VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/CPUM.cpp@ 78406

Last change on this file since 78406 was 78220, checked in by vboxsync, 6 years ago

VMM: Nested VMX: bugref:9180 Hardware-assisted nested VT-x infrastructure changes and VM-entry implementation.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 239.1 KB
Line 
1/* $Id: CPUM.cpp 78220 2019-04-20 04:08:44Z vboxsync $ */
2/** @file
3 * CPUM - CPU Monitor / Manager.
4 */
5
6/*
7 * Copyright (C) 2006-2019 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/** @page pg_cpum CPUM - CPU Monitor / Manager
19 *
20 * The CPU Monitor / Manager keeps track of all the CPU registers. It is
21 * also responsible for lazy FPU handling and some of the context loading
22 * in raw mode.
23 *
24 * There are three CPU contexts, the most important one is the guest one (GC).
25 * When running in raw-mode (RC) there is a special hyper context for the VMM
26 * part that floats around inside the guest address space. When running in
27 * raw-mode, CPUM also maintains a host context for saving and restoring
28 * registers across world switches. This latter is done in cooperation with the
29 * world switcher (@see pg_vmm).
30 *
31 * @see grp_cpum
32 *
33 * @section sec_cpum_fpu FPU / SSE / AVX / ++ state.
34 *
35 * TODO: proper write up, currently just some notes.
36 *
37 * The ring-0 FPU handling per OS:
38 *
39 * - 64-bit Windows uses XMM registers in the kernel as part of the calling
40 * convention (Visual C++ doesn't seem to have a way to disable
41 * generating such code either), so CR0.TS/EM are always zero from what I
42 * can tell. We are also forced to always load/save the guest XMM0-XMM15
43 * registers when entering/leaving guest context. Interrupt handlers
44 * using FPU/SSE will offically have call save and restore functions
45 * exported by the kernel, if the really really have to use the state.
46 *
47 * - 32-bit windows does lazy FPU handling, I think, probably including
48 * lazying saving. The Windows Internals book states that it's a bad
49 * idea to use the FPU in kernel space. However, it looks like it will
50 * restore the FPU state of the current thread in case of a kernel \#NM.
51 * Interrupt handlers should be same as for 64-bit.
52 *
53 * - Darwin allows taking \#NM in kernel space, restoring current thread's
54 * state if I read the code correctly. It saves the FPU state of the
55 * outgoing thread, and uses CR0.TS to lazily load the state of the
56 * incoming one. No idea yet how the FPU is treated by interrupt
57 * handlers, i.e. whether they are allowed to disable the state or
58 * something.
59 *
60 * - Linux also allows \#NM in kernel space (don't know since when), and
61 * uses CR0.TS for lazy loading. Saves outgoing thread's state, lazy
62 * loads the incoming unless configured to agressivly load it. Interrupt
63 * handlers can ask whether they're allowed to use the FPU, and may
64 * freely trash the state if Linux thinks it has saved the thread's state
65 * already. This is a problem.
66 *
67 * - Solaris will, from what I can tell, panic if it gets an \#NM in kernel
68 * context. When switching threads, the kernel will save the state of
69 * the outgoing thread and lazy load the incoming one using CR0.TS.
70 * There are a few routines in seeblk.s which uses the SSE unit in ring-0
71 * to do stuff, HAT are among the users. The routines there will
72 * manually clear CR0.TS and save the XMM registers they use only if
73 * CR0.TS was zero upon entry. They will skip it when not, because as
74 * mentioned above, the FPU state is saved when switching away from a
75 * thread and CR0.TS set to 1, so when CR0.TS is 1 there is nothing to
76 * preserve. This is a problem if we restore CR0.TS to 1 after loading
77 * the guest state.
78 *
79 * - FreeBSD - no idea yet.
80 *
81 * - OS/2 does not allow \#NMs in kernel space IIRC. Does lazy loading,
82 * possibly also lazy saving. Interrupts must preserve the CR0.TS+EM &
83 * FPU states.
84 *
85 * Up to r107425 (2016-05-24) we would only temporarily modify CR0.TS/EM while
86 * saving and restoring the host and guest states. The motivation for this
87 * change is that we want to be able to emulate SSE instruction in ring-0 (IEM).
88 *
89 * Starting with that change, we will leave CR0.TS=EM=0 after saving the host
90 * state and only restore it once we've restore the host FPU state. This has the
91 * accidental side effect of triggering Solaris to preserve XMM registers in
92 * sseblk.s. When CR0 was changed by saving the FPU state, CPUM must now inform
93 * the VT-x (HMVMX) code about it as it caches the CR0 value in the VMCS.
94 *
95 *
96 * @section sec_cpum_logging Logging Level Assignments.
97 *
98 * Following log level assignments:
99 * - Log6 is used for FPU state management.
100 * - Log7 is used for FPU state actualization.
101 *
102 */
103
104
105/*********************************************************************************************************************************
106* Header Files *
107*********************************************************************************************************************************/
108#define LOG_GROUP LOG_GROUP_CPUM
109#include <VBox/vmm/cpum.h>
110#include <VBox/vmm/cpumdis.h>
111#include <VBox/vmm/cpumctx-v1_6.h>
112#include <VBox/vmm/pgm.h>
113#include <VBox/vmm/apic.h>
114#include <VBox/vmm/mm.h>
115#include <VBox/vmm/em.h>
116#include <VBox/vmm/iem.h>
117#include <VBox/vmm/selm.h>
118#include <VBox/vmm/dbgf.h>
119#include <VBox/vmm/patm.h>
120#include <VBox/vmm/hm.h>
121#include <VBox/vmm/ssm.h>
122#include "CPUMInternal.h"
123#include <VBox/vmm/vm.h>
124
125#include <VBox/param.h>
126#include <VBox/dis.h>
127#include <VBox/err.h>
128#include <VBox/log.h>
129#include <iprt/asm-amd64-x86.h>
130#include <iprt/assert.h>
131#include <iprt/cpuset.h>
132#include <iprt/mem.h>
133#include <iprt/mp.h>
134#include <iprt/string.h>
135
136
137/*********************************************************************************************************************************
138* Defined Constants And Macros *
139*********************************************************************************************************************************/
140/**
141 * This was used in the saved state up to the early life of version 14.
142 *
143 * It indicates that we may have some out-of-sync hidden segement registers.
144 * It is only relevant for raw-mode.
145 */
146#define CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID RT_BIT(12)
147
148
149/*********************************************************************************************************************************
150* Structures and Typedefs *
151*********************************************************************************************************************************/
152
153/**
154 * What kind of cpu info dump to perform.
155 */
156typedef enum CPUMDUMPTYPE
157{
158 CPUMDUMPTYPE_TERSE,
159 CPUMDUMPTYPE_DEFAULT,
160 CPUMDUMPTYPE_VERBOSE
161} CPUMDUMPTYPE;
162/** Pointer to a cpu info dump type. */
163typedef CPUMDUMPTYPE *PCPUMDUMPTYPE;
164
165
166/*********************************************************************************************************************************
167* Internal Functions *
168*********************************************************************************************************************************/
169static DECLCALLBACK(int) cpumR3LiveExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uPass);
170static DECLCALLBACK(int) cpumR3SaveExec(PVM pVM, PSSMHANDLE pSSM);
171static DECLCALLBACK(int) cpumR3LoadPrep(PVM pVM, PSSMHANDLE pSSM);
172static DECLCALLBACK(int) cpumR3LoadExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
173static DECLCALLBACK(int) cpumR3LoadDone(PVM pVM, PSSMHANDLE pSSM);
174static DECLCALLBACK(void) cpumR3InfoAll(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
175static DECLCALLBACK(void) cpumR3InfoGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
176static DECLCALLBACK(void) cpumR3InfoGuestHwvirt(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
177static DECLCALLBACK(void) cpumR3InfoGuestInstr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
178static DECLCALLBACK(void) cpumR3InfoHyper(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
179static DECLCALLBACK(void) cpumR3InfoHost(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
180
181
182/*********************************************************************************************************************************
183* Global Variables *
184*********************************************************************************************************************************/
185/** Saved state field descriptors for CPUMCTX. */
186static const SSMFIELD g_aCpumCtxFields[] =
187{
188 SSMFIELD_ENTRY( CPUMCTX, rdi),
189 SSMFIELD_ENTRY( CPUMCTX, rsi),
190 SSMFIELD_ENTRY( CPUMCTX, rbp),
191 SSMFIELD_ENTRY( CPUMCTX, rax),
192 SSMFIELD_ENTRY( CPUMCTX, rbx),
193 SSMFIELD_ENTRY( CPUMCTX, rdx),
194 SSMFIELD_ENTRY( CPUMCTX, rcx),
195 SSMFIELD_ENTRY( CPUMCTX, rsp),
196 SSMFIELD_ENTRY( CPUMCTX, rflags),
197 SSMFIELD_ENTRY( CPUMCTX, rip),
198 SSMFIELD_ENTRY( CPUMCTX, r8),
199 SSMFIELD_ENTRY( CPUMCTX, r9),
200 SSMFIELD_ENTRY( CPUMCTX, r10),
201 SSMFIELD_ENTRY( CPUMCTX, r11),
202 SSMFIELD_ENTRY( CPUMCTX, r12),
203 SSMFIELD_ENTRY( CPUMCTX, r13),
204 SSMFIELD_ENTRY( CPUMCTX, r14),
205 SSMFIELD_ENTRY( CPUMCTX, r15),
206 SSMFIELD_ENTRY( CPUMCTX, es.Sel),
207 SSMFIELD_ENTRY( CPUMCTX, es.ValidSel),
208 SSMFIELD_ENTRY( CPUMCTX, es.fFlags),
209 SSMFIELD_ENTRY( CPUMCTX, es.u64Base),
210 SSMFIELD_ENTRY( CPUMCTX, es.u32Limit),
211 SSMFIELD_ENTRY( CPUMCTX, es.Attr),
212 SSMFIELD_ENTRY( CPUMCTX, cs.Sel),
213 SSMFIELD_ENTRY( CPUMCTX, cs.ValidSel),
214 SSMFIELD_ENTRY( CPUMCTX, cs.fFlags),
215 SSMFIELD_ENTRY( CPUMCTX, cs.u64Base),
216 SSMFIELD_ENTRY( CPUMCTX, cs.u32Limit),
217 SSMFIELD_ENTRY( CPUMCTX, cs.Attr),
218 SSMFIELD_ENTRY( CPUMCTX, ss.Sel),
219 SSMFIELD_ENTRY( CPUMCTX, ss.ValidSel),
220 SSMFIELD_ENTRY( CPUMCTX, ss.fFlags),
221 SSMFIELD_ENTRY( CPUMCTX, ss.u64Base),
222 SSMFIELD_ENTRY( CPUMCTX, ss.u32Limit),
223 SSMFIELD_ENTRY( CPUMCTX, ss.Attr),
224 SSMFIELD_ENTRY( CPUMCTX, ds.Sel),
225 SSMFIELD_ENTRY( CPUMCTX, ds.ValidSel),
226 SSMFIELD_ENTRY( CPUMCTX, ds.fFlags),
227 SSMFIELD_ENTRY( CPUMCTX, ds.u64Base),
228 SSMFIELD_ENTRY( CPUMCTX, ds.u32Limit),
229 SSMFIELD_ENTRY( CPUMCTX, ds.Attr),
230 SSMFIELD_ENTRY( CPUMCTX, fs.Sel),
231 SSMFIELD_ENTRY( CPUMCTX, fs.ValidSel),
232 SSMFIELD_ENTRY( CPUMCTX, fs.fFlags),
233 SSMFIELD_ENTRY( CPUMCTX, fs.u64Base),
234 SSMFIELD_ENTRY( CPUMCTX, fs.u32Limit),
235 SSMFIELD_ENTRY( CPUMCTX, fs.Attr),
236 SSMFIELD_ENTRY( CPUMCTX, gs.Sel),
237 SSMFIELD_ENTRY( CPUMCTX, gs.ValidSel),
238 SSMFIELD_ENTRY( CPUMCTX, gs.fFlags),
239 SSMFIELD_ENTRY( CPUMCTX, gs.u64Base),
240 SSMFIELD_ENTRY( CPUMCTX, gs.u32Limit),
241 SSMFIELD_ENTRY( CPUMCTX, gs.Attr),
242 SSMFIELD_ENTRY( CPUMCTX, cr0),
243 SSMFIELD_ENTRY( CPUMCTX, cr2),
244 SSMFIELD_ENTRY( CPUMCTX, cr3),
245 SSMFIELD_ENTRY( CPUMCTX, cr4),
246 SSMFIELD_ENTRY( CPUMCTX, dr[0]),
247 SSMFIELD_ENTRY( CPUMCTX, dr[1]),
248 SSMFIELD_ENTRY( CPUMCTX, dr[2]),
249 SSMFIELD_ENTRY( CPUMCTX, dr[3]),
250 SSMFIELD_ENTRY( CPUMCTX, dr[6]),
251 SSMFIELD_ENTRY( CPUMCTX, dr[7]),
252 SSMFIELD_ENTRY( CPUMCTX, gdtr.cbGdt),
253 SSMFIELD_ENTRY( CPUMCTX, gdtr.pGdt),
254 SSMFIELD_ENTRY( CPUMCTX, idtr.cbIdt),
255 SSMFIELD_ENTRY( CPUMCTX, idtr.pIdt),
256 SSMFIELD_ENTRY( CPUMCTX, SysEnter.cs),
257 SSMFIELD_ENTRY( CPUMCTX, SysEnter.eip),
258 SSMFIELD_ENTRY( CPUMCTX, SysEnter.esp),
259 SSMFIELD_ENTRY( CPUMCTX, msrEFER),
260 SSMFIELD_ENTRY( CPUMCTX, msrSTAR),
261 SSMFIELD_ENTRY( CPUMCTX, msrPAT),
262 SSMFIELD_ENTRY( CPUMCTX, msrLSTAR),
263 SSMFIELD_ENTRY( CPUMCTX, msrCSTAR),
264 SSMFIELD_ENTRY( CPUMCTX, msrSFMASK),
265 SSMFIELD_ENTRY( CPUMCTX, msrKERNELGSBASE),
266 SSMFIELD_ENTRY( CPUMCTX, ldtr.Sel),
267 SSMFIELD_ENTRY( CPUMCTX, ldtr.ValidSel),
268 SSMFIELD_ENTRY( CPUMCTX, ldtr.fFlags),
269 SSMFIELD_ENTRY( CPUMCTX, ldtr.u64Base),
270 SSMFIELD_ENTRY( CPUMCTX, ldtr.u32Limit),
271 SSMFIELD_ENTRY( CPUMCTX, ldtr.Attr),
272 SSMFIELD_ENTRY( CPUMCTX, tr.Sel),
273 SSMFIELD_ENTRY( CPUMCTX, tr.ValidSel),
274 SSMFIELD_ENTRY( CPUMCTX, tr.fFlags),
275 SSMFIELD_ENTRY( CPUMCTX, tr.u64Base),
276 SSMFIELD_ENTRY( CPUMCTX, tr.u32Limit),
277 SSMFIELD_ENTRY( CPUMCTX, tr.Attr),
278 SSMFIELD_ENTRY_VER( CPUMCTX, aXcr[0], CPUM_SAVED_STATE_VERSION_XSAVE),
279 SSMFIELD_ENTRY_VER( CPUMCTX, aXcr[1], CPUM_SAVED_STATE_VERSION_XSAVE),
280 SSMFIELD_ENTRY_VER( CPUMCTX, fXStateMask, CPUM_SAVED_STATE_VERSION_XSAVE),
281 SSMFIELD_ENTRY_TERM()
282};
283
284/** Saved state field descriptors for SVM nested hardware-virtualization
285 * Host State. */
286static const SSMFIELD g_aSvmHwvirtHostState[] =
287{
288 SSMFIELD_ENTRY( SVMHOSTSTATE, uEferMsr),
289 SSMFIELD_ENTRY( SVMHOSTSTATE, uCr0),
290 SSMFIELD_ENTRY( SVMHOSTSTATE, uCr4),
291 SSMFIELD_ENTRY( SVMHOSTSTATE, uCr3),
292 SSMFIELD_ENTRY( SVMHOSTSTATE, uRip),
293 SSMFIELD_ENTRY( SVMHOSTSTATE, uRsp),
294 SSMFIELD_ENTRY( SVMHOSTSTATE, uRax),
295 SSMFIELD_ENTRY( SVMHOSTSTATE, rflags),
296 SSMFIELD_ENTRY( SVMHOSTSTATE, es.Sel),
297 SSMFIELD_ENTRY( SVMHOSTSTATE, es.ValidSel),
298 SSMFIELD_ENTRY( SVMHOSTSTATE, es.fFlags),
299 SSMFIELD_ENTRY( SVMHOSTSTATE, es.u64Base),
300 SSMFIELD_ENTRY( SVMHOSTSTATE, es.u32Limit),
301 SSMFIELD_ENTRY( SVMHOSTSTATE, es.Attr),
302 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.Sel),
303 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.ValidSel),
304 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.fFlags),
305 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.u64Base),
306 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.u32Limit),
307 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.Attr),
308 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.Sel),
309 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.ValidSel),
310 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.fFlags),
311 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.u64Base),
312 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.u32Limit),
313 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.Attr),
314 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.Sel),
315 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.ValidSel),
316 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.fFlags),
317 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.u64Base),
318 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.u32Limit),
319 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.Attr),
320 SSMFIELD_ENTRY( SVMHOSTSTATE, gdtr.cbGdt),
321 SSMFIELD_ENTRY( SVMHOSTSTATE, gdtr.pGdt),
322 SSMFIELD_ENTRY( SVMHOSTSTATE, idtr.cbIdt),
323 SSMFIELD_ENTRY( SVMHOSTSTATE, idtr.pIdt),
324 SSMFIELD_ENTRY_IGNORE(SVMHOSTSTATE, abPadding),
325 SSMFIELD_ENTRY_TERM()
326};
327
328/** Saved state field descriptors for VMX nested hardware-virtualization
329 * VMCS. */
330static const SSMFIELD g_aVmxHwvirtVmcs[] =
331{
332 SSMFIELD_ENTRY( VMXVVMCS, u32VmcsRevId),
333 SSMFIELD_ENTRY( VMXVVMCS, enmVmxAbort),
334 SSMFIELD_ENTRY( VMXVVMCS, fVmcsState),
335 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au8Padding0),
336 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au32Reserved0),
337
338 SSMFIELD_ENTRY( VMXVVMCS, u16Vpid),
339 SSMFIELD_ENTRY( VMXVVMCS, u16PostIntNotifyVector),
340 SSMFIELD_ENTRY( VMXVVMCS, u16EptpIndex),
341 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au16Reserved0),
342
343 SSMFIELD_ENTRY( VMXVVMCS, GuestEs),
344 SSMFIELD_ENTRY( VMXVVMCS, GuestCs),
345 SSMFIELD_ENTRY( VMXVVMCS, GuestSs),
346 SSMFIELD_ENTRY( VMXVVMCS, GuestDs),
347 SSMFIELD_ENTRY( VMXVVMCS, GuestFs),
348 SSMFIELD_ENTRY( VMXVVMCS, GuestGs),
349 SSMFIELD_ENTRY( VMXVVMCS, GuestLdtr),
350 SSMFIELD_ENTRY( VMXVVMCS, GuestTr),
351 SSMFIELD_ENTRY( VMXVVMCS, u16GuestIntStatus),
352 SSMFIELD_ENTRY( VMXVVMCS, u16PmlIndex),
353 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au16Reserved1[8]),
354
355 SSMFIELD_ENTRY( VMXVVMCS, HostEs),
356 SSMFIELD_ENTRY( VMXVVMCS, HostCs),
357 SSMFIELD_ENTRY( VMXVVMCS, HostSs),
358 SSMFIELD_ENTRY( VMXVVMCS, HostDs),
359 SSMFIELD_ENTRY( VMXVVMCS, HostFs),
360 SSMFIELD_ENTRY( VMXVVMCS, HostGs),
361 SSMFIELD_ENTRY( VMXVVMCS, HostTr),
362 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au16Reserved2),
363
364 SSMFIELD_ENTRY( VMXVVMCS, u32PinCtls),
365 SSMFIELD_ENTRY( VMXVVMCS, u32ProcCtls),
366 SSMFIELD_ENTRY( VMXVVMCS, u32XcptBitmap),
367 SSMFIELD_ENTRY( VMXVVMCS, u32XcptPFMask),
368 SSMFIELD_ENTRY( VMXVVMCS, u32XcptPFMatch),
369 SSMFIELD_ENTRY( VMXVVMCS, u32Cr3TargetCount),
370 SSMFIELD_ENTRY( VMXVVMCS, u32ExitCtls),
371 SSMFIELD_ENTRY( VMXVVMCS, u32ExitMsrStoreCount),
372 SSMFIELD_ENTRY( VMXVVMCS, u32ExitMsrLoadCount),
373 SSMFIELD_ENTRY( VMXVVMCS, u32EntryCtls),
374 SSMFIELD_ENTRY( VMXVVMCS, u32EntryMsrLoadCount),
375 SSMFIELD_ENTRY( VMXVVMCS, u32EntryIntInfo),
376 SSMFIELD_ENTRY( VMXVVMCS, u32EntryXcptErrCode),
377 SSMFIELD_ENTRY( VMXVVMCS, u32EntryInstrLen),
378 SSMFIELD_ENTRY( VMXVVMCS, u32TprThreshold),
379 SSMFIELD_ENTRY( VMXVVMCS, u32ProcCtls2),
380 SSMFIELD_ENTRY( VMXVVMCS, u32PleGap),
381 SSMFIELD_ENTRY( VMXVVMCS, u32PleWindow),
382 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au32Reserved1),
383
384 SSMFIELD_ENTRY( VMXVVMCS, u32RoVmInstrError),
385 SSMFIELD_ENTRY( VMXVVMCS, u32RoExitReason),
386 SSMFIELD_ENTRY( VMXVVMCS, u32RoExitIntInfo),
387 SSMFIELD_ENTRY( VMXVVMCS, u32RoExitIntErrCode),
388 SSMFIELD_ENTRY( VMXVVMCS, u32RoIdtVectoringInfo),
389 SSMFIELD_ENTRY( VMXVVMCS, u32RoIdtVectoringErrCode),
390 SSMFIELD_ENTRY( VMXVVMCS, u32RoExitInstrLen),
391 SSMFIELD_ENTRY( VMXVVMCS, u32RoExitInstrInfo),
392 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au32RoReserved2),
393
394 SSMFIELD_ENTRY( VMXVVMCS, u32GuestEsLimit),
395 SSMFIELD_ENTRY( VMXVVMCS, u32GuestCsLimit),
396 SSMFIELD_ENTRY( VMXVVMCS, u32GuestSsLimit),
397 SSMFIELD_ENTRY( VMXVVMCS, u32GuestDsLimit),
398 SSMFIELD_ENTRY( VMXVVMCS, u32GuestFsLimit),
399 SSMFIELD_ENTRY( VMXVVMCS, u32GuestGsLimit),
400 SSMFIELD_ENTRY( VMXVVMCS, u32GuestLdtrLimit),
401 SSMFIELD_ENTRY( VMXVVMCS, u32GuestTrLimit),
402 SSMFIELD_ENTRY( VMXVVMCS, u32GuestGdtrLimit),
403 SSMFIELD_ENTRY( VMXVVMCS, u32GuestIdtrLimit),
404 SSMFIELD_ENTRY( VMXVVMCS, u32GuestEsAttr),
405 SSMFIELD_ENTRY( VMXVVMCS, u32GuestCsAttr),
406 SSMFIELD_ENTRY( VMXVVMCS, u32GuestSsAttr),
407 SSMFIELD_ENTRY( VMXVVMCS, u32GuestDsAttr),
408 SSMFIELD_ENTRY( VMXVVMCS, u32GuestFsAttr),
409 SSMFIELD_ENTRY( VMXVVMCS, u32GuestGsAttr),
410 SSMFIELD_ENTRY( VMXVVMCS, u32GuestLdtrAttr),
411 SSMFIELD_ENTRY( VMXVVMCS, u32GuestTrAttr),
412 SSMFIELD_ENTRY( VMXVVMCS, u32GuestIntrState),
413 SSMFIELD_ENTRY( VMXVVMCS, u32GuestActivityState),
414 SSMFIELD_ENTRY( VMXVVMCS, u32GuestSmBase),
415 SSMFIELD_ENTRY( VMXVVMCS, u32GuestSysenterCS),
416 SSMFIELD_ENTRY( VMXVVMCS, u32PreemptTimer),
417 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au32Reserved3),
418
419 SSMFIELD_ENTRY( VMXVVMCS, u32HostSysenterCs),
420 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au32Reserved4),
421
422 SSMFIELD_ENTRY( VMXVVMCS, u64AddrIoBitmapA),
423 SSMFIELD_ENTRY( VMXVVMCS, u64AddrIoBitmapB),
424 SSMFIELD_ENTRY( VMXVVMCS, u64AddrMsrBitmap),
425 SSMFIELD_ENTRY( VMXVVMCS, u64AddrExitMsrStore),
426 SSMFIELD_ENTRY( VMXVVMCS, u64AddrExitMsrLoad),
427 SSMFIELD_ENTRY( VMXVVMCS, u64AddrEntryMsrLoad),
428 SSMFIELD_ENTRY( VMXVVMCS, u64ExecVmcsPtr),
429 SSMFIELD_ENTRY( VMXVVMCS, u64AddrPml),
430 SSMFIELD_ENTRY( VMXVVMCS, u64TscOffset),
431 SSMFIELD_ENTRY( VMXVVMCS, u64AddrVirtApic),
432 SSMFIELD_ENTRY( VMXVVMCS, u64AddrApicAccess),
433 SSMFIELD_ENTRY( VMXVVMCS, u64AddrPostedIntDesc),
434 SSMFIELD_ENTRY( VMXVVMCS, u64VmFuncCtls),
435 SSMFIELD_ENTRY( VMXVVMCS, u64EptpPtr),
436 SSMFIELD_ENTRY( VMXVVMCS, u64EoiExitBitmap0),
437 SSMFIELD_ENTRY( VMXVVMCS, u64EoiExitBitmap1),
438 SSMFIELD_ENTRY( VMXVVMCS, u64EoiExitBitmap2),
439 SSMFIELD_ENTRY( VMXVVMCS, u64EoiExitBitmap3),
440 SSMFIELD_ENTRY( VMXVVMCS, u64AddrEptpList),
441 SSMFIELD_ENTRY( VMXVVMCS, u64AddrVmreadBitmap),
442 SSMFIELD_ENTRY( VMXVVMCS, u64AddrVmwriteBitmap),
443 SSMFIELD_ENTRY( VMXVVMCS, u64AddrXcptVeInfo),
444 SSMFIELD_ENTRY( VMXVVMCS, u64XssBitmap),
445 SSMFIELD_ENTRY( VMXVVMCS, u64AddrEnclsBitmap),
446 SSMFIELD_ENTRY( VMXVVMCS, u64TscMultiplier),
447 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved0),
448
449 SSMFIELD_ENTRY( VMXVVMCS, u64RoGuestPhysAddr),
450 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved1),
451
452 SSMFIELD_ENTRY( VMXVVMCS, u64VmcsLinkPtr),
453 SSMFIELD_ENTRY( VMXVVMCS, u64GuestDebugCtlMsr),
454 SSMFIELD_ENTRY( VMXVVMCS, u64GuestPatMsr),
455 SSMFIELD_ENTRY( VMXVVMCS, u64GuestEferMsr),
456 SSMFIELD_ENTRY( VMXVVMCS, u64GuestPerfGlobalCtlMsr),
457 SSMFIELD_ENTRY( VMXVVMCS, u64GuestPdpte0),
458 SSMFIELD_ENTRY( VMXVVMCS, u64GuestPdpte1),
459 SSMFIELD_ENTRY( VMXVVMCS, u64GuestPdpte2),
460 SSMFIELD_ENTRY( VMXVVMCS, u64GuestPdpte3),
461 SSMFIELD_ENTRY( VMXVVMCS, u64GuestBndcfgsMsr),
462 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved2),
463
464 SSMFIELD_ENTRY( VMXVVMCS, u64HostPatMsr),
465 SSMFIELD_ENTRY( VMXVVMCS, u64HostEferMsr),
466 SSMFIELD_ENTRY( VMXVVMCS, u64HostPerfGlobalCtlMsr),
467 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved3),
468
469 SSMFIELD_ENTRY( VMXVVMCS, u64Cr0Mask),
470 SSMFIELD_ENTRY( VMXVVMCS, u64Cr4Mask),
471 SSMFIELD_ENTRY( VMXVVMCS, u64Cr0ReadShadow),
472 SSMFIELD_ENTRY( VMXVVMCS, u64Cr4ReadShadow),
473 SSMFIELD_ENTRY( VMXVVMCS, u64Cr3Target0),
474 SSMFIELD_ENTRY( VMXVVMCS, u64Cr3Target1),
475 SSMFIELD_ENTRY( VMXVVMCS, u64Cr3Target2),
476 SSMFIELD_ENTRY( VMXVVMCS, u64Cr3Target3),
477 SSMFIELD_ENTRY( VMXVVMCS, au64Reserved4),
478
479 SSMFIELD_ENTRY( VMXVVMCS, u64RoExitQual),
480 SSMFIELD_ENTRY( VMXVVMCS, u64RoIoRcx),
481 SSMFIELD_ENTRY( VMXVVMCS, u64RoIoRsi),
482 SSMFIELD_ENTRY( VMXVVMCS, u64RoIoRdi),
483 SSMFIELD_ENTRY( VMXVVMCS, u64RoIoRip),
484 SSMFIELD_ENTRY( VMXVVMCS, u64RoGuestLinearAddr),
485 SSMFIELD_ENTRY( VMXVVMCS, au64Reserved5),
486
487 SSMFIELD_ENTRY( VMXVVMCS, u64GuestCr0),
488 SSMFIELD_ENTRY( VMXVVMCS, u64GuestCr3),
489 SSMFIELD_ENTRY( VMXVVMCS, u64GuestCr4),
490 SSMFIELD_ENTRY( VMXVVMCS, u64GuestEsBase),
491 SSMFIELD_ENTRY( VMXVVMCS, u64GuestCsBase),
492 SSMFIELD_ENTRY( VMXVVMCS, u64GuestSsBase),
493 SSMFIELD_ENTRY( VMXVVMCS, u64GuestDsBase),
494 SSMFIELD_ENTRY( VMXVVMCS, u64GuestFsBase),
495 SSMFIELD_ENTRY( VMXVVMCS, u64GuestGsBase),
496 SSMFIELD_ENTRY( VMXVVMCS, u64GuestLdtrBase),
497 SSMFIELD_ENTRY( VMXVVMCS, u64GuestTrBase),
498 SSMFIELD_ENTRY( VMXVVMCS, u64GuestGdtrBase),
499 SSMFIELD_ENTRY( VMXVVMCS, u64GuestIdtrBase),
500 SSMFIELD_ENTRY( VMXVVMCS, u64GuestDr7),
501 SSMFIELD_ENTRY( VMXVVMCS, u64GuestRsp),
502 SSMFIELD_ENTRY( VMXVVMCS, u64GuestRip),
503 SSMFIELD_ENTRY( VMXVVMCS, u64GuestRFlags),
504 SSMFIELD_ENTRY( VMXVVMCS, u64GuestPendingDbgXcpt),
505 SSMFIELD_ENTRY( VMXVVMCS, u64GuestSysenterEsp),
506 SSMFIELD_ENTRY( VMXVVMCS, u64GuestSysenterEip),
507 SSMFIELD_ENTRY( VMXVVMCS, au64Reserved6),
508
509 SSMFIELD_ENTRY( VMXVVMCS, u64HostCr0),
510 SSMFIELD_ENTRY( VMXVVMCS, u64HostCr3),
511 SSMFIELD_ENTRY( VMXVVMCS, u64HostCr4),
512 SSMFIELD_ENTRY( VMXVVMCS, u64HostFsBase),
513 SSMFIELD_ENTRY( VMXVVMCS, u64HostGsBase),
514 SSMFIELD_ENTRY( VMXVVMCS, u64HostTrBase),
515 SSMFIELD_ENTRY( VMXVVMCS, u64HostGdtrBase),
516 SSMFIELD_ENTRY( VMXVVMCS, u64HostIdtrBase),
517 SSMFIELD_ENTRY( VMXVVMCS, u64HostSysenterEsp),
518 SSMFIELD_ENTRY( VMXVVMCS, u64HostSysenterEip),
519 SSMFIELD_ENTRY( VMXVVMCS, u64HostRsp),
520 SSMFIELD_ENTRY( VMXVVMCS, u64HostRip),
521 SSMFIELD_ENTRY( VMXVVMCS, au64Reserved7),
522 SSMFIELD_ENTRY_TERM()
523};
524
525/** Saved state field descriptors for CPUMCTX. */
526static const SSMFIELD g_aCpumX87Fields[] =
527{
528 SSMFIELD_ENTRY( X86FXSTATE, FCW),
529 SSMFIELD_ENTRY( X86FXSTATE, FSW),
530 SSMFIELD_ENTRY( X86FXSTATE, FTW),
531 SSMFIELD_ENTRY( X86FXSTATE, FOP),
532 SSMFIELD_ENTRY( X86FXSTATE, FPUIP),
533 SSMFIELD_ENTRY( X86FXSTATE, CS),
534 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd1),
535 SSMFIELD_ENTRY( X86FXSTATE, FPUDP),
536 SSMFIELD_ENTRY( X86FXSTATE, DS),
537 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd2),
538 SSMFIELD_ENTRY( X86FXSTATE, MXCSR),
539 SSMFIELD_ENTRY( X86FXSTATE, MXCSR_MASK),
540 SSMFIELD_ENTRY( X86FXSTATE, aRegs[0]),
541 SSMFIELD_ENTRY( X86FXSTATE, aRegs[1]),
542 SSMFIELD_ENTRY( X86FXSTATE, aRegs[2]),
543 SSMFIELD_ENTRY( X86FXSTATE, aRegs[3]),
544 SSMFIELD_ENTRY( X86FXSTATE, aRegs[4]),
545 SSMFIELD_ENTRY( X86FXSTATE, aRegs[5]),
546 SSMFIELD_ENTRY( X86FXSTATE, aRegs[6]),
547 SSMFIELD_ENTRY( X86FXSTATE, aRegs[7]),
548 SSMFIELD_ENTRY( X86FXSTATE, aXMM[0]),
549 SSMFIELD_ENTRY( X86FXSTATE, aXMM[1]),
550 SSMFIELD_ENTRY( X86FXSTATE, aXMM[2]),
551 SSMFIELD_ENTRY( X86FXSTATE, aXMM[3]),
552 SSMFIELD_ENTRY( X86FXSTATE, aXMM[4]),
553 SSMFIELD_ENTRY( X86FXSTATE, aXMM[5]),
554 SSMFIELD_ENTRY( X86FXSTATE, aXMM[6]),
555 SSMFIELD_ENTRY( X86FXSTATE, aXMM[7]),
556 SSMFIELD_ENTRY( X86FXSTATE, aXMM[8]),
557 SSMFIELD_ENTRY( X86FXSTATE, aXMM[9]),
558 SSMFIELD_ENTRY( X86FXSTATE, aXMM[10]),
559 SSMFIELD_ENTRY( X86FXSTATE, aXMM[11]),
560 SSMFIELD_ENTRY( X86FXSTATE, aXMM[12]),
561 SSMFIELD_ENTRY( X86FXSTATE, aXMM[13]),
562 SSMFIELD_ENTRY( X86FXSTATE, aXMM[14]),
563 SSMFIELD_ENTRY( X86FXSTATE, aXMM[15]),
564 SSMFIELD_ENTRY_VER( X86FXSTATE, au32RsrvdForSoftware[0], CPUM_SAVED_STATE_VERSION_XSAVE), /* 32-bit/64-bit hack */
565 SSMFIELD_ENTRY_TERM()
566};
567
568/** Saved state field descriptors for X86XSAVEHDR. */
569static const SSMFIELD g_aCpumXSaveHdrFields[] =
570{
571 SSMFIELD_ENTRY( X86XSAVEHDR, bmXState),
572 SSMFIELD_ENTRY_TERM()
573};
574
575/** Saved state field descriptors for X86XSAVEYMMHI. */
576static const SSMFIELD g_aCpumYmmHiFields[] =
577{
578 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[0]),
579 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[1]),
580 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[2]),
581 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[3]),
582 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[4]),
583 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[5]),
584 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[6]),
585 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[7]),
586 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[8]),
587 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[9]),
588 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[10]),
589 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[11]),
590 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[12]),
591 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[13]),
592 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[14]),
593 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[15]),
594 SSMFIELD_ENTRY_TERM()
595};
596
597/** Saved state field descriptors for X86XSAVEBNDREGS. */
598static const SSMFIELD g_aCpumBndRegsFields[] =
599{
600 SSMFIELD_ENTRY( X86XSAVEBNDREGS, aRegs[0]),
601 SSMFIELD_ENTRY( X86XSAVEBNDREGS, aRegs[1]),
602 SSMFIELD_ENTRY( X86XSAVEBNDREGS, aRegs[2]),
603 SSMFIELD_ENTRY( X86XSAVEBNDREGS, aRegs[3]),
604 SSMFIELD_ENTRY_TERM()
605};
606
607/** Saved state field descriptors for X86XSAVEBNDCFG. */
608static const SSMFIELD g_aCpumBndCfgFields[] =
609{
610 SSMFIELD_ENTRY( X86XSAVEBNDCFG, fConfig),
611 SSMFIELD_ENTRY( X86XSAVEBNDCFG, fStatus),
612 SSMFIELD_ENTRY_TERM()
613};
614
615#if 0 /** @todo */
616/** Saved state field descriptors for X86XSAVEOPMASK. */
617static const SSMFIELD g_aCpumOpmaskFields[] =
618{
619 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[0]),
620 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[1]),
621 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[2]),
622 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[3]),
623 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[4]),
624 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[5]),
625 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[6]),
626 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[7]),
627 SSMFIELD_ENTRY_TERM()
628};
629#endif
630
631/** Saved state field descriptors for X86XSAVEZMMHI256. */
632static const SSMFIELD g_aCpumZmmHi256Fields[] =
633{
634 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[0]),
635 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[1]),
636 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[2]),
637 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[3]),
638 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[4]),
639 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[5]),
640 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[6]),
641 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[7]),
642 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[8]),
643 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[9]),
644 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[10]),
645 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[11]),
646 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[12]),
647 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[13]),
648 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[14]),
649 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[15]),
650 SSMFIELD_ENTRY_TERM()
651};
652
653/** Saved state field descriptors for X86XSAVEZMM16HI. */
654static const SSMFIELD g_aCpumZmm16HiFields[] =
655{
656 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[0]),
657 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[1]),
658 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[2]),
659 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[3]),
660 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[4]),
661 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[5]),
662 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[6]),
663 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[7]),
664 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[8]),
665 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[9]),
666 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[10]),
667 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[11]),
668 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[12]),
669 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[13]),
670 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[14]),
671 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[15]),
672 SSMFIELD_ENTRY_TERM()
673};
674
675
676
677/** Saved state field descriptors for CPUMCTX in V4.1 before the hidden selector
678 * registeres changed. */
679static const SSMFIELD g_aCpumX87FieldsMem[] =
680{
681 SSMFIELD_ENTRY( X86FXSTATE, FCW),
682 SSMFIELD_ENTRY( X86FXSTATE, FSW),
683 SSMFIELD_ENTRY( X86FXSTATE, FTW),
684 SSMFIELD_ENTRY( X86FXSTATE, FOP),
685 SSMFIELD_ENTRY( X86FXSTATE, FPUIP),
686 SSMFIELD_ENTRY( X86FXSTATE, CS),
687 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd1),
688 SSMFIELD_ENTRY( X86FXSTATE, FPUDP),
689 SSMFIELD_ENTRY( X86FXSTATE, DS),
690 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd2),
691 SSMFIELD_ENTRY( X86FXSTATE, MXCSR),
692 SSMFIELD_ENTRY( X86FXSTATE, MXCSR_MASK),
693 SSMFIELD_ENTRY( X86FXSTATE, aRegs[0]),
694 SSMFIELD_ENTRY( X86FXSTATE, aRegs[1]),
695 SSMFIELD_ENTRY( X86FXSTATE, aRegs[2]),
696 SSMFIELD_ENTRY( X86FXSTATE, aRegs[3]),
697 SSMFIELD_ENTRY( X86FXSTATE, aRegs[4]),
698 SSMFIELD_ENTRY( X86FXSTATE, aRegs[5]),
699 SSMFIELD_ENTRY( X86FXSTATE, aRegs[6]),
700 SSMFIELD_ENTRY( X86FXSTATE, aRegs[7]),
701 SSMFIELD_ENTRY( X86FXSTATE, aXMM[0]),
702 SSMFIELD_ENTRY( X86FXSTATE, aXMM[1]),
703 SSMFIELD_ENTRY( X86FXSTATE, aXMM[2]),
704 SSMFIELD_ENTRY( X86FXSTATE, aXMM[3]),
705 SSMFIELD_ENTRY( X86FXSTATE, aXMM[4]),
706 SSMFIELD_ENTRY( X86FXSTATE, aXMM[5]),
707 SSMFIELD_ENTRY( X86FXSTATE, aXMM[6]),
708 SSMFIELD_ENTRY( X86FXSTATE, aXMM[7]),
709 SSMFIELD_ENTRY( X86FXSTATE, aXMM[8]),
710 SSMFIELD_ENTRY( X86FXSTATE, aXMM[9]),
711 SSMFIELD_ENTRY( X86FXSTATE, aXMM[10]),
712 SSMFIELD_ENTRY( X86FXSTATE, aXMM[11]),
713 SSMFIELD_ENTRY( X86FXSTATE, aXMM[12]),
714 SSMFIELD_ENTRY( X86FXSTATE, aXMM[13]),
715 SSMFIELD_ENTRY( X86FXSTATE, aXMM[14]),
716 SSMFIELD_ENTRY( X86FXSTATE, aXMM[15]),
717 SSMFIELD_ENTRY_IGNORE( X86FXSTATE, au32RsrvdRest),
718 SSMFIELD_ENTRY_IGNORE( X86FXSTATE, au32RsrvdForSoftware),
719};
720
721/** Saved state field descriptors for CPUMCTX in V4.1 before the hidden selector
722 * registeres changed. */
723static const SSMFIELD g_aCpumCtxFieldsMem[] =
724{
725 SSMFIELD_ENTRY( CPUMCTX, rdi),
726 SSMFIELD_ENTRY( CPUMCTX, rsi),
727 SSMFIELD_ENTRY( CPUMCTX, rbp),
728 SSMFIELD_ENTRY( CPUMCTX, rax),
729 SSMFIELD_ENTRY( CPUMCTX, rbx),
730 SSMFIELD_ENTRY( CPUMCTX, rdx),
731 SSMFIELD_ENTRY( CPUMCTX, rcx),
732 SSMFIELD_ENTRY( CPUMCTX, rsp),
733 SSMFIELD_ENTRY_OLD( lss_esp, sizeof(uint32_t)),
734 SSMFIELD_ENTRY( CPUMCTX, ss.Sel),
735 SSMFIELD_ENTRY_OLD( ssPadding, sizeof(uint16_t)),
736 SSMFIELD_ENTRY( CPUMCTX, gs.Sel),
737 SSMFIELD_ENTRY_OLD( gsPadding, sizeof(uint16_t)),
738 SSMFIELD_ENTRY( CPUMCTX, fs.Sel),
739 SSMFIELD_ENTRY_OLD( fsPadding, sizeof(uint16_t)),
740 SSMFIELD_ENTRY( CPUMCTX, es.Sel),
741 SSMFIELD_ENTRY_OLD( esPadding, sizeof(uint16_t)),
742 SSMFIELD_ENTRY( CPUMCTX, ds.Sel),
743 SSMFIELD_ENTRY_OLD( dsPadding, sizeof(uint16_t)),
744 SSMFIELD_ENTRY( CPUMCTX, cs.Sel),
745 SSMFIELD_ENTRY_OLD( csPadding, sizeof(uint16_t)*3),
746 SSMFIELD_ENTRY( CPUMCTX, rflags),
747 SSMFIELD_ENTRY( CPUMCTX, rip),
748 SSMFIELD_ENTRY( CPUMCTX, r8),
749 SSMFIELD_ENTRY( CPUMCTX, r9),
750 SSMFIELD_ENTRY( CPUMCTX, r10),
751 SSMFIELD_ENTRY( CPUMCTX, r11),
752 SSMFIELD_ENTRY( CPUMCTX, r12),
753 SSMFIELD_ENTRY( CPUMCTX, r13),
754 SSMFIELD_ENTRY( CPUMCTX, r14),
755 SSMFIELD_ENTRY( CPUMCTX, r15),
756 SSMFIELD_ENTRY( CPUMCTX, es.u64Base),
757 SSMFIELD_ENTRY( CPUMCTX, es.u32Limit),
758 SSMFIELD_ENTRY( CPUMCTX, es.Attr),
759 SSMFIELD_ENTRY( CPUMCTX, cs.u64Base),
760 SSMFIELD_ENTRY( CPUMCTX, cs.u32Limit),
761 SSMFIELD_ENTRY( CPUMCTX, cs.Attr),
762 SSMFIELD_ENTRY( CPUMCTX, ss.u64Base),
763 SSMFIELD_ENTRY( CPUMCTX, ss.u32Limit),
764 SSMFIELD_ENTRY( CPUMCTX, ss.Attr),
765 SSMFIELD_ENTRY( CPUMCTX, ds.u64Base),
766 SSMFIELD_ENTRY( CPUMCTX, ds.u32Limit),
767 SSMFIELD_ENTRY( CPUMCTX, ds.Attr),
768 SSMFIELD_ENTRY( CPUMCTX, fs.u64Base),
769 SSMFIELD_ENTRY( CPUMCTX, fs.u32Limit),
770 SSMFIELD_ENTRY( CPUMCTX, fs.Attr),
771 SSMFIELD_ENTRY( CPUMCTX, gs.u64Base),
772 SSMFIELD_ENTRY( CPUMCTX, gs.u32Limit),
773 SSMFIELD_ENTRY( CPUMCTX, gs.Attr),
774 SSMFIELD_ENTRY( CPUMCTX, cr0),
775 SSMFIELD_ENTRY( CPUMCTX, cr2),
776 SSMFIELD_ENTRY( CPUMCTX, cr3),
777 SSMFIELD_ENTRY( CPUMCTX, cr4),
778 SSMFIELD_ENTRY( CPUMCTX, dr[0]),
779 SSMFIELD_ENTRY( CPUMCTX, dr[1]),
780 SSMFIELD_ENTRY( CPUMCTX, dr[2]),
781 SSMFIELD_ENTRY( CPUMCTX, dr[3]),
782 SSMFIELD_ENTRY_OLD( dr[4], sizeof(uint64_t)),
783 SSMFIELD_ENTRY_OLD( dr[5], sizeof(uint64_t)),
784 SSMFIELD_ENTRY( CPUMCTX, dr[6]),
785 SSMFIELD_ENTRY( CPUMCTX, dr[7]),
786 SSMFIELD_ENTRY( CPUMCTX, gdtr.cbGdt),
787 SSMFIELD_ENTRY( CPUMCTX, gdtr.pGdt),
788 SSMFIELD_ENTRY_OLD( gdtrPadding, sizeof(uint16_t)),
789 SSMFIELD_ENTRY( CPUMCTX, idtr.cbIdt),
790 SSMFIELD_ENTRY( CPUMCTX, idtr.pIdt),
791 SSMFIELD_ENTRY_OLD( idtrPadding, sizeof(uint16_t)),
792 SSMFIELD_ENTRY( CPUMCTX, ldtr.Sel),
793 SSMFIELD_ENTRY_OLD( ldtrPadding, sizeof(uint16_t)),
794 SSMFIELD_ENTRY( CPUMCTX, tr.Sel),
795 SSMFIELD_ENTRY_OLD( trPadding, sizeof(uint16_t)),
796 SSMFIELD_ENTRY( CPUMCTX, SysEnter.cs),
797 SSMFIELD_ENTRY( CPUMCTX, SysEnter.eip),
798 SSMFIELD_ENTRY( CPUMCTX, SysEnter.esp),
799 SSMFIELD_ENTRY( CPUMCTX, msrEFER),
800 SSMFIELD_ENTRY( CPUMCTX, msrSTAR),
801 SSMFIELD_ENTRY( CPUMCTX, msrPAT),
802 SSMFIELD_ENTRY( CPUMCTX, msrLSTAR),
803 SSMFIELD_ENTRY( CPUMCTX, msrCSTAR),
804 SSMFIELD_ENTRY( CPUMCTX, msrSFMASK),
805 SSMFIELD_ENTRY( CPUMCTX, msrKERNELGSBASE),
806 SSMFIELD_ENTRY( CPUMCTX, ldtr.u64Base),
807 SSMFIELD_ENTRY( CPUMCTX, ldtr.u32Limit),
808 SSMFIELD_ENTRY( CPUMCTX, ldtr.Attr),
809 SSMFIELD_ENTRY( CPUMCTX, tr.u64Base),
810 SSMFIELD_ENTRY( CPUMCTX, tr.u32Limit),
811 SSMFIELD_ENTRY( CPUMCTX, tr.Attr),
812 SSMFIELD_ENTRY_TERM()
813};
814
815/** Saved state field descriptors for CPUMCTX_VER1_6. */
816static const SSMFIELD g_aCpumX87FieldsV16[] =
817{
818 SSMFIELD_ENTRY( X86FXSTATE, FCW),
819 SSMFIELD_ENTRY( X86FXSTATE, FSW),
820 SSMFIELD_ENTRY( X86FXSTATE, FTW),
821 SSMFIELD_ENTRY( X86FXSTATE, FOP),
822 SSMFIELD_ENTRY( X86FXSTATE, FPUIP),
823 SSMFIELD_ENTRY( X86FXSTATE, CS),
824 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd1),
825 SSMFIELD_ENTRY( X86FXSTATE, FPUDP),
826 SSMFIELD_ENTRY( X86FXSTATE, DS),
827 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd2),
828 SSMFIELD_ENTRY( X86FXSTATE, MXCSR),
829 SSMFIELD_ENTRY( X86FXSTATE, MXCSR_MASK),
830 SSMFIELD_ENTRY( X86FXSTATE, aRegs[0]),
831 SSMFIELD_ENTRY( X86FXSTATE, aRegs[1]),
832 SSMFIELD_ENTRY( X86FXSTATE, aRegs[2]),
833 SSMFIELD_ENTRY( X86FXSTATE, aRegs[3]),
834 SSMFIELD_ENTRY( X86FXSTATE, aRegs[4]),
835 SSMFIELD_ENTRY( X86FXSTATE, aRegs[5]),
836 SSMFIELD_ENTRY( X86FXSTATE, aRegs[6]),
837 SSMFIELD_ENTRY( X86FXSTATE, aRegs[7]),
838 SSMFIELD_ENTRY( X86FXSTATE, aXMM[0]),
839 SSMFIELD_ENTRY( X86FXSTATE, aXMM[1]),
840 SSMFIELD_ENTRY( X86FXSTATE, aXMM[2]),
841 SSMFIELD_ENTRY( X86FXSTATE, aXMM[3]),
842 SSMFIELD_ENTRY( X86FXSTATE, aXMM[4]),
843 SSMFIELD_ENTRY( X86FXSTATE, aXMM[5]),
844 SSMFIELD_ENTRY( X86FXSTATE, aXMM[6]),
845 SSMFIELD_ENTRY( X86FXSTATE, aXMM[7]),
846 SSMFIELD_ENTRY( X86FXSTATE, aXMM[8]),
847 SSMFIELD_ENTRY( X86FXSTATE, aXMM[9]),
848 SSMFIELD_ENTRY( X86FXSTATE, aXMM[10]),
849 SSMFIELD_ENTRY( X86FXSTATE, aXMM[11]),
850 SSMFIELD_ENTRY( X86FXSTATE, aXMM[12]),
851 SSMFIELD_ENTRY( X86FXSTATE, aXMM[13]),
852 SSMFIELD_ENTRY( X86FXSTATE, aXMM[14]),
853 SSMFIELD_ENTRY( X86FXSTATE, aXMM[15]),
854 SSMFIELD_ENTRY_IGNORE( X86FXSTATE, au32RsrvdRest),
855 SSMFIELD_ENTRY_IGNORE( X86FXSTATE, au32RsrvdForSoftware),
856 SSMFIELD_ENTRY_TERM()
857};
858
859/** Saved state field descriptors for CPUMCTX_VER1_6. */
860static const SSMFIELD g_aCpumCtxFieldsV16[] =
861{
862 SSMFIELD_ENTRY( CPUMCTX, rdi),
863 SSMFIELD_ENTRY( CPUMCTX, rsi),
864 SSMFIELD_ENTRY( CPUMCTX, rbp),
865 SSMFIELD_ENTRY( CPUMCTX, rax),
866 SSMFIELD_ENTRY( CPUMCTX, rbx),
867 SSMFIELD_ENTRY( CPUMCTX, rdx),
868 SSMFIELD_ENTRY( CPUMCTX, rcx),
869 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, rsp),
870 SSMFIELD_ENTRY( CPUMCTX, ss.Sel),
871 SSMFIELD_ENTRY_OLD( ssPadding, sizeof(uint16_t)),
872 SSMFIELD_ENTRY_OLD( CPUMCTX, sizeof(uint64_t) /*rsp_notused*/),
873 SSMFIELD_ENTRY( CPUMCTX, gs.Sel),
874 SSMFIELD_ENTRY_OLD( gsPadding, sizeof(uint16_t)),
875 SSMFIELD_ENTRY( CPUMCTX, fs.Sel),
876 SSMFIELD_ENTRY_OLD( fsPadding, sizeof(uint16_t)),
877 SSMFIELD_ENTRY( CPUMCTX, es.Sel),
878 SSMFIELD_ENTRY_OLD( esPadding, sizeof(uint16_t)),
879 SSMFIELD_ENTRY( CPUMCTX, ds.Sel),
880 SSMFIELD_ENTRY_OLD( dsPadding, sizeof(uint16_t)),
881 SSMFIELD_ENTRY( CPUMCTX, cs.Sel),
882 SSMFIELD_ENTRY_OLD( csPadding, sizeof(uint16_t)*3),
883 SSMFIELD_ENTRY( CPUMCTX, rflags),
884 SSMFIELD_ENTRY( CPUMCTX, rip),
885 SSMFIELD_ENTRY( CPUMCTX, r8),
886 SSMFIELD_ENTRY( CPUMCTX, r9),
887 SSMFIELD_ENTRY( CPUMCTX, r10),
888 SSMFIELD_ENTRY( CPUMCTX, r11),
889 SSMFIELD_ENTRY( CPUMCTX, r12),
890 SSMFIELD_ENTRY( CPUMCTX, r13),
891 SSMFIELD_ENTRY( CPUMCTX, r14),
892 SSMFIELD_ENTRY( CPUMCTX, r15),
893 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, es.u64Base),
894 SSMFIELD_ENTRY( CPUMCTX, es.u32Limit),
895 SSMFIELD_ENTRY( CPUMCTX, es.Attr),
896 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, cs.u64Base),
897 SSMFIELD_ENTRY( CPUMCTX, cs.u32Limit),
898 SSMFIELD_ENTRY( CPUMCTX, cs.Attr),
899 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, ss.u64Base),
900 SSMFIELD_ENTRY( CPUMCTX, ss.u32Limit),
901 SSMFIELD_ENTRY( CPUMCTX, ss.Attr),
902 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, ds.u64Base),
903 SSMFIELD_ENTRY( CPUMCTX, ds.u32Limit),
904 SSMFIELD_ENTRY( CPUMCTX, ds.Attr),
905 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, fs.u64Base),
906 SSMFIELD_ENTRY( CPUMCTX, fs.u32Limit),
907 SSMFIELD_ENTRY( CPUMCTX, fs.Attr),
908 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, gs.u64Base),
909 SSMFIELD_ENTRY( CPUMCTX, gs.u32Limit),
910 SSMFIELD_ENTRY( CPUMCTX, gs.Attr),
911 SSMFIELD_ENTRY( CPUMCTX, cr0),
912 SSMFIELD_ENTRY( CPUMCTX, cr2),
913 SSMFIELD_ENTRY( CPUMCTX, cr3),
914 SSMFIELD_ENTRY( CPUMCTX, cr4),
915 SSMFIELD_ENTRY_OLD( cr8, sizeof(uint64_t)),
916 SSMFIELD_ENTRY( CPUMCTX, dr[0]),
917 SSMFIELD_ENTRY( CPUMCTX, dr[1]),
918 SSMFIELD_ENTRY( CPUMCTX, dr[2]),
919 SSMFIELD_ENTRY( CPUMCTX, dr[3]),
920 SSMFIELD_ENTRY_OLD( dr[4], sizeof(uint64_t)),
921 SSMFIELD_ENTRY_OLD( dr[5], sizeof(uint64_t)),
922 SSMFIELD_ENTRY( CPUMCTX, dr[6]),
923 SSMFIELD_ENTRY( CPUMCTX, dr[7]),
924 SSMFIELD_ENTRY( CPUMCTX, gdtr.cbGdt),
925 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, gdtr.pGdt),
926 SSMFIELD_ENTRY_OLD( gdtrPadding, sizeof(uint16_t)),
927 SSMFIELD_ENTRY_OLD( gdtrPadding64, sizeof(uint64_t)),
928 SSMFIELD_ENTRY( CPUMCTX, idtr.cbIdt),
929 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, idtr.pIdt),
930 SSMFIELD_ENTRY_OLD( idtrPadding, sizeof(uint16_t)),
931 SSMFIELD_ENTRY_OLD( idtrPadding64, sizeof(uint64_t)),
932 SSMFIELD_ENTRY( CPUMCTX, ldtr.Sel),
933 SSMFIELD_ENTRY_OLD( ldtrPadding, sizeof(uint16_t)),
934 SSMFIELD_ENTRY( CPUMCTX, tr.Sel),
935 SSMFIELD_ENTRY_OLD( trPadding, sizeof(uint16_t)),
936 SSMFIELD_ENTRY( CPUMCTX, SysEnter.cs),
937 SSMFIELD_ENTRY( CPUMCTX, SysEnter.eip),
938 SSMFIELD_ENTRY( CPUMCTX, SysEnter.esp),
939 SSMFIELD_ENTRY( CPUMCTX, msrEFER),
940 SSMFIELD_ENTRY( CPUMCTX, msrSTAR),
941 SSMFIELD_ENTRY( CPUMCTX, msrPAT),
942 SSMFIELD_ENTRY( CPUMCTX, msrLSTAR),
943 SSMFIELD_ENTRY( CPUMCTX, msrCSTAR),
944 SSMFIELD_ENTRY( CPUMCTX, msrSFMASK),
945 SSMFIELD_ENTRY_OLD( msrFSBASE, sizeof(uint64_t)),
946 SSMFIELD_ENTRY_OLD( msrGSBASE, sizeof(uint64_t)),
947 SSMFIELD_ENTRY( CPUMCTX, msrKERNELGSBASE),
948 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, ldtr.u64Base),
949 SSMFIELD_ENTRY( CPUMCTX, ldtr.u32Limit),
950 SSMFIELD_ENTRY( CPUMCTX, ldtr.Attr),
951 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, tr.u64Base),
952 SSMFIELD_ENTRY( CPUMCTX, tr.u32Limit),
953 SSMFIELD_ENTRY( CPUMCTX, tr.Attr),
954 SSMFIELD_ENTRY_OLD( padding, sizeof(uint32_t)*2),
955 SSMFIELD_ENTRY_TERM()
956};
957
958
959/**
960 * Checks for partial/leaky FXSAVE/FXRSTOR handling on AMD CPUs.
961 *
962 * AMD K7, K8 and newer AMD CPUs do not save/restore the x87 error pointers
963 * (last instruction pointer, last data pointer, last opcode) except when the ES
964 * bit (Exception Summary) in x87 FSW (FPU Status Word) is set. Thus if we don't
965 * clear these registers there is potential, local FPU leakage from a process
966 * using the FPU to another.
967 *
968 * See AMD Instruction Reference for FXSAVE, FXRSTOR.
969 *
970 * @param pVM The cross context VM structure.
971 */
972static void cpumR3CheckLeakyFpu(PVM pVM)
973{
974 uint32_t u32CpuVersion = ASMCpuId_EAX(1);
975 uint32_t const u32Family = u32CpuVersion >> 8;
976 if ( u32Family >= 6 /* K7 and higher */
977 && ASMIsAmdCpu())
978 {
979 uint32_t cExt = ASMCpuId_EAX(0x80000000);
980 if (ASMIsValidExtRange(cExt))
981 {
982 uint32_t fExtFeaturesEDX = ASMCpuId_EDX(0x80000001);
983 if (fExtFeaturesEDX & X86_CPUID_AMD_FEATURE_EDX_FFXSR)
984 {
985 for (VMCPUID i = 0; i < pVM->cCpus; i++)
986 pVM->aCpus[i].cpum.s.fUseFlags |= CPUM_USE_FFXSR_LEAKY;
987 Log(("CPUM: Host CPU has leaky fxsave/fxrstor behaviour\n"));
988 }
989 }
990 }
991}
992
993
994/**
995 * Frees memory allocated for the SVM hardware virtualization state.
996 *
997 * @param pVM The cross context VM structure.
998 */
999static void cpumR3FreeSvmHwVirtState(PVM pVM)
1000{
1001 Assert(pVM->cpum.s.GuestFeatures.fSvm);
1002 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1003 {
1004 PVMCPU pVCpu = &pVM->aCpus[i];
1005 if (pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR3)
1006 {
1007 SUPR3PageFreeEx(pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR3, SVM_VMCB_PAGES);
1008 pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR3 = NULL;
1009 }
1010 pVCpu->cpum.s.Guest.hwvirt.svm.HCPhysVmcb = NIL_RTHCPHYS;
1011
1012 if (pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR3)
1013 {
1014 SUPR3PageFreeEx(pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR3, SVM_MSRPM_PAGES);
1015 pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR3 = NULL;
1016 }
1017
1018 if (pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR3)
1019 {
1020 SUPR3PageFreeEx(pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR3, SVM_IOPM_PAGES);
1021 pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR3 = NULL;
1022 }
1023 }
1024}
1025
1026
1027/**
1028 * Allocates memory for the SVM hardware virtualization state.
1029 *
1030 * @returns VBox status code.
1031 * @param pVM The cross context VM structure.
1032 */
1033static int cpumR3AllocSvmHwVirtState(PVM pVM)
1034{
1035 Assert(pVM->cpum.s.GuestFeatures.fSvm);
1036
1037 int rc = VINF_SUCCESS;
1038 LogRel(("CPUM: Allocating %u pages for the nested-guest SVM MSR and IO permission bitmaps\n",
1039 pVM->cCpus * (SVM_MSRPM_PAGES + SVM_IOPM_PAGES)));
1040 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1041 {
1042 PVMCPU pVCpu = &pVM->aCpus[i];
1043 pVCpu->cpum.s.Guest.hwvirt.enmHwvirt = CPUMHWVIRT_SVM;
1044
1045 /*
1046 * Allocate the nested-guest VMCB.
1047 */
1048 SUPPAGE SupNstGstVmcbPage;
1049 RT_ZERO(SupNstGstVmcbPage);
1050 SupNstGstVmcbPage.Phys = NIL_RTHCPHYS;
1051 Assert(SVM_VMCB_PAGES == 1);
1052 Assert(!pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR3);
1053 rc = SUPR3PageAllocEx(SVM_VMCB_PAGES, 0 /* fFlags */, (void **)&pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR3,
1054 &pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR0, &SupNstGstVmcbPage);
1055 if (RT_FAILURE(rc))
1056 {
1057 Assert(!pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR3);
1058 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's VMCB\n", pVCpu->idCpu, SVM_VMCB_PAGES));
1059 break;
1060 }
1061 pVCpu->cpum.s.Guest.hwvirt.svm.HCPhysVmcb = SupNstGstVmcbPage.Phys;
1062
1063 /*
1064 * Allocate the MSRPM (MSR Permission bitmap).
1065 */
1066 Assert(!pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR3);
1067 rc = SUPR3PageAllocEx(SVM_MSRPM_PAGES, 0 /* fFlags */, &pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR3,
1068 &pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR0, NULL /* paPages */);
1069 if (RT_FAILURE(rc))
1070 {
1071 Assert(!pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR3);
1072 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's MSR permission bitmap\n", pVCpu->idCpu,
1073 SVM_MSRPM_PAGES));
1074 break;
1075 }
1076
1077 /*
1078 * Allocate the IOPM (IO Permission bitmap).
1079 */
1080 Assert(!pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR3);
1081 rc = SUPR3PageAllocEx(SVM_IOPM_PAGES, 0 /* fFlags */, &pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR3,
1082 &pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR0, NULL /* paPages */);
1083 if (RT_FAILURE(rc))
1084 {
1085 Assert(!pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR3);
1086 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's IO permission bitmap\n", pVCpu->idCpu,
1087 SVM_IOPM_PAGES));
1088 break;
1089 }
1090 }
1091
1092 /* On any failure, cleanup. */
1093 if (RT_FAILURE(rc))
1094 cpumR3FreeSvmHwVirtState(pVM);
1095
1096 return rc;
1097}
1098
1099
1100/**
1101 * Resets per-VCPU SVM hardware virtualization state.
1102 *
1103 * @param pVCpu The cross context virtual CPU structure.
1104 */
1105DECLINLINE(void) cpumR3ResetSvmHwVirtState(PVMCPU pVCpu)
1106{
1107 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
1108 Assert(pCtx->hwvirt.enmHwvirt == CPUMHWVIRT_SVM);
1109 Assert(pCtx->hwvirt.svm.CTX_SUFF(pVmcb));
1110
1111 memset(pCtx->hwvirt.svm.CTX_SUFF(pVmcb), 0, SVM_VMCB_PAGES << PAGE_SHIFT);
1112 pCtx->hwvirt.svm.uMsrHSavePa = 0;
1113 pCtx->hwvirt.svm.uPrevPauseTick = 0;
1114}
1115
1116
1117/**
1118 * Frees memory allocated for the VMX hardware virtualization state.
1119 *
1120 * @param pVM The cross context VM structure.
1121 */
1122static void cpumR3FreeVmxHwVirtState(PVM pVM)
1123{
1124 Assert(pVM->cpum.s.GuestFeatures.fVmx);
1125 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1126 {
1127 PVMCPU pVCpu = &pVM->aCpus[i];
1128 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
1129
1130 if (pCtx->hwvirt.vmx.pVmcsR3)
1131 {
1132 SUPR3ContFree(pCtx->hwvirt.vmx.pVmcsR3, VMX_V_VMCS_PAGES);
1133 pCtx->hwvirt.vmx.pVmcsR3 = NULL;
1134 }
1135 if (pCtx->hwvirt.vmx.pShadowVmcsR3)
1136 {
1137 SUPR3ContFree(pCtx->hwvirt.vmx.pShadowVmcsR3, VMX_V_VMCS_PAGES);
1138 pCtx->hwvirt.vmx.pShadowVmcsR3 = NULL;
1139 }
1140 if (pCtx->hwvirt.vmx.pvVmreadBitmapR3)
1141 {
1142 SUPR3ContFree(pCtx->hwvirt.vmx.pvVmreadBitmapR3, VMX_V_VMREAD_VMWRITE_BITMAP_PAGES);
1143 pCtx->hwvirt.vmx.pvVmreadBitmapR3 = NULL;
1144 }
1145 if (pCtx->hwvirt.vmx.pvVmwriteBitmapR3)
1146 {
1147 SUPR3ContFree(pCtx->hwvirt.vmx.pvVmwriteBitmapR3, VMX_V_VMREAD_VMWRITE_BITMAP_PAGES);
1148 pCtx->hwvirt.vmx.pvVmwriteBitmapR3 = NULL;
1149 }
1150 if (pCtx->hwvirt.vmx.pEntryMsrLoadAreaR3)
1151 {
1152 SUPR3ContFree(pCtx->hwvirt.vmx.pEntryMsrLoadAreaR3, VMX_V_AUTOMSR_AREA_PAGES);
1153 pCtx->hwvirt.vmx.pEntryMsrLoadAreaR3 = NULL;
1154 }
1155 if (pCtx->hwvirt.vmx.pExitMsrStoreAreaR3)
1156 {
1157 SUPR3ContFree(pCtx->hwvirt.vmx.pExitMsrStoreAreaR3, VMX_V_AUTOMSR_AREA_PAGES);
1158 pCtx->hwvirt.vmx.pExitMsrStoreAreaR3 = NULL;
1159 }
1160 if (pCtx->hwvirt.vmx.pExitMsrLoadAreaR3)
1161 {
1162 SUPR3ContFree(pCtx->hwvirt.vmx.pExitMsrLoadAreaR3, VMX_V_AUTOMSR_AREA_PAGES);
1163 pCtx->hwvirt.vmx.pExitMsrLoadAreaR3 = NULL;
1164 }
1165 if (pCtx->hwvirt.vmx.pvMsrBitmapR3)
1166 {
1167 SUPR3ContFree(pCtx->hwvirt.vmx.pvMsrBitmapR3, VMX_V_MSR_BITMAP_PAGES);
1168 pCtx->hwvirt.vmx.pvMsrBitmapR3 = NULL;
1169 }
1170 if (pCtx->hwvirt.vmx.pvIoBitmapR3)
1171 {
1172 SUPR3ContFree(pCtx->hwvirt.vmx.pvIoBitmapR3, VMX_V_IO_BITMAP_A_PAGES + VMX_V_IO_BITMAP_B_PAGES);
1173 pCtx->hwvirt.vmx.pvIoBitmapR3 = NULL;
1174 }
1175 }
1176}
1177
1178
1179/**
1180 * Allocates memory for the VMX hardware virtualization state.
1181 *
1182 * @returns VBox status code.
1183 * @param pVM The cross context VM structure.
1184 */
1185static int cpumR3AllocVmxHwVirtState(PVM pVM)
1186{
1187 int rc = VINF_SUCCESS;
1188 uint32_t const cPages = (2 * VMX_V_VMCS_PAGES)
1189 + VMX_V_VIRT_APIC_PAGES
1190 + (2 * VMX_V_VMREAD_VMWRITE_BITMAP_SIZE)
1191 + (3 * VMX_V_AUTOMSR_AREA_SIZE)
1192 + VMX_V_MSR_BITMAP_SIZE
1193 + (VMX_V_IO_BITMAP_A_SIZE + VMX_V_IO_BITMAP_B_SIZE);
1194 LogRel(("CPUM: Allocating %u pages for the nested-guest VMCS and related structures\n", pVM->cCpus * cPages));
1195 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1196 {
1197 PVMCPU pVCpu = &pVM->aCpus[i];
1198 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
1199 pCtx->hwvirt.enmHwvirt = CPUMHWVIRT_VMX;
1200
1201 /*
1202 * Allocate the nested-guest current VMCS.
1203 */
1204 Assert(VMX_V_VMCS_PAGES == 1);
1205 pCtx->hwvirt.vmx.pVmcsR3 = (PVMXVVMCS)SUPR3ContAlloc(VMX_V_VMCS_PAGES,
1206 &pCtx->hwvirt.vmx.pVmcsR0,
1207 &pCtx->hwvirt.vmx.HCPhysVmcs);
1208 if (pCtx->hwvirt.vmx.pVmcsR3)
1209 { /* likely */ }
1210 else
1211 {
1212 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's VMCS\n", pVCpu->idCpu, VMX_V_VMCS_PAGES));
1213 break;
1214 }
1215
1216 /*
1217 * Allocate the nested-guest shadow VMCS.
1218 */
1219 Assert(VMX_V_VMCS_PAGES == 1);
1220 pCtx->hwvirt.vmx.pShadowVmcsR3 = (PVMXVVMCS)SUPR3ContAlloc(VMX_V_VMCS_PAGES,
1221 &pCtx->hwvirt.vmx.pShadowVmcsR0,
1222 &pCtx->hwvirt.vmx.HCPhysShadowVmcs);
1223 if (pCtx->hwvirt.vmx.pShadowVmcsR3)
1224 { /* likely */ }
1225 else
1226 {
1227 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's shadow VMCS\n", pVCpu->idCpu, VMX_V_VMCS_PAGES));
1228 break;
1229 }
1230
1231 /*
1232 * Allocate the VMREAD-bitmap.
1233 */
1234 pCtx->hwvirt.vmx.pvVmreadBitmapR3 = SUPR3ContAlloc(VMX_V_VMREAD_VMWRITE_BITMAP_PAGES,
1235 &pCtx->hwvirt.vmx.pvVmreadBitmapR0,
1236 &pCtx->hwvirt.vmx.HCPhysVmreadBitmap);
1237 if (pCtx->hwvirt.vmx.pvVmreadBitmapR3)
1238 { /* likely */ }
1239 else
1240 {
1241 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's VMREAD-bitmap\n", pVCpu->idCpu,
1242 VMX_V_VMREAD_VMWRITE_BITMAP_PAGES));
1243 break;
1244 }
1245
1246 /*
1247 * Allocatge the VMWRITE-bitmap.
1248 */
1249 pCtx->hwvirt.vmx.pvVmwriteBitmapR3 = SUPR3ContAlloc(VMX_V_VMREAD_VMWRITE_BITMAP_PAGES,
1250 &pCtx->hwvirt.vmx.pvVmwriteBitmapR0,
1251 &pCtx->hwvirt.vmx.HCPhysVmwriteBitmap);
1252 if (pCtx->hwvirt.vmx.pvVmwriteBitmapR3)
1253 { /* likely */ }
1254 else
1255 {
1256 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's VMWRITE-bitmap\n", pVCpu->idCpu,
1257 VMX_V_VMREAD_VMWRITE_BITMAP_PAGES));
1258 break;
1259 }
1260
1261 /*
1262 * Allocate the VM-entry MSR-load area.
1263 */
1264 pCtx->hwvirt.vmx.pEntryMsrLoadAreaR3 = (PVMXAUTOMSR)SUPR3ContAlloc(VMX_V_AUTOMSR_AREA_PAGES,
1265 &pCtx->hwvirt.vmx.pEntryMsrLoadAreaR0,
1266 &pCtx->hwvirt.vmx.HCPhysEntryMsrLoadArea);
1267 if (pCtx->hwvirt.vmx.pEntryMsrLoadAreaR3)
1268 { /* likely */ }
1269 else
1270 {
1271 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's VM-entry MSR-load area\n", pVCpu->idCpu,
1272 VMX_V_AUTOMSR_AREA_PAGES));
1273 break;
1274 }
1275
1276 /*
1277 * Allocate the VM-exit MSR-store area.
1278 */
1279 pCtx->hwvirt.vmx.pExitMsrStoreAreaR3 = (PVMXAUTOMSR)SUPR3ContAlloc(VMX_V_AUTOMSR_AREA_PAGES,
1280 &pCtx->hwvirt.vmx.pExitMsrStoreAreaR0,
1281 &pCtx->hwvirt.vmx.HCPhysExitMsrStoreArea);
1282 if (pCtx->hwvirt.vmx.pExitMsrStoreAreaR3)
1283 { /* likely */ }
1284 else
1285 {
1286 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's VM-exit MSR-store area\n", pVCpu->idCpu,
1287 VMX_V_AUTOMSR_AREA_PAGES));
1288 break;
1289 }
1290
1291 /*
1292 * Allocate the VM-exit MSR-load area.
1293 */
1294 pCtx->hwvirt.vmx.pExitMsrLoadAreaR3 = (PVMXAUTOMSR)SUPR3ContAlloc(VMX_V_AUTOMSR_AREA_PAGES,
1295 &pCtx->hwvirt.vmx.pExitMsrLoadAreaR0,
1296 &pCtx->hwvirt.vmx.HCPhysExitMsrLoadArea);
1297 if (pCtx->hwvirt.vmx.pExitMsrLoadAreaR3)
1298 { /* likely */ }
1299 else
1300 {
1301 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's VM-exit MSR-load area\n", pVCpu->idCpu,
1302 VMX_V_AUTOMSR_AREA_PAGES));
1303 break;
1304 }
1305
1306 /*
1307 * Allocate the MSR bitmap.
1308 */
1309 pCtx->hwvirt.vmx.pvMsrBitmapR3 = SUPR3ContAlloc(VMX_V_MSR_BITMAP_PAGES,
1310 &pCtx->hwvirt.vmx.pvMsrBitmapR0,
1311 &pCtx->hwvirt.vmx.HCPhysMsrBitmap);
1312 if (pCtx->hwvirt.vmx.pvMsrBitmapR3)
1313 { /* likely */ }
1314 else
1315 {
1316 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's MSR bitmap\n", pVCpu->idCpu,
1317 VMX_V_MSR_BITMAP_PAGES));
1318 break;
1319 }
1320
1321 /*
1322 * Allocate the I/O bitmaps (A and B).
1323 */
1324 pCtx->hwvirt.vmx.pvIoBitmapR3 = SUPR3ContAlloc(VMX_V_IO_BITMAP_A_PAGES + VMX_V_IO_BITMAP_B_PAGES,
1325 &pCtx->hwvirt.vmx.pvIoBitmapR0,
1326 &pCtx->hwvirt.vmx.HCPhysIoBitmap);
1327 if (pCtx->hwvirt.vmx.pvIoBitmapR3)
1328 { /* likely */ }
1329 else
1330 {
1331 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's I/O bitmaps\n", pVCpu->idCpu,
1332 VMX_V_IO_BITMAP_A_PAGES + VMX_V_IO_BITMAP_B_PAGES));
1333 break;
1334 }
1335
1336 /*
1337 * Zero out all allocated pages (should compress well for saved-state).
1338 */
1339 memset(pCtx->hwvirt.vmx.CTX_SUFF(pVmcs), 0, VMX_V_VMCS_SIZE);
1340 memset(pCtx->hwvirt.vmx.CTX_SUFF(pShadowVmcs), 0, VMX_V_VMCS_SIZE);
1341 memset(pCtx->hwvirt.vmx.CTX_SUFF(pvVmreadBitmap), 0, VMX_V_VMREAD_VMWRITE_BITMAP_SIZE);
1342 memset(pCtx->hwvirt.vmx.CTX_SUFF(pvVmwriteBitmap), 0, VMX_V_VMREAD_VMWRITE_BITMAP_SIZE);
1343 memset(pCtx->hwvirt.vmx.CTX_SUFF(pEntryMsrLoadArea), 0, VMX_V_AUTOMSR_AREA_SIZE);
1344 memset(pCtx->hwvirt.vmx.CTX_SUFF(pExitMsrStoreArea), 0, VMX_V_AUTOMSR_AREA_SIZE);
1345 memset(pCtx->hwvirt.vmx.CTX_SUFF(pExitMsrLoadArea), 0, VMX_V_AUTOMSR_AREA_SIZE);
1346 memset(pCtx->hwvirt.vmx.CTX_SUFF(pvMsrBitmap), 0, VMX_V_MSR_BITMAP_SIZE);
1347 memset(pCtx->hwvirt.vmx.CTX_SUFF(pvIoBitmap), 0, VMX_V_IO_BITMAP_A_SIZE + VMX_V_IO_BITMAP_B_SIZE);
1348 }
1349
1350 /* On any failure, cleanup. */
1351 if (RT_FAILURE(rc))
1352 cpumR3FreeVmxHwVirtState(pVM);
1353
1354 return rc;
1355}
1356
1357
1358/**
1359 * Resets per-VCPU VMX hardware virtualization state.
1360 *
1361 * @param pVCpu The cross context virtual CPU structure.
1362 */
1363DECLINLINE(void) cpumR3ResetVmxHwVirtState(PVMCPU pVCpu)
1364{
1365 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
1366 Assert(pCtx->hwvirt.enmHwvirt == CPUMHWVIRT_VMX);
1367 Assert(pCtx->hwvirt.vmx.CTX_SUFF(pVmcs));
1368 Assert(pCtx->hwvirt.vmx.CTX_SUFF(pShadowVmcs));
1369
1370 memset(pCtx->hwvirt.vmx.CTX_SUFF(pVmcs), 0, VMX_V_VMCS_SIZE);
1371 memset(pCtx->hwvirt.vmx.CTX_SUFF(pShadowVmcs), 0, VMX_V_VMCS_SIZE);
1372 pCtx->hwvirt.vmx.GCPhysVmxon = NIL_RTGCPHYS;
1373 pCtx->hwvirt.vmx.GCPhysShadowVmcs = NIL_RTGCPHYS;
1374 pCtx->hwvirt.vmx.GCPhysVmxon = NIL_RTGCPHYS;
1375 pCtx->hwvirt.vmx.fInVmxRootMode = false;
1376 pCtx->hwvirt.vmx.fInVmxNonRootMode = false;
1377 /* Don't reset diagnostics here. */
1378}
1379
1380
1381/**
1382 * Displays the host and guest VMX features.
1383 *
1384 * @param pVM The cross context VM structure.
1385 * @param pHlp The info helper functions.
1386 * @param pszArgs "terse", "default" or "verbose".
1387 */
1388DECLCALLBACK(void) cpumR3InfoVmxFeatures(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
1389{
1390 RT_NOREF(pszArgs);
1391 PCCPUMFEATURES pHostFeatures = &pVM->cpum.s.HostFeatures;
1392 PCCPUMFEATURES pGuestFeatures = &pVM->cpum.s.GuestFeatures;
1393 if ( pHostFeatures->enmCpuVendor == CPUMCPUVENDOR_INTEL
1394 || pHostFeatures->enmCpuVendor == CPUMCPUVENDOR_VIA
1395 || pHostFeatures->enmCpuVendor == CPUMCPUVENDOR_SHANGHAI)
1396 {
1397#define VMXFEATDUMP(a_szDesc, a_Var) \
1398 pHlp->pfnPrintf(pHlp, " %s = %u (%u)\n", a_szDesc, pGuestFeatures->a_Var, pHostFeatures->a_Var)
1399
1400 pHlp->pfnPrintf(pHlp, "Nested hardware virtualization - VMX features\n");
1401 pHlp->pfnPrintf(pHlp, " Mnemonic - Description = guest (host)\n");
1402 VMXFEATDUMP("VMX - Virtual-Machine Extensions ", fVmx);
1403 /* Basic. */
1404 VMXFEATDUMP("InsOutInfo - INS/OUTS instruction info. ", fVmxInsOutInfo);
1405 /* Pin-based controls. */
1406 VMXFEATDUMP("ExtIntExit - External interrupt exiting ", fVmxExtIntExit);
1407 VMXFEATDUMP("NmiExit - NMI exiting ", fVmxNmiExit);
1408 VMXFEATDUMP("VirtNmi - Virtual NMIs ", fVmxVirtNmi);
1409 VMXFEATDUMP("PreemptTimer - VMX preemption timer ", fVmxPreemptTimer);
1410 VMXFEATDUMP("PostedInt - Posted interrupts ", fVmxPostedInt);
1411 /* Processor-based controls. */
1412 VMXFEATDUMP("IntWindowExit - Interrupt-window exiting ", fVmxIntWindowExit);
1413 VMXFEATDUMP("TscOffsetting - TSC offsetting ", fVmxTscOffsetting);
1414 VMXFEATDUMP("HltExit - HLT exiting ", fVmxHltExit);
1415 VMXFEATDUMP("InvlpgExit - INVLPG exiting ", fVmxInvlpgExit);
1416 VMXFEATDUMP("MwaitExit - MWAIT exiting ", fVmxMwaitExit);
1417 VMXFEATDUMP("RdpmcExit - RDPMC exiting ", fVmxRdpmcExit);
1418 VMXFEATDUMP("RdtscExit - RDTSC exiting ", fVmxRdtscExit);
1419 VMXFEATDUMP("Cr3LoadExit - CR3-load exiting ", fVmxCr3LoadExit);
1420 VMXFEATDUMP("Cr3StoreExit - CR3-store exiting ", fVmxCr3StoreExit);
1421 VMXFEATDUMP("Cr8LoadExit - CR8-load exiting ", fVmxCr8LoadExit);
1422 VMXFEATDUMP("Cr8StoreExit - CR8-store exiting ", fVmxCr8StoreExit);
1423 VMXFEATDUMP("UseTprShadow - Use TPR shadow ", fVmxUseTprShadow);
1424 VMXFEATDUMP("NmiWindowExit - NMI-window exiting ", fVmxNmiWindowExit);
1425 VMXFEATDUMP("MovDRxExit - Mov-DR exiting ", fVmxMovDRxExit);
1426 VMXFEATDUMP("UncondIoExit - Unconditional I/O exiting ", fVmxUncondIoExit);
1427 VMXFEATDUMP("UseIoBitmaps - Use I/O bitmaps ", fVmxUseIoBitmaps);
1428 VMXFEATDUMP("MonitorTrapFlag - Monitor trap flag ", fVmxMonitorTrapFlag);
1429 VMXFEATDUMP("UseMsrBitmaps - MSR bitmaps ", fVmxUseMsrBitmaps);
1430 VMXFEATDUMP("MonitorExit - MONITOR exiting ", fVmxMonitorExit);
1431 VMXFEATDUMP("PauseExit - PAUSE exiting ", fVmxPauseExit);
1432 VMXFEATDUMP("SecondaryExecCtl - Activate secondary controls ", fVmxSecondaryExecCtls);
1433 /* Secondary processor-based controls. */
1434 VMXFEATDUMP("VirtApic - Virtualize-APIC accesses ", fVmxVirtApicAccess);
1435 VMXFEATDUMP("Ept - Extended Page Tables ", fVmxEpt);
1436 VMXFEATDUMP("DescTableExit - Descriptor-table exiting ", fVmxDescTableExit);
1437 VMXFEATDUMP("Rdtscp - Enable RDTSCP ", fVmxRdtscp);
1438 VMXFEATDUMP("VirtX2ApicMode - Virtualize-x2APIC mode ", fVmxVirtX2ApicMode);
1439 VMXFEATDUMP("Vpid - Enable VPID ", fVmxVpid);
1440 VMXFEATDUMP("WbinvdExit - WBINVD exiting ", fVmxWbinvdExit);
1441 VMXFEATDUMP("UnrestrictedGuest - Unrestricted guest ", fVmxUnrestrictedGuest);
1442 VMXFEATDUMP("ApicRegVirt - APIC-register virtualization ", fVmxApicRegVirt);
1443 VMXFEATDUMP("VirtIntDelivery - Virtual-interrupt delivery ", fVmxVirtIntDelivery);
1444 VMXFEATDUMP("PauseLoopExit - PAUSE-loop exiting ", fVmxPauseLoopExit);
1445 VMXFEATDUMP("RdrandExit - RDRAND exiting ", fVmxRdrandExit);
1446 VMXFEATDUMP("Invpcid - Enable INVPCID ", fVmxInvpcid);
1447 VMXFEATDUMP("VmFuncs - Enable VM Functions ", fVmxVmFunc);
1448 VMXFEATDUMP("VmcsShadowing - VMCS shadowing ", fVmxVmcsShadowing);
1449 VMXFEATDUMP("RdseedExiting - RDSEED exiting ", fVmxRdseedExit);
1450 VMXFEATDUMP("PML - Page-Modification Log (PML) ", fVmxPml);
1451 VMXFEATDUMP("EptVe - EPT violations can cause #VE ", fVmxEptXcptVe);
1452 VMXFEATDUMP("XsavesXRstors - Enable XSAVES/XRSTORS ", fVmxXsavesXrstors);
1453 /* VM-entry controls. */
1454 VMXFEATDUMP("EntryLoadDebugCtls - Load debug controls on VM-entry ", fVmxEntryLoadDebugCtls);
1455 VMXFEATDUMP("Ia32eModeGuest - IA-32e mode guest ", fVmxIa32eModeGuest);
1456 VMXFEATDUMP("EntryLoadEferMsr - Load IA32_EFER MSR on VM-entry ", fVmxEntryLoadEferMsr);
1457 VMXFEATDUMP("EntryLoadPatMsr - Load IA32_PAT MSR on VM-entry ", fVmxEntryLoadPatMsr);
1458 /* VM-exit controls. */
1459 VMXFEATDUMP("ExitSaveDebugCtls - Save debug controls on VM-exit ", fVmxExitSaveDebugCtls);
1460 VMXFEATDUMP("HostAddrSpaceSize - Host address-space size ", fVmxHostAddrSpaceSize);
1461 VMXFEATDUMP("ExitAckExtInt - Acknowledge interrupt on VM-exit ", fVmxExitAckExtInt);
1462 VMXFEATDUMP("ExitSavePatMsr - Save IA32_PAT MSR on VM-exit ", fVmxExitSavePatMsr);
1463 VMXFEATDUMP("ExitLoadPatMsr - Load IA32_PAT MSR on VM-exit ", fVmxExitLoadPatMsr);
1464 VMXFEATDUMP("ExitSaveEferMsr - Save IA32_EFER MSR on VM-exit ", fVmxExitSaveEferMsr);
1465 VMXFEATDUMP("ExitLoadEferMsr - Load IA32_EFER MSR on VM-exit ", fVmxExitLoadEferMsr);
1466 VMXFEATDUMP("SavePreemptTimer - Save VMX-preemption timer ", fVmxSavePreemptTimer);
1467 /* Miscellaneous data. */
1468 VMXFEATDUMP("ExitSaveEferLma - Save IA32_EFER.LMA on VM-exit ", fVmxExitSaveEferLma);
1469 VMXFEATDUMP("IntelPt - Intel PT (Processor Trace) in VMX operation ", fVmxIntelPt);
1470 VMXFEATDUMP("VmwriteAll - Write allowed to read-only VMCS fields ", fVmxVmwriteAll);
1471 VMXFEATDUMP("EntryInjectSoftInt - Inject softint. with 0-len instr. ", fVmxEntryInjectSoftInt);
1472#undef VMXFEATDUMP
1473 }
1474 else
1475 pHlp->pfnPrintf(pHlp, "No VMX features present - requires an Intel or compatible CPU.\n");
1476}
1477
1478
1479/**
1480 * Checks whether nested-guest execution using hardware-assisted VMX (e.g, using HM
1481 * or NEM) is allowed.
1482 *
1483 * @returns @c true if hardware-assisted nested-guest execution is allowed, @c false
1484 * otherwise.
1485 * @param pVM The cross context VM structure.
1486 */
1487static bool cpumR3IsHwAssistNstGstExecAllowed(PVM pVM)
1488{
1489 AssertMsg(pVM->bMainExecutionEngine != VM_EXEC_ENGINE_NOT_SET, ("Calling this function too early!\n"));
1490#ifndef VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM
1491 if ( pVM->bMainExecutionEngine == VM_EXEC_ENGINE_HW_VIRT
1492 || pVM->bMainExecutionEngine == VM_EXEC_ENGINE_NATIVE_API)
1493 return true;
1494#else
1495 NOREF(pVM);
1496#endif
1497 return false;
1498}
1499
1500
1501/**
1502 * Initializes the VMX guest MSRs from guest CPU features based on the host MSRs.
1503 *
1504 * @param pVM The cross context VM structure.
1505 * @param pHostVmxMsrs The host VMX MSRs. Pass NULL when fully emulating VMX
1506 * and no hardware-assisted nested-guest execution is
1507 * possible for this VM.
1508 * @param pGuestFeatures The guest features to use (only VMX features are
1509 * accessed).
1510 * @param pGuestVmxMsrs Where to store the initialized guest VMX MSRs.
1511 *
1512 * @remarks This function ASSUMES the VMX guest-features are already exploded!
1513 */
1514static void cpumR3InitVmxGuestMsrs(PVM pVM, PCVMXMSRS pHostVmxMsrs, PCCPUMFEATURES pGuestFeatures, PVMXMSRS pGuestVmxMsrs)
1515{
1516 bool const fIsNstGstHwExecAllowed = cpumR3IsHwAssistNstGstExecAllowed(pVM);
1517
1518 Assert(!fIsNstGstHwExecAllowed || pHostVmxMsrs);
1519 Assert(pGuestFeatures->fVmx);
1520
1521 /*
1522 * We don't support the following MSRs yet:
1523 * - True Pin-based VM-execution controls.
1524 * - True Processor-based VM-execution controls.
1525 * - True VM-entry VM-execution controls.
1526 * - True VM-exit VM-execution controls.
1527 * - EPT/VPID capabilities.
1528 */
1529
1530 /* Feature control. */
1531 pGuestVmxMsrs->u64FeatCtrl = MSR_IA32_FEATURE_CONTROL_LOCK | MSR_IA32_FEATURE_CONTROL_VMXON;
1532
1533 /* Basic information. */
1534 {
1535 uint64_t const u64Basic = RT_BF_MAKE(VMX_BF_BASIC_VMCS_ID, VMX_V_VMCS_REVISION_ID )
1536 | RT_BF_MAKE(VMX_BF_BASIC_VMCS_SIZE, VMX_V_VMCS_SIZE )
1537 | RT_BF_MAKE(VMX_BF_BASIC_PHYSADDR_WIDTH, !pGuestFeatures->fLongMode )
1538 | RT_BF_MAKE(VMX_BF_BASIC_DUAL_MON, 0 )
1539 | RT_BF_MAKE(VMX_BF_BASIC_VMCS_MEM_TYPE, VMX_BASIC_MEM_TYPE_WB )
1540 | RT_BF_MAKE(VMX_BF_BASIC_VMCS_INS_OUTS, pGuestFeatures->fVmxInsOutInfo)
1541 | RT_BF_MAKE(VMX_BF_BASIC_TRUE_CTLS, 0 );
1542 pGuestVmxMsrs->u64Basic = u64Basic;
1543 }
1544
1545 /* Pin-based VM-execution controls. */
1546 {
1547 uint32_t const fFeatures = (pGuestFeatures->fVmxExtIntExit << VMX_BF_PIN_CTLS_EXT_INT_EXIT_SHIFT )
1548 | (pGuestFeatures->fVmxNmiExit << VMX_BF_PIN_CTLS_NMI_EXIT_SHIFT )
1549 | (pGuestFeatures->fVmxVirtNmi << VMX_BF_PIN_CTLS_VIRT_NMI_SHIFT )
1550 | (pGuestFeatures->fVmxPreemptTimer << VMX_BF_PIN_CTLS_PREEMPT_TIMER_SHIFT)
1551 | (pGuestFeatures->fVmxPostedInt << VMX_BF_PIN_CTLS_POSTED_INT_SHIFT );
1552 uint32_t const fAllowed0 = VMX_PIN_CTLS_DEFAULT1;
1553 uint32_t const fAllowed1 = fFeatures | VMX_PIN_CTLS_DEFAULT1;
1554 AssertMsg((fAllowed0 & fAllowed1) == fAllowed0, ("fAllowed0=%#RX32 fAllowed1=%#RX32 fFeatures=%#RX32\n",
1555 fAllowed0, fAllowed1, fFeatures));
1556 pGuestVmxMsrs->PinCtls.u = RT_MAKE_U64(fAllowed0, fAllowed1);
1557 }
1558
1559 /* Processor-based VM-execution controls. */
1560 {
1561 uint32_t const fFeatures = (pGuestFeatures->fVmxIntWindowExit << VMX_BF_PROC_CTLS_INT_WINDOW_EXIT_SHIFT )
1562 | (pGuestFeatures->fVmxTscOffsetting << VMX_BF_PROC_CTLS_USE_TSC_OFFSETTING_SHIFT)
1563 | (pGuestFeatures->fVmxHltExit << VMX_BF_PROC_CTLS_HLT_EXIT_SHIFT )
1564 | (pGuestFeatures->fVmxInvlpgExit << VMX_BF_PROC_CTLS_INVLPG_EXIT_SHIFT )
1565 | (pGuestFeatures->fVmxMwaitExit << VMX_BF_PROC_CTLS_MWAIT_EXIT_SHIFT )
1566 | (pGuestFeatures->fVmxRdpmcExit << VMX_BF_PROC_CTLS_RDPMC_EXIT_SHIFT )
1567 | (pGuestFeatures->fVmxRdtscExit << VMX_BF_PROC_CTLS_RDTSC_EXIT_SHIFT )
1568 | (pGuestFeatures->fVmxCr3LoadExit << VMX_BF_PROC_CTLS_CR3_LOAD_EXIT_SHIFT )
1569 | (pGuestFeatures->fVmxCr3StoreExit << VMX_BF_PROC_CTLS_CR3_STORE_EXIT_SHIFT )
1570 | (pGuestFeatures->fVmxCr8LoadExit << VMX_BF_PROC_CTLS_CR8_LOAD_EXIT_SHIFT )
1571 | (pGuestFeatures->fVmxCr8StoreExit << VMX_BF_PROC_CTLS_CR8_STORE_EXIT_SHIFT )
1572 | (pGuestFeatures->fVmxUseTprShadow << VMX_BF_PROC_CTLS_USE_TPR_SHADOW_SHIFT )
1573 | (pGuestFeatures->fVmxNmiWindowExit << VMX_BF_PROC_CTLS_NMI_WINDOW_EXIT_SHIFT )
1574 | (pGuestFeatures->fVmxMovDRxExit << VMX_BF_PROC_CTLS_MOV_DR_EXIT_SHIFT )
1575 | (pGuestFeatures->fVmxUncondIoExit << VMX_BF_PROC_CTLS_UNCOND_IO_EXIT_SHIFT )
1576 | (pGuestFeatures->fVmxUseIoBitmaps << VMX_BF_PROC_CTLS_USE_IO_BITMAPS_SHIFT )
1577 | (pGuestFeatures->fVmxMonitorTrapFlag << VMX_BF_PROC_CTLS_MONITOR_TRAP_FLAG_SHIFT )
1578 | (pGuestFeatures->fVmxUseMsrBitmaps << VMX_BF_PROC_CTLS_USE_MSR_BITMAPS_SHIFT )
1579 | (pGuestFeatures->fVmxMonitorExit << VMX_BF_PROC_CTLS_MONITOR_EXIT_SHIFT )
1580 | (pGuestFeatures->fVmxPauseExit << VMX_BF_PROC_CTLS_PAUSE_EXIT_SHIFT )
1581 | (pGuestFeatures->fVmxSecondaryExecCtls << VMX_BF_PROC_CTLS_USE_SECONDARY_CTLS_SHIFT);
1582 uint32_t const fAllowed0 = VMX_PROC_CTLS_DEFAULT1;
1583 uint32_t const fAllowed1 = fFeatures | VMX_PROC_CTLS_DEFAULT1;
1584 AssertMsg((fAllowed0 & fAllowed1) == fAllowed0, ("fAllowed0=%#RX32 fAllowed1=%#RX32 fFeatures=%#RX32\n", fAllowed0,
1585 fAllowed1, fFeatures));
1586 pGuestVmxMsrs->ProcCtls.u = RT_MAKE_U64(fAllowed0, fAllowed1);
1587 }
1588
1589 /* Secondary processor-based VM-execution controls. */
1590 if (pGuestFeatures->fVmxSecondaryExecCtls)
1591 {
1592 uint32_t const fFeatures = (pGuestFeatures->fVmxVirtApicAccess << VMX_BF_PROC_CTLS2_VIRT_APIC_ACCESS_SHIFT )
1593 | (pGuestFeatures->fVmxEpt << VMX_BF_PROC_CTLS2_EPT_SHIFT )
1594 | (pGuestFeatures->fVmxDescTableExit << VMX_BF_PROC_CTLS2_DESC_TABLE_EXIT_SHIFT )
1595 | (pGuestFeatures->fVmxRdtscp << VMX_BF_PROC_CTLS2_RDTSCP_SHIFT )
1596 | (pGuestFeatures->fVmxVirtX2ApicMode << VMX_BF_PROC_CTLS2_VIRT_X2APIC_MODE_SHIFT )
1597 | (pGuestFeatures->fVmxVpid << VMX_BF_PROC_CTLS2_VPID_SHIFT )
1598 | (pGuestFeatures->fVmxWbinvdExit << VMX_BF_PROC_CTLS2_WBINVD_EXIT_SHIFT )
1599 | (pGuestFeatures->fVmxUnrestrictedGuest << VMX_BF_PROC_CTLS2_UNRESTRICTED_GUEST_SHIFT)
1600 | (pGuestFeatures->fVmxApicRegVirt << VMX_BF_PROC_CTLS2_APIC_REG_VIRT_SHIFT )
1601 | (pGuestFeatures->fVmxVirtIntDelivery << VMX_BF_PROC_CTLS2_VIRT_INT_DELIVERY_SHIFT )
1602 | (pGuestFeatures->fVmxPauseLoopExit << VMX_BF_PROC_CTLS2_PAUSE_LOOP_EXIT_SHIFT )
1603 | (pGuestFeatures->fVmxRdrandExit << VMX_BF_PROC_CTLS2_RDRAND_EXIT_SHIFT )
1604 | (pGuestFeatures->fVmxInvpcid << VMX_BF_PROC_CTLS2_INVPCID_SHIFT )
1605 | (pGuestFeatures->fVmxVmFunc << VMX_BF_PROC_CTLS2_VMFUNC_SHIFT )
1606 | (pGuestFeatures->fVmxVmcsShadowing << VMX_BF_PROC_CTLS2_VMCS_SHADOWING_SHIFT )
1607 | (pGuestFeatures->fVmxRdseedExit << VMX_BF_PROC_CTLS2_RDSEED_EXIT_SHIFT )
1608 | (pGuestFeatures->fVmxPml << VMX_BF_PROC_CTLS2_PML_SHIFT )
1609 | (pGuestFeatures->fVmxEptXcptVe << VMX_BF_PROC_CTLS2_EPT_VE_SHIFT )
1610 | (pGuestFeatures->fVmxXsavesXrstors << VMX_BF_PROC_CTLS2_XSAVES_XRSTORS_SHIFT )
1611 | (pGuestFeatures->fVmxUseTscScaling << VMX_BF_PROC_CTLS2_TSC_SCALING_SHIFT );
1612 uint32_t const fAllowed0 = 0;
1613 uint32_t const fAllowed1 = fFeatures;
1614 pGuestVmxMsrs->ProcCtls2.u = RT_MAKE_U64(fAllowed0, fAllowed1);
1615 }
1616
1617 /* VM-exit controls. */
1618 {
1619 uint32_t const fFeatures = (pGuestFeatures->fVmxExitSaveDebugCtls << VMX_BF_EXIT_CTLS_SAVE_DEBUG_SHIFT )
1620 | (pGuestFeatures->fVmxHostAddrSpaceSize << VMX_BF_EXIT_CTLS_HOST_ADDR_SPACE_SIZE_SHIFT)
1621 | (pGuestFeatures->fVmxExitAckExtInt << VMX_BF_EXIT_CTLS_ACK_EXT_INT_SHIFT )
1622 | (pGuestFeatures->fVmxExitSavePatMsr << VMX_BF_EXIT_CTLS_SAVE_PAT_MSR_SHIFT )
1623 | (pGuestFeatures->fVmxExitLoadPatMsr << VMX_BF_EXIT_CTLS_LOAD_PAT_MSR_SHIFT )
1624 | (pGuestFeatures->fVmxExitSaveEferMsr << VMX_BF_EXIT_CTLS_SAVE_EFER_MSR_SHIFT )
1625 | (pGuestFeatures->fVmxExitLoadEferMsr << VMX_BF_EXIT_CTLS_LOAD_EFER_MSR_SHIFT )
1626 | (pGuestFeatures->fVmxSavePreemptTimer << VMX_BF_EXIT_CTLS_SAVE_PREEMPT_TIMER_SHIFT );
1627 /* Set the default1 class bits. See Intel spec. A.4 "VM-exit Controls". */
1628 uint32_t const fAllowed0 = VMX_EXIT_CTLS_DEFAULT1;
1629 uint32_t const fAllowed1 = fFeatures | VMX_EXIT_CTLS_DEFAULT1;
1630 AssertMsg((fAllowed0 & fAllowed1) == fAllowed0, ("fAllowed0=%#RX32 fAllowed1=%#RX32 fFeatures=%#RX32\n", fAllowed0,
1631 fAllowed1, fFeatures));
1632 pGuestVmxMsrs->ExitCtls.u = RT_MAKE_U64(fAllowed0, fAllowed1);
1633 }
1634
1635 /* VM-entry controls. */
1636 {
1637 uint32_t const fFeatures = (pGuestFeatures->fVmxEntryLoadDebugCtls << VMX_BF_ENTRY_CTLS_LOAD_DEBUG_SHIFT )
1638 | (pGuestFeatures->fVmxIa32eModeGuest << VMX_BF_ENTRY_CTLS_IA32E_MODE_GUEST_SHIFT)
1639 | (pGuestFeatures->fVmxEntryLoadEferMsr << VMX_BF_ENTRY_CTLS_LOAD_EFER_MSR_SHIFT )
1640 | (pGuestFeatures->fVmxEntryLoadPatMsr << VMX_BF_ENTRY_CTLS_LOAD_PAT_MSR_SHIFT );
1641 uint32_t const fAllowed0 = VMX_ENTRY_CTLS_DEFAULT1;
1642 uint32_t const fAllowed1 = fFeatures | VMX_ENTRY_CTLS_DEFAULT1;
1643 AssertMsg((fAllowed0 & fAllowed1) == fAllowed0, ("fAllowed0=%#RX32 fAllowed0=%#RX32 fFeatures=%#RX32\n", fAllowed0,
1644 fAllowed1, fFeatures));
1645 pGuestVmxMsrs->EntryCtls.u = RT_MAKE_U64(fAllowed0, fAllowed1);
1646 }
1647
1648 /* Miscellaneous data. */
1649 {
1650 uint64_t const uHostMsr = fIsNstGstHwExecAllowed ? pHostVmxMsrs->u64Misc : 0;
1651
1652 uint8_t const cMaxMsrs = RT_MIN(RT_BF_GET(uHostMsr, VMX_BF_MISC_MAX_MSRS), VMX_V_AUTOMSR_COUNT_MAX);
1653 uint8_t const fActivityState = RT_BF_GET(uHostMsr, VMX_BF_MISC_ACTIVITY_STATES) & VMX_V_GUEST_ACTIVITY_STATE_MASK;
1654 pGuestVmxMsrs->u64Misc = RT_BF_MAKE(VMX_BF_MISC_PREEMPT_TIMER_TSC, VMX_V_PREEMPT_TIMER_SHIFT )
1655 | RT_BF_MAKE(VMX_BF_MISC_EXIT_SAVE_EFER_LMA, pGuestFeatures->fVmxExitSaveEferLma )
1656 | RT_BF_MAKE(VMX_BF_MISC_ACTIVITY_STATES, fActivityState )
1657 | RT_BF_MAKE(VMX_BF_MISC_INTEL_PT, pGuestFeatures->fVmxIntelPt )
1658 | RT_BF_MAKE(VMX_BF_MISC_SMM_READ_SMBASE_MSR, 0 )
1659 | RT_BF_MAKE(VMX_BF_MISC_CR3_TARGET, VMX_V_CR3_TARGET_COUNT )
1660 | RT_BF_MAKE(VMX_BF_MISC_MAX_MSRS, cMaxMsrs )
1661 | RT_BF_MAKE(VMX_BF_MISC_VMXOFF_BLOCK_SMI, 0 )
1662 | RT_BF_MAKE(VMX_BF_MISC_VMWRITE_ALL, pGuestFeatures->fVmxVmwriteAll )
1663 | RT_BF_MAKE(VMX_BF_MISC_ENTRY_INJECT_SOFT_INT, pGuestFeatures->fVmxEntryInjectSoftInt)
1664 | RT_BF_MAKE(VMX_BF_MISC_MSEG_ID, VMX_V_MSEG_REV_ID );
1665 }
1666
1667 /* CR0 Fixed-0. */
1668 pGuestVmxMsrs->u64Cr0Fixed0 = pGuestFeatures->fVmxUnrestrictedGuest ? VMX_V_CR0_FIXED0_UX: VMX_V_CR0_FIXED0;
1669
1670 /* CR0 Fixed-1. */
1671 {
1672 /*
1673 * All CPUs I've looked at so far report CR0 fixed-1 bits as 0xffffffff.
1674 * This is different from CR4 fixed-1 bits which are reported as per the
1675 * CPU features and/or micro-architecture/generation. Why? Ask Intel.
1676 */
1677 uint64_t const uHostMsr = fIsNstGstHwExecAllowed ? pHostVmxMsrs->u64Cr0Fixed1 : 0xffffffff;
1678 pGuestVmxMsrs->u64Cr0Fixed1 = uHostMsr | VMX_V_CR0_FIXED0; /* Make sure the CR0 MB1 bits are not clear. */
1679 }
1680
1681 /* CR4 Fixed-0. */
1682 pGuestVmxMsrs->u64Cr4Fixed0 = VMX_V_CR4_FIXED0;
1683
1684 /* CR4 Fixed-1. */
1685 {
1686 uint64_t const uHostMsr = fIsNstGstHwExecAllowed ? pHostVmxMsrs->u64Cr4Fixed1 : CPUMGetGuestCR4ValidMask(pVM);
1687 pGuestVmxMsrs->u64Cr4Fixed1 = uHostMsr | VMX_V_CR4_FIXED0; /* Make sure the CR4 MB1 bits are not clear. */
1688 }
1689
1690 /* VMCS Enumeration. */
1691 pGuestVmxMsrs->u64VmcsEnum = VMX_V_VMCS_MAX_INDEX << VMX_BF_VMCS_ENUM_HIGHEST_IDX_SHIFT;
1692
1693 /* VM Functions. */
1694 if (pGuestFeatures->fVmxVmFunc)
1695 pGuestVmxMsrs->u64VmFunc = RT_BF_MAKE(VMX_BF_VMFUNC_EPTP_SWITCHING, 1);
1696}
1697
1698
1699/**
1700 * Checks whether the given guest CPU VMX features are compatible with the provided
1701 * base features.
1702 *
1703 * @returns @c true if compatible, @c false otherwise.
1704 * @param pVM The cross context VM structure.
1705 * @param pBase The base VMX CPU features.
1706 * @param pGst The guest VMX CPU features.
1707 *
1708 * @remarks Only VMX feature bits are examined.
1709 */
1710static bool cpumR3AreVmxCpuFeaturesCompatible(PVM pVM, PCCPUMFEATURES pBase, PCCPUMFEATURES pGst)
1711{
1712 if (cpumR3IsHwAssistNstGstExecAllowed(pVM))
1713 {
1714 uint64_t const fBase = ((uint64_t)pBase->fVmxInsOutInfo << 0) | ((uint64_t)pBase->fVmxExtIntExit << 1)
1715 | ((uint64_t)pBase->fVmxNmiExit << 2) | ((uint64_t)pBase->fVmxVirtNmi << 3)
1716 | ((uint64_t)pBase->fVmxPreemptTimer << 4) | ((uint64_t)pBase->fVmxPostedInt << 5)
1717 | ((uint64_t)pBase->fVmxIntWindowExit << 6) | ((uint64_t)pBase->fVmxTscOffsetting << 7)
1718 | ((uint64_t)pBase->fVmxHltExit << 8) | ((uint64_t)pBase->fVmxInvlpgExit << 9)
1719 | ((uint64_t)pBase->fVmxMwaitExit << 10) | ((uint64_t)pBase->fVmxRdpmcExit << 11)
1720 | ((uint64_t)pBase->fVmxRdtscExit << 12) | ((uint64_t)pBase->fVmxCr3LoadExit << 13)
1721 | ((uint64_t)pBase->fVmxCr3StoreExit << 14) | ((uint64_t)pBase->fVmxCr8LoadExit << 15)
1722 | ((uint64_t)pBase->fVmxCr8StoreExit << 16) | ((uint64_t)pBase->fVmxUseTprShadow << 17)
1723 | ((uint64_t)pBase->fVmxNmiWindowExit << 18) | ((uint64_t)pBase->fVmxMovDRxExit << 19)
1724 | ((uint64_t)pBase->fVmxUncondIoExit << 20) | ((uint64_t)pBase->fVmxUseIoBitmaps << 21)
1725 | ((uint64_t)pBase->fVmxMonitorTrapFlag << 22) | ((uint64_t)pBase->fVmxUseMsrBitmaps << 23)
1726 | ((uint64_t)pBase->fVmxMonitorExit << 24) | ((uint64_t)pBase->fVmxPauseExit << 25)
1727 | ((uint64_t)pBase->fVmxSecondaryExecCtls << 26) | ((uint64_t)pBase->fVmxVirtApicAccess << 27)
1728 | ((uint64_t)pBase->fVmxEpt << 28) | ((uint64_t)pBase->fVmxDescTableExit << 29)
1729 | ((uint64_t)pBase->fVmxRdtscp << 30) | ((uint64_t)pBase->fVmxVirtX2ApicMode << 31)
1730 | ((uint64_t)pBase->fVmxVpid << 32) | ((uint64_t)pBase->fVmxWbinvdExit << 33)
1731 | ((uint64_t)pBase->fVmxUnrestrictedGuest << 34) | ((uint64_t)pBase->fVmxApicRegVirt << 35)
1732 | ((uint64_t)pBase->fVmxVirtIntDelivery << 36) | ((uint64_t)pBase->fVmxPauseLoopExit << 37)
1733 | ((uint64_t)pBase->fVmxRdrandExit << 38) | ((uint64_t)pBase->fVmxInvpcid << 39)
1734 | ((uint64_t)pBase->fVmxVmFunc << 40) | ((uint64_t)pBase->fVmxVmcsShadowing << 41)
1735 | ((uint64_t)pBase->fVmxRdseedExit << 42) | ((uint64_t)pBase->fVmxPml << 43)
1736 | ((uint64_t)pBase->fVmxEptXcptVe << 44) | ((uint64_t)pBase->fVmxXsavesXrstors << 45)
1737 | ((uint64_t)pBase->fVmxUseTscScaling << 46) | ((uint64_t)pBase->fVmxEntryLoadDebugCtls << 47)
1738 | ((uint64_t)pBase->fVmxIa32eModeGuest << 48) | ((uint64_t)pBase->fVmxEntryLoadEferMsr << 49)
1739 | ((uint64_t)pBase->fVmxEntryLoadPatMsr << 50) | ((uint64_t)pBase->fVmxExitSaveDebugCtls << 51)
1740 | ((uint64_t)pBase->fVmxHostAddrSpaceSize << 52) | ((uint64_t)pBase->fVmxExitAckExtInt << 53)
1741 | ((uint64_t)pBase->fVmxExitSavePatMsr << 54) | ((uint64_t)pBase->fVmxExitLoadPatMsr << 55)
1742 | ((uint64_t)pBase->fVmxExitSaveEferMsr << 56) | ((uint64_t)pBase->fVmxExitLoadEferMsr << 57)
1743 | ((uint64_t)pBase->fVmxSavePreemptTimer << 58) | ((uint64_t)pBase->fVmxExitSaveEferLma << 59)
1744 | ((uint64_t)pBase->fVmxIntelPt << 60) | ((uint64_t)pBase->fVmxVmwriteAll << 61)
1745 | ((uint64_t)pBase->fVmxEntryInjectSoftInt << 62);
1746
1747 uint64_t const fGst = ((uint64_t)pGst->fVmxInsOutInfo << 0) | ((uint64_t)pGst->fVmxExtIntExit << 1)
1748 | ((uint64_t)pGst->fVmxNmiExit << 2) | ((uint64_t)pGst->fVmxVirtNmi << 3)
1749 | ((uint64_t)pGst->fVmxPreemptTimer << 4) | ((uint64_t)pGst->fVmxPostedInt << 5)
1750 | ((uint64_t)pGst->fVmxIntWindowExit << 6) | ((uint64_t)pGst->fVmxTscOffsetting << 7)
1751 | ((uint64_t)pGst->fVmxHltExit << 8) | ((uint64_t)pGst->fVmxInvlpgExit << 9)
1752 | ((uint64_t)pGst->fVmxMwaitExit << 10) | ((uint64_t)pGst->fVmxRdpmcExit << 11)
1753 | ((uint64_t)pGst->fVmxRdtscExit << 12) | ((uint64_t)pGst->fVmxCr3LoadExit << 13)
1754 | ((uint64_t)pGst->fVmxCr3StoreExit << 14) | ((uint64_t)pGst->fVmxCr8LoadExit << 15)
1755 | ((uint64_t)pGst->fVmxCr8StoreExit << 16) | ((uint64_t)pGst->fVmxUseTprShadow << 17)
1756 | ((uint64_t)pGst->fVmxNmiWindowExit << 18) | ((uint64_t)pGst->fVmxMovDRxExit << 19)
1757 | ((uint64_t)pGst->fVmxUncondIoExit << 20) | ((uint64_t)pGst->fVmxUseIoBitmaps << 21)
1758 | ((uint64_t)pGst->fVmxMonitorTrapFlag << 22) | ((uint64_t)pGst->fVmxUseMsrBitmaps << 23)
1759 | ((uint64_t)pGst->fVmxMonitorExit << 24) | ((uint64_t)pGst->fVmxPauseExit << 25)
1760 | ((uint64_t)pGst->fVmxSecondaryExecCtls << 26) | ((uint64_t)pGst->fVmxVirtApicAccess << 27)
1761 | ((uint64_t)pGst->fVmxEpt << 28) | ((uint64_t)pGst->fVmxDescTableExit << 29)
1762 | ((uint64_t)pGst->fVmxRdtscp << 30) | ((uint64_t)pGst->fVmxVirtX2ApicMode << 31)
1763 | ((uint64_t)pGst->fVmxVpid << 32) | ((uint64_t)pGst->fVmxWbinvdExit << 33)
1764 | ((uint64_t)pGst->fVmxUnrestrictedGuest << 34) | ((uint64_t)pGst->fVmxApicRegVirt << 35)
1765 | ((uint64_t)pGst->fVmxVirtIntDelivery << 36) | ((uint64_t)pGst->fVmxPauseLoopExit << 37)
1766 | ((uint64_t)pGst->fVmxRdrandExit << 38) | ((uint64_t)pGst->fVmxInvpcid << 39)
1767 | ((uint64_t)pGst->fVmxVmFunc << 40) | ((uint64_t)pGst->fVmxVmcsShadowing << 41)
1768 | ((uint64_t)pGst->fVmxRdseedExit << 42) | ((uint64_t)pGst->fVmxPml << 43)
1769 | ((uint64_t)pGst->fVmxEptXcptVe << 44) | ((uint64_t)pGst->fVmxXsavesXrstors << 45)
1770 | ((uint64_t)pGst->fVmxUseTscScaling << 46) | ((uint64_t)pGst->fVmxEntryLoadDebugCtls << 47)
1771 | ((uint64_t)pGst->fVmxIa32eModeGuest << 48) | ((uint64_t)pGst->fVmxEntryLoadEferMsr << 49)
1772 | ((uint64_t)pGst->fVmxEntryLoadPatMsr << 50) | ((uint64_t)pGst->fVmxExitSaveDebugCtls << 51)
1773 | ((uint64_t)pGst->fVmxHostAddrSpaceSize << 52) | ((uint64_t)pGst->fVmxExitAckExtInt << 53)
1774 | ((uint64_t)pGst->fVmxExitSavePatMsr << 54) | ((uint64_t)pGst->fVmxExitLoadPatMsr << 55)
1775 | ((uint64_t)pGst->fVmxExitSaveEferMsr << 56) | ((uint64_t)pGst->fVmxExitLoadEferMsr << 57)
1776 | ((uint64_t)pGst->fVmxSavePreemptTimer << 58) | ((uint64_t)pGst->fVmxExitSaveEferLma << 59)
1777 | ((uint64_t)pGst->fVmxIntelPt << 60) | ((uint64_t)pGst->fVmxVmwriteAll << 61)
1778 | ((uint64_t)pGst->fVmxEntryInjectSoftInt << 62);
1779
1780 if ((fBase | fGst) != fBase)
1781 {
1782 LogRel(("CPUM: Host VMX features are incompatible with those from the saved state. fBase=%#RX64 fGst=%#RX64\n",
1783 fBase, fGst));
1784 return false;
1785 }
1786 return true;
1787 }
1788 return true;
1789}
1790
1791
1792/**
1793 * Initializes VMX guest features and MSRs.
1794 *
1795 * @param pVM The cross context VM structure.
1796 * @param pHostVmxMsrs The host VMX MSRs. Pass NULL when fully emulating VMX
1797 * and no hardware-assisted nested-guest execution is
1798 * possible for this VM.
1799 * @param pGuestVmxMsrs Where to store the initialized guest VMX MSRs.
1800 */
1801void cpumR3InitVmxGuestFeaturesAndMsrs(PVM pVM, PCVMXMSRS pHostVmxMsrs, PVMXMSRS pGuestVmxMsrs)
1802{
1803 Assert(pVM);
1804 Assert(pGuestVmxMsrs);
1805
1806 /*
1807 * Initialize the set of VMX features we emulate.
1808 *
1809 * Note! Some bits might be reported as 1 always if they fall under the
1810 * default1 class bits (e.g. fVmxEntryLoadDebugCtls), see @bugref{9180#c5}.
1811 */
1812 CPUMFEATURES EmuFeat;
1813 RT_ZERO(EmuFeat);
1814 EmuFeat.fVmx = 1;
1815 EmuFeat.fVmxInsOutInfo = 0;
1816 EmuFeat.fVmxExtIntExit = 1;
1817 EmuFeat.fVmxNmiExit = 1;
1818 EmuFeat.fVmxVirtNmi = 0;
1819 EmuFeat.fVmxPreemptTimer = 0; /** @todo NSTVMX: enable this. */
1820 EmuFeat.fVmxPostedInt = 0;
1821 EmuFeat.fVmxIntWindowExit = 1;
1822 EmuFeat.fVmxTscOffsetting = 1;
1823 EmuFeat.fVmxHltExit = 1;
1824 EmuFeat.fVmxInvlpgExit = 1;
1825 EmuFeat.fVmxMwaitExit = 1;
1826 EmuFeat.fVmxRdpmcExit = 1;
1827 EmuFeat.fVmxRdtscExit = 1;
1828 EmuFeat.fVmxCr3LoadExit = 1;
1829 EmuFeat.fVmxCr3StoreExit = 1;
1830 EmuFeat.fVmxCr8LoadExit = 1;
1831 EmuFeat.fVmxCr8StoreExit = 1;
1832 EmuFeat.fVmxUseTprShadow = 0;
1833 EmuFeat.fVmxNmiWindowExit = 0;
1834 EmuFeat.fVmxMovDRxExit = 1;
1835 EmuFeat.fVmxUncondIoExit = 1;
1836 EmuFeat.fVmxUseIoBitmaps = 1;
1837 EmuFeat.fVmxMonitorTrapFlag = 0;
1838 EmuFeat.fVmxUseMsrBitmaps = 1;
1839 EmuFeat.fVmxMonitorExit = 1;
1840 EmuFeat.fVmxPauseExit = 1;
1841 EmuFeat.fVmxSecondaryExecCtls = 1;
1842 EmuFeat.fVmxVirtApicAccess = 0;
1843 EmuFeat.fVmxEpt = 0;
1844 EmuFeat.fVmxDescTableExit = 1;
1845 EmuFeat.fVmxRdtscp = 1;
1846 EmuFeat.fVmxVirtX2ApicMode = 0;
1847 EmuFeat.fVmxVpid = 0;
1848 EmuFeat.fVmxWbinvdExit = 1;
1849 EmuFeat.fVmxUnrestrictedGuest = 0;
1850 EmuFeat.fVmxApicRegVirt = 0;
1851 EmuFeat.fVmxVirtIntDelivery = 0;
1852 EmuFeat.fVmxPauseLoopExit = 0;
1853 EmuFeat.fVmxRdrandExit = 0;
1854 EmuFeat.fVmxInvpcid = 1;
1855 EmuFeat.fVmxVmFunc = 0;
1856 EmuFeat.fVmxVmcsShadowing = 0;
1857 EmuFeat.fVmxRdseedExit = 0;
1858 EmuFeat.fVmxPml = 0;
1859 EmuFeat.fVmxEptXcptVe = 0;
1860 EmuFeat.fVmxXsavesXrstors = 0;
1861 EmuFeat.fVmxUseTscScaling = 0;
1862 EmuFeat.fVmxEntryLoadDebugCtls = 1;
1863 EmuFeat.fVmxIa32eModeGuest = 1;
1864 EmuFeat.fVmxEntryLoadEferMsr = 1;
1865 EmuFeat.fVmxEntryLoadPatMsr = 0;
1866 EmuFeat.fVmxExitSaveDebugCtls = 1;
1867 EmuFeat.fVmxHostAddrSpaceSize = 1;
1868 EmuFeat.fVmxExitAckExtInt = 0;
1869 EmuFeat.fVmxExitSavePatMsr = 0;
1870 EmuFeat.fVmxExitLoadPatMsr = 0;
1871 EmuFeat.fVmxExitSaveEferMsr = 1;
1872 EmuFeat.fVmxExitLoadEferMsr = 1;
1873 EmuFeat.fVmxSavePreemptTimer = 0;
1874 EmuFeat.fVmxExitSaveEferLma = 1;
1875 EmuFeat.fVmxIntelPt = 0;
1876 EmuFeat.fVmxVmwriteAll = 0;
1877 EmuFeat.fVmxEntryInjectSoftInt = 0;
1878
1879 /*
1880 * Merge guest features.
1881 *
1882 * When hardware-assisted VMX may be used, any feature we emulate must also be supported
1883 * by the hardware, hence we merge our emulated features with the host features below.
1884 */
1885 PCCPUMFEATURES pBaseFeat = cpumR3IsHwAssistNstGstExecAllowed(pVM) ? &pVM->cpum.s.HostFeatures : &EmuFeat;
1886 PCPUMFEATURES pGuestFeat = &pVM->cpum.s.GuestFeatures;
1887 Assert(pBaseFeat->fVmx);
1888 pGuestFeat->fVmxInsOutInfo = (pBaseFeat->fVmxInsOutInfo & EmuFeat.fVmxInsOutInfo );
1889 pGuestFeat->fVmxExtIntExit = (pBaseFeat->fVmxExtIntExit & EmuFeat.fVmxExtIntExit );
1890 pGuestFeat->fVmxNmiExit = (pBaseFeat->fVmxNmiExit & EmuFeat.fVmxNmiExit );
1891 pGuestFeat->fVmxVirtNmi = (pBaseFeat->fVmxVirtNmi & EmuFeat.fVmxVirtNmi );
1892 pGuestFeat->fVmxPreemptTimer = (pBaseFeat->fVmxPreemptTimer & EmuFeat.fVmxPreemptTimer );
1893 pGuestFeat->fVmxPostedInt = (pBaseFeat->fVmxPostedInt & EmuFeat.fVmxPostedInt );
1894 pGuestFeat->fVmxIntWindowExit = (pBaseFeat->fVmxIntWindowExit & EmuFeat.fVmxIntWindowExit );
1895 pGuestFeat->fVmxTscOffsetting = (pBaseFeat->fVmxTscOffsetting & EmuFeat.fVmxTscOffsetting );
1896 pGuestFeat->fVmxHltExit = (pBaseFeat->fVmxHltExit & EmuFeat.fVmxHltExit );
1897 pGuestFeat->fVmxInvlpgExit = (pBaseFeat->fVmxInvlpgExit & EmuFeat.fVmxInvlpgExit );
1898 pGuestFeat->fVmxMwaitExit = (pBaseFeat->fVmxMwaitExit & EmuFeat.fVmxMwaitExit );
1899 pGuestFeat->fVmxRdpmcExit = (pBaseFeat->fVmxRdpmcExit & EmuFeat.fVmxRdpmcExit );
1900 pGuestFeat->fVmxRdtscExit = (pBaseFeat->fVmxRdtscExit & EmuFeat.fVmxRdtscExit );
1901 pGuestFeat->fVmxCr3LoadExit = (pBaseFeat->fVmxCr3LoadExit & EmuFeat.fVmxCr3LoadExit );
1902 pGuestFeat->fVmxCr3StoreExit = (pBaseFeat->fVmxCr3StoreExit & EmuFeat.fVmxCr3StoreExit );
1903 pGuestFeat->fVmxCr8LoadExit = (pBaseFeat->fVmxCr8LoadExit & EmuFeat.fVmxCr8LoadExit );
1904 pGuestFeat->fVmxCr8StoreExit = (pBaseFeat->fVmxCr8StoreExit & EmuFeat.fVmxCr8StoreExit );
1905 pGuestFeat->fVmxUseTprShadow = (pBaseFeat->fVmxUseTprShadow & EmuFeat.fVmxUseTprShadow );
1906 pGuestFeat->fVmxNmiWindowExit = (pBaseFeat->fVmxNmiWindowExit & EmuFeat.fVmxNmiWindowExit );
1907 pGuestFeat->fVmxMovDRxExit = (pBaseFeat->fVmxMovDRxExit & EmuFeat.fVmxMovDRxExit );
1908 pGuestFeat->fVmxUncondIoExit = (pBaseFeat->fVmxUncondIoExit & EmuFeat.fVmxUncondIoExit );
1909 pGuestFeat->fVmxUseIoBitmaps = (pBaseFeat->fVmxUseIoBitmaps & EmuFeat.fVmxUseIoBitmaps );
1910 pGuestFeat->fVmxMonitorTrapFlag = (pBaseFeat->fVmxMonitorTrapFlag & EmuFeat.fVmxMonitorTrapFlag );
1911 pGuestFeat->fVmxUseMsrBitmaps = (pBaseFeat->fVmxUseMsrBitmaps & EmuFeat.fVmxUseMsrBitmaps );
1912 pGuestFeat->fVmxMonitorExit = (pBaseFeat->fVmxMonitorExit & EmuFeat.fVmxMonitorExit );
1913 pGuestFeat->fVmxPauseExit = (pBaseFeat->fVmxPauseExit & EmuFeat.fVmxPauseExit );
1914 pGuestFeat->fVmxSecondaryExecCtls = (pBaseFeat->fVmxSecondaryExecCtls & EmuFeat.fVmxSecondaryExecCtls );
1915 pGuestFeat->fVmxVirtApicAccess = (pBaseFeat->fVmxVirtApicAccess & EmuFeat.fVmxVirtApicAccess );
1916 pGuestFeat->fVmxEpt = (pBaseFeat->fVmxEpt & EmuFeat.fVmxEpt );
1917 pGuestFeat->fVmxDescTableExit = (pBaseFeat->fVmxDescTableExit & EmuFeat.fVmxDescTableExit );
1918 pGuestFeat->fVmxRdtscp = (pBaseFeat->fVmxRdtscp & EmuFeat.fVmxRdtscp );
1919 pGuestFeat->fVmxVirtX2ApicMode = (pBaseFeat->fVmxVirtX2ApicMode & EmuFeat.fVmxVirtX2ApicMode );
1920 pGuestFeat->fVmxVpid = (pBaseFeat->fVmxVpid & EmuFeat.fVmxVpid );
1921 pGuestFeat->fVmxWbinvdExit = (pBaseFeat->fVmxWbinvdExit & EmuFeat.fVmxWbinvdExit );
1922 pGuestFeat->fVmxUnrestrictedGuest = (pBaseFeat->fVmxUnrestrictedGuest & EmuFeat.fVmxUnrestrictedGuest );
1923 pGuestFeat->fVmxApicRegVirt = (pBaseFeat->fVmxApicRegVirt & EmuFeat.fVmxApicRegVirt );
1924 pGuestFeat->fVmxVirtIntDelivery = (pBaseFeat->fVmxVirtIntDelivery & EmuFeat.fVmxVirtIntDelivery );
1925 pGuestFeat->fVmxPauseLoopExit = (pBaseFeat->fVmxPauseLoopExit & EmuFeat.fVmxPauseLoopExit );
1926 pGuestFeat->fVmxRdrandExit = (pBaseFeat->fVmxRdrandExit & EmuFeat.fVmxRdrandExit );
1927 pGuestFeat->fVmxInvpcid = (pBaseFeat->fVmxInvpcid & EmuFeat.fVmxInvpcid );
1928 pGuestFeat->fVmxVmFunc = (pBaseFeat->fVmxVmFunc & EmuFeat.fVmxVmFunc );
1929 pGuestFeat->fVmxVmcsShadowing = (pBaseFeat->fVmxVmcsShadowing & EmuFeat.fVmxVmcsShadowing );
1930 pGuestFeat->fVmxRdseedExit = (pBaseFeat->fVmxRdseedExit & EmuFeat.fVmxRdseedExit );
1931 pGuestFeat->fVmxPml = (pBaseFeat->fVmxPml & EmuFeat.fVmxPml );
1932 pGuestFeat->fVmxEptXcptVe = (pBaseFeat->fVmxEptXcptVe & EmuFeat.fVmxEptXcptVe );
1933 pGuestFeat->fVmxXsavesXrstors = (pBaseFeat->fVmxXsavesXrstors & EmuFeat.fVmxXsavesXrstors );
1934 pGuestFeat->fVmxUseTscScaling = (pBaseFeat->fVmxUseTscScaling & EmuFeat.fVmxUseTscScaling );
1935 pGuestFeat->fVmxEntryLoadDebugCtls = (pBaseFeat->fVmxEntryLoadDebugCtls & EmuFeat.fVmxEntryLoadDebugCtls );
1936 pGuestFeat->fVmxIa32eModeGuest = (pBaseFeat->fVmxIa32eModeGuest & EmuFeat.fVmxIa32eModeGuest );
1937 pGuestFeat->fVmxEntryLoadEferMsr = (pBaseFeat->fVmxEntryLoadEferMsr & EmuFeat.fVmxEntryLoadEferMsr );
1938 pGuestFeat->fVmxEntryLoadPatMsr = (pBaseFeat->fVmxEntryLoadPatMsr & EmuFeat.fVmxEntryLoadPatMsr );
1939 pGuestFeat->fVmxExitSaveDebugCtls = (pBaseFeat->fVmxExitSaveDebugCtls & EmuFeat.fVmxExitSaveDebugCtls );
1940 pGuestFeat->fVmxHostAddrSpaceSize = (pBaseFeat->fVmxHostAddrSpaceSize & EmuFeat.fVmxHostAddrSpaceSize );
1941 pGuestFeat->fVmxExitAckExtInt = (pBaseFeat->fVmxExitAckExtInt & EmuFeat.fVmxExitAckExtInt );
1942 pGuestFeat->fVmxExitSavePatMsr = (pBaseFeat->fVmxExitSavePatMsr & EmuFeat.fVmxExitSavePatMsr );
1943 pGuestFeat->fVmxExitLoadPatMsr = (pBaseFeat->fVmxExitLoadPatMsr & EmuFeat.fVmxExitLoadPatMsr );
1944 pGuestFeat->fVmxExitSaveEferMsr = (pBaseFeat->fVmxExitSaveEferMsr & EmuFeat.fVmxExitSaveEferMsr );
1945 pGuestFeat->fVmxExitLoadEferMsr = (pBaseFeat->fVmxExitLoadEferMsr & EmuFeat.fVmxExitLoadEferMsr );
1946 pGuestFeat->fVmxSavePreemptTimer = (pBaseFeat->fVmxSavePreemptTimer & EmuFeat.fVmxSavePreemptTimer );
1947 pGuestFeat->fVmxExitSaveEferLma = (pBaseFeat->fVmxExitSaveEferLma & EmuFeat.fVmxExitSaveEferLma );
1948 pGuestFeat->fVmxIntelPt = (pBaseFeat->fVmxIntelPt & EmuFeat.fVmxIntelPt );
1949 pGuestFeat->fVmxVmwriteAll = (pBaseFeat->fVmxVmwriteAll & EmuFeat.fVmxVmwriteAll );
1950 pGuestFeat->fVmxEntryInjectSoftInt = (pBaseFeat->fVmxEntryInjectSoftInt & EmuFeat.fVmxEntryInjectSoftInt );
1951
1952 /* Paranoia. */
1953 if (!pGuestFeat->fVmxSecondaryExecCtls)
1954 {
1955 Assert(!pGuestFeat->fVmxVirtApicAccess);
1956 Assert(!pGuestFeat->fVmxEpt);
1957 Assert(!pGuestFeat->fVmxDescTableExit);
1958 Assert(!pGuestFeat->fVmxRdtscp);
1959 Assert(!pGuestFeat->fVmxVirtX2ApicMode);
1960 Assert(!pGuestFeat->fVmxVpid);
1961 Assert(!pGuestFeat->fVmxWbinvdExit);
1962 Assert(!pGuestFeat->fVmxUnrestrictedGuest);
1963 Assert(!pGuestFeat->fVmxApicRegVirt);
1964 Assert(!pGuestFeat->fVmxVirtIntDelivery);
1965 Assert(!pGuestFeat->fVmxPauseLoopExit);
1966 Assert(!pGuestFeat->fVmxRdrandExit);
1967 Assert(!pGuestFeat->fVmxInvpcid);
1968 Assert(!pGuestFeat->fVmxVmFunc);
1969 Assert(!pGuestFeat->fVmxVmcsShadowing);
1970 Assert(!pGuestFeat->fVmxRdseedExit);
1971 Assert(!pGuestFeat->fVmxPml);
1972 Assert(!pGuestFeat->fVmxEptXcptVe);
1973 Assert(!pGuestFeat->fVmxXsavesXrstors);
1974 Assert(!pGuestFeat->fVmxUseTscScaling);
1975 }
1976 if (pGuestFeat->fVmxUnrestrictedGuest)
1977 {
1978 /* See footnote in Intel spec. 27.2 "Recording VM-Exit Information And Updating VM-entry Control Fields". */
1979 Assert(pGuestFeat->fVmxExitSaveEferLma);
1980 }
1981
1982 /*
1983 * Finally initialize the VMX guest MSRs.
1984 */
1985 cpumR3InitVmxGuestMsrs(pVM, pHostVmxMsrs, pGuestFeat, pGuestVmxMsrs);
1986}
1987
1988
1989/**
1990 * Gets the host hardware-virtualization MSRs.
1991 *
1992 * @returns VBox status code.
1993 * @param pMsrs Where to store the MSRs.
1994 */
1995static int cpumR3GetHostHwvirtMsrs(PCPUMMSRS pMsrs)
1996{
1997 Assert(pMsrs);
1998
1999 uint32_t fCaps = 0;
2000 int rc = SUPR3QueryVTCaps(&fCaps);
2001 if (RT_SUCCESS(rc))
2002 {
2003 if (fCaps & (SUPVTCAPS_VT_X | SUPVTCAPS_AMD_V))
2004 {
2005 SUPHWVIRTMSRS HwvirtMsrs;
2006 rc = SUPR3GetHwvirtMsrs(&HwvirtMsrs, false /* fForceRequery */);
2007 if (RT_SUCCESS(rc))
2008 {
2009 if (fCaps & SUPVTCAPS_VT_X)
2010 HMGetVmxMsrsFromHwvirtMsrs(&HwvirtMsrs, &pMsrs->hwvirt.vmx);
2011 else
2012 HMGetSvmMsrsFromHwvirtMsrs(&HwvirtMsrs, &pMsrs->hwvirt.svm);
2013 return VINF_SUCCESS;
2014 }
2015
2016 LogRel(("CPUM: Querying hardware-virtualization MSRs failed. rc=%Rrc\n", rc));
2017 return rc;
2018 }
2019 else
2020 {
2021 LogRel(("CPUM: Querying hardware-virtualization capability succeeded but did not find VT-x or AMD-V\n"));
2022 return VERR_INTERNAL_ERROR_5;
2023 }
2024 }
2025 else
2026 LogRel(("CPUM: No hardware-virtualization capability detected\n"));
2027
2028 return VINF_SUCCESS;
2029}
2030
2031
2032/**
2033 * Initializes the CPUM.
2034 *
2035 * @returns VBox status code.
2036 * @param pVM The cross context VM structure.
2037 */
2038VMMR3DECL(int) CPUMR3Init(PVM pVM)
2039{
2040 LogFlow(("CPUMR3Init\n"));
2041
2042 /*
2043 * Assert alignment, sizes and tables.
2044 */
2045 AssertCompileMemberAlignment(VM, cpum.s, 32);
2046 AssertCompile(sizeof(pVM->cpum.s) <= sizeof(pVM->cpum.padding));
2047 AssertCompileSizeAlignment(CPUMCTX, 64);
2048 AssertCompileSizeAlignment(CPUMCTXMSRS, 64);
2049 AssertCompileSizeAlignment(CPUMHOSTCTX, 64);
2050 AssertCompileMemberAlignment(VM, cpum, 64);
2051 AssertCompileMemberAlignment(VM, aCpus, 64);
2052 AssertCompileMemberAlignment(VMCPU, cpum.s, 64);
2053 AssertCompileMemberSizeAlignment(VM, aCpus[0].cpum.s, 64);
2054#ifdef VBOX_STRICT
2055 int rc2 = cpumR3MsrStrictInitChecks();
2056 AssertRCReturn(rc2, rc2);
2057#endif
2058
2059 /*
2060 * Initialize offsets.
2061 */
2062
2063 /* Calculate the offset from CPUM to CPUMCPU for the first CPU. */
2064 pVM->cpum.s.offCPUMCPU0 = RT_UOFFSETOF(VM, aCpus[0].cpum) - RT_UOFFSETOF(VM, cpum);
2065 Assert((uintptr_t)&pVM->cpum + pVM->cpum.s.offCPUMCPU0 == (uintptr_t)&pVM->aCpus[0].cpum);
2066
2067
2068 /* Calculate the offset from CPUMCPU to CPUM. */
2069 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2070 {
2071 PVMCPU pVCpu = &pVM->aCpus[i];
2072
2073 pVCpu->cpum.s.offCPUM = RT_UOFFSETOF_DYN(VM, aCpus[i].cpum) - RT_UOFFSETOF(VM, cpum);
2074 Assert((uintptr_t)&pVCpu->cpum - pVCpu->cpum.s.offCPUM == (uintptr_t)&pVM->cpum);
2075 }
2076
2077 /*
2078 * Gather info about the host CPU.
2079 */
2080 if (!ASMHasCpuId())
2081 {
2082 LogRel(("The CPU doesn't support CPUID!\n"));
2083 return VERR_UNSUPPORTED_CPU;
2084 }
2085
2086 pVM->cpum.s.fHostMxCsrMask = CPUMR3DeterminHostMxCsrMask();
2087
2088 CPUMMSRS HostMsrs;
2089 RT_ZERO(HostMsrs);
2090 int rc = cpumR3GetHostHwvirtMsrs(&HostMsrs);
2091 AssertLogRelRCReturn(rc, rc);
2092
2093 PCPUMCPUIDLEAF paLeaves;
2094 uint32_t cLeaves;
2095 rc = CPUMR3CpuIdCollectLeaves(&paLeaves, &cLeaves);
2096 AssertLogRelRCReturn(rc, rc);
2097
2098 rc = cpumR3CpuIdExplodeFeatures(paLeaves, cLeaves, &HostMsrs, &pVM->cpum.s.HostFeatures);
2099 RTMemFree(paLeaves);
2100 AssertLogRelRCReturn(rc, rc);
2101 pVM->cpum.s.GuestFeatures.enmCpuVendor = pVM->cpum.s.HostFeatures.enmCpuVendor;
2102
2103 /*
2104 * Check that the CPU supports the minimum features we require.
2105 */
2106 if (!pVM->cpum.s.HostFeatures.fFxSaveRstor)
2107 return VMSetError(pVM, VERR_UNSUPPORTED_CPU, RT_SRC_POS, "Host CPU does not support the FXSAVE/FXRSTOR instruction.");
2108 if (!pVM->cpum.s.HostFeatures.fMmx)
2109 return VMSetError(pVM, VERR_UNSUPPORTED_CPU, RT_SRC_POS, "Host CPU does not support MMX.");
2110 if (!pVM->cpum.s.HostFeatures.fTsc)
2111 return VMSetError(pVM, VERR_UNSUPPORTED_CPU, RT_SRC_POS, "Host CPU does not support RDTSC.");
2112
2113 /*
2114 * Setup the CR4 AND and OR masks used in the raw-mode switcher.
2115 */
2116 pVM->cpum.s.CR4.AndMask = X86_CR4_OSXMMEEXCPT | X86_CR4_PVI | X86_CR4_VME;
2117 pVM->cpum.s.CR4.OrMask = X86_CR4_OSFXSR;
2118
2119 /*
2120 * Figure out which XSAVE/XRSTOR features are available on the host.
2121 */
2122 uint64_t fXcr0Host = 0;
2123 uint64_t fXStateHostMask = 0;
2124 if ( pVM->cpum.s.HostFeatures.fXSaveRstor
2125 && pVM->cpum.s.HostFeatures.fOpSysXSaveRstor)
2126 {
2127 fXStateHostMask = fXcr0Host = ASMGetXcr0();
2128 fXStateHostMask &= XSAVE_C_X87 | XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI;
2129 AssertLogRelMsgStmt((fXStateHostMask & (XSAVE_C_X87 | XSAVE_C_SSE)) == (XSAVE_C_X87 | XSAVE_C_SSE),
2130 ("%#llx\n", fXStateHostMask), fXStateHostMask = 0);
2131 }
2132 pVM->cpum.s.fXStateHostMask = fXStateHostMask;
2133 if (VM_IS_RAW_MODE_ENABLED(pVM)) /* For raw-mode, we only use XSAVE/XRSTOR when the guest starts using it (CPUID/CR4 visibility). */
2134 fXStateHostMask = 0;
2135 LogRel(("CPUM: fXStateHostMask=%#llx; initial: %#llx; host XCR0=%#llx\n",
2136 pVM->cpum.s.fXStateHostMask, fXStateHostMask, fXcr0Host));
2137
2138 /*
2139 * Allocate memory for the extended CPU state and initialize the host XSAVE/XRSTOR mask.
2140 */
2141 uint32_t cbMaxXState = pVM->cpum.s.HostFeatures.cbMaxExtendedState;
2142 cbMaxXState = RT_ALIGN(cbMaxXState, 128);
2143 AssertLogRelReturn(cbMaxXState >= sizeof(X86FXSTATE) && cbMaxXState <= _8K, VERR_CPUM_IPE_2);
2144
2145 uint8_t *pbXStates;
2146 rc = MMR3HyperAllocOnceNoRelEx(pVM, cbMaxXState * 3 * pVM->cCpus, PAGE_SIZE, MM_TAG_CPUM_CTX,
2147 MMHYPER_AONR_FLAGS_KERNEL_MAPPING, (void **)&pbXStates);
2148 AssertLogRelRCReturn(rc, rc);
2149
2150 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2151 {
2152 PVMCPU pVCpu = &pVM->aCpus[i];
2153
2154 pVCpu->cpum.s.Guest.pXStateR3 = (PX86XSAVEAREA)pbXStates;
2155 pVCpu->cpum.s.Guest.pXStateR0 = MMHyperR3ToR0(pVM, pbXStates);
2156 pVCpu->cpum.s.Guest.pXStateRC = MMHyperR3ToR0(pVM, pbXStates);
2157 pbXStates += cbMaxXState;
2158
2159 pVCpu->cpum.s.Host.pXStateR3 = (PX86XSAVEAREA)pbXStates;
2160 pVCpu->cpum.s.Host.pXStateR0 = MMHyperR3ToR0(pVM, pbXStates);
2161 pVCpu->cpum.s.Host.pXStateRC = MMHyperR3ToR0(pVM, pbXStates);
2162 pbXStates += cbMaxXState;
2163
2164 pVCpu->cpum.s.Hyper.pXStateR3 = (PX86XSAVEAREA)pbXStates;
2165 pVCpu->cpum.s.Hyper.pXStateR0 = MMHyperR3ToR0(pVM, pbXStates);
2166 pVCpu->cpum.s.Hyper.pXStateRC = MMHyperR3ToR0(pVM, pbXStates);
2167 pbXStates += cbMaxXState;
2168
2169 pVCpu->cpum.s.Host.fXStateMask = fXStateHostMask;
2170 }
2171
2172 /*
2173 * Register saved state data item.
2174 */
2175 rc = SSMR3RegisterInternal(pVM, "cpum", 1, CPUM_SAVED_STATE_VERSION, sizeof(CPUM),
2176 NULL, cpumR3LiveExec, NULL,
2177 NULL, cpumR3SaveExec, NULL,
2178 cpumR3LoadPrep, cpumR3LoadExec, cpumR3LoadDone);
2179 if (RT_FAILURE(rc))
2180 return rc;
2181
2182 /*
2183 * Register info handlers and registers with the debugger facility.
2184 */
2185 DBGFR3InfoRegisterInternalEx(pVM, "cpum", "Displays the all the cpu states.",
2186 &cpumR3InfoAll, DBGFINFO_FLAGS_ALL_EMTS);
2187 DBGFR3InfoRegisterInternalEx(pVM, "cpumguest", "Displays the guest cpu state.",
2188 &cpumR3InfoGuest, DBGFINFO_FLAGS_ALL_EMTS);
2189 DBGFR3InfoRegisterInternalEx(pVM, "cpumguesthwvirt", "Displays the guest hwvirt. cpu state.",
2190 &cpumR3InfoGuestHwvirt, DBGFINFO_FLAGS_ALL_EMTS);
2191 DBGFR3InfoRegisterInternalEx(pVM, "cpumhyper", "Displays the hypervisor cpu state.",
2192 &cpumR3InfoHyper, DBGFINFO_FLAGS_ALL_EMTS);
2193 DBGFR3InfoRegisterInternalEx(pVM, "cpumhost", "Displays the host cpu state.",
2194 &cpumR3InfoHost, DBGFINFO_FLAGS_ALL_EMTS);
2195 DBGFR3InfoRegisterInternalEx(pVM, "cpumguestinstr", "Displays the current guest instruction.",
2196 &cpumR3InfoGuestInstr, DBGFINFO_FLAGS_ALL_EMTS);
2197 DBGFR3InfoRegisterInternal( pVM, "cpuid", "Displays the guest cpuid leaves.", &cpumR3CpuIdInfo);
2198 DBGFR3InfoRegisterInternal( pVM, "cpumvmxfeat", "Displays the host and guest VMX hwvirt. features.",
2199 &cpumR3InfoVmxFeatures);
2200
2201 rc = cpumR3DbgInit(pVM);
2202 if (RT_FAILURE(rc))
2203 return rc;
2204
2205 /*
2206 * Check if we need to workaround partial/leaky FPU handling.
2207 */
2208 cpumR3CheckLeakyFpu(pVM);
2209
2210 /*
2211 * Initialize the Guest CPUID and MSR states.
2212 */
2213 rc = cpumR3InitCpuIdAndMsrs(pVM, &HostMsrs);
2214 if (RT_FAILURE(rc))
2215 return rc;
2216
2217 /*
2218 * Allocate memory required by the guest hardware-virtualization structures.
2219 * This must be done after initializing CPUID/MSR features as we access the
2220 * the VMX/SVM guest features below.
2221 */
2222 if (pVM->cpum.s.GuestFeatures.fVmx)
2223 rc = cpumR3AllocVmxHwVirtState(pVM);
2224 else if (pVM->cpum.s.GuestFeatures.fSvm)
2225 rc = cpumR3AllocSvmHwVirtState(pVM);
2226 else
2227 Assert(pVM->aCpus[0].cpum.s.Guest.hwvirt.enmHwvirt == CPUMHWVIRT_NONE);
2228 if (RT_FAILURE(rc))
2229 return rc;
2230
2231 /*
2232 * Workaround for missing cpuid(0) patches when leaf 4 returns GuestInfo.DefCpuId:
2233 * If we miss to patch a cpuid(0).eax then Linux tries to determine the number
2234 * of processors from (cpuid(4).eax >> 26) + 1.
2235 *
2236 * Note: this code is obsolete, but let's keep it here for reference.
2237 * Purpose is valid when we artificially cap the max std id to less than 4.
2238 *
2239 * Note: This used to be a separate function CPUMR3SetHwVirt that was called
2240 * after VMINITCOMPLETED_HM.
2241 */
2242 if (VM_IS_RAW_MODE_ENABLED(pVM))
2243 {
2244 Assert( (pVM->cpum.s.aGuestCpuIdPatmStd[4].uEax & UINT32_C(0xffffc000)) == 0
2245 || pVM->cpum.s.aGuestCpuIdPatmStd[0].uEax < 0x4);
2246 pVM->cpum.s.aGuestCpuIdPatmStd[4].uEax &= UINT32_C(0x00003fff);
2247 }
2248
2249 CPUMR3Reset(pVM);
2250 return VINF_SUCCESS;
2251}
2252
2253
2254/**
2255 * Applies relocations to data and code managed by this
2256 * component. This function will be called at init and
2257 * whenever the VMM need to relocate it self inside the GC.
2258 *
2259 * The CPUM will update the addresses used by the switcher.
2260 *
2261 * @param pVM The cross context VM structure.
2262 */
2263VMMR3DECL(void) CPUMR3Relocate(PVM pVM)
2264{
2265 LogFlow(("CPUMR3Relocate\n"));
2266
2267 pVM->cpum.s.GuestInfo.paMsrRangesRC = MMHyperR3ToRC(pVM, pVM->cpum.s.GuestInfo.paMsrRangesR3);
2268 pVM->cpum.s.GuestInfo.paCpuIdLeavesRC = MMHyperR3ToRC(pVM, pVM->cpum.s.GuestInfo.paCpuIdLeavesR3);
2269
2270 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
2271 {
2272 PVMCPU pVCpu = &pVM->aCpus[iCpu];
2273 pVCpu->cpum.s.Guest.pXStateRC = MMHyperR3ToRC(pVM, pVCpu->cpum.s.Guest.pXStateR3);
2274 pVCpu->cpum.s.Host.pXStateRC = MMHyperR3ToRC(pVM, pVCpu->cpum.s.Host.pXStateR3);
2275 pVCpu->cpum.s.Hyper.pXStateRC = MMHyperR3ToRC(pVM, pVCpu->cpum.s.Hyper.pXStateR3); /** @todo remove me */
2276
2277 /* Recheck the guest DRx values in raw-mode. */
2278 CPUMRecalcHyperDRx(pVCpu, UINT8_MAX, false);
2279 }
2280}
2281
2282
2283/**
2284 * Terminates the CPUM.
2285 *
2286 * Termination means cleaning up and freeing all resources,
2287 * the VM it self is at this point powered off or suspended.
2288 *
2289 * @returns VBox status code.
2290 * @param pVM The cross context VM structure.
2291 */
2292VMMR3DECL(int) CPUMR3Term(PVM pVM)
2293{
2294#ifdef VBOX_WITH_CRASHDUMP_MAGIC
2295 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2296 {
2297 PVMCPU pVCpu = &pVM->aCpus[i];
2298 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
2299
2300 memset(pVCpu->cpum.s.aMagic, 0, sizeof(pVCpu->cpum.s.aMagic));
2301 pVCpu->cpum.s.uMagic = 0;
2302 pCtx->dr[5] = 0;
2303 }
2304#endif
2305
2306 if (pVM->cpum.s.GuestFeatures.fVmx)
2307 cpumR3FreeVmxHwVirtState(pVM);
2308 else if (pVM->cpum.s.GuestFeatures.fSvm)
2309 cpumR3FreeSvmHwVirtState(pVM);
2310 return VINF_SUCCESS;
2311}
2312
2313
2314/**
2315 * Resets a virtual CPU.
2316 *
2317 * Used by CPUMR3Reset and CPU hot plugging.
2318 *
2319 * @param pVM The cross context VM structure.
2320 * @param pVCpu The cross context virtual CPU structure of the CPU that is
2321 * being reset. This may differ from the current EMT.
2322 */
2323VMMR3DECL(void) CPUMR3ResetCpu(PVM pVM, PVMCPU pVCpu)
2324{
2325 /** @todo anything different for VCPU > 0? */
2326 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
2327
2328 /*
2329 * Initialize everything to ZERO first.
2330 */
2331 uint32_t fUseFlags = pVCpu->cpum.s.fUseFlags & ~CPUM_USED_FPU_SINCE_REM;
2332
2333 AssertCompile(RTASSERT_OFFSET_OF(CPUMCTX, pXStateR0) < RTASSERT_OFFSET_OF(CPUMCTX, pXStateR3));
2334 AssertCompile(RTASSERT_OFFSET_OF(CPUMCTX, pXStateR0) < RTASSERT_OFFSET_OF(CPUMCTX, pXStateRC));
2335 memset(pCtx, 0, RT_UOFFSETOF(CPUMCTX, pXStateR0));
2336
2337 pVCpu->cpum.s.fUseFlags = fUseFlags;
2338
2339 pCtx->cr0 = X86_CR0_CD | X86_CR0_NW | X86_CR0_ET; //0x60000010
2340 pCtx->eip = 0x0000fff0;
2341 pCtx->edx = 0x00000600; /* P6 processor */
2342 pCtx->eflags.Bits.u1Reserved0 = 1;
2343
2344 pCtx->cs.Sel = 0xf000;
2345 pCtx->cs.ValidSel = 0xf000;
2346 pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
2347 pCtx->cs.u64Base = UINT64_C(0xffff0000);
2348 pCtx->cs.u32Limit = 0x0000ffff;
2349 pCtx->cs.Attr.n.u1DescType = 1; /* code/data segment */
2350 pCtx->cs.Attr.n.u1Present = 1;
2351 pCtx->cs.Attr.n.u4Type = X86_SEL_TYPE_ER_ACC;
2352
2353 pCtx->ds.fFlags = CPUMSELREG_FLAGS_VALID;
2354 pCtx->ds.u32Limit = 0x0000ffff;
2355 pCtx->ds.Attr.n.u1DescType = 1; /* code/data segment */
2356 pCtx->ds.Attr.n.u1Present = 1;
2357 pCtx->ds.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
2358
2359 pCtx->es.fFlags = CPUMSELREG_FLAGS_VALID;
2360 pCtx->es.u32Limit = 0x0000ffff;
2361 pCtx->es.Attr.n.u1DescType = 1; /* code/data segment */
2362 pCtx->es.Attr.n.u1Present = 1;
2363 pCtx->es.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
2364
2365 pCtx->fs.fFlags = CPUMSELREG_FLAGS_VALID;
2366 pCtx->fs.u32Limit = 0x0000ffff;
2367 pCtx->fs.Attr.n.u1DescType = 1; /* code/data segment */
2368 pCtx->fs.Attr.n.u1Present = 1;
2369 pCtx->fs.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
2370
2371 pCtx->gs.fFlags = CPUMSELREG_FLAGS_VALID;
2372 pCtx->gs.u32Limit = 0x0000ffff;
2373 pCtx->gs.Attr.n.u1DescType = 1; /* code/data segment */
2374 pCtx->gs.Attr.n.u1Present = 1;
2375 pCtx->gs.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
2376
2377 pCtx->ss.fFlags = CPUMSELREG_FLAGS_VALID;
2378 pCtx->ss.u32Limit = 0x0000ffff;
2379 pCtx->ss.Attr.n.u1Present = 1;
2380 pCtx->ss.Attr.n.u1DescType = 1; /* code/data segment */
2381 pCtx->ss.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
2382
2383 pCtx->idtr.cbIdt = 0xffff;
2384 pCtx->gdtr.cbGdt = 0xffff;
2385
2386 pCtx->ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
2387 pCtx->ldtr.u32Limit = 0xffff;
2388 pCtx->ldtr.Attr.n.u1Present = 1;
2389 pCtx->ldtr.Attr.n.u4Type = X86_SEL_TYPE_SYS_LDT;
2390
2391 pCtx->tr.fFlags = CPUMSELREG_FLAGS_VALID;
2392 pCtx->tr.u32Limit = 0xffff;
2393 pCtx->tr.Attr.n.u1Present = 1;
2394 pCtx->tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY; /* Deduction, not properly documented by Intel. */
2395
2396 pCtx->dr[6] = X86_DR6_INIT_VAL;
2397 pCtx->dr[7] = X86_DR7_INIT_VAL;
2398
2399 PX86FXSTATE pFpuCtx = &pCtx->pXStateR3->x87; AssertReleaseMsg(RT_VALID_PTR(pFpuCtx), ("%p\n", pFpuCtx));
2400 pFpuCtx->FTW = 0x00; /* All empty (abbridged tag reg edition). */
2401 pFpuCtx->FCW = 0x37f;
2402
2403 /* Intel 64 and IA-32 Architectures Software Developer's Manual Volume 3A, Table 8-1.
2404 IA-32 Processor States Following Power-up, Reset, or INIT */
2405 pFpuCtx->MXCSR = 0x1F80;
2406 pFpuCtx->MXCSR_MASK = pVM->cpum.s.GuestInfo.fMxCsrMask; /** @todo check if REM messes this up... */
2407
2408 pCtx->aXcr[0] = XSAVE_C_X87;
2409 if (pVM->cpum.s.HostFeatures.cbMaxExtendedState >= RT_UOFFSETOF(X86XSAVEAREA, Hdr))
2410 {
2411 /* The entire FXSAVE state needs loading when we switch to XSAVE/XRSTOR
2412 as we don't know what happened before. (Bother optimize later?) */
2413 pCtx->pXStateR3->Hdr.bmXState = XSAVE_C_X87 | XSAVE_C_SSE;
2414 }
2415
2416 /*
2417 * MSRs.
2418 */
2419 /* Init PAT MSR */
2420 pCtx->msrPAT = MSR_IA32_CR_PAT_INIT_VAL;
2421
2422 /* EFER MBZ; see AMD64 Architecture Programmer's Manual Volume 2: Table 14-1. Initial Processor State.
2423 * The Intel docs don't mention it. */
2424 Assert(!pCtx->msrEFER);
2425
2426 /* IA32_MISC_ENABLE - not entirely sure what the init/reset state really
2427 is supposed to be here, just trying provide useful/sensible values. */
2428 PCPUMMSRRANGE pRange = cpumLookupMsrRange(pVM, MSR_IA32_MISC_ENABLE);
2429 if (pRange)
2430 {
2431 pVCpu->cpum.s.GuestMsrs.msr.MiscEnable = MSR_IA32_MISC_ENABLE_BTS_UNAVAIL
2432 | MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL
2433 | (pVM->cpum.s.GuestFeatures.fMonitorMWait ? MSR_IA32_MISC_ENABLE_MONITOR : 0)
2434 | MSR_IA32_MISC_ENABLE_FAST_STRINGS;
2435 pRange->fWrIgnMask |= MSR_IA32_MISC_ENABLE_BTS_UNAVAIL
2436 | MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL;
2437 pRange->fWrGpMask &= ~pVCpu->cpum.s.GuestMsrs.msr.MiscEnable;
2438 }
2439
2440 /** @todo Wire IA32_MISC_ENABLE bit 22 to our NT 4 CPUID trick. */
2441
2442 /** @todo r=ramshankar: Currently broken for SMP as TMCpuTickSet() expects to be
2443 * called from each EMT while we're getting called by CPUMR3Reset()
2444 * iteratively on the same thread. Fix later. */
2445#if 0 /** @todo r=bird: This we will do in TM, not here. */
2446 /* TSC must be 0. Intel spec. Table 9-1. "IA-32 Processor States Following Power-up, Reset, or INIT." */
2447 CPUMSetGuestMsr(pVCpu, MSR_IA32_TSC, 0);
2448#endif
2449
2450
2451 /* C-state control. Guesses. */
2452 pVCpu->cpum.s.GuestMsrs.msr.PkgCStateCfgCtrl = 1 /*C1*/ | RT_BIT_32(25) | RT_BIT_32(26) | RT_BIT_32(27) | RT_BIT_32(28);
2453 /* For Nehalem+ and Atoms, the 0xE2 MSR (MSR_PKG_CST_CONFIG_CONTROL) is documented. For Core 2,
2454 * it's undocumented but exists as MSR_PMG_CST_CONFIG_CONTROL and has similar but not identical
2455 * functionality. The default value must be different due to incompatible write mask.
2456 */
2457 if (CPUMMICROARCH_IS_INTEL_CORE2(pVM->cpum.s.GuestFeatures.enmMicroarch))
2458 pVCpu->cpum.s.GuestMsrs.msr.PkgCStateCfgCtrl = 0x202a01; /* From Mac Pro Harpertown, unlocked. */
2459 else if (pVM->cpum.s.GuestFeatures.enmMicroarch == kCpumMicroarch_Intel_Core_Yonah)
2460 pVCpu->cpum.s.GuestMsrs.msr.PkgCStateCfgCtrl = 0x26740c; /* From MacBookPro1,1. */
2461
2462 /*
2463 * Hardware virtualization state.
2464 */
2465 CPUMSetGuestGif(pCtx, true);
2466 Assert(!pVM->cpum.s.GuestFeatures.fVmx || !pVM->cpum.s.GuestFeatures.fSvm); /* Paranoia. */
2467 if (pVM->cpum.s.GuestFeatures.fVmx)
2468 cpumR3ResetVmxHwVirtState(pVCpu);
2469 else if (pVM->cpum.s.GuestFeatures.fSvm)
2470 cpumR3ResetSvmHwVirtState(pVCpu);
2471}
2472
2473
2474/**
2475 * Resets the CPU.
2476 *
2477 * @returns VINF_SUCCESS.
2478 * @param pVM The cross context VM structure.
2479 */
2480VMMR3DECL(void) CPUMR3Reset(PVM pVM)
2481{
2482 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2483 {
2484 CPUMR3ResetCpu(pVM, &pVM->aCpus[i]);
2485
2486#ifdef VBOX_WITH_CRASHDUMP_MAGIC
2487 PCPUMCTX pCtx = &pVM->aCpus[i].cpum.s.Guest;
2488
2489 /* Magic marker for searching in crash dumps. */
2490 strcpy((char *)pVM->aCpus[i].cpum.s.aMagic, "CPUMCPU Magic");
2491 pVM->aCpus[i].cpum.s.uMagic = UINT64_C(0xDEADBEEFDEADBEEF);
2492 pCtx->dr[5] = UINT64_C(0xDEADBEEFDEADBEEF);
2493#endif
2494 }
2495}
2496
2497
2498
2499
2500/**
2501 * Pass 0 live exec callback.
2502 *
2503 * @returns VINF_SSM_DONT_CALL_AGAIN.
2504 * @param pVM The cross context VM structure.
2505 * @param pSSM The saved state handle.
2506 * @param uPass The pass (0).
2507 */
2508static DECLCALLBACK(int) cpumR3LiveExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uPass)
2509{
2510 AssertReturn(uPass == 0, VERR_SSM_UNEXPECTED_PASS);
2511 cpumR3SaveCpuId(pVM, pSSM);
2512 return VINF_SSM_DONT_CALL_AGAIN;
2513}
2514
2515
2516/**
2517 * Execute state save operation.
2518 *
2519 * @returns VBox status code.
2520 * @param pVM The cross context VM structure.
2521 * @param pSSM SSM operation handle.
2522 */
2523static DECLCALLBACK(int) cpumR3SaveExec(PVM pVM, PSSMHANDLE pSSM)
2524{
2525 /*
2526 * Save.
2527 */
2528 SSMR3PutU32(pSSM, pVM->cCpus);
2529 SSMR3PutU32(pSSM, sizeof(pVM->aCpus[0].cpum.s.GuestMsrs.msr));
2530 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
2531 {
2532 PVMCPU pVCpu = &pVM->aCpus[iCpu];
2533
2534 SSMR3PutStructEx(pSSM, &pVCpu->cpum.s.Hyper, sizeof(pVCpu->cpum.s.Hyper), 0, g_aCpumCtxFields, NULL);
2535
2536 PCPUMCTX pGstCtx = &pVCpu->cpum.s.Guest;
2537 SSMR3PutStructEx(pSSM, pGstCtx, sizeof(*pGstCtx), 0, g_aCpumCtxFields, NULL);
2538 SSMR3PutStructEx(pSSM, &pGstCtx->pXStateR3->x87, sizeof(pGstCtx->pXStateR3->x87), 0, g_aCpumX87Fields, NULL);
2539 if (pGstCtx->fXStateMask != 0)
2540 SSMR3PutStructEx(pSSM, &pGstCtx->pXStateR3->Hdr, sizeof(pGstCtx->pXStateR3->Hdr), 0, g_aCpumXSaveHdrFields, NULL);
2541 if (pGstCtx->fXStateMask & XSAVE_C_YMM)
2542 {
2543 PCX86XSAVEYMMHI pYmmHiCtx = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_YMM_BIT, PCX86XSAVEYMMHI);
2544 SSMR3PutStructEx(pSSM, pYmmHiCtx, sizeof(*pYmmHiCtx), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumYmmHiFields, NULL);
2545 }
2546 if (pGstCtx->fXStateMask & XSAVE_C_BNDREGS)
2547 {
2548 PCX86XSAVEBNDREGS pBndRegs = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_BNDREGS_BIT, PCX86XSAVEBNDREGS);
2549 SSMR3PutStructEx(pSSM, pBndRegs, sizeof(*pBndRegs), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumBndRegsFields, NULL);
2550 }
2551 if (pGstCtx->fXStateMask & XSAVE_C_BNDCSR)
2552 {
2553 PCX86XSAVEBNDCFG pBndCfg = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_BNDCSR_BIT, PCX86XSAVEBNDCFG);
2554 SSMR3PutStructEx(pSSM, pBndCfg, sizeof(*pBndCfg), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumBndCfgFields, NULL);
2555 }
2556 if (pGstCtx->fXStateMask & XSAVE_C_ZMM_HI256)
2557 {
2558 PCX86XSAVEZMMHI256 pZmmHi256 = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_ZMM_HI256_BIT, PCX86XSAVEZMMHI256);
2559 SSMR3PutStructEx(pSSM, pZmmHi256, sizeof(*pZmmHi256), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumZmmHi256Fields, NULL);
2560 }
2561 if (pGstCtx->fXStateMask & XSAVE_C_ZMM_16HI)
2562 {
2563 PCX86XSAVEZMM16HI pZmm16Hi = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_ZMM_16HI_BIT, PCX86XSAVEZMM16HI);
2564 SSMR3PutStructEx(pSSM, pZmm16Hi, sizeof(*pZmm16Hi), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumZmm16HiFields, NULL);
2565 }
2566 if (pVM->cpum.s.GuestFeatures.fSvm)
2567 {
2568 Assert(pGstCtx->hwvirt.svm.CTX_SUFF(pVmcb));
2569 SSMR3PutU64(pSSM, pGstCtx->hwvirt.svm.uMsrHSavePa);
2570 SSMR3PutGCPhys(pSSM, pGstCtx->hwvirt.svm.GCPhysVmcb);
2571 SSMR3PutU64(pSSM, pGstCtx->hwvirt.svm.uPrevPauseTick);
2572 SSMR3PutU16(pSSM, pGstCtx->hwvirt.svm.cPauseFilter);
2573 SSMR3PutU16(pSSM, pGstCtx->hwvirt.svm.cPauseFilterThreshold);
2574 SSMR3PutBool(pSSM, pGstCtx->hwvirt.svm.fInterceptEvents);
2575 SSMR3PutStructEx(pSSM, &pGstCtx->hwvirt.svm.HostState, sizeof(pGstCtx->hwvirt.svm.HostState), 0 /* fFlags */,
2576 g_aSvmHwvirtHostState, NULL /* pvUser */);
2577 SSMR3PutMem(pSSM, pGstCtx->hwvirt.svm.pVmcbR3, SVM_VMCB_PAGES << X86_PAGE_4K_SHIFT);
2578 SSMR3PutMem(pSSM, pGstCtx->hwvirt.svm.pvMsrBitmapR3, SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT);
2579 SSMR3PutMem(pSSM, pGstCtx->hwvirt.svm.pvIoBitmapR3, SVM_IOPM_PAGES << X86_PAGE_4K_SHIFT);
2580 SSMR3PutU32(pSSM, pGstCtx->hwvirt.fLocalForcedActions);
2581 SSMR3PutBool(pSSM, pGstCtx->hwvirt.fGif);
2582 }
2583 if (pVM->cpum.s.GuestFeatures.fVmx)
2584 {
2585 Assert(pGstCtx->hwvirt.vmx.CTX_SUFF(pVmcs));
2586 SSMR3PutGCPhys(pSSM, pGstCtx->hwvirt.vmx.GCPhysVmxon);
2587 SSMR3PutGCPhys(pSSM, pGstCtx->hwvirt.vmx.GCPhysVmcs);
2588 SSMR3PutGCPhys(pSSM, pGstCtx->hwvirt.vmx.GCPhysShadowVmcs);
2589 SSMR3PutU32(pSSM, (uint32_t)pGstCtx->hwvirt.vmx.enmDiag);
2590 SSMR3PutU32(pSSM, (uint32_t)pGstCtx->hwvirt.vmx.enmAbort);
2591 SSMR3PutU32(pSSM, pGstCtx->hwvirt.vmx.uAbortAux);
2592 SSMR3PutBool(pSSM, pGstCtx->hwvirt.vmx.fInVmxRootMode);
2593 SSMR3PutBool(pSSM, pGstCtx->hwvirt.vmx.fInVmxNonRootMode);
2594 SSMR3PutBool(pSSM, pGstCtx->hwvirt.vmx.fInterceptEvents);
2595 SSMR3PutBool(pSSM, pGstCtx->hwvirt.vmx.fNmiUnblockingIret);
2596 SSMR3PutStructEx(pSSM, pGstCtx->hwvirt.vmx.pVmcsR3, sizeof(VMXVVMCS), 0, g_aVmxHwvirtVmcs, NULL);
2597 SSMR3PutStructEx(pSSM, pGstCtx->hwvirt.vmx.pShadowVmcsR3, sizeof(VMXVVMCS), 0, g_aVmxHwvirtVmcs, NULL);
2598 SSMR3PutMem(pSSM, pGstCtx->hwvirt.vmx.pvVmreadBitmapR3, VMX_V_VMREAD_VMWRITE_BITMAP_SIZE);
2599 SSMR3PutMem(pSSM, pGstCtx->hwvirt.vmx.pvVmwriteBitmapR3, VMX_V_VMREAD_VMWRITE_BITMAP_SIZE);
2600 SSMR3PutMem(pSSM, pGstCtx->hwvirt.vmx.pEntryMsrLoadAreaR3, VMX_V_AUTOMSR_AREA_SIZE);
2601 SSMR3PutMem(pSSM, pGstCtx->hwvirt.vmx.pExitMsrStoreAreaR3, VMX_V_AUTOMSR_AREA_SIZE);
2602 SSMR3PutMem(pSSM, pGstCtx->hwvirt.vmx.pExitMsrLoadAreaR3, VMX_V_AUTOMSR_AREA_SIZE);
2603 SSMR3PutMem(pSSM, pGstCtx->hwvirt.vmx.pvMsrBitmapR3, VMX_V_MSR_BITMAP_SIZE);
2604 SSMR3PutMem(pSSM, pGstCtx->hwvirt.vmx.pvIoBitmapR3, VMX_V_IO_BITMAP_A_SIZE + VMX_V_IO_BITMAP_B_SIZE);
2605 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.uFirstPauseLoopTick);
2606 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.uPrevPauseTick);
2607 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.uEntryTick);
2608 SSMR3PutU16(pSSM, pGstCtx->hwvirt.vmx.offVirtApicWrite);
2609 SSMR3PutBool(pSSM, pGstCtx->hwvirt.vmx.fVirtNmiBlocking);
2610 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64FeatCtrl);
2611 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64Basic);
2612 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.PinCtls.u);
2613 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.ProcCtls.u);
2614 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.ProcCtls2.u);
2615 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.ExitCtls.u);
2616 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.EntryCtls.u);
2617 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.TruePinCtls.u);
2618 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.TrueProcCtls.u);
2619 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.TrueEntryCtls.u);
2620 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.TrueExitCtls.u);
2621 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64Misc);
2622 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64Cr0Fixed0);
2623 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64Cr0Fixed1);
2624 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64Cr4Fixed0);
2625 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64Cr4Fixed1);
2626 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64VmcsEnum);
2627 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64VmFunc);
2628 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64EptVpidCaps);
2629 }
2630 SSMR3PutU32(pSSM, pVCpu->cpum.s.fUseFlags);
2631 SSMR3PutU32(pSSM, pVCpu->cpum.s.fChanged);
2632 AssertCompileSizeAlignment(pVCpu->cpum.s.GuestMsrs.msr, sizeof(uint64_t));
2633 SSMR3PutMem(pSSM, &pVCpu->cpum.s.GuestMsrs, sizeof(pVCpu->cpum.s.GuestMsrs.msr));
2634 }
2635
2636 cpumR3SaveCpuId(pVM, pSSM);
2637 return VINF_SUCCESS;
2638}
2639
2640
2641/**
2642 * @callback_method_impl{FNSSMINTLOADPREP}
2643 */
2644static DECLCALLBACK(int) cpumR3LoadPrep(PVM pVM, PSSMHANDLE pSSM)
2645{
2646 NOREF(pSSM);
2647 pVM->cpum.s.fPendingRestore = true;
2648 return VINF_SUCCESS;
2649}
2650
2651
2652/**
2653 * @callback_method_impl{FNSSMINTLOADEXEC}
2654 */
2655static DECLCALLBACK(int) cpumR3LoadExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
2656{
2657 int rc; /* Only for AssertRCReturn use. */
2658
2659 /*
2660 * Validate version.
2661 */
2662 if ( uVersion != CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_IEM
2663 && uVersion != CPUM_SAVED_STATE_VERSION_HWVIRT_SVM
2664 && uVersion != CPUM_SAVED_STATE_VERSION_XSAVE
2665 && uVersion != CPUM_SAVED_STATE_VERSION_GOOD_CPUID_COUNT
2666 && uVersion != CPUM_SAVED_STATE_VERSION_BAD_CPUID_COUNT
2667 && uVersion != CPUM_SAVED_STATE_VERSION_PUT_STRUCT
2668 && uVersion != CPUM_SAVED_STATE_VERSION_MEM
2669 && uVersion != CPUM_SAVED_STATE_VERSION_NO_MSR_SIZE
2670 && uVersion != CPUM_SAVED_STATE_VERSION_VER3_2
2671 && uVersion != CPUM_SAVED_STATE_VERSION_VER3_0
2672 && uVersion != CPUM_SAVED_STATE_VERSION_VER2_1_NOMSR
2673 && uVersion != CPUM_SAVED_STATE_VERSION_VER2_0
2674 && uVersion != CPUM_SAVED_STATE_VERSION_VER1_6)
2675 {
2676 AssertMsgFailed(("cpumR3LoadExec: Invalid version uVersion=%d!\n", uVersion));
2677 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
2678 }
2679
2680 if (uPass == SSM_PASS_FINAL)
2681 {
2682 /*
2683 * Set the size of RTGCPTR for SSMR3GetGCPtr. (Only necessary for
2684 * really old SSM file versions.)
2685 */
2686 if (uVersion == CPUM_SAVED_STATE_VERSION_VER1_6)
2687 SSMR3HandleSetGCPtrSize(pSSM, sizeof(RTGCPTR32));
2688 else if (uVersion <= CPUM_SAVED_STATE_VERSION_VER3_0)
2689 SSMR3HandleSetGCPtrSize(pSSM, HC_ARCH_BITS == 32 ? sizeof(RTGCPTR32) : sizeof(RTGCPTR));
2690
2691 /*
2692 * Figure x86 and ctx field definitions to use for older states.
2693 */
2694 uint32_t const fLoad = uVersion > CPUM_SAVED_STATE_VERSION_MEM ? 0 : SSMSTRUCT_FLAGS_MEM_BAND_AID_RELAXED;
2695 PCSSMFIELD paCpumCtx1Fields = g_aCpumX87Fields;
2696 PCSSMFIELD paCpumCtx2Fields = g_aCpumCtxFields;
2697 if (uVersion == CPUM_SAVED_STATE_VERSION_VER1_6)
2698 {
2699 paCpumCtx1Fields = g_aCpumX87FieldsV16;
2700 paCpumCtx2Fields = g_aCpumCtxFieldsV16;
2701 }
2702 else if (uVersion <= CPUM_SAVED_STATE_VERSION_MEM)
2703 {
2704 paCpumCtx1Fields = g_aCpumX87FieldsMem;
2705 paCpumCtx2Fields = g_aCpumCtxFieldsMem;
2706 }
2707
2708 /*
2709 * The hyper state used to preceed the CPU count. Starting with
2710 * XSAVE it was moved down till after we've got the count.
2711 */
2712 if (uVersion < CPUM_SAVED_STATE_VERSION_XSAVE)
2713 {
2714 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
2715 {
2716 PVMCPU pVCpu = &pVM->aCpus[iCpu];
2717 X86FXSTATE Ign;
2718 SSMR3GetStructEx(pSSM, &Ign, sizeof(Ign), fLoad | SSMSTRUCT_FLAGS_NO_TAIL_MARKER, paCpumCtx1Fields, NULL);
2719 uint64_t uCR3 = pVCpu->cpum.s.Hyper.cr3;
2720 uint64_t uRSP = pVCpu->cpum.s.Hyper.rsp; /* see VMMR3Relocate(). */
2721 SSMR3GetStructEx(pSSM, &pVCpu->cpum.s.Hyper, sizeof(pVCpu->cpum.s.Hyper),
2722 fLoad | SSMSTRUCT_FLAGS_NO_LEAD_MARKER, paCpumCtx2Fields, NULL);
2723 pVCpu->cpum.s.Hyper.cr3 = uCR3;
2724 pVCpu->cpum.s.Hyper.rsp = uRSP;
2725 }
2726 }
2727
2728 if (uVersion >= CPUM_SAVED_STATE_VERSION_VER2_1_NOMSR)
2729 {
2730 uint32_t cCpus;
2731 rc = SSMR3GetU32(pSSM, &cCpus); AssertRCReturn(rc, rc);
2732 AssertLogRelMsgReturn(cCpus == pVM->cCpus, ("Mismatching CPU counts: saved: %u; configured: %u \n", cCpus, pVM->cCpus),
2733 VERR_SSM_UNEXPECTED_DATA);
2734 }
2735 AssertLogRelMsgReturn( uVersion > CPUM_SAVED_STATE_VERSION_VER2_0
2736 || pVM->cCpus == 1,
2737 ("cCpus=%u\n", pVM->cCpus),
2738 VERR_SSM_UNEXPECTED_DATA);
2739
2740 uint32_t cbMsrs = 0;
2741 if (uVersion > CPUM_SAVED_STATE_VERSION_NO_MSR_SIZE)
2742 {
2743 rc = SSMR3GetU32(pSSM, &cbMsrs); AssertRCReturn(rc, rc);
2744 AssertLogRelMsgReturn(RT_ALIGN(cbMsrs, sizeof(uint64_t)) == cbMsrs, ("Size of MSRs is misaligned: %#x\n", cbMsrs),
2745 VERR_SSM_UNEXPECTED_DATA);
2746 AssertLogRelMsgReturn(cbMsrs <= sizeof(CPUMCTXMSRS) && cbMsrs > 0, ("Size of MSRs is out of range: %#x\n", cbMsrs),
2747 VERR_SSM_UNEXPECTED_DATA);
2748 }
2749
2750 /*
2751 * Do the per-CPU restoring.
2752 */
2753 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
2754 {
2755 PVMCPU pVCpu = &pVM->aCpus[iCpu];
2756 PCPUMCTX pGstCtx = &pVCpu->cpum.s.Guest;
2757
2758 if (uVersion >= CPUM_SAVED_STATE_VERSION_XSAVE)
2759 {
2760 /*
2761 * The XSAVE saved state layout moved the hyper state down here.
2762 */
2763 uint64_t uCR3 = pVCpu->cpum.s.Hyper.cr3;
2764 uint64_t uRSP = pVCpu->cpum.s.Hyper.rsp; /* see VMMR3Relocate(). */
2765 rc = SSMR3GetStructEx(pSSM, &pVCpu->cpum.s.Hyper, sizeof(pVCpu->cpum.s.Hyper), 0, g_aCpumCtxFields, NULL);
2766 pVCpu->cpum.s.Hyper.cr3 = uCR3;
2767 pVCpu->cpum.s.Hyper.rsp = uRSP;
2768 AssertRCReturn(rc, rc);
2769
2770 /*
2771 * Start by restoring the CPUMCTX structure and the X86FXSAVE bits of the extended state.
2772 */
2773 rc = SSMR3GetStructEx(pSSM, pGstCtx, sizeof(*pGstCtx), 0, g_aCpumCtxFields, NULL);
2774 rc = SSMR3GetStructEx(pSSM, &pGstCtx->pXStateR3->x87, sizeof(pGstCtx->pXStateR3->x87), 0, g_aCpumX87Fields, NULL);
2775 AssertRCReturn(rc, rc);
2776
2777 /* Check that the xsave/xrstor mask is valid (invalid results in #GP). */
2778 if (pGstCtx->fXStateMask != 0)
2779 {
2780 AssertLogRelMsgReturn(!(pGstCtx->fXStateMask & ~pVM->cpum.s.fXStateGuestMask),
2781 ("fXStateMask=%#RX64 fXStateGuestMask=%#RX64\n",
2782 pGstCtx->fXStateMask, pVM->cpum.s.fXStateGuestMask),
2783 VERR_CPUM_INCOMPATIBLE_XSAVE_COMP_MASK);
2784 AssertLogRelMsgReturn(pGstCtx->fXStateMask & XSAVE_C_X87,
2785 ("fXStateMask=%#RX64\n", pGstCtx->fXStateMask), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2786 AssertLogRelMsgReturn((pGstCtx->fXStateMask & (XSAVE_C_SSE | XSAVE_C_YMM)) != XSAVE_C_YMM,
2787 ("fXStateMask=%#RX64\n", pGstCtx->fXStateMask), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2788 AssertLogRelMsgReturn( (pGstCtx->fXStateMask & (XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI)) == 0
2789 || (pGstCtx->fXStateMask & (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI))
2790 == (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI),
2791 ("fXStateMask=%#RX64\n", pGstCtx->fXStateMask), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2792 }
2793
2794 /* Check that the XCR0 mask is valid (invalid results in #GP). */
2795 AssertLogRelMsgReturn(pGstCtx->aXcr[0] & XSAVE_C_X87, ("xcr0=%#RX64\n", pGstCtx->aXcr[0]), VERR_CPUM_INVALID_XCR0);
2796 if (pGstCtx->aXcr[0] != XSAVE_C_X87)
2797 {
2798 AssertLogRelMsgReturn(!(pGstCtx->aXcr[0] & ~(pGstCtx->fXStateMask | XSAVE_C_X87)),
2799 ("xcr0=%#RX64 fXStateMask=%#RX64\n", pGstCtx->aXcr[0], pGstCtx->fXStateMask),
2800 VERR_CPUM_INVALID_XCR0);
2801 AssertLogRelMsgReturn(pGstCtx->aXcr[0] & XSAVE_C_X87,
2802 ("xcr0=%#RX64\n", pGstCtx->aXcr[0]), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2803 AssertLogRelMsgReturn((pGstCtx->aXcr[0] & (XSAVE_C_SSE | XSAVE_C_YMM)) != XSAVE_C_YMM,
2804 ("xcr0=%#RX64\n", pGstCtx->aXcr[0]), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2805 AssertLogRelMsgReturn( (pGstCtx->aXcr[0] & (XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI)) == 0
2806 || (pGstCtx->aXcr[0] & (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI))
2807 == (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI),
2808 ("xcr0=%#RX64\n", pGstCtx->aXcr[0]), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2809 }
2810
2811 /* Check that the XCR1 is zero, as we don't implement it yet. */
2812 AssertLogRelMsgReturn(!pGstCtx->aXcr[1], ("xcr1=%#RX64\n", pGstCtx->aXcr[1]), VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2813
2814 /*
2815 * Restore the individual extended state components we support.
2816 */
2817 if (pGstCtx->fXStateMask != 0)
2818 {
2819 rc = SSMR3GetStructEx(pSSM, &pGstCtx->pXStateR3->Hdr, sizeof(pGstCtx->pXStateR3->Hdr),
2820 0, g_aCpumXSaveHdrFields, NULL);
2821 AssertRCReturn(rc, rc);
2822 AssertLogRelMsgReturn(!(pGstCtx->pXStateR3->Hdr.bmXState & ~pGstCtx->fXStateMask),
2823 ("bmXState=%#RX64 fXStateMask=%#RX64\n",
2824 pGstCtx->pXStateR3->Hdr.bmXState, pGstCtx->fXStateMask),
2825 VERR_CPUM_INVALID_XSAVE_HDR);
2826 }
2827 if (pGstCtx->fXStateMask & XSAVE_C_YMM)
2828 {
2829 PX86XSAVEYMMHI pYmmHiCtx = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_YMM_BIT, PX86XSAVEYMMHI);
2830 SSMR3GetStructEx(pSSM, pYmmHiCtx, sizeof(*pYmmHiCtx), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumYmmHiFields, NULL);
2831 }
2832 if (pGstCtx->fXStateMask & XSAVE_C_BNDREGS)
2833 {
2834 PX86XSAVEBNDREGS pBndRegs = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_BNDREGS_BIT, PX86XSAVEBNDREGS);
2835 SSMR3GetStructEx(pSSM, pBndRegs, sizeof(*pBndRegs), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumBndRegsFields, NULL);
2836 }
2837 if (pGstCtx->fXStateMask & XSAVE_C_BNDCSR)
2838 {
2839 PX86XSAVEBNDCFG pBndCfg = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_BNDCSR_BIT, PX86XSAVEBNDCFG);
2840 SSMR3GetStructEx(pSSM, pBndCfg, sizeof(*pBndCfg), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumBndCfgFields, NULL);
2841 }
2842 if (pGstCtx->fXStateMask & XSAVE_C_ZMM_HI256)
2843 {
2844 PX86XSAVEZMMHI256 pZmmHi256 = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_ZMM_HI256_BIT, PX86XSAVEZMMHI256);
2845 SSMR3GetStructEx(pSSM, pZmmHi256, sizeof(*pZmmHi256), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumZmmHi256Fields, NULL);
2846 }
2847 if (pGstCtx->fXStateMask & XSAVE_C_ZMM_16HI)
2848 {
2849 PX86XSAVEZMM16HI pZmm16Hi = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_ZMM_16HI_BIT, PX86XSAVEZMM16HI);
2850 SSMR3GetStructEx(pSSM, pZmm16Hi, sizeof(*pZmm16Hi), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumZmm16HiFields, NULL);
2851 }
2852 if (uVersion >= CPUM_SAVED_STATE_VERSION_HWVIRT_SVM)
2853 {
2854 if (pVM->cpum.s.GuestFeatures.fSvm)
2855 {
2856 Assert(pGstCtx->hwvirt.svm.CTX_SUFF(pVmcb));
2857 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.svm.uMsrHSavePa);
2858 SSMR3GetGCPhys(pSSM, &pGstCtx->hwvirt.svm.GCPhysVmcb);
2859 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.svm.uPrevPauseTick);
2860 SSMR3GetU16(pSSM, &pGstCtx->hwvirt.svm.cPauseFilter);
2861 SSMR3GetU16(pSSM, &pGstCtx->hwvirt.svm.cPauseFilterThreshold);
2862 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.svm.fInterceptEvents);
2863 SSMR3GetStructEx(pSSM, &pGstCtx->hwvirt.svm.HostState, sizeof(pGstCtx->hwvirt.svm.HostState),
2864 0 /* fFlags */, g_aSvmHwvirtHostState, NULL /* pvUser */);
2865 SSMR3GetMem(pSSM, pGstCtx->hwvirt.svm.pVmcbR3, SVM_VMCB_PAGES << X86_PAGE_4K_SHIFT);
2866 SSMR3GetMem(pSSM, pGstCtx->hwvirt.svm.pvMsrBitmapR3, SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT);
2867 SSMR3GetMem(pSSM, pGstCtx->hwvirt.svm.pvIoBitmapR3, SVM_IOPM_PAGES << X86_PAGE_4K_SHIFT);
2868 SSMR3GetU32(pSSM, &pGstCtx->hwvirt.fLocalForcedActions);
2869 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.fGif);
2870 }
2871 }
2872 if (uVersion >= CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_IEM)
2873 {
2874 if (pVM->cpum.s.GuestFeatures.fVmx)
2875 {
2876 Assert(pGstCtx->hwvirt.vmx.CTX_SUFF(pVmcs));
2877 SSMR3GetGCPhys(pSSM, &pGstCtx->hwvirt.vmx.GCPhysVmxon);
2878 SSMR3GetGCPhys(pSSM, &pGstCtx->hwvirt.vmx.GCPhysVmcs);
2879 SSMR3GetGCPhys(pSSM, &pGstCtx->hwvirt.vmx.GCPhysShadowVmcs);
2880 SSMR3GetU32(pSSM, (uint32_t *)&pGstCtx->hwvirt.vmx.enmDiag);
2881 SSMR3GetU32(pSSM, (uint32_t *)&pGstCtx->hwvirt.vmx.enmAbort);
2882 SSMR3GetU32(pSSM, &pGstCtx->hwvirt.vmx.uAbortAux);
2883 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.vmx.fInVmxRootMode);
2884 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.vmx.fInVmxNonRootMode);
2885 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.vmx.fInterceptEvents);
2886 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.vmx.fNmiUnblockingIret);
2887 SSMR3GetStructEx(pSSM, pGstCtx->hwvirt.vmx.pVmcsR3, sizeof(VMXVVMCS), 0, g_aVmxHwvirtVmcs, NULL);
2888 SSMR3GetStructEx(pSSM, pGstCtx->hwvirt.vmx.pShadowVmcsR3, sizeof(VMXVVMCS), 0, g_aVmxHwvirtVmcs, NULL);
2889 SSMR3GetMem(pSSM, pGstCtx->hwvirt.vmx.pvVmreadBitmapR3, VMX_V_VMREAD_VMWRITE_BITMAP_SIZE);
2890 SSMR3GetMem(pSSM, pGstCtx->hwvirt.vmx.pvVmwriteBitmapR3, VMX_V_VMREAD_VMWRITE_BITMAP_SIZE);
2891 SSMR3GetMem(pSSM, pGstCtx->hwvirt.vmx.pEntryMsrLoadAreaR3, VMX_V_AUTOMSR_AREA_SIZE);
2892 SSMR3GetMem(pSSM, pGstCtx->hwvirt.vmx.pExitMsrStoreAreaR3, VMX_V_AUTOMSR_AREA_SIZE);
2893 SSMR3GetMem(pSSM, pGstCtx->hwvirt.vmx.pExitMsrLoadAreaR3, VMX_V_AUTOMSR_AREA_SIZE);
2894 SSMR3GetMem(pSSM, pGstCtx->hwvirt.vmx.pvMsrBitmapR3, VMX_V_MSR_BITMAP_SIZE);
2895 SSMR3GetMem(pSSM, pGstCtx->hwvirt.vmx.pvIoBitmapR3, VMX_V_IO_BITMAP_A_SIZE + VMX_V_IO_BITMAP_B_SIZE);
2896 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.uFirstPauseLoopTick);
2897 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.uPrevPauseTick);
2898 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.uEntryTick);
2899 SSMR3GetU16(pSSM, &pGstCtx->hwvirt.vmx.offVirtApicWrite);
2900 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.vmx.fVirtNmiBlocking);
2901 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64FeatCtrl);
2902 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64Basic);
2903 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.PinCtls.u);
2904 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.ProcCtls.u);
2905 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.ProcCtls2.u);
2906 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.ExitCtls.u);
2907 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.EntryCtls.u);
2908 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.TruePinCtls.u);
2909 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.TrueProcCtls.u);
2910 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.TrueEntryCtls.u);
2911 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.TrueExitCtls.u);
2912 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64Misc);
2913 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64Cr0Fixed0);
2914 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64Cr0Fixed1);
2915 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64Cr4Fixed0);
2916 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64Cr4Fixed1);
2917 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64VmcsEnum);
2918 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64VmFunc);
2919 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64EptVpidCaps);
2920 }
2921 }
2922 }
2923 else
2924 {
2925 /*
2926 * Pre XSAVE saved state.
2927 */
2928 SSMR3GetStructEx(pSSM, &pGstCtx->pXStateR3->x87, sizeof(pGstCtx->pXStateR3->x87),
2929 fLoad | SSMSTRUCT_FLAGS_NO_TAIL_MARKER, paCpumCtx1Fields, NULL);
2930 SSMR3GetStructEx(pSSM, pGstCtx, sizeof(*pGstCtx), fLoad | SSMSTRUCT_FLAGS_NO_LEAD_MARKER, paCpumCtx2Fields, NULL);
2931 }
2932
2933 /*
2934 * Restore a couple of flags and the MSRs.
2935 */
2936 SSMR3GetU32(pSSM, &pVCpu->cpum.s.fUseFlags);
2937 SSMR3GetU32(pSSM, &pVCpu->cpum.s.fChanged);
2938
2939 rc = VINF_SUCCESS;
2940 if (uVersion > CPUM_SAVED_STATE_VERSION_NO_MSR_SIZE)
2941 rc = SSMR3GetMem(pSSM, &pVCpu->cpum.s.GuestMsrs.au64[0], cbMsrs);
2942 else if (uVersion >= CPUM_SAVED_STATE_VERSION_VER3_0)
2943 {
2944 SSMR3GetMem(pSSM, &pVCpu->cpum.s.GuestMsrs.au64[0], 2 * sizeof(uint64_t)); /* Restore two MSRs. */
2945 rc = SSMR3Skip(pSSM, 62 * sizeof(uint64_t));
2946 }
2947 AssertRCReturn(rc, rc);
2948
2949 /* REM and other may have cleared must-be-one fields in DR6 and
2950 DR7, fix these. */
2951 pGstCtx->dr[6] &= ~(X86_DR6_RAZ_MASK | X86_DR6_MBZ_MASK);
2952 pGstCtx->dr[6] |= X86_DR6_RA1_MASK;
2953 pGstCtx->dr[7] &= ~(X86_DR7_RAZ_MASK | X86_DR7_MBZ_MASK);
2954 pGstCtx->dr[7] |= X86_DR7_RA1_MASK;
2955 }
2956
2957 /* Older states does not have the internal selector register flags
2958 and valid selector value. Supply those. */
2959 if (uVersion <= CPUM_SAVED_STATE_VERSION_MEM)
2960 {
2961 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
2962 {
2963 PVMCPU pVCpu = &pVM->aCpus[iCpu];
2964 bool const fValid = !VM_IS_RAW_MODE_ENABLED(pVM)
2965 || ( uVersion > CPUM_SAVED_STATE_VERSION_VER3_2
2966 && !(pVCpu->cpum.s.fChanged & CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID));
2967 PCPUMSELREG paSelReg = CPUMCTX_FIRST_SREG(&pVCpu->cpum.s.Guest);
2968 if (fValid)
2969 {
2970 for (uint32_t iSelReg = 0; iSelReg < X86_SREG_COUNT; iSelReg++)
2971 {
2972 paSelReg[iSelReg].fFlags = CPUMSELREG_FLAGS_VALID;
2973 paSelReg[iSelReg].ValidSel = paSelReg[iSelReg].Sel;
2974 }
2975
2976 pVCpu->cpum.s.Guest.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
2977 pVCpu->cpum.s.Guest.ldtr.ValidSel = pVCpu->cpum.s.Guest.ldtr.Sel;
2978 }
2979 else
2980 {
2981 for (uint32_t iSelReg = 0; iSelReg < X86_SREG_COUNT; iSelReg++)
2982 {
2983 paSelReg[iSelReg].fFlags = 0;
2984 paSelReg[iSelReg].ValidSel = 0;
2985 }
2986
2987 /* This might not be 104% correct, but I think it's close
2988 enough for all practical purposes... (REM always loaded
2989 LDTR registers.) */
2990 pVCpu->cpum.s.Guest.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
2991 pVCpu->cpum.s.Guest.ldtr.ValidSel = pVCpu->cpum.s.Guest.ldtr.Sel;
2992 }
2993 pVCpu->cpum.s.Guest.tr.fFlags = CPUMSELREG_FLAGS_VALID;
2994 pVCpu->cpum.s.Guest.tr.ValidSel = pVCpu->cpum.s.Guest.tr.Sel;
2995 }
2996 }
2997
2998 /* Clear CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID. */
2999 if ( uVersion > CPUM_SAVED_STATE_VERSION_VER3_2
3000 && uVersion <= CPUM_SAVED_STATE_VERSION_MEM)
3001 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
3002 pVM->aCpus[iCpu].cpum.s.fChanged &= CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID;
3003
3004 /*
3005 * A quick sanity check.
3006 */
3007 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
3008 {
3009 PVMCPU pVCpu = &pVM->aCpus[iCpu];
3010 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.es.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
3011 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.cs.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
3012 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.ss.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
3013 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.ds.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
3014 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.fs.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
3015 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.gs.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
3016 }
3017 }
3018
3019 pVM->cpum.s.fPendingRestore = false;
3020
3021 /*
3022 * Guest CPUIDs (and VMX MSR features).
3023 */
3024 if (uVersion >= CPUM_SAVED_STATE_VERSION_VER3_2)
3025 {
3026 CPUMMSRS GuestMsrs;
3027 RT_ZERO(GuestMsrs);
3028
3029 CPUMFEATURES BaseFeatures;
3030 bool const fVmxGstFeat = pVM->cpum.s.GuestFeatures.fVmx;
3031 if (fVmxGstFeat)
3032 {
3033 /*
3034 * At this point the MSRs in the guest CPU-context are loaded with the guest VMX MSRs from the saved state.
3035 * However the VMX sub-features have not been exploded yet. So cache the base (host derived) VMX features
3036 * here so we can compare them for compatibility after exploding guest features.
3037 */
3038 BaseFeatures = pVM->cpum.s.GuestFeatures;
3039
3040 /* Use the VMX MSR features from the saved state while exploding guest features. */
3041 GuestMsrs.hwvirt.vmx = pVM->aCpus[0].cpum.s.Guest.hwvirt.vmx.Msrs;
3042 }
3043
3044 /* Load CPUID and explode guest features. */
3045 rc = cpumR3LoadCpuId(pVM, pSSM, uVersion, &GuestMsrs);
3046 if (fVmxGstFeat)
3047 {
3048 /*
3049 * Check if the exploded VMX features from the saved state are compatible with the host-derived features
3050 * we cached earlier (above). The is required if we use hardware-assisted nested-guest execution with
3051 * VMX features presented to the guest.
3052 */
3053 bool const fIsCompat = cpumR3AreVmxCpuFeaturesCompatible(pVM, &BaseFeatures, &pVM->cpum.s.GuestFeatures);
3054 if (!fIsCompat)
3055 return VERR_CPUM_INVALID_HWVIRT_FEAT_COMBO;
3056 }
3057 return rc;
3058 }
3059 return cpumR3LoadCpuIdPre32(pVM, pSSM, uVersion);
3060}
3061
3062
3063/**
3064 * @callback_method_impl{FNSSMINTLOADDONE}
3065 */
3066static DECLCALLBACK(int) cpumR3LoadDone(PVM pVM, PSSMHANDLE pSSM)
3067{
3068 if (RT_FAILURE(SSMR3HandleGetStatus(pSSM)))
3069 return VINF_SUCCESS;
3070
3071 /* just check this since we can. */ /** @todo Add a SSM unit flag for indicating that it's mandatory during a restore. */
3072 if (pVM->cpum.s.fPendingRestore)
3073 {
3074 LogRel(("CPUM: Missing state!\n"));
3075 return VERR_INTERNAL_ERROR_2;
3076 }
3077
3078 bool const fSupportsLongMode = VMR3IsLongModeAllowed(pVM);
3079 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
3080 {
3081 PVMCPU pVCpu = &pVM->aCpus[idCpu];
3082
3083 /* Notify PGM of the NXE states in case they've changed. */
3084 PGMNotifyNxeChanged(pVCpu, RT_BOOL(pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_NXE));
3085
3086 /* During init. this is done in CPUMR3InitCompleted(). */
3087 if (fSupportsLongMode)
3088 pVCpu->cpum.s.fUseFlags |= CPUM_USE_SUPPORTS_LONGMODE;
3089 }
3090 return VINF_SUCCESS;
3091}
3092
3093
3094/**
3095 * Checks if the CPUM state restore is still pending.
3096 *
3097 * @returns true / false.
3098 * @param pVM The cross context VM structure.
3099 */
3100VMMDECL(bool) CPUMR3IsStateRestorePending(PVM pVM)
3101{
3102 return pVM->cpum.s.fPendingRestore;
3103}
3104
3105
3106/**
3107 * Formats the EFLAGS value into mnemonics.
3108 *
3109 * @param pszEFlags Where to write the mnemonics. (Assumes sufficient buffer space.)
3110 * @param efl The EFLAGS value.
3111 */
3112static void cpumR3InfoFormatFlags(char *pszEFlags, uint32_t efl)
3113{
3114 /*
3115 * Format the flags.
3116 */
3117 static const struct
3118 {
3119 const char *pszSet; const char *pszClear; uint32_t fFlag;
3120 } s_aFlags[] =
3121 {
3122 { "vip",NULL, X86_EFL_VIP },
3123 { "vif",NULL, X86_EFL_VIF },
3124 { "ac", NULL, X86_EFL_AC },
3125 { "vm", NULL, X86_EFL_VM },
3126 { "rf", NULL, X86_EFL_RF },
3127 { "nt", NULL, X86_EFL_NT },
3128 { "ov", "nv", X86_EFL_OF },
3129 { "dn", "up", X86_EFL_DF },
3130 { "ei", "di", X86_EFL_IF },
3131 { "tf", NULL, X86_EFL_TF },
3132 { "nt", "pl", X86_EFL_SF },
3133 { "nz", "zr", X86_EFL_ZF },
3134 { "ac", "na", X86_EFL_AF },
3135 { "po", "pe", X86_EFL_PF },
3136 { "cy", "nc", X86_EFL_CF },
3137 };
3138 char *psz = pszEFlags;
3139 for (unsigned i = 0; i < RT_ELEMENTS(s_aFlags); i++)
3140 {
3141 const char *pszAdd = s_aFlags[i].fFlag & efl ? s_aFlags[i].pszSet : s_aFlags[i].pszClear;
3142 if (pszAdd)
3143 {
3144 strcpy(psz, pszAdd);
3145 psz += strlen(pszAdd);
3146 *psz++ = ' ';
3147 }
3148 }
3149 psz[-1] = '\0';
3150}
3151
3152
3153/**
3154 * Formats a full register dump.
3155 *
3156 * @param pVM The cross context VM structure.
3157 * @param pCtx The context to format.
3158 * @param pCtxCore The context core to format.
3159 * @param pHlp Output functions.
3160 * @param enmType The dump type.
3161 * @param pszPrefix Register name prefix.
3162 */
3163static void cpumR3InfoOne(PVM pVM, PCPUMCTX pCtx, PCCPUMCTXCORE pCtxCore, PCDBGFINFOHLP pHlp, CPUMDUMPTYPE enmType,
3164 const char *pszPrefix)
3165{
3166 NOREF(pVM);
3167
3168 /*
3169 * Format the EFLAGS.
3170 */
3171 uint32_t efl = pCtxCore->eflags.u32;
3172 char szEFlags[80];
3173 cpumR3InfoFormatFlags(&szEFlags[0], efl);
3174
3175 /*
3176 * Format the registers.
3177 */
3178 switch (enmType)
3179 {
3180 case CPUMDUMPTYPE_TERSE:
3181 if (CPUMIsGuestIn64BitCodeEx(pCtx))
3182 pHlp->pfnPrintf(pHlp,
3183 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
3184 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
3185 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
3186 "%sr14=%016RX64 %sr15=%016RX64\n"
3187 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
3188 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %seflags=%08x\n",
3189 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
3190 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
3191 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
3192 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
3193 pszPrefix, pCtxCore->cs.Sel, pszPrefix, pCtxCore->ss.Sel, pszPrefix, pCtxCore->ds.Sel, pszPrefix, pCtxCore->es.Sel,
3194 pszPrefix, pCtxCore->fs.Sel, pszPrefix, pCtxCore->gs.Sel, pszPrefix, efl);
3195 else
3196 pHlp->pfnPrintf(pHlp,
3197 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
3198 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
3199 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %seflags=%08x\n",
3200 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
3201 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
3202 pszPrefix, pCtxCore->cs.Sel, pszPrefix, pCtxCore->ss.Sel, pszPrefix, pCtxCore->ds.Sel, pszPrefix, pCtxCore->es.Sel,
3203 pszPrefix, pCtxCore->fs.Sel, pszPrefix, pCtxCore->gs.Sel, pszPrefix, efl);
3204 break;
3205
3206 case CPUMDUMPTYPE_DEFAULT:
3207 if (CPUMIsGuestIn64BitCodeEx(pCtx))
3208 pHlp->pfnPrintf(pHlp,
3209 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
3210 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
3211 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
3212 "%sr14=%016RX64 %sr15=%016RX64\n"
3213 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
3214 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %str=%04x %seflags=%08x\n"
3215 "%scr0=%08RX64 %scr2=%08RX64 %scr3=%08RX64 %scr4=%08RX64 %sgdtr=%016RX64:%04x %sldtr=%04x\n"
3216 ,
3217 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
3218 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
3219 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
3220 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
3221 pszPrefix, pCtxCore->cs.Sel, pszPrefix, pCtxCore->ss.Sel, pszPrefix, pCtxCore->ds.Sel, pszPrefix, pCtxCore->es.Sel,
3222 pszPrefix, pCtxCore->fs.Sel, pszPrefix, pCtxCore->gs.Sel, pszPrefix, pCtx->tr.Sel, pszPrefix, efl,
3223 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
3224 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->ldtr.Sel);
3225 else
3226 pHlp->pfnPrintf(pHlp,
3227 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
3228 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
3229 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %str=%04x %seflags=%08x\n"
3230 "%scr0=%08RX64 %scr2=%08RX64 %scr3=%08RX64 %scr4=%08RX64 %sgdtr=%08RX64:%04x %sldtr=%04x\n"
3231 ,
3232 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
3233 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
3234 pszPrefix, pCtxCore->cs.Sel, pszPrefix, pCtxCore->ss.Sel, pszPrefix, pCtxCore->ds.Sel, pszPrefix, pCtxCore->es.Sel,
3235 pszPrefix, pCtxCore->fs.Sel, pszPrefix, pCtxCore->gs.Sel, pszPrefix, pCtx->tr.Sel, pszPrefix, efl,
3236 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
3237 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->ldtr.Sel);
3238 break;
3239
3240 case CPUMDUMPTYPE_VERBOSE:
3241 if (CPUMIsGuestIn64BitCodeEx(pCtx))
3242 pHlp->pfnPrintf(pHlp,
3243 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
3244 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
3245 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
3246 "%sr14=%016RX64 %sr15=%016RX64\n"
3247 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
3248 "%scs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
3249 "%sds={%04x base=%016RX64 limit=%08x flags=%08x}\n"
3250 "%ses={%04x base=%016RX64 limit=%08x flags=%08x}\n"
3251 "%sfs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
3252 "%sgs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
3253 "%sss={%04x base=%016RX64 limit=%08x flags=%08x}\n"
3254 "%scr0=%016RX64 %scr2=%016RX64 %scr3=%016RX64 %scr4=%016RX64\n"
3255 "%sdr0=%016RX64 %sdr1=%016RX64 %sdr2=%016RX64 %sdr3=%016RX64\n"
3256 "%sdr4=%016RX64 %sdr5=%016RX64 %sdr6=%016RX64 %sdr7=%016RX64\n"
3257 "%sgdtr=%016RX64:%04x %sidtr=%016RX64:%04x %seflags=%08x\n"
3258 "%sldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
3259 "%str ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
3260 "%sSysEnter={cs=%04llx eip=%016RX64 esp=%016RX64}\n"
3261 ,
3262 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
3263 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
3264 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
3265 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
3266 pszPrefix, pCtxCore->cs.Sel, pCtx->cs.u64Base, pCtx->cs.u32Limit, pCtx->cs.Attr.u,
3267 pszPrefix, pCtxCore->ds.Sel, pCtx->ds.u64Base, pCtx->ds.u32Limit, pCtx->ds.Attr.u,
3268 pszPrefix, pCtxCore->es.Sel, pCtx->es.u64Base, pCtx->es.u32Limit, pCtx->es.Attr.u,
3269 pszPrefix, pCtxCore->fs.Sel, pCtx->fs.u64Base, pCtx->fs.u32Limit, pCtx->fs.Attr.u,
3270 pszPrefix, pCtxCore->gs.Sel, pCtx->gs.u64Base, pCtx->gs.u32Limit, pCtx->gs.Attr.u,
3271 pszPrefix, pCtxCore->ss.Sel, pCtx->ss.u64Base, pCtx->ss.u32Limit, pCtx->ss.Attr.u,
3272 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
3273 pszPrefix, pCtx->dr[0], pszPrefix, pCtx->dr[1], pszPrefix, pCtx->dr[2], pszPrefix, pCtx->dr[3],
3274 pszPrefix, pCtx->dr[4], pszPrefix, pCtx->dr[5], pszPrefix, pCtx->dr[6], pszPrefix, pCtx->dr[7],
3275 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, pszPrefix, efl,
3276 pszPrefix, pCtx->ldtr.Sel, pCtx->ldtr.u64Base, pCtx->ldtr.u32Limit, pCtx->ldtr.Attr.u,
3277 pszPrefix, pCtx->tr.Sel, pCtx->tr.u64Base, pCtx->tr.u32Limit, pCtx->tr.Attr.u,
3278 pszPrefix, pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
3279 else
3280 pHlp->pfnPrintf(pHlp,
3281 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
3282 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
3283 "%scs={%04x base=%016RX64 limit=%08x flags=%08x} %sdr0=%08RX64 %sdr1=%08RX64\n"
3284 "%sds={%04x base=%016RX64 limit=%08x flags=%08x} %sdr2=%08RX64 %sdr3=%08RX64\n"
3285 "%ses={%04x base=%016RX64 limit=%08x flags=%08x} %sdr4=%08RX64 %sdr5=%08RX64\n"
3286 "%sfs={%04x base=%016RX64 limit=%08x flags=%08x} %sdr6=%08RX64 %sdr7=%08RX64\n"
3287 "%sgs={%04x base=%016RX64 limit=%08x flags=%08x} %scr0=%08RX64 %scr2=%08RX64\n"
3288 "%sss={%04x base=%016RX64 limit=%08x flags=%08x} %scr3=%08RX64 %scr4=%08RX64\n"
3289 "%sgdtr=%016RX64:%04x %sidtr=%016RX64:%04x %seflags=%08x\n"
3290 "%sldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
3291 "%str ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
3292 "%sSysEnter={cs=%04llx eip=%08llx esp=%08llx}\n"
3293 ,
3294 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
3295 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
3296 pszPrefix, pCtxCore->cs.Sel, pCtx->cs.u64Base, pCtx->cs.u32Limit, pCtx->cs.Attr.u, pszPrefix, pCtx->dr[0], pszPrefix, pCtx->dr[1],
3297 pszPrefix, pCtxCore->ds.Sel, pCtx->ds.u64Base, pCtx->ds.u32Limit, pCtx->ds.Attr.u, pszPrefix, pCtx->dr[2], pszPrefix, pCtx->dr[3],
3298 pszPrefix, pCtxCore->es.Sel, pCtx->es.u64Base, pCtx->es.u32Limit, pCtx->es.Attr.u, pszPrefix, pCtx->dr[4], pszPrefix, pCtx->dr[5],
3299 pszPrefix, pCtxCore->fs.Sel, pCtx->fs.u64Base, pCtx->fs.u32Limit, pCtx->fs.Attr.u, pszPrefix, pCtx->dr[6], pszPrefix, pCtx->dr[7],
3300 pszPrefix, pCtxCore->gs.Sel, pCtx->gs.u64Base, pCtx->gs.u32Limit, pCtx->gs.Attr.u, pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2,
3301 pszPrefix, pCtxCore->ss.Sel, pCtx->ss.u64Base, pCtx->ss.u32Limit, pCtx->ss.Attr.u, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
3302 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, pszPrefix, efl,
3303 pszPrefix, pCtx->ldtr.Sel, pCtx->ldtr.u64Base, pCtx->ldtr.u32Limit, pCtx->ldtr.Attr.u,
3304 pszPrefix, pCtx->tr.Sel, pCtx->tr.u64Base, pCtx->tr.u32Limit, pCtx->tr.Attr.u,
3305 pszPrefix, pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
3306
3307 pHlp->pfnPrintf(pHlp, "%sxcr=%016RX64 %sxcr1=%016RX64 %sxss=%016RX64 (fXStateMask=%016RX64)\n",
3308 pszPrefix, pCtx->aXcr[0], pszPrefix, pCtx->aXcr[1],
3309 pszPrefix, UINT64_C(0) /** @todo XSS */, pCtx->fXStateMask);
3310 if (pCtx->CTX_SUFF(pXState))
3311 {
3312 PX86FXSTATE pFpuCtx = &pCtx->CTX_SUFF(pXState)->x87;
3313 pHlp->pfnPrintf(pHlp,
3314 "%sFCW=%04x %sFSW=%04x %sFTW=%04x %sFOP=%04x %sMXCSR=%08x %sMXCSR_MASK=%08x\n"
3315 "%sFPUIP=%08x %sCS=%04x %sRsrvd1=%04x %sFPUDP=%08x %sDS=%04x %sRsvrd2=%04x\n"
3316 ,
3317 pszPrefix, pFpuCtx->FCW, pszPrefix, pFpuCtx->FSW, pszPrefix, pFpuCtx->FTW, pszPrefix, pFpuCtx->FOP,
3318 pszPrefix, pFpuCtx->MXCSR, pszPrefix, pFpuCtx->MXCSR_MASK,
3319 pszPrefix, pFpuCtx->FPUIP, pszPrefix, pFpuCtx->CS, pszPrefix, pFpuCtx->Rsrvd1,
3320 pszPrefix, pFpuCtx->FPUDP, pszPrefix, pFpuCtx->DS, pszPrefix, pFpuCtx->Rsrvd2
3321 );
3322 /*
3323 * The FSAVE style memory image contains ST(0)-ST(7) at increasing addresses,
3324 * not (FP)R0-7 as Intel SDM suggests.
3325 */
3326 unsigned iShift = (pFpuCtx->FSW >> 11) & 7;
3327 for (unsigned iST = 0; iST < RT_ELEMENTS(pFpuCtx->aRegs); iST++)
3328 {
3329 unsigned iFPR = (iST + iShift) % RT_ELEMENTS(pFpuCtx->aRegs);
3330 unsigned uTag = (pFpuCtx->FTW >> (2 * iFPR)) & 3;
3331 char chSign = pFpuCtx->aRegs[iST].au16[4] & 0x8000 ? '-' : '+';
3332 unsigned iInteger = (unsigned)(pFpuCtx->aRegs[iST].au64[0] >> 63);
3333 uint64_t u64Fraction = pFpuCtx->aRegs[iST].au64[0] & UINT64_C(0x7fffffffffffffff);
3334 int iExponent = pFpuCtx->aRegs[iST].au16[4] & 0x7fff;
3335 iExponent -= 16383; /* subtract bias */
3336 /** @todo This isn't entirenly correct and needs more work! */
3337 pHlp->pfnPrintf(pHlp,
3338 "%sST(%u)=%sFPR%u={%04RX16'%08RX32'%08RX32} t%d %c%u.%022llu * 2 ^ %d (*)",
3339 pszPrefix, iST, pszPrefix, iFPR,
3340 pFpuCtx->aRegs[iST].au16[4], pFpuCtx->aRegs[iST].au32[1], pFpuCtx->aRegs[iST].au32[0],
3341 uTag, chSign, iInteger, u64Fraction, iExponent);
3342 if (pFpuCtx->aRegs[iST].au16[5] || pFpuCtx->aRegs[iST].au16[6] || pFpuCtx->aRegs[iST].au16[7])
3343 pHlp->pfnPrintf(pHlp, " res={%04RX16,%04RX16,%04RX16}\n",
3344 pFpuCtx->aRegs[iST].au16[5], pFpuCtx->aRegs[iST].au16[6], pFpuCtx->aRegs[iST].au16[7]);
3345 else
3346 pHlp->pfnPrintf(pHlp, "\n");
3347 }
3348
3349 /* XMM/YMM/ZMM registers. */
3350 if (pCtx->fXStateMask & XSAVE_C_YMM)
3351 {
3352 PCX86XSAVEYMMHI pYmmHiCtx = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_YMM_BIT, PCX86XSAVEYMMHI);
3353 if (!(pCtx->fXStateMask & XSAVE_C_ZMM_HI256))
3354 for (unsigned i = 0; i < RT_ELEMENTS(pFpuCtx->aXMM); i++)
3355 pHlp->pfnPrintf(pHlp, "%sYMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32\n",
3356 pszPrefix, i, i < 10 ? " " : "",
3357 pYmmHiCtx->aYmmHi[i].au32[3],
3358 pYmmHiCtx->aYmmHi[i].au32[2],
3359 pYmmHiCtx->aYmmHi[i].au32[1],
3360 pYmmHiCtx->aYmmHi[i].au32[0],
3361 pFpuCtx->aXMM[i].au32[3],
3362 pFpuCtx->aXMM[i].au32[2],
3363 pFpuCtx->aXMM[i].au32[1],
3364 pFpuCtx->aXMM[i].au32[0]);
3365 else
3366 {
3367 PCX86XSAVEZMMHI256 pZmmHi256 = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_ZMM_HI256_BIT, PCX86XSAVEZMMHI256);
3368 for (unsigned i = 0; i < RT_ELEMENTS(pFpuCtx->aXMM); i++)
3369 pHlp->pfnPrintf(pHlp,
3370 "%sZMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32''%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32\n",
3371 pszPrefix, i, i < 10 ? " " : "",
3372 pZmmHi256->aHi256Regs[i].au32[7],
3373 pZmmHi256->aHi256Regs[i].au32[6],
3374 pZmmHi256->aHi256Regs[i].au32[5],
3375 pZmmHi256->aHi256Regs[i].au32[4],
3376 pZmmHi256->aHi256Regs[i].au32[3],
3377 pZmmHi256->aHi256Regs[i].au32[2],
3378 pZmmHi256->aHi256Regs[i].au32[1],
3379 pZmmHi256->aHi256Regs[i].au32[0],
3380 pYmmHiCtx->aYmmHi[i].au32[3],
3381 pYmmHiCtx->aYmmHi[i].au32[2],
3382 pYmmHiCtx->aYmmHi[i].au32[1],
3383 pYmmHiCtx->aYmmHi[i].au32[0],
3384 pFpuCtx->aXMM[i].au32[3],
3385 pFpuCtx->aXMM[i].au32[2],
3386 pFpuCtx->aXMM[i].au32[1],
3387 pFpuCtx->aXMM[i].au32[0]);
3388
3389 PCX86XSAVEZMM16HI pZmm16Hi = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_ZMM_16HI_BIT, PCX86XSAVEZMM16HI);
3390 for (unsigned i = 0; i < RT_ELEMENTS(pZmm16Hi->aRegs); i++)
3391 pHlp->pfnPrintf(pHlp,
3392 "%sZMM%u=%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32''%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32\n",
3393 pszPrefix, i + 16,
3394 pZmm16Hi->aRegs[i].au32[15],
3395 pZmm16Hi->aRegs[i].au32[14],
3396 pZmm16Hi->aRegs[i].au32[13],
3397 pZmm16Hi->aRegs[i].au32[12],
3398 pZmm16Hi->aRegs[i].au32[11],
3399 pZmm16Hi->aRegs[i].au32[10],
3400 pZmm16Hi->aRegs[i].au32[9],
3401 pZmm16Hi->aRegs[i].au32[8],
3402 pZmm16Hi->aRegs[i].au32[7],
3403 pZmm16Hi->aRegs[i].au32[6],
3404 pZmm16Hi->aRegs[i].au32[5],
3405 pZmm16Hi->aRegs[i].au32[4],
3406 pZmm16Hi->aRegs[i].au32[3],
3407 pZmm16Hi->aRegs[i].au32[2],
3408 pZmm16Hi->aRegs[i].au32[1],
3409 pZmm16Hi->aRegs[i].au32[0]);
3410 }
3411 }
3412 else
3413 for (unsigned i = 0; i < RT_ELEMENTS(pFpuCtx->aXMM); i++)
3414 pHlp->pfnPrintf(pHlp,
3415 i & 1
3416 ? "%sXMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32\n"
3417 : "%sXMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32 ",
3418 pszPrefix, i, i < 10 ? " " : "",
3419 pFpuCtx->aXMM[i].au32[3],
3420 pFpuCtx->aXMM[i].au32[2],
3421 pFpuCtx->aXMM[i].au32[1],
3422 pFpuCtx->aXMM[i].au32[0]);
3423
3424 if (pCtx->fXStateMask & XSAVE_C_OPMASK)
3425 {
3426 PCX86XSAVEOPMASK pOpMask = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_OPMASK_BIT, PCX86XSAVEOPMASK);
3427 for (unsigned i = 0; i < RT_ELEMENTS(pOpMask->aKRegs); i += 4)
3428 pHlp->pfnPrintf(pHlp, "%sK%u=%016RX64 %sK%u=%016RX64 %sK%u=%016RX64 %sK%u=%016RX64\n",
3429 pszPrefix, i + 0, pOpMask->aKRegs[i + 0],
3430 pszPrefix, i + 1, pOpMask->aKRegs[i + 1],
3431 pszPrefix, i + 2, pOpMask->aKRegs[i + 2],
3432 pszPrefix, i + 3, pOpMask->aKRegs[i + 3]);
3433 }
3434
3435 if (pCtx->fXStateMask & XSAVE_C_BNDREGS)
3436 {
3437 PCX86XSAVEBNDREGS pBndRegs = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_BNDREGS_BIT, PCX86XSAVEBNDREGS);
3438 for (unsigned i = 0; i < RT_ELEMENTS(pBndRegs->aRegs); i += 2)
3439 pHlp->pfnPrintf(pHlp, "%sBNDREG%u=%016RX64/%016RX64 %sBNDREG%u=%016RX64/%016RX64\n",
3440 pszPrefix, i, pBndRegs->aRegs[i].uLowerBound, pBndRegs->aRegs[i].uUpperBound,
3441 pszPrefix, i + 1, pBndRegs->aRegs[i + 1].uLowerBound, pBndRegs->aRegs[i + 1].uUpperBound);
3442 }
3443
3444 if (pCtx->fXStateMask & XSAVE_C_BNDCSR)
3445 {
3446 PCX86XSAVEBNDCFG pBndCfg = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_BNDCSR_BIT, PCX86XSAVEBNDCFG);
3447 pHlp->pfnPrintf(pHlp, "%sBNDCFG.CONFIG=%016RX64 %sBNDCFG.STATUS=%016RX64\n",
3448 pszPrefix, pBndCfg->fConfig, pszPrefix, pBndCfg->fStatus);
3449 }
3450
3451 for (unsigned i = 0; i < RT_ELEMENTS(pFpuCtx->au32RsrvdRest); i++)
3452 if (pFpuCtx->au32RsrvdRest[i])
3453 pHlp->pfnPrintf(pHlp, "%sRsrvdRest[%u]=%RX32 (offset=%#x)\n",
3454 pszPrefix, i, pFpuCtx->au32RsrvdRest[i], RT_UOFFSETOF_DYN(X86FXSTATE, au32RsrvdRest[i]) );
3455 }
3456
3457 pHlp->pfnPrintf(pHlp,
3458 "%sEFER =%016RX64\n"
3459 "%sPAT =%016RX64\n"
3460 "%sSTAR =%016RX64\n"
3461 "%sCSTAR =%016RX64\n"
3462 "%sLSTAR =%016RX64\n"
3463 "%sSFMASK =%016RX64\n"
3464 "%sKERNELGSBASE =%016RX64\n",
3465 pszPrefix, pCtx->msrEFER,
3466 pszPrefix, pCtx->msrPAT,
3467 pszPrefix, pCtx->msrSTAR,
3468 pszPrefix, pCtx->msrCSTAR,
3469 pszPrefix, pCtx->msrLSTAR,
3470 pszPrefix, pCtx->msrSFMASK,
3471 pszPrefix, pCtx->msrKERNELGSBASE);
3472 break;
3473 }
3474}
3475
3476
3477/**
3478 * Display all cpu states and any other cpum info.
3479 *
3480 * @param pVM The cross context VM structure.
3481 * @param pHlp The info helper functions.
3482 * @param pszArgs Arguments, ignored.
3483 */
3484static DECLCALLBACK(void) cpumR3InfoAll(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3485{
3486 cpumR3InfoGuest(pVM, pHlp, pszArgs);
3487 cpumR3InfoGuestInstr(pVM, pHlp, pszArgs);
3488 cpumR3InfoGuestHwvirt(pVM, pHlp, pszArgs);
3489 cpumR3InfoHyper(pVM, pHlp, pszArgs);
3490 cpumR3InfoHost(pVM, pHlp, pszArgs);
3491}
3492
3493
3494/**
3495 * Parses the info argument.
3496 *
3497 * The argument starts with 'verbose', 'terse' or 'default' and then
3498 * continues with the comment string.
3499 *
3500 * @param pszArgs The pointer to the argument string.
3501 * @param penmType Where to store the dump type request.
3502 * @param ppszComment Where to store the pointer to the comment string.
3503 */
3504static void cpumR3InfoParseArg(const char *pszArgs, CPUMDUMPTYPE *penmType, const char **ppszComment)
3505{
3506 if (!pszArgs)
3507 {
3508 *penmType = CPUMDUMPTYPE_DEFAULT;
3509 *ppszComment = "";
3510 }
3511 else
3512 {
3513 if (!strncmp(pszArgs, RT_STR_TUPLE("verbose")))
3514 {
3515 pszArgs += 7;
3516 *penmType = CPUMDUMPTYPE_VERBOSE;
3517 }
3518 else if (!strncmp(pszArgs, RT_STR_TUPLE("terse")))
3519 {
3520 pszArgs += 5;
3521 *penmType = CPUMDUMPTYPE_TERSE;
3522 }
3523 else if (!strncmp(pszArgs, RT_STR_TUPLE("default")))
3524 {
3525 pszArgs += 7;
3526 *penmType = CPUMDUMPTYPE_DEFAULT;
3527 }
3528 else
3529 *penmType = CPUMDUMPTYPE_DEFAULT;
3530 *ppszComment = RTStrStripL(pszArgs);
3531 }
3532}
3533
3534
3535/**
3536 * Display the guest cpu state.
3537 *
3538 * @param pVM The cross context VM structure.
3539 * @param pHlp The info helper functions.
3540 * @param pszArgs Arguments.
3541 */
3542static DECLCALLBACK(void) cpumR3InfoGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3543{
3544 CPUMDUMPTYPE enmType;
3545 const char *pszComment;
3546 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
3547
3548 PVMCPU pVCpu = VMMGetCpu(pVM);
3549 if (!pVCpu)
3550 pVCpu = &pVM->aCpus[0];
3551
3552 pHlp->pfnPrintf(pHlp, "Guest CPUM (VCPU %d) state: %s\n", pVCpu->idCpu, pszComment);
3553
3554 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
3555 cpumR3InfoOne(pVM, pCtx, CPUMCTX2CORE(pCtx), pHlp, enmType, "");
3556}
3557
3558
3559/**
3560 * Displays an SVM VMCB control area.
3561 *
3562 * @param pHlp The info helper functions.
3563 * @param pVmcbCtrl Pointer to a SVM VMCB controls area.
3564 * @param pszPrefix Caller specified string prefix.
3565 */
3566static void cpumR3InfoSvmVmcbCtrl(PCDBGFINFOHLP pHlp, PCSVMVMCBCTRL pVmcbCtrl, const char *pszPrefix)
3567{
3568 AssertReturnVoid(pHlp);
3569 AssertReturnVoid(pVmcbCtrl);
3570
3571 pHlp->pfnPrintf(pHlp, "%sCRX-read intercepts = %#RX16\n", pszPrefix, pVmcbCtrl->u16InterceptRdCRx);
3572 pHlp->pfnPrintf(pHlp, "%sCRX-write intercepts = %#RX16\n", pszPrefix, pVmcbCtrl->u16InterceptWrCRx);
3573 pHlp->pfnPrintf(pHlp, "%sDRX-read intercepts = %#RX16\n", pszPrefix, pVmcbCtrl->u16InterceptRdDRx);
3574 pHlp->pfnPrintf(pHlp, "%sDRX-write intercepts = %#RX16\n", pszPrefix, pVmcbCtrl->u16InterceptWrDRx);
3575 pHlp->pfnPrintf(pHlp, "%sException intercepts = %#RX32\n", pszPrefix, pVmcbCtrl->u32InterceptXcpt);
3576 pHlp->pfnPrintf(pHlp, "%sControl intercepts = %#RX64\n", pszPrefix, pVmcbCtrl->u64InterceptCtrl);
3577 pHlp->pfnPrintf(pHlp, "%sPause-filter threshold = %#RX16\n", pszPrefix, pVmcbCtrl->u16PauseFilterThreshold);
3578 pHlp->pfnPrintf(pHlp, "%sPause-filter count = %#RX16\n", pszPrefix, pVmcbCtrl->u16PauseFilterCount);
3579 pHlp->pfnPrintf(pHlp, "%sIOPM bitmap physaddr = %#RX64\n", pszPrefix, pVmcbCtrl->u64IOPMPhysAddr);
3580 pHlp->pfnPrintf(pHlp, "%sMSRPM bitmap physaddr = %#RX64\n", pszPrefix, pVmcbCtrl->u64MSRPMPhysAddr);
3581 pHlp->pfnPrintf(pHlp, "%sTSC offset = %#RX64\n", pszPrefix, pVmcbCtrl->u64TSCOffset);
3582 pHlp->pfnPrintf(pHlp, "%sTLB Control\n", pszPrefix);
3583 pHlp->pfnPrintf(pHlp, " %sASID = %#RX32\n", pszPrefix, pVmcbCtrl->TLBCtrl.n.u32ASID);
3584 pHlp->pfnPrintf(pHlp, " %sTLB-flush type = %u\n", pszPrefix, pVmcbCtrl->TLBCtrl.n.u8TLBFlush);
3585 pHlp->pfnPrintf(pHlp, "%sInterrupt Control\n", pszPrefix);
3586 pHlp->pfnPrintf(pHlp, " %sVTPR = %#RX8 (%u)\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u8VTPR, pVmcbCtrl->IntCtrl.n.u8VTPR);
3587 pHlp->pfnPrintf(pHlp, " %sVIRQ (Pending) = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1VIrqPending);
3588 pHlp->pfnPrintf(pHlp, " %sVINTR vector = %#RX8\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u8VIntrVector);
3589 pHlp->pfnPrintf(pHlp, " %sVGIF = %u\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1VGif);
3590 pHlp->pfnPrintf(pHlp, " %sVINTR priority = %#RX8\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u4VIntrPrio);
3591 pHlp->pfnPrintf(pHlp, " %sIgnore TPR = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1IgnoreTPR);
3592 pHlp->pfnPrintf(pHlp, " %sVINTR masking = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1VIntrMasking);
3593 pHlp->pfnPrintf(pHlp, " %sVGIF enable = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1VGifEnable);
3594 pHlp->pfnPrintf(pHlp, " %sAVIC enable = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1AvicEnable);
3595 pHlp->pfnPrintf(pHlp, "%sInterrupt Shadow\n", pszPrefix);
3596 pHlp->pfnPrintf(pHlp, " %sInterrupt shadow = %RTbool\n", pszPrefix, pVmcbCtrl->IntShadow.n.u1IntShadow);
3597 pHlp->pfnPrintf(pHlp, " %sGuest-interrupt Mask = %RTbool\n", pszPrefix, pVmcbCtrl->IntShadow.n.u1GuestIntMask);
3598 pHlp->pfnPrintf(pHlp, "%sExit Code = %#RX64\n", pszPrefix, pVmcbCtrl->u64ExitCode);
3599 pHlp->pfnPrintf(pHlp, "%sEXITINFO1 = %#RX64\n", pszPrefix, pVmcbCtrl->u64ExitInfo1);
3600 pHlp->pfnPrintf(pHlp, "%sEXITINFO2 = %#RX64\n", pszPrefix, pVmcbCtrl->u64ExitInfo2);
3601 pHlp->pfnPrintf(pHlp, "%sExit Interrupt Info\n", pszPrefix);
3602 pHlp->pfnPrintf(pHlp, " %sValid = %RTbool\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u1Valid);
3603 pHlp->pfnPrintf(pHlp, " %sVector = %#RX8 (%u)\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u8Vector, pVmcbCtrl->ExitIntInfo.n.u8Vector);
3604 pHlp->pfnPrintf(pHlp, " %sType = %u\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u3Type);
3605 pHlp->pfnPrintf(pHlp, " %sError-code valid = %RTbool\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u1ErrorCodeValid);
3606 pHlp->pfnPrintf(pHlp, " %sError-code = %#RX32\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u32ErrorCode);
3607 pHlp->pfnPrintf(pHlp, "%sNested paging and SEV\n", pszPrefix);
3608 pHlp->pfnPrintf(pHlp, " %sNested paging = %RTbool\n", pszPrefix, pVmcbCtrl->NestedPagingCtrl.n.u1NestedPaging);
3609 pHlp->pfnPrintf(pHlp, " %sSEV (Secure Encrypted VM) = %RTbool\n", pszPrefix, pVmcbCtrl->NestedPagingCtrl.n.u1Sev);
3610 pHlp->pfnPrintf(pHlp, " %sSEV-ES (Encrypted State) = %RTbool\n", pszPrefix, pVmcbCtrl->NestedPagingCtrl.n.u1SevEs);
3611 pHlp->pfnPrintf(pHlp, "%sEvent Inject\n", pszPrefix);
3612 pHlp->pfnPrintf(pHlp, " %sValid = %RTbool\n", pszPrefix, pVmcbCtrl->EventInject.n.u1Valid);
3613 pHlp->pfnPrintf(pHlp, " %sVector = %#RX32 (%u)\n", pszPrefix, pVmcbCtrl->EventInject.n.u8Vector, pVmcbCtrl->EventInject.n.u8Vector);
3614 pHlp->pfnPrintf(pHlp, " %sType = %u\n", pszPrefix, pVmcbCtrl->EventInject.n.u3Type);
3615 pHlp->pfnPrintf(pHlp, " %sError-code valid = %RTbool\n", pszPrefix, pVmcbCtrl->EventInject.n.u1ErrorCodeValid);
3616 pHlp->pfnPrintf(pHlp, " %sError-code = %#RX32\n", pszPrefix, pVmcbCtrl->EventInject.n.u32ErrorCode);
3617 pHlp->pfnPrintf(pHlp, "%sNested-paging CR3 = %#RX64\n", pszPrefix, pVmcbCtrl->u64NestedPagingCR3);
3618 pHlp->pfnPrintf(pHlp, "%sLBR Virtualization\n", pszPrefix);
3619 pHlp->pfnPrintf(pHlp, " %sLBR virt = %RTbool\n", pszPrefix, pVmcbCtrl->LbrVirt.n.u1LbrVirt);
3620 pHlp->pfnPrintf(pHlp, " %sVirt. VMSAVE/VMLOAD = %RTbool\n", pszPrefix, pVmcbCtrl->LbrVirt.n.u1VirtVmsaveVmload);
3621 pHlp->pfnPrintf(pHlp, "%sVMCB Clean Bits = %#RX32\n", pszPrefix, pVmcbCtrl->u32VmcbCleanBits);
3622 pHlp->pfnPrintf(pHlp, "%sNext-RIP = %#RX64\n", pszPrefix, pVmcbCtrl->u64NextRIP);
3623 pHlp->pfnPrintf(pHlp, "%sInstruction bytes fetched = %u\n", pszPrefix, pVmcbCtrl->cbInstrFetched);
3624 pHlp->pfnPrintf(pHlp, "%sInstruction bytes = %.*Rhxs\n", pszPrefix, sizeof(pVmcbCtrl->abInstr), pVmcbCtrl->abInstr);
3625 pHlp->pfnPrintf(pHlp, "%sAVIC\n", pszPrefix);
3626 pHlp->pfnPrintf(pHlp, " %sBar addr = %#RX64\n", pszPrefix, pVmcbCtrl->AvicBar.n.u40Addr);
3627 pHlp->pfnPrintf(pHlp, " %sBacking page addr = %#RX64\n", pszPrefix, pVmcbCtrl->AvicBackingPagePtr.n.u40Addr);
3628 pHlp->pfnPrintf(pHlp, " %sLogical table addr = %#RX64\n", pszPrefix, pVmcbCtrl->AvicLogicalTablePtr.n.u40Addr);
3629 pHlp->pfnPrintf(pHlp, " %sPhysical table addr = %#RX64\n", pszPrefix, pVmcbCtrl->AvicPhysicalTablePtr.n.u40Addr);
3630 pHlp->pfnPrintf(pHlp, " %sLast guest core Id = %u\n", pszPrefix, pVmcbCtrl->AvicPhysicalTablePtr.n.u8LastGuestCoreId);
3631}
3632
3633
3634/**
3635 * Helper for dumping the SVM VMCB selector registers.
3636 *
3637 * @param pHlp The info helper functions.
3638 * @param pSel Pointer to the SVM selector register.
3639 * @param pszName Name of the selector.
3640 * @param pszPrefix Caller specified string prefix.
3641 */
3642DECLINLINE(void) cpumR3InfoSvmVmcbSelReg(PCDBGFINFOHLP pHlp, PCSVMSELREG pSel, const char *pszName, const char *pszPrefix)
3643{
3644 /* The string width of 4 used below is to handle 'LDTR'. Change later if longer register names are used. */
3645 pHlp->pfnPrintf(pHlp, "%s%-4s = {%04x base=%016RX64 limit=%08x flags=%04x}\n", pszPrefix,
3646 pszName, pSel->u16Sel, pSel->u64Base, pSel->u32Limit, pSel->u16Attr);
3647}
3648
3649
3650/**
3651 * Helper for dumping the SVM VMCB GDTR/IDTR registers.
3652 *
3653 * @param pHlp The info helper functions.
3654 * @param pXdtr Pointer to the descriptor table register.
3655 * @param pszName Name of the descriptor table register.
3656 * @param pszPrefix Caller specified string prefix.
3657 */
3658DECLINLINE(void) cpumR3InfoSvmVmcbXdtr(PCDBGFINFOHLP pHlp, PCSVMXDTR pXdtr, const char *pszName, const char *pszPrefix)
3659{
3660 /* The string width of 4 used below is to cover 'GDTR', 'IDTR'. Change later if longer register names are used. */
3661 pHlp->pfnPrintf(pHlp, "%s%-4s = %016RX64:%04x\n", pszPrefix, pszName, pXdtr->u64Base, pXdtr->u32Limit);
3662}
3663
3664
3665/**
3666 * Displays an SVM VMCB state-save area.
3667 *
3668 * @param pHlp The info helper functions.
3669 * @param pVmcbStateSave Pointer to a SVM VMCB controls area.
3670 * @param pszPrefix Caller specified string prefix.
3671 */
3672static void cpumR3InfoSvmVmcbStateSave(PCDBGFINFOHLP pHlp, PCSVMVMCBSTATESAVE pVmcbStateSave, const char *pszPrefix)
3673{
3674 AssertReturnVoid(pHlp);
3675 AssertReturnVoid(pVmcbStateSave);
3676
3677 char szEFlags[80];
3678 cpumR3InfoFormatFlags(&szEFlags[0], pVmcbStateSave->u64RFlags);
3679
3680 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->CS, "CS", pszPrefix);
3681 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->SS, "SS", pszPrefix);
3682 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->ES, "ES", pszPrefix);
3683 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->DS, "DS", pszPrefix);
3684 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->FS, "FS", pszPrefix);
3685 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->GS, "GS", pszPrefix);
3686 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->LDTR, "LDTR", pszPrefix);
3687 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->TR, "TR", pszPrefix);
3688 cpumR3InfoSvmVmcbXdtr(pHlp, &pVmcbStateSave->GDTR, "GDTR", pszPrefix);
3689 cpumR3InfoSvmVmcbXdtr(pHlp, &pVmcbStateSave->IDTR, "IDTR", pszPrefix);
3690 pHlp->pfnPrintf(pHlp, "%sCPL = %u\n", pszPrefix, pVmcbStateSave->u8CPL);
3691 pHlp->pfnPrintf(pHlp, "%sEFER = %#RX64\n", pszPrefix, pVmcbStateSave->u64EFER);
3692 pHlp->pfnPrintf(pHlp, "%sCR4 = %#RX64\n", pszPrefix, pVmcbStateSave->u64CR4);
3693 pHlp->pfnPrintf(pHlp, "%sCR3 = %#RX64\n", pszPrefix, pVmcbStateSave->u64CR3);
3694 pHlp->pfnPrintf(pHlp, "%sCR0 = %#RX64\n", pszPrefix, pVmcbStateSave->u64CR0);
3695 pHlp->pfnPrintf(pHlp, "%sDR7 = %#RX64\n", pszPrefix, pVmcbStateSave->u64DR7);
3696 pHlp->pfnPrintf(pHlp, "%sDR6 = %#RX64\n", pszPrefix, pVmcbStateSave->u64DR6);
3697 pHlp->pfnPrintf(pHlp, "%sRFLAGS = %#RX64 %31s\n", pszPrefix, pVmcbStateSave->u64RFlags, szEFlags);
3698 pHlp->pfnPrintf(pHlp, "%sRIP = %#RX64\n", pszPrefix, pVmcbStateSave->u64RIP);
3699 pHlp->pfnPrintf(pHlp, "%sRSP = %#RX64\n", pszPrefix, pVmcbStateSave->u64RSP);
3700 pHlp->pfnPrintf(pHlp, "%sRAX = %#RX64\n", pszPrefix, pVmcbStateSave->u64RAX);
3701 pHlp->pfnPrintf(pHlp, "%sSTAR = %#RX64\n", pszPrefix, pVmcbStateSave->u64STAR);
3702 pHlp->pfnPrintf(pHlp, "%sLSTAR = %#RX64\n", pszPrefix, pVmcbStateSave->u64LSTAR);
3703 pHlp->pfnPrintf(pHlp, "%sCSTAR = %#RX64\n", pszPrefix, pVmcbStateSave->u64CSTAR);
3704 pHlp->pfnPrintf(pHlp, "%sSFMASK = %#RX64\n", pszPrefix, pVmcbStateSave->u64SFMASK);
3705 pHlp->pfnPrintf(pHlp, "%sKERNELGSBASE = %#RX64\n", pszPrefix, pVmcbStateSave->u64KernelGSBase);
3706 pHlp->pfnPrintf(pHlp, "%sSysEnter CS = %#RX64\n", pszPrefix, pVmcbStateSave->u64SysEnterCS);
3707 pHlp->pfnPrintf(pHlp, "%sSysEnter EIP = %#RX64\n", pszPrefix, pVmcbStateSave->u64SysEnterEIP);
3708 pHlp->pfnPrintf(pHlp, "%sSysEnter ESP = %#RX64\n", pszPrefix, pVmcbStateSave->u64SysEnterESP);
3709 pHlp->pfnPrintf(pHlp, "%sCR2 = %#RX64\n", pszPrefix, pVmcbStateSave->u64CR2);
3710 pHlp->pfnPrintf(pHlp, "%sPAT = %#RX64\n", pszPrefix, pVmcbStateSave->u64PAT);
3711 pHlp->pfnPrintf(pHlp, "%sDBGCTL = %#RX64\n", pszPrefix, pVmcbStateSave->u64DBGCTL);
3712 pHlp->pfnPrintf(pHlp, "%sBR_FROM = %#RX64\n", pszPrefix, pVmcbStateSave->u64BR_FROM);
3713 pHlp->pfnPrintf(pHlp, "%sBR_TO = %#RX64\n", pszPrefix, pVmcbStateSave->u64BR_TO);
3714 pHlp->pfnPrintf(pHlp, "%sLASTXCPT_FROM = %#RX64\n", pszPrefix, pVmcbStateSave->u64LASTEXCPFROM);
3715 pHlp->pfnPrintf(pHlp, "%sLASTXCPT_TO = %#RX64\n", pszPrefix, pVmcbStateSave->u64LASTEXCPTO);
3716}
3717
3718
3719/**
3720 * Displays a virtual-VMCS.
3721 *
3722 * @param pHlp The info helper functions.
3723 * @param pVmcs Pointer to a virtual VMCS.
3724 * @param pszPrefix Caller specified string prefix.
3725 */
3726static void cpumR3InfoVmxVmcs(PCDBGFINFOHLP pHlp, PCVMXVVMCS pVmcs, const char *pszPrefix)
3727{
3728 AssertReturnVoid(pHlp);
3729 AssertReturnVoid(pVmcs);
3730
3731 /* The string width of -4 used in the macros below to cover 'LDTR', 'GDTR', 'IDTR. */
3732#define CPUMVMX_DUMP_HOST_XDTR(a_pHlp, a_pVmcs, a_Seg, a_SegName, a_pszPrefix) \
3733 do { \
3734 (a_pHlp)->pfnPrintf((a_pHlp), " %s%-4s = {base=%016RX64}\n", \
3735 (a_pszPrefix), (a_SegName), (a_pVmcs)->u64Host##a_Seg##Base.u); \
3736 } while (0)
3737
3738#define CPUMVMX_DUMP_HOST_FS_GS_TR(a_pHlp, a_pVmcs, a_Seg, a_SegName, a_pszPrefix) \
3739 do { \
3740 (a_pHlp)->pfnPrintf((a_pHlp), " %s%-4s = {%04x base=%016RX64}\n", \
3741 (a_pszPrefix), (a_SegName), (a_pVmcs)->Host##a_Seg, (a_pVmcs)->u64Host##a_Seg##Base.u); \
3742 } while (0)
3743
3744#define CPUMVMX_DUMP_GUEST_SEGREG(a_pHlp, a_pVmcs, a_Seg, a_SegName, a_pszPrefix) \
3745 do { \
3746 (a_pHlp)->pfnPrintf((a_pHlp), " %s%-4s = {%04x base=%016RX64 limit=%08x flags=%04x}\n", \
3747 (a_pszPrefix), (a_SegName), (a_pVmcs)->Guest##a_Seg, (a_pVmcs)->u64Guest##a_Seg##Base.u, \
3748 (a_pVmcs)->u32Guest##a_Seg##Limit, (a_pVmcs)->u32Guest##a_Seg##Attr); \
3749 } while (0)
3750
3751#define CPUMVMX_DUMP_GUEST_XDTR(a_pHlp, a_pVmcs, a_Seg, a_SegName, a_pszPrefix) \
3752 do { \
3753 (a_pHlp)->pfnPrintf((a_pHlp), " %s%-4s = {base=%016RX64 limit=%08x}\n", \
3754 (a_pszPrefix), (a_SegName), (a_pVmcs)->u64Guest##a_Seg##Base.u, (a_pVmcs)->u32Guest##a_Seg##Limit); \
3755 } while (0)
3756
3757 /* Header. */
3758 {
3759 pHlp->pfnPrintf(pHlp, "%sHeader:\n", pszPrefix);
3760 pHlp->pfnPrintf(pHlp, " %sVMCS revision id = %#RX32\n", pszPrefix, pVmcs->u32VmcsRevId);
3761 pHlp->pfnPrintf(pHlp, " %sVMX-abort id = %#RX32 (%s)\n", pszPrefix, pVmcs->enmVmxAbort, HMGetVmxAbortDesc(pVmcs->enmVmxAbort));
3762 pHlp->pfnPrintf(pHlp, " %sVMCS state = %#x (%s)\n", pszPrefix, pVmcs->fVmcsState, HMGetVmxVmcsStateDesc(pVmcs->fVmcsState));
3763 }
3764
3765 /* Control fields. */
3766 {
3767 /* 16-bit. */
3768 pHlp->pfnPrintf(pHlp, "%sControl:\n", pszPrefix);
3769 pHlp->pfnPrintf(pHlp, " %sVPID = %#RX16\n", pszPrefix, pVmcs->u16Vpid);
3770 pHlp->pfnPrintf(pHlp, " %sPosted intr notify vector = %#RX16\n", pszPrefix, pVmcs->u16PostIntNotifyVector);
3771 pHlp->pfnPrintf(pHlp, " %sEPTP index = %#RX16\n", pszPrefix, pVmcs->u16EptpIndex);
3772
3773 /* 32-bit. */
3774 pHlp->pfnPrintf(pHlp, " %sPinCtls = %#RX32\n", pszPrefix, pVmcs->u32PinCtls);
3775 pHlp->pfnPrintf(pHlp, " %sProcCtls = %#RX32\n", pszPrefix, pVmcs->u32ProcCtls);
3776 pHlp->pfnPrintf(pHlp, " %sProcCtls2 = %#RX32\n", pszPrefix, pVmcs->u32ProcCtls2);
3777 pHlp->pfnPrintf(pHlp, " %sExitCtls = %#RX32\n", pszPrefix, pVmcs->u32ExitCtls);
3778 pHlp->pfnPrintf(pHlp, " %sEntryCtls = %#RX32\n", pszPrefix, pVmcs->u32EntryCtls);
3779 pHlp->pfnPrintf(pHlp, " %sException bitmap = %#RX32\n", pszPrefix, pVmcs->u32XcptBitmap);
3780 pHlp->pfnPrintf(pHlp, " %sPage-fault mask = %#RX32\n", pszPrefix, pVmcs->u32XcptPFMask);
3781 pHlp->pfnPrintf(pHlp, " %sPage-fault match = %#RX32\n", pszPrefix, pVmcs->u32XcptPFMatch);
3782 pHlp->pfnPrintf(pHlp, " %sCR3-target count = %RU32\n", pszPrefix, pVmcs->u32Cr3TargetCount);
3783 pHlp->pfnPrintf(pHlp, " %sVM-exit MSR store count = %RU32\n", pszPrefix, pVmcs->u32ExitMsrStoreCount);
3784 pHlp->pfnPrintf(pHlp, " %sVM-exit MSR load count = %RU32\n", pszPrefix, pVmcs->u32ExitMsrLoadCount);
3785 pHlp->pfnPrintf(pHlp, " %sVM-entry MSR load count = %RU32\n", pszPrefix, pVmcs->u32EntryMsrLoadCount);
3786 pHlp->pfnPrintf(pHlp, " %sVM-entry interruption info = %#RX32\n", pszPrefix, pVmcs->u32EntryIntInfo);
3787 {
3788 uint32_t const fInfo = pVmcs->u32EntryIntInfo;
3789 uint8_t const uType = VMX_ENTRY_INT_INFO_TYPE(fInfo);
3790 pHlp->pfnPrintf(pHlp, " %sValid = %RTbool\n", pszPrefix, VMX_ENTRY_INT_INFO_IS_VALID(fInfo));
3791 pHlp->pfnPrintf(pHlp, " %sType = %#x (%s)\n", pszPrefix, uType, HMGetVmxEntryIntInfoTypeDesc(uType));
3792 pHlp->pfnPrintf(pHlp, " %sVector = %#x\n", pszPrefix, VMX_ENTRY_INT_INFO_VECTOR(fInfo));
3793 pHlp->pfnPrintf(pHlp, " %sNMI-unblocking-IRET = %RTbool\n", pszPrefix, VMX_ENTRY_INT_INFO_IS_NMI_UNBLOCK_IRET(fInfo));
3794 pHlp->pfnPrintf(pHlp, " %sError-code valid = %RTbool\n", pszPrefix, VMX_ENTRY_INT_INFO_IS_ERROR_CODE_VALID(fInfo));
3795 }
3796 pHlp->pfnPrintf(pHlp, " %sVM-entry xcpt error-code = %#RX32\n", pszPrefix, pVmcs->u32EntryXcptErrCode);
3797 pHlp->pfnPrintf(pHlp, " %sVM-entry instruction len = %u bytes\n", pszPrefix, pVmcs->u32EntryInstrLen);
3798 pHlp->pfnPrintf(pHlp, " %sTPR threshold = %#RX32\n", pszPrefix, pVmcs->u32TprThreshold);
3799 pHlp->pfnPrintf(pHlp, " %sPLE gap = %#RX32\n", pszPrefix, pVmcs->u32PleGap);
3800 pHlp->pfnPrintf(pHlp, " %sPLE window = %#RX32\n", pszPrefix, pVmcs->u32PleWindow);
3801
3802 /* 64-bit. */
3803 pHlp->pfnPrintf(pHlp, " %sIO-bitmap A addr = %#RX64\n", pszPrefix, pVmcs->u64AddrIoBitmapA.u);
3804 pHlp->pfnPrintf(pHlp, " %sIO-bitmap B addr = %#RX64\n", pszPrefix, pVmcs->u64AddrIoBitmapB.u);
3805 pHlp->pfnPrintf(pHlp, " %sMSR-bitmap addr = %#RX64\n", pszPrefix, pVmcs->u64AddrMsrBitmap.u);
3806 pHlp->pfnPrintf(pHlp, " %sVM-exit MSR store addr = %#RX64\n", pszPrefix, pVmcs->u64AddrExitMsrStore.u);
3807 pHlp->pfnPrintf(pHlp, " %sVM-exit MSR load addr = %#RX64\n", pszPrefix, pVmcs->u64AddrExitMsrLoad.u);
3808 pHlp->pfnPrintf(pHlp, " %sVM-entry MSR load addr = %#RX64\n", pszPrefix, pVmcs->u64AddrEntryMsrLoad.u);
3809 pHlp->pfnPrintf(pHlp, " %sExecutive VMCS ptr = %#RX64\n", pszPrefix, pVmcs->u64ExecVmcsPtr.u);
3810 pHlp->pfnPrintf(pHlp, " %sPML addr = %#RX64\n", pszPrefix, pVmcs->u64AddrPml.u);
3811 pHlp->pfnPrintf(pHlp, " %sTSC offset = %#RX64\n", pszPrefix, pVmcs->u64TscOffset.u);
3812 pHlp->pfnPrintf(pHlp, " %sVirtual-APIC addr = %#RX64\n", pszPrefix, pVmcs->u64AddrVirtApic.u);
3813 pHlp->pfnPrintf(pHlp, " %sAPIC-access addr = %#RX64\n", pszPrefix, pVmcs->u64AddrApicAccess.u);
3814 pHlp->pfnPrintf(pHlp, " %sPosted-intr desc addr = %#RX64\n", pszPrefix, pVmcs->u64AddrPostedIntDesc.u);
3815 pHlp->pfnPrintf(pHlp, " %sVM-functions control = %#RX64\n", pszPrefix, pVmcs->u64VmFuncCtls.u);
3816 pHlp->pfnPrintf(pHlp, " %sEPTP ptr = %#RX64\n", pszPrefix, pVmcs->u64EptpPtr.u);
3817 pHlp->pfnPrintf(pHlp, " %sEOI-exit bitmap 0 addr = %#RX64\n", pszPrefix, pVmcs->u64EoiExitBitmap0.u);
3818 pHlp->pfnPrintf(pHlp, " %sEOI-exit bitmap 1 addr = %#RX64\n", pszPrefix, pVmcs->u64EoiExitBitmap1.u);
3819 pHlp->pfnPrintf(pHlp, " %sEOI-exit bitmap 2 addr = %#RX64\n", pszPrefix, pVmcs->u64EoiExitBitmap2.u);
3820 pHlp->pfnPrintf(pHlp, " %sEOI-exit bitmap 3 addr = %#RX64\n", pszPrefix, pVmcs->u64EoiExitBitmap3.u);
3821 pHlp->pfnPrintf(pHlp, " %sEPTP-list addr = %#RX64\n", pszPrefix, pVmcs->u64AddrEptpList.u);
3822 pHlp->pfnPrintf(pHlp, " %sVMREAD-bitmap addr = %#RX64\n", pszPrefix, pVmcs->u64AddrVmreadBitmap.u);
3823 pHlp->pfnPrintf(pHlp, " %sVMWRITE-bitmap addr = %#RX64\n", pszPrefix, pVmcs->u64AddrVmwriteBitmap.u);
3824 pHlp->pfnPrintf(pHlp, " %sVirt-Xcpt info addr = %#RX64\n", pszPrefix, pVmcs->u64AddrXcptVeInfo.u);
3825 pHlp->pfnPrintf(pHlp, " %sXSS-bitmap = %#RX64\n", pszPrefix, pVmcs->u64XssBitmap.u);
3826 pHlp->pfnPrintf(pHlp, " %sENCLS-exiting bitmap addr = %#RX64\n", pszPrefix, pVmcs->u64AddrEnclsBitmap.u);
3827 pHlp->pfnPrintf(pHlp, " %sTSC multiplier = %#RX64\n", pszPrefix, pVmcs->u64TscMultiplier.u);
3828
3829 /* Natural width. */
3830 pHlp->pfnPrintf(pHlp, " %sCR0 guest/host mask = %#RX64\n", pszPrefix, pVmcs->u64Cr0Mask.u);
3831 pHlp->pfnPrintf(pHlp, " %sCR4 guest/host mask = %#RX64\n", pszPrefix, pVmcs->u64Cr4Mask.u);
3832 pHlp->pfnPrintf(pHlp, " %sCR0 read shadow = %#RX64\n", pszPrefix, pVmcs->u64Cr0ReadShadow.u);
3833 pHlp->pfnPrintf(pHlp, " %sCR4 read shadow = %#RX64\n", pszPrefix, pVmcs->u64Cr4ReadShadow.u);
3834 pHlp->pfnPrintf(pHlp, " %sCR3-target 0 = %#RX64\n", pszPrefix, pVmcs->u64Cr3Target0.u);
3835 pHlp->pfnPrintf(pHlp, " %sCR3-target 1 = %#RX64\n", pszPrefix, pVmcs->u64Cr3Target1.u);
3836 pHlp->pfnPrintf(pHlp, " %sCR3-target 2 = %#RX64\n", pszPrefix, pVmcs->u64Cr3Target2.u);
3837 pHlp->pfnPrintf(pHlp, " %sCR3-target 3 = %#RX64\n", pszPrefix, pVmcs->u64Cr3Target3.u);
3838 }
3839
3840 /* Guest state. */
3841 {
3842 char szEFlags[80];
3843 cpumR3InfoFormatFlags(&szEFlags[0], pVmcs->u64GuestRFlags.u);
3844 pHlp->pfnPrintf(pHlp, "%sGuest state:\n", pszPrefix);
3845
3846 /* 16-bit. */
3847 CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Cs, "cs", pszPrefix);
3848 CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Ss, "ss", pszPrefix);
3849 CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Es, "es", pszPrefix);
3850 CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Ds, "ds", pszPrefix);
3851 CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Fs, "fs", pszPrefix);
3852 CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Gs, "gs", pszPrefix);
3853 CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Ldtr, "ldtr", pszPrefix);
3854 CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Tr, "tr", pszPrefix);
3855 CPUMVMX_DUMP_GUEST_XDTR(pHlp, pVmcs, Gdtr, "gdtr", pszPrefix);
3856 CPUMVMX_DUMP_GUEST_XDTR(pHlp, pVmcs, Idtr, "idtr", pszPrefix);
3857 pHlp->pfnPrintf(pHlp, " %sInterrupt status = %#RX16\n", pszPrefix, pVmcs->u16GuestIntStatus);
3858 pHlp->pfnPrintf(pHlp, " %sPML index = %#RX16\n", pszPrefix, pVmcs->u16PmlIndex);
3859
3860 /* 32-bit. */
3861 pHlp->pfnPrintf(pHlp, " %sInterruptibility state = %#RX32\n", pszPrefix, pVmcs->u32GuestIntrState);
3862 pHlp->pfnPrintf(pHlp, " %sActivity state = %#RX32\n", pszPrefix, pVmcs->u32GuestActivityState);
3863 pHlp->pfnPrintf(pHlp, " %sSMBASE = %#RX32\n", pszPrefix, pVmcs->u32GuestSmBase);
3864 pHlp->pfnPrintf(pHlp, " %sSysEnter CS = %#RX32\n", pszPrefix, pVmcs->u32GuestSysenterCS);
3865 pHlp->pfnPrintf(pHlp, " %sVMX-preemption timer value = %#RX32\n", pszPrefix, pVmcs->u32PreemptTimer);
3866
3867 /* 64-bit. */
3868 pHlp->pfnPrintf(pHlp, " %sVMCS link ptr = %#RX64\n", pszPrefix, pVmcs->u64VmcsLinkPtr.u);
3869 pHlp->pfnPrintf(pHlp, " %sDBGCTL = %#RX64\n", pszPrefix, pVmcs->u64GuestDebugCtlMsr.u);
3870 pHlp->pfnPrintf(pHlp, " %sPAT = %#RX64\n", pszPrefix, pVmcs->u64GuestPatMsr.u);
3871 pHlp->pfnPrintf(pHlp, " %sEFER = %#RX64\n", pszPrefix, pVmcs->u64GuestEferMsr.u);
3872 pHlp->pfnPrintf(pHlp, " %sPERFGLOBALCTRL = %#RX64\n", pszPrefix, pVmcs->u64GuestPerfGlobalCtlMsr.u);
3873 pHlp->pfnPrintf(pHlp, " %sPDPTE 0 = %#RX64\n", pszPrefix, pVmcs->u64GuestPdpte0.u);
3874 pHlp->pfnPrintf(pHlp, " %sPDPTE 1 = %#RX64\n", pszPrefix, pVmcs->u64GuestPdpte1.u);
3875 pHlp->pfnPrintf(pHlp, " %sPDPTE 2 = %#RX64\n", pszPrefix, pVmcs->u64GuestPdpte2.u);
3876 pHlp->pfnPrintf(pHlp, " %sPDPTE 3 = %#RX64\n", pszPrefix, pVmcs->u64GuestPdpte3.u);
3877 pHlp->pfnPrintf(pHlp, " %sBNDCFGS = %#RX64\n", pszPrefix, pVmcs->u64GuestBndcfgsMsr.u);
3878
3879 /* Natural width. */
3880 pHlp->pfnPrintf(pHlp, " %scr0 = %#RX64\n", pszPrefix, pVmcs->u64GuestCr0.u);
3881 pHlp->pfnPrintf(pHlp, " %scr3 = %#RX64\n", pszPrefix, pVmcs->u64GuestCr3.u);
3882 pHlp->pfnPrintf(pHlp, " %scr4 = %#RX64\n", pszPrefix, pVmcs->u64GuestCr4.u);
3883 pHlp->pfnPrintf(pHlp, " %sdr7 = %#RX64\n", pszPrefix, pVmcs->u64GuestDr7.u);
3884 pHlp->pfnPrintf(pHlp, " %srsp = %#RX64\n", pszPrefix, pVmcs->u64GuestRsp.u);
3885 pHlp->pfnPrintf(pHlp, " %srip = %#RX64\n", pszPrefix, pVmcs->u64GuestRip.u);
3886 pHlp->pfnPrintf(pHlp, " %srflags = %#RX64 %31s\n",pszPrefix, pVmcs->u64GuestRFlags.u, szEFlags);
3887 pHlp->pfnPrintf(pHlp, " %sPending debug xcpts = %#RX64\n", pszPrefix, pVmcs->u64GuestPendingDbgXcpt.u);
3888 pHlp->pfnPrintf(pHlp, " %sSysEnter ESP = %#RX64\n", pszPrefix, pVmcs->u64GuestSysenterEsp.u);
3889 pHlp->pfnPrintf(pHlp, " %sSysEnter EIP = %#RX64\n", pszPrefix, pVmcs->u64GuestSysenterEip.u);
3890 }
3891
3892 /* Host state. */
3893 {
3894 pHlp->pfnPrintf(pHlp, "%sHost state:\n", pszPrefix);
3895
3896 /* 16-bit. */
3897 pHlp->pfnPrintf(pHlp, " %scs = %#RX16\n", pszPrefix, pVmcs->HostCs);
3898 pHlp->pfnPrintf(pHlp, " %sss = %#RX16\n", pszPrefix, pVmcs->HostSs);
3899 pHlp->pfnPrintf(pHlp, " %sds = %#RX16\n", pszPrefix, pVmcs->HostDs);
3900 pHlp->pfnPrintf(pHlp, " %ses = %#RX16\n", pszPrefix, pVmcs->HostEs);
3901 CPUMVMX_DUMP_HOST_FS_GS_TR(pHlp, pVmcs, Fs, "fs", pszPrefix);
3902 CPUMVMX_DUMP_HOST_FS_GS_TR(pHlp, pVmcs, Gs, "gs", pszPrefix);
3903 CPUMVMX_DUMP_HOST_FS_GS_TR(pHlp, pVmcs, Tr, "tr", pszPrefix);
3904 CPUMVMX_DUMP_HOST_XDTR(pHlp, pVmcs, Gdtr, "gdtr", pszPrefix);
3905 CPUMVMX_DUMP_HOST_XDTR(pHlp, pVmcs, Idtr, "idtr", pszPrefix);
3906
3907 /* 32-bit. */
3908 pHlp->pfnPrintf(pHlp, " %sSysEnter CS = %#RX32\n", pszPrefix, pVmcs->u32HostSysenterCs);
3909
3910 /* 64-bit. */
3911 pHlp->pfnPrintf(pHlp, " %sEFER = %#RX64\n", pszPrefix, pVmcs->u64HostEferMsr.u);
3912 pHlp->pfnPrintf(pHlp, " %sPAT = %#RX64\n", pszPrefix, pVmcs->u64HostPatMsr.u);
3913 pHlp->pfnPrintf(pHlp, " %sPERFGLOBALCTRL = %#RX64\n", pszPrefix, pVmcs->u64HostPerfGlobalCtlMsr.u);
3914
3915 /* Natural width. */
3916 pHlp->pfnPrintf(pHlp, " %scr0 = %#RX64\n", pszPrefix, pVmcs->u64HostCr0.u);
3917 pHlp->pfnPrintf(pHlp, " %scr3 = %#RX64\n", pszPrefix, pVmcs->u64HostCr3.u);
3918 pHlp->pfnPrintf(pHlp, " %scr4 = %#RX64\n", pszPrefix, pVmcs->u64HostCr4.u);
3919 pHlp->pfnPrintf(pHlp, " %sSysEnter ESP = %#RX64\n", pszPrefix, pVmcs->u64HostSysenterEsp.u);
3920 pHlp->pfnPrintf(pHlp, " %sSysEnter EIP = %#RX64\n", pszPrefix, pVmcs->u64HostSysenterEip.u);
3921 pHlp->pfnPrintf(pHlp, " %srsp = %#RX64\n", pszPrefix, pVmcs->u64HostRsp.u);
3922 pHlp->pfnPrintf(pHlp, " %srip = %#RX64\n", pszPrefix, pVmcs->u64HostRip.u);
3923 }
3924
3925 /* Read-only fields. */
3926 {
3927 pHlp->pfnPrintf(pHlp, "%sRead-only data fields:\n", pszPrefix);
3928
3929 /* 16-bit (none currently). */
3930
3931 /* 32-bit. */
3932 pHlp->pfnPrintf(pHlp, " %sExit reason = %u (%s)\n", pszPrefix, pVmcs->u32RoExitReason, HMGetVmxExitName(pVmcs->u32RoExitReason));
3933 pHlp->pfnPrintf(pHlp, " %sExit qualification = %#RX64\n", pszPrefix, pVmcs->u64RoExitQual.u);
3934 pHlp->pfnPrintf(pHlp, " %sVM-instruction error = %#RX32\n", pszPrefix, pVmcs->u32RoVmInstrError);
3935 pHlp->pfnPrintf(pHlp, " %sVM-exit intr info = %#RX32\n", pszPrefix, pVmcs->u32RoExitIntInfo);
3936 {
3937 uint32_t const fInfo = pVmcs->u32RoExitIntInfo;
3938 uint8_t const uType = VMX_EXIT_INT_INFO_TYPE(fInfo);
3939 pHlp->pfnPrintf(pHlp, " %sValid = %RTbool\n", pszPrefix, VMX_EXIT_INT_INFO_IS_VALID(fInfo));
3940 pHlp->pfnPrintf(pHlp, " %sType = %#x (%s)\n", pszPrefix, uType, HMGetVmxExitIntInfoTypeDesc(uType));
3941 pHlp->pfnPrintf(pHlp, " %sVector = %#x\n", pszPrefix, VMX_EXIT_INT_INFO_VECTOR(fInfo));
3942 pHlp->pfnPrintf(pHlp, " %sNMI-unblocking-IRET = %RTbool\n", pszPrefix, VMX_EXIT_INT_INFO_IS_NMI_UNBLOCK_IRET(fInfo));
3943 pHlp->pfnPrintf(pHlp, " %sError-code valid = %RTbool\n", pszPrefix, VMX_EXIT_INT_INFO_IS_ERROR_CODE_VALID(fInfo));
3944 }
3945 pHlp->pfnPrintf(pHlp, " %sVM-exit intr error-code = %#RX32\n", pszPrefix, pVmcs->u32RoExitIntErrCode);
3946 pHlp->pfnPrintf(pHlp, " %sIDT-vectoring info = %#RX32\n", pszPrefix, pVmcs->u32RoIdtVectoringInfo);
3947 {
3948 uint32_t const fInfo = pVmcs->u32RoIdtVectoringInfo;
3949 uint8_t const uType = VMX_IDT_VECTORING_INFO_TYPE(fInfo);
3950 pHlp->pfnPrintf(pHlp, " %sValid = %RTbool\n", pszPrefix, VMX_IDT_VECTORING_INFO_IS_VALID(fInfo));
3951 pHlp->pfnPrintf(pHlp, " %sType = %#x (%s)\n", pszPrefix, uType, HMGetVmxIdtVectoringInfoTypeDesc(uType));
3952 pHlp->pfnPrintf(pHlp, " %sVector = %#x\n", pszPrefix, VMX_IDT_VECTORING_INFO_VECTOR(fInfo));
3953 pHlp->pfnPrintf(pHlp, " %sError-code valid = %RTbool\n", pszPrefix, VMX_IDT_VECTORING_INFO_IS_ERROR_CODE_VALID(fInfo));
3954 }
3955 pHlp->pfnPrintf(pHlp, " %sIDT-vectoring error-code = %#RX32\n", pszPrefix, pVmcs->u32RoIdtVectoringErrCode);
3956 pHlp->pfnPrintf(pHlp, " %sVM-exit instruction length = %u bytes\n", pszPrefix, pVmcs->u32RoExitInstrLen);
3957 pHlp->pfnPrintf(pHlp, " %sVM-exit instruction info = %#RX64\n", pszPrefix, pVmcs->u32RoExitInstrInfo);
3958
3959 /* 64-bit. */
3960 pHlp->pfnPrintf(pHlp, " %sGuest-physical addr = %#RX64\n", pszPrefix, pVmcs->u64RoGuestPhysAddr.u);
3961
3962 /* Natural width. */
3963 pHlp->pfnPrintf(pHlp, " %sI/O RCX = %#RX64\n", pszPrefix, pVmcs->u64RoIoRcx.u);
3964 pHlp->pfnPrintf(pHlp, " %sI/O RSI = %#RX64\n", pszPrefix, pVmcs->u64RoIoRsi.u);
3965 pHlp->pfnPrintf(pHlp, " %sI/O RDI = %#RX64\n", pszPrefix, pVmcs->u64RoIoRdi.u);
3966 pHlp->pfnPrintf(pHlp, " %sI/O RIP = %#RX64\n", pszPrefix, pVmcs->u64RoIoRip.u);
3967 pHlp->pfnPrintf(pHlp, " %sGuest-linear addr = %#RX64\n", pszPrefix, pVmcs->u64RoGuestLinearAddr.u);
3968 }
3969
3970#undef CPUMVMX_DUMP_HOST_XDTR
3971#undef CPUMVMX_DUMP_HOST_FS_GS_TR
3972#undef CPUMVMX_DUMP_GUEST_SEGREG
3973#undef CPUMVMX_DUMP_GUEST_XDTR
3974}
3975
3976
3977/**
3978 * Display the guest's hardware-virtualization cpu state.
3979 *
3980 * @param pVM The cross context VM structure.
3981 * @param pHlp The info helper functions.
3982 * @param pszArgs Arguments, ignored.
3983 */
3984static DECLCALLBACK(void) cpumR3InfoGuestHwvirt(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3985{
3986 RT_NOREF(pszArgs);
3987
3988 PVMCPU pVCpu = VMMGetCpu(pVM);
3989 if (!pVCpu)
3990 pVCpu = &pVM->aCpus[0];
3991
3992 /*
3993 * Figure out what to dump.
3994 *
3995 * In the future we may need to dump everything whether or not we're actively in nested-guest mode
3996 * or not, hence the reason why we use a mask to determine what needs dumping. Currently, we only
3997 * dump hwvirt. state when the guest CPU is executing a nested-guest.
3998 */
3999 /** @todo perhaps make this configurable through pszArgs, depending on how much
4000 * noise we wish to accept when nested hwvirt. isn't used. */
4001#define CPUMHWVIRTDUMP_NONE (0)
4002#define CPUMHWVIRTDUMP_SVM RT_BIT(0)
4003#define CPUMHWVIRTDUMP_VMX RT_BIT(1)
4004#define CPUMHWVIRTDUMP_COMMON RT_BIT(2)
4005#define CPUMHWVIRTDUMP_LAST CPUMHWVIRTDUMP_VMX
4006
4007 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
4008 static const char *const s_aHwvirtModes[] = { "No/inactive", "SVM", "VMX", "Common" };
4009 bool const fSvm = pVM->cpum.s.GuestFeatures.fSvm;
4010 bool const fVmx = pVM->cpum.s.GuestFeatures.fVmx;
4011 uint8_t const idxHwvirtState = fSvm ? CPUMHWVIRTDUMP_SVM : (fVmx ? CPUMHWVIRTDUMP_VMX : CPUMHWVIRTDUMP_NONE);
4012 AssertCompile(CPUMHWVIRTDUMP_LAST <= RT_ELEMENTS(s_aHwvirtModes));
4013 Assert(idxHwvirtState < RT_ELEMENTS(s_aHwvirtModes));
4014 const char *pcszHwvirtMode = s_aHwvirtModes[idxHwvirtState];
4015 uint32_t fDumpState = idxHwvirtState | CPUMHWVIRTDUMP_COMMON;
4016
4017 /*
4018 * Dump it.
4019 */
4020 pHlp->pfnPrintf(pHlp, "VCPU[%u] hardware virtualization state:\n", pVCpu->idCpu);
4021
4022 if (fDumpState & CPUMHWVIRTDUMP_COMMON)
4023 pHlp->pfnPrintf(pHlp, "fLocalForcedActions = %#RX32\n", pCtx->hwvirt.fLocalForcedActions);
4024
4025 pHlp->pfnPrintf(pHlp, "%s hwvirt state%s\n", pcszHwvirtMode, (fDumpState & (CPUMHWVIRTDUMP_SVM | CPUMHWVIRTDUMP_VMX)) ?
4026 ":" : "");
4027 if (fDumpState & CPUMHWVIRTDUMP_SVM)
4028 {
4029 pHlp->pfnPrintf(pHlp, " fGif = %RTbool\n", pCtx->hwvirt.fGif);
4030
4031 char szEFlags[80];
4032 cpumR3InfoFormatFlags(&szEFlags[0], pCtx->hwvirt.svm.HostState.rflags.u);
4033 pHlp->pfnPrintf(pHlp, " uMsrHSavePa = %#RX64\n", pCtx->hwvirt.svm.uMsrHSavePa);
4034 pHlp->pfnPrintf(pHlp, " GCPhysVmcb = %#RGp\n", pCtx->hwvirt.svm.GCPhysVmcb);
4035 pHlp->pfnPrintf(pHlp, " VmcbCtrl:\n");
4036 cpumR3InfoSvmVmcbCtrl(pHlp, &pCtx->hwvirt.svm.pVmcbR3->ctrl, " " /* pszPrefix */);
4037 pHlp->pfnPrintf(pHlp, " VmcbStateSave:\n");
4038 cpumR3InfoSvmVmcbStateSave(pHlp, &pCtx->hwvirt.svm.pVmcbR3->guest, " " /* pszPrefix */);
4039 pHlp->pfnPrintf(pHlp, " HostState:\n");
4040 pHlp->pfnPrintf(pHlp, " uEferMsr = %#RX64\n", pCtx->hwvirt.svm.HostState.uEferMsr);
4041 pHlp->pfnPrintf(pHlp, " uCr0 = %#RX64\n", pCtx->hwvirt.svm.HostState.uCr0);
4042 pHlp->pfnPrintf(pHlp, " uCr4 = %#RX64\n", pCtx->hwvirt.svm.HostState.uCr4);
4043 pHlp->pfnPrintf(pHlp, " uCr3 = %#RX64\n", pCtx->hwvirt.svm.HostState.uCr3);
4044 pHlp->pfnPrintf(pHlp, " uRip = %#RX64\n", pCtx->hwvirt.svm.HostState.uRip);
4045 pHlp->pfnPrintf(pHlp, " uRsp = %#RX64\n", pCtx->hwvirt.svm.HostState.uRsp);
4046 pHlp->pfnPrintf(pHlp, " uRax = %#RX64\n", pCtx->hwvirt.svm.HostState.uRax);
4047 pHlp->pfnPrintf(pHlp, " rflags = %#RX64 %31s\n", pCtx->hwvirt.svm.HostState.rflags.u64, szEFlags);
4048 PCPUMSELREG pSel = &pCtx->hwvirt.svm.HostState.es;
4049 pHlp->pfnPrintf(pHlp, " es = {%04x base=%016RX64 limit=%08x flags=%08x}\n",
4050 pSel->Sel, pSel->u64Base, pSel->u32Limit, pSel->Attr.u);
4051 pSel = &pCtx->hwvirt.svm.HostState.cs;
4052 pHlp->pfnPrintf(pHlp, " cs = {%04x base=%016RX64 limit=%08x flags=%08x}\n",
4053 pSel->Sel, pSel->u64Base, pSel->u32Limit, pSel->Attr.u);
4054 pSel = &pCtx->hwvirt.svm.HostState.ss;
4055 pHlp->pfnPrintf(pHlp, " ss = {%04x base=%016RX64 limit=%08x flags=%08x}\n",
4056 pSel->Sel, pSel->u64Base, pSel->u32Limit, pSel->Attr.u);
4057 pSel = &pCtx->hwvirt.svm.HostState.ds;
4058 pHlp->pfnPrintf(pHlp, " ds = {%04x base=%016RX64 limit=%08x flags=%08x}\n",
4059 pSel->Sel, pSel->u64Base, pSel->u32Limit, pSel->Attr.u);
4060 pHlp->pfnPrintf(pHlp, " gdtr = %016RX64:%04x\n", pCtx->hwvirt.svm.HostState.gdtr.pGdt,
4061 pCtx->hwvirt.svm.HostState.gdtr.cbGdt);
4062 pHlp->pfnPrintf(pHlp, " idtr = %016RX64:%04x\n", pCtx->hwvirt.svm.HostState.idtr.pIdt,
4063 pCtx->hwvirt.svm.HostState.idtr.cbIdt);
4064 pHlp->pfnPrintf(pHlp, " cPauseFilter = %RU16\n", pCtx->hwvirt.svm.cPauseFilter);
4065 pHlp->pfnPrintf(pHlp, " cPauseFilterThreshold = %RU32\n", pCtx->hwvirt.svm.cPauseFilterThreshold);
4066 pHlp->pfnPrintf(pHlp, " fInterceptEvents = %u\n", pCtx->hwvirt.svm.fInterceptEvents);
4067 pHlp->pfnPrintf(pHlp, " pvMsrBitmapR3 = %p\n", pCtx->hwvirt.svm.pvMsrBitmapR3);
4068 pHlp->pfnPrintf(pHlp, " pvMsrBitmapR0 = %RKv\n", pCtx->hwvirt.svm.pvMsrBitmapR0);
4069 pHlp->pfnPrintf(pHlp, " pvIoBitmapR3 = %p\n", pCtx->hwvirt.svm.pvIoBitmapR3);
4070 pHlp->pfnPrintf(pHlp, " pvIoBitmapR0 = %RKv\n", pCtx->hwvirt.svm.pvIoBitmapR0);
4071 }
4072
4073 if (fDumpState & CPUMHWVIRTDUMP_VMX)
4074 {
4075 pHlp->pfnPrintf(pHlp, " GCPhysVmxon = %#RGp\n", pCtx->hwvirt.vmx.GCPhysVmxon);
4076 pHlp->pfnPrintf(pHlp, " GCPhysVmcs = %#RGp\n", pCtx->hwvirt.vmx.GCPhysVmcs);
4077 pHlp->pfnPrintf(pHlp, " GCPhysShadowVmcs = %#RGp\n", pCtx->hwvirt.vmx.GCPhysShadowVmcs);
4078 pHlp->pfnPrintf(pHlp, " enmDiag = %u (%s)\n", pCtx->hwvirt.vmx.enmDiag, HMGetVmxDiagDesc(pCtx->hwvirt.vmx.enmDiag));
4079 pHlp->pfnPrintf(pHlp, " enmAbort = %u (%s)\n", pCtx->hwvirt.vmx.enmAbort, HMGetVmxAbortDesc(pCtx->hwvirt.vmx.enmAbort));
4080 pHlp->pfnPrintf(pHlp, " uAbortAux = %u (%#x)\n", pCtx->hwvirt.vmx.uAbortAux, pCtx->hwvirt.vmx.uAbortAux);
4081 pHlp->pfnPrintf(pHlp, " fInVmxRootMode = %RTbool\n", pCtx->hwvirt.vmx.fInVmxRootMode);
4082 pHlp->pfnPrintf(pHlp, " fInVmxNonRootMode = %RTbool\n", pCtx->hwvirt.vmx.fInVmxNonRootMode);
4083 pHlp->pfnPrintf(pHlp, " fInterceptEvents = %RTbool\n", pCtx->hwvirt.vmx.fInterceptEvents);
4084 pHlp->pfnPrintf(pHlp, " fNmiUnblockingIret = %RTbool\n", pCtx->hwvirt.vmx.fNmiUnblockingIret);
4085 pHlp->pfnPrintf(pHlp, " uFirstPauseLoopTick = %RX64\n", pCtx->hwvirt.vmx.uFirstPauseLoopTick);
4086 pHlp->pfnPrintf(pHlp, " uPrevPauseTick = %RX64\n", pCtx->hwvirt.vmx.uPrevPauseTick);
4087 pHlp->pfnPrintf(pHlp, " uEntryTick = %RX64\n", pCtx->hwvirt.vmx.uEntryTick);
4088 pHlp->pfnPrintf(pHlp, " offVirtApicWrite = %#RX16\n", pCtx->hwvirt.vmx.offVirtApicWrite);
4089 pHlp->pfnPrintf(pHlp, " fVirtNmiBlocking = %RTbool\n", pCtx->hwvirt.vmx.fVirtNmiBlocking);
4090 pHlp->pfnPrintf(pHlp, " VMCS cache:\n");
4091 cpumR3InfoVmxVmcs(pHlp, pCtx->hwvirt.vmx.pVmcsR3, " " /* pszPrefix */);
4092 }
4093
4094#undef CPUMHWVIRTDUMP_NONE
4095#undef CPUMHWVIRTDUMP_COMMON
4096#undef CPUMHWVIRTDUMP_SVM
4097#undef CPUMHWVIRTDUMP_VMX
4098#undef CPUMHWVIRTDUMP_LAST
4099#undef CPUMHWVIRTDUMP_ALL
4100}
4101
4102/**
4103 * Display the current guest instruction
4104 *
4105 * @param pVM The cross context VM structure.
4106 * @param pHlp The info helper functions.
4107 * @param pszArgs Arguments, ignored.
4108 */
4109static DECLCALLBACK(void) cpumR3InfoGuestInstr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
4110{
4111 NOREF(pszArgs);
4112
4113 PVMCPU pVCpu = VMMGetCpu(pVM);
4114 if (!pVCpu)
4115 pVCpu = &pVM->aCpus[0];
4116
4117 char szInstruction[256];
4118 szInstruction[0] = '\0';
4119 DBGFR3DisasInstrCurrent(pVCpu, szInstruction, sizeof(szInstruction));
4120 pHlp->pfnPrintf(pHlp, "\nCPUM%u: %s\n\n", pVCpu->idCpu, szInstruction);
4121}
4122
4123
4124/**
4125 * Display the hypervisor cpu state.
4126 *
4127 * @param pVM The cross context VM structure.
4128 * @param pHlp The info helper functions.
4129 * @param pszArgs Arguments, ignored.
4130 */
4131static DECLCALLBACK(void) cpumR3InfoHyper(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
4132{
4133 PVMCPU pVCpu = VMMGetCpu(pVM);
4134 if (!pVCpu)
4135 pVCpu = &pVM->aCpus[0];
4136
4137 CPUMDUMPTYPE enmType;
4138 const char *pszComment;
4139 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
4140 pHlp->pfnPrintf(pHlp, "Hypervisor CPUM state: %s\n", pszComment);
4141 cpumR3InfoOne(pVM, &pVCpu->cpum.s.Hyper, CPUMCTX2CORE(&pVCpu->cpum.s.Hyper), pHlp, enmType, ".");
4142 pHlp->pfnPrintf(pHlp, "CR4OrMask=%#x CR4AndMask=%#x\n", pVM->cpum.s.CR4.OrMask, pVM->cpum.s.CR4.AndMask);
4143}
4144
4145
4146/**
4147 * Display the host cpu state.
4148 *
4149 * @param pVM The cross context VM structure.
4150 * @param pHlp The info helper functions.
4151 * @param pszArgs Arguments, ignored.
4152 */
4153static DECLCALLBACK(void) cpumR3InfoHost(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
4154{
4155 CPUMDUMPTYPE enmType;
4156 const char *pszComment;
4157 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
4158 pHlp->pfnPrintf(pHlp, "Host CPUM state: %s\n", pszComment);
4159
4160 PVMCPU pVCpu = VMMGetCpu(pVM);
4161 if (!pVCpu)
4162 pVCpu = &pVM->aCpus[0];
4163 PCPUMHOSTCTX pCtx = &pVCpu->cpum.s.Host;
4164
4165 /*
4166 * Format the EFLAGS.
4167 */
4168#if HC_ARCH_BITS == 32
4169 uint32_t efl = pCtx->eflags.u32;
4170#else
4171 uint64_t efl = pCtx->rflags;
4172#endif
4173 char szEFlags[80];
4174 cpumR3InfoFormatFlags(&szEFlags[0], efl);
4175
4176 /*
4177 * Format the registers.
4178 */
4179#if HC_ARCH_BITS == 32
4180 pHlp->pfnPrintf(pHlp,
4181 "eax=xxxxxxxx ebx=%08x ecx=xxxxxxxx edx=xxxxxxxx esi=%08x edi=%08x\n"
4182 "eip=xxxxxxxx esp=%08x ebp=%08x iopl=%d %31s\n"
4183 "cs=%04x ds=%04x es=%04x fs=%04x gs=%04x eflags=%08x\n"
4184 "cr0=%08RX64 cr2=xxxxxxxx cr3=%08RX64 cr4=%08RX64 gdtr=%08x:%04x ldtr=%04x\n"
4185 "dr[0]=%08RX64 dr[1]=%08RX64x dr[2]=%08RX64 dr[3]=%08RX64x dr[6]=%08RX64 dr[7]=%08RX64\n"
4186 "SysEnter={cs=%04x eip=%08x esp=%08x}\n"
4187 ,
4188 /*pCtx->eax,*/ pCtx->ebx, /*pCtx->ecx, pCtx->edx,*/ pCtx->esi, pCtx->edi,
4189 /*pCtx->eip,*/ pCtx->esp, pCtx->ebp, X86_EFL_GET_IOPL(efl), szEFlags,
4190 pCtx->cs, pCtx->ds, pCtx->es, pCtx->fs, pCtx->gs, efl,
4191 pCtx->cr0, /*pCtx->cr2,*/ pCtx->cr3, pCtx->cr4,
4192 pCtx->dr0, pCtx->dr1, pCtx->dr2, pCtx->dr3, pCtx->dr6, pCtx->dr7,
4193 (uint32_t)pCtx->gdtr.uAddr, pCtx->gdtr.cb, pCtx->ldtr,
4194 pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
4195#else
4196 pHlp->pfnPrintf(pHlp,
4197 "rax=xxxxxxxxxxxxxxxx rbx=%016RX64 rcx=xxxxxxxxxxxxxxxx\n"
4198 "rdx=xxxxxxxxxxxxxxxx rsi=%016RX64 rdi=%016RX64\n"
4199 "rip=xxxxxxxxxxxxxxxx rsp=%016RX64 rbp=%016RX64\n"
4200 " r8=xxxxxxxxxxxxxxxx r9=xxxxxxxxxxxxxxxx r10=%016RX64\n"
4201 "r11=%016RX64 r12=%016RX64 r13=%016RX64\n"
4202 "r14=%016RX64 r15=%016RX64\n"
4203 "iopl=%d %31s\n"
4204 "cs=%04x ds=%04x es=%04x fs=%04x gs=%04x eflags=%08RX64\n"
4205 "cr0=%016RX64 cr2=xxxxxxxxxxxxxxxx cr3=%016RX64\n"
4206 "cr4=%016RX64 ldtr=%04x tr=%04x\n"
4207 "dr[0]=%016RX64 dr[1]=%016RX64 dr[2]=%016RX64\n"
4208 "dr[3]=%016RX64 dr[6]=%016RX64 dr[7]=%016RX64\n"
4209 "gdtr=%016RX64:%04x idtr=%016RX64:%04x\n"
4210 "SysEnter={cs=%04x eip=%08x esp=%08x}\n"
4211 "FSbase=%016RX64 GSbase=%016RX64 efer=%08RX64\n"
4212 ,
4213 /*pCtx->rax,*/ pCtx->rbx, /*pCtx->rcx,
4214 pCtx->rdx,*/ pCtx->rsi, pCtx->rdi,
4215 /*pCtx->rip,*/ pCtx->rsp, pCtx->rbp,
4216 /*pCtx->r8, pCtx->r9,*/ pCtx->r10,
4217 pCtx->r11, pCtx->r12, pCtx->r13,
4218 pCtx->r14, pCtx->r15,
4219 X86_EFL_GET_IOPL(efl), szEFlags,
4220 pCtx->cs, pCtx->ds, pCtx->es, pCtx->fs, pCtx->gs, efl,
4221 pCtx->cr0, /*pCtx->cr2,*/ pCtx->cr3,
4222 pCtx->cr4, pCtx->ldtr, pCtx->tr,
4223 pCtx->dr0, pCtx->dr1, pCtx->dr2,
4224 pCtx->dr3, pCtx->dr6, pCtx->dr7,
4225 pCtx->gdtr.uAddr, pCtx->gdtr.cb, pCtx->idtr.uAddr, pCtx->idtr.cb,
4226 pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp,
4227 pCtx->FSbase, pCtx->GSbase, pCtx->efer);
4228#endif
4229}
4230
4231/**
4232 * Structure used when disassembling and instructions in DBGF.
4233 * This is used so the reader function can get the stuff it needs.
4234 */
4235typedef struct CPUMDISASSTATE
4236{
4237 /** Pointer to the CPU structure. */
4238 PDISCPUSTATE pCpu;
4239 /** Pointer to the VM. */
4240 PVM pVM;
4241 /** Pointer to the VMCPU. */
4242 PVMCPU pVCpu;
4243 /** Pointer to the first byte in the segment. */
4244 RTGCUINTPTR GCPtrSegBase;
4245 /** Pointer to the byte after the end of the segment. (might have wrapped!) */
4246 RTGCUINTPTR GCPtrSegEnd;
4247 /** The size of the segment minus 1. */
4248 RTGCUINTPTR cbSegLimit;
4249 /** Pointer to the current page - R3 Ptr. */
4250 void const *pvPageR3;
4251 /** Pointer to the current page - GC Ptr. */
4252 RTGCPTR pvPageGC;
4253 /** The lock information that PGMPhysReleasePageMappingLock needs. */
4254 PGMPAGEMAPLOCK PageMapLock;
4255 /** Whether the PageMapLock is valid or not. */
4256 bool fLocked;
4257 /** 64 bits mode or not. */
4258 bool f64Bits;
4259} CPUMDISASSTATE, *PCPUMDISASSTATE;
4260
4261
4262/**
4263 * @callback_method_impl{FNDISREADBYTES}
4264 */
4265static DECLCALLBACK(int) cpumR3DisasInstrRead(PDISCPUSTATE pDis, uint8_t offInstr, uint8_t cbMinRead, uint8_t cbMaxRead)
4266{
4267 PCPUMDISASSTATE pState = (PCPUMDISASSTATE)pDis->pvUser;
4268 for (;;)
4269 {
4270 RTGCUINTPTR GCPtr = pDis->uInstrAddr + offInstr + pState->GCPtrSegBase;
4271
4272 /*
4273 * Need to update the page translation?
4274 */
4275 if ( !pState->pvPageR3
4276 || (GCPtr >> PAGE_SHIFT) != (pState->pvPageGC >> PAGE_SHIFT))
4277 {
4278 int rc = VINF_SUCCESS;
4279
4280 /* translate the address */
4281 pState->pvPageGC = GCPtr & PAGE_BASE_GC_MASK;
4282 if ( VM_IS_RAW_MODE_ENABLED(pState->pVM)
4283 && MMHyperIsInsideArea(pState->pVM, pState->pvPageGC))
4284 {
4285 pState->pvPageR3 = MMHyperRCToR3(pState->pVM, (RTRCPTR)pState->pvPageGC);
4286 if (!pState->pvPageR3)
4287 rc = VERR_INVALID_POINTER;
4288 }
4289 else
4290 {
4291 /* Release mapping lock previously acquired. */
4292 if (pState->fLocked)
4293 PGMPhysReleasePageMappingLock(pState->pVM, &pState->PageMapLock);
4294 rc = PGMPhysGCPtr2CCPtrReadOnly(pState->pVCpu, pState->pvPageGC, &pState->pvPageR3, &pState->PageMapLock);
4295 pState->fLocked = RT_SUCCESS_NP(rc);
4296 }
4297 if (RT_FAILURE(rc))
4298 {
4299 pState->pvPageR3 = NULL;
4300 return rc;
4301 }
4302 }
4303
4304 /*
4305 * Check the segment limit.
4306 */
4307 if (!pState->f64Bits && pDis->uInstrAddr + offInstr > pState->cbSegLimit)
4308 return VERR_OUT_OF_SELECTOR_BOUNDS;
4309
4310 /*
4311 * Calc how much we can read.
4312 */
4313 uint32_t cb = PAGE_SIZE - (GCPtr & PAGE_OFFSET_MASK);
4314 if (!pState->f64Bits)
4315 {
4316 RTGCUINTPTR cbSeg = pState->GCPtrSegEnd - GCPtr;
4317 if (cb > cbSeg && cbSeg)
4318 cb = cbSeg;
4319 }
4320 if (cb > cbMaxRead)
4321 cb = cbMaxRead;
4322
4323 /*
4324 * Read and advance or exit.
4325 */
4326 memcpy(&pDis->abInstr[offInstr], (uint8_t *)pState->pvPageR3 + (GCPtr & PAGE_OFFSET_MASK), cb);
4327 offInstr += (uint8_t)cb;
4328 if (cb >= cbMinRead)
4329 {
4330 pDis->cbCachedInstr = offInstr;
4331 return VINF_SUCCESS;
4332 }
4333 cbMinRead -= (uint8_t)cb;
4334 cbMaxRead -= (uint8_t)cb;
4335 }
4336}
4337
4338
4339/**
4340 * Disassemble an instruction and return the information in the provided structure.
4341 *
4342 * @returns VBox status code.
4343 * @param pVM The cross context VM structure.
4344 * @param pVCpu The cross context virtual CPU structure.
4345 * @param pCtx Pointer to the guest CPU context.
4346 * @param GCPtrPC Program counter (relative to CS) to disassemble from.
4347 * @param pCpu Disassembly state.
4348 * @param pszPrefix String prefix for logging (debug only).
4349 *
4350 */
4351VMMR3DECL(int) CPUMR3DisasmInstrCPU(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, RTGCPTR GCPtrPC, PDISCPUSTATE pCpu,
4352 const char *pszPrefix)
4353{
4354 CPUMDISASSTATE State;
4355 int rc;
4356
4357 const PGMMODE enmMode = PGMGetGuestMode(pVCpu);
4358 State.pCpu = pCpu;
4359 State.pvPageGC = 0;
4360 State.pvPageR3 = NULL;
4361 State.pVM = pVM;
4362 State.pVCpu = pVCpu;
4363 State.fLocked = false;
4364 State.f64Bits = false;
4365
4366 /*
4367 * Get selector information.
4368 */
4369 DISCPUMODE enmDisCpuMode;
4370 if ( (pCtx->cr0 & X86_CR0_PE)
4371 && pCtx->eflags.Bits.u1VM == 0)
4372 {
4373 if (!CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->cs))
4374 {
4375# ifdef VBOX_WITH_RAW_MODE_NOT_R0
4376 CPUMGuestLazyLoadHiddenSelectorReg(pVCpu, &pCtx->cs);
4377# endif
4378 if (!CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->cs))
4379 return VERR_CPUM_HIDDEN_CS_LOAD_ERROR;
4380 }
4381 State.f64Bits = enmMode >= PGMMODE_AMD64 && pCtx->cs.Attr.n.u1Long;
4382 State.GCPtrSegBase = pCtx->cs.u64Base;
4383 State.GCPtrSegEnd = pCtx->cs.u32Limit + 1 + (RTGCUINTPTR)pCtx->cs.u64Base;
4384 State.cbSegLimit = pCtx->cs.u32Limit;
4385 enmDisCpuMode = (State.f64Bits)
4386 ? DISCPUMODE_64BIT
4387 : pCtx->cs.Attr.n.u1DefBig
4388 ? DISCPUMODE_32BIT
4389 : DISCPUMODE_16BIT;
4390 }
4391 else
4392 {
4393 /* real or V86 mode */
4394 enmDisCpuMode = DISCPUMODE_16BIT;
4395 State.GCPtrSegBase = pCtx->cs.Sel * 16;
4396 State.GCPtrSegEnd = 0xFFFFFFFF;
4397 State.cbSegLimit = 0xFFFFFFFF;
4398 }
4399
4400 /*
4401 * Disassemble the instruction.
4402 */
4403 uint32_t cbInstr;
4404#ifndef LOG_ENABLED
4405 RT_NOREF_PV(pszPrefix);
4406 rc = DISInstrWithReader(GCPtrPC, enmDisCpuMode, cpumR3DisasInstrRead, &State, pCpu, &cbInstr);
4407 if (RT_SUCCESS(rc))
4408 {
4409#else
4410 char szOutput[160];
4411 rc = DISInstrToStrWithReader(GCPtrPC, enmDisCpuMode, cpumR3DisasInstrRead, &State,
4412 pCpu, &cbInstr, szOutput, sizeof(szOutput));
4413 if (RT_SUCCESS(rc))
4414 {
4415 /* log it */
4416 if (pszPrefix)
4417 Log(("%s-CPU%d: %s", pszPrefix, pVCpu->idCpu, szOutput));
4418 else
4419 Log(("%s", szOutput));
4420#endif
4421 rc = VINF_SUCCESS;
4422 }
4423 else
4424 Log(("CPUMR3DisasmInstrCPU: DISInstr failed for %04X:%RGv rc=%Rrc\n", pCtx->cs.Sel, GCPtrPC, rc));
4425
4426 /* Release mapping lock acquired in cpumR3DisasInstrRead. */
4427 if (State.fLocked)
4428 PGMPhysReleasePageMappingLock(pVM, &State.PageMapLock);
4429
4430 return rc;
4431}
4432
4433
4434
4435/**
4436 * API for controlling a few of the CPU features found in CR4.
4437 *
4438 * Currently only X86_CR4_TSD is accepted as input.
4439 *
4440 * @returns VBox status code.
4441 *
4442 * @param pVM The cross context VM structure.
4443 * @param fOr The CR4 OR mask.
4444 * @param fAnd The CR4 AND mask.
4445 */
4446VMMR3DECL(int) CPUMR3SetCR4Feature(PVM pVM, RTHCUINTREG fOr, RTHCUINTREG fAnd)
4447{
4448 AssertMsgReturn(!(fOr & ~(X86_CR4_TSD)), ("%#x\n", fOr), VERR_INVALID_PARAMETER);
4449 AssertMsgReturn((fAnd & ~(X86_CR4_TSD)) == ~(X86_CR4_TSD), ("%#x\n", fAnd), VERR_INVALID_PARAMETER);
4450
4451 pVM->cpum.s.CR4.OrMask &= fAnd;
4452 pVM->cpum.s.CR4.OrMask |= fOr;
4453
4454 return VINF_SUCCESS;
4455}
4456
4457
4458/**
4459 * Enters REM, gets and resets the changed flags (CPUM_CHANGED_*).
4460 *
4461 * Only REM should ever call this function!
4462 *
4463 * @returns The changed flags.
4464 * @param pVCpu The cross context virtual CPU structure.
4465 * @param puCpl Where to return the current privilege level (CPL).
4466 */
4467VMMR3DECL(uint32_t) CPUMR3RemEnter(PVMCPU pVCpu, uint32_t *puCpl)
4468{
4469 Assert(!pVCpu->cpum.s.fRawEntered);
4470 Assert(!pVCpu->cpum.s.fRemEntered);
4471
4472 /*
4473 * Get the CPL first.
4474 */
4475 *puCpl = CPUMGetGuestCPL(pVCpu);
4476
4477 /*
4478 * Get and reset the flags.
4479 */
4480 uint32_t fFlags = pVCpu->cpum.s.fChanged;
4481 pVCpu->cpum.s.fChanged = 0;
4482
4483 /** @todo change the switcher to use the fChanged flags. */
4484 if (pVCpu->cpum.s.fUseFlags & CPUM_USED_FPU_SINCE_REM)
4485 {
4486 fFlags |= CPUM_CHANGED_FPU_REM;
4487 pVCpu->cpum.s.fUseFlags &= ~CPUM_USED_FPU_SINCE_REM;
4488 }
4489
4490 pVCpu->cpum.s.fRemEntered = true;
4491 return fFlags;
4492}
4493
4494
4495/**
4496 * Leaves REM.
4497 *
4498 * @param pVCpu The cross context virtual CPU structure.
4499 * @param fNoOutOfSyncSels This is @c false if there are out of sync
4500 * registers.
4501 */
4502VMMR3DECL(void) CPUMR3RemLeave(PVMCPU pVCpu, bool fNoOutOfSyncSels)
4503{
4504 Assert(!pVCpu->cpum.s.fRawEntered);
4505 Assert(pVCpu->cpum.s.fRemEntered);
4506
4507 RT_NOREF_PV(fNoOutOfSyncSels);
4508
4509 pVCpu->cpum.s.fRemEntered = false;
4510}
4511
4512
4513/**
4514 * Called when the ring-3 init phase completes.
4515 *
4516 * @returns VBox status code.
4517 * @param pVM The cross context VM structure.
4518 * @param enmWhat Which init phase.
4519 */
4520VMMR3DECL(int) CPUMR3InitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
4521{
4522 switch (enmWhat)
4523 {
4524 case VMINITCOMPLETED_RING3:
4525 {
4526 /*
4527 * Figure out if the guest uses 32-bit or 64-bit FPU state at runtime for 64-bit capable VMs.
4528 * Only applicable/used on 64-bit hosts, refer CPUMR0A.asm. See @bugref{7138}.
4529 */
4530 bool const fSupportsLongMode = VMR3IsLongModeAllowed(pVM);
4531 for (VMCPUID i = 0; i < pVM->cCpus; i++)
4532 {
4533 PVMCPU pVCpu = &pVM->aCpus[i];
4534 /* While loading a saved-state we fix it up in, cpumR3LoadDone(). */
4535 if (fSupportsLongMode)
4536 pVCpu->cpum.s.fUseFlags |= CPUM_USE_SUPPORTS_LONGMODE;
4537 }
4538
4539 /* Register statistic counters for MSRs. */
4540 cpumR3MsrRegStats(pVM);
4541 break;
4542 }
4543
4544 default:
4545 break;
4546 }
4547 return VINF_SUCCESS;
4548}
4549
4550
4551/**
4552 * Called when the ring-0 init phases completed.
4553 *
4554 * @param pVM The cross context VM structure.
4555 */
4556VMMR3DECL(void) CPUMR3LogCpuIdAndMsrFeatures(PVM pVM)
4557{
4558 /*
4559 * Enable log buffering as we're going to log a lot of lines.
4560 */
4561 bool const fOldBuffered = RTLogRelSetBuffering(true /*fBuffered*/);
4562
4563 /*
4564 * Log the cpuid.
4565 */
4566 RTCPUSET OnlineSet;
4567 LogRel(("CPUM: Logical host processors: %u present, %u max, %u online, online mask: %016RX64\n",
4568 (unsigned)RTMpGetPresentCount(), (unsigned)RTMpGetCount(), (unsigned)RTMpGetOnlineCount(),
4569 RTCpuSetToU64(RTMpGetOnlineSet(&OnlineSet)) ));
4570 RTCPUID cCores = RTMpGetCoreCount();
4571 if (cCores)
4572 LogRel(("CPUM: Physical host cores: %u\n", (unsigned)cCores));
4573 LogRel(("************************* CPUID dump ************************\n"));
4574 DBGFR3Info(pVM->pUVM, "cpuid", "verbose", DBGFR3InfoLogRelHlp());
4575 LogRel(("\n"));
4576 DBGFR3_INFO_LOG_SAFE(pVM, "cpuid", "verbose"); /* macro */
4577 LogRel(("******************** End of CPUID dump **********************\n"));
4578
4579 /*
4580 * Log VT-x extended features.
4581 *
4582 * SVM features are currently all covered under CPUID so there is nothing
4583 * to do here for SVM.
4584 */
4585 if (pVM->cpum.s.HostFeatures.fVmx)
4586 {
4587 LogRel(("*********************** VT-x features ***********************\n"));
4588 DBGFR3Info(pVM->pUVM, "cpumvmxfeat", "default", DBGFR3InfoLogRelHlp());
4589 LogRel(("\n"));
4590 LogRel(("******************* End of VT-x features ********************\n"));
4591 }
4592
4593 /*
4594 * Restore the log buffering state to what it was previously.
4595 */
4596 RTLogRelSetBuffering(fOldBuffered);
4597}
4598
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette