VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/CPUM.cpp@ 76465

Last change on this file since 76465 was 76465, checked in by vboxsync, 6 years ago

VMM/CPUM: Doxygen.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 199.0 KB
Line 
1/* $Id: CPUM.cpp 76465 2018-12-25 04:39:02Z vboxsync $ */
2/** @file
3 * CPUM - CPU Monitor / Manager.
4 */
5
6/*
7 * Copyright (C) 2006-2017 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/** @page pg_cpum CPUM - CPU Monitor / Manager
19 *
20 * The CPU Monitor / Manager keeps track of all the CPU registers. It is
21 * also responsible for lazy FPU handling and some of the context loading
22 * in raw mode.
23 *
24 * There are three CPU contexts, the most important one is the guest one (GC).
25 * When running in raw-mode (RC) there is a special hyper context for the VMM
26 * part that floats around inside the guest address space. When running in
27 * raw-mode, CPUM also maintains a host context for saving and restoring
28 * registers across world switches. This latter is done in cooperation with the
29 * world switcher (@see pg_vmm).
30 *
31 * @see grp_cpum
32 *
33 * @section sec_cpum_fpu FPU / SSE / AVX / ++ state.
34 *
35 * TODO: proper write up, currently just some notes.
36 *
37 * The ring-0 FPU handling per OS:
38 *
39 * - 64-bit Windows uses XMM registers in the kernel as part of the calling
40 * convention (Visual C++ doesn't seem to have a way to disable
41 * generating such code either), so CR0.TS/EM are always zero from what I
42 * can tell. We are also forced to always load/save the guest XMM0-XMM15
43 * registers when entering/leaving guest context. Interrupt handlers
44 * using FPU/SSE will offically have call save and restore functions
45 * exported by the kernel, if the really really have to use the state.
46 *
47 * - 32-bit windows does lazy FPU handling, I think, probably including
48 * lazying saving. The Windows Internals book states that it's a bad
49 * idea to use the FPU in kernel space. However, it looks like it will
50 * restore the FPU state of the current thread in case of a kernel \#NM.
51 * Interrupt handlers should be same as for 64-bit.
52 *
53 * - Darwin allows taking \#NM in kernel space, restoring current thread's
54 * state if I read the code correctly. It saves the FPU state of the
55 * outgoing thread, and uses CR0.TS to lazily load the state of the
56 * incoming one. No idea yet how the FPU is treated by interrupt
57 * handlers, i.e. whether they are allowed to disable the state or
58 * something.
59 *
60 * - Linux also allows \#NM in kernel space (don't know since when), and
61 * uses CR0.TS for lazy loading. Saves outgoing thread's state, lazy
62 * loads the incoming unless configured to agressivly load it. Interrupt
63 * handlers can ask whether they're allowed to use the FPU, and may
64 * freely trash the state if Linux thinks it has saved the thread's state
65 * already. This is a problem.
66 *
67 * - Solaris will, from what I can tell, panic if it gets an \#NM in kernel
68 * context. When switching threads, the kernel will save the state of
69 * the outgoing thread and lazy load the incoming one using CR0.TS.
70 * There are a few routines in seeblk.s which uses the SSE unit in ring-0
71 * to do stuff, HAT are among the users. The routines there will
72 * manually clear CR0.TS and save the XMM registers they use only if
73 * CR0.TS was zero upon entry. They will skip it when not, because as
74 * mentioned above, the FPU state is saved when switching away from a
75 * thread and CR0.TS set to 1, so when CR0.TS is 1 there is nothing to
76 * preserve. This is a problem if we restore CR0.TS to 1 after loading
77 * the guest state.
78 *
79 * - FreeBSD - no idea yet.
80 *
81 * - OS/2 does not allow \#NMs in kernel space IIRC. Does lazy loading,
82 * possibly also lazy saving. Interrupts must preserve the CR0.TS+EM &
83 * FPU states.
84 *
85 * Up to r107425 (2016-05-24) we would only temporarily modify CR0.TS/EM while
86 * saving and restoring the host and guest states. The motivation for this
87 * change is that we want to be able to emulate SSE instruction in ring-0 (IEM).
88 *
89 * Starting with that change, we will leave CR0.TS=EM=0 after saving the host
90 * state and only restore it once we've restore the host FPU state. This has the
91 * accidental side effect of triggering Solaris to preserve XMM registers in
92 * sseblk.s. When CR0 was changed by saving the FPU state, CPUM must now inform
93 * the VT-x (HMVMX) code about it as it caches the CR0 value in the VMCS.
94 *
95 *
96 * @section sec_cpum_logging Logging Level Assignments.
97 *
98 * Following log level assignments:
99 * - Log6 is used for FPU state management.
100 * - Log7 is used for FPU state actualization.
101 *
102 */
103
104
105/*********************************************************************************************************************************
106* Header Files *
107*********************************************************************************************************************************/
108#define LOG_GROUP LOG_GROUP_CPUM
109#include <VBox/vmm/cpum.h>
110#include <VBox/vmm/cpumdis.h>
111#include <VBox/vmm/cpumctx-v1_6.h>
112#include <VBox/vmm/pgm.h>
113#include <VBox/vmm/apic.h>
114#include <VBox/vmm/mm.h>
115#include <VBox/vmm/em.h>
116#include <VBox/vmm/iem.h>
117#include <VBox/vmm/selm.h>
118#include <VBox/vmm/dbgf.h>
119#include <VBox/vmm/patm.h>
120#include <VBox/vmm/hm.h>
121#include <VBox/vmm/ssm.h>
122#include "CPUMInternal.h"
123#include <VBox/vmm/vm.h>
124
125#include <VBox/param.h>
126#include <VBox/dis.h>
127#include <VBox/err.h>
128#include <VBox/log.h>
129#include <iprt/asm-amd64-x86.h>
130#include <iprt/assert.h>
131#include <iprt/cpuset.h>
132#include <iprt/mem.h>
133#include <iprt/mp.h>
134#include <iprt/string.h>
135
136
137/*********************************************************************************************************************************
138* Defined Constants And Macros *
139*********************************************************************************************************************************/
140/**
141 * This was used in the saved state up to the early life of version 14.
142 *
143 * It indicates that we may have some out-of-sync hidden segement registers.
144 * It is only relevant for raw-mode.
145 */
146#define CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID RT_BIT(12)
147
148
149/*********************************************************************************************************************************
150* Structures and Typedefs *
151*********************************************************************************************************************************/
152
153/**
154 * What kind of cpu info dump to perform.
155 */
156typedef enum CPUMDUMPTYPE
157{
158 CPUMDUMPTYPE_TERSE,
159 CPUMDUMPTYPE_DEFAULT,
160 CPUMDUMPTYPE_VERBOSE
161} CPUMDUMPTYPE;
162/** Pointer to a cpu info dump type. */
163typedef CPUMDUMPTYPE *PCPUMDUMPTYPE;
164
165
166/*********************************************************************************************************************************
167* Internal Functions *
168*********************************************************************************************************************************/
169static DECLCALLBACK(int) cpumR3LiveExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uPass);
170static DECLCALLBACK(int) cpumR3SaveExec(PVM pVM, PSSMHANDLE pSSM);
171static DECLCALLBACK(int) cpumR3LoadPrep(PVM pVM, PSSMHANDLE pSSM);
172static DECLCALLBACK(int) cpumR3LoadExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
173static DECLCALLBACK(int) cpumR3LoadDone(PVM pVM, PSSMHANDLE pSSM);
174static DECLCALLBACK(void) cpumR3InfoAll(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
175static DECLCALLBACK(void) cpumR3InfoGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
176static DECLCALLBACK(void) cpumR3InfoGuestHwvirt(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
177static DECLCALLBACK(void) cpumR3InfoGuestInstr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
178static DECLCALLBACK(void) cpumR3InfoHyper(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
179static DECLCALLBACK(void) cpumR3InfoHost(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
180
181
182/*********************************************************************************************************************************
183* Global Variables *
184*********************************************************************************************************************************/
185/** Saved state field descriptors for CPUMCTX. */
186static const SSMFIELD g_aCpumCtxFields[] =
187{
188 SSMFIELD_ENTRY( CPUMCTX, rdi),
189 SSMFIELD_ENTRY( CPUMCTX, rsi),
190 SSMFIELD_ENTRY( CPUMCTX, rbp),
191 SSMFIELD_ENTRY( CPUMCTX, rax),
192 SSMFIELD_ENTRY( CPUMCTX, rbx),
193 SSMFIELD_ENTRY( CPUMCTX, rdx),
194 SSMFIELD_ENTRY( CPUMCTX, rcx),
195 SSMFIELD_ENTRY( CPUMCTX, rsp),
196 SSMFIELD_ENTRY( CPUMCTX, rflags),
197 SSMFIELD_ENTRY( CPUMCTX, rip),
198 SSMFIELD_ENTRY( CPUMCTX, r8),
199 SSMFIELD_ENTRY( CPUMCTX, r9),
200 SSMFIELD_ENTRY( CPUMCTX, r10),
201 SSMFIELD_ENTRY( CPUMCTX, r11),
202 SSMFIELD_ENTRY( CPUMCTX, r12),
203 SSMFIELD_ENTRY( CPUMCTX, r13),
204 SSMFIELD_ENTRY( CPUMCTX, r14),
205 SSMFIELD_ENTRY( CPUMCTX, r15),
206 SSMFIELD_ENTRY( CPUMCTX, es.Sel),
207 SSMFIELD_ENTRY( CPUMCTX, es.ValidSel),
208 SSMFIELD_ENTRY( CPUMCTX, es.fFlags),
209 SSMFIELD_ENTRY( CPUMCTX, es.u64Base),
210 SSMFIELD_ENTRY( CPUMCTX, es.u32Limit),
211 SSMFIELD_ENTRY( CPUMCTX, es.Attr),
212 SSMFIELD_ENTRY( CPUMCTX, cs.Sel),
213 SSMFIELD_ENTRY( CPUMCTX, cs.ValidSel),
214 SSMFIELD_ENTRY( CPUMCTX, cs.fFlags),
215 SSMFIELD_ENTRY( CPUMCTX, cs.u64Base),
216 SSMFIELD_ENTRY( CPUMCTX, cs.u32Limit),
217 SSMFIELD_ENTRY( CPUMCTX, cs.Attr),
218 SSMFIELD_ENTRY( CPUMCTX, ss.Sel),
219 SSMFIELD_ENTRY( CPUMCTX, ss.ValidSel),
220 SSMFIELD_ENTRY( CPUMCTX, ss.fFlags),
221 SSMFIELD_ENTRY( CPUMCTX, ss.u64Base),
222 SSMFIELD_ENTRY( CPUMCTX, ss.u32Limit),
223 SSMFIELD_ENTRY( CPUMCTX, ss.Attr),
224 SSMFIELD_ENTRY( CPUMCTX, ds.Sel),
225 SSMFIELD_ENTRY( CPUMCTX, ds.ValidSel),
226 SSMFIELD_ENTRY( CPUMCTX, ds.fFlags),
227 SSMFIELD_ENTRY( CPUMCTX, ds.u64Base),
228 SSMFIELD_ENTRY( CPUMCTX, ds.u32Limit),
229 SSMFIELD_ENTRY( CPUMCTX, ds.Attr),
230 SSMFIELD_ENTRY( CPUMCTX, fs.Sel),
231 SSMFIELD_ENTRY( CPUMCTX, fs.ValidSel),
232 SSMFIELD_ENTRY( CPUMCTX, fs.fFlags),
233 SSMFIELD_ENTRY( CPUMCTX, fs.u64Base),
234 SSMFIELD_ENTRY( CPUMCTX, fs.u32Limit),
235 SSMFIELD_ENTRY( CPUMCTX, fs.Attr),
236 SSMFIELD_ENTRY( CPUMCTX, gs.Sel),
237 SSMFIELD_ENTRY( CPUMCTX, gs.ValidSel),
238 SSMFIELD_ENTRY( CPUMCTX, gs.fFlags),
239 SSMFIELD_ENTRY( CPUMCTX, gs.u64Base),
240 SSMFIELD_ENTRY( CPUMCTX, gs.u32Limit),
241 SSMFIELD_ENTRY( CPUMCTX, gs.Attr),
242 SSMFIELD_ENTRY( CPUMCTX, cr0),
243 SSMFIELD_ENTRY( CPUMCTX, cr2),
244 SSMFIELD_ENTRY( CPUMCTX, cr3),
245 SSMFIELD_ENTRY( CPUMCTX, cr4),
246 SSMFIELD_ENTRY( CPUMCTX, dr[0]),
247 SSMFIELD_ENTRY( CPUMCTX, dr[1]),
248 SSMFIELD_ENTRY( CPUMCTX, dr[2]),
249 SSMFIELD_ENTRY( CPUMCTX, dr[3]),
250 SSMFIELD_ENTRY( CPUMCTX, dr[6]),
251 SSMFIELD_ENTRY( CPUMCTX, dr[7]),
252 SSMFIELD_ENTRY( CPUMCTX, gdtr.cbGdt),
253 SSMFIELD_ENTRY( CPUMCTX, gdtr.pGdt),
254 SSMFIELD_ENTRY( CPUMCTX, idtr.cbIdt),
255 SSMFIELD_ENTRY( CPUMCTX, idtr.pIdt),
256 SSMFIELD_ENTRY( CPUMCTX, SysEnter.cs),
257 SSMFIELD_ENTRY( CPUMCTX, SysEnter.eip),
258 SSMFIELD_ENTRY( CPUMCTX, SysEnter.esp),
259 SSMFIELD_ENTRY( CPUMCTX, msrEFER),
260 SSMFIELD_ENTRY( CPUMCTX, msrSTAR),
261 SSMFIELD_ENTRY( CPUMCTX, msrPAT),
262 SSMFIELD_ENTRY( CPUMCTX, msrLSTAR),
263 SSMFIELD_ENTRY( CPUMCTX, msrCSTAR),
264 SSMFIELD_ENTRY( CPUMCTX, msrSFMASK),
265 SSMFIELD_ENTRY( CPUMCTX, msrKERNELGSBASE),
266 SSMFIELD_ENTRY( CPUMCTX, ldtr.Sel),
267 SSMFIELD_ENTRY( CPUMCTX, ldtr.ValidSel),
268 SSMFIELD_ENTRY( CPUMCTX, ldtr.fFlags),
269 SSMFIELD_ENTRY( CPUMCTX, ldtr.u64Base),
270 SSMFIELD_ENTRY( CPUMCTX, ldtr.u32Limit),
271 SSMFIELD_ENTRY( CPUMCTX, ldtr.Attr),
272 SSMFIELD_ENTRY( CPUMCTX, tr.Sel),
273 SSMFIELD_ENTRY( CPUMCTX, tr.ValidSel),
274 SSMFIELD_ENTRY( CPUMCTX, tr.fFlags),
275 SSMFIELD_ENTRY( CPUMCTX, tr.u64Base),
276 SSMFIELD_ENTRY( CPUMCTX, tr.u32Limit),
277 SSMFIELD_ENTRY( CPUMCTX, tr.Attr),
278 SSMFIELD_ENTRY_VER( CPUMCTX, aXcr[0], CPUM_SAVED_STATE_VERSION_XSAVE),
279 SSMFIELD_ENTRY_VER( CPUMCTX, aXcr[1], CPUM_SAVED_STATE_VERSION_XSAVE),
280 SSMFIELD_ENTRY_VER( CPUMCTX, fXStateMask, CPUM_SAVED_STATE_VERSION_XSAVE),
281 SSMFIELD_ENTRY_TERM()
282};
283
284/** Saved state field descriptors for SVM nested hardware-virtualization
285 * Host State. */
286static const SSMFIELD g_aSvmHwvirtHostState[] =
287{
288 SSMFIELD_ENTRY( SVMHOSTSTATE, uEferMsr),
289 SSMFIELD_ENTRY( SVMHOSTSTATE, uCr0),
290 SSMFIELD_ENTRY( SVMHOSTSTATE, uCr4),
291 SSMFIELD_ENTRY( SVMHOSTSTATE, uCr3),
292 SSMFIELD_ENTRY( SVMHOSTSTATE, uRip),
293 SSMFIELD_ENTRY( SVMHOSTSTATE, uRsp),
294 SSMFIELD_ENTRY( SVMHOSTSTATE, uRax),
295 SSMFIELD_ENTRY( SVMHOSTSTATE, rflags),
296 SSMFIELD_ENTRY( SVMHOSTSTATE, es.Sel),
297 SSMFIELD_ENTRY( SVMHOSTSTATE, es.ValidSel),
298 SSMFIELD_ENTRY( SVMHOSTSTATE, es.fFlags),
299 SSMFIELD_ENTRY( SVMHOSTSTATE, es.u64Base),
300 SSMFIELD_ENTRY( SVMHOSTSTATE, es.u32Limit),
301 SSMFIELD_ENTRY( SVMHOSTSTATE, es.Attr),
302 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.Sel),
303 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.ValidSel),
304 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.fFlags),
305 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.u64Base),
306 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.u32Limit),
307 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.Attr),
308 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.Sel),
309 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.ValidSel),
310 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.fFlags),
311 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.u64Base),
312 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.u32Limit),
313 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.Attr),
314 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.Sel),
315 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.ValidSel),
316 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.fFlags),
317 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.u64Base),
318 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.u32Limit),
319 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.Attr),
320 SSMFIELD_ENTRY( SVMHOSTSTATE, gdtr.cbGdt),
321 SSMFIELD_ENTRY( SVMHOSTSTATE, gdtr.pGdt),
322 SSMFIELD_ENTRY( SVMHOSTSTATE, idtr.cbIdt),
323 SSMFIELD_ENTRY( SVMHOSTSTATE, idtr.pIdt),
324 SSMFIELD_ENTRY_IGNORE(SVMHOSTSTATE, abPadding),
325 SSMFIELD_ENTRY_TERM()
326};
327
328/** Saved state field descriptors for CPUMCTX. */
329static const SSMFIELD g_aCpumX87Fields[] =
330{
331 SSMFIELD_ENTRY( X86FXSTATE, FCW),
332 SSMFIELD_ENTRY( X86FXSTATE, FSW),
333 SSMFIELD_ENTRY( X86FXSTATE, FTW),
334 SSMFIELD_ENTRY( X86FXSTATE, FOP),
335 SSMFIELD_ENTRY( X86FXSTATE, FPUIP),
336 SSMFIELD_ENTRY( X86FXSTATE, CS),
337 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd1),
338 SSMFIELD_ENTRY( X86FXSTATE, FPUDP),
339 SSMFIELD_ENTRY( X86FXSTATE, DS),
340 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd2),
341 SSMFIELD_ENTRY( X86FXSTATE, MXCSR),
342 SSMFIELD_ENTRY( X86FXSTATE, MXCSR_MASK),
343 SSMFIELD_ENTRY( X86FXSTATE, aRegs[0]),
344 SSMFIELD_ENTRY( X86FXSTATE, aRegs[1]),
345 SSMFIELD_ENTRY( X86FXSTATE, aRegs[2]),
346 SSMFIELD_ENTRY( X86FXSTATE, aRegs[3]),
347 SSMFIELD_ENTRY( X86FXSTATE, aRegs[4]),
348 SSMFIELD_ENTRY( X86FXSTATE, aRegs[5]),
349 SSMFIELD_ENTRY( X86FXSTATE, aRegs[6]),
350 SSMFIELD_ENTRY( X86FXSTATE, aRegs[7]),
351 SSMFIELD_ENTRY( X86FXSTATE, aXMM[0]),
352 SSMFIELD_ENTRY( X86FXSTATE, aXMM[1]),
353 SSMFIELD_ENTRY( X86FXSTATE, aXMM[2]),
354 SSMFIELD_ENTRY( X86FXSTATE, aXMM[3]),
355 SSMFIELD_ENTRY( X86FXSTATE, aXMM[4]),
356 SSMFIELD_ENTRY( X86FXSTATE, aXMM[5]),
357 SSMFIELD_ENTRY( X86FXSTATE, aXMM[6]),
358 SSMFIELD_ENTRY( X86FXSTATE, aXMM[7]),
359 SSMFIELD_ENTRY( X86FXSTATE, aXMM[8]),
360 SSMFIELD_ENTRY( X86FXSTATE, aXMM[9]),
361 SSMFIELD_ENTRY( X86FXSTATE, aXMM[10]),
362 SSMFIELD_ENTRY( X86FXSTATE, aXMM[11]),
363 SSMFIELD_ENTRY( X86FXSTATE, aXMM[12]),
364 SSMFIELD_ENTRY( X86FXSTATE, aXMM[13]),
365 SSMFIELD_ENTRY( X86FXSTATE, aXMM[14]),
366 SSMFIELD_ENTRY( X86FXSTATE, aXMM[15]),
367 SSMFIELD_ENTRY_VER( X86FXSTATE, au32RsrvdForSoftware[0], CPUM_SAVED_STATE_VERSION_XSAVE), /* 32-bit/64-bit hack */
368 SSMFIELD_ENTRY_TERM()
369};
370
371/** Saved state field descriptors for X86XSAVEHDR. */
372static const SSMFIELD g_aCpumXSaveHdrFields[] =
373{
374 SSMFIELD_ENTRY( X86XSAVEHDR, bmXState),
375 SSMFIELD_ENTRY_TERM()
376};
377
378/** Saved state field descriptors for X86XSAVEYMMHI. */
379static const SSMFIELD g_aCpumYmmHiFields[] =
380{
381 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[0]),
382 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[1]),
383 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[2]),
384 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[3]),
385 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[4]),
386 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[5]),
387 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[6]),
388 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[7]),
389 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[8]),
390 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[9]),
391 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[10]),
392 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[11]),
393 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[12]),
394 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[13]),
395 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[14]),
396 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[15]),
397 SSMFIELD_ENTRY_TERM()
398};
399
400/** Saved state field descriptors for X86XSAVEBNDREGS. */
401static const SSMFIELD g_aCpumBndRegsFields[] =
402{
403 SSMFIELD_ENTRY( X86XSAVEBNDREGS, aRegs[0]),
404 SSMFIELD_ENTRY( X86XSAVEBNDREGS, aRegs[1]),
405 SSMFIELD_ENTRY( X86XSAVEBNDREGS, aRegs[2]),
406 SSMFIELD_ENTRY( X86XSAVEBNDREGS, aRegs[3]),
407 SSMFIELD_ENTRY_TERM()
408};
409
410/** Saved state field descriptors for X86XSAVEBNDCFG. */
411static const SSMFIELD g_aCpumBndCfgFields[] =
412{
413 SSMFIELD_ENTRY( X86XSAVEBNDCFG, fConfig),
414 SSMFIELD_ENTRY( X86XSAVEBNDCFG, fStatus),
415 SSMFIELD_ENTRY_TERM()
416};
417
418#if 0 /** @todo */
419/** Saved state field descriptors for X86XSAVEOPMASK. */
420static const SSMFIELD g_aCpumOpmaskFields[] =
421{
422 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[0]),
423 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[1]),
424 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[2]),
425 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[3]),
426 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[4]),
427 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[5]),
428 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[6]),
429 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[7]),
430 SSMFIELD_ENTRY_TERM()
431};
432#endif
433
434/** Saved state field descriptors for X86XSAVEZMMHI256. */
435static const SSMFIELD g_aCpumZmmHi256Fields[] =
436{
437 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[0]),
438 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[1]),
439 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[2]),
440 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[3]),
441 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[4]),
442 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[5]),
443 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[6]),
444 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[7]),
445 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[8]),
446 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[9]),
447 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[10]),
448 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[11]),
449 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[12]),
450 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[13]),
451 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[14]),
452 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[15]),
453 SSMFIELD_ENTRY_TERM()
454};
455
456/** Saved state field descriptors for X86XSAVEZMM16HI. */
457static const SSMFIELD g_aCpumZmm16HiFields[] =
458{
459 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[0]),
460 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[1]),
461 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[2]),
462 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[3]),
463 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[4]),
464 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[5]),
465 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[6]),
466 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[7]),
467 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[8]),
468 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[9]),
469 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[10]),
470 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[11]),
471 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[12]),
472 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[13]),
473 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[14]),
474 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[15]),
475 SSMFIELD_ENTRY_TERM()
476};
477
478
479
480/** Saved state field descriptors for CPUMCTX in V4.1 before the hidden selector
481 * registeres changed. */
482static const SSMFIELD g_aCpumX87FieldsMem[] =
483{
484 SSMFIELD_ENTRY( X86FXSTATE, FCW),
485 SSMFIELD_ENTRY( X86FXSTATE, FSW),
486 SSMFIELD_ENTRY( X86FXSTATE, FTW),
487 SSMFIELD_ENTRY( X86FXSTATE, FOP),
488 SSMFIELD_ENTRY( X86FXSTATE, FPUIP),
489 SSMFIELD_ENTRY( X86FXSTATE, CS),
490 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd1),
491 SSMFIELD_ENTRY( X86FXSTATE, FPUDP),
492 SSMFIELD_ENTRY( X86FXSTATE, DS),
493 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd2),
494 SSMFIELD_ENTRY( X86FXSTATE, MXCSR),
495 SSMFIELD_ENTRY( X86FXSTATE, MXCSR_MASK),
496 SSMFIELD_ENTRY( X86FXSTATE, aRegs[0]),
497 SSMFIELD_ENTRY( X86FXSTATE, aRegs[1]),
498 SSMFIELD_ENTRY( X86FXSTATE, aRegs[2]),
499 SSMFIELD_ENTRY( X86FXSTATE, aRegs[3]),
500 SSMFIELD_ENTRY( X86FXSTATE, aRegs[4]),
501 SSMFIELD_ENTRY( X86FXSTATE, aRegs[5]),
502 SSMFIELD_ENTRY( X86FXSTATE, aRegs[6]),
503 SSMFIELD_ENTRY( X86FXSTATE, aRegs[7]),
504 SSMFIELD_ENTRY( X86FXSTATE, aXMM[0]),
505 SSMFIELD_ENTRY( X86FXSTATE, aXMM[1]),
506 SSMFIELD_ENTRY( X86FXSTATE, aXMM[2]),
507 SSMFIELD_ENTRY( X86FXSTATE, aXMM[3]),
508 SSMFIELD_ENTRY( X86FXSTATE, aXMM[4]),
509 SSMFIELD_ENTRY( X86FXSTATE, aXMM[5]),
510 SSMFIELD_ENTRY( X86FXSTATE, aXMM[6]),
511 SSMFIELD_ENTRY( X86FXSTATE, aXMM[7]),
512 SSMFIELD_ENTRY( X86FXSTATE, aXMM[8]),
513 SSMFIELD_ENTRY( X86FXSTATE, aXMM[9]),
514 SSMFIELD_ENTRY( X86FXSTATE, aXMM[10]),
515 SSMFIELD_ENTRY( X86FXSTATE, aXMM[11]),
516 SSMFIELD_ENTRY( X86FXSTATE, aXMM[12]),
517 SSMFIELD_ENTRY( X86FXSTATE, aXMM[13]),
518 SSMFIELD_ENTRY( X86FXSTATE, aXMM[14]),
519 SSMFIELD_ENTRY( X86FXSTATE, aXMM[15]),
520 SSMFIELD_ENTRY_IGNORE( X86FXSTATE, au32RsrvdRest),
521 SSMFIELD_ENTRY_IGNORE( X86FXSTATE, au32RsrvdForSoftware),
522};
523
524/** Saved state field descriptors for CPUMCTX in V4.1 before the hidden selector
525 * registeres changed. */
526static const SSMFIELD g_aCpumCtxFieldsMem[] =
527{
528 SSMFIELD_ENTRY( CPUMCTX, rdi),
529 SSMFIELD_ENTRY( CPUMCTX, rsi),
530 SSMFIELD_ENTRY( CPUMCTX, rbp),
531 SSMFIELD_ENTRY( CPUMCTX, rax),
532 SSMFIELD_ENTRY( CPUMCTX, rbx),
533 SSMFIELD_ENTRY( CPUMCTX, rdx),
534 SSMFIELD_ENTRY( CPUMCTX, rcx),
535 SSMFIELD_ENTRY( CPUMCTX, rsp),
536 SSMFIELD_ENTRY_OLD( lss_esp, sizeof(uint32_t)),
537 SSMFIELD_ENTRY( CPUMCTX, ss.Sel),
538 SSMFIELD_ENTRY_OLD( ssPadding, sizeof(uint16_t)),
539 SSMFIELD_ENTRY( CPUMCTX, gs.Sel),
540 SSMFIELD_ENTRY_OLD( gsPadding, sizeof(uint16_t)),
541 SSMFIELD_ENTRY( CPUMCTX, fs.Sel),
542 SSMFIELD_ENTRY_OLD( fsPadding, sizeof(uint16_t)),
543 SSMFIELD_ENTRY( CPUMCTX, es.Sel),
544 SSMFIELD_ENTRY_OLD( esPadding, sizeof(uint16_t)),
545 SSMFIELD_ENTRY( CPUMCTX, ds.Sel),
546 SSMFIELD_ENTRY_OLD( dsPadding, sizeof(uint16_t)),
547 SSMFIELD_ENTRY( CPUMCTX, cs.Sel),
548 SSMFIELD_ENTRY_OLD( csPadding, sizeof(uint16_t)*3),
549 SSMFIELD_ENTRY( CPUMCTX, rflags),
550 SSMFIELD_ENTRY( CPUMCTX, rip),
551 SSMFIELD_ENTRY( CPUMCTX, r8),
552 SSMFIELD_ENTRY( CPUMCTX, r9),
553 SSMFIELD_ENTRY( CPUMCTX, r10),
554 SSMFIELD_ENTRY( CPUMCTX, r11),
555 SSMFIELD_ENTRY( CPUMCTX, r12),
556 SSMFIELD_ENTRY( CPUMCTX, r13),
557 SSMFIELD_ENTRY( CPUMCTX, r14),
558 SSMFIELD_ENTRY( CPUMCTX, r15),
559 SSMFIELD_ENTRY( CPUMCTX, es.u64Base),
560 SSMFIELD_ENTRY( CPUMCTX, es.u32Limit),
561 SSMFIELD_ENTRY( CPUMCTX, es.Attr),
562 SSMFIELD_ENTRY( CPUMCTX, cs.u64Base),
563 SSMFIELD_ENTRY( CPUMCTX, cs.u32Limit),
564 SSMFIELD_ENTRY( CPUMCTX, cs.Attr),
565 SSMFIELD_ENTRY( CPUMCTX, ss.u64Base),
566 SSMFIELD_ENTRY( CPUMCTX, ss.u32Limit),
567 SSMFIELD_ENTRY( CPUMCTX, ss.Attr),
568 SSMFIELD_ENTRY( CPUMCTX, ds.u64Base),
569 SSMFIELD_ENTRY( CPUMCTX, ds.u32Limit),
570 SSMFIELD_ENTRY( CPUMCTX, ds.Attr),
571 SSMFIELD_ENTRY( CPUMCTX, fs.u64Base),
572 SSMFIELD_ENTRY( CPUMCTX, fs.u32Limit),
573 SSMFIELD_ENTRY( CPUMCTX, fs.Attr),
574 SSMFIELD_ENTRY( CPUMCTX, gs.u64Base),
575 SSMFIELD_ENTRY( CPUMCTX, gs.u32Limit),
576 SSMFIELD_ENTRY( CPUMCTX, gs.Attr),
577 SSMFIELD_ENTRY( CPUMCTX, cr0),
578 SSMFIELD_ENTRY( CPUMCTX, cr2),
579 SSMFIELD_ENTRY( CPUMCTX, cr3),
580 SSMFIELD_ENTRY( CPUMCTX, cr4),
581 SSMFIELD_ENTRY( CPUMCTX, dr[0]),
582 SSMFIELD_ENTRY( CPUMCTX, dr[1]),
583 SSMFIELD_ENTRY( CPUMCTX, dr[2]),
584 SSMFIELD_ENTRY( CPUMCTX, dr[3]),
585 SSMFIELD_ENTRY_OLD( dr[4], sizeof(uint64_t)),
586 SSMFIELD_ENTRY_OLD( dr[5], sizeof(uint64_t)),
587 SSMFIELD_ENTRY( CPUMCTX, dr[6]),
588 SSMFIELD_ENTRY( CPUMCTX, dr[7]),
589 SSMFIELD_ENTRY( CPUMCTX, gdtr.cbGdt),
590 SSMFIELD_ENTRY( CPUMCTX, gdtr.pGdt),
591 SSMFIELD_ENTRY_OLD( gdtrPadding, sizeof(uint16_t)),
592 SSMFIELD_ENTRY( CPUMCTX, idtr.cbIdt),
593 SSMFIELD_ENTRY( CPUMCTX, idtr.pIdt),
594 SSMFIELD_ENTRY_OLD( idtrPadding, sizeof(uint16_t)),
595 SSMFIELD_ENTRY( CPUMCTX, ldtr.Sel),
596 SSMFIELD_ENTRY_OLD( ldtrPadding, sizeof(uint16_t)),
597 SSMFIELD_ENTRY( CPUMCTX, tr.Sel),
598 SSMFIELD_ENTRY_OLD( trPadding, sizeof(uint16_t)),
599 SSMFIELD_ENTRY( CPUMCTX, SysEnter.cs),
600 SSMFIELD_ENTRY( CPUMCTX, SysEnter.eip),
601 SSMFIELD_ENTRY( CPUMCTX, SysEnter.esp),
602 SSMFIELD_ENTRY( CPUMCTX, msrEFER),
603 SSMFIELD_ENTRY( CPUMCTX, msrSTAR),
604 SSMFIELD_ENTRY( CPUMCTX, msrPAT),
605 SSMFIELD_ENTRY( CPUMCTX, msrLSTAR),
606 SSMFIELD_ENTRY( CPUMCTX, msrCSTAR),
607 SSMFIELD_ENTRY( CPUMCTX, msrSFMASK),
608 SSMFIELD_ENTRY( CPUMCTX, msrKERNELGSBASE),
609 SSMFIELD_ENTRY( CPUMCTX, ldtr.u64Base),
610 SSMFIELD_ENTRY( CPUMCTX, ldtr.u32Limit),
611 SSMFIELD_ENTRY( CPUMCTX, ldtr.Attr),
612 SSMFIELD_ENTRY( CPUMCTX, tr.u64Base),
613 SSMFIELD_ENTRY( CPUMCTX, tr.u32Limit),
614 SSMFIELD_ENTRY( CPUMCTX, tr.Attr),
615 SSMFIELD_ENTRY_TERM()
616};
617
618/** Saved state field descriptors for CPUMCTX_VER1_6. */
619static const SSMFIELD g_aCpumX87FieldsV16[] =
620{
621 SSMFIELD_ENTRY( X86FXSTATE, FCW),
622 SSMFIELD_ENTRY( X86FXSTATE, FSW),
623 SSMFIELD_ENTRY( X86FXSTATE, FTW),
624 SSMFIELD_ENTRY( X86FXSTATE, FOP),
625 SSMFIELD_ENTRY( X86FXSTATE, FPUIP),
626 SSMFIELD_ENTRY( X86FXSTATE, CS),
627 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd1),
628 SSMFIELD_ENTRY( X86FXSTATE, FPUDP),
629 SSMFIELD_ENTRY( X86FXSTATE, DS),
630 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd2),
631 SSMFIELD_ENTRY( X86FXSTATE, MXCSR),
632 SSMFIELD_ENTRY( X86FXSTATE, MXCSR_MASK),
633 SSMFIELD_ENTRY( X86FXSTATE, aRegs[0]),
634 SSMFIELD_ENTRY( X86FXSTATE, aRegs[1]),
635 SSMFIELD_ENTRY( X86FXSTATE, aRegs[2]),
636 SSMFIELD_ENTRY( X86FXSTATE, aRegs[3]),
637 SSMFIELD_ENTRY( X86FXSTATE, aRegs[4]),
638 SSMFIELD_ENTRY( X86FXSTATE, aRegs[5]),
639 SSMFIELD_ENTRY( X86FXSTATE, aRegs[6]),
640 SSMFIELD_ENTRY( X86FXSTATE, aRegs[7]),
641 SSMFIELD_ENTRY( X86FXSTATE, aXMM[0]),
642 SSMFIELD_ENTRY( X86FXSTATE, aXMM[1]),
643 SSMFIELD_ENTRY( X86FXSTATE, aXMM[2]),
644 SSMFIELD_ENTRY( X86FXSTATE, aXMM[3]),
645 SSMFIELD_ENTRY( X86FXSTATE, aXMM[4]),
646 SSMFIELD_ENTRY( X86FXSTATE, aXMM[5]),
647 SSMFIELD_ENTRY( X86FXSTATE, aXMM[6]),
648 SSMFIELD_ENTRY( X86FXSTATE, aXMM[7]),
649 SSMFIELD_ENTRY( X86FXSTATE, aXMM[8]),
650 SSMFIELD_ENTRY( X86FXSTATE, aXMM[9]),
651 SSMFIELD_ENTRY( X86FXSTATE, aXMM[10]),
652 SSMFIELD_ENTRY( X86FXSTATE, aXMM[11]),
653 SSMFIELD_ENTRY( X86FXSTATE, aXMM[12]),
654 SSMFIELD_ENTRY( X86FXSTATE, aXMM[13]),
655 SSMFIELD_ENTRY( X86FXSTATE, aXMM[14]),
656 SSMFIELD_ENTRY( X86FXSTATE, aXMM[15]),
657 SSMFIELD_ENTRY_IGNORE( X86FXSTATE, au32RsrvdRest),
658 SSMFIELD_ENTRY_IGNORE( X86FXSTATE, au32RsrvdForSoftware),
659 SSMFIELD_ENTRY_TERM()
660};
661
662/** Saved state field descriptors for CPUMCTX_VER1_6. */
663static const SSMFIELD g_aCpumCtxFieldsV16[] =
664{
665 SSMFIELD_ENTRY( CPUMCTX, rdi),
666 SSMFIELD_ENTRY( CPUMCTX, rsi),
667 SSMFIELD_ENTRY( CPUMCTX, rbp),
668 SSMFIELD_ENTRY( CPUMCTX, rax),
669 SSMFIELD_ENTRY( CPUMCTX, rbx),
670 SSMFIELD_ENTRY( CPUMCTX, rdx),
671 SSMFIELD_ENTRY( CPUMCTX, rcx),
672 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, rsp),
673 SSMFIELD_ENTRY( CPUMCTX, ss.Sel),
674 SSMFIELD_ENTRY_OLD( ssPadding, sizeof(uint16_t)),
675 SSMFIELD_ENTRY_OLD( CPUMCTX, sizeof(uint64_t) /*rsp_notused*/),
676 SSMFIELD_ENTRY( CPUMCTX, gs.Sel),
677 SSMFIELD_ENTRY_OLD( gsPadding, sizeof(uint16_t)),
678 SSMFIELD_ENTRY( CPUMCTX, fs.Sel),
679 SSMFIELD_ENTRY_OLD( fsPadding, sizeof(uint16_t)),
680 SSMFIELD_ENTRY( CPUMCTX, es.Sel),
681 SSMFIELD_ENTRY_OLD( esPadding, sizeof(uint16_t)),
682 SSMFIELD_ENTRY( CPUMCTX, ds.Sel),
683 SSMFIELD_ENTRY_OLD( dsPadding, sizeof(uint16_t)),
684 SSMFIELD_ENTRY( CPUMCTX, cs.Sel),
685 SSMFIELD_ENTRY_OLD( csPadding, sizeof(uint16_t)*3),
686 SSMFIELD_ENTRY( CPUMCTX, rflags),
687 SSMFIELD_ENTRY( CPUMCTX, rip),
688 SSMFIELD_ENTRY( CPUMCTX, r8),
689 SSMFIELD_ENTRY( CPUMCTX, r9),
690 SSMFIELD_ENTRY( CPUMCTX, r10),
691 SSMFIELD_ENTRY( CPUMCTX, r11),
692 SSMFIELD_ENTRY( CPUMCTX, r12),
693 SSMFIELD_ENTRY( CPUMCTX, r13),
694 SSMFIELD_ENTRY( CPUMCTX, r14),
695 SSMFIELD_ENTRY( CPUMCTX, r15),
696 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, es.u64Base),
697 SSMFIELD_ENTRY( CPUMCTX, es.u32Limit),
698 SSMFIELD_ENTRY( CPUMCTX, es.Attr),
699 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, cs.u64Base),
700 SSMFIELD_ENTRY( CPUMCTX, cs.u32Limit),
701 SSMFIELD_ENTRY( CPUMCTX, cs.Attr),
702 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, ss.u64Base),
703 SSMFIELD_ENTRY( CPUMCTX, ss.u32Limit),
704 SSMFIELD_ENTRY( CPUMCTX, ss.Attr),
705 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, ds.u64Base),
706 SSMFIELD_ENTRY( CPUMCTX, ds.u32Limit),
707 SSMFIELD_ENTRY( CPUMCTX, ds.Attr),
708 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, fs.u64Base),
709 SSMFIELD_ENTRY( CPUMCTX, fs.u32Limit),
710 SSMFIELD_ENTRY( CPUMCTX, fs.Attr),
711 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, gs.u64Base),
712 SSMFIELD_ENTRY( CPUMCTX, gs.u32Limit),
713 SSMFIELD_ENTRY( CPUMCTX, gs.Attr),
714 SSMFIELD_ENTRY( CPUMCTX, cr0),
715 SSMFIELD_ENTRY( CPUMCTX, cr2),
716 SSMFIELD_ENTRY( CPUMCTX, cr3),
717 SSMFIELD_ENTRY( CPUMCTX, cr4),
718 SSMFIELD_ENTRY_OLD( cr8, sizeof(uint64_t)),
719 SSMFIELD_ENTRY( CPUMCTX, dr[0]),
720 SSMFIELD_ENTRY( CPUMCTX, dr[1]),
721 SSMFIELD_ENTRY( CPUMCTX, dr[2]),
722 SSMFIELD_ENTRY( CPUMCTX, dr[3]),
723 SSMFIELD_ENTRY_OLD( dr[4], sizeof(uint64_t)),
724 SSMFIELD_ENTRY_OLD( dr[5], sizeof(uint64_t)),
725 SSMFIELD_ENTRY( CPUMCTX, dr[6]),
726 SSMFIELD_ENTRY( CPUMCTX, dr[7]),
727 SSMFIELD_ENTRY( CPUMCTX, gdtr.cbGdt),
728 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, gdtr.pGdt),
729 SSMFIELD_ENTRY_OLD( gdtrPadding, sizeof(uint16_t)),
730 SSMFIELD_ENTRY_OLD( gdtrPadding64, sizeof(uint64_t)),
731 SSMFIELD_ENTRY( CPUMCTX, idtr.cbIdt),
732 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, idtr.pIdt),
733 SSMFIELD_ENTRY_OLD( idtrPadding, sizeof(uint16_t)),
734 SSMFIELD_ENTRY_OLD( idtrPadding64, sizeof(uint64_t)),
735 SSMFIELD_ENTRY( CPUMCTX, ldtr.Sel),
736 SSMFIELD_ENTRY_OLD( ldtrPadding, sizeof(uint16_t)),
737 SSMFIELD_ENTRY( CPUMCTX, tr.Sel),
738 SSMFIELD_ENTRY_OLD( trPadding, sizeof(uint16_t)),
739 SSMFIELD_ENTRY( CPUMCTX, SysEnter.cs),
740 SSMFIELD_ENTRY( CPUMCTX, SysEnter.eip),
741 SSMFIELD_ENTRY( CPUMCTX, SysEnter.esp),
742 SSMFIELD_ENTRY( CPUMCTX, msrEFER),
743 SSMFIELD_ENTRY( CPUMCTX, msrSTAR),
744 SSMFIELD_ENTRY( CPUMCTX, msrPAT),
745 SSMFIELD_ENTRY( CPUMCTX, msrLSTAR),
746 SSMFIELD_ENTRY( CPUMCTX, msrCSTAR),
747 SSMFIELD_ENTRY( CPUMCTX, msrSFMASK),
748 SSMFIELD_ENTRY_OLD( msrFSBASE, sizeof(uint64_t)),
749 SSMFIELD_ENTRY_OLD( msrGSBASE, sizeof(uint64_t)),
750 SSMFIELD_ENTRY( CPUMCTX, msrKERNELGSBASE),
751 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, ldtr.u64Base),
752 SSMFIELD_ENTRY( CPUMCTX, ldtr.u32Limit),
753 SSMFIELD_ENTRY( CPUMCTX, ldtr.Attr),
754 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, tr.u64Base),
755 SSMFIELD_ENTRY( CPUMCTX, tr.u32Limit),
756 SSMFIELD_ENTRY( CPUMCTX, tr.Attr),
757 SSMFIELD_ENTRY_OLD( padding, sizeof(uint32_t)*2),
758 SSMFIELD_ENTRY_TERM()
759};
760
761
762/**
763 * Checks for partial/leaky FXSAVE/FXRSTOR handling on AMD CPUs.
764 *
765 * AMD K7, K8 and newer AMD CPUs do not save/restore the x87 error pointers
766 * (last instruction pointer, last data pointer, last opcode) except when the ES
767 * bit (Exception Summary) in x87 FSW (FPU Status Word) is set. Thus if we don't
768 * clear these registers there is potential, local FPU leakage from a process
769 * using the FPU to another.
770 *
771 * See AMD Instruction Reference for FXSAVE, FXRSTOR.
772 *
773 * @param pVM The cross context VM structure.
774 */
775static void cpumR3CheckLeakyFpu(PVM pVM)
776{
777 uint32_t u32CpuVersion = ASMCpuId_EAX(1);
778 uint32_t const u32Family = u32CpuVersion >> 8;
779 if ( u32Family >= 6 /* K7 and higher */
780 && ASMIsAmdCpu())
781 {
782 uint32_t cExt = ASMCpuId_EAX(0x80000000);
783 if (ASMIsValidExtRange(cExt))
784 {
785 uint32_t fExtFeaturesEDX = ASMCpuId_EDX(0x80000001);
786 if (fExtFeaturesEDX & X86_CPUID_AMD_FEATURE_EDX_FFXSR)
787 {
788 for (VMCPUID i = 0; i < pVM->cCpus; i++)
789 pVM->aCpus[i].cpum.s.fUseFlags |= CPUM_USE_FFXSR_LEAKY;
790 Log(("CPUM: Host CPU has leaky fxsave/fxrstor behaviour\n"));
791 }
792 }
793 }
794}
795
796
797/**
798 * Frees memory allocated for the SVM hardware virtualization state.
799 *
800 * @param pVM The cross context VM structure.
801 */
802static void cpumR3FreeSvmHwVirtState(PVM pVM)
803{
804 Assert(pVM->cpum.s.GuestFeatures.fSvm);
805 for (VMCPUID i = 0; i < pVM->cCpus; i++)
806 {
807 PVMCPU pVCpu = &pVM->aCpus[i];
808 if (pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR3)
809 {
810 SUPR3PageFreeEx(pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR3, SVM_VMCB_PAGES);
811 pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR3 = NULL;
812 }
813 pVCpu->cpum.s.Guest.hwvirt.svm.HCPhysVmcb = NIL_RTHCPHYS;
814
815 if (pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR3)
816 {
817 SUPR3PageFreeEx(pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR3, SVM_MSRPM_PAGES);
818 pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR3 = NULL;
819 }
820
821 if (pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR3)
822 {
823 SUPR3PageFreeEx(pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR3, SVM_IOPM_PAGES);
824 pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR3 = NULL;
825 }
826 }
827}
828
829
830/**
831 * Allocates memory for the SVM hardware virtualization state.
832 *
833 * @returns VBox status code.
834 * @param pVM The cross context VM structure.
835 */
836static int cpumR3AllocSvmHwVirtState(PVM pVM)
837{
838 Assert(pVM->cpum.s.GuestFeatures.fSvm);
839
840 int rc = VINF_SUCCESS;
841 LogRel(("CPUM: Allocating %u pages for the nested-guest SVM MSR and IO permission bitmaps\n",
842 pVM->cCpus * (SVM_MSRPM_PAGES + SVM_IOPM_PAGES)));
843 for (VMCPUID i = 0; i < pVM->cCpus; i++)
844 {
845 PVMCPU pVCpu = &pVM->aCpus[i];
846 pVCpu->cpum.s.Guest.hwvirt.enmHwvirt = CPUMHWVIRT_SVM;
847
848 /*
849 * Allocate the nested-guest VMCB.
850 */
851 SUPPAGE SupNstGstVmcbPage;
852 RT_ZERO(SupNstGstVmcbPage);
853 SupNstGstVmcbPage.Phys = NIL_RTHCPHYS;
854 Assert(SVM_VMCB_PAGES == 1);
855 Assert(!pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR3);
856 rc = SUPR3PageAllocEx(SVM_VMCB_PAGES, 0 /* fFlags */, (void **)&pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR3,
857 &pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR0, &SupNstGstVmcbPage);
858 if (RT_FAILURE(rc))
859 {
860 Assert(!pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR3);
861 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's VMCB\n", pVCpu->idCpu, SVM_VMCB_PAGES));
862 break;
863 }
864 pVCpu->cpum.s.Guest.hwvirt.svm.HCPhysVmcb = SupNstGstVmcbPage.Phys;
865
866 /*
867 * Allocate the MSRPM (MSR Permission bitmap).
868 */
869 Assert(!pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR3);
870 rc = SUPR3PageAllocEx(SVM_MSRPM_PAGES, 0 /* fFlags */, &pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR3,
871 &pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR0, NULL /* paPages */);
872 if (RT_FAILURE(rc))
873 {
874 Assert(!pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR3);
875 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's MSR permission bitmap\n", pVCpu->idCpu,
876 SVM_MSRPM_PAGES));
877 break;
878 }
879
880 /*
881 * Allocate the IOPM (IO Permission bitmap).
882 */
883 Assert(!pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR3);
884 rc = SUPR3PageAllocEx(SVM_IOPM_PAGES, 0 /* fFlags */, &pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR3,
885 &pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR0, NULL /* paPages */);
886 if (RT_FAILURE(rc))
887 {
888 Assert(!pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR3);
889 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's IO permission bitmap\n", pVCpu->idCpu,
890 SVM_IOPM_PAGES));
891 break;
892 }
893 }
894
895 /* On any failure, cleanup. */
896 if (RT_FAILURE(rc))
897 cpumR3FreeSvmHwVirtState(pVM);
898
899 return rc;
900}
901
902
903/**
904 * Resets per-VCPU SVM hardware virtualization state.
905 *
906 * @param pVCpu The cross context virtual CPU structure.
907 */
908DECLINLINE(void) cpumR3ResetSvmHwVirtState(PVMCPU pVCpu)
909{
910 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
911 Assert(pCtx->hwvirt.enmHwvirt == CPUMHWVIRT_SVM);
912 Assert(pCtx->hwvirt.svm.CTX_SUFF(pVmcb));
913
914 memset(pCtx->hwvirt.svm.CTX_SUFF(pVmcb), 0, SVM_VMCB_PAGES << PAGE_SHIFT);
915 pCtx->hwvirt.svm.uMsrHSavePa = 0;
916 pCtx->hwvirt.svm.uPrevPauseTick = 0;
917}
918
919
920/**
921 * Frees memory allocated for the VMX hardware virtualization state.
922 *
923 * @param pVM The cross context VM structure.
924 */
925static void cpumR3FreeVmxHwVirtState(PVM pVM)
926{
927 Assert(pVM->cpum.s.GuestFeatures.fVmx);
928 for (VMCPUID i = 0; i < pVM->cCpus; i++)
929 {
930 PVMCPU pVCpu = &pVM->aCpus[i];
931 if (pVCpu->cpum.s.Guest.hwvirt.vmx.pVmcsR3)
932 {
933 SUPR3PageFreeEx(pVCpu->cpum.s.Guest.hwvirt.vmx.pVmcsR3, VMX_V_VMCS_PAGES);
934 pVCpu->cpum.s.Guest.hwvirt.vmx.pVmcsR3 = NULL;
935 }
936 if (pVCpu->cpum.s.Guest.hwvirt.vmx.pShadowVmcsR3)
937 {
938 SUPR3PageFreeEx(pVCpu->cpum.s.Guest.hwvirt.vmx.pShadowVmcsR3, VMX_V_VMCS_PAGES);
939 pVCpu->cpum.s.Guest.hwvirt.vmx.pShadowVmcsR3 = NULL;
940 }
941 if (pVCpu->cpum.s.Guest.hwvirt.vmx.pvVirtApicPageR3)
942 {
943 SUPR3PageFreeEx(pVCpu->cpum.s.Guest.hwvirt.vmx.pvVirtApicPageR3, VMX_V_VIRT_APIC_PAGES);
944 pVCpu->cpum.s.Guest.hwvirt.vmx.pvVirtApicPageR3 = NULL;
945 }
946 if (pVCpu->cpum.s.Guest.hwvirt.vmx.pvVmreadBitmapR3)
947 {
948 SUPR3PageFreeEx(pVCpu->cpum.s.Guest.hwvirt.vmx.pvVmreadBitmapR3, VMX_V_VMREAD_VMWRITE_BITMAP_PAGES);
949 pVCpu->cpum.s.Guest.hwvirt.vmx.pvVmreadBitmapR3 = NULL;
950 }
951 if (pVCpu->cpum.s.Guest.hwvirt.vmx.pvVmwriteBitmapR3)
952 {
953 SUPR3PageFreeEx(pVCpu->cpum.s.Guest.hwvirt.vmx.pvVmwriteBitmapR3, VMX_V_VMREAD_VMWRITE_BITMAP_PAGES);
954 pVCpu->cpum.s.Guest.hwvirt.vmx.pvVmwriteBitmapR3 = NULL;
955 }
956 if (pVCpu->cpum.s.Guest.hwvirt.vmx.pAutoMsrAreaR3)
957 {
958 SUPR3PageFreeEx(pVCpu->cpum.s.Guest.hwvirt.vmx.pAutoMsrAreaR3, VMX_V_AUTOMSR_AREA_PAGES);
959 pVCpu->cpum.s.Guest.hwvirt.vmx.pAutoMsrAreaR3 = NULL;
960 }
961 if (pVCpu->cpum.s.Guest.hwvirt.vmx.pvMsrBitmapR3)
962 {
963 SUPR3PageFreeEx(pVCpu->cpum.s.Guest.hwvirt.vmx.pvMsrBitmapR3, VMX_V_MSR_BITMAP_PAGES);
964 pVCpu->cpum.s.Guest.hwvirt.vmx.pvMsrBitmapR3 = NULL;
965 }
966 if (pVCpu->cpum.s.Guest.hwvirt.vmx.pvIoBitmapR3)
967 {
968 SUPR3PageFreeEx(pVCpu->cpum.s.Guest.hwvirt.vmx.pvIoBitmapR3, VMX_V_IO_BITMAP_A_PAGES + VMX_V_IO_BITMAP_B_PAGES);
969 pVCpu->cpum.s.Guest.hwvirt.vmx.pvIoBitmapR3 = NULL;
970 }
971 }
972}
973
974
975/**
976 * Allocates memory for the VMX hardware virtualization state.
977 *
978 * @returns VBox status code.
979 * @param pVM The cross context VM structure.
980 */
981static int cpumR3AllocVmxHwVirtState(PVM pVM)
982{
983 int rc = VINF_SUCCESS;
984 LogRel(("CPUM: Allocating %u pages for the nested-guest VMCS and related structures\n",
985 pVM->cCpus * ( VMX_V_VMCS_PAGES + VMX_V_VIRT_APIC_PAGES + VMX_V_VMREAD_VMWRITE_BITMAP_PAGES * 2
986 + VMX_V_AUTOMSR_AREA_PAGES)));
987 for (VMCPUID i = 0; i < pVM->cCpus; i++)
988 {
989 PVMCPU pVCpu = &pVM->aCpus[i];
990 pVCpu->cpum.s.Guest.hwvirt.enmHwvirt = CPUMHWVIRT_VMX;
991
992 /*
993 * Allocate the nested-guest current VMCS.
994 */
995 Assert(VMX_V_VMCS_PAGES == 1);
996 Assert(!pVCpu->cpum.s.Guest.hwvirt.vmx.pVmcsR3);
997 rc = SUPR3PageAllocEx(VMX_V_VMCS_PAGES, 0 /* fFlags */, (void **)&pVCpu->cpum.s.Guest.hwvirt.vmx.pVmcsR3,
998 &pVCpu->cpum.s.Guest.hwvirt.vmx.pVmcsR0, NULL /* paPages */);
999 if (RT_FAILURE(rc))
1000 {
1001 Assert(!pVCpu->cpum.s.Guest.hwvirt.vmx.pVmcsR3);
1002 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's VMCS\n", pVCpu->idCpu, VMX_V_VMCS_PAGES));
1003 break;
1004 }
1005
1006 /*
1007 * Allocate the nested-guest shadow VMCS.
1008 */
1009 Assert(VMX_V_VMCS_PAGES == 1);
1010 Assert(!pVCpu->cpum.s.Guest.hwvirt.vmx.pShadowVmcsR3);
1011 rc = SUPR3PageAllocEx(VMX_V_VMCS_PAGES, 0 /* fFlags */, (void **)&pVCpu->cpum.s.Guest.hwvirt.vmx.pShadowVmcsR3,
1012 &pVCpu->cpum.s.Guest.hwvirt.vmx.pShadowVmcsR0, NULL /* paPages */);
1013 if (RT_FAILURE(rc))
1014 {
1015 Assert(!pVCpu->cpum.s.Guest.hwvirt.vmx.pShadowVmcsR3);
1016 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's shadow VMCS\n", pVCpu->idCpu, VMX_V_VMCS_PAGES));
1017 break;
1018 }
1019
1020 /*
1021 * Allocate the Virtual-APIC page.
1022 */
1023 Assert(!pVCpu->cpum.s.Guest.hwvirt.vmx.pvVirtApicPageR3);
1024 rc = SUPR3PageAllocEx(VMX_V_VIRT_APIC_PAGES, 0 /* fFlags */, &pVCpu->cpum.s.Guest.hwvirt.vmx.pvVirtApicPageR3,
1025 &pVCpu->cpum.s.Guest.hwvirt.vmx.pvVirtApicPageR0, NULL /* paPages */);
1026 if (RT_FAILURE(rc))
1027 {
1028 Assert(!pVCpu->cpum.s.Guest.hwvirt.vmx.pvVirtApicPageR3);
1029 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's Virtual-APIC page\n", pVCpu->idCpu,
1030 VMX_V_VIRT_APIC_PAGES));
1031 break;
1032 }
1033
1034 /*
1035 * Allocate the VMREAD-bitmap.
1036 */
1037 Assert(!pVCpu->cpum.s.Guest.hwvirt.vmx.pvVmreadBitmapR3);
1038 rc = SUPR3PageAllocEx(VMX_V_VMREAD_VMWRITE_BITMAP_PAGES, 0 /* fFlags */, &pVCpu->cpum.s.Guest.hwvirt.vmx.pvVmreadBitmapR3,
1039 &pVCpu->cpum.s.Guest.hwvirt.vmx.pvVmreadBitmapR0, NULL /* paPages */);
1040 if (RT_FAILURE(rc))
1041 {
1042 Assert(!pVCpu->cpum.s.Guest.hwvirt.vmx.pvVmreadBitmapR3);
1043 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's VMREAD-bitmap\n", pVCpu->idCpu,
1044 VMX_V_VMREAD_VMWRITE_BITMAP_PAGES));
1045 break;
1046 }
1047
1048 /*
1049 * Allocatge the VMWRITE-bitmap.
1050 */
1051 Assert(!pVCpu->cpum.s.Guest.hwvirt.vmx.pvVmwriteBitmapR3);
1052 rc = SUPR3PageAllocEx(VMX_V_VMREAD_VMWRITE_BITMAP_PAGES, 0 /* fFlags */,
1053 &pVCpu->cpum.s.Guest.hwvirt.vmx.pvVmwriteBitmapR3,
1054 &pVCpu->cpum.s.Guest.hwvirt.vmx.pvVmwriteBitmapR0, NULL /* paPages */);
1055 if (RT_FAILURE(rc))
1056 {
1057 Assert(!pVCpu->cpum.s.Guest.hwvirt.vmx.pvVmwriteBitmapR3);
1058 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's VMWRITE-bitmap\n", pVCpu->idCpu,
1059 VMX_V_VMREAD_VMWRITE_BITMAP_PAGES));
1060 break;
1061 }
1062
1063 /*
1064 * Allocate the MSR auto-load/store area.
1065 */
1066 Assert(!pVCpu->cpum.s.Guest.hwvirt.vmx.pAutoMsrAreaR3);
1067 rc = SUPR3PageAllocEx(VMX_V_AUTOMSR_AREA_PAGES, 0 /* fFlags */, (void **)&pVCpu->cpum.s.Guest.hwvirt.vmx.pAutoMsrAreaR3,
1068 &pVCpu->cpum.s.Guest.hwvirt.vmx.pAutoMsrAreaR0, NULL /* paPages */);
1069 if (RT_FAILURE(rc))
1070 {
1071 Assert(!pVCpu->cpum.s.Guest.hwvirt.vmx.pAutoMsrAreaR3);
1072 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's auto-load/store MSR area\n", pVCpu->idCpu,
1073 VMX_V_AUTOMSR_AREA_PAGES));
1074 break;
1075 }
1076
1077 /*
1078 * Allocate the MSR bitmap.
1079 */
1080 Assert(!pVCpu->cpum.s.Guest.hwvirt.vmx.pvMsrBitmapR3);
1081 rc = SUPR3PageAllocEx(VMX_V_MSR_BITMAP_PAGES, 0 /* fFlags */, (void **)&pVCpu->cpum.s.Guest.hwvirt.vmx.pvMsrBitmapR3,
1082 &pVCpu->cpum.s.Guest.hwvirt.vmx.pvMsrBitmapR0, NULL /* paPages */);
1083 if (RT_FAILURE(rc))
1084 {
1085 Assert(!pVCpu->cpum.s.Guest.hwvirt.vmx.pvMsrBitmapR3);
1086 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's MSR bitmap\n", pVCpu->idCpu,
1087 VMX_V_MSR_BITMAP_PAGES));
1088 break;
1089 }
1090
1091 /*
1092 * Allocate the I/O bitmaps (A and B).
1093 */
1094 Assert(!pVCpu->cpum.s.Guest.hwvirt.vmx.pvIoBitmapR3);
1095 rc = SUPR3PageAllocEx(VMX_V_IO_BITMAP_A_PAGES + VMX_V_IO_BITMAP_B_PAGES, 0 /* fFlags */,
1096 (void **)&pVCpu->cpum.s.Guest.hwvirt.vmx.pvIoBitmapR3,
1097 &pVCpu->cpum.s.Guest.hwvirt.vmx.pvIoBitmapR0, NULL /* paPages */);
1098 if (RT_FAILURE(rc))
1099 {
1100 Assert(!pVCpu->cpum.s.Guest.hwvirt.vmx.pvIoBitmapR3);
1101 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's I/O bitmaps\n", pVCpu->idCpu,
1102 VMX_V_IO_BITMAP_A_PAGES + VMX_V_IO_BITMAP_B_PAGES));
1103 break;
1104 }
1105 }
1106
1107 /* On any failure, cleanup. */
1108 if (RT_FAILURE(rc))
1109 cpumR3FreeVmxHwVirtState(pVM);
1110
1111 return rc;
1112}
1113
1114
1115/**
1116 * Resets per-VCPU VMX hardware virtualization state.
1117 *
1118 * @param pVCpu The cross context virtual CPU structure.
1119 */
1120DECLINLINE(void) cpumR3ResetVmxHwVirtState(PVMCPU pVCpu)
1121{
1122 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
1123 Assert(pCtx->hwvirt.enmHwvirt == CPUMHWVIRT_VMX);
1124 Assert(pCtx->hwvirt.vmx.CTX_SUFF(pVmcs));
1125 Assert(pCtx->hwvirt.vmx.CTX_SUFF(pShadowVmcs));
1126
1127 memset(pCtx->hwvirt.vmx.CTX_SUFF(pVmcs), 0, VMX_V_VMCS_SIZE);
1128 memset(pCtx->hwvirt.vmx.CTX_SUFF(pShadowVmcs), 0, VMX_V_VMCS_SIZE);
1129 pCtx->hwvirt.vmx.GCPhysVmxon = NIL_RTGCPHYS;
1130 pCtx->hwvirt.vmx.GCPhysShadowVmcs = NIL_RTGCPHYS;
1131 pCtx->hwvirt.vmx.GCPhysVmxon = NIL_RTGCPHYS;
1132 pCtx->hwvirt.vmx.fInVmxRootMode = false;
1133 pCtx->hwvirt.vmx.fInVmxNonRootMode = false;
1134 /* Don't reset diagnostics here. */
1135}
1136
1137
1138/**
1139 * Displays the host and guest VMX features.
1140 *
1141 * @param pVM The cross context VM structure.
1142 * @param pHlp The info helper functions.
1143 * @param pszArgs "terse", "default" or "verbose".
1144 */
1145DECLCALLBACK(void) cpumR3InfoVmxFeatures(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
1146{
1147 RT_NOREF(pszArgs);
1148 PCCPUMFEATURES pHostFeatures = &pVM->cpum.s.HostFeatures;
1149 PCCPUMFEATURES pGuestFeatures = &pVM->cpum.s.GuestFeatures;
1150 if ( pHostFeatures->enmCpuVendor == CPUMCPUVENDOR_INTEL
1151 || pHostFeatures->enmCpuVendor == CPUMCPUVENDOR_VIA)
1152 {
1153#define VMXFEATDUMP(a_szDesc, a_Var) \
1154 pHlp->pfnPrintf(pHlp, " %s = %u (%u)\n", a_szDesc, pGuestFeatures->a_Var, pHostFeatures->a_Var)
1155
1156 pHlp->pfnPrintf(pHlp, "Nested hardware virtualization - VMX features\n");
1157 pHlp->pfnPrintf(pHlp, " Mnemonic - Description = guest (host)\n");
1158 VMXFEATDUMP("VMX - Virtual-Machine Extensions ", fVmx);
1159 /* Basic. */
1160 VMXFEATDUMP("InsOutInfo - INS/OUTS instruction info. ", fVmxInsOutInfo);
1161 /* Pin-based controls. */
1162 VMXFEATDUMP("ExtIntExit - External interrupt VM-exit ", fVmxExtIntExit);
1163 VMXFEATDUMP("NmiExit - NMI VM-exit ", fVmxNmiExit);
1164 VMXFEATDUMP("VirtNmi - Virtual NMIs ", fVmxVirtNmi);
1165 VMXFEATDUMP("PreemptTimer - VMX preemption timer ", fVmxPreemptTimer);
1166 VMXFEATDUMP("PostedInt - Posted interrupts ", fVmxPostedInt);
1167 /* Processor-based controls. */
1168 VMXFEATDUMP("IntWindowExit - Interrupt-window exiting ", fVmxIntWindowExit);
1169 VMXFEATDUMP("TscOffsetting - TSC offsetting ", fVmxTscOffsetting);
1170 VMXFEATDUMP("HltExit - HLT exiting ", fVmxHltExit);
1171 VMXFEATDUMP("InvlpgExit - INVLPG exiting ", fVmxInvlpgExit);
1172 VMXFEATDUMP("MwaitExit - MWAIT exiting ", fVmxMwaitExit);
1173 VMXFEATDUMP("RdpmcExit - RDPMC exiting ", fVmxRdpmcExit);
1174 VMXFEATDUMP("RdtscExit - RDTSC exiting ", fVmxRdtscExit);
1175 VMXFEATDUMP("Cr3LoadExit - CR3-load exiting ", fVmxCr3LoadExit);
1176 VMXFEATDUMP("Cr3StoreExit - CR3-store exiting ", fVmxCr3StoreExit);
1177 VMXFEATDUMP("Cr8LoadExit - CR8-load exiting ", fVmxCr8LoadExit);
1178 VMXFEATDUMP("Cr8StoreExit - CR8-store exiting ", fVmxCr8StoreExit);
1179 VMXFEATDUMP("UseTprShadow - Use TPR shadow ", fVmxUseTprShadow);
1180 VMXFEATDUMP("NmiWindowExit - NMI-window exiting ", fVmxNmiWindowExit);
1181 VMXFEATDUMP("MovDRxExit - Mov-DR exiting ", fVmxMovDRxExit);
1182 VMXFEATDUMP("UncondIoExit - Unconditional I/O exiting ", fVmxUncondIoExit);
1183 VMXFEATDUMP("UseIoBitmaps - Use I/O bitmaps ", fVmxUseIoBitmaps);
1184 VMXFEATDUMP("MonitorTrapFlag - Monitor trap flag ", fVmxMonitorTrapFlag);
1185 VMXFEATDUMP("UseMsrBitmaps - MSR bitmaps ", fVmxUseMsrBitmaps);
1186 VMXFEATDUMP("MonitorExit - MONITOR exiting ", fVmxMonitorExit);
1187 VMXFEATDUMP("PauseExit - PAUSE exiting ", fVmxPauseExit);
1188 VMXFEATDUMP("SecondaryExecCtl - Activate secondary controls ", fVmxSecondaryExecCtls);
1189 /* Secondary processor-based controls. */
1190 VMXFEATDUMP("VirtApic - Virtualize-APIC accesses ", fVmxVirtApicAccess);
1191 VMXFEATDUMP("Ept - Extended Page Tables ", fVmxEpt);
1192 VMXFEATDUMP("DescTableExit - Descriptor-table exiting ", fVmxDescTableExit);
1193 VMXFEATDUMP("Rdtscp - Enable RDTSCP ", fVmxRdtscp);
1194 VMXFEATDUMP("VirtX2ApicMode - Virtualize-x2APIC mode ", fVmxVirtX2ApicMode);
1195 VMXFEATDUMP("Vpid - Enable VPID ", fVmxVpid);
1196 VMXFEATDUMP("WbinvdExit - WBINVD exiting ", fVmxWbinvdExit);
1197 VMXFEATDUMP("UnrestrictedGuest - Unrestricted guest ", fVmxUnrestrictedGuest);
1198 VMXFEATDUMP("ApicRegVirt - APIC-register virtualization ", fVmxApicRegVirt);
1199 VMXFEATDUMP("VirtIntDelivery - Virtual-interrupt delivery ", fVmxVirtIntDelivery);
1200 VMXFEATDUMP("PauseLoopExit - PAUSE-loop exiting ", fVmxPauseLoopExit);
1201 VMXFEATDUMP("RdrandExit - RDRAND exiting ", fVmxRdrandExit);
1202 VMXFEATDUMP("Invpcid - Enable INVPCID ", fVmxInvpcid);
1203 VMXFEATDUMP("VmFuncs - Enable VM Functions ", fVmxVmFunc);
1204 VMXFEATDUMP("VmcsShadowing - VMCS shadowing ", fVmxVmcsShadowing);
1205 VMXFEATDUMP("RdseedExiting - RDSEED exiting ", fVmxRdseedExit);
1206 VMXFEATDUMP("PML - Supports Page-Modification Log (PML) ", fVmxPml);
1207 VMXFEATDUMP("EptVe - EPT violations can cause #VE ", fVmxEptXcptVe);
1208 VMXFEATDUMP("XsavesXRstors - Enable XSAVES/XRSTORS ", fVmxXsavesXrstors);
1209 /* VM-entry controls. */
1210 VMXFEATDUMP("EntryLoadDebugCtls - Load debug controls on VM-entry ", fVmxEntryLoadDebugCtls);
1211 VMXFEATDUMP("Ia32eModeGuest - IA-32e mode guest ", fVmxIa32eModeGuest);
1212 VMXFEATDUMP("EntryLoadEferMsr - Load IA32_EFER on VM-entry ", fVmxEntryLoadEferMsr);
1213 VMXFEATDUMP("EntryLoadPatMsr - Load IA32_PAT on VM-entry ", fVmxEntryLoadPatMsr);
1214 /* VM-exit controls. */
1215 VMXFEATDUMP("ExitSaveDebugCtls - Save debug controls on VM-exit ", fVmxExitSaveDebugCtls);
1216 VMXFEATDUMP("HostAddrSpaceSize - Host address-space size ", fVmxHostAddrSpaceSize);
1217 VMXFEATDUMP("ExitAckExtInt - Acknowledge interrupt on VM-exit ", fVmxExitAckExtInt);
1218 VMXFEATDUMP("ExitSavePatMsr - Save IA32_PAT on VM-exit ", fVmxExitSavePatMsr);
1219 VMXFEATDUMP("ExitLoadPatMsr - Load IA32_PAT on VM-exit ", fVmxExitLoadPatMsr);
1220 VMXFEATDUMP("ExitSaveEferMsr - Save IA32_EFER on VM-exit ", fVmxExitSaveEferMsr);
1221 VMXFEATDUMP("ExitLoadEferMsr - Load IA32_EFER on VM-exit ", fVmxExitLoadEferMsr);
1222 VMXFEATDUMP("SavePreemptTimer - Save VMX-preemption timer ", fVmxSavePreemptTimer);
1223 /* Miscellaneous data. */
1224 VMXFEATDUMP("ExitSaveEferLma - Save EFER.LMA on VM-exit ", fVmxExitSaveEferLma);
1225 VMXFEATDUMP("IntelPt - Intel PT (Processor Trace) in VMX operation ", fVmxIntelPt);
1226 VMXFEATDUMP("VmwriteAll - Inject softint. with 0-len instr. ", fVmxVmwriteAll);
1227 VMXFEATDUMP("EntryInjectSoftInt - Inject softint. with 0-len instr. ", fVmxEntryInjectSoftInt);
1228#undef VMXFEATDUMP
1229 }
1230 else
1231 pHlp->pfnPrintf(pHlp, "No VMX features present - requires an Intel or compatible CPU.\n");
1232}
1233
1234
1235/**
1236 * Checks whether VMX nested-guest may be executed using hardware-assisted VMX (e.g,
1237 * using HM or NEM).
1238 *
1239 * @returns @c true if hardware-assisted VMX nested-guest is allowed, @c false
1240 * otherwise.
1241 * @param pVM The cross context VM structure.
1242 */
1243static bool cpumR3IsHwAssistVmxNstGstExecAllowed(PVM pVM)
1244{
1245 AssertMsg(pVM->bMainExecutionEngine != VM_EXEC_ENGINE_NOT_SET, ("Calling this function too early!\n"));
1246#ifndef VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM
1247 if ( pVM->bMainExecutionEngine == VM_EXEC_ENGINE_HW_VIRT
1248 || pVM->bMainExecutionEngine == VM_EXEC_ENGINE_NATIVE_API)
1249 return true;
1250#else
1251 NOREF(pVM);
1252#endif
1253 return false;
1254}
1255
1256
1257/**
1258 * Initializes the VMX guest MSRs from guest CPU features based on the host MSRs.
1259 *
1260 * @param pVM The cross context VM structure.
1261 * @param pHostVmxMsrs The host VMX MSRs. Pass NULL when fully emulating VMX
1262 * and no hardware-assisted nested-guest execution is
1263 * possible for this VM.
1264 * @param pGuestFeatures The guest features to use (only VMX features are
1265 * accessed).
1266 * @param pGuestVmxMsrs Where to store the initialized guest VMX MSRs.
1267 *
1268 * @remarks This function ASSUMES the VMX guest-features are already exploded!
1269 */
1270static void cpumR3InitVmxGuestMsrs(PVM pVM, PCVMXMSRS pHostVmxMsrs, PCCPUMFEATURES pGuestFeatures, PVMXMSRS pGuestVmxMsrs)
1271{
1272 Assert(!cpumR3IsHwAssistVmxNstGstExecAllowed(pVM) || pHostVmxMsrs);
1273 Assert(pGuestFeatures->fVmx);
1274
1275 /*
1276 * We don't support the following MSRs yet:
1277 * - True Pin-based VM-execution controls.
1278 * - True Processor-based VM-execution controls.
1279 * - True VM-entry VM-execution controls.
1280 * - True VM-exit VM-execution controls.
1281 * - EPT/VPID capabilities.
1282 */
1283
1284 /* Feature control. */
1285 pGuestVmxMsrs->u64FeatCtrl = MSR_IA32_FEATURE_CONTROL_LOCK | MSR_IA32_FEATURE_CONTROL_VMXON;
1286
1287 /* Basic information. */
1288 {
1289 uint64_t const u64Basic = RT_BF_MAKE(VMX_BF_BASIC_VMCS_ID, VMX_V_VMCS_REVISION_ID )
1290 | RT_BF_MAKE(VMX_BF_BASIC_VMCS_SIZE, VMX_V_VMCS_SIZE )
1291 | RT_BF_MAKE(VMX_BF_BASIC_PHYSADDR_WIDTH, !pGuestFeatures->fLongMode )
1292 | RT_BF_MAKE(VMX_BF_BASIC_DUAL_MON, 0 )
1293 | RT_BF_MAKE(VMX_BF_BASIC_VMCS_MEM_TYPE, VMX_BASIC_MEM_TYPE_WB )
1294 | RT_BF_MAKE(VMX_BF_BASIC_VMCS_INS_OUTS, pGuestFeatures->fVmxInsOutInfo)
1295 | RT_BF_MAKE(VMX_BF_BASIC_TRUE_CTLS, 0 );
1296 pGuestVmxMsrs->u64Basic = u64Basic;
1297 }
1298
1299 /* Pin-based VM-execution controls. */
1300 {
1301 uint32_t const fFeatures = (pGuestFeatures->fVmxExtIntExit << VMX_BF_PIN_CTLS_EXT_INT_EXIT_SHIFT )
1302 | (pGuestFeatures->fVmxNmiExit << VMX_BF_PIN_CTLS_NMI_EXIT_SHIFT )
1303 | (pGuestFeatures->fVmxVirtNmi << VMX_BF_PIN_CTLS_VIRT_NMI_SHIFT )
1304 | (pGuestFeatures->fVmxPreemptTimer << VMX_BF_PIN_CTLS_PREEMPT_TIMER_SHIFT)
1305 | (pGuestFeatures->fVmxPostedInt << VMX_BF_PIN_CTLS_POSTED_INT_SHIFT );
1306 uint32_t const fAllowed0 = VMX_PIN_CTLS_DEFAULT1;
1307 uint32_t const fAllowed1 = fFeatures | VMX_PIN_CTLS_DEFAULT1;
1308 AssertMsg((fAllowed0 & fAllowed1) == fAllowed0, ("fAllowed0=%#RX32 fAllowed1=%#RX32 fFeatures=%#RX32\n",
1309 fAllowed0, fAllowed1, fFeatures));
1310 pGuestVmxMsrs->PinCtls.u = RT_MAKE_U64(fAllowed0, fAllowed1);
1311 }
1312
1313 /* Processor-based VM-execution controls. */
1314 {
1315 uint32_t const fFeatures = (pGuestFeatures->fVmxIntWindowExit << VMX_BF_PROC_CTLS_INT_WINDOW_EXIT_SHIFT )
1316 | (pGuestFeatures->fVmxTscOffsetting << VMX_BF_PROC_CTLS_USE_TSC_OFFSETTING_SHIFT)
1317 | (pGuestFeatures->fVmxHltExit << VMX_BF_PROC_CTLS_HLT_EXIT_SHIFT )
1318 | (pGuestFeatures->fVmxInvlpgExit << VMX_BF_PROC_CTLS_INVLPG_EXIT_SHIFT )
1319 | (pGuestFeatures->fVmxMwaitExit << VMX_BF_PROC_CTLS_MWAIT_EXIT_SHIFT )
1320 | (pGuestFeatures->fVmxRdpmcExit << VMX_BF_PROC_CTLS_RDPMC_EXIT_SHIFT )
1321 | (pGuestFeatures->fVmxRdtscExit << VMX_BF_PROC_CTLS_RDTSC_EXIT_SHIFT )
1322 | (pGuestFeatures->fVmxCr3LoadExit << VMX_BF_PROC_CTLS_CR3_LOAD_EXIT_SHIFT )
1323 | (pGuestFeatures->fVmxCr3StoreExit << VMX_BF_PROC_CTLS_CR3_STORE_EXIT_SHIFT )
1324 | (pGuestFeatures->fVmxCr8LoadExit << VMX_BF_PROC_CTLS_CR8_LOAD_EXIT_SHIFT )
1325 | (pGuestFeatures->fVmxCr8StoreExit << VMX_BF_PROC_CTLS_CR8_STORE_EXIT_SHIFT )
1326 | (pGuestFeatures->fVmxUseTprShadow << VMX_BF_PROC_CTLS_USE_TPR_SHADOW_SHIFT )
1327 | (pGuestFeatures->fVmxNmiWindowExit << VMX_BF_PROC_CTLS_NMI_WINDOW_EXIT_SHIFT )
1328 | (pGuestFeatures->fVmxMovDRxExit << VMX_BF_PROC_CTLS_MOV_DR_EXIT_SHIFT )
1329 | (pGuestFeatures->fVmxUncondIoExit << VMX_BF_PROC_CTLS_UNCOND_IO_EXIT_SHIFT )
1330 | (pGuestFeatures->fVmxUseIoBitmaps << VMX_BF_PROC_CTLS_USE_IO_BITMAPS_SHIFT )
1331 | (pGuestFeatures->fVmxMonitorTrapFlag << VMX_BF_PROC_CTLS_MONITOR_TRAP_FLAG_SHIFT )
1332 | (pGuestFeatures->fVmxUseMsrBitmaps << VMX_BF_PROC_CTLS_USE_MSR_BITMAPS_SHIFT )
1333 | (pGuestFeatures->fVmxMonitorExit << VMX_BF_PROC_CTLS_MONITOR_EXIT_SHIFT )
1334 | (pGuestFeatures->fVmxPauseExit << VMX_BF_PROC_CTLS_PAUSE_EXIT_SHIFT )
1335 | (pGuestFeatures->fVmxSecondaryExecCtls << VMX_BF_PROC_CTLS_USE_SECONDARY_CTLS_SHIFT);
1336 uint32_t const fAllowed0 = VMX_PROC_CTLS_DEFAULT1;
1337 uint32_t const fAllowed1 = fFeatures | VMX_PROC_CTLS_DEFAULT1;
1338 AssertMsg((fAllowed0 & fAllowed1) == fAllowed0, ("fAllowed0=%#RX32 fAllowed1=%#RX32 fFeatures=%#RX32\n", fAllowed0,
1339 fAllowed1, fFeatures));
1340 pGuestVmxMsrs->ProcCtls.u = RT_MAKE_U64(fAllowed0, fAllowed1);
1341 }
1342
1343 /* Secondary processor-based VM-execution controls. */
1344 if (pGuestFeatures->fVmxSecondaryExecCtls)
1345 {
1346 uint32_t const fFeatures = (pGuestFeatures->fVmxVirtApicAccess << VMX_BF_PROC_CTLS2_VIRT_APIC_ACCESS_SHIFT )
1347 | (pGuestFeatures->fVmxEpt << VMX_BF_PROC_CTLS2_EPT_SHIFT )
1348 | (pGuestFeatures->fVmxDescTableExit << VMX_BF_PROC_CTLS2_DESC_TABLE_EXIT_SHIFT )
1349 | (pGuestFeatures->fVmxRdtscp << VMX_BF_PROC_CTLS2_RDTSCP_SHIFT )
1350 | (pGuestFeatures->fVmxVirtX2ApicMode << VMX_BF_PROC_CTLS2_VIRT_X2APIC_MODE_SHIFT )
1351 | (pGuestFeatures->fVmxVpid << VMX_BF_PROC_CTLS2_VPID_SHIFT )
1352 | (pGuestFeatures->fVmxWbinvdExit << VMX_BF_PROC_CTLS2_WBINVD_EXIT_SHIFT )
1353 | (pGuestFeatures->fVmxUnrestrictedGuest << VMX_BF_PROC_CTLS2_UNRESTRICTED_GUEST_SHIFT)
1354 | (pGuestFeatures->fVmxApicRegVirt << VMX_BF_PROC_CTLS2_APIC_REG_VIRT_SHIFT )
1355 | (pGuestFeatures->fVmxVirtIntDelivery << VMX_BF_PROC_CTLS2_VIRT_INT_DELIVERY_SHIFT )
1356 | (pGuestFeatures->fVmxPauseLoopExit << VMX_BF_PROC_CTLS2_PAUSE_LOOP_EXIT_SHIFT )
1357 | (pGuestFeatures->fVmxRdrandExit << VMX_BF_PROC_CTLS2_RDRAND_EXIT_SHIFT )
1358 | (pGuestFeatures->fVmxInvpcid << VMX_BF_PROC_CTLS2_INVPCID_SHIFT )
1359 | (pGuestFeatures->fVmxVmFunc << VMX_BF_PROC_CTLS2_VMFUNC_SHIFT )
1360 | (pGuestFeatures->fVmxVmcsShadowing << VMX_BF_PROC_CTLS2_VMCS_SHADOWING_SHIFT )
1361 | (pGuestFeatures->fVmxRdseedExit << VMX_BF_PROC_CTLS2_RDSEED_EXIT_SHIFT )
1362 | (pGuestFeatures->fVmxPml << VMX_BF_PROC_CTLS2_PML_SHIFT )
1363 | (pGuestFeatures->fVmxEptXcptVe << VMX_BF_PROC_CTLS2_EPT_VE_SHIFT )
1364 | (pGuestFeatures->fVmxXsavesXrstors << VMX_BF_PROC_CTLS2_XSAVES_XRSTORS_SHIFT )
1365 | (pGuestFeatures->fVmxUseTscScaling << VMX_BF_PROC_CTLS2_TSC_SCALING_SHIFT );
1366 uint32_t const fAllowed0 = 0;
1367 uint32_t const fAllowed1 = fFeatures;
1368 pGuestVmxMsrs->ProcCtls2.u = RT_MAKE_U64(fAllowed0, fAllowed1);
1369 }
1370
1371 /* VM-exit controls. */
1372 {
1373 uint32_t const fFeatures = (pGuestFeatures->fVmxExitSaveDebugCtls << VMX_BF_EXIT_CTLS_SAVE_DEBUG_SHIFT )
1374 | (pGuestFeatures->fVmxHostAddrSpaceSize << VMX_BF_EXIT_CTLS_HOST_ADDR_SPACE_SIZE_SHIFT)
1375 | (pGuestFeatures->fVmxExitAckExtInt << VMX_BF_EXIT_CTLS_ACK_EXT_INT_SHIFT )
1376 | (pGuestFeatures->fVmxExitSavePatMsr << VMX_BF_EXIT_CTLS_SAVE_PAT_MSR_SHIFT )
1377 | (pGuestFeatures->fVmxExitLoadPatMsr << VMX_BF_EXIT_CTLS_LOAD_PAT_MSR_SHIFT )
1378 | (pGuestFeatures->fVmxExitSaveEferMsr << VMX_BF_EXIT_CTLS_SAVE_EFER_MSR_SHIFT )
1379 | (pGuestFeatures->fVmxExitLoadEferMsr << VMX_BF_EXIT_CTLS_LOAD_EFER_MSR_SHIFT )
1380 | (pGuestFeatures->fVmxSavePreemptTimer << VMX_BF_EXIT_CTLS_SAVE_PREEMPT_TIMER_SHIFT );
1381 /* Set the default1 class bits. See Intel spec. A.4 "VM-exit Controls". */
1382 uint32_t const fAllowed0 = VMX_EXIT_CTLS_DEFAULT1;
1383 uint32_t const fAllowed1 = fFeatures | VMX_EXIT_CTLS_DEFAULT1;
1384 AssertMsg((fAllowed0 & fAllowed1) == fAllowed0, ("fAllowed0=%#RX32 fAllowed1=%#RX32 fFeatures=%#RX32\n", fAllowed0,
1385 fAllowed1, fFeatures));
1386 pGuestVmxMsrs->ExitCtls.u = RT_MAKE_U64(fAllowed0, fAllowed1);
1387 }
1388
1389 /* VM-entry controls. */
1390 {
1391 uint32_t const fFeatures = (pGuestFeatures->fVmxEntryLoadDebugCtls << VMX_BF_ENTRY_CTLS_LOAD_DEBUG_SHIFT )
1392 | (pGuestFeatures->fVmxIa32eModeGuest << VMX_BF_ENTRY_CTLS_IA32E_MODE_GUEST_SHIFT)
1393 | (pGuestFeatures->fVmxEntryLoadEferMsr << VMX_BF_ENTRY_CTLS_LOAD_EFER_MSR_SHIFT )
1394 | (pGuestFeatures->fVmxEntryLoadPatMsr << VMX_BF_ENTRY_CTLS_LOAD_PAT_MSR_SHIFT );
1395 uint32_t const fAllowed0 = VMX_ENTRY_CTLS_DEFAULT1;
1396 uint32_t const fAllowed1 = fFeatures | VMX_ENTRY_CTLS_DEFAULT1;
1397 AssertMsg((fAllowed0 & fAllowed1) == fAllowed0, ("fAllowed0=%#RX32 fAllowed0=%#RX32 fFeatures=%#RX32\n", fAllowed0,
1398 fAllowed1, fFeatures));
1399 pGuestVmxMsrs->EntryCtls.u = RT_MAKE_U64(fAllowed0, fAllowed1);
1400 }
1401
1402 /* Miscellaneous data. */
1403 {
1404 uint64_t const uHostMsr = cpumR3IsHwAssistVmxNstGstExecAllowed(pVM) ? pHostVmxMsrs->u64Misc : 0;
1405
1406 uint8_t const cMaxMsrs = RT_MIN(RT_BF_GET(uHostMsr, VMX_BF_MISC_MAX_MSRS), VMX_V_AUTOMSR_COUNT_MAX);
1407 uint8_t const fActivityState = RT_BF_GET(uHostMsr, VMX_BF_MISC_ACTIVITY_STATES) & VMX_V_GUEST_ACTIVITY_STATE_MASK;
1408 pGuestVmxMsrs->u64Misc = RT_BF_MAKE(VMX_BF_MISC_PREEMPT_TIMER_TSC, VMX_V_PREEMPT_TIMER_SHIFT )
1409 | RT_BF_MAKE(VMX_BF_MISC_EXIT_SAVE_EFER_LMA, pGuestFeatures->fVmxExitSaveEferLma )
1410 | RT_BF_MAKE(VMX_BF_MISC_ACTIVITY_STATES, fActivityState )
1411 | RT_BF_MAKE(VMX_BF_MISC_INTEL_PT, pGuestFeatures->fVmxIntelPt )
1412 | RT_BF_MAKE(VMX_BF_MISC_SMM_READ_SMBASE_MSR, 0 )
1413 | RT_BF_MAKE(VMX_BF_MISC_CR3_TARGET, VMX_V_CR3_TARGET_COUNT )
1414 | RT_BF_MAKE(VMX_BF_MISC_MAX_MSRS, cMaxMsrs )
1415 | RT_BF_MAKE(VMX_BF_MISC_VMXOFF_BLOCK_SMI, 0 )
1416 | RT_BF_MAKE(VMX_BF_MISC_VMWRITE_ALL, pGuestFeatures->fVmxVmwriteAll )
1417 | RT_BF_MAKE(VMX_BF_MISC_ENTRY_INJECT_SOFT_INT, pGuestFeatures->fVmxEntryInjectSoftInt)
1418 | RT_BF_MAKE(VMX_BF_MISC_MSEG_ID, VMX_V_MSEG_REV_ID );
1419 }
1420
1421 /* CR0 Fixed-0. */
1422 pGuestVmxMsrs->u64Cr0Fixed0 = pGuestFeatures->fVmxUnrestrictedGuest ? VMX_V_CR0_FIXED0_UX: VMX_V_CR0_FIXED0;
1423
1424 /* CR0 Fixed-1. */
1425 {
1426 uint64_t const uHostMsr = cpumR3IsHwAssistVmxNstGstExecAllowed(pVM) ? pHostVmxMsrs->u64Cr0Fixed1 : 0;
1427 pGuestVmxMsrs->u64Cr0Fixed1 = uHostMsr | VMX_V_CR0_FIXED0; /* Make sure the CR0 MB1 bits are not clear. */
1428 }
1429
1430 /* CR4 Fixed-0. */
1431 pGuestVmxMsrs->u64Cr4Fixed0 = VMX_V_CR4_FIXED0;
1432
1433 /* CR4 Fixed-1. */
1434 {
1435 uint64_t const uHostMsr = cpumR3IsHwAssistVmxNstGstExecAllowed(pVM) ? pHostVmxMsrs->u64Cr4Fixed1 : 0;
1436 pGuestVmxMsrs->u64Cr4Fixed1 = uHostMsr | VMX_V_CR4_FIXED0; /* Make sure the CR4 MB1 bits are not clear. */
1437 }
1438
1439 /* VMCS Enumeration. */
1440 pGuestVmxMsrs->u64VmcsEnum = VMX_V_VMCS_MAX_INDEX << VMX_BF_VMCS_ENUM_HIGHEST_IDX_SHIFT;
1441
1442 /* VM Functions. */
1443 if (pGuestFeatures->fVmxVmFunc)
1444 pGuestVmxMsrs->u64VmFunc = RT_BF_MAKE(VMX_BF_VMFUNC_EPTP_SWITCHING, 1);
1445}
1446
1447
1448#if 0
1449/**
1450 * Checks whether the given guest CPU VMX features are compatible with the provided
1451 * base features.
1452 *
1453 * @returns @c true if compatible, @c false otherwise.
1454 * @param pVM The cross context VM structure.
1455 * @param pBase The base VMX CPU features.
1456 * @param pGst The guest VMX CPU features.
1457 *
1458 * @remarks Only VMX feature bits are examined.
1459 */
1460static bool cpumR3AreVmxCpuFeaturesCompatible(PVM pVM, PCCPUMFEATURES pBase, PCCPUMFEATURES pGst)
1461{
1462 if (cpumR3IsHwAssistVmxNstGstExecAllowed(pVM))
1463 {
1464 uint64_t const fBase = ((uint64_t)pBase->fVmxInsOutInfo << 0) | ((uint64_t)pBase->fVmxExtIntExit << 1)
1465 | ((uint64_t)pBase->fVmxNmiExit << 2) | ((uint64_t)pBase->fVmxVirtNmi << 3)
1466 | ((uint64_t)pBase->fVmxPreemptTimer << 4) | ((uint64_t)pBase->fVmxPostedInt << 5)
1467 | ((uint64_t)pBase->fVmxIntWindowExit << 6) | ((uint64_t)pBase->fVmxTscOffsetting << 7)
1468 | ((uint64_t)pBase->fVmxHltExit << 8) | ((uint64_t)pBase->fVmxInvlpgExit << 9)
1469 | ((uint64_t)pBase->fVmxMwaitExit << 10) | ((uint64_t)pBase->fVmxRdpmcExit << 11)
1470 | ((uint64_t)pBase->fVmxRdtscExit << 12) | ((uint64_t)pBase->fVmxCr3LoadExit << 13)
1471 | ((uint64_t)pBase->fVmxCr3StoreExit << 14) | ((uint64_t)pBase->fVmxCr8LoadExit << 15)
1472 | ((uint64_t)pBase->fVmxCr8StoreExit << 16) | ((uint64_t)pBase->fVmxUseTprShadow << 17)
1473 | ((uint64_t)pBase->fVmxNmiWindowExit << 18) | ((uint64_t)pBase->fVmxMovDRxExit << 19)
1474 | ((uint64_t)pBase->fVmxUncondIoExit << 20) | ((uint64_t)pBase->fVmxUseIoBitmaps << 21)
1475 | ((uint64_t)pBase->fVmxMonitorTrapFlag << 22) | ((uint64_t)pBase->fVmxUseMsrBitmaps << 23)
1476 | ((uint64_t)pBase->fVmxMonitorExit << 24) | ((uint64_t)pBase->fVmxPauseExit << 25)
1477 | ((uint64_t)pBase->fVmxSecondaryExecCtls << 26) | ((uint64_t)pBase->fVmxVirtApicAccess << 27)
1478 | ((uint64_t)pBase->fVmxEpt << 28) | ((uint64_t)pBase->fVmxDescTableExit << 29)
1479 | ((uint64_t)pBase->fVmxRdtscp << 30) | ((uint64_t)pBase->fVmxVirtX2ApicMode << 31)
1480 | ((uint64_t)pBase->fVmxVpid << 32) | ((uint64_t)pBase->fVmxWbinvdExit << 33)
1481 | ((uint64_t)pBase->fVmxUnrestrictedGuest << 34) | ((uint64_t)pBase->fVmxApicRegVirt << 35)
1482 | ((uint64_t)pBase->fVmxVirtIntDelivery << 36) | ((uint64_t)pBase->fVmxPauseLoopExit << 37)
1483 | ((uint64_t)pBase->fVmxRdrandExit << 38) | ((uint64_t)pBase->fVmxInvpcid << 39)
1484 | ((uint64_t)pBase->fVmxVmFunc << 40) | ((uint64_t)pBase->fVmxVmcsShadowing << 41)
1485 | ((uint64_t)pBase->fVmxRdseedExit << 42) | ((uint64_t)pBase->fVmxPml << 43)
1486 | ((uint64_t)pBase->fVmxEptXcptVe << 44) | ((uint64_t)pBase->fVmxXsavesXrstors << 45)
1487 | ((uint64_t)pBase->fVmxUseTscScaling << 46) | ((uint64_t)pBase->fVmxEntryLoadDebugCtls << 47)
1488 | ((uint64_t)pBase->fVmxIa32eModeGuest << 48) | ((uint64_t)pBase->fVmxEntryLoadEferMsr << 49)
1489 | ((uint64_t)pBase->fVmxEntryLoadPatMsr << 50) | ((uint64_t)pBase->fVmxExitSaveDebugCtls << 51)
1490 | ((uint64_t)pBase->fVmxHostAddrSpaceSize << 52) | ((uint64_t)pBase->fVmxExitAckExtInt << 53)
1491 | ((uint64_t)pBase->fVmxExitSavePatMsr << 54) | ((uint64_t)pBase->fVmxExitLoadPatMsr << 55)
1492 | ((uint64_t)pBase->fVmxExitSaveEferMsr << 56) | ((uint64_t)pBase->fVmxExitLoadEferMsr << 57)
1493 | ((uint64_t)pBase->fVmxSavePreemptTimer << 58) | ((uint64_t)pBase->fVmxExitSaveEferLma << 59)
1494 | ((uint64_t)pBase->fVmxIntelPt << 60) | ((uint64_t)pBase->fVmxVmwriteAll << 61)
1495 | ((uint64_t)pBase->fVmxEntryInjectSoftInt << 62);
1496
1497 uint64_t const fGst = ((uint64_t)pGst->fVmxInsOutInfo << 0) | ((uint64_t)pGst->fVmxExtIntExit << 1)
1498 | ((uint64_t)pGst->fVmxNmiExit << 2) | ((uint64_t)pGst->fVmxVirtNmi << 3)
1499 | ((uint64_t)pGst->fVmxPreemptTimer << 4) | ((uint64_t)pGst->fVmxPostedInt << 5)
1500 | ((uint64_t)pGst->fVmxIntWindowExit << 6) | ((uint64_t)pGst->fVmxTscOffsetting << 7)
1501 | ((uint64_t)pGst->fVmxHltExit << 8) | ((uint64_t)pGst->fVmxInvlpgExit << 9)
1502 | ((uint64_t)pGst->fVmxMwaitExit << 10) | ((uint64_t)pGst->fVmxRdpmcExit << 11)
1503 | ((uint64_t)pGst->fVmxRdtscExit << 12) | ((uint64_t)pGst->fVmxCr3LoadExit << 13)
1504 | ((uint64_t)pGst->fVmxCr3StoreExit << 14) | ((uint64_t)pGst->fVmxCr8LoadExit << 15)
1505 | ((uint64_t)pGst->fVmxCr8StoreExit << 16) | ((uint64_t)pGst->fVmxUseTprShadow << 17)
1506 | ((uint64_t)pGst->fVmxNmiWindowExit << 18) | ((uint64_t)pGst->fVmxMovDRxExit << 19)
1507 | ((uint64_t)pGst->fVmxUncondIoExit << 20) | ((uint64_t)pGst->fVmxUseIoBitmaps << 21)
1508 | ((uint64_t)pGst->fVmxMonitorTrapFlag << 22) | ((uint64_t)pGst->fVmxUseMsrBitmaps << 23)
1509 | ((uint64_t)pGst->fVmxMonitorExit << 24) | ((uint64_t)pGst->fVmxPauseExit << 25)
1510 | ((uint64_t)pGst->fVmxSecondaryExecCtls << 26) | ((uint64_t)pGst->fVmxVirtApicAccess << 27)
1511 | ((uint64_t)pGst->fVmxEpt << 28) | ((uint64_t)pGst->fVmxDescTableExit << 29)
1512 | ((uint64_t)pGst->fVmxRdtscp << 30) | ((uint64_t)pGst->fVmxVirtX2ApicMode << 31)
1513 | ((uint64_t)pGst->fVmxVpid << 32) | ((uint64_t)pGst->fVmxWbinvdExit << 33)
1514 | ((uint64_t)pGst->fVmxUnrestrictedGuest << 34) | ((uint64_t)pGst->fVmxApicRegVirt << 35)
1515 | ((uint64_t)pGst->fVmxVirtIntDelivery << 36) | ((uint64_t)pGst->fVmxPauseLoopExit << 37)
1516 | ((uint64_t)pGst->fVmxRdrandExit << 38) | ((uint64_t)pGst->fVmxInvpcid << 39)
1517 | ((uint64_t)pGst->fVmxVmFunc << 40) | ((uint64_t)pGst->fVmxVmcsShadowing << 41)
1518 | ((uint64_t)pGst->fVmxRdseedExit << 42) | ((uint64_t)pGst->fVmxPml << 43)
1519 | ((uint64_t)pGst->fVmxEptXcptVe << 44) | ((uint64_t)pGst->fVmxXsavesXrstors << 45)
1520 | ((uint64_t)pGst->fVmxUseTscScaling << 46) | ((uint64_t)pGst->fVmxEntryLoadDebugCtls << 47)
1521 | ((uint64_t)pGst->fVmxIa32eModeGuest << 48) | ((uint64_t)pGst->fVmxEntryLoadEferMsr << 49)
1522 | ((uint64_t)pGst->fVmxEntryLoadPatMsr << 50) | ((uint64_t)pGst->fVmxExitSaveDebugCtls << 51)
1523 | ((uint64_t)pGst->fVmxHostAddrSpaceSize << 52) | ((uint64_t)pGst->fVmxExitAckExtInt << 53)
1524 | ((uint64_t)pGst->fVmxExitSavePatMsr << 54) | ((uint64_t)pGst->fVmxExitLoadPatMsr << 55)
1525 | ((uint64_t)pGst->fVmxExitSaveEferMsr << 56) | ((uint64_t)pGst->fVmxExitLoadEferMsr << 57)
1526 | ((uint64_t)pGst->fVmxSavePreemptTimer << 58) | ((uint64_t)pGst->fVmxExitSaveEferLma << 59)
1527 | ((uint64_t)pGst->fVmxIntelPt << 60) | ((uint64_t)pGst->fVmxVmwriteAll << 61)
1528 | ((uint64_t)pGst->fVmxEntryInjectSoftInt << 62);
1529
1530 if ((fBase | fGst) != fBase)
1531 return false;
1532 return true;
1533 }
1534 return true;
1535}
1536#endif
1537
1538
1539/**
1540 * Initializes VMX guest features and MSRs.
1541 *
1542 * @param pVM The cross context VM structure.
1543 * @param pHostVmxMsrs The host VMX MSRs. Pass NULL when fully emulating VMX
1544 * and no hardware-assisted nested-guest execution is
1545 * possible for this VM.
1546 * @param pGuestVmxMsrs Where to store the initialized guest VMX MSRs.
1547 */
1548void cpumR3InitVmxGuestFeaturesAndMsrs(PVM pVM, PCVMXMSRS pHostVmxMsrs, PVMXMSRS pGuestVmxMsrs)
1549{
1550 Assert(pVM);
1551 Assert(pGuestVmxMsrs);
1552
1553 /*
1554 * Initialize the set of VMX features we emulate.
1555 *
1556 * Note! Some bits might be reported as 1 always if they fall under the
1557 * default1 class bits (e.g. fVmxEntryLoadDebugCtls), see @bugref{9180#c5}.
1558 */
1559 CPUMFEATURES EmuFeat;
1560 RT_ZERO(EmuFeat);
1561 EmuFeat.fVmx = 1;
1562 EmuFeat.fVmxInsOutInfo = 0;
1563 EmuFeat.fVmxExtIntExit = 1;
1564 EmuFeat.fVmxNmiExit = 1;
1565 EmuFeat.fVmxVirtNmi = 0;
1566 EmuFeat.fVmxPreemptTimer = 0; /** @todo NSTVMX: enable this. */
1567 EmuFeat.fVmxPostedInt = 0;
1568 EmuFeat.fVmxIntWindowExit = 1;
1569 EmuFeat.fVmxTscOffsetting = 1;
1570 EmuFeat.fVmxHltExit = 1;
1571 EmuFeat.fVmxInvlpgExit = 1;
1572 EmuFeat.fVmxMwaitExit = 1;
1573 EmuFeat.fVmxRdpmcExit = 1;
1574 EmuFeat.fVmxRdtscExit = 1;
1575 EmuFeat.fVmxCr3LoadExit = 1;
1576 EmuFeat.fVmxCr3StoreExit = 1;
1577 EmuFeat.fVmxCr8LoadExit = 1;
1578 EmuFeat.fVmxCr8StoreExit = 1;
1579 EmuFeat.fVmxUseTprShadow = 0;
1580 EmuFeat.fVmxNmiWindowExit = 0;
1581 EmuFeat.fVmxMovDRxExit = 1;
1582 EmuFeat.fVmxUncondIoExit = 1;
1583 EmuFeat.fVmxUseIoBitmaps = 1;
1584 EmuFeat.fVmxMonitorTrapFlag = 0;
1585 EmuFeat.fVmxUseMsrBitmaps = 0;
1586 EmuFeat.fVmxMonitorExit = 1;
1587 EmuFeat.fVmxPauseExit = 1;
1588 EmuFeat.fVmxSecondaryExecCtls = 1;
1589 EmuFeat.fVmxVirtApicAccess = 0;
1590 EmuFeat.fVmxEpt = 0;
1591 EmuFeat.fVmxDescTableExit = 1;
1592 EmuFeat.fVmxRdtscp = 1;
1593 EmuFeat.fVmxVirtX2ApicMode = 0;
1594 EmuFeat.fVmxVpid = 0;
1595 EmuFeat.fVmxWbinvdExit = 1;
1596 EmuFeat.fVmxUnrestrictedGuest = 0;
1597 EmuFeat.fVmxApicRegVirt = 0;
1598 EmuFeat.fVmxVirtIntDelivery = 0;
1599 EmuFeat.fVmxPauseLoopExit = 0;
1600 EmuFeat.fVmxRdrandExit = 0;
1601 EmuFeat.fVmxInvpcid = 1;
1602 EmuFeat.fVmxVmFunc = 0;
1603 EmuFeat.fVmxVmcsShadowing = 0;
1604 EmuFeat.fVmxRdseedExit = 0;
1605 EmuFeat.fVmxPml = 0;
1606 EmuFeat.fVmxEptXcptVe = 0;
1607 EmuFeat.fVmxXsavesXrstors = 0;
1608 EmuFeat.fVmxUseTscScaling = 0;
1609 EmuFeat.fVmxEntryLoadDebugCtls = 1;
1610 EmuFeat.fVmxIa32eModeGuest = 1;
1611 EmuFeat.fVmxEntryLoadEferMsr = 1;
1612 EmuFeat.fVmxEntryLoadPatMsr = 0;
1613 EmuFeat.fVmxExitSaveDebugCtls = 1;
1614 EmuFeat.fVmxHostAddrSpaceSize = 1;
1615 EmuFeat.fVmxExitAckExtInt = 0;
1616 EmuFeat.fVmxExitSavePatMsr = 0;
1617 EmuFeat.fVmxExitLoadPatMsr = 0;
1618 EmuFeat.fVmxExitSaveEferMsr = 1;
1619 EmuFeat.fVmxExitLoadEferMsr = 1;
1620 EmuFeat.fVmxSavePreemptTimer = 0;
1621 EmuFeat.fVmxExitSaveEferLma = 1;
1622 EmuFeat.fVmxIntelPt = 0;
1623 EmuFeat.fVmxVmwriteAll = 0;
1624 EmuFeat.fVmxEntryInjectSoftInt = 0;
1625
1626 /*
1627 * Merge guest features.
1628 *
1629 * When hardware-assisted VMX may be used, any feature we emulate must also be supported
1630 * by the hardware, hence we merge our emulated features with the host features below.
1631 */
1632 PCCPUMFEATURES pBaseFeat = cpumR3IsHwAssistVmxNstGstExecAllowed(pVM) ? &pVM->cpum.s.HostFeatures : &EmuFeat;
1633 PCPUMFEATURES pGuestFeat = &pVM->cpum.s.GuestFeatures;
1634 Assert(pBaseFeat->fVmx);
1635 pGuestFeat->fVmxInsOutInfo = (pBaseFeat->fVmxInsOutInfo & EmuFeat.fVmxInsOutInfo );
1636 pGuestFeat->fVmxExtIntExit = (pBaseFeat->fVmxExtIntExit & EmuFeat.fVmxExtIntExit );
1637 pGuestFeat->fVmxNmiExit = (pBaseFeat->fVmxNmiExit & EmuFeat.fVmxNmiExit );
1638 pGuestFeat->fVmxVirtNmi = (pBaseFeat->fVmxVirtNmi & EmuFeat.fVmxVirtNmi );
1639 pGuestFeat->fVmxPreemptTimer = (pBaseFeat->fVmxPreemptTimer & EmuFeat.fVmxPreemptTimer );
1640 pGuestFeat->fVmxPostedInt = (pBaseFeat->fVmxPostedInt & EmuFeat.fVmxPostedInt );
1641 pGuestFeat->fVmxIntWindowExit = (pBaseFeat->fVmxIntWindowExit & EmuFeat.fVmxIntWindowExit );
1642 pGuestFeat->fVmxTscOffsetting = (pBaseFeat->fVmxTscOffsetting & EmuFeat.fVmxTscOffsetting );
1643 pGuestFeat->fVmxHltExit = (pBaseFeat->fVmxHltExit & EmuFeat.fVmxHltExit );
1644 pGuestFeat->fVmxInvlpgExit = (pBaseFeat->fVmxInvlpgExit & EmuFeat.fVmxInvlpgExit );
1645 pGuestFeat->fVmxMwaitExit = (pBaseFeat->fVmxMwaitExit & EmuFeat.fVmxMwaitExit );
1646 pGuestFeat->fVmxRdpmcExit = (pBaseFeat->fVmxRdpmcExit & EmuFeat.fVmxRdpmcExit );
1647 pGuestFeat->fVmxRdtscExit = (pBaseFeat->fVmxRdtscExit & EmuFeat.fVmxRdtscExit );
1648 pGuestFeat->fVmxCr3LoadExit = (pBaseFeat->fVmxCr3LoadExit & EmuFeat.fVmxCr3LoadExit );
1649 pGuestFeat->fVmxCr3StoreExit = (pBaseFeat->fVmxCr3StoreExit & EmuFeat.fVmxCr3StoreExit );
1650 pGuestFeat->fVmxCr8LoadExit = (pBaseFeat->fVmxCr8LoadExit & EmuFeat.fVmxCr8LoadExit );
1651 pGuestFeat->fVmxCr8StoreExit = (pBaseFeat->fVmxCr8StoreExit & EmuFeat.fVmxCr8StoreExit );
1652 pGuestFeat->fVmxUseTprShadow = (pBaseFeat->fVmxUseTprShadow & EmuFeat.fVmxUseTprShadow );
1653 pGuestFeat->fVmxNmiWindowExit = (pBaseFeat->fVmxNmiWindowExit & EmuFeat.fVmxNmiWindowExit );
1654 pGuestFeat->fVmxMovDRxExit = (pBaseFeat->fVmxMovDRxExit & EmuFeat.fVmxMovDRxExit );
1655 pGuestFeat->fVmxUncondIoExit = (pBaseFeat->fVmxUncondIoExit & EmuFeat.fVmxUncondIoExit );
1656 pGuestFeat->fVmxUseIoBitmaps = (pBaseFeat->fVmxUseIoBitmaps & EmuFeat.fVmxUseIoBitmaps );
1657 pGuestFeat->fVmxMonitorTrapFlag = (pBaseFeat->fVmxMonitorTrapFlag & EmuFeat.fVmxMonitorTrapFlag );
1658 pGuestFeat->fVmxUseMsrBitmaps = (pBaseFeat->fVmxUseMsrBitmaps & EmuFeat.fVmxUseMsrBitmaps );
1659 pGuestFeat->fVmxMonitorExit = (pBaseFeat->fVmxMonitorExit & EmuFeat.fVmxMonitorExit );
1660 pGuestFeat->fVmxPauseExit = (pBaseFeat->fVmxPauseExit & EmuFeat.fVmxPauseExit );
1661 pGuestFeat->fVmxSecondaryExecCtls = (pBaseFeat->fVmxSecondaryExecCtls & EmuFeat.fVmxSecondaryExecCtls );
1662 pGuestFeat->fVmxVirtApicAccess = (pBaseFeat->fVmxVirtApicAccess & EmuFeat.fVmxVirtApicAccess );
1663 pGuestFeat->fVmxEpt = (pBaseFeat->fVmxEpt & EmuFeat.fVmxEpt );
1664 pGuestFeat->fVmxDescTableExit = (pBaseFeat->fVmxDescTableExit & EmuFeat.fVmxDescTableExit );
1665 pGuestFeat->fVmxRdtscp = (pBaseFeat->fVmxRdtscp & EmuFeat.fVmxRdtscp );
1666 pGuestFeat->fVmxVirtX2ApicMode = (pBaseFeat->fVmxVirtX2ApicMode & EmuFeat.fVmxVirtX2ApicMode );
1667 pGuestFeat->fVmxVpid = (pBaseFeat->fVmxVpid & EmuFeat.fVmxVpid );
1668 pGuestFeat->fVmxWbinvdExit = (pBaseFeat->fVmxWbinvdExit & EmuFeat.fVmxWbinvdExit );
1669 pGuestFeat->fVmxUnrestrictedGuest = (pBaseFeat->fVmxUnrestrictedGuest & EmuFeat.fVmxUnrestrictedGuest );
1670 pGuestFeat->fVmxApicRegVirt = (pBaseFeat->fVmxApicRegVirt & EmuFeat.fVmxApicRegVirt );
1671 pGuestFeat->fVmxVirtIntDelivery = (pBaseFeat->fVmxVirtIntDelivery & EmuFeat.fVmxVirtIntDelivery );
1672 pGuestFeat->fVmxPauseLoopExit = (pBaseFeat->fVmxPauseLoopExit & EmuFeat.fVmxPauseLoopExit );
1673 pGuestFeat->fVmxRdrandExit = (pBaseFeat->fVmxRdrandExit & EmuFeat.fVmxRdrandExit );
1674 pGuestFeat->fVmxInvpcid = (pBaseFeat->fVmxInvpcid & EmuFeat.fVmxInvpcid );
1675 pGuestFeat->fVmxVmFunc = (pBaseFeat->fVmxVmFunc & EmuFeat.fVmxVmFunc );
1676 pGuestFeat->fVmxVmcsShadowing = (pBaseFeat->fVmxVmcsShadowing & EmuFeat.fVmxVmcsShadowing );
1677 pGuestFeat->fVmxRdseedExit = (pBaseFeat->fVmxRdseedExit & EmuFeat.fVmxRdseedExit );
1678 pGuestFeat->fVmxPml = (pBaseFeat->fVmxPml & EmuFeat.fVmxPml );
1679 pGuestFeat->fVmxEptXcptVe = (pBaseFeat->fVmxEptXcptVe & EmuFeat.fVmxEptXcptVe );
1680 pGuestFeat->fVmxXsavesXrstors = (pBaseFeat->fVmxXsavesXrstors & EmuFeat.fVmxXsavesXrstors );
1681 pGuestFeat->fVmxUseTscScaling = (pBaseFeat->fVmxUseTscScaling & EmuFeat.fVmxUseTscScaling );
1682 pGuestFeat->fVmxEntryLoadDebugCtls = (pBaseFeat->fVmxEntryLoadDebugCtls & EmuFeat.fVmxEntryLoadDebugCtls );
1683 pGuestFeat->fVmxIa32eModeGuest = (pBaseFeat->fVmxIa32eModeGuest & EmuFeat.fVmxIa32eModeGuest );
1684 pGuestFeat->fVmxEntryLoadEferMsr = (pBaseFeat->fVmxEntryLoadEferMsr & EmuFeat.fVmxEntryLoadEferMsr );
1685 pGuestFeat->fVmxEntryLoadPatMsr = (pBaseFeat->fVmxEntryLoadPatMsr & EmuFeat.fVmxEntryLoadPatMsr );
1686 pGuestFeat->fVmxExitSaveDebugCtls = (pBaseFeat->fVmxExitSaveDebugCtls & EmuFeat.fVmxExitSaveDebugCtls );
1687 pGuestFeat->fVmxHostAddrSpaceSize = (pBaseFeat->fVmxHostAddrSpaceSize & EmuFeat.fVmxHostAddrSpaceSize );
1688 pGuestFeat->fVmxExitAckExtInt = (pBaseFeat->fVmxExitAckExtInt & EmuFeat.fVmxExitAckExtInt );
1689 pGuestFeat->fVmxExitSavePatMsr = (pBaseFeat->fVmxExitSavePatMsr & EmuFeat.fVmxExitSavePatMsr );
1690 pGuestFeat->fVmxExitLoadPatMsr = (pBaseFeat->fVmxExitLoadPatMsr & EmuFeat.fVmxExitLoadPatMsr );
1691 pGuestFeat->fVmxExitSaveEferMsr = (pBaseFeat->fVmxExitSaveEferMsr & EmuFeat.fVmxExitSaveEferMsr );
1692 pGuestFeat->fVmxExitLoadEferMsr = (pBaseFeat->fVmxExitLoadEferMsr & EmuFeat.fVmxExitLoadEferMsr );
1693 pGuestFeat->fVmxSavePreemptTimer = (pBaseFeat->fVmxSavePreemptTimer & EmuFeat.fVmxSavePreemptTimer );
1694 pGuestFeat->fVmxExitSaveEferLma = (pBaseFeat->fVmxExitSaveEferLma & EmuFeat.fVmxExitSaveEferLma );
1695 pGuestFeat->fVmxIntelPt = (pBaseFeat->fVmxIntelPt & EmuFeat.fVmxIntelPt );
1696 pGuestFeat->fVmxVmwriteAll = (pBaseFeat->fVmxVmwriteAll & EmuFeat.fVmxVmwriteAll );
1697 pGuestFeat->fVmxEntryInjectSoftInt = (pBaseFeat->fVmxEntryInjectSoftInt & EmuFeat.fVmxEntryInjectSoftInt );
1698
1699 /* Paranoia. */
1700 if (!pGuestFeat->fVmxSecondaryExecCtls)
1701 {
1702 Assert(!pGuestFeat->fVmxVirtApicAccess);
1703 Assert(!pGuestFeat->fVmxEpt);
1704 Assert(!pGuestFeat->fVmxDescTableExit);
1705 Assert(!pGuestFeat->fVmxRdtscp);
1706 Assert(!pGuestFeat->fVmxVirtX2ApicMode);
1707 Assert(!pGuestFeat->fVmxVpid);
1708 Assert(!pGuestFeat->fVmxWbinvdExit);
1709 Assert(!pGuestFeat->fVmxUnrestrictedGuest);
1710 Assert(!pGuestFeat->fVmxApicRegVirt);
1711 Assert(!pGuestFeat->fVmxVirtIntDelivery);
1712 Assert(!pGuestFeat->fVmxPauseLoopExit);
1713 Assert(!pGuestFeat->fVmxRdrandExit);
1714 Assert(!pGuestFeat->fVmxInvpcid);
1715 Assert(!pGuestFeat->fVmxVmFunc);
1716 Assert(!pGuestFeat->fVmxVmcsShadowing);
1717 Assert(!pGuestFeat->fVmxRdseedExit);
1718 Assert(!pGuestFeat->fVmxPml);
1719 Assert(!pGuestFeat->fVmxEptXcptVe);
1720 Assert(!pGuestFeat->fVmxXsavesXrstors);
1721 Assert(!pGuestFeat->fVmxUseTscScaling);
1722 }
1723
1724 /*
1725 * Finally initialize the VMX guest MSRs.
1726 */
1727 cpumR3InitVmxGuestMsrs(pVM, pHostVmxMsrs, pGuestFeat, pGuestVmxMsrs);
1728}
1729
1730
1731/**
1732 * Gets the host hardware-virtualization MSRs.
1733 *
1734 * @returns VBox status code.
1735 * @param pMsrs Where to store the MSRs.
1736 */
1737static int cpumR3GetHostHwvirtMsrs(PCPUMMSRS pMsrs)
1738{
1739 Assert(pMsrs);
1740
1741 uint32_t fCaps = 0;
1742 int rc = SUPR3QueryVTCaps(&fCaps);
1743 if (RT_SUCCESS(rc))
1744 {
1745 if (fCaps & (SUPVTCAPS_VT_X | SUPVTCAPS_AMD_V))
1746 {
1747 SUPHWVIRTMSRS HwvirtMsrs;
1748 int rc = SUPR3GetHwvirtMsrs(&HwvirtMsrs, false /* fForceRequery */);
1749 if (RT_SUCCESS(rc))
1750 {
1751 if (fCaps & SUPVTCAPS_VT_X)
1752 pMsrs->hwvirt.vmx = HwvirtMsrs.u.vmx;
1753 else
1754 pMsrs->hwvirt.svm = HwvirtMsrs.u.svm;
1755 return VINF_SUCCESS;
1756 }
1757
1758 LogRel(("CPUM: Query hardware-virtualization MSRs failed. rc=%Rrc\n", rc));
1759 return rc;
1760 }
1761 else
1762 {
1763 LogRel(("CPUM: Querying hardware-virtualization capability succeeded but did not find VT-x or AMD-V\n"));
1764 return VERR_INTERNAL_ERROR_5;
1765 }
1766 }
1767 else
1768 LogRel(("CPUM: No hardware-virtualization capability detected\n"));
1769
1770 return VINF_SUCCESS;
1771}
1772
1773
1774/**
1775 * Initializes the CPUM.
1776 *
1777 * @returns VBox status code.
1778 * @param pVM The cross context VM structure.
1779 */
1780VMMR3DECL(int) CPUMR3Init(PVM pVM)
1781{
1782 LogFlow(("CPUMR3Init\n"));
1783
1784 /*
1785 * Assert alignment, sizes and tables.
1786 */
1787 AssertCompileMemberAlignment(VM, cpum.s, 32);
1788 AssertCompile(sizeof(pVM->cpum.s) <= sizeof(pVM->cpum.padding));
1789 AssertCompileSizeAlignment(CPUMCTX, 64);
1790 AssertCompileSizeAlignment(CPUMCTXMSRS, 64);
1791 AssertCompileSizeAlignment(CPUMHOSTCTX, 64);
1792 AssertCompileMemberAlignment(VM, cpum, 64);
1793 AssertCompileMemberAlignment(VM, aCpus, 64);
1794 AssertCompileMemberAlignment(VMCPU, cpum.s, 64);
1795 AssertCompileMemberSizeAlignment(VM, aCpus[0].cpum.s, 64);
1796#ifdef VBOX_STRICT
1797 int rc2 = cpumR3MsrStrictInitChecks();
1798 AssertRCReturn(rc2, rc2);
1799#endif
1800
1801 /*
1802 * Initialize offsets.
1803 */
1804
1805 /* Calculate the offset from CPUM to CPUMCPU for the first CPU. */
1806 pVM->cpum.s.offCPUMCPU0 = RT_UOFFSETOF(VM, aCpus[0].cpum) - RT_UOFFSETOF(VM, cpum);
1807 Assert((uintptr_t)&pVM->cpum + pVM->cpum.s.offCPUMCPU0 == (uintptr_t)&pVM->aCpus[0].cpum);
1808
1809
1810 /* Calculate the offset from CPUMCPU to CPUM. */
1811 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1812 {
1813 PVMCPU pVCpu = &pVM->aCpus[i];
1814
1815 pVCpu->cpum.s.offCPUM = RT_UOFFSETOF_DYN(VM, aCpus[i].cpum) - RT_UOFFSETOF(VM, cpum);
1816 Assert((uintptr_t)&pVCpu->cpum - pVCpu->cpum.s.offCPUM == (uintptr_t)&pVM->cpum);
1817 }
1818
1819 /*
1820 * Gather info about the host CPU.
1821 */
1822 if (!ASMHasCpuId())
1823 {
1824 LogRel(("The CPU doesn't support CPUID!\n"));
1825 return VERR_UNSUPPORTED_CPU;
1826 }
1827
1828 pVM->cpum.s.fHostMxCsrMask = CPUMR3DeterminHostMxCsrMask();
1829
1830 CPUMMSRS HostMsrs;
1831 RT_ZERO(HostMsrs);
1832 int rc = cpumR3GetHostHwvirtMsrs(&HostMsrs);
1833 AssertLogRelRCReturn(rc, rc);
1834
1835 PCPUMCPUIDLEAF paLeaves;
1836 uint32_t cLeaves;
1837 rc = CPUMR3CpuIdCollectLeaves(&paLeaves, &cLeaves);
1838 AssertLogRelRCReturn(rc, rc);
1839
1840 rc = cpumR3CpuIdExplodeFeatures(paLeaves, cLeaves, &HostMsrs, &pVM->cpum.s.HostFeatures);
1841 RTMemFree(paLeaves);
1842 AssertLogRelRCReturn(rc, rc);
1843 pVM->cpum.s.GuestFeatures.enmCpuVendor = pVM->cpum.s.HostFeatures.enmCpuVendor;
1844
1845 /*
1846 * Check that the CPU supports the minimum features we require.
1847 */
1848 if (!pVM->cpum.s.HostFeatures.fFxSaveRstor)
1849 return VMSetError(pVM, VERR_UNSUPPORTED_CPU, RT_SRC_POS, "Host CPU does not support the FXSAVE/FXRSTOR instruction.");
1850 if (!pVM->cpum.s.HostFeatures.fMmx)
1851 return VMSetError(pVM, VERR_UNSUPPORTED_CPU, RT_SRC_POS, "Host CPU does not support MMX.");
1852 if (!pVM->cpum.s.HostFeatures.fTsc)
1853 return VMSetError(pVM, VERR_UNSUPPORTED_CPU, RT_SRC_POS, "Host CPU does not support RDTSC.");
1854
1855 /*
1856 * Setup the CR4 AND and OR masks used in the raw-mode switcher.
1857 */
1858 pVM->cpum.s.CR4.AndMask = X86_CR4_OSXMMEEXCPT | X86_CR4_PVI | X86_CR4_VME;
1859 pVM->cpum.s.CR4.OrMask = X86_CR4_OSFXSR;
1860
1861 /*
1862 * Figure out which XSAVE/XRSTOR features are available on the host.
1863 */
1864 uint64_t fXcr0Host = 0;
1865 uint64_t fXStateHostMask = 0;
1866 if ( pVM->cpum.s.HostFeatures.fXSaveRstor
1867 && pVM->cpum.s.HostFeatures.fOpSysXSaveRstor)
1868 {
1869 fXStateHostMask = fXcr0Host = ASMGetXcr0();
1870 fXStateHostMask &= XSAVE_C_X87 | XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI;
1871 AssertLogRelMsgStmt((fXStateHostMask & (XSAVE_C_X87 | XSAVE_C_SSE)) == (XSAVE_C_X87 | XSAVE_C_SSE),
1872 ("%#llx\n", fXStateHostMask), fXStateHostMask = 0);
1873 }
1874 pVM->cpum.s.fXStateHostMask = fXStateHostMask;
1875 if (VM_IS_RAW_MODE_ENABLED(pVM)) /* For raw-mode, we only use XSAVE/XRSTOR when the guest starts using it (CPUID/CR4 visibility). */
1876 fXStateHostMask = 0;
1877 LogRel(("CPUM: fXStateHostMask=%#llx; initial: %#llx; host XCR0=%#llx\n",
1878 pVM->cpum.s.fXStateHostMask, fXStateHostMask, fXcr0Host));
1879
1880 /*
1881 * Allocate memory for the extended CPU state and initialize the host XSAVE/XRSTOR mask.
1882 */
1883 uint32_t cbMaxXState = pVM->cpum.s.HostFeatures.cbMaxExtendedState;
1884 cbMaxXState = RT_ALIGN(cbMaxXState, 128);
1885 AssertLogRelReturn(cbMaxXState >= sizeof(X86FXSTATE) && cbMaxXState <= _8K, VERR_CPUM_IPE_2);
1886
1887 uint8_t *pbXStates;
1888 rc = MMR3HyperAllocOnceNoRelEx(pVM, cbMaxXState * 3 * pVM->cCpus, PAGE_SIZE, MM_TAG_CPUM_CTX,
1889 MMHYPER_AONR_FLAGS_KERNEL_MAPPING, (void **)&pbXStates);
1890 AssertLogRelRCReturn(rc, rc);
1891
1892 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1893 {
1894 PVMCPU pVCpu = &pVM->aCpus[i];
1895
1896 pVCpu->cpum.s.Guest.pXStateR3 = (PX86XSAVEAREA)pbXStates;
1897 pVCpu->cpum.s.Guest.pXStateR0 = MMHyperR3ToR0(pVM, pbXStates);
1898 pVCpu->cpum.s.Guest.pXStateRC = MMHyperR3ToR0(pVM, pbXStates);
1899 pbXStates += cbMaxXState;
1900
1901 pVCpu->cpum.s.Host.pXStateR3 = (PX86XSAVEAREA)pbXStates;
1902 pVCpu->cpum.s.Host.pXStateR0 = MMHyperR3ToR0(pVM, pbXStates);
1903 pVCpu->cpum.s.Host.pXStateRC = MMHyperR3ToR0(pVM, pbXStates);
1904 pbXStates += cbMaxXState;
1905
1906 pVCpu->cpum.s.Hyper.pXStateR3 = (PX86XSAVEAREA)pbXStates;
1907 pVCpu->cpum.s.Hyper.pXStateR0 = MMHyperR3ToR0(pVM, pbXStates);
1908 pVCpu->cpum.s.Hyper.pXStateRC = MMHyperR3ToR0(pVM, pbXStates);
1909 pbXStates += cbMaxXState;
1910
1911 pVCpu->cpum.s.Host.fXStateMask = fXStateHostMask;
1912 }
1913
1914 /*
1915 * Register saved state data item.
1916 */
1917 rc = SSMR3RegisterInternal(pVM, "cpum", 1, CPUM_SAVED_STATE_VERSION, sizeof(CPUM),
1918 NULL, cpumR3LiveExec, NULL,
1919 NULL, cpumR3SaveExec, NULL,
1920 cpumR3LoadPrep, cpumR3LoadExec, cpumR3LoadDone);
1921 if (RT_FAILURE(rc))
1922 return rc;
1923
1924 /*
1925 * Register info handlers and registers with the debugger facility.
1926 */
1927 DBGFR3InfoRegisterInternalEx(pVM, "cpum", "Displays the all the cpu states.",
1928 &cpumR3InfoAll, DBGFINFO_FLAGS_ALL_EMTS);
1929 DBGFR3InfoRegisterInternalEx(pVM, "cpumguest", "Displays the guest cpu state.",
1930 &cpumR3InfoGuest, DBGFINFO_FLAGS_ALL_EMTS);
1931 DBGFR3InfoRegisterInternalEx(pVM, "cpumguesthwvirt", "Displays the guest hwvirt. cpu state.",
1932 &cpumR3InfoGuestHwvirt, DBGFINFO_FLAGS_ALL_EMTS);
1933 DBGFR3InfoRegisterInternalEx(pVM, "cpumhyper", "Displays the hypervisor cpu state.",
1934 &cpumR3InfoHyper, DBGFINFO_FLAGS_ALL_EMTS);
1935 DBGFR3InfoRegisterInternalEx(pVM, "cpumhost", "Displays the host cpu state.",
1936 &cpumR3InfoHost, DBGFINFO_FLAGS_ALL_EMTS);
1937 DBGFR3InfoRegisterInternalEx(pVM, "cpumguestinstr", "Displays the current guest instruction.",
1938 &cpumR3InfoGuestInstr, DBGFINFO_FLAGS_ALL_EMTS);
1939 DBGFR3InfoRegisterInternal( pVM, "cpuid", "Displays the guest cpuid leaves.", &cpumR3CpuIdInfo);
1940 DBGFR3InfoRegisterInternal( pVM, "cpumvmxfeat", "Displays the host and guest VMX hwvirt. features.",
1941 &cpumR3InfoVmxFeatures);
1942
1943 rc = cpumR3DbgInit(pVM);
1944 if (RT_FAILURE(rc))
1945 return rc;
1946
1947 /*
1948 * Check if we need to workaround partial/leaky FPU handling.
1949 */
1950 cpumR3CheckLeakyFpu(pVM);
1951
1952 /*
1953 * Initialize the Guest CPUID and MSR states.
1954 */
1955 rc = cpumR3InitCpuIdAndMsrs(pVM, &HostMsrs);
1956 if (RT_FAILURE(rc))
1957 return rc;
1958
1959 /*
1960 * Allocate memory required by the guest hardware-virtualization structures.
1961 * This must be done after initializing CPUID/MSR features as we access the
1962 * the VMX/SVM guest features below.
1963 */
1964 if (pVM->cpum.s.GuestFeatures.fVmx)
1965 rc = cpumR3AllocVmxHwVirtState(pVM);
1966 else if (pVM->cpum.s.GuestFeatures.fSvm)
1967 rc = cpumR3AllocSvmHwVirtState(pVM);
1968 else
1969 Assert(pVM->aCpus[0].cpum.s.Guest.hwvirt.enmHwvirt == CPUMHWVIRT_NONE);
1970 if (RT_FAILURE(rc))
1971 return rc;
1972
1973 /*
1974 * Workaround for missing cpuid(0) patches when leaf 4 returns GuestInfo.DefCpuId:
1975 * If we miss to patch a cpuid(0).eax then Linux tries to determine the number
1976 * of processors from (cpuid(4).eax >> 26) + 1.
1977 *
1978 * Note: this code is obsolete, but let's keep it here for reference.
1979 * Purpose is valid when we artificially cap the max std id to less than 4.
1980 *
1981 * Note: This used to be a separate function CPUMR3SetHwVirt that was called
1982 * after VMINITCOMPLETED_HM.
1983 */
1984 if (VM_IS_RAW_MODE_ENABLED(pVM))
1985 {
1986 Assert( (pVM->cpum.s.aGuestCpuIdPatmStd[4].uEax & UINT32_C(0xffffc000)) == 0
1987 || pVM->cpum.s.aGuestCpuIdPatmStd[0].uEax < 0x4);
1988 pVM->cpum.s.aGuestCpuIdPatmStd[4].uEax &= UINT32_C(0x00003fff);
1989 }
1990
1991 CPUMR3Reset(pVM);
1992 return VINF_SUCCESS;
1993}
1994
1995
1996/**
1997 * Applies relocations to data and code managed by this
1998 * component. This function will be called at init and
1999 * whenever the VMM need to relocate it self inside the GC.
2000 *
2001 * The CPUM will update the addresses used by the switcher.
2002 *
2003 * @param pVM The cross context VM structure.
2004 */
2005VMMR3DECL(void) CPUMR3Relocate(PVM pVM)
2006{
2007 LogFlow(("CPUMR3Relocate\n"));
2008
2009 pVM->cpum.s.GuestInfo.paMsrRangesRC = MMHyperR3ToRC(pVM, pVM->cpum.s.GuestInfo.paMsrRangesR3);
2010 pVM->cpum.s.GuestInfo.paCpuIdLeavesRC = MMHyperR3ToRC(pVM, pVM->cpum.s.GuestInfo.paCpuIdLeavesR3);
2011
2012 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
2013 {
2014 PVMCPU pVCpu = &pVM->aCpus[iCpu];
2015 pVCpu->cpum.s.Guest.pXStateRC = MMHyperR3ToRC(pVM, pVCpu->cpum.s.Guest.pXStateR3);
2016 pVCpu->cpum.s.Host.pXStateRC = MMHyperR3ToRC(pVM, pVCpu->cpum.s.Host.pXStateR3);
2017 pVCpu->cpum.s.Hyper.pXStateRC = MMHyperR3ToRC(pVM, pVCpu->cpum.s.Hyper.pXStateR3); /** @todo remove me */
2018
2019 /* Recheck the guest DRx values in raw-mode. */
2020 CPUMRecalcHyperDRx(pVCpu, UINT8_MAX, false);
2021 }
2022}
2023
2024
2025/**
2026 * Terminates the CPUM.
2027 *
2028 * Termination means cleaning up and freeing all resources,
2029 * the VM it self is at this point powered off or suspended.
2030 *
2031 * @returns VBox status code.
2032 * @param pVM The cross context VM structure.
2033 */
2034VMMR3DECL(int) CPUMR3Term(PVM pVM)
2035{
2036#ifdef VBOX_WITH_CRASHDUMP_MAGIC
2037 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2038 {
2039 PVMCPU pVCpu = &pVM->aCpus[i];
2040 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
2041
2042 memset(pVCpu->cpum.s.aMagic, 0, sizeof(pVCpu->cpum.s.aMagic));
2043 pVCpu->cpum.s.uMagic = 0;
2044 pCtx->dr[5] = 0;
2045 }
2046#endif
2047
2048 if (pVM->cpum.s.GuestFeatures.fVmx)
2049 cpumR3FreeVmxHwVirtState(pVM);
2050 else if (pVM->cpum.s.GuestFeatures.fSvm)
2051 cpumR3FreeSvmHwVirtState(pVM);
2052 return VINF_SUCCESS;
2053}
2054
2055
2056/**
2057 * Resets a virtual CPU.
2058 *
2059 * Used by CPUMR3Reset and CPU hot plugging.
2060 *
2061 * @param pVM The cross context VM structure.
2062 * @param pVCpu The cross context virtual CPU structure of the CPU that is
2063 * being reset. This may differ from the current EMT.
2064 */
2065VMMR3DECL(void) CPUMR3ResetCpu(PVM pVM, PVMCPU pVCpu)
2066{
2067 /** @todo anything different for VCPU > 0? */
2068 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
2069
2070 /*
2071 * Initialize everything to ZERO first.
2072 */
2073 uint32_t fUseFlags = pVCpu->cpum.s.fUseFlags & ~CPUM_USED_FPU_SINCE_REM;
2074
2075 AssertCompile(RTASSERT_OFFSET_OF(CPUMCTX, pXStateR0) < RTASSERT_OFFSET_OF(CPUMCTX, pXStateR3));
2076 AssertCompile(RTASSERT_OFFSET_OF(CPUMCTX, pXStateR0) < RTASSERT_OFFSET_OF(CPUMCTX, pXStateRC));
2077 memset(pCtx, 0, RT_UOFFSETOF(CPUMCTX, pXStateR0));
2078
2079 pVCpu->cpum.s.fUseFlags = fUseFlags;
2080
2081 pCtx->cr0 = X86_CR0_CD | X86_CR0_NW | X86_CR0_ET; //0x60000010
2082 pCtx->eip = 0x0000fff0;
2083 pCtx->edx = 0x00000600; /* P6 processor */
2084 pCtx->eflags.Bits.u1Reserved0 = 1;
2085
2086 pCtx->cs.Sel = 0xf000;
2087 pCtx->cs.ValidSel = 0xf000;
2088 pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
2089 pCtx->cs.u64Base = UINT64_C(0xffff0000);
2090 pCtx->cs.u32Limit = 0x0000ffff;
2091 pCtx->cs.Attr.n.u1DescType = 1; /* code/data segment */
2092 pCtx->cs.Attr.n.u1Present = 1;
2093 pCtx->cs.Attr.n.u4Type = X86_SEL_TYPE_ER_ACC;
2094
2095 pCtx->ds.fFlags = CPUMSELREG_FLAGS_VALID;
2096 pCtx->ds.u32Limit = 0x0000ffff;
2097 pCtx->ds.Attr.n.u1DescType = 1; /* code/data segment */
2098 pCtx->ds.Attr.n.u1Present = 1;
2099 pCtx->ds.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
2100
2101 pCtx->es.fFlags = CPUMSELREG_FLAGS_VALID;
2102 pCtx->es.u32Limit = 0x0000ffff;
2103 pCtx->es.Attr.n.u1DescType = 1; /* code/data segment */
2104 pCtx->es.Attr.n.u1Present = 1;
2105 pCtx->es.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
2106
2107 pCtx->fs.fFlags = CPUMSELREG_FLAGS_VALID;
2108 pCtx->fs.u32Limit = 0x0000ffff;
2109 pCtx->fs.Attr.n.u1DescType = 1; /* code/data segment */
2110 pCtx->fs.Attr.n.u1Present = 1;
2111 pCtx->fs.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
2112
2113 pCtx->gs.fFlags = CPUMSELREG_FLAGS_VALID;
2114 pCtx->gs.u32Limit = 0x0000ffff;
2115 pCtx->gs.Attr.n.u1DescType = 1; /* code/data segment */
2116 pCtx->gs.Attr.n.u1Present = 1;
2117 pCtx->gs.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
2118
2119 pCtx->ss.fFlags = CPUMSELREG_FLAGS_VALID;
2120 pCtx->ss.u32Limit = 0x0000ffff;
2121 pCtx->ss.Attr.n.u1Present = 1;
2122 pCtx->ss.Attr.n.u1DescType = 1; /* code/data segment */
2123 pCtx->ss.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
2124
2125 pCtx->idtr.cbIdt = 0xffff;
2126 pCtx->gdtr.cbGdt = 0xffff;
2127
2128 pCtx->ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
2129 pCtx->ldtr.u32Limit = 0xffff;
2130 pCtx->ldtr.Attr.n.u1Present = 1;
2131 pCtx->ldtr.Attr.n.u4Type = X86_SEL_TYPE_SYS_LDT;
2132
2133 pCtx->tr.fFlags = CPUMSELREG_FLAGS_VALID;
2134 pCtx->tr.u32Limit = 0xffff;
2135 pCtx->tr.Attr.n.u1Present = 1;
2136 pCtx->tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY; /* Deduction, not properly documented by Intel. */
2137
2138 pCtx->dr[6] = X86_DR6_INIT_VAL;
2139 pCtx->dr[7] = X86_DR7_INIT_VAL;
2140
2141 PX86FXSTATE pFpuCtx = &pCtx->pXStateR3->x87; AssertReleaseMsg(RT_VALID_PTR(pFpuCtx), ("%p\n", pFpuCtx));
2142 pFpuCtx->FTW = 0x00; /* All empty (abbridged tag reg edition). */
2143 pFpuCtx->FCW = 0x37f;
2144
2145 /* Intel 64 and IA-32 Architectures Software Developer's Manual Volume 3A, Table 8-1.
2146 IA-32 Processor States Following Power-up, Reset, or INIT */
2147 pFpuCtx->MXCSR = 0x1F80;
2148 pFpuCtx->MXCSR_MASK = pVM->cpum.s.GuestInfo.fMxCsrMask; /** @todo check if REM messes this up... */
2149
2150 pCtx->aXcr[0] = XSAVE_C_X87;
2151 if (pVM->cpum.s.HostFeatures.cbMaxExtendedState >= RT_UOFFSETOF(X86XSAVEAREA, Hdr))
2152 {
2153 /* The entire FXSAVE state needs loading when we switch to XSAVE/XRSTOR
2154 as we don't know what happened before. (Bother optimize later?) */
2155 pCtx->pXStateR3->Hdr.bmXState = XSAVE_C_X87 | XSAVE_C_SSE;
2156 }
2157
2158 /*
2159 * MSRs.
2160 */
2161 /* Init PAT MSR */
2162 pCtx->msrPAT = MSR_IA32_CR_PAT_INIT_VAL;
2163
2164 /* EFER MBZ; see AMD64 Architecture Programmer's Manual Volume 2: Table 14-1. Initial Processor State.
2165 * The Intel docs don't mention it. */
2166 Assert(!pCtx->msrEFER);
2167
2168 /* IA32_MISC_ENABLE - not entirely sure what the init/reset state really
2169 is supposed to be here, just trying provide useful/sensible values. */
2170 PCPUMMSRRANGE pRange = cpumLookupMsrRange(pVM, MSR_IA32_MISC_ENABLE);
2171 if (pRange)
2172 {
2173 pVCpu->cpum.s.GuestMsrs.msr.MiscEnable = MSR_IA32_MISC_ENABLE_BTS_UNAVAIL
2174 | MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL
2175 | (pVM->cpum.s.GuestFeatures.fMonitorMWait ? MSR_IA32_MISC_ENABLE_MONITOR : 0)
2176 | MSR_IA32_MISC_ENABLE_FAST_STRINGS;
2177 pRange->fWrIgnMask |= MSR_IA32_MISC_ENABLE_BTS_UNAVAIL
2178 | MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL;
2179 pRange->fWrGpMask &= ~pVCpu->cpum.s.GuestMsrs.msr.MiscEnable;
2180 }
2181
2182 /** @todo Wire IA32_MISC_ENABLE bit 22 to our NT 4 CPUID trick. */
2183
2184 /** @todo r=ramshankar: Currently broken for SMP as TMCpuTickSet() expects to be
2185 * called from each EMT while we're getting called by CPUMR3Reset()
2186 * iteratively on the same thread. Fix later. */
2187#if 0 /** @todo r=bird: This we will do in TM, not here. */
2188 /* TSC must be 0. Intel spec. Table 9-1. "IA-32 Processor States Following Power-up, Reset, or INIT." */
2189 CPUMSetGuestMsr(pVCpu, MSR_IA32_TSC, 0);
2190#endif
2191
2192
2193 /* C-state control. Guesses. */
2194 pVCpu->cpum.s.GuestMsrs.msr.PkgCStateCfgCtrl = 1 /*C1*/ | RT_BIT_32(25) | RT_BIT_32(26) | RT_BIT_32(27) | RT_BIT_32(28);
2195 /* For Nehalem+ and Atoms, the 0xE2 MSR (MSR_PKG_CST_CONFIG_CONTROL) is documented. For Core 2,
2196 * it's undocumented but exists as MSR_PMG_CST_CONFIG_CONTROL and has similar but not identical
2197 * functionality. The default value must be different due to incompatible write mask.
2198 */
2199 if (CPUMMICROARCH_IS_INTEL_CORE2(pVM->cpum.s.GuestFeatures.enmMicroarch))
2200 pVCpu->cpum.s.GuestMsrs.msr.PkgCStateCfgCtrl = 0x202a01; /* From Mac Pro Harpertown, unlocked. */
2201 else if (pVM->cpum.s.GuestFeatures.enmMicroarch == kCpumMicroarch_Intel_Core_Yonah)
2202 pVCpu->cpum.s.GuestMsrs.msr.PkgCStateCfgCtrl = 0x26740c; /* From MacBookPro1,1. */
2203
2204 /*
2205 * Hardware virtualization state.
2206 */
2207 CPUMSetGuestGif(pCtx, true);
2208 Assert(!pVM->cpum.s.GuestFeatures.fVmx || !pVM->cpum.s.GuestFeatures.fSvm); /* Paranoia. */
2209 if (pVM->cpum.s.GuestFeatures.fVmx)
2210 cpumR3ResetVmxHwVirtState(pVCpu);
2211 else if (pVM->cpum.s.GuestFeatures.fSvm)
2212 cpumR3ResetSvmHwVirtState(pVCpu);
2213}
2214
2215
2216/**
2217 * Resets the CPU.
2218 *
2219 * @returns VINF_SUCCESS.
2220 * @param pVM The cross context VM structure.
2221 */
2222VMMR3DECL(void) CPUMR3Reset(PVM pVM)
2223{
2224 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2225 {
2226 CPUMR3ResetCpu(pVM, &pVM->aCpus[i]);
2227
2228#ifdef VBOX_WITH_CRASHDUMP_MAGIC
2229 PCPUMCTX pCtx = &pVM->aCpus[i].cpum.s.Guest;
2230
2231 /* Magic marker for searching in crash dumps. */
2232 strcpy((char *)pVM->aCpus[i].cpum.s.aMagic, "CPUMCPU Magic");
2233 pVM->aCpus[i].cpum.s.uMagic = UINT64_C(0xDEADBEEFDEADBEEF);
2234 pCtx->dr[5] = UINT64_C(0xDEADBEEFDEADBEEF);
2235#endif
2236 }
2237}
2238
2239
2240
2241
2242/**
2243 * Pass 0 live exec callback.
2244 *
2245 * @returns VINF_SSM_DONT_CALL_AGAIN.
2246 * @param pVM The cross context VM structure.
2247 * @param pSSM The saved state handle.
2248 * @param uPass The pass (0).
2249 */
2250static DECLCALLBACK(int) cpumR3LiveExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uPass)
2251{
2252 AssertReturn(uPass == 0, VERR_SSM_UNEXPECTED_PASS);
2253 cpumR3SaveCpuId(pVM, pSSM);
2254 return VINF_SSM_DONT_CALL_AGAIN;
2255}
2256
2257
2258/**
2259 * Execute state save operation.
2260 *
2261 * @returns VBox status code.
2262 * @param pVM The cross context VM structure.
2263 * @param pSSM SSM operation handle.
2264 */
2265static DECLCALLBACK(int) cpumR3SaveExec(PVM pVM, PSSMHANDLE pSSM)
2266{
2267 /*
2268 * Save.
2269 */
2270 SSMR3PutU32(pSSM, pVM->cCpus);
2271 SSMR3PutU32(pSSM, sizeof(pVM->aCpus[0].cpum.s.GuestMsrs.msr));
2272 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
2273 {
2274 PVMCPU pVCpu = &pVM->aCpus[iCpu];
2275
2276 SSMR3PutStructEx(pSSM, &pVCpu->cpum.s.Hyper, sizeof(pVCpu->cpum.s.Hyper), 0, g_aCpumCtxFields, NULL);
2277
2278 PCPUMCTX pGstCtx = &pVCpu->cpum.s.Guest;
2279 SSMR3PutStructEx(pSSM, pGstCtx, sizeof(*pGstCtx), 0, g_aCpumCtxFields, NULL);
2280 SSMR3PutStructEx(pSSM, &pGstCtx->pXStateR3->x87, sizeof(pGstCtx->pXStateR3->x87), 0, g_aCpumX87Fields, NULL);
2281 if (pGstCtx->fXStateMask != 0)
2282 SSMR3PutStructEx(pSSM, &pGstCtx->pXStateR3->Hdr, sizeof(pGstCtx->pXStateR3->Hdr), 0, g_aCpumXSaveHdrFields, NULL);
2283 if (pGstCtx->fXStateMask & XSAVE_C_YMM)
2284 {
2285 PCX86XSAVEYMMHI pYmmHiCtx = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_YMM_BIT, PCX86XSAVEYMMHI);
2286 SSMR3PutStructEx(pSSM, pYmmHiCtx, sizeof(*pYmmHiCtx), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumYmmHiFields, NULL);
2287 }
2288 if (pGstCtx->fXStateMask & XSAVE_C_BNDREGS)
2289 {
2290 PCX86XSAVEBNDREGS pBndRegs = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_BNDREGS_BIT, PCX86XSAVEBNDREGS);
2291 SSMR3PutStructEx(pSSM, pBndRegs, sizeof(*pBndRegs), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumBndRegsFields, NULL);
2292 }
2293 if (pGstCtx->fXStateMask & XSAVE_C_BNDCSR)
2294 {
2295 PCX86XSAVEBNDCFG pBndCfg = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_BNDCSR_BIT, PCX86XSAVEBNDCFG);
2296 SSMR3PutStructEx(pSSM, pBndCfg, sizeof(*pBndCfg), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumBndCfgFields, NULL);
2297 }
2298 if (pGstCtx->fXStateMask & XSAVE_C_ZMM_HI256)
2299 {
2300 PCX86XSAVEZMMHI256 pZmmHi256 = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_ZMM_HI256_BIT, PCX86XSAVEZMMHI256);
2301 SSMR3PutStructEx(pSSM, pZmmHi256, sizeof(*pZmmHi256), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumZmmHi256Fields, NULL);
2302 }
2303 if (pGstCtx->fXStateMask & XSAVE_C_ZMM_16HI)
2304 {
2305 PCX86XSAVEZMM16HI pZmm16Hi = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_ZMM_16HI_BIT, PCX86XSAVEZMM16HI);
2306 SSMR3PutStructEx(pSSM, pZmm16Hi, sizeof(*pZmm16Hi), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumZmm16HiFields, NULL);
2307 }
2308 if (pVM->cpum.s.GuestFeatures.fSvm)
2309 {
2310 Assert(pGstCtx->hwvirt.svm.CTX_SUFF(pVmcb));
2311 SSMR3PutU64(pSSM, pGstCtx->hwvirt.svm.uMsrHSavePa);
2312 SSMR3PutGCPhys(pSSM, pGstCtx->hwvirt.svm.GCPhysVmcb);
2313 SSMR3PutU64(pSSM, pGstCtx->hwvirt.svm.uPrevPauseTick);
2314 SSMR3PutU16(pSSM, pGstCtx->hwvirt.svm.cPauseFilter);
2315 SSMR3PutU16(pSSM, pGstCtx->hwvirt.svm.cPauseFilterThreshold);
2316 SSMR3PutBool(pSSM, pGstCtx->hwvirt.svm.fInterceptEvents);
2317 SSMR3PutStructEx(pSSM, &pGstCtx->hwvirt.svm.HostState, sizeof(pGstCtx->hwvirt.svm.HostState), 0 /* fFlags */,
2318 g_aSvmHwvirtHostState, NULL /* pvUser */);
2319 SSMR3PutMem(pSSM, pGstCtx->hwvirt.svm.pVmcbR3, SVM_VMCB_PAGES << X86_PAGE_4K_SHIFT);
2320 SSMR3PutMem(pSSM, pGstCtx->hwvirt.svm.pvMsrBitmapR3, SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT);
2321 SSMR3PutMem(pSSM, pGstCtx->hwvirt.svm.pvIoBitmapR3, SVM_IOPM_PAGES << X86_PAGE_4K_SHIFT);
2322 SSMR3PutU32(pSSM, pGstCtx->hwvirt.fLocalForcedActions);
2323 SSMR3PutBool(pSSM, pGstCtx->hwvirt.fGif);
2324 }
2325 SSMR3PutU32(pSSM, pVCpu->cpum.s.fUseFlags);
2326 SSMR3PutU32(pSSM, pVCpu->cpum.s.fChanged);
2327 AssertCompileSizeAlignment(pVCpu->cpum.s.GuestMsrs.msr, sizeof(uint64_t));
2328 SSMR3PutMem(pSSM, &pVCpu->cpum.s.GuestMsrs, sizeof(pVCpu->cpum.s.GuestMsrs.msr));
2329 }
2330
2331 cpumR3SaveCpuId(pVM, pSSM);
2332 return VINF_SUCCESS;
2333}
2334
2335
2336/**
2337 * @callback_method_impl{FNSSMINTLOADPREP}
2338 */
2339static DECLCALLBACK(int) cpumR3LoadPrep(PVM pVM, PSSMHANDLE pSSM)
2340{
2341 NOREF(pSSM);
2342 pVM->cpum.s.fPendingRestore = true;
2343 return VINF_SUCCESS;
2344}
2345
2346
2347/**
2348 * @callback_method_impl{FNSSMINTLOADEXEC}
2349 */
2350static DECLCALLBACK(int) cpumR3LoadExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
2351{
2352 int rc; /* Only for AssertRCReturn use. */
2353
2354 /*
2355 * Validate version.
2356 */
2357 if ( uVersion != CPUM_SAVED_STATE_VERSION_HWVIRT_SVM
2358 && uVersion != CPUM_SAVED_STATE_VERSION_XSAVE
2359 && uVersion != CPUM_SAVED_STATE_VERSION_GOOD_CPUID_COUNT
2360 && uVersion != CPUM_SAVED_STATE_VERSION_BAD_CPUID_COUNT
2361 && uVersion != CPUM_SAVED_STATE_VERSION_PUT_STRUCT
2362 && uVersion != CPUM_SAVED_STATE_VERSION_MEM
2363 && uVersion != CPUM_SAVED_STATE_VERSION_NO_MSR_SIZE
2364 && uVersion != CPUM_SAVED_STATE_VERSION_VER3_2
2365 && uVersion != CPUM_SAVED_STATE_VERSION_VER3_0
2366 && uVersion != CPUM_SAVED_STATE_VERSION_VER2_1_NOMSR
2367 && uVersion != CPUM_SAVED_STATE_VERSION_VER2_0
2368 && uVersion != CPUM_SAVED_STATE_VERSION_VER1_6)
2369 {
2370 AssertMsgFailed(("cpumR3LoadExec: Invalid version uVersion=%d!\n", uVersion));
2371 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
2372 }
2373
2374 if (uPass == SSM_PASS_FINAL)
2375 {
2376 /*
2377 * Set the size of RTGCPTR for SSMR3GetGCPtr. (Only necessary for
2378 * really old SSM file versions.)
2379 */
2380 if (uVersion == CPUM_SAVED_STATE_VERSION_VER1_6)
2381 SSMR3HandleSetGCPtrSize(pSSM, sizeof(RTGCPTR32));
2382 else if (uVersion <= CPUM_SAVED_STATE_VERSION_VER3_0)
2383 SSMR3HandleSetGCPtrSize(pSSM, HC_ARCH_BITS == 32 ? sizeof(RTGCPTR32) : sizeof(RTGCPTR));
2384
2385 /*
2386 * Figure x86 and ctx field definitions to use for older states.
2387 */
2388 uint32_t const fLoad = uVersion > CPUM_SAVED_STATE_VERSION_MEM ? 0 : SSMSTRUCT_FLAGS_MEM_BAND_AID_RELAXED;
2389 PCSSMFIELD paCpumCtx1Fields = g_aCpumX87Fields;
2390 PCSSMFIELD paCpumCtx2Fields = g_aCpumCtxFields;
2391 if (uVersion == CPUM_SAVED_STATE_VERSION_VER1_6)
2392 {
2393 paCpumCtx1Fields = g_aCpumX87FieldsV16;
2394 paCpumCtx2Fields = g_aCpumCtxFieldsV16;
2395 }
2396 else if (uVersion <= CPUM_SAVED_STATE_VERSION_MEM)
2397 {
2398 paCpumCtx1Fields = g_aCpumX87FieldsMem;
2399 paCpumCtx2Fields = g_aCpumCtxFieldsMem;
2400 }
2401
2402 /*
2403 * The hyper state used to preceed the CPU count. Starting with
2404 * XSAVE it was moved down till after we've got the count.
2405 */
2406 if (uVersion < CPUM_SAVED_STATE_VERSION_XSAVE)
2407 {
2408 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
2409 {
2410 PVMCPU pVCpu = &pVM->aCpus[iCpu];
2411 X86FXSTATE Ign;
2412 SSMR3GetStructEx(pSSM, &Ign, sizeof(Ign), fLoad | SSMSTRUCT_FLAGS_NO_TAIL_MARKER, paCpumCtx1Fields, NULL);
2413 uint64_t uCR3 = pVCpu->cpum.s.Hyper.cr3;
2414 uint64_t uRSP = pVCpu->cpum.s.Hyper.rsp; /* see VMMR3Relocate(). */
2415 SSMR3GetStructEx(pSSM, &pVCpu->cpum.s.Hyper, sizeof(pVCpu->cpum.s.Hyper),
2416 fLoad | SSMSTRUCT_FLAGS_NO_LEAD_MARKER, paCpumCtx2Fields, NULL);
2417 pVCpu->cpum.s.Hyper.cr3 = uCR3;
2418 pVCpu->cpum.s.Hyper.rsp = uRSP;
2419 }
2420 }
2421
2422 if (uVersion >= CPUM_SAVED_STATE_VERSION_VER2_1_NOMSR)
2423 {
2424 uint32_t cCpus;
2425 rc = SSMR3GetU32(pSSM, &cCpus); AssertRCReturn(rc, rc);
2426 AssertLogRelMsgReturn(cCpus == pVM->cCpus, ("Mismatching CPU counts: saved: %u; configured: %u \n", cCpus, pVM->cCpus),
2427 VERR_SSM_UNEXPECTED_DATA);
2428 }
2429 AssertLogRelMsgReturn( uVersion > CPUM_SAVED_STATE_VERSION_VER2_0
2430 || pVM->cCpus == 1,
2431 ("cCpus=%u\n", pVM->cCpus),
2432 VERR_SSM_UNEXPECTED_DATA);
2433
2434 uint32_t cbMsrs = 0;
2435 if (uVersion > CPUM_SAVED_STATE_VERSION_NO_MSR_SIZE)
2436 {
2437 rc = SSMR3GetU32(pSSM, &cbMsrs); AssertRCReturn(rc, rc);
2438 AssertLogRelMsgReturn(RT_ALIGN(cbMsrs, sizeof(uint64_t)) == cbMsrs, ("Size of MSRs is misaligned: %#x\n", cbMsrs),
2439 VERR_SSM_UNEXPECTED_DATA);
2440 AssertLogRelMsgReturn(cbMsrs <= sizeof(CPUMCTXMSRS) && cbMsrs > 0, ("Size of MSRs is out of range: %#x\n", cbMsrs),
2441 VERR_SSM_UNEXPECTED_DATA);
2442 }
2443
2444 /*
2445 * Do the per-CPU restoring.
2446 */
2447 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
2448 {
2449 PVMCPU pVCpu = &pVM->aCpus[iCpu];
2450 PCPUMCTX pGstCtx = &pVCpu->cpum.s.Guest;
2451
2452 if (uVersion >= CPUM_SAVED_STATE_VERSION_XSAVE)
2453 {
2454 /*
2455 * The XSAVE saved state layout moved the hyper state down here.
2456 */
2457 uint64_t uCR3 = pVCpu->cpum.s.Hyper.cr3;
2458 uint64_t uRSP = pVCpu->cpum.s.Hyper.rsp; /* see VMMR3Relocate(). */
2459 rc = SSMR3GetStructEx(pSSM, &pVCpu->cpum.s.Hyper, sizeof(pVCpu->cpum.s.Hyper), 0, g_aCpumCtxFields, NULL);
2460 pVCpu->cpum.s.Hyper.cr3 = uCR3;
2461 pVCpu->cpum.s.Hyper.rsp = uRSP;
2462 AssertRCReturn(rc, rc);
2463
2464 /*
2465 * Start by restoring the CPUMCTX structure and the X86FXSAVE bits of the extended state.
2466 */
2467 rc = SSMR3GetStructEx(pSSM, pGstCtx, sizeof(*pGstCtx), 0, g_aCpumCtxFields, NULL);
2468 rc = SSMR3GetStructEx(pSSM, &pGstCtx->pXStateR3->x87, sizeof(pGstCtx->pXStateR3->x87), 0, g_aCpumX87Fields, NULL);
2469 AssertRCReturn(rc, rc);
2470
2471 /* Check that the xsave/xrstor mask is valid (invalid results in #GP). */
2472 if (pGstCtx->fXStateMask != 0)
2473 {
2474 AssertLogRelMsgReturn(!(pGstCtx->fXStateMask & ~pVM->cpum.s.fXStateGuestMask),
2475 ("fXStateMask=%#RX64 fXStateGuestMask=%#RX64\n",
2476 pGstCtx->fXStateMask, pVM->cpum.s.fXStateGuestMask),
2477 VERR_CPUM_INCOMPATIBLE_XSAVE_COMP_MASK);
2478 AssertLogRelMsgReturn(pGstCtx->fXStateMask & XSAVE_C_X87,
2479 ("fXStateMask=%#RX64\n", pGstCtx->fXStateMask), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2480 AssertLogRelMsgReturn((pGstCtx->fXStateMask & (XSAVE_C_SSE | XSAVE_C_YMM)) != XSAVE_C_YMM,
2481 ("fXStateMask=%#RX64\n", pGstCtx->fXStateMask), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2482 AssertLogRelMsgReturn( (pGstCtx->fXStateMask & (XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI)) == 0
2483 || (pGstCtx->fXStateMask & (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI))
2484 == (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI),
2485 ("fXStateMask=%#RX64\n", pGstCtx->fXStateMask), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2486 }
2487
2488 /* Check that the XCR0 mask is valid (invalid results in #GP). */
2489 AssertLogRelMsgReturn(pGstCtx->aXcr[0] & XSAVE_C_X87, ("xcr0=%#RX64\n", pGstCtx->aXcr[0]), VERR_CPUM_INVALID_XCR0);
2490 if (pGstCtx->aXcr[0] != XSAVE_C_X87)
2491 {
2492 AssertLogRelMsgReturn(!(pGstCtx->aXcr[0] & ~(pGstCtx->fXStateMask | XSAVE_C_X87)),
2493 ("xcr0=%#RX64 fXStateMask=%#RX64\n", pGstCtx->aXcr[0], pGstCtx->fXStateMask),
2494 VERR_CPUM_INVALID_XCR0);
2495 AssertLogRelMsgReturn(pGstCtx->aXcr[0] & XSAVE_C_X87,
2496 ("xcr0=%#RX64\n", pGstCtx->aXcr[0]), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2497 AssertLogRelMsgReturn((pGstCtx->aXcr[0] & (XSAVE_C_SSE | XSAVE_C_YMM)) != XSAVE_C_YMM,
2498 ("xcr0=%#RX64\n", pGstCtx->aXcr[0]), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2499 AssertLogRelMsgReturn( (pGstCtx->aXcr[0] & (XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI)) == 0
2500 || (pGstCtx->aXcr[0] & (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI))
2501 == (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI),
2502 ("xcr0=%#RX64\n", pGstCtx->aXcr[0]), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2503 }
2504
2505 /* Check that the XCR1 is zero, as we don't implement it yet. */
2506 AssertLogRelMsgReturn(!pGstCtx->aXcr[1], ("xcr1=%#RX64\n", pGstCtx->aXcr[1]), VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2507
2508 /*
2509 * Restore the individual extended state components we support.
2510 */
2511 if (pGstCtx->fXStateMask != 0)
2512 {
2513 rc = SSMR3GetStructEx(pSSM, &pGstCtx->pXStateR3->Hdr, sizeof(pGstCtx->pXStateR3->Hdr),
2514 0, g_aCpumXSaveHdrFields, NULL);
2515 AssertRCReturn(rc, rc);
2516 AssertLogRelMsgReturn(!(pGstCtx->pXStateR3->Hdr.bmXState & ~pGstCtx->fXStateMask),
2517 ("bmXState=%#RX64 fXStateMask=%#RX64\n",
2518 pGstCtx->pXStateR3->Hdr.bmXState, pGstCtx->fXStateMask),
2519 VERR_CPUM_INVALID_XSAVE_HDR);
2520 }
2521 if (pGstCtx->fXStateMask & XSAVE_C_YMM)
2522 {
2523 PX86XSAVEYMMHI pYmmHiCtx = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_YMM_BIT, PX86XSAVEYMMHI);
2524 SSMR3GetStructEx(pSSM, pYmmHiCtx, sizeof(*pYmmHiCtx), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumYmmHiFields, NULL);
2525 }
2526 if (pGstCtx->fXStateMask & XSAVE_C_BNDREGS)
2527 {
2528 PX86XSAVEBNDREGS pBndRegs = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_BNDREGS_BIT, PX86XSAVEBNDREGS);
2529 SSMR3GetStructEx(pSSM, pBndRegs, sizeof(*pBndRegs), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumBndRegsFields, NULL);
2530 }
2531 if (pGstCtx->fXStateMask & XSAVE_C_BNDCSR)
2532 {
2533 PX86XSAVEBNDCFG pBndCfg = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_BNDCSR_BIT, PX86XSAVEBNDCFG);
2534 SSMR3GetStructEx(pSSM, pBndCfg, sizeof(*pBndCfg), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumBndCfgFields, NULL);
2535 }
2536 if (pGstCtx->fXStateMask & XSAVE_C_ZMM_HI256)
2537 {
2538 PX86XSAVEZMMHI256 pZmmHi256 = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_ZMM_HI256_BIT, PX86XSAVEZMMHI256);
2539 SSMR3GetStructEx(pSSM, pZmmHi256, sizeof(*pZmmHi256), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumZmmHi256Fields, NULL);
2540 }
2541 if (pGstCtx->fXStateMask & XSAVE_C_ZMM_16HI)
2542 {
2543 PX86XSAVEZMM16HI pZmm16Hi = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_ZMM_16HI_BIT, PX86XSAVEZMM16HI);
2544 SSMR3GetStructEx(pSSM, pZmm16Hi, sizeof(*pZmm16Hi), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumZmm16HiFields, NULL);
2545 }
2546 if (uVersion >= CPUM_SAVED_STATE_VERSION_HWVIRT_SVM)
2547 {
2548 if (pVM->cpum.s.GuestFeatures.fSvm)
2549 {
2550 Assert(pGstCtx->hwvirt.svm.CTX_SUFF(pVmcb));
2551 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.svm.uMsrHSavePa);
2552 SSMR3GetGCPhys(pSSM, &pGstCtx->hwvirt.svm.GCPhysVmcb);
2553 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.svm.uPrevPauseTick);
2554 SSMR3GetU16(pSSM, &pGstCtx->hwvirt.svm.cPauseFilter);
2555 SSMR3GetU16(pSSM, &pGstCtx->hwvirt.svm.cPauseFilterThreshold);
2556 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.svm.fInterceptEvents);
2557 SSMR3GetStructEx(pSSM, &pGstCtx->hwvirt.svm.HostState, sizeof(pGstCtx->hwvirt.svm.HostState),
2558 0 /* fFlags */, g_aSvmHwvirtHostState, NULL /* pvUser */);
2559 SSMR3GetMem(pSSM, pGstCtx->hwvirt.svm.pVmcbR3, SVM_VMCB_PAGES << X86_PAGE_4K_SHIFT);
2560 SSMR3GetMem(pSSM, pGstCtx->hwvirt.svm.pvMsrBitmapR3, SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT);
2561 SSMR3GetMem(pSSM, pGstCtx->hwvirt.svm.pvIoBitmapR3, SVM_IOPM_PAGES << X86_PAGE_4K_SHIFT);
2562 SSMR3GetU32(pSSM, &pGstCtx->hwvirt.fLocalForcedActions);
2563 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.fGif);
2564 }
2565 }
2566 /** @todo NSTVMX: Load VMX state. */
2567 }
2568 else
2569 {
2570 /*
2571 * Pre XSAVE saved state.
2572 */
2573 SSMR3GetStructEx(pSSM, &pGstCtx->pXStateR3->x87, sizeof(pGstCtx->pXStateR3->x87),
2574 fLoad | SSMSTRUCT_FLAGS_NO_TAIL_MARKER, paCpumCtx1Fields, NULL);
2575 SSMR3GetStructEx(pSSM, pGstCtx, sizeof(*pGstCtx), fLoad | SSMSTRUCT_FLAGS_NO_LEAD_MARKER, paCpumCtx2Fields, NULL);
2576 }
2577
2578 /*
2579 * Restore a couple of flags and the MSRs.
2580 */
2581 SSMR3GetU32(pSSM, &pVCpu->cpum.s.fUseFlags);
2582 SSMR3GetU32(pSSM, &pVCpu->cpum.s.fChanged);
2583
2584 rc = VINF_SUCCESS;
2585 if (uVersion > CPUM_SAVED_STATE_VERSION_NO_MSR_SIZE)
2586 rc = SSMR3GetMem(pSSM, &pVCpu->cpum.s.GuestMsrs.au64[0], cbMsrs);
2587 else if (uVersion >= CPUM_SAVED_STATE_VERSION_VER3_0)
2588 {
2589 SSMR3GetMem(pSSM, &pVCpu->cpum.s.GuestMsrs.au64[0], 2 * sizeof(uint64_t)); /* Restore two MSRs. */
2590 rc = SSMR3Skip(pSSM, 62 * sizeof(uint64_t));
2591 }
2592 AssertRCReturn(rc, rc);
2593
2594 /* REM and other may have cleared must-be-one fields in DR6 and
2595 DR7, fix these. */
2596 pGstCtx->dr[6] &= ~(X86_DR6_RAZ_MASK | X86_DR6_MBZ_MASK);
2597 pGstCtx->dr[6] |= X86_DR6_RA1_MASK;
2598 pGstCtx->dr[7] &= ~(X86_DR7_RAZ_MASK | X86_DR7_MBZ_MASK);
2599 pGstCtx->dr[7] |= X86_DR7_RA1_MASK;
2600 }
2601
2602 /* Older states does not have the internal selector register flags
2603 and valid selector value. Supply those. */
2604 if (uVersion <= CPUM_SAVED_STATE_VERSION_MEM)
2605 {
2606 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
2607 {
2608 PVMCPU pVCpu = &pVM->aCpus[iCpu];
2609 bool const fValid = !VM_IS_RAW_MODE_ENABLED(pVM)
2610 || ( uVersion > CPUM_SAVED_STATE_VERSION_VER3_2
2611 && !(pVCpu->cpum.s.fChanged & CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID));
2612 PCPUMSELREG paSelReg = CPUMCTX_FIRST_SREG(&pVCpu->cpum.s.Guest);
2613 if (fValid)
2614 {
2615 for (uint32_t iSelReg = 0; iSelReg < X86_SREG_COUNT; iSelReg++)
2616 {
2617 paSelReg[iSelReg].fFlags = CPUMSELREG_FLAGS_VALID;
2618 paSelReg[iSelReg].ValidSel = paSelReg[iSelReg].Sel;
2619 }
2620
2621 pVCpu->cpum.s.Guest.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
2622 pVCpu->cpum.s.Guest.ldtr.ValidSel = pVCpu->cpum.s.Guest.ldtr.Sel;
2623 }
2624 else
2625 {
2626 for (uint32_t iSelReg = 0; iSelReg < X86_SREG_COUNT; iSelReg++)
2627 {
2628 paSelReg[iSelReg].fFlags = 0;
2629 paSelReg[iSelReg].ValidSel = 0;
2630 }
2631
2632 /* This might not be 104% correct, but I think it's close
2633 enough for all practical purposes... (REM always loaded
2634 LDTR registers.) */
2635 pVCpu->cpum.s.Guest.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
2636 pVCpu->cpum.s.Guest.ldtr.ValidSel = pVCpu->cpum.s.Guest.ldtr.Sel;
2637 }
2638 pVCpu->cpum.s.Guest.tr.fFlags = CPUMSELREG_FLAGS_VALID;
2639 pVCpu->cpum.s.Guest.tr.ValidSel = pVCpu->cpum.s.Guest.tr.Sel;
2640 }
2641 }
2642
2643 /* Clear CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID. */
2644 if ( uVersion > CPUM_SAVED_STATE_VERSION_VER3_2
2645 && uVersion <= CPUM_SAVED_STATE_VERSION_MEM)
2646 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
2647 pVM->aCpus[iCpu].cpum.s.fChanged &= CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID;
2648
2649 /*
2650 * A quick sanity check.
2651 */
2652 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
2653 {
2654 PVMCPU pVCpu = &pVM->aCpus[iCpu];
2655 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.es.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
2656 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.cs.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
2657 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.ss.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
2658 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.ds.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
2659 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.fs.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
2660 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.gs.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
2661 }
2662 }
2663
2664 pVM->cpum.s.fPendingRestore = false;
2665
2666 /*
2667 * Guest CPUIDs.
2668 */
2669 if (uVersion >= CPUM_SAVED_STATE_VERSION_VER3_2)
2670 {
2671 CPUMMSRS GuestMsrs;
2672 RT_ZERO(GuestMsrs);
2673 if (pVM->cpum.s.GuestFeatures.fVmx)
2674 GuestMsrs.hwvirt.vmx = pVM->aCpus[0].cpum.s.Guest.hwvirt.vmx.Msrs;
2675 return cpumR3LoadCpuId(pVM, pSSM, uVersion, &GuestMsrs);
2676 }
2677 return cpumR3LoadCpuIdPre32(pVM, pSSM, uVersion);
2678}
2679
2680
2681/**
2682 * @callback_method_impl{FNSSMINTLOADDONE}
2683 */
2684static DECLCALLBACK(int) cpumR3LoadDone(PVM pVM, PSSMHANDLE pSSM)
2685{
2686 if (RT_FAILURE(SSMR3HandleGetStatus(pSSM)))
2687 return VINF_SUCCESS;
2688
2689 /* just check this since we can. */ /** @todo Add a SSM unit flag for indicating that it's mandatory during a restore. */
2690 if (pVM->cpum.s.fPendingRestore)
2691 {
2692 LogRel(("CPUM: Missing state!\n"));
2693 return VERR_INTERNAL_ERROR_2;
2694 }
2695
2696 bool const fSupportsLongMode = VMR3IsLongModeAllowed(pVM);
2697 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2698 {
2699 PVMCPU pVCpu = &pVM->aCpus[idCpu];
2700
2701 /* Notify PGM of the NXE states in case they've changed. */
2702 PGMNotifyNxeChanged(pVCpu, RT_BOOL(pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_NXE));
2703
2704 /* During init. this is done in CPUMR3InitCompleted(). */
2705 if (fSupportsLongMode)
2706 pVCpu->cpum.s.fUseFlags |= CPUM_USE_SUPPORTS_LONGMODE;
2707 }
2708 return VINF_SUCCESS;
2709}
2710
2711
2712/**
2713 * Checks if the CPUM state restore is still pending.
2714 *
2715 * @returns true / false.
2716 * @param pVM The cross context VM structure.
2717 */
2718VMMDECL(bool) CPUMR3IsStateRestorePending(PVM pVM)
2719{
2720 return pVM->cpum.s.fPendingRestore;
2721}
2722
2723
2724/**
2725 * Formats the EFLAGS value into mnemonics.
2726 *
2727 * @param pszEFlags Where to write the mnemonics. (Assumes sufficient buffer space.)
2728 * @param efl The EFLAGS value.
2729 */
2730static void cpumR3InfoFormatFlags(char *pszEFlags, uint32_t efl)
2731{
2732 /*
2733 * Format the flags.
2734 */
2735 static const struct
2736 {
2737 const char *pszSet; const char *pszClear; uint32_t fFlag;
2738 } s_aFlags[] =
2739 {
2740 { "vip",NULL, X86_EFL_VIP },
2741 { "vif",NULL, X86_EFL_VIF },
2742 { "ac", NULL, X86_EFL_AC },
2743 { "vm", NULL, X86_EFL_VM },
2744 { "rf", NULL, X86_EFL_RF },
2745 { "nt", NULL, X86_EFL_NT },
2746 { "ov", "nv", X86_EFL_OF },
2747 { "dn", "up", X86_EFL_DF },
2748 { "ei", "di", X86_EFL_IF },
2749 { "tf", NULL, X86_EFL_TF },
2750 { "nt", "pl", X86_EFL_SF },
2751 { "nz", "zr", X86_EFL_ZF },
2752 { "ac", "na", X86_EFL_AF },
2753 { "po", "pe", X86_EFL_PF },
2754 { "cy", "nc", X86_EFL_CF },
2755 };
2756 char *psz = pszEFlags;
2757 for (unsigned i = 0; i < RT_ELEMENTS(s_aFlags); i++)
2758 {
2759 const char *pszAdd = s_aFlags[i].fFlag & efl ? s_aFlags[i].pszSet : s_aFlags[i].pszClear;
2760 if (pszAdd)
2761 {
2762 strcpy(psz, pszAdd);
2763 psz += strlen(pszAdd);
2764 *psz++ = ' ';
2765 }
2766 }
2767 psz[-1] = '\0';
2768}
2769
2770
2771/**
2772 * Formats a full register dump.
2773 *
2774 * @param pVM The cross context VM structure.
2775 * @param pCtx The context to format.
2776 * @param pCtxCore The context core to format.
2777 * @param pHlp Output functions.
2778 * @param enmType The dump type.
2779 * @param pszPrefix Register name prefix.
2780 */
2781static void cpumR3InfoOne(PVM pVM, PCPUMCTX pCtx, PCCPUMCTXCORE pCtxCore, PCDBGFINFOHLP pHlp, CPUMDUMPTYPE enmType,
2782 const char *pszPrefix)
2783{
2784 NOREF(pVM);
2785
2786 /*
2787 * Format the EFLAGS.
2788 */
2789 uint32_t efl = pCtxCore->eflags.u32;
2790 char szEFlags[80];
2791 cpumR3InfoFormatFlags(&szEFlags[0], efl);
2792
2793 /*
2794 * Format the registers.
2795 */
2796 switch (enmType)
2797 {
2798 case CPUMDUMPTYPE_TERSE:
2799 if (CPUMIsGuestIn64BitCodeEx(pCtx))
2800 pHlp->pfnPrintf(pHlp,
2801 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
2802 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
2803 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
2804 "%sr14=%016RX64 %sr15=%016RX64\n"
2805 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
2806 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %seflags=%08x\n",
2807 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
2808 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
2809 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
2810 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2811 pszPrefix, pCtxCore->cs.Sel, pszPrefix, pCtxCore->ss.Sel, pszPrefix, pCtxCore->ds.Sel, pszPrefix, pCtxCore->es.Sel,
2812 pszPrefix, pCtxCore->fs.Sel, pszPrefix, pCtxCore->gs.Sel, pszPrefix, efl);
2813 else
2814 pHlp->pfnPrintf(pHlp,
2815 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
2816 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
2817 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %seflags=%08x\n",
2818 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
2819 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2820 pszPrefix, pCtxCore->cs.Sel, pszPrefix, pCtxCore->ss.Sel, pszPrefix, pCtxCore->ds.Sel, pszPrefix, pCtxCore->es.Sel,
2821 pszPrefix, pCtxCore->fs.Sel, pszPrefix, pCtxCore->gs.Sel, pszPrefix, efl);
2822 break;
2823
2824 case CPUMDUMPTYPE_DEFAULT:
2825 if (CPUMIsGuestIn64BitCodeEx(pCtx))
2826 pHlp->pfnPrintf(pHlp,
2827 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
2828 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
2829 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
2830 "%sr14=%016RX64 %sr15=%016RX64\n"
2831 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
2832 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %str=%04x %seflags=%08x\n"
2833 "%scr0=%08RX64 %scr2=%08RX64 %scr3=%08RX64 %scr4=%08RX64 %sgdtr=%016RX64:%04x %sldtr=%04x\n"
2834 ,
2835 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
2836 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
2837 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
2838 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2839 pszPrefix, pCtxCore->cs.Sel, pszPrefix, pCtxCore->ss.Sel, pszPrefix, pCtxCore->ds.Sel, pszPrefix, pCtxCore->es.Sel,
2840 pszPrefix, pCtxCore->fs.Sel, pszPrefix, pCtxCore->gs.Sel, pszPrefix, pCtx->tr.Sel, pszPrefix, efl,
2841 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
2842 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->ldtr.Sel);
2843 else
2844 pHlp->pfnPrintf(pHlp,
2845 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
2846 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
2847 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %str=%04x %seflags=%08x\n"
2848 "%scr0=%08RX64 %scr2=%08RX64 %scr3=%08RX64 %scr4=%08RX64 %sgdtr=%08RX64:%04x %sldtr=%04x\n"
2849 ,
2850 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
2851 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2852 pszPrefix, pCtxCore->cs.Sel, pszPrefix, pCtxCore->ss.Sel, pszPrefix, pCtxCore->ds.Sel, pszPrefix, pCtxCore->es.Sel,
2853 pszPrefix, pCtxCore->fs.Sel, pszPrefix, pCtxCore->gs.Sel, pszPrefix, pCtx->tr.Sel, pszPrefix, efl,
2854 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
2855 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->ldtr.Sel);
2856 break;
2857
2858 case CPUMDUMPTYPE_VERBOSE:
2859 if (CPUMIsGuestIn64BitCodeEx(pCtx))
2860 pHlp->pfnPrintf(pHlp,
2861 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
2862 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
2863 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
2864 "%sr14=%016RX64 %sr15=%016RX64\n"
2865 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
2866 "%scs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2867 "%sds={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2868 "%ses={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2869 "%sfs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2870 "%sgs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2871 "%sss={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2872 "%scr0=%016RX64 %scr2=%016RX64 %scr3=%016RX64 %scr4=%016RX64\n"
2873 "%sdr0=%016RX64 %sdr1=%016RX64 %sdr2=%016RX64 %sdr3=%016RX64\n"
2874 "%sdr4=%016RX64 %sdr5=%016RX64 %sdr6=%016RX64 %sdr7=%016RX64\n"
2875 "%sgdtr=%016RX64:%04x %sidtr=%016RX64:%04x %seflags=%08x\n"
2876 "%sldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
2877 "%str ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
2878 "%sSysEnter={cs=%04llx eip=%016RX64 esp=%016RX64}\n"
2879 ,
2880 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
2881 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
2882 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
2883 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2884 pszPrefix, pCtxCore->cs.Sel, pCtx->cs.u64Base, pCtx->cs.u32Limit, pCtx->cs.Attr.u,
2885 pszPrefix, pCtxCore->ds.Sel, pCtx->ds.u64Base, pCtx->ds.u32Limit, pCtx->ds.Attr.u,
2886 pszPrefix, pCtxCore->es.Sel, pCtx->es.u64Base, pCtx->es.u32Limit, pCtx->es.Attr.u,
2887 pszPrefix, pCtxCore->fs.Sel, pCtx->fs.u64Base, pCtx->fs.u32Limit, pCtx->fs.Attr.u,
2888 pszPrefix, pCtxCore->gs.Sel, pCtx->gs.u64Base, pCtx->gs.u32Limit, pCtx->gs.Attr.u,
2889 pszPrefix, pCtxCore->ss.Sel, pCtx->ss.u64Base, pCtx->ss.u32Limit, pCtx->ss.Attr.u,
2890 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
2891 pszPrefix, pCtx->dr[0], pszPrefix, pCtx->dr[1], pszPrefix, pCtx->dr[2], pszPrefix, pCtx->dr[3],
2892 pszPrefix, pCtx->dr[4], pszPrefix, pCtx->dr[5], pszPrefix, pCtx->dr[6], pszPrefix, pCtx->dr[7],
2893 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, pszPrefix, efl,
2894 pszPrefix, pCtx->ldtr.Sel, pCtx->ldtr.u64Base, pCtx->ldtr.u32Limit, pCtx->ldtr.Attr.u,
2895 pszPrefix, pCtx->tr.Sel, pCtx->tr.u64Base, pCtx->tr.u32Limit, pCtx->tr.Attr.u,
2896 pszPrefix, pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
2897 else
2898 pHlp->pfnPrintf(pHlp,
2899 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
2900 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
2901 "%scs={%04x base=%016RX64 limit=%08x flags=%08x} %sdr0=%08RX64 %sdr1=%08RX64\n"
2902 "%sds={%04x base=%016RX64 limit=%08x flags=%08x} %sdr2=%08RX64 %sdr3=%08RX64\n"
2903 "%ses={%04x base=%016RX64 limit=%08x flags=%08x} %sdr4=%08RX64 %sdr5=%08RX64\n"
2904 "%sfs={%04x base=%016RX64 limit=%08x flags=%08x} %sdr6=%08RX64 %sdr7=%08RX64\n"
2905 "%sgs={%04x base=%016RX64 limit=%08x flags=%08x} %scr0=%08RX64 %scr2=%08RX64\n"
2906 "%sss={%04x base=%016RX64 limit=%08x flags=%08x} %scr3=%08RX64 %scr4=%08RX64\n"
2907 "%sgdtr=%016RX64:%04x %sidtr=%016RX64:%04x %seflags=%08x\n"
2908 "%sldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
2909 "%str ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
2910 "%sSysEnter={cs=%04llx eip=%08llx esp=%08llx}\n"
2911 ,
2912 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
2913 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2914 pszPrefix, pCtxCore->cs.Sel, pCtx->cs.u64Base, pCtx->cs.u32Limit, pCtx->cs.Attr.u, pszPrefix, pCtx->dr[0], pszPrefix, pCtx->dr[1],
2915 pszPrefix, pCtxCore->ds.Sel, pCtx->ds.u64Base, pCtx->ds.u32Limit, pCtx->ds.Attr.u, pszPrefix, pCtx->dr[2], pszPrefix, pCtx->dr[3],
2916 pszPrefix, pCtxCore->es.Sel, pCtx->es.u64Base, pCtx->es.u32Limit, pCtx->es.Attr.u, pszPrefix, pCtx->dr[4], pszPrefix, pCtx->dr[5],
2917 pszPrefix, pCtxCore->fs.Sel, pCtx->fs.u64Base, pCtx->fs.u32Limit, pCtx->fs.Attr.u, pszPrefix, pCtx->dr[6], pszPrefix, pCtx->dr[7],
2918 pszPrefix, pCtxCore->gs.Sel, pCtx->gs.u64Base, pCtx->gs.u32Limit, pCtx->gs.Attr.u, pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2,
2919 pszPrefix, pCtxCore->ss.Sel, pCtx->ss.u64Base, pCtx->ss.u32Limit, pCtx->ss.Attr.u, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
2920 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, pszPrefix, efl,
2921 pszPrefix, pCtx->ldtr.Sel, pCtx->ldtr.u64Base, pCtx->ldtr.u32Limit, pCtx->ldtr.Attr.u,
2922 pszPrefix, pCtx->tr.Sel, pCtx->tr.u64Base, pCtx->tr.u32Limit, pCtx->tr.Attr.u,
2923 pszPrefix, pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
2924
2925 pHlp->pfnPrintf(pHlp, "%sxcr=%016RX64 %sxcr1=%016RX64 %sxss=%016RX64 (fXStateMask=%016RX64)\n",
2926 pszPrefix, pCtx->aXcr[0], pszPrefix, pCtx->aXcr[1],
2927 pszPrefix, UINT64_C(0) /** @todo XSS */, pCtx->fXStateMask);
2928 if (pCtx->CTX_SUFF(pXState))
2929 {
2930 PX86FXSTATE pFpuCtx = &pCtx->CTX_SUFF(pXState)->x87;
2931 pHlp->pfnPrintf(pHlp,
2932 "%sFCW=%04x %sFSW=%04x %sFTW=%04x %sFOP=%04x %sMXCSR=%08x %sMXCSR_MASK=%08x\n"
2933 "%sFPUIP=%08x %sCS=%04x %sRsrvd1=%04x %sFPUDP=%08x %sDS=%04x %sRsvrd2=%04x\n"
2934 ,
2935 pszPrefix, pFpuCtx->FCW, pszPrefix, pFpuCtx->FSW, pszPrefix, pFpuCtx->FTW, pszPrefix, pFpuCtx->FOP,
2936 pszPrefix, pFpuCtx->MXCSR, pszPrefix, pFpuCtx->MXCSR_MASK,
2937 pszPrefix, pFpuCtx->FPUIP, pszPrefix, pFpuCtx->CS, pszPrefix, pFpuCtx->Rsrvd1,
2938 pszPrefix, pFpuCtx->FPUDP, pszPrefix, pFpuCtx->DS, pszPrefix, pFpuCtx->Rsrvd2
2939 );
2940 /*
2941 * The FSAVE style memory image contains ST(0)-ST(7) at increasing addresses,
2942 * not (FP)R0-7 as Intel SDM suggests.
2943 */
2944 unsigned iShift = (pFpuCtx->FSW >> 11) & 7;
2945 for (unsigned iST = 0; iST < RT_ELEMENTS(pFpuCtx->aRegs); iST++)
2946 {
2947 unsigned iFPR = (iST + iShift) % RT_ELEMENTS(pFpuCtx->aRegs);
2948 unsigned uTag = (pFpuCtx->FTW >> (2 * iFPR)) & 3;
2949 char chSign = pFpuCtx->aRegs[iST].au16[4] & 0x8000 ? '-' : '+';
2950 unsigned iInteger = (unsigned)(pFpuCtx->aRegs[iST].au64[0] >> 63);
2951 uint64_t u64Fraction = pFpuCtx->aRegs[iST].au64[0] & UINT64_C(0x7fffffffffffffff);
2952 int iExponent = pFpuCtx->aRegs[iST].au16[4] & 0x7fff;
2953 iExponent -= 16383; /* subtract bias */
2954 /** @todo This isn't entirenly correct and needs more work! */
2955 pHlp->pfnPrintf(pHlp,
2956 "%sST(%u)=%sFPR%u={%04RX16'%08RX32'%08RX32} t%d %c%u.%022llu * 2 ^ %d (*)",
2957 pszPrefix, iST, pszPrefix, iFPR,
2958 pFpuCtx->aRegs[iST].au16[4], pFpuCtx->aRegs[iST].au32[1], pFpuCtx->aRegs[iST].au32[0],
2959 uTag, chSign, iInteger, u64Fraction, iExponent);
2960 if (pFpuCtx->aRegs[iST].au16[5] || pFpuCtx->aRegs[iST].au16[6] || pFpuCtx->aRegs[iST].au16[7])
2961 pHlp->pfnPrintf(pHlp, " res={%04RX16,%04RX16,%04RX16}\n",
2962 pFpuCtx->aRegs[iST].au16[5], pFpuCtx->aRegs[iST].au16[6], pFpuCtx->aRegs[iST].au16[7]);
2963 else
2964 pHlp->pfnPrintf(pHlp, "\n");
2965 }
2966
2967 /* XMM/YMM/ZMM registers. */
2968 if (pCtx->fXStateMask & XSAVE_C_YMM)
2969 {
2970 PCX86XSAVEYMMHI pYmmHiCtx = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_YMM_BIT, PCX86XSAVEYMMHI);
2971 if (!(pCtx->fXStateMask & XSAVE_C_ZMM_HI256))
2972 for (unsigned i = 0; i < RT_ELEMENTS(pFpuCtx->aXMM); i++)
2973 pHlp->pfnPrintf(pHlp, "%sYMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32\n",
2974 pszPrefix, i, i < 10 ? " " : "",
2975 pYmmHiCtx->aYmmHi[i].au32[3],
2976 pYmmHiCtx->aYmmHi[i].au32[2],
2977 pYmmHiCtx->aYmmHi[i].au32[1],
2978 pYmmHiCtx->aYmmHi[i].au32[0],
2979 pFpuCtx->aXMM[i].au32[3],
2980 pFpuCtx->aXMM[i].au32[2],
2981 pFpuCtx->aXMM[i].au32[1],
2982 pFpuCtx->aXMM[i].au32[0]);
2983 else
2984 {
2985 PCX86XSAVEZMMHI256 pZmmHi256 = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_ZMM_HI256_BIT, PCX86XSAVEZMMHI256);
2986 for (unsigned i = 0; i < RT_ELEMENTS(pFpuCtx->aXMM); i++)
2987 pHlp->pfnPrintf(pHlp,
2988 "%sZMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32''%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32\n",
2989 pszPrefix, i, i < 10 ? " " : "",
2990 pZmmHi256->aHi256Regs[i].au32[7],
2991 pZmmHi256->aHi256Regs[i].au32[6],
2992 pZmmHi256->aHi256Regs[i].au32[5],
2993 pZmmHi256->aHi256Regs[i].au32[4],
2994 pZmmHi256->aHi256Regs[i].au32[3],
2995 pZmmHi256->aHi256Regs[i].au32[2],
2996 pZmmHi256->aHi256Regs[i].au32[1],
2997 pZmmHi256->aHi256Regs[i].au32[0],
2998 pYmmHiCtx->aYmmHi[i].au32[3],
2999 pYmmHiCtx->aYmmHi[i].au32[2],
3000 pYmmHiCtx->aYmmHi[i].au32[1],
3001 pYmmHiCtx->aYmmHi[i].au32[0],
3002 pFpuCtx->aXMM[i].au32[3],
3003 pFpuCtx->aXMM[i].au32[2],
3004 pFpuCtx->aXMM[i].au32[1],
3005 pFpuCtx->aXMM[i].au32[0]);
3006
3007 PCX86XSAVEZMM16HI pZmm16Hi = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_ZMM_16HI_BIT, PCX86XSAVEZMM16HI);
3008 for (unsigned i = 0; i < RT_ELEMENTS(pZmm16Hi->aRegs); i++)
3009 pHlp->pfnPrintf(pHlp,
3010 "%sZMM%u=%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32''%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32\n",
3011 pszPrefix, i + 16,
3012 pZmm16Hi->aRegs[i].au32[15],
3013 pZmm16Hi->aRegs[i].au32[14],
3014 pZmm16Hi->aRegs[i].au32[13],
3015 pZmm16Hi->aRegs[i].au32[12],
3016 pZmm16Hi->aRegs[i].au32[11],
3017 pZmm16Hi->aRegs[i].au32[10],
3018 pZmm16Hi->aRegs[i].au32[9],
3019 pZmm16Hi->aRegs[i].au32[8],
3020 pZmm16Hi->aRegs[i].au32[7],
3021 pZmm16Hi->aRegs[i].au32[6],
3022 pZmm16Hi->aRegs[i].au32[5],
3023 pZmm16Hi->aRegs[i].au32[4],
3024 pZmm16Hi->aRegs[i].au32[3],
3025 pZmm16Hi->aRegs[i].au32[2],
3026 pZmm16Hi->aRegs[i].au32[1],
3027 pZmm16Hi->aRegs[i].au32[0]);
3028 }
3029 }
3030 else
3031 for (unsigned i = 0; i < RT_ELEMENTS(pFpuCtx->aXMM); i++)
3032 pHlp->pfnPrintf(pHlp,
3033 i & 1
3034 ? "%sXMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32\n"
3035 : "%sXMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32 ",
3036 pszPrefix, i, i < 10 ? " " : "",
3037 pFpuCtx->aXMM[i].au32[3],
3038 pFpuCtx->aXMM[i].au32[2],
3039 pFpuCtx->aXMM[i].au32[1],
3040 pFpuCtx->aXMM[i].au32[0]);
3041
3042 if (pCtx->fXStateMask & XSAVE_C_OPMASK)
3043 {
3044 PCX86XSAVEOPMASK pOpMask = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_OPMASK_BIT, PCX86XSAVEOPMASK);
3045 for (unsigned i = 0; i < RT_ELEMENTS(pOpMask->aKRegs); i += 4)
3046 pHlp->pfnPrintf(pHlp, "%sK%u=%016RX64 %sK%u=%016RX64 %sK%u=%016RX64 %sK%u=%016RX64\n",
3047 pszPrefix, i + 0, pOpMask->aKRegs[i + 0],
3048 pszPrefix, i + 1, pOpMask->aKRegs[i + 1],
3049 pszPrefix, i + 2, pOpMask->aKRegs[i + 2],
3050 pszPrefix, i + 3, pOpMask->aKRegs[i + 3]);
3051 }
3052
3053 if (pCtx->fXStateMask & XSAVE_C_BNDREGS)
3054 {
3055 PCX86XSAVEBNDREGS pBndRegs = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_BNDREGS_BIT, PCX86XSAVEBNDREGS);
3056 for (unsigned i = 0; i < RT_ELEMENTS(pBndRegs->aRegs); i += 2)
3057 pHlp->pfnPrintf(pHlp, "%sBNDREG%u=%016RX64/%016RX64 %sBNDREG%u=%016RX64/%016RX64\n",
3058 pszPrefix, i, pBndRegs->aRegs[i].uLowerBound, pBndRegs->aRegs[i].uUpperBound,
3059 pszPrefix, i + 1, pBndRegs->aRegs[i + 1].uLowerBound, pBndRegs->aRegs[i + 1].uUpperBound);
3060 }
3061
3062 if (pCtx->fXStateMask & XSAVE_C_BNDCSR)
3063 {
3064 PCX86XSAVEBNDCFG pBndCfg = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_BNDCSR_BIT, PCX86XSAVEBNDCFG);
3065 pHlp->pfnPrintf(pHlp, "%sBNDCFG.CONFIG=%016RX64 %sBNDCFG.STATUS=%016RX64\n",
3066 pszPrefix, pBndCfg->fConfig, pszPrefix, pBndCfg->fStatus);
3067 }
3068
3069 for (unsigned i = 0; i < RT_ELEMENTS(pFpuCtx->au32RsrvdRest); i++)
3070 if (pFpuCtx->au32RsrvdRest[i])
3071 pHlp->pfnPrintf(pHlp, "%sRsrvdRest[%u]=%RX32 (offset=%#x)\n",
3072 pszPrefix, i, pFpuCtx->au32RsrvdRest[i], RT_UOFFSETOF_DYN(X86FXSTATE, au32RsrvdRest[i]) );
3073 }
3074
3075 pHlp->pfnPrintf(pHlp,
3076 "%sEFER =%016RX64\n"
3077 "%sPAT =%016RX64\n"
3078 "%sSTAR =%016RX64\n"
3079 "%sCSTAR =%016RX64\n"
3080 "%sLSTAR =%016RX64\n"
3081 "%sSFMASK =%016RX64\n"
3082 "%sKERNELGSBASE =%016RX64\n",
3083 pszPrefix, pCtx->msrEFER,
3084 pszPrefix, pCtx->msrPAT,
3085 pszPrefix, pCtx->msrSTAR,
3086 pszPrefix, pCtx->msrCSTAR,
3087 pszPrefix, pCtx->msrLSTAR,
3088 pszPrefix, pCtx->msrSFMASK,
3089 pszPrefix, pCtx->msrKERNELGSBASE);
3090 break;
3091 }
3092}
3093
3094
3095/**
3096 * Display all cpu states and any other cpum info.
3097 *
3098 * @param pVM The cross context VM structure.
3099 * @param pHlp The info helper functions.
3100 * @param pszArgs Arguments, ignored.
3101 */
3102static DECLCALLBACK(void) cpumR3InfoAll(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3103{
3104 cpumR3InfoGuest(pVM, pHlp, pszArgs);
3105 cpumR3InfoGuestInstr(pVM, pHlp, pszArgs);
3106 cpumR3InfoGuestHwvirt(pVM, pHlp, pszArgs);
3107 cpumR3InfoHyper(pVM, pHlp, pszArgs);
3108 cpumR3InfoHost(pVM, pHlp, pszArgs);
3109}
3110
3111
3112/**
3113 * Parses the info argument.
3114 *
3115 * The argument starts with 'verbose', 'terse' or 'default' and then
3116 * continues with the comment string.
3117 *
3118 * @param pszArgs The pointer to the argument string.
3119 * @param penmType Where to store the dump type request.
3120 * @param ppszComment Where to store the pointer to the comment string.
3121 */
3122static void cpumR3InfoParseArg(const char *pszArgs, CPUMDUMPTYPE *penmType, const char **ppszComment)
3123{
3124 if (!pszArgs)
3125 {
3126 *penmType = CPUMDUMPTYPE_DEFAULT;
3127 *ppszComment = "";
3128 }
3129 else
3130 {
3131 if (!strncmp(pszArgs, RT_STR_TUPLE("verbose")))
3132 {
3133 pszArgs += 7;
3134 *penmType = CPUMDUMPTYPE_VERBOSE;
3135 }
3136 else if (!strncmp(pszArgs, RT_STR_TUPLE("terse")))
3137 {
3138 pszArgs += 5;
3139 *penmType = CPUMDUMPTYPE_TERSE;
3140 }
3141 else if (!strncmp(pszArgs, RT_STR_TUPLE("default")))
3142 {
3143 pszArgs += 7;
3144 *penmType = CPUMDUMPTYPE_DEFAULT;
3145 }
3146 else
3147 *penmType = CPUMDUMPTYPE_DEFAULT;
3148 *ppszComment = RTStrStripL(pszArgs);
3149 }
3150}
3151
3152
3153/**
3154 * Display the guest cpu state.
3155 *
3156 * @param pVM The cross context VM structure.
3157 * @param pHlp The info helper functions.
3158 * @param pszArgs Arguments.
3159 */
3160static DECLCALLBACK(void) cpumR3InfoGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3161{
3162 CPUMDUMPTYPE enmType;
3163 const char *pszComment;
3164 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
3165
3166 PVMCPU pVCpu = VMMGetCpu(pVM);
3167 if (!pVCpu)
3168 pVCpu = &pVM->aCpus[0];
3169
3170 pHlp->pfnPrintf(pHlp, "Guest CPUM (VCPU %d) state: %s\n", pVCpu->idCpu, pszComment);
3171
3172 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
3173 cpumR3InfoOne(pVM, pCtx, CPUMCTX2CORE(pCtx), pHlp, enmType, "");
3174}
3175
3176
3177/**
3178 * Displays an SVM VMCB control area.
3179 *
3180 * @param pHlp The info helper functions.
3181 * @param pVmcbCtrl Pointer to a SVM VMCB controls area.
3182 * @param pszPrefix Caller specified string prefix.
3183 */
3184static void cpumR3InfoSvmVmcbCtrl(PCDBGFINFOHLP pHlp, PCSVMVMCBCTRL pVmcbCtrl, const char *pszPrefix)
3185{
3186 AssertReturnVoid(pHlp);
3187 AssertReturnVoid(pVmcbCtrl);
3188
3189 pHlp->pfnPrintf(pHlp, "%su16InterceptRdCRx = %#RX16\n", pszPrefix, pVmcbCtrl->u16InterceptRdCRx);
3190 pHlp->pfnPrintf(pHlp, "%su16InterceptWrCRx = %#RX16\n", pszPrefix, pVmcbCtrl->u16InterceptWrCRx);
3191 pHlp->pfnPrintf(pHlp, "%su16InterceptRdDRx = %#RX16\n", pszPrefix, pVmcbCtrl->u16InterceptRdDRx);
3192 pHlp->pfnPrintf(pHlp, "%su16InterceptWrDRx = %#RX16\n", pszPrefix, pVmcbCtrl->u16InterceptWrDRx);
3193 pHlp->pfnPrintf(pHlp, "%su32InterceptXcpt = %#RX32\n", pszPrefix, pVmcbCtrl->u32InterceptXcpt);
3194 pHlp->pfnPrintf(pHlp, "%su64InterceptCtrl = %#RX64\n", pszPrefix, pVmcbCtrl->u64InterceptCtrl);
3195 pHlp->pfnPrintf(pHlp, "%su16PauseFilterThreshold = %#RX16\n", pszPrefix, pVmcbCtrl->u16PauseFilterThreshold);
3196 pHlp->pfnPrintf(pHlp, "%su16PauseFilterCount = %#RX16\n", pszPrefix, pVmcbCtrl->u16PauseFilterCount);
3197 pHlp->pfnPrintf(pHlp, "%su64IOPMPhysAddr = %#RX64\n", pszPrefix, pVmcbCtrl->u64IOPMPhysAddr);
3198 pHlp->pfnPrintf(pHlp, "%su64MSRPMPhysAddr = %#RX64\n", pszPrefix, pVmcbCtrl->u64MSRPMPhysAddr);
3199 pHlp->pfnPrintf(pHlp, "%su64TSCOffset = %#RX64\n", pszPrefix, pVmcbCtrl->u64TSCOffset);
3200 pHlp->pfnPrintf(pHlp, "%sTLBCtrl\n", pszPrefix);
3201 pHlp->pfnPrintf(pHlp, "%s u32ASID = %#RX32\n", pszPrefix, pVmcbCtrl->TLBCtrl.n.u32ASID);
3202 pHlp->pfnPrintf(pHlp, "%s u8TLBFlush = %u\n", pszPrefix, pVmcbCtrl->TLBCtrl.n.u8TLBFlush);
3203 pHlp->pfnPrintf(pHlp, "%sIntCtrl\n", pszPrefix);
3204 pHlp->pfnPrintf(pHlp, "%s u8VTPR = %#RX8 (%u)\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u8VTPR, pVmcbCtrl->IntCtrl.n.u8VTPR);
3205 pHlp->pfnPrintf(pHlp, "%s u1VIrqPending = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1VIrqPending);
3206 pHlp->pfnPrintf(pHlp, "%s u1VGif = %u\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1VGif);
3207 pHlp->pfnPrintf(pHlp, "%s u4VIntrPrio = %#RX8\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u4VIntrPrio);
3208 pHlp->pfnPrintf(pHlp, "%s u1IgnoreTPR = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1IgnoreTPR);
3209 pHlp->pfnPrintf(pHlp, "%s u1VIntrMasking = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1VIntrMasking);
3210 pHlp->pfnPrintf(pHlp, "%s u1VGifEnable = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1VGifEnable);
3211 pHlp->pfnPrintf(pHlp, "%s u1AvicEnable = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1AvicEnable);
3212 pHlp->pfnPrintf(pHlp, "%s u8VIntrVector = %#RX8\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u8VIntrVector);
3213 pHlp->pfnPrintf(pHlp, "%sIntShadow\n", pszPrefix);
3214 pHlp->pfnPrintf(pHlp, "%s u1IntShadow = %RTbool\n", pszPrefix, pVmcbCtrl->IntShadow.n.u1IntShadow);
3215 pHlp->pfnPrintf(pHlp, "%s u1GuestIntMask = %RTbool\n", pszPrefix, pVmcbCtrl->IntShadow.n.u1GuestIntMask);
3216 pHlp->pfnPrintf(pHlp, "%su64ExitCode = %#RX64\n", pszPrefix, pVmcbCtrl->u64ExitCode);
3217 pHlp->pfnPrintf(pHlp, "%su64ExitInfo1 = %#RX64\n", pszPrefix, pVmcbCtrl->u64ExitInfo1);
3218 pHlp->pfnPrintf(pHlp, "%su64ExitInfo2 = %#RX64\n", pszPrefix, pVmcbCtrl->u64ExitInfo2);
3219 pHlp->pfnPrintf(pHlp, "%sExitIntInfo\n", pszPrefix);
3220 pHlp->pfnPrintf(pHlp, "%s u8Vector = %#RX8 (%u)\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u8Vector, pVmcbCtrl->ExitIntInfo.n.u8Vector);
3221 pHlp->pfnPrintf(pHlp, "%s u3Type = %u\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u3Type);
3222 pHlp->pfnPrintf(pHlp, "%s u1ErrorCodeValid = %RTbool\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u1ErrorCodeValid);
3223 pHlp->pfnPrintf(pHlp, "%s u1Valid = %RTbool\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u1Valid);
3224 pHlp->pfnPrintf(pHlp, "%s u32ErrorCode = %#RX32\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u32ErrorCode);
3225 pHlp->pfnPrintf(pHlp, "%sNestedPaging and SEV\n", pszPrefix);
3226 pHlp->pfnPrintf(pHlp, "%s u1NestedPaging = %RTbool\n", pszPrefix, pVmcbCtrl->NestedPagingCtrl.n.u1NestedPaging);
3227 pHlp->pfnPrintf(pHlp, "%s u1Sev = %RTbool\n", pszPrefix, pVmcbCtrl->NestedPagingCtrl.n.u1Sev);
3228 pHlp->pfnPrintf(pHlp, "%s u1SevEs = %RTbool\n", pszPrefix, pVmcbCtrl->NestedPagingCtrl.n.u1SevEs);
3229 pHlp->pfnPrintf(pHlp, "%sAvicBar\n", pszPrefix);
3230 pHlp->pfnPrintf(pHlp, "%s u40Addr = %#RX64\n", pszPrefix, pVmcbCtrl->AvicBar.n.u40Addr);
3231 pHlp->pfnPrintf(pHlp, "%sEventInject\n", pszPrefix);
3232 pHlp->pfnPrintf(pHlp, "%s EventInject\n", pszPrefix);
3233 pHlp->pfnPrintf(pHlp, "%s u8Vector = %#RX32 (%u)\n", pszPrefix, pVmcbCtrl->EventInject.n.u8Vector, pVmcbCtrl->EventInject.n.u8Vector);
3234 pHlp->pfnPrintf(pHlp, "%s u3Type = %u\n", pszPrefix, pVmcbCtrl->EventInject.n.u3Type);
3235 pHlp->pfnPrintf(pHlp, "%s u1ErrorCodeValid = %RTbool\n", pszPrefix, pVmcbCtrl->EventInject.n.u1ErrorCodeValid);
3236 pHlp->pfnPrintf(pHlp, "%s u1Valid = %RTbool\n", pszPrefix, pVmcbCtrl->EventInject.n.u1Valid);
3237 pHlp->pfnPrintf(pHlp, "%s u32ErrorCode = %#RX32\n", pszPrefix, pVmcbCtrl->EventInject.n.u32ErrorCode);
3238 pHlp->pfnPrintf(pHlp, "%su64NestedPagingCR3 = %#RX64\n", pszPrefix, pVmcbCtrl->u64NestedPagingCR3);
3239 pHlp->pfnPrintf(pHlp, "%sLBR virtualization\n", pszPrefix);
3240 pHlp->pfnPrintf(pHlp, "%s u1LbrVirt = %RTbool\n", pszPrefix, pVmcbCtrl->LbrVirt.n.u1LbrVirt);
3241 pHlp->pfnPrintf(pHlp, "%s u1VirtVmsaveVmload = %RTbool\n", pszPrefix, pVmcbCtrl->LbrVirt.n.u1VirtVmsaveVmload);
3242 pHlp->pfnPrintf(pHlp, "%su32VmcbCleanBits = %#RX32\n", pszPrefix, pVmcbCtrl->u32VmcbCleanBits);
3243 pHlp->pfnPrintf(pHlp, "%su64NextRIP = %#RX64\n", pszPrefix, pVmcbCtrl->u64NextRIP);
3244 pHlp->pfnPrintf(pHlp, "%scbInstrFetched = %u\n", pszPrefix, pVmcbCtrl->cbInstrFetched);
3245 pHlp->pfnPrintf(pHlp, "%sabInstr = %.*Rhxs\n", pszPrefix, sizeof(pVmcbCtrl->abInstr), pVmcbCtrl->abInstr);
3246 pHlp->pfnPrintf(pHlp, "%sAvicBackingPagePtr\n", pszPrefix);
3247 pHlp->pfnPrintf(pHlp, "%s u40Addr = %#RX64\n", pszPrefix, pVmcbCtrl->AvicBackingPagePtr.n.u40Addr);
3248 pHlp->pfnPrintf(pHlp, "%sAvicLogicalTablePtr\n", pszPrefix);
3249 pHlp->pfnPrintf(pHlp, "%s u40Addr = %#RX64\n", pszPrefix, pVmcbCtrl->AvicLogicalTablePtr.n.u40Addr);
3250 pHlp->pfnPrintf(pHlp, "%sAvicPhysicalTablePtr\n", pszPrefix);
3251 pHlp->pfnPrintf(pHlp, "%s u8LastGuestCoreId = %u\n", pszPrefix, pVmcbCtrl->AvicPhysicalTablePtr.n.u8LastGuestCoreId);
3252 pHlp->pfnPrintf(pHlp, "%s u40Addr = %#RX64\n", pszPrefix, pVmcbCtrl->AvicPhysicalTablePtr.n.u40Addr);
3253}
3254
3255
3256/**
3257 * Helper for dumping the SVM VMCB selector registers.
3258 *
3259 * @param pHlp The info helper functions.
3260 * @param pSel Pointer to the SVM selector register.
3261 * @param pszName Name of the selector.
3262 * @param pszPrefix Caller specified string prefix.
3263 */
3264DECLINLINE(void) cpumR3InfoSvmVmcbSelReg(PCDBGFINFOHLP pHlp, PCSVMSELREG pSel, const char *pszName, const char *pszPrefix)
3265{
3266 /* The string width of 4 used below is to handle 'LDTR'. Change later if longer register names are used. */
3267 pHlp->pfnPrintf(pHlp, "%s%-4s = {%04x base=%016RX64 limit=%08x flags=%04x}\n", pszPrefix,
3268 pszName, pSel->u16Sel, pSel->u64Base, pSel->u32Limit, pSel->u16Attr);
3269}
3270
3271
3272/**
3273 * Helper for dumping the SVM VMCB GDTR/IDTR registers.
3274 *
3275 * @param pHlp The info helper functions.
3276 * @param pXdtr Pointer to the descriptor table register.
3277 * @param pszName Name of the descriptor table register.
3278 * @param pszPrefix Caller specified string prefix.
3279 */
3280DECLINLINE(void) cpumR3InfoSvmVmcbXdtr(PCDBGFINFOHLP pHlp, PCSVMXDTR pXdtr, const char *pszName, const char *pszPrefix)
3281{
3282 /* The string width of 4 used below is to cover 'GDTR', 'IDTR'. Change later if longer register names are used. */
3283 pHlp->pfnPrintf(pHlp, "%s%-4s = %016RX64:%04x\n", pszPrefix, pszName, pXdtr->u64Base, pXdtr->u32Limit);
3284}
3285
3286
3287/**
3288 * Displays an SVM VMCB state-save area.
3289 *
3290 * @param pHlp The info helper functions.
3291 * @param pVmcbStateSave Pointer to a SVM VMCB controls area.
3292 * @param pszPrefix Caller specified string prefix.
3293 */
3294static void cpumR3InfoSvmVmcbStateSave(PCDBGFINFOHLP pHlp, PCSVMVMCBSTATESAVE pVmcbStateSave, const char *pszPrefix)
3295{
3296 AssertReturnVoid(pHlp);
3297 AssertReturnVoid(pVmcbStateSave);
3298
3299 char szEFlags[80];
3300 cpumR3InfoFormatFlags(&szEFlags[0], pVmcbStateSave->u64RFlags);
3301
3302 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->CS, "CS", pszPrefix);
3303 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->SS, "SS", pszPrefix);
3304 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->ES, "ES", pszPrefix);
3305 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->DS, "DS", pszPrefix);
3306 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->FS, "FS", pszPrefix);
3307 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->GS, "GS", pszPrefix);
3308 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->LDTR, "LDTR", pszPrefix);
3309 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->TR, "TR", pszPrefix);
3310 cpumR3InfoSvmVmcbXdtr(pHlp, &pVmcbStateSave->GDTR, "GDTR", pszPrefix);
3311 cpumR3InfoSvmVmcbXdtr(pHlp, &pVmcbStateSave->IDTR, "IDTR", pszPrefix);
3312 pHlp->pfnPrintf(pHlp, "%su8CPL = %u\n", pszPrefix, pVmcbStateSave->u8CPL);
3313 pHlp->pfnPrintf(pHlp, "%su64EFER = %#RX64\n", pszPrefix, pVmcbStateSave->u64EFER);
3314 pHlp->pfnPrintf(pHlp, "%su64CR4 = %#RX64\n", pszPrefix, pVmcbStateSave->u64CR4);
3315 pHlp->pfnPrintf(pHlp, "%su64CR3 = %#RX64\n", pszPrefix, pVmcbStateSave->u64CR3);
3316 pHlp->pfnPrintf(pHlp, "%su64CR0 = %#RX64\n", pszPrefix, pVmcbStateSave->u64CR0);
3317 pHlp->pfnPrintf(pHlp, "%su64DR7 = %#RX64\n", pszPrefix, pVmcbStateSave->u64DR7);
3318 pHlp->pfnPrintf(pHlp, "%su64DR6 = %#RX64\n", pszPrefix, pVmcbStateSave->u64DR6);
3319 pHlp->pfnPrintf(pHlp, "%su64RFlags = %#RX64 %31s\n", pszPrefix, pVmcbStateSave->u64RFlags, szEFlags);
3320 pHlp->pfnPrintf(pHlp, "%su64RIP = %#RX64\n", pszPrefix, pVmcbStateSave->u64RIP);
3321 pHlp->pfnPrintf(pHlp, "%su64RSP = %#RX64\n", pszPrefix, pVmcbStateSave->u64RSP);
3322 pHlp->pfnPrintf(pHlp, "%su64RAX = %#RX64\n", pszPrefix, pVmcbStateSave->u64RAX);
3323 pHlp->pfnPrintf(pHlp, "%su64STAR = %#RX64\n", pszPrefix, pVmcbStateSave->u64STAR);
3324 pHlp->pfnPrintf(pHlp, "%su64LSTAR = %#RX64\n", pszPrefix, pVmcbStateSave->u64LSTAR);
3325 pHlp->pfnPrintf(pHlp, "%su64CSTAR = %#RX64\n", pszPrefix, pVmcbStateSave->u64CSTAR);
3326 pHlp->pfnPrintf(pHlp, "%su64SFMASK = %#RX64\n", pszPrefix, pVmcbStateSave->u64SFMASK);
3327 pHlp->pfnPrintf(pHlp, "%su64KernelGSBase = %#RX64\n", pszPrefix, pVmcbStateSave->u64KernelGSBase);
3328 pHlp->pfnPrintf(pHlp, "%su64SysEnterCS = %#RX64\n", pszPrefix, pVmcbStateSave->u64SysEnterCS);
3329 pHlp->pfnPrintf(pHlp, "%su64SysEnterEIP = %#RX64\n", pszPrefix, pVmcbStateSave->u64SysEnterEIP);
3330 pHlp->pfnPrintf(pHlp, "%su64SysEnterESP = %#RX64\n", pszPrefix, pVmcbStateSave->u64SysEnterESP);
3331 pHlp->pfnPrintf(pHlp, "%su64CR2 = %#RX64\n", pszPrefix, pVmcbStateSave->u64CR2);
3332 pHlp->pfnPrintf(pHlp, "%su64PAT = %#RX64\n", pszPrefix, pVmcbStateSave->u64PAT);
3333 pHlp->pfnPrintf(pHlp, "%su64DBGCTL = %#RX64\n", pszPrefix, pVmcbStateSave->u64DBGCTL);
3334 pHlp->pfnPrintf(pHlp, "%su64BR_FROM = %#RX64\n", pszPrefix, pVmcbStateSave->u64BR_FROM);
3335 pHlp->pfnPrintf(pHlp, "%su64BR_TO = %#RX64\n", pszPrefix, pVmcbStateSave->u64BR_TO);
3336 pHlp->pfnPrintf(pHlp, "%su64LASTEXCPFROM = %#RX64\n", pszPrefix, pVmcbStateSave->u64LASTEXCPFROM);
3337 pHlp->pfnPrintf(pHlp, "%su64LASTEXCPTO = %#RX64\n", pszPrefix, pVmcbStateSave->u64LASTEXCPTO);
3338}
3339
3340
3341/**
3342 * Display the guest's hardware-virtualization cpu state.
3343 *
3344 * @param pVM The cross context VM structure.
3345 * @param pHlp The info helper functions.
3346 * @param pszArgs Arguments, ignored.
3347 */
3348static DECLCALLBACK(void) cpumR3InfoGuestHwvirt(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3349{
3350 RT_NOREF(pszArgs);
3351
3352 PVMCPU pVCpu = VMMGetCpu(pVM);
3353 if (!pVCpu)
3354 pVCpu = &pVM->aCpus[0];
3355
3356 /*
3357 * Figure out what to dump.
3358 *
3359 * In the future we may need to dump everything whether or not we're actively in nested-guest mode
3360 * or not, hence the reason why we use a mask to determine what needs dumping. Currently, we only
3361 * dump hwvirt. state when the guest CPU is executing a nested-guest.
3362 */
3363 /** @todo perhaps make this configurable through pszArgs, depending on how much
3364 * noise we wish to accept when nested hwvirt. isn't used. */
3365#define CPUMHWVIRTDUMP_NONE (0)
3366#define CPUMHWVIRTDUMP_SVM RT_BIT(0)
3367#define CPUMHWVIRTDUMP_VMX RT_BIT(1)
3368#define CPUMHWVIRTDUMP_COMMON RT_BIT(2)
3369#define CPUMHWVIRTDUMP_LAST CPUMHWVIRTDUMP_VMX
3370
3371 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
3372 static const char *const s_aHwvirtModes[] = { "No/inactive", "SVM", "VMX", "Common" };
3373 bool const fSvm = pVM->cpum.s.GuestFeatures.fSvm;
3374 bool const fVmx = pVM->cpum.s.GuestFeatures.fVmx;
3375 uint8_t const idxHwvirtState = fSvm ? CPUMHWVIRTDUMP_SVM : (fVmx ? CPUMHWVIRTDUMP_VMX : CPUMHWVIRTDUMP_NONE);
3376 AssertCompile(CPUMHWVIRTDUMP_LAST <= RT_ELEMENTS(s_aHwvirtModes));
3377 Assert(idxHwvirtState < RT_ELEMENTS(s_aHwvirtModes));
3378 const char *pcszHwvirtMode = s_aHwvirtModes[idxHwvirtState];
3379 uint32_t fDumpState = idxHwvirtState | CPUMHWVIRTDUMP_COMMON;
3380
3381 /*
3382 * Dump it.
3383 */
3384 pHlp->pfnPrintf(pHlp, "VCPU[%u] hardware virtualization state:\n", pVCpu->idCpu);
3385
3386 if (fDumpState & CPUMHWVIRTDUMP_COMMON)
3387 pHlp->pfnPrintf(pHlp, "fLocalForcedActions = %#RX32\n", pCtx->hwvirt.fLocalForcedActions);
3388
3389 pHlp->pfnPrintf(pHlp, "%s hwvirt state%s\n", pcszHwvirtMode, (fDumpState & (CPUMHWVIRTDUMP_SVM | CPUMHWVIRTDUMP_VMX)) ?
3390 ":" : "");
3391 if (fDumpState & CPUMHWVIRTDUMP_SVM)
3392 {
3393 pHlp->pfnPrintf(pHlp, " fGif = %RTbool\n", pCtx->hwvirt.fGif);
3394
3395 char szEFlags[80];
3396 cpumR3InfoFormatFlags(&szEFlags[0], pCtx->hwvirt.svm.HostState.rflags.u);
3397 pHlp->pfnPrintf(pHlp, " uMsrHSavePa = %#RX64\n", pCtx->hwvirt.svm.uMsrHSavePa);
3398 pHlp->pfnPrintf(pHlp, " GCPhysVmcb = %#RGp\n", pCtx->hwvirt.svm.GCPhysVmcb);
3399 pHlp->pfnPrintf(pHlp, " VmcbCtrl:\n");
3400 cpumR3InfoSvmVmcbCtrl(pHlp, &pCtx->hwvirt.svm.pVmcbR3->ctrl, " " /* pszPrefix */);
3401 pHlp->pfnPrintf(pHlp, " VmcbStateSave:\n");
3402 cpumR3InfoSvmVmcbStateSave(pHlp, &pCtx->hwvirt.svm.pVmcbR3->guest, " " /* pszPrefix */);
3403 pHlp->pfnPrintf(pHlp, " HostState:\n");
3404 pHlp->pfnPrintf(pHlp, " uEferMsr = %#RX64\n", pCtx->hwvirt.svm.HostState.uEferMsr);
3405 pHlp->pfnPrintf(pHlp, " uCr0 = %#RX64\n", pCtx->hwvirt.svm.HostState.uCr0);
3406 pHlp->pfnPrintf(pHlp, " uCr4 = %#RX64\n", pCtx->hwvirt.svm.HostState.uCr4);
3407 pHlp->pfnPrintf(pHlp, " uCr3 = %#RX64\n", pCtx->hwvirt.svm.HostState.uCr3);
3408 pHlp->pfnPrintf(pHlp, " uRip = %#RX64\n", pCtx->hwvirt.svm.HostState.uRip);
3409 pHlp->pfnPrintf(pHlp, " uRsp = %#RX64\n", pCtx->hwvirt.svm.HostState.uRsp);
3410 pHlp->pfnPrintf(pHlp, " uRax = %#RX64\n", pCtx->hwvirt.svm.HostState.uRax);
3411 pHlp->pfnPrintf(pHlp, " rflags = %#RX64 %31s\n", pCtx->hwvirt.svm.HostState.rflags.u64, szEFlags);
3412 PCPUMSELREG pSel = &pCtx->hwvirt.svm.HostState.es;
3413 pHlp->pfnPrintf(pHlp, " es = {%04x base=%016RX64 limit=%08x flags=%08x}\n",
3414 pSel->Sel, pSel->u64Base, pSel->u32Limit, pSel->Attr.u);
3415 pSel = &pCtx->hwvirt.svm.HostState.cs;
3416 pHlp->pfnPrintf(pHlp, " cs = {%04x base=%016RX64 limit=%08x flags=%08x}\n",
3417 pSel->Sel, pSel->u64Base, pSel->u32Limit, pSel->Attr.u);
3418 pSel = &pCtx->hwvirt.svm.HostState.ss;
3419 pHlp->pfnPrintf(pHlp, " ss = {%04x base=%016RX64 limit=%08x flags=%08x}\n",
3420 pSel->Sel, pSel->u64Base, pSel->u32Limit, pSel->Attr.u);
3421 pSel = &pCtx->hwvirt.svm.HostState.ds;
3422 pHlp->pfnPrintf(pHlp, " ds = {%04x base=%016RX64 limit=%08x flags=%08x}\n",
3423 pSel->Sel, pSel->u64Base, pSel->u32Limit, pSel->Attr.u);
3424 pHlp->pfnPrintf(pHlp, " gdtr = %016RX64:%04x\n", pCtx->hwvirt.svm.HostState.gdtr.pGdt,
3425 pCtx->hwvirt.svm.HostState.gdtr.cbGdt);
3426 pHlp->pfnPrintf(pHlp, " idtr = %016RX64:%04x\n", pCtx->hwvirt.svm.HostState.idtr.pIdt,
3427 pCtx->hwvirt.svm.HostState.idtr.cbIdt);
3428 pHlp->pfnPrintf(pHlp, " cPauseFilter = %RU16\n", pCtx->hwvirt.svm.cPauseFilter);
3429 pHlp->pfnPrintf(pHlp, " cPauseFilterThreshold = %RU32\n", pCtx->hwvirt.svm.cPauseFilterThreshold);
3430 pHlp->pfnPrintf(pHlp, " fInterceptEvents = %u\n", pCtx->hwvirt.svm.fInterceptEvents);
3431 pHlp->pfnPrintf(pHlp, " pvMsrBitmapR3 = %p\n", pCtx->hwvirt.svm.pvMsrBitmapR3);
3432 pHlp->pfnPrintf(pHlp, " pvMsrBitmapR0 = %RKv\n", pCtx->hwvirt.svm.pvMsrBitmapR0);
3433 pHlp->pfnPrintf(pHlp, " pvIoBitmapR3 = %p\n", pCtx->hwvirt.svm.pvIoBitmapR3);
3434 pHlp->pfnPrintf(pHlp, " pvIoBitmapR0 = %RKv\n", pCtx->hwvirt.svm.pvIoBitmapR0);
3435 }
3436
3437 if (fDumpState & CPUMHWVIRTDUMP_VMX)
3438 {
3439 pHlp->pfnPrintf(pHlp, " GCPhysVmxon = %#RGp\n", pCtx->hwvirt.vmx.GCPhysVmxon);
3440 pHlp->pfnPrintf(pHlp, " GCPhysVmcs = %#RGp\n", pCtx->hwvirt.vmx.GCPhysVmcs);
3441 pHlp->pfnPrintf(pHlp, " GCPhysShadowVmcs = %#RGp\n", pCtx->hwvirt.vmx.GCPhysShadowVmcs);
3442 pHlp->pfnPrintf(pHlp, " enmDiag = %u (%s)\n", pCtx->hwvirt.vmx.enmDiag, HMVmxGetDiagDesc(pCtx->hwvirt.vmx.enmDiag));
3443 pHlp->pfnPrintf(pHlp, " enmAbort = %u (%s)\n", pCtx->hwvirt.vmx.enmAbort, HMVmxGetAbortDesc(pCtx->hwvirt.vmx.enmAbort));
3444 pHlp->pfnPrintf(pHlp, " uAbortAux = %u (%#x)\n", pCtx->hwvirt.vmx.uAbortAux, pCtx->hwvirt.vmx.uAbortAux);
3445 pHlp->pfnPrintf(pHlp, " fInVmxRootMode = %RTbool\n", pCtx->hwvirt.vmx.fInVmxRootMode);
3446 pHlp->pfnPrintf(pHlp, " fInVmxNonRootMode = %RTbool\n", pCtx->hwvirt.vmx.fInVmxNonRootMode);
3447 pHlp->pfnPrintf(pHlp, " fInterceptEvents = %RTbool\n", pCtx->hwvirt.vmx.fInterceptEvents);
3448 pHlp->pfnPrintf(pHlp, " uFirstPauseLoopTick = %RX64\n", pCtx->hwvirt.vmx.uFirstPauseLoopTick);
3449 pHlp->pfnPrintf(pHlp, " uPrevPauseTick = %RX64\n", pCtx->hwvirt.vmx.uPrevPauseTick);
3450
3451 /** @todo NSTVMX: Dump remaining/new fields. */
3452 }
3453
3454#undef CPUMHWVIRTDUMP_NONE
3455#undef CPUMHWVIRTDUMP_COMMON
3456#undef CPUMHWVIRTDUMP_SVM
3457#undef CPUMHWVIRTDUMP_VMX
3458#undef CPUMHWVIRTDUMP_LAST
3459#undef CPUMHWVIRTDUMP_ALL
3460}
3461
3462/**
3463 * Display the current guest instruction
3464 *
3465 * @param pVM The cross context VM structure.
3466 * @param pHlp The info helper functions.
3467 * @param pszArgs Arguments, ignored.
3468 */
3469static DECLCALLBACK(void) cpumR3InfoGuestInstr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3470{
3471 NOREF(pszArgs);
3472
3473 PVMCPU pVCpu = VMMGetCpu(pVM);
3474 if (!pVCpu)
3475 pVCpu = &pVM->aCpus[0];
3476
3477 char szInstruction[256];
3478 szInstruction[0] = '\0';
3479 DBGFR3DisasInstrCurrent(pVCpu, szInstruction, sizeof(szInstruction));
3480 pHlp->pfnPrintf(pHlp, "\nCPUM%u: %s\n\n", pVCpu->idCpu, szInstruction);
3481}
3482
3483
3484/**
3485 * Display the hypervisor cpu state.
3486 *
3487 * @param pVM The cross context VM structure.
3488 * @param pHlp The info helper functions.
3489 * @param pszArgs Arguments, ignored.
3490 */
3491static DECLCALLBACK(void) cpumR3InfoHyper(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3492{
3493 PVMCPU pVCpu = VMMGetCpu(pVM);
3494 if (!pVCpu)
3495 pVCpu = &pVM->aCpus[0];
3496
3497 CPUMDUMPTYPE enmType;
3498 const char *pszComment;
3499 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
3500 pHlp->pfnPrintf(pHlp, "Hypervisor CPUM state: %s\n", pszComment);
3501 cpumR3InfoOne(pVM, &pVCpu->cpum.s.Hyper, CPUMCTX2CORE(&pVCpu->cpum.s.Hyper), pHlp, enmType, ".");
3502 pHlp->pfnPrintf(pHlp, "CR4OrMask=%#x CR4AndMask=%#x\n", pVM->cpum.s.CR4.OrMask, pVM->cpum.s.CR4.AndMask);
3503}
3504
3505
3506/**
3507 * Display the host cpu state.
3508 *
3509 * @param pVM The cross context VM structure.
3510 * @param pHlp The info helper functions.
3511 * @param pszArgs Arguments, ignored.
3512 */
3513static DECLCALLBACK(void) cpumR3InfoHost(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3514{
3515 CPUMDUMPTYPE enmType;
3516 const char *pszComment;
3517 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
3518 pHlp->pfnPrintf(pHlp, "Host CPUM state: %s\n", pszComment);
3519
3520 PVMCPU pVCpu = VMMGetCpu(pVM);
3521 if (!pVCpu)
3522 pVCpu = &pVM->aCpus[0];
3523 PCPUMHOSTCTX pCtx = &pVCpu->cpum.s.Host;
3524
3525 /*
3526 * Format the EFLAGS.
3527 */
3528#if HC_ARCH_BITS == 32
3529 uint32_t efl = pCtx->eflags.u32;
3530#else
3531 uint64_t efl = pCtx->rflags;
3532#endif
3533 char szEFlags[80];
3534 cpumR3InfoFormatFlags(&szEFlags[0], efl);
3535
3536 /*
3537 * Format the registers.
3538 */
3539#if HC_ARCH_BITS == 32
3540 pHlp->pfnPrintf(pHlp,
3541 "eax=xxxxxxxx ebx=%08x ecx=xxxxxxxx edx=xxxxxxxx esi=%08x edi=%08x\n"
3542 "eip=xxxxxxxx esp=%08x ebp=%08x iopl=%d %31s\n"
3543 "cs=%04x ds=%04x es=%04x fs=%04x gs=%04x eflags=%08x\n"
3544 "cr0=%08RX64 cr2=xxxxxxxx cr3=%08RX64 cr4=%08RX64 gdtr=%08x:%04x ldtr=%04x\n"
3545 "dr[0]=%08RX64 dr[1]=%08RX64x dr[2]=%08RX64 dr[3]=%08RX64x dr[6]=%08RX64 dr[7]=%08RX64\n"
3546 "SysEnter={cs=%04x eip=%08x esp=%08x}\n"
3547 ,
3548 /*pCtx->eax,*/ pCtx->ebx, /*pCtx->ecx, pCtx->edx,*/ pCtx->esi, pCtx->edi,
3549 /*pCtx->eip,*/ pCtx->esp, pCtx->ebp, X86_EFL_GET_IOPL(efl), szEFlags,
3550 pCtx->cs, pCtx->ds, pCtx->es, pCtx->fs, pCtx->gs, efl,
3551 pCtx->cr0, /*pCtx->cr2,*/ pCtx->cr3, pCtx->cr4,
3552 pCtx->dr0, pCtx->dr1, pCtx->dr2, pCtx->dr3, pCtx->dr6, pCtx->dr7,
3553 (uint32_t)pCtx->gdtr.uAddr, pCtx->gdtr.cb, pCtx->ldtr,
3554 pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
3555#else
3556 pHlp->pfnPrintf(pHlp,
3557 "rax=xxxxxxxxxxxxxxxx rbx=%016RX64 rcx=xxxxxxxxxxxxxxxx\n"
3558 "rdx=xxxxxxxxxxxxxxxx rsi=%016RX64 rdi=%016RX64\n"
3559 "rip=xxxxxxxxxxxxxxxx rsp=%016RX64 rbp=%016RX64\n"
3560 " r8=xxxxxxxxxxxxxxxx r9=xxxxxxxxxxxxxxxx r10=%016RX64\n"
3561 "r11=%016RX64 r12=%016RX64 r13=%016RX64\n"
3562 "r14=%016RX64 r15=%016RX64\n"
3563 "iopl=%d %31s\n"
3564 "cs=%04x ds=%04x es=%04x fs=%04x gs=%04x eflags=%08RX64\n"
3565 "cr0=%016RX64 cr2=xxxxxxxxxxxxxxxx cr3=%016RX64\n"
3566 "cr4=%016RX64 ldtr=%04x tr=%04x\n"
3567 "dr[0]=%016RX64 dr[1]=%016RX64 dr[2]=%016RX64\n"
3568 "dr[3]=%016RX64 dr[6]=%016RX64 dr[7]=%016RX64\n"
3569 "gdtr=%016RX64:%04x idtr=%016RX64:%04x\n"
3570 "SysEnter={cs=%04x eip=%08x esp=%08x}\n"
3571 "FSbase=%016RX64 GSbase=%016RX64 efer=%08RX64\n"
3572 ,
3573 /*pCtx->rax,*/ pCtx->rbx, /*pCtx->rcx,
3574 pCtx->rdx,*/ pCtx->rsi, pCtx->rdi,
3575 /*pCtx->rip,*/ pCtx->rsp, pCtx->rbp,
3576 /*pCtx->r8, pCtx->r9,*/ pCtx->r10,
3577 pCtx->r11, pCtx->r12, pCtx->r13,
3578 pCtx->r14, pCtx->r15,
3579 X86_EFL_GET_IOPL(efl), szEFlags,
3580 pCtx->cs, pCtx->ds, pCtx->es, pCtx->fs, pCtx->gs, efl,
3581 pCtx->cr0, /*pCtx->cr2,*/ pCtx->cr3,
3582 pCtx->cr4, pCtx->ldtr, pCtx->tr,
3583 pCtx->dr0, pCtx->dr1, pCtx->dr2,
3584 pCtx->dr3, pCtx->dr6, pCtx->dr7,
3585 pCtx->gdtr.uAddr, pCtx->gdtr.cb, pCtx->idtr.uAddr, pCtx->idtr.cb,
3586 pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp,
3587 pCtx->FSbase, pCtx->GSbase, pCtx->efer);
3588#endif
3589}
3590
3591/**
3592 * Structure used when disassembling and instructions in DBGF.
3593 * This is used so the reader function can get the stuff it needs.
3594 */
3595typedef struct CPUMDISASSTATE
3596{
3597 /** Pointer to the CPU structure. */
3598 PDISCPUSTATE pCpu;
3599 /** Pointer to the VM. */
3600 PVM pVM;
3601 /** Pointer to the VMCPU. */
3602 PVMCPU pVCpu;
3603 /** Pointer to the first byte in the segment. */
3604 RTGCUINTPTR GCPtrSegBase;
3605 /** Pointer to the byte after the end of the segment. (might have wrapped!) */
3606 RTGCUINTPTR GCPtrSegEnd;
3607 /** The size of the segment minus 1. */
3608 RTGCUINTPTR cbSegLimit;
3609 /** Pointer to the current page - R3 Ptr. */
3610 void const *pvPageR3;
3611 /** Pointer to the current page - GC Ptr. */
3612 RTGCPTR pvPageGC;
3613 /** The lock information that PGMPhysReleasePageMappingLock needs. */
3614 PGMPAGEMAPLOCK PageMapLock;
3615 /** Whether the PageMapLock is valid or not. */
3616 bool fLocked;
3617 /** 64 bits mode or not. */
3618 bool f64Bits;
3619} CPUMDISASSTATE, *PCPUMDISASSTATE;
3620
3621
3622/**
3623 * @callback_method_impl{FNDISREADBYTES}
3624 */
3625static DECLCALLBACK(int) cpumR3DisasInstrRead(PDISCPUSTATE pDis, uint8_t offInstr, uint8_t cbMinRead, uint8_t cbMaxRead)
3626{
3627 PCPUMDISASSTATE pState = (PCPUMDISASSTATE)pDis->pvUser;
3628 for (;;)
3629 {
3630 RTGCUINTPTR GCPtr = pDis->uInstrAddr + offInstr + pState->GCPtrSegBase;
3631
3632 /*
3633 * Need to update the page translation?
3634 */
3635 if ( !pState->pvPageR3
3636 || (GCPtr >> PAGE_SHIFT) != (pState->pvPageGC >> PAGE_SHIFT))
3637 {
3638 int rc = VINF_SUCCESS;
3639
3640 /* translate the address */
3641 pState->pvPageGC = GCPtr & PAGE_BASE_GC_MASK;
3642 if ( VM_IS_RAW_MODE_ENABLED(pState->pVM)
3643 && MMHyperIsInsideArea(pState->pVM, pState->pvPageGC))
3644 {
3645 pState->pvPageR3 = MMHyperRCToR3(pState->pVM, (RTRCPTR)pState->pvPageGC);
3646 if (!pState->pvPageR3)
3647 rc = VERR_INVALID_POINTER;
3648 }
3649 else
3650 {
3651 /* Release mapping lock previously acquired. */
3652 if (pState->fLocked)
3653 PGMPhysReleasePageMappingLock(pState->pVM, &pState->PageMapLock);
3654 rc = PGMPhysGCPtr2CCPtrReadOnly(pState->pVCpu, pState->pvPageGC, &pState->pvPageR3, &pState->PageMapLock);
3655 pState->fLocked = RT_SUCCESS_NP(rc);
3656 }
3657 if (RT_FAILURE(rc))
3658 {
3659 pState->pvPageR3 = NULL;
3660 return rc;
3661 }
3662 }
3663
3664 /*
3665 * Check the segment limit.
3666 */
3667 if (!pState->f64Bits && pDis->uInstrAddr + offInstr > pState->cbSegLimit)
3668 return VERR_OUT_OF_SELECTOR_BOUNDS;
3669
3670 /*
3671 * Calc how much we can read.
3672 */
3673 uint32_t cb = PAGE_SIZE - (GCPtr & PAGE_OFFSET_MASK);
3674 if (!pState->f64Bits)
3675 {
3676 RTGCUINTPTR cbSeg = pState->GCPtrSegEnd - GCPtr;
3677 if (cb > cbSeg && cbSeg)
3678 cb = cbSeg;
3679 }
3680 if (cb > cbMaxRead)
3681 cb = cbMaxRead;
3682
3683 /*
3684 * Read and advance or exit.
3685 */
3686 memcpy(&pDis->abInstr[offInstr], (uint8_t *)pState->pvPageR3 + (GCPtr & PAGE_OFFSET_MASK), cb);
3687 offInstr += (uint8_t)cb;
3688 if (cb >= cbMinRead)
3689 {
3690 pDis->cbCachedInstr = offInstr;
3691 return VINF_SUCCESS;
3692 }
3693 cbMinRead -= (uint8_t)cb;
3694 cbMaxRead -= (uint8_t)cb;
3695 }
3696}
3697
3698
3699/**
3700 * Disassemble an instruction and return the information in the provided structure.
3701 *
3702 * @returns VBox status code.
3703 * @param pVM The cross context VM structure.
3704 * @param pVCpu The cross context virtual CPU structure.
3705 * @param pCtx Pointer to the guest CPU context.
3706 * @param GCPtrPC Program counter (relative to CS) to disassemble from.
3707 * @param pCpu Disassembly state.
3708 * @param pszPrefix String prefix for logging (debug only).
3709 *
3710 */
3711VMMR3DECL(int) CPUMR3DisasmInstrCPU(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, RTGCPTR GCPtrPC, PDISCPUSTATE pCpu,
3712 const char *pszPrefix)
3713{
3714 CPUMDISASSTATE State;
3715 int rc;
3716
3717 const PGMMODE enmMode = PGMGetGuestMode(pVCpu);
3718 State.pCpu = pCpu;
3719 State.pvPageGC = 0;
3720 State.pvPageR3 = NULL;
3721 State.pVM = pVM;
3722 State.pVCpu = pVCpu;
3723 State.fLocked = false;
3724 State.f64Bits = false;
3725
3726 /*
3727 * Get selector information.
3728 */
3729 DISCPUMODE enmDisCpuMode;
3730 if ( (pCtx->cr0 & X86_CR0_PE)
3731 && pCtx->eflags.Bits.u1VM == 0)
3732 {
3733 if (!CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->cs))
3734 {
3735# ifdef VBOX_WITH_RAW_MODE_NOT_R0
3736 CPUMGuestLazyLoadHiddenSelectorReg(pVCpu, &pCtx->cs);
3737# endif
3738 if (!CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->cs))
3739 return VERR_CPUM_HIDDEN_CS_LOAD_ERROR;
3740 }
3741 State.f64Bits = enmMode >= PGMMODE_AMD64 && pCtx->cs.Attr.n.u1Long;
3742 State.GCPtrSegBase = pCtx->cs.u64Base;
3743 State.GCPtrSegEnd = pCtx->cs.u32Limit + 1 + (RTGCUINTPTR)pCtx->cs.u64Base;
3744 State.cbSegLimit = pCtx->cs.u32Limit;
3745 enmDisCpuMode = (State.f64Bits)
3746 ? DISCPUMODE_64BIT
3747 : pCtx->cs.Attr.n.u1DefBig
3748 ? DISCPUMODE_32BIT
3749 : DISCPUMODE_16BIT;
3750 }
3751 else
3752 {
3753 /* real or V86 mode */
3754 enmDisCpuMode = DISCPUMODE_16BIT;
3755 State.GCPtrSegBase = pCtx->cs.Sel * 16;
3756 State.GCPtrSegEnd = 0xFFFFFFFF;
3757 State.cbSegLimit = 0xFFFFFFFF;
3758 }
3759
3760 /*
3761 * Disassemble the instruction.
3762 */
3763 uint32_t cbInstr;
3764#ifndef LOG_ENABLED
3765 RT_NOREF_PV(pszPrefix);
3766 rc = DISInstrWithReader(GCPtrPC, enmDisCpuMode, cpumR3DisasInstrRead, &State, pCpu, &cbInstr);
3767 if (RT_SUCCESS(rc))
3768 {
3769#else
3770 char szOutput[160];
3771 rc = DISInstrToStrWithReader(GCPtrPC, enmDisCpuMode, cpumR3DisasInstrRead, &State,
3772 pCpu, &cbInstr, szOutput, sizeof(szOutput));
3773 if (RT_SUCCESS(rc))
3774 {
3775 /* log it */
3776 if (pszPrefix)
3777 Log(("%s-CPU%d: %s", pszPrefix, pVCpu->idCpu, szOutput));
3778 else
3779 Log(("%s", szOutput));
3780#endif
3781 rc = VINF_SUCCESS;
3782 }
3783 else
3784 Log(("CPUMR3DisasmInstrCPU: DISInstr failed for %04X:%RGv rc=%Rrc\n", pCtx->cs.Sel, GCPtrPC, rc));
3785
3786 /* Release mapping lock acquired in cpumR3DisasInstrRead. */
3787 if (State.fLocked)
3788 PGMPhysReleasePageMappingLock(pVM, &State.PageMapLock);
3789
3790 return rc;
3791}
3792
3793
3794
3795/**
3796 * API for controlling a few of the CPU features found in CR4.
3797 *
3798 * Currently only X86_CR4_TSD is accepted as input.
3799 *
3800 * @returns VBox status code.
3801 *
3802 * @param pVM The cross context VM structure.
3803 * @param fOr The CR4 OR mask.
3804 * @param fAnd The CR4 AND mask.
3805 */
3806VMMR3DECL(int) CPUMR3SetCR4Feature(PVM pVM, RTHCUINTREG fOr, RTHCUINTREG fAnd)
3807{
3808 AssertMsgReturn(!(fOr & ~(X86_CR4_TSD)), ("%#x\n", fOr), VERR_INVALID_PARAMETER);
3809 AssertMsgReturn((fAnd & ~(X86_CR4_TSD)) == ~(X86_CR4_TSD), ("%#x\n", fAnd), VERR_INVALID_PARAMETER);
3810
3811 pVM->cpum.s.CR4.OrMask &= fAnd;
3812 pVM->cpum.s.CR4.OrMask |= fOr;
3813
3814 return VINF_SUCCESS;
3815}
3816
3817
3818/**
3819 * Enters REM, gets and resets the changed flags (CPUM_CHANGED_*).
3820 *
3821 * Only REM should ever call this function!
3822 *
3823 * @returns The changed flags.
3824 * @param pVCpu The cross context virtual CPU structure.
3825 * @param puCpl Where to return the current privilege level (CPL).
3826 */
3827VMMR3DECL(uint32_t) CPUMR3RemEnter(PVMCPU pVCpu, uint32_t *puCpl)
3828{
3829 Assert(!pVCpu->cpum.s.fRawEntered);
3830 Assert(!pVCpu->cpum.s.fRemEntered);
3831
3832 /*
3833 * Get the CPL first.
3834 */
3835 *puCpl = CPUMGetGuestCPL(pVCpu);
3836
3837 /*
3838 * Get and reset the flags.
3839 */
3840 uint32_t fFlags = pVCpu->cpum.s.fChanged;
3841 pVCpu->cpum.s.fChanged = 0;
3842
3843 /** @todo change the switcher to use the fChanged flags. */
3844 if (pVCpu->cpum.s.fUseFlags & CPUM_USED_FPU_SINCE_REM)
3845 {
3846 fFlags |= CPUM_CHANGED_FPU_REM;
3847 pVCpu->cpum.s.fUseFlags &= ~CPUM_USED_FPU_SINCE_REM;
3848 }
3849
3850 pVCpu->cpum.s.fRemEntered = true;
3851 return fFlags;
3852}
3853
3854
3855/**
3856 * Leaves REM.
3857 *
3858 * @param pVCpu The cross context virtual CPU structure.
3859 * @param fNoOutOfSyncSels This is @c false if there are out of sync
3860 * registers.
3861 */
3862VMMR3DECL(void) CPUMR3RemLeave(PVMCPU pVCpu, bool fNoOutOfSyncSels)
3863{
3864 Assert(!pVCpu->cpum.s.fRawEntered);
3865 Assert(pVCpu->cpum.s.fRemEntered);
3866
3867 RT_NOREF_PV(fNoOutOfSyncSels);
3868
3869 pVCpu->cpum.s.fRemEntered = false;
3870}
3871
3872
3873/**
3874 * Called when the ring-3 init phase completes.
3875 *
3876 * @returns VBox status code.
3877 * @param pVM The cross context VM structure.
3878 * @param enmWhat Which init phase.
3879 */
3880VMMR3DECL(int) CPUMR3InitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
3881{
3882 switch (enmWhat)
3883 {
3884 case VMINITCOMPLETED_RING3:
3885 {
3886 /*
3887 * Figure out if the guest uses 32-bit or 64-bit FPU state at runtime for 64-bit capable VMs.
3888 * Only applicable/used on 64-bit hosts, refer CPUMR0A.asm. See @bugref{7138}.
3889 */
3890 bool const fSupportsLongMode = VMR3IsLongModeAllowed(pVM);
3891 for (VMCPUID i = 0; i < pVM->cCpus; i++)
3892 {
3893 PVMCPU pVCpu = &pVM->aCpus[i];
3894 /* While loading a saved-state we fix it up in, cpumR3LoadDone(). */
3895 if (fSupportsLongMode)
3896 pVCpu->cpum.s.fUseFlags |= CPUM_USE_SUPPORTS_LONGMODE;
3897 }
3898
3899 /* Register statistic counters for MSRs. */
3900 cpumR3MsrRegStats(pVM);
3901 break;
3902 }
3903
3904 default:
3905 break;
3906 }
3907 return VINF_SUCCESS;
3908}
3909
3910
3911/**
3912 * Called when the ring-0 init phases completed.
3913 *
3914 * @param pVM The cross context VM structure.
3915 */
3916VMMR3DECL(void) CPUMR3LogCpuIds(PVM pVM)
3917{
3918 /*
3919 * Log the cpuid.
3920 */
3921 bool fOldBuffered = RTLogRelSetBuffering(true /*fBuffered*/);
3922 RTCPUSET OnlineSet;
3923 LogRel(("CPUM: Logical host processors: %u present, %u max, %u online, online mask: %016RX64\n",
3924 (unsigned)RTMpGetPresentCount(), (unsigned)RTMpGetCount(), (unsigned)RTMpGetOnlineCount(),
3925 RTCpuSetToU64(RTMpGetOnlineSet(&OnlineSet)) ));
3926 RTCPUID cCores = RTMpGetCoreCount();
3927 if (cCores)
3928 LogRel(("CPUM: Physical host cores: %u\n", (unsigned)cCores));
3929 LogRel(("************************* CPUID dump ************************\n"));
3930 DBGFR3Info(pVM->pUVM, "cpuid", "verbose", DBGFR3InfoLogRelHlp());
3931 LogRel(("\n"));
3932 DBGFR3_INFO_LOG_SAFE(pVM, "cpuid", "verbose"); /* macro */
3933 RTLogRelSetBuffering(fOldBuffered);
3934 LogRel(("******************** End of CPUID dump **********************\n"));
3935
3936 /*
3937 * Log VT-x extended features.
3938 *
3939 * SVM features are currently all covered under CPUID so there is nothing
3940 * to do here for SVM.
3941 */
3942 if (pVM->cpum.s.HostFeatures.fVmx)
3943 {
3944 LogRel(("*********************** VT-x features ***********************\n"));
3945 DBGFR3Info(pVM->pUVM, "cpumvmxfeat", "default", DBGFR3InfoLogRelHlp());
3946 LogRel(("\n"));
3947 LogRel(("******************* End of VT-x features ********************\n"));
3948 }
3949}
3950
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette