VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/CPUM.cpp@ 40082

Last change on this file since 40082 was 40075, checked in by vboxsync, 13 years ago

CPUM.cpp: MXCSR_MASK always was 0xffff not 0 (0xffbf) because of REM.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 188.9 KB
Line 
1/* $Id: CPUM.cpp 40075 2012-02-11 02:47:21Z vboxsync $ */
2/** @file
3 * CPUM - CPU Monitor / Manager.
4 */
5
6/*
7 * Copyright (C) 2006-2010 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/** @page pg_cpum CPUM - CPU Monitor / Manager
19 *
20 * The CPU Monitor / Manager keeps track of all the CPU registers. It is
21 * also responsible for lazy FPU handling and some of the context loading
22 * in raw mode.
23 *
24 * There are three CPU contexts, the most important one is the guest one (GC).
25 * When running in raw-mode (RC) there is a special hyper context for the VMM
26 * part that floats around inside the guest address space. When running in
27 * raw-mode, CPUM also maintains a host context for saving and restoring
28 * registers across world switches. This latter is done in cooperation with the
29 * world switcher (@see pg_vmm).
30 *
31 * @see grp_cpum
32 */
33
34/*******************************************************************************
35* Header Files *
36*******************************************************************************/
37#define LOG_GROUP LOG_GROUP_CPUM
38#include <VBox/vmm/cpum.h>
39#include <VBox/vmm/cpumdis.h>
40#include <VBox/vmm/pgm.h>
41#include <VBox/vmm/mm.h>
42#include <VBox/vmm/selm.h>
43#include <VBox/vmm/dbgf.h>
44#include <VBox/vmm/patm.h>
45#include <VBox/vmm/hwaccm.h>
46#include <VBox/vmm/ssm.h>
47#include "CPUMInternal.h"
48#include <VBox/vmm/vm.h>
49
50#include <VBox/param.h>
51#include <VBox/dis.h>
52#include <VBox/err.h>
53#include <VBox/log.h>
54#include <iprt/assert.h>
55#include <iprt/asm-amd64-x86.h>
56#include <iprt/string.h>
57#include <iprt/mp.h>
58#include <iprt/cpuset.h>
59#include "internal/pgm.h"
60
61
62/*******************************************************************************
63* Defined Constants And Macros *
64*******************************************************************************/
65/** The current saved state version. */
66#define CPUM_SAVED_STATE_VERSION 12
67/** The saved state version of 3.2, 3.1 and 3.3 trunk before the hidden
68 * selector register change (CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID). */
69#define CPUM_SAVED_STATE_VERSION_VER3_2 11
70/** The saved state version of 3.0 and 3.1 trunk before the teleportation
71 * changes. */
72#define CPUM_SAVED_STATE_VERSION_VER3_0 10
73/** The saved state version for the 2.1 trunk before the MSR changes. */
74#define CPUM_SAVED_STATE_VERSION_VER2_1_NOMSR 9
75/** The saved state version of 2.0, used for backwards compatibility. */
76#define CPUM_SAVED_STATE_VERSION_VER2_0 8
77/** The saved state version of 1.6, used for backwards compatibility. */
78#define CPUM_SAVED_STATE_VERSION_VER1_6 6
79
80
81/*******************************************************************************
82* Structures and Typedefs *
83*******************************************************************************/
84
85/**
86 * What kind of cpu info dump to perform.
87 */
88typedef enum CPUMDUMPTYPE
89{
90 CPUMDUMPTYPE_TERSE,
91 CPUMDUMPTYPE_DEFAULT,
92 CPUMDUMPTYPE_VERBOSE
93} CPUMDUMPTYPE;
94/** Pointer to a cpu info dump type. */
95typedef CPUMDUMPTYPE *PCPUMDUMPTYPE;
96
97
98/*******************************************************************************
99* Internal Functions *
100*******************************************************************************/
101static CPUMCPUVENDOR cpumR3DetectVendor(uint32_t uEAX, uint32_t uEBX, uint32_t uECX, uint32_t uEDX);
102static int cpumR3CpuIdInit(PVM pVM);
103static DECLCALLBACK(int) cpumR3LiveExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uPass);
104static DECLCALLBACK(int) cpumR3SaveExec(PVM pVM, PSSMHANDLE pSSM);
105static DECLCALLBACK(int) cpumR3LoadPrep(PVM pVM, PSSMHANDLE pSSM);
106static DECLCALLBACK(int) cpumR3LoadExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
107static DECLCALLBACK(int) cpumR3LoadDone(PVM pVM, PSSMHANDLE pSSM);
108static DECLCALLBACK(void) cpumR3InfoAll(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
109static DECLCALLBACK(void) cpumR3InfoGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
110static DECLCALLBACK(void) cpumR3InfoGuestInstr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
111static DECLCALLBACK(void) cpumR3InfoHyper(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
112static DECLCALLBACK(void) cpumR3InfoHost(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
113static DECLCALLBACK(void) cpumR3CpuIdInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
114
115
116/**
117 * Initializes the CPUM.
118 *
119 * @returns VBox status code.
120 * @param pVM The VM to operate on.
121 */
122VMMR3DECL(int) CPUMR3Init(PVM pVM)
123{
124 LogFlow(("CPUMR3Init\n"));
125
126 /*
127 * Assert alignment and sizes.
128 */
129 AssertCompileMemberAlignment(VM, cpum.s, 32);
130 AssertCompile(sizeof(pVM->cpum.s) <= sizeof(pVM->cpum.padding));
131 AssertCompileSizeAlignment(CPUMCTX, 64);
132 AssertCompileSizeAlignment(CPUMCTXMSR, 64);
133 AssertCompileSizeAlignment(CPUMHOSTCTX, 64);
134 AssertCompileMemberAlignment(VM, cpum, 64);
135 AssertCompileMemberAlignment(VM, aCpus, 64);
136 AssertCompileMemberAlignment(VMCPU, cpum.s, 64);
137 AssertCompileMemberSizeAlignment(VM, aCpus[0].cpum.s, 64);
138
139 /* Calculate the offset from CPUM to CPUMCPU for the first CPU. */
140 pVM->cpum.s.offCPUMCPU0 = RT_OFFSETOF(VM, aCpus[0].cpum) - RT_OFFSETOF(VM, cpum);
141 Assert((uintptr_t)&pVM->cpum + pVM->cpum.s.offCPUMCPU0 == (uintptr_t)&pVM->aCpus[0].cpum);
142
143 /* Calculate the offset from CPUMCPU to CPUM. */
144 for (VMCPUID i = 0; i < pVM->cCpus; i++)
145 {
146 PVMCPU pVCpu = &pVM->aCpus[i];
147
148 /*
149 * Setup any fixed pointers and offsets.
150 */
151 pVCpu->cpum.s.pHyperCoreR3 = CPUMCTX2CORE(&pVCpu->cpum.s.Hyper);
152 pVCpu->cpum.s.pHyperCoreR0 = VM_R0_ADDR(pVM, CPUMCTX2CORE(&pVCpu->cpum.s.Hyper));
153
154 pVCpu->cpum.s.offCPUM = RT_OFFSETOF(VM, aCpus[i].cpum) - RT_OFFSETOF(VM, cpum);
155 Assert((uintptr_t)&pVCpu->cpum - pVCpu->cpum.s.offCPUM == (uintptr_t)&pVM->cpum);
156 }
157
158 /*
159 * Check that the CPU supports the minimum features we require.
160 */
161 if (!ASMHasCpuId())
162 {
163 Log(("The CPU doesn't support CPUID!\n"));
164 return VERR_UNSUPPORTED_CPU;
165 }
166 ASMCpuId_ECX_EDX(1, &pVM->cpum.s.CPUFeatures.ecx, &pVM->cpum.s.CPUFeatures.edx);
167 ASMCpuId_ECX_EDX(0x80000001, &pVM->cpum.s.CPUFeaturesExt.ecx, &pVM->cpum.s.CPUFeaturesExt.edx);
168
169 /* Setup the CR4 AND and OR masks used in the switcher */
170 /* Depends on the presence of FXSAVE(SSE) support on the host CPU */
171 if (!pVM->cpum.s.CPUFeatures.edx.u1FXSR)
172 {
173 Log(("The CPU doesn't support FXSAVE/FXRSTOR!\n"));
174 /* No FXSAVE implies no SSE */
175 pVM->cpum.s.CR4.AndMask = X86_CR4_PVI | X86_CR4_VME;
176 pVM->cpum.s.CR4.OrMask = 0;
177 }
178 else
179 {
180 pVM->cpum.s.CR4.AndMask = X86_CR4_OSXMMEEXCPT | X86_CR4_PVI | X86_CR4_VME;
181 pVM->cpum.s.CR4.OrMask = X86_CR4_OSFSXR;
182 }
183
184 if (!pVM->cpum.s.CPUFeatures.edx.u1MMX)
185 {
186 Log(("The CPU doesn't support MMX!\n"));
187 return VERR_UNSUPPORTED_CPU;
188 }
189 if (!pVM->cpum.s.CPUFeatures.edx.u1TSC)
190 {
191 Log(("The CPU doesn't support TSC!\n"));
192 return VERR_UNSUPPORTED_CPU;
193 }
194 /* Bogus on AMD? */
195 if (!pVM->cpum.s.CPUFeatures.edx.u1SEP)
196 Log(("The CPU doesn't support SYSENTER/SYSEXIT!\n"));
197
198 /*
199 * Detect the host CPU vendor.
200 * (The guest CPU vendor is re-detected later on.)
201 */
202 uint32_t uEAX, uEBX, uECX, uEDX;
203 ASMCpuId(0, &uEAX, &uEBX, &uECX, &uEDX);
204 pVM->cpum.s.enmHostCpuVendor = cpumR3DetectVendor(uEAX, uEBX, uECX, uEDX);
205 pVM->cpum.s.enmGuestCpuVendor = pVM->cpum.s.enmHostCpuVendor;
206
207 /*
208 * Setup hypervisor startup values.
209 */
210
211 /*
212 * Register saved state data item.
213 */
214 int rc = SSMR3RegisterInternal(pVM, "cpum", 1, CPUM_SAVED_STATE_VERSION, sizeof(CPUM),
215 NULL, cpumR3LiveExec, NULL,
216 NULL, cpumR3SaveExec, NULL,
217 cpumR3LoadPrep, cpumR3LoadExec, cpumR3LoadDone);
218 if (RT_FAILURE(rc))
219 return rc;
220
221 /*
222 * Register info handlers and registers with the debugger facility.
223 */
224 DBGFR3InfoRegisterInternal(pVM, "cpum", "Displays the all the cpu states.", &cpumR3InfoAll);
225 DBGFR3InfoRegisterInternal(pVM, "cpumguest", "Displays the guest cpu state.", &cpumR3InfoGuest);
226 DBGFR3InfoRegisterInternal(pVM, "cpumhyper", "Displays the hypervisor cpu state.", &cpumR3InfoHyper);
227 DBGFR3InfoRegisterInternal(pVM, "cpumhost", "Displays the host cpu state.", &cpumR3InfoHost);
228 DBGFR3InfoRegisterInternal(pVM, "cpuid", "Displays the guest cpuid leaves.", &cpumR3CpuIdInfo);
229 DBGFR3InfoRegisterInternal(pVM, "cpumguestinstr", "Displays the current guest instruction.", &cpumR3InfoGuestInstr);
230
231 rc = cpumR3DbgInit(pVM);
232 if (RT_FAILURE(rc))
233 return rc;
234
235 /*
236 * Initialize the Guest CPUID state.
237 */
238 rc = cpumR3CpuIdInit(pVM);
239 if (RT_FAILURE(rc))
240 return rc;
241 CPUMR3Reset(pVM);
242 return VINF_SUCCESS;
243}
244
245
246/**
247 * Detect the CPU vendor give n the
248 *
249 * @returns The vendor.
250 * @param uEAX EAX from CPUID(0).
251 * @param uEBX EBX from CPUID(0).
252 * @param uECX ECX from CPUID(0).
253 * @param uEDX EDX from CPUID(0).
254 */
255static CPUMCPUVENDOR cpumR3DetectVendor(uint32_t uEAX, uint32_t uEBX, uint32_t uECX, uint32_t uEDX)
256{
257 if ( uEAX >= 1
258 && uEBX == X86_CPUID_VENDOR_AMD_EBX
259 && uECX == X86_CPUID_VENDOR_AMD_ECX
260 && uEDX == X86_CPUID_VENDOR_AMD_EDX)
261 return CPUMCPUVENDOR_AMD;
262
263 if ( uEAX >= 1
264 && uEBX == X86_CPUID_VENDOR_INTEL_EBX
265 && uECX == X86_CPUID_VENDOR_INTEL_ECX
266 && uEDX == X86_CPUID_VENDOR_INTEL_EDX)
267 return CPUMCPUVENDOR_INTEL;
268
269 /** @todo detect the other buggers... */
270 return CPUMCPUVENDOR_UNKNOWN;
271}
272
273
274/**
275 * Fetches overrides for a CPUID leaf.
276 *
277 * @returns VBox status code.
278 * @param pLeaf The leaf to load the overrides into.
279 * @param pCfgNode The CFGM node containing the overrides
280 * (/CPUM/HostCPUID/ or /CPUM/CPUID/).
281 * @param iLeaf The CPUID leaf number.
282 */
283static int cpumR3CpuIdFetchLeafOverride(PCPUMCPUID pLeaf, PCFGMNODE pCfgNode, uint32_t iLeaf)
284{
285 PCFGMNODE pLeafNode = CFGMR3GetChildF(pCfgNode, "%RX32", iLeaf);
286 if (pLeafNode)
287 {
288 uint32_t u32;
289 int rc = CFGMR3QueryU32(pLeafNode, "eax", &u32);
290 if (RT_SUCCESS(rc))
291 pLeaf->eax = u32;
292 else
293 AssertReturn(rc == VERR_CFGM_VALUE_NOT_FOUND, rc);
294
295 rc = CFGMR3QueryU32(pLeafNode, "ebx", &u32);
296 if (RT_SUCCESS(rc))
297 pLeaf->ebx = u32;
298 else
299 AssertReturn(rc == VERR_CFGM_VALUE_NOT_FOUND, rc);
300
301 rc = CFGMR3QueryU32(pLeafNode, "ecx", &u32);
302 if (RT_SUCCESS(rc))
303 pLeaf->ecx = u32;
304 else
305 AssertReturn(rc == VERR_CFGM_VALUE_NOT_FOUND, rc);
306
307 rc = CFGMR3QueryU32(pLeafNode, "edx", &u32);
308 if (RT_SUCCESS(rc))
309 pLeaf->edx = u32;
310 else
311 AssertReturn(rc == VERR_CFGM_VALUE_NOT_FOUND, rc);
312
313 }
314 return VINF_SUCCESS;
315}
316
317
318/**
319 * Load the overrides for a set of CPUID leaves.
320 *
321 * @returns VBox status code.
322 * @param paLeaves The leaf array.
323 * @param cLeaves The number of leaves.
324 * @param uStart The start leaf number.
325 * @param pCfgNode The CFGM node containing the overrides
326 * (/CPUM/HostCPUID/ or /CPUM/CPUID/).
327 */
328static int cpumR3CpuIdInitLoadOverrideSet(uint32_t uStart, PCPUMCPUID paLeaves, uint32_t cLeaves, PCFGMNODE pCfgNode)
329{
330 for (uint32_t i = 0; i < cLeaves; i++)
331 {
332 int rc = cpumR3CpuIdFetchLeafOverride(&paLeaves[i], pCfgNode, uStart + i);
333 if (RT_FAILURE(rc))
334 return rc;
335 }
336
337 return VINF_SUCCESS;
338}
339
340/**
341 * Init a set of host CPUID leaves.
342 *
343 * @returns VBox status code.
344 * @param paLeaves The leaf array.
345 * @param cLeaves The number of leaves.
346 * @param uStart The start leaf number.
347 * @param pCfgNode The /CPUM/HostCPUID/ node.
348 */
349static int cpumR3CpuIdInitHostSet(uint32_t uStart, PCPUMCPUID paLeaves, uint32_t cLeaves, PCFGMNODE pCfgNode)
350{
351 /* Using the ECX variant for all of them can't hurt... */
352 for (uint32_t i = 0; i < cLeaves; i++)
353 ASMCpuId_Idx_ECX(uStart + i, 0, &paLeaves[i].eax, &paLeaves[i].ebx, &paLeaves[i].ecx, &paLeaves[i].edx);
354
355 /* Load CPUID leaf override; we currently don't care if the user
356 specifies features the host CPU doesn't support. */
357 return cpumR3CpuIdInitLoadOverrideSet(uStart, paLeaves, cLeaves, pCfgNode);
358}
359
360
361/**
362 * Initializes the emulated CPU's cpuid information.
363 *
364 * @returns VBox status code.
365 * @param pVM The VM to operate on.
366 */
367static int cpumR3CpuIdInit(PVM pVM)
368{
369 PCPUM pCPUM = &pVM->cpum.s;
370 PCFGMNODE pCpumCfg = CFGMR3GetChild(CFGMR3GetRoot(pVM), "CPUM");
371 uint32_t i;
372 int rc;
373
374#define PORTABLE_CLEAR_BITS_WHEN(Lvl, LeafSuffReg, FeatNm, fMask, uValue) \
375 if (pCPUM->u8PortableCpuIdLevel >= (Lvl) && (pCPUM->aGuestCpuId##LeafSuffReg & (fMask)) == (uValue) ) \
376 { \
377 LogRel(("PortableCpuId: " #LeafSuffReg "[" #FeatNm "]: %#x -> 0\n", pCPUM->aGuestCpuId##LeafSuffReg & (fMask))); \
378 pCPUM->aGuestCpuId##LeafSuffReg &= ~(uint32_t)(fMask); \
379 }
380#define PORTABLE_DISABLE_FEATURE_BIT(Lvl, LeafSuffReg, FeatNm, fBitMask) \
381 if (pCPUM->u8PortableCpuIdLevel >= (Lvl) && (pCPUM->aGuestCpuId##LeafSuffReg & (fBitMask)) ) \
382 { \
383 LogRel(("PortableCpuId: " #LeafSuffReg "[" #FeatNm "]: 1 -> 0\n")); \
384 pCPUM->aGuestCpuId##LeafSuffReg &= ~(uint32_t)(fBitMask); \
385 }
386
387 /*
388 * Read the configuration.
389 */
390 /** @cfgm{CPUM/SyntheticCpu, boolean, false}
391 * Enables the Synthetic CPU. The Vendor ID and Processor Name are
392 * completely overridden by VirtualBox custom strings. Some
393 * CPUID information is withheld, like the cache info. */
394 rc = CFGMR3QueryBoolDef(pCpumCfg, "SyntheticCpu", &pCPUM->fSyntheticCpu, false);
395 AssertRCReturn(rc, rc);
396
397 /** @cfgm{CPUM/PortableCpuIdLevel, 8-bit, 0, 3, 0}
398 * When non-zero CPUID features that could cause portability issues will be
399 * stripped. The higher the value the more features gets stripped. Higher
400 * values should only be used when older CPUs are involved since it may
401 * harm performance and maybe also cause problems with specific guests. */
402 rc = CFGMR3QueryU8Def(pCpumCfg, "PortableCpuIdLevel", &pCPUM->u8PortableCpuIdLevel, 0);
403 AssertRCReturn(rc, rc);
404
405 AssertLogRelReturn(!pCPUM->fSyntheticCpu || !pCPUM->u8PortableCpuIdLevel, VERR_CPUM_INCOMPATIBLE_CONFIG);
406
407 /*
408 * Get the host CPUID leaves and redetect the guest CPU vendor (could've
409 * been overridden).
410 */
411 /** @cfgm{CPUM/HostCPUID/[000000xx|800000xx|c000000x]/[eax|ebx|ecx|edx],32-bit}
412 * Overrides the host CPUID leaf values used for calculating the guest CPUID
413 * leaves. This can be used to preserve the CPUID values when moving a VM
414 * to a different machine. Another use is restricting (or extending) the
415 * feature set exposed to the guest. */
416 PCFGMNODE pHostOverrideCfg = CFGMR3GetChild(pCpumCfg, "HostCPUID");
417 rc = cpumR3CpuIdInitHostSet(UINT32_C(0x00000000), &pCPUM->aGuestCpuIdStd[0], RT_ELEMENTS(pCPUM->aGuestCpuIdStd), pHostOverrideCfg);
418 AssertRCReturn(rc, rc);
419 rc = cpumR3CpuIdInitHostSet(UINT32_C(0x80000000), &pCPUM->aGuestCpuIdExt[0], RT_ELEMENTS(pCPUM->aGuestCpuIdExt), pHostOverrideCfg);
420 AssertRCReturn(rc, rc);
421 rc = cpumR3CpuIdInitHostSet(UINT32_C(0xc0000000), &pCPUM->aGuestCpuIdCentaur[0], RT_ELEMENTS(pCPUM->aGuestCpuIdCentaur), pHostOverrideCfg);
422 AssertRCReturn(rc, rc);
423
424 pCPUM->enmGuestCpuVendor = cpumR3DetectVendor(pCPUM->aGuestCpuIdStd[0].eax, pCPUM->aGuestCpuIdStd[0].ebx,
425 pCPUM->aGuestCpuIdStd[0].ecx, pCPUM->aGuestCpuIdStd[0].edx);
426
427 /*
428 * Determine the default leaf.
429 *
430 * Intel returns values of the highest standard function, while AMD
431 * returns zeros. VIA on the other hand seems to returning nothing or
432 * perhaps some random garbage, we don't try to duplicate this behavior.
433 */
434 ASMCpuId(pCPUM->aGuestCpuIdStd[0].eax + 10, /** @todo r=bird: Use the host value here in case of overrides and more than 10 leaves being stripped already. */
435 &pCPUM->GuestCpuIdDef.eax, &pCPUM->GuestCpuIdDef.ebx,
436 &pCPUM->GuestCpuIdDef.ecx, &pCPUM->GuestCpuIdDef.edx);
437
438
439 /* Cpuid 1 & 0x80000001:
440 * Only report features we can support.
441 *
442 * Note! When enabling new features the Synthetic CPU and Portable CPUID
443 * options may require adjusting (i.e. stripping what was enabled).
444 */
445 pCPUM->aGuestCpuIdStd[1].edx &= X86_CPUID_FEATURE_EDX_FPU
446 | X86_CPUID_FEATURE_EDX_VME
447 | X86_CPUID_FEATURE_EDX_DE
448 | X86_CPUID_FEATURE_EDX_PSE
449 | X86_CPUID_FEATURE_EDX_TSC
450 | X86_CPUID_FEATURE_EDX_MSR
451 //| X86_CPUID_FEATURE_EDX_PAE - set later if configured.
452 | X86_CPUID_FEATURE_EDX_MCE
453 | X86_CPUID_FEATURE_EDX_CX8
454 //| X86_CPUID_FEATURE_EDX_APIC - set by the APIC device if present.
455 /* Note! we don't report sysenter/sysexit support due to our inability to keep the IOPL part of eflags in sync while in ring 1 (see #1757) */
456 //| X86_CPUID_FEATURE_EDX_SEP
457 | X86_CPUID_FEATURE_EDX_MTRR
458 | X86_CPUID_FEATURE_EDX_PGE
459 | X86_CPUID_FEATURE_EDX_MCA
460 | X86_CPUID_FEATURE_EDX_CMOV
461 | X86_CPUID_FEATURE_EDX_PAT
462 | X86_CPUID_FEATURE_EDX_PSE36
463 //| X86_CPUID_FEATURE_EDX_PSN - no serial number.
464 | X86_CPUID_FEATURE_EDX_CLFSH
465 //| X86_CPUID_FEATURE_EDX_DS - no debug store.
466 //| X86_CPUID_FEATURE_EDX_ACPI - not virtualized yet.
467 | X86_CPUID_FEATURE_EDX_MMX
468 | X86_CPUID_FEATURE_EDX_FXSR
469 | X86_CPUID_FEATURE_EDX_SSE
470 | X86_CPUID_FEATURE_EDX_SSE2
471 //| X86_CPUID_FEATURE_EDX_SS - no self snoop.
472 //| X86_CPUID_FEATURE_EDX_HTT - no hyperthreading.
473 //| X86_CPUID_FEATURE_EDX_TM - no thermal monitor.
474 //| X86_CPUID_FEATURE_EDX_PBE - no pending break enabled.
475 | 0;
476 pCPUM->aGuestCpuIdStd[1].ecx &= 0
477 | X86_CPUID_FEATURE_ECX_SSE3
478 /* Can't properly emulate monitor & mwait with guest SMP; force the guest to use hlt for idling VCPUs. */
479 | ((pVM->cCpus == 1) ? X86_CPUID_FEATURE_ECX_MONITOR : 0)
480 //| X86_CPUID_FEATURE_ECX_CPLDS - no CPL qualified debug store.
481 //| X86_CPUID_FEATURE_ECX_VMX - not virtualized.
482 //| X86_CPUID_FEATURE_ECX_EST - no extended speed step.
483 //| X86_CPUID_FEATURE_ECX_TM2 - no thermal monitor 2.
484 | X86_CPUID_FEATURE_ECX_SSSE3
485 //| X86_CPUID_FEATURE_ECX_CNTXID - no L1 context id (MSR++).
486 //| X86_CPUID_FEATURE_ECX_CX16 - no cmpxchg16b
487 /* ECX Bit 14 - xTPR Update Control. Processor supports changing IA32_MISC_ENABLES[bit 23]. */
488 //| X86_CPUID_FEATURE_ECX_TPRUPDATE
489 /* ECX Bit 21 - x2APIC support - not yet. */
490 // | X86_CPUID_FEATURE_ECX_X2APIC
491 /* ECX Bit 23 - POPCNT instruction. */
492 //| X86_CPUID_FEATURE_ECX_POPCNT
493 | 0;
494 if (pCPUM->u8PortableCpuIdLevel > 0)
495 {
496 PORTABLE_CLEAR_BITS_WHEN(1, Std[1].eax, ProcessorType, (UINT32_C(3) << 12), (UINT32_C(2) << 12));
497 PORTABLE_DISABLE_FEATURE_BIT(1, Std[1].ecx, SSSE3, X86_CPUID_FEATURE_ECX_SSSE3);
498 PORTABLE_DISABLE_FEATURE_BIT(1, Std[1].ecx, SSE3, X86_CPUID_FEATURE_ECX_SSE3);
499 PORTABLE_DISABLE_FEATURE_BIT(2, Std[1].edx, SSE2, X86_CPUID_FEATURE_EDX_SSE2);
500 PORTABLE_DISABLE_FEATURE_BIT(3, Std[1].edx, SSE, X86_CPUID_FEATURE_EDX_SSE);
501 PORTABLE_DISABLE_FEATURE_BIT(3, Std[1].edx, CLFSH, X86_CPUID_FEATURE_EDX_CLFSH);
502 PORTABLE_DISABLE_FEATURE_BIT(3, Std[1].edx, CMOV, X86_CPUID_FEATURE_EDX_CMOV);
503
504 Assert(!(pCPUM->aGuestCpuIdStd[1].edx & ( X86_CPUID_FEATURE_EDX_SEP
505 | X86_CPUID_FEATURE_EDX_PSN
506 | X86_CPUID_FEATURE_EDX_DS
507 | X86_CPUID_FEATURE_EDX_ACPI
508 | X86_CPUID_FEATURE_EDX_SS
509 | X86_CPUID_FEATURE_EDX_TM
510 | X86_CPUID_FEATURE_EDX_PBE
511 )));
512 Assert(!(pCPUM->aGuestCpuIdStd[1].ecx & ( X86_CPUID_FEATURE_ECX_PCLMUL
513 | X86_CPUID_FEATURE_ECX_DTES64
514 | X86_CPUID_FEATURE_ECX_CPLDS
515 | X86_CPUID_FEATURE_ECX_VMX
516 | X86_CPUID_FEATURE_ECX_SMX
517 | X86_CPUID_FEATURE_ECX_EST
518 | X86_CPUID_FEATURE_ECX_TM2
519 | X86_CPUID_FEATURE_ECX_CNTXID
520 | X86_CPUID_FEATURE_ECX_FMA
521 | X86_CPUID_FEATURE_ECX_CX16
522 | X86_CPUID_FEATURE_ECX_TPRUPDATE
523 | X86_CPUID_FEATURE_ECX_PDCM
524 | X86_CPUID_FEATURE_ECX_DCA
525 | X86_CPUID_FEATURE_ECX_MOVBE
526 | X86_CPUID_FEATURE_ECX_AES
527 | X86_CPUID_FEATURE_ECX_POPCNT
528 | X86_CPUID_FEATURE_ECX_XSAVE
529 | X86_CPUID_FEATURE_ECX_OSXSAVE
530 | X86_CPUID_FEATURE_ECX_AVX
531 )));
532 }
533
534 /* Cpuid 0x80000001:
535 * Only report features we can support.
536 *
537 * Note! When enabling new features the Synthetic CPU and Portable CPUID
538 * options may require adjusting (i.e. stripping what was enabled).
539 *
540 * ASSUMES that this is ALWAYS the AMD defined feature set if present.
541 */
542 pCPUM->aGuestCpuIdExt[1].edx &= X86_CPUID_AMD_FEATURE_EDX_FPU
543 | X86_CPUID_AMD_FEATURE_EDX_VME
544 | X86_CPUID_AMD_FEATURE_EDX_DE
545 | X86_CPUID_AMD_FEATURE_EDX_PSE
546 | X86_CPUID_AMD_FEATURE_EDX_TSC
547 | X86_CPUID_AMD_FEATURE_EDX_MSR //?? this means AMD MSRs..
548 //| X86_CPUID_AMD_FEATURE_EDX_PAE - not implemented yet.
549 //| X86_CPUID_AMD_FEATURE_EDX_MCE - not virtualized yet.
550 | X86_CPUID_AMD_FEATURE_EDX_CX8
551 //| X86_CPUID_AMD_FEATURE_EDX_APIC - set by the APIC device if present.
552 /* Note! we don't report sysenter/sysexit support due to our inability to keep the IOPL part of eflags in sync while in ring 1 (see #1757) */
553 //| X86_CPUID_AMD_FEATURE_EDX_SEP
554 | X86_CPUID_AMD_FEATURE_EDX_MTRR
555 | X86_CPUID_AMD_FEATURE_EDX_PGE
556 | X86_CPUID_AMD_FEATURE_EDX_MCA
557 | X86_CPUID_AMD_FEATURE_EDX_CMOV
558 | X86_CPUID_AMD_FEATURE_EDX_PAT
559 | X86_CPUID_AMD_FEATURE_EDX_PSE36
560 //| X86_CPUID_AMD_FEATURE_EDX_NX - not virtualized, requires PAE.
561 //| X86_CPUID_AMD_FEATURE_EDX_AXMMX
562 | X86_CPUID_AMD_FEATURE_EDX_MMX
563 | X86_CPUID_AMD_FEATURE_EDX_FXSR
564 | X86_CPUID_AMD_FEATURE_EDX_FFXSR
565 //| X86_CPUID_AMD_FEATURE_EDX_PAGE1GB
566 //| X86_CPUID_AMD_FEATURE_EDX_RDTSCP - AMD only; turned on when necessary
567 //| X86_CPUID_AMD_FEATURE_EDX_LONG_MODE - turned on when necessary
568 | X86_CPUID_AMD_FEATURE_EDX_3DNOW_EX
569 | X86_CPUID_AMD_FEATURE_EDX_3DNOW
570 | 0;
571 pCPUM->aGuestCpuIdExt[1].ecx &= 0
572 //| X86_CPUID_AMD_FEATURE_ECX_LAHF_SAHF
573 //| X86_CPUID_AMD_FEATURE_ECX_CMPL
574 //| X86_CPUID_AMD_FEATURE_ECX_SVM - not virtualized.
575 //| X86_CPUID_AMD_FEATURE_ECX_EXT_APIC
576 /* Note: This could prevent teleporting from AMD to Intel CPUs! */
577 | X86_CPUID_AMD_FEATURE_ECX_CR8L /* expose lock mov cr0 = mov cr8 hack for guests that can use this feature to access the TPR. */
578 //| X86_CPUID_AMD_FEATURE_ECX_ABM
579 //| X86_CPUID_AMD_FEATURE_ECX_SSE4A
580 //| X86_CPUID_AMD_FEATURE_ECX_MISALNSSE
581 //| X86_CPUID_AMD_FEATURE_ECX_3DNOWPRF
582 //| X86_CPUID_AMD_FEATURE_ECX_OSVW
583 //| X86_CPUID_AMD_FEATURE_ECX_IBS
584 //| X86_CPUID_AMD_FEATURE_ECX_SSE5
585 //| X86_CPUID_AMD_FEATURE_ECX_SKINIT
586 //| X86_CPUID_AMD_FEATURE_ECX_WDT
587 | 0;
588 if (pCPUM->u8PortableCpuIdLevel > 0)
589 {
590 PORTABLE_DISABLE_FEATURE_BIT(1, Ext[1].ecx, CR8L, X86_CPUID_AMD_FEATURE_ECX_CR8L);
591 PORTABLE_DISABLE_FEATURE_BIT(1, Ext[1].edx, 3DNOW, X86_CPUID_AMD_FEATURE_EDX_3DNOW);
592 PORTABLE_DISABLE_FEATURE_BIT(1, Ext[1].edx, 3DNOW_EX, X86_CPUID_AMD_FEATURE_EDX_3DNOW_EX);
593 PORTABLE_DISABLE_FEATURE_BIT(1, Ext[1].edx, FFXSR, X86_CPUID_AMD_FEATURE_EDX_FFXSR);
594 PORTABLE_DISABLE_FEATURE_BIT(1, Ext[1].edx, RDTSCP, X86_CPUID_AMD_FEATURE_EDX_RDTSCP);
595 PORTABLE_DISABLE_FEATURE_BIT(2, Ext[1].ecx, LAHF_SAHF, X86_CPUID_AMD_FEATURE_ECX_LAHF_SAHF);
596 PORTABLE_DISABLE_FEATURE_BIT(3, Ext[1].ecx, CMOV, X86_CPUID_AMD_FEATURE_EDX_CMOV);
597
598 Assert(!(pCPUM->aGuestCpuIdExt[1].ecx & ( X86_CPUID_AMD_FEATURE_ECX_CMPL
599 | X86_CPUID_AMD_FEATURE_ECX_SVM
600 | X86_CPUID_AMD_FEATURE_ECX_EXT_APIC
601 | X86_CPUID_AMD_FEATURE_ECX_CR8L
602 | X86_CPUID_AMD_FEATURE_ECX_ABM
603 | X86_CPUID_AMD_FEATURE_ECX_SSE4A
604 | X86_CPUID_AMD_FEATURE_ECX_MISALNSSE
605 | X86_CPUID_AMD_FEATURE_ECX_3DNOWPRF
606 | X86_CPUID_AMD_FEATURE_ECX_OSVW
607 | X86_CPUID_AMD_FEATURE_ECX_IBS
608 | X86_CPUID_AMD_FEATURE_ECX_SSE5
609 | X86_CPUID_AMD_FEATURE_ECX_SKINIT
610 | X86_CPUID_AMD_FEATURE_ECX_WDT
611 | UINT32_C(0xffffc000)
612 )));
613 Assert(!(pCPUM->aGuestCpuIdExt[1].edx & ( RT_BIT(10)
614 | X86_CPUID_AMD_FEATURE_EDX_SEP
615 | RT_BIT(18)
616 | RT_BIT(19)
617 | RT_BIT(21)
618 | X86_CPUID_AMD_FEATURE_EDX_AXMMX
619 | X86_CPUID_AMD_FEATURE_EDX_PAGE1GB
620 | RT_BIT(28)
621 )));
622 }
623
624 /*
625 * Apply the Synthetic CPU modifications. (TODO: move this up)
626 */
627 if (pCPUM->fSyntheticCpu)
628 {
629 static const char s_szVendor[13] = "VirtualBox ";
630 static const char s_szProcessor[48] = "VirtualBox SPARCx86 Processor v1000 "; /* includes null terminator */
631
632 pCPUM->enmGuestCpuVendor = CPUMCPUVENDOR_SYNTHETIC;
633
634 /* Limit the nr of standard leaves; 5 for monitor/mwait */
635 pCPUM->aGuestCpuIdStd[0].eax = RT_MIN(pCPUM->aGuestCpuIdStd[0].eax, 5);
636
637 /* 0: Vendor */
638 pCPUM->aGuestCpuIdStd[0].ebx = pCPUM->aGuestCpuIdExt[0].ebx = ((uint32_t *)s_szVendor)[0];
639 pCPUM->aGuestCpuIdStd[0].ecx = pCPUM->aGuestCpuIdExt[0].ecx = ((uint32_t *)s_szVendor)[2];
640 pCPUM->aGuestCpuIdStd[0].edx = pCPUM->aGuestCpuIdExt[0].edx = ((uint32_t *)s_szVendor)[1];
641
642 /* 1.eax: Version information. family : model : stepping */
643 pCPUM->aGuestCpuIdStd[1].eax = (0xf << 8) + (0x1 << 4) + 1;
644
645 /* Leaves 2 - 4 are Intel only - zero them out */
646 memset(&pCPUM->aGuestCpuIdStd[2], 0, sizeof(pCPUM->aGuestCpuIdStd[2]));
647 memset(&pCPUM->aGuestCpuIdStd[3], 0, sizeof(pCPUM->aGuestCpuIdStd[3]));
648 memset(&pCPUM->aGuestCpuIdStd[4], 0, sizeof(pCPUM->aGuestCpuIdStd[4]));
649
650 /* Leaf 5 = monitor/mwait */
651
652 /* Limit the nr of extended leaves: 0x80000008 to include the max virtual and physical address size (64 bits guests). */
653 pCPUM->aGuestCpuIdExt[0].eax = RT_MIN(pCPUM->aGuestCpuIdExt[0].eax, 0x80000008);
654 /* AMD only - set to zero. */
655 pCPUM->aGuestCpuIdExt[0].ebx = pCPUM->aGuestCpuIdExt[0].ecx = pCPUM->aGuestCpuIdExt[0].edx = 0;
656
657 /* 0x800000001: AMD only; shared feature bits are set dynamically. */
658 memset(&pCPUM->aGuestCpuIdExt[1], 0, sizeof(pCPUM->aGuestCpuIdExt[1]));
659
660 /* 0x800000002-4: Processor Name String Identifier. */
661 pCPUM->aGuestCpuIdExt[2].eax = ((uint32_t *)s_szProcessor)[0];
662 pCPUM->aGuestCpuIdExt[2].ebx = ((uint32_t *)s_szProcessor)[1];
663 pCPUM->aGuestCpuIdExt[2].ecx = ((uint32_t *)s_szProcessor)[2];
664 pCPUM->aGuestCpuIdExt[2].edx = ((uint32_t *)s_szProcessor)[3];
665 pCPUM->aGuestCpuIdExt[3].eax = ((uint32_t *)s_szProcessor)[4];
666 pCPUM->aGuestCpuIdExt[3].ebx = ((uint32_t *)s_szProcessor)[5];
667 pCPUM->aGuestCpuIdExt[3].ecx = ((uint32_t *)s_szProcessor)[6];
668 pCPUM->aGuestCpuIdExt[3].edx = ((uint32_t *)s_szProcessor)[7];
669 pCPUM->aGuestCpuIdExt[4].eax = ((uint32_t *)s_szProcessor)[8];
670 pCPUM->aGuestCpuIdExt[4].ebx = ((uint32_t *)s_szProcessor)[9];
671 pCPUM->aGuestCpuIdExt[4].ecx = ((uint32_t *)s_szProcessor)[10];
672 pCPUM->aGuestCpuIdExt[4].edx = ((uint32_t *)s_szProcessor)[11];
673
674 /* 0x800000005-7 - reserved -> zero */
675 memset(&pCPUM->aGuestCpuIdExt[5], 0, sizeof(pCPUM->aGuestCpuIdExt[5]));
676 memset(&pCPUM->aGuestCpuIdExt[6], 0, sizeof(pCPUM->aGuestCpuIdExt[6]));
677 memset(&pCPUM->aGuestCpuIdExt[7], 0, sizeof(pCPUM->aGuestCpuIdExt[7]));
678
679 /* 0x800000008: only the max virtual and physical address size. */
680 pCPUM->aGuestCpuIdExt[8].ecx = pCPUM->aGuestCpuIdExt[8].ebx = pCPUM->aGuestCpuIdExt[8].edx = 0; /* reserved */
681 }
682
683 /*
684 * Hide HTT, multicode, SMP, whatever.
685 * (APIC-ID := 0 and #LogCpus := 0)
686 */
687 pCPUM->aGuestCpuIdStd[1].ebx &= 0x0000ffff;
688#ifdef VBOX_WITH_MULTI_CORE
689 if ( pCPUM->enmGuestCpuVendor != CPUMCPUVENDOR_SYNTHETIC
690 && pVM->cCpus > 1)
691 {
692 /* If CPUID Fn0000_0001_EDX[HTT] = 1 then LogicalProcessorCount is the number of threads per CPU core times the number of CPU cores per processor */
693 pCPUM->aGuestCpuIdStd[1].ebx |= (pVM->cCpus << 16);
694 pCPUM->aGuestCpuIdStd[1].edx |= X86_CPUID_FEATURE_EDX_HTT; /* necessary for hyper-threading *or* multi-core CPUs */
695 }
696#endif
697
698 /* Cpuid 2:
699 * Intel: Cache and TLB information
700 * AMD: Reserved
701 * Safe to expose; restrict the number of calls to 1 for the portable case.
702 */
703 if ( pCPUM->u8PortableCpuIdLevel > 0
704 && pCPUM->aGuestCpuIdStd[0].eax >= 2
705 && (pCPUM->aGuestCpuIdStd[2].eax & 0xff) > 1)
706 {
707 LogRel(("PortableCpuId: Std[2].al: %d -> 1\n", pCPUM->aGuestCpuIdStd[2].eax & 0xff));
708 pCPUM->aGuestCpuIdStd[2].eax &= UINT32_C(0xfffffffe);
709 }
710
711 /* Cpuid 3:
712 * Intel: EAX, EBX - reserved (transmeta uses these)
713 * ECX, EDX - Processor Serial Number if available, otherwise reserved
714 * AMD: Reserved
715 * Safe to expose
716 */
717 if (!(pCPUM->aGuestCpuIdStd[1].edx & X86_CPUID_FEATURE_EDX_PSN))
718 {
719 pCPUM->aGuestCpuIdStd[3].ecx = pCPUM->aGuestCpuIdStd[3].edx = 0;
720 if (pCPUM->u8PortableCpuIdLevel > 0)
721 pCPUM->aGuestCpuIdStd[3].eax = pCPUM->aGuestCpuIdStd[3].ebx = 0;
722 }
723
724 /* Cpuid 4:
725 * Intel: Deterministic Cache Parameters Leaf
726 * Note: Depends on the ECX input! -> Feeling rather lazy now, so we just return 0
727 * AMD: Reserved
728 * Safe to expose, except for EAX:
729 * Bits 25-14: Maximum number of addressable IDs for logical processors sharing this cache (see note)**
730 * Bits 31-26: Maximum number of processor cores in this physical package**
731 * Note: These SMP values are constant regardless of ECX
732 */
733 pCPUM->aGuestCpuIdStd[4].ecx = pCPUM->aGuestCpuIdStd[4].edx = 0;
734 pCPUM->aGuestCpuIdStd[4].eax = pCPUM->aGuestCpuIdStd[4].ebx = 0;
735#ifdef VBOX_WITH_MULTI_CORE
736 if ( pVM->cCpus > 1
737 && pVM->cpum.s.enmGuestCpuVendor == CPUMCPUVENDOR_INTEL)
738 {
739 AssertReturn(pVM->cCpus <= 64, VERR_TOO_MANY_CPUS);
740 /* One logical processor with possibly multiple cores. */
741 /* See http://www.intel.com/Assets/PDF/appnote/241618.pdf p. 29 */
742 pCPUM->aGuestCpuIdStd[4].eax |= ((pVM->cCpus - 1) << 26); /* 6 bits only -> 64 cores! */
743 }
744#endif
745
746 /* Cpuid 5: Monitor/mwait Leaf
747 * Intel: ECX, EDX - reserved
748 * EAX, EBX - Smallest and largest monitor line size
749 * AMD: EDX - reserved
750 * EAX, EBX - Smallest and largest monitor line size
751 * ECX - extensions (ignored for now)
752 * Safe to expose
753 */
754 if (!(pCPUM->aGuestCpuIdStd[1].ecx & X86_CPUID_FEATURE_ECX_MONITOR))
755 pCPUM->aGuestCpuIdStd[5].eax = pCPUM->aGuestCpuIdStd[5].ebx = 0;
756
757 pCPUM->aGuestCpuIdStd[5].ecx = pCPUM->aGuestCpuIdStd[5].edx = 0;
758 /** @cfgm{/CPUM/MWaitExtensions, boolean, false}
759 * Expose MWAIT extended features to the guest. For now we expose
760 * just MWAIT break on interrupt feature (bit 1).
761 */
762 bool fMWaitExtensions;
763 rc = CFGMR3QueryBoolDef(pCpumCfg, "MWaitExtensions", &fMWaitExtensions, false); AssertRCReturn(rc, rc);
764 if (fMWaitExtensions)
765 {
766 pCPUM->aGuestCpuIdStd[5].ecx = X86_CPUID_MWAIT_ECX_EXT | X86_CPUID_MWAIT_ECX_BREAKIRQIF0;
767 /* @todo: for now we just expose host's MWAIT C-states, although conceptually
768 it shall be part of our power management virtualization model */
769#if 0
770 /* MWAIT sub C-states */
771 pCPUM->aGuestCpuIdStd[5].edx =
772 (0 << 0) /* 0 in C0 */ |
773 (2 << 4) /* 2 in C1 */ |
774 (2 << 8) /* 2 in C2 */ |
775 (2 << 12) /* 2 in C3 */ |
776 (0 << 16) /* 0 in C4 */
777 ;
778#endif
779 }
780 else
781 pCPUM->aGuestCpuIdStd[5].ecx = pCPUM->aGuestCpuIdStd[5].edx = 0;
782
783 /* Cpuid 0x800000005 & 0x800000006 contain information about L1, L2 & L3 cache and TLB identifiers.
784 * Safe to pass on to the guest.
785 *
786 * Intel: 0x800000005 reserved
787 * 0x800000006 L2 cache information
788 * AMD: 0x800000005 L1 cache information
789 * 0x800000006 L2/L3 cache information
790 */
791
792 /* Cpuid 0x800000007:
793 * AMD: EAX, EBX, ECX - reserved
794 * EDX: Advanced Power Management Information
795 * Intel: Reserved
796 */
797 if (pCPUM->aGuestCpuIdExt[0].eax >= UINT32_C(0x80000007))
798 {
799 Assert(pVM->cpum.s.enmGuestCpuVendor != CPUMCPUVENDOR_INVALID);
800
801 pCPUM->aGuestCpuIdExt[7].eax = pCPUM->aGuestCpuIdExt[7].ebx = pCPUM->aGuestCpuIdExt[7].ecx = 0;
802
803 if (pVM->cpum.s.enmGuestCpuVendor == CPUMCPUVENDOR_AMD)
804 {
805 /* Only expose the TSC invariant capability bit to the guest. */
806 pCPUM->aGuestCpuIdExt[7].edx &= 0
807 //| X86_CPUID_AMD_ADVPOWER_EDX_TS
808 //| X86_CPUID_AMD_ADVPOWER_EDX_FID
809 //| X86_CPUID_AMD_ADVPOWER_EDX_VID
810 //| X86_CPUID_AMD_ADVPOWER_EDX_TTP
811 //| X86_CPUID_AMD_ADVPOWER_EDX_TM
812 //| X86_CPUID_AMD_ADVPOWER_EDX_STC
813 //| X86_CPUID_AMD_ADVPOWER_EDX_MC
814 //| X86_CPUID_AMD_ADVPOWER_EDX_HWPSTATE
815#if 0 /* We don't expose X86_CPUID_AMD_ADVPOWER_EDX_TSCINVAR, because newer
816 * Linux kernels blindly assume that the AMD performance counters work
817 * if this is set for 64 bits guests. (Can't really find a CPUID feature
818 * bit for them though.) */
819 | X86_CPUID_AMD_ADVPOWER_EDX_TSCINVAR
820#endif
821 | 0;
822 }
823 else
824 pCPUM->aGuestCpuIdExt[7].edx = 0;
825 }
826
827 /* Cpuid 0x800000008:
828 * AMD: EBX, EDX - reserved
829 * EAX: Virtual/Physical/Guest address Size
830 * ECX: Number of cores + APICIdCoreIdSize
831 * Intel: EAX: Virtual/Physical address Size
832 * EBX, ECX, EDX - reserved
833 */
834 if (pCPUM->aGuestCpuIdExt[0].eax >= UINT32_C(0x80000008))
835 {
836 /* Only expose the virtual and physical address sizes to the guest. */
837 pCPUM->aGuestCpuIdExt[8].eax &= UINT32_C(0x0000ffff);
838 pCPUM->aGuestCpuIdExt[8].ebx = pCPUM->aGuestCpuIdExt[8].edx = 0; /* reserved */
839 /* Set APICIdCoreIdSize to zero (use legacy method to determine the number of cores per cpu)
840 * NC (0-7) Number of cores; 0 equals 1 core */
841 pCPUM->aGuestCpuIdExt[8].ecx = 0;
842#ifdef VBOX_WITH_MULTI_CORE
843 if ( pVM->cCpus > 1
844 && pVM->cpum.s.enmGuestCpuVendor == CPUMCPUVENDOR_AMD)
845 {
846 /* Legacy method to determine the number of cores. */
847 pCPUM->aGuestCpuIdExt[1].ecx |= X86_CPUID_AMD_FEATURE_ECX_CMPL;
848 pCPUM->aGuestCpuIdExt[8].ecx |= (pVM->cCpus - 1); /* NC: Number of CPU cores - 1; 8 bits */
849 }
850#endif
851 }
852
853 /** @cfgm{/CPUM/NT4LeafLimit, boolean, false}
854 * Limit the number of standard CPUID leaves to 0..3 to prevent NT4 from
855 * bugchecking with MULTIPROCESSOR_CONFIGURATION_NOT_SUPPORTED (0x3e).
856 * This option corresponds somewhat to IA32_MISC_ENABLES.BOOT_NT4[bit 22].
857 */
858 bool fNt4LeafLimit;
859 rc = CFGMR3QueryBoolDef(pCpumCfg, "NT4LeafLimit", &fNt4LeafLimit, false); AssertRCReturn(rc, rc);
860 if (fNt4LeafLimit)
861 pCPUM->aGuestCpuIdStd[0].eax = 3; /** @todo r=bird: shouldn't we check if pCPUM->aGuestCpuIdStd[0].eax > 3 before setting it 3 here? */
862
863 /*
864 * Limit it the number of entries and fill the remaining with the defaults.
865 *
866 * The limits are masking off stuff about power saving and similar, this
867 * is perhaps a bit crudely done as there is probably some relatively harmless
868 * info too in these leaves (like words about having a constant TSC).
869 */
870 if (pCPUM->aGuestCpuIdStd[0].eax > 5)
871 pCPUM->aGuestCpuIdStd[0].eax = 5;
872 for (i = pCPUM->aGuestCpuIdStd[0].eax + 1; i < RT_ELEMENTS(pCPUM->aGuestCpuIdStd); i++)
873 pCPUM->aGuestCpuIdStd[i] = pCPUM->GuestCpuIdDef;
874
875 if (pCPUM->aGuestCpuIdExt[0].eax > UINT32_C(0x80000008))
876 pCPUM->aGuestCpuIdExt[0].eax = UINT32_C(0x80000008);
877 for (i = pCPUM->aGuestCpuIdExt[0].eax >= UINT32_C(0x80000000)
878 ? pCPUM->aGuestCpuIdExt[0].eax - UINT32_C(0x80000000) + 1
879 : 0;
880 i < RT_ELEMENTS(pCPUM->aGuestCpuIdExt);
881 i++)
882 pCPUM->aGuestCpuIdExt[i] = pCPUM->GuestCpuIdDef;
883
884 /*
885 * Centaur stuff (VIA).
886 *
887 * The important part here (we think) is to make sure the 0xc0000000
888 * function returns 0xc0000001. As for the features, we don't currently
889 * let on about any of those... 0xc0000002 seems to be some
890 * temperature/hz/++ stuff, include it as well (static).
891 */
892 if ( pCPUM->aGuestCpuIdCentaur[0].eax >= UINT32_C(0xc0000000)
893 && pCPUM->aGuestCpuIdCentaur[0].eax <= UINT32_C(0xc0000004))
894 {
895 pCPUM->aGuestCpuIdCentaur[0].eax = RT_MIN(pCPUM->aGuestCpuIdCentaur[0].eax, UINT32_C(0xc0000002));
896 pCPUM->aGuestCpuIdCentaur[1].edx = 0; /* all features hidden */
897 for (i = pCPUM->aGuestCpuIdCentaur[0].eax - UINT32_C(0xc0000000);
898 i < RT_ELEMENTS(pCPUM->aGuestCpuIdCentaur);
899 i++)
900 pCPUM->aGuestCpuIdCentaur[i] = pCPUM->GuestCpuIdDef;
901 }
902 else
903 for (i = 0; i < RT_ELEMENTS(pCPUM->aGuestCpuIdCentaur); i++)
904 pCPUM->aGuestCpuIdCentaur[i] = pCPUM->GuestCpuIdDef;
905
906
907 /*
908 * Load CPUID overrides from configuration.
909 * Note: Kind of redundant now, but allows unchanged overrides
910 */
911 /** @cfgm{CPUM/CPUID/[000000xx|800000xx|c000000x]/[eax|ebx|ecx|edx],32-bit}
912 * Overrides the CPUID leaf values. */
913 PCFGMNODE pOverrideCfg = CFGMR3GetChild(pCpumCfg, "CPUID");
914 rc = cpumR3CpuIdInitLoadOverrideSet(UINT32_C(0x00000000), &pCPUM->aGuestCpuIdStd[0], RT_ELEMENTS(pCPUM->aGuestCpuIdStd), pOverrideCfg);
915 AssertRCReturn(rc, rc);
916 rc = cpumR3CpuIdInitLoadOverrideSet(UINT32_C(0x80000000), &pCPUM->aGuestCpuIdExt[0], RT_ELEMENTS(pCPUM->aGuestCpuIdExt), pOverrideCfg);
917 AssertRCReturn(rc, rc);
918 rc = cpumR3CpuIdInitLoadOverrideSet(UINT32_C(0xc0000000), &pCPUM->aGuestCpuIdCentaur[0], RT_ELEMENTS(pCPUM->aGuestCpuIdCentaur), pOverrideCfg);
919 AssertRCReturn(rc, rc);
920
921 /*
922 * Check if PAE was explicitely enabled by the user.
923 */
924 bool fEnable;
925 rc = CFGMR3QueryBoolDef(CFGMR3GetRoot(pVM), "EnablePAE", &fEnable, false); AssertRCReturn(rc, rc);
926 if (fEnable)
927 CPUMSetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_PAE);
928
929 /*
930 * We don't normally enable NX for raw-mode, so give the user a chance to
931 * force it on.
932 */
933 rc = CFGMR3QueryBoolDef(pCpumCfg, "EnableNX", &fEnable, false); AssertRCReturn(rc, rc);
934 if (fEnable)
935 CPUMSetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_NXE);
936
937 /*
938 * We don't enable the Hypervisor Present bit by default, but it may
939 * be needed by some guests.
940 */
941 rc = CFGMR3QueryBoolDef(pCpumCfg, "EnableHVP", &fEnable, false); AssertRCReturn(rc, rc);
942 if (fEnable)
943 CPUMSetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_HVP);
944 /*
945 * Log the cpuid and we're good.
946 */
947 bool fOldBuffered = RTLogRelSetBuffering(true /*fBuffered*/);
948 RTCPUSET OnlineSet;
949 LogRel(("Logical host processors: %u present, %u max, %u online, online mask: %016RX64\n",
950 (unsigned)RTMpGetPresentCount(), (unsigned)RTMpGetCount(), (unsigned)RTMpGetOnlineCount(),
951 RTCpuSetToU64(RTMpGetOnlineSet(&OnlineSet)) ));
952 LogRel(("************************* CPUID dump ************************\n"));
953 DBGFR3Info(pVM, "cpuid", "verbose", DBGFR3InfoLogRelHlp());
954 LogRel(("\n"));
955 DBGFR3InfoLog(pVM, "cpuid", "verbose"); /* macro */
956 RTLogRelSetBuffering(fOldBuffered);
957 LogRel(("******************** End of CPUID dump **********************\n"));
958
959#undef PORTABLE_DISABLE_FEATURE_BIT
960#undef PORTABLE_CLEAR_BITS_WHEN
961
962 return VINF_SUCCESS;
963}
964
965
966/**
967 * Applies relocations to data and code managed by this
968 * component. This function will be called at init and
969 * whenever the VMM need to relocate it self inside the GC.
970 *
971 * The CPUM will update the addresses used by the switcher.
972 *
973 * @param pVM The VM.
974 */
975VMMR3DECL(void) CPUMR3Relocate(PVM pVM)
976{
977 LogFlow(("CPUMR3Relocate\n"));
978 for (VMCPUID i = 0; i < pVM->cCpus; i++)
979 {
980 /*
981 * Switcher pointers.
982 */
983 PVMCPU pVCpu = &pVM->aCpus[i];
984 pVCpu->cpum.s.pHyperCoreRC = MMHyperCCToRC(pVM, pVCpu->cpum.s.pHyperCoreR3);
985 Assert(pVCpu->cpum.s.pHyperCoreRC != NIL_RTRCPTR);
986
987 }
988}
989
990
991/**
992 * Apply late CPUM property changes based on the fHWVirtEx setting
993 *
994 * @param pVM The VM to operate on.
995 * @param fHWVirtExEnabled HWVirtEx enabled/disabled
996 */
997VMMR3DECL(void) CPUMR3SetHWVirtEx(PVM pVM, bool fHWVirtExEnabled)
998{
999 /*
1000 * Workaround for missing cpuid(0) patches when leaf 4 returns GuestCpuIdDef:
1001 * If we miss to patch a cpuid(0).eax then Linux tries to determine the number
1002 * of processors from (cpuid(4).eax >> 26) + 1.
1003 *
1004 * Note: this code is obsolete, but let's keep it here for reference.
1005 * Purpose is valid when we artificially cap the max std id to less than 4.
1006 */
1007 if (!fHWVirtExEnabled)
1008 {
1009 Assert( pVM->cpum.s.aGuestCpuIdStd[4].eax == 0
1010 || pVM->cpum.s.aGuestCpuIdStd[0].eax < 0x4);
1011 pVM->cpum.s.aGuestCpuIdStd[4].eax = 0;
1012 }
1013}
1014
1015/**
1016 * Terminates the CPUM.
1017 *
1018 * Termination means cleaning up and freeing all resources,
1019 * the VM it self is at this point powered off or suspended.
1020 *
1021 * @returns VBox status code.
1022 * @param pVM The VM to operate on.
1023 */
1024VMMR3DECL(int) CPUMR3Term(PVM pVM)
1025{
1026#ifdef VBOX_WITH_CRASHDUMP_MAGIC
1027 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1028 {
1029 PVMCPU pVCpu = &pVM->aCpus[i];
1030 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1031
1032 memset(pVCpu->cpum.s.aMagic, 0, sizeof(pVCpu->cpum.s.aMagic));
1033 pVCpu->cpum.s.uMagic = 0;
1034 pCtx->dr[5] = 0;
1035 }
1036#else
1037 NOREF(pVM);
1038#endif
1039 return VINF_SUCCESS;
1040}
1041
1042
1043/**
1044 * Resets a virtual CPU.
1045 *
1046 * Used by CPUMR3Reset and CPU hot plugging.
1047 *
1048 * @param pVCpu The virtual CPU handle.
1049 */
1050VMMR3DECL(void) CPUMR3ResetCpu(PVMCPU pVCpu)
1051{
1052 /** @todo anything different for VCPU > 0? */
1053 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1054
1055 /*
1056 * Initialize everything to ZERO first.
1057 */
1058 uint32_t fUseFlags = pVCpu->cpum.s.fUseFlags & ~CPUM_USED_FPU_SINCE_REM;
1059 memset(pCtx, 0, sizeof(*pCtx));
1060 pVCpu->cpum.s.fUseFlags = fUseFlags;
1061
1062 pCtx->cr0 = X86_CR0_CD | X86_CR0_NW | X86_CR0_ET; //0x60000010
1063 pCtx->eip = 0x0000fff0;
1064 pCtx->edx = 0x00000600; /* P6 processor */
1065 pCtx->eflags.Bits.u1Reserved0 = 1;
1066
1067 pCtx->cs = 0xf000;
1068 pCtx->csHid.u64Base = UINT64_C(0xffff0000);
1069 pCtx->csHid.u32Limit = 0x0000ffff;
1070 pCtx->csHid.Attr.n.u1DescType = 1; /* code/data segment */
1071 pCtx->csHid.Attr.n.u1Present = 1;
1072 pCtx->csHid.Attr.n.u4Type = X86_SEL_TYPE_READ | X86_SEL_TYPE_CODE;
1073
1074 pCtx->dsHid.u32Limit = 0x0000ffff;
1075 pCtx->dsHid.Attr.n.u1DescType = 1; /* code/data segment */
1076 pCtx->dsHid.Attr.n.u1Present = 1;
1077 pCtx->dsHid.Attr.n.u4Type = X86_SEL_TYPE_RW;
1078
1079 pCtx->esHid.u32Limit = 0x0000ffff;
1080 pCtx->esHid.Attr.n.u1DescType = 1; /* code/data segment */
1081 pCtx->esHid.Attr.n.u1Present = 1;
1082 pCtx->esHid.Attr.n.u4Type = X86_SEL_TYPE_RW;
1083
1084 pCtx->fsHid.u32Limit = 0x0000ffff;
1085 pCtx->fsHid.Attr.n.u1DescType = 1; /* code/data segment */
1086 pCtx->fsHid.Attr.n.u1Present = 1;
1087 pCtx->fsHid.Attr.n.u4Type = X86_SEL_TYPE_RW;
1088
1089 pCtx->gsHid.u32Limit = 0x0000ffff;
1090 pCtx->gsHid.Attr.n.u1DescType = 1; /* code/data segment */
1091 pCtx->gsHid.Attr.n.u1Present = 1;
1092 pCtx->gsHid.Attr.n.u4Type = X86_SEL_TYPE_RW;
1093
1094 pCtx->ssHid.u32Limit = 0x0000ffff;
1095 pCtx->ssHid.Attr.n.u1Present = 1;
1096 pCtx->ssHid.Attr.n.u1DescType = 1; /* code/data segment */
1097 pCtx->ssHid.Attr.n.u4Type = X86_SEL_TYPE_RW;
1098
1099 pCtx->idtr.cbIdt = 0xffff;
1100 pCtx->gdtr.cbGdt = 0xffff;
1101
1102 pCtx->ldtrHid.u32Limit = 0xffff;
1103 pCtx->ldtrHid.Attr.n.u1Present = 1;
1104 pCtx->ldtrHid.Attr.n.u4Type = X86_SEL_TYPE_SYS_LDT;
1105
1106 pCtx->trHid.u32Limit = 0xffff;
1107 pCtx->trHid.Attr.n.u1Present = 1;
1108 pCtx->trHid.Attr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY; /* Deduction, not properly documented by Intel. */
1109
1110 pCtx->dr[6] = X86_DR6_INIT_VAL;
1111 pCtx->dr[7] = X86_DR7_INIT_VAL;
1112
1113 pCtx->fpu.FTW = 0x00; /* All empty (abbridged tag reg edition). */
1114 pCtx->fpu.FCW = 0x37f;
1115
1116 /* Intel 64 and IA-32 Architectures Software Developer's Manual Volume 3A, Table 8-1.
1117 IA-32 Processor States Following Power-up, Reset, or INIT */
1118 pCtx->fpu.MXCSR = 0x1F80;
1119 pCtx->fpu.MXCSR_MASK = 0xffff; /** @todo REM always changed this for us. Should probably check if the HW really
1120 supports all bits, since a zero value here should be read as 0xffbf. */
1121
1122 /* Init PAT MSR */
1123 pCtx->msrPAT = UINT64_C(0x0007040600070406); /** @todo correct? */
1124
1125 /* Reset EFER; see AMD64 Architecture Programmer's Manual Volume 2: Table 14-1. Initial Processor State
1126 * The Intel docs don't mention it.
1127 */
1128 pCtx->msrEFER = 0;
1129}
1130
1131
1132/**
1133 * Resets the CPU.
1134 *
1135 * @returns VINF_SUCCESS.
1136 * @param pVM The VM handle.
1137 */
1138VMMR3DECL(void) CPUMR3Reset(PVM pVM)
1139{
1140 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1141 {
1142 CPUMR3ResetCpu(&pVM->aCpus[i]);
1143
1144#ifdef VBOX_WITH_CRASHDUMP_MAGIC
1145 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(&pVM->aCpus[i]);
1146
1147 /* Magic marker for searching in crash dumps. */
1148 strcpy((char *)pVM->aCpus[i].cpum.s.aMagic, "CPUMCPU Magic");
1149 pVM->aCpus[i].cpum.s.uMagic = UINT64_C(0xDEADBEEFDEADBEEF);
1150 pCtx->dr[5] = UINT64_C(0xDEADBEEFDEADBEEF);
1151#endif
1152 }
1153}
1154
1155
1156/**
1157 * Called both in pass 0 and the final pass.
1158 *
1159 * @param pVM The VM handle.
1160 * @param pSSM The saved state handle.
1161 */
1162static void cpumR3SaveCpuId(PVM pVM, PSSMHANDLE pSSM)
1163{
1164 /*
1165 * Save all the CPU ID leaves here so we can check them for compatibility
1166 * upon loading.
1167 */
1168 SSMR3PutU32(pSSM, RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdStd));
1169 SSMR3PutMem(pSSM, &pVM->cpum.s.aGuestCpuIdStd[0], sizeof(pVM->cpum.s.aGuestCpuIdStd));
1170
1171 SSMR3PutU32(pSSM, RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdExt));
1172 SSMR3PutMem(pSSM, &pVM->cpum.s.aGuestCpuIdExt[0], sizeof(pVM->cpum.s.aGuestCpuIdExt));
1173
1174 SSMR3PutU32(pSSM, RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdCentaur));
1175 SSMR3PutMem(pSSM, &pVM->cpum.s.aGuestCpuIdCentaur[0], sizeof(pVM->cpum.s.aGuestCpuIdCentaur));
1176
1177 SSMR3PutMem(pSSM, &pVM->cpum.s.GuestCpuIdDef, sizeof(pVM->cpum.s.GuestCpuIdDef));
1178
1179 /*
1180 * Save a good portion of the raw CPU IDs as well as they may come in
1181 * handy when validating features for raw mode.
1182 */
1183 CPUMCPUID aRawStd[16];
1184 for (unsigned i = 0; i < RT_ELEMENTS(aRawStd); i++)
1185 ASMCpuId(i, &aRawStd[i].eax, &aRawStd[i].ebx, &aRawStd[i].ecx, &aRawStd[i].edx);
1186 SSMR3PutU32(pSSM, RT_ELEMENTS(aRawStd));
1187 SSMR3PutMem(pSSM, &aRawStd[0], sizeof(aRawStd));
1188
1189 CPUMCPUID aRawExt[32];
1190 for (unsigned i = 0; i < RT_ELEMENTS(aRawExt); i++)
1191 ASMCpuId(i | UINT32_C(0x80000000), &aRawExt[i].eax, &aRawExt[i].ebx, &aRawExt[i].ecx, &aRawExt[i].edx);
1192 SSMR3PutU32(pSSM, RT_ELEMENTS(aRawExt));
1193 SSMR3PutMem(pSSM, &aRawExt[0], sizeof(aRawExt));
1194}
1195
1196
1197/**
1198 * Loads the CPU ID leaves saved by pass 0.
1199 *
1200 * @returns VBox status code.
1201 * @param pVM The VM handle.
1202 * @param pSSM The saved state handle.
1203 * @param uVersion The format version.
1204 */
1205static int cpumR3LoadCpuId(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion)
1206{
1207 AssertMsgReturn(uVersion >= CPUM_SAVED_STATE_VERSION_VER3_2, ("%u\n", uVersion), VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION);
1208
1209 /*
1210 * Define a bunch of macros for simplifying the code.
1211 */
1212 /* Generic expression + failure message. */
1213#define CPUID_CHECK_RET(expr, fmt) \
1214 do { \
1215 if (!(expr)) \
1216 { \
1217 char *pszMsg = RTStrAPrintf2 fmt; /* lack of variadic macros sucks */ \
1218 if (fStrictCpuIdChecks) \
1219 { \
1220 int rcCpuid = SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS, "%s", pszMsg); \
1221 RTStrFree(pszMsg); \
1222 return rcCpuid; \
1223 } \
1224 LogRel(("CPUM: %s\n", pszMsg)); \
1225 RTStrFree(pszMsg); \
1226 } \
1227 } while (0)
1228#define CPUID_CHECK_WRN(expr, fmt) \
1229 do { \
1230 if (!(expr)) \
1231 LogRel(fmt); \
1232 } while (0)
1233
1234 /* For comparing two values and bitch if they differs. */
1235#define CPUID_CHECK2_RET(what, host, saved) \
1236 do { \
1237 if ((host) != (saved)) \
1238 { \
1239 if (fStrictCpuIdChecks) \
1240 return SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS, \
1241 N_(#what " mismatch: host=%#x saved=%#x"), (host), (saved)); \
1242 LogRel(("CPUM: " #what " differs: host=%#x saved=%#x\n", (host), (saved))); \
1243 } \
1244 } while (0)
1245#define CPUID_CHECK2_WRN(what, host, saved) \
1246 do { \
1247 if ((host) != (saved)) \
1248 LogRel(("CPUM: " #what " differs: host=%#x saved=%#x\n", (host), (saved))); \
1249 } while (0)
1250
1251 /* For checking raw cpu features (raw mode). */
1252#define CPUID_RAW_FEATURE_RET(set, reg, bit) \
1253 do { \
1254 if ((aHostRaw##set [1].reg & bit) != (aRaw##set [1].reg & bit)) \
1255 { \
1256 if (fStrictCpuIdChecks) \
1257 return SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS, \
1258 N_(#bit " mismatch: host=%d saved=%d"), \
1259 !!(aHostRaw##set [1].reg & (bit)), !!(aRaw##set [1].reg & (bit)) ); \
1260 LogRel(("CPUM: " #bit" differs: host=%d saved=%d\n", \
1261 !!(aHostRaw##set [1].reg & (bit)), !!(aRaw##set [1].reg & (bit)) )); \
1262 } \
1263 } while (0)
1264#define CPUID_RAW_FEATURE_WRN(set, reg, bit) \
1265 do { \
1266 if ((aHostRaw##set [1].reg & bit) != (aRaw##set [1].reg & bit)) \
1267 LogRel(("CPUM: " #bit" differs: host=%d saved=%d\n", \
1268 !!(aHostRaw##set [1].reg & (bit)), !!(aRaw##set [1].reg & (bit)) )); \
1269 } while (0)
1270#define CPUID_RAW_FEATURE_IGN(set, reg, bit) do { } while (0)
1271
1272 /* For checking guest features. */
1273#define CPUID_GST_FEATURE_RET(set, reg, bit) \
1274 do { \
1275 if ( (aGuestCpuId##set [1].reg & bit) \
1276 && !(aHostRaw##set [1].reg & bit) \
1277 && !(aHostOverride##set [1].reg & bit) \
1278 && !(aGuestOverride##set [1].reg & bit) \
1279 ) \
1280 { \
1281 if (fStrictCpuIdChecks) \
1282 return SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS, \
1283 N_(#bit " is not supported by the host but has already exposed to the guest")); \
1284 LogRel(("CPUM: " #bit " is not supported by the host but has already exposed to the guest\n")); \
1285 } \
1286 } while (0)
1287#define CPUID_GST_FEATURE_WRN(set, reg, bit) \
1288 do { \
1289 if ( (aGuestCpuId##set [1].reg & bit) \
1290 && !(aHostRaw##set [1].reg & bit) \
1291 && !(aHostOverride##set [1].reg & bit) \
1292 && !(aGuestOverride##set [1].reg & bit) \
1293 ) \
1294 LogRel(("CPUM: " #bit " is not supported by the host but has already exposed to the guest\n")); \
1295 } while (0)
1296#define CPUID_GST_FEATURE_EMU(set, reg, bit) \
1297 do { \
1298 if ( (aGuestCpuId##set [1].reg & bit) \
1299 && !(aHostRaw##set [1].reg & bit) \
1300 && !(aHostOverride##set [1].reg & bit) \
1301 && !(aGuestOverride##set [1].reg & bit) \
1302 ) \
1303 LogRel(("CPUM: Warning - " #bit " is not supported by the host but already exposed to the guest. This may impact performance.\n")); \
1304 } while (0)
1305#define CPUID_GST_FEATURE_IGN(set, reg, bit) do { } while (0)
1306
1307 /* For checking guest features if AMD guest CPU. */
1308#define CPUID_GST_AMD_FEATURE_RET(set, reg, bit) \
1309 do { \
1310 if ( (aGuestCpuId##set [1].reg & bit) \
1311 && fGuestAmd \
1312 && (!fGuestAmd || !(aHostRaw##set [1].reg & bit)) \
1313 && !(aHostOverride##set [1].reg & bit) \
1314 && !(aGuestOverride##set [1].reg & bit) \
1315 ) \
1316 { \
1317 if (fStrictCpuIdChecks) \
1318 return SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS, \
1319 N_(#bit " is not supported by the host but has already exposed to the guest")); \
1320 LogRel(("CPUM: " #bit " is not supported by the host but has already exposed to the guest\n")); \
1321 } \
1322 } while (0)
1323#define CPUID_GST_AMD_FEATURE_WRN(set, reg, bit) \
1324 do { \
1325 if ( (aGuestCpuId##set [1].reg & bit) \
1326 && fGuestAmd \
1327 && (!fGuestAmd || !(aHostRaw##set [1].reg & bit)) \
1328 && !(aHostOverride##set [1].reg & bit) \
1329 && !(aGuestOverride##set [1].reg & bit) \
1330 ) \
1331 LogRel(("CPUM: " #bit " is not supported by the host but has already exposed to the guest\n")); \
1332 } while (0)
1333#define CPUID_GST_AMD_FEATURE_EMU(set, reg, bit) \
1334 do { \
1335 if ( (aGuestCpuId##set [1].reg & bit) \
1336 && fGuestAmd \
1337 && (!fGuestAmd || !(aHostRaw##set [1].reg & bit)) \
1338 && !(aHostOverride##set [1].reg & bit) \
1339 && !(aGuestOverride##set [1].reg & bit) \
1340 ) \
1341 LogRel(("CPUM: Warning - " #bit " is not supported by the host but already exposed to the guest. This may impact performance.\n")); \
1342 } while (0)
1343#define CPUID_GST_AMD_FEATURE_IGN(set, reg, bit) do { } while (0)
1344
1345 /* For checking AMD features which have a corresponding bit in the standard
1346 range. (Intel defines very few bits in the extended feature sets.) */
1347#define CPUID_GST_FEATURE2_RET(reg, ExtBit, StdBit) \
1348 do { \
1349 if ( (aGuestCpuIdExt [1].reg & (ExtBit)) \
1350 && !(fHostAmd \
1351 ? aHostRawExt[1].reg & (ExtBit) \
1352 : aHostRawStd[1].reg & (StdBit)) \
1353 && !(aHostOverrideExt[1].reg & (ExtBit)) \
1354 && !(aGuestOverrideExt[1].reg & (ExtBit)) \
1355 ) \
1356 { \
1357 if (fStrictCpuIdChecks) \
1358 return SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS, \
1359 N_(#ExtBit " is not supported by the host but has already exposed to the guest")); \
1360 LogRel(("CPUM: " #ExtBit " is not supported by the host but has already exposed to the guest\n")); \
1361 } \
1362 } while (0)
1363#define CPUID_GST_FEATURE2_WRN(reg, ExtBit, StdBit) \
1364 do { \
1365 if ( (aGuestCpuIdExt [1].reg & (ExtBit)) \
1366 && !(fHostAmd \
1367 ? aHostRawExt[1].reg & (ExtBit) \
1368 : aHostRawStd[1].reg & (StdBit)) \
1369 && !(aHostOverrideExt[1].reg & (ExtBit)) \
1370 && !(aGuestOverrideExt[1].reg & (ExtBit)) \
1371 ) \
1372 LogRel(("CPUM: " #ExtBit " is not supported by the host but has already exposed to the guest\n")); \
1373 } while (0)
1374#define CPUID_GST_FEATURE2_EMU(reg, ExtBit, StdBit) \
1375 do { \
1376 if ( (aGuestCpuIdExt [1].reg & (ExtBit)) \
1377 && !(fHostAmd \
1378 ? aHostRawExt[1].reg & (ExtBit) \
1379 : aHostRawStd[1].reg & (StdBit)) \
1380 && !(aHostOverrideExt[1].reg & (ExtBit)) \
1381 && !(aGuestOverrideExt[1].reg & (ExtBit)) \
1382 ) \
1383 LogRel(("CPUM: Warning - " #ExtBit " is not supported by the host but already exposed to the guest. This may impact performance.\n")); \
1384 } while (0)
1385#define CPUID_GST_FEATURE2_IGN(reg, ExtBit, StdBit) do { } while (0)
1386
1387 /*
1388 * Load them into stack buffers first.
1389 */
1390 CPUMCPUID aGuestCpuIdStd[RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdStd)];
1391 uint32_t cGuestCpuIdStd;
1392 int rc = SSMR3GetU32(pSSM, &cGuestCpuIdStd); AssertRCReturn(rc, rc);
1393 if (cGuestCpuIdStd > RT_ELEMENTS(aGuestCpuIdStd))
1394 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
1395 SSMR3GetMem(pSSM, &aGuestCpuIdStd[0], cGuestCpuIdStd * sizeof(aGuestCpuIdStd[0]));
1396
1397 CPUMCPUID aGuestCpuIdExt[RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdExt)];
1398 uint32_t cGuestCpuIdExt;
1399 rc = SSMR3GetU32(pSSM, &cGuestCpuIdExt); AssertRCReturn(rc, rc);
1400 if (cGuestCpuIdExt > RT_ELEMENTS(aGuestCpuIdExt))
1401 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
1402 SSMR3GetMem(pSSM, &aGuestCpuIdExt[0], cGuestCpuIdExt * sizeof(aGuestCpuIdExt[0]));
1403
1404 CPUMCPUID aGuestCpuIdCentaur[RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdCentaur)];
1405 uint32_t cGuestCpuIdCentaur;
1406 rc = SSMR3GetU32(pSSM, &cGuestCpuIdCentaur); AssertRCReturn(rc, rc);
1407 if (cGuestCpuIdCentaur > RT_ELEMENTS(aGuestCpuIdCentaur))
1408 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
1409 SSMR3GetMem(pSSM, &aGuestCpuIdCentaur[0], cGuestCpuIdCentaur * sizeof(aGuestCpuIdCentaur[0]));
1410
1411 CPUMCPUID GuestCpuIdDef;
1412 rc = SSMR3GetMem(pSSM, &GuestCpuIdDef, sizeof(GuestCpuIdDef));
1413 AssertRCReturn(rc, rc);
1414
1415 CPUMCPUID aRawStd[16];
1416 uint32_t cRawStd;
1417 rc = SSMR3GetU32(pSSM, &cRawStd); AssertRCReturn(rc, rc);
1418 if (cRawStd > RT_ELEMENTS(aRawStd))
1419 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
1420 SSMR3GetMem(pSSM, &aRawStd[0], cRawStd * sizeof(aRawStd[0]));
1421
1422 CPUMCPUID aRawExt[32];
1423 uint32_t cRawExt;
1424 rc = SSMR3GetU32(pSSM, &cRawExt); AssertRCReturn(rc, rc);
1425 if (cRawExt > RT_ELEMENTS(aRawExt))
1426 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
1427 rc = SSMR3GetMem(pSSM, &aRawExt[0], cRawExt * sizeof(aRawExt[0]));
1428 AssertRCReturn(rc, rc);
1429
1430 /*
1431 * Note that we support restoring less than the current amount of standard
1432 * leaves because we've been allowed more is newer version of VBox.
1433 *
1434 * So, pad new entries with the default.
1435 */
1436 for (uint32_t i = cGuestCpuIdStd; i < RT_ELEMENTS(aGuestCpuIdStd); i++)
1437 aGuestCpuIdStd[i] = GuestCpuIdDef;
1438
1439 for (uint32_t i = cGuestCpuIdExt; i < RT_ELEMENTS(aGuestCpuIdExt); i++)
1440 aGuestCpuIdExt[i] = GuestCpuIdDef;
1441
1442 for (uint32_t i = cGuestCpuIdCentaur; i < RT_ELEMENTS(aGuestCpuIdCentaur); i++)
1443 aGuestCpuIdCentaur[i] = GuestCpuIdDef;
1444
1445 for (uint32_t i = cRawStd; i < RT_ELEMENTS(aRawStd); i++)
1446 ASMCpuId(i, &aRawStd[i].eax, &aRawStd[i].ebx, &aRawStd[i].ecx, &aRawStd[i].edx);
1447
1448 for (uint32_t i = cRawExt; i < RT_ELEMENTS(aRawExt); i++)
1449 ASMCpuId(i | UINT32_C(0x80000000), &aRawExt[i].eax, &aRawExt[i].ebx, &aRawExt[i].ecx, &aRawExt[i].edx);
1450
1451 /*
1452 * Get the raw CPU IDs for the current host.
1453 */
1454 CPUMCPUID aHostRawStd[16];
1455 for (unsigned i = 0; i < RT_ELEMENTS(aHostRawStd); i++)
1456 ASMCpuId(i, &aHostRawStd[i].eax, &aHostRawStd[i].ebx, &aHostRawStd[i].ecx, &aHostRawStd[i].edx);
1457
1458 CPUMCPUID aHostRawExt[32];
1459 for (unsigned i = 0; i < RT_ELEMENTS(aHostRawExt); i++)
1460 ASMCpuId(i | UINT32_C(0x80000000), &aHostRawExt[i].eax, &aHostRawExt[i].ebx, &aHostRawExt[i].ecx, &aHostRawExt[i].edx);
1461
1462 /*
1463 * Get the host and guest overrides so we don't reject the state because
1464 * some feature was enabled thru these interfaces.
1465 * Note! We currently only need the feature leaves, so skip rest.
1466 */
1467 PCFGMNODE pOverrideCfg = CFGMR3GetChild(CFGMR3GetRoot(pVM), "CPUM/CPUID");
1468 CPUMCPUID aGuestOverrideStd[2];
1469 memcpy(&aGuestOverrideStd[0], &aHostRawStd[0], sizeof(aGuestOverrideStd));
1470 cpumR3CpuIdInitLoadOverrideSet(UINT32_C(0x00000000), &aGuestOverrideStd[0], RT_ELEMENTS(aGuestOverrideStd), pOverrideCfg);
1471
1472 CPUMCPUID aGuestOverrideExt[2];
1473 memcpy(&aGuestOverrideExt[0], &aHostRawExt[0], sizeof(aGuestOverrideExt));
1474 cpumR3CpuIdInitLoadOverrideSet(UINT32_C(0x80000000), &aGuestOverrideExt[0], RT_ELEMENTS(aGuestOverrideExt), pOverrideCfg);
1475
1476 pOverrideCfg = CFGMR3GetChild(CFGMR3GetRoot(pVM), "CPUM/HostCPUID");
1477 CPUMCPUID aHostOverrideStd[2];
1478 memcpy(&aHostOverrideStd[0], &aHostRawStd[0], sizeof(aHostOverrideStd));
1479 cpumR3CpuIdInitLoadOverrideSet(UINT32_C(0x00000000), &aHostOverrideStd[0], RT_ELEMENTS(aHostOverrideStd), pOverrideCfg);
1480
1481 CPUMCPUID aHostOverrideExt[2];
1482 memcpy(&aHostOverrideExt[0], &aHostRawExt[0], sizeof(aHostOverrideExt));
1483 cpumR3CpuIdInitLoadOverrideSet(UINT32_C(0x80000000), &aHostOverrideExt[0], RT_ELEMENTS(aHostOverrideExt), pOverrideCfg);
1484
1485 /*
1486 * This can be skipped.
1487 */
1488 bool fStrictCpuIdChecks;
1489 CFGMR3QueryBoolDef(CFGMR3GetChild(CFGMR3GetRoot(pVM), "CPUM"), "StrictCpuIdChecks", &fStrictCpuIdChecks, true);
1490
1491
1492
1493 /*
1494 * For raw-mode we'll require that the CPUs are very similar since we don't
1495 * intercept CPUID instructions for user mode applications.
1496 */
1497 if (!HWACCMIsEnabled(pVM))
1498 {
1499 /* CPUID(0) */
1500 CPUID_CHECK_RET( aHostRawStd[0].ebx == aRawStd[0].ebx
1501 && aHostRawStd[0].ecx == aRawStd[0].ecx
1502 && aHostRawStd[0].edx == aRawStd[0].edx,
1503 (N_("CPU vendor mismatch: host='%.4s%.4s%.4s' saved='%.4s%.4s%.4s'"),
1504 &aHostRawStd[0].ebx, &aHostRawStd[0].edx, &aHostRawStd[0].ecx,
1505 &aRawStd[0].ebx, &aRawStd[0].edx, &aRawStd[0].ecx));
1506 CPUID_CHECK2_WRN("Std CPUID max leaf", aHostRawStd[0].eax, aRawStd[0].eax);
1507 CPUID_CHECK2_WRN("Reserved bits 15:14", (aHostRawExt[1].eax >> 14) & 3, (aRawExt[1].eax >> 14) & 3);
1508 CPUID_CHECK2_WRN("Reserved bits 31:28", aHostRawExt[1].eax >> 28, aRawExt[1].eax >> 28);
1509
1510 bool const fIntel = ASMIsIntelCpuEx(aRawStd[0].ebx, aRawStd[0].ecx, aRawStd[0].edx);
1511
1512 /* CPUID(1).eax */
1513 CPUID_CHECK2_RET("CPU family", ASMGetCpuFamily(aHostRawStd[1].eax), ASMGetCpuFamily(aRawStd[1].eax));
1514 CPUID_CHECK2_RET("CPU model", ASMGetCpuModel(aHostRawStd[1].eax, fIntel), ASMGetCpuModel(aRawStd[1].eax, fIntel));
1515 CPUID_CHECK2_WRN("CPU type", (aHostRawStd[1].eax >> 12) & 3, (aRawStd[1].eax >> 12) & 3 );
1516
1517 /* CPUID(1).ebx - completely ignore CPU count and APIC ID. */
1518 CPUID_CHECK2_RET("CPU brand ID", aHostRawStd[1].ebx & 0xff, aRawStd[1].ebx & 0xff);
1519 CPUID_CHECK2_WRN("CLFLUSH chunk count", (aHostRawStd[1].ebx >> 8) & 0xff, (aRawStd[1].ebx >> 8) & 0xff);
1520
1521 /* CPUID(1).ecx */
1522 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSE3);
1523 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_PCLMUL);
1524 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_DTES64);
1525 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_MONITOR);
1526 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_CPLDS);
1527 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_VMX);
1528 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_SMX);
1529 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_EST);
1530 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_TM2);
1531 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSSE3);
1532 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_CNTXID);
1533 CPUID_RAW_FEATURE_RET(Std, ecx, RT_BIT_32(11) /*reserved*/ );
1534 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_FMA);
1535 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_CX16);
1536 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_TPRUPDATE);
1537 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_PDCM);
1538 CPUID_RAW_FEATURE_RET(Std, ecx, RT_BIT_32(16) /*reserved*/);
1539 CPUID_RAW_FEATURE_RET(Std, ecx, RT_BIT_32(17) /*reserved*/);
1540 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_DCA);
1541 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSE4_1);
1542 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSE4_2);
1543 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_X2APIC);
1544 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_MOVBE);
1545 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_POPCNT);
1546 CPUID_RAW_FEATURE_RET(Std, ecx, RT_BIT_32(24) /*reserved*/);
1547 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_AES);
1548 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_XSAVE);
1549 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_OSXSAVE);
1550 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_AVX);
1551 CPUID_RAW_FEATURE_RET(Std, ecx, RT_BIT_32(29) /*reserved*/);
1552 CPUID_RAW_FEATURE_RET(Std, ecx, RT_BIT_32(30) /*reserved*/);
1553 CPUID_RAW_FEATURE_RET(Std, ecx, RT_BIT_32(31) /*reserved*/);
1554
1555 /* CPUID(1).edx */
1556 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_FPU);
1557 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_VME);
1558 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_DE);
1559 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PSE);
1560 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_TSC);
1561 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_MSR);
1562 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PAE);
1563 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_MCE);
1564 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_CX8);
1565 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_APIC);
1566 CPUID_RAW_FEATURE_RET(Std, edx, RT_BIT_32(10) /*reserved*/);
1567 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_SEP);
1568 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_MTRR);
1569 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PGE);
1570 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_MCA);
1571 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_CMOV);
1572 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PAT);
1573 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PSE36);
1574 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PSN);
1575 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_CLFSH);
1576 CPUID_RAW_FEATURE_RET(Std, edx, RT_BIT_32(20) /*reserved*/);
1577 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_DS);
1578 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_ACPI);
1579 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_MMX);
1580 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_FXSR);
1581 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_SSE);
1582 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_SSE2);
1583 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_SS);
1584 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_HTT);
1585 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_TM);
1586 CPUID_RAW_FEATURE_RET(Std, edx, RT_BIT_32(30) /*JMPE/IA64*/);
1587 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PBE);
1588
1589 /* CPUID(2) - config, mostly about caches. ignore. */
1590 /* CPUID(3) - processor serial number. ignore. */
1591 /* CPUID(4) - config, cache and topology - takes ECX as input. ignore. */
1592 /* CPUID(5) - mwait/monitor config. ignore. */
1593 /* CPUID(6) - power management. ignore. */
1594 /* CPUID(7) - ???. ignore. */
1595 /* CPUID(8) - ???. ignore. */
1596 /* CPUID(9) - DCA. ignore for now. */
1597 /* CPUID(a) - PeMo info. ignore for now. */
1598 /* CPUID(b) - topology info - takes ECX as input. ignore. */
1599
1600 /* CPUID(d) - XCR0 stuff - takes ECX as input. We only warn about the main level (ECX=0) for now. */
1601 CPUID_CHECK_WRN( aRawStd[0].eax < UINT32_C(0x0000000d)
1602 || aHostRawStd[0].eax >= UINT32_C(0x0000000d),
1603 ("CPUM: Standard leaf D was present on saved state host, not present on current.\n"));
1604 if ( aRawStd[0].eax >= UINT32_C(0x0000000d)
1605 && aHostRawStd[0].eax >= UINT32_C(0x0000000d))
1606 {
1607 CPUID_CHECK2_WRN("Valid low XCR0 bits", aHostRawStd[0xd].eax, aRawStd[0xd].eax);
1608 CPUID_CHECK2_WRN("Valid high XCR0 bits", aHostRawStd[0xd].edx, aRawStd[0xd].edx);
1609 CPUID_CHECK2_WRN("Current XSAVE/XRSTOR area size", aHostRawStd[0xd].ebx, aRawStd[0xd].ebx);
1610 CPUID_CHECK2_WRN("Max XSAVE/XRSTOR area size", aHostRawStd[0xd].ecx, aRawStd[0xd].ecx);
1611 }
1612
1613 /* CPUID(0x80000000) - same as CPUID(0) except for eax.
1614 Note! Intel have/is marking many of the fields here as reserved. We
1615 will verify them as if it's an AMD CPU. */
1616 CPUID_CHECK_RET( (aHostRawExt[0].eax >= UINT32_C(0x80000001) && aHostRawExt[0].eax <= UINT32_C(0x8000007f))
1617 || !(aRawExt[0].eax >= UINT32_C(0x80000001) && aRawExt[0].eax <= UINT32_C(0x8000007f)),
1618 (N_("Extended leaves was present on saved state host, but is missing on the current\n")));
1619 if (aRawExt[0].eax >= UINT32_C(0x80000001) && aRawExt[0].eax <= UINT32_C(0x8000007f))
1620 {
1621 CPUID_CHECK_RET( aHostRawExt[0].ebx == aRawExt[0].ebx
1622 && aHostRawExt[0].ecx == aRawExt[0].ecx
1623 && aHostRawExt[0].edx == aRawExt[0].edx,
1624 (N_("CPU vendor mismatch: host='%.4s%.4s%.4s' saved='%.4s%.4s%.4s'"),
1625 &aHostRawExt[0].ebx, &aHostRawExt[0].edx, &aHostRawExt[0].ecx,
1626 &aRawExt[0].ebx, &aRawExt[0].edx, &aRawExt[0].ecx));
1627 CPUID_CHECK2_WRN("Ext CPUID max leaf", aHostRawExt[0].eax, aRawExt[0].eax);
1628
1629 /* CPUID(0x80000001).eax - same as CPUID(0).eax. */
1630 CPUID_CHECK2_RET("CPU family", ASMGetCpuFamily(aHostRawExt[1].eax), ASMGetCpuFamily(aRawExt[1].eax));
1631 CPUID_CHECK2_RET("CPU model", ASMGetCpuModel(aHostRawExt[1].eax, fIntel), ASMGetCpuModel(aRawExt[1].eax, fIntel));
1632 CPUID_CHECK2_WRN("CPU type", (aHostRawExt[1].eax >> 12) & 3, (aRawExt[1].eax >> 12) & 3 );
1633 CPUID_CHECK2_WRN("Reserved bits 15:14", (aHostRawExt[1].eax >> 14) & 3, (aRawExt[1].eax >> 14) & 3 );
1634 CPUID_CHECK2_WRN("Reserved bits 31:28", aHostRawExt[1].eax >> 28, aRawExt[1].eax >> 28);
1635
1636 /* CPUID(0x80000001).ebx - Brand ID (maybe), just warn if things differs. */
1637 CPUID_CHECK2_WRN("CPU BrandID", aHostRawExt[1].ebx & 0xffff, aRawExt[1].ebx & 0xffff);
1638 CPUID_CHECK2_WRN("Reserved bits 16:27", (aHostRawExt[1].ebx >> 16) & 0xfff, (aRawExt[1].ebx >> 16) & 0xfff);
1639 CPUID_CHECK2_WRN("PkgType", (aHostRawExt[1].ebx >> 28) & 0xf, (aRawExt[1].ebx >> 28) & 0xf);
1640
1641 /* CPUID(0x80000001).ecx */
1642 CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_LAHF_SAHF);
1643 CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_CMPL);
1644 CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SVM);
1645 CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_EXT_APIC);
1646 CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_CR8L);
1647 CPUID_RAW_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_ABM);
1648 CPUID_RAW_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SSE4A);
1649 CPUID_RAW_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_MISALNSSE);
1650 CPUID_RAW_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_3DNOWPRF);
1651 CPUID_RAW_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_OSVW);
1652 CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_IBS);
1653 CPUID_RAW_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SSE5);
1654 CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SKINIT);
1655 CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_WDT);
1656 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(14));
1657 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(15));
1658 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(16));
1659 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(17));
1660 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(18));
1661 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(19));
1662 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(20));
1663 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(21));
1664 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(22));
1665 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(23));
1666 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(24));
1667 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(25));
1668 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(26));
1669 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(27));
1670 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(28));
1671 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(29));
1672 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(30));
1673 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(31));
1674
1675 /* CPUID(0x80000001).edx */
1676 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_FPU);
1677 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_VME);
1678 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_DE);
1679 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_PSE);
1680 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_TSC);
1681 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_MSR);
1682 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_PAE);
1683 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_MCE);
1684 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_CX8);
1685 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_APIC);
1686 CPUID_RAW_FEATURE_IGN(Ext, edx, RT_BIT_32(10) /*reserved*/);
1687 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_SEP);
1688 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_MTRR);
1689 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_PGE);
1690 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_MCA);
1691 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_CMOV);
1692 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_PAT);
1693 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_PSE36);
1694 CPUID_RAW_FEATURE_IGN(Ext, edx, RT_BIT_32(18) /*reserved*/);
1695 CPUID_RAW_FEATURE_IGN(Ext, edx, RT_BIT_32(19) /*reserved*/);
1696 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_NX);
1697 CPUID_RAW_FEATURE_IGN(Ext, edx, RT_BIT_32(21) /*reserved*/);
1698 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_AXMMX);
1699 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_MMX);
1700 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_FXSR);
1701 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_FFXSR);
1702 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_PAGE1GB);
1703 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_RDTSCP);
1704 CPUID_RAW_FEATURE_IGN(Ext, edx, RT_BIT_32(28) /*reserved*/);
1705 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_LONG_MODE);
1706 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_3DNOW_EX);
1707 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_3DNOW);
1708
1709 /** @todo verify the rest as well. */
1710 }
1711 }
1712
1713
1714
1715 /*
1716 * Verify that we can support the features already exposed to the guest on
1717 * this host.
1718 *
1719 * Most of the features we're emulating requires intercepting instruction
1720 * and doing it the slow way, so there is no need to warn when they aren't
1721 * present in the host CPU. Thus we use IGN instead of EMU on these.
1722 *
1723 * Trailing comments:
1724 * "EMU" - Possible to emulate, could be lots of work and very slow.
1725 * "EMU?" - Can this be emulated?
1726 */
1727 /* CPUID(1).ecx */
1728 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSE3); // -> EMU
1729 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_PCLMUL); // -> EMU?
1730 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_DTES64); // -> EMU?
1731 CPUID_GST_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_MONITOR);
1732 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_CPLDS); // -> EMU?
1733 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_VMX); // -> EMU
1734 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SMX); // -> EMU
1735 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_EST); // -> EMU
1736 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_TM2); // -> EMU?
1737 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSSE3); // -> EMU
1738 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_CNTXID); // -> EMU
1739 CPUID_GST_FEATURE_RET(Std, ecx, RT_BIT_32(11) /*reserved*/ );
1740 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_FMA); // -> EMU? what's this?
1741 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_CX16); // -> EMU?
1742 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_TPRUPDATE);//-> EMU
1743 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_PDCM); // -> EMU
1744 CPUID_GST_FEATURE_RET(Std, ecx, RT_BIT_32(16) /*reserved*/);
1745 CPUID_GST_FEATURE_RET(Std, ecx, RT_BIT_32(17) /*reserved*/);
1746 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_DCA); // -> EMU?
1747 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSE4_1); // -> EMU
1748 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSE4_2); // -> EMU
1749 CPUID_GST_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_X2APIC);
1750 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_MOVBE); // -> EMU
1751 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_POPCNT); // -> EMU
1752 CPUID_GST_FEATURE_RET(Std, ecx, RT_BIT_32(24) /*reserved*/);
1753 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_AES); // -> EMU
1754 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_XSAVE); // -> EMU
1755 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_OSXSAVE); // -> EMU
1756 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_AVX); // -> EMU?
1757 CPUID_GST_FEATURE_RET(Std, ecx, RT_BIT_32(29) /*reserved*/);
1758 CPUID_GST_FEATURE_RET(Std, ecx, RT_BIT_32(30) /*reserved*/);
1759 CPUID_GST_FEATURE_RET(Std, ecx, RT_BIT_32(31) /*reserved*/);
1760
1761 /* CPUID(1).edx */
1762 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_FPU);
1763 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_VME);
1764 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_DE); // -> EMU?
1765 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PSE);
1766 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_TSC); // -> EMU
1767 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_MSR); // -> EMU
1768 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_PAE);
1769 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_MCE);
1770 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_CX8); // -> EMU?
1771 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_APIC);
1772 CPUID_GST_FEATURE_RET(Std, edx, RT_BIT_32(10) /*reserved*/);
1773 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_SEP);
1774 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_MTRR);
1775 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PGE);
1776 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_MCA);
1777 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_CMOV); // -> EMU
1778 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PAT);
1779 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PSE36);
1780 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PSN);
1781 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_CLFSH); // -> EMU
1782 CPUID_GST_FEATURE_RET(Std, edx, RT_BIT_32(20) /*reserved*/);
1783 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_DS); // -> EMU?
1784 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_ACPI); // -> EMU?
1785 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_MMX); // -> EMU
1786 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_FXSR); // -> EMU
1787 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_SSE); // -> EMU
1788 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_SSE2); // -> EMU
1789 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_SS); // -> EMU?
1790 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_HTT); // -> EMU?
1791 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_TM); // -> EMU?
1792 CPUID_GST_FEATURE_RET(Std, edx, RT_BIT_32(30) /*JMPE/IA64*/); // -> EMU
1793 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_PBE); // -> EMU?
1794
1795 /* CPUID(0x80000000). */
1796 if ( aGuestCpuIdExt[0].eax >= UINT32_C(0x80000001)
1797 && aGuestCpuIdExt[0].eax < UINT32_C(0x8000007f))
1798 {
1799 /** @todo deal with no 0x80000001 on the host. */
1800 bool const fHostAmd = ASMIsAmdCpuEx(aHostRawStd[0].ebx, aHostRawStd[0].ecx, aHostRawStd[0].edx);
1801 bool const fGuestAmd = ASMIsAmdCpuEx(aGuestCpuIdExt[0].ebx, aGuestCpuIdExt[0].ecx, aGuestCpuIdExt[0].edx);
1802
1803 /* CPUID(0x80000001).ecx */
1804 CPUID_GST_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_LAHF_SAHF); // -> EMU
1805 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_CMPL); // -> EMU
1806 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SVM); // -> EMU
1807 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_EXT_APIC);// ???
1808 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_CR8L); // -> EMU
1809 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_ABM); // -> EMU
1810 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SSE4A); // -> EMU
1811 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_MISALNSSE);//-> EMU
1812 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_3DNOWPRF);// -> EMU
1813 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_OSVW); // -> EMU?
1814 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_IBS); // -> EMU
1815 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SSE5); // -> EMU
1816 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SKINIT); // -> EMU
1817 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_WDT); // -> EMU
1818 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(14));
1819 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(15));
1820 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(16));
1821 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(17));
1822 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(18));
1823 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(19));
1824 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(20));
1825 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(21));
1826 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(22));
1827 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(23));
1828 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(24));
1829 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(25));
1830 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(26));
1831 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(27));
1832 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(28));
1833 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(29));
1834 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(30));
1835 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(31));
1836
1837 /* CPUID(0x80000001).edx */
1838 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_FPU, X86_CPUID_FEATURE_EDX_FPU); // -> EMU
1839 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_VME, X86_CPUID_FEATURE_EDX_VME); // -> EMU
1840 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_DE, X86_CPUID_FEATURE_EDX_DE); // -> EMU
1841 CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_PSE, X86_CPUID_FEATURE_EDX_PSE);
1842 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_TSC, X86_CPUID_FEATURE_EDX_TSC); // -> EMU
1843 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_MSR, X86_CPUID_FEATURE_EDX_MSR); // -> EMU
1844 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_PAE, X86_CPUID_FEATURE_EDX_PAE);
1845 CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_MCE, X86_CPUID_FEATURE_EDX_MCE);
1846 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_CX8, X86_CPUID_FEATURE_EDX_CX8); // -> EMU?
1847 CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_APIC, X86_CPUID_FEATURE_EDX_APIC);
1848 CPUID_GST_AMD_FEATURE_WRN(Ext, edx, RT_BIT_32(10) /*reserved*/);
1849 CPUID_GST_FEATURE_IGN( Ext, edx, X86_CPUID_AMD_FEATURE_EDX_SEP); // Intel: long mode only.
1850 CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_MTRR, X86_CPUID_FEATURE_EDX_MTRR);
1851 CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_PGE, X86_CPUID_FEATURE_EDX_PGE);
1852 CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_MCA, X86_CPUID_FEATURE_EDX_MCA);
1853 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_CMOV, X86_CPUID_FEATURE_EDX_CMOV); // -> EMU
1854 CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_PAT, X86_CPUID_FEATURE_EDX_PAT);
1855 CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_PSE36, X86_CPUID_FEATURE_EDX_PSE36);
1856 CPUID_GST_AMD_FEATURE_WRN(Ext, edx, RT_BIT_32(18) /*reserved*/);
1857 CPUID_GST_AMD_FEATURE_WRN(Ext, edx, RT_BIT_32(19) /*reserved*/);
1858 CPUID_GST_FEATURE_RET( Ext, edx, X86_CPUID_AMD_FEATURE_EDX_NX);
1859 CPUID_GST_FEATURE_WRN( Ext, edx, RT_BIT_32(21) /*reserved*/);
1860 CPUID_GST_FEATURE_RET( Ext, edx, X86_CPUID_AMD_FEATURE_EDX_AXMMX);
1861 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_MMX, X86_CPUID_FEATURE_EDX_MMX); // -> EMU
1862 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_FXSR, X86_CPUID_FEATURE_EDX_FXSR); // -> EMU
1863 CPUID_GST_AMD_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_FFXSR);
1864 CPUID_GST_AMD_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_PAGE1GB);
1865 CPUID_GST_AMD_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_RDTSCP);
1866 CPUID_GST_FEATURE_IGN( Ext, edx, RT_BIT_32(28) /*reserved*/);
1867 CPUID_GST_FEATURE_RET( Ext, edx, X86_CPUID_AMD_FEATURE_EDX_LONG_MODE);
1868 CPUID_GST_AMD_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_3DNOW_EX);
1869 CPUID_GST_AMD_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_3DNOW);
1870 }
1871
1872 /*
1873 * We're good, commit the CPU ID leaves.
1874 */
1875 memcpy(&pVM->cpum.s.aGuestCpuIdStd[0], &aGuestCpuIdStd[0], sizeof(aGuestCpuIdStd));
1876 memcpy(&pVM->cpum.s.aGuestCpuIdExt[0], &aGuestCpuIdExt[0], sizeof(aGuestCpuIdExt));
1877 memcpy(&pVM->cpum.s.aGuestCpuIdCentaur[0], &aGuestCpuIdCentaur[0], sizeof(aGuestCpuIdCentaur));
1878 pVM->cpum.s.GuestCpuIdDef = GuestCpuIdDef;
1879
1880#undef CPUID_CHECK_RET
1881#undef CPUID_CHECK_WRN
1882#undef CPUID_CHECK2_RET
1883#undef CPUID_CHECK2_WRN
1884#undef CPUID_RAW_FEATURE_RET
1885#undef CPUID_RAW_FEATURE_WRN
1886#undef CPUID_RAW_FEATURE_IGN
1887#undef CPUID_GST_FEATURE_RET
1888#undef CPUID_GST_FEATURE_WRN
1889#undef CPUID_GST_FEATURE_EMU
1890#undef CPUID_GST_FEATURE_IGN
1891#undef CPUID_GST_FEATURE2_RET
1892#undef CPUID_GST_FEATURE2_WRN
1893#undef CPUID_GST_FEATURE2_EMU
1894#undef CPUID_GST_FEATURE2_IGN
1895#undef CPUID_GST_AMD_FEATURE_RET
1896#undef CPUID_GST_AMD_FEATURE_WRN
1897#undef CPUID_GST_AMD_FEATURE_EMU
1898#undef CPUID_GST_AMD_FEATURE_IGN
1899
1900 return VINF_SUCCESS;
1901}
1902
1903
1904/**
1905 * Pass 0 live exec callback.
1906 *
1907 * @returns VINF_SSM_DONT_CALL_AGAIN.
1908 * @param pVM The VM handle.
1909 * @param pSSM The saved state handle.
1910 * @param uPass The pass (0).
1911 */
1912static DECLCALLBACK(int) cpumR3LiveExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uPass)
1913{
1914 AssertReturn(uPass == 0, VERR_SSM_UNEXPECTED_PASS);
1915 cpumR3SaveCpuId(pVM, pSSM);
1916 return VINF_SSM_DONT_CALL_AGAIN;
1917}
1918
1919
1920/**
1921 * Execute state save operation.
1922 *
1923 * @returns VBox status code.
1924 * @param pVM VM Handle.
1925 * @param pSSM SSM operation handle.
1926 */
1927static DECLCALLBACK(int) cpumR3SaveExec(PVM pVM, PSSMHANDLE pSSM)
1928{
1929 /*
1930 * Save.
1931 */
1932 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1933 {
1934 PVMCPU pVCpu = &pVM->aCpus[i];
1935
1936 SSMR3PutMem(pSSM, &pVCpu->cpum.s.Hyper, sizeof(pVCpu->cpum.s.Hyper));
1937 }
1938
1939 SSMR3PutU32(pSSM, pVM->cCpus);
1940 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1941 {
1942 PVMCPU pVCpu = &pVM->aCpus[i];
1943
1944 SSMR3PutMem(pSSM, &pVCpu->cpum.s.Guest, sizeof(pVCpu->cpum.s.Guest));
1945 SSMR3PutU32(pSSM, pVCpu->cpum.s.fUseFlags);
1946 SSMR3PutU32(pSSM, pVCpu->cpum.s.fChanged);
1947 SSMR3PutMem(pSSM, &pVCpu->cpum.s.GuestMsr, sizeof(pVCpu->cpum.s.GuestMsr));
1948 }
1949
1950 cpumR3SaveCpuId(pVM, pSSM);
1951 return VINF_SUCCESS;
1952}
1953
1954
1955/**
1956 * Load a version 1.6 CPUMCTX structure.
1957 *
1958 * @returns VBox status code.
1959 * @param pVM VM Handle.
1960 * @param pCpumctx16 Version 1.6 CPUMCTX
1961 */
1962static void cpumR3LoadCPUM1_6(PVM pVM, CPUMCTX_VER1_6 *pCpumctx16)
1963{
1964#define CPUMCTX16_LOADREG(RegName) \
1965 pVM->aCpus[0].cpum.s.Guest.RegName = pCpumctx16->RegName;
1966
1967#define CPUMCTX16_LOADDRXREG(RegName) \
1968 pVM->aCpus[0].cpum.s.Guest.dr[RegName] = pCpumctx16->dr##RegName;
1969
1970#define CPUMCTX16_LOADHIDREG(RegName) \
1971 pVM->aCpus[0].cpum.s.Guest.RegName##Hid.u64Base = pCpumctx16->RegName##Hid.u32Base; \
1972 pVM->aCpus[0].cpum.s.Guest.RegName##Hid.u32Limit = pCpumctx16->RegName##Hid.u32Limit; \
1973 pVM->aCpus[0].cpum.s.Guest.RegName##Hid.Attr = pCpumctx16->RegName##Hid.Attr;
1974
1975#define CPUMCTX16_LOADSEGREG(RegName) \
1976 pVM->aCpus[0].cpum.s.Guest.RegName = pCpumctx16->RegName; \
1977 CPUMCTX16_LOADHIDREG(RegName);
1978
1979 pVM->aCpus[0].cpum.s.Guest.fpu = pCpumctx16->fpu;
1980
1981 CPUMCTX16_LOADREG(rax);
1982 CPUMCTX16_LOADREG(rbx);
1983 CPUMCTX16_LOADREG(rcx);
1984 CPUMCTX16_LOADREG(rdx);
1985 CPUMCTX16_LOADREG(rdi);
1986 CPUMCTX16_LOADREG(rsi);
1987 CPUMCTX16_LOADREG(rbp);
1988 CPUMCTX16_LOADREG(esp);
1989 CPUMCTX16_LOADREG(rip);
1990 CPUMCTX16_LOADREG(rflags);
1991
1992 CPUMCTX16_LOADSEGREG(cs);
1993 CPUMCTX16_LOADSEGREG(ds);
1994 CPUMCTX16_LOADSEGREG(es);
1995 CPUMCTX16_LOADSEGREG(fs);
1996 CPUMCTX16_LOADSEGREG(gs);
1997 CPUMCTX16_LOADSEGREG(ss);
1998
1999 CPUMCTX16_LOADREG(r8);
2000 CPUMCTX16_LOADREG(r9);
2001 CPUMCTX16_LOADREG(r10);
2002 CPUMCTX16_LOADREG(r11);
2003 CPUMCTX16_LOADREG(r12);
2004 CPUMCTX16_LOADREG(r13);
2005 CPUMCTX16_LOADREG(r14);
2006 CPUMCTX16_LOADREG(r15);
2007
2008 CPUMCTX16_LOADREG(cr0);
2009 CPUMCTX16_LOADREG(cr2);
2010 CPUMCTX16_LOADREG(cr3);
2011 CPUMCTX16_LOADREG(cr4);
2012
2013 CPUMCTX16_LOADDRXREG(0);
2014 CPUMCTX16_LOADDRXREG(1);
2015 CPUMCTX16_LOADDRXREG(2);
2016 CPUMCTX16_LOADDRXREG(3);
2017 CPUMCTX16_LOADDRXREG(4);
2018 CPUMCTX16_LOADDRXREG(5);
2019 CPUMCTX16_LOADDRXREG(6);
2020 CPUMCTX16_LOADDRXREG(7);
2021
2022 pVM->aCpus[0].cpum.s.Guest.gdtr.cbGdt = pCpumctx16->gdtr.cbGdt;
2023 pVM->aCpus[0].cpum.s.Guest.gdtr.pGdt = pCpumctx16->gdtr.pGdt;
2024 pVM->aCpus[0].cpum.s.Guest.idtr.cbIdt = pCpumctx16->idtr.cbIdt;
2025 pVM->aCpus[0].cpum.s.Guest.idtr.pIdt = pCpumctx16->idtr.pIdt;
2026
2027 CPUMCTX16_LOADREG(ldtr);
2028 CPUMCTX16_LOADREG(tr);
2029
2030 pVM->aCpus[0].cpum.s.Guest.SysEnter = pCpumctx16->SysEnter;
2031
2032 CPUMCTX16_LOADREG(msrEFER);
2033 CPUMCTX16_LOADREG(msrSTAR);
2034 CPUMCTX16_LOADREG(msrPAT);
2035 CPUMCTX16_LOADREG(msrLSTAR);
2036 CPUMCTX16_LOADREG(msrCSTAR);
2037 CPUMCTX16_LOADREG(msrSFMASK);
2038 CPUMCTX16_LOADREG(msrKERNELGSBASE);
2039
2040 CPUMCTX16_LOADHIDREG(ldtr);
2041 CPUMCTX16_LOADHIDREG(tr);
2042
2043#undef CPUMCTX16_LOADSEGREG
2044#undef CPUMCTX16_LOADHIDREG
2045#undef CPUMCTX16_LOADDRXREG
2046#undef CPUMCTX16_LOADREG
2047}
2048
2049
2050/**
2051 * @copydoc FNSSMINTLOADPREP
2052 */
2053static DECLCALLBACK(int) cpumR3LoadPrep(PVM pVM, PSSMHANDLE pSSM)
2054{
2055 NOREF(pSSM);
2056 pVM->cpum.s.fPendingRestore = true;
2057 return VINF_SUCCESS;
2058}
2059
2060
2061/**
2062 * @copydoc FNSSMINTLOADEXEC
2063 */
2064static DECLCALLBACK(int) cpumR3LoadExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
2065{
2066 /*
2067 * Validate version.
2068 */
2069 if ( uVersion != CPUM_SAVED_STATE_VERSION
2070 && uVersion != CPUM_SAVED_STATE_VERSION_VER3_2
2071 && uVersion != CPUM_SAVED_STATE_VERSION_VER3_0
2072 && uVersion != CPUM_SAVED_STATE_VERSION_VER2_1_NOMSR
2073 && uVersion != CPUM_SAVED_STATE_VERSION_VER2_0
2074 && uVersion != CPUM_SAVED_STATE_VERSION_VER1_6)
2075 {
2076 AssertMsgFailed(("cpumR3LoadExec: Invalid version uVersion=%d!\n", uVersion));
2077 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
2078 }
2079
2080 if (uPass == SSM_PASS_FINAL)
2081 {
2082 /*
2083 * Set the size of RTGCPTR for SSMR3GetGCPtr. (Only necessary for
2084 * really old SSM file versions.)
2085 */
2086 if (uVersion == CPUM_SAVED_STATE_VERSION_VER1_6)
2087 SSMR3HandleSetGCPtrSize(pSSM, sizeof(RTGCPTR32));
2088 else if (uVersion <= CPUM_SAVED_STATE_VERSION_VER3_0)
2089 SSMR3HandleSetGCPtrSize(pSSM, HC_ARCH_BITS == 32 ? sizeof(RTGCPTR32) : sizeof(RTGCPTR));
2090
2091 /*
2092 * Restore.
2093 */
2094 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2095 {
2096 PVMCPU pVCpu = &pVM->aCpus[i];
2097 uint32_t uCR3 = pVCpu->cpum.s.Hyper.cr3;
2098 uint32_t uESP = pVCpu->cpum.s.Hyper.esp; /* see VMMR3Relocate(). */
2099
2100 SSMR3GetMem(pSSM, &pVCpu->cpum.s.Hyper, sizeof(pVCpu->cpum.s.Hyper));
2101 pVCpu->cpum.s.Hyper.cr3 = uCR3;
2102 pVCpu->cpum.s.Hyper.esp = uESP;
2103 }
2104
2105 if (uVersion == CPUM_SAVED_STATE_VERSION_VER1_6)
2106 {
2107 CPUMCTX_VER1_6 cpumctx16;
2108 memset(&pVM->aCpus[0].cpum.s.Guest, 0, sizeof(pVM->aCpus[0].cpum.s.Guest));
2109 SSMR3GetMem(pSSM, &cpumctx16, sizeof(cpumctx16));
2110
2111 /* Save the old cpumctx state into the new one. */
2112 cpumR3LoadCPUM1_6(pVM, &cpumctx16);
2113
2114 SSMR3GetU32(pSSM, &pVM->aCpus[0].cpum.s.fUseFlags);
2115 SSMR3GetU32(pSSM, &pVM->aCpus[0].cpum.s.fChanged);
2116 }
2117 else
2118 {
2119 if (uVersion >= CPUM_SAVED_STATE_VERSION_VER2_1_NOMSR)
2120 {
2121 uint32_t cCpus;
2122 int rc = SSMR3GetU32(pSSM, &cCpus); AssertRCReturn(rc, rc);
2123 AssertLogRelMsgReturn(cCpus == pVM->cCpus, ("Mismatching CPU counts: saved: %u; configured: %u \n", cCpus, pVM->cCpus),
2124 VERR_SSM_UNEXPECTED_DATA);
2125 }
2126 AssertLogRelMsgReturn( uVersion != CPUM_SAVED_STATE_VERSION_VER2_0
2127 || pVM->cCpus == 1,
2128 ("cCpus=%u\n", pVM->cCpus),
2129 VERR_SSM_UNEXPECTED_DATA);
2130
2131 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2132 {
2133 SSMR3GetMem(pSSM, &pVM->aCpus[i].cpum.s.Guest, sizeof(pVM->aCpus[i].cpum.s.Guest));
2134 SSMR3GetU32(pSSM, &pVM->aCpus[i].cpum.s.fUseFlags);
2135 SSMR3GetU32(pSSM, &pVM->aCpus[i].cpum.s.fChanged);
2136 if (uVersion >= CPUM_SAVED_STATE_VERSION_VER3_0)
2137 SSMR3GetMem(pSSM, &pVM->aCpus[i].cpum.s.GuestMsr, sizeof(pVM->aCpus[i].cpum.s.GuestMsr));
2138 }
2139 }
2140
2141 /* Older states does not set CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID for
2142 raw-mode guest, so we have to do it ourselves. */
2143 if ( uVersion <= CPUM_SAVED_STATE_VERSION_VER3_2
2144 && !HWACCMIsEnabled(pVM))
2145 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
2146 pVM->aCpus[iCpu].cpum.s.fChanged |= CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID;
2147 }
2148
2149 pVM->cpum.s.fPendingRestore = false;
2150
2151 /*
2152 * Guest CPUIDs.
2153 */
2154 if (uVersion > CPUM_SAVED_STATE_VERSION_VER3_0)
2155 return cpumR3LoadCpuId(pVM, pSSM, uVersion);
2156
2157 /** @todo Merge the code below into cpumR3LoadCpuId when we've found out what is
2158 * actually required. */
2159
2160 /*
2161 * Restore the CPUID leaves.
2162 *
2163 * Note that we support restoring less than the current amount of standard
2164 * leaves because we've been allowed more is newer version of VBox.
2165 */
2166 uint32_t cElements;
2167 int rc = SSMR3GetU32(pSSM, &cElements); AssertRCReturn(rc, rc);
2168 if (cElements > RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdStd))
2169 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2170 SSMR3GetMem(pSSM, &pVM->cpum.s.aGuestCpuIdStd[0], cElements*sizeof(pVM->cpum.s.aGuestCpuIdStd[0]));
2171
2172 rc = SSMR3GetU32(pSSM, &cElements); AssertRCReturn(rc, rc);
2173 if (cElements != RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdExt))
2174 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2175 SSMR3GetMem(pSSM, &pVM->cpum.s.aGuestCpuIdExt[0], sizeof(pVM->cpum.s.aGuestCpuIdExt));
2176
2177 rc = SSMR3GetU32(pSSM, &cElements); AssertRCReturn(rc, rc);
2178 if (cElements != RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdCentaur))
2179 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2180 SSMR3GetMem(pSSM, &pVM->cpum.s.aGuestCpuIdCentaur[0], sizeof(pVM->cpum.s.aGuestCpuIdCentaur));
2181
2182 SSMR3GetMem(pSSM, &pVM->cpum.s.GuestCpuIdDef, sizeof(pVM->cpum.s.GuestCpuIdDef));
2183
2184 /*
2185 * Check that the basic cpuid id information is unchanged.
2186 */
2187 /** @todo we should check the 64 bits capabilities too! */
2188 uint32_t au32CpuId[8] = {0,0,0,0, 0,0,0,0};
2189 ASMCpuId(0, &au32CpuId[0], &au32CpuId[1], &au32CpuId[2], &au32CpuId[3]);
2190 ASMCpuId(1, &au32CpuId[4], &au32CpuId[5], &au32CpuId[6], &au32CpuId[7]);
2191 uint32_t au32CpuIdSaved[8];
2192 rc = SSMR3GetMem(pSSM, &au32CpuIdSaved[0], sizeof(au32CpuIdSaved));
2193 if (RT_SUCCESS(rc))
2194 {
2195 /* Ignore CPU stepping. */
2196 au32CpuId[4] &= 0xfffffff0;
2197 au32CpuIdSaved[4] &= 0xfffffff0;
2198
2199 /* Ignore APIC ID (AMD specs). */
2200 au32CpuId[5] &= ~0xff000000;
2201 au32CpuIdSaved[5] &= ~0xff000000;
2202
2203 /* Ignore the number of Logical CPUs (AMD specs). */
2204 au32CpuId[5] &= ~0x00ff0000;
2205 au32CpuIdSaved[5] &= ~0x00ff0000;
2206
2207 /* Ignore some advanced capability bits, that we don't expose to the guest. */
2208 au32CpuId[6] &= ~( X86_CPUID_FEATURE_ECX_DTES64
2209 | X86_CPUID_FEATURE_ECX_VMX
2210 | X86_CPUID_FEATURE_ECX_SMX
2211 | X86_CPUID_FEATURE_ECX_EST
2212 | X86_CPUID_FEATURE_ECX_TM2
2213 | X86_CPUID_FEATURE_ECX_CNTXID
2214 | X86_CPUID_FEATURE_ECX_TPRUPDATE
2215 | X86_CPUID_FEATURE_ECX_PDCM
2216 | X86_CPUID_FEATURE_ECX_DCA
2217 | X86_CPUID_FEATURE_ECX_X2APIC
2218 );
2219 au32CpuIdSaved[6] &= ~( X86_CPUID_FEATURE_ECX_DTES64
2220 | X86_CPUID_FEATURE_ECX_VMX
2221 | X86_CPUID_FEATURE_ECX_SMX
2222 | X86_CPUID_FEATURE_ECX_EST
2223 | X86_CPUID_FEATURE_ECX_TM2
2224 | X86_CPUID_FEATURE_ECX_CNTXID
2225 | X86_CPUID_FEATURE_ECX_TPRUPDATE
2226 | X86_CPUID_FEATURE_ECX_PDCM
2227 | X86_CPUID_FEATURE_ECX_DCA
2228 | X86_CPUID_FEATURE_ECX_X2APIC
2229 );
2230
2231 /* Make sure we don't forget to update the masks when enabling
2232 * features in the future.
2233 */
2234 AssertRelease(!(pVM->cpum.s.aGuestCpuIdStd[1].ecx &
2235 ( X86_CPUID_FEATURE_ECX_DTES64
2236 | X86_CPUID_FEATURE_ECX_VMX
2237 | X86_CPUID_FEATURE_ECX_SMX
2238 | X86_CPUID_FEATURE_ECX_EST
2239 | X86_CPUID_FEATURE_ECX_TM2
2240 | X86_CPUID_FEATURE_ECX_CNTXID
2241 | X86_CPUID_FEATURE_ECX_TPRUPDATE
2242 | X86_CPUID_FEATURE_ECX_PDCM
2243 | X86_CPUID_FEATURE_ECX_DCA
2244 | X86_CPUID_FEATURE_ECX_X2APIC
2245 )));
2246 /* do the compare */
2247 if (memcmp(au32CpuIdSaved, au32CpuId, sizeof(au32CpuIdSaved)))
2248 {
2249 if (SSMR3HandleGetAfter(pSSM) == SSMAFTER_DEBUG_IT)
2250 LogRel(("cpumR3LoadExec: CpuId mismatch! (ignored due to SSMAFTER_DEBUG_IT)\n"
2251 "Saved=%.*Rhxs\n"
2252 "Real =%.*Rhxs\n",
2253 sizeof(au32CpuIdSaved), au32CpuIdSaved,
2254 sizeof(au32CpuId), au32CpuId));
2255 else
2256 {
2257 LogRel(("cpumR3LoadExec: CpuId mismatch!\n"
2258 "Saved=%.*Rhxs\n"
2259 "Real =%.*Rhxs\n",
2260 sizeof(au32CpuIdSaved), au32CpuIdSaved,
2261 sizeof(au32CpuId), au32CpuId));
2262 rc = VERR_SSM_LOAD_CPUID_MISMATCH;
2263 }
2264 }
2265 }
2266
2267 return rc;
2268}
2269
2270
2271/**
2272 * @copydoc FNSSMINTLOADPREP
2273 */
2274static DECLCALLBACK(int) cpumR3LoadDone(PVM pVM, PSSMHANDLE pSSM)
2275{
2276 if (RT_FAILURE(SSMR3HandleGetStatus(pSSM)))
2277 return VINF_SUCCESS;
2278
2279 /* just check this since we can. */ /** @todo Add a SSM unit flag for indicating that it's mandatory during a restore. */
2280 if (pVM->cpum.s.fPendingRestore)
2281 {
2282 LogRel(("CPUM: Missing state!\n"));
2283 return VERR_INTERNAL_ERROR_2;
2284 }
2285
2286 /* Notify PGM of the NXE states in case they've changed. */
2287 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
2288 PGMNotifyNxeChanged(&pVM->aCpus[iCpu], !!(pVM->aCpus[iCpu].cpum.s.Guest.msrEFER & MSR_K6_EFER_NXE));
2289 return VINF_SUCCESS;
2290}
2291
2292
2293/**
2294 * Checks if the CPUM state restore is still pending.
2295 *
2296 * @returns true / false.
2297 * @param pVM The VM handle.
2298 */
2299VMMDECL(bool) CPUMR3IsStateRestorePending(PVM pVM)
2300{
2301 return pVM->cpum.s.fPendingRestore;
2302}
2303
2304
2305/**
2306 * Formats the EFLAGS value into mnemonics.
2307 *
2308 * @param pszEFlags Where to write the mnemonics. (Assumes sufficient buffer space.)
2309 * @param efl The EFLAGS value.
2310 */
2311static void cpumR3InfoFormatFlags(char *pszEFlags, uint32_t efl)
2312{
2313 /*
2314 * Format the flags.
2315 */
2316 static const struct
2317 {
2318 const char *pszSet; const char *pszClear; uint32_t fFlag;
2319 } s_aFlags[] =
2320 {
2321 { "vip",NULL, X86_EFL_VIP },
2322 { "vif",NULL, X86_EFL_VIF },
2323 { "ac", NULL, X86_EFL_AC },
2324 { "vm", NULL, X86_EFL_VM },
2325 { "rf", NULL, X86_EFL_RF },
2326 { "nt", NULL, X86_EFL_NT },
2327 { "ov", "nv", X86_EFL_OF },
2328 { "dn", "up", X86_EFL_DF },
2329 { "ei", "di", X86_EFL_IF },
2330 { "tf", NULL, X86_EFL_TF },
2331 { "nt", "pl", X86_EFL_SF },
2332 { "nz", "zr", X86_EFL_ZF },
2333 { "ac", "na", X86_EFL_AF },
2334 { "po", "pe", X86_EFL_PF },
2335 { "cy", "nc", X86_EFL_CF },
2336 };
2337 char *psz = pszEFlags;
2338 for (unsigned i = 0; i < RT_ELEMENTS(s_aFlags); i++)
2339 {
2340 const char *pszAdd = s_aFlags[i].fFlag & efl ? s_aFlags[i].pszSet : s_aFlags[i].pszClear;
2341 if (pszAdd)
2342 {
2343 strcpy(psz, pszAdd);
2344 psz += strlen(pszAdd);
2345 *psz++ = ' ';
2346 }
2347 }
2348 psz[-1] = '\0';
2349}
2350
2351
2352/**
2353 * Formats a full register dump.
2354 *
2355 * @param pVM VM Handle.
2356 * @param pCtx The context to format.
2357 * @param pCtxCore The context core to format.
2358 * @param pHlp Output functions.
2359 * @param enmType The dump type.
2360 * @param pszPrefix Register name prefix.
2361 */
2362static void cpumR3InfoOne(PVM pVM, PCPUMCTX pCtx, PCCPUMCTXCORE pCtxCore, PCDBGFINFOHLP pHlp, CPUMDUMPTYPE enmType,
2363 const char *pszPrefix)
2364{
2365 NOREF(pVM);
2366
2367 /*
2368 * Format the EFLAGS.
2369 */
2370 uint32_t efl = pCtxCore->eflags.u32;
2371 char szEFlags[80];
2372 cpumR3InfoFormatFlags(&szEFlags[0], efl);
2373
2374 /*
2375 * Format the registers.
2376 */
2377 switch (enmType)
2378 {
2379 case CPUMDUMPTYPE_TERSE:
2380 if (CPUMIsGuestIn64BitCodeEx(pCtx))
2381 pHlp->pfnPrintf(pHlp,
2382 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
2383 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
2384 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
2385 "%sr14=%016RX64 %sr15=%016RX64\n"
2386 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
2387 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %seflags=%08x\n",
2388 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
2389 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
2390 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
2391 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2392 pszPrefix, (RTSEL)pCtxCore->cs, pszPrefix, (RTSEL)pCtxCore->ss, pszPrefix, (RTSEL)pCtxCore->ds, pszPrefix, (RTSEL)pCtxCore->es,
2393 pszPrefix, (RTSEL)pCtxCore->fs, pszPrefix, (RTSEL)pCtxCore->gs, pszPrefix, efl);
2394 else
2395 pHlp->pfnPrintf(pHlp,
2396 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
2397 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
2398 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %seflags=%08x\n",
2399 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
2400 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2401 pszPrefix, (RTSEL)pCtxCore->cs, pszPrefix, (RTSEL)pCtxCore->ss, pszPrefix, (RTSEL)pCtxCore->ds, pszPrefix, (RTSEL)pCtxCore->es,
2402 pszPrefix, (RTSEL)pCtxCore->fs, pszPrefix, (RTSEL)pCtxCore->gs, pszPrefix, efl);
2403 break;
2404
2405 case CPUMDUMPTYPE_DEFAULT:
2406 if (CPUMIsGuestIn64BitCodeEx(pCtx))
2407 pHlp->pfnPrintf(pHlp,
2408 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
2409 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
2410 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
2411 "%sr14=%016RX64 %sr15=%016RX64\n"
2412 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
2413 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %str=%04x %seflags=%08x\n"
2414 "%scr0=%08RX64 %scr2=%08RX64 %scr3=%08RX64 %scr4=%08RX64 %sgdtr=%016RX64:%04x %sldtr=%04x\n"
2415 ,
2416 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
2417 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
2418 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
2419 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2420 pszPrefix, (RTSEL)pCtxCore->cs, pszPrefix, (RTSEL)pCtxCore->ss, pszPrefix, (RTSEL)pCtxCore->ds, pszPrefix, (RTSEL)pCtxCore->es,
2421 pszPrefix, (RTSEL)pCtxCore->fs, pszPrefix, (RTSEL)pCtxCore->gs, pszPrefix, (RTSEL)pCtx->tr, pszPrefix, efl,
2422 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
2423 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, (RTSEL)pCtx->ldtr);
2424 else
2425 pHlp->pfnPrintf(pHlp,
2426 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
2427 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
2428 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %str=%04x %seflags=%08x\n"
2429 "%scr0=%08RX64 %scr2=%08RX64 %scr3=%08RX64 %scr4=%08RX64 %sgdtr=%08RX64:%04x %sldtr=%04x\n"
2430 ,
2431 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
2432 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2433 pszPrefix, (RTSEL)pCtxCore->cs, pszPrefix, (RTSEL)pCtxCore->ss, pszPrefix, (RTSEL)pCtxCore->ds, pszPrefix, (RTSEL)pCtxCore->es,
2434 pszPrefix, (RTSEL)pCtxCore->fs, pszPrefix, (RTSEL)pCtxCore->gs, pszPrefix, (RTSEL)pCtx->tr, pszPrefix, efl,
2435 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
2436 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, (RTSEL)pCtx->ldtr);
2437 break;
2438
2439 case CPUMDUMPTYPE_VERBOSE:
2440 if (CPUMIsGuestIn64BitCodeEx(pCtx))
2441 pHlp->pfnPrintf(pHlp,
2442 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
2443 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
2444 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
2445 "%sr14=%016RX64 %sr15=%016RX64\n"
2446 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
2447 "%scs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2448 "%sds={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2449 "%ses={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2450 "%sfs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2451 "%sgs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2452 "%sss={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2453 "%scr0=%016RX64 %scr2=%016RX64 %scr3=%016RX64 %scr4=%016RX64\n"
2454 "%sdr0=%016RX64 %sdr1=%016RX64 %sdr2=%016RX64 %sdr3=%016RX64\n"
2455 "%sdr4=%016RX64 %sdr5=%016RX64 %sdr6=%016RX64 %sdr7=%016RX64\n"
2456 "%sgdtr=%016RX64:%04x %sidtr=%016RX64:%04x %seflags=%08x\n"
2457 "%sldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
2458 "%str ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
2459 "%sSysEnter={cs=%04llx eip=%016RX64 esp=%016RX64}\n"
2460 ,
2461 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
2462 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
2463 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
2464 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2465 pszPrefix, (RTSEL)pCtxCore->cs, pCtx->csHid.u64Base, pCtx->csHid.u32Limit, pCtx->csHid.Attr.u,
2466 pszPrefix, (RTSEL)pCtxCore->ds, pCtx->dsHid.u64Base, pCtx->dsHid.u32Limit, pCtx->dsHid.Attr.u,
2467 pszPrefix, (RTSEL)pCtxCore->es, pCtx->esHid.u64Base, pCtx->esHid.u32Limit, pCtx->esHid.Attr.u,
2468 pszPrefix, (RTSEL)pCtxCore->fs, pCtx->fsHid.u64Base, pCtx->fsHid.u32Limit, pCtx->fsHid.Attr.u,
2469 pszPrefix, (RTSEL)pCtxCore->gs, pCtx->gsHid.u64Base, pCtx->gsHid.u32Limit, pCtx->gsHid.Attr.u,
2470 pszPrefix, (RTSEL)pCtxCore->ss, pCtx->ssHid.u64Base, pCtx->ssHid.u32Limit, pCtx->ssHid.Attr.u,
2471 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
2472 pszPrefix, pCtx->dr[0], pszPrefix, pCtx->dr[1], pszPrefix, pCtx->dr[2], pszPrefix, pCtx->dr[3],
2473 pszPrefix, pCtx->dr[4], pszPrefix, pCtx->dr[5], pszPrefix, pCtx->dr[6], pszPrefix, pCtx->dr[7],
2474 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, pszPrefix, efl,
2475 pszPrefix, (RTSEL)pCtx->ldtr, pCtx->ldtrHid.u64Base, pCtx->ldtrHid.u32Limit, pCtx->ldtrHid.Attr.u,
2476 pszPrefix, (RTSEL)pCtx->tr, pCtx->trHid.u64Base, pCtx->trHid.u32Limit, pCtx->trHid.Attr.u,
2477 pszPrefix, pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
2478 else
2479 pHlp->pfnPrintf(pHlp,
2480 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
2481 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
2482 "%scs={%04x base=%016RX64 limit=%08x flags=%08x} %sdr0=%08RX64 %sdr1=%08RX64\n"
2483 "%sds={%04x base=%016RX64 limit=%08x flags=%08x} %sdr2=%08RX64 %sdr3=%08RX64\n"
2484 "%ses={%04x base=%016RX64 limit=%08x flags=%08x} %sdr4=%08RX64 %sdr5=%08RX64\n"
2485 "%sfs={%04x base=%016RX64 limit=%08x flags=%08x} %sdr6=%08RX64 %sdr7=%08RX64\n"
2486 "%sgs={%04x base=%016RX64 limit=%08x flags=%08x} %scr0=%08RX64 %scr2=%08RX64\n"
2487 "%sss={%04x base=%016RX64 limit=%08x flags=%08x} %scr3=%08RX64 %scr4=%08RX64\n"
2488 "%sgdtr=%016RX64:%04x %sidtr=%016RX64:%04x %seflags=%08x\n"
2489 "%sldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
2490 "%str ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
2491 "%sSysEnter={cs=%04llx eip=%08llx esp=%08llx}\n"
2492 ,
2493 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
2494 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2495 pszPrefix, (RTSEL)pCtxCore->cs, pCtx->csHid.u64Base, pCtx->csHid.u32Limit, pCtx->csHid.Attr.u, pszPrefix, pCtx->dr[0], pszPrefix, pCtx->dr[1],
2496 pszPrefix, (RTSEL)pCtxCore->ds, pCtx->dsHid.u64Base, pCtx->dsHid.u32Limit, pCtx->dsHid.Attr.u, pszPrefix, pCtx->dr[2], pszPrefix, pCtx->dr[3],
2497 pszPrefix, (RTSEL)pCtxCore->es, pCtx->esHid.u64Base, pCtx->esHid.u32Limit, pCtx->esHid.Attr.u, pszPrefix, pCtx->dr[4], pszPrefix, pCtx->dr[5],
2498 pszPrefix, (RTSEL)pCtxCore->fs, pCtx->fsHid.u64Base, pCtx->fsHid.u32Limit, pCtx->fsHid.Attr.u, pszPrefix, pCtx->dr[6], pszPrefix, pCtx->dr[7],
2499 pszPrefix, (RTSEL)pCtxCore->gs, pCtx->gsHid.u64Base, pCtx->gsHid.u32Limit, pCtx->gsHid.Attr.u, pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2,
2500 pszPrefix, (RTSEL)pCtxCore->ss, pCtx->ssHid.u64Base, pCtx->ssHid.u32Limit, pCtx->ssHid.Attr.u, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
2501 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, pszPrefix, efl,
2502 pszPrefix, (RTSEL)pCtx->ldtr, pCtx->ldtrHid.u64Base, pCtx->ldtrHid.u32Limit, pCtx->ldtrHid.Attr.u,
2503 pszPrefix, (RTSEL)pCtx->tr, pCtx->trHid.u64Base, pCtx->trHid.u32Limit, pCtx->trHid.Attr.u,
2504 pszPrefix, pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
2505
2506 pHlp->pfnPrintf(pHlp,
2507 "%sFCW=%04x %sFSW=%04x %sFTW=%04x %sFOP=%04x %sMXCSR=%08x %sMXCSR_MASK=%08x\n"
2508 "%sFPUIP=%08x %sCS=%04x %sRsrvd1=%04x %sFPUDP=%08x %sDS=%04x %sRsvrd2=%04x\n"
2509 ,
2510 pszPrefix, pCtx->fpu.FCW, pszPrefix, pCtx->fpu.FSW, pszPrefix, pCtx->fpu.FTW, pszPrefix, pCtx->fpu.FOP,
2511 pszPrefix, pCtx->fpu.MXCSR, pszPrefix, pCtx->fpu.MXCSR_MASK,
2512 pszPrefix, pCtx->fpu.FPUIP, pszPrefix, pCtx->fpu.CS, pszPrefix, pCtx->fpu.Rsrvd1,
2513 pszPrefix, pCtx->fpu.FPUDP, pszPrefix, pCtx->fpu.DS, pszPrefix, pCtx->fpu.Rsrvd2
2514 );
2515 unsigned iShift = (pCtx->fpu.FSW >> 11) & 7;
2516 for (unsigned iST = 0; iST < RT_ELEMENTS(pCtx->fpu.aRegs); iST++)
2517 {
2518 unsigned iFPR = (iST + iShift) % RT_ELEMENTS(pCtx->fpu.aRegs);
2519 unsigned uTag = pCtx->fpu.FTW & (1 << iFPR) ? 1 : 0;
2520 char chSign = pCtx->fpu.aRegs[0].au16[4] & 0x8000 ? '-' : '+';
2521 unsigned iInteger = (unsigned)(pCtx->fpu.aRegs[0].au64[0] >> 63);
2522 uint64_t u64Fraction = pCtx->fpu.aRegs[0].au64[0] & UINT64_C(0x7fffffffffffffff);
2523 unsigned uExponent = pCtx->fpu.aRegs[0].au16[4] & 0x7fff;
2524 /** @todo This isn't entirenly correct and needs more work! */
2525 pHlp->pfnPrintf(pHlp,
2526 "%sST(%u)=%sFPR%u={%04RX16'%08RX32'%08RX32} t%d %c%u.%022llu ^ %u",
2527 pszPrefix, iST, pszPrefix, iFPR,
2528 pCtx->fpu.aRegs[0].au16[4], pCtx->fpu.aRegs[0].au32[1], pCtx->fpu.aRegs[0].au32[0],
2529 uTag, chSign, iInteger, u64Fraction, uExponent);
2530 if (pCtx->fpu.aRegs[0].au16[5] || pCtx->fpu.aRegs[0].au16[6] || pCtx->fpu.aRegs[0].au16[7])
2531 pHlp->pfnPrintf(pHlp, " res={%04RX16,%04RX16,%04RX16}\n",
2532 pCtx->fpu.aRegs[0].au16[5], pCtx->fpu.aRegs[0].au16[6], pCtx->fpu.aRegs[0].au16[7]);
2533 else
2534 pHlp->pfnPrintf(pHlp, "\n");
2535 }
2536 for (unsigned iXMM = 0; iXMM < RT_ELEMENTS(pCtx->fpu.aXMM); iXMM++)
2537 pHlp->pfnPrintf(pHlp,
2538 iXMM & 1
2539 ? "%sXMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32\n"
2540 : "%sXMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32 ",
2541 pszPrefix, iXMM, iXMM < 10 ? " " : "",
2542 pCtx->fpu.aXMM[iXMM].au32[3],
2543 pCtx->fpu.aXMM[iXMM].au32[2],
2544 pCtx->fpu.aXMM[iXMM].au32[1],
2545 pCtx->fpu.aXMM[iXMM].au32[0]);
2546 for (unsigned i = 0; i < RT_ELEMENTS(pCtx->fpu.au32RsrvdRest); i++)
2547 if (pCtx->fpu.au32RsrvdRest[i])
2548 pHlp->pfnPrintf(pHlp, "%sRsrvdRest[i]=%RX32 (offset=%#x)\n",
2549 pszPrefix, i, pCtx->fpu.au32RsrvdRest[i], RT_OFFSETOF(X86FXSTATE, au32RsrvdRest[i]) );
2550
2551 pHlp->pfnPrintf(pHlp,
2552 "%sEFER =%016RX64\n"
2553 "%sPAT =%016RX64\n"
2554 "%sSTAR =%016RX64\n"
2555 "%sCSTAR =%016RX64\n"
2556 "%sLSTAR =%016RX64\n"
2557 "%sSFMASK =%016RX64\n"
2558 "%sKERNELGSBASE =%016RX64\n",
2559 pszPrefix, pCtx->msrEFER,
2560 pszPrefix, pCtx->msrPAT,
2561 pszPrefix, pCtx->msrSTAR,
2562 pszPrefix, pCtx->msrCSTAR,
2563 pszPrefix, pCtx->msrLSTAR,
2564 pszPrefix, pCtx->msrSFMASK,
2565 pszPrefix, pCtx->msrKERNELGSBASE);
2566 break;
2567 }
2568}
2569
2570
2571/**
2572 * Display all cpu states and any other cpum info.
2573 *
2574 * @param pVM VM Handle.
2575 * @param pHlp The info helper functions.
2576 * @param pszArgs Arguments, ignored.
2577 */
2578static DECLCALLBACK(void) cpumR3InfoAll(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2579{
2580 cpumR3InfoGuest(pVM, pHlp, pszArgs);
2581 cpumR3InfoGuestInstr(pVM, pHlp, pszArgs);
2582 cpumR3InfoHyper(pVM, pHlp, pszArgs);
2583 cpumR3InfoHost(pVM, pHlp, pszArgs);
2584}
2585
2586
2587/**
2588 * Parses the info argument.
2589 *
2590 * The argument starts with 'verbose', 'terse' or 'default' and then
2591 * continues with the comment string.
2592 *
2593 * @param pszArgs The pointer to the argument string.
2594 * @param penmType Where to store the dump type request.
2595 * @param ppszComment Where to store the pointer to the comment string.
2596 */
2597static void cpumR3InfoParseArg(const char *pszArgs, CPUMDUMPTYPE *penmType, const char **ppszComment)
2598{
2599 if (!pszArgs)
2600 {
2601 *penmType = CPUMDUMPTYPE_DEFAULT;
2602 *ppszComment = "";
2603 }
2604 else
2605 {
2606 if (!strncmp(pszArgs, "verbose", sizeof("verbose") - 1))
2607 {
2608 pszArgs += 5;
2609 *penmType = CPUMDUMPTYPE_VERBOSE;
2610 }
2611 else if (!strncmp(pszArgs, "terse", sizeof("terse") - 1))
2612 {
2613 pszArgs += 5;
2614 *penmType = CPUMDUMPTYPE_TERSE;
2615 }
2616 else if (!strncmp(pszArgs, "default", sizeof("default") - 1))
2617 {
2618 pszArgs += 7;
2619 *penmType = CPUMDUMPTYPE_DEFAULT;
2620 }
2621 else
2622 *penmType = CPUMDUMPTYPE_DEFAULT;
2623 *ppszComment = RTStrStripL(pszArgs);
2624 }
2625}
2626
2627
2628/**
2629 * Display the guest cpu state.
2630 *
2631 * @param pVM VM Handle.
2632 * @param pHlp The info helper functions.
2633 * @param pszArgs Arguments, ignored.
2634 */
2635static DECLCALLBACK(void) cpumR3InfoGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2636{
2637 CPUMDUMPTYPE enmType;
2638 const char *pszComment;
2639 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
2640
2641 /* @todo SMP support! */
2642 PVMCPU pVCpu = VMMGetCpu(pVM);
2643 if (!pVCpu)
2644 pVCpu = &pVM->aCpus[0];
2645
2646 pHlp->pfnPrintf(pHlp, "Guest CPUM (VCPU %d) state: %s\n", pVCpu->idCpu, pszComment);
2647
2648 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
2649 cpumR3InfoOne(pVM, pCtx, CPUMCTX2CORE(pCtx), pHlp, enmType, "");
2650}
2651
2652
2653/**
2654 * Display the current guest instruction
2655 *
2656 * @param pVM VM Handle.
2657 * @param pHlp The info helper functions.
2658 * @param pszArgs Arguments, ignored.
2659 */
2660static DECLCALLBACK(void) cpumR3InfoGuestInstr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2661{
2662 NOREF(pszArgs);
2663
2664 /** @todo SMP support! */
2665 PVMCPU pVCpu = VMMGetCpu(pVM);
2666 if (!pVCpu)
2667 pVCpu = &pVM->aCpus[0];
2668
2669 char szInstruction[256];
2670 int rc = DBGFR3DisasInstrCurrent(pVCpu, szInstruction, sizeof(szInstruction));
2671 if (RT_SUCCESS(rc))
2672 pHlp->pfnPrintf(pHlp, "\nCPUM: %s\n\n", szInstruction);
2673}
2674
2675
2676/**
2677 * Display the hypervisor cpu state.
2678 *
2679 * @param pVM VM Handle.
2680 * @param pHlp The info helper functions.
2681 * @param pszArgs Arguments, ignored.
2682 */
2683static DECLCALLBACK(void) cpumR3InfoHyper(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2684{
2685 CPUMDUMPTYPE enmType;
2686 const char *pszComment;
2687 /* @todo SMP */
2688 PVMCPU pVCpu = &pVM->aCpus[0];
2689
2690 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
2691 pHlp->pfnPrintf(pHlp, "Hypervisor CPUM state: %s\n", pszComment);
2692 cpumR3InfoOne(pVM, &pVCpu->cpum.s.Hyper, pVCpu->cpum.s.pHyperCoreR3, pHlp, enmType, ".");
2693 pHlp->pfnPrintf(pHlp, "CR4OrMask=%#x CR4AndMask=%#x\n", pVM->cpum.s.CR4.OrMask, pVM->cpum.s.CR4.AndMask);
2694}
2695
2696
2697/**
2698 * Display the host cpu state.
2699 *
2700 * @param pVM VM Handle.
2701 * @param pHlp The info helper functions.
2702 * @param pszArgs Arguments, ignored.
2703 */
2704static DECLCALLBACK(void) cpumR3InfoHost(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2705{
2706 CPUMDUMPTYPE enmType;
2707 const char *pszComment;
2708 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
2709 pHlp->pfnPrintf(pHlp, "Host CPUM state: %s\n", pszComment);
2710
2711 /*
2712 * Format the EFLAGS.
2713 */
2714 /* @todo SMP */
2715 PCPUMHOSTCTX pCtx = &pVM->aCpus[0].cpum.s.Host;
2716#if HC_ARCH_BITS == 32
2717 uint32_t efl = pCtx->eflags.u32;
2718#else
2719 uint64_t efl = pCtx->rflags;
2720#endif
2721 char szEFlags[80];
2722 cpumR3InfoFormatFlags(&szEFlags[0], efl);
2723
2724 /*
2725 * Format the registers.
2726 */
2727#if HC_ARCH_BITS == 32
2728# ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
2729 if (!(pCtx->efer & MSR_K6_EFER_LMA))
2730# endif
2731 {
2732 pHlp->pfnPrintf(pHlp,
2733 "eax=xxxxxxxx ebx=%08x ecx=xxxxxxxx edx=xxxxxxxx esi=%08x edi=%08x\n"
2734 "eip=xxxxxxxx esp=%08x ebp=%08x iopl=%d %31s\n"
2735 "cs=%04x ds=%04x es=%04x fs=%04x gs=%04x eflags=%08x\n"
2736 "cr0=%08RX64 cr2=xxxxxxxx cr3=%08RX64 cr4=%08RX64 gdtr=%08x:%04x ldtr=%04x\n"
2737 "dr[0]=%08RX64 dr[1]=%08RX64x dr[2]=%08RX64 dr[3]=%08RX64x dr[6]=%08RX64 dr[7]=%08RX64\n"
2738 "SysEnter={cs=%04x eip=%08x esp=%08x}\n"
2739 ,
2740 /*pCtx->eax,*/ pCtx->ebx, /*pCtx->ecx, pCtx->edx,*/ pCtx->esi, pCtx->edi,
2741 /*pCtx->eip,*/ pCtx->esp, pCtx->ebp, X86_EFL_GET_IOPL(efl), szEFlags,
2742 (RTSEL)pCtx->cs, (RTSEL)pCtx->ds, (RTSEL)pCtx->es, (RTSEL)pCtx->fs, (RTSEL)pCtx->gs, efl,
2743 pCtx->cr0, /*pCtx->cr2,*/ pCtx->cr3, pCtx->cr4,
2744 pCtx->dr0, pCtx->dr1, pCtx->dr2, pCtx->dr3, pCtx->dr6, pCtx->dr7,
2745 (uint32_t)pCtx->gdtr.uAddr, pCtx->gdtr.cb, (RTSEL)pCtx->ldtr,
2746 pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
2747 }
2748# ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
2749 else
2750# endif
2751#endif
2752#if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
2753 {
2754 pHlp->pfnPrintf(pHlp,
2755 "rax=xxxxxxxxxxxxxxxx rbx=%016RX64 rcx=xxxxxxxxxxxxxxxx\n"
2756 "rdx=xxxxxxxxxxxxxxxx rsi=%016RX64 rdi=%016RX64\n"
2757 "rip=xxxxxxxxxxxxxxxx rsp=%016RX64 rbp=%016RX64\n"
2758 " r8=xxxxxxxxxxxxxxxx r9=xxxxxxxxxxxxxxxx r10=%016RX64\n"
2759 "r11=%016RX64 r12=%016RX64 r13=%016RX64\n"
2760 "r14=%016RX64 r15=%016RX64\n"
2761 "iopl=%d %31s\n"
2762 "cs=%04x ds=%04x es=%04x fs=%04x gs=%04x eflags=%08RX64\n"
2763 "cr0=%016RX64 cr2=xxxxxxxxxxxxxxxx cr3=%016RX64\n"
2764 "cr4=%016RX64 ldtr=%04x tr=%04x\n"
2765 "dr[0]=%016RX64 dr[1]=%016RX64 dr[2]=%016RX64\n"
2766 "dr[3]=%016RX64 dr[6]=%016RX64 dr[7]=%016RX64\n"
2767 "gdtr=%016RX64:%04x idtr=%016RX64:%04x\n"
2768 "SysEnter={cs=%04x eip=%08x esp=%08x}\n"
2769 "FSbase=%016RX64 GSbase=%016RX64 efer=%08RX64\n"
2770 ,
2771 /*pCtx->rax,*/ pCtx->rbx, /*pCtx->rcx,
2772 pCtx->rdx,*/ pCtx->rsi, pCtx->rdi,
2773 /*pCtx->rip,*/ pCtx->rsp, pCtx->rbp,
2774 /*pCtx->r8, pCtx->r9,*/ pCtx->r10,
2775 pCtx->r11, pCtx->r12, pCtx->r13,
2776 pCtx->r14, pCtx->r15,
2777 X86_EFL_GET_IOPL(efl), szEFlags,
2778 (RTSEL)pCtx->cs, (RTSEL)pCtx->ds, (RTSEL)pCtx->es, (RTSEL)pCtx->fs, (RTSEL)pCtx->gs, efl,
2779 pCtx->cr0, /*pCtx->cr2,*/ pCtx->cr3,
2780 pCtx->cr4, pCtx->ldtr, pCtx->tr,
2781 pCtx->dr0, pCtx->dr1, pCtx->dr2,
2782 pCtx->dr3, pCtx->dr6, pCtx->dr7,
2783 pCtx->gdtr.uAddr, pCtx->gdtr.cb, pCtx->idtr.uAddr, pCtx->idtr.cb,
2784 pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp,
2785 pCtx->FSbase, pCtx->GSbase, pCtx->efer);
2786 }
2787#endif
2788}
2789
2790
2791/**
2792 * Get L1 cache / TLS associativity.
2793 */
2794static const char *getCacheAss(unsigned u, char *pszBuf)
2795{
2796 if (u == 0)
2797 return "res0 ";
2798 if (u == 1)
2799 return "direct";
2800 if (u == 255)
2801 return "fully";
2802 if (u >= 256)
2803 return "???";
2804
2805 RTStrPrintf(pszBuf, 16, "%d way", u);
2806 return pszBuf;
2807}
2808
2809
2810/**
2811 * Get L2 cache associativity.
2812 */
2813const char *getL2CacheAss(unsigned u)
2814{
2815 switch (u)
2816 {
2817 case 0: return "off ";
2818 case 1: return "direct";
2819 case 2: return "2 way ";
2820 case 3: return "res3 ";
2821 case 4: return "4 way ";
2822 case 5: return "res5 ";
2823 case 6: return "8 way ";
2824 case 7: return "res7 ";
2825 case 8: return "16 way";
2826 case 9: return "res9 ";
2827 case 10: return "res10 ";
2828 case 11: return "res11 ";
2829 case 12: return "res12 ";
2830 case 13: return "res13 ";
2831 case 14: return "res14 ";
2832 case 15: return "fully ";
2833 default: return "????";
2834 }
2835}
2836
2837
2838/**
2839 * Display the guest CpuId leaves.
2840 *
2841 * @param pVM VM Handle.
2842 * @param pHlp The info helper functions.
2843 * @param pszArgs "terse", "default" or "verbose".
2844 */
2845static DECLCALLBACK(void) cpumR3CpuIdInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2846{
2847 /*
2848 * Parse the argument.
2849 */
2850 unsigned iVerbosity = 1;
2851 if (pszArgs)
2852 {
2853 pszArgs = RTStrStripL(pszArgs);
2854 if (!strcmp(pszArgs, "terse"))
2855 iVerbosity--;
2856 else if (!strcmp(pszArgs, "verbose"))
2857 iVerbosity++;
2858 }
2859
2860 /*
2861 * Start cracking.
2862 */
2863 CPUMCPUID Host;
2864 CPUMCPUID Guest;
2865 unsigned cStdMax = pVM->cpum.s.aGuestCpuIdStd[0].eax;
2866
2867 pHlp->pfnPrintf(pHlp,
2868 " RAW Standard CPUIDs\n"
2869 " Function eax ebx ecx edx\n");
2870 for (unsigned i = 0; i < RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdStd); i++)
2871 {
2872 Guest = pVM->cpum.s.aGuestCpuIdStd[i];
2873 ASMCpuId_Idx_ECX(i, 0, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
2874
2875 pHlp->pfnPrintf(pHlp,
2876 "Gst: %08x %08x %08x %08x %08x%s\n"
2877 "Hst: %08x %08x %08x %08x\n",
2878 i, Guest.eax, Guest.ebx, Guest.ecx, Guest.edx,
2879 i <= cStdMax ? "" : "*",
2880 Host.eax, Host.ebx, Host.ecx, Host.edx);
2881 }
2882
2883 /*
2884 * If verbose, decode it.
2885 */
2886 if (iVerbosity)
2887 {
2888 Guest = pVM->cpum.s.aGuestCpuIdStd[0];
2889 pHlp->pfnPrintf(pHlp,
2890 "Name: %.04s%.04s%.04s\n"
2891 "Supports: 0-%x\n",
2892 &Guest.ebx, &Guest.edx, &Guest.ecx, Guest.eax);
2893 }
2894
2895 /*
2896 * Get Features.
2897 */
2898 bool const fIntel = ASMIsIntelCpuEx(pVM->cpum.s.aGuestCpuIdStd[0].ebx,
2899 pVM->cpum.s.aGuestCpuIdStd[0].ecx,
2900 pVM->cpum.s.aGuestCpuIdStd[0].edx);
2901 if (cStdMax >= 1 && iVerbosity)
2902 {
2903 static const char * const s_apszTypes[4] = { "primary", "overdrive", "MP", "reserved" };
2904
2905 Guest = pVM->cpum.s.aGuestCpuIdStd[1];
2906 uint32_t uEAX = Guest.eax;
2907
2908 pHlp->pfnPrintf(pHlp,
2909 "Family: %d \tExtended: %d \tEffective: %d\n"
2910 "Model: %d \tExtended: %d \tEffective: %d\n"
2911 "Stepping: %d\n"
2912 "Type: %d (%s)\n"
2913 "APIC ID: %#04x\n"
2914 "Logical CPUs: %d\n"
2915 "CLFLUSH Size: %d\n"
2916 "Brand ID: %#04x\n",
2917 (uEAX >> 8) & 0xf, (uEAX >> 20) & 0x7f, ASMGetCpuFamily(uEAX),
2918 (uEAX >> 4) & 0xf, (uEAX >> 16) & 0x0f, ASMGetCpuModel(uEAX, fIntel),
2919 ASMGetCpuStepping(uEAX),
2920 (uEAX >> 12) & 3, s_apszTypes[(uEAX >> 12) & 3],
2921 (Guest.ebx >> 24) & 0xff,
2922 (Guest.ebx >> 16) & 0xff,
2923 (Guest.ebx >> 8) & 0xff,
2924 (Guest.ebx >> 0) & 0xff);
2925 if (iVerbosity == 1)
2926 {
2927 uint32_t uEDX = Guest.edx;
2928 pHlp->pfnPrintf(pHlp, "Features EDX: ");
2929 if (uEDX & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " FPU");
2930 if (uEDX & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " VME");
2931 if (uEDX & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " DE");
2932 if (uEDX & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " PSE");
2933 if (uEDX & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " TSC");
2934 if (uEDX & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " MSR");
2935 if (uEDX & RT_BIT(6)) pHlp->pfnPrintf(pHlp, " PAE");
2936 if (uEDX & RT_BIT(7)) pHlp->pfnPrintf(pHlp, " MCE");
2937 if (uEDX & RT_BIT(8)) pHlp->pfnPrintf(pHlp, " CX8");
2938 if (uEDX & RT_BIT(9)) pHlp->pfnPrintf(pHlp, " APIC");
2939 if (uEDX & RT_BIT(10)) pHlp->pfnPrintf(pHlp, " 10");
2940 if (uEDX & RT_BIT(11)) pHlp->pfnPrintf(pHlp, " SEP");
2941 if (uEDX & RT_BIT(12)) pHlp->pfnPrintf(pHlp, " MTRR");
2942 if (uEDX & RT_BIT(13)) pHlp->pfnPrintf(pHlp, " PGE");
2943 if (uEDX & RT_BIT(14)) pHlp->pfnPrintf(pHlp, " MCA");
2944 if (uEDX & RT_BIT(15)) pHlp->pfnPrintf(pHlp, " CMOV");
2945 if (uEDX & RT_BIT(16)) pHlp->pfnPrintf(pHlp, " PAT");
2946 if (uEDX & RT_BIT(17)) pHlp->pfnPrintf(pHlp, " PSE36");
2947 if (uEDX & RT_BIT(18)) pHlp->pfnPrintf(pHlp, " PSN");
2948 if (uEDX & RT_BIT(19)) pHlp->pfnPrintf(pHlp, " CLFSH");
2949 if (uEDX & RT_BIT(20)) pHlp->pfnPrintf(pHlp, " 20");
2950 if (uEDX & RT_BIT(21)) pHlp->pfnPrintf(pHlp, " DS");
2951 if (uEDX & RT_BIT(22)) pHlp->pfnPrintf(pHlp, " ACPI");
2952 if (uEDX & RT_BIT(23)) pHlp->pfnPrintf(pHlp, " MMX");
2953 if (uEDX & RT_BIT(24)) pHlp->pfnPrintf(pHlp, " FXSR");
2954 if (uEDX & RT_BIT(25)) pHlp->pfnPrintf(pHlp, " SSE");
2955 if (uEDX & RT_BIT(26)) pHlp->pfnPrintf(pHlp, " SSE2");
2956 if (uEDX & RT_BIT(27)) pHlp->pfnPrintf(pHlp, " SS");
2957 if (uEDX & RT_BIT(28)) pHlp->pfnPrintf(pHlp, " HTT");
2958 if (uEDX & RT_BIT(29)) pHlp->pfnPrintf(pHlp, " TM");
2959 if (uEDX & RT_BIT(30)) pHlp->pfnPrintf(pHlp, " 30");
2960 if (uEDX & RT_BIT(31)) pHlp->pfnPrintf(pHlp, " PBE");
2961 pHlp->pfnPrintf(pHlp, "\n");
2962
2963 uint32_t uECX = Guest.ecx;
2964 pHlp->pfnPrintf(pHlp, "Features ECX: ");
2965 if (uECX & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " SSE3");
2966 if (uECX & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " PCLMUL");
2967 if (uECX & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " DTES64");
2968 if (uECX & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " MONITOR");
2969 if (uECX & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " DS-CPL");
2970 if (uECX & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " VMX");
2971 if (uECX & RT_BIT(6)) pHlp->pfnPrintf(pHlp, " SMX");
2972 if (uECX & RT_BIT(7)) pHlp->pfnPrintf(pHlp, " EST");
2973 if (uECX & RT_BIT(8)) pHlp->pfnPrintf(pHlp, " TM2");
2974 if (uECX & RT_BIT(9)) pHlp->pfnPrintf(pHlp, " SSSE3");
2975 if (uECX & RT_BIT(10)) pHlp->pfnPrintf(pHlp, " CNXT-ID");
2976 if (uECX & RT_BIT(11)) pHlp->pfnPrintf(pHlp, " 11");
2977 if (uECX & RT_BIT(12)) pHlp->pfnPrintf(pHlp, " FMA");
2978 if (uECX & RT_BIT(13)) pHlp->pfnPrintf(pHlp, " CX16");
2979 if (uECX & RT_BIT(14)) pHlp->pfnPrintf(pHlp, " TPRUPDATE");
2980 if (uECX & RT_BIT(15)) pHlp->pfnPrintf(pHlp, " PDCM");
2981 if (uECX & RT_BIT(16)) pHlp->pfnPrintf(pHlp, " 16");
2982 if (uECX & RT_BIT(17)) pHlp->pfnPrintf(pHlp, " PCID");
2983 if (uECX & RT_BIT(18)) pHlp->pfnPrintf(pHlp, " DCA");
2984 if (uECX & RT_BIT(19)) pHlp->pfnPrintf(pHlp, " SSE4.1");
2985 if (uECX & RT_BIT(20)) pHlp->pfnPrintf(pHlp, " SSE4.2");
2986 if (uECX & RT_BIT(21)) pHlp->pfnPrintf(pHlp, " X2APIC");
2987 if (uECX & RT_BIT(22)) pHlp->pfnPrintf(pHlp, " MOVBE");
2988 if (uECX & RT_BIT(23)) pHlp->pfnPrintf(pHlp, " POPCNT");
2989 if (uECX & RT_BIT(24)) pHlp->pfnPrintf(pHlp, " TSCDEADL");
2990 if (uECX & RT_BIT(25)) pHlp->pfnPrintf(pHlp, " AES");
2991 if (uECX & RT_BIT(26)) pHlp->pfnPrintf(pHlp, " XSAVE");
2992 if (uECX & RT_BIT(27)) pHlp->pfnPrintf(pHlp, " OSXSAVE");
2993 if (uECX & RT_BIT(28)) pHlp->pfnPrintf(pHlp, " AVX");
2994 if (uECX & RT_BIT(29)) pHlp->pfnPrintf(pHlp, " 29");
2995 if (uECX & RT_BIT(30)) pHlp->pfnPrintf(pHlp, " 30");
2996 if (uECX & RT_BIT(31)) pHlp->pfnPrintf(pHlp, " 31");
2997 pHlp->pfnPrintf(pHlp, "\n");
2998 }
2999 else
3000 {
3001 ASMCpuId(1, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
3002
3003 X86CPUIDFEATEDX EdxHost = *(PX86CPUIDFEATEDX)&Host.edx;
3004 X86CPUIDFEATECX EcxHost = *(PX86CPUIDFEATECX)&Host.ecx;
3005 X86CPUIDFEATEDX EdxGuest = *(PX86CPUIDFEATEDX)&Guest.edx;
3006 X86CPUIDFEATECX EcxGuest = *(PX86CPUIDFEATECX)&Guest.ecx;
3007
3008 pHlp->pfnPrintf(pHlp, "Mnemonic - Description = guest (host)\n");
3009 pHlp->pfnPrintf(pHlp, "FPU - x87 FPU on Chip = %d (%d)\n", EdxGuest.u1FPU, EdxHost.u1FPU);
3010 pHlp->pfnPrintf(pHlp, "VME - Virtual 8086 Mode Enhancements = %d (%d)\n", EdxGuest.u1VME, EdxHost.u1VME);
3011 pHlp->pfnPrintf(pHlp, "DE - Debugging extensions = %d (%d)\n", EdxGuest.u1DE, EdxHost.u1DE);
3012 pHlp->pfnPrintf(pHlp, "PSE - Page Size Extension = %d (%d)\n", EdxGuest.u1PSE, EdxHost.u1PSE);
3013 pHlp->pfnPrintf(pHlp, "TSC - Time Stamp Counter = %d (%d)\n", EdxGuest.u1TSC, EdxHost.u1TSC);
3014 pHlp->pfnPrintf(pHlp, "MSR - Model Specific Registers = %d (%d)\n", EdxGuest.u1MSR, EdxHost.u1MSR);
3015 pHlp->pfnPrintf(pHlp, "PAE - Physical Address Extension = %d (%d)\n", EdxGuest.u1PAE, EdxHost.u1PAE);
3016 pHlp->pfnPrintf(pHlp, "MCE - Machine Check Exception = %d (%d)\n", EdxGuest.u1MCE, EdxHost.u1MCE);
3017 pHlp->pfnPrintf(pHlp, "CX8 - CMPXCHG8B instruction = %d (%d)\n", EdxGuest.u1CX8, EdxHost.u1CX8);
3018 pHlp->pfnPrintf(pHlp, "APIC - APIC On-Chip = %d (%d)\n", EdxGuest.u1APIC, EdxHost.u1APIC);
3019 pHlp->pfnPrintf(pHlp, "10 - Reserved = %d (%d)\n", EdxGuest.u1Reserved1, EdxHost.u1Reserved1);
3020 pHlp->pfnPrintf(pHlp, "SEP - SYSENTER and SYSEXIT = %d (%d)\n", EdxGuest.u1SEP, EdxHost.u1SEP);
3021 pHlp->pfnPrintf(pHlp, "MTRR - Memory Type Range Registers = %d (%d)\n", EdxGuest.u1MTRR, EdxHost.u1MTRR);
3022 pHlp->pfnPrintf(pHlp, "PGE - PTE Global Bit = %d (%d)\n", EdxGuest.u1PGE, EdxHost.u1PGE);
3023 pHlp->pfnPrintf(pHlp, "MCA - Machine Check Architecture = %d (%d)\n", EdxGuest.u1MCA, EdxHost.u1MCA);
3024 pHlp->pfnPrintf(pHlp, "CMOV - Conditional Move Instructions = %d (%d)\n", EdxGuest.u1CMOV, EdxHost.u1CMOV);
3025 pHlp->pfnPrintf(pHlp, "PAT - Page Attribute Table = %d (%d)\n", EdxGuest.u1PAT, EdxHost.u1PAT);
3026 pHlp->pfnPrintf(pHlp, "PSE-36 - 36-bit Page Size Extention = %d (%d)\n", EdxGuest.u1PSE36, EdxHost.u1PSE36);
3027 pHlp->pfnPrintf(pHlp, "PSN - Processor Serial Number = %d (%d)\n", EdxGuest.u1PSN, EdxHost.u1PSN);
3028 pHlp->pfnPrintf(pHlp, "CLFSH - CLFLUSH Instruction. = %d (%d)\n", EdxGuest.u1CLFSH, EdxHost.u1CLFSH);
3029 pHlp->pfnPrintf(pHlp, "20 - Reserved = %d (%d)\n", EdxGuest.u1Reserved2, EdxHost.u1Reserved2);
3030 pHlp->pfnPrintf(pHlp, "DS - Debug Store = %d (%d)\n", EdxGuest.u1DS, EdxHost.u1DS);
3031 pHlp->pfnPrintf(pHlp, "ACPI - Thermal Mon. & Soft. Clock Ctrl.= %d (%d)\n", EdxGuest.u1ACPI, EdxHost.u1ACPI);
3032 pHlp->pfnPrintf(pHlp, "MMX - Intel MMX Technology = %d (%d)\n", EdxGuest.u1MMX, EdxHost.u1MMX);
3033 pHlp->pfnPrintf(pHlp, "FXSR - FXSAVE and FXRSTOR Instructions = %d (%d)\n", EdxGuest.u1FXSR, EdxHost.u1FXSR);
3034 pHlp->pfnPrintf(pHlp, "SSE - SSE Support = %d (%d)\n", EdxGuest.u1SSE, EdxHost.u1SSE);
3035 pHlp->pfnPrintf(pHlp, "SSE2 - SSE2 Support = %d (%d)\n", EdxGuest.u1SSE2, EdxHost.u1SSE2);
3036 pHlp->pfnPrintf(pHlp, "SS - Self Snoop = %d (%d)\n", EdxGuest.u1SS, EdxHost.u1SS);
3037 pHlp->pfnPrintf(pHlp, "HTT - Hyper-Threading Technology = %d (%d)\n", EdxGuest.u1HTT, EdxHost.u1HTT);
3038 pHlp->pfnPrintf(pHlp, "TM - Thermal Monitor = %d (%d)\n", EdxGuest.u1TM, EdxHost.u1TM);
3039 pHlp->pfnPrintf(pHlp, "30 - Reserved = %d (%d)\n", EdxGuest.u1Reserved3, EdxHost.u1Reserved3);
3040 pHlp->pfnPrintf(pHlp, "PBE - Pending Break Enable = %d (%d)\n", EdxGuest.u1PBE, EdxHost.u1PBE);
3041
3042 pHlp->pfnPrintf(pHlp, "Supports SSE3 = %d (%d)\n", EcxGuest.u1SSE3, EcxHost.u1SSE3);
3043 pHlp->pfnPrintf(pHlp, "PCLMULQDQ = %d (%d)\n", EcxGuest.u1PCLMULQDQ, EcxHost.u1PCLMULQDQ);
3044 pHlp->pfnPrintf(pHlp, "DS Area 64-bit layout = %d (%d)\n", EcxGuest.u1DTE64, EcxHost.u1DTE64);
3045 pHlp->pfnPrintf(pHlp, "Supports MONITOR/MWAIT = %d (%d)\n", EcxGuest.u1Monitor, EcxHost.u1Monitor);
3046 pHlp->pfnPrintf(pHlp, "CPL-DS - CPL Qualified Debug Store = %d (%d)\n", EcxGuest.u1CPLDS, EcxHost.u1CPLDS);
3047 pHlp->pfnPrintf(pHlp, "VMX - Virtual Machine Technology = %d (%d)\n", EcxGuest.u1VMX, EcxHost.u1VMX);
3048 pHlp->pfnPrintf(pHlp, "SMX - Safer Mode Extensions = %d (%d)\n", EcxGuest.u1SMX, EcxHost.u1SMX);
3049 pHlp->pfnPrintf(pHlp, "Enhanced SpeedStep Technology = %d (%d)\n", EcxGuest.u1EST, EcxHost.u1EST);
3050 pHlp->pfnPrintf(pHlp, "Terminal Monitor 2 = %d (%d)\n", EcxGuest.u1TM2, EcxHost.u1TM2);
3051 pHlp->pfnPrintf(pHlp, "Supplemental SSE3 instructions = %d (%d)\n", EcxGuest.u1SSSE3, EcxHost.u1SSSE3);
3052 pHlp->pfnPrintf(pHlp, "L1 Context ID = %d (%d)\n", EcxGuest.u1CNTXID, EcxHost.u1CNTXID);
3053 pHlp->pfnPrintf(pHlp, "11 - Reserved = %d (%d)\n", EcxGuest.u1Reserved1, EcxHost.u1Reserved1);
3054 pHlp->pfnPrintf(pHlp, "FMA extensions using YMM state = %d (%d)\n", EcxGuest.u1FMA, EcxHost.u1FMA);
3055 pHlp->pfnPrintf(pHlp, "CMPXCHG16B instruction = %d (%d)\n", EcxGuest.u1CX16, EcxHost.u1CX16);
3056 pHlp->pfnPrintf(pHlp, "xTPR Update Control = %d (%d)\n", EcxGuest.u1TPRUpdate, EcxHost.u1TPRUpdate);
3057 pHlp->pfnPrintf(pHlp, "Perf/Debug Capability MSR = %d (%d)\n", EcxGuest.u1PDCM, EcxHost.u1PDCM);
3058 pHlp->pfnPrintf(pHlp, "16 - Reserved = %d (%d)\n", EcxGuest.u1Reserved2, EcxHost.u1Reserved2);
3059 pHlp->pfnPrintf(pHlp, "PCID - Process-context identifiers = %d (%d)\n", EcxGuest.u1PCID, EcxHost.u1PCID);
3060 pHlp->pfnPrintf(pHlp, "DCA - Direct Cache Access = %d (%d)\n", EcxGuest.u1DCA, EcxHost.u1DCA);
3061 pHlp->pfnPrintf(pHlp, "SSE4.1 instruction extensions = %d (%d)\n", EcxGuest.u1SSE4_1, EcxHost.u1SSE4_1);
3062 pHlp->pfnPrintf(pHlp, "SSE4.2 instruction extensions = %d (%d)\n", EcxGuest.u1SSE4_2, EcxHost.u1SSE4_2);
3063 pHlp->pfnPrintf(pHlp, "Supports the x2APIC extensions = %d (%d)\n", EcxGuest.u1x2APIC, EcxHost.u1x2APIC);
3064 pHlp->pfnPrintf(pHlp, "MOVBE instruction = %d (%d)\n", EcxGuest.u1MOVBE, EcxHost.u1MOVBE);
3065 pHlp->pfnPrintf(pHlp, "POPCNT instruction = %d (%d)\n", EcxGuest.u1POPCNT, EcxHost.u1POPCNT);
3066 pHlp->pfnPrintf(pHlp, "TSC-Deadline LAPIC timer mode = %d (%d)\n", EcxGuest.u1TSCDEADLINE,EcxHost.u1TSCDEADLINE);
3067 pHlp->pfnPrintf(pHlp, "AESNI instruction extensions = %d (%d)\n", EcxGuest.u1AES, EcxHost.u1AES);
3068 pHlp->pfnPrintf(pHlp, "XSAVE/XRSTOR extended state feature = %d (%d)\n", EcxGuest.u1XSAVE, EcxHost.u1XSAVE);
3069 pHlp->pfnPrintf(pHlp, "Supports OSXSAVE = %d (%d)\n", EcxGuest.u1OSXSAVE, EcxHost.u1OSXSAVE);
3070 pHlp->pfnPrintf(pHlp, "AVX instruction extensions = %d (%d)\n", EcxGuest.u1AVX, EcxHost.u1AVX);
3071 pHlp->pfnPrintf(pHlp, "29/30 - Reserved = %#x (%#x)\n",EcxGuest.u2Reserved3, EcxHost.u2Reserved3);
3072 pHlp->pfnPrintf(pHlp, "Hypervisor Present (we're a guest) = %d (%d)\n", EcxGuest.u1HVP, EcxHost.u1HVP);
3073 }
3074 }
3075 if (cStdMax >= 2 && iVerbosity)
3076 {
3077 /** @todo */
3078 }
3079
3080 /*
3081 * Extended.
3082 * Implemented after AMD specs.
3083 */
3084 unsigned cExtMax = pVM->cpum.s.aGuestCpuIdExt[0].eax & 0xffff;
3085
3086 pHlp->pfnPrintf(pHlp,
3087 "\n"
3088 " RAW Extended CPUIDs\n"
3089 " Function eax ebx ecx edx\n");
3090 for (unsigned i = 0; i < RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdExt); i++)
3091 {
3092 Guest = pVM->cpum.s.aGuestCpuIdExt[i];
3093 ASMCpuId(0x80000000 | i, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
3094
3095 pHlp->pfnPrintf(pHlp,
3096 "Gst: %08x %08x %08x %08x %08x%s\n"
3097 "Hst: %08x %08x %08x %08x\n",
3098 0x80000000 | i, Guest.eax, Guest.ebx, Guest.ecx, Guest.edx,
3099 i <= cExtMax ? "" : "*",
3100 Host.eax, Host.ebx, Host.ecx, Host.edx);
3101 }
3102
3103 /*
3104 * Understandable output
3105 */
3106 if (iVerbosity)
3107 {
3108 Guest = pVM->cpum.s.aGuestCpuIdExt[0];
3109 pHlp->pfnPrintf(pHlp,
3110 "Ext Name: %.4s%.4s%.4s\n"
3111 "Ext Supports: 0x80000000-%#010x\n",
3112 &Guest.ebx, &Guest.edx, &Guest.ecx, Guest.eax);
3113 }
3114
3115 if (iVerbosity && cExtMax >= 1)
3116 {
3117 Guest = pVM->cpum.s.aGuestCpuIdExt[1];
3118 uint32_t uEAX = Guest.eax;
3119 pHlp->pfnPrintf(pHlp,
3120 "Family: %d \tExtended: %d \tEffective: %d\n"
3121 "Model: %d \tExtended: %d \tEffective: %d\n"
3122 "Stepping: %d\n"
3123 "Brand ID: %#05x\n",
3124 (uEAX >> 8) & 0xf, (uEAX >> 20) & 0x7f, ASMGetCpuFamily(uEAX),
3125 (uEAX >> 4) & 0xf, (uEAX >> 16) & 0x0f, ASMGetCpuModel(uEAX, fIntel),
3126 ASMGetCpuStepping(uEAX),
3127 Guest.ebx & 0xfff);
3128
3129 if (iVerbosity == 1)
3130 {
3131 uint32_t uEDX = Guest.edx;
3132 pHlp->pfnPrintf(pHlp, "Features EDX: ");
3133 if (uEDX & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " FPU");
3134 if (uEDX & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " VME");
3135 if (uEDX & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " DE");
3136 if (uEDX & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " PSE");
3137 if (uEDX & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " TSC");
3138 if (uEDX & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " MSR");
3139 if (uEDX & RT_BIT(6)) pHlp->pfnPrintf(pHlp, " PAE");
3140 if (uEDX & RT_BIT(7)) pHlp->pfnPrintf(pHlp, " MCE");
3141 if (uEDX & RT_BIT(8)) pHlp->pfnPrintf(pHlp, " CX8");
3142 if (uEDX & RT_BIT(9)) pHlp->pfnPrintf(pHlp, " APIC");
3143 if (uEDX & RT_BIT(10)) pHlp->pfnPrintf(pHlp, " 10");
3144 if (uEDX & RT_BIT(11)) pHlp->pfnPrintf(pHlp, " SCR");
3145 if (uEDX & RT_BIT(12)) pHlp->pfnPrintf(pHlp, " MTRR");
3146 if (uEDX & RT_BIT(13)) pHlp->pfnPrintf(pHlp, " PGE");
3147 if (uEDX & RT_BIT(14)) pHlp->pfnPrintf(pHlp, " MCA");
3148 if (uEDX & RT_BIT(15)) pHlp->pfnPrintf(pHlp, " CMOV");
3149 if (uEDX & RT_BIT(16)) pHlp->pfnPrintf(pHlp, " PAT");
3150 if (uEDX & RT_BIT(17)) pHlp->pfnPrintf(pHlp, " PSE36");
3151 if (uEDX & RT_BIT(18)) pHlp->pfnPrintf(pHlp, " 18");
3152 if (uEDX & RT_BIT(19)) pHlp->pfnPrintf(pHlp, " 19");
3153 if (uEDX & RT_BIT(20)) pHlp->pfnPrintf(pHlp, " NX");
3154 if (uEDX & RT_BIT(21)) pHlp->pfnPrintf(pHlp, " 21");
3155 if (uEDX & RT_BIT(22)) pHlp->pfnPrintf(pHlp, " ExtMMX");
3156 if (uEDX & RT_BIT(23)) pHlp->pfnPrintf(pHlp, " MMX");
3157 if (uEDX & RT_BIT(24)) pHlp->pfnPrintf(pHlp, " FXSR");
3158 if (uEDX & RT_BIT(25)) pHlp->pfnPrintf(pHlp, " FastFXSR");
3159 if (uEDX & RT_BIT(26)) pHlp->pfnPrintf(pHlp, " Page1GB");
3160 if (uEDX & RT_BIT(27)) pHlp->pfnPrintf(pHlp, " RDTSCP");
3161 if (uEDX & RT_BIT(28)) pHlp->pfnPrintf(pHlp, " 28");
3162 if (uEDX & RT_BIT(29)) pHlp->pfnPrintf(pHlp, " LongMode");
3163 if (uEDX & RT_BIT(30)) pHlp->pfnPrintf(pHlp, " Ext3DNow");
3164 if (uEDX & RT_BIT(31)) pHlp->pfnPrintf(pHlp, " 3DNow");
3165 pHlp->pfnPrintf(pHlp, "\n");
3166
3167 uint32_t uECX = Guest.ecx;
3168 pHlp->pfnPrintf(pHlp, "Features ECX: ");
3169 if (uECX & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " LAHF/SAHF");
3170 if (uECX & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " CMPL");
3171 if (uECX & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " SVM");
3172 if (uECX & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " ExtAPIC");
3173 if (uECX & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " CR8L");
3174 if (uECX & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " ABM");
3175 if (uECX & RT_BIT(6)) pHlp->pfnPrintf(pHlp, " SSE4A");
3176 if (uECX & RT_BIT(7)) pHlp->pfnPrintf(pHlp, " MISALNSSE");
3177 if (uECX & RT_BIT(8)) pHlp->pfnPrintf(pHlp, " 3DNOWPRF");
3178 if (uECX & RT_BIT(9)) pHlp->pfnPrintf(pHlp, " OSVW");
3179 if (uECX & RT_BIT(10)) pHlp->pfnPrintf(pHlp, " IBS");
3180 if (uECX & RT_BIT(11)) pHlp->pfnPrintf(pHlp, " SSE5");
3181 if (uECX & RT_BIT(12)) pHlp->pfnPrintf(pHlp, " SKINIT");
3182 if (uECX & RT_BIT(13)) pHlp->pfnPrintf(pHlp, " WDT");
3183 for (unsigned iBit = 5; iBit < 32; iBit++)
3184 if (uECX & RT_BIT(iBit))
3185 pHlp->pfnPrintf(pHlp, " %d", iBit);
3186 pHlp->pfnPrintf(pHlp, "\n");
3187 }
3188 else
3189 {
3190 ASMCpuId(0x80000001, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
3191
3192 uint32_t uEdxGst = Guest.edx;
3193 uint32_t uEdxHst = Host.edx;
3194 pHlp->pfnPrintf(pHlp, "Mnemonic - Description = guest (host)\n");
3195 pHlp->pfnPrintf(pHlp, "FPU - x87 FPU on Chip = %d (%d)\n", !!(uEdxGst & RT_BIT( 0)), !!(uEdxHst & RT_BIT( 0)));
3196 pHlp->pfnPrintf(pHlp, "VME - Virtual 8086 Mode Enhancements = %d (%d)\n", !!(uEdxGst & RT_BIT( 1)), !!(uEdxHst & RT_BIT( 1)));
3197 pHlp->pfnPrintf(pHlp, "DE - Debugging extensions = %d (%d)\n", !!(uEdxGst & RT_BIT( 2)), !!(uEdxHst & RT_BIT( 2)));
3198 pHlp->pfnPrintf(pHlp, "PSE - Page Size Extension = %d (%d)\n", !!(uEdxGst & RT_BIT( 3)), !!(uEdxHst & RT_BIT( 3)));
3199 pHlp->pfnPrintf(pHlp, "TSC - Time Stamp Counter = %d (%d)\n", !!(uEdxGst & RT_BIT( 4)), !!(uEdxHst & RT_BIT( 4)));
3200 pHlp->pfnPrintf(pHlp, "MSR - K86 Model Specific Registers = %d (%d)\n", !!(uEdxGst & RT_BIT( 5)), !!(uEdxHst & RT_BIT( 5)));
3201 pHlp->pfnPrintf(pHlp, "PAE - Physical Address Extension = %d (%d)\n", !!(uEdxGst & RT_BIT( 6)), !!(uEdxHst & RT_BIT( 6)));
3202 pHlp->pfnPrintf(pHlp, "MCE - Machine Check Exception = %d (%d)\n", !!(uEdxGst & RT_BIT( 7)), !!(uEdxHst & RT_BIT( 7)));
3203 pHlp->pfnPrintf(pHlp, "CX8 - CMPXCHG8B instruction = %d (%d)\n", !!(uEdxGst & RT_BIT( 8)), !!(uEdxHst & RT_BIT( 8)));
3204 pHlp->pfnPrintf(pHlp, "APIC - APIC On-Chip = %d (%d)\n", !!(uEdxGst & RT_BIT( 9)), !!(uEdxHst & RT_BIT( 9)));
3205 pHlp->pfnPrintf(pHlp, "10 - Reserved = %d (%d)\n", !!(uEdxGst & RT_BIT(10)), !!(uEdxHst & RT_BIT(10)));
3206 pHlp->pfnPrintf(pHlp, "SEP - SYSCALL and SYSRET = %d (%d)\n", !!(uEdxGst & RT_BIT(11)), !!(uEdxHst & RT_BIT(11)));
3207 pHlp->pfnPrintf(pHlp, "MTRR - Memory Type Range Registers = %d (%d)\n", !!(uEdxGst & RT_BIT(12)), !!(uEdxHst & RT_BIT(12)));
3208 pHlp->pfnPrintf(pHlp, "PGE - PTE Global Bit = %d (%d)\n", !!(uEdxGst & RT_BIT(13)), !!(uEdxHst & RT_BIT(13)));
3209 pHlp->pfnPrintf(pHlp, "MCA - Machine Check Architecture = %d (%d)\n", !!(uEdxGst & RT_BIT(14)), !!(uEdxHst & RT_BIT(14)));
3210 pHlp->pfnPrintf(pHlp, "CMOV - Conditional Move Instructions = %d (%d)\n", !!(uEdxGst & RT_BIT(15)), !!(uEdxHst & RT_BIT(15)));
3211 pHlp->pfnPrintf(pHlp, "PAT - Page Attribute Table = %d (%d)\n", !!(uEdxGst & RT_BIT(16)), !!(uEdxHst & RT_BIT(16)));
3212 pHlp->pfnPrintf(pHlp, "PSE-36 - 36-bit Page Size Extention = %d (%d)\n", !!(uEdxGst & RT_BIT(17)), !!(uEdxHst & RT_BIT(17)));
3213 pHlp->pfnPrintf(pHlp, "18 - Reserved = %d (%d)\n", !!(uEdxGst & RT_BIT(18)), !!(uEdxHst & RT_BIT(18)));
3214 pHlp->pfnPrintf(pHlp, "19 - Reserved = %d (%d)\n", !!(uEdxGst & RT_BIT(19)), !!(uEdxHst & RT_BIT(19)));
3215 pHlp->pfnPrintf(pHlp, "NX - No-Execute Page Protection = %d (%d)\n", !!(uEdxGst & RT_BIT(20)), !!(uEdxHst & RT_BIT(20)));
3216 pHlp->pfnPrintf(pHlp, "DS - Debug Store = %d (%d)\n", !!(uEdxGst & RT_BIT(21)), !!(uEdxHst & RT_BIT(21)));
3217 pHlp->pfnPrintf(pHlp, "AXMMX - AMD Extensions to MMX Instr. = %d (%d)\n", !!(uEdxGst & RT_BIT(22)), !!(uEdxHst & RT_BIT(22)));
3218 pHlp->pfnPrintf(pHlp, "MMX - Intel MMX Technology = %d (%d)\n", !!(uEdxGst & RT_BIT(23)), !!(uEdxHst & RT_BIT(23)));
3219 pHlp->pfnPrintf(pHlp, "FXSR - FXSAVE and FXRSTOR Instructions = %d (%d)\n", !!(uEdxGst & RT_BIT(24)), !!(uEdxHst & RT_BIT(24)));
3220 pHlp->pfnPrintf(pHlp, "25 - AMD fast FXSAVE and FXRSTOR Instr.= %d (%d)\n", !!(uEdxGst & RT_BIT(25)), !!(uEdxHst & RT_BIT(25)));
3221 pHlp->pfnPrintf(pHlp, "26 - 1 GB large page support = %d (%d)\n", !!(uEdxGst & RT_BIT(26)), !!(uEdxHst & RT_BIT(26)));
3222 pHlp->pfnPrintf(pHlp, "27 - RDTSCP instruction = %d (%d)\n", !!(uEdxGst & RT_BIT(27)), !!(uEdxHst & RT_BIT(27)));
3223 pHlp->pfnPrintf(pHlp, "28 - Reserved = %d (%d)\n", !!(uEdxGst & RT_BIT(28)), !!(uEdxHst & RT_BIT(28)));
3224 pHlp->pfnPrintf(pHlp, "29 - AMD Long Mode = %d (%d)\n", !!(uEdxGst & RT_BIT(29)), !!(uEdxHst & RT_BIT(29)));
3225 pHlp->pfnPrintf(pHlp, "30 - AMD Extensions to 3DNow = %d (%d)\n", !!(uEdxGst & RT_BIT(30)), !!(uEdxHst & RT_BIT(30)));
3226 pHlp->pfnPrintf(pHlp, "31 - AMD 3DNow = %d (%d)\n", !!(uEdxGst & RT_BIT(31)), !!(uEdxHst & RT_BIT(31)));
3227
3228 uint32_t uEcxGst = Guest.ecx;
3229 uint32_t uEcxHst = Host.ecx;
3230 pHlp->pfnPrintf(pHlp, "LahfSahf - LAHF/SAHF in 64-bit mode = %d (%d)\n", !!(uEcxGst & RT_BIT( 0)), !!(uEcxHst & RT_BIT( 0)));
3231 pHlp->pfnPrintf(pHlp, "CmpLegacy - Core MP legacy mode (depr) = %d (%d)\n", !!(uEcxGst & RT_BIT( 1)), !!(uEcxHst & RT_BIT( 1)));
3232 pHlp->pfnPrintf(pHlp, "SVM - AMD VM Extensions = %d (%d)\n", !!(uEcxGst & RT_BIT( 2)), !!(uEcxHst & RT_BIT( 2)));
3233 pHlp->pfnPrintf(pHlp, "APIC registers starting at 0x400 = %d (%d)\n", !!(uEcxGst & RT_BIT( 3)), !!(uEcxHst & RT_BIT( 3)));
3234 pHlp->pfnPrintf(pHlp, "AltMovCR8 - LOCK MOV CR0 means MOV CR8 = %d (%d)\n", !!(uEcxGst & RT_BIT( 4)), !!(uEcxHst & RT_BIT( 4)));
3235 pHlp->pfnPrintf(pHlp, "Advanced bit manipulation = %d (%d)\n", !!(uEcxGst & RT_BIT( 5)), !!(uEcxHst & RT_BIT( 5)));
3236 pHlp->pfnPrintf(pHlp, "SSE4A instruction support = %d (%d)\n", !!(uEcxGst & RT_BIT( 6)), !!(uEcxHst & RT_BIT( 6)));
3237 pHlp->pfnPrintf(pHlp, "Misaligned SSE mode = %d (%d)\n", !!(uEcxGst & RT_BIT( 7)), !!(uEcxHst & RT_BIT( 7)));
3238 pHlp->pfnPrintf(pHlp, "PREFETCH and PREFETCHW instruction = %d (%d)\n", !!(uEcxGst & RT_BIT( 8)), !!(uEcxHst & RT_BIT( 8)));
3239 pHlp->pfnPrintf(pHlp, "OS visible workaround = %d (%d)\n", !!(uEcxGst & RT_BIT( 9)), !!(uEcxHst & RT_BIT( 9)));
3240 pHlp->pfnPrintf(pHlp, "Instruction based sampling = %d (%d)\n", !!(uEcxGst & RT_BIT(10)), !!(uEcxHst & RT_BIT(10)));
3241 pHlp->pfnPrintf(pHlp, "SSE5 support = %d (%d)\n", !!(uEcxGst & RT_BIT(11)), !!(uEcxHst & RT_BIT(11)));
3242 pHlp->pfnPrintf(pHlp, "SKINIT, STGI, and DEV support = %d (%d)\n", !!(uEcxGst & RT_BIT(12)), !!(uEcxHst & RT_BIT(12)));
3243 pHlp->pfnPrintf(pHlp, "Watchdog timer support. = %d (%d)\n", !!(uEcxGst & RT_BIT(13)), !!(uEcxHst & RT_BIT(13)));
3244 pHlp->pfnPrintf(pHlp, "31:14 - Reserved = %#x (%#x)\n", uEcxGst >> 14, uEcxHst >> 14);
3245 }
3246 }
3247
3248 if (iVerbosity && cExtMax >= 2)
3249 {
3250 char szString[4*4*3+1] = {0};
3251 uint32_t *pu32 = (uint32_t *)szString;
3252 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[2].eax;
3253 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[2].ebx;
3254 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[2].ecx;
3255 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[2].edx;
3256 if (cExtMax >= 3)
3257 {
3258 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[3].eax;
3259 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[3].ebx;
3260 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[3].ecx;
3261 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[3].edx;
3262 }
3263 if (cExtMax >= 4)
3264 {
3265 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[4].eax;
3266 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[4].ebx;
3267 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[4].ecx;
3268 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[4].edx;
3269 }
3270 pHlp->pfnPrintf(pHlp, "Full Name: %s\n", szString);
3271 }
3272
3273 if (iVerbosity && cExtMax >= 5)
3274 {
3275 uint32_t uEAX = pVM->cpum.s.aGuestCpuIdExt[5].eax;
3276 uint32_t uEBX = pVM->cpum.s.aGuestCpuIdExt[5].ebx;
3277 uint32_t uECX = pVM->cpum.s.aGuestCpuIdExt[5].ecx;
3278 uint32_t uEDX = pVM->cpum.s.aGuestCpuIdExt[5].edx;
3279 char sz1[32];
3280 char sz2[32];
3281
3282 pHlp->pfnPrintf(pHlp,
3283 "TLB 2/4M Instr/Uni: %s %3d entries\n"
3284 "TLB 2/4M Data: %s %3d entries\n",
3285 getCacheAss((uEAX >> 8) & 0xff, sz1), (uEAX >> 0) & 0xff,
3286 getCacheAss((uEAX >> 24) & 0xff, sz2), (uEAX >> 16) & 0xff);
3287 pHlp->pfnPrintf(pHlp,
3288 "TLB 4K Instr/Uni: %s %3d entries\n"
3289 "TLB 4K Data: %s %3d entries\n",
3290 getCacheAss((uEBX >> 8) & 0xff, sz1), (uEBX >> 0) & 0xff,
3291 getCacheAss((uEBX >> 24) & 0xff, sz2), (uEBX >> 16) & 0xff);
3292 pHlp->pfnPrintf(pHlp, "L1 Instr Cache Line Size: %d bytes\n"
3293 "L1 Instr Cache Lines Per Tag: %d\n"
3294 "L1 Instr Cache Associativity: %s\n"
3295 "L1 Instr Cache Size: %d KB\n",
3296 (uEDX >> 0) & 0xff,
3297 (uEDX >> 8) & 0xff,
3298 getCacheAss((uEDX >> 16) & 0xff, sz1),
3299 (uEDX >> 24) & 0xff);
3300 pHlp->pfnPrintf(pHlp,
3301 "L1 Data Cache Line Size: %d bytes\n"
3302 "L1 Data Cache Lines Per Tag: %d\n"
3303 "L1 Data Cache Associativity: %s\n"
3304 "L1 Data Cache Size: %d KB\n",
3305 (uECX >> 0) & 0xff,
3306 (uECX >> 8) & 0xff,
3307 getCacheAss((uECX >> 16) & 0xff, sz1),
3308 (uECX >> 24) & 0xff);
3309 }
3310
3311 if (iVerbosity && cExtMax >= 6)
3312 {
3313 uint32_t uEAX = pVM->cpum.s.aGuestCpuIdExt[6].eax;
3314 uint32_t uEBX = pVM->cpum.s.aGuestCpuIdExt[6].ebx;
3315 uint32_t uEDX = pVM->cpum.s.aGuestCpuIdExt[6].edx;
3316
3317 pHlp->pfnPrintf(pHlp,
3318 "L2 TLB 2/4M Instr/Uni: %s %4d entries\n"
3319 "L2 TLB 2/4M Data: %s %4d entries\n",
3320 getL2CacheAss((uEAX >> 12) & 0xf), (uEAX >> 0) & 0xfff,
3321 getL2CacheAss((uEAX >> 28) & 0xf), (uEAX >> 16) & 0xfff);
3322 pHlp->pfnPrintf(pHlp,
3323 "L2 TLB 4K Instr/Uni: %s %4d entries\n"
3324 "L2 TLB 4K Data: %s %4d entries\n",
3325 getL2CacheAss((uEBX >> 12) & 0xf), (uEBX >> 0) & 0xfff,
3326 getL2CacheAss((uEBX >> 28) & 0xf), (uEBX >> 16) & 0xfff);
3327 pHlp->pfnPrintf(pHlp,
3328 "L2 Cache Line Size: %d bytes\n"
3329 "L2 Cache Lines Per Tag: %d\n"
3330 "L2 Cache Associativity: %s\n"
3331 "L2 Cache Size: %d KB\n",
3332 (uEDX >> 0) & 0xff,
3333 (uEDX >> 8) & 0xf,
3334 getL2CacheAss((uEDX >> 12) & 0xf),
3335 (uEDX >> 16) & 0xffff);
3336 }
3337
3338 if (iVerbosity && cExtMax >= 7)
3339 {
3340 uint32_t uEDX = pVM->cpum.s.aGuestCpuIdExt[7].edx;
3341
3342 pHlp->pfnPrintf(pHlp, "APM Features: ");
3343 if (uEDX & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " TS");
3344 if (uEDX & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " FID");
3345 if (uEDX & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " VID");
3346 if (uEDX & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " TTP");
3347 if (uEDX & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " TM");
3348 if (uEDX & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " STC");
3349 for (unsigned iBit = 6; iBit < 32; iBit++)
3350 if (uEDX & RT_BIT(iBit))
3351 pHlp->pfnPrintf(pHlp, " %d", iBit);
3352 pHlp->pfnPrintf(pHlp, "\n");
3353 }
3354
3355 if (iVerbosity && cExtMax >= 8)
3356 {
3357 uint32_t uEAX = pVM->cpum.s.aGuestCpuIdExt[8].eax;
3358 uint32_t uECX = pVM->cpum.s.aGuestCpuIdExt[8].ecx;
3359
3360 pHlp->pfnPrintf(pHlp,
3361 "Physical Address Width: %d bits\n"
3362 "Virtual Address Width: %d bits\n"
3363 "Guest Physical Address Width: %d bits\n",
3364 (uEAX >> 0) & 0xff,
3365 (uEAX >> 8) & 0xff,
3366 (uEAX >> 16) & 0xff);
3367 pHlp->pfnPrintf(pHlp,
3368 "Physical Core Count: %d\n",
3369 (uECX >> 0) & 0xff);
3370 }
3371
3372
3373 /*
3374 * Centaur.
3375 */
3376 unsigned cCentaurMax = pVM->cpum.s.aGuestCpuIdCentaur[0].eax & 0xffff;
3377
3378 pHlp->pfnPrintf(pHlp,
3379 "\n"
3380 " RAW Centaur CPUIDs\n"
3381 " Function eax ebx ecx edx\n");
3382 for (unsigned i = 0; i < RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdCentaur); i++)
3383 {
3384 Guest = pVM->cpum.s.aGuestCpuIdCentaur[i];
3385 ASMCpuId(0xc0000000 | i, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
3386
3387 pHlp->pfnPrintf(pHlp,
3388 "Gst: %08x %08x %08x %08x %08x%s\n"
3389 "Hst: %08x %08x %08x %08x\n",
3390 0xc0000000 | i, Guest.eax, Guest.ebx, Guest.ecx, Guest.edx,
3391 i <= cCentaurMax ? "" : "*",
3392 Host.eax, Host.ebx, Host.ecx, Host.edx);
3393 }
3394
3395 /*
3396 * Understandable output
3397 */
3398 if (iVerbosity)
3399 {
3400 Guest = pVM->cpum.s.aGuestCpuIdCentaur[0];
3401 pHlp->pfnPrintf(pHlp,
3402 "Centaur Supports: 0xc0000000-%#010x\n",
3403 Guest.eax);
3404 }
3405
3406 if (iVerbosity && cCentaurMax >= 1)
3407 {
3408 ASMCpuId(0xc0000001, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
3409 uint32_t uEdxGst = pVM->cpum.s.aGuestCpuIdExt[1].edx;
3410 uint32_t uEdxHst = Host.edx;
3411
3412 if (iVerbosity == 1)
3413 {
3414 pHlp->pfnPrintf(pHlp, "Centaur Features EDX: ");
3415 if (uEdxGst & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " AIS");
3416 if (uEdxGst & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " AIS-E");
3417 if (uEdxGst & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " RNG");
3418 if (uEdxGst & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " RNG-E");
3419 if (uEdxGst & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " LH");
3420 if (uEdxGst & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " FEMMS");
3421 if (uEdxGst & RT_BIT(6)) pHlp->pfnPrintf(pHlp, " ACE");
3422 if (uEdxGst & RT_BIT(7)) pHlp->pfnPrintf(pHlp, " ACE-E");
3423 /* possibly indicating MM/HE and MM/HE-E on older chips... */
3424 if (uEdxGst & RT_BIT(8)) pHlp->pfnPrintf(pHlp, " ACE2");
3425 if (uEdxGst & RT_BIT(9)) pHlp->pfnPrintf(pHlp, " ACE2-E");
3426 if (uEdxGst & RT_BIT(10)) pHlp->pfnPrintf(pHlp, " PHE");
3427 if (uEdxGst & RT_BIT(11)) pHlp->pfnPrintf(pHlp, " PHE-E");
3428 if (uEdxGst & RT_BIT(12)) pHlp->pfnPrintf(pHlp, " PMM");
3429 if (uEdxGst & RT_BIT(13)) pHlp->pfnPrintf(pHlp, " PMM-E");
3430 for (unsigned iBit = 14; iBit < 32; iBit++)
3431 if (uEdxGst & RT_BIT(iBit))
3432 pHlp->pfnPrintf(pHlp, " %d", iBit);
3433 pHlp->pfnPrintf(pHlp, "\n");
3434 }
3435 else
3436 {
3437 pHlp->pfnPrintf(pHlp, "Mnemonic - Description = guest (host)\n");
3438 pHlp->pfnPrintf(pHlp, "AIS - Alternate Instruction Set = %d (%d)\n", !!(uEdxGst & RT_BIT( 0)), !!(uEdxHst & RT_BIT( 0)));
3439 pHlp->pfnPrintf(pHlp, "AIS-E - AIS enabled = %d (%d)\n", !!(uEdxGst & RT_BIT( 1)), !!(uEdxHst & RT_BIT( 1)));
3440 pHlp->pfnPrintf(pHlp, "RNG - Random Number Generator = %d (%d)\n", !!(uEdxGst & RT_BIT( 2)), !!(uEdxHst & RT_BIT( 2)));
3441 pHlp->pfnPrintf(pHlp, "RNG-E - RNG enabled = %d (%d)\n", !!(uEdxGst & RT_BIT( 3)), !!(uEdxHst & RT_BIT( 3)));
3442 pHlp->pfnPrintf(pHlp, "LH - LongHaul MSR 0000_110Ah = %d (%d)\n", !!(uEdxGst & RT_BIT( 4)), !!(uEdxHst & RT_BIT( 4)));
3443 pHlp->pfnPrintf(pHlp, "FEMMS - FEMMS = %d (%d)\n", !!(uEdxGst & RT_BIT( 5)), !!(uEdxHst & RT_BIT( 5)));
3444 pHlp->pfnPrintf(pHlp, "ACE - Advanced Cryptography Engine = %d (%d)\n", !!(uEdxGst & RT_BIT( 6)), !!(uEdxHst & RT_BIT( 6)));
3445 pHlp->pfnPrintf(pHlp, "ACE-E - ACE enabled = %d (%d)\n", !!(uEdxGst & RT_BIT( 7)), !!(uEdxHst & RT_BIT( 7)));
3446 /* possibly indicating MM/HE and MM/HE-E on older chips... */
3447 pHlp->pfnPrintf(pHlp, "ACE2 - Advanced Cryptography Engine 2 = %d (%d)\n", !!(uEdxGst & RT_BIT( 8)), !!(uEdxHst & RT_BIT( 8)));
3448 pHlp->pfnPrintf(pHlp, "ACE2-E - ACE enabled = %d (%d)\n", !!(uEdxGst & RT_BIT( 9)), !!(uEdxHst & RT_BIT( 9)));
3449 pHlp->pfnPrintf(pHlp, "PHE - Hash Engine = %d (%d)\n", !!(uEdxGst & RT_BIT(10)), !!(uEdxHst & RT_BIT(10)));
3450 pHlp->pfnPrintf(pHlp, "PHE-E - PHE enabled = %d (%d)\n", !!(uEdxGst & RT_BIT(11)), !!(uEdxHst & RT_BIT(11)));
3451 pHlp->pfnPrintf(pHlp, "PMM - Montgomery Multiplier = %d (%d)\n", !!(uEdxGst & RT_BIT(12)), !!(uEdxHst & RT_BIT(12)));
3452 pHlp->pfnPrintf(pHlp, "PMM-E - PMM enabled = %d (%d)\n", !!(uEdxGst & RT_BIT(13)), !!(uEdxHst & RT_BIT(13)));
3453 for (unsigned iBit = 14; iBit < 32; iBit++)
3454 if ((uEdxGst | uEdxHst) & RT_BIT(iBit))
3455 pHlp->pfnPrintf(pHlp, "Bit %d = %d (%d)\n", !!(uEdxGst & RT_BIT(iBit)), !!(uEdxHst & RT_BIT(iBit)));
3456 pHlp->pfnPrintf(pHlp, "\n");
3457 }
3458 }
3459}
3460
3461
3462/**
3463 * Structure used when disassembling and instructions in DBGF.
3464 * This is used so the reader function can get the stuff it needs.
3465 */
3466typedef struct CPUMDISASSTATE
3467{
3468 /** Pointer to the CPU structure. */
3469 PDISCPUSTATE pCpu;
3470 /** The VM handle. */
3471 PVM pVM;
3472 /** The VMCPU handle. */
3473 PVMCPU pVCpu;
3474 /** Pointer to the first byte in the segment. */
3475 RTGCUINTPTR GCPtrSegBase;
3476 /** Pointer to the byte after the end of the segment. (might have wrapped!) */
3477 RTGCUINTPTR GCPtrSegEnd;
3478 /** The size of the segment minus 1. */
3479 RTGCUINTPTR cbSegLimit;
3480 /** Pointer to the current page - R3 Ptr. */
3481 void const *pvPageR3;
3482 /** Pointer to the current page - GC Ptr. */
3483 RTGCPTR pvPageGC;
3484 /** The lock information that PGMPhysReleasePageMappingLock needs. */
3485 PGMPAGEMAPLOCK PageMapLock;
3486 /** Whether the PageMapLock is valid or not. */
3487 bool fLocked;
3488 /** 64 bits mode or not. */
3489 bool f64Bits;
3490} CPUMDISASSTATE, *PCPUMDISASSTATE;
3491
3492
3493/**
3494 * Instruction reader.
3495 *
3496 * @returns VBox status code.
3497 * @param PtrSrc Address to read from.
3498 * In our case this is relative to the selector pointed to by the 2nd user argument of uDisCpu.
3499 * @param pu8Dst Where to store the bytes.
3500 * @param cbRead Number of bytes to read.
3501 * @param uDisCpu Pointer to the disassembler cpu state.
3502 * In this context it's always pointer to the Core of a DBGFDISASSTATE.
3503 */
3504static DECLCALLBACK(int) cpumR3DisasInstrRead(RTUINTPTR PtrSrc, uint8_t *pu8Dst, unsigned cbRead, void *uDisCpu)
3505{
3506 PDISCPUSTATE pCpu = (PDISCPUSTATE)uDisCpu;
3507 PCPUMDISASSTATE pState = (PCPUMDISASSTATE)pCpu->apvUserData[0];
3508 Assert(cbRead > 0);
3509 for (;;)
3510 {
3511 RTGCUINTPTR GCPtr = PtrSrc + pState->GCPtrSegBase;
3512
3513 /* Need to update the page translation? */
3514 if ( !pState->pvPageR3
3515 || (GCPtr >> PAGE_SHIFT) != (pState->pvPageGC >> PAGE_SHIFT))
3516 {
3517 int rc = VINF_SUCCESS;
3518
3519 /* translate the address */
3520 pState->pvPageGC = GCPtr & PAGE_BASE_GC_MASK;
3521 if ( MMHyperIsInsideArea(pState->pVM, pState->pvPageGC)
3522 && !HWACCMIsEnabled(pState->pVM))
3523 {
3524 pState->pvPageR3 = MMHyperRCToR3(pState->pVM, (RTRCPTR)pState->pvPageGC);
3525 if (!pState->pvPageR3)
3526 rc = VERR_INVALID_POINTER;
3527 }
3528 else
3529 {
3530 /* Release mapping lock previously acquired. */
3531 if (pState->fLocked)
3532 PGMPhysReleasePageMappingLock(pState->pVM, &pState->PageMapLock);
3533 rc = PGMPhysGCPtr2CCPtrReadOnly(pState->pVCpu, pState->pvPageGC, &pState->pvPageR3, &pState->PageMapLock);
3534 pState->fLocked = RT_SUCCESS_NP(rc);
3535 }
3536 if (RT_FAILURE(rc))
3537 {
3538 pState->pvPageR3 = NULL;
3539 return rc;
3540 }
3541 }
3542
3543 /* check the segment limit */
3544 if (!pState->f64Bits && PtrSrc > pState->cbSegLimit)
3545 return VERR_OUT_OF_SELECTOR_BOUNDS;
3546
3547 /* calc how much we can read */
3548 uint32_t cb = PAGE_SIZE - (GCPtr & PAGE_OFFSET_MASK);
3549 if (!pState->f64Bits)
3550 {
3551 RTGCUINTPTR cbSeg = pState->GCPtrSegEnd - GCPtr;
3552 if (cb > cbSeg && cbSeg)
3553 cb = cbSeg;
3554 }
3555 if (cb > cbRead)
3556 cb = cbRead;
3557
3558 /* read and advance */
3559 memcpy(pu8Dst, (char *)pState->pvPageR3 + (GCPtr & PAGE_OFFSET_MASK), cb);
3560 cbRead -= cb;
3561 if (!cbRead)
3562 return VINF_SUCCESS;
3563 pu8Dst += cb;
3564 PtrSrc += cb;
3565 }
3566}
3567
3568
3569/**
3570 * Disassemble an instruction and return the information in the provided structure.
3571 *
3572 * @returns VBox status code.
3573 * @param pVM VM Handle
3574 * @param pVCpu VMCPU Handle
3575 * @param pCtx CPU context
3576 * @param GCPtrPC Program counter (relative to CS) to disassemble from.
3577 * @param pCpu Disassembly state
3578 * @param pszPrefix String prefix for logging (debug only)
3579 *
3580 */
3581VMMR3DECL(int) CPUMR3DisasmInstrCPU(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, RTGCPTR GCPtrPC, PDISCPUSTATE pCpu, const char *pszPrefix)
3582{
3583 CPUMDISASSTATE State;
3584 int rc;
3585
3586 const PGMMODE enmMode = PGMGetGuestMode(pVCpu);
3587 State.pCpu = pCpu;
3588 State.pvPageGC = 0;
3589 State.pvPageR3 = NULL;
3590 State.pVM = pVM;
3591 State.pVCpu = pVCpu;
3592 State.fLocked = false;
3593 State.f64Bits = false;
3594
3595 /*
3596 * Get selector information.
3597 */
3598 if ( (pCtx->cr0 & X86_CR0_PE)
3599 && pCtx->eflags.Bits.u1VM == 0)
3600 {
3601 if (CPUMAreHiddenSelRegsValid(pVCpu))
3602 {
3603 State.f64Bits = enmMode >= PGMMODE_AMD64 && pCtx->csHid.Attr.n.u1Long;
3604 State.GCPtrSegBase = pCtx->csHid.u64Base;
3605 State.GCPtrSegEnd = pCtx->csHid.u32Limit + 1 + (RTGCUINTPTR)pCtx->csHid.u64Base;
3606 State.cbSegLimit = pCtx->csHid.u32Limit;
3607 pCpu->mode = (State.f64Bits)
3608 ? CPUMODE_64BIT
3609 : pCtx->csHid.Attr.n.u1DefBig
3610 ? CPUMODE_32BIT
3611 : CPUMODE_16BIT;
3612 }
3613 else
3614 {
3615 DBGFSELINFO SelInfo;
3616
3617 rc = SELMR3GetShadowSelectorInfo(pVM, pCtx->cs, &SelInfo);
3618 if (RT_FAILURE(rc))
3619 {
3620 AssertMsgFailed(("SELMR3GetShadowSelectorInfo failed for %04X:%RGv rc=%d\n", pCtx->cs, GCPtrPC, rc));
3621 return rc;
3622 }
3623
3624 /*
3625 * Validate the selector.
3626 */
3627 rc = DBGFR3SelInfoValidateCS(&SelInfo, pCtx->ss);
3628 if (RT_FAILURE(rc))
3629 {
3630 AssertMsgFailed(("SELMSelInfoValidateCS failed for %04X:%RGv rc=%d\n", pCtx->cs, GCPtrPC, rc));
3631 return rc;
3632 }
3633 State.GCPtrSegBase = SelInfo.GCPtrBase;
3634 State.GCPtrSegEnd = SelInfo.cbLimit + 1 + (RTGCUINTPTR)SelInfo.GCPtrBase;
3635 State.cbSegLimit = SelInfo.cbLimit;
3636 pCpu->mode = SelInfo.u.Raw.Gen.u1DefBig ? CPUMODE_32BIT : CPUMODE_16BIT;
3637 }
3638 }
3639 else
3640 {
3641 /* real or V86 mode */
3642 pCpu->mode = CPUMODE_16BIT;
3643 State.GCPtrSegBase = pCtx->cs * 16;
3644 State.GCPtrSegEnd = 0xFFFFFFFF;
3645 State.cbSegLimit = 0xFFFFFFFF;
3646 }
3647
3648 /*
3649 * Disassemble the instruction.
3650 */
3651 pCpu->pfnReadBytes = cpumR3DisasInstrRead;
3652 pCpu->apvUserData[0] = &State;
3653
3654 uint32_t cbInstr;
3655#ifndef LOG_ENABLED
3656 rc = DISInstr(pCpu, GCPtrPC, 0, &cbInstr, NULL);
3657 if (RT_SUCCESS(rc))
3658 {
3659#else
3660 char szOutput[160];
3661 rc = DISInstr(pCpu, GCPtrPC, 0, &cbInstr, &szOutput[0]);
3662 if (RT_SUCCESS(rc))
3663 {
3664 /* log it */
3665 if (pszPrefix)
3666 Log(("%s-CPU%d: %s", pszPrefix, pVCpu->idCpu, szOutput));
3667 else
3668 Log(("%s", szOutput));
3669#endif
3670 rc = VINF_SUCCESS;
3671 }
3672 else
3673 Log(("CPUMR3DisasmInstrCPU: DISInstr failed for %04X:%RGv rc=%Rrc\n", pCtx->cs, GCPtrPC, rc));
3674
3675 /* Release mapping lock acquired in cpumR3DisasInstrRead. */
3676 if (State.fLocked)
3677 PGMPhysReleasePageMappingLock(pVM, &State.PageMapLock);
3678
3679 return rc;
3680}
3681
3682#ifdef DEBUG
3683
3684/**
3685 * Disassemble an instruction and dump it to the log
3686 *
3687 * @returns VBox status code.
3688 * @param pVM VM Handle
3689 * @param pVCpu VMCPU Handle
3690 * @param pCtx CPU context
3691 * @param pc GC instruction pointer
3692 * @param pszPrefix String prefix for logging
3693 *
3694 * @deprecated Use DBGFR3DisasInstrCurrentLog().
3695 */
3696VMMR3DECL(void) CPUMR3DisasmInstr(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, RTGCPTR pc, const char *pszPrefix)
3697{
3698 DISCPUSTATE Cpu;
3699 CPUMR3DisasmInstrCPU(pVM, pVCpu, pCtx, pc, &Cpu, pszPrefix);
3700}
3701
3702
3703/**
3704 * Debug helper - Saves guest context on raw mode entry (for fatal dump)
3705 *
3706 * @internal
3707 */
3708VMMR3DECL(void) CPUMR3SaveEntryCtx(PVM pVM)
3709{
3710 /** @todo SMP support!! */
3711 pVM->cpum.s.GuestEntry = *CPUMQueryGuestCtxPtr(VMMGetCpu(pVM));
3712}
3713
3714#endif /* DEBUG */
3715
3716/**
3717 * API for controlling a few of the CPU features found in CR4.
3718 *
3719 * Currently only X86_CR4_TSD is accepted as input.
3720 *
3721 * @returns VBox status code.
3722 *
3723 * @param pVM The VM handle.
3724 * @param fOr The CR4 OR mask.
3725 * @param fAnd The CR4 AND mask.
3726 */
3727VMMR3DECL(int) CPUMR3SetCR4Feature(PVM pVM, RTHCUINTREG fOr, RTHCUINTREG fAnd)
3728{
3729 AssertMsgReturn(!(fOr & ~(X86_CR4_TSD)), ("%#x\n", fOr), VERR_INVALID_PARAMETER);
3730 AssertMsgReturn((fAnd & ~(X86_CR4_TSD)) == ~(X86_CR4_TSD), ("%#x\n", fAnd), VERR_INVALID_PARAMETER);
3731
3732 pVM->cpum.s.CR4.OrMask &= fAnd;
3733 pVM->cpum.s.CR4.OrMask |= fOr;
3734
3735 return VINF_SUCCESS;
3736}
3737
3738
3739/**
3740 * Gets a pointer to the array of standard CPUID leaves.
3741 *
3742 * CPUMR3GetGuestCpuIdStdMax() give the size of the array.
3743 *
3744 * @returns Pointer to the standard CPUID leaves (read-only).
3745 * @param pVM The VM handle.
3746 * @remark Intended for PATM.
3747 */
3748VMMR3DECL(RCPTRTYPE(PCCPUMCPUID)) CPUMR3GetGuestCpuIdStdRCPtr(PVM pVM)
3749{
3750 return RCPTRTYPE(PCCPUMCPUID)VM_RC_ADDR(pVM, &pVM->cpum.s.aGuestCpuIdStd[0]);
3751}
3752
3753
3754/**
3755 * Gets a pointer to the array of extended CPUID leaves.
3756 *
3757 * CPUMGetGuestCpuIdExtMax() give the size of the array.
3758 *
3759 * @returns Pointer to the extended CPUID leaves (read-only).
3760 * @param pVM The VM handle.
3761 * @remark Intended for PATM.
3762 */
3763VMMR3DECL(RCPTRTYPE(PCCPUMCPUID)) CPUMR3GetGuestCpuIdExtRCPtr(PVM pVM)
3764{
3765 return (RCPTRTYPE(PCCPUMCPUID))VM_RC_ADDR(pVM, &pVM->cpum.s.aGuestCpuIdExt[0]);
3766}
3767
3768
3769/**
3770 * Gets a pointer to the array of centaur CPUID leaves.
3771 *
3772 * CPUMGetGuestCpuIdCentaurMax() give the size of the array.
3773 *
3774 * @returns Pointer to the centaur CPUID leaves (read-only).
3775 * @param pVM The VM handle.
3776 * @remark Intended for PATM.
3777 */
3778VMMR3DECL(RCPTRTYPE(PCCPUMCPUID)) CPUMR3GetGuestCpuIdCentaurRCPtr(PVM pVM)
3779{
3780 return (RCPTRTYPE(PCCPUMCPUID))VM_RC_ADDR(pVM, &pVM->cpum.s.aGuestCpuIdCentaur[0]);
3781}
3782
3783
3784/**
3785 * Gets a pointer to the default CPUID leaf.
3786 *
3787 * @returns Pointer to the default CPUID leaf (read-only).
3788 * @param pVM The VM handle.
3789 * @remark Intended for PATM.
3790 */
3791VMMR3DECL(RCPTRTYPE(PCCPUMCPUID)) CPUMR3GetGuestCpuIdDefRCPtr(PVM pVM)
3792{
3793 return (RCPTRTYPE(PCCPUMCPUID))VM_RC_ADDR(pVM, &pVM->cpum.s.GuestCpuIdDef);
3794}
3795
3796
3797/**
3798 * Transforms the guest CPU state to raw-ring mode.
3799 *
3800 * This function will change the any of the cs and ss register with DPL=0 to DPL=1.
3801 *
3802 * @returns VBox status. (recompiler failure)
3803 * @param pVCpu The VMCPU handle.
3804 * @param pCtxCore The context core (for trap usage).
3805 * @see @ref pg_raw
3806 */
3807VMMR3DECL(int) CPUMR3RawEnter(PVMCPU pVCpu, PCPUMCTXCORE pCtxCore)
3808{
3809 PVM pVM = pVCpu->CTX_SUFF(pVM);
3810
3811 Assert(!pVCpu->cpum.s.fRawEntered);
3812 Assert(!pVCpu->cpum.s.fRemEntered);
3813 if (!pCtxCore)
3814 pCtxCore = CPUMCTX2CORE(&pVCpu->cpum.s.Guest);
3815
3816 /*
3817 * Are we in Ring-0?
3818 */
3819 if ( pCtxCore->ss && (pCtxCore->ss & X86_SEL_RPL) == 0
3820 && !pCtxCore->eflags.Bits.u1VM)
3821 {
3822 /*
3823 * Enter execution mode.
3824 */
3825 PATMRawEnter(pVM, pCtxCore);
3826
3827 /*
3828 * Set CPL to Ring-1.
3829 */
3830 pCtxCore->ss |= 1;
3831 if (pCtxCore->cs && (pCtxCore->cs & X86_SEL_RPL) == 0)
3832 pCtxCore->cs |= 1;
3833 }
3834 else
3835 {
3836 AssertMsg((pCtxCore->ss & X86_SEL_RPL) >= 2 || pCtxCore->eflags.Bits.u1VM,
3837 ("ring-1 code not supported\n"));
3838 /*
3839 * PATM takes care of IOPL and IF flags for Ring-3 and Ring-2 code as well.
3840 */
3841 PATMRawEnter(pVM, pCtxCore);
3842 }
3843
3844 /*
3845 * Invalidate the hidden registers.
3846 */
3847 pVCpu->cpum.s.fChanged |= CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID;
3848
3849 /*
3850 * Assert sanity.
3851 */
3852 AssertMsg((pCtxCore->eflags.u32 & X86_EFL_IF), ("X86_EFL_IF is clear\n"));
3853 AssertReleaseMsg( pCtxCore->eflags.Bits.u2IOPL < (unsigned)(pCtxCore->ss & X86_SEL_RPL)
3854 || pCtxCore->eflags.Bits.u1VM,
3855 ("X86_EFL_IOPL=%d CPL=%d\n", pCtxCore->eflags.Bits.u2IOPL, pCtxCore->ss & X86_SEL_RPL));
3856 Assert((pVCpu->cpum.s.Guest.cr0 & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE)) == (X86_CR0_PG | X86_CR0_PE | X86_CR0_WP));
3857
3858 pCtxCore->eflags.u32 |= X86_EFL_IF; /* paranoia */
3859
3860 pVCpu->cpum.s.fRawEntered = true;
3861 return VINF_SUCCESS;
3862}
3863
3864
3865/**
3866 * Transforms the guest CPU state from raw-ring mode to correct values.
3867 *
3868 * This function will change any selector registers with DPL=1 to DPL=0.
3869 *
3870 * @returns Adjusted rc.
3871 * @param pVCpu The VMCPU handle.
3872 * @param rc Raw mode return code
3873 * @param pCtxCore The context core (for trap usage).
3874 * @see @ref pg_raw
3875 */
3876VMMR3DECL(int) CPUMR3RawLeave(PVMCPU pVCpu, PCPUMCTXCORE pCtxCore, int rc)
3877{
3878 PVM pVM = pVCpu->CTX_SUFF(pVM);
3879
3880 /*
3881 * Don't leave if we've already left (in GC).
3882 */
3883 Assert(pVCpu->cpum.s.fRawEntered);
3884 Assert(!pVCpu->cpum.s.fRemEntered);
3885 if (!pVCpu->cpum.s.fRawEntered)
3886 return rc;
3887 pVCpu->cpum.s.fRawEntered = false;
3888
3889 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
3890 if (!pCtxCore)
3891 pCtxCore = CPUMCTX2CORE(pCtx);
3892 Assert(pCtxCore->eflags.Bits.u1VM || (pCtxCore->ss & X86_SEL_RPL));
3893 AssertMsg(pCtxCore->eflags.Bits.u1VM || pCtxCore->eflags.Bits.u2IOPL < (unsigned)(pCtxCore->ss & X86_SEL_RPL),
3894 ("X86_EFL_IOPL=%d CPL=%d\n", pCtxCore->eflags.Bits.u2IOPL, pCtxCore->ss & X86_SEL_RPL));
3895
3896 /*
3897 * Are we executing in raw ring-1?
3898 */
3899 if ( (pCtxCore->ss & X86_SEL_RPL) == 1
3900 && !pCtxCore->eflags.Bits.u1VM)
3901 {
3902 /*
3903 * Leave execution mode.
3904 */
3905 PATMRawLeave(pVM, pCtxCore, rc);
3906 /* Not quite sure if this is really required, but shouldn't harm (too much anyways). */
3907 /** @todo See what happens if we remove this. */
3908 if ((pCtxCore->ds & X86_SEL_RPL) == 1)
3909 pCtxCore->ds &= ~X86_SEL_RPL;
3910 if ((pCtxCore->es & X86_SEL_RPL) == 1)
3911 pCtxCore->es &= ~X86_SEL_RPL;
3912 if ((pCtxCore->fs & X86_SEL_RPL) == 1)
3913 pCtxCore->fs &= ~X86_SEL_RPL;
3914 if ((pCtxCore->gs & X86_SEL_RPL) == 1)
3915 pCtxCore->gs &= ~X86_SEL_RPL;
3916
3917 /*
3918 * Ring-1 selector => Ring-0.
3919 */
3920 pCtxCore->ss &= ~X86_SEL_RPL;
3921 if ((pCtxCore->cs & X86_SEL_RPL) == 1)
3922 pCtxCore->cs &= ~X86_SEL_RPL;
3923 }
3924 else
3925 {
3926 /*
3927 * PATM is taking care of the IOPL and IF flags for us.
3928 */
3929 PATMRawLeave(pVM, pCtxCore, rc);
3930 if (!pCtxCore->eflags.Bits.u1VM)
3931 {
3932 /** @todo See what happens if we remove this. */
3933 if ((pCtxCore->ds & X86_SEL_RPL) == 1)
3934 pCtxCore->ds &= ~X86_SEL_RPL;
3935 if ((pCtxCore->es & X86_SEL_RPL) == 1)
3936 pCtxCore->es &= ~X86_SEL_RPL;
3937 if ((pCtxCore->fs & X86_SEL_RPL) == 1)
3938 pCtxCore->fs &= ~X86_SEL_RPL;
3939 if ((pCtxCore->gs & X86_SEL_RPL) == 1)
3940 pCtxCore->gs &= ~X86_SEL_RPL;
3941 }
3942 }
3943
3944 return rc;
3945}
3946
3947
3948/**
3949 * Enters REM, gets and resets the changed flags (CPUM_CHANGED_*).
3950 *
3951 * Only REM should ever call this function!
3952 *
3953 * @returns The changed flags.
3954 * @param pVCpu The VMCPU handle.
3955 * @param puCpl Where to return the current privilege level (CPL).
3956 */
3957VMMR3DECL(uint32_t) CPUMR3RemEnter(PVMCPU pVCpu, uint32_t *puCpl)
3958{
3959 Assert(!pVCpu->cpum.s.fRawEntered);
3960 Assert(!pVCpu->cpum.s.fRemEntered);
3961
3962 /*
3963 * Get the CPL first.
3964 */
3965 *puCpl = CPUMGetGuestCPL(pVCpu, CPUMCTX2CORE(&pVCpu->cpum.s.Guest));
3966
3967 /*
3968 * Get and reset the flags, leaving CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID set.
3969 */
3970 uint32_t fFlags = pVCpu->cpum.s.fChanged;
3971 pVCpu->cpum.s.fChanged &= CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID; /* leave it set */
3972
3973 /** @todo change the switcher to use the fChanged flags. */
3974 if (pVCpu->cpum.s.fUseFlags & CPUM_USED_FPU_SINCE_REM)
3975 {
3976 fFlags |= CPUM_CHANGED_FPU_REM;
3977 pVCpu->cpum.s.fUseFlags &= ~CPUM_USED_FPU_SINCE_REM;
3978 }
3979
3980 pVCpu->cpum.s.fRemEntered = true;
3981 return fFlags;
3982}
3983
3984
3985/**
3986 * Leaves REM and works the CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID flag.
3987 *
3988 * @param pVCpu The virtual CPU handle.
3989 * @param fNoOutOfSyncSels This is @c false if there are out of sync
3990 * registers.
3991 */
3992VMMR3DECL(void) CPUMR3RemLeave(PVMCPU pVCpu, bool fNoOutOfSyncSels)
3993{
3994 Assert(!pVCpu->cpum.s.fRawEntered);
3995 Assert(pVCpu->cpum.s.fRemEntered);
3996
3997 if (fNoOutOfSyncSels)
3998 pVCpu->cpum.s.fChanged &= ~CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID;
3999 else
4000 pVCpu->cpum.s.fChanged |= ~CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID;
4001
4002 pVCpu->cpum.s.fRemEntered = false;
4003}
4004
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette