VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/CPUM.cpp@ 71833

Last change on this file since 71833 was 71833, checked in by vboxsync, 7 years ago

VMM: Nested hw.virt: Implement pause-filter and pause-filter threshold.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 138.2 KB
Line 
1/* $Id: CPUM.cpp 71833 2018-04-12 07:20:33Z vboxsync $ */
2/** @file
3 * CPUM - CPU Monitor / Manager.
4 */
5
6/*
7 * Copyright (C) 2006-2017 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/** @page pg_cpum CPUM - CPU Monitor / Manager
19 *
20 * The CPU Monitor / Manager keeps track of all the CPU registers. It is
21 * also responsible for lazy FPU handling and some of the context loading
22 * in raw mode.
23 *
24 * There are three CPU contexts, the most important one is the guest one (GC).
25 * When running in raw-mode (RC) there is a special hyper context for the VMM
26 * part that floats around inside the guest address space. When running in
27 * raw-mode, CPUM also maintains a host context for saving and restoring
28 * registers across world switches. This latter is done in cooperation with the
29 * world switcher (@see pg_vmm).
30 *
31 * @see grp_cpum
32 *
33 * @section sec_cpum_fpu FPU / SSE / AVX / ++ state.
34 *
35 * TODO: proper write up, currently just some notes.
36 *
37 * The ring-0 FPU handling per OS:
38 *
39 * - 64-bit Windows uses XMM registers in the kernel as part of the calling
40 * convention (Visual C++ doesn't seem to have a way to disable
41 * generating such code either), so CR0.TS/EM are always zero from what I
42 * can tell. We are also forced to always load/save the guest XMM0-XMM15
43 * registers when entering/leaving guest context. Interrupt handlers
44 * using FPU/SSE will offically have call save and restore functions
45 * exported by the kernel, if the really really have to use the state.
46 *
47 * - 32-bit windows does lazy FPU handling, I think, probably including
48 * lazying saving. The Windows Internals book states that it's a bad
49 * idea to use the FPU in kernel space. However, it looks like it will
50 * restore the FPU state of the current thread in case of a kernel \#NM.
51 * Interrupt handlers should be same as for 64-bit.
52 *
53 * - Darwin allows taking \#NM in kernel space, restoring current thread's
54 * state if I read the code correctly. It saves the FPU state of the
55 * outgoing thread, and uses CR0.TS to lazily load the state of the
56 * incoming one. No idea yet how the FPU is treated by interrupt
57 * handlers, i.e. whether they are allowed to disable the state or
58 * something.
59 *
60 * - Linux also allows \#NM in kernel space (don't know since when), and
61 * uses CR0.TS for lazy loading. Saves outgoing thread's state, lazy
62 * loads the incoming unless configured to agressivly load it. Interrupt
63 * handlers can ask whether they're allowed to use the FPU, and may
64 * freely trash the state if Linux thinks it has saved the thread's state
65 * already. This is a problem.
66 *
67 * - Solaris will, from what I can tell, panic if it gets an \#NM in kernel
68 * context. When switching threads, the kernel will save the state of
69 * the outgoing thread and lazy load the incoming one using CR0.TS.
70 * There are a few routines in seeblk.s which uses the SSE unit in ring-0
71 * to do stuff, HAT are among the users. The routines there will
72 * manually clear CR0.TS and save the XMM registers they use only if
73 * CR0.TS was zero upon entry. They will skip it when not, because as
74 * mentioned above, the FPU state is saved when switching away from a
75 * thread and CR0.TS set to 1, so when CR0.TS is 1 there is nothing to
76 * preserve. This is a problem if we restore CR0.TS to 1 after loading
77 * the guest state.
78 *
79 * - FreeBSD - no idea yet.
80 *
81 * - OS/2 does not allow \#NMs in kernel space IIRC. Does lazy loading,
82 * possibly also lazy saving. Interrupts must preserve the CR0.TS+EM &
83 * FPU states.
84 *
85 * Up to r107425 (2016-05-24) we would only temporarily modify CR0.TS/EM while
86 * saving and restoring the host and guest states. The motivation for this
87 * change is that we want to be able to emulate SSE instruction in ring-0 (IEM).
88 *
89 * Starting with that change, we will leave CR0.TS=EM=0 after saving the host
90 * state and only restore it once we've restore the host FPU state. This has the
91 * accidental side effect of triggering Solaris to preserve XMM registers in
92 * sseblk.s. When CR0 was changed by saving the FPU state, CPUM must now inform
93 * the VT-x (HMVMX) code about it as it caches the CR0 value in the VMCS.
94 *
95 *
96 * @section sec_cpum_logging Logging Level Assignments.
97 *
98 * Following log level assignments:
99 * - Log6 is used for FPU state management.
100 * - Log7 is used for FPU state actualization.
101 *
102 */
103
104
105/*********************************************************************************************************************************
106* Header Files *
107*********************************************************************************************************************************/
108#define LOG_GROUP LOG_GROUP_CPUM
109#include <VBox/vmm/cpum.h>
110#include <VBox/vmm/cpumdis.h>
111#include <VBox/vmm/cpumctx-v1_6.h>
112#include <VBox/vmm/pgm.h>
113#include <VBox/vmm/apic.h>
114#include <VBox/vmm/mm.h>
115#include <VBox/vmm/em.h>
116#include <VBox/vmm/iem.h>
117#include <VBox/vmm/selm.h>
118#include <VBox/vmm/dbgf.h>
119#include <VBox/vmm/patm.h>
120#include <VBox/vmm/hm.h>
121#include <VBox/vmm/ssm.h>
122#include "CPUMInternal.h"
123#include <VBox/vmm/vm.h>
124
125#include <VBox/param.h>
126#include <VBox/dis.h>
127#include <VBox/err.h>
128#include <VBox/log.h>
129#include <iprt/asm-amd64-x86.h>
130#include <iprt/assert.h>
131#include <iprt/cpuset.h>
132#include <iprt/mem.h>
133#include <iprt/mp.h>
134#include <iprt/string.h>
135
136
137/*********************************************************************************************************************************
138* Defined Constants And Macros *
139*********************************************************************************************************************************/
140/**
141 * This was used in the saved state up to the early life of version 14.
142 *
143 * It indicates that we may have some out-of-sync hidden segement registers.
144 * It is only relevant for raw-mode.
145 */
146#define CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID RT_BIT(12)
147
148
149/*********************************************************************************************************************************
150* Structures and Typedefs *
151*********************************************************************************************************************************/
152
153/**
154 * What kind of cpu info dump to perform.
155 */
156typedef enum CPUMDUMPTYPE
157{
158 CPUMDUMPTYPE_TERSE,
159 CPUMDUMPTYPE_DEFAULT,
160 CPUMDUMPTYPE_VERBOSE
161} CPUMDUMPTYPE;
162/** Pointer to a cpu info dump type. */
163typedef CPUMDUMPTYPE *PCPUMDUMPTYPE;
164
165
166/*********************************************************************************************************************************
167* Internal Functions *
168*********************************************************************************************************************************/
169static DECLCALLBACK(int) cpumR3LiveExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uPass);
170static DECLCALLBACK(int) cpumR3SaveExec(PVM pVM, PSSMHANDLE pSSM);
171static DECLCALLBACK(int) cpumR3LoadPrep(PVM pVM, PSSMHANDLE pSSM);
172static DECLCALLBACK(int) cpumR3LoadExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
173static DECLCALLBACK(int) cpumR3LoadDone(PVM pVM, PSSMHANDLE pSSM);
174static DECLCALLBACK(void) cpumR3InfoAll(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
175static DECLCALLBACK(void) cpumR3InfoGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
176static DECLCALLBACK(void) cpumR3InfoGuestHwvirt(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
177static DECLCALLBACK(void) cpumR3InfoGuestInstr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
178static DECLCALLBACK(void) cpumR3InfoHyper(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
179static DECLCALLBACK(void) cpumR3InfoHost(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
180
181
182/*********************************************************************************************************************************
183* Global Variables *
184*********************************************************************************************************************************/
185/** Saved state field descriptors for CPUMCTX. */
186static const SSMFIELD g_aCpumCtxFields[] =
187{
188 SSMFIELD_ENTRY( CPUMCTX, rdi),
189 SSMFIELD_ENTRY( CPUMCTX, rsi),
190 SSMFIELD_ENTRY( CPUMCTX, rbp),
191 SSMFIELD_ENTRY( CPUMCTX, rax),
192 SSMFIELD_ENTRY( CPUMCTX, rbx),
193 SSMFIELD_ENTRY( CPUMCTX, rdx),
194 SSMFIELD_ENTRY( CPUMCTX, rcx),
195 SSMFIELD_ENTRY( CPUMCTX, rsp),
196 SSMFIELD_ENTRY( CPUMCTX, rflags),
197 SSMFIELD_ENTRY( CPUMCTX, rip),
198 SSMFIELD_ENTRY( CPUMCTX, r8),
199 SSMFIELD_ENTRY( CPUMCTX, r9),
200 SSMFIELD_ENTRY( CPUMCTX, r10),
201 SSMFIELD_ENTRY( CPUMCTX, r11),
202 SSMFIELD_ENTRY( CPUMCTX, r12),
203 SSMFIELD_ENTRY( CPUMCTX, r13),
204 SSMFIELD_ENTRY( CPUMCTX, r14),
205 SSMFIELD_ENTRY( CPUMCTX, r15),
206 SSMFIELD_ENTRY( CPUMCTX, es.Sel),
207 SSMFIELD_ENTRY( CPUMCTX, es.ValidSel),
208 SSMFIELD_ENTRY( CPUMCTX, es.fFlags),
209 SSMFIELD_ENTRY( CPUMCTX, es.u64Base),
210 SSMFIELD_ENTRY( CPUMCTX, es.u32Limit),
211 SSMFIELD_ENTRY( CPUMCTX, es.Attr),
212 SSMFIELD_ENTRY( CPUMCTX, cs.Sel),
213 SSMFIELD_ENTRY( CPUMCTX, cs.ValidSel),
214 SSMFIELD_ENTRY( CPUMCTX, cs.fFlags),
215 SSMFIELD_ENTRY( CPUMCTX, cs.u64Base),
216 SSMFIELD_ENTRY( CPUMCTX, cs.u32Limit),
217 SSMFIELD_ENTRY( CPUMCTX, cs.Attr),
218 SSMFIELD_ENTRY( CPUMCTX, ss.Sel),
219 SSMFIELD_ENTRY( CPUMCTX, ss.ValidSel),
220 SSMFIELD_ENTRY( CPUMCTX, ss.fFlags),
221 SSMFIELD_ENTRY( CPUMCTX, ss.u64Base),
222 SSMFIELD_ENTRY( CPUMCTX, ss.u32Limit),
223 SSMFIELD_ENTRY( CPUMCTX, ss.Attr),
224 SSMFIELD_ENTRY( CPUMCTX, ds.Sel),
225 SSMFIELD_ENTRY( CPUMCTX, ds.ValidSel),
226 SSMFIELD_ENTRY( CPUMCTX, ds.fFlags),
227 SSMFIELD_ENTRY( CPUMCTX, ds.u64Base),
228 SSMFIELD_ENTRY( CPUMCTX, ds.u32Limit),
229 SSMFIELD_ENTRY( CPUMCTX, ds.Attr),
230 SSMFIELD_ENTRY( CPUMCTX, fs.Sel),
231 SSMFIELD_ENTRY( CPUMCTX, fs.ValidSel),
232 SSMFIELD_ENTRY( CPUMCTX, fs.fFlags),
233 SSMFIELD_ENTRY( CPUMCTX, fs.u64Base),
234 SSMFIELD_ENTRY( CPUMCTX, fs.u32Limit),
235 SSMFIELD_ENTRY( CPUMCTX, fs.Attr),
236 SSMFIELD_ENTRY( CPUMCTX, gs.Sel),
237 SSMFIELD_ENTRY( CPUMCTX, gs.ValidSel),
238 SSMFIELD_ENTRY( CPUMCTX, gs.fFlags),
239 SSMFIELD_ENTRY( CPUMCTX, gs.u64Base),
240 SSMFIELD_ENTRY( CPUMCTX, gs.u32Limit),
241 SSMFIELD_ENTRY( CPUMCTX, gs.Attr),
242 SSMFIELD_ENTRY( CPUMCTX, cr0),
243 SSMFIELD_ENTRY( CPUMCTX, cr2),
244 SSMFIELD_ENTRY( CPUMCTX, cr3),
245 SSMFIELD_ENTRY( CPUMCTX, cr4),
246 SSMFIELD_ENTRY( CPUMCTX, dr[0]),
247 SSMFIELD_ENTRY( CPUMCTX, dr[1]),
248 SSMFIELD_ENTRY( CPUMCTX, dr[2]),
249 SSMFIELD_ENTRY( CPUMCTX, dr[3]),
250 SSMFIELD_ENTRY( CPUMCTX, dr[6]),
251 SSMFIELD_ENTRY( CPUMCTX, dr[7]),
252 SSMFIELD_ENTRY( CPUMCTX, gdtr.cbGdt),
253 SSMFIELD_ENTRY( CPUMCTX, gdtr.pGdt),
254 SSMFIELD_ENTRY( CPUMCTX, idtr.cbIdt),
255 SSMFIELD_ENTRY( CPUMCTX, idtr.pIdt),
256 SSMFIELD_ENTRY( CPUMCTX, SysEnter.cs),
257 SSMFIELD_ENTRY( CPUMCTX, SysEnter.eip),
258 SSMFIELD_ENTRY( CPUMCTX, SysEnter.esp),
259 SSMFIELD_ENTRY( CPUMCTX, msrEFER),
260 SSMFIELD_ENTRY( CPUMCTX, msrSTAR),
261 SSMFIELD_ENTRY( CPUMCTX, msrPAT),
262 SSMFIELD_ENTRY( CPUMCTX, msrLSTAR),
263 SSMFIELD_ENTRY( CPUMCTX, msrCSTAR),
264 SSMFIELD_ENTRY( CPUMCTX, msrSFMASK),
265 SSMFIELD_ENTRY( CPUMCTX, msrKERNELGSBASE),
266 SSMFIELD_ENTRY( CPUMCTX, ldtr.Sel),
267 SSMFIELD_ENTRY( CPUMCTX, ldtr.ValidSel),
268 SSMFIELD_ENTRY( CPUMCTX, ldtr.fFlags),
269 SSMFIELD_ENTRY( CPUMCTX, ldtr.u64Base),
270 SSMFIELD_ENTRY( CPUMCTX, ldtr.u32Limit),
271 SSMFIELD_ENTRY( CPUMCTX, ldtr.Attr),
272 SSMFIELD_ENTRY( CPUMCTX, tr.Sel),
273 SSMFIELD_ENTRY( CPUMCTX, tr.ValidSel),
274 SSMFIELD_ENTRY( CPUMCTX, tr.fFlags),
275 SSMFIELD_ENTRY( CPUMCTX, tr.u64Base),
276 SSMFIELD_ENTRY( CPUMCTX, tr.u32Limit),
277 SSMFIELD_ENTRY( CPUMCTX, tr.Attr),
278 SSMFIELD_ENTRY_VER( CPUMCTX, aXcr[0], CPUM_SAVED_STATE_VERSION_XSAVE),
279 SSMFIELD_ENTRY_VER( CPUMCTX, aXcr[1], CPUM_SAVED_STATE_VERSION_XSAVE),
280 SSMFIELD_ENTRY_VER( CPUMCTX, fXStateMask, CPUM_SAVED_STATE_VERSION_XSAVE),
281 SSMFIELD_ENTRY_TERM()
282};
283
284/** Saved state field descriptors for CPUMCTX. */
285static const SSMFIELD g_aCpumX87Fields[] =
286{
287 SSMFIELD_ENTRY( X86FXSTATE, FCW),
288 SSMFIELD_ENTRY( X86FXSTATE, FSW),
289 SSMFIELD_ENTRY( X86FXSTATE, FTW),
290 SSMFIELD_ENTRY( X86FXSTATE, FOP),
291 SSMFIELD_ENTRY( X86FXSTATE, FPUIP),
292 SSMFIELD_ENTRY( X86FXSTATE, CS),
293 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd1),
294 SSMFIELD_ENTRY( X86FXSTATE, FPUDP),
295 SSMFIELD_ENTRY( X86FXSTATE, DS),
296 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd2),
297 SSMFIELD_ENTRY( X86FXSTATE, MXCSR),
298 SSMFIELD_ENTRY( X86FXSTATE, MXCSR_MASK),
299 SSMFIELD_ENTRY( X86FXSTATE, aRegs[0]),
300 SSMFIELD_ENTRY( X86FXSTATE, aRegs[1]),
301 SSMFIELD_ENTRY( X86FXSTATE, aRegs[2]),
302 SSMFIELD_ENTRY( X86FXSTATE, aRegs[3]),
303 SSMFIELD_ENTRY( X86FXSTATE, aRegs[4]),
304 SSMFIELD_ENTRY( X86FXSTATE, aRegs[5]),
305 SSMFIELD_ENTRY( X86FXSTATE, aRegs[6]),
306 SSMFIELD_ENTRY( X86FXSTATE, aRegs[7]),
307 SSMFIELD_ENTRY( X86FXSTATE, aXMM[0]),
308 SSMFIELD_ENTRY( X86FXSTATE, aXMM[1]),
309 SSMFIELD_ENTRY( X86FXSTATE, aXMM[2]),
310 SSMFIELD_ENTRY( X86FXSTATE, aXMM[3]),
311 SSMFIELD_ENTRY( X86FXSTATE, aXMM[4]),
312 SSMFIELD_ENTRY( X86FXSTATE, aXMM[5]),
313 SSMFIELD_ENTRY( X86FXSTATE, aXMM[6]),
314 SSMFIELD_ENTRY( X86FXSTATE, aXMM[7]),
315 SSMFIELD_ENTRY( X86FXSTATE, aXMM[8]),
316 SSMFIELD_ENTRY( X86FXSTATE, aXMM[9]),
317 SSMFIELD_ENTRY( X86FXSTATE, aXMM[10]),
318 SSMFIELD_ENTRY( X86FXSTATE, aXMM[11]),
319 SSMFIELD_ENTRY( X86FXSTATE, aXMM[12]),
320 SSMFIELD_ENTRY( X86FXSTATE, aXMM[13]),
321 SSMFIELD_ENTRY( X86FXSTATE, aXMM[14]),
322 SSMFIELD_ENTRY( X86FXSTATE, aXMM[15]),
323 SSMFIELD_ENTRY_VER( X86FXSTATE, au32RsrvdForSoftware[0], CPUM_SAVED_STATE_VERSION_XSAVE), /* 32-bit/64-bit hack */
324 SSMFIELD_ENTRY_TERM()
325};
326
327/** Saved state field descriptors for X86XSAVEHDR. */
328static const SSMFIELD g_aCpumXSaveHdrFields[] =
329{
330 SSMFIELD_ENTRY( X86XSAVEHDR, bmXState),
331 SSMFIELD_ENTRY_TERM()
332};
333
334/** Saved state field descriptors for X86XSAVEYMMHI. */
335static const SSMFIELD g_aCpumYmmHiFields[] =
336{
337 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[0]),
338 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[1]),
339 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[2]),
340 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[3]),
341 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[4]),
342 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[5]),
343 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[6]),
344 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[7]),
345 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[8]),
346 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[9]),
347 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[10]),
348 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[11]),
349 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[12]),
350 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[13]),
351 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[14]),
352 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[15]),
353 SSMFIELD_ENTRY_TERM()
354};
355
356/** Saved state field descriptors for X86XSAVEBNDREGS. */
357static const SSMFIELD g_aCpumBndRegsFields[] =
358{
359 SSMFIELD_ENTRY( X86XSAVEBNDREGS, aRegs[0]),
360 SSMFIELD_ENTRY( X86XSAVEBNDREGS, aRegs[1]),
361 SSMFIELD_ENTRY( X86XSAVEBNDREGS, aRegs[2]),
362 SSMFIELD_ENTRY( X86XSAVEBNDREGS, aRegs[3]),
363 SSMFIELD_ENTRY_TERM()
364};
365
366/** Saved state field descriptors for X86XSAVEBNDCFG. */
367static const SSMFIELD g_aCpumBndCfgFields[] =
368{
369 SSMFIELD_ENTRY( X86XSAVEBNDCFG, fConfig),
370 SSMFIELD_ENTRY( X86XSAVEBNDCFG, fStatus),
371 SSMFIELD_ENTRY_TERM()
372};
373
374#if 0 /** @todo */
375/** Saved state field descriptors for X86XSAVEOPMASK. */
376static const SSMFIELD g_aCpumOpmaskFields[] =
377{
378 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[0]),
379 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[1]),
380 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[2]),
381 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[3]),
382 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[4]),
383 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[5]),
384 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[6]),
385 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[7]),
386 SSMFIELD_ENTRY_TERM()
387};
388#endif
389
390/** Saved state field descriptors for X86XSAVEZMMHI256. */
391static const SSMFIELD g_aCpumZmmHi256Fields[] =
392{
393 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[0]),
394 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[1]),
395 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[2]),
396 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[3]),
397 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[4]),
398 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[5]),
399 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[6]),
400 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[7]),
401 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[8]),
402 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[9]),
403 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[10]),
404 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[11]),
405 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[12]),
406 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[13]),
407 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[14]),
408 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[15]),
409 SSMFIELD_ENTRY_TERM()
410};
411
412/** Saved state field descriptors for X86XSAVEZMM16HI. */
413static const SSMFIELD g_aCpumZmm16HiFields[] =
414{
415 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[0]),
416 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[1]),
417 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[2]),
418 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[3]),
419 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[4]),
420 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[5]),
421 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[6]),
422 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[7]),
423 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[8]),
424 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[9]),
425 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[10]),
426 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[11]),
427 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[12]),
428 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[13]),
429 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[14]),
430 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[15]),
431 SSMFIELD_ENTRY_TERM()
432};
433
434
435
436/** Saved state field descriptors for CPUMCTX in V4.1 before the hidden selector
437 * registeres changed. */
438static const SSMFIELD g_aCpumX87FieldsMem[] =
439{
440 SSMFIELD_ENTRY( X86FXSTATE, FCW),
441 SSMFIELD_ENTRY( X86FXSTATE, FSW),
442 SSMFIELD_ENTRY( X86FXSTATE, FTW),
443 SSMFIELD_ENTRY( X86FXSTATE, FOP),
444 SSMFIELD_ENTRY( X86FXSTATE, FPUIP),
445 SSMFIELD_ENTRY( X86FXSTATE, CS),
446 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd1),
447 SSMFIELD_ENTRY( X86FXSTATE, FPUDP),
448 SSMFIELD_ENTRY( X86FXSTATE, DS),
449 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd2),
450 SSMFIELD_ENTRY( X86FXSTATE, MXCSR),
451 SSMFIELD_ENTRY( X86FXSTATE, MXCSR_MASK),
452 SSMFIELD_ENTRY( X86FXSTATE, aRegs[0]),
453 SSMFIELD_ENTRY( X86FXSTATE, aRegs[1]),
454 SSMFIELD_ENTRY( X86FXSTATE, aRegs[2]),
455 SSMFIELD_ENTRY( X86FXSTATE, aRegs[3]),
456 SSMFIELD_ENTRY( X86FXSTATE, aRegs[4]),
457 SSMFIELD_ENTRY( X86FXSTATE, aRegs[5]),
458 SSMFIELD_ENTRY( X86FXSTATE, aRegs[6]),
459 SSMFIELD_ENTRY( X86FXSTATE, aRegs[7]),
460 SSMFIELD_ENTRY( X86FXSTATE, aXMM[0]),
461 SSMFIELD_ENTRY( X86FXSTATE, aXMM[1]),
462 SSMFIELD_ENTRY( X86FXSTATE, aXMM[2]),
463 SSMFIELD_ENTRY( X86FXSTATE, aXMM[3]),
464 SSMFIELD_ENTRY( X86FXSTATE, aXMM[4]),
465 SSMFIELD_ENTRY( X86FXSTATE, aXMM[5]),
466 SSMFIELD_ENTRY( X86FXSTATE, aXMM[6]),
467 SSMFIELD_ENTRY( X86FXSTATE, aXMM[7]),
468 SSMFIELD_ENTRY( X86FXSTATE, aXMM[8]),
469 SSMFIELD_ENTRY( X86FXSTATE, aXMM[9]),
470 SSMFIELD_ENTRY( X86FXSTATE, aXMM[10]),
471 SSMFIELD_ENTRY( X86FXSTATE, aXMM[11]),
472 SSMFIELD_ENTRY( X86FXSTATE, aXMM[12]),
473 SSMFIELD_ENTRY( X86FXSTATE, aXMM[13]),
474 SSMFIELD_ENTRY( X86FXSTATE, aXMM[14]),
475 SSMFIELD_ENTRY( X86FXSTATE, aXMM[15]),
476 SSMFIELD_ENTRY_IGNORE( X86FXSTATE, au32RsrvdRest),
477 SSMFIELD_ENTRY_IGNORE( X86FXSTATE, au32RsrvdForSoftware),
478};
479
480/** Saved state field descriptors for CPUMCTX in V4.1 before the hidden selector
481 * registeres changed. */
482static const SSMFIELD g_aCpumCtxFieldsMem[] =
483{
484 SSMFIELD_ENTRY( CPUMCTX, rdi),
485 SSMFIELD_ENTRY( CPUMCTX, rsi),
486 SSMFIELD_ENTRY( CPUMCTX, rbp),
487 SSMFIELD_ENTRY( CPUMCTX, rax),
488 SSMFIELD_ENTRY( CPUMCTX, rbx),
489 SSMFIELD_ENTRY( CPUMCTX, rdx),
490 SSMFIELD_ENTRY( CPUMCTX, rcx),
491 SSMFIELD_ENTRY( CPUMCTX, rsp),
492 SSMFIELD_ENTRY_OLD( lss_esp, sizeof(uint32_t)),
493 SSMFIELD_ENTRY( CPUMCTX, ss.Sel),
494 SSMFIELD_ENTRY_OLD( ssPadding, sizeof(uint16_t)),
495 SSMFIELD_ENTRY( CPUMCTX, gs.Sel),
496 SSMFIELD_ENTRY_OLD( gsPadding, sizeof(uint16_t)),
497 SSMFIELD_ENTRY( CPUMCTX, fs.Sel),
498 SSMFIELD_ENTRY_OLD( fsPadding, sizeof(uint16_t)),
499 SSMFIELD_ENTRY( CPUMCTX, es.Sel),
500 SSMFIELD_ENTRY_OLD( esPadding, sizeof(uint16_t)),
501 SSMFIELD_ENTRY( CPUMCTX, ds.Sel),
502 SSMFIELD_ENTRY_OLD( dsPadding, sizeof(uint16_t)),
503 SSMFIELD_ENTRY( CPUMCTX, cs.Sel),
504 SSMFIELD_ENTRY_OLD( csPadding, sizeof(uint16_t)*3),
505 SSMFIELD_ENTRY( CPUMCTX, rflags),
506 SSMFIELD_ENTRY( CPUMCTX, rip),
507 SSMFIELD_ENTRY( CPUMCTX, r8),
508 SSMFIELD_ENTRY( CPUMCTX, r9),
509 SSMFIELD_ENTRY( CPUMCTX, r10),
510 SSMFIELD_ENTRY( CPUMCTX, r11),
511 SSMFIELD_ENTRY( CPUMCTX, r12),
512 SSMFIELD_ENTRY( CPUMCTX, r13),
513 SSMFIELD_ENTRY( CPUMCTX, r14),
514 SSMFIELD_ENTRY( CPUMCTX, r15),
515 SSMFIELD_ENTRY( CPUMCTX, es.u64Base),
516 SSMFIELD_ENTRY( CPUMCTX, es.u32Limit),
517 SSMFIELD_ENTRY( CPUMCTX, es.Attr),
518 SSMFIELD_ENTRY( CPUMCTX, cs.u64Base),
519 SSMFIELD_ENTRY( CPUMCTX, cs.u32Limit),
520 SSMFIELD_ENTRY( CPUMCTX, cs.Attr),
521 SSMFIELD_ENTRY( CPUMCTX, ss.u64Base),
522 SSMFIELD_ENTRY( CPUMCTX, ss.u32Limit),
523 SSMFIELD_ENTRY( CPUMCTX, ss.Attr),
524 SSMFIELD_ENTRY( CPUMCTX, ds.u64Base),
525 SSMFIELD_ENTRY( CPUMCTX, ds.u32Limit),
526 SSMFIELD_ENTRY( CPUMCTX, ds.Attr),
527 SSMFIELD_ENTRY( CPUMCTX, fs.u64Base),
528 SSMFIELD_ENTRY( CPUMCTX, fs.u32Limit),
529 SSMFIELD_ENTRY( CPUMCTX, fs.Attr),
530 SSMFIELD_ENTRY( CPUMCTX, gs.u64Base),
531 SSMFIELD_ENTRY( CPUMCTX, gs.u32Limit),
532 SSMFIELD_ENTRY( CPUMCTX, gs.Attr),
533 SSMFIELD_ENTRY( CPUMCTX, cr0),
534 SSMFIELD_ENTRY( CPUMCTX, cr2),
535 SSMFIELD_ENTRY( CPUMCTX, cr3),
536 SSMFIELD_ENTRY( CPUMCTX, cr4),
537 SSMFIELD_ENTRY( CPUMCTX, dr[0]),
538 SSMFIELD_ENTRY( CPUMCTX, dr[1]),
539 SSMFIELD_ENTRY( CPUMCTX, dr[2]),
540 SSMFIELD_ENTRY( CPUMCTX, dr[3]),
541 SSMFIELD_ENTRY_OLD( dr[4], sizeof(uint64_t)),
542 SSMFIELD_ENTRY_OLD( dr[5], sizeof(uint64_t)),
543 SSMFIELD_ENTRY( CPUMCTX, dr[6]),
544 SSMFIELD_ENTRY( CPUMCTX, dr[7]),
545 SSMFIELD_ENTRY( CPUMCTX, gdtr.cbGdt),
546 SSMFIELD_ENTRY( CPUMCTX, gdtr.pGdt),
547 SSMFIELD_ENTRY_OLD( gdtrPadding, sizeof(uint16_t)),
548 SSMFIELD_ENTRY( CPUMCTX, idtr.cbIdt),
549 SSMFIELD_ENTRY( CPUMCTX, idtr.pIdt),
550 SSMFIELD_ENTRY_OLD( idtrPadding, sizeof(uint16_t)),
551 SSMFIELD_ENTRY( CPUMCTX, ldtr.Sel),
552 SSMFIELD_ENTRY_OLD( ldtrPadding, sizeof(uint16_t)),
553 SSMFIELD_ENTRY( CPUMCTX, tr.Sel),
554 SSMFIELD_ENTRY_OLD( trPadding, sizeof(uint16_t)),
555 SSMFIELD_ENTRY( CPUMCTX, SysEnter.cs),
556 SSMFIELD_ENTRY( CPUMCTX, SysEnter.eip),
557 SSMFIELD_ENTRY( CPUMCTX, SysEnter.esp),
558 SSMFIELD_ENTRY( CPUMCTX, msrEFER),
559 SSMFIELD_ENTRY( CPUMCTX, msrSTAR),
560 SSMFIELD_ENTRY( CPUMCTX, msrPAT),
561 SSMFIELD_ENTRY( CPUMCTX, msrLSTAR),
562 SSMFIELD_ENTRY( CPUMCTX, msrCSTAR),
563 SSMFIELD_ENTRY( CPUMCTX, msrSFMASK),
564 SSMFIELD_ENTRY( CPUMCTX, msrKERNELGSBASE),
565 SSMFIELD_ENTRY( CPUMCTX, ldtr.u64Base),
566 SSMFIELD_ENTRY( CPUMCTX, ldtr.u32Limit),
567 SSMFIELD_ENTRY( CPUMCTX, ldtr.Attr),
568 SSMFIELD_ENTRY( CPUMCTX, tr.u64Base),
569 SSMFIELD_ENTRY( CPUMCTX, tr.u32Limit),
570 SSMFIELD_ENTRY( CPUMCTX, tr.Attr),
571 SSMFIELD_ENTRY_TERM()
572};
573
574/** Saved state field descriptors for CPUMCTX_VER1_6. */
575static const SSMFIELD g_aCpumX87FieldsV16[] =
576{
577 SSMFIELD_ENTRY( X86FXSTATE, FCW),
578 SSMFIELD_ENTRY( X86FXSTATE, FSW),
579 SSMFIELD_ENTRY( X86FXSTATE, FTW),
580 SSMFIELD_ENTRY( X86FXSTATE, FOP),
581 SSMFIELD_ENTRY( X86FXSTATE, FPUIP),
582 SSMFIELD_ENTRY( X86FXSTATE, CS),
583 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd1),
584 SSMFIELD_ENTRY( X86FXSTATE, FPUDP),
585 SSMFIELD_ENTRY( X86FXSTATE, DS),
586 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd2),
587 SSMFIELD_ENTRY( X86FXSTATE, MXCSR),
588 SSMFIELD_ENTRY( X86FXSTATE, MXCSR_MASK),
589 SSMFIELD_ENTRY( X86FXSTATE, aRegs[0]),
590 SSMFIELD_ENTRY( X86FXSTATE, aRegs[1]),
591 SSMFIELD_ENTRY( X86FXSTATE, aRegs[2]),
592 SSMFIELD_ENTRY( X86FXSTATE, aRegs[3]),
593 SSMFIELD_ENTRY( X86FXSTATE, aRegs[4]),
594 SSMFIELD_ENTRY( X86FXSTATE, aRegs[5]),
595 SSMFIELD_ENTRY( X86FXSTATE, aRegs[6]),
596 SSMFIELD_ENTRY( X86FXSTATE, aRegs[7]),
597 SSMFIELD_ENTRY( X86FXSTATE, aXMM[0]),
598 SSMFIELD_ENTRY( X86FXSTATE, aXMM[1]),
599 SSMFIELD_ENTRY( X86FXSTATE, aXMM[2]),
600 SSMFIELD_ENTRY( X86FXSTATE, aXMM[3]),
601 SSMFIELD_ENTRY( X86FXSTATE, aXMM[4]),
602 SSMFIELD_ENTRY( X86FXSTATE, aXMM[5]),
603 SSMFIELD_ENTRY( X86FXSTATE, aXMM[6]),
604 SSMFIELD_ENTRY( X86FXSTATE, aXMM[7]),
605 SSMFIELD_ENTRY( X86FXSTATE, aXMM[8]),
606 SSMFIELD_ENTRY( X86FXSTATE, aXMM[9]),
607 SSMFIELD_ENTRY( X86FXSTATE, aXMM[10]),
608 SSMFIELD_ENTRY( X86FXSTATE, aXMM[11]),
609 SSMFIELD_ENTRY( X86FXSTATE, aXMM[12]),
610 SSMFIELD_ENTRY( X86FXSTATE, aXMM[13]),
611 SSMFIELD_ENTRY( X86FXSTATE, aXMM[14]),
612 SSMFIELD_ENTRY( X86FXSTATE, aXMM[15]),
613 SSMFIELD_ENTRY_IGNORE( X86FXSTATE, au32RsrvdRest),
614 SSMFIELD_ENTRY_IGNORE( X86FXSTATE, au32RsrvdForSoftware),
615 SSMFIELD_ENTRY_TERM()
616};
617
618/** Saved state field descriptors for CPUMCTX_VER1_6. */
619static const SSMFIELD g_aCpumCtxFieldsV16[] =
620{
621 SSMFIELD_ENTRY( CPUMCTX, rdi),
622 SSMFIELD_ENTRY( CPUMCTX, rsi),
623 SSMFIELD_ENTRY( CPUMCTX, rbp),
624 SSMFIELD_ENTRY( CPUMCTX, rax),
625 SSMFIELD_ENTRY( CPUMCTX, rbx),
626 SSMFIELD_ENTRY( CPUMCTX, rdx),
627 SSMFIELD_ENTRY( CPUMCTX, rcx),
628 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, rsp),
629 SSMFIELD_ENTRY( CPUMCTX, ss.Sel),
630 SSMFIELD_ENTRY_OLD( ssPadding, sizeof(uint16_t)),
631 SSMFIELD_ENTRY_OLD( CPUMCTX, sizeof(uint64_t) /*rsp_notused*/),
632 SSMFIELD_ENTRY( CPUMCTX, gs.Sel),
633 SSMFIELD_ENTRY_OLD( gsPadding, sizeof(uint16_t)),
634 SSMFIELD_ENTRY( CPUMCTX, fs.Sel),
635 SSMFIELD_ENTRY_OLD( fsPadding, sizeof(uint16_t)),
636 SSMFIELD_ENTRY( CPUMCTX, es.Sel),
637 SSMFIELD_ENTRY_OLD( esPadding, sizeof(uint16_t)),
638 SSMFIELD_ENTRY( CPUMCTX, ds.Sel),
639 SSMFIELD_ENTRY_OLD( dsPadding, sizeof(uint16_t)),
640 SSMFIELD_ENTRY( CPUMCTX, cs.Sel),
641 SSMFIELD_ENTRY_OLD( csPadding, sizeof(uint16_t)*3),
642 SSMFIELD_ENTRY( CPUMCTX, rflags),
643 SSMFIELD_ENTRY( CPUMCTX, rip),
644 SSMFIELD_ENTRY( CPUMCTX, r8),
645 SSMFIELD_ENTRY( CPUMCTX, r9),
646 SSMFIELD_ENTRY( CPUMCTX, r10),
647 SSMFIELD_ENTRY( CPUMCTX, r11),
648 SSMFIELD_ENTRY( CPUMCTX, r12),
649 SSMFIELD_ENTRY( CPUMCTX, r13),
650 SSMFIELD_ENTRY( CPUMCTX, r14),
651 SSMFIELD_ENTRY( CPUMCTX, r15),
652 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, es.u64Base),
653 SSMFIELD_ENTRY( CPUMCTX, es.u32Limit),
654 SSMFIELD_ENTRY( CPUMCTX, es.Attr),
655 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, cs.u64Base),
656 SSMFIELD_ENTRY( CPUMCTX, cs.u32Limit),
657 SSMFIELD_ENTRY( CPUMCTX, cs.Attr),
658 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, ss.u64Base),
659 SSMFIELD_ENTRY( CPUMCTX, ss.u32Limit),
660 SSMFIELD_ENTRY( CPUMCTX, ss.Attr),
661 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, ds.u64Base),
662 SSMFIELD_ENTRY( CPUMCTX, ds.u32Limit),
663 SSMFIELD_ENTRY( CPUMCTX, ds.Attr),
664 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, fs.u64Base),
665 SSMFIELD_ENTRY( CPUMCTX, fs.u32Limit),
666 SSMFIELD_ENTRY( CPUMCTX, fs.Attr),
667 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, gs.u64Base),
668 SSMFIELD_ENTRY( CPUMCTX, gs.u32Limit),
669 SSMFIELD_ENTRY( CPUMCTX, gs.Attr),
670 SSMFIELD_ENTRY( CPUMCTX, cr0),
671 SSMFIELD_ENTRY( CPUMCTX, cr2),
672 SSMFIELD_ENTRY( CPUMCTX, cr3),
673 SSMFIELD_ENTRY( CPUMCTX, cr4),
674 SSMFIELD_ENTRY_OLD( cr8, sizeof(uint64_t)),
675 SSMFIELD_ENTRY( CPUMCTX, dr[0]),
676 SSMFIELD_ENTRY( CPUMCTX, dr[1]),
677 SSMFIELD_ENTRY( CPUMCTX, dr[2]),
678 SSMFIELD_ENTRY( CPUMCTX, dr[3]),
679 SSMFIELD_ENTRY_OLD( dr[4], sizeof(uint64_t)),
680 SSMFIELD_ENTRY_OLD( dr[5], sizeof(uint64_t)),
681 SSMFIELD_ENTRY( CPUMCTX, dr[6]),
682 SSMFIELD_ENTRY( CPUMCTX, dr[7]),
683 SSMFIELD_ENTRY( CPUMCTX, gdtr.cbGdt),
684 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, gdtr.pGdt),
685 SSMFIELD_ENTRY_OLD( gdtrPadding, sizeof(uint16_t)),
686 SSMFIELD_ENTRY_OLD( gdtrPadding64, sizeof(uint64_t)),
687 SSMFIELD_ENTRY( CPUMCTX, idtr.cbIdt),
688 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, idtr.pIdt),
689 SSMFIELD_ENTRY_OLD( idtrPadding, sizeof(uint16_t)),
690 SSMFIELD_ENTRY_OLD( idtrPadding64, sizeof(uint64_t)),
691 SSMFIELD_ENTRY( CPUMCTX, ldtr.Sel),
692 SSMFIELD_ENTRY_OLD( ldtrPadding, sizeof(uint16_t)),
693 SSMFIELD_ENTRY( CPUMCTX, tr.Sel),
694 SSMFIELD_ENTRY_OLD( trPadding, sizeof(uint16_t)),
695 SSMFIELD_ENTRY( CPUMCTX, SysEnter.cs),
696 SSMFIELD_ENTRY( CPUMCTX, SysEnter.eip),
697 SSMFIELD_ENTRY( CPUMCTX, SysEnter.esp),
698 SSMFIELD_ENTRY( CPUMCTX, msrEFER),
699 SSMFIELD_ENTRY( CPUMCTX, msrSTAR),
700 SSMFIELD_ENTRY( CPUMCTX, msrPAT),
701 SSMFIELD_ENTRY( CPUMCTX, msrLSTAR),
702 SSMFIELD_ENTRY( CPUMCTX, msrCSTAR),
703 SSMFIELD_ENTRY( CPUMCTX, msrSFMASK),
704 SSMFIELD_ENTRY_OLD( msrFSBASE, sizeof(uint64_t)),
705 SSMFIELD_ENTRY_OLD( msrGSBASE, sizeof(uint64_t)),
706 SSMFIELD_ENTRY( CPUMCTX, msrKERNELGSBASE),
707 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, ldtr.u64Base),
708 SSMFIELD_ENTRY( CPUMCTX, ldtr.u32Limit),
709 SSMFIELD_ENTRY( CPUMCTX, ldtr.Attr),
710 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, tr.u64Base),
711 SSMFIELD_ENTRY( CPUMCTX, tr.u32Limit),
712 SSMFIELD_ENTRY( CPUMCTX, tr.Attr),
713 SSMFIELD_ENTRY_OLD( padding, sizeof(uint32_t)*2),
714 SSMFIELD_ENTRY_TERM()
715};
716
717
718/**
719 * Checks for partial/leaky FXSAVE/FXRSTOR handling on AMD CPUs.
720 *
721 * AMD K7, K8 and newer AMD CPUs do not save/restore the x87 error pointers
722 * (last instruction pointer, last data pointer, last opcode) except when the ES
723 * bit (Exception Summary) in x87 FSW (FPU Status Word) is set. Thus if we don't
724 * clear these registers there is potential, local FPU leakage from a process
725 * using the FPU to another.
726 *
727 * See AMD Instruction Reference for FXSAVE, FXRSTOR.
728 *
729 * @param pVM The cross context VM structure.
730 */
731static void cpumR3CheckLeakyFpu(PVM pVM)
732{
733 uint32_t u32CpuVersion = ASMCpuId_EAX(1);
734 uint32_t const u32Family = u32CpuVersion >> 8;
735 if ( u32Family >= 6 /* K7 and higher */
736 && ASMIsAmdCpu())
737 {
738 uint32_t cExt = ASMCpuId_EAX(0x80000000);
739 if (ASMIsValidExtRange(cExt))
740 {
741 uint32_t fExtFeaturesEDX = ASMCpuId_EDX(0x80000001);
742 if (fExtFeaturesEDX & X86_CPUID_AMD_FEATURE_EDX_FFXSR)
743 {
744 for (VMCPUID i = 0; i < pVM->cCpus; i++)
745 pVM->aCpus[i].cpum.s.fUseFlags |= CPUM_USE_FFXSR_LEAKY;
746 Log(("CPUMR3Init: host CPU has leaky fxsave/fxrstor behaviour\n"));
747 }
748 }
749 }
750}
751
752
753/**
754 * Frees memory allocated for the SVM hardware virtualization state.
755 *
756 * @param pVM The cross context VM structure.
757 */
758static void cpumR3FreeSvmHwVirtState(PVM pVM)
759{
760 Assert(pVM->cpum.ro.GuestFeatures.fSvm);
761 for (VMCPUID i = 0; i < pVM->cCpus; i++)
762 {
763 PVMCPU pVCpu = &pVM->aCpus[i];
764 if (pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR3)
765 {
766 SUPR3PageFreeEx(pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR3, SVM_VMCB_PAGES);
767 pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR3 = NULL;
768 }
769 pVCpu->cpum.s.Guest.hwvirt.svm.HCPhysVmcb = NIL_RTHCPHYS;
770
771 if (pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR3)
772 {
773 SUPR3PageFreeEx(pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR3, SVM_MSRPM_PAGES);
774 pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR3 = NULL;
775 }
776
777 if (pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR3)
778 {
779 SUPR3PageFreeEx(pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR3, SVM_IOPM_PAGES);
780 pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR3 = NULL;
781 }
782 }
783}
784
785
786/**
787 * Allocates memory for the SVM hardware virtualization state.
788 *
789 * @returns VBox status code.
790 * @param pVM The cross context VM structure.
791 */
792static int cpumR3AllocSvmHwVirtState(PVM pVM)
793{
794 Assert(pVM->cpum.ro.GuestFeatures.fSvm);
795
796 int rc = VINF_SUCCESS;
797 LogRel(("CPUM: Allocating %u pages for the nested-guest SVM MSR and IO permission bitmaps\n",
798 pVM->cCpus * (SVM_MSRPM_PAGES + SVM_IOPM_PAGES)));
799 for (VMCPUID i = 0; i < pVM->cCpus; i++)
800 {
801 PVMCPU pVCpu = &pVM->aCpus[i];
802
803 /*
804 * Allocate the nested-guest VMCB.
805 */
806 SUPPAGE SupNstGstVmcbPage;
807 RT_ZERO(SupNstGstVmcbPage);
808 SupNstGstVmcbPage.Phys = NIL_RTHCPHYS;
809 Assert(SVM_VMCB_PAGES == 1);
810 Assert(!pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR3);
811 rc = SUPR3PageAllocEx(SVM_VMCB_PAGES, 0 /* fFlags */, (void **)&pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR3,
812 &pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR0, &SupNstGstVmcbPage);
813 if (RT_FAILURE(rc))
814 {
815 Assert(!pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR3);
816 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's VMCB\n", pVCpu->idCpu, SVM_VMCB_PAGES));
817 break;
818 }
819 pVCpu->cpum.s.Guest.hwvirt.svm.HCPhysVmcb = SupNstGstVmcbPage.Phys;
820
821 /*
822 * Allocate the MSRPM (MSR Permission bitmap).
823 */
824 Assert(!pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR3);
825 rc = SUPR3PageAllocEx(SVM_MSRPM_PAGES, 0 /* fFlags */, &pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR3,
826 &pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR0, NULL /* paPages */);
827 if (RT_FAILURE(rc))
828 {
829 Assert(!pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR3);
830 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's MSR permission bitmap\n", pVCpu->idCpu,
831 SVM_MSRPM_PAGES));
832 break;
833 }
834
835 /*
836 * Allocate the IOPM (IO Permission bitmap).
837 */
838 Assert(!pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR3);
839 rc = SUPR3PageAllocEx(SVM_IOPM_PAGES, 0 /* fFlags */, &pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR3,
840 &pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR0, NULL /* paPages */);
841 if (RT_FAILURE(rc))
842 {
843 Assert(!pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR3);
844 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's IO permission bitmap\n", pVCpu->idCpu,
845 SVM_IOPM_PAGES));
846 break;
847 }
848 }
849
850 /* On any failure, cleanup. */
851 if (RT_FAILURE(rc))
852 cpumR3FreeSvmHwVirtState(pVM);
853
854 return rc;
855}
856
857
858/**
859 * Initializes the CPUM.
860 *
861 * @returns VBox status code.
862 * @param pVM The cross context VM structure.
863 */
864VMMR3DECL(int) CPUMR3Init(PVM pVM)
865{
866 LogFlow(("CPUMR3Init\n"));
867
868 /*
869 * Assert alignment, sizes and tables.
870 */
871 AssertCompileMemberAlignment(VM, cpum.s, 32);
872 AssertCompile(sizeof(pVM->cpum.s) <= sizeof(pVM->cpum.padding));
873 AssertCompileSizeAlignment(CPUMCTX, 64);
874 AssertCompileSizeAlignment(CPUMCTXMSRS, 64);
875 AssertCompileSizeAlignment(CPUMHOSTCTX, 64);
876 AssertCompileMemberAlignment(VM, cpum, 64);
877 AssertCompileMemberAlignment(VM, aCpus, 64);
878 AssertCompileMemberAlignment(VMCPU, cpum.s, 64);
879 AssertCompileMemberSizeAlignment(VM, aCpus[0].cpum.s, 64);
880#ifdef VBOX_STRICT
881 int rc2 = cpumR3MsrStrictInitChecks();
882 AssertRCReturn(rc2, rc2);
883#endif
884
885 /*
886 * Initialize offsets.
887 */
888
889 /* Calculate the offset from CPUM to CPUMCPU for the first CPU. */
890 pVM->cpum.s.offCPUMCPU0 = RT_OFFSETOF(VM, aCpus[0].cpum) - RT_OFFSETOF(VM, cpum);
891 Assert((uintptr_t)&pVM->cpum + pVM->cpum.s.offCPUMCPU0 == (uintptr_t)&pVM->aCpus[0].cpum);
892
893
894 /* Calculate the offset from CPUMCPU to CPUM. */
895 for (VMCPUID i = 0; i < pVM->cCpus; i++)
896 {
897 PVMCPU pVCpu = &pVM->aCpus[i];
898
899 pVCpu->cpum.s.offCPUM = RT_OFFSETOF(VM, aCpus[i].cpum) - RT_OFFSETOF(VM, cpum);
900 Assert((uintptr_t)&pVCpu->cpum - pVCpu->cpum.s.offCPUM == (uintptr_t)&pVM->cpum);
901 }
902
903 /*
904 * Gather info about the host CPU.
905 */
906 if (!ASMHasCpuId())
907 {
908 Log(("The CPU doesn't support CPUID!\n"));
909 return VERR_UNSUPPORTED_CPU;
910 }
911
912 pVM->cpum.s.fHostMxCsrMask = CPUMR3DeterminHostMxCsrMask();
913
914 PCPUMCPUIDLEAF paLeaves;
915 uint32_t cLeaves;
916 int rc = CPUMR3CpuIdCollectLeaves(&paLeaves, &cLeaves);
917 AssertLogRelRCReturn(rc, rc);
918
919 rc = cpumR3CpuIdExplodeFeatures(paLeaves, cLeaves, &pVM->cpum.s.HostFeatures);
920 RTMemFree(paLeaves);
921 AssertLogRelRCReturn(rc, rc);
922 pVM->cpum.s.GuestFeatures.enmCpuVendor = pVM->cpum.s.HostFeatures.enmCpuVendor;
923
924 /*
925 * Check that the CPU supports the minimum features we require.
926 */
927 if (!pVM->cpum.s.HostFeatures.fFxSaveRstor)
928 return VMSetError(pVM, VERR_UNSUPPORTED_CPU, RT_SRC_POS, "Host CPU does not support the FXSAVE/FXRSTOR instruction.");
929 if (!pVM->cpum.s.HostFeatures.fMmx)
930 return VMSetError(pVM, VERR_UNSUPPORTED_CPU, RT_SRC_POS, "Host CPU does not support MMX.");
931 if (!pVM->cpum.s.HostFeatures.fTsc)
932 return VMSetError(pVM, VERR_UNSUPPORTED_CPU, RT_SRC_POS, "Host CPU does not support RDTSC.");
933
934 /*
935 * Setup the CR4 AND and OR masks used in the raw-mode switcher.
936 */
937 pVM->cpum.s.CR4.AndMask = X86_CR4_OSXMMEEXCPT | X86_CR4_PVI | X86_CR4_VME;
938 pVM->cpum.s.CR4.OrMask = X86_CR4_OSFXSR;
939
940 /*
941 * Figure out which XSAVE/XRSTOR features are available on the host.
942 */
943 uint64_t fXcr0Host = 0;
944 uint64_t fXStateHostMask = 0;
945 if ( pVM->cpum.s.HostFeatures.fXSaveRstor
946 && pVM->cpum.s.HostFeatures.fOpSysXSaveRstor)
947 {
948 fXStateHostMask = fXcr0Host = ASMGetXcr0();
949 fXStateHostMask &= XSAVE_C_X87 | XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI;
950 AssertLogRelMsgStmt((fXStateHostMask & (XSAVE_C_X87 | XSAVE_C_SSE)) == (XSAVE_C_X87 | XSAVE_C_SSE),
951 ("%#llx\n", fXStateHostMask), fXStateHostMask = 0);
952 }
953 pVM->cpum.s.fXStateHostMask = fXStateHostMask;
954 if (VM_IS_RAW_MODE_ENABLED(pVM)) /* For raw-mode, we only use XSAVE/XRSTOR when the guest starts using it (CPUID/CR4 visibility). */
955 fXStateHostMask = 0;
956 LogRel(("CPUM: fXStateHostMask=%#llx; initial: %#llx; host XCR0=%#llx\n",
957 pVM->cpum.s.fXStateHostMask, fXStateHostMask, fXcr0Host));
958
959 /*
960 * Allocate memory for the extended CPU state and initialize the host XSAVE/XRSTOR mask.
961 */
962 uint32_t cbMaxXState = pVM->cpum.s.HostFeatures.cbMaxExtendedState;
963 cbMaxXState = RT_ALIGN(cbMaxXState, 128);
964 AssertLogRelReturn(cbMaxXState >= sizeof(X86FXSTATE) && cbMaxXState <= _8K, VERR_CPUM_IPE_2);
965
966 uint8_t *pbXStates;
967 rc = MMR3HyperAllocOnceNoRelEx(pVM, cbMaxXState * 3 * pVM->cCpus, PAGE_SIZE, MM_TAG_CPUM_CTX,
968 MMHYPER_AONR_FLAGS_KERNEL_MAPPING, (void **)&pbXStates);
969 AssertLogRelRCReturn(rc, rc);
970
971 for (VMCPUID i = 0; i < pVM->cCpus; i++)
972 {
973 PVMCPU pVCpu = &pVM->aCpus[i];
974
975 pVCpu->cpum.s.Guest.pXStateR3 = (PX86XSAVEAREA)pbXStates;
976 pVCpu->cpum.s.Guest.pXStateR0 = MMHyperR3ToR0(pVM, pbXStates);
977 pVCpu->cpum.s.Guest.pXStateRC = MMHyperR3ToR0(pVM, pbXStates);
978 pbXStates += cbMaxXState;
979
980 pVCpu->cpum.s.Host.pXStateR3 = (PX86XSAVEAREA)pbXStates;
981 pVCpu->cpum.s.Host.pXStateR0 = MMHyperR3ToR0(pVM, pbXStates);
982 pVCpu->cpum.s.Host.pXStateRC = MMHyperR3ToR0(pVM, pbXStates);
983 pbXStates += cbMaxXState;
984
985 pVCpu->cpum.s.Hyper.pXStateR3 = (PX86XSAVEAREA)pbXStates;
986 pVCpu->cpum.s.Hyper.pXStateR0 = MMHyperR3ToR0(pVM, pbXStates);
987 pVCpu->cpum.s.Hyper.pXStateRC = MMHyperR3ToR0(pVM, pbXStates);
988 pbXStates += cbMaxXState;
989
990 pVCpu->cpum.s.Host.fXStateMask = fXStateHostMask;
991 }
992
993 /*
994 * Register saved state data item.
995 */
996 rc = SSMR3RegisterInternal(pVM, "cpum", 1, CPUM_SAVED_STATE_VERSION, sizeof(CPUM),
997 NULL, cpumR3LiveExec, NULL,
998 NULL, cpumR3SaveExec, NULL,
999 cpumR3LoadPrep, cpumR3LoadExec, cpumR3LoadDone);
1000 if (RT_FAILURE(rc))
1001 return rc;
1002
1003 /*
1004 * Register info handlers and registers with the debugger facility.
1005 */
1006 DBGFR3InfoRegisterInternalEx(pVM, "cpum", "Displays the all the cpu states.",
1007 &cpumR3InfoAll, DBGFINFO_FLAGS_ALL_EMTS);
1008 DBGFR3InfoRegisterInternalEx(pVM, "cpumguest", "Displays the guest cpu state.",
1009 &cpumR3InfoGuest, DBGFINFO_FLAGS_ALL_EMTS);
1010 DBGFR3InfoRegisterInternalEx(pVM, "cpumguesthwvirt", "Displays the guest hwvirt. cpu state.",
1011 &cpumR3InfoGuestHwvirt, DBGFINFO_FLAGS_ALL_EMTS);
1012 DBGFR3InfoRegisterInternalEx(pVM, "cpumhyper", "Displays the hypervisor cpu state.",
1013 &cpumR3InfoHyper, DBGFINFO_FLAGS_ALL_EMTS);
1014 DBGFR3InfoRegisterInternalEx(pVM, "cpumhost", "Displays the host cpu state.",
1015 &cpumR3InfoHost, DBGFINFO_FLAGS_ALL_EMTS);
1016 DBGFR3InfoRegisterInternalEx(pVM, "cpumguestinstr", "Displays the current guest instruction.",
1017 &cpumR3InfoGuestInstr, DBGFINFO_FLAGS_ALL_EMTS);
1018 DBGFR3InfoRegisterInternal( pVM, "cpuid", "Displays the guest cpuid leaves.", &cpumR3CpuIdInfo);
1019
1020 rc = cpumR3DbgInit(pVM);
1021 if (RT_FAILURE(rc))
1022 return rc;
1023
1024 /*
1025 * Check if we need to workaround partial/leaky FPU handling.
1026 */
1027 cpumR3CheckLeakyFpu(pVM);
1028
1029 /*
1030 * Initialize the Guest CPUID and MSR states.
1031 */
1032 rc = cpumR3InitCpuIdAndMsrs(pVM);
1033 if (RT_FAILURE(rc))
1034 return rc;
1035
1036 /*
1037 * Allocate memory required by the guest hardware virtualization state.
1038 */
1039 if (pVM->cpum.ro.GuestFeatures.fSvm)
1040 {
1041 rc = cpumR3AllocSvmHwVirtState(pVM);
1042 if (RT_FAILURE(rc))
1043 return rc;
1044 }
1045
1046 /*
1047 * Workaround for missing cpuid(0) patches when leaf 4 returns GuestInfo.DefCpuId:
1048 * If we miss to patch a cpuid(0).eax then Linux tries to determine the number
1049 * of processors from (cpuid(4).eax >> 26) + 1.
1050 *
1051 * Note: this code is obsolete, but let's keep it here for reference.
1052 * Purpose is valid when we artificially cap the max std id to less than 4.
1053 *
1054 * Note: This used to be a separate function CPUMR3SetHwVirt that was called
1055 * after VMINITCOMPLETED_HM.
1056 */
1057 if (VM_IS_RAW_MODE_ENABLED(pVM))
1058 {
1059 Assert( (pVM->cpum.s.aGuestCpuIdPatmStd[4].uEax & UINT32_C(0xffffc000)) == 0
1060 || pVM->cpum.s.aGuestCpuIdPatmStd[0].uEax < 0x4);
1061 pVM->cpum.s.aGuestCpuIdPatmStd[4].uEax &= UINT32_C(0x00003fff);
1062 }
1063
1064 CPUMR3Reset(pVM);
1065 return VINF_SUCCESS;
1066}
1067
1068
1069/**
1070 * Applies relocations to data and code managed by this
1071 * component. This function will be called at init and
1072 * whenever the VMM need to relocate it self inside the GC.
1073 *
1074 * The CPUM will update the addresses used by the switcher.
1075 *
1076 * @param pVM The cross context VM structure.
1077 */
1078VMMR3DECL(void) CPUMR3Relocate(PVM pVM)
1079{
1080 LogFlow(("CPUMR3Relocate\n"));
1081
1082 pVM->cpum.s.GuestInfo.paMsrRangesRC = MMHyperR3ToRC(pVM, pVM->cpum.s.GuestInfo.paMsrRangesR3);
1083 pVM->cpum.s.GuestInfo.paCpuIdLeavesRC = MMHyperR3ToRC(pVM, pVM->cpum.s.GuestInfo.paCpuIdLeavesR3);
1084
1085 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
1086 {
1087 PVMCPU pVCpu = &pVM->aCpus[iCpu];
1088 pVCpu->cpum.s.Guest.pXStateRC = MMHyperR3ToRC(pVM, pVCpu->cpum.s.Guest.pXStateR3);
1089 pVCpu->cpum.s.Host.pXStateRC = MMHyperR3ToRC(pVM, pVCpu->cpum.s.Host.pXStateR3);
1090 pVCpu->cpum.s.Hyper.pXStateRC = MMHyperR3ToRC(pVM, pVCpu->cpum.s.Hyper.pXStateR3); /** @todo remove me */
1091
1092 /* Recheck the guest DRx values in raw-mode. */
1093 CPUMRecalcHyperDRx(pVCpu, UINT8_MAX, false);
1094 }
1095}
1096
1097
1098/**
1099 * Terminates the CPUM.
1100 *
1101 * Termination means cleaning up and freeing all resources,
1102 * the VM it self is at this point powered off or suspended.
1103 *
1104 * @returns VBox status code.
1105 * @param pVM The cross context VM structure.
1106 */
1107VMMR3DECL(int) CPUMR3Term(PVM pVM)
1108{
1109#ifdef VBOX_WITH_CRASHDUMP_MAGIC
1110 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1111 {
1112 PVMCPU pVCpu = &pVM->aCpus[i];
1113 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1114
1115 memset(pVCpu->cpum.s.aMagic, 0, sizeof(pVCpu->cpum.s.aMagic));
1116 pVCpu->cpum.s.uMagic = 0;
1117 pCtx->dr[5] = 0;
1118 }
1119#endif
1120
1121 if (pVM->cpum.ro.GuestFeatures.fSvm)
1122 cpumR3FreeSvmHwVirtState(pVM);
1123 return VINF_SUCCESS;
1124}
1125
1126
1127/**
1128 * Resets a virtual CPU.
1129 *
1130 * Used by CPUMR3Reset and CPU hot plugging.
1131 *
1132 * @param pVM The cross context VM structure.
1133 * @param pVCpu The cross context virtual CPU structure of the CPU that is
1134 * being reset. This may differ from the current EMT.
1135 */
1136VMMR3DECL(void) CPUMR3ResetCpu(PVM pVM, PVMCPU pVCpu)
1137{
1138 /** @todo anything different for VCPU > 0? */
1139 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
1140
1141 /*
1142 * Initialize everything to ZERO first.
1143 */
1144 uint32_t fUseFlags = pVCpu->cpum.s.fUseFlags & ~CPUM_USED_FPU_SINCE_REM;
1145
1146 AssertCompile(RTASSERT_OFFSET_OF(CPUMCTX, pXStateR0) < RTASSERT_OFFSET_OF(CPUMCTX, pXStateR3));
1147 AssertCompile(RTASSERT_OFFSET_OF(CPUMCTX, pXStateR0) < RTASSERT_OFFSET_OF(CPUMCTX, pXStateRC));
1148 memset(pCtx, 0, RT_OFFSETOF(CPUMCTX, pXStateR0));
1149
1150 pVCpu->cpum.s.fUseFlags = fUseFlags;
1151
1152 pCtx->cr0 = X86_CR0_CD | X86_CR0_NW | X86_CR0_ET; //0x60000010
1153 pCtx->eip = 0x0000fff0;
1154 pCtx->edx = 0x00000600; /* P6 processor */
1155 pCtx->eflags.Bits.u1Reserved0 = 1;
1156
1157 pCtx->cs.Sel = 0xf000;
1158 pCtx->cs.ValidSel = 0xf000;
1159 pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
1160 pCtx->cs.u64Base = UINT64_C(0xffff0000);
1161 pCtx->cs.u32Limit = 0x0000ffff;
1162 pCtx->cs.Attr.n.u1DescType = 1; /* code/data segment */
1163 pCtx->cs.Attr.n.u1Present = 1;
1164 pCtx->cs.Attr.n.u4Type = X86_SEL_TYPE_ER_ACC;
1165
1166 pCtx->ds.fFlags = CPUMSELREG_FLAGS_VALID;
1167 pCtx->ds.u32Limit = 0x0000ffff;
1168 pCtx->ds.Attr.n.u1DescType = 1; /* code/data segment */
1169 pCtx->ds.Attr.n.u1Present = 1;
1170 pCtx->ds.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
1171
1172 pCtx->es.fFlags = CPUMSELREG_FLAGS_VALID;
1173 pCtx->es.u32Limit = 0x0000ffff;
1174 pCtx->es.Attr.n.u1DescType = 1; /* code/data segment */
1175 pCtx->es.Attr.n.u1Present = 1;
1176 pCtx->es.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
1177
1178 pCtx->fs.fFlags = CPUMSELREG_FLAGS_VALID;
1179 pCtx->fs.u32Limit = 0x0000ffff;
1180 pCtx->fs.Attr.n.u1DescType = 1; /* code/data segment */
1181 pCtx->fs.Attr.n.u1Present = 1;
1182 pCtx->fs.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
1183
1184 pCtx->gs.fFlags = CPUMSELREG_FLAGS_VALID;
1185 pCtx->gs.u32Limit = 0x0000ffff;
1186 pCtx->gs.Attr.n.u1DescType = 1; /* code/data segment */
1187 pCtx->gs.Attr.n.u1Present = 1;
1188 pCtx->gs.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
1189
1190 pCtx->ss.fFlags = CPUMSELREG_FLAGS_VALID;
1191 pCtx->ss.u32Limit = 0x0000ffff;
1192 pCtx->ss.Attr.n.u1Present = 1;
1193 pCtx->ss.Attr.n.u1DescType = 1; /* code/data segment */
1194 pCtx->ss.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
1195
1196 pCtx->idtr.cbIdt = 0xffff;
1197 pCtx->gdtr.cbGdt = 0xffff;
1198
1199 pCtx->ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
1200 pCtx->ldtr.u32Limit = 0xffff;
1201 pCtx->ldtr.Attr.n.u1Present = 1;
1202 pCtx->ldtr.Attr.n.u4Type = X86_SEL_TYPE_SYS_LDT;
1203
1204 pCtx->tr.fFlags = CPUMSELREG_FLAGS_VALID;
1205 pCtx->tr.u32Limit = 0xffff;
1206 pCtx->tr.Attr.n.u1Present = 1;
1207 pCtx->tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY; /* Deduction, not properly documented by Intel. */
1208
1209 pCtx->dr[6] = X86_DR6_INIT_VAL;
1210 pCtx->dr[7] = X86_DR7_INIT_VAL;
1211
1212 PX86FXSTATE pFpuCtx = &pCtx->pXStateR3->x87; AssertReleaseMsg(RT_VALID_PTR(pFpuCtx), ("%p\n", pFpuCtx));
1213 pFpuCtx->FTW = 0x00; /* All empty (abbridged tag reg edition). */
1214 pFpuCtx->FCW = 0x37f;
1215
1216 /* Intel 64 and IA-32 Architectures Software Developer's Manual Volume 3A, Table 8-1.
1217 IA-32 Processor States Following Power-up, Reset, or INIT */
1218 pFpuCtx->MXCSR = 0x1F80;
1219 pFpuCtx->MXCSR_MASK = pVM->cpum.s.GuestInfo.fMxCsrMask; /** @todo check if REM messes this up... */
1220
1221 pCtx->aXcr[0] = XSAVE_C_X87;
1222 if (pVM->cpum.s.HostFeatures.cbMaxExtendedState >= RT_OFFSETOF(X86XSAVEAREA, Hdr))
1223 {
1224 /* The entire FXSAVE state needs loading when we switch to XSAVE/XRSTOR
1225 as we don't know what happened before. (Bother optimize later?) */
1226 pCtx->pXStateR3->Hdr.bmXState = XSAVE_C_X87 | XSAVE_C_SSE;
1227 }
1228
1229 /*
1230 * MSRs.
1231 */
1232 /* Init PAT MSR */
1233 pCtx->msrPAT = MSR_IA32_CR_PAT_INIT_VAL;
1234
1235 /* EFER MBZ; see AMD64 Architecture Programmer's Manual Volume 2: Table 14-1. Initial Processor State.
1236 * The Intel docs don't mention it. */
1237 Assert(!pCtx->msrEFER);
1238
1239 /* IA32_MISC_ENABLE - not entirely sure what the init/reset state really
1240 is supposed to be here, just trying provide useful/sensible values. */
1241 PCPUMMSRRANGE pRange = cpumLookupMsrRange(pVM, MSR_IA32_MISC_ENABLE);
1242 if (pRange)
1243 {
1244 pVCpu->cpum.s.GuestMsrs.msr.MiscEnable = MSR_IA32_MISC_ENABLE_BTS_UNAVAIL
1245 | MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL
1246 | (pVM->cpum.s.GuestFeatures.fMonitorMWait ? MSR_IA32_MISC_ENABLE_MONITOR : 0)
1247 | MSR_IA32_MISC_ENABLE_FAST_STRINGS;
1248 pRange->fWrIgnMask |= MSR_IA32_MISC_ENABLE_BTS_UNAVAIL
1249 | MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL;
1250 pRange->fWrGpMask &= ~pVCpu->cpum.s.GuestMsrs.msr.MiscEnable;
1251 }
1252
1253 /** @todo Wire IA32_MISC_ENABLE bit 22 to our NT 4 CPUID trick. */
1254
1255 /** @todo r=ramshankar: Currently broken for SMP as TMCpuTickSet() expects to be
1256 * called from each EMT while we're getting called by CPUMR3Reset()
1257 * iteratively on the same thread. Fix later. */
1258#if 0 /** @todo r=bird: This we will do in TM, not here. */
1259 /* TSC must be 0. Intel spec. Table 9-1. "IA-32 Processor States Following Power-up, Reset, or INIT." */
1260 CPUMSetGuestMsr(pVCpu, MSR_IA32_TSC, 0);
1261#endif
1262
1263
1264 /* C-state control. Guesses. */
1265 pVCpu->cpum.s.GuestMsrs.msr.PkgCStateCfgCtrl = 1 /*C1*/ | RT_BIT_32(25) | RT_BIT_32(26) | RT_BIT_32(27) | RT_BIT_32(28);
1266 /* For Nehalem+ and Atoms, the 0xE2 MSR (MSR_PKG_CST_CONFIG_CONTROL) is documented. For Core 2,
1267 * it's undocumented but exists as MSR_PMG_CST_CONFIG_CONTROL and has similar but not identical
1268 * functionality. The default value must be different due to incompatible write mask.
1269 */
1270 if (CPUMMICROARCH_IS_INTEL_CORE2(pVM->cpum.s.GuestFeatures.enmMicroarch))
1271 pVCpu->cpum.s.GuestMsrs.msr.PkgCStateCfgCtrl = 0x202a01; /* From Mac Pro Harpertown, unlocked. */
1272 else if (pVM->cpum.s.GuestFeatures.enmMicroarch == kCpumMicroarch_Intel_Core_Yonah)
1273 pVCpu->cpum.s.GuestMsrs.msr.PkgCStateCfgCtrl = 0x26740c; /* From MacBookPro1,1. */
1274
1275 /*
1276 * Hardware virtualization state.
1277 */
1278 pCtx->hwvirt.fGif = true;
1279
1280 /* SVM. */
1281 if (pCtx->hwvirt.svm.CTX_SUFF(pVmcb))
1282 {
1283 memset(pCtx->hwvirt.svm.CTX_SUFF(pVmcb), 0, SVM_VMCB_PAGES << PAGE_SHIFT);
1284 pCtx->hwvirt.svm.uMsrHSavePa = 0;
1285 pCtx->hwvirt.svm.uPrevPauseTick = 0;
1286 }
1287}
1288
1289
1290/**
1291 * Resets the CPU.
1292 *
1293 * @returns VINF_SUCCESS.
1294 * @param pVM The cross context VM structure.
1295 */
1296VMMR3DECL(void) CPUMR3Reset(PVM pVM)
1297{
1298 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1299 {
1300 CPUMR3ResetCpu(pVM, &pVM->aCpus[i]);
1301
1302#ifdef VBOX_WITH_CRASHDUMP_MAGIC
1303 PCPUMCTX pCtx = &pVM->aCpus[i].cpum.s.Guest;
1304
1305 /* Magic marker for searching in crash dumps. */
1306 strcpy((char *)pVM->aCpus[i].cpum.s.aMagic, "CPUMCPU Magic");
1307 pVM->aCpus[i].cpum.s.uMagic = UINT64_C(0xDEADBEEFDEADBEEF);
1308 pCtx->dr[5] = UINT64_C(0xDEADBEEFDEADBEEF);
1309#endif
1310 }
1311}
1312
1313
1314
1315
1316/**
1317 * Pass 0 live exec callback.
1318 *
1319 * @returns VINF_SSM_DONT_CALL_AGAIN.
1320 * @param pVM The cross context VM structure.
1321 * @param pSSM The saved state handle.
1322 * @param uPass The pass (0).
1323 */
1324static DECLCALLBACK(int) cpumR3LiveExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uPass)
1325{
1326 AssertReturn(uPass == 0, VERR_SSM_UNEXPECTED_PASS);
1327 cpumR3SaveCpuId(pVM, pSSM);
1328 return VINF_SSM_DONT_CALL_AGAIN;
1329}
1330
1331
1332/**
1333 * Execute state save operation.
1334 *
1335 * @returns VBox status code.
1336 * @param pVM The cross context VM structure.
1337 * @param pSSM SSM operation handle.
1338 */
1339static DECLCALLBACK(int) cpumR3SaveExec(PVM pVM, PSSMHANDLE pSSM)
1340{
1341 /*
1342 * Save.
1343 */
1344 SSMR3PutU32(pSSM, pVM->cCpus);
1345 SSMR3PutU32(pSSM, sizeof(pVM->aCpus[0].cpum.s.GuestMsrs.msr));
1346 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
1347 {
1348 PVMCPU pVCpu = &pVM->aCpus[iCpu];
1349
1350 SSMR3PutStructEx(pSSM, &pVCpu->cpum.s.Hyper, sizeof(pVCpu->cpum.s.Hyper), 0, g_aCpumCtxFields, NULL);
1351
1352 PCPUMCTX pGstCtx = &pVCpu->cpum.s.Guest;
1353 SSMR3PutStructEx(pSSM, pGstCtx, sizeof(*pGstCtx), 0, g_aCpumCtxFields, NULL);
1354 SSMR3PutStructEx(pSSM, &pGstCtx->pXStateR3->x87, sizeof(pGstCtx->pXStateR3->x87), 0, g_aCpumX87Fields, NULL);
1355 if (pGstCtx->fXStateMask != 0)
1356 SSMR3PutStructEx(pSSM, &pGstCtx->pXStateR3->Hdr, sizeof(pGstCtx->pXStateR3->Hdr), 0, g_aCpumXSaveHdrFields, NULL);
1357 if (pGstCtx->fXStateMask & XSAVE_C_YMM)
1358 {
1359 PCX86XSAVEYMMHI pYmmHiCtx = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_YMM_BIT, PCX86XSAVEYMMHI);
1360 SSMR3PutStructEx(pSSM, pYmmHiCtx, sizeof(*pYmmHiCtx), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumYmmHiFields, NULL);
1361 }
1362 if (pGstCtx->fXStateMask & XSAVE_C_BNDREGS)
1363 {
1364 PCX86XSAVEBNDREGS pBndRegs = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_BNDREGS_BIT, PCX86XSAVEBNDREGS);
1365 SSMR3PutStructEx(pSSM, pBndRegs, sizeof(*pBndRegs), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumBndRegsFields, NULL);
1366 }
1367 if (pGstCtx->fXStateMask & XSAVE_C_BNDCSR)
1368 {
1369 PCX86XSAVEBNDCFG pBndCfg = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_BNDCSR_BIT, PCX86XSAVEBNDCFG);
1370 SSMR3PutStructEx(pSSM, pBndCfg, sizeof(*pBndCfg), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumBndCfgFields, NULL);
1371 }
1372 if (pGstCtx->fXStateMask & XSAVE_C_ZMM_HI256)
1373 {
1374 PCX86XSAVEZMMHI256 pZmmHi256 = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_ZMM_HI256_BIT, PCX86XSAVEZMMHI256);
1375 SSMR3PutStructEx(pSSM, pZmmHi256, sizeof(*pZmmHi256), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumZmmHi256Fields, NULL);
1376 }
1377 if (pGstCtx->fXStateMask & XSAVE_C_ZMM_16HI)
1378 {
1379 PCX86XSAVEZMM16HI pZmm16Hi = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_ZMM_16HI_BIT, PCX86XSAVEZMM16HI);
1380 SSMR3PutStructEx(pSSM, pZmm16Hi, sizeof(*pZmm16Hi), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumZmm16HiFields, NULL);
1381 }
1382
1383 SSMR3PutU32(pSSM, pVCpu->cpum.s.fUseFlags);
1384 SSMR3PutU32(pSSM, pVCpu->cpum.s.fChanged);
1385 AssertCompileSizeAlignment(pVCpu->cpum.s.GuestMsrs.msr, sizeof(uint64_t));
1386 SSMR3PutMem(pSSM, &pVCpu->cpum.s.GuestMsrs, sizeof(pVCpu->cpum.s.GuestMsrs.msr));
1387 }
1388
1389 cpumR3SaveCpuId(pVM, pSSM);
1390 return VINF_SUCCESS;
1391}
1392
1393
1394/**
1395 * @callback_method_impl{FNSSMINTLOADPREP}
1396 */
1397static DECLCALLBACK(int) cpumR3LoadPrep(PVM pVM, PSSMHANDLE pSSM)
1398{
1399 NOREF(pSSM);
1400 pVM->cpum.s.fPendingRestore = true;
1401 return VINF_SUCCESS;
1402}
1403
1404
1405/**
1406 * @callback_method_impl{FNSSMINTLOADEXEC}
1407 */
1408static DECLCALLBACK(int) cpumR3LoadExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
1409{
1410 int rc; /* Only for AssertRCReturn use. */
1411
1412 /*
1413 * Validate version.
1414 */
1415 if ( uVersion != CPUM_SAVED_STATE_VERSION_XSAVE
1416 && uVersion != CPUM_SAVED_STATE_VERSION_GOOD_CPUID_COUNT
1417 && uVersion != CPUM_SAVED_STATE_VERSION_BAD_CPUID_COUNT
1418 && uVersion != CPUM_SAVED_STATE_VERSION_PUT_STRUCT
1419 && uVersion != CPUM_SAVED_STATE_VERSION_MEM
1420 && uVersion != CPUM_SAVED_STATE_VERSION_NO_MSR_SIZE
1421 && uVersion != CPUM_SAVED_STATE_VERSION_VER3_2
1422 && uVersion != CPUM_SAVED_STATE_VERSION_VER3_0
1423 && uVersion != CPUM_SAVED_STATE_VERSION_VER2_1_NOMSR
1424 && uVersion != CPUM_SAVED_STATE_VERSION_VER2_0
1425 && uVersion != CPUM_SAVED_STATE_VERSION_VER1_6)
1426 {
1427 AssertMsgFailed(("cpumR3LoadExec: Invalid version uVersion=%d!\n", uVersion));
1428 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
1429 }
1430
1431 if (uPass == SSM_PASS_FINAL)
1432 {
1433 /*
1434 * Set the size of RTGCPTR for SSMR3GetGCPtr. (Only necessary for
1435 * really old SSM file versions.)
1436 */
1437 if (uVersion == CPUM_SAVED_STATE_VERSION_VER1_6)
1438 SSMR3HandleSetGCPtrSize(pSSM, sizeof(RTGCPTR32));
1439 else if (uVersion <= CPUM_SAVED_STATE_VERSION_VER3_0)
1440 SSMR3HandleSetGCPtrSize(pSSM, HC_ARCH_BITS == 32 ? sizeof(RTGCPTR32) : sizeof(RTGCPTR));
1441
1442 /*
1443 * Figure x86 and ctx field definitions to use for older states.
1444 */
1445 uint32_t const fLoad = uVersion > CPUM_SAVED_STATE_VERSION_MEM ? 0 : SSMSTRUCT_FLAGS_MEM_BAND_AID_RELAXED;
1446 PCSSMFIELD paCpumCtx1Fields = g_aCpumX87Fields;
1447 PCSSMFIELD paCpumCtx2Fields = g_aCpumCtxFields;
1448 if (uVersion == CPUM_SAVED_STATE_VERSION_VER1_6)
1449 {
1450 paCpumCtx1Fields = g_aCpumX87FieldsV16;
1451 paCpumCtx2Fields = g_aCpumCtxFieldsV16;
1452 }
1453 else if (uVersion <= CPUM_SAVED_STATE_VERSION_MEM)
1454 {
1455 paCpumCtx1Fields = g_aCpumX87FieldsMem;
1456 paCpumCtx2Fields = g_aCpumCtxFieldsMem;
1457 }
1458
1459 /*
1460 * The hyper state used to preceed the CPU count. Starting with
1461 * XSAVE it was moved down till after we've got the count.
1462 */
1463 if (uVersion < CPUM_SAVED_STATE_VERSION_XSAVE)
1464 {
1465 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
1466 {
1467 PVMCPU pVCpu = &pVM->aCpus[iCpu];
1468 X86FXSTATE Ign;
1469 SSMR3GetStructEx(pSSM, &Ign, sizeof(Ign), fLoad | SSMSTRUCT_FLAGS_NO_TAIL_MARKER, paCpumCtx1Fields, NULL);
1470 uint64_t uCR3 = pVCpu->cpum.s.Hyper.cr3;
1471 uint64_t uRSP = pVCpu->cpum.s.Hyper.rsp; /* see VMMR3Relocate(). */
1472 SSMR3GetStructEx(pSSM, &pVCpu->cpum.s.Hyper, sizeof(pVCpu->cpum.s.Hyper),
1473 fLoad | SSMSTRUCT_FLAGS_NO_LEAD_MARKER, paCpumCtx2Fields, NULL);
1474 pVCpu->cpum.s.Hyper.cr3 = uCR3;
1475 pVCpu->cpum.s.Hyper.rsp = uRSP;
1476 }
1477 }
1478
1479 if (uVersion >= CPUM_SAVED_STATE_VERSION_VER2_1_NOMSR)
1480 {
1481 uint32_t cCpus;
1482 rc = SSMR3GetU32(pSSM, &cCpus); AssertRCReturn(rc, rc);
1483 AssertLogRelMsgReturn(cCpus == pVM->cCpus, ("Mismatching CPU counts: saved: %u; configured: %u \n", cCpus, pVM->cCpus),
1484 VERR_SSM_UNEXPECTED_DATA);
1485 }
1486 AssertLogRelMsgReturn( uVersion > CPUM_SAVED_STATE_VERSION_VER2_0
1487 || pVM->cCpus == 1,
1488 ("cCpus=%u\n", pVM->cCpus),
1489 VERR_SSM_UNEXPECTED_DATA);
1490
1491 uint32_t cbMsrs = 0;
1492 if (uVersion > CPUM_SAVED_STATE_VERSION_NO_MSR_SIZE)
1493 {
1494 rc = SSMR3GetU32(pSSM, &cbMsrs); AssertRCReturn(rc, rc);
1495 AssertLogRelMsgReturn(RT_ALIGN(cbMsrs, sizeof(uint64_t)) == cbMsrs, ("Size of MSRs is misaligned: %#x\n", cbMsrs),
1496 VERR_SSM_UNEXPECTED_DATA);
1497 AssertLogRelMsgReturn(cbMsrs <= sizeof(CPUMCTXMSRS) && cbMsrs > 0, ("Size of MSRs is out of range: %#x\n", cbMsrs),
1498 VERR_SSM_UNEXPECTED_DATA);
1499 }
1500
1501 /*
1502 * Do the per-CPU restoring.
1503 */
1504 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
1505 {
1506 PVMCPU pVCpu = &pVM->aCpus[iCpu];
1507 PCPUMCTX pGstCtx = &pVCpu->cpum.s.Guest;
1508
1509 if (uVersion >= CPUM_SAVED_STATE_VERSION_XSAVE)
1510 {
1511 /*
1512 * The XSAVE saved state layout moved the hyper state down here.
1513 */
1514 uint64_t uCR3 = pVCpu->cpum.s.Hyper.cr3;
1515 uint64_t uRSP = pVCpu->cpum.s.Hyper.rsp; /* see VMMR3Relocate(). */
1516 rc = SSMR3GetStructEx(pSSM, &pVCpu->cpum.s.Hyper, sizeof(pVCpu->cpum.s.Hyper), 0, g_aCpumCtxFields, NULL);
1517 pVCpu->cpum.s.Hyper.cr3 = uCR3;
1518 pVCpu->cpum.s.Hyper.rsp = uRSP;
1519 AssertRCReturn(rc, rc);
1520
1521 /*
1522 * Start by restoring the CPUMCTX structure and the X86FXSAVE bits of the extended state.
1523 */
1524 rc = SSMR3GetStructEx(pSSM, pGstCtx, sizeof(*pGstCtx), 0, g_aCpumCtxFields, NULL);
1525 rc = SSMR3GetStructEx(pSSM, &pGstCtx->pXStateR3->x87, sizeof(pGstCtx->pXStateR3->x87), 0, g_aCpumX87Fields, NULL);
1526 AssertRCReturn(rc, rc);
1527
1528 /* Check that the xsave/xrstor mask is valid (invalid results in #GP). */
1529 if (pGstCtx->fXStateMask != 0)
1530 {
1531 AssertLogRelMsgReturn(!(pGstCtx->fXStateMask & ~pVM->cpum.s.fXStateGuestMask),
1532 ("fXStateMask=%#RX64 fXStateGuestMask=%#RX64\n",
1533 pGstCtx->fXStateMask, pVM->cpum.s.fXStateGuestMask),
1534 VERR_CPUM_INCOMPATIBLE_XSAVE_COMP_MASK);
1535 AssertLogRelMsgReturn(pGstCtx->fXStateMask & XSAVE_C_X87,
1536 ("fXStateMask=%#RX64\n", pGstCtx->fXStateMask), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
1537 AssertLogRelMsgReturn((pGstCtx->fXStateMask & (XSAVE_C_SSE | XSAVE_C_YMM)) != XSAVE_C_YMM,
1538 ("fXStateMask=%#RX64\n", pGstCtx->fXStateMask), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
1539 AssertLogRelMsgReturn( (pGstCtx->fXStateMask & (XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI)) == 0
1540 || (pGstCtx->fXStateMask & (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI))
1541 == (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI),
1542 ("fXStateMask=%#RX64\n", pGstCtx->fXStateMask), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
1543 }
1544
1545 /* Check that the XCR0 mask is valid (invalid results in #GP). */
1546 AssertLogRelMsgReturn(pGstCtx->aXcr[0] & XSAVE_C_X87, ("xcr0=%#RX64\n", pGstCtx->aXcr[0]), VERR_CPUM_INVALID_XCR0);
1547 if (pGstCtx->aXcr[0] != XSAVE_C_X87)
1548 {
1549 AssertLogRelMsgReturn(!(pGstCtx->aXcr[0] & ~(pGstCtx->fXStateMask | XSAVE_C_X87)),
1550 ("xcr0=%#RX64 fXStateMask=%#RX64\n", pGstCtx->aXcr[0], pGstCtx->fXStateMask),
1551 VERR_CPUM_INVALID_XCR0);
1552 AssertLogRelMsgReturn(pGstCtx->aXcr[0] & XSAVE_C_X87,
1553 ("xcr0=%#RX64\n", pGstCtx->aXcr[0]), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
1554 AssertLogRelMsgReturn((pGstCtx->aXcr[0] & (XSAVE_C_SSE | XSAVE_C_YMM)) != XSAVE_C_YMM,
1555 ("xcr0=%#RX64\n", pGstCtx->aXcr[0]), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
1556 AssertLogRelMsgReturn( (pGstCtx->aXcr[0] & (XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI)) == 0
1557 || (pGstCtx->aXcr[0] & (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI))
1558 == (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI),
1559 ("xcr0=%#RX64\n", pGstCtx->aXcr[0]), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
1560 }
1561
1562 /* Check that the XCR1 is zero, as we don't implement it yet. */
1563 AssertLogRelMsgReturn(!pGstCtx->aXcr[1], ("xcr1=%#RX64\n", pGstCtx->aXcr[1]), VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
1564
1565 /*
1566 * Restore the individual extended state components we support.
1567 */
1568 if (pGstCtx->fXStateMask != 0)
1569 {
1570 rc = SSMR3GetStructEx(pSSM, &pGstCtx->pXStateR3->Hdr, sizeof(pGstCtx->pXStateR3->Hdr),
1571 0, g_aCpumXSaveHdrFields, NULL);
1572 AssertRCReturn(rc, rc);
1573 AssertLogRelMsgReturn(!(pGstCtx->pXStateR3->Hdr.bmXState & ~pGstCtx->fXStateMask),
1574 ("bmXState=%#RX64 fXStateMask=%#RX64\n",
1575 pGstCtx->pXStateR3->Hdr.bmXState, pGstCtx->fXStateMask),
1576 VERR_CPUM_INVALID_XSAVE_HDR);
1577 }
1578 if (pGstCtx->fXStateMask & XSAVE_C_YMM)
1579 {
1580 PX86XSAVEYMMHI pYmmHiCtx = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_YMM_BIT, PX86XSAVEYMMHI);
1581 SSMR3GetStructEx(pSSM, pYmmHiCtx, sizeof(*pYmmHiCtx), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumYmmHiFields, NULL);
1582 }
1583 if (pGstCtx->fXStateMask & XSAVE_C_BNDREGS)
1584 {
1585 PX86XSAVEBNDREGS pBndRegs = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_BNDREGS_BIT, PX86XSAVEBNDREGS);
1586 SSMR3GetStructEx(pSSM, pBndRegs, sizeof(*pBndRegs), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumBndRegsFields, NULL);
1587 }
1588 if (pGstCtx->fXStateMask & XSAVE_C_BNDCSR)
1589 {
1590 PX86XSAVEBNDCFG pBndCfg = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_BNDCSR_BIT, PX86XSAVEBNDCFG);
1591 SSMR3GetStructEx(pSSM, pBndCfg, sizeof(*pBndCfg), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumBndCfgFields, NULL);
1592 }
1593 if (pGstCtx->fXStateMask & XSAVE_C_ZMM_HI256)
1594 {
1595 PX86XSAVEZMMHI256 pZmmHi256 = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_ZMM_HI256_BIT, PX86XSAVEZMMHI256);
1596 SSMR3GetStructEx(pSSM, pZmmHi256, sizeof(*pZmmHi256), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumZmmHi256Fields, NULL);
1597 }
1598 if (pGstCtx->fXStateMask & XSAVE_C_ZMM_16HI)
1599 {
1600 PX86XSAVEZMM16HI pZmm16Hi = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_ZMM_16HI_BIT, PX86XSAVEZMM16HI);
1601 SSMR3GetStructEx(pSSM, pZmm16Hi, sizeof(*pZmm16Hi), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumZmm16HiFields, NULL);
1602 }
1603 }
1604 else
1605 {
1606 /*
1607 * Pre XSAVE saved state.
1608 */
1609 SSMR3GetStructEx(pSSM, &pGstCtx->pXStateR3->x87, sizeof(pGstCtx->pXStateR3->x87),
1610 fLoad | SSMSTRUCT_FLAGS_NO_TAIL_MARKER, paCpumCtx1Fields, NULL);
1611 SSMR3GetStructEx(pSSM, pGstCtx, sizeof(*pGstCtx), fLoad | SSMSTRUCT_FLAGS_NO_LEAD_MARKER, paCpumCtx2Fields, NULL);
1612 }
1613
1614 /*
1615 * Restore a couple of flags and the MSRs.
1616 */
1617 SSMR3GetU32(pSSM, &pVCpu->cpum.s.fUseFlags);
1618 SSMR3GetU32(pSSM, &pVCpu->cpum.s.fChanged);
1619
1620 rc = VINF_SUCCESS;
1621 if (uVersion > CPUM_SAVED_STATE_VERSION_NO_MSR_SIZE)
1622 rc = SSMR3GetMem(pSSM, &pVCpu->cpum.s.GuestMsrs.au64[0], cbMsrs);
1623 else if (uVersion >= CPUM_SAVED_STATE_VERSION_VER3_0)
1624 {
1625 SSMR3GetMem(pSSM, &pVCpu->cpum.s.GuestMsrs.au64[0], 2 * sizeof(uint64_t)); /* Restore two MSRs. */
1626 rc = SSMR3Skip(pSSM, 62 * sizeof(uint64_t));
1627 }
1628 AssertRCReturn(rc, rc);
1629
1630 /* REM and other may have cleared must-be-one fields in DR6 and
1631 DR7, fix these. */
1632 pGstCtx->dr[6] &= ~(X86_DR6_RAZ_MASK | X86_DR6_MBZ_MASK);
1633 pGstCtx->dr[6] |= X86_DR6_RA1_MASK;
1634 pGstCtx->dr[7] &= ~(X86_DR7_RAZ_MASK | X86_DR7_MBZ_MASK);
1635 pGstCtx->dr[7] |= X86_DR7_RA1_MASK;
1636 }
1637
1638 /* Older states does not have the internal selector register flags
1639 and valid selector value. Supply those. */
1640 if (uVersion <= CPUM_SAVED_STATE_VERSION_MEM)
1641 {
1642 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
1643 {
1644 PVMCPU pVCpu = &pVM->aCpus[iCpu];
1645 bool const fValid = !VM_IS_RAW_MODE_ENABLED(pVM)
1646 || ( uVersion > CPUM_SAVED_STATE_VERSION_VER3_2
1647 && !(pVCpu->cpum.s.fChanged & CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID));
1648 PCPUMSELREG paSelReg = CPUMCTX_FIRST_SREG(&pVCpu->cpum.s.Guest);
1649 if (fValid)
1650 {
1651 for (uint32_t iSelReg = 0; iSelReg < X86_SREG_COUNT; iSelReg++)
1652 {
1653 paSelReg[iSelReg].fFlags = CPUMSELREG_FLAGS_VALID;
1654 paSelReg[iSelReg].ValidSel = paSelReg[iSelReg].Sel;
1655 }
1656
1657 pVCpu->cpum.s.Guest.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
1658 pVCpu->cpum.s.Guest.ldtr.ValidSel = pVCpu->cpum.s.Guest.ldtr.Sel;
1659 }
1660 else
1661 {
1662 for (uint32_t iSelReg = 0; iSelReg < X86_SREG_COUNT; iSelReg++)
1663 {
1664 paSelReg[iSelReg].fFlags = 0;
1665 paSelReg[iSelReg].ValidSel = 0;
1666 }
1667
1668 /* This might not be 104% correct, but I think it's close
1669 enough for all practical purposes... (REM always loaded
1670 LDTR registers.) */
1671 pVCpu->cpum.s.Guest.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
1672 pVCpu->cpum.s.Guest.ldtr.ValidSel = pVCpu->cpum.s.Guest.ldtr.Sel;
1673 }
1674 pVCpu->cpum.s.Guest.tr.fFlags = CPUMSELREG_FLAGS_VALID;
1675 pVCpu->cpum.s.Guest.tr.ValidSel = pVCpu->cpum.s.Guest.tr.Sel;
1676 }
1677 }
1678
1679 /* Clear CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID. */
1680 if ( uVersion > CPUM_SAVED_STATE_VERSION_VER3_2
1681 && uVersion <= CPUM_SAVED_STATE_VERSION_MEM)
1682 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
1683 pVM->aCpus[iCpu].cpum.s.fChanged &= CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID;
1684
1685 /*
1686 * A quick sanity check.
1687 */
1688 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
1689 {
1690 PVMCPU pVCpu = &pVM->aCpus[iCpu];
1691 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.es.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
1692 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.cs.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
1693 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.ss.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
1694 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.ds.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
1695 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.fs.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
1696 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.gs.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
1697 }
1698 }
1699
1700 pVM->cpum.s.fPendingRestore = false;
1701
1702 /*
1703 * Guest CPUIDs.
1704 */
1705 if (uVersion >= CPUM_SAVED_STATE_VERSION_VER3_2)
1706 return cpumR3LoadCpuId(pVM, pSSM, uVersion);
1707 return cpumR3LoadCpuIdPre32(pVM, pSSM, uVersion);
1708}
1709
1710
1711/**
1712 * @callback_method_impl{FNSSMINTLOADDONE}
1713 */
1714static DECLCALLBACK(int) cpumR3LoadDone(PVM pVM, PSSMHANDLE pSSM)
1715{
1716 if (RT_FAILURE(SSMR3HandleGetStatus(pSSM)))
1717 return VINF_SUCCESS;
1718
1719 /* just check this since we can. */ /** @todo Add a SSM unit flag for indicating that it's mandatory during a restore. */
1720 if (pVM->cpum.s.fPendingRestore)
1721 {
1722 LogRel(("CPUM: Missing state!\n"));
1723 return VERR_INTERNAL_ERROR_2;
1724 }
1725
1726 bool const fSupportsLongMode = VMR3IsLongModeAllowed(pVM);
1727 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1728 {
1729 PVMCPU pVCpu = &pVM->aCpus[idCpu];
1730
1731 /* Notify PGM of the NXE states in case they've changed. */
1732 PGMNotifyNxeChanged(pVCpu, RT_BOOL(pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_NXE));
1733
1734 /* During init. this is done in CPUMR3InitCompleted(). */
1735 if (fSupportsLongMode)
1736 pVCpu->cpum.s.fUseFlags |= CPUM_USE_SUPPORTS_LONGMODE;
1737 }
1738 return VINF_SUCCESS;
1739}
1740
1741
1742/**
1743 * Checks if the CPUM state restore is still pending.
1744 *
1745 * @returns true / false.
1746 * @param pVM The cross context VM structure.
1747 */
1748VMMDECL(bool) CPUMR3IsStateRestorePending(PVM pVM)
1749{
1750 return pVM->cpum.s.fPendingRestore;
1751}
1752
1753
1754/**
1755 * Formats the EFLAGS value into mnemonics.
1756 *
1757 * @param pszEFlags Where to write the mnemonics. (Assumes sufficient buffer space.)
1758 * @param efl The EFLAGS value.
1759 */
1760static void cpumR3InfoFormatFlags(char *pszEFlags, uint32_t efl)
1761{
1762 /*
1763 * Format the flags.
1764 */
1765 static const struct
1766 {
1767 const char *pszSet; const char *pszClear; uint32_t fFlag;
1768 } s_aFlags[] =
1769 {
1770 { "vip",NULL, X86_EFL_VIP },
1771 { "vif",NULL, X86_EFL_VIF },
1772 { "ac", NULL, X86_EFL_AC },
1773 { "vm", NULL, X86_EFL_VM },
1774 { "rf", NULL, X86_EFL_RF },
1775 { "nt", NULL, X86_EFL_NT },
1776 { "ov", "nv", X86_EFL_OF },
1777 { "dn", "up", X86_EFL_DF },
1778 { "ei", "di", X86_EFL_IF },
1779 { "tf", NULL, X86_EFL_TF },
1780 { "nt", "pl", X86_EFL_SF },
1781 { "nz", "zr", X86_EFL_ZF },
1782 { "ac", "na", X86_EFL_AF },
1783 { "po", "pe", X86_EFL_PF },
1784 { "cy", "nc", X86_EFL_CF },
1785 };
1786 char *psz = pszEFlags;
1787 for (unsigned i = 0; i < RT_ELEMENTS(s_aFlags); i++)
1788 {
1789 const char *pszAdd = s_aFlags[i].fFlag & efl ? s_aFlags[i].pszSet : s_aFlags[i].pszClear;
1790 if (pszAdd)
1791 {
1792 strcpy(psz, pszAdd);
1793 psz += strlen(pszAdd);
1794 *psz++ = ' ';
1795 }
1796 }
1797 psz[-1] = '\0';
1798}
1799
1800
1801/**
1802 * Formats a full register dump.
1803 *
1804 * @param pVM The cross context VM structure.
1805 * @param pCtx The context to format.
1806 * @param pCtxCore The context core to format.
1807 * @param pHlp Output functions.
1808 * @param enmType The dump type.
1809 * @param pszPrefix Register name prefix.
1810 */
1811static void cpumR3InfoOne(PVM pVM, PCPUMCTX pCtx, PCCPUMCTXCORE pCtxCore, PCDBGFINFOHLP pHlp, CPUMDUMPTYPE enmType,
1812 const char *pszPrefix)
1813{
1814 NOREF(pVM);
1815
1816 /*
1817 * Format the EFLAGS.
1818 */
1819 uint32_t efl = pCtxCore->eflags.u32;
1820 char szEFlags[80];
1821 cpumR3InfoFormatFlags(&szEFlags[0], efl);
1822
1823 /*
1824 * Format the registers.
1825 */
1826 switch (enmType)
1827 {
1828 case CPUMDUMPTYPE_TERSE:
1829 if (CPUMIsGuestIn64BitCodeEx(pCtx))
1830 pHlp->pfnPrintf(pHlp,
1831 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
1832 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
1833 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
1834 "%sr14=%016RX64 %sr15=%016RX64\n"
1835 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
1836 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %seflags=%08x\n",
1837 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
1838 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
1839 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
1840 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
1841 pszPrefix, pCtxCore->cs.Sel, pszPrefix, pCtxCore->ss.Sel, pszPrefix, pCtxCore->ds.Sel, pszPrefix, pCtxCore->es.Sel,
1842 pszPrefix, pCtxCore->fs.Sel, pszPrefix, pCtxCore->gs.Sel, pszPrefix, efl);
1843 else
1844 pHlp->pfnPrintf(pHlp,
1845 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
1846 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
1847 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %seflags=%08x\n",
1848 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
1849 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
1850 pszPrefix, pCtxCore->cs.Sel, pszPrefix, pCtxCore->ss.Sel, pszPrefix, pCtxCore->ds.Sel, pszPrefix, pCtxCore->es.Sel,
1851 pszPrefix, pCtxCore->fs.Sel, pszPrefix, pCtxCore->gs.Sel, pszPrefix, efl);
1852 break;
1853
1854 case CPUMDUMPTYPE_DEFAULT:
1855 if (CPUMIsGuestIn64BitCodeEx(pCtx))
1856 pHlp->pfnPrintf(pHlp,
1857 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
1858 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
1859 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
1860 "%sr14=%016RX64 %sr15=%016RX64\n"
1861 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
1862 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %str=%04x %seflags=%08x\n"
1863 "%scr0=%08RX64 %scr2=%08RX64 %scr3=%08RX64 %scr4=%08RX64 %sgdtr=%016RX64:%04x %sldtr=%04x\n"
1864 ,
1865 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
1866 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
1867 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
1868 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
1869 pszPrefix, pCtxCore->cs.Sel, pszPrefix, pCtxCore->ss.Sel, pszPrefix, pCtxCore->ds.Sel, pszPrefix, pCtxCore->es.Sel,
1870 pszPrefix, pCtxCore->fs.Sel, pszPrefix, pCtxCore->gs.Sel, pszPrefix, pCtx->tr.Sel, pszPrefix, efl,
1871 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
1872 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->ldtr.Sel);
1873 else
1874 pHlp->pfnPrintf(pHlp,
1875 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
1876 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
1877 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %str=%04x %seflags=%08x\n"
1878 "%scr0=%08RX64 %scr2=%08RX64 %scr3=%08RX64 %scr4=%08RX64 %sgdtr=%08RX64:%04x %sldtr=%04x\n"
1879 ,
1880 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
1881 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
1882 pszPrefix, pCtxCore->cs.Sel, pszPrefix, pCtxCore->ss.Sel, pszPrefix, pCtxCore->ds.Sel, pszPrefix, pCtxCore->es.Sel,
1883 pszPrefix, pCtxCore->fs.Sel, pszPrefix, pCtxCore->gs.Sel, pszPrefix, pCtx->tr.Sel, pszPrefix, efl,
1884 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
1885 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->ldtr.Sel);
1886 break;
1887
1888 case CPUMDUMPTYPE_VERBOSE:
1889 if (CPUMIsGuestIn64BitCodeEx(pCtx))
1890 pHlp->pfnPrintf(pHlp,
1891 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
1892 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
1893 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
1894 "%sr14=%016RX64 %sr15=%016RX64\n"
1895 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
1896 "%scs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1897 "%sds={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1898 "%ses={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1899 "%sfs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1900 "%sgs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1901 "%sss={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1902 "%scr0=%016RX64 %scr2=%016RX64 %scr3=%016RX64 %scr4=%016RX64\n"
1903 "%sdr0=%016RX64 %sdr1=%016RX64 %sdr2=%016RX64 %sdr3=%016RX64\n"
1904 "%sdr4=%016RX64 %sdr5=%016RX64 %sdr6=%016RX64 %sdr7=%016RX64\n"
1905 "%sgdtr=%016RX64:%04x %sidtr=%016RX64:%04x %seflags=%08x\n"
1906 "%sldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
1907 "%str ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
1908 "%sSysEnter={cs=%04llx eip=%016RX64 esp=%016RX64}\n"
1909 ,
1910 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
1911 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
1912 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
1913 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
1914 pszPrefix, pCtxCore->cs.Sel, pCtx->cs.u64Base, pCtx->cs.u32Limit, pCtx->cs.Attr.u,
1915 pszPrefix, pCtxCore->ds.Sel, pCtx->ds.u64Base, pCtx->ds.u32Limit, pCtx->ds.Attr.u,
1916 pszPrefix, pCtxCore->es.Sel, pCtx->es.u64Base, pCtx->es.u32Limit, pCtx->es.Attr.u,
1917 pszPrefix, pCtxCore->fs.Sel, pCtx->fs.u64Base, pCtx->fs.u32Limit, pCtx->fs.Attr.u,
1918 pszPrefix, pCtxCore->gs.Sel, pCtx->gs.u64Base, pCtx->gs.u32Limit, pCtx->gs.Attr.u,
1919 pszPrefix, pCtxCore->ss.Sel, pCtx->ss.u64Base, pCtx->ss.u32Limit, pCtx->ss.Attr.u,
1920 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
1921 pszPrefix, pCtx->dr[0], pszPrefix, pCtx->dr[1], pszPrefix, pCtx->dr[2], pszPrefix, pCtx->dr[3],
1922 pszPrefix, pCtx->dr[4], pszPrefix, pCtx->dr[5], pszPrefix, pCtx->dr[6], pszPrefix, pCtx->dr[7],
1923 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, pszPrefix, efl,
1924 pszPrefix, pCtx->ldtr.Sel, pCtx->ldtr.u64Base, pCtx->ldtr.u32Limit, pCtx->ldtr.Attr.u,
1925 pszPrefix, pCtx->tr.Sel, pCtx->tr.u64Base, pCtx->tr.u32Limit, pCtx->tr.Attr.u,
1926 pszPrefix, pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
1927 else
1928 pHlp->pfnPrintf(pHlp,
1929 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
1930 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
1931 "%scs={%04x base=%016RX64 limit=%08x flags=%08x} %sdr0=%08RX64 %sdr1=%08RX64\n"
1932 "%sds={%04x base=%016RX64 limit=%08x flags=%08x} %sdr2=%08RX64 %sdr3=%08RX64\n"
1933 "%ses={%04x base=%016RX64 limit=%08x flags=%08x} %sdr4=%08RX64 %sdr5=%08RX64\n"
1934 "%sfs={%04x base=%016RX64 limit=%08x flags=%08x} %sdr6=%08RX64 %sdr7=%08RX64\n"
1935 "%sgs={%04x base=%016RX64 limit=%08x flags=%08x} %scr0=%08RX64 %scr2=%08RX64\n"
1936 "%sss={%04x base=%016RX64 limit=%08x flags=%08x} %scr3=%08RX64 %scr4=%08RX64\n"
1937 "%sgdtr=%016RX64:%04x %sidtr=%016RX64:%04x %seflags=%08x\n"
1938 "%sldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
1939 "%str ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
1940 "%sSysEnter={cs=%04llx eip=%08llx esp=%08llx}\n"
1941 ,
1942 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
1943 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
1944 pszPrefix, pCtxCore->cs.Sel, pCtx->cs.u64Base, pCtx->cs.u32Limit, pCtx->cs.Attr.u, pszPrefix, pCtx->dr[0], pszPrefix, pCtx->dr[1],
1945 pszPrefix, pCtxCore->ds.Sel, pCtx->ds.u64Base, pCtx->ds.u32Limit, pCtx->ds.Attr.u, pszPrefix, pCtx->dr[2], pszPrefix, pCtx->dr[3],
1946 pszPrefix, pCtxCore->es.Sel, pCtx->es.u64Base, pCtx->es.u32Limit, pCtx->es.Attr.u, pszPrefix, pCtx->dr[4], pszPrefix, pCtx->dr[5],
1947 pszPrefix, pCtxCore->fs.Sel, pCtx->fs.u64Base, pCtx->fs.u32Limit, pCtx->fs.Attr.u, pszPrefix, pCtx->dr[6], pszPrefix, pCtx->dr[7],
1948 pszPrefix, pCtxCore->gs.Sel, pCtx->gs.u64Base, pCtx->gs.u32Limit, pCtx->gs.Attr.u, pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2,
1949 pszPrefix, pCtxCore->ss.Sel, pCtx->ss.u64Base, pCtx->ss.u32Limit, pCtx->ss.Attr.u, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
1950 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, pszPrefix, efl,
1951 pszPrefix, pCtx->ldtr.Sel, pCtx->ldtr.u64Base, pCtx->ldtr.u32Limit, pCtx->ldtr.Attr.u,
1952 pszPrefix, pCtx->tr.Sel, pCtx->tr.u64Base, pCtx->tr.u32Limit, pCtx->tr.Attr.u,
1953 pszPrefix, pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
1954
1955 pHlp->pfnPrintf(pHlp, "%sxcr=%016RX64 %sxcr1=%016RX64 %sxss=%016RX64 (fXStateMask=%016RX64)\n",
1956 pszPrefix, pCtx->aXcr[0], pszPrefix, pCtx->aXcr[1],
1957 pszPrefix, UINT64_C(0) /** @todo XSS */, pCtx->fXStateMask);
1958 if (pCtx->CTX_SUFF(pXState))
1959 {
1960 PX86FXSTATE pFpuCtx = &pCtx->CTX_SUFF(pXState)->x87;
1961 pHlp->pfnPrintf(pHlp,
1962 "%sFCW=%04x %sFSW=%04x %sFTW=%04x %sFOP=%04x %sMXCSR=%08x %sMXCSR_MASK=%08x\n"
1963 "%sFPUIP=%08x %sCS=%04x %sRsrvd1=%04x %sFPUDP=%08x %sDS=%04x %sRsvrd2=%04x\n"
1964 ,
1965 pszPrefix, pFpuCtx->FCW, pszPrefix, pFpuCtx->FSW, pszPrefix, pFpuCtx->FTW, pszPrefix, pFpuCtx->FOP,
1966 pszPrefix, pFpuCtx->MXCSR, pszPrefix, pFpuCtx->MXCSR_MASK,
1967 pszPrefix, pFpuCtx->FPUIP, pszPrefix, pFpuCtx->CS, pszPrefix, pFpuCtx->Rsrvd1,
1968 pszPrefix, pFpuCtx->FPUDP, pszPrefix, pFpuCtx->DS, pszPrefix, pFpuCtx->Rsrvd2
1969 );
1970 /*
1971 * The FSAVE style memory image contains ST(0)-ST(7) at increasing addresses,
1972 * not (FP)R0-7 as Intel SDM suggests.
1973 */
1974 unsigned iShift = (pFpuCtx->FSW >> 11) & 7;
1975 for (unsigned iST = 0; iST < RT_ELEMENTS(pFpuCtx->aRegs); iST++)
1976 {
1977 unsigned iFPR = (iST + iShift) % RT_ELEMENTS(pFpuCtx->aRegs);
1978 unsigned uTag = (pFpuCtx->FTW >> (2 * iFPR)) & 3;
1979 char chSign = pFpuCtx->aRegs[iST].au16[4] & 0x8000 ? '-' : '+';
1980 unsigned iInteger = (unsigned)(pFpuCtx->aRegs[iST].au64[0] >> 63);
1981 uint64_t u64Fraction = pFpuCtx->aRegs[iST].au64[0] & UINT64_C(0x7fffffffffffffff);
1982 int iExponent = pFpuCtx->aRegs[iST].au16[4] & 0x7fff;
1983 iExponent -= 16383; /* subtract bias */
1984 /** @todo This isn't entirenly correct and needs more work! */
1985 pHlp->pfnPrintf(pHlp,
1986 "%sST(%u)=%sFPR%u={%04RX16'%08RX32'%08RX32} t%d %c%u.%022llu * 2 ^ %d (*)",
1987 pszPrefix, iST, pszPrefix, iFPR,
1988 pFpuCtx->aRegs[iST].au16[4], pFpuCtx->aRegs[iST].au32[1], pFpuCtx->aRegs[iST].au32[0],
1989 uTag, chSign, iInteger, u64Fraction, iExponent);
1990 if (pFpuCtx->aRegs[iST].au16[5] || pFpuCtx->aRegs[iST].au16[6] || pFpuCtx->aRegs[iST].au16[7])
1991 pHlp->pfnPrintf(pHlp, " res={%04RX16,%04RX16,%04RX16}\n",
1992 pFpuCtx->aRegs[iST].au16[5], pFpuCtx->aRegs[iST].au16[6], pFpuCtx->aRegs[iST].au16[7]);
1993 else
1994 pHlp->pfnPrintf(pHlp, "\n");
1995 }
1996
1997 /* XMM/YMM/ZMM registers. */
1998 if (pCtx->fXStateMask & XSAVE_C_YMM)
1999 {
2000 PCX86XSAVEYMMHI pYmmHiCtx = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_YMM_BIT, PCX86XSAVEYMMHI);
2001 if (!(pCtx->fXStateMask & XSAVE_C_ZMM_HI256))
2002 for (unsigned i = 0; i < RT_ELEMENTS(pFpuCtx->aXMM); i++)
2003 pHlp->pfnPrintf(pHlp, "%sYMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32\n",
2004 pszPrefix, i, i < 10 ? " " : "",
2005 pYmmHiCtx->aYmmHi[i].au32[3],
2006 pYmmHiCtx->aYmmHi[i].au32[2],
2007 pYmmHiCtx->aYmmHi[i].au32[1],
2008 pYmmHiCtx->aYmmHi[i].au32[0],
2009 pFpuCtx->aXMM[i].au32[3],
2010 pFpuCtx->aXMM[i].au32[2],
2011 pFpuCtx->aXMM[i].au32[1],
2012 pFpuCtx->aXMM[i].au32[0]);
2013 else
2014 {
2015 PCX86XSAVEZMMHI256 pZmmHi256 = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_ZMM_HI256_BIT, PCX86XSAVEZMMHI256);
2016 for (unsigned i = 0; i < RT_ELEMENTS(pFpuCtx->aXMM); i++)
2017 pHlp->pfnPrintf(pHlp,
2018 "%sZMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32''%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32\n",
2019 pszPrefix, i, i < 10 ? " " : "",
2020 pZmmHi256->aHi256Regs[i].au32[7],
2021 pZmmHi256->aHi256Regs[i].au32[6],
2022 pZmmHi256->aHi256Regs[i].au32[5],
2023 pZmmHi256->aHi256Regs[i].au32[4],
2024 pZmmHi256->aHi256Regs[i].au32[3],
2025 pZmmHi256->aHi256Regs[i].au32[2],
2026 pZmmHi256->aHi256Regs[i].au32[1],
2027 pZmmHi256->aHi256Regs[i].au32[0],
2028 pYmmHiCtx->aYmmHi[i].au32[3],
2029 pYmmHiCtx->aYmmHi[i].au32[2],
2030 pYmmHiCtx->aYmmHi[i].au32[1],
2031 pYmmHiCtx->aYmmHi[i].au32[0],
2032 pFpuCtx->aXMM[i].au32[3],
2033 pFpuCtx->aXMM[i].au32[2],
2034 pFpuCtx->aXMM[i].au32[1],
2035 pFpuCtx->aXMM[i].au32[0]);
2036
2037 PCX86XSAVEZMM16HI pZmm16Hi = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_ZMM_16HI_BIT, PCX86XSAVEZMM16HI);
2038 for (unsigned i = 0; i < RT_ELEMENTS(pZmm16Hi->aRegs); i++)
2039 pHlp->pfnPrintf(pHlp,
2040 "%sZMM%u=%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32''%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32\n",
2041 pszPrefix, i + 16,
2042 pZmm16Hi->aRegs[i].au32[15],
2043 pZmm16Hi->aRegs[i].au32[14],
2044 pZmm16Hi->aRegs[i].au32[13],
2045 pZmm16Hi->aRegs[i].au32[12],
2046 pZmm16Hi->aRegs[i].au32[11],
2047 pZmm16Hi->aRegs[i].au32[10],
2048 pZmm16Hi->aRegs[i].au32[9],
2049 pZmm16Hi->aRegs[i].au32[8],
2050 pZmm16Hi->aRegs[i].au32[7],
2051 pZmm16Hi->aRegs[i].au32[6],
2052 pZmm16Hi->aRegs[i].au32[5],
2053 pZmm16Hi->aRegs[i].au32[4],
2054 pZmm16Hi->aRegs[i].au32[3],
2055 pZmm16Hi->aRegs[i].au32[2],
2056 pZmm16Hi->aRegs[i].au32[1],
2057 pZmm16Hi->aRegs[i].au32[0]);
2058 }
2059 }
2060 else
2061 for (unsigned i = 0; i < RT_ELEMENTS(pFpuCtx->aXMM); i++)
2062 pHlp->pfnPrintf(pHlp,
2063 i & 1
2064 ? "%sXMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32\n"
2065 : "%sXMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32 ",
2066 pszPrefix, i, i < 10 ? " " : "",
2067 pFpuCtx->aXMM[i].au32[3],
2068 pFpuCtx->aXMM[i].au32[2],
2069 pFpuCtx->aXMM[i].au32[1],
2070 pFpuCtx->aXMM[i].au32[0]);
2071
2072 if (pCtx->fXStateMask & XSAVE_C_OPMASK)
2073 {
2074 PCX86XSAVEOPMASK pOpMask = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_OPMASK_BIT, PCX86XSAVEOPMASK);
2075 for (unsigned i = 0; i < RT_ELEMENTS(pOpMask->aKRegs); i += 4)
2076 pHlp->pfnPrintf(pHlp, "%sK%u=%016RX64 %sK%u=%016RX64 %sK%u=%016RX64 %sK%u=%016RX64\n",
2077 pszPrefix, i + 0, pOpMask->aKRegs[i + 0],
2078 pszPrefix, i + 1, pOpMask->aKRegs[i + 1],
2079 pszPrefix, i + 2, pOpMask->aKRegs[i + 2],
2080 pszPrefix, i + 3, pOpMask->aKRegs[i + 3]);
2081 }
2082
2083 if (pCtx->fXStateMask & XSAVE_C_BNDREGS)
2084 {
2085 PCX86XSAVEBNDREGS pBndRegs = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_BNDREGS_BIT, PCX86XSAVEBNDREGS);
2086 for (unsigned i = 0; i < RT_ELEMENTS(pBndRegs->aRegs); i += 2)
2087 pHlp->pfnPrintf(pHlp, "%sBNDREG%u=%016RX64/%016RX64 %sBNDREG%u=%016RX64/%016RX64\n",
2088 pszPrefix, i, pBndRegs->aRegs[i].uLowerBound, pBndRegs->aRegs[i].uUpperBound,
2089 pszPrefix, i + 1, pBndRegs->aRegs[i + 1].uLowerBound, pBndRegs->aRegs[i + 1].uUpperBound);
2090 }
2091
2092 if (pCtx->fXStateMask & XSAVE_C_BNDCSR)
2093 {
2094 PCX86XSAVEBNDCFG pBndCfg = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_BNDCSR_BIT, PCX86XSAVEBNDCFG);
2095 pHlp->pfnPrintf(pHlp, "%sBNDCFG.CONFIG=%016RX64 %sBNDCFG.STATUS=%016RX64\n",
2096 pszPrefix, pBndCfg->fConfig, pszPrefix, pBndCfg->fStatus);
2097 }
2098
2099 for (unsigned i = 0; i < RT_ELEMENTS(pFpuCtx->au32RsrvdRest); i++)
2100 if (pFpuCtx->au32RsrvdRest[i])
2101 pHlp->pfnPrintf(pHlp, "%sRsrvdRest[%u]=%RX32 (offset=%#x)\n",
2102 pszPrefix, i, pFpuCtx->au32RsrvdRest[i], RT_OFFSETOF(X86FXSTATE, au32RsrvdRest[i]) );
2103 }
2104
2105 pHlp->pfnPrintf(pHlp,
2106 "%sEFER =%016RX64\n"
2107 "%sPAT =%016RX64\n"
2108 "%sSTAR =%016RX64\n"
2109 "%sCSTAR =%016RX64\n"
2110 "%sLSTAR =%016RX64\n"
2111 "%sSFMASK =%016RX64\n"
2112 "%sKERNELGSBASE =%016RX64\n",
2113 pszPrefix, pCtx->msrEFER,
2114 pszPrefix, pCtx->msrPAT,
2115 pszPrefix, pCtx->msrSTAR,
2116 pszPrefix, pCtx->msrCSTAR,
2117 pszPrefix, pCtx->msrLSTAR,
2118 pszPrefix, pCtx->msrSFMASK,
2119 pszPrefix, pCtx->msrKERNELGSBASE);
2120 break;
2121 }
2122}
2123
2124
2125/**
2126 * Display all cpu states and any other cpum info.
2127 *
2128 * @param pVM The cross context VM structure.
2129 * @param pHlp The info helper functions.
2130 * @param pszArgs Arguments, ignored.
2131 */
2132static DECLCALLBACK(void) cpumR3InfoAll(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2133{
2134 cpumR3InfoGuest(pVM, pHlp, pszArgs);
2135 cpumR3InfoGuestInstr(pVM, pHlp, pszArgs);
2136 cpumR3InfoGuestHwvirt(pVM, pHlp, pszArgs);
2137 cpumR3InfoHyper(pVM, pHlp, pszArgs);
2138 cpumR3InfoHost(pVM, pHlp, pszArgs);
2139}
2140
2141
2142/**
2143 * Parses the info argument.
2144 *
2145 * The argument starts with 'verbose', 'terse' or 'default' and then
2146 * continues with the comment string.
2147 *
2148 * @param pszArgs The pointer to the argument string.
2149 * @param penmType Where to store the dump type request.
2150 * @param ppszComment Where to store the pointer to the comment string.
2151 */
2152static void cpumR3InfoParseArg(const char *pszArgs, CPUMDUMPTYPE *penmType, const char **ppszComment)
2153{
2154 if (!pszArgs)
2155 {
2156 *penmType = CPUMDUMPTYPE_DEFAULT;
2157 *ppszComment = "";
2158 }
2159 else
2160 {
2161 if (!strncmp(pszArgs, RT_STR_TUPLE("verbose")))
2162 {
2163 pszArgs += 7;
2164 *penmType = CPUMDUMPTYPE_VERBOSE;
2165 }
2166 else if (!strncmp(pszArgs, RT_STR_TUPLE("terse")))
2167 {
2168 pszArgs += 5;
2169 *penmType = CPUMDUMPTYPE_TERSE;
2170 }
2171 else if (!strncmp(pszArgs, RT_STR_TUPLE("default")))
2172 {
2173 pszArgs += 7;
2174 *penmType = CPUMDUMPTYPE_DEFAULT;
2175 }
2176 else
2177 *penmType = CPUMDUMPTYPE_DEFAULT;
2178 *ppszComment = RTStrStripL(pszArgs);
2179 }
2180}
2181
2182
2183/**
2184 * Display the guest cpu state.
2185 *
2186 * @param pVM The cross context VM structure.
2187 * @param pHlp The info helper functions.
2188 * @param pszArgs Arguments.
2189 */
2190static DECLCALLBACK(void) cpumR3InfoGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2191{
2192 CPUMDUMPTYPE enmType;
2193 const char *pszComment;
2194 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
2195
2196 PVMCPU pVCpu = VMMGetCpu(pVM);
2197 if (!pVCpu)
2198 pVCpu = &pVM->aCpus[0];
2199
2200 pHlp->pfnPrintf(pHlp, "Guest CPUM (VCPU %d) state: %s\n", pVCpu->idCpu, pszComment);
2201
2202 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
2203 cpumR3InfoOne(pVM, pCtx, CPUMCTX2CORE(pCtx), pHlp, enmType, "");
2204}
2205
2206
2207/**
2208 * Displays an SVM VMCB control area.
2209 *
2210 * @param pHlp The info helper functions.
2211 * @param pVmcbCtrl Pointer to a SVM VMCB controls area.
2212 * @param pszPrefix Caller specified string prefix.
2213 */
2214static void cpumR3InfoSvmVmcbCtrl(PCDBGFINFOHLP pHlp, PCSVMVMCBCTRL pVmcbCtrl, const char *pszPrefix)
2215{
2216 AssertReturnVoid(pHlp);
2217 AssertReturnVoid(pVmcbCtrl);
2218
2219 pHlp->pfnPrintf(pHlp, "%su16InterceptRdCRx = %#RX16\n", pszPrefix, pVmcbCtrl->u16InterceptRdCRx);
2220 pHlp->pfnPrintf(pHlp, "%su16InterceptWrCRx = %#RX16\n", pszPrefix, pVmcbCtrl->u16InterceptWrCRx);
2221 pHlp->pfnPrintf(pHlp, "%su16InterceptRdDRx = %#RX16\n", pszPrefix, pVmcbCtrl->u16InterceptRdDRx);
2222 pHlp->pfnPrintf(pHlp, "%su16InterceptWrDRx = %#RX16\n", pszPrefix, pVmcbCtrl->u16InterceptWrDRx);
2223 pHlp->pfnPrintf(pHlp, "%su32InterceptXcpt = %#RX32\n", pszPrefix, pVmcbCtrl->u32InterceptXcpt);
2224 pHlp->pfnPrintf(pHlp, "%su64InterceptCtrl = %#RX64\n", pszPrefix, pVmcbCtrl->u64InterceptCtrl);
2225 pHlp->pfnPrintf(pHlp, "%su16PauseFilterThreshold = %#RX16\n", pszPrefix, pVmcbCtrl->u16PauseFilterThreshold);
2226 pHlp->pfnPrintf(pHlp, "%su16PauseFilterCount = %#RX16\n", pszPrefix, pVmcbCtrl->u16PauseFilterCount);
2227 pHlp->pfnPrintf(pHlp, "%su64IOPMPhysAddr = %#RX64\n", pszPrefix, pVmcbCtrl->u64IOPMPhysAddr);
2228 pHlp->pfnPrintf(pHlp, "%su64MSRPMPhysAddr = %#RX64\n", pszPrefix, pVmcbCtrl->u64MSRPMPhysAddr);
2229 pHlp->pfnPrintf(pHlp, "%su64TSCOffset = %#RX64\n", pszPrefix, pVmcbCtrl->u64TSCOffset);
2230 pHlp->pfnPrintf(pHlp, "%sTLBCtrl\n", pszPrefix);
2231 pHlp->pfnPrintf(pHlp, "%s u32ASID = %#RX32\n", pszPrefix, pVmcbCtrl->TLBCtrl.n.u32ASID);
2232 pHlp->pfnPrintf(pHlp, "%s u8TLBFlush = %u\n", pszPrefix, pVmcbCtrl->TLBCtrl.n.u8TLBFlush);
2233 pHlp->pfnPrintf(pHlp, "%sIntCtrl\n", pszPrefix);
2234 pHlp->pfnPrintf(pHlp, "%s u8VTPR = %#RX8 (%u)\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u8VTPR, pVmcbCtrl->IntCtrl.n.u8VTPR);
2235 pHlp->pfnPrintf(pHlp, "%s u1VIrqPending = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1VIrqPending);
2236 pHlp->pfnPrintf(pHlp, "%s u1VGif = %u\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1VGif);
2237 pHlp->pfnPrintf(pHlp, "%s u4VIntrPrio = %#RX8\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u4VIntrPrio);
2238 pHlp->pfnPrintf(pHlp, "%s u1IgnoreTPR = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1IgnoreTPR);
2239 pHlp->pfnPrintf(pHlp, "%s u1VIntrMasking = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1VIntrMasking);
2240 pHlp->pfnPrintf(pHlp, "%s u1VGifEnable = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1VGifEnable);
2241 pHlp->pfnPrintf(pHlp, "%s u1AvicEnable = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1AvicEnable);
2242 pHlp->pfnPrintf(pHlp, "%s u8VIntrVector = %#RX8\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u8VIntrVector);
2243 pHlp->pfnPrintf(pHlp, "%sIntShadow\n", pszPrefix);
2244 pHlp->pfnPrintf(pHlp, "%s u1IntShadow = %RTbool\n", pszPrefix, pVmcbCtrl->IntShadow.n.u1IntShadow);
2245 pHlp->pfnPrintf(pHlp, "%s u1GuestIntMask = %RTbool\n", pszPrefix, pVmcbCtrl->IntShadow.n.u1GuestIntMask);
2246 pHlp->pfnPrintf(pHlp, "%su64ExitCode = %#RX64\n", pszPrefix, pVmcbCtrl->u64ExitCode);
2247 pHlp->pfnPrintf(pHlp, "%su64ExitInfo1 = %#RX64\n", pszPrefix, pVmcbCtrl->u64ExitInfo1);
2248 pHlp->pfnPrintf(pHlp, "%su64ExitInfo2 = %#RX64\n", pszPrefix, pVmcbCtrl->u64ExitInfo2);
2249 pHlp->pfnPrintf(pHlp, "%sExitIntInfo\n", pszPrefix);
2250 pHlp->pfnPrintf(pHlp, "%s u8Vector = %#RX8 (%u)\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u8Vector, pVmcbCtrl->ExitIntInfo.n.u8Vector);
2251 pHlp->pfnPrintf(pHlp, "%s u3Type = %u\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u3Type);
2252 pHlp->pfnPrintf(pHlp, "%s u1ErrorCodeValid = %RTbool\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u1ErrorCodeValid);
2253 pHlp->pfnPrintf(pHlp, "%s u1Valid = %RTbool\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u1Valid);
2254 pHlp->pfnPrintf(pHlp, "%s u32ErrorCode = %#RX32\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u32ErrorCode);
2255 pHlp->pfnPrintf(pHlp, "%sNestedPaging and SEV\n", pszPrefix);
2256 pHlp->pfnPrintf(pHlp, "%s u1NestedPaging = %RTbool\n", pszPrefix, pVmcbCtrl->NestedPaging.n.u1NestedPaging);
2257 pHlp->pfnPrintf(pHlp, "%s u1Sev = %RTbool\n", pszPrefix, pVmcbCtrl->NestedPaging.n.u1Sev);
2258 pHlp->pfnPrintf(pHlp, "%s u1SevEs = %RTbool\n", pszPrefix, pVmcbCtrl->NestedPaging.n.u1SevEs);
2259 pHlp->pfnPrintf(pHlp, "%sAvicBar\n", pszPrefix);
2260 pHlp->pfnPrintf(pHlp, "%s u40Addr = %#RX64\n", pszPrefix, pVmcbCtrl->AvicBar.n.u40Addr);
2261 pHlp->pfnPrintf(pHlp, "%sEventInject\n", pszPrefix);
2262 pHlp->pfnPrintf(pHlp, "%s EventInject\n", pszPrefix);
2263 pHlp->pfnPrintf(pHlp, "%s u8Vector = %#RX32 (%u)\n", pszPrefix, pVmcbCtrl->EventInject.n.u8Vector, pVmcbCtrl->EventInject.n.u8Vector);
2264 pHlp->pfnPrintf(pHlp, "%s u3Type = %u\n", pszPrefix, pVmcbCtrl->EventInject.n.u3Type);
2265 pHlp->pfnPrintf(pHlp, "%s u1ErrorCodeValid = %RTbool\n", pszPrefix, pVmcbCtrl->EventInject.n.u1ErrorCodeValid);
2266 pHlp->pfnPrintf(pHlp, "%s u1Valid = %RTbool\n", pszPrefix, pVmcbCtrl->EventInject.n.u1Valid);
2267 pHlp->pfnPrintf(pHlp, "%s u32ErrorCode = %#RX32\n", pszPrefix, pVmcbCtrl->EventInject.n.u32ErrorCode);
2268 pHlp->pfnPrintf(pHlp, "%su64NestedPagingCR3 = %#RX64\n", pszPrefix, pVmcbCtrl->u64NestedPagingCR3);
2269 pHlp->pfnPrintf(pHlp, "%sLBR virtualization\n", pszPrefix);
2270 pHlp->pfnPrintf(pHlp, "%s u1LbrVirt = %RTbool\n", pszPrefix, pVmcbCtrl->LbrVirt.n.u1LbrVirt);
2271 pHlp->pfnPrintf(pHlp, "%s u1VirtVmsaveVmload = %RTbool\n", pszPrefix, pVmcbCtrl->LbrVirt.n.u1VirtVmsaveVmload);
2272 pHlp->pfnPrintf(pHlp, "%su32VmcbCleanBits = %#RX32\n", pszPrefix, pVmcbCtrl->u32VmcbCleanBits);
2273 pHlp->pfnPrintf(pHlp, "%su64NextRIP = %#RX64\n", pszPrefix, pVmcbCtrl->u64NextRIP);
2274 pHlp->pfnPrintf(pHlp, "%scbInstrFetched = %u\n", pszPrefix, pVmcbCtrl->cbInstrFetched);
2275 pHlp->pfnPrintf(pHlp, "%sabInstr = %.*Rhxs\n", pszPrefix, sizeof(pVmcbCtrl->abInstr), pVmcbCtrl->abInstr);
2276 pHlp->pfnPrintf(pHlp, "%sAvicBackingPagePtr\n", pszPrefix);
2277 pHlp->pfnPrintf(pHlp, "%s u40Addr = %#RX64\n", pszPrefix, pVmcbCtrl->AvicBackingPagePtr.n.u40Addr);
2278 pHlp->pfnPrintf(pHlp, "%sAvicLogicalTablePtr\n", pszPrefix);
2279 pHlp->pfnPrintf(pHlp, "%s u40Addr = %#RX64\n", pszPrefix, pVmcbCtrl->AvicLogicalTablePtr.n.u40Addr);
2280 pHlp->pfnPrintf(pHlp, "%sAvicPhysicalTablePtr\n", pszPrefix);
2281 pHlp->pfnPrintf(pHlp, "%s u8LastGuestCoreId = %u\n", pszPrefix, pVmcbCtrl->AvicPhysicalTablePtr.n.u8LastGuestCoreId);
2282 pHlp->pfnPrintf(pHlp, "%s u40Addr = %#RX64\n", pszPrefix, pVmcbCtrl->AvicPhysicalTablePtr.n.u40Addr);
2283}
2284
2285
2286/**
2287 * Helper for dumping the SVM VMCB selector registers.
2288 *
2289 * @param pHlp The info helper functions.
2290 * @param pSel Pointer to the SVM selector register.
2291 * @param pszName Name of the selector.
2292 * @param pszPrefix Caller specified string prefix.
2293 */
2294DECLINLINE(void) cpumR3InfoSvmVmcbSelReg(PCDBGFINFOHLP pHlp, PCSVMSELREG pSel, const char *pszName, const char *pszPrefix)
2295{
2296 /* The string width of 4 used below is to handle 'LDTR'. Change later if longer register names are used. */
2297 pHlp->pfnPrintf(pHlp, "%s%-4s = {%04x base=%016RX64 limit=%08x flags=%04x}\n", pszPrefix,
2298 pszName, pSel->u16Sel, pSel->u64Base, pSel->u32Limit, pSel->u16Attr);
2299}
2300
2301
2302/**
2303 * Helper for dumping the SVM VMCB GDTR/IDTR registers.
2304 *
2305 * @param pHlp The info helper functions.
2306 * @param pXdtr Pointer to the descriptor table register.
2307 * @param pszName Name of the descriptor table register.
2308 * @param pszPrefix Caller specified string prefix.
2309 */
2310DECLINLINE(void) cpumR3InfoSvmVmcbXdtr(PCDBGFINFOHLP pHlp, PCSVMXDTR pXdtr, const char *pszName, const char *pszPrefix)
2311{
2312 /* The string width of 4 used below is to cover 'GDTR', 'IDTR'. Change later if longer register names are used. */
2313 pHlp->pfnPrintf(pHlp, "%s%-4s = %016RX64:%04x\n", pszPrefix, pszName, pXdtr->u64Base, pXdtr->u32Limit);
2314}
2315
2316
2317/**
2318 * Displays an SVM VMCB state-save area.
2319 *
2320 * @param pHlp The info helper functions.
2321 * @param pVmcbStateSave Pointer to a SVM VMCB controls area.
2322 * @param pszPrefix Caller specified string prefix.
2323 */
2324static void cpumR3InfoSvmVmcbStateSave(PCDBGFINFOHLP pHlp, PCSVMVMCBSTATESAVE pVmcbStateSave, const char *pszPrefix)
2325{
2326 AssertReturnVoid(pHlp);
2327 AssertReturnVoid(pVmcbStateSave);
2328
2329 char szEFlags[80];
2330 cpumR3InfoFormatFlags(&szEFlags[0], pVmcbStateSave->u64RFlags);
2331
2332 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->CS, "CS", pszPrefix);
2333 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->SS, "SS", pszPrefix);
2334 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->ES, "ES", pszPrefix);
2335 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->DS, "DS", pszPrefix);
2336 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->FS, "FS", pszPrefix);
2337 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->GS, "GS", pszPrefix);
2338 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->LDTR, "LDTR", pszPrefix);
2339 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->TR, "TR", pszPrefix);
2340 cpumR3InfoSvmVmcbXdtr(pHlp, &pVmcbStateSave->GDTR, "GDTR", pszPrefix);
2341 cpumR3InfoSvmVmcbXdtr(pHlp, &pVmcbStateSave->IDTR, "IDTR", pszPrefix);
2342 pHlp->pfnPrintf(pHlp, "%su8CPL = %u\n", pszPrefix, pVmcbStateSave->u8CPL);
2343 pHlp->pfnPrintf(pHlp, "%su64EFER = %#RX64\n", pszPrefix, pVmcbStateSave->u64EFER);
2344 pHlp->pfnPrintf(pHlp, "%su64CR4 = %#RX64\n", pszPrefix, pVmcbStateSave->u64CR4);
2345 pHlp->pfnPrintf(pHlp, "%su64CR3 = %#RX64\n", pszPrefix, pVmcbStateSave->u64CR3);
2346 pHlp->pfnPrintf(pHlp, "%su64CR0 = %#RX64\n", pszPrefix, pVmcbStateSave->u64CR0);
2347 pHlp->pfnPrintf(pHlp, "%su64DR7 = %#RX64\n", pszPrefix, pVmcbStateSave->u64DR7);
2348 pHlp->pfnPrintf(pHlp, "%su64DR6 = %#RX64\n", pszPrefix, pVmcbStateSave->u64DR6);
2349 pHlp->pfnPrintf(pHlp, "%su64RFlags = %#RX64 %31s\n", pszPrefix, pVmcbStateSave->u64RFlags, szEFlags);
2350 pHlp->pfnPrintf(pHlp, "%su64RIP = %#RX64\n", pszPrefix, pVmcbStateSave->u64RIP);
2351 pHlp->pfnPrintf(pHlp, "%su64RSP = %#RX64\n", pszPrefix, pVmcbStateSave->u64RSP);
2352 pHlp->pfnPrintf(pHlp, "%su64RAX = %#RX64\n", pszPrefix, pVmcbStateSave->u64RAX);
2353 pHlp->pfnPrintf(pHlp, "%su64STAR = %#RX64\n", pszPrefix, pVmcbStateSave->u64STAR);
2354 pHlp->pfnPrintf(pHlp, "%su64LSTAR = %#RX64\n", pszPrefix, pVmcbStateSave->u64LSTAR);
2355 pHlp->pfnPrintf(pHlp, "%su64CSTAR = %#RX64\n", pszPrefix, pVmcbStateSave->u64CSTAR);
2356 pHlp->pfnPrintf(pHlp, "%su64SFMASK = %#RX64\n", pszPrefix, pVmcbStateSave->u64SFMASK);
2357 pHlp->pfnPrintf(pHlp, "%su64KernelGSBase = %#RX64\n", pszPrefix, pVmcbStateSave->u64KernelGSBase);
2358 pHlp->pfnPrintf(pHlp, "%su64SysEnterCS = %#RX64\n", pszPrefix, pVmcbStateSave->u64SysEnterCS);
2359 pHlp->pfnPrintf(pHlp, "%su64SysEnterEIP = %#RX64\n", pszPrefix, pVmcbStateSave->u64SysEnterEIP);
2360 pHlp->pfnPrintf(pHlp, "%su64SysEnterESP = %#RX64\n", pszPrefix, pVmcbStateSave->u64SysEnterESP);
2361 pHlp->pfnPrintf(pHlp, "%su64CR2 = %#RX64\n", pszPrefix, pVmcbStateSave->u64CR2);
2362 pHlp->pfnPrintf(pHlp, "%su64PAT = %#RX64\n", pszPrefix, pVmcbStateSave->u64PAT);
2363 pHlp->pfnPrintf(pHlp, "%su64DBGCTL = %#RX64\n", pszPrefix, pVmcbStateSave->u64DBGCTL);
2364 pHlp->pfnPrintf(pHlp, "%su64BR_FROM = %#RX64\n", pszPrefix, pVmcbStateSave->u64BR_FROM);
2365 pHlp->pfnPrintf(pHlp, "%su64BR_TO = %#RX64\n", pszPrefix, pVmcbStateSave->u64BR_TO);
2366 pHlp->pfnPrintf(pHlp, "%su64LASTEXCPFROM = %#RX64\n", pszPrefix, pVmcbStateSave->u64LASTEXCPFROM);
2367 pHlp->pfnPrintf(pHlp, "%su64LASTEXCPTO = %#RX64\n", pszPrefix, pVmcbStateSave->u64LASTEXCPTO);
2368}
2369
2370
2371/**
2372 * Display the guest's hardware-virtualization cpu state.
2373 *
2374 * @param pVM The cross context VM structure.
2375 * @param pHlp The info helper functions.
2376 * @param pszArgs Arguments, ignored.
2377 */
2378static DECLCALLBACK(void) cpumR3InfoGuestHwvirt(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2379{
2380 RT_NOREF(pszArgs);
2381
2382 PVMCPU pVCpu = VMMGetCpu(pVM);
2383 if (!pVCpu)
2384 pVCpu = &pVM->aCpus[0];
2385
2386 /*
2387 * Figure out what to dump.
2388 *
2389 * In the future we may need to dump everything whether or not we're actively in nested-guest mode
2390 * or not, hence the reason why we use a mask to determine what needs dumping. Currently, we only
2391 * dump hwvirt. state when the guest CPU is executing a nested-guest.
2392 */
2393 /** @todo perhaps make this configurable through pszArgs, depending on how much
2394 * noise we wish to accept when nested hwvirt. isn't used. */
2395#define CPUMHWVIRTDUMP_NONE (0)
2396#define CPUMHWVIRTDUMP_SVM RT_BIT(0)
2397#define CPUMHWVIRTDUMP_VMX RT_BIT(1)
2398#define CPUMHWVIRTDUMP_COMMON RT_BIT(2)
2399#define CPUMHWVIRTDUMP_LAST CPUMHWVIRTDUMP_VMX
2400
2401 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
2402 static const char *const s_aHwvirtModes[] = { "No/inactive", "SVM", "VMX", "Common" };
2403 uint8_t const idxHwvirtState = CPUMIsGuestInSvmNestedHwVirtMode(pCtx) ? CPUMHWVIRTDUMP_SVM
2404 : CPUMIsGuestInVmxNestedHwVirtMode(pCtx) ? CPUMHWVIRTDUMP_VMX : CPUMHWVIRTDUMP_NONE;
2405 AssertCompile(CPUMHWVIRTDUMP_LAST <= RT_ELEMENTS(s_aHwvirtModes));
2406 Assert(idxHwvirtState < RT_ELEMENTS(s_aHwvirtModes));
2407 const char *pcszHwvirtMode = s_aHwvirtModes[idxHwvirtState];
2408 uint32_t fDumpState = idxHwvirtState | CPUMHWVIRTDUMP_COMMON;
2409
2410 /*
2411 * Dump it.
2412 */
2413 pHlp->pfnPrintf(pHlp, "VCPU[%u] hardware virtualization state:\n", pVCpu->idCpu);
2414
2415 if (fDumpState & CPUMHWVIRTDUMP_COMMON)
2416 {
2417 pHlp->pfnPrintf(pHlp, "fGif = %RTbool\n", pCtx->hwvirt.fGif);
2418 pHlp->pfnPrintf(pHlp, "fLocalForcedActions = %#RX32\n", pCtx->hwvirt.fLocalForcedActions);
2419 }
2420 pHlp->pfnPrintf(pHlp, "%s hwvirt state%s\n", pcszHwvirtMode, (fDumpState & (CPUMHWVIRTDUMP_SVM | CPUMHWVIRTDUMP_VMX)) ?
2421 ":" : "");
2422 if (fDumpState & CPUMHWVIRTDUMP_SVM)
2423 {
2424 char szEFlags[80];
2425 cpumR3InfoFormatFlags(&szEFlags[0], pCtx->hwvirt.svm.HostState.rflags.u);
2426
2427 pHlp->pfnPrintf(pHlp, " uMsrHSavePa = %#RX64\n", pCtx->hwvirt.svm.uMsrHSavePa);
2428 pHlp->pfnPrintf(pHlp, " GCPhysVmcb = %#RGp\n", pCtx->hwvirt.svm.GCPhysVmcb);
2429 pHlp->pfnPrintf(pHlp, " VmcbCtrl:\n");
2430 cpumR3InfoSvmVmcbCtrl(pHlp, &pCtx->hwvirt.svm.pVmcbR3->ctrl, " " /* pszPrefix */);
2431 pHlp->pfnPrintf(pHlp, " VmcbStateSave:\n");
2432 cpumR3InfoSvmVmcbStateSave(pHlp, &pCtx->hwvirt.svm.pVmcbR3->guest, " " /* pszPrefix */);
2433 pHlp->pfnPrintf(pHlp, " HostState:\n");
2434 pHlp->pfnPrintf(pHlp, " uEferMsr = %#RX64\n", pCtx->hwvirt.svm.HostState.uEferMsr);
2435 pHlp->pfnPrintf(pHlp, " uCr0 = %#RX64\n", pCtx->hwvirt.svm.HostState.uCr0);
2436 pHlp->pfnPrintf(pHlp, " uCr4 = %#RX64\n", pCtx->hwvirt.svm.HostState.uCr4);
2437 pHlp->pfnPrintf(pHlp, " uCr3 = %#RX64\n", pCtx->hwvirt.svm.HostState.uCr3);
2438 pHlp->pfnPrintf(pHlp, " uRip = %#RX64\n", pCtx->hwvirt.svm.HostState.uRip);
2439 pHlp->pfnPrintf(pHlp, " uRsp = %#RX64\n", pCtx->hwvirt.svm.HostState.uRsp);
2440 pHlp->pfnPrintf(pHlp, " uRax = %#RX64\n", pCtx->hwvirt.svm.HostState.uRax);
2441 pHlp->pfnPrintf(pHlp, " rflags = %#RX64 %31s\n", pCtx->hwvirt.svm.HostState.rflags.u64, szEFlags);
2442 PCPUMSELREG pSel = &pCtx->hwvirt.svm.HostState.es;
2443 pHlp->pfnPrintf(pHlp, " es = {%04x base=%016RX64 limit=%08x flags=%08x}\n",
2444 pSel->Sel, pSel->u64Base, pSel->u32Limit, pSel->Attr.u);
2445 pSel = &pCtx->hwvirt.svm.HostState.cs;
2446 pHlp->pfnPrintf(pHlp, " cs = {%04x base=%016RX64 limit=%08x flags=%08x}\n",
2447 pSel->Sel, pSel->u64Base, pSel->u32Limit, pSel->Attr.u);
2448 pSel = &pCtx->hwvirt.svm.HostState.ss;
2449 pHlp->pfnPrintf(pHlp, " ss = {%04x base=%016RX64 limit=%08x flags=%08x}\n",
2450 pSel->Sel, pSel->u64Base, pSel->u32Limit, pSel->Attr.u);
2451 pSel = &pCtx->hwvirt.svm.HostState.ds;
2452 pHlp->pfnPrintf(pHlp, " ds = {%04x base=%016RX64 limit=%08x flags=%08x}\n",
2453 pSel->Sel, pSel->u64Base, pSel->u32Limit, pSel->Attr.u);
2454 pHlp->pfnPrintf(pHlp, " gdtr = %016RX64:%04x\n", pCtx->hwvirt.svm.HostState.gdtr.pGdt,
2455 pCtx->hwvirt.svm.HostState.gdtr.cbGdt);
2456 pHlp->pfnPrintf(pHlp, " idtr = %016RX64:%04x\n", pCtx->hwvirt.svm.HostState.idtr.pIdt,
2457 pCtx->hwvirt.svm.HostState.idtr.cbIdt);
2458 pHlp->pfnPrintf(pHlp, " cPauseFilter = %RU16\n", pCtx->hwvirt.svm.cPauseFilter);
2459 pHlp->pfnPrintf(pHlp, " cPauseFilterThreshold = %RU32\n", pCtx->hwvirt.svm.cPauseFilterThreshold);
2460 pHlp->pfnPrintf(pHlp, " fInterceptEvents = %u\n", pCtx->hwvirt.svm.fInterceptEvents);
2461 pHlp->pfnPrintf(pHlp, " pvMsrBitmapR3 = %p\n", pCtx->hwvirt.svm.pvMsrBitmapR3);
2462 pHlp->pfnPrintf(pHlp, " pvMsrBitmapR0 = %RKv\n", pCtx->hwvirt.svm.pvMsrBitmapR0);
2463 pHlp->pfnPrintf(pHlp, " pvIoBitmapR3 = %p\n", pCtx->hwvirt.svm.pvIoBitmapR3);
2464 pHlp->pfnPrintf(pHlp, " pvIoBitmapR0 = %RKv\n", pCtx->hwvirt.svm.pvIoBitmapR0);
2465 }
2466
2467 /** @todo Intel. */
2468#if 0
2469 if (fDumpState & CPUMHWVIRTDUMP_VMX)
2470 {
2471 }
2472#endif
2473
2474#undef CPUMHWVIRTDUMP_NONE
2475#undef CPUMHWVIRTDUMP_COMMON
2476#undef CPUMHWVIRTDUMP_SVM
2477#undef CPUMHWVIRTDUMP_VMX
2478#undef CPUMHWVIRTDUMP_LAST
2479#undef CPUMHWVIRTDUMP_ALL
2480}
2481
2482/**
2483 * Display the current guest instruction
2484 *
2485 * @param pVM The cross context VM structure.
2486 * @param pHlp The info helper functions.
2487 * @param pszArgs Arguments, ignored.
2488 */
2489static DECLCALLBACK(void) cpumR3InfoGuestInstr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2490{
2491 NOREF(pszArgs);
2492
2493 PVMCPU pVCpu = VMMGetCpu(pVM);
2494 if (!pVCpu)
2495 pVCpu = &pVM->aCpus[0];
2496
2497 char szInstruction[256];
2498 szInstruction[0] = '\0';
2499 DBGFR3DisasInstrCurrent(pVCpu, szInstruction, sizeof(szInstruction));
2500 pHlp->pfnPrintf(pHlp, "\nCPUM%u: %s\n\n", pVCpu->idCpu, szInstruction);
2501}
2502
2503
2504/**
2505 * Display the hypervisor cpu state.
2506 *
2507 * @param pVM The cross context VM structure.
2508 * @param pHlp The info helper functions.
2509 * @param pszArgs Arguments, ignored.
2510 */
2511static DECLCALLBACK(void) cpumR3InfoHyper(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2512{
2513 PVMCPU pVCpu = VMMGetCpu(pVM);
2514 if (!pVCpu)
2515 pVCpu = &pVM->aCpus[0];
2516
2517 CPUMDUMPTYPE enmType;
2518 const char *pszComment;
2519 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
2520 pHlp->pfnPrintf(pHlp, "Hypervisor CPUM state: %s\n", pszComment);
2521 cpumR3InfoOne(pVM, &pVCpu->cpum.s.Hyper, CPUMCTX2CORE(&pVCpu->cpum.s.Hyper), pHlp, enmType, ".");
2522 pHlp->pfnPrintf(pHlp, "CR4OrMask=%#x CR4AndMask=%#x\n", pVM->cpum.s.CR4.OrMask, pVM->cpum.s.CR4.AndMask);
2523}
2524
2525
2526/**
2527 * Display the host cpu state.
2528 *
2529 * @param pVM The cross context VM structure.
2530 * @param pHlp The info helper functions.
2531 * @param pszArgs Arguments, ignored.
2532 */
2533static DECLCALLBACK(void) cpumR3InfoHost(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2534{
2535 CPUMDUMPTYPE enmType;
2536 const char *pszComment;
2537 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
2538 pHlp->pfnPrintf(pHlp, "Host CPUM state: %s\n", pszComment);
2539
2540 PVMCPU pVCpu = VMMGetCpu(pVM);
2541 if (!pVCpu)
2542 pVCpu = &pVM->aCpus[0];
2543 PCPUMHOSTCTX pCtx = &pVCpu->cpum.s.Host;
2544
2545 /*
2546 * Format the EFLAGS.
2547 */
2548#if HC_ARCH_BITS == 32
2549 uint32_t efl = pCtx->eflags.u32;
2550#else
2551 uint64_t efl = pCtx->rflags;
2552#endif
2553 char szEFlags[80];
2554 cpumR3InfoFormatFlags(&szEFlags[0], efl);
2555
2556 /*
2557 * Format the registers.
2558 */
2559#if HC_ARCH_BITS == 32
2560 pHlp->pfnPrintf(pHlp,
2561 "eax=xxxxxxxx ebx=%08x ecx=xxxxxxxx edx=xxxxxxxx esi=%08x edi=%08x\n"
2562 "eip=xxxxxxxx esp=%08x ebp=%08x iopl=%d %31s\n"
2563 "cs=%04x ds=%04x es=%04x fs=%04x gs=%04x eflags=%08x\n"
2564 "cr0=%08RX64 cr2=xxxxxxxx cr3=%08RX64 cr4=%08RX64 gdtr=%08x:%04x ldtr=%04x\n"
2565 "dr[0]=%08RX64 dr[1]=%08RX64x dr[2]=%08RX64 dr[3]=%08RX64x dr[6]=%08RX64 dr[7]=%08RX64\n"
2566 "SysEnter={cs=%04x eip=%08x esp=%08x}\n"
2567 ,
2568 /*pCtx->eax,*/ pCtx->ebx, /*pCtx->ecx, pCtx->edx,*/ pCtx->esi, pCtx->edi,
2569 /*pCtx->eip,*/ pCtx->esp, pCtx->ebp, X86_EFL_GET_IOPL(efl), szEFlags,
2570 pCtx->cs, pCtx->ds, pCtx->es, pCtx->fs, pCtx->gs, efl,
2571 pCtx->cr0, /*pCtx->cr2,*/ pCtx->cr3, pCtx->cr4,
2572 pCtx->dr0, pCtx->dr1, pCtx->dr2, pCtx->dr3, pCtx->dr6, pCtx->dr7,
2573 (uint32_t)pCtx->gdtr.uAddr, pCtx->gdtr.cb, pCtx->ldtr,
2574 pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
2575#else
2576 pHlp->pfnPrintf(pHlp,
2577 "rax=xxxxxxxxxxxxxxxx rbx=%016RX64 rcx=xxxxxxxxxxxxxxxx\n"
2578 "rdx=xxxxxxxxxxxxxxxx rsi=%016RX64 rdi=%016RX64\n"
2579 "rip=xxxxxxxxxxxxxxxx rsp=%016RX64 rbp=%016RX64\n"
2580 " r8=xxxxxxxxxxxxxxxx r9=xxxxxxxxxxxxxxxx r10=%016RX64\n"
2581 "r11=%016RX64 r12=%016RX64 r13=%016RX64\n"
2582 "r14=%016RX64 r15=%016RX64\n"
2583 "iopl=%d %31s\n"
2584 "cs=%04x ds=%04x es=%04x fs=%04x gs=%04x eflags=%08RX64\n"
2585 "cr0=%016RX64 cr2=xxxxxxxxxxxxxxxx cr3=%016RX64\n"
2586 "cr4=%016RX64 ldtr=%04x tr=%04x\n"
2587 "dr[0]=%016RX64 dr[1]=%016RX64 dr[2]=%016RX64\n"
2588 "dr[3]=%016RX64 dr[6]=%016RX64 dr[7]=%016RX64\n"
2589 "gdtr=%016RX64:%04x idtr=%016RX64:%04x\n"
2590 "SysEnter={cs=%04x eip=%08x esp=%08x}\n"
2591 "FSbase=%016RX64 GSbase=%016RX64 efer=%08RX64\n"
2592 ,
2593 /*pCtx->rax,*/ pCtx->rbx, /*pCtx->rcx,
2594 pCtx->rdx,*/ pCtx->rsi, pCtx->rdi,
2595 /*pCtx->rip,*/ pCtx->rsp, pCtx->rbp,
2596 /*pCtx->r8, pCtx->r9,*/ pCtx->r10,
2597 pCtx->r11, pCtx->r12, pCtx->r13,
2598 pCtx->r14, pCtx->r15,
2599 X86_EFL_GET_IOPL(efl), szEFlags,
2600 pCtx->cs, pCtx->ds, pCtx->es, pCtx->fs, pCtx->gs, efl,
2601 pCtx->cr0, /*pCtx->cr2,*/ pCtx->cr3,
2602 pCtx->cr4, pCtx->ldtr, pCtx->tr,
2603 pCtx->dr0, pCtx->dr1, pCtx->dr2,
2604 pCtx->dr3, pCtx->dr6, pCtx->dr7,
2605 pCtx->gdtr.uAddr, pCtx->gdtr.cb, pCtx->idtr.uAddr, pCtx->idtr.cb,
2606 pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp,
2607 pCtx->FSbase, pCtx->GSbase, pCtx->efer);
2608#endif
2609}
2610
2611/**
2612 * Structure used when disassembling and instructions in DBGF.
2613 * This is used so the reader function can get the stuff it needs.
2614 */
2615typedef struct CPUMDISASSTATE
2616{
2617 /** Pointer to the CPU structure. */
2618 PDISCPUSTATE pCpu;
2619 /** Pointer to the VM. */
2620 PVM pVM;
2621 /** Pointer to the VMCPU. */
2622 PVMCPU pVCpu;
2623 /** Pointer to the first byte in the segment. */
2624 RTGCUINTPTR GCPtrSegBase;
2625 /** Pointer to the byte after the end of the segment. (might have wrapped!) */
2626 RTGCUINTPTR GCPtrSegEnd;
2627 /** The size of the segment minus 1. */
2628 RTGCUINTPTR cbSegLimit;
2629 /** Pointer to the current page - R3 Ptr. */
2630 void const *pvPageR3;
2631 /** Pointer to the current page - GC Ptr. */
2632 RTGCPTR pvPageGC;
2633 /** The lock information that PGMPhysReleasePageMappingLock needs. */
2634 PGMPAGEMAPLOCK PageMapLock;
2635 /** Whether the PageMapLock is valid or not. */
2636 bool fLocked;
2637 /** 64 bits mode or not. */
2638 bool f64Bits;
2639} CPUMDISASSTATE, *PCPUMDISASSTATE;
2640
2641
2642/**
2643 * @callback_method_impl{FNDISREADBYTES}
2644 */
2645static DECLCALLBACK(int) cpumR3DisasInstrRead(PDISCPUSTATE pDis, uint8_t offInstr, uint8_t cbMinRead, uint8_t cbMaxRead)
2646{
2647 PCPUMDISASSTATE pState = (PCPUMDISASSTATE)pDis->pvUser;
2648 for (;;)
2649 {
2650 RTGCUINTPTR GCPtr = pDis->uInstrAddr + offInstr + pState->GCPtrSegBase;
2651
2652 /*
2653 * Need to update the page translation?
2654 */
2655 if ( !pState->pvPageR3
2656 || (GCPtr >> PAGE_SHIFT) != (pState->pvPageGC >> PAGE_SHIFT))
2657 {
2658 int rc = VINF_SUCCESS;
2659
2660 /* translate the address */
2661 pState->pvPageGC = GCPtr & PAGE_BASE_GC_MASK;
2662 if ( VM_IS_RAW_MODE_ENABLED(pState->pVM)
2663 && MMHyperIsInsideArea(pState->pVM, pState->pvPageGC))
2664 {
2665 pState->pvPageR3 = MMHyperRCToR3(pState->pVM, (RTRCPTR)pState->pvPageGC);
2666 if (!pState->pvPageR3)
2667 rc = VERR_INVALID_POINTER;
2668 }
2669 else
2670 {
2671 /* Release mapping lock previously acquired. */
2672 if (pState->fLocked)
2673 PGMPhysReleasePageMappingLock(pState->pVM, &pState->PageMapLock);
2674 rc = PGMPhysGCPtr2CCPtrReadOnly(pState->pVCpu, pState->pvPageGC, &pState->pvPageR3, &pState->PageMapLock);
2675 pState->fLocked = RT_SUCCESS_NP(rc);
2676 }
2677 if (RT_FAILURE(rc))
2678 {
2679 pState->pvPageR3 = NULL;
2680 return rc;
2681 }
2682 }
2683
2684 /*
2685 * Check the segment limit.
2686 */
2687 if (!pState->f64Bits && pDis->uInstrAddr + offInstr > pState->cbSegLimit)
2688 return VERR_OUT_OF_SELECTOR_BOUNDS;
2689
2690 /*
2691 * Calc how much we can read.
2692 */
2693 uint32_t cb = PAGE_SIZE - (GCPtr & PAGE_OFFSET_MASK);
2694 if (!pState->f64Bits)
2695 {
2696 RTGCUINTPTR cbSeg = pState->GCPtrSegEnd - GCPtr;
2697 if (cb > cbSeg && cbSeg)
2698 cb = cbSeg;
2699 }
2700 if (cb > cbMaxRead)
2701 cb = cbMaxRead;
2702
2703 /*
2704 * Read and advance or exit.
2705 */
2706 memcpy(&pDis->abInstr[offInstr], (uint8_t *)pState->pvPageR3 + (GCPtr & PAGE_OFFSET_MASK), cb);
2707 offInstr += (uint8_t)cb;
2708 if (cb >= cbMinRead)
2709 {
2710 pDis->cbCachedInstr = offInstr;
2711 return VINF_SUCCESS;
2712 }
2713 cbMinRead -= (uint8_t)cb;
2714 cbMaxRead -= (uint8_t)cb;
2715 }
2716}
2717
2718
2719/**
2720 * Disassemble an instruction and return the information in the provided structure.
2721 *
2722 * @returns VBox status code.
2723 * @param pVM The cross context VM structure.
2724 * @param pVCpu The cross context virtual CPU structure.
2725 * @param pCtx Pointer to the guest CPU context.
2726 * @param GCPtrPC Program counter (relative to CS) to disassemble from.
2727 * @param pCpu Disassembly state.
2728 * @param pszPrefix String prefix for logging (debug only).
2729 *
2730 */
2731VMMR3DECL(int) CPUMR3DisasmInstrCPU(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, RTGCPTR GCPtrPC, PDISCPUSTATE pCpu,
2732 const char *pszPrefix)
2733{
2734 CPUMDISASSTATE State;
2735 int rc;
2736
2737 const PGMMODE enmMode = PGMGetGuestMode(pVCpu);
2738 State.pCpu = pCpu;
2739 State.pvPageGC = 0;
2740 State.pvPageR3 = NULL;
2741 State.pVM = pVM;
2742 State.pVCpu = pVCpu;
2743 State.fLocked = false;
2744 State.f64Bits = false;
2745
2746 /*
2747 * Get selector information.
2748 */
2749 DISCPUMODE enmDisCpuMode;
2750 if ( (pCtx->cr0 & X86_CR0_PE)
2751 && pCtx->eflags.Bits.u1VM == 0)
2752 {
2753 if (!CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->cs))
2754 {
2755# ifdef VBOX_WITH_RAW_MODE_NOT_R0
2756 CPUMGuestLazyLoadHiddenSelectorReg(pVCpu, &pCtx->cs);
2757# endif
2758 if (!CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->cs))
2759 return VERR_CPUM_HIDDEN_CS_LOAD_ERROR;
2760 }
2761 State.f64Bits = enmMode >= PGMMODE_AMD64 && pCtx->cs.Attr.n.u1Long;
2762 State.GCPtrSegBase = pCtx->cs.u64Base;
2763 State.GCPtrSegEnd = pCtx->cs.u32Limit + 1 + (RTGCUINTPTR)pCtx->cs.u64Base;
2764 State.cbSegLimit = pCtx->cs.u32Limit;
2765 enmDisCpuMode = (State.f64Bits)
2766 ? DISCPUMODE_64BIT
2767 : pCtx->cs.Attr.n.u1DefBig
2768 ? DISCPUMODE_32BIT
2769 : DISCPUMODE_16BIT;
2770 }
2771 else
2772 {
2773 /* real or V86 mode */
2774 enmDisCpuMode = DISCPUMODE_16BIT;
2775 State.GCPtrSegBase = pCtx->cs.Sel * 16;
2776 State.GCPtrSegEnd = 0xFFFFFFFF;
2777 State.cbSegLimit = 0xFFFFFFFF;
2778 }
2779
2780 /*
2781 * Disassemble the instruction.
2782 */
2783 uint32_t cbInstr;
2784#ifndef LOG_ENABLED
2785 RT_NOREF_PV(pszPrefix);
2786 rc = DISInstrWithReader(GCPtrPC, enmDisCpuMode, cpumR3DisasInstrRead, &State, pCpu, &cbInstr);
2787 if (RT_SUCCESS(rc))
2788 {
2789#else
2790 char szOutput[160];
2791 rc = DISInstrToStrWithReader(GCPtrPC, enmDisCpuMode, cpumR3DisasInstrRead, &State,
2792 pCpu, &cbInstr, szOutput, sizeof(szOutput));
2793 if (RT_SUCCESS(rc))
2794 {
2795 /* log it */
2796 if (pszPrefix)
2797 Log(("%s-CPU%d: %s", pszPrefix, pVCpu->idCpu, szOutput));
2798 else
2799 Log(("%s", szOutput));
2800#endif
2801 rc = VINF_SUCCESS;
2802 }
2803 else
2804 Log(("CPUMR3DisasmInstrCPU: DISInstr failed for %04X:%RGv rc=%Rrc\n", pCtx->cs.Sel, GCPtrPC, rc));
2805
2806 /* Release mapping lock acquired in cpumR3DisasInstrRead. */
2807 if (State.fLocked)
2808 PGMPhysReleasePageMappingLock(pVM, &State.PageMapLock);
2809
2810 return rc;
2811}
2812
2813
2814
2815/**
2816 * API for controlling a few of the CPU features found in CR4.
2817 *
2818 * Currently only X86_CR4_TSD is accepted as input.
2819 *
2820 * @returns VBox status code.
2821 *
2822 * @param pVM The cross context VM structure.
2823 * @param fOr The CR4 OR mask.
2824 * @param fAnd The CR4 AND mask.
2825 */
2826VMMR3DECL(int) CPUMR3SetCR4Feature(PVM pVM, RTHCUINTREG fOr, RTHCUINTREG fAnd)
2827{
2828 AssertMsgReturn(!(fOr & ~(X86_CR4_TSD)), ("%#x\n", fOr), VERR_INVALID_PARAMETER);
2829 AssertMsgReturn((fAnd & ~(X86_CR4_TSD)) == ~(X86_CR4_TSD), ("%#x\n", fAnd), VERR_INVALID_PARAMETER);
2830
2831 pVM->cpum.s.CR4.OrMask &= fAnd;
2832 pVM->cpum.s.CR4.OrMask |= fOr;
2833
2834 return VINF_SUCCESS;
2835}
2836
2837
2838/**
2839 * Enters REM, gets and resets the changed flags (CPUM_CHANGED_*).
2840 *
2841 * Only REM should ever call this function!
2842 *
2843 * @returns The changed flags.
2844 * @param pVCpu The cross context virtual CPU structure.
2845 * @param puCpl Where to return the current privilege level (CPL).
2846 */
2847VMMR3DECL(uint32_t) CPUMR3RemEnter(PVMCPU pVCpu, uint32_t *puCpl)
2848{
2849 Assert(!pVCpu->cpum.s.fRawEntered);
2850 Assert(!pVCpu->cpum.s.fRemEntered);
2851
2852 /*
2853 * Get the CPL first.
2854 */
2855 *puCpl = CPUMGetGuestCPL(pVCpu);
2856
2857 /*
2858 * Get and reset the flags.
2859 */
2860 uint32_t fFlags = pVCpu->cpum.s.fChanged;
2861 pVCpu->cpum.s.fChanged = 0;
2862
2863 /** @todo change the switcher to use the fChanged flags. */
2864 if (pVCpu->cpum.s.fUseFlags & CPUM_USED_FPU_SINCE_REM)
2865 {
2866 fFlags |= CPUM_CHANGED_FPU_REM;
2867 pVCpu->cpum.s.fUseFlags &= ~CPUM_USED_FPU_SINCE_REM;
2868 }
2869
2870 pVCpu->cpum.s.fRemEntered = true;
2871 return fFlags;
2872}
2873
2874
2875/**
2876 * Leaves REM.
2877 *
2878 * @param pVCpu The cross context virtual CPU structure.
2879 * @param fNoOutOfSyncSels This is @c false if there are out of sync
2880 * registers.
2881 */
2882VMMR3DECL(void) CPUMR3RemLeave(PVMCPU pVCpu, bool fNoOutOfSyncSels)
2883{
2884 Assert(!pVCpu->cpum.s.fRawEntered);
2885 Assert(pVCpu->cpum.s.fRemEntered);
2886
2887 RT_NOREF_PV(fNoOutOfSyncSels);
2888
2889 pVCpu->cpum.s.fRemEntered = false;
2890}
2891
2892
2893/**
2894 * Called when the ring-3 init phase completes.
2895 *
2896 * @returns VBox status code.
2897 * @param pVM The cross context VM structure.
2898 * @param enmWhat Which init phase.
2899 */
2900VMMR3DECL(int) CPUMR3InitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
2901{
2902 switch (enmWhat)
2903 {
2904 case VMINITCOMPLETED_RING3:
2905 {
2906 /*
2907 * Figure out if the guest uses 32-bit or 64-bit FPU state at runtime for 64-bit capable VMs.
2908 * Only applicable/used on 64-bit hosts, refer CPUMR0A.asm. See @bugref{7138}.
2909 */
2910 bool const fSupportsLongMode = VMR3IsLongModeAllowed(pVM);
2911 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2912 {
2913 PVMCPU pVCpu = &pVM->aCpus[i];
2914 /* While loading a saved-state we fix it up in, cpumR3LoadDone(). */
2915 if (fSupportsLongMode)
2916 pVCpu->cpum.s.fUseFlags |= CPUM_USE_SUPPORTS_LONGMODE;
2917 }
2918
2919 cpumR3MsrRegStats(pVM);
2920 break;
2921 }
2922
2923 default:
2924 break;
2925 }
2926 return VINF_SUCCESS;
2927}
2928
2929
2930/**
2931 * Called when the ring-0 init phases completed.
2932 *
2933 * @param pVM The cross context VM structure.
2934 */
2935VMMR3DECL(void) CPUMR3LogCpuIds(PVM pVM)
2936{
2937 /*
2938 * Log the cpuid.
2939 */
2940 bool fOldBuffered = RTLogRelSetBuffering(true /*fBuffered*/);
2941 RTCPUSET OnlineSet;
2942 LogRel(("CPUM: Logical host processors: %u present, %u max, %u online, online mask: %016RX64\n",
2943 (unsigned)RTMpGetPresentCount(), (unsigned)RTMpGetCount(), (unsigned)RTMpGetOnlineCount(),
2944 RTCpuSetToU64(RTMpGetOnlineSet(&OnlineSet)) ));
2945 RTCPUID cCores = RTMpGetCoreCount();
2946 if (cCores)
2947 LogRel(("CPUM: Physical host cores: %u\n", (unsigned)cCores));
2948 LogRel(("************************* CPUID dump ************************\n"));
2949 DBGFR3Info(pVM->pUVM, "cpuid", "verbose", DBGFR3InfoLogRelHlp());
2950 LogRel(("\n"));
2951 DBGFR3_INFO_LOG_SAFE(pVM, "cpuid", "verbose"); /* macro */
2952 RTLogRelSetBuffering(fOldBuffered);
2953 LogRel(("******************** End of CPUID dump **********************\n"));
2954}
2955
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette