VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/CPUM.cpp@ 74043

Last change on this file since 74043 was 73870, checked in by vboxsync, 7 years ago

VMM: Nested VMX: Added VMX CPUID features for RDRAND, RDSEED and PML. Fixed incorrect VMCS field validation for guest-interrupt status.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 172.0 KB
Line 
1/* $Id: CPUM.cpp 73870 2018-08-24 09:39:44Z vboxsync $ */
2/** @file
3 * CPUM - CPU Monitor / Manager.
4 */
5
6/*
7 * Copyright (C) 2006-2017 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/** @page pg_cpum CPUM - CPU Monitor / Manager
19 *
20 * The CPU Monitor / Manager keeps track of all the CPU registers. It is
21 * also responsible for lazy FPU handling and some of the context loading
22 * in raw mode.
23 *
24 * There are three CPU contexts, the most important one is the guest one (GC).
25 * When running in raw-mode (RC) there is a special hyper context for the VMM
26 * part that floats around inside the guest address space. When running in
27 * raw-mode, CPUM also maintains a host context for saving and restoring
28 * registers across world switches. This latter is done in cooperation with the
29 * world switcher (@see pg_vmm).
30 *
31 * @see grp_cpum
32 *
33 * @section sec_cpum_fpu FPU / SSE / AVX / ++ state.
34 *
35 * TODO: proper write up, currently just some notes.
36 *
37 * The ring-0 FPU handling per OS:
38 *
39 * - 64-bit Windows uses XMM registers in the kernel as part of the calling
40 * convention (Visual C++ doesn't seem to have a way to disable
41 * generating such code either), so CR0.TS/EM are always zero from what I
42 * can tell. We are also forced to always load/save the guest XMM0-XMM15
43 * registers when entering/leaving guest context. Interrupt handlers
44 * using FPU/SSE will offically have call save and restore functions
45 * exported by the kernel, if the really really have to use the state.
46 *
47 * - 32-bit windows does lazy FPU handling, I think, probably including
48 * lazying saving. The Windows Internals book states that it's a bad
49 * idea to use the FPU in kernel space. However, it looks like it will
50 * restore the FPU state of the current thread in case of a kernel \#NM.
51 * Interrupt handlers should be same as for 64-bit.
52 *
53 * - Darwin allows taking \#NM in kernel space, restoring current thread's
54 * state if I read the code correctly. It saves the FPU state of the
55 * outgoing thread, and uses CR0.TS to lazily load the state of the
56 * incoming one. No idea yet how the FPU is treated by interrupt
57 * handlers, i.e. whether they are allowed to disable the state or
58 * something.
59 *
60 * - Linux also allows \#NM in kernel space (don't know since when), and
61 * uses CR0.TS for lazy loading. Saves outgoing thread's state, lazy
62 * loads the incoming unless configured to agressivly load it. Interrupt
63 * handlers can ask whether they're allowed to use the FPU, and may
64 * freely trash the state if Linux thinks it has saved the thread's state
65 * already. This is a problem.
66 *
67 * - Solaris will, from what I can tell, panic if it gets an \#NM in kernel
68 * context. When switching threads, the kernel will save the state of
69 * the outgoing thread and lazy load the incoming one using CR0.TS.
70 * There are a few routines in seeblk.s which uses the SSE unit in ring-0
71 * to do stuff, HAT are among the users. The routines there will
72 * manually clear CR0.TS and save the XMM registers they use only if
73 * CR0.TS was zero upon entry. They will skip it when not, because as
74 * mentioned above, the FPU state is saved when switching away from a
75 * thread and CR0.TS set to 1, so when CR0.TS is 1 there is nothing to
76 * preserve. This is a problem if we restore CR0.TS to 1 after loading
77 * the guest state.
78 *
79 * - FreeBSD - no idea yet.
80 *
81 * - OS/2 does not allow \#NMs in kernel space IIRC. Does lazy loading,
82 * possibly also lazy saving. Interrupts must preserve the CR0.TS+EM &
83 * FPU states.
84 *
85 * Up to r107425 (2016-05-24) we would only temporarily modify CR0.TS/EM while
86 * saving and restoring the host and guest states. The motivation for this
87 * change is that we want to be able to emulate SSE instruction in ring-0 (IEM).
88 *
89 * Starting with that change, we will leave CR0.TS=EM=0 after saving the host
90 * state and only restore it once we've restore the host FPU state. This has the
91 * accidental side effect of triggering Solaris to preserve XMM registers in
92 * sseblk.s. When CR0 was changed by saving the FPU state, CPUM must now inform
93 * the VT-x (HMVMX) code about it as it caches the CR0 value in the VMCS.
94 *
95 *
96 * @section sec_cpum_logging Logging Level Assignments.
97 *
98 * Following log level assignments:
99 * - Log6 is used for FPU state management.
100 * - Log7 is used for FPU state actualization.
101 *
102 */
103
104
105/*********************************************************************************************************************************
106* Header Files *
107*********************************************************************************************************************************/
108#define LOG_GROUP LOG_GROUP_CPUM
109#include <VBox/vmm/cpum.h>
110#include <VBox/vmm/cpumdis.h>
111#include <VBox/vmm/cpumctx-v1_6.h>
112#include <VBox/vmm/pgm.h>
113#include <VBox/vmm/apic.h>
114#include <VBox/vmm/mm.h>
115#include <VBox/vmm/em.h>
116#include <VBox/vmm/iem.h>
117#include <VBox/vmm/selm.h>
118#include <VBox/vmm/dbgf.h>
119#include <VBox/vmm/patm.h>
120#include <VBox/vmm/hm.h>
121#include <VBox/vmm/ssm.h>
122#include "CPUMInternal.h"
123#include <VBox/vmm/vm.h>
124
125#include <VBox/param.h>
126#include <VBox/dis.h>
127#include <VBox/err.h>
128#include <VBox/log.h>
129#include <iprt/asm-amd64-x86.h>
130#include <iprt/assert.h>
131#include <iprt/cpuset.h>
132#include <iprt/mem.h>
133#include <iprt/mp.h>
134#include <iprt/string.h>
135
136
137/*********************************************************************************************************************************
138* Defined Constants And Macros *
139*********************************************************************************************************************************/
140/**
141 * This was used in the saved state up to the early life of version 14.
142 *
143 * It indicates that we may have some out-of-sync hidden segement registers.
144 * It is only relevant for raw-mode.
145 */
146#define CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID RT_BIT(12)
147
148
149/*********************************************************************************************************************************
150* Structures and Typedefs *
151*********************************************************************************************************************************/
152
153/**
154 * What kind of cpu info dump to perform.
155 */
156typedef enum CPUMDUMPTYPE
157{
158 CPUMDUMPTYPE_TERSE,
159 CPUMDUMPTYPE_DEFAULT,
160 CPUMDUMPTYPE_VERBOSE
161} CPUMDUMPTYPE;
162/** Pointer to a cpu info dump type. */
163typedef CPUMDUMPTYPE *PCPUMDUMPTYPE;
164
165
166/*********************************************************************************************************************************
167* Internal Functions *
168*********************************************************************************************************************************/
169static DECLCALLBACK(int) cpumR3LiveExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uPass);
170static DECLCALLBACK(int) cpumR3SaveExec(PVM pVM, PSSMHANDLE pSSM);
171static DECLCALLBACK(int) cpumR3LoadPrep(PVM pVM, PSSMHANDLE pSSM);
172static DECLCALLBACK(int) cpumR3LoadExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
173static DECLCALLBACK(int) cpumR3LoadDone(PVM pVM, PSSMHANDLE pSSM);
174static DECLCALLBACK(void) cpumR3InfoAll(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
175static DECLCALLBACK(void) cpumR3InfoGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
176static DECLCALLBACK(void) cpumR3InfoGuestHwvirt(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
177static DECLCALLBACK(void) cpumR3InfoGuestInstr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
178static DECLCALLBACK(void) cpumR3InfoHyper(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
179static DECLCALLBACK(void) cpumR3InfoHost(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
180
181
182/*********************************************************************************************************************************
183* Global Variables *
184*********************************************************************************************************************************/
185/** Saved state field descriptors for CPUMCTX. */
186static const SSMFIELD g_aCpumCtxFields[] =
187{
188 SSMFIELD_ENTRY( CPUMCTX, rdi),
189 SSMFIELD_ENTRY( CPUMCTX, rsi),
190 SSMFIELD_ENTRY( CPUMCTX, rbp),
191 SSMFIELD_ENTRY( CPUMCTX, rax),
192 SSMFIELD_ENTRY( CPUMCTX, rbx),
193 SSMFIELD_ENTRY( CPUMCTX, rdx),
194 SSMFIELD_ENTRY( CPUMCTX, rcx),
195 SSMFIELD_ENTRY( CPUMCTX, rsp),
196 SSMFIELD_ENTRY( CPUMCTX, rflags),
197 SSMFIELD_ENTRY( CPUMCTX, rip),
198 SSMFIELD_ENTRY( CPUMCTX, r8),
199 SSMFIELD_ENTRY( CPUMCTX, r9),
200 SSMFIELD_ENTRY( CPUMCTX, r10),
201 SSMFIELD_ENTRY( CPUMCTX, r11),
202 SSMFIELD_ENTRY( CPUMCTX, r12),
203 SSMFIELD_ENTRY( CPUMCTX, r13),
204 SSMFIELD_ENTRY( CPUMCTX, r14),
205 SSMFIELD_ENTRY( CPUMCTX, r15),
206 SSMFIELD_ENTRY( CPUMCTX, es.Sel),
207 SSMFIELD_ENTRY( CPUMCTX, es.ValidSel),
208 SSMFIELD_ENTRY( CPUMCTX, es.fFlags),
209 SSMFIELD_ENTRY( CPUMCTX, es.u64Base),
210 SSMFIELD_ENTRY( CPUMCTX, es.u32Limit),
211 SSMFIELD_ENTRY( CPUMCTX, es.Attr),
212 SSMFIELD_ENTRY( CPUMCTX, cs.Sel),
213 SSMFIELD_ENTRY( CPUMCTX, cs.ValidSel),
214 SSMFIELD_ENTRY( CPUMCTX, cs.fFlags),
215 SSMFIELD_ENTRY( CPUMCTX, cs.u64Base),
216 SSMFIELD_ENTRY( CPUMCTX, cs.u32Limit),
217 SSMFIELD_ENTRY( CPUMCTX, cs.Attr),
218 SSMFIELD_ENTRY( CPUMCTX, ss.Sel),
219 SSMFIELD_ENTRY( CPUMCTX, ss.ValidSel),
220 SSMFIELD_ENTRY( CPUMCTX, ss.fFlags),
221 SSMFIELD_ENTRY( CPUMCTX, ss.u64Base),
222 SSMFIELD_ENTRY( CPUMCTX, ss.u32Limit),
223 SSMFIELD_ENTRY( CPUMCTX, ss.Attr),
224 SSMFIELD_ENTRY( CPUMCTX, ds.Sel),
225 SSMFIELD_ENTRY( CPUMCTX, ds.ValidSel),
226 SSMFIELD_ENTRY( CPUMCTX, ds.fFlags),
227 SSMFIELD_ENTRY( CPUMCTX, ds.u64Base),
228 SSMFIELD_ENTRY( CPUMCTX, ds.u32Limit),
229 SSMFIELD_ENTRY( CPUMCTX, ds.Attr),
230 SSMFIELD_ENTRY( CPUMCTX, fs.Sel),
231 SSMFIELD_ENTRY( CPUMCTX, fs.ValidSel),
232 SSMFIELD_ENTRY( CPUMCTX, fs.fFlags),
233 SSMFIELD_ENTRY( CPUMCTX, fs.u64Base),
234 SSMFIELD_ENTRY( CPUMCTX, fs.u32Limit),
235 SSMFIELD_ENTRY( CPUMCTX, fs.Attr),
236 SSMFIELD_ENTRY( CPUMCTX, gs.Sel),
237 SSMFIELD_ENTRY( CPUMCTX, gs.ValidSel),
238 SSMFIELD_ENTRY( CPUMCTX, gs.fFlags),
239 SSMFIELD_ENTRY( CPUMCTX, gs.u64Base),
240 SSMFIELD_ENTRY( CPUMCTX, gs.u32Limit),
241 SSMFIELD_ENTRY( CPUMCTX, gs.Attr),
242 SSMFIELD_ENTRY( CPUMCTX, cr0),
243 SSMFIELD_ENTRY( CPUMCTX, cr2),
244 SSMFIELD_ENTRY( CPUMCTX, cr3),
245 SSMFIELD_ENTRY( CPUMCTX, cr4),
246 SSMFIELD_ENTRY( CPUMCTX, dr[0]),
247 SSMFIELD_ENTRY( CPUMCTX, dr[1]),
248 SSMFIELD_ENTRY( CPUMCTX, dr[2]),
249 SSMFIELD_ENTRY( CPUMCTX, dr[3]),
250 SSMFIELD_ENTRY( CPUMCTX, dr[6]),
251 SSMFIELD_ENTRY( CPUMCTX, dr[7]),
252 SSMFIELD_ENTRY( CPUMCTX, gdtr.cbGdt),
253 SSMFIELD_ENTRY( CPUMCTX, gdtr.pGdt),
254 SSMFIELD_ENTRY( CPUMCTX, idtr.cbIdt),
255 SSMFIELD_ENTRY( CPUMCTX, idtr.pIdt),
256 SSMFIELD_ENTRY( CPUMCTX, SysEnter.cs),
257 SSMFIELD_ENTRY( CPUMCTX, SysEnter.eip),
258 SSMFIELD_ENTRY( CPUMCTX, SysEnter.esp),
259 SSMFIELD_ENTRY( CPUMCTX, msrEFER),
260 SSMFIELD_ENTRY( CPUMCTX, msrSTAR),
261 SSMFIELD_ENTRY( CPUMCTX, msrPAT),
262 SSMFIELD_ENTRY( CPUMCTX, msrLSTAR),
263 SSMFIELD_ENTRY( CPUMCTX, msrCSTAR),
264 SSMFIELD_ENTRY( CPUMCTX, msrSFMASK),
265 SSMFIELD_ENTRY( CPUMCTX, msrKERNELGSBASE),
266 SSMFIELD_ENTRY( CPUMCTX, ldtr.Sel),
267 SSMFIELD_ENTRY( CPUMCTX, ldtr.ValidSel),
268 SSMFIELD_ENTRY( CPUMCTX, ldtr.fFlags),
269 SSMFIELD_ENTRY( CPUMCTX, ldtr.u64Base),
270 SSMFIELD_ENTRY( CPUMCTX, ldtr.u32Limit),
271 SSMFIELD_ENTRY( CPUMCTX, ldtr.Attr),
272 SSMFIELD_ENTRY( CPUMCTX, tr.Sel),
273 SSMFIELD_ENTRY( CPUMCTX, tr.ValidSel),
274 SSMFIELD_ENTRY( CPUMCTX, tr.fFlags),
275 SSMFIELD_ENTRY( CPUMCTX, tr.u64Base),
276 SSMFIELD_ENTRY( CPUMCTX, tr.u32Limit),
277 SSMFIELD_ENTRY( CPUMCTX, tr.Attr),
278 SSMFIELD_ENTRY_VER( CPUMCTX, aXcr[0], CPUM_SAVED_STATE_VERSION_XSAVE),
279 SSMFIELD_ENTRY_VER( CPUMCTX, aXcr[1], CPUM_SAVED_STATE_VERSION_XSAVE),
280 SSMFIELD_ENTRY_VER( CPUMCTX, fXStateMask, CPUM_SAVED_STATE_VERSION_XSAVE),
281 SSMFIELD_ENTRY_TERM()
282};
283
284/** Saved state field descriptors for SVM nested hardware-virtualization
285 * Host State. */
286static const SSMFIELD g_aSvmHwvirtHostState[] =
287{
288 SSMFIELD_ENTRY( SVMHOSTSTATE, uEferMsr),
289 SSMFIELD_ENTRY( SVMHOSTSTATE, uCr0),
290 SSMFIELD_ENTRY( SVMHOSTSTATE, uCr4),
291 SSMFIELD_ENTRY( SVMHOSTSTATE, uCr3),
292 SSMFIELD_ENTRY( SVMHOSTSTATE, uRip),
293 SSMFIELD_ENTRY( SVMHOSTSTATE, uRsp),
294 SSMFIELD_ENTRY( SVMHOSTSTATE, uRax),
295 SSMFIELD_ENTRY( SVMHOSTSTATE, rflags),
296 SSMFIELD_ENTRY( SVMHOSTSTATE, es.Sel),
297 SSMFIELD_ENTRY( SVMHOSTSTATE, es.ValidSel),
298 SSMFIELD_ENTRY( SVMHOSTSTATE, es.fFlags),
299 SSMFIELD_ENTRY( SVMHOSTSTATE, es.u64Base),
300 SSMFIELD_ENTRY( SVMHOSTSTATE, es.u32Limit),
301 SSMFIELD_ENTRY( SVMHOSTSTATE, es.Attr),
302 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.Sel),
303 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.ValidSel),
304 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.fFlags),
305 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.u64Base),
306 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.u32Limit),
307 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.Attr),
308 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.Sel),
309 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.ValidSel),
310 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.fFlags),
311 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.u64Base),
312 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.u32Limit),
313 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.Attr),
314 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.Sel),
315 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.ValidSel),
316 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.fFlags),
317 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.u64Base),
318 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.u32Limit),
319 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.Attr),
320 SSMFIELD_ENTRY( SVMHOSTSTATE, gdtr.cbGdt),
321 SSMFIELD_ENTRY( SVMHOSTSTATE, gdtr.pGdt),
322 SSMFIELD_ENTRY( SVMHOSTSTATE, idtr.cbIdt),
323 SSMFIELD_ENTRY( SVMHOSTSTATE, idtr.pIdt),
324 SSMFIELD_ENTRY_IGNORE(SVMHOSTSTATE, abPadding),
325 SSMFIELD_ENTRY_TERM()
326};
327
328/** Saved state field descriptors for CPUMCTX. */
329static const SSMFIELD g_aCpumX87Fields[] =
330{
331 SSMFIELD_ENTRY( X86FXSTATE, FCW),
332 SSMFIELD_ENTRY( X86FXSTATE, FSW),
333 SSMFIELD_ENTRY( X86FXSTATE, FTW),
334 SSMFIELD_ENTRY( X86FXSTATE, FOP),
335 SSMFIELD_ENTRY( X86FXSTATE, FPUIP),
336 SSMFIELD_ENTRY( X86FXSTATE, CS),
337 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd1),
338 SSMFIELD_ENTRY( X86FXSTATE, FPUDP),
339 SSMFIELD_ENTRY( X86FXSTATE, DS),
340 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd2),
341 SSMFIELD_ENTRY( X86FXSTATE, MXCSR),
342 SSMFIELD_ENTRY( X86FXSTATE, MXCSR_MASK),
343 SSMFIELD_ENTRY( X86FXSTATE, aRegs[0]),
344 SSMFIELD_ENTRY( X86FXSTATE, aRegs[1]),
345 SSMFIELD_ENTRY( X86FXSTATE, aRegs[2]),
346 SSMFIELD_ENTRY( X86FXSTATE, aRegs[3]),
347 SSMFIELD_ENTRY( X86FXSTATE, aRegs[4]),
348 SSMFIELD_ENTRY( X86FXSTATE, aRegs[5]),
349 SSMFIELD_ENTRY( X86FXSTATE, aRegs[6]),
350 SSMFIELD_ENTRY( X86FXSTATE, aRegs[7]),
351 SSMFIELD_ENTRY( X86FXSTATE, aXMM[0]),
352 SSMFIELD_ENTRY( X86FXSTATE, aXMM[1]),
353 SSMFIELD_ENTRY( X86FXSTATE, aXMM[2]),
354 SSMFIELD_ENTRY( X86FXSTATE, aXMM[3]),
355 SSMFIELD_ENTRY( X86FXSTATE, aXMM[4]),
356 SSMFIELD_ENTRY( X86FXSTATE, aXMM[5]),
357 SSMFIELD_ENTRY( X86FXSTATE, aXMM[6]),
358 SSMFIELD_ENTRY( X86FXSTATE, aXMM[7]),
359 SSMFIELD_ENTRY( X86FXSTATE, aXMM[8]),
360 SSMFIELD_ENTRY( X86FXSTATE, aXMM[9]),
361 SSMFIELD_ENTRY( X86FXSTATE, aXMM[10]),
362 SSMFIELD_ENTRY( X86FXSTATE, aXMM[11]),
363 SSMFIELD_ENTRY( X86FXSTATE, aXMM[12]),
364 SSMFIELD_ENTRY( X86FXSTATE, aXMM[13]),
365 SSMFIELD_ENTRY( X86FXSTATE, aXMM[14]),
366 SSMFIELD_ENTRY( X86FXSTATE, aXMM[15]),
367 SSMFIELD_ENTRY_VER( X86FXSTATE, au32RsrvdForSoftware[0], CPUM_SAVED_STATE_VERSION_XSAVE), /* 32-bit/64-bit hack */
368 SSMFIELD_ENTRY_TERM()
369};
370
371/** Saved state field descriptors for X86XSAVEHDR. */
372static const SSMFIELD g_aCpumXSaveHdrFields[] =
373{
374 SSMFIELD_ENTRY( X86XSAVEHDR, bmXState),
375 SSMFIELD_ENTRY_TERM()
376};
377
378/** Saved state field descriptors for X86XSAVEYMMHI. */
379static const SSMFIELD g_aCpumYmmHiFields[] =
380{
381 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[0]),
382 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[1]),
383 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[2]),
384 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[3]),
385 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[4]),
386 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[5]),
387 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[6]),
388 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[7]),
389 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[8]),
390 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[9]),
391 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[10]),
392 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[11]),
393 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[12]),
394 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[13]),
395 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[14]),
396 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[15]),
397 SSMFIELD_ENTRY_TERM()
398};
399
400/** Saved state field descriptors for X86XSAVEBNDREGS. */
401static const SSMFIELD g_aCpumBndRegsFields[] =
402{
403 SSMFIELD_ENTRY( X86XSAVEBNDREGS, aRegs[0]),
404 SSMFIELD_ENTRY( X86XSAVEBNDREGS, aRegs[1]),
405 SSMFIELD_ENTRY( X86XSAVEBNDREGS, aRegs[2]),
406 SSMFIELD_ENTRY( X86XSAVEBNDREGS, aRegs[3]),
407 SSMFIELD_ENTRY_TERM()
408};
409
410/** Saved state field descriptors for X86XSAVEBNDCFG. */
411static const SSMFIELD g_aCpumBndCfgFields[] =
412{
413 SSMFIELD_ENTRY( X86XSAVEBNDCFG, fConfig),
414 SSMFIELD_ENTRY( X86XSAVEBNDCFG, fStatus),
415 SSMFIELD_ENTRY_TERM()
416};
417
418#if 0 /** @todo */
419/** Saved state field descriptors for X86XSAVEOPMASK. */
420static const SSMFIELD g_aCpumOpmaskFields[] =
421{
422 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[0]),
423 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[1]),
424 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[2]),
425 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[3]),
426 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[4]),
427 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[5]),
428 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[6]),
429 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[7]),
430 SSMFIELD_ENTRY_TERM()
431};
432#endif
433
434/** Saved state field descriptors for X86XSAVEZMMHI256. */
435static const SSMFIELD g_aCpumZmmHi256Fields[] =
436{
437 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[0]),
438 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[1]),
439 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[2]),
440 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[3]),
441 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[4]),
442 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[5]),
443 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[6]),
444 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[7]),
445 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[8]),
446 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[9]),
447 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[10]),
448 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[11]),
449 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[12]),
450 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[13]),
451 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[14]),
452 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[15]),
453 SSMFIELD_ENTRY_TERM()
454};
455
456/** Saved state field descriptors for X86XSAVEZMM16HI. */
457static const SSMFIELD g_aCpumZmm16HiFields[] =
458{
459 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[0]),
460 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[1]),
461 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[2]),
462 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[3]),
463 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[4]),
464 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[5]),
465 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[6]),
466 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[7]),
467 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[8]),
468 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[9]),
469 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[10]),
470 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[11]),
471 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[12]),
472 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[13]),
473 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[14]),
474 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[15]),
475 SSMFIELD_ENTRY_TERM()
476};
477
478
479
480/** Saved state field descriptors for CPUMCTX in V4.1 before the hidden selector
481 * registeres changed. */
482static const SSMFIELD g_aCpumX87FieldsMem[] =
483{
484 SSMFIELD_ENTRY( X86FXSTATE, FCW),
485 SSMFIELD_ENTRY( X86FXSTATE, FSW),
486 SSMFIELD_ENTRY( X86FXSTATE, FTW),
487 SSMFIELD_ENTRY( X86FXSTATE, FOP),
488 SSMFIELD_ENTRY( X86FXSTATE, FPUIP),
489 SSMFIELD_ENTRY( X86FXSTATE, CS),
490 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd1),
491 SSMFIELD_ENTRY( X86FXSTATE, FPUDP),
492 SSMFIELD_ENTRY( X86FXSTATE, DS),
493 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd2),
494 SSMFIELD_ENTRY( X86FXSTATE, MXCSR),
495 SSMFIELD_ENTRY( X86FXSTATE, MXCSR_MASK),
496 SSMFIELD_ENTRY( X86FXSTATE, aRegs[0]),
497 SSMFIELD_ENTRY( X86FXSTATE, aRegs[1]),
498 SSMFIELD_ENTRY( X86FXSTATE, aRegs[2]),
499 SSMFIELD_ENTRY( X86FXSTATE, aRegs[3]),
500 SSMFIELD_ENTRY( X86FXSTATE, aRegs[4]),
501 SSMFIELD_ENTRY( X86FXSTATE, aRegs[5]),
502 SSMFIELD_ENTRY( X86FXSTATE, aRegs[6]),
503 SSMFIELD_ENTRY( X86FXSTATE, aRegs[7]),
504 SSMFIELD_ENTRY( X86FXSTATE, aXMM[0]),
505 SSMFIELD_ENTRY( X86FXSTATE, aXMM[1]),
506 SSMFIELD_ENTRY( X86FXSTATE, aXMM[2]),
507 SSMFIELD_ENTRY( X86FXSTATE, aXMM[3]),
508 SSMFIELD_ENTRY( X86FXSTATE, aXMM[4]),
509 SSMFIELD_ENTRY( X86FXSTATE, aXMM[5]),
510 SSMFIELD_ENTRY( X86FXSTATE, aXMM[6]),
511 SSMFIELD_ENTRY( X86FXSTATE, aXMM[7]),
512 SSMFIELD_ENTRY( X86FXSTATE, aXMM[8]),
513 SSMFIELD_ENTRY( X86FXSTATE, aXMM[9]),
514 SSMFIELD_ENTRY( X86FXSTATE, aXMM[10]),
515 SSMFIELD_ENTRY( X86FXSTATE, aXMM[11]),
516 SSMFIELD_ENTRY( X86FXSTATE, aXMM[12]),
517 SSMFIELD_ENTRY( X86FXSTATE, aXMM[13]),
518 SSMFIELD_ENTRY( X86FXSTATE, aXMM[14]),
519 SSMFIELD_ENTRY( X86FXSTATE, aXMM[15]),
520 SSMFIELD_ENTRY_IGNORE( X86FXSTATE, au32RsrvdRest),
521 SSMFIELD_ENTRY_IGNORE( X86FXSTATE, au32RsrvdForSoftware),
522};
523
524/** Saved state field descriptors for CPUMCTX in V4.1 before the hidden selector
525 * registeres changed. */
526static const SSMFIELD g_aCpumCtxFieldsMem[] =
527{
528 SSMFIELD_ENTRY( CPUMCTX, rdi),
529 SSMFIELD_ENTRY( CPUMCTX, rsi),
530 SSMFIELD_ENTRY( CPUMCTX, rbp),
531 SSMFIELD_ENTRY( CPUMCTX, rax),
532 SSMFIELD_ENTRY( CPUMCTX, rbx),
533 SSMFIELD_ENTRY( CPUMCTX, rdx),
534 SSMFIELD_ENTRY( CPUMCTX, rcx),
535 SSMFIELD_ENTRY( CPUMCTX, rsp),
536 SSMFIELD_ENTRY_OLD( lss_esp, sizeof(uint32_t)),
537 SSMFIELD_ENTRY( CPUMCTX, ss.Sel),
538 SSMFIELD_ENTRY_OLD( ssPadding, sizeof(uint16_t)),
539 SSMFIELD_ENTRY( CPUMCTX, gs.Sel),
540 SSMFIELD_ENTRY_OLD( gsPadding, sizeof(uint16_t)),
541 SSMFIELD_ENTRY( CPUMCTX, fs.Sel),
542 SSMFIELD_ENTRY_OLD( fsPadding, sizeof(uint16_t)),
543 SSMFIELD_ENTRY( CPUMCTX, es.Sel),
544 SSMFIELD_ENTRY_OLD( esPadding, sizeof(uint16_t)),
545 SSMFIELD_ENTRY( CPUMCTX, ds.Sel),
546 SSMFIELD_ENTRY_OLD( dsPadding, sizeof(uint16_t)),
547 SSMFIELD_ENTRY( CPUMCTX, cs.Sel),
548 SSMFIELD_ENTRY_OLD( csPadding, sizeof(uint16_t)*3),
549 SSMFIELD_ENTRY( CPUMCTX, rflags),
550 SSMFIELD_ENTRY( CPUMCTX, rip),
551 SSMFIELD_ENTRY( CPUMCTX, r8),
552 SSMFIELD_ENTRY( CPUMCTX, r9),
553 SSMFIELD_ENTRY( CPUMCTX, r10),
554 SSMFIELD_ENTRY( CPUMCTX, r11),
555 SSMFIELD_ENTRY( CPUMCTX, r12),
556 SSMFIELD_ENTRY( CPUMCTX, r13),
557 SSMFIELD_ENTRY( CPUMCTX, r14),
558 SSMFIELD_ENTRY( CPUMCTX, r15),
559 SSMFIELD_ENTRY( CPUMCTX, es.u64Base),
560 SSMFIELD_ENTRY( CPUMCTX, es.u32Limit),
561 SSMFIELD_ENTRY( CPUMCTX, es.Attr),
562 SSMFIELD_ENTRY( CPUMCTX, cs.u64Base),
563 SSMFIELD_ENTRY( CPUMCTX, cs.u32Limit),
564 SSMFIELD_ENTRY( CPUMCTX, cs.Attr),
565 SSMFIELD_ENTRY( CPUMCTX, ss.u64Base),
566 SSMFIELD_ENTRY( CPUMCTX, ss.u32Limit),
567 SSMFIELD_ENTRY( CPUMCTX, ss.Attr),
568 SSMFIELD_ENTRY( CPUMCTX, ds.u64Base),
569 SSMFIELD_ENTRY( CPUMCTX, ds.u32Limit),
570 SSMFIELD_ENTRY( CPUMCTX, ds.Attr),
571 SSMFIELD_ENTRY( CPUMCTX, fs.u64Base),
572 SSMFIELD_ENTRY( CPUMCTX, fs.u32Limit),
573 SSMFIELD_ENTRY( CPUMCTX, fs.Attr),
574 SSMFIELD_ENTRY( CPUMCTX, gs.u64Base),
575 SSMFIELD_ENTRY( CPUMCTX, gs.u32Limit),
576 SSMFIELD_ENTRY( CPUMCTX, gs.Attr),
577 SSMFIELD_ENTRY( CPUMCTX, cr0),
578 SSMFIELD_ENTRY( CPUMCTX, cr2),
579 SSMFIELD_ENTRY( CPUMCTX, cr3),
580 SSMFIELD_ENTRY( CPUMCTX, cr4),
581 SSMFIELD_ENTRY( CPUMCTX, dr[0]),
582 SSMFIELD_ENTRY( CPUMCTX, dr[1]),
583 SSMFIELD_ENTRY( CPUMCTX, dr[2]),
584 SSMFIELD_ENTRY( CPUMCTX, dr[3]),
585 SSMFIELD_ENTRY_OLD( dr[4], sizeof(uint64_t)),
586 SSMFIELD_ENTRY_OLD( dr[5], sizeof(uint64_t)),
587 SSMFIELD_ENTRY( CPUMCTX, dr[6]),
588 SSMFIELD_ENTRY( CPUMCTX, dr[7]),
589 SSMFIELD_ENTRY( CPUMCTX, gdtr.cbGdt),
590 SSMFIELD_ENTRY( CPUMCTX, gdtr.pGdt),
591 SSMFIELD_ENTRY_OLD( gdtrPadding, sizeof(uint16_t)),
592 SSMFIELD_ENTRY( CPUMCTX, idtr.cbIdt),
593 SSMFIELD_ENTRY( CPUMCTX, idtr.pIdt),
594 SSMFIELD_ENTRY_OLD( idtrPadding, sizeof(uint16_t)),
595 SSMFIELD_ENTRY( CPUMCTX, ldtr.Sel),
596 SSMFIELD_ENTRY_OLD( ldtrPadding, sizeof(uint16_t)),
597 SSMFIELD_ENTRY( CPUMCTX, tr.Sel),
598 SSMFIELD_ENTRY_OLD( trPadding, sizeof(uint16_t)),
599 SSMFIELD_ENTRY( CPUMCTX, SysEnter.cs),
600 SSMFIELD_ENTRY( CPUMCTX, SysEnter.eip),
601 SSMFIELD_ENTRY( CPUMCTX, SysEnter.esp),
602 SSMFIELD_ENTRY( CPUMCTX, msrEFER),
603 SSMFIELD_ENTRY( CPUMCTX, msrSTAR),
604 SSMFIELD_ENTRY( CPUMCTX, msrPAT),
605 SSMFIELD_ENTRY( CPUMCTX, msrLSTAR),
606 SSMFIELD_ENTRY( CPUMCTX, msrCSTAR),
607 SSMFIELD_ENTRY( CPUMCTX, msrSFMASK),
608 SSMFIELD_ENTRY( CPUMCTX, msrKERNELGSBASE),
609 SSMFIELD_ENTRY( CPUMCTX, ldtr.u64Base),
610 SSMFIELD_ENTRY( CPUMCTX, ldtr.u32Limit),
611 SSMFIELD_ENTRY( CPUMCTX, ldtr.Attr),
612 SSMFIELD_ENTRY( CPUMCTX, tr.u64Base),
613 SSMFIELD_ENTRY( CPUMCTX, tr.u32Limit),
614 SSMFIELD_ENTRY( CPUMCTX, tr.Attr),
615 SSMFIELD_ENTRY_TERM()
616};
617
618/** Saved state field descriptors for CPUMCTX_VER1_6. */
619static const SSMFIELD g_aCpumX87FieldsV16[] =
620{
621 SSMFIELD_ENTRY( X86FXSTATE, FCW),
622 SSMFIELD_ENTRY( X86FXSTATE, FSW),
623 SSMFIELD_ENTRY( X86FXSTATE, FTW),
624 SSMFIELD_ENTRY( X86FXSTATE, FOP),
625 SSMFIELD_ENTRY( X86FXSTATE, FPUIP),
626 SSMFIELD_ENTRY( X86FXSTATE, CS),
627 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd1),
628 SSMFIELD_ENTRY( X86FXSTATE, FPUDP),
629 SSMFIELD_ENTRY( X86FXSTATE, DS),
630 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd2),
631 SSMFIELD_ENTRY( X86FXSTATE, MXCSR),
632 SSMFIELD_ENTRY( X86FXSTATE, MXCSR_MASK),
633 SSMFIELD_ENTRY( X86FXSTATE, aRegs[0]),
634 SSMFIELD_ENTRY( X86FXSTATE, aRegs[1]),
635 SSMFIELD_ENTRY( X86FXSTATE, aRegs[2]),
636 SSMFIELD_ENTRY( X86FXSTATE, aRegs[3]),
637 SSMFIELD_ENTRY( X86FXSTATE, aRegs[4]),
638 SSMFIELD_ENTRY( X86FXSTATE, aRegs[5]),
639 SSMFIELD_ENTRY( X86FXSTATE, aRegs[6]),
640 SSMFIELD_ENTRY( X86FXSTATE, aRegs[7]),
641 SSMFIELD_ENTRY( X86FXSTATE, aXMM[0]),
642 SSMFIELD_ENTRY( X86FXSTATE, aXMM[1]),
643 SSMFIELD_ENTRY( X86FXSTATE, aXMM[2]),
644 SSMFIELD_ENTRY( X86FXSTATE, aXMM[3]),
645 SSMFIELD_ENTRY( X86FXSTATE, aXMM[4]),
646 SSMFIELD_ENTRY( X86FXSTATE, aXMM[5]),
647 SSMFIELD_ENTRY( X86FXSTATE, aXMM[6]),
648 SSMFIELD_ENTRY( X86FXSTATE, aXMM[7]),
649 SSMFIELD_ENTRY( X86FXSTATE, aXMM[8]),
650 SSMFIELD_ENTRY( X86FXSTATE, aXMM[9]),
651 SSMFIELD_ENTRY( X86FXSTATE, aXMM[10]),
652 SSMFIELD_ENTRY( X86FXSTATE, aXMM[11]),
653 SSMFIELD_ENTRY( X86FXSTATE, aXMM[12]),
654 SSMFIELD_ENTRY( X86FXSTATE, aXMM[13]),
655 SSMFIELD_ENTRY( X86FXSTATE, aXMM[14]),
656 SSMFIELD_ENTRY( X86FXSTATE, aXMM[15]),
657 SSMFIELD_ENTRY_IGNORE( X86FXSTATE, au32RsrvdRest),
658 SSMFIELD_ENTRY_IGNORE( X86FXSTATE, au32RsrvdForSoftware),
659 SSMFIELD_ENTRY_TERM()
660};
661
662/** Saved state field descriptors for CPUMCTX_VER1_6. */
663static const SSMFIELD g_aCpumCtxFieldsV16[] =
664{
665 SSMFIELD_ENTRY( CPUMCTX, rdi),
666 SSMFIELD_ENTRY( CPUMCTX, rsi),
667 SSMFIELD_ENTRY( CPUMCTX, rbp),
668 SSMFIELD_ENTRY( CPUMCTX, rax),
669 SSMFIELD_ENTRY( CPUMCTX, rbx),
670 SSMFIELD_ENTRY( CPUMCTX, rdx),
671 SSMFIELD_ENTRY( CPUMCTX, rcx),
672 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, rsp),
673 SSMFIELD_ENTRY( CPUMCTX, ss.Sel),
674 SSMFIELD_ENTRY_OLD( ssPadding, sizeof(uint16_t)),
675 SSMFIELD_ENTRY_OLD( CPUMCTX, sizeof(uint64_t) /*rsp_notused*/),
676 SSMFIELD_ENTRY( CPUMCTX, gs.Sel),
677 SSMFIELD_ENTRY_OLD( gsPadding, sizeof(uint16_t)),
678 SSMFIELD_ENTRY( CPUMCTX, fs.Sel),
679 SSMFIELD_ENTRY_OLD( fsPadding, sizeof(uint16_t)),
680 SSMFIELD_ENTRY( CPUMCTX, es.Sel),
681 SSMFIELD_ENTRY_OLD( esPadding, sizeof(uint16_t)),
682 SSMFIELD_ENTRY( CPUMCTX, ds.Sel),
683 SSMFIELD_ENTRY_OLD( dsPadding, sizeof(uint16_t)),
684 SSMFIELD_ENTRY( CPUMCTX, cs.Sel),
685 SSMFIELD_ENTRY_OLD( csPadding, sizeof(uint16_t)*3),
686 SSMFIELD_ENTRY( CPUMCTX, rflags),
687 SSMFIELD_ENTRY( CPUMCTX, rip),
688 SSMFIELD_ENTRY( CPUMCTX, r8),
689 SSMFIELD_ENTRY( CPUMCTX, r9),
690 SSMFIELD_ENTRY( CPUMCTX, r10),
691 SSMFIELD_ENTRY( CPUMCTX, r11),
692 SSMFIELD_ENTRY( CPUMCTX, r12),
693 SSMFIELD_ENTRY( CPUMCTX, r13),
694 SSMFIELD_ENTRY( CPUMCTX, r14),
695 SSMFIELD_ENTRY( CPUMCTX, r15),
696 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, es.u64Base),
697 SSMFIELD_ENTRY( CPUMCTX, es.u32Limit),
698 SSMFIELD_ENTRY( CPUMCTX, es.Attr),
699 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, cs.u64Base),
700 SSMFIELD_ENTRY( CPUMCTX, cs.u32Limit),
701 SSMFIELD_ENTRY( CPUMCTX, cs.Attr),
702 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, ss.u64Base),
703 SSMFIELD_ENTRY( CPUMCTX, ss.u32Limit),
704 SSMFIELD_ENTRY( CPUMCTX, ss.Attr),
705 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, ds.u64Base),
706 SSMFIELD_ENTRY( CPUMCTX, ds.u32Limit),
707 SSMFIELD_ENTRY( CPUMCTX, ds.Attr),
708 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, fs.u64Base),
709 SSMFIELD_ENTRY( CPUMCTX, fs.u32Limit),
710 SSMFIELD_ENTRY( CPUMCTX, fs.Attr),
711 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, gs.u64Base),
712 SSMFIELD_ENTRY( CPUMCTX, gs.u32Limit),
713 SSMFIELD_ENTRY( CPUMCTX, gs.Attr),
714 SSMFIELD_ENTRY( CPUMCTX, cr0),
715 SSMFIELD_ENTRY( CPUMCTX, cr2),
716 SSMFIELD_ENTRY( CPUMCTX, cr3),
717 SSMFIELD_ENTRY( CPUMCTX, cr4),
718 SSMFIELD_ENTRY_OLD( cr8, sizeof(uint64_t)),
719 SSMFIELD_ENTRY( CPUMCTX, dr[0]),
720 SSMFIELD_ENTRY( CPUMCTX, dr[1]),
721 SSMFIELD_ENTRY( CPUMCTX, dr[2]),
722 SSMFIELD_ENTRY( CPUMCTX, dr[3]),
723 SSMFIELD_ENTRY_OLD( dr[4], sizeof(uint64_t)),
724 SSMFIELD_ENTRY_OLD( dr[5], sizeof(uint64_t)),
725 SSMFIELD_ENTRY( CPUMCTX, dr[6]),
726 SSMFIELD_ENTRY( CPUMCTX, dr[7]),
727 SSMFIELD_ENTRY( CPUMCTX, gdtr.cbGdt),
728 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, gdtr.pGdt),
729 SSMFIELD_ENTRY_OLD( gdtrPadding, sizeof(uint16_t)),
730 SSMFIELD_ENTRY_OLD( gdtrPadding64, sizeof(uint64_t)),
731 SSMFIELD_ENTRY( CPUMCTX, idtr.cbIdt),
732 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, idtr.pIdt),
733 SSMFIELD_ENTRY_OLD( idtrPadding, sizeof(uint16_t)),
734 SSMFIELD_ENTRY_OLD( idtrPadding64, sizeof(uint64_t)),
735 SSMFIELD_ENTRY( CPUMCTX, ldtr.Sel),
736 SSMFIELD_ENTRY_OLD( ldtrPadding, sizeof(uint16_t)),
737 SSMFIELD_ENTRY( CPUMCTX, tr.Sel),
738 SSMFIELD_ENTRY_OLD( trPadding, sizeof(uint16_t)),
739 SSMFIELD_ENTRY( CPUMCTX, SysEnter.cs),
740 SSMFIELD_ENTRY( CPUMCTX, SysEnter.eip),
741 SSMFIELD_ENTRY( CPUMCTX, SysEnter.esp),
742 SSMFIELD_ENTRY( CPUMCTX, msrEFER),
743 SSMFIELD_ENTRY( CPUMCTX, msrSTAR),
744 SSMFIELD_ENTRY( CPUMCTX, msrPAT),
745 SSMFIELD_ENTRY( CPUMCTX, msrLSTAR),
746 SSMFIELD_ENTRY( CPUMCTX, msrCSTAR),
747 SSMFIELD_ENTRY( CPUMCTX, msrSFMASK),
748 SSMFIELD_ENTRY_OLD( msrFSBASE, sizeof(uint64_t)),
749 SSMFIELD_ENTRY_OLD( msrGSBASE, sizeof(uint64_t)),
750 SSMFIELD_ENTRY( CPUMCTX, msrKERNELGSBASE),
751 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, ldtr.u64Base),
752 SSMFIELD_ENTRY( CPUMCTX, ldtr.u32Limit),
753 SSMFIELD_ENTRY( CPUMCTX, ldtr.Attr),
754 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, tr.u64Base),
755 SSMFIELD_ENTRY( CPUMCTX, tr.u32Limit),
756 SSMFIELD_ENTRY( CPUMCTX, tr.Attr),
757 SSMFIELD_ENTRY_OLD( padding, sizeof(uint32_t)*2),
758 SSMFIELD_ENTRY_TERM()
759};
760
761
762/**
763 * Checks for partial/leaky FXSAVE/FXRSTOR handling on AMD CPUs.
764 *
765 * AMD K7, K8 and newer AMD CPUs do not save/restore the x87 error pointers
766 * (last instruction pointer, last data pointer, last opcode) except when the ES
767 * bit (Exception Summary) in x87 FSW (FPU Status Word) is set. Thus if we don't
768 * clear these registers there is potential, local FPU leakage from a process
769 * using the FPU to another.
770 *
771 * See AMD Instruction Reference for FXSAVE, FXRSTOR.
772 *
773 * @param pVM The cross context VM structure.
774 */
775static void cpumR3CheckLeakyFpu(PVM pVM)
776{
777 uint32_t u32CpuVersion = ASMCpuId_EAX(1);
778 uint32_t const u32Family = u32CpuVersion >> 8;
779 if ( u32Family >= 6 /* K7 and higher */
780 && ASMIsAmdCpu())
781 {
782 uint32_t cExt = ASMCpuId_EAX(0x80000000);
783 if (ASMIsValidExtRange(cExt))
784 {
785 uint32_t fExtFeaturesEDX = ASMCpuId_EDX(0x80000001);
786 if (fExtFeaturesEDX & X86_CPUID_AMD_FEATURE_EDX_FFXSR)
787 {
788 for (VMCPUID i = 0; i < pVM->cCpus; i++)
789 pVM->aCpus[i].cpum.s.fUseFlags |= CPUM_USE_FFXSR_LEAKY;
790 Log(("CPUMR3Init: host CPU has leaky fxsave/fxrstor behaviour\n"));
791 }
792 }
793 }
794}
795
796
797/**
798 * Frees memory allocated for the SVM hardware virtualization state.
799 *
800 * @param pVM The cross context VM structure.
801 */
802static void cpumR3FreeSvmHwVirtState(PVM pVM)
803{
804 Assert(pVM->cpum.ro.GuestFeatures.fSvm);
805 for (VMCPUID i = 0; i < pVM->cCpus; i++)
806 {
807 PVMCPU pVCpu = &pVM->aCpus[i];
808 if (pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR3)
809 {
810 SUPR3PageFreeEx(pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR3, SVM_VMCB_PAGES);
811 pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR3 = NULL;
812 }
813 pVCpu->cpum.s.Guest.hwvirt.svm.HCPhysVmcb = NIL_RTHCPHYS;
814
815 if (pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR3)
816 {
817 SUPR3PageFreeEx(pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR3, SVM_MSRPM_PAGES);
818 pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR3 = NULL;
819 }
820
821 if (pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR3)
822 {
823 SUPR3PageFreeEx(pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR3, SVM_IOPM_PAGES);
824 pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR3 = NULL;
825 }
826 }
827}
828
829
830/**
831 * Allocates memory for the SVM hardware virtualization state.
832 *
833 * @returns VBox status code.
834 * @param pVM The cross context VM structure.
835 */
836static int cpumR3AllocSvmHwVirtState(PVM pVM)
837{
838 Assert(pVM->cpum.ro.GuestFeatures.fSvm);
839
840 int rc = VINF_SUCCESS;
841 LogRel(("CPUM: Allocating %u pages for the nested-guest SVM MSR and IO permission bitmaps\n",
842 pVM->cCpus * (SVM_MSRPM_PAGES + SVM_IOPM_PAGES)));
843 for (VMCPUID i = 0; i < pVM->cCpus; i++)
844 {
845 PVMCPU pVCpu = &pVM->aCpus[i];
846
847 /*
848 * Allocate the nested-guest VMCB.
849 */
850 SUPPAGE SupNstGstVmcbPage;
851 RT_ZERO(SupNstGstVmcbPage);
852 SupNstGstVmcbPage.Phys = NIL_RTHCPHYS;
853 Assert(SVM_VMCB_PAGES == 1);
854 Assert(!pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR3);
855 rc = SUPR3PageAllocEx(SVM_VMCB_PAGES, 0 /* fFlags */, (void **)&pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR3,
856 &pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR0, &SupNstGstVmcbPage);
857 if (RT_FAILURE(rc))
858 {
859 Assert(!pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR3);
860 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's VMCB\n", pVCpu->idCpu, SVM_VMCB_PAGES));
861 break;
862 }
863 pVCpu->cpum.s.Guest.hwvirt.svm.HCPhysVmcb = SupNstGstVmcbPage.Phys;
864
865 /*
866 * Allocate the MSRPM (MSR Permission bitmap).
867 */
868 Assert(!pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR3);
869 rc = SUPR3PageAllocEx(SVM_MSRPM_PAGES, 0 /* fFlags */, &pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR3,
870 &pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR0, NULL /* paPages */);
871 if (RT_FAILURE(rc))
872 {
873 Assert(!pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR3);
874 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's MSR permission bitmap\n", pVCpu->idCpu,
875 SVM_MSRPM_PAGES));
876 break;
877 }
878
879 /*
880 * Allocate the IOPM (IO Permission bitmap).
881 */
882 Assert(!pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR3);
883 rc = SUPR3PageAllocEx(SVM_IOPM_PAGES, 0 /* fFlags */, &pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR3,
884 &pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR0, NULL /* paPages */);
885 if (RT_FAILURE(rc))
886 {
887 Assert(!pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR3);
888 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's IO permission bitmap\n", pVCpu->idCpu,
889 SVM_IOPM_PAGES));
890 break;
891 }
892 }
893
894 /* On any failure, cleanup. */
895 if (RT_FAILURE(rc))
896 cpumR3FreeSvmHwVirtState(pVM);
897
898 return rc;
899}
900
901
902/**
903 * Frees memory allocated for the VMX hardware virtualization state.
904 *
905 * @param pVM The cross context VM structure.
906 */
907static void cpumR3FreeVmxHwVirtState(PVM pVM)
908{
909 Assert(pVM->cpum.ro.GuestFeatures.fVmx);
910 for (VMCPUID i = 0; i < pVM->cCpus; i++)
911 {
912 PVMCPU pVCpu = &pVM->aCpus[i];
913 if (pVCpu->cpum.s.Guest.hwvirt.vmx.pVmcsR3)
914 {
915 SUPR3PageFreeEx(pVCpu->cpum.s.Guest.hwvirt.vmx.pVmcsR3, VMX_V_VMCS_PAGES);
916 pVCpu->cpum.s.Guest.hwvirt.vmx.pVmcsR3 = NULL;
917 }
918 }
919}
920
921
922/**
923 * Allocates memory for the VMX hardware virtualization state.
924 *
925 * @returns VBox status code.
926 * @param pVM The cross context VM structure.
927 */
928static int cpumR3AllocVmxHwVirtState(PVM pVM)
929{
930 int rc = VINF_SUCCESS;
931 LogRel(("CPUM: Allocating %u pages for the nested-guest VMCS\n", pVM->cCpus * VMX_V_VMCS_SIZE));
932 for (VMCPUID i = 0; i < pVM->cCpus; i++)
933 {
934 PVMCPU pVCpu = &pVM->aCpus[i];
935
936 /*
937 * Allocate the nested-guest current VMCS.
938 */
939 SUPPAGE SupNstGstVmcsPage;
940 RT_ZERO(SupNstGstVmcsPage);
941 SupNstGstVmcsPage.Phys = NIL_RTHCPHYS;
942 Assert(VMX_V_VMCS_PAGES == 1);
943 Assert(!pVCpu->cpum.s.Guest.hwvirt.vmx.pVmcsR3);
944 rc = SUPR3PageAllocEx(VMX_V_VMCS_PAGES, 0 /* fFlags */, (void **)&pVCpu->cpum.s.Guest.hwvirt.vmx.pVmcsR3,
945 &pVCpu->cpum.s.Guest.hwvirt.vmx.pVmcsR0, &SupNstGstVmcsPage);
946 if (RT_FAILURE(rc))
947 {
948 Assert(!pVCpu->cpum.s.Guest.hwvirt.vmx.pVmcsR3);
949 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's VMCS\n", pVCpu->idCpu, VMX_V_VMCS_PAGES));
950 break;
951 }
952 }
953
954 /* On any failure, cleanup. */
955 if (RT_FAILURE(rc))
956 cpumR3FreeVmxHwVirtState(pVM);
957
958 return rc;
959}
960
961
962/**
963 * Displays the host and guest VMX features.
964 *
965 * @param pVM The cross context VM structure.
966 * @param pHlp The info helper functions.
967 * @param pszArgs "terse", "default" or "verbose".
968 */
969DECLCALLBACK(void) cpumR3InfoVmxFeatures(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
970{
971 RT_NOREF(pszArgs);
972 PCCPUMFEATURES pHostFeatures = &pVM->cpum.s.HostFeatures;
973 PCCPUMFEATURES pGuestFeatures = &pVM->cpum.s.GuestFeatures;
974 if ( pHostFeatures->enmCpuVendor == CPUMCPUVENDOR_INTEL
975 || pHostFeatures->enmCpuVendor == CPUMCPUVENDOR_VIA)
976 {
977#define VMXFEATDUMP(a_szDesc, a_Var) \
978 pHlp->pfnPrintf(pHlp, " %s = %u (%u)\n", a_szDesc, pGuestFeatures->a_Var, pHostFeatures->a_Var)
979
980 pHlp->pfnPrintf(pHlp, "Nested hardware virtualization - VMX features\n");
981 pHlp->pfnPrintf(pHlp, " Mnemonic - Description = guest (host)\n");
982 VMXFEATDUMP("VMX - Virtual-Machine Extensions ", fVmx);
983 /* Basic. */
984 VMXFEATDUMP("InsOutInfo - INS/OUTS instruction info. ", fVmxInsOutInfo);
985 /* Pin-based controls. */
986 VMXFEATDUMP("ExtIntExit - External interrupt VM-exit ", fVmxExtIntExit);
987 VMXFEATDUMP("NmiExit - NMI VM-exit ", fVmxNmiExit);
988 VMXFEATDUMP("VirtNmi - Virtual NMIs ", fVmxVirtNmi);
989 VMXFEATDUMP("PreemptTimer - VMX preemption timer ", fVmxPreemptTimer);
990 VMXFEATDUMP("PostedInt - Posted interrupts ", fVmxPostedInt);
991 /* Processor-based controls. */
992 VMXFEATDUMP("IntWindowExit - Interrupt-window exiting ", fVmxIntWindowExit);
993 VMXFEATDUMP("TscOffsetting - TSC offsetting ", fVmxTscOffsetting);
994 VMXFEATDUMP("HltExit - HLT exiting ", fVmxHltExit);
995 VMXFEATDUMP("InvlpgExit - INVLPG exiting ", fVmxInvlpgExit);
996 VMXFEATDUMP("MwaitExit - MWAIT exiting ", fVmxMwaitExit);
997 VMXFEATDUMP("RdpmcExit - RDPMC exiting ", fVmxRdpmcExit);
998 VMXFEATDUMP("RdtscExit - RDTSC exiting ", fVmxRdtscExit);
999 VMXFEATDUMP("Cr3LoadExit - CR3-load exiting ", fVmxCr3LoadExit);
1000 VMXFEATDUMP("Cr3StoreExit - CR3-store exiting ", fVmxCr3StoreExit);
1001 VMXFEATDUMP("Cr8LoadExit - CR8-load exiting ", fVmxCr8LoadExit);
1002 VMXFEATDUMP("Cr8StoreExit - CR8-store exiting ", fVmxCr8StoreExit);
1003 VMXFEATDUMP("UseTprShadow - Use TPR shadow ", fVmxUseTprShadow);
1004 VMXFEATDUMP("NmiWindowExit - NMI-window exiting ", fVmxNmiWindowExit);
1005 VMXFEATDUMP("MovDRxExit - Mov-DR exiting ", fVmxMovDRxExit);
1006 VMXFEATDUMP("UncondIoExit - Unconditional I/O exiting ", fVmxUncondIoExit);
1007 VMXFEATDUMP("UseIoBitmaps - Use I/O bitmaps ", fVmxUseIoBitmaps);
1008 VMXFEATDUMP("MonitorTrapFlag - Monitor trap flag ", fVmxMonitorTrapFlag);
1009 VMXFEATDUMP("UseMsrBitmaps - MSR bitmaps ", fVmxUseMsrBitmaps);
1010 VMXFEATDUMP("MonitorExit - MONITOR exiting ", fVmxMonitorExit);
1011 VMXFEATDUMP("PauseExit - PAUSE exiting ", fVmxPauseExit);
1012 VMXFEATDUMP("SecondaryExecCtl - Activate secondary controls ", fVmxSecondaryExecCtls);
1013 /* Secondary processor-based controls. */
1014 VMXFEATDUMP("VirtApic - Virtualize-APIC accesses ", fVmxVirtApicAccess);
1015 VMXFEATDUMP("Ept - Extended Page Tables ", fVmxEpt);
1016 VMXFEATDUMP("DescTableExit - Descriptor-table exiting ", fVmxDescTableExit);
1017 VMXFEATDUMP("Rdtscp - Enable RDTSCP ", fVmxRdtscp);
1018 VMXFEATDUMP("VirtX2Apic - Virtualize-x2APIC accesses ", fVmxVirtX2ApicAccess);
1019 VMXFEATDUMP("Vpid - Enable VPID ", fVmxVpid);
1020 VMXFEATDUMP("WbinvdExit - WBINVD exiting ", fVmxWbinvdExit);
1021 VMXFEATDUMP("UnrestrictedGuest - Unrestricted guest ", fVmxUnrestrictedGuest);
1022 VMXFEATDUMP("ApicRegVirt - APIC-register virtualization ", fVmxApicRegVirt);
1023 VMXFEATDUMP("VirtIntDelivery - Virtual-interrupt delivery ", fVmxVirtIntDelivery);
1024 VMXFEATDUMP("PauseLoopExit - PAUSE-loop exiting ", fVmxPauseLoopExit);
1025 VMXFEATDUMP("RdrandExit - RDRAND exiting ", fVmxRdrandExit);
1026 VMXFEATDUMP("Invpcid - Enable INVPCID ", fVmxInvpcid);
1027 VMXFEATDUMP("VmFuncs - Enable VM Functions ", fVmxVmFunc);
1028 VMXFEATDUMP("VmcsShadowing - VMCS shadowing ", fVmxVmcsShadowing);
1029 VMXFEATDUMP("RdseedExiting - RDSEED exiting ", fVmxRdseedExit);
1030 VMXFEATDUMP("PML - Supports Page-Modification Log (PML) ", fVmxPml);
1031 VMXFEATDUMP("EptVe - EPT violations can cause #VE ", fVmxEptXcptVe);
1032 VMXFEATDUMP("XsavesXRstors - Enable XSAVES/XRSTORS ", fVmxXsavesXrstors);
1033 /* VM-entry controls. */
1034 VMXFEATDUMP("EntryLoadDebugCtls - Load debug controls on VM-entry ", fVmxEntryLoadDebugCtls);
1035 VMXFEATDUMP("Ia32eModeGuest - IA-32e mode guest ", fVmxIa32eModeGuest);
1036 VMXFEATDUMP("EntryLoadEferMsr - Load IA32_EFER on VM-entry ", fVmxEntryLoadEferMsr);
1037 VMXFEATDUMP("EntryLoadPatMsr - Load IA32_PAT on VM-entry ", fVmxEntryLoadPatMsr);
1038 /* VM-exit controls. */
1039 VMXFEATDUMP("ExitSaveDebugCtls - Save debug controls on VM-exit ", fVmxExitSaveDebugCtls);
1040 VMXFEATDUMP("HostAddrSpaceSize - Host address-space size ", fVmxHostAddrSpaceSize);
1041 VMXFEATDUMP("ExitAckExtInt - Acknowledge interrupt on VM-exit ", fVmxExitAckExtInt);
1042 VMXFEATDUMP("ExitSavePatMsr - Save IA32_PAT on VM-exit ", fVmxExitSavePatMsr);
1043 VMXFEATDUMP("ExitLoadPatMsr - Load IA32_PAT on VM-exit ", fVmxExitLoadPatMsr);
1044 VMXFEATDUMP("ExitSaveEferMsr - Save IA32_EFER on VM-exit ", fVmxExitSaveEferMsr);
1045 VMXFEATDUMP("ExitLoadEferMsr - Load IA32_EFER on VM-exit ", fVmxExitLoadEferMsr);
1046 VMXFEATDUMP("SavePreemptTimer - Save VMX-preemption timer ", fVmxSavePreemptTimer);
1047 VMXFEATDUMP("ExitStoreEferLma - Store EFER.LMA on VM-exit ", fVmxExitStoreEferLma);
1048 VMXFEATDUMP("VmwriteAll - VMWRITE to any VMCS field ", fVmxVmwriteAll);
1049 VMXFEATDUMP("EntryInjectSoftInt - Inject softint. with 0-len instr. ", fVmxEntryInjectSoftInt);
1050 /* Miscellaneous data. */
1051 VMXFEATDUMP("ExitStoreEferLma - Inject softint. with 0-len instr. ", fVmxExitStoreEferLma);
1052 VMXFEATDUMP("VmwriteAll - Inject softint. with 0-len instr. ", fVmxVmwriteAll);
1053 VMXFEATDUMP("EntryInjectSoftInt - Inject softint. with 0-len instr. ", fVmxEntryInjectSoftInt);
1054#undef VMXFEATDUMP
1055 }
1056 else
1057 pHlp->pfnPrintf(pHlp, "No VMX features present - requires an Intel or compatible CPU.\n");
1058}
1059
1060
1061/**
1062 * Initializes VMX host and guest features.
1063 *
1064 * @param pVM The cross context VM structure.
1065 *
1066 * @remarks This must be called only after HM has fully initialized since it calls
1067 * into HM to retrieve VMX and related MSRs.
1068 */
1069static void cpumR3InitVmxCpuFeatures(PVM pVM)
1070{
1071 /*
1072 * Init. host features.
1073 */
1074 PCPUMFEATURES pHostFeat = &pVM->cpum.s.HostFeatures;
1075 VMXMSRS VmxMsrs;
1076 int rc = HMVmxGetHostMsrs(pVM, &VmxMsrs);
1077 if (RT_SUCCESS(rc))
1078 {
1079 /* Basic information. */
1080 pHostFeat->fVmxInsOutInfo = RT_BF_GET(VmxMsrs.u64Basic, VMX_BF_BASIC_VMCS_INS_OUTS);
1081
1082 /* Pin-based VM-execution controls. */
1083 uint32_t const fPinCtls = VmxMsrs.PinCtls.n.allowed1;
1084 pHostFeat->fVmxExtIntExit = RT_BOOL(fPinCtls & VMX_PIN_CTLS_EXT_INT_EXIT);
1085 pHostFeat->fVmxNmiExit = RT_BOOL(fPinCtls & VMX_PIN_CTLS_NMI_EXIT);
1086 pHostFeat->fVmxVirtNmi = RT_BOOL(fPinCtls & VMX_PIN_CTLS_VIRT_NMI);
1087 pHostFeat->fVmxPreemptTimer = RT_BOOL(fPinCtls & VMX_PIN_CTLS_PREEMPT_TIMER);
1088 pHostFeat->fVmxPostedInt = RT_BOOL(fPinCtls & VMX_PIN_CTLS_POSTED_INT);
1089
1090 /* Processor-based VM-execution controls. */
1091 uint32_t const fProcCtls = VmxMsrs.ProcCtls.n.allowed1;
1092 pHostFeat->fVmxIntWindowExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_INT_WINDOW_EXIT);
1093 pHostFeat->fVmxTscOffsetting = RT_BOOL(fProcCtls & VMX_PROC_CTLS_USE_TSC_OFFSETTING);
1094 pHostFeat->fVmxHltExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_HLT_EXIT);
1095 pHostFeat->fVmxInvlpgExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_INVLPG_EXIT);
1096 pHostFeat->fVmxMwaitExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_MWAIT_EXIT);
1097 pHostFeat->fVmxRdpmcExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_RDPMC_EXIT);
1098 pHostFeat->fVmxRdtscExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_RDTSC_EXIT);
1099 pHostFeat->fVmxCr3LoadExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_CR3_LOAD_EXIT);
1100 pHostFeat->fVmxCr3StoreExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_CR3_STORE_EXIT);
1101 pHostFeat->fVmxCr8LoadExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_CR8_LOAD_EXIT);
1102 pHostFeat->fVmxCr8StoreExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_CR8_STORE_EXIT);
1103 pHostFeat->fVmxUseTprShadow = RT_BOOL(fProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW);
1104 pHostFeat->fVmxNmiWindowExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_NMI_WINDOW_EXIT);
1105 pHostFeat->fVmxMovDRxExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_MOV_DR_EXIT);
1106 pHostFeat->fVmxUncondIoExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_UNCOND_IO_EXIT);
1107 pHostFeat->fVmxUseIoBitmaps = RT_BOOL(fProcCtls & VMX_PROC_CTLS_USE_IO_BITMAPS);
1108 pHostFeat->fVmxMonitorTrapFlag = RT_BOOL(fProcCtls & VMX_PROC_CTLS_MONITOR_TRAP_FLAG);
1109 pHostFeat->fVmxUseMsrBitmaps = RT_BOOL(fProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS);
1110 pHostFeat->fVmxMonitorExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_MONITOR_EXIT);
1111 pHostFeat->fVmxPauseExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_PAUSE_EXIT);
1112 pHostFeat->fVmxSecondaryExecCtls = RT_BOOL(fProcCtls & VMX_PROC_CTLS_USE_SECONDARY_CTLS);
1113
1114 /* Secondary processor-based VM-execution controls. */
1115 if (pHostFeat->fVmxSecondaryExecCtls)
1116 {
1117 uint32_t const fProcCtls2 = VmxMsrs.ProcCtls2.n.allowed1;
1118 pHostFeat->fVmxVirtApicAccess = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS);
1119 pHostFeat->fVmxEpt = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_EPT);
1120 pHostFeat->fVmxDescTableExit = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_DESC_TABLE_EXIT);
1121 pHostFeat->fVmxRdtscp = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_RDTSCP);
1122 pHostFeat->fVmxVirtX2ApicAccess = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_VIRT_X2APIC_ACCESS);
1123 pHostFeat->fVmxVpid = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_VPID);
1124 pHostFeat->fVmxWbinvdExit = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_WBINVD_EXIT);
1125 pHostFeat->fVmxUnrestrictedGuest = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_UNRESTRICTED_GUEST);
1126 pHostFeat->fVmxApicRegVirt = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_APIC_REG_VIRT);
1127 pHostFeat->fVmxVirtIntDelivery = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY);
1128 pHostFeat->fVmxPauseLoopExit = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_PAUSE_LOOP_EXIT);
1129 pHostFeat->fVmxRdrandExit = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_RDRAND_EXIT);
1130 pHostFeat->fVmxInvpcid = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_INVPCID);
1131 pHostFeat->fVmxVmFunc = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_VMFUNC);
1132 pHostFeat->fVmxVmcsShadowing = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_VMCS_SHADOWING);
1133 pHostFeat->fVmxRdseedExit = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_RDSEED_EXIT);
1134 pHostFeat->fVmxPml = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_PML);
1135 pHostFeat->fVmxEptXcptVe = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_EPT_VE);
1136 pHostFeat->fVmxXsavesXrstors = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_XSAVES_XRSTORS);
1137 pHostFeat->fVmxUseTscScaling = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_TSC_SCALING);
1138 }
1139
1140 /* VM-entry controls. */
1141 uint32_t const fEntryCtls = VmxMsrs.EntryCtls.n.allowed1;
1142 pHostFeat->fVmxEntryLoadDebugCtls = RT_BOOL(fEntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG);
1143 pHostFeat->fVmxIa32eModeGuest = RT_BOOL(fEntryCtls & VMX_ENTRY_CTLS_IA32E_MODE_GUEST);
1144 pHostFeat->fVmxEntryLoadEferMsr = RT_BOOL(fEntryCtls & VMX_ENTRY_CTLS_LOAD_EFER_MSR);
1145 pHostFeat->fVmxEntryLoadPatMsr = RT_BOOL(fEntryCtls & VMX_ENTRY_CTLS_LOAD_PAT_MSR);
1146
1147 /* VM-exit controls. */
1148 uint32_t const fExitCtls = VmxMsrs.ExitCtls.n.allowed1;
1149 pHostFeat->fVmxExitSaveDebugCtls = RT_BOOL(fExitCtls & VMX_EXIT_CTLS_SAVE_DEBUG);
1150 pHostFeat->fVmxHostAddrSpaceSize = RT_BOOL(fExitCtls & VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE);
1151 pHostFeat->fVmxExitAckExtInt = RT_BOOL(fExitCtls & VMX_EXIT_CTLS_ACK_EXT_INT);
1152 pHostFeat->fVmxExitSavePatMsr = RT_BOOL(fExitCtls & VMX_EXIT_CTLS_SAVE_PAT_MSR);
1153 pHostFeat->fVmxExitLoadPatMsr = RT_BOOL(fExitCtls & VMX_EXIT_CTLS_LOAD_PAT_MSR);
1154 pHostFeat->fVmxExitSaveEferMsr = RT_BOOL(fExitCtls & VMX_EXIT_CTLS_SAVE_EFER_MSR);
1155 pHostFeat->fVmxExitLoadEferMsr = RT_BOOL(fExitCtls & VMX_EXIT_CTLS_LOAD_EFER_MSR);
1156 pHostFeat->fVmxSavePreemptTimer = RT_BOOL(fExitCtls & VMX_EXIT_CTLS_SAVE_VMX_PREEMPT_TIMER);
1157
1158 /* Miscellaneous data. */
1159 uint32_t const fMiscData = VmxMsrs.u64Misc;
1160 pHostFeat->fVmxExitStoreEferLma = RT_BOOL(fMiscData & VMX_MISC_EXIT_STORE_EFER_LMA);
1161 pHostFeat->fVmxVmwriteAll = RT_BOOL(fMiscData & VMX_MISC_VMWRITE_ALL);
1162 pHostFeat->fVmxEntryInjectSoftInt = RT_BOOL(fMiscData & VMX_MISC_ENTRY_INJECT_SOFT_INT);
1163 }
1164
1165 /*
1166 * Initialize the set of VMX features we emulate.
1167 * Note! Some bits might be reported as 1 always if they fall under the default1 class bits
1168 * (e.g. fVmxEntryLoadDebugCtls), see @bugref{9180#c5}.
1169 */
1170 CPUMFEATURES EmuFeat;
1171 RT_ZERO(EmuFeat);
1172 EmuFeat.fVmx = 1;
1173 EmuFeat.fVmxInsOutInfo = 0;
1174 EmuFeat.fVmxExtIntExit = 1;
1175 EmuFeat.fVmxNmiExit = 1;
1176 EmuFeat.fVmxVirtNmi = 0;
1177 EmuFeat.fVmxPreemptTimer = 0; /** @todo NSTVMX: enable this. */
1178 EmuFeat.fVmxPostedInt = 0;
1179 EmuFeat.fVmxIntWindowExit = 1;
1180 EmuFeat.fVmxTscOffsetting = 1;
1181 EmuFeat.fVmxHltExit = 1;
1182 EmuFeat.fVmxInvlpgExit = 1;
1183 EmuFeat.fVmxMwaitExit = 1;
1184 EmuFeat.fVmxRdpmcExit = 1;
1185 EmuFeat.fVmxRdtscExit = 1;
1186 EmuFeat.fVmxCr3LoadExit = 1;
1187 EmuFeat.fVmxCr3StoreExit = 1;
1188 EmuFeat.fVmxCr8LoadExit = 1;
1189 EmuFeat.fVmxCr8StoreExit = 1;
1190 EmuFeat.fVmxUseTprShadow = 0;
1191 EmuFeat.fVmxNmiWindowExit = 0;
1192 EmuFeat.fVmxMovDRxExit = 1;
1193 EmuFeat.fVmxUncondIoExit = 1;
1194 EmuFeat.fVmxUseIoBitmaps = 1;
1195 EmuFeat.fVmxMonitorTrapFlag = 0;
1196 EmuFeat.fVmxUseMsrBitmaps = 0;
1197 EmuFeat.fVmxMonitorExit = 1;
1198 EmuFeat.fVmxPauseExit = 1;
1199 EmuFeat.fVmxSecondaryExecCtls = 1;
1200 EmuFeat.fVmxVirtApicAccess = 0;
1201 EmuFeat.fVmxEpt = 0;
1202 EmuFeat.fVmxDescTableExit = 1;
1203 EmuFeat.fVmxRdtscp = 1;
1204 EmuFeat.fVmxVirtX2ApicAccess = 0;
1205 EmuFeat.fVmxVpid = 0;
1206 EmuFeat.fVmxWbinvdExit = 1;
1207 EmuFeat.fVmxUnrestrictedGuest = 0;
1208 EmuFeat.fVmxApicRegVirt = 0;
1209 EmuFeat.fVmxVirtIntDelivery = 0;
1210 EmuFeat.fVmxPauseLoopExit = 0;
1211 EmuFeat.fVmxRdrandExit = 0;
1212 EmuFeat.fVmxInvpcid = 1;
1213 EmuFeat.fVmxVmFunc = 0;
1214 EmuFeat.fVmxVmcsShadowing = 0;
1215 EmuFeat.fVmxRdseedExit = 0;
1216 EmuFeat.fVmxPml = 0;
1217 EmuFeat.fVmxEptXcptVe = 0;
1218 EmuFeat.fVmxXsavesXrstors = 0;
1219 EmuFeat.fVmxUseTscScaling = 0;
1220 EmuFeat.fVmxEntryLoadDebugCtls = 1;
1221 EmuFeat.fVmxIa32eModeGuest = 1;
1222 EmuFeat.fVmxEntryLoadEferMsr = 1;
1223 EmuFeat.fVmxEntryLoadPatMsr = 0;
1224 EmuFeat.fVmxExitSaveDebugCtls = 1;
1225 EmuFeat.fVmxHostAddrSpaceSize = 1;
1226 EmuFeat.fVmxExitAckExtInt = 0;
1227 EmuFeat.fVmxExitSavePatMsr = 0;
1228 EmuFeat.fVmxExitLoadPatMsr = 0;
1229 EmuFeat.fVmxExitSaveEferMsr = 1;
1230 EmuFeat.fVmxExitLoadEferMsr = 1;
1231 EmuFeat.fVmxSavePreemptTimer = 0;
1232 EmuFeat.fVmxExitStoreEferLma = 1;
1233 EmuFeat.fVmxVmwriteAll = 0;
1234 EmuFeat.fVmxEntryInjectSoftInt = 0;
1235
1236 /*
1237 * Explode guest features.
1238 *
1239 * When hardware-assisted VMX may be used, any feature we emulate must also be supported
1240 * by the hardware, hence we merge our emulated features with the host features below.
1241 */
1242 bool const fHostSupportsVmx = pHostFeat->fVmx;
1243 AssertLogRelReturnVoid(!fHostSupportsVmx || HMIsVmxSupported(pVM));
1244 PCCPUMFEATURES pBaseFeat = fHostSupportsVmx ? pHostFeat : &EmuFeat;
1245 PCPUMFEATURES pGuestFeat = &pVM->cpum.s.GuestFeatures;
1246 pGuestFeat->fVmx = (pBaseFeat->fVmx & EmuFeat.fVmx );
1247 pGuestFeat->fVmxInsOutInfo = (pBaseFeat->fVmxInsOutInfo & EmuFeat.fVmxInsOutInfo );
1248 pGuestFeat->fVmxExtIntExit = (pBaseFeat->fVmxExtIntExit & EmuFeat.fVmxExtIntExit );
1249 pGuestFeat->fVmxNmiExit = (pBaseFeat->fVmxNmiExit & EmuFeat.fVmxNmiExit );
1250 pGuestFeat->fVmxVirtNmi = (pBaseFeat->fVmxVirtNmi & EmuFeat.fVmxVirtNmi );
1251 pGuestFeat->fVmxPreemptTimer = (pBaseFeat->fVmxPreemptTimer & EmuFeat.fVmxPreemptTimer );
1252 pGuestFeat->fVmxPostedInt = (pBaseFeat->fVmxPostedInt & EmuFeat.fVmxPostedInt );
1253 pGuestFeat->fVmxIntWindowExit = (pBaseFeat->fVmxIntWindowExit & EmuFeat.fVmxIntWindowExit );
1254 pGuestFeat->fVmxTscOffsetting = (pBaseFeat->fVmxTscOffsetting & EmuFeat.fVmxTscOffsetting );
1255 pGuestFeat->fVmxHltExit = (pBaseFeat->fVmxHltExit & EmuFeat.fVmxHltExit );
1256 pGuestFeat->fVmxInvlpgExit = (pBaseFeat->fVmxInvlpgExit & EmuFeat.fVmxInvlpgExit );
1257 pGuestFeat->fVmxMwaitExit = (pBaseFeat->fVmxMwaitExit & EmuFeat.fVmxMwaitExit );
1258 pGuestFeat->fVmxRdpmcExit = (pBaseFeat->fVmxRdpmcExit & EmuFeat.fVmxRdpmcExit );
1259 pGuestFeat->fVmxRdtscExit = (pBaseFeat->fVmxRdtscExit & EmuFeat.fVmxRdtscExit );
1260 pGuestFeat->fVmxCr3LoadExit = (pBaseFeat->fVmxCr3LoadExit & EmuFeat.fVmxCr3LoadExit );
1261 pGuestFeat->fVmxCr3StoreExit = (pBaseFeat->fVmxCr3StoreExit & EmuFeat.fVmxCr3StoreExit );
1262 pGuestFeat->fVmxCr8LoadExit = (pBaseFeat->fVmxCr8LoadExit & EmuFeat.fVmxCr8LoadExit );
1263 pGuestFeat->fVmxCr8StoreExit = (pBaseFeat->fVmxCr8StoreExit & EmuFeat.fVmxCr8StoreExit );
1264 pGuestFeat->fVmxUseTprShadow = (pBaseFeat->fVmxUseTprShadow & EmuFeat.fVmxUseTprShadow );
1265 pGuestFeat->fVmxNmiWindowExit = (pBaseFeat->fVmxNmiWindowExit & EmuFeat.fVmxNmiWindowExit );
1266 pGuestFeat->fVmxMovDRxExit = (pBaseFeat->fVmxMovDRxExit & EmuFeat.fVmxMovDRxExit );
1267 pGuestFeat->fVmxUncondIoExit = (pBaseFeat->fVmxUncondIoExit & EmuFeat.fVmxUncondIoExit );
1268 pGuestFeat->fVmxUseIoBitmaps = (pBaseFeat->fVmxUseIoBitmaps & EmuFeat.fVmxUseIoBitmaps );
1269 pGuestFeat->fVmxMonitorTrapFlag = (pBaseFeat->fVmxMonitorTrapFlag & EmuFeat.fVmxMonitorTrapFlag );
1270 pGuestFeat->fVmxUseMsrBitmaps = (pBaseFeat->fVmxUseMsrBitmaps & EmuFeat.fVmxUseMsrBitmaps );
1271 pGuestFeat->fVmxMonitorExit = (pBaseFeat->fVmxMonitorExit & EmuFeat.fVmxMonitorExit );
1272 pGuestFeat->fVmxPauseExit = (pBaseFeat->fVmxPauseExit & EmuFeat.fVmxPauseExit );
1273 pGuestFeat->fVmxSecondaryExecCtls = (pBaseFeat->fVmxSecondaryExecCtls & EmuFeat.fVmxSecondaryExecCtls );
1274 pGuestFeat->fVmxVirtApicAccess = (pBaseFeat->fVmxVirtApicAccess & EmuFeat.fVmxVirtApicAccess );
1275 pGuestFeat->fVmxEpt = (pBaseFeat->fVmxEpt & EmuFeat.fVmxEpt );
1276 pGuestFeat->fVmxDescTableExit = (pBaseFeat->fVmxDescTableExit & EmuFeat.fVmxDescTableExit );
1277 pGuestFeat->fVmxRdtscp = (pBaseFeat->fVmxRdtscp & EmuFeat.fVmxRdtscp );
1278 pGuestFeat->fVmxVirtX2ApicAccess = (pBaseFeat->fVmxVirtX2ApicAccess & EmuFeat.fVmxVirtX2ApicAccess );
1279 pGuestFeat->fVmxVpid = (pBaseFeat->fVmxVpid & EmuFeat.fVmxVpid );
1280 pGuestFeat->fVmxWbinvdExit = (pBaseFeat->fVmxWbinvdExit & EmuFeat.fVmxWbinvdExit );
1281 pGuestFeat->fVmxUnrestrictedGuest = (pBaseFeat->fVmxUnrestrictedGuest & EmuFeat.fVmxUnrestrictedGuest );
1282 pGuestFeat->fVmxApicRegVirt = (pBaseFeat->fVmxApicRegVirt & EmuFeat.fVmxApicRegVirt );
1283 pGuestFeat->fVmxVirtIntDelivery = (pBaseFeat->fVmxVirtIntDelivery & EmuFeat.fVmxVirtIntDelivery );
1284 pGuestFeat->fVmxPauseLoopExit = (pBaseFeat->fVmxPauseLoopExit & EmuFeat.fVmxPauseLoopExit );
1285 pGuestFeat->fVmxRdrandExit = (pBaseFeat->fVmxRdrandExit & EmuFeat.fVmxRdrandExit );
1286 pGuestFeat->fVmxInvpcid = (pBaseFeat->fVmxInvpcid & EmuFeat.fVmxInvpcid );
1287 pGuestFeat->fVmxVmFunc = (pBaseFeat->fVmxVmFunc & EmuFeat.fVmxVmFunc );
1288 pGuestFeat->fVmxVmcsShadowing = (pBaseFeat->fVmxVmcsShadowing & EmuFeat.fVmxVmcsShadowing );
1289 pGuestFeat->fVmxRdseedExit = (pBaseFeat->fVmxRdseedExit & EmuFeat.fVmxRdseedExit );
1290 pGuestFeat->fVmxPml = (pBaseFeat->fVmxPml & EmuFeat.fVmxPml );
1291 pGuestFeat->fVmxEptXcptVe = (pBaseFeat->fVmxEptXcptVe & EmuFeat.fVmxEptXcptVe );
1292 pGuestFeat->fVmxXsavesXrstors = (pBaseFeat->fVmxXsavesXrstors & EmuFeat.fVmxXsavesXrstors );
1293 pGuestFeat->fVmxUseTscScaling = (pBaseFeat->fVmxUseTscScaling & EmuFeat.fVmxUseTscScaling );
1294 pGuestFeat->fVmxEntryLoadDebugCtls = (pBaseFeat->fVmxEntryLoadDebugCtls & EmuFeat.fVmxEntryLoadDebugCtls );
1295 pGuestFeat->fVmxIa32eModeGuest = (pBaseFeat->fVmxIa32eModeGuest & EmuFeat.fVmxIa32eModeGuest );
1296 pGuestFeat->fVmxEntryLoadEferMsr = (pBaseFeat->fVmxEntryLoadEferMsr & EmuFeat.fVmxEntryLoadEferMsr );
1297 pGuestFeat->fVmxEntryLoadPatMsr = (pBaseFeat->fVmxEntryLoadPatMsr & EmuFeat.fVmxEntryLoadPatMsr );
1298 pGuestFeat->fVmxExitSaveDebugCtls = (pBaseFeat->fVmxExitSaveDebugCtls & EmuFeat.fVmxExitSaveDebugCtls );
1299 pGuestFeat->fVmxHostAddrSpaceSize = (pBaseFeat->fVmxHostAddrSpaceSize & EmuFeat.fVmxHostAddrSpaceSize );
1300 pGuestFeat->fVmxExitAckExtInt = (pBaseFeat->fVmxExitAckExtInt & EmuFeat.fVmxExitAckExtInt );
1301 pGuestFeat->fVmxExitSavePatMsr = (pBaseFeat->fVmxExitSavePatMsr & EmuFeat.fVmxExitSavePatMsr );
1302 pGuestFeat->fVmxExitLoadPatMsr = (pBaseFeat->fVmxExitLoadPatMsr & EmuFeat.fVmxExitLoadPatMsr );
1303 pGuestFeat->fVmxExitSaveEferMsr = (pBaseFeat->fVmxExitSaveEferMsr & EmuFeat.fVmxExitSaveEferMsr );
1304 pGuestFeat->fVmxExitLoadEferMsr = (pBaseFeat->fVmxExitLoadEferMsr & EmuFeat.fVmxExitLoadEferMsr );
1305 pGuestFeat->fVmxSavePreemptTimer = (pBaseFeat->fVmxSavePreemptTimer & EmuFeat.fVmxSavePreemptTimer );
1306 pGuestFeat->fVmxExitStoreEferLma = (pBaseFeat->fVmxExitStoreEferLma & EmuFeat.fVmxExitStoreEferLma );
1307 pGuestFeat->fVmxVmwriteAll = (pBaseFeat->fVmxVmwriteAll & EmuFeat.fVmxVmwriteAll );
1308 pGuestFeat->fVmxEntryInjectSoftInt = (pBaseFeat->fVmxEntryInjectSoftInt & EmuFeat.fVmxEntryInjectSoftInt );
1309}
1310
1311
1312/**
1313 * Initializes the CPUM.
1314 *
1315 * @returns VBox status code.
1316 * @param pVM The cross context VM structure.
1317 */
1318VMMR3DECL(int) CPUMR3Init(PVM pVM)
1319{
1320 LogFlow(("CPUMR3Init\n"));
1321
1322 /*
1323 * Assert alignment, sizes and tables.
1324 */
1325 AssertCompileMemberAlignment(VM, cpum.s, 32);
1326 AssertCompile(sizeof(pVM->cpum.s) <= sizeof(pVM->cpum.padding));
1327 AssertCompileSizeAlignment(CPUMCTX, 64);
1328 AssertCompileSizeAlignment(CPUMCTXMSRS, 64);
1329 AssertCompileSizeAlignment(CPUMHOSTCTX, 64);
1330 AssertCompileMemberAlignment(VM, cpum, 64);
1331 AssertCompileMemberAlignment(VM, aCpus, 64);
1332 AssertCompileMemberAlignment(VMCPU, cpum.s, 64);
1333 AssertCompileMemberSizeAlignment(VM, aCpus[0].cpum.s, 64);
1334#ifdef VBOX_STRICT
1335 int rc2 = cpumR3MsrStrictInitChecks();
1336 AssertRCReturn(rc2, rc2);
1337#endif
1338
1339 /*
1340 * Initialize offsets.
1341 */
1342
1343 /* Calculate the offset from CPUM to CPUMCPU for the first CPU. */
1344 pVM->cpum.s.offCPUMCPU0 = RT_UOFFSETOF(VM, aCpus[0].cpum) - RT_UOFFSETOF(VM, cpum);
1345 Assert((uintptr_t)&pVM->cpum + pVM->cpum.s.offCPUMCPU0 == (uintptr_t)&pVM->aCpus[0].cpum);
1346
1347
1348 /* Calculate the offset from CPUMCPU to CPUM. */
1349 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1350 {
1351 PVMCPU pVCpu = &pVM->aCpus[i];
1352
1353 pVCpu->cpum.s.offCPUM = RT_UOFFSETOF_DYN(VM, aCpus[i].cpum) - RT_UOFFSETOF(VM, cpum);
1354 Assert((uintptr_t)&pVCpu->cpum - pVCpu->cpum.s.offCPUM == (uintptr_t)&pVM->cpum);
1355 }
1356
1357 /*
1358 * Gather info about the host CPU.
1359 */
1360 if (!ASMHasCpuId())
1361 {
1362 Log(("The CPU doesn't support CPUID!\n"));
1363 return VERR_UNSUPPORTED_CPU;
1364 }
1365
1366 pVM->cpum.s.fHostMxCsrMask = CPUMR3DeterminHostMxCsrMask();
1367
1368 PCPUMCPUIDLEAF paLeaves;
1369 uint32_t cLeaves;
1370 int rc = CPUMR3CpuIdCollectLeaves(&paLeaves, &cLeaves);
1371 AssertLogRelRCReturn(rc, rc);
1372
1373 rc = cpumR3CpuIdExplodeFeatures(paLeaves, cLeaves, &pVM->cpum.s.HostFeatures);
1374 RTMemFree(paLeaves);
1375 AssertLogRelRCReturn(rc, rc);
1376 pVM->cpum.s.GuestFeatures.enmCpuVendor = pVM->cpum.s.HostFeatures.enmCpuVendor;
1377
1378 /*
1379 * Check that the CPU supports the minimum features we require.
1380 */
1381 if (!pVM->cpum.s.HostFeatures.fFxSaveRstor)
1382 return VMSetError(pVM, VERR_UNSUPPORTED_CPU, RT_SRC_POS, "Host CPU does not support the FXSAVE/FXRSTOR instruction.");
1383 if (!pVM->cpum.s.HostFeatures.fMmx)
1384 return VMSetError(pVM, VERR_UNSUPPORTED_CPU, RT_SRC_POS, "Host CPU does not support MMX.");
1385 if (!pVM->cpum.s.HostFeatures.fTsc)
1386 return VMSetError(pVM, VERR_UNSUPPORTED_CPU, RT_SRC_POS, "Host CPU does not support RDTSC.");
1387
1388 /*
1389 * Setup the CR4 AND and OR masks used in the raw-mode switcher.
1390 */
1391 pVM->cpum.s.CR4.AndMask = X86_CR4_OSXMMEEXCPT | X86_CR4_PVI | X86_CR4_VME;
1392 pVM->cpum.s.CR4.OrMask = X86_CR4_OSFXSR;
1393
1394 /*
1395 * Figure out which XSAVE/XRSTOR features are available on the host.
1396 */
1397 uint64_t fXcr0Host = 0;
1398 uint64_t fXStateHostMask = 0;
1399 if ( pVM->cpum.s.HostFeatures.fXSaveRstor
1400 && pVM->cpum.s.HostFeatures.fOpSysXSaveRstor)
1401 {
1402 fXStateHostMask = fXcr0Host = ASMGetXcr0();
1403 fXStateHostMask &= XSAVE_C_X87 | XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI;
1404 AssertLogRelMsgStmt((fXStateHostMask & (XSAVE_C_X87 | XSAVE_C_SSE)) == (XSAVE_C_X87 | XSAVE_C_SSE),
1405 ("%#llx\n", fXStateHostMask), fXStateHostMask = 0);
1406 }
1407 pVM->cpum.s.fXStateHostMask = fXStateHostMask;
1408 if (VM_IS_RAW_MODE_ENABLED(pVM)) /* For raw-mode, we only use XSAVE/XRSTOR when the guest starts using it (CPUID/CR4 visibility). */
1409 fXStateHostMask = 0;
1410 LogRel(("CPUM: fXStateHostMask=%#llx; initial: %#llx; host XCR0=%#llx\n",
1411 pVM->cpum.s.fXStateHostMask, fXStateHostMask, fXcr0Host));
1412
1413 /*
1414 * Allocate memory for the extended CPU state and initialize the host XSAVE/XRSTOR mask.
1415 */
1416 uint32_t cbMaxXState = pVM->cpum.s.HostFeatures.cbMaxExtendedState;
1417 cbMaxXState = RT_ALIGN(cbMaxXState, 128);
1418 AssertLogRelReturn(cbMaxXState >= sizeof(X86FXSTATE) && cbMaxXState <= _8K, VERR_CPUM_IPE_2);
1419
1420 uint8_t *pbXStates;
1421 rc = MMR3HyperAllocOnceNoRelEx(pVM, cbMaxXState * 3 * pVM->cCpus, PAGE_SIZE, MM_TAG_CPUM_CTX,
1422 MMHYPER_AONR_FLAGS_KERNEL_MAPPING, (void **)&pbXStates);
1423 AssertLogRelRCReturn(rc, rc);
1424
1425 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1426 {
1427 PVMCPU pVCpu = &pVM->aCpus[i];
1428
1429 pVCpu->cpum.s.Guest.pXStateR3 = (PX86XSAVEAREA)pbXStates;
1430 pVCpu->cpum.s.Guest.pXStateR0 = MMHyperR3ToR0(pVM, pbXStates);
1431 pVCpu->cpum.s.Guest.pXStateRC = MMHyperR3ToR0(pVM, pbXStates);
1432 pbXStates += cbMaxXState;
1433
1434 pVCpu->cpum.s.Host.pXStateR3 = (PX86XSAVEAREA)pbXStates;
1435 pVCpu->cpum.s.Host.pXStateR0 = MMHyperR3ToR0(pVM, pbXStates);
1436 pVCpu->cpum.s.Host.pXStateRC = MMHyperR3ToR0(pVM, pbXStates);
1437 pbXStates += cbMaxXState;
1438
1439 pVCpu->cpum.s.Hyper.pXStateR3 = (PX86XSAVEAREA)pbXStates;
1440 pVCpu->cpum.s.Hyper.pXStateR0 = MMHyperR3ToR0(pVM, pbXStates);
1441 pVCpu->cpum.s.Hyper.pXStateRC = MMHyperR3ToR0(pVM, pbXStates);
1442 pbXStates += cbMaxXState;
1443
1444 pVCpu->cpum.s.Host.fXStateMask = fXStateHostMask;
1445 }
1446
1447 /*
1448 * Register saved state data item.
1449 */
1450 rc = SSMR3RegisterInternal(pVM, "cpum", 1, CPUM_SAVED_STATE_VERSION, sizeof(CPUM),
1451 NULL, cpumR3LiveExec, NULL,
1452 NULL, cpumR3SaveExec, NULL,
1453 cpumR3LoadPrep, cpumR3LoadExec, cpumR3LoadDone);
1454 if (RT_FAILURE(rc))
1455 return rc;
1456
1457 /*
1458 * Register info handlers and registers with the debugger facility.
1459 */
1460 DBGFR3InfoRegisterInternalEx(pVM, "cpum", "Displays the all the cpu states.",
1461 &cpumR3InfoAll, DBGFINFO_FLAGS_ALL_EMTS);
1462 DBGFR3InfoRegisterInternalEx(pVM, "cpumguest", "Displays the guest cpu state.",
1463 &cpumR3InfoGuest, DBGFINFO_FLAGS_ALL_EMTS);
1464 DBGFR3InfoRegisterInternalEx(pVM, "cpumguesthwvirt", "Displays the guest hwvirt. cpu state.",
1465 &cpumR3InfoGuestHwvirt, DBGFINFO_FLAGS_ALL_EMTS);
1466 DBGFR3InfoRegisterInternalEx(pVM, "cpumhyper", "Displays the hypervisor cpu state.",
1467 &cpumR3InfoHyper, DBGFINFO_FLAGS_ALL_EMTS);
1468 DBGFR3InfoRegisterInternalEx(pVM, "cpumhost", "Displays the host cpu state.",
1469 &cpumR3InfoHost, DBGFINFO_FLAGS_ALL_EMTS);
1470 DBGFR3InfoRegisterInternalEx(pVM, "cpumguestinstr", "Displays the current guest instruction.",
1471 &cpumR3InfoGuestInstr, DBGFINFO_FLAGS_ALL_EMTS);
1472 DBGFR3InfoRegisterInternal( pVM, "cpuid", "Displays the guest cpuid leaves.", &cpumR3CpuIdInfo);
1473 DBGFR3InfoRegisterInternal( pVM, "cpumvmxfeat", "Displays the host and guest VMX hwvirt. features.",
1474 &cpumR3InfoVmxFeatures);
1475
1476 rc = cpumR3DbgInit(pVM);
1477 if (RT_FAILURE(rc))
1478 return rc;
1479
1480 /*
1481 * Check if we need to workaround partial/leaky FPU handling.
1482 */
1483 cpumR3CheckLeakyFpu(pVM);
1484
1485 /*
1486 * Initialize the Guest CPUID and MSR states.
1487 */
1488 rc = cpumR3InitCpuIdAndMsrs(pVM);
1489 if (RT_FAILURE(rc))
1490 return rc;
1491
1492 /*
1493 * Allocate memory required by the guest hardware virtualization state.
1494 */
1495 if (pVM->cpum.ro.GuestFeatures.fVmx)
1496 rc = cpumR3AllocVmxHwVirtState(pVM);
1497 else if (pVM->cpum.ro.GuestFeatures.fSvm)
1498 rc = cpumR3AllocSvmHwVirtState(pVM);
1499 if (RT_FAILURE(rc))
1500 return rc;
1501
1502 /*
1503 * Workaround for missing cpuid(0) patches when leaf 4 returns GuestInfo.DefCpuId:
1504 * If we miss to patch a cpuid(0).eax then Linux tries to determine the number
1505 * of processors from (cpuid(4).eax >> 26) + 1.
1506 *
1507 * Note: this code is obsolete, but let's keep it here for reference.
1508 * Purpose is valid when we artificially cap the max std id to less than 4.
1509 *
1510 * Note: This used to be a separate function CPUMR3SetHwVirt that was called
1511 * after VMINITCOMPLETED_HM.
1512 */
1513 if (VM_IS_RAW_MODE_ENABLED(pVM))
1514 {
1515 Assert( (pVM->cpum.s.aGuestCpuIdPatmStd[4].uEax & UINT32_C(0xffffc000)) == 0
1516 || pVM->cpum.s.aGuestCpuIdPatmStd[0].uEax < 0x4);
1517 pVM->cpum.s.aGuestCpuIdPatmStd[4].uEax &= UINT32_C(0x00003fff);
1518 }
1519
1520 CPUMR3Reset(pVM);
1521 return VINF_SUCCESS;
1522}
1523
1524
1525/**
1526 * Applies relocations to data and code managed by this
1527 * component. This function will be called at init and
1528 * whenever the VMM need to relocate it self inside the GC.
1529 *
1530 * The CPUM will update the addresses used by the switcher.
1531 *
1532 * @param pVM The cross context VM structure.
1533 */
1534VMMR3DECL(void) CPUMR3Relocate(PVM pVM)
1535{
1536 LogFlow(("CPUMR3Relocate\n"));
1537
1538 pVM->cpum.s.GuestInfo.paMsrRangesRC = MMHyperR3ToRC(pVM, pVM->cpum.s.GuestInfo.paMsrRangesR3);
1539 pVM->cpum.s.GuestInfo.paCpuIdLeavesRC = MMHyperR3ToRC(pVM, pVM->cpum.s.GuestInfo.paCpuIdLeavesR3);
1540
1541 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
1542 {
1543 PVMCPU pVCpu = &pVM->aCpus[iCpu];
1544 pVCpu->cpum.s.Guest.pXStateRC = MMHyperR3ToRC(pVM, pVCpu->cpum.s.Guest.pXStateR3);
1545 pVCpu->cpum.s.Host.pXStateRC = MMHyperR3ToRC(pVM, pVCpu->cpum.s.Host.pXStateR3);
1546 pVCpu->cpum.s.Hyper.pXStateRC = MMHyperR3ToRC(pVM, pVCpu->cpum.s.Hyper.pXStateR3); /** @todo remove me */
1547
1548 /* Recheck the guest DRx values in raw-mode. */
1549 CPUMRecalcHyperDRx(pVCpu, UINT8_MAX, false);
1550 }
1551}
1552
1553
1554/**
1555 * Terminates the CPUM.
1556 *
1557 * Termination means cleaning up and freeing all resources,
1558 * the VM it self is at this point powered off or suspended.
1559 *
1560 * @returns VBox status code.
1561 * @param pVM The cross context VM structure.
1562 */
1563VMMR3DECL(int) CPUMR3Term(PVM pVM)
1564{
1565#ifdef VBOX_WITH_CRASHDUMP_MAGIC
1566 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1567 {
1568 PVMCPU pVCpu = &pVM->aCpus[i];
1569 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1570
1571 memset(pVCpu->cpum.s.aMagic, 0, sizeof(pVCpu->cpum.s.aMagic));
1572 pVCpu->cpum.s.uMagic = 0;
1573 pCtx->dr[5] = 0;
1574 }
1575#endif
1576
1577 if (pVM->cpum.ro.GuestFeatures.fSvm)
1578 cpumR3FreeVmxHwVirtState(pVM);
1579 else if (pVM->cpum.ro.GuestFeatures.fSvm)
1580 cpumR3FreeSvmHwVirtState(pVM);
1581 return VINF_SUCCESS;
1582}
1583
1584
1585/**
1586 * Resets a virtual CPU.
1587 *
1588 * Used by CPUMR3Reset and CPU hot plugging.
1589 *
1590 * @param pVM The cross context VM structure.
1591 * @param pVCpu The cross context virtual CPU structure of the CPU that is
1592 * being reset. This may differ from the current EMT.
1593 */
1594VMMR3DECL(void) CPUMR3ResetCpu(PVM pVM, PVMCPU pVCpu)
1595{
1596 /** @todo anything different for VCPU > 0? */
1597 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
1598
1599 /*
1600 * Initialize everything to ZERO first.
1601 */
1602 uint32_t fUseFlags = pVCpu->cpum.s.fUseFlags & ~CPUM_USED_FPU_SINCE_REM;
1603
1604 AssertCompile(RTASSERT_OFFSET_OF(CPUMCTX, pXStateR0) < RTASSERT_OFFSET_OF(CPUMCTX, pXStateR3));
1605 AssertCompile(RTASSERT_OFFSET_OF(CPUMCTX, pXStateR0) < RTASSERT_OFFSET_OF(CPUMCTX, pXStateRC));
1606 memset(pCtx, 0, RT_UOFFSETOF(CPUMCTX, pXStateR0));
1607
1608 pVCpu->cpum.s.fUseFlags = fUseFlags;
1609
1610 pCtx->cr0 = X86_CR0_CD | X86_CR0_NW | X86_CR0_ET; //0x60000010
1611 pCtx->eip = 0x0000fff0;
1612 pCtx->edx = 0x00000600; /* P6 processor */
1613 pCtx->eflags.Bits.u1Reserved0 = 1;
1614
1615 pCtx->cs.Sel = 0xf000;
1616 pCtx->cs.ValidSel = 0xf000;
1617 pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
1618 pCtx->cs.u64Base = UINT64_C(0xffff0000);
1619 pCtx->cs.u32Limit = 0x0000ffff;
1620 pCtx->cs.Attr.n.u1DescType = 1; /* code/data segment */
1621 pCtx->cs.Attr.n.u1Present = 1;
1622 pCtx->cs.Attr.n.u4Type = X86_SEL_TYPE_ER_ACC;
1623
1624 pCtx->ds.fFlags = CPUMSELREG_FLAGS_VALID;
1625 pCtx->ds.u32Limit = 0x0000ffff;
1626 pCtx->ds.Attr.n.u1DescType = 1; /* code/data segment */
1627 pCtx->ds.Attr.n.u1Present = 1;
1628 pCtx->ds.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
1629
1630 pCtx->es.fFlags = CPUMSELREG_FLAGS_VALID;
1631 pCtx->es.u32Limit = 0x0000ffff;
1632 pCtx->es.Attr.n.u1DescType = 1; /* code/data segment */
1633 pCtx->es.Attr.n.u1Present = 1;
1634 pCtx->es.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
1635
1636 pCtx->fs.fFlags = CPUMSELREG_FLAGS_VALID;
1637 pCtx->fs.u32Limit = 0x0000ffff;
1638 pCtx->fs.Attr.n.u1DescType = 1; /* code/data segment */
1639 pCtx->fs.Attr.n.u1Present = 1;
1640 pCtx->fs.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
1641
1642 pCtx->gs.fFlags = CPUMSELREG_FLAGS_VALID;
1643 pCtx->gs.u32Limit = 0x0000ffff;
1644 pCtx->gs.Attr.n.u1DescType = 1; /* code/data segment */
1645 pCtx->gs.Attr.n.u1Present = 1;
1646 pCtx->gs.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
1647
1648 pCtx->ss.fFlags = CPUMSELREG_FLAGS_VALID;
1649 pCtx->ss.u32Limit = 0x0000ffff;
1650 pCtx->ss.Attr.n.u1Present = 1;
1651 pCtx->ss.Attr.n.u1DescType = 1; /* code/data segment */
1652 pCtx->ss.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
1653
1654 pCtx->idtr.cbIdt = 0xffff;
1655 pCtx->gdtr.cbGdt = 0xffff;
1656
1657 pCtx->ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
1658 pCtx->ldtr.u32Limit = 0xffff;
1659 pCtx->ldtr.Attr.n.u1Present = 1;
1660 pCtx->ldtr.Attr.n.u4Type = X86_SEL_TYPE_SYS_LDT;
1661
1662 pCtx->tr.fFlags = CPUMSELREG_FLAGS_VALID;
1663 pCtx->tr.u32Limit = 0xffff;
1664 pCtx->tr.Attr.n.u1Present = 1;
1665 pCtx->tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY; /* Deduction, not properly documented by Intel. */
1666
1667 pCtx->dr[6] = X86_DR6_INIT_VAL;
1668 pCtx->dr[7] = X86_DR7_INIT_VAL;
1669
1670 PX86FXSTATE pFpuCtx = &pCtx->pXStateR3->x87; AssertReleaseMsg(RT_VALID_PTR(pFpuCtx), ("%p\n", pFpuCtx));
1671 pFpuCtx->FTW = 0x00; /* All empty (abbridged tag reg edition). */
1672 pFpuCtx->FCW = 0x37f;
1673
1674 /* Intel 64 and IA-32 Architectures Software Developer's Manual Volume 3A, Table 8-1.
1675 IA-32 Processor States Following Power-up, Reset, or INIT */
1676 pFpuCtx->MXCSR = 0x1F80;
1677 pFpuCtx->MXCSR_MASK = pVM->cpum.s.GuestInfo.fMxCsrMask; /** @todo check if REM messes this up... */
1678
1679 pCtx->aXcr[0] = XSAVE_C_X87;
1680 if (pVM->cpum.s.HostFeatures.cbMaxExtendedState >= RT_UOFFSETOF(X86XSAVEAREA, Hdr))
1681 {
1682 /* The entire FXSAVE state needs loading when we switch to XSAVE/XRSTOR
1683 as we don't know what happened before. (Bother optimize later?) */
1684 pCtx->pXStateR3->Hdr.bmXState = XSAVE_C_X87 | XSAVE_C_SSE;
1685 }
1686
1687 /*
1688 * MSRs.
1689 */
1690 /* Init PAT MSR */
1691 pCtx->msrPAT = MSR_IA32_CR_PAT_INIT_VAL;
1692
1693 /* EFER MBZ; see AMD64 Architecture Programmer's Manual Volume 2: Table 14-1. Initial Processor State.
1694 * The Intel docs don't mention it. */
1695 Assert(!pCtx->msrEFER);
1696
1697 /* IA32_MISC_ENABLE - not entirely sure what the init/reset state really
1698 is supposed to be here, just trying provide useful/sensible values. */
1699 PCPUMMSRRANGE pRange = cpumLookupMsrRange(pVM, MSR_IA32_MISC_ENABLE);
1700 if (pRange)
1701 {
1702 pVCpu->cpum.s.GuestMsrs.msr.MiscEnable = MSR_IA32_MISC_ENABLE_BTS_UNAVAIL
1703 | MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL
1704 | (pVM->cpum.s.GuestFeatures.fMonitorMWait ? MSR_IA32_MISC_ENABLE_MONITOR : 0)
1705 | MSR_IA32_MISC_ENABLE_FAST_STRINGS;
1706 pRange->fWrIgnMask |= MSR_IA32_MISC_ENABLE_BTS_UNAVAIL
1707 | MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL;
1708 pRange->fWrGpMask &= ~pVCpu->cpum.s.GuestMsrs.msr.MiscEnable;
1709 }
1710
1711 /** @todo Wire IA32_MISC_ENABLE bit 22 to our NT 4 CPUID trick. */
1712
1713 /** @todo r=ramshankar: Currently broken for SMP as TMCpuTickSet() expects to be
1714 * called from each EMT while we're getting called by CPUMR3Reset()
1715 * iteratively on the same thread. Fix later. */
1716#if 0 /** @todo r=bird: This we will do in TM, not here. */
1717 /* TSC must be 0. Intel spec. Table 9-1. "IA-32 Processor States Following Power-up, Reset, or INIT." */
1718 CPUMSetGuestMsr(pVCpu, MSR_IA32_TSC, 0);
1719#endif
1720
1721
1722 /* C-state control. Guesses. */
1723 pVCpu->cpum.s.GuestMsrs.msr.PkgCStateCfgCtrl = 1 /*C1*/ | RT_BIT_32(25) | RT_BIT_32(26) | RT_BIT_32(27) | RT_BIT_32(28);
1724 /* For Nehalem+ and Atoms, the 0xE2 MSR (MSR_PKG_CST_CONFIG_CONTROL) is documented. For Core 2,
1725 * it's undocumented but exists as MSR_PMG_CST_CONFIG_CONTROL and has similar but not identical
1726 * functionality. The default value must be different due to incompatible write mask.
1727 */
1728 if (CPUMMICROARCH_IS_INTEL_CORE2(pVM->cpum.s.GuestFeatures.enmMicroarch))
1729 pVCpu->cpum.s.GuestMsrs.msr.PkgCStateCfgCtrl = 0x202a01; /* From Mac Pro Harpertown, unlocked. */
1730 else if (pVM->cpum.s.GuestFeatures.enmMicroarch == kCpumMicroarch_Intel_Core_Yonah)
1731 pVCpu->cpum.s.GuestMsrs.msr.PkgCStateCfgCtrl = 0x26740c; /* From MacBookPro1,1. */
1732
1733 /*
1734 * Hardware virtualization state.
1735 */
1736 pCtx->hwvirt.fGif = true;
1737
1738 /* SVM. */
1739 if (pCtx->hwvirt.svm.CTX_SUFF(pVmcb))
1740 {
1741 memset(pCtx->hwvirt.svm.CTX_SUFF(pVmcb), 0, SVM_VMCB_PAGES << PAGE_SHIFT);
1742 pCtx->hwvirt.svm.uMsrHSavePa = 0;
1743 pCtx->hwvirt.svm.uPrevPauseTick = 0;
1744 }
1745}
1746
1747
1748/**
1749 * Resets the CPU.
1750 *
1751 * @returns VINF_SUCCESS.
1752 * @param pVM The cross context VM structure.
1753 */
1754VMMR3DECL(void) CPUMR3Reset(PVM pVM)
1755{
1756 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1757 {
1758 CPUMR3ResetCpu(pVM, &pVM->aCpus[i]);
1759
1760#ifdef VBOX_WITH_CRASHDUMP_MAGIC
1761 PCPUMCTX pCtx = &pVM->aCpus[i].cpum.s.Guest;
1762
1763 /* Magic marker for searching in crash dumps. */
1764 strcpy((char *)pVM->aCpus[i].cpum.s.aMagic, "CPUMCPU Magic");
1765 pVM->aCpus[i].cpum.s.uMagic = UINT64_C(0xDEADBEEFDEADBEEF);
1766 pCtx->dr[5] = UINT64_C(0xDEADBEEFDEADBEEF);
1767#endif
1768 }
1769}
1770
1771
1772
1773
1774/**
1775 * Pass 0 live exec callback.
1776 *
1777 * @returns VINF_SSM_DONT_CALL_AGAIN.
1778 * @param pVM The cross context VM structure.
1779 * @param pSSM The saved state handle.
1780 * @param uPass The pass (0).
1781 */
1782static DECLCALLBACK(int) cpumR3LiveExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uPass)
1783{
1784 AssertReturn(uPass == 0, VERR_SSM_UNEXPECTED_PASS);
1785 cpumR3SaveCpuId(pVM, pSSM);
1786 return VINF_SSM_DONT_CALL_AGAIN;
1787}
1788
1789
1790/**
1791 * Execute state save operation.
1792 *
1793 * @returns VBox status code.
1794 * @param pVM The cross context VM structure.
1795 * @param pSSM SSM operation handle.
1796 */
1797static DECLCALLBACK(int) cpumR3SaveExec(PVM pVM, PSSMHANDLE pSSM)
1798{
1799 /*
1800 * Save.
1801 */
1802 SSMR3PutU32(pSSM, pVM->cCpus);
1803 SSMR3PutU32(pSSM, sizeof(pVM->aCpus[0].cpum.s.GuestMsrs.msr));
1804 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
1805 {
1806 PVMCPU pVCpu = &pVM->aCpus[iCpu];
1807
1808 SSMR3PutStructEx(pSSM, &pVCpu->cpum.s.Hyper, sizeof(pVCpu->cpum.s.Hyper), 0, g_aCpumCtxFields, NULL);
1809
1810 PCPUMCTX pGstCtx = &pVCpu->cpum.s.Guest;
1811 SSMR3PutStructEx(pSSM, pGstCtx, sizeof(*pGstCtx), 0, g_aCpumCtxFields, NULL);
1812 SSMR3PutStructEx(pSSM, &pGstCtx->pXStateR3->x87, sizeof(pGstCtx->pXStateR3->x87), 0, g_aCpumX87Fields, NULL);
1813 if (pGstCtx->fXStateMask != 0)
1814 SSMR3PutStructEx(pSSM, &pGstCtx->pXStateR3->Hdr, sizeof(pGstCtx->pXStateR3->Hdr), 0, g_aCpumXSaveHdrFields, NULL);
1815 if (pGstCtx->fXStateMask & XSAVE_C_YMM)
1816 {
1817 PCX86XSAVEYMMHI pYmmHiCtx = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_YMM_BIT, PCX86XSAVEYMMHI);
1818 SSMR3PutStructEx(pSSM, pYmmHiCtx, sizeof(*pYmmHiCtx), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumYmmHiFields, NULL);
1819 }
1820 if (pGstCtx->fXStateMask & XSAVE_C_BNDREGS)
1821 {
1822 PCX86XSAVEBNDREGS pBndRegs = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_BNDREGS_BIT, PCX86XSAVEBNDREGS);
1823 SSMR3PutStructEx(pSSM, pBndRegs, sizeof(*pBndRegs), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumBndRegsFields, NULL);
1824 }
1825 if (pGstCtx->fXStateMask & XSAVE_C_BNDCSR)
1826 {
1827 PCX86XSAVEBNDCFG pBndCfg = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_BNDCSR_BIT, PCX86XSAVEBNDCFG);
1828 SSMR3PutStructEx(pSSM, pBndCfg, sizeof(*pBndCfg), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumBndCfgFields, NULL);
1829 }
1830 if (pGstCtx->fXStateMask & XSAVE_C_ZMM_HI256)
1831 {
1832 PCX86XSAVEZMMHI256 pZmmHi256 = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_ZMM_HI256_BIT, PCX86XSAVEZMMHI256);
1833 SSMR3PutStructEx(pSSM, pZmmHi256, sizeof(*pZmmHi256), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumZmmHi256Fields, NULL);
1834 }
1835 if (pGstCtx->fXStateMask & XSAVE_C_ZMM_16HI)
1836 {
1837 PCX86XSAVEZMM16HI pZmm16Hi = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_ZMM_16HI_BIT, PCX86XSAVEZMM16HI);
1838 SSMR3PutStructEx(pSSM, pZmm16Hi, sizeof(*pZmm16Hi), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumZmm16HiFields, NULL);
1839 }
1840 if (pVM->cpum.ro.GuestFeatures.fSvm)
1841 {
1842 Assert(pGstCtx->hwvirt.svm.CTX_SUFF(pVmcb));
1843 SSMR3PutU64(pSSM, pGstCtx->hwvirt.svm.uMsrHSavePa);
1844 SSMR3PutGCPhys(pSSM, pGstCtx->hwvirt.svm.GCPhysVmcb);
1845 SSMR3PutU64(pSSM, pGstCtx->hwvirt.svm.uPrevPauseTick);
1846 SSMR3PutU16(pSSM, pGstCtx->hwvirt.svm.cPauseFilter);
1847 SSMR3PutU16(pSSM, pGstCtx->hwvirt.svm.cPauseFilterThreshold);
1848 SSMR3PutBool(pSSM, pGstCtx->hwvirt.svm.fInterceptEvents);
1849 SSMR3PutStructEx(pSSM, &pGstCtx->hwvirt.svm.HostState, sizeof(pGstCtx->hwvirt.svm.HostState), 0 /* fFlags */,
1850 g_aSvmHwvirtHostState, NULL /* pvUser */);
1851 SSMR3PutMem(pSSM, pGstCtx->hwvirt.svm.pVmcbR3, SVM_VMCB_PAGES << X86_PAGE_4K_SHIFT);
1852 SSMR3PutMem(pSSM, pGstCtx->hwvirt.svm.pvMsrBitmapR3, SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT);
1853 SSMR3PutMem(pSSM, pGstCtx->hwvirt.svm.pvIoBitmapR3, SVM_IOPM_PAGES << X86_PAGE_4K_SHIFT);
1854 SSMR3PutU32(pSSM, pGstCtx->hwvirt.fLocalForcedActions);
1855 SSMR3PutBool(pSSM, pGstCtx->hwvirt.fGif);
1856 }
1857 SSMR3PutU32(pSSM, pVCpu->cpum.s.fUseFlags);
1858 SSMR3PutU32(pSSM, pVCpu->cpum.s.fChanged);
1859 AssertCompileSizeAlignment(pVCpu->cpum.s.GuestMsrs.msr, sizeof(uint64_t));
1860 SSMR3PutMem(pSSM, &pVCpu->cpum.s.GuestMsrs, sizeof(pVCpu->cpum.s.GuestMsrs.msr));
1861 }
1862
1863 cpumR3SaveCpuId(pVM, pSSM);
1864 return VINF_SUCCESS;
1865}
1866
1867
1868/**
1869 * @callback_method_impl{FNSSMINTLOADPREP}
1870 */
1871static DECLCALLBACK(int) cpumR3LoadPrep(PVM pVM, PSSMHANDLE pSSM)
1872{
1873 NOREF(pSSM);
1874 pVM->cpum.s.fPendingRestore = true;
1875 return VINF_SUCCESS;
1876}
1877
1878
1879/**
1880 * @callback_method_impl{FNSSMINTLOADEXEC}
1881 */
1882static DECLCALLBACK(int) cpumR3LoadExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
1883{
1884 int rc; /* Only for AssertRCReturn use. */
1885
1886 /*
1887 * Validate version.
1888 */
1889 if ( uVersion != CPUM_SAVED_STATE_VERSION_HWVIRT_SVM
1890 && uVersion != CPUM_SAVED_STATE_VERSION_XSAVE
1891 && uVersion != CPUM_SAVED_STATE_VERSION_GOOD_CPUID_COUNT
1892 && uVersion != CPUM_SAVED_STATE_VERSION_BAD_CPUID_COUNT
1893 && uVersion != CPUM_SAVED_STATE_VERSION_PUT_STRUCT
1894 && uVersion != CPUM_SAVED_STATE_VERSION_MEM
1895 && uVersion != CPUM_SAVED_STATE_VERSION_NO_MSR_SIZE
1896 && uVersion != CPUM_SAVED_STATE_VERSION_VER3_2
1897 && uVersion != CPUM_SAVED_STATE_VERSION_VER3_0
1898 && uVersion != CPUM_SAVED_STATE_VERSION_VER2_1_NOMSR
1899 && uVersion != CPUM_SAVED_STATE_VERSION_VER2_0
1900 && uVersion != CPUM_SAVED_STATE_VERSION_VER1_6)
1901 {
1902 AssertMsgFailed(("cpumR3LoadExec: Invalid version uVersion=%d!\n", uVersion));
1903 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
1904 }
1905
1906 if (uPass == SSM_PASS_FINAL)
1907 {
1908 /*
1909 * Set the size of RTGCPTR for SSMR3GetGCPtr. (Only necessary for
1910 * really old SSM file versions.)
1911 */
1912 if (uVersion == CPUM_SAVED_STATE_VERSION_VER1_6)
1913 SSMR3HandleSetGCPtrSize(pSSM, sizeof(RTGCPTR32));
1914 else if (uVersion <= CPUM_SAVED_STATE_VERSION_VER3_0)
1915 SSMR3HandleSetGCPtrSize(pSSM, HC_ARCH_BITS == 32 ? sizeof(RTGCPTR32) : sizeof(RTGCPTR));
1916
1917 /*
1918 * Figure x86 and ctx field definitions to use for older states.
1919 */
1920 uint32_t const fLoad = uVersion > CPUM_SAVED_STATE_VERSION_MEM ? 0 : SSMSTRUCT_FLAGS_MEM_BAND_AID_RELAXED;
1921 PCSSMFIELD paCpumCtx1Fields = g_aCpumX87Fields;
1922 PCSSMFIELD paCpumCtx2Fields = g_aCpumCtxFields;
1923 if (uVersion == CPUM_SAVED_STATE_VERSION_VER1_6)
1924 {
1925 paCpumCtx1Fields = g_aCpumX87FieldsV16;
1926 paCpumCtx2Fields = g_aCpumCtxFieldsV16;
1927 }
1928 else if (uVersion <= CPUM_SAVED_STATE_VERSION_MEM)
1929 {
1930 paCpumCtx1Fields = g_aCpumX87FieldsMem;
1931 paCpumCtx2Fields = g_aCpumCtxFieldsMem;
1932 }
1933
1934 /*
1935 * The hyper state used to preceed the CPU count. Starting with
1936 * XSAVE it was moved down till after we've got the count.
1937 */
1938 if (uVersion < CPUM_SAVED_STATE_VERSION_XSAVE)
1939 {
1940 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
1941 {
1942 PVMCPU pVCpu = &pVM->aCpus[iCpu];
1943 X86FXSTATE Ign;
1944 SSMR3GetStructEx(pSSM, &Ign, sizeof(Ign), fLoad | SSMSTRUCT_FLAGS_NO_TAIL_MARKER, paCpumCtx1Fields, NULL);
1945 uint64_t uCR3 = pVCpu->cpum.s.Hyper.cr3;
1946 uint64_t uRSP = pVCpu->cpum.s.Hyper.rsp; /* see VMMR3Relocate(). */
1947 SSMR3GetStructEx(pSSM, &pVCpu->cpum.s.Hyper, sizeof(pVCpu->cpum.s.Hyper),
1948 fLoad | SSMSTRUCT_FLAGS_NO_LEAD_MARKER, paCpumCtx2Fields, NULL);
1949 pVCpu->cpum.s.Hyper.cr3 = uCR3;
1950 pVCpu->cpum.s.Hyper.rsp = uRSP;
1951 }
1952 }
1953
1954 if (uVersion >= CPUM_SAVED_STATE_VERSION_VER2_1_NOMSR)
1955 {
1956 uint32_t cCpus;
1957 rc = SSMR3GetU32(pSSM, &cCpus); AssertRCReturn(rc, rc);
1958 AssertLogRelMsgReturn(cCpus == pVM->cCpus, ("Mismatching CPU counts: saved: %u; configured: %u \n", cCpus, pVM->cCpus),
1959 VERR_SSM_UNEXPECTED_DATA);
1960 }
1961 AssertLogRelMsgReturn( uVersion > CPUM_SAVED_STATE_VERSION_VER2_0
1962 || pVM->cCpus == 1,
1963 ("cCpus=%u\n", pVM->cCpus),
1964 VERR_SSM_UNEXPECTED_DATA);
1965
1966 uint32_t cbMsrs = 0;
1967 if (uVersion > CPUM_SAVED_STATE_VERSION_NO_MSR_SIZE)
1968 {
1969 rc = SSMR3GetU32(pSSM, &cbMsrs); AssertRCReturn(rc, rc);
1970 AssertLogRelMsgReturn(RT_ALIGN(cbMsrs, sizeof(uint64_t)) == cbMsrs, ("Size of MSRs is misaligned: %#x\n", cbMsrs),
1971 VERR_SSM_UNEXPECTED_DATA);
1972 AssertLogRelMsgReturn(cbMsrs <= sizeof(CPUMCTXMSRS) && cbMsrs > 0, ("Size of MSRs is out of range: %#x\n", cbMsrs),
1973 VERR_SSM_UNEXPECTED_DATA);
1974 }
1975
1976 /*
1977 * Do the per-CPU restoring.
1978 */
1979 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
1980 {
1981 PVMCPU pVCpu = &pVM->aCpus[iCpu];
1982 PCPUMCTX pGstCtx = &pVCpu->cpum.s.Guest;
1983
1984 if (uVersion >= CPUM_SAVED_STATE_VERSION_XSAVE)
1985 {
1986 /*
1987 * The XSAVE saved state layout moved the hyper state down here.
1988 */
1989 uint64_t uCR3 = pVCpu->cpum.s.Hyper.cr3;
1990 uint64_t uRSP = pVCpu->cpum.s.Hyper.rsp; /* see VMMR3Relocate(). */
1991 rc = SSMR3GetStructEx(pSSM, &pVCpu->cpum.s.Hyper, sizeof(pVCpu->cpum.s.Hyper), 0, g_aCpumCtxFields, NULL);
1992 pVCpu->cpum.s.Hyper.cr3 = uCR3;
1993 pVCpu->cpum.s.Hyper.rsp = uRSP;
1994 AssertRCReturn(rc, rc);
1995
1996 /*
1997 * Start by restoring the CPUMCTX structure and the X86FXSAVE bits of the extended state.
1998 */
1999 rc = SSMR3GetStructEx(pSSM, pGstCtx, sizeof(*pGstCtx), 0, g_aCpumCtxFields, NULL);
2000 rc = SSMR3GetStructEx(pSSM, &pGstCtx->pXStateR3->x87, sizeof(pGstCtx->pXStateR3->x87), 0, g_aCpumX87Fields, NULL);
2001 AssertRCReturn(rc, rc);
2002
2003 /* Check that the xsave/xrstor mask is valid (invalid results in #GP). */
2004 if (pGstCtx->fXStateMask != 0)
2005 {
2006 AssertLogRelMsgReturn(!(pGstCtx->fXStateMask & ~pVM->cpum.s.fXStateGuestMask),
2007 ("fXStateMask=%#RX64 fXStateGuestMask=%#RX64\n",
2008 pGstCtx->fXStateMask, pVM->cpum.s.fXStateGuestMask),
2009 VERR_CPUM_INCOMPATIBLE_XSAVE_COMP_MASK);
2010 AssertLogRelMsgReturn(pGstCtx->fXStateMask & XSAVE_C_X87,
2011 ("fXStateMask=%#RX64\n", pGstCtx->fXStateMask), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2012 AssertLogRelMsgReturn((pGstCtx->fXStateMask & (XSAVE_C_SSE | XSAVE_C_YMM)) != XSAVE_C_YMM,
2013 ("fXStateMask=%#RX64\n", pGstCtx->fXStateMask), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2014 AssertLogRelMsgReturn( (pGstCtx->fXStateMask & (XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI)) == 0
2015 || (pGstCtx->fXStateMask & (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI))
2016 == (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI),
2017 ("fXStateMask=%#RX64\n", pGstCtx->fXStateMask), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2018 }
2019
2020 /* Check that the XCR0 mask is valid (invalid results in #GP). */
2021 AssertLogRelMsgReturn(pGstCtx->aXcr[0] & XSAVE_C_X87, ("xcr0=%#RX64\n", pGstCtx->aXcr[0]), VERR_CPUM_INVALID_XCR0);
2022 if (pGstCtx->aXcr[0] != XSAVE_C_X87)
2023 {
2024 AssertLogRelMsgReturn(!(pGstCtx->aXcr[0] & ~(pGstCtx->fXStateMask | XSAVE_C_X87)),
2025 ("xcr0=%#RX64 fXStateMask=%#RX64\n", pGstCtx->aXcr[0], pGstCtx->fXStateMask),
2026 VERR_CPUM_INVALID_XCR0);
2027 AssertLogRelMsgReturn(pGstCtx->aXcr[0] & XSAVE_C_X87,
2028 ("xcr0=%#RX64\n", pGstCtx->aXcr[0]), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2029 AssertLogRelMsgReturn((pGstCtx->aXcr[0] & (XSAVE_C_SSE | XSAVE_C_YMM)) != XSAVE_C_YMM,
2030 ("xcr0=%#RX64\n", pGstCtx->aXcr[0]), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2031 AssertLogRelMsgReturn( (pGstCtx->aXcr[0] & (XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI)) == 0
2032 || (pGstCtx->aXcr[0] & (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI))
2033 == (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI),
2034 ("xcr0=%#RX64\n", pGstCtx->aXcr[0]), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2035 }
2036
2037 /* Check that the XCR1 is zero, as we don't implement it yet. */
2038 AssertLogRelMsgReturn(!pGstCtx->aXcr[1], ("xcr1=%#RX64\n", pGstCtx->aXcr[1]), VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2039
2040 /*
2041 * Restore the individual extended state components we support.
2042 */
2043 if (pGstCtx->fXStateMask != 0)
2044 {
2045 rc = SSMR3GetStructEx(pSSM, &pGstCtx->pXStateR3->Hdr, sizeof(pGstCtx->pXStateR3->Hdr),
2046 0, g_aCpumXSaveHdrFields, NULL);
2047 AssertRCReturn(rc, rc);
2048 AssertLogRelMsgReturn(!(pGstCtx->pXStateR3->Hdr.bmXState & ~pGstCtx->fXStateMask),
2049 ("bmXState=%#RX64 fXStateMask=%#RX64\n",
2050 pGstCtx->pXStateR3->Hdr.bmXState, pGstCtx->fXStateMask),
2051 VERR_CPUM_INVALID_XSAVE_HDR);
2052 }
2053 if (pGstCtx->fXStateMask & XSAVE_C_YMM)
2054 {
2055 PX86XSAVEYMMHI pYmmHiCtx = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_YMM_BIT, PX86XSAVEYMMHI);
2056 SSMR3GetStructEx(pSSM, pYmmHiCtx, sizeof(*pYmmHiCtx), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumYmmHiFields, NULL);
2057 }
2058 if (pGstCtx->fXStateMask & XSAVE_C_BNDREGS)
2059 {
2060 PX86XSAVEBNDREGS pBndRegs = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_BNDREGS_BIT, PX86XSAVEBNDREGS);
2061 SSMR3GetStructEx(pSSM, pBndRegs, sizeof(*pBndRegs), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumBndRegsFields, NULL);
2062 }
2063 if (pGstCtx->fXStateMask & XSAVE_C_BNDCSR)
2064 {
2065 PX86XSAVEBNDCFG pBndCfg = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_BNDCSR_BIT, PX86XSAVEBNDCFG);
2066 SSMR3GetStructEx(pSSM, pBndCfg, sizeof(*pBndCfg), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumBndCfgFields, NULL);
2067 }
2068 if (pGstCtx->fXStateMask & XSAVE_C_ZMM_HI256)
2069 {
2070 PX86XSAVEZMMHI256 pZmmHi256 = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_ZMM_HI256_BIT, PX86XSAVEZMMHI256);
2071 SSMR3GetStructEx(pSSM, pZmmHi256, sizeof(*pZmmHi256), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumZmmHi256Fields, NULL);
2072 }
2073 if (pGstCtx->fXStateMask & XSAVE_C_ZMM_16HI)
2074 {
2075 PX86XSAVEZMM16HI pZmm16Hi = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_ZMM_16HI_BIT, PX86XSAVEZMM16HI);
2076 SSMR3GetStructEx(pSSM, pZmm16Hi, sizeof(*pZmm16Hi), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumZmm16HiFields, NULL);
2077 }
2078 if (uVersion >= CPUM_SAVED_STATE_VERSION_HWVIRT_SVM)
2079 {
2080 if (pVM->cpum.ro.GuestFeatures.fSvm)
2081 {
2082 Assert(pGstCtx->hwvirt.svm.CTX_SUFF(pVmcb));
2083 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.svm.uMsrHSavePa);
2084 SSMR3GetGCPhys(pSSM, &pGstCtx->hwvirt.svm.GCPhysVmcb);
2085 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.svm.uPrevPauseTick);
2086 SSMR3GetU16(pSSM, &pGstCtx->hwvirt.svm.cPauseFilter);
2087 SSMR3GetU16(pSSM, &pGstCtx->hwvirt.svm.cPauseFilterThreshold);
2088 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.svm.fInterceptEvents);
2089 SSMR3GetStructEx(pSSM, &pGstCtx->hwvirt.svm.HostState, sizeof(pGstCtx->hwvirt.svm.HostState),
2090 0 /* fFlags */, g_aSvmHwvirtHostState, NULL /* pvUser */);
2091 SSMR3GetMem(pSSM, pGstCtx->hwvirt.svm.pVmcbR3, SVM_VMCB_PAGES << X86_PAGE_4K_SHIFT);
2092 SSMR3GetMem(pSSM, pGstCtx->hwvirt.svm.pvMsrBitmapR3, SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT);
2093 SSMR3GetMem(pSSM, pGstCtx->hwvirt.svm.pvIoBitmapR3, SVM_IOPM_PAGES << X86_PAGE_4K_SHIFT);
2094 SSMR3GetU32(pSSM, &pGstCtx->hwvirt.fLocalForcedActions);
2095 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.fGif);
2096 }
2097 }
2098 }
2099 else
2100 {
2101 /*
2102 * Pre XSAVE saved state.
2103 */
2104 SSMR3GetStructEx(pSSM, &pGstCtx->pXStateR3->x87, sizeof(pGstCtx->pXStateR3->x87),
2105 fLoad | SSMSTRUCT_FLAGS_NO_TAIL_MARKER, paCpumCtx1Fields, NULL);
2106 SSMR3GetStructEx(pSSM, pGstCtx, sizeof(*pGstCtx), fLoad | SSMSTRUCT_FLAGS_NO_LEAD_MARKER, paCpumCtx2Fields, NULL);
2107 }
2108
2109 /*
2110 * Restore a couple of flags and the MSRs.
2111 */
2112 SSMR3GetU32(pSSM, &pVCpu->cpum.s.fUseFlags);
2113 SSMR3GetU32(pSSM, &pVCpu->cpum.s.fChanged);
2114
2115 rc = VINF_SUCCESS;
2116 if (uVersion > CPUM_SAVED_STATE_VERSION_NO_MSR_SIZE)
2117 rc = SSMR3GetMem(pSSM, &pVCpu->cpum.s.GuestMsrs.au64[0], cbMsrs);
2118 else if (uVersion >= CPUM_SAVED_STATE_VERSION_VER3_0)
2119 {
2120 SSMR3GetMem(pSSM, &pVCpu->cpum.s.GuestMsrs.au64[0], 2 * sizeof(uint64_t)); /* Restore two MSRs. */
2121 rc = SSMR3Skip(pSSM, 62 * sizeof(uint64_t));
2122 }
2123 AssertRCReturn(rc, rc);
2124
2125 /* REM and other may have cleared must-be-one fields in DR6 and
2126 DR7, fix these. */
2127 pGstCtx->dr[6] &= ~(X86_DR6_RAZ_MASK | X86_DR6_MBZ_MASK);
2128 pGstCtx->dr[6] |= X86_DR6_RA1_MASK;
2129 pGstCtx->dr[7] &= ~(X86_DR7_RAZ_MASK | X86_DR7_MBZ_MASK);
2130 pGstCtx->dr[7] |= X86_DR7_RA1_MASK;
2131 }
2132
2133 /* Older states does not have the internal selector register flags
2134 and valid selector value. Supply those. */
2135 if (uVersion <= CPUM_SAVED_STATE_VERSION_MEM)
2136 {
2137 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
2138 {
2139 PVMCPU pVCpu = &pVM->aCpus[iCpu];
2140 bool const fValid = !VM_IS_RAW_MODE_ENABLED(pVM)
2141 || ( uVersion > CPUM_SAVED_STATE_VERSION_VER3_2
2142 && !(pVCpu->cpum.s.fChanged & CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID));
2143 PCPUMSELREG paSelReg = CPUMCTX_FIRST_SREG(&pVCpu->cpum.s.Guest);
2144 if (fValid)
2145 {
2146 for (uint32_t iSelReg = 0; iSelReg < X86_SREG_COUNT; iSelReg++)
2147 {
2148 paSelReg[iSelReg].fFlags = CPUMSELREG_FLAGS_VALID;
2149 paSelReg[iSelReg].ValidSel = paSelReg[iSelReg].Sel;
2150 }
2151
2152 pVCpu->cpum.s.Guest.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
2153 pVCpu->cpum.s.Guest.ldtr.ValidSel = pVCpu->cpum.s.Guest.ldtr.Sel;
2154 }
2155 else
2156 {
2157 for (uint32_t iSelReg = 0; iSelReg < X86_SREG_COUNT; iSelReg++)
2158 {
2159 paSelReg[iSelReg].fFlags = 0;
2160 paSelReg[iSelReg].ValidSel = 0;
2161 }
2162
2163 /* This might not be 104% correct, but I think it's close
2164 enough for all practical purposes... (REM always loaded
2165 LDTR registers.) */
2166 pVCpu->cpum.s.Guest.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
2167 pVCpu->cpum.s.Guest.ldtr.ValidSel = pVCpu->cpum.s.Guest.ldtr.Sel;
2168 }
2169 pVCpu->cpum.s.Guest.tr.fFlags = CPUMSELREG_FLAGS_VALID;
2170 pVCpu->cpum.s.Guest.tr.ValidSel = pVCpu->cpum.s.Guest.tr.Sel;
2171 }
2172 }
2173
2174 /* Clear CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID. */
2175 if ( uVersion > CPUM_SAVED_STATE_VERSION_VER3_2
2176 && uVersion <= CPUM_SAVED_STATE_VERSION_MEM)
2177 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
2178 pVM->aCpus[iCpu].cpum.s.fChanged &= CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID;
2179
2180 /*
2181 * A quick sanity check.
2182 */
2183 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
2184 {
2185 PVMCPU pVCpu = &pVM->aCpus[iCpu];
2186 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.es.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
2187 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.cs.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
2188 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.ss.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
2189 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.ds.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
2190 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.fs.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
2191 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.gs.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
2192 }
2193 }
2194
2195 pVM->cpum.s.fPendingRestore = false;
2196
2197 /*
2198 * Guest CPUIDs.
2199 */
2200 if (uVersion >= CPUM_SAVED_STATE_VERSION_VER3_2)
2201 return cpumR3LoadCpuId(pVM, pSSM, uVersion);
2202 return cpumR3LoadCpuIdPre32(pVM, pSSM, uVersion);
2203}
2204
2205
2206/**
2207 * @callback_method_impl{FNSSMINTLOADDONE}
2208 */
2209static DECLCALLBACK(int) cpumR3LoadDone(PVM pVM, PSSMHANDLE pSSM)
2210{
2211 if (RT_FAILURE(SSMR3HandleGetStatus(pSSM)))
2212 return VINF_SUCCESS;
2213
2214 /* just check this since we can. */ /** @todo Add a SSM unit flag for indicating that it's mandatory during a restore. */
2215 if (pVM->cpum.s.fPendingRestore)
2216 {
2217 LogRel(("CPUM: Missing state!\n"));
2218 return VERR_INTERNAL_ERROR_2;
2219 }
2220
2221 bool const fSupportsLongMode = VMR3IsLongModeAllowed(pVM);
2222 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2223 {
2224 PVMCPU pVCpu = &pVM->aCpus[idCpu];
2225
2226 /* Notify PGM of the NXE states in case they've changed. */
2227 PGMNotifyNxeChanged(pVCpu, RT_BOOL(pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_NXE));
2228
2229 /* During init. this is done in CPUMR3InitCompleted(). */
2230 if (fSupportsLongMode)
2231 pVCpu->cpum.s.fUseFlags |= CPUM_USE_SUPPORTS_LONGMODE;
2232 }
2233 return VINF_SUCCESS;
2234}
2235
2236
2237/**
2238 * Checks if the CPUM state restore is still pending.
2239 *
2240 * @returns true / false.
2241 * @param pVM The cross context VM structure.
2242 */
2243VMMDECL(bool) CPUMR3IsStateRestorePending(PVM pVM)
2244{
2245 return pVM->cpum.s.fPendingRestore;
2246}
2247
2248
2249/**
2250 * Formats the EFLAGS value into mnemonics.
2251 *
2252 * @param pszEFlags Where to write the mnemonics. (Assumes sufficient buffer space.)
2253 * @param efl The EFLAGS value.
2254 */
2255static void cpumR3InfoFormatFlags(char *pszEFlags, uint32_t efl)
2256{
2257 /*
2258 * Format the flags.
2259 */
2260 static const struct
2261 {
2262 const char *pszSet; const char *pszClear; uint32_t fFlag;
2263 } s_aFlags[] =
2264 {
2265 { "vip",NULL, X86_EFL_VIP },
2266 { "vif",NULL, X86_EFL_VIF },
2267 { "ac", NULL, X86_EFL_AC },
2268 { "vm", NULL, X86_EFL_VM },
2269 { "rf", NULL, X86_EFL_RF },
2270 { "nt", NULL, X86_EFL_NT },
2271 { "ov", "nv", X86_EFL_OF },
2272 { "dn", "up", X86_EFL_DF },
2273 { "ei", "di", X86_EFL_IF },
2274 { "tf", NULL, X86_EFL_TF },
2275 { "nt", "pl", X86_EFL_SF },
2276 { "nz", "zr", X86_EFL_ZF },
2277 { "ac", "na", X86_EFL_AF },
2278 { "po", "pe", X86_EFL_PF },
2279 { "cy", "nc", X86_EFL_CF },
2280 };
2281 char *psz = pszEFlags;
2282 for (unsigned i = 0; i < RT_ELEMENTS(s_aFlags); i++)
2283 {
2284 const char *pszAdd = s_aFlags[i].fFlag & efl ? s_aFlags[i].pszSet : s_aFlags[i].pszClear;
2285 if (pszAdd)
2286 {
2287 strcpy(psz, pszAdd);
2288 psz += strlen(pszAdd);
2289 *psz++ = ' ';
2290 }
2291 }
2292 psz[-1] = '\0';
2293}
2294
2295
2296/**
2297 * Formats a full register dump.
2298 *
2299 * @param pVM The cross context VM structure.
2300 * @param pCtx The context to format.
2301 * @param pCtxCore The context core to format.
2302 * @param pHlp Output functions.
2303 * @param enmType The dump type.
2304 * @param pszPrefix Register name prefix.
2305 */
2306static void cpumR3InfoOne(PVM pVM, PCPUMCTX pCtx, PCCPUMCTXCORE pCtxCore, PCDBGFINFOHLP pHlp, CPUMDUMPTYPE enmType,
2307 const char *pszPrefix)
2308{
2309 NOREF(pVM);
2310
2311 /*
2312 * Format the EFLAGS.
2313 */
2314 uint32_t efl = pCtxCore->eflags.u32;
2315 char szEFlags[80];
2316 cpumR3InfoFormatFlags(&szEFlags[0], efl);
2317
2318 /*
2319 * Format the registers.
2320 */
2321 switch (enmType)
2322 {
2323 case CPUMDUMPTYPE_TERSE:
2324 if (CPUMIsGuestIn64BitCodeEx(pCtx))
2325 pHlp->pfnPrintf(pHlp,
2326 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
2327 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
2328 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
2329 "%sr14=%016RX64 %sr15=%016RX64\n"
2330 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
2331 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %seflags=%08x\n",
2332 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
2333 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
2334 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
2335 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2336 pszPrefix, pCtxCore->cs.Sel, pszPrefix, pCtxCore->ss.Sel, pszPrefix, pCtxCore->ds.Sel, pszPrefix, pCtxCore->es.Sel,
2337 pszPrefix, pCtxCore->fs.Sel, pszPrefix, pCtxCore->gs.Sel, pszPrefix, efl);
2338 else
2339 pHlp->pfnPrintf(pHlp,
2340 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
2341 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
2342 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %seflags=%08x\n",
2343 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
2344 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2345 pszPrefix, pCtxCore->cs.Sel, pszPrefix, pCtxCore->ss.Sel, pszPrefix, pCtxCore->ds.Sel, pszPrefix, pCtxCore->es.Sel,
2346 pszPrefix, pCtxCore->fs.Sel, pszPrefix, pCtxCore->gs.Sel, pszPrefix, efl);
2347 break;
2348
2349 case CPUMDUMPTYPE_DEFAULT:
2350 if (CPUMIsGuestIn64BitCodeEx(pCtx))
2351 pHlp->pfnPrintf(pHlp,
2352 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
2353 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
2354 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
2355 "%sr14=%016RX64 %sr15=%016RX64\n"
2356 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
2357 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %str=%04x %seflags=%08x\n"
2358 "%scr0=%08RX64 %scr2=%08RX64 %scr3=%08RX64 %scr4=%08RX64 %sgdtr=%016RX64:%04x %sldtr=%04x\n"
2359 ,
2360 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
2361 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
2362 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
2363 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2364 pszPrefix, pCtxCore->cs.Sel, pszPrefix, pCtxCore->ss.Sel, pszPrefix, pCtxCore->ds.Sel, pszPrefix, pCtxCore->es.Sel,
2365 pszPrefix, pCtxCore->fs.Sel, pszPrefix, pCtxCore->gs.Sel, pszPrefix, pCtx->tr.Sel, pszPrefix, efl,
2366 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
2367 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->ldtr.Sel);
2368 else
2369 pHlp->pfnPrintf(pHlp,
2370 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
2371 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
2372 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %str=%04x %seflags=%08x\n"
2373 "%scr0=%08RX64 %scr2=%08RX64 %scr3=%08RX64 %scr4=%08RX64 %sgdtr=%08RX64:%04x %sldtr=%04x\n"
2374 ,
2375 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
2376 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2377 pszPrefix, pCtxCore->cs.Sel, pszPrefix, pCtxCore->ss.Sel, pszPrefix, pCtxCore->ds.Sel, pszPrefix, pCtxCore->es.Sel,
2378 pszPrefix, pCtxCore->fs.Sel, pszPrefix, pCtxCore->gs.Sel, pszPrefix, pCtx->tr.Sel, pszPrefix, efl,
2379 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
2380 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->ldtr.Sel);
2381 break;
2382
2383 case CPUMDUMPTYPE_VERBOSE:
2384 if (CPUMIsGuestIn64BitCodeEx(pCtx))
2385 pHlp->pfnPrintf(pHlp,
2386 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
2387 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
2388 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
2389 "%sr14=%016RX64 %sr15=%016RX64\n"
2390 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
2391 "%scs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2392 "%sds={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2393 "%ses={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2394 "%sfs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2395 "%sgs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2396 "%sss={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2397 "%scr0=%016RX64 %scr2=%016RX64 %scr3=%016RX64 %scr4=%016RX64\n"
2398 "%sdr0=%016RX64 %sdr1=%016RX64 %sdr2=%016RX64 %sdr3=%016RX64\n"
2399 "%sdr4=%016RX64 %sdr5=%016RX64 %sdr6=%016RX64 %sdr7=%016RX64\n"
2400 "%sgdtr=%016RX64:%04x %sidtr=%016RX64:%04x %seflags=%08x\n"
2401 "%sldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
2402 "%str ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
2403 "%sSysEnter={cs=%04llx eip=%016RX64 esp=%016RX64}\n"
2404 ,
2405 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
2406 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
2407 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
2408 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2409 pszPrefix, pCtxCore->cs.Sel, pCtx->cs.u64Base, pCtx->cs.u32Limit, pCtx->cs.Attr.u,
2410 pszPrefix, pCtxCore->ds.Sel, pCtx->ds.u64Base, pCtx->ds.u32Limit, pCtx->ds.Attr.u,
2411 pszPrefix, pCtxCore->es.Sel, pCtx->es.u64Base, pCtx->es.u32Limit, pCtx->es.Attr.u,
2412 pszPrefix, pCtxCore->fs.Sel, pCtx->fs.u64Base, pCtx->fs.u32Limit, pCtx->fs.Attr.u,
2413 pszPrefix, pCtxCore->gs.Sel, pCtx->gs.u64Base, pCtx->gs.u32Limit, pCtx->gs.Attr.u,
2414 pszPrefix, pCtxCore->ss.Sel, pCtx->ss.u64Base, pCtx->ss.u32Limit, pCtx->ss.Attr.u,
2415 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
2416 pszPrefix, pCtx->dr[0], pszPrefix, pCtx->dr[1], pszPrefix, pCtx->dr[2], pszPrefix, pCtx->dr[3],
2417 pszPrefix, pCtx->dr[4], pszPrefix, pCtx->dr[5], pszPrefix, pCtx->dr[6], pszPrefix, pCtx->dr[7],
2418 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, pszPrefix, efl,
2419 pszPrefix, pCtx->ldtr.Sel, pCtx->ldtr.u64Base, pCtx->ldtr.u32Limit, pCtx->ldtr.Attr.u,
2420 pszPrefix, pCtx->tr.Sel, pCtx->tr.u64Base, pCtx->tr.u32Limit, pCtx->tr.Attr.u,
2421 pszPrefix, pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
2422 else
2423 pHlp->pfnPrintf(pHlp,
2424 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
2425 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
2426 "%scs={%04x base=%016RX64 limit=%08x flags=%08x} %sdr0=%08RX64 %sdr1=%08RX64\n"
2427 "%sds={%04x base=%016RX64 limit=%08x flags=%08x} %sdr2=%08RX64 %sdr3=%08RX64\n"
2428 "%ses={%04x base=%016RX64 limit=%08x flags=%08x} %sdr4=%08RX64 %sdr5=%08RX64\n"
2429 "%sfs={%04x base=%016RX64 limit=%08x flags=%08x} %sdr6=%08RX64 %sdr7=%08RX64\n"
2430 "%sgs={%04x base=%016RX64 limit=%08x flags=%08x} %scr0=%08RX64 %scr2=%08RX64\n"
2431 "%sss={%04x base=%016RX64 limit=%08x flags=%08x} %scr3=%08RX64 %scr4=%08RX64\n"
2432 "%sgdtr=%016RX64:%04x %sidtr=%016RX64:%04x %seflags=%08x\n"
2433 "%sldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
2434 "%str ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
2435 "%sSysEnter={cs=%04llx eip=%08llx esp=%08llx}\n"
2436 ,
2437 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
2438 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2439 pszPrefix, pCtxCore->cs.Sel, pCtx->cs.u64Base, pCtx->cs.u32Limit, pCtx->cs.Attr.u, pszPrefix, pCtx->dr[0], pszPrefix, pCtx->dr[1],
2440 pszPrefix, pCtxCore->ds.Sel, pCtx->ds.u64Base, pCtx->ds.u32Limit, pCtx->ds.Attr.u, pszPrefix, pCtx->dr[2], pszPrefix, pCtx->dr[3],
2441 pszPrefix, pCtxCore->es.Sel, pCtx->es.u64Base, pCtx->es.u32Limit, pCtx->es.Attr.u, pszPrefix, pCtx->dr[4], pszPrefix, pCtx->dr[5],
2442 pszPrefix, pCtxCore->fs.Sel, pCtx->fs.u64Base, pCtx->fs.u32Limit, pCtx->fs.Attr.u, pszPrefix, pCtx->dr[6], pszPrefix, pCtx->dr[7],
2443 pszPrefix, pCtxCore->gs.Sel, pCtx->gs.u64Base, pCtx->gs.u32Limit, pCtx->gs.Attr.u, pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2,
2444 pszPrefix, pCtxCore->ss.Sel, pCtx->ss.u64Base, pCtx->ss.u32Limit, pCtx->ss.Attr.u, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
2445 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, pszPrefix, efl,
2446 pszPrefix, pCtx->ldtr.Sel, pCtx->ldtr.u64Base, pCtx->ldtr.u32Limit, pCtx->ldtr.Attr.u,
2447 pszPrefix, pCtx->tr.Sel, pCtx->tr.u64Base, pCtx->tr.u32Limit, pCtx->tr.Attr.u,
2448 pszPrefix, pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
2449
2450 pHlp->pfnPrintf(pHlp, "%sxcr=%016RX64 %sxcr1=%016RX64 %sxss=%016RX64 (fXStateMask=%016RX64)\n",
2451 pszPrefix, pCtx->aXcr[0], pszPrefix, pCtx->aXcr[1],
2452 pszPrefix, UINT64_C(0) /** @todo XSS */, pCtx->fXStateMask);
2453 if (pCtx->CTX_SUFF(pXState))
2454 {
2455 PX86FXSTATE pFpuCtx = &pCtx->CTX_SUFF(pXState)->x87;
2456 pHlp->pfnPrintf(pHlp,
2457 "%sFCW=%04x %sFSW=%04x %sFTW=%04x %sFOP=%04x %sMXCSR=%08x %sMXCSR_MASK=%08x\n"
2458 "%sFPUIP=%08x %sCS=%04x %sRsrvd1=%04x %sFPUDP=%08x %sDS=%04x %sRsvrd2=%04x\n"
2459 ,
2460 pszPrefix, pFpuCtx->FCW, pszPrefix, pFpuCtx->FSW, pszPrefix, pFpuCtx->FTW, pszPrefix, pFpuCtx->FOP,
2461 pszPrefix, pFpuCtx->MXCSR, pszPrefix, pFpuCtx->MXCSR_MASK,
2462 pszPrefix, pFpuCtx->FPUIP, pszPrefix, pFpuCtx->CS, pszPrefix, pFpuCtx->Rsrvd1,
2463 pszPrefix, pFpuCtx->FPUDP, pszPrefix, pFpuCtx->DS, pszPrefix, pFpuCtx->Rsrvd2
2464 );
2465 /*
2466 * The FSAVE style memory image contains ST(0)-ST(7) at increasing addresses,
2467 * not (FP)R0-7 as Intel SDM suggests.
2468 */
2469 unsigned iShift = (pFpuCtx->FSW >> 11) & 7;
2470 for (unsigned iST = 0; iST < RT_ELEMENTS(pFpuCtx->aRegs); iST++)
2471 {
2472 unsigned iFPR = (iST + iShift) % RT_ELEMENTS(pFpuCtx->aRegs);
2473 unsigned uTag = (pFpuCtx->FTW >> (2 * iFPR)) & 3;
2474 char chSign = pFpuCtx->aRegs[iST].au16[4] & 0x8000 ? '-' : '+';
2475 unsigned iInteger = (unsigned)(pFpuCtx->aRegs[iST].au64[0] >> 63);
2476 uint64_t u64Fraction = pFpuCtx->aRegs[iST].au64[0] & UINT64_C(0x7fffffffffffffff);
2477 int iExponent = pFpuCtx->aRegs[iST].au16[4] & 0x7fff;
2478 iExponent -= 16383; /* subtract bias */
2479 /** @todo This isn't entirenly correct and needs more work! */
2480 pHlp->pfnPrintf(pHlp,
2481 "%sST(%u)=%sFPR%u={%04RX16'%08RX32'%08RX32} t%d %c%u.%022llu * 2 ^ %d (*)",
2482 pszPrefix, iST, pszPrefix, iFPR,
2483 pFpuCtx->aRegs[iST].au16[4], pFpuCtx->aRegs[iST].au32[1], pFpuCtx->aRegs[iST].au32[0],
2484 uTag, chSign, iInteger, u64Fraction, iExponent);
2485 if (pFpuCtx->aRegs[iST].au16[5] || pFpuCtx->aRegs[iST].au16[6] || pFpuCtx->aRegs[iST].au16[7])
2486 pHlp->pfnPrintf(pHlp, " res={%04RX16,%04RX16,%04RX16}\n",
2487 pFpuCtx->aRegs[iST].au16[5], pFpuCtx->aRegs[iST].au16[6], pFpuCtx->aRegs[iST].au16[7]);
2488 else
2489 pHlp->pfnPrintf(pHlp, "\n");
2490 }
2491
2492 /* XMM/YMM/ZMM registers. */
2493 if (pCtx->fXStateMask & XSAVE_C_YMM)
2494 {
2495 PCX86XSAVEYMMHI pYmmHiCtx = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_YMM_BIT, PCX86XSAVEYMMHI);
2496 if (!(pCtx->fXStateMask & XSAVE_C_ZMM_HI256))
2497 for (unsigned i = 0; i < RT_ELEMENTS(pFpuCtx->aXMM); i++)
2498 pHlp->pfnPrintf(pHlp, "%sYMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32\n",
2499 pszPrefix, i, i < 10 ? " " : "",
2500 pYmmHiCtx->aYmmHi[i].au32[3],
2501 pYmmHiCtx->aYmmHi[i].au32[2],
2502 pYmmHiCtx->aYmmHi[i].au32[1],
2503 pYmmHiCtx->aYmmHi[i].au32[0],
2504 pFpuCtx->aXMM[i].au32[3],
2505 pFpuCtx->aXMM[i].au32[2],
2506 pFpuCtx->aXMM[i].au32[1],
2507 pFpuCtx->aXMM[i].au32[0]);
2508 else
2509 {
2510 PCX86XSAVEZMMHI256 pZmmHi256 = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_ZMM_HI256_BIT, PCX86XSAVEZMMHI256);
2511 for (unsigned i = 0; i < RT_ELEMENTS(pFpuCtx->aXMM); i++)
2512 pHlp->pfnPrintf(pHlp,
2513 "%sZMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32''%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32\n",
2514 pszPrefix, i, i < 10 ? " " : "",
2515 pZmmHi256->aHi256Regs[i].au32[7],
2516 pZmmHi256->aHi256Regs[i].au32[6],
2517 pZmmHi256->aHi256Regs[i].au32[5],
2518 pZmmHi256->aHi256Regs[i].au32[4],
2519 pZmmHi256->aHi256Regs[i].au32[3],
2520 pZmmHi256->aHi256Regs[i].au32[2],
2521 pZmmHi256->aHi256Regs[i].au32[1],
2522 pZmmHi256->aHi256Regs[i].au32[0],
2523 pYmmHiCtx->aYmmHi[i].au32[3],
2524 pYmmHiCtx->aYmmHi[i].au32[2],
2525 pYmmHiCtx->aYmmHi[i].au32[1],
2526 pYmmHiCtx->aYmmHi[i].au32[0],
2527 pFpuCtx->aXMM[i].au32[3],
2528 pFpuCtx->aXMM[i].au32[2],
2529 pFpuCtx->aXMM[i].au32[1],
2530 pFpuCtx->aXMM[i].au32[0]);
2531
2532 PCX86XSAVEZMM16HI pZmm16Hi = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_ZMM_16HI_BIT, PCX86XSAVEZMM16HI);
2533 for (unsigned i = 0; i < RT_ELEMENTS(pZmm16Hi->aRegs); i++)
2534 pHlp->pfnPrintf(pHlp,
2535 "%sZMM%u=%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32''%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32\n",
2536 pszPrefix, i + 16,
2537 pZmm16Hi->aRegs[i].au32[15],
2538 pZmm16Hi->aRegs[i].au32[14],
2539 pZmm16Hi->aRegs[i].au32[13],
2540 pZmm16Hi->aRegs[i].au32[12],
2541 pZmm16Hi->aRegs[i].au32[11],
2542 pZmm16Hi->aRegs[i].au32[10],
2543 pZmm16Hi->aRegs[i].au32[9],
2544 pZmm16Hi->aRegs[i].au32[8],
2545 pZmm16Hi->aRegs[i].au32[7],
2546 pZmm16Hi->aRegs[i].au32[6],
2547 pZmm16Hi->aRegs[i].au32[5],
2548 pZmm16Hi->aRegs[i].au32[4],
2549 pZmm16Hi->aRegs[i].au32[3],
2550 pZmm16Hi->aRegs[i].au32[2],
2551 pZmm16Hi->aRegs[i].au32[1],
2552 pZmm16Hi->aRegs[i].au32[0]);
2553 }
2554 }
2555 else
2556 for (unsigned i = 0; i < RT_ELEMENTS(pFpuCtx->aXMM); i++)
2557 pHlp->pfnPrintf(pHlp,
2558 i & 1
2559 ? "%sXMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32\n"
2560 : "%sXMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32 ",
2561 pszPrefix, i, i < 10 ? " " : "",
2562 pFpuCtx->aXMM[i].au32[3],
2563 pFpuCtx->aXMM[i].au32[2],
2564 pFpuCtx->aXMM[i].au32[1],
2565 pFpuCtx->aXMM[i].au32[0]);
2566
2567 if (pCtx->fXStateMask & XSAVE_C_OPMASK)
2568 {
2569 PCX86XSAVEOPMASK pOpMask = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_OPMASK_BIT, PCX86XSAVEOPMASK);
2570 for (unsigned i = 0; i < RT_ELEMENTS(pOpMask->aKRegs); i += 4)
2571 pHlp->pfnPrintf(pHlp, "%sK%u=%016RX64 %sK%u=%016RX64 %sK%u=%016RX64 %sK%u=%016RX64\n",
2572 pszPrefix, i + 0, pOpMask->aKRegs[i + 0],
2573 pszPrefix, i + 1, pOpMask->aKRegs[i + 1],
2574 pszPrefix, i + 2, pOpMask->aKRegs[i + 2],
2575 pszPrefix, i + 3, pOpMask->aKRegs[i + 3]);
2576 }
2577
2578 if (pCtx->fXStateMask & XSAVE_C_BNDREGS)
2579 {
2580 PCX86XSAVEBNDREGS pBndRegs = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_BNDREGS_BIT, PCX86XSAVEBNDREGS);
2581 for (unsigned i = 0; i < RT_ELEMENTS(pBndRegs->aRegs); i += 2)
2582 pHlp->pfnPrintf(pHlp, "%sBNDREG%u=%016RX64/%016RX64 %sBNDREG%u=%016RX64/%016RX64\n",
2583 pszPrefix, i, pBndRegs->aRegs[i].uLowerBound, pBndRegs->aRegs[i].uUpperBound,
2584 pszPrefix, i + 1, pBndRegs->aRegs[i + 1].uLowerBound, pBndRegs->aRegs[i + 1].uUpperBound);
2585 }
2586
2587 if (pCtx->fXStateMask & XSAVE_C_BNDCSR)
2588 {
2589 PCX86XSAVEBNDCFG pBndCfg = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_BNDCSR_BIT, PCX86XSAVEBNDCFG);
2590 pHlp->pfnPrintf(pHlp, "%sBNDCFG.CONFIG=%016RX64 %sBNDCFG.STATUS=%016RX64\n",
2591 pszPrefix, pBndCfg->fConfig, pszPrefix, pBndCfg->fStatus);
2592 }
2593
2594 for (unsigned i = 0; i < RT_ELEMENTS(pFpuCtx->au32RsrvdRest); i++)
2595 if (pFpuCtx->au32RsrvdRest[i])
2596 pHlp->pfnPrintf(pHlp, "%sRsrvdRest[%u]=%RX32 (offset=%#x)\n",
2597 pszPrefix, i, pFpuCtx->au32RsrvdRest[i], RT_UOFFSETOF_DYN(X86FXSTATE, au32RsrvdRest[i]) );
2598 }
2599
2600 pHlp->pfnPrintf(pHlp,
2601 "%sEFER =%016RX64\n"
2602 "%sPAT =%016RX64\n"
2603 "%sSTAR =%016RX64\n"
2604 "%sCSTAR =%016RX64\n"
2605 "%sLSTAR =%016RX64\n"
2606 "%sSFMASK =%016RX64\n"
2607 "%sKERNELGSBASE =%016RX64\n",
2608 pszPrefix, pCtx->msrEFER,
2609 pszPrefix, pCtx->msrPAT,
2610 pszPrefix, pCtx->msrSTAR,
2611 pszPrefix, pCtx->msrCSTAR,
2612 pszPrefix, pCtx->msrLSTAR,
2613 pszPrefix, pCtx->msrSFMASK,
2614 pszPrefix, pCtx->msrKERNELGSBASE);
2615 break;
2616 }
2617}
2618
2619
2620/**
2621 * Display all cpu states and any other cpum info.
2622 *
2623 * @param pVM The cross context VM structure.
2624 * @param pHlp The info helper functions.
2625 * @param pszArgs Arguments, ignored.
2626 */
2627static DECLCALLBACK(void) cpumR3InfoAll(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2628{
2629 cpumR3InfoGuest(pVM, pHlp, pszArgs);
2630 cpumR3InfoGuestInstr(pVM, pHlp, pszArgs);
2631 cpumR3InfoGuestHwvirt(pVM, pHlp, pszArgs);
2632 cpumR3InfoHyper(pVM, pHlp, pszArgs);
2633 cpumR3InfoHost(pVM, pHlp, pszArgs);
2634}
2635
2636
2637/**
2638 * Parses the info argument.
2639 *
2640 * The argument starts with 'verbose', 'terse' or 'default' and then
2641 * continues with the comment string.
2642 *
2643 * @param pszArgs The pointer to the argument string.
2644 * @param penmType Where to store the dump type request.
2645 * @param ppszComment Where to store the pointer to the comment string.
2646 */
2647static void cpumR3InfoParseArg(const char *pszArgs, CPUMDUMPTYPE *penmType, const char **ppszComment)
2648{
2649 if (!pszArgs)
2650 {
2651 *penmType = CPUMDUMPTYPE_DEFAULT;
2652 *ppszComment = "";
2653 }
2654 else
2655 {
2656 if (!strncmp(pszArgs, RT_STR_TUPLE("verbose")))
2657 {
2658 pszArgs += 7;
2659 *penmType = CPUMDUMPTYPE_VERBOSE;
2660 }
2661 else if (!strncmp(pszArgs, RT_STR_TUPLE("terse")))
2662 {
2663 pszArgs += 5;
2664 *penmType = CPUMDUMPTYPE_TERSE;
2665 }
2666 else if (!strncmp(pszArgs, RT_STR_TUPLE("default")))
2667 {
2668 pszArgs += 7;
2669 *penmType = CPUMDUMPTYPE_DEFAULT;
2670 }
2671 else
2672 *penmType = CPUMDUMPTYPE_DEFAULT;
2673 *ppszComment = RTStrStripL(pszArgs);
2674 }
2675}
2676
2677
2678/**
2679 * Display the guest cpu state.
2680 *
2681 * @param pVM The cross context VM structure.
2682 * @param pHlp The info helper functions.
2683 * @param pszArgs Arguments.
2684 */
2685static DECLCALLBACK(void) cpumR3InfoGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2686{
2687 CPUMDUMPTYPE enmType;
2688 const char *pszComment;
2689 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
2690
2691 PVMCPU pVCpu = VMMGetCpu(pVM);
2692 if (!pVCpu)
2693 pVCpu = &pVM->aCpus[0];
2694
2695 pHlp->pfnPrintf(pHlp, "Guest CPUM (VCPU %d) state: %s\n", pVCpu->idCpu, pszComment);
2696
2697 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
2698 cpumR3InfoOne(pVM, pCtx, CPUMCTX2CORE(pCtx), pHlp, enmType, "");
2699}
2700
2701
2702/**
2703 * Displays an SVM VMCB control area.
2704 *
2705 * @param pHlp The info helper functions.
2706 * @param pVmcbCtrl Pointer to a SVM VMCB controls area.
2707 * @param pszPrefix Caller specified string prefix.
2708 */
2709static void cpumR3InfoSvmVmcbCtrl(PCDBGFINFOHLP pHlp, PCSVMVMCBCTRL pVmcbCtrl, const char *pszPrefix)
2710{
2711 AssertReturnVoid(pHlp);
2712 AssertReturnVoid(pVmcbCtrl);
2713
2714 pHlp->pfnPrintf(pHlp, "%su16InterceptRdCRx = %#RX16\n", pszPrefix, pVmcbCtrl->u16InterceptRdCRx);
2715 pHlp->pfnPrintf(pHlp, "%su16InterceptWrCRx = %#RX16\n", pszPrefix, pVmcbCtrl->u16InterceptWrCRx);
2716 pHlp->pfnPrintf(pHlp, "%su16InterceptRdDRx = %#RX16\n", pszPrefix, pVmcbCtrl->u16InterceptRdDRx);
2717 pHlp->pfnPrintf(pHlp, "%su16InterceptWrDRx = %#RX16\n", pszPrefix, pVmcbCtrl->u16InterceptWrDRx);
2718 pHlp->pfnPrintf(pHlp, "%su32InterceptXcpt = %#RX32\n", pszPrefix, pVmcbCtrl->u32InterceptXcpt);
2719 pHlp->pfnPrintf(pHlp, "%su64InterceptCtrl = %#RX64\n", pszPrefix, pVmcbCtrl->u64InterceptCtrl);
2720 pHlp->pfnPrintf(pHlp, "%su16PauseFilterThreshold = %#RX16\n", pszPrefix, pVmcbCtrl->u16PauseFilterThreshold);
2721 pHlp->pfnPrintf(pHlp, "%su16PauseFilterCount = %#RX16\n", pszPrefix, pVmcbCtrl->u16PauseFilterCount);
2722 pHlp->pfnPrintf(pHlp, "%su64IOPMPhysAddr = %#RX64\n", pszPrefix, pVmcbCtrl->u64IOPMPhysAddr);
2723 pHlp->pfnPrintf(pHlp, "%su64MSRPMPhysAddr = %#RX64\n", pszPrefix, pVmcbCtrl->u64MSRPMPhysAddr);
2724 pHlp->pfnPrintf(pHlp, "%su64TSCOffset = %#RX64\n", pszPrefix, pVmcbCtrl->u64TSCOffset);
2725 pHlp->pfnPrintf(pHlp, "%sTLBCtrl\n", pszPrefix);
2726 pHlp->pfnPrintf(pHlp, "%s u32ASID = %#RX32\n", pszPrefix, pVmcbCtrl->TLBCtrl.n.u32ASID);
2727 pHlp->pfnPrintf(pHlp, "%s u8TLBFlush = %u\n", pszPrefix, pVmcbCtrl->TLBCtrl.n.u8TLBFlush);
2728 pHlp->pfnPrintf(pHlp, "%sIntCtrl\n", pszPrefix);
2729 pHlp->pfnPrintf(pHlp, "%s u8VTPR = %#RX8 (%u)\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u8VTPR, pVmcbCtrl->IntCtrl.n.u8VTPR);
2730 pHlp->pfnPrintf(pHlp, "%s u1VIrqPending = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1VIrqPending);
2731 pHlp->pfnPrintf(pHlp, "%s u1VGif = %u\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1VGif);
2732 pHlp->pfnPrintf(pHlp, "%s u4VIntrPrio = %#RX8\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u4VIntrPrio);
2733 pHlp->pfnPrintf(pHlp, "%s u1IgnoreTPR = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1IgnoreTPR);
2734 pHlp->pfnPrintf(pHlp, "%s u1VIntrMasking = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1VIntrMasking);
2735 pHlp->pfnPrintf(pHlp, "%s u1VGifEnable = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1VGifEnable);
2736 pHlp->pfnPrintf(pHlp, "%s u1AvicEnable = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1AvicEnable);
2737 pHlp->pfnPrintf(pHlp, "%s u8VIntrVector = %#RX8\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u8VIntrVector);
2738 pHlp->pfnPrintf(pHlp, "%sIntShadow\n", pszPrefix);
2739 pHlp->pfnPrintf(pHlp, "%s u1IntShadow = %RTbool\n", pszPrefix, pVmcbCtrl->IntShadow.n.u1IntShadow);
2740 pHlp->pfnPrintf(pHlp, "%s u1GuestIntMask = %RTbool\n", pszPrefix, pVmcbCtrl->IntShadow.n.u1GuestIntMask);
2741 pHlp->pfnPrintf(pHlp, "%su64ExitCode = %#RX64\n", pszPrefix, pVmcbCtrl->u64ExitCode);
2742 pHlp->pfnPrintf(pHlp, "%su64ExitInfo1 = %#RX64\n", pszPrefix, pVmcbCtrl->u64ExitInfo1);
2743 pHlp->pfnPrintf(pHlp, "%su64ExitInfo2 = %#RX64\n", pszPrefix, pVmcbCtrl->u64ExitInfo2);
2744 pHlp->pfnPrintf(pHlp, "%sExitIntInfo\n", pszPrefix);
2745 pHlp->pfnPrintf(pHlp, "%s u8Vector = %#RX8 (%u)\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u8Vector, pVmcbCtrl->ExitIntInfo.n.u8Vector);
2746 pHlp->pfnPrintf(pHlp, "%s u3Type = %u\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u3Type);
2747 pHlp->pfnPrintf(pHlp, "%s u1ErrorCodeValid = %RTbool\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u1ErrorCodeValid);
2748 pHlp->pfnPrintf(pHlp, "%s u1Valid = %RTbool\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u1Valid);
2749 pHlp->pfnPrintf(pHlp, "%s u32ErrorCode = %#RX32\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u32ErrorCode);
2750 pHlp->pfnPrintf(pHlp, "%sNestedPaging and SEV\n", pszPrefix);
2751 pHlp->pfnPrintf(pHlp, "%s u1NestedPaging = %RTbool\n", pszPrefix, pVmcbCtrl->NestedPagingCtrl.n.u1NestedPaging);
2752 pHlp->pfnPrintf(pHlp, "%s u1Sev = %RTbool\n", pszPrefix, pVmcbCtrl->NestedPagingCtrl.n.u1Sev);
2753 pHlp->pfnPrintf(pHlp, "%s u1SevEs = %RTbool\n", pszPrefix, pVmcbCtrl->NestedPagingCtrl.n.u1SevEs);
2754 pHlp->pfnPrintf(pHlp, "%sAvicBar\n", pszPrefix);
2755 pHlp->pfnPrintf(pHlp, "%s u40Addr = %#RX64\n", pszPrefix, pVmcbCtrl->AvicBar.n.u40Addr);
2756 pHlp->pfnPrintf(pHlp, "%sEventInject\n", pszPrefix);
2757 pHlp->pfnPrintf(pHlp, "%s EventInject\n", pszPrefix);
2758 pHlp->pfnPrintf(pHlp, "%s u8Vector = %#RX32 (%u)\n", pszPrefix, pVmcbCtrl->EventInject.n.u8Vector, pVmcbCtrl->EventInject.n.u8Vector);
2759 pHlp->pfnPrintf(pHlp, "%s u3Type = %u\n", pszPrefix, pVmcbCtrl->EventInject.n.u3Type);
2760 pHlp->pfnPrintf(pHlp, "%s u1ErrorCodeValid = %RTbool\n", pszPrefix, pVmcbCtrl->EventInject.n.u1ErrorCodeValid);
2761 pHlp->pfnPrintf(pHlp, "%s u1Valid = %RTbool\n", pszPrefix, pVmcbCtrl->EventInject.n.u1Valid);
2762 pHlp->pfnPrintf(pHlp, "%s u32ErrorCode = %#RX32\n", pszPrefix, pVmcbCtrl->EventInject.n.u32ErrorCode);
2763 pHlp->pfnPrintf(pHlp, "%su64NestedPagingCR3 = %#RX64\n", pszPrefix, pVmcbCtrl->u64NestedPagingCR3);
2764 pHlp->pfnPrintf(pHlp, "%sLBR virtualization\n", pszPrefix);
2765 pHlp->pfnPrintf(pHlp, "%s u1LbrVirt = %RTbool\n", pszPrefix, pVmcbCtrl->LbrVirt.n.u1LbrVirt);
2766 pHlp->pfnPrintf(pHlp, "%s u1VirtVmsaveVmload = %RTbool\n", pszPrefix, pVmcbCtrl->LbrVirt.n.u1VirtVmsaveVmload);
2767 pHlp->pfnPrintf(pHlp, "%su32VmcbCleanBits = %#RX32\n", pszPrefix, pVmcbCtrl->u32VmcbCleanBits);
2768 pHlp->pfnPrintf(pHlp, "%su64NextRIP = %#RX64\n", pszPrefix, pVmcbCtrl->u64NextRIP);
2769 pHlp->pfnPrintf(pHlp, "%scbInstrFetched = %u\n", pszPrefix, pVmcbCtrl->cbInstrFetched);
2770 pHlp->pfnPrintf(pHlp, "%sabInstr = %.*Rhxs\n", pszPrefix, sizeof(pVmcbCtrl->abInstr), pVmcbCtrl->abInstr);
2771 pHlp->pfnPrintf(pHlp, "%sAvicBackingPagePtr\n", pszPrefix);
2772 pHlp->pfnPrintf(pHlp, "%s u40Addr = %#RX64\n", pszPrefix, pVmcbCtrl->AvicBackingPagePtr.n.u40Addr);
2773 pHlp->pfnPrintf(pHlp, "%sAvicLogicalTablePtr\n", pszPrefix);
2774 pHlp->pfnPrintf(pHlp, "%s u40Addr = %#RX64\n", pszPrefix, pVmcbCtrl->AvicLogicalTablePtr.n.u40Addr);
2775 pHlp->pfnPrintf(pHlp, "%sAvicPhysicalTablePtr\n", pszPrefix);
2776 pHlp->pfnPrintf(pHlp, "%s u8LastGuestCoreId = %u\n", pszPrefix, pVmcbCtrl->AvicPhysicalTablePtr.n.u8LastGuestCoreId);
2777 pHlp->pfnPrintf(pHlp, "%s u40Addr = %#RX64\n", pszPrefix, pVmcbCtrl->AvicPhysicalTablePtr.n.u40Addr);
2778}
2779
2780
2781/**
2782 * Helper for dumping the SVM VMCB selector registers.
2783 *
2784 * @param pHlp The info helper functions.
2785 * @param pSel Pointer to the SVM selector register.
2786 * @param pszName Name of the selector.
2787 * @param pszPrefix Caller specified string prefix.
2788 */
2789DECLINLINE(void) cpumR3InfoSvmVmcbSelReg(PCDBGFINFOHLP pHlp, PCSVMSELREG pSel, const char *pszName, const char *pszPrefix)
2790{
2791 /* The string width of 4 used below is to handle 'LDTR'. Change later if longer register names are used. */
2792 pHlp->pfnPrintf(pHlp, "%s%-4s = {%04x base=%016RX64 limit=%08x flags=%04x}\n", pszPrefix,
2793 pszName, pSel->u16Sel, pSel->u64Base, pSel->u32Limit, pSel->u16Attr);
2794}
2795
2796
2797/**
2798 * Helper for dumping the SVM VMCB GDTR/IDTR registers.
2799 *
2800 * @param pHlp The info helper functions.
2801 * @param pXdtr Pointer to the descriptor table register.
2802 * @param pszName Name of the descriptor table register.
2803 * @param pszPrefix Caller specified string prefix.
2804 */
2805DECLINLINE(void) cpumR3InfoSvmVmcbXdtr(PCDBGFINFOHLP pHlp, PCSVMXDTR pXdtr, const char *pszName, const char *pszPrefix)
2806{
2807 /* The string width of 4 used below is to cover 'GDTR', 'IDTR'. Change later if longer register names are used. */
2808 pHlp->pfnPrintf(pHlp, "%s%-4s = %016RX64:%04x\n", pszPrefix, pszName, pXdtr->u64Base, pXdtr->u32Limit);
2809}
2810
2811
2812/**
2813 * Displays an SVM VMCB state-save area.
2814 *
2815 * @param pHlp The info helper functions.
2816 * @param pVmcbStateSave Pointer to a SVM VMCB controls area.
2817 * @param pszPrefix Caller specified string prefix.
2818 */
2819static void cpumR3InfoSvmVmcbStateSave(PCDBGFINFOHLP pHlp, PCSVMVMCBSTATESAVE pVmcbStateSave, const char *pszPrefix)
2820{
2821 AssertReturnVoid(pHlp);
2822 AssertReturnVoid(pVmcbStateSave);
2823
2824 char szEFlags[80];
2825 cpumR3InfoFormatFlags(&szEFlags[0], pVmcbStateSave->u64RFlags);
2826
2827 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->CS, "CS", pszPrefix);
2828 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->SS, "SS", pszPrefix);
2829 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->ES, "ES", pszPrefix);
2830 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->DS, "DS", pszPrefix);
2831 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->FS, "FS", pszPrefix);
2832 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->GS, "GS", pszPrefix);
2833 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->LDTR, "LDTR", pszPrefix);
2834 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->TR, "TR", pszPrefix);
2835 cpumR3InfoSvmVmcbXdtr(pHlp, &pVmcbStateSave->GDTR, "GDTR", pszPrefix);
2836 cpumR3InfoSvmVmcbXdtr(pHlp, &pVmcbStateSave->IDTR, "IDTR", pszPrefix);
2837 pHlp->pfnPrintf(pHlp, "%su8CPL = %u\n", pszPrefix, pVmcbStateSave->u8CPL);
2838 pHlp->pfnPrintf(pHlp, "%su64EFER = %#RX64\n", pszPrefix, pVmcbStateSave->u64EFER);
2839 pHlp->pfnPrintf(pHlp, "%su64CR4 = %#RX64\n", pszPrefix, pVmcbStateSave->u64CR4);
2840 pHlp->pfnPrintf(pHlp, "%su64CR3 = %#RX64\n", pszPrefix, pVmcbStateSave->u64CR3);
2841 pHlp->pfnPrintf(pHlp, "%su64CR0 = %#RX64\n", pszPrefix, pVmcbStateSave->u64CR0);
2842 pHlp->pfnPrintf(pHlp, "%su64DR7 = %#RX64\n", pszPrefix, pVmcbStateSave->u64DR7);
2843 pHlp->pfnPrintf(pHlp, "%su64DR6 = %#RX64\n", pszPrefix, pVmcbStateSave->u64DR6);
2844 pHlp->pfnPrintf(pHlp, "%su64RFlags = %#RX64 %31s\n", pszPrefix, pVmcbStateSave->u64RFlags, szEFlags);
2845 pHlp->pfnPrintf(pHlp, "%su64RIP = %#RX64\n", pszPrefix, pVmcbStateSave->u64RIP);
2846 pHlp->pfnPrintf(pHlp, "%su64RSP = %#RX64\n", pszPrefix, pVmcbStateSave->u64RSP);
2847 pHlp->pfnPrintf(pHlp, "%su64RAX = %#RX64\n", pszPrefix, pVmcbStateSave->u64RAX);
2848 pHlp->pfnPrintf(pHlp, "%su64STAR = %#RX64\n", pszPrefix, pVmcbStateSave->u64STAR);
2849 pHlp->pfnPrintf(pHlp, "%su64LSTAR = %#RX64\n", pszPrefix, pVmcbStateSave->u64LSTAR);
2850 pHlp->pfnPrintf(pHlp, "%su64CSTAR = %#RX64\n", pszPrefix, pVmcbStateSave->u64CSTAR);
2851 pHlp->pfnPrintf(pHlp, "%su64SFMASK = %#RX64\n", pszPrefix, pVmcbStateSave->u64SFMASK);
2852 pHlp->pfnPrintf(pHlp, "%su64KernelGSBase = %#RX64\n", pszPrefix, pVmcbStateSave->u64KernelGSBase);
2853 pHlp->pfnPrintf(pHlp, "%su64SysEnterCS = %#RX64\n", pszPrefix, pVmcbStateSave->u64SysEnterCS);
2854 pHlp->pfnPrintf(pHlp, "%su64SysEnterEIP = %#RX64\n", pszPrefix, pVmcbStateSave->u64SysEnterEIP);
2855 pHlp->pfnPrintf(pHlp, "%su64SysEnterESP = %#RX64\n", pszPrefix, pVmcbStateSave->u64SysEnterESP);
2856 pHlp->pfnPrintf(pHlp, "%su64CR2 = %#RX64\n", pszPrefix, pVmcbStateSave->u64CR2);
2857 pHlp->pfnPrintf(pHlp, "%su64PAT = %#RX64\n", pszPrefix, pVmcbStateSave->u64PAT);
2858 pHlp->pfnPrintf(pHlp, "%su64DBGCTL = %#RX64\n", pszPrefix, pVmcbStateSave->u64DBGCTL);
2859 pHlp->pfnPrintf(pHlp, "%su64BR_FROM = %#RX64\n", pszPrefix, pVmcbStateSave->u64BR_FROM);
2860 pHlp->pfnPrintf(pHlp, "%su64BR_TO = %#RX64\n", pszPrefix, pVmcbStateSave->u64BR_TO);
2861 pHlp->pfnPrintf(pHlp, "%su64LASTEXCPFROM = %#RX64\n", pszPrefix, pVmcbStateSave->u64LASTEXCPFROM);
2862 pHlp->pfnPrintf(pHlp, "%su64LASTEXCPTO = %#RX64\n", pszPrefix, pVmcbStateSave->u64LASTEXCPTO);
2863}
2864
2865
2866/**
2867 * Display the guest's hardware-virtualization cpu state.
2868 *
2869 * @param pVM The cross context VM structure.
2870 * @param pHlp The info helper functions.
2871 * @param pszArgs Arguments, ignored.
2872 */
2873static DECLCALLBACK(void) cpumR3InfoGuestHwvirt(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2874{
2875 RT_NOREF(pszArgs);
2876
2877 PVMCPU pVCpu = VMMGetCpu(pVM);
2878 if (!pVCpu)
2879 pVCpu = &pVM->aCpus[0];
2880
2881 /*
2882 * Figure out what to dump.
2883 *
2884 * In the future we may need to dump everything whether or not we're actively in nested-guest mode
2885 * or not, hence the reason why we use a mask to determine what needs dumping. Currently, we only
2886 * dump hwvirt. state when the guest CPU is executing a nested-guest.
2887 */
2888 /** @todo perhaps make this configurable through pszArgs, depending on how much
2889 * noise we wish to accept when nested hwvirt. isn't used. */
2890#define CPUMHWVIRTDUMP_NONE (0)
2891#define CPUMHWVIRTDUMP_SVM RT_BIT(0)
2892#define CPUMHWVIRTDUMP_VMX RT_BIT(1)
2893#define CPUMHWVIRTDUMP_COMMON RT_BIT(2)
2894#define CPUMHWVIRTDUMP_LAST CPUMHWVIRTDUMP_VMX
2895
2896 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
2897 static const char *const s_aHwvirtModes[] = { "No/inactive", "SVM", "VMX", "Common" };
2898 bool const fSvm = pVM->cpum.ro.GuestFeatures.fSvm;
2899 bool const fVmx = pVM->cpum.ro.GuestFeatures.fVmx;
2900 uint8_t const idxHwvirtState = fSvm ? CPUMHWVIRTDUMP_SVM : (fVmx ? CPUMHWVIRTDUMP_VMX : CPUMHWVIRTDUMP_NONE);
2901 AssertCompile(CPUMHWVIRTDUMP_LAST <= RT_ELEMENTS(s_aHwvirtModes));
2902 Assert(idxHwvirtState < RT_ELEMENTS(s_aHwvirtModes));
2903 const char *pcszHwvirtMode = s_aHwvirtModes[idxHwvirtState];
2904 uint32_t fDumpState = idxHwvirtState | CPUMHWVIRTDUMP_COMMON;
2905
2906 /*
2907 * Dump it.
2908 */
2909 pHlp->pfnPrintf(pHlp, "VCPU[%u] hardware virtualization state:\n", pVCpu->idCpu);
2910
2911 if (fDumpState & CPUMHWVIRTDUMP_COMMON)
2912 pHlp->pfnPrintf(pHlp, "fLocalForcedActions = %#RX32\n", pCtx->hwvirt.fLocalForcedActions);
2913
2914 pHlp->pfnPrintf(pHlp, "%s hwvirt state%s\n", pcszHwvirtMode, (fDumpState & (CPUMHWVIRTDUMP_SVM | CPUMHWVIRTDUMP_VMX)) ?
2915 ":" : "");
2916 if (fDumpState & CPUMHWVIRTDUMP_SVM)
2917 {
2918 pHlp->pfnPrintf(pHlp, " fGif = %RTbool\n", pCtx->hwvirt.fGif);
2919
2920 char szEFlags[80];
2921 cpumR3InfoFormatFlags(&szEFlags[0], pCtx->hwvirt.svm.HostState.rflags.u);
2922 pHlp->pfnPrintf(pHlp, " uMsrHSavePa = %#RX64\n", pCtx->hwvirt.svm.uMsrHSavePa);
2923 pHlp->pfnPrintf(pHlp, " GCPhysVmcb = %#RGp\n", pCtx->hwvirt.svm.GCPhysVmcb);
2924 pHlp->pfnPrintf(pHlp, " VmcbCtrl:\n");
2925 cpumR3InfoSvmVmcbCtrl(pHlp, &pCtx->hwvirt.svm.pVmcbR3->ctrl, " " /* pszPrefix */);
2926 pHlp->pfnPrintf(pHlp, " VmcbStateSave:\n");
2927 cpumR3InfoSvmVmcbStateSave(pHlp, &pCtx->hwvirt.svm.pVmcbR3->guest, " " /* pszPrefix */);
2928 pHlp->pfnPrintf(pHlp, " HostState:\n");
2929 pHlp->pfnPrintf(pHlp, " uEferMsr = %#RX64\n", pCtx->hwvirt.svm.HostState.uEferMsr);
2930 pHlp->pfnPrintf(pHlp, " uCr0 = %#RX64\n", pCtx->hwvirt.svm.HostState.uCr0);
2931 pHlp->pfnPrintf(pHlp, " uCr4 = %#RX64\n", pCtx->hwvirt.svm.HostState.uCr4);
2932 pHlp->pfnPrintf(pHlp, " uCr3 = %#RX64\n", pCtx->hwvirt.svm.HostState.uCr3);
2933 pHlp->pfnPrintf(pHlp, " uRip = %#RX64\n", pCtx->hwvirt.svm.HostState.uRip);
2934 pHlp->pfnPrintf(pHlp, " uRsp = %#RX64\n", pCtx->hwvirt.svm.HostState.uRsp);
2935 pHlp->pfnPrintf(pHlp, " uRax = %#RX64\n", pCtx->hwvirt.svm.HostState.uRax);
2936 pHlp->pfnPrintf(pHlp, " rflags = %#RX64 %31s\n", pCtx->hwvirt.svm.HostState.rflags.u64, szEFlags);
2937 PCPUMSELREG pSel = &pCtx->hwvirt.svm.HostState.es;
2938 pHlp->pfnPrintf(pHlp, " es = {%04x base=%016RX64 limit=%08x flags=%08x}\n",
2939 pSel->Sel, pSel->u64Base, pSel->u32Limit, pSel->Attr.u);
2940 pSel = &pCtx->hwvirt.svm.HostState.cs;
2941 pHlp->pfnPrintf(pHlp, " cs = {%04x base=%016RX64 limit=%08x flags=%08x}\n",
2942 pSel->Sel, pSel->u64Base, pSel->u32Limit, pSel->Attr.u);
2943 pSel = &pCtx->hwvirt.svm.HostState.ss;
2944 pHlp->pfnPrintf(pHlp, " ss = {%04x base=%016RX64 limit=%08x flags=%08x}\n",
2945 pSel->Sel, pSel->u64Base, pSel->u32Limit, pSel->Attr.u);
2946 pSel = &pCtx->hwvirt.svm.HostState.ds;
2947 pHlp->pfnPrintf(pHlp, " ds = {%04x base=%016RX64 limit=%08x flags=%08x}\n",
2948 pSel->Sel, pSel->u64Base, pSel->u32Limit, pSel->Attr.u);
2949 pHlp->pfnPrintf(pHlp, " gdtr = %016RX64:%04x\n", pCtx->hwvirt.svm.HostState.gdtr.pGdt,
2950 pCtx->hwvirt.svm.HostState.gdtr.cbGdt);
2951 pHlp->pfnPrintf(pHlp, " idtr = %016RX64:%04x\n", pCtx->hwvirt.svm.HostState.idtr.pIdt,
2952 pCtx->hwvirt.svm.HostState.idtr.cbIdt);
2953 pHlp->pfnPrintf(pHlp, " cPauseFilter = %RU16\n", pCtx->hwvirt.svm.cPauseFilter);
2954 pHlp->pfnPrintf(pHlp, " cPauseFilterThreshold = %RU32\n", pCtx->hwvirt.svm.cPauseFilterThreshold);
2955 pHlp->pfnPrintf(pHlp, " fInterceptEvents = %u\n", pCtx->hwvirt.svm.fInterceptEvents);
2956 pHlp->pfnPrintf(pHlp, " pvMsrBitmapR3 = %p\n", pCtx->hwvirt.svm.pvMsrBitmapR3);
2957 pHlp->pfnPrintf(pHlp, " pvMsrBitmapR0 = %RKv\n", pCtx->hwvirt.svm.pvMsrBitmapR0);
2958 pHlp->pfnPrintf(pHlp, " pvIoBitmapR3 = %p\n", pCtx->hwvirt.svm.pvIoBitmapR3);
2959 pHlp->pfnPrintf(pHlp, " pvIoBitmapR0 = %RKv\n", pCtx->hwvirt.svm.pvIoBitmapR0);
2960 }
2961
2962 if (fDumpState & CPUMHWVIRTDUMP_VMX)
2963 {
2964 pHlp->pfnPrintf(pHlp, " fInVmxRootMode = %RTbool\n", pCtx->hwvirt.vmx.fInVmxRootMode);
2965 pHlp->pfnPrintf(pHlp, " fInVmxNonRootMode = %RTbool\n", pCtx->hwvirt.vmx.fInVmxNonRootMode);
2966 pHlp->pfnPrintf(pHlp, " GCPhysVmxon = %#RGp\n", pCtx->hwvirt.vmx.GCPhysVmxon);
2967 pHlp->pfnPrintf(pHlp, " GCPhysVmcs = %#RGp\n", pCtx->hwvirt.vmx.GCPhysVmcs);
2968 pHlp->pfnPrintf(pHlp, " enmInstrDiag = %u (%s)\n", pCtx->hwvirt.vmx.enmInstrDiag,
2969 HMVmxGetInstrDiagDesc(pCtx->hwvirt.vmx.enmInstrDiag));
2970 /** @todo NSTVMX: Dump remaining/new fields. */
2971 }
2972
2973#undef CPUMHWVIRTDUMP_NONE
2974#undef CPUMHWVIRTDUMP_COMMON
2975#undef CPUMHWVIRTDUMP_SVM
2976#undef CPUMHWVIRTDUMP_VMX
2977#undef CPUMHWVIRTDUMP_LAST
2978#undef CPUMHWVIRTDUMP_ALL
2979}
2980
2981/**
2982 * Display the current guest instruction
2983 *
2984 * @param pVM The cross context VM structure.
2985 * @param pHlp The info helper functions.
2986 * @param pszArgs Arguments, ignored.
2987 */
2988static DECLCALLBACK(void) cpumR3InfoGuestInstr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2989{
2990 NOREF(pszArgs);
2991
2992 PVMCPU pVCpu = VMMGetCpu(pVM);
2993 if (!pVCpu)
2994 pVCpu = &pVM->aCpus[0];
2995
2996 char szInstruction[256];
2997 szInstruction[0] = '\0';
2998 DBGFR3DisasInstrCurrent(pVCpu, szInstruction, sizeof(szInstruction));
2999 pHlp->pfnPrintf(pHlp, "\nCPUM%u: %s\n\n", pVCpu->idCpu, szInstruction);
3000}
3001
3002
3003/**
3004 * Display the hypervisor cpu state.
3005 *
3006 * @param pVM The cross context VM structure.
3007 * @param pHlp The info helper functions.
3008 * @param pszArgs Arguments, ignored.
3009 */
3010static DECLCALLBACK(void) cpumR3InfoHyper(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3011{
3012 PVMCPU pVCpu = VMMGetCpu(pVM);
3013 if (!pVCpu)
3014 pVCpu = &pVM->aCpus[0];
3015
3016 CPUMDUMPTYPE enmType;
3017 const char *pszComment;
3018 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
3019 pHlp->pfnPrintf(pHlp, "Hypervisor CPUM state: %s\n", pszComment);
3020 cpumR3InfoOne(pVM, &pVCpu->cpum.s.Hyper, CPUMCTX2CORE(&pVCpu->cpum.s.Hyper), pHlp, enmType, ".");
3021 pHlp->pfnPrintf(pHlp, "CR4OrMask=%#x CR4AndMask=%#x\n", pVM->cpum.s.CR4.OrMask, pVM->cpum.s.CR4.AndMask);
3022}
3023
3024
3025/**
3026 * Display the host cpu state.
3027 *
3028 * @param pVM The cross context VM structure.
3029 * @param pHlp The info helper functions.
3030 * @param pszArgs Arguments, ignored.
3031 */
3032static DECLCALLBACK(void) cpumR3InfoHost(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3033{
3034 CPUMDUMPTYPE enmType;
3035 const char *pszComment;
3036 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
3037 pHlp->pfnPrintf(pHlp, "Host CPUM state: %s\n", pszComment);
3038
3039 PVMCPU pVCpu = VMMGetCpu(pVM);
3040 if (!pVCpu)
3041 pVCpu = &pVM->aCpus[0];
3042 PCPUMHOSTCTX pCtx = &pVCpu->cpum.s.Host;
3043
3044 /*
3045 * Format the EFLAGS.
3046 */
3047#if HC_ARCH_BITS == 32
3048 uint32_t efl = pCtx->eflags.u32;
3049#else
3050 uint64_t efl = pCtx->rflags;
3051#endif
3052 char szEFlags[80];
3053 cpumR3InfoFormatFlags(&szEFlags[0], efl);
3054
3055 /*
3056 * Format the registers.
3057 */
3058#if HC_ARCH_BITS == 32
3059 pHlp->pfnPrintf(pHlp,
3060 "eax=xxxxxxxx ebx=%08x ecx=xxxxxxxx edx=xxxxxxxx esi=%08x edi=%08x\n"
3061 "eip=xxxxxxxx esp=%08x ebp=%08x iopl=%d %31s\n"
3062 "cs=%04x ds=%04x es=%04x fs=%04x gs=%04x eflags=%08x\n"
3063 "cr0=%08RX64 cr2=xxxxxxxx cr3=%08RX64 cr4=%08RX64 gdtr=%08x:%04x ldtr=%04x\n"
3064 "dr[0]=%08RX64 dr[1]=%08RX64x dr[2]=%08RX64 dr[3]=%08RX64x dr[6]=%08RX64 dr[7]=%08RX64\n"
3065 "SysEnter={cs=%04x eip=%08x esp=%08x}\n"
3066 ,
3067 /*pCtx->eax,*/ pCtx->ebx, /*pCtx->ecx, pCtx->edx,*/ pCtx->esi, pCtx->edi,
3068 /*pCtx->eip,*/ pCtx->esp, pCtx->ebp, X86_EFL_GET_IOPL(efl), szEFlags,
3069 pCtx->cs, pCtx->ds, pCtx->es, pCtx->fs, pCtx->gs, efl,
3070 pCtx->cr0, /*pCtx->cr2,*/ pCtx->cr3, pCtx->cr4,
3071 pCtx->dr0, pCtx->dr1, pCtx->dr2, pCtx->dr3, pCtx->dr6, pCtx->dr7,
3072 (uint32_t)pCtx->gdtr.uAddr, pCtx->gdtr.cb, pCtx->ldtr,
3073 pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
3074#else
3075 pHlp->pfnPrintf(pHlp,
3076 "rax=xxxxxxxxxxxxxxxx rbx=%016RX64 rcx=xxxxxxxxxxxxxxxx\n"
3077 "rdx=xxxxxxxxxxxxxxxx rsi=%016RX64 rdi=%016RX64\n"
3078 "rip=xxxxxxxxxxxxxxxx rsp=%016RX64 rbp=%016RX64\n"
3079 " r8=xxxxxxxxxxxxxxxx r9=xxxxxxxxxxxxxxxx r10=%016RX64\n"
3080 "r11=%016RX64 r12=%016RX64 r13=%016RX64\n"
3081 "r14=%016RX64 r15=%016RX64\n"
3082 "iopl=%d %31s\n"
3083 "cs=%04x ds=%04x es=%04x fs=%04x gs=%04x eflags=%08RX64\n"
3084 "cr0=%016RX64 cr2=xxxxxxxxxxxxxxxx cr3=%016RX64\n"
3085 "cr4=%016RX64 ldtr=%04x tr=%04x\n"
3086 "dr[0]=%016RX64 dr[1]=%016RX64 dr[2]=%016RX64\n"
3087 "dr[3]=%016RX64 dr[6]=%016RX64 dr[7]=%016RX64\n"
3088 "gdtr=%016RX64:%04x idtr=%016RX64:%04x\n"
3089 "SysEnter={cs=%04x eip=%08x esp=%08x}\n"
3090 "FSbase=%016RX64 GSbase=%016RX64 efer=%08RX64\n"
3091 ,
3092 /*pCtx->rax,*/ pCtx->rbx, /*pCtx->rcx,
3093 pCtx->rdx,*/ pCtx->rsi, pCtx->rdi,
3094 /*pCtx->rip,*/ pCtx->rsp, pCtx->rbp,
3095 /*pCtx->r8, pCtx->r9,*/ pCtx->r10,
3096 pCtx->r11, pCtx->r12, pCtx->r13,
3097 pCtx->r14, pCtx->r15,
3098 X86_EFL_GET_IOPL(efl), szEFlags,
3099 pCtx->cs, pCtx->ds, pCtx->es, pCtx->fs, pCtx->gs, efl,
3100 pCtx->cr0, /*pCtx->cr2,*/ pCtx->cr3,
3101 pCtx->cr4, pCtx->ldtr, pCtx->tr,
3102 pCtx->dr0, pCtx->dr1, pCtx->dr2,
3103 pCtx->dr3, pCtx->dr6, pCtx->dr7,
3104 pCtx->gdtr.uAddr, pCtx->gdtr.cb, pCtx->idtr.uAddr, pCtx->idtr.cb,
3105 pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp,
3106 pCtx->FSbase, pCtx->GSbase, pCtx->efer);
3107#endif
3108}
3109
3110/**
3111 * Structure used when disassembling and instructions in DBGF.
3112 * This is used so the reader function can get the stuff it needs.
3113 */
3114typedef struct CPUMDISASSTATE
3115{
3116 /** Pointer to the CPU structure. */
3117 PDISCPUSTATE pCpu;
3118 /** Pointer to the VM. */
3119 PVM pVM;
3120 /** Pointer to the VMCPU. */
3121 PVMCPU pVCpu;
3122 /** Pointer to the first byte in the segment. */
3123 RTGCUINTPTR GCPtrSegBase;
3124 /** Pointer to the byte after the end of the segment. (might have wrapped!) */
3125 RTGCUINTPTR GCPtrSegEnd;
3126 /** The size of the segment minus 1. */
3127 RTGCUINTPTR cbSegLimit;
3128 /** Pointer to the current page - R3 Ptr. */
3129 void const *pvPageR3;
3130 /** Pointer to the current page - GC Ptr. */
3131 RTGCPTR pvPageGC;
3132 /** The lock information that PGMPhysReleasePageMappingLock needs. */
3133 PGMPAGEMAPLOCK PageMapLock;
3134 /** Whether the PageMapLock is valid or not. */
3135 bool fLocked;
3136 /** 64 bits mode or not. */
3137 bool f64Bits;
3138} CPUMDISASSTATE, *PCPUMDISASSTATE;
3139
3140
3141/**
3142 * @callback_method_impl{FNDISREADBYTES}
3143 */
3144static DECLCALLBACK(int) cpumR3DisasInstrRead(PDISCPUSTATE pDis, uint8_t offInstr, uint8_t cbMinRead, uint8_t cbMaxRead)
3145{
3146 PCPUMDISASSTATE pState = (PCPUMDISASSTATE)pDis->pvUser;
3147 for (;;)
3148 {
3149 RTGCUINTPTR GCPtr = pDis->uInstrAddr + offInstr + pState->GCPtrSegBase;
3150
3151 /*
3152 * Need to update the page translation?
3153 */
3154 if ( !pState->pvPageR3
3155 || (GCPtr >> PAGE_SHIFT) != (pState->pvPageGC >> PAGE_SHIFT))
3156 {
3157 int rc = VINF_SUCCESS;
3158
3159 /* translate the address */
3160 pState->pvPageGC = GCPtr & PAGE_BASE_GC_MASK;
3161 if ( VM_IS_RAW_MODE_ENABLED(pState->pVM)
3162 && MMHyperIsInsideArea(pState->pVM, pState->pvPageGC))
3163 {
3164 pState->pvPageR3 = MMHyperRCToR3(pState->pVM, (RTRCPTR)pState->pvPageGC);
3165 if (!pState->pvPageR3)
3166 rc = VERR_INVALID_POINTER;
3167 }
3168 else
3169 {
3170 /* Release mapping lock previously acquired. */
3171 if (pState->fLocked)
3172 PGMPhysReleasePageMappingLock(pState->pVM, &pState->PageMapLock);
3173 rc = PGMPhysGCPtr2CCPtrReadOnly(pState->pVCpu, pState->pvPageGC, &pState->pvPageR3, &pState->PageMapLock);
3174 pState->fLocked = RT_SUCCESS_NP(rc);
3175 }
3176 if (RT_FAILURE(rc))
3177 {
3178 pState->pvPageR3 = NULL;
3179 return rc;
3180 }
3181 }
3182
3183 /*
3184 * Check the segment limit.
3185 */
3186 if (!pState->f64Bits && pDis->uInstrAddr + offInstr > pState->cbSegLimit)
3187 return VERR_OUT_OF_SELECTOR_BOUNDS;
3188
3189 /*
3190 * Calc how much we can read.
3191 */
3192 uint32_t cb = PAGE_SIZE - (GCPtr & PAGE_OFFSET_MASK);
3193 if (!pState->f64Bits)
3194 {
3195 RTGCUINTPTR cbSeg = pState->GCPtrSegEnd - GCPtr;
3196 if (cb > cbSeg && cbSeg)
3197 cb = cbSeg;
3198 }
3199 if (cb > cbMaxRead)
3200 cb = cbMaxRead;
3201
3202 /*
3203 * Read and advance or exit.
3204 */
3205 memcpy(&pDis->abInstr[offInstr], (uint8_t *)pState->pvPageR3 + (GCPtr & PAGE_OFFSET_MASK), cb);
3206 offInstr += (uint8_t)cb;
3207 if (cb >= cbMinRead)
3208 {
3209 pDis->cbCachedInstr = offInstr;
3210 return VINF_SUCCESS;
3211 }
3212 cbMinRead -= (uint8_t)cb;
3213 cbMaxRead -= (uint8_t)cb;
3214 }
3215}
3216
3217
3218/**
3219 * Disassemble an instruction and return the information in the provided structure.
3220 *
3221 * @returns VBox status code.
3222 * @param pVM The cross context VM structure.
3223 * @param pVCpu The cross context virtual CPU structure.
3224 * @param pCtx Pointer to the guest CPU context.
3225 * @param GCPtrPC Program counter (relative to CS) to disassemble from.
3226 * @param pCpu Disassembly state.
3227 * @param pszPrefix String prefix for logging (debug only).
3228 *
3229 */
3230VMMR3DECL(int) CPUMR3DisasmInstrCPU(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, RTGCPTR GCPtrPC, PDISCPUSTATE pCpu,
3231 const char *pszPrefix)
3232{
3233 CPUMDISASSTATE State;
3234 int rc;
3235
3236 const PGMMODE enmMode = PGMGetGuestMode(pVCpu);
3237 State.pCpu = pCpu;
3238 State.pvPageGC = 0;
3239 State.pvPageR3 = NULL;
3240 State.pVM = pVM;
3241 State.pVCpu = pVCpu;
3242 State.fLocked = false;
3243 State.f64Bits = false;
3244
3245 /*
3246 * Get selector information.
3247 */
3248 DISCPUMODE enmDisCpuMode;
3249 if ( (pCtx->cr0 & X86_CR0_PE)
3250 && pCtx->eflags.Bits.u1VM == 0)
3251 {
3252 if (!CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->cs))
3253 {
3254# ifdef VBOX_WITH_RAW_MODE_NOT_R0
3255 CPUMGuestLazyLoadHiddenSelectorReg(pVCpu, &pCtx->cs);
3256# endif
3257 if (!CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->cs))
3258 return VERR_CPUM_HIDDEN_CS_LOAD_ERROR;
3259 }
3260 State.f64Bits = enmMode >= PGMMODE_AMD64 && pCtx->cs.Attr.n.u1Long;
3261 State.GCPtrSegBase = pCtx->cs.u64Base;
3262 State.GCPtrSegEnd = pCtx->cs.u32Limit + 1 + (RTGCUINTPTR)pCtx->cs.u64Base;
3263 State.cbSegLimit = pCtx->cs.u32Limit;
3264 enmDisCpuMode = (State.f64Bits)
3265 ? DISCPUMODE_64BIT
3266 : pCtx->cs.Attr.n.u1DefBig
3267 ? DISCPUMODE_32BIT
3268 : DISCPUMODE_16BIT;
3269 }
3270 else
3271 {
3272 /* real or V86 mode */
3273 enmDisCpuMode = DISCPUMODE_16BIT;
3274 State.GCPtrSegBase = pCtx->cs.Sel * 16;
3275 State.GCPtrSegEnd = 0xFFFFFFFF;
3276 State.cbSegLimit = 0xFFFFFFFF;
3277 }
3278
3279 /*
3280 * Disassemble the instruction.
3281 */
3282 uint32_t cbInstr;
3283#ifndef LOG_ENABLED
3284 RT_NOREF_PV(pszPrefix);
3285 rc = DISInstrWithReader(GCPtrPC, enmDisCpuMode, cpumR3DisasInstrRead, &State, pCpu, &cbInstr);
3286 if (RT_SUCCESS(rc))
3287 {
3288#else
3289 char szOutput[160];
3290 rc = DISInstrToStrWithReader(GCPtrPC, enmDisCpuMode, cpumR3DisasInstrRead, &State,
3291 pCpu, &cbInstr, szOutput, sizeof(szOutput));
3292 if (RT_SUCCESS(rc))
3293 {
3294 /* log it */
3295 if (pszPrefix)
3296 Log(("%s-CPU%d: %s", pszPrefix, pVCpu->idCpu, szOutput));
3297 else
3298 Log(("%s", szOutput));
3299#endif
3300 rc = VINF_SUCCESS;
3301 }
3302 else
3303 Log(("CPUMR3DisasmInstrCPU: DISInstr failed for %04X:%RGv rc=%Rrc\n", pCtx->cs.Sel, GCPtrPC, rc));
3304
3305 /* Release mapping lock acquired in cpumR3DisasInstrRead. */
3306 if (State.fLocked)
3307 PGMPhysReleasePageMappingLock(pVM, &State.PageMapLock);
3308
3309 return rc;
3310}
3311
3312
3313
3314/**
3315 * API for controlling a few of the CPU features found in CR4.
3316 *
3317 * Currently only X86_CR4_TSD is accepted as input.
3318 *
3319 * @returns VBox status code.
3320 *
3321 * @param pVM The cross context VM structure.
3322 * @param fOr The CR4 OR mask.
3323 * @param fAnd The CR4 AND mask.
3324 */
3325VMMR3DECL(int) CPUMR3SetCR4Feature(PVM pVM, RTHCUINTREG fOr, RTHCUINTREG fAnd)
3326{
3327 AssertMsgReturn(!(fOr & ~(X86_CR4_TSD)), ("%#x\n", fOr), VERR_INVALID_PARAMETER);
3328 AssertMsgReturn((fAnd & ~(X86_CR4_TSD)) == ~(X86_CR4_TSD), ("%#x\n", fAnd), VERR_INVALID_PARAMETER);
3329
3330 pVM->cpum.s.CR4.OrMask &= fAnd;
3331 pVM->cpum.s.CR4.OrMask |= fOr;
3332
3333 return VINF_SUCCESS;
3334}
3335
3336
3337/**
3338 * Enters REM, gets and resets the changed flags (CPUM_CHANGED_*).
3339 *
3340 * Only REM should ever call this function!
3341 *
3342 * @returns The changed flags.
3343 * @param pVCpu The cross context virtual CPU structure.
3344 * @param puCpl Where to return the current privilege level (CPL).
3345 */
3346VMMR3DECL(uint32_t) CPUMR3RemEnter(PVMCPU pVCpu, uint32_t *puCpl)
3347{
3348 Assert(!pVCpu->cpum.s.fRawEntered);
3349 Assert(!pVCpu->cpum.s.fRemEntered);
3350
3351 /*
3352 * Get the CPL first.
3353 */
3354 *puCpl = CPUMGetGuestCPL(pVCpu);
3355
3356 /*
3357 * Get and reset the flags.
3358 */
3359 uint32_t fFlags = pVCpu->cpum.s.fChanged;
3360 pVCpu->cpum.s.fChanged = 0;
3361
3362 /** @todo change the switcher to use the fChanged flags. */
3363 if (pVCpu->cpum.s.fUseFlags & CPUM_USED_FPU_SINCE_REM)
3364 {
3365 fFlags |= CPUM_CHANGED_FPU_REM;
3366 pVCpu->cpum.s.fUseFlags &= ~CPUM_USED_FPU_SINCE_REM;
3367 }
3368
3369 pVCpu->cpum.s.fRemEntered = true;
3370 return fFlags;
3371}
3372
3373
3374/**
3375 * Leaves REM.
3376 *
3377 * @param pVCpu The cross context virtual CPU structure.
3378 * @param fNoOutOfSyncSels This is @c false if there are out of sync
3379 * registers.
3380 */
3381VMMR3DECL(void) CPUMR3RemLeave(PVMCPU pVCpu, bool fNoOutOfSyncSels)
3382{
3383 Assert(!pVCpu->cpum.s.fRawEntered);
3384 Assert(pVCpu->cpum.s.fRemEntered);
3385
3386 RT_NOREF_PV(fNoOutOfSyncSels);
3387
3388 pVCpu->cpum.s.fRemEntered = false;
3389}
3390
3391
3392/**
3393 * Called when the ring-3 init phase completes.
3394 *
3395 * @returns VBox status code.
3396 * @param pVM The cross context VM structure.
3397 * @param enmWhat Which init phase.
3398 */
3399VMMR3DECL(int) CPUMR3InitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
3400{
3401 switch (enmWhat)
3402 {
3403 case VMINITCOMPLETED_RING3:
3404 {
3405 /*
3406 * Figure out if the guest uses 32-bit or 64-bit FPU state at runtime for 64-bit capable VMs.
3407 * Only applicable/used on 64-bit hosts, refer CPUMR0A.asm. See @bugref{7138}.
3408 */
3409 bool const fSupportsLongMode = VMR3IsLongModeAllowed(pVM);
3410 for (VMCPUID i = 0; i < pVM->cCpus; i++)
3411 {
3412 PVMCPU pVCpu = &pVM->aCpus[i];
3413 /* While loading a saved-state we fix it up in, cpumR3LoadDone(). */
3414 if (fSupportsLongMode)
3415 pVCpu->cpum.s.fUseFlags |= CPUM_USE_SUPPORTS_LONGMODE;
3416 }
3417
3418 cpumR3MsrRegStats(pVM);
3419 break;
3420 }
3421
3422 case VMINITCOMPLETED_HM:
3423 {
3424 /*
3425 * Currently, nested VMX/SVM both derives their guest VMX/SVM CPUID bit from the host
3426 * CPUID bit. This could be later changed if we need to support nested-VMX on CPUs
3427 * that are not capable of VMX.
3428 */
3429 if (pVM->cpum.s.GuestFeatures.fVmx)
3430 {
3431 Assert( pVM->cpum.s.GuestFeatures.enmCpuVendor == CPUMCPUVENDOR_INTEL
3432 || pVM->cpum.s.GuestFeatures.enmCpuVendor == CPUMCPUVENDOR_VIA);
3433 cpumR3InitVmxCpuFeatures(pVM);
3434 DBGFR3Info(pVM->pUVM, "cpumvmxfeat", "default", DBGFR3InfoLogRelHlp());
3435 }
3436
3437 if (pVM->cpum.s.GuestFeatures.fVmx)
3438 LogRel(("CPUM: Enabled guest VMX support\n"));
3439 else if (pVM->cpum.s.GuestFeatures.fSvm)
3440 LogRel(("CPUM: Enabled guest SVM support\n"));
3441 break;
3442 }
3443
3444 default:
3445 break;
3446 }
3447 return VINF_SUCCESS;
3448}
3449
3450
3451/**
3452 * Called when the ring-0 init phases completed.
3453 *
3454 * @param pVM The cross context VM structure.
3455 */
3456VMMR3DECL(void) CPUMR3LogCpuIds(PVM pVM)
3457{
3458 /*
3459 * Log the cpuid.
3460 */
3461 bool fOldBuffered = RTLogRelSetBuffering(true /*fBuffered*/);
3462 RTCPUSET OnlineSet;
3463 LogRel(("CPUM: Logical host processors: %u present, %u max, %u online, online mask: %016RX64\n",
3464 (unsigned)RTMpGetPresentCount(), (unsigned)RTMpGetCount(), (unsigned)RTMpGetOnlineCount(),
3465 RTCpuSetToU64(RTMpGetOnlineSet(&OnlineSet)) ));
3466 RTCPUID cCores = RTMpGetCoreCount();
3467 if (cCores)
3468 LogRel(("CPUM: Physical host cores: %u\n", (unsigned)cCores));
3469 LogRel(("************************* CPUID dump ************************\n"));
3470 DBGFR3Info(pVM->pUVM, "cpuid", "verbose", DBGFR3InfoLogRelHlp());
3471 LogRel(("\n"));
3472 DBGFR3_INFO_LOG_SAFE(pVM, "cpuid", "verbose"); /* macro */
3473 RTLogRelSetBuffering(fOldBuffered);
3474 LogRel(("******************** End of CPUID dump **********************\n"));
3475}
3476
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette