VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/CPUM.cpp@ 49977

Last change on this file since 49977 was 49977, checked in by vboxsync, 11 years ago

CPUM: Make sure a minimum of commonly used MSRs are present by default.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 223.4 KB
Line 
1/* $Id: CPUM.cpp 49977 2013-12-18 17:51:13Z vboxsync $ */
2/** @file
3 * CPUM - CPU Monitor / Manager.
4 */
5
6/*
7 * Copyright (C) 2006-2013 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/** @page pg_cpum CPUM - CPU Monitor / Manager
19 *
20 * The CPU Monitor / Manager keeps track of all the CPU registers. It is
21 * also responsible for lazy FPU handling and some of the context loading
22 * in raw mode.
23 *
24 * There are three CPU contexts, the most important one is the guest one (GC).
25 * When running in raw-mode (RC) there is a special hyper context for the VMM
26 * part that floats around inside the guest address space. When running in
27 * raw-mode, CPUM also maintains a host context for saving and restoring
28 * registers across world switches. This latter is done in cooperation with the
29 * world switcher (@see pg_vmm).
30 *
31 * @see grp_cpum
32 */
33
34/*******************************************************************************
35* Header Files *
36*******************************************************************************/
37#define LOG_GROUP LOG_GROUP_CPUM
38#include <VBox/vmm/cpum.h>
39#include <VBox/vmm/cpumdis.h>
40#include <VBox/vmm/cpumctx-v1_6.h>
41#include <VBox/vmm/pgm.h>
42#include <VBox/vmm/pdmapi.h>
43#include <VBox/vmm/mm.h>
44#include <VBox/vmm/em.h>
45#include <VBox/vmm/selm.h>
46#include <VBox/vmm/dbgf.h>
47#include <VBox/vmm/patm.h>
48#include <VBox/vmm/hm.h>
49#include <VBox/vmm/ssm.h>
50#include "CPUMInternal.h"
51#include <VBox/vmm/vm.h>
52
53#include <VBox/param.h>
54#include <VBox/dis.h>
55#include <VBox/err.h>
56#include <VBox/log.h>
57#include <iprt/asm-amd64-x86.h>
58#include <iprt/assert.h>
59#include <iprt/cpuset.h>
60#include <iprt/mem.h>
61#include <iprt/mp.h>
62#include <iprt/string.h>
63#include "internal/pgm.h"
64
65
66/*******************************************************************************
67* Defined Constants And Macros *
68*******************************************************************************/
69/** The current saved state version. */
70#define CPUM_SAVED_STATE_VERSION 14
71/** The current saved state version before using SSMR3PutStruct. */
72#define CPUM_SAVED_STATE_VERSION_MEM 13
73/** The saved state version before introducing the MSR size field. */
74#define CPUM_SAVED_STATE_VERSION_NO_MSR_SIZE 12
75/** The saved state version of 3.2, 3.1 and 3.3 trunk before the hidden
76 * selector register change (CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID). */
77#define CPUM_SAVED_STATE_VERSION_VER3_2 11
78/** The saved state version of 3.0 and 3.1 trunk before the teleportation
79 * changes. */
80#define CPUM_SAVED_STATE_VERSION_VER3_0 10
81/** The saved state version for the 2.1 trunk before the MSR changes. */
82#define CPUM_SAVED_STATE_VERSION_VER2_1_NOMSR 9
83/** The saved state version of 2.0, used for backwards compatibility. */
84#define CPUM_SAVED_STATE_VERSION_VER2_0 8
85/** The saved state version of 1.6, used for backwards compatibility. */
86#define CPUM_SAVED_STATE_VERSION_VER1_6 6
87
88
89/**
90 * This was used in the saved state up to the early life of version 14.
91 *
92 * It indicates that we may have some out-of-sync hidden segement registers.
93 * It is only relevant for raw-mode.
94 */
95#define CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID RT_BIT(12)
96
97
98/*******************************************************************************
99* Structures and Typedefs *
100*******************************************************************************/
101
102/**
103 * What kind of cpu info dump to perform.
104 */
105typedef enum CPUMDUMPTYPE
106{
107 CPUMDUMPTYPE_TERSE,
108 CPUMDUMPTYPE_DEFAULT,
109 CPUMDUMPTYPE_VERBOSE
110} CPUMDUMPTYPE;
111/** Pointer to a cpu info dump type. */
112typedef CPUMDUMPTYPE *PCPUMDUMPTYPE;
113
114
115/*******************************************************************************
116* Internal Functions *
117*******************************************************************************/
118static int cpumR3CpuIdInit(PVM pVM);
119static DECLCALLBACK(int) cpumR3LiveExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uPass);
120static DECLCALLBACK(int) cpumR3SaveExec(PVM pVM, PSSMHANDLE pSSM);
121static DECLCALLBACK(int) cpumR3LoadPrep(PVM pVM, PSSMHANDLE pSSM);
122static DECLCALLBACK(int) cpumR3LoadExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
123static DECLCALLBACK(int) cpumR3LoadDone(PVM pVM, PSSMHANDLE pSSM);
124static DECLCALLBACK(void) cpumR3InfoAll(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
125static DECLCALLBACK(void) cpumR3InfoGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
126static DECLCALLBACK(void) cpumR3InfoGuestInstr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
127static DECLCALLBACK(void) cpumR3InfoHyper(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
128static DECLCALLBACK(void) cpumR3InfoHost(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
129static DECLCALLBACK(void) cpumR3CpuIdInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
130
131
132/*******************************************************************************
133* Global Variables *
134*******************************************************************************/
135/** Saved state field descriptors for CPUMCTX. */
136static const SSMFIELD g_aCpumCtxFields[] =
137{
138 SSMFIELD_ENTRY( CPUMCTX, fpu.FCW),
139 SSMFIELD_ENTRY( CPUMCTX, fpu.FSW),
140 SSMFIELD_ENTRY( CPUMCTX, fpu.FTW),
141 SSMFIELD_ENTRY( CPUMCTX, fpu.FOP),
142 SSMFIELD_ENTRY( CPUMCTX, fpu.FPUIP),
143 SSMFIELD_ENTRY( CPUMCTX, fpu.CS),
144 SSMFIELD_ENTRY( CPUMCTX, fpu.Rsrvd1),
145 SSMFIELD_ENTRY( CPUMCTX, fpu.FPUDP),
146 SSMFIELD_ENTRY( CPUMCTX, fpu.DS),
147 SSMFIELD_ENTRY( CPUMCTX, fpu.Rsrvd2),
148 SSMFIELD_ENTRY( CPUMCTX, fpu.MXCSR),
149 SSMFIELD_ENTRY( CPUMCTX, fpu.MXCSR_MASK),
150 SSMFIELD_ENTRY( CPUMCTX, fpu.aRegs[0]),
151 SSMFIELD_ENTRY( CPUMCTX, fpu.aRegs[1]),
152 SSMFIELD_ENTRY( CPUMCTX, fpu.aRegs[2]),
153 SSMFIELD_ENTRY( CPUMCTX, fpu.aRegs[3]),
154 SSMFIELD_ENTRY( CPUMCTX, fpu.aRegs[4]),
155 SSMFIELD_ENTRY( CPUMCTX, fpu.aRegs[5]),
156 SSMFIELD_ENTRY( CPUMCTX, fpu.aRegs[6]),
157 SSMFIELD_ENTRY( CPUMCTX, fpu.aRegs[7]),
158 SSMFIELD_ENTRY( CPUMCTX, fpu.aXMM[0]),
159 SSMFIELD_ENTRY( CPUMCTX, fpu.aXMM[1]),
160 SSMFIELD_ENTRY( CPUMCTX, fpu.aXMM[2]),
161 SSMFIELD_ENTRY( CPUMCTX, fpu.aXMM[3]),
162 SSMFIELD_ENTRY( CPUMCTX, fpu.aXMM[4]),
163 SSMFIELD_ENTRY( CPUMCTX, fpu.aXMM[5]),
164 SSMFIELD_ENTRY( CPUMCTX, fpu.aXMM[6]),
165 SSMFIELD_ENTRY( CPUMCTX, fpu.aXMM[7]),
166 SSMFIELD_ENTRY( CPUMCTX, fpu.aXMM[8]),
167 SSMFIELD_ENTRY( CPUMCTX, fpu.aXMM[9]),
168 SSMFIELD_ENTRY( CPUMCTX, fpu.aXMM[10]),
169 SSMFIELD_ENTRY( CPUMCTX, fpu.aXMM[11]),
170 SSMFIELD_ENTRY( CPUMCTX, fpu.aXMM[12]),
171 SSMFIELD_ENTRY( CPUMCTX, fpu.aXMM[13]),
172 SSMFIELD_ENTRY( CPUMCTX, fpu.aXMM[14]),
173 SSMFIELD_ENTRY( CPUMCTX, fpu.aXMM[15]),
174 SSMFIELD_ENTRY( CPUMCTX, rdi),
175 SSMFIELD_ENTRY( CPUMCTX, rsi),
176 SSMFIELD_ENTRY( CPUMCTX, rbp),
177 SSMFIELD_ENTRY( CPUMCTX, rax),
178 SSMFIELD_ENTRY( CPUMCTX, rbx),
179 SSMFIELD_ENTRY( CPUMCTX, rdx),
180 SSMFIELD_ENTRY( CPUMCTX, rcx),
181 SSMFIELD_ENTRY( CPUMCTX, rsp),
182 SSMFIELD_ENTRY( CPUMCTX, rflags),
183 SSMFIELD_ENTRY( CPUMCTX, rip),
184 SSMFIELD_ENTRY( CPUMCTX, r8),
185 SSMFIELD_ENTRY( CPUMCTX, r9),
186 SSMFIELD_ENTRY( CPUMCTX, r10),
187 SSMFIELD_ENTRY( CPUMCTX, r11),
188 SSMFIELD_ENTRY( CPUMCTX, r12),
189 SSMFIELD_ENTRY( CPUMCTX, r13),
190 SSMFIELD_ENTRY( CPUMCTX, r14),
191 SSMFIELD_ENTRY( CPUMCTX, r15),
192 SSMFIELD_ENTRY( CPUMCTX, es.Sel),
193 SSMFIELD_ENTRY( CPUMCTX, es.ValidSel),
194 SSMFIELD_ENTRY( CPUMCTX, es.fFlags),
195 SSMFIELD_ENTRY( CPUMCTX, es.u64Base),
196 SSMFIELD_ENTRY( CPUMCTX, es.u32Limit),
197 SSMFIELD_ENTRY( CPUMCTX, es.Attr),
198 SSMFIELD_ENTRY( CPUMCTX, cs.Sel),
199 SSMFIELD_ENTRY( CPUMCTX, cs.ValidSel),
200 SSMFIELD_ENTRY( CPUMCTX, cs.fFlags),
201 SSMFIELD_ENTRY( CPUMCTX, cs.u64Base),
202 SSMFIELD_ENTRY( CPUMCTX, cs.u32Limit),
203 SSMFIELD_ENTRY( CPUMCTX, cs.Attr),
204 SSMFIELD_ENTRY( CPUMCTX, ss.Sel),
205 SSMFIELD_ENTRY( CPUMCTX, ss.ValidSel),
206 SSMFIELD_ENTRY( CPUMCTX, ss.fFlags),
207 SSMFIELD_ENTRY( CPUMCTX, ss.u64Base),
208 SSMFIELD_ENTRY( CPUMCTX, ss.u32Limit),
209 SSMFIELD_ENTRY( CPUMCTX, ss.Attr),
210 SSMFIELD_ENTRY( CPUMCTX, ds.Sel),
211 SSMFIELD_ENTRY( CPUMCTX, ds.ValidSel),
212 SSMFIELD_ENTRY( CPUMCTX, ds.fFlags),
213 SSMFIELD_ENTRY( CPUMCTX, ds.u64Base),
214 SSMFIELD_ENTRY( CPUMCTX, ds.u32Limit),
215 SSMFIELD_ENTRY( CPUMCTX, ds.Attr),
216 SSMFIELD_ENTRY( CPUMCTX, fs.Sel),
217 SSMFIELD_ENTRY( CPUMCTX, fs.ValidSel),
218 SSMFIELD_ENTRY( CPUMCTX, fs.fFlags),
219 SSMFIELD_ENTRY( CPUMCTX, fs.u64Base),
220 SSMFIELD_ENTRY( CPUMCTX, fs.u32Limit),
221 SSMFIELD_ENTRY( CPUMCTX, fs.Attr),
222 SSMFIELD_ENTRY( CPUMCTX, gs.Sel),
223 SSMFIELD_ENTRY( CPUMCTX, gs.ValidSel),
224 SSMFIELD_ENTRY( CPUMCTX, gs.fFlags),
225 SSMFIELD_ENTRY( CPUMCTX, gs.u64Base),
226 SSMFIELD_ENTRY( CPUMCTX, gs.u32Limit),
227 SSMFIELD_ENTRY( CPUMCTX, gs.Attr),
228 SSMFIELD_ENTRY( CPUMCTX, cr0),
229 SSMFIELD_ENTRY( CPUMCTX, cr2),
230 SSMFIELD_ENTRY( CPUMCTX, cr3),
231 SSMFIELD_ENTRY( CPUMCTX, cr4),
232 SSMFIELD_ENTRY( CPUMCTX, dr[0]),
233 SSMFIELD_ENTRY( CPUMCTX, dr[1]),
234 SSMFIELD_ENTRY( CPUMCTX, dr[2]),
235 SSMFIELD_ENTRY( CPUMCTX, dr[3]),
236 SSMFIELD_ENTRY( CPUMCTX, dr[6]),
237 SSMFIELD_ENTRY( CPUMCTX, dr[7]),
238 SSMFIELD_ENTRY( CPUMCTX, gdtr.cbGdt),
239 SSMFIELD_ENTRY( CPUMCTX, gdtr.pGdt),
240 SSMFIELD_ENTRY( CPUMCTX, idtr.cbIdt),
241 SSMFIELD_ENTRY( CPUMCTX, idtr.pIdt),
242 SSMFIELD_ENTRY( CPUMCTX, SysEnter.cs),
243 SSMFIELD_ENTRY( CPUMCTX, SysEnter.eip),
244 SSMFIELD_ENTRY( CPUMCTX, SysEnter.esp),
245 SSMFIELD_ENTRY( CPUMCTX, msrEFER),
246 SSMFIELD_ENTRY( CPUMCTX, msrSTAR),
247 SSMFIELD_ENTRY( CPUMCTX, msrPAT),
248 SSMFIELD_ENTRY( CPUMCTX, msrLSTAR),
249 SSMFIELD_ENTRY( CPUMCTX, msrCSTAR),
250 SSMFIELD_ENTRY( CPUMCTX, msrSFMASK),
251 SSMFIELD_ENTRY( CPUMCTX, msrKERNELGSBASE),
252 /* msrApicBase is not included here, it resides in the APIC device state. */
253 SSMFIELD_ENTRY( CPUMCTX, ldtr.Sel),
254 SSMFIELD_ENTRY( CPUMCTX, ldtr.ValidSel),
255 SSMFIELD_ENTRY( CPUMCTX, ldtr.fFlags),
256 SSMFIELD_ENTRY( CPUMCTX, ldtr.u64Base),
257 SSMFIELD_ENTRY( CPUMCTX, ldtr.u32Limit),
258 SSMFIELD_ENTRY( CPUMCTX, ldtr.Attr),
259 SSMFIELD_ENTRY( CPUMCTX, tr.Sel),
260 SSMFIELD_ENTRY( CPUMCTX, tr.ValidSel),
261 SSMFIELD_ENTRY( CPUMCTX, tr.fFlags),
262 SSMFIELD_ENTRY( CPUMCTX, tr.u64Base),
263 SSMFIELD_ENTRY( CPUMCTX, tr.u32Limit),
264 SSMFIELD_ENTRY( CPUMCTX, tr.Attr),
265 SSMFIELD_ENTRY_TERM()
266};
267
268/** Saved state field descriptors for CPUMCTX in V4.1 before the hidden selector
269 * registeres changed. */
270static const SSMFIELD g_aCpumCtxFieldsMem[] =
271{
272 SSMFIELD_ENTRY( CPUMCTX, fpu.FCW),
273 SSMFIELD_ENTRY( CPUMCTX, fpu.FSW),
274 SSMFIELD_ENTRY( CPUMCTX, fpu.FTW),
275 SSMFIELD_ENTRY( CPUMCTX, fpu.FOP),
276 SSMFIELD_ENTRY( CPUMCTX, fpu.FPUIP),
277 SSMFIELD_ENTRY( CPUMCTX, fpu.CS),
278 SSMFIELD_ENTRY( CPUMCTX, fpu.Rsrvd1),
279 SSMFIELD_ENTRY( CPUMCTX, fpu.FPUDP),
280 SSMFIELD_ENTRY( CPUMCTX, fpu.DS),
281 SSMFIELD_ENTRY( CPUMCTX, fpu.Rsrvd2),
282 SSMFIELD_ENTRY( CPUMCTX, fpu.MXCSR),
283 SSMFIELD_ENTRY( CPUMCTX, fpu.MXCSR_MASK),
284 SSMFIELD_ENTRY( CPUMCTX, fpu.aRegs[0]),
285 SSMFIELD_ENTRY( CPUMCTX, fpu.aRegs[1]),
286 SSMFIELD_ENTRY( CPUMCTX, fpu.aRegs[2]),
287 SSMFIELD_ENTRY( CPUMCTX, fpu.aRegs[3]),
288 SSMFIELD_ENTRY( CPUMCTX, fpu.aRegs[4]),
289 SSMFIELD_ENTRY( CPUMCTX, fpu.aRegs[5]),
290 SSMFIELD_ENTRY( CPUMCTX, fpu.aRegs[6]),
291 SSMFIELD_ENTRY( CPUMCTX, fpu.aRegs[7]),
292 SSMFIELD_ENTRY( CPUMCTX, fpu.aXMM[0]),
293 SSMFIELD_ENTRY( CPUMCTX, fpu.aXMM[1]),
294 SSMFIELD_ENTRY( CPUMCTX, fpu.aXMM[2]),
295 SSMFIELD_ENTRY( CPUMCTX, fpu.aXMM[3]),
296 SSMFIELD_ENTRY( CPUMCTX, fpu.aXMM[4]),
297 SSMFIELD_ENTRY( CPUMCTX, fpu.aXMM[5]),
298 SSMFIELD_ENTRY( CPUMCTX, fpu.aXMM[6]),
299 SSMFIELD_ENTRY( CPUMCTX, fpu.aXMM[7]),
300 SSMFIELD_ENTRY( CPUMCTX, fpu.aXMM[8]),
301 SSMFIELD_ENTRY( CPUMCTX, fpu.aXMM[9]),
302 SSMFIELD_ENTRY( CPUMCTX, fpu.aXMM[10]),
303 SSMFIELD_ENTRY( CPUMCTX, fpu.aXMM[11]),
304 SSMFIELD_ENTRY( CPUMCTX, fpu.aXMM[12]),
305 SSMFIELD_ENTRY( CPUMCTX, fpu.aXMM[13]),
306 SSMFIELD_ENTRY( CPUMCTX, fpu.aXMM[14]),
307 SSMFIELD_ENTRY( CPUMCTX, fpu.aXMM[15]),
308 SSMFIELD_ENTRY_IGNORE( CPUMCTX, fpu.au32RsrvdRest),
309 SSMFIELD_ENTRY( CPUMCTX, rdi),
310 SSMFIELD_ENTRY( CPUMCTX, rsi),
311 SSMFIELD_ENTRY( CPUMCTX, rbp),
312 SSMFIELD_ENTRY( CPUMCTX, rax),
313 SSMFIELD_ENTRY( CPUMCTX, rbx),
314 SSMFIELD_ENTRY( CPUMCTX, rdx),
315 SSMFIELD_ENTRY( CPUMCTX, rcx),
316 SSMFIELD_ENTRY( CPUMCTX, rsp),
317 SSMFIELD_ENTRY_OLD( lss_esp, sizeof(uint32_t)),
318 SSMFIELD_ENTRY( CPUMCTX, ss.Sel),
319 SSMFIELD_ENTRY_OLD( ssPadding, sizeof(uint16_t)),
320 SSMFIELD_ENTRY( CPUMCTX, gs.Sel),
321 SSMFIELD_ENTRY_OLD( gsPadding, sizeof(uint16_t)),
322 SSMFIELD_ENTRY( CPUMCTX, fs.Sel),
323 SSMFIELD_ENTRY_OLD( fsPadding, sizeof(uint16_t)),
324 SSMFIELD_ENTRY( CPUMCTX, es.Sel),
325 SSMFIELD_ENTRY_OLD( esPadding, sizeof(uint16_t)),
326 SSMFIELD_ENTRY( CPUMCTX, ds.Sel),
327 SSMFIELD_ENTRY_OLD( dsPadding, sizeof(uint16_t)),
328 SSMFIELD_ENTRY( CPUMCTX, cs.Sel),
329 SSMFIELD_ENTRY_OLD( csPadding, sizeof(uint16_t)*3),
330 SSMFIELD_ENTRY( CPUMCTX, rflags),
331 SSMFIELD_ENTRY( CPUMCTX, rip),
332 SSMFIELD_ENTRY( CPUMCTX, r8),
333 SSMFIELD_ENTRY( CPUMCTX, r9),
334 SSMFIELD_ENTRY( CPUMCTX, r10),
335 SSMFIELD_ENTRY( CPUMCTX, r11),
336 SSMFIELD_ENTRY( CPUMCTX, r12),
337 SSMFIELD_ENTRY( CPUMCTX, r13),
338 SSMFIELD_ENTRY( CPUMCTX, r14),
339 SSMFIELD_ENTRY( CPUMCTX, r15),
340 SSMFIELD_ENTRY( CPUMCTX, es.u64Base),
341 SSMFIELD_ENTRY( CPUMCTX, es.u32Limit),
342 SSMFIELD_ENTRY( CPUMCTX, es.Attr),
343 SSMFIELD_ENTRY( CPUMCTX, cs.u64Base),
344 SSMFIELD_ENTRY( CPUMCTX, cs.u32Limit),
345 SSMFIELD_ENTRY( CPUMCTX, cs.Attr),
346 SSMFIELD_ENTRY( CPUMCTX, ss.u64Base),
347 SSMFIELD_ENTRY( CPUMCTX, ss.u32Limit),
348 SSMFIELD_ENTRY( CPUMCTX, ss.Attr),
349 SSMFIELD_ENTRY( CPUMCTX, ds.u64Base),
350 SSMFIELD_ENTRY( CPUMCTX, ds.u32Limit),
351 SSMFIELD_ENTRY( CPUMCTX, ds.Attr),
352 SSMFIELD_ENTRY( CPUMCTX, fs.u64Base),
353 SSMFIELD_ENTRY( CPUMCTX, fs.u32Limit),
354 SSMFIELD_ENTRY( CPUMCTX, fs.Attr),
355 SSMFIELD_ENTRY( CPUMCTX, gs.u64Base),
356 SSMFIELD_ENTRY( CPUMCTX, gs.u32Limit),
357 SSMFIELD_ENTRY( CPUMCTX, gs.Attr),
358 SSMFIELD_ENTRY( CPUMCTX, cr0),
359 SSMFIELD_ENTRY( CPUMCTX, cr2),
360 SSMFIELD_ENTRY( CPUMCTX, cr3),
361 SSMFIELD_ENTRY( CPUMCTX, cr4),
362 SSMFIELD_ENTRY( CPUMCTX, dr[0]),
363 SSMFIELD_ENTRY( CPUMCTX, dr[1]),
364 SSMFIELD_ENTRY( CPUMCTX, dr[2]),
365 SSMFIELD_ENTRY( CPUMCTX, dr[3]),
366 SSMFIELD_ENTRY_OLD( dr[4], sizeof(uint64_t)),
367 SSMFIELD_ENTRY_OLD( dr[5], sizeof(uint64_t)),
368 SSMFIELD_ENTRY( CPUMCTX, dr[6]),
369 SSMFIELD_ENTRY( CPUMCTX, dr[7]),
370 SSMFIELD_ENTRY( CPUMCTX, gdtr.cbGdt),
371 SSMFIELD_ENTRY( CPUMCTX, gdtr.pGdt),
372 SSMFIELD_ENTRY_OLD( gdtrPadding, sizeof(uint16_t)),
373 SSMFIELD_ENTRY( CPUMCTX, idtr.cbIdt),
374 SSMFIELD_ENTRY( CPUMCTX, idtr.pIdt),
375 SSMFIELD_ENTRY_OLD( idtrPadding, sizeof(uint16_t)),
376 SSMFIELD_ENTRY( CPUMCTX, ldtr.Sel),
377 SSMFIELD_ENTRY_OLD( ldtrPadding, sizeof(uint16_t)),
378 SSMFIELD_ENTRY( CPUMCTX, tr.Sel),
379 SSMFIELD_ENTRY_OLD( trPadding, sizeof(uint16_t)),
380 SSMFIELD_ENTRY( CPUMCTX, SysEnter.cs),
381 SSMFIELD_ENTRY( CPUMCTX, SysEnter.eip),
382 SSMFIELD_ENTRY( CPUMCTX, SysEnter.esp),
383 SSMFIELD_ENTRY( CPUMCTX, msrEFER),
384 SSMFIELD_ENTRY( CPUMCTX, msrSTAR),
385 SSMFIELD_ENTRY( CPUMCTX, msrPAT),
386 SSMFIELD_ENTRY( CPUMCTX, msrLSTAR),
387 SSMFIELD_ENTRY( CPUMCTX, msrCSTAR),
388 SSMFIELD_ENTRY( CPUMCTX, msrSFMASK),
389 SSMFIELD_ENTRY( CPUMCTX, msrKERNELGSBASE),
390 SSMFIELD_ENTRY( CPUMCTX, ldtr.u64Base),
391 SSMFIELD_ENTRY( CPUMCTX, ldtr.u32Limit),
392 SSMFIELD_ENTRY( CPUMCTX, ldtr.Attr),
393 SSMFIELD_ENTRY( CPUMCTX, tr.u64Base),
394 SSMFIELD_ENTRY( CPUMCTX, tr.u32Limit),
395 SSMFIELD_ENTRY( CPUMCTX, tr.Attr),
396 SSMFIELD_ENTRY_TERM()
397};
398
399/** Saved state field descriptors for CPUMCTX_VER1_6. */
400static const SSMFIELD g_aCpumCtxFieldsV16[] =
401{
402 SSMFIELD_ENTRY( CPUMCTX, fpu.FCW),
403 SSMFIELD_ENTRY( CPUMCTX, fpu.FSW),
404 SSMFIELD_ENTRY( CPUMCTX, fpu.FTW),
405 SSMFIELD_ENTRY( CPUMCTX, fpu.FOP),
406 SSMFIELD_ENTRY( CPUMCTX, fpu.FPUIP),
407 SSMFIELD_ENTRY( CPUMCTX, fpu.CS),
408 SSMFIELD_ENTRY( CPUMCTX, fpu.Rsrvd1),
409 SSMFIELD_ENTRY( CPUMCTX, fpu.FPUDP),
410 SSMFIELD_ENTRY( CPUMCTX, fpu.DS),
411 SSMFIELD_ENTRY( CPUMCTX, fpu.Rsrvd2),
412 SSMFIELD_ENTRY( CPUMCTX, fpu.MXCSR),
413 SSMFIELD_ENTRY( CPUMCTX, fpu.MXCSR_MASK),
414 SSMFIELD_ENTRY( CPUMCTX, fpu.aRegs[0]),
415 SSMFIELD_ENTRY( CPUMCTX, fpu.aRegs[1]),
416 SSMFIELD_ENTRY( CPUMCTX, fpu.aRegs[2]),
417 SSMFIELD_ENTRY( CPUMCTX, fpu.aRegs[3]),
418 SSMFIELD_ENTRY( CPUMCTX, fpu.aRegs[4]),
419 SSMFIELD_ENTRY( CPUMCTX, fpu.aRegs[5]),
420 SSMFIELD_ENTRY( CPUMCTX, fpu.aRegs[6]),
421 SSMFIELD_ENTRY( CPUMCTX, fpu.aRegs[7]),
422 SSMFIELD_ENTRY( CPUMCTX, fpu.aXMM[0]),
423 SSMFIELD_ENTRY( CPUMCTX, fpu.aXMM[1]),
424 SSMFIELD_ENTRY( CPUMCTX, fpu.aXMM[2]),
425 SSMFIELD_ENTRY( CPUMCTX, fpu.aXMM[3]),
426 SSMFIELD_ENTRY( CPUMCTX, fpu.aXMM[4]),
427 SSMFIELD_ENTRY( CPUMCTX, fpu.aXMM[5]),
428 SSMFIELD_ENTRY( CPUMCTX, fpu.aXMM[6]),
429 SSMFIELD_ENTRY( CPUMCTX, fpu.aXMM[7]),
430 SSMFIELD_ENTRY( CPUMCTX, fpu.aXMM[8]),
431 SSMFIELD_ENTRY( CPUMCTX, fpu.aXMM[9]),
432 SSMFIELD_ENTRY( CPUMCTX, fpu.aXMM[10]),
433 SSMFIELD_ENTRY( CPUMCTX, fpu.aXMM[11]),
434 SSMFIELD_ENTRY( CPUMCTX, fpu.aXMM[12]),
435 SSMFIELD_ENTRY( CPUMCTX, fpu.aXMM[13]),
436 SSMFIELD_ENTRY( CPUMCTX, fpu.aXMM[14]),
437 SSMFIELD_ENTRY( CPUMCTX, fpu.aXMM[15]),
438 SSMFIELD_ENTRY_IGNORE( CPUMCTX, fpu.au32RsrvdRest),
439 SSMFIELD_ENTRY( CPUMCTX, rdi),
440 SSMFIELD_ENTRY( CPUMCTX, rsi),
441 SSMFIELD_ENTRY( CPUMCTX, rbp),
442 SSMFIELD_ENTRY( CPUMCTX, rax),
443 SSMFIELD_ENTRY( CPUMCTX, rbx),
444 SSMFIELD_ENTRY( CPUMCTX, rdx),
445 SSMFIELD_ENTRY( CPUMCTX, rcx),
446 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, rsp),
447 SSMFIELD_ENTRY( CPUMCTX, ss.Sel),
448 SSMFIELD_ENTRY_OLD( ssPadding, sizeof(uint16_t)),
449 SSMFIELD_ENTRY_OLD( CPUMCTX, sizeof(uint64_t) /*rsp_notused*/),
450 SSMFIELD_ENTRY( CPUMCTX, gs.Sel),
451 SSMFIELD_ENTRY_OLD( gsPadding, sizeof(uint16_t)),
452 SSMFIELD_ENTRY( CPUMCTX, fs.Sel),
453 SSMFIELD_ENTRY_OLD( fsPadding, sizeof(uint16_t)),
454 SSMFIELD_ENTRY( CPUMCTX, es.Sel),
455 SSMFIELD_ENTRY_OLD( esPadding, sizeof(uint16_t)),
456 SSMFIELD_ENTRY( CPUMCTX, ds.Sel),
457 SSMFIELD_ENTRY_OLD( dsPadding, sizeof(uint16_t)),
458 SSMFIELD_ENTRY( CPUMCTX, cs.Sel),
459 SSMFIELD_ENTRY_OLD( csPadding, sizeof(uint16_t)*3),
460 SSMFIELD_ENTRY( CPUMCTX, rflags),
461 SSMFIELD_ENTRY( CPUMCTX, rip),
462 SSMFIELD_ENTRY( CPUMCTX, r8),
463 SSMFIELD_ENTRY( CPUMCTX, r9),
464 SSMFIELD_ENTRY( CPUMCTX, r10),
465 SSMFIELD_ENTRY( CPUMCTX, r11),
466 SSMFIELD_ENTRY( CPUMCTX, r12),
467 SSMFIELD_ENTRY( CPUMCTX, r13),
468 SSMFIELD_ENTRY( CPUMCTX, r14),
469 SSMFIELD_ENTRY( CPUMCTX, r15),
470 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, es.u64Base),
471 SSMFIELD_ENTRY( CPUMCTX, es.u32Limit),
472 SSMFIELD_ENTRY( CPUMCTX, es.Attr),
473 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, cs.u64Base),
474 SSMFIELD_ENTRY( CPUMCTX, cs.u32Limit),
475 SSMFIELD_ENTRY( CPUMCTX, cs.Attr),
476 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, ss.u64Base),
477 SSMFIELD_ENTRY( CPUMCTX, ss.u32Limit),
478 SSMFIELD_ENTRY( CPUMCTX, ss.Attr),
479 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, ds.u64Base),
480 SSMFIELD_ENTRY( CPUMCTX, ds.u32Limit),
481 SSMFIELD_ENTRY( CPUMCTX, ds.Attr),
482 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, fs.u64Base),
483 SSMFIELD_ENTRY( CPUMCTX, fs.u32Limit),
484 SSMFIELD_ENTRY( CPUMCTX, fs.Attr),
485 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, gs.u64Base),
486 SSMFIELD_ENTRY( CPUMCTX, gs.u32Limit),
487 SSMFIELD_ENTRY( CPUMCTX, gs.Attr),
488 SSMFIELD_ENTRY( CPUMCTX, cr0),
489 SSMFIELD_ENTRY( CPUMCTX, cr2),
490 SSMFIELD_ENTRY( CPUMCTX, cr3),
491 SSMFIELD_ENTRY( CPUMCTX, cr4),
492 SSMFIELD_ENTRY_OLD( cr8, sizeof(uint64_t)),
493 SSMFIELD_ENTRY( CPUMCTX, dr[0]),
494 SSMFIELD_ENTRY( CPUMCTX, dr[1]),
495 SSMFIELD_ENTRY( CPUMCTX, dr[2]),
496 SSMFIELD_ENTRY( CPUMCTX, dr[3]),
497 SSMFIELD_ENTRY_OLD( dr[4], sizeof(uint64_t)),
498 SSMFIELD_ENTRY_OLD( dr[5], sizeof(uint64_t)),
499 SSMFIELD_ENTRY( CPUMCTX, dr[6]),
500 SSMFIELD_ENTRY( CPUMCTX, dr[7]),
501 SSMFIELD_ENTRY( CPUMCTX, gdtr.cbGdt),
502 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, gdtr.pGdt),
503 SSMFIELD_ENTRY_OLD( gdtrPadding, sizeof(uint16_t)),
504 SSMFIELD_ENTRY_OLD( gdtrPadding64, sizeof(uint64_t)),
505 SSMFIELD_ENTRY( CPUMCTX, idtr.cbIdt),
506 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, idtr.pIdt),
507 SSMFIELD_ENTRY_OLD( idtrPadding, sizeof(uint16_t)),
508 SSMFIELD_ENTRY_OLD( idtrPadding64, sizeof(uint64_t)),
509 SSMFIELD_ENTRY( CPUMCTX, ldtr.Sel),
510 SSMFIELD_ENTRY_OLD( ldtrPadding, sizeof(uint16_t)),
511 SSMFIELD_ENTRY( CPUMCTX, tr.Sel),
512 SSMFIELD_ENTRY_OLD( trPadding, sizeof(uint16_t)),
513 SSMFIELD_ENTRY( CPUMCTX, SysEnter.cs),
514 SSMFIELD_ENTRY( CPUMCTX, SysEnter.eip),
515 SSMFIELD_ENTRY( CPUMCTX, SysEnter.esp),
516 SSMFIELD_ENTRY( CPUMCTX, msrEFER),
517 SSMFIELD_ENTRY( CPUMCTX, msrSTAR),
518 SSMFIELD_ENTRY( CPUMCTX, msrPAT),
519 SSMFIELD_ENTRY( CPUMCTX, msrLSTAR),
520 SSMFIELD_ENTRY( CPUMCTX, msrCSTAR),
521 SSMFIELD_ENTRY( CPUMCTX, msrSFMASK),
522 SSMFIELD_ENTRY_OLD( msrFSBASE, sizeof(uint64_t)),
523 SSMFIELD_ENTRY_OLD( msrGSBASE, sizeof(uint64_t)),
524 SSMFIELD_ENTRY( CPUMCTX, msrKERNELGSBASE),
525 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, ldtr.u64Base),
526 SSMFIELD_ENTRY( CPUMCTX, ldtr.u32Limit),
527 SSMFIELD_ENTRY( CPUMCTX, ldtr.Attr),
528 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, tr.u64Base),
529 SSMFIELD_ENTRY( CPUMCTX, tr.u32Limit),
530 SSMFIELD_ENTRY( CPUMCTX, tr.Attr),
531 SSMFIELD_ENTRY_OLD( padding, sizeof(uint32_t)*2),
532 SSMFIELD_ENTRY_TERM()
533};
534
535
536/**
537 * Checks for partial/leaky FXSAVE/FXRSTOR handling on AMD CPUs.
538 *
539 * AMD K7, K8 and newer AMD CPUs do not save/restore the x87 error
540 * pointers (last instruction pointer, last data pointer, last opcode)
541 * except when the ES bit (Exception Summary) in x87 FSW (FPU Status
542 * Word) is set. Thus if we don't clear these registers there is
543 * potential, local FPU leakage from a process using the FPU to
544 * another.
545 *
546 * See AMD Instruction Reference for FXSAVE, FXRSTOR.
547 *
548 * @param pVM Pointer to the VM.
549 */
550static void cpumR3CheckLeakyFpu(PVM pVM)
551{
552 uint32_t u32CpuVersion = ASMCpuId_EAX(1);
553 uint32_t const u32Family = u32CpuVersion >> 8;
554 if ( u32Family >= 6 /* K7 and higher */
555 && ASMIsAmdCpu())
556 {
557 uint32_t cExt = ASMCpuId_EAX(0x80000000);
558 if (ASMIsValidExtRange(cExt))
559 {
560 uint32_t fExtFeaturesEDX = ASMCpuId_EDX(0x80000001);
561 if (fExtFeaturesEDX & X86_CPUID_AMD_FEATURE_EDX_FFXSR)
562 {
563 for (VMCPUID i = 0; i < pVM->cCpus; i++)
564 pVM->aCpus[i].cpum.s.fUseFlags |= CPUM_USE_FFXSR_LEAKY;
565 Log(("CPUMR3Init: host CPU has leaky fxsave/fxrstor behaviour\n"));
566 }
567 }
568 }
569}
570
571
572/**
573 * Initializes the CPUM.
574 *
575 * @returns VBox status code.
576 * @param pVM Pointer to the VM.
577 */
578VMMR3DECL(int) CPUMR3Init(PVM pVM)
579{
580 LogFlow(("CPUMR3Init\n"));
581
582 /*
583 * Assert alignment, sizes and tables.
584 */
585 AssertCompileMemberAlignment(VM, cpum.s, 32);
586 AssertCompile(sizeof(pVM->cpum.s) <= sizeof(pVM->cpum.padding));
587 AssertCompileSizeAlignment(CPUMCTX, 64);
588 AssertCompileSizeAlignment(CPUMCTXMSRS, 64);
589 AssertCompileSizeAlignment(CPUMHOSTCTX, 64);
590 AssertCompileMemberAlignment(VM, cpum, 64);
591 AssertCompileMemberAlignment(VM, aCpus, 64);
592 AssertCompileMemberAlignment(VMCPU, cpum.s, 64);
593 AssertCompileMemberSizeAlignment(VM, aCpus[0].cpum.s, 64);
594#ifdef VBOX_STRICT
595 int rc2 = cpumR3MsrStrictInitChecks();
596 AssertRCReturn(rc2, rc2);
597#endif
598
599 /* Calculate the offset from CPUM to CPUMCPU for the first CPU. */
600 pVM->cpum.s.offCPUMCPU0 = RT_OFFSETOF(VM, aCpus[0].cpum) - RT_OFFSETOF(VM, cpum);
601 Assert((uintptr_t)&pVM->cpum + pVM->cpum.s.offCPUMCPU0 == (uintptr_t)&pVM->aCpus[0].cpum);
602
603
604 /* Calculate the offset from CPUMCPU to CPUM. */
605 for (VMCPUID i = 0; i < pVM->cCpus; i++)
606 {
607 PVMCPU pVCpu = &pVM->aCpus[i];
608
609 pVCpu->cpum.s.offCPUM = RT_OFFSETOF(VM, aCpus[i].cpum) - RT_OFFSETOF(VM, cpum);
610 Assert((uintptr_t)&pVCpu->cpum - pVCpu->cpum.s.offCPUM == (uintptr_t)&pVM->cpum);
611 }
612
613 /*
614 * Check that the CPU supports the minimum features we require.
615 */
616 if (!ASMHasCpuId())
617 {
618 Log(("The CPU doesn't support CPUID!\n"));
619 return VERR_UNSUPPORTED_CPU;
620 }
621 ASMCpuId_ECX_EDX(1, &pVM->cpum.s.CPUFeatures.ecx, &pVM->cpum.s.CPUFeatures.edx);
622 ASMCpuId_ECX_EDX(0x80000001, &pVM->cpum.s.CPUFeaturesExt.ecx, &pVM->cpum.s.CPUFeaturesExt.edx);
623
624 /* Setup the CR4 AND and OR masks used in the switcher */
625 /* Depends on the presence of FXSAVE(SSE) support on the host CPU */
626 if (!pVM->cpum.s.CPUFeatures.edx.u1FXSR)
627 {
628 Log(("The CPU doesn't support FXSAVE/FXRSTOR!\n"));
629 /* No FXSAVE implies no SSE */
630 pVM->cpum.s.CR4.AndMask = X86_CR4_PVI | X86_CR4_VME;
631 pVM->cpum.s.CR4.OrMask = 0;
632 }
633 else
634 {
635 pVM->cpum.s.CR4.AndMask = X86_CR4_OSXMMEEXCPT | X86_CR4_PVI | X86_CR4_VME;
636 pVM->cpum.s.CR4.OrMask = X86_CR4_OSFSXR;
637 }
638
639 if (!pVM->cpum.s.CPUFeatures.edx.u1MMX)
640 {
641 Log(("The CPU doesn't support MMX!\n"));
642 return VERR_UNSUPPORTED_CPU;
643 }
644 if (!pVM->cpum.s.CPUFeatures.edx.u1TSC)
645 {
646 Log(("The CPU doesn't support TSC!\n"));
647 return VERR_UNSUPPORTED_CPU;
648 }
649 /* Bogus on AMD? */
650 if (!pVM->cpum.s.CPUFeatures.edx.u1SEP)
651 Log(("The CPU doesn't support SYSENTER/SYSEXIT!\n"));
652
653 /*
654 * Gather info about the host CPU.
655 */
656 PCPUMCPUIDLEAF paLeaves;
657 uint32_t cLeaves;
658 int rc = CPUMR3CpuIdCollectLeaves(&paLeaves, &cLeaves);
659 AssertLogRelRCReturn(rc, rc);
660
661 rc = cpumR3CpuIdExplodeFeatures(paLeaves, cLeaves, &pVM->cpum.s.HostFeatures);
662 RTMemFree(paLeaves);
663 AssertLogRelRCReturn(rc, rc);
664 pVM->cpum.s.GuestFeatures.enmCpuVendor = pVM->cpum.s.HostFeatures.enmCpuVendor;
665
666 /*
667 * Setup hypervisor startup values.
668 */
669
670 /*
671 * Register saved state data item.
672 */
673 rc = SSMR3RegisterInternal(pVM, "cpum", 1, CPUM_SAVED_STATE_VERSION, sizeof(CPUM),
674 NULL, cpumR3LiveExec, NULL,
675 NULL, cpumR3SaveExec, NULL,
676 cpumR3LoadPrep, cpumR3LoadExec, cpumR3LoadDone);
677 if (RT_FAILURE(rc))
678 return rc;
679
680 /*
681 * Register info handlers and registers with the debugger facility.
682 */
683 DBGFR3InfoRegisterInternal(pVM, "cpum", "Displays the all the cpu states.", &cpumR3InfoAll);
684 DBGFR3InfoRegisterInternal(pVM, "cpumguest", "Displays the guest cpu state.", &cpumR3InfoGuest);
685 DBGFR3InfoRegisterInternal(pVM, "cpumhyper", "Displays the hypervisor cpu state.", &cpumR3InfoHyper);
686 DBGFR3InfoRegisterInternal(pVM, "cpumhost", "Displays the host cpu state.", &cpumR3InfoHost);
687 DBGFR3InfoRegisterInternal(pVM, "cpuid", "Displays the guest cpuid leaves.", &cpumR3CpuIdInfo);
688 DBGFR3InfoRegisterInternal(pVM, "cpumguestinstr", "Displays the current guest instruction.", &cpumR3InfoGuestInstr);
689
690 rc = cpumR3DbgInit(pVM);
691 if (RT_FAILURE(rc))
692 return rc;
693
694 /*
695 * Check if we need to workaround partial/leaky FPU handling.
696 */
697 cpumR3CheckLeakyFpu(pVM);
698
699 /*
700 * Initialize the Guest CPUID state.
701 */
702 rc = cpumR3CpuIdInit(pVM);
703 if (RT_FAILURE(rc))
704 return rc;
705 CPUMR3Reset(pVM);
706 return VINF_SUCCESS;
707}
708
709
710/**
711 * Loads MSR range overrides.
712 *
713 * This must be called before the MSR ranges are moved from the normal heap to
714 * the hyper heap!
715 *
716 * @returns VBox status code (VMSetError called).
717 * @param pVM Pointer to the cross context VM structure
718 * @param pMsrNode The CFGM node with the MSR overrides.
719 */
720static int cpumR3LoadMsrOverrides(PVM pVM, PCFGMNODE pMsrNode)
721{
722 for (PCFGMNODE pNode = CFGMR3GetFirstChild(pMsrNode); pNode; pNode = CFGMR3GetNextChild(pNode))
723 {
724 /*
725 * Assemble a valid MSR range.
726 */
727 CPUMMSRRANGE MsrRange;
728 MsrRange.offCpumCpu = 0;
729 MsrRange.fReserved = 0;
730
731 int rc = CFGMR3GetName(pNode, MsrRange.szName, sizeof(MsrRange.szName));
732 if (RT_FAILURE(rc))
733 return VMSetError(pVM, rc, RT_SRC_POS, "Invalid MSR entry (name is probably too long): %Rrc\n", rc);
734
735 rc = CFGMR3QueryU32(pNode, "First", &MsrRange.uFirst);
736 if (RT_FAILURE(rc))
737 return VMSetError(pVM, rc, RT_SRC_POS, "Invalid MSR entry '%s': Error querying mandatory 'First' value: %Rrc\n",
738 MsrRange.szName, rc);
739
740 rc = CFGMR3QueryU32Def(pNode, "Last", &MsrRange.uLast, MsrRange.uFirst);
741 if (RT_FAILURE(rc))
742 return VMSetError(pVM, rc, RT_SRC_POS, "Invalid MSR entry '%s': Error querying 'Last' value: %Rrc\n",
743 MsrRange.szName, rc);
744
745 char szType[32];
746 rc = CFGMR3QueryStringDef(pNode, "Type", szType, sizeof(szType), "FixedValue");
747 if (RT_FAILURE(rc))
748 return VMSetError(pVM, rc, RT_SRC_POS, "Invalid MSR entry '%s': Error querying 'Type' value: %Rrc\n",
749 MsrRange.szName, rc);
750 if (!RTStrICmp(szType, "FixedValue"))
751 {
752 MsrRange.enmRdFn = kCpumMsrRdFn_FixedValue;
753 MsrRange.enmWrFn = kCpumMsrWrFn_IgnoreWrite;
754
755 rc = CFGMR3QueryU64Def(pNode, "Value", &MsrRange.uValue, 0);
756 if (RT_FAILURE(rc))
757 return VMSetError(pVM, rc, RT_SRC_POS, "Invalid MSR entry '%s': Error querying 'Value' value: %Rrc\n",
758 MsrRange.szName, rc);
759
760 rc = CFGMR3QueryU64Def(pNode, "WrGpMask", &MsrRange.fWrGpMask, 0);
761 if (RT_FAILURE(rc))
762 return VMSetError(pVM, rc, RT_SRC_POS, "Invalid MSR entry '%s': Error querying 'WrGpMask' value: %Rrc\n",
763 MsrRange.szName, rc);
764
765 rc = CFGMR3QueryU64Def(pNode, "WrIgnMask", &MsrRange.fWrIgnMask, 0);
766 if (RT_FAILURE(rc))
767 return VMSetError(pVM, rc, RT_SRC_POS, "Invalid MSR entry '%s': Error querying 'WrIgnMask' value: %Rrc\n",
768 MsrRange.szName, rc);
769 }
770 else
771 return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS,
772 "Invalid MSR entry '%s': Unknown type '%s'\n", MsrRange.szName, szType);
773
774 /*
775 * Insert the range into the table (replaces/splits/shrinks existing
776 * MSR ranges).
777 */
778 rc = cpumR3MsrRangesInsert(&pVM->cpum.s.GuestInfo.paMsrRangesR3, &pVM->cpum.s.GuestInfo.cMsrRanges, &MsrRange);
779 if (RT_FAILURE(rc))
780 return VMSetError(pVM, rc, RT_SRC_POS, "Error adding MSR entry '%s': %Rrc\n", MsrRange.szName, rc);
781 }
782
783 return VINF_SUCCESS;
784}
785
786
787/**
788 * Loads CPUID leaf overrides.
789 *
790 * This must be called before the CPUID leaves are moved from the normal
791 * heap to the hyper heap!
792 *
793 * @returns VBox status code (VMSetError called).
794 * @param pVM Pointer to the cross context VM structure
795 * @param pParentNode The CFGM node with the CPUID leaves.
796 * @param pszLabel How to label the overrides we're loading.
797 */
798static int cpumR3LoadCpuIdOverrides(PVM pVM, PCFGMNODE pParentNode, const char *pszLabel)
799{
800 for (PCFGMNODE pNode = CFGMR3GetFirstChild(pParentNode); pNode; pNode = CFGMR3GetNextChild(pNode))
801 {
802 /*
803 * Get the leaf and subleaf numbers.
804 */
805 char szName[128];
806 int rc = CFGMR3GetName(pNode, szName, sizeof(szName));
807 if (RT_FAILURE(rc))
808 return VMSetError(pVM, rc, RT_SRC_POS, "Invalid %s entry (name is probably too long): %Rrc\n", pszLabel, rc);
809
810 /* The leaf number is either specified directly or thru the node name. */
811 uint32_t uLeaf;
812 rc = CFGMR3QueryU32(pNode, "Leaf", &uLeaf);
813 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
814 {
815 rc = RTStrToUInt32Full(szName, 16, &uLeaf);
816 if (rc != VINF_SUCCESS)
817 return VMSetError(pVM, VERR_INVALID_NAME, RT_SRC_POS,
818 "Invalid %s entry: Invalid leaf number: '%s' \n", pszLabel, szName);
819 }
820 else if (RT_FAILURE(rc))
821 return VMSetError(pVM, rc, RT_SRC_POS, "Invalid %s entry '%s': Error querying 'Leaf' value: %Rrc\n",
822 pszLabel, szName, rc);
823
824 uint32_t uSubLeaf;
825 rc = CFGMR3QueryU32Def(pNode, "SubLeaf", &uSubLeaf, 0);
826 if (RT_FAILURE(rc))
827 return VMSetError(pVM, rc, RT_SRC_POS, "Invalid %s entry '%s': Error querying 'SubLeaf' value: %Rrc\n",
828 pszLabel, szName, rc);
829
830 uint32_t fSubLeafMask;
831 rc = CFGMR3QueryU32Def(pNode, "SubLeafMask", &fSubLeafMask, 0);
832 if (RT_FAILURE(rc))
833 return VMSetError(pVM, rc, RT_SRC_POS, "Invalid %s entry '%s': Error querying 'SubLeafMask' value: %Rrc\n",
834 pszLabel, szName, rc);
835
836 /*
837 * Look up the specified leaf, since the output register values
838 * defaults to any existing values. This allows overriding a single
839 * register, without needing to know the other values.
840 */
841 PCCPUMCPUIDLEAF pLeaf = cpumR3CpuIdGetLeaf(pVM->cpum.s.GuestInfo.paCpuIdLeavesR3, pVM->cpum.s.GuestInfo.cCpuIdLeaves,
842 uLeaf, uSubLeaf);
843 CPUMCPUIDLEAF Leaf;
844 if (pLeaf)
845 Leaf = *pLeaf;
846 else
847 RT_ZERO(Leaf);
848 Leaf.uLeaf = uLeaf;
849 Leaf.uSubLeaf = uSubLeaf;
850 Leaf.fSubLeafMask = fSubLeafMask;
851
852 rc = CFGMR3QueryU32Def(pNode, "eax", &Leaf.uEax, Leaf.uEax);
853 if (RT_FAILURE(rc))
854 return VMSetError(pVM, rc, RT_SRC_POS, "Invalid %s entry '%s': Error querying 'eax' value: %Rrc\n",
855 pszLabel, szName, rc);
856 rc = CFGMR3QueryU32Def(pNode, "ebx", &Leaf.uEbx, Leaf.uEbx);
857 if (RT_FAILURE(rc))
858 return VMSetError(pVM, rc, RT_SRC_POS, "Invalid %s entry '%s': Error querying 'ebx' value: %Rrc\n",
859 pszLabel, szName, rc);
860 rc = CFGMR3QueryU32Def(pNode, "ecx", &Leaf.uEcx, Leaf.uEcx);
861 if (RT_FAILURE(rc))
862 return VMSetError(pVM, rc, RT_SRC_POS, "Invalid %s entry '%s': Error querying 'ecx' value: %Rrc\n",
863 pszLabel, szName, rc);
864 rc = CFGMR3QueryU32Def(pNode, "edx", &Leaf.uEdx, Leaf.uEdx);
865 if (RT_FAILURE(rc))
866 return VMSetError(pVM, rc, RT_SRC_POS, "Invalid %s entry '%s': Error querying 'edx' value: %Rrc\n",
867 pszLabel, szName, rc);
868
869 /*
870 * Insert the leaf into the table (replaces existing ones).
871 */
872 rc = cpumR3CpuIdInsert(&pVM->cpum.s.GuestInfo.paCpuIdLeavesR3, &pVM->cpum.s.GuestInfo.cCpuIdLeaves, &Leaf);
873 if (RT_FAILURE(rc))
874 return VMSetError(pVM, rc, RT_SRC_POS, "Error adding CPUID leaf entry '%s': %Rrc\n", szName, rc);
875 }
876
877 return VINF_SUCCESS;
878}
879
880
881
882/**
883 * Fetches overrides for a CPUID leaf.
884 *
885 * @returns VBox status code.
886 * @param pLeaf The leaf to load the overrides into.
887 * @param pCfgNode The CFGM node containing the overrides
888 * (/CPUM/HostCPUID/ or /CPUM/CPUID/).
889 * @param iLeaf The CPUID leaf number.
890 */
891static int cpumR3CpuIdFetchLeafOverride(PCPUMCPUID pLeaf, PCFGMNODE pCfgNode, uint32_t iLeaf)
892{
893 PCFGMNODE pLeafNode = CFGMR3GetChildF(pCfgNode, "%RX32", iLeaf);
894 if (pLeafNode)
895 {
896 uint32_t u32;
897 int rc = CFGMR3QueryU32(pLeafNode, "eax", &u32);
898 if (RT_SUCCESS(rc))
899 pLeaf->eax = u32;
900 else
901 AssertReturn(rc == VERR_CFGM_VALUE_NOT_FOUND, rc);
902
903 rc = CFGMR3QueryU32(pLeafNode, "ebx", &u32);
904 if (RT_SUCCESS(rc))
905 pLeaf->ebx = u32;
906 else
907 AssertReturn(rc == VERR_CFGM_VALUE_NOT_FOUND, rc);
908
909 rc = CFGMR3QueryU32(pLeafNode, "ecx", &u32);
910 if (RT_SUCCESS(rc))
911 pLeaf->ecx = u32;
912 else
913 AssertReturn(rc == VERR_CFGM_VALUE_NOT_FOUND, rc);
914
915 rc = CFGMR3QueryU32(pLeafNode, "edx", &u32);
916 if (RT_SUCCESS(rc))
917 pLeaf->edx = u32;
918 else
919 AssertReturn(rc == VERR_CFGM_VALUE_NOT_FOUND, rc);
920
921 }
922 return VINF_SUCCESS;
923}
924
925
926/**
927 * Load the overrides for a set of CPUID leaves.
928 *
929 * @returns VBox status code.
930 * @param paLeaves The leaf array.
931 * @param cLeaves The number of leaves.
932 * @param uStart The start leaf number.
933 * @param pCfgNode The CFGM node containing the overrides
934 * (/CPUM/HostCPUID/ or /CPUM/CPUID/).
935 */
936static int cpumR3CpuIdInitLoadOverrideSet(uint32_t uStart, PCPUMCPUID paLeaves, uint32_t cLeaves, PCFGMNODE pCfgNode)
937{
938 for (uint32_t i = 0; i < cLeaves; i++)
939 {
940 int rc = cpumR3CpuIdFetchLeafOverride(&paLeaves[i], pCfgNode, uStart + i);
941 if (RT_FAILURE(rc))
942 return rc;
943 }
944
945 return VINF_SUCCESS;
946}
947
948/**
949 * Init a set of host CPUID leaves.
950 *
951 * @returns VBox status code.
952 * @param paLeaves The leaf array.
953 * @param cLeaves The number of leaves.
954 * @param uStart The start leaf number.
955 * @param pCfgNode The /CPUM/HostCPUID/ node.
956 */
957static int cpumR3CpuIdInitHostSet(uint32_t uStart, PCPUMCPUID paLeaves, uint32_t cLeaves, PCFGMNODE pCfgNode)
958{
959 /* Using the ECX variant for all of them can't hurt... */
960 for (uint32_t i = 0; i < cLeaves; i++)
961 ASMCpuIdExSlow(uStart + i, 0, 0, 0, &paLeaves[i].eax, &paLeaves[i].ebx, &paLeaves[i].ecx, &paLeaves[i].edx);
962
963 /* Load CPUID leaf override; we currently don't care if the user
964 specifies features the host CPU doesn't support. */
965 return cpumR3CpuIdInitLoadOverrideSet(uStart, paLeaves, cLeaves, pCfgNode);
966}
967
968
969static int cpumR3CpuIdInstallAndExplodeLeaves(PVM pVM, PCPUM pCPUM, PCPUMCPUIDLEAF paLeaves, uint32_t cLeaves)
970{
971 /*
972 * Install the CPUID information.
973 */
974 int rc = MMHyperDupMem(pVM, paLeaves, sizeof(paLeaves[0]) * cLeaves, 32,
975 MM_TAG_CPUM_CPUID, (void **)&pCPUM->GuestInfo.paCpuIdLeavesR3);
976
977 AssertLogRelRCReturn(rc, rc);
978
979 pCPUM->GuestInfo.paCpuIdLeavesR0 = MMHyperR3ToR0(pVM, pCPUM->GuestInfo.paCpuIdLeavesR3);
980 pCPUM->GuestInfo.paCpuIdLeavesRC = MMHyperR3ToRC(pVM, pCPUM->GuestInfo.paCpuIdLeavesR3);
981 Assert(MMHyperR0ToR3(pVM, pCPUM->GuestInfo.paCpuIdLeavesR0) == (void *)pCPUM->GuestInfo.paCpuIdLeavesR3);
982 Assert(MMHyperRCToR3(pVM, pCPUM->GuestInfo.paCpuIdLeavesRC) == (void *)pCPUM->GuestInfo.paCpuIdLeavesR3);
983
984 /*
985 * Explode the guest CPU features.
986 */
987 rc = cpumR3CpuIdExplodeFeatures(pCPUM->GuestInfo.paCpuIdLeavesR3, pCPUM->GuestInfo.cCpuIdLeaves, &pCPUM->GuestFeatures);
988 AssertLogRelRCReturn(rc, rc);
989
990
991 /*
992 * Populate the legacy arrays. Currently used for everything, later only
993 * for patch manager.
994 */
995 struct { PCPUMCPUID paCpuIds; uint32_t cCpuIds, uBase; } aOldRanges[] =
996 {
997 { pCPUM->aGuestCpuIdStd, RT_ELEMENTS(pCPUM->aGuestCpuIdStd), 0x00000000 },
998 { pCPUM->aGuestCpuIdExt, RT_ELEMENTS(pCPUM->aGuestCpuIdExt), 0x80000000 },
999 { pCPUM->aGuestCpuIdCentaur, RT_ELEMENTS(pCPUM->aGuestCpuIdCentaur), 0xc0000000 },
1000 { pCPUM->aGuestCpuIdHyper, RT_ELEMENTS(pCPUM->aGuestCpuIdHyper), 0x40000000 },
1001 };
1002 for (uint32_t i = 0; i < RT_ELEMENTS(aOldRanges); i++)
1003 {
1004 uint32_t cLeft = aOldRanges[i].cCpuIds;
1005 uint32_t uLeaf = aOldRanges[i].uBase + cLeft;
1006 PCPUMCPUID pLegacyLeaf = &aOldRanges[i].paCpuIds[cLeft];
1007 while (cLeft-- > 0)
1008 {
1009 uLeaf--;
1010 pLegacyLeaf--;
1011
1012 PCCPUMCPUIDLEAF pLeaf = cpumR3CpuIdGetLeaf(pCPUM->GuestInfo.paCpuIdLeavesR3, pCPUM->GuestInfo.cCpuIdLeaves, uLeaf, 0);
1013 if (pLeaf)
1014 {
1015 pLegacyLeaf->eax = pLeaf->uEax;
1016 pLegacyLeaf->ebx = pLeaf->uEbx;
1017 pLegacyLeaf->ecx = pLeaf->uEcx;
1018 pLegacyLeaf->edx = pLeaf->uEdx;
1019 }
1020 else
1021 *pLegacyLeaf = pCPUM->GuestInfo.DefCpuId;
1022 }
1023 }
1024
1025 pCPUM->GuestCpuIdDef = pCPUM->GuestInfo.DefCpuId;
1026
1027 return VINF_SUCCESS;
1028}
1029
1030
1031/**
1032 * Initializes the emulated CPU's cpuid information.
1033 *
1034 * @returns VBox status code.
1035 * @param pVM Pointer to the VM.
1036 */
1037static int cpumR3CpuIdInit(PVM pVM)
1038{
1039 PCPUM pCPUM = &pVM->cpum.s;
1040 PCFGMNODE pCpumCfg = CFGMR3GetChild(CFGMR3GetRoot(pVM), "CPUM");
1041 int rc;
1042
1043#define PORTABLE_CLEAR_BITS_WHEN(Lvl, a_pLeafReg, FeatNm, fMask, uValue) \
1044 if ( pCPUM->u8PortableCpuIdLevel >= (Lvl) && ((a_pLeafReg) & (fMask)) == (uValue) ) \
1045 { \
1046 LogRel(("PortableCpuId: " #a_pLeafReg "[" #FeatNm "]: %#x -> 0\n", (a_pLeafReg) & (fMask))); \
1047 (a_pLeafReg) &= ~(uint32_t)(fMask); \
1048 }
1049#define PORTABLE_DISABLE_FEATURE_BIT(Lvl, a_pLeafReg, FeatNm, fBitMask) \
1050 if ( pCPUM->u8PortableCpuIdLevel >= (Lvl) && ((a_pLeafReg) & (fBitMask)) ) \
1051 { \
1052 LogRel(("PortableCpuId: " #a_pLeafReg "[" #FeatNm "]: 1 -> 0\n")); \
1053 (a_pLeafReg) &= ~(uint32_t)(fBitMask); \
1054 }
1055
1056 /*
1057 * Read the configuration.
1058 */
1059 /** @cfgm{CPUM/SyntheticCpu, boolean, false}
1060 * Enables the Synthetic CPU. The Vendor ID and Processor Name are
1061 * completely overridden by VirtualBox custom strings. Some
1062 * CPUID information is withheld, like the cache info.
1063 *
1064 * This is obsoleted by PortableCpuIdLevel. */
1065 bool fSyntheticCpu;
1066 rc = CFGMR3QueryBoolDef(pCpumCfg, "SyntheticCpu", &fSyntheticCpu, false);
1067 AssertRCReturn(rc, rc);
1068
1069 /** @cfgm{CPUM/PortableCpuIdLevel, 8-bit, 0, 3, 0}
1070 * When non-zero CPUID features that could cause portability issues will be
1071 * stripped. The higher the value the more features gets stripped. Higher
1072 * values should only be used when older CPUs are involved since it may
1073 * harm performance and maybe also cause problems with specific guests. */
1074 rc = CFGMR3QueryU8Def(pCpumCfg, "PortableCpuIdLevel", &pCPUM->u8PortableCpuIdLevel, fSyntheticCpu ? 1 : 0);
1075 AssertLogRelRCReturn(rc, rc);
1076
1077 /** @cfgm{CPUM/GuestCpuName, string}
1078 * The name of of the CPU we're to emulate. The default is the host CPU.
1079 * Note! CPUs other than "host" one is currently unsupported. */
1080 char szCpuName[128];
1081 rc = CFGMR3QueryStringDef(pCpumCfg, "GuestCpuName", szCpuName, sizeof(szCpuName), "host");
1082 AssertLogRelRCReturn(rc, rc);
1083
1084 /** @cfgm{/CPUM/CMPXCHG16B, boolean, false}
1085 * Expose CMPXCHG16B to the guest if supported by the host.
1086 */
1087 bool fCmpXchg16b;
1088 rc = CFGMR3QueryBoolDef(pCpumCfg, "CMPXCHG16B", &fCmpXchg16b, false);
1089 AssertLogRelRCReturn(rc, rc);
1090
1091 /** @cfgm{/CPUM/MONITOR, boolean, true}
1092 * Expose MONITOR/MWAIT instructions to the guest.
1093 */
1094 bool fMonitor;
1095 rc = CFGMR3QueryBoolDef(pCpumCfg, "MONITOR", &fMonitor, true);
1096 AssertLogRelRCReturn(rc, rc);
1097
1098 /** @cfgm{/CPUM/MWaitExtensions, boolean, false}
1099 * Expose MWAIT extended features to the guest. For now we expose just MWAIT
1100 * break on interrupt feature (bit 1).
1101 */
1102 bool fMWaitExtensions;
1103 rc = CFGMR3QueryBoolDef(pCpumCfg, "MWaitExtensions", &fMWaitExtensions, false);
1104 AssertLogRelRCReturn(rc, rc);
1105
1106 /** @cfgm{/CPUM/NT4LeafLimit, boolean, false}
1107 * Limit the number of standard CPUID leaves to 0..3 to prevent NT4 from
1108 * bugchecking with MULTIPROCESSOR_CONFIGURATION_NOT_SUPPORTED (0x3e).
1109 * This option corresponds somewhat to IA32_MISC_ENABLES.BOOT_NT4[bit 22].
1110 */
1111 bool fNt4LeafLimit;
1112 rc = CFGMR3QueryBoolDef(pCpumCfg, "NT4LeafLimit", &fNt4LeafLimit, false);
1113 AssertLogRelRCReturn(rc, rc);
1114
1115 /** @cfgm{/CPUM/MaxIntelFamilyModelStep, uint32_t, UINT32_MAX}
1116 * Restrict the reported CPU family+model+stepping of intel CPUs. This is
1117 * probably going to be a temporary hack, so don't depend on this.
1118 * The 1st byte of the value is the stepping, the 2nd byte value is the model
1119 * number and the 3rd byte value is the family, and the 4th value must be zero.
1120 */
1121 uint32_t uMaxIntelFamilyModelStep;
1122 rc = CFGMR3QueryU32Def(pCpumCfg, "MaxIntelFamilyModelStep", &uMaxIntelFamilyModelStep, UINT32_MAX);
1123 AssertLogRelRCReturn(rc, rc);
1124
1125 /*
1126 * Get the guest CPU data from the database and/or the host.
1127 */
1128 rc = cpumR3DbGetCpuInfo(szCpuName, &pCPUM->GuestInfo);
1129 if (RT_FAILURE(rc))
1130 return rc == VERR_CPUM_DB_CPU_NOT_FOUND
1131 ? VMSetError(pVM, rc, RT_SRC_POS,
1132 "Info on guest CPU '%s' could not be found. Please, select a different CPU.", szCpuName)
1133 : rc;
1134
1135 /** @cfgm{CPUM/MSRs/[Name]/[First|Last|Type|Value|...],}
1136 * Overrides the guest MSRs.
1137 */
1138 rc = cpumR3LoadMsrOverrides(pVM, CFGMR3GetChild(pCpumCfg, "MSRs"));
1139
1140 /** @cfgm{CPUM/HostCPUID/[000000xx|800000xx|c000000x]/[eax|ebx|ecx|edx],32-bit}
1141 * Overrides the CPUID leaf values (from the host CPU usually) used for
1142 * calculating the guest CPUID leaves. This can be used to preserve the CPUID
1143 * values when moving a VM to a different machine. Another use is restricting
1144 * (or extending) the feature set exposed to the guest. */
1145 if (RT_SUCCESS(rc))
1146 rc = cpumR3LoadCpuIdOverrides(pVM, CFGMR3GetChild(pCpumCfg, "HostCPUID"), "HostCPUID");
1147
1148 if (RT_SUCCESS(rc) && CFGMR3GetChild(pCpumCfg, "CPUID")) /* 2nd override, now discontinued. */
1149 rc = VMSetError(pVM, VERR_CFGM_CONFIG_UNKNOWN_NODE, RT_SRC_POS,
1150 "Found unsupported configuration node '/CPUM/CPUID/'. "
1151 "Please use IMachine::setCPUIDLeaf() instead.");
1152
1153 /*
1154 * Pre-exploded the CPUID info.
1155 */
1156 if (RT_SUCCESS(rc))
1157 rc = cpumR3CpuIdExplodeFeatures(pCPUM->GuestInfo.paCpuIdLeavesR3, pCPUM->GuestInfo.cCpuIdLeaves, &pCPUM->GuestFeatures);
1158 if (RT_FAILURE(rc))
1159 {
1160 RTMemFree(pCPUM->GuestInfo.paCpuIdLeavesR3);
1161 pCPUM->GuestInfo.paCpuIdLeavesR3 = NULL;
1162 RTMemFree(pCPUM->GuestInfo.paMsrRangesR3);
1163 pCPUM->GuestInfo.paMsrRangesR3 = NULL;
1164 return rc;
1165 }
1166
1167
1168 /* ... split this function about here ... */
1169
1170
1171 PCPUMCPUIDLEAF pStdLeaf0 = cpumR3CpuIdGetLeaf(pCPUM->GuestInfo.paCpuIdLeavesR3, pCPUM->GuestInfo.cCpuIdLeaves, 0, 0);
1172 AssertLogRelReturn(pStdLeaf0, VERR_CPUM_IPE_2);
1173
1174
1175 /* Cpuid 1:
1176 * Only report features we can support.
1177 *
1178 * Note! When enabling new features the Synthetic CPU and Portable CPUID
1179 * options may require adjusting (i.e. stripping what was enabled).
1180 */
1181 PCPUMCPUIDLEAF pStdFeatureLeaf = cpumR3CpuIdGetLeaf(pCPUM->GuestInfo.paCpuIdLeavesR3, pCPUM->GuestInfo.cCpuIdLeaves, 1, 0);
1182 AssertLogRelReturn(pStdFeatureLeaf, VERR_CPUM_IPE_2);
1183 pStdFeatureLeaf->uEdx &= X86_CPUID_FEATURE_EDX_FPU
1184 | X86_CPUID_FEATURE_EDX_VME
1185 | X86_CPUID_FEATURE_EDX_DE
1186 | X86_CPUID_FEATURE_EDX_PSE
1187 | X86_CPUID_FEATURE_EDX_TSC
1188 | X86_CPUID_FEATURE_EDX_MSR
1189 //| X86_CPUID_FEATURE_EDX_PAE - set later if configured.
1190 | X86_CPUID_FEATURE_EDX_MCE
1191 | X86_CPUID_FEATURE_EDX_CX8
1192 //| X86_CPUID_FEATURE_EDX_APIC - set by the APIC device if present.
1193 /* Note! we don't report sysenter/sysexit support due to our inability to keep the IOPL part of eflags in sync while in ring 1 (see @bugref{1757}) */
1194 //| X86_CPUID_FEATURE_EDX_SEP
1195 | X86_CPUID_FEATURE_EDX_MTRR
1196 | X86_CPUID_FEATURE_EDX_PGE
1197 | X86_CPUID_FEATURE_EDX_MCA
1198 | X86_CPUID_FEATURE_EDX_CMOV
1199 | X86_CPUID_FEATURE_EDX_PAT
1200 | X86_CPUID_FEATURE_EDX_PSE36
1201 //| X86_CPUID_FEATURE_EDX_PSN - no serial number.
1202 | X86_CPUID_FEATURE_EDX_CLFSH
1203 //| X86_CPUID_FEATURE_EDX_DS - no debug store.
1204 //| X86_CPUID_FEATURE_EDX_ACPI - not virtualized yet.
1205 | X86_CPUID_FEATURE_EDX_MMX
1206 | X86_CPUID_FEATURE_EDX_FXSR
1207 | X86_CPUID_FEATURE_EDX_SSE
1208 | X86_CPUID_FEATURE_EDX_SSE2
1209 //| X86_CPUID_FEATURE_EDX_SS - no self snoop.
1210 //| X86_CPUID_FEATURE_EDX_HTT - no hyperthreading.
1211 //| X86_CPUID_FEATURE_EDX_TM - no thermal monitor.
1212 //| X86_CPUID_FEATURE_EDX_PBE - no pending break enabled.
1213 | 0;
1214 pStdFeatureLeaf->uEcx &= 0
1215 | X86_CPUID_FEATURE_ECX_SSE3
1216 /* Can't properly emulate monitor & mwait with guest SMP; force the guest to use hlt for idling VCPUs. */
1217 | ((fMonitor && pVM->cCpus == 1) ? X86_CPUID_FEATURE_ECX_MONITOR : 0)
1218 //| X86_CPUID_FEATURE_ECX_CPLDS - no CPL qualified debug store.
1219 //| X86_CPUID_FEATURE_ECX_VMX - not virtualized.
1220 //| X86_CPUID_FEATURE_ECX_EST - no extended speed step.
1221 //| X86_CPUID_FEATURE_ECX_TM2 - no thermal monitor 2.
1222 | X86_CPUID_FEATURE_ECX_SSSE3
1223 //| X86_CPUID_FEATURE_ECX_CNTXID - no L1 context id (MSR++).
1224 | (fCmpXchg16b ? X86_CPUID_FEATURE_ECX_CX16 : 0)
1225 /* ECX Bit 14 - xTPR Update Control. Processor supports changing IA32_MISC_ENABLES[bit 23]. */
1226 //| X86_CPUID_FEATURE_ECX_TPRUPDATE
1227 /* ECX Bit 21 - x2APIC support - not yet. */
1228 // | X86_CPUID_FEATURE_ECX_X2APIC
1229 /* ECX Bit 23 - POPCNT instruction. */
1230 //| X86_CPUID_FEATURE_ECX_POPCNT
1231 | 0;
1232 if (pCPUM->u8PortableCpuIdLevel > 0)
1233 {
1234 PORTABLE_CLEAR_BITS_WHEN(1, pStdFeatureLeaf->uEax, ProcessorType, (UINT32_C(3) << 12), (UINT32_C(2) << 12));
1235 PORTABLE_DISABLE_FEATURE_BIT(1, pStdFeatureLeaf->uEcx, SSSE3, X86_CPUID_FEATURE_ECX_SSSE3);
1236 PORTABLE_DISABLE_FEATURE_BIT(1, pStdFeatureLeaf->uEcx, SSE3, X86_CPUID_FEATURE_ECX_SSE3);
1237 PORTABLE_DISABLE_FEATURE_BIT(1, pStdFeatureLeaf->uEcx, CX16, X86_CPUID_FEATURE_ECX_CX16);
1238 PORTABLE_DISABLE_FEATURE_BIT(2, pStdFeatureLeaf->uEdx, SSE2, X86_CPUID_FEATURE_EDX_SSE2);
1239 PORTABLE_DISABLE_FEATURE_BIT(3, pStdFeatureLeaf->uEdx, SSE, X86_CPUID_FEATURE_EDX_SSE);
1240 PORTABLE_DISABLE_FEATURE_BIT(3, pStdFeatureLeaf->uEdx, CLFSH, X86_CPUID_FEATURE_EDX_CLFSH);
1241 PORTABLE_DISABLE_FEATURE_BIT(3, pStdFeatureLeaf->uEdx, CMOV, X86_CPUID_FEATURE_EDX_CMOV);
1242
1243 Assert(!(pStdFeatureLeaf->uEdx & ( X86_CPUID_FEATURE_EDX_SEP
1244 | X86_CPUID_FEATURE_EDX_PSN
1245 | X86_CPUID_FEATURE_EDX_DS
1246 | X86_CPUID_FEATURE_EDX_ACPI
1247 | X86_CPUID_FEATURE_EDX_SS
1248 | X86_CPUID_FEATURE_EDX_TM
1249 | X86_CPUID_FEATURE_EDX_PBE
1250 )));
1251 Assert(!(pStdFeatureLeaf->uEcx & ( X86_CPUID_FEATURE_ECX_PCLMUL
1252 | X86_CPUID_FEATURE_ECX_DTES64
1253 | X86_CPUID_FEATURE_ECX_CPLDS
1254 | X86_CPUID_FEATURE_ECX_VMX
1255 | X86_CPUID_FEATURE_ECX_SMX
1256 | X86_CPUID_FEATURE_ECX_EST
1257 | X86_CPUID_FEATURE_ECX_TM2
1258 | X86_CPUID_FEATURE_ECX_CNTXID
1259 | X86_CPUID_FEATURE_ECX_FMA
1260 | X86_CPUID_FEATURE_ECX_CX16
1261 | X86_CPUID_FEATURE_ECX_TPRUPDATE
1262 | X86_CPUID_FEATURE_ECX_PDCM
1263 | X86_CPUID_FEATURE_ECX_DCA
1264 | X86_CPUID_FEATURE_ECX_MOVBE
1265 | X86_CPUID_FEATURE_ECX_AES
1266 | X86_CPUID_FEATURE_ECX_POPCNT
1267 | X86_CPUID_FEATURE_ECX_XSAVE
1268 | X86_CPUID_FEATURE_ECX_OSXSAVE
1269 | X86_CPUID_FEATURE_ECX_AVX
1270 )));
1271 }
1272
1273 /* Cpuid 0x80000001:
1274 * Only report features we can support.
1275 *
1276 * Note! When enabling new features the Synthetic CPU and Portable CPUID
1277 * options may require adjusting (i.e. stripping what was enabled).
1278 *
1279 * ASSUMES that this is ALWAYS the AMD defined feature set if present.
1280 */
1281 PCPUMCPUIDLEAF pExtFeatureLeaf = cpumR3CpuIdGetLeaf(pCPUM->GuestInfo.paCpuIdLeavesR3, pCPUM->GuestInfo.cCpuIdLeaves,
1282 UINT32_C(0x80000001), 0);
1283 if (pExtFeatureLeaf)
1284 {
1285 pExtFeatureLeaf->uEdx &= X86_CPUID_AMD_FEATURE_EDX_FPU
1286 | X86_CPUID_AMD_FEATURE_EDX_VME
1287 | X86_CPUID_AMD_FEATURE_EDX_DE
1288 | X86_CPUID_AMD_FEATURE_EDX_PSE
1289 | X86_CPUID_AMD_FEATURE_EDX_TSC
1290 | X86_CPUID_AMD_FEATURE_EDX_MSR //?? this means AMD MSRs..
1291 //| X86_CPUID_AMD_FEATURE_EDX_PAE - not implemented yet.
1292 //| X86_CPUID_AMD_FEATURE_EDX_MCE - not virtualized yet.
1293 | X86_CPUID_AMD_FEATURE_EDX_CX8
1294 //| X86_CPUID_AMD_FEATURE_EDX_APIC - set by the APIC device if present.
1295 /* Note! we don't report sysenter/sysexit support due to our inability to keep the IOPL part of eflags in sync while in ring 1 (see @bugref{1757}) */
1296 //| X86_CPUID_EXT_FEATURE_EDX_SEP
1297 | X86_CPUID_AMD_FEATURE_EDX_MTRR
1298 | X86_CPUID_AMD_FEATURE_EDX_PGE
1299 | X86_CPUID_AMD_FEATURE_EDX_MCA
1300 | X86_CPUID_AMD_FEATURE_EDX_CMOV
1301 | X86_CPUID_AMD_FEATURE_EDX_PAT
1302 | X86_CPUID_AMD_FEATURE_EDX_PSE36
1303 //| X86_CPUID_EXT_FEATURE_EDX_NX - not virtualized, requires PAE.
1304 //| X86_CPUID_AMD_FEATURE_EDX_AXMMX
1305 | X86_CPUID_AMD_FEATURE_EDX_MMX
1306 | X86_CPUID_AMD_FEATURE_EDX_FXSR
1307 | X86_CPUID_AMD_FEATURE_EDX_FFXSR
1308 //| X86_CPUID_EXT_FEATURE_EDX_PAGE1GB
1309 | X86_CPUID_EXT_FEATURE_EDX_RDTSCP
1310 //| X86_CPUID_EXT_FEATURE_EDX_LONG_MODE - turned on when necessary
1311 | X86_CPUID_AMD_FEATURE_EDX_3DNOW_EX
1312 | X86_CPUID_AMD_FEATURE_EDX_3DNOW
1313 | 0;
1314 pExtFeatureLeaf->uEcx &= 0
1315 //| X86_CPUID_EXT_FEATURE_ECX_LAHF_SAHF
1316 //| X86_CPUID_AMD_FEATURE_ECX_CMPL
1317 //| X86_CPUID_AMD_FEATURE_ECX_SVM - not virtualized.
1318 //| X86_CPUID_AMD_FEATURE_ECX_EXT_APIC
1319 /* Note: This could prevent teleporting from AMD to Intel CPUs! */
1320 | X86_CPUID_AMD_FEATURE_ECX_CR8L /* expose lock mov cr0 = mov cr8 hack for guests that can use this feature to access the TPR. */
1321 //| X86_CPUID_AMD_FEATURE_ECX_ABM
1322 //| X86_CPUID_AMD_FEATURE_ECX_SSE4A
1323 //| X86_CPUID_AMD_FEATURE_ECX_MISALNSSE
1324 //| X86_CPUID_AMD_FEATURE_ECX_3DNOWPRF
1325 //| X86_CPUID_AMD_FEATURE_ECX_OSVW
1326 //| X86_CPUID_AMD_FEATURE_ECX_IBS
1327 //| X86_CPUID_AMD_FEATURE_ECX_SSE5
1328 //| X86_CPUID_AMD_FEATURE_ECX_SKINIT
1329 //| X86_CPUID_AMD_FEATURE_ECX_WDT
1330 | 0;
1331 if (pCPUM->u8PortableCpuIdLevel > 0)
1332 {
1333 PORTABLE_DISABLE_FEATURE_BIT(1, pExtFeatureLeaf->uEcx, CR8L, X86_CPUID_AMD_FEATURE_ECX_CR8L);
1334 PORTABLE_DISABLE_FEATURE_BIT(1, pExtFeatureLeaf->uEdx, 3DNOW, X86_CPUID_AMD_FEATURE_EDX_3DNOW);
1335 PORTABLE_DISABLE_FEATURE_BIT(1, pExtFeatureLeaf->uEdx, 3DNOW_EX, X86_CPUID_AMD_FEATURE_EDX_3DNOW_EX);
1336 PORTABLE_DISABLE_FEATURE_BIT(1, pExtFeatureLeaf->uEdx, FFXSR, X86_CPUID_AMD_FEATURE_EDX_FFXSR);
1337 PORTABLE_DISABLE_FEATURE_BIT(1, pExtFeatureLeaf->uEdx, RDTSCP, X86_CPUID_EXT_FEATURE_EDX_RDTSCP);
1338 PORTABLE_DISABLE_FEATURE_BIT(2, pExtFeatureLeaf->uEcx, LAHF_SAHF, X86_CPUID_EXT_FEATURE_ECX_LAHF_SAHF);
1339 PORTABLE_DISABLE_FEATURE_BIT(3, pExtFeatureLeaf->uEcx, CMOV, X86_CPUID_AMD_FEATURE_EDX_CMOV);
1340
1341 Assert(!(pExtFeatureLeaf->uEcx & ( X86_CPUID_AMD_FEATURE_ECX_CMPL
1342 | X86_CPUID_AMD_FEATURE_ECX_SVM
1343 | X86_CPUID_AMD_FEATURE_ECX_EXT_APIC
1344 | X86_CPUID_AMD_FEATURE_ECX_CR8L
1345 | X86_CPUID_AMD_FEATURE_ECX_ABM
1346 | X86_CPUID_AMD_FEATURE_ECX_SSE4A
1347 | X86_CPUID_AMD_FEATURE_ECX_MISALNSSE
1348 | X86_CPUID_AMD_FEATURE_ECX_3DNOWPRF
1349 | X86_CPUID_AMD_FEATURE_ECX_OSVW
1350 | X86_CPUID_AMD_FEATURE_ECX_IBS
1351 | X86_CPUID_AMD_FEATURE_ECX_SSE5
1352 | X86_CPUID_AMD_FEATURE_ECX_SKINIT
1353 | X86_CPUID_AMD_FEATURE_ECX_WDT
1354 | UINT32_C(0xffffc000)
1355 )));
1356 Assert(!(pExtFeatureLeaf->uEdx & ( RT_BIT(10)
1357 | X86_CPUID_EXT_FEATURE_EDX_SYSCALL
1358 | RT_BIT(18)
1359 | RT_BIT(19)
1360 | RT_BIT(21)
1361 | X86_CPUID_AMD_FEATURE_EDX_AXMMX
1362 | X86_CPUID_EXT_FEATURE_EDX_PAGE1GB
1363 | RT_BIT(28)
1364 )));
1365 }
1366 }
1367
1368 /*
1369 * Hide HTT, multicode, SMP, whatever.
1370 * (APIC-ID := 0 and #LogCpus := 0)
1371 */
1372 pStdFeatureLeaf->uEbx &= 0x0000ffff;
1373#ifdef VBOX_WITH_MULTI_CORE
1374 if (pVM->cCpus > 1)
1375 {
1376 /* If CPUID Fn0000_0001_EDX[HTT] = 1 then LogicalProcessorCount is the number of threads per CPU core times the number of CPU cores per processor */
1377 pStdFeatureLeaf->uEbx |= (pVM->cCpus << 16);
1378 pStdFeatureLeaf->uEdx |= X86_CPUID_FEATURE_EDX_HTT; /* necessary for hyper-threading *or* multi-core CPUs */
1379 }
1380#endif
1381
1382 /* Cpuid 2:
1383 * Intel: Cache and TLB information
1384 * AMD: Reserved
1385 * VIA: Reserved
1386 * Safe to expose; restrict the number of calls to 1 for the portable case.
1387 */
1388 PCPUMCPUIDLEAF pCurLeaf = cpumR3CpuIdGetLeaf(pCPUM->GuestInfo.paCpuIdLeavesR3, pCPUM->GuestInfo.cCpuIdLeaves, 2, 0);
1389 if ( pCPUM->u8PortableCpuIdLevel > 0
1390 && pCurLeaf
1391 && (pCurLeaf->uEax & 0xff) > 1)
1392 {
1393 LogRel(("PortableCpuId: Std[2].al: %d -> 1\n", pCurLeaf->uEax & 0xff));
1394 pCurLeaf->uEax &= UINT32_C(0xfffffffe);
1395 }
1396
1397 /* Cpuid 3:
1398 * Intel: EAX, EBX - reserved (transmeta uses these)
1399 * ECX, EDX - Processor Serial Number if available, otherwise reserved
1400 * AMD: Reserved
1401 * VIA: Reserved
1402 * Safe to expose
1403 */
1404 pCurLeaf = cpumR3CpuIdGetLeaf(pCPUM->GuestInfo.paCpuIdLeavesR3, pCPUM->GuestInfo.cCpuIdLeaves, 3, 0);
1405 if ( !(pStdFeatureLeaf->uEdx & X86_CPUID_FEATURE_EDX_PSN)
1406 && pCurLeaf)
1407 {
1408 pCurLeaf->uEcx = pCurLeaf->uEdx = 0;
1409 if (pCPUM->u8PortableCpuIdLevel > 0)
1410 pCurLeaf->uEax = pCurLeaf->uEbx = 0;
1411 }
1412
1413 /* Cpuid 4:
1414 * Intel: Deterministic Cache Parameters Leaf
1415 * Note: Depends on the ECX input! -> Feeling rather lazy now, so we just return 0
1416 * AMD: Reserved
1417 * VIA: Reserved
1418 * Safe to expose, except for EAX:
1419 * Bits 25-14: Maximum number of addressable IDs for logical processors sharing this cache (see note)**
1420 * Bits 31-26: Maximum number of processor cores in this physical package**
1421 * Note: These SMP values are constant regardless of ECX
1422 */
1423 CPUMCPUIDLEAF NewLeaf;
1424 pCurLeaf = cpumR3CpuIdGetLeaf(pCPUM->GuestInfo.paCpuIdLeavesR3, pCPUM->GuestInfo.cCpuIdLeaves, 4, 0);
1425 if (pCurLeaf)
1426 {
1427 NewLeaf.uLeaf = 4;
1428 NewLeaf.uSubLeaf = 0;
1429 NewLeaf.fSubLeafMask = 0;
1430 NewLeaf.uEax = 0;
1431 NewLeaf.uEbx = 0;
1432 NewLeaf.uEcx = 0;
1433 NewLeaf.uEdx = 0;
1434 NewLeaf.fFlags = 0;
1435#ifdef VBOX_WITH_MULTI_CORE
1436 if ( pVM->cCpus > 1
1437 && pCPUM->GuestFeatures.enmCpuVendor == CPUMCPUVENDOR_INTEL)
1438 {
1439 AssertReturn(pVM->cCpus <= 64, VERR_TOO_MANY_CPUS);
1440 /* One logical processor with possibly multiple cores. */
1441 /* See http://www.intel.com/Assets/PDF/appnote/241618.pdf p. 29 */
1442 NewLeaf.uEax |= ((pVM->cCpus - 1) << 26); /* 6 bits only -> 64 cores! */
1443 }
1444#endif
1445 rc = cpumR3CpuIdInsert(&pCPUM->GuestInfo.paCpuIdLeavesR3, &pCPUM->GuestInfo.cCpuIdLeaves, &NewLeaf);
1446 AssertLogRelRCReturn(rc, rc);
1447 }
1448
1449 /* Cpuid 5: Monitor/mwait Leaf
1450 * Intel: ECX, EDX - reserved
1451 * EAX, EBX - Smallest and largest monitor line size
1452 * AMD: EDX - reserved
1453 * EAX, EBX - Smallest and largest monitor line size
1454 * ECX - extensions (ignored for now)
1455 * VIA: Reserved
1456 * Safe to expose
1457 */
1458 pCurLeaf = cpumR3CpuIdGetLeaf(pCPUM->GuestInfo.paCpuIdLeavesR3, pCPUM->GuestInfo.cCpuIdLeaves, 5, 0);
1459 if (pCurLeaf)
1460 {
1461 if (!(pStdFeatureLeaf->uEcx & X86_CPUID_FEATURE_ECX_MONITOR))
1462 pCurLeaf->uEax = pCurLeaf->uEbx = 0;
1463
1464 pCurLeaf->uEcx = pCurLeaf->uEdx = 0;
1465 if (fMWaitExtensions)
1466 {
1467 pCurLeaf->uEcx = X86_CPUID_MWAIT_ECX_EXT | X86_CPUID_MWAIT_ECX_BREAKIRQIF0;
1468 /** @todo: for now we just expose host's MWAIT C-states, although conceptually
1469 it shall be part of our power management virtualization model */
1470#if 0
1471 /* MWAIT sub C-states */
1472 pCurLeaf->uEdx =
1473 (0 << 0) /* 0 in C0 */ |
1474 (2 << 4) /* 2 in C1 */ |
1475 (2 << 8) /* 2 in C2 */ |
1476 (2 << 12) /* 2 in C3 */ |
1477 (0 << 16) /* 0 in C4 */
1478 ;
1479#endif
1480 }
1481 else
1482 pCurLeaf->uEcx = pCurLeaf->uEdx = 0;
1483 }
1484
1485 /* Cpuid 0x800000005 & 0x800000006 contain information about L1, L2 & L3 cache and TLB identifiers.
1486 * Safe to pass on to the guest.
1487 *
1488 * Intel: 0x800000005 reserved
1489 * 0x800000006 L2 cache information
1490 * AMD: 0x800000005 L1 cache information
1491 * 0x800000006 L2/L3 cache information
1492 * VIA: 0x800000005 TLB and L1 cache information
1493 * 0x800000006 L2 cache information
1494 */
1495
1496 /* Cpuid 0x800000007:
1497 * Intel: Reserved
1498 * AMD: EAX, EBX, ECX - reserved
1499 * EDX: Advanced Power Management Information
1500 * VIA: Reserved
1501 */
1502 pCurLeaf = cpumR3CpuIdGetLeaf(pCPUM->GuestInfo.paCpuIdLeavesR3, pCPUM->GuestInfo.cCpuIdLeaves, UINT32_C(0x80000007), 0);
1503 if (pCurLeaf)
1504 {
1505 Assert(pCPUM->GuestFeatures.enmCpuVendor != CPUMCPUVENDOR_INVALID);
1506
1507 pCurLeaf->uEax = pCurLeaf->uEbx = pCurLeaf->uEcx = 0;
1508
1509 if (pCPUM->GuestFeatures.enmCpuVendor == CPUMCPUVENDOR_AMD)
1510 {
1511 /* Only expose the TSC invariant capability bit to the guest. */
1512 pCurLeaf->uEdx &= 0
1513 //| X86_CPUID_AMD_ADVPOWER_EDX_TS
1514 //| X86_CPUID_AMD_ADVPOWER_EDX_FID
1515 //| X86_CPUID_AMD_ADVPOWER_EDX_VID
1516 //| X86_CPUID_AMD_ADVPOWER_EDX_TTP
1517 //| X86_CPUID_AMD_ADVPOWER_EDX_TM
1518 //| X86_CPUID_AMD_ADVPOWER_EDX_STC
1519 //| X86_CPUID_AMD_ADVPOWER_EDX_MC
1520 //| X86_CPUID_AMD_ADVPOWER_EDX_HWPSTATE
1521#if 0
1522 /*
1523 * We don't expose X86_CPUID_AMD_ADVPOWER_EDX_TSCINVAR, because newer
1524 * Linux kernels blindly assume that the AMD performance counters work
1525 * if this is set for 64 bits guests. (Can't really find a CPUID feature
1526 * bit for them though.)
1527 */
1528 | X86_CPUID_AMD_ADVPOWER_EDX_TSCINVAR
1529#endif
1530 | 0;
1531 }
1532 else
1533 pCurLeaf->uEdx = 0;
1534 }
1535
1536 /* Cpuid 0x800000008:
1537 * Intel: EAX: Virtual/Physical address Size
1538 * EBX, ECX, EDX - reserved
1539 * AMD: EBX, EDX - reserved
1540 * EAX: Virtual/Physical/Guest address Size
1541 * ECX: Number of cores + APICIdCoreIdSize
1542 * VIA: EAX: Virtual/Physical address Size
1543 * EBX, ECX, EDX - reserved
1544 */
1545 pCurLeaf = cpumR3CpuIdGetLeaf(pCPUM->GuestInfo.paCpuIdLeavesR3, pCPUM->GuestInfo.cCpuIdLeaves, UINT32_C(0x80000008), 0);
1546 if (pCurLeaf)
1547 {
1548 /* Only expose the virtual and physical address sizes to the guest. */
1549 pCurLeaf->uEax &= UINT32_C(0x0000ffff);
1550 pCurLeaf->uEbx = pCurLeaf->uEdx = 0; /* reserved */
1551 /* Set APICIdCoreIdSize to zero (use legacy method to determine the number of cores per cpu)
1552 * NC (0-7) Number of cores; 0 equals 1 core */
1553 pCurLeaf->uEcx = 0;
1554#ifdef VBOX_WITH_MULTI_CORE
1555 if ( pVM->cCpus > 1
1556 && pCPUM->GuestFeatures.enmCpuVendor == CPUMCPUVENDOR_AMD)
1557 {
1558 /* Legacy method to determine the number of cores. */
1559 pCurLeaf->uEcx |= (pVM->cCpus - 1); /* NC: Number of CPU cores - 1; 8 bits */
1560 if (pExtFeatureLeaf)
1561 pExtFeatureLeaf->uEcx |= X86_CPUID_AMD_FEATURE_ECX_CMPL;
1562 }
1563#endif
1564 }
1565
1566
1567 /*
1568 * Limit it the number of entries, zapping the remainder.
1569 *
1570 * The limits are masking off stuff about power saving and similar, this
1571 * is perhaps a bit crudely done as there is probably some relatively harmless
1572 * info too in these leaves (like words about having a constant TSC).
1573 */
1574 pCurLeaf = cpumR3CpuIdGetLeaf(pCPUM->GuestInfo.paCpuIdLeavesR3, pCPUM->GuestInfo.cCpuIdLeaves, 0, 0);
1575 if (pCurLeaf)
1576 {
1577 if (pCurLeaf->uEax > 5)
1578 {
1579 pCurLeaf->uEax = 5;
1580 cpumR3CpuIdRemoveRange(pCPUM->GuestInfo.paCpuIdLeavesR3, &pCPUM->GuestInfo.cCpuIdLeaves,
1581 pCurLeaf->uEax + 1, UINT32_C(0x000fffff));
1582 }
1583
1584 /* NT4 hack, no zapping of extra leaves here. */
1585 if (fNt4LeafLimit && pCurLeaf->uEax > 3)
1586 pCurLeaf->uEax = 3;
1587 }
1588
1589 pCurLeaf = cpumR3CpuIdGetLeaf(pCPUM->GuestInfo.paCpuIdLeavesR3, pCPUM->GuestInfo.cCpuIdLeaves, UINT32_C(0x80000000), 0);
1590 if (pCurLeaf)
1591 {
1592 if (pCurLeaf->uEax > UINT32_C(0x80000008))
1593 {
1594 pCurLeaf->uEax = UINT32_C(0x80000008);
1595 cpumR3CpuIdRemoveRange(pCPUM->GuestInfo.paCpuIdLeavesR3, &pCPUM->GuestInfo.cCpuIdLeaves,
1596 pCurLeaf->uEax + 1, UINT32_C(0x800fffff));
1597 }
1598 }
1599
1600 /*
1601 * Centaur stuff (VIA).
1602 *
1603 * The important part here (we think) is to make sure the 0xc0000000
1604 * function returns 0xc0000001. As for the features, we don't currently
1605 * let on about any of those... 0xc0000002 seems to be some
1606 * temperature/hz/++ stuff, include it as well (static).
1607 */
1608 pCurLeaf = cpumR3CpuIdGetLeaf(pCPUM->GuestInfo.paCpuIdLeavesR3, pCPUM->GuestInfo.cCpuIdLeaves, UINT32_C(0xc0000000), 0);
1609 if (pCurLeaf)
1610 {
1611 if ( pCurLeaf->uEax >= UINT32_C(0xc0000000)
1612 && pCurLeaf->uEax <= UINT32_C(0xc0000004))
1613 {
1614 pCurLeaf->uEax = RT_MIN(pCurLeaf->uEax, UINT32_C(0xc0000002));
1615 cpumR3CpuIdRemoveRange(pCPUM->GuestInfo.paCpuIdLeavesR3, &pCPUM->GuestInfo.cCpuIdLeaves,
1616 UINT32_C(0xc0000002), UINT32_C(0xc00fffff));
1617
1618 pCurLeaf = cpumR3CpuIdGetLeaf(pCPUM->GuestInfo.paCpuIdLeavesR3, pCPUM->GuestInfo.cCpuIdLeaves,
1619 UINT32_C(0xc0000001), 0);
1620 if (pCurLeaf)
1621 pCurLeaf->uEdx = 0; /* all features hidden */
1622 }
1623 else
1624 cpumR3CpuIdRemoveRange(pCPUM->GuestInfo.paCpuIdLeavesR3, &pCPUM->GuestInfo.cCpuIdLeaves,
1625 UINT32_C(0xc0000000), UINT32_C(0xc00fffff));
1626 }
1627
1628 /*
1629 * Hypervisor identification.
1630 *
1631 * We only return minimal information, primarily ensuring that the
1632 * 0x40000000 function returns 0x40000001 and identifying ourselves.
1633 * Currently we do not support any hypervisor-specific interface.
1634 */
1635 NewLeaf.uLeaf = UINT32_C(0x40000000);
1636 NewLeaf.uSubLeaf = 0;
1637 NewLeaf.fSubLeafMask = 0;
1638 NewLeaf.uEax = UINT32_C(0x40000001);
1639 NewLeaf.uEbx = 0x786f4256 /* 'VBox' */;
1640 NewLeaf.uEcx = 0x786f4256 /* 'VBox' */;
1641 NewLeaf.uEdx = 0x786f4256 /* 'VBox' */;
1642 NewLeaf.fFlags = 0;
1643 rc = cpumR3CpuIdInsert(&pCPUM->GuestInfo.paCpuIdLeavesR3, &pCPUM->GuestInfo.cCpuIdLeaves, &NewLeaf);
1644 AssertLogRelRCReturn(rc, rc);
1645
1646 NewLeaf.uLeaf = UINT32_C(0x40000001);
1647 NewLeaf.uEax = 0x656e6f6e; /* 'none' */
1648 NewLeaf.uEbx = 0;
1649 NewLeaf.uEcx = 0;
1650 NewLeaf.uEdx = 0;
1651 NewLeaf.fFlags = 0;
1652 rc = cpumR3CpuIdInsert(&pCPUM->GuestInfo.paCpuIdLeavesR3, &pCPUM->GuestInfo.cCpuIdLeaves, &NewLeaf);
1653 AssertLogRelRCReturn(rc, rc);
1654
1655 /*
1656 * Mini CPU selection support for making Mac OS X happy.
1657 */
1658 if (pCPUM->GuestFeatures.enmCpuVendor == CPUMCPUVENDOR_INTEL)
1659 {
1660 uint32_t uCurIntelFamilyModelStep = RT_MAKE_U32_FROM_U8(ASMGetCpuStepping(pStdFeatureLeaf->uEax),
1661 ASMGetCpuModelIntel(pStdFeatureLeaf->uEax),
1662 ASMGetCpuFamily(pStdFeatureLeaf->uEax),
1663 0);
1664 if (uMaxIntelFamilyModelStep < uCurIntelFamilyModelStep)
1665 {
1666 uint32_t uNew = pStdFeatureLeaf->uEax & UINT32_C(0xf0003000);
1667 uNew |= RT_BYTE1(uMaxIntelFamilyModelStep) & 0xf; /* stepping */
1668 uNew |= (RT_BYTE2(uMaxIntelFamilyModelStep) & 0xf) << 4; /* 4 low model bits */
1669 uNew |= (RT_BYTE2(uMaxIntelFamilyModelStep) >> 4) << 16; /* 4 high model bits */
1670 uNew |= (RT_BYTE3(uMaxIntelFamilyModelStep) & 0xf) << 8; /* 4 low family bits */
1671 if (RT_BYTE3(uMaxIntelFamilyModelStep) > 0xf) /* 8 high family bits, using intel's suggested calculation. */
1672 uNew |= ( (RT_BYTE3(uMaxIntelFamilyModelStep) - (RT_BYTE3(uMaxIntelFamilyModelStep) & 0xf)) & 0xff ) << 20;
1673 LogRel(("CPU: CPUID(0).EAX %#x -> %#x (uMaxIntelFamilyModelStep=%#x, uCurIntelFamilyModelStep=%#x\n",
1674 pStdFeatureLeaf->uEax, uNew, uMaxIntelFamilyModelStep, uCurIntelFamilyModelStep));
1675 pStdFeatureLeaf->uEax = uNew;
1676 }
1677 }
1678
1679 /*
1680 * MSR fudging.
1681 */
1682 /** @cfgm{CPUM/FudgeMSRs, boolean, true}
1683 * Fudges some common MSRs if not present in the selected CPU database entry.
1684 * This is for trying to keep VMs running when moved between different hosts
1685 * and different CPU vendors. */
1686 bool fEnable;
1687 rc = CFGMR3QueryBoolDef(pCpumCfg, "FudgeMSRs", &fEnable, true); AssertRCReturn(rc, rc);
1688 if (fEnable)
1689 {
1690 rc = cpumR3MsrApplyFudge(pVM);
1691 AssertLogRelRCReturn(rc, rc);
1692 }
1693
1694 /*
1695 * Move the MSR and CPUID arrays over on the hypervisor heap, and explode
1696 * guest CPU features again.
1697 */
1698 void *pvFree = pCPUM->GuestInfo.paCpuIdLeavesR3;
1699 int rc1 = cpumR3CpuIdInstallAndExplodeLeaves(pVM, pCPUM, pCPUM->GuestInfo.paCpuIdLeavesR3, pCPUM->GuestInfo.cCpuIdLeaves);
1700 RTMemFree(pvFree);
1701
1702 pvFree = pCPUM->GuestInfo.paMsrRangesR3;
1703 int rc2 = MMHyperDupMem(pVM, pvFree,
1704 sizeof(pCPUM->GuestInfo.paMsrRangesR3[0]) * pCPUM->GuestInfo.cMsrRanges, 32,
1705 MM_TAG_CPUM_MSRS, (void **)&pCPUM->GuestInfo.paMsrRangesR3);
1706 RTMemFree(pvFree);
1707 AssertLogRelRCReturn(rc1, rc1);
1708 AssertLogRelRCReturn(rc2, rc2);
1709
1710 pCPUM->GuestInfo.paMsrRangesR0 = MMHyperR3ToR0(pVM, pCPUM->GuestInfo.paMsrRangesR3);
1711 pCPUM->GuestInfo.paMsrRangesRC = MMHyperR3ToRC(pVM, pCPUM->GuestInfo.paMsrRangesR3);
1712 cpumR3MsrRegStats(pVM);
1713
1714 /*
1715 * Some more configuration that we're applying at the end of everything
1716 * via the CPUMSetGuestCpuIdFeature API.
1717 */
1718
1719 /* Check if PAE was explicitely enabled by the user. */
1720 rc = CFGMR3QueryBoolDef(CFGMR3GetRoot(pVM), "EnablePAE", &fEnable, false); AssertRCReturn(rc, rc);
1721 if (fEnable)
1722 CPUMSetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_PAE);
1723
1724 /* We don't normally enable NX for raw-mode, so give the user a chance to force it on. */
1725 rc = CFGMR3QueryBoolDef(pCpumCfg, "EnableNX", &fEnable, false); AssertRCReturn(rc, rc);
1726 if (fEnable)
1727 CPUMSetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_NX);
1728
1729 /* We don't enable the Hypervisor Present bit by default, but it may be needed by some guests. */
1730 rc = CFGMR3QueryBoolDef(pCpumCfg, "EnableHVP", &fEnable, false); AssertRCReturn(rc, rc);
1731 if (fEnable)
1732 CPUMSetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_HVP);
1733
1734#undef PORTABLE_DISABLE_FEATURE_BIT
1735#undef PORTABLE_CLEAR_BITS_WHEN
1736
1737 return VINF_SUCCESS;
1738}
1739
1740
1741/**
1742 * Applies relocations to data and code managed by this
1743 * component. This function will be called at init and
1744 * whenever the VMM need to relocate it self inside the GC.
1745 *
1746 * The CPUM will update the addresses used by the switcher.
1747 *
1748 * @param pVM The VM.
1749 */
1750VMMR3DECL(void) CPUMR3Relocate(PVM pVM)
1751{
1752 LogFlow(("CPUMR3Relocate\n"));
1753
1754 pVM->cpum.s.GuestInfo.paMsrRangesRC = MMHyperR3ToRC(pVM, pVM->cpum.s.GuestInfo.paMsrRangesR3);
1755 pVM->cpum.s.GuestInfo.paCpuIdLeavesRC = MMHyperR3ToRC(pVM, pVM->cpum.s.GuestInfo.paCpuIdLeavesR3);
1756
1757 /* Recheck the guest DRx values in raw-mode. */
1758 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
1759 CPUMRecalcHyperDRx(&pVM->aCpus[iCpu], UINT8_MAX, false);
1760}
1761
1762
1763/**
1764 * Apply late CPUM property changes based on the fHWVirtEx setting
1765 *
1766 * @param pVM Pointer to the VM.
1767 * @param fHWVirtExEnabled HWVirtEx enabled/disabled
1768 */
1769VMMR3DECL(void) CPUMR3SetHWVirtEx(PVM pVM, bool fHWVirtExEnabled)
1770{
1771 /*
1772 * Workaround for missing cpuid(0) patches when leaf 4 returns GuestCpuIdDef:
1773 * If we miss to patch a cpuid(0).eax then Linux tries to determine the number
1774 * of processors from (cpuid(4).eax >> 26) + 1.
1775 *
1776 * Note: this code is obsolete, but let's keep it here for reference.
1777 * Purpose is valid when we artificially cap the max std id to less than 4.
1778 */
1779 if (!fHWVirtExEnabled)
1780 {
1781 Assert( pVM->cpum.s.aGuestCpuIdStd[4].eax == 0
1782 || pVM->cpum.s.aGuestCpuIdStd[0].eax < 0x4);
1783 pVM->cpum.s.aGuestCpuIdStd[4].eax = 0;
1784 }
1785}
1786
1787/**
1788 * Terminates the CPUM.
1789 *
1790 * Termination means cleaning up and freeing all resources,
1791 * the VM it self is at this point powered off or suspended.
1792 *
1793 * @returns VBox status code.
1794 * @param pVM Pointer to the VM.
1795 */
1796VMMR3DECL(int) CPUMR3Term(PVM pVM)
1797{
1798#ifdef VBOX_WITH_CRASHDUMP_MAGIC
1799 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1800 {
1801 PVMCPU pVCpu = &pVM->aCpus[i];
1802 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1803
1804 memset(pVCpu->cpum.s.aMagic, 0, sizeof(pVCpu->cpum.s.aMagic));
1805 pVCpu->cpum.s.uMagic = 0;
1806 pCtx->dr[5] = 0;
1807 }
1808#else
1809 NOREF(pVM);
1810#endif
1811 return VINF_SUCCESS;
1812}
1813
1814
1815/**
1816 * Resets a virtual CPU.
1817 *
1818 * Used by CPUMR3Reset and CPU hot plugging.
1819 *
1820 * @param pVM Pointer to the cross context VM structure.
1821 * @param pVCpu Pointer to the cross context virtual CPU structure of
1822 * the CPU that is being reset. This may differ from the
1823 * current EMT.
1824 */
1825VMMR3DECL(void) CPUMR3ResetCpu(PVM pVM, PVMCPU pVCpu)
1826{
1827 /** @todo anything different for VCPU > 0? */
1828 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
1829
1830 /*
1831 * Initialize everything to ZERO first.
1832 */
1833 uint32_t fUseFlags = pVCpu->cpum.s.fUseFlags & ~CPUM_USED_FPU_SINCE_REM;
1834 memset(pCtx, 0, sizeof(*pCtx));
1835 pVCpu->cpum.s.fUseFlags = fUseFlags;
1836
1837 pCtx->cr0 = X86_CR0_CD | X86_CR0_NW | X86_CR0_ET; //0x60000010
1838 pCtx->eip = 0x0000fff0;
1839 pCtx->edx = 0x00000600; /* P6 processor */
1840 pCtx->eflags.Bits.u1Reserved0 = 1;
1841
1842 pCtx->cs.Sel = 0xf000;
1843 pCtx->cs.ValidSel = 0xf000;
1844 pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
1845 pCtx->cs.u64Base = UINT64_C(0xffff0000);
1846 pCtx->cs.u32Limit = 0x0000ffff;
1847 pCtx->cs.Attr.n.u1DescType = 1; /* code/data segment */
1848 pCtx->cs.Attr.n.u1Present = 1;
1849 pCtx->cs.Attr.n.u4Type = X86_SEL_TYPE_ER_ACC;
1850
1851 pCtx->ds.fFlags = CPUMSELREG_FLAGS_VALID;
1852 pCtx->ds.u32Limit = 0x0000ffff;
1853 pCtx->ds.Attr.n.u1DescType = 1; /* code/data segment */
1854 pCtx->ds.Attr.n.u1Present = 1;
1855 pCtx->ds.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
1856
1857 pCtx->es.fFlags = CPUMSELREG_FLAGS_VALID;
1858 pCtx->es.u32Limit = 0x0000ffff;
1859 pCtx->es.Attr.n.u1DescType = 1; /* code/data segment */
1860 pCtx->es.Attr.n.u1Present = 1;
1861 pCtx->es.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
1862
1863 pCtx->fs.fFlags = CPUMSELREG_FLAGS_VALID;
1864 pCtx->fs.u32Limit = 0x0000ffff;
1865 pCtx->fs.Attr.n.u1DescType = 1; /* code/data segment */
1866 pCtx->fs.Attr.n.u1Present = 1;
1867 pCtx->fs.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
1868
1869 pCtx->gs.fFlags = CPUMSELREG_FLAGS_VALID;
1870 pCtx->gs.u32Limit = 0x0000ffff;
1871 pCtx->gs.Attr.n.u1DescType = 1; /* code/data segment */
1872 pCtx->gs.Attr.n.u1Present = 1;
1873 pCtx->gs.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
1874
1875 pCtx->ss.fFlags = CPUMSELREG_FLAGS_VALID;
1876 pCtx->ss.u32Limit = 0x0000ffff;
1877 pCtx->ss.Attr.n.u1Present = 1;
1878 pCtx->ss.Attr.n.u1DescType = 1; /* code/data segment */
1879 pCtx->ss.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
1880
1881 pCtx->idtr.cbIdt = 0xffff;
1882 pCtx->gdtr.cbGdt = 0xffff;
1883
1884 pCtx->ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
1885 pCtx->ldtr.u32Limit = 0xffff;
1886 pCtx->ldtr.Attr.n.u1Present = 1;
1887 pCtx->ldtr.Attr.n.u4Type = X86_SEL_TYPE_SYS_LDT;
1888
1889 pCtx->tr.fFlags = CPUMSELREG_FLAGS_VALID;
1890 pCtx->tr.u32Limit = 0xffff;
1891 pCtx->tr.Attr.n.u1Present = 1;
1892 pCtx->tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY; /* Deduction, not properly documented by Intel. */
1893
1894 pCtx->dr[6] = X86_DR6_INIT_VAL;
1895 pCtx->dr[7] = X86_DR7_INIT_VAL;
1896
1897 pCtx->fpu.FTW = 0x00; /* All empty (abbridged tag reg edition). */
1898 pCtx->fpu.FCW = 0x37f;
1899
1900 /* Intel 64 and IA-32 Architectures Software Developer's Manual Volume 3A, Table 8-1.
1901 IA-32 Processor States Following Power-up, Reset, or INIT */
1902 pCtx->fpu.MXCSR = 0x1F80;
1903 pCtx->fpu.MXCSR_MASK = 0xffff; /** @todo REM always changed this for us. Should probably check if the HW really
1904 supports all bits, since a zero value here should be read as 0xffbf. */
1905
1906 /*
1907 * MSRs.
1908 */
1909 /* Init PAT MSR */
1910 pCtx->msrPAT = UINT64_C(0x0007040600070406); /** @todo correct? */
1911
1912 /* EFER MBZ; see AMD64 Architecture Programmer's Manual Volume 2: Table 14-1. Initial Processor State.
1913 * The Intel docs don't mention it. */
1914 Assert(!pCtx->msrEFER);
1915
1916 /* IA32_MISC_ENABLE - not entirely sure what the init/reset state really
1917 is supposed to be here, just trying provide useful/sensible values. */
1918 PCPUMMSRRANGE pRange = cpumLookupMsrRange(pVM, MSR_IA32_MISC_ENABLE);
1919 if (pRange)
1920 {
1921 pVCpu->cpum.s.GuestMsrs.msr.MiscEnable = MSR_IA32_MISC_ENABLE_BTS_UNAVAIL
1922 | MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL
1923 | (pVM->cpum.s.GuestFeatures.fMonitorMWait ? MSR_IA32_MISC_ENABLE_MONITOR : 0)
1924 | MSR_IA32_MISC_ENABLE_FAST_STRINGS;
1925 pRange->fWrIgnMask |= MSR_IA32_MISC_ENABLE_BTS_UNAVAIL
1926 | MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL;
1927 pRange->fWrGpMask &= ~pVCpu->cpum.s.GuestMsrs.msr.MiscEnable;
1928 }
1929
1930 /** @todo Wire IA32_MISC_ENABLE bit 22 to our NT 4 CPUID trick. */
1931
1932 /** @todo r=ramshankar: Currently broken for SMP as TMCpuTickSet() expects to be
1933 * called from each EMT while we're getting called by CPUMR3Reset()
1934 * iteratively on the same thread. Fix later. */
1935#if 0 /** @todo r=bird: This we will do in TM, not here. */
1936 /* TSC must be 0. Intel spec. Table 9-1. "IA-32 Processor States Following Power-up, Reset, or INIT." */
1937 CPUMSetGuestMsr(pVCpu, MSR_IA32_TSC, 0);
1938#endif
1939
1940
1941 /* C-state control. Guesses. */
1942 pVCpu->cpum.s.GuestMsrs.msr.PkgCStateCfgCtrl = 1 /*C1*/ | RT_BIT_32(25) | RT_BIT_32(26) | RT_BIT_32(27) | RT_BIT_32(28);
1943
1944
1945 /*
1946 * Get the APIC base MSR from the APIC device. For historical reasons (saved state), the APIC base
1947 * continues to reside in the APIC device and we cache it here in the VCPU for all further accesses.
1948 */
1949 PDMApicGetBase(pVCpu, &pCtx->msrApicBase);
1950}
1951
1952
1953/**
1954 * Resets the CPU.
1955 *
1956 * @returns VINF_SUCCESS.
1957 * @param pVM Pointer to the VM.
1958 */
1959VMMR3DECL(void) CPUMR3Reset(PVM pVM)
1960{
1961 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1962 {
1963 CPUMR3ResetCpu(pVM, &pVM->aCpus[i]);
1964
1965#ifdef VBOX_WITH_CRASHDUMP_MAGIC
1966 PCPUMCTX pCtx = &pVM->aCpus[i].cpum.s.Guest;
1967
1968 /* Magic marker for searching in crash dumps. */
1969 strcpy((char *)pVM->aCpus[i].cpum.s.aMagic, "CPUMCPU Magic");
1970 pVM->aCpus[i].cpum.s.uMagic = UINT64_C(0xDEADBEEFDEADBEEF);
1971 pCtx->dr[5] = UINT64_C(0xDEADBEEFDEADBEEF);
1972#endif
1973 }
1974}
1975
1976
1977/**
1978 * Called both in pass 0 and the final pass.
1979 *
1980 * @param pVM Pointer to the VM.
1981 * @param pSSM The saved state handle.
1982 */
1983static void cpumR3SaveCpuId(PVM pVM, PSSMHANDLE pSSM)
1984{
1985 /*
1986 * Save all the CPU ID leaves here so we can check them for compatibility
1987 * upon loading.
1988 */
1989 SSMR3PutU32(pSSM, RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdStd));
1990 SSMR3PutMem(pSSM, &pVM->cpum.s.aGuestCpuIdStd[0], sizeof(pVM->cpum.s.aGuestCpuIdStd));
1991
1992 SSMR3PutU32(pSSM, RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdExt));
1993 SSMR3PutMem(pSSM, &pVM->cpum.s.aGuestCpuIdExt[0], sizeof(pVM->cpum.s.aGuestCpuIdExt));
1994
1995 SSMR3PutU32(pSSM, RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdCentaur));
1996 SSMR3PutMem(pSSM, &pVM->cpum.s.aGuestCpuIdCentaur[0], sizeof(pVM->cpum.s.aGuestCpuIdCentaur));
1997
1998 SSMR3PutMem(pSSM, &pVM->cpum.s.GuestCpuIdDef, sizeof(pVM->cpum.s.GuestCpuIdDef));
1999
2000 /*
2001 * Save a good portion of the raw CPU IDs as well as they may come in
2002 * handy when validating features for raw mode.
2003 */
2004 CPUMCPUID aRawStd[16];
2005 for (unsigned i = 0; i < RT_ELEMENTS(aRawStd); i++)
2006 ASMCpuIdExSlow(i, 0, 0, 0, &aRawStd[i].eax, &aRawStd[i].ebx, &aRawStd[i].ecx, &aRawStd[i].edx);
2007 SSMR3PutU32(pSSM, RT_ELEMENTS(aRawStd));
2008 SSMR3PutMem(pSSM, &aRawStd[0], sizeof(aRawStd));
2009
2010 CPUMCPUID aRawExt[32];
2011 for (unsigned i = 0; i < RT_ELEMENTS(aRawExt); i++)
2012 ASMCpuIdExSlow(i | UINT32_C(0x80000000), 0, 0, 0, &aRawExt[i].eax, &aRawExt[i].ebx, &aRawExt[i].ecx, &aRawExt[i].edx);
2013 SSMR3PutU32(pSSM, RT_ELEMENTS(aRawExt));
2014 SSMR3PutMem(pSSM, &aRawExt[0], sizeof(aRawExt));
2015}
2016
2017
2018static int cpumR3LoadCpuIdOneGuestArray(PSSMHANDLE pSSM, uint32_t uBase, PCPUMCPUIDLEAF *ppaLeaves, uint32_t *pcLeaves)
2019{
2020 uint32_t cCpuIds;
2021 int rc = SSMR3GetU32(pSSM, &cCpuIds);
2022 if (RT_SUCCESS(rc))
2023 {
2024 if (cCpuIds < 64)
2025 {
2026 for (uint32_t i = 0; i < cCpuIds; i++)
2027 {
2028 CPUMCPUID CpuId;
2029 rc = SSMR3GetMem(pSSM, &CpuId, sizeof(CpuId));
2030 if (RT_FAILURE(rc))
2031 break;
2032
2033 CPUMCPUIDLEAF NewLeaf;
2034 NewLeaf.uLeaf = uBase + i;
2035 NewLeaf.uSubLeaf = 0;
2036 NewLeaf.fSubLeafMask = 0;
2037 NewLeaf.uEax = CpuId.eax;
2038 NewLeaf.uEbx = CpuId.ebx;
2039 NewLeaf.uEcx = CpuId.ecx;
2040 NewLeaf.uEdx = CpuId.edx;
2041 NewLeaf.fFlags = 0;
2042 rc = cpumR3CpuIdInsert(ppaLeaves, pcLeaves, &NewLeaf);
2043 }
2044 }
2045 else
2046 rc = VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2047 }
2048 if (RT_FAILURE(rc))
2049 {
2050 RTMemFree(*ppaLeaves);
2051 *ppaLeaves = NULL;
2052 *pcLeaves = 0;
2053 }
2054 return rc;
2055}
2056
2057
2058static int cpumR3LoadCpuIdGuestArrays(PSSMHANDLE pSSM, uint32_t uVersion, PCPUMCPUIDLEAF *ppaLeaves, uint32_t *pcLeaves)
2059{
2060 *ppaLeaves = NULL;
2061 *pcLeaves = 0;
2062
2063 int rc = cpumR3LoadCpuIdOneGuestArray(pSSM, UINT32_C(0x00000000), ppaLeaves, pcLeaves);
2064 if (RT_SUCCESS(rc))
2065 rc = cpumR3LoadCpuIdOneGuestArray(pSSM, UINT32_C(0x80000000), ppaLeaves, pcLeaves);
2066 if (RT_SUCCESS(rc))
2067 rc = cpumR3LoadCpuIdOneGuestArray(pSSM, UINT32_C(0xc0000000), ppaLeaves, pcLeaves);
2068
2069 return rc;
2070}
2071
2072
2073/**
2074 * Loads the CPU ID leaves saved by pass 0.
2075 *
2076 * @returns VBox status code.
2077 * @param pVM Pointer to the VM.
2078 * @param pSSM The saved state handle.
2079 * @param uVersion The format version.
2080 */
2081static int cpumR3LoadCpuId(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion)
2082{
2083 AssertMsgReturn(uVersion >= CPUM_SAVED_STATE_VERSION_VER3_2, ("%u\n", uVersion), VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION);
2084
2085 /*
2086 * Define a bunch of macros for simplifying the code.
2087 */
2088 /* Generic expression + failure message. */
2089#define CPUID_CHECK_RET(expr, fmt) \
2090 do { \
2091 if (!(expr)) \
2092 { \
2093 char *pszMsg = RTStrAPrintf2 fmt; /* lack of variadic macros sucks */ \
2094 if (fStrictCpuIdChecks) \
2095 { \
2096 int rcCpuid = SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS, "%s", pszMsg); \
2097 RTStrFree(pszMsg); \
2098 return rcCpuid; \
2099 } \
2100 LogRel(("CPUM: %s\n", pszMsg)); \
2101 RTStrFree(pszMsg); \
2102 } \
2103 } while (0)
2104#define CPUID_CHECK_WRN(expr, fmt) \
2105 do { \
2106 if (!(expr)) \
2107 LogRel(fmt); \
2108 } while (0)
2109
2110 /* For comparing two values and bitch if they differs. */
2111#define CPUID_CHECK2_RET(what, host, saved) \
2112 do { \
2113 if ((host) != (saved)) \
2114 { \
2115 if (fStrictCpuIdChecks) \
2116 return SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS, \
2117 N_(#what " mismatch: host=%#x saved=%#x"), (host), (saved)); \
2118 LogRel(("CPUM: " #what " differs: host=%#x saved=%#x\n", (host), (saved))); \
2119 } \
2120 } while (0)
2121#define CPUID_CHECK2_WRN(what, host, saved) \
2122 do { \
2123 if ((host) != (saved)) \
2124 LogRel(("CPUM: " #what " differs: host=%#x saved=%#x\n", (host), (saved))); \
2125 } while (0)
2126
2127 /* For checking raw cpu features (raw mode). */
2128#define CPUID_RAW_FEATURE_RET(set, reg, bit) \
2129 do { \
2130 if ((aHostRaw##set [1].reg & bit) != (aRaw##set [1].reg & bit)) \
2131 { \
2132 if (fStrictCpuIdChecks) \
2133 return SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS, \
2134 N_(#bit " mismatch: host=%d saved=%d"), \
2135 !!(aHostRaw##set [1].reg & (bit)), !!(aRaw##set [1].reg & (bit)) ); \
2136 LogRel(("CPUM: " #bit" differs: host=%d saved=%d\n", \
2137 !!(aHostRaw##set [1].reg & (bit)), !!(aRaw##set [1].reg & (bit)) )); \
2138 } \
2139 } while (0)
2140#define CPUID_RAW_FEATURE_WRN(set, reg, bit) \
2141 do { \
2142 if ((aHostRaw##set [1].reg & bit) != (aRaw##set [1].reg & bit)) \
2143 LogRel(("CPUM: " #bit" differs: host=%d saved=%d\n", \
2144 !!(aHostRaw##set [1].reg & (bit)), !!(aRaw##set [1].reg & (bit)) )); \
2145 } while (0)
2146#define CPUID_RAW_FEATURE_IGN(set, reg, bit) do { } while (0)
2147
2148 /* For checking guest features. */
2149#define CPUID_GST_FEATURE_RET(set, reg, bit) \
2150 do { \
2151 if ( (aGuestCpuId##set [1].reg & bit) \
2152 && !(aHostRaw##set [1].reg & bit) \
2153 && !(aHostOverride##set [1].reg & bit) \
2154 ) \
2155 { \
2156 if (fStrictCpuIdChecks) \
2157 return SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS, \
2158 N_(#bit " is not supported by the host but has already exposed to the guest")); \
2159 LogRel(("CPUM: " #bit " is not supported by the host but has already exposed to the guest\n")); \
2160 } \
2161 } while (0)
2162#define CPUID_GST_FEATURE_WRN(set, reg, bit) \
2163 do { \
2164 if ( (aGuestCpuId##set [1].reg & bit) \
2165 && !(aHostRaw##set [1].reg & bit) \
2166 && !(aHostOverride##set [1].reg & bit) \
2167 ) \
2168 LogRel(("CPUM: " #bit " is not supported by the host but has already exposed to the guest\n")); \
2169 } while (0)
2170#define CPUID_GST_FEATURE_EMU(set, reg, bit) \
2171 do { \
2172 if ( (aGuestCpuId##set [1].reg & bit) \
2173 && !(aHostRaw##set [1].reg & bit) \
2174 && !(aHostOverride##set [1].reg & bit) \
2175 ) \
2176 LogRel(("CPUM: Warning - " #bit " is not supported by the host but already exposed to the guest. This may impact performance.\n")); \
2177 } while (0)
2178#define CPUID_GST_FEATURE_IGN(set, reg, bit) do { } while (0)
2179
2180 /* For checking guest features if AMD guest CPU. */
2181#define CPUID_GST_AMD_FEATURE_RET(set, reg, bit) \
2182 do { \
2183 if ( (aGuestCpuId##set [1].reg & bit) \
2184 && fGuestAmd \
2185 && (!fGuestAmd || !(aHostRaw##set [1].reg & bit)) \
2186 && !(aHostOverride##set [1].reg & bit) \
2187 ) \
2188 { \
2189 if (fStrictCpuIdChecks) \
2190 return SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS, \
2191 N_(#bit " is not supported by the host but has already exposed to the guest")); \
2192 LogRel(("CPUM: " #bit " is not supported by the host but has already exposed to the guest\n")); \
2193 } \
2194 } while (0)
2195#define CPUID_GST_AMD_FEATURE_WRN(set, reg, bit) \
2196 do { \
2197 if ( (aGuestCpuId##set [1].reg & bit) \
2198 && fGuestAmd \
2199 && (!fGuestAmd || !(aHostRaw##set [1].reg & bit)) \
2200 && !(aHostOverride##set [1].reg & bit) \
2201 ) \
2202 LogRel(("CPUM: " #bit " is not supported by the host but has already exposed to the guest\n")); \
2203 } while (0)
2204#define CPUID_GST_AMD_FEATURE_EMU(set, reg, bit) \
2205 do { \
2206 if ( (aGuestCpuId##set [1].reg & bit) \
2207 && fGuestAmd \
2208 && (!fGuestAmd || !(aHostRaw##set [1].reg & bit)) \
2209 && !(aHostOverride##set [1].reg & bit) \
2210 ) \
2211 LogRel(("CPUM: Warning - " #bit " is not supported by the host but already exposed to the guest. This may impact performance.\n")); \
2212 } while (0)
2213#define CPUID_GST_AMD_FEATURE_IGN(set, reg, bit) do { } while (0)
2214
2215 /* For checking AMD features which have a corresponding bit in the standard
2216 range. (Intel defines very few bits in the extended feature sets.) */
2217#define CPUID_GST_FEATURE2_RET(reg, ExtBit, StdBit) \
2218 do { \
2219 if ( (aGuestCpuIdExt [1].reg & (ExtBit)) \
2220 && !(fHostAmd \
2221 ? aHostRawExt[1].reg & (ExtBit) \
2222 : aHostRawStd[1].reg & (StdBit)) \
2223 && !(aHostOverrideExt[1].reg & (ExtBit)) \
2224 ) \
2225 { \
2226 if (fStrictCpuIdChecks) \
2227 return SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS, \
2228 N_(#ExtBit " is not supported by the host but has already exposed to the guest")); \
2229 LogRel(("CPUM: " #ExtBit " is not supported by the host but has already exposed to the guest\n")); \
2230 } \
2231 } while (0)
2232#define CPUID_GST_FEATURE2_WRN(reg, ExtBit, StdBit) \
2233 do { \
2234 if ( (aGuestCpuIdExt [1].reg & (ExtBit)) \
2235 && !(fHostAmd \
2236 ? aHostRawExt[1].reg & (ExtBit) \
2237 : aHostRawStd[1].reg & (StdBit)) \
2238 && !(aHostOverrideExt[1].reg & (ExtBit)) \
2239 ) \
2240 LogRel(("CPUM: " #ExtBit " is not supported by the host but has already exposed to the guest\n")); \
2241 } while (0)
2242#define CPUID_GST_FEATURE2_EMU(reg, ExtBit, StdBit) \
2243 do { \
2244 if ( (aGuestCpuIdExt [1].reg & (ExtBit)) \
2245 && !(fHostAmd \
2246 ? aHostRawExt[1].reg & (ExtBit) \
2247 : aHostRawStd[1].reg & (StdBit)) \
2248 && !(aHostOverrideExt[1].reg & (ExtBit)) \
2249 ) \
2250 LogRel(("CPUM: Warning - " #ExtBit " is not supported by the host but already exposed to the guest. This may impact performance.\n")); \
2251 } while (0)
2252#define CPUID_GST_FEATURE2_IGN(reg, ExtBit, StdBit) do { } while (0)
2253
2254 /*
2255 * Load them into stack buffers first.
2256 */
2257 PCPUMCPUIDLEAF paLeaves;
2258 uint32_t cLeaves;
2259 int rc = cpumR3LoadCpuIdGuestArrays(pSSM, uVersion, &paLeaves, &cLeaves);
2260 AssertRCReturn(rc, rc);
2261
2262 /** @todo we'll be leaking paLeaves on error return... */
2263
2264 CPUMCPUID GuestCpuIdDef;
2265 rc = SSMR3GetMem(pSSM, &GuestCpuIdDef, sizeof(GuestCpuIdDef));
2266 AssertRCReturn(rc, rc);
2267
2268 CPUMCPUID aRawStd[16];
2269 uint32_t cRawStd;
2270 rc = SSMR3GetU32(pSSM, &cRawStd); AssertRCReturn(rc, rc);
2271 if (cRawStd > RT_ELEMENTS(aRawStd))
2272 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2273 rc = SSMR3GetMem(pSSM, &aRawStd[0], cRawStd * sizeof(aRawStd[0]));
2274 AssertRCReturn(rc, rc);
2275 for (uint32_t i = cRawStd; i < RT_ELEMENTS(aRawStd); i++)
2276 ASMCpuIdExSlow(i, 0, 0, 0, &aRawStd[i].eax, &aRawStd[i].ebx, &aRawStd[i].ecx, &aRawStd[i].edx);
2277
2278 CPUMCPUID aRawExt[32];
2279 uint32_t cRawExt;
2280 rc = SSMR3GetU32(pSSM, &cRawExt); AssertRCReturn(rc, rc);
2281 if (cRawExt > RT_ELEMENTS(aRawExt))
2282 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2283 rc = SSMR3GetMem(pSSM, &aRawExt[0], cRawExt * sizeof(aRawExt[0]));
2284 AssertRCReturn(rc, rc);
2285 for (uint32_t i = cRawExt; i < RT_ELEMENTS(aRawExt); i++)
2286 ASMCpuIdExSlow(i | UINT32_C(0x80000000), 0, 0, 0, &aRawExt[i].eax, &aRawExt[i].ebx, &aRawExt[i].ecx, &aRawExt[i].edx);
2287
2288 /*
2289 * Get the raw CPU IDs for the current host.
2290 */
2291 CPUMCPUID aHostRawStd[16];
2292 for (unsigned i = 0; i < RT_ELEMENTS(aHostRawStd); i++)
2293 ASMCpuIdExSlow(i, 0, 0, 0, &aHostRawStd[i].eax, &aHostRawStd[i].ebx, &aHostRawStd[i].ecx, &aHostRawStd[i].edx);
2294
2295 CPUMCPUID aHostRawExt[32];
2296 for (unsigned i = 0; i < RT_ELEMENTS(aHostRawExt); i++)
2297 ASMCpuIdExSlow(i | UINT32_C(0x80000000), 0, 0, 0,
2298 &aHostRawExt[i].eax, &aHostRawExt[i].ebx, &aHostRawExt[i].ecx, &aHostRawExt[i].edx);
2299
2300 /*
2301 * Get the host and guest overrides so we don't reject the state because
2302 * some feature was enabled thru these interfaces.
2303 * Note! We currently only need the feature leaves, so skip rest.
2304 */
2305 PCFGMNODE pOverrideCfg = CFGMR3GetChild(CFGMR3GetRoot(pVM), "CPUM/HostCPUID");
2306 CPUMCPUID aHostOverrideStd[2];
2307 memcpy(&aHostOverrideStd[0], &aHostRawStd[0], sizeof(aHostOverrideStd));
2308 cpumR3CpuIdInitLoadOverrideSet(UINT32_C(0x00000000), &aHostOverrideStd[0], RT_ELEMENTS(aHostOverrideStd), pOverrideCfg);
2309
2310 CPUMCPUID aHostOverrideExt[2];
2311 memcpy(&aHostOverrideExt[0], &aHostRawExt[0], sizeof(aHostOverrideExt));
2312 cpumR3CpuIdInitLoadOverrideSet(UINT32_C(0x80000000), &aHostOverrideExt[0], RT_ELEMENTS(aHostOverrideExt), pOverrideCfg);
2313
2314 /*
2315 * This can be skipped.
2316 */
2317 bool fStrictCpuIdChecks;
2318 CFGMR3QueryBoolDef(CFGMR3GetChild(CFGMR3GetRoot(pVM), "CPUM"), "StrictCpuIdChecks", &fStrictCpuIdChecks, true);
2319
2320
2321
2322 /*
2323 * For raw-mode we'll require that the CPUs are very similar since we don't
2324 * intercept CPUID instructions for user mode applications.
2325 */
2326 if (!HMIsEnabled(pVM))
2327 {
2328 /* CPUID(0) */
2329 CPUID_CHECK_RET( aHostRawStd[0].ebx == aRawStd[0].ebx
2330 && aHostRawStd[0].ecx == aRawStd[0].ecx
2331 && aHostRawStd[0].edx == aRawStd[0].edx,
2332 (N_("CPU vendor mismatch: host='%.4s%.4s%.4s' saved='%.4s%.4s%.4s'"),
2333 &aHostRawStd[0].ebx, &aHostRawStd[0].edx, &aHostRawStd[0].ecx,
2334 &aRawStd[0].ebx, &aRawStd[0].edx, &aRawStd[0].ecx));
2335 CPUID_CHECK2_WRN("Std CPUID max leaf", aHostRawStd[0].eax, aRawStd[0].eax);
2336 CPUID_CHECK2_WRN("Reserved bits 15:14", (aHostRawExt[1].eax >> 14) & 3, (aRawExt[1].eax >> 14) & 3);
2337 CPUID_CHECK2_WRN("Reserved bits 31:28", aHostRawExt[1].eax >> 28, aRawExt[1].eax >> 28);
2338
2339 bool const fIntel = ASMIsIntelCpuEx(aRawStd[0].ebx, aRawStd[0].ecx, aRawStd[0].edx);
2340
2341 /* CPUID(1).eax */
2342 CPUID_CHECK2_RET("CPU family", ASMGetCpuFamily(aHostRawStd[1].eax), ASMGetCpuFamily(aRawStd[1].eax));
2343 CPUID_CHECK2_RET("CPU model", ASMGetCpuModel(aHostRawStd[1].eax, fIntel), ASMGetCpuModel(aRawStd[1].eax, fIntel));
2344 CPUID_CHECK2_WRN("CPU type", (aHostRawStd[1].eax >> 12) & 3, (aRawStd[1].eax >> 12) & 3 );
2345
2346 /* CPUID(1).ebx - completely ignore CPU count and APIC ID. */
2347 CPUID_CHECK2_RET("CPU brand ID", aHostRawStd[1].ebx & 0xff, aRawStd[1].ebx & 0xff);
2348 CPUID_CHECK2_WRN("CLFLUSH chunk count", (aHostRawStd[1].ebx >> 8) & 0xff, (aRawStd[1].ebx >> 8) & 0xff);
2349
2350 /* CPUID(1).ecx */
2351 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSE3);
2352 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_PCLMUL);
2353 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_DTES64);
2354 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_MONITOR);
2355 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_CPLDS);
2356 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_VMX);
2357 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_SMX);
2358 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_EST);
2359 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_TM2);
2360 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSSE3);
2361 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_CNTXID);
2362 CPUID_RAW_FEATURE_RET(Std, ecx, RT_BIT_32(11) /*reserved*/ );
2363 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_FMA);
2364 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_CX16);
2365 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_TPRUPDATE);
2366 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_PDCM);
2367 CPUID_RAW_FEATURE_RET(Std, ecx, RT_BIT_32(16) /*reserved*/);
2368 CPUID_RAW_FEATURE_RET(Std, ecx, RT_BIT_32(17) /*reserved*/);
2369 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_DCA);
2370 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSE4_1);
2371 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSE4_2);
2372 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_X2APIC);
2373 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_MOVBE);
2374 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_POPCNT);
2375 CPUID_RAW_FEATURE_RET(Std, ecx, RT_BIT_32(24) /*reserved*/);
2376 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_AES);
2377 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_XSAVE);
2378 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_OSXSAVE);
2379 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_AVX);
2380 CPUID_RAW_FEATURE_RET(Std, ecx, RT_BIT_32(29) /*reserved*/);
2381 CPUID_RAW_FEATURE_RET(Std, ecx, RT_BIT_32(30) /*reserved*/);
2382 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_HVP);
2383
2384 /* CPUID(1).edx */
2385 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_FPU);
2386 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_VME);
2387 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_DE);
2388 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PSE);
2389 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_TSC);
2390 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_MSR);
2391 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PAE);
2392 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_MCE);
2393 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_CX8);
2394 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_APIC);
2395 CPUID_RAW_FEATURE_RET(Std, edx, RT_BIT_32(10) /*reserved*/);
2396 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_SEP);
2397 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_MTRR);
2398 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PGE);
2399 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_MCA);
2400 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_CMOV);
2401 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PAT);
2402 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PSE36);
2403 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PSN);
2404 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_CLFSH);
2405 CPUID_RAW_FEATURE_RET(Std, edx, RT_BIT_32(20) /*reserved*/);
2406 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_DS);
2407 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_ACPI);
2408 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_MMX);
2409 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_FXSR);
2410 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_SSE);
2411 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_SSE2);
2412 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_SS);
2413 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_HTT);
2414 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_TM);
2415 CPUID_RAW_FEATURE_RET(Std, edx, RT_BIT_32(30) /*JMPE/IA64*/);
2416 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PBE);
2417
2418 /* CPUID(2) - config, mostly about caches. ignore. */
2419 /* CPUID(3) - processor serial number. ignore. */
2420 /* CPUID(4) - config, cache and topology - takes ECX as input. ignore. */
2421 /* CPUID(5) - mwait/monitor config. ignore. */
2422 /* CPUID(6) - power management. ignore. */
2423 /* CPUID(7) - ???. ignore. */
2424 /* CPUID(8) - ???. ignore. */
2425 /* CPUID(9) - DCA. ignore for now. */
2426 /* CPUID(a) - PeMo info. ignore for now. */
2427 /* CPUID(b) - topology info - takes ECX as input. ignore. */
2428
2429 /* CPUID(d) - XCR0 stuff - takes ECX as input. We only warn about the main level (ECX=0) for now. */
2430 CPUID_CHECK_WRN( aRawStd[0].eax < UINT32_C(0x0000000d)
2431 || aHostRawStd[0].eax >= UINT32_C(0x0000000d),
2432 ("CPUM: Standard leaf D was present on saved state host, not present on current.\n"));
2433 if ( aRawStd[0].eax >= UINT32_C(0x0000000d)
2434 && aHostRawStd[0].eax >= UINT32_C(0x0000000d))
2435 {
2436 CPUID_CHECK2_WRN("Valid low XCR0 bits", aHostRawStd[0xd].eax, aRawStd[0xd].eax);
2437 CPUID_CHECK2_WRN("Valid high XCR0 bits", aHostRawStd[0xd].edx, aRawStd[0xd].edx);
2438 CPUID_CHECK2_WRN("Current XSAVE/XRSTOR area size", aHostRawStd[0xd].ebx, aRawStd[0xd].ebx);
2439 CPUID_CHECK2_WRN("Max XSAVE/XRSTOR area size", aHostRawStd[0xd].ecx, aRawStd[0xd].ecx);
2440 }
2441
2442 /* CPUID(0x80000000) - same as CPUID(0) except for eax.
2443 Note! Intel have/is marking many of the fields here as reserved. We
2444 will verify them as if it's an AMD CPU. */
2445 CPUID_CHECK_RET( (aHostRawExt[0].eax >= UINT32_C(0x80000001) && aHostRawExt[0].eax <= UINT32_C(0x8000007f))
2446 || !(aRawExt[0].eax >= UINT32_C(0x80000001) && aRawExt[0].eax <= UINT32_C(0x8000007f)),
2447 (N_("Extended leaves was present on saved state host, but is missing on the current\n")));
2448 if (aRawExt[0].eax >= UINT32_C(0x80000001) && aRawExt[0].eax <= UINT32_C(0x8000007f))
2449 {
2450 CPUID_CHECK_RET( aHostRawExt[0].ebx == aRawExt[0].ebx
2451 && aHostRawExt[0].ecx == aRawExt[0].ecx
2452 && aHostRawExt[0].edx == aRawExt[0].edx,
2453 (N_("CPU vendor mismatch: host='%.4s%.4s%.4s' saved='%.4s%.4s%.4s'"),
2454 &aHostRawExt[0].ebx, &aHostRawExt[0].edx, &aHostRawExt[0].ecx,
2455 &aRawExt[0].ebx, &aRawExt[0].edx, &aRawExt[0].ecx));
2456 CPUID_CHECK2_WRN("Ext CPUID max leaf", aHostRawExt[0].eax, aRawExt[0].eax);
2457
2458 /* CPUID(0x80000001).eax - same as CPUID(0).eax. */
2459 CPUID_CHECK2_RET("CPU family", ASMGetCpuFamily(aHostRawExt[1].eax), ASMGetCpuFamily(aRawExt[1].eax));
2460 CPUID_CHECK2_RET("CPU model", ASMGetCpuModel(aHostRawExt[1].eax, fIntel), ASMGetCpuModel(aRawExt[1].eax, fIntel));
2461 CPUID_CHECK2_WRN("CPU type", (aHostRawExt[1].eax >> 12) & 3, (aRawExt[1].eax >> 12) & 3 );
2462 CPUID_CHECK2_WRN("Reserved bits 15:14", (aHostRawExt[1].eax >> 14) & 3, (aRawExt[1].eax >> 14) & 3 );
2463 CPUID_CHECK2_WRN("Reserved bits 31:28", aHostRawExt[1].eax >> 28, aRawExt[1].eax >> 28);
2464
2465 /* CPUID(0x80000001).ebx - Brand ID (maybe), just warn if things differs. */
2466 CPUID_CHECK2_WRN("CPU BrandID", aHostRawExt[1].ebx & 0xffff, aRawExt[1].ebx & 0xffff);
2467 CPUID_CHECK2_WRN("Reserved bits 16:27", (aHostRawExt[1].ebx >> 16) & 0xfff, (aRawExt[1].ebx >> 16) & 0xfff);
2468 CPUID_CHECK2_WRN("PkgType", (aHostRawExt[1].ebx >> 28) & 0xf, (aRawExt[1].ebx >> 28) & 0xf);
2469
2470 /* CPUID(0x80000001).ecx */
2471 CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_EXT_FEATURE_ECX_LAHF_SAHF);
2472 CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_CMPL);
2473 CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SVM);
2474 CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_EXT_APIC);
2475 CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_CR8L);
2476 CPUID_RAW_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_ABM);
2477 CPUID_RAW_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SSE4A);
2478 CPUID_RAW_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_MISALNSSE);
2479 CPUID_RAW_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_3DNOWPRF);
2480 CPUID_RAW_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_OSVW);
2481 CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_IBS);
2482 CPUID_RAW_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SSE5);
2483 CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SKINIT);
2484 CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_WDT);
2485 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(14));
2486 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(15));
2487 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(16));
2488 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(17));
2489 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(18));
2490 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(19));
2491 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(20));
2492 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(21));
2493 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(22));
2494 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(23));
2495 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(24));
2496 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(25));
2497 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(26));
2498 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(27));
2499 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(28));
2500 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(29));
2501 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(30));
2502 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(31));
2503
2504 /* CPUID(0x80000001).edx */
2505 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_FPU);
2506 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_VME);
2507 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_DE);
2508 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_PSE);
2509 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_TSC);
2510 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_MSR);
2511 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_PAE);
2512 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_MCE);
2513 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_CX8);
2514 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_APIC);
2515 CPUID_RAW_FEATURE_IGN(Ext, edx, RT_BIT_32(10) /*reserved*/);
2516 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_EXT_FEATURE_EDX_SEP);
2517 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_MTRR);
2518 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_PGE);
2519 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_MCA);
2520 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_CMOV);
2521 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_PAT);
2522 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_PSE36);
2523 CPUID_RAW_FEATURE_IGN(Ext, edx, RT_BIT_32(18) /*reserved*/);
2524 CPUID_RAW_FEATURE_IGN(Ext, edx, RT_BIT_32(19) /*reserved*/);
2525 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_EXT_FEATURE_EDX_NX);
2526 CPUID_RAW_FEATURE_IGN(Ext, edx, RT_BIT_32(21) /*reserved*/);
2527 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_AXMMX);
2528 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_MMX);
2529 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_FXSR);
2530 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_FFXSR);
2531 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_EXT_FEATURE_EDX_PAGE1GB);
2532 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_EXT_FEATURE_EDX_RDTSCP);
2533 CPUID_RAW_FEATURE_IGN(Ext, edx, RT_BIT_32(28) /*reserved*/);
2534 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_EXT_FEATURE_EDX_LONG_MODE);
2535 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_3DNOW_EX);
2536 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_3DNOW);
2537
2538 /** @todo verify the rest as well. */
2539 }
2540 }
2541
2542
2543
2544 /*
2545 * Verify that we can support the features already exposed to the guest on
2546 * this host.
2547 *
2548 * Most of the features we're emulating requires intercepting instruction
2549 * and doing it the slow way, so there is no need to warn when they aren't
2550 * present in the host CPU. Thus we use IGN instead of EMU on these.
2551 *
2552 * Trailing comments:
2553 * "EMU" - Possible to emulate, could be lots of work and very slow.
2554 * "EMU?" - Can this be emulated?
2555 */
2556 CPUMCPUID aGuestCpuIdStd[2];
2557 RT_ZERO(aGuestCpuIdStd);
2558 cpumR3CpuIdGetLeafLegacy(paLeaves, cLeaves, 1, 0, &aGuestCpuIdStd[1]);
2559
2560 /* CPUID(1).ecx */
2561 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSE3); // -> EMU
2562 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_PCLMUL); // -> EMU?
2563 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_DTES64); // -> EMU?
2564 CPUID_GST_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_MONITOR);
2565 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_CPLDS); // -> EMU?
2566 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_VMX); // -> EMU
2567 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SMX); // -> EMU
2568 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_EST); // -> EMU
2569 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_TM2); // -> EMU?
2570 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSSE3); // -> EMU
2571 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_CNTXID); // -> EMU
2572 CPUID_GST_FEATURE_RET(Std, ecx, RT_BIT_32(11) /*reserved*/ );
2573 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_FMA); // -> EMU? what's this?
2574 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_CX16); // -> EMU?
2575 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_TPRUPDATE);//-> EMU
2576 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_PDCM); // -> EMU
2577 CPUID_GST_FEATURE_RET(Std, ecx, RT_BIT_32(16) /*reserved*/);
2578 CPUID_GST_FEATURE_RET(Std, ecx, RT_BIT_32(17) /*reserved*/);
2579 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_DCA); // -> EMU?
2580 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSE4_1); // -> EMU
2581 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSE4_2); // -> EMU
2582 CPUID_GST_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_X2APIC);
2583 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_MOVBE); // -> EMU
2584 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_POPCNT); // -> EMU
2585 CPUID_GST_FEATURE_RET(Std, ecx, RT_BIT_32(24) /*reserved*/);
2586 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_AES); // -> EMU
2587 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_XSAVE); // -> EMU
2588 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_OSXSAVE); // -> EMU
2589 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_AVX); // -> EMU?
2590 CPUID_GST_FEATURE_RET(Std, ecx, RT_BIT_32(29) /*reserved*/);
2591 CPUID_GST_FEATURE_RET(Std, ecx, RT_BIT_32(30) /*reserved*/);
2592 CPUID_GST_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_HVP); // Normally not set by host
2593
2594 /* CPUID(1).edx */
2595 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_FPU);
2596 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_VME);
2597 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_DE); // -> EMU?
2598 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PSE);
2599 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_TSC); // -> EMU
2600 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_MSR); // -> EMU
2601 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_PAE);
2602 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_MCE);
2603 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_CX8); // -> EMU?
2604 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_APIC);
2605 CPUID_GST_FEATURE_RET(Std, edx, RT_BIT_32(10) /*reserved*/);
2606 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_SEP);
2607 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_MTRR);
2608 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PGE);
2609 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_MCA);
2610 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_CMOV); // -> EMU
2611 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PAT);
2612 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PSE36);
2613 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PSN);
2614 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_CLFSH); // -> EMU
2615 CPUID_GST_FEATURE_RET(Std, edx, RT_BIT_32(20) /*reserved*/);
2616 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_DS); // -> EMU?
2617 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_ACPI); // -> EMU?
2618 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_MMX); // -> EMU
2619 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_FXSR); // -> EMU
2620 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_SSE); // -> EMU
2621 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_SSE2); // -> EMU
2622 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_SS); // -> EMU?
2623 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_HTT); // -> EMU?
2624 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_TM); // -> EMU?
2625 CPUID_GST_FEATURE_RET(Std, edx, RT_BIT_32(30) /*JMPE/IA64*/); // -> EMU
2626 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_PBE); // -> EMU?
2627
2628 /* CPUID(0x80000000). */
2629 CPUMCPUID aGuestCpuIdExt[2];
2630 RT_ZERO(aGuestCpuIdExt);
2631 if (cpumR3CpuIdGetLeafLegacy(paLeaves, cLeaves, UINT32_C(0x80000001), 0, &aGuestCpuIdExt[1]))
2632 {
2633 /** @todo deal with no 0x80000001 on the host. */
2634 bool const fHostAmd = ASMIsAmdCpuEx(aHostRawStd[0].ebx, aHostRawStd[0].ecx, aHostRawStd[0].edx);
2635 bool const fGuestAmd = ASMIsAmdCpuEx(aGuestCpuIdExt[0].ebx, aGuestCpuIdExt[0].ecx, aGuestCpuIdExt[0].edx);
2636
2637 /* CPUID(0x80000001).ecx */
2638 CPUID_GST_FEATURE_WRN(Ext, ecx, X86_CPUID_EXT_FEATURE_ECX_LAHF_SAHF); // -> EMU
2639 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_CMPL); // -> EMU
2640 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SVM); // -> EMU
2641 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_EXT_APIC);// ???
2642 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_CR8L); // -> EMU
2643 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_ABM); // -> EMU
2644 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SSE4A); // -> EMU
2645 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_MISALNSSE);//-> EMU
2646 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_3DNOWPRF);// -> EMU
2647 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_OSVW); // -> EMU?
2648 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_IBS); // -> EMU
2649 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SSE5); // -> EMU
2650 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SKINIT); // -> EMU
2651 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_WDT); // -> EMU
2652 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(14));
2653 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(15));
2654 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(16));
2655 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(17));
2656 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(18));
2657 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(19));
2658 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(20));
2659 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(21));
2660 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(22));
2661 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(23));
2662 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(24));
2663 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(25));
2664 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(26));
2665 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(27));
2666 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(28));
2667 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(29));
2668 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(30));
2669 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(31));
2670
2671 /* CPUID(0x80000001).edx */
2672 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_FPU, X86_CPUID_FEATURE_EDX_FPU); // -> EMU
2673 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_VME, X86_CPUID_FEATURE_EDX_VME); // -> EMU
2674 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_DE, X86_CPUID_FEATURE_EDX_DE); // -> EMU
2675 CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_PSE, X86_CPUID_FEATURE_EDX_PSE);
2676 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_TSC, X86_CPUID_FEATURE_EDX_TSC); // -> EMU
2677 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_MSR, X86_CPUID_FEATURE_EDX_MSR); // -> EMU
2678 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_PAE, X86_CPUID_FEATURE_EDX_PAE);
2679 CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_MCE, X86_CPUID_FEATURE_EDX_MCE);
2680 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_CX8, X86_CPUID_FEATURE_EDX_CX8); // -> EMU?
2681 CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_APIC, X86_CPUID_FEATURE_EDX_APIC);
2682 CPUID_GST_AMD_FEATURE_WRN(Ext, edx, RT_BIT_32(10) /*reserved*/);
2683 CPUID_GST_FEATURE_IGN( Ext, edx, X86_CPUID_EXT_FEATURE_EDX_SYSCALL); // On Intel: long mode only.
2684 CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_MTRR, X86_CPUID_FEATURE_EDX_MTRR);
2685 CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_PGE, X86_CPUID_FEATURE_EDX_PGE);
2686 CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_MCA, X86_CPUID_FEATURE_EDX_MCA);
2687 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_CMOV, X86_CPUID_FEATURE_EDX_CMOV); // -> EMU
2688 CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_PAT, X86_CPUID_FEATURE_EDX_PAT);
2689 CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_PSE36, X86_CPUID_FEATURE_EDX_PSE36);
2690 CPUID_GST_AMD_FEATURE_WRN(Ext, edx, RT_BIT_32(18) /*reserved*/);
2691 CPUID_GST_AMD_FEATURE_WRN(Ext, edx, RT_BIT_32(19) /*reserved*/);
2692 CPUID_GST_FEATURE_RET( Ext, edx, X86_CPUID_EXT_FEATURE_EDX_NX);
2693 CPUID_GST_FEATURE_WRN( Ext, edx, RT_BIT_32(21) /*reserved*/);
2694 CPUID_GST_FEATURE_RET( Ext, edx, X86_CPUID_AMD_FEATURE_EDX_AXMMX);
2695 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_MMX, X86_CPUID_FEATURE_EDX_MMX); // -> EMU
2696 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_FXSR, X86_CPUID_FEATURE_EDX_FXSR); // -> EMU
2697 CPUID_GST_AMD_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_FFXSR);
2698 CPUID_GST_AMD_FEATURE_RET(Ext, edx, X86_CPUID_EXT_FEATURE_EDX_PAGE1GB);
2699 CPUID_GST_AMD_FEATURE_RET(Ext, edx, X86_CPUID_EXT_FEATURE_EDX_RDTSCP);
2700 CPUID_GST_FEATURE_IGN( Ext, edx, RT_BIT_32(28) /*reserved*/);
2701 CPUID_GST_FEATURE_RET( Ext, edx, X86_CPUID_EXT_FEATURE_EDX_LONG_MODE);
2702 CPUID_GST_AMD_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_3DNOW_EX);
2703 CPUID_GST_AMD_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_3DNOW);
2704 }
2705
2706 /*
2707 * We're good, commit the CPU ID leaves.
2708 */
2709 MMHyperFree(pVM, pVM->cpum.s.GuestInfo.paCpuIdLeavesR3);
2710 pVM->cpum.s.GuestInfo.paCpuIdLeavesR0 = NIL_RTR0PTR;
2711 pVM->cpum.s.GuestInfo.paCpuIdLeavesRC = NIL_RTRCPTR;
2712 pVM->cpum.s.GuestInfo.DefCpuId = GuestCpuIdDef;
2713 rc = cpumR3CpuIdInstallAndExplodeLeaves(pVM, &pVM->cpum.s, paLeaves, cLeaves);
2714 RTMemFree(paLeaves);
2715 AssertLogRelRCReturn(rc, rc);
2716
2717
2718#undef CPUID_CHECK_RET
2719#undef CPUID_CHECK_WRN
2720#undef CPUID_CHECK2_RET
2721#undef CPUID_CHECK2_WRN
2722#undef CPUID_RAW_FEATURE_RET
2723#undef CPUID_RAW_FEATURE_WRN
2724#undef CPUID_RAW_FEATURE_IGN
2725#undef CPUID_GST_FEATURE_RET
2726#undef CPUID_GST_FEATURE_WRN
2727#undef CPUID_GST_FEATURE_EMU
2728#undef CPUID_GST_FEATURE_IGN
2729#undef CPUID_GST_FEATURE2_RET
2730#undef CPUID_GST_FEATURE2_WRN
2731#undef CPUID_GST_FEATURE2_EMU
2732#undef CPUID_GST_FEATURE2_IGN
2733#undef CPUID_GST_AMD_FEATURE_RET
2734#undef CPUID_GST_AMD_FEATURE_WRN
2735#undef CPUID_GST_AMD_FEATURE_EMU
2736#undef CPUID_GST_AMD_FEATURE_IGN
2737
2738 return VINF_SUCCESS;
2739}
2740
2741
2742/**
2743 * Pass 0 live exec callback.
2744 *
2745 * @returns VINF_SSM_DONT_CALL_AGAIN.
2746 * @param pVM Pointer to the VM.
2747 * @param pSSM The saved state handle.
2748 * @param uPass The pass (0).
2749 */
2750static DECLCALLBACK(int) cpumR3LiveExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uPass)
2751{
2752 AssertReturn(uPass == 0, VERR_SSM_UNEXPECTED_PASS);
2753 cpumR3SaveCpuId(pVM, pSSM);
2754 return VINF_SSM_DONT_CALL_AGAIN;
2755}
2756
2757
2758/**
2759 * Execute state save operation.
2760 *
2761 * @returns VBox status code.
2762 * @param pVM Pointer to the VM.
2763 * @param pSSM SSM operation handle.
2764 */
2765static DECLCALLBACK(int) cpumR3SaveExec(PVM pVM, PSSMHANDLE pSSM)
2766{
2767 /*
2768 * Save.
2769 */
2770 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2771 {
2772 PVMCPU pVCpu = &pVM->aCpus[i];
2773 SSMR3PutStructEx(pSSM, &pVCpu->cpum.s.Hyper, sizeof(pVCpu->cpum.s.Hyper), 0, g_aCpumCtxFields, NULL);
2774 }
2775
2776 SSMR3PutU32(pSSM, pVM->cCpus);
2777 SSMR3PutU32(pSSM, sizeof(pVM->aCpus[0].cpum.s.GuestMsrs.msr));
2778 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
2779 {
2780 PVMCPU pVCpu = &pVM->aCpus[iCpu];
2781
2782 SSMR3PutStructEx(pSSM, &pVCpu->cpum.s.Guest, sizeof(pVCpu->cpum.s.Guest), 0, g_aCpumCtxFields, NULL);
2783 SSMR3PutU32(pSSM, pVCpu->cpum.s.fUseFlags);
2784 SSMR3PutU32(pSSM, pVCpu->cpum.s.fChanged);
2785 AssertCompileSizeAlignment(pVCpu->cpum.s.GuestMsrs.msr, sizeof(uint64_t));
2786 SSMR3PutMem(pSSM, &pVCpu->cpum.s.GuestMsrs, sizeof(pVCpu->cpum.s.GuestMsrs.msr));
2787 }
2788
2789 cpumR3SaveCpuId(pVM, pSSM);
2790 return VINF_SUCCESS;
2791}
2792
2793
2794/**
2795 * @copydoc FNSSMINTLOADPREP
2796 */
2797static DECLCALLBACK(int) cpumR3LoadPrep(PVM pVM, PSSMHANDLE pSSM)
2798{
2799 NOREF(pSSM);
2800 pVM->cpum.s.fPendingRestore = true;
2801 return VINF_SUCCESS;
2802}
2803
2804
2805/**
2806 * @copydoc FNSSMINTLOADEXEC
2807 */
2808static DECLCALLBACK(int) cpumR3LoadExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
2809{
2810 /*
2811 * Validate version.
2812 */
2813 if ( uVersion != CPUM_SAVED_STATE_VERSION
2814 && uVersion != CPUM_SAVED_STATE_VERSION_MEM
2815 && uVersion != CPUM_SAVED_STATE_VERSION_NO_MSR_SIZE
2816 && uVersion != CPUM_SAVED_STATE_VERSION_VER3_2
2817 && uVersion != CPUM_SAVED_STATE_VERSION_VER3_0
2818 && uVersion != CPUM_SAVED_STATE_VERSION_VER2_1_NOMSR
2819 && uVersion != CPUM_SAVED_STATE_VERSION_VER2_0
2820 && uVersion != CPUM_SAVED_STATE_VERSION_VER1_6)
2821 {
2822 AssertMsgFailed(("cpumR3LoadExec: Invalid version uVersion=%d!\n", uVersion));
2823 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
2824 }
2825
2826 if (uPass == SSM_PASS_FINAL)
2827 {
2828 /*
2829 * Set the size of RTGCPTR for SSMR3GetGCPtr. (Only necessary for
2830 * really old SSM file versions.)
2831 */
2832 if (uVersion == CPUM_SAVED_STATE_VERSION_VER1_6)
2833 SSMR3HandleSetGCPtrSize(pSSM, sizeof(RTGCPTR32));
2834 else if (uVersion <= CPUM_SAVED_STATE_VERSION_VER3_0)
2835 SSMR3HandleSetGCPtrSize(pSSM, HC_ARCH_BITS == 32 ? sizeof(RTGCPTR32) : sizeof(RTGCPTR));
2836
2837 uint32_t const fLoad = uVersion > CPUM_SAVED_STATE_VERSION_MEM ? 0 : SSMSTRUCT_FLAGS_MEM_BAND_AID_RELAXED;
2838 PCSSMFIELD paCpumCtxFields = g_aCpumCtxFields;
2839 if (uVersion == CPUM_SAVED_STATE_VERSION_VER1_6)
2840 paCpumCtxFields = g_aCpumCtxFieldsV16;
2841 else if (uVersion <= CPUM_SAVED_STATE_VERSION_MEM)
2842 paCpumCtxFields = g_aCpumCtxFieldsMem;
2843
2844 /*
2845 * Restore.
2846 */
2847 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
2848 {
2849 PVMCPU pVCpu = &pVM->aCpus[iCpu];
2850 uint64_t uCR3 = pVCpu->cpum.s.Hyper.cr3;
2851 uint64_t uRSP = pVCpu->cpum.s.Hyper.rsp; /* see VMMR3Relocate(). */
2852 SSMR3GetStructEx(pSSM, &pVCpu->cpum.s.Hyper, sizeof(pVCpu->cpum.s.Hyper), fLoad, paCpumCtxFields, NULL);
2853 pVCpu->cpum.s.Hyper.cr3 = uCR3;
2854 pVCpu->cpum.s.Hyper.rsp = uRSP;
2855 }
2856
2857 if (uVersion >= CPUM_SAVED_STATE_VERSION_VER2_1_NOMSR)
2858 {
2859 uint32_t cCpus;
2860 int rc = SSMR3GetU32(pSSM, &cCpus); AssertRCReturn(rc, rc);
2861 AssertLogRelMsgReturn(cCpus == pVM->cCpus, ("Mismatching CPU counts: saved: %u; configured: %u \n", cCpus, pVM->cCpus),
2862 VERR_SSM_UNEXPECTED_DATA);
2863 }
2864 AssertLogRelMsgReturn( uVersion > CPUM_SAVED_STATE_VERSION_VER2_0
2865 || pVM->cCpus == 1,
2866 ("cCpus=%u\n", pVM->cCpus),
2867 VERR_SSM_UNEXPECTED_DATA);
2868
2869 uint32_t cbMsrs = 0;
2870 if (uVersion > CPUM_SAVED_STATE_VERSION_NO_MSR_SIZE)
2871 {
2872 int rc = SSMR3GetU32(pSSM, &cbMsrs); AssertRCReturn(rc, rc);
2873 AssertLogRelMsgReturn(RT_ALIGN(cbMsrs, sizeof(uint64_t)) == cbMsrs, ("Size of MSRs is misaligned: %#x\n", cbMsrs),
2874 VERR_SSM_UNEXPECTED_DATA);
2875 AssertLogRelMsgReturn(cbMsrs <= sizeof(CPUMCTXMSRS) && cbMsrs > 0, ("Size of MSRs is out of range: %#x\n", cbMsrs),
2876 VERR_SSM_UNEXPECTED_DATA);
2877 }
2878
2879 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
2880 {
2881 PVMCPU pVCpu = &pVM->aCpus[iCpu];
2882 SSMR3GetStructEx(pSSM, &pVCpu->cpum.s.Guest, sizeof(pVCpu->cpum.s.Guest), fLoad,
2883 paCpumCtxFields, NULL);
2884 SSMR3GetU32(pSSM, &pVCpu->cpum.s.fUseFlags);
2885 SSMR3GetU32(pSSM, &pVCpu->cpum.s.fChanged);
2886 if (uVersion > CPUM_SAVED_STATE_VERSION_NO_MSR_SIZE)
2887 SSMR3GetMem(pSSM, &pVCpu->cpum.s.GuestMsrs.au64[0], cbMsrs);
2888 else if (uVersion >= CPUM_SAVED_STATE_VERSION_VER3_0)
2889 {
2890 SSMR3GetMem(pSSM, &pVCpu->cpum.s.GuestMsrs.au64[0], 2 * sizeof(uint64_t)); /* Restore two MSRs. */
2891 SSMR3Skip(pSSM, 62 * sizeof(uint64_t));
2892 }
2893
2894 /* REM and other may have cleared must-be-one fields in DR6 and
2895 DR7, fix these. */
2896 pVCpu->cpum.s.Guest.dr[6] &= ~(X86_DR6_RAZ_MASK | X86_DR6_MBZ_MASK);
2897 pVCpu->cpum.s.Guest.dr[6] |= X86_DR6_RA1_MASK;
2898 pVCpu->cpum.s.Guest.dr[7] &= ~(X86_DR7_RAZ_MASK | X86_DR7_MBZ_MASK);
2899 pVCpu->cpum.s.Guest.dr[7] |= X86_DR7_RA1_MASK;
2900 }
2901
2902 /* Older states does not have the internal selector register flags
2903 and valid selector value. Supply those. */
2904 if (uVersion <= CPUM_SAVED_STATE_VERSION_MEM)
2905 {
2906 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
2907 {
2908 PVMCPU pVCpu = &pVM->aCpus[iCpu];
2909 bool const fValid = HMIsEnabled(pVM)
2910 || ( uVersion > CPUM_SAVED_STATE_VERSION_VER3_2
2911 && !(pVCpu->cpum.s.fChanged & CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID));
2912 PCPUMSELREG paSelReg = CPUMCTX_FIRST_SREG(&pVCpu->cpum.s.Guest);
2913 if (fValid)
2914 {
2915 for (uint32_t iSelReg = 0; iSelReg < X86_SREG_COUNT; iSelReg++)
2916 {
2917 paSelReg[iSelReg].fFlags = CPUMSELREG_FLAGS_VALID;
2918 paSelReg[iSelReg].ValidSel = paSelReg[iSelReg].Sel;
2919 }
2920
2921 pVCpu->cpum.s.Guest.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
2922 pVCpu->cpum.s.Guest.ldtr.ValidSel = pVCpu->cpum.s.Guest.ldtr.Sel;
2923 }
2924 else
2925 {
2926 for (uint32_t iSelReg = 0; iSelReg < X86_SREG_COUNT; iSelReg++)
2927 {
2928 paSelReg[iSelReg].fFlags = 0;
2929 paSelReg[iSelReg].ValidSel = 0;
2930 }
2931
2932 /* This might not be 104% correct, but I think it's close
2933 enough for all practical purposes... (REM always loaded
2934 LDTR registers.) */
2935 pVCpu->cpum.s.Guest.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
2936 pVCpu->cpum.s.Guest.ldtr.ValidSel = pVCpu->cpum.s.Guest.ldtr.Sel;
2937 }
2938 pVCpu->cpum.s.Guest.tr.fFlags = CPUMSELREG_FLAGS_VALID;
2939 pVCpu->cpum.s.Guest.tr.ValidSel = pVCpu->cpum.s.Guest.tr.Sel;
2940 }
2941 }
2942
2943 /* Clear CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID. */
2944 if ( uVersion > CPUM_SAVED_STATE_VERSION_VER3_2
2945 && uVersion <= CPUM_SAVED_STATE_VERSION_MEM)
2946 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
2947 pVM->aCpus[iCpu].cpum.s.fChanged &= CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID;
2948
2949 /*
2950 * A quick sanity check.
2951 */
2952 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
2953 {
2954 PVMCPU pVCpu = &pVM->aCpus[iCpu];
2955 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.es.fFlags & !CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
2956 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.cs.fFlags & !CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
2957 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.ss.fFlags & !CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
2958 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.ds.fFlags & !CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
2959 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.fs.fFlags & !CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
2960 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.gs.fFlags & !CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
2961 }
2962 }
2963
2964 pVM->cpum.s.fPendingRestore = false;
2965
2966 /*
2967 * Guest CPUIDs.
2968 */
2969 if (uVersion > CPUM_SAVED_STATE_VERSION_VER3_0)
2970 return cpumR3LoadCpuId(pVM, pSSM, uVersion);
2971
2972 /** @todo Merge the code below into cpumR3LoadCpuId when we've found out what is
2973 * actually required. */
2974
2975 /*
2976 * Restore the CPUID leaves.
2977 *
2978 * Note that we support restoring less than the current amount of standard
2979 * leaves because we've been allowed more is newer version of VBox.
2980 */
2981 uint32_t cElements;
2982 int rc = SSMR3GetU32(pSSM, &cElements); AssertRCReturn(rc, rc);
2983 if (cElements > RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdStd))
2984 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2985 SSMR3GetMem(pSSM, &pVM->cpum.s.aGuestCpuIdStd[0], cElements*sizeof(pVM->cpum.s.aGuestCpuIdStd[0]));
2986
2987 rc = SSMR3GetU32(pSSM, &cElements); AssertRCReturn(rc, rc);
2988 if (cElements != RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdExt))
2989 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2990 SSMR3GetMem(pSSM, &pVM->cpum.s.aGuestCpuIdExt[0], sizeof(pVM->cpum.s.aGuestCpuIdExt));
2991
2992 rc = SSMR3GetU32(pSSM, &cElements); AssertRCReturn(rc, rc);
2993 if (cElements != RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdCentaur))
2994 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2995 SSMR3GetMem(pSSM, &pVM->cpum.s.aGuestCpuIdCentaur[0], sizeof(pVM->cpum.s.aGuestCpuIdCentaur));
2996
2997 SSMR3GetMem(pSSM, &pVM->cpum.s.GuestCpuIdDef, sizeof(pVM->cpum.s.GuestCpuIdDef));
2998
2999 /*
3000 * Check that the basic cpuid id information is unchanged.
3001 */
3002 /** @todo we should check the 64 bits capabilities too! */
3003 uint32_t au32CpuId[8] = {0,0,0,0, 0,0,0,0};
3004 ASMCpuIdExSlow(0, 0, 0, 0, &au32CpuId[0], &au32CpuId[1], &au32CpuId[2], &au32CpuId[3]);
3005 ASMCpuIdExSlow(1, 0, 0, 0, &au32CpuId[4], &au32CpuId[5], &au32CpuId[6], &au32CpuId[7]);
3006 uint32_t au32CpuIdSaved[8];
3007 rc = SSMR3GetMem(pSSM, &au32CpuIdSaved[0], sizeof(au32CpuIdSaved));
3008 if (RT_SUCCESS(rc))
3009 {
3010 /* Ignore CPU stepping. */
3011 au32CpuId[4] &= 0xfffffff0;
3012 au32CpuIdSaved[4] &= 0xfffffff0;
3013
3014 /* Ignore APIC ID (AMD specs). */
3015 au32CpuId[5] &= ~0xff000000;
3016 au32CpuIdSaved[5] &= ~0xff000000;
3017
3018 /* Ignore the number of Logical CPUs (AMD specs). */
3019 au32CpuId[5] &= ~0x00ff0000;
3020 au32CpuIdSaved[5] &= ~0x00ff0000;
3021
3022 /* Ignore some advanced capability bits, that we don't expose to the guest. */
3023 au32CpuId[6] &= ~( X86_CPUID_FEATURE_ECX_DTES64
3024 | X86_CPUID_FEATURE_ECX_VMX
3025 | X86_CPUID_FEATURE_ECX_SMX
3026 | X86_CPUID_FEATURE_ECX_EST
3027 | X86_CPUID_FEATURE_ECX_TM2
3028 | X86_CPUID_FEATURE_ECX_CNTXID
3029 | X86_CPUID_FEATURE_ECX_TPRUPDATE
3030 | X86_CPUID_FEATURE_ECX_PDCM
3031 | X86_CPUID_FEATURE_ECX_DCA
3032 | X86_CPUID_FEATURE_ECX_X2APIC
3033 );
3034 au32CpuIdSaved[6] &= ~( X86_CPUID_FEATURE_ECX_DTES64
3035 | X86_CPUID_FEATURE_ECX_VMX
3036 | X86_CPUID_FEATURE_ECX_SMX
3037 | X86_CPUID_FEATURE_ECX_EST
3038 | X86_CPUID_FEATURE_ECX_TM2
3039 | X86_CPUID_FEATURE_ECX_CNTXID
3040 | X86_CPUID_FEATURE_ECX_TPRUPDATE
3041 | X86_CPUID_FEATURE_ECX_PDCM
3042 | X86_CPUID_FEATURE_ECX_DCA
3043 | X86_CPUID_FEATURE_ECX_X2APIC
3044 );
3045
3046 /* Make sure we don't forget to update the masks when enabling
3047 * features in the future.
3048 */
3049 AssertRelease(!(pVM->cpum.s.aGuestCpuIdStd[1].ecx &
3050 ( X86_CPUID_FEATURE_ECX_DTES64
3051 | X86_CPUID_FEATURE_ECX_VMX
3052 | X86_CPUID_FEATURE_ECX_SMX
3053 | X86_CPUID_FEATURE_ECX_EST
3054 | X86_CPUID_FEATURE_ECX_TM2
3055 | X86_CPUID_FEATURE_ECX_CNTXID
3056 | X86_CPUID_FEATURE_ECX_TPRUPDATE
3057 | X86_CPUID_FEATURE_ECX_PDCM
3058 | X86_CPUID_FEATURE_ECX_DCA
3059 | X86_CPUID_FEATURE_ECX_X2APIC
3060 )));
3061 /* do the compare */
3062 if (memcmp(au32CpuIdSaved, au32CpuId, sizeof(au32CpuIdSaved)))
3063 {
3064 if (SSMR3HandleGetAfter(pSSM) == SSMAFTER_DEBUG_IT)
3065 LogRel(("cpumR3LoadExec: CpuId mismatch! (ignored due to SSMAFTER_DEBUG_IT)\n"
3066 "Saved=%.*Rhxs\n"
3067 "Real =%.*Rhxs\n",
3068 sizeof(au32CpuIdSaved), au32CpuIdSaved,
3069 sizeof(au32CpuId), au32CpuId));
3070 else
3071 {
3072 LogRel(("cpumR3LoadExec: CpuId mismatch!\n"
3073 "Saved=%.*Rhxs\n"
3074 "Real =%.*Rhxs\n",
3075 sizeof(au32CpuIdSaved), au32CpuIdSaved,
3076 sizeof(au32CpuId), au32CpuId));
3077 rc = VERR_SSM_LOAD_CPUID_MISMATCH;
3078 }
3079 }
3080 }
3081
3082 return rc;
3083}
3084
3085
3086/**
3087 * @copydoc FNSSMINTLOADPREP
3088 */
3089static DECLCALLBACK(int) cpumR3LoadDone(PVM pVM, PSSMHANDLE pSSM)
3090{
3091 if (RT_FAILURE(SSMR3HandleGetStatus(pSSM)))
3092 return VINF_SUCCESS;
3093
3094 /* just check this since we can. */ /** @todo Add a SSM unit flag for indicating that it's mandatory during a restore. */
3095 if (pVM->cpum.s.fPendingRestore)
3096 {
3097 LogRel(("CPUM: Missing state!\n"));
3098 return VERR_INTERNAL_ERROR_2;
3099 }
3100
3101 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
3102 {
3103 /* Notify PGM of the NXE states in case they've changed. */
3104 PGMNotifyNxeChanged(&pVM->aCpus[iCpu], !!(pVM->aCpus[iCpu].cpum.s.Guest.msrEFER & MSR_K6_EFER_NXE));
3105
3106 /* Cache the local APIC base from the APIC device. During init. this is done in CPUMR3ResetCpu(). */
3107 PDMApicGetBase(&pVM->aCpus[iCpu], &pVM->aCpus[iCpu].cpum.s.Guest.msrApicBase);
3108 }
3109 return VINF_SUCCESS;
3110}
3111
3112
3113/**
3114 * Checks if the CPUM state restore is still pending.
3115 *
3116 * @returns true / false.
3117 * @param pVM Pointer to the VM.
3118 */
3119VMMDECL(bool) CPUMR3IsStateRestorePending(PVM pVM)
3120{
3121 return pVM->cpum.s.fPendingRestore;
3122}
3123
3124
3125/**
3126 * Formats the EFLAGS value into mnemonics.
3127 *
3128 * @param pszEFlags Where to write the mnemonics. (Assumes sufficient buffer space.)
3129 * @param efl The EFLAGS value.
3130 */
3131static void cpumR3InfoFormatFlags(char *pszEFlags, uint32_t efl)
3132{
3133 /*
3134 * Format the flags.
3135 */
3136 static const struct
3137 {
3138 const char *pszSet; const char *pszClear; uint32_t fFlag;
3139 } s_aFlags[] =
3140 {
3141 { "vip",NULL, X86_EFL_VIP },
3142 { "vif",NULL, X86_EFL_VIF },
3143 { "ac", NULL, X86_EFL_AC },
3144 { "vm", NULL, X86_EFL_VM },
3145 { "rf", NULL, X86_EFL_RF },
3146 { "nt", NULL, X86_EFL_NT },
3147 { "ov", "nv", X86_EFL_OF },
3148 { "dn", "up", X86_EFL_DF },
3149 { "ei", "di", X86_EFL_IF },
3150 { "tf", NULL, X86_EFL_TF },
3151 { "nt", "pl", X86_EFL_SF },
3152 { "nz", "zr", X86_EFL_ZF },
3153 { "ac", "na", X86_EFL_AF },
3154 { "po", "pe", X86_EFL_PF },
3155 { "cy", "nc", X86_EFL_CF },
3156 };
3157 char *psz = pszEFlags;
3158 for (unsigned i = 0; i < RT_ELEMENTS(s_aFlags); i++)
3159 {
3160 const char *pszAdd = s_aFlags[i].fFlag & efl ? s_aFlags[i].pszSet : s_aFlags[i].pszClear;
3161 if (pszAdd)
3162 {
3163 strcpy(psz, pszAdd);
3164 psz += strlen(pszAdd);
3165 *psz++ = ' ';
3166 }
3167 }
3168 psz[-1] = '\0';
3169}
3170
3171
3172/**
3173 * Formats a full register dump.
3174 *
3175 * @param pVM Pointer to the VM.
3176 * @param pCtx The context to format.
3177 * @param pCtxCore The context core to format.
3178 * @param pHlp Output functions.
3179 * @param enmType The dump type.
3180 * @param pszPrefix Register name prefix.
3181 */
3182static void cpumR3InfoOne(PVM pVM, PCPUMCTX pCtx, PCCPUMCTXCORE pCtxCore, PCDBGFINFOHLP pHlp, CPUMDUMPTYPE enmType,
3183 const char *pszPrefix)
3184{
3185 NOREF(pVM);
3186
3187 /*
3188 * Format the EFLAGS.
3189 */
3190 uint32_t efl = pCtxCore->eflags.u32;
3191 char szEFlags[80];
3192 cpumR3InfoFormatFlags(&szEFlags[0], efl);
3193
3194 /*
3195 * Format the registers.
3196 */
3197 switch (enmType)
3198 {
3199 case CPUMDUMPTYPE_TERSE:
3200 if (CPUMIsGuestIn64BitCodeEx(pCtx))
3201 pHlp->pfnPrintf(pHlp,
3202 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
3203 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
3204 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
3205 "%sr14=%016RX64 %sr15=%016RX64\n"
3206 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
3207 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %seflags=%08x\n",
3208 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
3209 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
3210 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
3211 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
3212 pszPrefix, pCtxCore->cs.Sel, pszPrefix, pCtxCore->ss.Sel, pszPrefix, pCtxCore->ds.Sel, pszPrefix, pCtxCore->es.Sel,
3213 pszPrefix, pCtxCore->fs.Sel, pszPrefix, pCtxCore->gs.Sel, pszPrefix, efl);
3214 else
3215 pHlp->pfnPrintf(pHlp,
3216 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
3217 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
3218 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %seflags=%08x\n",
3219 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
3220 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
3221 pszPrefix, pCtxCore->cs.Sel, pszPrefix, pCtxCore->ss.Sel, pszPrefix, pCtxCore->ds.Sel, pszPrefix, pCtxCore->es.Sel,
3222 pszPrefix, pCtxCore->fs.Sel, pszPrefix, pCtxCore->gs.Sel, pszPrefix, efl);
3223 break;
3224
3225 case CPUMDUMPTYPE_DEFAULT:
3226 if (CPUMIsGuestIn64BitCodeEx(pCtx))
3227 pHlp->pfnPrintf(pHlp,
3228 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
3229 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
3230 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
3231 "%sr14=%016RX64 %sr15=%016RX64\n"
3232 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
3233 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %str=%04x %seflags=%08x\n"
3234 "%scr0=%08RX64 %scr2=%08RX64 %scr3=%08RX64 %scr4=%08RX64 %sgdtr=%016RX64:%04x %sldtr=%04x\n"
3235 ,
3236 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
3237 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
3238 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
3239 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
3240 pszPrefix, pCtxCore->cs.Sel, pszPrefix, pCtxCore->ss.Sel, pszPrefix, pCtxCore->ds.Sel, pszPrefix, pCtxCore->es.Sel,
3241 pszPrefix, pCtxCore->fs.Sel, pszPrefix, pCtxCore->gs.Sel, pszPrefix, pCtx->tr.Sel, pszPrefix, efl,
3242 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
3243 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->ldtr.Sel);
3244 else
3245 pHlp->pfnPrintf(pHlp,
3246 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
3247 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
3248 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %str=%04x %seflags=%08x\n"
3249 "%scr0=%08RX64 %scr2=%08RX64 %scr3=%08RX64 %scr4=%08RX64 %sgdtr=%08RX64:%04x %sldtr=%04x\n"
3250 ,
3251 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
3252 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
3253 pszPrefix, pCtxCore->cs.Sel, pszPrefix, pCtxCore->ss.Sel, pszPrefix, pCtxCore->ds.Sel, pszPrefix, pCtxCore->es.Sel,
3254 pszPrefix, pCtxCore->fs.Sel, pszPrefix, pCtxCore->gs.Sel, pszPrefix, pCtx->tr.Sel, pszPrefix, efl,
3255 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
3256 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->ldtr.Sel);
3257 break;
3258
3259 case CPUMDUMPTYPE_VERBOSE:
3260 if (CPUMIsGuestIn64BitCodeEx(pCtx))
3261 pHlp->pfnPrintf(pHlp,
3262 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
3263 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
3264 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
3265 "%sr14=%016RX64 %sr15=%016RX64\n"
3266 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
3267 "%scs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
3268 "%sds={%04x base=%016RX64 limit=%08x flags=%08x}\n"
3269 "%ses={%04x base=%016RX64 limit=%08x flags=%08x}\n"
3270 "%sfs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
3271 "%sgs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
3272 "%sss={%04x base=%016RX64 limit=%08x flags=%08x}\n"
3273 "%scr0=%016RX64 %scr2=%016RX64 %scr3=%016RX64 %scr4=%016RX64\n"
3274 "%sdr0=%016RX64 %sdr1=%016RX64 %sdr2=%016RX64 %sdr3=%016RX64\n"
3275 "%sdr4=%016RX64 %sdr5=%016RX64 %sdr6=%016RX64 %sdr7=%016RX64\n"
3276 "%sgdtr=%016RX64:%04x %sidtr=%016RX64:%04x %seflags=%08x\n"
3277 "%sldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
3278 "%str ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
3279 "%sSysEnter={cs=%04llx eip=%016RX64 esp=%016RX64}\n"
3280 ,
3281 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
3282 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
3283 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
3284 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
3285 pszPrefix, pCtxCore->cs.Sel, pCtx->cs.u64Base, pCtx->cs.u32Limit, pCtx->cs.Attr.u,
3286 pszPrefix, pCtxCore->ds.Sel, pCtx->ds.u64Base, pCtx->ds.u32Limit, pCtx->ds.Attr.u,
3287 pszPrefix, pCtxCore->es.Sel, pCtx->es.u64Base, pCtx->es.u32Limit, pCtx->es.Attr.u,
3288 pszPrefix, pCtxCore->fs.Sel, pCtx->fs.u64Base, pCtx->fs.u32Limit, pCtx->fs.Attr.u,
3289 pszPrefix, pCtxCore->gs.Sel, pCtx->gs.u64Base, pCtx->gs.u32Limit, pCtx->gs.Attr.u,
3290 pszPrefix, pCtxCore->ss.Sel, pCtx->ss.u64Base, pCtx->ss.u32Limit, pCtx->ss.Attr.u,
3291 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
3292 pszPrefix, pCtx->dr[0], pszPrefix, pCtx->dr[1], pszPrefix, pCtx->dr[2], pszPrefix, pCtx->dr[3],
3293 pszPrefix, pCtx->dr[4], pszPrefix, pCtx->dr[5], pszPrefix, pCtx->dr[6], pszPrefix, pCtx->dr[7],
3294 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, pszPrefix, efl,
3295 pszPrefix, pCtx->ldtr.Sel, pCtx->ldtr.u64Base, pCtx->ldtr.u32Limit, pCtx->ldtr.Attr.u,
3296 pszPrefix, pCtx->tr.Sel, pCtx->tr.u64Base, pCtx->tr.u32Limit, pCtx->tr.Attr.u,
3297 pszPrefix, pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
3298 else
3299 pHlp->pfnPrintf(pHlp,
3300 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
3301 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
3302 "%scs={%04x base=%016RX64 limit=%08x flags=%08x} %sdr0=%08RX64 %sdr1=%08RX64\n"
3303 "%sds={%04x base=%016RX64 limit=%08x flags=%08x} %sdr2=%08RX64 %sdr3=%08RX64\n"
3304 "%ses={%04x base=%016RX64 limit=%08x flags=%08x} %sdr4=%08RX64 %sdr5=%08RX64\n"
3305 "%sfs={%04x base=%016RX64 limit=%08x flags=%08x} %sdr6=%08RX64 %sdr7=%08RX64\n"
3306 "%sgs={%04x base=%016RX64 limit=%08x flags=%08x} %scr0=%08RX64 %scr2=%08RX64\n"
3307 "%sss={%04x base=%016RX64 limit=%08x flags=%08x} %scr3=%08RX64 %scr4=%08RX64\n"
3308 "%sgdtr=%016RX64:%04x %sidtr=%016RX64:%04x %seflags=%08x\n"
3309 "%sldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
3310 "%str ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
3311 "%sSysEnter={cs=%04llx eip=%08llx esp=%08llx}\n"
3312 ,
3313 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
3314 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
3315 pszPrefix, pCtxCore->cs.Sel, pCtx->cs.u64Base, pCtx->cs.u32Limit, pCtx->cs.Attr.u, pszPrefix, pCtx->dr[0], pszPrefix, pCtx->dr[1],
3316 pszPrefix, pCtxCore->ds.Sel, pCtx->ds.u64Base, pCtx->ds.u32Limit, pCtx->ds.Attr.u, pszPrefix, pCtx->dr[2], pszPrefix, pCtx->dr[3],
3317 pszPrefix, pCtxCore->es.Sel, pCtx->es.u64Base, pCtx->es.u32Limit, pCtx->es.Attr.u, pszPrefix, pCtx->dr[4], pszPrefix, pCtx->dr[5],
3318 pszPrefix, pCtxCore->fs.Sel, pCtx->fs.u64Base, pCtx->fs.u32Limit, pCtx->fs.Attr.u, pszPrefix, pCtx->dr[6], pszPrefix, pCtx->dr[7],
3319 pszPrefix, pCtxCore->gs.Sel, pCtx->gs.u64Base, pCtx->gs.u32Limit, pCtx->gs.Attr.u, pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2,
3320 pszPrefix, pCtxCore->ss.Sel, pCtx->ss.u64Base, pCtx->ss.u32Limit, pCtx->ss.Attr.u, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
3321 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, pszPrefix, efl,
3322 pszPrefix, pCtx->ldtr.Sel, pCtx->ldtr.u64Base, pCtx->ldtr.u32Limit, pCtx->ldtr.Attr.u,
3323 pszPrefix, pCtx->tr.Sel, pCtx->tr.u64Base, pCtx->tr.u32Limit, pCtx->tr.Attr.u,
3324 pszPrefix, pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
3325
3326 pHlp->pfnPrintf(pHlp,
3327 "%sFCW=%04x %sFSW=%04x %sFTW=%04x %sFOP=%04x %sMXCSR=%08x %sMXCSR_MASK=%08x\n"
3328 "%sFPUIP=%08x %sCS=%04x %sRsrvd1=%04x %sFPUDP=%08x %sDS=%04x %sRsvrd2=%04x\n"
3329 ,
3330 pszPrefix, pCtx->fpu.FCW, pszPrefix, pCtx->fpu.FSW, pszPrefix, pCtx->fpu.FTW, pszPrefix, pCtx->fpu.FOP,
3331 pszPrefix, pCtx->fpu.MXCSR, pszPrefix, pCtx->fpu.MXCSR_MASK,
3332 pszPrefix, pCtx->fpu.FPUIP, pszPrefix, pCtx->fpu.CS, pszPrefix, pCtx->fpu.Rsrvd1,
3333 pszPrefix, pCtx->fpu.FPUDP, pszPrefix, pCtx->fpu.DS, pszPrefix, pCtx->fpu.Rsrvd2
3334 );
3335 unsigned iShift = (pCtx->fpu.FSW >> 11) & 7;
3336 for (unsigned iST = 0; iST < RT_ELEMENTS(pCtx->fpu.aRegs); iST++)
3337 {
3338 unsigned iFPR = (iST + iShift) % RT_ELEMENTS(pCtx->fpu.aRegs);
3339 unsigned uTag = pCtx->fpu.FTW & (1 << iFPR) ? 1 : 0;
3340 char chSign = pCtx->fpu.aRegs[0].au16[4] & 0x8000 ? '-' : '+';
3341 unsigned iInteger = (unsigned)(pCtx->fpu.aRegs[0].au64[0] >> 63);
3342 uint64_t u64Fraction = pCtx->fpu.aRegs[0].au64[0] & UINT64_C(0x7fffffffffffffff);
3343 unsigned uExponent = pCtx->fpu.aRegs[0].au16[4] & 0x7fff;
3344 /** @todo This isn't entirenly correct and needs more work! */
3345 pHlp->pfnPrintf(pHlp,
3346 "%sST(%u)=%sFPR%u={%04RX16'%08RX32'%08RX32} t%d %c%u.%022llu ^ %u",
3347 pszPrefix, iST, pszPrefix, iFPR,
3348 pCtx->fpu.aRegs[0].au16[4], pCtx->fpu.aRegs[0].au32[1], pCtx->fpu.aRegs[0].au32[0],
3349 uTag, chSign, iInteger, u64Fraction, uExponent);
3350 if (pCtx->fpu.aRegs[0].au16[5] || pCtx->fpu.aRegs[0].au16[6] || pCtx->fpu.aRegs[0].au16[7])
3351 pHlp->pfnPrintf(pHlp, " res={%04RX16,%04RX16,%04RX16}\n",
3352 pCtx->fpu.aRegs[0].au16[5], pCtx->fpu.aRegs[0].au16[6], pCtx->fpu.aRegs[0].au16[7]);
3353 else
3354 pHlp->pfnPrintf(pHlp, "\n");
3355 }
3356 for (unsigned iXMM = 0; iXMM < RT_ELEMENTS(pCtx->fpu.aXMM); iXMM++)
3357 pHlp->pfnPrintf(pHlp,
3358 iXMM & 1
3359 ? "%sXMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32\n"
3360 : "%sXMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32 ",
3361 pszPrefix, iXMM, iXMM < 10 ? " " : "",
3362 pCtx->fpu.aXMM[iXMM].au32[3],
3363 pCtx->fpu.aXMM[iXMM].au32[2],
3364 pCtx->fpu.aXMM[iXMM].au32[1],
3365 pCtx->fpu.aXMM[iXMM].au32[0]);
3366 for (unsigned i = 0; i < RT_ELEMENTS(pCtx->fpu.au32RsrvdRest); i++)
3367 if (pCtx->fpu.au32RsrvdRest[i])
3368 pHlp->pfnPrintf(pHlp, "%sRsrvdRest[i]=%RX32 (offset=%#x)\n",
3369 pszPrefix, i, pCtx->fpu.au32RsrvdRest[i], RT_OFFSETOF(X86FXSTATE, au32RsrvdRest[i]) );
3370
3371 pHlp->pfnPrintf(pHlp,
3372 "%sEFER =%016RX64\n"
3373 "%sPAT =%016RX64\n"
3374 "%sSTAR =%016RX64\n"
3375 "%sCSTAR =%016RX64\n"
3376 "%sLSTAR =%016RX64\n"
3377 "%sSFMASK =%016RX64\n"
3378 "%sKERNELGSBASE =%016RX64\n",
3379 pszPrefix, pCtx->msrEFER,
3380 pszPrefix, pCtx->msrPAT,
3381 pszPrefix, pCtx->msrSTAR,
3382 pszPrefix, pCtx->msrCSTAR,
3383 pszPrefix, pCtx->msrLSTAR,
3384 pszPrefix, pCtx->msrSFMASK,
3385 pszPrefix, pCtx->msrKERNELGSBASE);
3386 break;
3387 }
3388}
3389
3390
3391/**
3392 * Display all cpu states and any other cpum info.
3393 *
3394 * @param pVM Pointer to the VM.
3395 * @param pHlp The info helper functions.
3396 * @param pszArgs Arguments, ignored.
3397 */
3398static DECLCALLBACK(void) cpumR3InfoAll(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3399{
3400 cpumR3InfoGuest(pVM, pHlp, pszArgs);
3401 cpumR3InfoGuestInstr(pVM, pHlp, pszArgs);
3402 cpumR3InfoHyper(pVM, pHlp, pszArgs);
3403 cpumR3InfoHost(pVM, pHlp, pszArgs);
3404}
3405
3406
3407/**
3408 * Parses the info argument.
3409 *
3410 * The argument starts with 'verbose', 'terse' or 'default' and then
3411 * continues with the comment string.
3412 *
3413 * @param pszArgs The pointer to the argument string.
3414 * @param penmType Where to store the dump type request.
3415 * @param ppszComment Where to store the pointer to the comment string.
3416 */
3417static void cpumR3InfoParseArg(const char *pszArgs, CPUMDUMPTYPE *penmType, const char **ppszComment)
3418{
3419 if (!pszArgs)
3420 {
3421 *penmType = CPUMDUMPTYPE_DEFAULT;
3422 *ppszComment = "";
3423 }
3424 else
3425 {
3426 if (!strncmp(pszArgs, RT_STR_TUPLE("verbose")))
3427 {
3428 pszArgs += 7;
3429 *penmType = CPUMDUMPTYPE_VERBOSE;
3430 }
3431 else if (!strncmp(pszArgs, RT_STR_TUPLE("terse")))
3432 {
3433 pszArgs += 5;
3434 *penmType = CPUMDUMPTYPE_TERSE;
3435 }
3436 else if (!strncmp(pszArgs, RT_STR_TUPLE("default")))
3437 {
3438 pszArgs += 7;
3439 *penmType = CPUMDUMPTYPE_DEFAULT;
3440 }
3441 else
3442 *penmType = CPUMDUMPTYPE_DEFAULT;
3443 *ppszComment = RTStrStripL(pszArgs);
3444 }
3445}
3446
3447
3448/**
3449 * Display the guest cpu state.
3450 *
3451 * @param pVM Pointer to the VM.
3452 * @param pHlp The info helper functions.
3453 * @param pszArgs Arguments, ignored.
3454 */
3455static DECLCALLBACK(void) cpumR3InfoGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3456{
3457 CPUMDUMPTYPE enmType;
3458 const char *pszComment;
3459 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
3460
3461 /* @todo SMP support! */
3462 PVMCPU pVCpu = VMMGetCpu(pVM);
3463 if (!pVCpu)
3464 pVCpu = &pVM->aCpus[0];
3465
3466 pHlp->pfnPrintf(pHlp, "Guest CPUM (VCPU %d) state: %s\n", pVCpu->idCpu, pszComment);
3467
3468 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
3469 cpumR3InfoOne(pVM, pCtx, CPUMCTX2CORE(pCtx), pHlp, enmType, "");
3470}
3471
3472
3473/**
3474 * Display the current guest instruction
3475 *
3476 * @param pVM Pointer to the VM.
3477 * @param pHlp The info helper functions.
3478 * @param pszArgs Arguments, ignored.
3479 */
3480static DECLCALLBACK(void) cpumR3InfoGuestInstr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3481{
3482 NOREF(pszArgs);
3483
3484 /** @todo SMP support! */
3485 PVMCPU pVCpu = VMMGetCpu(pVM);
3486 if (!pVCpu)
3487 pVCpu = &pVM->aCpus[0];
3488
3489 char szInstruction[256];
3490 szInstruction[0] = '\0';
3491 DBGFR3DisasInstrCurrent(pVCpu, szInstruction, sizeof(szInstruction));
3492 pHlp->pfnPrintf(pHlp, "\nCPUM: %s\n\n", szInstruction);
3493}
3494
3495
3496/**
3497 * Display the hypervisor cpu state.
3498 *
3499 * @param pVM Pointer to the VM.
3500 * @param pHlp The info helper functions.
3501 * @param pszArgs Arguments, ignored.
3502 */
3503static DECLCALLBACK(void) cpumR3InfoHyper(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3504{
3505 CPUMDUMPTYPE enmType;
3506 const char *pszComment;
3507 /* @todo SMP */
3508 PVMCPU pVCpu = &pVM->aCpus[0];
3509
3510 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
3511 pHlp->pfnPrintf(pHlp, "Hypervisor CPUM state: %s\n", pszComment);
3512 cpumR3InfoOne(pVM, &pVCpu->cpum.s.Hyper, CPUMCTX2CORE(&pVCpu->cpum.s.Hyper), pHlp, enmType, ".");
3513 pHlp->pfnPrintf(pHlp, "CR4OrMask=%#x CR4AndMask=%#x\n", pVM->cpum.s.CR4.OrMask, pVM->cpum.s.CR4.AndMask);
3514}
3515
3516
3517/**
3518 * Display the host cpu state.
3519 *
3520 * @param pVM Pointer to the VM.
3521 * @param pHlp The info helper functions.
3522 * @param pszArgs Arguments, ignored.
3523 */
3524static DECLCALLBACK(void) cpumR3InfoHost(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3525{
3526 CPUMDUMPTYPE enmType;
3527 const char *pszComment;
3528 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
3529 pHlp->pfnPrintf(pHlp, "Host CPUM state: %s\n", pszComment);
3530
3531 /*
3532 * Format the EFLAGS.
3533 */
3534 /* @todo SMP */
3535 PCPUMHOSTCTX pCtx = &pVM->aCpus[0].cpum.s.Host;
3536#if HC_ARCH_BITS == 32
3537 uint32_t efl = pCtx->eflags.u32;
3538#else
3539 uint64_t efl = pCtx->rflags;
3540#endif
3541 char szEFlags[80];
3542 cpumR3InfoFormatFlags(&szEFlags[0], efl);
3543
3544 /*
3545 * Format the registers.
3546 */
3547#if HC_ARCH_BITS == 32
3548# ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
3549 if (!(pCtx->efer & MSR_K6_EFER_LMA))
3550# endif
3551 {
3552 pHlp->pfnPrintf(pHlp,
3553 "eax=xxxxxxxx ebx=%08x ecx=xxxxxxxx edx=xxxxxxxx esi=%08x edi=%08x\n"
3554 "eip=xxxxxxxx esp=%08x ebp=%08x iopl=%d %31s\n"
3555 "cs=%04x ds=%04x es=%04x fs=%04x gs=%04x eflags=%08x\n"
3556 "cr0=%08RX64 cr2=xxxxxxxx cr3=%08RX64 cr4=%08RX64 gdtr=%08x:%04x ldtr=%04x\n"
3557 "dr[0]=%08RX64 dr[1]=%08RX64x dr[2]=%08RX64 dr[3]=%08RX64x dr[6]=%08RX64 dr[7]=%08RX64\n"
3558 "SysEnter={cs=%04x eip=%08x esp=%08x}\n"
3559 ,
3560 /*pCtx->eax,*/ pCtx->ebx, /*pCtx->ecx, pCtx->edx,*/ pCtx->esi, pCtx->edi,
3561 /*pCtx->eip,*/ pCtx->esp, pCtx->ebp, X86_EFL_GET_IOPL(efl), szEFlags,
3562 pCtx->cs, pCtx->ds, pCtx->es, pCtx->fs, pCtx->gs, efl,
3563 pCtx->cr0, /*pCtx->cr2,*/ pCtx->cr3, pCtx->cr4,
3564 pCtx->dr0, pCtx->dr1, pCtx->dr2, pCtx->dr3, pCtx->dr6, pCtx->dr7,
3565 (uint32_t)pCtx->gdtr.uAddr, pCtx->gdtr.cb, pCtx->ldtr,
3566 pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
3567 }
3568# ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
3569 else
3570# endif
3571#endif
3572#if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
3573 {
3574 pHlp->pfnPrintf(pHlp,
3575 "rax=xxxxxxxxxxxxxxxx rbx=%016RX64 rcx=xxxxxxxxxxxxxxxx\n"
3576 "rdx=xxxxxxxxxxxxxxxx rsi=%016RX64 rdi=%016RX64\n"
3577 "rip=xxxxxxxxxxxxxxxx rsp=%016RX64 rbp=%016RX64\n"
3578 " r8=xxxxxxxxxxxxxxxx r9=xxxxxxxxxxxxxxxx r10=%016RX64\n"
3579 "r11=%016RX64 r12=%016RX64 r13=%016RX64\n"
3580 "r14=%016RX64 r15=%016RX64\n"
3581 "iopl=%d %31s\n"
3582 "cs=%04x ds=%04x es=%04x fs=%04x gs=%04x eflags=%08RX64\n"
3583 "cr0=%016RX64 cr2=xxxxxxxxxxxxxxxx cr3=%016RX64\n"
3584 "cr4=%016RX64 ldtr=%04x tr=%04x\n"
3585 "dr[0]=%016RX64 dr[1]=%016RX64 dr[2]=%016RX64\n"
3586 "dr[3]=%016RX64 dr[6]=%016RX64 dr[7]=%016RX64\n"
3587 "gdtr=%016RX64:%04x idtr=%016RX64:%04x\n"
3588 "SysEnter={cs=%04x eip=%08x esp=%08x}\n"
3589 "FSbase=%016RX64 GSbase=%016RX64 efer=%08RX64\n"
3590 ,
3591 /*pCtx->rax,*/ pCtx->rbx, /*pCtx->rcx,
3592 pCtx->rdx,*/ pCtx->rsi, pCtx->rdi,
3593 /*pCtx->rip,*/ pCtx->rsp, pCtx->rbp,
3594 /*pCtx->r8, pCtx->r9,*/ pCtx->r10,
3595 pCtx->r11, pCtx->r12, pCtx->r13,
3596 pCtx->r14, pCtx->r15,
3597 X86_EFL_GET_IOPL(efl), szEFlags,
3598 pCtx->cs, pCtx->ds, pCtx->es, pCtx->fs, pCtx->gs, efl,
3599 pCtx->cr0, /*pCtx->cr2,*/ pCtx->cr3,
3600 pCtx->cr4, pCtx->ldtr, pCtx->tr,
3601 pCtx->dr0, pCtx->dr1, pCtx->dr2,
3602 pCtx->dr3, pCtx->dr6, pCtx->dr7,
3603 pCtx->gdtr.uAddr, pCtx->gdtr.cb, pCtx->idtr.uAddr, pCtx->idtr.cb,
3604 pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp,
3605 pCtx->FSbase, pCtx->GSbase, pCtx->efer);
3606 }
3607#endif
3608}
3609
3610
3611/**
3612 * Get L1 cache / TLS associativity.
3613 */
3614static const char *getCacheAss(unsigned u, char *pszBuf)
3615{
3616 if (u == 0)
3617 return "res0 ";
3618 if (u == 1)
3619 return "direct";
3620 if (u == 255)
3621 return "fully";
3622 if (u >= 256)
3623 return "???";
3624
3625 RTStrPrintf(pszBuf, 16, "%d way", u);
3626 return pszBuf;
3627}
3628
3629
3630/**
3631 * Get L2 cache associativity.
3632 */
3633const char *getL2CacheAss(unsigned u)
3634{
3635 switch (u)
3636 {
3637 case 0: return "off ";
3638 case 1: return "direct";
3639 case 2: return "2 way ";
3640 case 3: return "res3 ";
3641 case 4: return "4 way ";
3642 case 5: return "res5 ";
3643 case 6: return "8 way ";
3644 case 7: return "res7 ";
3645 case 8: return "16 way";
3646 case 9: return "res9 ";
3647 case 10: return "res10 ";
3648 case 11: return "res11 ";
3649 case 12: return "res12 ";
3650 case 13: return "res13 ";
3651 case 14: return "res14 ";
3652 case 15: return "fully ";
3653 default: return "????";
3654 }
3655}
3656
3657
3658/**
3659 * Display the guest CpuId leaves.
3660 *
3661 * @param pVM Pointer to the VM.
3662 * @param pHlp The info helper functions.
3663 * @param pszArgs "terse", "default" or "verbose".
3664 */
3665static DECLCALLBACK(void) cpumR3CpuIdInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3666{
3667 /*
3668 * Parse the argument.
3669 */
3670 unsigned iVerbosity = 1;
3671 if (pszArgs)
3672 {
3673 pszArgs = RTStrStripL(pszArgs);
3674 if (!strcmp(pszArgs, "terse"))
3675 iVerbosity--;
3676 else if (!strcmp(pszArgs, "verbose"))
3677 iVerbosity++;
3678 }
3679
3680 /*
3681 * Start cracking.
3682 */
3683 CPUMCPUID Host;
3684 CPUMCPUID Guest;
3685 unsigned cStdMax = pVM->cpum.s.aGuestCpuIdStd[0].eax;
3686
3687 uint32_t cStdHstMax;
3688 uint32_t dummy;
3689 ASMCpuIdExSlow(0, 0, 0, 0, &cStdHstMax, &dummy, &dummy, &dummy);
3690
3691 unsigned cStdLstMax = RT_MAX(RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdStd), cStdHstMax);
3692
3693 pHlp->pfnPrintf(pHlp,
3694 " RAW Standard CPUIDs\n"
3695 " Function eax ebx ecx edx\n");
3696 for (unsigned i = 0; i <= cStdLstMax ; i++)
3697 {
3698 if (i < RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdStd))
3699 {
3700 Guest = pVM->cpum.s.aGuestCpuIdStd[i];
3701 ASMCpuIdExSlow(i, 0, 0, 0, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
3702
3703 pHlp->pfnPrintf(pHlp,
3704 "Gst: %08x %08x %08x %08x %08x%s\n"
3705 "Hst: %08x %08x %08x %08x\n",
3706 i, Guest.eax, Guest.ebx, Guest.ecx, Guest.edx,
3707 i <= cStdMax ? "" : "*",
3708 Host.eax, Host.ebx, Host.ecx, Host.edx);
3709 }
3710 else
3711 {
3712 ASMCpuIdExSlow(i, 0, 0, 0, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
3713
3714 pHlp->pfnPrintf(pHlp,
3715 "Hst: %08x %08x %08x %08x %08x\n",
3716 i, Host.eax, Host.ebx, Host.ecx, Host.edx);
3717 }
3718 }
3719
3720 /*
3721 * If verbose, decode it.
3722 */
3723 if (iVerbosity)
3724 {
3725 Guest = pVM->cpum.s.aGuestCpuIdStd[0];
3726 pHlp->pfnPrintf(pHlp,
3727 "Name: %.04s%.04s%.04s\n"
3728 "Supports: 0-%x\n",
3729 &Guest.ebx, &Guest.edx, &Guest.ecx, Guest.eax);
3730 }
3731
3732 /*
3733 * Get Features.
3734 */
3735 bool const fIntel = ASMIsIntelCpuEx(pVM->cpum.s.aGuestCpuIdStd[0].ebx,
3736 pVM->cpum.s.aGuestCpuIdStd[0].ecx,
3737 pVM->cpum.s.aGuestCpuIdStd[0].edx);
3738 if (cStdMax >= 1 && iVerbosity)
3739 {
3740 static const char * const s_apszTypes[4] = { "primary", "overdrive", "MP", "reserved" };
3741
3742 Guest = pVM->cpum.s.aGuestCpuIdStd[1];
3743 uint32_t uEAX = Guest.eax;
3744
3745 pHlp->pfnPrintf(pHlp,
3746 "Family: %d \tExtended: %d \tEffective: %d\n"
3747 "Model: %d \tExtended: %d \tEffective: %d\n"
3748 "Stepping: %d\n"
3749 "Type: %d (%s)\n"
3750 "APIC ID: %#04x\n"
3751 "Logical CPUs: %d\n"
3752 "CLFLUSH Size: %d\n"
3753 "Brand ID: %#04x\n",
3754 (uEAX >> 8) & 0xf, (uEAX >> 20) & 0x7f, ASMGetCpuFamily(uEAX),
3755 (uEAX >> 4) & 0xf, (uEAX >> 16) & 0x0f, ASMGetCpuModel(uEAX, fIntel),
3756 ASMGetCpuStepping(uEAX),
3757 (uEAX >> 12) & 3, s_apszTypes[(uEAX >> 12) & 3],
3758 (Guest.ebx >> 24) & 0xff,
3759 (Guest.ebx >> 16) & 0xff,
3760 (Guest.ebx >> 8) & 0xff,
3761 (Guest.ebx >> 0) & 0xff);
3762 if (iVerbosity == 1)
3763 {
3764 uint32_t uEDX = Guest.edx;
3765 pHlp->pfnPrintf(pHlp, "Features EDX: ");
3766 if (uEDX & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " FPU");
3767 if (uEDX & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " VME");
3768 if (uEDX & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " DE");
3769 if (uEDX & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " PSE");
3770 if (uEDX & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " TSC");
3771 if (uEDX & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " MSR");
3772 if (uEDX & RT_BIT(6)) pHlp->pfnPrintf(pHlp, " PAE");
3773 if (uEDX & RT_BIT(7)) pHlp->pfnPrintf(pHlp, " MCE");
3774 if (uEDX & RT_BIT(8)) pHlp->pfnPrintf(pHlp, " CX8");
3775 if (uEDX & RT_BIT(9)) pHlp->pfnPrintf(pHlp, " APIC");
3776 if (uEDX & RT_BIT(10)) pHlp->pfnPrintf(pHlp, " 10");
3777 if (uEDX & RT_BIT(11)) pHlp->pfnPrintf(pHlp, " SEP");
3778 if (uEDX & RT_BIT(12)) pHlp->pfnPrintf(pHlp, " MTRR");
3779 if (uEDX & RT_BIT(13)) pHlp->pfnPrintf(pHlp, " PGE");
3780 if (uEDX & RT_BIT(14)) pHlp->pfnPrintf(pHlp, " MCA");
3781 if (uEDX & RT_BIT(15)) pHlp->pfnPrintf(pHlp, " CMOV");
3782 if (uEDX & RT_BIT(16)) pHlp->pfnPrintf(pHlp, " PAT");
3783 if (uEDX & RT_BIT(17)) pHlp->pfnPrintf(pHlp, " PSE36");
3784 if (uEDX & RT_BIT(18)) pHlp->pfnPrintf(pHlp, " PSN");
3785 if (uEDX & RT_BIT(19)) pHlp->pfnPrintf(pHlp, " CLFSH");
3786 if (uEDX & RT_BIT(20)) pHlp->pfnPrintf(pHlp, " 20");
3787 if (uEDX & RT_BIT(21)) pHlp->pfnPrintf(pHlp, " DS");
3788 if (uEDX & RT_BIT(22)) pHlp->pfnPrintf(pHlp, " ACPI");
3789 if (uEDX & RT_BIT(23)) pHlp->pfnPrintf(pHlp, " MMX");
3790 if (uEDX & RT_BIT(24)) pHlp->pfnPrintf(pHlp, " FXSR");
3791 if (uEDX & RT_BIT(25)) pHlp->pfnPrintf(pHlp, " SSE");
3792 if (uEDX & RT_BIT(26)) pHlp->pfnPrintf(pHlp, " SSE2");
3793 if (uEDX & RT_BIT(27)) pHlp->pfnPrintf(pHlp, " SS");
3794 if (uEDX & RT_BIT(28)) pHlp->pfnPrintf(pHlp, " HTT");
3795 if (uEDX & RT_BIT(29)) pHlp->pfnPrintf(pHlp, " TM");
3796 if (uEDX & RT_BIT(30)) pHlp->pfnPrintf(pHlp, " 30");
3797 if (uEDX & RT_BIT(31)) pHlp->pfnPrintf(pHlp, " PBE");
3798 pHlp->pfnPrintf(pHlp, "\n");
3799
3800 uint32_t uECX = Guest.ecx;
3801 pHlp->pfnPrintf(pHlp, "Features ECX: ");
3802 if (uECX & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " SSE3");
3803 if (uECX & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " PCLMUL");
3804 if (uECX & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " DTES64");
3805 if (uECX & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " MONITOR");
3806 if (uECX & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " DS-CPL");
3807 if (uECX & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " VMX");
3808 if (uECX & RT_BIT(6)) pHlp->pfnPrintf(pHlp, " SMX");
3809 if (uECX & RT_BIT(7)) pHlp->pfnPrintf(pHlp, " EST");
3810 if (uECX & RT_BIT(8)) pHlp->pfnPrintf(pHlp, " TM2");
3811 if (uECX & RT_BIT(9)) pHlp->pfnPrintf(pHlp, " SSSE3");
3812 if (uECX & RT_BIT(10)) pHlp->pfnPrintf(pHlp, " CNXT-ID");
3813 if (uECX & RT_BIT(11)) pHlp->pfnPrintf(pHlp, " 11");
3814 if (uECX & RT_BIT(12)) pHlp->pfnPrintf(pHlp, " FMA");
3815 if (uECX & RT_BIT(13)) pHlp->pfnPrintf(pHlp, " CX16");
3816 if (uECX & RT_BIT(14)) pHlp->pfnPrintf(pHlp, " TPRUPDATE");
3817 if (uECX & RT_BIT(15)) pHlp->pfnPrintf(pHlp, " PDCM");
3818 if (uECX & RT_BIT(16)) pHlp->pfnPrintf(pHlp, " 16");
3819 if (uECX & RT_BIT(17)) pHlp->pfnPrintf(pHlp, " PCID");
3820 if (uECX & RT_BIT(18)) pHlp->pfnPrintf(pHlp, " DCA");
3821 if (uECX & RT_BIT(19)) pHlp->pfnPrintf(pHlp, " SSE4.1");
3822 if (uECX & RT_BIT(20)) pHlp->pfnPrintf(pHlp, " SSE4.2");
3823 if (uECX & RT_BIT(21)) pHlp->pfnPrintf(pHlp, " X2APIC");
3824 if (uECX & RT_BIT(22)) pHlp->pfnPrintf(pHlp, " MOVBE");
3825 if (uECX & RT_BIT(23)) pHlp->pfnPrintf(pHlp, " POPCNT");
3826 if (uECX & RT_BIT(24)) pHlp->pfnPrintf(pHlp, " TSCDEADL");
3827 if (uECX & RT_BIT(25)) pHlp->pfnPrintf(pHlp, " AES");
3828 if (uECX & RT_BIT(26)) pHlp->pfnPrintf(pHlp, " XSAVE");
3829 if (uECX & RT_BIT(27)) pHlp->pfnPrintf(pHlp, " OSXSAVE");
3830 if (uECX & RT_BIT(28)) pHlp->pfnPrintf(pHlp, " AVX");
3831 if (uECX & RT_BIT(29)) pHlp->pfnPrintf(pHlp, " 29");
3832 if (uECX & RT_BIT(30)) pHlp->pfnPrintf(pHlp, " 30");
3833 if (uECX & RT_BIT(31)) pHlp->pfnPrintf(pHlp, " HVP");
3834 pHlp->pfnPrintf(pHlp, "\n");
3835 }
3836 else
3837 {
3838 ASMCpuIdExSlow(1, 0, 0, 0, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
3839
3840 X86CPUIDFEATEDX EdxHost = *(PX86CPUIDFEATEDX)&Host.edx;
3841 X86CPUIDFEATECX EcxHost = *(PX86CPUIDFEATECX)&Host.ecx;
3842 X86CPUIDFEATEDX EdxGuest = *(PX86CPUIDFEATEDX)&Guest.edx;
3843 X86CPUIDFEATECX EcxGuest = *(PX86CPUIDFEATECX)&Guest.ecx;
3844
3845 pHlp->pfnPrintf(pHlp, "Mnemonic - Description = guest (host)\n");
3846 pHlp->pfnPrintf(pHlp, "FPU - x87 FPU on Chip = %d (%d)\n", EdxGuest.u1FPU, EdxHost.u1FPU);
3847 pHlp->pfnPrintf(pHlp, "VME - Virtual 8086 Mode Enhancements = %d (%d)\n", EdxGuest.u1VME, EdxHost.u1VME);
3848 pHlp->pfnPrintf(pHlp, "DE - Debugging extensions = %d (%d)\n", EdxGuest.u1DE, EdxHost.u1DE);
3849 pHlp->pfnPrintf(pHlp, "PSE - Page Size Extension = %d (%d)\n", EdxGuest.u1PSE, EdxHost.u1PSE);
3850 pHlp->pfnPrintf(pHlp, "TSC - Time Stamp Counter = %d (%d)\n", EdxGuest.u1TSC, EdxHost.u1TSC);
3851 pHlp->pfnPrintf(pHlp, "MSR - Model Specific Registers = %d (%d)\n", EdxGuest.u1MSR, EdxHost.u1MSR);
3852 pHlp->pfnPrintf(pHlp, "PAE - Physical Address Extension = %d (%d)\n", EdxGuest.u1PAE, EdxHost.u1PAE);
3853 pHlp->pfnPrintf(pHlp, "MCE - Machine Check Exception = %d (%d)\n", EdxGuest.u1MCE, EdxHost.u1MCE);
3854 pHlp->pfnPrintf(pHlp, "CX8 - CMPXCHG8B instruction = %d (%d)\n", EdxGuest.u1CX8, EdxHost.u1CX8);
3855 pHlp->pfnPrintf(pHlp, "APIC - APIC On-Chip = %d (%d)\n", EdxGuest.u1APIC, EdxHost.u1APIC);
3856 pHlp->pfnPrintf(pHlp, "10 - Reserved = %d (%d)\n", EdxGuest.u1Reserved1, EdxHost.u1Reserved1);
3857 pHlp->pfnPrintf(pHlp, "SEP - SYSENTER and SYSEXIT = %d (%d)\n", EdxGuest.u1SEP, EdxHost.u1SEP);
3858 pHlp->pfnPrintf(pHlp, "MTRR - Memory Type Range Registers = %d (%d)\n", EdxGuest.u1MTRR, EdxHost.u1MTRR);
3859 pHlp->pfnPrintf(pHlp, "PGE - PTE Global Bit = %d (%d)\n", EdxGuest.u1PGE, EdxHost.u1PGE);
3860 pHlp->pfnPrintf(pHlp, "MCA - Machine Check Architecture = %d (%d)\n", EdxGuest.u1MCA, EdxHost.u1MCA);
3861 pHlp->pfnPrintf(pHlp, "CMOV - Conditional Move Instructions = %d (%d)\n", EdxGuest.u1CMOV, EdxHost.u1CMOV);
3862 pHlp->pfnPrintf(pHlp, "PAT - Page Attribute Table = %d (%d)\n", EdxGuest.u1PAT, EdxHost.u1PAT);
3863 pHlp->pfnPrintf(pHlp, "PSE-36 - 36-bit Page Size Extention = %d (%d)\n", EdxGuest.u1PSE36, EdxHost.u1PSE36);
3864 pHlp->pfnPrintf(pHlp, "PSN - Processor Serial Number = %d (%d)\n", EdxGuest.u1PSN, EdxHost.u1PSN);
3865 pHlp->pfnPrintf(pHlp, "CLFSH - CLFLUSH Instruction. = %d (%d)\n", EdxGuest.u1CLFSH, EdxHost.u1CLFSH);
3866 pHlp->pfnPrintf(pHlp, "20 - Reserved = %d (%d)\n", EdxGuest.u1Reserved2, EdxHost.u1Reserved2);
3867 pHlp->pfnPrintf(pHlp, "DS - Debug Store = %d (%d)\n", EdxGuest.u1DS, EdxHost.u1DS);
3868 pHlp->pfnPrintf(pHlp, "ACPI - Thermal Mon. & Soft. Clock Ctrl.= %d (%d)\n", EdxGuest.u1ACPI, EdxHost.u1ACPI);
3869 pHlp->pfnPrintf(pHlp, "MMX - Intel MMX Technology = %d (%d)\n", EdxGuest.u1MMX, EdxHost.u1MMX);
3870 pHlp->pfnPrintf(pHlp, "FXSR - FXSAVE and FXRSTOR Instructions = %d (%d)\n", EdxGuest.u1FXSR, EdxHost.u1FXSR);
3871 pHlp->pfnPrintf(pHlp, "SSE - SSE Support = %d (%d)\n", EdxGuest.u1SSE, EdxHost.u1SSE);
3872 pHlp->pfnPrintf(pHlp, "SSE2 - SSE2 Support = %d (%d)\n", EdxGuest.u1SSE2, EdxHost.u1SSE2);
3873 pHlp->pfnPrintf(pHlp, "SS - Self Snoop = %d (%d)\n", EdxGuest.u1SS, EdxHost.u1SS);
3874 pHlp->pfnPrintf(pHlp, "HTT - Hyper-Threading Technology = %d (%d)\n", EdxGuest.u1HTT, EdxHost.u1HTT);
3875 pHlp->pfnPrintf(pHlp, "TM - Thermal Monitor = %d (%d)\n", EdxGuest.u1TM, EdxHost.u1TM);
3876 pHlp->pfnPrintf(pHlp, "30 - Reserved = %d (%d)\n", EdxGuest.u1Reserved3, EdxHost.u1Reserved3);
3877 pHlp->pfnPrintf(pHlp, "PBE - Pending Break Enable = %d (%d)\n", EdxGuest.u1PBE, EdxHost.u1PBE);
3878
3879 pHlp->pfnPrintf(pHlp, "Supports SSE3 = %d (%d)\n", EcxGuest.u1SSE3, EcxHost.u1SSE3);
3880 pHlp->pfnPrintf(pHlp, "PCLMULQDQ = %d (%d)\n", EcxGuest.u1PCLMULQDQ, EcxHost.u1PCLMULQDQ);
3881 pHlp->pfnPrintf(pHlp, "DS Area 64-bit layout = %d (%d)\n", EcxGuest.u1DTE64, EcxHost.u1DTE64);
3882 pHlp->pfnPrintf(pHlp, "Supports MONITOR/MWAIT = %d (%d)\n", EcxGuest.u1Monitor, EcxHost.u1Monitor);
3883 pHlp->pfnPrintf(pHlp, "CPL-DS - CPL Qualified Debug Store = %d (%d)\n", EcxGuest.u1CPLDS, EcxHost.u1CPLDS);
3884 pHlp->pfnPrintf(pHlp, "VMX - Virtual Machine Technology = %d (%d)\n", EcxGuest.u1VMX, EcxHost.u1VMX);
3885 pHlp->pfnPrintf(pHlp, "SMX - Safer Mode Extensions = %d (%d)\n", EcxGuest.u1SMX, EcxHost.u1SMX);
3886 pHlp->pfnPrintf(pHlp, "Enhanced SpeedStep Technology = %d (%d)\n", EcxGuest.u1EST, EcxHost.u1EST);
3887 pHlp->pfnPrintf(pHlp, "Terminal Monitor 2 = %d (%d)\n", EcxGuest.u1TM2, EcxHost.u1TM2);
3888 pHlp->pfnPrintf(pHlp, "Supplemental SSE3 instructions = %d (%d)\n", EcxGuest.u1SSSE3, EcxHost.u1SSSE3);
3889 pHlp->pfnPrintf(pHlp, "L1 Context ID = %d (%d)\n", EcxGuest.u1CNTXID, EcxHost.u1CNTXID);
3890 pHlp->pfnPrintf(pHlp, "11 - Reserved = %d (%d)\n", EcxGuest.u1Reserved1, EcxHost.u1Reserved1);
3891 pHlp->pfnPrintf(pHlp, "FMA extensions using YMM state = %d (%d)\n", EcxGuest.u1FMA, EcxHost.u1FMA);
3892 pHlp->pfnPrintf(pHlp, "CMPXCHG16B instruction = %d (%d)\n", EcxGuest.u1CX16, EcxHost.u1CX16);
3893 pHlp->pfnPrintf(pHlp, "xTPR Update Control = %d (%d)\n", EcxGuest.u1TPRUpdate, EcxHost.u1TPRUpdate);
3894 pHlp->pfnPrintf(pHlp, "Perf/Debug Capability MSR = %d (%d)\n", EcxGuest.u1PDCM, EcxHost.u1PDCM);
3895 pHlp->pfnPrintf(pHlp, "16 - Reserved = %d (%d)\n", EcxGuest.u1Reserved2, EcxHost.u1Reserved2);
3896 pHlp->pfnPrintf(pHlp, "PCID - Process-context identifiers = %d (%d)\n", EcxGuest.u1PCID, EcxHost.u1PCID);
3897 pHlp->pfnPrintf(pHlp, "DCA - Direct Cache Access = %d (%d)\n", EcxGuest.u1DCA, EcxHost.u1DCA);
3898 pHlp->pfnPrintf(pHlp, "SSE4.1 instruction extensions = %d (%d)\n", EcxGuest.u1SSE4_1, EcxHost.u1SSE4_1);
3899 pHlp->pfnPrintf(pHlp, "SSE4.2 instruction extensions = %d (%d)\n", EcxGuest.u1SSE4_2, EcxHost.u1SSE4_2);
3900 pHlp->pfnPrintf(pHlp, "Supports the x2APIC extensions = %d (%d)\n", EcxGuest.u1x2APIC, EcxHost.u1x2APIC);
3901 pHlp->pfnPrintf(pHlp, "MOVBE instruction = %d (%d)\n", EcxGuest.u1MOVBE, EcxHost.u1MOVBE);
3902 pHlp->pfnPrintf(pHlp, "POPCNT instruction = %d (%d)\n", EcxGuest.u1POPCNT, EcxHost.u1POPCNT);
3903 pHlp->pfnPrintf(pHlp, "TSC-Deadline LAPIC timer mode = %d (%d)\n", EcxGuest.u1TSCDEADLINE,EcxHost.u1TSCDEADLINE);
3904 pHlp->pfnPrintf(pHlp, "AESNI instruction extensions = %d (%d)\n", EcxGuest.u1AES, EcxHost.u1AES);
3905 pHlp->pfnPrintf(pHlp, "XSAVE/XRSTOR extended state feature = %d (%d)\n", EcxGuest.u1XSAVE, EcxHost.u1XSAVE);
3906 pHlp->pfnPrintf(pHlp, "Supports OSXSAVE = %d (%d)\n", EcxGuest.u1OSXSAVE, EcxHost.u1OSXSAVE);
3907 pHlp->pfnPrintf(pHlp, "AVX instruction extensions = %d (%d)\n", EcxGuest.u1AVX, EcxHost.u1AVX);
3908 pHlp->pfnPrintf(pHlp, "29/30 - Reserved = %#x (%#x)\n",EcxGuest.u2Reserved3, EcxHost.u2Reserved3);
3909 pHlp->pfnPrintf(pHlp, "Hypervisor Present (we're a guest) = %d (%d)\n", EcxGuest.u1HVP, EcxHost.u1HVP);
3910 }
3911 }
3912 if (cStdMax >= 2 && iVerbosity)
3913 {
3914 /** @todo */
3915 }
3916
3917 /*
3918 * Extended.
3919 * Implemented after AMD specs.
3920 */
3921 unsigned cExtMax = pVM->cpum.s.aGuestCpuIdExt[0].eax & 0xffff;
3922
3923 pHlp->pfnPrintf(pHlp,
3924 "\n"
3925 " RAW Extended CPUIDs\n"
3926 " Function eax ebx ecx edx\n");
3927 for (unsigned i = 0; i < RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdExt); i++)
3928 {
3929 Guest = pVM->cpum.s.aGuestCpuIdExt[i];
3930 ASMCpuIdExSlow(0x80000000 | i, 0, 0, 0, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
3931
3932 pHlp->pfnPrintf(pHlp,
3933 "Gst: %08x %08x %08x %08x %08x%s\n"
3934 "Hst: %08x %08x %08x %08x\n",
3935 0x80000000 | i, Guest.eax, Guest.ebx, Guest.ecx, Guest.edx,
3936 i <= cExtMax ? "" : "*",
3937 Host.eax, Host.ebx, Host.ecx, Host.edx);
3938 }
3939
3940 /*
3941 * Understandable output
3942 */
3943 if (iVerbosity)
3944 {
3945 Guest = pVM->cpum.s.aGuestCpuIdExt[0];
3946 pHlp->pfnPrintf(pHlp,
3947 "Ext Name: %.4s%.4s%.4s\n"
3948 "Ext Supports: 0x80000000-%#010x\n",
3949 &Guest.ebx, &Guest.edx, &Guest.ecx, Guest.eax);
3950 }
3951
3952 if (iVerbosity && cExtMax >= 1)
3953 {
3954 Guest = pVM->cpum.s.aGuestCpuIdExt[1];
3955 uint32_t uEAX = Guest.eax;
3956 pHlp->pfnPrintf(pHlp,
3957 "Family: %d \tExtended: %d \tEffective: %d\n"
3958 "Model: %d \tExtended: %d \tEffective: %d\n"
3959 "Stepping: %d\n"
3960 "Brand ID: %#05x\n",
3961 (uEAX >> 8) & 0xf, (uEAX >> 20) & 0x7f, ASMGetCpuFamily(uEAX),
3962 (uEAX >> 4) & 0xf, (uEAX >> 16) & 0x0f, ASMGetCpuModel(uEAX, fIntel),
3963 ASMGetCpuStepping(uEAX),
3964 Guest.ebx & 0xfff);
3965
3966 if (iVerbosity == 1)
3967 {
3968 uint32_t uEDX = Guest.edx;
3969 pHlp->pfnPrintf(pHlp, "Features EDX: ");
3970 if (uEDX & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " FPU");
3971 if (uEDX & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " VME");
3972 if (uEDX & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " DE");
3973 if (uEDX & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " PSE");
3974 if (uEDX & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " TSC");
3975 if (uEDX & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " MSR");
3976 if (uEDX & RT_BIT(6)) pHlp->pfnPrintf(pHlp, " PAE");
3977 if (uEDX & RT_BIT(7)) pHlp->pfnPrintf(pHlp, " MCE");
3978 if (uEDX & RT_BIT(8)) pHlp->pfnPrintf(pHlp, " CX8");
3979 if (uEDX & RT_BIT(9)) pHlp->pfnPrintf(pHlp, " APIC");
3980 if (uEDX & RT_BIT(10)) pHlp->pfnPrintf(pHlp, " 10");
3981 if (uEDX & RT_BIT(11)) pHlp->pfnPrintf(pHlp, " SCR");
3982 if (uEDX & RT_BIT(12)) pHlp->pfnPrintf(pHlp, " MTRR");
3983 if (uEDX & RT_BIT(13)) pHlp->pfnPrintf(pHlp, " PGE");
3984 if (uEDX & RT_BIT(14)) pHlp->pfnPrintf(pHlp, " MCA");
3985 if (uEDX & RT_BIT(15)) pHlp->pfnPrintf(pHlp, " CMOV");
3986 if (uEDX & RT_BIT(16)) pHlp->pfnPrintf(pHlp, " PAT");
3987 if (uEDX & RT_BIT(17)) pHlp->pfnPrintf(pHlp, " PSE36");
3988 if (uEDX & RT_BIT(18)) pHlp->pfnPrintf(pHlp, " 18");
3989 if (uEDX & RT_BIT(19)) pHlp->pfnPrintf(pHlp, " 19");
3990 if (uEDX & RT_BIT(20)) pHlp->pfnPrintf(pHlp, " NX");
3991 if (uEDX & RT_BIT(21)) pHlp->pfnPrintf(pHlp, " 21");
3992 if (uEDX & RT_BIT(22)) pHlp->pfnPrintf(pHlp, " ExtMMX");
3993 if (uEDX & RT_BIT(23)) pHlp->pfnPrintf(pHlp, " MMX");
3994 if (uEDX & RT_BIT(24)) pHlp->pfnPrintf(pHlp, " FXSR");
3995 if (uEDX & RT_BIT(25)) pHlp->pfnPrintf(pHlp, " FastFXSR");
3996 if (uEDX & RT_BIT(26)) pHlp->pfnPrintf(pHlp, " Page1GB");
3997 if (uEDX & RT_BIT(27)) pHlp->pfnPrintf(pHlp, " RDTSCP");
3998 if (uEDX & RT_BIT(28)) pHlp->pfnPrintf(pHlp, " 28");
3999 if (uEDX & RT_BIT(29)) pHlp->pfnPrintf(pHlp, " LongMode");
4000 if (uEDX & RT_BIT(30)) pHlp->pfnPrintf(pHlp, " Ext3DNow");
4001 if (uEDX & RT_BIT(31)) pHlp->pfnPrintf(pHlp, " 3DNow");
4002 pHlp->pfnPrintf(pHlp, "\n");
4003
4004 uint32_t uECX = Guest.ecx;
4005 pHlp->pfnPrintf(pHlp, "Features ECX: ");
4006 if (uECX & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " LAHF/SAHF");
4007 if (uECX & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " CMPL");
4008 if (uECX & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " SVM");
4009 if (uECX & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " ExtAPIC");
4010 if (uECX & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " CR8L");
4011 if (uECX & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " ABM");
4012 if (uECX & RT_BIT(6)) pHlp->pfnPrintf(pHlp, " SSE4A");
4013 if (uECX & RT_BIT(7)) pHlp->pfnPrintf(pHlp, " MISALNSSE");
4014 if (uECX & RT_BIT(8)) pHlp->pfnPrintf(pHlp, " 3DNOWPRF");
4015 if (uECX & RT_BIT(9)) pHlp->pfnPrintf(pHlp, " OSVW");
4016 if (uECX & RT_BIT(10)) pHlp->pfnPrintf(pHlp, " IBS");
4017 if (uECX & RT_BIT(11)) pHlp->pfnPrintf(pHlp, " SSE5");
4018 if (uECX & RT_BIT(12)) pHlp->pfnPrintf(pHlp, " SKINIT");
4019 if (uECX & RT_BIT(13)) pHlp->pfnPrintf(pHlp, " WDT");
4020 for (unsigned iBit = 5; iBit < 32; iBit++)
4021 if (uECX & RT_BIT(iBit))
4022 pHlp->pfnPrintf(pHlp, " %d", iBit);
4023 pHlp->pfnPrintf(pHlp, "\n");
4024 }
4025 else
4026 {
4027 ASMCpuIdExSlow(0x80000001, 0, 0, 0, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
4028
4029 uint32_t uEdxGst = Guest.edx;
4030 uint32_t uEdxHst = Host.edx;
4031 pHlp->pfnPrintf(pHlp, "Mnemonic - Description = guest (host)\n");
4032 pHlp->pfnPrintf(pHlp, "FPU - x87 FPU on Chip = %d (%d)\n", !!(uEdxGst & RT_BIT( 0)), !!(uEdxHst & RT_BIT( 0)));
4033 pHlp->pfnPrintf(pHlp, "VME - Virtual 8086 Mode Enhancements = %d (%d)\n", !!(uEdxGst & RT_BIT( 1)), !!(uEdxHst & RT_BIT( 1)));
4034 pHlp->pfnPrintf(pHlp, "DE - Debugging extensions = %d (%d)\n", !!(uEdxGst & RT_BIT( 2)), !!(uEdxHst & RT_BIT( 2)));
4035 pHlp->pfnPrintf(pHlp, "PSE - Page Size Extension = %d (%d)\n", !!(uEdxGst & RT_BIT( 3)), !!(uEdxHst & RT_BIT( 3)));
4036 pHlp->pfnPrintf(pHlp, "TSC - Time Stamp Counter = %d (%d)\n", !!(uEdxGst & RT_BIT( 4)), !!(uEdxHst & RT_BIT( 4)));
4037 pHlp->pfnPrintf(pHlp, "MSR - K86 Model Specific Registers = %d (%d)\n", !!(uEdxGst & RT_BIT( 5)), !!(uEdxHst & RT_BIT( 5)));
4038 pHlp->pfnPrintf(pHlp, "PAE - Physical Address Extension = %d (%d)\n", !!(uEdxGst & RT_BIT( 6)), !!(uEdxHst & RT_BIT( 6)));
4039 pHlp->pfnPrintf(pHlp, "MCE - Machine Check Exception = %d (%d)\n", !!(uEdxGst & RT_BIT( 7)), !!(uEdxHst & RT_BIT( 7)));
4040 pHlp->pfnPrintf(pHlp, "CX8 - CMPXCHG8B instruction = %d (%d)\n", !!(uEdxGst & RT_BIT( 8)), !!(uEdxHst & RT_BIT( 8)));
4041 pHlp->pfnPrintf(pHlp, "APIC - APIC On-Chip = %d (%d)\n", !!(uEdxGst & RT_BIT( 9)), !!(uEdxHst & RT_BIT( 9)));
4042 pHlp->pfnPrintf(pHlp, "10 - Reserved = %d (%d)\n", !!(uEdxGst & RT_BIT(10)), !!(uEdxHst & RT_BIT(10)));
4043 pHlp->pfnPrintf(pHlp, "SEP - SYSCALL and SYSRET = %d (%d)\n", !!(uEdxGst & RT_BIT(11)), !!(uEdxHst & RT_BIT(11)));
4044 pHlp->pfnPrintf(pHlp, "MTRR - Memory Type Range Registers = %d (%d)\n", !!(uEdxGst & RT_BIT(12)), !!(uEdxHst & RT_BIT(12)));
4045 pHlp->pfnPrintf(pHlp, "PGE - PTE Global Bit = %d (%d)\n", !!(uEdxGst & RT_BIT(13)), !!(uEdxHst & RT_BIT(13)));
4046 pHlp->pfnPrintf(pHlp, "MCA - Machine Check Architecture = %d (%d)\n", !!(uEdxGst & RT_BIT(14)), !!(uEdxHst & RT_BIT(14)));
4047 pHlp->pfnPrintf(pHlp, "CMOV - Conditional Move Instructions = %d (%d)\n", !!(uEdxGst & RT_BIT(15)), !!(uEdxHst & RT_BIT(15)));
4048 pHlp->pfnPrintf(pHlp, "PAT - Page Attribute Table = %d (%d)\n", !!(uEdxGst & RT_BIT(16)), !!(uEdxHst & RT_BIT(16)));
4049 pHlp->pfnPrintf(pHlp, "PSE-36 - 36-bit Page Size Extention = %d (%d)\n", !!(uEdxGst & RT_BIT(17)), !!(uEdxHst & RT_BIT(17)));
4050 pHlp->pfnPrintf(pHlp, "18 - Reserved = %d (%d)\n", !!(uEdxGst & RT_BIT(18)), !!(uEdxHst & RT_BIT(18)));
4051 pHlp->pfnPrintf(pHlp, "19 - Reserved = %d (%d)\n", !!(uEdxGst & RT_BIT(19)), !!(uEdxHst & RT_BIT(19)));
4052 pHlp->pfnPrintf(pHlp, "NX - No-Execute Page Protection = %d (%d)\n", !!(uEdxGst & RT_BIT(20)), !!(uEdxHst & RT_BIT(20)));
4053 pHlp->pfnPrintf(pHlp, "DS - Debug Store = %d (%d)\n", !!(uEdxGst & RT_BIT(21)), !!(uEdxHst & RT_BIT(21)));
4054 pHlp->pfnPrintf(pHlp, "AXMMX - AMD Extensions to MMX Instr. = %d (%d)\n", !!(uEdxGst & RT_BIT(22)), !!(uEdxHst & RT_BIT(22)));
4055 pHlp->pfnPrintf(pHlp, "MMX - Intel MMX Technology = %d (%d)\n", !!(uEdxGst & RT_BIT(23)), !!(uEdxHst & RT_BIT(23)));
4056 pHlp->pfnPrintf(pHlp, "FXSR - FXSAVE and FXRSTOR Instructions = %d (%d)\n", !!(uEdxGst & RT_BIT(24)), !!(uEdxHst & RT_BIT(24)));
4057 pHlp->pfnPrintf(pHlp, "25 - AMD fast FXSAVE and FXRSTOR Instr.= %d (%d)\n", !!(uEdxGst & RT_BIT(25)), !!(uEdxHst & RT_BIT(25)));
4058 pHlp->pfnPrintf(pHlp, "26 - 1 GB large page support = %d (%d)\n", !!(uEdxGst & RT_BIT(26)), !!(uEdxHst & RT_BIT(26)));
4059 pHlp->pfnPrintf(pHlp, "27 - RDTSCP instruction = %d (%d)\n", !!(uEdxGst & RT_BIT(27)), !!(uEdxHst & RT_BIT(27)));
4060 pHlp->pfnPrintf(pHlp, "28 - Reserved = %d (%d)\n", !!(uEdxGst & RT_BIT(28)), !!(uEdxHst & RT_BIT(28)));
4061 pHlp->pfnPrintf(pHlp, "29 - AMD Long Mode = %d (%d)\n", !!(uEdxGst & RT_BIT(29)), !!(uEdxHst & RT_BIT(29)));
4062 pHlp->pfnPrintf(pHlp, "30 - AMD Extensions to 3DNow! = %d (%d)\n", !!(uEdxGst & RT_BIT(30)), !!(uEdxHst & RT_BIT(30)));
4063 pHlp->pfnPrintf(pHlp, "31 - AMD 3DNow! = %d (%d)\n", !!(uEdxGst & RT_BIT(31)), !!(uEdxHst & RT_BIT(31)));
4064
4065 uint32_t uEcxGst = Guest.ecx;
4066 uint32_t uEcxHst = Host.ecx;
4067 pHlp->pfnPrintf(pHlp, "LahfSahf - LAHF/SAHF in 64-bit mode = %d (%d)\n", !!(uEcxGst & RT_BIT( 0)), !!(uEcxHst & RT_BIT( 0)));
4068 pHlp->pfnPrintf(pHlp, "CmpLegacy - Core MP legacy mode (depr) = %d (%d)\n", !!(uEcxGst & RT_BIT( 1)), !!(uEcxHst & RT_BIT( 1)));
4069 pHlp->pfnPrintf(pHlp, "SVM - AMD VM Extensions = %d (%d)\n", !!(uEcxGst & RT_BIT( 2)), !!(uEcxHst & RT_BIT( 2)));
4070 pHlp->pfnPrintf(pHlp, "APIC registers starting at 0x400 = %d (%d)\n", !!(uEcxGst & RT_BIT( 3)), !!(uEcxHst & RT_BIT( 3)));
4071 pHlp->pfnPrintf(pHlp, "AltMovCR8 - LOCK MOV CR0 means MOV CR8 = %d (%d)\n", !!(uEcxGst & RT_BIT( 4)), !!(uEcxHst & RT_BIT( 4)));
4072 pHlp->pfnPrintf(pHlp, "5 - Advanced bit manipulation = %d (%d)\n", !!(uEcxGst & RT_BIT( 5)), !!(uEcxHst & RT_BIT( 5)));
4073 pHlp->pfnPrintf(pHlp, "6 - SSE4A instruction support = %d (%d)\n", !!(uEcxGst & RT_BIT( 6)), !!(uEcxHst & RT_BIT( 6)));
4074 pHlp->pfnPrintf(pHlp, "7 - Misaligned SSE mode = %d (%d)\n", !!(uEcxGst & RT_BIT( 7)), !!(uEcxHst & RT_BIT( 7)));
4075 pHlp->pfnPrintf(pHlp, "8 - PREFETCH and PREFETCHW instruction= %d (%d)\n", !!(uEcxGst & RT_BIT( 8)), !!(uEcxHst & RT_BIT( 8)));
4076 pHlp->pfnPrintf(pHlp, "9 - OS visible workaround = %d (%d)\n", !!(uEcxGst & RT_BIT( 9)), !!(uEcxHst & RT_BIT( 9)));
4077 pHlp->pfnPrintf(pHlp, "10 - Instruction based sampling = %d (%d)\n", !!(uEcxGst & RT_BIT(10)), !!(uEcxHst & RT_BIT(10)));
4078 pHlp->pfnPrintf(pHlp, "11 - SSE5 support = %d (%d)\n", !!(uEcxGst & RT_BIT(11)), !!(uEcxHst & RT_BIT(11)));
4079 pHlp->pfnPrintf(pHlp, "12 - SKINIT, STGI, and DEV support = %d (%d)\n", !!(uEcxGst & RT_BIT(12)), !!(uEcxHst & RT_BIT(12)));
4080 pHlp->pfnPrintf(pHlp, "13 - Watchdog timer support. = %d (%d)\n", !!(uEcxGst & RT_BIT(13)), !!(uEcxHst & RT_BIT(13)));
4081 pHlp->pfnPrintf(pHlp, "31:14 - Reserved = %#x (%#x)\n", uEcxGst >> 14, uEcxHst >> 14);
4082 }
4083 }
4084
4085 if (iVerbosity && cExtMax >= 2)
4086 {
4087 char szString[4*4*3+1] = {0};
4088 uint32_t *pu32 = (uint32_t *)szString;
4089 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[2].eax;
4090 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[2].ebx;
4091 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[2].ecx;
4092 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[2].edx;
4093 if (cExtMax >= 3)
4094 {
4095 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[3].eax;
4096 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[3].ebx;
4097 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[3].ecx;
4098 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[3].edx;
4099 }
4100 if (cExtMax >= 4)
4101 {
4102 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[4].eax;
4103 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[4].ebx;
4104 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[4].ecx;
4105 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[4].edx;
4106 }
4107 pHlp->pfnPrintf(pHlp, "Full Name: %s\n", szString);
4108 }
4109
4110 if (iVerbosity && cExtMax >= 5)
4111 {
4112 uint32_t uEAX = pVM->cpum.s.aGuestCpuIdExt[5].eax;
4113 uint32_t uEBX = pVM->cpum.s.aGuestCpuIdExt[5].ebx;
4114 uint32_t uECX = pVM->cpum.s.aGuestCpuIdExt[5].ecx;
4115 uint32_t uEDX = pVM->cpum.s.aGuestCpuIdExt[5].edx;
4116 char sz1[32];
4117 char sz2[32];
4118
4119 pHlp->pfnPrintf(pHlp,
4120 "TLB 2/4M Instr/Uni: %s %3d entries\n"
4121 "TLB 2/4M Data: %s %3d entries\n",
4122 getCacheAss((uEAX >> 8) & 0xff, sz1), (uEAX >> 0) & 0xff,
4123 getCacheAss((uEAX >> 24) & 0xff, sz2), (uEAX >> 16) & 0xff);
4124 pHlp->pfnPrintf(pHlp,
4125 "TLB 4K Instr/Uni: %s %3d entries\n"
4126 "TLB 4K Data: %s %3d entries\n",
4127 getCacheAss((uEBX >> 8) & 0xff, sz1), (uEBX >> 0) & 0xff,
4128 getCacheAss((uEBX >> 24) & 0xff, sz2), (uEBX >> 16) & 0xff);
4129 pHlp->pfnPrintf(pHlp, "L1 Instr Cache Line Size: %d bytes\n"
4130 "L1 Instr Cache Lines Per Tag: %d\n"
4131 "L1 Instr Cache Associativity: %s\n"
4132 "L1 Instr Cache Size: %d KB\n",
4133 (uEDX >> 0) & 0xff,
4134 (uEDX >> 8) & 0xff,
4135 getCacheAss((uEDX >> 16) & 0xff, sz1),
4136 (uEDX >> 24) & 0xff);
4137 pHlp->pfnPrintf(pHlp,
4138 "L1 Data Cache Line Size: %d bytes\n"
4139 "L1 Data Cache Lines Per Tag: %d\n"
4140 "L1 Data Cache Associativity: %s\n"
4141 "L1 Data Cache Size: %d KB\n",
4142 (uECX >> 0) & 0xff,
4143 (uECX >> 8) & 0xff,
4144 getCacheAss((uECX >> 16) & 0xff, sz1),
4145 (uECX >> 24) & 0xff);
4146 }
4147
4148 if (iVerbosity && cExtMax >= 6)
4149 {
4150 uint32_t uEAX = pVM->cpum.s.aGuestCpuIdExt[6].eax;
4151 uint32_t uEBX = pVM->cpum.s.aGuestCpuIdExt[6].ebx;
4152 uint32_t uEDX = pVM->cpum.s.aGuestCpuIdExt[6].edx;
4153
4154 pHlp->pfnPrintf(pHlp,
4155 "L2 TLB 2/4M Instr/Uni: %s %4d entries\n"
4156 "L2 TLB 2/4M Data: %s %4d entries\n",
4157 getL2CacheAss((uEAX >> 12) & 0xf), (uEAX >> 0) & 0xfff,
4158 getL2CacheAss((uEAX >> 28) & 0xf), (uEAX >> 16) & 0xfff);
4159 pHlp->pfnPrintf(pHlp,
4160 "L2 TLB 4K Instr/Uni: %s %4d entries\n"
4161 "L2 TLB 4K Data: %s %4d entries\n",
4162 getL2CacheAss((uEBX >> 12) & 0xf), (uEBX >> 0) & 0xfff,
4163 getL2CacheAss((uEBX >> 28) & 0xf), (uEBX >> 16) & 0xfff);
4164 pHlp->pfnPrintf(pHlp,
4165 "L2 Cache Line Size: %d bytes\n"
4166 "L2 Cache Lines Per Tag: %d\n"
4167 "L2 Cache Associativity: %s\n"
4168 "L2 Cache Size: %d KB\n",
4169 (uEDX >> 0) & 0xff,
4170 (uEDX >> 8) & 0xf,
4171 getL2CacheAss((uEDX >> 12) & 0xf),
4172 (uEDX >> 16) & 0xffff);
4173 }
4174
4175 if (iVerbosity && cExtMax >= 7)
4176 {
4177 uint32_t uEDX = pVM->cpum.s.aGuestCpuIdExt[7].edx;
4178
4179 pHlp->pfnPrintf(pHlp, "APM Features: ");
4180 if (uEDX & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " TS");
4181 if (uEDX & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " FID");
4182 if (uEDX & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " VID");
4183 if (uEDX & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " TTP");
4184 if (uEDX & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " TM");
4185 if (uEDX & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " STC");
4186 for (unsigned iBit = 6; iBit < 32; iBit++)
4187 if (uEDX & RT_BIT(iBit))
4188 pHlp->pfnPrintf(pHlp, " %d", iBit);
4189 pHlp->pfnPrintf(pHlp, "\n");
4190 }
4191
4192 if (iVerbosity && cExtMax >= 8)
4193 {
4194 uint32_t uEAX = pVM->cpum.s.aGuestCpuIdExt[8].eax;
4195 uint32_t uECX = pVM->cpum.s.aGuestCpuIdExt[8].ecx;
4196
4197 pHlp->pfnPrintf(pHlp,
4198 "Physical Address Width: %d bits\n"
4199 "Virtual Address Width: %d bits\n"
4200 "Guest Physical Address Width: %d bits\n",
4201 (uEAX >> 0) & 0xff,
4202 (uEAX >> 8) & 0xff,
4203 (uEAX >> 16) & 0xff);
4204 pHlp->pfnPrintf(pHlp,
4205 "Physical Core Count: %d\n",
4206 (uECX >> 0) & 0xff);
4207 }
4208
4209
4210 /*
4211 * Centaur.
4212 */
4213 unsigned cCentaurMax = pVM->cpum.s.aGuestCpuIdCentaur[0].eax & 0xffff;
4214
4215 pHlp->pfnPrintf(pHlp,
4216 "\n"
4217 " RAW Centaur CPUIDs\n"
4218 " Function eax ebx ecx edx\n");
4219 for (unsigned i = 0; i < RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdCentaur); i++)
4220 {
4221 Guest = pVM->cpum.s.aGuestCpuIdCentaur[i];
4222 ASMCpuIdExSlow(0xc0000000 | i, 0, 0, 0, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
4223
4224 pHlp->pfnPrintf(pHlp,
4225 "Gst: %08x %08x %08x %08x %08x%s\n"
4226 "Hst: %08x %08x %08x %08x\n",
4227 0xc0000000 | i, Guest.eax, Guest.ebx, Guest.ecx, Guest.edx,
4228 i <= cCentaurMax ? "" : "*",
4229 Host.eax, Host.ebx, Host.ecx, Host.edx);
4230 }
4231
4232 /*
4233 * Understandable output
4234 */
4235 if (iVerbosity)
4236 {
4237 Guest = pVM->cpum.s.aGuestCpuIdCentaur[0];
4238 pHlp->pfnPrintf(pHlp,
4239 "Centaur Supports: 0xc0000000-%#010x\n",
4240 Guest.eax);
4241 }
4242
4243 if (iVerbosity && cCentaurMax >= 1)
4244 {
4245 ASMCpuIdExSlow(0xc0000001, 0, 0, 0, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
4246 uint32_t uEdxGst = pVM->cpum.s.aGuestCpuIdCentaur[1].edx;
4247 uint32_t uEdxHst = Host.edx;
4248
4249 if (iVerbosity == 1)
4250 {
4251 pHlp->pfnPrintf(pHlp, "Centaur Features EDX: ");
4252 if (uEdxGst & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " AIS");
4253 if (uEdxGst & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " AIS-E");
4254 if (uEdxGst & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " RNG");
4255 if (uEdxGst & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " RNG-E");
4256 if (uEdxGst & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " LH");
4257 if (uEdxGst & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " FEMMS");
4258 if (uEdxGst & RT_BIT(6)) pHlp->pfnPrintf(pHlp, " ACE");
4259 if (uEdxGst & RT_BIT(7)) pHlp->pfnPrintf(pHlp, " ACE-E");
4260 /* possibly indicating MM/HE and MM/HE-E on older chips... */
4261 if (uEdxGst & RT_BIT(8)) pHlp->pfnPrintf(pHlp, " ACE2");
4262 if (uEdxGst & RT_BIT(9)) pHlp->pfnPrintf(pHlp, " ACE2-E");
4263 if (uEdxGst & RT_BIT(10)) pHlp->pfnPrintf(pHlp, " PHE");
4264 if (uEdxGst & RT_BIT(11)) pHlp->pfnPrintf(pHlp, " PHE-E");
4265 if (uEdxGst & RT_BIT(12)) pHlp->pfnPrintf(pHlp, " PMM");
4266 if (uEdxGst & RT_BIT(13)) pHlp->pfnPrintf(pHlp, " PMM-E");
4267 for (unsigned iBit = 14; iBit < 32; iBit++)
4268 if (uEdxGst & RT_BIT(iBit))
4269 pHlp->pfnPrintf(pHlp, " %d", iBit);
4270 pHlp->pfnPrintf(pHlp, "\n");
4271 }
4272 else
4273 {
4274 pHlp->pfnPrintf(pHlp, "Mnemonic - Description = guest (host)\n");
4275 pHlp->pfnPrintf(pHlp, "AIS - Alternate Instruction Set = %d (%d)\n", !!(uEdxGst & RT_BIT( 0)), !!(uEdxHst & RT_BIT( 0)));
4276 pHlp->pfnPrintf(pHlp, "AIS-E - AIS enabled = %d (%d)\n", !!(uEdxGst & RT_BIT( 1)), !!(uEdxHst & RT_BIT( 1)));
4277 pHlp->pfnPrintf(pHlp, "RNG - Random Number Generator = %d (%d)\n", !!(uEdxGst & RT_BIT( 2)), !!(uEdxHst & RT_BIT( 2)));
4278 pHlp->pfnPrintf(pHlp, "RNG-E - RNG enabled = %d (%d)\n", !!(uEdxGst & RT_BIT( 3)), !!(uEdxHst & RT_BIT( 3)));
4279 pHlp->pfnPrintf(pHlp, "LH - LongHaul MSR 0000_110Ah = %d (%d)\n", !!(uEdxGst & RT_BIT( 4)), !!(uEdxHst & RT_BIT( 4)));
4280 pHlp->pfnPrintf(pHlp, "FEMMS - FEMMS = %d (%d)\n", !!(uEdxGst & RT_BIT( 5)), !!(uEdxHst & RT_BIT( 5)));
4281 pHlp->pfnPrintf(pHlp, "ACE - Advanced Cryptography Engine = %d (%d)\n", !!(uEdxGst & RT_BIT( 6)), !!(uEdxHst & RT_BIT( 6)));
4282 pHlp->pfnPrintf(pHlp, "ACE-E - ACE enabled = %d (%d)\n", !!(uEdxGst & RT_BIT( 7)), !!(uEdxHst & RT_BIT( 7)));
4283 /* possibly indicating MM/HE and MM/HE-E on older chips... */
4284 pHlp->pfnPrintf(pHlp, "ACE2 - Advanced Cryptography Engine 2 = %d (%d)\n", !!(uEdxGst & RT_BIT( 8)), !!(uEdxHst & RT_BIT( 8)));
4285 pHlp->pfnPrintf(pHlp, "ACE2-E - ACE enabled = %d (%d)\n", !!(uEdxGst & RT_BIT( 9)), !!(uEdxHst & RT_BIT( 9)));
4286 pHlp->pfnPrintf(pHlp, "PHE - Padlock Hash Engine = %d (%d)\n", !!(uEdxGst & RT_BIT(10)), !!(uEdxHst & RT_BIT(10)));
4287 pHlp->pfnPrintf(pHlp, "PHE-E - PHE enabled = %d (%d)\n", !!(uEdxGst & RT_BIT(11)), !!(uEdxHst & RT_BIT(11)));
4288 pHlp->pfnPrintf(pHlp, "PMM - Montgomery Multiplier = %d (%d)\n", !!(uEdxGst & RT_BIT(12)), !!(uEdxHst & RT_BIT(12)));
4289 pHlp->pfnPrintf(pHlp, "PMM-E - PMM enabled = %d (%d)\n", !!(uEdxGst & RT_BIT(13)), !!(uEdxHst & RT_BIT(13)));
4290 pHlp->pfnPrintf(pHlp, "14 - Reserved = %d (%d)\n", !!(uEdxGst & RT_BIT(14)), !!(uEdxHst & RT_BIT(14)));
4291 pHlp->pfnPrintf(pHlp, "15 - Reserved = %d (%d)\n", !!(uEdxGst & RT_BIT(15)), !!(uEdxHst & RT_BIT(15)));
4292 pHlp->pfnPrintf(pHlp, "Parallax = %d (%d)\n", !!(uEdxGst & RT_BIT(16)), !!(uEdxHst & RT_BIT(16)));
4293 pHlp->pfnPrintf(pHlp, "Parallax enabled = %d (%d)\n", !!(uEdxGst & RT_BIT(17)), !!(uEdxHst & RT_BIT(17)));
4294 pHlp->pfnPrintf(pHlp, "Overstress = %d (%d)\n", !!(uEdxGst & RT_BIT(18)), !!(uEdxHst & RT_BIT(18)));
4295 pHlp->pfnPrintf(pHlp, "Overstress enabled = %d (%d)\n", !!(uEdxGst & RT_BIT(19)), !!(uEdxHst & RT_BIT(19)));
4296 pHlp->pfnPrintf(pHlp, "TM3 - Temperature Monitoring 3 = %d (%d)\n", !!(uEdxGst & RT_BIT(20)), !!(uEdxHst & RT_BIT(20)));
4297 pHlp->pfnPrintf(pHlp, "TM3-E - TM3 enabled = %d (%d)\n", !!(uEdxGst & RT_BIT(21)), !!(uEdxHst & RT_BIT(21)));
4298 pHlp->pfnPrintf(pHlp, "RNG2 - Random Number Generator 2 = %d (%d)\n", !!(uEdxGst & RT_BIT(22)), !!(uEdxHst & RT_BIT(22)));
4299 pHlp->pfnPrintf(pHlp, "RNG2-E - RNG2 enabled = %d (%d)\n", !!(uEdxGst & RT_BIT(23)), !!(uEdxHst & RT_BIT(23)));
4300 pHlp->pfnPrintf(pHlp, "24 - Reserved = %d (%d)\n", !!(uEdxGst & RT_BIT(24)), !!(uEdxHst & RT_BIT(24)));
4301 pHlp->pfnPrintf(pHlp, "PHE2 - Padlock Hash Engine 2 = %d (%d)\n", !!(uEdxGst & RT_BIT(25)), !!(uEdxHst & RT_BIT(25)));
4302 pHlp->pfnPrintf(pHlp, "PHE2-E - PHE2 enabled = %d (%d)\n", !!(uEdxGst & RT_BIT(26)), !!(uEdxHst & RT_BIT(26)));
4303 for (unsigned iBit = 27; iBit < 32; iBit++)
4304 if ((uEdxGst | uEdxHst) & RT_BIT(iBit))
4305 pHlp->pfnPrintf(pHlp, "Bit %d = %d (%d)\n", iBit, !!(uEdxGst & RT_BIT(iBit)), !!(uEdxHst & RT_BIT(iBit)));
4306 pHlp->pfnPrintf(pHlp, "\n");
4307 }
4308 }
4309}
4310
4311
4312/**
4313 * Structure used when disassembling and instructions in DBGF.
4314 * This is used so the reader function can get the stuff it needs.
4315 */
4316typedef struct CPUMDISASSTATE
4317{
4318 /** Pointer to the CPU structure. */
4319 PDISCPUSTATE pCpu;
4320 /** Pointer to the VM. */
4321 PVM pVM;
4322 /** Pointer to the VMCPU. */
4323 PVMCPU pVCpu;
4324 /** Pointer to the first byte in the segment. */
4325 RTGCUINTPTR GCPtrSegBase;
4326 /** Pointer to the byte after the end of the segment. (might have wrapped!) */
4327 RTGCUINTPTR GCPtrSegEnd;
4328 /** The size of the segment minus 1. */
4329 RTGCUINTPTR cbSegLimit;
4330 /** Pointer to the current page - R3 Ptr. */
4331 void const *pvPageR3;
4332 /** Pointer to the current page - GC Ptr. */
4333 RTGCPTR pvPageGC;
4334 /** The lock information that PGMPhysReleasePageMappingLock needs. */
4335 PGMPAGEMAPLOCK PageMapLock;
4336 /** Whether the PageMapLock is valid or not. */
4337 bool fLocked;
4338 /** 64 bits mode or not. */
4339 bool f64Bits;
4340} CPUMDISASSTATE, *PCPUMDISASSTATE;
4341
4342
4343/**
4344 * @callback_method_impl{FNDISREADBYTES}
4345 */
4346static DECLCALLBACK(int) cpumR3DisasInstrRead(PDISCPUSTATE pDis, uint8_t offInstr, uint8_t cbMinRead, uint8_t cbMaxRead)
4347{
4348 PCPUMDISASSTATE pState = (PCPUMDISASSTATE)pDis->pvUser;
4349 for (;;)
4350 {
4351 RTGCUINTPTR GCPtr = pDis->uInstrAddr + offInstr + pState->GCPtrSegBase;
4352
4353 /*
4354 * Need to update the page translation?
4355 */
4356 if ( !pState->pvPageR3
4357 || (GCPtr >> PAGE_SHIFT) != (pState->pvPageGC >> PAGE_SHIFT))
4358 {
4359 int rc = VINF_SUCCESS;
4360
4361 /* translate the address */
4362 pState->pvPageGC = GCPtr & PAGE_BASE_GC_MASK;
4363 if ( !HMIsEnabled(pState->pVM)
4364 && MMHyperIsInsideArea(pState->pVM, pState->pvPageGC))
4365 {
4366 pState->pvPageR3 = MMHyperRCToR3(pState->pVM, (RTRCPTR)pState->pvPageGC);
4367 if (!pState->pvPageR3)
4368 rc = VERR_INVALID_POINTER;
4369 }
4370 else
4371 {
4372 /* Release mapping lock previously acquired. */
4373 if (pState->fLocked)
4374 PGMPhysReleasePageMappingLock(pState->pVM, &pState->PageMapLock);
4375 rc = PGMPhysGCPtr2CCPtrReadOnly(pState->pVCpu, pState->pvPageGC, &pState->pvPageR3, &pState->PageMapLock);
4376 pState->fLocked = RT_SUCCESS_NP(rc);
4377 }
4378 if (RT_FAILURE(rc))
4379 {
4380 pState->pvPageR3 = NULL;
4381 return rc;
4382 }
4383 }
4384
4385 /*
4386 * Check the segment limit.
4387 */
4388 if (!pState->f64Bits && pDis->uInstrAddr + offInstr > pState->cbSegLimit)
4389 return VERR_OUT_OF_SELECTOR_BOUNDS;
4390
4391 /*
4392 * Calc how much we can read.
4393 */
4394 uint32_t cb = PAGE_SIZE - (GCPtr & PAGE_OFFSET_MASK);
4395 if (!pState->f64Bits)
4396 {
4397 RTGCUINTPTR cbSeg = pState->GCPtrSegEnd - GCPtr;
4398 if (cb > cbSeg && cbSeg)
4399 cb = cbSeg;
4400 }
4401 if (cb > cbMaxRead)
4402 cb = cbMaxRead;
4403
4404 /*
4405 * Read and advance or exit.
4406 */
4407 memcpy(&pDis->abInstr[offInstr], (uint8_t *)pState->pvPageR3 + (GCPtr & PAGE_OFFSET_MASK), cb);
4408 offInstr += (uint8_t)cb;
4409 if (cb >= cbMinRead)
4410 {
4411 pDis->cbCachedInstr = offInstr;
4412 return VINF_SUCCESS;
4413 }
4414 cbMinRead -= (uint8_t)cb;
4415 cbMaxRead -= (uint8_t)cb;
4416 }
4417}
4418
4419
4420/**
4421 * Disassemble an instruction and return the information in the provided structure.
4422 *
4423 * @returns VBox status code.
4424 * @param pVM Pointer to the VM.
4425 * @param pVCpu Pointer to the VMCPU.
4426 * @param pCtx Pointer to the guest CPU context.
4427 * @param GCPtrPC Program counter (relative to CS) to disassemble from.
4428 * @param pCpu Disassembly state.
4429 * @param pszPrefix String prefix for logging (debug only).
4430 *
4431 */
4432VMMR3DECL(int) CPUMR3DisasmInstrCPU(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, RTGCPTR GCPtrPC, PDISCPUSTATE pCpu, const char *pszPrefix)
4433{
4434 CPUMDISASSTATE State;
4435 int rc;
4436
4437 const PGMMODE enmMode = PGMGetGuestMode(pVCpu);
4438 State.pCpu = pCpu;
4439 State.pvPageGC = 0;
4440 State.pvPageR3 = NULL;
4441 State.pVM = pVM;
4442 State.pVCpu = pVCpu;
4443 State.fLocked = false;
4444 State.f64Bits = false;
4445
4446 /*
4447 * Get selector information.
4448 */
4449 DISCPUMODE enmDisCpuMode;
4450 if ( (pCtx->cr0 & X86_CR0_PE)
4451 && pCtx->eflags.Bits.u1VM == 0)
4452 {
4453 if (!CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->cs))
4454 {
4455# ifdef VBOX_WITH_RAW_MODE_NOT_R0
4456 CPUMGuestLazyLoadHiddenSelectorReg(pVCpu, &pCtx->cs);
4457# endif
4458 if (!CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->cs))
4459 return VERR_CPUM_HIDDEN_CS_LOAD_ERROR;
4460 }
4461 State.f64Bits = enmMode >= PGMMODE_AMD64 && pCtx->cs.Attr.n.u1Long;
4462 State.GCPtrSegBase = pCtx->cs.u64Base;
4463 State.GCPtrSegEnd = pCtx->cs.u32Limit + 1 + (RTGCUINTPTR)pCtx->cs.u64Base;
4464 State.cbSegLimit = pCtx->cs.u32Limit;
4465 enmDisCpuMode = (State.f64Bits)
4466 ? DISCPUMODE_64BIT
4467 : pCtx->cs.Attr.n.u1DefBig
4468 ? DISCPUMODE_32BIT
4469 : DISCPUMODE_16BIT;
4470 }
4471 else
4472 {
4473 /* real or V86 mode */
4474 enmDisCpuMode = DISCPUMODE_16BIT;
4475 State.GCPtrSegBase = pCtx->cs.Sel * 16;
4476 State.GCPtrSegEnd = 0xFFFFFFFF;
4477 State.cbSegLimit = 0xFFFFFFFF;
4478 }
4479
4480 /*
4481 * Disassemble the instruction.
4482 */
4483 uint32_t cbInstr;
4484#ifndef LOG_ENABLED
4485 rc = DISInstrWithReader(GCPtrPC, enmDisCpuMode, cpumR3DisasInstrRead, &State, pCpu, &cbInstr);
4486 if (RT_SUCCESS(rc))
4487 {
4488#else
4489 char szOutput[160];
4490 rc = DISInstrToStrWithReader(GCPtrPC, enmDisCpuMode, cpumR3DisasInstrRead, &State,
4491 pCpu, &cbInstr, szOutput, sizeof(szOutput));
4492 if (RT_SUCCESS(rc))
4493 {
4494 /* log it */
4495 if (pszPrefix)
4496 Log(("%s-CPU%d: %s", pszPrefix, pVCpu->idCpu, szOutput));
4497 else
4498 Log(("%s", szOutput));
4499#endif
4500 rc = VINF_SUCCESS;
4501 }
4502 else
4503 Log(("CPUMR3DisasmInstrCPU: DISInstr failed for %04X:%RGv rc=%Rrc\n", pCtx->cs.Sel, GCPtrPC, rc));
4504
4505 /* Release mapping lock acquired in cpumR3DisasInstrRead. */
4506 if (State.fLocked)
4507 PGMPhysReleasePageMappingLock(pVM, &State.PageMapLock);
4508
4509 return rc;
4510}
4511
4512
4513
4514/**
4515 * API for controlling a few of the CPU features found in CR4.
4516 *
4517 * Currently only X86_CR4_TSD is accepted as input.
4518 *
4519 * @returns VBox status code.
4520 *
4521 * @param pVM Pointer to the VM.
4522 * @param fOr The CR4 OR mask.
4523 * @param fAnd The CR4 AND mask.
4524 */
4525VMMR3DECL(int) CPUMR3SetCR4Feature(PVM pVM, RTHCUINTREG fOr, RTHCUINTREG fAnd)
4526{
4527 AssertMsgReturn(!(fOr & ~(X86_CR4_TSD)), ("%#x\n", fOr), VERR_INVALID_PARAMETER);
4528 AssertMsgReturn((fAnd & ~(X86_CR4_TSD)) == ~(X86_CR4_TSD), ("%#x\n", fAnd), VERR_INVALID_PARAMETER);
4529
4530 pVM->cpum.s.CR4.OrMask &= fAnd;
4531 pVM->cpum.s.CR4.OrMask |= fOr;
4532
4533 return VINF_SUCCESS;
4534}
4535
4536
4537/**
4538 * Gets a pointer to the array of standard CPUID leaves.
4539 *
4540 * CPUMR3GetGuestCpuIdStdMax() give the size of the array.
4541 *
4542 * @returns Pointer to the standard CPUID leaves (read-only).
4543 * @param pVM Pointer to the VM.
4544 * @remark Intended for PATM.
4545 */
4546VMMR3DECL(RCPTRTYPE(PCCPUMCPUID)) CPUMR3GetGuestCpuIdStdRCPtr(PVM pVM)
4547{
4548 return RCPTRTYPE(PCCPUMCPUID)VM_RC_ADDR(pVM, &pVM->cpum.s.aGuestCpuIdStd[0]);
4549}
4550
4551
4552/**
4553 * Gets a pointer to the array of extended CPUID leaves.
4554 *
4555 * CPUMGetGuestCpuIdExtMax() give the size of the array.
4556 *
4557 * @returns Pointer to the extended CPUID leaves (read-only).
4558 * @param pVM Pointer to the VM.
4559 * @remark Intended for PATM.
4560 */
4561VMMR3DECL(RCPTRTYPE(PCCPUMCPUID)) CPUMR3GetGuestCpuIdExtRCPtr(PVM pVM)
4562{
4563 return (RCPTRTYPE(PCCPUMCPUID))VM_RC_ADDR(pVM, &pVM->cpum.s.aGuestCpuIdExt[0]);
4564}
4565
4566
4567/**
4568 * Gets a pointer to the array of centaur CPUID leaves.
4569 *
4570 * CPUMGetGuestCpuIdCentaurMax() give the size of the array.
4571 *
4572 * @returns Pointer to the centaur CPUID leaves (read-only).
4573 * @param pVM Pointer to the VM.
4574 * @remark Intended for PATM.
4575 */
4576VMMR3DECL(RCPTRTYPE(PCCPUMCPUID)) CPUMR3GetGuestCpuIdCentaurRCPtr(PVM pVM)
4577{
4578 return (RCPTRTYPE(PCCPUMCPUID))VM_RC_ADDR(pVM, &pVM->cpum.s.aGuestCpuIdCentaur[0]);
4579}
4580
4581
4582/**
4583 * Gets a pointer to the default CPUID leaf.
4584 *
4585 * @returns Pointer to the default CPUID leaf (read-only).
4586 * @param pVM Pointer to the VM.
4587 * @remark Intended for PATM.
4588 */
4589VMMR3DECL(RCPTRTYPE(PCCPUMCPUID)) CPUMR3GetGuestCpuIdDefRCPtr(PVM pVM)
4590{
4591 return (RCPTRTYPE(PCCPUMCPUID))VM_RC_ADDR(pVM, &pVM->cpum.s.GuestCpuIdDef);
4592}
4593
4594
4595/**
4596 * Enters REM, gets and resets the changed flags (CPUM_CHANGED_*).
4597 *
4598 * Only REM should ever call this function!
4599 *
4600 * @returns The changed flags.
4601 * @param pVCpu Pointer to the VMCPU.
4602 * @param puCpl Where to return the current privilege level (CPL).
4603 */
4604VMMR3DECL(uint32_t) CPUMR3RemEnter(PVMCPU pVCpu, uint32_t *puCpl)
4605{
4606 Assert(!pVCpu->cpum.s.fRawEntered);
4607 Assert(!pVCpu->cpum.s.fRemEntered);
4608
4609 /*
4610 * Get the CPL first.
4611 */
4612 *puCpl = CPUMGetGuestCPL(pVCpu);
4613
4614 /*
4615 * Get and reset the flags.
4616 */
4617 uint32_t fFlags = pVCpu->cpum.s.fChanged;
4618 pVCpu->cpum.s.fChanged = 0;
4619
4620 /** @todo change the switcher to use the fChanged flags. */
4621 if (pVCpu->cpum.s.fUseFlags & CPUM_USED_FPU_SINCE_REM)
4622 {
4623 fFlags |= CPUM_CHANGED_FPU_REM;
4624 pVCpu->cpum.s.fUseFlags &= ~CPUM_USED_FPU_SINCE_REM;
4625 }
4626
4627 pVCpu->cpum.s.fRemEntered = true;
4628 return fFlags;
4629}
4630
4631
4632/**
4633 * Leaves REM.
4634 *
4635 * @param pVCpu Pointer to the VMCPU.
4636 * @param fNoOutOfSyncSels This is @c false if there are out of sync
4637 * registers.
4638 */
4639VMMR3DECL(void) CPUMR3RemLeave(PVMCPU pVCpu, bool fNoOutOfSyncSels)
4640{
4641 Assert(!pVCpu->cpum.s.fRawEntered);
4642 Assert(pVCpu->cpum.s.fRemEntered);
4643
4644 pVCpu->cpum.s.fRemEntered = false;
4645}
4646
4647
4648/**
4649 * Called when the ring-3 init phase completes.
4650 *
4651 * @returns VBox status code.
4652 * @param pVM Pointer to the VM.
4653 */
4654VMMR3DECL(int) CPUMR3InitCompleted(PVM pVM)
4655{
4656 for (VMCPUID i = 0; i < pVM->cCpus; i++)
4657 {
4658 /* Cache the APIC base (from the APIC device) once it has been initialized. */
4659 PDMApicGetBase(&pVM->aCpus[i], &pVM->aCpus[i].cpum.s.Guest.msrApicBase);
4660 Log(("CPUMR3InitCompleted pVM=%p APIC base[%u]=%RX64\n", pVM, (unsigned)i, pVM->aCpus[i].cpum.s.Guest.msrApicBase));
4661 }
4662 return VINF_SUCCESS;
4663}
4664
4665/**
4666 * Called when the ring-0 init phases comleted.
4667 *
4668 * @param pVM Pointer to the VM.
4669 */
4670VMMR3DECL(void) CPUMR3LogCpuIds(PVM pVM)
4671{
4672 /*
4673 * Log the cpuid.
4674 */
4675 bool fOldBuffered = RTLogRelSetBuffering(true /*fBuffered*/);
4676 RTCPUSET OnlineSet;
4677 LogRel(("Logical host processors: %u present, %u max, %u online, online mask: %016RX64\n",
4678 (unsigned)RTMpGetPresentCount(), (unsigned)RTMpGetCount(), (unsigned)RTMpGetOnlineCount(),
4679 RTCpuSetToU64(RTMpGetOnlineSet(&OnlineSet)) ));
4680 RTCPUID cCores = RTMpGetCoreCount();
4681 if (cCores)
4682 LogRel(("Physical host cores: %u\n", (unsigned)cCores));
4683 LogRel(("************************* CPUID dump ************************\n"));
4684 DBGFR3Info(pVM->pUVM, "cpuid", "verbose", DBGFR3InfoLogRelHlp());
4685 LogRel(("\n"));
4686 DBGFR3_INFO_LOG(pVM, "cpuid", "verbose"); /* macro */
4687 RTLogRelSetBuffering(fOldBuffered);
4688 LogRel(("******************** End of CPUID dump **********************\n"));
4689}
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette