VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/CPUM.cpp@ 72403

Last change on this file since 72403 was 72178, checked in by vboxsync, 7 years ago

VMM: Nested hw.virt: Implemented saved-states for nested SVM. Bumps the CPUM and HM SSM versions.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 143.1 KB
Line 
1/* $Id: CPUM.cpp 72178 2018-05-09 16:18:56Z vboxsync $ */
2/** @file
3 * CPUM - CPU Monitor / Manager.
4 */
5
6/*
7 * Copyright (C) 2006-2017 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/** @page pg_cpum CPUM - CPU Monitor / Manager
19 *
20 * The CPU Monitor / Manager keeps track of all the CPU registers. It is
21 * also responsible for lazy FPU handling and some of the context loading
22 * in raw mode.
23 *
24 * There are three CPU contexts, the most important one is the guest one (GC).
25 * When running in raw-mode (RC) there is a special hyper context for the VMM
26 * part that floats around inside the guest address space. When running in
27 * raw-mode, CPUM also maintains a host context for saving and restoring
28 * registers across world switches. This latter is done in cooperation with the
29 * world switcher (@see pg_vmm).
30 *
31 * @see grp_cpum
32 *
33 * @section sec_cpum_fpu FPU / SSE / AVX / ++ state.
34 *
35 * TODO: proper write up, currently just some notes.
36 *
37 * The ring-0 FPU handling per OS:
38 *
39 * - 64-bit Windows uses XMM registers in the kernel as part of the calling
40 * convention (Visual C++ doesn't seem to have a way to disable
41 * generating such code either), so CR0.TS/EM are always zero from what I
42 * can tell. We are also forced to always load/save the guest XMM0-XMM15
43 * registers when entering/leaving guest context. Interrupt handlers
44 * using FPU/SSE will offically have call save and restore functions
45 * exported by the kernel, if the really really have to use the state.
46 *
47 * - 32-bit windows does lazy FPU handling, I think, probably including
48 * lazying saving. The Windows Internals book states that it's a bad
49 * idea to use the FPU in kernel space. However, it looks like it will
50 * restore the FPU state of the current thread in case of a kernel \#NM.
51 * Interrupt handlers should be same as for 64-bit.
52 *
53 * - Darwin allows taking \#NM in kernel space, restoring current thread's
54 * state if I read the code correctly. It saves the FPU state of the
55 * outgoing thread, and uses CR0.TS to lazily load the state of the
56 * incoming one. No idea yet how the FPU is treated by interrupt
57 * handlers, i.e. whether they are allowed to disable the state or
58 * something.
59 *
60 * - Linux also allows \#NM in kernel space (don't know since when), and
61 * uses CR0.TS for lazy loading. Saves outgoing thread's state, lazy
62 * loads the incoming unless configured to agressivly load it. Interrupt
63 * handlers can ask whether they're allowed to use the FPU, and may
64 * freely trash the state if Linux thinks it has saved the thread's state
65 * already. This is a problem.
66 *
67 * - Solaris will, from what I can tell, panic if it gets an \#NM in kernel
68 * context. When switching threads, the kernel will save the state of
69 * the outgoing thread and lazy load the incoming one using CR0.TS.
70 * There are a few routines in seeblk.s which uses the SSE unit in ring-0
71 * to do stuff, HAT are among the users. The routines there will
72 * manually clear CR0.TS and save the XMM registers they use only if
73 * CR0.TS was zero upon entry. They will skip it when not, because as
74 * mentioned above, the FPU state is saved when switching away from a
75 * thread and CR0.TS set to 1, so when CR0.TS is 1 there is nothing to
76 * preserve. This is a problem if we restore CR0.TS to 1 after loading
77 * the guest state.
78 *
79 * - FreeBSD - no idea yet.
80 *
81 * - OS/2 does not allow \#NMs in kernel space IIRC. Does lazy loading,
82 * possibly also lazy saving. Interrupts must preserve the CR0.TS+EM &
83 * FPU states.
84 *
85 * Up to r107425 (2016-05-24) we would only temporarily modify CR0.TS/EM while
86 * saving and restoring the host and guest states. The motivation for this
87 * change is that we want to be able to emulate SSE instruction in ring-0 (IEM).
88 *
89 * Starting with that change, we will leave CR0.TS=EM=0 after saving the host
90 * state and only restore it once we've restore the host FPU state. This has the
91 * accidental side effect of triggering Solaris to preserve XMM registers in
92 * sseblk.s. When CR0 was changed by saving the FPU state, CPUM must now inform
93 * the VT-x (HMVMX) code about it as it caches the CR0 value in the VMCS.
94 *
95 *
96 * @section sec_cpum_logging Logging Level Assignments.
97 *
98 * Following log level assignments:
99 * - Log6 is used for FPU state management.
100 * - Log7 is used for FPU state actualization.
101 *
102 */
103
104
105/*********************************************************************************************************************************
106* Header Files *
107*********************************************************************************************************************************/
108#define LOG_GROUP LOG_GROUP_CPUM
109#include <VBox/vmm/cpum.h>
110#include <VBox/vmm/cpumdis.h>
111#include <VBox/vmm/cpumctx-v1_6.h>
112#include <VBox/vmm/pgm.h>
113#include <VBox/vmm/apic.h>
114#include <VBox/vmm/mm.h>
115#include <VBox/vmm/em.h>
116#include <VBox/vmm/iem.h>
117#include <VBox/vmm/selm.h>
118#include <VBox/vmm/dbgf.h>
119#include <VBox/vmm/patm.h>
120#include <VBox/vmm/hm.h>
121#include <VBox/vmm/ssm.h>
122#include "CPUMInternal.h"
123#include <VBox/vmm/vm.h>
124
125#include <VBox/param.h>
126#include <VBox/dis.h>
127#include <VBox/err.h>
128#include <VBox/log.h>
129#include <iprt/asm-amd64-x86.h>
130#include <iprt/assert.h>
131#include <iprt/cpuset.h>
132#include <iprt/mem.h>
133#include <iprt/mp.h>
134#include <iprt/string.h>
135
136
137/*********************************************************************************************************************************
138* Defined Constants And Macros *
139*********************************************************************************************************************************/
140/**
141 * This was used in the saved state up to the early life of version 14.
142 *
143 * It indicates that we may have some out-of-sync hidden segement registers.
144 * It is only relevant for raw-mode.
145 */
146#define CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID RT_BIT(12)
147
148
149/*********************************************************************************************************************************
150* Structures and Typedefs *
151*********************************************************************************************************************************/
152
153/**
154 * What kind of cpu info dump to perform.
155 */
156typedef enum CPUMDUMPTYPE
157{
158 CPUMDUMPTYPE_TERSE,
159 CPUMDUMPTYPE_DEFAULT,
160 CPUMDUMPTYPE_VERBOSE
161} CPUMDUMPTYPE;
162/** Pointer to a cpu info dump type. */
163typedef CPUMDUMPTYPE *PCPUMDUMPTYPE;
164
165
166/*********************************************************************************************************************************
167* Internal Functions *
168*********************************************************************************************************************************/
169static DECLCALLBACK(int) cpumR3LiveExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uPass);
170static DECLCALLBACK(int) cpumR3SaveExec(PVM pVM, PSSMHANDLE pSSM);
171static DECLCALLBACK(int) cpumR3LoadPrep(PVM pVM, PSSMHANDLE pSSM);
172static DECLCALLBACK(int) cpumR3LoadExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
173static DECLCALLBACK(int) cpumR3LoadDone(PVM pVM, PSSMHANDLE pSSM);
174static DECLCALLBACK(void) cpumR3InfoAll(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
175static DECLCALLBACK(void) cpumR3InfoGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
176static DECLCALLBACK(void) cpumR3InfoGuestHwvirt(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
177static DECLCALLBACK(void) cpumR3InfoGuestInstr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
178static DECLCALLBACK(void) cpumR3InfoHyper(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
179static DECLCALLBACK(void) cpumR3InfoHost(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
180
181
182/*********************************************************************************************************************************
183* Global Variables *
184*********************************************************************************************************************************/
185/** Saved state field descriptors for CPUMCTX. */
186static const SSMFIELD g_aCpumCtxFields[] =
187{
188 SSMFIELD_ENTRY( CPUMCTX, rdi),
189 SSMFIELD_ENTRY( CPUMCTX, rsi),
190 SSMFIELD_ENTRY( CPUMCTX, rbp),
191 SSMFIELD_ENTRY( CPUMCTX, rax),
192 SSMFIELD_ENTRY( CPUMCTX, rbx),
193 SSMFIELD_ENTRY( CPUMCTX, rdx),
194 SSMFIELD_ENTRY( CPUMCTX, rcx),
195 SSMFIELD_ENTRY( CPUMCTX, rsp),
196 SSMFIELD_ENTRY( CPUMCTX, rflags),
197 SSMFIELD_ENTRY( CPUMCTX, rip),
198 SSMFIELD_ENTRY( CPUMCTX, r8),
199 SSMFIELD_ENTRY( CPUMCTX, r9),
200 SSMFIELD_ENTRY( CPUMCTX, r10),
201 SSMFIELD_ENTRY( CPUMCTX, r11),
202 SSMFIELD_ENTRY( CPUMCTX, r12),
203 SSMFIELD_ENTRY( CPUMCTX, r13),
204 SSMFIELD_ENTRY( CPUMCTX, r14),
205 SSMFIELD_ENTRY( CPUMCTX, r15),
206 SSMFIELD_ENTRY( CPUMCTX, es.Sel),
207 SSMFIELD_ENTRY( CPUMCTX, es.ValidSel),
208 SSMFIELD_ENTRY( CPUMCTX, es.fFlags),
209 SSMFIELD_ENTRY( CPUMCTX, es.u64Base),
210 SSMFIELD_ENTRY( CPUMCTX, es.u32Limit),
211 SSMFIELD_ENTRY( CPUMCTX, es.Attr),
212 SSMFIELD_ENTRY( CPUMCTX, cs.Sel),
213 SSMFIELD_ENTRY( CPUMCTX, cs.ValidSel),
214 SSMFIELD_ENTRY( CPUMCTX, cs.fFlags),
215 SSMFIELD_ENTRY( CPUMCTX, cs.u64Base),
216 SSMFIELD_ENTRY( CPUMCTX, cs.u32Limit),
217 SSMFIELD_ENTRY( CPUMCTX, cs.Attr),
218 SSMFIELD_ENTRY( CPUMCTX, ss.Sel),
219 SSMFIELD_ENTRY( CPUMCTX, ss.ValidSel),
220 SSMFIELD_ENTRY( CPUMCTX, ss.fFlags),
221 SSMFIELD_ENTRY( CPUMCTX, ss.u64Base),
222 SSMFIELD_ENTRY( CPUMCTX, ss.u32Limit),
223 SSMFIELD_ENTRY( CPUMCTX, ss.Attr),
224 SSMFIELD_ENTRY( CPUMCTX, ds.Sel),
225 SSMFIELD_ENTRY( CPUMCTX, ds.ValidSel),
226 SSMFIELD_ENTRY( CPUMCTX, ds.fFlags),
227 SSMFIELD_ENTRY( CPUMCTX, ds.u64Base),
228 SSMFIELD_ENTRY( CPUMCTX, ds.u32Limit),
229 SSMFIELD_ENTRY( CPUMCTX, ds.Attr),
230 SSMFIELD_ENTRY( CPUMCTX, fs.Sel),
231 SSMFIELD_ENTRY( CPUMCTX, fs.ValidSel),
232 SSMFIELD_ENTRY( CPUMCTX, fs.fFlags),
233 SSMFIELD_ENTRY( CPUMCTX, fs.u64Base),
234 SSMFIELD_ENTRY( CPUMCTX, fs.u32Limit),
235 SSMFIELD_ENTRY( CPUMCTX, fs.Attr),
236 SSMFIELD_ENTRY( CPUMCTX, gs.Sel),
237 SSMFIELD_ENTRY( CPUMCTX, gs.ValidSel),
238 SSMFIELD_ENTRY( CPUMCTX, gs.fFlags),
239 SSMFIELD_ENTRY( CPUMCTX, gs.u64Base),
240 SSMFIELD_ENTRY( CPUMCTX, gs.u32Limit),
241 SSMFIELD_ENTRY( CPUMCTX, gs.Attr),
242 SSMFIELD_ENTRY( CPUMCTX, cr0),
243 SSMFIELD_ENTRY( CPUMCTX, cr2),
244 SSMFIELD_ENTRY( CPUMCTX, cr3),
245 SSMFIELD_ENTRY( CPUMCTX, cr4),
246 SSMFIELD_ENTRY( CPUMCTX, dr[0]),
247 SSMFIELD_ENTRY( CPUMCTX, dr[1]),
248 SSMFIELD_ENTRY( CPUMCTX, dr[2]),
249 SSMFIELD_ENTRY( CPUMCTX, dr[3]),
250 SSMFIELD_ENTRY( CPUMCTX, dr[6]),
251 SSMFIELD_ENTRY( CPUMCTX, dr[7]),
252 SSMFIELD_ENTRY( CPUMCTX, gdtr.cbGdt),
253 SSMFIELD_ENTRY( CPUMCTX, gdtr.pGdt),
254 SSMFIELD_ENTRY( CPUMCTX, idtr.cbIdt),
255 SSMFIELD_ENTRY( CPUMCTX, idtr.pIdt),
256 SSMFIELD_ENTRY( CPUMCTX, SysEnter.cs),
257 SSMFIELD_ENTRY( CPUMCTX, SysEnter.eip),
258 SSMFIELD_ENTRY( CPUMCTX, SysEnter.esp),
259 SSMFIELD_ENTRY( CPUMCTX, msrEFER),
260 SSMFIELD_ENTRY( CPUMCTX, msrSTAR),
261 SSMFIELD_ENTRY( CPUMCTX, msrPAT),
262 SSMFIELD_ENTRY( CPUMCTX, msrLSTAR),
263 SSMFIELD_ENTRY( CPUMCTX, msrCSTAR),
264 SSMFIELD_ENTRY( CPUMCTX, msrSFMASK),
265 SSMFIELD_ENTRY( CPUMCTX, msrKERNELGSBASE),
266 SSMFIELD_ENTRY( CPUMCTX, ldtr.Sel),
267 SSMFIELD_ENTRY( CPUMCTX, ldtr.ValidSel),
268 SSMFIELD_ENTRY( CPUMCTX, ldtr.fFlags),
269 SSMFIELD_ENTRY( CPUMCTX, ldtr.u64Base),
270 SSMFIELD_ENTRY( CPUMCTX, ldtr.u32Limit),
271 SSMFIELD_ENTRY( CPUMCTX, ldtr.Attr),
272 SSMFIELD_ENTRY( CPUMCTX, tr.Sel),
273 SSMFIELD_ENTRY( CPUMCTX, tr.ValidSel),
274 SSMFIELD_ENTRY( CPUMCTX, tr.fFlags),
275 SSMFIELD_ENTRY( CPUMCTX, tr.u64Base),
276 SSMFIELD_ENTRY( CPUMCTX, tr.u32Limit),
277 SSMFIELD_ENTRY( CPUMCTX, tr.Attr),
278 SSMFIELD_ENTRY_VER( CPUMCTX, aXcr[0], CPUM_SAVED_STATE_VERSION_XSAVE),
279 SSMFIELD_ENTRY_VER( CPUMCTX, aXcr[1], CPUM_SAVED_STATE_VERSION_XSAVE),
280 SSMFIELD_ENTRY_VER( CPUMCTX, fXStateMask, CPUM_SAVED_STATE_VERSION_XSAVE),
281 SSMFIELD_ENTRY_TERM()
282};
283
284/** Saved state field descriptors for SVM nested hardware-virtualization
285 * Host State. */
286static const SSMFIELD g_aSvmHwvirtHostState[] =
287{
288 SSMFIELD_ENTRY( SVMHOSTSTATE, uEferMsr),
289 SSMFIELD_ENTRY( SVMHOSTSTATE, uCr0),
290 SSMFIELD_ENTRY( SVMHOSTSTATE, uCr4),
291 SSMFIELD_ENTRY( SVMHOSTSTATE, uCr3),
292 SSMFIELD_ENTRY( SVMHOSTSTATE, uRip),
293 SSMFIELD_ENTRY( SVMHOSTSTATE, uRsp),
294 SSMFIELD_ENTRY( SVMHOSTSTATE, uRax),
295 SSMFIELD_ENTRY( SVMHOSTSTATE, rflags),
296 SSMFIELD_ENTRY( SVMHOSTSTATE, es.Sel),
297 SSMFIELD_ENTRY( SVMHOSTSTATE, es.ValidSel),
298 SSMFIELD_ENTRY( SVMHOSTSTATE, es.fFlags),
299 SSMFIELD_ENTRY( SVMHOSTSTATE, es.u64Base),
300 SSMFIELD_ENTRY( SVMHOSTSTATE, es.u32Limit),
301 SSMFIELD_ENTRY( SVMHOSTSTATE, es.Attr),
302 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.Sel),
303 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.ValidSel),
304 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.fFlags),
305 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.u64Base),
306 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.u32Limit),
307 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.Attr),
308 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.Sel),
309 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.ValidSel),
310 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.fFlags),
311 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.u64Base),
312 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.u32Limit),
313 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.Attr),
314 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.Sel),
315 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.ValidSel),
316 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.fFlags),
317 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.u64Base),
318 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.u32Limit),
319 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.Attr),
320 SSMFIELD_ENTRY( SVMHOSTSTATE, gdtr.cbGdt),
321 SSMFIELD_ENTRY( SVMHOSTSTATE, gdtr.pGdt),
322 SSMFIELD_ENTRY( SVMHOSTSTATE, idtr.cbIdt),
323 SSMFIELD_ENTRY( SVMHOSTSTATE, idtr.pIdt),
324 SSMFIELD_ENTRY_IGNORE(SVMHOSTSTATE, abPadding),
325 SSMFIELD_ENTRY_TERM()
326};
327
328/** Saved state field descriptors for CPUMCTX. */
329static const SSMFIELD g_aCpumX87Fields[] =
330{
331 SSMFIELD_ENTRY( X86FXSTATE, FCW),
332 SSMFIELD_ENTRY( X86FXSTATE, FSW),
333 SSMFIELD_ENTRY( X86FXSTATE, FTW),
334 SSMFIELD_ENTRY( X86FXSTATE, FOP),
335 SSMFIELD_ENTRY( X86FXSTATE, FPUIP),
336 SSMFIELD_ENTRY( X86FXSTATE, CS),
337 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd1),
338 SSMFIELD_ENTRY( X86FXSTATE, FPUDP),
339 SSMFIELD_ENTRY( X86FXSTATE, DS),
340 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd2),
341 SSMFIELD_ENTRY( X86FXSTATE, MXCSR),
342 SSMFIELD_ENTRY( X86FXSTATE, MXCSR_MASK),
343 SSMFIELD_ENTRY( X86FXSTATE, aRegs[0]),
344 SSMFIELD_ENTRY( X86FXSTATE, aRegs[1]),
345 SSMFIELD_ENTRY( X86FXSTATE, aRegs[2]),
346 SSMFIELD_ENTRY( X86FXSTATE, aRegs[3]),
347 SSMFIELD_ENTRY( X86FXSTATE, aRegs[4]),
348 SSMFIELD_ENTRY( X86FXSTATE, aRegs[5]),
349 SSMFIELD_ENTRY( X86FXSTATE, aRegs[6]),
350 SSMFIELD_ENTRY( X86FXSTATE, aRegs[7]),
351 SSMFIELD_ENTRY( X86FXSTATE, aXMM[0]),
352 SSMFIELD_ENTRY( X86FXSTATE, aXMM[1]),
353 SSMFIELD_ENTRY( X86FXSTATE, aXMM[2]),
354 SSMFIELD_ENTRY( X86FXSTATE, aXMM[3]),
355 SSMFIELD_ENTRY( X86FXSTATE, aXMM[4]),
356 SSMFIELD_ENTRY( X86FXSTATE, aXMM[5]),
357 SSMFIELD_ENTRY( X86FXSTATE, aXMM[6]),
358 SSMFIELD_ENTRY( X86FXSTATE, aXMM[7]),
359 SSMFIELD_ENTRY( X86FXSTATE, aXMM[8]),
360 SSMFIELD_ENTRY( X86FXSTATE, aXMM[9]),
361 SSMFIELD_ENTRY( X86FXSTATE, aXMM[10]),
362 SSMFIELD_ENTRY( X86FXSTATE, aXMM[11]),
363 SSMFIELD_ENTRY( X86FXSTATE, aXMM[12]),
364 SSMFIELD_ENTRY( X86FXSTATE, aXMM[13]),
365 SSMFIELD_ENTRY( X86FXSTATE, aXMM[14]),
366 SSMFIELD_ENTRY( X86FXSTATE, aXMM[15]),
367 SSMFIELD_ENTRY_VER( X86FXSTATE, au32RsrvdForSoftware[0], CPUM_SAVED_STATE_VERSION_XSAVE), /* 32-bit/64-bit hack */
368 SSMFIELD_ENTRY_TERM()
369};
370
371/** Saved state field descriptors for X86XSAVEHDR. */
372static const SSMFIELD g_aCpumXSaveHdrFields[] =
373{
374 SSMFIELD_ENTRY( X86XSAVEHDR, bmXState),
375 SSMFIELD_ENTRY_TERM()
376};
377
378/** Saved state field descriptors for X86XSAVEYMMHI. */
379static const SSMFIELD g_aCpumYmmHiFields[] =
380{
381 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[0]),
382 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[1]),
383 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[2]),
384 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[3]),
385 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[4]),
386 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[5]),
387 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[6]),
388 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[7]),
389 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[8]),
390 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[9]),
391 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[10]),
392 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[11]),
393 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[12]),
394 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[13]),
395 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[14]),
396 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[15]),
397 SSMFIELD_ENTRY_TERM()
398};
399
400/** Saved state field descriptors for X86XSAVEBNDREGS. */
401static const SSMFIELD g_aCpumBndRegsFields[] =
402{
403 SSMFIELD_ENTRY( X86XSAVEBNDREGS, aRegs[0]),
404 SSMFIELD_ENTRY( X86XSAVEBNDREGS, aRegs[1]),
405 SSMFIELD_ENTRY( X86XSAVEBNDREGS, aRegs[2]),
406 SSMFIELD_ENTRY( X86XSAVEBNDREGS, aRegs[3]),
407 SSMFIELD_ENTRY_TERM()
408};
409
410/** Saved state field descriptors for X86XSAVEBNDCFG. */
411static const SSMFIELD g_aCpumBndCfgFields[] =
412{
413 SSMFIELD_ENTRY( X86XSAVEBNDCFG, fConfig),
414 SSMFIELD_ENTRY( X86XSAVEBNDCFG, fStatus),
415 SSMFIELD_ENTRY_TERM()
416};
417
418#if 0 /** @todo */
419/** Saved state field descriptors for X86XSAVEOPMASK. */
420static const SSMFIELD g_aCpumOpmaskFields[] =
421{
422 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[0]),
423 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[1]),
424 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[2]),
425 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[3]),
426 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[4]),
427 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[5]),
428 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[6]),
429 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[7]),
430 SSMFIELD_ENTRY_TERM()
431};
432#endif
433
434/** Saved state field descriptors for X86XSAVEZMMHI256. */
435static const SSMFIELD g_aCpumZmmHi256Fields[] =
436{
437 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[0]),
438 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[1]),
439 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[2]),
440 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[3]),
441 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[4]),
442 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[5]),
443 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[6]),
444 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[7]),
445 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[8]),
446 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[9]),
447 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[10]),
448 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[11]),
449 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[12]),
450 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[13]),
451 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[14]),
452 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[15]),
453 SSMFIELD_ENTRY_TERM()
454};
455
456/** Saved state field descriptors for X86XSAVEZMM16HI. */
457static const SSMFIELD g_aCpumZmm16HiFields[] =
458{
459 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[0]),
460 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[1]),
461 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[2]),
462 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[3]),
463 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[4]),
464 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[5]),
465 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[6]),
466 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[7]),
467 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[8]),
468 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[9]),
469 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[10]),
470 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[11]),
471 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[12]),
472 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[13]),
473 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[14]),
474 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[15]),
475 SSMFIELD_ENTRY_TERM()
476};
477
478
479
480/** Saved state field descriptors for CPUMCTX in V4.1 before the hidden selector
481 * registeres changed. */
482static const SSMFIELD g_aCpumX87FieldsMem[] =
483{
484 SSMFIELD_ENTRY( X86FXSTATE, FCW),
485 SSMFIELD_ENTRY( X86FXSTATE, FSW),
486 SSMFIELD_ENTRY( X86FXSTATE, FTW),
487 SSMFIELD_ENTRY( X86FXSTATE, FOP),
488 SSMFIELD_ENTRY( X86FXSTATE, FPUIP),
489 SSMFIELD_ENTRY( X86FXSTATE, CS),
490 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd1),
491 SSMFIELD_ENTRY( X86FXSTATE, FPUDP),
492 SSMFIELD_ENTRY( X86FXSTATE, DS),
493 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd2),
494 SSMFIELD_ENTRY( X86FXSTATE, MXCSR),
495 SSMFIELD_ENTRY( X86FXSTATE, MXCSR_MASK),
496 SSMFIELD_ENTRY( X86FXSTATE, aRegs[0]),
497 SSMFIELD_ENTRY( X86FXSTATE, aRegs[1]),
498 SSMFIELD_ENTRY( X86FXSTATE, aRegs[2]),
499 SSMFIELD_ENTRY( X86FXSTATE, aRegs[3]),
500 SSMFIELD_ENTRY( X86FXSTATE, aRegs[4]),
501 SSMFIELD_ENTRY( X86FXSTATE, aRegs[5]),
502 SSMFIELD_ENTRY( X86FXSTATE, aRegs[6]),
503 SSMFIELD_ENTRY( X86FXSTATE, aRegs[7]),
504 SSMFIELD_ENTRY( X86FXSTATE, aXMM[0]),
505 SSMFIELD_ENTRY( X86FXSTATE, aXMM[1]),
506 SSMFIELD_ENTRY( X86FXSTATE, aXMM[2]),
507 SSMFIELD_ENTRY( X86FXSTATE, aXMM[3]),
508 SSMFIELD_ENTRY( X86FXSTATE, aXMM[4]),
509 SSMFIELD_ENTRY( X86FXSTATE, aXMM[5]),
510 SSMFIELD_ENTRY( X86FXSTATE, aXMM[6]),
511 SSMFIELD_ENTRY( X86FXSTATE, aXMM[7]),
512 SSMFIELD_ENTRY( X86FXSTATE, aXMM[8]),
513 SSMFIELD_ENTRY( X86FXSTATE, aXMM[9]),
514 SSMFIELD_ENTRY( X86FXSTATE, aXMM[10]),
515 SSMFIELD_ENTRY( X86FXSTATE, aXMM[11]),
516 SSMFIELD_ENTRY( X86FXSTATE, aXMM[12]),
517 SSMFIELD_ENTRY( X86FXSTATE, aXMM[13]),
518 SSMFIELD_ENTRY( X86FXSTATE, aXMM[14]),
519 SSMFIELD_ENTRY( X86FXSTATE, aXMM[15]),
520 SSMFIELD_ENTRY_IGNORE( X86FXSTATE, au32RsrvdRest),
521 SSMFIELD_ENTRY_IGNORE( X86FXSTATE, au32RsrvdForSoftware),
522};
523
524/** Saved state field descriptors for CPUMCTX in V4.1 before the hidden selector
525 * registeres changed. */
526static const SSMFIELD g_aCpumCtxFieldsMem[] =
527{
528 SSMFIELD_ENTRY( CPUMCTX, rdi),
529 SSMFIELD_ENTRY( CPUMCTX, rsi),
530 SSMFIELD_ENTRY( CPUMCTX, rbp),
531 SSMFIELD_ENTRY( CPUMCTX, rax),
532 SSMFIELD_ENTRY( CPUMCTX, rbx),
533 SSMFIELD_ENTRY( CPUMCTX, rdx),
534 SSMFIELD_ENTRY( CPUMCTX, rcx),
535 SSMFIELD_ENTRY( CPUMCTX, rsp),
536 SSMFIELD_ENTRY_OLD( lss_esp, sizeof(uint32_t)),
537 SSMFIELD_ENTRY( CPUMCTX, ss.Sel),
538 SSMFIELD_ENTRY_OLD( ssPadding, sizeof(uint16_t)),
539 SSMFIELD_ENTRY( CPUMCTX, gs.Sel),
540 SSMFIELD_ENTRY_OLD( gsPadding, sizeof(uint16_t)),
541 SSMFIELD_ENTRY( CPUMCTX, fs.Sel),
542 SSMFIELD_ENTRY_OLD( fsPadding, sizeof(uint16_t)),
543 SSMFIELD_ENTRY( CPUMCTX, es.Sel),
544 SSMFIELD_ENTRY_OLD( esPadding, sizeof(uint16_t)),
545 SSMFIELD_ENTRY( CPUMCTX, ds.Sel),
546 SSMFIELD_ENTRY_OLD( dsPadding, sizeof(uint16_t)),
547 SSMFIELD_ENTRY( CPUMCTX, cs.Sel),
548 SSMFIELD_ENTRY_OLD( csPadding, sizeof(uint16_t)*3),
549 SSMFIELD_ENTRY( CPUMCTX, rflags),
550 SSMFIELD_ENTRY( CPUMCTX, rip),
551 SSMFIELD_ENTRY( CPUMCTX, r8),
552 SSMFIELD_ENTRY( CPUMCTX, r9),
553 SSMFIELD_ENTRY( CPUMCTX, r10),
554 SSMFIELD_ENTRY( CPUMCTX, r11),
555 SSMFIELD_ENTRY( CPUMCTX, r12),
556 SSMFIELD_ENTRY( CPUMCTX, r13),
557 SSMFIELD_ENTRY( CPUMCTX, r14),
558 SSMFIELD_ENTRY( CPUMCTX, r15),
559 SSMFIELD_ENTRY( CPUMCTX, es.u64Base),
560 SSMFIELD_ENTRY( CPUMCTX, es.u32Limit),
561 SSMFIELD_ENTRY( CPUMCTX, es.Attr),
562 SSMFIELD_ENTRY( CPUMCTX, cs.u64Base),
563 SSMFIELD_ENTRY( CPUMCTX, cs.u32Limit),
564 SSMFIELD_ENTRY( CPUMCTX, cs.Attr),
565 SSMFIELD_ENTRY( CPUMCTX, ss.u64Base),
566 SSMFIELD_ENTRY( CPUMCTX, ss.u32Limit),
567 SSMFIELD_ENTRY( CPUMCTX, ss.Attr),
568 SSMFIELD_ENTRY( CPUMCTX, ds.u64Base),
569 SSMFIELD_ENTRY( CPUMCTX, ds.u32Limit),
570 SSMFIELD_ENTRY( CPUMCTX, ds.Attr),
571 SSMFIELD_ENTRY( CPUMCTX, fs.u64Base),
572 SSMFIELD_ENTRY( CPUMCTX, fs.u32Limit),
573 SSMFIELD_ENTRY( CPUMCTX, fs.Attr),
574 SSMFIELD_ENTRY( CPUMCTX, gs.u64Base),
575 SSMFIELD_ENTRY( CPUMCTX, gs.u32Limit),
576 SSMFIELD_ENTRY( CPUMCTX, gs.Attr),
577 SSMFIELD_ENTRY( CPUMCTX, cr0),
578 SSMFIELD_ENTRY( CPUMCTX, cr2),
579 SSMFIELD_ENTRY( CPUMCTX, cr3),
580 SSMFIELD_ENTRY( CPUMCTX, cr4),
581 SSMFIELD_ENTRY( CPUMCTX, dr[0]),
582 SSMFIELD_ENTRY( CPUMCTX, dr[1]),
583 SSMFIELD_ENTRY( CPUMCTX, dr[2]),
584 SSMFIELD_ENTRY( CPUMCTX, dr[3]),
585 SSMFIELD_ENTRY_OLD( dr[4], sizeof(uint64_t)),
586 SSMFIELD_ENTRY_OLD( dr[5], sizeof(uint64_t)),
587 SSMFIELD_ENTRY( CPUMCTX, dr[6]),
588 SSMFIELD_ENTRY( CPUMCTX, dr[7]),
589 SSMFIELD_ENTRY( CPUMCTX, gdtr.cbGdt),
590 SSMFIELD_ENTRY( CPUMCTX, gdtr.pGdt),
591 SSMFIELD_ENTRY_OLD( gdtrPadding, sizeof(uint16_t)),
592 SSMFIELD_ENTRY( CPUMCTX, idtr.cbIdt),
593 SSMFIELD_ENTRY( CPUMCTX, idtr.pIdt),
594 SSMFIELD_ENTRY_OLD( idtrPadding, sizeof(uint16_t)),
595 SSMFIELD_ENTRY( CPUMCTX, ldtr.Sel),
596 SSMFIELD_ENTRY_OLD( ldtrPadding, sizeof(uint16_t)),
597 SSMFIELD_ENTRY( CPUMCTX, tr.Sel),
598 SSMFIELD_ENTRY_OLD( trPadding, sizeof(uint16_t)),
599 SSMFIELD_ENTRY( CPUMCTX, SysEnter.cs),
600 SSMFIELD_ENTRY( CPUMCTX, SysEnter.eip),
601 SSMFIELD_ENTRY( CPUMCTX, SysEnter.esp),
602 SSMFIELD_ENTRY( CPUMCTX, msrEFER),
603 SSMFIELD_ENTRY( CPUMCTX, msrSTAR),
604 SSMFIELD_ENTRY( CPUMCTX, msrPAT),
605 SSMFIELD_ENTRY( CPUMCTX, msrLSTAR),
606 SSMFIELD_ENTRY( CPUMCTX, msrCSTAR),
607 SSMFIELD_ENTRY( CPUMCTX, msrSFMASK),
608 SSMFIELD_ENTRY( CPUMCTX, msrKERNELGSBASE),
609 SSMFIELD_ENTRY( CPUMCTX, ldtr.u64Base),
610 SSMFIELD_ENTRY( CPUMCTX, ldtr.u32Limit),
611 SSMFIELD_ENTRY( CPUMCTX, ldtr.Attr),
612 SSMFIELD_ENTRY( CPUMCTX, tr.u64Base),
613 SSMFIELD_ENTRY( CPUMCTX, tr.u32Limit),
614 SSMFIELD_ENTRY( CPUMCTX, tr.Attr),
615 SSMFIELD_ENTRY_TERM()
616};
617
618/** Saved state field descriptors for CPUMCTX_VER1_6. */
619static const SSMFIELD g_aCpumX87FieldsV16[] =
620{
621 SSMFIELD_ENTRY( X86FXSTATE, FCW),
622 SSMFIELD_ENTRY( X86FXSTATE, FSW),
623 SSMFIELD_ENTRY( X86FXSTATE, FTW),
624 SSMFIELD_ENTRY( X86FXSTATE, FOP),
625 SSMFIELD_ENTRY( X86FXSTATE, FPUIP),
626 SSMFIELD_ENTRY( X86FXSTATE, CS),
627 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd1),
628 SSMFIELD_ENTRY( X86FXSTATE, FPUDP),
629 SSMFIELD_ENTRY( X86FXSTATE, DS),
630 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd2),
631 SSMFIELD_ENTRY( X86FXSTATE, MXCSR),
632 SSMFIELD_ENTRY( X86FXSTATE, MXCSR_MASK),
633 SSMFIELD_ENTRY( X86FXSTATE, aRegs[0]),
634 SSMFIELD_ENTRY( X86FXSTATE, aRegs[1]),
635 SSMFIELD_ENTRY( X86FXSTATE, aRegs[2]),
636 SSMFIELD_ENTRY( X86FXSTATE, aRegs[3]),
637 SSMFIELD_ENTRY( X86FXSTATE, aRegs[4]),
638 SSMFIELD_ENTRY( X86FXSTATE, aRegs[5]),
639 SSMFIELD_ENTRY( X86FXSTATE, aRegs[6]),
640 SSMFIELD_ENTRY( X86FXSTATE, aRegs[7]),
641 SSMFIELD_ENTRY( X86FXSTATE, aXMM[0]),
642 SSMFIELD_ENTRY( X86FXSTATE, aXMM[1]),
643 SSMFIELD_ENTRY( X86FXSTATE, aXMM[2]),
644 SSMFIELD_ENTRY( X86FXSTATE, aXMM[3]),
645 SSMFIELD_ENTRY( X86FXSTATE, aXMM[4]),
646 SSMFIELD_ENTRY( X86FXSTATE, aXMM[5]),
647 SSMFIELD_ENTRY( X86FXSTATE, aXMM[6]),
648 SSMFIELD_ENTRY( X86FXSTATE, aXMM[7]),
649 SSMFIELD_ENTRY( X86FXSTATE, aXMM[8]),
650 SSMFIELD_ENTRY( X86FXSTATE, aXMM[9]),
651 SSMFIELD_ENTRY( X86FXSTATE, aXMM[10]),
652 SSMFIELD_ENTRY( X86FXSTATE, aXMM[11]),
653 SSMFIELD_ENTRY( X86FXSTATE, aXMM[12]),
654 SSMFIELD_ENTRY( X86FXSTATE, aXMM[13]),
655 SSMFIELD_ENTRY( X86FXSTATE, aXMM[14]),
656 SSMFIELD_ENTRY( X86FXSTATE, aXMM[15]),
657 SSMFIELD_ENTRY_IGNORE( X86FXSTATE, au32RsrvdRest),
658 SSMFIELD_ENTRY_IGNORE( X86FXSTATE, au32RsrvdForSoftware),
659 SSMFIELD_ENTRY_TERM()
660};
661
662/** Saved state field descriptors for CPUMCTX_VER1_6. */
663static const SSMFIELD g_aCpumCtxFieldsV16[] =
664{
665 SSMFIELD_ENTRY( CPUMCTX, rdi),
666 SSMFIELD_ENTRY( CPUMCTX, rsi),
667 SSMFIELD_ENTRY( CPUMCTX, rbp),
668 SSMFIELD_ENTRY( CPUMCTX, rax),
669 SSMFIELD_ENTRY( CPUMCTX, rbx),
670 SSMFIELD_ENTRY( CPUMCTX, rdx),
671 SSMFIELD_ENTRY( CPUMCTX, rcx),
672 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, rsp),
673 SSMFIELD_ENTRY( CPUMCTX, ss.Sel),
674 SSMFIELD_ENTRY_OLD( ssPadding, sizeof(uint16_t)),
675 SSMFIELD_ENTRY_OLD( CPUMCTX, sizeof(uint64_t) /*rsp_notused*/),
676 SSMFIELD_ENTRY( CPUMCTX, gs.Sel),
677 SSMFIELD_ENTRY_OLD( gsPadding, sizeof(uint16_t)),
678 SSMFIELD_ENTRY( CPUMCTX, fs.Sel),
679 SSMFIELD_ENTRY_OLD( fsPadding, sizeof(uint16_t)),
680 SSMFIELD_ENTRY( CPUMCTX, es.Sel),
681 SSMFIELD_ENTRY_OLD( esPadding, sizeof(uint16_t)),
682 SSMFIELD_ENTRY( CPUMCTX, ds.Sel),
683 SSMFIELD_ENTRY_OLD( dsPadding, sizeof(uint16_t)),
684 SSMFIELD_ENTRY( CPUMCTX, cs.Sel),
685 SSMFIELD_ENTRY_OLD( csPadding, sizeof(uint16_t)*3),
686 SSMFIELD_ENTRY( CPUMCTX, rflags),
687 SSMFIELD_ENTRY( CPUMCTX, rip),
688 SSMFIELD_ENTRY( CPUMCTX, r8),
689 SSMFIELD_ENTRY( CPUMCTX, r9),
690 SSMFIELD_ENTRY( CPUMCTX, r10),
691 SSMFIELD_ENTRY( CPUMCTX, r11),
692 SSMFIELD_ENTRY( CPUMCTX, r12),
693 SSMFIELD_ENTRY( CPUMCTX, r13),
694 SSMFIELD_ENTRY( CPUMCTX, r14),
695 SSMFIELD_ENTRY( CPUMCTX, r15),
696 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, es.u64Base),
697 SSMFIELD_ENTRY( CPUMCTX, es.u32Limit),
698 SSMFIELD_ENTRY( CPUMCTX, es.Attr),
699 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, cs.u64Base),
700 SSMFIELD_ENTRY( CPUMCTX, cs.u32Limit),
701 SSMFIELD_ENTRY( CPUMCTX, cs.Attr),
702 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, ss.u64Base),
703 SSMFIELD_ENTRY( CPUMCTX, ss.u32Limit),
704 SSMFIELD_ENTRY( CPUMCTX, ss.Attr),
705 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, ds.u64Base),
706 SSMFIELD_ENTRY( CPUMCTX, ds.u32Limit),
707 SSMFIELD_ENTRY( CPUMCTX, ds.Attr),
708 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, fs.u64Base),
709 SSMFIELD_ENTRY( CPUMCTX, fs.u32Limit),
710 SSMFIELD_ENTRY( CPUMCTX, fs.Attr),
711 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, gs.u64Base),
712 SSMFIELD_ENTRY( CPUMCTX, gs.u32Limit),
713 SSMFIELD_ENTRY( CPUMCTX, gs.Attr),
714 SSMFIELD_ENTRY( CPUMCTX, cr0),
715 SSMFIELD_ENTRY( CPUMCTX, cr2),
716 SSMFIELD_ENTRY( CPUMCTX, cr3),
717 SSMFIELD_ENTRY( CPUMCTX, cr4),
718 SSMFIELD_ENTRY_OLD( cr8, sizeof(uint64_t)),
719 SSMFIELD_ENTRY( CPUMCTX, dr[0]),
720 SSMFIELD_ENTRY( CPUMCTX, dr[1]),
721 SSMFIELD_ENTRY( CPUMCTX, dr[2]),
722 SSMFIELD_ENTRY( CPUMCTX, dr[3]),
723 SSMFIELD_ENTRY_OLD( dr[4], sizeof(uint64_t)),
724 SSMFIELD_ENTRY_OLD( dr[5], sizeof(uint64_t)),
725 SSMFIELD_ENTRY( CPUMCTX, dr[6]),
726 SSMFIELD_ENTRY( CPUMCTX, dr[7]),
727 SSMFIELD_ENTRY( CPUMCTX, gdtr.cbGdt),
728 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, gdtr.pGdt),
729 SSMFIELD_ENTRY_OLD( gdtrPadding, sizeof(uint16_t)),
730 SSMFIELD_ENTRY_OLD( gdtrPadding64, sizeof(uint64_t)),
731 SSMFIELD_ENTRY( CPUMCTX, idtr.cbIdt),
732 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, idtr.pIdt),
733 SSMFIELD_ENTRY_OLD( idtrPadding, sizeof(uint16_t)),
734 SSMFIELD_ENTRY_OLD( idtrPadding64, sizeof(uint64_t)),
735 SSMFIELD_ENTRY( CPUMCTX, ldtr.Sel),
736 SSMFIELD_ENTRY_OLD( ldtrPadding, sizeof(uint16_t)),
737 SSMFIELD_ENTRY( CPUMCTX, tr.Sel),
738 SSMFIELD_ENTRY_OLD( trPadding, sizeof(uint16_t)),
739 SSMFIELD_ENTRY( CPUMCTX, SysEnter.cs),
740 SSMFIELD_ENTRY( CPUMCTX, SysEnter.eip),
741 SSMFIELD_ENTRY( CPUMCTX, SysEnter.esp),
742 SSMFIELD_ENTRY( CPUMCTX, msrEFER),
743 SSMFIELD_ENTRY( CPUMCTX, msrSTAR),
744 SSMFIELD_ENTRY( CPUMCTX, msrPAT),
745 SSMFIELD_ENTRY( CPUMCTX, msrLSTAR),
746 SSMFIELD_ENTRY( CPUMCTX, msrCSTAR),
747 SSMFIELD_ENTRY( CPUMCTX, msrSFMASK),
748 SSMFIELD_ENTRY_OLD( msrFSBASE, sizeof(uint64_t)),
749 SSMFIELD_ENTRY_OLD( msrGSBASE, sizeof(uint64_t)),
750 SSMFIELD_ENTRY( CPUMCTX, msrKERNELGSBASE),
751 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, ldtr.u64Base),
752 SSMFIELD_ENTRY( CPUMCTX, ldtr.u32Limit),
753 SSMFIELD_ENTRY( CPUMCTX, ldtr.Attr),
754 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, tr.u64Base),
755 SSMFIELD_ENTRY( CPUMCTX, tr.u32Limit),
756 SSMFIELD_ENTRY( CPUMCTX, tr.Attr),
757 SSMFIELD_ENTRY_OLD( padding, sizeof(uint32_t)*2),
758 SSMFIELD_ENTRY_TERM()
759};
760
761
762/**
763 * Checks for partial/leaky FXSAVE/FXRSTOR handling on AMD CPUs.
764 *
765 * AMD K7, K8 and newer AMD CPUs do not save/restore the x87 error pointers
766 * (last instruction pointer, last data pointer, last opcode) except when the ES
767 * bit (Exception Summary) in x87 FSW (FPU Status Word) is set. Thus if we don't
768 * clear these registers there is potential, local FPU leakage from a process
769 * using the FPU to another.
770 *
771 * See AMD Instruction Reference for FXSAVE, FXRSTOR.
772 *
773 * @param pVM The cross context VM structure.
774 */
775static void cpumR3CheckLeakyFpu(PVM pVM)
776{
777 uint32_t u32CpuVersion = ASMCpuId_EAX(1);
778 uint32_t const u32Family = u32CpuVersion >> 8;
779 if ( u32Family >= 6 /* K7 and higher */
780 && ASMIsAmdCpu())
781 {
782 uint32_t cExt = ASMCpuId_EAX(0x80000000);
783 if (ASMIsValidExtRange(cExt))
784 {
785 uint32_t fExtFeaturesEDX = ASMCpuId_EDX(0x80000001);
786 if (fExtFeaturesEDX & X86_CPUID_AMD_FEATURE_EDX_FFXSR)
787 {
788 for (VMCPUID i = 0; i < pVM->cCpus; i++)
789 pVM->aCpus[i].cpum.s.fUseFlags |= CPUM_USE_FFXSR_LEAKY;
790 Log(("CPUMR3Init: host CPU has leaky fxsave/fxrstor behaviour\n"));
791 }
792 }
793 }
794}
795
796
797/**
798 * Frees memory allocated for the SVM hardware virtualization state.
799 *
800 * @param pVM The cross context VM structure.
801 */
802static void cpumR3FreeSvmHwVirtState(PVM pVM)
803{
804 Assert(pVM->cpum.ro.GuestFeatures.fSvm);
805 for (VMCPUID i = 0; i < pVM->cCpus; i++)
806 {
807 PVMCPU pVCpu = &pVM->aCpus[i];
808 if (pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR3)
809 {
810 SUPR3PageFreeEx(pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR3, SVM_VMCB_PAGES);
811 pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR3 = NULL;
812 }
813 pVCpu->cpum.s.Guest.hwvirt.svm.HCPhysVmcb = NIL_RTHCPHYS;
814
815 if (pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR3)
816 {
817 SUPR3PageFreeEx(pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR3, SVM_MSRPM_PAGES);
818 pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR3 = NULL;
819 }
820
821 if (pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR3)
822 {
823 SUPR3PageFreeEx(pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR3, SVM_IOPM_PAGES);
824 pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR3 = NULL;
825 }
826 }
827}
828
829
830/**
831 * Allocates memory for the SVM hardware virtualization state.
832 *
833 * @returns VBox status code.
834 * @param pVM The cross context VM structure.
835 */
836static int cpumR3AllocSvmHwVirtState(PVM pVM)
837{
838 Assert(pVM->cpum.ro.GuestFeatures.fSvm);
839
840 int rc = VINF_SUCCESS;
841 LogRel(("CPUM: Allocating %u pages for the nested-guest SVM MSR and IO permission bitmaps\n",
842 pVM->cCpus * (SVM_MSRPM_PAGES + SVM_IOPM_PAGES)));
843 for (VMCPUID i = 0; i < pVM->cCpus; i++)
844 {
845 PVMCPU pVCpu = &pVM->aCpus[i];
846
847 /*
848 * Allocate the nested-guest VMCB.
849 */
850 SUPPAGE SupNstGstVmcbPage;
851 RT_ZERO(SupNstGstVmcbPage);
852 SupNstGstVmcbPage.Phys = NIL_RTHCPHYS;
853 Assert(SVM_VMCB_PAGES == 1);
854 Assert(!pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR3);
855 rc = SUPR3PageAllocEx(SVM_VMCB_PAGES, 0 /* fFlags */, (void **)&pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR3,
856 &pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR0, &SupNstGstVmcbPage);
857 if (RT_FAILURE(rc))
858 {
859 Assert(!pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR3);
860 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's VMCB\n", pVCpu->idCpu, SVM_VMCB_PAGES));
861 break;
862 }
863 pVCpu->cpum.s.Guest.hwvirt.svm.HCPhysVmcb = SupNstGstVmcbPage.Phys;
864
865 /*
866 * Allocate the MSRPM (MSR Permission bitmap).
867 */
868 Assert(!pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR3);
869 rc = SUPR3PageAllocEx(SVM_MSRPM_PAGES, 0 /* fFlags */, &pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR3,
870 &pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR0, NULL /* paPages */);
871 if (RT_FAILURE(rc))
872 {
873 Assert(!pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR3);
874 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's MSR permission bitmap\n", pVCpu->idCpu,
875 SVM_MSRPM_PAGES));
876 break;
877 }
878
879 /*
880 * Allocate the IOPM (IO Permission bitmap).
881 */
882 Assert(!pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR3);
883 rc = SUPR3PageAllocEx(SVM_IOPM_PAGES, 0 /* fFlags */, &pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR3,
884 &pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR0, NULL /* paPages */);
885 if (RT_FAILURE(rc))
886 {
887 Assert(!pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR3);
888 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's IO permission bitmap\n", pVCpu->idCpu,
889 SVM_IOPM_PAGES));
890 break;
891 }
892 }
893
894 /* On any failure, cleanup. */
895 if (RT_FAILURE(rc))
896 cpumR3FreeSvmHwVirtState(pVM);
897
898 return rc;
899}
900
901
902/**
903 * Initializes the CPUM.
904 *
905 * @returns VBox status code.
906 * @param pVM The cross context VM structure.
907 */
908VMMR3DECL(int) CPUMR3Init(PVM pVM)
909{
910 LogFlow(("CPUMR3Init\n"));
911
912 /*
913 * Assert alignment, sizes and tables.
914 */
915 AssertCompileMemberAlignment(VM, cpum.s, 32);
916 AssertCompile(sizeof(pVM->cpum.s) <= sizeof(pVM->cpum.padding));
917 AssertCompileSizeAlignment(CPUMCTX, 64);
918 AssertCompileSizeAlignment(CPUMCTXMSRS, 64);
919 AssertCompileSizeAlignment(CPUMHOSTCTX, 64);
920 AssertCompileMemberAlignment(VM, cpum, 64);
921 AssertCompileMemberAlignment(VM, aCpus, 64);
922 AssertCompileMemberAlignment(VMCPU, cpum.s, 64);
923 AssertCompileMemberSizeAlignment(VM, aCpus[0].cpum.s, 64);
924#ifdef VBOX_STRICT
925 int rc2 = cpumR3MsrStrictInitChecks();
926 AssertRCReturn(rc2, rc2);
927#endif
928
929 /*
930 * Initialize offsets.
931 */
932
933 /* Calculate the offset from CPUM to CPUMCPU for the first CPU. */
934 pVM->cpum.s.offCPUMCPU0 = RT_OFFSETOF(VM, aCpus[0].cpum) - RT_OFFSETOF(VM, cpum);
935 Assert((uintptr_t)&pVM->cpum + pVM->cpum.s.offCPUMCPU0 == (uintptr_t)&pVM->aCpus[0].cpum);
936
937
938 /* Calculate the offset from CPUMCPU to CPUM. */
939 for (VMCPUID i = 0; i < pVM->cCpus; i++)
940 {
941 PVMCPU pVCpu = &pVM->aCpus[i];
942
943 pVCpu->cpum.s.offCPUM = RT_OFFSETOF(VM, aCpus[i].cpum) - RT_OFFSETOF(VM, cpum);
944 Assert((uintptr_t)&pVCpu->cpum - pVCpu->cpum.s.offCPUM == (uintptr_t)&pVM->cpum);
945 }
946
947 /*
948 * Gather info about the host CPU.
949 */
950 if (!ASMHasCpuId())
951 {
952 Log(("The CPU doesn't support CPUID!\n"));
953 return VERR_UNSUPPORTED_CPU;
954 }
955
956 pVM->cpum.s.fHostMxCsrMask = CPUMR3DeterminHostMxCsrMask();
957
958 PCPUMCPUIDLEAF paLeaves;
959 uint32_t cLeaves;
960 int rc = CPUMR3CpuIdCollectLeaves(&paLeaves, &cLeaves);
961 AssertLogRelRCReturn(rc, rc);
962
963 rc = cpumR3CpuIdExplodeFeatures(paLeaves, cLeaves, &pVM->cpum.s.HostFeatures);
964 RTMemFree(paLeaves);
965 AssertLogRelRCReturn(rc, rc);
966 pVM->cpum.s.GuestFeatures.enmCpuVendor = pVM->cpum.s.HostFeatures.enmCpuVendor;
967
968 /*
969 * Check that the CPU supports the minimum features we require.
970 */
971 if (!pVM->cpum.s.HostFeatures.fFxSaveRstor)
972 return VMSetError(pVM, VERR_UNSUPPORTED_CPU, RT_SRC_POS, "Host CPU does not support the FXSAVE/FXRSTOR instruction.");
973 if (!pVM->cpum.s.HostFeatures.fMmx)
974 return VMSetError(pVM, VERR_UNSUPPORTED_CPU, RT_SRC_POS, "Host CPU does not support MMX.");
975 if (!pVM->cpum.s.HostFeatures.fTsc)
976 return VMSetError(pVM, VERR_UNSUPPORTED_CPU, RT_SRC_POS, "Host CPU does not support RDTSC.");
977
978 /*
979 * Setup the CR4 AND and OR masks used in the raw-mode switcher.
980 */
981 pVM->cpum.s.CR4.AndMask = X86_CR4_OSXMMEEXCPT | X86_CR4_PVI | X86_CR4_VME;
982 pVM->cpum.s.CR4.OrMask = X86_CR4_OSFXSR;
983
984 /*
985 * Figure out which XSAVE/XRSTOR features are available on the host.
986 */
987 uint64_t fXcr0Host = 0;
988 uint64_t fXStateHostMask = 0;
989 if ( pVM->cpum.s.HostFeatures.fXSaveRstor
990 && pVM->cpum.s.HostFeatures.fOpSysXSaveRstor)
991 {
992 fXStateHostMask = fXcr0Host = ASMGetXcr0();
993 fXStateHostMask &= XSAVE_C_X87 | XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI;
994 AssertLogRelMsgStmt((fXStateHostMask & (XSAVE_C_X87 | XSAVE_C_SSE)) == (XSAVE_C_X87 | XSAVE_C_SSE),
995 ("%#llx\n", fXStateHostMask), fXStateHostMask = 0);
996 }
997 pVM->cpum.s.fXStateHostMask = fXStateHostMask;
998 if (VM_IS_RAW_MODE_ENABLED(pVM)) /* For raw-mode, we only use XSAVE/XRSTOR when the guest starts using it (CPUID/CR4 visibility). */
999 fXStateHostMask = 0;
1000 LogRel(("CPUM: fXStateHostMask=%#llx; initial: %#llx; host XCR0=%#llx\n",
1001 pVM->cpum.s.fXStateHostMask, fXStateHostMask, fXcr0Host));
1002
1003 /*
1004 * Allocate memory for the extended CPU state and initialize the host XSAVE/XRSTOR mask.
1005 */
1006 uint32_t cbMaxXState = pVM->cpum.s.HostFeatures.cbMaxExtendedState;
1007 cbMaxXState = RT_ALIGN(cbMaxXState, 128);
1008 AssertLogRelReturn(cbMaxXState >= sizeof(X86FXSTATE) && cbMaxXState <= _8K, VERR_CPUM_IPE_2);
1009
1010 uint8_t *pbXStates;
1011 rc = MMR3HyperAllocOnceNoRelEx(pVM, cbMaxXState * 3 * pVM->cCpus, PAGE_SIZE, MM_TAG_CPUM_CTX,
1012 MMHYPER_AONR_FLAGS_KERNEL_MAPPING, (void **)&pbXStates);
1013 AssertLogRelRCReturn(rc, rc);
1014
1015 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1016 {
1017 PVMCPU pVCpu = &pVM->aCpus[i];
1018
1019 pVCpu->cpum.s.Guest.pXStateR3 = (PX86XSAVEAREA)pbXStates;
1020 pVCpu->cpum.s.Guest.pXStateR0 = MMHyperR3ToR0(pVM, pbXStates);
1021 pVCpu->cpum.s.Guest.pXStateRC = MMHyperR3ToR0(pVM, pbXStates);
1022 pbXStates += cbMaxXState;
1023
1024 pVCpu->cpum.s.Host.pXStateR3 = (PX86XSAVEAREA)pbXStates;
1025 pVCpu->cpum.s.Host.pXStateR0 = MMHyperR3ToR0(pVM, pbXStates);
1026 pVCpu->cpum.s.Host.pXStateRC = MMHyperR3ToR0(pVM, pbXStates);
1027 pbXStates += cbMaxXState;
1028
1029 pVCpu->cpum.s.Hyper.pXStateR3 = (PX86XSAVEAREA)pbXStates;
1030 pVCpu->cpum.s.Hyper.pXStateR0 = MMHyperR3ToR0(pVM, pbXStates);
1031 pVCpu->cpum.s.Hyper.pXStateRC = MMHyperR3ToR0(pVM, pbXStates);
1032 pbXStates += cbMaxXState;
1033
1034 pVCpu->cpum.s.Host.fXStateMask = fXStateHostMask;
1035 }
1036
1037 /*
1038 * Register saved state data item.
1039 */
1040 rc = SSMR3RegisterInternal(pVM, "cpum", 1, CPUM_SAVED_STATE_VERSION, sizeof(CPUM),
1041 NULL, cpumR3LiveExec, NULL,
1042 NULL, cpumR3SaveExec, NULL,
1043 cpumR3LoadPrep, cpumR3LoadExec, cpumR3LoadDone);
1044 if (RT_FAILURE(rc))
1045 return rc;
1046
1047 /*
1048 * Register info handlers and registers with the debugger facility.
1049 */
1050 DBGFR3InfoRegisterInternalEx(pVM, "cpum", "Displays the all the cpu states.",
1051 &cpumR3InfoAll, DBGFINFO_FLAGS_ALL_EMTS);
1052 DBGFR3InfoRegisterInternalEx(pVM, "cpumguest", "Displays the guest cpu state.",
1053 &cpumR3InfoGuest, DBGFINFO_FLAGS_ALL_EMTS);
1054 DBGFR3InfoRegisterInternalEx(pVM, "cpumguesthwvirt", "Displays the guest hwvirt. cpu state.",
1055 &cpumR3InfoGuestHwvirt, DBGFINFO_FLAGS_ALL_EMTS);
1056 DBGFR3InfoRegisterInternalEx(pVM, "cpumhyper", "Displays the hypervisor cpu state.",
1057 &cpumR3InfoHyper, DBGFINFO_FLAGS_ALL_EMTS);
1058 DBGFR3InfoRegisterInternalEx(pVM, "cpumhost", "Displays the host cpu state.",
1059 &cpumR3InfoHost, DBGFINFO_FLAGS_ALL_EMTS);
1060 DBGFR3InfoRegisterInternalEx(pVM, "cpumguestinstr", "Displays the current guest instruction.",
1061 &cpumR3InfoGuestInstr, DBGFINFO_FLAGS_ALL_EMTS);
1062 DBGFR3InfoRegisterInternal( pVM, "cpuid", "Displays the guest cpuid leaves.", &cpumR3CpuIdInfo);
1063
1064 rc = cpumR3DbgInit(pVM);
1065 if (RT_FAILURE(rc))
1066 return rc;
1067
1068 /*
1069 * Check if we need to workaround partial/leaky FPU handling.
1070 */
1071 cpumR3CheckLeakyFpu(pVM);
1072
1073 /*
1074 * Initialize the Guest CPUID and MSR states.
1075 */
1076 rc = cpumR3InitCpuIdAndMsrs(pVM);
1077 if (RT_FAILURE(rc))
1078 return rc;
1079
1080 /*
1081 * Allocate memory required by the guest hardware virtualization state.
1082 */
1083 if (pVM->cpum.ro.GuestFeatures.fSvm)
1084 {
1085 rc = cpumR3AllocSvmHwVirtState(pVM);
1086 if (RT_FAILURE(rc))
1087 return rc;
1088 }
1089
1090 /*
1091 * Workaround for missing cpuid(0) patches when leaf 4 returns GuestInfo.DefCpuId:
1092 * If we miss to patch a cpuid(0).eax then Linux tries to determine the number
1093 * of processors from (cpuid(4).eax >> 26) + 1.
1094 *
1095 * Note: this code is obsolete, but let's keep it here for reference.
1096 * Purpose is valid when we artificially cap the max std id to less than 4.
1097 *
1098 * Note: This used to be a separate function CPUMR3SetHwVirt that was called
1099 * after VMINITCOMPLETED_HM.
1100 */
1101 if (VM_IS_RAW_MODE_ENABLED(pVM))
1102 {
1103 Assert( (pVM->cpum.s.aGuestCpuIdPatmStd[4].uEax & UINT32_C(0xffffc000)) == 0
1104 || pVM->cpum.s.aGuestCpuIdPatmStd[0].uEax < 0x4);
1105 pVM->cpum.s.aGuestCpuIdPatmStd[4].uEax &= UINT32_C(0x00003fff);
1106 }
1107
1108 CPUMR3Reset(pVM);
1109 return VINF_SUCCESS;
1110}
1111
1112
1113/**
1114 * Applies relocations to data and code managed by this
1115 * component. This function will be called at init and
1116 * whenever the VMM need to relocate it self inside the GC.
1117 *
1118 * The CPUM will update the addresses used by the switcher.
1119 *
1120 * @param pVM The cross context VM structure.
1121 */
1122VMMR3DECL(void) CPUMR3Relocate(PVM pVM)
1123{
1124 LogFlow(("CPUMR3Relocate\n"));
1125
1126 pVM->cpum.s.GuestInfo.paMsrRangesRC = MMHyperR3ToRC(pVM, pVM->cpum.s.GuestInfo.paMsrRangesR3);
1127 pVM->cpum.s.GuestInfo.paCpuIdLeavesRC = MMHyperR3ToRC(pVM, pVM->cpum.s.GuestInfo.paCpuIdLeavesR3);
1128
1129 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
1130 {
1131 PVMCPU pVCpu = &pVM->aCpus[iCpu];
1132 pVCpu->cpum.s.Guest.pXStateRC = MMHyperR3ToRC(pVM, pVCpu->cpum.s.Guest.pXStateR3);
1133 pVCpu->cpum.s.Host.pXStateRC = MMHyperR3ToRC(pVM, pVCpu->cpum.s.Host.pXStateR3);
1134 pVCpu->cpum.s.Hyper.pXStateRC = MMHyperR3ToRC(pVM, pVCpu->cpum.s.Hyper.pXStateR3); /** @todo remove me */
1135
1136 /* Recheck the guest DRx values in raw-mode. */
1137 CPUMRecalcHyperDRx(pVCpu, UINT8_MAX, false);
1138 }
1139}
1140
1141
1142/**
1143 * Terminates the CPUM.
1144 *
1145 * Termination means cleaning up and freeing all resources,
1146 * the VM it self is at this point powered off or suspended.
1147 *
1148 * @returns VBox status code.
1149 * @param pVM The cross context VM structure.
1150 */
1151VMMR3DECL(int) CPUMR3Term(PVM pVM)
1152{
1153#ifdef VBOX_WITH_CRASHDUMP_MAGIC
1154 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1155 {
1156 PVMCPU pVCpu = &pVM->aCpus[i];
1157 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1158
1159 memset(pVCpu->cpum.s.aMagic, 0, sizeof(pVCpu->cpum.s.aMagic));
1160 pVCpu->cpum.s.uMagic = 0;
1161 pCtx->dr[5] = 0;
1162 }
1163#endif
1164
1165 if (pVM->cpum.ro.GuestFeatures.fSvm)
1166 cpumR3FreeSvmHwVirtState(pVM);
1167 return VINF_SUCCESS;
1168}
1169
1170
1171/**
1172 * Resets a virtual CPU.
1173 *
1174 * Used by CPUMR3Reset and CPU hot plugging.
1175 *
1176 * @param pVM The cross context VM structure.
1177 * @param pVCpu The cross context virtual CPU structure of the CPU that is
1178 * being reset. This may differ from the current EMT.
1179 */
1180VMMR3DECL(void) CPUMR3ResetCpu(PVM pVM, PVMCPU pVCpu)
1181{
1182 /** @todo anything different for VCPU > 0? */
1183 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
1184
1185 /*
1186 * Initialize everything to ZERO first.
1187 */
1188 uint32_t fUseFlags = pVCpu->cpum.s.fUseFlags & ~CPUM_USED_FPU_SINCE_REM;
1189
1190 AssertCompile(RTASSERT_OFFSET_OF(CPUMCTX, pXStateR0) < RTASSERT_OFFSET_OF(CPUMCTX, pXStateR3));
1191 AssertCompile(RTASSERT_OFFSET_OF(CPUMCTX, pXStateR0) < RTASSERT_OFFSET_OF(CPUMCTX, pXStateRC));
1192 memset(pCtx, 0, RT_OFFSETOF(CPUMCTX, pXStateR0));
1193
1194 pVCpu->cpum.s.fUseFlags = fUseFlags;
1195
1196 pCtx->cr0 = X86_CR0_CD | X86_CR0_NW | X86_CR0_ET; //0x60000010
1197 pCtx->eip = 0x0000fff0;
1198 pCtx->edx = 0x00000600; /* P6 processor */
1199 pCtx->eflags.Bits.u1Reserved0 = 1;
1200
1201 pCtx->cs.Sel = 0xf000;
1202 pCtx->cs.ValidSel = 0xf000;
1203 pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
1204 pCtx->cs.u64Base = UINT64_C(0xffff0000);
1205 pCtx->cs.u32Limit = 0x0000ffff;
1206 pCtx->cs.Attr.n.u1DescType = 1; /* code/data segment */
1207 pCtx->cs.Attr.n.u1Present = 1;
1208 pCtx->cs.Attr.n.u4Type = X86_SEL_TYPE_ER_ACC;
1209
1210 pCtx->ds.fFlags = CPUMSELREG_FLAGS_VALID;
1211 pCtx->ds.u32Limit = 0x0000ffff;
1212 pCtx->ds.Attr.n.u1DescType = 1; /* code/data segment */
1213 pCtx->ds.Attr.n.u1Present = 1;
1214 pCtx->ds.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
1215
1216 pCtx->es.fFlags = CPUMSELREG_FLAGS_VALID;
1217 pCtx->es.u32Limit = 0x0000ffff;
1218 pCtx->es.Attr.n.u1DescType = 1; /* code/data segment */
1219 pCtx->es.Attr.n.u1Present = 1;
1220 pCtx->es.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
1221
1222 pCtx->fs.fFlags = CPUMSELREG_FLAGS_VALID;
1223 pCtx->fs.u32Limit = 0x0000ffff;
1224 pCtx->fs.Attr.n.u1DescType = 1; /* code/data segment */
1225 pCtx->fs.Attr.n.u1Present = 1;
1226 pCtx->fs.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
1227
1228 pCtx->gs.fFlags = CPUMSELREG_FLAGS_VALID;
1229 pCtx->gs.u32Limit = 0x0000ffff;
1230 pCtx->gs.Attr.n.u1DescType = 1; /* code/data segment */
1231 pCtx->gs.Attr.n.u1Present = 1;
1232 pCtx->gs.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
1233
1234 pCtx->ss.fFlags = CPUMSELREG_FLAGS_VALID;
1235 pCtx->ss.u32Limit = 0x0000ffff;
1236 pCtx->ss.Attr.n.u1Present = 1;
1237 pCtx->ss.Attr.n.u1DescType = 1; /* code/data segment */
1238 pCtx->ss.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
1239
1240 pCtx->idtr.cbIdt = 0xffff;
1241 pCtx->gdtr.cbGdt = 0xffff;
1242
1243 pCtx->ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
1244 pCtx->ldtr.u32Limit = 0xffff;
1245 pCtx->ldtr.Attr.n.u1Present = 1;
1246 pCtx->ldtr.Attr.n.u4Type = X86_SEL_TYPE_SYS_LDT;
1247
1248 pCtx->tr.fFlags = CPUMSELREG_FLAGS_VALID;
1249 pCtx->tr.u32Limit = 0xffff;
1250 pCtx->tr.Attr.n.u1Present = 1;
1251 pCtx->tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY; /* Deduction, not properly documented by Intel. */
1252
1253 pCtx->dr[6] = X86_DR6_INIT_VAL;
1254 pCtx->dr[7] = X86_DR7_INIT_VAL;
1255
1256 PX86FXSTATE pFpuCtx = &pCtx->pXStateR3->x87; AssertReleaseMsg(RT_VALID_PTR(pFpuCtx), ("%p\n", pFpuCtx));
1257 pFpuCtx->FTW = 0x00; /* All empty (abbridged tag reg edition). */
1258 pFpuCtx->FCW = 0x37f;
1259
1260 /* Intel 64 and IA-32 Architectures Software Developer's Manual Volume 3A, Table 8-1.
1261 IA-32 Processor States Following Power-up, Reset, or INIT */
1262 pFpuCtx->MXCSR = 0x1F80;
1263 pFpuCtx->MXCSR_MASK = pVM->cpum.s.GuestInfo.fMxCsrMask; /** @todo check if REM messes this up... */
1264
1265 pCtx->aXcr[0] = XSAVE_C_X87;
1266 if (pVM->cpum.s.HostFeatures.cbMaxExtendedState >= RT_OFFSETOF(X86XSAVEAREA, Hdr))
1267 {
1268 /* The entire FXSAVE state needs loading when we switch to XSAVE/XRSTOR
1269 as we don't know what happened before. (Bother optimize later?) */
1270 pCtx->pXStateR3->Hdr.bmXState = XSAVE_C_X87 | XSAVE_C_SSE;
1271 }
1272
1273 /*
1274 * MSRs.
1275 */
1276 /* Init PAT MSR */
1277 pCtx->msrPAT = MSR_IA32_CR_PAT_INIT_VAL;
1278
1279 /* EFER MBZ; see AMD64 Architecture Programmer's Manual Volume 2: Table 14-1. Initial Processor State.
1280 * The Intel docs don't mention it. */
1281 Assert(!pCtx->msrEFER);
1282
1283 /* IA32_MISC_ENABLE - not entirely sure what the init/reset state really
1284 is supposed to be here, just trying provide useful/sensible values. */
1285 PCPUMMSRRANGE pRange = cpumLookupMsrRange(pVM, MSR_IA32_MISC_ENABLE);
1286 if (pRange)
1287 {
1288 pVCpu->cpum.s.GuestMsrs.msr.MiscEnable = MSR_IA32_MISC_ENABLE_BTS_UNAVAIL
1289 | MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL
1290 | (pVM->cpum.s.GuestFeatures.fMonitorMWait ? MSR_IA32_MISC_ENABLE_MONITOR : 0)
1291 | MSR_IA32_MISC_ENABLE_FAST_STRINGS;
1292 pRange->fWrIgnMask |= MSR_IA32_MISC_ENABLE_BTS_UNAVAIL
1293 | MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL;
1294 pRange->fWrGpMask &= ~pVCpu->cpum.s.GuestMsrs.msr.MiscEnable;
1295 }
1296
1297 /** @todo Wire IA32_MISC_ENABLE bit 22 to our NT 4 CPUID trick. */
1298
1299 /** @todo r=ramshankar: Currently broken for SMP as TMCpuTickSet() expects to be
1300 * called from each EMT while we're getting called by CPUMR3Reset()
1301 * iteratively on the same thread. Fix later. */
1302#if 0 /** @todo r=bird: This we will do in TM, not here. */
1303 /* TSC must be 0. Intel spec. Table 9-1. "IA-32 Processor States Following Power-up, Reset, or INIT." */
1304 CPUMSetGuestMsr(pVCpu, MSR_IA32_TSC, 0);
1305#endif
1306
1307
1308 /* C-state control. Guesses. */
1309 pVCpu->cpum.s.GuestMsrs.msr.PkgCStateCfgCtrl = 1 /*C1*/ | RT_BIT_32(25) | RT_BIT_32(26) | RT_BIT_32(27) | RT_BIT_32(28);
1310 /* For Nehalem+ and Atoms, the 0xE2 MSR (MSR_PKG_CST_CONFIG_CONTROL) is documented. For Core 2,
1311 * it's undocumented but exists as MSR_PMG_CST_CONFIG_CONTROL and has similar but not identical
1312 * functionality. The default value must be different due to incompatible write mask.
1313 */
1314 if (CPUMMICROARCH_IS_INTEL_CORE2(pVM->cpum.s.GuestFeatures.enmMicroarch))
1315 pVCpu->cpum.s.GuestMsrs.msr.PkgCStateCfgCtrl = 0x202a01; /* From Mac Pro Harpertown, unlocked. */
1316 else if (pVM->cpum.s.GuestFeatures.enmMicroarch == kCpumMicroarch_Intel_Core_Yonah)
1317 pVCpu->cpum.s.GuestMsrs.msr.PkgCStateCfgCtrl = 0x26740c; /* From MacBookPro1,1. */
1318
1319 /*
1320 * Hardware virtualization state.
1321 */
1322 pCtx->hwvirt.fGif = true;
1323
1324 /* SVM. */
1325 if (pCtx->hwvirt.svm.CTX_SUFF(pVmcb))
1326 {
1327 memset(pCtx->hwvirt.svm.CTX_SUFF(pVmcb), 0, SVM_VMCB_PAGES << PAGE_SHIFT);
1328 pCtx->hwvirt.svm.uMsrHSavePa = 0;
1329 pCtx->hwvirt.svm.uPrevPauseTick = 0;
1330 }
1331}
1332
1333
1334/**
1335 * Resets the CPU.
1336 *
1337 * @returns VINF_SUCCESS.
1338 * @param pVM The cross context VM structure.
1339 */
1340VMMR3DECL(void) CPUMR3Reset(PVM pVM)
1341{
1342 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1343 {
1344 CPUMR3ResetCpu(pVM, &pVM->aCpus[i]);
1345
1346#ifdef VBOX_WITH_CRASHDUMP_MAGIC
1347 PCPUMCTX pCtx = &pVM->aCpus[i].cpum.s.Guest;
1348
1349 /* Magic marker for searching in crash dumps. */
1350 strcpy((char *)pVM->aCpus[i].cpum.s.aMagic, "CPUMCPU Magic");
1351 pVM->aCpus[i].cpum.s.uMagic = UINT64_C(0xDEADBEEFDEADBEEF);
1352 pCtx->dr[5] = UINT64_C(0xDEADBEEFDEADBEEF);
1353#endif
1354 }
1355}
1356
1357
1358
1359
1360/**
1361 * Pass 0 live exec callback.
1362 *
1363 * @returns VINF_SSM_DONT_CALL_AGAIN.
1364 * @param pVM The cross context VM structure.
1365 * @param pSSM The saved state handle.
1366 * @param uPass The pass (0).
1367 */
1368static DECLCALLBACK(int) cpumR3LiveExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uPass)
1369{
1370 AssertReturn(uPass == 0, VERR_SSM_UNEXPECTED_PASS);
1371 cpumR3SaveCpuId(pVM, pSSM);
1372 return VINF_SSM_DONT_CALL_AGAIN;
1373}
1374
1375
1376/**
1377 * Execute state save operation.
1378 *
1379 * @returns VBox status code.
1380 * @param pVM The cross context VM structure.
1381 * @param pSSM SSM operation handle.
1382 */
1383static DECLCALLBACK(int) cpumR3SaveExec(PVM pVM, PSSMHANDLE pSSM)
1384{
1385 /*
1386 * Save.
1387 */
1388 SSMR3PutU32(pSSM, pVM->cCpus);
1389 SSMR3PutU32(pSSM, sizeof(pVM->aCpus[0].cpum.s.GuestMsrs.msr));
1390 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
1391 {
1392 PVMCPU pVCpu = &pVM->aCpus[iCpu];
1393
1394 SSMR3PutStructEx(pSSM, &pVCpu->cpum.s.Hyper, sizeof(pVCpu->cpum.s.Hyper), 0, g_aCpumCtxFields, NULL);
1395
1396 PCPUMCTX pGstCtx = &pVCpu->cpum.s.Guest;
1397 SSMR3PutStructEx(pSSM, pGstCtx, sizeof(*pGstCtx), 0, g_aCpumCtxFields, NULL);
1398 SSMR3PutStructEx(pSSM, &pGstCtx->pXStateR3->x87, sizeof(pGstCtx->pXStateR3->x87), 0, g_aCpumX87Fields, NULL);
1399 if (pGstCtx->fXStateMask != 0)
1400 SSMR3PutStructEx(pSSM, &pGstCtx->pXStateR3->Hdr, sizeof(pGstCtx->pXStateR3->Hdr), 0, g_aCpumXSaveHdrFields, NULL);
1401 if (pGstCtx->fXStateMask & XSAVE_C_YMM)
1402 {
1403 PCX86XSAVEYMMHI pYmmHiCtx = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_YMM_BIT, PCX86XSAVEYMMHI);
1404 SSMR3PutStructEx(pSSM, pYmmHiCtx, sizeof(*pYmmHiCtx), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumYmmHiFields, NULL);
1405 }
1406 if (pGstCtx->fXStateMask & XSAVE_C_BNDREGS)
1407 {
1408 PCX86XSAVEBNDREGS pBndRegs = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_BNDREGS_BIT, PCX86XSAVEBNDREGS);
1409 SSMR3PutStructEx(pSSM, pBndRegs, sizeof(*pBndRegs), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumBndRegsFields, NULL);
1410 }
1411 if (pGstCtx->fXStateMask & XSAVE_C_BNDCSR)
1412 {
1413 PCX86XSAVEBNDCFG pBndCfg = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_BNDCSR_BIT, PCX86XSAVEBNDCFG);
1414 SSMR3PutStructEx(pSSM, pBndCfg, sizeof(*pBndCfg), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumBndCfgFields, NULL);
1415 }
1416 if (pGstCtx->fXStateMask & XSAVE_C_ZMM_HI256)
1417 {
1418 PCX86XSAVEZMMHI256 pZmmHi256 = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_ZMM_HI256_BIT, PCX86XSAVEZMMHI256);
1419 SSMR3PutStructEx(pSSM, pZmmHi256, sizeof(*pZmmHi256), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumZmmHi256Fields, NULL);
1420 }
1421 if (pGstCtx->fXStateMask & XSAVE_C_ZMM_16HI)
1422 {
1423 PCX86XSAVEZMM16HI pZmm16Hi = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_ZMM_16HI_BIT, PCX86XSAVEZMM16HI);
1424 SSMR3PutStructEx(pSSM, pZmm16Hi, sizeof(*pZmm16Hi), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumZmm16HiFields, NULL);
1425 }
1426 if (pVM->cpum.ro.GuestFeatures.fSvm)
1427 {
1428 Assert(pGstCtx->hwvirt.svm.CTX_SUFF(pVmcb));
1429 SSMR3PutU64(pSSM, pGstCtx->hwvirt.svm.uMsrHSavePa);
1430 SSMR3PutGCPhys(pSSM, pGstCtx->hwvirt.svm.GCPhysVmcb);
1431 SSMR3PutU64(pSSM, pGstCtx->hwvirt.svm.uPrevPauseTick);
1432 SSMR3PutU16(pSSM, pGstCtx->hwvirt.svm.cPauseFilter);
1433 SSMR3PutU16(pSSM, pGstCtx->hwvirt.svm.cPauseFilterThreshold);
1434 SSMR3PutBool(pSSM, pGstCtx->hwvirt.svm.fInterceptEvents);
1435 SSMR3PutBool(pSSM, pGstCtx->hwvirt.svm.fHMCachedVmcb);
1436 SSMR3PutStructEx(pSSM, &pGstCtx->hwvirt.svm.HostState, sizeof(pGstCtx->hwvirt.svm.HostState), 0 /* fFlags */,
1437 g_aSvmHwvirtHostState, NULL /* pvUser */);
1438 SSMR3PutMem(pSSM, pGstCtx->hwvirt.svm.pVmcbR3, SVM_VMCB_PAGES << X86_PAGE_4K_SHIFT);
1439 SSMR3PutMem(pSSM, pGstCtx->hwvirt.svm.pvMsrBitmapR3, SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT);
1440 SSMR3PutMem(pSSM, pGstCtx->hwvirt.svm.pvIoBitmapR3, SVM_IOPM_PAGES << X86_PAGE_4K_SHIFT);
1441 SSMR3PutU32(pSSM, pGstCtx->hwvirt.fLocalForcedActions);
1442 SSMR3PutBool(pSSM, pGstCtx->hwvirt.fGif);
1443 }
1444 SSMR3PutU32(pSSM, pVCpu->cpum.s.fUseFlags);
1445 SSMR3PutU32(pSSM, pVCpu->cpum.s.fChanged);
1446 AssertCompileSizeAlignment(pVCpu->cpum.s.GuestMsrs.msr, sizeof(uint64_t));
1447 SSMR3PutMem(pSSM, &pVCpu->cpum.s.GuestMsrs, sizeof(pVCpu->cpum.s.GuestMsrs.msr));
1448 }
1449
1450 cpumR3SaveCpuId(pVM, pSSM);
1451 return VINF_SUCCESS;
1452}
1453
1454
1455/**
1456 * @callback_method_impl{FNSSMINTLOADPREP}
1457 */
1458static DECLCALLBACK(int) cpumR3LoadPrep(PVM pVM, PSSMHANDLE pSSM)
1459{
1460 NOREF(pSSM);
1461 pVM->cpum.s.fPendingRestore = true;
1462 return VINF_SUCCESS;
1463}
1464
1465
1466/**
1467 * @callback_method_impl{FNSSMINTLOADEXEC}
1468 */
1469static DECLCALLBACK(int) cpumR3LoadExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
1470{
1471 int rc; /* Only for AssertRCReturn use. */
1472
1473 /*
1474 * Validate version.
1475 */
1476 if ( uVersion != CPUM_SAVED_STATE_VERSION_HWVIRT_SVM
1477 && uVersion != CPUM_SAVED_STATE_VERSION_XSAVE
1478 && uVersion != CPUM_SAVED_STATE_VERSION_GOOD_CPUID_COUNT
1479 && uVersion != CPUM_SAVED_STATE_VERSION_BAD_CPUID_COUNT
1480 && uVersion != CPUM_SAVED_STATE_VERSION_PUT_STRUCT
1481 && uVersion != CPUM_SAVED_STATE_VERSION_MEM
1482 && uVersion != CPUM_SAVED_STATE_VERSION_NO_MSR_SIZE
1483 && uVersion != CPUM_SAVED_STATE_VERSION_VER3_2
1484 && uVersion != CPUM_SAVED_STATE_VERSION_VER3_0
1485 && uVersion != CPUM_SAVED_STATE_VERSION_VER2_1_NOMSR
1486 && uVersion != CPUM_SAVED_STATE_VERSION_VER2_0
1487 && uVersion != CPUM_SAVED_STATE_VERSION_VER1_6)
1488 {
1489 AssertMsgFailed(("cpumR3LoadExec: Invalid version uVersion=%d!\n", uVersion));
1490 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
1491 }
1492
1493 if (uPass == SSM_PASS_FINAL)
1494 {
1495 /*
1496 * Set the size of RTGCPTR for SSMR3GetGCPtr. (Only necessary for
1497 * really old SSM file versions.)
1498 */
1499 if (uVersion == CPUM_SAVED_STATE_VERSION_VER1_6)
1500 SSMR3HandleSetGCPtrSize(pSSM, sizeof(RTGCPTR32));
1501 else if (uVersion <= CPUM_SAVED_STATE_VERSION_VER3_0)
1502 SSMR3HandleSetGCPtrSize(pSSM, HC_ARCH_BITS == 32 ? sizeof(RTGCPTR32) : sizeof(RTGCPTR));
1503
1504 /*
1505 * Figure x86 and ctx field definitions to use for older states.
1506 */
1507 uint32_t const fLoad = uVersion > CPUM_SAVED_STATE_VERSION_MEM ? 0 : SSMSTRUCT_FLAGS_MEM_BAND_AID_RELAXED;
1508 PCSSMFIELD paCpumCtx1Fields = g_aCpumX87Fields;
1509 PCSSMFIELD paCpumCtx2Fields = g_aCpumCtxFields;
1510 if (uVersion == CPUM_SAVED_STATE_VERSION_VER1_6)
1511 {
1512 paCpumCtx1Fields = g_aCpumX87FieldsV16;
1513 paCpumCtx2Fields = g_aCpumCtxFieldsV16;
1514 }
1515 else if (uVersion <= CPUM_SAVED_STATE_VERSION_MEM)
1516 {
1517 paCpumCtx1Fields = g_aCpumX87FieldsMem;
1518 paCpumCtx2Fields = g_aCpumCtxFieldsMem;
1519 }
1520
1521 /*
1522 * The hyper state used to preceed the CPU count. Starting with
1523 * XSAVE it was moved down till after we've got the count.
1524 */
1525 if (uVersion < CPUM_SAVED_STATE_VERSION_XSAVE)
1526 {
1527 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
1528 {
1529 PVMCPU pVCpu = &pVM->aCpus[iCpu];
1530 X86FXSTATE Ign;
1531 SSMR3GetStructEx(pSSM, &Ign, sizeof(Ign), fLoad | SSMSTRUCT_FLAGS_NO_TAIL_MARKER, paCpumCtx1Fields, NULL);
1532 uint64_t uCR3 = pVCpu->cpum.s.Hyper.cr3;
1533 uint64_t uRSP = pVCpu->cpum.s.Hyper.rsp; /* see VMMR3Relocate(). */
1534 SSMR3GetStructEx(pSSM, &pVCpu->cpum.s.Hyper, sizeof(pVCpu->cpum.s.Hyper),
1535 fLoad | SSMSTRUCT_FLAGS_NO_LEAD_MARKER, paCpumCtx2Fields, NULL);
1536 pVCpu->cpum.s.Hyper.cr3 = uCR3;
1537 pVCpu->cpum.s.Hyper.rsp = uRSP;
1538 }
1539 }
1540
1541 if (uVersion >= CPUM_SAVED_STATE_VERSION_VER2_1_NOMSR)
1542 {
1543 uint32_t cCpus;
1544 rc = SSMR3GetU32(pSSM, &cCpus); AssertRCReturn(rc, rc);
1545 AssertLogRelMsgReturn(cCpus == pVM->cCpus, ("Mismatching CPU counts: saved: %u; configured: %u \n", cCpus, pVM->cCpus),
1546 VERR_SSM_UNEXPECTED_DATA);
1547 }
1548 AssertLogRelMsgReturn( uVersion > CPUM_SAVED_STATE_VERSION_VER2_0
1549 || pVM->cCpus == 1,
1550 ("cCpus=%u\n", pVM->cCpus),
1551 VERR_SSM_UNEXPECTED_DATA);
1552
1553 uint32_t cbMsrs = 0;
1554 if (uVersion > CPUM_SAVED_STATE_VERSION_NO_MSR_SIZE)
1555 {
1556 rc = SSMR3GetU32(pSSM, &cbMsrs); AssertRCReturn(rc, rc);
1557 AssertLogRelMsgReturn(RT_ALIGN(cbMsrs, sizeof(uint64_t)) == cbMsrs, ("Size of MSRs is misaligned: %#x\n", cbMsrs),
1558 VERR_SSM_UNEXPECTED_DATA);
1559 AssertLogRelMsgReturn(cbMsrs <= sizeof(CPUMCTXMSRS) && cbMsrs > 0, ("Size of MSRs is out of range: %#x\n", cbMsrs),
1560 VERR_SSM_UNEXPECTED_DATA);
1561 }
1562
1563 /*
1564 * Do the per-CPU restoring.
1565 */
1566 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
1567 {
1568 PVMCPU pVCpu = &pVM->aCpus[iCpu];
1569 PCPUMCTX pGstCtx = &pVCpu->cpum.s.Guest;
1570
1571 if (uVersion >= CPUM_SAVED_STATE_VERSION_XSAVE)
1572 {
1573 /*
1574 * The XSAVE saved state layout moved the hyper state down here.
1575 */
1576 uint64_t uCR3 = pVCpu->cpum.s.Hyper.cr3;
1577 uint64_t uRSP = pVCpu->cpum.s.Hyper.rsp; /* see VMMR3Relocate(). */
1578 rc = SSMR3GetStructEx(pSSM, &pVCpu->cpum.s.Hyper, sizeof(pVCpu->cpum.s.Hyper), 0, g_aCpumCtxFields, NULL);
1579 pVCpu->cpum.s.Hyper.cr3 = uCR3;
1580 pVCpu->cpum.s.Hyper.rsp = uRSP;
1581 AssertRCReturn(rc, rc);
1582
1583 /*
1584 * Start by restoring the CPUMCTX structure and the X86FXSAVE bits of the extended state.
1585 */
1586 rc = SSMR3GetStructEx(pSSM, pGstCtx, sizeof(*pGstCtx), 0, g_aCpumCtxFields, NULL);
1587 rc = SSMR3GetStructEx(pSSM, &pGstCtx->pXStateR3->x87, sizeof(pGstCtx->pXStateR3->x87), 0, g_aCpumX87Fields, NULL);
1588 AssertRCReturn(rc, rc);
1589
1590 /* Check that the xsave/xrstor mask is valid (invalid results in #GP). */
1591 if (pGstCtx->fXStateMask != 0)
1592 {
1593 AssertLogRelMsgReturn(!(pGstCtx->fXStateMask & ~pVM->cpum.s.fXStateGuestMask),
1594 ("fXStateMask=%#RX64 fXStateGuestMask=%#RX64\n",
1595 pGstCtx->fXStateMask, pVM->cpum.s.fXStateGuestMask),
1596 VERR_CPUM_INCOMPATIBLE_XSAVE_COMP_MASK);
1597 AssertLogRelMsgReturn(pGstCtx->fXStateMask & XSAVE_C_X87,
1598 ("fXStateMask=%#RX64\n", pGstCtx->fXStateMask), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
1599 AssertLogRelMsgReturn((pGstCtx->fXStateMask & (XSAVE_C_SSE | XSAVE_C_YMM)) != XSAVE_C_YMM,
1600 ("fXStateMask=%#RX64\n", pGstCtx->fXStateMask), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
1601 AssertLogRelMsgReturn( (pGstCtx->fXStateMask & (XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI)) == 0
1602 || (pGstCtx->fXStateMask & (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI))
1603 == (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI),
1604 ("fXStateMask=%#RX64\n", pGstCtx->fXStateMask), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
1605 }
1606
1607 /* Check that the XCR0 mask is valid (invalid results in #GP). */
1608 AssertLogRelMsgReturn(pGstCtx->aXcr[0] & XSAVE_C_X87, ("xcr0=%#RX64\n", pGstCtx->aXcr[0]), VERR_CPUM_INVALID_XCR0);
1609 if (pGstCtx->aXcr[0] != XSAVE_C_X87)
1610 {
1611 AssertLogRelMsgReturn(!(pGstCtx->aXcr[0] & ~(pGstCtx->fXStateMask | XSAVE_C_X87)),
1612 ("xcr0=%#RX64 fXStateMask=%#RX64\n", pGstCtx->aXcr[0], pGstCtx->fXStateMask),
1613 VERR_CPUM_INVALID_XCR0);
1614 AssertLogRelMsgReturn(pGstCtx->aXcr[0] & XSAVE_C_X87,
1615 ("xcr0=%#RX64\n", pGstCtx->aXcr[0]), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
1616 AssertLogRelMsgReturn((pGstCtx->aXcr[0] & (XSAVE_C_SSE | XSAVE_C_YMM)) != XSAVE_C_YMM,
1617 ("xcr0=%#RX64\n", pGstCtx->aXcr[0]), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
1618 AssertLogRelMsgReturn( (pGstCtx->aXcr[0] & (XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI)) == 0
1619 || (pGstCtx->aXcr[0] & (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI))
1620 == (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI),
1621 ("xcr0=%#RX64\n", pGstCtx->aXcr[0]), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
1622 }
1623
1624 /* Check that the XCR1 is zero, as we don't implement it yet. */
1625 AssertLogRelMsgReturn(!pGstCtx->aXcr[1], ("xcr1=%#RX64\n", pGstCtx->aXcr[1]), VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
1626
1627 /*
1628 * Restore the individual extended state components we support.
1629 */
1630 if (pGstCtx->fXStateMask != 0)
1631 {
1632 rc = SSMR3GetStructEx(pSSM, &pGstCtx->pXStateR3->Hdr, sizeof(pGstCtx->pXStateR3->Hdr),
1633 0, g_aCpumXSaveHdrFields, NULL);
1634 AssertRCReturn(rc, rc);
1635 AssertLogRelMsgReturn(!(pGstCtx->pXStateR3->Hdr.bmXState & ~pGstCtx->fXStateMask),
1636 ("bmXState=%#RX64 fXStateMask=%#RX64\n",
1637 pGstCtx->pXStateR3->Hdr.bmXState, pGstCtx->fXStateMask),
1638 VERR_CPUM_INVALID_XSAVE_HDR);
1639 }
1640 if (pGstCtx->fXStateMask & XSAVE_C_YMM)
1641 {
1642 PX86XSAVEYMMHI pYmmHiCtx = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_YMM_BIT, PX86XSAVEYMMHI);
1643 SSMR3GetStructEx(pSSM, pYmmHiCtx, sizeof(*pYmmHiCtx), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumYmmHiFields, NULL);
1644 }
1645 if (pGstCtx->fXStateMask & XSAVE_C_BNDREGS)
1646 {
1647 PX86XSAVEBNDREGS pBndRegs = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_BNDREGS_BIT, PX86XSAVEBNDREGS);
1648 SSMR3GetStructEx(pSSM, pBndRegs, sizeof(*pBndRegs), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumBndRegsFields, NULL);
1649 }
1650 if (pGstCtx->fXStateMask & XSAVE_C_BNDCSR)
1651 {
1652 PX86XSAVEBNDCFG pBndCfg = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_BNDCSR_BIT, PX86XSAVEBNDCFG);
1653 SSMR3GetStructEx(pSSM, pBndCfg, sizeof(*pBndCfg), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumBndCfgFields, NULL);
1654 }
1655 if (pGstCtx->fXStateMask & XSAVE_C_ZMM_HI256)
1656 {
1657 PX86XSAVEZMMHI256 pZmmHi256 = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_ZMM_HI256_BIT, PX86XSAVEZMMHI256);
1658 SSMR3GetStructEx(pSSM, pZmmHi256, sizeof(*pZmmHi256), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumZmmHi256Fields, NULL);
1659 }
1660 if (pGstCtx->fXStateMask & XSAVE_C_ZMM_16HI)
1661 {
1662 PX86XSAVEZMM16HI pZmm16Hi = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_ZMM_16HI_BIT, PX86XSAVEZMM16HI);
1663 SSMR3GetStructEx(pSSM, pZmm16Hi, sizeof(*pZmm16Hi), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumZmm16HiFields, NULL);
1664 }
1665 if (uVersion >= CPUM_SAVED_STATE_VERSION_HWVIRT_SVM)
1666 {
1667 if (pVM->cpum.ro.GuestFeatures.fSvm)
1668 {
1669 Assert(pGstCtx->hwvirt.svm.CTX_SUFF(pVmcb));
1670 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.svm.uMsrHSavePa);
1671 SSMR3GetGCPhys(pSSM, &pGstCtx->hwvirt.svm.GCPhysVmcb);
1672 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.svm.uPrevPauseTick);
1673 SSMR3GetU16(pSSM, &pGstCtx->hwvirt.svm.cPauseFilter);
1674 SSMR3GetU16(pSSM, &pGstCtx->hwvirt.svm.cPauseFilterThreshold);
1675 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.svm.fInterceptEvents);
1676 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.svm.fHMCachedVmcb);
1677 SSMR3GetStructEx(pSSM, &pGstCtx->hwvirt.svm.HostState, sizeof(pGstCtx->hwvirt.svm.HostState),
1678 0 /* fFlags */, g_aSvmHwvirtHostState, NULL /* pvUser */);
1679 SSMR3GetMem(pSSM, pGstCtx->hwvirt.svm.pVmcbR3, SVM_VMCB_PAGES << X86_PAGE_4K_SHIFT);
1680 SSMR3GetMem(pSSM, pGstCtx->hwvirt.svm.pvMsrBitmapR3, SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT);
1681 SSMR3GetMem(pSSM, pGstCtx->hwvirt.svm.pvIoBitmapR3, SVM_IOPM_PAGES << X86_PAGE_4K_SHIFT);
1682 SSMR3GetU32(pSSM, &pGstCtx->hwvirt.fLocalForcedActions);
1683 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.fGif);
1684 }
1685 }
1686 }
1687 else
1688 {
1689 /*
1690 * Pre XSAVE saved state.
1691 */
1692 SSMR3GetStructEx(pSSM, &pGstCtx->pXStateR3->x87, sizeof(pGstCtx->pXStateR3->x87),
1693 fLoad | SSMSTRUCT_FLAGS_NO_TAIL_MARKER, paCpumCtx1Fields, NULL);
1694 SSMR3GetStructEx(pSSM, pGstCtx, sizeof(*pGstCtx), fLoad | SSMSTRUCT_FLAGS_NO_LEAD_MARKER, paCpumCtx2Fields, NULL);
1695 }
1696
1697 /*
1698 * Restore a couple of flags and the MSRs.
1699 */
1700 SSMR3GetU32(pSSM, &pVCpu->cpum.s.fUseFlags);
1701 SSMR3GetU32(pSSM, &pVCpu->cpum.s.fChanged);
1702
1703 rc = VINF_SUCCESS;
1704 if (uVersion > CPUM_SAVED_STATE_VERSION_NO_MSR_SIZE)
1705 rc = SSMR3GetMem(pSSM, &pVCpu->cpum.s.GuestMsrs.au64[0], cbMsrs);
1706 else if (uVersion >= CPUM_SAVED_STATE_VERSION_VER3_0)
1707 {
1708 SSMR3GetMem(pSSM, &pVCpu->cpum.s.GuestMsrs.au64[0], 2 * sizeof(uint64_t)); /* Restore two MSRs. */
1709 rc = SSMR3Skip(pSSM, 62 * sizeof(uint64_t));
1710 }
1711 AssertRCReturn(rc, rc);
1712
1713 /* REM and other may have cleared must-be-one fields in DR6 and
1714 DR7, fix these. */
1715 pGstCtx->dr[6] &= ~(X86_DR6_RAZ_MASK | X86_DR6_MBZ_MASK);
1716 pGstCtx->dr[6] |= X86_DR6_RA1_MASK;
1717 pGstCtx->dr[7] &= ~(X86_DR7_RAZ_MASK | X86_DR7_MBZ_MASK);
1718 pGstCtx->dr[7] |= X86_DR7_RA1_MASK;
1719 }
1720
1721 /* Older states does not have the internal selector register flags
1722 and valid selector value. Supply those. */
1723 if (uVersion <= CPUM_SAVED_STATE_VERSION_MEM)
1724 {
1725 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
1726 {
1727 PVMCPU pVCpu = &pVM->aCpus[iCpu];
1728 bool const fValid = !VM_IS_RAW_MODE_ENABLED(pVM)
1729 || ( uVersion > CPUM_SAVED_STATE_VERSION_VER3_2
1730 && !(pVCpu->cpum.s.fChanged & CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID));
1731 PCPUMSELREG paSelReg = CPUMCTX_FIRST_SREG(&pVCpu->cpum.s.Guest);
1732 if (fValid)
1733 {
1734 for (uint32_t iSelReg = 0; iSelReg < X86_SREG_COUNT; iSelReg++)
1735 {
1736 paSelReg[iSelReg].fFlags = CPUMSELREG_FLAGS_VALID;
1737 paSelReg[iSelReg].ValidSel = paSelReg[iSelReg].Sel;
1738 }
1739
1740 pVCpu->cpum.s.Guest.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
1741 pVCpu->cpum.s.Guest.ldtr.ValidSel = pVCpu->cpum.s.Guest.ldtr.Sel;
1742 }
1743 else
1744 {
1745 for (uint32_t iSelReg = 0; iSelReg < X86_SREG_COUNT; iSelReg++)
1746 {
1747 paSelReg[iSelReg].fFlags = 0;
1748 paSelReg[iSelReg].ValidSel = 0;
1749 }
1750
1751 /* This might not be 104% correct, but I think it's close
1752 enough for all practical purposes... (REM always loaded
1753 LDTR registers.) */
1754 pVCpu->cpum.s.Guest.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
1755 pVCpu->cpum.s.Guest.ldtr.ValidSel = pVCpu->cpum.s.Guest.ldtr.Sel;
1756 }
1757 pVCpu->cpum.s.Guest.tr.fFlags = CPUMSELREG_FLAGS_VALID;
1758 pVCpu->cpum.s.Guest.tr.ValidSel = pVCpu->cpum.s.Guest.tr.Sel;
1759 }
1760 }
1761
1762 /* Clear CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID. */
1763 if ( uVersion > CPUM_SAVED_STATE_VERSION_VER3_2
1764 && uVersion <= CPUM_SAVED_STATE_VERSION_MEM)
1765 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
1766 pVM->aCpus[iCpu].cpum.s.fChanged &= CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID;
1767
1768 /*
1769 * A quick sanity check.
1770 */
1771 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
1772 {
1773 PVMCPU pVCpu = &pVM->aCpus[iCpu];
1774 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.es.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
1775 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.cs.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
1776 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.ss.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
1777 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.ds.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
1778 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.fs.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
1779 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.gs.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
1780 }
1781 }
1782
1783 pVM->cpum.s.fPendingRestore = false;
1784
1785 /*
1786 * Guest CPUIDs.
1787 */
1788 if (uVersion >= CPUM_SAVED_STATE_VERSION_VER3_2)
1789 return cpumR3LoadCpuId(pVM, pSSM, uVersion);
1790 return cpumR3LoadCpuIdPre32(pVM, pSSM, uVersion);
1791}
1792
1793
1794/**
1795 * @callback_method_impl{FNSSMINTLOADDONE}
1796 */
1797static DECLCALLBACK(int) cpumR3LoadDone(PVM pVM, PSSMHANDLE pSSM)
1798{
1799 if (RT_FAILURE(SSMR3HandleGetStatus(pSSM)))
1800 return VINF_SUCCESS;
1801
1802 /* just check this since we can. */ /** @todo Add a SSM unit flag for indicating that it's mandatory during a restore. */
1803 if (pVM->cpum.s.fPendingRestore)
1804 {
1805 LogRel(("CPUM: Missing state!\n"));
1806 return VERR_INTERNAL_ERROR_2;
1807 }
1808
1809 bool const fSupportsLongMode = VMR3IsLongModeAllowed(pVM);
1810 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1811 {
1812 PVMCPU pVCpu = &pVM->aCpus[idCpu];
1813
1814 /* Notify PGM of the NXE states in case they've changed. */
1815 PGMNotifyNxeChanged(pVCpu, RT_BOOL(pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_NXE));
1816
1817 /* During init. this is done in CPUMR3InitCompleted(). */
1818 if (fSupportsLongMode)
1819 pVCpu->cpum.s.fUseFlags |= CPUM_USE_SUPPORTS_LONGMODE;
1820 }
1821 return VINF_SUCCESS;
1822}
1823
1824
1825/**
1826 * Checks if the CPUM state restore is still pending.
1827 *
1828 * @returns true / false.
1829 * @param pVM The cross context VM structure.
1830 */
1831VMMDECL(bool) CPUMR3IsStateRestorePending(PVM pVM)
1832{
1833 return pVM->cpum.s.fPendingRestore;
1834}
1835
1836
1837/**
1838 * Formats the EFLAGS value into mnemonics.
1839 *
1840 * @param pszEFlags Where to write the mnemonics. (Assumes sufficient buffer space.)
1841 * @param efl The EFLAGS value.
1842 */
1843static void cpumR3InfoFormatFlags(char *pszEFlags, uint32_t efl)
1844{
1845 /*
1846 * Format the flags.
1847 */
1848 static const struct
1849 {
1850 const char *pszSet; const char *pszClear; uint32_t fFlag;
1851 } s_aFlags[] =
1852 {
1853 { "vip",NULL, X86_EFL_VIP },
1854 { "vif",NULL, X86_EFL_VIF },
1855 { "ac", NULL, X86_EFL_AC },
1856 { "vm", NULL, X86_EFL_VM },
1857 { "rf", NULL, X86_EFL_RF },
1858 { "nt", NULL, X86_EFL_NT },
1859 { "ov", "nv", X86_EFL_OF },
1860 { "dn", "up", X86_EFL_DF },
1861 { "ei", "di", X86_EFL_IF },
1862 { "tf", NULL, X86_EFL_TF },
1863 { "nt", "pl", X86_EFL_SF },
1864 { "nz", "zr", X86_EFL_ZF },
1865 { "ac", "na", X86_EFL_AF },
1866 { "po", "pe", X86_EFL_PF },
1867 { "cy", "nc", X86_EFL_CF },
1868 };
1869 char *psz = pszEFlags;
1870 for (unsigned i = 0; i < RT_ELEMENTS(s_aFlags); i++)
1871 {
1872 const char *pszAdd = s_aFlags[i].fFlag & efl ? s_aFlags[i].pszSet : s_aFlags[i].pszClear;
1873 if (pszAdd)
1874 {
1875 strcpy(psz, pszAdd);
1876 psz += strlen(pszAdd);
1877 *psz++ = ' ';
1878 }
1879 }
1880 psz[-1] = '\0';
1881}
1882
1883
1884/**
1885 * Formats a full register dump.
1886 *
1887 * @param pVM The cross context VM structure.
1888 * @param pCtx The context to format.
1889 * @param pCtxCore The context core to format.
1890 * @param pHlp Output functions.
1891 * @param enmType The dump type.
1892 * @param pszPrefix Register name prefix.
1893 */
1894static void cpumR3InfoOne(PVM pVM, PCPUMCTX pCtx, PCCPUMCTXCORE pCtxCore, PCDBGFINFOHLP pHlp, CPUMDUMPTYPE enmType,
1895 const char *pszPrefix)
1896{
1897 NOREF(pVM);
1898
1899 /*
1900 * Format the EFLAGS.
1901 */
1902 uint32_t efl = pCtxCore->eflags.u32;
1903 char szEFlags[80];
1904 cpumR3InfoFormatFlags(&szEFlags[0], efl);
1905
1906 /*
1907 * Format the registers.
1908 */
1909 switch (enmType)
1910 {
1911 case CPUMDUMPTYPE_TERSE:
1912 if (CPUMIsGuestIn64BitCodeEx(pCtx))
1913 pHlp->pfnPrintf(pHlp,
1914 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
1915 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
1916 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
1917 "%sr14=%016RX64 %sr15=%016RX64\n"
1918 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
1919 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %seflags=%08x\n",
1920 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
1921 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
1922 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
1923 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
1924 pszPrefix, pCtxCore->cs.Sel, pszPrefix, pCtxCore->ss.Sel, pszPrefix, pCtxCore->ds.Sel, pszPrefix, pCtxCore->es.Sel,
1925 pszPrefix, pCtxCore->fs.Sel, pszPrefix, pCtxCore->gs.Sel, pszPrefix, efl);
1926 else
1927 pHlp->pfnPrintf(pHlp,
1928 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
1929 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
1930 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %seflags=%08x\n",
1931 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
1932 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
1933 pszPrefix, pCtxCore->cs.Sel, pszPrefix, pCtxCore->ss.Sel, pszPrefix, pCtxCore->ds.Sel, pszPrefix, pCtxCore->es.Sel,
1934 pszPrefix, pCtxCore->fs.Sel, pszPrefix, pCtxCore->gs.Sel, pszPrefix, efl);
1935 break;
1936
1937 case CPUMDUMPTYPE_DEFAULT:
1938 if (CPUMIsGuestIn64BitCodeEx(pCtx))
1939 pHlp->pfnPrintf(pHlp,
1940 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
1941 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
1942 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
1943 "%sr14=%016RX64 %sr15=%016RX64\n"
1944 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
1945 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %str=%04x %seflags=%08x\n"
1946 "%scr0=%08RX64 %scr2=%08RX64 %scr3=%08RX64 %scr4=%08RX64 %sgdtr=%016RX64:%04x %sldtr=%04x\n"
1947 ,
1948 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
1949 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
1950 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
1951 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
1952 pszPrefix, pCtxCore->cs.Sel, pszPrefix, pCtxCore->ss.Sel, pszPrefix, pCtxCore->ds.Sel, pszPrefix, pCtxCore->es.Sel,
1953 pszPrefix, pCtxCore->fs.Sel, pszPrefix, pCtxCore->gs.Sel, pszPrefix, pCtx->tr.Sel, pszPrefix, efl,
1954 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
1955 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->ldtr.Sel);
1956 else
1957 pHlp->pfnPrintf(pHlp,
1958 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
1959 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
1960 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %str=%04x %seflags=%08x\n"
1961 "%scr0=%08RX64 %scr2=%08RX64 %scr3=%08RX64 %scr4=%08RX64 %sgdtr=%08RX64:%04x %sldtr=%04x\n"
1962 ,
1963 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
1964 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
1965 pszPrefix, pCtxCore->cs.Sel, pszPrefix, pCtxCore->ss.Sel, pszPrefix, pCtxCore->ds.Sel, pszPrefix, pCtxCore->es.Sel,
1966 pszPrefix, pCtxCore->fs.Sel, pszPrefix, pCtxCore->gs.Sel, pszPrefix, pCtx->tr.Sel, pszPrefix, efl,
1967 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
1968 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->ldtr.Sel);
1969 break;
1970
1971 case CPUMDUMPTYPE_VERBOSE:
1972 if (CPUMIsGuestIn64BitCodeEx(pCtx))
1973 pHlp->pfnPrintf(pHlp,
1974 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
1975 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
1976 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
1977 "%sr14=%016RX64 %sr15=%016RX64\n"
1978 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
1979 "%scs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1980 "%sds={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1981 "%ses={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1982 "%sfs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1983 "%sgs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1984 "%sss={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1985 "%scr0=%016RX64 %scr2=%016RX64 %scr3=%016RX64 %scr4=%016RX64\n"
1986 "%sdr0=%016RX64 %sdr1=%016RX64 %sdr2=%016RX64 %sdr3=%016RX64\n"
1987 "%sdr4=%016RX64 %sdr5=%016RX64 %sdr6=%016RX64 %sdr7=%016RX64\n"
1988 "%sgdtr=%016RX64:%04x %sidtr=%016RX64:%04x %seflags=%08x\n"
1989 "%sldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
1990 "%str ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
1991 "%sSysEnter={cs=%04llx eip=%016RX64 esp=%016RX64}\n"
1992 ,
1993 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
1994 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
1995 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
1996 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
1997 pszPrefix, pCtxCore->cs.Sel, pCtx->cs.u64Base, pCtx->cs.u32Limit, pCtx->cs.Attr.u,
1998 pszPrefix, pCtxCore->ds.Sel, pCtx->ds.u64Base, pCtx->ds.u32Limit, pCtx->ds.Attr.u,
1999 pszPrefix, pCtxCore->es.Sel, pCtx->es.u64Base, pCtx->es.u32Limit, pCtx->es.Attr.u,
2000 pszPrefix, pCtxCore->fs.Sel, pCtx->fs.u64Base, pCtx->fs.u32Limit, pCtx->fs.Attr.u,
2001 pszPrefix, pCtxCore->gs.Sel, pCtx->gs.u64Base, pCtx->gs.u32Limit, pCtx->gs.Attr.u,
2002 pszPrefix, pCtxCore->ss.Sel, pCtx->ss.u64Base, pCtx->ss.u32Limit, pCtx->ss.Attr.u,
2003 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
2004 pszPrefix, pCtx->dr[0], pszPrefix, pCtx->dr[1], pszPrefix, pCtx->dr[2], pszPrefix, pCtx->dr[3],
2005 pszPrefix, pCtx->dr[4], pszPrefix, pCtx->dr[5], pszPrefix, pCtx->dr[6], pszPrefix, pCtx->dr[7],
2006 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, pszPrefix, efl,
2007 pszPrefix, pCtx->ldtr.Sel, pCtx->ldtr.u64Base, pCtx->ldtr.u32Limit, pCtx->ldtr.Attr.u,
2008 pszPrefix, pCtx->tr.Sel, pCtx->tr.u64Base, pCtx->tr.u32Limit, pCtx->tr.Attr.u,
2009 pszPrefix, pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
2010 else
2011 pHlp->pfnPrintf(pHlp,
2012 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
2013 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
2014 "%scs={%04x base=%016RX64 limit=%08x flags=%08x} %sdr0=%08RX64 %sdr1=%08RX64\n"
2015 "%sds={%04x base=%016RX64 limit=%08x flags=%08x} %sdr2=%08RX64 %sdr3=%08RX64\n"
2016 "%ses={%04x base=%016RX64 limit=%08x flags=%08x} %sdr4=%08RX64 %sdr5=%08RX64\n"
2017 "%sfs={%04x base=%016RX64 limit=%08x flags=%08x} %sdr6=%08RX64 %sdr7=%08RX64\n"
2018 "%sgs={%04x base=%016RX64 limit=%08x flags=%08x} %scr0=%08RX64 %scr2=%08RX64\n"
2019 "%sss={%04x base=%016RX64 limit=%08x flags=%08x} %scr3=%08RX64 %scr4=%08RX64\n"
2020 "%sgdtr=%016RX64:%04x %sidtr=%016RX64:%04x %seflags=%08x\n"
2021 "%sldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
2022 "%str ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
2023 "%sSysEnter={cs=%04llx eip=%08llx esp=%08llx}\n"
2024 ,
2025 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
2026 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2027 pszPrefix, pCtxCore->cs.Sel, pCtx->cs.u64Base, pCtx->cs.u32Limit, pCtx->cs.Attr.u, pszPrefix, pCtx->dr[0], pszPrefix, pCtx->dr[1],
2028 pszPrefix, pCtxCore->ds.Sel, pCtx->ds.u64Base, pCtx->ds.u32Limit, pCtx->ds.Attr.u, pszPrefix, pCtx->dr[2], pszPrefix, pCtx->dr[3],
2029 pszPrefix, pCtxCore->es.Sel, pCtx->es.u64Base, pCtx->es.u32Limit, pCtx->es.Attr.u, pszPrefix, pCtx->dr[4], pszPrefix, pCtx->dr[5],
2030 pszPrefix, pCtxCore->fs.Sel, pCtx->fs.u64Base, pCtx->fs.u32Limit, pCtx->fs.Attr.u, pszPrefix, pCtx->dr[6], pszPrefix, pCtx->dr[7],
2031 pszPrefix, pCtxCore->gs.Sel, pCtx->gs.u64Base, pCtx->gs.u32Limit, pCtx->gs.Attr.u, pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2,
2032 pszPrefix, pCtxCore->ss.Sel, pCtx->ss.u64Base, pCtx->ss.u32Limit, pCtx->ss.Attr.u, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
2033 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, pszPrefix, efl,
2034 pszPrefix, pCtx->ldtr.Sel, pCtx->ldtr.u64Base, pCtx->ldtr.u32Limit, pCtx->ldtr.Attr.u,
2035 pszPrefix, pCtx->tr.Sel, pCtx->tr.u64Base, pCtx->tr.u32Limit, pCtx->tr.Attr.u,
2036 pszPrefix, pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
2037
2038 pHlp->pfnPrintf(pHlp, "%sxcr=%016RX64 %sxcr1=%016RX64 %sxss=%016RX64 (fXStateMask=%016RX64)\n",
2039 pszPrefix, pCtx->aXcr[0], pszPrefix, pCtx->aXcr[1],
2040 pszPrefix, UINT64_C(0) /** @todo XSS */, pCtx->fXStateMask);
2041 if (pCtx->CTX_SUFF(pXState))
2042 {
2043 PX86FXSTATE pFpuCtx = &pCtx->CTX_SUFF(pXState)->x87;
2044 pHlp->pfnPrintf(pHlp,
2045 "%sFCW=%04x %sFSW=%04x %sFTW=%04x %sFOP=%04x %sMXCSR=%08x %sMXCSR_MASK=%08x\n"
2046 "%sFPUIP=%08x %sCS=%04x %sRsrvd1=%04x %sFPUDP=%08x %sDS=%04x %sRsvrd2=%04x\n"
2047 ,
2048 pszPrefix, pFpuCtx->FCW, pszPrefix, pFpuCtx->FSW, pszPrefix, pFpuCtx->FTW, pszPrefix, pFpuCtx->FOP,
2049 pszPrefix, pFpuCtx->MXCSR, pszPrefix, pFpuCtx->MXCSR_MASK,
2050 pszPrefix, pFpuCtx->FPUIP, pszPrefix, pFpuCtx->CS, pszPrefix, pFpuCtx->Rsrvd1,
2051 pszPrefix, pFpuCtx->FPUDP, pszPrefix, pFpuCtx->DS, pszPrefix, pFpuCtx->Rsrvd2
2052 );
2053 /*
2054 * The FSAVE style memory image contains ST(0)-ST(7) at increasing addresses,
2055 * not (FP)R0-7 as Intel SDM suggests.
2056 */
2057 unsigned iShift = (pFpuCtx->FSW >> 11) & 7;
2058 for (unsigned iST = 0; iST < RT_ELEMENTS(pFpuCtx->aRegs); iST++)
2059 {
2060 unsigned iFPR = (iST + iShift) % RT_ELEMENTS(pFpuCtx->aRegs);
2061 unsigned uTag = (pFpuCtx->FTW >> (2 * iFPR)) & 3;
2062 char chSign = pFpuCtx->aRegs[iST].au16[4] & 0x8000 ? '-' : '+';
2063 unsigned iInteger = (unsigned)(pFpuCtx->aRegs[iST].au64[0] >> 63);
2064 uint64_t u64Fraction = pFpuCtx->aRegs[iST].au64[0] & UINT64_C(0x7fffffffffffffff);
2065 int iExponent = pFpuCtx->aRegs[iST].au16[4] & 0x7fff;
2066 iExponent -= 16383; /* subtract bias */
2067 /** @todo This isn't entirenly correct and needs more work! */
2068 pHlp->pfnPrintf(pHlp,
2069 "%sST(%u)=%sFPR%u={%04RX16'%08RX32'%08RX32} t%d %c%u.%022llu * 2 ^ %d (*)",
2070 pszPrefix, iST, pszPrefix, iFPR,
2071 pFpuCtx->aRegs[iST].au16[4], pFpuCtx->aRegs[iST].au32[1], pFpuCtx->aRegs[iST].au32[0],
2072 uTag, chSign, iInteger, u64Fraction, iExponent);
2073 if (pFpuCtx->aRegs[iST].au16[5] || pFpuCtx->aRegs[iST].au16[6] || pFpuCtx->aRegs[iST].au16[7])
2074 pHlp->pfnPrintf(pHlp, " res={%04RX16,%04RX16,%04RX16}\n",
2075 pFpuCtx->aRegs[iST].au16[5], pFpuCtx->aRegs[iST].au16[6], pFpuCtx->aRegs[iST].au16[7]);
2076 else
2077 pHlp->pfnPrintf(pHlp, "\n");
2078 }
2079
2080 /* XMM/YMM/ZMM registers. */
2081 if (pCtx->fXStateMask & XSAVE_C_YMM)
2082 {
2083 PCX86XSAVEYMMHI pYmmHiCtx = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_YMM_BIT, PCX86XSAVEYMMHI);
2084 if (!(pCtx->fXStateMask & XSAVE_C_ZMM_HI256))
2085 for (unsigned i = 0; i < RT_ELEMENTS(pFpuCtx->aXMM); i++)
2086 pHlp->pfnPrintf(pHlp, "%sYMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32\n",
2087 pszPrefix, i, i < 10 ? " " : "",
2088 pYmmHiCtx->aYmmHi[i].au32[3],
2089 pYmmHiCtx->aYmmHi[i].au32[2],
2090 pYmmHiCtx->aYmmHi[i].au32[1],
2091 pYmmHiCtx->aYmmHi[i].au32[0],
2092 pFpuCtx->aXMM[i].au32[3],
2093 pFpuCtx->aXMM[i].au32[2],
2094 pFpuCtx->aXMM[i].au32[1],
2095 pFpuCtx->aXMM[i].au32[0]);
2096 else
2097 {
2098 PCX86XSAVEZMMHI256 pZmmHi256 = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_ZMM_HI256_BIT, PCX86XSAVEZMMHI256);
2099 for (unsigned i = 0; i < RT_ELEMENTS(pFpuCtx->aXMM); i++)
2100 pHlp->pfnPrintf(pHlp,
2101 "%sZMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32''%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32\n",
2102 pszPrefix, i, i < 10 ? " " : "",
2103 pZmmHi256->aHi256Regs[i].au32[7],
2104 pZmmHi256->aHi256Regs[i].au32[6],
2105 pZmmHi256->aHi256Regs[i].au32[5],
2106 pZmmHi256->aHi256Regs[i].au32[4],
2107 pZmmHi256->aHi256Regs[i].au32[3],
2108 pZmmHi256->aHi256Regs[i].au32[2],
2109 pZmmHi256->aHi256Regs[i].au32[1],
2110 pZmmHi256->aHi256Regs[i].au32[0],
2111 pYmmHiCtx->aYmmHi[i].au32[3],
2112 pYmmHiCtx->aYmmHi[i].au32[2],
2113 pYmmHiCtx->aYmmHi[i].au32[1],
2114 pYmmHiCtx->aYmmHi[i].au32[0],
2115 pFpuCtx->aXMM[i].au32[3],
2116 pFpuCtx->aXMM[i].au32[2],
2117 pFpuCtx->aXMM[i].au32[1],
2118 pFpuCtx->aXMM[i].au32[0]);
2119
2120 PCX86XSAVEZMM16HI pZmm16Hi = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_ZMM_16HI_BIT, PCX86XSAVEZMM16HI);
2121 for (unsigned i = 0; i < RT_ELEMENTS(pZmm16Hi->aRegs); i++)
2122 pHlp->pfnPrintf(pHlp,
2123 "%sZMM%u=%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32''%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32\n",
2124 pszPrefix, i + 16,
2125 pZmm16Hi->aRegs[i].au32[15],
2126 pZmm16Hi->aRegs[i].au32[14],
2127 pZmm16Hi->aRegs[i].au32[13],
2128 pZmm16Hi->aRegs[i].au32[12],
2129 pZmm16Hi->aRegs[i].au32[11],
2130 pZmm16Hi->aRegs[i].au32[10],
2131 pZmm16Hi->aRegs[i].au32[9],
2132 pZmm16Hi->aRegs[i].au32[8],
2133 pZmm16Hi->aRegs[i].au32[7],
2134 pZmm16Hi->aRegs[i].au32[6],
2135 pZmm16Hi->aRegs[i].au32[5],
2136 pZmm16Hi->aRegs[i].au32[4],
2137 pZmm16Hi->aRegs[i].au32[3],
2138 pZmm16Hi->aRegs[i].au32[2],
2139 pZmm16Hi->aRegs[i].au32[1],
2140 pZmm16Hi->aRegs[i].au32[0]);
2141 }
2142 }
2143 else
2144 for (unsigned i = 0; i < RT_ELEMENTS(pFpuCtx->aXMM); i++)
2145 pHlp->pfnPrintf(pHlp,
2146 i & 1
2147 ? "%sXMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32\n"
2148 : "%sXMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32 ",
2149 pszPrefix, i, i < 10 ? " " : "",
2150 pFpuCtx->aXMM[i].au32[3],
2151 pFpuCtx->aXMM[i].au32[2],
2152 pFpuCtx->aXMM[i].au32[1],
2153 pFpuCtx->aXMM[i].au32[0]);
2154
2155 if (pCtx->fXStateMask & XSAVE_C_OPMASK)
2156 {
2157 PCX86XSAVEOPMASK pOpMask = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_OPMASK_BIT, PCX86XSAVEOPMASK);
2158 for (unsigned i = 0; i < RT_ELEMENTS(pOpMask->aKRegs); i += 4)
2159 pHlp->pfnPrintf(pHlp, "%sK%u=%016RX64 %sK%u=%016RX64 %sK%u=%016RX64 %sK%u=%016RX64\n",
2160 pszPrefix, i + 0, pOpMask->aKRegs[i + 0],
2161 pszPrefix, i + 1, pOpMask->aKRegs[i + 1],
2162 pszPrefix, i + 2, pOpMask->aKRegs[i + 2],
2163 pszPrefix, i + 3, pOpMask->aKRegs[i + 3]);
2164 }
2165
2166 if (pCtx->fXStateMask & XSAVE_C_BNDREGS)
2167 {
2168 PCX86XSAVEBNDREGS pBndRegs = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_BNDREGS_BIT, PCX86XSAVEBNDREGS);
2169 for (unsigned i = 0; i < RT_ELEMENTS(pBndRegs->aRegs); i += 2)
2170 pHlp->pfnPrintf(pHlp, "%sBNDREG%u=%016RX64/%016RX64 %sBNDREG%u=%016RX64/%016RX64\n",
2171 pszPrefix, i, pBndRegs->aRegs[i].uLowerBound, pBndRegs->aRegs[i].uUpperBound,
2172 pszPrefix, i + 1, pBndRegs->aRegs[i + 1].uLowerBound, pBndRegs->aRegs[i + 1].uUpperBound);
2173 }
2174
2175 if (pCtx->fXStateMask & XSAVE_C_BNDCSR)
2176 {
2177 PCX86XSAVEBNDCFG pBndCfg = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_BNDCSR_BIT, PCX86XSAVEBNDCFG);
2178 pHlp->pfnPrintf(pHlp, "%sBNDCFG.CONFIG=%016RX64 %sBNDCFG.STATUS=%016RX64\n",
2179 pszPrefix, pBndCfg->fConfig, pszPrefix, pBndCfg->fStatus);
2180 }
2181
2182 for (unsigned i = 0; i < RT_ELEMENTS(pFpuCtx->au32RsrvdRest); i++)
2183 if (pFpuCtx->au32RsrvdRest[i])
2184 pHlp->pfnPrintf(pHlp, "%sRsrvdRest[%u]=%RX32 (offset=%#x)\n",
2185 pszPrefix, i, pFpuCtx->au32RsrvdRest[i], RT_OFFSETOF(X86FXSTATE, au32RsrvdRest[i]) );
2186 }
2187
2188 pHlp->pfnPrintf(pHlp,
2189 "%sEFER =%016RX64\n"
2190 "%sPAT =%016RX64\n"
2191 "%sSTAR =%016RX64\n"
2192 "%sCSTAR =%016RX64\n"
2193 "%sLSTAR =%016RX64\n"
2194 "%sSFMASK =%016RX64\n"
2195 "%sKERNELGSBASE =%016RX64\n",
2196 pszPrefix, pCtx->msrEFER,
2197 pszPrefix, pCtx->msrPAT,
2198 pszPrefix, pCtx->msrSTAR,
2199 pszPrefix, pCtx->msrCSTAR,
2200 pszPrefix, pCtx->msrLSTAR,
2201 pszPrefix, pCtx->msrSFMASK,
2202 pszPrefix, pCtx->msrKERNELGSBASE);
2203 break;
2204 }
2205}
2206
2207
2208/**
2209 * Display all cpu states and any other cpum info.
2210 *
2211 * @param pVM The cross context VM structure.
2212 * @param pHlp The info helper functions.
2213 * @param pszArgs Arguments, ignored.
2214 */
2215static DECLCALLBACK(void) cpumR3InfoAll(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2216{
2217 cpumR3InfoGuest(pVM, pHlp, pszArgs);
2218 cpumR3InfoGuestInstr(pVM, pHlp, pszArgs);
2219 cpumR3InfoGuestHwvirt(pVM, pHlp, pszArgs);
2220 cpumR3InfoHyper(pVM, pHlp, pszArgs);
2221 cpumR3InfoHost(pVM, pHlp, pszArgs);
2222}
2223
2224
2225/**
2226 * Parses the info argument.
2227 *
2228 * The argument starts with 'verbose', 'terse' or 'default' and then
2229 * continues with the comment string.
2230 *
2231 * @param pszArgs The pointer to the argument string.
2232 * @param penmType Where to store the dump type request.
2233 * @param ppszComment Where to store the pointer to the comment string.
2234 */
2235static void cpumR3InfoParseArg(const char *pszArgs, CPUMDUMPTYPE *penmType, const char **ppszComment)
2236{
2237 if (!pszArgs)
2238 {
2239 *penmType = CPUMDUMPTYPE_DEFAULT;
2240 *ppszComment = "";
2241 }
2242 else
2243 {
2244 if (!strncmp(pszArgs, RT_STR_TUPLE("verbose")))
2245 {
2246 pszArgs += 7;
2247 *penmType = CPUMDUMPTYPE_VERBOSE;
2248 }
2249 else if (!strncmp(pszArgs, RT_STR_TUPLE("terse")))
2250 {
2251 pszArgs += 5;
2252 *penmType = CPUMDUMPTYPE_TERSE;
2253 }
2254 else if (!strncmp(pszArgs, RT_STR_TUPLE("default")))
2255 {
2256 pszArgs += 7;
2257 *penmType = CPUMDUMPTYPE_DEFAULT;
2258 }
2259 else
2260 *penmType = CPUMDUMPTYPE_DEFAULT;
2261 *ppszComment = RTStrStripL(pszArgs);
2262 }
2263}
2264
2265
2266/**
2267 * Display the guest cpu state.
2268 *
2269 * @param pVM The cross context VM structure.
2270 * @param pHlp The info helper functions.
2271 * @param pszArgs Arguments.
2272 */
2273static DECLCALLBACK(void) cpumR3InfoGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2274{
2275 CPUMDUMPTYPE enmType;
2276 const char *pszComment;
2277 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
2278
2279 PVMCPU pVCpu = VMMGetCpu(pVM);
2280 if (!pVCpu)
2281 pVCpu = &pVM->aCpus[0];
2282
2283 pHlp->pfnPrintf(pHlp, "Guest CPUM (VCPU %d) state: %s\n", pVCpu->idCpu, pszComment);
2284
2285 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
2286 cpumR3InfoOne(pVM, pCtx, CPUMCTX2CORE(pCtx), pHlp, enmType, "");
2287}
2288
2289
2290/**
2291 * Displays an SVM VMCB control area.
2292 *
2293 * @param pHlp The info helper functions.
2294 * @param pVmcbCtrl Pointer to a SVM VMCB controls area.
2295 * @param pszPrefix Caller specified string prefix.
2296 */
2297static void cpumR3InfoSvmVmcbCtrl(PCDBGFINFOHLP pHlp, PCSVMVMCBCTRL pVmcbCtrl, const char *pszPrefix)
2298{
2299 AssertReturnVoid(pHlp);
2300 AssertReturnVoid(pVmcbCtrl);
2301
2302 pHlp->pfnPrintf(pHlp, "%su16InterceptRdCRx = %#RX16\n", pszPrefix, pVmcbCtrl->u16InterceptRdCRx);
2303 pHlp->pfnPrintf(pHlp, "%su16InterceptWrCRx = %#RX16\n", pszPrefix, pVmcbCtrl->u16InterceptWrCRx);
2304 pHlp->pfnPrintf(pHlp, "%su16InterceptRdDRx = %#RX16\n", pszPrefix, pVmcbCtrl->u16InterceptRdDRx);
2305 pHlp->pfnPrintf(pHlp, "%su16InterceptWrDRx = %#RX16\n", pszPrefix, pVmcbCtrl->u16InterceptWrDRx);
2306 pHlp->pfnPrintf(pHlp, "%su32InterceptXcpt = %#RX32\n", pszPrefix, pVmcbCtrl->u32InterceptXcpt);
2307 pHlp->pfnPrintf(pHlp, "%su64InterceptCtrl = %#RX64\n", pszPrefix, pVmcbCtrl->u64InterceptCtrl);
2308 pHlp->pfnPrintf(pHlp, "%su16PauseFilterThreshold = %#RX16\n", pszPrefix, pVmcbCtrl->u16PauseFilterThreshold);
2309 pHlp->pfnPrintf(pHlp, "%su16PauseFilterCount = %#RX16\n", pszPrefix, pVmcbCtrl->u16PauseFilterCount);
2310 pHlp->pfnPrintf(pHlp, "%su64IOPMPhysAddr = %#RX64\n", pszPrefix, pVmcbCtrl->u64IOPMPhysAddr);
2311 pHlp->pfnPrintf(pHlp, "%su64MSRPMPhysAddr = %#RX64\n", pszPrefix, pVmcbCtrl->u64MSRPMPhysAddr);
2312 pHlp->pfnPrintf(pHlp, "%su64TSCOffset = %#RX64\n", pszPrefix, pVmcbCtrl->u64TSCOffset);
2313 pHlp->pfnPrintf(pHlp, "%sTLBCtrl\n", pszPrefix);
2314 pHlp->pfnPrintf(pHlp, "%s u32ASID = %#RX32\n", pszPrefix, pVmcbCtrl->TLBCtrl.n.u32ASID);
2315 pHlp->pfnPrintf(pHlp, "%s u8TLBFlush = %u\n", pszPrefix, pVmcbCtrl->TLBCtrl.n.u8TLBFlush);
2316 pHlp->pfnPrintf(pHlp, "%sIntCtrl\n", pszPrefix);
2317 pHlp->pfnPrintf(pHlp, "%s u8VTPR = %#RX8 (%u)\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u8VTPR, pVmcbCtrl->IntCtrl.n.u8VTPR);
2318 pHlp->pfnPrintf(pHlp, "%s u1VIrqPending = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1VIrqPending);
2319 pHlp->pfnPrintf(pHlp, "%s u1VGif = %u\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1VGif);
2320 pHlp->pfnPrintf(pHlp, "%s u4VIntrPrio = %#RX8\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u4VIntrPrio);
2321 pHlp->pfnPrintf(pHlp, "%s u1IgnoreTPR = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1IgnoreTPR);
2322 pHlp->pfnPrintf(pHlp, "%s u1VIntrMasking = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1VIntrMasking);
2323 pHlp->pfnPrintf(pHlp, "%s u1VGifEnable = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1VGifEnable);
2324 pHlp->pfnPrintf(pHlp, "%s u1AvicEnable = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1AvicEnable);
2325 pHlp->pfnPrintf(pHlp, "%s u8VIntrVector = %#RX8\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u8VIntrVector);
2326 pHlp->pfnPrintf(pHlp, "%sIntShadow\n", pszPrefix);
2327 pHlp->pfnPrintf(pHlp, "%s u1IntShadow = %RTbool\n", pszPrefix, pVmcbCtrl->IntShadow.n.u1IntShadow);
2328 pHlp->pfnPrintf(pHlp, "%s u1GuestIntMask = %RTbool\n", pszPrefix, pVmcbCtrl->IntShadow.n.u1GuestIntMask);
2329 pHlp->pfnPrintf(pHlp, "%su64ExitCode = %#RX64\n", pszPrefix, pVmcbCtrl->u64ExitCode);
2330 pHlp->pfnPrintf(pHlp, "%su64ExitInfo1 = %#RX64\n", pszPrefix, pVmcbCtrl->u64ExitInfo1);
2331 pHlp->pfnPrintf(pHlp, "%su64ExitInfo2 = %#RX64\n", pszPrefix, pVmcbCtrl->u64ExitInfo2);
2332 pHlp->pfnPrintf(pHlp, "%sExitIntInfo\n", pszPrefix);
2333 pHlp->pfnPrintf(pHlp, "%s u8Vector = %#RX8 (%u)\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u8Vector, pVmcbCtrl->ExitIntInfo.n.u8Vector);
2334 pHlp->pfnPrintf(pHlp, "%s u3Type = %u\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u3Type);
2335 pHlp->pfnPrintf(pHlp, "%s u1ErrorCodeValid = %RTbool\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u1ErrorCodeValid);
2336 pHlp->pfnPrintf(pHlp, "%s u1Valid = %RTbool\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u1Valid);
2337 pHlp->pfnPrintf(pHlp, "%s u32ErrorCode = %#RX32\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u32ErrorCode);
2338 pHlp->pfnPrintf(pHlp, "%sNestedPaging and SEV\n", pszPrefix);
2339 pHlp->pfnPrintf(pHlp, "%s u1NestedPaging = %RTbool\n", pszPrefix, pVmcbCtrl->NestedPagingCtrl.n.u1NestedPaging);
2340 pHlp->pfnPrintf(pHlp, "%s u1Sev = %RTbool\n", pszPrefix, pVmcbCtrl->NestedPagingCtrl.n.u1Sev);
2341 pHlp->pfnPrintf(pHlp, "%s u1SevEs = %RTbool\n", pszPrefix, pVmcbCtrl->NestedPagingCtrl.n.u1SevEs);
2342 pHlp->pfnPrintf(pHlp, "%sAvicBar\n", pszPrefix);
2343 pHlp->pfnPrintf(pHlp, "%s u40Addr = %#RX64\n", pszPrefix, pVmcbCtrl->AvicBar.n.u40Addr);
2344 pHlp->pfnPrintf(pHlp, "%sEventInject\n", pszPrefix);
2345 pHlp->pfnPrintf(pHlp, "%s EventInject\n", pszPrefix);
2346 pHlp->pfnPrintf(pHlp, "%s u8Vector = %#RX32 (%u)\n", pszPrefix, pVmcbCtrl->EventInject.n.u8Vector, pVmcbCtrl->EventInject.n.u8Vector);
2347 pHlp->pfnPrintf(pHlp, "%s u3Type = %u\n", pszPrefix, pVmcbCtrl->EventInject.n.u3Type);
2348 pHlp->pfnPrintf(pHlp, "%s u1ErrorCodeValid = %RTbool\n", pszPrefix, pVmcbCtrl->EventInject.n.u1ErrorCodeValid);
2349 pHlp->pfnPrintf(pHlp, "%s u1Valid = %RTbool\n", pszPrefix, pVmcbCtrl->EventInject.n.u1Valid);
2350 pHlp->pfnPrintf(pHlp, "%s u32ErrorCode = %#RX32\n", pszPrefix, pVmcbCtrl->EventInject.n.u32ErrorCode);
2351 pHlp->pfnPrintf(pHlp, "%su64NestedPagingCR3 = %#RX64\n", pszPrefix, pVmcbCtrl->u64NestedPagingCR3);
2352 pHlp->pfnPrintf(pHlp, "%sLBR virtualization\n", pszPrefix);
2353 pHlp->pfnPrintf(pHlp, "%s u1LbrVirt = %RTbool\n", pszPrefix, pVmcbCtrl->LbrVirt.n.u1LbrVirt);
2354 pHlp->pfnPrintf(pHlp, "%s u1VirtVmsaveVmload = %RTbool\n", pszPrefix, pVmcbCtrl->LbrVirt.n.u1VirtVmsaveVmload);
2355 pHlp->pfnPrintf(pHlp, "%su32VmcbCleanBits = %#RX32\n", pszPrefix, pVmcbCtrl->u32VmcbCleanBits);
2356 pHlp->pfnPrintf(pHlp, "%su64NextRIP = %#RX64\n", pszPrefix, pVmcbCtrl->u64NextRIP);
2357 pHlp->pfnPrintf(pHlp, "%scbInstrFetched = %u\n", pszPrefix, pVmcbCtrl->cbInstrFetched);
2358 pHlp->pfnPrintf(pHlp, "%sabInstr = %.*Rhxs\n", pszPrefix, sizeof(pVmcbCtrl->abInstr), pVmcbCtrl->abInstr);
2359 pHlp->pfnPrintf(pHlp, "%sAvicBackingPagePtr\n", pszPrefix);
2360 pHlp->pfnPrintf(pHlp, "%s u40Addr = %#RX64\n", pszPrefix, pVmcbCtrl->AvicBackingPagePtr.n.u40Addr);
2361 pHlp->pfnPrintf(pHlp, "%sAvicLogicalTablePtr\n", pszPrefix);
2362 pHlp->pfnPrintf(pHlp, "%s u40Addr = %#RX64\n", pszPrefix, pVmcbCtrl->AvicLogicalTablePtr.n.u40Addr);
2363 pHlp->pfnPrintf(pHlp, "%sAvicPhysicalTablePtr\n", pszPrefix);
2364 pHlp->pfnPrintf(pHlp, "%s u8LastGuestCoreId = %u\n", pszPrefix, pVmcbCtrl->AvicPhysicalTablePtr.n.u8LastGuestCoreId);
2365 pHlp->pfnPrintf(pHlp, "%s u40Addr = %#RX64\n", pszPrefix, pVmcbCtrl->AvicPhysicalTablePtr.n.u40Addr);
2366}
2367
2368
2369/**
2370 * Helper for dumping the SVM VMCB selector registers.
2371 *
2372 * @param pHlp The info helper functions.
2373 * @param pSel Pointer to the SVM selector register.
2374 * @param pszName Name of the selector.
2375 * @param pszPrefix Caller specified string prefix.
2376 */
2377DECLINLINE(void) cpumR3InfoSvmVmcbSelReg(PCDBGFINFOHLP pHlp, PCSVMSELREG pSel, const char *pszName, const char *pszPrefix)
2378{
2379 /* The string width of 4 used below is to handle 'LDTR'. Change later if longer register names are used. */
2380 pHlp->pfnPrintf(pHlp, "%s%-4s = {%04x base=%016RX64 limit=%08x flags=%04x}\n", pszPrefix,
2381 pszName, pSel->u16Sel, pSel->u64Base, pSel->u32Limit, pSel->u16Attr);
2382}
2383
2384
2385/**
2386 * Helper for dumping the SVM VMCB GDTR/IDTR registers.
2387 *
2388 * @param pHlp The info helper functions.
2389 * @param pXdtr Pointer to the descriptor table register.
2390 * @param pszName Name of the descriptor table register.
2391 * @param pszPrefix Caller specified string prefix.
2392 */
2393DECLINLINE(void) cpumR3InfoSvmVmcbXdtr(PCDBGFINFOHLP pHlp, PCSVMXDTR pXdtr, const char *pszName, const char *pszPrefix)
2394{
2395 /* The string width of 4 used below is to cover 'GDTR', 'IDTR'. Change later if longer register names are used. */
2396 pHlp->pfnPrintf(pHlp, "%s%-4s = %016RX64:%04x\n", pszPrefix, pszName, pXdtr->u64Base, pXdtr->u32Limit);
2397}
2398
2399
2400/**
2401 * Displays an SVM VMCB state-save area.
2402 *
2403 * @param pHlp The info helper functions.
2404 * @param pVmcbStateSave Pointer to a SVM VMCB controls area.
2405 * @param pszPrefix Caller specified string prefix.
2406 */
2407static void cpumR3InfoSvmVmcbStateSave(PCDBGFINFOHLP pHlp, PCSVMVMCBSTATESAVE pVmcbStateSave, const char *pszPrefix)
2408{
2409 AssertReturnVoid(pHlp);
2410 AssertReturnVoid(pVmcbStateSave);
2411
2412 char szEFlags[80];
2413 cpumR3InfoFormatFlags(&szEFlags[0], pVmcbStateSave->u64RFlags);
2414
2415 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->CS, "CS", pszPrefix);
2416 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->SS, "SS", pszPrefix);
2417 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->ES, "ES", pszPrefix);
2418 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->DS, "DS", pszPrefix);
2419 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->FS, "FS", pszPrefix);
2420 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->GS, "GS", pszPrefix);
2421 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->LDTR, "LDTR", pszPrefix);
2422 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->TR, "TR", pszPrefix);
2423 cpumR3InfoSvmVmcbXdtr(pHlp, &pVmcbStateSave->GDTR, "GDTR", pszPrefix);
2424 cpumR3InfoSvmVmcbXdtr(pHlp, &pVmcbStateSave->IDTR, "IDTR", pszPrefix);
2425 pHlp->pfnPrintf(pHlp, "%su8CPL = %u\n", pszPrefix, pVmcbStateSave->u8CPL);
2426 pHlp->pfnPrintf(pHlp, "%su64EFER = %#RX64\n", pszPrefix, pVmcbStateSave->u64EFER);
2427 pHlp->pfnPrintf(pHlp, "%su64CR4 = %#RX64\n", pszPrefix, pVmcbStateSave->u64CR4);
2428 pHlp->pfnPrintf(pHlp, "%su64CR3 = %#RX64\n", pszPrefix, pVmcbStateSave->u64CR3);
2429 pHlp->pfnPrintf(pHlp, "%su64CR0 = %#RX64\n", pszPrefix, pVmcbStateSave->u64CR0);
2430 pHlp->pfnPrintf(pHlp, "%su64DR7 = %#RX64\n", pszPrefix, pVmcbStateSave->u64DR7);
2431 pHlp->pfnPrintf(pHlp, "%su64DR6 = %#RX64\n", pszPrefix, pVmcbStateSave->u64DR6);
2432 pHlp->pfnPrintf(pHlp, "%su64RFlags = %#RX64 %31s\n", pszPrefix, pVmcbStateSave->u64RFlags, szEFlags);
2433 pHlp->pfnPrintf(pHlp, "%su64RIP = %#RX64\n", pszPrefix, pVmcbStateSave->u64RIP);
2434 pHlp->pfnPrintf(pHlp, "%su64RSP = %#RX64\n", pszPrefix, pVmcbStateSave->u64RSP);
2435 pHlp->pfnPrintf(pHlp, "%su64RAX = %#RX64\n", pszPrefix, pVmcbStateSave->u64RAX);
2436 pHlp->pfnPrintf(pHlp, "%su64STAR = %#RX64\n", pszPrefix, pVmcbStateSave->u64STAR);
2437 pHlp->pfnPrintf(pHlp, "%su64LSTAR = %#RX64\n", pszPrefix, pVmcbStateSave->u64LSTAR);
2438 pHlp->pfnPrintf(pHlp, "%su64CSTAR = %#RX64\n", pszPrefix, pVmcbStateSave->u64CSTAR);
2439 pHlp->pfnPrintf(pHlp, "%su64SFMASK = %#RX64\n", pszPrefix, pVmcbStateSave->u64SFMASK);
2440 pHlp->pfnPrintf(pHlp, "%su64KernelGSBase = %#RX64\n", pszPrefix, pVmcbStateSave->u64KernelGSBase);
2441 pHlp->pfnPrintf(pHlp, "%su64SysEnterCS = %#RX64\n", pszPrefix, pVmcbStateSave->u64SysEnterCS);
2442 pHlp->pfnPrintf(pHlp, "%su64SysEnterEIP = %#RX64\n", pszPrefix, pVmcbStateSave->u64SysEnterEIP);
2443 pHlp->pfnPrintf(pHlp, "%su64SysEnterESP = %#RX64\n", pszPrefix, pVmcbStateSave->u64SysEnterESP);
2444 pHlp->pfnPrintf(pHlp, "%su64CR2 = %#RX64\n", pszPrefix, pVmcbStateSave->u64CR2);
2445 pHlp->pfnPrintf(pHlp, "%su64PAT = %#RX64\n", pszPrefix, pVmcbStateSave->u64PAT);
2446 pHlp->pfnPrintf(pHlp, "%su64DBGCTL = %#RX64\n", pszPrefix, pVmcbStateSave->u64DBGCTL);
2447 pHlp->pfnPrintf(pHlp, "%su64BR_FROM = %#RX64\n", pszPrefix, pVmcbStateSave->u64BR_FROM);
2448 pHlp->pfnPrintf(pHlp, "%su64BR_TO = %#RX64\n", pszPrefix, pVmcbStateSave->u64BR_TO);
2449 pHlp->pfnPrintf(pHlp, "%su64LASTEXCPFROM = %#RX64\n", pszPrefix, pVmcbStateSave->u64LASTEXCPFROM);
2450 pHlp->pfnPrintf(pHlp, "%su64LASTEXCPTO = %#RX64\n", pszPrefix, pVmcbStateSave->u64LASTEXCPTO);
2451}
2452
2453
2454/**
2455 * Display the guest's hardware-virtualization cpu state.
2456 *
2457 * @param pVM The cross context VM structure.
2458 * @param pHlp The info helper functions.
2459 * @param pszArgs Arguments, ignored.
2460 */
2461static DECLCALLBACK(void) cpumR3InfoGuestHwvirt(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2462{
2463 RT_NOREF(pszArgs);
2464
2465 PVMCPU pVCpu = VMMGetCpu(pVM);
2466 if (!pVCpu)
2467 pVCpu = &pVM->aCpus[0];
2468
2469 /*
2470 * Figure out what to dump.
2471 *
2472 * In the future we may need to dump everything whether or not we're actively in nested-guest mode
2473 * or not, hence the reason why we use a mask to determine what needs dumping. Currently, we only
2474 * dump hwvirt. state when the guest CPU is executing a nested-guest.
2475 */
2476 /** @todo perhaps make this configurable through pszArgs, depending on how much
2477 * noise we wish to accept when nested hwvirt. isn't used. */
2478#define CPUMHWVIRTDUMP_NONE (0)
2479#define CPUMHWVIRTDUMP_SVM RT_BIT(0)
2480#define CPUMHWVIRTDUMP_VMX RT_BIT(1)
2481#define CPUMHWVIRTDUMP_COMMON RT_BIT(2)
2482#define CPUMHWVIRTDUMP_LAST CPUMHWVIRTDUMP_VMX
2483
2484 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
2485 static const char *const s_aHwvirtModes[] = { "No/inactive", "SVM", "VMX", "Common" };
2486 uint8_t const idxHwvirtState = CPUMIsGuestInSvmNestedHwVirtMode(pCtx) ? CPUMHWVIRTDUMP_SVM
2487 : CPUMIsGuestInVmxNestedHwVirtMode(pCtx) ? CPUMHWVIRTDUMP_VMX : CPUMHWVIRTDUMP_NONE;
2488 AssertCompile(CPUMHWVIRTDUMP_LAST <= RT_ELEMENTS(s_aHwvirtModes));
2489 Assert(idxHwvirtState < RT_ELEMENTS(s_aHwvirtModes));
2490 const char *pcszHwvirtMode = s_aHwvirtModes[idxHwvirtState];
2491 uint32_t fDumpState = idxHwvirtState | CPUMHWVIRTDUMP_COMMON;
2492
2493 /*
2494 * Dump it.
2495 */
2496 pHlp->pfnPrintf(pHlp, "VCPU[%u] hardware virtualization state:\n", pVCpu->idCpu);
2497
2498 if (fDumpState & CPUMHWVIRTDUMP_COMMON)
2499 {
2500 pHlp->pfnPrintf(pHlp, "fGif = %RTbool\n", pCtx->hwvirt.fGif);
2501 pHlp->pfnPrintf(pHlp, "fLocalForcedActions = %#RX32\n", pCtx->hwvirt.fLocalForcedActions);
2502 }
2503 pHlp->pfnPrintf(pHlp, "%s hwvirt state%s\n", pcszHwvirtMode, (fDumpState & (CPUMHWVIRTDUMP_SVM | CPUMHWVIRTDUMP_VMX)) ?
2504 ":" : "");
2505 if (fDumpState & CPUMHWVIRTDUMP_SVM)
2506 {
2507 char szEFlags[80];
2508 cpumR3InfoFormatFlags(&szEFlags[0], pCtx->hwvirt.svm.HostState.rflags.u);
2509
2510 pHlp->pfnPrintf(pHlp, " uMsrHSavePa = %#RX64\n", pCtx->hwvirt.svm.uMsrHSavePa);
2511 pHlp->pfnPrintf(pHlp, " GCPhysVmcb = %#RGp\n", pCtx->hwvirt.svm.GCPhysVmcb);
2512 pHlp->pfnPrintf(pHlp, " VmcbCtrl:\n");
2513 cpumR3InfoSvmVmcbCtrl(pHlp, &pCtx->hwvirt.svm.pVmcbR3->ctrl, " " /* pszPrefix */);
2514 pHlp->pfnPrintf(pHlp, " VmcbStateSave:\n");
2515 cpumR3InfoSvmVmcbStateSave(pHlp, &pCtx->hwvirt.svm.pVmcbR3->guest, " " /* pszPrefix */);
2516 pHlp->pfnPrintf(pHlp, " HostState:\n");
2517 pHlp->pfnPrintf(pHlp, " uEferMsr = %#RX64\n", pCtx->hwvirt.svm.HostState.uEferMsr);
2518 pHlp->pfnPrintf(pHlp, " uCr0 = %#RX64\n", pCtx->hwvirt.svm.HostState.uCr0);
2519 pHlp->pfnPrintf(pHlp, " uCr4 = %#RX64\n", pCtx->hwvirt.svm.HostState.uCr4);
2520 pHlp->pfnPrintf(pHlp, " uCr3 = %#RX64\n", pCtx->hwvirt.svm.HostState.uCr3);
2521 pHlp->pfnPrintf(pHlp, " uRip = %#RX64\n", pCtx->hwvirt.svm.HostState.uRip);
2522 pHlp->pfnPrintf(pHlp, " uRsp = %#RX64\n", pCtx->hwvirt.svm.HostState.uRsp);
2523 pHlp->pfnPrintf(pHlp, " uRax = %#RX64\n", pCtx->hwvirt.svm.HostState.uRax);
2524 pHlp->pfnPrintf(pHlp, " rflags = %#RX64 %31s\n", pCtx->hwvirt.svm.HostState.rflags.u64, szEFlags);
2525 PCPUMSELREG pSel = &pCtx->hwvirt.svm.HostState.es;
2526 pHlp->pfnPrintf(pHlp, " es = {%04x base=%016RX64 limit=%08x flags=%08x}\n",
2527 pSel->Sel, pSel->u64Base, pSel->u32Limit, pSel->Attr.u);
2528 pSel = &pCtx->hwvirt.svm.HostState.cs;
2529 pHlp->pfnPrintf(pHlp, " cs = {%04x base=%016RX64 limit=%08x flags=%08x}\n",
2530 pSel->Sel, pSel->u64Base, pSel->u32Limit, pSel->Attr.u);
2531 pSel = &pCtx->hwvirt.svm.HostState.ss;
2532 pHlp->pfnPrintf(pHlp, " ss = {%04x base=%016RX64 limit=%08x flags=%08x}\n",
2533 pSel->Sel, pSel->u64Base, pSel->u32Limit, pSel->Attr.u);
2534 pSel = &pCtx->hwvirt.svm.HostState.ds;
2535 pHlp->pfnPrintf(pHlp, " ds = {%04x base=%016RX64 limit=%08x flags=%08x}\n",
2536 pSel->Sel, pSel->u64Base, pSel->u32Limit, pSel->Attr.u);
2537 pHlp->pfnPrintf(pHlp, " gdtr = %016RX64:%04x\n", pCtx->hwvirt.svm.HostState.gdtr.pGdt,
2538 pCtx->hwvirt.svm.HostState.gdtr.cbGdt);
2539 pHlp->pfnPrintf(pHlp, " idtr = %016RX64:%04x\n", pCtx->hwvirt.svm.HostState.idtr.pIdt,
2540 pCtx->hwvirt.svm.HostState.idtr.cbIdt);
2541 pHlp->pfnPrintf(pHlp, " cPauseFilter = %RU16\n", pCtx->hwvirt.svm.cPauseFilter);
2542 pHlp->pfnPrintf(pHlp, " cPauseFilterThreshold = %RU32\n", pCtx->hwvirt.svm.cPauseFilterThreshold);
2543 pHlp->pfnPrintf(pHlp, " fInterceptEvents = %u\n", pCtx->hwvirt.svm.fInterceptEvents);
2544 pHlp->pfnPrintf(pHlp, " pvMsrBitmapR3 = %p\n", pCtx->hwvirt.svm.pvMsrBitmapR3);
2545 pHlp->pfnPrintf(pHlp, " pvMsrBitmapR0 = %RKv\n", pCtx->hwvirt.svm.pvMsrBitmapR0);
2546 pHlp->pfnPrintf(pHlp, " pvIoBitmapR3 = %p\n", pCtx->hwvirt.svm.pvIoBitmapR3);
2547 pHlp->pfnPrintf(pHlp, " pvIoBitmapR0 = %RKv\n", pCtx->hwvirt.svm.pvIoBitmapR0);
2548 }
2549
2550 /** @todo Intel. */
2551#if 0
2552 if (fDumpState & CPUMHWVIRTDUMP_VMX)
2553 {
2554 }
2555#endif
2556
2557#undef CPUMHWVIRTDUMP_NONE
2558#undef CPUMHWVIRTDUMP_COMMON
2559#undef CPUMHWVIRTDUMP_SVM
2560#undef CPUMHWVIRTDUMP_VMX
2561#undef CPUMHWVIRTDUMP_LAST
2562#undef CPUMHWVIRTDUMP_ALL
2563}
2564
2565/**
2566 * Display the current guest instruction
2567 *
2568 * @param pVM The cross context VM structure.
2569 * @param pHlp The info helper functions.
2570 * @param pszArgs Arguments, ignored.
2571 */
2572static DECLCALLBACK(void) cpumR3InfoGuestInstr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2573{
2574 NOREF(pszArgs);
2575
2576 PVMCPU pVCpu = VMMGetCpu(pVM);
2577 if (!pVCpu)
2578 pVCpu = &pVM->aCpus[0];
2579
2580 char szInstruction[256];
2581 szInstruction[0] = '\0';
2582 DBGFR3DisasInstrCurrent(pVCpu, szInstruction, sizeof(szInstruction));
2583 pHlp->pfnPrintf(pHlp, "\nCPUM%u: %s\n\n", pVCpu->idCpu, szInstruction);
2584}
2585
2586
2587/**
2588 * Display the hypervisor cpu state.
2589 *
2590 * @param pVM The cross context VM structure.
2591 * @param pHlp The info helper functions.
2592 * @param pszArgs Arguments, ignored.
2593 */
2594static DECLCALLBACK(void) cpumR3InfoHyper(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2595{
2596 PVMCPU pVCpu = VMMGetCpu(pVM);
2597 if (!pVCpu)
2598 pVCpu = &pVM->aCpus[0];
2599
2600 CPUMDUMPTYPE enmType;
2601 const char *pszComment;
2602 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
2603 pHlp->pfnPrintf(pHlp, "Hypervisor CPUM state: %s\n", pszComment);
2604 cpumR3InfoOne(pVM, &pVCpu->cpum.s.Hyper, CPUMCTX2CORE(&pVCpu->cpum.s.Hyper), pHlp, enmType, ".");
2605 pHlp->pfnPrintf(pHlp, "CR4OrMask=%#x CR4AndMask=%#x\n", pVM->cpum.s.CR4.OrMask, pVM->cpum.s.CR4.AndMask);
2606}
2607
2608
2609/**
2610 * Display the host cpu state.
2611 *
2612 * @param pVM The cross context VM structure.
2613 * @param pHlp The info helper functions.
2614 * @param pszArgs Arguments, ignored.
2615 */
2616static DECLCALLBACK(void) cpumR3InfoHost(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2617{
2618 CPUMDUMPTYPE enmType;
2619 const char *pszComment;
2620 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
2621 pHlp->pfnPrintf(pHlp, "Host CPUM state: %s\n", pszComment);
2622
2623 PVMCPU pVCpu = VMMGetCpu(pVM);
2624 if (!pVCpu)
2625 pVCpu = &pVM->aCpus[0];
2626 PCPUMHOSTCTX pCtx = &pVCpu->cpum.s.Host;
2627
2628 /*
2629 * Format the EFLAGS.
2630 */
2631#if HC_ARCH_BITS == 32
2632 uint32_t efl = pCtx->eflags.u32;
2633#else
2634 uint64_t efl = pCtx->rflags;
2635#endif
2636 char szEFlags[80];
2637 cpumR3InfoFormatFlags(&szEFlags[0], efl);
2638
2639 /*
2640 * Format the registers.
2641 */
2642#if HC_ARCH_BITS == 32
2643 pHlp->pfnPrintf(pHlp,
2644 "eax=xxxxxxxx ebx=%08x ecx=xxxxxxxx edx=xxxxxxxx esi=%08x edi=%08x\n"
2645 "eip=xxxxxxxx esp=%08x ebp=%08x iopl=%d %31s\n"
2646 "cs=%04x ds=%04x es=%04x fs=%04x gs=%04x eflags=%08x\n"
2647 "cr0=%08RX64 cr2=xxxxxxxx cr3=%08RX64 cr4=%08RX64 gdtr=%08x:%04x ldtr=%04x\n"
2648 "dr[0]=%08RX64 dr[1]=%08RX64x dr[2]=%08RX64 dr[3]=%08RX64x dr[6]=%08RX64 dr[7]=%08RX64\n"
2649 "SysEnter={cs=%04x eip=%08x esp=%08x}\n"
2650 ,
2651 /*pCtx->eax,*/ pCtx->ebx, /*pCtx->ecx, pCtx->edx,*/ pCtx->esi, pCtx->edi,
2652 /*pCtx->eip,*/ pCtx->esp, pCtx->ebp, X86_EFL_GET_IOPL(efl), szEFlags,
2653 pCtx->cs, pCtx->ds, pCtx->es, pCtx->fs, pCtx->gs, efl,
2654 pCtx->cr0, /*pCtx->cr2,*/ pCtx->cr3, pCtx->cr4,
2655 pCtx->dr0, pCtx->dr1, pCtx->dr2, pCtx->dr3, pCtx->dr6, pCtx->dr7,
2656 (uint32_t)pCtx->gdtr.uAddr, pCtx->gdtr.cb, pCtx->ldtr,
2657 pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
2658#else
2659 pHlp->pfnPrintf(pHlp,
2660 "rax=xxxxxxxxxxxxxxxx rbx=%016RX64 rcx=xxxxxxxxxxxxxxxx\n"
2661 "rdx=xxxxxxxxxxxxxxxx rsi=%016RX64 rdi=%016RX64\n"
2662 "rip=xxxxxxxxxxxxxxxx rsp=%016RX64 rbp=%016RX64\n"
2663 " r8=xxxxxxxxxxxxxxxx r9=xxxxxxxxxxxxxxxx r10=%016RX64\n"
2664 "r11=%016RX64 r12=%016RX64 r13=%016RX64\n"
2665 "r14=%016RX64 r15=%016RX64\n"
2666 "iopl=%d %31s\n"
2667 "cs=%04x ds=%04x es=%04x fs=%04x gs=%04x eflags=%08RX64\n"
2668 "cr0=%016RX64 cr2=xxxxxxxxxxxxxxxx cr3=%016RX64\n"
2669 "cr4=%016RX64 ldtr=%04x tr=%04x\n"
2670 "dr[0]=%016RX64 dr[1]=%016RX64 dr[2]=%016RX64\n"
2671 "dr[3]=%016RX64 dr[6]=%016RX64 dr[7]=%016RX64\n"
2672 "gdtr=%016RX64:%04x idtr=%016RX64:%04x\n"
2673 "SysEnter={cs=%04x eip=%08x esp=%08x}\n"
2674 "FSbase=%016RX64 GSbase=%016RX64 efer=%08RX64\n"
2675 ,
2676 /*pCtx->rax,*/ pCtx->rbx, /*pCtx->rcx,
2677 pCtx->rdx,*/ pCtx->rsi, pCtx->rdi,
2678 /*pCtx->rip,*/ pCtx->rsp, pCtx->rbp,
2679 /*pCtx->r8, pCtx->r9,*/ pCtx->r10,
2680 pCtx->r11, pCtx->r12, pCtx->r13,
2681 pCtx->r14, pCtx->r15,
2682 X86_EFL_GET_IOPL(efl), szEFlags,
2683 pCtx->cs, pCtx->ds, pCtx->es, pCtx->fs, pCtx->gs, efl,
2684 pCtx->cr0, /*pCtx->cr2,*/ pCtx->cr3,
2685 pCtx->cr4, pCtx->ldtr, pCtx->tr,
2686 pCtx->dr0, pCtx->dr1, pCtx->dr2,
2687 pCtx->dr3, pCtx->dr6, pCtx->dr7,
2688 pCtx->gdtr.uAddr, pCtx->gdtr.cb, pCtx->idtr.uAddr, pCtx->idtr.cb,
2689 pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp,
2690 pCtx->FSbase, pCtx->GSbase, pCtx->efer);
2691#endif
2692}
2693
2694/**
2695 * Structure used when disassembling and instructions in DBGF.
2696 * This is used so the reader function can get the stuff it needs.
2697 */
2698typedef struct CPUMDISASSTATE
2699{
2700 /** Pointer to the CPU structure. */
2701 PDISCPUSTATE pCpu;
2702 /** Pointer to the VM. */
2703 PVM pVM;
2704 /** Pointer to the VMCPU. */
2705 PVMCPU pVCpu;
2706 /** Pointer to the first byte in the segment. */
2707 RTGCUINTPTR GCPtrSegBase;
2708 /** Pointer to the byte after the end of the segment. (might have wrapped!) */
2709 RTGCUINTPTR GCPtrSegEnd;
2710 /** The size of the segment minus 1. */
2711 RTGCUINTPTR cbSegLimit;
2712 /** Pointer to the current page - R3 Ptr. */
2713 void const *pvPageR3;
2714 /** Pointer to the current page - GC Ptr. */
2715 RTGCPTR pvPageGC;
2716 /** The lock information that PGMPhysReleasePageMappingLock needs. */
2717 PGMPAGEMAPLOCK PageMapLock;
2718 /** Whether the PageMapLock is valid or not. */
2719 bool fLocked;
2720 /** 64 bits mode or not. */
2721 bool f64Bits;
2722} CPUMDISASSTATE, *PCPUMDISASSTATE;
2723
2724
2725/**
2726 * @callback_method_impl{FNDISREADBYTES}
2727 */
2728static DECLCALLBACK(int) cpumR3DisasInstrRead(PDISCPUSTATE pDis, uint8_t offInstr, uint8_t cbMinRead, uint8_t cbMaxRead)
2729{
2730 PCPUMDISASSTATE pState = (PCPUMDISASSTATE)pDis->pvUser;
2731 for (;;)
2732 {
2733 RTGCUINTPTR GCPtr = pDis->uInstrAddr + offInstr + pState->GCPtrSegBase;
2734
2735 /*
2736 * Need to update the page translation?
2737 */
2738 if ( !pState->pvPageR3
2739 || (GCPtr >> PAGE_SHIFT) != (pState->pvPageGC >> PAGE_SHIFT))
2740 {
2741 int rc = VINF_SUCCESS;
2742
2743 /* translate the address */
2744 pState->pvPageGC = GCPtr & PAGE_BASE_GC_MASK;
2745 if ( VM_IS_RAW_MODE_ENABLED(pState->pVM)
2746 && MMHyperIsInsideArea(pState->pVM, pState->pvPageGC))
2747 {
2748 pState->pvPageR3 = MMHyperRCToR3(pState->pVM, (RTRCPTR)pState->pvPageGC);
2749 if (!pState->pvPageR3)
2750 rc = VERR_INVALID_POINTER;
2751 }
2752 else
2753 {
2754 /* Release mapping lock previously acquired. */
2755 if (pState->fLocked)
2756 PGMPhysReleasePageMappingLock(pState->pVM, &pState->PageMapLock);
2757 rc = PGMPhysGCPtr2CCPtrReadOnly(pState->pVCpu, pState->pvPageGC, &pState->pvPageR3, &pState->PageMapLock);
2758 pState->fLocked = RT_SUCCESS_NP(rc);
2759 }
2760 if (RT_FAILURE(rc))
2761 {
2762 pState->pvPageR3 = NULL;
2763 return rc;
2764 }
2765 }
2766
2767 /*
2768 * Check the segment limit.
2769 */
2770 if (!pState->f64Bits && pDis->uInstrAddr + offInstr > pState->cbSegLimit)
2771 return VERR_OUT_OF_SELECTOR_BOUNDS;
2772
2773 /*
2774 * Calc how much we can read.
2775 */
2776 uint32_t cb = PAGE_SIZE - (GCPtr & PAGE_OFFSET_MASK);
2777 if (!pState->f64Bits)
2778 {
2779 RTGCUINTPTR cbSeg = pState->GCPtrSegEnd - GCPtr;
2780 if (cb > cbSeg && cbSeg)
2781 cb = cbSeg;
2782 }
2783 if (cb > cbMaxRead)
2784 cb = cbMaxRead;
2785
2786 /*
2787 * Read and advance or exit.
2788 */
2789 memcpy(&pDis->abInstr[offInstr], (uint8_t *)pState->pvPageR3 + (GCPtr & PAGE_OFFSET_MASK), cb);
2790 offInstr += (uint8_t)cb;
2791 if (cb >= cbMinRead)
2792 {
2793 pDis->cbCachedInstr = offInstr;
2794 return VINF_SUCCESS;
2795 }
2796 cbMinRead -= (uint8_t)cb;
2797 cbMaxRead -= (uint8_t)cb;
2798 }
2799}
2800
2801
2802/**
2803 * Disassemble an instruction and return the information in the provided structure.
2804 *
2805 * @returns VBox status code.
2806 * @param pVM The cross context VM structure.
2807 * @param pVCpu The cross context virtual CPU structure.
2808 * @param pCtx Pointer to the guest CPU context.
2809 * @param GCPtrPC Program counter (relative to CS) to disassemble from.
2810 * @param pCpu Disassembly state.
2811 * @param pszPrefix String prefix for logging (debug only).
2812 *
2813 */
2814VMMR3DECL(int) CPUMR3DisasmInstrCPU(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, RTGCPTR GCPtrPC, PDISCPUSTATE pCpu,
2815 const char *pszPrefix)
2816{
2817 CPUMDISASSTATE State;
2818 int rc;
2819
2820 const PGMMODE enmMode = PGMGetGuestMode(pVCpu);
2821 State.pCpu = pCpu;
2822 State.pvPageGC = 0;
2823 State.pvPageR3 = NULL;
2824 State.pVM = pVM;
2825 State.pVCpu = pVCpu;
2826 State.fLocked = false;
2827 State.f64Bits = false;
2828
2829 /*
2830 * Get selector information.
2831 */
2832 DISCPUMODE enmDisCpuMode;
2833 if ( (pCtx->cr0 & X86_CR0_PE)
2834 && pCtx->eflags.Bits.u1VM == 0)
2835 {
2836 if (!CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->cs))
2837 {
2838# ifdef VBOX_WITH_RAW_MODE_NOT_R0
2839 CPUMGuestLazyLoadHiddenSelectorReg(pVCpu, &pCtx->cs);
2840# endif
2841 if (!CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->cs))
2842 return VERR_CPUM_HIDDEN_CS_LOAD_ERROR;
2843 }
2844 State.f64Bits = enmMode >= PGMMODE_AMD64 && pCtx->cs.Attr.n.u1Long;
2845 State.GCPtrSegBase = pCtx->cs.u64Base;
2846 State.GCPtrSegEnd = pCtx->cs.u32Limit + 1 + (RTGCUINTPTR)pCtx->cs.u64Base;
2847 State.cbSegLimit = pCtx->cs.u32Limit;
2848 enmDisCpuMode = (State.f64Bits)
2849 ? DISCPUMODE_64BIT
2850 : pCtx->cs.Attr.n.u1DefBig
2851 ? DISCPUMODE_32BIT
2852 : DISCPUMODE_16BIT;
2853 }
2854 else
2855 {
2856 /* real or V86 mode */
2857 enmDisCpuMode = DISCPUMODE_16BIT;
2858 State.GCPtrSegBase = pCtx->cs.Sel * 16;
2859 State.GCPtrSegEnd = 0xFFFFFFFF;
2860 State.cbSegLimit = 0xFFFFFFFF;
2861 }
2862
2863 /*
2864 * Disassemble the instruction.
2865 */
2866 uint32_t cbInstr;
2867#ifndef LOG_ENABLED
2868 RT_NOREF_PV(pszPrefix);
2869 rc = DISInstrWithReader(GCPtrPC, enmDisCpuMode, cpumR3DisasInstrRead, &State, pCpu, &cbInstr);
2870 if (RT_SUCCESS(rc))
2871 {
2872#else
2873 char szOutput[160];
2874 rc = DISInstrToStrWithReader(GCPtrPC, enmDisCpuMode, cpumR3DisasInstrRead, &State,
2875 pCpu, &cbInstr, szOutput, sizeof(szOutput));
2876 if (RT_SUCCESS(rc))
2877 {
2878 /* log it */
2879 if (pszPrefix)
2880 Log(("%s-CPU%d: %s", pszPrefix, pVCpu->idCpu, szOutput));
2881 else
2882 Log(("%s", szOutput));
2883#endif
2884 rc = VINF_SUCCESS;
2885 }
2886 else
2887 Log(("CPUMR3DisasmInstrCPU: DISInstr failed for %04X:%RGv rc=%Rrc\n", pCtx->cs.Sel, GCPtrPC, rc));
2888
2889 /* Release mapping lock acquired in cpumR3DisasInstrRead. */
2890 if (State.fLocked)
2891 PGMPhysReleasePageMappingLock(pVM, &State.PageMapLock);
2892
2893 return rc;
2894}
2895
2896
2897
2898/**
2899 * API for controlling a few of the CPU features found in CR4.
2900 *
2901 * Currently only X86_CR4_TSD is accepted as input.
2902 *
2903 * @returns VBox status code.
2904 *
2905 * @param pVM The cross context VM structure.
2906 * @param fOr The CR4 OR mask.
2907 * @param fAnd The CR4 AND mask.
2908 */
2909VMMR3DECL(int) CPUMR3SetCR4Feature(PVM pVM, RTHCUINTREG fOr, RTHCUINTREG fAnd)
2910{
2911 AssertMsgReturn(!(fOr & ~(X86_CR4_TSD)), ("%#x\n", fOr), VERR_INVALID_PARAMETER);
2912 AssertMsgReturn((fAnd & ~(X86_CR4_TSD)) == ~(X86_CR4_TSD), ("%#x\n", fAnd), VERR_INVALID_PARAMETER);
2913
2914 pVM->cpum.s.CR4.OrMask &= fAnd;
2915 pVM->cpum.s.CR4.OrMask |= fOr;
2916
2917 return VINF_SUCCESS;
2918}
2919
2920
2921/**
2922 * Enters REM, gets and resets the changed flags (CPUM_CHANGED_*).
2923 *
2924 * Only REM should ever call this function!
2925 *
2926 * @returns The changed flags.
2927 * @param pVCpu The cross context virtual CPU structure.
2928 * @param puCpl Where to return the current privilege level (CPL).
2929 */
2930VMMR3DECL(uint32_t) CPUMR3RemEnter(PVMCPU pVCpu, uint32_t *puCpl)
2931{
2932 Assert(!pVCpu->cpum.s.fRawEntered);
2933 Assert(!pVCpu->cpum.s.fRemEntered);
2934
2935 /*
2936 * Get the CPL first.
2937 */
2938 *puCpl = CPUMGetGuestCPL(pVCpu);
2939
2940 /*
2941 * Get and reset the flags.
2942 */
2943 uint32_t fFlags = pVCpu->cpum.s.fChanged;
2944 pVCpu->cpum.s.fChanged = 0;
2945
2946 /** @todo change the switcher to use the fChanged flags. */
2947 if (pVCpu->cpum.s.fUseFlags & CPUM_USED_FPU_SINCE_REM)
2948 {
2949 fFlags |= CPUM_CHANGED_FPU_REM;
2950 pVCpu->cpum.s.fUseFlags &= ~CPUM_USED_FPU_SINCE_REM;
2951 }
2952
2953 pVCpu->cpum.s.fRemEntered = true;
2954 return fFlags;
2955}
2956
2957
2958/**
2959 * Leaves REM.
2960 *
2961 * @param pVCpu The cross context virtual CPU structure.
2962 * @param fNoOutOfSyncSels This is @c false if there are out of sync
2963 * registers.
2964 */
2965VMMR3DECL(void) CPUMR3RemLeave(PVMCPU pVCpu, bool fNoOutOfSyncSels)
2966{
2967 Assert(!pVCpu->cpum.s.fRawEntered);
2968 Assert(pVCpu->cpum.s.fRemEntered);
2969
2970 RT_NOREF_PV(fNoOutOfSyncSels);
2971
2972 pVCpu->cpum.s.fRemEntered = false;
2973}
2974
2975
2976/**
2977 * Called when the ring-3 init phase completes.
2978 *
2979 * @returns VBox status code.
2980 * @param pVM The cross context VM structure.
2981 * @param enmWhat Which init phase.
2982 */
2983VMMR3DECL(int) CPUMR3InitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
2984{
2985 switch (enmWhat)
2986 {
2987 case VMINITCOMPLETED_RING3:
2988 {
2989 /*
2990 * Figure out if the guest uses 32-bit or 64-bit FPU state at runtime for 64-bit capable VMs.
2991 * Only applicable/used on 64-bit hosts, refer CPUMR0A.asm. See @bugref{7138}.
2992 */
2993 bool const fSupportsLongMode = VMR3IsLongModeAllowed(pVM);
2994 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2995 {
2996 PVMCPU pVCpu = &pVM->aCpus[i];
2997 /* While loading a saved-state we fix it up in, cpumR3LoadDone(). */
2998 if (fSupportsLongMode)
2999 pVCpu->cpum.s.fUseFlags |= CPUM_USE_SUPPORTS_LONGMODE;
3000 }
3001
3002 cpumR3MsrRegStats(pVM);
3003 break;
3004 }
3005
3006 default:
3007 break;
3008 }
3009 return VINF_SUCCESS;
3010}
3011
3012
3013/**
3014 * Called when the ring-0 init phases completed.
3015 *
3016 * @param pVM The cross context VM structure.
3017 */
3018VMMR3DECL(void) CPUMR3LogCpuIds(PVM pVM)
3019{
3020 /*
3021 * Log the cpuid.
3022 */
3023 bool fOldBuffered = RTLogRelSetBuffering(true /*fBuffered*/);
3024 RTCPUSET OnlineSet;
3025 LogRel(("CPUM: Logical host processors: %u present, %u max, %u online, online mask: %016RX64\n",
3026 (unsigned)RTMpGetPresentCount(), (unsigned)RTMpGetCount(), (unsigned)RTMpGetOnlineCount(),
3027 RTCpuSetToU64(RTMpGetOnlineSet(&OnlineSet)) ));
3028 RTCPUID cCores = RTMpGetCoreCount();
3029 if (cCores)
3030 LogRel(("CPUM: Physical host cores: %u\n", (unsigned)cCores));
3031 LogRel(("************************* CPUID dump ************************\n"));
3032 DBGFR3Info(pVM->pUVM, "cpuid", "verbose", DBGFR3InfoLogRelHlp());
3033 LogRel(("\n"));
3034 DBGFR3_INFO_LOG_SAFE(pVM, "cpuid", "verbose"); /* macro */
3035 RTLogRelSetBuffering(fOldBuffered);
3036 LogRel(("******************** End of CPUID dump **********************\n"));
3037}
3038
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette