU handle.
3966 * @param fNoOutOfSyncSels This is @c false if there are out of sync
3967 * registers.
3968 */
3969VMMR3DECL(void) CPUMR3RemLeave(PVMCPU pVCpu, bool fNoOutOfSyncSels)
3970{
3971 Assert(!pVCpu->cpum.s.fRawEntered);
3972 Assert(pVCpu->cpum.s.fRemEntered);
3973
3974 if (fNoOutOfSyncSels)
3975 pVCpu->cpum.s.fChanged &= ~CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID;
3976 else
3977 pVCpu->cpum.s.fChanged |= ~CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID;
3978
3979 pVCpu->cpum.s.fRemEntered = false;
3980}
3981
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette