VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/CPUM.cpp@ 73770

Last change on this file since 73770 was 73745, checked in by vboxsync, 6 years ago

VMM: Nested VMX: bugref:9180 Implement VMPTRLD.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 167.2 KB
Line 
1/* $Id: CPUM.cpp 73745 2018-08-17 18:12:20Z vboxsync $ */
2/** @file
3 * CPUM - CPU Monitor / Manager.
4 */
5
6/*
7 * Copyright (C) 2006-2017 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/** @page pg_cpum CPUM - CPU Monitor / Manager
19 *
20 * The CPU Monitor / Manager keeps track of all the CPU registers. It is
21 * also responsible for lazy FPU handling and some of the context loading
22 * in raw mode.
23 *
24 * There are three CPU contexts, the most important one is the guest one (GC).
25 * When running in raw-mode (RC) there is a special hyper context for the VMM
26 * part that floats around inside the guest address space. When running in
27 * raw-mode, CPUM also maintains a host context for saving and restoring
28 * registers across world switches. This latter is done in cooperation with the
29 * world switcher (@see pg_vmm).
30 *
31 * @see grp_cpum
32 *
33 * @section sec_cpum_fpu FPU / SSE / AVX / ++ state.
34 *
35 * TODO: proper write up, currently just some notes.
36 *
37 * The ring-0 FPU handling per OS:
38 *
39 * - 64-bit Windows uses XMM registers in the kernel as part of the calling
40 * convention (Visual C++ doesn't seem to have a way to disable
41 * generating such code either), so CR0.TS/EM are always zero from what I
42 * can tell. We are also forced to always load/save the guest XMM0-XMM15
43 * registers when entering/leaving guest context. Interrupt handlers
44 * using FPU/SSE will offically have call save and restore functions
45 * exported by the kernel, if the really really have to use the state.
46 *
47 * - 32-bit windows does lazy FPU handling, I think, probably including
48 * lazying saving. The Windows Internals book states that it's a bad
49 * idea to use the FPU in kernel space. However, it looks like it will
50 * restore the FPU state of the current thread in case of a kernel \#NM.
51 * Interrupt handlers should be same as for 64-bit.
52 *
53 * - Darwin allows taking \#NM in kernel space, restoring current thread's
54 * state if I read the code correctly. It saves the FPU state of the
55 * outgoing thread, and uses CR0.TS to lazily load the state of the
56 * incoming one. No idea yet how the FPU is treated by interrupt
57 * handlers, i.e. whether they are allowed to disable the state or
58 * something.
59 *
60 * - Linux also allows \#NM in kernel space (don't know since when), and
61 * uses CR0.TS for lazy loading. Saves outgoing thread's state, lazy
62 * loads the incoming unless configured to agressivly load it. Interrupt
63 * handlers can ask whether they're allowed to use the FPU, and may
64 * freely trash the state if Linux thinks it has saved the thread's state
65 * already. This is a problem.
66 *
67 * - Solaris will, from what I can tell, panic if it gets an \#NM in kernel
68 * context. When switching threads, the kernel will save the state of
69 * the outgoing thread and lazy load the incoming one using CR0.TS.
70 * There are a few routines in seeblk.s which uses the SSE unit in ring-0
71 * to do stuff, HAT are among the users. The routines there will
72 * manually clear CR0.TS and save the XMM registers they use only if
73 * CR0.TS was zero upon entry. They will skip it when not, because as
74 * mentioned above, the FPU state is saved when switching away from a
75 * thread and CR0.TS set to 1, so when CR0.TS is 1 there is nothing to
76 * preserve. This is a problem if we restore CR0.TS to 1 after loading
77 * the guest state.
78 *
79 * - FreeBSD - no idea yet.
80 *
81 * - OS/2 does not allow \#NMs in kernel space IIRC. Does lazy loading,
82 * possibly also lazy saving. Interrupts must preserve the CR0.TS+EM &
83 * FPU states.
84 *
85 * Up to r107425 (2016-05-24) we would only temporarily modify CR0.TS/EM while
86 * saving and restoring the host and guest states. The motivation for this
87 * change is that we want to be able to emulate SSE instruction in ring-0 (IEM).
88 *
89 * Starting with that change, we will leave CR0.TS=EM=0 after saving the host
90 * state and only restore it once we've restore the host FPU state. This has the
91 * accidental side effect of triggering Solaris to preserve XMM registers in
92 * sseblk.s. When CR0 was changed by saving the FPU state, CPUM must now inform
93 * the VT-x (HMVMX) code about it as it caches the CR0 value in the VMCS.
94 *
95 *
96 * @section sec_cpum_logging Logging Level Assignments.
97 *
98 * Following log level assignments:
99 * - Log6 is used for FPU state management.
100 * - Log7 is used for FPU state actualization.
101 *
102 */
103
104
105/*********************************************************************************************************************************
106* Header Files *
107*********************************************************************************************************************************/
108#define LOG_GROUP LOG_GROUP_CPUM
109#include <VBox/vmm/cpum.h>
110#include <VBox/vmm/cpumdis.h>
111#include <VBox/vmm/cpumctx-v1_6.h>
112#include <VBox/vmm/pgm.h>
113#include <VBox/vmm/apic.h>
114#include <VBox/vmm/mm.h>
115#include <VBox/vmm/em.h>
116#include <VBox/vmm/iem.h>
117#include <VBox/vmm/selm.h>
118#include <VBox/vmm/dbgf.h>
119#include <VBox/vmm/patm.h>
120#include <VBox/vmm/hm.h>
121#include <VBox/vmm/ssm.h>
122#include "CPUMInternal.h"
123#include <VBox/vmm/vm.h>
124
125#include <VBox/param.h>
126#include <VBox/dis.h>
127#include <VBox/err.h>
128#include <VBox/log.h>
129#include <iprt/asm-amd64-x86.h>
130#include <iprt/assert.h>
131#include <iprt/cpuset.h>
132#include <iprt/mem.h>
133#include <iprt/mp.h>
134#include <iprt/string.h>
135
136
137/*********************************************************************************************************************************
138* Defined Constants And Macros *
139*********************************************************************************************************************************/
140/**
141 * This was used in the saved state up to the early life of version 14.
142 *
143 * It indicates that we may have some out-of-sync hidden segement registers.
144 * It is only relevant for raw-mode.
145 */
146#define CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID RT_BIT(12)
147
148
149/*********************************************************************************************************************************
150* Structures and Typedefs *
151*********************************************************************************************************************************/
152
153/**
154 * What kind of cpu info dump to perform.
155 */
156typedef enum CPUMDUMPTYPE
157{
158 CPUMDUMPTYPE_TERSE,
159 CPUMDUMPTYPE_DEFAULT,
160 CPUMDUMPTYPE_VERBOSE
161} CPUMDUMPTYPE;
162/** Pointer to a cpu info dump type. */
163typedef CPUMDUMPTYPE *PCPUMDUMPTYPE;
164
165
166/*********************************************************************************************************************************
167* Internal Functions *
168*********************************************************************************************************************************/
169static DECLCALLBACK(int) cpumR3LiveExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uPass);
170static DECLCALLBACK(int) cpumR3SaveExec(PVM pVM, PSSMHANDLE pSSM);
171static DECLCALLBACK(int) cpumR3LoadPrep(PVM pVM, PSSMHANDLE pSSM);
172static DECLCALLBACK(int) cpumR3LoadExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
173static DECLCALLBACK(int) cpumR3LoadDone(PVM pVM, PSSMHANDLE pSSM);
174static DECLCALLBACK(void) cpumR3InfoAll(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
175static DECLCALLBACK(void) cpumR3InfoGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
176static DECLCALLBACK(void) cpumR3InfoGuestHwvirt(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
177static DECLCALLBACK(void) cpumR3InfoGuestInstr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
178static DECLCALLBACK(void) cpumR3InfoHyper(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
179static DECLCALLBACK(void) cpumR3InfoHost(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
180
181
182/*********************************************************************************************************************************
183* Global Variables *
184*********************************************************************************************************************************/
185/** Saved state field descriptors for CPUMCTX. */
186static const SSMFIELD g_aCpumCtxFields[] =
187{
188 SSMFIELD_ENTRY( CPUMCTX, rdi),
189 SSMFIELD_ENTRY( CPUMCTX, rsi),
190 SSMFIELD_ENTRY( CPUMCTX, rbp),
191 SSMFIELD_ENTRY( CPUMCTX, rax),
192 SSMFIELD_ENTRY( CPUMCTX, rbx),
193 SSMFIELD_ENTRY( CPUMCTX, rdx),
194 SSMFIELD_ENTRY( CPUMCTX, rcx),
195 SSMFIELD_ENTRY( CPUMCTX, rsp),
196 SSMFIELD_ENTRY( CPUMCTX, rflags),
197 SSMFIELD_ENTRY( CPUMCTX, rip),
198 SSMFIELD_ENTRY( CPUMCTX, r8),
199 SSMFIELD_ENTRY( CPUMCTX, r9),
200 SSMFIELD_ENTRY( CPUMCTX, r10),
201 SSMFIELD_ENTRY( CPUMCTX, r11),
202 SSMFIELD_ENTRY( CPUMCTX, r12),
203 SSMFIELD_ENTRY( CPUMCTX, r13),
204 SSMFIELD_ENTRY( CPUMCTX, r14),
205 SSMFIELD_ENTRY( CPUMCTX, r15),
206 SSMFIELD_ENTRY( CPUMCTX, es.Sel),
207 SSMFIELD_ENTRY( CPUMCTX, es.ValidSel),
208 SSMFIELD_ENTRY( CPUMCTX, es.fFlags),
209 SSMFIELD_ENTRY( CPUMCTX, es.u64Base),
210 SSMFIELD_ENTRY( CPUMCTX, es.u32Limit),
211 SSMFIELD_ENTRY( CPUMCTX, es.Attr),
212 SSMFIELD_ENTRY( CPUMCTX, cs.Sel),
213 SSMFIELD_ENTRY( CPUMCTX, cs.ValidSel),
214 SSMFIELD_ENTRY( CPUMCTX, cs.fFlags),
215 SSMFIELD_ENTRY( CPUMCTX, cs.u64Base),
216 SSMFIELD_ENTRY( CPUMCTX, cs.u32Limit),
217 SSMFIELD_ENTRY( CPUMCTX, cs.Attr),
218 SSMFIELD_ENTRY( CPUMCTX, ss.Sel),
219 SSMFIELD_ENTRY( CPUMCTX, ss.ValidSel),
220 SSMFIELD_ENTRY( CPUMCTX, ss.fFlags),
221 SSMFIELD_ENTRY( CPUMCTX, ss.u64Base),
222 SSMFIELD_ENTRY( CPUMCTX, ss.u32Limit),
223 SSMFIELD_ENTRY( CPUMCTX, ss.Attr),
224 SSMFIELD_ENTRY( CPUMCTX, ds.Sel),
225 SSMFIELD_ENTRY( CPUMCTX, ds.ValidSel),
226 SSMFIELD_ENTRY( CPUMCTX, ds.fFlags),
227 SSMFIELD_ENTRY( CPUMCTX, ds.u64Base),
228 SSMFIELD_ENTRY( CPUMCTX, ds.u32Limit),
229 SSMFIELD_ENTRY( CPUMCTX, ds.Attr),
230 SSMFIELD_ENTRY( CPUMCTX, fs.Sel),
231 SSMFIELD_ENTRY( CPUMCTX, fs.ValidSel),
232 SSMFIELD_ENTRY( CPUMCTX, fs.fFlags),
233 SSMFIELD_ENTRY( CPUMCTX, fs.u64Base),
234 SSMFIELD_ENTRY( CPUMCTX, fs.u32Limit),
235 SSMFIELD_ENTRY( CPUMCTX, fs.Attr),
236 SSMFIELD_ENTRY( CPUMCTX, gs.Sel),
237 SSMFIELD_ENTRY( CPUMCTX, gs.ValidSel),
238 SSMFIELD_ENTRY( CPUMCTX, gs.fFlags),
239 SSMFIELD_ENTRY( CPUMCTX, gs.u64Base),
240 SSMFIELD_ENTRY( CPUMCTX, gs.u32Limit),
241 SSMFIELD_ENTRY( CPUMCTX, gs.Attr),
242 SSMFIELD_ENTRY( CPUMCTX, cr0),
243 SSMFIELD_ENTRY( CPUMCTX, cr2),
244 SSMFIELD_ENTRY( CPUMCTX, cr3),
245 SSMFIELD_ENTRY( CPUMCTX, cr4),
246 SSMFIELD_ENTRY( CPUMCTX, dr[0]),
247 SSMFIELD_ENTRY( CPUMCTX, dr[1]),
248 SSMFIELD_ENTRY( CPUMCTX, dr[2]),
249 SSMFIELD_ENTRY( CPUMCTX, dr[3]),
250 SSMFIELD_ENTRY( CPUMCTX, dr[6]),
251 SSMFIELD_ENTRY( CPUMCTX, dr[7]),
252 SSMFIELD_ENTRY( CPUMCTX, gdtr.cbGdt),
253 SSMFIELD_ENTRY( CPUMCTX, gdtr.pGdt),
254 SSMFIELD_ENTRY( CPUMCTX, idtr.cbIdt),
255 SSMFIELD_ENTRY( CPUMCTX, idtr.pIdt),
256 SSMFIELD_ENTRY( CPUMCTX, SysEnter.cs),
257 SSMFIELD_ENTRY( CPUMCTX, SysEnter.eip),
258 SSMFIELD_ENTRY( CPUMCTX, SysEnter.esp),
259 SSMFIELD_ENTRY( CPUMCTX, msrEFER),
260 SSMFIELD_ENTRY( CPUMCTX, msrSTAR),
261 SSMFIELD_ENTRY( CPUMCTX, msrPAT),
262 SSMFIELD_ENTRY( CPUMCTX, msrLSTAR),
263 SSMFIELD_ENTRY( CPUMCTX, msrCSTAR),
264 SSMFIELD_ENTRY( CPUMCTX, msrSFMASK),
265 SSMFIELD_ENTRY( CPUMCTX, msrKERNELGSBASE),
266 SSMFIELD_ENTRY( CPUMCTX, ldtr.Sel),
267 SSMFIELD_ENTRY( CPUMCTX, ldtr.ValidSel),
268 SSMFIELD_ENTRY( CPUMCTX, ldtr.fFlags),
269 SSMFIELD_ENTRY( CPUMCTX, ldtr.u64Base),
270 SSMFIELD_ENTRY( CPUMCTX, ldtr.u32Limit),
271 SSMFIELD_ENTRY( CPUMCTX, ldtr.Attr),
272 SSMFIELD_ENTRY( CPUMCTX, tr.Sel),
273 SSMFIELD_ENTRY( CPUMCTX, tr.ValidSel),
274 SSMFIELD_ENTRY( CPUMCTX, tr.fFlags),
275 SSMFIELD_ENTRY( CPUMCTX, tr.u64Base),
276 SSMFIELD_ENTRY( CPUMCTX, tr.u32Limit),
277 SSMFIELD_ENTRY( CPUMCTX, tr.Attr),
278 SSMFIELD_ENTRY_VER( CPUMCTX, aXcr[0], CPUM_SAVED_STATE_VERSION_XSAVE),
279 SSMFIELD_ENTRY_VER( CPUMCTX, aXcr[1], CPUM_SAVED_STATE_VERSION_XSAVE),
280 SSMFIELD_ENTRY_VER( CPUMCTX, fXStateMask, CPUM_SAVED_STATE_VERSION_XSAVE),
281 SSMFIELD_ENTRY_TERM()
282};
283
284/** Saved state field descriptors for SVM nested hardware-virtualization
285 * Host State. */
286static const SSMFIELD g_aSvmHwvirtHostState[] =
287{
288 SSMFIELD_ENTRY( SVMHOSTSTATE, uEferMsr),
289 SSMFIELD_ENTRY( SVMHOSTSTATE, uCr0),
290 SSMFIELD_ENTRY( SVMHOSTSTATE, uCr4),
291 SSMFIELD_ENTRY( SVMHOSTSTATE, uCr3),
292 SSMFIELD_ENTRY( SVMHOSTSTATE, uRip),
293 SSMFIELD_ENTRY( SVMHOSTSTATE, uRsp),
294 SSMFIELD_ENTRY( SVMHOSTSTATE, uRax),
295 SSMFIELD_ENTRY( SVMHOSTSTATE, rflags),
296 SSMFIELD_ENTRY( SVMHOSTSTATE, es.Sel),
297 SSMFIELD_ENTRY( SVMHOSTSTATE, es.ValidSel),
298 SSMFIELD_ENTRY( SVMHOSTSTATE, es.fFlags),
299 SSMFIELD_ENTRY( SVMHOSTSTATE, es.u64Base),
300 SSMFIELD_ENTRY( SVMHOSTSTATE, es.u32Limit),
301 SSMFIELD_ENTRY( SVMHOSTSTATE, es.Attr),
302 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.Sel),
303 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.ValidSel),
304 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.fFlags),
305 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.u64Base),
306 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.u32Limit),
307 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.Attr),
308 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.Sel),
309 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.ValidSel),
310 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.fFlags),
311 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.u64Base),
312 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.u32Limit),
313 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.Attr),
314 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.Sel),
315 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.ValidSel),
316 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.fFlags),
317 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.u64Base),
318 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.u32Limit),
319 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.Attr),
320 SSMFIELD_ENTRY( SVMHOSTSTATE, gdtr.cbGdt),
321 SSMFIELD_ENTRY( SVMHOSTSTATE, gdtr.pGdt),
322 SSMFIELD_ENTRY( SVMHOSTSTATE, idtr.cbIdt),
323 SSMFIELD_ENTRY( SVMHOSTSTATE, idtr.pIdt),
324 SSMFIELD_ENTRY_IGNORE(SVMHOSTSTATE, abPadding),
325 SSMFIELD_ENTRY_TERM()
326};
327
328/** Saved state field descriptors for CPUMCTX. */
329static const SSMFIELD g_aCpumX87Fields[] =
330{
331 SSMFIELD_ENTRY( X86FXSTATE, FCW),
332 SSMFIELD_ENTRY( X86FXSTATE, FSW),
333 SSMFIELD_ENTRY( X86FXSTATE, FTW),
334 SSMFIELD_ENTRY( X86FXSTATE, FOP),
335 SSMFIELD_ENTRY( X86FXSTATE, FPUIP),
336 SSMFIELD_ENTRY( X86FXSTATE, CS),
337 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd1),
338 SSMFIELD_ENTRY( X86FXSTATE, FPUDP),
339 SSMFIELD_ENTRY( X86FXSTATE, DS),
340 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd2),
341 SSMFIELD_ENTRY( X86FXSTATE, MXCSR),
342 SSMFIELD_ENTRY( X86FXSTATE, MXCSR_MASK),
343 SSMFIELD_ENTRY( X86FXSTATE, aRegs[0]),
344 SSMFIELD_ENTRY( X86FXSTATE, aRegs[1]),
345 SSMFIELD_ENTRY( X86FXSTATE, aRegs[2]),
346 SSMFIELD_ENTRY( X86FXSTATE, aRegs[3]),
347 SSMFIELD_ENTRY( X86FXSTATE, aRegs[4]),
348 SSMFIELD_ENTRY( X86FXSTATE, aRegs[5]),
349 SSMFIELD_ENTRY( X86FXSTATE, aRegs[6]),
350 SSMFIELD_ENTRY( X86FXSTATE, aRegs[7]),
351 SSMFIELD_ENTRY( X86FXSTATE, aXMM[0]),
352 SSMFIELD_ENTRY( X86FXSTATE, aXMM[1]),
353 SSMFIELD_ENTRY( X86FXSTATE, aXMM[2]),
354 SSMFIELD_ENTRY( X86FXSTATE, aXMM[3]),
355 SSMFIELD_ENTRY( X86FXSTATE, aXMM[4]),
356 SSMFIELD_ENTRY( X86FXSTATE, aXMM[5]),
357 SSMFIELD_ENTRY( X86FXSTATE, aXMM[6]),
358 SSMFIELD_ENTRY( X86FXSTATE, aXMM[7]),
359 SSMFIELD_ENTRY( X86FXSTATE, aXMM[8]),
360 SSMFIELD_ENTRY( X86FXSTATE, aXMM[9]),
361 SSMFIELD_ENTRY( X86FXSTATE, aXMM[10]),
362 SSMFIELD_ENTRY( X86FXSTATE, aXMM[11]),
363 SSMFIELD_ENTRY( X86FXSTATE, aXMM[12]),
364 SSMFIELD_ENTRY( X86FXSTATE, aXMM[13]),
365 SSMFIELD_ENTRY( X86FXSTATE, aXMM[14]),
366 SSMFIELD_ENTRY( X86FXSTATE, aXMM[15]),
367 SSMFIELD_ENTRY_VER( X86FXSTATE, au32RsrvdForSoftware[0], CPUM_SAVED_STATE_VERSION_XSAVE), /* 32-bit/64-bit hack */
368 SSMFIELD_ENTRY_TERM()
369};
370
371/** Saved state field descriptors for X86XSAVEHDR. */
372static const SSMFIELD g_aCpumXSaveHdrFields[] =
373{
374 SSMFIELD_ENTRY( X86XSAVEHDR, bmXState),
375 SSMFIELD_ENTRY_TERM()
376};
377
378/** Saved state field descriptors for X86XSAVEYMMHI. */
379static const SSMFIELD g_aCpumYmmHiFields[] =
380{
381 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[0]),
382 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[1]),
383 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[2]),
384 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[3]),
385 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[4]),
386 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[5]),
387 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[6]),
388 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[7]),
389 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[8]),
390 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[9]),
391 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[10]),
392 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[11]),
393 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[12]),
394 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[13]),
395 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[14]),
396 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[15]),
397 SSMFIELD_ENTRY_TERM()
398};
399
400/** Saved state field descriptors for X86XSAVEBNDREGS. */
401static const SSMFIELD g_aCpumBndRegsFields[] =
402{
403 SSMFIELD_ENTRY( X86XSAVEBNDREGS, aRegs[0]),
404 SSMFIELD_ENTRY( X86XSAVEBNDREGS, aRegs[1]),
405 SSMFIELD_ENTRY( X86XSAVEBNDREGS, aRegs[2]),
406 SSMFIELD_ENTRY( X86XSAVEBNDREGS, aRegs[3]),
407 SSMFIELD_ENTRY_TERM()
408};
409
410/** Saved state field descriptors for X86XSAVEBNDCFG. */
411static const SSMFIELD g_aCpumBndCfgFields[] =
412{
413 SSMFIELD_ENTRY( X86XSAVEBNDCFG, fConfig),
414 SSMFIELD_ENTRY( X86XSAVEBNDCFG, fStatus),
415 SSMFIELD_ENTRY_TERM()
416};
417
418#if 0 /** @todo */
419/** Saved state field descriptors for X86XSAVEOPMASK. */
420static const SSMFIELD g_aCpumOpmaskFields[] =
421{
422 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[0]),
423 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[1]),
424 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[2]),
425 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[3]),
426 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[4]),
427 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[5]),
428 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[6]),
429 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[7]),
430 SSMFIELD_ENTRY_TERM()
431};
432#endif
433
434/** Saved state field descriptors for X86XSAVEZMMHI256. */
435static const SSMFIELD g_aCpumZmmHi256Fields[] =
436{
437 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[0]),
438 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[1]),
439 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[2]),
440 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[3]),
441 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[4]),
442 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[5]),
443 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[6]),
444 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[7]),
445 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[8]),
446 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[9]),
447 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[10]),
448 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[11]),
449 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[12]),
450 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[13]),
451 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[14]),
452 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[15]),
453 SSMFIELD_ENTRY_TERM()
454};
455
456/** Saved state field descriptors for X86XSAVEZMM16HI. */
457static const SSMFIELD g_aCpumZmm16HiFields[] =
458{
459 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[0]),
460 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[1]),
461 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[2]),
462 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[3]),
463 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[4]),
464 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[5]),
465 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[6]),
466 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[7]),
467 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[8]),
468 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[9]),
469 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[10]),
470 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[11]),
471 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[12]),
472 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[13]),
473 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[14]),
474 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[15]),
475 SSMFIELD_ENTRY_TERM()
476};
477
478
479
480/** Saved state field descriptors for CPUMCTX in V4.1 before the hidden selector
481 * registeres changed. */
482static const SSMFIELD g_aCpumX87FieldsMem[] =
483{
484 SSMFIELD_ENTRY( X86FXSTATE, FCW),
485 SSMFIELD_ENTRY( X86FXSTATE, FSW),
486 SSMFIELD_ENTRY( X86FXSTATE, FTW),
487 SSMFIELD_ENTRY( X86FXSTATE, FOP),
488 SSMFIELD_ENTRY( X86FXSTATE, FPUIP),
489 SSMFIELD_ENTRY( X86FXSTATE, CS),
490 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd1),
491 SSMFIELD_ENTRY( X86FXSTATE, FPUDP),
492 SSMFIELD_ENTRY( X86FXSTATE, DS),
493 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd2),
494 SSMFIELD_ENTRY( X86FXSTATE, MXCSR),
495 SSMFIELD_ENTRY( X86FXSTATE, MXCSR_MASK),
496 SSMFIELD_ENTRY( X86FXSTATE, aRegs[0]),
497 SSMFIELD_ENTRY( X86FXSTATE, aRegs[1]),
498 SSMFIELD_ENTRY( X86FXSTATE, aRegs[2]),
499 SSMFIELD_ENTRY( X86FXSTATE, aRegs[3]),
500 SSMFIELD_ENTRY( X86FXSTATE, aRegs[4]),
501 SSMFIELD_ENTRY( X86FXSTATE, aRegs[5]),
502 SSMFIELD_ENTRY( X86FXSTATE, aRegs[6]),
503 SSMFIELD_ENTRY( X86FXSTATE, aRegs[7]),
504 SSMFIELD_ENTRY( X86FXSTATE, aXMM[0]),
505 SSMFIELD_ENTRY( X86FXSTATE, aXMM[1]),
506 SSMFIELD_ENTRY( X86FXSTATE, aXMM[2]),
507 SSMFIELD_ENTRY( X86FXSTATE, aXMM[3]),
508 SSMFIELD_ENTRY( X86FXSTATE, aXMM[4]),
509 SSMFIELD_ENTRY( X86FXSTATE, aXMM[5]),
510 SSMFIELD_ENTRY( X86FXSTATE, aXMM[6]),
511 SSMFIELD_ENTRY( X86FXSTATE, aXMM[7]),
512 SSMFIELD_ENTRY( X86FXSTATE, aXMM[8]),
513 SSMFIELD_ENTRY( X86FXSTATE, aXMM[9]),
514 SSMFIELD_ENTRY( X86FXSTATE, aXMM[10]),
515 SSMFIELD_ENTRY( X86FXSTATE, aXMM[11]),
516 SSMFIELD_ENTRY( X86FXSTATE, aXMM[12]),
517 SSMFIELD_ENTRY( X86FXSTATE, aXMM[13]),
518 SSMFIELD_ENTRY( X86FXSTATE, aXMM[14]),
519 SSMFIELD_ENTRY( X86FXSTATE, aXMM[15]),
520 SSMFIELD_ENTRY_IGNORE( X86FXSTATE, au32RsrvdRest),
521 SSMFIELD_ENTRY_IGNORE( X86FXSTATE, au32RsrvdForSoftware),
522};
523
524/** Saved state field descriptors for CPUMCTX in V4.1 before the hidden selector
525 * registeres changed. */
526static const SSMFIELD g_aCpumCtxFieldsMem[] =
527{
528 SSMFIELD_ENTRY( CPUMCTX, rdi),
529 SSMFIELD_ENTRY( CPUMCTX, rsi),
530 SSMFIELD_ENTRY( CPUMCTX, rbp),
531 SSMFIELD_ENTRY( CPUMCTX, rax),
532 SSMFIELD_ENTRY( CPUMCTX, rbx),
533 SSMFIELD_ENTRY( CPUMCTX, rdx),
534 SSMFIELD_ENTRY( CPUMCTX, rcx),
535 SSMFIELD_ENTRY( CPUMCTX, rsp),
536 SSMFIELD_ENTRY_OLD( lss_esp, sizeof(uint32_t)),
537 SSMFIELD_ENTRY( CPUMCTX, ss.Sel),
538 SSMFIELD_ENTRY_OLD( ssPadding, sizeof(uint16_t)),
539 SSMFIELD_ENTRY( CPUMCTX, gs.Sel),
540 SSMFIELD_ENTRY_OLD( gsPadding, sizeof(uint16_t)),
541 SSMFIELD_ENTRY( CPUMCTX, fs.Sel),
542 SSMFIELD_ENTRY_OLD( fsPadding, sizeof(uint16_t)),
543 SSMFIELD_ENTRY( CPUMCTX, es.Sel),
544 SSMFIELD_ENTRY_OLD( esPadding, sizeof(uint16_t)),
545 SSMFIELD_ENTRY( CPUMCTX, ds.Sel),
546 SSMFIELD_ENTRY_OLD( dsPadding, sizeof(uint16_t)),
547 SSMFIELD_ENTRY( CPUMCTX, cs.Sel),
548 SSMFIELD_ENTRY_OLD( csPadding, sizeof(uint16_t)*3),
549 SSMFIELD_ENTRY( CPUMCTX, rflags),
550 SSMFIELD_ENTRY( CPUMCTX, rip),
551 SSMFIELD_ENTRY( CPUMCTX, r8),
552 SSMFIELD_ENTRY( CPUMCTX, r9),
553 SSMFIELD_ENTRY( CPUMCTX, r10),
554 SSMFIELD_ENTRY( CPUMCTX, r11),
555 SSMFIELD_ENTRY( CPUMCTX, r12),
556 SSMFIELD_ENTRY( CPUMCTX, r13),
557 SSMFIELD_ENTRY( CPUMCTX, r14),
558 SSMFIELD_ENTRY( CPUMCTX, r15),
559 SSMFIELD_ENTRY( CPUMCTX, es.u64Base),
560 SSMFIELD_ENTRY( CPUMCTX, es.u32Limit),
561 SSMFIELD_ENTRY( CPUMCTX, es.Attr),
562 SSMFIELD_ENTRY( CPUMCTX, cs.u64Base),
563 SSMFIELD_ENTRY( CPUMCTX, cs.u32Limit),
564 SSMFIELD_ENTRY( CPUMCTX, cs.Attr),
565 SSMFIELD_ENTRY( CPUMCTX, ss.u64Base),
566 SSMFIELD_ENTRY( CPUMCTX, ss.u32Limit),
567 SSMFIELD_ENTRY( CPUMCTX, ss.Attr),
568 SSMFIELD_ENTRY( CPUMCTX, ds.u64Base),
569 SSMFIELD_ENTRY( CPUMCTX, ds.u32Limit),
570 SSMFIELD_ENTRY( CPUMCTX, ds.Attr),
571 SSMFIELD_ENTRY( CPUMCTX, fs.u64Base),
572 SSMFIELD_ENTRY( CPUMCTX, fs.u32Limit),
573 SSMFIELD_ENTRY( CPUMCTX, fs.Attr),
574 SSMFIELD_ENTRY( CPUMCTX, gs.u64Base),
575 SSMFIELD_ENTRY( CPUMCTX, gs.u32Limit),
576 SSMFIELD_ENTRY( CPUMCTX, gs.Attr),
577 SSMFIELD_ENTRY( CPUMCTX, cr0),
578 SSMFIELD_ENTRY( CPUMCTX, cr2),
579 SSMFIELD_ENTRY( CPUMCTX, cr3),
580 SSMFIELD_ENTRY( CPUMCTX, cr4),
581 SSMFIELD_ENTRY( CPUMCTX, dr[0]),
582 SSMFIELD_ENTRY( CPUMCTX, dr[1]),
583 SSMFIELD_ENTRY( CPUMCTX, dr[2]),
584 SSMFIELD_ENTRY( CPUMCTX, dr[3]),
585 SSMFIELD_ENTRY_OLD( dr[4], sizeof(uint64_t)),
586 SSMFIELD_ENTRY_OLD( dr[5], sizeof(uint64_t)),
587 SSMFIELD_ENTRY( CPUMCTX, dr[6]),
588 SSMFIELD_ENTRY( CPUMCTX, dr[7]),
589 SSMFIELD_ENTRY( CPUMCTX, gdtr.cbGdt),
590 SSMFIELD_ENTRY( CPUMCTX, gdtr.pGdt),
591 SSMFIELD_ENTRY_OLD( gdtrPadding, sizeof(uint16_t)),
592 SSMFIELD_ENTRY( CPUMCTX, idtr.cbIdt),
593 SSMFIELD_ENTRY( CPUMCTX, idtr.pIdt),
594 SSMFIELD_ENTRY_OLD( idtrPadding, sizeof(uint16_t)),
595 SSMFIELD_ENTRY( CPUMCTX, ldtr.Sel),
596 SSMFIELD_ENTRY_OLD( ldtrPadding, sizeof(uint16_t)),
597 SSMFIELD_ENTRY( CPUMCTX, tr.Sel),
598 SSMFIELD_ENTRY_OLD( trPadding, sizeof(uint16_t)),
599 SSMFIELD_ENTRY( CPUMCTX, SysEnter.cs),
600 SSMFIELD_ENTRY( CPUMCTX, SysEnter.eip),
601 SSMFIELD_ENTRY( CPUMCTX, SysEnter.esp),
602 SSMFIELD_ENTRY( CPUMCTX, msrEFER),
603 SSMFIELD_ENTRY( CPUMCTX, msrSTAR),
604 SSMFIELD_ENTRY( CPUMCTX, msrPAT),
605 SSMFIELD_ENTRY( CPUMCTX, msrLSTAR),
606 SSMFIELD_ENTRY( CPUMCTX, msrCSTAR),
607 SSMFIELD_ENTRY( CPUMCTX, msrSFMASK),
608 SSMFIELD_ENTRY( CPUMCTX, msrKERNELGSBASE),
609 SSMFIELD_ENTRY( CPUMCTX, ldtr.u64Base),
610 SSMFIELD_ENTRY( CPUMCTX, ldtr.u32Limit),
611 SSMFIELD_ENTRY( CPUMCTX, ldtr.Attr),
612 SSMFIELD_ENTRY( CPUMCTX, tr.u64Base),
613 SSMFIELD_ENTRY( CPUMCTX, tr.u32Limit),
614 SSMFIELD_ENTRY( CPUMCTX, tr.Attr),
615 SSMFIELD_ENTRY_TERM()
616};
617
618/** Saved state field descriptors for CPUMCTX_VER1_6. */
619static const SSMFIELD g_aCpumX87FieldsV16[] =
620{
621 SSMFIELD_ENTRY( X86FXSTATE, FCW),
622 SSMFIELD_ENTRY( X86FXSTATE, FSW),
623 SSMFIELD_ENTRY( X86FXSTATE, FTW),
624 SSMFIELD_ENTRY( X86FXSTATE, FOP),
625 SSMFIELD_ENTRY( X86FXSTATE, FPUIP),
626 SSMFIELD_ENTRY( X86FXSTATE, CS),
627 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd1),
628 SSMFIELD_ENTRY( X86FXSTATE, FPUDP),
629 SSMFIELD_ENTRY( X86FXSTATE, DS),
630 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd2),
631 SSMFIELD_ENTRY( X86FXSTATE, MXCSR),
632 SSMFIELD_ENTRY( X86FXSTATE, MXCSR_MASK),
633 SSMFIELD_ENTRY( X86FXSTATE, aRegs[0]),
634 SSMFIELD_ENTRY( X86FXSTATE, aRegs[1]),
635 SSMFIELD_ENTRY( X86FXSTATE, aRegs[2]),
636 SSMFIELD_ENTRY( X86FXSTATE, aRegs[3]),
637 SSMFIELD_ENTRY( X86FXSTATE, aRegs[4]),
638 SSMFIELD_ENTRY( X86FXSTATE, aRegs[5]),
639 SSMFIELD_ENTRY( X86FXSTATE, aRegs[6]),
640 SSMFIELD_ENTRY( X86FXSTATE, aRegs[7]),
641 SSMFIELD_ENTRY( X86FXSTATE, aXMM[0]),
642 SSMFIELD_ENTRY( X86FXSTATE, aXMM[1]),
643 SSMFIELD_ENTRY( X86FXSTATE, aXMM[2]),
644 SSMFIELD_ENTRY( X86FXSTATE, aXMM[3]),
645 SSMFIELD_ENTRY( X86FXSTATE, aXMM[4]),
646 SSMFIELD_ENTRY( X86FXSTATE, aXMM[5]),
647 SSMFIELD_ENTRY( X86FXSTATE, aXMM[6]),
648 SSMFIELD_ENTRY( X86FXSTATE, aXMM[7]),
649 SSMFIELD_ENTRY( X86FXSTATE, aXMM[8]),
650 SSMFIELD_ENTRY( X86FXSTATE, aXMM[9]),
651 SSMFIELD_ENTRY( X86FXSTATE, aXMM[10]),
652 SSMFIELD_ENTRY( X86FXSTATE, aXMM[11]),
653 SSMFIELD_ENTRY( X86FXSTATE, aXMM[12]),
654 SSMFIELD_ENTRY( X86FXSTATE, aXMM[13]),
655 SSMFIELD_ENTRY( X86FXSTATE, aXMM[14]),
656 SSMFIELD_ENTRY( X86FXSTATE, aXMM[15]),
657 SSMFIELD_ENTRY_IGNORE( X86FXSTATE, au32RsrvdRest),
658 SSMFIELD_ENTRY_IGNORE( X86FXSTATE, au32RsrvdForSoftware),
659 SSMFIELD_ENTRY_TERM()
660};
661
662/** Saved state field descriptors for CPUMCTX_VER1_6. */
663static const SSMFIELD g_aCpumCtxFieldsV16[] =
664{
665 SSMFIELD_ENTRY( CPUMCTX, rdi),
666 SSMFIELD_ENTRY( CPUMCTX, rsi),
667 SSMFIELD_ENTRY( CPUMCTX, rbp),
668 SSMFIELD_ENTRY( CPUMCTX, rax),
669 SSMFIELD_ENTRY( CPUMCTX, rbx),
670 SSMFIELD_ENTRY( CPUMCTX, rdx),
671 SSMFIELD_ENTRY( CPUMCTX, rcx),
672 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, rsp),
673 SSMFIELD_ENTRY( CPUMCTX, ss.Sel),
674 SSMFIELD_ENTRY_OLD( ssPadding, sizeof(uint16_t)),
675 SSMFIELD_ENTRY_OLD( CPUMCTX, sizeof(uint64_t) /*rsp_notused*/),
676 SSMFIELD_ENTRY( CPUMCTX, gs.Sel),
677 SSMFIELD_ENTRY_OLD( gsPadding, sizeof(uint16_t)),
678 SSMFIELD_ENTRY( CPUMCTX, fs.Sel),
679 SSMFIELD_ENTRY_OLD( fsPadding, sizeof(uint16_t)),
680 SSMFIELD_ENTRY( CPUMCTX, es.Sel),
681 SSMFIELD_ENTRY_OLD( esPadding, sizeof(uint16_t)),
682 SSMFIELD_ENTRY( CPUMCTX, ds.Sel),
683 SSMFIELD_ENTRY_OLD( dsPadding, sizeof(uint16_t)),
684 SSMFIELD_ENTRY( CPUMCTX, cs.Sel),
685 SSMFIELD_ENTRY_OLD( csPadding, sizeof(uint16_t)*3),
686 SSMFIELD_ENTRY( CPUMCTX, rflags),
687 SSMFIELD_ENTRY( CPUMCTX, rip),
688 SSMFIELD_ENTRY( CPUMCTX, r8),
689 SSMFIELD_ENTRY( CPUMCTX, r9),
690 SSMFIELD_ENTRY( CPUMCTX, r10),
691 SSMFIELD_ENTRY( CPUMCTX, r11),
692 SSMFIELD_ENTRY( CPUMCTX, r12),
693 SSMFIELD_ENTRY( CPUMCTX, r13),
694 SSMFIELD_ENTRY( CPUMCTX, r14),
695 SSMFIELD_ENTRY( CPUMCTX, r15),
696 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, es.u64Base),
697 SSMFIELD_ENTRY( CPUMCTX, es.u32Limit),
698 SSMFIELD_ENTRY( CPUMCTX, es.Attr),
699 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, cs.u64Base),
700 SSMFIELD_ENTRY( CPUMCTX, cs.u32Limit),
701 SSMFIELD_ENTRY( CPUMCTX, cs.Attr),
702 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, ss.u64Base),
703 SSMFIELD_ENTRY( CPUMCTX, ss.u32Limit),
704 SSMFIELD_ENTRY( CPUMCTX, ss.Attr),
705 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, ds.u64Base),
706 SSMFIELD_ENTRY( CPUMCTX, ds.u32Limit),
707 SSMFIELD_ENTRY( CPUMCTX, ds.Attr),
708 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, fs.u64Base),
709 SSMFIELD_ENTRY( CPUMCTX, fs.u32Limit),
710 SSMFIELD_ENTRY( CPUMCTX, fs.Attr),
711 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, gs.u64Base),
712 SSMFIELD_ENTRY( CPUMCTX, gs.u32Limit),
713 SSMFIELD_ENTRY( CPUMCTX, gs.Attr),
714 SSMFIELD_ENTRY( CPUMCTX, cr0),
715 SSMFIELD_ENTRY( CPUMCTX, cr2),
716 SSMFIELD_ENTRY( CPUMCTX, cr3),
717 SSMFIELD_ENTRY( CPUMCTX, cr4),
718 SSMFIELD_ENTRY_OLD( cr8, sizeof(uint64_t)),
719 SSMFIELD_ENTRY( CPUMCTX, dr[0]),
720 SSMFIELD_ENTRY( CPUMCTX, dr[1]),
721 SSMFIELD_ENTRY( CPUMCTX, dr[2]),
722 SSMFIELD_ENTRY( CPUMCTX, dr[3]),
723 SSMFIELD_ENTRY_OLD( dr[4], sizeof(uint64_t)),
724 SSMFIELD_ENTRY_OLD( dr[5], sizeof(uint64_t)),
725 SSMFIELD_ENTRY( CPUMCTX, dr[6]),
726 SSMFIELD_ENTRY( CPUMCTX, dr[7]),
727 SSMFIELD_ENTRY( CPUMCTX, gdtr.cbGdt),
728 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, gdtr.pGdt),
729 SSMFIELD_ENTRY_OLD( gdtrPadding, sizeof(uint16_t)),
730 SSMFIELD_ENTRY_OLD( gdtrPadding64, sizeof(uint64_t)),
731 SSMFIELD_ENTRY( CPUMCTX, idtr.cbIdt),
732 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, idtr.pIdt),
733 SSMFIELD_ENTRY_OLD( idtrPadding, sizeof(uint16_t)),
734 SSMFIELD_ENTRY_OLD( idtrPadding64, sizeof(uint64_t)),
735 SSMFIELD_ENTRY( CPUMCTX, ldtr.Sel),
736 SSMFIELD_ENTRY_OLD( ldtrPadding, sizeof(uint16_t)),
737 SSMFIELD_ENTRY( CPUMCTX, tr.Sel),
738 SSMFIELD_ENTRY_OLD( trPadding, sizeof(uint16_t)),
739 SSMFIELD_ENTRY( CPUMCTX, SysEnter.cs),
740 SSMFIELD_ENTRY( CPUMCTX, SysEnter.eip),
741 SSMFIELD_ENTRY( CPUMCTX, SysEnter.esp),
742 SSMFIELD_ENTRY( CPUMCTX, msrEFER),
743 SSMFIELD_ENTRY( CPUMCTX, msrSTAR),
744 SSMFIELD_ENTRY( CPUMCTX, msrPAT),
745 SSMFIELD_ENTRY( CPUMCTX, msrLSTAR),
746 SSMFIELD_ENTRY( CPUMCTX, msrCSTAR),
747 SSMFIELD_ENTRY( CPUMCTX, msrSFMASK),
748 SSMFIELD_ENTRY_OLD( msrFSBASE, sizeof(uint64_t)),
749 SSMFIELD_ENTRY_OLD( msrGSBASE, sizeof(uint64_t)),
750 SSMFIELD_ENTRY( CPUMCTX, msrKERNELGSBASE),
751 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, ldtr.u64Base),
752 SSMFIELD_ENTRY( CPUMCTX, ldtr.u32Limit),
753 SSMFIELD_ENTRY( CPUMCTX, ldtr.Attr),
754 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, tr.u64Base),
755 SSMFIELD_ENTRY( CPUMCTX, tr.u32Limit),
756 SSMFIELD_ENTRY( CPUMCTX, tr.Attr),
757 SSMFIELD_ENTRY_OLD( padding, sizeof(uint32_t)*2),
758 SSMFIELD_ENTRY_TERM()
759};
760
761
762/**
763 * Checks for partial/leaky FXSAVE/FXRSTOR handling on AMD CPUs.
764 *
765 * AMD K7, K8 and newer AMD CPUs do not save/restore the x87 error pointers
766 * (last instruction pointer, last data pointer, last opcode) except when the ES
767 * bit (Exception Summary) in x87 FSW (FPU Status Word) is set. Thus if we don't
768 * clear these registers there is potential, local FPU leakage from a process
769 * using the FPU to another.
770 *
771 * See AMD Instruction Reference for FXSAVE, FXRSTOR.
772 *
773 * @param pVM The cross context VM structure.
774 */
775static void cpumR3CheckLeakyFpu(PVM pVM)
776{
777 uint32_t u32CpuVersion = ASMCpuId_EAX(1);
778 uint32_t const u32Family = u32CpuVersion >> 8;
779 if ( u32Family >= 6 /* K7 and higher */
780 && ASMIsAmdCpu())
781 {
782 uint32_t cExt = ASMCpuId_EAX(0x80000000);
783 if (ASMIsValidExtRange(cExt))
784 {
785 uint32_t fExtFeaturesEDX = ASMCpuId_EDX(0x80000001);
786 if (fExtFeaturesEDX & X86_CPUID_AMD_FEATURE_EDX_FFXSR)
787 {
788 for (VMCPUID i = 0; i < pVM->cCpus; i++)
789 pVM->aCpus[i].cpum.s.fUseFlags |= CPUM_USE_FFXSR_LEAKY;
790 Log(("CPUMR3Init: host CPU has leaky fxsave/fxrstor behaviour\n"));
791 }
792 }
793 }
794}
795
796
797/**
798 * Frees memory allocated for the SVM hardware virtualization state.
799 *
800 * @param pVM The cross context VM structure.
801 */
802static void cpumR3FreeSvmHwVirtState(PVM pVM)
803{
804 Assert(pVM->cpum.ro.GuestFeatures.fSvm);
805 for (VMCPUID i = 0; i < pVM->cCpus; i++)
806 {
807 PVMCPU pVCpu = &pVM->aCpus[i];
808 if (pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR3)
809 {
810 SUPR3PageFreeEx(pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR3, SVM_VMCB_PAGES);
811 pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR3 = NULL;
812 }
813 pVCpu->cpum.s.Guest.hwvirt.svm.HCPhysVmcb = NIL_RTHCPHYS;
814
815 if (pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR3)
816 {
817 SUPR3PageFreeEx(pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR3, SVM_MSRPM_PAGES);
818 pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR3 = NULL;
819 }
820
821 if (pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR3)
822 {
823 SUPR3PageFreeEx(pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR3, SVM_IOPM_PAGES);
824 pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR3 = NULL;
825 }
826 }
827}
828
829
830/**
831 * Allocates memory for the SVM hardware virtualization state.
832 *
833 * @returns VBox status code.
834 * @param pVM The cross context VM structure.
835 */
836static int cpumR3AllocSvmHwVirtState(PVM pVM)
837{
838 Assert(pVM->cpum.ro.GuestFeatures.fSvm);
839
840 int rc = VINF_SUCCESS;
841 LogRel(("CPUM: Allocating %u pages for the nested-guest SVM MSR and IO permission bitmaps\n",
842 pVM->cCpus * (SVM_MSRPM_PAGES + SVM_IOPM_PAGES)));
843 for (VMCPUID i = 0; i < pVM->cCpus; i++)
844 {
845 PVMCPU pVCpu = &pVM->aCpus[i];
846
847 /*
848 * Allocate the nested-guest VMCB.
849 */
850 SUPPAGE SupNstGstVmcbPage;
851 RT_ZERO(SupNstGstVmcbPage);
852 SupNstGstVmcbPage.Phys = NIL_RTHCPHYS;
853 Assert(SVM_VMCB_PAGES == 1);
854 Assert(!pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR3);
855 rc = SUPR3PageAllocEx(SVM_VMCB_PAGES, 0 /* fFlags */, (void **)&pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR3,
856 &pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR0, &SupNstGstVmcbPage);
857 if (RT_FAILURE(rc))
858 {
859 Assert(!pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR3);
860 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's VMCB\n", pVCpu->idCpu, SVM_VMCB_PAGES));
861 break;
862 }
863 pVCpu->cpum.s.Guest.hwvirt.svm.HCPhysVmcb = SupNstGstVmcbPage.Phys;
864
865 /*
866 * Allocate the MSRPM (MSR Permission bitmap).
867 */
868 Assert(!pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR3);
869 rc = SUPR3PageAllocEx(SVM_MSRPM_PAGES, 0 /* fFlags */, &pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR3,
870 &pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR0, NULL /* paPages */);
871 if (RT_FAILURE(rc))
872 {
873 Assert(!pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR3);
874 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's MSR permission bitmap\n", pVCpu->idCpu,
875 SVM_MSRPM_PAGES));
876 break;
877 }
878
879 /*
880 * Allocate the IOPM (IO Permission bitmap).
881 */
882 Assert(!pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR3);
883 rc = SUPR3PageAllocEx(SVM_IOPM_PAGES, 0 /* fFlags */, &pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR3,
884 &pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR0, NULL /* paPages */);
885 if (RT_FAILURE(rc))
886 {
887 Assert(!pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR3);
888 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's IO permission bitmap\n", pVCpu->idCpu,
889 SVM_IOPM_PAGES));
890 break;
891 }
892 }
893
894 /* On any failure, cleanup. */
895 if (RT_FAILURE(rc))
896 cpumR3FreeSvmHwVirtState(pVM);
897
898 return rc;
899}
900
901
902/**
903 * Frees memory allocated for the VMX hardware virtualization state.
904 *
905 * @param pVM The cross context VM structure.
906 */
907static void cpumR3FreeVmxHwVirtState(PVM pVM)
908{
909 Assert(pVM->cpum.ro.GuestFeatures.fVmx);
910 for (VMCPUID i = 0; i < pVM->cCpus; i++)
911 {
912 PVMCPU pVCpu = &pVM->aCpus[i];
913 if (pVCpu->cpum.s.Guest.hwvirt.vmx.pVmcsR3)
914 {
915 SUPR3PageFreeEx(pVCpu->cpum.s.Guest.hwvirt.vmx.pVmcsR3, VMX_V_VMCS_PAGES);
916 pVCpu->cpum.s.Guest.hwvirt.vmx.pVmcsR3 = NULL;
917 }
918 }
919}
920
921
922/**
923 * Allocates memory for the VMX hardware virtualization state.
924 *
925 * @returns VBox status code.
926 * @param pVM The cross context VM structure.
927 */
928static int cpumR3AllocVmxHwVirtState(PVM pVM)
929{
930 int rc = VINF_SUCCESS;
931 LogRel(("CPUM: Allocating %u pages for the nested-guest VMCS\n", pVM->cCpus * VMX_V_VMCS_SIZE));
932 for (VMCPUID i = 0; i < pVM->cCpus; i++)
933 {
934 PVMCPU pVCpu = &pVM->aCpus[i];
935
936 /*
937 * Allocate the nested-guest current VMCS.
938 */
939 SUPPAGE SupNstGstVmcsPage;
940 RT_ZERO(SupNstGstVmcsPage);
941 SupNstGstVmcsPage.Phys = NIL_RTHCPHYS;
942 Assert(VMX_V_VMCS_PAGES == 1);
943 Assert(!pVCpu->cpum.s.Guest.hwvirt.vmx.pVmcsR3);
944 rc = SUPR3PageAllocEx(VMX_V_VMCS_PAGES, 0 /* fFlags */, (void **)&pVCpu->cpum.s.Guest.hwvirt.vmx.pVmcsR3,
945 &pVCpu->cpum.s.Guest.hwvirt.vmx.pVmcsR0, &SupNstGstVmcsPage);
946 if (RT_FAILURE(rc))
947 {
948 Assert(!pVCpu->cpum.s.Guest.hwvirt.vmx.pVmcsR3);
949 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's VMCS\n", pVCpu->idCpu, VMX_V_VMCS_PAGES));
950 break;
951 }
952 }
953
954 /* On any failure, cleanup. */
955 if (RT_FAILURE(rc))
956 cpumR3FreeVmxHwVirtState(pVM);
957
958 return rc;
959}
960
961
962/**
963 * Displays the host and guest VMX features.
964 *
965 * @param pVM The cross context VM structure.
966 * @param pHlp The info helper functions.
967 * @param pszArgs "terse", "default" or "verbose".
968 */
969DECLCALLBACK(void) cpumR3InfoVmxFeatures(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
970{
971 RT_NOREF(pszArgs);
972 PCCPUMFEATURES pHostFeatures = &pVM->cpum.s.HostFeatures;
973 PCCPUMFEATURES pGuestFeatures = &pVM->cpum.s.GuestFeatures;
974 if ( pHostFeatures->enmCpuVendor == CPUMCPUVENDOR_INTEL
975 || pHostFeatures->enmCpuVendor == CPUMCPUVENDOR_VIA)
976 {
977#define VMXFEATDUMP(a_szDesc, a_Var) \
978 pHlp->pfnPrintf(pHlp, " %s = %u (%u)\n", a_szDesc, pGuestFeatures->a_Var, pHostFeatures->a_Var)
979
980 pHlp->pfnPrintf(pHlp, "Nested hardware virtualization - VMX features\n");
981 pHlp->pfnPrintf(pHlp, " Mnemonic - Description = guest (host)\n");
982 VMXFEATDUMP("VMX - Virtual-Machine Extensions ", fVmx);
983 /* Basic. */
984 VMXFEATDUMP("InsOutInfo - INS/OUTS instruction info. ", fVmxInsOutInfo);
985 /* Pin-based controls. */
986 VMXFEATDUMP("ExtIntExit - External interrupt VM-exit ", fVmxExtIntExit);
987 VMXFEATDUMP("NmiExit - NMI VM-exit ", fVmxNmiExit);
988 VMXFEATDUMP("VirtNmi - Virtual NMIs ", fVmxVirtNmi);
989 VMXFEATDUMP("PreemptTimer - VMX preemption timer ", fVmxPreemptTimer);
990 /* Processor-based controls. */
991 VMXFEATDUMP("IntWindowExit - Interrupt-window exiting ", fVmxIntWindowExit);
992 VMXFEATDUMP("TscOffsetting - TSC offsetting ", fVmxTscOffsetting);
993 VMXFEATDUMP("HltExit - HLT exiting ", fVmxHltExit);
994 VMXFEATDUMP("InvlpgExit - INVLPG exiting ", fVmxInvlpgExit);
995 VMXFEATDUMP("MwaitExit - MWAIT exiting ", fVmxMwaitExit);
996 VMXFEATDUMP("RdpmcExit - RDPMC exiting ", fVmxRdpmcExit);
997 VMXFEATDUMP("RdtscExit - RDTSC exiting ", fVmxRdtscExit);
998 VMXFEATDUMP("Cr3LoadExit - CR3-load exiting ", fVmxCr3LoadExit);
999 VMXFEATDUMP("Cr3StoreExit - CR3-store exiting ", fVmxCr3StoreExit);
1000 VMXFEATDUMP("Cr8LoadExit - CR8-load exiting ", fVmxCr8LoadExit);
1001 VMXFEATDUMP("Cr8StoreExit - CR8-store exiting ", fVmxCr8StoreExit);
1002 VMXFEATDUMP("TprShadow - TPR shadow ", fVmxTprShadow);
1003 VMXFEATDUMP("NmiWindowExit - NMI-window exiting ", fVmxNmiWindowExit);
1004 VMXFEATDUMP("MovDRxExit - Mov-DR exiting ", fVmxMovDRxExit);
1005 VMXFEATDUMP("UncondIoExit - Unconditional I/O exiting ", fVmxUncondIoExit);
1006 VMXFEATDUMP("UseIoBitmaps - Use I/O bitmaps ", fVmxUseIoBitmaps);
1007 VMXFEATDUMP("MonitorTrapFlag - Monitor trap flag ", fVmxMonitorTrapFlag);
1008 VMXFEATDUMP("UseMsrBitmaps - MSR bitmaps ", fVmxUseMsrBitmaps);
1009 VMXFEATDUMP("MonitorExit - MONITOR exiting ", fVmxMonitorExit);
1010 VMXFEATDUMP("PauseExit - PAUSE exiting ", fVmxPauseExit);
1011 VMXFEATDUMP("SecondaryExecCtl - Activate secondary controls ", fVmxSecondaryExecCtls);
1012 /* Secondary processor-based controls. */
1013 VMXFEATDUMP("VirtApic - Virtualize-APIC accesses ", fVmxVirtApicAccess);
1014 VMXFEATDUMP("Ept - Extended Page Tables ", fVmxEpt);
1015 VMXFEATDUMP("DescTableExit - Descriptor-table exiting ", fVmxDescTableExit);
1016 VMXFEATDUMP("Rdtscp - Enable RDTSCP ", fVmxRdtscp);
1017 VMXFEATDUMP("VirtX2Apic - Virtualize-x2APIC accesses ", fVmxVirtX2ApicAccess);
1018 VMXFEATDUMP("Vpid - Enable VPID ", fVmxVpid);
1019 VMXFEATDUMP("WbinvdExit - WBINVD exiting ", fVmxWbinvdExit);
1020 VMXFEATDUMP("UnrestrictedGuest - Unrestricted guest ", fVmxUnrestrictedGuest);
1021 VMXFEATDUMP("PauseLoopExit - PAUSE-loop exiting ", fVmxPauseLoopExit);
1022 VMXFEATDUMP("Invpcid - Enable INVPCID ", fVmxInvpcid);
1023 VMXFEATDUMP("VmcsShadowing - VMCS shadowing ", fVmxVmcsShadowing);
1024 /* VM-entry controls. */
1025 VMXFEATDUMP("EntryLoadDebugCtls - Load debug controls on VM-entry ", fVmxEntryLoadDebugCtls);
1026 VMXFEATDUMP("Ia32eModeGuest - IA-32e mode guest ", fVmxIa32eModeGuest);
1027 VMXFEATDUMP("EntryLoadEferMsr - Load IA32_EFER on VM-entry ", fVmxEntryLoadEferMsr);
1028 /* VM-exit controls. */
1029 VMXFEATDUMP("ExitSaveDebugCtls - Save debug controls on VM-exit ", fVmxExitSaveDebugCtls);
1030 VMXFEATDUMP("HostAddrSpaceSize - Host address-space size ", fVmxHostAddrSpaceSize);
1031 VMXFEATDUMP("ExitAckExtInt - Acknowledge interrupt on VM-exit ", fVmxExitAckExtInt);
1032 VMXFEATDUMP("ExitSaveEferMsr - Save IA32_EFER on VM-exit ", fVmxExitSaveEferMsr);
1033 VMXFEATDUMP("ExitLoadEferMsr - Load IA32_EFER on VM-exit ", fVmxExitLoadEferMsr);
1034 VMXFEATDUMP("SavePreemptTimer - Save VMX-preemption timer ", fVmxSavePreemptTimer);
1035 VMXFEATDUMP("ExitStoreEferLma - Store EFER.LMA on VM-exit ", fVmxExitStoreEferLma);
1036 VMXFEATDUMP("VmwriteAll - VMWRITE to any VMCS field ", fVmxVmwriteAll);
1037 VMXFEATDUMP("EntryInjectSoftInt - Inject softint. with 0-len instr. ", fVmxEntryInjectSoftInt);
1038#undef VMXFEATDUMP
1039 }
1040 else
1041 pHlp->pfnPrintf(pHlp, "No VMX features present - requires an Intel or compatible CPU.\n");
1042}
1043
1044
1045/**
1046 * Initializes VMX host and guest features.
1047 *
1048 * @param pVM The cross context VM structure.
1049 *
1050 * @remarks This must be called only after HM has fully initialized since it calls
1051 * into HM to retrieve VMX and related MSRs.
1052 */
1053static void cpumR3InitVmxCpuFeatures(PVM pVM)
1054{
1055 /*
1056 * Init. host features.
1057 */
1058 PCPUMFEATURES pHostFeat = &pVM->cpum.s.HostFeatures;
1059 VMXMSRS VmxMsrs;
1060 int rc = HMVmxGetHostMsrs(pVM, &VmxMsrs);
1061 if (RT_SUCCESS(rc))
1062 {
1063 /* Basic information. */
1064 pHostFeat->fVmxInsOutInfo = RT_BF_GET(VmxMsrs.u64Basic, VMX_BF_BASIC_VMCS_INS_OUTS);
1065
1066 /* Pin-based VM-execution controls. */
1067 uint32_t const fPinCtls = VmxMsrs.PinCtls.n.allowed1;
1068 pHostFeat->fVmxExtIntExit = RT_BOOL(fPinCtls & VMX_PIN_CTLS_EXT_INT_EXIT);
1069 pHostFeat->fVmxNmiExit = RT_BOOL(fPinCtls & VMX_PIN_CTLS_NMI_EXIT);
1070 pHostFeat->fVmxVirtNmi = RT_BOOL(fPinCtls & VMX_PIN_CTLS_VIRT_NMI);
1071 pHostFeat->fVmxPreemptTimer = RT_BOOL(fPinCtls & VMX_PIN_CTLS_PREEMPT_TIMER);
1072
1073 /* Processor-based VM-execution controls. */
1074 uint32_t const fProcCtls = VmxMsrs.ProcCtls.n.allowed1;
1075 pHostFeat->fVmxIntWindowExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_INT_WINDOW_EXIT);
1076 pHostFeat->fVmxTscOffsetting = RT_BOOL(fProcCtls & VMX_PROC_CTLS_USE_TSC_OFFSETTING);
1077 pHostFeat->fVmxHltExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_HLT_EXIT);
1078 pHostFeat->fVmxInvlpgExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_INVLPG_EXIT);
1079 pHostFeat->fVmxMwaitExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_MWAIT_EXIT);
1080 pHostFeat->fVmxRdpmcExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_RDPMC_EXIT);
1081 pHostFeat->fVmxRdtscExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_RDTSC_EXIT);
1082 pHostFeat->fVmxCr3LoadExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_CR3_LOAD_EXIT);
1083 pHostFeat->fVmxCr3StoreExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_CR3_STORE_EXIT);
1084 pHostFeat->fVmxCr8LoadExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_CR8_LOAD_EXIT);
1085 pHostFeat->fVmxCr8StoreExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_CR8_STORE_EXIT);
1086 pHostFeat->fVmxTprShadow = RT_BOOL(fProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW);
1087 pHostFeat->fVmxNmiWindowExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_NMI_WINDOW_EXIT);
1088 pHostFeat->fVmxMovDRxExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_MOV_DR_EXIT);
1089 pHostFeat->fVmxUncondIoExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_UNCOND_IO_EXIT);
1090 pHostFeat->fVmxUseIoBitmaps = RT_BOOL(fProcCtls & VMX_PROC_CTLS_USE_IO_BITMAPS);
1091 pHostFeat->fVmxMonitorTrapFlag = RT_BOOL(fProcCtls & VMX_PROC_CTLS_MONITOR_TRAP_FLAG);
1092 pHostFeat->fVmxUseMsrBitmaps = RT_BOOL(fProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS);
1093 pHostFeat->fVmxMonitorExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_MONITOR_EXIT);
1094 pHostFeat->fVmxPauseExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_PAUSE_EXIT);
1095 pHostFeat->fVmxSecondaryExecCtls = RT_BOOL(fProcCtls & VMX_PROC_CTLS_USE_SECONDARY_CTLS);
1096
1097 /* Secondary processor-based VM-execution controls. */
1098 if (pHostFeat->fVmxSecondaryExecCtls)
1099 {
1100 uint32_t const fProcCtls2 = VmxMsrs.ProcCtls2.n.allowed1;
1101 pHostFeat->fVmxVirtApicAccess = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS);
1102 pHostFeat->fVmxEpt = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_EPT);
1103 pHostFeat->fVmxDescTableExit = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_DESC_TABLE_EXIT);
1104 pHostFeat->fVmxRdtscp = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_RDTSCP);
1105 pHostFeat->fVmxVirtX2ApicAccess = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_VIRT_X2APIC_ACCESS);
1106 pHostFeat->fVmxVpid = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_VPID);
1107 pHostFeat->fVmxWbinvdExit = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_WBINVD_EXIT);
1108 pHostFeat->fVmxUnrestrictedGuest = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_UNRESTRICTED_GUEST);
1109 pHostFeat->fVmxPauseLoopExit = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_PAUSE_LOOP_EXIT);
1110 pHostFeat->fVmxInvpcid = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_INVPCID);
1111 pHostFeat->fVmxVmcsShadowing = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_VMCS_SHADOWING);
1112 }
1113
1114 /* VM-entry controls. */
1115 uint32_t const fEntryCtls = VmxMsrs.EntryCtls.n.allowed1;
1116 pHostFeat->fVmxEntryLoadDebugCtls = RT_BOOL(fEntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG);
1117 pHostFeat->fVmxIa32eModeGuest = RT_BOOL(fEntryCtls & VMX_ENTRY_CTLS_IA32E_MODE_GUEST);
1118 pHostFeat->fVmxEntryLoadEferMsr = RT_BOOL(fEntryCtls & VMX_ENTRY_CTLS_LOAD_EFER_MSR);
1119
1120 /* VM-exit controls. */
1121 uint32_t const fExitCtls = VmxMsrs.ExitCtls.n.allowed1;
1122 pHostFeat->fVmxExitSaveDebugCtls = RT_BOOL(fExitCtls & VMX_EXIT_CTLS_SAVE_DEBUG);
1123 pHostFeat->fVmxHostAddrSpaceSize = RT_BOOL(fExitCtls & VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE);
1124 pHostFeat->fVmxExitAckExtInt = RT_BOOL(fExitCtls & VMX_EXIT_CTLS_ACK_EXT_INT);
1125 pHostFeat->fVmxExitSaveEferMsr = RT_BOOL(fExitCtls & VMX_EXIT_CTLS_SAVE_EFER_MSR);
1126 pHostFeat->fVmxExitLoadEferMsr = RT_BOOL(fExitCtls & VMX_EXIT_CTLS_LOAD_EFER_MSR);
1127 pHostFeat->fVmxSavePreemptTimer = RT_BOOL(fExitCtls & VMX_EXIT_CTLS_SAVE_VMX_PREEMPT_TIMER);
1128
1129 /* Miscellaneous data. */
1130 uint32_t const fMiscData = VmxMsrs.u64Misc;
1131 pHostFeat->fVmxExitStoreEferLma = RT_BOOL(fMiscData & VMX_MISC_EXIT_STORE_EFER_LMA);
1132 pHostFeat->fVmxVmwriteAll = RT_BOOL(fMiscData & VMX_MISC_VMWRITE_ALL);
1133 pHostFeat->fVmxEntryInjectSoftInt = RT_BOOL(fMiscData & VMX_MISC_ENTRY_INJECT_SOFT_INT);
1134 }
1135
1136 /*
1137 * Initialize the set of VMX features we emulate.
1138 * Note! Some bits might be reported as 1 always if they fall under the default1 class bits
1139 * (e.g. fVmxEntryLoadDebugCtls), see @bugref{9180#c5}.
1140 */
1141 CPUMFEATURES EmuFeat;
1142 RT_ZERO(EmuFeat);
1143 EmuFeat.fVmx = 1;
1144 EmuFeat.fVmxInsOutInfo = 0;
1145 EmuFeat.fVmxExtIntExit = 1;
1146 EmuFeat.fVmxNmiExit = 1;
1147 EmuFeat.fVmxVirtNmi = 0;
1148 EmuFeat.fVmxPreemptTimer = 0;
1149 EmuFeat.fVmxIntWindowExit = 1;
1150 EmuFeat.fVmxTscOffsetting = 1;
1151 EmuFeat.fVmxHltExit = 1;
1152 EmuFeat.fVmxInvlpgExit = 1;
1153 EmuFeat.fVmxMwaitExit = 1;
1154 EmuFeat.fVmxRdpmcExit = 1;
1155 EmuFeat.fVmxRdtscExit = 1;
1156 EmuFeat.fVmxCr3LoadExit = 1;
1157 EmuFeat.fVmxCr3StoreExit = 1;
1158 EmuFeat.fVmxCr8LoadExit = 1;
1159 EmuFeat.fVmxCr8StoreExit = 1;
1160 EmuFeat.fVmxTprShadow = 0;
1161 EmuFeat.fVmxNmiWindowExit = 0;
1162 EmuFeat.fVmxMovDRxExit = 1;
1163 EmuFeat.fVmxUncondIoExit = 1;
1164 EmuFeat.fVmxUseIoBitmaps = 1;
1165 EmuFeat.fVmxMonitorTrapFlag = 0;
1166 EmuFeat.fVmxUseMsrBitmaps = 0;
1167 EmuFeat.fVmxMonitorExit = 1;
1168 EmuFeat.fVmxPauseExit = 1;
1169 EmuFeat.fVmxSecondaryExecCtls = 1;
1170 EmuFeat.fVmxVirtApicAccess = 0;
1171 EmuFeat.fVmxEpt = 0;
1172 EmuFeat.fVmxDescTableExit = 1;
1173 EmuFeat.fVmxRdtscp = 1;
1174 EmuFeat.fVmxVirtX2ApicAccess = 0;
1175 EmuFeat.fVmxVpid = 0;
1176 EmuFeat.fVmxWbinvdExit = 1;
1177 EmuFeat.fVmxUnrestrictedGuest = 0;
1178 EmuFeat.fVmxPauseLoopExit = 0;
1179 EmuFeat.fVmxInvpcid = 1;
1180 EmuFeat.fVmxVmcsShadowing = 0;
1181 EmuFeat.fVmxEntryLoadDebugCtls = 1;
1182 EmuFeat.fVmxIa32eModeGuest = 1;
1183 EmuFeat.fVmxEntryLoadEferMsr = 1;
1184 EmuFeat.fVmxExitSaveDebugCtls = 1;
1185 EmuFeat.fVmxHostAddrSpaceSize = 1;
1186 EmuFeat.fVmxExitAckExtInt = 0;
1187 EmuFeat.fVmxExitSaveEferMsr = 1;
1188 EmuFeat.fVmxExitLoadEferMsr = 1;
1189 EmuFeat.fVmxSavePreemptTimer = 0;
1190 EmuFeat.fVmxExitStoreEferLma = 1;
1191 EmuFeat.fVmxVmwriteAll = 0;
1192 EmuFeat.fVmxEntryInjectSoftInt = 0;
1193
1194 /*
1195 * Explode guest features.
1196 *
1197 * When hardware-assisted VMX may be used, any feature we emulate must also be supported
1198 * by the hardware, hence we merge our emulated features with the host features below.
1199 */
1200 bool const fHostSupportsVmx = pHostFeat->fVmx;
1201 AssertLogRelReturnVoid(!fHostSupportsVmx || HMIsVmxSupported(pVM));
1202 PCCPUMFEATURES pBaseFeat = fHostSupportsVmx ? pHostFeat : &EmuFeat;
1203 PCPUMFEATURES pGuestFeat = &pVM->cpum.s.GuestFeatures;
1204 pGuestFeat->fVmx = (pBaseFeat->fVmx & EmuFeat.fVmx );
1205 pGuestFeat->fVmxInsOutInfo = (pBaseFeat->fVmxInsOutInfo & EmuFeat.fVmxInsOutInfo );
1206 pGuestFeat->fVmxExtIntExit = (pBaseFeat->fVmxExtIntExit & EmuFeat.fVmxExtIntExit );
1207 pGuestFeat->fVmxNmiExit = (pBaseFeat->fVmxNmiExit & EmuFeat.fVmxNmiExit );
1208 pGuestFeat->fVmxVirtNmi = (pBaseFeat->fVmxVirtNmi & EmuFeat.fVmxVirtNmi );
1209 pGuestFeat->fVmxPreemptTimer = (pBaseFeat->fVmxPreemptTimer & EmuFeat.fVmxPreemptTimer );
1210 pGuestFeat->fVmxIntWindowExit = (pBaseFeat->fVmxIntWindowExit & EmuFeat.fVmxIntWindowExit );
1211 pGuestFeat->fVmxTscOffsetting = (pBaseFeat->fVmxTscOffsetting & EmuFeat.fVmxTscOffsetting );
1212 pGuestFeat->fVmxHltExit = (pBaseFeat->fVmxHltExit & EmuFeat.fVmxHltExit );
1213 pGuestFeat->fVmxInvlpgExit = (pBaseFeat->fVmxInvlpgExit & EmuFeat.fVmxInvlpgExit );
1214 pGuestFeat->fVmxMwaitExit = (pBaseFeat->fVmxMwaitExit & EmuFeat.fVmxMwaitExit );
1215 pGuestFeat->fVmxRdpmcExit = (pBaseFeat->fVmxRdpmcExit & EmuFeat.fVmxRdpmcExit );
1216 pGuestFeat->fVmxRdtscExit = (pBaseFeat->fVmxRdtscExit & EmuFeat.fVmxRdtscExit );
1217 pGuestFeat->fVmxCr3LoadExit = (pBaseFeat->fVmxCr3LoadExit & EmuFeat.fVmxCr3LoadExit );
1218 pGuestFeat->fVmxCr3StoreExit = (pBaseFeat->fVmxCr3StoreExit & EmuFeat.fVmxCr3StoreExit );
1219 pGuestFeat->fVmxCr8LoadExit = (pBaseFeat->fVmxCr8LoadExit & EmuFeat.fVmxCr8LoadExit );
1220 pGuestFeat->fVmxCr8StoreExit = (pBaseFeat->fVmxCr8StoreExit & EmuFeat.fVmxCr8StoreExit );
1221 pGuestFeat->fVmxTprShadow = (pBaseFeat->fVmxTprShadow & EmuFeat.fVmxTprShadow );
1222 pGuestFeat->fVmxNmiWindowExit = (pBaseFeat->fVmxNmiWindowExit & EmuFeat.fVmxNmiWindowExit );
1223 pGuestFeat->fVmxMovDRxExit = (pBaseFeat->fVmxMovDRxExit & EmuFeat.fVmxMovDRxExit );
1224 pGuestFeat->fVmxUncondIoExit = (pBaseFeat->fVmxUncondIoExit & EmuFeat.fVmxUncondIoExit );
1225 pGuestFeat->fVmxUseIoBitmaps = (pBaseFeat->fVmxUseIoBitmaps & EmuFeat.fVmxUseIoBitmaps );
1226 pGuestFeat->fVmxMonitorTrapFlag = (pBaseFeat->fVmxMonitorTrapFlag & EmuFeat.fVmxMonitorTrapFlag );
1227 pGuestFeat->fVmxUseMsrBitmaps = (pBaseFeat->fVmxUseMsrBitmaps & EmuFeat.fVmxUseMsrBitmaps );
1228 pGuestFeat->fVmxMonitorExit = (pBaseFeat->fVmxMonitorExit & EmuFeat.fVmxMonitorExit );
1229 pGuestFeat->fVmxPauseExit = (pBaseFeat->fVmxPauseExit & EmuFeat.fVmxPauseExit );
1230 pGuestFeat->fVmxSecondaryExecCtls = (pBaseFeat->fVmxSecondaryExecCtls & EmuFeat.fVmxSecondaryExecCtls );
1231 pGuestFeat->fVmxVirtApicAccess = (pBaseFeat->fVmxVirtApicAccess & EmuFeat.fVmxVirtApicAccess );
1232 pGuestFeat->fVmxEpt = (pBaseFeat->fVmxEpt & EmuFeat.fVmxEpt );
1233 pGuestFeat->fVmxDescTableExit = (pBaseFeat->fVmxDescTableExit & EmuFeat.fVmxDescTableExit );
1234 pGuestFeat->fVmxRdtscp = (pBaseFeat->fVmxRdtscp & EmuFeat.fVmxRdtscp );
1235 pGuestFeat->fVmxVirtX2ApicAccess = (pBaseFeat->fVmxVirtX2ApicAccess & EmuFeat.fVmxVirtX2ApicAccess );
1236 pGuestFeat->fVmxVpid = (pBaseFeat->fVmxVpid & EmuFeat.fVmxVpid );
1237 pGuestFeat->fVmxWbinvdExit = (pBaseFeat->fVmxWbinvdExit & EmuFeat.fVmxWbinvdExit );
1238 pGuestFeat->fVmxUnrestrictedGuest = (pBaseFeat->fVmxUnrestrictedGuest & EmuFeat.fVmxUnrestrictedGuest );
1239 pGuestFeat->fVmxPauseLoopExit = (pBaseFeat->fVmxPauseLoopExit & EmuFeat.fVmxPauseLoopExit );
1240 pGuestFeat->fVmxInvpcid = (pBaseFeat->fVmxInvpcid & EmuFeat.fVmxInvpcid );
1241 pGuestFeat->fVmxVmcsShadowing = (pBaseFeat->fVmxVmcsShadowing & EmuFeat.fVmxVmcsShadowing );
1242 pGuestFeat->fVmxEntryLoadDebugCtls = (pBaseFeat->fVmxEntryLoadDebugCtls & EmuFeat.fVmxEntryLoadDebugCtls );
1243 pGuestFeat->fVmxIa32eModeGuest = (pBaseFeat->fVmxIa32eModeGuest & EmuFeat.fVmxIa32eModeGuest );
1244 pGuestFeat->fVmxEntryLoadEferMsr = (pBaseFeat->fVmxEntryLoadEferMsr & EmuFeat.fVmxEntryLoadEferMsr);
1245 pGuestFeat->fVmxExitSaveDebugCtls = (pBaseFeat->fVmxExitSaveDebugCtls & EmuFeat.fVmxExitSaveDebugCtls );
1246 pGuestFeat->fVmxHostAddrSpaceSize = (pBaseFeat->fVmxHostAddrSpaceSize & EmuFeat.fVmxHostAddrSpaceSize );
1247 pGuestFeat->fVmxExitAckExtInt = (pBaseFeat->fVmxExitAckExtInt & EmuFeat.fVmxExitAckExtInt );
1248 pGuestFeat->fVmxExitSaveEferMsr = (pBaseFeat->fVmxExitSaveEferMsr & EmuFeat.fVmxExitSaveEferMsr );
1249 pGuestFeat->fVmxExitLoadEferMsr = (pBaseFeat->fVmxExitLoadEferMsr & EmuFeat.fVmxExitLoadEferMsr );
1250 pGuestFeat->fVmxSavePreemptTimer = (pBaseFeat->fVmxSavePreemptTimer & EmuFeat.fVmxSavePreemptTimer );
1251 pGuestFeat->fVmxExitStoreEferLma = (pBaseFeat->fVmxExitStoreEferLma & EmuFeat.fVmxExitStoreEferLma );
1252 pGuestFeat->fVmxVmwriteAll = (pBaseFeat->fVmxVmwriteAll & EmuFeat.fVmxVmwriteAll );
1253 pGuestFeat->fVmxEntryInjectSoftInt = (pBaseFeat->fVmxEntryInjectSoftInt & EmuFeat.fVmxEntryInjectSoftInt );
1254}
1255
1256
1257/**
1258 * Initializes the CPUM.
1259 *
1260 * @returns VBox status code.
1261 * @param pVM The cross context VM structure.
1262 */
1263VMMR3DECL(int) CPUMR3Init(PVM pVM)
1264{
1265 LogFlow(("CPUMR3Init\n"));
1266
1267 /*
1268 * Assert alignment, sizes and tables.
1269 */
1270 AssertCompileMemberAlignment(VM, cpum.s, 32);
1271 AssertCompile(sizeof(pVM->cpum.s) <= sizeof(pVM->cpum.padding));
1272 AssertCompileSizeAlignment(CPUMCTX, 64);
1273 AssertCompileSizeAlignment(CPUMCTXMSRS, 64);
1274 AssertCompileSizeAlignment(CPUMHOSTCTX, 64);
1275 AssertCompileMemberAlignment(VM, cpum, 64);
1276 AssertCompileMemberAlignment(VM, aCpus, 64);
1277 AssertCompileMemberAlignment(VMCPU, cpum.s, 64);
1278 AssertCompileMemberSizeAlignment(VM, aCpus[0].cpum.s, 64);
1279#ifdef VBOX_STRICT
1280 int rc2 = cpumR3MsrStrictInitChecks();
1281 AssertRCReturn(rc2, rc2);
1282#endif
1283
1284 /*
1285 * Initialize offsets.
1286 */
1287
1288 /* Calculate the offset from CPUM to CPUMCPU for the first CPU. */
1289 pVM->cpum.s.offCPUMCPU0 = RT_UOFFSETOF(VM, aCpus[0].cpum) - RT_UOFFSETOF(VM, cpum);
1290 Assert((uintptr_t)&pVM->cpum + pVM->cpum.s.offCPUMCPU0 == (uintptr_t)&pVM->aCpus[0].cpum);
1291
1292
1293 /* Calculate the offset from CPUMCPU to CPUM. */
1294 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1295 {
1296 PVMCPU pVCpu = &pVM->aCpus[i];
1297
1298 pVCpu->cpum.s.offCPUM = RT_UOFFSETOF_DYN(VM, aCpus[i].cpum) - RT_UOFFSETOF(VM, cpum);
1299 Assert((uintptr_t)&pVCpu->cpum - pVCpu->cpum.s.offCPUM == (uintptr_t)&pVM->cpum);
1300 }
1301
1302 /*
1303 * Gather info about the host CPU.
1304 */
1305 if (!ASMHasCpuId())
1306 {
1307 Log(("The CPU doesn't support CPUID!\n"));
1308 return VERR_UNSUPPORTED_CPU;
1309 }
1310
1311 pVM->cpum.s.fHostMxCsrMask = CPUMR3DeterminHostMxCsrMask();
1312
1313 PCPUMCPUIDLEAF paLeaves;
1314 uint32_t cLeaves;
1315 int rc = CPUMR3CpuIdCollectLeaves(&paLeaves, &cLeaves);
1316 AssertLogRelRCReturn(rc, rc);
1317
1318 rc = cpumR3CpuIdExplodeFeatures(paLeaves, cLeaves, &pVM->cpum.s.HostFeatures);
1319 RTMemFree(paLeaves);
1320 AssertLogRelRCReturn(rc, rc);
1321 pVM->cpum.s.GuestFeatures.enmCpuVendor = pVM->cpum.s.HostFeatures.enmCpuVendor;
1322
1323 /*
1324 * Check that the CPU supports the minimum features we require.
1325 */
1326 if (!pVM->cpum.s.HostFeatures.fFxSaveRstor)
1327 return VMSetError(pVM, VERR_UNSUPPORTED_CPU, RT_SRC_POS, "Host CPU does not support the FXSAVE/FXRSTOR instruction.");
1328 if (!pVM->cpum.s.HostFeatures.fMmx)
1329 return VMSetError(pVM, VERR_UNSUPPORTED_CPU, RT_SRC_POS, "Host CPU does not support MMX.");
1330 if (!pVM->cpum.s.HostFeatures.fTsc)
1331 return VMSetError(pVM, VERR_UNSUPPORTED_CPU, RT_SRC_POS, "Host CPU does not support RDTSC.");
1332
1333 /*
1334 * Setup the CR4 AND and OR masks used in the raw-mode switcher.
1335 */
1336 pVM->cpum.s.CR4.AndMask = X86_CR4_OSXMMEEXCPT | X86_CR4_PVI | X86_CR4_VME;
1337 pVM->cpum.s.CR4.OrMask = X86_CR4_OSFXSR;
1338
1339 /*
1340 * Figure out which XSAVE/XRSTOR features are available on the host.
1341 */
1342 uint64_t fXcr0Host = 0;
1343 uint64_t fXStateHostMask = 0;
1344 if ( pVM->cpum.s.HostFeatures.fXSaveRstor
1345 && pVM->cpum.s.HostFeatures.fOpSysXSaveRstor)
1346 {
1347 fXStateHostMask = fXcr0Host = ASMGetXcr0();
1348 fXStateHostMask &= XSAVE_C_X87 | XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI;
1349 AssertLogRelMsgStmt((fXStateHostMask & (XSAVE_C_X87 | XSAVE_C_SSE)) == (XSAVE_C_X87 | XSAVE_C_SSE),
1350 ("%#llx\n", fXStateHostMask), fXStateHostMask = 0);
1351 }
1352 pVM->cpum.s.fXStateHostMask = fXStateHostMask;
1353 if (VM_IS_RAW_MODE_ENABLED(pVM)) /* For raw-mode, we only use XSAVE/XRSTOR when the guest starts using it (CPUID/CR4 visibility). */
1354 fXStateHostMask = 0;
1355 LogRel(("CPUM: fXStateHostMask=%#llx; initial: %#llx; host XCR0=%#llx\n",
1356 pVM->cpum.s.fXStateHostMask, fXStateHostMask, fXcr0Host));
1357
1358 /*
1359 * Allocate memory for the extended CPU state and initialize the host XSAVE/XRSTOR mask.
1360 */
1361 uint32_t cbMaxXState = pVM->cpum.s.HostFeatures.cbMaxExtendedState;
1362 cbMaxXState = RT_ALIGN(cbMaxXState, 128);
1363 AssertLogRelReturn(cbMaxXState >= sizeof(X86FXSTATE) && cbMaxXState <= _8K, VERR_CPUM_IPE_2);
1364
1365 uint8_t *pbXStates;
1366 rc = MMR3HyperAllocOnceNoRelEx(pVM, cbMaxXState * 3 * pVM->cCpus, PAGE_SIZE, MM_TAG_CPUM_CTX,
1367 MMHYPER_AONR_FLAGS_KERNEL_MAPPING, (void **)&pbXStates);
1368 AssertLogRelRCReturn(rc, rc);
1369
1370 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1371 {
1372 PVMCPU pVCpu = &pVM->aCpus[i];
1373
1374 pVCpu->cpum.s.Guest.pXStateR3 = (PX86XSAVEAREA)pbXStates;
1375 pVCpu->cpum.s.Guest.pXStateR0 = MMHyperR3ToR0(pVM, pbXStates);
1376 pVCpu->cpum.s.Guest.pXStateRC = MMHyperR3ToR0(pVM, pbXStates);
1377 pbXStates += cbMaxXState;
1378
1379 pVCpu->cpum.s.Host.pXStateR3 = (PX86XSAVEAREA)pbXStates;
1380 pVCpu->cpum.s.Host.pXStateR0 = MMHyperR3ToR0(pVM, pbXStates);
1381 pVCpu->cpum.s.Host.pXStateRC = MMHyperR3ToR0(pVM, pbXStates);
1382 pbXStates += cbMaxXState;
1383
1384 pVCpu->cpum.s.Hyper.pXStateR3 = (PX86XSAVEAREA)pbXStates;
1385 pVCpu->cpum.s.Hyper.pXStateR0 = MMHyperR3ToR0(pVM, pbXStates);
1386 pVCpu->cpum.s.Hyper.pXStateRC = MMHyperR3ToR0(pVM, pbXStates);
1387 pbXStates += cbMaxXState;
1388
1389 pVCpu->cpum.s.Host.fXStateMask = fXStateHostMask;
1390 }
1391
1392 /*
1393 * Register saved state data item.
1394 */
1395 rc = SSMR3RegisterInternal(pVM, "cpum", 1, CPUM_SAVED_STATE_VERSION, sizeof(CPUM),
1396 NULL, cpumR3LiveExec, NULL,
1397 NULL, cpumR3SaveExec, NULL,
1398 cpumR3LoadPrep, cpumR3LoadExec, cpumR3LoadDone);
1399 if (RT_FAILURE(rc))
1400 return rc;
1401
1402 /*
1403 * Register info handlers and registers with the debugger facility.
1404 */
1405 DBGFR3InfoRegisterInternalEx(pVM, "cpum", "Displays the all the cpu states.",
1406 &cpumR3InfoAll, DBGFINFO_FLAGS_ALL_EMTS);
1407 DBGFR3InfoRegisterInternalEx(pVM, "cpumguest", "Displays the guest cpu state.",
1408 &cpumR3InfoGuest, DBGFINFO_FLAGS_ALL_EMTS);
1409 DBGFR3InfoRegisterInternalEx(pVM, "cpumguesthwvirt", "Displays the guest hwvirt. cpu state.",
1410 &cpumR3InfoGuestHwvirt, DBGFINFO_FLAGS_ALL_EMTS);
1411 DBGFR3InfoRegisterInternalEx(pVM, "cpumhyper", "Displays the hypervisor cpu state.",
1412 &cpumR3InfoHyper, DBGFINFO_FLAGS_ALL_EMTS);
1413 DBGFR3InfoRegisterInternalEx(pVM, "cpumhost", "Displays the host cpu state.",
1414 &cpumR3InfoHost, DBGFINFO_FLAGS_ALL_EMTS);
1415 DBGFR3InfoRegisterInternalEx(pVM, "cpumguestinstr", "Displays the current guest instruction.",
1416 &cpumR3InfoGuestInstr, DBGFINFO_FLAGS_ALL_EMTS);
1417 DBGFR3InfoRegisterInternal( pVM, "cpuid", "Displays the guest cpuid leaves.", &cpumR3CpuIdInfo);
1418 DBGFR3InfoRegisterInternal( pVM, "cpumvmxfeat", "Displays the host and guest VMX hwvirt. features.",
1419 &cpumR3InfoVmxFeatures);
1420
1421 rc = cpumR3DbgInit(pVM);
1422 if (RT_FAILURE(rc))
1423 return rc;
1424
1425 /*
1426 * Check if we need to workaround partial/leaky FPU handling.
1427 */
1428 cpumR3CheckLeakyFpu(pVM);
1429
1430 /*
1431 * Initialize the Guest CPUID and MSR states.
1432 */
1433 rc = cpumR3InitCpuIdAndMsrs(pVM);
1434 if (RT_FAILURE(rc))
1435 return rc;
1436
1437 /*
1438 * Allocate memory required by the guest hardware virtualization state.
1439 */
1440 if (pVM->cpum.ro.GuestFeatures.fVmx)
1441 rc = cpumR3AllocVmxHwVirtState(pVM);
1442 else if (pVM->cpum.ro.GuestFeatures.fSvm)
1443 rc = cpumR3AllocSvmHwVirtState(pVM);
1444 if (RT_FAILURE(rc))
1445 return rc;
1446
1447 /*
1448 * Workaround for missing cpuid(0) patches when leaf 4 returns GuestInfo.DefCpuId:
1449 * If we miss to patch a cpuid(0).eax then Linux tries to determine the number
1450 * of processors from (cpuid(4).eax >> 26) + 1.
1451 *
1452 * Note: this code is obsolete, but let's keep it here for reference.
1453 * Purpose is valid when we artificially cap the max std id to less than 4.
1454 *
1455 * Note: This used to be a separate function CPUMR3SetHwVirt that was called
1456 * after VMINITCOMPLETED_HM.
1457 */
1458 if (VM_IS_RAW_MODE_ENABLED(pVM))
1459 {
1460 Assert( (pVM->cpum.s.aGuestCpuIdPatmStd[4].uEax & UINT32_C(0xffffc000)) == 0
1461 || pVM->cpum.s.aGuestCpuIdPatmStd[0].uEax < 0x4);
1462 pVM->cpum.s.aGuestCpuIdPatmStd[4].uEax &= UINT32_C(0x00003fff);
1463 }
1464
1465 CPUMR3Reset(pVM);
1466 return VINF_SUCCESS;
1467}
1468
1469
1470/**
1471 * Applies relocations to data and code managed by this
1472 * component. This function will be called at init and
1473 * whenever the VMM need to relocate it self inside the GC.
1474 *
1475 * The CPUM will update the addresses used by the switcher.
1476 *
1477 * @param pVM The cross context VM structure.
1478 */
1479VMMR3DECL(void) CPUMR3Relocate(PVM pVM)
1480{
1481 LogFlow(("CPUMR3Relocate\n"));
1482
1483 pVM->cpum.s.GuestInfo.paMsrRangesRC = MMHyperR3ToRC(pVM, pVM->cpum.s.GuestInfo.paMsrRangesR3);
1484 pVM->cpum.s.GuestInfo.paCpuIdLeavesRC = MMHyperR3ToRC(pVM, pVM->cpum.s.GuestInfo.paCpuIdLeavesR3);
1485
1486 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
1487 {
1488 PVMCPU pVCpu = &pVM->aCpus[iCpu];
1489 pVCpu->cpum.s.Guest.pXStateRC = MMHyperR3ToRC(pVM, pVCpu->cpum.s.Guest.pXStateR3);
1490 pVCpu->cpum.s.Host.pXStateRC = MMHyperR3ToRC(pVM, pVCpu->cpum.s.Host.pXStateR3);
1491 pVCpu->cpum.s.Hyper.pXStateRC = MMHyperR3ToRC(pVM, pVCpu->cpum.s.Hyper.pXStateR3); /** @todo remove me */
1492
1493 /* Recheck the guest DRx values in raw-mode. */
1494 CPUMRecalcHyperDRx(pVCpu, UINT8_MAX, false);
1495 }
1496}
1497
1498
1499/**
1500 * Terminates the CPUM.
1501 *
1502 * Termination means cleaning up and freeing all resources,
1503 * the VM it self is at this point powered off or suspended.
1504 *
1505 * @returns VBox status code.
1506 * @param pVM The cross context VM structure.
1507 */
1508VMMR3DECL(int) CPUMR3Term(PVM pVM)
1509{
1510#ifdef VBOX_WITH_CRASHDUMP_MAGIC
1511 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1512 {
1513 PVMCPU pVCpu = &pVM->aCpus[i];
1514 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1515
1516 memset(pVCpu->cpum.s.aMagic, 0, sizeof(pVCpu->cpum.s.aMagic));
1517 pVCpu->cpum.s.uMagic = 0;
1518 pCtx->dr[5] = 0;
1519 }
1520#endif
1521
1522 if (pVM->cpum.ro.GuestFeatures.fSvm)
1523 cpumR3FreeVmxHwVirtState(pVM);
1524 else if (pVM->cpum.ro.GuestFeatures.fSvm)
1525 cpumR3FreeSvmHwVirtState(pVM);
1526 return VINF_SUCCESS;
1527}
1528
1529
1530/**
1531 * Resets a virtual CPU.
1532 *
1533 * Used by CPUMR3Reset and CPU hot plugging.
1534 *
1535 * @param pVM The cross context VM structure.
1536 * @param pVCpu The cross context virtual CPU structure of the CPU that is
1537 * being reset. This may differ from the current EMT.
1538 */
1539VMMR3DECL(void) CPUMR3ResetCpu(PVM pVM, PVMCPU pVCpu)
1540{
1541 /** @todo anything different for VCPU > 0? */
1542 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
1543
1544 /*
1545 * Initialize everything to ZERO first.
1546 */
1547 uint32_t fUseFlags = pVCpu->cpum.s.fUseFlags & ~CPUM_USED_FPU_SINCE_REM;
1548
1549 AssertCompile(RTASSERT_OFFSET_OF(CPUMCTX, pXStateR0) < RTASSERT_OFFSET_OF(CPUMCTX, pXStateR3));
1550 AssertCompile(RTASSERT_OFFSET_OF(CPUMCTX, pXStateR0) < RTASSERT_OFFSET_OF(CPUMCTX, pXStateRC));
1551 memset(pCtx, 0, RT_UOFFSETOF(CPUMCTX, pXStateR0));
1552
1553 pVCpu->cpum.s.fUseFlags = fUseFlags;
1554
1555 pCtx->cr0 = X86_CR0_CD | X86_CR0_NW | X86_CR0_ET; //0x60000010
1556 pCtx->eip = 0x0000fff0;
1557 pCtx->edx = 0x00000600; /* P6 processor */
1558 pCtx->eflags.Bits.u1Reserved0 = 1;
1559
1560 pCtx->cs.Sel = 0xf000;
1561 pCtx->cs.ValidSel = 0xf000;
1562 pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
1563 pCtx->cs.u64Base = UINT64_C(0xffff0000);
1564 pCtx->cs.u32Limit = 0x0000ffff;
1565 pCtx->cs.Attr.n.u1DescType = 1; /* code/data segment */
1566 pCtx->cs.Attr.n.u1Present = 1;
1567 pCtx->cs.Attr.n.u4Type = X86_SEL_TYPE_ER_ACC;
1568
1569 pCtx->ds.fFlags = CPUMSELREG_FLAGS_VALID;
1570 pCtx->ds.u32Limit = 0x0000ffff;
1571 pCtx->ds.Attr.n.u1DescType = 1; /* code/data segment */
1572 pCtx->ds.Attr.n.u1Present = 1;
1573 pCtx->ds.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
1574
1575 pCtx->es.fFlags = CPUMSELREG_FLAGS_VALID;
1576 pCtx->es.u32Limit = 0x0000ffff;
1577 pCtx->es.Attr.n.u1DescType = 1; /* code/data segment */
1578 pCtx->es.Attr.n.u1Present = 1;
1579 pCtx->es.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
1580
1581 pCtx->fs.fFlags = CPUMSELREG_FLAGS_VALID;
1582 pCtx->fs.u32Limit = 0x0000ffff;
1583 pCtx->fs.Attr.n.u1DescType = 1; /* code/data segment */
1584 pCtx->fs.Attr.n.u1Present = 1;
1585 pCtx->fs.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
1586
1587 pCtx->gs.fFlags = CPUMSELREG_FLAGS_VALID;
1588 pCtx->gs.u32Limit = 0x0000ffff;
1589 pCtx->gs.Attr.n.u1DescType = 1; /* code/data segment */
1590 pCtx->gs.Attr.n.u1Present = 1;
1591 pCtx->gs.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
1592
1593 pCtx->ss.fFlags = CPUMSELREG_FLAGS_VALID;
1594 pCtx->ss.u32Limit = 0x0000ffff;
1595 pCtx->ss.Attr.n.u1Present = 1;
1596 pCtx->ss.Attr.n.u1DescType = 1; /* code/data segment */
1597 pCtx->ss.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
1598
1599 pCtx->idtr.cbIdt = 0xffff;
1600 pCtx->gdtr.cbGdt = 0xffff;
1601
1602 pCtx->ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
1603 pCtx->ldtr.u32Limit = 0xffff;
1604 pCtx->ldtr.Attr.n.u1Present = 1;
1605 pCtx->ldtr.Attr.n.u4Type = X86_SEL_TYPE_SYS_LDT;
1606
1607 pCtx->tr.fFlags = CPUMSELREG_FLAGS_VALID;
1608 pCtx->tr.u32Limit = 0xffff;
1609 pCtx->tr.Attr.n.u1Present = 1;
1610 pCtx->tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY; /* Deduction, not properly documented by Intel. */
1611
1612 pCtx->dr[6] = X86_DR6_INIT_VAL;
1613 pCtx->dr[7] = X86_DR7_INIT_VAL;
1614
1615 PX86FXSTATE pFpuCtx = &pCtx->pXStateR3->x87; AssertReleaseMsg(RT_VALID_PTR(pFpuCtx), ("%p\n", pFpuCtx));
1616 pFpuCtx->FTW = 0x00; /* All empty (abbridged tag reg edition). */
1617 pFpuCtx->FCW = 0x37f;
1618
1619 /* Intel 64 and IA-32 Architectures Software Developer's Manual Volume 3A, Table 8-1.
1620 IA-32 Processor States Following Power-up, Reset, or INIT */
1621 pFpuCtx->MXCSR = 0x1F80;
1622 pFpuCtx->MXCSR_MASK = pVM->cpum.s.GuestInfo.fMxCsrMask; /** @todo check if REM messes this up... */
1623
1624 pCtx->aXcr[0] = XSAVE_C_X87;
1625 if (pVM->cpum.s.HostFeatures.cbMaxExtendedState >= RT_UOFFSETOF(X86XSAVEAREA, Hdr))
1626 {
1627 /* The entire FXSAVE state needs loading when we switch to XSAVE/XRSTOR
1628 as we don't know what happened before. (Bother optimize later?) */
1629 pCtx->pXStateR3->Hdr.bmXState = XSAVE_C_X87 | XSAVE_C_SSE;
1630 }
1631
1632 /*
1633 * MSRs.
1634 */
1635 /* Init PAT MSR */
1636 pCtx->msrPAT = MSR_IA32_CR_PAT_INIT_VAL;
1637
1638 /* EFER MBZ; see AMD64 Architecture Programmer's Manual Volume 2: Table 14-1. Initial Processor State.
1639 * The Intel docs don't mention it. */
1640 Assert(!pCtx->msrEFER);
1641
1642 /* IA32_MISC_ENABLE - not entirely sure what the init/reset state really
1643 is supposed to be here, just trying provide useful/sensible values. */
1644 PCPUMMSRRANGE pRange = cpumLookupMsrRange(pVM, MSR_IA32_MISC_ENABLE);
1645 if (pRange)
1646 {
1647 pVCpu->cpum.s.GuestMsrs.msr.MiscEnable = MSR_IA32_MISC_ENABLE_BTS_UNAVAIL
1648 | MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL
1649 | (pVM->cpum.s.GuestFeatures.fMonitorMWait ? MSR_IA32_MISC_ENABLE_MONITOR : 0)
1650 | MSR_IA32_MISC_ENABLE_FAST_STRINGS;
1651 pRange->fWrIgnMask |= MSR_IA32_MISC_ENABLE_BTS_UNAVAIL
1652 | MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL;
1653 pRange->fWrGpMask &= ~pVCpu->cpum.s.GuestMsrs.msr.MiscEnable;
1654 }
1655
1656 /** @todo Wire IA32_MISC_ENABLE bit 22 to our NT 4 CPUID trick. */
1657
1658 /** @todo r=ramshankar: Currently broken for SMP as TMCpuTickSet() expects to be
1659 * called from each EMT while we're getting called by CPUMR3Reset()
1660 * iteratively on the same thread. Fix later. */
1661#if 0 /** @todo r=bird: This we will do in TM, not here. */
1662 /* TSC must be 0. Intel spec. Table 9-1. "IA-32 Processor States Following Power-up, Reset, or INIT." */
1663 CPUMSetGuestMsr(pVCpu, MSR_IA32_TSC, 0);
1664#endif
1665
1666
1667 /* C-state control. Guesses. */
1668 pVCpu->cpum.s.GuestMsrs.msr.PkgCStateCfgCtrl = 1 /*C1*/ | RT_BIT_32(25) | RT_BIT_32(26) | RT_BIT_32(27) | RT_BIT_32(28);
1669 /* For Nehalem+ and Atoms, the 0xE2 MSR (MSR_PKG_CST_CONFIG_CONTROL) is documented. For Core 2,
1670 * it's undocumented but exists as MSR_PMG_CST_CONFIG_CONTROL and has similar but not identical
1671 * functionality. The default value must be different due to incompatible write mask.
1672 */
1673 if (CPUMMICROARCH_IS_INTEL_CORE2(pVM->cpum.s.GuestFeatures.enmMicroarch))
1674 pVCpu->cpum.s.GuestMsrs.msr.PkgCStateCfgCtrl = 0x202a01; /* From Mac Pro Harpertown, unlocked. */
1675 else if (pVM->cpum.s.GuestFeatures.enmMicroarch == kCpumMicroarch_Intel_Core_Yonah)
1676 pVCpu->cpum.s.GuestMsrs.msr.PkgCStateCfgCtrl = 0x26740c; /* From MacBookPro1,1. */
1677
1678 /*
1679 * Hardware virtualization state.
1680 */
1681 pCtx->hwvirt.fGif = true;
1682
1683 /* SVM. */
1684 if (pCtx->hwvirt.svm.CTX_SUFF(pVmcb))
1685 {
1686 memset(pCtx->hwvirt.svm.CTX_SUFF(pVmcb), 0, SVM_VMCB_PAGES << PAGE_SHIFT);
1687 pCtx->hwvirt.svm.uMsrHSavePa = 0;
1688 pCtx->hwvirt.svm.uPrevPauseTick = 0;
1689 }
1690}
1691
1692
1693/**
1694 * Resets the CPU.
1695 *
1696 * @returns VINF_SUCCESS.
1697 * @param pVM The cross context VM structure.
1698 */
1699VMMR3DECL(void) CPUMR3Reset(PVM pVM)
1700{
1701 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1702 {
1703 CPUMR3ResetCpu(pVM, &pVM->aCpus[i]);
1704
1705#ifdef VBOX_WITH_CRASHDUMP_MAGIC
1706 PCPUMCTX pCtx = &pVM->aCpus[i].cpum.s.Guest;
1707
1708 /* Magic marker for searching in crash dumps. */
1709 strcpy((char *)pVM->aCpus[i].cpum.s.aMagic, "CPUMCPU Magic");
1710 pVM->aCpus[i].cpum.s.uMagic = UINT64_C(0xDEADBEEFDEADBEEF);
1711 pCtx->dr[5] = UINT64_C(0xDEADBEEFDEADBEEF);
1712#endif
1713 }
1714}
1715
1716
1717
1718
1719/**
1720 * Pass 0 live exec callback.
1721 *
1722 * @returns VINF_SSM_DONT_CALL_AGAIN.
1723 * @param pVM The cross context VM structure.
1724 * @param pSSM The saved state handle.
1725 * @param uPass The pass (0).
1726 */
1727static DECLCALLBACK(int) cpumR3LiveExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uPass)
1728{
1729 AssertReturn(uPass == 0, VERR_SSM_UNEXPECTED_PASS);
1730 cpumR3SaveCpuId(pVM, pSSM);
1731 return VINF_SSM_DONT_CALL_AGAIN;
1732}
1733
1734
1735/**
1736 * Execute state save operation.
1737 *
1738 * @returns VBox status code.
1739 * @param pVM The cross context VM structure.
1740 * @param pSSM SSM operation handle.
1741 */
1742static DECLCALLBACK(int) cpumR3SaveExec(PVM pVM, PSSMHANDLE pSSM)
1743{
1744 /*
1745 * Save.
1746 */
1747 SSMR3PutU32(pSSM, pVM->cCpus);
1748 SSMR3PutU32(pSSM, sizeof(pVM->aCpus[0].cpum.s.GuestMsrs.msr));
1749 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
1750 {
1751 PVMCPU pVCpu = &pVM->aCpus[iCpu];
1752
1753 SSMR3PutStructEx(pSSM, &pVCpu->cpum.s.Hyper, sizeof(pVCpu->cpum.s.Hyper), 0, g_aCpumCtxFields, NULL);
1754
1755 PCPUMCTX pGstCtx = &pVCpu->cpum.s.Guest;
1756 SSMR3PutStructEx(pSSM, pGstCtx, sizeof(*pGstCtx), 0, g_aCpumCtxFields, NULL);
1757 SSMR3PutStructEx(pSSM, &pGstCtx->pXStateR3->x87, sizeof(pGstCtx->pXStateR3->x87), 0, g_aCpumX87Fields, NULL);
1758 if (pGstCtx->fXStateMask != 0)
1759 SSMR3PutStructEx(pSSM, &pGstCtx->pXStateR3->Hdr, sizeof(pGstCtx->pXStateR3->Hdr), 0, g_aCpumXSaveHdrFields, NULL);
1760 if (pGstCtx->fXStateMask & XSAVE_C_YMM)
1761 {
1762 PCX86XSAVEYMMHI pYmmHiCtx = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_YMM_BIT, PCX86XSAVEYMMHI);
1763 SSMR3PutStructEx(pSSM, pYmmHiCtx, sizeof(*pYmmHiCtx), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumYmmHiFields, NULL);
1764 }
1765 if (pGstCtx->fXStateMask & XSAVE_C_BNDREGS)
1766 {
1767 PCX86XSAVEBNDREGS pBndRegs = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_BNDREGS_BIT, PCX86XSAVEBNDREGS);
1768 SSMR3PutStructEx(pSSM, pBndRegs, sizeof(*pBndRegs), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumBndRegsFields, NULL);
1769 }
1770 if (pGstCtx->fXStateMask & XSAVE_C_BNDCSR)
1771 {
1772 PCX86XSAVEBNDCFG pBndCfg = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_BNDCSR_BIT, PCX86XSAVEBNDCFG);
1773 SSMR3PutStructEx(pSSM, pBndCfg, sizeof(*pBndCfg), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumBndCfgFields, NULL);
1774 }
1775 if (pGstCtx->fXStateMask & XSAVE_C_ZMM_HI256)
1776 {
1777 PCX86XSAVEZMMHI256 pZmmHi256 = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_ZMM_HI256_BIT, PCX86XSAVEZMMHI256);
1778 SSMR3PutStructEx(pSSM, pZmmHi256, sizeof(*pZmmHi256), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumZmmHi256Fields, NULL);
1779 }
1780 if (pGstCtx->fXStateMask & XSAVE_C_ZMM_16HI)
1781 {
1782 PCX86XSAVEZMM16HI pZmm16Hi = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_ZMM_16HI_BIT, PCX86XSAVEZMM16HI);
1783 SSMR3PutStructEx(pSSM, pZmm16Hi, sizeof(*pZmm16Hi), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumZmm16HiFields, NULL);
1784 }
1785 if (pVM->cpum.ro.GuestFeatures.fSvm)
1786 {
1787 Assert(pGstCtx->hwvirt.svm.CTX_SUFF(pVmcb));
1788 SSMR3PutU64(pSSM, pGstCtx->hwvirt.svm.uMsrHSavePa);
1789 SSMR3PutGCPhys(pSSM, pGstCtx->hwvirt.svm.GCPhysVmcb);
1790 SSMR3PutU64(pSSM, pGstCtx->hwvirt.svm.uPrevPauseTick);
1791 SSMR3PutU16(pSSM, pGstCtx->hwvirt.svm.cPauseFilter);
1792 SSMR3PutU16(pSSM, pGstCtx->hwvirt.svm.cPauseFilterThreshold);
1793 SSMR3PutBool(pSSM, pGstCtx->hwvirt.svm.fInterceptEvents);
1794 SSMR3PutStructEx(pSSM, &pGstCtx->hwvirt.svm.HostState, sizeof(pGstCtx->hwvirt.svm.HostState), 0 /* fFlags */,
1795 g_aSvmHwvirtHostState, NULL /* pvUser */);
1796 SSMR3PutMem(pSSM, pGstCtx->hwvirt.svm.pVmcbR3, SVM_VMCB_PAGES << X86_PAGE_4K_SHIFT);
1797 SSMR3PutMem(pSSM, pGstCtx->hwvirt.svm.pvMsrBitmapR3, SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT);
1798 SSMR3PutMem(pSSM, pGstCtx->hwvirt.svm.pvIoBitmapR3, SVM_IOPM_PAGES << X86_PAGE_4K_SHIFT);
1799 SSMR3PutU32(pSSM, pGstCtx->hwvirt.fLocalForcedActions);
1800 SSMR3PutBool(pSSM, pGstCtx->hwvirt.fGif);
1801 }
1802 SSMR3PutU32(pSSM, pVCpu->cpum.s.fUseFlags);
1803 SSMR3PutU32(pSSM, pVCpu->cpum.s.fChanged);
1804 AssertCompileSizeAlignment(pVCpu->cpum.s.GuestMsrs.msr, sizeof(uint64_t));
1805 SSMR3PutMem(pSSM, &pVCpu->cpum.s.GuestMsrs, sizeof(pVCpu->cpum.s.GuestMsrs.msr));
1806 }
1807
1808 cpumR3SaveCpuId(pVM, pSSM);
1809 return VINF_SUCCESS;
1810}
1811
1812
1813/**
1814 * @callback_method_impl{FNSSMINTLOADPREP}
1815 */
1816static DECLCALLBACK(int) cpumR3LoadPrep(PVM pVM, PSSMHANDLE pSSM)
1817{
1818 NOREF(pSSM);
1819 pVM->cpum.s.fPendingRestore = true;
1820 return VINF_SUCCESS;
1821}
1822
1823
1824/**
1825 * @callback_method_impl{FNSSMINTLOADEXEC}
1826 */
1827static DECLCALLBACK(int) cpumR3LoadExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
1828{
1829 int rc; /* Only for AssertRCReturn use. */
1830
1831 /*
1832 * Validate version.
1833 */
1834 if ( uVersion != CPUM_SAVED_STATE_VERSION_HWVIRT_SVM
1835 && uVersion != CPUM_SAVED_STATE_VERSION_XSAVE
1836 && uVersion != CPUM_SAVED_STATE_VERSION_GOOD_CPUID_COUNT
1837 && uVersion != CPUM_SAVED_STATE_VERSION_BAD_CPUID_COUNT
1838 && uVersion != CPUM_SAVED_STATE_VERSION_PUT_STRUCT
1839 && uVersion != CPUM_SAVED_STATE_VERSION_MEM
1840 && uVersion != CPUM_SAVED_STATE_VERSION_NO_MSR_SIZE
1841 && uVersion != CPUM_SAVED_STATE_VERSION_VER3_2
1842 && uVersion != CPUM_SAVED_STATE_VERSION_VER3_0
1843 && uVersion != CPUM_SAVED_STATE_VERSION_VER2_1_NOMSR
1844 && uVersion != CPUM_SAVED_STATE_VERSION_VER2_0
1845 && uVersion != CPUM_SAVED_STATE_VERSION_VER1_6)
1846 {
1847 AssertMsgFailed(("cpumR3LoadExec: Invalid version uVersion=%d!\n", uVersion));
1848 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
1849 }
1850
1851 if (uPass == SSM_PASS_FINAL)
1852 {
1853 /*
1854 * Set the size of RTGCPTR for SSMR3GetGCPtr. (Only necessary for
1855 * really old SSM file versions.)
1856 */
1857 if (uVersion == CPUM_SAVED_STATE_VERSION_VER1_6)
1858 SSMR3HandleSetGCPtrSize(pSSM, sizeof(RTGCPTR32));
1859 else if (uVersion <= CPUM_SAVED_STATE_VERSION_VER3_0)
1860 SSMR3HandleSetGCPtrSize(pSSM, HC_ARCH_BITS == 32 ? sizeof(RTGCPTR32) : sizeof(RTGCPTR));
1861
1862 /*
1863 * Figure x86 and ctx field definitions to use for older states.
1864 */
1865 uint32_t const fLoad = uVersion > CPUM_SAVED_STATE_VERSION_MEM ? 0 : SSMSTRUCT_FLAGS_MEM_BAND_AID_RELAXED;
1866 PCSSMFIELD paCpumCtx1Fields = g_aCpumX87Fields;
1867 PCSSMFIELD paCpumCtx2Fields = g_aCpumCtxFields;
1868 if (uVersion == CPUM_SAVED_STATE_VERSION_VER1_6)
1869 {
1870 paCpumCtx1Fields = g_aCpumX87FieldsV16;
1871 paCpumCtx2Fields = g_aCpumCtxFieldsV16;
1872 }
1873 else if (uVersion <= CPUM_SAVED_STATE_VERSION_MEM)
1874 {
1875 paCpumCtx1Fields = g_aCpumX87FieldsMem;
1876 paCpumCtx2Fields = g_aCpumCtxFieldsMem;
1877 }
1878
1879 /*
1880 * The hyper state used to preceed the CPU count. Starting with
1881 * XSAVE it was moved down till after we've got the count.
1882 */
1883 if (uVersion < CPUM_SAVED_STATE_VERSION_XSAVE)
1884 {
1885 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
1886 {
1887 PVMCPU pVCpu = &pVM->aCpus[iCpu];
1888 X86FXSTATE Ign;
1889 SSMR3GetStructEx(pSSM, &Ign, sizeof(Ign), fLoad | SSMSTRUCT_FLAGS_NO_TAIL_MARKER, paCpumCtx1Fields, NULL);
1890 uint64_t uCR3 = pVCpu->cpum.s.Hyper.cr3;
1891 uint64_t uRSP = pVCpu->cpum.s.Hyper.rsp; /* see VMMR3Relocate(). */
1892 SSMR3GetStructEx(pSSM, &pVCpu->cpum.s.Hyper, sizeof(pVCpu->cpum.s.Hyper),
1893 fLoad | SSMSTRUCT_FLAGS_NO_LEAD_MARKER, paCpumCtx2Fields, NULL);
1894 pVCpu->cpum.s.Hyper.cr3 = uCR3;
1895 pVCpu->cpum.s.Hyper.rsp = uRSP;
1896 }
1897 }
1898
1899 if (uVersion >= CPUM_SAVED_STATE_VERSION_VER2_1_NOMSR)
1900 {
1901 uint32_t cCpus;
1902 rc = SSMR3GetU32(pSSM, &cCpus); AssertRCReturn(rc, rc);
1903 AssertLogRelMsgReturn(cCpus == pVM->cCpus, ("Mismatching CPU counts: saved: %u; configured: %u \n", cCpus, pVM->cCpus),
1904 VERR_SSM_UNEXPECTED_DATA);
1905 }
1906 AssertLogRelMsgReturn( uVersion > CPUM_SAVED_STATE_VERSION_VER2_0
1907 || pVM->cCpus == 1,
1908 ("cCpus=%u\n", pVM->cCpus),
1909 VERR_SSM_UNEXPECTED_DATA);
1910
1911 uint32_t cbMsrs = 0;
1912 if (uVersion > CPUM_SAVED_STATE_VERSION_NO_MSR_SIZE)
1913 {
1914 rc = SSMR3GetU32(pSSM, &cbMsrs); AssertRCReturn(rc, rc);
1915 AssertLogRelMsgReturn(RT_ALIGN(cbMsrs, sizeof(uint64_t)) == cbMsrs, ("Size of MSRs is misaligned: %#x\n", cbMsrs),
1916 VERR_SSM_UNEXPECTED_DATA);
1917 AssertLogRelMsgReturn(cbMsrs <= sizeof(CPUMCTXMSRS) && cbMsrs > 0, ("Size of MSRs is out of range: %#x\n", cbMsrs),
1918 VERR_SSM_UNEXPECTED_DATA);
1919 }
1920
1921 /*
1922 * Do the per-CPU restoring.
1923 */
1924 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
1925 {
1926 PVMCPU pVCpu = &pVM->aCpus[iCpu];
1927 PCPUMCTX pGstCtx = &pVCpu->cpum.s.Guest;
1928
1929 if (uVersion >= CPUM_SAVED_STATE_VERSION_XSAVE)
1930 {
1931 /*
1932 * The XSAVE saved state layout moved the hyper state down here.
1933 */
1934 uint64_t uCR3 = pVCpu->cpum.s.Hyper.cr3;
1935 uint64_t uRSP = pVCpu->cpum.s.Hyper.rsp; /* see VMMR3Relocate(). */
1936 rc = SSMR3GetStructEx(pSSM, &pVCpu->cpum.s.Hyper, sizeof(pVCpu->cpum.s.Hyper), 0, g_aCpumCtxFields, NULL);
1937 pVCpu->cpum.s.Hyper.cr3 = uCR3;
1938 pVCpu->cpum.s.Hyper.rsp = uRSP;
1939 AssertRCReturn(rc, rc);
1940
1941 /*
1942 * Start by restoring the CPUMCTX structure and the X86FXSAVE bits of the extended state.
1943 */
1944 rc = SSMR3GetStructEx(pSSM, pGstCtx, sizeof(*pGstCtx), 0, g_aCpumCtxFields, NULL);
1945 rc = SSMR3GetStructEx(pSSM, &pGstCtx->pXStateR3->x87, sizeof(pGstCtx->pXStateR3->x87), 0, g_aCpumX87Fields, NULL);
1946 AssertRCReturn(rc, rc);
1947
1948 /* Check that the xsave/xrstor mask is valid (invalid results in #GP). */
1949 if (pGstCtx->fXStateMask != 0)
1950 {
1951 AssertLogRelMsgReturn(!(pGstCtx->fXStateMask & ~pVM->cpum.s.fXStateGuestMask),
1952 ("fXStateMask=%#RX64 fXStateGuestMask=%#RX64\n",
1953 pGstCtx->fXStateMask, pVM->cpum.s.fXStateGuestMask),
1954 VERR_CPUM_INCOMPATIBLE_XSAVE_COMP_MASK);
1955 AssertLogRelMsgReturn(pGstCtx->fXStateMask & XSAVE_C_X87,
1956 ("fXStateMask=%#RX64\n", pGstCtx->fXStateMask), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
1957 AssertLogRelMsgReturn((pGstCtx->fXStateMask & (XSAVE_C_SSE | XSAVE_C_YMM)) != XSAVE_C_YMM,
1958 ("fXStateMask=%#RX64\n", pGstCtx->fXStateMask), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
1959 AssertLogRelMsgReturn( (pGstCtx->fXStateMask & (XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI)) == 0
1960 || (pGstCtx->fXStateMask & (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI))
1961 == (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI),
1962 ("fXStateMask=%#RX64\n", pGstCtx->fXStateMask), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
1963 }
1964
1965 /* Check that the XCR0 mask is valid (invalid results in #GP). */
1966 AssertLogRelMsgReturn(pGstCtx->aXcr[0] & XSAVE_C_X87, ("xcr0=%#RX64\n", pGstCtx->aXcr[0]), VERR_CPUM_INVALID_XCR0);
1967 if (pGstCtx->aXcr[0] != XSAVE_C_X87)
1968 {
1969 AssertLogRelMsgReturn(!(pGstCtx->aXcr[0] & ~(pGstCtx->fXStateMask | XSAVE_C_X87)),
1970 ("xcr0=%#RX64 fXStateMask=%#RX64\n", pGstCtx->aXcr[0], pGstCtx->fXStateMask),
1971 VERR_CPUM_INVALID_XCR0);
1972 AssertLogRelMsgReturn(pGstCtx->aXcr[0] & XSAVE_C_X87,
1973 ("xcr0=%#RX64\n", pGstCtx->aXcr[0]), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
1974 AssertLogRelMsgReturn((pGstCtx->aXcr[0] & (XSAVE_C_SSE | XSAVE_C_YMM)) != XSAVE_C_YMM,
1975 ("xcr0=%#RX64\n", pGstCtx->aXcr[0]), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
1976 AssertLogRelMsgReturn( (pGstCtx->aXcr[0] & (XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI)) == 0
1977 || (pGstCtx->aXcr[0] & (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI))
1978 == (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI),
1979 ("xcr0=%#RX64\n", pGstCtx->aXcr[0]), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
1980 }
1981
1982 /* Check that the XCR1 is zero, as we don't implement it yet. */
1983 AssertLogRelMsgReturn(!pGstCtx->aXcr[1], ("xcr1=%#RX64\n", pGstCtx->aXcr[1]), VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
1984
1985 /*
1986 * Restore the individual extended state components we support.
1987 */
1988 if (pGstCtx->fXStateMask != 0)
1989 {
1990 rc = SSMR3GetStructEx(pSSM, &pGstCtx->pXStateR3->Hdr, sizeof(pGstCtx->pXStateR3->Hdr),
1991 0, g_aCpumXSaveHdrFields, NULL);
1992 AssertRCReturn(rc, rc);
1993 AssertLogRelMsgReturn(!(pGstCtx->pXStateR3->Hdr.bmXState & ~pGstCtx->fXStateMask),
1994 ("bmXState=%#RX64 fXStateMask=%#RX64\n",
1995 pGstCtx->pXStateR3->Hdr.bmXState, pGstCtx->fXStateMask),
1996 VERR_CPUM_INVALID_XSAVE_HDR);
1997 }
1998 if (pGstCtx->fXStateMask & XSAVE_C_YMM)
1999 {
2000 PX86XSAVEYMMHI pYmmHiCtx = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_YMM_BIT, PX86XSAVEYMMHI);
2001 SSMR3GetStructEx(pSSM, pYmmHiCtx, sizeof(*pYmmHiCtx), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumYmmHiFields, NULL);
2002 }
2003 if (pGstCtx->fXStateMask & XSAVE_C_BNDREGS)
2004 {
2005 PX86XSAVEBNDREGS pBndRegs = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_BNDREGS_BIT, PX86XSAVEBNDREGS);
2006 SSMR3GetStructEx(pSSM, pBndRegs, sizeof(*pBndRegs), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumBndRegsFields, NULL);
2007 }
2008 if (pGstCtx->fXStateMask & XSAVE_C_BNDCSR)
2009 {
2010 PX86XSAVEBNDCFG pBndCfg = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_BNDCSR_BIT, PX86XSAVEBNDCFG);
2011 SSMR3GetStructEx(pSSM, pBndCfg, sizeof(*pBndCfg), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumBndCfgFields, NULL);
2012 }
2013 if (pGstCtx->fXStateMask & XSAVE_C_ZMM_HI256)
2014 {
2015 PX86XSAVEZMMHI256 pZmmHi256 = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_ZMM_HI256_BIT, PX86XSAVEZMMHI256);
2016 SSMR3GetStructEx(pSSM, pZmmHi256, sizeof(*pZmmHi256), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumZmmHi256Fields, NULL);
2017 }
2018 if (pGstCtx->fXStateMask & XSAVE_C_ZMM_16HI)
2019 {
2020 PX86XSAVEZMM16HI pZmm16Hi = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_ZMM_16HI_BIT, PX86XSAVEZMM16HI);
2021 SSMR3GetStructEx(pSSM, pZmm16Hi, sizeof(*pZmm16Hi), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumZmm16HiFields, NULL);
2022 }
2023 if (uVersion >= CPUM_SAVED_STATE_VERSION_HWVIRT_SVM)
2024 {
2025 if (pVM->cpum.ro.GuestFeatures.fSvm)
2026 {
2027 Assert(pGstCtx->hwvirt.svm.CTX_SUFF(pVmcb));
2028 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.svm.uMsrHSavePa);
2029 SSMR3GetGCPhys(pSSM, &pGstCtx->hwvirt.svm.GCPhysVmcb);
2030 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.svm.uPrevPauseTick);
2031 SSMR3GetU16(pSSM, &pGstCtx->hwvirt.svm.cPauseFilter);
2032 SSMR3GetU16(pSSM, &pGstCtx->hwvirt.svm.cPauseFilterThreshold);
2033 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.svm.fInterceptEvents);
2034 SSMR3GetStructEx(pSSM, &pGstCtx->hwvirt.svm.HostState, sizeof(pGstCtx->hwvirt.svm.HostState),
2035 0 /* fFlags */, g_aSvmHwvirtHostState, NULL /* pvUser */);
2036 SSMR3GetMem(pSSM, pGstCtx->hwvirt.svm.pVmcbR3, SVM_VMCB_PAGES << X86_PAGE_4K_SHIFT);
2037 SSMR3GetMem(pSSM, pGstCtx->hwvirt.svm.pvMsrBitmapR3, SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT);
2038 SSMR3GetMem(pSSM, pGstCtx->hwvirt.svm.pvIoBitmapR3, SVM_IOPM_PAGES << X86_PAGE_4K_SHIFT);
2039 SSMR3GetU32(pSSM, &pGstCtx->hwvirt.fLocalForcedActions);
2040 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.fGif);
2041 }
2042 }
2043 }
2044 else
2045 {
2046 /*
2047 * Pre XSAVE saved state.
2048 */
2049 SSMR3GetStructEx(pSSM, &pGstCtx->pXStateR3->x87, sizeof(pGstCtx->pXStateR3->x87),
2050 fLoad | SSMSTRUCT_FLAGS_NO_TAIL_MARKER, paCpumCtx1Fields, NULL);
2051 SSMR3GetStructEx(pSSM, pGstCtx, sizeof(*pGstCtx), fLoad | SSMSTRUCT_FLAGS_NO_LEAD_MARKER, paCpumCtx2Fields, NULL);
2052 }
2053
2054 /*
2055 * Restore a couple of flags and the MSRs.
2056 */
2057 SSMR3GetU32(pSSM, &pVCpu->cpum.s.fUseFlags);
2058 SSMR3GetU32(pSSM, &pVCpu->cpum.s.fChanged);
2059
2060 rc = VINF_SUCCESS;
2061 if (uVersion > CPUM_SAVED_STATE_VERSION_NO_MSR_SIZE)
2062 rc = SSMR3GetMem(pSSM, &pVCpu->cpum.s.GuestMsrs.au64[0], cbMsrs);
2063 else if (uVersion >= CPUM_SAVED_STATE_VERSION_VER3_0)
2064 {
2065 SSMR3GetMem(pSSM, &pVCpu->cpum.s.GuestMsrs.au64[0], 2 * sizeof(uint64_t)); /* Restore two MSRs. */
2066 rc = SSMR3Skip(pSSM, 62 * sizeof(uint64_t));
2067 }
2068 AssertRCReturn(rc, rc);
2069
2070 /* REM and other may have cleared must-be-one fields in DR6 and
2071 DR7, fix these. */
2072 pGstCtx->dr[6] &= ~(X86_DR6_RAZ_MASK | X86_DR6_MBZ_MASK);
2073 pGstCtx->dr[6] |= X86_DR6_RA1_MASK;
2074 pGstCtx->dr[7] &= ~(X86_DR7_RAZ_MASK | X86_DR7_MBZ_MASK);
2075 pGstCtx->dr[7] |= X86_DR7_RA1_MASK;
2076 }
2077
2078 /* Older states does not have the internal selector register flags
2079 and valid selector value. Supply those. */
2080 if (uVersion <= CPUM_SAVED_STATE_VERSION_MEM)
2081 {
2082 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
2083 {
2084 PVMCPU pVCpu = &pVM->aCpus[iCpu];
2085 bool const fValid = !VM_IS_RAW_MODE_ENABLED(pVM)
2086 || ( uVersion > CPUM_SAVED_STATE_VERSION_VER3_2
2087 && !(pVCpu->cpum.s.fChanged & CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID));
2088 PCPUMSELREG paSelReg = CPUMCTX_FIRST_SREG(&pVCpu->cpum.s.Guest);
2089 if (fValid)
2090 {
2091 for (uint32_t iSelReg = 0; iSelReg < X86_SREG_COUNT; iSelReg++)
2092 {
2093 paSelReg[iSelReg].fFlags = CPUMSELREG_FLAGS_VALID;
2094 paSelReg[iSelReg].ValidSel = paSelReg[iSelReg].Sel;
2095 }
2096
2097 pVCpu->cpum.s.Guest.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
2098 pVCpu->cpum.s.Guest.ldtr.ValidSel = pVCpu->cpum.s.Guest.ldtr.Sel;
2099 }
2100 else
2101 {
2102 for (uint32_t iSelReg = 0; iSelReg < X86_SREG_COUNT; iSelReg++)
2103 {
2104 paSelReg[iSelReg].fFlags = 0;
2105 paSelReg[iSelReg].ValidSel = 0;
2106 }
2107
2108 /* This might not be 104% correct, but I think it's close
2109 enough for all practical purposes... (REM always loaded
2110 LDTR registers.) */
2111 pVCpu->cpum.s.Guest.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
2112 pVCpu->cpum.s.Guest.ldtr.ValidSel = pVCpu->cpum.s.Guest.ldtr.Sel;
2113 }
2114 pVCpu->cpum.s.Guest.tr.fFlags = CPUMSELREG_FLAGS_VALID;
2115 pVCpu->cpum.s.Guest.tr.ValidSel = pVCpu->cpum.s.Guest.tr.Sel;
2116 }
2117 }
2118
2119 /* Clear CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID. */
2120 if ( uVersion > CPUM_SAVED_STATE_VERSION_VER3_2
2121 && uVersion <= CPUM_SAVED_STATE_VERSION_MEM)
2122 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
2123 pVM->aCpus[iCpu].cpum.s.fChanged &= CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID;
2124
2125 /*
2126 * A quick sanity check.
2127 */
2128 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
2129 {
2130 PVMCPU pVCpu = &pVM->aCpus[iCpu];
2131 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.es.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
2132 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.cs.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
2133 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.ss.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
2134 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.ds.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
2135 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.fs.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
2136 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.gs.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
2137 }
2138 }
2139
2140 pVM->cpum.s.fPendingRestore = false;
2141
2142 /*
2143 * Guest CPUIDs.
2144 */
2145 if (uVersion >= CPUM_SAVED_STATE_VERSION_VER3_2)
2146 return cpumR3LoadCpuId(pVM, pSSM, uVersion);
2147 return cpumR3LoadCpuIdPre32(pVM, pSSM, uVersion);
2148}
2149
2150
2151/**
2152 * @callback_method_impl{FNSSMINTLOADDONE}
2153 */
2154static DECLCALLBACK(int) cpumR3LoadDone(PVM pVM, PSSMHANDLE pSSM)
2155{
2156 if (RT_FAILURE(SSMR3HandleGetStatus(pSSM)))
2157 return VINF_SUCCESS;
2158
2159 /* just check this since we can. */ /** @todo Add a SSM unit flag for indicating that it's mandatory during a restore. */
2160 if (pVM->cpum.s.fPendingRestore)
2161 {
2162 LogRel(("CPUM: Missing state!\n"));
2163 return VERR_INTERNAL_ERROR_2;
2164 }
2165
2166 bool const fSupportsLongMode = VMR3IsLongModeAllowed(pVM);
2167 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2168 {
2169 PVMCPU pVCpu = &pVM->aCpus[idCpu];
2170
2171 /* Notify PGM of the NXE states in case they've changed. */
2172 PGMNotifyNxeChanged(pVCpu, RT_BOOL(pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_NXE));
2173
2174 /* During init. this is done in CPUMR3InitCompleted(). */
2175 if (fSupportsLongMode)
2176 pVCpu->cpum.s.fUseFlags |= CPUM_USE_SUPPORTS_LONGMODE;
2177 }
2178 return VINF_SUCCESS;
2179}
2180
2181
2182/**
2183 * Checks if the CPUM state restore is still pending.
2184 *
2185 * @returns true / false.
2186 * @param pVM The cross context VM structure.
2187 */
2188VMMDECL(bool) CPUMR3IsStateRestorePending(PVM pVM)
2189{
2190 return pVM->cpum.s.fPendingRestore;
2191}
2192
2193
2194/**
2195 * Formats the EFLAGS value into mnemonics.
2196 *
2197 * @param pszEFlags Where to write the mnemonics. (Assumes sufficient buffer space.)
2198 * @param efl The EFLAGS value.
2199 */
2200static void cpumR3InfoFormatFlags(char *pszEFlags, uint32_t efl)
2201{
2202 /*
2203 * Format the flags.
2204 */
2205 static const struct
2206 {
2207 const char *pszSet; const char *pszClear; uint32_t fFlag;
2208 } s_aFlags[] =
2209 {
2210 { "vip",NULL, X86_EFL_VIP },
2211 { "vif",NULL, X86_EFL_VIF },
2212 { "ac", NULL, X86_EFL_AC },
2213 { "vm", NULL, X86_EFL_VM },
2214 { "rf", NULL, X86_EFL_RF },
2215 { "nt", NULL, X86_EFL_NT },
2216 { "ov", "nv", X86_EFL_OF },
2217 { "dn", "up", X86_EFL_DF },
2218 { "ei", "di", X86_EFL_IF },
2219 { "tf", NULL, X86_EFL_TF },
2220 { "nt", "pl", X86_EFL_SF },
2221 { "nz", "zr", X86_EFL_ZF },
2222 { "ac", "na", X86_EFL_AF },
2223 { "po", "pe", X86_EFL_PF },
2224 { "cy", "nc", X86_EFL_CF },
2225 };
2226 char *psz = pszEFlags;
2227 for (unsigned i = 0; i < RT_ELEMENTS(s_aFlags); i++)
2228 {
2229 const char *pszAdd = s_aFlags[i].fFlag & efl ? s_aFlags[i].pszSet : s_aFlags[i].pszClear;
2230 if (pszAdd)
2231 {
2232 strcpy(psz, pszAdd);
2233 psz += strlen(pszAdd);
2234 *psz++ = ' ';
2235 }
2236 }
2237 psz[-1] = '\0';
2238}
2239
2240
2241/**
2242 * Formats a full register dump.
2243 *
2244 * @param pVM The cross context VM structure.
2245 * @param pCtx The context to format.
2246 * @param pCtxCore The context core to format.
2247 * @param pHlp Output functions.
2248 * @param enmType The dump type.
2249 * @param pszPrefix Register name prefix.
2250 */
2251static void cpumR3InfoOne(PVM pVM, PCPUMCTX pCtx, PCCPUMCTXCORE pCtxCore, PCDBGFINFOHLP pHlp, CPUMDUMPTYPE enmType,
2252 const char *pszPrefix)
2253{
2254 NOREF(pVM);
2255
2256 /*
2257 * Format the EFLAGS.
2258 */
2259 uint32_t efl = pCtxCore->eflags.u32;
2260 char szEFlags[80];
2261 cpumR3InfoFormatFlags(&szEFlags[0], efl);
2262
2263 /*
2264 * Format the registers.
2265 */
2266 switch (enmType)
2267 {
2268 case CPUMDUMPTYPE_TERSE:
2269 if (CPUMIsGuestIn64BitCodeEx(pCtx))
2270 pHlp->pfnPrintf(pHlp,
2271 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
2272 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
2273 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
2274 "%sr14=%016RX64 %sr15=%016RX64\n"
2275 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
2276 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %seflags=%08x\n",
2277 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
2278 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
2279 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
2280 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2281 pszPrefix, pCtxCore->cs.Sel, pszPrefix, pCtxCore->ss.Sel, pszPrefix, pCtxCore->ds.Sel, pszPrefix, pCtxCore->es.Sel,
2282 pszPrefix, pCtxCore->fs.Sel, pszPrefix, pCtxCore->gs.Sel, pszPrefix, efl);
2283 else
2284 pHlp->pfnPrintf(pHlp,
2285 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
2286 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
2287 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %seflags=%08x\n",
2288 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
2289 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2290 pszPrefix, pCtxCore->cs.Sel, pszPrefix, pCtxCore->ss.Sel, pszPrefix, pCtxCore->ds.Sel, pszPrefix, pCtxCore->es.Sel,
2291 pszPrefix, pCtxCore->fs.Sel, pszPrefix, pCtxCore->gs.Sel, pszPrefix, efl);
2292 break;
2293
2294 case CPUMDUMPTYPE_DEFAULT:
2295 if (CPUMIsGuestIn64BitCodeEx(pCtx))
2296 pHlp->pfnPrintf(pHlp,
2297 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
2298 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
2299 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
2300 "%sr14=%016RX64 %sr15=%016RX64\n"
2301 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
2302 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %str=%04x %seflags=%08x\n"
2303 "%scr0=%08RX64 %scr2=%08RX64 %scr3=%08RX64 %scr4=%08RX64 %sgdtr=%016RX64:%04x %sldtr=%04x\n"
2304 ,
2305 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
2306 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
2307 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
2308 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2309 pszPrefix, pCtxCore->cs.Sel, pszPrefix, pCtxCore->ss.Sel, pszPrefix, pCtxCore->ds.Sel, pszPrefix, pCtxCore->es.Sel,
2310 pszPrefix, pCtxCore->fs.Sel, pszPrefix, pCtxCore->gs.Sel, pszPrefix, pCtx->tr.Sel, pszPrefix, efl,
2311 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
2312 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->ldtr.Sel);
2313 else
2314 pHlp->pfnPrintf(pHlp,
2315 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
2316 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
2317 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %str=%04x %seflags=%08x\n"
2318 "%scr0=%08RX64 %scr2=%08RX64 %scr3=%08RX64 %scr4=%08RX64 %sgdtr=%08RX64:%04x %sldtr=%04x\n"
2319 ,
2320 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
2321 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2322 pszPrefix, pCtxCore->cs.Sel, pszPrefix, pCtxCore->ss.Sel, pszPrefix, pCtxCore->ds.Sel, pszPrefix, pCtxCore->es.Sel,
2323 pszPrefix, pCtxCore->fs.Sel, pszPrefix, pCtxCore->gs.Sel, pszPrefix, pCtx->tr.Sel, pszPrefix, efl,
2324 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
2325 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->ldtr.Sel);
2326 break;
2327
2328 case CPUMDUMPTYPE_VERBOSE:
2329 if (CPUMIsGuestIn64BitCodeEx(pCtx))
2330 pHlp->pfnPrintf(pHlp,
2331 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
2332 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
2333 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
2334 "%sr14=%016RX64 %sr15=%016RX64\n"
2335 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
2336 "%scs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2337 "%sds={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2338 "%ses={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2339 "%sfs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2340 "%sgs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2341 "%sss={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2342 "%scr0=%016RX64 %scr2=%016RX64 %scr3=%016RX64 %scr4=%016RX64\n"
2343 "%sdr0=%016RX64 %sdr1=%016RX64 %sdr2=%016RX64 %sdr3=%016RX64\n"
2344 "%sdr4=%016RX64 %sdr5=%016RX64 %sdr6=%016RX64 %sdr7=%016RX64\n"
2345 "%sgdtr=%016RX64:%04x %sidtr=%016RX64:%04x %seflags=%08x\n"
2346 "%sldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
2347 "%str ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
2348 "%sSysEnter={cs=%04llx eip=%016RX64 esp=%016RX64}\n"
2349 ,
2350 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
2351 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
2352 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
2353 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2354 pszPrefix, pCtxCore->cs.Sel, pCtx->cs.u64Base, pCtx->cs.u32Limit, pCtx->cs.Attr.u,
2355 pszPrefix, pCtxCore->ds.Sel, pCtx->ds.u64Base, pCtx->ds.u32Limit, pCtx->ds.Attr.u,
2356 pszPrefix, pCtxCore->es.Sel, pCtx->es.u64Base, pCtx->es.u32Limit, pCtx->es.Attr.u,
2357 pszPrefix, pCtxCore->fs.Sel, pCtx->fs.u64Base, pCtx->fs.u32Limit, pCtx->fs.Attr.u,
2358 pszPrefix, pCtxCore->gs.Sel, pCtx->gs.u64Base, pCtx->gs.u32Limit, pCtx->gs.Attr.u,
2359 pszPrefix, pCtxCore->ss.Sel, pCtx->ss.u64Base, pCtx->ss.u32Limit, pCtx->ss.Attr.u,
2360 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
2361 pszPrefix, pCtx->dr[0], pszPrefix, pCtx->dr[1], pszPrefix, pCtx->dr[2], pszPrefix, pCtx->dr[3],
2362 pszPrefix, pCtx->dr[4], pszPrefix, pCtx->dr[5], pszPrefix, pCtx->dr[6], pszPrefix, pCtx->dr[7],
2363 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, pszPrefix, efl,
2364 pszPrefix, pCtx->ldtr.Sel, pCtx->ldtr.u64Base, pCtx->ldtr.u32Limit, pCtx->ldtr.Attr.u,
2365 pszPrefix, pCtx->tr.Sel, pCtx->tr.u64Base, pCtx->tr.u32Limit, pCtx->tr.Attr.u,
2366 pszPrefix, pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
2367 else
2368 pHlp->pfnPrintf(pHlp,
2369 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
2370 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
2371 "%scs={%04x base=%016RX64 limit=%08x flags=%08x} %sdr0=%08RX64 %sdr1=%08RX64\n"
2372 "%sds={%04x base=%016RX64 limit=%08x flags=%08x} %sdr2=%08RX64 %sdr3=%08RX64\n"
2373 "%ses={%04x base=%016RX64 limit=%08x flags=%08x} %sdr4=%08RX64 %sdr5=%08RX64\n"
2374 "%sfs={%04x base=%016RX64 limit=%08x flags=%08x} %sdr6=%08RX64 %sdr7=%08RX64\n"
2375 "%sgs={%04x base=%016RX64 limit=%08x flags=%08x} %scr0=%08RX64 %scr2=%08RX64\n"
2376 "%sss={%04x base=%016RX64 limit=%08x flags=%08x} %scr3=%08RX64 %scr4=%08RX64\n"
2377 "%sgdtr=%016RX64:%04x %sidtr=%016RX64:%04x %seflags=%08x\n"
2378 "%sldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
2379 "%str ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
2380 "%sSysEnter={cs=%04llx eip=%08llx esp=%08llx}\n"
2381 ,
2382 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
2383 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2384 pszPrefix, pCtxCore->cs.Sel, pCtx->cs.u64Base, pCtx->cs.u32Limit, pCtx->cs.Attr.u, pszPrefix, pCtx->dr[0], pszPrefix, pCtx->dr[1],
2385 pszPrefix, pCtxCore->ds.Sel, pCtx->ds.u64Base, pCtx->ds.u32Limit, pCtx->ds.Attr.u, pszPrefix, pCtx->dr[2], pszPrefix, pCtx->dr[3],
2386 pszPrefix, pCtxCore->es.Sel, pCtx->es.u64Base, pCtx->es.u32Limit, pCtx->es.Attr.u, pszPrefix, pCtx->dr[4], pszPrefix, pCtx->dr[5],
2387 pszPrefix, pCtxCore->fs.Sel, pCtx->fs.u64Base, pCtx->fs.u32Limit, pCtx->fs.Attr.u, pszPrefix, pCtx->dr[6], pszPrefix, pCtx->dr[7],
2388 pszPrefix, pCtxCore->gs.Sel, pCtx->gs.u64Base, pCtx->gs.u32Limit, pCtx->gs.Attr.u, pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2,
2389 pszPrefix, pCtxCore->ss.Sel, pCtx->ss.u64Base, pCtx->ss.u32Limit, pCtx->ss.Attr.u, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
2390 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, pszPrefix, efl,
2391 pszPrefix, pCtx->ldtr.Sel, pCtx->ldtr.u64Base, pCtx->ldtr.u32Limit, pCtx->ldtr.Attr.u,
2392 pszPrefix, pCtx->tr.Sel, pCtx->tr.u64Base, pCtx->tr.u32Limit, pCtx->tr.Attr.u,
2393 pszPrefix, pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
2394
2395 pHlp->pfnPrintf(pHlp, "%sxcr=%016RX64 %sxcr1=%016RX64 %sxss=%016RX64 (fXStateMask=%016RX64)\n",
2396 pszPrefix, pCtx->aXcr[0], pszPrefix, pCtx->aXcr[1],
2397 pszPrefix, UINT64_C(0) /** @todo XSS */, pCtx->fXStateMask);
2398 if (pCtx->CTX_SUFF(pXState))
2399 {
2400 PX86FXSTATE pFpuCtx = &pCtx->CTX_SUFF(pXState)->x87;
2401 pHlp->pfnPrintf(pHlp,
2402 "%sFCW=%04x %sFSW=%04x %sFTW=%04x %sFOP=%04x %sMXCSR=%08x %sMXCSR_MASK=%08x\n"
2403 "%sFPUIP=%08x %sCS=%04x %sRsrvd1=%04x %sFPUDP=%08x %sDS=%04x %sRsvrd2=%04x\n"
2404 ,
2405 pszPrefix, pFpuCtx->FCW, pszPrefix, pFpuCtx->FSW, pszPrefix, pFpuCtx->FTW, pszPrefix, pFpuCtx->FOP,
2406 pszPrefix, pFpuCtx->MXCSR, pszPrefix, pFpuCtx->MXCSR_MASK,
2407 pszPrefix, pFpuCtx->FPUIP, pszPrefix, pFpuCtx->CS, pszPrefix, pFpuCtx->Rsrvd1,
2408 pszPrefix, pFpuCtx->FPUDP, pszPrefix, pFpuCtx->DS, pszPrefix, pFpuCtx->Rsrvd2
2409 );
2410 /*
2411 * The FSAVE style memory image contains ST(0)-ST(7) at increasing addresses,
2412 * not (FP)R0-7 as Intel SDM suggests.
2413 */
2414 unsigned iShift = (pFpuCtx->FSW >> 11) & 7;
2415 for (unsigned iST = 0; iST < RT_ELEMENTS(pFpuCtx->aRegs); iST++)
2416 {
2417 unsigned iFPR = (iST + iShift) % RT_ELEMENTS(pFpuCtx->aRegs);
2418 unsigned uTag = (pFpuCtx->FTW >> (2 * iFPR)) & 3;
2419 char chSign = pFpuCtx->aRegs[iST].au16[4] & 0x8000 ? '-' : '+';
2420 unsigned iInteger = (unsigned)(pFpuCtx->aRegs[iST].au64[0] >> 63);
2421 uint64_t u64Fraction = pFpuCtx->aRegs[iST].au64[0] & UINT64_C(0x7fffffffffffffff);
2422 int iExponent = pFpuCtx->aRegs[iST].au16[4] & 0x7fff;
2423 iExponent -= 16383; /* subtract bias */
2424 /** @todo This isn't entirenly correct and needs more work! */
2425 pHlp->pfnPrintf(pHlp,
2426 "%sST(%u)=%sFPR%u={%04RX16'%08RX32'%08RX32} t%d %c%u.%022llu * 2 ^ %d (*)",
2427 pszPrefix, iST, pszPrefix, iFPR,
2428 pFpuCtx->aRegs[iST].au16[4], pFpuCtx->aRegs[iST].au32[1], pFpuCtx->aRegs[iST].au32[0],
2429 uTag, chSign, iInteger, u64Fraction, iExponent);
2430 if (pFpuCtx->aRegs[iST].au16[5] || pFpuCtx->aRegs[iST].au16[6] || pFpuCtx->aRegs[iST].au16[7])
2431 pHlp->pfnPrintf(pHlp, " res={%04RX16,%04RX16,%04RX16}\n",
2432 pFpuCtx->aRegs[iST].au16[5], pFpuCtx->aRegs[iST].au16[6], pFpuCtx->aRegs[iST].au16[7]);
2433 else
2434 pHlp->pfnPrintf(pHlp, "\n");
2435 }
2436
2437 /* XMM/YMM/ZMM registers. */
2438 if (pCtx->fXStateMask & XSAVE_C_YMM)
2439 {
2440 PCX86XSAVEYMMHI pYmmHiCtx = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_YMM_BIT, PCX86XSAVEYMMHI);
2441 if (!(pCtx->fXStateMask & XSAVE_C_ZMM_HI256))
2442 for (unsigned i = 0; i < RT_ELEMENTS(pFpuCtx->aXMM); i++)
2443 pHlp->pfnPrintf(pHlp, "%sYMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32\n",
2444 pszPrefix, i, i < 10 ? " " : "",
2445 pYmmHiCtx->aYmmHi[i].au32[3],
2446 pYmmHiCtx->aYmmHi[i].au32[2],
2447 pYmmHiCtx->aYmmHi[i].au32[1],
2448 pYmmHiCtx->aYmmHi[i].au32[0],
2449 pFpuCtx->aXMM[i].au32[3],
2450 pFpuCtx->aXMM[i].au32[2],
2451 pFpuCtx->aXMM[i].au32[1],
2452 pFpuCtx->aXMM[i].au32[0]);
2453 else
2454 {
2455 PCX86XSAVEZMMHI256 pZmmHi256 = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_ZMM_HI256_BIT, PCX86XSAVEZMMHI256);
2456 for (unsigned i = 0; i < RT_ELEMENTS(pFpuCtx->aXMM); i++)
2457 pHlp->pfnPrintf(pHlp,
2458 "%sZMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32''%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32\n",
2459 pszPrefix, i, i < 10 ? " " : "",
2460 pZmmHi256->aHi256Regs[i].au32[7],
2461 pZmmHi256->aHi256Regs[i].au32[6],
2462 pZmmHi256->aHi256Regs[i].au32[5],
2463 pZmmHi256->aHi256Regs[i].au32[4],
2464 pZmmHi256->aHi256Regs[i].au32[3],
2465 pZmmHi256->aHi256Regs[i].au32[2],
2466 pZmmHi256->aHi256Regs[i].au32[1],
2467 pZmmHi256->aHi256Regs[i].au32[0],
2468 pYmmHiCtx->aYmmHi[i].au32[3],
2469 pYmmHiCtx->aYmmHi[i].au32[2],
2470 pYmmHiCtx->aYmmHi[i].au32[1],
2471 pYmmHiCtx->aYmmHi[i].au32[0],
2472 pFpuCtx->aXMM[i].au32[3],
2473 pFpuCtx->aXMM[i].au32[2],
2474 pFpuCtx->aXMM[i].au32[1],
2475 pFpuCtx->aXMM[i].au32[0]);
2476
2477 PCX86XSAVEZMM16HI pZmm16Hi = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_ZMM_16HI_BIT, PCX86XSAVEZMM16HI);
2478 for (unsigned i = 0; i < RT_ELEMENTS(pZmm16Hi->aRegs); i++)
2479 pHlp->pfnPrintf(pHlp,
2480 "%sZMM%u=%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32''%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32\n",
2481 pszPrefix, i + 16,
2482 pZmm16Hi->aRegs[i].au32[15],
2483 pZmm16Hi->aRegs[i].au32[14],
2484 pZmm16Hi->aRegs[i].au32[13],
2485 pZmm16Hi->aRegs[i].au32[12],
2486 pZmm16Hi->aRegs[i].au32[11],
2487 pZmm16Hi->aRegs[i].au32[10],
2488 pZmm16Hi->aRegs[i].au32[9],
2489 pZmm16Hi->aRegs[i].au32[8],
2490 pZmm16Hi->aRegs[i].au32[7],
2491 pZmm16Hi->aRegs[i].au32[6],
2492 pZmm16Hi->aRegs[i].au32[5],
2493 pZmm16Hi->aRegs[i].au32[4],
2494 pZmm16Hi->aRegs[i].au32[3],
2495 pZmm16Hi->aRegs[i].au32[2],
2496 pZmm16Hi->aRegs[i].au32[1],
2497 pZmm16Hi->aRegs[i].au32[0]);
2498 }
2499 }
2500 else
2501 for (unsigned i = 0; i < RT_ELEMENTS(pFpuCtx->aXMM); i++)
2502 pHlp->pfnPrintf(pHlp,
2503 i & 1
2504 ? "%sXMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32\n"
2505 : "%sXMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32 ",
2506 pszPrefix, i, i < 10 ? " " : "",
2507 pFpuCtx->aXMM[i].au32[3],
2508 pFpuCtx->aXMM[i].au32[2],
2509 pFpuCtx->aXMM[i].au32[1],
2510 pFpuCtx->aXMM[i].au32[0]);
2511
2512 if (pCtx->fXStateMask & XSAVE_C_OPMASK)
2513 {
2514 PCX86XSAVEOPMASK pOpMask = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_OPMASK_BIT, PCX86XSAVEOPMASK);
2515 for (unsigned i = 0; i < RT_ELEMENTS(pOpMask->aKRegs); i += 4)
2516 pHlp->pfnPrintf(pHlp, "%sK%u=%016RX64 %sK%u=%016RX64 %sK%u=%016RX64 %sK%u=%016RX64\n",
2517 pszPrefix, i + 0, pOpMask->aKRegs[i + 0],
2518 pszPrefix, i + 1, pOpMask->aKRegs[i + 1],
2519 pszPrefix, i + 2, pOpMask->aKRegs[i + 2],
2520 pszPrefix, i + 3, pOpMask->aKRegs[i + 3]);
2521 }
2522
2523 if (pCtx->fXStateMask & XSAVE_C_BNDREGS)
2524 {
2525 PCX86XSAVEBNDREGS pBndRegs = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_BNDREGS_BIT, PCX86XSAVEBNDREGS);
2526 for (unsigned i = 0; i < RT_ELEMENTS(pBndRegs->aRegs); i += 2)
2527 pHlp->pfnPrintf(pHlp, "%sBNDREG%u=%016RX64/%016RX64 %sBNDREG%u=%016RX64/%016RX64\n",
2528 pszPrefix, i, pBndRegs->aRegs[i].uLowerBound, pBndRegs->aRegs[i].uUpperBound,
2529 pszPrefix, i + 1, pBndRegs->aRegs[i + 1].uLowerBound, pBndRegs->aRegs[i + 1].uUpperBound);
2530 }
2531
2532 if (pCtx->fXStateMask & XSAVE_C_BNDCSR)
2533 {
2534 PCX86XSAVEBNDCFG pBndCfg = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_BNDCSR_BIT, PCX86XSAVEBNDCFG);
2535 pHlp->pfnPrintf(pHlp, "%sBNDCFG.CONFIG=%016RX64 %sBNDCFG.STATUS=%016RX64\n",
2536 pszPrefix, pBndCfg->fConfig, pszPrefix, pBndCfg->fStatus);
2537 }
2538
2539 for (unsigned i = 0; i < RT_ELEMENTS(pFpuCtx->au32RsrvdRest); i++)
2540 if (pFpuCtx->au32RsrvdRest[i])
2541 pHlp->pfnPrintf(pHlp, "%sRsrvdRest[%u]=%RX32 (offset=%#x)\n",
2542 pszPrefix, i, pFpuCtx->au32RsrvdRest[i], RT_UOFFSETOF_DYN(X86FXSTATE, au32RsrvdRest[i]) );
2543 }
2544
2545 pHlp->pfnPrintf(pHlp,
2546 "%sEFER =%016RX64\n"
2547 "%sPAT =%016RX64\n"
2548 "%sSTAR =%016RX64\n"
2549 "%sCSTAR =%016RX64\n"
2550 "%sLSTAR =%016RX64\n"
2551 "%sSFMASK =%016RX64\n"
2552 "%sKERNELGSBASE =%016RX64\n",
2553 pszPrefix, pCtx->msrEFER,
2554 pszPrefix, pCtx->msrPAT,
2555 pszPrefix, pCtx->msrSTAR,
2556 pszPrefix, pCtx->msrCSTAR,
2557 pszPrefix, pCtx->msrLSTAR,
2558 pszPrefix, pCtx->msrSFMASK,
2559 pszPrefix, pCtx->msrKERNELGSBASE);
2560 break;
2561 }
2562}
2563
2564
2565/**
2566 * Display all cpu states and any other cpum info.
2567 *
2568 * @param pVM The cross context VM structure.
2569 * @param pHlp The info helper functions.
2570 * @param pszArgs Arguments, ignored.
2571 */
2572static DECLCALLBACK(void) cpumR3InfoAll(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2573{
2574 cpumR3InfoGuest(pVM, pHlp, pszArgs);
2575 cpumR3InfoGuestInstr(pVM, pHlp, pszArgs);
2576 cpumR3InfoGuestHwvirt(pVM, pHlp, pszArgs);
2577 cpumR3InfoHyper(pVM, pHlp, pszArgs);
2578 cpumR3InfoHost(pVM, pHlp, pszArgs);
2579}
2580
2581
2582/**
2583 * Parses the info argument.
2584 *
2585 * The argument starts with 'verbose', 'terse' or 'default' and then
2586 * continues with the comment string.
2587 *
2588 * @param pszArgs The pointer to the argument string.
2589 * @param penmType Where to store the dump type request.
2590 * @param ppszComment Where to store the pointer to the comment string.
2591 */
2592static void cpumR3InfoParseArg(const char *pszArgs, CPUMDUMPTYPE *penmType, const char **ppszComment)
2593{
2594 if (!pszArgs)
2595 {
2596 *penmType = CPUMDUMPTYPE_DEFAULT;
2597 *ppszComment = "";
2598 }
2599 else
2600 {
2601 if (!strncmp(pszArgs, RT_STR_TUPLE("verbose")))
2602 {
2603 pszArgs += 7;
2604 *penmType = CPUMDUMPTYPE_VERBOSE;
2605 }
2606 else if (!strncmp(pszArgs, RT_STR_TUPLE("terse")))
2607 {
2608 pszArgs += 5;
2609 *penmType = CPUMDUMPTYPE_TERSE;
2610 }
2611 else if (!strncmp(pszArgs, RT_STR_TUPLE("default")))
2612 {
2613 pszArgs += 7;
2614 *penmType = CPUMDUMPTYPE_DEFAULT;
2615 }
2616 else
2617 *penmType = CPUMDUMPTYPE_DEFAULT;
2618 *ppszComment = RTStrStripL(pszArgs);
2619 }
2620}
2621
2622
2623/**
2624 * Display the guest cpu state.
2625 *
2626 * @param pVM The cross context VM structure.
2627 * @param pHlp The info helper functions.
2628 * @param pszArgs Arguments.
2629 */
2630static DECLCALLBACK(void) cpumR3InfoGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2631{
2632 CPUMDUMPTYPE enmType;
2633 const char *pszComment;
2634 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
2635
2636 PVMCPU pVCpu = VMMGetCpu(pVM);
2637 if (!pVCpu)
2638 pVCpu = &pVM->aCpus[0];
2639
2640 pHlp->pfnPrintf(pHlp, "Guest CPUM (VCPU %d) state: %s\n", pVCpu->idCpu, pszComment);
2641
2642 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
2643 cpumR3InfoOne(pVM, pCtx, CPUMCTX2CORE(pCtx), pHlp, enmType, "");
2644}
2645
2646
2647/**
2648 * Displays an SVM VMCB control area.
2649 *
2650 * @param pHlp The info helper functions.
2651 * @param pVmcbCtrl Pointer to a SVM VMCB controls area.
2652 * @param pszPrefix Caller specified string prefix.
2653 */
2654static void cpumR3InfoSvmVmcbCtrl(PCDBGFINFOHLP pHlp, PCSVMVMCBCTRL pVmcbCtrl, const char *pszPrefix)
2655{
2656 AssertReturnVoid(pHlp);
2657 AssertReturnVoid(pVmcbCtrl);
2658
2659 pHlp->pfnPrintf(pHlp, "%su16InterceptRdCRx = %#RX16\n", pszPrefix, pVmcbCtrl->u16InterceptRdCRx);
2660 pHlp->pfnPrintf(pHlp, "%su16InterceptWrCRx = %#RX16\n", pszPrefix, pVmcbCtrl->u16InterceptWrCRx);
2661 pHlp->pfnPrintf(pHlp, "%su16InterceptRdDRx = %#RX16\n", pszPrefix, pVmcbCtrl->u16InterceptRdDRx);
2662 pHlp->pfnPrintf(pHlp, "%su16InterceptWrDRx = %#RX16\n", pszPrefix, pVmcbCtrl->u16InterceptWrDRx);
2663 pHlp->pfnPrintf(pHlp, "%su32InterceptXcpt = %#RX32\n", pszPrefix, pVmcbCtrl->u32InterceptXcpt);
2664 pHlp->pfnPrintf(pHlp, "%su64InterceptCtrl = %#RX64\n", pszPrefix, pVmcbCtrl->u64InterceptCtrl);
2665 pHlp->pfnPrintf(pHlp, "%su16PauseFilterThreshold = %#RX16\n", pszPrefix, pVmcbCtrl->u16PauseFilterThreshold);
2666 pHlp->pfnPrintf(pHlp, "%su16PauseFilterCount = %#RX16\n", pszPrefix, pVmcbCtrl->u16PauseFilterCount);
2667 pHlp->pfnPrintf(pHlp, "%su64IOPMPhysAddr = %#RX64\n", pszPrefix, pVmcbCtrl->u64IOPMPhysAddr);
2668 pHlp->pfnPrintf(pHlp, "%su64MSRPMPhysAddr = %#RX64\n", pszPrefix, pVmcbCtrl->u64MSRPMPhysAddr);
2669 pHlp->pfnPrintf(pHlp, "%su64TSCOffset = %#RX64\n", pszPrefix, pVmcbCtrl->u64TSCOffset);
2670 pHlp->pfnPrintf(pHlp, "%sTLBCtrl\n", pszPrefix);
2671 pHlp->pfnPrintf(pHlp, "%s u32ASID = %#RX32\n", pszPrefix, pVmcbCtrl->TLBCtrl.n.u32ASID);
2672 pHlp->pfnPrintf(pHlp, "%s u8TLBFlush = %u\n", pszPrefix, pVmcbCtrl->TLBCtrl.n.u8TLBFlush);
2673 pHlp->pfnPrintf(pHlp, "%sIntCtrl\n", pszPrefix);
2674 pHlp->pfnPrintf(pHlp, "%s u8VTPR = %#RX8 (%u)\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u8VTPR, pVmcbCtrl->IntCtrl.n.u8VTPR);
2675 pHlp->pfnPrintf(pHlp, "%s u1VIrqPending = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1VIrqPending);
2676 pHlp->pfnPrintf(pHlp, "%s u1VGif = %u\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1VGif);
2677 pHlp->pfnPrintf(pHlp, "%s u4VIntrPrio = %#RX8\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u4VIntrPrio);
2678 pHlp->pfnPrintf(pHlp, "%s u1IgnoreTPR = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1IgnoreTPR);
2679 pHlp->pfnPrintf(pHlp, "%s u1VIntrMasking = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1VIntrMasking);
2680 pHlp->pfnPrintf(pHlp, "%s u1VGifEnable = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1VGifEnable);
2681 pHlp->pfnPrintf(pHlp, "%s u1AvicEnable = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1AvicEnable);
2682 pHlp->pfnPrintf(pHlp, "%s u8VIntrVector = %#RX8\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u8VIntrVector);
2683 pHlp->pfnPrintf(pHlp, "%sIntShadow\n", pszPrefix);
2684 pHlp->pfnPrintf(pHlp, "%s u1IntShadow = %RTbool\n", pszPrefix, pVmcbCtrl->IntShadow.n.u1IntShadow);
2685 pHlp->pfnPrintf(pHlp, "%s u1GuestIntMask = %RTbool\n", pszPrefix, pVmcbCtrl->IntShadow.n.u1GuestIntMask);
2686 pHlp->pfnPrintf(pHlp, "%su64ExitCode = %#RX64\n", pszPrefix, pVmcbCtrl->u64ExitCode);
2687 pHlp->pfnPrintf(pHlp, "%su64ExitInfo1 = %#RX64\n", pszPrefix, pVmcbCtrl->u64ExitInfo1);
2688 pHlp->pfnPrintf(pHlp, "%su64ExitInfo2 = %#RX64\n", pszPrefix, pVmcbCtrl->u64ExitInfo2);
2689 pHlp->pfnPrintf(pHlp, "%sExitIntInfo\n", pszPrefix);
2690 pHlp->pfnPrintf(pHlp, "%s u8Vector = %#RX8 (%u)\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u8Vector, pVmcbCtrl->ExitIntInfo.n.u8Vector);
2691 pHlp->pfnPrintf(pHlp, "%s u3Type = %u\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u3Type);
2692 pHlp->pfnPrintf(pHlp, "%s u1ErrorCodeValid = %RTbool\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u1ErrorCodeValid);
2693 pHlp->pfnPrintf(pHlp, "%s u1Valid = %RTbool\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u1Valid);
2694 pHlp->pfnPrintf(pHlp, "%s u32ErrorCode = %#RX32\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u32ErrorCode);
2695 pHlp->pfnPrintf(pHlp, "%sNestedPaging and SEV\n", pszPrefix);
2696 pHlp->pfnPrintf(pHlp, "%s u1NestedPaging = %RTbool\n", pszPrefix, pVmcbCtrl->NestedPagingCtrl.n.u1NestedPaging);
2697 pHlp->pfnPrintf(pHlp, "%s u1Sev = %RTbool\n", pszPrefix, pVmcbCtrl->NestedPagingCtrl.n.u1Sev);
2698 pHlp->pfnPrintf(pHlp, "%s u1SevEs = %RTbool\n", pszPrefix, pVmcbCtrl->NestedPagingCtrl.n.u1SevEs);
2699 pHlp->pfnPrintf(pHlp, "%sAvicBar\n", pszPrefix);
2700 pHlp->pfnPrintf(pHlp, "%s u40Addr = %#RX64\n", pszPrefix, pVmcbCtrl->AvicBar.n.u40Addr);
2701 pHlp->pfnPrintf(pHlp, "%sEventInject\n", pszPrefix);
2702 pHlp->pfnPrintf(pHlp, "%s EventInject\n", pszPrefix);
2703 pHlp->pfnPrintf(pHlp, "%s u8Vector = %#RX32 (%u)\n", pszPrefix, pVmcbCtrl->EventInject.n.u8Vector, pVmcbCtrl->EventInject.n.u8Vector);
2704 pHlp->pfnPrintf(pHlp, "%s u3Type = %u\n", pszPrefix, pVmcbCtrl->EventInject.n.u3Type);
2705 pHlp->pfnPrintf(pHlp, "%s u1ErrorCodeValid = %RTbool\n", pszPrefix, pVmcbCtrl->EventInject.n.u1ErrorCodeValid);
2706 pHlp->pfnPrintf(pHlp, "%s u1Valid = %RTbool\n", pszPrefix, pVmcbCtrl->EventInject.n.u1Valid);
2707 pHlp->pfnPrintf(pHlp, "%s u32ErrorCode = %#RX32\n", pszPrefix, pVmcbCtrl->EventInject.n.u32ErrorCode);
2708 pHlp->pfnPrintf(pHlp, "%su64NestedPagingCR3 = %#RX64\n", pszPrefix, pVmcbCtrl->u64NestedPagingCR3);
2709 pHlp->pfnPrintf(pHlp, "%sLBR virtualization\n", pszPrefix);
2710 pHlp->pfnPrintf(pHlp, "%s u1LbrVirt = %RTbool\n", pszPrefix, pVmcbCtrl->LbrVirt.n.u1LbrVirt);
2711 pHlp->pfnPrintf(pHlp, "%s u1VirtVmsaveVmload = %RTbool\n", pszPrefix, pVmcbCtrl->LbrVirt.n.u1VirtVmsaveVmload);
2712 pHlp->pfnPrintf(pHlp, "%su32VmcbCleanBits = %#RX32\n", pszPrefix, pVmcbCtrl->u32VmcbCleanBits);
2713 pHlp->pfnPrintf(pHlp, "%su64NextRIP = %#RX64\n", pszPrefix, pVmcbCtrl->u64NextRIP);
2714 pHlp->pfnPrintf(pHlp, "%scbInstrFetched = %u\n", pszPrefix, pVmcbCtrl->cbInstrFetched);
2715 pHlp->pfnPrintf(pHlp, "%sabInstr = %.*Rhxs\n", pszPrefix, sizeof(pVmcbCtrl->abInstr), pVmcbCtrl->abInstr);
2716 pHlp->pfnPrintf(pHlp, "%sAvicBackingPagePtr\n", pszPrefix);
2717 pHlp->pfnPrintf(pHlp, "%s u40Addr = %#RX64\n", pszPrefix, pVmcbCtrl->AvicBackingPagePtr.n.u40Addr);
2718 pHlp->pfnPrintf(pHlp, "%sAvicLogicalTablePtr\n", pszPrefix);
2719 pHlp->pfnPrintf(pHlp, "%s u40Addr = %#RX64\n", pszPrefix, pVmcbCtrl->AvicLogicalTablePtr.n.u40Addr);
2720 pHlp->pfnPrintf(pHlp, "%sAvicPhysicalTablePtr\n", pszPrefix);
2721 pHlp->pfnPrintf(pHlp, "%s u8LastGuestCoreId = %u\n", pszPrefix, pVmcbCtrl->AvicPhysicalTablePtr.n.u8LastGuestCoreId);
2722 pHlp->pfnPrintf(pHlp, "%s u40Addr = %#RX64\n", pszPrefix, pVmcbCtrl->AvicPhysicalTablePtr.n.u40Addr);
2723}
2724
2725
2726/**
2727 * Helper for dumping the SVM VMCB selector registers.
2728 *
2729 * @param pHlp The info helper functions.
2730 * @param pSel Pointer to the SVM selector register.
2731 * @param pszName Name of the selector.
2732 * @param pszPrefix Caller specified string prefix.
2733 */
2734DECLINLINE(void) cpumR3InfoSvmVmcbSelReg(PCDBGFINFOHLP pHlp, PCSVMSELREG pSel, const char *pszName, const char *pszPrefix)
2735{
2736 /* The string width of 4 used below is to handle 'LDTR'. Change later if longer register names are used. */
2737 pHlp->pfnPrintf(pHlp, "%s%-4s = {%04x base=%016RX64 limit=%08x flags=%04x}\n", pszPrefix,
2738 pszName, pSel->u16Sel, pSel->u64Base, pSel->u32Limit, pSel->u16Attr);
2739}
2740
2741
2742/**
2743 * Helper for dumping the SVM VMCB GDTR/IDTR registers.
2744 *
2745 * @param pHlp The info helper functions.
2746 * @param pXdtr Pointer to the descriptor table register.
2747 * @param pszName Name of the descriptor table register.
2748 * @param pszPrefix Caller specified string prefix.
2749 */
2750DECLINLINE(void) cpumR3InfoSvmVmcbXdtr(PCDBGFINFOHLP pHlp, PCSVMXDTR pXdtr, const char *pszName, const char *pszPrefix)
2751{
2752 /* The string width of 4 used below is to cover 'GDTR', 'IDTR'. Change later if longer register names are used. */
2753 pHlp->pfnPrintf(pHlp, "%s%-4s = %016RX64:%04x\n", pszPrefix, pszName, pXdtr->u64Base, pXdtr->u32Limit);
2754}
2755
2756
2757/**
2758 * Displays an SVM VMCB state-save area.
2759 *
2760 * @param pHlp The info helper functions.
2761 * @param pVmcbStateSave Pointer to a SVM VMCB controls area.
2762 * @param pszPrefix Caller specified string prefix.
2763 */
2764static void cpumR3InfoSvmVmcbStateSave(PCDBGFINFOHLP pHlp, PCSVMVMCBSTATESAVE pVmcbStateSave, const char *pszPrefix)
2765{
2766 AssertReturnVoid(pHlp);
2767 AssertReturnVoid(pVmcbStateSave);
2768
2769 char szEFlags[80];
2770 cpumR3InfoFormatFlags(&szEFlags[0], pVmcbStateSave->u64RFlags);
2771
2772 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->CS, "CS", pszPrefix);
2773 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->SS, "SS", pszPrefix);
2774 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->ES, "ES", pszPrefix);
2775 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->DS, "DS", pszPrefix);
2776 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->FS, "FS", pszPrefix);
2777 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->GS, "GS", pszPrefix);
2778 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->LDTR, "LDTR", pszPrefix);
2779 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->TR, "TR", pszPrefix);
2780 cpumR3InfoSvmVmcbXdtr(pHlp, &pVmcbStateSave->GDTR, "GDTR", pszPrefix);
2781 cpumR3InfoSvmVmcbXdtr(pHlp, &pVmcbStateSave->IDTR, "IDTR", pszPrefix);
2782 pHlp->pfnPrintf(pHlp, "%su8CPL = %u\n", pszPrefix, pVmcbStateSave->u8CPL);
2783 pHlp->pfnPrintf(pHlp, "%su64EFER = %#RX64\n", pszPrefix, pVmcbStateSave->u64EFER);
2784 pHlp->pfnPrintf(pHlp, "%su64CR4 = %#RX64\n", pszPrefix, pVmcbStateSave->u64CR4);
2785 pHlp->pfnPrintf(pHlp, "%su64CR3 = %#RX64\n", pszPrefix, pVmcbStateSave->u64CR3);
2786 pHlp->pfnPrintf(pHlp, "%su64CR0 = %#RX64\n", pszPrefix, pVmcbStateSave->u64CR0);
2787 pHlp->pfnPrintf(pHlp, "%su64DR7 = %#RX64\n", pszPrefix, pVmcbStateSave->u64DR7);
2788 pHlp->pfnPrintf(pHlp, "%su64DR6 = %#RX64\n", pszPrefix, pVmcbStateSave->u64DR6);
2789 pHlp->pfnPrintf(pHlp, "%su64RFlags = %#RX64 %31s\n", pszPrefix, pVmcbStateSave->u64RFlags, szEFlags);
2790 pHlp->pfnPrintf(pHlp, "%su64RIP = %#RX64\n", pszPrefix, pVmcbStateSave->u64RIP);
2791 pHlp->pfnPrintf(pHlp, "%su64RSP = %#RX64\n", pszPrefix, pVmcbStateSave->u64RSP);
2792 pHlp->pfnPrintf(pHlp, "%su64RAX = %#RX64\n", pszPrefix, pVmcbStateSave->u64RAX);
2793 pHlp->pfnPrintf(pHlp, "%su64STAR = %#RX64\n", pszPrefix, pVmcbStateSave->u64STAR);
2794 pHlp->pfnPrintf(pHlp, "%su64LSTAR = %#RX64\n", pszPrefix, pVmcbStateSave->u64LSTAR);
2795 pHlp->pfnPrintf(pHlp, "%su64CSTAR = %#RX64\n", pszPrefix, pVmcbStateSave->u64CSTAR);
2796 pHlp->pfnPrintf(pHlp, "%su64SFMASK = %#RX64\n", pszPrefix, pVmcbStateSave->u64SFMASK);
2797 pHlp->pfnPrintf(pHlp, "%su64KernelGSBase = %#RX64\n", pszPrefix, pVmcbStateSave->u64KernelGSBase);
2798 pHlp->pfnPrintf(pHlp, "%su64SysEnterCS = %#RX64\n", pszPrefix, pVmcbStateSave->u64SysEnterCS);
2799 pHlp->pfnPrintf(pHlp, "%su64SysEnterEIP = %#RX64\n", pszPrefix, pVmcbStateSave->u64SysEnterEIP);
2800 pHlp->pfnPrintf(pHlp, "%su64SysEnterESP = %#RX64\n", pszPrefix, pVmcbStateSave->u64SysEnterESP);
2801 pHlp->pfnPrintf(pHlp, "%su64CR2 = %#RX64\n", pszPrefix, pVmcbStateSave->u64CR2);
2802 pHlp->pfnPrintf(pHlp, "%su64PAT = %#RX64\n", pszPrefix, pVmcbStateSave->u64PAT);
2803 pHlp->pfnPrintf(pHlp, "%su64DBGCTL = %#RX64\n", pszPrefix, pVmcbStateSave->u64DBGCTL);
2804 pHlp->pfnPrintf(pHlp, "%su64BR_FROM = %#RX64\n", pszPrefix, pVmcbStateSave->u64BR_FROM);
2805 pHlp->pfnPrintf(pHlp, "%su64BR_TO = %#RX64\n", pszPrefix, pVmcbStateSave->u64BR_TO);
2806 pHlp->pfnPrintf(pHlp, "%su64LASTEXCPFROM = %#RX64\n", pszPrefix, pVmcbStateSave->u64LASTEXCPFROM);
2807 pHlp->pfnPrintf(pHlp, "%su64LASTEXCPTO = %#RX64\n", pszPrefix, pVmcbStateSave->u64LASTEXCPTO);
2808}
2809
2810
2811/**
2812 * Display the guest's hardware-virtualization cpu state.
2813 *
2814 * @param pVM The cross context VM structure.
2815 * @param pHlp The info helper functions.
2816 * @param pszArgs Arguments, ignored.
2817 */
2818static DECLCALLBACK(void) cpumR3InfoGuestHwvirt(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2819{
2820 RT_NOREF(pszArgs);
2821
2822 PVMCPU pVCpu = VMMGetCpu(pVM);
2823 if (!pVCpu)
2824 pVCpu = &pVM->aCpus[0];
2825
2826 /*
2827 * Figure out what to dump.
2828 *
2829 * In the future we may need to dump everything whether or not we're actively in nested-guest mode
2830 * or not, hence the reason why we use a mask to determine what needs dumping. Currently, we only
2831 * dump hwvirt. state when the guest CPU is executing a nested-guest.
2832 */
2833 /** @todo perhaps make this configurable through pszArgs, depending on how much
2834 * noise we wish to accept when nested hwvirt. isn't used. */
2835#define CPUMHWVIRTDUMP_NONE (0)
2836#define CPUMHWVIRTDUMP_SVM RT_BIT(0)
2837#define CPUMHWVIRTDUMP_VMX RT_BIT(1)
2838#define CPUMHWVIRTDUMP_COMMON RT_BIT(2)
2839#define CPUMHWVIRTDUMP_LAST CPUMHWVIRTDUMP_VMX
2840
2841 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
2842 static const char *const s_aHwvirtModes[] = { "No/inactive", "SVM", "VMX", "Common" };
2843 bool const fSvm = pVM->cpum.ro.GuestFeatures.fSvm;
2844 bool const fVmx = pVM->cpum.ro.GuestFeatures.fVmx;
2845 uint8_t const idxHwvirtState = fSvm ? CPUMHWVIRTDUMP_SVM : (fVmx ? CPUMHWVIRTDUMP_VMX : CPUMHWVIRTDUMP_NONE);
2846 AssertCompile(CPUMHWVIRTDUMP_LAST <= RT_ELEMENTS(s_aHwvirtModes));
2847 Assert(idxHwvirtState < RT_ELEMENTS(s_aHwvirtModes));
2848 const char *pcszHwvirtMode = s_aHwvirtModes[idxHwvirtState];
2849 uint32_t fDumpState = idxHwvirtState | CPUMHWVIRTDUMP_COMMON;
2850
2851 /*
2852 * Dump it.
2853 */
2854 pHlp->pfnPrintf(pHlp, "VCPU[%u] hardware virtualization state:\n", pVCpu->idCpu);
2855
2856 if (fDumpState & CPUMHWVIRTDUMP_COMMON)
2857 pHlp->pfnPrintf(pHlp, "fLocalForcedActions = %#RX32\n", pCtx->hwvirt.fLocalForcedActions);
2858
2859 pHlp->pfnPrintf(pHlp, "%s hwvirt state%s\n", pcszHwvirtMode, (fDumpState & (CPUMHWVIRTDUMP_SVM | CPUMHWVIRTDUMP_VMX)) ?
2860 ":" : "");
2861 if (fDumpState & CPUMHWVIRTDUMP_SVM)
2862 {
2863 pHlp->pfnPrintf(pHlp, " fGif = %RTbool\n", pCtx->hwvirt.fGif);
2864
2865 char szEFlags[80];
2866 cpumR3InfoFormatFlags(&szEFlags[0], pCtx->hwvirt.svm.HostState.rflags.u);
2867 pHlp->pfnPrintf(pHlp, " uMsrHSavePa = %#RX64\n", pCtx->hwvirt.svm.uMsrHSavePa);
2868 pHlp->pfnPrintf(pHlp, " GCPhysVmcb = %#RGp\n", pCtx->hwvirt.svm.GCPhysVmcb);
2869 pHlp->pfnPrintf(pHlp, " VmcbCtrl:\n");
2870 cpumR3InfoSvmVmcbCtrl(pHlp, &pCtx->hwvirt.svm.pVmcbR3->ctrl, " " /* pszPrefix */);
2871 pHlp->pfnPrintf(pHlp, " VmcbStateSave:\n");
2872 cpumR3InfoSvmVmcbStateSave(pHlp, &pCtx->hwvirt.svm.pVmcbR3->guest, " " /* pszPrefix */);
2873 pHlp->pfnPrintf(pHlp, " HostState:\n");
2874 pHlp->pfnPrintf(pHlp, " uEferMsr = %#RX64\n", pCtx->hwvirt.svm.HostState.uEferMsr);
2875 pHlp->pfnPrintf(pHlp, " uCr0 = %#RX64\n", pCtx->hwvirt.svm.HostState.uCr0);
2876 pHlp->pfnPrintf(pHlp, " uCr4 = %#RX64\n", pCtx->hwvirt.svm.HostState.uCr4);
2877 pHlp->pfnPrintf(pHlp, " uCr3 = %#RX64\n", pCtx->hwvirt.svm.HostState.uCr3);
2878 pHlp->pfnPrintf(pHlp, " uRip = %#RX64\n", pCtx->hwvirt.svm.HostState.uRip);
2879 pHlp->pfnPrintf(pHlp, " uRsp = %#RX64\n", pCtx->hwvirt.svm.HostState.uRsp);
2880 pHlp->pfnPrintf(pHlp, " uRax = %#RX64\n", pCtx->hwvirt.svm.HostState.uRax);
2881 pHlp->pfnPrintf(pHlp, " rflags = %#RX64 %31s\n", pCtx->hwvirt.svm.HostState.rflags.u64, szEFlags);
2882 PCPUMSELREG pSel = &pCtx->hwvirt.svm.HostState.es;
2883 pHlp->pfnPrintf(pHlp, " es = {%04x base=%016RX64 limit=%08x flags=%08x}\n",
2884 pSel->Sel, pSel->u64Base, pSel->u32Limit, pSel->Attr.u);
2885 pSel = &pCtx->hwvirt.svm.HostState.cs;
2886 pHlp->pfnPrintf(pHlp, " cs = {%04x base=%016RX64 limit=%08x flags=%08x}\n",
2887 pSel->Sel, pSel->u64Base, pSel->u32Limit, pSel->Attr.u);
2888 pSel = &pCtx->hwvirt.svm.HostState.ss;
2889 pHlp->pfnPrintf(pHlp, " ss = {%04x base=%016RX64 limit=%08x flags=%08x}\n",
2890 pSel->Sel, pSel->u64Base, pSel->u32Limit, pSel->Attr.u);
2891 pSel = &pCtx->hwvirt.svm.HostState.ds;
2892 pHlp->pfnPrintf(pHlp, " ds = {%04x base=%016RX64 limit=%08x flags=%08x}\n",
2893 pSel->Sel, pSel->u64Base, pSel->u32Limit, pSel->Attr.u);
2894 pHlp->pfnPrintf(pHlp, " gdtr = %016RX64:%04x\n", pCtx->hwvirt.svm.HostState.gdtr.pGdt,
2895 pCtx->hwvirt.svm.HostState.gdtr.cbGdt);
2896 pHlp->pfnPrintf(pHlp, " idtr = %016RX64:%04x\n", pCtx->hwvirt.svm.HostState.idtr.pIdt,
2897 pCtx->hwvirt.svm.HostState.idtr.cbIdt);
2898 pHlp->pfnPrintf(pHlp, " cPauseFilter = %RU16\n", pCtx->hwvirt.svm.cPauseFilter);
2899 pHlp->pfnPrintf(pHlp, " cPauseFilterThreshold = %RU32\n", pCtx->hwvirt.svm.cPauseFilterThreshold);
2900 pHlp->pfnPrintf(pHlp, " fInterceptEvents = %u\n", pCtx->hwvirt.svm.fInterceptEvents);
2901 pHlp->pfnPrintf(pHlp, " pvMsrBitmapR3 = %p\n", pCtx->hwvirt.svm.pvMsrBitmapR3);
2902 pHlp->pfnPrintf(pHlp, " pvMsrBitmapR0 = %RKv\n", pCtx->hwvirt.svm.pvMsrBitmapR0);
2903 pHlp->pfnPrintf(pHlp, " pvIoBitmapR3 = %p\n", pCtx->hwvirt.svm.pvIoBitmapR3);
2904 pHlp->pfnPrintf(pHlp, " pvIoBitmapR0 = %RKv\n", pCtx->hwvirt.svm.pvIoBitmapR0);
2905 }
2906
2907 if (fDumpState & CPUMHWVIRTDUMP_VMX)
2908 {
2909 pHlp->pfnPrintf(pHlp, " fInVmxRootMode = %RTbool\n", pCtx->hwvirt.vmx.fInVmxRootMode);
2910 pHlp->pfnPrintf(pHlp, " fInVmxNonRootMode = %RTbool\n", pCtx->hwvirt.vmx.fInVmxNonRootMode);
2911 pHlp->pfnPrintf(pHlp, " GCPhysVmxon = %#RGp\n", pCtx->hwvirt.vmx.GCPhysVmxon);
2912 pHlp->pfnPrintf(pHlp, " GCPhysVmcs = %#RGp\n", pCtx->hwvirt.vmx.GCPhysVmcs);
2913 pHlp->pfnPrintf(pHlp, " enmInstrDiag = %u (%s)\n", pCtx->hwvirt.vmx.enmInstrDiag,
2914 HMVmxGetInstrDiagDesc(pCtx->hwvirt.vmx.enmInstrDiag));
2915 /** @todo NSTVMX: Dump remaining/new fields. */
2916 }
2917
2918#undef CPUMHWVIRTDUMP_NONE
2919#undef CPUMHWVIRTDUMP_COMMON
2920#undef CPUMHWVIRTDUMP_SVM
2921#undef CPUMHWVIRTDUMP_VMX
2922#undef CPUMHWVIRTDUMP_LAST
2923#undef CPUMHWVIRTDUMP_ALL
2924}
2925
2926/**
2927 * Display the current guest instruction
2928 *
2929 * @param pVM The cross context VM structure.
2930 * @param pHlp The info helper functions.
2931 * @param pszArgs Arguments, ignored.
2932 */
2933static DECLCALLBACK(void) cpumR3InfoGuestInstr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2934{
2935 NOREF(pszArgs);
2936
2937 PVMCPU pVCpu = VMMGetCpu(pVM);
2938 if (!pVCpu)
2939 pVCpu = &pVM->aCpus[0];
2940
2941 char szInstruction[256];
2942 szInstruction[0] = '\0';
2943 DBGFR3DisasInstrCurrent(pVCpu, szInstruction, sizeof(szInstruction));
2944 pHlp->pfnPrintf(pHlp, "\nCPUM%u: %s\n\n", pVCpu->idCpu, szInstruction);
2945}
2946
2947
2948/**
2949 * Display the hypervisor cpu state.
2950 *
2951 * @param pVM The cross context VM structure.
2952 * @param pHlp The info helper functions.
2953 * @param pszArgs Arguments, ignored.
2954 */
2955static DECLCALLBACK(void) cpumR3InfoHyper(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2956{
2957 PVMCPU pVCpu = VMMGetCpu(pVM);
2958 if (!pVCpu)
2959 pVCpu = &pVM->aCpus[0];
2960
2961 CPUMDUMPTYPE enmType;
2962 const char *pszComment;
2963 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
2964 pHlp->pfnPrintf(pHlp, "Hypervisor CPUM state: %s\n", pszComment);
2965 cpumR3InfoOne(pVM, &pVCpu->cpum.s.Hyper, CPUMCTX2CORE(&pVCpu->cpum.s.Hyper), pHlp, enmType, ".");
2966 pHlp->pfnPrintf(pHlp, "CR4OrMask=%#x CR4AndMask=%#x\n", pVM->cpum.s.CR4.OrMask, pVM->cpum.s.CR4.AndMask);
2967}
2968
2969
2970/**
2971 * Display the host cpu state.
2972 *
2973 * @param pVM The cross context VM structure.
2974 * @param pHlp The info helper functions.
2975 * @param pszArgs Arguments, ignored.
2976 */
2977static DECLCALLBACK(void) cpumR3InfoHost(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2978{
2979 CPUMDUMPTYPE enmType;
2980 const char *pszComment;
2981 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
2982 pHlp->pfnPrintf(pHlp, "Host CPUM state: %s\n", pszComment);
2983
2984 PVMCPU pVCpu = VMMGetCpu(pVM);
2985 if (!pVCpu)
2986 pVCpu = &pVM->aCpus[0];
2987 PCPUMHOSTCTX pCtx = &pVCpu->cpum.s.Host;
2988
2989 /*
2990 * Format the EFLAGS.
2991 */
2992#if HC_ARCH_BITS == 32
2993 uint32_t efl = pCtx->eflags.u32;
2994#else
2995 uint64_t efl = pCtx->rflags;
2996#endif
2997 char szEFlags[80];
2998 cpumR3InfoFormatFlags(&szEFlags[0], efl);
2999
3000 /*
3001 * Format the registers.
3002 */
3003#if HC_ARCH_BITS == 32
3004 pHlp->pfnPrintf(pHlp,
3005 "eax=xxxxxxxx ebx=%08x ecx=xxxxxxxx edx=xxxxxxxx esi=%08x edi=%08x\n"
3006 "eip=xxxxxxxx esp=%08x ebp=%08x iopl=%d %31s\n"
3007 "cs=%04x ds=%04x es=%04x fs=%04x gs=%04x eflags=%08x\n"
3008 "cr0=%08RX64 cr2=xxxxxxxx cr3=%08RX64 cr4=%08RX64 gdtr=%08x:%04x ldtr=%04x\n"
3009 "dr[0]=%08RX64 dr[1]=%08RX64x dr[2]=%08RX64 dr[3]=%08RX64x dr[6]=%08RX64 dr[7]=%08RX64\n"
3010 "SysEnter={cs=%04x eip=%08x esp=%08x}\n"
3011 ,
3012 /*pCtx->eax,*/ pCtx->ebx, /*pCtx->ecx, pCtx->edx,*/ pCtx->esi, pCtx->edi,
3013 /*pCtx->eip,*/ pCtx->esp, pCtx->ebp, X86_EFL_GET_IOPL(efl), szEFlags,
3014 pCtx->cs, pCtx->ds, pCtx->es, pCtx->fs, pCtx->gs, efl,
3015 pCtx->cr0, /*pCtx->cr2,*/ pCtx->cr3, pCtx->cr4,
3016 pCtx->dr0, pCtx->dr1, pCtx->dr2, pCtx->dr3, pCtx->dr6, pCtx->dr7,
3017 (uint32_t)pCtx->gdtr.uAddr, pCtx->gdtr.cb, pCtx->ldtr,
3018 pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
3019#else
3020 pHlp->pfnPrintf(pHlp,
3021 "rax=xxxxxxxxxxxxxxxx rbx=%016RX64 rcx=xxxxxxxxxxxxxxxx\n"
3022 "rdx=xxxxxxxxxxxxxxxx rsi=%016RX64 rdi=%016RX64\n"
3023 "rip=xxxxxxxxxxxxxxxx rsp=%016RX64 rbp=%016RX64\n"
3024 " r8=xxxxxxxxxxxxxxxx r9=xxxxxxxxxxxxxxxx r10=%016RX64\n"
3025 "r11=%016RX64 r12=%016RX64 r13=%016RX64\n"
3026 "r14=%016RX64 r15=%016RX64\n"
3027 "iopl=%d %31s\n"
3028 "cs=%04x ds=%04x es=%04x fs=%04x gs=%04x eflags=%08RX64\n"
3029 "cr0=%016RX64 cr2=xxxxxxxxxxxxxxxx cr3=%016RX64\n"
3030 "cr4=%016RX64 ldtr=%04x tr=%04x\n"
3031 "dr[0]=%016RX64 dr[1]=%016RX64 dr[2]=%016RX64\n"
3032 "dr[3]=%016RX64 dr[6]=%016RX64 dr[7]=%016RX64\n"
3033 "gdtr=%016RX64:%04x idtr=%016RX64:%04x\n"
3034 "SysEnter={cs=%04x eip=%08x esp=%08x}\n"
3035 "FSbase=%016RX64 GSbase=%016RX64 efer=%08RX64\n"
3036 ,
3037 /*pCtx->rax,*/ pCtx->rbx, /*pCtx->rcx,
3038 pCtx->rdx,*/ pCtx->rsi, pCtx->rdi,
3039 /*pCtx->rip,*/ pCtx->rsp, pCtx->rbp,
3040 /*pCtx->r8, pCtx->r9,*/ pCtx->r10,
3041 pCtx->r11, pCtx->r12, pCtx->r13,
3042 pCtx->r14, pCtx->r15,
3043 X86_EFL_GET_IOPL(efl), szEFlags,
3044 pCtx->cs, pCtx->ds, pCtx->es, pCtx->fs, pCtx->gs, efl,
3045 pCtx->cr0, /*pCtx->cr2,*/ pCtx->cr3,
3046 pCtx->cr4, pCtx->ldtr, pCtx->tr,
3047 pCtx->dr0, pCtx->dr1, pCtx->dr2,
3048 pCtx->dr3, pCtx->dr6, pCtx->dr7,
3049 pCtx->gdtr.uAddr, pCtx->gdtr.cb, pCtx->idtr.uAddr, pCtx->idtr.cb,
3050 pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp,
3051 pCtx->FSbase, pCtx->GSbase, pCtx->efer);
3052#endif
3053}
3054
3055/**
3056 * Structure used when disassembling and instructions in DBGF.
3057 * This is used so the reader function can get the stuff it needs.
3058 */
3059typedef struct CPUMDISASSTATE
3060{
3061 /** Pointer to the CPU structure. */
3062 PDISCPUSTATE pCpu;
3063 /** Pointer to the VM. */
3064 PVM pVM;
3065 /** Pointer to the VMCPU. */
3066 PVMCPU pVCpu;
3067 /** Pointer to the first byte in the segment. */
3068 RTGCUINTPTR GCPtrSegBase;
3069 /** Pointer to the byte after the end of the segment. (might have wrapped!) */
3070 RTGCUINTPTR GCPtrSegEnd;
3071 /** The size of the segment minus 1. */
3072 RTGCUINTPTR cbSegLimit;
3073 /** Pointer to the current page - R3 Ptr. */
3074 void const *pvPageR3;
3075 /** Pointer to the current page - GC Ptr. */
3076 RTGCPTR pvPageGC;
3077 /** The lock information that PGMPhysReleasePageMappingLock needs. */
3078 PGMPAGEMAPLOCK PageMapLock;
3079 /** Whether the PageMapLock is valid or not. */
3080 bool fLocked;
3081 /** 64 bits mode or not. */
3082 bool f64Bits;
3083} CPUMDISASSTATE, *PCPUMDISASSTATE;
3084
3085
3086/**
3087 * @callback_method_impl{FNDISREADBYTES}
3088 */
3089static DECLCALLBACK(int) cpumR3DisasInstrRead(PDISCPUSTATE pDis, uint8_t offInstr, uint8_t cbMinRead, uint8_t cbMaxRead)
3090{
3091 PCPUMDISASSTATE pState = (PCPUMDISASSTATE)pDis->pvUser;
3092 for (;;)
3093 {
3094 RTGCUINTPTR GCPtr = pDis->uInstrAddr + offInstr + pState->GCPtrSegBase;
3095
3096 /*
3097 * Need to update the page translation?
3098 */
3099 if ( !pState->pvPageR3
3100 || (GCPtr >> PAGE_SHIFT) != (pState->pvPageGC >> PAGE_SHIFT))
3101 {
3102 int rc = VINF_SUCCESS;
3103
3104 /* translate the address */
3105 pState->pvPageGC = GCPtr & PAGE_BASE_GC_MASK;
3106 if ( VM_IS_RAW_MODE_ENABLED(pState->pVM)
3107 && MMHyperIsInsideArea(pState->pVM, pState->pvPageGC))
3108 {
3109 pState->pvPageR3 = MMHyperRCToR3(pState->pVM, (RTRCPTR)pState->pvPageGC);
3110 if (!pState->pvPageR3)
3111 rc = VERR_INVALID_POINTER;
3112 }
3113 else
3114 {
3115 /* Release mapping lock previously acquired. */
3116 if (pState->fLocked)
3117 PGMPhysReleasePageMappingLock(pState->pVM, &pState->PageMapLock);
3118 rc = PGMPhysGCPtr2CCPtrReadOnly(pState->pVCpu, pState->pvPageGC, &pState->pvPageR3, &pState->PageMapLock);
3119 pState->fLocked = RT_SUCCESS_NP(rc);
3120 }
3121 if (RT_FAILURE(rc))
3122 {
3123 pState->pvPageR3 = NULL;
3124 return rc;
3125 }
3126 }
3127
3128 /*
3129 * Check the segment limit.
3130 */
3131 if (!pState->f64Bits && pDis->uInstrAddr + offInstr > pState->cbSegLimit)
3132 return VERR_OUT_OF_SELECTOR_BOUNDS;
3133
3134 /*
3135 * Calc how much we can read.
3136 */
3137 uint32_t cb = PAGE_SIZE - (GCPtr & PAGE_OFFSET_MASK);
3138 if (!pState->f64Bits)
3139 {
3140 RTGCUINTPTR cbSeg = pState->GCPtrSegEnd - GCPtr;
3141 if (cb > cbSeg && cbSeg)
3142 cb = cbSeg;
3143 }
3144 if (cb > cbMaxRead)
3145 cb = cbMaxRead;
3146
3147 /*
3148 * Read and advance or exit.
3149 */
3150 memcpy(&pDis->abInstr[offInstr], (uint8_t *)pState->pvPageR3 + (GCPtr & PAGE_OFFSET_MASK), cb);
3151 offInstr += (uint8_t)cb;
3152 if (cb >= cbMinRead)
3153 {
3154 pDis->cbCachedInstr = offInstr;
3155 return VINF_SUCCESS;
3156 }
3157 cbMinRead -= (uint8_t)cb;
3158 cbMaxRead -= (uint8_t)cb;
3159 }
3160}
3161
3162
3163/**
3164 * Disassemble an instruction and return the information in the provided structure.
3165 *
3166 * @returns VBox status code.
3167 * @param pVM The cross context VM structure.
3168 * @param pVCpu The cross context virtual CPU structure.
3169 * @param pCtx Pointer to the guest CPU context.
3170 * @param GCPtrPC Program counter (relative to CS) to disassemble from.
3171 * @param pCpu Disassembly state.
3172 * @param pszPrefix String prefix for logging (debug only).
3173 *
3174 */
3175VMMR3DECL(int) CPUMR3DisasmInstrCPU(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, RTGCPTR GCPtrPC, PDISCPUSTATE pCpu,
3176 const char *pszPrefix)
3177{
3178 CPUMDISASSTATE State;
3179 int rc;
3180
3181 const PGMMODE enmMode = PGMGetGuestMode(pVCpu);
3182 State.pCpu = pCpu;
3183 State.pvPageGC = 0;
3184 State.pvPageR3 = NULL;
3185 State.pVM = pVM;
3186 State.pVCpu = pVCpu;
3187 State.fLocked = false;
3188 State.f64Bits = false;
3189
3190 /*
3191 * Get selector information.
3192 */
3193 DISCPUMODE enmDisCpuMode;
3194 if ( (pCtx->cr0 & X86_CR0_PE)
3195 && pCtx->eflags.Bits.u1VM == 0)
3196 {
3197 if (!CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->cs))
3198 {
3199# ifdef VBOX_WITH_RAW_MODE_NOT_R0
3200 CPUMGuestLazyLoadHiddenSelectorReg(pVCpu, &pCtx->cs);
3201# endif
3202 if (!CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->cs))
3203 return VERR_CPUM_HIDDEN_CS_LOAD_ERROR;
3204 }
3205 State.f64Bits = enmMode >= PGMMODE_AMD64 && pCtx->cs.Attr.n.u1Long;
3206 State.GCPtrSegBase = pCtx->cs.u64Base;
3207 State.GCPtrSegEnd = pCtx->cs.u32Limit + 1 + (RTGCUINTPTR)pCtx->cs.u64Base;
3208 State.cbSegLimit = pCtx->cs.u32Limit;
3209 enmDisCpuMode = (State.f64Bits)
3210 ? DISCPUMODE_64BIT
3211 : pCtx->cs.Attr.n.u1DefBig
3212 ? DISCPUMODE_32BIT
3213 : DISCPUMODE_16BIT;
3214 }
3215 else
3216 {
3217 /* real or V86 mode */
3218 enmDisCpuMode = DISCPUMODE_16BIT;
3219 State.GCPtrSegBase = pCtx->cs.Sel * 16;
3220 State.GCPtrSegEnd = 0xFFFFFFFF;
3221 State.cbSegLimit = 0xFFFFFFFF;
3222 }
3223
3224 /*
3225 * Disassemble the instruction.
3226 */
3227 uint32_t cbInstr;
3228#ifndef LOG_ENABLED
3229 RT_NOREF_PV(pszPrefix);
3230 rc = DISInstrWithReader(GCPtrPC, enmDisCpuMode, cpumR3DisasInstrRead, &State, pCpu, &cbInstr);
3231 if (RT_SUCCESS(rc))
3232 {
3233#else
3234 char szOutput[160];
3235 rc = DISInstrToStrWithReader(GCPtrPC, enmDisCpuMode, cpumR3DisasInstrRead, &State,
3236 pCpu, &cbInstr, szOutput, sizeof(szOutput));
3237 if (RT_SUCCESS(rc))
3238 {
3239 /* log it */
3240 if (pszPrefix)
3241 Log(("%s-CPU%d: %s", pszPrefix, pVCpu->idCpu, szOutput));
3242 else
3243 Log(("%s", szOutput));
3244#endif
3245 rc = VINF_SUCCESS;
3246 }
3247 else
3248 Log(("CPUMR3DisasmInstrCPU: DISInstr failed for %04X:%RGv rc=%Rrc\n", pCtx->cs.Sel, GCPtrPC, rc));
3249
3250 /* Release mapping lock acquired in cpumR3DisasInstrRead. */
3251 if (State.fLocked)
3252 PGMPhysReleasePageMappingLock(pVM, &State.PageMapLock);
3253
3254 return rc;
3255}
3256
3257
3258
3259/**
3260 * API for controlling a few of the CPU features found in CR4.
3261 *
3262 * Currently only X86_CR4_TSD is accepted as input.
3263 *
3264 * @returns VBox status code.
3265 *
3266 * @param pVM The cross context VM structure.
3267 * @param fOr The CR4 OR mask.
3268 * @param fAnd The CR4 AND mask.
3269 */
3270VMMR3DECL(int) CPUMR3SetCR4Feature(PVM pVM, RTHCUINTREG fOr, RTHCUINTREG fAnd)
3271{
3272 AssertMsgReturn(!(fOr & ~(X86_CR4_TSD)), ("%#x\n", fOr), VERR_INVALID_PARAMETER);
3273 AssertMsgReturn((fAnd & ~(X86_CR4_TSD)) == ~(X86_CR4_TSD), ("%#x\n", fAnd), VERR_INVALID_PARAMETER);
3274
3275 pVM->cpum.s.CR4.OrMask &= fAnd;
3276 pVM->cpum.s.CR4.OrMask |= fOr;
3277
3278 return VINF_SUCCESS;
3279}
3280
3281
3282/**
3283 * Enters REM, gets and resets the changed flags (CPUM_CHANGED_*).
3284 *
3285 * Only REM should ever call this function!
3286 *
3287 * @returns The changed flags.
3288 * @param pVCpu The cross context virtual CPU structure.
3289 * @param puCpl Where to return the current privilege level (CPL).
3290 */
3291VMMR3DECL(uint32_t) CPUMR3RemEnter(PVMCPU pVCpu, uint32_t *puCpl)
3292{
3293 Assert(!pVCpu->cpum.s.fRawEntered);
3294 Assert(!pVCpu->cpum.s.fRemEntered);
3295
3296 /*
3297 * Get the CPL first.
3298 */
3299 *puCpl = CPUMGetGuestCPL(pVCpu);
3300
3301 /*
3302 * Get and reset the flags.
3303 */
3304 uint32_t fFlags = pVCpu->cpum.s.fChanged;
3305 pVCpu->cpum.s.fChanged = 0;
3306
3307 /** @todo change the switcher to use the fChanged flags. */
3308 if (pVCpu->cpum.s.fUseFlags & CPUM_USED_FPU_SINCE_REM)
3309 {
3310 fFlags |= CPUM_CHANGED_FPU_REM;
3311 pVCpu->cpum.s.fUseFlags &= ~CPUM_USED_FPU_SINCE_REM;
3312 }
3313
3314 pVCpu->cpum.s.fRemEntered = true;
3315 return fFlags;
3316}
3317
3318
3319/**
3320 * Leaves REM.
3321 *
3322 * @param pVCpu The cross context virtual CPU structure.
3323 * @param fNoOutOfSyncSels This is @c false if there are out of sync
3324 * registers.
3325 */
3326VMMR3DECL(void) CPUMR3RemLeave(PVMCPU pVCpu, bool fNoOutOfSyncSels)
3327{
3328 Assert(!pVCpu->cpum.s.fRawEntered);
3329 Assert(pVCpu->cpum.s.fRemEntered);
3330
3331 RT_NOREF_PV(fNoOutOfSyncSels);
3332
3333 pVCpu->cpum.s.fRemEntered = false;
3334}
3335
3336
3337/**
3338 * Called when the ring-3 init phase completes.
3339 *
3340 * @returns VBox status code.
3341 * @param pVM The cross context VM structure.
3342 * @param enmWhat Which init phase.
3343 */
3344VMMR3DECL(int) CPUMR3InitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
3345{
3346 switch (enmWhat)
3347 {
3348 case VMINITCOMPLETED_RING3:
3349 {
3350 /*
3351 * Figure out if the guest uses 32-bit or 64-bit FPU state at runtime for 64-bit capable VMs.
3352 * Only applicable/used on 64-bit hosts, refer CPUMR0A.asm. See @bugref{7138}.
3353 */
3354 bool const fSupportsLongMode = VMR3IsLongModeAllowed(pVM);
3355 for (VMCPUID i = 0; i < pVM->cCpus; i++)
3356 {
3357 PVMCPU pVCpu = &pVM->aCpus[i];
3358 /* While loading a saved-state we fix it up in, cpumR3LoadDone(). */
3359 if (fSupportsLongMode)
3360 pVCpu->cpum.s.fUseFlags |= CPUM_USE_SUPPORTS_LONGMODE;
3361 }
3362
3363 cpumR3MsrRegStats(pVM);
3364 break;
3365 }
3366
3367 case VMINITCOMPLETED_HM:
3368 {
3369 /*
3370 * Currently, nested VMX/SVM both derives their guest VMX/SVM CPUID bit from the host
3371 * CPUID bit. This could be later changed if we need to support nested-VMX on CPUs
3372 * that are not capable of VMX.
3373 */
3374 if (pVM->cpum.s.GuestFeatures.fVmx)
3375 {
3376 Assert( pVM->cpum.s.GuestFeatures.enmCpuVendor == CPUMCPUVENDOR_INTEL
3377 || pVM->cpum.s.GuestFeatures.enmCpuVendor == CPUMCPUVENDOR_VIA);
3378 cpumR3InitVmxCpuFeatures(pVM);
3379 DBGFR3Info(pVM->pUVM, "cpumvmxfeat", "default", DBGFR3InfoLogRelHlp());
3380 }
3381
3382 if (pVM->cpum.s.GuestFeatures.fVmx)
3383 LogRel(("CPUM: Enabled guest VMX support\n"));
3384 else if (pVM->cpum.s.GuestFeatures.fSvm)
3385 LogRel(("CPUM: Enabled guest SVM support\n"));
3386 break;
3387 }
3388
3389 default:
3390 break;
3391 }
3392 return VINF_SUCCESS;
3393}
3394
3395
3396/**
3397 * Called when the ring-0 init phases completed.
3398 *
3399 * @param pVM The cross context VM structure.
3400 */
3401VMMR3DECL(void) CPUMR3LogCpuIds(PVM pVM)
3402{
3403 /*
3404 * Log the cpuid.
3405 */
3406 bool fOldBuffered = RTLogRelSetBuffering(true /*fBuffered*/);
3407 RTCPUSET OnlineSet;
3408 LogRel(("CPUM: Logical host processors: %u present, %u max, %u online, online mask: %016RX64\n",
3409 (unsigned)RTMpGetPresentCount(), (unsigned)RTMpGetCount(), (unsigned)RTMpGetOnlineCount(),
3410 RTCpuSetToU64(RTMpGetOnlineSet(&OnlineSet)) ));
3411 RTCPUID cCores = RTMpGetCoreCount();
3412 if (cCores)
3413 LogRel(("CPUM: Physical host cores: %u\n", (unsigned)cCores));
3414 LogRel(("************************* CPUID dump ************************\n"));
3415 DBGFR3Info(pVM->pUVM, "cpuid", "verbose", DBGFR3InfoLogRelHlp());
3416 LogRel(("\n"));
3417 DBGFR3_INFO_LOG_SAFE(pVM, "cpuid", "verbose"); /* macro */
3418 RTLogRelSetBuffering(fOldBuffered);
3419 LogRel(("******************** End of CPUID dump **********************\n"));
3420}
3421
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette