VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/CPUM.cpp@ 70301

Last change on this file since 70301 was 70301, checked in by vboxsync, 7 years ago

VMM: Updating VMCB layout with the new GUEST_INTERRUPT_MASK field, interrupt shadow bitfield as a consequence.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 137.9 KB
Line 
1/* $Id: CPUM.cpp 70301 2017-12-22 06:06:27Z vboxsync $ */
2/** @file
3 * CPUM - CPU Monitor / Manager.
4 */
5
6/*
7 * Copyright (C) 2006-2017 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/** @page pg_cpum CPUM - CPU Monitor / Manager
19 *
20 * The CPU Monitor / Manager keeps track of all the CPU registers. It is
21 * also responsible for lazy FPU handling and some of the context loading
22 * in raw mode.
23 *
24 * There are three CPU contexts, the most important one is the guest one (GC).
25 * When running in raw-mode (RC) there is a special hyper context for the VMM
26 * part that floats around inside the guest address space. When running in
27 * raw-mode, CPUM also maintains a host context for saving and restoring
28 * registers across world switches. This latter is done in cooperation with the
29 * world switcher (@see pg_vmm).
30 *
31 * @see grp_cpum
32 *
33 * @section sec_cpum_fpu FPU / SSE / AVX / ++ state.
34 *
35 * TODO: proper write up, currently just some notes.
36 *
37 * The ring-0 FPU handling per OS:
38 *
39 * - 64-bit Windows uses XMM registers in the kernel as part of the calling
40 * convention (Visual C++ doesn't seem to have a way to disable
41 * generating such code either), so CR0.TS/EM are always zero from what I
42 * can tell. We are also forced to always load/save the guest XMM0-XMM15
43 * registers when entering/leaving guest context. Interrupt handlers
44 * using FPU/SSE will offically have call save and restore functions
45 * exported by the kernel, if the really really have to use the state.
46 *
47 * - 32-bit windows does lazy FPU handling, I think, probably including
48 * lazying saving. The Windows Internals book states that it's a bad
49 * idea to use the FPU in kernel space. However, it looks like it will
50 * restore the FPU state of the current thread in case of a kernel \#NM.
51 * Interrupt handlers should be same as for 64-bit.
52 *
53 * - Darwin allows taking \#NM in kernel space, restoring current thread's
54 * state if I read the code correctly. It saves the FPU state of the
55 * outgoing thread, and uses CR0.TS to lazily load the state of the
56 * incoming one. No idea yet how the FPU is treated by interrupt
57 * handlers, i.e. whether they are allowed to disable the state or
58 * something.
59 *
60 * - Linux also allows \#NM in kernel space (don't know since when), and
61 * uses CR0.TS for lazy loading. Saves outgoing thread's state, lazy
62 * loads the incoming unless configured to agressivly load it. Interrupt
63 * handlers can ask whether they're allowed to use the FPU, and may
64 * freely trash the state if Linux thinks it has saved the thread's state
65 * already. This is a problem.
66 *
67 * - Solaris will, from what I can tell, panic if it gets an \#NM in kernel
68 * context. When switching threads, the kernel will save the state of
69 * the outgoing thread and lazy load the incoming one using CR0.TS.
70 * There are a few routines in seeblk.s which uses the SSE unit in ring-0
71 * to do stuff, HAT are among the users. The routines there will
72 * manually clear CR0.TS and save the XMM registers they use only if
73 * CR0.TS was zero upon entry. They will skip it when not, because as
74 * mentioned above, the FPU state is saved when switching away from a
75 * thread and CR0.TS set to 1, so when CR0.TS is 1 there is nothing to
76 * preserve. This is a problem if we restore CR0.TS to 1 after loading
77 * the guest state.
78 *
79 * - FreeBSD - no idea yet.
80 *
81 * - OS/2 does not allow \#NMs in kernel space IIRC. Does lazy loading,
82 * possibly also lazy saving. Interrupts must preserve the CR0.TS+EM &
83 * FPU states.
84 *
85 * Up to r107425 (2016-05-24) we would only temporarily modify CR0.TS/EM while
86 * saving and restoring the host and guest states. The motivation for this
87 * change is that we want to be able to emulate SSE instruction in ring-0 (IEM).
88 *
89 * Starting with that change, we will leave CR0.TS=EM=0 after saving the host
90 * state and only restore it once we've restore the host FPU state. This has the
91 * accidental side effect of triggering Solaris to preserve XMM registers in
92 * sseblk.s. When CR0 was changed by saving the FPU state, CPUM must now inform
93 * the VT-x (HMVMX) code about it as it caches the CR0 value in the VMCS.
94 *
95 *
96 * @section sec_cpum_logging Logging Level Assignments.
97 *
98 * Following log level assignments:
99 * - Log6 is used for FPU state management.
100 * - Log7 is used for FPU state actualization.
101 *
102 */
103
104
105/*********************************************************************************************************************************
106* Header Files *
107*********************************************************************************************************************************/
108#define LOG_GROUP LOG_GROUP_CPUM
109#include <VBox/vmm/cpum.h>
110#include <VBox/vmm/cpumdis.h>
111#include <VBox/vmm/cpumctx-v1_6.h>
112#include <VBox/vmm/pgm.h>
113#include <VBox/vmm/apic.h>
114#include <VBox/vmm/mm.h>
115#include <VBox/vmm/em.h>
116#include <VBox/vmm/iem.h>
117#include <VBox/vmm/selm.h>
118#include <VBox/vmm/dbgf.h>
119#include <VBox/vmm/patm.h>
120#include <VBox/vmm/hm.h>
121#include <VBox/vmm/ssm.h>
122#include "CPUMInternal.h"
123#include <VBox/vmm/vm.h>
124
125#include <VBox/param.h>
126#include <VBox/dis.h>
127#include <VBox/err.h>
128#include <VBox/log.h>
129#include <iprt/asm-amd64-x86.h>
130#include <iprt/assert.h>
131#include <iprt/cpuset.h>
132#include <iprt/mem.h>
133#include <iprt/mp.h>
134#include <iprt/string.h>
135
136
137/*********************************************************************************************************************************
138* Defined Constants And Macros *
139*********************************************************************************************************************************/
140/**
141 * This was used in the saved state up to the early life of version 14.
142 *
143 * It indicates that we may have some out-of-sync hidden segement registers.
144 * It is only relevant for raw-mode.
145 */
146#define CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID RT_BIT(12)
147
148
149/*********************************************************************************************************************************
150* Structures and Typedefs *
151*********************************************************************************************************************************/
152
153/**
154 * What kind of cpu info dump to perform.
155 */
156typedef enum CPUMDUMPTYPE
157{
158 CPUMDUMPTYPE_TERSE,
159 CPUMDUMPTYPE_DEFAULT,
160 CPUMDUMPTYPE_VERBOSE
161} CPUMDUMPTYPE;
162/** Pointer to a cpu info dump type. */
163typedef CPUMDUMPTYPE *PCPUMDUMPTYPE;
164
165
166/*********************************************************************************************************************************
167* Internal Functions *
168*********************************************************************************************************************************/
169static DECLCALLBACK(int) cpumR3LiveExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uPass);
170static DECLCALLBACK(int) cpumR3SaveExec(PVM pVM, PSSMHANDLE pSSM);
171static DECLCALLBACK(int) cpumR3LoadPrep(PVM pVM, PSSMHANDLE pSSM);
172static DECLCALLBACK(int) cpumR3LoadExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
173static DECLCALLBACK(int) cpumR3LoadDone(PVM pVM, PSSMHANDLE pSSM);
174static DECLCALLBACK(void) cpumR3InfoAll(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
175static DECLCALLBACK(void) cpumR3InfoGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
176static DECLCALLBACK(void) cpumR3InfoGuestHwvirt(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
177static DECLCALLBACK(void) cpumR3InfoGuestInstr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
178static DECLCALLBACK(void) cpumR3InfoHyper(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
179static DECLCALLBACK(void) cpumR3InfoHost(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
180
181
182/*********************************************************************************************************************************
183* Global Variables *
184*********************************************************************************************************************************/
185/** Saved state field descriptors for CPUMCTX. */
186static const SSMFIELD g_aCpumCtxFields[] =
187{
188 SSMFIELD_ENTRY( CPUMCTX, rdi),
189 SSMFIELD_ENTRY( CPUMCTX, rsi),
190 SSMFIELD_ENTRY( CPUMCTX, rbp),
191 SSMFIELD_ENTRY( CPUMCTX, rax),
192 SSMFIELD_ENTRY( CPUMCTX, rbx),
193 SSMFIELD_ENTRY( CPUMCTX, rdx),
194 SSMFIELD_ENTRY( CPUMCTX, rcx),
195 SSMFIELD_ENTRY( CPUMCTX, rsp),
196 SSMFIELD_ENTRY( CPUMCTX, rflags),
197 SSMFIELD_ENTRY( CPUMCTX, rip),
198 SSMFIELD_ENTRY( CPUMCTX, r8),
199 SSMFIELD_ENTRY( CPUMCTX, r9),
200 SSMFIELD_ENTRY( CPUMCTX, r10),
201 SSMFIELD_ENTRY( CPUMCTX, r11),
202 SSMFIELD_ENTRY( CPUMCTX, r12),
203 SSMFIELD_ENTRY( CPUMCTX, r13),
204 SSMFIELD_ENTRY( CPUMCTX, r14),
205 SSMFIELD_ENTRY( CPUMCTX, r15),
206 SSMFIELD_ENTRY( CPUMCTX, es.Sel),
207 SSMFIELD_ENTRY( CPUMCTX, es.ValidSel),
208 SSMFIELD_ENTRY( CPUMCTX, es.fFlags),
209 SSMFIELD_ENTRY( CPUMCTX, es.u64Base),
210 SSMFIELD_ENTRY( CPUMCTX, es.u32Limit),
211 SSMFIELD_ENTRY( CPUMCTX, es.Attr),
212 SSMFIELD_ENTRY( CPUMCTX, cs.Sel),
213 SSMFIELD_ENTRY( CPUMCTX, cs.ValidSel),
214 SSMFIELD_ENTRY( CPUMCTX, cs.fFlags),
215 SSMFIELD_ENTRY( CPUMCTX, cs.u64Base),
216 SSMFIELD_ENTRY( CPUMCTX, cs.u32Limit),
217 SSMFIELD_ENTRY( CPUMCTX, cs.Attr),
218 SSMFIELD_ENTRY( CPUMCTX, ss.Sel),
219 SSMFIELD_ENTRY( CPUMCTX, ss.ValidSel),
220 SSMFIELD_ENTRY( CPUMCTX, ss.fFlags),
221 SSMFIELD_ENTRY( CPUMCTX, ss.u64Base),
222 SSMFIELD_ENTRY( CPUMCTX, ss.u32Limit),
223 SSMFIELD_ENTRY( CPUMCTX, ss.Attr),
224 SSMFIELD_ENTRY( CPUMCTX, ds.Sel),
225 SSMFIELD_ENTRY( CPUMCTX, ds.ValidSel),
226 SSMFIELD_ENTRY( CPUMCTX, ds.fFlags),
227 SSMFIELD_ENTRY( CPUMCTX, ds.u64Base),
228 SSMFIELD_ENTRY( CPUMCTX, ds.u32Limit),
229 SSMFIELD_ENTRY( CPUMCTX, ds.Attr),
230 SSMFIELD_ENTRY( CPUMCTX, fs.Sel),
231 SSMFIELD_ENTRY( CPUMCTX, fs.ValidSel),
232 SSMFIELD_ENTRY( CPUMCTX, fs.fFlags),
233 SSMFIELD_ENTRY( CPUMCTX, fs.u64Base),
234 SSMFIELD_ENTRY( CPUMCTX, fs.u32Limit),
235 SSMFIELD_ENTRY( CPUMCTX, fs.Attr),
236 SSMFIELD_ENTRY( CPUMCTX, gs.Sel),
237 SSMFIELD_ENTRY( CPUMCTX, gs.ValidSel),
238 SSMFIELD_ENTRY( CPUMCTX, gs.fFlags),
239 SSMFIELD_ENTRY( CPUMCTX, gs.u64Base),
240 SSMFIELD_ENTRY( CPUMCTX, gs.u32Limit),
241 SSMFIELD_ENTRY( CPUMCTX, gs.Attr),
242 SSMFIELD_ENTRY( CPUMCTX, cr0),
243 SSMFIELD_ENTRY( CPUMCTX, cr2),
244 SSMFIELD_ENTRY( CPUMCTX, cr3),
245 SSMFIELD_ENTRY( CPUMCTX, cr4),
246 SSMFIELD_ENTRY( CPUMCTX, dr[0]),
247 SSMFIELD_ENTRY( CPUMCTX, dr[1]),
248 SSMFIELD_ENTRY( CPUMCTX, dr[2]),
249 SSMFIELD_ENTRY( CPUMCTX, dr[3]),
250 SSMFIELD_ENTRY( CPUMCTX, dr[6]),
251 SSMFIELD_ENTRY( CPUMCTX, dr[7]),
252 SSMFIELD_ENTRY( CPUMCTX, gdtr.cbGdt),
253 SSMFIELD_ENTRY( CPUMCTX, gdtr.pGdt),
254 SSMFIELD_ENTRY( CPUMCTX, idtr.cbIdt),
255 SSMFIELD_ENTRY( CPUMCTX, idtr.pIdt),
256 SSMFIELD_ENTRY( CPUMCTX, SysEnter.cs),
257 SSMFIELD_ENTRY( CPUMCTX, SysEnter.eip),
258 SSMFIELD_ENTRY( CPUMCTX, SysEnter.esp),
259 SSMFIELD_ENTRY( CPUMCTX, msrEFER),
260 SSMFIELD_ENTRY( CPUMCTX, msrSTAR),
261 SSMFIELD_ENTRY( CPUMCTX, msrPAT),
262 SSMFIELD_ENTRY( CPUMCTX, msrLSTAR),
263 SSMFIELD_ENTRY( CPUMCTX, msrCSTAR),
264 SSMFIELD_ENTRY( CPUMCTX, msrSFMASK),
265 SSMFIELD_ENTRY( CPUMCTX, msrKERNELGSBASE),
266 SSMFIELD_ENTRY( CPUMCTX, ldtr.Sel),
267 SSMFIELD_ENTRY( CPUMCTX, ldtr.ValidSel),
268 SSMFIELD_ENTRY( CPUMCTX, ldtr.fFlags),
269 SSMFIELD_ENTRY( CPUMCTX, ldtr.u64Base),
270 SSMFIELD_ENTRY( CPUMCTX, ldtr.u32Limit),
271 SSMFIELD_ENTRY( CPUMCTX, ldtr.Attr),
272 SSMFIELD_ENTRY( CPUMCTX, tr.Sel),
273 SSMFIELD_ENTRY( CPUMCTX, tr.ValidSel),
274 SSMFIELD_ENTRY( CPUMCTX, tr.fFlags),
275 SSMFIELD_ENTRY( CPUMCTX, tr.u64Base),
276 SSMFIELD_ENTRY( CPUMCTX, tr.u32Limit),
277 SSMFIELD_ENTRY( CPUMCTX, tr.Attr),
278 SSMFIELD_ENTRY_VER( CPUMCTX, aXcr[0], CPUM_SAVED_STATE_VERSION_XSAVE),
279 SSMFIELD_ENTRY_VER( CPUMCTX, aXcr[1], CPUM_SAVED_STATE_VERSION_XSAVE),
280 SSMFIELD_ENTRY_VER( CPUMCTX, fXStateMask, CPUM_SAVED_STATE_VERSION_XSAVE),
281 SSMFIELD_ENTRY_TERM()
282};
283
284/** Saved state field descriptors for CPUMCTX. */
285static const SSMFIELD g_aCpumX87Fields[] =
286{
287 SSMFIELD_ENTRY( X86FXSTATE, FCW),
288 SSMFIELD_ENTRY( X86FXSTATE, FSW),
289 SSMFIELD_ENTRY( X86FXSTATE, FTW),
290 SSMFIELD_ENTRY( X86FXSTATE, FOP),
291 SSMFIELD_ENTRY( X86FXSTATE, FPUIP),
292 SSMFIELD_ENTRY( X86FXSTATE, CS),
293 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd1),
294 SSMFIELD_ENTRY( X86FXSTATE, FPUDP),
295 SSMFIELD_ENTRY( X86FXSTATE, DS),
296 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd2),
297 SSMFIELD_ENTRY( X86FXSTATE, MXCSR),
298 SSMFIELD_ENTRY( X86FXSTATE, MXCSR_MASK),
299 SSMFIELD_ENTRY( X86FXSTATE, aRegs[0]),
300 SSMFIELD_ENTRY( X86FXSTATE, aRegs[1]),
301 SSMFIELD_ENTRY( X86FXSTATE, aRegs[2]),
302 SSMFIELD_ENTRY( X86FXSTATE, aRegs[3]),
303 SSMFIELD_ENTRY( X86FXSTATE, aRegs[4]),
304 SSMFIELD_ENTRY( X86FXSTATE, aRegs[5]),
305 SSMFIELD_ENTRY( X86FXSTATE, aRegs[6]),
306 SSMFIELD_ENTRY( X86FXSTATE, aRegs[7]),
307 SSMFIELD_ENTRY( X86FXSTATE, aXMM[0]),
308 SSMFIELD_ENTRY( X86FXSTATE, aXMM[1]),
309 SSMFIELD_ENTRY( X86FXSTATE, aXMM[2]),
310 SSMFIELD_ENTRY( X86FXSTATE, aXMM[3]),
311 SSMFIELD_ENTRY( X86FXSTATE, aXMM[4]),
312 SSMFIELD_ENTRY( X86FXSTATE, aXMM[5]),
313 SSMFIELD_ENTRY( X86FXSTATE, aXMM[6]),
314 SSMFIELD_ENTRY( X86FXSTATE, aXMM[7]),
315 SSMFIELD_ENTRY( X86FXSTATE, aXMM[8]),
316 SSMFIELD_ENTRY( X86FXSTATE, aXMM[9]),
317 SSMFIELD_ENTRY( X86FXSTATE, aXMM[10]),
318 SSMFIELD_ENTRY( X86FXSTATE, aXMM[11]),
319 SSMFIELD_ENTRY( X86FXSTATE, aXMM[12]),
320 SSMFIELD_ENTRY( X86FXSTATE, aXMM[13]),
321 SSMFIELD_ENTRY( X86FXSTATE, aXMM[14]),
322 SSMFIELD_ENTRY( X86FXSTATE, aXMM[15]),
323 SSMFIELD_ENTRY_VER( X86FXSTATE, au32RsrvdForSoftware[0], CPUM_SAVED_STATE_VERSION_XSAVE), /* 32-bit/64-bit hack */
324 SSMFIELD_ENTRY_TERM()
325};
326
327/** Saved state field descriptors for X86XSAVEHDR. */
328static const SSMFIELD g_aCpumXSaveHdrFields[] =
329{
330 SSMFIELD_ENTRY( X86XSAVEHDR, bmXState),
331 SSMFIELD_ENTRY_TERM()
332};
333
334/** Saved state field descriptors for X86XSAVEYMMHI. */
335static const SSMFIELD g_aCpumYmmHiFields[] =
336{
337 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[0]),
338 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[1]),
339 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[2]),
340 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[3]),
341 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[4]),
342 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[5]),
343 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[6]),
344 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[7]),
345 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[8]),
346 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[9]),
347 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[10]),
348 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[11]),
349 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[12]),
350 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[13]),
351 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[14]),
352 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[15]),
353 SSMFIELD_ENTRY_TERM()
354};
355
356/** Saved state field descriptors for X86XSAVEBNDREGS. */
357static const SSMFIELD g_aCpumBndRegsFields[] =
358{
359 SSMFIELD_ENTRY( X86XSAVEBNDREGS, aRegs[0]),
360 SSMFIELD_ENTRY( X86XSAVEBNDREGS, aRegs[1]),
361 SSMFIELD_ENTRY( X86XSAVEBNDREGS, aRegs[2]),
362 SSMFIELD_ENTRY( X86XSAVEBNDREGS, aRegs[3]),
363 SSMFIELD_ENTRY_TERM()
364};
365
366/** Saved state field descriptors for X86XSAVEBNDCFG. */
367static const SSMFIELD g_aCpumBndCfgFields[] =
368{
369 SSMFIELD_ENTRY( X86XSAVEBNDCFG, fConfig),
370 SSMFIELD_ENTRY( X86XSAVEBNDCFG, fStatus),
371 SSMFIELD_ENTRY_TERM()
372};
373
374#if 0 /** @todo */
375/** Saved state field descriptors for X86XSAVEOPMASK. */
376static const SSMFIELD g_aCpumOpmaskFields[] =
377{
378 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[0]),
379 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[1]),
380 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[2]),
381 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[3]),
382 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[4]),
383 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[5]),
384 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[6]),
385 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[7]),
386 SSMFIELD_ENTRY_TERM()
387};
388#endif
389
390/** Saved state field descriptors for X86XSAVEZMMHI256. */
391static const SSMFIELD g_aCpumZmmHi256Fields[] =
392{
393 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[0]),
394 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[1]),
395 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[2]),
396 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[3]),
397 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[4]),
398 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[5]),
399 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[6]),
400 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[7]),
401 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[8]),
402 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[9]),
403 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[10]),
404 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[11]),
405 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[12]),
406 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[13]),
407 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[14]),
408 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[15]),
409 SSMFIELD_ENTRY_TERM()
410};
411
412/** Saved state field descriptors for X86XSAVEZMM16HI. */
413static const SSMFIELD g_aCpumZmm16HiFields[] =
414{
415 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[0]),
416 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[1]),
417 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[2]),
418 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[3]),
419 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[4]),
420 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[5]),
421 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[6]),
422 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[7]),
423 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[8]),
424 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[9]),
425 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[10]),
426 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[11]),
427 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[12]),
428 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[13]),
429 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[14]),
430 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[15]),
431 SSMFIELD_ENTRY_TERM()
432};
433
434
435
436/** Saved state field descriptors for CPUMCTX in V4.1 before the hidden selector
437 * registeres changed. */
438static const SSMFIELD g_aCpumX87FieldsMem[] =
439{
440 SSMFIELD_ENTRY( X86FXSTATE, FCW),
441 SSMFIELD_ENTRY( X86FXSTATE, FSW),
442 SSMFIELD_ENTRY( X86FXSTATE, FTW),
443 SSMFIELD_ENTRY( X86FXSTATE, FOP),
444 SSMFIELD_ENTRY( X86FXSTATE, FPUIP),
445 SSMFIELD_ENTRY( X86FXSTATE, CS),
446 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd1),
447 SSMFIELD_ENTRY( X86FXSTATE, FPUDP),
448 SSMFIELD_ENTRY( X86FXSTATE, DS),
449 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd2),
450 SSMFIELD_ENTRY( X86FXSTATE, MXCSR),
451 SSMFIELD_ENTRY( X86FXSTATE, MXCSR_MASK),
452 SSMFIELD_ENTRY( X86FXSTATE, aRegs[0]),
453 SSMFIELD_ENTRY( X86FXSTATE, aRegs[1]),
454 SSMFIELD_ENTRY( X86FXSTATE, aRegs[2]),
455 SSMFIELD_ENTRY( X86FXSTATE, aRegs[3]),
456 SSMFIELD_ENTRY( X86FXSTATE, aRegs[4]),
457 SSMFIELD_ENTRY( X86FXSTATE, aRegs[5]),
458 SSMFIELD_ENTRY( X86FXSTATE, aRegs[6]),
459 SSMFIELD_ENTRY( X86FXSTATE, aRegs[7]),
460 SSMFIELD_ENTRY( X86FXSTATE, aXMM[0]),
461 SSMFIELD_ENTRY( X86FXSTATE, aXMM[1]),
462 SSMFIELD_ENTRY( X86FXSTATE, aXMM[2]),
463 SSMFIELD_ENTRY( X86FXSTATE, aXMM[3]),
464 SSMFIELD_ENTRY( X86FXSTATE, aXMM[4]),
465 SSMFIELD_ENTRY( X86FXSTATE, aXMM[5]),
466 SSMFIELD_ENTRY( X86FXSTATE, aXMM[6]),
467 SSMFIELD_ENTRY( X86FXSTATE, aXMM[7]),
468 SSMFIELD_ENTRY( X86FXSTATE, aXMM[8]),
469 SSMFIELD_ENTRY( X86FXSTATE, aXMM[9]),
470 SSMFIELD_ENTRY( X86FXSTATE, aXMM[10]),
471 SSMFIELD_ENTRY( X86FXSTATE, aXMM[11]),
472 SSMFIELD_ENTRY( X86FXSTATE, aXMM[12]),
473 SSMFIELD_ENTRY( X86FXSTATE, aXMM[13]),
474 SSMFIELD_ENTRY( X86FXSTATE, aXMM[14]),
475 SSMFIELD_ENTRY( X86FXSTATE, aXMM[15]),
476 SSMFIELD_ENTRY_IGNORE( X86FXSTATE, au32RsrvdRest),
477 SSMFIELD_ENTRY_IGNORE( X86FXSTATE, au32RsrvdForSoftware),
478};
479
480/** Saved state field descriptors for CPUMCTX in V4.1 before the hidden selector
481 * registeres changed. */
482static const SSMFIELD g_aCpumCtxFieldsMem[] =
483{
484 SSMFIELD_ENTRY( CPUMCTX, rdi),
485 SSMFIELD_ENTRY( CPUMCTX, rsi),
486 SSMFIELD_ENTRY( CPUMCTX, rbp),
487 SSMFIELD_ENTRY( CPUMCTX, rax),
488 SSMFIELD_ENTRY( CPUMCTX, rbx),
489 SSMFIELD_ENTRY( CPUMCTX, rdx),
490 SSMFIELD_ENTRY( CPUMCTX, rcx),
491 SSMFIELD_ENTRY( CPUMCTX, rsp),
492 SSMFIELD_ENTRY_OLD( lss_esp, sizeof(uint32_t)),
493 SSMFIELD_ENTRY( CPUMCTX, ss.Sel),
494 SSMFIELD_ENTRY_OLD( ssPadding, sizeof(uint16_t)),
495 SSMFIELD_ENTRY( CPUMCTX, gs.Sel),
496 SSMFIELD_ENTRY_OLD( gsPadding, sizeof(uint16_t)),
497 SSMFIELD_ENTRY( CPUMCTX, fs.Sel),
498 SSMFIELD_ENTRY_OLD( fsPadding, sizeof(uint16_t)),
499 SSMFIELD_ENTRY( CPUMCTX, es.Sel),
500 SSMFIELD_ENTRY_OLD( esPadding, sizeof(uint16_t)),
501 SSMFIELD_ENTRY( CPUMCTX, ds.Sel),
502 SSMFIELD_ENTRY_OLD( dsPadding, sizeof(uint16_t)),
503 SSMFIELD_ENTRY( CPUMCTX, cs.Sel),
504 SSMFIELD_ENTRY_OLD( csPadding, sizeof(uint16_t)*3),
505 SSMFIELD_ENTRY( CPUMCTX, rflags),
506 SSMFIELD_ENTRY( CPUMCTX, rip),
507 SSMFIELD_ENTRY( CPUMCTX, r8),
508 SSMFIELD_ENTRY( CPUMCTX, r9),
509 SSMFIELD_ENTRY( CPUMCTX, r10),
510 SSMFIELD_ENTRY( CPUMCTX, r11),
511 SSMFIELD_ENTRY( CPUMCTX, r12),
512 SSMFIELD_ENTRY( CPUMCTX, r13),
513 SSMFIELD_ENTRY( CPUMCTX, r14),
514 SSMFIELD_ENTRY( CPUMCTX, r15),
515 SSMFIELD_ENTRY( CPUMCTX, es.u64Base),
516 SSMFIELD_ENTRY( CPUMCTX, es.u32Limit),
517 SSMFIELD_ENTRY( CPUMCTX, es.Attr),
518 SSMFIELD_ENTRY( CPUMCTX, cs.u64Base),
519 SSMFIELD_ENTRY( CPUMCTX, cs.u32Limit),
520 SSMFIELD_ENTRY( CPUMCTX, cs.Attr),
521 SSMFIELD_ENTRY( CPUMCTX, ss.u64Base),
522 SSMFIELD_ENTRY( CPUMCTX, ss.u32Limit),
523 SSMFIELD_ENTRY( CPUMCTX, ss.Attr),
524 SSMFIELD_ENTRY( CPUMCTX, ds.u64Base),
525 SSMFIELD_ENTRY( CPUMCTX, ds.u32Limit),
526 SSMFIELD_ENTRY( CPUMCTX, ds.Attr),
527 SSMFIELD_ENTRY( CPUMCTX, fs.u64Base),
528 SSMFIELD_ENTRY( CPUMCTX, fs.u32Limit),
529 SSMFIELD_ENTRY( CPUMCTX, fs.Attr),
530 SSMFIELD_ENTRY( CPUMCTX, gs.u64Base),
531 SSMFIELD_ENTRY( CPUMCTX, gs.u32Limit),
532 SSMFIELD_ENTRY( CPUMCTX, gs.Attr),
533 SSMFIELD_ENTRY( CPUMCTX, cr0),
534 SSMFIELD_ENTRY( CPUMCTX, cr2),
535 SSMFIELD_ENTRY( CPUMCTX, cr3),
536 SSMFIELD_ENTRY( CPUMCTX, cr4),
537 SSMFIELD_ENTRY( CPUMCTX, dr[0]),
538 SSMFIELD_ENTRY( CPUMCTX, dr[1]),
539 SSMFIELD_ENTRY( CPUMCTX, dr[2]),
540 SSMFIELD_ENTRY( CPUMCTX, dr[3]),
541 SSMFIELD_ENTRY_OLD( dr[4], sizeof(uint64_t)),
542 SSMFIELD_ENTRY_OLD( dr[5], sizeof(uint64_t)),
543 SSMFIELD_ENTRY( CPUMCTX, dr[6]),
544 SSMFIELD_ENTRY( CPUMCTX, dr[7]),
545 SSMFIELD_ENTRY( CPUMCTX, gdtr.cbGdt),
546 SSMFIELD_ENTRY( CPUMCTX, gdtr.pGdt),
547 SSMFIELD_ENTRY_OLD( gdtrPadding, sizeof(uint16_t)),
548 SSMFIELD_ENTRY( CPUMCTX, idtr.cbIdt),
549 SSMFIELD_ENTRY( CPUMCTX, idtr.pIdt),
550 SSMFIELD_ENTRY_OLD( idtrPadding, sizeof(uint16_t)),
551 SSMFIELD_ENTRY( CPUMCTX, ldtr.Sel),
552 SSMFIELD_ENTRY_OLD( ldtrPadding, sizeof(uint16_t)),
553 SSMFIELD_ENTRY( CPUMCTX, tr.Sel),
554 SSMFIELD_ENTRY_OLD( trPadding, sizeof(uint16_t)),
555 SSMFIELD_ENTRY( CPUMCTX, SysEnter.cs),
556 SSMFIELD_ENTRY( CPUMCTX, SysEnter.eip),
557 SSMFIELD_ENTRY( CPUMCTX, SysEnter.esp),
558 SSMFIELD_ENTRY( CPUMCTX, msrEFER),
559 SSMFIELD_ENTRY( CPUMCTX, msrSTAR),
560 SSMFIELD_ENTRY( CPUMCTX, msrPAT),
561 SSMFIELD_ENTRY( CPUMCTX, msrLSTAR),
562 SSMFIELD_ENTRY( CPUMCTX, msrCSTAR),
563 SSMFIELD_ENTRY( CPUMCTX, msrSFMASK),
564 SSMFIELD_ENTRY( CPUMCTX, msrKERNELGSBASE),
565 SSMFIELD_ENTRY( CPUMCTX, ldtr.u64Base),
566 SSMFIELD_ENTRY( CPUMCTX, ldtr.u32Limit),
567 SSMFIELD_ENTRY( CPUMCTX, ldtr.Attr),
568 SSMFIELD_ENTRY( CPUMCTX, tr.u64Base),
569 SSMFIELD_ENTRY( CPUMCTX, tr.u32Limit),
570 SSMFIELD_ENTRY( CPUMCTX, tr.Attr),
571 SSMFIELD_ENTRY_TERM()
572};
573
574/** Saved state field descriptors for CPUMCTX_VER1_6. */
575static const SSMFIELD g_aCpumX87FieldsV16[] =
576{
577 SSMFIELD_ENTRY( X86FXSTATE, FCW),
578 SSMFIELD_ENTRY( X86FXSTATE, FSW),
579 SSMFIELD_ENTRY( X86FXSTATE, FTW),
580 SSMFIELD_ENTRY( X86FXSTATE, FOP),
581 SSMFIELD_ENTRY( X86FXSTATE, FPUIP),
582 SSMFIELD_ENTRY( X86FXSTATE, CS),
583 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd1),
584 SSMFIELD_ENTRY( X86FXSTATE, FPUDP),
585 SSMFIELD_ENTRY( X86FXSTATE, DS),
586 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd2),
587 SSMFIELD_ENTRY( X86FXSTATE, MXCSR),
588 SSMFIELD_ENTRY( X86FXSTATE, MXCSR_MASK),
589 SSMFIELD_ENTRY( X86FXSTATE, aRegs[0]),
590 SSMFIELD_ENTRY( X86FXSTATE, aRegs[1]),
591 SSMFIELD_ENTRY( X86FXSTATE, aRegs[2]),
592 SSMFIELD_ENTRY( X86FXSTATE, aRegs[3]),
593 SSMFIELD_ENTRY( X86FXSTATE, aRegs[4]),
594 SSMFIELD_ENTRY( X86FXSTATE, aRegs[5]),
595 SSMFIELD_ENTRY( X86FXSTATE, aRegs[6]),
596 SSMFIELD_ENTRY( X86FXSTATE, aRegs[7]),
597 SSMFIELD_ENTRY( X86FXSTATE, aXMM[0]),
598 SSMFIELD_ENTRY( X86FXSTATE, aXMM[1]),
599 SSMFIELD_ENTRY( X86FXSTATE, aXMM[2]),
600 SSMFIELD_ENTRY( X86FXSTATE, aXMM[3]),
601 SSMFIELD_ENTRY( X86FXSTATE, aXMM[4]),
602 SSMFIELD_ENTRY( X86FXSTATE, aXMM[5]),
603 SSMFIELD_ENTRY( X86FXSTATE, aXMM[6]),
604 SSMFIELD_ENTRY( X86FXSTATE, aXMM[7]),
605 SSMFIELD_ENTRY( X86FXSTATE, aXMM[8]),
606 SSMFIELD_ENTRY( X86FXSTATE, aXMM[9]),
607 SSMFIELD_ENTRY( X86FXSTATE, aXMM[10]),
608 SSMFIELD_ENTRY( X86FXSTATE, aXMM[11]),
609 SSMFIELD_ENTRY( X86FXSTATE, aXMM[12]),
610 SSMFIELD_ENTRY( X86FXSTATE, aXMM[13]),
611 SSMFIELD_ENTRY( X86FXSTATE, aXMM[14]),
612 SSMFIELD_ENTRY( X86FXSTATE, aXMM[15]),
613 SSMFIELD_ENTRY_IGNORE( X86FXSTATE, au32RsrvdRest),
614 SSMFIELD_ENTRY_IGNORE( X86FXSTATE, au32RsrvdForSoftware),
615 SSMFIELD_ENTRY_TERM()
616};
617
618/** Saved state field descriptors for CPUMCTX_VER1_6. */
619static const SSMFIELD g_aCpumCtxFieldsV16[] =
620{
621 SSMFIELD_ENTRY( CPUMCTX, rdi),
622 SSMFIELD_ENTRY( CPUMCTX, rsi),
623 SSMFIELD_ENTRY( CPUMCTX, rbp),
624 SSMFIELD_ENTRY( CPUMCTX, rax),
625 SSMFIELD_ENTRY( CPUMCTX, rbx),
626 SSMFIELD_ENTRY( CPUMCTX, rdx),
627 SSMFIELD_ENTRY( CPUMCTX, rcx),
628 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, rsp),
629 SSMFIELD_ENTRY( CPUMCTX, ss.Sel),
630 SSMFIELD_ENTRY_OLD( ssPadding, sizeof(uint16_t)),
631 SSMFIELD_ENTRY_OLD( CPUMCTX, sizeof(uint64_t) /*rsp_notused*/),
632 SSMFIELD_ENTRY( CPUMCTX, gs.Sel),
633 SSMFIELD_ENTRY_OLD( gsPadding, sizeof(uint16_t)),
634 SSMFIELD_ENTRY( CPUMCTX, fs.Sel),
635 SSMFIELD_ENTRY_OLD( fsPadding, sizeof(uint16_t)),
636 SSMFIELD_ENTRY( CPUMCTX, es.Sel),
637 SSMFIELD_ENTRY_OLD( esPadding, sizeof(uint16_t)),
638 SSMFIELD_ENTRY( CPUMCTX, ds.Sel),
639 SSMFIELD_ENTRY_OLD( dsPadding, sizeof(uint16_t)),
640 SSMFIELD_ENTRY( CPUMCTX, cs.Sel),
641 SSMFIELD_ENTRY_OLD( csPadding, sizeof(uint16_t)*3),
642 SSMFIELD_ENTRY( CPUMCTX, rflags),
643 SSMFIELD_ENTRY( CPUMCTX, rip),
644 SSMFIELD_ENTRY( CPUMCTX, r8),
645 SSMFIELD_ENTRY( CPUMCTX, r9),
646 SSMFIELD_ENTRY( CPUMCTX, r10),
647 SSMFIELD_ENTRY( CPUMCTX, r11),
648 SSMFIELD_ENTRY( CPUMCTX, r12),
649 SSMFIELD_ENTRY( CPUMCTX, r13),
650 SSMFIELD_ENTRY( CPUMCTX, r14),
651 SSMFIELD_ENTRY( CPUMCTX, r15),
652 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, es.u64Base),
653 SSMFIELD_ENTRY( CPUMCTX, es.u32Limit),
654 SSMFIELD_ENTRY( CPUMCTX, es.Attr),
655 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, cs.u64Base),
656 SSMFIELD_ENTRY( CPUMCTX, cs.u32Limit),
657 SSMFIELD_ENTRY( CPUMCTX, cs.Attr),
658 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, ss.u64Base),
659 SSMFIELD_ENTRY( CPUMCTX, ss.u32Limit),
660 SSMFIELD_ENTRY( CPUMCTX, ss.Attr),
661 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, ds.u64Base),
662 SSMFIELD_ENTRY( CPUMCTX, ds.u32Limit),
663 SSMFIELD_ENTRY( CPUMCTX, ds.Attr),
664 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, fs.u64Base),
665 SSMFIELD_ENTRY( CPUMCTX, fs.u32Limit),
666 SSMFIELD_ENTRY( CPUMCTX, fs.Attr),
667 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, gs.u64Base),
668 SSMFIELD_ENTRY( CPUMCTX, gs.u32Limit),
669 SSMFIELD_ENTRY( CPUMCTX, gs.Attr),
670 SSMFIELD_ENTRY( CPUMCTX, cr0),
671 SSMFIELD_ENTRY( CPUMCTX, cr2),
672 SSMFIELD_ENTRY( CPUMCTX, cr3),
673 SSMFIELD_ENTRY( CPUMCTX, cr4),
674 SSMFIELD_ENTRY_OLD( cr8, sizeof(uint64_t)),
675 SSMFIELD_ENTRY( CPUMCTX, dr[0]),
676 SSMFIELD_ENTRY( CPUMCTX, dr[1]),
677 SSMFIELD_ENTRY( CPUMCTX, dr[2]),
678 SSMFIELD_ENTRY( CPUMCTX, dr[3]),
679 SSMFIELD_ENTRY_OLD( dr[4], sizeof(uint64_t)),
680 SSMFIELD_ENTRY_OLD( dr[5], sizeof(uint64_t)),
681 SSMFIELD_ENTRY( CPUMCTX, dr[6]),
682 SSMFIELD_ENTRY( CPUMCTX, dr[7]),
683 SSMFIELD_ENTRY( CPUMCTX, gdtr.cbGdt),
684 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, gdtr.pGdt),
685 SSMFIELD_ENTRY_OLD( gdtrPadding, sizeof(uint16_t)),
686 SSMFIELD_ENTRY_OLD( gdtrPadding64, sizeof(uint64_t)),
687 SSMFIELD_ENTRY( CPUMCTX, idtr.cbIdt),
688 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, idtr.pIdt),
689 SSMFIELD_ENTRY_OLD( idtrPadding, sizeof(uint16_t)),
690 SSMFIELD_ENTRY_OLD( idtrPadding64, sizeof(uint64_t)),
691 SSMFIELD_ENTRY( CPUMCTX, ldtr.Sel),
692 SSMFIELD_ENTRY_OLD( ldtrPadding, sizeof(uint16_t)),
693 SSMFIELD_ENTRY( CPUMCTX, tr.Sel),
694 SSMFIELD_ENTRY_OLD( trPadding, sizeof(uint16_t)),
695 SSMFIELD_ENTRY( CPUMCTX, SysEnter.cs),
696 SSMFIELD_ENTRY( CPUMCTX, SysEnter.eip),
697 SSMFIELD_ENTRY( CPUMCTX, SysEnter.esp),
698 SSMFIELD_ENTRY( CPUMCTX, msrEFER),
699 SSMFIELD_ENTRY( CPUMCTX, msrSTAR),
700 SSMFIELD_ENTRY( CPUMCTX, msrPAT),
701 SSMFIELD_ENTRY( CPUMCTX, msrLSTAR),
702 SSMFIELD_ENTRY( CPUMCTX, msrCSTAR),
703 SSMFIELD_ENTRY( CPUMCTX, msrSFMASK),
704 SSMFIELD_ENTRY_OLD( msrFSBASE, sizeof(uint64_t)),
705 SSMFIELD_ENTRY_OLD( msrGSBASE, sizeof(uint64_t)),
706 SSMFIELD_ENTRY( CPUMCTX, msrKERNELGSBASE),
707 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, ldtr.u64Base),
708 SSMFIELD_ENTRY( CPUMCTX, ldtr.u32Limit),
709 SSMFIELD_ENTRY( CPUMCTX, ldtr.Attr),
710 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, tr.u64Base),
711 SSMFIELD_ENTRY( CPUMCTX, tr.u32Limit),
712 SSMFIELD_ENTRY( CPUMCTX, tr.Attr),
713 SSMFIELD_ENTRY_OLD( padding, sizeof(uint32_t)*2),
714 SSMFIELD_ENTRY_TERM()
715};
716
717
718/**
719 * Checks for partial/leaky FXSAVE/FXRSTOR handling on AMD CPUs.
720 *
721 * AMD K7, K8 and newer AMD CPUs do not save/restore the x87 error pointers
722 * (last instruction pointer, last data pointer, last opcode) except when the ES
723 * bit (Exception Summary) in x87 FSW (FPU Status Word) is set. Thus if we don't
724 * clear these registers there is potential, local FPU leakage from a process
725 * using the FPU to another.
726 *
727 * See AMD Instruction Reference for FXSAVE, FXRSTOR.
728 *
729 * @param pVM The cross context VM structure.
730 */
731static void cpumR3CheckLeakyFpu(PVM pVM)
732{
733 uint32_t u32CpuVersion = ASMCpuId_EAX(1);
734 uint32_t const u32Family = u32CpuVersion >> 8;
735 if ( u32Family >= 6 /* K7 and higher */
736 && ASMIsAmdCpu())
737 {
738 uint32_t cExt = ASMCpuId_EAX(0x80000000);
739 if (ASMIsValidExtRange(cExt))
740 {
741 uint32_t fExtFeaturesEDX = ASMCpuId_EDX(0x80000001);
742 if (fExtFeaturesEDX & X86_CPUID_AMD_FEATURE_EDX_FFXSR)
743 {
744 for (VMCPUID i = 0; i < pVM->cCpus; i++)
745 pVM->aCpus[i].cpum.s.fUseFlags |= CPUM_USE_FFXSR_LEAKY;
746 Log(("CPUMR3Init: host CPU has leaky fxsave/fxrstor behaviour\n"));
747 }
748 }
749 }
750}
751
752
753/**
754 * Frees memory allocated by cpumR3AllocHwVirtState().
755 *
756 * @param pVM The cross context VM structure.
757 */
758static void cpumR3FreeHwVirtState(PVM pVM)
759{
760 Assert(pVM->cpum.ro.GuestFeatures.fSvm);
761 for (VMCPUID i = 0; i < pVM->cCpus; i++)
762 {
763 PVMCPU pVCpu = &pVM->aCpus[i];
764 if (pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR3)
765 {
766 SUPR3PageFreeEx(pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR3, SVM_VMCB_PAGES);
767 pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR3 = NULL;
768 }
769 pVCpu->cpum.s.Guest.hwvirt.svm.HCPhysVmcb = NIL_RTHCPHYS;
770
771 if (pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR3)
772 {
773 SUPR3PageFreeEx(pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR3, SVM_MSRPM_PAGES);
774 pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR3 = NULL;
775 }
776
777 if (pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR3)
778 {
779 SUPR3PageFreeEx(pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR3, SVM_IOPM_PAGES);
780 pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR3 = NULL;
781 }
782 }
783}
784
785
786/**
787 * Allocates memory required by the hardware virtualization state.
788 *
789 * @returns VBox status code.
790 * @param pVM The cross context VM structure.
791 */
792static int cpumR3AllocHwVirtState(PVM pVM)
793{
794 Assert(pVM->cpum.ro.GuestFeatures.fSvm);
795
796 int rc = VINF_SUCCESS;
797 LogRel(("CPUM: Allocating a total of %u pages for the nested-guest SVM MSR and IO permission bitmaps\n",
798 pVM->cCpus * (SVM_MSRPM_PAGES + SVM_IOPM_PAGES)));
799 for (VMCPUID i = 0; i < pVM->cCpus; i++)
800 {
801 PVMCPU pVCpu = &pVM->aCpus[i];
802
803 /*
804 * Allocate the nested-guest VMCB.
805 */
806 SUPPAGE SupNstGstVmcbPage;
807 RT_ZERO(SupNstGstVmcbPage);
808 SupNstGstVmcbPage.Phys = NIL_RTHCPHYS;
809 Assert(SVM_VMCB_PAGES == 1);
810 Assert(!pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR3);
811 rc = SUPR3PageAllocEx(SVM_VMCB_PAGES, 0 /* fFlags */, (void **)&pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR3,
812 &pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR0, &SupNstGstVmcbPage);
813 if (RT_FAILURE(rc))
814 {
815 Assert(!pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR3);
816 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's VMCB\n", pVCpu->idCpu, SVM_VMCB_PAGES));
817 break;
818 }
819 pVCpu->cpum.s.Guest.hwvirt.svm.HCPhysVmcb = SupNstGstVmcbPage.Phys;
820
821 /*
822 * Allocate the MSRPM (MSR Permission bitmap).
823 */
824 Assert(!pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR3);
825 rc = SUPR3PageAllocEx(SVM_MSRPM_PAGES, 0 /* fFlags */, &pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR3,
826 &pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR0, NULL /* paPages */);
827 if (RT_FAILURE(rc))
828 {
829 Assert(!pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR3);
830 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's MSR permission bitmap\n", pVCpu->idCpu,
831 SVM_MSRPM_PAGES));
832 break;
833 }
834
835 /*
836 * Allocate the IOPM (IO Permission bitmap).
837 */
838 Assert(!pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR3);
839 rc = SUPR3PageAllocEx(SVM_IOPM_PAGES, 0 /* fFlags */, &pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR3,
840 &pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR0, NULL /* paPages */);
841 if (RT_FAILURE(rc))
842 {
843 Assert(!pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR3);
844 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's IO permission bitmap\n", pVCpu->idCpu,
845 SVM_IOPM_PAGES));
846 break;
847 }
848 }
849
850 /* On any failure, cleanup. */
851 if (RT_FAILURE(rc))
852 cpumR3FreeHwVirtState(pVM);
853
854 return rc;
855}
856
857
858/**
859 * Initializes the CPUM.
860 *
861 * @returns VBox status code.
862 * @param pVM The cross context VM structure.
863 */
864VMMR3DECL(int) CPUMR3Init(PVM pVM)
865{
866 LogFlow(("CPUMR3Init\n"));
867
868 /*
869 * Assert alignment, sizes and tables.
870 */
871 AssertCompileMemberAlignment(VM, cpum.s, 32);
872 AssertCompile(sizeof(pVM->cpum.s) <= sizeof(pVM->cpum.padding));
873 AssertCompileSizeAlignment(CPUMCTX, 64);
874 AssertCompileSizeAlignment(CPUMCTXMSRS, 64);
875 AssertCompileSizeAlignment(CPUMHOSTCTX, 64);
876 AssertCompileMemberAlignment(VM, cpum, 64);
877 AssertCompileMemberAlignment(VM, aCpus, 64);
878 AssertCompileMemberAlignment(VMCPU, cpum.s, 64);
879 AssertCompileMemberSizeAlignment(VM, aCpus[0].cpum.s, 64);
880#ifdef VBOX_STRICT
881 int rc2 = cpumR3MsrStrictInitChecks();
882 AssertRCReturn(rc2, rc2);
883#endif
884
885 /*
886 * Initialize offsets.
887 */
888
889 /* Calculate the offset from CPUM to CPUMCPU for the first CPU. */
890 pVM->cpum.s.offCPUMCPU0 = RT_OFFSETOF(VM, aCpus[0].cpum) - RT_OFFSETOF(VM, cpum);
891 Assert((uintptr_t)&pVM->cpum + pVM->cpum.s.offCPUMCPU0 == (uintptr_t)&pVM->aCpus[0].cpum);
892
893
894 /* Calculate the offset from CPUMCPU to CPUM. */
895 for (VMCPUID i = 0; i < pVM->cCpus; i++)
896 {
897 PVMCPU pVCpu = &pVM->aCpus[i];
898
899 pVCpu->cpum.s.offCPUM = RT_OFFSETOF(VM, aCpus[i].cpum) - RT_OFFSETOF(VM, cpum);
900 Assert((uintptr_t)&pVCpu->cpum - pVCpu->cpum.s.offCPUM == (uintptr_t)&pVM->cpum);
901 }
902
903 /*
904 * Gather info about the host CPU.
905 */
906 if (!ASMHasCpuId())
907 {
908 Log(("The CPU doesn't support CPUID!\n"));
909 return VERR_UNSUPPORTED_CPU;
910 }
911
912 pVM->cpum.s.fHostMxCsrMask = CPUMR3DeterminHostMxCsrMask();
913
914 PCPUMCPUIDLEAF paLeaves;
915 uint32_t cLeaves;
916 int rc = CPUMR3CpuIdCollectLeaves(&paLeaves, &cLeaves);
917 AssertLogRelRCReturn(rc, rc);
918
919 rc = cpumR3CpuIdExplodeFeatures(paLeaves, cLeaves, &pVM->cpum.s.HostFeatures);
920 RTMemFree(paLeaves);
921 AssertLogRelRCReturn(rc, rc);
922 pVM->cpum.s.GuestFeatures.enmCpuVendor = pVM->cpum.s.HostFeatures.enmCpuVendor;
923
924 /*
925 * Check that the CPU supports the minimum features we require.
926 */
927 if (!pVM->cpum.s.HostFeatures.fFxSaveRstor)
928 return VMSetError(pVM, VERR_UNSUPPORTED_CPU, RT_SRC_POS, "Host CPU does not support the FXSAVE/FXRSTOR instruction.");
929 if (!pVM->cpum.s.HostFeatures.fMmx)
930 return VMSetError(pVM, VERR_UNSUPPORTED_CPU, RT_SRC_POS, "Host CPU does not support MMX.");
931 if (!pVM->cpum.s.HostFeatures.fTsc)
932 return VMSetError(pVM, VERR_UNSUPPORTED_CPU, RT_SRC_POS, "Host CPU does not support RDTSC.");
933
934 /*
935 * Setup the CR4 AND and OR masks used in the raw-mode switcher.
936 */
937 pVM->cpum.s.CR4.AndMask = X86_CR4_OSXMMEEXCPT | X86_CR4_PVI | X86_CR4_VME;
938 pVM->cpum.s.CR4.OrMask = X86_CR4_OSFXSR;
939
940 /*
941 * Figure out which XSAVE/XRSTOR features are available on the host.
942 */
943 uint64_t fXcr0Host = 0;
944 uint64_t fXStateHostMask = 0;
945 if ( pVM->cpum.s.HostFeatures.fXSaveRstor
946 && pVM->cpum.s.HostFeatures.fOpSysXSaveRstor)
947 {
948 fXStateHostMask = fXcr0Host = ASMGetXcr0();
949 fXStateHostMask &= XSAVE_C_X87 | XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI;
950 AssertLogRelMsgStmt((fXStateHostMask & (XSAVE_C_X87 | XSAVE_C_SSE)) == (XSAVE_C_X87 | XSAVE_C_SSE),
951 ("%#llx\n", fXStateHostMask), fXStateHostMask = 0);
952 }
953 pVM->cpum.s.fXStateHostMask = fXStateHostMask;
954 if (!HMIsEnabled(pVM)) /* For raw-mode, we only use XSAVE/XRSTOR when the guest starts using it (CPUID/CR4 visibility). */
955 fXStateHostMask = 0;
956 LogRel(("CPUM: fXStateHostMask=%#llx; initial: %#llx; host XCR0=%#llx\n",
957 pVM->cpum.s.fXStateHostMask, fXStateHostMask, fXcr0Host));
958
959 /*
960 * Allocate memory for the extended CPU state and initialize the host XSAVE/XRSTOR mask.
961 */
962 uint32_t cbMaxXState = pVM->cpum.s.HostFeatures.cbMaxExtendedState;
963 cbMaxXState = RT_ALIGN(cbMaxXState, 128);
964 AssertLogRelReturn(cbMaxXState >= sizeof(X86FXSTATE) && cbMaxXState <= _8K, VERR_CPUM_IPE_2);
965
966 uint8_t *pbXStates;
967 rc = MMR3HyperAllocOnceNoRelEx(pVM, cbMaxXState * 3 * pVM->cCpus, PAGE_SIZE, MM_TAG_CPUM_CTX,
968 MMHYPER_AONR_FLAGS_KERNEL_MAPPING, (void **)&pbXStates);
969 AssertLogRelRCReturn(rc, rc);
970
971 for (VMCPUID i = 0; i < pVM->cCpus; i++)
972 {
973 PVMCPU pVCpu = &pVM->aCpus[i];
974
975 pVCpu->cpum.s.Guest.pXStateR3 = (PX86XSAVEAREA)pbXStates;
976 pVCpu->cpum.s.Guest.pXStateR0 = MMHyperR3ToR0(pVM, pbXStates);
977 pVCpu->cpum.s.Guest.pXStateRC = MMHyperR3ToR0(pVM, pbXStates);
978 pbXStates += cbMaxXState;
979
980 pVCpu->cpum.s.Host.pXStateR3 = (PX86XSAVEAREA)pbXStates;
981 pVCpu->cpum.s.Host.pXStateR0 = MMHyperR3ToR0(pVM, pbXStates);
982 pVCpu->cpum.s.Host.pXStateRC = MMHyperR3ToR0(pVM, pbXStates);
983 pbXStates += cbMaxXState;
984
985 pVCpu->cpum.s.Hyper.pXStateR3 = (PX86XSAVEAREA)pbXStates;
986 pVCpu->cpum.s.Hyper.pXStateR0 = MMHyperR3ToR0(pVM, pbXStates);
987 pVCpu->cpum.s.Hyper.pXStateRC = MMHyperR3ToR0(pVM, pbXStates);
988 pbXStates += cbMaxXState;
989
990 pVCpu->cpum.s.Host.fXStateMask = fXStateHostMask;
991 }
992
993 /*
994 * Register saved state data item.
995 */
996 rc = SSMR3RegisterInternal(pVM, "cpum", 1, CPUM_SAVED_STATE_VERSION, sizeof(CPUM),
997 NULL, cpumR3LiveExec, NULL,
998 NULL, cpumR3SaveExec, NULL,
999 cpumR3LoadPrep, cpumR3LoadExec, cpumR3LoadDone);
1000 if (RT_FAILURE(rc))
1001 return rc;
1002
1003 /*
1004 * Register info handlers and registers with the debugger facility.
1005 */
1006 DBGFR3InfoRegisterInternalEx(pVM, "cpum", "Displays the all the cpu states.",
1007 &cpumR3InfoAll, DBGFINFO_FLAGS_ALL_EMTS);
1008 DBGFR3InfoRegisterInternalEx(pVM, "cpumguest", "Displays the guest cpu state.",
1009 &cpumR3InfoGuest, DBGFINFO_FLAGS_ALL_EMTS);
1010 DBGFR3InfoRegisterInternalEx(pVM, "cpumguesthwvirt", "Displays the guest hwvirt. cpu state.",
1011 &cpumR3InfoGuestHwvirt, DBGFINFO_FLAGS_ALL_EMTS);
1012 DBGFR3InfoRegisterInternalEx(pVM, "cpumhyper", "Displays the hypervisor cpu state.",
1013 &cpumR3InfoHyper, DBGFINFO_FLAGS_ALL_EMTS);
1014 DBGFR3InfoRegisterInternalEx(pVM, "cpumhost", "Displays the host cpu state.",
1015 &cpumR3InfoHost, DBGFINFO_FLAGS_ALL_EMTS);
1016 DBGFR3InfoRegisterInternalEx(pVM, "cpumguestinstr", "Displays the current guest instruction.",
1017 &cpumR3InfoGuestInstr, DBGFINFO_FLAGS_ALL_EMTS);
1018 DBGFR3InfoRegisterInternal( pVM, "cpuid", "Displays the guest cpuid leaves.", &cpumR3CpuIdInfo);
1019
1020 rc = cpumR3DbgInit(pVM);
1021 if (RT_FAILURE(rc))
1022 return rc;
1023
1024 /*
1025 * Check if we need to workaround partial/leaky FPU handling.
1026 */
1027 cpumR3CheckLeakyFpu(pVM);
1028
1029 /*
1030 * Initialize the Guest CPUID and MSR states.
1031 */
1032 rc = cpumR3InitCpuIdAndMsrs(pVM);
1033 if (RT_FAILURE(rc))
1034 return rc;
1035
1036 /*
1037 * Allocate memory required by the guest hardware virtualization state.
1038 */
1039 if (pVM->cpum.ro.GuestFeatures.fSvm)
1040 {
1041 rc = cpumR3AllocHwVirtState(pVM);
1042 if (RT_FAILURE(rc))
1043 return rc;
1044 }
1045
1046 CPUMR3Reset(pVM);
1047 return VINF_SUCCESS;
1048}
1049
1050
1051/**
1052 * Applies relocations to data and code managed by this
1053 * component. This function will be called at init and
1054 * whenever the VMM need to relocate it self inside the GC.
1055 *
1056 * The CPUM will update the addresses used by the switcher.
1057 *
1058 * @param pVM The cross context VM structure.
1059 */
1060VMMR3DECL(void) CPUMR3Relocate(PVM pVM)
1061{
1062 LogFlow(("CPUMR3Relocate\n"));
1063
1064 pVM->cpum.s.GuestInfo.paMsrRangesRC = MMHyperR3ToRC(pVM, pVM->cpum.s.GuestInfo.paMsrRangesR3);
1065 pVM->cpum.s.GuestInfo.paCpuIdLeavesRC = MMHyperR3ToRC(pVM, pVM->cpum.s.GuestInfo.paCpuIdLeavesR3);
1066
1067 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
1068 {
1069 PVMCPU pVCpu = &pVM->aCpus[iCpu];
1070 pVCpu->cpum.s.Guest.pXStateRC = MMHyperR3ToRC(pVM, pVCpu->cpum.s.Guest.pXStateR3);
1071 pVCpu->cpum.s.Host.pXStateRC = MMHyperR3ToRC(pVM, pVCpu->cpum.s.Host.pXStateR3);
1072 pVCpu->cpum.s.Hyper.pXStateRC = MMHyperR3ToRC(pVM, pVCpu->cpum.s.Hyper.pXStateR3); /** @todo remove me */
1073
1074 /* Recheck the guest DRx values in raw-mode. */
1075 CPUMRecalcHyperDRx(pVCpu, UINT8_MAX, false);
1076 }
1077}
1078
1079
1080/**
1081 * Apply late CPUM property changes based on the fHWVirtEx setting
1082 *
1083 * @param pVM The cross context VM structure.
1084 * @param fHWVirtExEnabled HWVirtEx enabled/disabled
1085 */
1086VMMR3DECL(void) CPUMR3SetHWVirtEx(PVM pVM, bool fHWVirtExEnabled)
1087{
1088 /*
1089 * Workaround for missing cpuid(0) patches when leaf 4 returns GuestInfo.DefCpuId:
1090 * If we miss to patch a cpuid(0).eax then Linux tries to determine the number
1091 * of processors from (cpuid(4).eax >> 26) + 1.
1092 *
1093 * Note: this code is obsolete, but let's keep it here for reference.
1094 * Purpose is valid when we artificially cap the max std id to less than 4.
1095 */
1096 if (!fHWVirtExEnabled)
1097 {
1098 Assert( (pVM->cpum.s.aGuestCpuIdPatmStd[4].uEax & UINT32_C(0xffffc000)) == 0
1099 || pVM->cpum.s.aGuestCpuIdPatmStd[0].uEax < 0x4);
1100 pVM->cpum.s.aGuestCpuIdPatmStd[4].uEax &= UINT32_C(0x00003fff);
1101 }
1102}
1103
1104/**
1105 * Terminates the CPUM.
1106 *
1107 * Termination means cleaning up and freeing all resources,
1108 * the VM it self is at this point powered off or suspended.
1109 *
1110 * @returns VBox status code.
1111 * @param pVM The cross context VM structure.
1112 */
1113VMMR3DECL(int) CPUMR3Term(PVM pVM)
1114{
1115#ifdef VBOX_WITH_CRASHDUMP_MAGIC
1116 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1117 {
1118 PVMCPU pVCpu = &pVM->aCpus[i];
1119 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1120
1121 memset(pVCpu->cpum.s.aMagic, 0, sizeof(pVCpu->cpum.s.aMagic));
1122 pVCpu->cpum.s.uMagic = 0;
1123 pCtx->dr[5] = 0;
1124 }
1125#endif
1126
1127 if (pVM->cpum.ro.GuestFeatures.fSvm)
1128 cpumR3FreeHwVirtState(pVM);
1129 return VINF_SUCCESS;
1130}
1131
1132
1133/**
1134 * Resets a virtual CPU.
1135 *
1136 * Used by CPUMR3Reset and CPU hot plugging.
1137 *
1138 * @param pVM The cross context VM structure.
1139 * @param pVCpu The cross context virtual CPU structure of the CPU that is
1140 * being reset. This may differ from the current EMT.
1141 */
1142VMMR3DECL(void) CPUMR3ResetCpu(PVM pVM, PVMCPU pVCpu)
1143{
1144 /** @todo anything different for VCPU > 0? */
1145 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
1146
1147 /*
1148 * Initialize everything to ZERO first.
1149 */
1150 uint32_t fUseFlags = pVCpu->cpum.s.fUseFlags & ~CPUM_USED_FPU_SINCE_REM;
1151
1152 AssertCompile(RTASSERT_OFFSET_OF(CPUMCTX, pXStateR0) < RTASSERT_OFFSET_OF(CPUMCTX, pXStateR3));
1153 AssertCompile(RTASSERT_OFFSET_OF(CPUMCTX, pXStateR0) < RTASSERT_OFFSET_OF(CPUMCTX, pXStateRC));
1154 memset(pCtx, 0, RT_OFFSETOF(CPUMCTX, pXStateR0));
1155
1156 pVCpu->cpum.s.fUseFlags = fUseFlags;
1157
1158 pCtx->cr0 = X86_CR0_CD | X86_CR0_NW | X86_CR0_ET; //0x60000010
1159 pCtx->eip = 0x0000fff0;
1160 pCtx->edx = 0x00000600; /* P6 processor */
1161 pCtx->eflags.Bits.u1Reserved0 = 1;
1162
1163 pCtx->cs.Sel = 0xf000;
1164 pCtx->cs.ValidSel = 0xf000;
1165 pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
1166 pCtx->cs.u64Base = UINT64_C(0xffff0000);
1167 pCtx->cs.u32Limit = 0x0000ffff;
1168 pCtx->cs.Attr.n.u1DescType = 1; /* code/data segment */
1169 pCtx->cs.Attr.n.u1Present = 1;
1170 pCtx->cs.Attr.n.u4Type = X86_SEL_TYPE_ER_ACC;
1171
1172 pCtx->ds.fFlags = CPUMSELREG_FLAGS_VALID;
1173 pCtx->ds.u32Limit = 0x0000ffff;
1174 pCtx->ds.Attr.n.u1DescType = 1; /* code/data segment */
1175 pCtx->ds.Attr.n.u1Present = 1;
1176 pCtx->ds.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
1177
1178 pCtx->es.fFlags = CPUMSELREG_FLAGS_VALID;
1179 pCtx->es.u32Limit = 0x0000ffff;
1180 pCtx->es.Attr.n.u1DescType = 1; /* code/data segment */
1181 pCtx->es.Attr.n.u1Present = 1;
1182 pCtx->es.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
1183
1184 pCtx->fs.fFlags = CPUMSELREG_FLAGS_VALID;
1185 pCtx->fs.u32Limit = 0x0000ffff;
1186 pCtx->fs.Attr.n.u1DescType = 1; /* code/data segment */
1187 pCtx->fs.Attr.n.u1Present = 1;
1188 pCtx->fs.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
1189
1190 pCtx->gs.fFlags = CPUMSELREG_FLAGS_VALID;
1191 pCtx->gs.u32Limit = 0x0000ffff;
1192 pCtx->gs.Attr.n.u1DescType = 1; /* code/data segment */
1193 pCtx->gs.Attr.n.u1Present = 1;
1194 pCtx->gs.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
1195
1196 pCtx->ss.fFlags = CPUMSELREG_FLAGS_VALID;
1197 pCtx->ss.u32Limit = 0x0000ffff;
1198 pCtx->ss.Attr.n.u1Present = 1;
1199 pCtx->ss.Attr.n.u1DescType = 1; /* code/data segment */
1200 pCtx->ss.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
1201
1202 pCtx->idtr.cbIdt = 0xffff;
1203 pCtx->gdtr.cbGdt = 0xffff;
1204
1205 pCtx->ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
1206 pCtx->ldtr.u32Limit = 0xffff;
1207 pCtx->ldtr.Attr.n.u1Present = 1;
1208 pCtx->ldtr.Attr.n.u4Type = X86_SEL_TYPE_SYS_LDT;
1209
1210 pCtx->tr.fFlags = CPUMSELREG_FLAGS_VALID;
1211 pCtx->tr.u32Limit = 0xffff;
1212 pCtx->tr.Attr.n.u1Present = 1;
1213 pCtx->tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY; /* Deduction, not properly documented by Intel. */
1214
1215 pCtx->dr[6] = X86_DR6_INIT_VAL;
1216 pCtx->dr[7] = X86_DR7_INIT_VAL;
1217
1218 PX86FXSTATE pFpuCtx = &pCtx->pXStateR3->x87; AssertReleaseMsg(RT_VALID_PTR(pFpuCtx), ("%p\n", pFpuCtx));
1219 pFpuCtx->FTW = 0x00; /* All empty (abbridged tag reg edition). */
1220 pFpuCtx->FCW = 0x37f;
1221
1222 /* Intel 64 and IA-32 Architectures Software Developer's Manual Volume 3A, Table 8-1.
1223 IA-32 Processor States Following Power-up, Reset, or INIT */
1224 pFpuCtx->MXCSR = 0x1F80;
1225 pFpuCtx->MXCSR_MASK = pVM->cpum.s.GuestInfo.fMxCsrMask; /** @todo check if REM messes this up... */
1226
1227 pCtx->aXcr[0] = XSAVE_C_X87;
1228 if (pVM->cpum.s.HostFeatures.cbMaxExtendedState >= RT_OFFSETOF(X86XSAVEAREA, Hdr))
1229 {
1230 /* The entire FXSAVE state needs loading when we switch to XSAVE/XRSTOR
1231 as we don't know what happened before. (Bother optimize later?) */
1232 pCtx->pXStateR3->Hdr.bmXState = XSAVE_C_X87 | XSAVE_C_SSE;
1233 }
1234
1235 /*
1236 * MSRs.
1237 */
1238 /* Init PAT MSR */
1239 pCtx->msrPAT = UINT64_C(0x0007040600070406); /** @todo correct? */
1240
1241 /* EFER MBZ; see AMD64 Architecture Programmer's Manual Volume 2: Table 14-1. Initial Processor State.
1242 * The Intel docs don't mention it. */
1243 Assert(!pCtx->msrEFER);
1244
1245 /* IA32_MISC_ENABLE - not entirely sure what the init/reset state really
1246 is supposed to be here, just trying provide useful/sensible values. */
1247 PCPUMMSRRANGE pRange = cpumLookupMsrRange(pVM, MSR_IA32_MISC_ENABLE);
1248 if (pRange)
1249 {
1250 pVCpu->cpum.s.GuestMsrs.msr.MiscEnable = MSR_IA32_MISC_ENABLE_BTS_UNAVAIL
1251 | MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL
1252 | (pVM->cpum.s.GuestFeatures.fMonitorMWait ? MSR_IA32_MISC_ENABLE_MONITOR : 0)
1253 | MSR_IA32_MISC_ENABLE_FAST_STRINGS;
1254 pRange->fWrIgnMask |= MSR_IA32_MISC_ENABLE_BTS_UNAVAIL
1255 | MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL;
1256 pRange->fWrGpMask &= ~pVCpu->cpum.s.GuestMsrs.msr.MiscEnable;
1257 }
1258
1259 /** @todo Wire IA32_MISC_ENABLE bit 22 to our NT 4 CPUID trick. */
1260
1261 /** @todo r=ramshankar: Currently broken for SMP as TMCpuTickSet() expects to be
1262 * called from each EMT while we're getting called by CPUMR3Reset()
1263 * iteratively on the same thread. Fix later. */
1264#if 0 /** @todo r=bird: This we will do in TM, not here. */
1265 /* TSC must be 0. Intel spec. Table 9-1. "IA-32 Processor States Following Power-up, Reset, or INIT." */
1266 CPUMSetGuestMsr(pVCpu, MSR_IA32_TSC, 0);
1267#endif
1268
1269
1270 /* C-state control. Guesses. */
1271 pVCpu->cpum.s.GuestMsrs.msr.PkgCStateCfgCtrl = 1 /*C1*/ | RT_BIT_32(25) | RT_BIT_32(26) | RT_BIT_32(27) | RT_BIT_32(28);
1272 /* For Nehalem+ and Atoms, the 0xE2 MSR (MSR_PKG_CST_CONFIG_CONTROL) is documented. For Core 2,
1273 * it's undocumented but exists as MSR_PMG_CST_CONFIG_CONTROL and has similar but not identical
1274 * functionality. The default value must be different due to incompatible write mask.
1275 */
1276 if (CPUMMICROARCH_IS_INTEL_CORE2(pVM->cpum.s.GuestFeatures.enmMicroarch))
1277 pVCpu->cpum.s.GuestMsrs.msr.PkgCStateCfgCtrl = 0x202a01; /* From Mac Pro Harpertown, unlocked. */
1278 else if (pVM->cpum.s.GuestFeatures.enmMicroarch == kCpumMicroarch_Intel_Core_Yonah)
1279 pVCpu->cpum.s.GuestMsrs.msr.PkgCStateCfgCtrl = 0x26740c; /* From MacBookPro1,1. */
1280
1281 /*
1282 * Hardware virtualization state.
1283 */
1284 /* SVM. */
1285 if (pCtx->hwvirt.svm.CTX_SUFF(pVmcb))
1286 memset(pCtx->hwvirt.svm.CTX_SUFF(pVmcb), 0, SVM_VMCB_PAGES << PAGE_SHIFT);
1287 pCtx->hwvirt.svm.uMsrHSavePa = 0;
1288 pCtx->hwvirt.svm.GCPhysVmcb = 0;
1289 pCtx->hwvirt.svm.fGif = 1;
1290}
1291
1292
1293/**
1294 * Resets the CPU.
1295 *
1296 * @returns VINF_SUCCESS.
1297 * @param pVM The cross context VM structure.
1298 */
1299VMMR3DECL(void) CPUMR3Reset(PVM pVM)
1300{
1301 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1302 {
1303 CPUMR3ResetCpu(pVM, &pVM->aCpus[i]);
1304
1305#ifdef VBOX_WITH_CRASHDUMP_MAGIC
1306 PCPUMCTX pCtx = &pVM->aCpus[i].cpum.s.Guest;
1307
1308 /* Magic marker for searching in crash dumps. */
1309 strcpy((char *)pVM->aCpus[i].cpum.s.aMagic, "CPUMCPU Magic");
1310 pVM->aCpus[i].cpum.s.uMagic = UINT64_C(0xDEADBEEFDEADBEEF);
1311 pCtx->dr[5] = UINT64_C(0xDEADBEEFDEADBEEF);
1312#endif
1313 }
1314}
1315
1316
1317
1318
1319/**
1320 * Pass 0 live exec callback.
1321 *
1322 * @returns VINF_SSM_DONT_CALL_AGAIN.
1323 * @param pVM The cross context VM structure.
1324 * @param pSSM The saved state handle.
1325 * @param uPass The pass (0).
1326 */
1327static DECLCALLBACK(int) cpumR3LiveExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uPass)
1328{
1329 AssertReturn(uPass == 0, VERR_SSM_UNEXPECTED_PASS);
1330 cpumR3SaveCpuId(pVM, pSSM);
1331 return VINF_SSM_DONT_CALL_AGAIN;
1332}
1333
1334
1335/**
1336 * Execute state save operation.
1337 *
1338 * @returns VBox status code.
1339 * @param pVM The cross context VM structure.
1340 * @param pSSM SSM operation handle.
1341 */
1342static DECLCALLBACK(int) cpumR3SaveExec(PVM pVM, PSSMHANDLE pSSM)
1343{
1344 /*
1345 * Save.
1346 */
1347 SSMR3PutU32(pSSM, pVM->cCpus);
1348 SSMR3PutU32(pSSM, sizeof(pVM->aCpus[0].cpum.s.GuestMsrs.msr));
1349 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
1350 {
1351 PVMCPU pVCpu = &pVM->aCpus[iCpu];
1352
1353 SSMR3PutStructEx(pSSM, &pVCpu->cpum.s.Hyper, sizeof(pVCpu->cpum.s.Hyper), 0, g_aCpumCtxFields, NULL);
1354
1355 PCPUMCTX pGstCtx = &pVCpu->cpum.s.Guest;
1356 SSMR3PutStructEx(pSSM, pGstCtx, sizeof(*pGstCtx), 0, g_aCpumCtxFields, NULL);
1357 SSMR3PutStructEx(pSSM, &pGstCtx->pXStateR3->x87, sizeof(pGstCtx->pXStateR3->x87), 0, g_aCpumX87Fields, NULL);
1358 if (pGstCtx->fXStateMask != 0)
1359 SSMR3PutStructEx(pSSM, &pGstCtx->pXStateR3->Hdr, sizeof(pGstCtx->pXStateR3->Hdr), 0, g_aCpumXSaveHdrFields, NULL);
1360 if (pGstCtx->fXStateMask & XSAVE_C_YMM)
1361 {
1362 PCX86XSAVEYMMHI pYmmHiCtx = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_YMM_BIT, PCX86XSAVEYMMHI);
1363 SSMR3PutStructEx(pSSM, pYmmHiCtx, sizeof(*pYmmHiCtx), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumYmmHiFields, NULL);
1364 }
1365 if (pGstCtx->fXStateMask & XSAVE_C_BNDREGS)
1366 {
1367 PCX86XSAVEBNDREGS pBndRegs = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_BNDREGS_BIT, PCX86XSAVEBNDREGS);
1368 SSMR3PutStructEx(pSSM, pBndRegs, sizeof(*pBndRegs), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumBndRegsFields, NULL);
1369 }
1370 if (pGstCtx->fXStateMask & XSAVE_C_BNDCSR)
1371 {
1372 PCX86XSAVEBNDCFG pBndCfg = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_BNDCSR_BIT, PCX86XSAVEBNDCFG);
1373 SSMR3PutStructEx(pSSM, pBndCfg, sizeof(*pBndCfg), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumBndCfgFields, NULL);
1374 }
1375 if (pGstCtx->fXStateMask & XSAVE_C_ZMM_HI256)
1376 {
1377 PCX86XSAVEZMMHI256 pZmmHi256 = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_ZMM_HI256_BIT, PCX86XSAVEZMMHI256);
1378 SSMR3PutStructEx(pSSM, pZmmHi256, sizeof(*pZmmHi256), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumZmmHi256Fields, NULL);
1379 }
1380 if (pGstCtx->fXStateMask & XSAVE_C_ZMM_16HI)
1381 {
1382 PCX86XSAVEZMM16HI pZmm16Hi = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_ZMM_16HI_BIT, PCX86XSAVEZMM16HI);
1383 SSMR3PutStructEx(pSSM, pZmm16Hi, sizeof(*pZmm16Hi), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumZmm16HiFields, NULL);
1384 }
1385
1386 SSMR3PutU32(pSSM, pVCpu->cpum.s.fUseFlags);
1387 SSMR3PutU32(pSSM, pVCpu->cpum.s.fChanged);
1388 AssertCompileSizeAlignment(pVCpu->cpum.s.GuestMsrs.msr, sizeof(uint64_t));
1389 SSMR3PutMem(pSSM, &pVCpu->cpum.s.GuestMsrs, sizeof(pVCpu->cpum.s.GuestMsrs.msr));
1390 }
1391
1392 cpumR3SaveCpuId(pVM, pSSM);
1393 return VINF_SUCCESS;
1394}
1395
1396
1397/**
1398 * @callback_method_impl{FNSSMINTLOADPREP}
1399 */
1400static DECLCALLBACK(int) cpumR3LoadPrep(PVM pVM, PSSMHANDLE pSSM)
1401{
1402 NOREF(pSSM);
1403 pVM->cpum.s.fPendingRestore = true;
1404 return VINF_SUCCESS;
1405}
1406
1407
1408/**
1409 * @callback_method_impl{FNSSMINTLOADEXEC}
1410 */
1411static DECLCALLBACK(int) cpumR3LoadExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
1412{
1413 int rc; /* Only for AssertRCReturn use. */
1414
1415 /*
1416 * Validate version.
1417 */
1418 if ( uVersion != CPUM_SAVED_STATE_VERSION_XSAVE
1419 && uVersion != CPUM_SAVED_STATE_VERSION_GOOD_CPUID_COUNT
1420 && uVersion != CPUM_SAVED_STATE_VERSION_BAD_CPUID_COUNT
1421 && uVersion != CPUM_SAVED_STATE_VERSION_PUT_STRUCT
1422 && uVersion != CPUM_SAVED_STATE_VERSION_MEM
1423 && uVersion != CPUM_SAVED_STATE_VERSION_NO_MSR_SIZE
1424 && uVersion != CPUM_SAVED_STATE_VERSION_VER3_2
1425 && uVersion != CPUM_SAVED_STATE_VERSION_VER3_0
1426 && uVersion != CPUM_SAVED_STATE_VERSION_VER2_1_NOMSR
1427 && uVersion != CPUM_SAVED_STATE_VERSION_VER2_0
1428 && uVersion != CPUM_SAVED_STATE_VERSION_VER1_6)
1429 {
1430 AssertMsgFailed(("cpumR3LoadExec: Invalid version uVersion=%d!\n", uVersion));
1431 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
1432 }
1433
1434 if (uPass == SSM_PASS_FINAL)
1435 {
1436 /*
1437 * Set the size of RTGCPTR for SSMR3GetGCPtr. (Only necessary for
1438 * really old SSM file versions.)
1439 */
1440 if (uVersion == CPUM_SAVED_STATE_VERSION_VER1_6)
1441 SSMR3HandleSetGCPtrSize(pSSM, sizeof(RTGCPTR32));
1442 else if (uVersion <= CPUM_SAVED_STATE_VERSION_VER3_0)
1443 SSMR3HandleSetGCPtrSize(pSSM, HC_ARCH_BITS == 32 ? sizeof(RTGCPTR32) : sizeof(RTGCPTR));
1444
1445 /*
1446 * Figure x86 and ctx field definitions to use for older states.
1447 */
1448 uint32_t const fLoad = uVersion > CPUM_SAVED_STATE_VERSION_MEM ? 0 : SSMSTRUCT_FLAGS_MEM_BAND_AID_RELAXED;
1449 PCSSMFIELD paCpumCtx1Fields = g_aCpumX87Fields;
1450 PCSSMFIELD paCpumCtx2Fields = g_aCpumCtxFields;
1451 if (uVersion == CPUM_SAVED_STATE_VERSION_VER1_6)
1452 {
1453 paCpumCtx1Fields = g_aCpumX87FieldsV16;
1454 paCpumCtx2Fields = g_aCpumCtxFieldsV16;
1455 }
1456 else if (uVersion <= CPUM_SAVED_STATE_VERSION_MEM)
1457 {
1458 paCpumCtx1Fields = g_aCpumX87FieldsMem;
1459 paCpumCtx2Fields = g_aCpumCtxFieldsMem;
1460 }
1461
1462 /*
1463 * The hyper state used to preceed the CPU count. Starting with
1464 * XSAVE it was moved down till after we've got the count.
1465 */
1466 if (uVersion < CPUM_SAVED_STATE_VERSION_XSAVE)
1467 {
1468 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
1469 {
1470 PVMCPU pVCpu = &pVM->aCpus[iCpu];
1471 X86FXSTATE Ign;
1472 SSMR3GetStructEx(pSSM, &Ign, sizeof(Ign), fLoad | SSMSTRUCT_FLAGS_NO_TAIL_MARKER, paCpumCtx1Fields, NULL);
1473 uint64_t uCR3 = pVCpu->cpum.s.Hyper.cr3;
1474 uint64_t uRSP = pVCpu->cpum.s.Hyper.rsp; /* see VMMR3Relocate(). */
1475 SSMR3GetStructEx(pSSM, &pVCpu->cpum.s.Hyper, sizeof(pVCpu->cpum.s.Hyper),
1476 fLoad | SSMSTRUCT_FLAGS_NO_LEAD_MARKER, paCpumCtx2Fields, NULL);
1477 pVCpu->cpum.s.Hyper.cr3 = uCR3;
1478 pVCpu->cpum.s.Hyper.rsp = uRSP;
1479 }
1480 }
1481
1482 if (uVersion >= CPUM_SAVED_STATE_VERSION_VER2_1_NOMSR)
1483 {
1484 uint32_t cCpus;
1485 rc = SSMR3GetU32(pSSM, &cCpus); AssertRCReturn(rc, rc);
1486 AssertLogRelMsgReturn(cCpus == pVM->cCpus, ("Mismatching CPU counts: saved: %u; configured: %u \n", cCpus, pVM->cCpus),
1487 VERR_SSM_UNEXPECTED_DATA);
1488 }
1489 AssertLogRelMsgReturn( uVersion > CPUM_SAVED_STATE_VERSION_VER2_0
1490 || pVM->cCpus == 1,
1491 ("cCpus=%u\n", pVM->cCpus),
1492 VERR_SSM_UNEXPECTED_DATA);
1493
1494 uint32_t cbMsrs = 0;
1495 if (uVersion > CPUM_SAVED_STATE_VERSION_NO_MSR_SIZE)
1496 {
1497 rc = SSMR3GetU32(pSSM, &cbMsrs); AssertRCReturn(rc, rc);
1498 AssertLogRelMsgReturn(RT_ALIGN(cbMsrs, sizeof(uint64_t)) == cbMsrs, ("Size of MSRs is misaligned: %#x\n", cbMsrs),
1499 VERR_SSM_UNEXPECTED_DATA);
1500 AssertLogRelMsgReturn(cbMsrs <= sizeof(CPUMCTXMSRS) && cbMsrs > 0, ("Size of MSRs is out of range: %#x\n", cbMsrs),
1501 VERR_SSM_UNEXPECTED_DATA);
1502 }
1503
1504 /*
1505 * Do the per-CPU restoring.
1506 */
1507 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
1508 {
1509 PVMCPU pVCpu = &pVM->aCpus[iCpu];
1510 PCPUMCTX pGstCtx = &pVCpu->cpum.s.Guest;
1511
1512 if (uVersion >= CPUM_SAVED_STATE_VERSION_XSAVE)
1513 {
1514 /*
1515 * The XSAVE saved state layout moved the hyper state down here.
1516 */
1517 uint64_t uCR3 = pVCpu->cpum.s.Hyper.cr3;
1518 uint64_t uRSP = pVCpu->cpum.s.Hyper.rsp; /* see VMMR3Relocate(). */
1519 rc = SSMR3GetStructEx(pSSM, &pVCpu->cpum.s.Hyper, sizeof(pVCpu->cpum.s.Hyper), 0, g_aCpumCtxFields, NULL);
1520 pVCpu->cpum.s.Hyper.cr3 = uCR3;
1521 pVCpu->cpum.s.Hyper.rsp = uRSP;
1522 AssertRCReturn(rc, rc);
1523
1524 /*
1525 * Start by restoring the CPUMCTX structure and the X86FXSAVE bits of the extended state.
1526 */
1527 rc = SSMR3GetStructEx(pSSM, pGstCtx, sizeof(*pGstCtx), 0, g_aCpumCtxFields, NULL);
1528 rc = SSMR3GetStructEx(pSSM, &pGstCtx->pXStateR3->x87, sizeof(pGstCtx->pXStateR3->x87), 0, g_aCpumX87Fields, NULL);
1529 AssertRCReturn(rc, rc);
1530
1531 /* Check that the xsave/xrstor mask is valid (invalid results in #GP). */
1532 if (pGstCtx->fXStateMask != 0)
1533 {
1534 AssertLogRelMsgReturn(!(pGstCtx->fXStateMask & ~pVM->cpum.s.fXStateGuestMask),
1535 ("fXStateMask=%#RX64 fXStateGuestMask=%#RX64\n",
1536 pGstCtx->fXStateMask, pVM->cpum.s.fXStateGuestMask),
1537 VERR_CPUM_INCOMPATIBLE_XSAVE_COMP_MASK);
1538 AssertLogRelMsgReturn(pGstCtx->fXStateMask & XSAVE_C_X87,
1539 ("fXStateMask=%#RX64\n", pGstCtx->fXStateMask), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
1540 AssertLogRelMsgReturn((pGstCtx->fXStateMask & (XSAVE_C_SSE | XSAVE_C_YMM)) != XSAVE_C_YMM,
1541 ("fXStateMask=%#RX64\n", pGstCtx->fXStateMask), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
1542 AssertLogRelMsgReturn( (pGstCtx->fXStateMask & (XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI)) == 0
1543 || (pGstCtx->fXStateMask & (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI))
1544 == (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI),
1545 ("fXStateMask=%#RX64\n", pGstCtx->fXStateMask), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
1546 }
1547
1548 /* Check that the XCR0 mask is valid (invalid results in #GP). */
1549 AssertLogRelMsgReturn(pGstCtx->aXcr[0] & XSAVE_C_X87, ("xcr0=%#RX64\n", pGstCtx->aXcr[0]), VERR_CPUM_INVALID_XCR0);
1550 if (pGstCtx->aXcr[0] != XSAVE_C_X87)
1551 {
1552 AssertLogRelMsgReturn(!(pGstCtx->aXcr[0] & ~(pGstCtx->fXStateMask | XSAVE_C_X87)),
1553 ("xcr0=%#RX64 fXStateMask=%#RX64\n", pGstCtx->aXcr[0], pGstCtx->fXStateMask),
1554 VERR_CPUM_INVALID_XCR0);
1555 AssertLogRelMsgReturn(pGstCtx->aXcr[0] & XSAVE_C_X87,
1556 ("xcr0=%#RX64\n", pGstCtx->aXcr[0]), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
1557 AssertLogRelMsgReturn((pGstCtx->aXcr[0] & (XSAVE_C_SSE | XSAVE_C_YMM)) != XSAVE_C_YMM,
1558 ("xcr0=%#RX64\n", pGstCtx->aXcr[0]), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
1559 AssertLogRelMsgReturn( (pGstCtx->aXcr[0] & (XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI)) == 0
1560 || (pGstCtx->aXcr[0] & (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI))
1561 == (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI),
1562 ("xcr0=%#RX64\n", pGstCtx->aXcr[0]), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
1563 }
1564
1565 /* Check that the XCR1 is zero, as we don't implement it yet. */
1566 AssertLogRelMsgReturn(!pGstCtx->aXcr[1], ("xcr1=%#RX64\n", pGstCtx->aXcr[1]), VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
1567
1568 /*
1569 * Restore the individual extended state components we support.
1570 */
1571 if (pGstCtx->fXStateMask != 0)
1572 {
1573 rc = SSMR3GetStructEx(pSSM, &pGstCtx->pXStateR3->Hdr, sizeof(pGstCtx->pXStateR3->Hdr),
1574 0, g_aCpumXSaveHdrFields, NULL);
1575 AssertRCReturn(rc, rc);
1576 AssertLogRelMsgReturn(!(pGstCtx->pXStateR3->Hdr.bmXState & ~pGstCtx->fXStateMask),
1577 ("bmXState=%#RX64 fXStateMask=%#RX64\n",
1578 pGstCtx->pXStateR3->Hdr.bmXState, pGstCtx->fXStateMask),
1579 VERR_CPUM_INVALID_XSAVE_HDR);
1580 }
1581 if (pGstCtx->fXStateMask & XSAVE_C_YMM)
1582 {
1583 PX86XSAVEYMMHI pYmmHiCtx = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_YMM_BIT, PX86XSAVEYMMHI);
1584 SSMR3GetStructEx(pSSM, pYmmHiCtx, sizeof(*pYmmHiCtx), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumYmmHiFields, NULL);
1585 }
1586 if (pGstCtx->fXStateMask & XSAVE_C_BNDREGS)
1587 {
1588 PX86XSAVEBNDREGS pBndRegs = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_BNDREGS_BIT, PX86XSAVEBNDREGS);
1589 SSMR3GetStructEx(pSSM, pBndRegs, sizeof(*pBndRegs), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumBndRegsFields, NULL);
1590 }
1591 if (pGstCtx->fXStateMask & XSAVE_C_BNDCSR)
1592 {
1593 PX86XSAVEBNDCFG pBndCfg = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_BNDCSR_BIT, PX86XSAVEBNDCFG);
1594 SSMR3GetStructEx(pSSM, pBndCfg, sizeof(*pBndCfg), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumBndCfgFields, NULL);
1595 }
1596 if (pGstCtx->fXStateMask & XSAVE_C_ZMM_HI256)
1597 {
1598 PX86XSAVEZMMHI256 pZmmHi256 = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_ZMM_HI256_BIT, PX86XSAVEZMMHI256);
1599 SSMR3GetStructEx(pSSM, pZmmHi256, sizeof(*pZmmHi256), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumZmmHi256Fields, NULL);
1600 }
1601 if (pGstCtx->fXStateMask & XSAVE_C_ZMM_16HI)
1602 {
1603 PX86XSAVEZMM16HI pZmm16Hi = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_ZMM_16HI_BIT, PX86XSAVEZMM16HI);
1604 SSMR3GetStructEx(pSSM, pZmm16Hi, sizeof(*pZmm16Hi), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumZmm16HiFields, NULL);
1605 }
1606 }
1607 else
1608 {
1609 /*
1610 * Pre XSAVE saved state.
1611 */
1612 SSMR3GetStructEx(pSSM, &pGstCtx->pXStateR3->x87, sizeof(pGstCtx->pXStateR3->x87),
1613 fLoad | SSMSTRUCT_FLAGS_NO_TAIL_MARKER, paCpumCtx1Fields, NULL);
1614 SSMR3GetStructEx(pSSM, pGstCtx, sizeof(*pGstCtx), fLoad | SSMSTRUCT_FLAGS_NO_LEAD_MARKER, paCpumCtx2Fields, NULL);
1615 }
1616
1617 /*
1618 * Restore a couple of flags and the MSRs.
1619 */
1620 SSMR3GetU32(pSSM, &pVCpu->cpum.s.fUseFlags);
1621 SSMR3GetU32(pSSM, &pVCpu->cpum.s.fChanged);
1622
1623 rc = VINF_SUCCESS;
1624 if (uVersion > CPUM_SAVED_STATE_VERSION_NO_MSR_SIZE)
1625 rc = SSMR3GetMem(pSSM, &pVCpu->cpum.s.GuestMsrs.au64[0], cbMsrs);
1626 else if (uVersion >= CPUM_SAVED_STATE_VERSION_VER3_0)
1627 {
1628 SSMR3GetMem(pSSM, &pVCpu->cpum.s.GuestMsrs.au64[0], 2 * sizeof(uint64_t)); /* Restore two MSRs. */
1629 rc = SSMR3Skip(pSSM, 62 * sizeof(uint64_t));
1630 }
1631 AssertRCReturn(rc, rc);
1632
1633 /* REM and other may have cleared must-be-one fields in DR6 and
1634 DR7, fix these. */
1635 pGstCtx->dr[6] &= ~(X86_DR6_RAZ_MASK | X86_DR6_MBZ_MASK);
1636 pGstCtx->dr[6] |= X86_DR6_RA1_MASK;
1637 pGstCtx->dr[7] &= ~(X86_DR7_RAZ_MASK | X86_DR7_MBZ_MASK);
1638 pGstCtx->dr[7] |= X86_DR7_RA1_MASK;
1639 }
1640
1641 /* Older states does not have the internal selector register flags
1642 and valid selector value. Supply those. */
1643 if (uVersion <= CPUM_SAVED_STATE_VERSION_MEM)
1644 {
1645 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
1646 {
1647 PVMCPU pVCpu = &pVM->aCpus[iCpu];
1648 bool const fValid = HMIsEnabled(pVM)
1649 || ( uVersion > CPUM_SAVED_STATE_VERSION_VER3_2
1650 && !(pVCpu->cpum.s.fChanged & CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID));
1651 PCPUMSELREG paSelReg = CPUMCTX_FIRST_SREG(&pVCpu->cpum.s.Guest);
1652 if (fValid)
1653 {
1654 for (uint32_t iSelReg = 0; iSelReg < X86_SREG_COUNT; iSelReg++)
1655 {
1656 paSelReg[iSelReg].fFlags = CPUMSELREG_FLAGS_VALID;
1657 paSelReg[iSelReg].ValidSel = paSelReg[iSelReg].Sel;
1658 }
1659
1660 pVCpu->cpum.s.Guest.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
1661 pVCpu->cpum.s.Guest.ldtr.ValidSel = pVCpu->cpum.s.Guest.ldtr.Sel;
1662 }
1663 else
1664 {
1665 for (uint32_t iSelReg = 0; iSelReg < X86_SREG_COUNT; iSelReg++)
1666 {
1667 paSelReg[iSelReg].fFlags = 0;
1668 paSelReg[iSelReg].ValidSel = 0;
1669 }
1670
1671 /* This might not be 104% correct, but I think it's close
1672 enough for all practical purposes... (REM always loaded
1673 LDTR registers.) */
1674 pVCpu->cpum.s.Guest.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
1675 pVCpu->cpum.s.Guest.ldtr.ValidSel = pVCpu->cpum.s.Guest.ldtr.Sel;
1676 }
1677 pVCpu->cpum.s.Guest.tr.fFlags = CPUMSELREG_FLAGS_VALID;
1678 pVCpu->cpum.s.Guest.tr.ValidSel = pVCpu->cpum.s.Guest.tr.Sel;
1679 }
1680 }
1681
1682 /* Clear CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID. */
1683 if ( uVersion > CPUM_SAVED_STATE_VERSION_VER3_2
1684 && uVersion <= CPUM_SAVED_STATE_VERSION_MEM)
1685 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
1686 pVM->aCpus[iCpu].cpum.s.fChanged &= CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID;
1687
1688 /*
1689 * A quick sanity check.
1690 */
1691 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
1692 {
1693 PVMCPU pVCpu = &pVM->aCpus[iCpu];
1694 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.es.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
1695 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.cs.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
1696 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.ss.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
1697 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.ds.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
1698 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.fs.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
1699 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.gs.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
1700 }
1701 }
1702
1703 pVM->cpum.s.fPendingRestore = false;
1704
1705 /*
1706 * Guest CPUIDs.
1707 */
1708 if (uVersion >= CPUM_SAVED_STATE_VERSION_VER3_2)
1709 return cpumR3LoadCpuId(pVM, pSSM, uVersion);
1710 return cpumR3LoadCpuIdPre32(pVM, pSSM, uVersion);
1711}
1712
1713
1714/**
1715 * @callback_method_impl{FNSSMINTLOADDONE}
1716 */
1717static DECLCALLBACK(int) cpumR3LoadDone(PVM pVM, PSSMHANDLE pSSM)
1718{
1719 if (RT_FAILURE(SSMR3HandleGetStatus(pSSM)))
1720 return VINF_SUCCESS;
1721
1722 /* just check this since we can. */ /** @todo Add a SSM unit flag for indicating that it's mandatory during a restore. */
1723 if (pVM->cpum.s.fPendingRestore)
1724 {
1725 LogRel(("CPUM: Missing state!\n"));
1726 return VERR_INTERNAL_ERROR_2;
1727 }
1728
1729 bool const fSupportsLongMode = VMR3IsLongModeAllowed(pVM);
1730 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1731 {
1732 PVMCPU pVCpu = &pVM->aCpus[idCpu];
1733
1734 /* Notify PGM of the NXE states in case they've changed. */
1735 PGMNotifyNxeChanged(pVCpu, RT_BOOL(pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_NXE));
1736
1737 /* During init. this is done in CPUMR3InitCompleted(). */
1738 if (fSupportsLongMode)
1739 pVCpu->cpum.s.fUseFlags |= CPUM_USE_SUPPORTS_LONGMODE;
1740 }
1741 return VINF_SUCCESS;
1742}
1743
1744
1745/**
1746 * Checks if the CPUM state restore is still pending.
1747 *
1748 * @returns true / false.
1749 * @param pVM The cross context VM structure.
1750 */
1751VMMDECL(bool) CPUMR3IsStateRestorePending(PVM pVM)
1752{
1753 return pVM->cpum.s.fPendingRestore;
1754}
1755
1756
1757/**
1758 * Formats the EFLAGS value into mnemonics.
1759 *
1760 * @param pszEFlags Where to write the mnemonics. (Assumes sufficient buffer space.)
1761 * @param efl The EFLAGS value.
1762 */
1763static void cpumR3InfoFormatFlags(char *pszEFlags, uint32_t efl)
1764{
1765 /*
1766 * Format the flags.
1767 */
1768 static const struct
1769 {
1770 const char *pszSet; const char *pszClear; uint32_t fFlag;
1771 } s_aFlags[] =
1772 {
1773 { "vip",NULL, X86_EFL_VIP },
1774 { "vif",NULL, X86_EFL_VIF },
1775 { "ac", NULL, X86_EFL_AC },
1776 { "vm", NULL, X86_EFL_VM },
1777 { "rf", NULL, X86_EFL_RF },
1778 { "nt", NULL, X86_EFL_NT },
1779 { "ov", "nv", X86_EFL_OF },
1780 { "dn", "up", X86_EFL_DF },
1781 { "ei", "di", X86_EFL_IF },
1782 { "tf", NULL, X86_EFL_TF },
1783 { "nt", "pl", X86_EFL_SF },
1784 { "nz", "zr", X86_EFL_ZF },
1785 { "ac", "na", X86_EFL_AF },
1786 { "po", "pe", X86_EFL_PF },
1787 { "cy", "nc", X86_EFL_CF },
1788 };
1789 char *psz = pszEFlags;
1790 for (unsigned i = 0; i < RT_ELEMENTS(s_aFlags); i++)
1791 {
1792 const char *pszAdd = s_aFlags[i].fFlag & efl ? s_aFlags[i].pszSet : s_aFlags[i].pszClear;
1793 if (pszAdd)
1794 {
1795 strcpy(psz, pszAdd);
1796 psz += strlen(pszAdd);
1797 *psz++ = ' ';
1798 }
1799 }
1800 psz[-1] = '\0';
1801}
1802
1803
1804/**
1805 * Formats a full register dump.
1806 *
1807 * @param pVM The cross context VM structure.
1808 * @param pCtx The context to format.
1809 * @param pCtxCore The context core to format.
1810 * @param pHlp Output functions.
1811 * @param enmType The dump type.
1812 * @param pszPrefix Register name prefix.
1813 */
1814static void cpumR3InfoOne(PVM pVM, PCPUMCTX pCtx, PCCPUMCTXCORE pCtxCore, PCDBGFINFOHLP pHlp, CPUMDUMPTYPE enmType,
1815 const char *pszPrefix)
1816{
1817 NOREF(pVM);
1818
1819 /*
1820 * Format the EFLAGS.
1821 */
1822 uint32_t efl = pCtxCore->eflags.u32;
1823 char szEFlags[80];
1824 cpumR3InfoFormatFlags(&szEFlags[0], efl);
1825
1826 /*
1827 * Format the registers.
1828 */
1829 switch (enmType)
1830 {
1831 case CPUMDUMPTYPE_TERSE:
1832 if (CPUMIsGuestIn64BitCodeEx(pCtx))
1833 pHlp->pfnPrintf(pHlp,
1834 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
1835 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
1836 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
1837 "%sr14=%016RX64 %sr15=%016RX64\n"
1838 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
1839 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %seflags=%08x\n",
1840 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
1841 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
1842 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
1843 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
1844 pszPrefix, pCtxCore->cs.Sel, pszPrefix, pCtxCore->ss.Sel, pszPrefix, pCtxCore->ds.Sel, pszPrefix, pCtxCore->es.Sel,
1845 pszPrefix, pCtxCore->fs.Sel, pszPrefix, pCtxCore->gs.Sel, pszPrefix, efl);
1846 else
1847 pHlp->pfnPrintf(pHlp,
1848 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
1849 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
1850 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %seflags=%08x\n",
1851 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
1852 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
1853 pszPrefix, pCtxCore->cs.Sel, pszPrefix, pCtxCore->ss.Sel, pszPrefix, pCtxCore->ds.Sel, pszPrefix, pCtxCore->es.Sel,
1854 pszPrefix, pCtxCore->fs.Sel, pszPrefix, pCtxCore->gs.Sel, pszPrefix, efl);
1855 break;
1856
1857 case CPUMDUMPTYPE_DEFAULT:
1858 if (CPUMIsGuestIn64BitCodeEx(pCtx))
1859 pHlp->pfnPrintf(pHlp,
1860 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
1861 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
1862 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
1863 "%sr14=%016RX64 %sr15=%016RX64\n"
1864 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
1865 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %str=%04x %seflags=%08x\n"
1866 "%scr0=%08RX64 %scr2=%08RX64 %scr3=%08RX64 %scr4=%08RX64 %sgdtr=%016RX64:%04x %sldtr=%04x\n"
1867 ,
1868 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
1869 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
1870 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
1871 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
1872 pszPrefix, pCtxCore->cs.Sel, pszPrefix, pCtxCore->ss.Sel, pszPrefix, pCtxCore->ds.Sel, pszPrefix, pCtxCore->es.Sel,
1873 pszPrefix, pCtxCore->fs.Sel, pszPrefix, pCtxCore->gs.Sel, pszPrefix, pCtx->tr.Sel, pszPrefix, efl,
1874 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
1875 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->ldtr.Sel);
1876 else
1877 pHlp->pfnPrintf(pHlp,
1878 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
1879 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
1880 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %str=%04x %seflags=%08x\n"
1881 "%scr0=%08RX64 %scr2=%08RX64 %scr3=%08RX64 %scr4=%08RX64 %sgdtr=%08RX64:%04x %sldtr=%04x\n"
1882 ,
1883 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
1884 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
1885 pszPrefix, pCtxCore->cs.Sel, pszPrefix, pCtxCore->ss.Sel, pszPrefix, pCtxCore->ds.Sel, pszPrefix, pCtxCore->es.Sel,
1886 pszPrefix, pCtxCore->fs.Sel, pszPrefix, pCtxCore->gs.Sel, pszPrefix, pCtx->tr.Sel, pszPrefix, efl,
1887 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
1888 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->ldtr.Sel);
1889 break;
1890
1891 case CPUMDUMPTYPE_VERBOSE:
1892 if (CPUMIsGuestIn64BitCodeEx(pCtx))
1893 pHlp->pfnPrintf(pHlp,
1894 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
1895 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
1896 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
1897 "%sr14=%016RX64 %sr15=%016RX64\n"
1898 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
1899 "%scs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1900 "%sds={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1901 "%ses={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1902 "%sfs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1903 "%sgs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1904 "%sss={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1905 "%scr0=%016RX64 %scr2=%016RX64 %scr3=%016RX64 %scr4=%016RX64\n"
1906 "%sdr0=%016RX64 %sdr1=%016RX64 %sdr2=%016RX64 %sdr3=%016RX64\n"
1907 "%sdr4=%016RX64 %sdr5=%016RX64 %sdr6=%016RX64 %sdr7=%016RX64\n"
1908 "%sgdtr=%016RX64:%04x %sidtr=%016RX64:%04x %seflags=%08x\n"
1909 "%sldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
1910 "%str ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
1911 "%sSysEnter={cs=%04llx eip=%016RX64 esp=%016RX64}\n"
1912 ,
1913 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
1914 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
1915 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
1916 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
1917 pszPrefix, pCtxCore->cs.Sel, pCtx->cs.u64Base, pCtx->cs.u32Limit, pCtx->cs.Attr.u,
1918 pszPrefix, pCtxCore->ds.Sel, pCtx->ds.u64Base, pCtx->ds.u32Limit, pCtx->ds.Attr.u,
1919 pszPrefix, pCtxCore->es.Sel, pCtx->es.u64Base, pCtx->es.u32Limit, pCtx->es.Attr.u,
1920 pszPrefix, pCtxCore->fs.Sel, pCtx->fs.u64Base, pCtx->fs.u32Limit, pCtx->fs.Attr.u,
1921 pszPrefix, pCtxCore->gs.Sel, pCtx->gs.u64Base, pCtx->gs.u32Limit, pCtx->gs.Attr.u,
1922 pszPrefix, pCtxCore->ss.Sel, pCtx->ss.u64Base, pCtx->ss.u32Limit, pCtx->ss.Attr.u,
1923 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
1924 pszPrefix, pCtx->dr[0], pszPrefix, pCtx->dr[1], pszPrefix, pCtx->dr[2], pszPrefix, pCtx->dr[3],
1925 pszPrefix, pCtx->dr[4], pszPrefix, pCtx->dr[5], pszPrefix, pCtx->dr[6], pszPrefix, pCtx->dr[7],
1926 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, pszPrefix, efl,
1927 pszPrefix, pCtx->ldtr.Sel, pCtx->ldtr.u64Base, pCtx->ldtr.u32Limit, pCtx->ldtr.Attr.u,
1928 pszPrefix, pCtx->tr.Sel, pCtx->tr.u64Base, pCtx->tr.u32Limit, pCtx->tr.Attr.u,
1929 pszPrefix, pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
1930 else
1931 pHlp->pfnPrintf(pHlp,
1932 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
1933 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
1934 "%scs={%04x base=%016RX64 limit=%08x flags=%08x} %sdr0=%08RX64 %sdr1=%08RX64\n"
1935 "%sds={%04x base=%016RX64 limit=%08x flags=%08x} %sdr2=%08RX64 %sdr3=%08RX64\n"
1936 "%ses={%04x base=%016RX64 limit=%08x flags=%08x} %sdr4=%08RX64 %sdr5=%08RX64\n"
1937 "%sfs={%04x base=%016RX64 limit=%08x flags=%08x} %sdr6=%08RX64 %sdr7=%08RX64\n"
1938 "%sgs={%04x base=%016RX64 limit=%08x flags=%08x} %scr0=%08RX64 %scr2=%08RX64\n"
1939 "%sss={%04x base=%016RX64 limit=%08x flags=%08x} %scr3=%08RX64 %scr4=%08RX64\n"
1940 "%sgdtr=%016RX64:%04x %sidtr=%016RX64:%04x %seflags=%08x\n"
1941 "%sldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
1942 "%str ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
1943 "%sSysEnter={cs=%04llx eip=%08llx esp=%08llx}\n"
1944 ,
1945 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
1946 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
1947 pszPrefix, pCtxCore->cs.Sel, pCtx->cs.u64Base, pCtx->cs.u32Limit, pCtx->cs.Attr.u, pszPrefix, pCtx->dr[0], pszPrefix, pCtx->dr[1],
1948 pszPrefix, pCtxCore->ds.Sel, pCtx->ds.u64Base, pCtx->ds.u32Limit, pCtx->ds.Attr.u, pszPrefix, pCtx->dr[2], pszPrefix, pCtx->dr[3],
1949 pszPrefix, pCtxCore->es.Sel, pCtx->es.u64Base, pCtx->es.u32Limit, pCtx->es.Attr.u, pszPrefix, pCtx->dr[4], pszPrefix, pCtx->dr[5],
1950 pszPrefix, pCtxCore->fs.Sel, pCtx->fs.u64Base, pCtx->fs.u32Limit, pCtx->fs.Attr.u, pszPrefix, pCtx->dr[6], pszPrefix, pCtx->dr[7],
1951 pszPrefix, pCtxCore->gs.Sel, pCtx->gs.u64Base, pCtx->gs.u32Limit, pCtx->gs.Attr.u, pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2,
1952 pszPrefix, pCtxCore->ss.Sel, pCtx->ss.u64Base, pCtx->ss.u32Limit, pCtx->ss.Attr.u, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
1953 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, pszPrefix, efl,
1954 pszPrefix, pCtx->ldtr.Sel, pCtx->ldtr.u64Base, pCtx->ldtr.u32Limit, pCtx->ldtr.Attr.u,
1955 pszPrefix, pCtx->tr.Sel, pCtx->tr.u64Base, pCtx->tr.u32Limit, pCtx->tr.Attr.u,
1956 pszPrefix, pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
1957
1958 pHlp->pfnPrintf(pHlp, "%sxcr=%016RX64 %sxcr1=%016RX64 %sxss=%016RX64 (fXStateMask=%016RX64)\n",
1959 pszPrefix, pCtx->aXcr[0], pszPrefix, pCtx->aXcr[1],
1960 pszPrefix, UINT64_C(0) /** @todo XSS */, pCtx->fXStateMask);
1961 if (pCtx->CTX_SUFF(pXState))
1962 {
1963 PX86FXSTATE pFpuCtx = &pCtx->CTX_SUFF(pXState)->x87;
1964 pHlp->pfnPrintf(pHlp,
1965 "%sFCW=%04x %sFSW=%04x %sFTW=%04x %sFOP=%04x %sMXCSR=%08x %sMXCSR_MASK=%08x\n"
1966 "%sFPUIP=%08x %sCS=%04x %sRsrvd1=%04x %sFPUDP=%08x %sDS=%04x %sRsvrd2=%04x\n"
1967 ,
1968 pszPrefix, pFpuCtx->FCW, pszPrefix, pFpuCtx->FSW, pszPrefix, pFpuCtx->FTW, pszPrefix, pFpuCtx->FOP,
1969 pszPrefix, pFpuCtx->MXCSR, pszPrefix, pFpuCtx->MXCSR_MASK,
1970 pszPrefix, pFpuCtx->FPUIP, pszPrefix, pFpuCtx->CS, pszPrefix, pFpuCtx->Rsrvd1,
1971 pszPrefix, pFpuCtx->FPUDP, pszPrefix, pFpuCtx->DS, pszPrefix, pFpuCtx->Rsrvd2
1972 );
1973 /*
1974 * The FSAVE style memory image contains ST(0)-ST(7) at increasing addresses,
1975 * not (FP)R0-7 as Intel SDM suggests.
1976 */
1977 unsigned iShift = (pFpuCtx->FSW >> 11) & 7;
1978 for (unsigned iST = 0; iST < RT_ELEMENTS(pFpuCtx->aRegs); iST++)
1979 {
1980 unsigned iFPR = (iST + iShift) % RT_ELEMENTS(pFpuCtx->aRegs);
1981 unsigned uTag = (pFpuCtx->FTW >> (2 * iFPR)) & 3;
1982 char chSign = pFpuCtx->aRegs[iST].au16[4] & 0x8000 ? '-' : '+';
1983 unsigned iInteger = (unsigned)(pFpuCtx->aRegs[iST].au64[0] >> 63);
1984 uint64_t u64Fraction = pFpuCtx->aRegs[iST].au64[0] & UINT64_C(0x7fffffffffffffff);
1985 int iExponent = pFpuCtx->aRegs[iST].au16[4] & 0x7fff;
1986 iExponent -= 16383; /* subtract bias */
1987 /** @todo This isn't entirenly correct and needs more work! */
1988 pHlp->pfnPrintf(pHlp,
1989 "%sST(%u)=%sFPR%u={%04RX16'%08RX32'%08RX32} t%d %c%u.%022llu * 2 ^ %d (*)",
1990 pszPrefix, iST, pszPrefix, iFPR,
1991 pFpuCtx->aRegs[iST].au16[4], pFpuCtx->aRegs[iST].au32[1], pFpuCtx->aRegs[iST].au32[0],
1992 uTag, chSign, iInteger, u64Fraction, iExponent);
1993 if (pFpuCtx->aRegs[iST].au16[5] || pFpuCtx->aRegs[iST].au16[6] || pFpuCtx->aRegs[iST].au16[7])
1994 pHlp->pfnPrintf(pHlp, " res={%04RX16,%04RX16,%04RX16}\n",
1995 pFpuCtx->aRegs[iST].au16[5], pFpuCtx->aRegs[iST].au16[6], pFpuCtx->aRegs[iST].au16[7]);
1996 else
1997 pHlp->pfnPrintf(pHlp, "\n");
1998 }
1999
2000 /* XMM/YMM/ZMM registers. */
2001 if (pCtx->fXStateMask & XSAVE_C_YMM)
2002 {
2003 PCX86XSAVEYMMHI pYmmHiCtx = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_YMM_BIT, PCX86XSAVEYMMHI);
2004 if (!(pCtx->fXStateMask & XSAVE_C_ZMM_HI256))
2005 for (unsigned i = 0; i < RT_ELEMENTS(pFpuCtx->aXMM); i++)
2006 pHlp->pfnPrintf(pHlp, "%sYMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32\n",
2007 pszPrefix, i, i < 10 ? " " : "",
2008 pYmmHiCtx->aYmmHi[i].au32[3],
2009 pYmmHiCtx->aYmmHi[i].au32[2],
2010 pYmmHiCtx->aYmmHi[i].au32[1],
2011 pYmmHiCtx->aYmmHi[i].au32[0],
2012 pFpuCtx->aXMM[i].au32[3],
2013 pFpuCtx->aXMM[i].au32[2],
2014 pFpuCtx->aXMM[i].au32[1],
2015 pFpuCtx->aXMM[i].au32[0]);
2016 else
2017 {
2018 PCX86XSAVEZMMHI256 pZmmHi256 = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_ZMM_HI256_BIT, PCX86XSAVEZMMHI256);
2019 for (unsigned i = 0; i < RT_ELEMENTS(pFpuCtx->aXMM); i++)
2020 pHlp->pfnPrintf(pHlp,
2021 "%sZMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32''%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32\n",
2022 pszPrefix, i, i < 10 ? " " : "",
2023 pZmmHi256->aHi256Regs[i].au32[7],
2024 pZmmHi256->aHi256Regs[i].au32[6],
2025 pZmmHi256->aHi256Regs[i].au32[5],
2026 pZmmHi256->aHi256Regs[i].au32[4],
2027 pZmmHi256->aHi256Regs[i].au32[3],
2028 pZmmHi256->aHi256Regs[i].au32[2],
2029 pZmmHi256->aHi256Regs[i].au32[1],
2030 pZmmHi256->aHi256Regs[i].au32[0],
2031 pYmmHiCtx->aYmmHi[i].au32[3],
2032 pYmmHiCtx->aYmmHi[i].au32[2],
2033 pYmmHiCtx->aYmmHi[i].au32[1],
2034 pYmmHiCtx->aYmmHi[i].au32[0],
2035 pFpuCtx->aXMM[i].au32[3],
2036 pFpuCtx->aXMM[i].au32[2],
2037 pFpuCtx->aXMM[i].au32[1],
2038 pFpuCtx->aXMM[i].au32[0]);
2039
2040 PCX86XSAVEZMM16HI pZmm16Hi = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_ZMM_16HI_BIT, PCX86XSAVEZMM16HI);
2041 for (unsigned i = 0; i < RT_ELEMENTS(pZmm16Hi->aRegs); i++)
2042 pHlp->pfnPrintf(pHlp,
2043 "%sZMM%u=%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32''%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32\n",
2044 pszPrefix, i + 16,
2045 pZmm16Hi->aRegs[i].au32[15],
2046 pZmm16Hi->aRegs[i].au32[14],
2047 pZmm16Hi->aRegs[i].au32[13],
2048 pZmm16Hi->aRegs[i].au32[12],
2049 pZmm16Hi->aRegs[i].au32[11],
2050 pZmm16Hi->aRegs[i].au32[10],
2051 pZmm16Hi->aRegs[i].au32[9],
2052 pZmm16Hi->aRegs[i].au32[8],
2053 pZmm16Hi->aRegs[i].au32[7],
2054 pZmm16Hi->aRegs[i].au32[6],
2055 pZmm16Hi->aRegs[i].au32[5],
2056 pZmm16Hi->aRegs[i].au32[4],
2057 pZmm16Hi->aRegs[i].au32[3],
2058 pZmm16Hi->aRegs[i].au32[2],
2059 pZmm16Hi->aRegs[i].au32[1],
2060 pZmm16Hi->aRegs[i].au32[0]);
2061 }
2062 }
2063 else
2064 for (unsigned i = 0; i < RT_ELEMENTS(pFpuCtx->aXMM); i++)
2065 pHlp->pfnPrintf(pHlp,
2066 i & 1
2067 ? "%sXMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32\n"
2068 : "%sXMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32 ",
2069 pszPrefix, i, i < 10 ? " " : "",
2070 pFpuCtx->aXMM[i].au32[3],
2071 pFpuCtx->aXMM[i].au32[2],
2072 pFpuCtx->aXMM[i].au32[1],
2073 pFpuCtx->aXMM[i].au32[0]);
2074
2075 if (pCtx->fXStateMask & XSAVE_C_OPMASK)
2076 {
2077 PCX86XSAVEOPMASK pOpMask = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_OPMASK_BIT, PCX86XSAVEOPMASK);
2078 for (unsigned i = 0; i < RT_ELEMENTS(pOpMask->aKRegs); i += 4)
2079 pHlp->pfnPrintf(pHlp, "%sK%u=%016RX64 %sK%u=%016RX64 %sK%u=%016RX64 %sK%u=%016RX64\n",
2080 pszPrefix, i + 0, pOpMask->aKRegs[i + 0],
2081 pszPrefix, i + 1, pOpMask->aKRegs[i + 1],
2082 pszPrefix, i + 2, pOpMask->aKRegs[i + 2],
2083 pszPrefix, i + 3, pOpMask->aKRegs[i + 3]);
2084 }
2085
2086 if (pCtx->fXStateMask & XSAVE_C_BNDREGS)
2087 {
2088 PCX86XSAVEBNDREGS pBndRegs = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_BNDREGS_BIT, PCX86XSAVEBNDREGS);
2089 for (unsigned i = 0; i < RT_ELEMENTS(pBndRegs->aRegs); i += 2)
2090 pHlp->pfnPrintf(pHlp, "%sBNDREG%u=%016RX64/%016RX64 %sBNDREG%u=%016RX64/%016RX64\n",
2091 pszPrefix, i, pBndRegs->aRegs[i].uLowerBound, pBndRegs->aRegs[i].uUpperBound,
2092 pszPrefix, i + 1, pBndRegs->aRegs[i + 1].uLowerBound, pBndRegs->aRegs[i + 1].uUpperBound);
2093 }
2094
2095 if (pCtx->fXStateMask & XSAVE_C_BNDCSR)
2096 {
2097 PCX86XSAVEBNDCFG pBndCfg = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_BNDCSR_BIT, PCX86XSAVEBNDCFG);
2098 pHlp->pfnPrintf(pHlp, "%sBNDCFG.CONFIG=%016RX64 %sBNDCFG.STATUS=%016RX64\n",
2099 pszPrefix, pBndCfg->fConfig, pszPrefix, pBndCfg->fStatus);
2100 }
2101
2102 for (unsigned i = 0; i < RT_ELEMENTS(pFpuCtx->au32RsrvdRest); i++)
2103 if (pFpuCtx->au32RsrvdRest[i])
2104 pHlp->pfnPrintf(pHlp, "%sRsrvdRest[%u]=%RX32 (offset=%#x)\n",
2105 pszPrefix, i, pFpuCtx->au32RsrvdRest[i], RT_OFFSETOF(X86FXSTATE, au32RsrvdRest[i]) );
2106 }
2107
2108 pHlp->pfnPrintf(pHlp,
2109 "%sEFER =%016RX64\n"
2110 "%sPAT =%016RX64\n"
2111 "%sSTAR =%016RX64\n"
2112 "%sCSTAR =%016RX64\n"
2113 "%sLSTAR =%016RX64\n"
2114 "%sSFMASK =%016RX64\n"
2115 "%sKERNELGSBASE =%016RX64\n",
2116 pszPrefix, pCtx->msrEFER,
2117 pszPrefix, pCtx->msrPAT,
2118 pszPrefix, pCtx->msrSTAR,
2119 pszPrefix, pCtx->msrCSTAR,
2120 pszPrefix, pCtx->msrLSTAR,
2121 pszPrefix, pCtx->msrSFMASK,
2122 pszPrefix, pCtx->msrKERNELGSBASE);
2123 break;
2124 }
2125}
2126
2127
2128/**
2129 * Display all cpu states and any other cpum info.
2130 *
2131 * @param pVM The cross context VM structure.
2132 * @param pHlp The info helper functions.
2133 * @param pszArgs Arguments, ignored.
2134 */
2135static DECLCALLBACK(void) cpumR3InfoAll(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2136{
2137 cpumR3InfoGuest(pVM, pHlp, pszArgs);
2138 cpumR3InfoGuestInstr(pVM, pHlp, pszArgs);
2139 cpumR3InfoGuestHwvirt(pVM, pHlp, pszArgs);
2140 cpumR3InfoHyper(pVM, pHlp, pszArgs);
2141 cpumR3InfoHost(pVM, pHlp, pszArgs);
2142}
2143
2144
2145/**
2146 * Parses the info argument.
2147 *
2148 * The argument starts with 'verbose', 'terse' or 'default' and then
2149 * continues with the comment string.
2150 *
2151 * @param pszArgs The pointer to the argument string.
2152 * @param penmType Where to store the dump type request.
2153 * @param ppszComment Where to store the pointer to the comment string.
2154 */
2155static void cpumR3InfoParseArg(const char *pszArgs, CPUMDUMPTYPE *penmType, const char **ppszComment)
2156{
2157 if (!pszArgs)
2158 {
2159 *penmType = CPUMDUMPTYPE_DEFAULT;
2160 *ppszComment = "";
2161 }
2162 else
2163 {
2164 if (!strncmp(pszArgs, RT_STR_TUPLE("verbose")))
2165 {
2166 pszArgs += 7;
2167 *penmType = CPUMDUMPTYPE_VERBOSE;
2168 }
2169 else if (!strncmp(pszArgs, RT_STR_TUPLE("terse")))
2170 {
2171 pszArgs += 5;
2172 *penmType = CPUMDUMPTYPE_TERSE;
2173 }
2174 else if (!strncmp(pszArgs, RT_STR_TUPLE("default")))
2175 {
2176 pszArgs += 7;
2177 *penmType = CPUMDUMPTYPE_DEFAULT;
2178 }
2179 else
2180 *penmType = CPUMDUMPTYPE_DEFAULT;
2181 *ppszComment = RTStrStripL(pszArgs);
2182 }
2183}
2184
2185
2186/**
2187 * Display the guest cpu state.
2188 *
2189 * @param pVM The cross context VM structure.
2190 * @param pHlp The info helper functions.
2191 * @param pszArgs Arguments.
2192 */
2193static DECLCALLBACK(void) cpumR3InfoGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2194{
2195 CPUMDUMPTYPE enmType;
2196 const char *pszComment;
2197 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
2198
2199 PVMCPU pVCpu = VMMGetCpu(pVM);
2200 if (!pVCpu)
2201 pVCpu = &pVM->aCpus[0];
2202
2203 pHlp->pfnPrintf(pHlp, "Guest CPUM (VCPU %d) state: %s\n", pVCpu->idCpu, pszComment);
2204
2205 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
2206 cpumR3InfoOne(pVM, pCtx, CPUMCTX2CORE(pCtx), pHlp, enmType, "");
2207}
2208
2209
2210/**
2211 * Displays an SVM VMCB control area.
2212 *
2213 * @param pHlp The info helper functions.
2214 * @param pVmcbCtrl Pointer to a SVM VMCB controls area.
2215 * @param pszPrefix Caller specified string prefix.
2216 */
2217static void cpumR3InfoSvmVmcbCtrl(PCDBGFINFOHLP pHlp, PCSVMVMCBCTRL pVmcbCtrl, const char *pszPrefix)
2218{
2219 AssertReturnVoid(pHlp);
2220 AssertReturnVoid(pVmcbCtrl);
2221
2222 pHlp->pfnPrintf(pHlp, "%su16InterceptRdCRx = %#RX16\n", pszPrefix, pVmcbCtrl->u16InterceptRdCRx);
2223 pHlp->pfnPrintf(pHlp, "%su16InterceptWrCRx = %#RX16\n", pszPrefix, pVmcbCtrl->u16InterceptWrCRx);
2224 pHlp->pfnPrintf(pHlp, "%su16InterceptRdDRx = %#RX16\n", pszPrefix, pVmcbCtrl->u16InterceptRdDRx);
2225 pHlp->pfnPrintf(pHlp, "%su16InterceptWrDRx = %#RX16\n", pszPrefix, pVmcbCtrl->u16InterceptWrDRx);
2226 pHlp->pfnPrintf(pHlp, "%su32InterceptXcpt = %#RX32\n", pszPrefix, pVmcbCtrl->u32InterceptXcpt);
2227 pHlp->pfnPrintf(pHlp, "%su64InterceptCtrl = %#RX64\n", pszPrefix, pVmcbCtrl->u64InterceptCtrl);
2228 pHlp->pfnPrintf(pHlp, "%su16PauseFilterThreshold = %#RX16\n", pszPrefix, pVmcbCtrl->u16PauseFilterThreshold);
2229 pHlp->pfnPrintf(pHlp, "%su16PauseFilterCount = %#RX16\n", pszPrefix, pVmcbCtrl->u16PauseFilterCount);
2230 pHlp->pfnPrintf(pHlp, "%su64IOPMPhysAddr = %#RX64\n", pszPrefix, pVmcbCtrl->u64IOPMPhysAddr);
2231 pHlp->pfnPrintf(pHlp, "%su64MSRPMPhysAddr = %#RX64\n", pszPrefix, pVmcbCtrl->u64MSRPMPhysAddr);
2232 pHlp->pfnPrintf(pHlp, "%su64TSCOffset = %#RX64\n", pszPrefix, pVmcbCtrl->u64TSCOffset);
2233 pHlp->pfnPrintf(pHlp, "%sTLBCtrl\n", pszPrefix);
2234 pHlp->pfnPrintf(pHlp, "%s u32ASID = %#RX32\n", pszPrefix, pVmcbCtrl->TLBCtrl.n.u32ASID);
2235 pHlp->pfnPrintf(pHlp, "%s u8TLBFlush = %u\n", pszPrefix, pVmcbCtrl->TLBCtrl.n.u8TLBFlush);
2236 pHlp->pfnPrintf(pHlp, "%sIntCtrl\n", pszPrefix);
2237 pHlp->pfnPrintf(pHlp, "%s u8VTPR = %#RX8 (%u)\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u8VTPR, pVmcbCtrl->IntCtrl.n.u8VTPR);
2238 pHlp->pfnPrintf(pHlp, "%s u1VIrqPending = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1VIrqPending);
2239 pHlp->pfnPrintf(pHlp, "%s u1VGif = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1VGif);
2240 pHlp->pfnPrintf(pHlp, "%s u4VIntrPrio = %#RX8\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u4VIntrPrio);
2241 pHlp->pfnPrintf(pHlp, "%s u1IgnoreTPR = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1IgnoreTPR);
2242 pHlp->pfnPrintf(pHlp, "%s u1VIntrMasking = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1VIntrMasking);
2243 pHlp->pfnPrintf(pHlp, "%s u1AvicEnable = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1AvicEnable);
2244 pHlp->pfnPrintf(pHlp, "%s u8VIntrVector = %#RX8\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u8VIntrVector);
2245 pHlp->pfnPrintf(pHlp, "%su1IntShadow = %RTbool\n", pszPrefix, pVmcbCtrl->u1IntShadow);
2246 pHlp->pfnPrintf(pHlp, "%su1GuestIntMask = %RTbool\n", pszPrefix, pVmcbCtrl->u1GuestIntMask);
2247 pHlp->pfnPrintf(pHlp, "%su64ExitCode = %#RX64\n", pszPrefix, pVmcbCtrl->u64ExitCode);
2248 pHlp->pfnPrintf(pHlp, "%su64ExitInfo1 = %#RX64\n", pszPrefix, pVmcbCtrl->u64ExitInfo1);
2249 pHlp->pfnPrintf(pHlp, "%su64ExitInfo2 = %#RX64\n", pszPrefix, pVmcbCtrl->u64ExitInfo2);
2250 pHlp->pfnPrintf(pHlp, "%sExitIntInfo\n", pszPrefix);
2251 pHlp->pfnPrintf(pHlp, "%s u8Vector = %#RX8 (%u)\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u8Vector, pVmcbCtrl->ExitIntInfo.n.u8Vector);
2252 pHlp->pfnPrintf(pHlp, "%s u3Type = %u\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u3Type);
2253 pHlp->pfnPrintf(pHlp, "%s u1ErrorCodeValid = %RTbool\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u1ErrorCodeValid);
2254 pHlp->pfnPrintf(pHlp, "%s u1Valid = %RTbool\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u1Valid);
2255 pHlp->pfnPrintf(pHlp, "%s u32ErrorCode = %#RX32\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u32ErrorCode);
2256 pHlp->pfnPrintf(pHlp, "%sNestedPaging and SEV\n", pszPrefix);
2257 pHlp->pfnPrintf(pHlp, "%s u1NestedPaging = %RTbool\n", pszPrefix, pVmcbCtrl->u1NestedPaging);
2258 pHlp->pfnPrintf(pHlp, "%s u1Sev = %RTbool\n", pszPrefix, pVmcbCtrl->u1Sev);
2259 pHlp->pfnPrintf(pHlp, "%s u1SevEs = %RTbool\n", pszPrefix, pVmcbCtrl->u1SevEs);
2260 pHlp->pfnPrintf(pHlp, "%sAvicBar\n", pszPrefix);
2261 pHlp->pfnPrintf(pHlp, "%s u40Addr = %#RX64\n", pszPrefix, pVmcbCtrl->AvicBar.n.u40Addr);
2262 pHlp->pfnPrintf(pHlp, "%sEventInject\n", pszPrefix);
2263 pHlp->pfnPrintf(pHlp, "%s EventInject\n", pszPrefix);
2264 pHlp->pfnPrintf(pHlp, "%s u8Vector = %#RX32 (%u)\n", pszPrefix, pVmcbCtrl->EventInject.n.u8Vector, pVmcbCtrl->EventInject.n.u8Vector);
2265 pHlp->pfnPrintf(pHlp, "%s u3Type = %u\n", pszPrefix, pVmcbCtrl->EventInject.n.u3Type);
2266 pHlp->pfnPrintf(pHlp, "%s u1ErrorCodeValid = %RTbool\n", pszPrefix, pVmcbCtrl->EventInject.n.u1ErrorCodeValid);
2267 pHlp->pfnPrintf(pHlp, "%s u1Valid = %RTbool\n", pszPrefix, pVmcbCtrl->EventInject.n.u1Valid);
2268 pHlp->pfnPrintf(pHlp, "%s u32ErrorCode = %#RX32\n", pszPrefix, pVmcbCtrl->EventInject.n.u32ErrorCode);
2269 pHlp->pfnPrintf(pHlp, "%su64NestedPagingCR3 = %#RX64\n", pszPrefix, pVmcbCtrl->u64NestedPagingCR3);
2270 pHlp->pfnPrintf(pHlp, "%su1LbrVirt = %RTbool\n", pszPrefix, pVmcbCtrl->u1LbrVirt);
2271 pHlp->pfnPrintf(pHlp, "%su1VirtVmsaveVmload = %RTbool\n", pszPrefix, pVmcbCtrl->u1VirtVmsaveVmload);
2272 pHlp->pfnPrintf(pHlp, "%su32VmcbCleanBits = %#RX32\n", pszPrefix, pVmcbCtrl->u32VmcbCleanBits);
2273 pHlp->pfnPrintf(pHlp, "%su64NextRIP = %#RX64\n", pszPrefix, pVmcbCtrl->u64NextRIP);
2274 pHlp->pfnPrintf(pHlp, "%scbInstrFetched = %u\n", pszPrefix, pVmcbCtrl->cbInstrFetched);
2275 pHlp->pfnPrintf(pHlp, "%sabInstr = %.*Rhxs\n", pszPrefix, sizeof(pVmcbCtrl->abInstr), pVmcbCtrl->abInstr);
2276 pHlp->pfnPrintf(pHlp, "%sAvicBackingPagePtr\n", pszPrefix);
2277 pHlp->pfnPrintf(pHlp, "%s u40Addr = %#RX64\n", pszPrefix, pVmcbCtrl->AvicBackingPagePtr.n.u40Addr);
2278 pHlp->pfnPrintf(pHlp, "%sAvicLogicalTablePtr\n", pszPrefix);
2279 pHlp->pfnPrintf(pHlp, "%s u40Addr = %#RX64\n", pszPrefix, pVmcbCtrl->AvicLogicalTablePtr.n.u40Addr);
2280 pHlp->pfnPrintf(pHlp, "%sAvicPhysicalTablePtr\n", pszPrefix);
2281 pHlp->pfnPrintf(pHlp, "%s u8LastGuestCoreId = %u\n", pszPrefix, pVmcbCtrl->AvicPhysicalTablePtr.n.u8LastGuestCoreId);
2282 pHlp->pfnPrintf(pHlp, "%s u40Addr = %#RX64\n", pszPrefix, pVmcbCtrl->AvicPhysicalTablePtr.n.u40Addr);
2283}
2284
2285
2286/**
2287 * Helper for dumping the SVM VMCB selector registers.
2288 *
2289 * @param pHlp The info helper functions.
2290 * @param pSel Pointer to the SVM selector register.
2291 * @param pszName Name of the selector.
2292 * @param pszPrefix Caller specified string prefix.
2293 */
2294DECLINLINE(void) cpumR3InfoSvmVmcbSelReg(PCDBGFINFOHLP pHlp, PCSVMSELREG pSel, const char *pszName, const char *pszPrefix)
2295{
2296 /* The string width of 4 used below is to handle 'LDTR'. Change later if longer register names are used. */
2297 pHlp->pfnPrintf(pHlp, "%s%-4s = {%04x base=%016RX64 limit=%08x flags=%04x}\n", pszPrefix,
2298 pszName, pSel->u16Sel, pSel->u64Base, pSel->u32Limit, pSel->u16Attr);
2299}
2300
2301
2302/**
2303 * Helper for dumping the SVM VMCB GDTR/IDTR registers.
2304 *
2305 * @param pHlp The info helper functions.
2306 * @param pSel Pointer to the descriptor table register.
2307 * @param pszName Name of the descriptor table register.
2308 * @param pszPrefix Caller specified string prefix.
2309 */
2310DECLINLINE(void) cpumR3InfoSvmVmcbXdtr(PCDBGFINFOHLP pHlp, PCSVMXDTR pXdtr, const char *pszName, const char *pszPrefix)
2311{
2312 /* The string width of 4 used below is to cover 'GDTR', 'IDTR'. Change later if longer register names are used. */
2313 pHlp->pfnPrintf(pHlp, "%s%-4s = %016RX64:%04x\n", pszPrefix, pszName, pXdtr->u64Base, pXdtr->u32Limit);
2314}
2315
2316
2317/**
2318 * Displays an SVM VMCB state-save area.
2319 *
2320 * @param pHlp The info helper functions.
2321 * @param pVmcbStateSave Pointer to a SVM VMCB controls area.
2322 * @param pszPrefix Caller specified string prefix.
2323 */
2324static void cpumR3InfoSvmVmcbStateSave(PCDBGFINFOHLP pHlp, PCSVMVMCBSTATESAVE pVmcbStateSave, const char *pszPrefix)
2325{
2326 AssertReturnVoid(pHlp);
2327 AssertReturnVoid(pVmcbStateSave);
2328
2329 char szEFlags[80];
2330 cpumR3InfoFormatFlags(&szEFlags[0], pVmcbStateSave->u64RFlags);
2331
2332 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->CS, "CS", pszPrefix);
2333 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->SS, "SS", pszPrefix);
2334 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->ES, "ES", pszPrefix);
2335 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->DS, "DS", pszPrefix);
2336 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->FS, "FS", pszPrefix);
2337 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->GS, "GS", pszPrefix);
2338 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->LDTR, "LDTR", pszPrefix);
2339 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->TR, "TR", pszPrefix);
2340 cpumR3InfoSvmVmcbXdtr(pHlp, &pVmcbStateSave->GDTR, "GDTR", pszPrefix);
2341 cpumR3InfoSvmVmcbXdtr(pHlp, &pVmcbStateSave->IDTR, "IDTR", pszPrefix);
2342 pHlp->pfnPrintf(pHlp, "%su8CPL = %u\n", pszPrefix, pVmcbStateSave->u8CPL);
2343 pHlp->pfnPrintf(pHlp, "%su64EFER = %#RX64\n", pszPrefix, pVmcbStateSave->u64EFER);
2344 pHlp->pfnPrintf(pHlp, "%su64CR4 = %#RX64\n", pszPrefix, pVmcbStateSave->u64CR4);
2345 pHlp->pfnPrintf(pHlp, "%su64CR3 = %#RX64\n", pszPrefix, pVmcbStateSave->u64CR3);
2346 pHlp->pfnPrintf(pHlp, "%su64CR0 = %#RX64\n", pszPrefix, pVmcbStateSave->u64CR0);
2347 pHlp->pfnPrintf(pHlp, "%su64DR7 = %#RX64\n", pszPrefix, pVmcbStateSave->u64DR7);
2348 pHlp->pfnPrintf(pHlp, "%su64DR6 = %#RX64\n", pszPrefix, pVmcbStateSave->u64DR6);
2349 pHlp->pfnPrintf(pHlp, "%su64RFlags = %#RX64 %31s\n", pszPrefix, pVmcbStateSave->u64RFlags, szEFlags);
2350 pHlp->pfnPrintf(pHlp, "%su64RIP = %#RX64\n", pszPrefix, pVmcbStateSave->u64RIP);
2351 pHlp->pfnPrintf(pHlp, "%su64RSP = %#RX64\n", pszPrefix, pVmcbStateSave->u64RSP);
2352 pHlp->pfnPrintf(pHlp, "%su64RAX = %#RX64\n", pszPrefix, pVmcbStateSave->u64RAX);
2353 pHlp->pfnPrintf(pHlp, "%su64STAR = %#RX64\n", pszPrefix, pVmcbStateSave->u64STAR);
2354 pHlp->pfnPrintf(pHlp, "%su64LSTAR = %#RX64\n", pszPrefix, pVmcbStateSave->u64LSTAR);
2355 pHlp->pfnPrintf(pHlp, "%su64CSTAR = %#RX64\n", pszPrefix, pVmcbStateSave->u64CSTAR);
2356 pHlp->pfnPrintf(pHlp, "%su64SFMASK = %#RX64\n", pszPrefix, pVmcbStateSave->u64SFMASK);
2357 pHlp->pfnPrintf(pHlp, "%su64KernelGSBase = %#RX64\n", pszPrefix, pVmcbStateSave->u64KernelGSBase);
2358 pHlp->pfnPrintf(pHlp, "%su64SysEnterCS = %#RX64\n", pszPrefix, pVmcbStateSave->u64SysEnterCS);
2359 pHlp->pfnPrintf(pHlp, "%su64SysEnterEIP = %#RX64\n", pszPrefix, pVmcbStateSave->u64SysEnterEIP);
2360 pHlp->pfnPrintf(pHlp, "%su64SysEnterESP = %#RX64\n", pszPrefix, pVmcbStateSave->u64SysEnterESP);
2361 pHlp->pfnPrintf(pHlp, "%su64CR2 = %#RX64\n", pszPrefix, pVmcbStateSave->u64CR2);
2362 pHlp->pfnPrintf(pHlp, "%su64GPAT = %#RX64\n", pszPrefix, pVmcbStateSave->u64GPAT);
2363 pHlp->pfnPrintf(pHlp, "%su64DBGCTL = %#RX64\n", pszPrefix, pVmcbStateSave->u64DBGCTL);
2364 pHlp->pfnPrintf(pHlp, "%su64BR_FROM = %#RX64\n", pszPrefix, pVmcbStateSave->u64BR_FROM);
2365 pHlp->pfnPrintf(pHlp, "%su64BR_TO = %#RX64\n", pszPrefix, pVmcbStateSave->u64BR_TO);
2366 pHlp->pfnPrintf(pHlp, "%su64LASTEXCPFROM = %#RX64\n", pszPrefix, pVmcbStateSave->u64LASTEXCPFROM);
2367 pHlp->pfnPrintf(pHlp, "%su64LASTEXCPTO = %#RX64\n", pszPrefix, pVmcbStateSave->u64LASTEXCPTO);
2368}
2369
2370
2371/**
2372 * Display the guest's hardware-virtualization cpu state.
2373 *
2374 * @param pVM The cross context VM structure.
2375 * @param pHlp The info helper functions.
2376 * @param pszArgs Arguments, ignored.
2377 */
2378static DECLCALLBACK(void) cpumR3InfoGuestHwvirt(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2379{
2380 RT_NOREF(pszArgs);
2381
2382 PVMCPU pVCpu = VMMGetCpu(pVM);
2383 if (!pVCpu)
2384 pVCpu = &pVM->aCpus[0];
2385
2386 /*
2387 * Figure out what to dump.
2388 *
2389 * In the future we may need to dump everything whether or not we're actively in nested-guest mode
2390 * or not, hence the reason why we use a mask to determine what needs dumping. Currently, we only
2391 * dump hwvirt. state when the guest CPU is executing a nested-guest.
2392 */
2393 /** @todo perhaps make this configurable through pszArgs, depending on how much
2394 * noise we wish to accept when nested hwvirt. isn't used. */
2395#define CPUMHWVIRTDUMP_NONE (0)
2396#define CPUMHWVIRTDUMP_SVM RT_BIT(0)
2397#define CPUMHWVIRTDUMP_VMX RT_BIT(1)
2398#define CPUMHWVIRTDUMP_COMMON RT_BIT(2)
2399#define CPUMHWVIRTDUMP_LAST CPUMHWVIRTDUMP_VMX
2400#define CPUMHWVIRTDUMP_ALL (CPUMHWVIRTDUMP_COMMON | CPUMHWVIRTDUMP_VMX | CPUMHWVIRTDUMP_SVM)
2401
2402 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
2403 static const char *const s_aHwvirtModes[] = { "No/inactive", "SVM", "VMX", "Common" };
2404 uint8_t const idxHwvirtState = CPUMIsGuestInSvmNestedHwVirtMode(pCtx) ? CPUMHWVIRTDUMP_SVM
2405 : CPUMIsGuestInVmxNestedHwVirtMode(pCtx) ? CPUMHWVIRTDUMP_VMX : CPUMHWVIRTDUMP_NONE;
2406 AssertCompile(CPUMHWVIRTDUMP_LAST <= RT_ELEMENTS(s_aHwvirtModes));
2407 Assert(idxHwvirtState < RT_ELEMENTS(s_aHwvirtModes));
2408 const char *pcszHwvirtMode = s_aHwvirtModes[idxHwvirtState];
2409 uint32_t const fDumpState = idxHwvirtState; /* | CPUMHWVIRTDUMP_ALL */
2410
2411 /*
2412 * Dump it.
2413 */
2414 pHlp->pfnPrintf(pHlp, "VCPU[%u] hardware virtualization state:\n", pVCpu->idCpu);
2415
2416 if (fDumpState & CPUMHWVIRTDUMP_COMMON)
2417 pHlp->pfnPrintf(pHlp, "fLocalForcedActions = %#RX32\n", pCtx->hwvirt.fLocalForcedActions);
2418 pHlp->pfnPrintf(pHlp, "%s hwvirt state%s\n", pcszHwvirtMode, fDumpState ? ":" : "");
2419 if (fDumpState & CPUMHWVIRTDUMP_SVM)
2420 {
2421 char szEFlags[80];
2422 cpumR3InfoFormatFlags(&szEFlags[0], pCtx->hwvirt.svm.HostState.rflags.u);
2423
2424 pHlp->pfnPrintf(pHlp, " uMsrHSavePa = %#RX64\n", pCtx->hwvirt.svm.uMsrHSavePa);
2425 pHlp->pfnPrintf(pHlp, " GCPhysVmcb = %#RGp\n", pCtx->hwvirt.svm.GCPhysVmcb);
2426 pHlp->pfnPrintf(pHlp, " VmcbCtrl:\n");
2427 cpumR3InfoSvmVmcbCtrl(pHlp, &pCtx->hwvirt.svm.pVmcbR3->ctrl, " " /* pszPrefix */);
2428 pHlp->pfnPrintf(pHlp, " VmcbStateSave:\n");
2429 cpumR3InfoSvmVmcbStateSave(pHlp, &pCtx->hwvirt.svm.pVmcbR3->guest, " " /* pszPrefix */);
2430 pHlp->pfnPrintf(pHlp, " HostState:\n");
2431 pHlp->pfnPrintf(pHlp, " uEferMsr = %#RX64\n", pCtx->hwvirt.svm.HostState.uEferMsr);
2432 pHlp->pfnPrintf(pHlp, " uCr0 = %#RX64\n", pCtx->hwvirt.svm.HostState.uCr0);
2433 pHlp->pfnPrintf(pHlp, " uCr4 = %#RX64\n", pCtx->hwvirt.svm.HostState.uCr4);
2434 pHlp->pfnPrintf(pHlp, " uCr3 = %#RX64\n", pCtx->hwvirt.svm.HostState.uCr3);
2435 pHlp->pfnPrintf(pHlp, " uRip = %#RX64\n", pCtx->hwvirt.svm.HostState.uRip);
2436 pHlp->pfnPrintf(pHlp, " uRsp = %#RX64\n", pCtx->hwvirt.svm.HostState.uRsp);
2437 pHlp->pfnPrintf(pHlp, " uRax = %#RX64\n", pCtx->hwvirt.svm.HostState.uRax);
2438 pHlp->pfnPrintf(pHlp, " rflags = %#RX64 %31s\n", pCtx->hwvirt.svm.HostState.rflags.u64, szEFlags);
2439 PCPUMSELREG pSel = &pCtx->hwvirt.svm.HostState.es;
2440 pHlp->pfnPrintf(pHlp, " es = {%04x base=%016RX64 limit=%08x flags=%08x}\n",
2441 pSel->Sel, pSel->u64Base, pSel->u32Limit, pSel->fFlags);
2442 pSel = &pCtx->hwvirt.svm.HostState.cs;
2443 pHlp->pfnPrintf(pHlp, " cs = {%04x base=%016RX64 limit=%08x flags=%08x}\n",
2444 pSel->Sel, pSel->u64Base, pSel->u32Limit, pSel->fFlags);
2445 pSel = &pCtx->hwvirt.svm.HostState.ss;
2446 pHlp->pfnPrintf(pHlp, " ss = {%04x base=%016RX64 limit=%08x flags=%08x}\n",
2447 pSel->Sel, pSel->u64Base, pSel->u32Limit, pSel->fFlags);
2448 pSel = &pCtx->hwvirt.svm.HostState.ds;
2449 pHlp->pfnPrintf(pHlp, " ds = {%04x base=%016RX64 limit=%08x flags=%08x}\n",
2450 pSel->Sel, pSel->u64Base, pSel->u32Limit, pSel->fFlags);
2451 pHlp->pfnPrintf(pHlp, " gdtr = %016RX64:%04x\n", pCtx->hwvirt.svm.HostState.gdtr.pGdt,
2452 pCtx->hwvirt.svm.HostState.gdtr.cbGdt);
2453 pHlp->pfnPrintf(pHlp, " idtr = %016RX64:%04x\n", pCtx->hwvirt.svm.HostState.idtr.pIdt,
2454 pCtx->hwvirt.svm.HostState.idtr.cbIdt);
2455 pHlp->pfnPrintf(pHlp, " fGif = %u\n", pCtx->hwvirt.svm.fGif);
2456 pHlp->pfnPrintf(pHlp, " cPauseFilter = %RU16\n", pCtx->hwvirt.svm.cPauseFilter);
2457 pHlp->pfnPrintf(pHlp, " cPauseFilterThreshold = %RU32\n", pCtx->hwvirt.svm.cPauseFilterThreshold);
2458 pHlp->pfnPrintf(pHlp, " fInterceptEvents = %u\n", pCtx->hwvirt.svm.fInterceptEvents);
2459 pHlp->pfnPrintf(pHlp, " pvMsrBitmapR3 = %p\n", pCtx->hwvirt.svm.pvMsrBitmapR3);
2460 pHlp->pfnPrintf(pHlp, " pvMsrBitmapR0 = %RKv\n", pCtx->hwvirt.svm.pvMsrBitmapR0);
2461 pHlp->pfnPrintf(pHlp, " pvIoBitmapR3 = %p\n", pCtx->hwvirt.svm.pvIoBitmapR3);
2462 pHlp->pfnPrintf(pHlp, " pvIoBitmapR0 = %RKv\n", pCtx->hwvirt.svm.pvIoBitmapR0);
2463 }
2464
2465 /** @todo Intel. */
2466#if 0
2467 if (fDumpState & CPUMHWVIRTDUMP_VMX)
2468 {
2469 }
2470#endif
2471
2472#undef CPUMHWVIRTDUMP_NONE
2473#undef CPUMHWVIRTDUMP_COMMON
2474#undef CPUMHWVIRTDUMP_SVM
2475#undef CPUMHWVIRTDUMP_VMX
2476#undef CPUMHWVIRTDUMP_LAST
2477#undef CPUMHWVIRTDUMP_ALL
2478}
2479
2480/**
2481 * Display the current guest instruction
2482 *
2483 * @param pVM The cross context VM structure.
2484 * @param pHlp The info helper functions.
2485 * @param pszArgs Arguments, ignored.
2486 */
2487static DECLCALLBACK(void) cpumR3InfoGuestInstr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2488{
2489 NOREF(pszArgs);
2490
2491 PVMCPU pVCpu = VMMGetCpu(pVM);
2492 if (!pVCpu)
2493 pVCpu = &pVM->aCpus[0];
2494
2495 char szInstruction[256];
2496 szInstruction[0] = '\0';
2497 DBGFR3DisasInstrCurrent(pVCpu, szInstruction, sizeof(szInstruction));
2498 pHlp->pfnPrintf(pHlp, "\nCPUM%u: %s\n\n", pVCpu->idCpu, szInstruction);
2499}
2500
2501
2502/**
2503 * Display the hypervisor cpu state.
2504 *
2505 * @param pVM The cross context VM structure.
2506 * @param pHlp The info helper functions.
2507 * @param pszArgs Arguments, ignored.
2508 */
2509static DECLCALLBACK(void) cpumR3InfoHyper(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2510{
2511 PVMCPU pVCpu = VMMGetCpu(pVM);
2512 if (!pVCpu)
2513 pVCpu = &pVM->aCpus[0];
2514
2515 CPUMDUMPTYPE enmType;
2516 const char *pszComment;
2517 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
2518 pHlp->pfnPrintf(pHlp, "Hypervisor CPUM state: %s\n", pszComment);
2519 cpumR3InfoOne(pVM, &pVCpu->cpum.s.Hyper, CPUMCTX2CORE(&pVCpu->cpum.s.Hyper), pHlp, enmType, ".");
2520 pHlp->pfnPrintf(pHlp, "CR4OrMask=%#x CR4AndMask=%#x\n", pVM->cpum.s.CR4.OrMask, pVM->cpum.s.CR4.AndMask);
2521}
2522
2523
2524/**
2525 * Display the host cpu state.
2526 *
2527 * @param pVM The cross context VM structure.
2528 * @param pHlp The info helper functions.
2529 * @param pszArgs Arguments, ignored.
2530 */
2531static DECLCALLBACK(void) cpumR3InfoHost(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2532{
2533 CPUMDUMPTYPE enmType;
2534 const char *pszComment;
2535 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
2536 pHlp->pfnPrintf(pHlp, "Host CPUM state: %s\n", pszComment);
2537
2538 PVMCPU pVCpu = VMMGetCpu(pVM);
2539 if (!pVCpu)
2540 pVCpu = &pVM->aCpus[0];
2541 PCPUMHOSTCTX pCtx = &pVCpu->cpum.s.Host;
2542
2543 /*
2544 * Format the EFLAGS.
2545 */
2546#if HC_ARCH_BITS == 32
2547 uint32_t efl = pCtx->eflags.u32;
2548#else
2549 uint64_t efl = pCtx->rflags;
2550#endif
2551 char szEFlags[80];
2552 cpumR3InfoFormatFlags(&szEFlags[0], efl);
2553
2554 /*
2555 * Format the registers.
2556 */
2557#if HC_ARCH_BITS == 32
2558 pHlp->pfnPrintf(pHlp,
2559 "eax=xxxxxxxx ebx=%08x ecx=xxxxxxxx edx=xxxxxxxx esi=%08x edi=%08x\n"
2560 "eip=xxxxxxxx esp=%08x ebp=%08x iopl=%d %31s\n"
2561 "cs=%04x ds=%04x es=%04x fs=%04x gs=%04x eflags=%08x\n"
2562 "cr0=%08RX64 cr2=xxxxxxxx cr3=%08RX64 cr4=%08RX64 gdtr=%08x:%04x ldtr=%04x\n"
2563 "dr[0]=%08RX64 dr[1]=%08RX64x dr[2]=%08RX64 dr[3]=%08RX64x dr[6]=%08RX64 dr[7]=%08RX64\n"
2564 "SysEnter={cs=%04x eip=%08x esp=%08x}\n"
2565 ,
2566 /*pCtx->eax,*/ pCtx->ebx, /*pCtx->ecx, pCtx->edx,*/ pCtx->esi, pCtx->edi,
2567 /*pCtx->eip,*/ pCtx->esp, pCtx->ebp, X86_EFL_GET_IOPL(efl), szEFlags,
2568 pCtx->cs, pCtx->ds, pCtx->es, pCtx->fs, pCtx->gs, efl,
2569 pCtx->cr0, /*pCtx->cr2,*/ pCtx->cr3, pCtx->cr4,
2570 pCtx->dr0, pCtx->dr1, pCtx->dr2, pCtx->dr3, pCtx->dr6, pCtx->dr7,
2571 (uint32_t)pCtx->gdtr.uAddr, pCtx->gdtr.cb, pCtx->ldtr,
2572 pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
2573#else
2574 pHlp->pfnPrintf(pHlp,
2575 "rax=xxxxxxxxxxxxxxxx rbx=%016RX64 rcx=xxxxxxxxxxxxxxxx\n"
2576 "rdx=xxxxxxxxxxxxxxxx rsi=%016RX64 rdi=%016RX64\n"
2577 "rip=xxxxxxxxxxxxxxxx rsp=%016RX64 rbp=%016RX64\n"
2578 " r8=xxxxxxxxxxxxxxxx r9=xxxxxxxxxxxxxxxx r10=%016RX64\n"
2579 "r11=%016RX64 r12=%016RX64 r13=%016RX64\n"
2580 "r14=%016RX64 r15=%016RX64\n"
2581 "iopl=%d %31s\n"
2582 "cs=%04x ds=%04x es=%04x fs=%04x gs=%04x eflags=%08RX64\n"
2583 "cr0=%016RX64 cr2=xxxxxxxxxxxxxxxx cr3=%016RX64\n"
2584 "cr4=%016RX64 ldtr=%04x tr=%04x\n"
2585 "dr[0]=%016RX64 dr[1]=%016RX64 dr[2]=%016RX64\n"
2586 "dr[3]=%016RX64 dr[6]=%016RX64 dr[7]=%016RX64\n"
2587 "gdtr=%016RX64:%04x idtr=%016RX64:%04x\n"
2588 "SysEnter={cs=%04x eip=%08x esp=%08x}\n"
2589 "FSbase=%016RX64 GSbase=%016RX64 efer=%08RX64\n"
2590 ,
2591 /*pCtx->rax,*/ pCtx->rbx, /*pCtx->rcx,
2592 pCtx->rdx,*/ pCtx->rsi, pCtx->rdi,
2593 /*pCtx->rip,*/ pCtx->rsp, pCtx->rbp,
2594 /*pCtx->r8, pCtx->r9,*/ pCtx->r10,
2595 pCtx->r11, pCtx->r12, pCtx->r13,
2596 pCtx->r14, pCtx->r15,
2597 X86_EFL_GET_IOPL(efl), szEFlags,
2598 pCtx->cs, pCtx->ds, pCtx->es, pCtx->fs, pCtx->gs, efl,
2599 pCtx->cr0, /*pCtx->cr2,*/ pCtx->cr3,
2600 pCtx->cr4, pCtx->ldtr, pCtx->tr,
2601 pCtx->dr0, pCtx->dr1, pCtx->dr2,
2602 pCtx->dr3, pCtx->dr6, pCtx->dr7,
2603 pCtx->gdtr.uAddr, pCtx->gdtr.cb, pCtx->idtr.uAddr, pCtx->idtr.cb,
2604 pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp,
2605 pCtx->FSbase, pCtx->GSbase, pCtx->efer);
2606#endif
2607}
2608
2609/**
2610 * Structure used when disassembling and instructions in DBGF.
2611 * This is used so the reader function can get the stuff it needs.
2612 */
2613typedef struct CPUMDISASSTATE
2614{
2615 /** Pointer to the CPU structure. */
2616 PDISCPUSTATE pCpu;
2617 /** Pointer to the VM. */
2618 PVM pVM;
2619 /** Pointer to the VMCPU. */
2620 PVMCPU pVCpu;
2621 /** Pointer to the first byte in the segment. */
2622 RTGCUINTPTR GCPtrSegBase;
2623 /** Pointer to the byte after the end of the segment. (might have wrapped!) */
2624 RTGCUINTPTR GCPtrSegEnd;
2625 /** The size of the segment minus 1. */
2626 RTGCUINTPTR cbSegLimit;
2627 /** Pointer to the current page - R3 Ptr. */
2628 void const *pvPageR3;
2629 /** Pointer to the current page - GC Ptr. */
2630 RTGCPTR pvPageGC;
2631 /** The lock information that PGMPhysReleasePageMappingLock needs. */
2632 PGMPAGEMAPLOCK PageMapLock;
2633 /** Whether the PageMapLock is valid or not. */
2634 bool fLocked;
2635 /** 64 bits mode or not. */
2636 bool f64Bits;
2637} CPUMDISASSTATE, *PCPUMDISASSTATE;
2638
2639
2640/**
2641 * @callback_method_impl{FNDISREADBYTES}
2642 */
2643static DECLCALLBACK(int) cpumR3DisasInstrRead(PDISCPUSTATE pDis, uint8_t offInstr, uint8_t cbMinRead, uint8_t cbMaxRead)
2644{
2645 PCPUMDISASSTATE pState = (PCPUMDISASSTATE)pDis->pvUser;
2646 for (;;)
2647 {
2648 RTGCUINTPTR GCPtr = pDis->uInstrAddr + offInstr + pState->GCPtrSegBase;
2649
2650 /*
2651 * Need to update the page translation?
2652 */
2653 if ( !pState->pvPageR3
2654 || (GCPtr >> PAGE_SHIFT) != (pState->pvPageGC >> PAGE_SHIFT))
2655 {
2656 int rc = VINF_SUCCESS;
2657
2658 /* translate the address */
2659 pState->pvPageGC = GCPtr & PAGE_BASE_GC_MASK;
2660 if ( !HMIsEnabled(pState->pVM)
2661 && MMHyperIsInsideArea(pState->pVM, pState->pvPageGC))
2662 {
2663 pState->pvPageR3 = MMHyperRCToR3(pState->pVM, (RTRCPTR)pState->pvPageGC);
2664 if (!pState->pvPageR3)
2665 rc = VERR_INVALID_POINTER;
2666 }
2667 else
2668 {
2669 /* Release mapping lock previously acquired. */
2670 if (pState->fLocked)
2671 PGMPhysReleasePageMappingLock(pState->pVM, &pState->PageMapLock);
2672 rc = PGMPhysGCPtr2CCPtrReadOnly(pState->pVCpu, pState->pvPageGC, &pState->pvPageR3, &pState->PageMapLock);
2673 pState->fLocked = RT_SUCCESS_NP(rc);
2674 }
2675 if (RT_FAILURE(rc))
2676 {
2677 pState->pvPageR3 = NULL;
2678 return rc;
2679 }
2680 }
2681
2682 /*
2683 * Check the segment limit.
2684 */
2685 if (!pState->f64Bits && pDis->uInstrAddr + offInstr > pState->cbSegLimit)
2686 return VERR_OUT_OF_SELECTOR_BOUNDS;
2687
2688 /*
2689 * Calc how much we can read.
2690 */
2691 uint32_t cb = PAGE_SIZE - (GCPtr & PAGE_OFFSET_MASK);
2692 if (!pState->f64Bits)
2693 {
2694 RTGCUINTPTR cbSeg = pState->GCPtrSegEnd - GCPtr;
2695 if (cb > cbSeg && cbSeg)
2696 cb = cbSeg;
2697 }
2698 if (cb > cbMaxRead)
2699 cb = cbMaxRead;
2700
2701 /*
2702 * Read and advance or exit.
2703 */
2704 memcpy(&pDis->abInstr[offInstr], (uint8_t *)pState->pvPageR3 + (GCPtr & PAGE_OFFSET_MASK), cb);
2705 offInstr += (uint8_t)cb;
2706 if (cb >= cbMinRead)
2707 {
2708 pDis->cbCachedInstr = offInstr;
2709 return VINF_SUCCESS;
2710 }
2711 cbMinRead -= (uint8_t)cb;
2712 cbMaxRead -= (uint8_t)cb;
2713 }
2714}
2715
2716
2717/**
2718 * Disassemble an instruction and return the information in the provided structure.
2719 *
2720 * @returns VBox status code.
2721 * @param pVM The cross context VM structure.
2722 * @param pVCpu The cross context virtual CPU structure.
2723 * @param pCtx Pointer to the guest CPU context.
2724 * @param GCPtrPC Program counter (relative to CS) to disassemble from.
2725 * @param pCpu Disassembly state.
2726 * @param pszPrefix String prefix for logging (debug only).
2727 *
2728 */
2729VMMR3DECL(int) CPUMR3DisasmInstrCPU(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, RTGCPTR GCPtrPC, PDISCPUSTATE pCpu,
2730 const char *pszPrefix)
2731{
2732 CPUMDISASSTATE State;
2733 int rc;
2734
2735 const PGMMODE enmMode = PGMGetGuestMode(pVCpu);
2736 State.pCpu = pCpu;
2737 State.pvPageGC = 0;
2738 State.pvPageR3 = NULL;
2739 State.pVM = pVM;
2740 State.pVCpu = pVCpu;
2741 State.fLocked = false;
2742 State.f64Bits = false;
2743
2744 /*
2745 * Get selector information.
2746 */
2747 DISCPUMODE enmDisCpuMode;
2748 if ( (pCtx->cr0 & X86_CR0_PE)
2749 && pCtx->eflags.Bits.u1VM == 0)
2750 {
2751 if (!CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->cs))
2752 {
2753# ifdef VBOX_WITH_RAW_MODE_NOT_R0
2754 CPUMGuestLazyLoadHiddenSelectorReg(pVCpu, &pCtx->cs);
2755# endif
2756 if (!CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->cs))
2757 return VERR_CPUM_HIDDEN_CS_LOAD_ERROR;
2758 }
2759 State.f64Bits = enmMode >= PGMMODE_AMD64 && pCtx->cs.Attr.n.u1Long;
2760 State.GCPtrSegBase = pCtx->cs.u64Base;
2761 State.GCPtrSegEnd = pCtx->cs.u32Limit + 1 + (RTGCUINTPTR)pCtx->cs.u64Base;
2762 State.cbSegLimit = pCtx->cs.u32Limit;
2763 enmDisCpuMode = (State.f64Bits)
2764 ? DISCPUMODE_64BIT
2765 : pCtx->cs.Attr.n.u1DefBig
2766 ? DISCPUMODE_32BIT
2767 : DISCPUMODE_16BIT;
2768 }
2769 else
2770 {
2771 /* real or V86 mode */
2772 enmDisCpuMode = DISCPUMODE_16BIT;
2773 State.GCPtrSegBase = pCtx->cs.Sel * 16;
2774 State.GCPtrSegEnd = 0xFFFFFFFF;
2775 State.cbSegLimit = 0xFFFFFFFF;
2776 }
2777
2778 /*
2779 * Disassemble the instruction.
2780 */
2781 uint32_t cbInstr;
2782#ifndef LOG_ENABLED
2783 RT_NOREF_PV(pszPrefix);
2784 rc = DISInstrWithReader(GCPtrPC, enmDisCpuMode, cpumR3DisasInstrRead, &State, pCpu, &cbInstr);
2785 if (RT_SUCCESS(rc))
2786 {
2787#else
2788 char szOutput[160];
2789 rc = DISInstrToStrWithReader(GCPtrPC, enmDisCpuMode, cpumR3DisasInstrRead, &State,
2790 pCpu, &cbInstr, szOutput, sizeof(szOutput));
2791 if (RT_SUCCESS(rc))
2792 {
2793 /* log it */
2794 if (pszPrefix)
2795 Log(("%s-CPU%d: %s", pszPrefix, pVCpu->idCpu, szOutput));
2796 else
2797 Log(("%s", szOutput));
2798#endif
2799 rc = VINF_SUCCESS;
2800 }
2801 else
2802 Log(("CPUMR3DisasmInstrCPU: DISInstr failed for %04X:%RGv rc=%Rrc\n", pCtx->cs.Sel, GCPtrPC, rc));
2803
2804 /* Release mapping lock acquired in cpumR3DisasInstrRead. */
2805 if (State.fLocked)
2806 PGMPhysReleasePageMappingLock(pVM, &State.PageMapLock);
2807
2808 return rc;
2809}
2810
2811
2812
2813/**
2814 * API for controlling a few of the CPU features found in CR4.
2815 *
2816 * Currently only X86_CR4_TSD is accepted as input.
2817 *
2818 * @returns VBox status code.
2819 *
2820 * @param pVM The cross context VM structure.
2821 * @param fOr The CR4 OR mask.
2822 * @param fAnd The CR4 AND mask.
2823 */
2824VMMR3DECL(int) CPUMR3SetCR4Feature(PVM pVM, RTHCUINTREG fOr, RTHCUINTREG fAnd)
2825{
2826 AssertMsgReturn(!(fOr & ~(X86_CR4_TSD)), ("%#x\n", fOr), VERR_INVALID_PARAMETER);
2827 AssertMsgReturn((fAnd & ~(X86_CR4_TSD)) == ~(X86_CR4_TSD), ("%#x\n", fAnd), VERR_INVALID_PARAMETER);
2828
2829 pVM->cpum.s.CR4.OrMask &= fAnd;
2830 pVM->cpum.s.CR4.OrMask |= fOr;
2831
2832 return VINF_SUCCESS;
2833}
2834
2835
2836/**
2837 * Enters REM, gets and resets the changed flags (CPUM_CHANGED_*).
2838 *
2839 * Only REM should ever call this function!
2840 *
2841 * @returns The changed flags.
2842 * @param pVCpu The cross context virtual CPU structure.
2843 * @param puCpl Where to return the current privilege level (CPL).
2844 */
2845VMMR3DECL(uint32_t) CPUMR3RemEnter(PVMCPU pVCpu, uint32_t *puCpl)
2846{
2847 Assert(!pVCpu->cpum.s.fRawEntered);
2848 Assert(!pVCpu->cpum.s.fRemEntered);
2849
2850 /*
2851 * Get the CPL first.
2852 */
2853 *puCpl = CPUMGetGuestCPL(pVCpu);
2854
2855 /*
2856 * Get and reset the flags.
2857 */
2858 uint32_t fFlags = pVCpu->cpum.s.fChanged;
2859 pVCpu->cpum.s.fChanged = 0;
2860
2861 /** @todo change the switcher to use the fChanged flags. */
2862 if (pVCpu->cpum.s.fUseFlags & CPUM_USED_FPU_SINCE_REM)
2863 {
2864 fFlags |= CPUM_CHANGED_FPU_REM;
2865 pVCpu->cpum.s.fUseFlags &= ~CPUM_USED_FPU_SINCE_REM;
2866 }
2867
2868 pVCpu->cpum.s.fRemEntered = true;
2869 return fFlags;
2870}
2871
2872
2873/**
2874 * Leaves REM.
2875 *
2876 * @param pVCpu The cross context virtual CPU structure.
2877 * @param fNoOutOfSyncSels This is @c false if there are out of sync
2878 * registers.
2879 */
2880VMMR3DECL(void) CPUMR3RemLeave(PVMCPU pVCpu, bool fNoOutOfSyncSels)
2881{
2882 Assert(!pVCpu->cpum.s.fRawEntered);
2883 Assert(pVCpu->cpum.s.fRemEntered);
2884
2885 RT_NOREF_PV(fNoOutOfSyncSels);
2886
2887 pVCpu->cpum.s.fRemEntered = false;
2888}
2889
2890
2891/**
2892 * Called when the ring-3 init phase completes.
2893 *
2894 * @returns VBox status code.
2895 * @param pVM The cross context VM structure.
2896 * @param enmWhat Which init phase.
2897 */
2898VMMR3DECL(int) CPUMR3InitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
2899{
2900 switch (enmWhat)
2901 {
2902 case VMINITCOMPLETED_RING3:
2903 {
2904 /*
2905 * Figure out if the guest uses 32-bit or 64-bit FPU state at runtime for 64-bit capable VMs.
2906 * Only applicable/used on 64-bit hosts, refer CPUMR0A.asm. See @bugref{7138}.
2907 */
2908 bool const fSupportsLongMode = VMR3IsLongModeAllowed(pVM);
2909 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2910 {
2911 PVMCPU pVCpu = &pVM->aCpus[i];
2912 /* While loading a saved-state we fix it up in, cpumR3LoadDone(). */
2913 if (fSupportsLongMode)
2914 pVCpu->cpum.s.fUseFlags |= CPUM_USE_SUPPORTS_LONGMODE;
2915 }
2916
2917 cpumR3MsrRegStats(pVM);
2918 break;
2919 }
2920
2921 default:
2922 break;
2923 }
2924 return VINF_SUCCESS;
2925}
2926
2927
2928/**
2929 * Called when the ring-0 init phases completed.
2930 *
2931 * @param pVM The cross context VM structure.
2932 */
2933VMMR3DECL(void) CPUMR3LogCpuIds(PVM pVM)
2934{
2935 /*
2936 * Log the cpuid.
2937 */
2938 bool fOldBuffered = RTLogRelSetBuffering(true /*fBuffered*/);
2939 RTCPUSET OnlineSet;
2940 LogRel(("CPUM: Logical host processors: %u present, %u max, %u online, online mask: %016RX64\n",
2941 (unsigned)RTMpGetPresentCount(), (unsigned)RTMpGetCount(), (unsigned)RTMpGetOnlineCount(),
2942 RTCpuSetToU64(RTMpGetOnlineSet(&OnlineSet)) ));
2943 RTCPUID cCores = RTMpGetCoreCount();
2944 if (cCores)
2945 LogRel(("CPUM: Physical host cores: %u\n", (unsigned)cCores));
2946 LogRel(("************************* CPUID dump ************************\n"));
2947 DBGFR3Info(pVM->pUVM, "cpuid", "verbose", DBGFR3InfoLogRelHlp());
2948 LogRel(("\n"));
2949 DBGFR3_INFO_LOG_SAFE(pVM, "cpuid", "verbose"); /* macro */
2950 RTLogRelSetBuffering(fOldBuffered);
2951 LogRel(("******************** End of CPUID dump **********************\n"));
2952}
2953
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette