VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/CPUM.cpp@ 79098

Last change on this file since 79098 was 78650, checked in by vboxsync, 6 years ago

VMM: Nested VMX: bugref:9180 Added RTIT_CTL MSR to the virtual VMCS. Brought up rest of HM definitions to the latest VT-x specs. Spaces.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 240.6 KB
Line 
1/* $Id: CPUM.cpp 78650 2019-05-22 09:41:16Z vboxsync $ */
2/** @file
3 * CPUM - CPU Monitor / Manager.
4 */
5
6/*
7 * Copyright (C) 2006-2019 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/** @page pg_cpum CPUM - CPU Monitor / Manager
19 *
20 * The CPU Monitor / Manager keeps track of all the CPU registers. It is
21 * also responsible for lazy FPU handling and some of the context loading
22 * in raw mode.
23 *
24 * There are three CPU contexts, the most important one is the guest one (GC).
25 * When running in raw-mode (RC) there is a special hyper context for the VMM
26 * part that floats around inside the guest address space. When running in
27 * raw-mode, CPUM also maintains a host context for saving and restoring
28 * registers across world switches. This latter is done in cooperation with the
29 * world switcher (@see pg_vmm).
30 *
31 * @see grp_cpum
32 *
33 * @section sec_cpum_fpu FPU / SSE / AVX / ++ state.
34 *
35 * TODO: proper write up, currently just some notes.
36 *
37 * The ring-0 FPU handling per OS:
38 *
39 * - 64-bit Windows uses XMM registers in the kernel as part of the calling
40 * convention (Visual C++ doesn't seem to have a way to disable
41 * generating such code either), so CR0.TS/EM are always zero from what I
42 * can tell. We are also forced to always load/save the guest XMM0-XMM15
43 * registers when entering/leaving guest context. Interrupt handlers
44 * using FPU/SSE will offically have call save and restore functions
45 * exported by the kernel, if the really really have to use the state.
46 *
47 * - 32-bit windows does lazy FPU handling, I think, probably including
48 * lazying saving. The Windows Internals book states that it's a bad
49 * idea to use the FPU in kernel space. However, it looks like it will
50 * restore the FPU state of the current thread in case of a kernel \#NM.
51 * Interrupt handlers should be same as for 64-bit.
52 *
53 * - Darwin allows taking \#NM in kernel space, restoring current thread's
54 * state if I read the code correctly. It saves the FPU state of the
55 * outgoing thread, and uses CR0.TS to lazily load the state of the
56 * incoming one. No idea yet how the FPU is treated by interrupt
57 * handlers, i.e. whether they are allowed to disable the state or
58 * something.
59 *
60 * - Linux also allows \#NM in kernel space (don't know since when), and
61 * uses CR0.TS for lazy loading. Saves outgoing thread's state, lazy
62 * loads the incoming unless configured to agressivly load it. Interrupt
63 * handlers can ask whether they're allowed to use the FPU, and may
64 * freely trash the state if Linux thinks it has saved the thread's state
65 * already. This is a problem.
66 *
67 * - Solaris will, from what I can tell, panic if it gets an \#NM in kernel
68 * context. When switching threads, the kernel will save the state of
69 * the outgoing thread and lazy load the incoming one using CR0.TS.
70 * There are a few routines in seeblk.s which uses the SSE unit in ring-0
71 * to do stuff, HAT are among the users. The routines there will
72 * manually clear CR0.TS and save the XMM registers they use only if
73 * CR0.TS was zero upon entry. They will skip it when not, because as
74 * mentioned above, the FPU state is saved when switching away from a
75 * thread and CR0.TS set to 1, so when CR0.TS is 1 there is nothing to
76 * preserve. This is a problem if we restore CR0.TS to 1 after loading
77 * the guest state.
78 *
79 * - FreeBSD - no idea yet.
80 *
81 * - OS/2 does not allow \#NMs in kernel space IIRC. Does lazy loading,
82 * possibly also lazy saving. Interrupts must preserve the CR0.TS+EM &
83 * FPU states.
84 *
85 * Up to r107425 (2016-05-24) we would only temporarily modify CR0.TS/EM while
86 * saving and restoring the host and guest states. The motivation for this
87 * change is that we want to be able to emulate SSE instruction in ring-0 (IEM).
88 *
89 * Starting with that change, we will leave CR0.TS=EM=0 after saving the host
90 * state and only restore it once we've restore the host FPU state. This has the
91 * accidental side effect of triggering Solaris to preserve XMM registers in
92 * sseblk.s. When CR0 was changed by saving the FPU state, CPUM must now inform
93 * the VT-x (HMVMX) code about it as it caches the CR0 value in the VMCS.
94 *
95 *
96 * @section sec_cpum_logging Logging Level Assignments.
97 *
98 * Following log level assignments:
99 * - Log6 is used for FPU state management.
100 * - Log7 is used for FPU state actualization.
101 *
102 */
103
104
105/*********************************************************************************************************************************
106* Header Files *
107*********************************************************************************************************************************/
108#define LOG_GROUP LOG_GROUP_CPUM
109#include <VBox/vmm/cpum.h>
110#include <VBox/vmm/cpumdis.h>
111#include <VBox/vmm/cpumctx-v1_6.h>
112#include <VBox/vmm/pgm.h>
113#include <VBox/vmm/apic.h>
114#include <VBox/vmm/mm.h>
115#include <VBox/vmm/em.h>
116#include <VBox/vmm/iem.h>
117#include <VBox/vmm/selm.h>
118#include <VBox/vmm/dbgf.h>
119#include <VBox/vmm/patm.h>
120#include <VBox/vmm/hm.h>
121#include <VBox/vmm/ssm.h>
122#include "CPUMInternal.h"
123#include <VBox/vmm/vm.h>
124
125#include <VBox/param.h>
126#include <VBox/dis.h>
127#include <VBox/err.h>
128#include <VBox/log.h>
129#include <iprt/asm-amd64-x86.h>
130#include <iprt/assert.h>
131#include <iprt/cpuset.h>
132#include <iprt/mem.h>
133#include <iprt/mp.h>
134#include <iprt/string.h>
135
136
137/*********************************************************************************************************************************
138* Defined Constants And Macros *
139*********************************************************************************************************************************/
140/**
141 * This was used in the saved state up to the early life of version 14.
142 *
143 * It indicates that we may have some out-of-sync hidden segement registers.
144 * It is only relevant for raw-mode.
145 */
146#define CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID RT_BIT(12)
147
148
149/*********************************************************************************************************************************
150* Structures and Typedefs *
151*********************************************************************************************************************************/
152
153/**
154 * What kind of cpu info dump to perform.
155 */
156typedef enum CPUMDUMPTYPE
157{
158 CPUMDUMPTYPE_TERSE,
159 CPUMDUMPTYPE_DEFAULT,
160 CPUMDUMPTYPE_VERBOSE
161} CPUMDUMPTYPE;
162/** Pointer to a cpu info dump type. */
163typedef CPUMDUMPTYPE *PCPUMDUMPTYPE;
164
165
166/*********************************************************************************************************************************
167* Internal Functions *
168*********************************************************************************************************************************/
169static DECLCALLBACK(int) cpumR3LiveExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uPass);
170static DECLCALLBACK(int) cpumR3SaveExec(PVM pVM, PSSMHANDLE pSSM);
171static DECLCALLBACK(int) cpumR3LoadPrep(PVM pVM, PSSMHANDLE pSSM);
172static DECLCALLBACK(int) cpumR3LoadExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
173static DECLCALLBACK(int) cpumR3LoadDone(PVM pVM, PSSMHANDLE pSSM);
174static DECLCALLBACK(void) cpumR3InfoAll(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
175static DECLCALLBACK(void) cpumR3InfoGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
176static DECLCALLBACK(void) cpumR3InfoGuestHwvirt(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
177static DECLCALLBACK(void) cpumR3InfoGuestInstr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
178static DECLCALLBACK(void) cpumR3InfoHyper(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
179static DECLCALLBACK(void) cpumR3InfoHost(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
180
181
182/*********************************************************************************************************************************
183* Global Variables *
184*********************************************************************************************************************************/
185/** Saved state field descriptors for CPUMCTX. */
186static const SSMFIELD g_aCpumCtxFields[] =
187{
188 SSMFIELD_ENTRY( CPUMCTX, rdi),
189 SSMFIELD_ENTRY( CPUMCTX, rsi),
190 SSMFIELD_ENTRY( CPUMCTX, rbp),
191 SSMFIELD_ENTRY( CPUMCTX, rax),
192 SSMFIELD_ENTRY( CPUMCTX, rbx),
193 SSMFIELD_ENTRY( CPUMCTX, rdx),
194 SSMFIELD_ENTRY( CPUMCTX, rcx),
195 SSMFIELD_ENTRY( CPUMCTX, rsp),
196 SSMFIELD_ENTRY( CPUMCTX, rflags),
197 SSMFIELD_ENTRY( CPUMCTX, rip),
198 SSMFIELD_ENTRY( CPUMCTX, r8),
199 SSMFIELD_ENTRY( CPUMCTX, r9),
200 SSMFIELD_ENTRY( CPUMCTX, r10),
201 SSMFIELD_ENTRY( CPUMCTX, r11),
202 SSMFIELD_ENTRY( CPUMCTX, r12),
203 SSMFIELD_ENTRY( CPUMCTX, r13),
204 SSMFIELD_ENTRY( CPUMCTX, r14),
205 SSMFIELD_ENTRY( CPUMCTX, r15),
206 SSMFIELD_ENTRY( CPUMCTX, es.Sel),
207 SSMFIELD_ENTRY( CPUMCTX, es.ValidSel),
208 SSMFIELD_ENTRY( CPUMCTX, es.fFlags),
209 SSMFIELD_ENTRY( CPUMCTX, es.u64Base),
210 SSMFIELD_ENTRY( CPUMCTX, es.u32Limit),
211 SSMFIELD_ENTRY( CPUMCTX, es.Attr),
212 SSMFIELD_ENTRY( CPUMCTX, cs.Sel),
213 SSMFIELD_ENTRY( CPUMCTX, cs.ValidSel),
214 SSMFIELD_ENTRY( CPUMCTX, cs.fFlags),
215 SSMFIELD_ENTRY( CPUMCTX, cs.u64Base),
216 SSMFIELD_ENTRY( CPUMCTX, cs.u32Limit),
217 SSMFIELD_ENTRY( CPUMCTX, cs.Attr),
218 SSMFIELD_ENTRY( CPUMCTX, ss.Sel),
219 SSMFIELD_ENTRY( CPUMCTX, ss.ValidSel),
220 SSMFIELD_ENTRY( CPUMCTX, ss.fFlags),
221 SSMFIELD_ENTRY( CPUMCTX, ss.u64Base),
222 SSMFIELD_ENTRY( CPUMCTX, ss.u32Limit),
223 SSMFIELD_ENTRY( CPUMCTX, ss.Attr),
224 SSMFIELD_ENTRY( CPUMCTX, ds.Sel),
225 SSMFIELD_ENTRY( CPUMCTX, ds.ValidSel),
226 SSMFIELD_ENTRY( CPUMCTX, ds.fFlags),
227 SSMFIELD_ENTRY( CPUMCTX, ds.u64Base),
228 SSMFIELD_ENTRY( CPUMCTX, ds.u32Limit),
229 SSMFIELD_ENTRY( CPUMCTX, ds.Attr),
230 SSMFIELD_ENTRY( CPUMCTX, fs.Sel),
231 SSMFIELD_ENTRY( CPUMCTX, fs.ValidSel),
232 SSMFIELD_ENTRY( CPUMCTX, fs.fFlags),
233 SSMFIELD_ENTRY( CPUMCTX, fs.u64Base),
234 SSMFIELD_ENTRY( CPUMCTX, fs.u32Limit),
235 SSMFIELD_ENTRY( CPUMCTX, fs.Attr),
236 SSMFIELD_ENTRY( CPUMCTX, gs.Sel),
237 SSMFIELD_ENTRY( CPUMCTX, gs.ValidSel),
238 SSMFIELD_ENTRY( CPUMCTX, gs.fFlags),
239 SSMFIELD_ENTRY( CPUMCTX, gs.u64Base),
240 SSMFIELD_ENTRY( CPUMCTX, gs.u32Limit),
241 SSMFIELD_ENTRY( CPUMCTX, gs.Attr),
242 SSMFIELD_ENTRY( CPUMCTX, cr0),
243 SSMFIELD_ENTRY( CPUMCTX, cr2),
244 SSMFIELD_ENTRY( CPUMCTX, cr3),
245 SSMFIELD_ENTRY( CPUMCTX, cr4),
246 SSMFIELD_ENTRY( CPUMCTX, dr[0]),
247 SSMFIELD_ENTRY( CPUMCTX, dr[1]),
248 SSMFIELD_ENTRY( CPUMCTX, dr[2]),
249 SSMFIELD_ENTRY( CPUMCTX, dr[3]),
250 SSMFIELD_ENTRY( CPUMCTX, dr[6]),
251 SSMFIELD_ENTRY( CPUMCTX, dr[7]),
252 SSMFIELD_ENTRY( CPUMCTX, gdtr.cbGdt),
253 SSMFIELD_ENTRY( CPUMCTX, gdtr.pGdt),
254 SSMFIELD_ENTRY( CPUMCTX, idtr.cbIdt),
255 SSMFIELD_ENTRY( CPUMCTX, idtr.pIdt),
256 SSMFIELD_ENTRY( CPUMCTX, SysEnter.cs),
257 SSMFIELD_ENTRY( CPUMCTX, SysEnter.eip),
258 SSMFIELD_ENTRY( CPUMCTX, SysEnter.esp),
259 SSMFIELD_ENTRY( CPUMCTX, msrEFER),
260 SSMFIELD_ENTRY( CPUMCTX, msrSTAR),
261 SSMFIELD_ENTRY( CPUMCTX, msrPAT),
262 SSMFIELD_ENTRY( CPUMCTX, msrLSTAR),
263 SSMFIELD_ENTRY( CPUMCTX, msrCSTAR),
264 SSMFIELD_ENTRY( CPUMCTX, msrSFMASK),
265 SSMFIELD_ENTRY( CPUMCTX, msrKERNELGSBASE),
266 SSMFIELD_ENTRY( CPUMCTX, ldtr.Sel),
267 SSMFIELD_ENTRY( CPUMCTX, ldtr.ValidSel),
268 SSMFIELD_ENTRY( CPUMCTX, ldtr.fFlags),
269 SSMFIELD_ENTRY( CPUMCTX, ldtr.u64Base),
270 SSMFIELD_ENTRY( CPUMCTX, ldtr.u32Limit),
271 SSMFIELD_ENTRY( CPUMCTX, ldtr.Attr),
272 SSMFIELD_ENTRY( CPUMCTX, tr.Sel),
273 SSMFIELD_ENTRY( CPUMCTX, tr.ValidSel),
274 SSMFIELD_ENTRY( CPUMCTX, tr.fFlags),
275 SSMFIELD_ENTRY( CPUMCTX, tr.u64Base),
276 SSMFIELD_ENTRY( CPUMCTX, tr.u32Limit),
277 SSMFIELD_ENTRY( CPUMCTX, tr.Attr),
278 SSMFIELD_ENTRY_VER( CPUMCTX, aXcr[0], CPUM_SAVED_STATE_VERSION_XSAVE),
279 SSMFIELD_ENTRY_VER( CPUMCTX, aXcr[1], CPUM_SAVED_STATE_VERSION_XSAVE),
280 SSMFIELD_ENTRY_VER( CPUMCTX, fXStateMask, CPUM_SAVED_STATE_VERSION_XSAVE),
281 SSMFIELD_ENTRY_TERM()
282};
283
284/** Saved state field descriptors for SVM nested hardware-virtualization
285 * Host State. */
286static const SSMFIELD g_aSvmHwvirtHostState[] =
287{
288 SSMFIELD_ENTRY( SVMHOSTSTATE, uEferMsr),
289 SSMFIELD_ENTRY( SVMHOSTSTATE, uCr0),
290 SSMFIELD_ENTRY( SVMHOSTSTATE, uCr4),
291 SSMFIELD_ENTRY( SVMHOSTSTATE, uCr3),
292 SSMFIELD_ENTRY( SVMHOSTSTATE, uRip),
293 SSMFIELD_ENTRY( SVMHOSTSTATE, uRsp),
294 SSMFIELD_ENTRY( SVMHOSTSTATE, uRax),
295 SSMFIELD_ENTRY( SVMHOSTSTATE, rflags),
296 SSMFIELD_ENTRY( SVMHOSTSTATE, es.Sel),
297 SSMFIELD_ENTRY( SVMHOSTSTATE, es.ValidSel),
298 SSMFIELD_ENTRY( SVMHOSTSTATE, es.fFlags),
299 SSMFIELD_ENTRY( SVMHOSTSTATE, es.u64Base),
300 SSMFIELD_ENTRY( SVMHOSTSTATE, es.u32Limit),
301 SSMFIELD_ENTRY( SVMHOSTSTATE, es.Attr),
302 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.Sel),
303 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.ValidSel),
304 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.fFlags),
305 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.u64Base),
306 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.u32Limit),
307 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.Attr),
308 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.Sel),
309 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.ValidSel),
310 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.fFlags),
311 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.u64Base),
312 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.u32Limit),
313 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.Attr),
314 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.Sel),
315 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.ValidSel),
316 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.fFlags),
317 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.u64Base),
318 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.u32Limit),
319 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.Attr),
320 SSMFIELD_ENTRY( SVMHOSTSTATE, gdtr.cbGdt),
321 SSMFIELD_ENTRY( SVMHOSTSTATE, gdtr.pGdt),
322 SSMFIELD_ENTRY( SVMHOSTSTATE, idtr.cbIdt),
323 SSMFIELD_ENTRY( SVMHOSTSTATE, idtr.pIdt),
324 SSMFIELD_ENTRY_IGNORE(SVMHOSTSTATE, abPadding),
325 SSMFIELD_ENTRY_TERM()
326};
327
328/** Saved state field descriptors for VMX nested hardware-virtualization
329 * VMCS. */
330static const SSMFIELD g_aVmxHwvirtVmcs[] =
331{
332 SSMFIELD_ENTRY( VMXVVMCS, u32VmcsRevId),
333 SSMFIELD_ENTRY( VMXVVMCS, enmVmxAbort),
334 SSMFIELD_ENTRY( VMXVVMCS, fVmcsState),
335 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au8Padding0),
336 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au32Reserved0),
337
338 SSMFIELD_ENTRY( VMXVVMCS, u16Vpid),
339 SSMFIELD_ENTRY( VMXVVMCS, u16PostIntNotifyVector),
340 SSMFIELD_ENTRY( VMXVVMCS, u16EptpIndex),
341 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au16Reserved0),
342
343 SSMFIELD_ENTRY( VMXVVMCS, GuestEs),
344 SSMFIELD_ENTRY( VMXVVMCS, GuestCs),
345 SSMFIELD_ENTRY( VMXVVMCS, GuestSs),
346 SSMFIELD_ENTRY( VMXVVMCS, GuestDs),
347 SSMFIELD_ENTRY( VMXVVMCS, GuestFs),
348 SSMFIELD_ENTRY( VMXVVMCS, GuestGs),
349 SSMFIELD_ENTRY( VMXVVMCS, GuestLdtr),
350 SSMFIELD_ENTRY( VMXVVMCS, GuestTr),
351 SSMFIELD_ENTRY( VMXVVMCS, u16GuestIntStatus),
352 SSMFIELD_ENTRY( VMXVVMCS, u16PmlIndex),
353 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au16Reserved1[8]),
354
355 SSMFIELD_ENTRY( VMXVVMCS, HostEs),
356 SSMFIELD_ENTRY( VMXVVMCS, HostCs),
357 SSMFIELD_ENTRY( VMXVVMCS, HostSs),
358 SSMFIELD_ENTRY( VMXVVMCS, HostDs),
359 SSMFIELD_ENTRY( VMXVVMCS, HostFs),
360 SSMFIELD_ENTRY( VMXVVMCS, HostGs),
361 SSMFIELD_ENTRY( VMXVVMCS, HostTr),
362 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au16Reserved2),
363
364 SSMFIELD_ENTRY( VMXVVMCS, u32PinCtls),
365 SSMFIELD_ENTRY( VMXVVMCS, u32ProcCtls),
366 SSMFIELD_ENTRY( VMXVVMCS, u32XcptBitmap),
367 SSMFIELD_ENTRY( VMXVVMCS, u32XcptPFMask),
368 SSMFIELD_ENTRY( VMXVVMCS, u32XcptPFMatch),
369 SSMFIELD_ENTRY( VMXVVMCS, u32Cr3TargetCount),
370 SSMFIELD_ENTRY( VMXVVMCS, u32ExitCtls),
371 SSMFIELD_ENTRY( VMXVVMCS, u32ExitMsrStoreCount),
372 SSMFIELD_ENTRY( VMXVVMCS, u32ExitMsrLoadCount),
373 SSMFIELD_ENTRY( VMXVVMCS, u32EntryCtls),
374 SSMFIELD_ENTRY( VMXVVMCS, u32EntryMsrLoadCount),
375 SSMFIELD_ENTRY( VMXVVMCS, u32EntryIntInfo),
376 SSMFIELD_ENTRY( VMXVVMCS, u32EntryXcptErrCode),
377 SSMFIELD_ENTRY( VMXVVMCS, u32EntryInstrLen),
378 SSMFIELD_ENTRY( VMXVVMCS, u32TprThreshold),
379 SSMFIELD_ENTRY( VMXVVMCS, u32ProcCtls2),
380 SSMFIELD_ENTRY( VMXVVMCS, u32PleGap),
381 SSMFIELD_ENTRY( VMXVVMCS, u32PleWindow),
382 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au32Reserved1),
383
384 SSMFIELD_ENTRY( VMXVVMCS, u32RoVmInstrError),
385 SSMFIELD_ENTRY( VMXVVMCS, u32RoExitReason),
386 SSMFIELD_ENTRY( VMXVVMCS, u32RoExitIntInfo),
387 SSMFIELD_ENTRY( VMXVVMCS, u32RoExitIntErrCode),
388 SSMFIELD_ENTRY( VMXVVMCS, u32RoIdtVectoringInfo),
389 SSMFIELD_ENTRY( VMXVVMCS, u32RoIdtVectoringErrCode),
390 SSMFIELD_ENTRY( VMXVVMCS, u32RoExitInstrLen),
391 SSMFIELD_ENTRY( VMXVVMCS, u32RoExitInstrInfo),
392 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au32RoReserved2),
393
394 SSMFIELD_ENTRY( VMXVVMCS, u32GuestEsLimit),
395 SSMFIELD_ENTRY( VMXVVMCS, u32GuestCsLimit),
396 SSMFIELD_ENTRY( VMXVVMCS, u32GuestSsLimit),
397 SSMFIELD_ENTRY( VMXVVMCS, u32GuestDsLimit),
398 SSMFIELD_ENTRY( VMXVVMCS, u32GuestFsLimit),
399 SSMFIELD_ENTRY( VMXVVMCS, u32GuestGsLimit),
400 SSMFIELD_ENTRY( VMXVVMCS, u32GuestLdtrLimit),
401 SSMFIELD_ENTRY( VMXVVMCS, u32GuestTrLimit),
402 SSMFIELD_ENTRY( VMXVVMCS, u32GuestGdtrLimit),
403 SSMFIELD_ENTRY( VMXVVMCS, u32GuestIdtrLimit),
404 SSMFIELD_ENTRY( VMXVVMCS, u32GuestEsAttr),
405 SSMFIELD_ENTRY( VMXVVMCS, u32GuestCsAttr),
406 SSMFIELD_ENTRY( VMXVVMCS, u32GuestSsAttr),
407 SSMFIELD_ENTRY( VMXVVMCS, u32GuestDsAttr),
408 SSMFIELD_ENTRY( VMXVVMCS, u32GuestFsAttr),
409 SSMFIELD_ENTRY( VMXVVMCS, u32GuestGsAttr),
410 SSMFIELD_ENTRY( VMXVVMCS, u32GuestLdtrAttr),
411 SSMFIELD_ENTRY( VMXVVMCS, u32GuestTrAttr),
412 SSMFIELD_ENTRY( VMXVVMCS, u32GuestIntrState),
413 SSMFIELD_ENTRY( VMXVVMCS, u32GuestActivityState),
414 SSMFIELD_ENTRY( VMXVVMCS, u32GuestSmBase),
415 SSMFIELD_ENTRY( VMXVVMCS, u32GuestSysenterCS),
416 SSMFIELD_ENTRY( VMXVVMCS, u32PreemptTimer),
417 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au32Reserved3),
418
419 SSMFIELD_ENTRY( VMXVVMCS, u32HostSysenterCs),
420 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au32Reserved4),
421
422 SSMFIELD_ENTRY( VMXVVMCS, u64AddrIoBitmapA),
423 SSMFIELD_ENTRY( VMXVVMCS, u64AddrIoBitmapB),
424 SSMFIELD_ENTRY( VMXVVMCS, u64AddrMsrBitmap),
425 SSMFIELD_ENTRY( VMXVVMCS, u64AddrExitMsrStore),
426 SSMFIELD_ENTRY( VMXVVMCS, u64AddrExitMsrLoad),
427 SSMFIELD_ENTRY( VMXVVMCS, u64AddrEntryMsrLoad),
428 SSMFIELD_ENTRY( VMXVVMCS, u64ExecVmcsPtr),
429 SSMFIELD_ENTRY( VMXVVMCS, u64AddrPml),
430 SSMFIELD_ENTRY( VMXVVMCS, u64TscOffset),
431 SSMFIELD_ENTRY( VMXVVMCS, u64AddrVirtApic),
432 SSMFIELD_ENTRY( VMXVVMCS, u64AddrApicAccess),
433 SSMFIELD_ENTRY( VMXVVMCS, u64AddrPostedIntDesc),
434 SSMFIELD_ENTRY( VMXVVMCS, u64VmFuncCtls),
435 SSMFIELD_ENTRY( VMXVVMCS, u64EptpPtr),
436 SSMFIELD_ENTRY( VMXVVMCS, u64EoiExitBitmap0),
437 SSMFIELD_ENTRY( VMXVVMCS, u64EoiExitBitmap1),
438 SSMFIELD_ENTRY( VMXVVMCS, u64EoiExitBitmap2),
439 SSMFIELD_ENTRY( VMXVVMCS, u64EoiExitBitmap3),
440 SSMFIELD_ENTRY( VMXVVMCS, u64AddrEptpList),
441 SSMFIELD_ENTRY( VMXVVMCS, u64AddrVmreadBitmap),
442 SSMFIELD_ENTRY( VMXVVMCS, u64AddrVmwriteBitmap),
443 SSMFIELD_ENTRY( VMXVVMCS, u64AddrXcptVeInfo),
444 SSMFIELD_ENTRY( VMXVVMCS, u64XssBitmap),
445 SSMFIELD_ENTRY( VMXVVMCS, u64EnclsBitmap),
446 SSMFIELD_ENTRY( VMXVVMCS, u64SpptPtr),
447 SSMFIELD_ENTRY( VMXVVMCS, u64TscMultiplier),
448 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved0),
449
450 SSMFIELD_ENTRY( VMXVVMCS, u64RoGuestPhysAddr),
451 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved1),
452
453 SSMFIELD_ENTRY( VMXVVMCS, u64VmcsLinkPtr),
454 SSMFIELD_ENTRY( VMXVVMCS, u64GuestDebugCtlMsr),
455 SSMFIELD_ENTRY( VMXVVMCS, u64GuestPatMsr),
456 SSMFIELD_ENTRY( VMXVVMCS, u64GuestEferMsr),
457 SSMFIELD_ENTRY( VMXVVMCS, u64GuestPerfGlobalCtlMsr),
458 SSMFIELD_ENTRY( VMXVVMCS, u64GuestPdpte0),
459 SSMFIELD_ENTRY( VMXVVMCS, u64GuestPdpte1),
460 SSMFIELD_ENTRY( VMXVVMCS, u64GuestPdpte2),
461 SSMFIELD_ENTRY( VMXVVMCS, u64GuestPdpte3),
462 SSMFIELD_ENTRY( VMXVVMCS, u64GuestBndcfgsMsr),
463 SSMFIELD_ENTRY( VMXVVMCS, u64GuestRtitCtlMsr),
464 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved2),
465
466 SSMFIELD_ENTRY( VMXVVMCS, u64HostPatMsr),
467 SSMFIELD_ENTRY( VMXVVMCS, u64HostEferMsr),
468 SSMFIELD_ENTRY( VMXVVMCS, u64HostPerfGlobalCtlMsr),
469 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved3),
470
471 SSMFIELD_ENTRY( VMXVVMCS, u64Cr0Mask),
472 SSMFIELD_ENTRY( VMXVVMCS, u64Cr4Mask),
473 SSMFIELD_ENTRY( VMXVVMCS, u64Cr0ReadShadow),
474 SSMFIELD_ENTRY( VMXVVMCS, u64Cr4ReadShadow),
475 SSMFIELD_ENTRY( VMXVVMCS, u64Cr3Target0),
476 SSMFIELD_ENTRY( VMXVVMCS, u64Cr3Target1),
477 SSMFIELD_ENTRY( VMXVVMCS, u64Cr3Target2),
478 SSMFIELD_ENTRY( VMXVVMCS, u64Cr3Target3),
479 SSMFIELD_ENTRY( VMXVVMCS, au64Reserved4),
480
481 SSMFIELD_ENTRY( VMXVVMCS, u64RoExitQual),
482 SSMFIELD_ENTRY( VMXVVMCS, u64RoIoRcx),
483 SSMFIELD_ENTRY( VMXVVMCS, u64RoIoRsi),
484 SSMFIELD_ENTRY( VMXVVMCS, u64RoIoRdi),
485 SSMFIELD_ENTRY( VMXVVMCS, u64RoIoRip),
486 SSMFIELD_ENTRY( VMXVVMCS, u64RoGuestLinearAddr),
487 SSMFIELD_ENTRY( VMXVVMCS, au64Reserved5),
488
489 SSMFIELD_ENTRY( VMXVVMCS, u64GuestCr0),
490 SSMFIELD_ENTRY( VMXVVMCS, u64GuestCr3),
491 SSMFIELD_ENTRY( VMXVVMCS, u64GuestCr4),
492 SSMFIELD_ENTRY( VMXVVMCS, u64GuestEsBase),
493 SSMFIELD_ENTRY( VMXVVMCS, u64GuestCsBase),
494 SSMFIELD_ENTRY( VMXVVMCS, u64GuestSsBase),
495 SSMFIELD_ENTRY( VMXVVMCS, u64GuestDsBase),
496 SSMFIELD_ENTRY( VMXVVMCS, u64GuestFsBase),
497 SSMFIELD_ENTRY( VMXVVMCS, u64GuestGsBase),
498 SSMFIELD_ENTRY( VMXVVMCS, u64GuestLdtrBase),
499 SSMFIELD_ENTRY( VMXVVMCS, u64GuestTrBase),
500 SSMFIELD_ENTRY( VMXVVMCS, u64GuestGdtrBase),
501 SSMFIELD_ENTRY( VMXVVMCS, u64GuestIdtrBase),
502 SSMFIELD_ENTRY( VMXVVMCS, u64GuestDr7),
503 SSMFIELD_ENTRY( VMXVVMCS, u64GuestRsp),
504 SSMFIELD_ENTRY( VMXVVMCS, u64GuestRip),
505 SSMFIELD_ENTRY( VMXVVMCS, u64GuestRFlags),
506 SSMFIELD_ENTRY( VMXVVMCS, u64GuestPendingDbgXcpt),
507 SSMFIELD_ENTRY( VMXVVMCS, u64GuestSysenterEsp),
508 SSMFIELD_ENTRY( VMXVVMCS, u64GuestSysenterEip),
509 SSMFIELD_ENTRY( VMXVVMCS, au64Reserved6),
510
511 SSMFIELD_ENTRY( VMXVVMCS, u64HostCr0),
512 SSMFIELD_ENTRY( VMXVVMCS, u64HostCr3),
513 SSMFIELD_ENTRY( VMXVVMCS, u64HostCr4),
514 SSMFIELD_ENTRY( VMXVVMCS, u64HostFsBase),
515 SSMFIELD_ENTRY( VMXVVMCS, u64HostGsBase),
516 SSMFIELD_ENTRY( VMXVVMCS, u64HostTrBase),
517 SSMFIELD_ENTRY( VMXVVMCS, u64HostGdtrBase),
518 SSMFIELD_ENTRY( VMXVVMCS, u64HostIdtrBase),
519 SSMFIELD_ENTRY( VMXVVMCS, u64HostSysenterEsp),
520 SSMFIELD_ENTRY( VMXVVMCS, u64HostSysenterEip),
521 SSMFIELD_ENTRY( VMXVVMCS, u64HostRsp),
522 SSMFIELD_ENTRY( VMXVVMCS, u64HostRip),
523 SSMFIELD_ENTRY( VMXVVMCS, au64Reserved7),
524 SSMFIELD_ENTRY_TERM()
525};
526
527/** Saved state field descriptors for CPUMCTX. */
528static const SSMFIELD g_aCpumX87Fields[] =
529{
530 SSMFIELD_ENTRY( X86FXSTATE, FCW),
531 SSMFIELD_ENTRY( X86FXSTATE, FSW),
532 SSMFIELD_ENTRY( X86FXSTATE, FTW),
533 SSMFIELD_ENTRY( X86FXSTATE, FOP),
534 SSMFIELD_ENTRY( X86FXSTATE, FPUIP),
535 SSMFIELD_ENTRY( X86FXSTATE, CS),
536 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd1),
537 SSMFIELD_ENTRY( X86FXSTATE, FPUDP),
538 SSMFIELD_ENTRY( X86FXSTATE, DS),
539 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd2),
540 SSMFIELD_ENTRY( X86FXSTATE, MXCSR),
541 SSMFIELD_ENTRY( X86FXSTATE, MXCSR_MASK),
542 SSMFIELD_ENTRY( X86FXSTATE, aRegs[0]),
543 SSMFIELD_ENTRY( X86FXSTATE, aRegs[1]),
544 SSMFIELD_ENTRY( X86FXSTATE, aRegs[2]),
545 SSMFIELD_ENTRY( X86FXSTATE, aRegs[3]),
546 SSMFIELD_ENTRY( X86FXSTATE, aRegs[4]),
547 SSMFIELD_ENTRY( X86FXSTATE, aRegs[5]),
548 SSMFIELD_ENTRY( X86FXSTATE, aRegs[6]),
549 SSMFIELD_ENTRY( X86FXSTATE, aRegs[7]),
550 SSMFIELD_ENTRY( X86FXSTATE, aXMM[0]),
551 SSMFIELD_ENTRY( X86FXSTATE, aXMM[1]),
552 SSMFIELD_ENTRY( X86FXSTATE, aXMM[2]),
553 SSMFIELD_ENTRY( X86FXSTATE, aXMM[3]),
554 SSMFIELD_ENTRY( X86FXSTATE, aXMM[4]),
555 SSMFIELD_ENTRY( X86FXSTATE, aXMM[5]),
556 SSMFIELD_ENTRY( X86FXSTATE, aXMM[6]),
557 SSMFIELD_ENTRY( X86FXSTATE, aXMM[7]),
558 SSMFIELD_ENTRY( X86FXSTATE, aXMM[8]),
559 SSMFIELD_ENTRY( X86FXSTATE, aXMM[9]),
560 SSMFIELD_ENTRY( X86FXSTATE, aXMM[10]),
561 SSMFIELD_ENTRY( X86FXSTATE, aXMM[11]),
562 SSMFIELD_ENTRY( X86FXSTATE, aXMM[12]),
563 SSMFIELD_ENTRY( X86FXSTATE, aXMM[13]),
564 SSMFIELD_ENTRY( X86FXSTATE, aXMM[14]),
565 SSMFIELD_ENTRY( X86FXSTATE, aXMM[15]),
566 SSMFIELD_ENTRY_VER( X86FXSTATE, au32RsrvdForSoftware[0], CPUM_SAVED_STATE_VERSION_XSAVE), /* 32-bit/64-bit hack */
567 SSMFIELD_ENTRY_TERM()
568};
569
570/** Saved state field descriptors for X86XSAVEHDR. */
571static const SSMFIELD g_aCpumXSaveHdrFields[] =
572{
573 SSMFIELD_ENTRY( X86XSAVEHDR, bmXState),
574 SSMFIELD_ENTRY_TERM()
575};
576
577/** Saved state field descriptors for X86XSAVEYMMHI. */
578static const SSMFIELD g_aCpumYmmHiFields[] =
579{
580 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[0]),
581 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[1]),
582 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[2]),
583 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[3]),
584 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[4]),
585 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[5]),
586 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[6]),
587 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[7]),
588 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[8]),
589 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[9]),
590 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[10]),
591 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[11]),
592 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[12]),
593 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[13]),
594 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[14]),
595 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[15]),
596 SSMFIELD_ENTRY_TERM()
597};
598
599/** Saved state field descriptors for X86XSAVEBNDREGS. */
600static const SSMFIELD g_aCpumBndRegsFields[] =
601{
602 SSMFIELD_ENTRY( X86XSAVEBNDREGS, aRegs[0]),
603 SSMFIELD_ENTRY( X86XSAVEBNDREGS, aRegs[1]),
604 SSMFIELD_ENTRY( X86XSAVEBNDREGS, aRegs[2]),
605 SSMFIELD_ENTRY( X86XSAVEBNDREGS, aRegs[3]),
606 SSMFIELD_ENTRY_TERM()
607};
608
609/** Saved state field descriptors for X86XSAVEBNDCFG. */
610static const SSMFIELD g_aCpumBndCfgFields[] =
611{
612 SSMFIELD_ENTRY( X86XSAVEBNDCFG, fConfig),
613 SSMFIELD_ENTRY( X86XSAVEBNDCFG, fStatus),
614 SSMFIELD_ENTRY_TERM()
615};
616
617#if 0 /** @todo */
618/** Saved state field descriptors for X86XSAVEOPMASK. */
619static const SSMFIELD g_aCpumOpmaskFields[] =
620{
621 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[0]),
622 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[1]),
623 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[2]),
624 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[3]),
625 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[4]),
626 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[5]),
627 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[6]),
628 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[7]),
629 SSMFIELD_ENTRY_TERM()
630};
631#endif
632
633/** Saved state field descriptors for X86XSAVEZMMHI256. */
634static const SSMFIELD g_aCpumZmmHi256Fields[] =
635{
636 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[0]),
637 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[1]),
638 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[2]),
639 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[3]),
640 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[4]),
641 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[5]),
642 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[6]),
643 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[7]),
644 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[8]),
645 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[9]),
646 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[10]),
647 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[11]),
648 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[12]),
649 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[13]),
650 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[14]),
651 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[15]),
652 SSMFIELD_ENTRY_TERM()
653};
654
655/** Saved state field descriptors for X86XSAVEZMM16HI. */
656static const SSMFIELD g_aCpumZmm16HiFields[] =
657{
658 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[0]),
659 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[1]),
660 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[2]),
661 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[3]),
662 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[4]),
663 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[5]),
664 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[6]),
665 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[7]),
666 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[8]),
667 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[9]),
668 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[10]),
669 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[11]),
670 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[12]),
671 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[13]),
672 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[14]),
673 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[15]),
674 SSMFIELD_ENTRY_TERM()
675};
676
677
678
679/** Saved state field descriptors for CPUMCTX in V4.1 before the hidden selector
680 * registeres changed. */
681static const SSMFIELD g_aCpumX87FieldsMem[] =
682{
683 SSMFIELD_ENTRY( X86FXSTATE, FCW),
684 SSMFIELD_ENTRY( X86FXSTATE, FSW),
685 SSMFIELD_ENTRY( X86FXSTATE, FTW),
686 SSMFIELD_ENTRY( X86FXSTATE, FOP),
687 SSMFIELD_ENTRY( X86FXSTATE, FPUIP),
688 SSMFIELD_ENTRY( X86FXSTATE, CS),
689 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd1),
690 SSMFIELD_ENTRY( X86FXSTATE, FPUDP),
691 SSMFIELD_ENTRY( X86FXSTATE, DS),
692 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd2),
693 SSMFIELD_ENTRY( X86FXSTATE, MXCSR),
694 SSMFIELD_ENTRY( X86FXSTATE, MXCSR_MASK),
695 SSMFIELD_ENTRY( X86FXSTATE, aRegs[0]),
696 SSMFIELD_ENTRY( X86FXSTATE, aRegs[1]),
697 SSMFIELD_ENTRY( X86FXSTATE, aRegs[2]),
698 SSMFIELD_ENTRY( X86FXSTATE, aRegs[3]),
699 SSMFIELD_ENTRY( X86FXSTATE, aRegs[4]),
700 SSMFIELD_ENTRY( X86FXSTATE, aRegs[5]),
701 SSMFIELD_ENTRY( X86FXSTATE, aRegs[6]),
702 SSMFIELD_ENTRY( X86FXSTATE, aRegs[7]),
703 SSMFIELD_ENTRY( X86FXSTATE, aXMM[0]),
704 SSMFIELD_ENTRY( X86FXSTATE, aXMM[1]),
705 SSMFIELD_ENTRY( X86FXSTATE, aXMM[2]),
706 SSMFIELD_ENTRY( X86FXSTATE, aXMM[3]),
707 SSMFIELD_ENTRY( X86FXSTATE, aXMM[4]),
708 SSMFIELD_ENTRY( X86FXSTATE, aXMM[5]),
709 SSMFIELD_ENTRY( X86FXSTATE, aXMM[6]),
710 SSMFIELD_ENTRY( X86FXSTATE, aXMM[7]),
711 SSMFIELD_ENTRY( X86FXSTATE, aXMM[8]),
712 SSMFIELD_ENTRY( X86FXSTATE, aXMM[9]),
713 SSMFIELD_ENTRY( X86FXSTATE, aXMM[10]),
714 SSMFIELD_ENTRY( X86FXSTATE, aXMM[11]),
715 SSMFIELD_ENTRY( X86FXSTATE, aXMM[12]),
716 SSMFIELD_ENTRY( X86FXSTATE, aXMM[13]),
717 SSMFIELD_ENTRY( X86FXSTATE, aXMM[14]),
718 SSMFIELD_ENTRY( X86FXSTATE, aXMM[15]),
719 SSMFIELD_ENTRY_IGNORE( X86FXSTATE, au32RsrvdRest),
720 SSMFIELD_ENTRY_IGNORE( X86FXSTATE, au32RsrvdForSoftware),
721};
722
723/** Saved state field descriptors for CPUMCTX in V4.1 before the hidden selector
724 * registeres changed. */
725static const SSMFIELD g_aCpumCtxFieldsMem[] =
726{
727 SSMFIELD_ENTRY( CPUMCTX, rdi),
728 SSMFIELD_ENTRY( CPUMCTX, rsi),
729 SSMFIELD_ENTRY( CPUMCTX, rbp),
730 SSMFIELD_ENTRY( CPUMCTX, rax),
731 SSMFIELD_ENTRY( CPUMCTX, rbx),
732 SSMFIELD_ENTRY( CPUMCTX, rdx),
733 SSMFIELD_ENTRY( CPUMCTX, rcx),
734 SSMFIELD_ENTRY( CPUMCTX, rsp),
735 SSMFIELD_ENTRY_OLD( lss_esp, sizeof(uint32_t)),
736 SSMFIELD_ENTRY( CPUMCTX, ss.Sel),
737 SSMFIELD_ENTRY_OLD( ssPadding, sizeof(uint16_t)),
738 SSMFIELD_ENTRY( CPUMCTX, gs.Sel),
739 SSMFIELD_ENTRY_OLD( gsPadding, sizeof(uint16_t)),
740 SSMFIELD_ENTRY( CPUMCTX, fs.Sel),
741 SSMFIELD_ENTRY_OLD( fsPadding, sizeof(uint16_t)),
742 SSMFIELD_ENTRY( CPUMCTX, es.Sel),
743 SSMFIELD_ENTRY_OLD( esPadding, sizeof(uint16_t)),
744 SSMFIELD_ENTRY( CPUMCTX, ds.Sel),
745 SSMFIELD_ENTRY_OLD( dsPadding, sizeof(uint16_t)),
746 SSMFIELD_ENTRY( CPUMCTX, cs.Sel),
747 SSMFIELD_ENTRY_OLD( csPadding, sizeof(uint16_t)*3),
748 SSMFIELD_ENTRY( CPUMCTX, rflags),
749 SSMFIELD_ENTRY( CPUMCTX, rip),
750 SSMFIELD_ENTRY( CPUMCTX, r8),
751 SSMFIELD_ENTRY( CPUMCTX, r9),
752 SSMFIELD_ENTRY( CPUMCTX, r10),
753 SSMFIELD_ENTRY( CPUMCTX, r11),
754 SSMFIELD_ENTRY( CPUMCTX, r12),
755 SSMFIELD_ENTRY( CPUMCTX, r13),
756 SSMFIELD_ENTRY( CPUMCTX, r14),
757 SSMFIELD_ENTRY( CPUMCTX, r15),
758 SSMFIELD_ENTRY( CPUMCTX, es.u64Base),
759 SSMFIELD_ENTRY( CPUMCTX, es.u32Limit),
760 SSMFIELD_ENTRY( CPUMCTX, es.Attr),
761 SSMFIELD_ENTRY( CPUMCTX, cs.u64Base),
762 SSMFIELD_ENTRY( CPUMCTX, cs.u32Limit),
763 SSMFIELD_ENTRY( CPUMCTX, cs.Attr),
764 SSMFIELD_ENTRY( CPUMCTX, ss.u64Base),
765 SSMFIELD_ENTRY( CPUMCTX, ss.u32Limit),
766 SSMFIELD_ENTRY( CPUMCTX, ss.Attr),
767 SSMFIELD_ENTRY( CPUMCTX, ds.u64Base),
768 SSMFIELD_ENTRY( CPUMCTX, ds.u32Limit),
769 SSMFIELD_ENTRY( CPUMCTX, ds.Attr),
770 SSMFIELD_ENTRY( CPUMCTX, fs.u64Base),
771 SSMFIELD_ENTRY( CPUMCTX, fs.u32Limit),
772 SSMFIELD_ENTRY( CPUMCTX, fs.Attr),
773 SSMFIELD_ENTRY( CPUMCTX, gs.u64Base),
774 SSMFIELD_ENTRY( CPUMCTX, gs.u32Limit),
775 SSMFIELD_ENTRY( CPUMCTX, gs.Attr),
776 SSMFIELD_ENTRY( CPUMCTX, cr0),
777 SSMFIELD_ENTRY( CPUMCTX, cr2),
778 SSMFIELD_ENTRY( CPUMCTX, cr3),
779 SSMFIELD_ENTRY( CPUMCTX, cr4),
780 SSMFIELD_ENTRY( CPUMCTX, dr[0]),
781 SSMFIELD_ENTRY( CPUMCTX, dr[1]),
782 SSMFIELD_ENTRY( CPUMCTX, dr[2]),
783 SSMFIELD_ENTRY( CPUMCTX, dr[3]),
784 SSMFIELD_ENTRY_OLD( dr[4], sizeof(uint64_t)),
785 SSMFIELD_ENTRY_OLD( dr[5], sizeof(uint64_t)),
786 SSMFIELD_ENTRY( CPUMCTX, dr[6]),
787 SSMFIELD_ENTRY( CPUMCTX, dr[7]),
788 SSMFIELD_ENTRY( CPUMCTX, gdtr.cbGdt),
789 SSMFIELD_ENTRY( CPUMCTX, gdtr.pGdt),
790 SSMFIELD_ENTRY_OLD( gdtrPadding, sizeof(uint16_t)),
791 SSMFIELD_ENTRY( CPUMCTX, idtr.cbIdt),
792 SSMFIELD_ENTRY( CPUMCTX, idtr.pIdt),
793 SSMFIELD_ENTRY_OLD( idtrPadding, sizeof(uint16_t)),
794 SSMFIELD_ENTRY( CPUMCTX, ldtr.Sel),
795 SSMFIELD_ENTRY_OLD( ldtrPadding, sizeof(uint16_t)),
796 SSMFIELD_ENTRY( CPUMCTX, tr.Sel),
797 SSMFIELD_ENTRY_OLD( trPadding, sizeof(uint16_t)),
798 SSMFIELD_ENTRY( CPUMCTX, SysEnter.cs),
799 SSMFIELD_ENTRY( CPUMCTX, SysEnter.eip),
800 SSMFIELD_ENTRY( CPUMCTX, SysEnter.esp),
801 SSMFIELD_ENTRY( CPUMCTX, msrEFER),
802 SSMFIELD_ENTRY( CPUMCTX, msrSTAR),
803 SSMFIELD_ENTRY( CPUMCTX, msrPAT),
804 SSMFIELD_ENTRY( CPUMCTX, msrLSTAR),
805 SSMFIELD_ENTRY( CPUMCTX, msrCSTAR),
806 SSMFIELD_ENTRY( CPUMCTX, msrSFMASK),
807 SSMFIELD_ENTRY( CPUMCTX, msrKERNELGSBASE),
808 SSMFIELD_ENTRY( CPUMCTX, ldtr.u64Base),
809 SSMFIELD_ENTRY( CPUMCTX, ldtr.u32Limit),
810 SSMFIELD_ENTRY( CPUMCTX, ldtr.Attr),
811 SSMFIELD_ENTRY( CPUMCTX, tr.u64Base),
812 SSMFIELD_ENTRY( CPUMCTX, tr.u32Limit),
813 SSMFIELD_ENTRY( CPUMCTX, tr.Attr),
814 SSMFIELD_ENTRY_TERM()
815};
816
817/** Saved state field descriptors for CPUMCTX_VER1_6. */
818static const SSMFIELD g_aCpumX87FieldsV16[] =
819{
820 SSMFIELD_ENTRY( X86FXSTATE, FCW),
821 SSMFIELD_ENTRY( X86FXSTATE, FSW),
822 SSMFIELD_ENTRY( X86FXSTATE, FTW),
823 SSMFIELD_ENTRY( X86FXSTATE, FOP),
824 SSMFIELD_ENTRY( X86FXSTATE, FPUIP),
825 SSMFIELD_ENTRY( X86FXSTATE, CS),
826 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd1),
827 SSMFIELD_ENTRY( X86FXSTATE, FPUDP),
828 SSMFIELD_ENTRY( X86FXSTATE, DS),
829 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd2),
830 SSMFIELD_ENTRY( X86FXSTATE, MXCSR),
831 SSMFIELD_ENTRY( X86FXSTATE, MXCSR_MASK),
832 SSMFIELD_ENTRY( X86FXSTATE, aRegs[0]),
833 SSMFIELD_ENTRY( X86FXSTATE, aRegs[1]),
834 SSMFIELD_ENTRY( X86FXSTATE, aRegs[2]),
835 SSMFIELD_ENTRY( X86FXSTATE, aRegs[3]),
836 SSMFIELD_ENTRY( X86FXSTATE, aRegs[4]),
837 SSMFIELD_ENTRY( X86FXSTATE, aRegs[5]),
838 SSMFIELD_ENTRY( X86FXSTATE, aRegs[6]),
839 SSMFIELD_ENTRY( X86FXSTATE, aRegs[7]),
840 SSMFIELD_ENTRY( X86FXSTATE, aXMM[0]),
841 SSMFIELD_ENTRY( X86FXSTATE, aXMM[1]),
842 SSMFIELD_ENTRY( X86FXSTATE, aXMM[2]),
843 SSMFIELD_ENTRY( X86FXSTATE, aXMM[3]),
844 SSMFIELD_ENTRY( X86FXSTATE, aXMM[4]),
845 SSMFIELD_ENTRY( X86FXSTATE, aXMM[5]),
846 SSMFIELD_ENTRY( X86FXSTATE, aXMM[6]),
847 SSMFIELD_ENTRY( X86FXSTATE, aXMM[7]),
848 SSMFIELD_ENTRY( X86FXSTATE, aXMM[8]),
849 SSMFIELD_ENTRY( X86FXSTATE, aXMM[9]),
850 SSMFIELD_ENTRY( X86FXSTATE, aXMM[10]),
851 SSMFIELD_ENTRY( X86FXSTATE, aXMM[11]),
852 SSMFIELD_ENTRY( X86FXSTATE, aXMM[12]),
853 SSMFIELD_ENTRY( X86FXSTATE, aXMM[13]),
854 SSMFIELD_ENTRY( X86FXSTATE, aXMM[14]),
855 SSMFIELD_ENTRY( X86FXSTATE, aXMM[15]),
856 SSMFIELD_ENTRY_IGNORE( X86FXSTATE, au32RsrvdRest),
857 SSMFIELD_ENTRY_IGNORE( X86FXSTATE, au32RsrvdForSoftware),
858 SSMFIELD_ENTRY_TERM()
859};
860
861/** Saved state field descriptors for CPUMCTX_VER1_6. */
862static const SSMFIELD g_aCpumCtxFieldsV16[] =
863{
864 SSMFIELD_ENTRY( CPUMCTX, rdi),
865 SSMFIELD_ENTRY( CPUMCTX, rsi),
866 SSMFIELD_ENTRY( CPUMCTX, rbp),
867 SSMFIELD_ENTRY( CPUMCTX, rax),
868 SSMFIELD_ENTRY( CPUMCTX, rbx),
869 SSMFIELD_ENTRY( CPUMCTX, rdx),
870 SSMFIELD_ENTRY( CPUMCTX, rcx),
871 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, rsp),
872 SSMFIELD_ENTRY( CPUMCTX, ss.Sel),
873 SSMFIELD_ENTRY_OLD( ssPadding, sizeof(uint16_t)),
874 SSMFIELD_ENTRY_OLD( CPUMCTX, sizeof(uint64_t) /*rsp_notused*/),
875 SSMFIELD_ENTRY( CPUMCTX, gs.Sel),
876 SSMFIELD_ENTRY_OLD( gsPadding, sizeof(uint16_t)),
877 SSMFIELD_ENTRY( CPUMCTX, fs.Sel),
878 SSMFIELD_ENTRY_OLD( fsPadding, sizeof(uint16_t)),
879 SSMFIELD_ENTRY( CPUMCTX, es.Sel),
880 SSMFIELD_ENTRY_OLD( esPadding, sizeof(uint16_t)),
881 SSMFIELD_ENTRY( CPUMCTX, ds.Sel),
882 SSMFIELD_ENTRY_OLD( dsPadding, sizeof(uint16_t)),
883 SSMFIELD_ENTRY( CPUMCTX, cs.Sel),
884 SSMFIELD_ENTRY_OLD( csPadding, sizeof(uint16_t)*3),
885 SSMFIELD_ENTRY( CPUMCTX, rflags),
886 SSMFIELD_ENTRY( CPUMCTX, rip),
887 SSMFIELD_ENTRY( CPUMCTX, r8),
888 SSMFIELD_ENTRY( CPUMCTX, r9),
889 SSMFIELD_ENTRY( CPUMCTX, r10),
890 SSMFIELD_ENTRY( CPUMCTX, r11),
891 SSMFIELD_ENTRY( CPUMCTX, r12),
892 SSMFIELD_ENTRY( CPUMCTX, r13),
893 SSMFIELD_ENTRY( CPUMCTX, r14),
894 SSMFIELD_ENTRY( CPUMCTX, r15),
895 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, es.u64Base),
896 SSMFIELD_ENTRY( CPUMCTX, es.u32Limit),
897 SSMFIELD_ENTRY( CPUMCTX, es.Attr),
898 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, cs.u64Base),
899 SSMFIELD_ENTRY( CPUMCTX, cs.u32Limit),
900 SSMFIELD_ENTRY( CPUMCTX, cs.Attr),
901 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, ss.u64Base),
902 SSMFIELD_ENTRY( CPUMCTX, ss.u32Limit),
903 SSMFIELD_ENTRY( CPUMCTX, ss.Attr),
904 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, ds.u64Base),
905 SSMFIELD_ENTRY( CPUMCTX, ds.u32Limit),
906 SSMFIELD_ENTRY( CPUMCTX, ds.Attr),
907 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, fs.u64Base),
908 SSMFIELD_ENTRY( CPUMCTX, fs.u32Limit),
909 SSMFIELD_ENTRY( CPUMCTX, fs.Attr),
910 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, gs.u64Base),
911 SSMFIELD_ENTRY( CPUMCTX, gs.u32Limit),
912 SSMFIELD_ENTRY( CPUMCTX, gs.Attr),
913 SSMFIELD_ENTRY( CPUMCTX, cr0),
914 SSMFIELD_ENTRY( CPUMCTX, cr2),
915 SSMFIELD_ENTRY( CPUMCTX, cr3),
916 SSMFIELD_ENTRY( CPUMCTX, cr4),
917 SSMFIELD_ENTRY_OLD( cr8, sizeof(uint64_t)),
918 SSMFIELD_ENTRY( CPUMCTX, dr[0]),
919 SSMFIELD_ENTRY( CPUMCTX, dr[1]),
920 SSMFIELD_ENTRY( CPUMCTX, dr[2]),
921 SSMFIELD_ENTRY( CPUMCTX, dr[3]),
922 SSMFIELD_ENTRY_OLD( dr[4], sizeof(uint64_t)),
923 SSMFIELD_ENTRY_OLD( dr[5], sizeof(uint64_t)),
924 SSMFIELD_ENTRY( CPUMCTX, dr[6]),
925 SSMFIELD_ENTRY( CPUMCTX, dr[7]),
926 SSMFIELD_ENTRY( CPUMCTX, gdtr.cbGdt),
927 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, gdtr.pGdt),
928 SSMFIELD_ENTRY_OLD( gdtrPadding, sizeof(uint16_t)),
929 SSMFIELD_ENTRY_OLD( gdtrPadding64, sizeof(uint64_t)),
930 SSMFIELD_ENTRY( CPUMCTX, idtr.cbIdt),
931 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, idtr.pIdt),
932 SSMFIELD_ENTRY_OLD( idtrPadding, sizeof(uint16_t)),
933 SSMFIELD_ENTRY_OLD( idtrPadding64, sizeof(uint64_t)),
934 SSMFIELD_ENTRY( CPUMCTX, ldtr.Sel),
935 SSMFIELD_ENTRY_OLD( ldtrPadding, sizeof(uint16_t)),
936 SSMFIELD_ENTRY( CPUMCTX, tr.Sel),
937 SSMFIELD_ENTRY_OLD( trPadding, sizeof(uint16_t)),
938 SSMFIELD_ENTRY( CPUMCTX, SysEnter.cs),
939 SSMFIELD_ENTRY( CPUMCTX, SysEnter.eip),
940 SSMFIELD_ENTRY( CPUMCTX, SysEnter.esp),
941 SSMFIELD_ENTRY( CPUMCTX, msrEFER),
942 SSMFIELD_ENTRY( CPUMCTX, msrSTAR),
943 SSMFIELD_ENTRY( CPUMCTX, msrPAT),
944 SSMFIELD_ENTRY( CPUMCTX, msrLSTAR),
945 SSMFIELD_ENTRY( CPUMCTX, msrCSTAR),
946 SSMFIELD_ENTRY( CPUMCTX, msrSFMASK),
947 SSMFIELD_ENTRY_OLD( msrFSBASE, sizeof(uint64_t)),
948 SSMFIELD_ENTRY_OLD( msrGSBASE, sizeof(uint64_t)),
949 SSMFIELD_ENTRY( CPUMCTX, msrKERNELGSBASE),
950 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, ldtr.u64Base),
951 SSMFIELD_ENTRY( CPUMCTX, ldtr.u32Limit),
952 SSMFIELD_ENTRY( CPUMCTX, ldtr.Attr),
953 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, tr.u64Base),
954 SSMFIELD_ENTRY( CPUMCTX, tr.u32Limit),
955 SSMFIELD_ENTRY( CPUMCTX, tr.Attr),
956 SSMFIELD_ENTRY_OLD( padding, sizeof(uint32_t)*2),
957 SSMFIELD_ENTRY_TERM()
958};
959
960
961/**
962 * Checks for partial/leaky FXSAVE/FXRSTOR handling on AMD CPUs.
963 *
964 * AMD K7, K8 and newer AMD CPUs do not save/restore the x87 error pointers
965 * (last instruction pointer, last data pointer, last opcode) except when the ES
966 * bit (Exception Summary) in x87 FSW (FPU Status Word) is set. Thus if we don't
967 * clear these registers there is potential, local FPU leakage from a process
968 * using the FPU to another.
969 *
970 * See AMD Instruction Reference for FXSAVE, FXRSTOR.
971 *
972 * @param pVM The cross context VM structure.
973 */
974static void cpumR3CheckLeakyFpu(PVM pVM)
975{
976 uint32_t u32CpuVersion = ASMCpuId_EAX(1);
977 uint32_t const u32Family = u32CpuVersion >> 8;
978 if ( u32Family >= 6 /* K7 and higher */
979 && ASMIsAmdCpu())
980 {
981 uint32_t cExt = ASMCpuId_EAX(0x80000000);
982 if (ASMIsValidExtRange(cExt))
983 {
984 uint32_t fExtFeaturesEDX = ASMCpuId_EDX(0x80000001);
985 if (fExtFeaturesEDX & X86_CPUID_AMD_FEATURE_EDX_FFXSR)
986 {
987 for (VMCPUID i = 0; i < pVM->cCpus; i++)
988 pVM->aCpus[i].cpum.s.fUseFlags |= CPUM_USE_FFXSR_LEAKY;
989 Log(("CPUM: Host CPU has leaky fxsave/fxrstor behaviour\n"));
990 }
991 }
992 }
993}
994
995
996/**
997 * Frees memory allocated for the SVM hardware virtualization state.
998 *
999 * @param pVM The cross context VM structure.
1000 */
1001static void cpumR3FreeSvmHwVirtState(PVM pVM)
1002{
1003 Assert(pVM->cpum.s.GuestFeatures.fSvm);
1004 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1005 {
1006 PVMCPU pVCpu = &pVM->aCpus[i];
1007 if (pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR3)
1008 {
1009 SUPR3PageFreeEx(pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR3, SVM_VMCB_PAGES);
1010 pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR3 = NULL;
1011 }
1012 pVCpu->cpum.s.Guest.hwvirt.svm.HCPhysVmcb = NIL_RTHCPHYS;
1013
1014 if (pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR3)
1015 {
1016 SUPR3PageFreeEx(pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR3, SVM_MSRPM_PAGES);
1017 pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR3 = NULL;
1018 }
1019
1020 if (pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR3)
1021 {
1022 SUPR3PageFreeEx(pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR3, SVM_IOPM_PAGES);
1023 pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR3 = NULL;
1024 }
1025 }
1026}
1027
1028
1029/**
1030 * Allocates memory for the SVM hardware virtualization state.
1031 *
1032 * @returns VBox status code.
1033 * @param pVM The cross context VM structure.
1034 */
1035static int cpumR3AllocSvmHwVirtState(PVM pVM)
1036{
1037 Assert(pVM->cpum.s.GuestFeatures.fSvm);
1038
1039 int rc = VINF_SUCCESS;
1040 LogRel(("CPUM: Allocating %u pages for the nested-guest SVM MSR and IO permission bitmaps\n",
1041 pVM->cCpus * (SVM_MSRPM_PAGES + SVM_IOPM_PAGES)));
1042 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1043 {
1044 PVMCPU pVCpu = &pVM->aCpus[i];
1045 pVCpu->cpum.s.Guest.hwvirt.enmHwvirt = CPUMHWVIRT_SVM;
1046
1047 /*
1048 * Allocate the nested-guest VMCB.
1049 */
1050 SUPPAGE SupNstGstVmcbPage;
1051 RT_ZERO(SupNstGstVmcbPage);
1052 SupNstGstVmcbPage.Phys = NIL_RTHCPHYS;
1053 Assert(SVM_VMCB_PAGES == 1);
1054 Assert(!pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR3);
1055 rc = SUPR3PageAllocEx(SVM_VMCB_PAGES, 0 /* fFlags */, (void **)&pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR3,
1056 &pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR0, &SupNstGstVmcbPage);
1057 if (RT_FAILURE(rc))
1058 {
1059 Assert(!pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR3);
1060 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's VMCB\n", pVCpu->idCpu, SVM_VMCB_PAGES));
1061 break;
1062 }
1063 pVCpu->cpum.s.Guest.hwvirt.svm.HCPhysVmcb = SupNstGstVmcbPage.Phys;
1064
1065 /*
1066 * Allocate the MSRPM (MSR Permission bitmap).
1067 */
1068 Assert(!pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR3);
1069 rc = SUPR3PageAllocEx(SVM_MSRPM_PAGES, 0 /* fFlags */, &pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR3,
1070 &pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR0, NULL /* paPages */);
1071 if (RT_FAILURE(rc))
1072 {
1073 Assert(!pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR3);
1074 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's MSR permission bitmap\n", pVCpu->idCpu,
1075 SVM_MSRPM_PAGES));
1076 break;
1077 }
1078
1079 /*
1080 * Allocate the IOPM (IO Permission bitmap).
1081 */
1082 Assert(!pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR3);
1083 rc = SUPR3PageAllocEx(SVM_IOPM_PAGES, 0 /* fFlags */, &pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR3,
1084 &pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR0, NULL /* paPages */);
1085 if (RT_FAILURE(rc))
1086 {
1087 Assert(!pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR3);
1088 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's IO permission bitmap\n", pVCpu->idCpu,
1089 SVM_IOPM_PAGES));
1090 break;
1091 }
1092 }
1093
1094 /* On any failure, cleanup. */
1095 if (RT_FAILURE(rc))
1096 cpumR3FreeSvmHwVirtState(pVM);
1097
1098 return rc;
1099}
1100
1101
1102/**
1103 * Resets per-VCPU SVM hardware virtualization state.
1104 *
1105 * @param pVCpu The cross context virtual CPU structure.
1106 */
1107DECLINLINE(void) cpumR3ResetSvmHwVirtState(PVMCPU pVCpu)
1108{
1109 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
1110 Assert(pCtx->hwvirt.enmHwvirt == CPUMHWVIRT_SVM);
1111 Assert(pCtx->hwvirt.svm.CTX_SUFF(pVmcb));
1112
1113 memset(pCtx->hwvirt.svm.CTX_SUFF(pVmcb), 0, SVM_VMCB_PAGES << PAGE_SHIFT);
1114 pCtx->hwvirt.svm.uMsrHSavePa = 0;
1115 pCtx->hwvirt.svm.uPrevPauseTick = 0;
1116}
1117
1118
1119/**
1120 * Frees memory allocated for the VMX hardware virtualization state.
1121 *
1122 * @param pVM The cross context VM structure.
1123 */
1124static void cpumR3FreeVmxHwVirtState(PVM pVM)
1125{
1126 Assert(pVM->cpum.s.GuestFeatures.fVmx);
1127 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1128 {
1129 PVMCPU pVCpu = &pVM->aCpus[i];
1130 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
1131
1132 if (pCtx->hwvirt.vmx.pVmcsR3)
1133 {
1134 SUPR3ContFree(pCtx->hwvirt.vmx.pVmcsR3, VMX_V_VMCS_PAGES);
1135 pCtx->hwvirt.vmx.pVmcsR3 = NULL;
1136 }
1137 if (pCtx->hwvirt.vmx.pShadowVmcsR3)
1138 {
1139 SUPR3ContFree(pCtx->hwvirt.vmx.pShadowVmcsR3, VMX_V_VMCS_PAGES);
1140 pCtx->hwvirt.vmx.pShadowVmcsR3 = NULL;
1141 }
1142 if (pCtx->hwvirt.vmx.pvVmreadBitmapR3)
1143 {
1144 SUPR3ContFree(pCtx->hwvirt.vmx.pvVmreadBitmapR3, VMX_V_VMREAD_VMWRITE_BITMAP_PAGES);
1145 pCtx->hwvirt.vmx.pvVmreadBitmapR3 = NULL;
1146 }
1147 if (pCtx->hwvirt.vmx.pvVmwriteBitmapR3)
1148 {
1149 SUPR3ContFree(pCtx->hwvirt.vmx.pvVmwriteBitmapR3, VMX_V_VMREAD_VMWRITE_BITMAP_PAGES);
1150 pCtx->hwvirt.vmx.pvVmwriteBitmapR3 = NULL;
1151 }
1152 if (pCtx->hwvirt.vmx.pEntryMsrLoadAreaR3)
1153 {
1154 SUPR3ContFree(pCtx->hwvirt.vmx.pEntryMsrLoadAreaR3, VMX_V_AUTOMSR_AREA_PAGES);
1155 pCtx->hwvirt.vmx.pEntryMsrLoadAreaR3 = NULL;
1156 }
1157 if (pCtx->hwvirt.vmx.pExitMsrStoreAreaR3)
1158 {
1159 SUPR3ContFree(pCtx->hwvirt.vmx.pExitMsrStoreAreaR3, VMX_V_AUTOMSR_AREA_PAGES);
1160 pCtx->hwvirt.vmx.pExitMsrStoreAreaR3 = NULL;
1161 }
1162 if (pCtx->hwvirt.vmx.pExitMsrLoadAreaR3)
1163 {
1164 SUPR3ContFree(pCtx->hwvirt.vmx.pExitMsrLoadAreaR3, VMX_V_AUTOMSR_AREA_PAGES);
1165 pCtx->hwvirt.vmx.pExitMsrLoadAreaR3 = NULL;
1166 }
1167 if (pCtx->hwvirt.vmx.pvMsrBitmapR3)
1168 {
1169 SUPR3ContFree(pCtx->hwvirt.vmx.pvMsrBitmapR3, VMX_V_MSR_BITMAP_PAGES);
1170 pCtx->hwvirt.vmx.pvMsrBitmapR3 = NULL;
1171 }
1172 if (pCtx->hwvirt.vmx.pvIoBitmapR3)
1173 {
1174 SUPR3ContFree(pCtx->hwvirt.vmx.pvIoBitmapR3, VMX_V_IO_BITMAP_A_PAGES + VMX_V_IO_BITMAP_B_PAGES);
1175 pCtx->hwvirt.vmx.pvIoBitmapR3 = NULL;
1176 }
1177 }
1178}
1179
1180
1181/**
1182 * Allocates memory for the VMX hardware virtualization state.
1183 *
1184 * @returns VBox status code.
1185 * @param pVM The cross context VM structure.
1186 */
1187static int cpumR3AllocVmxHwVirtState(PVM pVM)
1188{
1189 int rc = VINF_SUCCESS;
1190 uint32_t const cPages = (2 * VMX_V_VMCS_PAGES)
1191 + VMX_V_VIRT_APIC_PAGES
1192 + (2 * VMX_V_VMREAD_VMWRITE_BITMAP_SIZE)
1193 + (3 * VMX_V_AUTOMSR_AREA_SIZE)
1194 + VMX_V_MSR_BITMAP_SIZE
1195 + (VMX_V_IO_BITMAP_A_SIZE + VMX_V_IO_BITMAP_B_SIZE);
1196 LogRel(("CPUM: Allocating %u pages for the nested-guest VMCS and related structures\n", pVM->cCpus * cPages));
1197 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1198 {
1199 PVMCPU pVCpu = &pVM->aCpus[i];
1200 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
1201 pCtx->hwvirt.enmHwvirt = CPUMHWVIRT_VMX;
1202
1203 /*
1204 * Allocate the nested-guest current VMCS.
1205 */
1206 Assert(VMX_V_VMCS_PAGES == 1);
1207 pCtx->hwvirt.vmx.pVmcsR3 = (PVMXVVMCS)SUPR3ContAlloc(VMX_V_VMCS_PAGES,
1208 &pCtx->hwvirt.vmx.pVmcsR0,
1209 &pCtx->hwvirt.vmx.HCPhysVmcs);
1210 if (pCtx->hwvirt.vmx.pVmcsR3)
1211 { /* likely */ }
1212 else
1213 {
1214 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's VMCS\n", pVCpu->idCpu, VMX_V_VMCS_PAGES));
1215 break;
1216 }
1217
1218 /*
1219 * Allocate the nested-guest shadow VMCS.
1220 */
1221 Assert(VMX_V_VMCS_PAGES == 1);
1222 pCtx->hwvirt.vmx.pShadowVmcsR3 = (PVMXVVMCS)SUPR3ContAlloc(VMX_V_VMCS_PAGES,
1223 &pCtx->hwvirt.vmx.pShadowVmcsR0,
1224 &pCtx->hwvirt.vmx.HCPhysShadowVmcs);
1225 if (pCtx->hwvirt.vmx.pShadowVmcsR3)
1226 { /* likely */ }
1227 else
1228 {
1229 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's shadow VMCS\n", pVCpu->idCpu, VMX_V_VMCS_PAGES));
1230 break;
1231 }
1232
1233 /*
1234 * Allocate the VMREAD-bitmap.
1235 */
1236 pCtx->hwvirt.vmx.pvVmreadBitmapR3 = SUPR3ContAlloc(VMX_V_VMREAD_VMWRITE_BITMAP_PAGES,
1237 &pCtx->hwvirt.vmx.pvVmreadBitmapR0,
1238 &pCtx->hwvirt.vmx.HCPhysVmreadBitmap);
1239 if (pCtx->hwvirt.vmx.pvVmreadBitmapR3)
1240 { /* likely */ }
1241 else
1242 {
1243 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's VMREAD-bitmap\n", pVCpu->idCpu,
1244 VMX_V_VMREAD_VMWRITE_BITMAP_PAGES));
1245 break;
1246 }
1247
1248 /*
1249 * Allocatge the VMWRITE-bitmap.
1250 */
1251 pCtx->hwvirt.vmx.pvVmwriteBitmapR3 = SUPR3ContAlloc(VMX_V_VMREAD_VMWRITE_BITMAP_PAGES,
1252 &pCtx->hwvirt.vmx.pvVmwriteBitmapR0,
1253 &pCtx->hwvirt.vmx.HCPhysVmwriteBitmap);
1254 if (pCtx->hwvirt.vmx.pvVmwriteBitmapR3)
1255 { /* likely */ }
1256 else
1257 {
1258 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's VMWRITE-bitmap\n", pVCpu->idCpu,
1259 VMX_V_VMREAD_VMWRITE_BITMAP_PAGES));
1260 break;
1261 }
1262
1263 /*
1264 * Allocate the VM-entry MSR-load area.
1265 */
1266 pCtx->hwvirt.vmx.pEntryMsrLoadAreaR3 = (PVMXAUTOMSR)SUPR3ContAlloc(VMX_V_AUTOMSR_AREA_PAGES,
1267 &pCtx->hwvirt.vmx.pEntryMsrLoadAreaR0,
1268 &pCtx->hwvirt.vmx.HCPhysEntryMsrLoadArea);
1269 if (pCtx->hwvirt.vmx.pEntryMsrLoadAreaR3)
1270 { /* likely */ }
1271 else
1272 {
1273 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's VM-entry MSR-load area\n", pVCpu->idCpu,
1274 VMX_V_AUTOMSR_AREA_PAGES));
1275 break;
1276 }
1277
1278 /*
1279 * Allocate the VM-exit MSR-store area.
1280 */
1281 pCtx->hwvirt.vmx.pExitMsrStoreAreaR3 = (PVMXAUTOMSR)SUPR3ContAlloc(VMX_V_AUTOMSR_AREA_PAGES,
1282 &pCtx->hwvirt.vmx.pExitMsrStoreAreaR0,
1283 &pCtx->hwvirt.vmx.HCPhysExitMsrStoreArea);
1284 if (pCtx->hwvirt.vmx.pExitMsrStoreAreaR3)
1285 { /* likely */ }
1286 else
1287 {
1288 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's VM-exit MSR-store area\n", pVCpu->idCpu,
1289 VMX_V_AUTOMSR_AREA_PAGES));
1290 break;
1291 }
1292
1293 /*
1294 * Allocate the VM-exit MSR-load area.
1295 */
1296 pCtx->hwvirt.vmx.pExitMsrLoadAreaR3 = (PVMXAUTOMSR)SUPR3ContAlloc(VMX_V_AUTOMSR_AREA_PAGES,
1297 &pCtx->hwvirt.vmx.pExitMsrLoadAreaR0,
1298 &pCtx->hwvirt.vmx.HCPhysExitMsrLoadArea);
1299 if (pCtx->hwvirt.vmx.pExitMsrLoadAreaR3)
1300 { /* likely */ }
1301 else
1302 {
1303 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's VM-exit MSR-load area\n", pVCpu->idCpu,
1304 VMX_V_AUTOMSR_AREA_PAGES));
1305 break;
1306 }
1307
1308 /*
1309 * Allocate the MSR bitmap.
1310 */
1311 pCtx->hwvirt.vmx.pvMsrBitmapR3 = SUPR3ContAlloc(VMX_V_MSR_BITMAP_PAGES,
1312 &pCtx->hwvirt.vmx.pvMsrBitmapR0,
1313 &pCtx->hwvirt.vmx.HCPhysMsrBitmap);
1314 if (pCtx->hwvirt.vmx.pvMsrBitmapR3)
1315 { /* likely */ }
1316 else
1317 {
1318 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's MSR bitmap\n", pVCpu->idCpu,
1319 VMX_V_MSR_BITMAP_PAGES));
1320 break;
1321 }
1322
1323 /*
1324 * Allocate the I/O bitmaps (A and B).
1325 */
1326 pCtx->hwvirt.vmx.pvIoBitmapR3 = SUPR3ContAlloc(VMX_V_IO_BITMAP_A_PAGES + VMX_V_IO_BITMAP_B_PAGES,
1327 &pCtx->hwvirt.vmx.pvIoBitmapR0,
1328 &pCtx->hwvirt.vmx.HCPhysIoBitmap);
1329 if (pCtx->hwvirt.vmx.pvIoBitmapR3)
1330 { /* likely */ }
1331 else
1332 {
1333 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's I/O bitmaps\n", pVCpu->idCpu,
1334 VMX_V_IO_BITMAP_A_PAGES + VMX_V_IO_BITMAP_B_PAGES));
1335 break;
1336 }
1337
1338 /*
1339 * Zero out all allocated pages (should compress well for saved-state).
1340 */
1341 memset(pCtx->hwvirt.vmx.CTX_SUFF(pVmcs), 0, VMX_V_VMCS_SIZE);
1342 memset(pCtx->hwvirt.vmx.CTX_SUFF(pShadowVmcs), 0, VMX_V_VMCS_SIZE);
1343 memset(pCtx->hwvirt.vmx.CTX_SUFF(pvVmreadBitmap), 0, VMX_V_VMREAD_VMWRITE_BITMAP_SIZE);
1344 memset(pCtx->hwvirt.vmx.CTX_SUFF(pvVmwriteBitmap), 0, VMX_V_VMREAD_VMWRITE_BITMAP_SIZE);
1345 memset(pCtx->hwvirt.vmx.CTX_SUFF(pEntryMsrLoadArea), 0, VMX_V_AUTOMSR_AREA_SIZE);
1346 memset(pCtx->hwvirt.vmx.CTX_SUFF(pExitMsrStoreArea), 0, VMX_V_AUTOMSR_AREA_SIZE);
1347 memset(pCtx->hwvirt.vmx.CTX_SUFF(pExitMsrLoadArea), 0, VMX_V_AUTOMSR_AREA_SIZE);
1348 memset(pCtx->hwvirt.vmx.CTX_SUFF(pvMsrBitmap), 0, VMX_V_MSR_BITMAP_SIZE);
1349 memset(pCtx->hwvirt.vmx.CTX_SUFF(pvIoBitmap), 0, VMX_V_IO_BITMAP_A_SIZE + VMX_V_IO_BITMAP_B_SIZE);
1350 }
1351
1352 /* On any failure, cleanup. */
1353 if (RT_FAILURE(rc))
1354 cpumR3FreeVmxHwVirtState(pVM);
1355
1356 return rc;
1357}
1358
1359
1360/**
1361 * Resets per-VCPU VMX hardware virtualization state.
1362 *
1363 * @param pVCpu The cross context virtual CPU structure.
1364 */
1365DECLINLINE(void) cpumR3ResetVmxHwVirtState(PVMCPU pVCpu)
1366{
1367 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
1368 Assert(pCtx->hwvirt.enmHwvirt == CPUMHWVIRT_VMX);
1369 Assert(pCtx->hwvirt.vmx.CTX_SUFF(pVmcs));
1370 Assert(pCtx->hwvirt.vmx.CTX_SUFF(pShadowVmcs));
1371
1372 memset(pCtx->hwvirt.vmx.CTX_SUFF(pVmcs), 0, VMX_V_VMCS_SIZE);
1373 memset(pCtx->hwvirt.vmx.CTX_SUFF(pShadowVmcs), 0, VMX_V_VMCS_SIZE);
1374 pCtx->hwvirt.vmx.GCPhysVmxon = NIL_RTGCPHYS;
1375 pCtx->hwvirt.vmx.GCPhysShadowVmcs = NIL_RTGCPHYS;
1376 pCtx->hwvirt.vmx.GCPhysVmxon = NIL_RTGCPHYS;
1377 pCtx->hwvirt.vmx.fInVmxRootMode = false;
1378 pCtx->hwvirt.vmx.fInVmxNonRootMode = false;
1379 /* Don't reset diagnostics here. */
1380}
1381
1382
1383/**
1384 * Displays the host and guest VMX features.
1385 *
1386 * @param pVM The cross context VM structure.
1387 * @param pHlp The info helper functions.
1388 * @param pszArgs "terse", "default" or "verbose".
1389 */
1390DECLCALLBACK(void) cpumR3InfoVmxFeatures(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
1391{
1392 RT_NOREF(pszArgs);
1393 PCCPUMFEATURES pHostFeatures = &pVM->cpum.s.HostFeatures;
1394 PCCPUMFEATURES pGuestFeatures = &pVM->cpum.s.GuestFeatures;
1395 if ( pHostFeatures->enmCpuVendor == CPUMCPUVENDOR_INTEL
1396 || pHostFeatures->enmCpuVendor == CPUMCPUVENDOR_VIA
1397 || pHostFeatures->enmCpuVendor == CPUMCPUVENDOR_SHANGHAI)
1398 {
1399#define VMXFEATDUMP(a_szDesc, a_Var) \
1400 pHlp->pfnPrintf(pHlp, " %s = %u (%u)\n", a_szDesc, pGuestFeatures->a_Var, pHostFeatures->a_Var)
1401
1402 pHlp->pfnPrintf(pHlp, "Nested hardware virtualization - VMX features\n");
1403 pHlp->pfnPrintf(pHlp, " Mnemonic - Description = guest (host)\n");
1404 VMXFEATDUMP("VMX - Virtual-Machine Extensions ", fVmx);
1405 /* Basic. */
1406 VMXFEATDUMP("InsOutInfo - INS/OUTS instruction info. ", fVmxInsOutInfo);
1407 /* Pin-based controls. */
1408 VMXFEATDUMP("ExtIntExit - External interrupt exiting ", fVmxExtIntExit);
1409 VMXFEATDUMP("NmiExit - NMI exiting ", fVmxNmiExit);
1410 VMXFEATDUMP("VirtNmi - Virtual NMIs ", fVmxVirtNmi);
1411 VMXFEATDUMP("PreemptTimer - VMX preemption timer ", fVmxPreemptTimer);
1412 VMXFEATDUMP("PostedInt - Posted interrupts ", fVmxPostedInt);
1413 /* Processor-based controls. */
1414 VMXFEATDUMP("IntWindowExit - Interrupt-window exiting ", fVmxIntWindowExit);
1415 VMXFEATDUMP("TscOffsetting - TSC offsetting ", fVmxTscOffsetting);
1416 VMXFEATDUMP("HltExit - HLT exiting ", fVmxHltExit);
1417 VMXFEATDUMP("InvlpgExit - INVLPG exiting ", fVmxInvlpgExit);
1418 VMXFEATDUMP("MwaitExit - MWAIT exiting ", fVmxMwaitExit);
1419 VMXFEATDUMP("RdpmcExit - RDPMC exiting ", fVmxRdpmcExit);
1420 VMXFEATDUMP("RdtscExit - RDTSC exiting ", fVmxRdtscExit);
1421 VMXFEATDUMP("Cr3LoadExit - CR3-load exiting ", fVmxCr3LoadExit);
1422 VMXFEATDUMP("Cr3StoreExit - CR3-store exiting ", fVmxCr3StoreExit);
1423 VMXFEATDUMP("Cr8LoadExit - CR8-load exiting ", fVmxCr8LoadExit);
1424 VMXFEATDUMP("Cr8StoreExit - CR8-store exiting ", fVmxCr8StoreExit);
1425 VMXFEATDUMP("UseTprShadow - Use TPR shadow ", fVmxUseTprShadow);
1426 VMXFEATDUMP("NmiWindowExit - NMI-window exiting ", fVmxNmiWindowExit);
1427 VMXFEATDUMP("MovDRxExit - Mov-DR exiting ", fVmxMovDRxExit);
1428 VMXFEATDUMP("UncondIoExit - Unconditional I/O exiting ", fVmxUncondIoExit);
1429 VMXFEATDUMP("UseIoBitmaps - Use I/O bitmaps ", fVmxUseIoBitmaps);
1430 VMXFEATDUMP("MonitorTrapFlag - Monitor trap flag ", fVmxMonitorTrapFlag);
1431 VMXFEATDUMP("UseMsrBitmaps - MSR bitmaps ", fVmxUseMsrBitmaps);
1432 VMXFEATDUMP("MonitorExit - MONITOR exiting ", fVmxMonitorExit);
1433 VMXFEATDUMP("PauseExit - PAUSE exiting ", fVmxPauseExit);
1434 VMXFEATDUMP("SecondaryExecCtl - Activate secondary controls ", fVmxSecondaryExecCtls);
1435 /* Secondary processor-based controls. */
1436 VMXFEATDUMP("VirtApic - Virtualize-APIC accesses ", fVmxVirtApicAccess);
1437 VMXFEATDUMP("Ept - Extended Page Tables ", fVmxEpt);
1438 VMXFEATDUMP("DescTableExit - Descriptor-table exiting ", fVmxDescTableExit);
1439 VMXFEATDUMP("Rdtscp - Enable RDTSCP ", fVmxRdtscp);
1440 VMXFEATDUMP("VirtX2ApicMode - Virtualize-x2APIC mode ", fVmxVirtX2ApicMode);
1441 VMXFEATDUMP("Vpid - Enable VPID ", fVmxVpid);
1442 VMXFEATDUMP("WbinvdExit - WBINVD exiting ", fVmxWbinvdExit);
1443 VMXFEATDUMP("UnrestrictedGuest - Unrestricted guest ", fVmxUnrestrictedGuest);
1444 VMXFEATDUMP("ApicRegVirt - APIC-register virtualization ", fVmxApicRegVirt);
1445 VMXFEATDUMP("VirtIntDelivery - Virtual-interrupt delivery ", fVmxVirtIntDelivery);
1446 VMXFEATDUMP("PauseLoopExit - PAUSE-loop exiting ", fVmxPauseLoopExit);
1447 VMXFEATDUMP("RdrandExit - RDRAND exiting ", fVmxRdrandExit);
1448 VMXFEATDUMP("Invpcid - Enable INVPCID ", fVmxInvpcid);
1449 VMXFEATDUMP("VmFuncs - Enable VM Functions ", fVmxVmFunc);
1450 VMXFEATDUMP("VmcsShadowing - VMCS shadowing ", fVmxVmcsShadowing);
1451 VMXFEATDUMP("RdseedExiting - RDSEED exiting ", fVmxRdseedExit);
1452 VMXFEATDUMP("PML - Page-Modification Log (PML) ", fVmxPml);
1453 VMXFEATDUMP("EptVe - EPT violations can cause #VE ", fVmxEptXcptVe);
1454 VMXFEATDUMP("XsavesXRstors - Enable XSAVES/XRSTORS ", fVmxXsavesXrstors);
1455 /* VM-entry controls. */
1456 VMXFEATDUMP("EntryLoadDebugCtls - Load debug controls on VM-entry ", fVmxEntryLoadDebugCtls);
1457 VMXFEATDUMP("Ia32eModeGuest - IA-32e mode guest ", fVmxIa32eModeGuest);
1458 VMXFEATDUMP("EntryLoadEferMsr - Load IA32_EFER MSR on VM-entry ", fVmxEntryLoadEferMsr);
1459 VMXFEATDUMP("EntryLoadPatMsr - Load IA32_PAT MSR on VM-entry ", fVmxEntryLoadPatMsr);
1460 /* VM-exit controls. */
1461 VMXFEATDUMP("ExitSaveDebugCtls - Save debug controls on VM-exit ", fVmxExitSaveDebugCtls);
1462 VMXFEATDUMP("HostAddrSpaceSize - Host address-space size ", fVmxHostAddrSpaceSize);
1463 VMXFEATDUMP("ExitAckExtInt - Acknowledge interrupt on VM-exit ", fVmxExitAckExtInt);
1464 VMXFEATDUMP("ExitSavePatMsr - Save IA32_PAT MSR on VM-exit ", fVmxExitSavePatMsr);
1465 VMXFEATDUMP("ExitLoadPatMsr - Load IA32_PAT MSR on VM-exit ", fVmxExitLoadPatMsr);
1466 VMXFEATDUMP("ExitSaveEferMsr - Save IA32_EFER MSR on VM-exit ", fVmxExitSaveEferMsr);
1467 VMXFEATDUMP("ExitLoadEferMsr - Load IA32_EFER MSR on VM-exit ", fVmxExitLoadEferMsr);
1468 VMXFEATDUMP("SavePreemptTimer - Save VMX-preemption timer ", fVmxSavePreemptTimer);
1469 /* Miscellaneous data. */
1470 VMXFEATDUMP("ExitSaveEferLma - Save IA32_EFER.LMA on VM-exit ", fVmxExitSaveEferLma);
1471 VMXFEATDUMP("IntelPt - Intel PT (Processor Trace) in VMX operation ", fVmxIntelPt);
1472 VMXFEATDUMP("VmwriteAll - Write allowed to read-only VMCS fields ", fVmxVmwriteAll);
1473 VMXFEATDUMP("EntryInjectSoftInt - Inject softint. with 0-len instr. ", fVmxEntryInjectSoftInt);
1474#undef VMXFEATDUMP
1475 }
1476 else
1477 pHlp->pfnPrintf(pHlp, "No VMX features present - requires an Intel or compatible CPU.\n");
1478}
1479
1480
1481/**
1482 * Checks whether nested-guest execution using hardware-assisted VMX (e.g, using HM
1483 * or NEM) is allowed.
1484 *
1485 * @returns @c true if hardware-assisted nested-guest execution is allowed, @c false
1486 * otherwise.
1487 * @param pVM The cross context VM structure.
1488 */
1489static bool cpumR3IsHwAssistNstGstExecAllowed(PVM pVM)
1490{
1491 AssertMsg(pVM->bMainExecutionEngine != VM_EXEC_ENGINE_NOT_SET, ("Calling this function too early!\n"));
1492#ifndef VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM
1493 if ( pVM->bMainExecutionEngine == VM_EXEC_ENGINE_HW_VIRT
1494 || pVM->bMainExecutionEngine == VM_EXEC_ENGINE_NATIVE_API)
1495 return true;
1496#else
1497 NOREF(pVM);
1498#endif
1499 return false;
1500}
1501
1502
1503/**
1504 * Initializes the VMX guest MSRs from guest CPU features based on the host MSRs.
1505 *
1506 * @param pVM The cross context VM structure.
1507 * @param pHostVmxMsrs The host VMX MSRs. Pass NULL when fully emulating VMX
1508 * and no hardware-assisted nested-guest execution is
1509 * possible for this VM.
1510 * @param pGuestFeatures The guest features to use (only VMX features are
1511 * accessed).
1512 * @param pGuestVmxMsrs Where to store the initialized guest VMX MSRs.
1513 *
1514 * @remarks This function ASSUMES the VMX guest-features are already exploded!
1515 */
1516static void cpumR3InitVmxGuestMsrs(PVM pVM, PCVMXMSRS pHostVmxMsrs, PCCPUMFEATURES pGuestFeatures, PVMXMSRS pGuestVmxMsrs)
1517{
1518 bool const fIsNstGstHwExecAllowed = cpumR3IsHwAssistNstGstExecAllowed(pVM);
1519
1520 Assert(!fIsNstGstHwExecAllowed || pHostVmxMsrs);
1521 Assert(pGuestFeatures->fVmx);
1522
1523 /*
1524 * We don't support the following MSRs yet:
1525 * - True Pin-based VM-execution controls.
1526 * - True Processor-based VM-execution controls.
1527 * - True VM-entry VM-execution controls.
1528 * - True VM-exit VM-execution controls.
1529 */
1530
1531 /* Feature control. */
1532 pGuestVmxMsrs->u64FeatCtrl = MSR_IA32_FEATURE_CONTROL_LOCK | MSR_IA32_FEATURE_CONTROL_VMXON;
1533
1534 /* Basic information. */
1535 {
1536 uint64_t const u64Basic = RT_BF_MAKE(VMX_BF_BASIC_VMCS_ID, VMX_V_VMCS_REVISION_ID )
1537 | RT_BF_MAKE(VMX_BF_BASIC_VMCS_SIZE, VMX_V_VMCS_SIZE )
1538 | RT_BF_MAKE(VMX_BF_BASIC_PHYSADDR_WIDTH, !pGuestFeatures->fLongMode )
1539 | RT_BF_MAKE(VMX_BF_BASIC_DUAL_MON, 0 )
1540 | RT_BF_MAKE(VMX_BF_BASIC_VMCS_MEM_TYPE, VMX_BASIC_MEM_TYPE_WB )
1541 | RT_BF_MAKE(VMX_BF_BASIC_VMCS_INS_OUTS, pGuestFeatures->fVmxInsOutInfo)
1542 | RT_BF_MAKE(VMX_BF_BASIC_TRUE_CTLS, 0 );
1543 pGuestVmxMsrs->u64Basic = u64Basic;
1544 }
1545
1546 /* Pin-based VM-execution controls. */
1547 {
1548 uint32_t const fFeatures = (pGuestFeatures->fVmxExtIntExit << VMX_BF_PIN_CTLS_EXT_INT_EXIT_SHIFT )
1549 | (pGuestFeatures->fVmxNmiExit << VMX_BF_PIN_CTLS_NMI_EXIT_SHIFT )
1550 | (pGuestFeatures->fVmxVirtNmi << VMX_BF_PIN_CTLS_VIRT_NMI_SHIFT )
1551 | (pGuestFeatures->fVmxPreemptTimer << VMX_BF_PIN_CTLS_PREEMPT_TIMER_SHIFT)
1552 | (pGuestFeatures->fVmxPostedInt << VMX_BF_PIN_CTLS_POSTED_INT_SHIFT );
1553 uint32_t const fAllowed0 = VMX_PIN_CTLS_DEFAULT1;
1554 uint32_t const fAllowed1 = fFeatures | VMX_PIN_CTLS_DEFAULT1;
1555 AssertMsg((fAllowed0 & fAllowed1) == fAllowed0, ("fAllowed0=%#RX32 fAllowed1=%#RX32 fFeatures=%#RX32\n",
1556 fAllowed0, fAllowed1, fFeatures));
1557 pGuestVmxMsrs->PinCtls.u = RT_MAKE_U64(fAllowed0, fAllowed1);
1558 }
1559
1560 /* Processor-based VM-execution controls. */
1561 {
1562 uint32_t const fFeatures = (pGuestFeatures->fVmxIntWindowExit << VMX_BF_PROC_CTLS_INT_WINDOW_EXIT_SHIFT )
1563 | (pGuestFeatures->fVmxTscOffsetting << VMX_BF_PROC_CTLS_USE_TSC_OFFSETTING_SHIFT)
1564 | (pGuestFeatures->fVmxHltExit << VMX_BF_PROC_CTLS_HLT_EXIT_SHIFT )
1565 | (pGuestFeatures->fVmxInvlpgExit << VMX_BF_PROC_CTLS_INVLPG_EXIT_SHIFT )
1566 | (pGuestFeatures->fVmxMwaitExit << VMX_BF_PROC_CTLS_MWAIT_EXIT_SHIFT )
1567 | (pGuestFeatures->fVmxRdpmcExit << VMX_BF_PROC_CTLS_RDPMC_EXIT_SHIFT )
1568 | (pGuestFeatures->fVmxRdtscExit << VMX_BF_PROC_CTLS_RDTSC_EXIT_SHIFT )
1569 | (pGuestFeatures->fVmxCr3LoadExit << VMX_BF_PROC_CTLS_CR3_LOAD_EXIT_SHIFT )
1570 | (pGuestFeatures->fVmxCr3StoreExit << VMX_BF_PROC_CTLS_CR3_STORE_EXIT_SHIFT )
1571 | (pGuestFeatures->fVmxCr8LoadExit << VMX_BF_PROC_CTLS_CR8_LOAD_EXIT_SHIFT )
1572 | (pGuestFeatures->fVmxCr8StoreExit << VMX_BF_PROC_CTLS_CR8_STORE_EXIT_SHIFT )
1573 | (pGuestFeatures->fVmxUseTprShadow << VMX_BF_PROC_CTLS_USE_TPR_SHADOW_SHIFT )
1574 | (pGuestFeatures->fVmxNmiWindowExit << VMX_BF_PROC_CTLS_NMI_WINDOW_EXIT_SHIFT )
1575 | (pGuestFeatures->fVmxMovDRxExit << VMX_BF_PROC_CTLS_MOV_DR_EXIT_SHIFT )
1576 | (pGuestFeatures->fVmxUncondIoExit << VMX_BF_PROC_CTLS_UNCOND_IO_EXIT_SHIFT )
1577 | (pGuestFeatures->fVmxUseIoBitmaps << VMX_BF_PROC_CTLS_USE_IO_BITMAPS_SHIFT )
1578 | (pGuestFeatures->fVmxMonitorTrapFlag << VMX_BF_PROC_CTLS_MONITOR_TRAP_FLAG_SHIFT )
1579 | (pGuestFeatures->fVmxUseMsrBitmaps << VMX_BF_PROC_CTLS_USE_MSR_BITMAPS_SHIFT )
1580 | (pGuestFeatures->fVmxMonitorExit << VMX_BF_PROC_CTLS_MONITOR_EXIT_SHIFT )
1581 | (pGuestFeatures->fVmxPauseExit << VMX_BF_PROC_CTLS_PAUSE_EXIT_SHIFT )
1582 | (pGuestFeatures->fVmxSecondaryExecCtls << VMX_BF_PROC_CTLS_USE_SECONDARY_CTLS_SHIFT);
1583 uint32_t const fAllowed0 = VMX_PROC_CTLS_DEFAULT1;
1584 uint32_t const fAllowed1 = fFeatures | VMX_PROC_CTLS_DEFAULT1;
1585 AssertMsg((fAllowed0 & fAllowed1) == fAllowed0, ("fAllowed0=%#RX32 fAllowed1=%#RX32 fFeatures=%#RX32\n", fAllowed0,
1586 fAllowed1, fFeatures));
1587 pGuestVmxMsrs->ProcCtls.u = RT_MAKE_U64(fAllowed0, fAllowed1);
1588 }
1589
1590 /* Secondary processor-based VM-execution controls. */
1591 if (pGuestFeatures->fVmxSecondaryExecCtls)
1592 {
1593 uint32_t const fFeatures = (pGuestFeatures->fVmxVirtApicAccess << VMX_BF_PROC_CTLS2_VIRT_APIC_ACCESS_SHIFT )
1594 | (pGuestFeatures->fVmxEpt << VMX_BF_PROC_CTLS2_EPT_SHIFT )
1595 | (pGuestFeatures->fVmxDescTableExit << VMX_BF_PROC_CTLS2_DESC_TABLE_EXIT_SHIFT )
1596 | (pGuestFeatures->fVmxRdtscp << VMX_BF_PROC_CTLS2_RDTSCP_SHIFT )
1597 | (pGuestFeatures->fVmxVirtX2ApicMode << VMX_BF_PROC_CTLS2_VIRT_X2APIC_MODE_SHIFT )
1598 | (pGuestFeatures->fVmxVpid << VMX_BF_PROC_CTLS2_VPID_SHIFT )
1599 | (pGuestFeatures->fVmxWbinvdExit << VMX_BF_PROC_CTLS2_WBINVD_EXIT_SHIFT )
1600 | (pGuestFeatures->fVmxUnrestrictedGuest << VMX_BF_PROC_CTLS2_UNRESTRICTED_GUEST_SHIFT)
1601 | (pGuestFeatures->fVmxApicRegVirt << VMX_BF_PROC_CTLS2_APIC_REG_VIRT_SHIFT )
1602 | (pGuestFeatures->fVmxVirtIntDelivery << VMX_BF_PROC_CTLS2_VIRT_INT_DELIVERY_SHIFT )
1603 | (pGuestFeatures->fVmxPauseLoopExit << VMX_BF_PROC_CTLS2_PAUSE_LOOP_EXIT_SHIFT )
1604 | (pGuestFeatures->fVmxRdrandExit << VMX_BF_PROC_CTLS2_RDRAND_EXIT_SHIFT )
1605 | (pGuestFeatures->fVmxInvpcid << VMX_BF_PROC_CTLS2_INVPCID_SHIFT )
1606 | (pGuestFeatures->fVmxVmFunc << VMX_BF_PROC_CTLS2_VMFUNC_SHIFT )
1607 | (pGuestFeatures->fVmxVmcsShadowing << VMX_BF_PROC_CTLS2_VMCS_SHADOWING_SHIFT )
1608 | (pGuestFeatures->fVmxRdseedExit << VMX_BF_PROC_CTLS2_RDSEED_EXIT_SHIFT )
1609 | (pGuestFeatures->fVmxPml << VMX_BF_PROC_CTLS2_PML_SHIFT )
1610 | (pGuestFeatures->fVmxEptXcptVe << VMX_BF_PROC_CTLS2_EPT_VE_SHIFT )
1611 | (pGuestFeatures->fVmxXsavesXrstors << VMX_BF_PROC_CTLS2_XSAVES_XRSTORS_SHIFT )
1612 | (pGuestFeatures->fVmxUseTscScaling << VMX_BF_PROC_CTLS2_TSC_SCALING_SHIFT );
1613 uint32_t const fAllowed0 = 0;
1614 uint32_t const fAllowed1 = fFeatures;
1615 pGuestVmxMsrs->ProcCtls2.u = RT_MAKE_U64(fAllowed0, fAllowed1);
1616 }
1617
1618 /* VM-exit controls. */
1619 {
1620 uint32_t const fFeatures = (pGuestFeatures->fVmxExitSaveDebugCtls << VMX_BF_EXIT_CTLS_SAVE_DEBUG_SHIFT )
1621 | (pGuestFeatures->fVmxHostAddrSpaceSize << VMX_BF_EXIT_CTLS_HOST_ADDR_SPACE_SIZE_SHIFT)
1622 | (pGuestFeatures->fVmxExitAckExtInt << VMX_BF_EXIT_CTLS_ACK_EXT_INT_SHIFT )
1623 | (pGuestFeatures->fVmxExitSavePatMsr << VMX_BF_EXIT_CTLS_SAVE_PAT_MSR_SHIFT )
1624 | (pGuestFeatures->fVmxExitLoadPatMsr << VMX_BF_EXIT_CTLS_LOAD_PAT_MSR_SHIFT )
1625 | (pGuestFeatures->fVmxExitSaveEferMsr << VMX_BF_EXIT_CTLS_SAVE_EFER_MSR_SHIFT )
1626 | (pGuestFeatures->fVmxExitLoadEferMsr << VMX_BF_EXIT_CTLS_LOAD_EFER_MSR_SHIFT )
1627 | (pGuestFeatures->fVmxSavePreemptTimer << VMX_BF_EXIT_CTLS_SAVE_PREEMPT_TIMER_SHIFT );
1628 /* Set the default1 class bits. See Intel spec. A.4 "VM-exit Controls". */
1629 uint32_t const fAllowed0 = VMX_EXIT_CTLS_DEFAULT1;
1630 uint32_t const fAllowed1 = fFeatures | VMX_EXIT_CTLS_DEFAULT1;
1631 AssertMsg((fAllowed0 & fAllowed1) == fAllowed0, ("fAllowed0=%#RX32 fAllowed1=%#RX32 fFeatures=%#RX32\n", fAllowed0,
1632 fAllowed1, fFeatures));
1633 pGuestVmxMsrs->ExitCtls.u = RT_MAKE_U64(fAllowed0, fAllowed1);
1634 }
1635
1636 /* VM-entry controls. */
1637 {
1638 uint32_t const fFeatures = (pGuestFeatures->fVmxEntryLoadDebugCtls << VMX_BF_ENTRY_CTLS_LOAD_DEBUG_SHIFT )
1639 | (pGuestFeatures->fVmxIa32eModeGuest << VMX_BF_ENTRY_CTLS_IA32E_MODE_GUEST_SHIFT)
1640 | (pGuestFeatures->fVmxEntryLoadEferMsr << VMX_BF_ENTRY_CTLS_LOAD_EFER_MSR_SHIFT )
1641 | (pGuestFeatures->fVmxEntryLoadPatMsr << VMX_BF_ENTRY_CTLS_LOAD_PAT_MSR_SHIFT );
1642 uint32_t const fAllowed0 = VMX_ENTRY_CTLS_DEFAULT1;
1643 uint32_t const fAllowed1 = fFeatures | VMX_ENTRY_CTLS_DEFAULT1;
1644 AssertMsg((fAllowed0 & fAllowed1) == fAllowed0, ("fAllowed0=%#RX32 fAllowed0=%#RX32 fFeatures=%#RX32\n", fAllowed0,
1645 fAllowed1, fFeatures));
1646 pGuestVmxMsrs->EntryCtls.u = RT_MAKE_U64(fAllowed0, fAllowed1);
1647 }
1648
1649 /* Miscellaneous data. */
1650 {
1651 uint64_t const uHostMsr = fIsNstGstHwExecAllowed ? pHostVmxMsrs->u64Misc : 0;
1652
1653 uint8_t const cMaxMsrs = RT_MIN(RT_BF_GET(uHostMsr, VMX_BF_MISC_MAX_MSRS), VMX_V_AUTOMSR_COUNT_MAX);
1654 uint8_t const fActivityState = RT_BF_GET(uHostMsr, VMX_BF_MISC_ACTIVITY_STATES) & VMX_V_GUEST_ACTIVITY_STATE_MASK;
1655 pGuestVmxMsrs->u64Misc = RT_BF_MAKE(VMX_BF_MISC_PREEMPT_TIMER_TSC, VMX_V_PREEMPT_TIMER_SHIFT )
1656 | RT_BF_MAKE(VMX_BF_MISC_EXIT_SAVE_EFER_LMA, pGuestFeatures->fVmxExitSaveEferLma )
1657 | RT_BF_MAKE(VMX_BF_MISC_ACTIVITY_STATES, fActivityState )
1658 | RT_BF_MAKE(VMX_BF_MISC_INTEL_PT, pGuestFeatures->fVmxIntelPt )
1659 | RT_BF_MAKE(VMX_BF_MISC_SMM_READ_SMBASE_MSR, 0 )
1660 | RT_BF_MAKE(VMX_BF_MISC_CR3_TARGET, VMX_V_CR3_TARGET_COUNT )
1661 | RT_BF_MAKE(VMX_BF_MISC_MAX_MSRS, cMaxMsrs )
1662 | RT_BF_MAKE(VMX_BF_MISC_VMXOFF_BLOCK_SMI, 0 )
1663 | RT_BF_MAKE(VMX_BF_MISC_VMWRITE_ALL, pGuestFeatures->fVmxVmwriteAll )
1664 | RT_BF_MAKE(VMX_BF_MISC_ENTRY_INJECT_SOFT_INT, pGuestFeatures->fVmxEntryInjectSoftInt)
1665 | RT_BF_MAKE(VMX_BF_MISC_MSEG_ID, VMX_V_MSEG_REV_ID );
1666 }
1667
1668 /* CR0 Fixed-0. */
1669 pGuestVmxMsrs->u64Cr0Fixed0 = pGuestFeatures->fVmxUnrestrictedGuest ? VMX_V_CR0_FIXED0_UX: VMX_V_CR0_FIXED0;
1670
1671 /* CR0 Fixed-1. */
1672 {
1673 /*
1674 * All CPUs I've looked at so far report CR0 fixed-1 bits as 0xffffffff.
1675 * This is different from CR4 fixed-1 bits which are reported as per the
1676 * CPU features and/or micro-architecture/generation. Why? Ask Intel.
1677 */
1678 uint64_t const uHostMsr = fIsNstGstHwExecAllowed ? pHostVmxMsrs->u64Cr0Fixed1 : 0xffffffff;
1679 pGuestVmxMsrs->u64Cr0Fixed1 = uHostMsr | VMX_V_CR0_FIXED0; /* Make sure the CR0 MB1 bits are not clear. */
1680 }
1681
1682 /* CR4 Fixed-0. */
1683 pGuestVmxMsrs->u64Cr4Fixed0 = VMX_V_CR4_FIXED0;
1684
1685 /* CR4 Fixed-1. */
1686 {
1687 uint64_t const uHostMsr = fIsNstGstHwExecAllowed ? pHostVmxMsrs->u64Cr4Fixed1 : CPUMGetGuestCR4ValidMask(pVM);
1688 pGuestVmxMsrs->u64Cr4Fixed1 = uHostMsr | VMX_V_CR4_FIXED0; /* Make sure the CR4 MB1 bits are not clear. */
1689 }
1690
1691 /* VMCS Enumeration. */
1692 pGuestVmxMsrs->u64VmcsEnum = VMX_V_VMCS_MAX_INDEX << VMX_BF_VMCS_ENUM_HIGHEST_IDX_SHIFT;
1693
1694 /* VPID and EPT Capabilities. */
1695 {
1696 /*
1697 * INVVPID instruction always causes a VM-exit unconditionally, so we are free to fake
1698 * and emulate any INVVPID flush type. However, it only makes sense to expose the types
1699 * when INVVPID instruction is supported just to be more compatible with guest
1700 * hypervisors that may make assumptions by only looking at this MSR even though they
1701 * are technically supposed to refer to bit 37 of MSR_IA32_VMX_PROC_CTLS2 first.
1702 *
1703 * See Intel spec. 25.1.2 "Instructions That Cause VM Exits Unconditionally".
1704 * See Intel spec. 30.3 "VMX Instructions".
1705 */
1706 uint8_t const fVpid = pGuestFeatures->fVmxVpid;
1707 pGuestVmxMsrs->u64EptVpidCaps = RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_INVVPID, fVpid)
1708 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_INVVPID_SINGLE_CTX, fVpid & 1)
1709 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_INVVPID_ALL_CTX, fVpid & 1)
1710 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_INVVPID_SINGLE_CTX_RETAIN_GLOBALS, fVpid & 1);
1711 }
1712
1713 /* VM Functions. */
1714 if (pGuestFeatures->fVmxVmFunc)
1715 pGuestVmxMsrs->u64VmFunc = RT_BF_MAKE(VMX_BF_VMFUNC_EPTP_SWITCHING, 1);
1716}
1717
1718
1719/**
1720 * Checks whether the given guest CPU VMX features are compatible with the provided
1721 * base features.
1722 *
1723 * @returns @c true if compatible, @c false otherwise.
1724 * @param pVM The cross context VM structure.
1725 * @param pBase The base VMX CPU features.
1726 * @param pGst The guest VMX CPU features.
1727 *
1728 * @remarks Only VMX feature bits are examined.
1729 */
1730static bool cpumR3AreVmxCpuFeaturesCompatible(PVM pVM, PCCPUMFEATURES pBase, PCCPUMFEATURES pGst)
1731{
1732 if (cpumR3IsHwAssistNstGstExecAllowed(pVM))
1733 {
1734 uint64_t const fBase = ((uint64_t)pBase->fVmxInsOutInfo << 0) | ((uint64_t)pBase->fVmxExtIntExit << 1)
1735 | ((uint64_t)pBase->fVmxNmiExit << 2) | ((uint64_t)pBase->fVmxVirtNmi << 3)
1736 | ((uint64_t)pBase->fVmxPreemptTimer << 4) | ((uint64_t)pBase->fVmxPostedInt << 5)
1737 | ((uint64_t)pBase->fVmxIntWindowExit << 6) | ((uint64_t)pBase->fVmxTscOffsetting << 7)
1738 | ((uint64_t)pBase->fVmxHltExit << 8) | ((uint64_t)pBase->fVmxInvlpgExit << 9)
1739 | ((uint64_t)pBase->fVmxMwaitExit << 10) | ((uint64_t)pBase->fVmxRdpmcExit << 11)
1740 | ((uint64_t)pBase->fVmxRdtscExit << 12) | ((uint64_t)pBase->fVmxCr3LoadExit << 13)
1741 | ((uint64_t)pBase->fVmxCr3StoreExit << 14) | ((uint64_t)pBase->fVmxCr8LoadExit << 15)
1742 | ((uint64_t)pBase->fVmxCr8StoreExit << 16) | ((uint64_t)pBase->fVmxUseTprShadow << 17)
1743 | ((uint64_t)pBase->fVmxNmiWindowExit << 18) | ((uint64_t)pBase->fVmxMovDRxExit << 19)
1744 | ((uint64_t)pBase->fVmxUncondIoExit << 20) | ((uint64_t)pBase->fVmxUseIoBitmaps << 21)
1745 | ((uint64_t)pBase->fVmxMonitorTrapFlag << 22) | ((uint64_t)pBase->fVmxUseMsrBitmaps << 23)
1746 | ((uint64_t)pBase->fVmxMonitorExit << 24) | ((uint64_t)pBase->fVmxPauseExit << 25)
1747 | ((uint64_t)pBase->fVmxSecondaryExecCtls << 26) | ((uint64_t)pBase->fVmxVirtApicAccess << 27)
1748 | ((uint64_t)pBase->fVmxEpt << 28) | ((uint64_t)pBase->fVmxDescTableExit << 29)
1749 | ((uint64_t)pBase->fVmxRdtscp << 30) | ((uint64_t)pBase->fVmxVirtX2ApicMode << 31)
1750 | ((uint64_t)pBase->fVmxVpid << 32) | ((uint64_t)pBase->fVmxWbinvdExit << 33)
1751 | ((uint64_t)pBase->fVmxUnrestrictedGuest << 34) | ((uint64_t)pBase->fVmxApicRegVirt << 35)
1752 | ((uint64_t)pBase->fVmxVirtIntDelivery << 36) | ((uint64_t)pBase->fVmxPauseLoopExit << 37)
1753 | ((uint64_t)pBase->fVmxRdrandExit << 38) | ((uint64_t)pBase->fVmxInvpcid << 39)
1754 | ((uint64_t)pBase->fVmxVmFunc << 40) | ((uint64_t)pBase->fVmxVmcsShadowing << 41)
1755 | ((uint64_t)pBase->fVmxRdseedExit << 42) | ((uint64_t)pBase->fVmxPml << 43)
1756 | ((uint64_t)pBase->fVmxEptXcptVe << 44) | ((uint64_t)pBase->fVmxXsavesXrstors << 45)
1757 | ((uint64_t)pBase->fVmxUseTscScaling << 46) | ((uint64_t)pBase->fVmxEntryLoadDebugCtls << 47)
1758 | ((uint64_t)pBase->fVmxIa32eModeGuest << 48) | ((uint64_t)pBase->fVmxEntryLoadEferMsr << 49)
1759 | ((uint64_t)pBase->fVmxEntryLoadPatMsr << 50) | ((uint64_t)pBase->fVmxExitSaveDebugCtls << 51)
1760 | ((uint64_t)pBase->fVmxHostAddrSpaceSize << 52) | ((uint64_t)pBase->fVmxExitAckExtInt << 53)
1761 | ((uint64_t)pBase->fVmxExitSavePatMsr << 54) | ((uint64_t)pBase->fVmxExitLoadPatMsr << 55)
1762 | ((uint64_t)pBase->fVmxExitSaveEferMsr << 56) | ((uint64_t)pBase->fVmxExitLoadEferMsr << 57)
1763 | ((uint64_t)pBase->fVmxSavePreemptTimer << 58) | ((uint64_t)pBase->fVmxExitSaveEferLma << 59)
1764 | ((uint64_t)pBase->fVmxIntelPt << 60) | ((uint64_t)pBase->fVmxVmwriteAll << 61)
1765 | ((uint64_t)pBase->fVmxEntryInjectSoftInt << 62);
1766
1767 uint64_t const fGst = ((uint64_t)pGst->fVmxInsOutInfo << 0) | ((uint64_t)pGst->fVmxExtIntExit << 1)
1768 | ((uint64_t)pGst->fVmxNmiExit << 2) | ((uint64_t)pGst->fVmxVirtNmi << 3)
1769 | ((uint64_t)pGst->fVmxPreemptTimer << 4) | ((uint64_t)pGst->fVmxPostedInt << 5)
1770 | ((uint64_t)pGst->fVmxIntWindowExit << 6) | ((uint64_t)pGst->fVmxTscOffsetting << 7)
1771 | ((uint64_t)pGst->fVmxHltExit << 8) | ((uint64_t)pGst->fVmxInvlpgExit << 9)
1772 | ((uint64_t)pGst->fVmxMwaitExit << 10) | ((uint64_t)pGst->fVmxRdpmcExit << 11)
1773 | ((uint64_t)pGst->fVmxRdtscExit << 12) | ((uint64_t)pGst->fVmxCr3LoadExit << 13)
1774 | ((uint64_t)pGst->fVmxCr3StoreExit << 14) | ((uint64_t)pGst->fVmxCr8LoadExit << 15)
1775 | ((uint64_t)pGst->fVmxCr8StoreExit << 16) | ((uint64_t)pGst->fVmxUseTprShadow << 17)
1776 | ((uint64_t)pGst->fVmxNmiWindowExit << 18) | ((uint64_t)pGst->fVmxMovDRxExit << 19)
1777 | ((uint64_t)pGst->fVmxUncondIoExit << 20) | ((uint64_t)pGst->fVmxUseIoBitmaps << 21)
1778 | ((uint64_t)pGst->fVmxMonitorTrapFlag << 22) | ((uint64_t)pGst->fVmxUseMsrBitmaps << 23)
1779 | ((uint64_t)pGst->fVmxMonitorExit << 24) | ((uint64_t)pGst->fVmxPauseExit << 25)
1780 | ((uint64_t)pGst->fVmxSecondaryExecCtls << 26) | ((uint64_t)pGst->fVmxVirtApicAccess << 27)
1781 | ((uint64_t)pGst->fVmxEpt << 28) | ((uint64_t)pGst->fVmxDescTableExit << 29)
1782 | ((uint64_t)pGst->fVmxRdtscp << 30) | ((uint64_t)pGst->fVmxVirtX2ApicMode << 31)
1783 | ((uint64_t)pGst->fVmxVpid << 32) | ((uint64_t)pGst->fVmxWbinvdExit << 33)
1784 | ((uint64_t)pGst->fVmxUnrestrictedGuest << 34) | ((uint64_t)pGst->fVmxApicRegVirt << 35)
1785 | ((uint64_t)pGst->fVmxVirtIntDelivery << 36) | ((uint64_t)pGst->fVmxPauseLoopExit << 37)
1786 | ((uint64_t)pGst->fVmxRdrandExit << 38) | ((uint64_t)pGst->fVmxInvpcid << 39)
1787 | ((uint64_t)pGst->fVmxVmFunc << 40) | ((uint64_t)pGst->fVmxVmcsShadowing << 41)
1788 | ((uint64_t)pGst->fVmxRdseedExit << 42) | ((uint64_t)pGst->fVmxPml << 43)
1789 | ((uint64_t)pGst->fVmxEptXcptVe << 44) | ((uint64_t)pGst->fVmxXsavesXrstors << 45)
1790 | ((uint64_t)pGst->fVmxUseTscScaling << 46) | ((uint64_t)pGst->fVmxEntryLoadDebugCtls << 47)
1791 | ((uint64_t)pGst->fVmxIa32eModeGuest << 48) | ((uint64_t)pGst->fVmxEntryLoadEferMsr << 49)
1792 | ((uint64_t)pGst->fVmxEntryLoadPatMsr << 50) | ((uint64_t)pGst->fVmxExitSaveDebugCtls << 51)
1793 | ((uint64_t)pGst->fVmxHostAddrSpaceSize << 52) | ((uint64_t)pGst->fVmxExitAckExtInt << 53)
1794 | ((uint64_t)pGst->fVmxExitSavePatMsr << 54) | ((uint64_t)pGst->fVmxExitLoadPatMsr << 55)
1795 | ((uint64_t)pGst->fVmxExitSaveEferMsr << 56) | ((uint64_t)pGst->fVmxExitLoadEferMsr << 57)
1796 | ((uint64_t)pGst->fVmxSavePreemptTimer << 58) | ((uint64_t)pGst->fVmxExitSaveEferLma << 59)
1797 | ((uint64_t)pGst->fVmxIntelPt << 60) | ((uint64_t)pGst->fVmxVmwriteAll << 61)
1798 | ((uint64_t)pGst->fVmxEntryInjectSoftInt << 62);
1799
1800 if ((fBase | fGst) != fBase)
1801 {
1802 LogRel(("CPUM: Host VMX features are incompatible with those from the saved state. fBase=%#RX64 fGst=%#RX64\n",
1803 fBase, fGst));
1804 return false;
1805 }
1806 return true;
1807 }
1808 return true;
1809}
1810
1811
1812/**
1813 * Initializes VMX guest features and MSRs.
1814 *
1815 * @param pVM The cross context VM structure.
1816 * @param pHostVmxMsrs The host VMX MSRs. Pass NULL when fully emulating VMX
1817 * and no hardware-assisted nested-guest execution is
1818 * possible for this VM.
1819 * @param pGuestVmxMsrs Where to store the initialized guest VMX MSRs.
1820 */
1821void cpumR3InitVmxGuestFeaturesAndMsrs(PVM pVM, PCVMXMSRS pHostVmxMsrs, PVMXMSRS pGuestVmxMsrs)
1822{
1823 Assert(pVM);
1824 Assert(pGuestVmxMsrs);
1825
1826 /*
1827 * Initialize the set of VMX features we emulate.
1828 *
1829 * Note! Some bits might be reported as 1 always if they fall under the
1830 * default1 class bits (e.g. fVmxEntryLoadDebugCtls), see @bugref{9180#c5}.
1831 */
1832 CPUMFEATURES EmuFeat;
1833 RT_ZERO(EmuFeat);
1834 EmuFeat.fVmx = 1;
1835 EmuFeat.fVmxInsOutInfo = 0;
1836 EmuFeat.fVmxExtIntExit = 1;
1837 EmuFeat.fVmxNmiExit = 1;
1838 EmuFeat.fVmxVirtNmi = 0;
1839 EmuFeat.fVmxPreemptTimer = 0; /** @todo NSTVMX: enable this. */
1840 EmuFeat.fVmxPostedInt = 0;
1841 EmuFeat.fVmxIntWindowExit = 1;
1842 EmuFeat.fVmxTscOffsetting = 1;
1843 EmuFeat.fVmxHltExit = 1;
1844 EmuFeat.fVmxInvlpgExit = 1;
1845 EmuFeat.fVmxMwaitExit = 1;
1846 EmuFeat.fVmxRdpmcExit = 1;
1847 EmuFeat.fVmxRdtscExit = 1;
1848 EmuFeat.fVmxCr3LoadExit = 1;
1849 EmuFeat.fVmxCr3StoreExit = 1;
1850 EmuFeat.fVmxCr8LoadExit = 1;
1851 EmuFeat.fVmxCr8StoreExit = 1;
1852 EmuFeat.fVmxUseTprShadow = 0;
1853 EmuFeat.fVmxNmiWindowExit = 0;
1854 EmuFeat.fVmxMovDRxExit = 1;
1855 EmuFeat.fVmxUncondIoExit = 1;
1856 EmuFeat.fVmxUseIoBitmaps = 1;
1857 EmuFeat.fVmxMonitorTrapFlag = 0;
1858 EmuFeat.fVmxUseMsrBitmaps = 1;
1859 EmuFeat.fVmxMonitorExit = 1;
1860 EmuFeat.fVmxPauseExit = 1;
1861 EmuFeat.fVmxSecondaryExecCtls = 1;
1862 EmuFeat.fVmxVirtApicAccess = 0;
1863 EmuFeat.fVmxEpt = 0;
1864 EmuFeat.fVmxDescTableExit = 1;
1865 EmuFeat.fVmxRdtscp = 1;
1866 EmuFeat.fVmxVirtX2ApicMode = 0;
1867 EmuFeat.fVmxVpid = 0; /** @todo NSTVMX: enable this. */
1868 EmuFeat.fVmxWbinvdExit = 1;
1869 EmuFeat.fVmxUnrestrictedGuest = 0;
1870 EmuFeat.fVmxApicRegVirt = 0;
1871 EmuFeat.fVmxVirtIntDelivery = 0;
1872 EmuFeat.fVmxPauseLoopExit = 0;
1873 EmuFeat.fVmxRdrandExit = 0;
1874 EmuFeat.fVmxInvpcid = 1;
1875 EmuFeat.fVmxVmFunc = 0;
1876 EmuFeat.fVmxVmcsShadowing = 0;
1877 EmuFeat.fVmxRdseedExit = 0;
1878 EmuFeat.fVmxPml = 0;
1879 EmuFeat.fVmxEptXcptVe = 0;
1880 EmuFeat.fVmxXsavesXrstors = 0;
1881 EmuFeat.fVmxUseTscScaling = 0;
1882 EmuFeat.fVmxEntryLoadDebugCtls = 1;
1883 EmuFeat.fVmxIa32eModeGuest = 1;
1884 EmuFeat.fVmxEntryLoadEferMsr = 1;
1885 EmuFeat.fVmxEntryLoadPatMsr = 0;
1886 EmuFeat.fVmxExitSaveDebugCtls = 1;
1887 EmuFeat.fVmxHostAddrSpaceSize = 1;
1888 EmuFeat.fVmxExitAckExtInt = 0;
1889 EmuFeat.fVmxExitSavePatMsr = 0;
1890 EmuFeat.fVmxExitLoadPatMsr = 0;
1891 EmuFeat.fVmxExitSaveEferMsr = 1;
1892 EmuFeat.fVmxExitLoadEferMsr = 1;
1893 EmuFeat.fVmxSavePreemptTimer = 0;
1894 EmuFeat.fVmxExitSaveEferLma = 1;
1895 EmuFeat.fVmxIntelPt = 0;
1896 EmuFeat.fVmxVmwriteAll = 0;
1897 EmuFeat.fVmxEntryInjectSoftInt = 0;
1898
1899 /*
1900 * Merge guest features.
1901 *
1902 * When hardware-assisted VMX may be used, any feature we emulate must also be supported
1903 * by the hardware, hence we merge our emulated features with the host features below.
1904 */
1905 PCCPUMFEATURES pBaseFeat = cpumR3IsHwAssistNstGstExecAllowed(pVM) ? &pVM->cpum.s.HostFeatures : &EmuFeat;
1906 PCPUMFEATURES pGuestFeat = &pVM->cpum.s.GuestFeatures;
1907 Assert(pBaseFeat->fVmx);
1908 pGuestFeat->fVmxInsOutInfo = (pBaseFeat->fVmxInsOutInfo & EmuFeat.fVmxInsOutInfo );
1909 pGuestFeat->fVmxExtIntExit = (pBaseFeat->fVmxExtIntExit & EmuFeat.fVmxExtIntExit );
1910 pGuestFeat->fVmxNmiExit = (pBaseFeat->fVmxNmiExit & EmuFeat.fVmxNmiExit );
1911 pGuestFeat->fVmxVirtNmi = (pBaseFeat->fVmxVirtNmi & EmuFeat.fVmxVirtNmi );
1912 pGuestFeat->fVmxPreemptTimer = (pBaseFeat->fVmxPreemptTimer & EmuFeat.fVmxPreemptTimer );
1913 pGuestFeat->fVmxPostedInt = (pBaseFeat->fVmxPostedInt & EmuFeat.fVmxPostedInt );
1914 pGuestFeat->fVmxIntWindowExit = (pBaseFeat->fVmxIntWindowExit & EmuFeat.fVmxIntWindowExit );
1915 pGuestFeat->fVmxTscOffsetting = (pBaseFeat->fVmxTscOffsetting & EmuFeat.fVmxTscOffsetting );
1916 pGuestFeat->fVmxHltExit = (pBaseFeat->fVmxHltExit & EmuFeat.fVmxHltExit );
1917 pGuestFeat->fVmxInvlpgExit = (pBaseFeat->fVmxInvlpgExit & EmuFeat.fVmxInvlpgExit );
1918 pGuestFeat->fVmxMwaitExit = (pBaseFeat->fVmxMwaitExit & EmuFeat.fVmxMwaitExit );
1919 pGuestFeat->fVmxRdpmcExit = (pBaseFeat->fVmxRdpmcExit & EmuFeat.fVmxRdpmcExit );
1920 pGuestFeat->fVmxRdtscExit = (pBaseFeat->fVmxRdtscExit & EmuFeat.fVmxRdtscExit );
1921 pGuestFeat->fVmxCr3LoadExit = (pBaseFeat->fVmxCr3LoadExit & EmuFeat.fVmxCr3LoadExit );
1922 pGuestFeat->fVmxCr3StoreExit = (pBaseFeat->fVmxCr3StoreExit & EmuFeat.fVmxCr3StoreExit );
1923 pGuestFeat->fVmxCr8LoadExit = (pBaseFeat->fVmxCr8LoadExit & EmuFeat.fVmxCr8LoadExit );
1924 pGuestFeat->fVmxCr8StoreExit = (pBaseFeat->fVmxCr8StoreExit & EmuFeat.fVmxCr8StoreExit );
1925 pGuestFeat->fVmxUseTprShadow = (pBaseFeat->fVmxUseTprShadow & EmuFeat.fVmxUseTprShadow );
1926 pGuestFeat->fVmxNmiWindowExit = (pBaseFeat->fVmxNmiWindowExit & EmuFeat.fVmxNmiWindowExit );
1927 pGuestFeat->fVmxMovDRxExit = (pBaseFeat->fVmxMovDRxExit & EmuFeat.fVmxMovDRxExit );
1928 pGuestFeat->fVmxUncondIoExit = (pBaseFeat->fVmxUncondIoExit & EmuFeat.fVmxUncondIoExit );
1929 pGuestFeat->fVmxUseIoBitmaps = (pBaseFeat->fVmxUseIoBitmaps & EmuFeat.fVmxUseIoBitmaps );
1930 pGuestFeat->fVmxMonitorTrapFlag = (pBaseFeat->fVmxMonitorTrapFlag & EmuFeat.fVmxMonitorTrapFlag );
1931 pGuestFeat->fVmxUseMsrBitmaps = (pBaseFeat->fVmxUseMsrBitmaps & EmuFeat.fVmxUseMsrBitmaps );
1932 pGuestFeat->fVmxMonitorExit = (pBaseFeat->fVmxMonitorExit & EmuFeat.fVmxMonitorExit );
1933 pGuestFeat->fVmxPauseExit = (pBaseFeat->fVmxPauseExit & EmuFeat.fVmxPauseExit );
1934 pGuestFeat->fVmxSecondaryExecCtls = (pBaseFeat->fVmxSecondaryExecCtls & EmuFeat.fVmxSecondaryExecCtls );
1935 pGuestFeat->fVmxVirtApicAccess = (pBaseFeat->fVmxVirtApicAccess & EmuFeat.fVmxVirtApicAccess );
1936 pGuestFeat->fVmxEpt = (pBaseFeat->fVmxEpt & EmuFeat.fVmxEpt );
1937 pGuestFeat->fVmxDescTableExit = (pBaseFeat->fVmxDescTableExit & EmuFeat.fVmxDescTableExit );
1938 pGuestFeat->fVmxRdtscp = (pBaseFeat->fVmxRdtscp & EmuFeat.fVmxRdtscp );
1939 pGuestFeat->fVmxVirtX2ApicMode = (pBaseFeat->fVmxVirtX2ApicMode & EmuFeat.fVmxVirtX2ApicMode );
1940 pGuestFeat->fVmxVpid = (pBaseFeat->fVmxVpid & EmuFeat.fVmxVpid );
1941 pGuestFeat->fVmxWbinvdExit = (pBaseFeat->fVmxWbinvdExit & EmuFeat.fVmxWbinvdExit );
1942 pGuestFeat->fVmxUnrestrictedGuest = (pBaseFeat->fVmxUnrestrictedGuest & EmuFeat.fVmxUnrestrictedGuest );
1943 pGuestFeat->fVmxApicRegVirt = (pBaseFeat->fVmxApicRegVirt & EmuFeat.fVmxApicRegVirt );
1944 pGuestFeat->fVmxVirtIntDelivery = (pBaseFeat->fVmxVirtIntDelivery & EmuFeat.fVmxVirtIntDelivery );
1945 pGuestFeat->fVmxPauseLoopExit = (pBaseFeat->fVmxPauseLoopExit & EmuFeat.fVmxPauseLoopExit );
1946 pGuestFeat->fVmxRdrandExit = (pBaseFeat->fVmxRdrandExit & EmuFeat.fVmxRdrandExit );
1947 pGuestFeat->fVmxInvpcid = (pBaseFeat->fVmxInvpcid & EmuFeat.fVmxInvpcid );
1948 pGuestFeat->fVmxVmFunc = (pBaseFeat->fVmxVmFunc & EmuFeat.fVmxVmFunc );
1949 pGuestFeat->fVmxVmcsShadowing = (pBaseFeat->fVmxVmcsShadowing & EmuFeat.fVmxVmcsShadowing );
1950 pGuestFeat->fVmxRdseedExit = (pBaseFeat->fVmxRdseedExit & EmuFeat.fVmxRdseedExit );
1951 pGuestFeat->fVmxPml = (pBaseFeat->fVmxPml & EmuFeat.fVmxPml );
1952 pGuestFeat->fVmxEptXcptVe = (pBaseFeat->fVmxEptXcptVe & EmuFeat.fVmxEptXcptVe );
1953 pGuestFeat->fVmxXsavesXrstors = (pBaseFeat->fVmxXsavesXrstors & EmuFeat.fVmxXsavesXrstors );
1954 pGuestFeat->fVmxUseTscScaling = (pBaseFeat->fVmxUseTscScaling & EmuFeat.fVmxUseTscScaling );
1955 pGuestFeat->fVmxEntryLoadDebugCtls = (pBaseFeat->fVmxEntryLoadDebugCtls & EmuFeat.fVmxEntryLoadDebugCtls );
1956 pGuestFeat->fVmxIa32eModeGuest = (pBaseFeat->fVmxIa32eModeGuest & EmuFeat.fVmxIa32eModeGuest );
1957 pGuestFeat->fVmxEntryLoadEferMsr = (pBaseFeat->fVmxEntryLoadEferMsr & EmuFeat.fVmxEntryLoadEferMsr );
1958 pGuestFeat->fVmxEntryLoadPatMsr = (pBaseFeat->fVmxEntryLoadPatMsr & EmuFeat.fVmxEntryLoadPatMsr );
1959 pGuestFeat->fVmxExitSaveDebugCtls = (pBaseFeat->fVmxExitSaveDebugCtls & EmuFeat.fVmxExitSaveDebugCtls );
1960 pGuestFeat->fVmxHostAddrSpaceSize = (pBaseFeat->fVmxHostAddrSpaceSize & EmuFeat.fVmxHostAddrSpaceSize );
1961 pGuestFeat->fVmxExitAckExtInt = (pBaseFeat->fVmxExitAckExtInt & EmuFeat.fVmxExitAckExtInt );
1962 pGuestFeat->fVmxExitSavePatMsr = (pBaseFeat->fVmxExitSavePatMsr & EmuFeat.fVmxExitSavePatMsr );
1963 pGuestFeat->fVmxExitLoadPatMsr = (pBaseFeat->fVmxExitLoadPatMsr & EmuFeat.fVmxExitLoadPatMsr );
1964 pGuestFeat->fVmxExitSaveEferMsr = (pBaseFeat->fVmxExitSaveEferMsr & EmuFeat.fVmxExitSaveEferMsr );
1965 pGuestFeat->fVmxExitLoadEferMsr = (pBaseFeat->fVmxExitLoadEferMsr & EmuFeat.fVmxExitLoadEferMsr );
1966 pGuestFeat->fVmxSavePreemptTimer = (pBaseFeat->fVmxSavePreemptTimer & EmuFeat.fVmxSavePreemptTimer );
1967 pGuestFeat->fVmxExitSaveEferLma = (pBaseFeat->fVmxExitSaveEferLma & EmuFeat.fVmxExitSaveEferLma );
1968 pGuestFeat->fVmxIntelPt = (pBaseFeat->fVmxIntelPt & EmuFeat.fVmxIntelPt );
1969 pGuestFeat->fVmxVmwriteAll = (pBaseFeat->fVmxVmwriteAll & EmuFeat.fVmxVmwriteAll );
1970 pGuestFeat->fVmxEntryInjectSoftInt = (pBaseFeat->fVmxEntryInjectSoftInt & EmuFeat.fVmxEntryInjectSoftInt );
1971
1972 /* Paranoia. */
1973 if (!pGuestFeat->fVmxSecondaryExecCtls)
1974 {
1975 Assert(!pGuestFeat->fVmxVirtApicAccess);
1976 Assert(!pGuestFeat->fVmxEpt);
1977 Assert(!pGuestFeat->fVmxDescTableExit);
1978 Assert(!pGuestFeat->fVmxRdtscp);
1979 Assert(!pGuestFeat->fVmxVirtX2ApicMode);
1980 Assert(!pGuestFeat->fVmxVpid);
1981 Assert(!pGuestFeat->fVmxWbinvdExit);
1982 Assert(!pGuestFeat->fVmxUnrestrictedGuest);
1983 Assert(!pGuestFeat->fVmxApicRegVirt);
1984 Assert(!pGuestFeat->fVmxVirtIntDelivery);
1985 Assert(!pGuestFeat->fVmxPauseLoopExit);
1986 Assert(!pGuestFeat->fVmxRdrandExit);
1987 Assert(!pGuestFeat->fVmxInvpcid);
1988 Assert(!pGuestFeat->fVmxVmFunc);
1989 Assert(!pGuestFeat->fVmxVmcsShadowing);
1990 Assert(!pGuestFeat->fVmxRdseedExit);
1991 Assert(!pGuestFeat->fVmxPml);
1992 Assert(!pGuestFeat->fVmxEptXcptVe);
1993 Assert(!pGuestFeat->fVmxXsavesXrstors);
1994 Assert(!pGuestFeat->fVmxUseTscScaling);
1995 }
1996 if (pGuestFeat->fVmxUnrestrictedGuest)
1997 {
1998 /* See footnote in Intel spec. 27.2 "Recording VM-Exit Information And Updating VM-entry Control Fields". */
1999 Assert(pGuestFeat->fVmxExitSaveEferLma);
2000 }
2001
2002 /*
2003 * Finally initialize the VMX guest MSRs.
2004 */
2005 cpumR3InitVmxGuestMsrs(pVM, pHostVmxMsrs, pGuestFeat, pGuestVmxMsrs);
2006}
2007
2008
2009/**
2010 * Gets the host hardware-virtualization MSRs.
2011 *
2012 * @returns VBox status code.
2013 * @param pMsrs Where to store the MSRs.
2014 */
2015static int cpumR3GetHostHwvirtMsrs(PCPUMMSRS pMsrs)
2016{
2017 Assert(pMsrs);
2018
2019 uint32_t fCaps = 0;
2020 int rc = SUPR3QueryVTCaps(&fCaps);
2021 if (RT_SUCCESS(rc))
2022 {
2023 if (fCaps & (SUPVTCAPS_VT_X | SUPVTCAPS_AMD_V))
2024 {
2025 SUPHWVIRTMSRS HwvirtMsrs;
2026 rc = SUPR3GetHwvirtMsrs(&HwvirtMsrs, false /* fForceRequery */);
2027 if (RT_SUCCESS(rc))
2028 {
2029 if (fCaps & SUPVTCAPS_VT_X)
2030 HMGetVmxMsrsFromHwvirtMsrs(&HwvirtMsrs, &pMsrs->hwvirt.vmx);
2031 else
2032 HMGetSvmMsrsFromHwvirtMsrs(&HwvirtMsrs, &pMsrs->hwvirt.svm);
2033 return VINF_SUCCESS;
2034 }
2035
2036 LogRel(("CPUM: Querying hardware-virtualization MSRs failed. rc=%Rrc\n", rc));
2037 return rc;
2038 }
2039 else
2040 {
2041 LogRel(("CPUM: Querying hardware-virtualization capability succeeded but did not find VT-x or AMD-V\n"));
2042 return VERR_INTERNAL_ERROR_5;
2043 }
2044 }
2045 else
2046 LogRel(("CPUM: No hardware-virtualization capability detected\n"));
2047
2048 return VINF_SUCCESS;
2049}
2050
2051
2052/**
2053 * Initializes the CPUM.
2054 *
2055 * @returns VBox status code.
2056 * @param pVM The cross context VM structure.
2057 */
2058VMMR3DECL(int) CPUMR3Init(PVM pVM)
2059{
2060 LogFlow(("CPUMR3Init\n"));
2061
2062 /*
2063 * Assert alignment, sizes and tables.
2064 */
2065 AssertCompileMemberAlignment(VM, cpum.s, 32);
2066 AssertCompile(sizeof(pVM->cpum.s) <= sizeof(pVM->cpum.padding));
2067 AssertCompileSizeAlignment(CPUMCTX, 64);
2068 AssertCompileSizeAlignment(CPUMCTXMSRS, 64);
2069 AssertCompileSizeAlignment(CPUMHOSTCTX, 64);
2070 AssertCompileMemberAlignment(VM, cpum, 64);
2071 AssertCompileMemberAlignment(VM, aCpus, 64);
2072 AssertCompileMemberAlignment(VMCPU, cpum.s, 64);
2073 AssertCompileMemberSizeAlignment(VM, aCpus[0].cpum.s, 64);
2074#ifdef VBOX_STRICT
2075 int rc2 = cpumR3MsrStrictInitChecks();
2076 AssertRCReturn(rc2, rc2);
2077#endif
2078
2079 /*
2080 * Initialize offsets.
2081 */
2082
2083 /* Calculate the offset from CPUM to CPUMCPU for the first CPU. */
2084 pVM->cpum.s.offCPUMCPU0 = RT_UOFFSETOF(VM, aCpus[0].cpum) - RT_UOFFSETOF(VM, cpum);
2085 Assert((uintptr_t)&pVM->cpum + pVM->cpum.s.offCPUMCPU0 == (uintptr_t)&pVM->aCpus[0].cpum);
2086
2087
2088 /* Calculate the offset from CPUMCPU to CPUM. */
2089 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2090 {
2091 PVMCPU pVCpu = &pVM->aCpus[i];
2092
2093 pVCpu->cpum.s.offCPUM = RT_UOFFSETOF_DYN(VM, aCpus[i].cpum) - RT_UOFFSETOF(VM, cpum);
2094 Assert((uintptr_t)&pVCpu->cpum - pVCpu->cpum.s.offCPUM == (uintptr_t)&pVM->cpum);
2095 }
2096
2097 /*
2098 * Gather info about the host CPU.
2099 */
2100 if (!ASMHasCpuId())
2101 {
2102 LogRel(("The CPU doesn't support CPUID!\n"));
2103 return VERR_UNSUPPORTED_CPU;
2104 }
2105
2106 pVM->cpum.s.fHostMxCsrMask = CPUMR3DeterminHostMxCsrMask();
2107
2108 CPUMMSRS HostMsrs;
2109 RT_ZERO(HostMsrs);
2110 int rc = cpumR3GetHostHwvirtMsrs(&HostMsrs);
2111 AssertLogRelRCReturn(rc, rc);
2112
2113 PCPUMCPUIDLEAF paLeaves;
2114 uint32_t cLeaves;
2115 rc = CPUMR3CpuIdCollectLeaves(&paLeaves, &cLeaves);
2116 AssertLogRelRCReturn(rc, rc);
2117
2118 rc = cpumR3CpuIdExplodeFeatures(paLeaves, cLeaves, &HostMsrs, &pVM->cpum.s.HostFeatures);
2119 RTMemFree(paLeaves);
2120 AssertLogRelRCReturn(rc, rc);
2121 pVM->cpum.s.GuestFeatures.enmCpuVendor = pVM->cpum.s.HostFeatures.enmCpuVendor;
2122
2123 /*
2124 * Check that the CPU supports the minimum features we require.
2125 */
2126 if (!pVM->cpum.s.HostFeatures.fFxSaveRstor)
2127 return VMSetError(pVM, VERR_UNSUPPORTED_CPU, RT_SRC_POS, "Host CPU does not support the FXSAVE/FXRSTOR instruction.");
2128 if (!pVM->cpum.s.HostFeatures.fMmx)
2129 return VMSetError(pVM, VERR_UNSUPPORTED_CPU, RT_SRC_POS, "Host CPU does not support MMX.");
2130 if (!pVM->cpum.s.HostFeatures.fTsc)
2131 return VMSetError(pVM, VERR_UNSUPPORTED_CPU, RT_SRC_POS, "Host CPU does not support RDTSC.");
2132
2133 /*
2134 * Setup the CR4 AND and OR masks used in the raw-mode switcher.
2135 */
2136 pVM->cpum.s.CR4.AndMask = X86_CR4_OSXMMEEXCPT | X86_CR4_PVI | X86_CR4_VME;
2137 pVM->cpum.s.CR4.OrMask = X86_CR4_OSFXSR;
2138
2139 /*
2140 * Figure out which XSAVE/XRSTOR features are available on the host.
2141 */
2142 uint64_t fXcr0Host = 0;
2143 uint64_t fXStateHostMask = 0;
2144 if ( pVM->cpum.s.HostFeatures.fXSaveRstor
2145 && pVM->cpum.s.HostFeatures.fOpSysXSaveRstor)
2146 {
2147 fXStateHostMask = fXcr0Host = ASMGetXcr0();
2148 fXStateHostMask &= XSAVE_C_X87 | XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI;
2149 AssertLogRelMsgStmt((fXStateHostMask & (XSAVE_C_X87 | XSAVE_C_SSE)) == (XSAVE_C_X87 | XSAVE_C_SSE),
2150 ("%#llx\n", fXStateHostMask), fXStateHostMask = 0);
2151 }
2152 pVM->cpum.s.fXStateHostMask = fXStateHostMask;
2153 if (VM_IS_RAW_MODE_ENABLED(pVM)) /* For raw-mode, we only use XSAVE/XRSTOR when the guest starts using it (CPUID/CR4 visibility). */
2154 fXStateHostMask = 0;
2155 LogRel(("CPUM: fXStateHostMask=%#llx; initial: %#llx; host XCR0=%#llx\n",
2156 pVM->cpum.s.fXStateHostMask, fXStateHostMask, fXcr0Host));
2157
2158 /*
2159 * Allocate memory for the extended CPU state and initialize the host XSAVE/XRSTOR mask.
2160 */
2161 uint32_t cbMaxXState = pVM->cpum.s.HostFeatures.cbMaxExtendedState;
2162 cbMaxXState = RT_ALIGN(cbMaxXState, 128);
2163 AssertLogRelReturn(cbMaxXState >= sizeof(X86FXSTATE) && cbMaxXState <= _8K, VERR_CPUM_IPE_2);
2164
2165 uint8_t *pbXStates;
2166 rc = MMR3HyperAllocOnceNoRelEx(pVM, cbMaxXState * 3 * pVM->cCpus, PAGE_SIZE, MM_TAG_CPUM_CTX,
2167 MMHYPER_AONR_FLAGS_KERNEL_MAPPING, (void **)&pbXStates);
2168 AssertLogRelRCReturn(rc, rc);
2169
2170 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2171 {
2172 PVMCPU pVCpu = &pVM->aCpus[i];
2173
2174 pVCpu->cpum.s.Guest.pXStateR3 = (PX86XSAVEAREA)pbXStates;
2175 pVCpu->cpum.s.Guest.pXStateR0 = MMHyperR3ToR0(pVM, pbXStates);
2176 pVCpu->cpum.s.Guest.pXStateRC = MMHyperR3ToR0(pVM, pbXStates);
2177 pbXStates += cbMaxXState;
2178
2179 pVCpu->cpum.s.Host.pXStateR3 = (PX86XSAVEAREA)pbXStates;
2180 pVCpu->cpum.s.Host.pXStateR0 = MMHyperR3ToR0(pVM, pbXStates);
2181 pVCpu->cpum.s.Host.pXStateRC = MMHyperR3ToR0(pVM, pbXStates);
2182 pbXStates += cbMaxXState;
2183
2184 pVCpu->cpum.s.Hyper.pXStateR3 = (PX86XSAVEAREA)pbXStates;
2185 pVCpu->cpum.s.Hyper.pXStateR0 = MMHyperR3ToR0(pVM, pbXStates);
2186 pVCpu->cpum.s.Hyper.pXStateRC = MMHyperR3ToR0(pVM, pbXStates);
2187 pbXStates += cbMaxXState;
2188
2189 pVCpu->cpum.s.Host.fXStateMask = fXStateHostMask;
2190 }
2191
2192 /*
2193 * Register saved state data item.
2194 */
2195 rc = SSMR3RegisterInternal(pVM, "cpum", 1, CPUM_SAVED_STATE_VERSION, sizeof(CPUM),
2196 NULL, cpumR3LiveExec, NULL,
2197 NULL, cpumR3SaveExec, NULL,
2198 cpumR3LoadPrep, cpumR3LoadExec, cpumR3LoadDone);
2199 if (RT_FAILURE(rc))
2200 return rc;
2201
2202 /*
2203 * Register info handlers and registers with the debugger facility.
2204 */
2205 DBGFR3InfoRegisterInternalEx(pVM, "cpum", "Displays the all the cpu states.",
2206 &cpumR3InfoAll, DBGFINFO_FLAGS_ALL_EMTS);
2207 DBGFR3InfoRegisterInternalEx(pVM, "cpumguest", "Displays the guest cpu state.",
2208 &cpumR3InfoGuest, DBGFINFO_FLAGS_ALL_EMTS);
2209 DBGFR3InfoRegisterInternalEx(pVM, "cpumguesthwvirt", "Displays the guest hwvirt. cpu state.",
2210 &cpumR3InfoGuestHwvirt, DBGFINFO_FLAGS_ALL_EMTS);
2211 DBGFR3InfoRegisterInternalEx(pVM, "cpumhyper", "Displays the hypervisor cpu state.",
2212 &cpumR3InfoHyper, DBGFINFO_FLAGS_ALL_EMTS);
2213 DBGFR3InfoRegisterInternalEx(pVM, "cpumhost", "Displays the host cpu state.",
2214 &cpumR3InfoHost, DBGFINFO_FLAGS_ALL_EMTS);
2215 DBGFR3InfoRegisterInternalEx(pVM, "cpumguestinstr", "Displays the current guest instruction.",
2216 &cpumR3InfoGuestInstr, DBGFINFO_FLAGS_ALL_EMTS);
2217 DBGFR3InfoRegisterInternal( pVM, "cpuid", "Displays the guest cpuid leaves.", &cpumR3CpuIdInfo);
2218 DBGFR3InfoRegisterInternal( pVM, "cpumvmxfeat", "Displays the host and guest VMX hwvirt. features.",
2219 &cpumR3InfoVmxFeatures);
2220
2221 rc = cpumR3DbgInit(pVM);
2222 if (RT_FAILURE(rc))
2223 return rc;
2224
2225 /*
2226 * Check if we need to workaround partial/leaky FPU handling.
2227 */
2228 cpumR3CheckLeakyFpu(pVM);
2229
2230 /*
2231 * Initialize the Guest CPUID and MSR states.
2232 */
2233 rc = cpumR3InitCpuIdAndMsrs(pVM, &HostMsrs);
2234 if (RT_FAILURE(rc))
2235 return rc;
2236
2237 /*
2238 * Allocate memory required by the guest hardware-virtualization structures.
2239 * This must be done after initializing CPUID/MSR features as we access the
2240 * the VMX/SVM guest features below.
2241 */
2242 if (pVM->cpum.s.GuestFeatures.fVmx)
2243 rc = cpumR3AllocVmxHwVirtState(pVM);
2244 else if (pVM->cpum.s.GuestFeatures.fSvm)
2245 rc = cpumR3AllocSvmHwVirtState(pVM);
2246 else
2247 Assert(pVM->aCpus[0].cpum.s.Guest.hwvirt.enmHwvirt == CPUMHWVIRT_NONE);
2248 if (RT_FAILURE(rc))
2249 return rc;
2250
2251 /*
2252 * Workaround for missing cpuid(0) patches when leaf 4 returns GuestInfo.DefCpuId:
2253 * If we miss to patch a cpuid(0).eax then Linux tries to determine the number
2254 * of processors from (cpuid(4).eax >> 26) + 1.
2255 *
2256 * Note: this code is obsolete, but let's keep it here for reference.
2257 * Purpose is valid when we artificially cap the max std id to less than 4.
2258 *
2259 * Note: This used to be a separate function CPUMR3SetHwVirt that was called
2260 * after VMINITCOMPLETED_HM.
2261 */
2262 if (VM_IS_RAW_MODE_ENABLED(pVM))
2263 {
2264 Assert( (pVM->cpum.s.aGuestCpuIdPatmStd[4].uEax & UINT32_C(0xffffc000)) == 0
2265 || pVM->cpum.s.aGuestCpuIdPatmStd[0].uEax < 0x4);
2266 pVM->cpum.s.aGuestCpuIdPatmStd[4].uEax &= UINT32_C(0x00003fff);
2267 }
2268
2269 CPUMR3Reset(pVM);
2270 return VINF_SUCCESS;
2271}
2272
2273
2274/**
2275 * Applies relocations to data and code managed by this
2276 * component. This function will be called at init and
2277 * whenever the VMM need to relocate it self inside the GC.
2278 *
2279 * The CPUM will update the addresses used by the switcher.
2280 *
2281 * @param pVM The cross context VM structure.
2282 */
2283VMMR3DECL(void) CPUMR3Relocate(PVM pVM)
2284{
2285 LogFlow(("CPUMR3Relocate\n"));
2286
2287 pVM->cpum.s.GuestInfo.paMsrRangesRC = MMHyperR3ToRC(pVM, pVM->cpum.s.GuestInfo.paMsrRangesR3);
2288 pVM->cpum.s.GuestInfo.paCpuIdLeavesRC = MMHyperR3ToRC(pVM, pVM->cpum.s.GuestInfo.paCpuIdLeavesR3);
2289
2290 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
2291 {
2292 PVMCPU pVCpu = &pVM->aCpus[iCpu];
2293 pVCpu->cpum.s.Guest.pXStateRC = MMHyperR3ToRC(pVM, pVCpu->cpum.s.Guest.pXStateR3);
2294 pVCpu->cpum.s.Host.pXStateRC = MMHyperR3ToRC(pVM, pVCpu->cpum.s.Host.pXStateR3);
2295 pVCpu->cpum.s.Hyper.pXStateRC = MMHyperR3ToRC(pVM, pVCpu->cpum.s.Hyper.pXStateR3); /** @todo remove me */
2296
2297 /* Recheck the guest DRx values in raw-mode. */
2298 CPUMRecalcHyperDRx(pVCpu, UINT8_MAX, false);
2299 }
2300}
2301
2302
2303/**
2304 * Terminates the CPUM.
2305 *
2306 * Termination means cleaning up and freeing all resources,
2307 * the VM it self is at this point powered off or suspended.
2308 *
2309 * @returns VBox status code.
2310 * @param pVM The cross context VM structure.
2311 */
2312VMMR3DECL(int) CPUMR3Term(PVM pVM)
2313{
2314#ifdef VBOX_WITH_CRASHDUMP_MAGIC
2315 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2316 {
2317 PVMCPU pVCpu = &pVM->aCpus[i];
2318 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
2319
2320 memset(pVCpu->cpum.s.aMagic, 0, sizeof(pVCpu->cpum.s.aMagic));
2321 pVCpu->cpum.s.uMagic = 0;
2322 pCtx->dr[5] = 0;
2323 }
2324#endif
2325
2326 if (pVM->cpum.s.GuestFeatures.fVmx)
2327 cpumR3FreeVmxHwVirtState(pVM);
2328 else if (pVM->cpum.s.GuestFeatures.fSvm)
2329 cpumR3FreeSvmHwVirtState(pVM);
2330 return VINF_SUCCESS;
2331}
2332
2333
2334/**
2335 * Resets a virtual CPU.
2336 *
2337 * Used by CPUMR3Reset and CPU hot plugging.
2338 *
2339 * @param pVM The cross context VM structure.
2340 * @param pVCpu The cross context virtual CPU structure of the CPU that is
2341 * being reset. This may differ from the current EMT.
2342 */
2343VMMR3DECL(void) CPUMR3ResetCpu(PVM pVM, PVMCPU pVCpu)
2344{
2345 /** @todo anything different for VCPU > 0? */
2346 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
2347
2348 /*
2349 * Initialize everything to ZERO first.
2350 */
2351 uint32_t fUseFlags = pVCpu->cpum.s.fUseFlags & ~CPUM_USED_FPU_SINCE_REM;
2352
2353 AssertCompile(RTASSERT_OFFSET_OF(CPUMCTX, pXStateR0) < RTASSERT_OFFSET_OF(CPUMCTX, pXStateR3));
2354 AssertCompile(RTASSERT_OFFSET_OF(CPUMCTX, pXStateR0) < RTASSERT_OFFSET_OF(CPUMCTX, pXStateRC));
2355 memset(pCtx, 0, RT_UOFFSETOF(CPUMCTX, pXStateR0));
2356
2357 pVCpu->cpum.s.fUseFlags = fUseFlags;
2358
2359 pCtx->cr0 = X86_CR0_CD | X86_CR0_NW | X86_CR0_ET; //0x60000010
2360 pCtx->eip = 0x0000fff0;
2361 pCtx->edx = 0x00000600; /* P6 processor */
2362 pCtx->eflags.Bits.u1Reserved0 = 1;
2363
2364 pCtx->cs.Sel = 0xf000;
2365 pCtx->cs.ValidSel = 0xf000;
2366 pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
2367 pCtx->cs.u64Base = UINT64_C(0xffff0000);
2368 pCtx->cs.u32Limit = 0x0000ffff;
2369 pCtx->cs.Attr.n.u1DescType = 1; /* code/data segment */
2370 pCtx->cs.Attr.n.u1Present = 1;
2371 pCtx->cs.Attr.n.u4Type = X86_SEL_TYPE_ER_ACC;
2372
2373 pCtx->ds.fFlags = CPUMSELREG_FLAGS_VALID;
2374 pCtx->ds.u32Limit = 0x0000ffff;
2375 pCtx->ds.Attr.n.u1DescType = 1; /* code/data segment */
2376 pCtx->ds.Attr.n.u1Present = 1;
2377 pCtx->ds.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
2378
2379 pCtx->es.fFlags = CPUMSELREG_FLAGS_VALID;
2380 pCtx->es.u32Limit = 0x0000ffff;
2381 pCtx->es.Attr.n.u1DescType = 1; /* code/data segment */
2382 pCtx->es.Attr.n.u1Present = 1;
2383 pCtx->es.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
2384
2385 pCtx->fs.fFlags = CPUMSELREG_FLAGS_VALID;
2386 pCtx->fs.u32Limit = 0x0000ffff;
2387 pCtx->fs.Attr.n.u1DescType = 1; /* code/data segment */
2388 pCtx->fs.Attr.n.u1Present = 1;
2389 pCtx->fs.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
2390
2391 pCtx->gs.fFlags = CPUMSELREG_FLAGS_VALID;
2392 pCtx->gs.u32Limit = 0x0000ffff;
2393 pCtx->gs.Attr.n.u1DescType = 1; /* code/data segment */
2394 pCtx->gs.Attr.n.u1Present = 1;
2395 pCtx->gs.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
2396
2397 pCtx->ss.fFlags = CPUMSELREG_FLAGS_VALID;
2398 pCtx->ss.u32Limit = 0x0000ffff;
2399 pCtx->ss.Attr.n.u1Present = 1;
2400 pCtx->ss.Attr.n.u1DescType = 1; /* code/data segment */
2401 pCtx->ss.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
2402
2403 pCtx->idtr.cbIdt = 0xffff;
2404 pCtx->gdtr.cbGdt = 0xffff;
2405
2406 pCtx->ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
2407 pCtx->ldtr.u32Limit = 0xffff;
2408 pCtx->ldtr.Attr.n.u1Present = 1;
2409 pCtx->ldtr.Attr.n.u4Type = X86_SEL_TYPE_SYS_LDT;
2410
2411 pCtx->tr.fFlags = CPUMSELREG_FLAGS_VALID;
2412 pCtx->tr.u32Limit = 0xffff;
2413 pCtx->tr.Attr.n.u1Present = 1;
2414 pCtx->tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY; /* Deduction, not properly documented by Intel. */
2415
2416 pCtx->dr[6] = X86_DR6_INIT_VAL;
2417 pCtx->dr[7] = X86_DR7_INIT_VAL;
2418
2419 PX86FXSTATE pFpuCtx = &pCtx->pXStateR3->x87; AssertReleaseMsg(RT_VALID_PTR(pFpuCtx), ("%p\n", pFpuCtx));
2420 pFpuCtx->FTW = 0x00; /* All empty (abbridged tag reg edition). */
2421 pFpuCtx->FCW = 0x37f;
2422
2423 /* Intel 64 and IA-32 Architectures Software Developer's Manual Volume 3A, Table 8-1.
2424 IA-32 Processor States Following Power-up, Reset, or INIT */
2425 pFpuCtx->MXCSR = 0x1F80;
2426 pFpuCtx->MXCSR_MASK = pVM->cpum.s.GuestInfo.fMxCsrMask; /** @todo check if REM messes this up... */
2427
2428 pCtx->aXcr[0] = XSAVE_C_X87;
2429 if (pVM->cpum.s.HostFeatures.cbMaxExtendedState >= RT_UOFFSETOF(X86XSAVEAREA, Hdr))
2430 {
2431 /* The entire FXSAVE state needs loading when we switch to XSAVE/XRSTOR
2432 as we don't know what happened before. (Bother optimize later?) */
2433 pCtx->pXStateR3->Hdr.bmXState = XSAVE_C_X87 | XSAVE_C_SSE;
2434 }
2435
2436 /*
2437 * MSRs.
2438 */
2439 /* Init PAT MSR */
2440 pCtx->msrPAT = MSR_IA32_CR_PAT_INIT_VAL;
2441
2442 /* EFER MBZ; see AMD64 Architecture Programmer's Manual Volume 2: Table 14-1. Initial Processor State.
2443 * The Intel docs don't mention it. */
2444 Assert(!pCtx->msrEFER);
2445
2446 /* IA32_MISC_ENABLE - not entirely sure what the init/reset state really
2447 is supposed to be here, just trying provide useful/sensible values. */
2448 PCPUMMSRRANGE pRange = cpumLookupMsrRange(pVM, MSR_IA32_MISC_ENABLE);
2449 if (pRange)
2450 {
2451 pVCpu->cpum.s.GuestMsrs.msr.MiscEnable = MSR_IA32_MISC_ENABLE_BTS_UNAVAIL
2452 | MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL
2453 | (pVM->cpum.s.GuestFeatures.fMonitorMWait ? MSR_IA32_MISC_ENABLE_MONITOR : 0)
2454 | MSR_IA32_MISC_ENABLE_FAST_STRINGS;
2455 pRange->fWrIgnMask |= MSR_IA32_MISC_ENABLE_BTS_UNAVAIL
2456 | MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL;
2457 pRange->fWrGpMask &= ~pVCpu->cpum.s.GuestMsrs.msr.MiscEnable;
2458 }
2459
2460 /** @todo Wire IA32_MISC_ENABLE bit 22 to our NT 4 CPUID trick. */
2461
2462 /** @todo r=ramshankar: Currently broken for SMP as TMCpuTickSet() expects to be
2463 * called from each EMT while we're getting called by CPUMR3Reset()
2464 * iteratively on the same thread. Fix later. */
2465#if 0 /** @todo r=bird: This we will do in TM, not here. */
2466 /* TSC must be 0. Intel spec. Table 9-1. "IA-32 Processor States Following Power-up, Reset, or INIT." */
2467 CPUMSetGuestMsr(pVCpu, MSR_IA32_TSC, 0);
2468#endif
2469
2470
2471 /* C-state control. Guesses. */
2472 pVCpu->cpum.s.GuestMsrs.msr.PkgCStateCfgCtrl = 1 /*C1*/ | RT_BIT_32(25) | RT_BIT_32(26) | RT_BIT_32(27) | RT_BIT_32(28);
2473 /* For Nehalem+ and Atoms, the 0xE2 MSR (MSR_PKG_CST_CONFIG_CONTROL) is documented. For Core 2,
2474 * it's undocumented but exists as MSR_PMG_CST_CONFIG_CONTROL and has similar but not identical
2475 * functionality. The default value must be different due to incompatible write mask.
2476 */
2477 if (CPUMMICROARCH_IS_INTEL_CORE2(pVM->cpum.s.GuestFeatures.enmMicroarch))
2478 pVCpu->cpum.s.GuestMsrs.msr.PkgCStateCfgCtrl = 0x202a01; /* From Mac Pro Harpertown, unlocked. */
2479 else if (pVM->cpum.s.GuestFeatures.enmMicroarch == kCpumMicroarch_Intel_Core_Yonah)
2480 pVCpu->cpum.s.GuestMsrs.msr.PkgCStateCfgCtrl = 0x26740c; /* From MacBookPro1,1. */
2481
2482 /*
2483 * Hardware virtualization state.
2484 */
2485 CPUMSetGuestGif(pCtx, true);
2486 Assert(!pVM->cpum.s.GuestFeatures.fVmx || !pVM->cpum.s.GuestFeatures.fSvm); /* Paranoia. */
2487 if (pVM->cpum.s.GuestFeatures.fVmx)
2488 cpumR3ResetVmxHwVirtState(pVCpu);
2489 else if (pVM->cpum.s.GuestFeatures.fSvm)
2490 cpumR3ResetSvmHwVirtState(pVCpu);
2491}
2492
2493
2494/**
2495 * Resets the CPU.
2496 *
2497 * @returns VINF_SUCCESS.
2498 * @param pVM The cross context VM structure.
2499 */
2500VMMR3DECL(void) CPUMR3Reset(PVM pVM)
2501{
2502 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2503 {
2504 CPUMR3ResetCpu(pVM, &pVM->aCpus[i]);
2505
2506#ifdef VBOX_WITH_CRASHDUMP_MAGIC
2507 PCPUMCTX pCtx = &pVM->aCpus[i].cpum.s.Guest;
2508
2509 /* Magic marker for searching in crash dumps. */
2510 strcpy((char *)pVM->aCpus[i].cpum.s.aMagic, "CPUMCPU Magic");
2511 pVM->aCpus[i].cpum.s.uMagic = UINT64_C(0xDEADBEEFDEADBEEF);
2512 pCtx->dr[5] = UINT64_C(0xDEADBEEFDEADBEEF);
2513#endif
2514 }
2515}
2516
2517
2518
2519
2520/**
2521 * Pass 0 live exec callback.
2522 *
2523 * @returns VINF_SSM_DONT_CALL_AGAIN.
2524 * @param pVM The cross context VM structure.
2525 * @param pSSM The saved state handle.
2526 * @param uPass The pass (0).
2527 */
2528static DECLCALLBACK(int) cpumR3LiveExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uPass)
2529{
2530 AssertReturn(uPass == 0, VERR_SSM_UNEXPECTED_PASS);
2531 cpumR3SaveCpuId(pVM, pSSM);
2532 return VINF_SSM_DONT_CALL_AGAIN;
2533}
2534
2535
2536/**
2537 * Execute state save operation.
2538 *
2539 * @returns VBox status code.
2540 * @param pVM The cross context VM structure.
2541 * @param pSSM SSM operation handle.
2542 */
2543static DECLCALLBACK(int) cpumR3SaveExec(PVM pVM, PSSMHANDLE pSSM)
2544{
2545 /*
2546 * Save.
2547 */
2548 SSMR3PutU32(pSSM, pVM->cCpus);
2549 SSMR3PutU32(pSSM, sizeof(pVM->aCpus[0].cpum.s.GuestMsrs.msr));
2550 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
2551 {
2552 PVMCPU pVCpu = &pVM->aCpus[iCpu];
2553
2554 SSMR3PutStructEx(pSSM, &pVCpu->cpum.s.Hyper, sizeof(pVCpu->cpum.s.Hyper), 0, g_aCpumCtxFields, NULL);
2555
2556 PCPUMCTX pGstCtx = &pVCpu->cpum.s.Guest;
2557 SSMR3PutStructEx(pSSM, pGstCtx, sizeof(*pGstCtx), 0, g_aCpumCtxFields, NULL);
2558 SSMR3PutStructEx(pSSM, &pGstCtx->pXStateR3->x87, sizeof(pGstCtx->pXStateR3->x87), 0, g_aCpumX87Fields, NULL);
2559 if (pGstCtx->fXStateMask != 0)
2560 SSMR3PutStructEx(pSSM, &pGstCtx->pXStateR3->Hdr, sizeof(pGstCtx->pXStateR3->Hdr), 0, g_aCpumXSaveHdrFields, NULL);
2561 if (pGstCtx->fXStateMask & XSAVE_C_YMM)
2562 {
2563 PCX86XSAVEYMMHI pYmmHiCtx = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_YMM_BIT, PCX86XSAVEYMMHI);
2564 SSMR3PutStructEx(pSSM, pYmmHiCtx, sizeof(*pYmmHiCtx), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumYmmHiFields, NULL);
2565 }
2566 if (pGstCtx->fXStateMask & XSAVE_C_BNDREGS)
2567 {
2568 PCX86XSAVEBNDREGS pBndRegs = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_BNDREGS_BIT, PCX86XSAVEBNDREGS);
2569 SSMR3PutStructEx(pSSM, pBndRegs, sizeof(*pBndRegs), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumBndRegsFields, NULL);
2570 }
2571 if (pGstCtx->fXStateMask & XSAVE_C_BNDCSR)
2572 {
2573 PCX86XSAVEBNDCFG pBndCfg = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_BNDCSR_BIT, PCX86XSAVEBNDCFG);
2574 SSMR3PutStructEx(pSSM, pBndCfg, sizeof(*pBndCfg), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumBndCfgFields, NULL);
2575 }
2576 if (pGstCtx->fXStateMask & XSAVE_C_ZMM_HI256)
2577 {
2578 PCX86XSAVEZMMHI256 pZmmHi256 = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_ZMM_HI256_BIT, PCX86XSAVEZMMHI256);
2579 SSMR3PutStructEx(pSSM, pZmmHi256, sizeof(*pZmmHi256), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumZmmHi256Fields, NULL);
2580 }
2581 if (pGstCtx->fXStateMask & XSAVE_C_ZMM_16HI)
2582 {
2583 PCX86XSAVEZMM16HI pZmm16Hi = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_ZMM_16HI_BIT, PCX86XSAVEZMM16HI);
2584 SSMR3PutStructEx(pSSM, pZmm16Hi, sizeof(*pZmm16Hi), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumZmm16HiFields, NULL);
2585 }
2586 if (pVM->cpum.s.GuestFeatures.fSvm)
2587 {
2588 Assert(pGstCtx->hwvirt.svm.CTX_SUFF(pVmcb));
2589 SSMR3PutU64(pSSM, pGstCtx->hwvirt.svm.uMsrHSavePa);
2590 SSMR3PutGCPhys(pSSM, pGstCtx->hwvirt.svm.GCPhysVmcb);
2591 SSMR3PutU64(pSSM, pGstCtx->hwvirt.svm.uPrevPauseTick);
2592 SSMR3PutU16(pSSM, pGstCtx->hwvirt.svm.cPauseFilter);
2593 SSMR3PutU16(pSSM, pGstCtx->hwvirt.svm.cPauseFilterThreshold);
2594 SSMR3PutBool(pSSM, pGstCtx->hwvirt.svm.fInterceptEvents);
2595 SSMR3PutStructEx(pSSM, &pGstCtx->hwvirt.svm.HostState, sizeof(pGstCtx->hwvirt.svm.HostState), 0 /* fFlags */,
2596 g_aSvmHwvirtHostState, NULL /* pvUser */);
2597 SSMR3PutMem(pSSM, pGstCtx->hwvirt.svm.pVmcbR3, SVM_VMCB_PAGES << X86_PAGE_4K_SHIFT);
2598 SSMR3PutMem(pSSM, pGstCtx->hwvirt.svm.pvMsrBitmapR3, SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT);
2599 SSMR3PutMem(pSSM, pGstCtx->hwvirt.svm.pvIoBitmapR3, SVM_IOPM_PAGES << X86_PAGE_4K_SHIFT);
2600 SSMR3PutU32(pSSM, pGstCtx->hwvirt.fLocalForcedActions);
2601 SSMR3PutBool(pSSM, pGstCtx->hwvirt.fGif);
2602 }
2603 if (pVM->cpum.s.GuestFeatures.fVmx)
2604 {
2605 Assert(pGstCtx->hwvirt.vmx.CTX_SUFF(pVmcs));
2606 SSMR3PutGCPhys(pSSM, pGstCtx->hwvirt.vmx.GCPhysVmxon);
2607 SSMR3PutGCPhys(pSSM, pGstCtx->hwvirt.vmx.GCPhysVmcs);
2608 SSMR3PutGCPhys(pSSM, pGstCtx->hwvirt.vmx.GCPhysShadowVmcs);
2609 SSMR3PutU32(pSSM, (uint32_t)pGstCtx->hwvirt.vmx.enmDiag);
2610 SSMR3PutU32(pSSM, (uint32_t)pGstCtx->hwvirt.vmx.enmAbort);
2611 SSMR3PutU32(pSSM, pGstCtx->hwvirt.vmx.uAbortAux);
2612 SSMR3PutBool(pSSM, pGstCtx->hwvirt.vmx.fInVmxRootMode);
2613 SSMR3PutBool(pSSM, pGstCtx->hwvirt.vmx.fInVmxNonRootMode);
2614 SSMR3PutBool(pSSM, pGstCtx->hwvirt.vmx.fInterceptEvents);
2615 SSMR3PutBool(pSSM, pGstCtx->hwvirt.vmx.fNmiUnblockingIret);
2616 SSMR3PutStructEx(pSSM, pGstCtx->hwvirt.vmx.pVmcsR3, sizeof(VMXVVMCS), 0, g_aVmxHwvirtVmcs, NULL);
2617 SSMR3PutStructEx(pSSM, pGstCtx->hwvirt.vmx.pShadowVmcsR3, sizeof(VMXVVMCS), 0, g_aVmxHwvirtVmcs, NULL);
2618 SSMR3PutMem(pSSM, pGstCtx->hwvirt.vmx.pvVmreadBitmapR3, VMX_V_VMREAD_VMWRITE_BITMAP_SIZE);
2619 SSMR3PutMem(pSSM, pGstCtx->hwvirt.vmx.pvVmwriteBitmapR3, VMX_V_VMREAD_VMWRITE_BITMAP_SIZE);
2620 SSMR3PutMem(pSSM, pGstCtx->hwvirt.vmx.pEntryMsrLoadAreaR3, VMX_V_AUTOMSR_AREA_SIZE);
2621 SSMR3PutMem(pSSM, pGstCtx->hwvirt.vmx.pExitMsrStoreAreaR3, VMX_V_AUTOMSR_AREA_SIZE);
2622 SSMR3PutMem(pSSM, pGstCtx->hwvirt.vmx.pExitMsrLoadAreaR3, VMX_V_AUTOMSR_AREA_SIZE);
2623 SSMR3PutMem(pSSM, pGstCtx->hwvirt.vmx.pvMsrBitmapR3, VMX_V_MSR_BITMAP_SIZE);
2624 SSMR3PutMem(pSSM, pGstCtx->hwvirt.vmx.pvIoBitmapR3, VMX_V_IO_BITMAP_A_SIZE + VMX_V_IO_BITMAP_B_SIZE);
2625 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.uFirstPauseLoopTick);
2626 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.uPrevPauseTick);
2627 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.uEntryTick);
2628 SSMR3PutU16(pSSM, pGstCtx->hwvirt.vmx.offVirtApicWrite);
2629 SSMR3PutBool(pSSM, pGstCtx->hwvirt.vmx.fVirtNmiBlocking);
2630 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64FeatCtrl);
2631 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64Basic);
2632 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.PinCtls.u);
2633 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.ProcCtls.u);
2634 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.ProcCtls2.u);
2635 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.ExitCtls.u);
2636 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.EntryCtls.u);
2637 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.TruePinCtls.u);
2638 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.TrueProcCtls.u);
2639 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.TrueEntryCtls.u);
2640 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.TrueExitCtls.u);
2641 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64Misc);
2642 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64Cr0Fixed0);
2643 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64Cr0Fixed1);
2644 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64Cr4Fixed0);
2645 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64Cr4Fixed1);
2646 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64VmcsEnum);
2647 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64VmFunc);
2648 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64EptVpidCaps);
2649 }
2650 SSMR3PutU32(pSSM, pVCpu->cpum.s.fUseFlags);
2651 SSMR3PutU32(pSSM, pVCpu->cpum.s.fChanged);
2652 AssertCompileSizeAlignment(pVCpu->cpum.s.GuestMsrs.msr, sizeof(uint64_t));
2653 SSMR3PutMem(pSSM, &pVCpu->cpum.s.GuestMsrs, sizeof(pVCpu->cpum.s.GuestMsrs.msr));
2654 }
2655
2656 cpumR3SaveCpuId(pVM, pSSM);
2657 return VINF_SUCCESS;
2658}
2659
2660
2661/**
2662 * @callback_method_impl{FNSSMINTLOADPREP}
2663 */
2664static DECLCALLBACK(int) cpumR3LoadPrep(PVM pVM, PSSMHANDLE pSSM)
2665{
2666 NOREF(pSSM);
2667 pVM->cpum.s.fPendingRestore = true;
2668 return VINF_SUCCESS;
2669}
2670
2671
2672/**
2673 * @callback_method_impl{FNSSMINTLOADEXEC}
2674 */
2675static DECLCALLBACK(int) cpumR3LoadExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
2676{
2677 int rc; /* Only for AssertRCReturn use. */
2678
2679 /*
2680 * Validate version.
2681 */
2682 if ( uVersion != CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_IEM
2683 && uVersion != CPUM_SAVED_STATE_VERSION_HWVIRT_SVM
2684 && uVersion != CPUM_SAVED_STATE_VERSION_XSAVE
2685 && uVersion != CPUM_SAVED_STATE_VERSION_GOOD_CPUID_COUNT
2686 && uVersion != CPUM_SAVED_STATE_VERSION_BAD_CPUID_COUNT
2687 && uVersion != CPUM_SAVED_STATE_VERSION_PUT_STRUCT
2688 && uVersion != CPUM_SAVED_STATE_VERSION_MEM
2689 && uVersion != CPUM_SAVED_STATE_VERSION_NO_MSR_SIZE
2690 && uVersion != CPUM_SAVED_STATE_VERSION_VER3_2
2691 && uVersion != CPUM_SAVED_STATE_VERSION_VER3_0
2692 && uVersion != CPUM_SAVED_STATE_VERSION_VER2_1_NOMSR
2693 && uVersion != CPUM_SAVED_STATE_VERSION_VER2_0
2694 && uVersion != CPUM_SAVED_STATE_VERSION_VER1_6)
2695 {
2696 AssertMsgFailed(("cpumR3LoadExec: Invalid version uVersion=%d!\n", uVersion));
2697 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
2698 }
2699
2700 if (uPass == SSM_PASS_FINAL)
2701 {
2702 /*
2703 * Set the size of RTGCPTR for SSMR3GetGCPtr. (Only necessary for
2704 * really old SSM file versions.)
2705 */
2706 if (uVersion == CPUM_SAVED_STATE_VERSION_VER1_6)
2707 SSMR3HandleSetGCPtrSize(pSSM, sizeof(RTGCPTR32));
2708 else if (uVersion <= CPUM_SAVED_STATE_VERSION_VER3_0)
2709 SSMR3HandleSetGCPtrSize(pSSM, HC_ARCH_BITS == 32 ? sizeof(RTGCPTR32) : sizeof(RTGCPTR));
2710
2711 /*
2712 * Figure x86 and ctx field definitions to use for older states.
2713 */
2714 uint32_t const fLoad = uVersion > CPUM_SAVED_STATE_VERSION_MEM ? 0 : SSMSTRUCT_FLAGS_MEM_BAND_AID_RELAXED;
2715 PCSSMFIELD paCpumCtx1Fields = g_aCpumX87Fields;
2716 PCSSMFIELD paCpumCtx2Fields = g_aCpumCtxFields;
2717 if (uVersion == CPUM_SAVED_STATE_VERSION_VER1_6)
2718 {
2719 paCpumCtx1Fields = g_aCpumX87FieldsV16;
2720 paCpumCtx2Fields = g_aCpumCtxFieldsV16;
2721 }
2722 else if (uVersion <= CPUM_SAVED_STATE_VERSION_MEM)
2723 {
2724 paCpumCtx1Fields = g_aCpumX87FieldsMem;
2725 paCpumCtx2Fields = g_aCpumCtxFieldsMem;
2726 }
2727
2728 /*
2729 * The hyper state used to preceed the CPU count. Starting with
2730 * XSAVE it was moved down till after we've got the count.
2731 */
2732 if (uVersion < CPUM_SAVED_STATE_VERSION_XSAVE)
2733 {
2734 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
2735 {
2736 PVMCPU pVCpu = &pVM->aCpus[iCpu];
2737 X86FXSTATE Ign;
2738 SSMR3GetStructEx(pSSM, &Ign, sizeof(Ign), fLoad | SSMSTRUCT_FLAGS_NO_TAIL_MARKER, paCpumCtx1Fields, NULL);
2739 uint64_t uCR3 = pVCpu->cpum.s.Hyper.cr3;
2740 uint64_t uRSP = pVCpu->cpum.s.Hyper.rsp; /* see VMMR3Relocate(). */
2741 SSMR3GetStructEx(pSSM, &pVCpu->cpum.s.Hyper, sizeof(pVCpu->cpum.s.Hyper),
2742 fLoad | SSMSTRUCT_FLAGS_NO_LEAD_MARKER, paCpumCtx2Fields, NULL);
2743 pVCpu->cpum.s.Hyper.cr3 = uCR3;
2744 pVCpu->cpum.s.Hyper.rsp = uRSP;
2745 }
2746 }
2747
2748 if (uVersion >= CPUM_SAVED_STATE_VERSION_VER2_1_NOMSR)
2749 {
2750 uint32_t cCpus;
2751 rc = SSMR3GetU32(pSSM, &cCpus); AssertRCReturn(rc, rc);
2752 AssertLogRelMsgReturn(cCpus == pVM->cCpus, ("Mismatching CPU counts: saved: %u; configured: %u \n", cCpus, pVM->cCpus),
2753 VERR_SSM_UNEXPECTED_DATA);
2754 }
2755 AssertLogRelMsgReturn( uVersion > CPUM_SAVED_STATE_VERSION_VER2_0
2756 || pVM->cCpus == 1,
2757 ("cCpus=%u\n", pVM->cCpus),
2758 VERR_SSM_UNEXPECTED_DATA);
2759
2760 uint32_t cbMsrs = 0;
2761 if (uVersion > CPUM_SAVED_STATE_VERSION_NO_MSR_SIZE)
2762 {
2763 rc = SSMR3GetU32(pSSM, &cbMsrs); AssertRCReturn(rc, rc);
2764 AssertLogRelMsgReturn(RT_ALIGN(cbMsrs, sizeof(uint64_t)) == cbMsrs, ("Size of MSRs is misaligned: %#x\n", cbMsrs),
2765 VERR_SSM_UNEXPECTED_DATA);
2766 AssertLogRelMsgReturn(cbMsrs <= sizeof(CPUMCTXMSRS) && cbMsrs > 0, ("Size of MSRs is out of range: %#x\n", cbMsrs),
2767 VERR_SSM_UNEXPECTED_DATA);
2768 }
2769
2770 /*
2771 * Do the per-CPU restoring.
2772 */
2773 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
2774 {
2775 PVMCPU pVCpu = &pVM->aCpus[iCpu];
2776 PCPUMCTX pGstCtx = &pVCpu->cpum.s.Guest;
2777
2778 if (uVersion >= CPUM_SAVED_STATE_VERSION_XSAVE)
2779 {
2780 /*
2781 * The XSAVE saved state layout moved the hyper state down here.
2782 */
2783 uint64_t uCR3 = pVCpu->cpum.s.Hyper.cr3;
2784 uint64_t uRSP = pVCpu->cpum.s.Hyper.rsp; /* see VMMR3Relocate(). */
2785 rc = SSMR3GetStructEx(pSSM, &pVCpu->cpum.s.Hyper, sizeof(pVCpu->cpum.s.Hyper), 0, g_aCpumCtxFields, NULL);
2786 pVCpu->cpum.s.Hyper.cr3 = uCR3;
2787 pVCpu->cpum.s.Hyper.rsp = uRSP;
2788 AssertRCReturn(rc, rc);
2789
2790 /*
2791 * Start by restoring the CPUMCTX structure and the X86FXSAVE bits of the extended state.
2792 */
2793 rc = SSMR3GetStructEx(pSSM, pGstCtx, sizeof(*pGstCtx), 0, g_aCpumCtxFields, NULL);
2794 rc = SSMR3GetStructEx(pSSM, &pGstCtx->pXStateR3->x87, sizeof(pGstCtx->pXStateR3->x87), 0, g_aCpumX87Fields, NULL);
2795 AssertRCReturn(rc, rc);
2796
2797 /* Check that the xsave/xrstor mask is valid (invalid results in #GP). */
2798 if (pGstCtx->fXStateMask != 0)
2799 {
2800 AssertLogRelMsgReturn(!(pGstCtx->fXStateMask & ~pVM->cpum.s.fXStateGuestMask),
2801 ("fXStateMask=%#RX64 fXStateGuestMask=%#RX64\n",
2802 pGstCtx->fXStateMask, pVM->cpum.s.fXStateGuestMask),
2803 VERR_CPUM_INCOMPATIBLE_XSAVE_COMP_MASK);
2804 AssertLogRelMsgReturn(pGstCtx->fXStateMask & XSAVE_C_X87,
2805 ("fXStateMask=%#RX64\n", pGstCtx->fXStateMask), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2806 AssertLogRelMsgReturn((pGstCtx->fXStateMask & (XSAVE_C_SSE | XSAVE_C_YMM)) != XSAVE_C_YMM,
2807 ("fXStateMask=%#RX64\n", pGstCtx->fXStateMask), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2808 AssertLogRelMsgReturn( (pGstCtx->fXStateMask & (XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI)) == 0
2809 || (pGstCtx->fXStateMask & (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI))
2810 == (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI),
2811 ("fXStateMask=%#RX64\n", pGstCtx->fXStateMask), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2812 }
2813
2814 /* Check that the XCR0 mask is valid (invalid results in #GP). */
2815 AssertLogRelMsgReturn(pGstCtx->aXcr[0] & XSAVE_C_X87, ("xcr0=%#RX64\n", pGstCtx->aXcr[0]), VERR_CPUM_INVALID_XCR0);
2816 if (pGstCtx->aXcr[0] != XSAVE_C_X87)
2817 {
2818 AssertLogRelMsgReturn(!(pGstCtx->aXcr[0] & ~(pGstCtx->fXStateMask | XSAVE_C_X87)),
2819 ("xcr0=%#RX64 fXStateMask=%#RX64\n", pGstCtx->aXcr[0], pGstCtx->fXStateMask),
2820 VERR_CPUM_INVALID_XCR0);
2821 AssertLogRelMsgReturn(pGstCtx->aXcr[0] & XSAVE_C_X87,
2822 ("xcr0=%#RX64\n", pGstCtx->aXcr[0]), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2823 AssertLogRelMsgReturn((pGstCtx->aXcr[0] & (XSAVE_C_SSE | XSAVE_C_YMM)) != XSAVE_C_YMM,
2824 ("xcr0=%#RX64\n", pGstCtx->aXcr[0]), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2825 AssertLogRelMsgReturn( (pGstCtx->aXcr[0] & (XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI)) == 0
2826 || (pGstCtx->aXcr[0] & (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI))
2827 == (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI),
2828 ("xcr0=%#RX64\n", pGstCtx->aXcr[0]), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2829 }
2830
2831 /* Check that the XCR1 is zero, as we don't implement it yet. */
2832 AssertLogRelMsgReturn(!pGstCtx->aXcr[1], ("xcr1=%#RX64\n", pGstCtx->aXcr[1]), VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2833
2834 /*
2835 * Restore the individual extended state components we support.
2836 */
2837 if (pGstCtx->fXStateMask != 0)
2838 {
2839 rc = SSMR3GetStructEx(pSSM, &pGstCtx->pXStateR3->Hdr, sizeof(pGstCtx->pXStateR3->Hdr),
2840 0, g_aCpumXSaveHdrFields, NULL);
2841 AssertRCReturn(rc, rc);
2842 AssertLogRelMsgReturn(!(pGstCtx->pXStateR3->Hdr.bmXState & ~pGstCtx->fXStateMask),
2843 ("bmXState=%#RX64 fXStateMask=%#RX64\n",
2844 pGstCtx->pXStateR3->Hdr.bmXState, pGstCtx->fXStateMask),
2845 VERR_CPUM_INVALID_XSAVE_HDR);
2846 }
2847 if (pGstCtx->fXStateMask & XSAVE_C_YMM)
2848 {
2849 PX86XSAVEYMMHI pYmmHiCtx = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_YMM_BIT, PX86XSAVEYMMHI);
2850 SSMR3GetStructEx(pSSM, pYmmHiCtx, sizeof(*pYmmHiCtx), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumYmmHiFields, NULL);
2851 }
2852 if (pGstCtx->fXStateMask & XSAVE_C_BNDREGS)
2853 {
2854 PX86XSAVEBNDREGS pBndRegs = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_BNDREGS_BIT, PX86XSAVEBNDREGS);
2855 SSMR3GetStructEx(pSSM, pBndRegs, sizeof(*pBndRegs), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumBndRegsFields, NULL);
2856 }
2857 if (pGstCtx->fXStateMask & XSAVE_C_BNDCSR)
2858 {
2859 PX86XSAVEBNDCFG pBndCfg = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_BNDCSR_BIT, PX86XSAVEBNDCFG);
2860 SSMR3GetStructEx(pSSM, pBndCfg, sizeof(*pBndCfg), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumBndCfgFields, NULL);
2861 }
2862 if (pGstCtx->fXStateMask & XSAVE_C_ZMM_HI256)
2863 {
2864 PX86XSAVEZMMHI256 pZmmHi256 = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_ZMM_HI256_BIT, PX86XSAVEZMMHI256);
2865 SSMR3GetStructEx(pSSM, pZmmHi256, sizeof(*pZmmHi256), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumZmmHi256Fields, NULL);
2866 }
2867 if (pGstCtx->fXStateMask & XSAVE_C_ZMM_16HI)
2868 {
2869 PX86XSAVEZMM16HI pZmm16Hi = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_ZMM_16HI_BIT, PX86XSAVEZMM16HI);
2870 SSMR3GetStructEx(pSSM, pZmm16Hi, sizeof(*pZmm16Hi), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumZmm16HiFields, NULL);
2871 }
2872 if (uVersion >= CPUM_SAVED_STATE_VERSION_HWVIRT_SVM)
2873 {
2874 if (pVM->cpum.s.GuestFeatures.fSvm)
2875 {
2876 Assert(pGstCtx->hwvirt.svm.CTX_SUFF(pVmcb));
2877 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.svm.uMsrHSavePa);
2878 SSMR3GetGCPhys(pSSM, &pGstCtx->hwvirt.svm.GCPhysVmcb);
2879 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.svm.uPrevPauseTick);
2880 SSMR3GetU16(pSSM, &pGstCtx->hwvirt.svm.cPauseFilter);
2881 SSMR3GetU16(pSSM, &pGstCtx->hwvirt.svm.cPauseFilterThreshold);
2882 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.svm.fInterceptEvents);
2883 SSMR3GetStructEx(pSSM, &pGstCtx->hwvirt.svm.HostState, sizeof(pGstCtx->hwvirt.svm.HostState),
2884 0 /* fFlags */, g_aSvmHwvirtHostState, NULL /* pvUser */);
2885 SSMR3GetMem(pSSM, pGstCtx->hwvirt.svm.pVmcbR3, SVM_VMCB_PAGES << X86_PAGE_4K_SHIFT);
2886 SSMR3GetMem(pSSM, pGstCtx->hwvirt.svm.pvMsrBitmapR3, SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT);
2887 SSMR3GetMem(pSSM, pGstCtx->hwvirt.svm.pvIoBitmapR3, SVM_IOPM_PAGES << X86_PAGE_4K_SHIFT);
2888 SSMR3GetU32(pSSM, &pGstCtx->hwvirt.fLocalForcedActions);
2889 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.fGif);
2890 }
2891 }
2892 if (uVersion >= CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_IEM)
2893 {
2894 if (pVM->cpum.s.GuestFeatures.fVmx)
2895 {
2896 Assert(pGstCtx->hwvirt.vmx.CTX_SUFF(pVmcs));
2897 SSMR3GetGCPhys(pSSM, &pGstCtx->hwvirt.vmx.GCPhysVmxon);
2898 SSMR3GetGCPhys(pSSM, &pGstCtx->hwvirt.vmx.GCPhysVmcs);
2899 SSMR3GetGCPhys(pSSM, &pGstCtx->hwvirt.vmx.GCPhysShadowVmcs);
2900 SSMR3GetU32(pSSM, (uint32_t *)&pGstCtx->hwvirt.vmx.enmDiag);
2901 SSMR3GetU32(pSSM, (uint32_t *)&pGstCtx->hwvirt.vmx.enmAbort);
2902 SSMR3GetU32(pSSM, &pGstCtx->hwvirt.vmx.uAbortAux);
2903 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.vmx.fInVmxRootMode);
2904 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.vmx.fInVmxNonRootMode);
2905 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.vmx.fInterceptEvents);
2906 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.vmx.fNmiUnblockingIret);
2907 SSMR3GetStructEx(pSSM, pGstCtx->hwvirt.vmx.pVmcsR3, sizeof(VMXVVMCS), 0, g_aVmxHwvirtVmcs, NULL);
2908 SSMR3GetStructEx(pSSM, pGstCtx->hwvirt.vmx.pShadowVmcsR3, sizeof(VMXVVMCS), 0, g_aVmxHwvirtVmcs, NULL);
2909 SSMR3GetMem(pSSM, pGstCtx->hwvirt.vmx.pvVmreadBitmapR3, VMX_V_VMREAD_VMWRITE_BITMAP_SIZE);
2910 SSMR3GetMem(pSSM, pGstCtx->hwvirt.vmx.pvVmwriteBitmapR3, VMX_V_VMREAD_VMWRITE_BITMAP_SIZE);
2911 SSMR3GetMem(pSSM, pGstCtx->hwvirt.vmx.pEntryMsrLoadAreaR3, VMX_V_AUTOMSR_AREA_SIZE);
2912 SSMR3GetMem(pSSM, pGstCtx->hwvirt.vmx.pExitMsrStoreAreaR3, VMX_V_AUTOMSR_AREA_SIZE);
2913 SSMR3GetMem(pSSM, pGstCtx->hwvirt.vmx.pExitMsrLoadAreaR3, VMX_V_AUTOMSR_AREA_SIZE);
2914 SSMR3GetMem(pSSM, pGstCtx->hwvirt.vmx.pvMsrBitmapR3, VMX_V_MSR_BITMAP_SIZE);
2915 SSMR3GetMem(pSSM, pGstCtx->hwvirt.vmx.pvIoBitmapR3, VMX_V_IO_BITMAP_A_SIZE + VMX_V_IO_BITMAP_B_SIZE);
2916 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.uFirstPauseLoopTick);
2917 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.uPrevPauseTick);
2918 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.uEntryTick);
2919 SSMR3GetU16(pSSM, &pGstCtx->hwvirt.vmx.offVirtApicWrite);
2920 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.vmx.fVirtNmiBlocking);
2921 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64FeatCtrl);
2922 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64Basic);
2923 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.PinCtls.u);
2924 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.ProcCtls.u);
2925 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.ProcCtls2.u);
2926 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.ExitCtls.u);
2927 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.EntryCtls.u);
2928 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.TruePinCtls.u);
2929 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.TrueProcCtls.u);
2930 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.TrueEntryCtls.u);
2931 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.TrueExitCtls.u);
2932 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64Misc);
2933 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64Cr0Fixed0);
2934 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64Cr0Fixed1);
2935 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64Cr4Fixed0);
2936 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64Cr4Fixed1);
2937 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64VmcsEnum);
2938 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64VmFunc);
2939 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64EptVpidCaps);
2940 }
2941 }
2942 }
2943 else
2944 {
2945 /*
2946 * Pre XSAVE saved state.
2947 */
2948 SSMR3GetStructEx(pSSM, &pGstCtx->pXStateR3->x87, sizeof(pGstCtx->pXStateR3->x87),
2949 fLoad | SSMSTRUCT_FLAGS_NO_TAIL_MARKER, paCpumCtx1Fields, NULL);
2950 SSMR3GetStructEx(pSSM, pGstCtx, sizeof(*pGstCtx), fLoad | SSMSTRUCT_FLAGS_NO_LEAD_MARKER, paCpumCtx2Fields, NULL);
2951 }
2952
2953 /*
2954 * Restore a couple of flags and the MSRs.
2955 */
2956 SSMR3GetU32(pSSM, &pVCpu->cpum.s.fUseFlags);
2957 SSMR3GetU32(pSSM, &pVCpu->cpum.s.fChanged);
2958
2959 rc = VINF_SUCCESS;
2960 if (uVersion > CPUM_SAVED_STATE_VERSION_NO_MSR_SIZE)
2961 rc = SSMR3GetMem(pSSM, &pVCpu->cpum.s.GuestMsrs.au64[0], cbMsrs);
2962 else if (uVersion >= CPUM_SAVED_STATE_VERSION_VER3_0)
2963 {
2964 SSMR3GetMem(pSSM, &pVCpu->cpum.s.GuestMsrs.au64[0], 2 * sizeof(uint64_t)); /* Restore two MSRs. */
2965 rc = SSMR3Skip(pSSM, 62 * sizeof(uint64_t));
2966 }
2967 AssertRCReturn(rc, rc);
2968
2969 /* REM and other may have cleared must-be-one fields in DR6 and
2970 DR7, fix these. */
2971 pGstCtx->dr[6] &= ~(X86_DR6_RAZ_MASK | X86_DR6_MBZ_MASK);
2972 pGstCtx->dr[6] |= X86_DR6_RA1_MASK;
2973 pGstCtx->dr[7] &= ~(X86_DR7_RAZ_MASK | X86_DR7_MBZ_MASK);
2974 pGstCtx->dr[7] |= X86_DR7_RA1_MASK;
2975 }
2976
2977 /* Older states does not have the internal selector register flags
2978 and valid selector value. Supply those. */
2979 if (uVersion <= CPUM_SAVED_STATE_VERSION_MEM)
2980 {
2981 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
2982 {
2983 PVMCPU pVCpu = &pVM->aCpus[iCpu];
2984 bool const fValid = !VM_IS_RAW_MODE_ENABLED(pVM)
2985 || ( uVersion > CPUM_SAVED_STATE_VERSION_VER3_2
2986 && !(pVCpu->cpum.s.fChanged & CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID));
2987 PCPUMSELREG paSelReg = CPUMCTX_FIRST_SREG(&pVCpu->cpum.s.Guest);
2988 if (fValid)
2989 {
2990 for (uint32_t iSelReg = 0; iSelReg < X86_SREG_COUNT; iSelReg++)
2991 {
2992 paSelReg[iSelReg].fFlags = CPUMSELREG_FLAGS_VALID;
2993 paSelReg[iSelReg].ValidSel = paSelReg[iSelReg].Sel;
2994 }
2995
2996 pVCpu->cpum.s.Guest.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
2997 pVCpu->cpum.s.Guest.ldtr.ValidSel = pVCpu->cpum.s.Guest.ldtr.Sel;
2998 }
2999 else
3000 {
3001 for (uint32_t iSelReg = 0; iSelReg < X86_SREG_COUNT; iSelReg++)
3002 {
3003 paSelReg[iSelReg].fFlags = 0;
3004 paSelReg[iSelReg].ValidSel = 0;
3005 }
3006
3007 /* This might not be 104% correct, but I think it's close
3008 enough for all practical purposes... (REM always loaded
3009 LDTR registers.) */
3010 pVCpu->cpum.s.Guest.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
3011 pVCpu->cpum.s.Guest.ldtr.ValidSel = pVCpu->cpum.s.Guest.ldtr.Sel;
3012 }
3013 pVCpu->cpum.s.Guest.tr.fFlags = CPUMSELREG_FLAGS_VALID;
3014 pVCpu->cpum.s.Guest.tr.ValidSel = pVCpu->cpum.s.Guest.tr.Sel;
3015 }
3016 }
3017
3018 /* Clear CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID. */
3019 if ( uVersion > CPUM_SAVED_STATE_VERSION_VER3_2
3020 && uVersion <= CPUM_SAVED_STATE_VERSION_MEM)
3021 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
3022 pVM->aCpus[iCpu].cpum.s.fChanged &= CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID;
3023
3024 /*
3025 * A quick sanity check.
3026 */
3027 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
3028 {
3029 PVMCPU pVCpu = &pVM->aCpus[iCpu];
3030 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.es.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
3031 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.cs.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
3032 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.ss.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
3033 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.ds.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
3034 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.fs.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
3035 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.gs.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
3036 }
3037 }
3038
3039 pVM->cpum.s.fPendingRestore = false;
3040
3041 /*
3042 * Guest CPUIDs (and VMX MSR features).
3043 */
3044 if (uVersion >= CPUM_SAVED_STATE_VERSION_VER3_2)
3045 {
3046 CPUMMSRS GuestMsrs;
3047 RT_ZERO(GuestMsrs);
3048
3049 CPUMFEATURES BaseFeatures;
3050 bool const fVmxGstFeat = pVM->cpum.s.GuestFeatures.fVmx;
3051 if (fVmxGstFeat)
3052 {
3053 /*
3054 * At this point the MSRs in the guest CPU-context are loaded with the guest VMX MSRs from the saved state.
3055 * However the VMX sub-features have not been exploded yet. So cache the base (host derived) VMX features
3056 * here so we can compare them for compatibility after exploding guest features.
3057 */
3058 BaseFeatures = pVM->cpum.s.GuestFeatures;
3059
3060 /* Use the VMX MSR features from the saved state while exploding guest features. */
3061 GuestMsrs.hwvirt.vmx = pVM->aCpus[0].cpum.s.Guest.hwvirt.vmx.Msrs;
3062 }
3063
3064 /* Load CPUID and explode guest features. */
3065 rc = cpumR3LoadCpuId(pVM, pSSM, uVersion, &GuestMsrs);
3066 if (fVmxGstFeat)
3067 {
3068 /*
3069 * Check if the exploded VMX features from the saved state are compatible with the host-derived features
3070 * we cached earlier (above). The is required if we use hardware-assisted nested-guest execution with
3071 * VMX features presented to the guest.
3072 */
3073 bool const fIsCompat = cpumR3AreVmxCpuFeaturesCompatible(pVM, &BaseFeatures, &pVM->cpum.s.GuestFeatures);
3074 if (!fIsCompat)
3075 return VERR_CPUM_INVALID_HWVIRT_FEAT_COMBO;
3076 }
3077 return rc;
3078 }
3079 return cpumR3LoadCpuIdPre32(pVM, pSSM, uVersion);
3080}
3081
3082
3083/**
3084 * @callback_method_impl{FNSSMINTLOADDONE}
3085 */
3086static DECLCALLBACK(int) cpumR3LoadDone(PVM pVM, PSSMHANDLE pSSM)
3087{
3088 if (RT_FAILURE(SSMR3HandleGetStatus(pSSM)))
3089 return VINF_SUCCESS;
3090
3091 /* just check this since we can. */ /** @todo Add a SSM unit flag for indicating that it's mandatory during a restore. */
3092 if (pVM->cpum.s.fPendingRestore)
3093 {
3094 LogRel(("CPUM: Missing state!\n"));
3095 return VERR_INTERNAL_ERROR_2;
3096 }
3097
3098 bool const fSupportsLongMode = VMR3IsLongModeAllowed(pVM);
3099 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
3100 {
3101 PVMCPU pVCpu = &pVM->aCpus[idCpu];
3102
3103 /* Notify PGM of the NXE states in case they've changed. */
3104 PGMNotifyNxeChanged(pVCpu, RT_BOOL(pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_NXE));
3105
3106 /* During init. this is done in CPUMR3InitCompleted(). */
3107 if (fSupportsLongMode)
3108 pVCpu->cpum.s.fUseFlags |= CPUM_USE_SUPPORTS_LONGMODE;
3109 }
3110 return VINF_SUCCESS;
3111}
3112
3113
3114/**
3115 * Checks if the CPUM state restore is still pending.
3116 *
3117 * @returns true / false.
3118 * @param pVM The cross context VM structure.
3119 */
3120VMMDECL(bool) CPUMR3IsStateRestorePending(PVM pVM)
3121{
3122 return pVM->cpum.s.fPendingRestore;
3123}
3124
3125
3126/**
3127 * Formats the EFLAGS value into mnemonics.
3128 *
3129 * @param pszEFlags Where to write the mnemonics. (Assumes sufficient buffer space.)
3130 * @param efl The EFLAGS value.
3131 */
3132static void cpumR3InfoFormatFlags(char *pszEFlags, uint32_t efl)
3133{
3134 /*
3135 * Format the flags.
3136 */
3137 static const struct
3138 {
3139 const char *pszSet; const char *pszClear; uint32_t fFlag;
3140 } s_aFlags[] =
3141 {
3142 { "vip",NULL, X86_EFL_VIP },
3143 { "vif",NULL, X86_EFL_VIF },
3144 { "ac", NULL, X86_EFL_AC },
3145 { "vm", NULL, X86_EFL_VM },
3146 { "rf", NULL, X86_EFL_RF },
3147 { "nt", NULL, X86_EFL_NT },
3148 { "ov", "nv", X86_EFL_OF },
3149 { "dn", "up", X86_EFL_DF },
3150 { "ei", "di", X86_EFL_IF },
3151 { "tf", NULL, X86_EFL_TF },
3152 { "nt", "pl", X86_EFL_SF },
3153 { "nz", "zr", X86_EFL_ZF },
3154 { "ac", "na", X86_EFL_AF },
3155 { "po", "pe", X86_EFL_PF },
3156 { "cy", "nc", X86_EFL_CF },
3157 };
3158 char *psz = pszEFlags;
3159 for (unsigned i = 0; i < RT_ELEMENTS(s_aFlags); i++)
3160 {
3161 const char *pszAdd = s_aFlags[i].fFlag & efl ? s_aFlags[i].pszSet : s_aFlags[i].pszClear;
3162 if (pszAdd)
3163 {
3164 strcpy(psz, pszAdd);
3165 psz += strlen(pszAdd);
3166 *psz++ = ' ';
3167 }
3168 }
3169 psz[-1] = '\0';
3170}
3171
3172
3173/**
3174 * Formats a full register dump.
3175 *
3176 * @param pVM The cross context VM structure.
3177 * @param pCtx The context to format.
3178 * @param pCtxCore The context core to format.
3179 * @param pHlp Output functions.
3180 * @param enmType The dump type.
3181 * @param pszPrefix Register name prefix.
3182 */
3183static void cpumR3InfoOne(PVM pVM, PCPUMCTX pCtx, PCCPUMCTXCORE pCtxCore, PCDBGFINFOHLP pHlp, CPUMDUMPTYPE enmType,
3184 const char *pszPrefix)
3185{
3186 NOREF(pVM);
3187
3188 /*
3189 * Format the EFLAGS.
3190 */
3191 uint32_t efl = pCtxCore->eflags.u32;
3192 char szEFlags[80];
3193 cpumR3InfoFormatFlags(&szEFlags[0], efl);
3194
3195 /*
3196 * Format the registers.
3197 */
3198 switch (enmType)
3199 {
3200 case CPUMDUMPTYPE_TERSE:
3201 if (CPUMIsGuestIn64BitCodeEx(pCtx))
3202 pHlp->pfnPrintf(pHlp,
3203 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
3204 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
3205 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
3206 "%sr14=%016RX64 %sr15=%016RX64\n"
3207 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
3208 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %seflags=%08x\n",
3209 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
3210 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
3211 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
3212 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
3213 pszPrefix, pCtxCore->cs.Sel, pszPrefix, pCtxCore->ss.Sel, pszPrefix, pCtxCore->ds.Sel, pszPrefix, pCtxCore->es.Sel,
3214 pszPrefix, pCtxCore->fs.Sel, pszPrefix, pCtxCore->gs.Sel, pszPrefix, efl);
3215 else
3216 pHlp->pfnPrintf(pHlp,
3217 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
3218 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
3219 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %seflags=%08x\n",
3220 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
3221 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
3222 pszPrefix, pCtxCore->cs.Sel, pszPrefix, pCtxCore->ss.Sel, pszPrefix, pCtxCore->ds.Sel, pszPrefix, pCtxCore->es.Sel,
3223 pszPrefix, pCtxCore->fs.Sel, pszPrefix, pCtxCore->gs.Sel, pszPrefix, efl);
3224 break;
3225
3226 case CPUMDUMPTYPE_DEFAULT:
3227 if (CPUMIsGuestIn64BitCodeEx(pCtx))
3228 pHlp->pfnPrintf(pHlp,
3229 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
3230 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
3231 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
3232 "%sr14=%016RX64 %sr15=%016RX64\n"
3233 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
3234 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %str=%04x %seflags=%08x\n"
3235 "%scr0=%08RX64 %scr2=%08RX64 %scr3=%08RX64 %scr4=%08RX64 %sgdtr=%016RX64:%04x %sldtr=%04x\n"
3236 ,
3237 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
3238 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
3239 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
3240 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
3241 pszPrefix, pCtxCore->cs.Sel, pszPrefix, pCtxCore->ss.Sel, pszPrefix, pCtxCore->ds.Sel, pszPrefix, pCtxCore->es.Sel,
3242 pszPrefix, pCtxCore->fs.Sel, pszPrefix, pCtxCore->gs.Sel, pszPrefix, pCtx->tr.Sel, pszPrefix, efl,
3243 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
3244 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->ldtr.Sel);
3245 else
3246 pHlp->pfnPrintf(pHlp,
3247 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
3248 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
3249 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %str=%04x %seflags=%08x\n"
3250 "%scr0=%08RX64 %scr2=%08RX64 %scr3=%08RX64 %scr4=%08RX64 %sgdtr=%08RX64:%04x %sldtr=%04x\n"
3251 ,
3252 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
3253 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
3254 pszPrefix, pCtxCore->cs.Sel, pszPrefix, pCtxCore->ss.Sel, pszPrefix, pCtxCore->ds.Sel, pszPrefix, pCtxCore->es.Sel,
3255 pszPrefix, pCtxCore->fs.Sel, pszPrefix, pCtxCore->gs.Sel, pszPrefix, pCtx->tr.Sel, pszPrefix, efl,
3256 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
3257 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->ldtr.Sel);
3258 break;
3259
3260 case CPUMDUMPTYPE_VERBOSE:
3261 if (CPUMIsGuestIn64BitCodeEx(pCtx))
3262 pHlp->pfnPrintf(pHlp,
3263 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
3264 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
3265 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
3266 "%sr14=%016RX64 %sr15=%016RX64\n"
3267 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
3268 "%scs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
3269 "%sds={%04x base=%016RX64 limit=%08x flags=%08x}\n"
3270 "%ses={%04x base=%016RX64 limit=%08x flags=%08x}\n"
3271 "%sfs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
3272 "%sgs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
3273 "%sss={%04x base=%016RX64 limit=%08x flags=%08x}\n"
3274 "%scr0=%016RX64 %scr2=%016RX64 %scr3=%016RX64 %scr4=%016RX64\n"
3275 "%sdr0=%016RX64 %sdr1=%016RX64 %sdr2=%016RX64 %sdr3=%016RX64\n"
3276 "%sdr4=%016RX64 %sdr5=%016RX64 %sdr6=%016RX64 %sdr7=%016RX64\n"
3277 "%sgdtr=%016RX64:%04x %sidtr=%016RX64:%04x %seflags=%08x\n"
3278 "%sldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
3279 "%str ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
3280 "%sSysEnter={cs=%04llx eip=%016RX64 esp=%016RX64}\n"
3281 ,
3282 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
3283 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
3284 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
3285 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
3286 pszPrefix, pCtxCore->cs.Sel, pCtx->cs.u64Base, pCtx->cs.u32Limit, pCtx->cs.Attr.u,
3287 pszPrefix, pCtxCore->ds.Sel, pCtx->ds.u64Base, pCtx->ds.u32Limit, pCtx->ds.Attr.u,
3288 pszPrefix, pCtxCore->es.Sel, pCtx->es.u64Base, pCtx->es.u32Limit, pCtx->es.Attr.u,
3289 pszPrefix, pCtxCore->fs.Sel, pCtx->fs.u64Base, pCtx->fs.u32Limit, pCtx->fs.Attr.u,
3290 pszPrefix, pCtxCore->gs.Sel, pCtx->gs.u64Base, pCtx->gs.u32Limit, pCtx->gs.Attr.u,
3291 pszPrefix, pCtxCore->ss.Sel, pCtx->ss.u64Base, pCtx->ss.u32Limit, pCtx->ss.Attr.u,
3292 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
3293 pszPrefix, pCtx->dr[0], pszPrefix, pCtx->dr[1], pszPrefix, pCtx->dr[2], pszPrefix, pCtx->dr[3],
3294 pszPrefix, pCtx->dr[4], pszPrefix, pCtx->dr[5], pszPrefix, pCtx->dr[6], pszPrefix, pCtx->dr[7],
3295 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, pszPrefix, efl,
3296 pszPrefix, pCtx->ldtr.Sel, pCtx->ldtr.u64Base, pCtx->ldtr.u32Limit, pCtx->ldtr.Attr.u,
3297 pszPrefix, pCtx->tr.Sel, pCtx->tr.u64Base, pCtx->tr.u32Limit, pCtx->tr.Attr.u,
3298 pszPrefix, pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
3299 else
3300 pHlp->pfnPrintf(pHlp,
3301 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
3302 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
3303 "%scs={%04x base=%016RX64 limit=%08x flags=%08x} %sdr0=%08RX64 %sdr1=%08RX64\n"
3304 "%sds={%04x base=%016RX64 limit=%08x flags=%08x} %sdr2=%08RX64 %sdr3=%08RX64\n"
3305 "%ses={%04x base=%016RX64 limit=%08x flags=%08x} %sdr4=%08RX64 %sdr5=%08RX64\n"
3306 "%sfs={%04x base=%016RX64 limit=%08x flags=%08x} %sdr6=%08RX64 %sdr7=%08RX64\n"
3307 "%sgs={%04x base=%016RX64 limit=%08x flags=%08x} %scr0=%08RX64 %scr2=%08RX64\n"
3308 "%sss={%04x base=%016RX64 limit=%08x flags=%08x} %scr3=%08RX64 %scr4=%08RX64\n"
3309 "%sgdtr=%016RX64:%04x %sidtr=%016RX64:%04x %seflags=%08x\n"
3310 "%sldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
3311 "%str ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
3312 "%sSysEnter={cs=%04llx eip=%08llx esp=%08llx}\n"
3313 ,
3314 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
3315 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
3316 pszPrefix, pCtxCore->cs.Sel, pCtx->cs.u64Base, pCtx->cs.u32Limit, pCtx->cs.Attr.u, pszPrefix, pCtx->dr[0], pszPrefix, pCtx->dr[1],
3317 pszPrefix, pCtxCore->ds.Sel, pCtx->ds.u64Base, pCtx->ds.u32Limit, pCtx->ds.Attr.u, pszPrefix, pCtx->dr[2], pszPrefix, pCtx->dr[3],
3318 pszPrefix, pCtxCore->es.Sel, pCtx->es.u64Base, pCtx->es.u32Limit, pCtx->es.Attr.u, pszPrefix, pCtx->dr[4], pszPrefix, pCtx->dr[5],
3319 pszPrefix, pCtxCore->fs.Sel, pCtx->fs.u64Base, pCtx->fs.u32Limit, pCtx->fs.Attr.u, pszPrefix, pCtx->dr[6], pszPrefix, pCtx->dr[7],
3320 pszPrefix, pCtxCore->gs.Sel, pCtx->gs.u64Base, pCtx->gs.u32Limit, pCtx->gs.Attr.u, pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2,
3321 pszPrefix, pCtxCore->ss.Sel, pCtx->ss.u64Base, pCtx->ss.u32Limit, pCtx->ss.Attr.u, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
3322 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, pszPrefix, efl,
3323 pszPrefix, pCtx->ldtr.Sel, pCtx->ldtr.u64Base, pCtx->ldtr.u32Limit, pCtx->ldtr.Attr.u,
3324 pszPrefix, pCtx->tr.Sel, pCtx->tr.u64Base, pCtx->tr.u32Limit, pCtx->tr.Attr.u,
3325 pszPrefix, pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
3326
3327 pHlp->pfnPrintf(pHlp, "%sxcr=%016RX64 %sxcr1=%016RX64 %sxss=%016RX64 (fXStateMask=%016RX64)\n",
3328 pszPrefix, pCtx->aXcr[0], pszPrefix, pCtx->aXcr[1],
3329 pszPrefix, UINT64_C(0) /** @todo XSS */, pCtx->fXStateMask);
3330 if (pCtx->CTX_SUFF(pXState))
3331 {
3332 PX86FXSTATE pFpuCtx = &pCtx->CTX_SUFF(pXState)->x87;
3333 pHlp->pfnPrintf(pHlp,
3334 "%sFCW=%04x %sFSW=%04x %sFTW=%04x %sFOP=%04x %sMXCSR=%08x %sMXCSR_MASK=%08x\n"
3335 "%sFPUIP=%08x %sCS=%04x %sRsrvd1=%04x %sFPUDP=%08x %sDS=%04x %sRsvrd2=%04x\n"
3336 ,
3337 pszPrefix, pFpuCtx->FCW, pszPrefix, pFpuCtx->FSW, pszPrefix, pFpuCtx->FTW, pszPrefix, pFpuCtx->FOP,
3338 pszPrefix, pFpuCtx->MXCSR, pszPrefix, pFpuCtx->MXCSR_MASK,
3339 pszPrefix, pFpuCtx->FPUIP, pszPrefix, pFpuCtx->CS, pszPrefix, pFpuCtx->Rsrvd1,
3340 pszPrefix, pFpuCtx->FPUDP, pszPrefix, pFpuCtx->DS, pszPrefix, pFpuCtx->Rsrvd2
3341 );
3342 /*
3343 * The FSAVE style memory image contains ST(0)-ST(7) at increasing addresses,
3344 * not (FP)R0-7 as Intel SDM suggests.
3345 */
3346 unsigned iShift = (pFpuCtx->FSW >> 11) & 7;
3347 for (unsigned iST = 0; iST < RT_ELEMENTS(pFpuCtx->aRegs); iST++)
3348 {
3349 unsigned iFPR = (iST + iShift) % RT_ELEMENTS(pFpuCtx->aRegs);
3350 unsigned uTag = (pFpuCtx->FTW >> (2 * iFPR)) & 3;
3351 char chSign = pFpuCtx->aRegs[iST].au16[4] & 0x8000 ? '-' : '+';
3352 unsigned iInteger = (unsigned)(pFpuCtx->aRegs[iST].au64[0] >> 63);
3353 uint64_t u64Fraction = pFpuCtx->aRegs[iST].au64[0] & UINT64_C(0x7fffffffffffffff);
3354 int iExponent = pFpuCtx->aRegs[iST].au16[4] & 0x7fff;
3355 iExponent -= 16383; /* subtract bias */
3356 /** @todo This isn't entirenly correct and needs more work! */
3357 pHlp->pfnPrintf(pHlp,
3358 "%sST(%u)=%sFPR%u={%04RX16'%08RX32'%08RX32} t%d %c%u.%022llu * 2 ^ %d (*)",
3359 pszPrefix, iST, pszPrefix, iFPR,
3360 pFpuCtx->aRegs[iST].au16[4], pFpuCtx->aRegs[iST].au32[1], pFpuCtx->aRegs[iST].au32[0],
3361 uTag, chSign, iInteger, u64Fraction, iExponent);
3362 if (pFpuCtx->aRegs[iST].au16[5] || pFpuCtx->aRegs[iST].au16[6] || pFpuCtx->aRegs[iST].au16[7])
3363 pHlp->pfnPrintf(pHlp, " res={%04RX16,%04RX16,%04RX16}\n",
3364 pFpuCtx->aRegs[iST].au16[5], pFpuCtx->aRegs[iST].au16[6], pFpuCtx->aRegs[iST].au16[7]);
3365 else
3366 pHlp->pfnPrintf(pHlp, "\n");
3367 }
3368
3369 /* XMM/YMM/ZMM registers. */
3370 if (pCtx->fXStateMask & XSAVE_C_YMM)
3371 {
3372 PCX86XSAVEYMMHI pYmmHiCtx = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_YMM_BIT, PCX86XSAVEYMMHI);
3373 if (!(pCtx->fXStateMask & XSAVE_C_ZMM_HI256))
3374 for (unsigned i = 0; i < RT_ELEMENTS(pFpuCtx->aXMM); i++)
3375 pHlp->pfnPrintf(pHlp, "%sYMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32\n",
3376 pszPrefix, i, i < 10 ? " " : "",
3377 pYmmHiCtx->aYmmHi[i].au32[3],
3378 pYmmHiCtx->aYmmHi[i].au32[2],
3379 pYmmHiCtx->aYmmHi[i].au32[1],
3380 pYmmHiCtx->aYmmHi[i].au32[0],
3381 pFpuCtx->aXMM[i].au32[3],
3382 pFpuCtx->aXMM[i].au32[2],
3383 pFpuCtx->aXMM[i].au32[1],
3384 pFpuCtx->aXMM[i].au32[0]);
3385 else
3386 {
3387 PCX86XSAVEZMMHI256 pZmmHi256 = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_ZMM_HI256_BIT, PCX86XSAVEZMMHI256);
3388 for (unsigned i = 0; i < RT_ELEMENTS(pFpuCtx->aXMM); i++)
3389 pHlp->pfnPrintf(pHlp,
3390 "%sZMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32''%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32\n",
3391 pszPrefix, i, i < 10 ? " " : "",
3392 pZmmHi256->aHi256Regs[i].au32[7],
3393 pZmmHi256->aHi256Regs[i].au32[6],
3394 pZmmHi256->aHi256Regs[i].au32[5],
3395 pZmmHi256->aHi256Regs[i].au32[4],
3396 pZmmHi256->aHi256Regs[i].au32[3],
3397 pZmmHi256->aHi256Regs[i].au32[2],
3398 pZmmHi256->aHi256Regs[i].au32[1],
3399 pZmmHi256->aHi256Regs[i].au32[0],
3400 pYmmHiCtx->aYmmHi[i].au32[3],
3401 pYmmHiCtx->aYmmHi[i].au32[2],
3402 pYmmHiCtx->aYmmHi[i].au32[1],
3403 pYmmHiCtx->aYmmHi[i].au32[0],
3404 pFpuCtx->aXMM[i].au32[3],
3405 pFpuCtx->aXMM[i].au32[2],
3406 pFpuCtx->aXMM[i].au32[1],
3407 pFpuCtx->aXMM[i].au32[0]);
3408
3409 PCX86XSAVEZMM16HI pZmm16Hi = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_ZMM_16HI_BIT, PCX86XSAVEZMM16HI);
3410 for (unsigned i = 0; i < RT_ELEMENTS(pZmm16Hi->aRegs); i++)
3411 pHlp->pfnPrintf(pHlp,
3412 "%sZMM%u=%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32''%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32\n",
3413 pszPrefix, i + 16,
3414 pZmm16Hi->aRegs[i].au32[15],
3415 pZmm16Hi->aRegs[i].au32[14],
3416 pZmm16Hi->aRegs[i].au32[13],
3417 pZmm16Hi->aRegs[i].au32[12],
3418 pZmm16Hi->aRegs[i].au32[11],
3419 pZmm16Hi->aRegs[i].au32[10],
3420 pZmm16Hi->aRegs[i].au32[9],
3421 pZmm16Hi->aRegs[i].au32[8],
3422 pZmm16Hi->aRegs[i].au32[7],
3423 pZmm16Hi->aRegs[i].au32[6],
3424 pZmm16Hi->aRegs[i].au32[5],
3425 pZmm16Hi->aRegs[i].au32[4],
3426 pZmm16Hi->aRegs[i].au32[3],
3427 pZmm16Hi->aRegs[i].au32[2],
3428 pZmm16Hi->aRegs[i].au32[1],
3429 pZmm16Hi->aRegs[i].au32[0]);
3430 }
3431 }
3432 else
3433 for (unsigned i = 0; i < RT_ELEMENTS(pFpuCtx->aXMM); i++)
3434 pHlp->pfnPrintf(pHlp,
3435 i & 1
3436 ? "%sXMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32\n"
3437 : "%sXMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32 ",
3438 pszPrefix, i, i < 10 ? " " : "",
3439 pFpuCtx->aXMM[i].au32[3],
3440 pFpuCtx->aXMM[i].au32[2],
3441 pFpuCtx->aXMM[i].au32[1],
3442 pFpuCtx->aXMM[i].au32[0]);
3443
3444 if (pCtx->fXStateMask & XSAVE_C_OPMASK)
3445 {
3446 PCX86XSAVEOPMASK pOpMask = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_OPMASK_BIT, PCX86XSAVEOPMASK);
3447 for (unsigned i = 0; i < RT_ELEMENTS(pOpMask->aKRegs); i += 4)
3448 pHlp->pfnPrintf(pHlp, "%sK%u=%016RX64 %sK%u=%016RX64 %sK%u=%016RX64 %sK%u=%016RX64\n",
3449 pszPrefix, i + 0, pOpMask->aKRegs[i + 0],
3450 pszPrefix, i + 1, pOpMask->aKRegs[i + 1],
3451 pszPrefix, i + 2, pOpMask->aKRegs[i + 2],
3452 pszPrefix, i + 3, pOpMask->aKRegs[i + 3]);
3453 }
3454
3455 if (pCtx->fXStateMask & XSAVE_C_BNDREGS)
3456 {
3457 PCX86XSAVEBNDREGS pBndRegs = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_BNDREGS_BIT, PCX86XSAVEBNDREGS);
3458 for (unsigned i = 0; i < RT_ELEMENTS(pBndRegs->aRegs); i += 2)
3459 pHlp->pfnPrintf(pHlp, "%sBNDREG%u=%016RX64/%016RX64 %sBNDREG%u=%016RX64/%016RX64\n",
3460 pszPrefix, i, pBndRegs->aRegs[i].uLowerBound, pBndRegs->aRegs[i].uUpperBound,
3461 pszPrefix, i + 1, pBndRegs->aRegs[i + 1].uLowerBound, pBndRegs->aRegs[i + 1].uUpperBound);
3462 }
3463
3464 if (pCtx->fXStateMask & XSAVE_C_BNDCSR)
3465 {
3466 PCX86XSAVEBNDCFG pBndCfg = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_BNDCSR_BIT, PCX86XSAVEBNDCFG);
3467 pHlp->pfnPrintf(pHlp, "%sBNDCFG.CONFIG=%016RX64 %sBNDCFG.STATUS=%016RX64\n",
3468 pszPrefix, pBndCfg->fConfig, pszPrefix, pBndCfg->fStatus);
3469 }
3470
3471 for (unsigned i = 0; i < RT_ELEMENTS(pFpuCtx->au32RsrvdRest); i++)
3472 if (pFpuCtx->au32RsrvdRest[i])
3473 pHlp->pfnPrintf(pHlp, "%sRsrvdRest[%u]=%RX32 (offset=%#x)\n",
3474 pszPrefix, i, pFpuCtx->au32RsrvdRest[i], RT_UOFFSETOF_DYN(X86FXSTATE, au32RsrvdRest[i]) );
3475 }
3476
3477 pHlp->pfnPrintf(pHlp,
3478 "%sEFER =%016RX64\n"
3479 "%sPAT =%016RX64\n"
3480 "%sSTAR =%016RX64\n"
3481 "%sCSTAR =%016RX64\n"
3482 "%sLSTAR =%016RX64\n"
3483 "%sSFMASK =%016RX64\n"
3484 "%sKERNELGSBASE =%016RX64\n",
3485 pszPrefix, pCtx->msrEFER,
3486 pszPrefix, pCtx->msrPAT,
3487 pszPrefix, pCtx->msrSTAR,
3488 pszPrefix, pCtx->msrCSTAR,
3489 pszPrefix, pCtx->msrLSTAR,
3490 pszPrefix, pCtx->msrSFMASK,
3491 pszPrefix, pCtx->msrKERNELGSBASE);
3492 break;
3493 }
3494}
3495
3496
3497/**
3498 * Display all cpu states and any other cpum info.
3499 *
3500 * @param pVM The cross context VM structure.
3501 * @param pHlp The info helper functions.
3502 * @param pszArgs Arguments, ignored.
3503 */
3504static DECLCALLBACK(void) cpumR3InfoAll(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3505{
3506 cpumR3InfoGuest(pVM, pHlp, pszArgs);
3507 cpumR3InfoGuestInstr(pVM, pHlp, pszArgs);
3508 cpumR3InfoGuestHwvirt(pVM, pHlp, pszArgs);
3509 cpumR3InfoHyper(pVM, pHlp, pszArgs);
3510 cpumR3InfoHost(pVM, pHlp, pszArgs);
3511}
3512
3513
3514/**
3515 * Parses the info argument.
3516 *
3517 * The argument starts with 'verbose', 'terse' or 'default' and then
3518 * continues with the comment string.
3519 *
3520 * @param pszArgs The pointer to the argument string.
3521 * @param penmType Where to store the dump type request.
3522 * @param ppszComment Where to store the pointer to the comment string.
3523 */
3524static void cpumR3InfoParseArg(const char *pszArgs, CPUMDUMPTYPE *penmType, const char **ppszComment)
3525{
3526 if (!pszArgs)
3527 {
3528 *penmType = CPUMDUMPTYPE_DEFAULT;
3529 *ppszComment = "";
3530 }
3531 else
3532 {
3533 if (!strncmp(pszArgs, RT_STR_TUPLE("verbose")))
3534 {
3535 pszArgs += 7;
3536 *penmType = CPUMDUMPTYPE_VERBOSE;
3537 }
3538 else if (!strncmp(pszArgs, RT_STR_TUPLE("terse")))
3539 {
3540 pszArgs += 5;
3541 *penmType = CPUMDUMPTYPE_TERSE;
3542 }
3543 else if (!strncmp(pszArgs, RT_STR_TUPLE("default")))
3544 {
3545 pszArgs += 7;
3546 *penmType = CPUMDUMPTYPE_DEFAULT;
3547 }
3548 else
3549 *penmType = CPUMDUMPTYPE_DEFAULT;
3550 *ppszComment = RTStrStripL(pszArgs);
3551 }
3552}
3553
3554
3555/**
3556 * Display the guest cpu state.
3557 *
3558 * @param pVM The cross context VM structure.
3559 * @param pHlp The info helper functions.
3560 * @param pszArgs Arguments.
3561 */
3562static DECLCALLBACK(void) cpumR3InfoGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3563{
3564 CPUMDUMPTYPE enmType;
3565 const char *pszComment;
3566 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
3567
3568 PVMCPU pVCpu = VMMGetCpu(pVM);
3569 if (!pVCpu)
3570 pVCpu = &pVM->aCpus[0];
3571
3572 pHlp->pfnPrintf(pHlp, "Guest CPUM (VCPU %d) state: %s\n", pVCpu->idCpu, pszComment);
3573
3574 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
3575 cpumR3InfoOne(pVM, pCtx, CPUMCTX2CORE(pCtx), pHlp, enmType, "");
3576}
3577
3578
3579/**
3580 * Displays an SVM VMCB control area.
3581 *
3582 * @param pHlp The info helper functions.
3583 * @param pVmcbCtrl Pointer to a SVM VMCB controls area.
3584 * @param pszPrefix Caller specified string prefix.
3585 */
3586static void cpumR3InfoSvmVmcbCtrl(PCDBGFINFOHLP pHlp, PCSVMVMCBCTRL pVmcbCtrl, const char *pszPrefix)
3587{
3588 AssertReturnVoid(pHlp);
3589 AssertReturnVoid(pVmcbCtrl);
3590
3591 pHlp->pfnPrintf(pHlp, "%sCRX-read intercepts = %#RX16\n", pszPrefix, pVmcbCtrl->u16InterceptRdCRx);
3592 pHlp->pfnPrintf(pHlp, "%sCRX-write intercepts = %#RX16\n", pszPrefix, pVmcbCtrl->u16InterceptWrCRx);
3593 pHlp->pfnPrintf(pHlp, "%sDRX-read intercepts = %#RX16\n", pszPrefix, pVmcbCtrl->u16InterceptRdDRx);
3594 pHlp->pfnPrintf(pHlp, "%sDRX-write intercepts = %#RX16\n", pszPrefix, pVmcbCtrl->u16InterceptWrDRx);
3595 pHlp->pfnPrintf(pHlp, "%sException intercepts = %#RX32\n", pszPrefix, pVmcbCtrl->u32InterceptXcpt);
3596 pHlp->pfnPrintf(pHlp, "%sControl intercepts = %#RX64\n", pszPrefix, pVmcbCtrl->u64InterceptCtrl);
3597 pHlp->pfnPrintf(pHlp, "%sPause-filter threshold = %#RX16\n", pszPrefix, pVmcbCtrl->u16PauseFilterThreshold);
3598 pHlp->pfnPrintf(pHlp, "%sPause-filter count = %#RX16\n", pszPrefix, pVmcbCtrl->u16PauseFilterCount);
3599 pHlp->pfnPrintf(pHlp, "%sIOPM bitmap physaddr = %#RX64\n", pszPrefix, pVmcbCtrl->u64IOPMPhysAddr);
3600 pHlp->pfnPrintf(pHlp, "%sMSRPM bitmap physaddr = %#RX64\n", pszPrefix, pVmcbCtrl->u64MSRPMPhysAddr);
3601 pHlp->pfnPrintf(pHlp, "%sTSC offset = %#RX64\n", pszPrefix, pVmcbCtrl->u64TSCOffset);
3602 pHlp->pfnPrintf(pHlp, "%sTLB Control\n", pszPrefix);
3603 pHlp->pfnPrintf(pHlp, " %sASID = %#RX32\n", pszPrefix, pVmcbCtrl->TLBCtrl.n.u32ASID);
3604 pHlp->pfnPrintf(pHlp, " %sTLB-flush type = %u\n", pszPrefix, pVmcbCtrl->TLBCtrl.n.u8TLBFlush);
3605 pHlp->pfnPrintf(pHlp, "%sInterrupt Control\n", pszPrefix);
3606 pHlp->pfnPrintf(pHlp, " %sVTPR = %#RX8 (%u)\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u8VTPR, pVmcbCtrl->IntCtrl.n.u8VTPR);
3607 pHlp->pfnPrintf(pHlp, " %sVIRQ (Pending) = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1VIrqPending);
3608 pHlp->pfnPrintf(pHlp, " %sVINTR vector = %#RX8\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u8VIntrVector);
3609 pHlp->pfnPrintf(pHlp, " %sVGIF = %u\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1VGif);
3610 pHlp->pfnPrintf(pHlp, " %sVINTR priority = %#RX8\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u4VIntrPrio);
3611 pHlp->pfnPrintf(pHlp, " %sIgnore TPR = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1IgnoreTPR);
3612 pHlp->pfnPrintf(pHlp, " %sVINTR masking = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1VIntrMasking);
3613 pHlp->pfnPrintf(pHlp, " %sVGIF enable = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1VGifEnable);
3614 pHlp->pfnPrintf(pHlp, " %sAVIC enable = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1AvicEnable);
3615 pHlp->pfnPrintf(pHlp, "%sInterrupt Shadow\n", pszPrefix);
3616 pHlp->pfnPrintf(pHlp, " %sInterrupt shadow = %RTbool\n", pszPrefix, pVmcbCtrl->IntShadow.n.u1IntShadow);
3617 pHlp->pfnPrintf(pHlp, " %sGuest-interrupt Mask = %RTbool\n", pszPrefix, pVmcbCtrl->IntShadow.n.u1GuestIntMask);
3618 pHlp->pfnPrintf(pHlp, "%sExit Code = %#RX64\n", pszPrefix, pVmcbCtrl->u64ExitCode);
3619 pHlp->pfnPrintf(pHlp, "%sEXITINFO1 = %#RX64\n", pszPrefix, pVmcbCtrl->u64ExitInfo1);
3620 pHlp->pfnPrintf(pHlp, "%sEXITINFO2 = %#RX64\n", pszPrefix, pVmcbCtrl->u64ExitInfo2);
3621 pHlp->pfnPrintf(pHlp, "%sExit Interrupt Info\n", pszPrefix);
3622 pHlp->pfnPrintf(pHlp, " %sValid = %RTbool\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u1Valid);
3623 pHlp->pfnPrintf(pHlp, " %sVector = %#RX8 (%u)\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u8Vector, pVmcbCtrl->ExitIntInfo.n.u8Vector);
3624 pHlp->pfnPrintf(pHlp, " %sType = %u\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u3Type);
3625 pHlp->pfnPrintf(pHlp, " %sError-code valid = %RTbool\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u1ErrorCodeValid);
3626 pHlp->pfnPrintf(pHlp, " %sError-code = %#RX32\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u32ErrorCode);
3627 pHlp->pfnPrintf(pHlp, "%sNested paging and SEV\n", pszPrefix);
3628 pHlp->pfnPrintf(pHlp, " %sNested paging = %RTbool\n", pszPrefix, pVmcbCtrl->NestedPagingCtrl.n.u1NestedPaging);
3629 pHlp->pfnPrintf(pHlp, " %sSEV (Secure Encrypted VM) = %RTbool\n", pszPrefix, pVmcbCtrl->NestedPagingCtrl.n.u1Sev);
3630 pHlp->pfnPrintf(pHlp, " %sSEV-ES (Encrypted State) = %RTbool\n", pszPrefix, pVmcbCtrl->NestedPagingCtrl.n.u1SevEs);
3631 pHlp->pfnPrintf(pHlp, "%sEvent Inject\n", pszPrefix);
3632 pHlp->pfnPrintf(pHlp, " %sValid = %RTbool\n", pszPrefix, pVmcbCtrl->EventInject.n.u1Valid);
3633 pHlp->pfnPrintf(pHlp, " %sVector = %#RX32 (%u)\n", pszPrefix, pVmcbCtrl->EventInject.n.u8Vector, pVmcbCtrl->EventInject.n.u8Vector);
3634 pHlp->pfnPrintf(pHlp, " %sType = %u\n", pszPrefix, pVmcbCtrl->EventInject.n.u3Type);
3635 pHlp->pfnPrintf(pHlp, " %sError-code valid = %RTbool\n", pszPrefix, pVmcbCtrl->EventInject.n.u1ErrorCodeValid);
3636 pHlp->pfnPrintf(pHlp, " %sError-code = %#RX32\n", pszPrefix, pVmcbCtrl->EventInject.n.u32ErrorCode);
3637 pHlp->pfnPrintf(pHlp, "%sNested-paging CR3 = %#RX64\n", pszPrefix, pVmcbCtrl->u64NestedPagingCR3);
3638 pHlp->pfnPrintf(pHlp, "%sLBR Virtualization\n", pszPrefix);
3639 pHlp->pfnPrintf(pHlp, " %sLBR virt = %RTbool\n", pszPrefix, pVmcbCtrl->LbrVirt.n.u1LbrVirt);
3640 pHlp->pfnPrintf(pHlp, " %sVirt. VMSAVE/VMLOAD = %RTbool\n", pszPrefix, pVmcbCtrl->LbrVirt.n.u1VirtVmsaveVmload);
3641 pHlp->pfnPrintf(pHlp, "%sVMCB Clean Bits = %#RX32\n", pszPrefix, pVmcbCtrl->u32VmcbCleanBits);
3642 pHlp->pfnPrintf(pHlp, "%sNext-RIP = %#RX64\n", pszPrefix, pVmcbCtrl->u64NextRIP);
3643 pHlp->pfnPrintf(pHlp, "%sInstruction bytes fetched = %u\n", pszPrefix, pVmcbCtrl->cbInstrFetched);
3644 pHlp->pfnPrintf(pHlp, "%sInstruction bytes = %.*Rhxs\n", pszPrefix, sizeof(pVmcbCtrl->abInstr), pVmcbCtrl->abInstr);
3645 pHlp->pfnPrintf(pHlp, "%sAVIC\n", pszPrefix);
3646 pHlp->pfnPrintf(pHlp, " %sBar addr = %#RX64\n", pszPrefix, pVmcbCtrl->AvicBar.n.u40Addr);
3647 pHlp->pfnPrintf(pHlp, " %sBacking page addr = %#RX64\n", pszPrefix, pVmcbCtrl->AvicBackingPagePtr.n.u40Addr);
3648 pHlp->pfnPrintf(pHlp, " %sLogical table addr = %#RX64\n", pszPrefix, pVmcbCtrl->AvicLogicalTablePtr.n.u40Addr);
3649 pHlp->pfnPrintf(pHlp, " %sPhysical table addr = %#RX64\n", pszPrefix, pVmcbCtrl->AvicPhysicalTablePtr.n.u40Addr);
3650 pHlp->pfnPrintf(pHlp, " %sLast guest core Id = %u\n", pszPrefix, pVmcbCtrl->AvicPhysicalTablePtr.n.u8LastGuestCoreId);
3651}
3652
3653
3654/**
3655 * Helper for dumping the SVM VMCB selector registers.
3656 *
3657 * @param pHlp The info helper functions.
3658 * @param pSel Pointer to the SVM selector register.
3659 * @param pszName Name of the selector.
3660 * @param pszPrefix Caller specified string prefix.
3661 */
3662DECLINLINE(void) cpumR3InfoSvmVmcbSelReg(PCDBGFINFOHLP pHlp, PCSVMSELREG pSel, const char *pszName, const char *pszPrefix)
3663{
3664 /* The string width of 4 used below is to handle 'LDTR'. Change later if longer register names are used. */
3665 pHlp->pfnPrintf(pHlp, "%s%-4s = {%04x base=%016RX64 limit=%08x flags=%04x}\n", pszPrefix,
3666 pszName, pSel->u16Sel, pSel->u64Base, pSel->u32Limit, pSel->u16Attr);
3667}
3668
3669
3670/**
3671 * Helper for dumping the SVM VMCB GDTR/IDTR registers.
3672 *
3673 * @param pHlp The info helper functions.
3674 * @param pXdtr Pointer to the descriptor table register.
3675 * @param pszName Name of the descriptor table register.
3676 * @param pszPrefix Caller specified string prefix.
3677 */
3678DECLINLINE(void) cpumR3InfoSvmVmcbXdtr(PCDBGFINFOHLP pHlp, PCSVMXDTR pXdtr, const char *pszName, const char *pszPrefix)
3679{
3680 /* The string width of 4 used below is to cover 'GDTR', 'IDTR'. Change later if longer register names are used. */
3681 pHlp->pfnPrintf(pHlp, "%s%-4s = %016RX64:%04x\n", pszPrefix, pszName, pXdtr->u64Base, pXdtr->u32Limit);
3682}
3683
3684
3685/**
3686 * Displays an SVM VMCB state-save area.
3687 *
3688 * @param pHlp The info helper functions.
3689 * @param pVmcbStateSave Pointer to a SVM VMCB controls area.
3690 * @param pszPrefix Caller specified string prefix.
3691 */
3692static void cpumR3InfoSvmVmcbStateSave(PCDBGFINFOHLP pHlp, PCSVMVMCBSTATESAVE pVmcbStateSave, const char *pszPrefix)
3693{
3694 AssertReturnVoid(pHlp);
3695 AssertReturnVoid(pVmcbStateSave);
3696
3697 char szEFlags[80];
3698 cpumR3InfoFormatFlags(&szEFlags[0], pVmcbStateSave->u64RFlags);
3699
3700 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->CS, "CS", pszPrefix);
3701 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->SS, "SS", pszPrefix);
3702 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->ES, "ES", pszPrefix);
3703 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->DS, "DS", pszPrefix);
3704 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->FS, "FS", pszPrefix);
3705 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->GS, "GS", pszPrefix);
3706 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->LDTR, "LDTR", pszPrefix);
3707 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->TR, "TR", pszPrefix);
3708 cpumR3InfoSvmVmcbXdtr(pHlp, &pVmcbStateSave->GDTR, "GDTR", pszPrefix);
3709 cpumR3InfoSvmVmcbXdtr(pHlp, &pVmcbStateSave->IDTR, "IDTR", pszPrefix);
3710 pHlp->pfnPrintf(pHlp, "%sCPL = %u\n", pszPrefix, pVmcbStateSave->u8CPL);
3711 pHlp->pfnPrintf(pHlp, "%sEFER = %#RX64\n", pszPrefix, pVmcbStateSave->u64EFER);
3712 pHlp->pfnPrintf(pHlp, "%sCR4 = %#RX64\n", pszPrefix, pVmcbStateSave->u64CR4);
3713 pHlp->pfnPrintf(pHlp, "%sCR3 = %#RX64\n", pszPrefix, pVmcbStateSave->u64CR3);
3714 pHlp->pfnPrintf(pHlp, "%sCR0 = %#RX64\n", pszPrefix, pVmcbStateSave->u64CR0);
3715 pHlp->pfnPrintf(pHlp, "%sDR7 = %#RX64\n", pszPrefix, pVmcbStateSave->u64DR7);
3716 pHlp->pfnPrintf(pHlp, "%sDR6 = %#RX64\n", pszPrefix, pVmcbStateSave->u64DR6);
3717 pHlp->pfnPrintf(pHlp, "%sRFLAGS = %#RX64 %31s\n", pszPrefix, pVmcbStateSave->u64RFlags, szEFlags);
3718 pHlp->pfnPrintf(pHlp, "%sRIP = %#RX64\n", pszPrefix, pVmcbStateSave->u64RIP);
3719 pHlp->pfnPrintf(pHlp, "%sRSP = %#RX64\n", pszPrefix, pVmcbStateSave->u64RSP);
3720 pHlp->pfnPrintf(pHlp, "%sRAX = %#RX64\n", pszPrefix, pVmcbStateSave->u64RAX);
3721 pHlp->pfnPrintf(pHlp, "%sSTAR = %#RX64\n", pszPrefix, pVmcbStateSave->u64STAR);
3722 pHlp->pfnPrintf(pHlp, "%sLSTAR = %#RX64\n", pszPrefix, pVmcbStateSave->u64LSTAR);
3723 pHlp->pfnPrintf(pHlp, "%sCSTAR = %#RX64\n", pszPrefix, pVmcbStateSave->u64CSTAR);
3724 pHlp->pfnPrintf(pHlp, "%sSFMASK = %#RX64\n", pszPrefix, pVmcbStateSave->u64SFMASK);
3725 pHlp->pfnPrintf(pHlp, "%sKERNELGSBASE = %#RX64\n", pszPrefix, pVmcbStateSave->u64KernelGSBase);
3726 pHlp->pfnPrintf(pHlp, "%sSysEnter CS = %#RX64\n", pszPrefix, pVmcbStateSave->u64SysEnterCS);
3727 pHlp->pfnPrintf(pHlp, "%sSysEnter EIP = %#RX64\n", pszPrefix, pVmcbStateSave->u64SysEnterEIP);
3728 pHlp->pfnPrintf(pHlp, "%sSysEnter ESP = %#RX64\n", pszPrefix, pVmcbStateSave->u64SysEnterESP);
3729 pHlp->pfnPrintf(pHlp, "%sCR2 = %#RX64\n", pszPrefix, pVmcbStateSave->u64CR2);
3730 pHlp->pfnPrintf(pHlp, "%sPAT = %#RX64\n", pszPrefix, pVmcbStateSave->u64PAT);
3731 pHlp->pfnPrintf(pHlp, "%sDBGCTL = %#RX64\n", pszPrefix, pVmcbStateSave->u64DBGCTL);
3732 pHlp->pfnPrintf(pHlp, "%sBR_FROM = %#RX64\n", pszPrefix, pVmcbStateSave->u64BR_FROM);
3733 pHlp->pfnPrintf(pHlp, "%sBR_TO = %#RX64\n", pszPrefix, pVmcbStateSave->u64BR_TO);
3734 pHlp->pfnPrintf(pHlp, "%sLASTXCPT_FROM = %#RX64\n", pszPrefix, pVmcbStateSave->u64LASTEXCPFROM);
3735 pHlp->pfnPrintf(pHlp, "%sLASTXCPT_TO = %#RX64\n", pszPrefix, pVmcbStateSave->u64LASTEXCPTO);
3736}
3737
3738
3739/**
3740 * Displays a virtual-VMCS.
3741 *
3742 * @param pHlp The info helper functions.
3743 * @param pVmcs Pointer to a virtual VMCS.
3744 * @param pszPrefix Caller specified string prefix.
3745 */
3746static void cpumR3InfoVmxVmcs(PCDBGFINFOHLP pHlp, PCVMXVVMCS pVmcs, const char *pszPrefix)
3747{
3748 AssertReturnVoid(pHlp);
3749 AssertReturnVoid(pVmcs);
3750
3751 /* The string width of -4 used in the macros below to cover 'LDTR', 'GDTR', 'IDTR. */
3752#define CPUMVMX_DUMP_HOST_XDTR(a_pHlp, a_pVmcs, a_Seg, a_SegName, a_pszPrefix) \
3753 do { \
3754 (a_pHlp)->pfnPrintf((a_pHlp), " %s%-4s = {base=%016RX64}\n", \
3755 (a_pszPrefix), (a_SegName), (a_pVmcs)->u64Host##a_Seg##Base.u); \
3756 } while (0)
3757
3758#define CPUMVMX_DUMP_HOST_FS_GS_TR(a_pHlp, a_pVmcs, a_Seg, a_SegName, a_pszPrefix) \
3759 do { \
3760 (a_pHlp)->pfnPrintf((a_pHlp), " %s%-4s = {%04x base=%016RX64}\n", \
3761 (a_pszPrefix), (a_SegName), (a_pVmcs)->Host##a_Seg, (a_pVmcs)->u64Host##a_Seg##Base.u); \
3762 } while (0)
3763
3764#define CPUMVMX_DUMP_GUEST_SEGREG(a_pHlp, a_pVmcs, a_Seg, a_SegName, a_pszPrefix) \
3765 do { \
3766 (a_pHlp)->pfnPrintf((a_pHlp), " %s%-4s = {%04x base=%016RX64 limit=%08x flags=%04x}\n", \
3767 (a_pszPrefix), (a_SegName), (a_pVmcs)->Guest##a_Seg, (a_pVmcs)->u64Guest##a_Seg##Base.u, \
3768 (a_pVmcs)->u32Guest##a_Seg##Limit, (a_pVmcs)->u32Guest##a_Seg##Attr); \
3769 } while (0)
3770
3771#define CPUMVMX_DUMP_GUEST_XDTR(a_pHlp, a_pVmcs, a_Seg, a_SegName, a_pszPrefix) \
3772 do { \
3773 (a_pHlp)->pfnPrintf((a_pHlp), " %s%-4s = {base=%016RX64 limit=%08x}\n", \
3774 (a_pszPrefix), (a_SegName), (a_pVmcs)->u64Guest##a_Seg##Base.u, (a_pVmcs)->u32Guest##a_Seg##Limit); \
3775 } while (0)
3776
3777 /* Header. */
3778 {
3779 pHlp->pfnPrintf(pHlp, "%sHeader:\n", pszPrefix);
3780 pHlp->pfnPrintf(pHlp, " %sVMCS revision id = %#RX32\n", pszPrefix, pVmcs->u32VmcsRevId);
3781 pHlp->pfnPrintf(pHlp, " %sVMX-abort id = %#RX32 (%s)\n", pszPrefix, pVmcs->enmVmxAbort, HMGetVmxAbortDesc(pVmcs->enmVmxAbort));
3782 pHlp->pfnPrintf(pHlp, " %sVMCS state = %#x (%s)\n", pszPrefix, pVmcs->fVmcsState, HMGetVmxVmcsStateDesc(pVmcs->fVmcsState));
3783 }
3784
3785 /* Control fields. */
3786 {
3787 /* 16-bit. */
3788 pHlp->pfnPrintf(pHlp, "%sControl:\n", pszPrefix);
3789 pHlp->pfnPrintf(pHlp, " %sVPID = %#RX16\n", pszPrefix, pVmcs->u16Vpid);
3790 pHlp->pfnPrintf(pHlp, " %sPosted intr notify vector = %#RX16\n", pszPrefix, pVmcs->u16PostIntNotifyVector);
3791 pHlp->pfnPrintf(pHlp, " %sEPTP index = %#RX16\n", pszPrefix, pVmcs->u16EptpIndex);
3792
3793 /* 32-bit. */
3794 pHlp->pfnPrintf(pHlp, " %sPin ctls = %#RX32\n", pszPrefix, pVmcs->u32PinCtls);
3795 pHlp->pfnPrintf(pHlp, " %sProcessor ctls = %#RX32\n", pszPrefix, pVmcs->u32ProcCtls);
3796 pHlp->pfnPrintf(pHlp, " %sSecondary processor ctls = %#RX32\n", pszPrefix, pVmcs->u32ProcCtls2);
3797 pHlp->pfnPrintf(pHlp, " %sVM-exit ctls = %#RX32\n", pszPrefix, pVmcs->u32ExitCtls);
3798 pHlp->pfnPrintf(pHlp, " %sVM-entry ctls = %#RX32\n", pszPrefix, pVmcs->u32EntryCtls);
3799 pHlp->pfnPrintf(pHlp, " %sException bitmap = %#RX32\n", pszPrefix, pVmcs->u32XcptBitmap);
3800 pHlp->pfnPrintf(pHlp, " %sPage-fault mask = %#RX32\n", pszPrefix, pVmcs->u32XcptPFMask);
3801 pHlp->pfnPrintf(pHlp, " %sPage-fault match = %#RX32\n", pszPrefix, pVmcs->u32XcptPFMatch);
3802 pHlp->pfnPrintf(pHlp, " %sCR3-target count = %RU32\n", pszPrefix, pVmcs->u32Cr3TargetCount);
3803 pHlp->pfnPrintf(pHlp, " %sVM-exit MSR store count = %RU32\n", pszPrefix, pVmcs->u32ExitMsrStoreCount);
3804 pHlp->pfnPrintf(pHlp, " %sVM-exit MSR load count = %RU32\n", pszPrefix, pVmcs->u32ExitMsrLoadCount);
3805 pHlp->pfnPrintf(pHlp, " %sVM-entry MSR load count = %RU32\n", pszPrefix, pVmcs->u32EntryMsrLoadCount);
3806 pHlp->pfnPrintf(pHlp, " %sVM-entry interruption info = %#RX32\n", pszPrefix, pVmcs->u32EntryIntInfo);
3807 {
3808 uint32_t const fInfo = pVmcs->u32EntryIntInfo;
3809 uint8_t const uType = VMX_ENTRY_INT_INFO_TYPE(fInfo);
3810 pHlp->pfnPrintf(pHlp, " %sValid = %RTbool\n", pszPrefix, VMX_ENTRY_INT_INFO_IS_VALID(fInfo));
3811 pHlp->pfnPrintf(pHlp, " %sType = %#x (%s)\n", pszPrefix, uType, HMGetVmxEntryIntInfoTypeDesc(uType));
3812 pHlp->pfnPrintf(pHlp, " %sVector = %#x\n", pszPrefix, VMX_ENTRY_INT_INFO_VECTOR(fInfo));
3813 pHlp->pfnPrintf(pHlp, " %sNMI-unblocking-IRET = %RTbool\n", pszPrefix, VMX_ENTRY_INT_INFO_IS_NMI_UNBLOCK_IRET(fInfo));
3814 pHlp->pfnPrintf(pHlp, " %sError-code valid = %RTbool\n", pszPrefix, VMX_ENTRY_INT_INFO_IS_ERROR_CODE_VALID(fInfo));
3815 }
3816 pHlp->pfnPrintf(pHlp, " %sVM-entry xcpt error-code = %#RX32\n", pszPrefix, pVmcs->u32EntryXcptErrCode);
3817 pHlp->pfnPrintf(pHlp, " %sVM-entry instr length = %u byte(s)\n", pszPrefix, pVmcs->u32EntryInstrLen);
3818 pHlp->pfnPrintf(pHlp, " %sTPR threshold = %#RX32\n", pszPrefix, pVmcs->u32TprThreshold);
3819 pHlp->pfnPrintf(pHlp, " %sPLE gap = %#RX32\n", pszPrefix, pVmcs->u32PleGap);
3820 pHlp->pfnPrintf(pHlp, " %sPLE window = %#RX32\n", pszPrefix, pVmcs->u32PleWindow);
3821
3822 /* 64-bit. */
3823 pHlp->pfnPrintf(pHlp, " %sIO-bitmap A addr = %#RX64\n", pszPrefix, pVmcs->u64AddrIoBitmapA.u);
3824 pHlp->pfnPrintf(pHlp, " %sIO-bitmap B addr = %#RX64\n", pszPrefix, pVmcs->u64AddrIoBitmapB.u);
3825 pHlp->pfnPrintf(pHlp, " %sMSR-bitmap addr = %#RX64\n", pszPrefix, pVmcs->u64AddrMsrBitmap.u);
3826 pHlp->pfnPrintf(pHlp, " %sVM-exit MSR store addr = %#RX64\n", pszPrefix, pVmcs->u64AddrExitMsrStore.u);
3827 pHlp->pfnPrintf(pHlp, " %sVM-exit MSR load addr = %#RX64\n", pszPrefix, pVmcs->u64AddrExitMsrLoad.u);
3828 pHlp->pfnPrintf(pHlp, " %sVM-entry MSR load addr = %#RX64\n", pszPrefix, pVmcs->u64AddrEntryMsrLoad.u);
3829 pHlp->pfnPrintf(pHlp, " %sExecutive VMCS ptr = %#RX64\n", pszPrefix, pVmcs->u64ExecVmcsPtr.u);
3830 pHlp->pfnPrintf(pHlp, " %sPML addr = %#RX64\n", pszPrefix, pVmcs->u64AddrPml.u);
3831 pHlp->pfnPrintf(pHlp, " %sTSC offset = %#RX64\n", pszPrefix, pVmcs->u64TscOffset.u);
3832 pHlp->pfnPrintf(pHlp, " %sVirtual-APIC addr = %#RX64\n", pszPrefix, pVmcs->u64AddrVirtApic.u);
3833 pHlp->pfnPrintf(pHlp, " %sAPIC-access addr = %#RX64\n", pszPrefix, pVmcs->u64AddrApicAccess.u);
3834 pHlp->pfnPrintf(pHlp, " %sPosted-intr desc addr = %#RX64\n", pszPrefix, pVmcs->u64AddrPostedIntDesc.u);
3835 pHlp->pfnPrintf(pHlp, " %sVM-functions control = %#RX64\n", pszPrefix, pVmcs->u64VmFuncCtls.u);
3836 pHlp->pfnPrintf(pHlp, " %sEPTP ptr = %#RX64\n", pszPrefix, pVmcs->u64EptpPtr.u);
3837 pHlp->pfnPrintf(pHlp, " %sEOI-exit bitmap 0 addr = %#RX64\n", pszPrefix, pVmcs->u64EoiExitBitmap0.u);
3838 pHlp->pfnPrintf(pHlp, " %sEOI-exit bitmap 1 addr = %#RX64\n", pszPrefix, pVmcs->u64EoiExitBitmap1.u);
3839 pHlp->pfnPrintf(pHlp, " %sEOI-exit bitmap 2 addr = %#RX64\n", pszPrefix, pVmcs->u64EoiExitBitmap2.u);
3840 pHlp->pfnPrintf(pHlp, " %sEOI-exit bitmap 3 addr = %#RX64\n", pszPrefix, pVmcs->u64EoiExitBitmap3.u);
3841 pHlp->pfnPrintf(pHlp, " %sEPTP-list addr = %#RX64\n", pszPrefix, pVmcs->u64AddrEptpList.u);
3842 pHlp->pfnPrintf(pHlp, " %sVMREAD-bitmap addr = %#RX64\n", pszPrefix, pVmcs->u64AddrVmreadBitmap.u);
3843 pHlp->pfnPrintf(pHlp, " %sVMWRITE-bitmap addr = %#RX64\n", pszPrefix, pVmcs->u64AddrVmwriteBitmap.u);
3844 pHlp->pfnPrintf(pHlp, " %sVirt-Xcpt info addr = %#RX64\n", pszPrefix, pVmcs->u64AddrXcptVeInfo.u);
3845 pHlp->pfnPrintf(pHlp, " %sXSS-bitmap = %#RX64\n", pszPrefix, pVmcs->u64XssBitmap.u);
3846 pHlp->pfnPrintf(pHlp, " %sENCLS-exiting bitmap = %#RX64\n", pszPrefix, pVmcs->u64EnclsBitmap.u);
3847 pHlp->pfnPrintf(pHlp, " %sSPPT pointer = %#RX64\n", pszPrefix, pVmcs->u64SpptPtr.u);
3848 pHlp->pfnPrintf(pHlp, " %sTSC multiplier = %#RX64\n", pszPrefix, pVmcs->u64TscMultiplier.u);
3849
3850 /* Natural width. */
3851 pHlp->pfnPrintf(pHlp, " %sCR0 guest/host mask = %#RX64\n", pszPrefix, pVmcs->u64Cr0Mask.u);
3852 pHlp->pfnPrintf(pHlp, " %sCR4 guest/host mask = %#RX64\n", pszPrefix, pVmcs->u64Cr4Mask.u);
3853 pHlp->pfnPrintf(pHlp, " %sCR0 read shadow = %#RX64\n", pszPrefix, pVmcs->u64Cr0ReadShadow.u);
3854 pHlp->pfnPrintf(pHlp, " %sCR4 read shadow = %#RX64\n", pszPrefix, pVmcs->u64Cr4ReadShadow.u);
3855 pHlp->pfnPrintf(pHlp, " %sCR3-target 0 = %#RX64\n", pszPrefix, pVmcs->u64Cr3Target0.u);
3856 pHlp->pfnPrintf(pHlp, " %sCR3-target 1 = %#RX64\n", pszPrefix, pVmcs->u64Cr3Target1.u);
3857 pHlp->pfnPrintf(pHlp, " %sCR3-target 2 = %#RX64\n", pszPrefix, pVmcs->u64Cr3Target2.u);
3858 pHlp->pfnPrintf(pHlp, " %sCR3-target 3 = %#RX64\n", pszPrefix, pVmcs->u64Cr3Target3.u);
3859 }
3860
3861 /* Guest state. */
3862 {
3863 char szEFlags[80];
3864 cpumR3InfoFormatFlags(&szEFlags[0], pVmcs->u64GuestRFlags.u);
3865 pHlp->pfnPrintf(pHlp, "%sGuest state:\n", pszPrefix);
3866
3867 /* 16-bit. */
3868 CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Cs, "cs", pszPrefix);
3869 CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Ss, "ss", pszPrefix);
3870 CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Es, "es", pszPrefix);
3871 CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Ds, "ds", pszPrefix);
3872 CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Fs, "fs", pszPrefix);
3873 CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Gs, "gs", pszPrefix);
3874 CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Ldtr, "ldtr", pszPrefix);
3875 CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Tr, "tr", pszPrefix);
3876 CPUMVMX_DUMP_GUEST_XDTR(pHlp, pVmcs, Gdtr, "gdtr", pszPrefix);
3877 CPUMVMX_DUMP_GUEST_XDTR(pHlp, pVmcs, Idtr, "idtr", pszPrefix);
3878 pHlp->pfnPrintf(pHlp, " %sInterrupt status = %#RX16\n", pszPrefix, pVmcs->u16GuestIntStatus);
3879 pHlp->pfnPrintf(pHlp, " %sPML index = %#RX16\n", pszPrefix, pVmcs->u16PmlIndex);
3880
3881 /* 32-bit. */
3882 pHlp->pfnPrintf(pHlp, " %sInterruptibility state = %#RX32\n", pszPrefix, pVmcs->u32GuestIntrState);
3883 pHlp->pfnPrintf(pHlp, " %sActivity state = %#RX32\n", pszPrefix, pVmcs->u32GuestActivityState);
3884 pHlp->pfnPrintf(pHlp, " %sSMBASE = %#RX32\n", pszPrefix, pVmcs->u32GuestSmBase);
3885 pHlp->pfnPrintf(pHlp, " %sSysEnter CS = %#RX32\n", pszPrefix, pVmcs->u32GuestSysenterCS);
3886 pHlp->pfnPrintf(pHlp, " %sVMX-preemption timer value = %#RX32\n", pszPrefix, pVmcs->u32PreemptTimer);
3887
3888 /* 64-bit. */
3889 pHlp->pfnPrintf(pHlp, " %sVMCS link ptr = %#RX64\n", pszPrefix, pVmcs->u64VmcsLinkPtr.u);
3890 pHlp->pfnPrintf(pHlp, " %sDBGCTL = %#RX64\n", pszPrefix, pVmcs->u64GuestDebugCtlMsr.u);
3891 pHlp->pfnPrintf(pHlp, " %sPAT = %#RX64\n", pszPrefix, pVmcs->u64GuestPatMsr.u);
3892 pHlp->pfnPrintf(pHlp, " %sEFER = %#RX64\n", pszPrefix, pVmcs->u64GuestEferMsr.u);
3893 pHlp->pfnPrintf(pHlp, " %sPERFGLOBALCTRL = %#RX64\n", pszPrefix, pVmcs->u64GuestPerfGlobalCtlMsr.u);
3894 pHlp->pfnPrintf(pHlp, " %sPDPTE 0 = %#RX64\n", pszPrefix, pVmcs->u64GuestPdpte0.u);
3895 pHlp->pfnPrintf(pHlp, " %sPDPTE 1 = %#RX64\n", pszPrefix, pVmcs->u64GuestPdpte1.u);
3896 pHlp->pfnPrintf(pHlp, " %sPDPTE 2 = %#RX64\n", pszPrefix, pVmcs->u64GuestPdpte2.u);
3897 pHlp->pfnPrintf(pHlp, " %sPDPTE 3 = %#RX64\n", pszPrefix, pVmcs->u64GuestPdpte3.u);
3898 pHlp->pfnPrintf(pHlp, " %sBNDCFGS = %#RX64\n", pszPrefix, pVmcs->u64GuestBndcfgsMsr.u);
3899 pHlp->pfnPrintf(pHlp, " %sRTIT_CTL = %#RX64\n", pszPrefix, pVmcs->u64GuestRtitCtlMsr.u);
3900
3901 /* Natural width. */
3902 pHlp->pfnPrintf(pHlp, " %scr0 = %#RX64\n", pszPrefix, pVmcs->u64GuestCr0.u);
3903 pHlp->pfnPrintf(pHlp, " %scr3 = %#RX64\n", pszPrefix, pVmcs->u64GuestCr3.u);
3904 pHlp->pfnPrintf(pHlp, " %scr4 = %#RX64\n", pszPrefix, pVmcs->u64GuestCr4.u);
3905 pHlp->pfnPrintf(pHlp, " %sdr7 = %#RX64\n", pszPrefix, pVmcs->u64GuestDr7.u);
3906 pHlp->pfnPrintf(pHlp, " %srsp = %#RX64\n", pszPrefix, pVmcs->u64GuestRsp.u);
3907 pHlp->pfnPrintf(pHlp, " %srip = %#RX64\n", pszPrefix, pVmcs->u64GuestRip.u);
3908 pHlp->pfnPrintf(pHlp, " %srflags = %#RX64 %31s\n",pszPrefix, pVmcs->u64GuestRFlags.u, szEFlags);
3909 pHlp->pfnPrintf(pHlp, " %sPending debug xcpts = %#RX64\n", pszPrefix, pVmcs->u64GuestPendingDbgXcpt.u);
3910 pHlp->pfnPrintf(pHlp, " %sSysEnter ESP = %#RX64\n", pszPrefix, pVmcs->u64GuestSysenterEsp.u);
3911 pHlp->pfnPrintf(pHlp, " %sSysEnter EIP = %#RX64\n", pszPrefix, pVmcs->u64GuestSysenterEip.u);
3912 }
3913
3914 /* Host state. */
3915 {
3916 pHlp->pfnPrintf(pHlp, "%sHost state:\n", pszPrefix);
3917
3918 /* 16-bit. */
3919 pHlp->pfnPrintf(pHlp, " %scs = %#RX16\n", pszPrefix, pVmcs->HostCs);
3920 pHlp->pfnPrintf(pHlp, " %sss = %#RX16\n", pszPrefix, pVmcs->HostSs);
3921 pHlp->pfnPrintf(pHlp, " %sds = %#RX16\n", pszPrefix, pVmcs->HostDs);
3922 pHlp->pfnPrintf(pHlp, " %ses = %#RX16\n", pszPrefix, pVmcs->HostEs);
3923 CPUMVMX_DUMP_HOST_FS_GS_TR(pHlp, pVmcs, Fs, "fs", pszPrefix);
3924 CPUMVMX_DUMP_HOST_FS_GS_TR(pHlp, pVmcs, Gs, "gs", pszPrefix);
3925 CPUMVMX_DUMP_HOST_FS_GS_TR(pHlp, pVmcs, Tr, "tr", pszPrefix);
3926 CPUMVMX_DUMP_HOST_XDTR(pHlp, pVmcs, Gdtr, "gdtr", pszPrefix);
3927 CPUMVMX_DUMP_HOST_XDTR(pHlp, pVmcs, Idtr, "idtr", pszPrefix);
3928
3929 /* 32-bit. */
3930 pHlp->pfnPrintf(pHlp, " %sSysEnter CS = %#RX32\n", pszPrefix, pVmcs->u32HostSysenterCs);
3931
3932 /* 64-bit. */
3933 pHlp->pfnPrintf(pHlp, " %sEFER = %#RX64\n", pszPrefix, pVmcs->u64HostEferMsr.u);
3934 pHlp->pfnPrintf(pHlp, " %sPAT = %#RX64\n", pszPrefix, pVmcs->u64HostPatMsr.u);
3935 pHlp->pfnPrintf(pHlp, " %sPERFGLOBALCTRL = %#RX64\n", pszPrefix, pVmcs->u64HostPerfGlobalCtlMsr.u);
3936
3937 /* Natural width. */
3938 pHlp->pfnPrintf(pHlp, " %scr0 = %#RX64\n", pszPrefix, pVmcs->u64HostCr0.u);
3939 pHlp->pfnPrintf(pHlp, " %scr3 = %#RX64\n", pszPrefix, pVmcs->u64HostCr3.u);
3940 pHlp->pfnPrintf(pHlp, " %scr4 = %#RX64\n", pszPrefix, pVmcs->u64HostCr4.u);
3941 pHlp->pfnPrintf(pHlp, " %sSysEnter ESP = %#RX64\n", pszPrefix, pVmcs->u64HostSysenterEsp.u);
3942 pHlp->pfnPrintf(pHlp, " %sSysEnter EIP = %#RX64\n", pszPrefix, pVmcs->u64HostSysenterEip.u);
3943 pHlp->pfnPrintf(pHlp, " %srsp = %#RX64\n", pszPrefix, pVmcs->u64HostRsp.u);
3944 pHlp->pfnPrintf(pHlp, " %srip = %#RX64\n", pszPrefix, pVmcs->u64HostRip.u);
3945 }
3946
3947 /* Read-only fields. */
3948 {
3949 pHlp->pfnPrintf(pHlp, "%sRead-only data fields:\n", pszPrefix);
3950
3951 /* 16-bit (none currently). */
3952
3953 /* 32-bit. */
3954 pHlp->pfnPrintf(pHlp, " %sExit reason = %u (%s)\n", pszPrefix, pVmcs->u32RoExitReason, HMGetVmxExitName(pVmcs->u32RoExitReason));
3955 pHlp->pfnPrintf(pHlp, " %sExit qualification = %#RX64\n", pszPrefix, pVmcs->u64RoExitQual.u);
3956 pHlp->pfnPrintf(pHlp, " %sVM-instruction error = %#RX32\n", pszPrefix, pVmcs->u32RoVmInstrError);
3957 pHlp->pfnPrintf(pHlp, " %sVM-exit intr info = %#RX32\n", pszPrefix, pVmcs->u32RoExitIntInfo);
3958 {
3959 uint32_t const fInfo = pVmcs->u32RoExitIntInfo;
3960 uint8_t const uType = VMX_EXIT_INT_INFO_TYPE(fInfo);
3961 pHlp->pfnPrintf(pHlp, " %sValid = %RTbool\n", pszPrefix, VMX_EXIT_INT_INFO_IS_VALID(fInfo));
3962 pHlp->pfnPrintf(pHlp, " %sType = %#x (%s)\n", pszPrefix, uType, HMGetVmxExitIntInfoTypeDesc(uType));
3963 pHlp->pfnPrintf(pHlp, " %sVector = %#x\n", pszPrefix, VMX_EXIT_INT_INFO_VECTOR(fInfo));
3964 pHlp->pfnPrintf(pHlp, " %sNMI-unblocking-IRET = %RTbool\n", pszPrefix, VMX_EXIT_INT_INFO_IS_NMI_UNBLOCK_IRET(fInfo));
3965 pHlp->pfnPrintf(pHlp, " %sError-code valid = %RTbool\n", pszPrefix, VMX_EXIT_INT_INFO_IS_ERROR_CODE_VALID(fInfo));
3966 }
3967 pHlp->pfnPrintf(pHlp, " %sVM-exit intr error-code = %#RX32\n", pszPrefix, pVmcs->u32RoExitIntErrCode);
3968 pHlp->pfnPrintf(pHlp, " %sIDT-vectoring info = %#RX32\n", pszPrefix, pVmcs->u32RoIdtVectoringInfo);
3969 {
3970 uint32_t const fInfo = pVmcs->u32RoIdtVectoringInfo;
3971 uint8_t const uType = VMX_IDT_VECTORING_INFO_TYPE(fInfo);
3972 pHlp->pfnPrintf(pHlp, " %sValid = %RTbool\n", pszPrefix, VMX_IDT_VECTORING_INFO_IS_VALID(fInfo));
3973 pHlp->pfnPrintf(pHlp, " %sType = %#x (%s)\n", pszPrefix, uType, HMGetVmxIdtVectoringInfoTypeDesc(uType));
3974 pHlp->pfnPrintf(pHlp, " %sVector = %#x\n", pszPrefix, VMX_IDT_VECTORING_INFO_VECTOR(fInfo));
3975 pHlp->pfnPrintf(pHlp, " %sError-code valid = %RTbool\n", pszPrefix, VMX_IDT_VECTORING_INFO_IS_ERROR_CODE_VALID(fInfo));
3976 }
3977 pHlp->pfnPrintf(pHlp, " %sIDT-vectoring error-code = %#RX32\n", pszPrefix, pVmcs->u32RoIdtVectoringErrCode);
3978 pHlp->pfnPrintf(pHlp, " %sVM-exit instruction length = %u bytes\n", pszPrefix, pVmcs->u32RoExitInstrLen);
3979 pHlp->pfnPrintf(pHlp, " %sVM-exit instruction info = %#RX64\n", pszPrefix, pVmcs->u32RoExitInstrInfo);
3980
3981 /* 64-bit. */
3982 pHlp->pfnPrintf(pHlp, " %sGuest-physical addr = %#RX64\n", pszPrefix, pVmcs->u64RoGuestPhysAddr.u);
3983
3984 /* Natural width. */
3985 pHlp->pfnPrintf(pHlp, " %sI/O RCX = %#RX64\n", pszPrefix, pVmcs->u64RoIoRcx.u);
3986 pHlp->pfnPrintf(pHlp, " %sI/O RSI = %#RX64\n", pszPrefix, pVmcs->u64RoIoRsi.u);
3987 pHlp->pfnPrintf(pHlp, " %sI/O RDI = %#RX64\n", pszPrefix, pVmcs->u64RoIoRdi.u);
3988 pHlp->pfnPrintf(pHlp, " %sI/O RIP = %#RX64\n", pszPrefix, pVmcs->u64RoIoRip.u);
3989 pHlp->pfnPrintf(pHlp, " %sGuest-linear addr = %#RX64\n", pszPrefix, pVmcs->u64RoGuestLinearAddr.u);
3990 }
3991
3992#undef CPUMVMX_DUMP_HOST_XDTR
3993#undef CPUMVMX_DUMP_HOST_FS_GS_TR
3994#undef CPUMVMX_DUMP_GUEST_SEGREG
3995#undef CPUMVMX_DUMP_GUEST_XDTR
3996}
3997
3998
3999/**
4000 * Display the guest's hardware-virtualization cpu state.
4001 *
4002 * @param pVM The cross context VM structure.
4003 * @param pHlp The info helper functions.
4004 * @param pszArgs Arguments, ignored.
4005 */
4006static DECLCALLBACK(void) cpumR3InfoGuestHwvirt(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
4007{
4008 RT_NOREF(pszArgs);
4009
4010 PVMCPU pVCpu = VMMGetCpu(pVM);
4011 if (!pVCpu)
4012 pVCpu = &pVM->aCpus[0];
4013
4014 /*
4015 * Figure out what to dump.
4016 *
4017 * In the future we may need to dump everything whether or not we're actively in nested-guest mode
4018 * or not, hence the reason why we use a mask to determine what needs dumping. Currently, we only
4019 * dump hwvirt. state when the guest CPU is executing a nested-guest.
4020 */
4021 /** @todo perhaps make this configurable through pszArgs, depending on how much
4022 * noise we wish to accept when nested hwvirt. isn't used. */
4023#define CPUMHWVIRTDUMP_NONE (0)
4024#define CPUMHWVIRTDUMP_SVM RT_BIT(0)
4025#define CPUMHWVIRTDUMP_VMX RT_BIT(1)
4026#define CPUMHWVIRTDUMP_COMMON RT_BIT(2)
4027#define CPUMHWVIRTDUMP_LAST CPUMHWVIRTDUMP_VMX
4028
4029 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
4030 static const char *const s_aHwvirtModes[] = { "No/inactive", "SVM", "VMX", "Common" };
4031 bool const fSvm = pVM->cpum.s.GuestFeatures.fSvm;
4032 bool const fVmx = pVM->cpum.s.GuestFeatures.fVmx;
4033 uint8_t const idxHwvirtState = fSvm ? CPUMHWVIRTDUMP_SVM : (fVmx ? CPUMHWVIRTDUMP_VMX : CPUMHWVIRTDUMP_NONE);
4034 AssertCompile(CPUMHWVIRTDUMP_LAST <= RT_ELEMENTS(s_aHwvirtModes));
4035 Assert(idxHwvirtState < RT_ELEMENTS(s_aHwvirtModes));
4036 const char *pcszHwvirtMode = s_aHwvirtModes[idxHwvirtState];
4037 uint32_t fDumpState = idxHwvirtState | CPUMHWVIRTDUMP_COMMON;
4038
4039 /*
4040 * Dump it.
4041 */
4042 pHlp->pfnPrintf(pHlp, "VCPU[%u] hardware virtualization state:\n", pVCpu->idCpu);
4043
4044 if (fDumpState & CPUMHWVIRTDUMP_COMMON)
4045 pHlp->pfnPrintf(pHlp, "fLocalForcedActions = %#RX32\n", pCtx->hwvirt.fLocalForcedActions);
4046
4047 pHlp->pfnPrintf(pHlp, "%s hwvirt state%s\n", pcszHwvirtMode, (fDumpState & (CPUMHWVIRTDUMP_SVM | CPUMHWVIRTDUMP_VMX)) ?
4048 ":" : "");
4049 if (fDumpState & CPUMHWVIRTDUMP_SVM)
4050 {
4051 pHlp->pfnPrintf(pHlp, " fGif = %RTbool\n", pCtx->hwvirt.fGif);
4052
4053 char szEFlags[80];
4054 cpumR3InfoFormatFlags(&szEFlags[0], pCtx->hwvirt.svm.HostState.rflags.u);
4055 pHlp->pfnPrintf(pHlp, " uMsrHSavePa = %#RX64\n", pCtx->hwvirt.svm.uMsrHSavePa);
4056 pHlp->pfnPrintf(pHlp, " GCPhysVmcb = %#RGp\n", pCtx->hwvirt.svm.GCPhysVmcb);
4057 pHlp->pfnPrintf(pHlp, " VmcbCtrl:\n");
4058 cpumR3InfoSvmVmcbCtrl(pHlp, &pCtx->hwvirt.svm.pVmcbR3->ctrl, " " /* pszPrefix */);
4059 pHlp->pfnPrintf(pHlp, " VmcbStateSave:\n");
4060 cpumR3InfoSvmVmcbStateSave(pHlp, &pCtx->hwvirt.svm.pVmcbR3->guest, " " /* pszPrefix */);
4061 pHlp->pfnPrintf(pHlp, " HostState:\n");
4062 pHlp->pfnPrintf(pHlp, " uEferMsr = %#RX64\n", pCtx->hwvirt.svm.HostState.uEferMsr);
4063 pHlp->pfnPrintf(pHlp, " uCr0 = %#RX64\n", pCtx->hwvirt.svm.HostState.uCr0);
4064 pHlp->pfnPrintf(pHlp, " uCr4 = %#RX64\n", pCtx->hwvirt.svm.HostState.uCr4);
4065 pHlp->pfnPrintf(pHlp, " uCr3 = %#RX64\n", pCtx->hwvirt.svm.HostState.uCr3);
4066 pHlp->pfnPrintf(pHlp, " uRip = %#RX64\n", pCtx->hwvirt.svm.HostState.uRip);
4067 pHlp->pfnPrintf(pHlp, " uRsp = %#RX64\n", pCtx->hwvirt.svm.HostState.uRsp);
4068 pHlp->pfnPrintf(pHlp, " uRax = %#RX64\n", pCtx->hwvirt.svm.HostState.uRax);
4069 pHlp->pfnPrintf(pHlp, " rflags = %#RX64 %31s\n", pCtx->hwvirt.svm.HostState.rflags.u64, szEFlags);
4070 PCPUMSELREG pSel = &pCtx->hwvirt.svm.HostState.es;
4071 pHlp->pfnPrintf(pHlp, " es = {%04x base=%016RX64 limit=%08x flags=%08x}\n",
4072 pSel->Sel, pSel->u64Base, pSel->u32Limit, pSel->Attr.u);
4073 pSel = &pCtx->hwvirt.svm.HostState.cs;
4074 pHlp->pfnPrintf(pHlp, " cs = {%04x base=%016RX64 limit=%08x flags=%08x}\n",
4075 pSel->Sel, pSel->u64Base, pSel->u32Limit, pSel->Attr.u);
4076 pSel = &pCtx->hwvirt.svm.HostState.ss;
4077 pHlp->pfnPrintf(pHlp, " ss = {%04x base=%016RX64 limit=%08x flags=%08x}\n",
4078 pSel->Sel, pSel->u64Base, pSel->u32Limit, pSel->Attr.u);
4079 pSel = &pCtx->hwvirt.svm.HostState.ds;
4080 pHlp->pfnPrintf(pHlp, " ds = {%04x base=%016RX64 limit=%08x flags=%08x}\n",
4081 pSel->Sel, pSel->u64Base, pSel->u32Limit, pSel->Attr.u);
4082 pHlp->pfnPrintf(pHlp, " gdtr = %016RX64:%04x\n", pCtx->hwvirt.svm.HostState.gdtr.pGdt,
4083 pCtx->hwvirt.svm.HostState.gdtr.cbGdt);
4084 pHlp->pfnPrintf(pHlp, " idtr = %016RX64:%04x\n", pCtx->hwvirt.svm.HostState.idtr.pIdt,
4085 pCtx->hwvirt.svm.HostState.idtr.cbIdt);
4086 pHlp->pfnPrintf(pHlp, " cPauseFilter = %RU16\n", pCtx->hwvirt.svm.cPauseFilter);
4087 pHlp->pfnPrintf(pHlp, " cPauseFilterThreshold = %RU32\n", pCtx->hwvirt.svm.cPauseFilterThreshold);
4088 pHlp->pfnPrintf(pHlp, " fInterceptEvents = %u\n", pCtx->hwvirt.svm.fInterceptEvents);
4089 pHlp->pfnPrintf(pHlp, " pvMsrBitmapR3 = %p\n", pCtx->hwvirt.svm.pvMsrBitmapR3);
4090 pHlp->pfnPrintf(pHlp, " pvMsrBitmapR0 = %RKv\n", pCtx->hwvirt.svm.pvMsrBitmapR0);
4091 pHlp->pfnPrintf(pHlp, " pvIoBitmapR3 = %p\n", pCtx->hwvirt.svm.pvIoBitmapR3);
4092 pHlp->pfnPrintf(pHlp, " pvIoBitmapR0 = %RKv\n", pCtx->hwvirt.svm.pvIoBitmapR0);
4093 }
4094
4095 if (fDumpState & CPUMHWVIRTDUMP_VMX)
4096 {
4097 pHlp->pfnPrintf(pHlp, " GCPhysVmxon = %#RGp\n", pCtx->hwvirt.vmx.GCPhysVmxon);
4098 pHlp->pfnPrintf(pHlp, " GCPhysVmcs = %#RGp\n", pCtx->hwvirt.vmx.GCPhysVmcs);
4099 pHlp->pfnPrintf(pHlp, " GCPhysShadowVmcs = %#RGp\n", pCtx->hwvirt.vmx.GCPhysShadowVmcs);
4100 pHlp->pfnPrintf(pHlp, " enmDiag = %u (%s)\n", pCtx->hwvirt.vmx.enmDiag, HMGetVmxDiagDesc(pCtx->hwvirt.vmx.enmDiag));
4101 pHlp->pfnPrintf(pHlp, " enmAbort = %u (%s)\n", pCtx->hwvirt.vmx.enmAbort, HMGetVmxAbortDesc(pCtx->hwvirt.vmx.enmAbort));
4102 pHlp->pfnPrintf(pHlp, " uAbortAux = %u (%#x)\n", pCtx->hwvirt.vmx.uAbortAux, pCtx->hwvirt.vmx.uAbortAux);
4103 pHlp->pfnPrintf(pHlp, " fInVmxRootMode = %RTbool\n", pCtx->hwvirt.vmx.fInVmxRootMode);
4104 pHlp->pfnPrintf(pHlp, " fInVmxNonRootMode = %RTbool\n", pCtx->hwvirt.vmx.fInVmxNonRootMode);
4105 pHlp->pfnPrintf(pHlp, " fInterceptEvents = %RTbool\n", pCtx->hwvirt.vmx.fInterceptEvents);
4106 pHlp->pfnPrintf(pHlp, " fNmiUnblockingIret = %RTbool\n", pCtx->hwvirt.vmx.fNmiUnblockingIret);
4107 pHlp->pfnPrintf(pHlp, " uFirstPauseLoopTick = %RX64\n", pCtx->hwvirt.vmx.uFirstPauseLoopTick);
4108 pHlp->pfnPrintf(pHlp, " uPrevPauseTick = %RX64\n", pCtx->hwvirt.vmx.uPrevPauseTick);
4109 pHlp->pfnPrintf(pHlp, " uEntryTick = %RX64\n", pCtx->hwvirt.vmx.uEntryTick);
4110 pHlp->pfnPrintf(pHlp, " offVirtApicWrite = %#RX16\n", pCtx->hwvirt.vmx.offVirtApicWrite);
4111 pHlp->pfnPrintf(pHlp, " fVirtNmiBlocking = %RTbool\n", pCtx->hwvirt.vmx.fVirtNmiBlocking);
4112 pHlp->pfnPrintf(pHlp, " VMCS cache:\n");
4113 cpumR3InfoVmxVmcs(pHlp, pCtx->hwvirt.vmx.pVmcsR3, " " /* pszPrefix */);
4114 }
4115
4116#undef CPUMHWVIRTDUMP_NONE
4117#undef CPUMHWVIRTDUMP_COMMON
4118#undef CPUMHWVIRTDUMP_SVM
4119#undef CPUMHWVIRTDUMP_VMX
4120#undef CPUMHWVIRTDUMP_LAST
4121#undef CPUMHWVIRTDUMP_ALL
4122}
4123
4124/**
4125 * Display the current guest instruction
4126 *
4127 * @param pVM The cross context VM structure.
4128 * @param pHlp The info helper functions.
4129 * @param pszArgs Arguments, ignored.
4130 */
4131static DECLCALLBACK(void) cpumR3InfoGuestInstr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
4132{
4133 NOREF(pszArgs);
4134
4135 PVMCPU pVCpu = VMMGetCpu(pVM);
4136 if (!pVCpu)
4137 pVCpu = &pVM->aCpus[0];
4138
4139 char szInstruction[256];
4140 szInstruction[0] = '\0';
4141 DBGFR3DisasInstrCurrent(pVCpu, szInstruction, sizeof(szInstruction));
4142 pHlp->pfnPrintf(pHlp, "\nCPUM%u: %s\n\n", pVCpu->idCpu, szInstruction);
4143}
4144
4145
4146/**
4147 * Display the hypervisor cpu state.
4148 *
4149 * @param pVM The cross context VM structure.
4150 * @param pHlp The info helper functions.
4151 * @param pszArgs Arguments, ignored.
4152 */
4153static DECLCALLBACK(void) cpumR3InfoHyper(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
4154{
4155 PVMCPU pVCpu = VMMGetCpu(pVM);
4156 if (!pVCpu)
4157 pVCpu = &pVM->aCpus[0];
4158
4159 CPUMDUMPTYPE enmType;
4160 const char *pszComment;
4161 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
4162 pHlp->pfnPrintf(pHlp, "Hypervisor CPUM state: %s\n", pszComment);
4163 cpumR3InfoOne(pVM, &pVCpu->cpum.s.Hyper, CPUMCTX2CORE(&pVCpu->cpum.s.Hyper), pHlp, enmType, ".");
4164 pHlp->pfnPrintf(pHlp, "CR4OrMask=%#x CR4AndMask=%#x\n", pVM->cpum.s.CR4.OrMask, pVM->cpum.s.CR4.AndMask);
4165}
4166
4167
4168/**
4169 * Display the host cpu state.
4170 *
4171 * @param pVM The cross context VM structure.
4172 * @param pHlp The info helper functions.
4173 * @param pszArgs Arguments, ignored.
4174 */
4175static DECLCALLBACK(void) cpumR3InfoHost(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
4176{
4177 CPUMDUMPTYPE enmType;
4178 const char *pszComment;
4179 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
4180 pHlp->pfnPrintf(pHlp, "Host CPUM state: %s\n", pszComment);
4181
4182 PVMCPU pVCpu = VMMGetCpu(pVM);
4183 if (!pVCpu)
4184 pVCpu = &pVM->aCpus[0];
4185 PCPUMHOSTCTX pCtx = &pVCpu->cpum.s.Host;
4186
4187 /*
4188 * Format the EFLAGS.
4189 */
4190#if HC_ARCH_BITS == 32
4191 uint32_t efl = pCtx->eflags.u32;
4192#else
4193 uint64_t efl = pCtx->rflags;
4194#endif
4195 char szEFlags[80];
4196 cpumR3InfoFormatFlags(&szEFlags[0], efl);
4197
4198 /*
4199 * Format the registers.
4200 */
4201#if HC_ARCH_BITS == 32
4202 pHlp->pfnPrintf(pHlp,
4203 "eax=xxxxxxxx ebx=%08x ecx=xxxxxxxx edx=xxxxxxxx esi=%08x edi=%08x\n"
4204 "eip=xxxxxxxx esp=%08x ebp=%08x iopl=%d %31s\n"
4205 "cs=%04x ds=%04x es=%04x fs=%04x gs=%04x eflags=%08x\n"
4206 "cr0=%08RX64 cr2=xxxxxxxx cr3=%08RX64 cr4=%08RX64 gdtr=%08x:%04x ldtr=%04x\n"
4207 "dr[0]=%08RX64 dr[1]=%08RX64x dr[2]=%08RX64 dr[3]=%08RX64x dr[6]=%08RX64 dr[7]=%08RX64\n"
4208 "SysEnter={cs=%04x eip=%08x esp=%08x}\n"
4209 ,
4210 /*pCtx->eax,*/ pCtx->ebx, /*pCtx->ecx, pCtx->edx,*/ pCtx->esi, pCtx->edi,
4211 /*pCtx->eip,*/ pCtx->esp, pCtx->ebp, X86_EFL_GET_IOPL(efl), szEFlags,
4212 pCtx->cs, pCtx->ds, pCtx->es, pCtx->fs, pCtx->gs, efl,
4213 pCtx->cr0, /*pCtx->cr2,*/ pCtx->cr3, pCtx->cr4,
4214 pCtx->dr0, pCtx->dr1, pCtx->dr2, pCtx->dr3, pCtx->dr6, pCtx->dr7,
4215 (uint32_t)pCtx->gdtr.uAddr, pCtx->gdtr.cb, pCtx->ldtr,
4216 pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
4217#else
4218 pHlp->pfnPrintf(pHlp,
4219 "rax=xxxxxxxxxxxxxxxx rbx=%016RX64 rcx=xxxxxxxxxxxxxxxx\n"
4220 "rdx=xxxxxxxxxxxxxxxx rsi=%016RX64 rdi=%016RX64\n"
4221 "rip=xxxxxxxxxxxxxxxx rsp=%016RX64 rbp=%016RX64\n"
4222 " r8=xxxxxxxxxxxxxxxx r9=xxxxxxxxxxxxxxxx r10=%016RX64\n"
4223 "r11=%016RX64 r12=%016RX64 r13=%016RX64\n"
4224 "r14=%016RX64 r15=%016RX64\n"
4225 "iopl=%d %31s\n"
4226 "cs=%04x ds=%04x es=%04x fs=%04x gs=%04x eflags=%08RX64\n"
4227 "cr0=%016RX64 cr2=xxxxxxxxxxxxxxxx cr3=%016RX64\n"
4228 "cr4=%016RX64 ldtr=%04x tr=%04x\n"
4229 "dr[0]=%016RX64 dr[1]=%016RX64 dr[2]=%016RX64\n"
4230 "dr[3]=%016RX64 dr[6]=%016RX64 dr[7]=%016RX64\n"
4231 "gdtr=%016RX64:%04x idtr=%016RX64:%04x\n"
4232 "SysEnter={cs=%04x eip=%08x esp=%08x}\n"
4233 "FSbase=%016RX64 GSbase=%016RX64 efer=%08RX64\n"
4234 ,
4235 /*pCtx->rax,*/ pCtx->rbx, /*pCtx->rcx,
4236 pCtx->rdx,*/ pCtx->rsi, pCtx->rdi,
4237 /*pCtx->rip,*/ pCtx->rsp, pCtx->rbp,
4238 /*pCtx->r8, pCtx->r9,*/ pCtx->r10,
4239 pCtx->r11, pCtx->r12, pCtx->r13,
4240 pCtx->r14, pCtx->r15,
4241 X86_EFL_GET_IOPL(efl), szEFlags,
4242 pCtx->cs, pCtx->ds, pCtx->es, pCtx->fs, pCtx->gs, efl,
4243 pCtx->cr0, /*pCtx->cr2,*/ pCtx->cr3,
4244 pCtx->cr4, pCtx->ldtr, pCtx->tr,
4245 pCtx->dr0, pCtx->dr1, pCtx->dr2,
4246 pCtx->dr3, pCtx->dr6, pCtx->dr7,
4247 pCtx->gdtr.uAddr, pCtx->gdtr.cb, pCtx->idtr.uAddr, pCtx->idtr.cb,
4248 pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp,
4249 pCtx->FSbase, pCtx->GSbase, pCtx->efer);
4250#endif
4251}
4252
4253/**
4254 * Structure used when disassembling and instructions in DBGF.
4255 * This is used so the reader function can get the stuff it needs.
4256 */
4257typedef struct CPUMDISASSTATE
4258{
4259 /** Pointer to the CPU structure. */
4260 PDISCPUSTATE pCpu;
4261 /** Pointer to the VM. */
4262 PVM pVM;
4263 /** Pointer to the VMCPU. */
4264 PVMCPU pVCpu;
4265 /** Pointer to the first byte in the segment. */
4266 RTGCUINTPTR GCPtrSegBase;
4267 /** Pointer to the byte after the end of the segment. (might have wrapped!) */
4268 RTGCUINTPTR GCPtrSegEnd;
4269 /** The size of the segment minus 1. */
4270 RTGCUINTPTR cbSegLimit;
4271 /** Pointer to the current page - R3 Ptr. */
4272 void const *pvPageR3;
4273 /** Pointer to the current page - GC Ptr. */
4274 RTGCPTR pvPageGC;
4275 /** The lock information that PGMPhysReleasePageMappingLock needs. */
4276 PGMPAGEMAPLOCK PageMapLock;
4277 /** Whether the PageMapLock is valid or not. */
4278 bool fLocked;
4279 /** 64 bits mode or not. */
4280 bool f64Bits;
4281} CPUMDISASSTATE, *PCPUMDISASSTATE;
4282
4283
4284/**
4285 * @callback_method_impl{FNDISREADBYTES}
4286 */
4287static DECLCALLBACK(int) cpumR3DisasInstrRead(PDISCPUSTATE pDis, uint8_t offInstr, uint8_t cbMinRead, uint8_t cbMaxRead)
4288{
4289 PCPUMDISASSTATE pState = (PCPUMDISASSTATE)pDis->pvUser;
4290 for (;;)
4291 {
4292 RTGCUINTPTR GCPtr = pDis->uInstrAddr + offInstr + pState->GCPtrSegBase;
4293
4294 /*
4295 * Need to update the page translation?
4296 */
4297 if ( !pState->pvPageR3
4298 || (GCPtr >> PAGE_SHIFT) != (pState->pvPageGC >> PAGE_SHIFT))
4299 {
4300 int rc = VINF_SUCCESS;
4301
4302 /* translate the address */
4303 pState->pvPageGC = GCPtr & PAGE_BASE_GC_MASK;
4304 if ( VM_IS_RAW_MODE_ENABLED(pState->pVM)
4305 && MMHyperIsInsideArea(pState->pVM, pState->pvPageGC))
4306 {
4307 pState->pvPageR3 = MMHyperRCToR3(pState->pVM, (RTRCPTR)pState->pvPageGC);
4308 if (!pState->pvPageR3)
4309 rc = VERR_INVALID_POINTER;
4310 }
4311 else
4312 {
4313 /* Release mapping lock previously acquired. */
4314 if (pState->fLocked)
4315 PGMPhysReleasePageMappingLock(pState->pVM, &pState->PageMapLock);
4316 rc = PGMPhysGCPtr2CCPtrReadOnly(pState->pVCpu, pState->pvPageGC, &pState->pvPageR3, &pState->PageMapLock);
4317 pState->fLocked = RT_SUCCESS_NP(rc);
4318 }
4319 if (RT_FAILURE(rc))
4320 {
4321 pState->pvPageR3 = NULL;
4322 return rc;
4323 }
4324 }
4325
4326 /*
4327 * Check the segment limit.
4328 */
4329 if (!pState->f64Bits && pDis->uInstrAddr + offInstr > pState->cbSegLimit)
4330 return VERR_OUT_OF_SELECTOR_BOUNDS;
4331
4332 /*
4333 * Calc how much we can read.
4334 */
4335 uint32_t cb = PAGE_SIZE - (GCPtr & PAGE_OFFSET_MASK);
4336 if (!pState->f64Bits)
4337 {
4338 RTGCUINTPTR cbSeg = pState->GCPtrSegEnd - GCPtr;
4339 if (cb > cbSeg && cbSeg)
4340 cb = cbSeg;
4341 }
4342 if (cb > cbMaxRead)
4343 cb = cbMaxRead;
4344
4345 /*
4346 * Read and advance or exit.
4347 */
4348 memcpy(&pDis->abInstr[offInstr], (uint8_t *)pState->pvPageR3 + (GCPtr & PAGE_OFFSET_MASK), cb);
4349 offInstr += (uint8_t)cb;
4350 if (cb >= cbMinRead)
4351 {
4352 pDis->cbCachedInstr = offInstr;
4353 return VINF_SUCCESS;
4354 }
4355 cbMinRead -= (uint8_t)cb;
4356 cbMaxRead -= (uint8_t)cb;
4357 }
4358}
4359
4360
4361/**
4362 * Disassemble an instruction and return the information in the provided structure.
4363 *
4364 * @returns VBox status code.
4365 * @param pVM The cross context VM structure.
4366 * @param pVCpu The cross context virtual CPU structure.
4367 * @param pCtx Pointer to the guest CPU context.
4368 * @param GCPtrPC Program counter (relative to CS) to disassemble from.
4369 * @param pCpu Disassembly state.
4370 * @param pszPrefix String prefix for logging (debug only).
4371 *
4372 */
4373VMMR3DECL(int) CPUMR3DisasmInstrCPU(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, RTGCPTR GCPtrPC, PDISCPUSTATE pCpu,
4374 const char *pszPrefix)
4375{
4376 CPUMDISASSTATE State;
4377 int rc;
4378
4379 const PGMMODE enmMode = PGMGetGuestMode(pVCpu);
4380 State.pCpu = pCpu;
4381 State.pvPageGC = 0;
4382 State.pvPageR3 = NULL;
4383 State.pVM = pVM;
4384 State.pVCpu = pVCpu;
4385 State.fLocked = false;
4386 State.f64Bits = false;
4387
4388 /*
4389 * Get selector information.
4390 */
4391 DISCPUMODE enmDisCpuMode;
4392 if ( (pCtx->cr0 & X86_CR0_PE)
4393 && pCtx->eflags.Bits.u1VM == 0)
4394 {
4395 if (!CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->cs))
4396 {
4397# ifdef VBOX_WITH_RAW_MODE_NOT_R0
4398 CPUMGuestLazyLoadHiddenSelectorReg(pVCpu, &pCtx->cs);
4399# endif
4400 if (!CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->cs))
4401 return VERR_CPUM_HIDDEN_CS_LOAD_ERROR;
4402 }
4403 State.f64Bits = enmMode >= PGMMODE_AMD64 && pCtx->cs.Attr.n.u1Long;
4404 State.GCPtrSegBase = pCtx->cs.u64Base;
4405 State.GCPtrSegEnd = pCtx->cs.u32Limit + 1 + (RTGCUINTPTR)pCtx->cs.u64Base;
4406 State.cbSegLimit = pCtx->cs.u32Limit;
4407 enmDisCpuMode = (State.f64Bits)
4408 ? DISCPUMODE_64BIT
4409 : pCtx->cs.Attr.n.u1DefBig
4410 ? DISCPUMODE_32BIT
4411 : DISCPUMODE_16BIT;
4412 }
4413 else
4414 {
4415 /* real or V86 mode */
4416 enmDisCpuMode = DISCPUMODE_16BIT;
4417 State.GCPtrSegBase = pCtx->cs.Sel * 16;
4418 State.GCPtrSegEnd = 0xFFFFFFFF;
4419 State.cbSegLimit = 0xFFFFFFFF;
4420 }
4421
4422 /*
4423 * Disassemble the instruction.
4424 */
4425 uint32_t cbInstr;
4426#ifndef LOG_ENABLED
4427 RT_NOREF_PV(pszPrefix);
4428 rc = DISInstrWithReader(GCPtrPC, enmDisCpuMode, cpumR3DisasInstrRead, &State, pCpu, &cbInstr);
4429 if (RT_SUCCESS(rc))
4430 {
4431#else
4432 char szOutput[160];
4433 rc = DISInstrToStrWithReader(GCPtrPC, enmDisCpuMode, cpumR3DisasInstrRead, &State,
4434 pCpu, &cbInstr, szOutput, sizeof(szOutput));
4435 if (RT_SUCCESS(rc))
4436 {
4437 /* log it */
4438 if (pszPrefix)
4439 Log(("%s-CPU%d: %s", pszPrefix, pVCpu->idCpu, szOutput));
4440 else
4441 Log(("%s", szOutput));
4442#endif
4443 rc = VINF_SUCCESS;
4444 }
4445 else
4446 Log(("CPUMR3DisasmInstrCPU: DISInstr failed for %04X:%RGv rc=%Rrc\n", pCtx->cs.Sel, GCPtrPC, rc));
4447
4448 /* Release mapping lock acquired in cpumR3DisasInstrRead. */
4449 if (State.fLocked)
4450 PGMPhysReleasePageMappingLock(pVM, &State.PageMapLock);
4451
4452 return rc;
4453}
4454
4455
4456
4457/**
4458 * API for controlling a few of the CPU features found in CR4.
4459 *
4460 * Currently only X86_CR4_TSD is accepted as input.
4461 *
4462 * @returns VBox status code.
4463 *
4464 * @param pVM The cross context VM structure.
4465 * @param fOr The CR4 OR mask.
4466 * @param fAnd The CR4 AND mask.
4467 */
4468VMMR3DECL(int) CPUMR3SetCR4Feature(PVM pVM, RTHCUINTREG fOr, RTHCUINTREG fAnd)
4469{
4470 AssertMsgReturn(!(fOr & ~(X86_CR4_TSD)), ("%#x\n", fOr), VERR_INVALID_PARAMETER);
4471 AssertMsgReturn((fAnd & ~(X86_CR4_TSD)) == ~(X86_CR4_TSD), ("%#x\n", fAnd), VERR_INVALID_PARAMETER);
4472
4473 pVM->cpum.s.CR4.OrMask &= fAnd;
4474 pVM->cpum.s.CR4.OrMask |= fOr;
4475
4476 return VINF_SUCCESS;
4477}
4478
4479
4480/**
4481 * Enters REM, gets and resets the changed flags (CPUM_CHANGED_*).
4482 *
4483 * Only REM should ever call this function!
4484 *
4485 * @returns The changed flags.
4486 * @param pVCpu The cross context virtual CPU structure.
4487 * @param puCpl Where to return the current privilege level (CPL).
4488 */
4489VMMR3DECL(uint32_t) CPUMR3RemEnter(PVMCPU pVCpu, uint32_t *puCpl)
4490{
4491 Assert(!pVCpu->cpum.s.fRawEntered);
4492 Assert(!pVCpu->cpum.s.fRemEntered);
4493
4494 /*
4495 * Get the CPL first.
4496 */
4497 *puCpl = CPUMGetGuestCPL(pVCpu);
4498
4499 /*
4500 * Get and reset the flags.
4501 */
4502 uint32_t fFlags = pVCpu->cpum.s.fChanged;
4503 pVCpu->cpum.s.fChanged = 0;
4504
4505 /** @todo change the switcher to use the fChanged flags. */
4506 if (pVCpu->cpum.s.fUseFlags & CPUM_USED_FPU_SINCE_REM)
4507 {
4508 fFlags |= CPUM_CHANGED_FPU_REM;
4509 pVCpu->cpum.s.fUseFlags &= ~CPUM_USED_FPU_SINCE_REM;
4510 }
4511
4512 pVCpu->cpum.s.fRemEntered = true;
4513 return fFlags;
4514}
4515
4516
4517/**
4518 * Leaves REM.
4519 *
4520 * @param pVCpu The cross context virtual CPU structure.
4521 * @param fNoOutOfSyncSels This is @c false if there are out of sync
4522 * registers.
4523 */
4524VMMR3DECL(void) CPUMR3RemLeave(PVMCPU pVCpu, bool fNoOutOfSyncSels)
4525{
4526 Assert(!pVCpu->cpum.s.fRawEntered);
4527 Assert(pVCpu->cpum.s.fRemEntered);
4528
4529 RT_NOREF_PV(fNoOutOfSyncSels);
4530
4531 pVCpu->cpum.s.fRemEntered = false;
4532}
4533
4534
4535/**
4536 * Called when the ring-3 init phase completes.
4537 *
4538 * @returns VBox status code.
4539 * @param pVM The cross context VM structure.
4540 * @param enmWhat Which init phase.
4541 */
4542VMMR3DECL(int) CPUMR3InitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
4543{
4544 switch (enmWhat)
4545 {
4546 case VMINITCOMPLETED_RING3:
4547 {
4548 /*
4549 * Figure out if the guest uses 32-bit or 64-bit FPU state at runtime for 64-bit capable VMs.
4550 * Only applicable/used on 64-bit hosts, refer CPUMR0A.asm. See @bugref{7138}.
4551 */
4552 bool const fSupportsLongMode = VMR3IsLongModeAllowed(pVM);
4553 for (VMCPUID i = 0; i < pVM->cCpus; i++)
4554 {
4555 PVMCPU pVCpu = &pVM->aCpus[i];
4556 /* While loading a saved-state we fix it up in, cpumR3LoadDone(). */
4557 if (fSupportsLongMode)
4558 pVCpu->cpum.s.fUseFlags |= CPUM_USE_SUPPORTS_LONGMODE;
4559 }
4560
4561 /* Register statistic counters for MSRs. */
4562 cpumR3MsrRegStats(pVM);
4563 break;
4564 }
4565
4566 default:
4567 break;
4568 }
4569 return VINF_SUCCESS;
4570}
4571
4572
4573/**
4574 * Called when the ring-0 init phases completed.
4575 *
4576 * @param pVM The cross context VM structure.
4577 */
4578VMMR3DECL(void) CPUMR3LogCpuIdAndMsrFeatures(PVM pVM)
4579{
4580 /*
4581 * Enable log buffering as we're going to log a lot of lines.
4582 */
4583 bool const fOldBuffered = RTLogRelSetBuffering(true /*fBuffered*/);
4584
4585 /*
4586 * Log the cpuid.
4587 */
4588 RTCPUSET OnlineSet;
4589 LogRel(("CPUM: Logical host processors: %u present, %u max, %u online, online mask: %016RX64\n",
4590 (unsigned)RTMpGetPresentCount(), (unsigned)RTMpGetCount(), (unsigned)RTMpGetOnlineCount(),
4591 RTCpuSetToU64(RTMpGetOnlineSet(&OnlineSet)) ));
4592 RTCPUID cCores = RTMpGetCoreCount();
4593 if (cCores)
4594 LogRel(("CPUM: Physical host cores: %u\n", (unsigned)cCores));
4595 LogRel(("************************* CPUID dump ************************\n"));
4596 DBGFR3Info(pVM->pUVM, "cpuid", "verbose", DBGFR3InfoLogRelHlp());
4597 LogRel(("\n"));
4598 DBGFR3_INFO_LOG_SAFE(pVM, "cpuid", "verbose"); /* macro */
4599 LogRel(("******************** End of CPUID dump **********************\n"));
4600
4601 /*
4602 * Log VT-x extended features.
4603 *
4604 * SVM features are currently all covered under CPUID so there is nothing
4605 * to do here for SVM.
4606 */
4607 if (pVM->cpum.s.HostFeatures.fVmx)
4608 {
4609 LogRel(("*********************** VT-x features ***********************\n"));
4610 DBGFR3Info(pVM->pUVM, "cpumvmxfeat", "default", DBGFR3InfoLogRelHlp());
4611 LogRel(("\n"));
4612 LogRel(("******************* End of VT-x features ********************\n"));
4613 }
4614
4615 /*
4616 * Restore the log buffering state to what it was previously.
4617 */
4618 RTLogRelSetBuffering(fOldBuffered);
4619}
4620
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette