VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/CPUM.cpp@ 74606

Last change on this file since 74606 was 74542, checked in by vboxsync, 7 years ago

VMM/CPUM, IEM: Nested VMX: bugref:9180 Preparation of MSR bitmaps for MSR intercepts.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 180.0 KB
Line 
1/* $Id: CPUM.cpp 74542 2018-10-01 05:42:25Z vboxsync $ */
2/** @file
3 * CPUM - CPU Monitor / Manager.
4 */
5
6/*
7 * Copyright (C) 2006-2017 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/** @page pg_cpum CPUM - CPU Monitor / Manager
19 *
20 * The CPU Monitor / Manager keeps track of all the CPU registers. It is
21 * also responsible for lazy FPU handling and some of the context loading
22 * in raw mode.
23 *
24 * There are three CPU contexts, the most important one is the guest one (GC).
25 * When running in raw-mode (RC) there is a special hyper context for the VMM
26 * part that floats around inside the guest address space. When running in
27 * raw-mode, CPUM also maintains a host context for saving and restoring
28 * registers across world switches. This latter is done in cooperation with the
29 * world switcher (@see pg_vmm).
30 *
31 * @see grp_cpum
32 *
33 * @section sec_cpum_fpu FPU / SSE / AVX / ++ state.
34 *
35 * TODO: proper write up, currently just some notes.
36 *
37 * The ring-0 FPU handling per OS:
38 *
39 * - 64-bit Windows uses XMM registers in the kernel as part of the calling
40 * convention (Visual C++ doesn't seem to have a way to disable
41 * generating such code either), so CR0.TS/EM are always zero from what I
42 * can tell. We are also forced to always load/save the guest XMM0-XMM15
43 * registers when entering/leaving guest context. Interrupt handlers
44 * using FPU/SSE will offically have call save and restore functions
45 * exported by the kernel, if the really really have to use the state.
46 *
47 * - 32-bit windows does lazy FPU handling, I think, probably including
48 * lazying saving. The Windows Internals book states that it's a bad
49 * idea to use the FPU in kernel space. However, it looks like it will
50 * restore the FPU state of the current thread in case of a kernel \#NM.
51 * Interrupt handlers should be same as for 64-bit.
52 *
53 * - Darwin allows taking \#NM in kernel space, restoring current thread's
54 * state if I read the code correctly. It saves the FPU state of the
55 * outgoing thread, and uses CR0.TS to lazily load the state of the
56 * incoming one. No idea yet how the FPU is treated by interrupt
57 * handlers, i.e. whether they are allowed to disable the state or
58 * something.
59 *
60 * - Linux also allows \#NM in kernel space (don't know since when), and
61 * uses CR0.TS for lazy loading. Saves outgoing thread's state, lazy
62 * loads the incoming unless configured to agressivly load it. Interrupt
63 * handlers can ask whether they're allowed to use the FPU, and may
64 * freely trash the state if Linux thinks it has saved the thread's state
65 * already. This is a problem.
66 *
67 * - Solaris will, from what I can tell, panic if it gets an \#NM in kernel
68 * context. When switching threads, the kernel will save the state of
69 * the outgoing thread and lazy load the incoming one using CR0.TS.
70 * There are a few routines in seeblk.s which uses the SSE unit in ring-0
71 * to do stuff, HAT are among the users. The routines there will
72 * manually clear CR0.TS and save the XMM registers they use only if
73 * CR0.TS was zero upon entry. They will skip it when not, because as
74 * mentioned above, the FPU state is saved when switching away from a
75 * thread and CR0.TS set to 1, so when CR0.TS is 1 there is nothing to
76 * preserve. This is a problem if we restore CR0.TS to 1 after loading
77 * the guest state.
78 *
79 * - FreeBSD - no idea yet.
80 *
81 * - OS/2 does not allow \#NMs in kernel space IIRC. Does lazy loading,
82 * possibly also lazy saving. Interrupts must preserve the CR0.TS+EM &
83 * FPU states.
84 *
85 * Up to r107425 (2016-05-24) we would only temporarily modify CR0.TS/EM while
86 * saving and restoring the host and guest states. The motivation for this
87 * change is that we want to be able to emulate SSE instruction in ring-0 (IEM).
88 *
89 * Starting with that change, we will leave CR0.TS=EM=0 after saving the host
90 * state and only restore it once we've restore the host FPU state. This has the
91 * accidental side effect of triggering Solaris to preserve XMM registers in
92 * sseblk.s. When CR0 was changed by saving the FPU state, CPUM must now inform
93 * the VT-x (HMVMX) code about it as it caches the CR0 value in the VMCS.
94 *
95 *
96 * @section sec_cpum_logging Logging Level Assignments.
97 *
98 * Following log level assignments:
99 * - Log6 is used for FPU state management.
100 * - Log7 is used for FPU state actualization.
101 *
102 */
103
104
105/*********************************************************************************************************************************
106* Header Files *
107*********************************************************************************************************************************/
108#define LOG_GROUP LOG_GROUP_CPUM
109#include <VBox/vmm/cpum.h>
110#include <VBox/vmm/cpumdis.h>
111#include <VBox/vmm/cpumctx-v1_6.h>
112#include <VBox/vmm/pgm.h>
113#include <VBox/vmm/apic.h>
114#include <VBox/vmm/mm.h>
115#include <VBox/vmm/em.h>
116#include <VBox/vmm/iem.h>
117#include <VBox/vmm/selm.h>
118#include <VBox/vmm/dbgf.h>
119#include <VBox/vmm/patm.h>
120#include <VBox/vmm/hm.h>
121#include <VBox/vmm/ssm.h>
122#include "CPUMInternal.h"
123#include <VBox/vmm/vm.h>
124
125#include <VBox/param.h>
126#include <VBox/dis.h>
127#include <VBox/err.h>
128#include <VBox/log.h>
129#include <iprt/asm-amd64-x86.h>
130#include <iprt/assert.h>
131#include <iprt/cpuset.h>
132#include <iprt/mem.h>
133#include <iprt/mp.h>
134#include <iprt/string.h>
135
136
137/*********************************************************************************************************************************
138* Defined Constants And Macros *
139*********************************************************************************************************************************/
140/**
141 * This was used in the saved state up to the early life of version 14.
142 *
143 * It indicates that we may have some out-of-sync hidden segement registers.
144 * It is only relevant for raw-mode.
145 */
146#define CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID RT_BIT(12)
147
148
149/*********************************************************************************************************************************
150* Structures and Typedefs *
151*********************************************************************************************************************************/
152
153/**
154 * What kind of cpu info dump to perform.
155 */
156typedef enum CPUMDUMPTYPE
157{
158 CPUMDUMPTYPE_TERSE,
159 CPUMDUMPTYPE_DEFAULT,
160 CPUMDUMPTYPE_VERBOSE
161} CPUMDUMPTYPE;
162/** Pointer to a cpu info dump type. */
163typedef CPUMDUMPTYPE *PCPUMDUMPTYPE;
164
165
166/*********************************************************************************************************************************
167* Internal Functions *
168*********************************************************************************************************************************/
169static DECLCALLBACK(int) cpumR3LiveExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uPass);
170static DECLCALLBACK(int) cpumR3SaveExec(PVM pVM, PSSMHANDLE pSSM);
171static DECLCALLBACK(int) cpumR3LoadPrep(PVM pVM, PSSMHANDLE pSSM);
172static DECLCALLBACK(int) cpumR3LoadExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
173static DECLCALLBACK(int) cpumR3LoadDone(PVM pVM, PSSMHANDLE pSSM);
174static DECLCALLBACK(void) cpumR3InfoAll(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
175static DECLCALLBACK(void) cpumR3InfoGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
176static DECLCALLBACK(void) cpumR3InfoGuestHwvirt(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
177static DECLCALLBACK(void) cpumR3InfoGuestInstr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
178static DECLCALLBACK(void) cpumR3InfoHyper(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
179static DECLCALLBACK(void) cpumR3InfoHost(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
180
181
182/*********************************************************************************************************************************
183* Global Variables *
184*********************************************************************************************************************************/
185/** Saved state field descriptors for CPUMCTX. */
186static const SSMFIELD g_aCpumCtxFields[] =
187{
188 SSMFIELD_ENTRY( CPUMCTX, rdi),
189 SSMFIELD_ENTRY( CPUMCTX, rsi),
190 SSMFIELD_ENTRY( CPUMCTX, rbp),
191 SSMFIELD_ENTRY( CPUMCTX, rax),
192 SSMFIELD_ENTRY( CPUMCTX, rbx),
193 SSMFIELD_ENTRY( CPUMCTX, rdx),
194 SSMFIELD_ENTRY( CPUMCTX, rcx),
195 SSMFIELD_ENTRY( CPUMCTX, rsp),
196 SSMFIELD_ENTRY( CPUMCTX, rflags),
197 SSMFIELD_ENTRY( CPUMCTX, rip),
198 SSMFIELD_ENTRY( CPUMCTX, r8),
199 SSMFIELD_ENTRY( CPUMCTX, r9),
200 SSMFIELD_ENTRY( CPUMCTX, r10),
201 SSMFIELD_ENTRY( CPUMCTX, r11),
202 SSMFIELD_ENTRY( CPUMCTX, r12),
203 SSMFIELD_ENTRY( CPUMCTX, r13),
204 SSMFIELD_ENTRY( CPUMCTX, r14),
205 SSMFIELD_ENTRY( CPUMCTX, r15),
206 SSMFIELD_ENTRY( CPUMCTX, es.Sel),
207 SSMFIELD_ENTRY( CPUMCTX, es.ValidSel),
208 SSMFIELD_ENTRY( CPUMCTX, es.fFlags),
209 SSMFIELD_ENTRY( CPUMCTX, es.u64Base),
210 SSMFIELD_ENTRY( CPUMCTX, es.u32Limit),
211 SSMFIELD_ENTRY( CPUMCTX, es.Attr),
212 SSMFIELD_ENTRY( CPUMCTX, cs.Sel),
213 SSMFIELD_ENTRY( CPUMCTX, cs.ValidSel),
214 SSMFIELD_ENTRY( CPUMCTX, cs.fFlags),
215 SSMFIELD_ENTRY( CPUMCTX, cs.u64Base),
216 SSMFIELD_ENTRY( CPUMCTX, cs.u32Limit),
217 SSMFIELD_ENTRY( CPUMCTX, cs.Attr),
218 SSMFIELD_ENTRY( CPUMCTX, ss.Sel),
219 SSMFIELD_ENTRY( CPUMCTX, ss.ValidSel),
220 SSMFIELD_ENTRY( CPUMCTX, ss.fFlags),
221 SSMFIELD_ENTRY( CPUMCTX, ss.u64Base),
222 SSMFIELD_ENTRY( CPUMCTX, ss.u32Limit),
223 SSMFIELD_ENTRY( CPUMCTX, ss.Attr),
224 SSMFIELD_ENTRY( CPUMCTX, ds.Sel),
225 SSMFIELD_ENTRY( CPUMCTX, ds.ValidSel),
226 SSMFIELD_ENTRY( CPUMCTX, ds.fFlags),
227 SSMFIELD_ENTRY( CPUMCTX, ds.u64Base),
228 SSMFIELD_ENTRY( CPUMCTX, ds.u32Limit),
229 SSMFIELD_ENTRY( CPUMCTX, ds.Attr),
230 SSMFIELD_ENTRY( CPUMCTX, fs.Sel),
231 SSMFIELD_ENTRY( CPUMCTX, fs.ValidSel),
232 SSMFIELD_ENTRY( CPUMCTX, fs.fFlags),
233 SSMFIELD_ENTRY( CPUMCTX, fs.u64Base),
234 SSMFIELD_ENTRY( CPUMCTX, fs.u32Limit),
235 SSMFIELD_ENTRY( CPUMCTX, fs.Attr),
236 SSMFIELD_ENTRY( CPUMCTX, gs.Sel),
237 SSMFIELD_ENTRY( CPUMCTX, gs.ValidSel),
238 SSMFIELD_ENTRY( CPUMCTX, gs.fFlags),
239 SSMFIELD_ENTRY( CPUMCTX, gs.u64Base),
240 SSMFIELD_ENTRY( CPUMCTX, gs.u32Limit),
241 SSMFIELD_ENTRY( CPUMCTX, gs.Attr),
242 SSMFIELD_ENTRY( CPUMCTX, cr0),
243 SSMFIELD_ENTRY( CPUMCTX, cr2),
244 SSMFIELD_ENTRY( CPUMCTX, cr3),
245 SSMFIELD_ENTRY( CPUMCTX, cr4),
246 SSMFIELD_ENTRY( CPUMCTX, dr[0]),
247 SSMFIELD_ENTRY( CPUMCTX, dr[1]),
248 SSMFIELD_ENTRY( CPUMCTX, dr[2]),
249 SSMFIELD_ENTRY( CPUMCTX, dr[3]),
250 SSMFIELD_ENTRY( CPUMCTX, dr[6]),
251 SSMFIELD_ENTRY( CPUMCTX, dr[7]),
252 SSMFIELD_ENTRY( CPUMCTX, gdtr.cbGdt),
253 SSMFIELD_ENTRY( CPUMCTX, gdtr.pGdt),
254 SSMFIELD_ENTRY( CPUMCTX, idtr.cbIdt),
255 SSMFIELD_ENTRY( CPUMCTX, idtr.pIdt),
256 SSMFIELD_ENTRY( CPUMCTX, SysEnter.cs),
257 SSMFIELD_ENTRY( CPUMCTX, SysEnter.eip),
258 SSMFIELD_ENTRY( CPUMCTX, SysEnter.esp),
259 SSMFIELD_ENTRY( CPUMCTX, msrEFER),
260 SSMFIELD_ENTRY( CPUMCTX, msrSTAR),
261 SSMFIELD_ENTRY( CPUMCTX, msrPAT),
262 SSMFIELD_ENTRY( CPUMCTX, msrLSTAR),
263 SSMFIELD_ENTRY( CPUMCTX, msrCSTAR),
264 SSMFIELD_ENTRY( CPUMCTX, msrSFMASK),
265 SSMFIELD_ENTRY( CPUMCTX, msrKERNELGSBASE),
266 SSMFIELD_ENTRY( CPUMCTX, ldtr.Sel),
267 SSMFIELD_ENTRY( CPUMCTX, ldtr.ValidSel),
268 SSMFIELD_ENTRY( CPUMCTX, ldtr.fFlags),
269 SSMFIELD_ENTRY( CPUMCTX, ldtr.u64Base),
270 SSMFIELD_ENTRY( CPUMCTX, ldtr.u32Limit),
271 SSMFIELD_ENTRY( CPUMCTX, ldtr.Attr),
272 SSMFIELD_ENTRY( CPUMCTX, tr.Sel),
273 SSMFIELD_ENTRY( CPUMCTX, tr.ValidSel),
274 SSMFIELD_ENTRY( CPUMCTX, tr.fFlags),
275 SSMFIELD_ENTRY( CPUMCTX, tr.u64Base),
276 SSMFIELD_ENTRY( CPUMCTX, tr.u32Limit),
277 SSMFIELD_ENTRY( CPUMCTX, tr.Attr),
278 SSMFIELD_ENTRY_VER( CPUMCTX, aXcr[0], CPUM_SAVED_STATE_VERSION_XSAVE),
279 SSMFIELD_ENTRY_VER( CPUMCTX, aXcr[1], CPUM_SAVED_STATE_VERSION_XSAVE),
280 SSMFIELD_ENTRY_VER( CPUMCTX, fXStateMask, CPUM_SAVED_STATE_VERSION_XSAVE),
281 SSMFIELD_ENTRY_TERM()
282};
283
284/** Saved state field descriptors for SVM nested hardware-virtualization
285 * Host State. */
286static const SSMFIELD g_aSvmHwvirtHostState[] =
287{
288 SSMFIELD_ENTRY( SVMHOSTSTATE, uEferMsr),
289 SSMFIELD_ENTRY( SVMHOSTSTATE, uCr0),
290 SSMFIELD_ENTRY( SVMHOSTSTATE, uCr4),
291 SSMFIELD_ENTRY( SVMHOSTSTATE, uCr3),
292 SSMFIELD_ENTRY( SVMHOSTSTATE, uRip),
293 SSMFIELD_ENTRY( SVMHOSTSTATE, uRsp),
294 SSMFIELD_ENTRY( SVMHOSTSTATE, uRax),
295 SSMFIELD_ENTRY( SVMHOSTSTATE, rflags),
296 SSMFIELD_ENTRY( SVMHOSTSTATE, es.Sel),
297 SSMFIELD_ENTRY( SVMHOSTSTATE, es.ValidSel),
298 SSMFIELD_ENTRY( SVMHOSTSTATE, es.fFlags),
299 SSMFIELD_ENTRY( SVMHOSTSTATE, es.u64Base),
300 SSMFIELD_ENTRY( SVMHOSTSTATE, es.u32Limit),
301 SSMFIELD_ENTRY( SVMHOSTSTATE, es.Attr),
302 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.Sel),
303 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.ValidSel),
304 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.fFlags),
305 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.u64Base),
306 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.u32Limit),
307 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.Attr),
308 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.Sel),
309 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.ValidSel),
310 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.fFlags),
311 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.u64Base),
312 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.u32Limit),
313 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.Attr),
314 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.Sel),
315 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.ValidSel),
316 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.fFlags),
317 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.u64Base),
318 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.u32Limit),
319 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.Attr),
320 SSMFIELD_ENTRY( SVMHOSTSTATE, gdtr.cbGdt),
321 SSMFIELD_ENTRY( SVMHOSTSTATE, gdtr.pGdt),
322 SSMFIELD_ENTRY( SVMHOSTSTATE, idtr.cbIdt),
323 SSMFIELD_ENTRY( SVMHOSTSTATE, idtr.pIdt),
324 SSMFIELD_ENTRY_IGNORE(SVMHOSTSTATE, abPadding),
325 SSMFIELD_ENTRY_TERM()
326};
327
328/** Saved state field descriptors for CPUMCTX. */
329static const SSMFIELD g_aCpumX87Fields[] =
330{
331 SSMFIELD_ENTRY( X86FXSTATE, FCW),
332 SSMFIELD_ENTRY( X86FXSTATE, FSW),
333 SSMFIELD_ENTRY( X86FXSTATE, FTW),
334 SSMFIELD_ENTRY( X86FXSTATE, FOP),
335 SSMFIELD_ENTRY( X86FXSTATE, FPUIP),
336 SSMFIELD_ENTRY( X86FXSTATE, CS),
337 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd1),
338 SSMFIELD_ENTRY( X86FXSTATE, FPUDP),
339 SSMFIELD_ENTRY( X86FXSTATE, DS),
340 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd2),
341 SSMFIELD_ENTRY( X86FXSTATE, MXCSR),
342 SSMFIELD_ENTRY( X86FXSTATE, MXCSR_MASK),
343 SSMFIELD_ENTRY( X86FXSTATE, aRegs[0]),
344 SSMFIELD_ENTRY( X86FXSTATE, aRegs[1]),
345 SSMFIELD_ENTRY( X86FXSTATE, aRegs[2]),
346 SSMFIELD_ENTRY( X86FXSTATE, aRegs[3]),
347 SSMFIELD_ENTRY( X86FXSTATE, aRegs[4]),
348 SSMFIELD_ENTRY( X86FXSTATE, aRegs[5]),
349 SSMFIELD_ENTRY( X86FXSTATE, aRegs[6]),
350 SSMFIELD_ENTRY( X86FXSTATE, aRegs[7]),
351 SSMFIELD_ENTRY( X86FXSTATE, aXMM[0]),
352 SSMFIELD_ENTRY( X86FXSTATE, aXMM[1]),
353 SSMFIELD_ENTRY( X86FXSTATE, aXMM[2]),
354 SSMFIELD_ENTRY( X86FXSTATE, aXMM[3]),
355 SSMFIELD_ENTRY( X86FXSTATE, aXMM[4]),
356 SSMFIELD_ENTRY( X86FXSTATE, aXMM[5]),
357 SSMFIELD_ENTRY( X86FXSTATE, aXMM[6]),
358 SSMFIELD_ENTRY( X86FXSTATE, aXMM[7]),
359 SSMFIELD_ENTRY( X86FXSTATE, aXMM[8]),
360 SSMFIELD_ENTRY( X86FXSTATE, aXMM[9]),
361 SSMFIELD_ENTRY( X86FXSTATE, aXMM[10]),
362 SSMFIELD_ENTRY( X86FXSTATE, aXMM[11]),
363 SSMFIELD_ENTRY( X86FXSTATE, aXMM[12]),
364 SSMFIELD_ENTRY( X86FXSTATE, aXMM[13]),
365 SSMFIELD_ENTRY( X86FXSTATE, aXMM[14]),
366 SSMFIELD_ENTRY( X86FXSTATE, aXMM[15]),
367 SSMFIELD_ENTRY_VER( X86FXSTATE, au32RsrvdForSoftware[0], CPUM_SAVED_STATE_VERSION_XSAVE), /* 32-bit/64-bit hack */
368 SSMFIELD_ENTRY_TERM()
369};
370
371/** Saved state field descriptors for X86XSAVEHDR. */
372static const SSMFIELD g_aCpumXSaveHdrFields[] =
373{
374 SSMFIELD_ENTRY( X86XSAVEHDR, bmXState),
375 SSMFIELD_ENTRY_TERM()
376};
377
378/** Saved state field descriptors for X86XSAVEYMMHI. */
379static const SSMFIELD g_aCpumYmmHiFields[] =
380{
381 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[0]),
382 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[1]),
383 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[2]),
384 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[3]),
385 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[4]),
386 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[5]),
387 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[6]),
388 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[7]),
389 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[8]),
390 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[9]),
391 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[10]),
392 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[11]),
393 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[12]),
394 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[13]),
395 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[14]),
396 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[15]),
397 SSMFIELD_ENTRY_TERM()
398};
399
400/** Saved state field descriptors for X86XSAVEBNDREGS. */
401static const SSMFIELD g_aCpumBndRegsFields[] =
402{
403 SSMFIELD_ENTRY( X86XSAVEBNDREGS, aRegs[0]),
404 SSMFIELD_ENTRY( X86XSAVEBNDREGS, aRegs[1]),
405 SSMFIELD_ENTRY( X86XSAVEBNDREGS, aRegs[2]),
406 SSMFIELD_ENTRY( X86XSAVEBNDREGS, aRegs[3]),
407 SSMFIELD_ENTRY_TERM()
408};
409
410/** Saved state field descriptors for X86XSAVEBNDCFG. */
411static const SSMFIELD g_aCpumBndCfgFields[] =
412{
413 SSMFIELD_ENTRY( X86XSAVEBNDCFG, fConfig),
414 SSMFIELD_ENTRY( X86XSAVEBNDCFG, fStatus),
415 SSMFIELD_ENTRY_TERM()
416};
417
418#if 0 /** @todo */
419/** Saved state field descriptors for X86XSAVEOPMASK. */
420static const SSMFIELD g_aCpumOpmaskFields[] =
421{
422 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[0]),
423 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[1]),
424 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[2]),
425 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[3]),
426 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[4]),
427 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[5]),
428 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[6]),
429 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[7]),
430 SSMFIELD_ENTRY_TERM()
431};
432#endif
433
434/** Saved state field descriptors for X86XSAVEZMMHI256. */
435static const SSMFIELD g_aCpumZmmHi256Fields[] =
436{
437 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[0]),
438 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[1]),
439 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[2]),
440 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[3]),
441 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[4]),
442 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[5]),
443 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[6]),
444 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[7]),
445 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[8]),
446 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[9]),
447 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[10]),
448 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[11]),
449 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[12]),
450 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[13]),
451 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[14]),
452 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[15]),
453 SSMFIELD_ENTRY_TERM()
454};
455
456/** Saved state field descriptors for X86XSAVEZMM16HI. */
457static const SSMFIELD g_aCpumZmm16HiFields[] =
458{
459 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[0]),
460 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[1]),
461 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[2]),
462 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[3]),
463 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[4]),
464 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[5]),
465 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[6]),
466 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[7]),
467 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[8]),
468 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[9]),
469 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[10]),
470 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[11]),
471 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[12]),
472 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[13]),
473 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[14]),
474 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[15]),
475 SSMFIELD_ENTRY_TERM()
476};
477
478
479
480/** Saved state field descriptors for CPUMCTX in V4.1 before the hidden selector
481 * registeres changed. */
482static const SSMFIELD g_aCpumX87FieldsMem[] =
483{
484 SSMFIELD_ENTRY( X86FXSTATE, FCW),
485 SSMFIELD_ENTRY( X86FXSTATE, FSW),
486 SSMFIELD_ENTRY( X86FXSTATE, FTW),
487 SSMFIELD_ENTRY( X86FXSTATE, FOP),
488 SSMFIELD_ENTRY( X86FXSTATE, FPUIP),
489 SSMFIELD_ENTRY( X86FXSTATE, CS),
490 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd1),
491 SSMFIELD_ENTRY( X86FXSTATE, FPUDP),
492 SSMFIELD_ENTRY( X86FXSTATE, DS),
493 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd2),
494 SSMFIELD_ENTRY( X86FXSTATE, MXCSR),
495 SSMFIELD_ENTRY( X86FXSTATE, MXCSR_MASK),
496 SSMFIELD_ENTRY( X86FXSTATE, aRegs[0]),
497 SSMFIELD_ENTRY( X86FXSTATE, aRegs[1]),
498 SSMFIELD_ENTRY( X86FXSTATE, aRegs[2]),
499 SSMFIELD_ENTRY( X86FXSTATE, aRegs[3]),
500 SSMFIELD_ENTRY( X86FXSTATE, aRegs[4]),
501 SSMFIELD_ENTRY( X86FXSTATE, aRegs[5]),
502 SSMFIELD_ENTRY( X86FXSTATE, aRegs[6]),
503 SSMFIELD_ENTRY( X86FXSTATE, aRegs[7]),
504 SSMFIELD_ENTRY( X86FXSTATE, aXMM[0]),
505 SSMFIELD_ENTRY( X86FXSTATE, aXMM[1]),
506 SSMFIELD_ENTRY( X86FXSTATE, aXMM[2]),
507 SSMFIELD_ENTRY( X86FXSTATE, aXMM[3]),
508 SSMFIELD_ENTRY( X86FXSTATE, aXMM[4]),
509 SSMFIELD_ENTRY( X86FXSTATE, aXMM[5]),
510 SSMFIELD_ENTRY( X86FXSTATE, aXMM[6]),
511 SSMFIELD_ENTRY( X86FXSTATE, aXMM[7]),
512 SSMFIELD_ENTRY( X86FXSTATE, aXMM[8]),
513 SSMFIELD_ENTRY( X86FXSTATE, aXMM[9]),
514 SSMFIELD_ENTRY( X86FXSTATE, aXMM[10]),
515 SSMFIELD_ENTRY( X86FXSTATE, aXMM[11]),
516 SSMFIELD_ENTRY( X86FXSTATE, aXMM[12]),
517 SSMFIELD_ENTRY( X86FXSTATE, aXMM[13]),
518 SSMFIELD_ENTRY( X86FXSTATE, aXMM[14]),
519 SSMFIELD_ENTRY( X86FXSTATE, aXMM[15]),
520 SSMFIELD_ENTRY_IGNORE( X86FXSTATE, au32RsrvdRest),
521 SSMFIELD_ENTRY_IGNORE( X86FXSTATE, au32RsrvdForSoftware),
522};
523
524/** Saved state field descriptors for CPUMCTX in V4.1 before the hidden selector
525 * registeres changed. */
526static const SSMFIELD g_aCpumCtxFieldsMem[] =
527{
528 SSMFIELD_ENTRY( CPUMCTX, rdi),
529 SSMFIELD_ENTRY( CPUMCTX, rsi),
530 SSMFIELD_ENTRY( CPUMCTX, rbp),
531 SSMFIELD_ENTRY( CPUMCTX, rax),
532 SSMFIELD_ENTRY( CPUMCTX, rbx),
533 SSMFIELD_ENTRY( CPUMCTX, rdx),
534 SSMFIELD_ENTRY( CPUMCTX, rcx),
535 SSMFIELD_ENTRY( CPUMCTX, rsp),
536 SSMFIELD_ENTRY_OLD( lss_esp, sizeof(uint32_t)),
537 SSMFIELD_ENTRY( CPUMCTX, ss.Sel),
538 SSMFIELD_ENTRY_OLD( ssPadding, sizeof(uint16_t)),
539 SSMFIELD_ENTRY( CPUMCTX, gs.Sel),
540 SSMFIELD_ENTRY_OLD( gsPadding, sizeof(uint16_t)),
541 SSMFIELD_ENTRY( CPUMCTX, fs.Sel),
542 SSMFIELD_ENTRY_OLD( fsPadding, sizeof(uint16_t)),
543 SSMFIELD_ENTRY( CPUMCTX, es.Sel),
544 SSMFIELD_ENTRY_OLD( esPadding, sizeof(uint16_t)),
545 SSMFIELD_ENTRY( CPUMCTX, ds.Sel),
546 SSMFIELD_ENTRY_OLD( dsPadding, sizeof(uint16_t)),
547 SSMFIELD_ENTRY( CPUMCTX, cs.Sel),
548 SSMFIELD_ENTRY_OLD( csPadding, sizeof(uint16_t)*3),
549 SSMFIELD_ENTRY( CPUMCTX, rflags),
550 SSMFIELD_ENTRY( CPUMCTX, rip),
551 SSMFIELD_ENTRY( CPUMCTX, r8),
552 SSMFIELD_ENTRY( CPUMCTX, r9),
553 SSMFIELD_ENTRY( CPUMCTX, r10),
554 SSMFIELD_ENTRY( CPUMCTX, r11),
555 SSMFIELD_ENTRY( CPUMCTX, r12),
556 SSMFIELD_ENTRY( CPUMCTX, r13),
557 SSMFIELD_ENTRY( CPUMCTX, r14),
558 SSMFIELD_ENTRY( CPUMCTX, r15),
559 SSMFIELD_ENTRY( CPUMCTX, es.u64Base),
560 SSMFIELD_ENTRY( CPUMCTX, es.u32Limit),
561 SSMFIELD_ENTRY( CPUMCTX, es.Attr),
562 SSMFIELD_ENTRY( CPUMCTX, cs.u64Base),
563 SSMFIELD_ENTRY( CPUMCTX, cs.u32Limit),
564 SSMFIELD_ENTRY( CPUMCTX, cs.Attr),
565 SSMFIELD_ENTRY( CPUMCTX, ss.u64Base),
566 SSMFIELD_ENTRY( CPUMCTX, ss.u32Limit),
567 SSMFIELD_ENTRY( CPUMCTX, ss.Attr),
568 SSMFIELD_ENTRY( CPUMCTX, ds.u64Base),
569 SSMFIELD_ENTRY( CPUMCTX, ds.u32Limit),
570 SSMFIELD_ENTRY( CPUMCTX, ds.Attr),
571 SSMFIELD_ENTRY( CPUMCTX, fs.u64Base),
572 SSMFIELD_ENTRY( CPUMCTX, fs.u32Limit),
573 SSMFIELD_ENTRY( CPUMCTX, fs.Attr),
574 SSMFIELD_ENTRY( CPUMCTX, gs.u64Base),
575 SSMFIELD_ENTRY( CPUMCTX, gs.u32Limit),
576 SSMFIELD_ENTRY( CPUMCTX, gs.Attr),
577 SSMFIELD_ENTRY( CPUMCTX, cr0),
578 SSMFIELD_ENTRY( CPUMCTX, cr2),
579 SSMFIELD_ENTRY( CPUMCTX, cr3),
580 SSMFIELD_ENTRY( CPUMCTX, cr4),
581 SSMFIELD_ENTRY( CPUMCTX, dr[0]),
582 SSMFIELD_ENTRY( CPUMCTX, dr[1]),
583 SSMFIELD_ENTRY( CPUMCTX, dr[2]),
584 SSMFIELD_ENTRY( CPUMCTX, dr[3]),
585 SSMFIELD_ENTRY_OLD( dr[4], sizeof(uint64_t)),
586 SSMFIELD_ENTRY_OLD( dr[5], sizeof(uint64_t)),
587 SSMFIELD_ENTRY( CPUMCTX, dr[6]),
588 SSMFIELD_ENTRY( CPUMCTX, dr[7]),
589 SSMFIELD_ENTRY( CPUMCTX, gdtr.cbGdt),
590 SSMFIELD_ENTRY( CPUMCTX, gdtr.pGdt),
591 SSMFIELD_ENTRY_OLD( gdtrPadding, sizeof(uint16_t)),
592 SSMFIELD_ENTRY( CPUMCTX, idtr.cbIdt),
593 SSMFIELD_ENTRY( CPUMCTX, idtr.pIdt),
594 SSMFIELD_ENTRY_OLD( idtrPadding, sizeof(uint16_t)),
595 SSMFIELD_ENTRY( CPUMCTX, ldtr.Sel),
596 SSMFIELD_ENTRY_OLD( ldtrPadding, sizeof(uint16_t)),
597 SSMFIELD_ENTRY( CPUMCTX, tr.Sel),
598 SSMFIELD_ENTRY_OLD( trPadding, sizeof(uint16_t)),
599 SSMFIELD_ENTRY( CPUMCTX, SysEnter.cs),
600 SSMFIELD_ENTRY( CPUMCTX, SysEnter.eip),
601 SSMFIELD_ENTRY( CPUMCTX, SysEnter.esp),
602 SSMFIELD_ENTRY( CPUMCTX, msrEFER),
603 SSMFIELD_ENTRY( CPUMCTX, msrSTAR),
604 SSMFIELD_ENTRY( CPUMCTX, msrPAT),
605 SSMFIELD_ENTRY( CPUMCTX, msrLSTAR),
606 SSMFIELD_ENTRY( CPUMCTX, msrCSTAR),
607 SSMFIELD_ENTRY( CPUMCTX, msrSFMASK),
608 SSMFIELD_ENTRY( CPUMCTX, msrKERNELGSBASE),
609 SSMFIELD_ENTRY( CPUMCTX, ldtr.u64Base),
610 SSMFIELD_ENTRY( CPUMCTX, ldtr.u32Limit),
611 SSMFIELD_ENTRY( CPUMCTX, ldtr.Attr),
612 SSMFIELD_ENTRY( CPUMCTX, tr.u64Base),
613 SSMFIELD_ENTRY( CPUMCTX, tr.u32Limit),
614 SSMFIELD_ENTRY( CPUMCTX, tr.Attr),
615 SSMFIELD_ENTRY_TERM()
616};
617
618/** Saved state field descriptors for CPUMCTX_VER1_6. */
619static const SSMFIELD g_aCpumX87FieldsV16[] =
620{
621 SSMFIELD_ENTRY( X86FXSTATE, FCW),
622 SSMFIELD_ENTRY( X86FXSTATE, FSW),
623 SSMFIELD_ENTRY( X86FXSTATE, FTW),
624 SSMFIELD_ENTRY( X86FXSTATE, FOP),
625 SSMFIELD_ENTRY( X86FXSTATE, FPUIP),
626 SSMFIELD_ENTRY( X86FXSTATE, CS),
627 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd1),
628 SSMFIELD_ENTRY( X86FXSTATE, FPUDP),
629 SSMFIELD_ENTRY( X86FXSTATE, DS),
630 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd2),
631 SSMFIELD_ENTRY( X86FXSTATE, MXCSR),
632 SSMFIELD_ENTRY( X86FXSTATE, MXCSR_MASK),
633 SSMFIELD_ENTRY( X86FXSTATE, aRegs[0]),
634 SSMFIELD_ENTRY( X86FXSTATE, aRegs[1]),
635 SSMFIELD_ENTRY( X86FXSTATE, aRegs[2]),
636 SSMFIELD_ENTRY( X86FXSTATE, aRegs[3]),
637 SSMFIELD_ENTRY( X86FXSTATE, aRegs[4]),
638 SSMFIELD_ENTRY( X86FXSTATE, aRegs[5]),
639 SSMFIELD_ENTRY( X86FXSTATE, aRegs[6]),
640 SSMFIELD_ENTRY( X86FXSTATE, aRegs[7]),
641 SSMFIELD_ENTRY( X86FXSTATE, aXMM[0]),
642 SSMFIELD_ENTRY( X86FXSTATE, aXMM[1]),
643 SSMFIELD_ENTRY( X86FXSTATE, aXMM[2]),
644 SSMFIELD_ENTRY( X86FXSTATE, aXMM[3]),
645 SSMFIELD_ENTRY( X86FXSTATE, aXMM[4]),
646 SSMFIELD_ENTRY( X86FXSTATE, aXMM[5]),
647 SSMFIELD_ENTRY( X86FXSTATE, aXMM[6]),
648 SSMFIELD_ENTRY( X86FXSTATE, aXMM[7]),
649 SSMFIELD_ENTRY( X86FXSTATE, aXMM[8]),
650 SSMFIELD_ENTRY( X86FXSTATE, aXMM[9]),
651 SSMFIELD_ENTRY( X86FXSTATE, aXMM[10]),
652 SSMFIELD_ENTRY( X86FXSTATE, aXMM[11]),
653 SSMFIELD_ENTRY( X86FXSTATE, aXMM[12]),
654 SSMFIELD_ENTRY( X86FXSTATE, aXMM[13]),
655 SSMFIELD_ENTRY( X86FXSTATE, aXMM[14]),
656 SSMFIELD_ENTRY( X86FXSTATE, aXMM[15]),
657 SSMFIELD_ENTRY_IGNORE( X86FXSTATE, au32RsrvdRest),
658 SSMFIELD_ENTRY_IGNORE( X86FXSTATE, au32RsrvdForSoftware),
659 SSMFIELD_ENTRY_TERM()
660};
661
662/** Saved state field descriptors for CPUMCTX_VER1_6. */
663static const SSMFIELD g_aCpumCtxFieldsV16[] =
664{
665 SSMFIELD_ENTRY( CPUMCTX, rdi),
666 SSMFIELD_ENTRY( CPUMCTX, rsi),
667 SSMFIELD_ENTRY( CPUMCTX, rbp),
668 SSMFIELD_ENTRY( CPUMCTX, rax),
669 SSMFIELD_ENTRY( CPUMCTX, rbx),
670 SSMFIELD_ENTRY( CPUMCTX, rdx),
671 SSMFIELD_ENTRY( CPUMCTX, rcx),
672 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, rsp),
673 SSMFIELD_ENTRY( CPUMCTX, ss.Sel),
674 SSMFIELD_ENTRY_OLD( ssPadding, sizeof(uint16_t)),
675 SSMFIELD_ENTRY_OLD( CPUMCTX, sizeof(uint64_t) /*rsp_notused*/),
676 SSMFIELD_ENTRY( CPUMCTX, gs.Sel),
677 SSMFIELD_ENTRY_OLD( gsPadding, sizeof(uint16_t)),
678 SSMFIELD_ENTRY( CPUMCTX, fs.Sel),
679 SSMFIELD_ENTRY_OLD( fsPadding, sizeof(uint16_t)),
680 SSMFIELD_ENTRY( CPUMCTX, es.Sel),
681 SSMFIELD_ENTRY_OLD( esPadding, sizeof(uint16_t)),
682 SSMFIELD_ENTRY( CPUMCTX, ds.Sel),
683 SSMFIELD_ENTRY_OLD( dsPadding, sizeof(uint16_t)),
684 SSMFIELD_ENTRY( CPUMCTX, cs.Sel),
685 SSMFIELD_ENTRY_OLD( csPadding, sizeof(uint16_t)*3),
686 SSMFIELD_ENTRY( CPUMCTX, rflags),
687 SSMFIELD_ENTRY( CPUMCTX, rip),
688 SSMFIELD_ENTRY( CPUMCTX, r8),
689 SSMFIELD_ENTRY( CPUMCTX, r9),
690 SSMFIELD_ENTRY( CPUMCTX, r10),
691 SSMFIELD_ENTRY( CPUMCTX, r11),
692 SSMFIELD_ENTRY( CPUMCTX, r12),
693 SSMFIELD_ENTRY( CPUMCTX, r13),
694 SSMFIELD_ENTRY( CPUMCTX, r14),
695 SSMFIELD_ENTRY( CPUMCTX, r15),
696 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, es.u64Base),
697 SSMFIELD_ENTRY( CPUMCTX, es.u32Limit),
698 SSMFIELD_ENTRY( CPUMCTX, es.Attr),
699 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, cs.u64Base),
700 SSMFIELD_ENTRY( CPUMCTX, cs.u32Limit),
701 SSMFIELD_ENTRY( CPUMCTX, cs.Attr),
702 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, ss.u64Base),
703 SSMFIELD_ENTRY( CPUMCTX, ss.u32Limit),
704 SSMFIELD_ENTRY( CPUMCTX, ss.Attr),
705 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, ds.u64Base),
706 SSMFIELD_ENTRY( CPUMCTX, ds.u32Limit),
707 SSMFIELD_ENTRY( CPUMCTX, ds.Attr),
708 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, fs.u64Base),
709 SSMFIELD_ENTRY( CPUMCTX, fs.u32Limit),
710 SSMFIELD_ENTRY( CPUMCTX, fs.Attr),
711 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, gs.u64Base),
712 SSMFIELD_ENTRY( CPUMCTX, gs.u32Limit),
713 SSMFIELD_ENTRY( CPUMCTX, gs.Attr),
714 SSMFIELD_ENTRY( CPUMCTX, cr0),
715 SSMFIELD_ENTRY( CPUMCTX, cr2),
716 SSMFIELD_ENTRY( CPUMCTX, cr3),
717 SSMFIELD_ENTRY( CPUMCTX, cr4),
718 SSMFIELD_ENTRY_OLD( cr8, sizeof(uint64_t)),
719 SSMFIELD_ENTRY( CPUMCTX, dr[0]),
720 SSMFIELD_ENTRY( CPUMCTX, dr[1]),
721 SSMFIELD_ENTRY( CPUMCTX, dr[2]),
722 SSMFIELD_ENTRY( CPUMCTX, dr[3]),
723 SSMFIELD_ENTRY_OLD( dr[4], sizeof(uint64_t)),
724 SSMFIELD_ENTRY_OLD( dr[5], sizeof(uint64_t)),
725 SSMFIELD_ENTRY( CPUMCTX, dr[6]),
726 SSMFIELD_ENTRY( CPUMCTX, dr[7]),
727 SSMFIELD_ENTRY( CPUMCTX, gdtr.cbGdt),
728 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, gdtr.pGdt),
729 SSMFIELD_ENTRY_OLD( gdtrPadding, sizeof(uint16_t)),
730 SSMFIELD_ENTRY_OLD( gdtrPadding64, sizeof(uint64_t)),
731 SSMFIELD_ENTRY( CPUMCTX, idtr.cbIdt),
732 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, idtr.pIdt),
733 SSMFIELD_ENTRY_OLD( idtrPadding, sizeof(uint16_t)),
734 SSMFIELD_ENTRY_OLD( idtrPadding64, sizeof(uint64_t)),
735 SSMFIELD_ENTRY( CPUMCTX, ldtr.Sel),
736 SSMFIELD_ENTRY_OLD( ldtrPadding, sizeof(uint16_t)),
737 SSMFIELD_ENTRY( CPUMCTX, tr.Sel),
738 SSMFIELD_ENTRY_OLD( trPadding, sizeof(uint16_t)),
739 SSMFIELD_ENTRY( CPUMCTX, SysEnter.cs),
740 SSMFIELD_ENTRY( CPUMCTX, SysEnter.eip),
741 SSMFIELD_ENTRY( CPUMCTX, SysEnter.esp),
742 SSMFIELD_ENTRY( CPUMCTX, msrEFER),
743 SSMFIELD_ENTRY( CPUMCTX, msrSTAR),
744 SSMFIELD_ENTRY( CPUMCTX, msrPAT),
745 SSMFIELD_ENTRY( CPUMCTX, msrLSTAR),
746 SSMFIELD_ENTRY( CPUMCTX, msrCSTAR),
747 SSMFIELD_ENTRY( CPUMCTX, msrSFMASK),
748 SSMFIELD_ENTRY_OLD( msrFSBASE, sizeof(uint64_t)),
749 SSMFIELD_ENTRY_OLD( msrGSBASE, sizeof(uint64_t)),
750 SSMFIELD_ENTRY( CPUMCTX, msrKERNELGSBASE),
751 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, ldtr.u64Base),
752 SSMFIELD_ENTRY( CPUMCTX, ldtr.u32Limit),
753 SSMFIELD_ENTRY( CPUMCTX, ldtr.Attr),
754 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, tr.u64Base),
755 SSMFIELD_ENTRY( CPUMCTX, tr.u32Limit),
756 SSMFIELD_ENTRY( CPUMCTX, tr.Attr),
757 SSMFIELD_ENTRY_OLD( padding, sizeof(uint32_t)*2),
758 SSMFIELD_ENTRY_TERM()
759};
760
761
762/**
763 * Checks for partial/leaky FXSAVE/FXRSTOR handling on AMD CPUs.
764 *
765 * AMD K7, K8 and newer AMD CPUs do not save/restore the x87 error pointers
766 * (last instruction pointer, last data pointer, last opcode) except when the ES
767 * bit (Exception Summary) in x87 FSW (FPU Status Word) is set. Thus if we don't
768 * clear these registers there is potential, local FPU leakage from a process
769 * using the FPU to another.
770 *
771 * See AMD Instruction Reference for FXSAVE, FXRSTOR.
772 *
773 * @param pVM The cross context VM structure.
774 */
775static void cpumR3CheckLeakyFpu(PVM pVM)
776{
777 uint32_t u32CpuVersion = ASMCpuId_EAX(1);
778 uint32_t const u32Family = u32CpuVersion >> 8;
779 if ( u32Family >= 6 /* K7 and higher */
780 && ASMIsAmdCpu())
781 {
782 uint32_t cExt = ASMCpuId_EAX(0x80000000);
783 if (ASMIsValidExtRange(cExt))
784 {
785 uint32_t fExtFeaturesEDX = ASMCpuId_EDX(0x80000001);
786 if (fExtFeaturesEDX & X86_CPUID_AMD_FEATURE_EDX_FFXSR)
787 {
788 for (VMCPUID i = 0; i < pVM->cCpus; i++)
789 pVM->aCpus[i].cpum.s.fUseFlags |= CPUM_USE_FFXSR_LEAKY;
790 Log(("CPUMR3Init: host CPU has leaky fxsave/fxrstor behaviour\n"));
791 }
792 }
793 }
794}
795
796
797/**
798 * Frees memory allocated for the SVM hardware virtualization state.
799 *
800 * @param pVM The cross context VM structure.
801 */
802static void cpumR3FreeSvmHwVirtState(PVM pVM)
803{
804 Assert(pVM->cpum.ro.GuestFeatures.fSvm);
805 for (VMCPUID i = 0; i < pVM->cCpus; i++)
806 {
807 PVMCPU pVCpu = &pVM->aCpus[i];
808 if (pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR3)
809 {
810 SUPR3PageFreeEx(pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR3, SVM_VMCB_PAGES);
811 pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR3 = NULL;
812 }
813 pVCpu->cpum.s.Guest.hwvirt.svm.HCPhysVmcb = NIL_RTHCPHYS;
814
815 if (pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR3)
816 {
817 SUPR3PageFreeEx(pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR3, SVM_MSRPM_PAGES);
818 pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR3 = NULL;
819 }
820
821 if (pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR3)
822 {
823 SUPR3PageFreeEx(pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR3, SVM_IOPM_PAGES);
824 pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR3 = NULL;
825 }
826 }
827}
828
829
830/**
831 * Allocates memory for the SVM hardware virtualization state.
832 *
833 * @returns VBox status code.
834 * @param pVM The cross context VM structure.
835 */
836static int cpumR3AllocSvmHwVirtState(PVM pVM)
837{
838 Assert(pVM->cpum.ro.GuestFeatures.fSvm);
839
840 int rc = VINF_SUCCESS;
841 LogRel(("CPUM: Allocating %u pages for the nested-guest SVM MSR and IO permission bitmaps\n",
842 pVM->cCpus * (SVM_MSRPM_PAGES + SVM_IOPM_PAGES)));
843 for (VMCPUID i = 0; i < pVM->cCpus; i++)
844 {
845 PVMCPU pVCpu = &pVM->aCpus[i];
846 pVCpu->cpum.s.Guest.hwvirt.enmHwvirt = CPUMHWVIRT_SVM;
847
848 /*
849 * Allocate the nested-guest VMCB.
850 */
851 SUPPAGE SupNstGstVmcbPage;
852 RT_ZERO(SupNstGstVmcbPage);
853 SupNstGstVmcbPage.Phys = NIL_RTHCPHYS;
854 Assert(SVM_VMCB_PAGES == 1);
855 Assert(!pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR3);
856 rc = SUPR3PageAllocEx(SVM_VMCB_PAGES, 0 /* fFlags */, (void **)&pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR3,
857 &pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR0, &SupNstGstVmcbPage);
858 if (RT_FAILURE(rc))
859 {
860 Assert(!pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR3);
861 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's VMCB\n", pVCpu->idCpu, SVM_VMCB_PAGES));
862 break;
863 }
864 pVCpu->cpum.s.Guest.hwvirt.svm.HCPhysVmcb = SupNstGstVmcbPage.Phys;
865
866 /*
867 * Allocate the MSRPM (MSR Permission bitmap).
868 */
869 Assert(!pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR3);
870 rc = SUPR3PageAllocEx(SVM_MSRPM_PAGES, 0 /* fFlags */, &pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR3,
871 &pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR0, NULL /* paPages */);
872 if (RT_FAILURE(rc))
873 {
874 Assert(!pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR3);
875 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's MSR permission bitmap\n", pVCpu->idCpu,
876 SVM_MSRPM_PAGES));
877 break;
878 }
879
880 /*
881 * Allocate the IOPM (IO Permission bitmap).
882 */
883 Assert(!pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR3);
884 rc = SUPR3PageAllocEx(SVM_IOPM_PAGES, 0 /* fFlags */, &pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR3,
885 &pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR0, NULL /* paPages */);
886 if (RT_FAILURE(rc))
887 {
888 Assert(!pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR3);
889 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's IO permission bitmap\n", pVCpu->idCpu,
890 SVM_IOPM_PAGES));
891 break;
892 }
893 }
894
895 /* On any failure, cleanup. */
896 if (RT_FAILURE(rc))
897 cpumR3FreeSvmHwVirtState(pVM);
898
899 return rc;
900}
901
902
903/**
904 * Initializes (or re-initializes) per-VCPU SVM hardware virtualization state.
905 *
906 * @param pVCpu The cross context virtual CPU structure.
907 */
908DECLINLINE(void) cpumR3InitSvmHwVirtState(PVMCPU pVCpu)
909{
910 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
911 Assert(pCtx->hwvirt.enmHwvirt == CPUMHWVIRT_SVM);
912 Assert(pCtx->hwvirt.svm.CTX_SUFF(pVmcb));
913
914 memset(pCtx->hwvirt.svm.CTX_SUFF(pVmcb), 0, SVM_VMCB_PAGES << PAGE_SHIFT);
915 pCtx->hwvirt.svm.uMsrHSavePa = 0;
916 pCtx->hwvirt.svm.uPrevPauseTick = 0;
917}
918
919
920/**
921 * Frees memory allocated for the VMX hardware virtualization state.
922 *
923 * @param pVM The cross context VM structure.
924 */
925static void cpumR3FreeVmxHwVirtState(PVM pVM)
926{
927 Assert(pVM->cpum.ro.GuestFeatures.fVmx);
928 for (VMCPUID i = 0; i < pVM->cCpus; i++)
929 {
930 PVMCPU pVCpu = &pVM->aCpus[i];
931 if (pVCpu->cpum.s.Guest.hwvirt.vmx.pVmcsR3)
932 {
933 SUPR3PageFreeEx(pVCpu->cpum.s.Guest.hwvirt.vmx.pVmcsR3, VMX_V_VMCS_PAGES);
934 pVCpu->cpum.s.Guest.hwvirt.vmx.pVmcsR3 = NULL;
935 }
936 if (pVCpu->cpum.s.Guest.hwvirt.vmx.pvVirtApicPageR3)
937 {
938 SUPR3PageFreeEx(pVCpu->cpum.s.Guest.hwvirt.vmx.pvVirtApicPageR3, VMX_V_VIRT_APIC_PAGES);
939 pVCpu->cpum.s.Guest.hwvirt.vmx.pvVirtApicPageR3 = NULL;
940 }
941 if (pVCpu->cpum.s.Guest.hwvirt.vmx.pvVmreadBitmapR3)
942 {
943 SUPR3PageFreeEx(pVCpu->cpum.s.Guest.hwvirt.vmx.pvVmreadBitmapR3, VMX_V_VMREAD_VMWRITE_BITMAP_PAGES);
944 pVCpu->cpum.s.Guest.hwvirt.vmx.pvVmreadBitmapR3 = NULL;
945 }
946 if (pVCpu->cpum.s.Guest.hwvirt.vmx.pvVmwriteBitmapR3)
947 {
948 SUPR3PageFreeEx(pVCpu->cpum.s.Guest.hwvirt.vmx.pvVmwriteBitmapR3, VMX_V_VMREAD_VMWRITE_BITMAP_PAGES);
949 pVCpu->cpum.s.Guest.hwvirt.vmx.pvVmwriteBitmapR3 = NULL;
950 }
951 if (pVCpu->cpum.s.Guest.hwvirt.vmx.pAutoMsrAreaR3)
952 {
953 SUPR3PageFreeEx(pVCpu->cpum.s.Guest.hwvirt.vmx.pAutoMsrAreaR3, VMX_V_AUTOMSR_AREA_PAGES);
954 pVCpu->cpum.s.Guest.hwvirt.vmx.pAutoMsrAreaR3 = NULL;
955 }
956 if (pVCpu->cpum.s.Guest.hwvirt.vmx.pvMsrBitmapR3)
957 {
958 SUPR3PageFreeEx(pVCpu->cpum.s.Guest.hwvirt.vmx.pvMsrBitmapR3, VMX_V_MSR_BITMAP_PAGES);
959 pVCpu->cpum.s.Guest.hwvirt.vmx.pvMsrBitmapR3 = NULL;
960 }
961 }
962}
963
964
965/**
966 * Allocates memory for the VMX hardware virtualization state.
967 *
968 * @returns VBox status code.
969 * @param pVM The cross context VM structure.
970 */
971static int cpumR3AllocVmxHwVirtState(PVM pVM)
972{
973 int rc = VINF_SUCCESS;
974 LogRel(("CPUM: Allocating %u pages for the nested-guest VMCS and related structures\n",
975 pVM->cCpus * ( VMX_V_VMCS_PAGES + VMX_V_VIRT_APIC_PAGES + VMX_V_VMREAD_VMWRITE_BITMAP_PAGES * 2
976 + VMX_V_AUTOMSR_AREA_PAGES)));
977 for (VMCPUID i = 0; i < pVM->cCpus; i++)
978 {
979 PVMCPU pVCpu = &pVM->aCpus[i];
980 pVCpu->cpum.s.Guest.hwvirt.enmHwvirt = CPUMHWVIRT_VMX;
981
982 /*
983 * Allocate the nested-guest current VMCS.
984 */
985 Assert(VMX_V_VMCS_PAGES == 1);
986 Assert(!pVCpu->cpum.s.Guest.hwvirt.vmx.pVmcsR3);
987 rc = SUPR3PageAllocEx(VMX_V_VMCS_PAGES, 0 /* fFlags */, (void **)&pVCpu->cpum.s.Guest.hwvirt.vmx.pVmcsR3,
988 &pVCpu->cpum.s.Guest.hwvirt.vmx.pVmcsR0, NULL /* paPages */);
989 if (RT_FAILURE(rc))
990 {
991 Assert(!pVCpu->cpum.s.Guest.hwvirt.vmx.pVmcsR3);
992 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's VMCS\n", pVCpu->idCpu, VMX_V_VMCS_PAGES));
993 break;
994 }
995
996 /*
997 * Allocate the Virtual-APIC page.
998 */
999 Assert(!pVCpu->cpum.s.Guest.hwvirt.vmx.pvVirtApicPageR3);
1000 rc = SUPR3PageAllocEx(VMX_V_VIRT_APIC_PAGES, 0 /* fFlags */, &pVCpu->cpum.s.Guest.hwvirt.vmx.pvVirtApicPageR3,
1001 &pVCpu->cpum.s.Guest.hwvirt.vmx.pvVirtApicPageR0, NULL /* paPages */);
1002 if (RT_FAILURE(rc))
1003 {
1004 Assert(!pVCpu->cpum.s.Guest.hwvirt.vmx.pvVirtApicPageR3);
1005 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's Virtual-APIC page\n", pVCpu->idCpu,
1006 VMX_V_VIRT_APIC_PAGES));
1007 break;
1008 }
1009
1010 /*
1011 * Allocate the VMREAD-bitmap.
1012 */
1013 Assert(!pVCpu->cpum.s.Guest.hwvirt.vmx.pvVmreadBitmapR3);
1014 rc = SUPR3PageAllocEx(VMX_V_VMREAD_VMWRITE_BITMAP_PAGES, 0 /* fFlags */, &pVCpu->cpum.s.Guest.hwvirt.vmx.pvVmreadBitmapR3,
1015 &pVCpu->cpum.s.Guest.hwvirt.vmx.pvVmreadBitmapR0, NULL /* paPages */);
1016 if (RT_FAILURE(rc))
1017 {
1018 Assert(!pVCpu->cpum.s.Guest.hwvirt.vmx.pvVmreadBitmapR3);
1019 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's VMREAD-bitmap\n", pVCpu->idCpu,
1020 VMX_V_VMREAD_VMWRITE_BITMAP_PAGES));
1021 break;
1022 }
1023
1024 /*
1025 * Allocatge the VMWRITE-bitmap.
1026 */
1027 Assert(!pVCpu->cpum.s.Guest.hwvirt.vmx.pvVmwriteBitmapR3);
1028 rc = SUPR3PageAllocEx(VMX_V_VMREAD_VMWRITE_BITMAP_PAGES, 0 /* fFlags */,
1029 &pVCpu->cpum.s.Guest.hwvirt.vmx.pvVmwriteBitmapR3,
1030 &pVCpu->cpum.s.Guest.hwvirt.vmx.pvVmwriteBitmapR0, NULL /* paPages */);
1031 if (RT_FAILURE(rc))
1032 {
1033 Assert(!pVCpu->cpum.s.Guest.hwvirt.vmx.pvVmwriteBitmapR3);
1034 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's VMWRITE-bitmap\n", pVCpu->idCpu,
1035 VMX_V_VMREAD_VMWRITE_BITMAP_PAGES));
1036 break;
1037 }
1038
1039 /*
1040 * Allocate the MSR auto-load/store area.
1041 */
1042 Assert(!pVCpu->cpum.s.Guest.hwvirt.vmx.pAutoMsrAreaR3);
1043 rc = SUPR3PageAllocEx(VMX_V_AUTOMSR_AREA_PAGES, 0 /* fFlags */, (void **)&pVCpu->cpum.s.Guest.hwvirt.vmx.pAutoMsrAreaR3,
1044 &pVCpu->cpum.s.Guest.hwvirt.vmx.pAutoMsrAreaR0, NULL /* paPages */);
1045 if (RT_FAILURE(rc))
1046 {
1047 Assert(!pVCpu->cpum.s.Guest.hwvirt.vmx.pAutoMsrAreaR3);
1048 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's auto-load/store MSR area\n", pVCpu->idCpu,
1049 VMX_V_AUTOMSR_AREA_PAGES));
1050 break;
1051 }
1052
1053 /*
1054 * Allocate the MSR bitmap.
1055 */
1056 Assert(!pVCpu->cpum.s.Guest.hwvirt.vmx.pvMsrBitmapR3);
1057 rc = SUPR3PageAllocEx(VMX_V_MSR_BITMAP_PAGES, 0 /* fFlags */, (void **)&pVCpu->cpum.s.Guest.hwvirt.vmx.pvMsrBitmapR3,
1058 &pVCpu->cpum.s.Guest.hwvirt.vmx.pvMsrBitmapR0, NULL /* paPages */);
1059 if (RT_FAILURE(rc))
1060 {
1061 Assert(!pVCpu->cpum.s.Guest.hwvirt.vmx.pvMsrBitmapR3);
1062 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's MSR bitmap\n", pVCpu->idCpu,
1063 VMX_V_MSR_BITMAP_PAGES));
1064 break;
1065 }
1066 }
1067
1068 /* On any failure, cleanup. */
1069 if (RT_FAILURE(rc))
1070 cpumR3FreeVmxHwVirtState(pVM);
1071
1072 return rc;
1073}
1074
1075
1076/**
1077 * Initializes (or re-initializes) per-VCPU VMX hardware virtualization state.
1078 *
1079 * @param pVCpu The cross context virtual CPU structure.
1080 */
1081DECLINLINE(void) cpumR3InitVmxHwVirtState(PVMCPU pVCpu)
1082{
1083 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
1084 Assert(pCtx->hwvirt.enmHwvirt == CPUMHWVIRT_VMX);
1085 Assert(pCtx->hwvirt.vmx.CTX_SUFF(pVmcs));
1086 Assert(pCtx->hwvirt.vmx.CTX_SUFF(pShadowVmcs));
1087
1088 memset(pCtx->hwvirt.vmx.CTX_SUFF(pVmcs), 0, VMX_V_VMCS_SIZE);
1089 memset(pCtx->hwvirt.vmx.CTX_SUFF(pShadowVmcs), 0, VMX_V_VMCS_SIZE);
1090 pCtx->hwvirt.vmx.GCPhysVmxon = NIL_RTGCPHYS;
1091 pCtx->hwvirt.vmx.GCPhysShadowVmcs = NIL_RTGCPHYS;
1092 pCtx->hwvirt.vmx.GCPhysVmxon = NIL_RTGCPHYS;
1093 pCtx->hwvirt.vmx.fInVmxRootMode = false;
1094 pCtx->hwvirt.vmx.fInVmxNonRootMode = false;
1095 /* Don't reset diagnostics here. */
1096}
1097
1098
1099/**
1100 * Displays the host and guest VMX features.
1101 *
1102 * @param pVM The cross context VM structure.
1103 * @param pHlp The info helper functions.
1104 * @param pszArgs "terse", "default" or "verbose".
1105 */
1106DECLCALLBACK(void) cpumR3InfoVmxFeatures(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
1107{
1108 RT_NOREF(pszArgs);
1109 PCCPUMFEATURES pHostFeatures = &pVM->cpum.s.HostFeatures;
1110 PCCPUMFEATURES pGuestFeatures = &pVM->cpum.s.GuestFeatures;
1111 if ( pHostFeatures->enmCpuVendor == CPUMCPUVENDOR_INTEL
1112 || pHostFeatures->enmCpuVendor == CPUMCPUVENDOR_VIA)
1113 {
1114#define VMXFEATDUMP(a_szDesc, a_Var) \
1115 pHlp->pfnPrintf(pHlp, " %s = %u (%u)\n", a_szDesc, pGuestFeatures->a_Var, pHostFeatures->a_Var)
1116
1117 pHlp->pfnPrintf(pHlp, "Nested hardware virtualization - VMX features\n");
1118 pHlp->pfnPrintf(pHlp, " Mnemonic - Description = guest (host)\n");
1119 VMXFEATDUMP("VMX - Virtual-Machine Extensions ", fVmx);
1120 if (!pGuestFeatures->fVmx)
1121 return;
1122 /* Basic. */
1123 VMXFEATDUMP("InsOutInfo - INS/OUTS instruction info. ", fVmxInsOutInfo);
1124 /* Pin-based controls. */
1125 VMXFEATDUMP("ExtIntExit - External interrupt VM-exit ", fVmxExtIntExit);
1126 VMXFEATDUMP("NmiExit - NMI VM-exit ", fVmxNmiExit);
1127 VMXFEATDUMP("VirtNmi - Virtual NMIs ", fVmxVirtNmi);
1128 VMXFEATDUMP("PreemptTimer - VMX preemption timer ", fVmxPreemptTimer);
1129 VMXFEATDUMP("PostedInt - Posted interrupts ", fVmxPostedInt);
1130 /* Processor-based controls. */
1131 VMXFEATDUMP("IntWindowExit - Interrupt-window exiting ", fVmxIntWindowExit);
1132 VMXFEATDUMP("TscOffsetting - TSC offsetting ", fVmxTscOffsetting);
1133 VMXFEATDUMP("HltExit - HLT exiting ", fVmxHltExit);
1134 VMXFEATDUMP("InvlpgExit - INVLPG exiting ", fVmxInvlpgExit);
1135 VMXFEATDUMP("MwaitExit - MWAIT exiting ", fVmxMwaitExit);
1136 VMXFEATDUMP("RdpmcExit - RDPMC exiting ", fVmxRdpmcExit);
1137 VMXFEATDUMP("RdtscExit - RDTSC exiting ", fVmxRdtscExit);
1138 VMXFEATDUMP("Cr3LoadExit - CR3-load exiting ", fVmxCr3LoadExit);
1139 VMXFEATDUMP("Cr3StoreExit - CR3-store exiting ", fVmxCr3StoreExit);
1140 VMXFEATDUMP("Cr8LoadExit - CR8-load exiting ", fVmxCr8LoadExit);
1141 VMXFEATDUMP("Cr8StoreExit - CR8-store exiting ", fVmxCr8StoreExit);
1142 VMXFEATDUMP("UseTprShadow - Use TPR shadow ", fVmxUseTprShadow);
1143 VMXFEATDUMP("NmiWindowExit - NMI-window exiting ", fVmxNmiWindowExit);
1144 VMXFEATDUMP("MovDRxExit - Mov-DR exiting ", fVmxMovDRxExit);
1145 VMXFEATDUMP("UncondIoExit - Unconditional I/O exiting ", fVmxUncondIoExit);
1146 VMXFEATDUMP("UseIoBitmaps - Use I/O bitmaps ", fVmxUseIoBitmaps);
1147 VMXFEATDUMP("MonitorTrapFlag - Monitor trap flag ", fVmxMonitorTrapFlag);
1148 VMXFEATDUMP("UseMsrBitmaps - MSR bitmaps ", fVmxUseMsrBitmaps);
1149 VMXFEATDUMP("MonitorExit - MONITOR exiting ", fVmxMonitorExit);
1150 VMXFEATDUMP("PauseExit - PAUSE exiting ", fVmxPauseExit);
1151 VMXFEATDUMP("SecondaryExecCtl - Activate secondary controls ", fVmxSecondaryExecCtls);
1152 /* Secondary processor-based controls. */
1153 VMXFEATDUMP("VirtApic - Virtualize-APIC accesses ", fVmxVirtApicAccess);
1154 VMXFEATDUMP("Ept - Extended Page Tables ", fVmxEpt);
1155 VMXFEATDUMP("DescTableExit - Descriptor-table exiting ", fVmxDescTableExit);
1156 VMXFEATDUMP("Rdtscp - Enable RDTSCP ", fVmxRdtscp);
1157 VMXFEATDUMP("VirtX2ApicMode - Virtualize-x2APIC mode ", fVmxVirtX2ApicMode);
1158 VMXFEATDUMP("Vpid - Enable VPID ", fVmxVpid);
1159 VMXFEATDUMP("WbinvdExit - WBINVD exiting ", fVmxWbinvdExit);
1160 VMXFEATDUMP("UnrestrictedGuest - Unrestricted guest ", fVmxUnrestrictedGuest);
1161 VMXFEATDUMP("ApicRegVirt - APIC-register virtualization ", fVmxApicRegVirt);
1162 VMXFEATDUMP("VirtIntDelivery - Virtual-interrupt delivery ", fVmxVirtIntDelivery);
1163 VMXFEATDUMP("PauseLoopExit - PAUSE-loop exiting ", fVmxPauseLoopExit);
1164 VMXFEATDUMP("RdrandExit - RDRAND exiting ", fVmxRdrandExit);
1165 VMXFEATDUMP("Invpcid - Enable INVPCID ", fVmxInvpcid);
1166 VMXFEATDUMP("VmFuncs - Enable VM Functions ", fVmxVmFunc);
1167 VMXFEATDUMP("VmcsShadowing - VMCS shadowing ", fVmxVmcsShadowing);
1168 VMXFEATDUMP("RdseedExiting - RDSEED exiting ", fVmxRdseedExit);
1169 VMXFEATDUMP("PML - Supports Page-Modification Log (PML) ", fVmxPml);
1170 VMXFEATDUMP("EptVe - EPT violations can cause #VE ", fVmxEptXcptVe);
1171 VMXFEATDUMP("XsavesXRstors - Enable XSAVES/XRSTORS ", fVmxXsavesXrstors);
1172 /* VM-entry controls. */
1173 VMXFEATDUMP("EntryLoadDebugCtls - Load debug controls on VM-entry ", fVmxEntryLoadDebugCtls);
1174 VMXFEATDUMP("Ia32eModeGuest - IA-32e mode guest ", fVmxIa32eModeGuest);
1175 VMXFEATDUMP("EntryLoadEferMsr - Load IA32_EFER on VM-entry ", fVmxEntryLoadEferMsr);
1176 VMXFEATDUMP("EntryLoadPatMsr - Load IA32_PAT on VM-entry ", fVmxEntryLoadPatMsr);
1177 /* VM-exit controls. */
1178 VMXFEATDUMP("ExitSaveDebugCtls - Save debug controls on VM-exit ", fVmxExitSaveDebugCtls);
1179 VMXFEATDUMP("HostAddrSpaceSize - Host address-space size ", fVmxHostAddrSpaceSize);
1180 VMXFEATDUMP("ExitAckExtInt - Acknowledge interrupt on VM-exit ", fVmxExitAckExtInt);
1181 VMXFEATDUMP("ExitSavePatMsr - Save IA32_PAT on VM-exit ", fVmxExitSavePatMsr);
1182 VMXFEATDUMP("ExitLoadPatMsr - Load IA32_PAT on VM-exit ", fVmxExitLoadPatMsr);
1183 VMXFEATDUMP("ExitSaveEferMsr - Save IA32_EFER on VM-exit ", fVmxExitSaveEferMsr);
1184 VMXFEATDUMP("ExitLoadEferMsr - Load IA32_EFER on VM-exit ", fVmxExitLoadEferMsr);
1185 VMXFEATDUMP("SavePreemptTimer - Save VMX-preemption timer ", fVmxSavePreemptTimer);
1186 VMXFEATDUMP("ExitStoreEferLma - Store EFER.LMA on VM-exit ", fVmxExitStoreEferLma);
1187 VMXFEATDUMP("VmwriteAll - VMWRITE to any VMCS field ", fVmxVmwriteAll);
1188 VMXFEATDUMP("EntryInjectSoftInt - Inject softint. with 0-len instr. ", fVmxEntryInjectSoftInt);
1189 /* Miscellaneous data. */
1190 VMXFEATDUMP("ExitStoreEferLma - Inject softint. with 0-len instr. ", fVmxExitStoreEferLma);
1191 VMXFEATDUMP("VmwriteAll - Inject softint. with 0-len instr. ", fVmxVmwriteAll);
1192 VMXFEATDUMP("EntryInjectSoftInt - Inject softint. with 0-len instr. ", fVmxEntryInjectSoftInt);
1193#undef VMXFEATDUMP
1194 }
1195 else
1196 pHlp->pfnPrintf(pHlp, "No VMX features present - requires an Intel or compatible CPU.\n");
1197}
1198
1199
1200/**
1201 * Initializes VMX host and guest features.
1202 *
1203 * @param pVM The cross context VM structure.
1204 *
1205 * @remarks This must be called only after HM has fully initialized since it calls
1206 * into HM to retrieve VMX and related MSRs.
1207 */
1208static void cpumR3InitVmxCpuFeatures(PVM pVM)
1209{
1210 /*
1211 * Init. host features.
1212 */
1213 PCPUMFEATURES pHostFeat = &pVM->cpum.s.HostFeatures;
1214 VMXMSRS VmxMsrs;
1215 int rc = HMVmxGetHostMsrs(pVM, &VmxMsrs);
1216 if (RT_SUCCESS(rc))
1217 {
1218 /* Basic information. */
1219 pHostFeat->fVmxInsOutInfo = RT_BF_GET(VmxMsrs.u64Basic, VMX_BF_BASIC_VMCS_INS_OUTS);
1220
1221 /* Pin-based VM-execution controls. */
1222 uint32_t const fPinCtls = VmxMsrs.PinCtls.n.allowed1;
1223 pHostFeat->fVmxExtIntExit = RT_BOOL(fPinCtls & VMX_PIN_CTLS_EXT_INT_EXIT);
1224 pHostFeat->fVmxNmiExit = RT_BOOL(fPinCtls & VMX_PIN_CTLS_NMI_EXIT);
1225 pHostFeat->fVmxVirtNmi = RT_BOOL(fPinCtls & VMX_PIN_CTLS_VIRT_NMI);
1226 pHostFeat->fVmxPreemptTimer = RT_BOOL(fPinCtls & VMX_PIN_CTLS_PREEMPT_TIMER);
1227 pHostFeat->fVmxPostedInt = RT_BOOL(fPinCtls & VMX_PIN_CTLS_POSTED_INT);
1228
1229 /* Processor-based VM-execution controls. */
1230 uint32_t const fProcCtls = VmxMsrs.ProcCtls.n.allowed1;
1231 pHostFeat->fVmxIntWindowExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_INT_WINDOW_EXIT);
1232 pHostFeat->fVmxTscOffsetting = RT_BOOL(fProcCtls & VMX_PROC_CTLS_USE_TSC_OFFSETTING);
1233 pHostFeat->fVmxHltExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_HLT_EXIT);
1234 pHostFeat->fVmxInvlpgExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_INVLPG_EXIT);
1235 pHostFeat->fVmxMwaitExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_MWAIT_EXIT);
1236 pHostFeat->fVmxRdpmcExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_RDPMC_EXIT);
1237 pHostFeat->fVmxRdtscExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_RDTSC_EXIT);
1238 pHostFeat->fVmxCr3LoadExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_CR3_LOAD_EXIT);
1239 pHostFeat->fVmxCr3StoreExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_CR3_STORE_EXIT);
1240 pHostFeat->fVmxCr8LoadExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_CR8_LOAD_EXIT);
1241 pHostFeat->fVmxCr8StoreExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_CR8_STORE_EXIT);
1242 pHostFeat->fVmxUseTprShadow = RT_BOOL(fProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW);
1243 pHostFeat->fVmxNmiWindowExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_NMI_WINDOW_EXIT);
1244 pHostFeat->fVmxMovDRxExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_MOV_DR_EXIT);
1245 pHostFeat->fVmxUncondIoExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_UNCOND_IO_EXIT);
1246 pHostFeat->fVmxUseIoBitmaps = RT_BOOL(fProcCtls & VMX_PROC_CTLS_USE_IO_BITMAPS);
1247 pHostFeat->fVmxMonitorTrapFlag = RT_BOOL(fProcCtls & VMX_PROC_CTLS_MONITOR_TRAP_FLAG);
1248 pHostFeat->fVmxUseMsrBitmaps = RT_BOOL(fProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS);
1249 pHostFeat->fVmxMonitorExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_MONITOR_EXIT);
1250 pHostFeat->fVmxPauseExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_PAUSE_EXIT);
1251 pHostFeat->fVmxSecondaryExecCtls = RT_BOOL(fProcCtls & VMX_PROC_CTLS_USE_SECONDARY_CTLS);
1252
1253 /* Secondary processor-based VM-execution controls. */
1254 if (pHostFeat->fVmxSecondaryExecCtls)
1255 {
1256 uint32_t const fProcCtls2 = VmxMsrs.ProcCtls2.n.allowed1;
1257 pHostFeat->fVmxVirtApicAccess = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS);
1258 pHostFeat->fVmxEpt = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_EPT);
1259 pHostFeat->fVmxDescTableExit = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_DESC_TABLE_EXIT);
1260 pHostFeat->fVmxRdtscp = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_RDTSCP);
1261 pHostFeat->fVmxVirtX2ApicMode = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_VIRT_X2APIC_MODE);
1262 pHostFeat->fVmxVpid = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_VPID);
1263 pHostFeat->fVmxWbinvdExit = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_WBINVD_EXIT);
1264 pHostFeat->fVmxUnrestrictedGuest = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_UNRESTRICTED_GUEST);
1265 pHostFeat->fVmxApicRegVirt = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_APIC_REG_VIRT);
1266 pHostFeat->fVmxVirtIntDelivery = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY);
1267 pHostFeat->fVmxPauseLoopExit = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_PAUSE_LOOP_EXIT);
1268 pHostFeat->fVmxRdrandExit = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_RDRAND_EXIT);
1269 pHostFeat->fVmxInvpcid = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_INVPCID);
1270 pHostFeat->fVmxVmFunc = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_VMFUNC);
1271 pHostFeat->fVmxVmcsShadowing = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_VMCS_SHADOWING);
1272 pHostFeat->fVmxRdseedExit = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_RDSEED_EXIT);
1273 pHostFeat->fVmxPml = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_PML);
1274 pHostFeat->fVmxEptXcptVe = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_EPT_VE);
1275 pHostFeat->fVmxXsavesXrstors = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_XSAVES_XRSTORS);
1276 pHostFeat->fVmxUseTscScaling = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_TSC_SCALING);
1277 }
1278
1279 /* VM-entry controls. */
1280 uint32_t const fEntryCtls = VmxMsrs.EntryCtls.n.allowed1;
1281 pHostFeat->fVmxEntryLoadDebugCtls = RT_BOOL(fEntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG);
1282 pHostFeat->fVmxIa32eModeGuest = RT_BOOL(fEntryCtls & VMX_ENTRY_CTLS_IA32E_MODE_GUEST);
1283 pHostFeat->fVmxEntryLoadEferMsr = RT_BOOL(fEntryCtls & VMX_ENTRY_CTLS_LOAD_EFER_MSR);
1284 pHostFeat->fVmxEntryLoadPatMsr = RT_BOOL(fEntryCtls & VMX_ENTRY_CTLS_LOAD_PAT_MSR);
1285
1286 /* VM-exit controls. */
1287 uint32_t const fExitCtls = VmxMsrs.ExitCtls.n.allowed1;
1288 pHostFeat->fVmxExitSaveDebugCtls = RT_BOOL(fExitCtls & VMX_EXIT_CTLS_SAVE_DEBUG);
1289 pHostFeat->fVmxHostAddrSpaceSize = RT_BOOL(fExitCtls & VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE);
1290 pHostFeat->fVmxExitAckExtInt = RT_BOOL(fExitCtls & VMX_EXIT_CTLS_ACK_EXT_INT);
1291 pHostFeat->fVmxExitSavePatMsr = RT_BOOL(fExitCtls & VMX_EXIT_CTLS_SAVE_PAT_MSR);
1292 pHostFeat->fVmxExitLoadPatMsr = RT_BOOL(fExitCtls & VMX_EXIT_CTLS_LOAD_PAT_MSR);
1293 pHostFeat->fVmxExitSaveEferMsr = RT_BOOL(fExitCtls & VMX_EXIT_CTLS_SAVE_EFER_MSR);
1294 pHostFeat->fVmxExitLoadEferMsr = RT_BOOL(fExitCtls & VMX_EXIT_CTLS_LOAD_EFER_MSR);
1295 pHostFeat->fVmxSavePreemptTimer = RT_BOOL(fExitCtls & VMX_EXIT_CTLS_SAVE_PREEMPT_TIMER);
1296
1297 /* Miscellaneous data. */
1298 uint32_t const fMiscData = VmxMsrs.u64Misc;
1299 pHostFeat->fVmxExitStoreEferLma = RT_BOOL(fMiscData & VMX_MISC_EXIT_STORE_EFER_LMA);
1300 pHostFeat->fVmxVmwriteAll = RT_BOOL(fMiscData & VMX_MISC_VMWRITE_ALL);
1301 pHostFeat->fVmxEntryInjectSoftInt = RT_BOOL(fMiscData & VMX_MISC_ENTRY_INJECT_SOFT_INT);
1302 }
1303
1304 /*
1305 * Initialize the set of VMX features we emulate.
1306 * Note! Some bits might be reported as 1 always if they fall under the default1 class bits
1307 * (e.g. fVmxEntryLoadDebugCtls), see @bugref{9180#c5}.
1308 */
1309 CPUMFEATURES EmuFeat;
1310 RT_ZERO(EmuFeat);
1311 EmuFeat.fVmx = 1;
1312 EmuFeat.fVmxInsOutInfo = 0;
1313 EmuFeat.fVmxExtIntExit = 1;
1314 EmuFeat.fVmxNmiExit = 1;
1315 EmuFeat.fVmxVirtNmi = 0;
1316 EmuFeat.fVmxPreemptTimer = 0; /** @todo NSTVMX: enable this. */
1317 EmuFeat.fVmxPostedInt = 0;
1318 EmuFeat.fVmxIntWindowExit = 1;
1319 EmuFeat.fVmxTscOffsetting = 1;
1320 EmuFeat.fVmxHltExit = 1;
1321 EmuFeat.fVmxInvlpgExit = 1;
1322 EmuFeat.fVmxMwaitExit = 1;
1323 EmuFeat.fVmxRdpmcExit = 1;
1324 EmuFeat.fVmxRdtscExit = 1;
1325 EmuFeat.fVmxCr3LoadExit = 1;
1326 EmuFeat.fVmxCr3StoreExit = 1;
1327 EmuFeat.fVmxCr8LoadExit = 1;
1328 EmuFeat.fVmxCr8StoreExit = 1;
1329 EmuFeat.fVmxUseTprShadow = 0;
1330 EmuFeat.fVmxNmiWindowExit = 0;
1331 EmuFeat.fVmxMovDRxExit = 1;
1332 EmuFeat.fVmxUncondIoExit = 1;
1333 EmuFeat.fVmxUseIoBitmaps = 1;
1334 EmuFeat.fVmxMonitorTrapFlag = 0;
1335 EmuFeat.fVmxUseMsrBitmaps = 0;
1336 EmuFeat.fVmxMonitorExit = 1;
1337 EmuFeat.fVmxPauseExit = 1;
1338 EmuFeat.fVmxSecondaryExecCtls = 1;
1339 EmuFeat.fVmxVirtApicAccess = 0;
1340 EmuFeat.fVmxEpt = 0;
1341 EmuFeat.fVmxDescTableExit = 1;
1342 EmuFeat.fVmxRdtscp = 1;
1343 EmuFeat.fVmxVirtX2ApicMode = 0;
1344 EmuFeat.fVmxVpid = 0;
1345 EmuFeat.fVmxWbinvdExit = 1;
1346 EmuFeat.fVmxUnrestrictedGuest = 0;
1347 EmuFeat.fVmxApicRegVirt = 0;
1348 EmuFeat.fVmxVirtIntDelivery = 0;
1349 EmuFeat.fVmxPauseLoopExit = 0;
1350 EmuFeat.fVmxRdrandExit = 0;
1351 EmuFeat.fVmxInvpcid = 1;
1352 EmuFeat.fVmxVmFunc = 0;
1353 EmuFeat.fVmxVmcsShadowing = 0;
1354 EmuFeat.fVmxRdseedExit = 0;
1355 EmuFeat.fVmxPml = 0;
1356 EmuFeat.fVmxEptXcptVe = 0;
1357 EmuFeat.fVmxXsavesXrstors = 0;
1358 EmuFeat.fVmxUseTscScaling = 0;
1359 EmuFeat.fVmxEntryLoadDebugCtls = 1;
1360 EmuFeat.fVmxIa32eModeGuest = 1;
1361 EmuFeat.fVmxEntryLoadEferMsr = 1;
1362 EmuFeat.fVmxEntryLoadPatMsr = 0;
1363 EmuFeat.fVmxExitSaveDebugCtls = 1;
1364 EmuFeat.fVmxHostAddrSpaceSize = 1;
1365 EmuFeat.fVmxExitAckExtInt = 0;
1366 EmuFeat.fVmxExitSavePatMsr = 0;
1367 EmuFeat.fVmxExitLoadPatMsr = 0;
1368 EmuFeat.fVmxExitSaveEferMsr = 1;
1369 EmuFeat.fVmxExitLoadEferMsr = 1;
1370 EmuFeat.fVmxSavePreemptTimer = 0;
1371 EmuFeat.fVmxExitStoreEferLma = 1;
1372 EmuFeat.fVmxVmwriteAll = 0;
1373 EmuFeat.fVmxEntryInjectSoftInt = 0;
1374
1375 /*
1376 * Explode guest features.
1377 *
1378 * When hardware-assisted VMX may be used, any feature we emulate must also be supported
1379 * by the hardware, hence we merge our emulated features with the host features below.
1380 */
1381 bool const fHostSupportsVmx = pHostFeat->fVmx;
1382 AssertLogRelReturnVoid(!fHostSupportsVmx || HMIsVmxSupported(pVM));
1383 PCCPUMFEATURES pBaseFeat = fHostSupportsVmx ? pHostFeat : &EmuFeat;
1384 PCPUMFEATURES pGuestFeat = &pVM->cpum.s.GuestFeatures;
1385 pGuestFeat->fVmx = (pBaseFeat->fVmx & EmuFeat.fVmx );
1386 pGuestFeat->fVmxInsOutInfo = (pBaseFeat->fVmxInsOutInfo & EmuFeat.fVmxInsOutInfo );
1387 pGuestFeat->fVmxExtIntExit = (pBaseFeat->fVmxExtIntExit & EmuFeat.fVmxExtIntExit );
1388 pGuestFeat->fVmxNmiExit = (pBaseFeat->fVmxNmiExit & EmuFeat.fVmxNmiExit );
1389 pGuestFeat->fVmxVirtNmi = (pBaseFeat->fVmxVirtNmi & EmuFeat.fVmxVirtNmi );
1390 pGuestFeat->fVmxPreemptTimer = (pBaseFeat->fVmxPreemptTimer & EmuFeat.fVmxPreemptTimer );
1391 pGuestFeat->fVmxPostedInt = (pBaseFeat->fVmxPostedInt & EmuFeat.fVmxPostedInt );
1392 pGuestFeat->fVmxIntWindowExit = (pBaseFeat->fVmxIntWindowExit & EmuFeat.fVmxIntWindowExit );
1393 pGuestFeat->fVmxTscOffsetting = (pBaseFeat->fVmxTscOffsetting & EmuFeat.fVmxTscOffsetting );
1394 pGuestFeat->fVmxHltExit = (pBaseFeat->fVmxHltExit & EmuFeat.fVmxHltExit );
1395 pGuestFeat->fVmxInvlpgExit = (pBaseFeat->fVmxInvlpgExit & EmuFeat.fVmxInvlpgExit );
1396 pGuestFeat->fVmxMwaitExit = (pBaseFeat->fVmxMwaitExit & EmuFeat.fVmxMwaitExit );
1397 pGuestFeat->fVmxRdpmcExit = (pBaseFeat->fVmxRdpmcExit & EmuFeat.fVmxRdpmcExit );
1398 pGuestFeat->fVmxRdtscExit = (pBaseFeat->fVmxRdtscExit & EmuFeat.fVmxRdtscExit );
1399 pGuestFeat->fVmxCr3LoadExit = (pBaseFeat->fVmxCr3LoadExit & EmuFeat.fVmxCr3LoadExit );
1400 pGuestFeat->fVmxCr3StoreExit = (pBaseFeat->fVmxCr3StoreExit & EmuFeat.fVmxCr3StoreExit );
1401 pGuestFeat->fVmxCr8LoadExit = (pBaseFeat->fVmxCr8LoadExit & EmuFeat.fVmxCr8LoadExit );
1402 pGuestFeat->fVmxCr8StoreExit = (pBaseFeat->fVmxCr8StoreExit & EmuFeat.fVmxCr8StoreExit );
1403 pGuestFeat->fVmxUseTprShadow = (pBaseFeat->fVmxUseTprShadow & EmuFeat.fVmxUseTprShadow );
1404 pGuestFeat->fVmxNmiWindowExit = (pBaseFeat->fVmxNmiWindowExit & EmuFeat.fVmxNmiWindowExit );
1405 pGuestFeat->fVmxMovDRxExit = (pBaseFeat->fVmxMovDRxExit & EmuFeat.fVmxMovDRxExit );
1406 pGuestFeat->fVmxUncondIoExit = (pBaseFeat->fVmxUncondIoExit & EmuFeat.fVmxUncondIoExit );
1407 pGuestFeat->fVmxUseIoBitmaps = (pBaseFeat->fVmxUseIoBitmaps & EmuFeat.fVmxUseIoBitmaps );
1408 pGuestFeat->fVmxMonitorTrapFlag = (pBaseFeat->fVmxMonitorTrapFlag & EmuFeat.fVmxMonitorTrapFlag );
1409 pGuestFeat->fVmxUseMsrBitmaps = (pBaseFeat->fVmxUseMsrBitmaps & EmuFeat.fVmxUseMsrBitmaps );
1410 pGuestFeat->fVmxMonitorExit = (pBaseFeat->fVmxMonitorExit & EmuFeat.fVmxMonitorExit );
1411 pGuestFeat->fVmxPauseExit = (pBaseFeat->fVmxPauseExit & EmuFeat.fVmxPauseExit );
1412 pGuestFeat->fVmxSecondaryExecCtls = (pBaseFeat->fVmxSecondaryExecCtls & EmuFeat.fVmxSecondaryExecCtls );
1413 pGuestFeat->fVmxVirtApicAccess = (pBaseFeat->fVmxVirtApicAccess & EmuFeat.fVmxVirtApicAccess );
1414 pGuestFeat->fVmxEpt = (pBaseFeat->fVmxEpt & EmuFeat.fVmxEpt );
1415 pGuestFeat->fVmxDescTableExit = (pBaseFeat->fVmxDescTableExit & EmuFeat.fVmxDescTableExit );
1416 pGuestFeat->fVmxRdtscp = (pBaseFeat->fVmxRdtscp & EmuFeat.fVmxRdtscp );
1417 pGuestFeat->fVmxVirtX2ApicMode = (pBaseFeat->fVmxVirtX2ApicMode & EmuFeat.fVmxVirtX2ApicMode );
1418 pGuestFeat->fVmxVpid = (pBaseFeat->fVmxVpid & EmuFeat.fVmxVpid );
1419 pGuestFeat->fVmxWbinvdExit = (pBaseFeat->fVmxWbinvdExit & EmuFeat.fVmxWbinvdExit );
1420 pGuestFeat->fVmxUnrestrictedGuest = (pBaseFeat->fVmxUnrestrictedGuest & EmuFeat.fVmxUnrestrictedGuest );
1421 pGuestFeat->fVmxApicRegVirt = (pBaseFeat->fVmxApicRegVirt & EmuFeat.fVmxApicRegVirt );
1422 pGuestFeat->fVmxVirtIntDelivery = (pBaseFeat->fVmxVirtIntDelivery & EmuFeat.fVmxVirtIntDelivery );
1423 pGuestFeat->fVmxPauseLoopExit = (pBaseFeat->fVmxPauseLoopExit & EmuFeat.fVmxPauseLoopExit );
1424 pGuestFeat->fVmxRdrandExit = (pBaseFeat->fVmxRdrandExit & EmuFeat.fVmxRdrandExit );
1425 pGuestFeat->fVmxInvpcid = (pBaseFeat->fVmxInvpcid & EmuFeat.fVmxInvpcid );
1426 pGuestFeat->fVmxVmFunc = (pBaseFeat->fVmxVmFunc & EmuFeat.fVmxVmFunc );
1427 pGuestFeat->fVmxVmcsShadowing = (pBaseFeat->fVmxVmcsShadowing & EmuFeat.fVmxVmcsShadowing );
1428 pGuestFeat->fVmxRdseedExit = (pBaseFeat->fVmxRdseedExit & EmuFeat.fVmxRdseedExit );
1429 pGuestFeat->fVmxPml = (pBaseFeat->fVmxPml & EmuFeat.fVmxPml );
1430 pGuestFeat->fVmxEptXcptVe = (pBaseFeat->fVmxEptXcptVe & EmuFeat.fVmxEptXcptVe );
1431 pGuestFeat->fVmxXsavesXrstors = (pBaseFeat->fVmxXsavesXrstors & EmuFeat.fVmxXsavesXrstors );
1432 pGuestFeat->fVmxUseTscScaling = (pBaseFeat->fVmxUseTscScaling & EmuFeat.fVmxUseTscScaling );
1433 pGuestFeat->fVmxEntryLoadDebugCtls = (pBaseFeat->fVmxEntryLoadDebugCtls & EmuFeat.fVmxEntryLoadDebugCtls );
1434 pGuestFeat->fVmxIa32eModeGuest = (pBaseFeat->fVmxIa32eModeGuest & EmuFeat.fVmxIa32eModeGuest );
1435 pGuestFeat->fVmxEntryLoadEferMsr = (pBaseFeat->fVmxEntryLoadEferMsr & EmuFeat.fVmxEntryLoadEferMsr );
1436 pGuestFeat->fVmxEntryLoadPatMsr = (pBaseFeat->fVmxEntryLoadPatMsr & EmuFeat.fVmxEntryLoadPatMsr );
1437 pGuestFeat->fVmxExitSaveDebugCtls = (pBaseFeat->fVmxExitSaveDebugCtls & EmuFeat.fVmxExitSaveDebugCtls );
1438 pGuestFeat->fVmxHostAddrSpaceSize = (pBaseFeat->fVmxHostAddrSpaceSize & EmuFeat.fVmxHostAddrSpaceSize );
1439 pGuestFeat->fVmxExitAckExtInt = (pBaseFeat->fVmxExitAckExtInt & EmuFeat.fVmxExitAckExtInt );
1440 pGuestFeat->fVmxExitSavePatMsr = (pBaseFeat->fVmxExitSavePatMsr & EmuFeat.fVmxExitSavePatMsr );
1441 pGuestFeat->fVmxExitLoadPatMsr = (pBaseFeat->fVmxExitLoadPatMsr & EmuFeat.fVmxExitLoadPatMsr );
1442 pGuestFeat->fVmxExitSaveEferMsr = (pBaseFeat->fVmxExitSaveEferMsr & EmuFeat.fVmxExitSaveEferMsr );
1443 pGuestFeat->fVmxExitLoadEferMsr = (pBaseFeat->fVmxExitLoadEferMsr & EmuFeat.fVmxExitLoadEferMsr );
1444 pGuestFeat->fVmxSavePreemptTimer = (pBaseFeat->fVmxSavePreemptTimer & EmuFeat.fVmxSavePreemptTimer );
1445 pGuestFeat->fVmxExitStoreEferLma = (pBaseFeat->fVmxExitStoreEferLma & EmuFeat.fVmxExitStoreEferLma );
1446 pGuestFeat->fVmxVmwriteAll = (pBaseFeat->fVmxVmwriteAll & EmuFeat.fVmxVmwriteAll );
1447 pGuestFeat->fVmxEntryInjectSoftInt = (pBaseFeat->fVmxEntryInjectSoftInt & EmuFeat.fVmxEntryInjectSoftInt );
1448
1449 /* Paranoia. */
1450 if (!pGuestFeat->fVmxSecondaryExecCtls)
1451 {
1452 Assert(!pGuestFeat->fVmxVirtApicAccess);
1453 Assert(!pGuestFeat->fVmxEpt);
1454 Assert(!pGuestFeat->fVmxDescTableExit);
1455 Assert(!pGuestFeat->fVmxRdtscp);
1456 Assert(!pGuestFeat->fVmxVirtX2ApicMode);
1457 Assert(!pGuestFeat->fVmxVpid);
1458 Assert(!pGuestFeat->fVmxWbinvdExit);
1459 Assert(!pGuestFeat->fVmxUnrestrictedGuest);
1460 Assert(!pGuestFeat->fVmxApicRegVirt);
1461 Assert(!pGuestFeat->fVmxVirtIntDelivery);
1462 Assert(!pGuestFeat->fVmxPauseLoopExit);
1463 Assert(!pGuestFeat->fVmxRdrandExit);
1464 Assert(!pGuestFeat->fVmxInvpcid);
1465 Assert(!pGuestFeat->fVmxVmFunc);
1466 Assert(!pGuestFeat->fVmxVmcsShadowing);
1467 Assert(!pGuestFeat->fVmxRdseedExit);
1468 Assert(!pGuestFeat->fVmxPml);
1469 Assert(!pGuestFeat->fVmxEptXcptVe);
1470 Assert(!pGuestFeat->fVmxXsavesXrstors);
1471 Assert(!pGuestFeat->fVmxUseTscScaling);
1472 }
1473}
1474
1475
1476/**
1477 * Initializes the CPUM.
1478 *
1479 * @returns VBox status code.
1480 * @param pVM The cross context VM structure.
1481 */
1482VMMR3DECL(int) CPUMR3Init(PVM pVM)
1483{
1484 LogFlow(("CPUMR3Init\n"));
1485
1486 /*
1487 * Assert alignment, sizes and tables.
1488 */
1489 AssertCompileMemberAlignment(VM, cpum.s, 32);
1490 AssertCompile(sizeof(pVM->cpum.s) <= sizeof(pVM->cpum.padding));
1491 AssertCompileSizeAlignment(CPUMCTX, 64);
1492 AssertCompileSizeAlignment(CPUMCTXMSRS, 64);
1493 AssertCompileSizeAlignment(CPUMHOSTCTX, 64);
1494 AssertCompileMemberAlignment(VM, cpum, 64);
1495 AssertCompileMemberAlignment(VM, aCpus, 64);
1496 AssertCompileMemberAlignment(VMCPU, cpum.s, 64);
1497 AssertCompileMemberSizeAlignment(VM, aCpus[0].cpum.s, 64);
1498#ifdef VBOX_STRICT
1499 int rc2 = cpumR3MsrStrictInitChecks();
1500 AssertRCReturn(rc2, rc2);
1501#endif
1502
1503 /*
1504 * Initialize offsets.
1505 */
1506
1507 /* Calculate the offset from CPUM to CPUMCPU for the first CPU. */
1508 pVM->cpum.s.offCPUMCPU0 = RT_UOFFSETOF(VM, aCpus[0].cpum) - RT_UOFFSETOF(VM, cpum);
1509 Assert((uintptr_t)&pVM->cpum + pVM->cpum.s.offCPUMCPU0 == (uintptr_t)&pVM->aCpus[0].cpum);
1510
1511
1512 /* Calculate the offset from CPUMCPU to CPUM. */
1513 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1514 {
1515 PVMCPU pVCpu = &pVM->aCpus[i];
1516
1517 pVCpu->cpum.s.offCPUM = RT_UOFFSETOF_DYN(VM, aCpus[i].cpum) - RT_UOFFSETOF(VM, cpum);
1518 Assert((uintptr_t)&pVCpu->cpum - pVCpu->cpum.s.offCPUM == (uintptr_t)&pVM->cpum);
1519 }
1520
1521 /*
1522 * Gather info about the host CPU.
1523 */
1524 if (!ASMHasCpuId())
1525 {
1526 Log(("The CPU doesn't support CPUID!\n"));
1527 return VERR_UNSUPPORTED_CPU;
1528 }
1529
1530 pVM->cpum.s.fHostMxCsrMask = CPUMR3DeterminHostMxCsrMask();
1531
1532 PCPUMCPUIDLEAF paLeaves;
1533 uint32_t cLeaves;
1534 int rc = CPUMR3CpuIdCollectLeaves(&paLeaves, &cLeaves);
1535 AssertLogRelRCReturn(rc, rc);
1536
1537 rc = cpumR3CpuIdExplodeFeatures(paLeaves, cLeaves, &pVM->cpum.s.HostFeatures);
1538 RTMemFree(paLeaves);
1539 AssertLogRelRCReturn(rc, rc);
1540 pVM->cpum.s.GuestFeatures.enmCpuVendor = pVM->cpum.s.HostFeatures.enmCpuVendor;
1541
1542 /*
1543 * Check that the CPU supports the minimum features we require.
1544 */
1545 if (!pVM->cpum.s.HostFeatures.fFxSaveRstor)
1546 return VMSetError(pVM, VERR_UNSUPPORTED_CPU, RT_SRC_POS, "Host CPU does not support the FXSAVE/FXRSTOR instruction.");
1547 if (!pVM->cpum.s.HostFeatures.fMmx)
1548 return VMSetError(pVM, VERR_UNSUPPORTED_CPU, RT_SRC_POS, "Host CPU does not support MMX.");
1549 if (!pVM->cpum.s.HostFeatures.fTsc)
1550 return VMSetError(pVM, VERR_UNSUPPORTED_CPU, RT_SRC_POS, "Host CPU does not support RDTSC.");
1551
1552 /*
1553 * Setup the CR4 AND and OR masks used in the raw-mode switcher.
1554 */
1555 pVM->cpum.s.CR4.AndMask = X86_CR4_OSXMMEEXCPT | X86_CR4_PVI | X86_CR4_VME;
1556 pVM->cpum.s.CR4.OrMask = X86_CR4_OSFXSR;
1557
1558 /*
1559 * Figure out which XSAVE/XRSTOR features are available on the host.
1560 */
1561 uint64_t fXcr0Host = 0;
1562 uint64_t fXStateHostMask = 0;
1563 if ( pVM->cpum.s.HostFeatures.fXSaveRstor
1564 && pVM->cpum.s.HostFeatures.fOpSysXSaveRstor)
1565 {
1566 fXStateHostMask = fXcr0Host = ASMGetXcr0();
1567 fXStateHostMask &= XSAVE_C_X87 | XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI;
1568 AssertLogRelMsgStmt((fXStateHostMask & (XSAVE_C_X87 | XSAVE_C_SSE)) == (XSAVE_C_X87 | XSAVE_C_SSE),
1569 ("%#llx\n", fXStateHostMask), fXStateHostMask = 0);
1570 }
1571 pVM->cpum.s.fXStateHostMask = fXStateHostMask;
1572 if (VM_IS_RAW_MODE_ENABLED(pVM)) /* For raw-mode, we only use XSAVE/XRSTOR when the guest starts using it (CPUID/CR4 visibility). */
1573 fXStateHostMask = 0;
1574 LogRel(("CPUM: fXStateHostMask=%#llx; initial: %#llx; host XCR0=%#llx\n",
1575 pVM->cpum.s.fXStateHostMask, fXStateHostMask, fXcr0Host));
1576
1577 /*
1578 * Allocate memory for the extended CPU state and initialize the host XSAVE/XRSTOR mask.
1579 */
1580 uint32_t cbMaxXState = pVM->cpum.s.HostFeatures.cbMaxExtendedState;
1581 cbMaxXState = RT_ALIGN(cbMaxXState, 128);
1582 AssertLogRelReturn(cbMaxXState >= sizeof(X86FXSTATE) && cbMaxXState <= _8K, VERR_CPUM_IPE_2);
1583
1584 uint8_t *pbXStates;
1585 rc = MMR3HyperAllocOnceNoRelEx(pVM, cbMaxXState * 3 * pVM->cCpus, PAGE_SIZE, MM_TAG_CPUM_CTX,
1586 MMHYPER_AONR_FLAGS_KERNEL_MAPPING, (void **)&pbXStates);
1587 AssertLogRelRCReturn(rc, rc);
1588
1589 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1590 {
1591 PVMCPU pVCpu = &pVM->aCpus[i];
1592
1593 pVCpu->cpum.s.Guest.pXStateR3 = (PX86XSAVEAREA)pbXStates;
1594 pVCpu->cpum.s.Guest.pXStateR0 = MMHyperR3ToR0(pVM, pbXStates);
1595 pVCpu->cpum.s.Guest.pXStateRC = MMHyperR3ToR0(pVM, pbXStates);
1596 pbXStates += cbMaxXState;
1597
1598 pVCpu->cpum.s.Host.pXStateR3 = (PX86XSAVEAREA)pbXStates;
1599 pVCpu->cpum.s.Host.pXStateR0 = MMHyperR3ToR0(pVM, pbXStates);
1600 pVCpu->cpum.s.Host.pXStateRC = MMHyperR3ToR0(pVM, pbXStates);
1601 pbXStates += cbMaxXState;
1602
1603 pVCpu->cpum.s.Hyper.pXStateR3 = (PX86XSAVEAREA)pbXStates;
1604 pVCpu->cpum.s.Hyper.pXStateR0 = MMHyperR3ToR0(pVM, pbXStates);
1605 pVCpu->cpum.s.Hyper.pXStateRC = MMHyperR3ToR0(pVM, pbXStates);
1606 pbXStates += cbMaxXState;
1607
1608 pVCpu->cpum.s.Host.fXStateMask = fXStateHostMask;
1609 }
1610
1611 /*
1612 * Register saved state data item.
1613 */
1614 rc = SSMR3RegisterInternal(pVM, "cpum", 1, CPUM_SAVED_STATE_VERSION, sizeof(CPUM),
1615 NULL, cpumR3LiveExec, NULL,
1616 NULL, cpumR3SaveExec, NULL,
1617 cpumR3LoadPrep, cpumR3LoadExec, cpumR3LoadDone);
1618 if (RT_FAILURE(rc))
1619 return rc;
1620
1621 /*
1622 * Register info handlers and registers with the debugger facility.
1623 */
1624 DBGFR3InfoRegisterInternalEx(pVM, "cpum", "Displays the all the cpu states.",
1625 &cpumR3InfoAll, DBGFINFO_FLAGS_ALL_EMTS);
1626 DBGFR3InfoRegisterInternalEx(pVM, "cpumguest", "Displays the guest cpu state.",
1627 &cpumR3InfoGuest, DBGFINFO_FLAGS_ALL_EMTS);
1628 DBGFR3InfoRegisterInternalEx(pVM, "cpumguesthwvirt", "Displays the guest hwvirt. cpu state.",
1629 &cpumR3InfoGuestHwvirt, DBGFINFO_FLAGS_ALL_EMTS);
1630 DBGFR3InfoRegisterInternalEx(pVM, "cpumhyper", "Displays the hypervisor cpu state.",
1631 &cpumR3InfoHyper, DBGFINFO_FLAGS_ALL_EMTS);
1632 DBGFR3InfoRegisterInternalEx(pVM, "cpumhost", "Displays the host cpu state.",
1633 &cpumR3InfoHost, DBGFINFO_FLAGS_ALL_EMTS);
1634 DBGFR3InfoRegisterInternalEx(pVM, "cpumguestinstr", "Displays the current guest instruction.",
1635 &cpumR3InfoGuestInstr, DBGFINFO_FLAGS_ALL_EMTS);
1636 DBGFR3InfoRegisterInternal( pVM, "cpuid", "Displays the guest cpuid leaves.", &cpumR3CpuIdInfo);
1637 DBGFR3InfoRegisterInternal( pVM, "cpumvmxfeat", "Displays the host and guest VMX hwvirt. features.",
1638 &cpumR3InfoVmxFeatures);
1639
1640 rc = cpumR3DbgInit(pVM);
1641 if (RT_FAILURE(rc))
1642 return rc;
1643
1644 /*
1645 * Check if we need to workaround partial/leaky FPU handling.
1646 */
1647 cpumR3CheckLeakyFpu(pVM);
1648
1649 /*
1650 * Initialize the Guest CPUID and MSR states.
1651 */
1652 rc = cpumR3InitCpuIdAndMsrs(pVM);
1653 if (RT_FAILURE(rc))
1654 return rc;
1655
1656 /*
1657 * Allocate memory required by the guest hardware virtualization state.
1658 */
1659 if (pVM->cpum.ro.GuestFeatures.fVmx)
1660 rc = cpumR3AllocVmxHwVirtState(pVM);
1661 else if (pVM->cpum.ro.GuestFeatures.fSvm)
1662 rc = cpumR3AllocSvmHwVirtState(pVM);
1663 else
1664 Assert(pVM->aCpus[0].cpum.s.Guest.hwvirt.enmHwvirt == CPUMHWVIRT_NONE);
1665 if (RT_FAILURE(rc))
1666 return rc;
1667
1668 /*
1669 * Initialize guest hardware virtualization state.
1670 */
1671 CPUMHWVIRT const enmHwvirt = pVM->aCpus[0].cpum.s.Guest.hwvirt.enmHwvirt;
1672 if (enmHwvirt == CPUMHWVIRT_VMX)
1673 {
1674 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1675 cpumR3InitVmxHwVirtState(&pVM->aCpus[i]);
1676 }
1677 else if (enmHwvirt == CPUMHWVIRT_SVM)
1678 {
1679 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1680 cpumR3InitSvmHwVirtState(&pVM->aCpus[i]);
1681 }
1682
1683 /*
1684 * Workaround for missing cpuid(0) patches when leaf 4 returns GuestInfo.DefCpuId:
1685 * If we miss to patch a cpuid(0).eax then Linux tries to determine the number
1686 * of processors from (cpuid(4).eax >> 26) + 1.
1687 *
1688 * Note: this code is obsolete, but let's keep it here for reference.
1689 * Purpose is valid when we artificially cap the max std id to less than 4.
1690 *
1691 * Note: This used to be a separate function CPUMR3SetHwVirt that was called
1692 * after VMINITCOMPLETED_HM.
1693 */
1694 if (VM_IS_RAW_MODE_ENABLED(pVM))
1695 {
1696 Assert( (pVM->cpum.s.aGuestCpuIdPatmStd[4].uEax & UINT32_C(0xffffc000)) == 0
1697 || pVM->cpum.s.aGuestCpuIdPatmStd[0].uEax < 0x4);
1698 pVM->cpum.s.aGuestCpuIdPatmStd[4].uEax &= UINT32_C(0x00003fff);
1699 }
1700
1701 CPUMR3Reset(pVM);
1702 return VINF_SUCCESS;
1703}
1704
1705
1706/**
1707 * Applies relocations to data and code managed by this
1708 * component. This function will be called at init and
1709 * whenever the VMM need to relocate it self inside the GC.
1710 *
1711 * The CPUM will update the addresses used by the switcher.
1712 *
1713 * @param pVM The cross context VM structure.
1714 */
1715VMMR3DECL(void) CPUMR3Relocate(PVM pVM)
1716{
1717 LogFlow(("CPUMR3Relocate\n"));
1718
1719 pVM->cpum.s.GuestInfo.paMsrRangesRC = MMHyperR3ToRC(pVM, pVM->cpum.s.GuestInfo.paMsrRangesR3);
1720 pVM->cpum.s.GuestInfo.paCpuIdLeavesRC = MMHyperR3ToRC(pVM, pVM->cpum.s.GuestInfo.paCpuIdLeavesR3);
1721
1722 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
1723 {
1724 PVMCPU pVCpu = &pVM->aCpus[iCpu];
1725 pVCpu->cpum.s.Guest.pXStateRC = MMHyperR3ToRC(pVM, pVCpu->cpum.s.Guest.pXStateR3);
1726 pVCpu->cpum.s.Host.pXStateRC = MMHyperR3ToRC(pVM, pVCpu->cpum.s.Host.pXStateR3);
1727 pVCpu->cpum.s.Hyper.pXStateRC = MMHyperR3ToRC(pVM, pVCpu->cpum.s.Hyper.pXStateR3); /** @todo remove me */
1728
1729 /* Recheck the guest DRx values in raw-mode. */
1730 CPUMRecalcHyperDRx(pVCpu, UINT8_MAX, false);
1731 }
1732}
1733
1734
1735/**
1736 * Terminates the CPUM.
1737 *
1738 * Termination means cleaning up and freeing all resources,
1739 * the VM it self is at this point powered off or suspended.
1740 *
1741 * @returns VBox status code.
1742 * @param pVM The cross context VM structure.
1743 */
1744VMMR3DECL(int) CPUMR3Term(PVM pVM)
1745{
1746#ifdef VBOX_WITH_CRASHDUMP_MAGIC
1747 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1748 {
1749 PVMCPU pVCpu = &pVM->aCpus[i];
1750 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1751
1752 memset(pVCpu->cpum.s.aMagic, 0, sizeof(pVCpu->cpum.s.aMagic));
1753 pVCpu->cpum.s.uMagic = 0;
1754 pCtx->dr[5] = 0;
1755 }
1756#endif
1757
1758 if (pVM->cpum.ro.GuestFeatures.fSvm)
1759 cpumR3FreeVmxHwVirtState(pVM);
1760 else if (pVM->cpum.ro.GuestFeatures.fSvm)
1761 cpumR3FreeSvmHwVirtState(pVM);
1762 return VINF_SUCCESS;
1763}
1764
1765
1766/**
1767 * Resets a virtual CPU.
1768 *
1769 * Used by CPUMR3Reset and CPU hot plugging.
1770 *
1771 * @param pVM The cross context VM structure.
1772 * @param pVCpu The cross context virtual CPU structure of the CPU that is
1773 * being reset. This may differ from the current EMT.
1774 */
1775VMMR3DECL(void) CPUMR3ResetCpu(PVM pVM, PVMCPU pVCpu)
1776{
1777 /** @todo anything different for VCPU > 0? */
1778 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
1779
1780 /*
1781 * Initialize everything to ZERO first.
1782 */
1783 uint32_t fUseFlags = pVCpu->cpum.s.fUseFlags & ~CPUM_USED_FPU_SINCE_REM;
1784
1785 AssertCompile(RTASSERT_OFFSET_OF(CPUMCTX, pXStateR0) < RTASSERT_OFFSET_OF(CPUMCTX, pXStateR3));
1786 AssertCompile(RTASSERT_OFFSET_OF(CPUMCTX, pXStateR0) < RTASSERT_OFFSET_OF(CPUMCTX, pXStateRC));
1787 memset(pCtx, 0, RT_UOFFSETOF(CPUMCTX, pXStateR0));
1788
1789 pVCpu->cpum.s.fUseFlags = fUseFlags;
1790
1791 pCtx->cr0 = X86_CR0_CD | X86_CR0_NW | X86_CR0_ET; //0x60000010
1792 pCtx->eip = 0x0000fff0;
1793 pCtx->edx = 0x00000600; /* P6 processor */
1794 pCtx->eflags.Bits.u1Reserved0 = 1;
1795
1796 pCtx->cs.Sel = 0xf000;
1797 pCtx->cs.ValidSel = 0xf000;
1798 pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
1799 pCtx->cs.u64Base = UINT64_C(0xffff0000);
1800 pCtx->cs.u32Limit = 0x0000ffff;
1801 pCtx->cs.Attr.n.u1DescType = 1; /* code/data segment */
1802 pCtx->cs.Attr.n.u1Present = 1;
1803 pCtx->cs.Attr.n.u4Type = X86_SEL_TYPE_ER_ACC;
1804
1805 pCtx->ds.fFlags = CPUMSELREG_FLAGS_VALID;
1806 pCtx->ds.u32Limit = 0x0000ffff;
1807 pCtx->ds.Attr.n.u1DescType = 1; /* code/data segment */
1808 pCtx->ds.Attr.n.u1Present = 1;
1809 pCtx->ds.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
1810
1811 pCtx->es.fFlags = CPUMSELREG_FLAGS_VALID;
1812 pCtx->es.u32Limit = 0x0000ffff;
1813 pCtx->es.Attr.n.u1DescType = 1; /* code/data segment */
1814 pCtx->es.Attr.n.u1Present = 1;
1815 pCtx->es.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
1816
1817 pCtx->fs.fFlags = CPUMSELREG_FLAGS_VALID;
1818 pCtx->fs.u32Limit = 0x0000ffff;
1819 pCtx->fs.Attr.n.u1DescType = 1; /* code/data segment */
1820 pCtx->fs.Attr.n.u1Present = 1;
1821 pCtx->fs.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
1822
1823 pCtx->gs.fFlags = CPUMSELREG_FLAGS_VALID;
1824 pCtx->gs.u32Limit = 0x0000ffff;
1825 pCtx->gs.Attr.n.u1DescType = 1; /* code/data segment */
1826 pCtx->gs.Attr.n.u1Present = 1;
1827 pCtx->gs.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
1828
1829 pCtx->ss.fFlags = CPUMSELREG_FLAGS_VALID;
1830 pCtx->ss.u32Limit = 0x0000ffff;
1831 pCtx->ss.Attr.n.u1Present = 1;
1832 pCtx->ss.Attr.n.u1DescType = 1; /* code/data segment */
1833 pCtx->ss.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
1834
1835 pCtx->idtr.cbIdt = 0xffff;
1836 pCtx->gdtr.cbGdt = 0xffff;
1837
1838 pCtx->ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
1839 pCtx->ldtr.u32Limit = 0xffff;
1840 pCtx->ldtr.Attr.n.u1Present = 1;
1841 pCtx->ldtr.Attr.n.u4Type = X86_SEL_TYPE_SYS_LDT;
1842
1843 pCtx->tr.fFlags = CPUMSELREG_FLAGS_VALID;
1844 pCtx->tr.u32Limit = 0xffff;
1845 pCtx->tr.Attr.n.u1Present = 1;
1846 pCtx->tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY; /* Deduction, not properly documented by Intel. */
1847
1848 pCtx->dr[6] = X86_DR6_INIT_VAL;
1849 pCtx->dr[7] = X86_DR7_INIT_VAL;
1850
1851 PX86FXSTATE pFpuCtx = &pCtx->pXStateR3->x87; AssertReleaseMsg(RT_VALID_PTR(pFpuCtx), ("%p\n", pFpuCtx));
1852 pFpuCtx->FTW = 0x00; /* All empty (abbridged tag reg edition). */
1853 pFpuCtx->FCW = 0x37f;
1854
1855 /* Intel 64 and IA-32 Architectures Software Developer's Manual Volume 3A, Table 8-1.
1856 IA-32 Processor States Following Power-up, Reset, or INIT */
1857 pFpuCtx->MXCSR = 0x1F80;
1858 pFpuCtx->MXCSR_MASK = pVM->cpum.s.GuestInfo.fMxCsrMask; /** @todo check if REM messes this up... */
1859
1860 pCtx->aXcr[0] = XSAVE_C_X87;
1861 if (pVM->cpum.s.HostFeatures.cbMaxExtendedState >= RT_UOFFSETOF(X86XSAVEAREA, Hdr))
1862 {
1863 /* The entire FXSAVE state needs loading when we switch to XSAVE/XRSTOR
1864 as we don't know what happened before. (Bother optimize later?) */
1865 pCtx->pXStateR3->Hdr.bmXState = XSAVE_C_X87 | XSAVE_C_SSE;
1866 }
1867
1868 /*
1869 * MSRs.
1870 */
1871 /* Init PAT MSR */
1872 pCtx->msrPAT = MSR_IA32_CR_PAT_INIT_VAL;
1873
1874 /* EFER MBZ; see AMD64 Architecture Programmer's Manual Volume 2: Table 14-1. Initial Processor State.
1875 * The Intel docs don't mention it. */
1876 Assert(!pCtx->msrEFER);
1877
1878 /* IA32_MISC_ENABLE - not entirely sure what the init/reset state really
1879 is supposed to be here, just trying provide useful/sensible values. */
1880 PCPUMMSRRANGE pRange = cpumLookupMsrRange(pVM, MSR_IA32_MISC_ENABLE);
1881 if (pRange)
1882 {
1883 pVCpu->cpum.s.GuestMsrs.msr.MiscEnable = MSR_IA32_MISC_ENABLE_BTS_UNAVAIL
1884 | MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL
1885 | (pVM->cpum.s.GuestFeatures.fMonitorMWait ? MSR_IA32_MISC_ENABLE_MONITOR : 0)
1886 | MSR_IA32_MISC_ENABLE_FAST_STRINGS;
1887 pRange->fWrIgnMask |= MSR_IA32_MISC_ENABLE_BTS_UNAVAIL
1888 | MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL;
1889 pRange->fWrGpMask &= ~pVCpu->cpum.s.GuestMsrs.msr.MiscEnable;
1890 }
1891
1892 /** @todo Wire IA32_MISC_ENABLE bit 22 to our NT 4 CPUID trick. */
1893
1894 /** @todo r=ramshankar: Currently broken for SMP as TMCpuTickSet() expects to be
1895 * called from each EMT while we're getting called by CPUMR3Reset()
1896 * iteratively on the same thread. Fix later. */
1897#if 0 /** @todo r=bird: This we will do in TM, not here. */
1898 /* TSC must be 0. Intel spec. Table 9-1. "IA-32 Processor States Following Power-up, Reset, or INIT." */
1899 CPUMSetGuestMsr(pVCpu, MSR_IA32_TSC, 0);
1900#endif
1901
1902
1903 /* C-state control. Guesses. */
1904 pVCpu->cpum.s.GuestMsrs.msr.PkgCStateCfgCtrl = 1 /*C1*/ | RT_BIT_32(25) | RT_BIT_32(26) | RT_BIT_32(27) | RT_BIT_32(28);
1905 /* For Nehalem+ and Atoms, the 0xE2 MSR (MSR_PKG_CST_CONFIG_CONTROL) is documented. For Core 2,
1906 * it's undocumented but exists as MSR_PMG_CST_CONFIG_CONTROL and has similar but not identical
1907 * functionality. The default value must be different due to incompatible write mask.
1908 */
1909 if (CPUMMICROARCH_IS_INTEL_CORE2(pVM->cpum.s.GuestFeatures.enmMicroarch))
1910 pVCpu->cpum.s.GuestMsrs.msr.PkgCStateCfgCtrl = 0x202a01; /* From Mac Pro Harpertown, unlocked. */
1911 else if (pVM->cpum.s.GuestFeatures.enmMicroarch == kCpumMicroarch_Intel_Core_Yonah)
1912 pVCpu->cpum.s.GuestMsrs.msr.PkgCStateCfgCtrl = 0x26740c; /* From MacBookPro1,1. */
1913
1914 /*
1915 * Hardware virtualization state.
1916 */
1917 pCtx->hwvirt.fGif = true;
1918 Assert(!pVM->cpum.ro.GuestFeatures.fVmx || !pVM->cpum.ro.GuestFeatures.fSvm); /* Paranoia. */
1919 if (pVM->cpum.ro.GuestFeatures.fVmx)
1920 cpumR3InitVmxHwVirtState(pVCpu);
1921 else if (pVM->cpum.ro.GuestFeatures.fSvm)
1922 cpumR3InitSvmHwVirtState(pVCpu);
1923}
1924
1925
1926/**
1927 * Resets the CPU.
1928 *
1929 * @returns VINF_SUCCESS.
1930 * @param pVM The cross context VM structure.
1931 */
1932VMMR3DECL(void) CPUMR3Reset(PVM pVM)
1933{
1934 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1935 {
1936 CPUMR3ResetCpu(pVM, &pVM->aCpus[i]);
1937
1938#ifdef VBOX_WITH_CRASHDUMP_MAGIC
1939 PCPUMCTX pCtx = &pVM->aCpus[i].cpum.s.Guest;
1940
1941 /* Magic marker for searching in crash dumps. */
1942 strcpy((char *)pVM->aCpus[i].cpum.s.aMagic, "CPUMCPU Magic");
1943 pVM->aCpus[i].cpum.s.uMagic = UINT64_C(0xDEADBEEFDEADBEEF);
1944 pCtx->dr[5] = UINT64_C(0xDEADBEEFDEADBEEF);
1945#endif
1946 }
1947}
1948
1949
1950
1951
1952/**
1953 * Pass 0 live exec callback.
1954 *
1955 * @returns VINF_SSM_DONT_CALL_AGAIN.
1956 * @param pVM The cross context VM structure.
1957 * @param pSSM The saved state handle.
1958 * @param uPass The pass (0).
1959 */
1960static DECLCALLBACK(int) cpumR3LiveExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uPass)
1961{
1962 AssertReturn(uPass == 0, VERR_SSM_UNEXPECTED_PASS);
1963 cpumR3SaveCpuId(pVM, pSSM);
1964 return VINF_SSM_DONT_CALL_AGAIN;
1965}
1966
1967
1968/**
1969 * Execute state save operation.
1970 *
1971 * @returns VBox status code.
1972 * @param pVM The cross context VM structure.
1973 * @param pSSM SSM operation handle.
1974 */
1975static DECLCALLBACK(int) cpumR3SaveExec(PVM pVM, PSSMHANDLE pSSM)
1976{
1977 /*
1978 * Save.
1979 */
1980 SSMR3PutU32(pSSM, pVM->cCpus);
1981 SSMR3PutU32(pSSM, sizeof(pVM->aCpus[0].cpum.s.GuestMsrs.msr));
1982 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
1983 {
1984 PVMCPU pVCpu = &pVM->aCpus[iCpu];
1985
1986 SSMR3PutStructEx(pSSM, &pVCpu->cpum.s.Hyper, sizeof(pVCpu->cpum.s.Hyper), 0, g_aCpumCtxFields, NULL);
1987
1988 PCPUMCTX pGstCtx = &pVCpu->cpum.s.Guest;
1989 SSMR3PutStructEx(pSSM, pGstCtx, sizeof(*pGstCtx), 0, g_aCpumCtxFields, NULL);
1990 SSMR3PutStructEx(pSSM, &pGstCtx->pXStateR3->x87, sizeof(pGstCtx->pXStateR3->x87), 0, g_aCpumX87Fields, NULL);
1991 if (pGstCtx->fXStateMask != 0)
1992 SSMR3PutStructEx(pSSM, &pGstCtx->pXStateR3->Hdr, sizeof(pGstCtx->pXStateR3->Hdr), 0, g_aCpumXSaveHdrFields, NULL);
1993 if (pGstCtx->fXStateMask & XSAVE_C_YMM)
1994 {
1995 PCX86XSAVEYMMHI pYmmHiCtx = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_YMM_BIT, PCX86XSAVEYMMHI);
1996 SSMR3PutStructEx(pSSM, pYmmHiCtx, sizeof(*pYmmHiCtx), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumYmmHiFields, NULL);
1997 }
1998 if (pGstCtx->fXStateMask & XSAVE_C_BNDREGS)
1999 {
2000 PCX86XSAVEBNDREGS pBndRegs = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_BNDREGS_BIT, PCX86XSAVEBNDREGS);
2001 SSMR3PutStructEx(pSSM, pBndRegs, sizeof(*pBndRegs), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumBndRegsFields, NULL);
2002 }
2003 if (pGstCtx->fXStateMask & XSAVE_C_BNDCSR)
2004 {
2005 PCX86XSAVEBNDCFG pBndCfg = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_BNDCSR_BIT, PCX86XSAVEBNDCFG);
2006 SSMR3PutStructEx(pSSM, pBndCfg, sizeof(*pBndCfg), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumBndCfgFields, NULL);
2007 }
2008 if (pGstCtx->fXStateMask & XSAVE_C_ZMM_HI256)
2009 {
2010 PCX86XSAVEZMMHI256 pZmmHi256 = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_ZMM_HI256_BIT, PCX86XSAVEZMMHI256);
2011 SSMR3PutStructEx(pSSM, pZmmHi256, sizeof(*pZmmHi256), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumZmmHi256Fields, NULL);
2012 }
2013 if (pGstCtx->fXStateMask & XSAVE_C_ZMM_16HI)
2014 {
2015 PCX86XSAVEZMM16HI pZmm16Hi = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_ZMM_16HI_BIT, PCX86XSAVEZMM16HI);
2016 SSMR3PutStructEx(pSSM, pZmm16Hi, sizeof(*pZmm16Hi), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumZmm16HiFields, NULL);
2017 }
2018 if (pVM->cpum.ro.GuestFeatures.fSvm)
2019 {
2020 Assert(pGstCtx->hwvirt.svm.CTX_SUFF(pVmcb));
2021 SSMR3PutU64(pSSM, pGstCtx->hwvirt.svm.uMsrHSavePa);
2022 SSMR3PutGCPhys(pSSM, pGstCtx->hwvirt.svm.GCPhysVmcb);
2023 SSMR3PutU64(pSSM, pGstCtx->hwvirt.svm.uPrevPauseTick);
2024 SSMR3PutU16(pSSM, pGstCtx->hwvirt.svm.cPauseFilter);
2025 SSMR3PutU16(pSSM, pGstCtx->hwvirt.svm.cPauseFilterThreshold);
2026 SSMR3PutBool(pSSM, pGstCtx->hwvirt.svm.fInterceptEvents);
2027 SSMR3PutStructEx(pSSM, &pGstCtx->hwvirt.svm.HostState, sizeof(pGstCtx->hwvirt.svm.HostState), 0 /* fFlags */,
2028 g_aSvmHwvirtHostState, NULL /* pvUser */);
2029 SSMR3PutMem(pSSM, pGstCtx->hwvirt.svm.pVmcbR3, SVM_VMCB_PAGES << X86_PAGE_4K_SHIFT);
2030 SSMR3PutMem(pSSM, pGstCtx->hwvirt.svm.pvMsrBitmapR3, SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT);
2031 SSMR3PutMem(pSSM, pGstCtx->hwvirt.svm.pvIoBitmapR3, SVM_IOPM_PAGES << X86_PAGE_4K_SHIFT);
2032 SSMR3PutU32(pSSM, pGstCtx->hwvirt.fLocalForcedActions);
2033 SSMR3PutBool(pSSM, pGstCtx->hwvirt.fGif);
2034 }
2035 SSMR3PutU32(pSSM, pVCpu->cpum.s.fUseFlags);
2036 SSMR3PutU32(pSSM, pVCpu->cpum.s.fChanged);
2037 AssertCompileSizeAlignment(pVCpu->cpum.s.GuestMsrs.msr, sizeof(uint64_t));
2038 SSMR3PutMem(pSSM, &pVCpu->cpum.s.GuestMsrs, sizeof(pVCpu->cpum.s.GuestMsrs.msr));
2039 }
2040
2041 cpumR3SaveCpuId(pVM, pSSM);
2042 return VINF_SUCCESS;
2043}
2044
2045
2046/**
2047 * @callback_method_impl{FNSSMINTLOADPREP}
2048 */
2049static DECLCALLBACK(int) cpumR3LoadPrep(PVM pVM, PSSMHANDLE pSSM)
2050{
2051 NOREF(pSSM);
2052 pVM->cpum.s.fPendingRestore = true;
2053 return VINF_SUCCESS;
2054}
2055
2056
2057/**
2058 * @callback_method_impl{FNSSMINTLOADEXEC}
2059 */
2060static DECLCALLBACK(int) cpumR3LoadExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
2061{
2062 int rc; /* Only for AssertRCReturn use. */
2063
2064 /*
2065 * Validate version.
2066 */
2067 if ( uVersion != CPUM_SAVED_STATE_VERSION_HWVIRT_SVM
2068 && uVersion != CPUM_SAVED_STATE_VERSION_XSAVE
2069 && uVersion != CPUM_SAVED_STATE_VERSION_GOOD_CPUID_COUNT
2070 && uVersion != CPUM_SAVED_STATE_VERSION_BAD_CPUID_COUNT
2071 && uVersion != CPUM_SAVED_STATE_VERSION_PUT_STRUCT
2072 && uVersion != CPUM_SAVED_STATE_VERSION_MEM
2073 && uVersion != CPUM_SAVED_STATE_VERSION_NO_MSR_SIZE
2074 && uVersion != CPUM_SAVED_STATE_VERSION_VER3_2
2075 && uVersion != CPUM_SAVED_STATE_VERSION_VER3_0
2076 && uVersion != CPUM_SAVED_STATE_VERSION_VER2_1_NOMSR
2077 && uVersion != CPUM_SAVED_STATE_VERSION_VER2_0
2078 && uVersion != CPUM_SAVED_STATE_VERSION_VER1_6)
2079 {
2080 AssertMsgFailed(("cpumR3LoadExec: Invalid version uVersion=%d!\n", uVersion));
2081 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
2082 }
2083
2084 if (uPass == SSM_PASS_FINAL)
2085 {
2086 /*
2087 * Set the size of RTGCPTR for SSMR3GetGCPtr. (Only necessary for
2088 * really old SSM file versions.)
2089 */
2090 if (uVersion == CPUM_SAVED_STATE_VERSION_VER1_6)
2091 SSMR3HandleSetGCPtrSize(pSSM, sizeof(RTGCPTR32));
2092 else if (uVersion <= CPUM_SAVED_STATE_VERSION_VER3_0)
2093 SSMR3HandleSetGCPtrSize(pSSM, HC_ARCH_BITS == 32 ? sizeof(RTGCPTR32) : sizeof(RTGCPTR));
2094
2095 /*
2096 * Figure x86 and ctx field definitions to use for older states.
2097 */
2098 uint32_t const fLoad = uVersion > CPUM_SAVED_STATE_VERSION_MEM ? 0 : SSMSTRUCT_FLAGS_MEM_BAND_AID_RELAXED;
2099 PCSSMFIELD paCpumCtx1Fields = g_aCpumX87Fields;
2100 PCSSMFIELD paCpumCtx2Fields = g_aCpumCtxFields;
2101 if (uVersion == CPUM_SAVED_STATE_VERSION_VER1_6)
2102 {
2103 paCpumCtx1Fields = g_aCpumX87FieldsV16;
2104 paCpumCtx2Fields = g_aCpumCtxFieldsV16;
2105 }
2106 else if (uVersion <= CPUM_SAVED_STATE_VERSION_MEM)
2107 {
2108 paCpumCtx1Fields = g_aCpumX87FieldsMem;
2109 paCpumCtx2Fields = g_aCpumCtxFieldsMem;
2110 }
2111
2112 /*
2113 * The hyper state used to preceed the CPU count. Starting with
2114 * XSAVE it was moved down till after we've got the count.
2115 */
2116 if (uVersion < CPUM_SAVED_STATE_VERSION_XSAVE)
2117 {
2118 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
2119 {
2120 PVMCPU pVCpu = &pVM->aCpus[iCpu];
2121 X86FXSTATE Ign;
2122 SSMR3GetStructEx(pSSM, &Ign, sizeof(Ign), fLoad | SSMSTRUCT_FLAGS_NO_TAIL_MARKER, paCpumCtx1Fields, NULL);
2123 uint64_t uCR3 = pVCpu->cpum.s.Hyper.cr3;
2124 uint64_t uRSP = pVCpu->cpum.s.Hyper.rsp; /* see VMMR3Relocate(). */
2125 SSMR3GetStructEx(pSSM, &pVCpu->cpum.s.Hyper, sizeof(pVCpu->cpum.s.Hyper),
2126 fLoad | SSMSTRUCT_FLAGS_NO_LEAD_MARKER, paCpumCtx2Fields, NULL);
2127 pVCpu->cpum.s.Hyper.cr3 = uCR3;
2128 pVCpu->cpum.s.Hyper.rsp = uRSP;
2129 }
2130 }
2131
2132 if (uVersion >= CPUM_SAVED_STATE_VERSION_VER2_1_NOMSR)
2133 {
2134 uint32_t cCpus;
2135 rc = SSMR3GetU32(pSSM, &cCpus); AssertRCReturn(rc, rc);
2136 AssertLogRelMsgReturn(cCpus == pVM->cCpus, ("Mismatching CPU counts: saved: %u; configured: %u \n", cCpus, pVM->cCpus),
2137 VERR_SSM_UNEXPECTED_DATA);
2138 }
2139 AssertLogRelMsgReturn( uVersion > CPUM_SAVED_STATE_VERSION_VER2_0
2140 || pVM->cCpus == 1,
2141 ("cCpus=%u\n", pVM->cCpus),
2142 VERR_SSM_UNEXPECTED_DATA);
2143
2144 uint32_t cbMsrs = 0;
2145 if (uVersion > CPUM_SAVED_STATE_VERSION_NO_MSR_SIZE)
2146 {
2147 rc = SSMR3GetU32(pSSM, &cbMsrs); AssertRCReturn(rc, rc);
2148 AssertLogRelMsgReturn(RT_ALIGN(cbMsrs, sizeof(uint64_t)) == cbMsrs, ("Size of MSRs is misaligned: %#x\n", cbMsrs),
2149 VERR_SSM_UNEXPECTED_DATA);
2150 AssertLogRelMsgReturn(cbMsrs <= sizeof(CPUMCTXMSRS) && cbMsrs > 0, ("Size of MSRs is out of range: %#x\n", cbMsrs),
2151 VERR_SSM_UNEXPECTED_DATA);
2152 }
2153
2154 /*
2155 * Do the per-CPU restoring.
2156 */
2157 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
2158 {
2159 PVMCPU pVCpu = &pVM->aCpus[iCpu];
2160 PCPUMCTX pGstCtx = &pVCpu->cpum.s.Guest;
2161
2162 if (uVersion >= CPUM_SAVED_STATE_VERSION_XSAVE)
2163 {
2164 /*
2165 * The XSAVE saved state layout moved the hyper state down here.
2166 */
2167 uint64_t uCR3 = pVCpu->cpum.s.Hyper.cr3;
2168 uint64_t uRSP = pVCpu->cpum.s.Hyper.rsp; /* see VMMR3Relocate(). */
2169 rc = SSMR3GetStructEx(pSSM, &pVCpu->cpum.s.Hyper, sizeof(pVCpu->cpum.s.Hyper), 0, g_aCpumCtxFields, NULL);
2170 pVCpu->cpum.s.Hyper.cr3 = uCR3;
2171 pVCpu->cpum.s.Hyper.rsp = uRSP;
2172 AssertRCReturn(rc, rc);
2173
2174 /*
2175 * Start by restoring the CPUMCTX structure and the X86FXSAVE bits of the extended state.
2176 */
2177 rc = SSMR3GetStructEx(pSSM, pGstCtx, sizeof(*pGstCtx), 0, g_aCpumCtxFields, NULL);
2178 rc = SSMR3GetStructEx(pSSM, &pGstCtx->pXStateR3->x87, sizeof(pGstCtx->pXStateR3->x87), 0, g_aCpumX87Fields, NULL);
2179 AssertRCReturn(rc, rc);
2180
2181 /* Check that the xsave/xrstor mask is valid (invalid results in #GP). */
2182 if (pGstCtx->fXStateMask != 0)
2183 {
2184 AssertLogRelMsgReturn(!(pGstCtx->fXStateMask & ~pVM->cpum.s.fXStateGuestMask),
2185 ("fXStateMask=%#RX64 fXStateGuestMask=%#RX64\n",
2186 pGstCtx->fXStateMask, pVM->cpum.s.fXStateGuestMask),
2187 VERR_CPUM_INCOMPATIBLE_XSAVE_COMP_MASK);
2188 AssertLogRelMsgReturn(pGstCtx->fXStateMask & XSAVE_C_X87,
2189 ("fXStateMask=%#RX64\n", pGstCtx->fXStateMask), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2190 AssertLogRelMsgReturn((pGstCtx->fXStateMask & (XSAVE_C_SSE | XSAVE_C_YMM)) != XSAVE_C_YMM,
2191 ("fXStateMask=%#RX64\n", pGstCtx->fXStateMask), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2192 AssertLogRelMsgReturn( (pGstCtx->fXStateMask & (XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI)) == 0
2193 || (pGstCtx->fXStateMask & (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI))
2194 == (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI),
2195 ("fXStateMask=%#RX64\n", pGstCtx->fXStateMask), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2196 }
2197
2198 /* Check that the XCR0 mask is valid (invalid results in #GP). */
2199 AssertLogRelMsgReturn(pGstCtx->aXcr[0] & XSAVE_C_X87, ("xcr0=%#RX64\n", pGstCtx->aXcr[0]), VERR_CPUM_INVALID_XCR0);
2200 if (pGstCtx->aXcr[0] != XSAVE_C_X87)
2201 {
2202 AssertLogRelMsgReturn(!(pGstCtx->aXcr[0] & ~(pGstCtx->fXStateMask | XSAVE_C_X87)),
2203 ("xcr0=%#RX64 fXStateMask=%#RX64\n", pGstCtx->aXcr[0], pGstCtx->fXStateMask),
2204 VERR_CPUM_INVALID_XCR0);
2205 AssertLogRelMsgReturn(pGstCtx->aXcr[0] & XSAVE_C_X87,
2206 ("xcr0=%#RX64\n", pGstCtx->aXcr[0]), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2207 AssertLogRelMsgReturn((pGstCtx->aXcr[0] & (XSAVE_C_SSE | XSAVE_C_YMM)) != XSAVE_C_YMM,
2208 ("xcr0=%#RX64\n", pGstCtx->aXcr[0]), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2209 AssertLogRelMsgReturn( (pGstCtx->aXcr[0] & (XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI)) == 0
2210 || (pGstCtx->aXcr[0] & (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI))
2211 == (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI),
2212 ("xcr0=%#RX64\n", pGstCtx->aXcr[0]), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2213 }
2214
2215 /* Check that the XCR1 is zero, as we don't implement it yet. */
2216 AssertLogRelMsgReturn(!pGstCtx->aXcr[1], ("xcr1=%#RX64\n", pGstCtx->aXcr[1]), VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2217
2218 /*
2219 * Restore the individual extended state components we support.
2220 */
2221 if (pGstCtx->fXStateMask != 0)
2222 {
2223 rc = SSMR3GetStructEx(pSSM, &pGstCtx->pXStateR3->Hdr, sizeof(pGstCtx->pXStateR3->Hdr),
2224 0, g_aCpumXSaveHdrFields, NULL);
2225 AssertRCReturn(rc, rc);
2226 AssertLogRelMsgReturn(!(pGstCtx->pXStateR3->Hdr.bmXState & ~pGstCtx->fXStateMask),
2227 ("bmXState=%#RX64 fXStateMask=%#RX64\n",
2228 pGstCtx->pXStateR3->Hdr.bmXState, pGstCtx->fXStateMask),
2229 VERR_CPUM_INVALID_XSAVE_HDR);
2230 }
2231 if (pGstCtx->fXStateMask & XSAVE_C_YMM)
2232 {
2233 PX86XSAVEYMMHI pYmmHiCtx = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_YMM_BIT, PX86XSAVEYMMHI);
2234 SSMR3GetStructEx(pSSM, pYmmHiCtx, sizeof(*pYmmHiCtx), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumYmmHiFields, NULL);
2235 }
2236 if (pGstCtx->fXStateMask & XSAVE_C_BNDREGS)
2237 {
2238 PX86XSAVEBNDREGS pBndRegs = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_BNDREGS_BIT, PX86XSAVEBNDREGS);
2239 SSMR3GetStructEx(pSSM, pBndRegs, sizeof(*pBndRegs), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumBndRegsFields, NULL);
2240 }
2241 if (pGstCtx->fXStateMask & XSAVE_C_BNDCSR)
2242 {
2243 PX86XSAVEBNDCFG pBndCfg = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_BNDCSR_BIT, PX86XSAVEBNDCFG);
2244 SSMR3GetStructEx(pSSM, pBndCfg, sizeof(*pBndCfg), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumBndCfgFields, NULL);
2245 }
2246 if (pGstCtx->fXStateMask & XSAVE_C_ZMM_HI256)
2247 {
2248 PX86XSAVEZMMHI256 pZmmHi256 = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_ZMM_HI256_BIT, PX86XSAVEZMMHI256);
2249 SSMR3GetStructEx(pSSM, pZmmHi256, sizeof(*pZmmHi256), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumZmmHi256Fields, NULL);
2250 }
2251 if (pGstCtx->fXStateMask & XSAVE_C_ZMM_16HI)
2252 {
2253 PX86XSAVEZMM16HI pZmm16Hi = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_ZMM_16HI_BIT, PX86XSAVEZMM16HI);
2254 SSMR3GetStructEx(pSSM, pZmm16Hi, sizeof(*pZmm16Hi), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumZmm16HiFields, NULL);
2255 }
2256 if (uVersion >= CPUM_SAVED_STATE_VERSION_HWVIRT_SVM)
2257 {
2258 if (pVM->cpum.ro.GuestFeatures.fSvm)
2259 {
2260 Assert(pGstCtx->hwvirt.svm.CTX_SUFF(pVmcb));
2261 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.svm.uMsrHSavePa);
2262 SSMR3GetGCPhys(pSSM, &pGstCtx->hwvirt.svm.GCPhysVmcb);
2263 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.svm.uPrevPauseTick);
2264 SSMR3GetU16(pSSM, &pGstCtx->hwvirt.svm.cPauseFilter);
2265 SSMR3GetU16(pSSM, &pGstCtx->hwvirt.svm.cPauseFilterThreshold);
2266 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.svm.fInterceptEvents);
2267 SSMR3GetStructEx(pSSM, &pGstCtx->hwvirt.svm.HostState, sizeof(pGstCtx->hwvirt.svm.HostState),
2268 0 /* fFlags */, g_aSvmHwvirtHostState, NULL /* pvUser */);
2269 SSMR3GetMem(pSSM, pGstCtx->hwvirt.svm.pVmcbR3, SVM_VMCB_PAGES << X86_PAGE_4K_SHIFT);
2270 SSMR3GetMem(pSSM, pGstCtx->hwvirt.svm.pvMsrBitmapR3, SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT);
2271 SSMR3GetMem(pSSM, pGstCtx->hwvirt.svm.pvIoBitmapR3, SVM_IOPM_PAGES << X86_PAGE_4K_SHIFT);
2272 SSMR3GetU32(pSSM, &pGstCtx->hwvirt.fLocalForcedActions);
2273 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.fGif);
2274 }
2275 }
2276 }
2277 else
2278 {
2279 /*
2280 * Pre XSAVE saved state.
2281 */
2282 SSMR3GetStructEx(pSSM, &pGstCtx->pXStateR3->x87, sizeof(pGstCtx->pXStateR3->x87),
2283 fLoad | SSMSTRUCT_FLAGS_NO_TAIL_MARKER, paCpumCtx1Fields, NULL);
2284 SSMR3GetStructEx(pSSM, pGstCtx, sizeof(*pGstCtx), fLoad | SSMSTRUCT_FLAGS_NO_LEAD_MARKER, paCpumCtx2Fields, NULL);
2285 }
2286
2287 /*
2288 * Restore a couple of flags and the MSRs.
2289 */
2290 SSMR3GetU32(pSSM, &pVCpu->cpum.s.fUseFlags);
2291 SSMR3GetU32(pSSM, &pVCpu->cpum.s.fChanged);
2292
2293 rc = VINF_SUCCESS;
2294 if (uVersion > CPUM_SAVED_STATE_VERSION_NO_MSR_SIZE)
2295 rc = SSMR3GetMem(pSSM, &pVCpu->cpum.s.GuestMsrs.au64[0], cbMsrs);
2296 else if (uVersion >= CPUM_SAVED_STATE_VERSION_VER3_0)
2297 {
2298 SSMR3GetMem(pSSM, &pVCpu->cpum.s.GuestMsrs.au64[0], 2 * sizeof(uint64_t)); /* Restore two MSRs. */
2299 rc = SSMR3Skip(pSSM, 62 * sizeof(uint64_t));
2300 }
2301 AssertRCReturn(rc, rc);
2302
2303 /* REM and other may have cleared must-be-one fields in DR6 and
2304 DR7, fix these. */
2305 pGstCtx->dr[6] &= ~(X86_DR6_RAZ_MASK | X86_DR6_MBZ_MASK);
2306 pGstCtx->dr[6] |= X86_DR6_RA1_MASK;
2307 pGstCtx->dr[7] &= ~(X86_DR7_RAZ_MASK | X86_DR7_MBZ_MASK);
2308 pGstCtx->dr[7] |= X86_DR7_RA1_MASK;
2309 }
2310
2311 /* Older states does not have the internal selector register flags
2312 and valid selector value. Supply those. */
2313 if (uVersion <= CPUM_SAVED_STATE_VERSION_MEM)
2314 {
2315 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
2316 {
2317 PVMCPU pVCpu = &pVM->aCpus[iCpu];
2318 bool const fValid = !VM_IS_RAW_MODE_ENABLED(pVM)
2319 || ( uVersion > CPUM_SAVED_STATE_VERSION_VER3_2
2320 && !(pVCpu->cpum.s.fChanged & CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID));
2321 PCPUMSELREG paSelReg = CPUMCTX_FIRST_SREG(&pVCpu->cpum.s.Guest);
2322 if (fValid)
2323 {
2324 for (uint32_t iSelReg = 0; iSelReg < X86_SREG_COUNT; iSelReg++)
2325 {
2326 paSelReg[iSelReg].fFlags = CPUMSELREG_FLAGS_VALID;
2327 paSelReg[iSelReg].ValidSel = paSelReg[iSelReg].Sel;
2328 }
2329
2330 pVCpu->cpum.s.Guest.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
2331 pVCpu->cpum.s.Guest.ldtr.ValidSel = pVCpu->cpum.s.Guest.ldtr.Sel;
2332 }
2333 else
2334 {
2335 for (uint32_t iSelReg = 0; iSelReg < X86_SREG_COUNT; iSelReg++)
2336 {
2337 paSelReg[iSelReg].fFlags = 0;
2338 paSelReg[iSelReg].ValidSel = 0;
2339 }
2340
2341 /* This might not be 104% correct, but I think it's close
2342 enough for all practical purposes... (REM always loaded
2343 LDTR registers.) */
2344 pVCpu->cpum.s.Guest.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
2345 pVCpu->cpum.s.Guest.ldtr.ValidSel = pVCpu->cpum.s.Guest.ldtr.Sel;
2346 }
2347 pVCpu->cpum.s.Guest.tr.fFlags = CPUMSELREG_FLAGS_VALID;
2348 pVCpu->cpum.s.Guest.tr.ValidSel = pVCpu->cpum.s.Guest.tr.Sel;
2349 }
2350 }
2351
2352 /* Clear CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID. */
2353 if ( uVersion > CPUM_SAVED_STATE_VERSION_VER3_2
2354 && uVersion <= CPUM_SAVED_STATE_VERSION_MEM)
2355 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
2356 pVM->aCpus[iCpu].cpum.s.fChanged &= CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID;
2357
2358 /*
2359 * A quick sanity check.
2360 */
2361 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
2362 {
2363 PVMCPU pVCpu = &pVM->aCpus[iCpu];
2364 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.es.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
2365 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.cs.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
2366 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.ss.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
2367 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.ds.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
2368 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.fs.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
2369 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.gs.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
2370 }
2371 }
2372
2373 pVM->cpum.s.fPendingRestore = false;
2374
2375 /*
2376 * Guest CPUIDs.
2377 */
2378 if (uVersion >= CPUM_SAVED_STATE_VERSION_VER3_2)
2379 return cpumR3LoadCpuId(pVM, pSSM, uVersion);
2380 return cpumR3LoadCpuIdPre32(pVM, pSSM, uVersion);
2381}
2382
2383
2384/**
2385 * @callback_method_impl{FNSSMINTLOADDONE}
2386 */
2387static DECLCALLBACK(int) cpumR3LoadDone(PVM pVM, PSSMHANDLE pSSM)
2388{
2389 if (RT_FAILURE(SSMR3HandleGetStatus(pSSM)))
2390 return VINF_SUCCESS;
2391
2392 /* just check this since we can. */ /** @todo Add a SSM unit flag for indicating that it's mandatory during a restore. */
2393 if (pVM->cpum.s.fPendingRestore)
2394 {
2395 LogRel(("CPUM: Missing state!\n"));
2396 return VERR_INTERNAL_ERROR_2;
2397 }
2398
2399 bool const fSupportsLongMode = VMR3IsLongModeAllowed(pVM);
2400 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2401 {
2402 PVMCPU pVCpu = &pVM->aCpus[idCpu];
2403
2404 /* Notify PGM of the NXE states in case they've changed. */
2405 PGMNotifyNxeChanged(pVCpu, RT_BOOL(pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_NXE));
2406
2407 /* During init. this is done in CPUMR3InitCompleted(). */
2408 if (fSupportsLongMode)
2409 pVCpu->cpum.s.fUseFlags |= CPUM_USE_SUPPORTS_LONGMODE;
2410 }
2411 return VINF_SUCCESS;
2412}
2413
2414
2415/**
2416 * Checks if the CPUM state restore is still pending.
2417 *
2418 * @returns true / false.
2419 * @param pVM The cross context VM structure.
2420 */
2421VMMDECL(bool) CPUMR3IsStateRestorePending(PVM pVM)
2422{
2423 return pVM->cpum.s.fPendingRestore;
2424}
2425
2426
2427/**
2428 * Formats the EFLAGS value into mnemonics.
2429 *
2430 * @param pszEFlags Where to write the mnemonics. (Assumes sufficient buffer space.)
2431 * @param efl The EFLAGS value.
2432 */
2433static void cpumR3InfoFormatFlags(char *pszEFlags, uint32_t efl)
2434{
2435 /*
2436 * Format the flags.
2437 */
2438 static const struct
2439 {
2440 const char *pszSet; const char *pszClear; uint32_t fFlag;
2441 } s_aFlags[] =
2442 {
2443 { "vip",NULL, X86_EFL_VIP },
2444 { "vif",NULL, X86_EFL_VIF },
2445 { "ac", NULL, X86_EFL_AC },
2446 { "vm", NULL, X86_EFL_VM },
2447 { "rf", NULL, X86_EFL_RF },
2448 { "nt", NULL, X86_EFL_NT },
2449 { "ov", "nv", X86_EFL_OF },
2450 { "dn", "up", X86_EFL_DF },
2451 { "ei", "di", X86_EFL_IF },
2452 { "tf", NULL, X86_EFL_TF },
2453 { "nt", "pl", X86_EFL_SF },
2454 { "nz", "zr", X86_EFL_ZF },
2455 { "ac", "na", X86_EFL_AF },
2456 { "po", "pe", X86_EFL_PF },
2457 { "cy", "nc", X86_EFL_CF },
2458 };
2459 char *psz = pszEFlags;
2460 for (unsigned i = 0; i < RT_ELEMENTS(s_aFlags); i++)
2461 {
2462 const char *pszAdd = s_aFlags[i].fFlag & efl ? s_aFlags[i].pszSet : s_aFlags[i].pszClear;
2463 if (pszAdd)
2464 {
2465 strcpy(psz, pszAdd);
2466 psz += strlen(pszAdd);
2467 *psz++ = ' ';
2468 }
2469 }
2470 psz[-1] = '\0';
2471}
2472
2473
2474/**
2475 * Formats a full register dump.
2476 *
2477 * @param pVM The cross context VM structure.
2478 * @param pCtx The context to format.
2479 * @param pCtxCore The context core to format.
2480 * @param pHlp Output functions.
2481 * @param enmType The dump type.
2482 * @param pszPrefix Register name prefix.
2483 */
2484static void cpumR3InfoOne(PVM pVM, PCPUMCTX pCtx, PCCPUMCTXCORE pCtxCore, PCDBGFINFOHLP pHlp, CPUMDUMPTYPE enmType,
2485 const char *pszPrefix)
2486{
2487 NOREF(pVM);
2488
2489 /*
2490 * Format the EFLAGS.
2491 */
2492 uint32_t efl = pCtxCore->eflags.u32;
2493 char szEFlags[80];
2494 cpumR3InfoFormatFlags(&szEFlags[0], efl);
2495
2496 /*
2497 * Format the registers.
2498 */
2499 switch (enmType)
2500 {
2501 case CPUMDUMPTYPE_TERSE:
2502 if (CPUMIsGuestIn64BitCodeEx(pCtx))
2503 pHlp->pfnPrintf(pHlp,
2504 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
2505 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
2506 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
2507 "%sr14=%016RX64 %sr15=%016RX64\n"
2508 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
2509 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %seflags=%08x\n",
2510 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
2511 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
2512 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
2513 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2514 pszPrefix, pCtxCore->cs.Sel, pszPrefix, pCtxCore->ss.Sel, pszPrefix, pCtxCore->ds.Sel, pszPrefix, pCtxCore->es.Sel,
2515 pszPrefix, pCtxCore->fs.Sel, pszPrefix, pCtxCore->gs.Sel, pszPrefix, efl);
2516 else
2517 pHlp->pfnPrintf(pHlp,
2518 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
2519 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
2520 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %seflags=%08x\n",
2521 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
2522 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2523 pszPrefix, pCtxCore->cs.Sel, pszPrefix, pCtxCore->ss.Sel, pszPrefix, pCtxCore->ds.Sel, pszPrefix, pCtxCore->es.Sel,
2524 pszPrefix, pCtxCore->fs.Sel, pszPrefix, pCtxCore->gs.Sel, pszPrefix, efl);
2525 break;
2526
2527 case CPUMDUMPTYPE_DEFAULT:
2528 if (CPUMIsGuestIn64BitCodeEx(pCtx))
2529 pHlp->pfnPrintf(pHlp,
2530 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
2531 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
2532 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
2533 "%sr14=%016RX64 %sr15=%016RX64\n"
2534 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
2535 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %str=%04x %seflags=%08x\n"
2536 "%scr0=%08RX64 %scr2=%08RX64 %scr3=%08RX64 %scr4=%08RX64 %sgdtr=%016RX64:%04x %sldtr=%04x\n"
2537 ,
2538 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
2539 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
2540 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
2541 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2542 pszPrefix, pCtxCore->cs.Sel, pszPrefix, pCtxCore->ss.Sel, pszPrefix, pCtxCore->ds.Sel, pszPrefix, pCtxCore->es.Sel,
2543 pszPrefix, pCtxCore->fs.Sel, pszPrefix, pCtxCore->gs.Sel, pszPrefix, pCtx->tr.Sel, pszPrefix, efl,
2544 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
2545 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->ldtr.Sel);
2546 else
2547 pHlp->pfnPrintf(pHlp,
2548 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
2549 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
2550 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %str=%04x %seflags=%08x\n"
2551 "%scr0=%08RX64 %scr2=%08RX64 %scr3=%08RX64 %scr4=%08RX64 %sgdtr=%08RX64:%04x %sldtr=%04x\n"
2552 ,
2553 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
2554 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2555 pszPrefix, pCtxCore->cs.Sel, pszPrefix, pCtxCore->ss.Sel, pszPrefix, pCtxCore->ds.Sel, pszPrefix, pCtxCore->es.Sel,
2556 pszPrefix, pCtxCore->fs.Sel, pszPrefix, pCtxCore->gs.Sel, pszPrefix, pCtx->tr.Sel, pszPrefix, efl,
2557 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
2558 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->ldtr.Sel);
2559 break;
2560
2561 case CPUMDUMPTYPE_VERBOSE:
2562 if (CPUMIsGuestIn64BitCodeEx(pCtx))
2563 pHlp->pfnPrintf(pHlp,
2564 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
2565 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
2566 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
2567 "%sr14=%016RX64 %sr15=%016RX64\n"
2568 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
2569 "%scs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2570 "%sds={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2571 "%ses={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2572 "%sfs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2573 "%sgs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2574 "%sss={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2575 "%scr0=%016RX64 %scr2=%016RX64 %scr3=%016RX64 %scr4=%016RX64\n"
2576 "%sdr0=%016RX64 %sdr1=%016RX64 %sdr2=%016RX64 %sdr3=%016RX64\n"
2577 "%sdr4=%016RX64 %sdr5=%016RX64 %sdr6=%016RX64 %sdr7=%016RX64\n"
2578 "%sgdtr=%016RX64:%04x %sidtr=%016RX64:%04x %seflags=%08x\n"
2579 "%sldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
2580 "%str ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
2581 "%sSysEnter={cs=%04llx eip=%016RX64 esp=%016RX64}\n"
2582 ,
2583 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
2584 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
2585 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
2586 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2587 pszPrefix, pCtxCore->cs.Sel, pCtx->cs.u64Base, pCtx->cs.u32Limit, pCtx->cs.Attr.u,
2588 pszPrefix, pCtxCore->ds.Sel, pCtx->ds.u64Base, pCtx->ds.u32Limit, pCtx->ds.Attr.u,
2589 pszPrefix, pCtxCore->es.Sel, pCtx->es.u64Base, pCtx->es.u32Limit, pCtx->es.Attr.u,
2590 pszPrefix, pCtxCore->fs.Sel, pCtx->fs.u64Base, pCtx->fs.u32Limit, pCtx->fs.Attr.u,
2591 pszPrefix, pCtxCore->gs.Sel, pCtx->gs.u64Base, pCtx->gs.u32Limit, pCtx->gs.Attr.u,
2592 pszPrefix, pCtxCore->ss.Sel, pCtx->ss.u64Base, pCtx->ss.u32Limit, pCtx->ss.Attr.u,
2593 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
2594 pszPrefix, pCtx->dr[0], pszPrefix, pCtx->dr[1], pszPrefix, pCtx->dr[2], pszPrefix, pCtx->dr[3],
2595 pszPrefix, pCtx->dr[4], pszPrefix, pCtx->dr[5], pszPrefix, pCtx->dr[6], pszPrefix, pCtx->dr[7],
2596 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, pszPrefix, efl,
2597 pszPrefix, pCtx->ldtr.Sel, pCtx->ldtr.u64Base, pCtx->ldtr.u32Limit, pCtx->ldtr.Attr.u,
2598 pszPrefix, pCtx->tr.Sel, pCtx->tr.u64Base, pCtx->tr.u32Limit, pCtx->tr.Attr.u,
2599 pszPrefix, pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
2600 else
2601 pHlp->pfnPrintf(pHlp,
2602 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
2603 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
2604 "%scs={%04x base=%016RX64 limit=%08x flags=%08x} %sdr0=%08RX64 %sdr1=%08RX64\n"
2605 "%sds={%04x base=%016RX64 limit=%08x flags=%08x} %sdr2=%08RX64 %sdr3=%08RX64\n"
2606 "%ses={%04x base=%016RX64 limit=%08x flags=%08x} %sdr4=%08RX64 %sdr5=%08RX64\n"
2607 "%sfs={%04x base=%016RX64 limit=%08x flags=%08x} %sdr6=%08RX64 %sdr7=%08RX64\n"
2608 "%sgs={%04x base=%016RX64 limit=%08x flags=%08x} %scr0=%08RX64 %scr2=%08RX64\n"
2609 "%sss={%04x base=%016RX64 limit=%08x flags=%08x} %scr3=%08RX64 %scr4=%08RX64\n"
2610 "%sgdtr=%016RX64:%04x %sidtr=%016RX64:%04x %seflags=%08x\n"
2611 "%sldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
2612 "%str ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
2613 "%sSysEnter={cs=%04llx eip=%08llx esp=%08llx}\n"
2614 ,
2615 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
2616 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2617 pszPrefix, pCtxCore->cs.Sel, pCtx->cs.u64Base, pCtx->cs.u32Limit, pCtx->cs.Attr.u, pszPrefix, pCtx->dr[0], pszPrefix, pCtx->dr[1],
2618 pszPrefix, pCtxCore->ds.Sel, pCtx->ds.u64Base, pCtx->ds.u32Limit, pCtx->ds.Attr.u, pszPrefix, pCtx->dr[2], pszPrefix, pCtx->dr[3],
2619 pszPrefix, pCtxCore->es.Sel, pCtx->es.u64Base, pCtx->es.u32Limit, pCtx->es.Attr.u, pszPrefix, pCtx->dr[4], pszPrefix, pCtx->dr[5],
2620 pszPrefix, pCtxCore->fs.Sel, pCtx->fs.u64Base, pCtx->fs.u32Limit, pCtx->fs.Attr.u, pszPrefix, pCtx->dr[6], pszPrefix, pCtx->dr[7],
2621 pszPrefix, pCtxCore->gs.Sel, pCtx->gs.u64Base, pCtx->gs.u32Limit, pCtx->gs.Attr.u, pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2,
2622 pszPrefix, pCtxCore->ss.Sel, pCtx->ss.u64Base, pCtx->ss.u32Limit, pCtx->ss.Attr.u, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
2623 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, pszPrefix, efl,
2624 pszPrefix, pCtx->ldtr.Sel, pCtx->ldtr.u64Base, pCtx->ldtr.u32Limit, pCtx->ldtr.Attr.u,
2625 pszPrefix, pCtx->tr.Sel, pCtx->tr.u64Base, pCtx->tr.u32Limit, pCtx->tr.Attr.u,
2626 pszPrefix, pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
2627
2628 pHlp->pfnPrintf(pHlp, "%sxcr=%016RX64 %sxcr1=%016RX64 %sxss=%016RX64 (fXStateMask=%016RX64)\n",
2629 pszPrefix, pCtx->aXcr[0], pszPrefix, pCtx->aXcr[1],
2630 pszPrefix, UINT64_C(0) /** @todo XSS */, pCtx->fXStateMask);
2631 if (pCtx->CTX_SUFF(pXState))
2632 {
2633 PX86FXSTATE pFpuCtx = &pCtx->CTX_SUFF(pXState)->x87;
2634 pHlp->pfnPrintf(pHlp,
2635 "%sFCW=%04x %sFSW=%04x %sFTW=%04x %sFOP=%04x %sMXCSR=%08x %sMXCSR_MASK=%08x\n"
2636 "%sFPUIP=%08x %sCS=%04x %sRsrvd1=%04x %sFPUDP=%08x %sDS=%04x %sRsvrd2=%04x\n"
2637 ,
2638 pszPrefix, pFpuCtx->FCW, pszPrefix, pFpuCtx->FSW, pszPrefix, pFpuCtx->FTW, pszPrefix, pFpuCtx->FOP,
2639 pszPrefix, pFpuCtx->MXCSR, pszPrefix, pFpuCtx->MXCSR_MASK,
2640 pszPrefix, pFpuCtx->FPUIP, pszPrefix, pFpuCtx->CS, pszPrefix, pFpuCtx->Rsrvd1,
2641 pszPrefix, pFpuCtx->FPUDP, pszPrefix, pFpuCtx->DS, pszPrefix, pFpuCtx->Rsrvd2
2642 );
2643 /*
2644 * The FSAVE style memory image contains ST(0)-ST(7) at increasing addresses,
2645 * not (FP)R0-7 as Intel SDM suggests.
2646 */
2647 unsigned iShift = (pFpuCtx->FSW >> 11) & 7;
2648 for (unsigned iST = 0; iST < RT_ELEMENTS(pFpuCtx->aRegs); iST++)
2649 {
2650 unsigned iFPR = (iST + iShift) % RT_ELEMENTS(pFpuCtx->aRegs);
2651 unsigned uTag = (pFpuCtx->FTW >> (2 * iFPR)) & 3;
2652 char chSign = pFpuCtx->aRegs[iST].au16[4] & 0x8000 ? '-' : '+';
2653 unsigned iInteger = (unsigned)(pFpuCtx->aRegs[iST].au64[0] >> 63);
2654 uint64_t u64Fraction = pFpuCtx->aRegs[iST].au64[0] & UINT64_C(0x7fffffffffffffff);
2655 int iExponent = pFpuCtx->aRegs[iST].au16[4] & 0x7fff;
2656 iExponent -= 16383; /* subtract bias */
2657 /** @todo This isn't entirenly correct and needs more work! */
2658 pHlp->pfnPrintf(pHlp,
2659 "%sST(%u)=%sFPR%u={%04RX16'%08RX32'%08RX32} t%d %c%u.%022llu * 2 ^ %d (*)",
2660 pszPrefix, iST, pszPrefix, iFPR,
2661 pFpuCtx->aRegs[iST].au16[4], pFpuCtx->aRegs[iST].au32[1], pFpuCtx->aRegs[iST].au32[0],
2662 uTag, chSign, iInteger, u64Fraction, iExponent);
2663 if (pFpuCtx->aRegs[iST].au16[5] || pFpuCtx->aRegs[iST].au16[6] || pFpuCtx->aRegs[iST].au16[7])
2664 pHlp->pfnPrintf(pHlp, " res={%04RX16,%04RX16,%04RX16}\n",
2665 pFpuCtx->aRegs[iST].au16[5], pFpuCtx->aRegs[iST].au16[6], pFpuCtx->aRegs[iST].au16[7]);
2666 else
2667 pHlp->pfnPrintf(pHlp, "\n");
2668 }
2669
2670 /* XMM/YMM/ZMM registers. */
2671 if (pCtx->fXStateMask & XSAVE_C_YMM)
2672 {
2673 PCX86XSAVEYMMHI pYmmHiCtx = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_YMM_BIT, PCX86XSAVEYMMHI);
2674 if (!(pCtx->fXStateMask & XSAVE_C_ZMM_HI256))
2675 for (unsigned i = 0; i < RT_ELEMENTS(pFpuCtx->aXMM); i++)
2676 pHlp->pfnPrintf(pHlp, "%sYMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32\n",
2677 pszPrefix, i, i < 10 ? " " : "",
2678 pYmmHiCtx->aYmmHi[i].au32[3],
2679 pYmmHiCtx->aYmmHi[i].au32[2],
2680 pYmmHiCtx->aYmmHi[i].au32[1],
2681 pYmmHiCtx->aYmmHi[i].au32[0],
2682 pFpuCtx->aXMM[i].au32[3],
2683 pFpuCtx->aXMM[i].au32[2],
2684 pFpuCtx->aXMM[i].au32[1],
2685 pFpuCtx->aXMM[i].au32[0]);
2686 else
2687 {
2688 PCX86XSAVEZMMHI256 pZmmHi256 = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_ZMM_HI256_BIT, PCX86XSAVEZMMHI256);
2689 for (unsigned i = 0; i < RT_ELEMENTS(pFpuCtx->aXMM); i++)
2690 pHlp->pfnPrintf(pHlp,
2691 "%sZMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32''%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32\n",
2692 pszPrefix, i, i < 10 ? " " : "",
2693 pZmmHi256->aHi256Regs[i].au32[7],
2694 pZmmHi256->aHi256Regs[i].au32[6],
2695 pZmmHi256->aHi256Regs[i].au32[5],
2696 pZmmHi256->aHi256Regs[i].au32[4],
2697 pZmmHi256->aHi256Regs[i].au32[3],
2698 pZmmHi256->aHi256Regs[i].au32[2],
2699 pZmmHi256->aHi256Regs[i].au32[1],
2700 pZmmHi256->aHi256Regs[i].au32[0],
2701 pYmmHiCtx->aYmmHi[i].au32[3],
2702 pYmmHiCtx->aYmmHi[i].au32[2],
2703 pYmmHiCtx->aYmmHi[i].au32[1],
2704 pYmmHiCtx->aYmmHi[i].au32[0],
2705 pFpuCtx->aXMM[i].au32[3],
2706 pFpuCtx->aXMM[i].au32[2],
2707 pFpuCtx->aXMM[i].au32[1],
2708 pFpuCtx->aXMM[i].au32[0]);
2709
2710 PCX86XSAVEZMM16HI pZmm16Hi = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_ZMM_16HI_BIT, PCX86XSAVEZMM16HI);
2711 for (unsigned i = 0; i < RT_ELEMENTS(pZmm16Hi->aRegs); i++)
2712 pHlp->pfnPrintf(pHlp,
2713 "%sZMM%u=%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32''%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32\n",
2714 pszPrefix, i + 16,
2715 pZmm16Hi->aRegs[i].au32[15],
2716 pZmm16Hi->aRegs[i].au32[14],
2717 pZmm16Hi->aRegs[i].au32[13],
2718 pZmm16Hi->aRegs[i].au32[12],
2719 pZmm16Hi->aRegs[i].au32[11],
2720 pZmm16Hi->aRegs[i].au32[10],
2721 pZmm16Hi->aRegs[i].au32[9],
2722 pZmm16Hi->aRegs[i].au32[8],
2723 pZmm16Hi->aRegs[i].au32[7],
2724 pZmm16Hi->aRegs[i].au32[6],
2725 pZmm16Hi->aRegs[i].au32[5],
2726 pZmm16Hi->aRegs[i].au32[4],
2727 pZmm16Hi->aRegs[i].au32[3],
2728 pZmm16Hi->aRegs[i].au32[2],
2729 pZmm16Hi->aRegs[i].au32[1],
2730 pZmm16Hi->aRegs[i].au32[0]);
2731 }
2732 }
2733 else
2734 for (unsigned i = 0; i < RT_ELEMENTS(pFpuCtx->aXMM); i++)
2735 pHlp->pfnPrintf(pHlp,
2736 i & 1
2737 ? "%sXMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32\n"
2738 : "%sXMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32 ",
2739 pszPrefix, i, i < 10 ? " " : "",
2740 pFpuCtx->aXMM[i].au32[3],
2741 pFpuCtx->aXMM[i].au32[2],
2742 pFpuCtx->aXMM[i].au32[1],
2743 pFpuCtx->aXMM[i].au32[0]);
2744
2745 if (pCtx->fXStateMask & XSAVE_C_OPMASK)
2746 {
2747 PCX86XSAVEOPMASK pOpMask = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_OPMASK_BIT, PCX86XSAVEOPMASK);
2748 for (unsigned i = 0; i < RT_ELEMENTS(pOpMask->aKRegs); i += 4)
2749 pHlp->pfnPrintf(pHlp, "%sK%u=%016RX64 %sK%u=%016RX64 %sK%u=%016RX64 %sK%u=%016RX64\n",
2750 pszPrefix, i + 0, pOpMask->aKRegs[i + 0],
2751 pszPrefix, i + 1, pOpMask->aKRegs[i + 1],
2752 pszPrefix, i + 2, pOpMask->aKRegs[i + 2],
2753 pszPrefix, i + 3, pOpMask->aKRegs[i + 3]);
2754 }
2755
2756 if (pCtx->fXStateMask & XSAVE_C_BNDREGS)
2757 {
2758 PCX86XSAVEBNDREGS pBndRegs = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_BNDREGS_BIT, PCX86XSAVEBNDREGS);
2759 for (unsigned i = 0; i < RT_ELEMENTS(pBndRegs->aRegs); i += 2)
2760 pHlp->pfnPrintf(pHlp, "%sBNDREG%u=%016RX64/%016RX64 %sBNDREG%u=%016RX64/%016RX64\n",
2761 pszPrefix, i, pBndRegs->aRegs[i].uLowerBound, pBndRegs->aRegs[i].uUpperBound,
2762 pszPrefix, i + 1, pBndRegs->aRegs[i + 1].uLowerBound, pBndRegs->aRegs[i + 1].uUpperBound);
2763 }
2764
2765 if (pCtx->fXStateMask & XSAVE_C_BNDCSR)
2766 {
2767 PCX86XSAVEBNDCFG pBndCfg = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_BNDCSR_BIT, PCX86XSAVEBNDCFG);
2768 pHlp->pfnPrintf(pHlp, "%sBNDCFG.CONFIG=%016RX64 %sBNDCFG.STATUS=%016RX64\n",
2769 pszPrefix, pBndCfg->fConfig, pszPrefix, pBndCfg->fStatus);
2770 }
2771
2772 for (unsigned i = 0; i < RT_ELEMENTS(pFpuCtx->au32RsrvdRest); i++)
2773 if (pFpuCtx->au32RsrvdRest[i])
2774 pHlp->pfnPrintf(pHlp, "%sRsrvdRest[%u]=%RX32 (offset=%#x)\n",
2775 pszPrefix, i, pFpuCtx->au32RsrvdRest[i], RT_UOFFSETOF_DYN(X86FXSTATE, au32RsrvdRest[i]) );
2776 }
2777
2778 pHlp->pfnPrintf(pHlp,
2779 "%sEFER =%016RX64\n"
2780 "%sPAT =%016RX64\n"
2781 "%sSTAR =%016RX64\n"
2782 "%sCSTAR =%016RX64\n"
2783 "%sLSTAR =%016RX64\n"
2784 "%sSFMASK =%016RX64\n"
2785 "%sKERNELGSBASE =%016RX64\n",
2786 pszPrefix, pCtx->msrEFER,
2787 pszPrefix, pCtx->msrPAT,
2788 pszPrefix, pCtx->msrSTAR,
2789 pszPrefix, pCtx->msrCSTAR,
2790 pszPrefix, pCtx->msrLSTAR,
2791 pszPrefix, pCtx->msrSFMASK,
2792 pszPrefix, pCtx->msrKERNELGSBASE);
2793 break;
2794 }
2795}
2796
2797
2798/**
2799 * Display all cpu states and any other cpum info.
2800 *
2801 * @param pVM The cross context VM structure.
2802 * @param pHlp The info helper functions.
2803 * @param pszArgs Arguments, ignored.
2804 */
2805static DECLCALLBACK(void) cpumR3InfoAll(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2806{
2807 cpumR3InfoGuest(pVM, pHlp, pszArgs);
2808 cpumR3InfoGuestInstr(pVM, pHlp, pszArgs);
2809 cpumR3InfoGuestHwvirt(pVM, pHlp, pszArgs);
2810 cpumR3InfoHyper(pVM, pHlp, pszArgs);
2811 cpumR3InfoHost(pVM, pHlp, pszArgs);
2812}
2813
2814
2815/**
2816 * Parses the info argument.
2817 *
2818 * The argument starts with 'verbose', 'terse' or 'default' and then
2819 * continues with the comment string.
2820 *
2821 * @param pszArgs The pointer to the argument string.
2822 * @param penmType Where to store the dump type request.
2823 * @param ppszComment Where to store the pointer to the comment string.
2824 */
2825static void cpumR3InfoParseArg(const char *pszArgs, CPUMDUMPTYPE *penmType, const char **ppszComment)
2826{
2827 if (!pszArgs)
2828 {
2829 *penmType = CPUMDUMPTYPE_DEFAULT;
2830 *ppszComment = "";
2831 }
2832 else
2833 {
2834 if (!strncmp(pszArgs, RT_STR_TUPLE("verbose")))
2835 {
2836 pszArgs += 7;
2837 *penmType = CPUMDUMPTYPE_VERBOSE;
2838 }
2839 else if (!strncmp(pszArgs, RT_STR_TUPLE("terse")))
2840 {
2841 pszArgs += 5;
2842 *penmType = CPUMDUMPTYPE_TERSE;
2843 }
2844 else if (!strncmp(pszArgs, RT_STR_TUPLE("default")))
2845 {
2846 pszArgs += 7;
2847 *penmType = CPUMDUMPTYPE_DEFAULT;
2848 }
2849 else
2850 *penmType = CPUMDUMPTYPE_DEFAULT;
2851 *ppszComment = RTStrStripL(pszArgs);
2852 }
2853}
2854
2855
2856/**
2857 * Display the guest cpu state.
2858 *
2859 * @param pVM The cross context VM structure.
2860 * @param pHlp The info helper functions.
2861 * @param pszArgs Arguments.
2862 */
2863static DECLCALLBACK(void) cpumR3InfoGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2864{
2865 CPUMDUMPTYPE enmType;
2866 const char *pszComment;
2867 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
2868
2869 PVMCPU pVCpu = VMMGetCpu(pVM);
2870 if (!pVCpu)
2871 pVCpu = &pVM->aCpus[0];
2872
2873 pHlp->pfnPrintf(pHlp, "Guest CPUM (VCPU %d) state: %s\n", pVCpu->idCpu, pszComment);
2874
2875 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
2876 cpumR3InfoOne(pVM, pCtx, CPUMCTX2CORE(pCtx), pHlp, enmType, "");
2877}
2878
2879
2880/**
2881 * Displays an SVM VMCB control area.
2882 *
2883 * @param pHlp The info helper functions.
2884 * @param pVmcbCtrl Pointer to a SVM VMCB controls area.
2885 * @param pszPrefix Caller specified string prefix.
2886 */
2887static void cpumR3InfoSvmVmcbCtrl(PCDBGFINFOHLP pHlp, PCSVMVMCBCTRL pVmcbCtrl, const char *pszPrefix)
2888{
2889 AssertReturnVoid(pHlp);
2890 AssertReturnVoid(pVmcbCtrl);
2891
2892 pHlp->pfnPrintf(pHlp, "%su16InterceptRdCRx = %#RX16\n", pszPrefix, pVmcbCtrl->u16InterceptRdCRx);
2893 pHlp->pfnPrintf(pHlp, "%su16InterceptWrCRx = %#RX16\n", pszPrefix, pVmcbCtrl->u16InterceptWrCRx);
2894 pHlp->pfnPrintf(pHlp, "%su16InterceptRdDRx = %#RX16\n", pszPrefix, pVmcbCtrl->u16InterceptRdDRx);
2895 pHlp->pfnPrintf(pHlp, "%su16InterceptWrDRx = %#RX16\n", pszPrefix, pVmcbCtrl->u16InterceptWrDRx);
2896 pHlp->pfnPrintf(pHlp, "%su32InterceptXcpt = %#RX32\n", pszPrefix, pVmcbCtrl->u32InterceptXcpt);
2897 pHlp->pfnPrintf(pHlp, "%su64InterceptCtrl = %#RX64\n", pszPrefix, pVmcbCtrl->u64InterceptCtrl);
2898 pHlp->pfnPrintf(pHlp, "%su16PauseFilterThreshold = %#RX16\n", pszPrefix, pVmcbCtrl->u16PauseFilterThreshold);
2899 pHlp->pfnPrintf(pHlp, "%su16PauseFilterCount = %#RX16\n", pszPrefix, pVmcbCtrl->u16PauseFilterCount);
2900 pHlp->pfnPrintf(pHlp, "%su64IOPMPhysAddr = %#RX64\n", pszPrefix, pVmcbCtrl->u64IOPMPhysAddr);
2901 pHlp->pfnPrintf(pHlp, "%su64MSRPMPhysAddr = %#RX64\n", pszPrefix, pVmcbCtrl->u64MSRPMPhysAddr);
2902 pHlp->pfnPrintf(pHlp, "%su64TSCOffset = %#RX64\n", pszPrefix, pVmcbCtrl->u64TSCOffset);
2903 pHlp->pfnPrintf(pHlp, "%sTLBCtrl\n", pszPrefix);
2904 pHlp->pfnPrintf(pHlp, "%s u32ASID = %#RX32\n", pszPrefix, pVmcbCtrl->TLBCtrl.n.u32ASID);
2905 pHlp->pfnPrintf(pHlp, "%s u8TLBFlush = %u\n", pszPrefix, pVmcbCtrl->TLBCtrl.n.u8TLBFlush);
2906 pHlp->pfnPrintf(pHlp, "%sIntCtrl\n", pszPrefix);
2907 pHlp->pfnPrintf(pHlp, "%s u8VTPR = %#RX8 (%u)\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u8VTPR, pVmcbCtrl->IntCtrl.n.u8VTPR);
2908 pHlp->pfnPrintf(pHlp, "%s u1VIrqPending = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1VIrqPending);
2909 pHlp->pfnPrintf(pHlp, "%s u1VGif = %u\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1VGif);
2910 pHlp->pfnPrintf(pHlp, "%s u4VIntrPrio = %#RX8\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u4VIntrPrio);
2911 pHlp->pfnPrintf(pHlp, "%s u1IgnoreTPR = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1IgnoreTPR);
2912 pHlp->pfnPrintf(pHlp, "%s u1VIntrMasking = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1VIntrMasking);
2913 pHlp->pfnPrintf(pHlp, "%s u1VGifEnable = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1VGifEnable);
2914 pHlp->pfnPrintf(pHlp, "%s u1AvicEnable = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1AvicEnable);
2915 pHlp->pfnPrintf(pHlp, "%s u8VIntrVector = %#RX8\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u8VIntrVector);
2916 pHlp->pfnPrintf(pHlp, "%sIntShadow\n", pszPrefix);
2917 pHlp->pfnPrintf(pHlp, "%s u1IntShadow = %RTbool\n", pszPrefix, pVmcbCtrl->IntShadow.n.u1IntShadow);
2918 pHlp->pfnPrintf(pHlp, "%s u1GuestIntMask = %RTbool\n", pszPrefix, pVmcbCtrl->IntShadow.n.u1GuestIntMask);
2919 pHlp->pfnPrintf(pHlp, "%su64ExitCode = %#RX64\n", pszPrefix, pVmcbCtrl->u64ExitCode);
2920 pHlp->pfnPrintf(pHlp, "%su64ExitInfo1 = %#RX64\n", pszPrefix, pVmcbCtrl->u64ExitInfo1);
2921 pHlp->pfnPrintf(pHlp, "%su64ExitInfo2 = %#RX64\n", pszPrefix, pVmcbCtrl->u64ExitInfo2);
2922 pHlp->pfnPrintf(pHlp, "%sExitIntInfo\n", pszPrefix);
2923 pHlp->pfnPrintf(pHlp, "%s u8Vector = %#RX8 (%u)\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u8Vector, pVmcbCtrl->ExitIntInfo.n.u8Vector);
2924 pHlp->pfnPrintf(pHlp, "%s u3Type = %u\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u3Type);
2925 pHlp->pfnPrintf(pHlp, "%s u1ErrorCodeValid = %RTbool\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u1ErrorCodeValid);
2926 pHlp->pfnPrintf(pHlp, "%s u1Valid = %RTbool\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u1Valid);
2927 pHlp->pfnPrintf(pHlp, "%s u32ErrorCode = %#RX32\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u32ErrorCode);
2928 pHlp->pfnPrintf(pHlp, "%sNestedPaging and SEV\n", pszPrefix);
2929 pHlp->pfnPrintf(pHlp, "%s u1NestedPaging = %RTbool\n", pszPrefix, pVmcbCtrl->NestedPagingCtrl.n.u1NestedPaging);
2930 pHlp->pfnPrintf(pHlp, "%s u1Sev = %RTbool\n", pszPrefix, pVmcbCtrl->NestedPagingCtrl.n.u1Sev);
2931 pHlp->pfnPrintf(pHlp, "%s u1SevEs = %RTbool\n", pszPrefix, pVmcbCtrl->NestedPagingCtrl.n.u1SevEs);
2932 pHlp->pfnPrintf(pHlp, "%sAvicBar\n", pszPrefix);
2933 pHlp->pfnPrintf(pHlp, "%s u40Addr = %#RX64\n", pszPrefix, pVmcbCtrl->AvicBar.n.u40Addr);
2934 pHlp->pfnPrintf(pHlp, "%sEventInject\n", pszPrefix);
2935 pHlp->pfnPrintf(pHlp, "%s EventInject\n", pszPrefix);
2936 pHlp->pfnPrintf(pHlp, "%s u8Vector = %#RX32 (%u)\n", pszPrefix, pVmcbCtrl->EventInject.n.u8Vector, pVmcbCtrl->EventInject.n.u8Vector);
2937 pHlp->pfnPrintf(pHlp, "%s u3Type = %u\n", pszPrefix, pVmcbCtrl->EventInject.n.u3Type);
2938 pHlp->pfnPrintf(pHlp, "%s u1ErrorCodeValid = %RTbool\n", pszPrefix, pVmcbCtrl->EventInject.n.u1ErrorCodeValid);
2939 pHlp->pfnPrintf(pHlp, "%s u1Valid = %RTbool\n", pszPrefix, pVmcbCtrl->EventInject.n.u1Valid);
2940 pHlp->pfnPrintf(pHlp, "%s u32ErrorCode = %#RX32\n", pszPrefix, pVmcbCtrl->EventInject.n.u32ErrorCode);
2941 pHlp->pfnPrintf(pHlp, "%su64NestedPagingCR3 = %#RX64\n", pszPrefix, pVmcbCtrl->u64NestedPagingCR3);
2942 pHlp->pfnPrintf(pHlp, "%sLBR virtualization\n", pszPrefix);
2943 pHlp->pfnPrintf(pHlp, "%s u1LbrVirt = %RTbool\n", pszPrefix, pVmcbCtrl->LbrVirt.n.u1LbrVirt);
2944 pHlp->pfnPrintf(pHlp, "%s u1VirtVmsaveVmload = %RTbool\n", pszPrefix, pVmcbCtrl->LbrVirt.n.u1VirtVmsaveVmload);
2945 pHlp->pfnPrintf(pHlp, "%su32VmcbCleanBits = %#RX32\n", pszPrefix, pVmcbCtrl->u32VmcbCleanBits);
2946 pHlp->pfnPrintf(pHlp, "%su64NextRIP = %#RX64\n", pszPrefix, pVmcbCtrl->u64NextRIP);
2947 pHlp->pfnPrintf(pHlp, "%scbInstrFetched = %u\n", pszPrefix, pVmcbCtrl->cbInstrFetched);
2948 pHlp->pfnPrintf(pHlp, "%sabInstr = %.*Rhxs\n", pszPrefix, sizeof(pVmcbCtrl->abInstr), pVmcbCtrl->abInstr);
2949 pHlp->pfnPrintf(pHlp, "%sAvicBackingPagePtr\n", pszPrefix);
2950 pHlp->pfnPrintf(pHlp, "%s u40Addr = %#RX64\n", pszPrefix, pVmcbCtrl->AvicBackingPagePtr.n.u40Addr);
2951 pHlp->pfnPrintf(pHlp, "%sAvicLogicalTablePtr\n", pszPrefix);
2952 pHlp->pfnPrintf(pHlp, "%s u40Addr = %#RX64\n", pszPrefix, pVmcbCtrl->AvicLogicalTablePtr.n.u40Addr);
2953 pHlp->pfnPrintf(pHlp, "%sAvicPhysicalTablePtr\n", pszPrefix);
2954 pHlp->pfnPrintf(pHlp, "%s u8LastGuestCoreId = %u\n", pszPrefix, pVmcbCtrl->AvicPhysicalTablePtr.n.u8LastGuestCoreId);
2955 pHlp->pfnPrintf(pHlp, "%s u40Addr = %#RX64\n", pszPrefix, pVmcbCtrl->AvicPhysicalTablePtr.n.u40Addr);
2956}
2957
2958
2959/**
2960 * Helper for dumping the SVM VMCB selector registers.
2961 *
2962 * @param pHlp The info helper functions.
2963 * @param pSel Pointer to the SVM selector register.
2964 * @param pszName Name of the selector.
2965 * @param pszPrefix Caller specified string prefix.
2966 */
2967DECLINLINE(void) cpumR3InfoSvmVmcbSelReg(PCDBGFINFOHLP pHlp, PCSVMSELREG pSel, const char *pszName, const char *pszPrefix)
2968{
2969 /* The string width of 4 used below is to handle 'LDTR'. Change later if longer register names are used. */
2970 pHlp->pfnPrintf(pHlp, "%s%-4s = {%04x base=%016RX64 limit=%08x flags=%04x}\n", pszPrefix,
2971 pszName, pSel->u16Sel, pSel->u64Base, pSel->u32Limit, pSel->u16Attr);
2972}
2973
2974
2975/**
2976 * Helper for dumping the SVM VMCB GDTR/IDTR registers.
2977 *
2978 * @param pHlp The info helper functions.
2979 * @param pXdtr Pointer to the descriptor table register.
2980 * @param pszName Name of the descriptor table register.
2981 * @param pszPrefix Caller specified string prefix.
2982 */
2983DECLINLINE(void) cpumR3InfoSvmVmcbXdtr(PCDBGFINFOHLP pHlp, PCSVMXDTR pXdtr, const char *pszName, const char *pszPrefix)
2984{
2985 /* The string width of 4 used below is to cover 'GDTR', 'IDTR'. Change later if longer register names are used. */
2986 pHlp->pfnPrintf(pHlp, "%s%-4s = %016RX64:%04x\n", pszPrefix, pszName, pXdtr->u64Base, pXdtr->u32Limit);
2987}
2988
2989
2990/**
2991 * Displays an SVM VMCB state-save area.
2992 *
2993 * @param pHlp The info helper functions.
2994 * @param pVmcbStateSave Pointer to a SVM VMCB controls area.
2995 * @param pszPrefix Caller specified string prefix.
2996 */
2997static void cpumR3InfoSvmVmcbStateSave(PCDBGFINFOHLP pHlp, PCSVMVMCBSTATESAVE pVmcbStateSave, const char *pszPrefix)
2998{
2999 AssertReturnVoid(pHlp);
3000 AssertReturnVoid(pVmcbStateSave);
3001
3002 char szEFlags[80];
3003 cpumR3InfoFormatFlags(&szEFlags[0], pVmcbStateSave->u64RFlags);
3004
3005 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->CS, "CS", pszPrefix);
3006 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->SS, "SS", pszPrefix);
3007 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->ES, "ES", pszPrefix);
3008 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->DS, "DS", pszPrefix);
3009 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->FS, "FS", pszPrefix);
3010 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->GS, "GS", pszPrefix);
3011 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->LDTR, "LDTR", pszPrefix);
3012 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->TR, "TR", pszPrefix);
3013 cpumR3InfoSvmVmcbXdtr(pHlp, &pVmcbStateSave->GDTR, "GDTR", pszPrefix);
3014 cpumR3InfoSvmVmcbXdtr(pHlp, &pVmcbStateSave->IDTR, "IDTR", pszPrefix);
3015 pHlp->pfnPrintf(pHlp, "%su8CPL = %u\n", pszPrefix, pVmcbStateSave->u8CPL);
3016 pHlp->pfnPrintf(pHlp, "%su64EFER = %#RX64\n", pszPrefix, pVmcbStateSave->u64EFER);
3017 pHlp->pfnPrintf(pHlp, "%su64CR4 = %#RX64\n", pszPrefix, pVmcbStateSave->u64CR4);
3018 pHlp->pfnPrintf(pHlp, "%su64CR3 = %#RX64\n", pszPrefix, pVmcbStateSave->u64CR3);
3019 pHlp->pfnPrintf(pHlp, "%su64CR0 = %#RX64\n", pszPrefix, pVmcbStateSave->u64CR0);
3020 pHlp->pfnPrintf(pHlp, "%su64DR7 = %#RX64\n", pszPrefix, pVmcbStateSave->u64DR7);
3021 pHlp->pfnPrintf(pHlp, "%su64DR6 = %#RX64\n", pszPrefix, pVmcbStateSave->u64DR6);
3022 pHlp->pfnPrintf(pHlp, "%su64RFlags = %#RX64 %31s\n", pszPrefix, pVmcbStateSave->u64RFlags, szEFlags);
3023 pHlp->pfnPrintf(pHlp, "%su64RIP = %#RX64\n", pszPrefix, pVmcbStateSave->u64RIP);
3024 pHlp->pfnPrintf(pHlp, "%su64RSP = %#RX64\n", pszPrefix, pVmcbStateSave->u64RSP);
3025 pHlp->pfnPrintf(pHlp, "%su64RAX = %#RX64\n", pszPrefix, pVmcbStateSave->u64RAX);
3026 pHlp->pfnPrintf(pHlp, "%su64STAR = %#RX64\n", pszPrefix, pVmcbStateSave->u64STAR);
3027 pHlp->pfnPrintf(pHlp, "%su64LSTAR = %#RX64\n", pszPrefix, pVmcbStateSave->u64LSTAR);
3028 pHlp->pfnPrintf(pHlp, "%su64CSTAR = %#RX64\n", pszPrefix, pVmcbStateSave->u64CSTAR);
3029 pHlp->pfnPrintf(pHlp, "%su64SFMASK = %#RX64\n", pszPrefix, pVmcbStateSave->u64SFMASK);
3030 pHlp->pfnPrintf(pHlp, "%su64KernelGSBase = %#RX64\n", pszPrefix, pVmcbStateSave->u64KernelGSBase);
3031 pHlp->pfnPrintf(pHlp, "%su64SysEnterCS = %#RX64\n", pszPrefix, pVmcbStateSave->u64SysEnterCS);
3032 pHlp->pfnPrintf(pHlp, "%su64SysEnterEIP = %#RX64\n", pszPrefix, pVmcbStateSave->u64SysEnterEIP);
3033 pHlp->pfnPrintf(pHlp, "%su64SysEnterESP = %#RX64\n", pszPrefix, pVmcbStateSave->u64SysEnterESP);
3034 pHlp->pfnPrintf(pHlp, "%su64CR2 = %#RX64\n", pszPrefix, pVmcbStateSave->u64CR2);
3035 pHlp->pfnPrintf(pHlp, "%su64PAT = %#RX64\n", pszPrefix, pVmcbStateSave->u64PAT);
3036 pHlp->pfnPrintf(pHlp, "%su64DBGCTL = %#RX64\n", pszPrefix, pVmcbStateSave->u64DBGCTL);
3037 pHlp->pfnPrintf(pHlp, "%su64BR_FROM = %#RX64\n", pszPrefix, pVmcbStateSave->u64BR_FROM);
3038 pHlp->pfnPrintf(pHlp, "%su64BR_TO = %#RX64\n", pszPrefix, pVmcbStateSave->u64BR_TO);
3039 pHlp->pfnPrintf(pHlp, "%su64LASTEXCPFROM = %#RX64\n", pszPrefix, pVmcbStateSave->u64LASTEXCPFROM);
3040 pHlp->pfnPrintf(pHlp, "%su64LASTEXCPTO = %#RX64\n", pszPrefix, pVmcbStateSave->u64LASTEXCPTO);
3041}
3042
3043
3044/**
3045 * Display the guest's hardware-virtualization cpu state.
3046 *
3047 * @param pVM The cross context VM structure.
3048 * @param pHlp The info helper functions.
3049 * @param pszArgs Arguments, ignored.
3050 */
3051static DECLCALLBACK(void) cpumR3InfoGuestHwvirt(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3052{
3053 RT_NOREF(pszArgs);
3054
3055 PVMCPU pVCpu = VMMGetCpu(pVM);
3056 if (!pVCpu)
3057 pVCpu = &pVM->aCpus[0];
3058
3059 /*
3060 * Figure out what to dump.
3061 *
3062 * In the future we may need to dump everything whether or not we're actively in nested-guest mode
3063 * or not, hence the reason why we use a mask to determine what needs dumping. Currently, we only
3064 * dump hwvirt. state when the guest CPU is executing a nested-guest.
3065 */
3066 /** @todo perhaps make this configurable through pszArgs, depending on how much
3067 * noise we wish to accept when nested hwvirt. isn't used. */
3068#define CPUMHWVIRTDUMP_NONE (0)
3069#define CPUMHWVIRTDUMP_SVM RT_BIT(0)
3070#define CPUMHWVIRTDUMP_VMX RT_BIT(1)
3071#define CPUMHWVIRTDUMP_COMMON RT_BIT(2)
3072#define CPUMHWVIRTDUMP_LAST CPUMHWVIRTDUMP_VMX
3073
3074 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
3075 static const char *const s_aHwvirtModes[] = { "No/inactive", "SVM", "VMX", "Common" };
3076 bool const fSvm = pVM->cpum.ro.GuestFeatures.fSvm;
3077 bool const fVmx = pVM->cpum.ro.GuestFeatures.fVmx;
3078 uint8_t const idxHwvirtState = fSvm ? CPUMHWVIRTDUMP_SVM : (fVmx ? CPUMHWVIRTDUMP_VMX : CPUMHWVIRTDUMP_NONE);
3079 AssertCompile(CPUMHWVIRTDUMP_LAST <= RT_ELEMENTS(s_aHwvirtModes));
3080 Assert(idxHwvirtState < RT_ELEMENTS(s_aHwvirtModes));
3081 const char *pcszHwvirtMode = s_aHwvirtModes[idxHwvirtState];
3082 uint32_t fDumpState = idxHwvirtState | CPUMHWVIRTDUMP_COMMON;
3083
3084 /*
3085 * Dump it.
3086 */
3087 pHlp->pfnPrintf(pHlp, "VCPU[%u] hardware virtualization state:\n", pVCpu->idCpu);
3088
3089 if (fDumpState & CPUMHWVIRTDUMP_COMMON)
3090 pHlp->pfnPrintf(pHlp, "fLocalForcedActions = %#RX32\n", pCtx->hwvirt.fLocalForcedActions);
3091
3092 pHlp->pfnPrintf(pHlp, "%s hwvirt state%s\n", pcszHwvirtMode, (fDumpState & (CPUMHWVIRTDUMP_SVM | CPUMHWVIRTDUMP_VMX)) ?
3093 ":" : "");
3094 if (fDumpState & CPUMHWVIRTDUMP_SVM)
3095 {
3096 pHlp->pfnPrintf(pHlp, " fGif = %RTbool\n", pCtx->hwvirt.fGif);
3097
3098 char szEFlags[80];
3099 cpumR3InfoFormatFlags(&szEFlags[0], pCtx->hwvirt.svm.HostState.rflags.u);
3100 pHlp->pfnPrintf(pHlp, " uMsrHSavePa = %#RX64\n", pCtx->hwvirt.svm.uMsrHSavePa);
3101 pHlp->pfnPrintf(pHlp, " GCPhysVmcb = %#RGp\n", pCtx->hwvirt.svm.GCPhysVmcb);
3102 pHlp->pfnPrintf(pHlp, " VmcbCtrl:\n");
3103 cpumR3InfoSvmVmcbCtrl(pHlp, &pCtx->hwvirt.svm.pVmcbR3->ctrl, " " /* pszPrefix */);
3104 pHlp->pfnPrintf(pHlp, " VmcbStateSave:\n");
3105 cpumR3InfoSvmVmcbStateSave(pHlp, &pCtx->hwvirt.svm.pVmcbR3->guest, " " /* pszPrefix */);
3106 pHlp->pfnPrintf(pHlp, " HostState:\n");
3107 pHlp->pfnPrintf(pHlp, " uEferMsr = %#RX64\n", pCtx->hwvirt.svm.HostState.uEferMsr);
3108 pHlp->pfnPrintf(pHlp, " uCr0 = %#RX64\n", pCtx->hwvirt.svm.HostState.uCr0);
3109 pHlp->pfnPrintf(pHlp, " uCr4 = %#RX64\n", pCtx->hwvirt.svm.HostState.uCr4);
3110 pHlp->pfnPrintf(pHlp, " uCr3 = %#RX64\n", pCtx->hwvirt.svm.HostState.uCr3);
3111 pHlp->pfnPrintf(pHlp, " uRip = %#RX64\n", pCtx->hwvirt.svm.HostState.uRip);
3112 pHlp->pfnPrintf(pHlp, " uRsp = %#RX64\n", pCtx->hwvirt.svm.HostState.uRsp);
3113 pHlp->pfnPrintf(pHlp, " uRax = %#RX64\n", pCtx->hwvirt.svm.HostState.uRax);
3114 pHlp->pfnPrintf(pHlp, " rflags = %#RX64 %31s\n", pCtx->hwvirt.svm.HostState.rflags.u64, szEFlags);
3115 PCPUMSELREG pSel = &pCtx->hwvirt.svm.HostState.es;
3116 pHlp->pfnPrintf(pHlp, " es = {%04x base=%016RX64 limit=%08x flags=%08x}\n",
3117 pSel->Sel, pSel->u64Base, pSel->u32Limit, pSel->Attr.u);
3118 pSel = &pCtx->hwvirt.svm.HostState.cs;
3119 pHlp->pfnPrintf(pHlp, " cs = {%04x base=%016RX64 limit=%08x flags=%08x}\n",
3120 pSel->Sel, pSel->u64Base, pSel->u32Limit, pSel->Attr.u);
3121 pSel = &pCtx->hwvirt.svm.HostState.ss;
3122 pHlp->pfnPrintf(pHlp, " ss = {%04x base=%016RX64 limit=%08x flags=%08x}\n",
3123 pSel->Sel, pSel->u64Base, pSel->u32Limit, pSel->Attr.u);
3124 pSel = &pCtx->hwvirt.svm.HostState.ds;
3125 pHlp->pfnPrintf(pHlp, " ds = {%04x base=%016RX64 limit=%08x flags=%08x}\n",
3126 pSel->Sel, pSel->u64Base, pSel->u32Limit, pSel->Attr.u);
3127 pHlp->pfnPrintf(pHlp, " gdtr = %016RX64:%04x\n", pCtx->hwvirt.svm.HostState.gdtr.pGdt,
3128 pCtx->hwvirt.svm.HostState.gdtr.cbGdt);
3129 pHlp->pfnPrintf(pHlp, " idtr = %016RX64:%04x\n", pCtx->hwvirt.svm.HostState.idtr.pIdt,
3130 pCtx->hwvirt.svm.HostState.idtr.cbIdt);
3131 pHlp->pfnPrintf(pHlp, " cPauseFilter = %RU16\n", pCtx->hwvirt.svm.cPauseFilter);
3132 pHlp->pfnPrintf(pHlp, " cPauseFilterThreshold = %RU32\n", pCtx->hwvirt.svm.cPauseFilterThreshold);
3133 pHlp->pfnPrintf(pHlp, " fInterceptEvents = %u\n", pCtx->hwvirt.svm.fInterceptEvents);
3134 pHlp->pfnPrintf(pHlp, " pvMsrBitmapR3 = %p\n", pCtx->hwvirt.svm.pvMsrBitmapR3);
3135 pHlp->pfnPrintf(pHlp, " pvMsrBitmapR0 = %RKv\n", pCtx->hwvirt.svm.pvMsrBitmapR0);
3136 pHlp->pfnPrintf(pHlp, " pvIoBitmapR3 = %p\n", pCtx->hwvirt.svm.pvIoBitmapR3);
3137 pHlp->pfnPrintf(pHlp, " pvIoBitmapR0 = %RKv\n", pCtx->hwvirt.svm.pvIoBitmapR0);
3138 }
3139
3140 if (fDumpState & CPUMHWVIRTDUMP_VMX)
3141 {
3142 pHlp->pfnPrintf(pHlp, " GCPhysVmxon = %#RGp\n", pCtx->hwvirt.vmx.GCPhysVmxon);
3143 pHlp->pfnPrintf(pHlp, " GCPhysVmcs = %#RGp\n", pCtx->hwvirt.vmx.GCPhysVmcs);
3144 pHlp->pfnPrintf(pHlp, " GCPhysShadowVmcs = %#RGp\n", pCtx->hwvirt.vmx.GCPhysShadowVmcs);
3145 pHlp->pfnPrintf(pHlp, " enmDiag = %u (%s)\n", pCtx->hwvirt.vmx.enmDiag, HMVmxGetDiagDesc(pCtx->hwvirt.vmx.enmDiag));
3146 pHlp->pfnPrintf(pHlp, " enmAbort = %u (%s)\n", pCtx->hwvirt.vmx.enmAbort, HMVmxGetAbortDesc(pCtx->hwvirt.vmx.enmAbort));
3147 pHlp->pfnPrintf(pHlp, " uAbortAux = %u (%#x)\n", pCtx->hwvirt.vmx.uAbortAux, pCtx->hwvirt.vmx.uAbortAux);
3148 pHlp->pfnPrintf(pHlp, " fInVmxRootMode = %RTbool\n", pCtx->hwvirt.vmx.fInVmxRootMode);
3149 pHlp->pfnPrintf(pHlp, " fInVmxNonRootMode = %RTbool\n", pCtx->hwvirt.vmx.fInVmxNonRootMode);
3150 pHlp->pfnPrintf(pHlp, " fInterceptEvents = %RTbool\n", pCtx->hwvirt.vmx.fInterceptEvents);
3151
3152 /** @todo NSTVMX: Dump remaining/new fields. */
3153 }
3154
3155#undef CPUMHWVIRTDUMP_NONE
3156#undef CPUMHWVIRTDUMP_COMMON
3157#undef CPUMHWVIRTDUMP_SVM
3158#undef CPUMHWVIRTDUMP_VMX
3159#undef CPUMHWVIRTDUMP_LAST
3160#undef CPUMHWVIRTDUMP_ALL
3161}
3162
3163/**
3164 * Display the current guest instruction
3165 *
3166 * @param pVM The cross context VM structure.
3167 * @param pHlp The info helper functions.
3168 * @param pszArgs Arguments, ignored.
3169 */
3170static DECLCALLBACK(void) cpumR3InfoGuestInstr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3171{
3172 NOREF(pszArgs);
3173
3174 PVMCPU pVCpu = VMMGetCpu(pVM);
3175 if (!pVCpu)
3176 pVCpu = &pVM->aCpus[0];
3177
3178 char szInstruction[256];
3179 szInstruction[0] = '\0';
3180 DBGFR3DisasInstrCurrent(pVCpu, szInstruction, sizeof(szInstruction));
3181 pHlp->pfnPrintf(pHlp, "\nCPUM%u: %s\n\n", pVCpu->idCpu, szInstruction);
3182}
3183
3184
3185/**
3186 * Display the hypervisor cpu state.
3187 *
3188 * @param pVM The cross context VM structure.
3189 * @param pHlp The info helper functions.
3190 * @param pszArgs Arguments, ignored.
3191 */
3192static DECLCALLBACK(void) cpumR3InfoHyper(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3193{
3194 PVMCPU pVCpu = VMMGetCpu(pVM);
3195 if (!pVCpu)
3196 pVCpu = &pVM->aCpus[0];
3197
3198 CPUMDUMPTYPE enmType;
3199 const char *pszComment;
3200 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
3201 pHlp->pfnPrintf(pHlp, "Hypervisor CPUM state: %s\n", pszComment);
3202 cpumR3InfoOne(pVM, &pVCpu->cpum.s.Hyper, CPUMCTX2CORE(&pVCpu->cpum.s.Hyper), pHlp, enmType, ".");
3203 pHlp->pfnPrintf(pHlp, "CR4OrMask=%#x CR4AndMask=%#x\n", pVM->cpum.s.CR4.OrMask, pVM->cpum.s.CR4.AndMask);
3204}
3205
3206
3207/**
3208 * Display the host cpu state.
3209 *
3210 * @param pVM The cross context VM structure.
3211 * @param pHlp The info helper functions.
3212 * @param pszArgs Arguments, ignored.
3213 */
3214static DECLCALLBACK(void) cpumR3InfoHost(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3215{
3216 CPUMDUMPTYPE enmType;
3217 const char *pszComment;
3218 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
3219 pHlp->pfnPrintf(pHlp, "Host CPUM state: %s\n", pszComment);
3220
3221 PVMCPU pVCpu = VMMGetCpu(pVM);
3222 if (!pVCpu)
3223 pVCpu = &pVM->aCpus[0];
3224 PCPUMHOSTCTX pCtx = &pVCpu->cpum.s.Host;
3225
3226 /*
3227 * Format the EFLAGS.
3228 */
3229#if HC_ARCH_BITS == 32
3230 uint32_t efl = pCtx->eflags.u32;
3231#else
3232 uint64_t efl = pCtx->rflags;
3233#endif
3234 char szEFlags[80];
3235 cpumR3InfoFormatFlags(&szEFlags[0], efl);
3236
3237 /*
3238 * Format the registers.
3239 */
3240#if HC_ARCH_BITS == 32
3241 pHlp->pfnPrintf(pHlp,
3242 "eax=xxxxxxxx ebx=%08x ecx=xxxxxxxx edx=xxxxxxxx esi=%08x edi=%08x\n"
3243 "eip=xxxxxxxx esp=%08x ebp=%08x iopl=%d %31s\n"
3244 "cs=%04x ds=%04x es=%04x fs=%04x gs=%04x eflags=%08x\n"
3245 "cr0=%08RX64 cr2=xxxxxxxx cr3=%08RX64 cr4=%08RX64 gdtr=%08x:%04x ldtr=%04x\n"
3246 "dr[0]=%08RX64 dr[1]=%08RX64x dr[2]=%08RX64 dr[3]=%08RX64x dr[6]=%08RX64 dr[7]=%08RX64\n"
3247 "SysEnter={cs=%04x eip=%08x esp=%08x}\n"
3248 ,
3249 /*pCtx->eax,*/ pCtx->ebx, /*pCtx->ecx, pCtx->edx,*/ pCtx->esi, pCtx->edi,
3250 /*pCtx->eip,*/ pCtx->esp, pCtx->ebp, X86_EFL_GET_IOPL(efl), szEFlags,
3251 pCtx->cs, pCtx->ds, pCtx->es, pCtx->fs, pCtx->gs, efl,
3252 pCtx->cr0, /*pCtx->cr2,*/ pCtx->cr3, pCtx->cr4,
3253 pCtx->dr0, pCtx->dr1, pCtx->dr2, pCtx->dr3, pCtx->dr6, pCtx->dr7,
3254 (uint32_t)pCtx->gdtr.uAddr, pCtx->gdtr.cb, pCtx->ldtr,
3255 pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
3256#else
3257 pHlp->pfnPrintf(pHlp,
3258 "rax=xxxxxxxxxxxxxxxx rbx=%016RX64 rcx=xxxxxxxxxxxxxxxx\n"
3259 "rdx=xxxxxxxxxxxxxxxx rsi=%016RX64 rdi=%016RX64\n"
3260 "rip=xxxxxxxxxxxxxxxx rsp=%016RX64 rbp=%016RX64\n"
3261 " r8=xxxxxxxxxxxxxxxx r9=xxxxxxxxxxxxxxxx r10=%016RX64\n"
3262 "r11=%016RX64 r12=%016RX64 r13=%016RX64\n"
3263 "r14=%016RX64 r15=%016RX64\n"
3264 "iopl=%d %31s\n"
3265 "cs=%04x ds=%04x es=%04x fs=%04x gs=%04x eflags=%08RX64\n"
3266 "cr0=%016RX64 cr2=xxxxxxxxxxxxxxxx cr3=%016RX64\n"
3267 "cr4=%016RX64 ldtr=%04x tr=%04x\n"
3268 "dr[0]=%016RX64 dr[1]=%016RX64 dr[2]=%016RX64\n"
3269 "dr[3]=%016RX64 dr[6]=%016RX64 dr[7]=%016RX64\n"
3270 "gdtr=%016RX64:%04x idtr=%016RX64:%04x\n"
3271 "SysEnter={cs=%04x eip=%08x esp=%08x}\n"
3272 "FSbase=%016RX64 GSbase=%016RX64 efer=%08RX64\n"
3273 ,
3274 /*pCtx->rax,*/ pCtx->rbx, /*pCtx->rcx,
3275 pCtx->rdx,*/ pCtx->rsi, pCtx->rdi,
3276 /*pCtx->rip,*/ pCtx->rsp, pCtx->rbp,
3277 /*pCtx->r8, pCtx->r9,*/ pCtx->r10,
3278 pCtx->r11, pCtx->r12, pCtx->r13,
3279 pCtx->r14, pCtx->r15,
3280 X86_EFL_GET_IOPL(efl), szEFlags,
3281 pCtx->cs, pCtx->ds, pCtx->es, pCtx->fs, pCtx->gs, efl,
3282 pCtx->cr0, /*pCtx->cr2,*/ pCtx->cr3,
3283 pCtx->cr4, pCtx->ldtr, pCtx->tr,
3284 pCtx->dr0, pCtx->dr1, pCtx->dr2,
3285 pCtx->dr3, pCtx->dr6, pCtx->dr7,
3286 pCtx->gdtr.uAddr, pCtx->gdtr.cb, pCtx->idtr.uAddr, pCtx->idtr.cb,
3287 pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp,
3288 pCtx->FSbase, pCtx->GSbase, pCtx->efer);
3289#endif
3290}
3291
3292/**
3293 * Structure used when disassembling and instructions in DBGF.
3294 * This is used so the reader function can get the stuff it needs.
3295 */
3296typedef struct CPUMDISASSTATE
3297{
3298 /** Pointer to the CPU structure. */
3299 PDISCPUSTATE pCpu;
3300 /** Pointer to the VM. */
3301 PVM pVM;
3302 /** Pointer to the VMCPU. */
3303 PVMCPU pVCpu;
3304 /** Pointer to the first byte in the segment. */
3305 RTGCUINTPTR GCPtrSegBase;
3306 /** Pointer to the byte after the end of the segment. (might have wrapped!) */
3307 RTGCUINTPTR GCPtrSegEnd;
3308 /** The size of the segment minus 1. */
3309 RTGCUINTPTR cbSegLimit;
3310 /** Pointer to the current page - R3 Ptr. */
3311 void const *pvPageR3;
3312 /** Pointer to the current page - GC Ptr. */
3313 RTGCPTR pvPageGC;
3314 /** The lock information that PGMPhysReleasePageMappingLock needs. */
3315 PGMPAGEMAPLOCK PageMapLock;
3316 /** Whether the PageMapLock is valid or not. */
3317 bool fLocked;
3318 /** 64 bits mode or not. */
3319 bool f64Bits;
3320} CPUMDISASSTATE, *PCPUMDISASSTATE;
3321
3322
3323/**
3324 * @callback_method_impl{FNDISREADBYTES}
3325 */
3326static DECLCALLBACK(int) cpumR3DisasInstrRead(PDISCPUSTATE pDis, uint8_t offInstr, uint8_t cbMinRead, uint8_t cbMaxRead)
3327{
3328 PCPUMDISASSTATE pState = (PCPUMDISASSTATE)pDis->pvUser;
3329 for (;;)
3330 {
3331 RTGCUINTPTR GCPtr = pDis->uInstrAddr + offInstr + pState->GCPtrSegBase;
3332
3333 /*
3334 * Need to update the page translation?
3335 */
3336 if ( !pState->pvPageR3
3337 || (GCPtr >> PAGE_SHIFT) != (pState->pvPageGC >> PAGE_SHIFT))
3338 {
3339 int rc = VINF_SUCCESS;
3340
3341 /* translate the address */
3342 pState->pvPageGC = GCPtr & PAGE_BASE_GC_MASK;
3343 if ( VM_IS_RAW_MODE_ENABLED(pState->pVM)
3344 && MMHyperIsInsideArea(pState->pVM, pState->pvPageGC))
3345 {
3346 pState->pvPageR3 = MMHyperRCToR3(pState->pVM, (RTRCPTR)pState->pvPageGC);
3347 if (!pState->pvPageR3)
3348 rc = VERR_INVALID_POINTER;
3349 }
3350 else
3351 {
3352 /* Release mapping lock previously acquired. */
3353 if (pState->fLocked)
3354 PGMPhysReleasePageMappingLock(pState->pVM, &pState->PageMapLock);
3355 rc = PGMPhysGCPtr2CCPtrReadOnly(pState->pVCpu, pState->pvPageGC, &pState->pvPageR3, &pState->PageMapLock);
3356 pState->fLocked = RT_SUCCESS_NP(rc);
3357 }
3358 if (RT_FAILURE(rc))
3359 {
3360 pState->pvPageR3 = NULL;
3361 return rc;
3362 }
3363 }
3364
3365 /*
3366 * Check the segment limit.
3367 */
3368 if (!pState->f64Bits && pDis->uInstrAddr + offInstr > pState->cbSegLimit)
3369 return VERR_OUT_OF_SELECTOR_BOUNDS;
3370
3371 /*
3372 * Calc how much we can read.
3373 */
3374 uint32_t cb = PAGE_SIZE - (GCPtr & PAGE_OFFSET_MASK);
3375 if (!pState->f64Bits)
3376 {
3377 RTGCUINTPTR cbSeg = pState->GCPtrSegEnd - GCPtr;
3378 if (cb > cbSeg && cbSeg)
3379 cb = cbSeg;
3380 }
3381 if (cb > cbMaxRead)
3382 cb = cbMaxRead;
3383
3384 /*
3385 * Read and advance or exit.
3386 */
3387 memcpy(&pDis->abInstr[offInstr], (uint8_t *)pState->pvPageR3 + (GCPtr & PAGE_OFFSET_MASK), cb);
3388 offInstr += (uint8_t)cb;
3389 if (cb >= cbMinRead)
3390 {
3391 pDis->cbCachedInstr = offInstr;
3392 return VINF_SUCCESS;
3393 }
3394 cbMinRead -= (uint8_t)cb;
3395 cbMaxRead -= (uint8_t)cb;
3396 }
3397}
3398
3399
3400/**
3401 * Disassemble an instruction and return the information in the provided structure.
3402 *
3403 * @returns VBox status code.
3404 * @param pVM The cross context VM structure.
3405 * @param pVCpu The cross context virtual CPU structure.
3406 * @param pCtx Pointer to the guest CPU context.
3407 * @param GCPtrPC Program counter (relative to CS) to disassemble from.
3408 * @param pCpu Disassembly state.
3409 * @param pszPrefix String prefix for logging (debug only).
3410 *
3411 */
3412VMMR3DECL(int) CPUMR3DisasmInstrCPU(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, RTGCPTR GCPtrPC, PDISCPUSTATE pCpu,
3413 const char *pszPrefix)
3414{
3415 CPUMDISASSTATE State;
3416 int rc;
3417
3418 const PGMMODE enmMode = PGMGetGuestMode(pVCpu);
3419 State.pCpu = pCpu;
3420 State.pvPageGC = 0;
3421 State.pvPageR3 = NULL;
3422 State.pVM = pVM;
3423 State.pVCpu = pVCpu;
3424 State.fLocked = false;
3425 State.f64Bits = false;
3426
3427 /*
3428 * Get selector information.
3429 */
3430 DISCPUMODE enmDisCpuMode;
3431 if ( (pCtx->cr0 & X86_CR0_PE)
3432 && pCtx->eflags.Bits.u1VM == 0)
3433 {
3434 if (!CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->cs))
3435 {
3436# ifdef VBOX_WITH_RAW_MODE_NOT_R0
3437 CPUMGuestLazyLoadHiddenSelectorReg(pVCpu, &pCtx->cs);
3438# endif
3439 if (!CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->cs))
3440 return VERR_CPUM_HIDDEN_CS_LOAD_ERROR;
3441 }
3442 State.f64Bits = enmMode >= PGMMODE_AMD64 && pCtx->cs.Attr.n.u1Long;
3443 State.GCPtrSegBase = pCtx->cs.u64Base;
3444 State.GCPtrSegEnd = pCtx->cs.u32Limit + 1 + (RTGCUINTPTR)pCtx->cs.u64Base;
3445 State.cbSegLimit = pCtx->cs.u32Limit;
3446 enmDisCpuMode = (State.f64Bits)
3447 ? DISCPUMODE_64BIT
3448 : pCtx->cs.Attr.n.u1DefBig
3449 ? DISCPUMODE_32BIT
3450 : DISCPUMODE_16BIT;
3451 }
3452 else
3453 {
3454 /* real or V86 mode */
3455 enmDisCpuMode = DISCPUMODE_16BIT;
3456 State.GCPtrSegBase = pCtx->cs.Sel * 16;
3457 State.GCPtrSegEnd = 0xFFFFFFFF;
3458 State.cbSegLimit = 0xFFFFFFFF;
3459 }
3460
3461 /*
3462 * Disassemble the instruction.
3463 */
3464 uint32_t cbInstr;
3465#ifndef LOG_ENABLED
3466 RT_NOREF_PV(pszPrefix);
3467 rc = DISInstrWithReader(GCPtrPC, enmDisCpuMode, cpumR3DisasInstrRead, &State, pCpu, &cbInstr);
3468 if (RT_SUCCESS(rc))
3469 {
3470#else
3471 char szOutput[160];
3472 rc = DISInstrToStrWithReader(GCPtrPC, enmDisCpuMode, cpumR3DisasInstrRead, &State,
3473 pCpu, &cbInstr, szOutput, sizeof(szOutput));
3474 if (RT_SUCCESS(rc))
3475 {
3476 /* log it */
3477 if (pszPrefix)
3478 Log(("%s-CPU%d: %s", pszPrefix, pVCpu->idCpu, szOutput));
3479 else
3480 Log(("%s", szOutput));
3481#endif
3482 rc = VINF_SUCCESS;
3483 }
3484 else
3485 Log(("CPUMR3DisasmInstrCPU: DISInstr failed for %04X:%RGv rc=%Rrc\n", pCtx->cs.Sel, GCPtrPC, rc));
3486
3487 /* Release mapping lock acquired in cpumR3DisasInstrRead. */
3488 if (State.fLocked)
3489 PGMPhysReleasePageMappingLock(pVM, &State.PageMapLock);
3490
3491 return rc;
3492}
3493
3494
3495
3496/**
3497 * API for controlling a few of the CPU features found in CR4.
3498 *
3499 * Currently only X86_CR4_TSD is accepted as input.
3500 *
3501 * @returns VBox status code.
3502 *
3503 * @param pVM The cross context VM structure.
3504 * @param fOr The CR4 OR mask.
3505 * @param fAnd The CR4 AND mask.
3506 */
3507VMMR3DECL(int) CPUMR3SetCR4Feature(PVM pVM, RTHCUINTREG fOr, RTHCUINTREG fAnd)
3508{
3509 AssertMsgReturn(!(fOr & ~(X86_CR4_TSD)), ("%#x\n", fOr), VERR_INVALID_PARAMETER);
3510 AssertMsgReturn((fAnd & ~(X86_CR4_TSD)) == ~(X86_CR4_TSD), ("%#x\n", fAnd), VERR_INVALID_PARAMETER);
3511
3512 pVM->cpum.s.CR4.OrMask &= fAnd;
3513 pVM->cpum.s.CR4.OrMask |= fOr;
3514
3515 return VINF_SUCCESS;
3516}
3517
3518
3519/**
3520 * Enters REM, gets and resets the changed flags (CPUM_CHANGED_*).
3521 *
3522 * Only REM should ever call this function!
3523 *
3524 * @returns The changed flags.
3525 * @param pVCpu The cross context virtual CPU structure.
3526 * @param puCpl Where to return the current privilege level (CPL).
3527 */
3528VMMR3DECL(uint32_t) CPUMR3RemEnter(PVMCPU pVCpu, uint32_t *puCpl)
3529{
3530 Assert(!pVCpu->cpum.s.fRawEntered);
3531 Assert(!pVCpu->cpum.s.fRemEntered);
3532
3533 /*
3534 * Get the CPL first.
3535 */
3536 *puCpl = CPUMGetGuestCPL(pVCpu);
3537
3538 /*
3539 * Get and reset the flags.
3540 */
3541 uint32_t fFlags = pVCpu->cpum.s.fChanged;
3542 pVCpu->cpum.s.fChanged = 0;
3543
3544 /** @todo change the switcher to use the fChanged flags. */
3545 if (pVCpu->cpum.s.fUseFlags & CPUM_USED_FPU_SINCE_REM)
3546 {
3547 fFlags |= CPUM_CHANGED_FPU_REM;
3548 pVCpu->cpum.s.fUseFlags &= ~CPUM_USED_FPU_SINCE_REM;
3549 }
3550
3551 pVCpu->cpum.s.fRemEntered = true;
3552 return fFlags;
3553}
3554
3555
3556/**
3557 * Leaves REM.
3558 *
3559 * @param pVCpu The cross context virtual CPU structure.
3560 * @param fNoOutOfSyncSels This is @c false if there are out of sync
3561 * registers.
3562 */
3563VMMR3DECL(void) CPUMR3RemLeave(PVMCPU pVCpu, bool fNoOutOfSyncSels)
3564{
3565 Assert(!pVCpu->cpum.s.fRawEntered);
3566 Assert(pVCpu->cpum.s.fRemEntered);
3567
3568 RT_NOREF_PV(fNoOutOfSyncSels);
3569
3570 pVCpu->cpum.s.fRemEntered = false;
3571}
3572
3573
3574/**
3575 * Called when the ring-3 init phase completes.
3576 *
3577 * @returns VBox status code.
3578 * @param pVM The cross context VM structure.
3579 * @param enmWhat Which init phase.
3580 */
3581VMMR3DECL(int) CPUMR3InitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
3582{
3583 switch (enmWhat)
3584 {
3585 case VMINITCOMPLETED_RING3:
3586 {
3587 /*
3588 * Figure out if the guest uses 32-bit or 64-bit FPU state at runtime for 64-bit capable VMs.
3589 * Only applicable/used on 64-bit hosts, refer CPUMR0A.asm. See @bugref{7138}.
3590 */
3591 bool const fSupportsLongMode = VMR3IsLongModeAllowed(pVM);
3592 for (VMCPUID i = 0; i < pVM->cCpus; i++)
3593 {
3594 PVMCPU pVCpu = &pVM->aCpus[i];
3595 /* While loading a saved-state we fix it up in, cpumR3LoadDone(). */
3596 if (fSupportsLongMode)
3597 pVCpu->cpum.s.fUseFlags |= CPUM_USE_SUPPORTS_LONGMODE;
3598 }
3599
3600 cpumR3MsrRegStats(pVM);
3601 break;
3602 }
3603
3604 case VMINITCOMPLETED_HM:
3605 {
3606 /*
3607 * Currently, nested VMX/SVM both derives their guest VMX/SVM CPUID bit from the host
3608 * CPUID bit. This could be later changed if we need to support nested-VMX on CPUs
3609 * that are not capable of VMX.
3610 */
3611 if (pVM->cpum.s.GuestFeatures.fVmx)
3612 {
3613 Assert( pVM->cpum.s.GuestFeatures.enmCpuVendor == CPUMCPUVENDOR_INTEL
3614 || pVM->cpum.s.GuestFeatures.enmCpuVendor == CPUMCPUVENDOR_VIA);
3615 cpumR3InitVmxCpuFeatures(pVM);
3616 DBGFR3Info(pVM->pUVM, "cpumvmxfeat", "default", DBGFR3InfoLogRelHlp());
3617 }
3618
3619 if (pVM->cpum.s.GuestFeatures.fVmx)
3620 LogRel(("CPUM: Enabled guest VMX support\n"));
3621 else if (pVM->cpum.s.GuestFeatures.fSvm)
3622 LogRel(("CPUM: Enabled guest SVM support\n"));
3623 break;
3624 }
3625
3626 default:
3627 break;
3628 }
3629 return VINF_SUCCESS;
3630}
3631
3632
3633/**
3634 * Called when the ring-0 init phases completed.
3635 *
3636 * @param pVM The cross context VM structure.
3637 */
3638VMMR3DECL(void) CPUMR3LogCpuIds(PVM pVM)
3639{
3640 /*
3641 * Log the cpuid.
3642 */
3643 bool fOldBuffered = RTLogRelSetBuffering(true /*fBuffered*/);
3644 RTCPUSET OnlineSet;
3645 LogRel(("CPUM: Logical host processors: %u present, %u max, %u online, online mask: %016RX64\n",
3646 (unsigned)RTMpGetPresentCount(), (unsigned)RTMpGetCount(), (unsigned)RTMpGetOnlineCount(),
3647 RTCpuSetToU64(RTMpGetOnlineSet(&OnlineSet)) ));
3648 RTCPUID cCores = RTMpGetCoreCount();
3649 if (cCores)
3650 LogRel(("CPUM: Physical host cores: %u\n", (unsigned)cCores));
3651 LogRel(("************************* CPUID dump ************************\n"));
3652 DBGFR3Info(pVM->pUVM, "cpuid", "verbose", DBGFR3InfoLogRelHlp());
3653 LogRel(("\n"));
3654 DBGFR3_INFO_LOG_SAFE(pVM, "cpuid", "verbose"); /* macro */
3655 RTLogRelSetBuffering(fOldBuffered);
3656 LogRel(("******************** End of CPUID dump **********************\n"));
3657}
3658
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette