VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/CPUM.cpp@ 101723

Last change on this file since 101723 was 101539, checked in by vboxsync, 15 months ago

DIS,VMM,DBGC,IPRT,++: Some disassembler tweaks and TB disassembly work. bugref:10371 bugref:9898

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 250.9 KB
Line 
1/* $Id: CPUM.cpp 101539 2023-10-22 02:43:09Z vboxsync $ */
2/** @file
3 * CPUM - CPU Monitor / Manager.
4 */
5
6/*
7 * Copyright (C) 2006-2023 Oracle and/or its affiliates.
8 *
9 * This file is part of VirtualBox base platform packages, as
10 * available from https://www.virtualbox.org.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation, in version 3 of the
15 * License.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, see <https://www.gnu.org/licenses>.
24 *
25 * SPDX-License-Identifier: GPL-3.0-only
26 */
27
28/** @page pg_cpum CPUM - CPU Monitor / Manager
29 *
30 * The CPU Monitor / Manager keeps track of all the CPU registers. It is
31 * also responsible for lazy FPU handling and some of the context loading
32 * in raw mode.
33 *
34 * There are three CPU contexts, the most important one is the guest one (GC).
35 * When running in raw-mode (RC) there is a special hyper context for the VMM
36 * part that floats around inside the guest address space. When running in
37 * raw-mode, CPUM also maintains a host context for saving and restoring
38 * registers across world switches. This latter is done in cooperation with the
39 * world switcher (@see pg_vmm).
40 *
41 * @see grp_cpum
42 *
43 * @section sec_cpum_fpu FPU / SSE / AVX / ++ state.
44 *
45 * TODO: proper write up, currently just some notes.
46 *
47 * The ring-0 FPU handling per OS:
48 *
49 * - 64-bit Windows uses XMM registers in the kernel as part of the calling
50 * convention (Visual C++ doesn't seem to have a way to disable
51 * generating such code either), so CR0.TS/EM are always zero from what I
52 * can tell. We are also forced to always load/save the guest XMM0-XMM15
53 * registers when entering/leaving guest context. Interrupt handlers
54 * using FPU/SSE will offically have call save and restore functions
55 * exported by the kernel, if the really really have to use the state.
56 *
57 * - 32-bit windows does lazy FPU handling, I think, probably including
58 * lazying saving. The Windows Internals book states that it's a bad
59 * idea to use the FPU in kernel space. However, it looks like it will
60 * restore the FPU state of the current thread in case of a kernel \#NM.
61 * Interrupt handlers should be same as for 64-bit.
62 *
63 * - Darwin allows taking \#NM in kernel space, restoring current thread's
64 * state if I read the code correctly. It saves the FPU state of the
65 * outgoing thread, and uses CR0.TS to lazily load the state of the
66 * incoming one. No idea yet how the FPU is treated by interrupt
67 * handlers, i.e. whether they are allowed to disable the state or
68 * something.
69 *
70 * - Linux also allows \#NM in kernel space (don't know since when), and
71 * uses CR0.TS for lazy loading. Saves outgoing thread's state, lazy
72 * loads the incoming unless configured to agressivly load it. Interrupt
73 * handlers can ask whether they're allowed to use the FPU, and may
74 * freely trash the state if Linux thinks it has saved the thread's state
75 * already. This is a problem.
76 *
77 * - Solaris will, from what I can tell, panic if it gets an \#NM in kernel
78 * context. When switching threads, the kernel will save the state of
79 * the outgoing thread and lazy load the incoming one using CR0.TS.
80 * There are a few routines in seeblk.s which uses the SSE unit in ring-0
81 * to do stuff, HAT are among the users. The routines there will
82 * manually clear CR0.TS and save the XMM registers they use only if
83 * CR0.TS was zero upon entry. They will skip it when not, because as
84 * mentioned above, the FPU state is saved when switching away from a
85 * thread and CR0.TS set to 1, so when CR0.TS is 1 there is nothing to
86 * preserve. This is a problem if we restore CR0.TS to 1 after loading
87 * the guest state.
88 *
89 * - FreeBSD - no idea yet.
90 *
91 * - OS/2 does not allow \#NMs in kernel space IIRC. Does lazy loading,
92 * possibly also lazy saving. Interrupts must preserve the CR0.TS+EM &
93 * FPU states.
94 *
95 * Up to r107425 (2016-05-24) we would only temporarily modify CR0.TS/EM while
96 * saving and restoring the host and guest states. The motivation for this
97 * change is that we want to be able to emulate SSE instruction in ring-0 (IEM).
98 *
99 * Starting with that change, we will leave CR0.TS=EM=0 after saving the host
100 * state and only restore it once we've restore the host FPU state. This has the
101 * accidental side effect of triggering Solaris to preserve XMM registers in
102 * sseblk.s. When CR0 was changed by saving the FPU state, CPUM must now inform
103 * the VT-x (HMVMX) code about it as it caches the CR0 value in the VMCS.
104 *
105 *
106 * @section sec_cpum_logging Logging Level Assignments.
107 *
108 * Following log level assignments:
109 * - Log6 is used for FPU state management.
110 * - Log7 is used for FPU state actualization.
111 *
112 */
113
114
115/*********************************************************************************************************************************
116* Header Files *
117*********************************************************************************************************************************/
118#define LOG_GROUP LOG_GROUP_CPUM
119#define CPUM_WITH_NONCONST_HOST_FEATURES
120#include <VBox/vmm/cpum.h>
121#include <VBox/vmm/cpumdis.h>
122#include <VBox/vmm/cpumctx-v1_6.h>
123#include <VBox/vmm/pgm.h>
124#include <VBox/vmm/apic.h>
125#include <VBox/vmm/mm.h>
126#include <VBox/vmm/em.h>
127#include <VBox/vmm/iem.h>
128#include <VBox/vmm/selm.h>
129#include <VBox/vmm/dbgf.h>
130#include <VBox/vmm/hm.h>
131#include <VBox/vmm/hmvmxinline.h>
132#include <VBox/vmm/ssm.h>
133#include "CPUMInternal.h"
134#include <VBox/vmm/vm.h>
135
136#include <VBox/param.h>
137#include <VBox/dis.h>
138#include <VBox/err.h>
139#include <VBox/log.h>
140#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
141# include <iprt/asm-amd64-x86.h>
142#endif
143#include <iprt/assert.h>
144#include <iprt/cpuset.h>
145#include <iprt/mem.h>
146#include <iprt/mp.h>
147#include <iprt/rand.h>
148#include <iprt/string.h>
149
150
151/*********************************************************************************************************************************
152* Defined Constants And Macros *
153*********************************************************************************************************************************/
154/**
155 * This was used in the saved state up to the early life of version 14.
156 *
157 * It indicates that we may have some out-of-sync hidden segement registers.
158 * It is only relevant for raw-mode.
159 */
160#define CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID RT_BIT(12)
161
162
163/** For saved state only: Block injection of non-maskable interrupts to the guest.
164 * @note This flag was moved to CPUMCTX::eflags.uBoth in v7.0.4. */
165#define CPUM_OLD_VMCPU_FF_BLOCK_NMIS RT_BIT_64(25)
166
167
168/*********************************************************************************************************************************
169* Structures and Typedefs *
170*********************************************************************************************************************************/
171
172/**
173 * What kind of cpu info dump to perform.
174 */
175typedef enum CPUMDUMPTYPE
176{
177 CPUMDUMPTYPE_TERSE,
178 CPUMDUMPTYPE_DEFAULT,
179 CPUMDUMPTYPE_VERBOSE
180} CPUMDUMPTYPE;
181/** Pointer to a cpu info dump type. */
182typedef CPUMDUMPTYPE *PCPUMDUMPTYPE;
183
184
185/*********************************************************************************************************************************
186* Internal Functions *
187*********************************************************************************************************************************/
188static DECLCALLBACK(int) cpumR3LiveExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uPass);
189static DECLCALLBACK(int) cpumR3SaveExec(PVM pVM, PSSMHANDLE pSSM);
190static DECLCALLBACK(int) cpumR3LoadPrep(PVM pVM, PSSMHANDLE pSSM);
191static DECLCALLBACK(int) cpumR3LoadExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
192static DECLCALLBACK(int) cpumR3LoadDone(PVM pVM, PSSMHANDLE pSSM);
193static DECLCALLBACK(void) cpumR3InfoAll(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
194static DECLCALLBACK(void) cpumR3InfoGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
195static DECLCALLBACK(void) cpumR3InfoGuestHwvirt(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
196static DECLCALLBACK(void) cpumR3InfoGuestInstr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
197static DECLCALLBACK(void) cpumR3InfoHyper(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
198static DECLCALLBACK(void) cpumR3InfoHost(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
199
200
201/*********************************************************************************************************************************
202* Global Variables *
203*********************************************************************************************************************************/
204#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
205/** Host CPU features. */
206DECL_HIDDEN_DATA(CPUHOSTFEATURES) g_CpumHostFeatures;
207#endif
208
209/** Saved state field descriptors for CPUMCTX. */
210static const SSMFIELD g_aCpumCtxFields[] =
211{
212 SSMFIELD_ENTRY( CPUMCTX, rdi),
213 SSMFIELD_ENTRY( CPUMCTX, rsi),
214 SSMFIELD_ENTRY( CPUMCTX, rbp),
215 SSMFIELD_ENTRY( CPUMCTX, rax),
216 SSMFIELD_ENTRY( CPUMCTX, rbx),
217 SSMFIELD_ENTRY( CPUMCTX, rdx),
218 SSMFIELD_ENTRY( CPUMCTX, rcx),
219 SSMFIELD_ENTRY( CPUMCTX, rsp),
220 SSMFIELD_ENTRY( CPUMCTX, rflags),
221 SSMFIELD_ENTRY( CPUMCTX, rip),
222 SSMFIELD_ENTRY( CPUMCTX, r8),
223 SSMFIELD_ENTRY( CPUMCTX, r9),
224 SSMFIELD_ENTRY( CPUMCTX, r10),
225 SSMFIELD_ENTRY( CPUMCTX, r11),
226 SSMFIELD_ENTRY( CPUMCTX, r12),
227 SSMFIELD_ENTRY( CPUMCTX, r13),
228 SSMFIELD_ENTRY( CPUMCTX, r14),
229 SSMFIELD_ENTRY( CPUMCTX, r15),
230 SSMFIELD_ENTRY( CPUMCTX, es.Sel),
231 SSMFIELD_ENTRY( CPUMCTX, es.ValidSel),
232 SSMFIELD_ENTRY( CPUMCTX, es.fFlags),
233 SSMFIELD_ENTRY( CPUMCTX, es.u64Base),
234 SSMFIELD_ENTRY( CPUMCTX, es.u32Limit),
235 SSMFIELD_ENTRY( CPUMCTX, es.Attr),
236 SSMFIELD_ENTRY( CPUMCTX, cs.Sel),
237 SSMFIELD_ENTRY( CPUMCTX, cs.ValidSel),
238 SSMFIELD_ENTRY( CPUMCTX, cs.fFlags),
239 SSMFIELD_ENTRY( CPUMCTX, cs.u64Base),
240 SSMFIELD_ENTRY( CPUMCTX, cs.u32Limit),
241 SSMFIELD_ENTRY( CPUMCTX, cs.Attr),
242 SSMFIELD_ENTRY( CPUMCTX, ss.Sel),
243 SSMFIELD_ENTRY( CPUMCTX, ss.ValidSel),
244 SSMFIELD_ENTRY( CPUMCTX, ss.fFlags),
245 SSMFIELD_ENTRY( CPUMCTX, ss.u64Base),
246 SSMFIELD_ENTRY( CPUMCTX, ss.u32Limit),
247 SSMFIELD_ENTRY( CPUMCTX, ss.Attr),
248 SSMFIELD_ENTRY( CPUMCTX, ds.Sel),
249 SSMFIELD_ENTRY( CPUMCTX, ds.ValidSel),
250 SSMFIELD_ENTRY( CPUMCTX, ds.fFlags),
251 SSMFIELD_ENTRY( CPUMCTX, ds.u64Base),
252 SSMFIELD_ENTRY( CPUMCTX, ds.u32Limit),
253 SSMFIELD_ENTRY( CPUMCTX, ds.Attr),
254 SSMFIELD_ENTRY( CPUMCTX, fs.Sel),
255 SSMFIELD_ENTRY( CPUMCTX, fs.ValidSel),
256 SSMFIELD_ENTRY( CPUMCTX, fs.fFlags),
257 SSMFIELD_ENTRY( CPUMCTX, fs.u64Base),
258 SSMFIELD_ENTRY( CPUMCTX, fs.u32Limit),
259 SSMFIELD_ENTRY( CPUMCTX, fs.Attr),
260 SSMFIELD_ENTRY( CPUMCTX, gs.Sel),
261 SSMFIELD_ENTRY( CPUMCTX, gs.ValidSel),
262 SSMFIELD_ENTRY( CPUMCTX, gs.fFlags),
263 SSMFIELD_ENTRY( CPUMCTX, gs.u64Base),
264 SSMFIELD_ENTRY( CPUMCTX, gs.u32Limit),
265 SSMFIELD_ENTRY( CPUMCTX, gs.Attr),
266 SSMFIELD_ENTRY( CPUMCTX, cr0),
267 SSMFIELD_ENTRY( CPUMCTX, cr2),
268 SSMFIELD_ENTRY( CPUMCTX, cr3),
269 SSMFIELD_ENTRY( CPUMCTX, cr4),
270 SSMFIELD_ENTRY( CPUMCTX, dr[0]),
271 SSMFIELD_ENTRY( CPUMCTX, dr[1]),
272 SSMFIELD_ENTRY( CPUMCTX, dr[2]),
273 SSMFIELD_ENTRY( CPUMCTX, dr[3]),
274 SSMFIELD_ENTRY( CPUMCTX, dr[6]),
275 SSMFIELD_ENTRY( CPUMCTX, dr[7]),
276 SSMFIELD_ENTRY( CPUMCTX, gdtr.cbGdt),
277 SSMFIELD_ENTRY( CPUMCTX, gdtr.pGdt),
278 SSMFIELD_ENTRY( CPUMCTX, idtr.cbIdt),
279 SSMFIELD_ENTRY( CPUMCTX, idtr.pIdt),
280 SSMFIELD_ENTRY( CPUMCTX, SysEnter.cs),
281 SSMFIELD_ENTRY( CPUMCTX, SysEnter.eip),
282 SSMFIELD_ENTRY( CPUMCTX, SysEnter.esp),
283 SSMFIELD_ENTRY( CPUMCTX, msrEFER),
284 SSMFIELD_ENTRY( CPUMCTX, msrSTAR),
285 SSMFIELD_ENTRY( CPUMCTX, msrPAT),
286 SSMFIELD_ENTRY( CPUMCTX, msrLSTAR),
287 SSMFIELD_ENTRY( CPUMCTX, msrCSTAR),
288 SSMFIELD_ENTRY( CPUMCTX, msrSFMASK),
289 SSMFIELD_ENTRY( CPUMCTX, msrKERNELGSBASE),
290 SSMFIELD_ENTRY( CPUMCTX, ldtr.Sel),
291 SSMFIELD_ENTRY( CPUMCTX, ldtr.ValidSel),
292 SSMFIELD_ENTRY( CPUMCTX, ldtr.fFlags),
293 SSMFIELD_ENTRY( CPUMCTX, ldtr.u64Base),
294 SSMFIELD_ENTRY( CPUMCTX, ldtr.u32Limit),
295 SSMFIELD_ENTRY( CPUMCTX, ldtr.Attr),
296 SSMFIELD_ENTRY( CPUMCTX, tr.Sel),
297 SSMFIELD_ENTRY( CPUMCTX, tr.ValidSel),
298 SSMFIELD_ENTRY( CPUMCTX, tr.fFlags),
299 SSMFIELD_ENTRY( CPUMCTX, tr.u64Base),
300 SSMFIELD_ENTRY( CPUMCTX, tr.u32Limit),
301 SSMFIELD_ENTRY( CPUMCTX, tr.Attr),
302 SSMFIELD_ENTRY_VER( CPUMCTX, aXcr[0], CPUM_SAVED_STATE_VERSION_XSAVE),
303 SSMFIELD_ENTRY_VER( CPUMCTX, aXcr[1], CPUM_SAVED_STATE_VERSION_XSAVE),
304 SSMFIELD_ENTRY_VER( CPUMCTX, fXStateMask, CPUM_SAVED_STATE_VERSION_XSAVE),
305 SSMFIELD_ENTRY_TERM()
306};
307
308/** Saved state field descriptors for SVM nested hardware-virtualization
309 * Host State. */
310static const SSMFIELD g_aSvmHwvirtHostState[] =
311{
312 SSMFIELD_ENTRY( SVMHOSTSTATE, uEferMsr),
313 SSMFIELD_ENTRY( SVMHOSTSTATE, uCr0),
314 SSMFIELD_ENTRY( SVMHOSTSTATE, uCr4),
315 SSMFIELD_ENTRY( SVMHOSTSTATE, uCr3),
316 SSMFIELD_ENTRY( SVMHOSTSTATE, uRip),
317 SSMFIELD_ENTRY( SVMHOSTSTATE, uRsp),
318 SSMFIELD_ENTRY( SVMHOSTSTATE, uRax),
319 SSMFIELD_ENTRY( SVMHOSTSTATE, rflags),
320 SSMFIELD_ENTRY( SVMHOSTSTATE, es.Sel),
321 SSMFIELD_ENTRY( SVMHOSTSTATE, es.ValidSel),
322 SSMFIELD_ENTRY( SVMHOSTSTATE, es.fFlags),
323 SSMFIELD_ENTRY( SVMHOSTSTATE, es.u64Base),
324 SSMFIELD_ENTRY( SVMHOSTSTATE, es.u32Limit),
325 SSMFIELD_ENTRY( SVMHOSTSTATE, es.Attr),
326 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.Sel),
327 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.ValidSel),
328 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.fFlags),
329 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.u64Base),
330 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.u32Limit),
331 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.Attr),
332 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.Sel),
333 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.ValidSel),
334 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.fFlags),
335 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.u64Base),
336 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.u32Limit),
337 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.Attr),
338 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.Sel),
339 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.ValidSel),
340 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.fFlags),
341 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.u64Base),
342 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.u32Limit),
343 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.Attr),
344 SSMFIELD_ENTRY( SVMHOSTSTATE, gdtr.cbGdt),
345 SSMFIELD_ENTRY( SVMHOSTSTATE, gdtr.pGdt),
346 SSMFIELD_ENTRY( SVMHOSTSTATE, idtr.cbIdt),
347 SSMFIELD_ENTRY( SVMHOSTSTATE, idtr.pIdt),
348 SSMFIELD_ENTRY_IGNORE(SVMHOSTSTATE, abPadding),
349 SSMFIELD_ENTRY_TERM()
350};
351
352/** Saved state field descriptors for VMX nested hardware-virtualization
353 * VMCS. */
354static const SSMFIELD g_aVmxHwvirtVmcs[] =
355{
356 SSMFIELD_ENTRY( VMXVVMCS, u32VmcsRevId),
357 SSMFIELD_ENTRY( VMXVVMCS, enmVmxAbort),
358 SSMFIELD_ENTRY( VMXVVMCS, fVmcsState),
359 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au8Padding0),
360 SSMFIELD_ENTRY_VER( VMXVVMCS, u32RestoreProcCtls2, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_4),
361 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au32Reserved0),
362
363 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, u16Reserved0),
364
365 SSMFIELD_ENTRY( VMXVVMCS, u32RoVmInstrError),
366 SSMFIELD_ENTRY( VMXVVMCS, u32RoExitReason),
367 SSMFIELD_ENTRY( VMXVVMCS, u32RoExitIntInfo),
368 SSMFIELD_ENTRY( VMXVVMCS, u32RoExitIntErrCode),
369 SSMFIELD_ENTRY( VMXVVMCS, u32RoIdtVectoringInfo),
370 SSMFIELD_ENTRY( VMXVVMCS, u32RoIdtVectoringErrCode),
371 SSMFIELD_ENTRY( VMXVVMCS, u32RoExitInstrLen),
372 SSMFIELD_ENTRY( VMXVVMCS, u32RoExitInstrInfo),
373 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au32RoReserved2),
374
375 SSMFIELD_ENTRY( VMXVVMCS, u64RoGuestPhysAddr),
376 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved1),
377
378 SSMFIELD_ENTRY( VMXVVMCS, u64RoExitQual),
379 SSMFIELD_ENTRY( VMXVVMCS, u64RoIoRcx),
380 SSMFIELD_ENTRY( VMXVVMCS, u64RoIoRsi),
381 SSMFIELD_ENTRY( VMXVVMCS, u64RoIoRdi),
382 SSMFIELD_ENTRY( VMXVVMCS, u64RoIoRip),
383 SSMFIELD_ENTRY( VMXVVMCS, u64RoGuestLinearAddr),
384 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved5),
385
386 SSMFIELD_ENTRY( VMXVVMCS, u16Vpid),
387 SSMFIELD_ENTRY( VMXVVMCS, u16PostIntNotifyVector),
388 SSMFIELD_ENTRY( VMXVVMCS, u16EptpIndex),
389 SSMFIELD_ENTRY_VER( VMXVVMCS, u16HlatPrefixSize, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_3),
390 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au16Reserved0),
391
392 SSMFIELD_ENTRY( VMXVVMCS, u32PinCtls),
393 SSMFIELD_ENTRY( VMXVVMCS, u32ProcCtls),
394 SSMFIELD_ENTRY( VMXVVMCS, u32XcptBitmap),
395 SSMFIELD_ENTRY( VMXVVMCS, u32XcptPFMask),
396 SSMFIELD_ENTRY( VMXVVMCS, u32XcptPFMatch),
397 SSMFIELD_ENTRY( VMXVVMCS, u32Cr3TargetCount),
398 SSMFIELD_ENTRY( VMXVVMCS, u32ExitCtls),
399 SSMFIELD_ENTRY( VMXVVMCS, u32ExitMsrStoreCount),
400 SSMFIELD_ENTRY( VMXVVMCS, u32ExitMsrLoadCount),
401 SSMFIELD_ENTRY( VMXVVMCS, u32EntryCtls),
402 SSMFIELD_ENTRY( VMXVVMCS, u32EntryMsrLoadCount),
403 SSMFIELD_ENTRY( VMXVVMCS, u32EntryIntInfo),
404 SSMFIELD_ENTRY( VMXVVMCS, u32EntryXcptErrCode),
405 SSMFIELD_ENTRY( VMXVVMCS, u32EntryInstrLen),
406 SSMFIELD_ENTRY( VMXVVMCS, u32TprThreshold),
407 SSMFIELD_ENTRY( VMXVVMCS, u32ProcCtls2),
408 SSMFIELD_ENTRY( VMXVVMCS, u32PleGap),
409 SSMFIELD_ENTRY( VMXVVMCS, u32PleWindow),
410 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au32Reserved1),
411
412 SSMFIELD_ENTRY( VMXVVMCS, u64AddrIoBitmapA),
413 SSMFIELD_ENTRY( VMXVVMCS, u64AddrIoBitmapB),
414 SSMFIELD_ENTRY( VMXVVMCS, u64AddrMsrBitmap),
415 SSMFIELD_ENTRY( VMXVVMCS, u64AddrExitMsrStore),
416 SSMFIELD_ENTRY( VMXVVMCS, u64AddrExitMsrLoad),
417 SSMFIELD_ENTRY( VMXVVMCS, u64AddrEntryMsrLoad),
418 SSMFIELD_ENTRY( VMXVVMCS, u64ExecVmcsPtr),
419 SSMFIELD_ENTRY( VMXVVMCS, u64AddrPml),
420 SSMFIELD_ENTRY( VMXVVMCS, u64TscOffset),
421 SSMFIELD_ENTRY( VMXVVMCS, u64AddrVirtApic),
422 SSMFIELD_ENTRY( VMXVVMCS, u64AddrApicAccess),
423 SSMFIELD_ENTRY( VMXVVMCS, u64AddrPostedIntDesc),
424 SSMFIELD_ENTRY( VMXVVMCS, u64VmFuncCtls),
425 SSMFIELD_ENTRY( VMXVVMCS, u64EptPtr),
426 SSMFIELD_ENTRY( VMXVVMCS, u64EoiExitBitmap0),
427 SSMFIELD_ENTRY( VMXVVMCS, u64EoiExitBitmap1),
428 SSMFIELD_ENTRY( VMXVVMCS, u64EoiExitBitmap2),
429 SSMFIELD_ENTRY( VMXVVMCS, u64EoiExitBitmap3),
430 SSMFIELD_ENTRY( VMXVVMCS, u64AddrEptpList),
431 SSMFIELD_ENTRY( VMXVVMCS, u64AddrVmreadBitmap),
432 SSMFIELD_ENTRY( VMXVVMCS, u64AddrVmwriteBitmap),
433 SSMFIELD_ENTRY( VMXVVMCS, u64AddrXcptVeInfo),
434 SSMFIELD_ENTRY( VMXVVMCS, u64XssExitBitmap),
435 SSMFIELD_ENTRY( VMXVVMCS, u64EnclsExitBitmap),
436 SSMFIELD_ENTRY( VMXVVMCS, u64SppTablePtr),
437 SSMFIELD_ENTRY( VMXVVMCS, u64TscMultiplier),
438 SSMFIELD_ENTRY_VER( VMXVVMCS, u64ProcCtls3, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2),
439 SSMFIELD_ENTRY_VER( VMXVVMCS, u64EnclvExitBitmap, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2),
440 SSMFIELD_ENTRY_VER( VMXVVMCS, u64PconfigExitBitmap, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_3),
441 SSMFIELD_ENTRY_VER( VMXVVMCS, u64HlatPtr, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_3),
442 SSMFIELD_ENTRY_VER( VMXVVMCS, u64ExitCtls2, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_3),
443 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved0),
444
445 SSMFIELD_ENTRY( VMXVVMCS, u64Cr0Mask),
446 SSMFIELD_ENTRY( VMXVVMCS, u64Cr4Mask),
447 SSMFIELD_ENTRY( VMXVVMCS, u64Cr0ReadShadow),
448 SSMFIELD_ENTRY( VMXVVMCS, u64Cr4ReadShadow),
449 SSMFIELD_ENTRY( VMXVVMCS, u64Cr3Target0),
450 SSMFIELD_ENTRY( VMXVVMCS, u64Cr3Target1),
451 SSMFIELD_ENTRY( VMXVVMCS, u64Cr3Target2),
452 SSMFIELD_ENTRY( VMXVVMCS, u64Cr3Target3),
453 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved4),
454
455 SSMFIELD_ENTRY( VMXVVMCS, HostEs),
456 SSMFIELD_ENTRY( VMXVVMCS, HostCs),
457 SSMFIELD_ENTRY( VMXVVMCS, HostSs),
458 SSMFIELD_ENTRY( VMXVVMCS, HostDs),
459 SSMFIELD_ENTRY( VMXVVMCS, HostFs),
460 SSMFIELD_ENTRY( VMXVVMCS, HostGs),
461 SSMFIELD_ENTRY( VMXVVMCS, HostTr),
462 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au16Reserved2),
463
464 SSMFIELD_ENTRY( VMXVVMCS, u32HostSysenterCs),
465 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au32Reserved4),
466
467 SSMFIELD_ENTRY( VMXVVMCS, u64HostPatMsr),
468 SSMFIELD_ENTRY( VMXVVMCS, u64HostEferMsr),
469 SSMFIELD_ENTRY( VMXVVMCS, u64HostPerfGlobalCtlMsr),
470 SSMFIELD_ENTRY_VER( VMXVVMCS, u64HostPkrsMsr, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2),
471 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved3),
472
473 SSMFIELD_ENTRY( VMXVVMCS, u64HostCr0),
474 SSMFIELD_ENTRY( VMXVVMCS, u64HostCr3),
475 SSMFIELD_ENTRY( VMXVVMCS, u64HostCr4),
476 SSMFIELD_ENTRY( VMXVVMCS, u64HostFsBase),
477 SSMFIELD_ENTRY( VMXVVMCS, u64HostGsBase),
478 SSMFIELD_ENTRY( VMXVVMCS, u64HostTrBase),
479 SSMFIELD_ENTRY( VMXVVMCS, u64HostGdtrBase),
480 SSMFIELD_ENTRY( VMXVVMCS, u64HostIdtrBase),
481 SSMFIELD_ENTRY( VMXVVMCS, u64HostSysenterEsp),
482 SSMFIELD_ENTRY( VMXVVMCS, u64HostSysenterEip),
483 SSMFIELD_ENTRY( VMXVVMCS, u64HostRsp),
484 SSMFIELD_ENTRY( VMXVVMCS, u64HostRip),
485 SSMFIELD_ENTRY_VER( VMXVVMCS, u64HostSCetMsr, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2),
486 SSMFIELD_ENTRY_VER( VMXVVMCS, u64HostSsp, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2),
487 SSMFIELD_ENTRY_VER( VMXVVMCS, u64HostIntrSspTableAddrMsr, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2),
488 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved7),
489
490 SSMFIELD_ENTRY( VMXVVMCS, GuestEs),
491 SSMFIELD_ENTRY( VMXVVMCS, GuestCs),
492 SSMFIELD_ENTRY( VMXVVMCS, GuestSs),
493 SSMFIELD_ENTRY( VMXVVMCS, GuestDs),
494 SSMFIELD_ENTRY( VMXVVMCS, GuestFs),
495 SSMFIELD_ENTRY( VMXVVMCS, GuestGs),
496 SSMFIELD_ENTRY( VMXVVMCS, GuestLdtr),
497 SSMFIELD_ENTRY( VMXVVMCS, GuestTr),
498 SSMFIELD_ENTRY( VMXVVMCS, u16GuestIntStatus),
499 SSMFIELD_ENTRY( VMXVVMCS, u16PmlIndex),
500 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au16Reserved1),
501
502 SSMFIELD_ENTRY( VMXVVMCS, u32GuestEsLimit),
503 SSMFIELD_ENTRY( VMXVVMCS, u32GuestCsLimit),
504 SSMFIELD_ENTRY( VMXVVMCS, u32GuestSsLimit),
505 SSMFIELD_ENTRY( VMXVVMCS, u32GuestDsLimit),
506 SSMFIELD_ENTRY( VMXVVMCS, u32GuestFsLimit),
507 SSMFIELD_ENTRY( VMXVVMCS, u32GuestGsLimit),
508 SSMFIELD_ENTRY( VMXVVMCS, u32GuestLdtrLimit),
509 SSMFIELD_ENTRY( VMXVVMCS, u32GuestTrLimit),
510 SSMFIELD_ENTRY( VMXVVMCS, u32GuestGdtrLimit),
511 SSMFIELD_ENTRY( VMXVVMCS, u32GuestIdtrLimit),
512 SSMFIELD_ENTRY( VMXVVMCS, u32GuestEsAttr),
513 SSMFIELD_ENTRY( VMXVVMCS, u32GuestCsAttr),
514 SSMFIELD_ENTRY( VMXVVMCS, u32GuestSsAttr),
515 SSMFIELD_ENTRY( VMXVVMCS, u32GuestDsAttr),
516 SSMFIELD_ENTRY( VMXVVMCS, u32GuestFsAttr),
517 SSMFIELD_ENTRY( VMXVVMCS, u32GuestGsAttr),
518 SSMFIELD_ENTRY( VMXVVMCS, u32GuestLdtrAttr),
519 SSMFIELD_ENTRY( VMXVVMCS, u32GuestTrAttr),
520 SSMFIELD_ENTRY( VMXVVMCS, u32GuestIntrState),
521 SSMFIELD_ENTRY( VMXVVMCS, u32GuestActivityState),
522 SSMFIELD_ENTRY( VMXVVMCS, u32GuestSmBase),
523 SSMFIELD_ENTRY( VMXVVMCS, u32GuestSysenterCS),
524 SSMFIELD_ENTRY( VMXVVMCS, u32PreemptTimer),
525 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au32Reserved3),
526
527 SSMFIELD_ENTRY( VMXVVMCS, u64VmcsLinkPtr),
528 SSMFIELD_ENTRY( VMXVVMCS, u64GuestDebugCtlMsr),
529 SSMFIELD_ENTRY( VMXVVMCS, u64GuestPatMsr),
530 SSMFIELD_ENTRY( VMXVVMCS, u64GuestEferMsr),
531 SSMFIELD_ENTRY( VMXVVMCS, u64GuestPerfGlobalCtlMsr),
532 SSMFIELD_ENTRY( VMXVVMCS, u64GuestPdpte0),
533 SSMFIELD_ENTRY( VMXVVMCS, u64GuestPdpte1),
534 SSMFIELD_ENTRY( VMXVVMCS, u64GuestPdpte2),
535 SSMFIELD_ENTRY( VMXVVMCS, u64GuestPdpte3),
536 SSMFIELD_ENTRY( VMXVVMCS, u64GuestBndcfgsMsr),
537 SSMFIELD_ENTRY( VMXVVMCS, u64GuestRtitCtlMsr),
538 SSMFIELD_ENTRY_VER( VMXVVMCS, u64GuestPkrsMsr, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2),
539 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved2),
540
541 SSMFIELD_ENTRY( VMXVVMCS, u64GuestCr0),
542 SSMFIELD_ENTRY( VMXVVMCS, u64GuestCr3),
543 SSMFIELD_ENTRY( VMXVVMCS, u64GuestCr4),
544 SSMFIELD_ENTRY( VMXVVMCS, u64GuestEsBase),
545 SSMFIELD_ENTRY( VMXVVMCS, u64GuestCsBase),
546 SSMFIELD_ENTRY( VMXVVMCS, u64GuestSsBase),
547 SSMFIELD_ENTRY( VMXVVMCS, u64GuestDsBase),
548 SSMFIELD_ENTRY( VMXVVMCS, u64GuestFsBase),
549 SSMFIELD_ENTRY( VMXVVMCS, u64GuestGsBase),
550 SSMFIELD_ENTRY( VMXVVMCS, u64GuestLdtrBase),
551 SSMFIELD_ENTRY( VMXVVMCS, u64GuestTrBase),
552 SSMFIELD_ENTRY( VMXVVMCS, u64GuestGdtrBase),
553 SSMFIELD_ENTRY( VMXVVMCS, u64GuestIdtrBase),
554 SSMFIELD_ENTRY( VMXVVMCS, u64GuestDr7),
555 SSMFIELD_ENTRY( VMXVVMCS, u64GuestRsp),
556 SSMFIELD_ENTRY( VMXVVMCS, u64GuestRip),
557 SSMFIELD_ENTRY( VMXVVMCS, u64GuestRFlags),
558 SSMFIELD_ENTRY( VMXVVMCS, u64GuestPendingDbgXcpts),
559 SSMFIELD_ENTRY( VMXVVMCS, u64GuestSysenterEsp),
560 SSMFIELD_ENTRY( VMXVVMCS, u64GuestSysenterEip),
561 SSMFIELD_ENTRY_VER( VMXVVMCS, u64GuestSCetMsr, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2),
562 SSMFIELD_ENTRY_VER( VMXVVMCS, u64GuestSsp, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2),
563 SSMFIELD_ENTRY_VER( VMXVVMCS, u64GuestIntrSspTableAddrMsr, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2),
564 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved6),
565
566 SSMFIELD_ENTRY_TERM()
567};
568
569/** Saved state field descriptors for CPUMCTX. */
570static const SSMFIELD g_aCpumX87Fields[] =
571{
572 SSMFIELD_ENTRY( X86FXSTATE, FCW),
573 SSMFIELD_ENTRY( X86FXSTATE, FSW),
574 SSMFIELD_ENTRY( X86FXSTATE, FTW),
575 SSMFIELD_ENTRY( X86FXSTATE, FOP),
576 SSMFIELD_ENTRY( X86FXSTATE, FPUIP),
577 SSMFIELD_ENTRY( X86FXSTATE, CS),
578 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd1),
579 SSMFIELD_ENTRY( X86FXSTATE, FPUDP),
580 SSMFIELD_ENTRY( X86FXSTATE, DS),
581 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd2),
582 SSMFIELD_ENTRY( X86FXSTATE, MXCSR),
583 SSMFIELD_ENTRY( X86FXSTATE, MXCSR_MASK),
584 SSMFIELD_ENTRY( X86FXSTATE, aRegs[0]),
585 SSMFIELD_ENTRY( X86FXSTATE, aRegs[1]),
586 SSMFIELD_ENTRY( X86FXSTATE, aRegs[2]),
587 SSMFIELD_ENTRY( X86FXSTATE, aRegs[3]),
588 SSMFIELD_ENTRY( X86FXSTATE, aRegs[4]),
589 SSMFIELD_ENTRY( X86FXSTATE, aRegs[5]),
590 SSMFIELD_ENTRY( X86FXSTATE, aRegs[6]),
591 SSMFIELD_ENTRY( X86FXSTATE, aRegs[7]),
592 SSMFIELD_ENTRY( X86FXSTATE, aXMM[0]),
593 SSMFIELD_ENTRY( X86FXSTATE, aXMM[1]),
594 SSMFIELD_ENTRY( X86FXSTATE, aXMM[2]),
595 SSMFIELD_ENTRY( X86FXSTATE, aXMM[3]),
596 SSMFIELD_ENTRY( X86FXSTATE, aXMM[4]),
597 SSMFIELD_ENTRY( X86FXSTATE, aXMM[5]),
598 SSMFIELD_ENTRY( X86FXSTATE, aXMM[6]),
599 SSMFIELD_ENTRY( X86FXSTATE, aXMM[7]),
600 SSMFIELD_ENTRY( X86FXSTATE, aXMM[8]),
601 SSMFIELD_ENTRY( X86FXSTATE, aXMM[9]),
602 SSMFIELD_ENTRY( X86FXSTATE, aXMM[10]),
603 SSMFIELD_ENTRY( X86FXSTATE, aXMM[11]),
604 SSMFIELD_ENTRY( X86FXSTATE, aXMM[12]),
605 SSMFIELD_ENTRY( X86FXSTATE, aXMM[13]),
606 SSMFIELD_ENTRY( X86FXSTATE, aXMM[14]),
607 SSMFIELD_ENTRY( X86FXSTATE, aXMM[15]),
608 SSMFIELD_ENTRY_VER( X86FXSTATE, au32RsrvdForSoftware[0], CPUM_SAVED_STATE_VERSION_XSAVE), /* 32-bit/64-bit hack */
609 SSMFIELD_ENTRY_TERM()
610};
611
612/** Saved state field descriptors for X86XSAVEHDR. */
613static const SSMFIELD g_aCpumXSaveHdrFields[] =
614{
615 SSMFIELD_ENTRY( X86XSAVEHDR, bmXState),
616 SSMFIELD_ENTRY_TERM()
617};
618
619/** Saved state field descriptors for X86XSAVEYMMHI. */
620static const SSMFIELD g_aCpumYmmHiFields[] =
621{
622 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[0]),
623 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[1]),
624 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[2]),
625 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[3]),
626 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[4]),
627 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[5]),
628 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[6]),
629 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[7]),
630 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[8]),
631 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[9]),
632 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[10]),
633 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[11]),
634 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[12]),
635 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[13]),
636 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[14]),
637 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[15]),
638 SSMFIELD_ENTRY_TERM()
639};
640
641/** Saved state field descriptors for X86XSAVEBNDREGS. */
642static const SSMFIELD g_aCpumBndRegsFields[] =
643{
644 SSMFIELD_ENTRY( X86XSAVEBNDREGS, aRegs[0]),
645 SSMFIELD_ENTRY( X86XSAVEBNDREGS, aRegs[1]),
646 SSMFIELD_ENTRY( X86XSAVEBNDREGS, aRegs[2]),
647 SSMFIELD_ENTRY( X86XSAVEBNDREGS, aRegs[3]),
648 SSMFIELD_ENTRY_TERM()
649};
650
651/** Saved state field descriptors for X86XSAVEBNDCFG. */
652static const SSMFIELD g_aCpumBndCfgFields[] =
653{
654 SSMFIELD_ENTRY( X86XSAVEBNDCFG, fConfig),
655 SSMFIELD_ENTRY( X86XSAVEBNDCFG, fStatus),
656 SSMFIELD_ENTRY_TERM()
657};
658
659#if 0 /** @todo */
660/** Saved state field descriptors for X86XSAVEOPMASK. */
661static const SSMFIELD g_aCpumOpmaskFields[] =
662{
663 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[0]),
664 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[1]),
665 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[2]),
666 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[3]),
667 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[4]),
668 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[5]),
669 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[6]),
670 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[7]),
671 SSMFIELD_ENTRY_TERM()
672};
673#endif
674
675/** Saved state field descriptors for X86XSAVEZMMHI256. */
676static const SSMFIELD g_aCpumZmmHi256Fields[] =
677{
678 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[0]),
679 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[1]),
680 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[2]),
681 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[3]),
682 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[4]),
683 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[5]),
684 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[6]),
685 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[7]),
686 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[8]),
687 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[9]),
688 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[10]),
689 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[11]),
690 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[12]),
691 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[13]),
692 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[14]),
693 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[15]),
694 SSMFIELD_ENTRY_TERM()
695};
696
697/** Saved state field descriptors for X86XSAVEZMM16HI. */
698static const SSMFIELD g_aCpumZmm16HiFields[] =
699{
700 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[0]),
701 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[1]),
702 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[2]),
703 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[3]),
704 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[4]),
705 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[5]),
706 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[6]),
707 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[7]),
708 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[8]),
709 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[9]),
710 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[10]),
711 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[11]),
712 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[12]),
713 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[13]),
714 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[14]),
715 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[15]),
716 SSMFIELD_ENTRY_TERM()
717};
718
719
720
721/** Saved state field descriptors for CPUMCTX in V4.1 before the hidden selector
722 * registeres changed. */
723static const SSMFIELD g_aCpumX87FieldsMem[] =
724{
725 SSMFIELD_ENTRY( X86FXSTATE, FCW),
726 SSMFIELD_ENTRY( X86FXSTATE, FSW),
727 SSMFIELD_ENTRY( X86FXSTATE, FTW),
728 SSMFIELD_ENTRY( X86FXSTATE, FOP),
729 SSMFIELD_ENTRY( X86FXSTATE, FPUIP),
730 SSMFIELD_ENTRY( X86FXSTATE, CS),
731 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd1),
732 SSMFIELD_ENTRY( X86FXSTATE, FPUDP),
733 SSMFIELD_ENTRY( X86FXSTATE, DS),
734 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd2),
735 SSMFIELD_ENTRY( X86FXSTATE, MXCSR),
736 SSMFIELD_ENTRY( X86FXSTATE, MXCSR_MASK),
737 SSMFIELD_ENTRY( X86FXSTATE, aRegs[0]),
738 SSMFIELD_ENTRY( X86FXSTATE, aRegs[1]),
739 SSMFIELD_ENTRY( X86FXSTATE, aRegs[2]),
740 SSMFIELD_ENTRY( X86FXSTATE, aRegs[3]),
741 SSMFIELD_ENTRY( X86FXSTATE, aRegs[4]),
742 SSMFIELD_ENTRY( X86FXSTATE, aRegs[5]),
743 SSMFIELD_ENTRY( X86FXSTATE, aRegs[6]),
744 SSMFIELD_ENTRY( X86FXSTATE, aRegs[7]),
745 SSMFIELD_ENTRY( X86FXSTATE, aXMM[0]),
746 SSMFIELD_ENTRY( X86FXSTATE, aXMM[1]),
747 SSMFIELD_ENTRY( X86FXSTATE, aXMM[2]),
748 SSMFIELD_ENTRY( X86FXSTATE, aXMM[3]),
749 SSMFIELD_ENTRY( X86FXSTATE, aXMM[4]),
750 SSMFIELD_ENTRY( X86FXSTATE, aXMM[5]),
751 SSMFIELD_ENTRY( X86FXSTATE, aXMM[6]),
752 SSMFIELD_ENTRY( X86FXSTATE, aXMM[7]),
753 SSMFIELD_ENTRY( X86FXSTATE, aXMM[8]),
754 SSMFIELD_ENTRY( X86FXSTATE, aXMM[9]),
755 SSMFIELD_ENTRY( X86FXSTATE, aXMM[10]),
756 SSMFIELD_ENTRY( X86FXSTATE, aXMM[11]),
757 SSMFIELD_ENTRY( X86FXSTATE, aXMM[12]),
758 SSMFIELD_ENTRY( X86FXSTATE, aXMM[13]),
759 SSMFIELD_ENTRY( X86FXSTATE, aXMM[14]),
760 SSMFIELD_ENTRY( X86FXSTATE, aXMM[15]),
761 SSMFIELD_ENTRY_IGNORE( X86FXSTATE, au32RsrvdRest),
762 SSMFIELD_ENTRY_IGNORE( X86FXSTATE, au32RsrvdForSoftware),
763};
764
765/** Saved state field descriptors for CPUMCTX in V4.1 before the hidden selector
766 * registeres changed. */
767static const SSMFIELD g_aCpumCtxFieldsMem[] =
768{
769 SSMFIELD_ENTRY( CPUMCTX, rdi),
770 SSMFIELD_ENTRY( CPUMCTX, rsi),
771 SSMFIELD_ENTRY( CPUMCTX, rbp),
772 SSMFIELD_ENTRY( CPUMCTX, rax),
773 SSMFIELD_ENTRY( CPUMCTX, rbx),
774 SSMFIELD_ENTRY( CPUMCTX, rdx),
775 SSMFIELD_ENTRY( CPUMCTX, rcx),
776 SSMFIELD_ENTRY( CPUMCTX, rsp),
777 SSMFIELD_ENTRY_OLD( lss_esp, sizeof(uint32_t)),
778 SSMFIELD_ENTRY( CPUMCTX, ss.Sel),
779 SSMFIELD_ENTRY_OLD( ssPadding, sizeof(uint16_t)),
780 SSMFIELD_ENTRY( CPUMCTX, gs.Sel),
781 SSMFIELD_ENTRY_OLD( gsPadding, sizeof(uint16_t)),
782 SSMFIELD_ENTRY( CPUMCTX, fs.Sel),
783 SSMFIELD_ENTRY_OLD( fsPadding, sizeof(uint16_t)),
784 SSMFIELD_ENTRY( CPUMCTX, es.Sel),
785 SSMFIELD_ENTRY_OLD( esPadding, sizeof(uint16_t)),
786 SSMFIELD_ENTRY( CPUMCTX, ds.Sel),
787 SSMFIELD_ENTRY_OLD( dsPadding, sizeof(uint16_t)),
788 SSMFIELD_ENTRY( CPUMCTX, cs.Sel),
789 SSMFIELD_ENTRY_OLD( csPadding, sizeof(uint16_t)*3),
790 SSMFIELD_ENTRY( CPUMCTX, rflags),
791 SSMFIELD_ENTRY( CPUMCTX, rip),
792 SSMFIELD_ENTRY( CPUMCTX, r8),
793 SSMFIELD_ENTRY( CPUMCTX, r9),
794 SSMFIELD_ENTRY( CPUMCTX, r10),
795 SSMFIELD_ENTRY( CPUMCTX, r11),
796 SSMFIELD_ENTRY( CPUMCTX, r12),
797 SSMFIELD_ENTRY( CPUMCTX, r13),
798 SSMFIELD_ENTRY( CPUMCTX, r14),
799 SSMFIELD_ENTRY( CPUMCTX, r15),
800 SSMFIELD_ENTRY( CPUMCTX, es.u64Base),
801 SSMFIELD_ENTRY( CPUMCTX, es.u32Limit),
802 SSMFIELD_ENTRY( CPUMCTX, es.Attr),
803 SSMFIELD_ENTRY( CPUMCTX, cs.u64Base),
804 SSMFIELD_ENTRY( CPUMCTX, cs.u32Limit),
805 SSMFIELD_ENTRY( CPUMCTX, cs.Attr),
806 SSMFIELD_ENTRY( CPUMCTX, ss.u64Base),
807 SSMFIELD_ENTRY( CPUMCTX, ss.u32Limit),
808 SSMFIELD_ENTRY( CPUMCTX, ss.Attr),
809 SSMFIELD_ENTRY( CPUMCTX, ds.u64Base),
810 SSMFIELD_ENTRY( CPUMCTX, ds.u32Limit),
811 SSMFIELD_ENTRY( CPUMCTX, ds.Attr),
812 SSMFIELD_ENTRY( CPUMCTX, fs.u64Base),
813 SSMFIELD_ENTRY( CPUMCTX, fs.u32Limit),
814 SSMFIELD_ENTRY( CPUMCTX, fs.Attr),
815 SSMFIELD_ENTRY( CPUMCTX, gs.u64Base),
816 SSMFIELD_ENTRY( CPUMCTX, gs.u32Limit),
817 SSMFIELD_ENTRY( CPUMCTX, gs.Attr),
818 SSMFIELD_ENTRY( CPUMCTX, cr0),
819 SSMFIELD_ENTRY( CPUMCTX, cr2),
820 SSMFIELD_ENTRY( CPUMCTX, cr3),
821 SSMFIELD_ENTRY( CPUMCTX, cr4),
822 SSMFIELD_ENTRY( CPUMCTX, dr[0]),
823 SSMFIELD_ENTRY( CPUMCTX, dr[1]),
824 SSMFIELD_ENTRY( CPUMCTX, dr[2]),
825 SSMFIELD_ENTRY( CPUMCTX, dr[3]),
826 SSMFIELD_ENTRY_OLD( dr[4], sizeof(uint64_t)),
827 SSMFIELD_ENTRY_OLD( dr[5], sizeof(uint64_t)),
828 SSMFIELD_ENTRY( CPUMCTX, dr[6]),
829 SSMFIELD_ENTRY( CPUMCTX, dr[7]),
830 SSMFIELD_ENTRY( CPUMCTX, gdtr.cbGdt),
831 SSMFIELD_ENTRY( CPUMCTX, gdtr.pGdt),
832 SSMFIELD_ENTRY_OLD( gdtrPadding, sizeof(uint16_t)),
833 SSMFIELD_ENTRY( CPUMCTX, idtr.cbIdt),
834 SSMFIELD_ENTRY( CPUMCTX, idtr.pIdt),
835 SSMFIELD_ENTRY_OLD( idtrPadding, sizeof(uint16_t)),
836 SSMFIELD_ENTRY( CPUMCTX, ldtr.Sel),
837 SSMFIELD_ENTRY_OLD( ldtrPadding, sizeof(uint16_t)),
838 SSMFIELD_ENTRY( CPUMCTX, tr.Sel),
839 SSMFIELD_ENTRY_OLD( trPadding, sizeof(uint16_t)),
840 SSMFIELD_ENTRY( CPUMCTX, SysEnter.cs),
841 SSMFIELD_ENTRY( CPUMCTX, SysEnter.eip),
842 SSMFIELD_ENTRY( CPUMCTX, SysEnter.esp),
843 SSMFIELD_ENTRY( CPUMCTX, msrEFER),
844 SSMFIELD_ENTRY( CPUMCTX, msrSTAR),
845 SSMFIELD_ENTRY( CPUMCTX, msrPAT),
846 SSMFIELD_ENTRY( CPUMCTX, msrLSTAR),
847 SSMFIELD_ENTRY( CPUMCTX, msrCSTAR),
848 SSMFIELD_ENTRY( CPUMCTX, msrSFMASK),
849 SSMFIELD_ENTRY( CPUMCTX, msrKERNELGSBASE),
850 SSMFIELD_ENTRY( CPUMCTX, ldtr.u64Base),
851 SSMFIELD_ENTRY( CPUMCTX, ldtr.u32Limit),
852 SSMFIELD_ENTRY( CPUMCTX, ldtr.Attr),
853 SSMFIELD_ENTRY( CPUMCTX, tr.u64Base),
854 SSMFIELD_ENTRY( CPUMCTX, tr.u32Limit),
855 SSMFIELD_ENTRY( CPUMCTX, tr.Attr),
856 SSMFIELD_ENTRY_TERM()
857};
858
859/** Saved state field descriptors for CPUMCTX_VER1_6. */
860static const SSMFIELD g_aCpumX87FieldsV16[] =
861{
862 SSMFIELD_ENTRY( X86FXSTATE, FCW),
863 SSMFIELD_ENTRY( X86FXSTATE, FSW),
864 SSMFIELD_ENTRY( X86FXSTATE, FTW),
865 SSMFIELD_ENTRY( X86FXSTATE, FOP),
866 SSMFIELD_ENTRY( X86FXSTATE, FPUIP),
867 SSMFIELD_ENTRY( X86FXSTATE, CS),
868 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd1),
869 SSMFIELD_ENTRY( X86FXSTATE, FPUDP),
870 SSMFIELD_ENTRY( X86FXSTATE, DS),
871 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd2),
872 SSMFIELD_ENTRY( X86FXSTATE, MXCSR),
873 SSMFIELD_ENTRY( X86FXSTATE, MXCSR_MASK),
874 SSMFIELD_ENTRY( X86FXSTATE, aRegs[0]),
875 SSMFIELD_ENTRY( X86FXSTATE, aRegs[1]),
876 SSMFIELD_ENTRY( X86FXSTATE, aRegs[2]),
877 SSMFIELD_ENTRY( X86FXSTATE, aRegs[3]),
878 SSMFIELD_ENTRY( X86FXSTATE, aRegs[4]),
879 SSMFIELD_ENTRY( X86FXSTATE, aRegs[5]),
880 SSMFIELD_ENTRY( X86FXSTATE, aRegs[6]),
881 SSMFIELD_ENTRY( X86FXSTATE, aRegs[7]),
882 SSMFIELD_ENTRY( X86FXSTATE, aXMM[0]),
883 SSMFIELD_ENTRY( X86FXSTATE, aXMM[1]),
884 SSMFIELD_ENTRY( X86FXSTATE, aXMM[2]),
885 SSMFIELD_ENTRY( X86FXSTATE, aXMM[3]),
886 SSMFIELD_ENTRY( X86FXSTATE, aXMM[4]),
887 SSMFIELD_ENTRY( X86FXSTATE, aXMM[5]),
888 SSMFIELD_ENTRY( X86FXSTATE, aXMM[6]),
889 SSMFIELD_ENTRY( X86FXSTATE, aXMM[7]),
890 SSMFIELD_ENTRY( X86FXSTATE, aXMM[8]),
891 SSMFIELD_ENTRY( X86FXSTATE, aXMM[9]),
892 SSMFIELD_ENTRY( X86FXSTATE, aXMM[10]),
893 SSMFIELD_ENTRY( X86FXSTATE, aXMM[11]),
894 SSMFIELD_ENTRY( X86FXSTATE, aXMM[12]),
895 SSMFIELD_ENTRY( X86FXSTATE, aXMM[13]),
896 SSMFIELD_ENTRY( X86FXSTATE, aXMM[14]),
897 SSMFIELD_ENTRY( X86FXSTATE, aXMM[15]),
898 SSMFIELD_ENTRY_IGNORE( X86FXSTATE, au32RsrvdRest),
899 SSMFIELD_ENTRY_IGNORE( X86FXSTATE, au32RsrvdForSoftware),
900 SSMFIELD_ENTRY_TERM()
901};
902
903/** Saved state field descriptors for CPUMCTX_VER1_6. */
904static const SSMFIELD g_aCpumCtxFieldsV16[] =
905{
906 SSMFIELD_ENTRY( CPUMCTX, rdi),
907 SSMFIELD_ENTRY( CPUMCTX, rsi),
908 SSMFIELD_ENTRY( CPUMCTX, rbp),
909 SSMFIELD_ENTRY( CPUMCTX, rax),
910 SSMFIELD_ENTRY( CPUMCTX, rbx),
911 SSMFIELD_ENTRY( CPUMCTX, rdx),
912 SSMFIELD_ENTRY( CPUMCTX, rcx),
913 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, rsp),
914 SSMFIELD_ENTRY( CPUMCTX, ss.Sel),
915 SSMFIELD_ENTRY_OLD( ssPadding, sizeof(uint16_t)),
916 SSMFIELD_ENTRY_OLD( CPUMCTX, sizeof(uint64_t) /*rsp_notused*/),
917 SSMFIELD_ENTRY( CPUMCTX, gs.Sel),
918 SSMFIELD_ENTRY_OLD( gsPadding, sizeof(uint16_t)),
919 SSMFIELD_ENTRY( CPUMCTX, fs.Sel),
920 SSMFIELD_ENTRY_OLD( fsPadding, sizeof(uint16_t)),
921 SSMFIELD_ENTRY( CPUMCTX, es.Sel),
922 SSMFIELD_ENTRY_OLD( esPadding, sizeof(uint16_t)),
923 SSMFIELD_ENTRY( CPUMCTX, ds.Sel),
924 SSMFIELD_ENTRY_OLD( dsPadding, sizeof(uint16_t)),
925 SSMFIELD_ENTRY( CPUMCTX, cs.Sel),
926 SSMFIELD_ENTRY_OLD( csPadding, sizeof(uint16_t)*3),
927 SSMFIELD_ENTRY( CPUMCTX, rflags),
928 SSMFIELD_ENTRY( CPUMCTX, rip),
929 SSMFIELD_ENTRY( CPUMCTX, r8),
930 SSMFIELD_ENTRY( CPUMCTX, r9),
931 SSMFIELD_ENTRY( CPUMCTX, r10),
932 SSMFIELD_ENTRY( CPUMCTX, r11),
933 SSMFIELD_ENTRY( CPUMCTX, r12),
934 SSMFIELD_ENTRY( CPUMCTX, r13),
935 SSMFIELD_ENTRY( CPUMCTX, r14),
936 SSMFIELD_ENTRY( CPUMCTX, r15),
937 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, es.u64Base),
938 SSMFIELD_ENTRY( CPUMCTX, es.u32Limit),
939 SSMFIELD_ENTRY( CPUMCTX, es.Attr),
940 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, cs.u64Base),
941 SSMFIELD_ENTRY( CPUMCTX, cs.u32Limit),
942 SSMFIELD_ENTRY( CPUMCTX, cs.Attr),
943 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, ss.u64Base),
944 SSMFIELD_ENTRY( CPUMCTX, ss.u32Limit),
945 SSMFIELD_ENTRY( CPUMCTX, ss.Attr),
946 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, ds.u64Base),
947 SSMFIELD_ENTRY( CPUMCTX, ds.u32Limit),
948 SSMFIELD_ENTRY( CPUMCTX, ds.Attr),
949 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, fs.u64Base),
950 SSMFIELD_ENTRY( CPUMCTX, fs.u32Limit),
951 SSMFIELD_ENTRY( CPUMCTX, fs.Attr),
952 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, gs.u64Base),
953 SSMFIELD_ENTRY( CPUMCTX, gs.u32Limit),
954 SSMFIELD_ENTRY( CPUMCTX, gs.Attr),
955 SSMFIELD_ENTRY( CPUMCTX, cr0),
956 SSMFIELD_ENTRY( CPUMCTX, cr2),
957 SSMFIELD_ENTRY( CPUMCTX, cr3),
958 SSMFIELD_ENTRY( CPUMCTX, cr4),
959 SSMFIELD_ENTRY_OLD( cr8, sizeof(uint64_t)),
960 SSMFIELD_ENTRY( CPUMCTX, dr[0]),
961 SSMFIELD_ENTRY( CPUMCTX, dr[1]),
962 SSMFIELD_ENTRY( CPUMCTX, dr[2]),
963 SSMFIELD_ENTRY( CPUMCTX, dr[3]),
964 SSMFIELD_ENTRY_OLD( dr[4], sizeof(uint64_t)),
965 SSMFIELD_ENTRY_OLD( dr[5], sizeof(uint64_t)),
966 SSMFIELD_ENTRY( CPUMCTX, dr[6]),
967 SSMFIELD_ENTRY( CPUMCTX, dr[7]),
968 SSMFIELD_ENTRY( CPUMCTX, gdtr.cbGdt),
969 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, gdtr.pGdt),
970 SSMFIELD_ENTRY_OLD( gdtrPadding, sizeof(uint16_t)),
971 SSMFIELD_ENTRY_OLD( gdtrPadding64, sizeof(uint64_t)),
972 SSMFIELD_ENTRY( CPUMCTX, idtr.cbIdt),
973 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, idtr.pIdt),
974 SSMFIELD_ENTRY_OLD( idtrPadding, sizeof(uint16_t)),
975 SSMFIELD_ENTRY_OLD( idtrPadding64, sizeof(uint64_t)),
976 SSMFIELD_ENTRY( CPUMCTX, ldtr.Sel),
977 SSMFIELD_ENTRY_OLD( ldtrPadding, sizeof(uint16_t)),
978 SSMFIELD_ENTRY( CPUMCTX, tr.Sel),
979 SSMFIELD_ENTRY_OLD( trPadding, sizeof(uint16_t)),
980 SSMFIELD_ENTRY( CPUMCTX, SysEnter.cs),
981 SSMFIELD_ENTRY( CPUMCTX, SysEnter.eip),
982 SSMFIELD_ENTRY( CPUMCTX, SysEnter.esp),
983 SSMFIELD_ENTRY( CPUMCTX, msrEFER),
984 SSMFIELD_ENTRY( CPUMCTX, msrSTAR),
985 SSMFIELD_ENTRY( CPUMCTX, msrPAT),
986 SSMFIELD_ENTRY( CPUMCTX, msrLSTAR),
987 SSMFIELD_ENTRY( CPUMCTX, msrCSTAR),
988 SSMFIELD_ENTRY( CPUMCTX, msrSFMASK),
989 SSMFIELD_ENTRY_OLD( msrFSBASE, sizeof(uint64_t)),
990 SSMFIELD_ENTRY_OLD( msrGSBASE, sizeof(uint64_t)),
991 SSMFIELD_ENTRY( CPUMCTX, msrKERNELGSBASE),
992 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, ldtr.u64Base),
993 SSMFIELD_ENTRY( CPUMCTX, ldtr.u32Limit),
994 SSMFIELD_ENTRY( CPUMCTX, ldtr.Attr),
995 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, tr.u64Base),
996 SSMFIELD_ENTRY( CPUMCTX, tr.u32Limit),
997 SSMFIELD_ENTRY( CPUMCTX, tr.Attr),
998 SSMFIELD_ENTRY_OLD( padding, sizeof(uint32_t)*2),
999 SSMFIELD_ENTRY_TERM()
1000};
1001
1002
1003#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
1004/**
1005 * Checks for partial/leaky FXSAVE/FXRSTOR handling on AMD CPUs.
1006 *
1007 * AMD K7, K8 and newer AMD CPUs do not save/restore the x87 error pointers
1008 * (last instruction pointer, last data pointer, last opcode) except when the ES
1009 * bit (Exception Summary) in x87 FSW (FPU Status Word) is set. Thus if we don't
1010 * clear these registers there is potential, local FPU leakage from a process
1011 * using the FPU to another.
1012 *
1013 * See AMD Instruction Reference for FXSAVE, FXRSTOR.
1014 *
1015 * @param pVM The cross context VM structure.
1016 */
1017static void cpumR3CheckLeakyFpu(PVM pVM)
1018{
1019 uint32_t u32CpuVersion = ASMCpuId_EAX(1);
1020 uint32_t const u32Family = u32CpuVersion >> 8;
1021 if ( u32Family >= 6 /* K7 and higher */
1022 && (ASMIsAmdCpu() || ASMIsHygonCpu()) )
1023 {
1024 uint32_t cExt = ASMCpuId_EAX(0x80000000);
1025 if (RTX86IsValidExtRange(cExt))
1026 {
1027 uint32_t fExtFeaturesEDX = ASMCpuId_EDX(0x80000001);
1028 if (fExtFeaturesEDX & X86_CPUID_AMD_FEATURE_EDX_FFXSR)
1029 {
1030 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1031 {
1032 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
1033 pVCpu->cpum.s.fUseFlags |= CPUM_USE_FFXSR_LEAKY;
1034 }
1035 Log(("CPUM: Host CPU has leaky fxsave/fxrstor behaviour\n"));
1036 }
1037 }
1038 }
1039}
1040#endif
1041
1042
1043/**
1044 * Initialize the SVM hardware virtualization state.
1045 *
1046 * @param pVM The cross context VM structure.
1047 */
1048static void cpumR3InitSvmHwVirtState(PVM pVM)
1049{
1050 LogRel(("CPUM: AMD-V nested-guest init\n"));
1051 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1052 {
1053 PVMCPU pVCpu = pVM->apCpusR3[i];
1054 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
1055
1056 /* Initialize that SVM hardware virtualization is available. */
1057 pCtx->hwvirt.enmHwvirt = CPUMHWVIRT_SVM;
1058
1059 AssertCompile(sizeof(pCtx->hwvirt.svm.Vmcb) == SVM_VMCB_PAGES * X86_PAGE_SIZE);
1060 AssertCompile(sizeof(pCtx->hwvirt.svm.abMsrBitmap) == SVM_MSRPM_PAGES * X86_PAGE_SIZE);
1061 AssertCompile(sizeof(pCtx->hwvirt.svm.abIoBitmap) == SVM_IOPM_PAGES * X86_PAGE_SIZE);
1062
1063 /* Initialize non-zero values. */
1064 pCtx->hwvirt.svm.GCPhysVmcb = NIL_RTGCPHYS;
1065 }
1066}
1067
1068
1069/**
1070 * Resets per-VCPU SVM hardware virtualization state.
1071 *
1072 * @param pVCpu The cross context virtual CPU structure.
1073 */
1074DECLINLINE(void) cpumR3ResetSvmHwVirtState(PVMCPU pVCpu)
1075{
1076 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
1077 Assert(pCtx->hwvirt.enmHwvirt == CPUMHWVIRT_SVM);
1078
1079 RT_ZERO(pCtx->hwvirt.svm.Vmcb);
1080 RT_ZERO(pCtx->hwvirt.svm.HostState);
1081 RT_ZERO(pCtx->hwvirt.svm.abMsrBitmap);
1082 RT_ZERO(pCtx->hwvirt.svm.abIoBitmap);
1083
1084 pCtx->hwvirt.svm.uMsrHSavePa = 0;
1085 pCtx->hwvirt.svm.uPrevPauseTick = 0;
1086 pCtx->hwvirt.svm.GCPhysVmcb = NIL_RTGCPHYS;
1087 pCtx->hwvirt.svm.cPauseFilter = 0;
1088 pCtx->hwvirt.svm.cPauseFilterThreshold = 0;
1089 pCtx->hwvirt.svm.fInterceptEvents = false;
1090}
1091
1092
1093/**
1094 * Initializes the VMX hardware virtualization state.
1095 *
1096 * @param pVM The cross context VM structure.
1097 */
1098static void cpumR3InitVmxHwVirtState(PVM pVM)
1099{
1100 LogRel(("CPUM: VT-x nested-guest init\n"));
1101 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1102 {
1103 PVMCPU pVCpu = pVM->apCpusR3[i];
1104 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
1105
1106 /* Initialize that VMX hardware virtualization is available. */
1107 pCtx->hwvirt.enmHwvirt = CPUMHWVIRT_VMX;
1108
1109 AssertCompile(sizeof(pCtx->hwvirt.vmx.Vmcs) == VMX_V_VMCS_PAGES * X86_PAGE_SIZE);
1110 AssertCompile(sizeof(pCtx->hwvirt.vmx.Vmcs) == VMX_V_VMCS_SIZE);
1111 AssertCompile(sizeof(pCtx->hwvirt.vmx.ShadowVmcs) == VMX_V_SHADOW_VMCS_PAGES * X86_PAGE_SIZE);
1112 AssertCompile(sizeof(pCtx->hwvirt.vmx.ShadowVmcs) == VMX_V_SHADOW_VMCS_SIZE);
1113 AssertCompile(sizeof(pCtx->hwvirt.vmx.abVmreadBitmap) == VMX_V_VMREAD_VMWRITE_BITMAP_PAGES * X86_PAGE_SIZE);
1114 AssertCompile(sizeof(pCtx->hwvirt.vmx.abVmreadBitmap) == VMX_V_VMREAD_VMWRITE_BITMAP_SIZE);
1115 AssertCompile(sizeof(pCtx->hwvirt.vmx.abVmwriteBitmap) == VMX_V_VMREAD_VMWRITE_BITMAP_PAGES * X86_PAGE_SIZE);
1116 AssertCompile(sizeof(pCtx->hwvirt.vmx.abVmwriteBitmap) == VMX_V_VMREAD_VMWRITE_BITMAP_SIZE);
1117 AssertCompile(sizeof(pCtx->hwvirt.vmx.aEntryMsrLoadArea) == VMX_V_AUTOMSR_AREA_PAGES * X86_PAGE_SIZE);
1118 AssertCompile(sizeof(pCtx->hwvirt.vmx.aEntryMsrLoadArea) == VMX_V_AUTOMSR_AREA_SIZE);
1119 AssertCompile(sizeof(pCtx->hwvirt.vmx.aExitMsrStoreArea) == VMX_V_AUTOMSR_AREA_PAGES * X86_PAGE_SIZE);
1120 AssertCompile(sizeof(pCtx->hwvirt.vmx.aExitMsrStoreArea) == VMX_V_AUTOMSR_AREA_SIZE);
1121 AssertCompile(sizeof(pCtx->hwvirt.vmx.aExitMsrLoadArea) == VMX_V_AUTOMSR_AREA_PAGES * X86_PAGE_SIZE);
1122 AssertCompile(sizeof(pCtx->hwvirt.vmx.aExitMsrLoadArea) == VMX_V_AUTOMSR_AREA_SIZE);
1123 AssertCompile(sizeof(pCtx->hwvirt.vmx.abMsrBitmap) == VMX_V_MSR_BITMAP_PAGES * X86_PAGE_SIZE);
1124 AssertCompile(sizeof(pCtx->hwvirt.vmx.abMsrBitmap) == VMX_V_MSR_BITMAP_SIZE);
1125 AssertCompile(sizeof(pCtx->hwvirt.vmx.abIoBitmap) == (VMX_V_IO_BITMAP_A_PAGES + VMX_V_IO_BITMAP_B_PAGES) * X86_PAGE_SIZE);
1126 AssertCompile(sizeof(pCtx->hwvirt.vmx.abIoBitmap) == VMX_V_IO_BITMAP_A_SIZE + VMX_V_IO_BITMAP_B_SIZE);
1127
1128 /* Initialize non-zero values. */
1129 pCtx->hwvirt.vmx.GCPhysVmxon = NIL_RTGCPHYS;
1130 pCtx->hwvirt.vmx.GCPhysShadowVmcs = NIL_RTGCPHYS;
1131 pCtx->hwvirt.vmx.GCPhysVmcs = NIL_RTGCPHYS;
1132 }
1133}
1134
1135
1136/**
1137 * Resets per-VCPU VMX hardware virtualization state.
1138 *
1139 * @param pVCpu The cross context virtual CPU structure.
1140 */
1141DECLINLINE(void) cpumR3ResetVmxHwVirtState(PVMCPU pVCpu)
1142{
1143 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
1144 Assert(pCtx->hwvirt.enmHwvirt == CPUMHWVIRT_VMX);
1145
1146 RT_ZERO(pCtx->hwvirt.vmx.Vmcs);
1147 RT_ZERO(pCtx->hwvirt.vmx.ShadowVmcs);
1148 RT_ZERO(pCtx->hwvirt.vmx.abVmreadBitmap);
1149 RT_ZERO(pCtx->hwvirt.vmx.abVmwriteBitmap);
1150 RT_ZERO(pCtx->hwvirt.vmx.aEntryMsrLoadArea);
1151 RT_ZERO(pCtx->hwvirt.vmx.aExitMsrStoreArea);
1152 RT_ZERO(pCtx->hwvirt.vmx.aExitMsrLoadArea);
1153 RT_ZERO(pCtx->hwvirt.vmx.abMsrBitmap);
1154 RT_ZERO(pCtx->hwvirt.vmx.abIoBitmap);
1155
1156 pCtx->hwvirt.vmx.GCPhysVmxon = NIL_RTGCPHYS;
1157 pCtx->hwvirt.vmx.GCPhysShadowVmcs = NIL_RTGCPHYS;
1158 pCtx->hwvirt.vmx.GCPhysVmcs = NIL_RTGCPHYS;
1159 pCtx->hwvirt.vmx.fInVmxRootMode = false;
1160 pCtx->hwvirt.vmx.fInVmxNonRootMode = false;
1161 /* Don't reset diagnostics here. */
1162
1163 pCtx->hwvirt.vmx.fInterceptEvents = false;
1164 pCtx->hwvirt.vmx.fNmiUnblockingIret = false;
1165 pCtx->hwvirt.vmx.uFirstPauseLoopTick = 0;
1166 pCtx->hwvirt.vmx.uPrevPauseTick = 0;
1167 pCtx->hwvirt.vmx.uEntryTick = 0;
1168 pCtx->hwvirt.vmx.offVirtApicWrite = 0;
1169 pCtx->hwvirt.vmx.fVirtNmiBlocking = false;
1170
1171 /* Stop any VMX-preemption timer. */
1172 CPUMStopGuestVmxPremptTimer(pVCpu);
1173
1174 /* Clear all nested-guest FFs. */
1175 VMCPU_FF_CLEAR_MASK(pVCpu, VMCPU_FF_VMX_ALL_MASK);
1176}
1177
1178
1179/**
1180 * Displays the host and guest VMX features.
1181 *
1182 * @param pVM The cross context VM structure.
1183 * @param pHlp The info helper functions.
1184 * @param pszArgs "terse", "default" or "verbose".
1185 */
1186static DECLCALLBACK(void) cpumR3InfoVmxFeatures(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
1187{
1188 RT_NOREF(pszArgs);
1189 PCCPUMFEATURES pHostFeatures = &pVM->cpum.s.HostFeatures;
1190 PCCPUMFEATURES pGuestFeatures = &pVM->cpum.s.GuestFeatures;
1191 if ( pHostFeatures->enmCpuVendor == CPUMCPUVENDOR_INTEL
1192 || pHostFeatures->enmCpuVendor == CPUMCPUVENDOR_VIA
1193 || pHostFeatures->enmCpuVendor == CPUMCPUVENDOR_SHANGHAI)
1194 {
1195#define VMXFEATDUMP(a_szDesc, a_Var) \
1196 pHlp->pfnPrintf(pHlp, " %s = %u (%u)\n", a_szDesc, pGuestFeatures->a_Var, pHostFeatures->a_Var)
1197
1198 pHlp->pfnPrintf(pHlp, "Nested hardware virtualization - VMX features\n");
1199 pHlp->pfnPrintf(pHlp, " Mnemonic - Description = guest (host)\n");
1200 VMXFEATDUMP("VMX - Virtual-Machine Extensions ", fVmx);
1201 /* Basic. */
1202 VMXFEATDUMP("InsOutInfo - INS/OUTS instruction info. ", fVmxInsOutInfo);
1203
1204 /* Pin-based controls. */
1205 VMXFEATDUMP("ExtIntExit - External interrupt exiting ", fVmxExtIntExit);
1206 VMXFEATDUMP("NmiExit - NMI exiting ", fVmxNmiExit);
1207 VMXFEATDUMP("VirtNmi - Virtual NMIs ", fVmxVirtNmi);
1208 VMXFEATDUMP("PreemptTimer - VMX preemption timer ", fVmxPreemptTimer);
1209 VMXFEATDUMP("PostedInt - Posted interrupts ", fVmxPostedInt);
1210
1211 /* Processor-based controls. */
1212 VMXFEATDUMP("IntWindowExit - Interrupt-window exiting ", fVmxIntWindowExit);
1213 VMXFEATDUMP("TscOffsetting - TSC offsetting ", fVmxTscOffsetting);
1214 VMXFEATDUMP("HltExit - HLT exiting ", fVmxHltExit);
1215 VMXFEATDUMP("InvlpgExit - INVLPG exiting ", fVmxInvlpgExit);
1216 VMXFEATDUMP("MwaitExit - MWAIT exiting ", fVmxMwaitExit);
1217 VMXFEATDUMP("RdpmcExit - RDPMC exiting ", fVmxRdpmcExit);
1218 VMXFEATDUMP("RdtscExit - RDTSC exiting ", fVmxRdtscExit);
1219 VMXFEATDUMP("Cr3LoadExit - CR3-load exiting ", fVmxCr3LoadExit);
1220 VMXFEATDUMP("Cr3StoreExit - CR3-store exiting ", fVmxCr3StoreExit);
1221 VMXFEATDUMP("TertiaryExecCtls - Activate tertiary controls ", fVmxTertiaryExecCtls);
1222 VMXFEATDUMP("Cr8LoadExit - CR8-load exiting ", fVmxCr8LoadExit);
1223 VMXFEATDUMP("Cr8StoreExit - CR8-store exiting ", fVmxCr8StoreExit);
1224 VMXFEATDUMP("UseTprShadow - Use TPR shadow ", fVmxUseTprShadow);
1225 VMXFEATDUMP("NmiWindowExit - NMI-window exiting ", fVmxNmiWindowExit);
1226 VMXFEATDUMP("MovDRxExit - Mov-DR exiting ", fVmxMovDRxExit);
1227 VMXFEATDUMP("UncondIoExit - Unconditional I/O exiting ", fVmxUncondIoExit);
1228 VMXFEATDUMP("UseIoBitmaps - Use I/O bitmaps ", fVmxUseIoBitmaps);
1229 VMXFEATDUMP("MonitorTrapFlag - Monitor Trap Flag ", fVmxMonitorTrapFlag);
1230 VMXFEATDUMP("UseMsrBitmaps - MSR bitmaps ", fVmxUseMsrBitmaps);
1231 VMXFEATDUMP("MonitorExit - MONITOR exiting ", fVmxMonitorExit);
1232 VMXFEATDUMP("PauseExit - PAUSE exiting ", fVmxPauseExit);
1233 VMXFEATDUMP("SecondaryExecCtl - Activate secondary controls ", fVmxSecondaryExecCtls);
1234
1235 /* Secondary processor-based controls. */
1236 VMXFEATDUMP("VirtApic - Virtualize-APIC accesses ", fVmxVirtApicAccess);
1237 VMXFEATDUMP("Ept - Extended Page Tables ", fVmxEpt);
1238 VMXFEATDUMP("DescTableExit - Descriptor-table exiting ", fVmxDescTableExit);
1239 VMXFEATDUMP("Rdtscp - Enable RDTSCP ", fVmxRdtscp);
1240 VMXFEATDUMP("VirtX2ApicMode - Virtualize-x2APIC mode ", fVmxVirtX2ApicMode);
1241 VMXFEATDUMP("Vpid - Enable VPID ", fVmxVpid);
1242 VMXFEATDUMP("WbinvdExit - WBINVD exiting ", fVmxWbinvdExit);
1243 VMXFEATDUMP("UnrestrictedGuest - Unrestricted guest ", fVmxUnrestrictedGuest);
1244 VMXFEATDUMP("ApicRegVirt - APIC-register virtualization ", fVmxApicRegVirt);
1245 VMXFEATDUMP("VirtIntDelivery - Virtual-interrupt delivery ", fVmxVirtIntDelivery);
1246 VMXFEATDUMP("PauseLoopExit - PAUSE-loop exiting ", fVmxPauseLoopExit);
1247 VMXFEATDUMP("RdrandExit - RDRAND exiting ", fVmxRdrandExit);
1248 VMXFEATDUMP("Invpcid - Enable INVPCID ", fVmxInvpcid);
1249 VMXFEATDUMP("VmFuncs - Enable VM Functions ", fVmxVmFunc);
1250 VMXFEATDUMP("VmcsShadowing - VMCS shadowing ", fVmxVmcsShadowing);
1251 VMXFEATDUMP("RdseedExiting - RDSEED exiting ", fVmxRdseedExit);
1252 VMXFEATDUMP("PML - Page-Modification Log ", fVmxPml);
1253 VMXFEATDUMP("EptVe - EPT violations can cause #VE ", fVmxEptXcptVe);
1254 VMXFEATDUMP("ConcealVmxFromPt - Conceal VMX from Processor Trace ", fVmxConcealVmxFromPt);
1255 VMXFEATDUMP("XsavesXRstors - Enable XSAVES/XRSTORS ", fVmxXsavesXrstors);
1256 VMXFEATDUMP("PasidTranslate - PASID translation ", fVmxPasidTranslate);
1257 VMXFEATDUMP("ModeBasedExecuteEpt - Mode-based execute permissions ", fVmxModeBasedExecuteEpt);
1258 VMXFEATDUMP("SppEpt - Sub-page page write permissions for EPT ", fVmxSppEpt);
1259 VMXFEATDUMP("PtEpt - Processor Trace address' translatable by EPT ", fVmxPtEpt);
1260 VMXFEATDUMP("UseTscScaling - Use TSC scaling ", fVmxUseTscScaling);
1261 VMXFEATDUMP("UserWaitPause - Enable TPAUSE, UMONITOR and UMWAIT ", fVmxUserWaitPause);
1262 VMXFEATDUMP("Pconfig - Enable PCONFIG ", fVmxPconfig);
1263 VMXFEATDUMP("EnclvExit - ENCLV exiting ", fVmxEnclvExit);
1264 VMXFEATDUMP("BusLockDetect - VMM Bus-Lock detection ", fVmxBusLockDetect);
1265 VMXFEATDUMP("InstrTimeout - Instruction timeout ", fVmxInstrTimeout);
1266
1267 /* Tertiary processor-based controls. */
1268 VMXFEATDUMP("LoadIwKeyExit - LOADIWKEY exiting ", fVmxLoadIwKeyExit);
1269 VMXFEATDUMP("HLAT - Hypervisor-managed linear-address translation ", fVmxHlat);
1270 VMXFEATDUMP("EptPagingWrite - EPT paging-write ", fVmxEptPagingWrite);
1271 VMXFEATDUMP("GstPagingVerify - Guest-paging verification ", fVmxGstPagingVerify);
1272 VMXFEATDUMP("IpiVirt - IPI virtualization ", fVmxIpiVirt);
1273 VMXFEATDUMP("VirtSpecCtrl - Virtualize IA32_SPEC_CTRL ", fVmxVirtSpecCtrl);
1274
1275 /* VM-entry controls. */
1276 VMXFEATDUMP("EntryLoadDebugCtls - Load debug controls on VM-entry ", fVmxEntryLoadDebugCtls);
1277 VMXFEATDUMP("Ia32eModeGuest - IA-32e mode guest ", fVmxIa32eModeGuest);
1278 VMXFEATDUMP("EntryLoadEferMsr - Load IA32_EFER MSR on VM-entry ", fVmxEntryLoadEferMsr);
1279 VMXFEATDUMP("EntryLoadPatMsr - Load IA32_PAT MSR on VM-entry ", fVmxEntryLoadPatMsr);
1280
1281 /* VM-exit controls. */
1282 VMXFEATDUMP("ExitSaveDebugCtls - Save debug controls on VM-exit ", fVmxExitSaveDebugCtls);
1283 VMXFEATDUMP("HostAddrSpaceSize - Host address-space size ", fVmxHostAddrSpaceSize);
1284 VMXFEATDUMP("ExitAckExtInt - Acknowledge interrupt on VM-exit ", fVmxExitAckExtInt);
1285 VMXFEATDUMP("ExitSavePatMsr - Save IA32_PAT MSR on VM-exit ", fVmxExitSavePatMsr);
1286 VMXFEATDUMP("ExitLoadPatMsr - Load IA32_PAT MSR on VM-exit ", fVmxExitLoadPatMsr);
1287 VMXFEATDUMP("ExitSaveEferMsr - Save IA32_EFER MSR on VM-exit ", fVmxExitSaveEferMsr);
1288 VMXFEATDUMP("ExitLoadEferMsr - Load IA32_EFER MSR on VM-exit ", fVmxExitLoadEferMsr);
1289 VMXFEATDUMP("SavePreemptTimer - Save VMX-preemption timer ", fVmxSavePreemptTimer);
1290 VMXFEATDUMP("SecondaryExitCtls - Secondary VM-exit controls ", fVmxSecondaryExitCtls);
1291
1292 /* Miscellaneous data. */
1293 VMXFEATDUMP("ExitSaveEferLma - Save IA32_EFER.LMA on VM-exit ", fVmxExitSaveEferLma);
1294 VMXFEATDUMP("IntelPt - Intel Processor Trace in VMX operation ", fVmxPt);
1295 VMXFEATDUMP("VmwriteAll - VMWRITE to any supported VMCS field ", fVmxVmwriteAll);
1296 VMXFEATDUMP("EntryInjectSoftInt - Inject softint. with 0-len instr. ", fVmxEntryInjectSoftInt);
1297#undef VMXFEATDUMP
1298 }
1299 else
1300 pHlp->pfnPrintf(pHlp, "No VMX features present - requires an Intel or compatible CPU.\n");
1301}
1302
1303
1304/**
1305 * Checks whether nested-guest execution using hardware-assisted VMX (e.g, using HM
1306 * or NEM) is allowed.
1307 *
1308 * @returns @c true if hardware-assisted nested-guest execution is allowed, @c false
1309 * otherwise.
1310 * @param pVM The cross context VM structure.
1311 */
1312static bool cpumR3IsHwAssistNstGstExecAllowed(PVM pVM)
1313{
1314 AssertMsg(pVM->bMainExecutionEngine != VM_EXEC_ENGINE_NOT_SET, ("Calling this function too early!\n"));
1315#ifndef VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM
1316 if ( pVM->bMainExecutionEngine == VM_EXEC_ENGINE_HW_VIRT
1317 || pVM->bMainExecutionEngine == VM_EXEC_ENGINE_NATIVE_API)
1318 return true;
1319#else
1320 NOREF(pVM);
1321#endif
1322 return false;
1323}
1324
1325
1326/**
1327 * Initializes the VMX guest MSRs from guest CPU features based on the host MSRs.
1328 *
1329 * @param pVM The cross context VM structure.
1330 * @param pHostVmxMsrs The host VMX MSRs. Pass NULL when fully emulating VMX
1331 * and no hardware-assisted nested-guest execution is
1332 * possible for this VM.
1333 * @param pGuestFeatures The guest features to use (only VMX features are
1334 * accessed).
1335 * @param pGuestVmxMsrs Where to store the initialized guest VMX MSRs.
1336 *
1337 * @remarks This function ASSUMES the VMX guest-features are already exploded!
1338 */
1339static void cpumR3InitVmxGuestMsrs(PVM pVM, PCVMXMSRS pHostVmxMsrs, PCCPUMFEATURES pGuestFeatures, PVMXMSRS pGuestVmxMsrs)
1340{
1341 bool const fIsNstGstHwExecAllowed = cpumR3IsHwAssistNstGstExecAllowed(pVM);
1342
1343 Assert(!fIsNstGstHwExecAllowed || pHostVmxMsrs);
1344 Assert(pGuestFeatures->fVmx);
1345
1346 /* Basic information. */
1347 uint8_t const fTrueVmxMsrs = 1;
1348 {
1349 uint64_t const u64Basic = RT_BF_MAKE(VMX_BF_BASIC_VMCS_ID, VMX_V_VMCS_REVISION_ID )
1350 | RT_BF_MAKE(VMX_BF_BASIC_VMCS_SIZE, VMX_V_VMCS_SIZE )
1351 | RT_BF_MAKE(VMX_BF_BASIC_PHYSADDR_WIDTH, !pGuestFeatures->fLongMode )
1352 | RT_BF_MAKE(VMX_BF_BASIC_DUAL_MON, 0 )
1353 | RT_BF_MAKE(VMX_BF_BASIC_VMCS_MEM_TYPE, VMX_BASIC_MEM_TYPE_WB )
1354 | RT_BF_MAKE(VMX_BF_BASIC_VMCS_INS_OUTS, pGuestFeatures->fVmxInsOutInfo)
1355 | RT_BF_MAKE(VMX_BF_BASIC_TRUE_CTLS, fTrueVmxMsrs );
1356 pGuestVmxMsrs->u64Basic = u64Basic;
1357 }
1358
1359 /* Pin-based VM-execution controls. */
1360 {
1361 uint32_t const fFeatures = (pGuestFeatures->fVmxExtIntExit << VMX_BF_PIN_CTLS_EXT_INT_EXIT_SHIFT )
1362 | (pGuestFeatures->fVmxNmiExit << VMX_BF_PIN_CTLS_NMI_EXIT_SHIFT )
1363 | (pGuestFeatures->fVmxVirtNmi << VMX_BF_PIN_CTLS_VIRT_NMI_SHIFT )
1364 | (pGuestFeatures->fVmxPreemptTimer << VMX_BF_PIN_CTLS_PREEMPT_TIMER_SHIFT)
1365 | (pGuestFeatures->fVmxPostedInt << VMX_BF_PIN_CTLS_POSTED_INT_SHIFT );
1366 uint32_t const fAllowed0 = VMX_PIN_CTLS_DEFAULT1;
1367 uint32_t const fAllowed1 = fFeatures | VMX_PIN_CTLS_DEFAULT1;
1368 AssertMsg((fAllowed0 & fAllowed1) == fAllowed0, ("fAllowed0=%#RX32 fAllowed1=%#RX32 fFeatures=%#RX32\n",
1369 fAllowed0, fAllowed1, fFeatures));
1370 pGuestVmxMsrs->PinCtls.u = RT_MAKE_U64(fAllowed0, fAllowed1);
1371
1372 /* True pin-based VM-execution controls. */
1373 if (fTrueVmxMsrs)
1374 {
1375 /* VMX_PIN_CTLS_DEFAULT1 contains MB1 reserved bits and must be reserved MB1 in true pin-based controls as well. */
1376 pGuestVmxMsrs->TruePinCtls.u = pGuestVmxMsrs->PinCtls.u;
1377 }
1378 }
1379
1380 /* Processor-based VM-execution controls. */
1381 {
1382 uint32_t const fFeatures = (pGuestFeatures->fVmxIntWindowExit << VMX_BF_PROC_CTLS_INT_WINDOW_EXIT_SHIFT )
1383 | (pGuestFeatures->fVmxTscOffsetting << VMX_BF_PROC_CTLS_USE_TSC_OFFSETTING_SHIFT)
1384 | (pGuestFeatures->fVmxHltExit << VMX_BF_PROC_CTLS_HLT_EXIT_SHIFT )
1385 | (pGuestFeatures->fVmxInvlpgExit << VMX_BF_PROC_CTLS_INVLPG_EXIT_SHIFT )
1386 | (pGuestFeatures->fVmxMwaitExit << VMX_BF_PROC_CTLS_MWAIT_EXIT_SHIFT )
1387 | (pGuestFeatures->fVmxRdpmcExit << VMX_BF_PROC_CTLS_RDPMC_EXIT_SHIFT )
1388 | (pGuestFeatures->fVmxRdtscExit << VMX_BF_PROC_CTLS_RDTSC_EXIT_SHIFT )
1389 | (pGuestFeatures->fVmxCr3LoadExit << VMX_BF_PROC_CTLS_CR3_LOAD_EXIT_SHIFT )
1390 | (pGuestFeatures->fVmxCr3StoreExit << VMX_BF_PROC_CTLS_CR3_STORE_EXIT_SHIFT )
1391 | (pGuestFeatures->fVmxTertiaryExecCtls << VMX_BF_PROC_CTLS_USE_TERTIARY_CTLS_SHIFT )
1392 | (pGuestFeatures->fVmxCr8LoadExit << VMX_BF_PROC_CTLS_CR8_LOAD_EXIT_SHIFT )
1393 | (pGuestFeatures->fVmxCr8StoreExit << VMX_BF_PROC_CTLS_CR8_STORE_EXIT_SHIFT )
1394 | (pGuestFeatures->fVmxUseTprShadow << VMX_BF_PROC_CTLS_USE_TPR_SHADOW_SHIFT )
1395 | (pGuestFeatures->fVmxNmiWindowExit << VMX_BF_PROC_CTLS_NMI_WINDOW_EXIT_SHIFT )
1396 | (pGuestFeatures->fVmxMovDRxExit << VMX_BF_PROC_CTLS_MOV_DR_EXIT_SHIFT )
1397 | (pGuestFeatures->fVmxUncondIoExit << VMX_BF_PROC_CTLS_UNCOND_IO_EXIT_SHIFT )
1398 | (pGuestFeatures->fVmxUseIoBitmaps << VMX_BF_PROC_CTLS_USE_IO_BITMAPS_SHIFT )
1399 | (pGuestFeatures->fVmxMonitorTrapFlag << VMX_BF_PROC_CTLS_MONITOR_TRAP_FLAG_SHIFT )
1400 | (pGuestFeatures->fVmxUseMsrBitmaps << VMX_BF_PROC_CTLS_USE_MSR_BITMAPS_SHIFT )
1401 | (pGuestFeatures->fVmxMonitorExit << VMX_BF_PROC_CTLS_MONITOR_EXIT_SHIFT )
1402 | (pGuestFeatures->fVmxPauseExit << VMX_BF_PROC_CTLS_PAUSE_EXIT_SHIFT )
1403 | (pGuestFeatures->fVmxSecondaryExecCtls << VMX_BF_PROC_CTLS_USE_SECONDARY_CTLS_SHIFT);
1404 uint32_t const fAllowed0 = VMX_PROC_CTLS_DEFAULT1;
1405 uint32_t const fAllowed1 = fFeatures | VMX_PROC_CTLS_DEFAULT1;
1406 AssertMsg((fAllowed0 & fAllowed1) == fAllowed0, ("fAllowed0=%#RX32 fAllowed1=%#RX32 fFeatures=%#RX32\n", fAllowed0,
1407 fAllowed1, fFeatures));
1408 pGuestVmxMsrs->ProcCtls.u = RT_MAKE_U64(fAllowed0, fAllowed1);
1409
1410 /* True processor-based VM-execution controls. */
1411 if (fTrueVmxMsrs)
1412 {
1413 /* VMX_PROC_CTLS_DEFAULT1 contains MB1 reserved bits but the following are not really reserved. */
1414 uint32_t const fTrueAllowed0 = VMX_PROC_CTLS_DEFAULT1 & ~( VMX_BF_PROC_CTLS_CR3_LOAD_EXIT_MASK
1415 | VMX_BF_PROC_CTLS_CR3_STORE_EXIT_MASK);
1416 uint32_t const fTrueAllowed1 = fFeatures | fTrueAllowed0;
1417 pGuestVmxMsrs->TrueProcCtls.u = RT_MAKE_U64(fTrueAllowed0, fTrueAllowed1);
1418 }
1419 }
1420
1421 /* Secondary processor-based VM-execution controls. */
1422 if (pGuestFeatures->fVmxSecondaryExecCtls)
1423 {
1424 uint32_t const fFeatures = (pGuestFeatures->fVmxVirtApicAccess << VMX_BF_PROC_CTLS2_VIRT_APIC_ACCESS_SHIFT )
1425 | (pGuestFeatures->fVmxEpt << VMX_BF_PROC_CTLS2_EPT_SHIFT )
1426 | (pGuestFeatures->fVmxDescTableExit << VMX_BF_PROC_CTLS2_DESC_TABLE_EXIT_SHIFT )
1427 | (pGuestFeatures->fVmxRdtscp << VMX_BF_PROC_CTLS2_RDTSCP_SHIFT )
1428 | (pGuestFeatures->fVmxVirtX2ApicMode << VMX_BF_PROC_CTLS2_VIRT_X2APIC_MODE_SHIFT )
1429 | (pGuestFeatures->fVmxVpid << VMX_BF_PROC_CTLS2_VPID_SHIFT )
1430 | (pGuestFeatures->fVmxWbinvdExit << VMX_BF_PROC_CTLS2_WBINVD_EXIT_SHIFT )
1431 | (pGuestFeatures->fVmxUnrestrictedGuest << VMX_BF_PROC_CTLS2_UNRESTRICTED_GUEST_SHIFT )
1432 | (pGuestFeatures->fVmxApicRegVirt << VMX_BF_PROC_CTLS2_APIC_REG_VIRT_SHIFT )
1433 | (pGuestFeatures->fVmxVirtIntDelivery << VMX_BF_PROC_CTLS2_VIRT_INT_DELIVERY_SHIFT )
1434 | (pGuestFeatures->fVmxPauseLoopExit << VMX_BF_PROC_CTLS2_PAUSE_LOOP_EXIT_SHIFT )
1435 | (pGuestFeatures->fVmxRdrandExit << VMX_BF_PROC_CTLS2_RDRAND_EXIT_SHIFT )
1436 | (pGuestFeatures->fVmxInvpcid << VMX_BF_PROC_CTLS2_INVPCID_SHIFT )
1437 | (pGuestFeatures->fVmxVmFunc << VMX_BF_PROC_CTLS2_VMFUNC_SHIFT )
1438 | (pGuestFeatures->fVmxVmcsShadowing << VMX_BF_PROC_CTLS2_VMCS_SHADOWING_SHIFT )
1439 | (pGuestFeatures->fVmxRdseedExit << VMX_BF_PROC_CTLS2_RDSEED_EXIT_SHIFT )
1440 | (pGuestFeatures->fVmxPml << VMX_BF_PROC_CTLS2_PML_SHIFT )
1441 | (pGuestFeatures->fVmxEptXcptVe << VMX_BF_PROC_CTLS2_EPT_VE_SHIFT )
1442 | (pGuestFeatures->fVmxConcealVmxFromPt << VMX_BF_PROC_CTLS2_CONCEAL_VMX_FROM_PT_SHIFT)
1443 | (pGuestFeatures->fVmxXsavesXrstors << VMX_BF_PROC_CTLS2_XSAVES_XRSTORS_SHIFT )
1444 | (pGuestFeatures->fVmxPasidTranslate << VMX_BF_PROC_CTLS2_PASID_TRANSLATE_SHIFT )
1445 | (pGuestFeatures->fVmxModeBasedExecuteEpt << VMX_BF_PROC_CTLS2_MODE_BASED_EPT_PERM_SHIFT)
1446 | (pGuestFeatures->fVmxSppEpt << VMX_BF_PROC_CTLS2_SPP_EPT_SHIFT )
1447 | (pGuestFeatures->fVmxPtEpt << VMX_BF_PROC_CTLS2_PT_EPT_SHIFT )
1448 | (pGuestFeatures->fVmxUseTscScaling << VMX_BF_PROC_CTLS2_TSC_SCALING_SHIFT )
1449 | (pGuestFeatures->fVmxUserWaitPause << VMX_BF_PROC_CTLS2_USER_WAIT_PAUSE_SHIFT )
1450 | (pGuestFeatures->fVmxPconfig << VMX_BF_PROC_CTLS2_PCONFIG_SHIFT )
1451 | (pGuestFeatures->fVmxEnclvExit << VMX_BF_PROC_CTLS2_ENCLV_EXIT_SHIFT )
1452 | (pGuestFeatures->fVmxBusLockDetect << VMX_BF_PROC_CTLS2_BUSLOCK_DETECT_SHIFT )
1453 | (pGuestFeatures->fVmxInstrTimeout << VMX_BF_PROC_CTLS2_INSTR_TIMEOUT_SHIFT );
1454 uint32_t const fAllowed0 = 0;
1455 uint32_t const fAllowed1 = fFeatures;
1456 pGuestVmxMsrs->ProcCtls2.u = RT_MAKE_U64(fAllowed0, fAllowed1);
1457 }
1458
1459 /* Tertiary processor-based VM-execution controls. */
1460 if (pGuestFeatures->fVmxTertiaryExecCtls)
1461 {
1462 pGuestVmxMsrs->u64ProcCtls3 = (pGuestFeatures->fVmxLoadIwKeyExit << VMX_BF_PROC_CTLS3_LOADIWKEY_EXIT_SHIFT)
1463 | (pGuestFeatures->fVmxHlat << VMX_BF_PROC_CTLS3_HLAT_SHIFT)
1464 | (pGuestFeatures->fVmxEptPagingWrite << VMX_BF_PROC_CTLS3_EPT_PAGING_WRITE_SHIFT)
1465 | (pGuestFeatures->fVmxGstPagingVerify << VMX_BF_PROC_CTLS3_GST_PAGING_VERIFY_SHIFT)
1466 | (pGuestFeatures->fVmxIpiVirt << VMX_BF_PROC_CTLS3_IPI_VIRT_SHIFT)
1467 | (pGuestFeatures->fVmxVirtSpecCtrl << VMX_BF_PROC_CTLS3_VIRT_SPEC_CTRL_SHIFT);
1468 }
1469
1470 /* VM-exit controls. */
1471 {
1472 uint32_t const fFeatures = (pGuestFeatures->fVmxExitSaveDebugCtls << VMX_BF_EXIT_CTLS_SAVE_DEBUG_SHIFT )
1473 | (pGuestFeatures->fVmxHostAddrSpaceSize << VMX_BF_EXIT_CTLS_HOST_ADDR_SPACE_SIZE_SHIFT)
1474 | (pGuestFeatures->fVmxExitAckExtInt << VMX_BF_EXIT_CTLS_ACK_EXT_INT_SHIFT )
1475 | (pGuestFeatures->fVmxExitSavePatMsr << VMX_BF_EXIT_CTLS_SAVE_PAT_MSR_SHIFT )
1476 | (pGuestFeatures->fVmxExitLoadPatMsr << VMX_BF_EXIT_CTLS_LOAD_PAT_MSR_SHIFT )
1477 | (pGuestFeatures->fVmxExitSaveEferMsr << VMX_BF_EXIT_CTLS_SAVE_EFER_MSR_SHIFT )
1478 | (pGuestFeatures->fVmxExitLoadEferMsr << VMX_BF_EXIT_CTLS_LOAD_EFER_MSR_SHIFT )
1479 | (pGuestFeatures->fVmxSavePreemptTimer << VMX_BF_EXIT_CTLS_SAVE_PREEMPT_TIMER_SHIFT )
1480 | (pGuestFeatures->fVmxSecondaryExitCtls << VMX_BF_EXIT_CTLS_USE_SECONDARY_CTLS_SHIFT );
1481 /* Set the default1 class bits. See Intel spec. A.4 "VM-exit Controls". */
1482 uint32_t const fAllowed0 = VMX_EXIT_CTLS_DEFAULT1;
1483 uint32_t const fAllowed1 = fFeatures | VMX_EXIT_CTLS_DEFAULT1;
1484 AssertMsg((fAllowed0 & fAllowed1) == fAllowed0, ("fAllowed0=%#RX32 fAllowed1=%#RX32 fFeatures=%#RX32\n", fAllowed0,
1485 fAllowed1, fFeatures));
1486 pGuestVmxMsrs->ExitCtls.u = RT_MAKE_U64(fAllowed0, fAllowed1);
1487
1488 /* True VM-exit controls. */
1489 if (fTrueVmxMsrs)
1490 {
1491 /* VMX_EXIT_CTLS_DEFAULT1 contains MB1 reserved bits but the following are not really reserved */
1492 uint32_t const fTrueAllowed0 = VMX_EXIT_CTLS_DEFAULT1 & ~VMX_BF_EXIT_CTLS_SAVE_DEBUG_MASK;
1493 uint32_t const fTrueAllowed1 = fFeatures | fTrueAllowed0;
1494 pGuestVmxMsrs->TrueExitCtls.u = RT_MAKE_U64(fTrueAllowed0, fTrueAllowed1);
1495 }
1496 }
1497
1498 /* VM-entry controls. */
1499 {
1500 uint32_t const fFeatures = (pGuestFeatures->fVmxEntryLoadDebugCtls << VMX_BF_ENTRY_CTLS_LOAD_DEBUG_SHIFT )
1501 | (pGuestFeatures->fVmxIa32eModeGuest << VMX_BF_ENTRY_CTLS_IA32E_MODE_GUEST_SHIFT)
1502 | (pGuestFeatures->fVmxEntryLoadEferMsr << VMX_BF_ENTRY_CTLS_LOAD_EFER_MSR_SHIFT )
1503 | (pGuestFeatures->fVmxEntryLoadPatMsr << VMX_BF_ENTRY_CTLS_LOAD_PAT_MSR_SHIFT );
1504 uint32_t const fAllowed0 = VMX_ENTRY_CTLS_DEFAULT1;
1505 uint32_t const fAllowed1 = fFeatures | VMX_ENTRY_CTLS_DEFAULT1;
1506 AssertMsg((fAllowed0 & fAllowed1) == fAllowed0, ("fAllowed0=%#RX32 fAllowed0=%#RX32 fFeatures=%#RX32\n", fAllowed0,
1507 fAllowed1, fFeatures));
1508 pGuestVmxMsrs->EntryCtls.u = RT_MAKE_U64(fAllowed0, fAllowed1);
1509
1510 /* True VM-entry controls. */
1511 if (fTrueVmxMsrs)
1512 {
1513 /* VMX_ENTRY_CTLS_DEFAULT1 contains MB1 reserved bits but the following are not really reserved */
1514 uint32_t const fTrueAllowed0 = VMX_ENTRY_CTLS_DEFAULT1 & ~( VMX_BF_ENTRY_CTLS_LOAD_DEBUG_MASK
1515 | VMX_BF_ENTRY_CTLS_IA32E_MODE_GUEST_MASK
1516 | VMX_BF_ENTRY_CTLS_ENTRY_SMM_MASK
1517 | VMX_BF_ENTRY_CTLS_DEACTIVATE_DUAL_MON_MASK);
1518 uint32_t const fTrueAllowed1 = fFeatures | fTrueAllowed0;
1519 pGuestVmxMsrs->TrueEntryCtls.u = RT_MAKE_U64(fTrueAllowed0, fTrueAllowed1);
1520 }
1521 }
1522
1523 /* Miscellaneous data. */
1524 {
1525 uint64_t const uHostMsr = fIsNstGstHwExecAllowed ? pHostVmxMsrs->u64Misc : 0;
1526
1527 uint8_t const cMaxMsrs = RT_MIN(RT_BF_GET(uHostMsr, VMX_BF_MISC_MAX_MSRS), VMX_V_AUTOMSR_COUNT_MAX);
1528 uint8_t const fActivityState = RT_BF_GET(uHostMsr, VMX_BF_MISC_ACTIVITY_STATES) & VMX_V_GUEST_ACTIVITY_STATE_MASK;
1529 pGuestVmxMsrs->u64Misc = RT_BF_MAKE(VMX_BF_MISC_PREEMPT_TIMER_TSC, VMX_V_PREEMPT_TIMER_SHIFT )
1530 | RT_BF_MAKE(VMX_BF_MISC_EXIT_SAVE_EFER_LMA, pGuestFeatures->fVmxExitSaveEferLma )
1531 | RT_BF_MAKE(VMX_BF_MISC_ACTIVITY_STATES, fActivityState )
1532 | RT_BF_MAKE(VMX_BF_MISC_INTEL_PT, pGuestFeatures->fVmxPt )
1533 | RT_BF_MAKE(VMX_BF_MISC_SMM_READ_SMBASE_MSR, 0 )
1534 | RT_BF_MAKE(VMX_BF_MISC_CR3_TARGET, VMX_V_CR3_TARGET_COUNT )
1535 | RT_BF_MAKE(VMX_BF_MISC_MAX_MSRS, cMaxMsrs )
1536 | RT_BF_MAKE(VMX_BF_MISC_VMXOFF_BLOCK_SMI, 0 )
1537 | RT_BF_MAKE(VMX_BF_MISC_VMWRITE_ALL, pGuestFeatures->fVmxVmwriteAll )
1538 | RT_BF_MAKE(VMX_BF_MISC_ENTRY_INJECT_SOFT_INT, pGuestFeatures->fVmxEntryInjectSoftInt)
1539 | RT_BF_MAKE(VMX_BF_MISC_MSEG_ID, VMX_V_MSEG_REV_ID );
1540 }
1541
1542 /* CR0 Fixed-0 (we report this fixed value regardless of whether UX is supported as it does on real hardware). */
1543 pGuestVmxMsrs->u64Cr0Fixed0 = VMX_V_CR0_FIXED0;
1544
1545 /* CR0 Fixed-1. */
1546 {
1547 /*
1548 * All CPUs I've looked at so far report CR0 fixed-1 bits as 0xffffffff.
1549 * This is different from CR4 fixed-1 bits which are reported as per the
1550 * CPU features and/or micro-architecture/generation. Why? Ask Intel.
1551 */
1552 pGuestVmxMsrs->u64Cr0Fixed1 = fIsNstGstHwExecAllowed ? pHostVmxMsrs->u64Cr0Fixed1 : VMX_V_CR0_FIXED1;
1553
1554 /* Make sure the CR0 MB1 bits are not clear. */
1555 Assert((pGuestVmxMsrs->u64Cr0Fixed1 & pGuestVmxMsrs->u64Cr0Fixed0) == pGuestVmxMsrs->u64Cr0Fixed0);
1556 }
1557
1558 /* CR4 Fixed-0. */
1559 pGuestVmxMsrs->u64Cr4Fixed0 = VMX_V_CR4_FIXED0;
1560
1561 /* CR4 Fixed-1. */
1562 {
1563 pGuestVmxMsrs->u64Cr4Fixed1 = CPUMGetGuestCR4ValidMask(pVM) & pHostVmxMsrs->u64Cr4Fixed1;
1564
1565 /* Make sure the CR4 MB1 bits are not clear. */
1566 Assert((pGuestVmxMsrs->u64Cr4Fixed1 & pGuestVmxMsrs->u64Cr4Fixed0) == pGuestVmxMsrs->u64Cr4Fixed0);
1567
1568 /* Make sure bits that must always be set are set. */
1569 Assert(pGuestVmxMsrs->u64Cr4Fixed1 & X86_CR4_PAE);
1570 Assert(pGuestVmxMsrs->u64Cr4Fixed1 & X86_CR4_VMXE);
1571 }
1572
1573 /* VMCS Enumeration. */
1574 pGuestVmxMsrs->u64VmcsEnum = VMX_V_VMCS_MAX_INDEX << VMX_BF_VMCS_ENUM_HIGHEST_IDX_SHIFT;
1575
1576 /* VPID and EPT Capabilities. */
1577 if (pGuestFeatures->fVmxEpt)
1578 {
1579 /*
1580 * INVVPID instruction always causes a VM-exit unconditionally, so we are free to fake
1581 * and emulate any INVVPID flush type. However, it only makes sense to expose the types
1582 * when INVVPID instruction is supported just to be more compatible with guest
1583 * hypervisors that may make assumptions by only looking at this MSR even though they
1584 * are technically supposed to refer to VMX_PROC_CTLS2_VPID first.
1585 *
1586 * See Intel spec. 25.1.2 "Instructions That Cause VM Exits Unconditionally".
1587 * See Intel spec. 30.3 "VMX Instructions".
1588 */
1589 uint64_t const uHostMsr = fIsNstGstHwExecAllowed ? pHostVmxMsrs->u64EptVpidCaps : UINT64_MAX;
1590 uint8_t const fVpid = pGuestFeatures->fVmxVpid;
1591
1592 uint8_t const fExecOnly = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_EXEC_ONLY);
1593 uint8_t const fPml4 = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_PAGE_WALK_LENGTH_4);
1594 uint8_t const fMemTypeUc = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_MEMTYPE_UC);
1595 uint8_t const fMemTypeWb = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_MEMTYPE_WB);
1596 uint8_t const f2MPage = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_PDE_2M);
1597 uint8_t const fInvept = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_INVEPT);
1598 /** @todo Nested VMX: Support accessed/dirty bits, see @bugref{10092#c25}. */
1599 /* uint8_t const fAccessDirty = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_ACCESS_DIRTY); */
1600 uint8_t const fEptSingle = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_INVEPT_SINGLE_CTX);
1601 uint8_t const fEptAll = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_INVEPT_ALL_CTX);
1602 uint8_t const fVpidIndiv = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_INVVPID_INDIV_ADDR);
1603 uint8_t const fVpidSingle = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_INVVPID_SINGLE_CTX);
1604 uint8_t const fVpidAll = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_INVVPID_ALL_CTX);
1605 uint8_t const fVpidSingleGlobal = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_INVVPID_SINGLE_CTX_RETAIN_GLOBALS);
1606 pGuestVmxMsrs->u64EptVpidCaps = RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_EXEC_ONLY, fExecOnly)
1607 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_PAGE_WALK_LENGTH_4, fPml4)
1608 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_MEMTYPE_UC, fMemTypeUc)
1609 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_MEMTYPE_WB, fMemTypeWb)
1610 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_PDE_2M, f2MPage)
1611 //| RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_PDPTE_1G, 0)
1612 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_INVEPT, fInvept)
1613 //| RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_ACCESS_DIRTY, 0)
1614 //| RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_ADVEXITINFO_EPT_VIOLATION, 0)
1615 //| RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_SUPER_SHW_STACK, 0)
1616 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_INVEPT_SINGLE_CTX, fEptSingle)
1617 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_INVEPT_ALL_CTX, fEptAll)
1618 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_INVVPID, fVpid)
1619 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_INVVPID_INDIV_ADDR, fVpid & fVpidIndiv)
1620 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_INVVPID_SINGLE_CTX, fVpid & fVpidSingle)
1621 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_INVVPID_ALL_CTX, fVpid & fVpidAll)
1622 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_INVVPID_SINGLE_CTX_RETAIN_GLOBALS, fVpid & fVpidSingleGlobal);
1623 }
1624
1625 /* VM Functions. */
1626 if (pGuestFeatures->fVmxVmFunc)
1627 pGuestVmxMsrs->u64VmFunc = RT_BF_MAKE(VMX_BF_VMFUNC_EPTP_SWITCHING, 1);
1628}
1629
1630
1631/**
1632 * Checks whether the given guest CPU VMX features are compatible with the provided
1633 * base features.
1634 *
1635 * @returns @c true if compatible, @c false otherwise.
1636 * @param pVM The cross context VM structure.
1637 * @param pBase The base VMX CPU features.
1638 * @param pGst The guest VMX CPU features.
1639 *
1640 * @remarks Only VMX feature bits are examined.
1641 */
1642static bool cpumR3AreVmxCpuFeaturesCompatible(PVM pVM, PCCPUMFEATURES pBase, PCCPUMFEATURES pGst)
1643{
1644 if (!cpumR3IsHwAssistNstGstExecAllowed(pVM))
1645 return false;
1646
1647#define CPUM_VMX_FEAT_SHIFT(a_pFeat, a_FeatName, a_cShift) ((uint64_t)(a_pFeat->a_FeatName) << (a_cShift))
1648#define CPUM_VMX_MAKE_FEATURES_1(a_pFeat) ( CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxInsOutInfo , 0) \
1649 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxExtIntExit , 1) \
1650 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxNmiExit , 2) \
1651 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxVirtNmi , 3) \
1652 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxPreemptTimer , 4) \
1653 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxPostedInt , 5) \
1654 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxIntWindowExit , 6) \
1655 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxTscOffsetting , 7) \
1656 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxHltExit , 8) \
1657 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxInvlpgExit , 9) \
1658 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxMwaitExit , 10) \
1659 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxRdpmcExit , 12) \
1660 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxRdtscExit , 13) \
1661 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxCr3LoadExit , 14) \
1662 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxCr3StoreExit , 15) \
1663 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxTertiaryExecCtls , 16) \
1664 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxCr8LoadExit , 17) \
1665 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxCr8StoreExit , 18) \
1666 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxUseTprShadow , 19) \
1667 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxNmiWindowExit , 20) \
1668 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxMovDRxExit , 21) \
1669 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxUncondIoExit , 22) \
1670 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxUseIoBitmaps , 23) \
1671 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxMonitorTrapFlag , 24) \
1672 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxUseMsrBitmaps , 25) \
1673 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxMonitorExit , 26) \
1674 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxPauseExit , 27) \
1675 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxSecondaryExecCtls , 28) \
1676 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxVirtApicAccess , 29) \
1677 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxEpt , 30) \
1678 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxDescTableExit , 31) \
1679 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxRdtscp , 32) \
1680 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxVirtX2ApicMode , 33) \
1681 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxVpid , 34) \
1682 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxWbinvdExit , 35) \
1683 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxUnrestrictedGuest , 36) \
1684 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxApicRegVirt , 37) \
1685 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxVirtIntDelivery , 38) \
1686 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxPauseLoopExit , 39) \
1687 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxRdrandExit , 40) \
1688 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxInvpcid , 41) \
1689 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxVmFunc , 42) \
1690 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxVmcsShadowing , 43) \
1691 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxRdseedExit , 44) \
1692 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxPml , 45) \
1693 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxEptXcptVe , 46) \
1694 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxConcealVmxFromPt , 47) \
1695 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxXsavesXrstors , 48) \
1696 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxModeBasedExecuteEpt, 49) \
1697 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxSppEpt , 50) \
1698 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxPtEpt , 51) \
1699 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxUseTscScaling , 52) \
1700 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxUserWaitPause , 53) \
1701 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxEnclvExit , 54) \
1702 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxLoadIwKeyExit , 55) \
1703 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxEntryLoadDebugCtls , 56) \
1704 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxIa32eModeGuest , 57) \
1705 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxEntryLoadEferMsr , 58) \
1706 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxEntryLoadPatMsr , 59) \
1707 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxExitSaveDebugCtls , 60) \
1708 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxHostAddrSpaceSize , 61) \
1709 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxExitAckExtInt , 62) \
1710 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxExitSavePatMsr , 63))
1711
1712#define CPUM_VMX_MAKE_FEATURES_2(a_pFeat) ( CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxExitLoadPatMsr , 0) \
1713 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxExitSaveEferMsr , 1) \
1714 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxExitLoadEferMsr , 2) \
1715 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxSavePreemptTimer , 3) \
1716 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxSecondaryExitCtls , 4) \
1717 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxExitSaveEferLma , 5) \
1718 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxPt , 6) \
1719 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxVmwriteAll , 7) \
1720 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxEntryInjectSoftInt , 8))
1721
1722 /* Check first set of feature bits. */
1723 {
1724 uint64_t const fBase = CPUM_VMX_MAKE_FEATURES_1(pBase);
1725 uint64_t const fGst = CPUM_VMX_MAKE_FEATURES_1(pGst);
1726 if ((fBase | fGst) != fBase)
1727 {
1728 uint64_t const fDiff = fBase ^ fGst;
1729 LogRel(("CPUM: VMX features (1) now exposed to the guest are incompatible with those from the saved state. fBase=%#RX64 fGst=%#RX64 fDiff=%#RX64\n",
1730 fBase, fGst, fDiff));
1731 return false;
1732 }
1733 }
1734
1735 /* Check second set of feature bits. */
1736 {
1737 uint64_t const fBase = CPUM_VMX_MAKE_FEATURES_2(pBase);
1738 uint64_t const fGst = CPUM_VMX_MAKE_FEATURES_2(pGst);
1739 if ((fBase | fGst) != fBase)
1740 {
1741 uint64_t const fDiff = fBase ^ fGst;
1742 LogRel(("CPUM: VMX features (2) now exposed to the guest are incompatible with those from the saved state. fBase=%#RX64 fGst=%#RX64 fDiff=%#RX64\n",
1743 fBase, fGst, fDiff));
1744 return false;
1745 }
1746 }
1747#undef CPUM_VMX_FEAT_SHIFT
1748#undef CPUM_VMX_MAKE_FEATURES_1
1749#undef CPUM_VMX_MAKE_FEATURES_2
1750
1751 return true;
1752}
1753
1754
1755/**
1756 * Initializes VMX guest features and MSRs.
1757 *
1758 * @param pVM The cross context VM structure.
1759 * @param pCpumCfg The CPUM CFGM configuration node.
1760 * @param pHostVmxMsrs The host VMX MSRs. Pass NULL when fully emulating VMX
1761 * and no hardware-assisted nested-guest execution is
1762 * possible for this VM.
1763 * @param pGuestVmxMsrs Where to store the initialized guest VMX MSRs.
1764 */
1765void cpumR3InitVmxGuestFeaturesAndMsrs(PVM pVM, PCFGMNODE pCpumCfg, PCVMXMSRS pHostVmxMsrs, PVMXMSRS pGuestVmxMsrs)
1766{
1767 Assert(pVM);
1768 Assert(pCpumCfg);
1769 Assert(pGuestVmxMsrs);
1770
1771 /*
1772 * Query VMX features from CFGM.
1773 */
1774 bool fVmxPreemptTimer;
1775 bool fVmxEpt;
1776 bool fVmxUnrestrictedGuest;
1777 {
1778 /** @cfgm{/CPUM/NestedVmxPreemptTimer, bool, true}
1779 * Whether to expose the VMX-preemption timer feature to the guest (if also
1780 * supported by the host hardware). When disabled will prevent exposing the
1781 * VMX-preemption timer feature to the guest even if the host supports it.
1782 *
1783 * @todo Currently disabled, see @bugref{9180#c108}.
1784 */
1785 int rc = CFGMR3QueryBoolDef(pCpumCfg, "NestedVmxPreemptTimer", &fVmxPreemptTimer, false);
1786 AssertLogRelRCReturnVoid(rc);
1787
1788#ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
1789 /** @cfgm{/CPUM/NestedVmxEpt, bool, true}
1790 * Whether to expose the EPT feature to the guest. The default is true.
1791 * When disabled will automatically prevent exposing features that rely
1792 * on it. This is dependent upon nested paging being enabled for the VM.
1793 */
1794 rc = CFGMR3QueryBoolDef(pCpumCfg, "NestedVmxEpt", &fVmxEpt, true);
1795 AssertLogRelRCReturnVoid(rc);
1796
1797 /** @cfgm{/CPUM/NestedVmxUnrestrictedGuest, bool, true}
1798 * Whether to expose the Unrestricted Guest feature to the guest. The
1799 * default is the same a /CPUM/Nested/VmxEpt. When disabled will
1800 * automatically prevent exposing features that rely on it.
1801 */
1802 rc = CFGMR3QueryBoolDef(pCpumCfg, "NestedVmxUnrestrictedGuest", &fVmxUnrestrictedGuest, fVmxEpt);
1803 AssertLogRelRCReturnVoid(rc);
1804#else
1805 fVmxEpt = fVmxUnrestrictedGuest = false;
1806#endif
1807 }
1808
1809 if (fVmxEpt)
1810 {
1811 const char *pszWhy = NULL;
1812 if (!VM_IS_HM_ENABLED(pVM) && !VM_IS_EXEC_ENGINE_IEM(pVM))
1813 pszWhy = "execution engine is neither HM nor IEM";
1814 else if (VM_IS_HM_ENABLED(pVM) && !HMIsNestedPagingActive(pVM))
1815 pszWhy = "nested paging is not enabled for the VM or it is not supported by the host";
1816 else if (VM_IS_HM_ENABLED(pVM) && !pVM->cpum.s.HostFeatures.fNoExecute)
1817 pszWhy = "NX is not available on the host";
1818 if (pszWhy)
1819 {
1820 LogRel(("CPUM: Warning! EPT not exposed to the guest because %s\n", pszWhy));
1821 fVmxEpt = false;
1822 }
1823 }
1824 else if (fVmxUnrestrictedGuest)
1825 {
1826 LogRel(("CPUM: Warning! Can't expose \"Unrestricted Guest\" to the guest when EPT is not exposed!\n"));
1827 fVmxUnrestrictedGuest = false;
1828 }
1829
1830 /*
1831 * Initialize the set of VMX features we emulate.
1832 *
1833 * Note! Some bits might be reported as 1 always if they fall under the
1834 * default1 class bits (e.g. fVmxEntryLoadDebugCtls), see @bugref{9180#c5}.
1835 */
1836 CPUMFEATURES EmuFeat;
1837 RT_ZERO(EmuFeat);
1838 EmuFeat.fVmx = 1;
1839 EmuFeat.fVmxInsOutInfo = 1;
1840 EmuFeat.fVmxExtIntExit = 1;
1841 EmuFeat.fVmxNmiExit = 1;
1842 EmuFeat.fVmxVirtNmi = 1;
1843 EmuFeat.fVmxPreemptTimer = fVmxPreemptTimer;
1844 EmuFeat.fVmxPostedInt = 0;
1845 EmuFeat.fVmxIntWindowExit = 1;
1846 EmuFeat.fVmxTscOffsetting = 1;
1847 EmuFeat.fVmxHltExit = 1;
1848 EmuFeat.fVmxInvlpgExit = 1;
1849 EmuFeat.fVmxMwaitExit = 1;
1850 EmuFeat.fVmxRdpmcExit = 1;
1851 EmuFeat.fVmxRdtscExit = 1;
1852 EmuFeat.fVmxCr3LoadExit = 1;
1853 EmuFeat.fVmxCr3StoreExit = 1;
1854 EmuFeat.fVmxTertiaryExecCtls = 0;
1855 EmuFeat.fVmxCr8LoadExit = 1;
1856 EmuFeat.fVmxCr8StoreExit = 1;
1857 EmuFeat.fVmxUseTprShadow = 1;
1858 EmuFeat.fVmxNmiWindowExit = 1;
1859 EmuFeat.fVmxMovDRxExit = 1;
1860 EmuFeat.fVmxUncondIoExit = 1;
1861 EmuFeat.fVmxUseIoBitmaps = 1;
1862 EmuFeat.fVmxMonitorTrapFlag = 0;
1863 EmuFeat.fVmxUseMsrBitmaps = 1;
1864 EmuFeat.fVmxMonitorExit = 1;
1865 EmuFeat.fVmxPauseExit = 1;
1866 EmuFeat.fVmxSecondaryExecCtls = 1;
1867 EmuFeat.fVmxVirtApicAccess = 1;
1868 EmuFeat.fVmxEpt = fVmxEpt;
1869 EmuFeat.fVmxDescTableExit = 1;
1870 EmuFeat.fVmxRdtscp = 1;
1871 EmuFeat.fVmxVirtX2ApicMode = 0;
1872 EmuFeat.fVmxVpid = 1;
1873 EmuFeat.fVmxWbinvdExit = 1;
1874 EmuFeat.fVmxUnrestrictedGuest = fVmxUnrestrictedGuest;
1875 EmuFeat.fVmxApicRegVirt = 0;
1876 EmuFeat.fVmxVirtIntDelivery = 0;
1877 EmuFeat.fVmxPauseLoopExit = 1;
1878 EmuFeat.fVmxRdrandExit = 0;
1879 EmuFeat.fVmxInvpcid = 1;
1880 EmuFeat.fVmxVmFunc = 0;
1881 EmuFeat.fVmxVmcsShadowing = 0;
1882 EmuFeat.fVmxRdseedExit = 0;
1883 EmuFeat.fVmxPml = 0;
1884 EmuFeat.fVmxEptXcptVe = 0;
1885 EmuFeat.fVmxConcealVmxFromPt = 0;
1886 EmuFeat.fVmxXsavesXrstors = 0;
1887 EmuFeat.fVmxPasidTranslate = 0;
1888 EmuFeat.fVmxModeBasedExecuteEpt = 0;
1889 EmuFeat.fVmxSppEpt = 0;
1890 EmuFeat.fVmxPtEpt = 0;
1891 EmuFeat.fVmxUseTscScaling = 0;
1892 EmuFeat.fVmxUserWaitPause = 0;
1893 EmuFeat.fVmxPconfig = 0;
1894 EmuFeat.fVmxEnclvExit = 0;
1895 EmuFeat.fVmxBusLockDetect = 0;
1896 EmuFeat.fVmxInstrTimeout = 0;
1897 EmuFeat.fVmxLoadIwKeyExit = 0;
1898 EmuFeat.fVmxHlat = 0;
1899 EmuFeat.fVmxEptPagingWrite = 0;
1900 EmuFeat.fVmxGstPagingVerify = 0;
1901 EmuFeat.fVmxIpiVirt = 0;
1902 EmuFeat.fVmxVirtSpecCtrl = 0;
1903 EmuFeat.fVmxEntryLoadDebugCtls = 1;
1904 EmuFeat.fVmxIa32eModeGuest = 1;
1905 EmuFeat.fVmxEntryLoadEferMsr = 1;
1906 EmuFeat.fVmxEntryLoadPatMsr = 1;
1907 EmuFeat.fVmxExitSaveDebugCtls = 1;
1908 EmuFeat.fVmxHostAddrSpaceSize = 1;
1909 EmuFeat.fVmxExitAckExtInt = 1;
1910 EmuFeat.fVmxExitSavePatMsr = 1;
1911 EmuFeat.fVmxExitLoadPatMsr = 1;
1912 EmuFeat.fVmxExitSaveEferMsr = 1;
1913 EmuFeat.fVmxExitLoadEferMsr = 1;
1914 EmuFeat.fVmxSavePreemptTimer = 0 & fVmxPreemptTimer; /* Cannot be enabled if VMX-preemption timer is disabled. */
1915 EmuFeat.fVmxSecondaryExitCtls = 0;
1916 EmuFeat.fVmxExitSaveEferLma = 1 | fVmxUnrestrictedGuest; /* Cannot be disabled if unrestricted guest is enabled. */
1917 EmuFeat.fVmxPt = 0;
1918 EmuFeat.fVmxVmwriteAll = 0; /** @todo NSTVMX: enable this when nested VMCS shadowing is enabled. */
1919 EmuFeat.fVmxEntryInjectSoftInt = 1;
1920
1921 /*
1922 * Merge guest features.
1923 *
1924 * When hardware-assisted VMX may be used, any feature we emulate must also be supported
1925 * by the hardware, hence we merge our emulated features with the host features below.
1926 */
1927 PCCPUMFEATURES pBaseFeat = cpumR3IsHwAssistNstGstExecAllowed(pVM) ? &pVM->cpum.s.HostFeatures : &EmuFeat;
1928 PCPUMFEATURES pGuestFeat = &pVM->cpum.s.GuestFeatures;
1929 Assert(pBaseFeat->fVmx);
1930#define CPUMVMX_SET_GST_FEAT(a_Feat) \
1931 do { \
1932 pGuestFeat->a_Feat = (pBaseFeat->a_Feat & EmuFeat.a_Feat); \
1933 } while (0)
1934
1935 CPUMVMX_SET_GST_FEAT(fVmxInsOutInfo);
1936 CPUMVMX_SET_GST_FEAT(fVmxExtIntExit);
1937 CPUMVMX_SET_GST_FEAT(fVmxNmiExit);
1938 CPUMVMX_SET_GST_FEAT(fVmxVirtNmi);
1939 CPUMVMX_SET_GST_FEAT(fVmxPreemptTimer);
1940 CPUMVMX_SET_GST_FEAT(fVmxPostedInt);
1941 CPUMVMX_SET_GST_FEAT(fVmxIntWindowExit);
1942 CPUMVMX_SET_GST_FEAT(fVmxTscOffsetting);
1943 CPUMVMX_SET_GST_FEAT(fVmxHltExit);
1944 CPUMVMX_SET_GST_FEAT(fVmxInvlpgExit);
1945 CPUMVMX_SET_GST_FEAT(fVmxMwaitExit);
1946 CPUMVMX_SET_GST_FEAT(fVmxRdpmcExit);
1947 CPUMVMX_SET_GST_FEAT(fVmxRdtscExit);
1948 CPUMVMX_SET_GST_FEAT(fVmxCr3LoadExit);
1949 CPUMVMX_SET_GST_FEAT(fVmxCr3StoreExit);
1950 CPUMVMX_SET_GST_FEAT(fVmxTertiaryExecCtls);
1951 CPUMVMX_SET_GST_FEAT(fVmxCr8LoadExit);
1952 CPUMVMX_SET_GST_FEAT(fVmxCr8StoreExit);
1953 CPUMVMX_SET_GST_FEAT(fVmxUseTprShadow);
1954 CPUMVMX_SET_GST_FEAT(fVmxNmiWindowExit);
1955 CPUMVMX_SET_GST_FEAT(fVmxMovDRxExit);
1956 CPUMVMX_SET_GST_FEAT(fVmxUncondIoExit);
1957 CPUMVMX_SET_GST_FEAT(fVmxUseIoBitmaps);
1958 CPUMVMX_SET_GST_FEAT(fVmxMonitorTrapFlag);
1959 CPUMVMX_SET_GST_FEAT(fVmxUseMsrBitmaps);
1960 CPUMVMX_SET_GST_FEAT(fVmxMonitorExit);
1961 CPUMVMX_SET_GST_FEAT(fVmxPauseExit);
1962 CPUMVMX_SET_GST_FEAT(fVmxSecondaryExecCtls);
1963 CPUMVMX_SET_GST_FEAT(fVmxVirtApicAccess);
1964 CPUMVMX_SET_GST_FEAT(fVmxEpt);
1965 CPUMVMX_SET_GST_FEAT(fVmxDescTableExit);
1966 CPUMVMX_SET_GST_FEAT(fVmxRdtscp);
1967 CPUMVMX_SET_GST_FEAT(fVmxVirtX2ApicMode);
1968 CPUMVMX_SET_GST_FEAT(fVmxVpid);
1969 CPUMVMX_SET_GST_FEAT(fVmxWbinvdExit);
1970 CPUMVMX_SET_GST_FEAT(fVmxUnrestrictedGuest);
1971 CPUMVMX_SET_GST_FEAT(fVmxApicRegVirt);
1972 CPUMVMX_SET_GST_FEAT(fVmxVirtIntDelivery);
1973 CPUMVMX_SET_GST_FEAT(fVmxPauseLoopExit);
1974 CPUMVMX_SET_GST_FEAT(fVmxRdrandExit);
1975 CPUMVMX_SET_GST_FEAT(fVmxInvpcid);
1976 CPUMVMX_SET_GST_FEAT(fVmxVmFunc);
1977 CPUMVMX_SET_GST_FEAT(fVmxVmcsShadowing);
1978 CPUMVMX_SET_GST_FEAT(fVmxRdseedExit);
1979 CPUMVMX_SET_GST_FEAT(fVmxPml);
1980 CPUMVMX_SET_GST_FEAT(fVmxEptXcptVe);
1981 CPUMVMX_SET_GST_FEAT(fVmxConcealVmxFromPt);
1982 CPUMVMX_SET_GST_FEAT(fVmxXsavesXrstors);
1983 CPUMVMX_SET_GST_FEAT(fVmxPasidTranslate);
1984 CPUMVMX_SET_GST_FEAT(fVmxModeBasedExecuteEpt);
1985 CPUMVMX_SET_GST_FEAT(fVmxSppEpt);
1986 CPUMVMX_SET_GST_FEAT(fVmxPtEpt);
1987 CPUMVMX_SET_GST_FEAT(fVmxUseTscScaling);
1988 CPUMVMX_SET_GST_FEAT(fVmxUserWaitPause);
1989 CPUMVMX_SET_GST_FEAT(fVmxPconfig);
1990 CPUMVMX_SET_GST_FEAT(fVmxEnclvExit);
1991 CPUMVMX_SET_GST_FEAT(fVmxBusLockDetect);
1992 CPUMVMX_SET_GST_FEAT(fVmxInstrTimeout);
1993 CPUMVMX_SET_GST_FEAT(fVmxLoadIwKeyExit);
1994 CPUMVMX_SET_GST_FEAT(fVmxHlat);
1995 CPUMVMX_SET_GST_FEAT(fVmxEptPagingWrite);
1996 CPUMVMX_SET_GST_FEAT(fVmxGstPagingVerify);
1997 CPUMVMX_SET_GST_FEAT(fVmxIpiVirt);
1998 CPUMVMX_SET_GST_FEAT(fVmxVirtSpecCtrl);
1999 CPUMVMX_SET_GST_FEAT(fVmxEntryLoadDebugCtls);
2000 CPUMVMX_SET_GST_FEAT(fVmxIa32eModeGuest);
2001 CPUMVMX_SET_GST_FEAT(fVmxEntryLoadEferMsr);
2002 CPUMVMX_SET_GST_FEAT(fVmxEntryLoadPatMsr);
2003 CPUMVMX_SET_GST_FEAT(fVmxExitSaveDebugCtls);
2004 CPUMVMX_SET_GST_FEAT(fVmxHostAddrSpaceSize);
2005 CPUMVMX_SET_GST_FEAT(fVmxExitAckExtInt);
2006 CPUMVMX_SET_GST_FEAT(fVmxExitSavePatMsr);
2007 CPUMVMX_SET_GST_FEAT(fVmxExitLoadPatMsr);
2008 CPUMVMX_SET_GST_FEAT(fVmxExitSaveEferMsr);
2009 CPUMVMX_SET_GST_FEAT(fVmxExitLoadEferMsr);
2010 CPUMVMX_SET_GST_FEAT(fVmxSavePreemptTimer);
2011 CPUMVMX_SET_GST_FEAT(fVmxSecondaryExitCtls);
2012 CPUMVMX_SET_GST_FEAT(fVmxExitSaveEferLma);
2013 CPUMVMX_SET_GST_FEAT(fVmxPt);
2014 CPUMVMX_SET_GST_FEAT(fVmxVmwriteAll);
2015 CPUMVMX_SET_GST_FEAT(fVmxEntryInjectSoftInt);
2016
2017#undef CPUMVMX_SET_GST_FEAT
2018
2019#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
2020 /* Don't expose VMX preemption timer if host is subject to VMX-preemption timer erratum. */
2021 if ( pGuestFeat->fVmxPreemptTimer
2022 && HMIsSubjectToVmxPreemptTimerErratum())
2023 {
2024 LogRel(("CPUM: Warning! VMX-preemption timer not exposed to guest due to host CPU erratum\n"));
2025 pGuestFeat->fVmxPreemptTimer = 0;
2026 pGuestFeat->fVmxSavePreemptTimer = 0;
2027 }
2028#endif
2029
2030 /* Sanity checking. */
2031 if (!pGuestFeat->fVmxSecondaryExecCtls)
2032 {
2033 Assert(!pGuestFeat->fVmxVirtApicAccess);
2034 Assert(!pGuestFeat->fVmxEpt);
2035 Assert(!pGuestFeat->fVmxDescTableExit);
2036 Assert(!pGuestFeat->fVmxRdtscp);
2037 Assert(!pGuestFeat->fVmxVirtX2ApicMode);
2038 Assert(!pGuestFeat->fVmxVpid);
2039 Assert(!pGuestFeat->fVmxWbinvdExit);
2040 Assert(!pGuestFeat->fVmxUnrestrictedGuest);
2041 Assert(!pGuestFeat->fVmxApicRegVirt);
2042 Assert(!pGuestFeat->fVmxVirtIntDelivery);
2043 Assert(!pGuestFeat->fVmxPauseLoopExit);
2044 Assert(!pGuestFeat->fVmxRdrandExit);
2045 Assert(!pGuestFeat->fVmxInvpcid);
2046 Assert(!pGuestFeat->fVmxVmFunc);
2047 Assert(!pGuestFeat->fVmxVmcsShadowing);
2048 Assert(!pGuestFeat->fVmxRdseedExit);
2049 Assert(!pGuestFeat->fVmxPml);
2050 Assert(!pGuestFeat->fVmxEptXcptVe);
2051 Assert(!pGuestFeat->fVmxConcealVmxFromPt);
2052 Assert(!pGuestFeat->fVmxXsavesXrstors);
2053 Assert(!pGuestFeat->fVmxModeBasedExecuteEpt);
2054 Assert(!pGuestFeat->fVmxSppEpt);
2055 Assert(!pGuestFeat->fVmxPtEpt);
2056 Assert(!pGuestFeat->fVmxUseTscScaling);
2057 Assert(!pGuestFeat->fVmxUserWaitPause);
2058 Assert(!pGuestFeat->fVmxEnclvExit);
2059 }
2060 else if (pGuestFeat->fVmxUnrestrictedGuest)
2061 {
2062 /* See footnote in Intel spec. 27.2 "Recording VM-Exit Information And Updating VM-entry Control Fields". */
2063 Assert(pGuestFeat->fVmxExitSaveEferLma);
2064 /* Unrestricted guest execution requires EPT. See Intel spec. 25.2.1.1 "VM-Execution Control Fields". */
2065 Assert(pGuestFeat->fVmxEpt);
2066 }
2067
2068 if (!pGuestFeat->fVmxTertiaryExecCtls)
2069 {
2070 Assert(!pGuestFeat->fVmxLoadIwKeyExit);
2071 Assert(!pGuestFeat->fVmxHlat);
2072 Assert(!pGuestFeat->fVmxEptPagingWrite);
2073 Assert(!pGuestFeat->fVmxGstPagingVerify);
2074 Assert(!pGuestFeat->fVmxIpiVirt);
2075 Assert(!pGuestFeat->fVmxVirtSpecCtrl);
2076 }
2077
2078 /*
2079 * Finally initialize the VMX guest MSRs.
2080 */
2081 cpumR3InitVmxGuestMsrs(pVM, pHostVmxMsrs, pGuestFeat, pGuestVmxMsrs);
2082}
2083
2084
2085/**
2086 * Gets the host hardware-virtualization MSRs.
2087 *
2088 * @returns VBox status code.
2089 * @param pMsrs Where to store the MSRs.
2090 */
2091static int cpumR3GetHostHwvirtMsrs(PCPUMMSRS pMsrs)
2092{
2093 Assert(pMsrs);
2094
2095 uint32_t fCaps = 0;
2096 int rc = SUPR3QueryVTCaps(&fCaps);
2097 if (RT_SUCCESS(rc))
2098 {
2099 if (fCaps & (SUPVTCAPS_VT_X | SUPVTCAPS_AMD_V))
2100 {
2101 SUPHWVIRTMSRS HwvirtMsrs;
2102 rc = SUPR3GetHwvirtMsrs(&HwvirtMsrs, false /* fForceRequery */);
2103 if (RT_SUCCESS(rc))
2104 {
2105 if (fCaps & SUPVTCAPS_VT_X)
2106 HMGetVmxMsrsFromHwvirtMsrs(&HwvirtMsrs, &pMsrs->hwvirt.vmx);
2107 else
2108 HMGetSvmMsrsFromHwvirtMsrs(&HwvirtMsrs, &pMsrs->hwvirt.svm);
2109 return VINF_SUCCESS;
2110 }
2111
2112 LogRel(("CPUM: Querying hardware-virtualization MSRs failed. rc=%Rrc\n", rc));
2113 return rc;
2114 }
2115
2116 LogRel(("CPUM: Querying hardware-virtualization capability succeeded but did not find VT-x or AMD-V\n"));
2117 return VERR_INTERNAL_ERROR_5;
2118 }
2119
2120 LogRel(("CPUM: No hardware-virtualization capability detected\n"));
2121 return VINF_SUCCESS;
2122}
2123
2124
2125/**
2126 * @callback_method_impl{FNTMTIMERINT,
2127 * Callback that fires when the nested VMX-preemption timer expired.}
2128 */
2129static DECLCALLBACK(void) cpumR3VmxPreemptTimerCallback(PVM pVM, TMTIMERHANDLE hTimer, void *pvUser)
2130{
2131 RT_NOREF(pVM, hTimer);
2132 PVMCPU pVCpu = (PVMCPUR3)pvUser;
2133 AssertPtr(pVCpu);
2134 VMCPU_FF_SET(pVCpu, VMCPU_FF_VMX_PREEMPT_TIMER);
2135}
2136
2137
2138/**
2139 * Initializes the CPUM.
2140 *
2141 * @returns VBox status code.
2142 * @param pVM The cross context VM structure.
2143 */
2144VMMR3DECL(int) CPUMR3Init(PVM pVM)
2145{
2146 LogFlow(("CPUMR3Init\n"));
2147
2148 /*
2149 * Assert alignment, sizes and tables.
2150 */
2151 AssertCompileMemberAlignment(VM, cpum.s, 32);
2152 AssertCompile(sizeof(pVM->cpum.s) <= sizeof(pVM->cpum.padding));
2153 AssertCompileSizeAlignment(CPUMCTX, 64);
2154 AssertCompileSizeAlignment(CPUMCTXMSRS, 64);
2155 AssertCompileSizeAlignment(CPUMHOSTCTX, 64);
2156 AssertCompileMemberAlignment(VM, cpum, 64);
2157 AssertCompileMemberAlignment(VMCPU, cpum.s, 64);
2158#ifdef VBOX_STRICT
2159 int rc2 = cpumR3MsrStrictInitChecks();
2160 AssertRCReturn(rc2, rc2);
2161#endif
2162
2163 /*
2164 * Gather info about the host CPU.
2165 */
2166#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
2167 if (!ASMHasCpuId())
2168 {
2169 LogRel(("The CPU doesn't support CPUID!\n"));
2170 return VERR_UNSUPPORTED_CPU;
2171 }
2172
2173 pVM->cpum.s.fHostMxCsrMask = CPUMR3DeterminHostMxCsrMask();
2174#endif
2175
2176 CPUMMSRS HostMsrs;
2177 RT_ZERO(HostMsrs);
2178 int rc = cpumR3GetHostHwvirtMsrs(&HostMsrs);
2179 AssertLogRelRCReturn(rc, rc);
2180
2181#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
2182 /* Use the host features detected by CPUMR0ModuleInit if available. */
2183 if (pVM->cpum.s.HostFeatures.enmCpuVendor != CPUMCPUVENDOR_INVALID)
2184 g_CpumHostFeatures.s = pVM->cpum.s.HostFeatures;
2185 else
2186 {
2187 PCPUMCPUIDLEAF paLeaves;
2188 uint32_t cLeaves;
2189 rc = CPUMCpuIdCollectLeavesX86(&paLeaves, &cLeaves);
2190 AssertLogRelRCReturn(rc, rc);
2191
2192 rc = cpumCpuIdExplodeFeaturesX86(paLeaves, cLeaves, &HostMsrs, &g_CpumHostFeatures.s);
2193 RTMemFree(paLeaves);
2194 AssertLogRelRCReturn(rc, rc);
2195 }
2196 pVM->cpum.s.HostFeatures = g_CpumHostFeatures.s;
2197 pVM->cpum.s.GuestFeatures.enmCpuVendor = pVM->cpum.s.HostFeatures.enmCpuVendor;
2198#endif
2199
2200 /*
2201 * Check that the CPU supports the minimum features we require.
2202 */
2203#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
2204 if (!pVM->cpum.s.HostFeatures.fFxSaveRstor)
2205 return VMSetError(pVM, VERR_UNSUPPORTED_CPU, RT_SRC_POS, "Host CPU does not support the FXSAVE/FXRSTOR instruction.");
2206 if (!pVM->cpum.s.HostFeatures.fMmx)
2207 return VMSetError(pVM, VERR_UNSUPPORTED_CPU, RT_SRC_POS, "Host CPU does not support MMX.");
2208 if (!pVM->cpum.s.HostFeatures.fTsc)
2209 return VMSetError(pVM, VERR_UNSUPPORTED_CPU, RT_SRC_POS, "Host CPU does not support RDTSC.");
2210#endif
2211
2212 /*
2213 * Setup the CR4 AND and OR masks used in the raw-mode switcher.
2214 */
2215 pVM->cpum.s.CR4.AndMask = X86_CR4_OSXMMEEXCPT | X86_CR4_PVI | X86_CR4_VME;
2216 pVM->cpum.s.CR4.OrMask = X86_CR4_OSFXSR;
2217
2218 /*
2219 * Figure out which XSAVE/XRSTOR features are available on the host.
2220 */
2221 uint64_t fXcr0Host = 0;
2222 uint64_t fXStateHostMask = 0;
2223#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
2224 if ( pVM->cpum.s.HostFeatures.fXSaveRstor
2225 && pVM->cpum.s.HostFeatures.fOpSysXSaveRstor)
2226 {
2227 fXStateHostMask = fXcr0Host = ASMGetXcr0();
2228 fXStateHostMask &= XSAVE_C_X87 | XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI;
2229 AssertLogRelMsgStmt((fXStateHostMask & (XSAVE_C_X87 | XSAVE_C_SSE)) == (XSAVE_C_X87 | XSAVE_C_SSE),
2230 ("%#llx\n", fXStateHostMask), fXStateHostMask = 0);
2231 }
2232#endif
2233 pVM->cpum.s.fXStateHostMask = fXStateHostMask;
2234 LogRel(("CPUM: fXStateHostMask=%#llx; initial: %#llx; host XCR0=%#llx\n",
2235 pVM->cpum.s.fXStateHostMask, fXStateHostMask, fXcr0Host));
2236
2237 /*
2238 * Initialize the host XSAVE/XRSTOR mask.
2239 */
2240#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
2241 uint32_t cbMaxXState = pVM->cpum.s.HostFeatures.cbMaxExtendedState;
2242 cbMaxXState = RT_ALIGN(cbMaxXState, 128);
2243 AssertLogRelReturn( pVM->cpum.s.HostFeatures.cbMaxExtendedState >= sizeof(X86FXSTATE)
2244 && pVM->cpum.s.HostFeatures.cbMaxExtendedState <= sizeof(pVM->apCpusR3[0]->cpum.s.Host.XState)
2245 && pVM->cpum.s.HostFeatures.cbMaxExtendedState <= sizeof(pVM->apCpusR3[0]->cpum.s.Guest.XState)
2246 , VERR_CPUM_IPE_2);
2247#endif
2248
2249 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2250 {
2251 PVMCPU pVCpu = pVM->apCpusR3[i];
2252
2253 pVCpu->cpum.s.Host.fXStateMask = fXStateHostMask;
2254 pVCpu->cpum.s.hNestedVmxPreemptTimer = NIL_TMTIMERHANDLE;
2255 }
2256
2257 /*
2258 * Register saved state data item.
2259 */
2260 rc = SSMR3RegisterInternal(pVM, "cpum", 1, CPUM_SAVED_STATE_VERSION, sizeof(CPUM),
2261 NULL, cpumR3LiveExec, NULL,
2262 NULL, cpumR3SaveExec, NULL,
2263 cpumR3LoadPrep, cpumR3LoadExec, cpumR3LoadDone);
2264 if (RT_FAILURE(rc))
2265 return rc;
2266
2267 /*
2268 * Register info handlers and registers with the debugger facility.
2269 */
2270 DBGFR3InfoRegisterInternalEx(pVM, "cpum", "Displays the all the cpu states.",
2271 &cpumR3InfoAll, DBGFINFO_FLAGS_ALL_EMTS);
2272 DBGFR3InfoRegisterInternalEx(pVM, "cpumguest", "Displays the guest cpu state.",
2273 &cpumR3InfoGuest, DBGFINFO_FLAGS_ALL_EMTS);
2274 DBGFR3InfoRegisterInternalEx(pVM, "cpumguesthwvirt", "Displays the guest hwvirt. cpu state.",
2275 &cpumR3InfoGuestHwvirt, DBGFINFO_FLAGS_ALL_EMTS);
2276 DBGFR3InfoRegisterInternalEx(pVM, "cpumhyper", "Displays the hypervisor cpu state.",
2277 &cpumR3InfoHyper, DBGFINFO_FLAGS_ALL_EMTS);
2278 DBGFR3InfoRegisterInternalEx(pVM, "cpumhost", "Displays the host cpu state.",
2279 &cpumR3InfoHost, DBGFINFO_FLAGS_ALL_EMTS);
2280 DBGFR3InfoRegisterInternalEx(pVM, "cpumguestinstr", "Displays the current guest instruction.",
2281 &cpumR3InfoGuestInstr, DBGFINFO_FLAGS_ALL_EMTS);
2282 DBGFR3InfoRegisterInternal( pVM, "cpuid", "Displays the guest cpuid leaves.",
2283 &cpumR3CpuIdInfo);
2284 DBGFR3InfoRegisterInternal( pVM, "cpumvmxfeat", "Displays the host and guest VMX hwvirt. features.",
2285 &cpumR3InfoVmxFeatures);
2286
2287 rc = cpumR3DbgInit(pVM);
2288 if (RT_FAILURE(rc))
2289 return rc;
2290
2291#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
2292 /*
2293 * Check if we need to workaround partial/leaky FPU handling.
2294 */
2295 cpumR3CheckLeakyFpu(pVM);
2296#endif
2297
2298 /*
2299 * Initialize the Guest CPUID and MSR states.
2300 */
2301 rc = cpumR3InitCpuIdAndMsrs(pVM, &HostMsrs);
2302 if (RT_FAILURE(rc))
2303 return rc;
2304
2305 /*
2306 * Generate the RFLAGS cookie.
2307 */
2308 pVM->cpum.s.fReservedRFlagsCookie = RTRandU64() & ~(CPUMX86EFLAGS_HW_MASK_64 | CPUMX86EFLAGS_INT_MASK_64);
2309
2310 /*
2311 * Init the VMX/SVM state.
2312 *
2313 * This must be done after initializing CPUID/MSR features as we access the
2314 * the VMX/SVM guest features below.
2315 *
2316 * In the case of nested VT-x, we also need to create the per-VCPU
2317 * VMX preemption timers.
2318 */
2319 if (pVM->cpum.s.GuestFeatures.fVmx)
2320 cpumR3InitVmxHwVirtState(pVM);
2321 else if (pVM->cpum.s.GuestFeatures.fSvm)
2322 cpumR3InitSvmHwVirtState(pVM);
2323 else
2324 Assert(pVM->apCpusR3[0]->cpum.s.Guest.hwvirt.enmHwvirt == CPUMHWVIRT_NONE);
2325
2326 /*
2327 * Initialize the general guest CPU state.
2328 */
2329 CPUMR3Reset(pVM);
2330
2331 return VINF_SUCCESS;
2332}
2333
2334
2335/**
2336 * Applies relocations to data and code managed by this
2337 * component. This function will be called at init and
2338 * whenever the VMM need to relocate it self inside the GC.
2339 *
2340 * The CPUM will update the addresses used by the switcher.
2341 *
2342 * @param pVM The cross context VM structure.
2343 */
2344VMMR3DECL(void) CPUMR3Relocate(PVM pVM)
2345{
2346 RT_NOREF(pVM);
2347}
2348
2349
2350/**
2351 * Terminates the CPUM.
2352 *
2353 * Termination means cleaning up and freeing all resources,
2354 * the VM it self is at this point powered off or suspended.
2355 *
2356 * @returns VBox status code.
2357 * @param pVM The cross context VM structure.
2358 */
2359VMMR3DECL(int) CPUMR3Term(PVM pVM)
2360{
2361#ifdef VBOX_WITH_CRASHDUMP_MAGIC
2362 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2363 {
2364 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
2365 memset(pVCpu->cpum.s.aMagic, 0, sizeof(pVCpu->cpum.s.aMagic));
2366 pVCpu->cpum.s.uMagic = 0;
2367 pvCpu->cpum.s.Guest.dr[5] = 0;
2368 }
2369#endif
2370
2371 if (pVM->cpum.s.GuestFeatures.fVmx)
2372 {
2373 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2374 {
2375 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
2376 if (pVCpu->cpum.s.hNestedVmxPreemptTimer != NIL_TMTIMERHANDLE)
2377 {
2378 int rc = TMR3TimerDestroy(pVM, pVCpu->cpum.s.hNestedVmxPreemptTimer); AssertRC(rc);
2379 pVCpu->cpum.s.hNestedVmxPreemptTimer = NIL_TMTIMERHANDLE;
2380 }
2381 }
2382 }
2383 return VINF_SUCCESS;
2384}
2385
2386
2387/**
2388 * Resets a virtual CPU.
2389 *
2390 * Used by CPUMR3Reset and CPU hot plugging.
2391 *
2392 * @param pVM The cross context VM structure.
2393 * @param pVCpu The cross context virtual CPU structure of the CPU that is
2394 * being reset. This may differ from the current EMT.
2395 */
2396VMMR3DECL(void) CPUMR3ResetCpu(PVM pVM, PVMCPU pVCpu)
2397{
2398 /** @todo anything different for VCPU > 0? */
2399 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
2400
2401 /*
2402 * Initialize everything to ZERO first.
2403 */
2404 uint32_t fUseFlags = pVCpu->cpum.s.fUseFlags & ~CPUM_USED_FPU_SINCE_REM;
2405
2406 RT_BZERO(pCtx, RT_UOFFSETOF(CPUMCTX, aoffXState));
2407
2408 pVCpu->cpum.s.fUseFlags = fUseFlags;
2409
2410 pCtx->cr0 = X86_CR0_CD | X86_CR0_NW | X86_CR0_ET; //0x60000010
2411 pCtx->eip = 0x0000fff0;
2412 pCtx->edx = 0x00000600; /* P6 processor */
2413
2414 Assert((pVM->cpum.s.fReservedRFlagsCookie & (X86_EFL_LIVE_MASK | X86_EFL_RAZ_LO_MASK | X86_EFL_RA1_MASK)) == 0);
2415 pCtx->rflags.uBoth = pVM->cpum.s.fReservedRFlagsCookie | X86_EFL_RA1_MASK;
2416
2417 pCtx->cs.Sel = 0xf000;
2418 pCtx->cs.ValidSel = 0xf000;
2419 pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
2420 pCtx->cs.u64Base = UINT64_C(0xffff0000);
2421 pCtx->cs.u32Limit = 0x0000ffff;
2422 pCtx->cs.Attr.n.u1DescType = 1; /* code/data segment */
2423 pCtx->cs.Attr.n.u1Present = 1;
2424 pCtx->cs.Attr.n.u4Type = X86_SEL_TYPE_ER_ACC;
2425
2426 pCtx->ds.fFlags = CPUMSELREG_FLAGS_VALID;
2427 pCtx->ds.u32Limit = 0x0000ffff;
2428 pCtx->ds.Attr.n.u1DescType = 1; /* code/data segment */
2429 pCtx->ds.Attr.n.u1Present = 1;
2430 pCtx->ds.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
2431
2432 pCtx->es.fFlags = CPUMSELREG_FLAGS_VALID;
2433 pCtx->es.u32Limit = 0x0000ffff;
2434 pCtx->es.Attr.n.u1DescType = 1; /* code/data segment */
2435 pCtx->es.Attr.n.u1Present = 1;
2436 pCtx->es.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
2437
2438 pCtx->fs.fFlags = CPUMSELREG_FLAGS_VALID;
2439 pCtx->fs.u32Limit = 0x0000ffff;
2440 pCtx->fs.Attr.n.u1DescType = 1; /* code/data segment */
2441 pCtx->fs.Attr.n.u1Present = 1;
2442 pCtx->fs.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
2443
2444 pCtx->gs.fFlags = CPUMSELREG_FLAGS_VALID;
2445 pCtx->gs.u32Limit = 0x0000ffff;
2446 pCtx->gs.Attr.n.u1DescType = 1; /* code/data segment */
2447 pCtx->gs.Attr.n.u1Present = 1;
2448 pCtx->gs.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
2449
2450 pCtx->ss.fFlags = CPUMSELREG_FLAGS_VALID;
2451 pCtx->ss.u32Limit = 0x0000ffff;
2452 pCtx->ss.Attr.n.u1Present = 1;
2453 pCtx->ss.Attr.n.u1DescType = 1; /* code/data segment */
2454 pCtx->ss.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
2455
2456 pCtx->idtr.cbIdt = 0xffff;
2457 pCtx->gdtr.cbGdt = 0xffff;
2458
2459 pCtx->ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
2460 pCtx->ldtr.u32Limit = 0xffff;
2461 pCtx->ldtr.Attr.n.u1Present = 1;
2462 pCtx->ldtr.Attr.n.u4Type = X86_SEL_TYPE_SYS_LDT;
2463
2464 pCtx->tr.fFlags = CPUMSELREG_FLAGS_VALID;
2465 pCtx->tr.u32Limit = 0xffff;
2466 pCtx->tr.Attr.n.u1Present = 1;
2467 pCtx->tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY; /* Deduction, not properly documented by Intel. */
2468
2469 pCtx->dr[6] = X86_DR6_INIT_VAL;
2470 pCtx->dr[7] = X86_DR7_INIT_VAL;
2471
2472 PX86FXSTATE pFpuCtx = &pCtx->XState.x87;
2473 pFpuCtx->FTW = 0x00; /* All empty (abbridged tag reg edition). */
2474 pFpuCtx->FCW = 0x37f;
2475
2476 /* Intel 64 and IA-32 Architectures Software Developer's Manual Volume 3A, Table 8-1.
2477 IA-32 Processor States Following Power-up, Reset, or INIT */
2478 pFpuCtx->MXCSR = 0x1F80;
2479 pFpuCtx->MXCSR_MASK = pVM->cpum.s.GuestInfo.fMxCsrMask; /** @todo check if REM messes this up... */
2480
2481 pCtx->aXcr[0] = XSAVE_C_X87;
2482 if (pVM->cpum.s.HostFeatures.cbMaxExtendedState >= RT_UOFFSETOF(X86XSAVEAREA, Hdr))
2483 {
2484 /* The entire FXSAVE state needs loading when we switch to XSAVE/XRSTOR
2485 as we don't know what happened before. (Bother optimize later?) */
2486 pCtx->XState.Hdr.bmXState = XSAVE_C_X87 | XSAVE_C_SSE;
2487 }
2488
2489 /*
2490 * MSRs.
2491 */
2492 /* Init PAT MSR */
2493 pCtx->msrPAT = MSR_IA32_CR_PAT_INIT_VAL;
2494
2495 /* EFER MBZ; see AMD64 Architecture Programmer's Manual Volume 2: Table 14-1. Initial Processor State.
2496 * The Intel docs don't mention it. */
2497 Assert(!pCtx->msrEFER);
2498
2499 /* IA32_MISC_ENABLE - not entirely sure what the init/reset state really
2500 is supposed to be here, just trying provide useful/sensible values. */
2501 PCPUMMSRRANGE pRange = cpumLookupMsrRange(pVM, MSR_IA32_MISC_ENABLE);
2502 if (pRange)
2503 {
2504 pVCpu->cpum.s.GuestMsrs.msr.MiscEnable = MSR_IA32_MISC_ENABLE_BTS_UNAVAIL
2505 | MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL
2506 | (pVM->cpum.s.GuestFeatures.fMonitorMWait ? MSR_IA32_MISC_ENABLE_MONITOR : 0)
2507 | MSR_IA32_MISC_ENABLE_FAST_STRINGS;
2508 pRange->fWrIgnMask |= MSR_IA32_MISC_ENABLE_BTS_UNAVAIL
2509 | MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL;
2510 pRange->fWrGpMask &= ~pVCpu->cpum.s.GuestMsrs.msr.MiscEnable;
2511 }
2512
2513 /** @todo Wire IA32_MISC_ENABLE bit 22 to our NT 4 CPUID trick. */
2514
2515 /** @todo r=ramshankar: Currently broken for SMP as TMCpuTickSet() expects to be
2516 * called from each EMT while we're getting called by CPUMR3Reset()
2517 * iteratively on the same thread. Fix later. */
2518#if 0 /** @todo r=bird: This we will do in TM, not here. */
2519 /* TSC must be 0. Intel spec. Table 9-1. "IA-32 Processor States Following Power-up, Reset, or INIT." */
2520 CPUMSetGuestMsr(pVCpu, MSR_IA32_TSC, 0);
2521#endif
2522
2523
2524 /* C-state control. Guesses. */
2525 pVCpu->cpum.s.GuestMsrs.msr.PkgCStateCfgCtrl = 1 /*C1*/ | RT_BIT_32(25) | RT_BIT_32(26) | RT_BIT_32(27) | RT_BIT_32(28);
2526 /* For Nehalem+ and Atoms, the 0xE2 MSR (MSR_PKG_CST_CONFIG_CONTROL) is documented. For Core 2,
2527 * it's undocumented but exists as MSR_PMG_CST_CONFIG_CONTROL and has similar but not identical
2528 * functionality. The default value must be different due to incompatible write mask.
2529 */
2530 if (CPUMMICROARCH_IS_INTEL_CORE2(pVM->cpum.s.GuestFeatures.enmMicroarch))
2531 pVCpu->cpum.s.GuestMsrs.msr.PkgCStateCfgCtrl = 0x202a01; /* From Mac Pro Harpertown, unlocked. */
2532 else if (pVM->cpum.s.GuestFeatures.enmMicroarch == kCpumMicroarch_Intel_Core_Yonah)
2533 pVCpu->cpum.s.GuestMsrs.msr.PkgCStateCfgCtrl = 0x26740c; /* From MacBookPro1,1. */
2534
2535 /*
2536 * Hardware virtualization state.
2537 */
2538 CPUMSetGuestGif(pCtx, true);
2539 Assert(!pVM->cpum.s.GuestFeatures.fVmx || !pVM->cpum.s.GuestFeatures.fSvm); /* Paranoia. */
2540 if (pVM->cpum.s.GuestFeatures.fVmx)
2541 cpumR3ResetVmxHwVirtState(pVCpu);
2542 else if (pVM->cpum.s.GuestFeatures.fSvm)
2543 cpumR3ResetSvmHwVirtState(pVCpu);
2544}
2545
2546
2547/**
2548 * Resets the CPU.
2549 *
2550 * @param pVM The cross context VM structure.
2551 */
2552VMMR3DECL(void) CPUMR3Reset(PVM pVM)
2553{
2554 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2555 {
2556 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
2557 CPUMR3ResetCpu(pVM, pVCpu);
2558
2559#ifdef VBOX_WITH_CRASHDUMP_MAGIC
2560
2561 /* Magic marker for searching in crash dumps. */
2562 strcpy((char *)pVCpu->.cpum.s.aMagic, "CPUMCPU Magic");
2563 pVCpu->cpum.s.uMagic = UINT64_C(0xDEADBEEFDEADBEEF);
2564 pVCpu->cpum.s.Guest->dr[5] = UINT64_C(0xDEADBEEFDEADBEEF);
2565#endif
2566 }
2567}
2568
2569
2570
2571
2572/**
2573 * Pass 0 live exec callback.
2574 *
2575 * @returns VINF_SSM_DONT_CALL_AGAIN.
2576 * @param pVM The cross context VM structure.
2577 * @param pSSM The saved state handle.
2578 * @param uPass The pass (0).
2579 */
2580static DECLCALLBACK(int) cpumR3LiveExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uPass)
2581{
2582 AssertReturn(uPass == 0, VERR_SSM_UNEXPECTED_PASS);
2583 cpumR3SaveCpuId(pVM, pSSM);
2584 return VINF_SSM_DONT_CALL_AGAIN;
2585}
2586
2587
2588/**
2589 * Execute state save operation.
2590 *
2591 * @returns VBox status code.
2592 * @param pVM The cross context VM structure.
2593 * @param pSSM SSM operation handle.
2594 */
2595static DECLCALLBACK(int) cpumR3SaveExec(PVM pVM, PSSMHANDLE pSSM)
2596{
2597 /*
2598 * Save.
2599 */
2600 SSMR3PutU32(pSSM, pVM->cCpus);
2601 SSMR3PutU32(pSSM, sizeof(pVM->apCpusR3[0]->cpum.s.GuestMsrs.msr));
2602 CPUMCTX DummyHyperCtx;
2603 RT_ZERO(DummyHyperCtx);
2604 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2605 {
2606 PVMCPU const pVCpu = pVM->apCpusR3[idCpu];
2607 PCPUMCTX const pGstCtx = &pVCpu->cpum.s.Guest;
2608
2609 /** @todo ditch this the next time we change the saved state. */
2610 SSMR3PutStructEx(pSSM, &DummyHyperCtx, sizeof(DummyHyperCtx), 0, g_aCpumCtxFields, NULL);
2611
2612 uint64_t const fSavedRFlags = pGstCtx->rflags.uBoth;
2613 pGstCtx->rflags.uBoth &= CPUMX86EFLAGS_HW_MASK_64; /* Temporarily clear the non-hardware bits in RFLAGS while saving. */
2614 SSMR3PutStructEx(pSSM, pGstCtx, sizeof(*pGstCtx), 0, g_aCpumCtxFields, NULL);
2615 pGstCtx->rflags.uBoth = fSavedRFlags;
2616
2617 SSMR3PutStructEx(pSSM, &pGstCtx->XState.x87, sizeof(pGstCtx->XState.x87), 0, g_aCpumX87Fields, NULL);
2618 if (pGstCtx->fXStateMask != 0)
2619 SSMR3PutStructEx(pSSM, &pGstCtx->XState.Hdr, sizeof(pGstCtx->XState.Hdr), 0, g_aCpumXSaveHdrFields, NULL);
2620 if (pGstCtx->fXStateMask & XSAVE_C_YMM)
2621 {
2622 PCX86XSAVEYMMHI pYmmHiCtx = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_YMM_BIT, PCX86XSAVEYMMHI);
2623 SSMR3PutStructEx(pSSM, pYmmHiCtx, sizeof(*pYmmHiCtx), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumYmmHiFields, NULL);
2624 }
2625 if (pGstCtx->fXStateMask & XSAVE_C_BNDREGS)
2626 {
2627 PCX86XSAVEBNDREGS pBndRegs = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_BNDREGS_BIT, PCX86XSAVEBNDREGS);
2628 SSMR3PutStructEx(pSSM, pBndRegs, sizeof(*pBndRegs), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumBndRegsFields, NULL);
2629 }
2630 if (pGstCtx->fXStateMask & XSAVE_C_BNDCSR)
2631 {
2632 PCX86XSAVEBNDCFG pBndCfg = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_BNDCSR_BIT, PCX86XSAVEBNDCFG);
2633 SSMR3PutStructEx(pSSM, pBndCfg, sizeof(*pBndCfg), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumBndCfgFields, NULL);
2634 }
2635 if (pGstCtx->fXStateMask & XSAVE_C_ZMM_HI256)
2636 {
2637 PCX86XSAVEZMMHI256 pZmmHi256 = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_ZMM_HI256_BIT, PCX86XSAVEZMMHI256);
2638 SSMR3PutStructEx(pSSM, pZmmHi256, sizeof(*pZmmHi256), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumZmmHi256Fields, NULL);
2639 }
2640 if (pGstCtx->fXStateMask & XSAVE_C_ZMM_16HI)
2641 {
2642 PCX86XSAVEZMM16HI pZmm16Hi = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_ZMM_16HI_BIT, PCX86XSAVEZMM16HI);
2643 SSMR3PutStructEx(pSSM, pZmm16Hi, sizeof(*pZmm16Hi), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumZmm16HiFields, NULL);
2644 }
2645 SSMR3PutU64(pSSM, pGstCtx->aPaePdpes[0].u);
2646 SSMR3PutU64(pSSM, pGstCtx->aPaePdpes[1].u);
2647 SSMR3PutU64(pSSM, pGstCtx->aPaePdpes[2].u);
2648 SSMR3PutU64(pSSM, pGstCtx->aPaePdpes[3].u);
2649 if (pVM->cpum.s.GuestFeatures.fSvm)
2650 {
2651 SSMR3PutU64(pSSM, pGstCtx->hwvirt.svm.uMsrHSavePa);
2652 SSMR3PutGCPhys(pSSM, pGstCtx->hwvirt.svm.GCPhysVmcb);
2653 SSMR3PutU64(pSSM, pGstCtx->hwvirt.svm.uPrevPauseTick);
2654 SSMR3PutU16(pSSM, pGstCtx->hwvirt.svm.cPauseFilter);
2655 SSMR3PutU16(pSSM, pGstCtx->hwvirt.svm.cPauseFilterThreshold);
2656 SSMR3PutBool(pSSM, pGstCtx->hwvirt.svm.fInterceptEvents);
2657 SSMR3PutStructEx(pSSM, &pGstCtx->hwvirt.svm.HostState, sizeof(pGstCtx->hwvirt.svm.HostState), 0 /* fFlags */,
2658 g_aSvmHwvirtHostState, NULL /* pvUser */);
2659 SSMR3PutMem(pSSM, &pGstCtx->hwvirt.svm.Vmcb, sizeof(pGstCtx->hwvirt.svm.Vmcb));
2660 SSMR3PutMem(pSSM, &pGstCtx->hwvirt.svm.abMsrBitmap[0], sizeof(pGstCtx->hwvirt.svm.abMsrBitmap));
2661 SSMR3PutMem(pSSM, &pGstCtx->hwvirt.svm.abIoBitmap[0], sizeof(pGstCtx->hwvirt.svm.abIoBitmap));
2662 /* This is saved in the old VMCPUM_FF format. Change if more flags are added. */
2663 SSMR3PutU32(pSSM, pGstCtx->hwvirt.fSavedInhibit & CPUMCTX_INHIBIT_NMI ? CPUM_OLD_VMCPU_FF_BLOCK_NMIS : 0);
2664 SSMR3PutBool(pSSM, pGstCtx->hwvirt.fGif);
2665 }
2666 if (pVM->cpum.s.GuestFeatures.fVmx)
2667 {
2668 SSMR3PutGCPhys(pSSM, pGstCtx->hwvirt.vmx.GCPhysVmxon);
2669 SSMR3PutGCPhys(pSSM, pGstCtx->hwvirt.vmx.GCPhysVmcs);
2670 SSMR3PutGCPhys(pSSM, pGstCtx->hwvirt.vmx.GCPhysShadowVmcs);
2671 SSMR3PutBool(pSSM, pGstCtx->hwvirt.vmx.fInVmxRootMode);
2672 SSMR3PutBool(pSSM, pGstCtx->hwvirt.vmx.fInVmxNonRootMode);
2673 SSMR3PutBool(pSSM, pGstCtx->hwvirt.vmx.fInterceptEvents);
2674 SSMR3PutBool(pSSM, pGstCtx->hwvirt.vmx.fNmiUnblockingIret);
2675 SSMR3PutStructEx(pSSM, &pGstCtx->hwvirt.vmx.Vmcs, sizeof(pGstCtx->hwvirt.vmx.Vmcs), 0, g_aVmxHwvirtVmcs, NULL);
2676 SSMR3PutStructEx(pSSM, &pGstCtx->hwvirt.vmx.ShadowVmcs, sizeof(pGstCtx->hwvirt.vmx.ShadowVmcs),
2677 0, g_aVmxHwvirtVmcs, NULL);
2678 SSMR3PutMem(pSSM, &pGstCtx->hwvirt.vmx.abVmreadBitmap[0], sizeof(pGstCtx->hwvirt.vmx.abVmreadBitmap));
2679 SSMR3PutMem(pSSM, &pGstCtx->hwvirt.vmx.abVmwriteBitmap[0], sizeof(pGstCtx->hwvirt.vmx.abVmwriteBitmap));
2680 SSMR3PutMem(pSSM, &pGstCtx->hwvirt.vmx.aEntryMsrLoadArea[0], sizeof(pGstCtx->hwvirt.vmx.aEntryMsrLoadArea));
2681 SSMR3PutMem(pSSM, &pGstCtx->hwvirt.vmx.aExitMsrStoreArea[0], sizeof(pGstCtx->hwvirt.vmx.aExitMsrStoreArea));
2682 SSMR3PutMem(pSSM, &pGstCtx->hwvirt.vmx.aExitMsrLoadArea[0], sizeof(pGstCtx->hwvirt.vmx.aExitMsrLoadArea));
2683 SSMR3PutMem(pSSM, &pGstCtx->hwvirt.vmx.abMsrBitmap[0], sizeof(pGstCtx->hwvirt.vmx.abMsrBitmap));
2684 SSMR3PutMem(pSSM, &pGstCtx->hwvirt.vmx.abIoBitmap[0], sizeof(pGstCtx->hwvirt.vmx.abIoBitmap));
2685 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.uFirstPauseLoopTick);
2686 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.uPrevPauseTick);
2687 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.uEntryTick);
2688 SSMR3PutU16(pSSM, pGstCtx->hwvirt.vmx.offVirtApicWrite);
2689 SSMR3PutBool(pSSM, pGstCtx->hwvirt.vmx.fVirtNmiBlocking);
2690 SSMR3PutU64(pSSM, MSR_IA32_FEATURE_CONTROL_LOCK | MSR_IA32_FEATURE_CONTROL_VMXON); /* Deprecated since 2021/09/22. Value kept backwards compatibile with 6.1.26. */
2691 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64Basic);
2692 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.PinCtls.u);
2693 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.ProcCtls.u);
2694 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.ProcCtls2.u);
2695 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.ExitCtls.u);
2696 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.EntryCtls.u);
2697 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.TruePinCtls.u);
2698 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.TrueProcCtls.u);
2699 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.TrueEntryCtls.u);
2700 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.TrueExitCtls.u);
2701 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64Misc);
2702 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64Cr0Fixed0);
2703 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64Cr0Fixed1);
2704 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64Cr4Fixed0);
2705 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64Cr4Fixed1);
2706 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64VmcsEnum);
2707 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64VmFunc);
2708 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64EptVpidCaps);
2709 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64ProcCtls3);
2710 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64ExitCtls2);
2711 }
2712 SSMR3PutU32(pSSM, pVCpu->cpum.s.fUseFlags);
2713 SSMR3PutU32(pSSM, pVCpu->cpum.s.fChanged);
2714 AssertCompileSizeAlignment(pVCpu->cpum.s.GuestMsrs.msr, sizeof(uint64_t));
2715 SSMR3PutMem(pSSM, &pVCpu->cpum.s.GuestMsrs, sizeof(pVCpu->cpum.s.GuestMsrs.msr));
2716 }
2717
2718 cpumR3SaveCpuId(pVM, pSSM);
2719 return VINF_SUCCESS;
2720}
2721
2722
2723/**
2724 * @callback_method_impl{FNSSMINTLOADPREP}
2725 */
2726static DECLCALLBACK(int) cpumR3LoadPrep(PVM pVM, PSSMHANDLE pSSM)
2727{
2728 NOREF(pSSM);
2729 pVM->cpum.s.fPendingRestore = true;
2730 return VINF_SUCCESS;
2731}
2732
2733
2734/**
2735 * @callback_method_impl{FNSSMINTLOADEXEC}
2736 */
2737static DECLCALLBACK(int) cpumR3LoadExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
2738{
2739 int rc; /* Only for AssertRCReturn use. */
2740
2741 /*
2742 * Validate version.
2743 */
2744 if ( uVersion != CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_4
2745 && uVersion != CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_3
2746 && uVersion != CPUM_SAVED_STATE_VERSION_PAE_PDPES
2747 && uVersion != CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2
2748 && uVersion != CPUM_SAVED_STATE_VERSION_HWVIRT_VMX
2749 && uVersion != CPUM_SAVED_STATE_VERSION_HWVIRT_SVM
2750 && uVersion != CPUM_SAVED_STATE_VERSION_XSAVE
2751 && uVersion != CPUM_SAVED_STATE_VERSION_GOOD_CPUID_COUNT
2752 && uVersion != CPUM_SAVED_STATE_VERSION_BAD_CPUID_COUNT
2753 && uVersion != CPUM_SAVED_STATE_VERSION_PUT_STRUCT
2754 && uVersion != CPUM_SAVED_STATE_VERSION_MEM
2755 && uVersion != CPUM_SAVED_STATE_VERSION_NO_MSR_SIZE
2756 && uVersion != CPUM_SAVED_STATE_VERSION_VER3_2
2757 && uVersion != CPUM_SAVED_STATE_VERSION_VER3_0
2758 && uVersion != CPUM_SAVED_STATE_VERSION_VER2_1_NOMSR
2759 && uVersion != CPUM_SAVED_STATE_VERSION_VER2_0
2760 && uVersion != CPUM_SAVED_STATE_VERSION_VER1_6)
2761 {
2762 AssertMsgFailed(("cpumR3LoadExec: Invalid version uVersion=%d!\n", uVersion));
2763 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
2764 }
2765
2766 if (uPass == SSM_PASS_FINAL)
2767 {
2768 /*
2769 * Set the size of RTGCPTR for SSMR3GetGCPtr. (Only necessary for
2770 * really old SSM file versions.)
2771 */
2772 if (uVersion == CPUM_SAVED_STATE_VERSION_VER1_6)
2773 SSMR3HandleSetGCPtrSize(pSSM, sizeof(RTGCPTR32));
2774 else if (uVersion <= CPUM_SAVED_STATE_VERSION_VER3_0)
2775 SSMR3HandleSetGCPtrSize(pSSM, sizeof(RTGCPTR));
2776
2777 /*
2778 * Figure x86 and ctx field definitions to use for older states.
2779 */
2780 uint32_t const fLoad = uVersion > CPUM_SAVED_STATE_VERSION_MEM ? 0 : SSMSTRUCT_FLAGS_MEM_BAND_AID_RELAXED;
2781 PCSSMFIELD paCpumCtx1Fields = g_aCpumX87Fields;
2782 PCSSMFIELD paCpumCtx2Fields = g_aCpumCtxFields;
2783 if (uVersion == CPUM_SAVED_STATE_VERSION_VER1_6)
2784 {
2785 paCpumCtx1Fields = g_aCpumX87FieldsV16;
2786 paCpumCtx2Fields = g_aCpumCtxFieldsV16;
2787 }
2788 else if (uVersion <= CPUM_SAVED_STATE_VERSION_MEM)
2789 {
2790 paCpumCtx1Fields = g_aCpumX87FieldsMem;
2791 paCpumCtx2Fields = g_aCpumCtxFieldsMem;
2792 }
2793
2794 /*
2795 * The hyper state used to preceed the CPU count. Starting with
2796 * XSAVE it was moved down till after we've got the count.
2797 */
2798 CPUMCTX HyperCtxIgnored;
2799 if (uVersion < CPUM_SAVED_STATE_VERSION_XSAVE)
2800 {
2801 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2802 {
2803 X86FXSTATE Ign;
2804 SSMR3GetStructEx(pSSM, &Ign, sizeof(Ign), fLoad | SSMSTRUCT_FLAGS_NO_TAIL_MARKER, paCpumCtx1Fields, NULL);
2805 SSMR3GetStructEx(pSSM, &HyperCtxIgnored, sizeof(HyperCtxIgnored),
2806 fLoad | SSMSTRUCT_FLAGS_NO_LEAD_MARKER, paCpumCtx2Fields, NULL);
2807 }
2808 }
2809
2810 if (uVersion >= CPUM_SAVED_STATE_VERSION_VER2_1_NOMSR)
2811 {
2812 uint32_t cCpus;
2813 rc = SSMR3GetU32(pSSM, &cCpus); AssertRCReturn(rc, rc);
2814 AssertLogRelMsgReturn(cCpus == pVM->cCpus, ("Mismatching CPU counts: saved: %u; configured: %u \n", cCpus, pVM->cCpus),
2815 VERR_SSM_UNEXPECTED_DATA);
2816 }
2817 AssertLogRelMsgReturn( uVersion > CPUM_SAVED_STATE_VERSION_VER2_0
2818 || pVM->cCpus == 1,
2819 ("cCpus=%u\n", pVM->cCpus),
2820 VERR_SSM_UNEXPECTED_DATA);
2821
2822 uint32_t cbMsrs = 0;
2823 if (uVersion > CPUM_SAVED_STATE_VERSION_NO_MSR_SIZE)
2824 {
2825 rc = SSMR3GetU32(pSSM, &cbMsrs); AssertRCReturn(rc, rc);
2826 AssertLogRelMsgReturn(RT_ALIGN(cbMsrs, sizeof(uint64_t)) == cbMsrs, ("Size of MSRs is misaligned: %#x\n", cbMsrs),
2827 VERR_SSM_UNEXPECTED_DATA);
2828 AssertLogRelMsgReturn(cbMsrs <= sizeof(CPUMCTXMSRS) && cbMsrs > 0, ("Size of MSRs is out of range: %#x\n", cbMsrs),
2829 VERR_SSM_UNEXPECTED_DATA);
2830 }
2831
2832 /*
2833 * Do the per-CPU restoring.
2834 */
2835 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2836 {
2837 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
2838 PCPUMCTX pGstCtx = &pVCpu->cpum.s.Guest;
2839
2840 if (uVersion >= CPUM_SAVED_STATE_VERSION_XSAVE)
2841 {
2842 /*
2843 * The XSAVE saved state layout moved the hyper state down here.
2844 */
2845 rc = SSMR3GetStructEx(pSSM, &HyperCtxIgnored, sizeof(HyperCtxIgnored), 0, g_aCpumCtxFields, NULL);
2846 AssertRCReturn(rc, rc);
2847
2848 /*
2849 * Start by restoring the CPUMCTX structure and the X86FXSAVE bits of the extended state.
2850 */
2851 rc = SSMR3GetStructEx(pSSM, pGstCtx, sizeof(*pGstCtx), 0, g_aCpumCtxFields, NULL);
2852 rc = SSMR3GetStructEx(pSSM, &pGstCtx->XState.x87, sizeof(pGstCtx->XState.x87), 0, g_aCpumX87Fields, NULL);
2853 AssertRCReturn(rc, rc);
2854
2855 /* Check that the xsave/xrstor mask is valid (invalid results in #GP). */
2856 if (pGstCtx->fXStateMask != 0)
2857 {
2858 AssertLogRelMsgReturn(!(pGstCtx->fXStateMask & ~pVM->cpum.s.fXStateGuestMask),
2859 ("fXStateMask=%#RX64 fXStateGuestMask=%#RX64\n",
2860 pGstCtx->fXStateMask, pVM->cpum.s.fXStateGuestMask),
2861 VERR_CPUM_INCOMPATIBLE_XSAVE_COMP_MASK);
2862 AssertLogRelMsgReturn(pGstCtx->fXStateMask & XSAVE_C_X87,
2863 ("fXStateMask=%#RX64\n", pGstCtx->fXStateMask), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2864 AssertLogRelMsgReturn((pGstCtx->fXStateMask & (XSAVE_C_SSE | XSAVE_C_YMM)) != XSAVE_C_YMM,
2865 ("fXStateMask=%#RX64\n", pGstCtx->fXStateMask), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2866 AssertLogRelMsgReturn( (pGstCtx->fXStateMask & (XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI)) == 0
2867 || (pGstCtx->fXStateMask & (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI))
2868 == (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI),
2869 ("fXStateMask=%#RX64\n", pGstCtx->fXStateMask), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2870 }
2871
2872 /* Check that the XCR0 mask is valid (invalid results in #GP). */
2873 AssertLogRelMsgReturn(pGstCtx->aXcr[0] & XSAVE_C_X87, ("xcr0=%#RX64\n", pGstCtx->aXcr[0]), VERR_CPUM_INVALID_XCR0);
2874 if (pGstCtx->aXcr[0] != XSAVE_C_X87)
2875 {
2876 AssertLogRelMsgReturn(!(pGstCtx->aXcr[0] & ~(pGstCtx->fXStateMask | XSAVE_C_X87)),
2877 ("xcr0=%#RX64 fXStateMask=%#RX64\n", pGstCtx->aXcr[0], pGstCtx->fXStateMask),
2878 VERR_CPUM_INVALID_XCR0);
2879 AssertLogRelMsgReturn(pGstCtx->aXcr[0] & XSAVE_C_X87,
2880 ("xcr0=%#RX64\n", pGstCtx->aXcr[0]), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2881 AssertLogRelMsgReturn((pGstCtx->aXcr[0] & (XSAVE_C_SSE | XSAVE_C_YMM)) != XSAVE_C_YMM,
2882 ("xcr0=%#RX64\n", pGstCtx->aXcr[0]), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2883 AssertLogRelMsgReturn( (pGstCtx->aXcr[0] & (XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI)) == 0
2884 || (pGstCtx->aXcr[0] & (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI))
2885 == (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI),
2886 ("xcr0=%#RX64\n", pGstCtx->aXcr[0]), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2887 }
2888
2889 /* Check that the XCR1 is zero, as we don't implement it yet. */
2890 AssertLogRelMsgReturn(!pGstCtx->aXcr[1], ("xcr1=%#RX64\n", pGstCtx->aXcr[1]), VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2891
2892 /*
2893 * Restore the individual extended state components we support.
2894 */
2895 if (pGstCtx->fXStateMask != 0)
2896 {
2897 rc = SSMR3GetStructEx(pSSM, &pGstCtx->XState.Hdr, sizeof(pGstCtx->XState.Hdr),
2898 0, g_aCpumXSaveHdrFields, NULL);
2899 AssertRCReturn(rc, rc);
2900 AssertLogRelMsgReturn(!(pGstCtx->XState.Hdr.bmXState & ~pGstCtx->fXStateMask),
2901 ("bmXState=%#RX64 fXStateMask=%#RX64\n",
2902 pGstCtx->XState.Hdr.bmXState, pGstCtx->fXStateMask),
2903 VERR_CPUM_INVALID_XSAVE_HDR);
2904 }
2905 if (pGstCtx->fXStateMask & XSAVE_C_YMM)
2906 {
2907 PX86XSAVEYMMHI pYmmHiCtx = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_YMM_BIT, PX86XSAVEYMMHI);
2908 SSMR3GetStructEx(pSSM, pYmmHiCtx, sizeof(*pYmmHiCtx), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumYmmHiFields, NULL);
2909 }
2910 if (pGstCtx->fXStateMask & XSAVE_C_BNDREGS)
2911 {
2912 PX86XSAVEBNDREGS pBndRegs = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_BNDREGS_BIT, PX86XSAVEBNDREGS);
2913 SSMR3GetStructEx(pSSM, pBndRegs, sizeof(*pBndRegs), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumBndRegsFields, NULL);
2914 }
2915 if (pGstCtx->fXStateMask & XSAVE_C_BNDCSR)
2916 {
2917 PX86XSAVEBNDCFG pBndCfg = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_BNDCSR_BIT, PX86XSAVEBNDCFG);
2918 SSMR3GetStructEx(pSSM, pBndCfg, sizeof(*pBndCfg), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumBndCfgFields, NULL);
2919 }
2920 if (pGstCtx->fXStateMask & XSAVE_C_ZMM_HI256)
2921 {
2922 PX86XSAVEZMMHI256 pZmmHi256 = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_ZMM_HI256_BIT, PX86XSAVEZMMHI256);
2923 SSMR3GetStructEx(pSSM, pZmmHi256, sizeof(*pZmmHi256), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumZmmHi256Fields, NULL);
2924 }
2925 if (pGstCtx->fXStateMask & XSAVE_C_ZMM_16HI)
2926 {
2927 PX86XSAVEZMM16HI pZmm16Hi = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_ZMM_16HI_BIT, PX86XSAVEZMM16HI);
2928 SSMR3GetStructEx(pSSM, pZmm16Hi, sizeof(*pZmm16Hi), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumZmm16HiFields, NULL);
2929 }
2930 if (uVersion >= CPUM_SAVED_STATE_VERSION_PAE_PDPES)
2931 {
2932 SSMR3GetU64(pSSM, &pGstCtx->aPaePdpes[0].u);
2933 SSMR3GetU64(pSSM, &pGstCtx->aPaePdpes[1].u);
2934 SSMR3GetU64(pSSM, &pGstCtx->aPaePdpes[2].u);
2935 SSMR3GetU64(pSSM, &pGstCtx->aPaePdpes[3].u);
2936 }
2937 if (uVersion >= CPUM_SAVED_STATE_VERSION_HWVIRT_SVM)
2938 {
2939 if (pVM->cpum.s.GuestFeatures.fSvm)
2940 {
2941 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.svm.uMsrHSavePa);
2942 SSMR3GetGCPhys(pSSM, &pGstCtx->hwvirt.svm.GCPhysVmcb);
2943 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.svm.uPrevPauseTick);
2944 SSMR3GetU16(pSSM, &pGstCtx->hwvirt.svm.cPauseFilter);
2945 SSMR3GetU16(pSSM, &pGstCtx->hwvirt.svm.cPauseFilterThreshold);
2946 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.svm.fInterceptEvents);
2947 SSMR3GetStructEx(pSSM, &pGstCtx->hwvirt.svm.HostState, sizeof(pGstCtx->hwvirt.svm.HostState),
2948 0 /* fFlags */, g_aSvmHwvirtHostState, NULL /* pvUser */);
2949 SSMR3GetMem(pSSM, &pGstCtx->hwvirt.svm.Vmcb, sizeof(pGstCtx->hwvirt.svm.Vmcb));
2950 SSMR3GetMem(pSSM, &pGstCtx->hwvirt.svm.abMsrBitmap[0], sizeof(pGstCtx->hwvirt.svm.abMsrBitmap));
2951 SSMR3GetMem(pSSM, &pGstCtx->hwvirt.svm.abIoBitmap[0], sizeof(pGstCtx->hwvirt.svm.abIoBitmap));
2952
2953 uint32_t fSavedLocalFFs = 0;
2954 rc = SSMR3GetU32(pSSM, &fSavedLocalFFs);
2955 AssertRCReturn(rc, rc);
2956 Assert(fSavedLocalFFs == 0 || fSavedLocalFFs == CPUM_OLD_VMCPU_FF_BLOCK_NMIS);
2957 pGstCtx->hwvirt.fSavedInhibit = fSavedLocalFFs & CPUM_OLD_VMCPU_FF_BLOCK_NMIS ? CPUMCTX_INHIBIT_NMI : 0;
2958
2959 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.fGif);
2960 }
2961 }
2962 if (uVersion >= CPUM_SAVED_STATE_VERSION_HWVIRT_VMX)
2963 {
2964 if (pVM->cpum.s.GuestFeatures.fVmx)
2965 {
2966 SSMR3GetGCPhys(pSSM, &pGstCtx->hwvirt.vmx.GCPhysVmxon);
2967 SSMR3GetGCPhys(pSSM, &pGstCtx->hwvirt.vmx.GCPhysVmcs);
2968 SSMR3GetGCPhys(pSSM, &pGstCtx->hwvirt.vmx.GCPhysShadowVmcs);
2969 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.vmx.fInVmxRootMode);
2970 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.vmx.fInVmxNonRootMode);
2971 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.vmx.fInterceptEvents);
2972 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.vmx.fNmiUnblockingIret);
2973 SSMR3GetStructEx(pSSM, &pGstCtx->hwvirt.vmx.Vmcs, sizeof(pGstCtx->hwvirt.vmx.Vmcs),
2974 0, g_aVmxHwvirtVmcs, NULL);
2975 SSMR3GetStructEx(pSSM, &pGstCtx->hwvirt.vmx.ShadowVmcs, sizeof(pGstCtx->hwvirt.vmx.ShadowVmcs),
2976 0, g_aVmxHwvirtVmcs, NULL);
2977 SSMR3GetMem(pSSM, &pGstCtx->hwvirt.vmx.abVmreadBitmap[0], sizeof(pGstCtx->hwvirt.vmx.abVmreadBitmap));
2978 SSMR3GetMem(pSSM, &pGstCtx->hwvirt.vmx.abVmwriteBitmap[0], sizeof(pGstCtx->hwvirt.vmx.abVmwriteBitmap));
2979 SSMR3GetMem(pSSM, &pGstCtx->hwvirt.vmx.aEntryMsrLoadArea[0], sizeof(pGstCtx->hwvirt.vmx.aEntryMsrLoadArea));
2980 SSMR3GetMem(pSSM, &pGstCtx->hwvirt.vmx.aExitMsrStoreArea[0], sizeof(pGstCtx->hwvirt.vmx.aExitMsrStoreArea));
2981 SSMR3GetMem(pSSM, &pGstCtx->hwvirt.vmx.aExitMsrLoadArea[0], sizeof(pGstCtx->hwvirt.vmx.aExitMsrLoadArea));
2982 SSMR3GetMem(pSSM, &pGstCtx->hwvirt.vmx.abMsrBitmap[0], sizeof(pGstCtx->hwvirt.vmx.abMsrBitmap));
2983 SSMR3GetMem(pSSM, &pGstCtx->hwvirt.vmx.abIoBitmap[0], sizeof(pGstCtx->hwvirt.vmx.abIoBitmap));
2984 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.uFirstPauseLoopTick);
2985 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.uPrevPauseTick);
2986 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.uEntryTick);
2987 SSMR3GetU16(pSSM, &pGstCtx->hwvirt.vmx.offVirtApicWrite);
2988 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.vmx.fVirtNmiBlocking);
2989 SSMR3Skip(pSSM, sizeof(uint64_t)); /* Unused - used to be IA32_FEATURE_CONTROL, see @bugref{10106}. */
2990 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64Basic);
2991 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.PinCtls.u);
2992 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.ProcCtls.u);
2993 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.ProcCtls2.u);
2994 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.ExitCtls.u);
2995 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.EntryCtls.u);
2996 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.TruePinCtls.u);
2997 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.TrueProcCtls.u);
2998 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.TrueEntryCtls.u);
2999 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.TrueExitCtls.u);
3000 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64Misc);
3001 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64Cr0Fixed0);
3002 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64Cr0Fixed1);
3003 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64Cr4Fixed0);
3004 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64Cr4Fixed1);
3005 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64VmcsEnum);
3006 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64VmFunc);
3007 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64EptVpidCaps);
3008 if (uVersion >= CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2)
3009 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64ProcCtls3);
3010 if (uVersion >= CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_3)
3011 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64ExitCtls2);
3012 }
3013 }
3014 }
3015 else
3016 {
3017 /*
3018 * Pre XSAVE saved state.
3019 */
3020 SSMR3GetStructEx(pSSM, &pGstCtx->XState.x87, sizeof(pGstCtx->XState.x87),
3021 fLoad | SSMSTRUCT_FLAGS_NO_TAIL_MARKER, paCpumCtx1Fields, NULL);
3022 SSMR3GetStructEx(pSSM, pGstCtx, sizeof(*pGstCtx), fLoad | SSMSTRUCT_FLAGS_NO_LEAD_MARKER, paCpumCtx2Fields, NULL);
3023 }
3024
3025 /*
3026 * Restore a couple of flags and the MSRs.
3027 */
3028 uint32_t fIgnoredUsedFlags = 0;
3029 rc = SSMR3GetU32(pSSM, &fIgnoredUsedFlags); /* we're recalc the two relevant flags after loading state. */
3030 AssertRCReturn(rc, rc);
3031 SSMR3GetU32(pSSM, &pVCpu->cpum.s.fChanged);
3032
3033 rc = VINF_SUCCESS;
3034 if (uVersion > CPUM_SAVED_STATE_VERSION_NO_MSR_SIZE)
3035 rc = SSMR3GetMem(pSSM, &pVCpu->cpum.s.GuestMsrs.au64[0], cbMsrs);
3036 else if (uVersion >= CPUM_SAVED_STATE_VERSION_VER3_0)
3037 {
3038 SSMR3GetMem(pSSM, &pVCpu->cpum.s.GuestMsrs.au64[0], 2 * sizeof(uint64_t)); /* Restore two MSRs. */
3039 rc = SSMR3Skip(pSSM, 62 * sizeof(uint64_t));
3040 }
3041 AssertRCReturn(rc, rc);
3042
3043 /* Deal with the reusing of reserved RFLAGS bits. */
3044 pGstCtx->rflags.uBoth |= pVM->cpum.s.fReservedRFlagsCookie;
3045
3046 /* REM and other may have cleared must-be-one fields in DR6 and
3047 DR7, fix these. */
3048 pGstCtx->dr[6] &= ~(X86_DR6_RAZ_MASK | X86_DR6_MBZ_MASK);
3049 pGstCtx->dr[6] |= X86_DR6_RA1_MASK;
3050 pGstCtx->dr[7] &= ~(X86_DR7_RAZ_MASK | X86_DR7_MBZ_MASK);
3051 pGstCtx->dr[7] |= X86_DR7_RA1_MASK;
3052 }
3053
3054 /* Older states does not have the internal selector register flags
3055 and valid selector value. Supply those. */
3056 if (uVersion <= CPUM_SAVED_STATE_VERSION_MEM)
3057 {
3058 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
3059 {
3060 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
3061 bool const fValid = true /*!VM_IS_RAW_MODE_ENABLED(pVM)*/
3062 || ( uVersion > CPUM_SAVED_STATE_VERSION_VER3_2
3063 && !(pVCpu->cpum.s.fChanged & CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID));
3064 PCPUMSELREG paSelReg = CPUMCTX_FIRST_SREG(&pVCpu->cpum.s.Guest);
3065 if (fValid)
3066 {
3067 for (uint32_t iSelReg = 0; iSelReg < X86_SREG_COUNT; iSelReg++)
3068 {
3069 paSelReg[iSelReg].fFlags = CPUMSELREG_FLAGS_VALID;
3070 paSelReg[iSelReg].ValidSel = paSelReg[iSelReg].Sel;
3071 }
3072
3073 pVCpu->cpum.s.Guest.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
3074 pVCpu->cpum.s.Guest.ldtr.ValidSel = pVCpu->cpum.s.Guest.ldtr.Sel;
3075 }
3076 else
3077 {
3078 for (uint32_t iSelReg = 0; iSelReg < X86_SREG_COUNT; iSelReg++)
3079 {
3080 paSelReg[iSelReg].fFlags = 0;
3081 paSelReg[iSelReg].ValidSel = 0;
3082 }
3083
3084 /* This might not be 104% correct, but I think it's close
3085 enough for all practical purposes... (REM always loaded
3086 LDTR registers.) */
3087 pVCpu->cpum.s.Guest.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
3088 pVCpu->cpum.s.Guest.ldtr.ValidSel = pVCpu->cpum.s.Guest.ldtr.Sel;
3089 }
3090 pVCpu->cpum.s.Guest.tr.fFlags = CPUMSELREG_FLAGS_VALID;
3091 pVCpu->cpum.s.Guest.tr.ValidSel = pVCpu->cpum.s.Guest.tr.Sel;
3092 }
3093 }
3094
3095 /* Clear CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID. */
3096 if ( uVersion > CPUM_SAVED_STATE_VERSION_VER3_2
3097 && uVersion <= CPUM_SAVED_STATE_VERSION_MEM)
3098 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
3099 {
3100 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
3101 pVCpu->cpum.s.fChanged &= CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID;
3102 }
3103
3104 /*
3105 * A quick sanity check.
3106 */
3107 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
3108 {
3109 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
3110 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.es.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
3111 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.cs.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
3112 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.ss.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
3113 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.ds.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
3114 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.fs.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
3115 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.gs.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
3116 }
3117 }
3118
3119 pVM->cpum.s.fPendingRestore = false;
3120
3121 /*
3122 * Guest CPUIDs (and VMX MSR features).
3123 */
3124 if (uVersion >= CPUM_SAVED_STATE_VERSION_VER3_2)
3125 {
3126 CPUMMSRS GuestMsrs;
3127 RT_ZERO(GuestMsrs);
3128
3129 CPUMFEATURES BaseFeatures;
3130 bool const fVmxGstFeat = pVM->cpum.s.GuestFeatures.fVmx;
3131 if (fVmxGstFeat)
3132 {
3133 /*
3134 * At this point the MSRs in the guest CPU-context are loaded with the guest VMX MSRs from the saved state.
3135 * However the VMX sub-features have not been exploded yet. So cache the base (host derived) VMX features
3136 * here so we can compare them for compatibility after exploding guest features.
3137 */
3138 BaseFeatures = pVM->cpum.s.GuestFeatures;
3139
3140 /* Use the VMX MSR features from the saved state while exploding guest features. */
3141 GuestMsrs.hwvirt.vmx = pVM->apCpusR3[0]->cpum.s.Guest.hwvirt.vmx.Msrs;
3142 }
3143
3144 /* Load CPUID and explode guest features. */
3145 rc = cpumR3LoadCpuId(pVM, pSSM, uVersion, &GuestMsrs);
3146 if (fVmxGstFeat)
3147 {
3148 /*
3149 * Check if the exploded VMX features from the saved state are compatible with the host-derived features
3150 * we cached earlier (above). The is required if we use hardware-assisted nested-guest execution with
3151 * VMX features presented to the guest.
3152 */
3153 bool const fIsCompat = cpumR3AreVmxCpuFeaturesCompatible(pVM, &BaseFeatures, &pVM->cpum.s.GuestFeatures);
3154 if (!fIsCompat)
3155 return VERR_CPUM_INVALID_HWVIRT_FEAT_COMBO;
3156 }
3157 return rc;
3158 }
3159 return cpumR3LoadCpuIdPre32(pVM, pSSM, uVersion);
3160}
3161
3162
3163/**
3164 * @callback_method_impl{FNSSMINTLOADDONE}
3165 */
3166static DECLCALLBACK(int) cpumR3LoadDone(PVM pVM, PSSMHANDLE pSSM)
3167{
3168 if (RT_FAILURE(SSMR3HandleGetStatus(pSSM)))
3169 return VINF_SUCCESS;
3170
3171 /* just check this since we can. */ /** @todo Add a SSM unit flag for indicating that it's mandatory during a restore. */
3172 if (pVM->cpum.s.fPendingRestore)
3173 {
3174 LogRel(("CPUM: Missing state!\n"));
3175 return VERR_INTERNAL_ERROR_2;
3176 }
3177
3178 bool const fSupportsLongMode = VMR3IsLongModeAllowed(pVM);
3179 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
3180 {
3181 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
3182
3183 /* Notify PGM of the NXE states in case they've changed. */
3184 PGMNotifyNxeChanged(pVCpu, RT_BOOL(pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_NXE));
3185
3186 /* During init. this is done in CPUMR3InitCompleted(). */
3187 if (fSupportsLongMode)
3188 pVCpu->cpum.s.fUseFlags |= CPUM_USE_SUPPORTS_LONGMODE;
3189
3190 /* Recalc the CPUM_USE_DEBUG_REGS_HYPER value. */
3191 CPUMRecalcHyperDRx(pVCpu, UINT8_MAX);
3192 }
3193 return VINF_SUCCESS;
3194}
3195
3196
3197/**
3198 * Checks if the CPUM state restore is still pending.
3199 *
3200 * @returns true / false.
3201 * @param pVM The cross context VM structure.
3202 */
3203VMMDECL(bool) CPUMR3IsStateRestorePending(PVM pVM)
3204{
3205 return pVM->cpum.s.fPendingRestore;
3206}
3207
3208
3209/**
3210 * Formats the EFLAGS value into mnemonics.
3211 *
3212 * @param pszEFlags Where to write the mnemonics. (Assumes sufficient buffer space.)
3213 * @param efl The EFLAGS value with both guest hardware and VBox
3214 * internal bits included.
3215 */
3216static void cpumR3InfoFormatFlags(char *pszEFlags, uint32_t efl)
3217{
3218 /*
3219 * Format the flags.
3220 */
3221 static const struct
3222 {
3223 const char *pszSet; const char *pszClear; uint32_t fFlag;
3224 } s_aFlags[] =
3225 {
3226 { "vip",NULL, X86_EFL_VIP },
3227 { "vif",NULL, X86_EFL_VIF },
3228 { "ac", NULL, X86_EFL_AC },
3229 { "vm", NULL, X86_EFL_VM },
3230 { "rf", NULL, X86_EFL_RF },
3231 { "nt", NULL, X86_EFL_NT },
3232 { "ov", "nv", X86_EFL_OF },
3233 { "dn", "up", X86_EFL_DF },
3234 { "ei", "di", X86_EFL_IF },
3235 { "tf", NULL, X86_EFL_TF },
3236 { "nt", "pl", X86_EFL_SF },
3237 { "nz", "zr", X86_EFL_ZF },
3238 { "ac", "na", X86_EFL_AF },
3239 { "po", "pe", X86_EFL_PF },
3240 { "cy", "nc", X86_EFL_CF },
3241 { "inh-ss", NULL, CPUMCTX_INHIBIT_SHADOW_SS },
3242 { "inh-sti", NULL, CPUMCTX_INHIBIT_SHADOW_STI },
3243 { "inh-nmi", NULL, CPUMCTX_INHIBIT_NMI },
3244 };
3245 char *psz = pszEFlags;
3246 for (unsigned i = 0; i < RT_ELEMENTS(s_aFlags); i++)
3247 {
3248 const char *pszAdd = s_aFlags[i].fFlag & efl ? s_aFlags[i].pszSet : s_aFlags[i].pszClear;
3249 if (pszAdd)
3250 {
3251 strcpy(psz, pszAdd);
3252 psz += strlen(pszAdd);
3253 *psz++ = ' ';
3254 }
3255 }
3256 psz[-1] = '\0';
3257}
3258
3259
3260/**
3261 * Formats a full register dump.
3262 *
3263 * @param pVM The cross context VM structure.
3264 * @param pVCpu The cross context virtual CPU structure.
3265 * @param pHlp Output functions.
3266 * @param enmType The dump type.
3267 * @param pszPrefix Register name prefix.
3268 */
3269static void cpumR3InfoOne(PVM pVM, PCVMCPU pVCpu, PCDBGFINFOHLP pHlp, CPUMDUMPTYPE enmType, const char *pszPrefix)
3270{
3271 PCCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
3272
3273 /*
3274 * Format the EFLAGS.
3275 */
3276 char szEFlags[80];
3277 cpumR3InfoFormatFlags(&szEFlags[0], pCtx->eflags.uBoth);
3278
3279 /*
3280 * Format the registers.
3281 */
3282 uint32_t const efl = pCtx->eflags.u;
3283 switch (enmType)
3284 {
3285 case CPUMDUMPTYPE_TERSE:
3286 if (CPUMIsGuestIn64BitCodeEx(pCtx))
3287 pHlp->pfnPrintf(pHlp,
3288 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
3289 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
3290 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
3291 "%sr14=%016RX64 %sr15=%016RX64\n"
3292 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
3293 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %seflags=%08x\n",
3294 pszPrefix, pCtx->rax, pszPrefix, pCtx->rbx, pszPrefix, pCtx->rcx, pszPrefix, pCtx->rdx, pszPrefix, pCtx->rsi, pszPrefix, pCtx->rdi,
3295 pszPrefix, pCtx->r8, pszPrefix, pCtx->r9, pszPrefix, pCtx->r10, pszPrefix, pCtx->r11, pszPrefix, pCtx->r12, pszPrefix, pCtx->r13,
3296 pszPrefix, pCtx->r14, pszPrefix, pCtx->r15,
3297 pszPrefix, pCtx->rip, pszPrefix, pCtx->rsp, pszPrefix, pCtx->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
3298 pszPrefix, pCtx->cs.Sel, pszPrefix, pCtx->ss.Sel, pszPrefix, pCtx->ds.Sel, pszPrefix, pCtx->es.Sel,
3299 pszPrefix, pCtx->fs.Sel, pszPrefix, pCtx->gs.Sel, pszPrefix, efl);
3300 else
3301 pHlp->pfnPrintf(pHlp,
3302 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
3303 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
3304 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %seflags=%08x\n",
3305 pszPrefix, pCtx->eax, pszPrefix, pCtx->ebx, pszPrefix, pCtx->ecx, pszPrefix, pCtx->edx, pszPrefix, pCtx->esi, pszPrefix, pCtx->edi,
3306 pszPrefix, pCtx->eip, pszPrefix, pCtx->esp, pszPrefix, pCtx->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
3307 pszPrefix, pCtx->cs.Sel, pszPrefix, pCtx->ss.Sel, pszPrefix, pCtx->ds.Sel, pszPrefix, pCtx->es.Sel,
3308 pszPrefix, pCtx->fs.Sel, pszPrefix, pCtx->gs.Sel, pszPrefix, efl);
3309 break;
3310
3311 case CPUMDUMPTYPE_DEFAULT:
3312 if (CPUMIsGuestIn64BitCodeEx(pCtx))
3313 pHlp->pfnPrintf(pHlp,
3314 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
3315 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
3316 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
3317 "%sr14=%016RX64 %sr15=%016RX64\n"
3318 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
3319 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %str=%04x %seflags=%08x\n"
3320 "%scr0=%08RX64 %scr2=%08RX64 %scr3=%08RX64 %scr4=%08RX64 %sgdtr=%016RX64:%04x %sldtr=%04x\n"
3321 ,
3322 pszPrefix, pCtx->rax, pszPrefix, pCtx->rbx, pszPrefix, pCtx->rcx, pszPrefix, pCtx->rdx, pszPrefix, pCtx->rsi, pszPrefix, pCtx->rdi,
3323 pszPrefix, pCtx->r8, pszPrefix, pCtx->r9, pszPrefix, pCtx->r10, pszPrefix, pCtx->r11, pszPrefix, pCtx->r12, pszPrefix, pCtx->r13,
3324 pszPrefix, pCtx->r14, pszPrefix, pCtx->r15,
3325 pszPrefix, pCtx->rip, pszPrefix, pCtx->rsp, pszPrefix, pCtx->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
3326 pszPrefix, pCtx->cs.Sel, pszPrefix, pCtx->ss.Sel, pszPrefix, pCtx->ds.Sel, pszPrefix, pCtx->es.Sel,
3327 pszPrefix, pCtx->fs.Sel, pszPrefix, pCtx->gs.Sel, pszPrefix, pCtx->tr.Sel, pszPrefix, efl,
3328 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
3329 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->ldtr.Sel);
3330 else
3331 pHlp->pfnPrintf(pHlp,
3332 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
3333 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
3334 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %str=%04x %seflags=%08x\n"
3335 "%scr0=%08RX64 %scr2=%08RX64 %scr3=%08RX64 %scr4=%08RX64 %sgdtr=%08RX64:%04x %sldtr=%04x\n"
3336 ,
3337 pszPrefix, pCtx->eax, pszPrefix, pCtx->ebx, pszPrefix, pCtx->ecx, pszPrefix, pCtx->edx, pszPrefix, pCtx->esi, pszPrefix, pCtx->edi,
3338 pszPrefix, pCtx->eip, pszPrefix, pCtx->esp, pszPrefix, pCtx->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
3339 pszPrefix, pCtx->cs.Sel, pszPrefix, pCtx->ss.Sel, pszPrefix, pCtx->ds.Sel, pszPrefix, pCtx->es.Sel,
3340 pszPrefix, pCtx->fs.Sel, pszPrefix, pCtx->gs.Sel, pszPrefix, pCtx->tr.Sel, pszPrefix, efl,
3341 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
3342 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->ldtr.Sel);
3343 break;
3344
3345 case CPUMDUMPTYPE_VERBOSE:
3346 if (CPUMIsGuestIn64BitCodeEx(pCtx))
3347 pHlp->pfnPrintf(pHlp,
3348 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
3349 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
3350 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
3351 "%sr14=%016RX64 %sr15=%016RX64\n"
3352 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
3353 "%scs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
3354 "%sds={%04x base=%016RX64 limit=%08x flags=%08x}\n"
3355 "%ses={%04x base=%016RX64 limit=%08x flags=%08x}\n"
3356 "%sfs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
3357 "%sgs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
3358 "%sss={%04x base=%016RX64 limit=%08x flags=%08x}\n"
3359 "%scr0=%016RX64 %scr2=%016RX64 %scr3=%016RX64 %scr4=%016RX64\n"
3360 "%sdr0=%016RX64 %sdr1=%016RX64 %sdr2=%016RX64 %sdr3=%016RX64\n"
3361 "%sdr4=%016RX64 %sdr5=%016RX64 %sdr6=%016RX64 %sdr7=%016RX64\n"
3362 "%sgdtr=%016RX64:%04x %sidtr=%016RX64:%04x %seflags=%08x\n"
3363 "%sldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
3364 "%str ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
3365 "%sSysEnter={cs=%04llx eip=%016RX64 esp=%016RX64}\n"
3366 ,
3367 pszPrefix, pCtx->rax, pszPrefix, pCtx->rbx, pszPrefix, pCtx->rcx, pszPrefix, pCtx->rdx, pszPrefix, pCtx->rsi, pszPrefix, pCtx->rdi,
3368 pszPrefix, pCtx->r8, pszPrefix, pCtx->r9, pszPrefix, pCtx->r10, pszPrefix, pCtx->r11, pszPrefix, pCtx->r12, pszPrefix, pCtx->r13,
3369 pszPrefix, pCtx->r14, pszPrefix, pCtx->r15,
3370 pszPrefix, pCtx->rip, pszPrefix, pCtx->rsp, pszPrefix, pCtx->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
3371 pszPrefix, pCtx->cs.Sel, pCtx->cs.u64Base, pCtx->cs.u32Limit, pCtx->cs.Attr.u,
3372 pszPrefix, pCtx->ds.Sel, pCtx->ds.u64Base, pCtx->ds.u32Limit, pCtx->ds.Attr.u,
3373 pszPrefix, pCtx->es.Sel, pCtx->es.u64Base, pCtx->es.u32Limit, pCtx->es.Attr.u,
3374 pszPrefix, pCtx->fs.Sel, pCtx->fs.u64Base, pCtx->fs.u32Limit, pCtx->fs.Attr.u,
3375 pszPrefix, pCtx->gs.Sel, pCtx->gs.u64Base, pCtx->gs.u32Limit, pCtx->gs.Attr.u,
3376 pszPrefix, pCtx->ss.Sel, pCtx->ss.u64Base, pCtx->ss.u32Limit, pCtx->ss.Attr.u,
3377 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
3378 pszPrefix, pCtx->dr[0], pszPrefix, pCtx->dr[1], pszPrefix, pCtx->dr[2], pszPrefix, pCtx->dr[3],
3379 pszPrefix, pCtx->dr[4], pszPrefix, pCtx->dr[5], pszPrefix, pCtx->dr[6], pszPrefix, pCtx->dr[7],
3380 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, pszPrefix, efl,
3381 pszPrefix, pCtx->ldtr.Sel, pCtx->ldtr.u64Base, pCtx->ldtr.u32Limit, pCtx->ldtr.Attr.u,
3382 pszPrefix, pCtx->tr.Sel, pCtx->tr.u64Base, pCtx->tr.u32Limit, pCtx->tr.Attr.u,
3383 pszPrefix, pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
3384 else
3385 pHlp->pfnPrintf(pHlp,
3386 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
3387 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
3388 "%scs={%04x base=%016RX64 limit=%08x flags=%08x} %sdr0=%08RX64 %sdr1=%08RX64\n"
3389 "%sds={%04x base=%016RX64 limit=%08x flags=%08x} %sdr2=%08RX64 %sdr3=%08RX64\n"
3390 "%ses={%04x base=%016RX64 limit=%08x flags=%08x} %sdr4=%08RX64 %sdr5=%08RX64\n"
3391 "%sfs={%04x base=%016RX64 limit=%08x flags=%08x} %sdr6=%08RX64 %sdr7=%08RX64\n"
3392 "%sgs={%04x base=%016RX64 limit=%08x flags=%08x} %scr0=%08RX64 %scr2=%08RX64\n"
3393 "%sss={%04x base=%016RX64 limit=%08x flags=%08x} %scr3=%08RX64 %scr4=%08RX64\n"
3394 "%sgdtr=%016RX64:%04x %sidtr=%016RX64:%04x %seflags=%08x\n"
3395 "%sldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
3396 "%str ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
3397 "%sSysEnter={cs=%04llx eip=%08llx esp=%08llx}\n"
3398 ,
3399 pszPrefix, pCtx->eax, pszPrefix, pCtx->ebx, pszPrefix, pCtx->ecx, pszPrefix, pCtx->edx, pszPrefix, pCtx->esi, pszPrefix, pCtx->edi,
3400 pszPrefix, pCtx->eip, pszPrefix, pCtx->esp, pszPrefix, pCtx->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
3401 pszPrefix, pCtx->cs.Sel, pCtx->cs.u64Base, pCtx->cs.u32Limit, pCtx->cs.Attr.u, pszPrefix, pCtx->dr[0], pszPrefix, pCtx->dr[1],
3402 pszPrefix, pCtx->ds.Sel, pCtx->ds.u64Base, pCtx->ds.u32Limit, pCtx->ds.Attr.u, pszPrefix, pCtx->dr[2], pszPrefix, pCtx->dr[3],
3403 pszPrefix, pCtx->es.Sel, pCtx->es.u64Base, pCtx->es.u32Limit, pCtx->es.Attr.u, pszPrefix, pCtx->dr[4], pszPrefix, pCtx->dr[5],
3404 pszPrefix, pCtx->fs.Sel, pCtx->fs.u64Base, pCtx->fs.u32Limit, pCtx->fs.Attr.u, pszPrefix, pCtx->dr[6], pszPrefix, pCtx->dr[7],
3405 pszPrefix, pCtx->gs.Sel, pCtx->gs.u64Base, pCtx->gs.u32Limit, pCtx->gs.Attr.u, pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2,
3406 pszPrefix, pCtx->ss.Sel, pCtx->ss.u64Base, pCtx->ss.u32Limit, pCtx->ss.Attr.u, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
3407 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, pszPrefix, efl,
3408 pszPrefix, pCtx->ldtr.Sel, pCtx->ldtr.u64Base, pCtx->ldtr.u32Limit, pCtx->ldtr.Attr.u,
3409 pszPrefix, pCtx->tr.Sel, pCtx->tr.u64Base, pCtx->tr.u32Limit, pCtx->tr.Attr.u,
3410 pszPrefix, pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
3411
3412 pHlp->pfnPrintf(pHlp, "%sxcr=%016RX64 %sxcr1=%016RX64 %sxss=%016RX64 (fXStateMask=%016RX64)\n",
3413 pszPrefix, pCtx->aXcr[0], pszPrefix, pCtx->aXcr[1],
3414 pszPrefix, UINT64_C(0) /** @todo XSS */, pCtx->fXStateMask);
3415 {
3416 PCX86FXSTATE pFpuCtx = &pCtx->XState.x87;
3417 pHlp->pfnPrintf(pHlp,
3418 "%sFCW=%04x %sFSW=%04x %sFTW=%04x %sFOP=%04x %sMXCSR=%08x %sMXCSR_MASK=%08x\n"
3419 "%sFPUIP=%08x %sCS=%04x %sRsrvd1=%04x %sFPUDP=%08x %sDS=%04x %sRsvrd2=%04x\n"
3420 ,
3421 pszPrefix, pFpuCtx->FCW, pszPrefix, pFpuCtx->FSW, pszPrefix, pFpuCtx->FTW, pszPrefix, pFpuCtx->FOP,
3422 pszPrefix, pFpuCtx->MXCSR, pszPrefix, pFpuCtx->MXCSR_MASK,
3423 pszPrefix, pFpuCtx->FPUIP, pszPrefix, pFpuCtx->CS, pszPrefix, pFpuCtx->Rsrvd1,
3424 pszPrefix, pFpuCtx->FPUDP, pszPrefix, pFpuCtx->DS, pszPrefix, pFpuCtx->Rsrvd2
3425 );
3426 /*
3427 * The FSAVE style memory image contains ST(0)-ST(7) at increasing addresses,
3428 * not (FP)R0-7 as Intel SDM suggests.
3429 */
3430 unsigned iShift = (pFpuCtx->FSW >> 11) & 7;
3431 for (unsigned iST = 0; iST < RT_ELEMENTS(pFpuCtx->aRegs); iST++)
3432 {
3433 unsigned iFPR = (iST + iShift) % RT_ELEMENTS(pFpuCtx->aRegs);
3434 unsigned uTag = (pFpuCtx->FTW >> (2 * iFPR)) & 3;
3435 char chSign = pFpuCtx->aRegs[iST].au16[4] & 0x8000 ? '-' : '+';
3436 unsigned iInteger = (unsigned)(pFpuCtx->aRegs[iST].au64[0] >> 63);
3437 uint64_t u64Fraction = pFpuCtx->aRegs[iST].au64[0] & UINT64_C(0x7fffffffffffffff);
3438 int iExponent = pFpuCtx->aRegs[iST].au16[4] & 0x7fff;
3439 iExponent -= 16383; /* subtract bias */
3440 /** @todo This isn't entirenly correct and needs more work! */
3441 pHlp->pfnPrintf(pHlp,
3442 "%sST(%u)=%sFPR%u={%04RX16'%08RX32'%08RX32} t%d %c%u.%022llu * 2 ^ %d (*)",
3443 pszPrefix, iST, pszPrefix, iFPR,
3444 pFpuCtx->aRegs[iST].au16[4], pFpuCtx->aRegs[iST].au32[1], pFpuCtx->aRegs[iST].au32[0],
3445 uTag, chSign, iInteger, u64Fraction, iExponent);
3446 if (pFpuCtx->aRegs[iST].au16[5] || pFpuCtx->aRegs[iST].au16[6] || pFpuCtx->aRegs[iST].au16[7])
3447 pHlp->pfnPrintf(pHlp, " res={%04RX16,%04RX16,%04RX16}\n",
3448 pFpuCtx->aRegs[iST].au16[5], pFpuCtx->aRegs[iST].au16[6], pFpuCtx->aRegs[iST].au16[7]);
3449 else
3450 pHlp->pfnPrintf(pHlp, "\n");
3451 }
3452
3453 /* XMM/YMM/ZMM registers. */
3454 if (pCtx->fXStateMask & XSAVE_C_YMM)
3455 {
3456 PCX86XSAVEYMMHI pYmmHiCtx = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_YMM_BIT, PCX86XSAVEYMMHI);
3457 if (!(pCtx->fXStateMask & XSAVE_C_ZMM_HI256))
3458 for (unsigned i = 0; i < RT_ELEMENTS(pFpuCtx->aXMM); i++)
3459 pHlp->pfnPrintf(pHlp, "%sYMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32\n",
3460 pszPrefix, i, i < 10 ? " " : "",
3461 pYmmHiCtx->aYmmHi[i].au32[3],
3462 pYmmHiCtx->aYmmHi[i].au32[2],
3463 pYmmHiCtx->aYmmHi[i].au32[1],
3464 pYmmHiCtx->aYmmHi[i].au32[0],
3465 pFpuCtx->aXMM[i].au32[3],
3466 pFpuCtx->aXMM[i].au32[2],
3467 pFpuCtx->aXMM[i].au32[1],
3468 pFpuCtx->aXMM[i].au32[0]);
3469 else
3470 {
3471 PCX86XSAVEZMMHI256 pZmmHi256 = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_ZMM_HI256_BIT, PCX86XSAVEZMMHI256);
3472 for (unsigned i = 0; i < RT_ELEMENTS(pFpuCtx->aXMM); i++)
3473 pHlp->pfnPrintf(pHlp,
3474 "%sZMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32''%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32\n",
3475 pszPrefix, i, i < 10 ? " " : "",
3476 pZmmHi256->aHi256Regs[i].au32[7],
3477 pZmmHi256->aHi256Regs[i].au32[6],
3478 pZmmHi256->aHi256Regs[i].au32[5],
3479 pZmmHi256->aHi256Regs[i].au32[4],
3480 pZmmHi256->aHi256Regs[i].au32[3],
3481 pZmmHi256->aHi256Regs[i].au32[2],
3482 pZmmHi256->aHi256Regs[i].au32[1],
3483 pZmmHi256->aHi256Regs[i].au32[0],
3484 pYmmHiCtx->aYmmHi[i].au32[3],
3485 pYmmHiCtx->aYmmHi[i].au32[2],
3486 pYmmHiCtx->aYmmHi[i].au32[1],
3487 pYmmHiCtx->aYmmHi[i].au32[0],
3488 pFpuCtx->aXMM[i].au32[3],
3489 pFpuCtx->aXMM[i].au32[2],
3490 pFpuCtx->aXMM[i].au32[1],
3491 pFpuCtx->aXMM[i].au32[0]);
3492
3493 PCX86XSAVEZMM16HI pZmm16Hi = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_ZMM_16HI_BIT, PCX86XSAVEZMM16HI);
3494 for (unsigned i = 0; i < RT_ELEMENTS(pZmm16Hi->aRegs); i++)
3495 pHlp->pfnPrintf(pHlp,
3496 "%sZMM%u=%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32''%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32\n",
3497 pszPrefix, i + 16,
3498 pZmm16Hi->aRegs[i].au32[15],
3499 pZmm16Hi->aRegs[i].au32[14],
3500 pZmm16Hi->aRegs[i].au32[13],
3501 pZmm16Hi->aRegs[i].au32[12],
3502 pZmm16Hi->aRegs[i].au32[11],
3503 pZmm16Hi->aRegs[i].au32[10],
3504 pZmm16Hi->aRegs[i].au32[9],
3505 pZmm16Hi->aRegs[i].au32[8],
3506 pZmm16Hi->aRegs[i].au32[7],
3507 pZmm16Hi->aRegs[i].au32[6],
3508 pZmm16Hi->aRegs[i].au32[5],
3509 pZmm16Hi->aRegs[i].au32[4],
3510 pZmm16Hi->aRegs[i].au32[3],
3511 pZmm16Hi->aRegs[i].au32[2],
3512 pZmm16Hi->aRegs[i].au32[1],
3513 pZmm16Hi->aRegs[i].au32[0]);
3514 }
3515 }
3516 else
3517 for (unsigned i = 0; i < RT_ELEMENTS(pFpuCtx->aXMM); i++)
3518 pHlp->pfnPrintf(pHlp,
3519 i & 1
3520 ? "%sXMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32\n"
3521 : "%sXMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32 ",
3522 pszPrefix, i, i < 10 ? " " : "",
3523 pFpuCtx->aXMM[i].au32[3],
3524 pFpuCtx->aXMM[i].au32[2],
3525 pFpuCtx->aXMM[i].au32[1],
3526 pFpuCtx->aXMM[i].au32[0]);
3527
3528 if (pCtx->fXStateMask & XSAVE_C_OPMASK)
3529 {
3530 PCX86XSAVEOPMASK pOpMask = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_OPMASK_BIT, PCX86XSAVEOPMASK);
3531 for (unsigned i = 0; i < RT_ELEMENTS(pOpMask->aKRegs); i += 4)
3532 pHlp->pfnPrintf(pHlp, "%sK%u=%016RX64 %sK%u=%016RX64 %sK%u=%016RX64 %sK%u=%016RX64\n",
3533 pszPrefix, i + 0, pOpMask->aKRegs[i + 0],
3534 pszPrefix, i + 1, pOpMask->aKRegs[i + 1],
3535 pszPrefix, i + 2, pOpMask->aKRegs[i + 2],
3536 pszPrefix, i + 3, pOpMask->aKRegs[i + 3]);
3537 }
3538
3539 if (pCtx->fXStateMask & XSAVE_C_BNDREGS)
3540 {
3541 PCX86XSAVEBNDREGS pBndRegs = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_BNDREGS_BIT, PCX86XSAVEBNDREGS);
3542 for (unsigned i = 0; i < RT_ELEMENTS(pBndRegs->aRegs); i += 2)
3543 pHlp->pfnPrintf(pHlp, "%sBNDREG%u=%016RX64/%016RX64 %sBNDREG%u=%016RX64/%016RX64\n",
3544 pszPrefix, i, pBndRegs->aRegs[i].uLowerBound, pBndRegs->aRegs[i].uUpperBound,
3545 pszPrefix, i + 1, pBndRegs->aRegs[i + 1].uLowerBound, pBndRegs->aRegs[i + 1].uUpperBound);
3546 }
3547
3548 if (pCtx->fXStateMask & XSAVE_C_BNDCSR)
3549 {
3550 PCX86XSAVEBNDCFG pBndCfg = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_BNDCSR_BIT, PCX86XSAVEBNDCFG);
3551 pHlp->pfnPrintf(pHlp, "%sBNDCFG.CONFIG=%016RX64 %sBNDCFG.STATUS=%016RX64\n",
3552 pszPrefix, pBndCfg->fConfig, pszPrefix, pBndCfg->fStatus);
3553 }
3554
3555 for (unsigned i = 0; i < RT_ELEMENTS(pFpuCtx->au32RsrvdRest); i++)
3556 if (pFpuCtx->au32RsrvdRest[i])
3557 pHlp->pfnPrintf(pHlp, "%sRsrvdRest[%u]=%RX32 (offset=%#x)\n",
3558 pszPrefix, i, pFpuCtx->au32RsrvdRest[i], RT_UOFFSETOF_DYN(X86FXSTATE, au32RsrvdRest[i]) );
3559 }
3560
3561 pHlp->pfnPrintf(pHlp,
3562 "%sEFER =%016RX64\n"
3563 "%sPAT =%016RX64\n"
3564 "%sSTAR =%016RX64\n"
3565 "%sCSTAR =%016RX64\n"
3566 "%sLSTAR =%016RX64\n"
3567 "%sSFMASK =%016RX64\n"
3568 "%sKERNELGSBASE =%016RX64\n",
3569 pszPrefix, pCtx->msrEFER,
3570 pszPrefix, pCtx->msrPAT,
3571 pszPrefix, pCtx->msrSTAR,
3572 pszPrefix, pCtx->msrCSTAR,
3573 pszPrefix, pCtx->msrLSTAR,
3574 pszPrefix, pCtx->msrSFMASK,
3575 pszPrefix, pCtx->msrKERNELGSBASE);
3576
3577 if (CPUMIsGuestInPAEModeEx(pCtx))
3578 for (unsigned i = 0; i < RT_ELEMENTS(pCtx->aPaePdpes); i++)
3579 pHlp->pfnPrintf(pHlp, "%sPAE PDPTE %u =%016RX64\n", pszPrefix, i, pCtx->aPaePdpes[i]);
3580
3581 /*
3582 * MTRRs.
3583 */
3584 if (pVM->cpum.s.GuestFeatures.fMtrr)
3585 {
3586 pHlp->pfnPrintf(pHlp,
3587 "%sMTRR_CAP =%016RX64\n"
3588 "%sMTRR_DEF_TYPE =%016RX64\n"
3589 "%sMTRR_FIX64K_00000 =%016RX64\n"
3590 "%sMTRR_FIX16K_80000 =%016RX64\n"
3591 "%sMTRR_FIX16K_A0000 =%016RX64\n"
3592 "%sMTRR_FIX4K_C0000 =%016RX64\n"
3593 "%sMTRR_FIX4K_C8000 =%016RX64\n"
3594 "%sMTRR_FIX4K_D0000 =%016RX64\n"
3595 "%sMTRR_FIX4K_D8000 =%016RX64\n"
3596 "%sMTRR_FIX4K_E0000 =%016RX64\n"
3597 "%sMTRR_FIX4K_E8000 =%016RX64\n"
3598 "%sMTRR_FIX4K_F0000 =%016RX64\n"
3599 "%sMTRR_FIX4K_F8000 =%016RX64\n",
3600 pszPrefix, pVCpu->cpum.s.GuestMsrs.msr.MtrrCap,
3601 pszPrefix, pVCpu->cpum.s.GuestMsrs.msr.MtrrDefType,
3602 pszPrefix, pVCpu->cpum.s.GuestMsrs.msr.MtrrFix64K_00000,
3603 pszPrefix, pVCpu->cpum.s.GuestMsrs.msr.MtrrFix16K_80000,
3604 pszPrefix, pVCpu->cpum.s.GuestMsrs.msr.MtrrFix16K_A0000,
3605 pszPrefix, pVCpu->cpum.s.GuestMsrs.msr.MtrrFix4K_C0000,
3606 pszPrefix, pVCpu->cpum.s.GuestMsrs.msr.MtrrFix4K_C8000,
3607 pszPrefix, pVCpu->cpum.s.GuestMsrs.msr.MtrrFix4K_D0000,
3608 pszPrefix, pVCpu->cpum.s.GuestMsrs.msr.MtrrFix4K_D8000,
3609 pszPrefix, pVCpu->cpum.s.GuestMsrs.msr.MtrrFix4K_E0000,
3610 pszPrefix, pVCpu->cpum.s.GuestMsrs.msr.MtrrFix4K_E8000,
3611 pszPrefix, pVCpu->cpum.s.GuestMsrs.msr.MtrrFix4K_F0000,
3612 pszPrefix, pVCpu->cpum.s.GuestMsrs.msr.MtrrFix4K_F8000);
3613
3614 for (uint8_t iRange = 0; iRange < RT_ELEMENTS(pVCpu->cpum.s.GuestMsrs.msr.aMtrrVarMsrs); iRange++)
3615 {
3616 PCX86MTRRVAR pMtrrVar = &pVCpu->cpum.s.GuestMsrs.msr.aMtrrVarMsrs[iRange];
3617 bool const fIsValid = RT_BOOL(pMtrrVar->MtrrPhysMask & MSR_IA32_MTRR_PHYSMASK_VALID);
3618 if (fIsValid)
3619 {
3620 uint64_t const fInvPhysMask = ~(RT_BIT_64(pVM->cpum.s.GuestFeatures.cMaxPhysAddrWidth) - 1U);
3621 RTGCPHYS const GCPhysMask = pMtrrVar->MtrrPhysMask & X86_PAGE_BASE_MASK;
3622 RTGCPHYS const GCPhysFirst = pMtrrVar->MtrrPhysBase & X86_PAGE_BASE_MASK;
3623 RTGCPHYS const GCPhysLast = (GCPhysFirst | ~GCPhysMask) & ~fInvPhysMask;
3624 Assert((GCPhysLast & GCPhysMask) == (GCPhysFirst & GCPhysMask));
3625 Assert(((GCPhysLast + 1) & GCPhysMask) != (GCPhysFirst & GCPhysMask));
3626 pHlp->pfnPrintf(pHlp,
3627 "%sMTRR_PHYSBASE[%2u] =%016RX64 First=%016RX64\n"
3628 "%sMTRR_PHYSMASK[%2u] =%016RX64 Last =%016RX64\n",
3629 pszPrefix, iRange, pMtrrVar->MtrrPhysBase, GCPhysFirst,
3630 pszPrefix, iRange, pMtrrVar->MtrrPhysMask, GCPhysLast);
3631 }
3632 else
3633 pHlp->pfnPrintf(pHlp,
3634 "%sMTRR_PHYSBASE[%2u] =%016RX64\n"
3635 "%sMTRR_PHYSMASK[%2u] =%016RX64\n",
3636 pszPrefix, iRange, pMtrrVar->MtrrPhysBase,
3637 pszPrefix, iRange, pMtrrVar->MtrrPhysMask);
3638 }
3639 }
3640 break;
3641 }
3642}
3643
3644
3645/**
3646 * Display all cpu states and any other cpum info.
3647 *
3648 * @param pVM The cross context VM structure.
3649 * @param pHlp The info helper functions.
3650 * @param pszArgs Arguments, ignored.
3651 */
3652static DECLCALLBACK(void) cpumR3InfoAll(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3653{
3654 cpumR3InfoGuest(pVM, pHlp, pszArgs);
3655 cpumR3InfoGuestInstr(pVM, pHlp, pszArgs);
3656 cpumR3InfoGuestHwvirt(pVM, pHlp, pszArgs);
3657 cpumR3InfoHyper(pVM, pHlp, pszArgs);
3658 cpumR3InfoHost(pVM, pHlp, pszArgs);
3659}
3660
3661
3662/**
3663 * Parses the info argument.
3664 *
3665 * The argument starts with 'verbose', 'terse' or 'default' and then
3666 * continues with the comment string.
3667 *
3668 * @param pszArgs The pointer to the argument string.
3669 * @param penmType Where to store the dump type request.
3670 * @param ppszComment Where to store the pointer to the comment string.
3671 */
3672static void cpumR3InfoParseArg(const char *pszArgs, CPUMDUMPTYPE *penmType, const char **ppszComment)
3673{
3674 if (!pszArgs)
3675 {
3676 *penmType = CPUMDUMPTYPE_DEFAULT;
3677 *ppszComment = "";
3678 }
3679 else
3680 {
3681 if (!strncmp(pszArgs, RT_STR_TUPLE("verbose")))
3682 {
3683 pszArgs += 7;
3684 *penmType = CPUMDUMPTYPE_VERBOSE;
3685 }
3686 else if (!strncmp(pszArgs, RT_STR_TUPLE("terse")))
3687 {
3688 pszArgs += 5;
3689 *penmType = CPUMDUMPTYPE_TERSE;
3690 }
3691 else if (!strncmp(pszArgs, RT_STR_TUPLE("default")))
3692 {
3693 pszArgs += 7;
3694 *penmType = CPUMDUMPTYPE_DEFAULT;
3695 }
3696 else
3697 *penmType = CPUMDUMPTYPE_DEFAULT;
3698 *ppszComment = RTStrStripL(pszArgs);
3699 }
3700}
3701
3702
3703/**
3704 * Display the guest cpu state.
3705 *
3706 * @param pVM The cross context VM structure.
3707 * @param pHlp The info helper functions.
3708 * @param pszArgs Arguments.
3709 */
3710static DECLCALLBACK(void) cpumR3InfoGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3711{
3712 CPUMDUMPTYPE enmType;
3713 const char *pszComment;
3714 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
3715
3716 PCVMCPU pVCpu = VMMGetCpu(pVM);
3717 if (!pVCpu)
3718 pVCpu = pVM->apCpusR3[0];
3719
3720 pHlp->pfnPrintf(pHlp, "Guest CPUM (VCPU %d) state: %s\n", pVCpu->idCpu, pszComment);
3721
3722 cpumR3InfoOne(pVM, pVCpu, pHlp, enmType, "");
3723}
3724
3725
3726/**
3727 * Displays an SVM VMCB control area.
3728 *
3729 * @param pHlp The info helper functions.
3730 * @param pVmcbCtrl Pointer to a SVM VMCB controls area.
3731 * @param pszPrefix Caller specified string prefix.
3732 */
3733static void cpumR3InfoSvmVmcbCtrl(PCDBGFINFOHLP pHlp, PCSVMVMCBCTRL pVmcbCtrl, const char *pszPrefix)
3734{
3735 AssertReturnVoid(pHlp);
3736 AssertReturnVoid(pVmcbCtrl);
3737
3738 pHlp->pfnPrintf(pHlp, "%sCRX-read intercepts = %#RX16\n", pszPrefix, pVmcbCtrl->u16InterceptRdCRx);
3739 pHlp->pfnPrintf(pHlp, "%sCRX-write intercepts = %#RX16\n", pszPrefix, pVmcbCtrl->u16InterceptWrCRx);
3740 pHlp->pfnPrintf(pHlp, "%sDRX-read intercepts = %#RX16\n", pszPrefix, pVmcbCtrl->u16InterceptRdDRx);
3741 pHlp->pfnPrintf(pHlp, "%sDRX-write intercepts = %#RX16\n", pszPrefix, pVmcbCtrl->u16InterceptWrDRx);
3742 pHlp->pfnPrintf(pHlp, "%sException intercepts = %#RX32\n", pszPrefix, pVmcbCtrl->u32InterceptXcpt);
3743 pHlp->pfnPrintf(pHlp, "%sControl intercepts = %#RX64\n", pszPrefix, pVmcbCtrl->u64InterceptCtrl);
3744 pHlp->pfnPrintf(pHlp, "%sPause-filter threshold = %#RX16\n", pszPrefix, pVmcbCtrl->u16PauseFilterThreshold);
3745 pHlp->pfnPrintf(pHlp, "%sPause-filter count = %#RX16\n", pszPrefix, pVmcbCtrl->u16PauseFilterCount);
3746 pHlp->pfnPrintf(pHlp, "%sIOPM bitmap physaddr = %#RX64\n", pszPrefix, pVmcbCtrl->u64IOPMPhysAddr);
3747 pHlp->pfnPrintf(pHlp, "%sMSRPM bitmap physaddr = %#RX64\n", pszPrefix, pVmcbCtrl->u64MSRPMPhysAddr);
3748 pHlp->pfnPrintf(pHlp, "%sTSC offset = %#RX64\n", pszPrefix, pVmcbCtrl->u64TSCOffset);
3749 pHlp->pfnPrintf(pHlp, "%sTLB Control\n", pszPrefix);
3750 pHlp->pfnPrintf(pHlp, " %sASID = %#RX32\n", pszPrefix, pVmcbCtrl->TLBCtrl.n.u32ASID);
3751 pHlp->pfnPrintf(pHlp, " %sTLB-flush type = %u\n", pszPrefix, pVmcbCtrl->TLBCtrl.n.u8TLBFlush);
3752 pHlp->pfnPrintf(pHlp, "%sInterrupt Control\n", pszPrefix);
3753 pHlp->pfnPrintf(pHlp, " %sVTPR = %#RX8 (%u)\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u8VTPR, pVmcbCtrl->IntCtrl.n.u8VTPR);
3754 pHlp->pfnPrintf(pHlp, " %sVIRQ (Pending) = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1VIrqPending);
3755 pHlp->pfnPrintf(pHlp, " %sVINTR vector = %#RX8\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u8VIntrVector);
3756 pHlp->pfnPrintf(pHlp, " %sVGIF = %u\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1VGif);
3757 pHlp->pfnPrintf(pHlp, " %sVINTR priority = %#RX8\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u4VIntrPrio);
3758 pHlp->pfnPrintf(pHlp, " %sIgnore TPR = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1IgnoreTPR);
3759 pHlp->pfnPrintf(pHlp, " %sVINTR masking = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1VIntrMasking);
3760 pHlp->pfnPrintf(pHlp, " %sVGIF enable = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1VGifEnable);
3761 pHlp->pfnPrintf(pHlp, " %sAVIC enable = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1AvicEnable);
3762 pHlp->pfnPrintf(pHlp, "%sInterrupt Shadow\n", pszPrefix);
3763 pHlp->pfnPrintf(pHlp, " %sInterrupt shadow = %RTbool\n", pszPrefix, pVmcbCtrl->IntShadow.n.u1IntShadow);
3764 pHlp->pfnPrintf(pHlp, " %sGuest-interrupt Mask = %RTbool\n", pszPrefix, pVmcbCtrl->IntShadow.n.u1GuestIntMask);
3765 pHlp->pfnPrintf(pHlp, "%sExit Code = %#RX64\n", pszPrefix, pVmcbCtrl->u64ExitCode);
3766 pHlp->pfnPrintf(pHlp, "%sEXITINFO1 = %#RX64\n", pszPrefix, pVmcbCtrl->u64ExitInfo1);
3767 pHlp->pfnPrintf(pHlp, "%sEXITINFO2 = %#RX64\n", pszPrefix, pVmcbCtrl->u64ExitInfo2);
3768 pHlp->pfnPrintf(pHlp, "%sExit Interrupt Info\n", pszPrefix);
3769 pHlp->pfnPrintf(pHlp, " %sValid = %RTbool\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u1Valid);
3770 pHlp->pfnPrintf(pHlp, " %sVector = %#RX8 (%u)\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u8Vector, pVmcbCtrl->ExitIntInfo.n.u8Vector);
3771 pHlp->pfnPrintf(pHlp, " %sType = %u\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u3Type);
3772 pHlp->pfnPrintf(pHlp, " %sError-code valid = %RTbool\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u1ErrorCodeValid);
3773 pHlp->pfnPrintf(pHlp, " %sError-code = %#RX32\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u32ErrorCode);
3774 pHlp->pfnPrintf(pHlp, "%sNested paging and SEV\n", pszPrefix);
3775 pHlp->pfnPrintf(pHlp, " %sNested paging = %RTbool\n", pszPrefix, pVmcbCtrl->NestedPagingCtrl.n.u1NestedPaging);
3776 pHlp->pfnPrintf(pHlp, " %sSEV (Secure Encrypted VM) = %RTbool\n", pszPrefix, pVmcbCtrl->NestedPagingCtrl.n.u1Sev);
3777 pHlp->pfnPrintf(pHlp, " %sSEV-ES (Encrypted State) = %RTbool\n", pszPrefix, pVmcbCtrl->NestedPagingCtrl.n.u1SevEs);
3778 pHlp->pfnPrintf(pHlp, "%sEvent Inject\n", pszPrefix);
3779 pHlp->pfnPrintf(pHlp, " %sValid = %RTbool\n", pszPrefix, pVmcbCtrl->EventInject.n.u1Valid);
3780 pHlp->pfnPrintf(pHlp, " %sVector = %#RX32 (%u)\n", pszPrefix, pVmcbCtrl->EventInject.n.u8Vector, pVmcbCtrl->EventInject.n.u8Vector);
3781 pHlp->pfnPrintf(pHlp, " %sType = %u\n", pszPrefix, pVmcbCtrl->EventInject.n.u3Type);
3782 pHlp->pfnPrintf(pHlp, " %sError-code valid = %RTbool\n", pszPrefix, pVmcbCtrl->EventInject.n.u1ErrorCodeValid);
3783 pHlp->pfnPrintf(pHlp, " %sError-code = %#RX32\n", pszPrefix, pVmcbCtrl->EventInject.n.u32ErrorCode);
3784 pHlp->pfnPrintf(pHlp, "%sNested-paging CR3 = %#RX64\n", pszPrefix, pVmcbCtrl->u64NestedPagingCR3);
3785 pHlp->pfnPrintf(pHlp, "%sLBR Virtualization\n", pszPrefix);
3786 pHlp->pfnPrintf(pHlp, " %sLBR virt = %RTbool\n", pszPrefix, pVmcbCtrl->LbrVirt.n.u1LbrVirt);
3787 pHlp->pfnPrintf(pHlp, " %sVirt. VMSAVE/VMLOAD = %RTbool\n", pszPrefix, pVmcbCtrl->LbrVirt.n.u1VirtVmsaveVmload);
3788 pHlp->pfnPrintf(pHlp, "%sVMCB Clean Bits = %#RX32\n", pszPrefix, pVmcbCtrl->u32VmcbCleanBits);
3789 pHlp->pfnPrintf(pHlp, "%sNext-RIP = %#RX64\n", pszPrefix, pVmcbCtrl->u64NextRIP);
3790 pHlp->pfnPrintf(pHlp, "%sInstruction bytes fetched = %u\n", pszPrefix, pVmcbCtrl->cbInstrFetched);
3791 pHlp->pfnPrintf(pHlp, "%sInstruction bytes = %.*Rhxs\n", pszPrefix, sizeof(pVmcbCtrl->abInstr), pVmcbCtrl->abInstr);
3792 pHlp->pfnPrintf(pHlp, "%sAVIC\n", pszPrefix);
3793 pHlp->pfnPrintf(pHlp, " %sBar addr = %#RX64\n", pszPrefix, pVmcbCtrl->AvicBar.n.u40Addr);
3794 pHlp->pfnPrintf(pHlp, " %sBacking page addr = %#RX64\n", pszPrefix, pVmcbCtrl->AvicBackingPagePtr.n.u40Addr);
3795 pHlp->pfnPrintf(pHlp, " %sLogical table addr = %#RX64\n", pszPrefix, pVmcbCtrl->AvicLogicalTablePtr.n.u40Addr);
3796 pHlp->pfnPrintf(pHlp, " %sPhysical table addr = %#RX64\n", pszPrefix, pVmcbCtrl->AvicPhysicalTablePtr.n.u40Addr);
3797 pHlp->pfnPrintf(pHlp, " %sLast guest core Id = %u\n", pszPrefix, pVmcbCtrl->AvicPhysicalTablePtr.n.u8LastGuestCoreId);
3798}
3799
3800
3801/**
3802 * Helper for dumping the SVM VMCB selector registers.
3803 *
3804 * @param pHlp The info helper functions.
3805 * @param pSel Pointer to the SVM selector register.
3806 * @param pszName Name of the selector.
3807 * @param pszPrefix Caller specified string prefix.
3808 */
3809DECLINLINE(void) cpumR3InfoSvmVmcbSelReg(PCDBGFINFOHLP pHlp, PCSVMSELREG pSel, const char *pszName, const char *pszPrefix)
3810{
3811 /* The string width of 4 used below is to handle 'LDTR'. Change later if longer register names are used. */
3812 pHlp->pfnPrintf(pHlp, "%s%-4s = {%04x base=%016RX64 limit=%08x flags=%04x}\n", pszPrefix,
3813 pszName, pSel->u16Sel, pSel->u64Base, pSel->u32Limit, pSel->u16Attr);
3814}
3815
3816
3817/**
3818 * Helper for dumping the SVM VMCB GDTR/IDTR registers.
3819 *
3820 * @param pHlp The info helper functions.
3821 * @param pXdtr Pointer to the descriptor table register.
3822 * @param pszName Name of the descriptor table register.
3823 * @param pszPrefix Caller specified string prefix.
3824 */
3825DECLINLINE(void) cpumR3InfoSvmVmcbXdtr(PCDBGFINFOHLP pHlp, PCSVMXDTR pXdtr, const char *pszName, const char *pszPrefix)
3826{
3827 /* The string width of 4 used below is to cover 'GDTR', 'IDTR'. Change later if longer register names are used. */
3828 pHlp->pfnPrintf(pHlp, "%s%-4s = %016RX64:%04x\n", pszPrefix, pszName, pXdtr->u64Base, pXdtr->u32Limit);
3829}
3830
3831
3832/**
3833 * Displays an SVM VMCB state-save area.
3834 *
3835 * @param pHlp The info helper functions.
3836 * @param pVmcbStateSave Pointer to a SVM VMCB controls area.
3837 * @param pszPrefix Caller specified string prefix.
3838 */
3839static void cpumR3InfoSvmVmcbStateSave(PCDBGFINFOHLP pHlp, PCSVMVMCBSTATESAVE pVmcbStateSave, const char *pszPrefix)
3840{
3841 AssertReturnVoid(pHlp);
3842 AssertReturnVoid(pVmcbStateSave);
3843
3844 char szEFlags[80];
3845 cpumR3InfoFormatFlags(&szEFlags[0], pVmcbStateSave->u64RFlags);
3846
3847 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->CS, "CS", pszPrefix);
3848 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->SS, "SS", pszPrefix);
3849 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->ES, "ES", pszPrefix);
3850 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->DS, "DS", pszPrefix);
3851 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->FS, "FS", pszPrefix);
3852 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->GS, "GS", pszPrefix);
3853 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->LDTR, "LDTR", pszPrefix);
3854 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->TR, "TR", pszPrefix);
3855 cpumR3InfoSvmVmcbXdtr(pHlp, &pVmcbStateSave->GDTR, "GDTR", pszPrefix);
3856 cpumR3InfoSvmVmcbXdtr(pHlp, &pVmcbStateSave->IDTR, "IDTR", pszPrefix);
3857 pHlp->pfnPrintf(pHlp, "%sCPL = %u\n", pszPrefix, pVmcbStateSave->u8CPL);
3858 pHlp->pfnPrintf(pHlp, "%sEFER = %#RX64\n", pszPrefix, pVmcbStateSave->u64EFER);
3859 pHlp->pfnPrintf(pHlp, "%sCR4 = %#RX64\n", pszPrefix, pVmcbStateSave->u64CR4);
3860 pHlp->pfnPrintf(pHlp, "%sCR3 = %#RX64\n", pszPrefix, pVmcbStateSave->u64CR3);
3861 pHlp->pfnPrintf(pHlp, "%sCR0 = %#RX64\n", pszPrefix, pVmcbStateSave->u64CR0);
3862 pHlp->pfnPrintf(pHlp, "%sDR7 = %#RX64\n", pszPrefix, pVmcbStateSave->u64DR7);
3863 pHlp->pfnPrintf(pHlp, "%sDR6 = %#RX64\n", pszPrefix, pVmcbStateSave->u64DR6);
3864 pHlp->pfnPrintf(pHlp, "%sRFLAGS = %#RX64 %31s\n", pszPrefix, pVmcbStateSave->u64RFlags, szEFlags);
3865 pHlp->pfnPrintf(pHlp, "%sRIP = %#RX64\n", pszPrefix, pVmcbStateSave->u64RIP);
3866 pHlp->pfnPrintf(pHlp, "%sRSP = %#RX64\n", pszPrefix, pVmcbStateSave->u64RSP);
3867 pHlp->pfnPrintf(pHlp, "%sRAX = %#RX64\n", pszPrefix, pVmcbStateSave->u64RAX);
3868 pHlp->pfnPrintf(pHlp, "%sSTAR = %#RX64\n", pszPrefix, pVmcbStateSave->u64STAR);
3869 pHlp->pfnPrintf(pHlp, "%sLSTAR = %#RX64\n", pszPrefix, pVmcbStateSave->u64LSTAR);
3870 pHlp->pfnPrintf(pHlp, "%sCSTAR = %#RX64\n", pszPrefix, pVmcbStateSave->u64CSTAR);
3871 pHlp->pfnPrintf(pHlp, "%sSFMASK = %#RX64\n", pszPrefix, pVmcbStateSave->u64SFMASK);
3872 pHlp->pfnPrintf(pHlp, "%sKERNELGSBASE = %#RX64\n", pszPrefix, pVmcbStateSave->u64KernelGSBase);
3873 pHlp->pfnPrintf(pHlp, "%sSysEnter CS = %#RX64\n", pszPrefix, pVmcbStateSave->u64SysEnterCS);
3874 pHlp->pfnPrintf(pHlp, "%sSysEnter EIP = %#RX64\n", pszPrefix, pVmcbStateSave->u64SysEnterEIP);
3875 pHlp->pfnPrintf(pHlp, "%sSysEnter ESP = %#RX64\n", pszPrefix, pVmcbStateSave->u64SysEnterESP);
3876 pHlp->pfnPrintf(pHlp, "%sCR2 = %#RX64\n", pszPrefix, pVmcbStateSave->u64CR2);
3877 pHlp->pfnPrintf(pHlp, "%sPAT = %#RX64\n", pszPrefix, pVmcbStateSave->u64PAT);
3878 pHlp->pfnPrintf(pHlp, "%sDBGCTL = %#RX64\n", pszPrefix, pVmcbStateSave->u64DBGCTL);
3879 pHlp->pfnPrintf(pHlp, "%sBR_FROM = %#RX64\n", pszPrefix, pVmcbStateSave->u64BR_FROM);
3880 pHlp->pfnPrintf(pHlp, "%sBR_TO = %#RX64\n", pszPrefix, pVmcbStateSave->u64BR_TO);
3881 pHlp->pfnPrintf(pHlp, "%sLASTXCPT_FROM = %#RX64\n", pszPrefix, pVmcbStateSave->u64LASTEXCPFROM);
3882 pHlp->pfnPrintf(pHlp, "%sLASTXCPT_TO = %#RX64\n", pszPrefix, pVmcbStateSave->u64LASTEXCPTO);
3883}
3884
3885
3886/**
3887 * Displays a virtual-VMCS.
3888 *
3889 * @param pVCpu The cross context virtual CPU structure.
3890 * @param pHlp The info helper functions.
3891 * @param pVmcs Pointer to a virtual VMCS.
3892 * @param pszPrefix Caller specified string prefix.
3893 */
3894static void cpumR3InfoVmxVmcs(PVMCPU pVCpu, PCDBGFINFOHLP pHlp, PCVMXVVMCS pVmcs, const char *pszPrefix)
3895{
3896 AssertReturnVoid(pHlp);
3897 AssertReturnVoid(pVmcs);
3898
3899 /* The string width of -4 used in the macros below to cover 'LDTR', 'GDTR', 'IDTR. */
3900#define CPUMVMX_DUMP_HOST_XDTR(a_pHlp, a_pVmcs, a_Seg, a_SegName, a_pszPrefix) \
3901 do { \
3902 (a_pHlp)->pfnPrintf((a_pHlp), " %s%-4s = {base=%016RX64}\n", \
3903 (a_pszPrefix), (a_SegName), (a_pVmcs)->u64Host##a_Seg##Base.u); \
3904 } while (0)
3905
3906#define CPUMVMX_DUMP_HOST_FS_GS_TR(a_pHlp, a_pVmcs, a_Seg, a_SegName, a_pszPrefix) \
3907 do { \
3908 (a_pHlp)->pfnPrintf((a_pHlp), " %s%-4s = {%04x base=%016RX64}\n", \
3909 (a_pszPrefix), (a_SegName), (a_pVmcs)->Host##a_Seg, (a_pVmcs)->u64Host##a_Seg##Base.u); \
3910 } while (0)
3911
3912#define CPUMVMX_DUMP_GUEST_SEGREG(a_pHlp, a_pVmcs, a_Seg, a_SegName, a_pszPrefix) \
3913 do { \
3914 (a_pHlp)->pfnPrintf((a_pHlp), " %s%-4s = {%04x base=%016RX64 limit=%08x flags=%04x}\n", \
3915 (a_pszPrefix), (a_SegName), (a_pVmcs)->Guest##a_Seg, (a_pVmcs)->u64Guest##a_Seg##Base.u, \
3916 (a_pVmcs)->u32Guest##a_Seg##Limit, (a_pVmcs)->u32Guest##a_Seg##Attr); \
3917 } while (0)
3918
3919#define CPUMVMX_DUMP_GUEST_XDTR(a_pHlp, a_pVmcs, a_Seg, a_SegName, a_pszPrefix) \
3920 do { \
3921 (a_pHlp)->pfnPrintf((a_pHlp), " %s%-4s = {base=%016RX64 limit=%08x}\n", \
3922 (a_pszPrefix), (a_SegName), (a_pVmcs)->u64Guest##a_Seg##Base.u, (a_pVmcs)->u32Guest##a_Seg##Limit); \
3923 } while (0)
3924
3925 /* Header. */
3926 {
3927 pHlp->pfnPrintf(pHlp, "%sHeader:\n", pszPrefix);
3928 pHlp->pfnPrintf(pHlp, " %sVMCS revision id = %#RX32\n", pszPrefix, pVmcs->u32VmcsRevId);
3929 pHlp->pfnPrintf(pHlp, " %sVMX-abort id = %#RX32 (%s)\n", pszPrefix, pVmcs->enmVmxAbort, VMXGetAbortDesc(pVmcs->enmVmxAbort));
3930 pHlp->pfnPrintf(pHlp, " %sVMCS state = %#x (%s)\n", pszPrefix, pVmcs->fVmcsState, VMXGetVmcsStateDesc(pVmcs->fVmcsState));
3931 }
3932
3933 /* Control fields. */
3934 {
3935 /* 16-bit. */
3936 pHlp->pfnPrintf(pHlp, "%sControl:\n", pszPrefix);
3937 pHlp->pfnPrintf(pHlp, " %sVPID = %#RX16\n", pszPrefix, pVmcs->u16Vpid);
3938 pHlp->pfnPrintf(pHlp, " %sPosted intr notify vector = %#RX16\n", pszPrefix, pVmcs->u16PostIntNotifyVector);
3939 pHlp->pfnPrintf(pHlp, " %sEPTP index = %#RX16\n", pszPrefix, pVmcs->u16EptpIndex);
3940 pHlp->pfnPrintf(pHlp, " %sHLAT prefix size = %#RX16\n", pszPrefix, pVmcs->u16HlatPrefixSize);
3941
3942 /* 32-bit. */
3943 pHlp->pfnPrintf(pHlp, " %sPin ctls = %#RX32\n", pszPrefix, pVmcs->u32PinCtls);
3944 pHlp->pfnPrintf(pHlp, " %sProcessor ctls = %#RX32\n", pszPrefix, pVmcs->u32ProcCtls);
3945 pHlp->pfnPrintf(pHlp, " %sSecondary processor ctls = %#RX32\n", pszPrefix, pVmcs->u32ProcCtls2);
3946 pHlp->pfnPrintf(pHlp, " %sVM-exit ctls = %#RX32\n", pszPrefix, pVmcs->u32ExitCtls);
3947 pHlp->pfnPrintf(pHlp, " %sVM-entry ctls = %#RX32\n", pszPrefix, pVmcs->u32EntryCtls);
3948 pHlp->pfnPrintf(pHlp, " %sException bitmap = %#RX32\n", pszPrefix, pVmcs->u32XcptBitmap);
3949 pHlp->pfnPrintf(pHlp, " %sPage-fault mask = %#RX32\n", pszPrefix, pVmcs->u32XcptPFMask);
3950 pHlp->pfnPrintf(pHlp, " %sPage-fault match = %#RX32\n", pszPrefix, pVmcs->u32XcptPFMatch);
3951 pHlp->pfnPrintf(pHlp, " %sCR3-target count = %RU32\n", pszPrefix, pVmcs->u32Cr3TargetCount);
3952 pHlp->pfnPrintf(pHlp, " %sVM-exit MSR store count = %RU32\n", pszPrefix, pVmcs->u32ExitMsrStoreCount);
3953 pHlp->pfnPrintf(pHlp, " %sVM-exit MSR load count = %RU32\n", pszPrefix, pVmcs->u32ExitMsrLoadCount);
3954 pHlp->pfnPrintf(pHlp, " %sVM-entry MSR load count = %RU32\n", pszPrefix, pVmcs->u32EntryMsrLoadCount);
3955 pHlp->pfnPrintf(pHlp, " %sVM-entry interruption info = %#RX32\n", pszPrefix, pVmcs->u32EntryIntInfo);
3956 {
3957 uint32_t const fInfo = pVmcs->u32EntryIntInfo;
3958 uint8_t const uType = VMX_ENTRY_INT_INFO_TYPE(fInfo);
3959 pHlp->pfnPrintf(pHlp, " %sValid = %RTbool\n", pszPrefix, VMX_ENTRY_INT_INFO_IS_VALID(fInfo));
3960 pHlp->pfnPrintf(pHlp, " %sType = %#x (%s)\n", pszPrefix, uType, VMXGetEntryIntInfoTypeDesc(uType));
3961 pHlp->pfnPrintf(pHlp, " %sVector = %#x\n", pszPrefix, VMX_ENTRY_INT_INFO_VECTOR(fInfo));
3962 pHlp->pfnPrintf(pHlp, " %sNMI-unblocking-IRET = %RTbool\n", pszPrefix, VMX_ENTRY_INT_INFO_IS_NMI_UNBLOCK_IRET(fInfo));
3963 pHlp->pfnPrintf(pHlp, " %sError-code valid = %RTbool\n", pszPrefix, VMX_ENTRY_INT_INFO_IS_ERROR_CODE_VALID(fInfo));
3964 }
3965 pHlp->pfnPrintf(pHlp, " %sVM-entry xcpt error-code = %#RX32\n", pszPrefix, pVmcs->u32EntryXcptErrCode);
3966 pHlp->pfnPrintf(pHlp, " %sVM-entry instr length = %u byte(s)\n", pszPrefix, pVmcs->u32EntryInstrLen);
3967 pHlp->pfnPrintf(pHlp, " %sTPR threshold = %#RX32\n", pszPrefix, pVmcs->u32TprThreshold);
3968 pHlp->pfnPrintf(pHlp, " %sPLE gap = %#RX32\n", pszPrefix, pVmcs->u32PleGap);
3969 pHlp->pfnPrintf(pHlp, " %sPLE window = %#RX32\n", pszPrefix, pVmcs->u32PleWindow);
3970
3971 /* 64-bit. */
3972 pHlp->pfnPrintf(pHlp, " %sIO-bitmap A addr = %#RX64\n", pszPrefix, pVmcs->u64AddrIoBitmapA.u);
3973 pHlp->pfnPrintf(pHlp, " %sIO-bitmap B addr = %#RX64\n", pszPrefix, pVmcs->u64AddrIoBitmapB.u);
3974 pHlp->pfnPrintf(pHlp, " %sMSR-bitmap addr = %#RX64\n", pszPrefix, pVmcs->u64AddrMsrBitmap.u);
3975 pHlp->pfnPrintf(pHlp, " %sVM-exit MSR store addr = %#RX64\n", pszPrefix, pVmcs->u64AddrExitMsrStore.u);
3976 pHlp->pfnPrintf(pHlp, " %sVM-exit MSR load addr = %#RX64\n", pszPrefix, pVmcs->u64AddrExitMsrLoad.u);
3977 pHlp->pfnPrintf(pHlp, " %sVM-entry MSR load addr = %#RX64\n", pszPrefix, pVmcs->u64AddrEntryMsrLoad.u);
3978 pHlp->pfnPrintf(pHlp, " %sExecutive VMCS ptr = %#RX64\n", pszPrefix, pVmcs->u64ExecVmcsPtr.u);
3979 pHlp->pfnPrintf(pHlp, " %sPML addr = %#RX64\n", pszPrefix, pVmcs->u64AddrPml.u);
3980 pHlp->pfnPrintf(pHlp, " %sTSC offset = %#RX64\n", pszPrefix, pVmcs->u64TscOffset.u);
3981 pHlp->pfnPrintf(pHlp, " %sVirtual-APIC addr = %#RX64\n", pszPrefix, pVmcs->u64AddrVirtApic.u);
3982 pHlp->pfnPrintf(pHlp, " %sAPIC-access addr = %#RX64\n", pszPrefix, pVmcs->u64AddrApicAccess.u);
3983 pHlp->pfnPrintf(pHlp, " %sPosted-intr desc addr = %#RX64\n", pszPrefix, pVmcs->u64AddrPostedIntDesc.u);
3984 pHlp->pfnPrintf(pHlp, " %sVM-functions control = %#RX64\n", pszPrefix, pVmcs->u64VmFuncCtls.u);
3985 pHlp->pfnPrintf(pHlp, " %sEPTP ptr = %#RX64\n", pszPrefix, pVmcs->u64EptPtr.u);
3986 pHlp->pfnPrintf(pHlp, " %sEOI-exit bitmap 0 = %#RX64\n", pszPrefix, pVmcs->u64EoiExitBitmap0.u);
3987 pHlp->pfnPrintf(pHlp, " %sEOI-exit bitmap 1 = %#RX64\n", pszPrefix, pVmcs->u64EoiExitBitmap1.u);
3988 pHlp->pfnPrintf(pHlp, " %sEOI-exit bitmap 2 = %#RX64\n", pszPrefix, pVmcs->u64EoiExitBitmap2.u);
3989 pHlp->pfnPrintf(pHlp, " %sEOI-exit bitmap 3 = %#RX64\n", pszPrefix, pVmcs->u64EoiExitBitmap3.u);
3990 pHlp->pfnPrintf(pHlp, " %sEPTP-list addr = %#RX64\n", pszPrefix, pVmcs->u64AddrEptpList.u);
3991 pHlp->pfnPrintf(pHlp, " %sVMREAD-bitmap addr = %#RX64\n", pszPrefix, pVmcs->u64AddrVmreadBitmap.u);
3992 pHlp->pfnPrintf(pHlp, " %sVMWRITE-bitmap addr = %#RX64\n", pszPrefix, pVmcs->u64AddrVmwriteBitmap.u);
3993 pHlp->pfnPrintf(pHlp, " %sVirt-Xcpt info addr = %#RX64\n", pszPrefix, pVmcs->u64AddrXcptVeInfo.u);
3994 pHlp->pfnPrintf(pHlp, " %sXSS-exiting bitmap = %#RX64\n", pszPrefix, pVmcs->u64XssExitBitmap.u);
3995 pHlp->pfnPrintf(pHlp, " %sENCLS-exiting bitmap = %#RX64\n", pszPrefix, pVmcs->u64EnclsExitBitmap.u);
3996 pHlp->pfnPrintf(pHlp, " %sSPP-table ptr = %#RX64\n", pszPrefix, pVmcs->u64SppTablePtr.u);
3997 pHlp->pfnPrintf(pHlp, " %sTSC multiplier = %#RX64\n", pszPrefix, pVmcs->u64TscMultiplier.u);
3998 pHlp->pfnPrintf(pHlp, " %sTertiary processor ctls = %#RX64\n", pszPrefix, pVmcs->u64ProcCtls3.u);
3999 pHlp->pfnPrintf(pHlp, " %sENCLV-exiting bitmap = %#RX64\n", pszPrefix, pVmcs->u64EnclvExitBitmap.u);
4000 pHlp->pfnPrintf(pHlp, " %sPCONFIG-exiting bitmap = %#RX64\n", pszPrefix, pVmcs->u64PconfigExitBitmap.u);
4001 pHlp->pfnPrintf(pHlp, " %sHLAT ptr = %#RX64\n", pszPrefix, pVmcs->u64HlatPtr.u);
4002 pHlp->pfnPrintf(pHlp, " %sSecondary VM-exit controls = %#RX64\n", pszPrefix, pVmcs->u64ExitCtls2.u);
4003
4004 /* Natural width. */
4005 pHlp->pfnPrintf(pHlp, " %sCR0 guest/host mask = %#RX64\n", pszPrefix, pVmcs->u64Cr0Mask.u);
4006 pHlp->pfnPrintf(pHlp, " %sCR4 guest/host mask = %#RX64\n", pszPrefix, pVmcs->u64Cr4Mask.u);
4007 pHlp->pfnPrintf(pHlp, " %sCR0 read shadow = %#RX64\n", pszPrefix, pVmcs->u64Cr0ReadShadow.u);
4008 pHlp->pfnPrintf(pHlp, " %sCR4 read shadow = %#RX64\n", pszPrefix, pVmcs->u64Cr4ReadShadow.u);
4009 pHlp->pfnPrintf(pHlp, " %sCR3-target 0 = %#RX64\n", pszPrefix, pVmcs->u64Cr3Target0.u);
4010 pHlp->pfnPrintf(pHlp, " %sCR3-target 1 = %#RX64\n", pszPrefix, pVmcs->u64Cr3Target1.u);
4011 pHlp->pfnPrintf(pHlp, " %sCR3-target 2 = %#RX64\n", pszPrefix, pVmcs->u64Cr3Target2.u);
4012 pHlp->pfnPrintf(pHlp, " %sCR3-target 3 = %#RX64\n", pszPrefix, pVmcs->u64Cr3Target3.u);
4013 }
4014
4015 /* Guest state. */
4016 {
4017 char szEFlags[80];
4018 cpumR3InfoFormatFlags(&szEFlags[0], pVmcs->u64GuestRFlags.u);
4019 pHlp->pfnPrintf(pHlp, "%sGuest state:\n", pszPrefix);
4020
4021 /* 16-bit. */
4022 CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Cs, "CS", pszPrefix);
4023 CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Ss, "SS", pszPrefix);
4024 CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Es, "ES", pszPrefix);
4025 CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Ds, "DS", pszPrefix);
4026 CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Fs, "FS", pszPrefix);
4027 CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Gs, "GS", pszPrefix);
4028 CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Ldtr, "LDTR", pszPrefix);
4029 CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Tr, "TR", pszPrefix);
4030 CPUMVMX_DUMP_GUEST_XDTR(pHlp, pVmcs, Gdtr, "GDTR", pszPrefix);
4031 CPUMVMX_DUMP_GUEST_XDTR(pHlp, pVmcs, Idtr, "IDTR", pszPrefix);
4032 pHlp->pfnPrintf(pHlp, " %sInterrupt status = %#RX16\n", pszPrefix, pVmcs->u16GuestIntStatus);
4033 pHlp->pfnPrintf(pHlp, " %sPML index = %#RX16\n", pszPrefix, pVmcs->u16PmlIndex);
4034
4035 /* 32-bit. */
4036 pHlp->pfnPrintf(pHlp, " %sInterruptibility state = %#RX32\n", pszPrefix, pVmcs->u32GuestIntrState);
4037 pHlp->pfnPrintf(pHlp, " %sActivity state = %#RX32\n", pszPrefix, pVmcs->u32GuestActivityState);
4038 pHlp->pfnPrintf(pHlp, " %sSMBASE = %#RX32\n", pszPrefix, pVmcs->u32GuestSmBase);
4039 pHlp->pfnPrintf(pHlp, " %sSysEnter CS = %#RX32\n", pszPrefix, pVmcs->u32GuestSysenterCS);
4040 pHlp->pfnPrintf(pHlp, " %sVMX-preemption timer value = %#RX32\n", pszPrefix, pVmcs->u32PreemptTimer);
4041
4042 /* 64-bit. */
4043 pHlp->pfnPrintf(pHlp, " %sVMCS link ptr = %#RX64\n", pszPrefix, pVmcs->u64VmcsLinkPtr.u);
4044 pHlp->pfnPrintf(pHlp, " %sDBGCTL = %#RX64\n", pszPrefix, pVmcs->u64GuestDebugCtlMsr.u);
4045 pHlp->pfnPrintf(pHlp, " %sPAT = %#RX64\n", pszPrefix, pVmcs->u64GuestPatMsr.u);
4046 pHlp->pfnPrintf(pHlp, " %sEFER = %#RX64\n", pszPrefix, pVmcs->u64GuestEferMsr.u);
4047 pHlp->pfnPrintf(pHlp, " %sPERFGLOBALCTRL = %#RX64\n", pszPrefix, pVmcs->u64GuestPerfGlobalCtlMsr.u);
4048 pHlp->pfnPrintf(pHlp, " %sPDPTE 0 = %#RX64\n", pszPrefix, pVmcs->u64GuestPdpte0.u);
4049 pHlp->pfnPrintf(pHlp, " %sPDPTE 1 = %#RX64\n", pszPrefix, pVmcs->u64GuestPdpte1.u);
4050 pHlp->pfnPrintf(pHlp, " %sPDPTE 2 = %#RX64\n", pszPrefix, pVmcs->u64GuestPdpte2.u);
4051 pHlp->pfnPrintf(pHlp, " %sPDPTE 3 = %#RX64\n", pszPrefix, pVmcs->u64GuestPdpte3.u);
4052 pHlp->pfnPrintf(pHlp, " %sBNDCFGS = %#RX64\n", pszPrefix, pVmcs->u64GuestBndcfgsMsr.u);
4053 pHlp->pfnPrintf(pHlp, " %sRTIT_CTL = %#RX64\n", pszPrefix, pVmcs->u64GuestRtitCtlMsr.u);
4054 pHlp->pfnPrintf(pHlp, " %sPKRS = %#RX64\n", pszPrefix, pVmcs->u64GuestPkrsMsr.u);
4055
4056 /* Natural width. */
4057 pHlp->pfnPrintf(pHlp, " %sCR0 = %#RX64\n", pszPrefix, pVmcs->u64GuestCr0.u);
4058 pHlp->pfnPrintf(pHlp, " %sCR3 = %#RX64\n", pszPrefix, pVmcs->u64GuestCr3.u);
4059 pHlp->pfnPrintf(pHlp, " %sCR4 = %#RX64\n", pszPrefix, pVmcs->u64GuestCr4.u);
4060 pHlp->pfnPrintf(pHlp, " %sDR7 = %#RX64\n", pszPrefix, pVmcs->u64GuestDr7.u);
4061 pHlp->pfnPrintf(pHlp, " %sRSP = %#RX64\n", pszPrefix, pVmcs->u64GuestRsp.u);
4062 pHlp->pfnPrintf(pHlp, " %sRIP = %#RX64\n", pszPrefix, pVmcs->u64GuestRip.u);
4063 pHlp->pfnPrintf(pHlp, " %sRFLAGS = %#RX64 %31s\n",pszPrefix, pVmcs->u64GuestRFlags.u, szEFlags);
4064 pHlp->pfnPrintf(pHlp, " %sPending debug xcpts = %#RX64\n", pszPrefix, pVmcs->u64GuestPendingDbgXcpts.u);
4065 pHlp->pfnPrintf(pHlp, " %sSysEnter ESP = %#RX64\n", pszPrefix, pVmcs->u64GuestSysenterEsp.u);
4066 pHlp->pfnPrintf(pHlp, " %sSysEnter EIP = %#RX64\n", pszPrefix, pVmcs->u64GuestSysenterEip.u);
4067 pHlp->pfnPrintf(pHlp, " %sS_CET = %#RX64\n", pszPrefix, pVmcs->u64GuestSCetMsr.u);
4068 pHlp->pfnPrintf(pHlp, " %sSSP = %#RX64\n", pszPrefix, pVmcs->u64GuestSsp.u);
4069 pHlp->pfnPrintf(pHlp, " %sINTERRUPT_SSP_TABLE_ADDR = %#RX64\n", pszPrefix, pVmcs->u64GuestIntrSspTableAddrMsr.u);
4070 }
4071
4072 /* Host state. */
4073 {
4074 pHlp->pfnPrintf(pHlp, "%sHost state:\n", pszPrefix);
4075
4076 /* 16-bit. */
4077 pHlp->pfnPrintf(pHlp, " %sCS = %#RX16\n", pszPrefix, pVmcs->HostCs);
4078 pHlp->pfnPrintf(pHlp, " %sSS = %#RX16\n", pszPrefix, pVmcs->HostSs);
4079 pHlp->pfnPrintf(pHlp, " %sDS = %#RX16\n", pszPrefix, pVmcs->HostDs);
4080 pHlp->pfnPrintf(pHlp, " %sES = %#RX16\n", pszPrefix, pVmcs->HostEs);
4081 CPUMVMX_DUMP_HOST_FS_GS_TR(pHlp, pVmcs, Fs, "FS", pszPrefix);
4082 CPUMVMX_DUMP_HOST_FS_GS_TR(pHlp, pVmcs, Gs, "GS", pszPrefix);
4083 CPUMVMX_DUMP_HOST_FS_GS_TR(pHlp, pVmcs, Tr, "TR", pszPrefix);
4084 CPUMVMX_DUMP_HOST_XDTR(pHlp, pVmcs, Gdtr, "GDTR", pszPrefix);
4085 CPUMVMX_DUMP_HOST_XDTR(pHlp, pVmcs, Idtr, "IDTR", pszPrefix);
4086
4087 /* 32-bit. */
4088 pHlp->pfnPrintf(pHlp, " %sSysEnter CS = %#RX32\n", pszPrefix, pVmcs->u32HostSysenterCs);
4089
4090 /* 64-bit. */
4091 pHlp->pfnPrintf(pHlp, " %sEFER = %#RX64\n", pszPrefix, pVmcs->u64HostEferMsr.u);
4092 pHlp->pfnPrintf(pHlp, " %sPAT = %#RX64\n", pszPrefix, pVmcs->u64HostPatMsr.u);
4093 pHlp->pfnPrintf(pHlp, " %sPERFGLOBALCTRL = %#RX64\n", pszPrefix, pVmcs->u64HostPerfGlobalCtlMsr.u);
4094 pHlp->pfnPrintf(pHlp, " %sPKRS = %#RX64\n", pszPrefix, pVmcs->u64HostPkrsMsr.u);
4095
4096 /* Natural width. */
4097 pHlp->pfnPrintf(pHlp, " %sCR0 = %#RX64\n", pszPrefix, pVmcs->u64HostCr0.u);
4098 pHlp->pfnPrintf(pHlp, " %sCR3 = %#RX64\n", pszPrefix, pVmcs->u64HostCr3.u);
4099 pHlp->pfnPrintf(pHlp, " %sCR4 = %#RX64\n", pszPrefix, pVmcs->u64HostCr4.u);
4100 pHlp->pfnPrintf(pHlp, " %sSysEnter ESP = %#RX64\n", pszPrefix, pVmcs->u64HostSysenterEsp.u);
4101 pHlp->pfnPrintf(pHlp, " %sSysEnter EIP = %#RX64\n", pszPrefix, pVmcs->u64HostSysenterEip.u);
4102 pHlp->pfnPrintf(pHlp, " %sRSP = %#RX64\n", pszPrefix, pVmcs->u64HostRsp.u);
4103 pHlp->pfnPrintf(pHlp, " %sRIP = %#RX64\n", pszPrefix, pVmcs->u64HostRip.u);
4104 pHlp->pfnPrintf(pHlp, " %sS_CET = %#RX64\n", pszPrefix, pVmcs->u64HostSCetMsr.u);
4105 pHlp->pfnPrintf(pHlp, " %sSSP = %#RX64\n", pszPrefix, pVmcs->u64HostSsp.u);
4106 pHlp->pfnPrintf(pHlp, " %sINTERRUPT_SSP_TABLE_ADDR = %#RX64\n", pszPrefix, pVmcs->u64HostIntrSspTableAddrMsr.u);
4107 }
4108
4109 /* Read-only fields. */
4110 {
4111 pHlp->pfnPrintf(pHlp, "%sRead-only data fields:\n", pszPrefix);
4112
4113 /* 16-bit (none currently). */
4114
4115 /* 32-bit. */
4116 pHlp->pfnPrintf(pHlp, " %sExit reason = %u (%s)\n", pszPrefix, pVmcs->u32RoExitReason, HMGetVmxExitName(pVmcs->u32RoExitReason));
4117 pHlp->pfnPrintf(pHlp, " %sExit qualification = %#RX64\n", pszPrefix, pVmcs->u64RoExitQual.u);
4118 pHlp->pfnPrintf(pHlp, " %sVM-instruction error = %#RX32\n", pszPrefix, pVmcs->u32RoVmInstrError);
4119 pHlp->pfnPrintf(pHlp, " %sVM-exit intr info = %#RX32\n", pszPrefix, pVmcs->u32RoExitIntInfo);
4120 {
4121 uint32_t const fInfo = pVmcs->u32RoExitIntInfo;
4122 uint8_t const uType = VMX_EXIT_INT_INFO_TYPE(fInfo);
4123 pHlp->pfnPrintf(pHlp, " %sValid = %RTbool\n", pszPrefix, VMX_EXIT_INT_INFO_IS_VALID(fInfo));
4124 pHlp->pfnPrintf(pHlp, " %sType = %#x (%s)\n", pszPrefix, uType, VMXGetExitIntInfoTypeDesc(uType));
4125 pHlp->pfnPrintf(pHlp, " %sVector = %#x\n", pszPrefix, VMX_EXIT_INT_INFO_VECTOR(fInfo));
4126 pHlp->pfnPrintf(pHlp, " %sNMI-unblocking-IRET = %RTbool\n", pszPrefix, VMX_EXIT_INT_INFO_IS_NMI_UNBLOCK_IRET(fInfo));
4127 pHlp->pfnPrintf(pHlp, " %sError-code valid = %RTbool\n", pszPrefix, VMX_EXIT_INT_INFO_IS_ERROR_CODE_VALID(fInfo));
4128 }
4129 pHlp->pfnPrintf(pHlp, " %sVM-exit intr error-code = %#RX32\n", pszPrefix, pVmcs->u32RoExitIntErrCode);
4130 pHlp->pfnPrintf(pHlp, " %sIDT-vectoring info = %#RX32\n", pszPrefix, pVmcs->u32RoIdtVectoringInfo);
4131 {
4132 uint32_t const fInfo = pVmcs->u32RoIdtVectoringInfo;
4133 uint8_t const uType = VMX_IDT_VECTORING_INFO_TYPE(fInfo);
4134 pHlp->pfnPrintf(pHlp, " %sValid = %RTbool\n", pszPrefix, VMX_IDT_VECTORING_INFO_IS_VALID(fInfo));
4135 pHlp->pfnPrintf(pHlp, " %sType = %#x (%s)\n", pszPrefix, uType, VMXGetIdtVectoringInfoTypeDesc(uType));
4136 pHlp->pfnPrintf(pHlp, " %sVector = %#x\n", pszPrefix, VMX_IDT_VECTORING_INFO_VECTOR(fInfo));
4137 pHlp->pfnPrintf(pHlp, " %sError-code valid = %RTbool\n", pszPrefix, VMX_IDT_VECTORING_INFO_IS_ERROR_CODE_VALID(fInfo));
4138 }
4139 pHlp->pfnPrintf(pHlp, " %sIDT-vectoring error-code = %#RX32\n", pszPrefix, pVmcs->u32RoIdtVectoringErrCode);
4140 pHlp->pfnPrintf(pHlp, " %sVM-exit instruction length = %u byte(s)\n", pszPrefix, pVmcs->u32RoExitInstrLen);
4141 pHlp->pfnPrintf(pHlp, " %sVM-exit instruction info = %#RX64\n", pszPrefix, pVmcs->u32RoExitInstrInfo);
4142
4143 /* 64-bit. */
4144 pHlp->pfnPrintf(pHlp, " %sGuest-physical addr = %#RX64\n", pszPrefix, pVmcs->u64RoGuestPhysAddr.u);
4145
4146 /* Natural width. */
4147 pHlp->pfnPrintf(pHlp, " %sI/O RCX = %#RX64\n", pszPrefix, pVmcs->u64RoIoRcx.u);
4148 pHlp->pfnPrintf(pHlp, " %sI/O RSI = %#RX64\n", pszPrefix, pVmcs->u64RoIoRsi.u);
4149 pHlp->pfnPrintf(pHlp, " %sI/O RDI = %#RX64\n", pszPrefix, pVmcs->u64RoIoRdi.u);
4150 pHlp->pfnPrintf(pHlp, " %sI/O RIP = %#RX64\n", pszPrefix, pVmcs->u64RoIoRip.u);
4151 pHlp->pfnPrintf(pHlp, " %sGuest-linear addr = %#RX64\n", pszPrefix, pVmcs->u64RoGuestLinearAddr.u);
4152 }
4153
4154#ifdef DEBUG_ramshankar
4155 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
4156 {
4157 void *pvPage = RTMemTmpAllocZ(VMX_V_VIRT_APIC_SIZE);
4158 Assert(pvPage);
4159 RTGCPHYS const GCPhysVirtApic = pVmcs->u64AddrVirtApic.u;
4160 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), pvPage, GCPhysVirtApic, VMX_V_VIRT_APIC_SIZE);
4161 if (RT_SUCCESS(rc))
4162 {
4163 pHlp->pfnPrintf(pHlp, " %sVirtual-APIC page\n", pszPrefix);
4164 pHlp->pfnPrintf(pHlp, "%.*Rhxs\n", VMX_V_VIRT_APIC_SIZE, pvPage);
4165 pHlp->pfnPrintf(pHlp, "\n");
4166 }
4167 RTMemTmpFree(pvPage);
4168 }
4169#else
4170 NOREF(pVCpu);
4171#endif
4172
4173#undef CPUMVMX_DUMP_HOST_XDTR
4174#undef CPUMVMX_DUMP_HOST_FS_GS_TR
4175#undef CPUMVMX_DUMP_GUEST_SEGREG
4176#undef CPUMVMX_DUMP_GUEST_XDTR
4177}
4178
4179
4180/**
4181 * Display the guest's hardware-virtualization cpu state.
4182 *
4183 * @param pVM The cross context VM structure.
4184 * @param pHlp The info helper functions.
4185 * @param pszArgs Arguments, ignored.
4186 */
4187static DECLCALLBACK(void) cpumR3InfoGuestHwvirt(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
4188{
4189 RT_NOREF(pszArgs);
4190
4191 PVMCPU pVCpu = VMMGetCpu(pVM);
4192 if (!pVCpu)
4193 pVCpu = pVM->apCpusR3[0];
4194
4195 PCCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
4196 bool const fSvm = pVM->cpum.s.GuestFeatures.fSvm;
4197 bool const fVmx = pVM->cpum.s.GuestFeatures.fVmx;
4198
4199 pHlp->pfnPrintf(pHlp, "VCPU[%u] hardware virtualization state:\n", pVCpu->idCpu);
4200 pHlp->pfnPrintf(pHlp, "fSavedInhibit = %#RX32\n", pCtx->hwvirt.fSavedInhibit);
4201 pHlp->pfnPrintf(pHlp, "In nested-guest hwvirt mode = %RTbool\n", CPUMIsGuestInNestedHwvirtMode(pCtx));
4202
4203 if (fSvm)
4204 {
4205 pHlp->pfnPrintf(pHlp, "SVM hwvirt state:\n");
4206 pHlp->pfnPrintf(pHlp, " fGif = %RTbool\n", pCtx->hwvirt.fGif);
4207
4208 char szEFlags[80];
4209 cpumR3InfoFormatFlags(&szEFlags[0], pCtx->hwvirt.svm.HostState.rflags.u);
4210 pHlp->pfnPrintf(pHlp, " uMsrHSavePa = %#RX64\n", pCtx->hwvirt.svm.uMsrHSavePa);
4211 pHlp->pfnPrintf(pHlp, " GCPhysVmcb = %#RGp\n", pCtx->hwvirt.svm.GCPhysVmcb);
4212 pHlp->pfnPrintf(pHlp, " VmcbCtrl:\n");
4213 cpumR3InfoSvmVmcbCtrl(pHlp, &pCtx->hwvirt.svm.Vmcb.ctrl, " " /* pszPrefix */);
4214 pHlp->pfnPrintf(pHlp, " VmcbStateSave:\n");
4215 cpumR3InfoSvmVmcbStateSave(pHlp, &pCtx->hwvirt.svm.Vmcb.guest, " " /* pszPrefix */);
4216 pHlp->pfnPrintf(pHlp, " HostState:\n");
4217 pHlp->pfnPrintf(pHlp, " uEferMsr = %#RX64\n", pCtx->hwvirt.svm.HostState.uEferMsr);
4218 pHlp->pfnPrintf(pHlp, " uCr0 = %#RX64\n", pCtx->hwvirt.svm.HostState.uCr0);
4219 pHlp->pfnPrintf(pHlp, " uCr4 = %#RX64\n", pCtx->hwvirt.svm.HostState.uCr4);
4220 pHlp->pfnPrintf(pHlp, " uCr3 = %#RX64\n", pCtx->hwvirt.svm.HostState.uCr3);
4221 pHlp->pfnPrintf(pHlp, " uRip = %#RX64\n", pCtx->hwvirt.svm.HostState.uRip);
4222 pHlp->pfnPrintf(pHlp, " uRsp = %#RX64\n", pCtx->hwvirt.svm.HostState.uRsp);
4223 pHlp->pfnPrintf(pHlp, " uRax = %#RX64\n", pCtx->hwvirt.svm.HostState.uRax);
4224 pHlp->pfnPrintf(pHlp, " rflags = %#RX64 %31s\n", pCtx->hwvirt.svm.HostState.rflags.u64, szEFlags);
4225 PCCPUMSELREG pSelEs = &pCtx->hwvirt.svm.HostState.es;
4226 pHlp->pfnPrintf(pHlp, " es = {%04x base=%016RX64 limit=%08x flags=%08x}\n",
4227 pSelEs->Sel, pSelEs->u64Base, pSelEs->u32Limit, pSelEs->Attr.u);
4228 PCCPUMSELREG pSelCs = &pCtx->hwvirt.svm.HostState.cs;
4229 pHlp->pfnPrintf(pHlp, " cs = {%04x base=%016RX64 limit=%08x flags=%08x}\n",
4230 pSelCs->Sel, pSelCs->u64Base, pSelCs->u32Limit, pSelCs->Attr.u);
4231 PCCPUMSELREG pSelSs = &pCtx->hwvirt.svm.HostState.ss;
4232 pHlp->pfnPrintf(pHlp, " ss = {%04x base=%016RX64 limit=%08x flags=%08x}\n",
4233 pSelSs->Sel, pSelSs->u64Base, pSelSs->u32Limit, pSelSs->Attr.u);
4234 PCCPUMSELREG pSelDs = &pCtx->hwvirt.svm.HostState.ds;
4235 pHlp->pfnPrintf(pHlp, " ds = {%04x base=%016RX64 limit=%08x flags=%08x}\n",
4236 pSelDs->Sel, pSelDs->u64Base, pSelDs->u32Limit, pSelDs->Attr.u);
4237 pHlp->pfnPrintf(pHlp, " gdtr = %016RX64:%04x\n", pCtx->hwvirt.svm.HostState.gdtr.pGdt,
4238 pCtx->hwvirt.svm.HostState.gdtr.cbGdt);
4239 pHlp->pfnPrintf(pHlp, " idtr = %016RX64:%04x\n", pCtx->hwvirt.svm.HostState.idtr.pIdt,
4240 pCtx->hwvirt.svm.HostState.idtr.cbIdt);
4241 pHlp->pfnPrintf(pHlp, " cPauseFilter = %RU16\n", pCtx->hwvirt.svm.cPauseFilter);
4242 pHlp->pfnPrintf(pHlp, " cPauseFilterThreshold = %RU32\n", pCtx->hwvirt.svm.cPauseFilterThreshold);
4243 pHlp->pfnPrintf(pHlp, " fInterceptEvents = %u\n", pCtx->hwvirt.svm.fInterceptEvents);
4244 }
4245 else if (fVmx)
4246 {
4247 pHlp->pfnPrintf(pHlp, "VMX hwvirt state:\n");
4248 pHlp->pfnPrintf(pHlp, " GCPhysVmxon = %#RGp\n", pCtx->hwvirt.vmx.GCPhysVmxon);
4249 pHlp->pfnPrintf(pHlp, " GCPhysVmcs = %#RGp\n", pCtx->hwvirt.vmx.GCPhysVmcs);
4250 pHlp->pfnPrintf(pHlp, " GCPhysShadowVmcs = %#RGp\n", pCtx->hwvirt.vmx.GCPhysShadowVmcs);
4251 pHlp->pfnPrintf(pHlp, " enmDiag = %u (%s)\n", pCtx->hwvirt.vmx.enmDiag, HMGetVmxDiagDesc(pCtx->hwvirt.vmx.enmDiag));
4252 pHlp->pfnPrintf(pHlp, " uDiagAux = %#RX64\n", pCtx->hwvirt.vmx.uDiagAux);
4253 pHlp->pfnPrintf(pHlp, " enmAbort = %u (%s)\n", pCtx->hwvirt.vmx.enmAbort, VMXGetAbortDesc(pCtx->hwvirt.vmx.enmAbort));
4254 pHlp->pfnPrintf(pHlp, " uAbortAux = %u (%#x)\n", pCtx->hwvirt.vmx.uAbortAux, pCtx->hwvirt.vmx.uAbortAux);
4255 pHlp->pfnPrintf(pHlp, " fInVmxRootMode = %RTbool\n", pCtx->hwvirt.vmx.fInVmxRootMode);
4256 pHlp->pfnPrintf(pHlp, " fInVmxNonRootMode = %RTbool\n", pCtx->hwvirt.vmx.fInVmxNonRootMode);
4257 pHlp->pfnPrintf(pHlp, " fInterceptEvents = %RTbool\n", pCtx->hwvirt.vmx.fInterceptEvents);
4258 pHlp->pfnPrintf(pHlp, " fNmiUnblockingIret = %RTbool\n", pCtx->hwvirt.vmx.fNmiUnblockingIret);
4259 pHlp->pfnPrintf(pHlp, " uFirstPauseLoopTick = %RX64\n", pCtx->hwvirt.vmx.uFirstPauseLoopTick);
4260 pHlp->pfnPrintf(pHlp, " uPrevPauseTick = %RX64\n", pCtx->hwvirt.vmx.uPrevPauseTick);
4261 pHlp->pfnPrintf(pHlp, " uEntryTick = %RX64\n", pCtx->hwvirt.vmx.uEntryTick);
4262 pHlp->pfnPrintf(pHlp, " offVirtApicWrite = %#RX16\n", pCtx->hwvirt.vmx.offVirtApicWrite);
4263 pHlp->pfnPrintf(pHlp, " fVirtNmiBlocking = %RTbool\n", pCtx->hwvirt.vmx.fVirtNmiBlocking);
4264 pHlp->pfnPrintf(pHlp, " VMCS cache:\n");
4265 cpumR3InfoVmxVmcs(pVCpu, pHlp, &pCtx->hwvirt.vmx.Vmcs, " " /* pszPrefix */);
4266 }
4267 else
4268 pHlp->pfnPrintf(pHlp, "Hwvirt state disabled.\n");
4269
4270#undef CPUMHWVIRTDUMP_NONE
4271#undef CPUMHWVIRTDUMP_COMMON
4272#undef CPUMHWVIRTDUMP_SVM
4273#undef CPUMHWVIRTDUMP_VMX
4274#undef CPUMHWVIRTDUMP_LAST
4275#undef CPUMHWVIRTDUMP_ALL
4276}
4277
4278/**
4279 * Display the current guest instruction
4280 *
4281 * @param pVM The cross context VM structure.
4282 * @param pHlp The info helper functions.
4283 * @param pszArgs Arguments, ignored.
4284 */
4285static DECLCALLBACK(void) cpumR3InfoGuestInstr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
4286{
4287 NOREF(pszArgs);
4288
4289 PVMCPU pVCpu = VMMGetCpu(pVM);
4290 if (!pVCpu)
4291 pVCpu = pVM->apCpusR3[0];
4292
4293 char szInstruction[256];
4294 szInstruction[0] = '\0';
4295 DBGFR3DisasInstrCurrent(pVCpu, szInstruction, sizeof(szInstruction));
4296 pHlp->pfnPrintf(pHlp, "\nCPUM%u: %s\n\n", pVCpu->idCpu, szInstruction);
4297}
4298
4299
4300/**
4301 * Display the hypervisor cpu state.
4302 *
4303 * @param pVM The cross context VM structure.
4304 * @param pHlp The info helper functions.
4305 * @param pszArgs Arguments, ignored.
4306 */
4307static DECLCALLBACK(void) cpumR3InfoHyper(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
4308{
4309 PVMCPU pVCpu = VMMGetCpu(pVM);
4310 if (!pVCpu)
4311 pVCpu = pVM->apCpusR3[0];
4312
4313 CPUMDUMPTYPE enmType;
4314 const char *pszComment;
4315 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
4316 pHlp->pfnPrintf(pHlp, "Hypervisor CPUM state: %s\n", pszComment);
4317
4318 pHlp->pfnPrintf(pHlp,
4319 ".dr0=%016RX64 .dr1=%016RX64 .dr2=%016RX64 .dr3=%016RX64\n"
4320 ".dr4=%016RX64 .dr5=%016RX64 .dr6=%016RX64 .dr7=%016RX64\n",
4321 pVCpu->cpum.s.Hyper.dr[0], pVCpu->cpum.s.Hyper.dr[1], pVCpu->cpum.s.Hyper.dr[2], pVCpu->cpum.s.Hyper.dr[3],
4322 pVCpu->cpum.s.Hyper.dr[4], pVCpu->cpum.s.Hyper.dr[5], pVCpu->cpum.s.Hyper.dr[6], pVCpu->cpum.s.Hyper.dr[7]);
4323 pHlp->pfnPrintf(pHlp, "CR4OrMask=%#x CR4AndMask=%#x\n", pVM->cpum.s.CR4.OrMask, pVM->cpum.s.CR4.AndMask);
4324}
4325
4326
4327/**
4328 * Display the host cpu state.
4329 *
4330 * @param pVM The cross context VM structure.
4331 * @param pHlp The info helper functions.
4332 * @param pszArgs Arguments, ignored.
4333 */
4334static DECLCALLBACK(void) cpumR3InfoHost(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
4335{
4336 CPUMDUMPTYPE enmType;
4337 const char *pszComment;
4338 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
4339 pHlp->pfnPrintf(pHlp, "Host CPUM state: %s\n", pszComment);
4340
4341 PVMCPU pVCpu = VMMGetCpu(pVM);
4342 if (!pVCpu)
4343 pVCpu = pVM->apCpusR3[0];
4344 PCPUMHOSTCTX pCtx = &pVCpu->cpum.s.Host;
4345
4346 /*
4347 * Format the EFLAGS.
4348 */
4349 uint64_t efl = pCtx->rflags;
4350 char szEFlags[80];
4351 cpumR3InfoFormatFlags(&szEFlags[0], efl);
4352
4353 /*
4354 * Format the registers.
4355 */
4356 pHlp->pfnPrintf(pHlp,
4357 "rax=xxxxxxxxxxxxxxxx rbx=%016RX64 rcx=xxxxxxxxxxxxxxxx\n"
4358 "rdx=xxxxxxxxxxxxxxxx rsi=%016RX64 rdi=%016RX64\n"
4359 "rip=xxxxxxxxxxxxxxxx rsp=%016RX64 rbp=%016RX64\n"
4360 " r8=xxxxxxxxxxxxxxxx r9=xxxxxxxxxxxxxxxx r10=%016RX64\n"
4361 "r11=%016RX64 r12=%016RX64 r13=%016RX64\n"
4362 "r14=%016RX64 r15=%016RX64\n"
4363 "iopl=%d %31s\n"
4364 "cs=%04x ds=%04x es=%04x fs=%04x gs=%04x eflags=%08RX64\n"
4365 "cr0=%016RX64 cr2=xxxxxxxxxxxxxxxx cr3=%016RX64\n"
4366 "cr4=%016RX64 ldtr=%04x tr=%04x\n"
4367 "dr[0]=%016RX64 dr[1]=%016RX64 dr[2]=%016RX64\n"
4368 "dr[3]=%016RX64 dr[6]=%016RX64 dr[7]=%016RX64\n"
4369 "gdtr=%016RX64:%04x idtr=%016RX64:%04x\n"
4370 "SysEnter={cs=%04x eip=%08x esp=%08x}\n"
4371 "FSbase=%016RX64 GSbase=%016RX64 efer=%08RX64\n"
4372 ,
4373 /*pCtx->rax,*/ pCtx->rbx, /*pCtx->rcx,
4374 pCtx->rdx,*/ pCtx->rsi, pCtx->rdi,
4375 /*pCtx->rip,*/ pCtx->rsp, pCtx->rbp,
4376 /*pCtx->r8, pCtx->r9,*/ pCtx->r10,
4377 pCtx->r11, pCtx->r12, pCtx->r13,
4378 pCtx->r14, pCtx->r15,
4379 X86_EFL_GET_IOPL(efl), szEFlags,
4380 pCtx->cs, pCtx->ds, pCtx->es, pCtx->fs, pCtx->gs, efl,
4381 pCtx->cr0, /*pCtx->cr2,*/ pCtx->cr3,
4382 pCtx->cr4, pCtx->ldtr, pCtx->tr,
4383 pCtx->dr0, pCtx->dr1, pCtx->dr2,
4384 pCtx->dr3, pCtx->dr6, pCtx->dr7,
4385 pCtx->gdtr.uAddr, pCtx->gdtr.cb, pCtx->idtr.uAddr, pCtx->idtr.cb,
4386 pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp,
4387 pCtx->FSbase, pCtx->GSbase, pCtx->efer);
4388}
4389
4390/**
4391 * Structure used when disassembling and instructions in DBGF.
4392 * This is used so the reader function can get the stuff it needs.
4393 */
4394typedef struct CPUMDISASSTATE
4395{
4396 /** Pointer to the CPU structure. */
4397 PDISSTATE pDis;
4398 /** Pointer to the VM. */
4399 PVM pVM;
4400 /** Pointer to the VMCPU. */
4401 PVMCPU pVCpu;
4402 /** Pointer to the first byte in the segment. */
4403 RTGCUINTPTR GCPtrSegBase;
4404 /** Pointer to the byte after the end of the segment. (might have wrapped!) */
4405 RTGCUINTPTR GCPtrSegEnd;
4406 /** The size of the segment minus 1. */
4407 RTGCUINTPTR cbSegLimit;
4408 /** Pointer to the current page - R3 Ptr. */
4409 void const *pvPageR3;
4410 /** Pointer to the current page - GC Ptr. */
4411 RTGCPTR pvPageGC;
4412 /** The lock information that PGMPhysReleasePageMappingLock needs. */
4413 PGMPAGEMAPLOCK PageMapLock;
4414 /** Whether the PageMapLock is valid or not. */
4415 bool fLocked;
4416 /** 64 bits mode or not. */
4417 bool f64Bits;
4418} CPUMDISASSTATE, *PCPUMDISASSTATE;
4419
4420
4421/**
4422 * @callback_method_impl{FNDISREADBYTES}
4423 */
4424static DECLCALLBACK(int) cpumR3DisasInstrRead(PDISSTATE pDis, uint8_t offInstr, uint8_t cbMinRead, uint8_t cbMaxRead)
4425{
4426 PCPUMDISASSTATE pState = (PCPUMDISASSTATE)pDis->pvUser;
4427 for (;;)
4428 {
4429 RTGCUINTPTR GCPtr = pDis->uInstrAddr + offInstr + pState->GCPtrSegBase;
4430
4431 /*
4432 * Need to update the page translation?
4433 */
4434 if ( !pState->pvPageR3
4435 || (GCPtr >> GUEST_PAGE_SHIFT) != (pState->pvPageGC >> GUEST_PAGE_SHIFT))
4436 {
4437 /* translate the address */
4438 pState->pvPageGC = GCPtr & ~(RTGCPTR)GUEST_PAGE_OFFSET_MASK;
4439
4440 /* Release mapping lock previously acquired. */
4441 if (pState->fLocked)
4442 PGMPhysReleasePageMappingLock(pState->pVM, &pState->PageMapLock);
4443 int rc = PGMPhysGCPtr2CCPtrReadOnly(pState->pVCpu, pState->pvPageGC, &pState->pvPageR3, &pState->PageMapLock);
4444 if (RT_SUCCESS(rc))
4445 pState->fLocked = true;
4446 else
4447 {
4448 pState->fLocked = false;
4449 pState->pvPageR3 = NULL;
4450 return rc;
4451 }
4452 }
4453
4454 /*
4455 * Check the segment limit.
4456 */
4457 if (!pState->f64Bits && pDis->uInstrAddr + offInstr > pState->cbSegLimit)
4458 return VERR_OUT_OF_SELECTOR_BOUNDS;
4459
4460 /*
4461 * Calc how much we can read.
4462 */
4463 uint32_t cb = GUEST_PAGE_SIZE - (GCPtr & GUEST_PAGE_OFFSET_MASK);
4464 if (!pState->f64Bits)
4465 {
4466 RTGCUINTPTR cbSeg = pState->GCPtrSegEnd - GCPtr;
4467 if (cb > cbSeg && cbSeg)
4468 cb = cbSeg;
4469 }
4470 if (cb > cbMaxRead)
4471 cb = cbMaxRead;
4472
4473 /*
4474 * Read and advance or exit.
4475 */
4476 memcpy(&pDis->Instr.ab[offInstr], (uint8_t *)pState->pvPageR3 + (GCPtr & GUEST_PAGE_OFFSET_MASK), cb);
4477 offInstr += (uint8_t)cb;
4478 if (cb >= cbMinRead)
4479 {
4480 pDis->cbCachedInstr = offInstr;
4481 return VINF_SUCCESS;
4482 }
4483 cbMinRead -= (uint8_t)cb;
4484 cbMaxRead -= (uint8_t)cb;
4485 }
4486}
4487
4488
4489/**
4490 * Disassemble an instruction and return the information in the provided structure.
4491 *
4492 * @returns VBox status code.
4493 * @param pVM The cross context VM structure.
4494 * @param pVCpu The cross context virtual CPU structure.
4495 * @param pCtx Pointer to the guest CPU context.
4496 * @param GCPtrPC Program counter (relative to CS) to disassemble from.
4497 * @param pDis Disassembly state.
4498 * @param pszPrefix String prefix for logging (debug only).
4499 *
4500 */
4501VMMR3DECL(int) CPUMR3DisasmInstrCPU(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, RTGCPTR GCPtrPC, PDISSTATE pDis,
4502 const char *pszPrefix)
4503{
4504 CPUMDISASSTATE State;
4505 int rc;
4506
4507 const PGMMODE enmMode = PGMGetGuestMode(pVCpu);
4508 State.pDis = pDis;
4509 State.pvPageGC = 0;
4510 State.pvPageR3 = NULL;
4511 State.pVM = pVM;
4512 State.pVCpu = pVCpu;
4513 State.fLocked = false;
4514 State.f64Bits = false;
4515
4516 /*
4517 * Get selector information.
4518 */
4519 DISCPUMODE enmDisCpuMode;
4520 if ( (pCtx->cr0 & X86_CR0_PE)
4521 && pCtx->eflags.Bits.u1VM == 0)
4522 {
4523 if (!CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->cs))
4524 return VERR_CPUM_HIDDEN_CS_LOAD_ERROR;
4525 State.f64Bits = enmMode >= PGMMODE_AMD64 && pCtx->cs.Attr.n.u1Long;
4526 State.GCPtrSegBase = pCtx->cs.u64Base;
4527 State.GCPtrSegEnd = pCtx->cs.u32Limit + 1 + (RTGCUINTPTR)pCtx->cs.u64Base;
4528 State.cbSegLimit = pCtx->cs.u32Limit;
4529 enmDisCpuMode = (State.f64Bits)
4530 ? DISCPUMODE_64BIT
4531 : pCtx->cs.Attr.n.u1DefBig
4532 ? DISCPUMODE_32BIT
4533 : DISCPUMODE_16BIT;
4534 }
4535 else
4536 {
4537 /* real or V86 mode */
4538 enmDisCpuMode = DISCPUMODE_16BIT;
4539 State.GCPtrSegBase = pCtx->cs.Sel * 16;
4540 State.GCPtrSegEnd = 0xFFFFFFFF;
4541 State.cbSegLimit = 0xFFFFFFFF;
4542 }
4543
4544 /*
4545 * Disassemble the instruction.
4546 */
4547 uint32_t cbInstr;
4548#ifndef LOG_ENABLED
4549 RT_NOREF_PV(pszPrefix);
4550 rc = DISInstrWithReader(GCPtrPC, enmDisCpuMode, cpumR3DisasInstrRead, &State, pDis, &cbInstr);
4551 if (RT_SUCCESS(rc))
4552 {
4553#else
4554 char szOutput[160];
4555 rc = DISInstrToStrWithReader(GCPtrPC, enmDisCpuMode, cpumR3DisasInstrRead, &State,
4556 pDis, &cbInstr, szOutput, sizeof(szOutput));
4557 if (RT_SUCCESS(rc))
4558 {
4559 /* log it */
4560 if (pszPrefix)
4561 Log(("%s-CPU%d: %s", pszPrefix, pVCpu->idCpu, szOutput));
4562 else
4563 Log(("%s", szOutput));
4564#endif
4565 rc = VINF_SUCCESS;
4566 }
4567 else
4568 Log(("CPUMR3DisasmInstrCPU: DISInstr failed for %04X:%RGv rc=%Rrc\n", pCtx->cs.Sel, GCPtrPC, rc));
4569
4570 /* Release mapping lock acquired in cpumR3DisasInstrRead. */
4571 if (State.fLocked)
4572 PGMPhysReleasePageMappingLock(pVM, &State.PageMapLock);
4573
4574 return rc;
4575}
4576
4577
4578
4579/**
4580 * API for controlling a few of the CPU features found in CR4.
4581 *
4582 * Currently only X86_CR4_TSD is accepted as input.
4583 *
4584 * @returns VBox status code.
4585 *
4586 * @param pVM The cross context VM structure.
4587 * @param fOr The CR4 OR mask.
4588 * @param fAnd The CR4 AND mask.
4589 */
4590VMMR3DECL(int) CPUMR3SetCR4Feature(PVM pVM, RTHCUINTREG fOr, RTHCUINTREG fAnd)
4591{
4592 AssertMsgReturn(!(fOr & ~(X86_CR4_TSD)), ("%#x\n", fOr), VERR_INVALID_PARAMETER);
4593 AssertMsgReturn((fAnd & ~(X86_CR4_TSD)) == ~(X86_CR4_TSD), ("%#x\n", fAnd), VERR_INVALID_PARAMETER);
4594
4595 pVM->cpum.s.CR4.OrMask &= fAnd;
4596 pVM->cpum.s.CR4.OrMask |= fOr;
4597
4598 return VINF_SUCCESS;
4599}
4600
4601
4602/**
4603 * Called when the ring-3 init phase completes.
4604 *
4605 * @returns VBox status code.
4606 * @param pVM The cross context VM structure.
4607 * @param enmWhat Which init phase.
4608 */
4609VMMR3DECL(int) CPUMR3InitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
4610{
4611 switch (enmWhat)
4612 {
4613 case VMINITCOMPLETED_RING3:
4614 {
4615 /*
4616 * Figure out if the guest uses 32-bit or 64-bit FPU state at runtime for 64-bit capable VMs.
4617 * Only applicable/used on 64-bit hosts, refer CPUMR0A.asm. See @bugref{7138}.
4618 */
4619 bool const fSupportsLongMode = VMR3IsLongModeAllowed(pVM);
4620 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
4621 {
4622 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
4623
4624 /* While loading a saved-state we fix it up in, cpumR3LoadDone(). */
4625 if (fSupportsLongMode)
4626 pVCpu->cpum.s.fUseFlags |= CPUM_USE_SUPPORTS_LONGMODE;
4627 }
4628
4629 /* Register statistic counters for MSRs. */
4630 cpumR3MsrRegStats(pVM);
4631
4632 /* There shouldn't be any more calls to CPUMR3SetGuestCpuIdFeature and
4633 CPUMR3ClearGuestCpuIdFeature now, so do some final CPUID polishing (NX). */
4634 cpumR3CpuIdRing3InitDone(pVM);
4635
4636 /* Create VMX-preemption timer for nested guests if required. Must be
4637 done here as CPUM is initialized before TM. */
4638 if (pVM->cpum.s.GuestFeatures.fVmx)
4639 {
4640 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
4641 {
4642 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
4643 char szName[32];
4644 RTStrPrintf(szName, sizeof(szName), "Nested VMX-preemption %u", idCpu);
4645 int rc = TMR3TimerCreate(pVM, TMCLOCK_VIRTUAL_SYNC, cpumR3VmxPreemptTimerCallback, pVCpu,
4646 TMTIMER_FLAGS_RING0, szName, &pVCpu->cpum.s.hNestedVmxPreemptTimer);
4647 AssertLogRelRCReturn(rc, rc);
4648 }
4649 }
4650
4651 /*
4652 * Initialize MTRRs.
4653 */
4654 if (pVM->cpum.s.fMtrrRead)
4655 {
4656 uint64_t cbRam;
4657 CFGMR3QueryU64Def(CFGMR3GetRoot(pVM), "RamSize", &cbRam, 0);
4658 AssertReturn(cbRam > _1M, VERR_CPUM_IPE_1);
4659 RTGCPHYS const GCPhysFirst = _1M;
4660 RTGCPHYS const GCPhysLast = cbRam - 1;
4661 RTGCPHYS const GCPhysLength = GCPhysLast - GCPhysFirst;
4662 uint64_t const fInvPhysMask = ~(RT_BIT_64(pVM->cpum.s.GuestFeatures.cMaxPhysAddrWidth) - 1U);
4663 RTGCPHYS const GCPhysMask = (~(GCPhysLength - 1) & ~fInvPhysMask) & X86_PAGE_BASE_MASK;
4664 uint64_t const uMtrrPhysMask = GCPhysMask | MSR_IA32_MTRR_PHYSMASK_VALID;
4665#ifdef VBOX_STRICT
4666 /* Paranoia. */
4667 Assert(GCPhysLast == ((GCPhysFirst | ~GCPhysMask) & ~fInvPhysMask));
4668 Assert((GCPhysLast & GCPhysMask) == (GCPhysFirst & GCPhysMask));
4669 Assert(((GCPhysLast + 1) & GCPhysMask) != (GCPhysFirst & GCPhysMask));
4670#endif
4671 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
4672 {
4673 PCPUMCTXMSRS pCtxMsrs = &pVM->apCpusR3[idCpu]->cpum.s.GuestMsrs;
4674 pCtxMsrs->msr.MtrrFix64K_00000 = 0x0606060606060606;
4675 pCtxMsrs->msr.MtrrFix16K_80000 = 0x0606060606060606;
4676 pCtxMsrs->msr.MtrrFix16K_A0000 = 0;
4677 pCtxMsrs->msr.MtrrFix4K_C0000 = 0x0505050505050505;
4678 pCtxMsrs->msr.MtrrFix4K_C8000 = 0x0505050505050505;
4679 pCtxMsrs->msr.MtrrFix4K_D0000 = 0x0505050505050505;
4680 pCtxMsrs->msr.MtrrFix4K_D8000 = 0x0505050505050505;
4681 pCtxMsrs->msr.MtrrFix4K_E0000 = 0x0505050505050505;
4682 pCtxMsrs->msr.MtrrFix4K_E8000 = 0x0505050505050505;
4683 pCtxMsrs->msr.MtrrFix4K_F0000 = 0x0505050505050505;
4684 pCtxMsrs->msr.MtrrFix4K_F8000 = 0x0505050505050505;
4685 pCtxMsrs->msr.aMtrrVarMsrs[0].MtrrPhysBase = GCPhysFirst | X86_MTRR_MT_WB;
4686 pCtxMsrs->msr.aMtrrVarMsrs[0].MtrrPhysMask = uMtrrPhysMask;
4687 }
4688 LogRel(("CPUM: Initialized MTRRs (MtrrPhysMask=%RGp GCPhysLast=%RGp)\n", uMtrrPhysMask, GCPhysLast));
4689 }
4690 break;
4691 }
4692
4693 default:
4694 break;
4695 }
4696 return VINF_SUCCESS;
4697}
4698
4699
4700/**
4701 * Called when the ring-0 init phases completed.
4702 *
4703 * @param pVM The cross context VM structure.
4704 */
4705VMMR3DECL(void) CPUMR3LogCpuIdAndMsrFeatures(PVM pVM)
4706{
4707 /*
4708 * Enable log buffering as we're going to log a lot of lines.
4709 */
4710 bool const fOldBuffered = RTLogRelSetBuffering(true /*fBuffered*/);
4711
4712 /*
4713 * Log the cpuid.
4714 */
4715 RTCPUSET OnlineSet;
4716 LogRel(("CPUM: Logical host processors: %u present, %u max, %u online, online mask: %016RX64\n",
4717 (unsigned)RTMpGetPresentCount(), (unsigned)RTMpGetCount(), (unsigned)RTMpGetOnlineCount(),
4718 RTCpuSetToU64(RTMpGetOnlineSet(&OnlineSet)) ));
4719 RTCPUID cCores = RTMpGetCoreCount();
4720 if (cCores)
4721 LogRel(("CPUM: Physical host cores: %u\n", (unsigned)cCores));
4722 LogRel(("************************* CPUID dump ************************\n"));
4723 DBGFR3Info(pVM->pUVM, "cpuid", "verbose", DBGFR3InfoLogRelHlp());
4724 LogRel(("\n"));
4725 DBGFR3_INFO_LOG_SAFE(pVM, "cpuid", "verbose"); /* macro */
4726 LogRel(("******************** End of CPUID dump **********************\n"));
4727
4728 /*
4729 * Log VT-x extended features.
4730 *
4731 * SVM features are currently all covered under CPUID so there is nothing
4732 * to do here for SVM.
4733 */
4734 if (pVM->cpum.s.HostFeatures.fVmx)
4735 {
4736 LogRel(("*********************** VT-x features ***********************\n"));
4737 DBGFR3Info(pVM->pUVM, "cpumvmxfeat", "default", DBGFR3InfoLogRelHlp());
4738 LogRel(("\n"));
4739 LogRel(("******************* End of VT-x features ********************\n"));
4740 }
4741
4742 /*
4743 * Restore the log buffering state to what it was previously.
4744 */
4745 RTLogRelSetBuffering(fOldBuffered);
4746}
4747
4748
4749/**
4750 * Marks the guest debug state as active.
4751 *
4752 * @param pVCpu The cross context virtual CPU structure.
4753 *
4754 * @note This is used solely by NEM (hence the name) to set the correct flags here
4755 * without loading the host's DRx registers, which is not possible from ring-3 anyway.
4756 * The specific NEM backends have to make sure to load the correct values.
4757 */
4758VMMR3_INT_DECL(void) CPUMR3NemActivateGuestDebugState(PVMCPUCC pVCpu)
4759{
4760 ASMAtomicAndU32(&pVCpu->cpum.s.fUseFlags, ~CPUM_USED_DEBUG_REGS_HYPER);
4761 ASMAtomicOrU32(&pVCpu->cpum.s.fUseFlags, CPUM_USED_DEBUG_REGS_GUEST);
4762}
4763
4764
4765/**
4766 * Marks the hyper debug state as active.
4767 *
4768 * @param pVCpu The cross context virtual CPU structure.
4769 *
4770 * @note This is used solely by NEM (hence the name) to set the correct flags here
4771 * without loading the host's DRx registers, which is not possible from ring-3 anyway.
4772 * The specific NEM backends have to make sure to load the correct values.
4773 */
4774VMMR3_INT_DECL(void) CPUMR3NemActivateHyperDebugState(PVMCPUCC pVCpu)
4775{
4776 /*
4777 * Make sure the hypervisor values are up to date.
4778 */
4779 CPUMRecalcHyperDRx(pVCpu, UINT8_MAX /* no loading, please */);
4780
4781 ASMAtomicAndU32(&pVCpu->cpum.s.fUseFlags, ~CPUM_USED_DEBUG_REGS_GUEST);
4782 ASMAtomicOrU32(&pVCpu->cpum.s.fUseFlags, CPUM_USED_DEBUG_REGS_HYPER);
4783}
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette