VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/CPUM.cpp@ 91281

Last change on this file since 91281 was 91281, checked in by vboxsync, 4 years ago

VMM/CPUM,++: Moved the guest's extended state (XState) from the hyper heap and into CPUMCTX. bugref:10093

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 246.5 KB
Line 
1/* $Id: CPUM.cpp 91281 2021-09-16 13:32:18Z vboxsync $ */
2/** @file
3 * CPUM - CPU Monitor / Manager.
4 */
5
6/*
7 * Copyright (C) 2006-2020 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/** @page pg_cpum CPUM - CPU Monitor / Manager
19 *
20 * The CPU Monitor / Manager keeps track of all the CPU registers. It is
21 * also responsible for lazy FPU handling and some of the context loading
22 * in raw mode.
23 *
24 * There are three CPU contexts, the most important one is the guest one (GC).
25 * When running in raw-mode (RC) there is a special hyper context for the VMM
26 * part that floats around inside the guest address space. When running in
27 * raw-mode, CPUM also maintains a host context for saving and restoring
28 * registers across world switches. This latter is done in cooperation with the
29 * world switcher (@see pg_vmm).
30 *
31 * @see grp_cpum
32 *
33 * @section sec_cpum_fpu FPU / SSE / AVX / ++ state.
34 *
35 * TODO: proper write up, currently just some notes.
36 *
37 * The ring-0 FPU handling per OS:
38 *
39 * - 64-bit Windows uses XMM registers in the kernel as part of the calling
40 * convention (Visual C++ doesn't seem to have a way to disable
41 * generating such code either), so CR0.TS/EM are always zero from what I
42 * can tell. We are also forced to always load/save the guest XMM0-XMM15
43 * registers when entering/leaving guest context. Interrupt handlers
44 * using FPU/SSE will offically have call save and restore functions
45 * exported by the kernel, if the really really have to use the state.
46 *
47 * - 32-bit windows does lazy FPU handling, I think, probably including
48 * lazying saving. The Windows Internals book states that it's a bad
49 * idea to use the FPU in kernel space. However, it looks like it will
50 * restore the FPU state of the current thread in case of a kernel \#NM.
51 * Interrupt handlers should be same as for 64-bit.
52 *
53 * - Darwin allows taking \#NM in kernel space, restoring current thread's
54 * state if I read the code correctly. It saves the FPU state of the
55 * outgoing thread, and uses CR0.TS to lazily load the state of the
56 * incoming one. No idea yet how the FPU is treated by interrupt
57 * handlers, i.e. whether they are allowed to disable the state or
58 * something.
59 *
60 * - Linux also allows \#NM in kernel space (don't know since when), and
61 * uses CR0.TS for lazy loading. Saves outgoing thread's state, lazy
62 * loads the incoming unless configured to agressivly load it. Interrupt
63 * handlers can ask whether they're allowed to use the FPU, and may
64 * freely trash the state if Linux thinks it has saved the thread's state
65 * already. This is a problem.
66 *
67 * - Solaris will, from what I can tell, panic if it gets an \#NM in kernel
68 * context. When switching threads, the kernel will save the state of
69 * the outgoing thread and lazy load the incoming one using CR0.TS.
70 * There are a few routines in seeblk.s which uses the SSE unit in ring-0
71 * to do stuff, HAT are among the users. The routines there will
72 * manually clear CR0.TS and save the XMM registers they use only if
73 * CR0.TS was zero upon entry. They will skip it when not, because as
74 * mentioned above, the FPU state is saved when switching away from a
75 * thread and CR0.TS set to 1, so when CR0.TS is 1 there is nothing to
76 * preserve. This is a problem if we restore CR0.TS to 1 after loading
77 * the guest state.
78 *
79 * - FreeBSD - no idea yet.
80 *
81 * - OS/2 does not allow \#NMs in kernel space IIRC. Does lazy loading,
82 * possibly also lazy saving. Interrupts must preserve the CR0.TS+EM &
83 * FPU states.
84 *
85 * Up to r107425 (2016-05-24) we would only temporarily modify CR0.TS/EM while
86 * saving and restoring the host and guest states. The motivation for this
87 * change is that we want to be able to emulate SSE instruction in ring-0 (IEM).
88 *
89 * Starting with that change, we will leave CR0.TS=EM=0 after saving the host
90 * state and only restore it once we've restore the host FPU state. This has the
91 * accidental side effect of triggering Solaris to preserve XMM registers in
92 * sseblk.s. When CR0 was changed by saving the FPU state, CPUM must now inform
93 * the VT-x (HMVMX) code about it as it caches the CR0 value in the VMCS.
94 *
95 *
96 * @section sec_cpum_logging Logging Level Assignments.
97 *
98 * Following log level assignments:
99 * - Log6 is used for FPU state management.
100 * - Log7 is used for FPU state actualization.
101 *
102 */
103
104
105/*********************************************************************************************************************************
106* Header Files *
107*********************************************************************************************************************************/
108#define LOG_GROUP LOG_GROUP_CPUM
109#include <VBox/vmm/cpum.h>
110#include <VBox/vmm/cpumdis.h>
111#include <VBox/vmm/cpumctx-v1_6.h>
112#include <VBox/vmm/pgm.h>
113#include <VBox/vmm/apic.h>
114#include <VBox/vmm/mm.h>
115#include <VBox/vmm/em.h>
116#include <VBox/vmm/iem.h>
117#include <VBox/vmm/selm.h>
118#include <VBox/vmm/dbgf.h>
119#include <VBox/vmm/hm.h>
120#include <VBox/vmm/hmvmxinline.h>
121#include <VBox/vmm/ssm.h>
122#include "CPUMInternal.h"
123#include <VBox/vmm/vm.h>
124
125#include <VBox/param.h>
126#include <VBox/dis.h>
127#include <VBox/err.h>
128#include <VBox/log.h>
129#include <iprt/asm-amd64-x86.h>
130#include <iprt/assert.h>
131#include <iprt/cpuset.h>
132#include <iprt/mem.h>
133#include <iprt/mp.h>
134#include <iprt/string.h>
135
136
137/*********************************************************************************************************************************
138* Defined Constants And Macros *
139*********************************************************************************************************************************/
140/**
141 * This was used in the saved state up to the early life of version 14.
142 *
143 * It indicates that we may have some out-of-sync hidden segement registers.
144 * It is only relevant for raw-mode.
145 */
146#define CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID RT_BIT(12)
147
148
149/*********************************************************************************************************************************
150* Structures and Typedefs *
151*********************************************************************************************************************************/
152
153/**
154 * What kind of cpu info dump to perform.
155 */
156typedef enum CPUMDUMPTYPE
157{
158 CPUMDUMPTYPE_TERSE,
159 CPUMDUMPTYPE_DEFAULT,
160 CPUMDUMPTYPE_VERBOSE
161} CPUMDUMPTYPE;
162/** Pointer to a cpu info dump type. */
163typedef CPUMDUMPTYPE *PCPUMDUMPTYPE;
164
165
166/*********************************************************************************************************************************
167* Internal Functions *
168*********************************************************************************************************************************/
169static DECLCALLBACK(int) cpumR3LiveExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uPass);
170static DECLCALLBACK(int) cpumR3SaveExec(PVM pVM, PSSMHANDLE pSSM);
171static DECLCALLBACK(int) cpumR3LoadPrep(PVM pVM, PSSMHANDLE pSSM);
172static DECLCALLBACK(int) cpumR3LoadExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
173static DECLCALLBACK(int) cpumR3LoadDone(PVM pVM, PSSMHANDLE pSSM);
174static DECLCALLBACK(void) cpumR3InfoAll(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
175static DECLCALLBACK(void) cpumR3InfoGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
176static DECLCALLBACK(void) cpumR3InfoGuestHwvirt(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
177static DECLCALLBACK(void) cpumR3InfoGuestInstr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
178static DECLCALLBACK(void) cpumR3InfoHyper(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
179static DECLCALLBACK(void) cpumR3InfoHost(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
180
181
182/*********************************************************************************************************************************
183* Global Variables *
184*********************************************************************************************************************************/
185/** Saved state field descriptors for CPUMCTX. */
186static const SSMFIELD g_aCpumCtxFields[] =
187{
188 SSMFIELD_ENTRY( CPUMCTX, rdi),
189 SSMFIELD_ENTRY( CPUMCTX, rsi),
190 SSMFIELD_ENTRY( CPUMCTX, rbp),
191 SSMFIELD_ENTRY( CPUMCTX, rax),
192 SSMFIELD_ENTRY( CPUMCTX, rbx),
193 SSMFIELD_ENTRY( CPUMCTX, rdx),
194 SSMFIELD_ENTRY( CPUMCTX, rcx),
195 SSMFIELD_ENTRY( CPUMCTX, rsp),
196 SSMFIELD_ENTRY( CPUMCTX, rflags),
197 SSMFIELD_ENTRY( CPUMCTX, rip),
198 SSMFIELD_ENTRY( CPUMCTX, r8),
199 SSMFIELD_ENTRY( CPUMCTX, r9),
200 SSMFIELD_ENTRY( CPUMCTX, r10),
201 SSMFIELD_ENTRY( CPUMCTX, r11),
202 SSMFIELD_ENTRY( CPUMCTX, r12),
203 SSMFIELD_ENTRY( CPUMCTX, r13),
204 SSMFIELD_ENTRY( CPUMCTX, r14),
205 SSMFIELD_ENTRY( CPUMCTX, r15),
206 SSMFIELD_ENTRY( CPUMCTX, es.Sel),
207 SSMFIELD_ENTRY( CPUMCTX, es.ValidSel),
208 SSMFIELD_ENTRY( CPUMCTX, es.fFlags),
209 SSMFIELD_ENTRY( CPUMCTX, es.u64Base),
210 SSMFIELD_ENTRY( CPUMCTX, es.u32Limit),
211 SSMFIELD_ENTRY( CPUMCTX, es.Attr),
212 SSMFIELD_ENTRY( CPUMCTX, cs.Sel),
213 SSMFIELD_ENTRY( CPUMCTX, cs.ValidSel),
214 SSMFIELD_ENTRY( CPUMCTX, cs.fFlags),
215 SSMFIELD_ENTRY( CPUMCTX, cs.u64Base),
216 SSMFIELD_ENTRY( CPUMCTX, cs.u32Limit),
217 SSMFIELD_ENTRY( CPUMCTX, cs.Attr),
218 SSMFIELD_ENTRY( CPUMCTX, ss.Sel),
219 SSMFIELD_ENTRY( CPUMCTX, ss.ValidSel),
220 SSMFIELD_ENTRY( CPUMCTX, ss.fFlags),
221 SSMFIELD_ENTRY( CPUMCTX, ss.u64Base),
222 SSMFIELD_ENTRY( CPUMCTX, ss.u32Limit),
223 SSMFIELD_ENTRY( CPUMCTX, ss.Attr),
224 SSMFIELD_ENTRY( CPUMCTX, ds.Sel),
225 SSMFIELD_ENTRY( CPUMCTX, ds.ValidSel),
226 SSMFIELD_ENTRY( CPUMCTX, ds.fFlags),
227 SSMFIELD_ENTRY( CPUMCTX, ds.u64Base),
228 SSMFIELD_ENTRY( CPUMCTX, ds.u32Limit),
229 SSMFIELD_ENTRY( CPUMCTX, ds.Attr),
230 SSMFIELD_ENTRY( CPUMCTX, fs.Sel),
231 SSMFIELD_ENTRY( CPUMCTX, fs.ValidSel),
232 SSMFIELD_ENTRY( CPUMCTX, fs.fFlags),
233 SSMFIELD_ENTRY( CPUMCTX, fs.u64Base),
234 SSMFIELD_ENTRY( CPUMCTX, fs.u32Limit),
235 SSMFIELD_ENTRY( CPUMCTX, fs.Attr),
236 SSMFIELD_ENTRY( CPUMCTX, gs.Sel),
237 SSMFIELD_ENTRY( CPUMCTX, gs.ValidSel),
238 SSMFIELD_ENTRY( CPUMCTX, gs.fFlags),
239 SSMFIELD_ENTRY( CPUMCTX, gs.u64Base),
240 SSMFIELD_ENTRY( CPUMCTX, gs.u32Limit),
241 SSMFIELD_ENTRY( CPUMCTX, gs.Attr),
242 SSMFIELD_ENTRY( CPUMCTX, cr0),
243 SSMFIELD_ENTRY( CPUMCTX, cr2),
244 SSMFIELD_ENTRY( CPUMCTX, cr3),
245 SSMFIELD_ENTRY( CPUMCTX, cr4),
246 SSMFIELD_ENTRY( CPUMCTX, dr[0]),
247 SSMFIELD_ENTRY( CPUMCTX, dr[1]),
248 SSMFIELD_ENTRY( CPUMCTX, dr[2]),
249 SSMFIELD_ENTRY( CPUMCTX, dr[3]),
250 SSMFIELD_ENTRY( CPUMCTX, dr[6]),
251 SSMFIELD_ENTRY( CPUMCTX, dr[7]),
252 SSMFIELD_ENTRY( CPUMCTX, gdtr.cbGdt),
253 SSMFIELD_ENTRY( CPUMCTX, gdtr.pGdt),
254 SSMFIELD_ENTRY( CPUMCTX, idtr.cbIdt),
255 SSMFIELD_ENTRY( CPUMCTX, idtr.pIdt),
256 SSMFIELD_ENTRY( CPUMCTX, SysEnter.cs),
257 SSMFIELD_ENTRY( CPUMCTX, SysEnter.eip),
258 SSMFIELD_ENTRY( CPUMCTX, SysEnter.esp),
259 SSMFIELD_ENTRY( CPUMCTX, msrEFER),
260 SSMFIELD_ENTRY( CPUMCTX, msrSTAR),
261 SSMFIELD_ENTRY( CPUMCTX, msrPAT),
262 SSMFIELD_ENTRY( CPUMCTX, msrLSTAR),
263 SSMFIELD_ENTRY( CPUMCTX, msrCSTAR),
264 SSMFIELD_ENTRY( CPUMCTX, msrSFMASK),
265 SSMFIELD_ENTRY( CPUMCTX, msrKERNELGSBASE),
266 SSMFIELD_ENTRY( CPUMCTX, ldtr.Sel),
267 SSMFIELD_ENTRY( CPUMCTX, ldtr.ValidSel),
268 SSMFIELD_ENTRY( CPUMCTX, ldtr.fFlags),
269 SSMFIELD_ENTRY( CPUMCTX, ldtr.u64Base),
270 SSMFIELD_ENTRY( CPUMCTX, ldtr.u32Limit),
271 SSMFIELD_ENTRY( CPUMCTX, ldtr.Attr),
272 SSMFIELD_ENTRY( CPUMCTX, tr.Sel),
273 SSMFIELD_ENTRY( CPUMCTX, tr.ValidSel),
274 SSMFIELD_ENTRY( CPUMCTX, tr.fFlags),
275 SSMFIELD_ENTRY( CPUMCTX, tr.u64Base),
276 SSMFIELD_ENTRY( CPUMCTX, tr.u32Limit),
277 SSMFIELD_ENTRY( CPUMCTX, tr.Attr),
278 SSMFIELD_ENTRY_VER( CPUMCTX, aXcr[0], CPUM_SAVED_STATE_VERSION_XSAVE),
279 SSMFIELD_ENTRY_VER( CPUMCTX, aXcr[1], CPUM_SAVED_STATE_VERSION_XSAVE),
280 SSMFIELD_ENTRY_VER( CPUMCTX, fXStateMask, CPUM_SAVED_STATE_VERSION_XSAVE),
281 SSMFIELD_ENTRY_TERM()
282};
283
284/** Saved state field descriptors for SVM nested hardware-virtualization
285 * Host State. */
286static const SSMFIELD g_aSvmHwvirtHostState[] =
287{
288 SSMFIELD_ENTRY( SVMHOSTSTATE, uEferMsr),
289 SSMFIELD_ENTRY( SVMHOSTSTATE, uCr0),
290 SSMFIELD_ENTRY( SVMHOSTSTATE, uCr4),
291 SSMFIELD_ENTRY( SVMHOSTSTATE, uCr3),
292 SSMFIELD_ENTRY( SVMHOSTSTATE, uRip),
293 SSMFIELD_ENTRY( SVMHOSTSTATE, uRsp),
294 SSMFIELD_ENTRY( SVMHOSTSTATE, uRax),
295 SSMFIELD_ENTRY( SVMHOSTSTATE, rflags),
296 SSMFIELD_ENTRY( SVMHOSTSTATE, es.Sel),
297 SSMFIELD_ENTRY( SVMHOSTSTATE, es.ValidSel),
298 SSMFIELD_ENTRY( SVMHOSTSTATE, es.fFlags),
299 SSMFIELD_ENTRY( SVMHOSTSTATE, es.u64Base),
300 SSMFIELD_ENTRY( SVMHOSTSTATE, es.u32Limit),
301 SSMFIELD_ENTRY( SVMHOSTSTATE, es.Attr),
302 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.Sel),
303 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.ValidSel),
304 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.fFlags),
305 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.u64Base),
306 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.u32Limit),
307 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.Attr),
308 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.Sel),
309 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.ValidSel),
310 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.fFlags),
311 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.u64Base),
312 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.u32Limit),
313 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.Attr),
314 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.Sel),
315 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.ValidSel),
316 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.fFlags),
317 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.u64Base),
318 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.u32Limit),
319 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.Attr),
320 SSMFIELD_ENTRY( SVMHOSTSTATE, gdtr.cbGdt),
321 SSMFIELD_ENTRY( SVMHOSTSTATE, gdtr.pGdt),
322 SSMFIELD_ENTRY( SVMHOSTSTATE, idtr.cbIdt),
323 SSMFIELD_ENTRY( SVMHOSTSTATE, idtr.pIdt),
324 SSMFIELD_ENTRY_IGNORE(SVMHOSTSTATE, abPadding),
325 SSMFIELD_ENTRY_TERM()
326};
327
328/** Saved state field descriptors for VMX nested hardware-virtualization
329 * VMCS. */
330static const SSMFIELD g_aVmxHwvirtVmcs[] =
331{
332 SSMFIELD_ENTRY( VMXVVMCS, u32VmcsRevId),
333 SSMFIELD_ENTRY( VMXVVMCS, enmVmxAbort),
334 SSMFIELD_ENTRY( VMXVVMCS, fVmcsState),
335 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au8Padding0),
336 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au32Reserved0),
337
338 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, u16Reserved0),
339
340 SSMFIELD_ENTRY( VMXVVMCS, u32RoVmInstrError),
341 SSMFIELD_ENTRY( VMXVVMCS, u32RoExitReason),
342 SSMFIELD_ENTRY( VMXVVMCS, u32RoExitIntInfo),
343 SSMFIELD_ENTRY( VMXVVMCS, u32RoExitIntErrCode),
344 SSMFIELD_ENTRY( VMXVVMCS, u32RoIdtVectoringInfo),
345 SSMFIELD_ENTRY( VMXVVMCS, u32RoIdtVectoringErrCode),
346 SSMFIELD_ENTRY( VMXVVMCS, u32RoExitInstrLen),
347 SSMFIELD_ENTRY( VMXVVMCS, u32RoExitInstrInfo),
348 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au32RoReserved2),
349
350 SSMFIELD_ENTRY( VMXVVMCS, u64RoGuestPhysAddr),
351 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved1),
352
353 SSMFIELD_ENTRY( VMXVVMCS, u64RoExitQual),
354 SSMFIELD_ENTRY( VMXVVMCS, u64RoIoRcx),
355 SSMFIELD_ENTRY( VMXVVMCS, u64RoIoRsi),
356 SSMFIELD_ENTRY( VMXVVMCS, u64RoIoRdi),
357 SSMFIELD_ENTRY( VMXVVMCS, u64RoIoRip),
358 SSMFIELD_ENTRY( VMXVVMCS, u64RoGuestLinearAddr),
359 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved5),
360
361 SSMFIELD_ENTRY( VMXVVMCS, u16Vpid),
362 SSMFIELD_ENTRY( VMXVVMCS, u16PostIntNotifyVector),
363 SSMFIELD_ENTRY( VMXVVMCS, u16EptpIndex),
364 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au16Reserved0),
365
366 SSMFIELD_ENTRY( VMXVVMCS, u32PinCtls),
367 SSMFIELD_ENTRY( VMXVVMCS, u32ProcCtls),
368 SSMFIELD_ENTRY( VMXVVMCS, u32XcptBitmap),
369 SSMFIELD_ENTRY( VMXVVMCS, u32XcptPFMask),
370 SSMFIELD_ENTRY( VMXVVMCS, u32XcptPFMatch),
371 SSMFIELD_ENTRY( VMXVVMCS, u32Cr3TargetCount),
372 SSMFIELD_ENTRY( VMXVVMCS, u32ExitCtls),
373 SSMFIELD_ENTRY( VMXVVMCS, u32ExitMsrStoreCount),
374 SSMFIELD_ENTRY( VMXVVMCS, u32ExitMsrLoadCount),
375 SSMFIELD_ENTRY( VMXVVMCS, u32EntryCtls),
376 SSMFIELD_ENTRY( VMXVVMCS, u32EntryMsrLoadCount),
377 SSMFIELD_ENTRY( VMXVVMCS, u32EntryIntInfo),
378 SSMFIELD_ENTRY( VMXVVMCS, u32EntryXcptErrCode),
379 SSMFIELD_ENTRY( VMXVVMCS, u32EntryInstrLen),
380 SSMFIELD_ENTRY( VMXVVMCS, u32TprThreshold),
381 SSMFIELD_ENTRY( VMXVVMCS, u32ProcCtls2),
382 SSMFIELD_ENTRY( VMXVVMCS, u32PleGap),
383 SSMFIELD_ENTRY( VMXVVMCS, u32PleWindow),
384 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au32Reserved1),
385
386 SSMFIELD_ENTRY( VMXVVMCS, u64AddrIoBitmapA),
387 SSMFIELD_ENTRY( VMXVVMCS, u64AddrIoBitmapB),
388 SSMFIELD_ENTRY( VMXVVMCS, u64AddrMsrBitmap),
389 SSMFIELD_ENTRY( VMXVVMCS, u64AddrExitMsrStore),
390 SSMFIELD_ENTRY( VMXVVMCS, u64AddrExitMsrLoad),
391 SSMFIELD_ENTRY( VMXVVMCS, u64AddrEntryMsrLoad),
392 SSMFIELD_ENTRY( VMXVVMCS, u64ExecVmcsPtr),
393 SSMFIELD_ENTRY( VMXVVMCS, u64AddrPml),
394 SSMFIELD_ENTRY( VMXVVMCS, u64TscOffset),
395 SSMFIELD_ENTRY( VMXVVMCS, u64AddrVirtApic),
396 SSMFIELD_ENTRY( VMXVVMCS, u64AddrApicAccess),
397 SSMFIELD_ENTRY( VMXVVMCS, u64AddrPostedIntDesc),
398 SSMFIELD_ENTRY( VMXVVMCS, u64VmFuncCtls),
399 SSMFIELD_ENTRY( VMXVVMCS, u64EptpPtr),
400 SSMFIELD_ENTRY( VMXVVMCS, u64EoiExitBitmap0),
401 SSMFIELD_ENTRY( VMXVVMCS, u64EoiExitBitmap1),
402 SSMFIELD_ENTRY( VMXVVMCS, u64EoiExitBitmap2),
403 SSMFIELD_ENTRY( VMXVVMCS, u64EoiExitBitmap3),
404 SSMFIELD_ENTRY( VMXVVMCS, u64AddrEptpList),
405 SSMFIELD_ENTRY( VMXVVMCS, u64AddrVmreadBitmap),
406 SSMFIELD_ENTRY( VMXVVMCS, u64AddrVmwriteBitmap),
407 SSMFIELD_ENTRY( VMXVVMCS, u64AddrXcptVeInfo),
408 SSMFIELD_ENTRY( VMXVVMCS, u64XssExitBitmap),
409 SSMFIELD_ENTRY( VMXVVMCS, u64EnclsExitBitmap),
410 SSMFIELD_ENTRY( VMXVVMCS, u64SppTablePtr),
411 SSMFIELD_ENTRY( VMXVVMCS, u64TscMultiplier),
412 SSMFIELD_ENTRY_VER( VMXVVMCS, u64ProcCtls3, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2),
413 SSMFIELD_ENTRY_VER( VMXVVMCS, u64EnclvExitBitmap, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2),
414 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved0),
415
416 SSMFIELD_ENTRY( VMXVVMCS, u64Cr0Mask),
417 SSMFIELD_ENTRY( VMXVVMCS, u64Cr4Mask),
418 SSMFIELD_ENTRY( VMXVVMCS, u64Cr0ReadShadow),
419 SSMFIELD_ENTRY( VMXVVMCS, u64Cr4ReadShadow),
420 SSMFIELD_ENTRY( VMXVVMCS, u64Cr3Target0),
421 SSMFIELD_ENTRY( VMXVVMCS, u64Cr3Target1),
422 SSMFIELD_ENTRY( VMXVVMCS, u64Cr3Target2),
423 SSMFIELD_ENTRY( VMXVVMCS, u64Cr3Target3),
424 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved4),
425
426 SSMFIELD_ENTRY( VMXVVMCS, HostEs),
427 SSMFIELD_ENTRY( VMXVVMCS, HostCs),
428 SSMFIELD_ENTRY( VMXVVMCS, HostSs),
429 SSMFIELD_ENTRY( VMXVVMCS, HostDs),
430 SSMFIELD_ENTRY( VMXVVMCS, HostFs),
431 SSMFIELD_ENTRY( VMXVVMCS, HostGs),
432 SSMFIELD_ENTRY( VMXVVMCS, HostTr),
433 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au16Reserved2),
434
435 SSMFIELD_ENTRY( VMXVVMCS, u32HostSysenterCs),
436 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au32Reserved4),
437
438 SSMFIELD_ENTRY( VMXVVMCS, u64HostPatMsr),
439 SSMFIELD_ENTRY( VMXVVMCS, u64HostEferMsr),
440 SSMFIELD_ENTRY( VMXVVMCS, u64HostPerfGlobalCtlMsr),
441 SSMFIELD_ENTRY_VER( VMXVVMCS, u64HostPkrsMsr, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2),
442 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved3),
443
444 SSMFIELD_ENTRY( VMXVVMCS, u64HostCr0),
445 SSMFIELD_ENTRY( VMXVVMCS, u64HostCr3),
446 SSMFIELD_ENTRY( VMXVVMCS, u64HostCr4),
447 SSMFIELD_ENTRY( VMXVVMCS, u64HostFsBase),
448 SSMFIELD_ENTRY( VMXVVMCS, u64HostGsBase),
449 SSMFIELD_ENTRY( VMXVVMCS, u64HostTrBase),
450 SSMFIELD_ENTRY( VMXVVMCS, u64HostGdtrBase),
451 SSMFIELD_ENTRY( VMXVVMCS, u64HostIdtrBase),
452 SSMFIELD_ENTRY( VMXVVMCS, u64HostSysenterEsp),
453 SSMFIELD_ENTRY( VMXVVMCS, u64HostSysenterEip),
454 SSMFIELD_ENTRY( VMXVVMCS, u64HostRsp),
455 SSMFIELD_ENTRY( VMXVVMCS, u64HostRip),
456 SSMFIELD_ENTRY_VER( VMXVVMCS, u64HostSCetMsr, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2),
457 SSMFIELD_ENTRY_VER( VMXVVMCS, u64HostSsp, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2),
458 SSMFIELD_ENTRY_VER( VMXVVMCS, u64HostIntrSspTableAddrMsr, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2),
459 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved7),
460
461 SSMFIELD_ENTRY( VMXVVMCS, GuestEs),
462 SSMFIELD_ENTRY( VMXVVMCS, GuestCs),
463 SSMFIELD_ENTRY( VMXVVMCS, GuestSs),
464 SSMFIELD_ENTRY( VMXVVMCS, GuestDs),
465 SSMFIELD_ENTRY( VMXVVMCS, GuestFs),
466 SSMFIELD_ENTRY( VMXVVMCS, GuestGs),
467 SSMFIELD_ENTRY( VMXVVMCS, GuestLdtr),
468 SSMFIELD_ENTRY( VMXVVMCS, GuestTr),
469 SSMFIELD_ENTRY( VMXVVMCS, u16GuestIntStatus),
470 SSMFIELD_ENTRY( VMXVVMCS, u16PmlIndex),
471 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au16Reserved1),
472
473 SSMFIELD_ENTRY( VMXVVMCS, u32GuestEsLimit),
474 SSMFIELD_ENTRY( VMXVVMCS, u32GuestCsLimit),
475 SSMFIELD_ENTRY( VMXVVMCS, u32GuestSsLimit),
476 SSMFIELD_ENTRY( VMXVVMCS, u32GuestDsLimit),
477 SSMFIELD_ENTRY( VMXVVMCS, u32GuestFsLimit),
478 SSMFIELD_ENTRY( VMXVVMCS, u32GuestGsLimit),
479 SSMFIELD_ENTRY( VMXVVMCS, u32GuestLdtrLimit),
480 SSMFIELD_ENTRY( VMXVVMCS, u32GuestTrLimit),
481 SSMFIELD_ENTRY( VMXVVMCS, u32GuestGdtrLimit),
482 SSMFIELD_ENTRY( VMXVVMCS, u32GuestIdtrLimit),
483 SSMFIELD_ENTRY( VMXVVMCS, u32GuestEsAttr),
484 SSMFIELD_ENTRY( VMXVVMCS, u32GuestCsAttr),
485 SSMFIELD_ENTRY( VMXVVMCS, u32GuestSsAttr),
486 SSMFIELD_ENTRY( VMXVVMCS, u32GuestDsAttr),
487 SSMFIELD_ENTRY( VMXVVMCS, u32GuestFsAttr),
488 SSMFIELD_ENTRY( VMXVVMCS, u32GuestGsAttr),
489 SSMFIELD_ENTRY( VMXVVMCS, u32GuestLdtrAttr),
490 SSMFIELD_ENTRY( VMXVVMCS, u32GuestTrAttr),
491 SSMFIELD_ENTRY( VMXVVMCS, u32GuestIntrState),
492 SSMFIELD_ENTRY( VMXVVMCS, u32GuestActivityState),
493 SSMFIELD_ENTRY( VMXVVMCS, u32GuestSmBase),
494 SSMFIELD_ENTRY( VMXVVMCS, u32GuestSysenterCS),
495 SSMFIELD_ENTRY( VMXVVMCS, u32PreemptTimer),
496 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au32Reserved3),
497
498 SSMFIELD_ENTRY( VMXVVMCS, u64VmcsLinkPtr),
499 SSMFIELD_ENTRY( VMXVVMCS, u64GuestDebugCtlMsr),
500 SSMFIELD_ENTRY( VMXVVMCS, u64GuestPatMsr),
501 SSMFIELD_ENTRY( VMXVVMCS, u64GuestEferMsr),
502 SSMFIELD_ENTRY( VMXVVMCS, u64GuestPerfGlobalCtlMsr),
503 SSMFIELD_ENTRY( VMXVVMCS, u64GuestPdpte0),
504 SSMFIELD_ENTRY( VMXVVMCS, u64GuestPdpte1),
505 SSMFIELD_ENTRY( VMXVVMCS, u64GuestPdpte2),
506 SSMFIELD_ENTRY( VMXVVMCS, u64GuestPdpte3),
507 SSMFIELD_ENTRY( VMXVVMCS, u64GuestBndcfgsMsr),
508 SSMFIELD_ENTRY( VMXVVMCS, u64GuestRtitCtlMsr),
509 SSMFIELD_ENTRY_VER( VMXVVMCS, u64GuestPkrsMsr, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2),
510 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved2),
511
512 SSMFIELD_ENTRY( VMXVVMCS, u64GuestCr0),
513 SSMFIELD_ENTRY( VMXVVMCS, u64GuestCr3),
514 SSMFIELD_ENTRY( VMXVVMCS, u64GuestCr4),
515 SSMFIELD_ENTRY( VMXVVMCS, u64GuestEsBase),
516 SSMFIELD_ENTRY( VMXVVMCS, u64GuestCsBase),
517 SSMFIELD_ENTRY( VMXVVMCS, u64GuestSsBase),
518 SSMFIELD_ENTRY( VMXVVMCS, u64GuestDsBase),
519 SSMFIELD_ENTRY( VMXVVMCS, u64GuestFsBase),
520 SSMFIELD_ENTRY( VMXVVMCS, u64GuestGsBase),
521 SSMFIELD_ENTRY( VMXVVMCS, u64GuestLdtrBase),
522 SSMFIELD_ENTRY( VMXVVMCS, u64GuestTrBase),
523 SSMFIELD_ENTRY( VMXVVMCS, u64GuestGdtrBase),
524 SSMFIELD_ENTRY( VMXVVMCS, u64GuestIdtrBase),
525 SSMFIELD_ENTRY( VMXVVMCS, u64GuestDr7),
526 SSMFIELD_ENTRY( VMXVVMCS, u64GuestRsp),
527 SSMFIELD_ENTRY( VMXVVMCS, u64GuestRip),
528 SSMFIELD_ENTRY( VMXVVMCS, u64GuestRFlags),
529 SSMFIELD_ENTRY( VMXVVMCS, u64GuestPendingDbgXcpts),
530 SSMFIELD_ENTRY( VMXVVMCS, u64GuestSysenterEsp),
531 SSMFIELD_ENTRY( VMXVVMCS, u64GuestSysenterEip),
532 SSMFIELD_ENTRY_VER( VMXVVMCS, u64GuestSCetMsr, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2),
533 SSMFIELD_ENTRY_VER( VMXVVMCS, u64GuestSsp, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2),
534 SSMFIELD_ENTRY_VER( VMXVVMCS, u64GuestIntrSspTableAddrMsr, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2),
535 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved6),
536
537 SSMFIELD_ENTRY_TERM()
538};
539
540/** Saved state field descriptors for CPUMCTX. */
541static const SSMFIELD g_aCpumX87Fields[] =
542{
543 SSMFIELD_ENTRY( X86FXSTATE, FCW),
544 SSMFIELD_ENTRY( X86FXSTATE, FSW),
545 SSMFIELD_ENTRY( X86FXSTATE, FTW),
546 SSMFIELD_ENTRY( X86FXSTATE, FOP),
547 SSMFIELD_ENTRY( X86FXSTATE, FPUIP),
548 SSMFIELD_ENTRY( X86FXSTATE, CS),
549 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd1),
550 SSMFIELD_ENTRY( X86FXSTATE, FPUDP),
551 SSMFIELD_ENTRY( X86FXSTATE, DS),
552 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd2),
553 SSMFIELD_ENTRY( X86FXSTATE, MXCSR),
554 SSMFIELD_ENTRY( X86FXSTATE, MXCSR_MASK),
555 SSMFIELD_ENTRY( X86FXSTATE, aRegs[0]),
556 SSMFIELD_ENTRY( X86FXSTATE, aRegs[1]),
557 SSMFIELD_ENTRY( X86FXSTATE, aRegs[2]),
558 SSMFIELD_ENTRY( X86FXSTATE, aRegs[3]),
559 SSMFIELD_ENTRY( X86FXSTATE, aRegs[4]),
560 SSMFIELD_ENTRY( X86FXSTATE, aRegs[5]),
561 SSMFIELD_ENTRY( X86FXSTATE, aRegs[6]),
562 SSMFIELD_ENTRY( X86FXSTATE, aRegs[7]),
563 SSMFIELD_ENTRY( X86FXSTATE, aXMM[0]),
564 SSMFIELD_ENTRY( X86FXSTATE, aXMM[1]),
565 SSMFIELD_ENTRY( X86FXSTATE, aXMM[2]),
566 SSMFIELD_ENTRY( X86FXSTATE, aXMM[3]),
567 SSMFIELD_ENTRY( X86FXSTATE, aXMM[4]),
568 SSMFIELD_ENTRY( X86FXSTATE, aXMM[5]),
569 SSMFIELD_ENTRY( X86FXSTATE, aXMM[6]),
570 SSMFIELD_ENTRY( X86FXSTATE, aXMM[7]),
571 SSMFIELD_ENTRY( X86FXSTATE, aXMM[8]),
572 SSMFIELD_ENTRY( X86FXSTATE, aXMM[9]),
573 SSMFIELD_ENTRY( X86FXSTATE, aXMM[10]),
574 SSMFIELD_ENTRY( X86FXSTATE, aXMM[11]),
575 SSMFIELD_ENTRY( X86FXSTATE, aXMM[12]),
576 SSMFIELD_ENTRY( X86FXSTATE, aXMM[13]),
577 SSMFIELD_ENTRY( X86FXSTATE, aXMM[14]),
578 SSMFIELD_ENTRY( X86FXSTATE, aXMM[15]),
579 SSMFIELD_ENTRY_VER( X86FXSTATE, au32RsrvdForSoftware[0], CPUM_SAVED_STATE_VERSION_XSAVE), /* 32-bit/64-bit hack */
580 SSMFIELD_ENTRY_TERM()
581};
582
583/** Saved state field descriptors for X86XSAVEHDR. */
584static const SSMFIELD g_aCpumXSaveHdrFields[] =
585{
586 SSMFIELD_ENTRY( X86XSAVEHDR, bmXState),
587 SSMFIELD_ENTRY_TERM()
588};
589
590/** Saved state field descriptors for X86XSAVEYMMHI. */
591static const SSMFIELD g_aCpumYmmHiFields[] =
592{
593 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[0]),
594 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[1]),
595 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[2]),
596 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[3]),
597 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[4]),
598 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[5]),
599 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[6]),
600 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[7]),
601 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[8]),
602 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[9]),
603 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[10]),
604 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[11]),
605 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[12]),
606 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[13]),
607 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[14]),
608 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[15]),
609 SSMFIELD_ENTRY_TERM()
610};
611
612/** Saved state field descriptors for X86XSAVEBNDREGS. */
613static const SSMFIELD g_aCpumBndRegsFields[] =
614{
615 SSMFIELD_ENTRY( X86XSAVEBNDREGS, aRegs[0]),
616 SSMFIELD_ENTRY( X86XSAVEBNDREGS, aRegs[1]),
617 SSMFIELD_ENTRY( X86XSAVEBNDREGS, aRegs[2]),
618 SSMFIELD_ENTRY( X86XSAVEBNDREGS, aRegs[3]),
619 SSMFIELD_ENTRY_TERM()
620};
621
622/** Saved state field descriptors for X86XSAVEBNDCFG. */
623static const SSMFIELD g_aCpumBndCfgFields[] =
624{
625 SSMFIELD_ENTRY( X86XSAVEBNDCFG, fConfig),
626 SSMFIELD_ENTRY( X86XSAVEBNDCFG, fStatus),
627 SSMFIELD_ENTRY_TERM()
628};
629
630#if 0 /** @todo */
631/** Saved state field descriptors for X86XSAVEOPMASK. */
632static const SSMFIELD g_aCpumOpmaskFields[] =
633{
634 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[0]),
635 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[1]),
636 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[2]),
637 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[3]),
638 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[4]),
639 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[5]),
640 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[6]),
641 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[7]),
642 SSMFIELD_ENTRY_TERM()
643};
644#endif
645
646/** Saved state field descriptors for X86XSAVEZMMHI256. */
647static const SSMFIELD g_aCpumZmmHi256Fields[] =
648{
649 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[0]),
650 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[1]),
651 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[2]),
652 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[3]),
653 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[4]),
654 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[5]),
655 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[6]),
656 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[7]),
657 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[8]),
658 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[9]),
659 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[10]),
660 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[11]),
661 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[12]),
662 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[13]),
663 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[14]),
664 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[15]),
665 SSMFIELD_ENTRY_TERM()
666};
667
668/** Saved state field descriptors for X86XSAVEZMM16HI. */
669static const SSMFIELD g_aCpumZmm16HiFields[] =
670{
671 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[0]),
672 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[1]),
673 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[2]),
674 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[3]),
675 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[4]),
676 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[5]),
677 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[6]),
678 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[7]),
679 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[8]),
680 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[9]),
681 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[10]),
682 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[11]),
683 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[12]),
684 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[13]),
685 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[14]),
686 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[15]),
687 SSMFIELD_ENTRY_TERM()
688};
689
690
691
692/** Saved state field descriptors for CPUMCTX in V4.1 before the hidden selector
693 * registeres changed. */
694static const SSMFIELD g_aCpumX87FieldsMem[] =
695{
696 SSMFIELD_ENTRY( X86FXSTATE, FCW),
697 SSMFIELD_ENTRY( X86FXSTATE, FSW),
698 SSMFIELD_ENTRY( X86FXSTATE, FTW),
699 SSMFIELD_ENTRY( X86FXSTATE, FOP),
700 SSMFIELD_ENTRY( X86FXSTATE, FPUIP),
701 SSMFIELD_ENTRY( X86FXSTATE, CS),
702 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd1),
703 SSMFIELD_ENTRY( X86FXSTATE, FPUDP),
704 SSMFIELD_ENTRY( X86FXSTATE, DS),
705 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd2),
706 SSMFIELD_ENTRY( X86FXSTATE, MXCSR),
707 SSMFIELD_ENTRY( X86FXSTATE, MXCSR_MASK),
708 SSMFIELD_ENTRY( X86FXSTATE, aRegs[0]),
709 SSMFIELD_ENTRY( X86FXSTATE, aRegs[1]),
710 SSMFIELD_ENTRY( X86FXSTATE, aRegs[2]),
711 SSMFIELD_ENTRY( X86FXSTATE, aRegs[3]),
712 SSMFIELD_ENTRY( X86FXSTATE, aRegs[4]),
713 SSMFIELD_ENTRY( X86FXSTATE, aRegs[5]),
714 SSMFIELD_ENTRY( X86FXSTATE, aRegs[6]),
715 SSMFIELD_ENTRY( X86FXSTATE, aRegs[7]),
716 SSMFIELD_ENTRY( X86FXSTATE, aXMM[0]),
717 SSMFIELD_ENTRY( X86FXSTATE, aXMM[1]),
718 SSMFIELD_ENTRY( X86FXSTATE, aXMM[2]),
719 SSMFIELD_ENTRY( X86FXSTATE, aXMM[3]),
720 SSMFIELD_ENTRY( X86FXSTATE, aXMM[4]),
721 SSMFIELD_ENTRY( X86FXSTATE, aXMM[5]),
722 SSMFIELD_ENTRY( X86FXSTATE, aXMM[6]),
723 SSMFIELD_ENTRY( X86FXSTATE, aXMM[7]),
724 SSMFIELD_ENTRY( X86FXSTATE, aXMM[8]),
725 SSMFIELD_ENTRY( X86FXSTATE, aXMM[9]),
726 SSMFIELD_ENTRY( X86FXSTATE, aXMM[10]),
727 SSMFIELD_ENTRY( X86FXSTATE, aXMM[11]),
728 SSMFIELD_ENTRY( X86FXSTATE, aXMM[12]),
729 SSMFIELD_ENTRY( X86FXSTATE, aXMM[13]),
730 SSMFIELD_ENTRY( X86FXSTATE, aXMM[14]),
731 SSMFIELD_ENTRY( X86FXSTATE, aXMM[15]),
732 SSMFIELD_ENTRY_IGNORE( X86FXSTATE, au32RsrvdRest),
733 SSMFIELD_ENTRY_IGNORE( X86FXSTATE, au32RsrvdForSoftware),
734};
735
736/** Saved state field descriptors for CPUMCTX in V4.1 before the hidden selector
737 * registeres changed. */
738static const SSMFIELD g_aCpumCtxFieldsMem[] =
739{
740 SSMFIELD_ENTRY( CPUMCTX, rdi),
741 SSMFIELD_ENTRY( CPUMCTX, rsi),
742 SSMFIELD_ENTRY( CPUMCTX, rbp),
743 SSMFIELD_ENTRY( CPUMCTX, rax),
744 SSMFIELD_ENTRY( CPUMCTX, rbx),
745 SSMFIELD_ENTRY( CPUMCTX, rdx),
746 SSMFIELD_ENTRY( CPUMCTX, rcx),
747 SSMFIELD_ENTRY( CPUMCTX, rsp),
748 SSMFIELD_ENTRY_OLD( lss_esp, sizeof(uint32_t)),
749 SSMFIELD_ENTRY( CPUMCTX, ss.Sel),
750 SSMFIELD_ENTRY_OLD( ssPadding, sizeof(uint16_t)),
751 SSMFIELD_ENTRY( CPUMCTX, gs.Sel),
752 SSMFIELD_ENTRY_OLD( gsPadding, sizeof(uint16_t)),
753 SSMFIELD_ENTRY( CPUMCTX, fs.Sel),
754 SSMFIELD_ENTRY_OLD( fsPadding, sizeof(uint16_t)),
755 SSMFIELD_ENTRY( CPUMCTX, es.Sel),
756 SSMFIELD_ENTRY_OLD( esPadding, sizeof(uint16_t)),
757 SSMFIELD_ENTRY( CPUMCTX, ds.Sel),
758 SSMFIELD_ENTRY_OLD( dsPadding, sizeof(uint16_t)),
759 SSMFIELD_ENTRY( CPUMCTX, cs.Sel),
760 SSMFIELD_ENTRY_OLD( csPadding, sizeof(uint16_t)*3),
761 SSMFIELD_ENTRY( CPUMCTX, rflags),
762 SSMFIELD_ENTRY( CPUMCTX, rip),
763 SSMFIELD_ENTRY( CPUMCTX, r8),
764 SSMFIELD_ENTRY( CPUMCTX, r9),
765 SSMFIELD_ENTRY( CPUMCTX, r10),
766 SSMFIELD_ENTRY( CPUMCTX, r11),
767 SSMFIELD_ENTRY( CPUMCTX, r12),
768 SSMFIELD_ENTRY( CPUMCTX, r13),
769 SSMFIELD_ENTRY( CPUMCTX, r14),
770 SSMFIELD_ENTRY( CPUMCTX, r15),
771 SSMFIELD_ENTRY( CPUMCTX, es.u64Base),
772 SSMFIELD_ENTRY( CPUMCTX, es.u32Limit),
773 SSMFIELD_ENTRY( CPUMCTX, es.Attr),
774 SSMFIELD_ENTRY( CPUMCTX, cs.u64Base),
775 SSMFIELD_ENTRY( CPUMCTX, cs.u32Limit),
776 SSMFIELD_ENTRY( CPUMCTX, cs.Attr),
777 SSMFIELD_ENTRY( CPUMCTX, ss.u64Base),
778 SSMFIELD_ENTRY( CPUMCTX, ss.u32Limit),
779 SSMFIELD_ENTRY( CPUMCTX, ss.Attr),
780 SSMFIELD_ENTRY( CPUMCTX, ds.u64Base),
781 SSMFIELD_ENTRY( CPUMCTX, ds.u32Limit),
782 SSMFIELD_ENTRY( CPUMCTX, ds.Attr),
783 SSMFIELD_ENTRY( CPUMCTX, fs.u64Base),
784 SSMFIELD_ENTRY( CPUMCTX, fs.u32Limit),
785 SSMFIELD_ENTRY( CPUMCTX, fs.Attr),
786 SSMFIELD_ENTRY( CPUMCTX, gs.u64Base),
787 SSMFIELD_ENTRY( CPUMCTX, gs.u32Limit),
788 SSMFIELD_ENTRY( CPUMCTX, gs.Attr),
789 SSMFIELD_ENTRY( CPUMCTX, cr0),
790 SSMFIELD_ENTRY( CPUMCTX, cr2),
791 SSMFIELD_ENTRY( CPUMCTX, cr3),
792 SSMFIELD_ENTRY( CPUMCTX, cr4),
793 SSMFIELD_ENTRY( CPUMCTX, dr[0]),
794 SSMFIELD_ENTRY( CPUMCTX, dr[1]),
795 SSMFIELD_ENTRY( CPUMCTX, dr[2]),
796 SSMFIELD_ENTRY( CPUMCTX, dr[3]),
797 SSMFIELD_ENTRY_OLD( dr[4], sizeof(uint64_t)),
798 SSMFIELD_ENTRY_OLD( dr[5], sizeof(uint64_t)),
799 SSMFIELD_ENTRY( CPUMCTX, dr[6]),
800 SSMFIELD_ENTRY( CPUMCTX, dr[7]),
801 SSMFIELD_ENTRY( CPUMCTX, gdtr.cbGdt),
802 SSMFIELD_ENTRY( CPUMCTX, gdtr.pGdt),
803 SSMFIELD_ENTRY_OLD( gdtrPadding, sizeof(uint16_t)),
804 SSMFIELD_ENTRY( CPUMCTX, idtr.cbIdt),
805 SSMFIELD_ENTRY( CPUMCTX, idtr.pIdt),
806 SSMFIELD_ENTRY_OLD( idtrPadding, sizeof(uint16_t)),
807 SSMFIELD_ENTRY( CPUMCTX, ldtr.Sel),
808 SSMFIELD_ENTRY_OLD( ldtrPadding, sizeof(uint16_t)),
809 SSMFIELD_ENTRY( CPUMCTX, tr.Sel),
810 SSMFIELD_ENTRY_OLD( trPadding, sizeof(uint16_t)),
811 SSMFIELD_ENTRY( CPUMCTX, SysEnter.cs),
812 SSMFIELD_ENTRY( CPUMCTX, SysEnter.eip),
813 SSMFIELD_ENTRY( CPUMCTX, SysEnter.esp),
814 SSMFIELD_ENTRY( CPUMCTX, msrEFER),
815 SSMFIELD_ENTRY( CPUMCTX, msrSTAR),
816 SSMFIELD_ENTRY( CPUMCTX, msrPAT),
817 SSMFIELD_ENTRY( CPUMCTX, msrLSTAR),
818 SSMFIELD_ENTRY( CPUMCTX, msrCSTAR),
819 SSMFIELD_ENTRY( CPUMCTX, msrSFMASK),
820 SSMFIELD_ENTRY( CPUMCTX, msrKERNELGSBASE),
821 SSMFIELD_ENTRY( CPUMCTX, ldtr.u64Base),
822 SSMFIELD_ENTRY( CPUMCTX, ldtr.u32Limit),
823 SSMFIELD_ENTRY( CPUMCTX, ldtr.Attr),
824 SSMFIELD_ENTRY( CPUMCTX, tr.u64Base),
825 SSMFIELD_ENTRY( CPUMCTX, tr.u32Limit),
826 SSMFIELD_ENTRY( CPUMCTX, tr.Attr),
827 SSMFIELD_ENTRY_TERM()
828};
829
830/** Saved state field descriptors for CPUMCTX_VER1_6. */
831static const SSMFIELD g_aCpumX87FieldsV16[] =
832{
833 SSMFIELD_ENTRY( X86FXSTATE, FCW),
834 SSMFIELD_ENTRY( X86FXSTATE, FSW),
835 SSMFIELD_ENTRY( X86FXSTATE, FTW),
836 SSMFIELD_ENTRY( X86FXSTATE, FOP),
837 SSMFIELD_ENTRY( X86FXSTATE, FPUIP),
838 SSMFIELD_ENTRY( X86FXSTATE, CS),
839 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd1),
840 SSMFIELD_ENTRY( X86FXSTATE, FPUDP),
841 SSMFIELD_ENTRY( X86FXSTATE, DS),
842 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd2),
843 SSMFIELD_ENTRY( X86FXSTATE, MXCSR),
844 SSMFIELD_ENTRY( X86FXSTATE, MXCSR_MASK),
845 SSMFIELD_ENTRY( X86FXSTATE, aRegs[0]),
846 SSMFIELD_ENTRY( X86FXSTATE, aRegs[1]),
847 SSMFIELD_ENTRY( X86FXSTATE, aRegs[2]),
848 SSMFIELD_ENTRY( X86FXSTATE, aRegs[3]),
849 SSMFIELD_ENTRY( X86FXSTATE, aRegs[4]),
850 SSMFIELD_ENTRY( X86FXSTATE, aRegs[5]),
851 SSMFIELD_ENTRY( X86FXSTATE, aRegs[6]),
852 SSMFIELD_ENTRY( X86FXSTATE, aRegs[7]),
853 SSMFIELD_ENTRY( X86FXSTATE, aXMM[0]),
854 SSMFIELD_ENTRY( X86FXSTATE, aXMM[1]),
855 SSMFIELD_ENTRY( X86FXSTATE, aXMM[2]),
856 SSMFIELD_ENTRY( X86FXSTATE, aXMM[3]),
857 SSMFIELD_ENTRY( X86FXSTATE, aXMM[4]),
858 SSMFIELD_ENTRY( X86FXSTATE, aXMM[5]),
859 SSMFIELD_ENTRY( X86FXSTATE, aXMM[6]),
860 SSMFIELD_ENTRY( X86FXSTATE, aXMM[7]),
861 SSMFIELD_ENTRY( X86FXSTATE, aXMM[8]),
862 SSMFIELD_ENTRY( X86FXSTATE, aXMM[9]),
863 SSMFIELD_ENTRY( X86FXSTATE, aXMM[10]),
864 SSMFIELD_ENTRY( X86FXSTATE, aXMM[11]),
865 SSMFIELD_ENTRY( X86FXSTATE, aXMM[12]),
866 SSMFIELD_ENTRY( X86FXSTATE, aXMM[13]),
867 SSMFIELD_ENTRY( X86FXSTATE, aXMM[14]),
868 SSMFIELD_ENTRY( X86FXSTATE, aXMM[15]),
869 SSMFIELD_ENTRY_IGNORE( X86FXSTATE, au32RsrvdRest),
870 SSMFIELD_ENTRY_IGNORE( X86FXSTATE, au32RsrvdForSoftware),
871 SSMFIELD_ENTRY_TERM()
872};
873
874/** Saved state field descriptors for CPUMCTX_VER1_6. */
875static const SSMFIELD g_aCpumCtxFieldsV16[] =
876{
877 SSMFIELD_ENTRY( CPUMCTX, rdi),
878 SSMFIELD_ENTRY( CPUMCTX, rsi),
879 SSMFIELD_ENTRY( CPUMCTX, rbp),
880 SSMFIELD_ENTRY( CPUMCTX, rax),
881 SSMFIELD_ENTRY( CPUMCTX, rbx),
882 SSMFIELD_ENTRY( CPUMCTX, rdx),
883 SSMFIELD_ENTRY( CPUMCTX, rcx),
884 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, rsp),
885 SSMFIELD_ENTRY( CPUMCTX, ss.Sel),
886 SSMFIELD_ENTRY_OLD( ssPadding, sizeof(uint16_t)),
887 SSMFIELD_ENTRY_OLD( CPUMCTX, sizeof(uint64_t) /*rsp_notused*/),
888 SSMFIELD_ENTRY( CPUMCTX, gs.Sel),
889 SSMFIELD_ENTRY_OLD( gsPadding, sizeof(uint16_t)),
890 SSMFIELD_ENTRY( CPUMCTX, fs.Sel),
891 SSMFIELD_ENTRY_OLD( fsPadding, sizeof(uint16_t)),
892 SSMFIELD_ENTRY( CPUMCTX, es.Sel),
893 SSMFIELD_ENTRY_OLD( esPadding, sizeof(uint16_t)),
894 SSMFIELD_ENTRY( CPUMCTX, ds.Sel),
895 SSMFIELD_ENTRY_OLD( dsPadding, sizeof(uint16_t)),
896 SSMFIELD_ENTRY( CPUMCTX, cs.Sel),
897 SSMFIELD_ENTRY_OLD( csPadding, sizeof(uint16_t)*3),
898 SSMFIELD_ENTRY( CPUMCTX, rflags),
899 SSMFIELD_ENTRY( CPUMCTX, rip),
900 SSMFIELD_ENTRY( CPUMCTX, r8),
901 SSMFIELD_ENTRY( CPUMCTX, r9),
902 SSMFIELD_ENTRY( CPUMCTX, r10),
903 SSMFIELD_ENTRY( CPUMCTX, r11),
904 SSMFIELD_ENTRY( CPUMCTX, r12),
905 SSMFIELD_ENTRY( CPUMCTX, r13),
906 SSMFIELD_ENTRY( CPUMCTX, r14),
907 SSMFIELD_ENTRY( CPUMCTX, r15),
908 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, es.u64Base),
909 SSMFIELD_ENTRY( CPUMCTX, es.u32Limit),
910 SSMFIELD_ENTRY( CPUMCTX, es.Attr),
911 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, cs.u64Base),
912 SSMFIELD_ENTRY( CPUMCTX, cs.u32Limit),
913 SSMFIELD_ENTRY( CPUMCTX, cs.Attr),
914 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, ss.u64Base),
915 SSMFIELD_ENTRY( CPUMCTX, ss.u32Limit),
916 SSMFIELD_ENTRY( CPUMCTX, ss.Attr),
917 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, ds.u64Base),
918 SSMFIELD_ENTRY( CPUMCTX, ds.u32Limit),
919 SSMFIELD_ENTRY( CPUMCTX, ds.Attr),
920 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, fs.u64Base),
921 SSMFIELD_ENTRY( CPUMCTX, fs.u32Limit),
922 SSMFIELD_ENTRY( CPUMCTX, fs.Attr),
923 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, gs.u64Base),
924 SSMFIELD_ENTRY( CPUMCTX, gs.u32Limit),
925 SSMFIELD_ENTRY( CPUMCTX, gs.Attr),
926 SSMFIELD_ENTRY( CPUMCTX, cr0),
927 SSMFIELD_ENTRY( CPUMCTX, cr2),
928 SSMFIELD_ENTRY( CPUMCTX, cr3),
929 SSMFIELD_ENTRY( CPUMCTX, cr4),
930 SSMFIELD_ENTRY_OLD( cr8, sizeof(uint64_t)),
931 SSMFIELD_ENTRY( CPUMCTX, dr[0]),
932 SSMFIELD_ENTRY( CPUMCTX, dr[1]),
933 SSMFIELD_ENTRY( CPUMCTX, dr[2]),
934 SSMFIELD_ENTRY( CPUMCTX, dr[3]),
935 SSMFIELD_ENTRY_OLD( dr[4], sizeof(uint64_t)),
936 SSMFIELD_ENTRY_OLD( dr[5], sizeof(uint64_t)),
937 SSMFIELD_ENTRY( CPUMCTX, dr[6]),
938 SSMFIELD_ENTRY( CPUMCTX, dr[7]),
939 SSMFIELD_ENTRY( CPUMCTX, gdtr.cbGdt),
940 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, gdtr.pGdt),
941 SSMFIELD_ENTRY_OLD( gdtrPadding, sizeof(uint16_t)),
942 SSMFIELD_ENTRY_OLD( gdtrPadding64, sizeof(uint64_t)),
943 SSMFIELD_ENTRY( CPUMCTX, idtr.cbIdt),
944 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, idtr.pIdt),
945 SSMFIELD_ENTRY_OLD( idtrPadding, sizeof(uint16_t)),
946 SSMFIELD_ENTRY_OLD( idtrPadding64, sizeof(uint64_t)),
947 SSMFIELD_ENTRY( CPUMCTX, ldtr.Sel),
948 SSMFIELD_ENTRY_OLD( ldtrPadding, sizeof(uint16_t)),
949 SSMFIELD_ENTRY( CPUMCTX, tr.Sel),
950 SSMFIELD_ENTRY_OLD( trPadding, sizeof(uint16_t)),
951 SSMFIELD_ENTRY( CPUMCTX, SysEnter.cs),
952 SSMFIELD_ENTRY( CPUMCTX, SysEnter.eip),
953 SSMFIELD_ENTRY( CPUMCTX, SysEnter.esp),
954 SSMFIELD_ENTRY( CPUMCTX, msrEFER),
955 SSMFIELD_ENTRY( CPUMCTX, msrSTAR),
956 SSMFIELD_ENTRY( CPUMCTX, msrPAT),
957 SSMFIELD_ENTRY( CPUMCTX, msrLSTAR),
958 SSMFIELD_ENTRY( CPUMCTX, msrCSTAR),
959 SSMFIELD_ENTRY( CPUMCTX, msrSFMASK),
960 SSMFIELD_ENTRY_OLD( msrFSBASE, sizeof(uint64_t)),
961 SSMFIELD_ENTRY_OLD( msrGSBASE, sizeof(uint64_t)),
962 SSMFIELD_ENTRY( CPUMCTX, msrKERNELGSBASE),
963 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, ldtr.u64Base),
964 SSMFIELD_ENTRY( CPUMCTX, ldtr.u32Limit),
965 SSMFIELD_ENTRY( CPUMCTX, ldtr.Attr),
966 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, tr.u64Base),
967 SSMFIELD_ENTRY( CPUMCTX, tr.u32Limit),
968 SSMFIELD_ENTRY( CPUMCTX, tr.Attr),
969 SSMFIELD_ENTRY_OLD( padding, sizeof(uint32_t)*2),
970 SSMFIELD_ENTRY_TERM()
971};
972
973
974/**
975 * Checks for partial/leaky FXSAVE/FXRSTOR handling on AMD CPUs.
976 *
977 * AMD K7, K8 and newer AMD CPUs do not save/restore the x87 error pointers
978 * (last instruction pointer, last data pointer, last opcode) except when the ES
979 * bit (Exception Summary) in x87 FSW (FPU Status Word) is set. Thus if we don't
980 * clear these registers there is potential, local FPU leakage from a process
981 * using the FPU to another.
982 *
983 * See AMD Instruction Reference for FXSAVE, FXRSTOR.
984 *
985 * @param pVM The cross context VM structure.
986 */
987static void cpumR3CheckLeakyFpu(PVM pVM)
988{
989 uint32_t u32CpuVersion = ASMCpuId_EAX(1);
990 uint32_t const u32Family = u32CpuVersion >> 8;
991 if ( u32Family >= 6 /* K7 and higher */
992 && (ASMIsAmdCpu() || ASMIsHygonCpu()) )
993 {
994 uint32_t cExt = ASMCpuId_EAX(0x80000000);
995 if (ASMIsValidExtRange(cExt))
996 {
997 uint32_t fExtFeaturesEDX = ASMCpuId_EDX(0x80000001);
998 if (fExtFeaturesEDX & X86_CPUID_AMD_FEATURE_EDX_FFXSR)
999 {
1000 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1001 {
1002 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
1003 pVCpu->cpum.s.fUseFlags |= CPUM_USE_FFXSR_LEAKY;
1004 }
1005 Log(("CPUM: Host CPU has leaky fxsave/fxrstor behaviour\n"));
1006 }
1007 }
1008 }
1009}
1010
1011
1012/**
1013 * Frees memory allocated for the SVM hardware virtualization state.
1014 *
1015 * @param pVM The cross context VM structure.
1016 */
1017static void cpumR3FreeSvmHwVirtState(PVM pVM)
1018{
1019 Assert(pVM->cpum.s.GuestFeatures.fSvm);
1020 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1021 {
1022 PVMCPU pVCpu = pVM->apCpusR3[i];
1023 if (pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR3)
1024 {
1025 SUPR3PageFreeEx(pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR3, SVM_VMCB_PAGES);
1026 pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR3 = NULL;
1027 }
1028 pVCpu->cpum.s.Guest.hwvirt.svm.HCPhysVmcb = NIL_RTHCPHYS;
1029
1030 if (pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR3)
1031 {
1032 SUPR3PageFreeEx(pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR3, SVM_MSRPM_PAGES);
1033 pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR3 = NULL;
1034 }
1035
1036 if (pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR3)
1037 {
1038 SUPR3PageFreeEx(pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR3, SVM_IOPM_PAGES);
1039 pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR3 = NULL;
1040 }
1041 }
1042}
1043
1044
1045/**
1046 * Allocates memory for the SVM hardware virtualization state.
1047 *
1048 * @returns VBox status code.
1049 * @param pVM The cross context VM structure.
1050 */
1051static int cpumR3AllocSvmHwVirtState(PVM pVM)
1052{
1053 Assert(pVM->cpum.s.GuestFeatures.fSvm);
1054
1055 int rc = VINF_SUCCESS;
1056 LogRel(("CPUM: Allocating %u pages for the nested-guest SVM MSR and IO permission bitmaps\n",
1057 pVM->cCpus * (SVM_MSRPM_PAGES + SVM_IOPM_PAGES)));
1058 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1059 {
1060 PVMCPU pVCpu = pVM->apCpusR3[i];
1061 pVCpu->cpum.s.Guest.hwvirt.enmHwvirt = CPUMHWVIRT_SVM;
1062
1063 /*
1064 * Allocate the nested-guest VMCB.
1065 */
1066 SUPPAGE SupNstGstVmcbPage;
1067 RT_ZERO(SupNstGstVmcbPage);
1068 SupNstGstVmcbPage.Phys = NIL_RTHCPHYS;
1069 Assert(SVM_VMCB_PAGES == 1);
1070 Assert(!pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR3);
1071 rc = SUPR3PageAllocEx(SVM_VMCB_PAGES, 0 /* fFlags */, (void **)&pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR3,
1072 &pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR0, &SupNstGstVmcbPage);
1073 if (RT_FAILURE(rc))
1074 {
1075 Assert(!pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR3);
1076 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's VMCB\n", pVCpu->idCpu, SVM_VMCB_PAGES));
1077 break;
1078 }
1079 pVCpu->cpum.s.Guest.hwvirt.svm.HCPhysVmcb = SupNstGstVmcbPage.Phys;
1080
1081 /*
1082 * Allocate the MSRPM (MSR Permission bitmap).
1083 *
1084 * This need not be physically contiguous pages because we use the one from
1085 * HMPHYSCPU while executing the nested-guest using hardware-assisted SVM.
1086 * This one is just used for caching the bitmap from guest physical memory.
1087 */
1088 Assert(!pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR3);
1089 rc = SUPR3PageAllocEx(SVM_MSRPM_PAGES, 0 /* fFlags */, &pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR3,
1090 &pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR0, NULL /* paPages */);
1091 if (RT_FAILURE(rc))
1092 {
1093 Assert(!pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR3);
1094 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's MSR permission bitmap\n", pVCpu->idCpu,
1095 SVM_MSRPM_PAGES));
1096 break;
1097 }
1098
1099 /*
1100 * Allocate the IOPM (IO Permission bitmap).
1101 *
1102 * This need not be physically contiguous pages because we re-use the ring-0
1103 * allocated IOPM while executing the nested-guest using hardware-assisted SVM
1104 * because it's identical (we trap all IO accesses).
1105 *
1106 * This one is just used for caching the IOPM from guest physical memory in
1107 * case the guest hypervisor allows direct access to some IO ports.
1108 */
1109 Assert(!pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR3);
1110 rc = SUPR3PageAllocEx(SVM_IOPM_PAGES, 0 /* fFlags */, &pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR3,
1111 &pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR0, NULL /* paPages */);
1112 if (RT_FAILURE(rc))
1113 {
1114 Assert(!pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR3);
1115 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's IO permission bitmap\n", pVCpu->idCpu,
1116 SVM_IOPM_PAGES));
1117 break;
1118 }
1119 }
1120
1121 /* On any failure, cleanup. */
1122 if (RT_FAILURE(rc))
1123 cpumR3FreeSvmHwVirtState(pVM);
1124
1125 return rc;
1126}
1127
1128
1129/**
1130 * Resets per-VCPU SVM hardware virtualization state.
1131 *
1132 * @param pVCpu The cross context virtual CPU structure.
1133 */
1134DECLINLINE(void) cpumR3ResetSvmHwVirtState(PVMCPU pVCpu)
1135{
1136 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
1137 Assert(pCtx->hwvirt.enmHwvirt == CPUMHWVIRT_SVM);
1138 Assert(pCtx->hwvirt.svm.CTX_SUFF(pVmcb));
1139
1140 memset(pCtx->hwvirt.svm.CTX_SUFF(pVmcb), 0, SVM_VMCB_PAGES << PAGE_SHIFT);
1141 pCtx->hwvirt.svm.uMsrHSavePa = 0;
1142 pCtx->hwvirt.svm.uPrevPauseTick = 0;
1143}
1144
1145
1146/**
1147 * Frees memory allocated for the VMX hardware virtualization state.
1148 *
1149 * @param pVM The cross context VM structure.
1150 */
1151static void cpumR3FreeVmxHwVirtState(PVM pVM)
1152{
1153 Assert(pVM->cpum.s.GuestFeatures.fVmx);
1154 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1155 {
1156 PVMCPU pVCpu = pVM->apCpusR3[i];
1157 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
1158
1159 if (pCtx->hwvirt.vmx.pVmcsR3)
1160 {
1161 SUPR3ContFree(pCtx->hwvirt.vmx.pVmcsR3, VMX_V_VMCS_PAGES);
1162 pCtx->hwvirt.vmx.pVmcsR3 = NULL;
1163 }
1164 if (pCtx->hwvirt.vmx.pShadowVmcsR3)
1165 {
1166 SUPR3ContFree(pCtx->hwvirt.vmx.pShadowVmcsR3, VMX_V_VMCS_PAGES);
1167 pCtx->hwvirt.vmx.pShadowVmcsR3 = NULL;
1168 }
1169 if (pCtx->hwvirt.vmx.pvVirtApicPageR3)
1170 {
1171 SUPR3ContFree(pCtx->hwvirt.vmx.pvVirtApicPageR3, VMX_V_VIRT_APIC_PAGES);
1172 pCtx->hwvirt.vmx.pvVirtApicPageR3 = NULL;
1173 }
1174 if (pCtx->hwvirt.vmx.pvVmreadBitmapR3)
1175 {
1176 SUPR3ContFree(pCtx->hwvirt.vmx.pvVmreadBitmapR3, VMX_V_VMREAD_VMWRITE_BITMAP_PAGES);
1177 pCtx->hwvirt.vmx.pvVmreadBitmapR3 = NULL;
1178 }
1179 if (pCtx->hwvirt.vmx.pvVmwriteBitmapR3)
1180 {
1181 SUPR3ContFree(pCtx->hwvirt.vmx.pvVmwriteBitmapR3, VMX_V_VMREAD_VMWRITE_BITMAP_PAGES);
1182 pCtx->hwvirt.vmx.pvVmwriteBitmapR3 = NULL;
1183 }
1184 if (pCtx->hwvirt.vmx.pEntryMsrLoadAreaR3)
1185 {
1186 SUPR3ContFree(pCtx->hwvirt.vmx.pEntryMsrLoadAreaR3, VMX_V_AUTOMSR_AREA_PAGES);
1187 pCtx->hwvirt.vmx.pEntryMsrLoadAreaR3 = NULL;
1188 }
1189 if (pCtx->hwvirt.vmx.pExitMsrStoreAreaR3)
1190 {
1191 SUPR3ContFree(pCtx->hwvirt.vmx.pExitMsrStoreAreaR3, VMX_V_AUTOMSR_AREA_PAGES);
1192 pCtx->hwvirt.vmx.pExitMsrStoreAreaR3 = NULL;
1193 }
1194 if (pCtx->hwvirt.vmx.pExitMsrLoadAreaR3)
1195 {
1196 SUPR3ContFree(pCtx->hwvirt.vmx.pExitMsrLoadAreaR3, VMX_V_AUTOMSR_AREA_PAGES);
1197 pCtx->hwvirt.vmx.pExitMsrLoadAreaR3 = NULL;
1198 }
1199 if (pCtx->hwvirt.vmx.pvMsrBitmapR3)
1200 {
1201 SUPR3ContFree(pCtx->hwvirt.vmx.pvMsrBitmapR3, VMX_V_MSR_BITMAP_PAGES);
1202 pCtx->hwvirt.vmx.pvMsrBitmapR3 = NULL;
1203 }
1204 if (pCtx->hwvirt.vmx.pvIoBitmapR3)
1205 {
1206 SUPR3ContFree(pCtx->hwvirt.vmx.pvIoBitmapR3, VMX_V_IO_BITMAP_A_PAGES + VMX_V_IO_BITMAP_B_PAGES);
1207 pCtx->hwvirt.vmx.pvIoBitmapR3 = NULL;
1208 }
1209 }
1210}
1211
1212
1213/**
1214 * Allocates memory for the VMX hardware virtualization state.
1215 *
1216 * @returns VBox status code.
1217 * @param pVM The cross context VM structure.
1218 */
1219static int cpumR3AllocVmxHwVirtState(PVM pVM)
1220{
1221 int rc = VINF_SUCCESS;
1222 uint32_t const cPages = VMX_V_VMCS_PAGES
1223 + VMX_V_SHADOW_VMCS_PAGES
1224 + VMX_V_VIRT_APIC_PAGES
1225 + (2 * VMX_V_VMREAD_VMWRITE_BITMAP_PAGES)
1226 + (3 * VMX_V_AUTOMSR_AREA_PAGES)
1227 + VMX_V_MSR_BITMAP_PAGES
1228 + (VMX_V_IO_BITMAP_A_PAGES + VMX_V_IO_BITMAP_B_PAGES);
1229 LogRel(("CPUM: Allocating %u pages for the nested-guest VMCS and related structures\n", pVM->cCpus * cPages));
1230 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1231 {
1232 PVMCPU pVCpu = pVM->apCpusR3[i];
1233 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
1234 pCtx->hwvirt.enmHwvirt = CPUMHWVIRT_VMX;
1235
1236 /*
1237 * Allocate the nested-guest current VMCS.
1238 */
1239 pCtx->hwvirt.vmx.pVmcsR3 = (PVMXVVMCS)SUPR3ContAlloc(VMX_V_VMCS_PAGES,
1240 &pCtx->hwvirt.vmx.pVmcsR0,
1241 &pCtx->hwvirt.vmx.HCPhysVmcs);
1242 if (pCtx->hwvirt.vmx.pVmcsR3)
1243 { /* likely */ }
1244 else
1245 {
1246 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's VMCS\n", pVCpu->idCpu, VMX_V_VMCS_PAGES));
1247 break;
1248 }
1249
1250 /*
1251 * Allocate the nested-guest shadow VMCS.
1252 */
1253 pCtx->hwvirt.vmx.pShadowVmcsR3 = (PVMXVVMCS)SUPR3ContAlloc(VMX_V_VMCS_PAGES,
1254 &pCtx->hwvirt.vmx.pShadowVmcsR0,
1255 &pCtx->hwvirt.vmx.HCPhysShadowVmcs);
1256 if (pCtx->hwvirt.vmx.pShadowVmcsR3)
1257 { /* likely */ }
1258 else
1259 {
1260 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's shadow VMCS\n", pVCpu->idCpu, VMX_V_VMCS_PAGES));
1261 break;
1262 }
1263
1264 /*
1265 * Allocate the virtual-APIC page.
1266 */
1267 pCtx->hwvirt.vmx.pvVirtApicPageR3 = SUPR3ContAlloc(VMX_V_VIRT_APIC_PAGES,
1268 &pCtx->hwvirt.vmx.pvVirtApicPageR0,
1269 &pCtx->hwvirt.vmx.HCPhysVirtApicPage);
1270 if (pCtx->hwvirt.vmx.pvVirtApicPageR3)
1271 { /* likely */ }
1272 else
1273 {
1274 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's virtual-APIC page\n", pVCpu->idCpu,
1275 VMX_V_VIRT_APIC_PAGES));
1276 break;
1277 }
1278
1279 /*
1280 * Allocate the VMREAD-bitmap.
1281 */
1282 pCtx->hwvirt.vmx.pvVmreadBitmapR3 = SUPR3ContAlloc(VMX_V_VMREAD_VMWRITE_BITMAP_PAGES,
1283 &pCtx->hwvirt.vmx.pvVmreadBitmapR0,
1284 &pCtx->hwvirt.vmx.HCPhysVmreadBitmap);
1285 if (pCtx->hwvirt.vmx.pvVmreadBitmapR3)
1286 { /* likely */ }
1287 else
1288 {
1289 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's VMREAD-bitmap\n", pVCpu->idCpu,
1290 VMX_V_VMREAD_VMWRITE_BITMAP_PAGES));
1291 break;
1292 }
1293
1294 /*
1295 * Allocatge the VMWRITE-bitmap.
1296 */
1297 pCtx->hwvirt.vmx.pvVmwriteBitmapR3 = SUPR3ContAlloc(VMX_V_VMREAD_VMWRITE_BITMAP_PAGES,
1298 &pCtx->hwvirt.vmx.pvVmwriteBitmapR0,
1299 &pCtx->hwvirt.vmx.HCPhysVmwriteBitmap);
1300 if (pCtx->hwvirt.vmx.pvVmwriteBitmapR3)
1301 { /* likely */ }
1302 else
1303 {
1304 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's VMWRITE-bitmap\n", pVCpu->idCpu,
1305 VMX_V_VMREAD_VMWRITE_BITMAP_PAGES));
1306 break;
1307 }
1308
1309 /*
1310 * Allocate the VM-entry MSR-load area.
1311 */
1312 pCtx->hwvirt.vmx.pEntryMsrLoadAreaR3 = (PVMXAUTOMSR)SUPR3ContAlloc(VMX_V_AUTOMSR_AREA_PAGES,
1313 &pCtx->hwvirt.vmx.pEntryMsrLoadAreaR0,
1314 &pCtx->hwvirt.vmx.HCPhysEntryMsrLoadArea);
1315 if (pCtx->hwvirt.vmx.pEntryMsrLoadAreaR3)
1316 { /* likely */ }
1317 else
1318 {
1319 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's VM-entry MSR-load area\n", pVCpu->idCpu,
1320 VMX_V_AUTOMSR_AREA_PAGES));
1321 break;
1322 }
1323
1324 /*
1325 * Allocate the VM-exit MSR-store area.
1326 */
1327 pCtx->hwvirt.vmx.pExitMsrStoreAreaR3 = (PVMXAUTOMSR)SUPR3ContAlloc(VMX_V_AUTOMSR_AREA_PAGES,
1328 &pCtx->hwvirt.vmx.pExitMsrStoreAreaR0,
1329 &pCtx->hwvirt.vmx.HCPhysExitMsrStoreArea);
1330 if (pCtx->hwvirt.vmx.pExitMsrStoreAreaR3)
1331 { /* likely */ }
1332 else
1333 {
1334 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's VM-exit MSR-store area\n", pVCpu->idCpu,
1335 VMX_V_AUTOMSR_AREA_PAGES));
1336 break;
1337 }
1338
1339 /*
1340 * Allocate the VM-exit MSR-load area.
1341 */
1342 pCtx->hwvirt.vmx.pExitMsrLoadAreaR3 = (PVMXAUTOMSR)SUPR3ContAlloc(VMX_V_AUTOMSR_AREA_PAGES,
1343 &pCtx->hwvirt.vmx.pExitMsrLoadAreaR0,
1344 &pCtx->hwvirt.vmx.HCPhysExitMsrLoadArea);
1345 if (pCtx->hwvirt.vmx.pExitMsrLoadAreaR3)
1346 { /* likely */ }
1347 else
1348 {
1349 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's VM-exit MSR-load area\n", pVCpu->idCpu,
1350 VMX_V_AUTOMSR_AREA_PAGES));
1351 break;
1352 }
1353
1354 /*
1355 * Allocate the MSR bitmap.
1356 */
1357 pCtx->hwvirt.vmx.pvMsrBitmapR3 = SUPR3ContAlloc(VMX_V_MSR_BITMAP_PAGES,
1358 &pCtx->hwvirt.vmx.pvMsrBitmapR0,
1359 &pCtx->hwvirt.vmx.HCPhysMsrBitmap);
1360 if (pCtx->hwvirt.vmx.pvMsrBitmapR3)
1361 { /* likely */ }
1362 else
1363 {
1364 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's MSR bitmap\n", pVCpu->idCpu,
1365 VMX_V_MSR_BITMAP_PAGES));
1366 break;
1367 }
1368
1369 /*
1370 * Allocate the I/O bitmaps (A and B).
1371 */
1372 pCtx->hwvirt.vmx.pvIoBitmapR3 = SUPR3ContAlloc(VMX_V_IO_BITMAP_A_PAGES + VMX_V_IO_BITMAP_B_PAGES,
1373 &pCtx->hwvirt.vmx.pvIoBitmapR0,
1374 &pCtx->hwvirt.vmx.HCPhysIoBitmap);
1375 if (pCtx->hwvirt.vmx.pvIoBitmapR3)
1376 { /* likely */ }
1377 else
1378 {
1379 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's I/O bitmaps\n", pVCpu->idCpu,
1380 VMX_V_IO_BITMAP_A_PAGES + VMX_V_IO_BITMAP_B_PAGES));
1381 break;
1382 }
1383
1384 /*
1385 * Zero out all allocated pages (should compress well for saved-state).
1386 */
1387 memset(pCtx->hwvirt.vmx.CTX_SUFF(pVmcs), 0, VMX_V_VMCS_SIZE);
1388 memset(pCtx->hwvirt.vmx.CTX_SUFF(pShadowVmcs), 0, VMX_V_SHADOW_VMCS_SIZE);
1389 memset(pCtx->hwvirt.vmx.CTX_SUFF(pvVirtApicPage), 0, VMX_V_VIRT_APIC_SIZE);
1390 memset(pCtx->hwvirt.vmx.CTX_SUFF(pvVmreadBitmap), 0, VMX_V_VMREAD_VMWRITE_BITMAP_SIZE);
1391 memset(pCtx->hwvirt.vmx.CTX_SUFF(pvVmwriteBitmap), 0, VMX_V_VMREAD_VMWRITE_BITMAP_SIZE);
1392 memset(pCtx->hwvirt.vmx.CTX_SUFF(pEntryMsrLoadArea), 0, VMX_V_AUTOMSR_AREA_SIZE);
1393 memset(pCtx->hwvirt.vmx.CTX_SUFF(pExitMsrStoreArea), 0, VMX_V_AUTOMSR_AREA_SIZE);
1394 memset(pCtx->hwvirt.vmx.CTX_SUFF(pExitMsrLoadArea), 0, VMX_V_AUTOMSR_AREA_SIZE);
1395 memset(pCtx->hwvirt.vmx.CTX_SUFF(pvMsrBitmap), 0, VMX_V_MSR_BITMAP_SIZE);
1396 memset(pCtx->hwvirt.vmx.CTX_SUFF(pvIoBitmap), 0, VMX_V_IO_BITMAP_A_SIZE + VMX_V_IO_BITMAP_B_SIZE);
1397 }
1398
1399 /* On any failure, cleanup. */
1400 if (RT_FAILURE(rc))
1401 cpumR3FreeVmxHwVirtState(pVM);
1402
1403 return rc;
1404}
1405
1406
1407/**
1408 * Resets per-VCPU VMX hardware virtualization state.
1409 *
1410 * @param pVCpu The cross context virtual CPU structure.
1411 */
1412DECLINLINE(void) cpumR3ResetVmxHwVirtState(PVMCPU pVCpu)
1413{
1414 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
1415 Assert(pCtx->hwvirt.enmHwvirt == CPUMHWVIRT_VMX);
1416 Assert(pCtx->hwvirt.vmx.CTX_SUFF(pVmcs));
1417 Assert(pCtx->hwvirt.vmx.CTX_SUFF(pShadowVmcs));
1418
1419 memset(pCtx->hwvirt.vmx.CTX_SUFF(pVmcs), 0, VMX_V_VMCS_SIZE);
1420 memset(pCtx->hwvirt.vmx.CTX_SUFF(pShadowVmcs), 0, VMX_V_SHADOW_VMCS_SIZE);
1421 pCtx->hwvirt.vmx.GCPhysVmxon = NIL_RTGCPHYS;
1422 pCtx->hwvirt.vmx.GCPhysShadowVmcs = NIL_RTGCPHYS;
1423 pCtx->hwvirt.vmx.GCPhysVmxon = NIL_RTGCPHYS;
1424 pCtx->hwvirt.vmx.fInVmxRootMode = false;
1425 pCtx->hwvirt.vmx.fInVmxNonRootMode = false;
1426 /* Don't reset diagnostics here. */
1427
1428 /* Stop any VMX-preemption timer. */
1429 CPUMStopGuestVmxPremptTimer(pVCpu);
1430
1431 /* Clear all nested-guest FFs. */
1432 VMCPU_FF_CLEAR_MASK(pVCpu, VMCPU_FF_VMX_ALL_MASK);
1433}
1434
1435
1436/**
1437 * Displays the host and guest VMX features.
1438 *
1439 * @param pVM The cross context VM structure.
1440 * @param pHlp The info helper functions.
1441 * @param pszArgs "terse", "default" or "verbose".
1442 */
1443DECLCALLBACK(void) cpumR3InfoVmxFeatures(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
1444{
1445 RT_NOREF(pszArgs);
1446 PCCPUMFEATURES pHostFeatures = &pVM->cpum.s.HostFeatures;
1447 PCCPUMFEATURES pGuestFeatures = &pVM->cpum.s.GuestFeatures;
1448 if ( pHostFeatures->enmCpuVendor == CPUMCPUVENDOR_INTEL
1449 || pHostFeatures->enmCpuVendor == CPUMCPUVENDOR_VIA
1450 || pHostFeatures->enmCpuVendor == CPUMCPUVENDOR_SHANGHAI)
1451 {
1452#define VMXFEATDUMP(a_szDesc, a_Var) \
1453 pHlp->pfnPrintf(pHlp, " %s = %u (%u)\n", a_szDesc, pGuestFeatures->a_Var, pHostFeatures->a_Var)
1454
1455 pHlp->pfnPrintf(pHlp, "Nested hardware virtualization - VMX features\n");
1456 pHlp->pfnPrintf(pHlp, " Mnemonic - Description = guest (host)\n");
1457 VMXFEATDUMP("VMX - Virtual-Machine Extensions ", fVmx);
1458 /* Basic. */
1459 VMXFEATDUMP("InsOutInfo - INS/OUTS instruction info. ", fVmxInsOutInfo);
1460 /* Pin-based controls. */
1461 VMXFEATDUMP("ExtIntExit - External interrupt exiting ", fVmxExtIntExit);
1462 VMXFEATDUMP("NmiExit - NMI exiting ", fVmxNmiExit);
1463 VMXFEATDUMP("VirtNmi - Virtual NMIs ", fVmxVirtNmi);
1464 VMXFEATDUMP("PreemptTimer - VMX preemption timer ", fVmxPreemptTimer);
1465 VMXFEATDUMP("PostedInt - Posted interrupts ", fVmxPostedInt);
1466 /* Processor-based controls. */
1467 VMXFEATDUMP("IntWindowExit - Interrupt-window exiting ", fVmxIntWindowExit);
1468 VMXFEATDUMP("TscOffsetting - TSC offsetting ", fVmxTscOffsetting);
1469 VMXFEATDUMP("HltExit - HLT exiting ", fVmxHltExit);
1470 VMXFEATDUMP("InvlpgExit - INVLPG exiting ", fVmxInvlpgExit);
1471 VMXFEATDUMP("MwaitExit - MWAIT exiting ", fVmxMwaitExit);
1472 VMXFEATDUMP("RdpmcExit - RDPMC exiting ", fVmxRdpmcExit);
1473 VMXFEATDUMP("RdtscExit - RDTSC exiting ", fVmxRdtscExit);
1474 VMXFEATDUMP("Cr3LoadExit - CR3-load exiting ", fVmxCr3LoadExit);
1475 VMXFEATDUMP("Cr3StoreExit - CR3-store exiting ", fVmxCr3StoreExit);
1476 VMXFEATDUMP("Cr8LoadExit - CR8-load exiting ", fVmxCr8LoadExit);
1477 VMXFEATDUMP("Cr8StoreExit - CR8-store exiting ", fVmxCr8StoreExit);
1478 VMXFEATDUMP("UseTprShadow - Use TPR shadow ", fVmxUseTprShadow);
1479 VMXFEATDUMP("NmiWindowExit - NMI-window exiting ", fVmxNmiWindowExit);
1480 VMXFEATDUMP("MovDRxExit - Mov-DR exiting ", fVmxMovDRxExit);
1481 VMXFEATDUMP("UncondIoExit - Unconditional I/O exiting ", fVmxUncondIoExit);
1482 VMXFEATDUMP("UseIoBitmaps - Use I/O bitmaps ", fVmxUseIoBitmaps);
1483 VMXFEATDUMP("MonitorTrapFlag - Monitor Trap Flag ", fVmxMonitorTrapFlag);
1484 VMXFEATDUMP("UseMsrBitmaps - MSR bitmaps ", fVmxUseMsrBitmaps);
1485 VMXFEATDUMP("MonitorExit - MONITOR exiting ", fVmxMonitorExit);
1486 VMXFEATDUMP("PauseExit - PAUSE exiting ", fVmxPauseExit);
1487 VMXFEATDUMP("SecondaryExecCtl - Activate secondary controls ", fVmxSecondaryExecCtls);
1488 /* Secondary processor-based controls. */
1489 VMXFEATDUMP("VirtApic - Virtualize-APIC accesses ", fVmxVirtApicAccess);
1490 VMXFEATDUMP("Ept - Extended Page Tables ", fVmxEpt);
1491 VMXFEATDUMP("DescTableExit - Descriptor-table exiting ", fVmxDescTableExit);
1492 VMXFEATDUMP("Rdtscp - Enable RDTSCP ", fVmxRdtscp);
1493 VMXFEATDUMP("VirtX2ApicMode - Virtualize-x2APIC mode ", fVmxVirtX2ApicMode);
1494 VMXFEATDUMP("Vpid - Enable VPID ", fVmxVpid);
1495 VMXFEATDUMP("WbinvdExit - WBINVD exiting ", fVmxWbinvdExit);
1496 VMXFEATDUMP("UnrestrictedGuest - Unrestricted guest ", fVmxUnrestrictedGuest);
1497 VMXFEATDUMP("ApicRegVirt - APIC-register virtualization ", fVmxApicRegVirt);
1498 VMXFEATDUMP("VirtIntDelivery - Virtual-interrupt delivery ", fVmxVirtIntDelivery);
1499 VMXFEATDUMP("PauseLoopExit - PAUSE-loop exiting ", fVmxPauseLoopExit);
1500 VMXFEATDUMP("RdrandExit - RDRAND exiting ", fVmxRdrandExit);
1501 VMXFEATDUMP("Invpcid - Enable INVPCID ", fVmxInvpcid);
1502 VMXFEATDUMP("VmFuncs - Enable VM Functions ", fVmxVmFunc);
1503 VMXFEATDUMP("VmcsShadowing - VMCS shadowing ", fVmxVmcsShadowing);
1504 VMXFEATDUMP("RdseedExiting - RDSEED exiting ", fVmxRdseedExit);
1505 VMXFEATDUMP("PML - Page-Modification Log (PML) ", fVmxPml);
1506 VMXFEATDUMP("EptVe - EPT violations can cause #VE ", fVmxEptXcptVe);
1507 VMXFEATDUMP("XsavesXRstors - Enable XSAVES/XRSTORS ", fVmxXsavesXrstors);
1508 /* VM-entry controls. */
1509 VMXFEATDUMP("EntryLoadDebugCtls - Load debug controls on VM-entry ", fVmxEntryLoadDebugCtls);
1510 VMXFEATDUMP("Ia32eModeGuest - IA-32e mode guest ", fVmxIa32eModeGuest);
1511 VMXFEATDUMP("EntryLoadEferMsr - Load IA32_EFER MSR on VM-entry ", fVmxEntryLoadEferMsr);
1512 VMXFEATDUMP("EntryLoadPatMsr - Load IA32_PAT MSR on VM-entry ", fVmxEntryLoadPatMsr);
1513 /* VM-exit controls. */
1514 VMXFEATDUMP("ExitSaveDebugCtls - Save debug controls on VM-exit ", fVmxExitSaveDebugCtls);
1515 VMXFEATDUMP("HostAddrSpaceSize - Host address-space size ", fVmxHostAddrSpaceSize);
1516 VMXFEATDUMP("ExitAckExtInt - Acknowledge interrupt on VM-exit ", fVmxExitAckExtInt);
1517 VMXFEATDUMP("ExitSavePatMsr - Save IA32_PAT MSR on VM-exit ", fVmxExitSavePatMsr);
1518 VMXFEATDUMP("ExitLoadPatMsr - Load IA32_PAT MSR on VM-exit ", fVmxExitLoadPatMsr);
1519 VMXFEATDUMP("ExitSaveEferMsr - Save IA32_EFER MSR on VM-exit ", fVmxExitSaveEferMsr);
1520 VMXFEATDUMP("ExitLoadEferMsr - Load IA32_EFER MSR on VM-exit ", fVmxExitLoadEferMsr);
1521 VMXFEATDUMP("SavePreemptTimer - Save VMX-preemption timer ", fVmxSavePreemptTimer);
1522 /* Miscellaneous data. */
1523 VMXFEATDUMP("ExitSaveEferLma - Save IA32_EFER.LMA on VM-exit ", fVmxExitSaveEferLma);
1524 VMXFEATDUMP("IntelPt - Intel PT (Processor Trace) in VMX operation ", fVmxIntelPt);
1525 VMXFEATDUMP("VmwriteAll - VMWRITE to any supported VMCS field ", fVmxVmwriteAll);
1526 VMXFEATDUMP("EntryInjectSoftInt - Inject softint. with 0-len instr. ", fVmxEntryInjectSoftInt);
1527#undef VMXFEATDUMP
1528 }
1529 else
1530 pHlp->pfnPrintf(pHlp, "No VMX features present - requires an Intel or compatible CPU.\n");
1531}
1532
1533
1534/**
1535 * Checks whether nested-guest execution using hardware-assisted VMX (e.g, using HM
1536 * or NEM) is allowed.
1537 *
1538 * @returns @c true if hardware-assisted nested-guest execution is allowed, @c false
1539 * otherwise.
1540 * @param pVM The cross context VM structure.
1541 */
1542static bool cpumR3IsHwAssistNstGstExecAllowed(PVM pVM)
1543{
1544 AssertMsg(pVM->bMainExecutionEngine != VM_EXEC_ENGINE_NOT_SET, ("Calling this function too early!\n"));
1545#ifndef VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM
1546 if ( pVM->bMainExecutionEngine == VM_EXEC_ENGINE_HW_VIRT
1547 || pVM->bMainExecutionEngine == VM_EXEC_ENGINE_NATIVE_API)
1548 return true;
1549#else
1550 NOREF(pVM);
1551#endif
1552 return false;
1553}
1554
1555
1556/**
1557 * Initializes the VMX guest MSRs from guest CPU features based on the host MSRs.
1558 *
1559 * @param pVM The cross context VM structure.
1560 * @param pHostVmxMsrs The host VMX MSRs. Pass NULL when fully emulating VMX
1561 * and no hardware-assisted nested-guest execution is
1562 * possible for this VM.
1563 * @param pGuestFeatures The guest features to use (only VMX features are
1564 * accessed).
1565 * @param pGuestVmxMsrs Where to store the initialized guest VMX MSRs.
1566 *
1567 * @remarks This function ASSUMES the VMX guest-features are already exploded!
1568 */
1569static void cpumR3InitVmxGuestMsrs(PVM pVM, PCVMXMSRS pHostVmxMsrs, PCCPUMFEATURES pGuestFeatures, PVMXMSRS pGuestVmxMsrs)
1570{
1571 bool const fIsNstGstHwExecAllowed = cpumR3IsHwAssistNstGstExecAllowed(pVM);
1572
1573 Assert(!fIsNstGstHwExecAllowed || pHostVmxMsrs);
1574 Assert(pGuestFeatures->fVmx);
1575
1576 /*
1577 * We don't support the following MSRs yet:
1578 * - True Pin-based VM-execution controls.
1579 * - True Processor-based VM-execution controls.
1580 * - True VM-entry VM-execution controls.
1581 * - True VM-exit VM-execution controls.
1582 */
1583
1584 /* Feature control. */
1585 pGuestVmxMsrs->u64FeatCtrl = MSR_IA32_FEATURE_CONTROL_LOCK | MSR_IA32_FEATURE_CONTROL_VMXON;
1586
1587 /* Basic information. */
1588 {
1589 uint64_t const u64Basic = RT_BF_MAKE(VMX_BF_BASIC_VMCS_ID, VMX_V_VMCS_REVISION_ID )
1590 | RT_BF_MAKE(VMX_BF_BASIC_VMCS_SIZE, VMX_V_VMCS_SIZE )
1591 | RT_BF_MAKE(VMX_BF_BASIC_PHYSADDR_WIDTH, !pGuestFeatures->fLongMode )
1592 | RT_BF_MAKE(VMX_BF_BASIC_DUAL_MON, 0 )
1593 | RT_BF_MAKE(VMX_BF_BASIC_VMCS_MEM_TYPE, VMX_BASIC_MEM_TYPE_WB )
1594 | RT_BF_MAKE(VMX_BF_BASIC_VMCS_INS_OUTS, pGuestFeatures->fVmxInsOutInfo)
1595 | RT_BF_MAKE(VMX_BF_BASIC_TRUE_CTLS, 0 );
1596 pGuestVmxMsrs->u64Basic = u64Basic;
1597 }
1598
1599 /* Pin-based VM-execution controls. */
1600 {
1601 uint32_t const fFeatures = (pGuestFeatures->fVmxExtIntExit << VMX_BF_PIN_CTLS_EXT_INT_EXIT_SHIFT )
1602 | (pGuestFeatures->fVmxNmiExit << VMX_BF_PIN_CTLS_NMI_EXIT_SHIFT )
1603 | (pGuestFeatures->fVmxVirtNmi << VMX_BF_PIN_CTLS_VIRT_NMI_SHIFT )
1604 | (pGuestFeatures->fVmxPreemptTimer << VMX_BF_PIN_CTLS_PREEMPT_TIMER_SHIFT)
1605 | (pGuestFeatures->fVmxPostedInt << VMX_BF_PIN_CTLS_POSTED_INT_SHIFT );
1606 uint32_t const fAllowed0 = VMX_PIN_CTLS_DEFAULT1;
1607 uint32_t const fAllowed1 = fFeatures | VMX_PIN_CTLS_DEFAULT1;
1608 AssertMsg((fAllowed0 & fAllowed1) == fAllowed0, ("fAllowed0=%#RX32 fAllowed1=%#RX32 fFeatures=%#RX32\n",
1609 fAllowed0, fAllowed1, fFeatures));
1610 pGuestVmxMsrs->PinCtls.u = RT_MAKE_U64(fAllowed0, fAllowed1);
1611 }
1612
1613 /* Processor-based VM-execution controls. */
1614 {
1615 uint32_t const fFeatures = (pGuestFeatures->fVmxIntWindowExit << VMX_BF_PROC_CTLS_INT_WINDOW_EXIT_SHIFT )
1616 | (pGuestFeatures->fVmxTscOffsetting << VMX_BF_PROC_CTLS_USE_TSC_OFFSETTING_SHIFT)
1617 | (pGuestFeatures->fVmxHltExit << VMX_BF_PROC_CTLS_HLT_EXIT_SHIFT )
1618 | (pGuestFeatures->fVmxInvlpgExit << VMX_BF_PROC_CTLS_INVLPG_EXIT_SHIFT )
1619 | (pGuestFeatures->fVmxMwaitExit << VMX_BF_PROC_CTLS_MWAIT_EXIT_SHIFT )
1620 | (pGuestFeatures->fVmxRdpmcExit << VMX_BF_PROC_CTLS_RDPMC_EXIT_SHIFT )
1621 | (pGuestFeatures->fVmxRdtscExit << VMX_BF_PROC_CTLS_RDTSC_EXIT_SHIFT )
1622 | (pGuestFeatures->fVmxCr3LoadExit << VMX_BF_PROC_CTLS_CR3_LOAD_EXIT_SHIFT )
1623 | (pGuestFeatures->fVmxCr3StoreExit << VMX_BF_PROC_CTLS_CR3_STORE_EXIT_SHIFT )
1624 | (pGuestFeatures->fVmxTertiaryExecCtls << VMX_BF_PROC_CTLS_USE_TERTIARY_CTLS_SHIFT )
1625 | (pGuestFeatures->fVmxCr8LoadExit << VMX_BF_PROC_CTLS_CR8_LOAD_EXIT_SHIFT )
1626 | (pGuestFeatures->fVmxCr8StoreExit << VMX_BF_PROC_CTLS_CR8_STORE_EXIT_SHIFT )
1627 | (pGuestFeatures->fVmxUseTprShadow << VMX_BF_PROC_CTLS_USE_TPR_SHADOW_SHIFT )
1628 | (pGuestFeatures->fVmxNmiWindowExit << VMX_BF_PROC_CTLS_NMI_WINDOW_EXIT_SHIFT )
1629 | (pGuestFeatures->fVmxMovDRxExit << VMX_BF_PROC_CTLS_MOV_DR_EXIT_SHIFT )
1630 | (pGuestFeatures->fVmxUncondIoExit << VMX_BF_PROC_CTLS_UNCOND_IO_EXIT_SHIFT )
1631 | (pGuestFeatures->fVmxUseIoBitmaps << VMX_BF_PROC_CTLS_USE_IO_BITMAPS_SHIFT )
1632 | (pGuestFeatures->fVmxMonitorTrapFlag << VMX_BF_PROC_CTLS_MONITOR_TRAP_FLAG_SHIFT )
1633 | (pGuestFeatures->fVmxUseMsrBitmaps << VMX_BF_PROC_CTLS_USE_MSR_BITMAPS_SHIFT )
1634 | (pGuestFeatures->fVmxMonitorExit << VMX_BF_PROC_CTLS_MONITOR_EXIT_SHIFT )
1635 | (pGuestFeatures->fVmxPauseExit << VMX_BF_PROC_CTLS_PAUSE_EXIT_SHIFT )
1636 | (pGuestFeatures->fVmxSecondaryExecCtls << VMX_BF_PROC_CTLS_USE_SECONDARY_CTLS_SHIFT);
1637 uint32_t const fAllowed0 = VMX_PROC_CTLS_DEFAULT1;
1638 uint32_t const fAllowed1 = fFeatures | VMX_PROC_CTLS_DEFAULT1;
1639 AssertMsg((fAllowed0 & fAllowed1) == fAllowed0, ("fAllowed0=%#RX32 fAllowed1=%#RX32 fFeatures=%#RX32\n", fAllowed0,
1640 fAllowed1, fFeatures));
1641 pGuestVmxMsrs->ProcCtls.u = RT_MAKE_U64(fAllowed0, fAllowed1);
1642 }
1643
1644 /* Secondary processor-based VM-execution controls. */
1645 if (pGuestFeatures->fVmxSecondaryExecCtls)
1646 {
1647 uint32_t const fFeatures = (pGuestFeatures->fVmxVirtApicAccess << VMX_BF_PROC_CTLS2_VIRT_APIC_ACCESS_SHIFT )
1648 | (pGuestFeatures->fVmxEpt << VMX_BF_PROC_CTLS2_EPT_SHIFT )
1649 | (pGuestFeatures->fVmxDescTableExit << VMX_BF_PROC_CTLS2_DESC_TABLE_EXIT_SHIFT )
1650 | (pGuestFeatures->fVmxRdtscp << VMX_BF_PROC_CTLS2_RDTSCP_SHIFT )
1651 | (pGuestFeatures->fVmxVirtX2ApicMode << VMX_BF_PROC_CTLS2_VIRT_X2APIC_MODE_SHIFT )
1652 | (pGuestFeatures->fVmxVpid << VMX_BF_PROC_CTLS2_VPID_SHIFT )
1653 | (pGuestFeatures->fVmxWbinvdExit << VMX_BF_PROC_CTLS2_WBINVD_EXIT_SHIFT )
1654 | (pGuestFeatures->fVmxUnrestrictedGuest << VMX_BF_PROC_CTLS2_UNRESTRICTED_GUEST_SHIFT)
1655 | (pGuestFeatures->fVmxApicRegVirt << VMX_BF_PROC_CTLS2_APIC_REG_VIRT_SHIFT )
1656 | (pGuestFeatures->fVmxVirtIntDelivery << VMX_BF_PROC_CTLS2_VIRT_INT_DELIVERY_SHIFT )
1657 | (pGuestFeatures->fVmxPauseLoopExit << VMX_BF_PROC_CTLS2_PAUSE_LOOP_EXIT_SHIFT )
1658 | (pGuestFeatures->fVmxRdrandExit << VMX_BF_PROC_CTLS2_RDRAND_EXIT_SHIFT )
1659 | (pGuestFeatures->fVmxInvpcid << VMX_BF_PROC_CTLS2_INVPCID_SHIFT )
1660 | (pGuestFeatures->fVmxVmFunc << VMX_BF_PROC_CTLS2_VMFUNC_SHIFT )
1661 | (pGuestFeatures->fVmxVmcsShadowing << VMX_BF_PROC_CTLS2_VMCS_SHADOWING_SHIFT )
1662 | (pGuestFeatures->fVmxRdseedExit << VMX_BF_PROC_CTLS2_RDSEED_EXIT_SHIFT )
1663 | (pGuestFeatures->fVmxPml << VMX_BF_PROC_CTLS2_PML_SHIFT )
1664 | (pGuestFeatures->fVmxEptXcptVe << VMX_BF_PROC_CTLS2_EPT_VE_SHIFT )
1665 | (pGuestFeatures->fVmxXsavesXrstors << VMX_BF_PROC_CTLS2_XSAVES_XRSTORS_SHIFT )
1666 | (pGuestFeatures->fVmxUseTscScaling << VMX_BF_PROC_CTLS2_TSC_SCALING_SHIFT );
1667 uint32_t const fAllowed0 = 0;
1668 uint32_t const fAllowed1 = fFeatures;
1669 pGuestVmxMsrs->ProcCtls2.u = RT_MAKE_U64(fAllowed0, fAllowed1);
1670 }
1671
1672 /* Tertiary processor-based VM-execution controls. */
1673 if (pGuestFeatures->fVmxTertiaryExecCtls)
1674 {
1675 pGuestVmxMsrs->u64ProcCtls3 = (pGuestFeatures->fVmxLoadIwKeyExit << VMX_BF_PROC_CTLS3_LOADIWKEY_EXIT_SHIFT);
1676 }
1677
1678 /* VM-exit controls. */
1679 {
1680 uint32_t const fFeatures = (pGuestFeatures->fVmxExitSaveDebugCtls << VMX_BF_EXIT_CTLS_SAVE_DEBUG_SHIFT )
1681 | (pGuestFeatures->fVmxHostAddrSpaceSize << VMX_BF_EXIT_CTLS_HOST_ADDR_SPACE_SIZE_SHIFT)
1682 | (pGuestFeatures->fVmxExitAckExtInt << VMX_BF_EXIT_CTLS_ACK_EXT_INT_SHIFT )
1683 | (pGuestFeatures->fVmxExitSavePatMsr << VMX_BF_EXIT_CTLS_SAVE_PAT_MSR_SHIFT )
1684 | (pGuestFeatures->fVmxExitLoadPatMsr << VMX_BF_EXIT_CTLS_LOAD_PAT_MSR_SHIFT )
1685 | (pGuestFeatures->fVmxExitSaveEferMsr << VMX_BF_EXIT_CTLS_SAVE_EFER_MSR_SHIFT )
1686 | (pGuestFeatures->fVmxExitLoadEferMsr << VMX_BF_EXIT_CTLS_LOAD_EFER_MSR_SHIFT )
1687 | (pGuestFeatures->fVmxSavePreemptTimer << VMX_BF_EXIT_CTLS_SAVE_PREEMPT_TIMER_SHIFT );
1688 /* Set the default1 class bits. See Intel spec. A.4 "VM-exit Controls". */
1689 uint32_t const fAllowed0 = VMX_EXIT_CTLS_DEFAULT1;
1690 uint32_t const fAllowed1 = fFeatures | VMX_EXIT_CTLS_DEFAULT1;
1691 AssertMsg((fAllowed0 & fAllowed1) == fAllowed0, ("fAllowed0=%#RX32 fAllowed1=%#RX32 fFeatures=%#RX32\n", fAllowed0,
1692 fAllowed1, fFeatures));
1693 pGuestVmxMsrs->ExitCtls.u = RT_MAKE_U64(fAllowed0, fAllowed1);
1694 }
1695
1696 /* VM-entry controls. */
1697 {
1698 uint32_t const fFeatures = (pGuestFeatures->fVmxEntryLoadDebugCtls << VMX_BF_ENTRY_CTLS_LOAD_DEBUG_SHIFT )
1699 | (pGuestFeatures->fVmxIa32eModeGuest << VMX_BF_ENTRY_CTLS_IA32E_MODE_GUEST_SHIFT)
1700 | (pGuestFeatures->fVmxEntryLoadEferMsr << VMX_BF_ENTRY_CTLS_LOAD_EFER_MSR_SHIFT )
1701 | (pGuestFeatures->fVmxEntryLoadPatMsr << VMX_BF_ENTRY_CTLS_LOAD_PAT_MSR_SHIFT );
1702 uint32_t const fAllowed0 = VMX_ENTRY_CTLS_DEFAULT1;
1703 uint32_t const fAllowed1 = fFeatures | VMX_ENTRY_CTLS_DEFAULT1;
1704 AssertMsg((fAllowed0 & fAllowed1) == fAllowed0, ("fAllowed0=%#RX32 fAllowed0=%#RX32 fFeatures=%#RX32\n", fAllowed0,
1705 fAllowed1, fFeatures));
1706 pGuestVmxMsrs->EntryCtls.u = RT_MAKE_U64(fAllowed0, fAllowed1);
1707 }
1708
1709 /* Miscellaneous data. */
1710 {
1711 uint64_t const uHostMsr = fIsNstGstHwExecAllowed ? pHostVmxMsrs->u64Misc : 0;
1712
1713 uint8_t const cMaxMsrs = RT_MIN(RT_BF_GET(uHostMsr, VMX_BF_MISC_MAX_MSRS), VMX_V_AUTOMSR_COUNT_MAX);
1714 uint8_t const fActivityState = RT_BF_GET(uHostMsr, VMX_BF_MISC_ACTIVITY_STATES) & VMX_V_GUEST_ACTIVITY_STATE_MASK;
1715 pGuestVmxMsrs->u64Misc = RT_BF_MAKE(VMX_BF_MISC_PREEMPT_TIMER_TSC, VMX_V_PREEMPT_TIMER_SHIFT )
1716 | RT_BF_MAKE(VMX_BF_MISC_EXIT_SAVE_EFER_LMA, pGuestFeatures->fVmxExitSaveEferLma )
1717 | RT_BF_MAKE(VMX_BF_MISC_ACTIVITY_STATES, fActivityState )
1718 | RT_BF_MAKE(VMX_BF_MISC_INTEL_PT, pGuestFeatures->fVmxIntelPt )
1719 | RT_BF_MAKE(VMX_BF_MISC_SMM_READ_SMBASE_MSR, 0 )
1720 | RT_BF_MAKE(VMX_BF_MISC_CR3_TARGET, VMX_V_CR3_TARGET_COUNT )
1721 | RT_BF_MAKE(VMX_BF_MISC_MAX_MSRS, cMaxMsrs )
1722 | RT_BF_MAKE(VMX_BF_MISC_VMXOFF_BLOCK_SMI, 0 )
1723 | RT_BF_MAKE(VMX_BF_MISC_VMWRITE_ALL, pGuestFeatures->fVmxVmwriteAll )
1724 | RT_BF_MAKE(VMX_BF_MISC_ENTRY_INJECT_SOFT_INT, pGuestFeatures->fVmxEntryInjectSoftInt)
1725 | RT_BF_MAKE(VMX_BF_MISC_MSEG_ID, VMX_V_MSEG_REV_ID );
1726 }
1727
1728 /* CR0 Fixed-0. */
1729 pGuestVmxMsrs->u64Cr0Fixed0 = pGuestFeatures->fVmxUnrestrictedGuest ? VMX_V_CR0_FIXED0_UX : VMX_V_CR0_FIXED0;
1730
1731 /* CR0 Fixed-1. */
1732 {
1733 /*
1734 * All CPUs I've looked at so far report CR0 fixed-1 bits as 0xffffffff.
1735 * This is different from CR4 fixed-1 bits which are reported as per the
1736 * CPU features and/or micro-architecture/generation. Why? Ask Intel.
1737 */
1738 uint64_t const uHostMsr = fIsNstGstHwExecAllowed ? pHostVmxMsrs->u64Cr0Fixed1 : 0xffffffff;
1739 pGuestVmxMsrs->u64Cr0Fixed1 = uHostMsr | pGuestVmxMsrs->u64Cr0Fixed0; /* Make sure the CR0 MB1 bits are not clear. */
1740 }
1741
1742 /* CR4 Fixed-0. */
1743 pGuestVmxMsrs->u64Cr4Fixed0 = VMX_V_CR4_FIXED0;
1744
1745 /* CR4 Fixed-1. */
1746 {
1747 uint64_t const uHostMsr = fIsNstGstHwExecAllowed ? pHostVmxMsrs->u64Cr4Fixed1 : CPUMGetGuestCR4ValidMask(pVM);
1748 pGuestVmxMsrs->u64Cr4Fixed1 = uHostMsr | pGuestVmxMsrs->u64Cr4Fixed0; /* Make sure the CR4 MB1 bits are not clear. */
1749 }
1750
1751 /* VMCS Enumeration. */
1752 pGuestVmxMsrs->u64VmcsEnum = VMX_V_VMCS_MAX_INDEX << VMX_BF_VMCS_ENUM_HIGHEST_IDX_SHIFT;
1753
1754 /* VPID and EPT Capabilities. */
1755 if (pGuestFeatures->fVmxEpt)
1756 {
1757 /*
1758 * INVVPID instruction always causes a VM-exit unconditionally, so we are free to fake
1759 * and emulate any INVVPID flush type. However, it only makes sense to expose the types
1760 * when INVVPID instruction is supported just to be more compatible with guest
1761 * hypervisors that may make assumptions by only looking at this MSR even though they
1762 * are technically supposed to refer to bit 37 of MSR_IA32_VMX_PROC_CTLS2 first.
1763 *
1764 * See Intel spec. 25.1.2 "Instructions That Cause VM Exits Unconditionally".
1765 * See Intel spec. 30.3 "VMX Instructions".
1766 */
1767 uint64_t const uHostMsr = fIsNstGstHwExecAllowed ? pHostVmxMsrs->u64EptVpidCaps : UINT64_MAX;
1768 uint8_t const fVpid = pGuestFeatures->fVmxVpid;
1769
1770 uint8_t const fExecOnly = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_RWX_X_ONLY);
1771 uint8_t const fPml4 = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_PAGE_WALK_LENGTH_4);
1772 uint8_t const fEptMemUc = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_EMT_UC);
1773 uint8_t const fEptMemWb = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_EMT_WB);
1774 uint8_t const f2MPage = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_PDE_2M);
1775 uint8_t const f1GPage = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_PDPTE_1G);
1776 uint8_t const fInvept = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_INVEPT);
1777 uint8_t const fEptAccDirty = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_EPT_ACCESS_DIRTY);
1778 uint8_t const fEptSingle = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_INVEPT_SINGLE_CTX);
1779 uint8_t const fEptAll = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_INVEPT_ALL_CTX);
1780 uint8_t const fVpidIndiv = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_INVVPID_INDIV_ADDR);
1781 uint8_t const fVpidSingle = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_INVVPID_SINGLE_CTX);
1782 uint8_t const fVpidAll = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_INVVPID_ALL_CTX);
1783 uint8_t const fVpidSingleGlobal = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_INVVPID_SINGLE_CTX_RETAIN_GLOBALS);
1784 pGuestVmxMsrs->u64EptVpidCaps = RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_RWX_X_ONLY, fExecOnly)
1785 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_PAGE_WALK_LENGTH_4, fPml4)
1786 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_EMT_UC, fEptMemUc)
1787 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_EMT_WB, fEptMemWb)
1788 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_PDE_2M, f2MPage)
1789 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_PDPTE_1G, f1GPage)
1790 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_INVEPT, fInvept)
1791 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_EPT_ACCESS_DIRTY, fEptAccDirty)
1792 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_ADVEXITINFO_EPT, 0)
1793 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_SUPER_SHW_STACK, 0)
1794 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_INVEPT_SINGLE_CTX, fEptSingle)
1795 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_INVEPT_ALL_CTX, fEptAll)
1796 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_INVVPID, fVpid)
1797 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_INVVPID_INDIV_ADDR, fVpid & fVpidIndiv)
1798 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_INVVPID_SINGLE_CTX, fVpid & fVpidSingle)
1799 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_INVVPID_ALL_CTX, fVpid & fVpidAll)
1800 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_INVVPID_SINGLE_CTX_RETAIN_GLOBALS, fVpid & fVpidSingleGlobal);
1801 }
1802
1803 /* VM Functions. */
1804 if (pGuestFeatures->fVmxVmFunc)
1805 pGuestVmxMsrs->u64VmFunc = RT_BF_MAKE(VMX_BF_VMFUNC_EPTP_SWITCHING, 1);
1806}
1807
1808
1809/**
1810 * Checks whether the given guest CPU VMX features are compatible with the provided
1811 * base features.
1812 *
1813 * @returns @c true if compatible, @c false otherwise.
1814 * @param pVM The cross context VM structure.
1815 * @param pBase The base VMX CPU features.
1816 * @param pGst The guest VMX CPU features.
1817 *
1818 * @remarks Only VMX feature bits are examined.
1819 */
1820static bool cpumR3AreVmxCpuFeaturesCompatible(PVM pVM, PCCPUMFEATURES pBase, PCCPUMFEATURES pGst)
1821{
1822 if (!cpumR3IsHwAssistNstGstExecAllowed(pVM))
1823 return false;
1824
1825 /* Check first set of feature bits. */
1826 {
1827 uint64_t const fBase = ((uint64_t)pBase->fVmxInsOutInfo << 0) | ((uint64_t)pBase->fVmxExtIntExit << 1)
1828 | ((uint64_t)pBase->fVmxNmiExit << 2) | ((uint64_t)pBase->fVmxVirtNmi << 3)
1829 | ((uint64_t)pBase->fVmxPreemptTimer << 4) | ((uint64_t)pBase->fVmxPostedInt << 5)
1830 | ((uint64_t)pBase->fVmxIntWindowExit << 6) | ((uint64_t)pBase->fVmxTscOffsetting << 7)
1831 | ((uint64_t)pBase->fVmxHltExit << 8) | ((uint64_t)pBase->fVmxInvlpgExit << 9)
1832 | ((uint64_t)pBase->fVmxMwaitExit << 10) | ((uint64_t)pBase->fVmxRdpmcExit << 11)
1833 | ((uint64_t)pBase->fVmxRdtscExit << 12) | ((uint64_t)pBase->fVmxCr3LoadExit << 13)
1834 | ((uint64_t)pBase->fVmxCr3StoreExit << 14) | ((uint64_t)pBase->fVmxCr8LoadExit << 15)
1835 | ((uint64_t)pBase->fVmxCr8StoreExit << 16) | ((uint64_t)pBase->fVmxUseTprShadow << 17)
1836 | ((uint64_t)pBase->fVmxNmiWindowExit << 18) | ((uint64_t)pBase->fVmxMovDRxExit << 19)
1837 | ((uint64_t)pBase->fVmxUncondIoExit << 20) | ((uint64_t)pBase->fVmxUseIoBitmaps << 21)
1838 | ((uint64_t)pBase->fVmxMonitorTrapFlag << 22) | ((uint64_t)pBase->fVmxUseMsrBitmaps << 23)
1839 | ((uint64_t)pBase->fVmxMonitorExit << 24) | ((uint64_t)pBase->fVmxPauseExit << 25)
1840 | ((uint64_t)pBase->fVmxSecondaryExecCtls << 26) | ((uint64_t)pBase->fVmxVirtApicAccess << 27)
1841 | ((uint64_t)pBase->fVmxEpt << 28) | ((uint64_t)pBase->fVmxDescTableExit << 29)
1842 | ((uint64_t)pBase->fVmxRdtscp << 30) | ((uint64_t)pBase->fVmxVirtX2ApicMode << 31)
1843 | ((uint64_t)pBase->fVmxVpid << 32) | ((uint64_t)pBase->fVmxWbinvdExit << 33)
1844 | ((uint64_t)pBase->fVmxUnrestrictedGuest << 34) | ((uint64_t)pBase->fVmxApicRegVirt << 35)
1845 | ((uint64_t)pBase->fVmxVirtIntDelivery << 36) | ((uint64_t)pBase->fVmxPauseLoopExit << 37)
1846 | ((uint64_t)pBase->fVmxRdrandExit << 38) | ((uint64_t)pBase->fVmxInvpcid << 39)
1847 | ((uint64_t)pBase->fVmxVmFunc << 40) | ((uint64_t)pBase->fVmxVmcsShadowing << 41)
1848 | ((uint64_t)pBase->fVmxRdseedExit << 42) | ((uint64_t)pBase->fVmxPml << 43)
1849 | ((uint64_t)pBase->fVmxEptXcptVe << 44) | ((uint64_t)pBase->fVmxXsavesXrstors << 45)
1850 | ((uint64_t)pBase->fVmxUseTscScaling << 46) | ((uint64_t)pBase->fVmxEntryLoadDebugCtls << 47)
1851 | ((uint64_t)pBase->fVmxIa32eModeGuest << 48) | ((uint64_t)pBase->fVmxEntryLoadEferMsr << 49)
1852 | ((uint64_t)pBase->fVmxEntryLoadPatMsr << 50) | ((uint64_t)pBase->fVmxExitSaveDebugCtls << 51)
1853 | ((uint64_t)pBase->fVmxHostAddrSpaceSize << 52) | ((uint64_t)pBase->fVmxExitAckExtInt << 53)
1854 | ((uint64_t)pBase->fVmxExitSavePatMsr << 54) | ((uint64_t)pBase->fVmxExitLoadPatMsr << 55)
1855 | ((uint64_t)pBase->fVmxExitSaveEferMsr << 56) | ((uint64_t)pBase->fVmxExitLoadEferMsr << 57)
1856 | ((uint64_t)pBase->fVmxSavePreemptTimer << 58) | ((uint64_t)pBase->fVmxExitSaveEferLma << 59)
1857 | ((uint64_t)pBase->fVmxIntelPt << 60) | ((uint64_t)pBase->fVmxVmwriteAll << 61)
1858 | ((uint64_t)pBase->fVmxEntryInjectSoftInt << 62);
1859
1860 uint64_t const fGst = ((uint64_t)pGst->fVmxInsOutInfo << 0) | ((uint64_t)pGst->fVmxExtIntExit << 1)
1861 | ((uint64_t)pGst->fVmxNmiExit << 2) | ((uint64_t)pGst->fVmxVirtNmi << 3)
1862 | ((uint64_t)pGst->fVmxPreemptTimer << 4) | ((uint64_t)pGst->fVmxPostedInt << 5)
1863 | ((uint64_t)pGst->fVmxIntWindowExit << 6) | ((uint64_t)pGst->fVmxTscOffsetting << 7)
1864 | ((uint64_t)pGst->fVmxHltExit << 8) | ((uint64_t)pGst->fVmxInvlpgExit << 9)
1865 | ((uint64_t)pGst->fVmxMwaitExit << 10) | ((uint64_t)pGst->fVmxRdpmcExit << 11)
1866 | ((uint64_t)pGst->fVmxRdtscExit << 12) | ((uint64_t)pGst->fVmxCr3LoadExit << 13)
1867 | ((uint64_t)pGst->fVmxCr3StoreExit << 14) | ((uint64_t)pGst->fVmxCr8LoadExit << 15)
1868 | ((uint64_t)pGst->fVmxCr8StoreExit << 16) | ((uint64_t)pGst->fVmxUseTprShadow << 17)
1869 | ((uint64_t)pGst->fVmxNmiWindowExit << 18) | ((uint64_t)pGst->fVmxMovDRxExit << 19)
1870 | ((uint64_t)pGst->fVmxUncondIoExit << 20) | ((uint64_t)pGst->fVmxUseIoBitmaps << 21)
1871 | ((uint64_t)pGst->fVmxMonitorTrapFlag << 22) | ((uint64_t)pGst->fVmxUseMsrBitmaps << 23)
1872 | ((uint64_t)pGst->fVmxMonitorExit << 24) | ((uint64_t)pGst->fVmxPauseExit << 25)
1873 | ((uint64_t)pGst->fVmxSecondaryExecCtls << 26) | ((uint64_t)pGst->fVmxVirtApicAccess << 27)
1874 | ((uint64_t)pGst->fVmxEpt << 28) | ((uint64_t)pGst->fVmxDescTableExit << 29)
1875 | ((uint64_t)pGst->fVmxRdtscp << 30) | ((uint64_t)pGst->fVmxVirtX2ApicMode << 31)
1876 | ((uint64_t)pGst->fVmxVpid << 32) | ((uint64_t)pGst->fVmxWbinvdExit << 33)
1877 | ((uint64_t)pGst->fVmxUnrestrictedGuest << 34) | ((uint64_t)pGst->fVmxApicRegVirt << 35)
1878 | ((uint64_t)pGst->fVmxVirtIntDelivery << 36) | ((uint64_t)pGst->fVmxPauseLoopExit << 37)
1879 | ((uint64_t)pGst->fVmxRdrandExit << 38) | ((uint64_t)pGst->fVmxInvpcid << 39)
1880 | ((uint64_t)pGst->fVmxVmFunc << 40) | ((uint64_t)pGst->fVmxVmcsShadowing << 41)
1881 | ((uint64_t)pGst->fVmxRdseedExit << 42) | ((uint64_t)pGst->fVmxPml << 43)
1882 | ((uint64_t)pGst->fVmxEptXcptVe << 44) | ((uint64_t)pGst->fVmxXsavesXrstors << 45)
1883 | ((uint64_t)pGst->fVmxUseTscScaling << 46) | ((uint64_t)pGst->fVmxEntryLoadDebugCtls << 47)
1884 | ((uint64_t)pGst->fVmxIa32eModeGuest << 48) | ((uint64_t)pGst->fVmxEntryLoadEferMsr << 49)
1885 | ((uint64_t)pGst->fVmxEntryLoadPatMsr << 50) | ((uint64_t)pGst->fVmxExitSaveDebugCtls << 51)
1886 | ((uint64_t)pGst->fVmxHostAddrSpaceSize << 52) | ((uint64_t)pGst->fVmxExitAckExtInt << 53)
1887 | ((uint64_t)pGst->fVmxExitSavePatMsr << 54) | ((uint64_t)pGst->fVmxExitLoadPatMsr << 55)
1888 | ((uint64_t)pGst->fVmxExitSaveEferMsr << 56) | ((uint64_t)pGst->fVmxExitLoadEferMsr << 57)
1889 | ((uint64_t)pGst->fVmxSavePreemptTimer << 58) | ((uint64_t)pGst->fVmxExitSaveEferLma << 59)
1890 | ((uint64_t)pGst->fVmxIntelPt << 60) | ((uint64_t)pGst->fVmxVmwriteAll << 61)
1891 | ((uint64_t)pGst->fVmxEntryInjectSoftInt << 62);
1892
1893 if ((fBase | fGst) != fBase)
1894 {
1895 uint64_t const fDiff = fBase ^ fGst;
1896 LogRel(("CPUM: VMX features (1) now exposed to the guest are incompatible with those from the saved state. fBase=%#RX64 fGst=%#RX64 fDiff=%#RX64\n",
1897 fBase, fGst, fDiff));
1898 return false;
1899 }
1900 }
1901
1902 /* Check second set of feature bits. */
1903 {
1904 uint64_t const fBase = ((uint64_t)pBase->fVmxTertiaryExecCtls << 0) | ((uint64_t)pBase->fVmxLoadIwKeyExit << 1);
1905 uint64_t const fGst = ((uint64_t)pGst->fVmxTertiaryExecCtls << 0) | ((uint64_t)pGst->fVmxLoadIwKeyExit << 1);
1906 if ((fBase | fGst) != fBase)
1907 {
1908 uint64_t const fDiff = fBase ^ fGst;
1909 LogRel(("CPUM: VMX features (2) now exposed to the guest are incompatible with those from the saved state. fBase=%#RX64 fGst=%#RX64 fDiff=%#RX64\n",
1910 fBase, fGst, fDiff));
1911 return false;
1912 }
1913 }
1914
1915 return true;
1916}
1917
1918
1919/**
1920 * Initializes VMX guest features and MSRs.
1921 *
1922 * @param pVM The cross context VM structure.
1923 * @param pHostVmxMsrs The host VMX MSRs. Pass NULL when fully emulating VMX
1924 * and no hardware-assisted nested-guest execution is
1925 * possible for this VM.
1926 * @param pGuestVmxMsrs Where to store the initialized guest VMX MSRs.
1927 */
1928void cpumR3InitVmxGuestFeaturesAndMsrs(PVM pVM, PCVMXMSRS pHostVmxMsrs, PVMXMSRS pGuestVmxMsrs)
1929{
1930 Assert(pVM);
1931 Assert(pGuestVmxMsrs);
1932
1933 /*
1934 * While it would be nice to check this earlier while initializing fNestedVmxEpt
1935 * but we would not have enumearted host features then, so do it at least now.
1936 */
1937 if ( !pVM->cpum.s.HostFeatures.fNoExecute
1938 && pVM->cpum.s.fNestedVmxEpt)
1939 {
1940 LogRel(("CPUM: Warning! EPT not exposed to the guest since NX isn't available on the host.\n"));
1941 pVM->cpum.s.fNestedVmxEpt = false;
1942 pVM->cpum.s.fNestedVmxUnrestrictedGuest = false;
1943 }
1944
1945 /*
1946 * Initialize the set of VMX features we emulate.
1947 *
1948 * Note! Some bits might be reported as 1 always if they fall under the
1949 * default1 class bits (e.g. fVmxEntryLoadDebugCtls), see @bugref{9180#c5}.
1950 */
1951 CPUMFEATURES EmuFeat;
1952 RT_ZERO(EmuFeat);
1953 EmuFeat.fVmx = 1;
1954 EmuFeat.fVmxInsOutInfo = 1;
1955 EmuFeat.fVmxExtIntExit = 1;
1956 EmuFeat.fVmxNmiExit = 1;
1957 EmuFeat.fVmxVirtNmi = 1;
1958 EmuFeat.fVmxPreemptTimer = 0; /* pVM->cpum.s.fNestedVmxPreemptTimer -- Currently disabled on purpose, see @bugref{9180#c108}. */
1959 EmuFeat.fVmxPostedInt = 0;
1960 EmuFeat.fVmxIntWindowExit = 1;
1961 EmuFeat.fVmxTscOffsetting = 1;
1962 EmuFeat.fVmxHltExit = 1;
1963 EmuFeat.fVmxInvlpgExit = 1;
1964 EmuFeat.fVmxMwaitExit = 1;
1965 EmuFeat.fVmxRdpmcExit = 1;
1966 EmuFeat.fVmxRdtscExit = 1;
1967 EmuFeat.fVmxCr3LoadExit = 1;
1968 EmuFeat.fVmxCr3StoreExit = 1;
1969 EmuFeat.fVmxTertiaryExecCtls = 0;
1970 EmuFeat.fVmxCr8LoadExit = 1;
1971 EmuFeat.fVmxCr8StoreExit = 1;
1972 EmuFeat.fVmxUseTprShadow = 1;
1973 EmuFeat.fVmxNmiWindowExit = 0;
1974 EmuFeat.fVmxMovDRxExit = 1;
1975 EmuFeat.fVmxUncondIoExit = 1;
1976 EmuFeat.fVmxUseIoBitmaps = 1;
1977 EmuFeat.fVmxMonitorTrapFlag = 0;
1978 EmuFeat.fVmxUseMsrBitmaps = 1;
1979 EmuFeat.fVmxMonitorExit = 1;
1980 EmuFeat.fVmxPauseExit = 1;
1981 EmuFeat.fVmxSecondaryExecCtls = 1;
1982 EmuFeat.fVmxVirtApicAccess = 1;
1983 EmuFeat.fVmxEpt = pVM->cpum.s.fNestedVmxEpt;
1984 EmuFeat.fVmxDescTableExit = 1;
1985 EmuFeat.fVmxRdtscp = 1;
1986 EmuFeat.fVmxVirtX2ApicMode = 0;
1987 EmuFeat.fVmxVpid = EmuFeat.fVmxEpt;
1988 EmuFeat.fVmxWbinvdExit = 1;
1989 EmuFeat.fVmxUnrestrictedGuest = pVM->cpum.s.fNestedVmxUnrestrictedGuest;
1990 EmuFeat.fVmxApicRegVirt = 0;
1991 EmuFeat.fVmxVirtIntDelivery = 0;
1992 EmuFeat.fVmxPauseLoopExit = 0;
1993 EmuFeat.fVmxRdrandExit = 0;
1994 EmuFeat.fVmxInvpcid = 1;
1995 EmuFeat.fVmxVmFunc = 0;
1996 EmuFeat.fVmxVmcsShadowing = 0;
1997 EmuFeat.fVmxRdseedExit = 0;
1998 EmuFeat.fVmxPml = 0;
1999 EmuFeat.fVmxEptXcptVe = 0;
2000 EmuFeat.fVmxXsavesXrstors = 0;
2001 EmuFeat.fVmxUseTscScaling = 0;
2002 EmuFeat.fVmxLoadIwKeyExit = 0;
2003 EmuFeat.fVmxEntryLoadDebugCtls = 1;
2004 EmuFeat.fVmxIa32eModeGuest = 1;
2005 EmuFeat.fVmxEntryLoadEferMsr = 1;
2006 EmuFeat.fVmxEntryLoadPatMsr = 0;
2007 EmuFeat.fVmxExitSaveDebugCtls = 1;
2008 EmuFeat.fVmxHostAddrSpaceSize = 1;
2009 EmuFeat.fVmxExitAckExtInt = 1;
2010 EmuFeat.fVmxExitSavePatMsr = 0;
2011 EmuFeat.fVmxExitLoadPatMsr = 0;
2012 EmuFeat.fVmxExitSaveEferMsr = 1;
2013 EmuFeat.fVmxExitLoadEferMsr = 1;
2014 EmuFeat.fVmxSavePreemptTimer = 0; /* Cannot be enabled if VMX-preemption timer is disabled. */
2015 EmuFeat.fVmxExitSaveEferLma = 1; /* Cannot be disabled if unrestricted guest is enabled. */
2016 EmuFeat.fVmxIntelPt = 0;
2017 EmuFeat.fVmxVmwriteAll = 0; /** @todo NSTVMX: enable this when nested VMCS shadowing is enabled. */
2018 EmuFeat.fVmxEntryInjectSoftInt = 1;
2019
2020 /*
2021 * Merge guest features.
2022 *
2023 * When hardware-assisted VMX may be used, any feature we emulate must also be supported
2024 * by the hardware, hence we merge our emulated features with the host features below.
2025 */
2026 PCCPUMFEATURES pBaseFeat = cpumR3IsHwAssistNstGstExecAllowed(pVM) ? &pVM->cpum.s.HostFeatures : &EmuFeat;
2027 PCPUMFEATURES pGuestFeat = &pVM->cpum.s.GuestFeatures;
2028 Assert(pBaseFeat->fVmx);
2029 pGuestFeat->fVmxInsOutInfo = (pBaseFeat->fVmxInsOutInfo & EmuFeat.fVmxInsOutInfo );
2030 pGuestFeat->fVmxExtIntExit = (pBaseFeat->fVmxExtIntExit & EmuFeat.fVmxExtIntExit );
2031 pGuestFeat->fVmxNmiExit = (pBaseFeat->fVmxNmiExit & EmuFeat.fVmxNmiExit );
2032 pGuestFeat->fVmxVirtNmi = (pBaseFeat->fVmxVirtNmi & EmuFeat.fVmxVirtNmi );
2033 pGuestFeat->fVmxPreemptTimer = (pBaseFeat->fVmxPreemptTimer & EmuFeat.fVmxPreemptTimer );
2034 pGuestFeat->fVmxPostedInt = (pBaseFeat->fVmxPostedInt & EmuFeat.fVmxPostedInt );
2035 pGuestFeat->fVmxIntWindowExit = (pBaseFeat->fVmxIntWindowExit & EmuFeat.fVmxIntWindowExit );
2036 pGuestFeat->fVmxTscOffsetting = (pBaseFeat->fVmxTscOffsetting & EmuFeat.fVmxTscOffsetting );
2037 pGuestFeat->fVmxHltExit = (pBaseFeat->fVmxHltExit & EmuFeat.fVmxHltExit );
2038 pGuestFeat->fVmxInvlpgExit = (pBaseFeat->fVmxInvlpgExit & EmuFeat.fVmxInvlpgExit );
2039 pGuestFeat->fVmxMwaitExit = (pBaseFeat->fVmxMwaitExit & EmuFeat.fVmxMwaitExit );
2040 pGuestFeat->fVmxRdpmcExit = (pBaseFeat->fVmxRdpmcExit & EmuFeat.fVmxRdpmcExit );
2041 pGuestFeat->fVmxRdtscExit = (pBaseFeat->fVmxRdtscExit & EmuFeat.fVmxRdtscExit );
2042 pGuestFeat->fVmxCr3LoadExit = (pBaseFeat->fVmxCr3LoadExit & EmuFeat.fVmxCr3LoadExit );
2043 pGuestFeat->fVmxCr3StoreExit = (pBaseFeat->fVmxCr3StoreExit & EmuFeat.fVmxCr3StoreExit );
2044 pGuestFeat->fVmxTertiaryExecCtls = (pBaseFeat->fVmxTertiaryExecCtls & EmuFeat.fVmxTertiaryExecCtls );
2045 pGuestFeat->fVmxCr8LoadExit = (pBaseFeat->fVmxCr8LoadExit & EmuFeat.fVmxCr8LoadExit );
2046 pGuestFeat->fVmxCr8StoreExit = (pBaseFeat->fVmxCr8StoreExit & EmuFeat.fVmxCr8StoreExit );
2047 pGuestFeat->fVmxUseTprShadow = (pBaseFeat->fVmxUseTprShadow & EmuFeat.fVmxUseTprShadow );
2048 pGuestFeat->fVmxNmiWindowExit = (pBaseFeat->fVmxNmiWindowExit & EmuFeat.fVmxNmiWindowExit );
2049 pGuestFeat->fVmxMovDRxExit = (pBaseFeat->fVmxMovDRxExit & EmuFeat.fVmxMovDRxExit );
2050 pGuestFeat->fVmxUncondIoExit = (pBaseFeat->fVmxUncondIoExit & EmuFeat.fVmxUncondIoExit );
2051 pGuestFeat->fVmxUseIoBitmaps = (pBaseFeat->fVmxUseIoBitmaps & EmuFeat.fVmxUseIoBitmaps );
2052 pGuestFeat->fVmxMonitorTrapFlag = (pBaseFeat->fVmxMonitorTrapFlag & EmuFeat.fVmxMonitorTrapFlag );
2053 pGuestFeat->fVmxUseMsrBitmaps = (pBaseFeat->fVmxUseMsrBitmaps & EmuFeat.fVmxUseMsrBitmaps );
2054 pGuestFeat->fVmxMonitorExit = (pBaseFeat->fVmxMonitorExit & EmuFeat.fVmxMonitorExit );
2055 pGuestFeat->fVmxPauseExit = (pBaseFeat->fVmxPauseExit & EmuFeat.fVmxPauseExit );
2056 pGuestFeat->fVmxSecondaryExecCtls = (pBaseFeat->fVmxSecondaryExecCtls & EmuFeat.fVmxSecondaryExecCtls );
2057 pGuestFeat->fVmxVirtApicAccess = (pBaseFeat->fVmxVirtApicAccess & EmuFeat.fVmxVirtApicAccess );
2058 pGuestFeat->fVmxEpt = (pBaseFeat->fVmxEpt & EmuFeat.fVmxEpt );
2059 pGuestFeat->fVmxDescTableExit = (pBaseFeat->fVmxDescTableExit & EmuFeat.fVmxDescTableExit );
2060 pGuestFeat->fVmxRdtscp = (pBaseFeat->fVmxRdtscp & EmuFeat.fVmxRdtscp );
2061 pGuestFeat->fVmxVirtX2ApicMode = (pBaseFeat->fVmxVirtX2ApicMode & EmuFeat.fVmxVirtX2ApicMode );
2062 pGuestFeat->fVmxVpid = (pBaseFeat->fVmxVpid & EmuFeat.fVmxVpid );
2063 pGuestFeat->fVmxWbinvdExit = (pBaseFeat->fVmxWbinvdExit & EmuFeat.fVmxWbinvdExit );
2064 pGuestFeat->fVmxUnrestrictedGuest = (pBaseFeat->fVmxUnrestrictedGuest & EmuFeat.fVmxUnrestrictedGuest );
2065 pGuestFeat->fVmxApicRegVirt = (pBaseFeat->fVmxApicRegVirt & EmuFeat.fVmxApicRegVirt );
2066 pGuestFeat->fVmxVirtIntDelivery = (pBaseFeat->fVmxVirtIntDelivery & EmuFeat.fVmxVirtIntDelivery );
2067 pGuestFeat->fVmxPauseLoopExit = (pBaseFeat->fVmxPauseLoopExit & EmuFeat.fVmxPauseLoopExit );
2068 pGuestFeat->fVmxRdrandExit = (pBaseFeat->fVmxRdrandExit & EmuFeat.fVmxRdrandExit );
2069 pGuestFeat->fVmxInvpcid = (pBaseFeat->fVmxInvpcid & EmuFeat.fVmxInvpcid );
2070 pGuestFeat->fVmxVmFunc = (pBaseFeat->fVmxVmFunc & EmuFeat.fVmxVmFunc );
2071 pGuestFeat->fVmxVmcsShadowing = (pBaseFeat->fVmxVmcsShadowing & EmuFeat.fVmxVmcsShadowing );
2072 pGuestFeat->fVmxRdseedExit = (pBaseFeat->fVmxRdseedExit & EmuFeat.fVmxRdseedExit );
2073 pGuestFeat->fVmxPml = (pBaseFeat->fVmxPml & EmuFeat.fVmxPml );
2074 pGuestFeat->fVmxEptXcptVe = (pBaseFeat->fVmxEptXcptVe & EmuFeat.fVmxEptXcptVe );
2075 pGuestFeat->fVmxXsavesXrstors = (pBaseFeat->fVmxXsavesXrstors & EmuFeat.fVmxXsavesXrstors );
2076 pGuestFeat->fVmxUseTscScaling = (pBaseFeat->fVmxUseTscScaling & EmuFeat.fVmxUseTscScaling );
2077 pGuestFeat->fVmxLoadIwKeyExit = (pBaseFeat->fVmxLoadIwKeyExit & EmuFeat.fVmxLoadIwKeyExit );
2078 pGuestFeat->fVmxEntryLoadDebugCtls = (pBaseFeat->fVmxEntryLoadDebugCtls & EmuFeat.fVmxEntryLoadDebugCtls );
2079 pGuestFeat->fVmxIa32eModeGuest = (pBaseFeat->fVmxIa32eModeGuest & EmuFeat.fVmxIa32eModeGuest );
2080 pGuestFeat->fVmxEntryLoadEferMsr = (pBaseFeat->fVmxEntryLoadEferMsr & EmuFeat.fVmxEntryLoadEferMsr );
2081 pGuestFeat->fVmxEntryLoadPatMsr = (pBaseFeat->fVmxEntryLoadPatMsr & EmuFeat.fVmxEntryLoadPatMsr );
2082 pGuestFeat->fVmxExitSaveDebugCtls = (pBaseFeat->fVmxExitSaveDebugCtls & EmuFeat.fVmxExitSaveDebugCtls );
2083 pGuestFeat->fVmxHostAddrSpaceSize = (pBaseFeat->fVmxHostAddrSpaceSize & EmuFeat.fVmxHostAddrSpaceSize );
2084 pGuestFeat->fVmxExitAckExtInt = (pBaseFeat->fVmxExitAckExtInt & EmuFeat.fVmxExitAckExtInt );
2085 pGuestFeat->fVmxExitSavePatMsr = (pBaseFeat->fVmxExitSavePatMsr & EmuFeat.fVmxExitSavePatMsr );
2086 pGuestFeat->fVmxExitLoadPatMsr = (pBaseFeat->fVmxExitLoadPatMsr & EmuFeat.fVmxExitLoadPatMsr );
2087 pGuestFeat->fVmxExitSaveEferMsr = (pBaseFeat->fVmxExitSaveEferMsr & EmuFeat.fVmxExitSaveEferMsr );
2088 pGuestFeat->fVmxExitLoadEferMsr = (pBaseFeat->fVmxExitLoadEferMsr & EmuFeat.fVmxExitLoadEferMsr );
2089 pGuestFeat->fVmxSavePreemptTimer = (pBaseFeat->fVmxSavePreemptTimer & EmuFeat.fVmxSavePreemptTimer );
2090 pGuestFeat->fVmxExitSaveEferLma = (pBaseFeat->fVmxExitSaveEferLma & EmuFeat.fVmxExitSaveEferLma );
2091 pGuestFeat->fVmxIntelPt = (pBaseFeat->fVmxIntelPt & EmuFeat.fVmxIntelPt );
2092 pGuestFeat->fVmxVmwriteAll = (pBaseFeat->fVmxVmwriteAll & EmuFeat.fVmxVmwriteAll );
2093 pGuestFeat->fVmxEntryInjectSoftInt = (pBaseFeat->fVmxEntryInjectSoftInt & EmuFeat.fVmxEntryInjectSoftInt );
2094
2095 /* Don't expose VMX preemption timer if host is subject to VMX-preemption timer erratum. */
2096 if ( pGuestFeat->fVmxPreemptTimer
2097 && HMIsSubjectToVmxPreemptTimerErratum())
2098 {
2099 LogRel(("CPUM: Warning! VMX-preemption timer not exposed to guest due to host CPU erratum.\n"));
2100 pGuestFeat->fVmxPreemptTimer = 0;
2101 pGuestFeat->fVmxSavePreemptTimer = 0;
2102 }
2103
2104 /* Sanity checking. */
2105 if (!pGuestFeat->fVmxSecondaryExecCtls)
2106 {
2107 Assert(!pGuestFeat->fVmxVirtApicAccess);
2108 Assert(!pGuestFeat->fVmxEpt);
2109 Assert(!pGuestFeat->fVmxDescTableExit);
2110 Assert(!pGuestFeat->fVmxRdtscp);
2111 Assert(!pGuestFeat->fVmxVirtX2ApicMode);
2112 Assert(!pGuestFeat->fVmxVpid);
2113 Assert(!pGuestFeat->fVmxWbinvdExit);
2114 Assert(!pGuestFeat->fVmxUnrestrictedGuest);
2115 Assert(!pGuestFeat->fVmxApicRegVirt);
2116 Assert(!pGuestFeat->fVmxVirtIntDelivery);
2117 Assert(!pGuestFeat->fVmxPauseLoopExit);
2118 Assert(!pGuestFeat->fVmxRdrandExit);
2119 Assert(!pGuestFeat->fVmxInvpcid);
2120 Assert(!pGuestFeat->fVmxVmFunc);
2121 Assert(!pGuestFeat->fVmxVmcsShadowing);
2122 Assert(!pGuestFeat->fVmxRdseedExit);
2123 Assert(!pGuestFeat->fVmxPml);
2124 Assert(!pGuestFeat->fVmxEptXcptVe);
2125 Assert(!pGuestFeat->fVmxXsavesXrstors);
2126 Assert(!pGuestFeat->fVmxUseTscScaling);
2127 }
2128 else if (pGuestFeat->fVmxUnrestrictedGuest)
2129 {
2130 /* See footnote in Intel spec. 27.2 "Recording VM-Exit Information And Updating VM-entry Control Fields". */
2131 Assert(pGuestFeat->fVmxExitSaveEferLma);
2132 /* Unrestricted guest execution requires EPT. See Intel spec. 25.2.1.1 "VM-Execution Control Fields". */
2133 Assert(pGuestFeat->fVmxEpt);
2134 }
2135
2136 if (!pGuestFeat->fVmxTertiaryExecCtls)
2137 Assert(!pGuestFeat->fVmxLoadIwKeyExit);
2138
2139 /*
2140 * Finally initialize the VMX guest MSRs.
2141 */
2142 cpumR3InitVmxGuestMsrs(pVM, pHostVmxMsrs, pGuestFeat, pGuestVmxMsrs);
2143}
2144
2145
2146/**
2147 * Gets the host hardware-virtualization MSRs.
2148 *
2149 * @returns VBox status code.
2150 * @param pMsrs Where to store the MSRs.
2151 */
2152static int cpumR3GetHostHwvirtMsrs(PCPUMMSRS pMsrs)
2153{
2154 Assert(pMsrs);
2155
2156 uint32_t fCaps = 0;
2157 int rc = SUPR3QueryVTCaps(&fCaps);
2158 if (RT_SUCCESS(rc))
2159 {
2160 if (fCaps & (SUPVTCAPS_VT_X | SUPVTCAPS_AMD_V))
2161 {
2162 SUPHWVIRTMSRS HwvirtMsrs;
2163 rc = SUPR3GetHwvirtMsrs(&HwvirtMsrs, false /* fForceRequery */);
2164 if (RT_SUCCESS(rc))
2165 {
2166 if (fCaps & SUPVTCAPS_VT_X)
2167 HMGetVmxMsrsFromHwvirtMsrs(&HwvirtMsrs, &pMsrs->hwvirt.vmx);
2168 else
2169 HMGetSvmMsrsFromHwvirtMsrs(&HwvirtMsrs, &pMsrs->hwvirt.svm);
2170 return VINF_SUCCESS;
2171 }
2172
2173 LogRel(("CPUM: Querying hardware-virtualization MSRs failed. rc=%Rrc\n", rc));
2174 return rc;
2175 }
2176
2177 LogRel(("CPUM: Querying hardware-virtualization capability succeeded but did not find VT-x or AMD-V\n"));
2178 return VERR_INTERNAL_ERROR_5;
2179 }
2180 LogRel(("CPUM: No hardware-virtualization capability detected\n"));
2181 return VINF_SUCCESS;
2182}
2183
2184
2185/**
2186 * @callback_method_impl{FNTMTIMERINT,
2187 * Callback that fires when the nested VMX-preemption timer expired.}
2188 */
2189static DECLCALLBACK(void) cpumR3VmxPreemptTimerCallback(PVM pVM, TMTIMERHANDLE hTimer, void *pvUser)
2190{
2191 RT_NOREF(pVM, hTimer);
2192 PVMCPU pVCpu = (PVMCPUR3)pvUser;
2193 AssertPtr(pVCpu);
2194 VMCPU_FF_SET(pVCpu, VMCPU_FF_VMX_PREEMPT_TIMER);
2195}
2196
2197
2198/**
2199 * Initializes the CPUM.
2200 *
2201 * @returns VBox status code.
2202 * @param pVM The cross context VM structure.
2203 */
2204VMMR3DECL(int) CPUMR3Init(PVM pVM)
2205{
2206 LogFlow(("CPUMR3Init\n"));
2207
2208 /*
2209 * Assert alignment, sizes and tables.
2210 */
2211 AssertCompileMemberAlignment(VM, cpum.s, 32);
2212 AssertCompile(sizeof(pVM->cpum.s) <= sizeof(pVM->cpum.padding));
2213 AssertCompileSizeAlignment(CPUMCTX, 64);
2214 AssertCompileSizeAlignment(CPUMCTXMSRS, 64);
2215 AssertCompileSizeAlignment(CPUMHOSTCTX, 64);
2216 AssertCompileMemberAlignment(VM, cpum, 64);
2217 AssertCompileMemberAlignment(VMCPU, cpum.s, 64);
2218#ifdef VBOX_STRICT
2219 int rc2 = cpumR3MsrStrictInitChecks();
2220 AssertRCReturn(rc2, rc2);
2221#endif
2222
2223 /*
2224 * Gather info about the host CPU.
2225 */
2226 if (!ASMHasCpuId())
2227 {
2228 LogRel(("The CPU doesn't support CPUID!\n"));
2229 return VERR_UNSUPPORTED_CPU;
2230 }
2231
2232 pVM->cpum.s.fHostMxCsrMask = CPUMR3DeterminHostMxCsrMask();
2233
2234 CPUMMSRS HostMsrs;
2235 RT_ZERO(HostMsrs);
2236 int rc = cpumR3GetHostHwvirtMsrs(&HostMsrs);
2237 AssertLogRelRCReturn(rc, rc);
2238
2239 PCPUMCPUIDLEAF paLeaves;
2240 uint32_t cLeaves;
2241 rc = CPUMR3CpuIdCollectLeaves(&paLeaves, &cLeaves);
2242 AssertLogRelRCReturn(rc, rc);
2243
2244 rc = cpumR3CpuIdExplodeFeatures(paLeaves, cLeaves, &HostMsrs, &pVM->cpum.s.HostFeatures);
2245 RTMemFree(paLeaves);
2246 AssertLogRelRCReturn(rc, rc);
2247 pVM->cpum.s.GuestFeatures.enmCpuVendor = pVM->cpum.s.HostFeatures.enmCpuVendor;
2248
2249 /*
2250 * Check that the CPU supports the minimum features we require.
2251 */
2252 if (!pVM->cpum.s.HostFeatures.fFxSaveRstor)
2253 return VMSetError(pVM, VERR_UNSUPPORTED_CPU, RT_SRC_POS, "Host CPU does not support the FXSAVE/FXRSTOR instruction.");
2254 if (!pVM->cpum.s.HostFeatures.fMmx)
2255 return VMSetError(pVM, VERR_UNSUPPORTED_CPU, RT_SRC_POS, "Host CPU does not support MMX.");
2256 if (!pVM->cpum.s.HostFeatures.fTsc)
2257 return VMSetError(pVM, VERR_UNSUPPORTED_CPU, RT_SRC_POS, "Host CPU does not support RDTSC.");
2258
2259 /*
2260 * Setup the CR4 AND and OR masks used in the raw-mode switcher.
2261 */
2262 pVM->cpum.s.CR4.AndMask = X86_CR4_OSXMMEEXCPT | X86_CR4_PVI | X86_CR4_VME;
2263 pVM->cpum.s.CR4.OrMask = X86_CR4_OSFXSR;
2264
2265 /*
2266 * Figure out which XSAVE/XRSTOR features are available on the host.
2267 */
2268 uint64_t fXcr0Host = 0;
2269 uint64_t fXStateHostMask = 0;
2270 if ( pVM->cpum.s.HostFeatures.fXSaveRstor
2271 && pVM->cpum.s.HostFeatures.fOpSysXSaveRstor)
2272 {
2273 fXStateHostMask = fXcr0Host = ASMGetXcr0();
2274 fXStateHostMask &= XSAVE_C_X87 | XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI;
2275 AssertLogRelMsgStmt((fXStateHostMask & (XSAVE_C_X87 | XSAVE_C_SSE)) == (XSAVE_C_X87 | XSAVE_C_SSE),
2276 ("%#llx\n", fXStateHostMask), fXStateHostMask = 0);
2277 }
2278 pVM->cpum.s.fXStateHostMask = fXStateHostMask;
2279 LogRel(("CPUM: fXStateHostMask=%#llx; initial: %#llx; host XCR0=%#llx\n",
2280 pVM->cpum.s.fXStateHostMask, fXStateHostMask, fXcr0Host));
2281
2282 /*
2283 * Allocate memory for the extended CPU state and initialize the host XSAVE/XRSTOR mask.
2284 */
2285 uint32_t cbMaxXState = pVM->cpum.s.HostFeatures.cbMaxExtendedState;
2286 cbMaxXState = RT_ALIGN(cbMaxXState, 128);
2287 AssertLogRelReturn(cbMaxXState >= sizeof(X86FXSTATE) && cbMaxXState <= _8K, VERR_CPUM_IPE_2);
2288
2289 uint8_t *pbXStates;
2290 rc = MMR3HyperAllocOnceNoRelEx(pVM, cbMaxXState * pVM->cCpus, PAGE_SIZE, MM_TAG_CPUM_CTX,
2291 MMHYPER_AONR_FLAGS_KERNEL_MAPPING, (void **)&pbXStates);
2292 AssertLogRelRCReturn(rc, rc);
2293
2294 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2295 {
2296 PVMCPU pVCpu = pVM->apCpusR3[i];
2297
2298 pVCpu->cpum.s.Host.pXStateR3 = (PX86XSAVEAREA)pbXStates;
2299 pVCpu->cpum.s.Host.pXStateR0 = MMHyperR3ToR0(pVM, pbXStates);
2300 pbXStates += cbMaxXState;
2301
2302 pVCpu->cpum.s.Host.fXStateMask = fXStateHostMask;
2303
2304 pVCpu->cpum.s.hNestedVmxPreemptTimer = NIL_TMTIMERHANDLE;
2305 }
2306
2307 /*
2308 * Register saved state data item.
2309 */
2310 rc = SSMR3RegisterInternal(pVM, "cpum", 1, CPUM_SAVED_STATE_VERSION, sizeof(CPUM),
2311 NULL, cpumR3LiveExec, NULL,
2312 NULL, cpumR3SaveExec, NULL,
2313 cpumR3LoadPrep, cpumR3LoadExec, cpumR3LoadDone);
2314 if (RT_FAILURE(rc))
2315 return rc;
2316
2317 /*
2318 * Register info handlers and registers with the debugger facility.
2319 */
2320 DBGFR3InfoRegisterInternalEx(pVM, "cpum", "Displays the all the cpu states.",
2321 &cpumR3InfoAll, DBGFINFO_FLAGS_ALL_EMTS);
2322 DBGFR3InfoRegisterInternalEx(pVM, "cpumguest", "Displays the guest cpu state.",
2323 &cpumR3InfoGuest, DBGFINFO_FLAGS_ALL_EMTS);
2324 DBGFR3InfoRegisterInternalEx(pVM, "cpumguesthwvirt", "Displays the guest hwvirt. cpu state.",
2325 &cpumR3InfoGuestHwvirt, DBGFINFO_FLAGS_ALL_EMTS);
2326 DBGFR3InfoRegisterInternalEx(pVM, "cpumhyper", "Displays the hypervisor cpu state.",
2327 &cpumR3InfoHyper, DBGFINFO_FLAGS_ALL_EMTS);
2328 DBGFR3InfoRegisterInternalEx(pVM, "cpumhost", "Displays the host cpu state.",
2329 &cpumR3InfoHost, DBGFINFO_FLAGS_ALL_EMTS);
2330 DBGFR3InfoRegisterInternalEx(pVM, "cpumguestinstr", "Displays the current guest instruction.",
2331 &cpumR3InfoGuestInstr, DBGFINFO_FLAGS_ALL_EMTS);
2332 DBGFR3InfoRegisterInternal( pVM, "cpuid", "Displays the guest cpuid leaves.", &cpumR3CpuIdInfo);
2333 DBGFR3InfoRegisterInternal( pVM, "cpumvmxfeat", "Displays the host and guest VMX hwvirt. features.",
2334 &cpumR3InfoVmxFeatures);
2335
2336 rc = cpumR3DbgInit(pVM);
2337 if (RT_FAILURE(rc))
2338 return rc;
2339
2340 /*
2341 * Check if we need to workaround partial/leaky FPU handling.
2342 */
2343 cpumR3CheckLeakyFpu(pVM);
2344
2345 /*
2346 * Initialize the Guest CPUID and MSR states.
2347 */
2348 rc = cpumR3InitCpuIdAndMsrs(pVM, &HostMsrs);
2349 if (RT_FAILURE(rc))
2350 return rc;
2351
2352 /*
2353 * Allocate memory required by the guest hardware-virtualization structures.
2354 * This must be done after initializing CPUID/MSR features as we access the
2355 * the VMX/SVM guest features below.
2356 *
2357 * In the case of nested VT-x, we also need to create the per-VCPU
2358 * VMX preemption timers.
2359 */
2360 if (pVM->cpum.s.GuestFeatures.fVmx)
2361 rc = cpumR3AllocVmxHwVirtState(pVM);
2362 else if (pVM->cpum.s.GuestFeatures.fSvm)
2363 rc = cpumR3AllocSvmHwVirtState(pVM);
2364 else
2365 Assert(pVM->apCpusR3[0]->cpum.s.Guest.hwvirt.enmHwvirt == CPUMHWVIRT_NONE);
2366 if (RT_FAILURE(rc))
2367 return rc;
2368
2369 CPUMR3Reset(pVM);
2370 return VINF_SUCCESS;
2371}
2372
2373
2374/**
2375 * Applies relocations to data and code managed by this
2376 * component. This function will be called at init and
2377 * whenever the VMM need to relocate it self inside the GC.
2378 *
2379 * The CPUM will update the addresses used by the switcher.
2380 *
2381 * @param pVM The cross context VM structure.
2382 */
2383VMMR3DECL(void) CPUMR3Relocate(PVM pVM)
2384{
2385 RT_NOREF(pVM);
2386}
2387
2388
2389/**
2390 * Terminates the CPUM.
2391 *
2392 * Termination means cleaning up and freeing all resources,
2393 * the VM it self is at this point powered off or suspended.
2394 *
2395 * @returns VBox status code.
2396 * @param pVM The cross context VM structure.
2397 */
2398VMMR3DECL(int) CPUMR3Term(PVM pVM)
2399{
2400#ifdef VBOX_WITH_CRASHDUMP_MAGIC
2401 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2402 {
2403 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
2404 memset(pVCpu->cpum.s.aMagic, 0, sizeof(pVCpu->cpum.s.aMagic));
2405 pVCpu->cpum.s.uMagic = 0;
2406 pvCpu->cpum.s.Guest.dr[5] = 0;
2407 }
2408#endif
2409
2410 if (pVM->cpum.s.GuestFeatures.fVmx)
2411 {
2412 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2413 {
2414 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
2415 if (pVCpu->cpum.s.hNestedVmxPreemptTimer != NIL_TMTIMERHANDLE)
2416 {
2417 int rc = TMR3TimerDestroy(pVM, pVCpu->cpum.s.hNestedVmxPreemptTimer); AssertRC(rc);
2418 pVCpu->cpum.s.hNestedVmxPreemptTimer = NIL_TMTIMERHANDLE;
2419 }
2420 }
2421
2422 cpumR3FreeVmxHwVirtState(pVM);
2423 }
2424 else if (pVM->cpum.s.GuestFeatures.fSvm)
2425 cpumR3FreeSvmHwVirtState(pVM);
2426 return VINF_SUCCESS;
2427}
2428
2429
2430/**
2431 * Resets a virtual CPU.
2432 *
2433 * Used by CPUMR3Reset and CPU hot plugging.
2434 *
2435 * @param pVM The cross context VM structure.
2436 * @param pVCpu The cross context virtual CPU structure of the CPU that is
2437 * being reset. This may differ from the current EMT.
2438 */
2439VMMR3DECL(void) CPUMR3ResetCpu(PVM pVM, PVMCPU pVCpu)
2440{
2441 /** @todo anything different for VCPU > 0? */
2442 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
2443
2444 /*
2445 * Initialize everything to ZERO first.
2446 */
2447 uint32_t fUseFlags = pVCpu->cpum.s.fUseFlags & ~CPUM_USED_FPU_SINCE_REM;
2448
2449 RT_BZERO(pCtx, RT_UOFFSETOF(CPUMCTX, aoffXState));
2450
2451 pVCpu->cpum.s.fUseFlags = fUseFlags;
2452
2453 pCtx->cr0 = X86_CR0_CD | X86_CR0_NW | X86_CR0_ET; //0x60000010
2454 pCtx->eip = 0x0000fff0;
2455 pCtx->edx = 0x00000600; /* P6 processor */
2456 pCtx->eflags.Bits.u1Reserved0 = 1;
2457
2458 pCtx->cs.Sel = 0xf000;
2459 pCtx->cs.ValidSel = 0xf000;
2460 pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
2461 pCtx->cs.u64Base = UINT64_C(0xffff0000);
2462 pCtx->cs.u32Limit = 0x0000ffff;
2463 pCtx->cs.Attr.n.u1DescType = 1; /* code/data segment */
2464 pCtx->cs.Attr.n.u1Present = 1;
2465 pCtx->cs.Attr.n.u4Type = X86_SEL_TYPE_ER_ACC;
2466
2467 pCtx->ds.fFlags = CPUMSELREG_FLAGS_VALID;
2468 pCtx->ds.u32Limit = 0x0000ffff;
2469 pCtx->ds.Attr.n.u1DescType = 1; /* code/data segment */
2470 pCtx->ds.Attr.n.u1Present = 1;
2471 pCtx->ds.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
2472
2473 pCtx->es.fFlags = CPUMSELREG_FLAGS_VALID;
2474 pCtx->es.u32Limit = 0x0000ffff;
2475 pCtx->es.Attr.n.u1DescType = 1; /* code/data segment */
2476 pCtx->es.Attr.n.u1Present = 1;
2477 pCtx->es.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
2478
2479 pCtx->fs.fFlags = CPUMSELREG_FLAGS_VALID;
2480 pCtx->fs.u32Limit = 0x0000ffff;
2481 pCtx->fs.Attr.n.u1DescType = 1; /* code/data segment */
2482 pCtx->fs.Attr.n.u1Present = 1;
2483 pCtx->fs.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
2484
2485 pCtx->gs.fFlags = CPUMSELREG_FLAGS_VALID;
2486 pCtx->gs.u32Limit = 0x0000ffff;
2487 pCtx->gs.Attr.n.u1DescType = 1; /* code/data segment */
2488 pCtx->gs.Attr.n.u1Present = 1;
2489 pCtx->gs.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
2490
2491 pCtx->ss.fFlags = CPUMSELREG_FLAGS_VALID;
2492 pCtx->ss.u32Limit = 0x0000ffff;
2493 pCtx->ss.Attr.n.u1Present = 1;
2494 pCtx->ss.Attr.n.u1DescType = 1; /* code/data segment */
2495 pCtx->ss.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
2496
2497 pCtx->idtr.cbIdt = 0xffff;
2498 pCtx->gdtr.cbGdt = 0xffff;
2499
2500 pCtx->ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
2501 pCtx->ldtr.u32Limit = 0xffff;
2502 pCtx->ldtr.Attr.n.u1Present = 1;
2503 pCtx->ldtr.Attr.n.u4Type = X86_SEL_TYPE_SYS_LDT;
2504
2505 pCtx->tr.fFlags = CPUMSELREG_FLAGS_VALID;
2506 pCtx->tr.u32Limit = 0xffff;
2507 pCtx->tr.Attr.n.u1Present = 1;
2508 pCtx->tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY; /* Deduction, not properly documented by Intel. */
2509
2510 pCtx->dr[6] = X86_DR6_INIT_VAL;
2511 pCtx->dr[7] = X86_DR7_INIT_VAL;
2512
2513 PX86FXSTATE pFpuCtx = &pCtx->XState.x87;
2514 pFpuCtx->FTW = 0x00; /* All empty (abbridged tag reg edition). */
2515 pFpuCtx->FCW = 0x37f;
2516
2517 /* Intel 64 and IA-32 Architectures Software Developer's Manual Volume 3A, Table 8-1.
2518 IA-32 Processor States Following Power-up, Reset, or INIT */
2519 pFpuCtx->MXCSR = 0x1F80;
2520 pFpuCtx->MXCSR_MASK = pVM->cpum.s.GuestInfo.fMxCsrMask; /** @todo check if REM messes this up... */
2521
2522 pCtx->aXcr[0] = XSAVE_C_X87;
2523 if (pVM->cpum.s.HostFeatures.cbMaxExtendedState >= RT_UOFFSETOF(X86XSAVEAREA, Hdr))
2524 {
2525 /* The entire FXSAVE state needs loading when we switch to XSAVE/XRSTOR
2526 as we don't know what happened before. (Bother optimize later?) */
2527 pCtx->XState.Hdr.bmXState = XSAVE_C_X87 | XSAVE_C_SSE;
2528 }
2529
2530 /*
2531 * MSRs.
2532 */
2533 /* Init PAT MSR */
2534 pCtx->msrPAT = MSR_IA32_CR_PAT_INIT_VAL;
2535
2536 /* EFER MBZ; see AMD64 Architecture Programmer's Manual Volume 2: Table 14-1. Initial Processor State.
2537 * The Intel docs don't mention it. */
2538 Assert(!pCtx->msrEFER);
2539
2540 /* IA32_MISC_ENABLE - not entirely sure what the init/reset state really
2541 is supposed to be here, just trying provide useful/sensible values. */
2542 PCPUMMSRRANGE pRange = cpumLookupMsrRange(pVM, MSR_IA32_MISC_ENABLE);
2543 if (pRange)
2544 {
2545 pVCpu->cpum.s.GuestMsrs.msr.MiscEnable = MSR_IA32_MISC_ENABLE_BTS_UNAVAIL
2546 | MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL
2547 | (pVM->cpum.s.GuestFeatures.fMonitorMWait ? MSR_IA32_MISC_ENABLE_MONITOR : 0)
2548 | MSR_IA32_MISC_ENABLE_FAST_STRINGS;
2549 pRange->fWrIgnMask |= MSR_IA32_MISC_ENABLE_BTS_UNAVAIL
2550 | MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL;
2551 pRange->fWrGpMask &= ~pVCpu->cpum.s.GuestMsrs.msr.MiscEnable;
2552 }
2553
2554 /** @todo Wire IA32_MISC_ENABLE bit 22 to our NT 4 CPUID trick. */
2555
2556 /** @todo r=ramshankar: Currently broken for SMP as TMCpuTickSet() expects to be
2557 * called from each EMT while we're getting called by CPUMR3Reset()
2558 * iteratively on the same thread. Fix later. */
2559#if 0 /** @todo r=bird: This we will do in TM, not here. */
2560 /* TSC must be 0. Intel spec. Table 9-1. "IA-32 Processor States Following Power-up, Reset, or INIT." */
2561 CPUMSetGuestMsr(pVCpu, MSR_IA32_TSC, 0);
2562#endif
2563
2564
2565 /* C-state control. Guesses. */
2566 pVCpu->cpum.s.GuestMsrs.msr.PkgCStateCfgCtrl = 1 /*C1*/ | RT_BIT_32(25) | RT_BIT_32(26) | RT_BIT_32(27) | RT_BIT_32(28);
2567 /* For Nehalem+ and Atoms, the 0xE2 MSR (MSR_PKG_CST_CONFIG_CONTROL) is documented. For Core 2,
2568 * it's undocumented but exists as MSR_PMG_CST_CONFIG_CONTROL and has similar but not identical
2569 * functionality. The default value must be different due to incompatible write mask.
2570 */
2571 if (CPUMMICROARCH_IS_INTEL_CORE2(pVM->cpum.s.GuestFeatures.enmMicroarch))
2572 pVCpu->cpum.s.GuestMsrs.msr.PkgCStateCfgCtrl = 0x202a01; /* From Mac Pro Harpertown, unlocked. */
2573 else if (pVM->cpum.s.GuestFeatures.enmMicroarch == kCpumMicroarch_Intel_Core_Yonah)
2574 pVCpu->cpum.s.GuestMsrs.msr.PkgCStateCfgCtrl = 0x26740c; /* From MacBookPro1,1. */
2575
2576 /*
2577 * Hardware virtualization state.
2578 */
2579 CPUMSetGuestGif(pCtx, true);
2580 Assert(!pVM->cpum.s.GuestFeatures.fVmx || !pVM->cpum.s.GuestFeatures.fSvm); /* Paranoia. */
2581 if (pVM->cpum.s.GuestFeatures.fVmx)
2582 cpumR3ResetVmxHwVirtState(pVCpu);
2583 else if (pVM->cpum.s.GuestFeatures.fSvm)
2584 cpumR3ResetSvmHwVirtState(pVCpu);
2585}
2586
2587
2588/**
2589 * Resets the CPU.
2590 *
2591 * @returns VINF_SUCCESS.
2592 * @param pVM The cross context VM structure.
2593 */
2594VMMR3DECL(void) CPUMR3Reset(PVM pVM)
2595{
2596 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2597 {
2598 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
2599 CPUMR3ResetCpu(pVM, pVCpu);
2600
2601#ifdef VBOX_WITH_CRASHDUMP_MAGIC
2602
2603 /* Magic marker for searching in crash dumps. */
2604 strcpy((char *)pVCpu->.cpum.s.aMagic, "CPUMCPU Magic");
2605 pVCpu->cpum.s.uMagic = UINT64_C(0xDEADBEEFDEADBEEF);
2606 pVCpu->cpum.s.Guest->dr[5] = UINT64_C(0xDEADBEEFDEADBEEF);
2607#endif
2608 }
2609}
2610
2611
2612
2613
2614/**
2615 * Pass 0 live exec callback.
2616 *
2617 * @returns VINF_SSM_DONT_CALL_AGAIN.
2618 * @param pVM The cross context VM structure.
2619 * @param pSSM The saved state handle.
2620 * @param uPass The pass (0).
2621 */
2622static DECLCALLBACK(int) cpumR3LiveExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uPass)
2623{
2624 AssertReturn(uPass == 0, VERR_SSM_UNEXPECTED_PASS);
2625 cpumR3SaveCpuId(pVM, pSSM);
2626 return VINF_SSM_DONT_CALL_AGAIN;
2627}
2628
2629
2630/**
2631 * Execute state save operation.
2632 *
2633 * @returns VBox status code.
2634 * @param pVM The cross context VM structure.
2635 * @param pSSM SSM operation handle.
2636 */
2637static DECLCALLBACK(int) cpumR3SaveExec(PVM pVM, PSSMHANDLE pSSM)
2638{
2639 /*
2640 * Save.
2641 */
2642 SSMR3PutU32(pSSM, pVM->cCpus);
2643 SSMR3PutU32(pSSM, sizeof(pVM->apCpusR3[0]->cpum.s.GuestMsrs.msr));
2644 CPUMCTX DummyHyperCtx;
2645 RT_ZERO(DummyHyperCtx);
2646 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2647 {
2648 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
2649
2650 SSMR3PutStructEx(pSSM, &DummyHyperCtx, sizeof(DummyHyperCtx), 0, g_aCpumCtxFields, NULL);
2651
2652 PCPUMCTX pGstCtx = &pVCpu->cpum.s.Guest;
2653 SSMR3PutStructEx(pSSM, pGstCtx, sizeof(*pGstCtx), 0, g_aCpumCtxFields, NULL);
2654 SSMR3PutStructEx(pSSM, &pGstCtx->XState.x87, sizeof(pGstCtx->XState.x87), 0, g_aCpumX87Fields, NULL);
2655 if (pGstCtx->fXStateMask != 0)
2656 SSMR3PutStructEx(pSSM, &pGstCtx->XState.Hdr, sizeof(pGstCtx->XState.Hdr), 0, g_aCpumXSaveHdrFields, NULL);
2657 if (pGstCtx->fXStateMask & XSAVE_C_YMM)
2658 {
2659 PCX86XSAVEYMMHI pYmmHiCtx = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_YMM_BIT, PCX86XSAVEYMMHI);
2660 SSMR3PutStructEx(pSSM, pYmmHiCtx, sizeof(*pYmmHiCtx), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumYmmHiFields, NULL);
2661 }
2662 if (pGstCtx->fXStateMask & XSAVE_C_BNDREGS)
2663 {
2664 PCX86XSAVEBNDREGS pBndRegs = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_BNDREGS_BIT, PCX86XSAVEBNDREGS);
2665 SSMR3PutStructEx(pSSM, pBndRegs, sizeof(*pBndRegs), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumBndRegsFields, NULL);
2666 }
2667 if (pGstCtx->fXStateMask & XSAVE_C_BNDCSR)
2668 {
2669 PCX86XSAVEBNDCFG pBndCfg = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_BNDCSR_BIT, PCX86XSAVEBNDCFG);
2670 SSMR3PutStructEx(pSSM, pBndCfg, sizeof(*pBndCfg), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumBndCfgFields, NULL);
2671 }
2672 if (pGstCtx->fXStateMask & XSAVE_C_ZMM_HI256)
2673 {
2674 PCX86XSAVEZMMHI256 pZmmHi256 = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_ZMM_HI256_BIT, PCX86XSAVEZMMHI256);
2675 SSMR3PutStructEx(pSSM, pZmmHi256, sizeof(*pZmmHi256), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumZmmHi256Fields, NULL);
2676 }
2677 if (pGstCtx->fXStateMask & XSAVE_C_ZMM_16HI)
2678 {
2679 PCX86XSAVEZMM16HI pZmm16Hi = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_ZMM_16HI_BIT, PCX86XSAVEZMM16HI);
2680 SSMR3PutStructEx(pSSM, pZmm16Hi, sizeof(*pZmm16Hi), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumZmm16HiFields, NULL);
2681 }
2682 SSMR3PutU64(pSSM, pGstCtx->aPaePdpes[0].u);
2683 SSMR3PutU64(pSSM, pGstCtx->aPaePdpes[1].u);
2684 SSMR3PutU64(pSSM, pGstCtx->aPaePdpes[2].u);
2685 SSMR3PutU64(pSSM, pGstCtx->aPaePdpes[3].u);
2686 if (pVM->cpum.s.GuestFeatures.fSvm)
2687 {
2688 Assert(pGstCtx->hwvirt.svm.CTX_SUFF(pVmcb));
2689 SSMR3PutU64(pSSM, pGstCtx->hwvirt.svm.uMsrHSavePa);
2690 SSMR3PutGCPhys(pSSM, pGstCtx->hwvirt.svm.GCPhysVmcb);
2691 SSMR3PutU64(pSSM, pGstCtx->hwvirt.svm.uPrevPauseTick);
2692 SSMR3PutU16(pSSM, pGstCtx->hwvirt.svm.cPauseFilter);
2693 SSMR3PutU16(pSSM, pGstCtx->hwvirt.svm.cPauseFilterThreshold);
2694 SSMR3PutBool(pSSM, pGstCtx->hwvirt.svm.fInterceptEvents);
2695 SSMR3PutStructEx(pSSM, &pGstCtx->hwvirt.svm.HostState, sizeof(pGstCtx->hwvirt.svm.HostState), 0 /* fFlags */,
2696 g_aSvmHwvirtHostState, NULL /* pvUser */);
2697 SSMR3PutMem(pSSM, pGstCtx->hwvirt.svm.pVmcbR3, SVM_VMCB_PAGES << X86_PAGE_4K_SHIFT);
2698 SSMR3PutMem(pSSM, pGstCtx->hwvirt.svm.pvMsrBitmapR3, SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT);
2699 SSMR3PutMem(pSSM, pGstCtx->hwvirt.svm.pvIoBitmapR3, SVM_IOPM_PAGES << X86_PAGE_4K_SHIFT);
2700 SSMR3PutU32(pSSM, pGstCtx->hwvirt.fLocalForcedActions);
2701 SSMR3PutBool(pSSM, pGstCtx->hwvirt.fGif);
2702 }
2703 if (pVM->cpum.s.GuestFeatures.fVmx)
2704 {
2705 Assert(pGstCtx->hwvirt.vmx.CTX_SUFF(pVmcs));
2706 SSMR3PutGCPhys(pSSM, pGstCtx->hwvirt.vmx.GCPhysVmxon);
2707 SSMR3PutGCPhys(pSSM, pGstCtx->hwvirt.vmx.GCPhysVmcs);
2708 SSMR3PutGCPhys(pSSM, pGstCtx->hwvirt.vmx.GCPhysShadowVmcs);
2709 SSMR3PutBool(pSSM, pGstCtx->hwvirt.vmx.fInVmxRootMode);
2710 SSMR3PutBool(pSSM, pGstCtx->hwvirt.vmx.fInVmxNonRootMode);
2711 SSMR3PutBool(pSSM, pGstCtx->hwvirt.vmx.fInterceptEvents);
2712 SSMR3PutBool(pSSM, pGstCtx->hwvirt.vmx.fNmiUnblockingIret);
2713 SSMR3PutStructEx(pSSM, pGstCtx->hwvirt.vmx.pVmcsR3, sizeof(VMXVVMCS), 0, g_aVmxHwvirtVmcs, NULL);
2714 SSMR3PutStructEx(pSSM, pGstCtx->hwvirt.vmx.pShadowVmcsR3, sizeof(VMXVVMCS), 0, g_aVmxHwvirtVmcs, NULL);
2715 SSMR3PutMem(pSSM, pGstCtx->hwvirt.vmx.pvVmreadBitmapR3, VMX_V_VMREAD_VMWRITE_BITMAP_SIZE);
2716 SSMR3PutMem(pSSM, pGstCtx->hwvirt.vmx.pvVmwriteBitmapR3, VMX_V_VMREAD_VMWRITE_BITMAP_SIZE);
2717 SSMR3PutMem(pSSM, pGstCtx->hwvirt.vmx.pEntryMsrLoadAreaR3, VMX_V_AUTOMSR_AREA_SIZE);
2718 SSMR3PutMem(pSSM, pGstCtx->hwvirt.vmx.pExitMsrStoreAreaR3, VMX_V_AUTOMSR_AREA_SIZE);
2719 SSMR3PutMem(pSSM, pGstCtx->hwvirt.vmx.pExitMsrLoadAreaR3, VMX_V_AUTOMSR_AREA_SIZE);
2720 SSMR3PutMem(pSSM, pGstCtx->hwvirt.vmx.pvMsrBitmapR3, VMX_V_MSR_BITMAP_SIZE);
2721 SSMR3PutMem(pSSM, pGstCtx->hwvirt.vmx.pvIoBitmapR3, VMX_V_IO_BITMAP_A_SIZE + VMX_V_IO_BITMAP_B_SIZE);
2722 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.uFirstPauseLoopTick);
2723 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.uPrevPauseTick);
2724 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.uEntryTick);
2725 SSMR3PutU16(pSSM, pGstCtx->hwvirt.vmx.offVirtApicWrite);
2726 SSMR3PutBool(pSSM, pGstCtx->hwvirt.vmx.fVirtNmiBlocking);
2727 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64FeatCtrl);
2728 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64Basic);
2729 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.PinCtls.u);
2730 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.ProcCtls.u);
2731 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.ProcCtls2.u);
2732 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.ExitCtls.u);
2733 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.EntryCtls.u);
2734 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.TruePinCtls.u);
2735 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.TrueProcCtls.u);
2736 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.TrueEntryCtls.u);
2737 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.TrueExitCtls.u);
2738 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64Misc);
2739 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64Cr0Fixed0);
2740 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64Cr0Fixed1);
2741 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64Cr4Fixed0);
2742 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64Cr4Fixed1);
2743 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64VmcsEnum);
2744 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64VmFunc);
2745 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64EptVpidCaps);
2746 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64ProcCtls3);
2747 }
2748 SSMR3PutU32(pSSM, pVCpu->cpum.s.fUseFlags);
2749 SSMR3PutU32(pSSM, pVCpu->cpum.s.fChanged);
2750 AssertCompileSizeAlignment(pVCpu->cpum.s.GuestMsrs.msr, sizeof(uint64_t));
2751 SSMR3PutMem(pSSM, &pVCpu->cpum.s.GuestMsrs, sizeof(pVCpu->cpum.s.GuestMsrs.msr));
2752 }
2753
2754 cpumR3SaveCpuId(pVM, pSSM);
2755 return VINF_SUCCESS;
2756}
2757
2758
2759/**
2760 * @callback_method_impl{FNSSMINTLOADPREP}
2761 */
2762static DECLCALLBACK(int) cpumR3LoadPrep(PVM pVM, PSSMHANDLE pSSM)
2763{
2764 NOREF(pSSM);
2765 pVM->cpum.s.fPendingRestore = true;
2766 return VINF_SUCCESS;
2767}
2768
2769
2770/**
2771 * @callback_method_impl{FNSSMINTLOADEXEC}
2772 */
2773static DECLCALLBACK(int) cpumR3LoadExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
2774{
2775 int rc; /* Only for AssertRCReturn use. */
2776
2777 /*
2778 * Validate version.
2779 */
2780 if ( uVersion != CPUM_SAVED_STATE_VERSION_PAE_PDPES
2781 && uVersion != CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2
2782 && uVersion != CPUM_SAVED_STATE_VERSION_HWVIRT_VMX
2783 && uVersion != CPUM_SAVED_STATE_VERSION_HWVIRT_SVM
2784 && uVersion != CPUM_SAVED_STATE_VERSION_XSAVE
2785 && uVersion != CPUM_SAVED_STATE_VERSION_GOOD_CPUID_COUNT
2786 && uVersion != CPUM_SAVED_STATE_VERSION_BAD_CPUID_COUNT
2787 && uVersion != CPUM_SAVED_STATE_VERSION_PUT_STRUCT
2788 && uVersion != CPUM_SAVED_STATE_VERSION_MEM
2789 && uVersion != CPUM_SAVED_STATE_VERSION_NO_MSR_SIZE
2790 && uVersion != CPUM_SAVED_STATE_VERSION_VER3_2
2791 && uVersion != CPUM_SAVED_STATE_VERSION_VER3_0
2792 && uVersion != CPUM_SAVED_STATE_VERSION_VER2_1_NOMSR
2793 && uVersion != CPUM_SAVED_STATE_VERSION_VER2_0
2794 && uVersion != CPUM_SAVED_STATE_VERSION_VER1_6)
2795 {
2796 AssertMsgFailed(("cpumR3LoadExec: Invalid version uVersion=%d!\n", uVersion));
2797 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
2798 }
2799
2800 if (uPass == SSM_PASS_FINAL)
2801 {
2802 /*
2803 * Set the size of RTGCPTR for SSMR3GetGCPtr. (Only necessary for
2804 * really old SSM file versions.)
2805 */
2806 if (uVersion == CPUM_SAVED_STATE_VERSION_VER1_6)
2807 SSMR3HandleSetGCPtrSize(pSSM, sizeof(RTGCPTR32));
2808 else if (uVersion <= CPUM_SAVED_STATE_VERSION_VER3_0)
2809 SSMR3HandleSetGCPtrSize(pSSM, sizeof(RTGCPTR));
2810
2811 /*
2812 * Figure x86 and ctx field definitions to use for older states.
2813 */
2814 uint32_t const fLoad = uVersion > CPUM_SAVED_STATE_VERSION_MEM ? 0 : SSMSTRUCT_FLAGS_MEM_BAND_AID_RELAXED;
2815 PCSSMFIELD paCpumCtx1Fields = g_aCpumX87Fields;
2816 PCSSMFIELD paCpumCtx2Fields = g_aCpumCtxFields;
2817 if (uVersion == CPUM_SAVED_STATE_VERSION_VER1_6)
2818 {
2819 paCpumCtx1Fields = g_aCpumX87FieldsV16;
2820 paCpumCtx2Fields = g_aCpumCtxFieldsV16;
2821 }
2822 else if (uVersion <= CPUM_SAVED_STATE_VERSION_MEM)
2823 {
2824 paCpumCtx1Fields = g_aCpumX87FieldsMem;
2825 paCpumCtx2Fields = g_aCpumCtxFieldsMem;
2826 }
2827
2828 /*
2829 * The hyper state used to preceed the CPU count. Starting with
2830 * XSAVE it was moved down till after we've got the count.
2831 */
2832 CPUMCTX HyperCtxIgnored;
2833 if (uVersion < CPUM_SAVED_STATE_VERSION_XSAVE)
2834 {
2835 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2836 {
2837 X86FXSTATE Ign;
2838 SSMR3GetStructEx(pSSM, &Ign, sizeof(Ign), fLoad | SSMSTRUCT_FLAGS_NO_TAIL_MARKER, paCpumCtx1Fields, NULL);
2839 SSMR3GetStructEx(pSSM, &HyperCtxIgnored, sizeof(HyperCtxIgnored),
2840 fLoad | SSMSTRUCT_FLAGS_NO_LEAD_MARKER, paCpumCtx2Fields, NULL);
2841 }
2842 }
2843
2844 if (uVersion >= CPUM_SAVED_STATE_VERSION_VER2_1_NOMSR)
2845 {
2846 uint32_t cCpus;
2847 rc = SSMR3GetU32(pSSM, &cCpus); AssertRCReturn(rc, rc);
2848 AssertLogRelMsgReturn(cCpus == pVM->cCpus, ("Mismatching CPU counts: saved: %u; configured: %u \n", cCpus, pVM->cCpus),
2849 VERR_SSM_UNEXPECTED_DATA);
2850 }
2851 AssertLogRelMsgReturn( uVersion > CPUM_SAVED_STATE_VERSION_VER2_0
2852 || pVM->cCpus == 1,
2853 ("cCpus=%u\n", pVM->cCpus),
2854 VERR_SSM_UNEXPECTED_DATA);
2855
2856 uint32_t cbMsrs = 0;
2857 if (uVersion > CPUM_SAVED_STATE_VERSION_NO_MSR_SIZE)
2858 {
2859 rc = SSMR3GetU32(pSSM, &cbMsrs); AssertRCReturn(rc, rc);
2860 AssertLogRelMsgReturn(RT_ALIGN(cbMsrs, sizeof(uint64_t)) == cbMsrs, ("Size of MSRs is misaligned: %#x\n", cbMsrs),
2861 VERR_SSM_UNEXPECTED_DATA);
2862 AssertLogRelMsgReturn(cbMsrs <= sizeof(CPUMCTXMSRS) && cbMsrs > 0, ("Size of MSRs is out of range: %#x\n", cbMsrs),
2863 VERR_SSM_UNEXPECTED_DATA);
2864 }
2865
2866 /*
2867 * Do the per-CPU restoring.
2868 */
2869 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2870 {
2871 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
2872 PCPUMCTX pGstCtx = &pVCpu->cpum.s.Guest;
2873
2874 if (uVersion >= CPUM_SAVED_STATE_VERSION_XSAVE)
2875 {
2876 /*
2877 * The XSAVE saved state layout moved the hyper state down here.
2878 */
2879 rc = SSMR3GetStructEx(pSSM, &HyperCtxIgnored, sizeof(HyperCtxIgnored), 0, g_aCpumCtxFields, NULL);
2880 AssertRCReturn(rc, rc);
2881
2882 /*
2883 * Start by restoring the CPUMCTX structure and the X86FXSAVE bits of the extended state.
2884 */
2885 rc = SSMR3GetStructEx(pSSM, pGstCtx, sizeof(*pGstCtx), 0, g_aCpumCtxFields, NULL);
2886 rc = SSMR3GetStructEx(pSSM, &pGstCtx->XState.x87, sizeof(pGstCtx->XState.x87), 0, g_aCpumX87Fields, NULL);
2887 AssertRCReturn(rc, rc);
2888
2889 /* Check that the xsave/xrstor mask is valid (invalid results in #GP). */
2890 if (pGstCtx->fXStateMask != 0)
2891 {
2892 AssertLogRelMsgReturn(!(pGstCtx->fXStateMask & ~pVM->cpum.s.fXStateGuestMask),
2893 ("fXStateMask=%#RX64 fXStateGuestMask=%#RX64\n",
2894 pGstCtx->fXStateMask, pVM->cpum.s.fXStateGuestMask),
2895 VERR_CPUM_INCOMPATIBLE_XSAVE_COMP_MASK);
2896 AssertLogRelMsgReturn(pGstCtx->fXStateMask & XSAVE_C_X87,
2897 ("fXStateMask=%#RX64\n", pGstCtx->fXStateMask), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2898 AssertLogRelMsgReturn((pGstCtx->fXStateMask & (XSAVE_C_SSE | XSAVE_C_YMM)) != XSAVE_C_YMM,
2899 ("fXStateMask=%#RX64\n", pGstCtx->fXStateMask), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2900 AssertLogRelMsgReturn( (pGstCtx->fXStateMask & (XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI)) == 0
2901 || (pGstCtx->fXStateMask & (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI))
2902 == (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI),
2903 ("fXStateMask=%#RX64\n", pGstCtx->fXStateMask), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2904 }
2905
2906 /* Check that the XCR0 mask is valid (invalid results in #GP). */
2907 AssertLogRelMsgReturn(pGstCtx->aXcr[0] & XSAVE_C_X87, ("xcr0=%#RX64\n", pGstCtx->aXcr[0]), VERR_CPUM_INVALID_XCR0);
2908 if (pGstCtx->aXcr[0] != XSAVE_C_X87)
2909 {
2910 AssertLogRelMsgReturn(!(pGstCtx->aXcr[0] & ~(pGstCtx->fXStateMask | XSAVE_C_X87)),
2911 ("xcr0=%#RX64 fXStateMask=%#RX64\n", pGstCtx->aXcr[0], pGstCtx->fXStateMask),
2912 VERR_CPUM_INVALID_XCR0);
2913 AssertLogRelMsgReturn(pGstCtx->aXcr[0] & XSAVE_C_X87,
2914 ("xcr0=%#RX64\n", pGstCtx->aXcr[0]), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2915 AssertLogRelMsgReturn((pGstCtx->aXcr[0] & (XSAVE_C_SSE | XSAVE_C_YMM)) != XSAVE_C_YMM,
2916 ("xcr0=%#RX64\n", pGstCtx->aXcr[0]), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2917 AssertLogRelMsgReturn( (pGstCtx->aXcr[0] & (XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI)) == 0
2918 || (pGstCtx->aXcr[0] & (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI))
2919 == (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI),
2920 ("xcr0=%#RX64\n", pGstCtx->aXcr[0]), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2921 }
2922
2923 /* Check that the XCR1 is zero, as we don't implement it yet. */
2924 AssertLogRelMsgReturn(!pGstCtx->aXcr[1], ("xcr1=%#RX64\n", pGstCtx->aXcr[1]), VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2925
2926 /*
2927 * Restore the individual extended state components we support.
2928 */
2929 if (pGstCtx->fXStateMask != 0)
2930 {
2931 rc = SSMR3GetStructEx(pSSM, &pGstCtx->XState.Hdr, sizeof(pGstCtx->XState.Hdr),
2932 0, g_aCpumXSaveHdrFields, NULL);
2933 AssertRCReturn(rc, rc);
2934 AssertLogRelMsgReturn(!(pGstCtx->XState.Hdr.bmXState & ~pGstCtx->fXStateMask),
2935 ("bmXState=%#RX64 fXStateMask=%#RX64\n",
2936 pGstCtx->XState.Hdr.bmXState, pGstCtx->fXStateMask),
2937 VERR_CPUM_INVALID_XSAVE_HDR);
2938 }
2939 if (pGstCtx->fXStateMask & XSAVE_C_YMM)
2940 {
2941 PX86XSAVEYMMHI pYmmHiCtx = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_YMM_BIT, PX86XSAVEYMMHI);
2942 SSMR3GetStructEx(pSSM, pYmmHiCtx, sizeof(*pYmmHiCtx), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumYmmHiFields, NULL);
2943 }
2944 if (pGstCtx->fXStateMask & XSAVE_C_BNDREGS)
2945 {
2946 PX86XSAVEBNDREGS pBndRegs = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_BNDREGS_BIT, PX86XSAVEBNDREGS);
2947 SSMR3GetStructEx(pSSM, pBndRegs, sizeof(*pBndRegs), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumBndRegsFields, NULL);
2948 }
2949 if (pGstCtx->fXStateMask & XSAVE_C_BNDCSR)
2950 {
2951 PX86XSAVEBNDCFG pBndCfg = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_BNDCSR_BIT, PX86XSAVEBNDCFG);
2952 SSMR3GetStructEx(pSSM, pBndCfg, sizeof(*pBndCfg), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumBndCfgFields, NULL);
2953 }
2954 if (pGstCtx->fXStateMask & XSAVE_C_ZMM_HI256)
2955 {
2956 PX86XSAVEZMMHI256 pZmmHi256 = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_ZMM_HI256_BIT, PX86XSAVEZMMHI256);
2957 SSMR3GetStructEx(pSSM, pZmmHi256, sizeof(*pZmmHi256), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumZmmHi256Fields, NULL);
2958 }
2959 if (pGstCtx->fXStateMask & XSAVE_C_ZMM_16HI)
2960 {
2961 PX86XSAVEZMM16HI pZmm16Hi = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_ZMM_16HI_BIT, PX86XSAVEZMM16HI);
2962 SSMR3GetStructEx(pSSM, pZmm16Hi, sizeof(*pZmm16Hi), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumZmm16HiFields, NULL);
2963 }
2964 if (uVersion >= CPUM_SAVED_STATE_VERSION_PAE_PDPES)
2965 {
2966 SSMR3GetU64(pSSM, &pGstCtx->aPaePdpes[0].u);
2967 SSMR3GetU64(pSSM, &pGstCtx->aPaePdpes[1].u);
2968 SSMR3GetU64(pSSM, &pGstCtx->aPaePdpes[2].u);
2969 SSMR3GetU64(pSSM, &pGstCtx->aPaePdpes[3].u);
2970 }
2971 if (uVersion >= CPUM_SAVED_STATE_VERSION_HWVIRT_SVM)
2972 {
2973 if (pVM->cpum.s.GuestFeatures.fSvm)
2974 {
2975 Assert(pGstCtx->hwvirt.svm.CTX_SUFF(pVmcb));
2976 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.svm.uMsrHSavePa);
2977 SSMR3GetGCPhys(pSSM, &pGstCtx->hwvirt.svm.GCPhysVmcb);
2978 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.svm.uPrevPauseTick);
2979 SSMR3GetU16(pSSM, &pGstCtx->hwvirt.svm.cPauseFilter);
2980 SSMR3GetU16(pSSM, &pGstCtx->hwvirt.svm.cPauseFilterThreshold);
2981 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.svm.fInterceptEvents);
2982 SSMR3GetStructEx(pSSM, &pGstCtx->hwvirt.svm.HostState, sizeof(pGstCtx->hwvirt.svm.HostState),
2983 0 /* fFlags */, g_aSvmHwvirtHostState, NULL /* pvUser */);
2984 SSMR3GetMem(pSSM, pGstCtx->hwvirt.svm.pVmcbR3, SVM_VMCB_PAGES << X86_PAGE_4K_SHIFT);
2985 SSMR3GetMem(pSSM, pGstCtx->hwvirt.svm.pvMsrBitmapR3, SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT);
2986 SSMR3GetMem(pSSM, pGstCtx->hwvirt.svm.pvIoBitmapR3, SVM_IOPM_PAGES << X86_PAGE_4K_SHIFT);
2987 SSMR3GetU32(pSSM, &pGstCtx->hwvirt.fLocalForcedActions);
2988 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.fGif);
2989 }
2990 }
2991 if (uVersion >= CPUM_SAVED_STATE_VERSION_HWVIRT_VMX)
2992 {
2993 if (pVM->cpum.s.GuestFeatures.fVmx)
2994 {
2995 Assert(pGstCtx->hwvirt.vmx.CTX_SUFF(pVmcs));
2996 SSMR3GetGCPhys(pSSM, &pGstCtx->hwvirt.vmx.GCPhysVmxon);
2997 SSMR3GetGCPhys(pSSM, &pGstCtx->hwvirt.vmx.GCPhysVmcs);
2998 SSMR3GetGCPhys(pSSM, &pGstCtx->hwvirt.vmx.GCPhysShadowVmcs);
2999 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.vmx.fInVmxRootMode);
3000 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.vmx.fInVmxNonRootMode);
3001 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.vmx.fInterceptEvents);
3002 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.vmx.fNmiUnblockingIret);
3003 SSMR3GetStructEx(pSSM, pGstCtx->hwvirt.vmx.pVmcsR3, sizeof(VMXVVMCS), 0, g_aVmxHwvirtVmcs, NULL);
3004 SSMR3GetStructEx(pSSM, pGstCtx->hwvirt.vmx.pShadowVmcsR3, sizeof(VMXVVMCS), 0, g_aVmxHwvirtVmcs, NULL);
3005 SSMR3GetMem(pSSM, pGstCtx->hwvirt.vmx.pvVmreadBitmapR3, VMX_V_VMREAD_VMWRITE_BITMAP_SIZE);
3006 SSMR3GetMem(pSSM, pGstCtx->hwvirt.vmx.pvVmwriteBitmapR3, VMX_V_VMREAD_VMWRITE_BITMAP_SIZE);
3007 SSMR3GetMem(pSSM, pGstCtx->hwvirt.vmx.pEntryMsrLoadAreaR3, VMX_V_AUTOMSR_AREA_SIZE);
3008 SSMR3GetMem(pSSM, pGstCtx->hwvirt.vmx.pExitMsrStoreAreaR3, VMX_V_AUTOMSR_AREA_SIZE);
3009 SSMR3GetMem(pSSM, pGstCtx->hwvirt.vmx.pExitMsrLoadAreaR3, VMX_V_AUTOMSR_AREA_SIZE);
3010 SSMR3GetMem(pSSM, pGstCtx->hwvirt.vmx.pvMsrBitmapR3, VMX_V_MSR_BITMAP_SIZE);
3011 SSMR3GetMem(pSSM, pGstCtx->hwvirt.vmx.pvIoBitmapR3, VMX_V_IO_BITMAP_A_SIZE + VMX_V_IO_BITMAP_B_SIZE);
3012 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.uFirstPauseLoopTick);
3013 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.uPrevPauseTick);
3014 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.uEntryTick);
3015 SSMR3GetU16(pSSM, &pGstCtx->hwvirt.vmx.offVirtApicWrite);
3016 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.vmx.fVirtNmiBlocking);
3017 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64FeatCtrl);
3018 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64Basic);
3019 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.PinCtls.u);
3020 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.ProcCtls.u);
3021 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.ProcCtls2.u);
3022 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.ExitCtls.u);
3023 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.EntryCtls.u);
3024 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.TruePinCtls.u);
3025 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.TrueProcCtls.u);
3026 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.TrueEntryCtls.u);
3027 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.TrueExitCtls.u);
3028 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64Misc);
3029 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64Cr0Fixed0);
3030 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64Cr0Fixed1);
3031 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64Cr4Fixed0);
3032 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64Cr4Fixed1);
3033 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64VmcsEnum);
3034 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64VmFunc);
3035 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64EptVpidCaps);
3036 if (uVersion >= CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2)
3037 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64ProcCtls3);
3038 }
3039 }
3040 }
3041 else
3042 {
3043 /*
3044 * Pre XSAVE saved state.
3045 */
3046 SSMR3GetStructEx(pSSM, &pGstCtx->XState.x87, sizeof(pGstCtx->XState.x87),
3047 fLoad | SSMSTRUCT_FLAGS_NO_TAIL_MARKER, paCpumCtx1Fields, NULL);
3048 SSMR3GetStructEx(pSSM, pGstCtx, sizeof(*pGstCtx), fLoad | SSMSTRUCT_FLAGS_NO_LEAD_MARKER, paCpumCtx2Fields, NULL);
3049 }
3050
3051 /*
3052 * Restore a couple of flags and the MSRs.
3053 */
3054 uint32_t fIgnoredUsedFlags = 0;
3055 rc = SSMR3GetU32(pSSM, &fIgnoredUsedFlags); /* we're recalc the two relevant flags after loading state. */
3056 AssertRCReturn(rc, rc);
3057 SSMR3GetU32(pSSM, &pVCpu->cpum.s.fChanged);
3058
3059 rc = VINF_SUCCESS;
3060 if (uVersion > CPUM_SAVED_STATE_VERSION_NO_MSR_SIZE)
3061 rc = SSMR3GetMem(pSSM, &pVCpu->cpum.s.GuestMsrs.au64[0], cbMsrs);
3062 else if (uVersion >= CPUM_SAVED_STATE_VERSION_VER3_0)
3063 {
3064 SSMR3GetMem(pSSM, &pVCpu->cpum.s.GuestMsrs.au64[0], 2 * sizeof(uint64_t)); /* Restore two MSRs. */
3065 rc = SSMR3Skip(pSSM, 62 * sizeof(uint64_t));
3066 }
3067 AssertRCReturn(rc, rc);
3068
3069 /* REM and other may have cleared must-be-one fields in DR6 and
3070 DR7, fix these. */
3071 pGstCtx->dr[6] &= ~(X86_DR6_RAZ_MASK | X86_DR6_MBZ_MASK);
3072 pGstCtx->dr[6] |= X86_DR6_RA1_MASK;
3073 pGstCtx->dr[7] &= ~(X86_DR7_RAZ_MASK | X86_DR7_MBZ_MASK);
3074 pGstCtx->dr[7] |= X86_DR7_RA1_MASK;
3075 }
3076
3077 /* Older states does not have the internal selector register flags
3078 and valid selector value. Supply those. */
3079 if (uVersion <= CPUM_SAVED_STATE_VERSION_MEM)
3080 {
3081 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
3082 {
3083 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
3084 bool const fValid = true /*!VM_IS_RAW_MODE_ENABLED(pVM)*/
3085 || ( uVersion > CPUM_SAVED_STATE_VERSION_VER3_2
3086 && !(pVCpu->cpum.s.fChanged & CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID));
3087 PCPUMSELREG paSelReg = CPUMCTX_FIRST_SREG(&pVCpu->cpum.s.Guest);
3088 if (fValid)
3089 {
3090 for (uint32_t iSelReg = 0; iSelReg < X86_SREG_COUNT; iSelReg++)
3091 {
3092 paSelReg[iSelReg].fFlags = CPUMSELREG_FLAGS_VALID;
3093 paSelReg[iSelReg].ValidSel = paSelReg[iSelReg].Sel;
3094 }
3095
3096 pVCpu->cpum.s.Guest.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
3097 pVCpu->cpum.s.Guest.ldtr.ValidSel = pVCpu->cpum.s.Guest.ldtr.Sel;
3098 }
3099 else
3100 {
3101 for (uint32_t iSelReg = 0; iSelReg < X86_SREG_COUNT; iSelReg++)
3102 {
3103 paSelReg[iSelReg].fFlags = 0;
3104 paSelReg[iSelReg].ValidSel = 0;
3105 }
3106
3107 /* This might not be 104% correct, but I think it's close
3108 enough for all practical purposes... (REM always loaded
3109 LDTR registers.) */
3110 pVCpu->cpum.s.Guest.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
3111 pVCpu->cpum.s.Guest.ldtr.ValidSel = pVCpu->cpum.s.Guest.ldtr.Sel;
3112 }
3113 pVCpu->cpum.s.Guest.tr.fFlags = CPUMSELREG_FLAGS_VALID;
3114 pVCpu->cpum.s.Guest.tr.ValidSel = pVCpu->cpum.s.Guest.tr.Sel;
3115 }
3116 }
3117
3118 /* Clear CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID. */
3119 if ( uVersion > CPUM_SAVED_STATE_VERSION_VER3_2
3120 && uVersion <= CPUM_SAVED_STATE_VERSION_MEM)
3121 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
3122 {
3123 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
3124 pVCpu->cpum.s.fChanged &= CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID;
3125 }
3126
3127 /*
3128 * A quick sanity check.
3129 */
3130 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
3131 {
3132 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
3133 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.es.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
3134 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.cs.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
3135 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.ss.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
3136 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.ds.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
3137 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.fs.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
3138 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.gs.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
3139 }
3140 }
3141
3142 pVM->cpum.s.fPendingRestore = false;
3143
3144 /*
3145 * Guest CPUIDs (and VMX MSR features).
3146 */
3147 if (uVersion >= CPUM_SAVED_STATE_VERSION_VER3_2)
3148 {
3149 CPUMMSRS GuestMsrs;
3150 RT_ZERO(GuestMsrs);
3151
3152 CPUMFEATURES BaseFeatures;
3153 bool const fVmxGstFeat = pVM->cpum.s.GuestFeatures.fVmx;
3154 if (fVmxGstFeat)
3155 {
3156 /*
3157 * At this point the MSRs in the guest CPU-context are loaded with the guest VMX MSRs from the saved state.
3158 * However the VMX sub-features have not been exploded yet. So cache the base (host derived) VMX features
3159 * here so we can compare them for compatibility after exploding guest features.
3160 */
3161 BaseFeatures = pVM->cpum.s.GuestFeatures;
3162
3163 /* Use the VMX MSR features from the saved state while exploding guest features. */
3164 GuestMsrs.hwvirt.vmx = pVM->apCpusR3[0]->cpum.s.Guest.hwvirt.vmx.Msrs;
3165 }
3166
3167 /* Load CPUID and explode guest features. */
3168 rc = cpumR3LoadCpuId(pVM, pSSM, uVersion, &GuestMsrs);
3169 if (fVmxGstFeat)
3170 {
3171 /*
3172 * Check if the exploded VMX features from the saved state are compatible with the host-derived features
3173 * we cached earlier (above). The is required if we use hardware-assisted nested-guest execution with
3174 * VMX features presented to the guest.
3175 */
3176 bool const fIsCompat = cpumR3AreVmxCpuFeaturesCompatible(pVM, &BaseFeatures, &pVM->cpum.s.GuestFeatures);
3177 if (!fIsCompat)
3178 return VERR_CPUM_INVALID_HWVIRT_FEAT_COMBO;
3179 }
3180 return rc;
3181 }
3182 return cpumR3LoadCpuIdPre32(pVM, pSSM, uVersion);
3183}
3184
3185
3186/**
3187 * @callback_method_impl{FNSSMINTLOADDONE}
3188 */
3189static DECLCALLBACK(int) cpumR3LoadDone(PVM pVM, PSSMHANDLE pSSM)
3190{
3191 if (RT_FAILURE(SSMR3HandleGetStatus(pSSM)))
3192 return VINF_SUCCESS;
3193
3194 /* just check this since we can. */ /** @todo Add a SSM unit flag for indicating that it's mandatory during a restore. */
3195 if (pVM->cpum.s.fPendingRestore)
3196 {
3197 LogRel(("CPUM: Missing state!\n"));
3198 return VERR_INTERNAL_ERROR_2;
3199 }
3200
3201 bool const fSupportsLongMode = VMR3IsLongModeAllowed(pVM);
3202 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
3203 {
3204 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
3205
3206 /* Notify PGM of the NXE states in case they've changed. */
3207 PGMNotifyNxeChanged(pVCpu, RT_BOOL(pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_NXE));
3208
3209 /* During init. this is done in CPUMR3InitCompleted(). */
3210 if (fSupportsLongMode)
3211 pVCpu->cpum.s.fUseFlags |= CPUM_USE_SUPPORTS_LONGMODE;
3212
3213 /* Recalc the CPUM_USE_DEBUG_REGS_HYPER value. */
3214 CPUMRecalcHyperDRx(pVCpu, UINT8_MAX);
3215 }
3216 return VINF_SUCCESS;
3217}
3218
3219
3220/**
3221 * Checks if the CPUM state restore is still pending.
3222 *
3223 * @returns true / false.
3224 * @param pVM The cross context VM structure.
3225 */
3226VMMDECL(bool) CPUMR3IsStateRestorePending(PVM pVM)
3227{
3228 return pVM->cpum.s.fPendingRestore;
3229}
3230
3231
3232/**
3233 * Formats the EFLAGS value into mnemonics.
3234 *
3235 * @param pszEFlags Where to write the mnemonics. (Assumes sufficient buffer space.)
3236 * @param efl The EFLAGS value.
3237 */
3238static void cpumR3InfoFormatFlags(char *pszEFlags, uint32_t efl)
3239{
3240 /*
3241 * Format the flags.
3242 */
3243 static const struct
3244 {
3245 const char *pszSet; const char *pszClear; uint32_t fFlag;
3246 } s_aFlags[] =
3247 {
3248 { "vip",NULL, X86_EFL_VIP },
3249 { "vif",NULL, X86_EFL_VIF },
3250 { "ac", NULL, X86_EFL_AC },
3251 { "vm", NULL, X86_EFL_VM },
3252 { "rf", NULL, X86_EFL_RF },
3253 { "nt", NULL, X86_EFL_NT },
3254 { "ov", "nv", X86_EFL_OF },
3255 { "dn", "up", X86_EFL_DF },
3256 { "ei", "di", X86_EFL_IF },
3257 { "tf", NULL, X86_EFL_TF },
3258 { "nt", "pl", X86_EFL_SF },
3259 { "nz", "zr", X86_EFL_ZF },
3260 { "ac", "na", X86_EFL_AF },
3261 { "po", "pe", X86_EFL_PF },
3262 { "cy", "nc", X86_EFL_CF },
3263 };
3264 char *psz = pszEFlags;
3265 for (unsigned i = 0; i < RT_ELEMENTS(s_aFlags); i++)
3266 {
3267 const char *pszAdd = s_aFlags[i].fFlag & efl ? s_aFlags[i].pszSet : s_aFlags[i].pszClear;
3268 if (pszAdd)
3269 {
3270 strcpy(psz, pszAdd);
3271 psz += strlen(pszAdd);
3272 *psz++ = ' ';
3273 }
3274 }
3275 psz[-1] = '\0';
3276}
3277
3278
3279/**
3280 * Formats a full register dump.
3281 *
3282 * @param pVM The cross context VM structure.
3283 * @param pCtx The context to format.
3284 * @param pCtxCore The context core to format.
3285 * @param pHlp Output functions.
3286 * @param enmType The dump type.
3287 * @param pszPrefix Register name prefix.
3288 */
3289static void cpumR3InfoOne(PVM pVM, PCPUMCTX pCtx, PCCPUMCTXCORE pCtxCore, PCDBGFINFOHLP pHlp, CPUMDUMPTYPE enmType,
3290 const char *pszPrefix)
3291{
3292 NOREF(pVM);
3293
3294 /*
3295 * Format the EFLAGS.
3296 */
3297 uint32_t efl = pCtxCore->eflags.u32;
3298 char szEFlags[80];
3299 cpumR3InfoFormatFlags(&szEFlags[0], efl);
3300
3301 /*
3302 * Format the registers.
3303 */
3304 switch (enmType)
3305 {
3306 case CPUMDUMPTYPE_TERSE:
3307 if (CPUMIsGuestIn64BitCodeEx(pCtx))
3308 pHlp->pfnPrintf(pHlp,
3309 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
3310 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
3311 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
3312 "%sr14=%016RX64 %sr15=%016RX64\n"
3313 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
3314 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %seflags=%08x\n",
3315 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
3316 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
3317 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
3318 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
3319 pszPrefix, pCtxCore->cs.Sel, pszPrefix, pCtxCore->ss.Sel, pszPrefix, pCtxCore->ds.Sel, pszPrefix, pCtxCore->es.Sel,
3320 pszPrefix, pCtxCore->fs.Sel, pszPrefix, pCtxCore->gs.Sel, pszPrefix, efl);
3321 else
3322 pHlp->pfnPrintf(pHlp,
3323 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
3324 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
3325 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %seflags=%08x\n",
3326 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
3327 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
3328 pszPrefix, pCtxCore->cs.Sel, pszPrefix, pCtxCore->ss.Sel, pszPrefix, pCtxCore->ds.Sel, pszPrefix, pCtxCore->es.Sel,
3329 pszPrefix, pCtxCore->fs.Sel, pszPrefix, pCtxCore->gs.Sel, pszPrefix, efl);
3330 break;
3331
3332 case CPUMDUMPTYPE_DEFAULT:
3333 if (CPUMIsGuestIn64BitCodeEx(pCtx))
3334 pHlp->pfnPrintf(pHlp,
3335 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
3336 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
3337 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
3338 "%sr14=%016RX64 %sr15=%016RX64\n"
3339 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
3340 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %str=%04x %seflags=%08x\n"
3341 "%scr0=%08RX64 %scr2=%08RX64 %scr3=%08RX64 %scr4=%08RX64 %sgdtr=%016RX64:%04x %sldtr=%04x\n"
3342 ,
3343 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
3344 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
3345 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
3346 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
3347 pszPrefix, pCtxCore->cs.Sel, pszPrefix, pCtxCore->ss.Sel, pszPrefix, pCtxCore->ds.Sel, pszPrefix, pCtxCore->es.Sel,
3348 pszPrefix, pCtxCore->fs.Sel, pszPrefix, pCtxCore->gs.Sel, pszPrefix, pCtx->tr.Sel, pszPrefix, efl,
3349 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
3350 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->ldtr.Sel);
3351 else
3352 pHlp->pfnPrintf(pHlp,
3353 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
3354 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
3355 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %str=%04x %seflags=%08x\n"
3356 "%scr0=%08RX64 %scr2=%08RX64 %scr3=%08RX64 %scr4=%08RX64 %sgdtr=%08RX64:%04x %sldtr=%04x\n"
3357 ,
3358 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
3359 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
3360 pszPrefix, pCtxCore->cs.Sel, pszPrefix, pCtxCore->ss.Sel, pszPrefix, pCtxCore->ds.Sel, pszPrefix, pCtxCore->es.Sel,
3361 pszPrefix, pCtxCore->fs.Sel, pszPrefix, pCtxCore->gs.Sel, pszPrefix, pCtx->tr.Sel, pszPrefix, efl,
3362 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
3363 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->ldtr.Sel);
3364 break;
3365
3366 case CPUMDUMPTYPE_VERBOSE:
3367 if (CPUMIsGuestIn64BitCodeEx(pCtx))
3368 pHlp->pfnPrintf(pHlp,
3369 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
3370 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
3371 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
3372 "%sr14=%016RX64 %sr15=%016RX64\n"
3373 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
3374 "%scs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
3375 "%sds={%04x base=%016RX64 limit=%08x flags=%08x}\n"
3376 "%ses={%04x base=%016RX64 limit=%08x flags=%08x}\n"
3377 "%sfs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
3378 "%sgs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
3379 "%sss={%04x base=%016RX64 limit=%08x flags=%08x}\n"
3380 "%scr0=%016RX64 %scr2=%016RX64 %scr3=%016RX64 %scr4=%016RX64\n"
3381 "%sdr0=%016RX64 %sdr1=%016RX64 %sdr2=%016RX64 %sdr3=%016RX64\n"
3382 "%sdr4=%016RX64 %sdr5=%016RX64 %sdr6=%016RX64 %sdr7=%016RX64\n"
3383 "%sgdtr=%016RX64:%04x %sidtr=%016RX64:%04x %seflags=%08x\n"
3384 "%sldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
3385 "%str ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
3386 "%sSysEnter={cs=%04llx eip=%016RX64 esp=%016RX64}\n"
3387 ,
3388 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
3389 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
3390 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
3391 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
3392 pszPrefix, pCtxCore->cs.Sel, pCtx->cs.u64Base, pCtx->cs.u32Limit, pCtx->cs.Attr.u,
3393 pszPrefix, pCtxCore->ds.Sel, pCtx->ds.u64Base, pCtx->ds.u32Limit, pCtx->ds.Attr.u,
3394 pszPrefix, pCtxCore->es.Sel, pCtx->es.u64Base, pCtx->es.u32Limit, pCtx->es.Attr.u,
3395 pszPrefix, pCtxCore->fs.Sel, pCtx->fs.u64Base, pCtx->fs.u32Limit, pCtx->fs.Attr.u,
3396 pszPrefix, pCtxCore->gs.Sel, pCtx->gs.u64Base, pCtx->gs.u32Limit, pCtx->gs.Attr.u,
3397 pszPrefix, pCtxCore->ss.Sel, pCtx->ss.u64Base, pCtx->ss.u32Limit, pCtx->ss.Attr.u,
3398 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
3399 pszPrefix, pCtx->dr[0], pszPrefix, pCtx->dr[1], pszPrefix, pCtx->dr[2], pszPrefix, pCtx->dr[3],
3400 pszPrefix, pCtx->dr[4], pszPrefix, pCtx->dr[5], pszPrefix, pCtx->dr[6], pszPrefix, pCtx->dr[7],
3401 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, pszPrefix, efl,
3402 pszPrefix, pCtx->ldtr.Sel, pCtx->ldtr.u64Base, pCtx->ldtr.u32Limit, pCtx->ldtr.Attr.u,
3403 pszPrefix, pCtx->tr.Sel, pCtx->tr.u64Base, pCtx->tr.u32Limit, pCtx->tr.Attr.u,
3404 pszPrefix, pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
3405 else
3406 pHlp->pfnPrintf(pHlp,
3407 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
3408 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
3409 "%scs={%04x base=%016RX64 limit=%08x flags=%08x} %sdr0=%08RX64 %sdr1=%08RX64\n"
3410 "%sds={%04x base=%016RX64 limit=%08x flags=%08x} %sdr2=%08RX64 %sdr3=%08RX64\n"
3411 "%ses={%04x base=%016RX64 limit=%08x flags=%08x} %sdr4=%08RX64 %sdr5=%08RX64\n"
3412 "%sfs={%04x base=%016RX64 limit=%08x flags=%08x} %sdr6=%08RX64 %sdr7=%08RX64\n"
3413 "%sgs={%04x base=%016RX64 limit=%08x flags=%08x} %scr0=%08RX64 %scr2=%08RX64\n"
3414 "%sss={%04x base=%016RX64 limit=%08x flags=%08x} %scr3=%08RX64 %scr4=%08RX64\n"
3415 "%sgdtr=%016RX64:%04x %sidtr=%016RX64:%04x %seflags=%08x\n"
3416 "%sldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
3417 "%str ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
3418 "%sSysEnter={cs=%04llx eip=%08llx esp=%08llx}\n"
3419 ,
3420 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
3421 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
3422 pszPrefix, pCtxCore->cs.Sel, pCtx->cs.u64Base, pCtx->cs.u32Limit, pCtx->cs.Attr.u, pszPrefix, pCtx->dr[0], pszPrefix, pCtx->dr[1],
3423 pszPrefix, pCtxCore->ds.Sel, pCtx->ds.u64Base, pCtx->ds.u32Limit, pCtx->ds.Attr.u, pszPrefix, pCtx->dr[2], pszPrefix, pCtx->dr[3],
3424 pszPrefix, pCtxCore->es.Sel, pCtx->es.u64Base, pCtx->es.u32Limit, pCtx->es.Attr.u, pszPrefix, pCtx->dr[4], pszPrefix, pCtx->dr[5],
3425 pszPrefix, pCtxCore->fs.Sel, pCtx->fs.u64Base, pCtx->fs.u32Limit, pCtx->fs.Attr.u, pszPrefix, pCtx->dr[6], pszPrefix, pCtx->dr[7],
3426 pszPrefix, pCtxCore->gs.Sel, pCtx->gs.u64Base, pCtx->gs.u32Limit, pCtx->gs.Attr.u, pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2,
3427 pszPrefix, pCtxCore->ss.Sel, pCtx->ss.u64Base, pCtx->ss.u32Limit, pCtx->ss.Attr.u, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
3428 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, pszPrefix, efl,
3429 pszPrefix, pCtx->ldtr.Sel, pCtx->ldtr.u64Base, pCtx->ldtr.u32Limit, pCtx->ldtr.Attr.u,
3430 pszPrefix, pCtx->tr.Sel, pCtx->tr.u64Base, pCtx->tr.u32Limit, pCtx->tr.Attr.u,
3431 pszPrefix, pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
3432
3433 pHlp->pfnPrintf(pHlp, "%sxcr=%016RX64 %sxcr1=%016RX64 %sxss=%016RX64 (fXStateMask=%016RX64)\n",
3434 pszPrefix, pCtx->aXcr[0], pszPrefix, pCtx->aXcr[1],
3435 pszPrefix, UINT64_C(0) /** @todo XSS */, pCtx->fXStateMask);
3436 {
3437 PX86FXSTATE pFpuCtx = &pCtx->XState.x87;
3438 pHlp->pfnPrintf(pHlp,
3439 "%sFCW=%04x %sFSW=%04x %sFTW=%04x %sFOP=%04x %sMXCSR=%08x %sMXCSR_MASK=%08x\n"
3440 "%sFPUIP=%08x %sCS=%04x %sRsrvd1=%04x %sFPUDP=%08x %sDS=%04x %sRsvrd2=%04x\n"
3441 ,
3442 pszPrefix, pFpuCtx->FCW, pszPrefix, pFpuCtx->FSW, pszPrefix, pFpuCtx->FTW, pszPrefix, pFpuCtx->FOP,
3443 pszPrefix, pFpuCtx->MXCSR, pszPrefix, pFpuCtx->MXCSR_MASK,
3444 pszPrefix, pFpuCtx->FPUIP, pszPrefix, pFpuCtx->CS, pszPrefix, pFpuCtx->Rsrvd1,
3445 pszPrefix, pFpuCtx->FPUDP, pszPrefix, pFpuCtx->DS, pszPrefix, pFpuCtx->Rsrvd2
3446 );
3447 /*
3448 * The FSAVE style memory image contains ST(0)-ST(7) at increasing addresses,
3449 * not (FP)R0-7 as Intel SDM suggests.
3450 */
3451 unsigned iShift = (pFpuCtx->FSW >> 11) & 7;
3452 for (unsigned iST = 0; iST < RT_ELEMENTS(pFpuCtx->aRegs); iST++)
3453 {
3454 unsigned iFPR = (iST + iShift) % RT_ELEMENTS(pFpuCtx->aRegs);
3455 unsigned uTag = (pFpuCtx->FTW >> (2 * iFPR)) & 3;
3456 char chSign = pFpuCtx->aRegs[iST].au16[4] & 0x8000 ? '-' : '+';
3457 unsigned iInteger = (unsigned)(pFpuCtx->aRegs[iST].au64[0] >> 63);
3458 uint64_t u64Fraction = pFpuCtx->aRegs[iST].au64[0] & UINT64_C(0x7fffffffffffffff);
3459 int iExponent = pFpuCtx->aRegs[iST].au16[4] & 0x7fff;
3460 iExponent -= 16383; /* subtract bias */
3461 /** @todo This isn't entirenly correct and needs more work! */
3462 pHlp->pfnPrintf(pHlp,
3463 "%sST(%u)=%sFPR%u={%04RX16'%08RX32'%08RX32} t%d %c%u.%022llu * 2 ^ %d (*)",
3464 pszPrefix, iST, pszPrefix, iFPR,
3465 pFpuCtx->aRegs[iST].au16[4], pFpuCtx->aRegs[iST].au32[1], pFpuCtx->aRegs[iST].au32[0],
3466 uTag, chSign, iInteger, u64Fraction, iExponent);
3467 if (pFpuCtx->aRegs[iST].au16[5] || pFpuCtx->aRegs[iST].au16[6] || pFpuCtx->aRegs[iST].au16[7])
3468 pHlp->pfnPrintf(pHlp, " res={%04RX16,%04RX16,%04RX16}\n",
3469 pFpuCtx->aRegs[iST].au16[5], pFpuCtx->aRegs[iST].au16[6], pFpuCtx->aRegs[iST].au16[7]);
3470 else
3471 pHlp->pfnPrintf(pHlp, "\n");
3472 }
3473
3474 /* XMM/YMM/ZMM registers. */
3475 if (pCtx->fXStateMask & XSAVE_C_YMM)
3476 {
3477 PCX86XSAVEYMMHI pYmmHiCtx = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_YMM_BIT, PCX86XSAVEYMMHI);
3478 if (!(pCtx->fXStateMask & XSAVE_C_ZMM_HI256))
3479 for (unsigned i = 0; i < RT_ELEMENTS(pFpuCtx->aXMM); i++)
3480 pHlp->pfnPrintf(pHlp, "%sYMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32\n",
3481 pszPrefix, i, i < 10 ? " " : "",
3482 pYmmHiCtx->aYmmHi[i].au32[3],
3483 pYmmHiCtx->aYmmHi[i].au32[2],
3484 pYmmHiCtx->aYmmHi[i].au32[1],
3485 pYmmHiCtx->aYmmHi[i].au32[0],
3486 pFpuCtx->aXMM[i].au32[3],
3487 pFpuCtx->aXMM[i].au32[2],
3488 pFpuCtx->aXMM[i].au32[1],
3489 pFpuCtx->aXMM[i].au32[0]);
3490 else
3491 {
3492 PCX86XSAVEZMMHI256 pZmmHi256 = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_ZMM_HI256_BIT, PCX86XSAVEZMMHI256);
3493 for (unsigned i = 0; i < RT_ELEMENTS(pFpuCtx->aXMM); i++)
3494 pHlp->pfnPrintf(pHlp,
3495 "%sZMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32''%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32\n",
3496 pszPrefix, i, i < 10 ? " " : "",
3497 pZmmHi256->aHi256Regs[i].au32[7],
3498 pZmmHi256->aHi256Regs[i].au32[6],
3499 pZmmHi256->aHi256Regs[i].au32[5],
3500 pZmmHi256->aHi256Regs[i].au32[4],
3501 pZmmHi256->aHi256Regs[i].au32[3],
3502 pZmmHi256->aHi256Regs[i].au32[2],
3503 pZmmHi256->aHi256Regs[i].au32[1],
3504 pZmmHi256->aHi256Regs[i].au32[0],
3505 pYmmHiCtx->aYmmHi[i].au32[3],
3506 pYmmHiCtx->aYmmHi[i].au32[2],
3507 pYmmHiCtx->aYmmHi[i].au32[1],
3508 pYmmHiCtx->aYmmHi[i].au32[0],
3509 pFpuCtx->aXMM[i].au32[3],
3510 pFpuCtx->aXMM[i].au32[2],
3511 pFpuCtx->aXMM[i].au32[1],
3512 pFpuCtx->aXMM[i].au32[0]);
3513
3514 PCX86XSAVEZMM16HI pZmm16Hi = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_ZMM_16HI_BIT, PCX86XSAVEZMM16HI);
3515 for (unsigned i = 0; i < RT_ELEMENTS(pZmm16Hi->aRegs); i++)
3516 pHlp->pfnPrintf(pHlp,
3517 "%sZMM%u=%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32''%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32\n",
3518 pszPrefix, i + 16,
3519 pZmm16Hi->aRegs[i].au32[15],
3520 pZmm16Hi->aRegs[i].au32[14],
3521 pZmm16Hi->aRegs[i].au32[13],
3522 pZmm16Hi->aRegs[i].au32[12],
3523 pZmm16Hi->aRegs[i].au32[11],
3524 pZmm16Hi->aRegs[i].au32[10],
3525 pZmm16Hi->aRegs[i].au32[9],
3526 pZmm16Hi->aRegs[i].au32[8],
3527 pZmm16Hi->aRegs[i].au32[7],
3528 pZmm16Hi->aRegs[i].au32[6],
3529 pZmm16Hi->aRegs[i].au32[5],
3530 pZmm16Hi->aRegs[i].au32[4],
3531 pZmm16Hi->aRegs[i].au32[3],
3532 pZmm16Hi->aRegs[i].au32[2],
3533 pZmm16Hi->aRegs[i].au32[1],
3534 pZmm16Hi->aRegs[i].au32[0]);
3535 }
3536 }
3537 else
3538 for (unsigned i = 0; i < RT_ELEMENTS(pFpuCtx->aXMM); i++)
3539 pHlp->pfnPrintf(pHlp,
3540 i & 1
3541 ? "%sXMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32\n"
3542 : "%sXMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32 ",
3543 pszPrefix, i, i < 10 ? " " : "",
3544 pFpuCtx->aXMM[i].au32[3],
3545 pFpuCtx->aXMM[i].au32[2],
3546 pFpuCtx->aXMM[i].au32[1],
3547 pFpuCtx->aXMM[i].au32[0]);
3548
3549 if (pCtx->fXStateMask & XSAVE_C_OPMASK)
3550 {
3551 PCX86XSAVEOPMASK pOpMask = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_OPMASK_BIT, PCX86XSAVEOPMASK);
3552 for (unsigned i = 0; i < RT_ELEMENTS(pOpMask->aKRegs); i += 4)
3553 pHlp->pfnPrintf(pHlp, "%sK%u=%016RX64 %sK%u=%016RX64 %sK%u=%016RX64 %sK%u=%016RX64\n",
3554 pszPrefix, i + 0, pOpMask->aKRegs[i + 0],
3555 pszPrefix, i + 1, pOpMask->aKRegs[i + 1],
3556 pszPrefix, i + 2, pOpMask->aKRegs[i + 2],
3557 pszPrefix, i + 3, pOpMask->aKRegs[i + 3]);
3558 }
3559
3560 if (pCtx->fXStateMask & XSAVE_C_BNDREGS)
3561 {
3562 PCX86XSAVEBNDREGS pBndRegs = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_BNDREGS_BIT, PCX86XSAVEBNDREGS);
3563 for (unsigned i = 0; i < RT_ELEMENTS(pBndRegs->aRegs); i += 2)
3564 pHlp->pfnPrintf(pHlp, "%sBNDREG%u=%016RX64/%016RX64 %sBNDREG%u=%016RX64/%016RX64\n",
3565 pszPrefix, i, pBndRegs->aRegs[i].uLowerBound, pBndRegs->aRegs[i].uUpperBound,
3566 pszPrefix, i + 1, pBndRegs->aRegs[i + 1].uLowerBound, pBndRegs->aRegs[i + 1].uUpperBound);
3567 }
3568
3569 if (pCtx->fXStateMask & XSAVE_C_BNDCSR)
3570 {
3571 PCX86XSAVEBNDCFG pBndCfg = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_BNDCSR_BIT, PCX86XSAVEBNDCFG);
3572 pHlp->pfnPrintf(pHlp, "%sBNDCFG.CONFIG=%016RX64 %sBNDCFG.STATUS=%016RX64\n",
3573 pszPrefix, pBndCfg->fConfig, pszPrefix, pBndCfg->fStatus);
3574 }
3575
3576 for (unsigned i = 0; i < RT_ELEMENTS(pFpuCtx->au32RsrvdRest); i++)
3577 if (pFpuCtx->au32RsrvdRest[i])
3578 pHlp->pfnPrintf(pHlp, "%sRsrvdRest[%u]=%RX32 (offset=%#x)\n",
3579 pszPrefix, i, pFpuCtx->au32RsrvdRest[i], RT_UOFFSETOF_DYN(X86FXSTATE, au32RsrvdRest[i]) );
3580 }
3581
3582 pHlp->pfnPrintf(pHlp,
3583 "%sEFER =%016RX64\n"
3584 "%sPAT =%016RX64\n"
3585 "%sSTAR =%016RX64\n"
3586 "%sCSTAR =%016RX64\n"
3587 "%sLSTAR =%016RX64\n"
3588 "%sSFMASK =%016RX64\n"
3589 "%sKERNELGSBASE =%016RX64\n",
3590 pszPrefix, pCtx->msrEFER,
3591 pszPrefix, pCtx->msrPAT,
3592 pszPrefix, pCtx->msrSTAR,
3593 pszPrefix, pCtx->msrCSTAR,
3594 pszPrefix, pCtx->msrLSTAR,
3595 pszPrefix, pCtx->msrSFMASK,
3596 pszPrefix, pCtx->msrKERNELGSBASE);
3597
3598 if (CPUMIsGuestInPAEModeEx(pCtx))
3599 for (unsigned i = 0; i < RT_ELEMENTS(pCtx->aPaePdpes); i++)
3600 pHlp->pfnPrintf(pHlp, "%sPAE PDPTE %u =%016RX64\n", pszPrefix, i, pCtx->aPaePdpes[i]);
3601 break;
3602 }
3603}
3604
3605
3606/**
3607 * Display all cpu states and any other cpum info.
3608 *
3609 * @param pVM The cross context VM structure.
3610 * @param pHlp The info helper functions.
3611 * @param pszArgs Arguments, ignored.
3612 */
3613static DECLCALLBACK(void) cpumR3InfoAll(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3614{
3615 cpumR3InfoGuest(pVM, pHlp, pszArgs);
3616 cpumR3InfoGuestInstr(pVM, pHlp, pszArgs);
3617 cpumR3InfoGuestHwvirt(pVM, pHlp, pszArgs);
3618 cpumR3InfoHyper(pVM, pHlp, pszArgs);
3619 cpumR3InfoHost(pVM, pHlp, pszArgs);
3620}
3621
3622
3623/**
3624 * Parses the info argument.
3625 *
3626 * The argument starts with 'verbose', 'terse' or 'default' and then
3627 * continues with the comment string.
3628 *
3629 * @param pszArgs The pointer to the argument string.
3630 * @param penmType Where to store the dump type request.
3631 * @param ppszComment Where to store the pointer to the comment string.
3632 */
3633static void cpumR3InfoParseArg(const char *pszArgs, CPUMDUMPTYPE *penmType, const char **ppszComment)
3634{
3635 if (!pszArgs)
3636 {
3637 *penmType = CPUMDUMPTYPE_DEFAULT;
3638 *ppszComment = "";
3639 }
3640 else
3641 {
3642 if (!strncmp(pszArgs, RT_STR_TUPLE("verbose")))
3643 {
3644 pszArgs += 7;
3645 *penmType = CPUMDUMPTYPE_VERBOSE;
3646 }
3647 else if (!strncmp(pszArgs, RT_STR_TUPLE("terse")))
3648 {
3649 pszArgs += 5;
3650 *penmType = CPUMDUMPTYPE_TERSE;
3651 }
3652 else if (!strncmp(pszArgs, RT_STR_TUPLE("default")))
3653 {
3654 pszArgs += 7;
3655 *penmType = CPUMDUMPTYPE_DEFAULT;
3656 }
3657 else
3658 *penmType = CPUMDUMPTYPE_DEFAULT;
3659 *ppszComment = RTStrStripL(pszArgs);
3660 }
3661}
3662
3663
3664/**
3665 * Display the guest cpu state.
3666 *
3667 * @param pVM The cross context VM structure.
3668 * @param pHlp The info helper functions.
3669 * @param pszArgs Arguments.
3670 */
3671static DECLCALLBACK(void) cpumR3InfoGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3672{
3673 CPUMDUMPTYPE enmType;
3674 const char *pszComment;
3675 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
3676
3677 PVMCPU pVCpu = VMMGetCpu(pVM);
3678 if (!pVCpu)
3679 pVCpu = pVM->apCpusR3[0];
3680
3681 pHlp->pfnPrintf(pHlp, "Guest CPUM (VCPU %d) state: %s\n", pVCpu->idCpu, pszComment);
3682
3683 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
3684 cpumR3InfoOne(pVM, pCtx, CPUMCTX2CORE(pCtx), pHlp, enmType, "");
3685}
3686
3687
3688/**
3689 * Displays an SVM VMCB control area.
3690 *
3691 * @param pHlp The info helper functions.
3692 * @param pVmcbCtrl Pointer to a SVM VMCB controls area.
3693 * @param pszPrefix Caller specified string prefix.
3694 */
3695static void cpumR3InfoSvmVmcbCtrl(PCDBGFINFOHLP pHlp, PCSVMVMCBCTRL pVmcbCtrl, const char *pszPrefix)
3696{
3697 AssertReturnVoid(pHlp);
3698 AssertReturnVoid(pVmcbCtrl);
3699
3700 pHlp->pfnPrintf(pHlp, "%sCRX-read intercepts = %#RX16\n", pszPrefix, pVmcbCtrl->u16InterceptRdCRx);
3701 pHlp->pfnPrintf(pHlp, "%sCRX-write intercepts = %#RX16\n", pszPrefix, pVmcbCtrl->u16InterceptWrCRx);
3702 pHlp->pfnPrintf(pHlp, "%sDRX-read intercepts = %#RX16\n", pszPrefix, pVmcbCtrl->u16InterceptRdDRx);
3703 pHlp->pfnPrintf(pHlp, "%sDRX-write intercepts = %#RX16\n", pszPrefix, pVmcbCtrl->u16InterceptWrDRx);
3704 pHlp->pfnPrintf(pHlp, "%sException intercepts = %#RX32\n", pszPrefix, pVmcbCtrl->u32InterceptXcpt);
3705 pHlp->pfnPrintf(pHlp, "%sControl intercepts = %#RX64\n", pszPrefix, pVmcbCtrl->u64InterceptCtrl);
3706 pHlp->pfnPrintf(pHlp, "%sPause-filter threshold = %#RX16\n", pszPrefix, pVmcbCtrl->u16PauseFilterThreshold);
3707 pHlp->pfnPrintf(pHlp, "%sPause-filter count = %#RX16\n", pszPrefix, pVmcbCtrl->u16PauseFilterCount);
3708 pHlp->pfnPrintf(pHlp, "%sIOPM bitmap physaddr = %#RX64\n", pszPrefix, pVmcbCtrl->u64IOPMPhysAddr);
3709 pHlp->pfnPrintf(pHlp, "%sMSRPM bitmap physaddr = %#RX64\n", pszPrefix, pVmcbCtrl->u64MSRPMPhysAddr);
3710 pHlp->pfnPrintf(pHlp, "%sTSC offset = %#RX64\n", pszPrefix, pVmcbCtrl->u64TSCOffset);
3711 pHlp->pfnPrintf(pHlp, "%sTLB Control\n", pszPrefix);
3712 pHlp->pfnPrintf(pHlp, " %sASID = %#RX32\n", pszPrefix, pVmcbCtrl->TLBCtrl.n.u32ASID);
3713 pHlp->pfnPrintf(pHlp, " %sTLB-flush type = %u\n", pszPrefix, pVmcbCtrl->TLBCtrl.n.u8TLBFlush);
3714 pHlp->pfnPrintf(pHlp, "%sInterrupt Control\n", pszPrefix);
3715 pHlp->pfnPrintf(pHlp, " %sVTPR = %#RX8 (%u)\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u8VTPR, pVmcbCtrl->IntCtrl.n.u8VTPR);
3716 pHlp->pfnPrintf(pHlp, " %sVIRQ (Pending) = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1VIrqPending);
3717 pHlp->pfnPrintf(pHlp, " %sVINTR vector = %#RX8\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u8VIntrVector);
3718 pHlp->pfnPrintf(pHlp, " %sVGIF = %u\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1VGif);
3719 pHlp->pfnPrintf(pHlp, " %sVINTR priority = %#RX8\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u4VIntrPrio);
3720 pHlp->pfnPrintf(pHlp, " %sIgnore TPR = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1IgnoreTPR);
3721 pHlp->pfnPrintf(pHlp, " %sVINTR masking = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1VIntrMasking);
3722 pHlp->pfnPrintf(pHlp, " %sVGIF enable = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1VGifEnable);
3723 pHlp->pfnPrintf(pHlp, " %sAVIC enable = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1AvicEnable);
3724 pHlp->pfnPrintf(pHlp, "%sInterrupt Shadow\n", pszPrefix);
3725 pHlp->pfnPrintf(pHlp, " %sInterrupt shadow = %RTbool\n", pszPrefix, pVmcbCtrl->IntShadow.n.u1IntShadow);
3726 pHlp->pfnPrintf(pHlp, " %sGuest-interrupt Mask = %RTbool\n", pszPrefix, pVmcbCtrl->IntShadow.n.u1GuestIntMask);
3727 pHlp->pfnPrintf(pHlp, "%sExit Code = %#RX64\n", pszPrefix, pVmcbCtrl->u64ExitCode);
3728 pHlp->pfnPrintf(pHlp, "%sEXITINFO1 = %#RX64\n", pszPrefix, pVmcbCtrl->u64ExitInfo1);
3729 pHlp->pfnPrintf(pHlp, "%sEXITINFO2 = %#RX64\n", pszPrefix, pVmcbCtrl->u64ExitInfo2);
3730 pHlp->pfnPrintf(pHlp, "%sExit Interrupt Info\n", pszPrefix);
3731 pHlp->pfnPrintf(pHlp, " %sValid = %RTbool\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u1Valid);
3732 pHlp->pfnPrintf(pHlp, " %sVector = %#RX8 (%u)\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u8Vector, pVmcbCtrl->ExitIntInfo.n.u8Vector);
3733 pHlp->pfnPrintf(pHlp, " %sType = %u\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u3Type);
3734 pHlp->pfnPrintf(pHlp, " %sError-code valid = %RTbool\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u1ErrorCodeValid);
3735 pHlp->pfnPrintf(pHlp, " %sError-code = %#RX32\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u32ErrorCode);
3736 pHlp->pfnPrintf(pHlp, "%sNested paging and SEV\n", pszPrefix);
3737 pHlp->pfnPrintf(pHlp, " %sNested paging = %RTbool\n", pszPrefix, pVmcbCtrl->NestedPagingCtrl.n.u1NestedPaging);
3738 pHlp->pfnPrintf(pHlp, " %sSEV (Secure Encrypted VM) = %RTbool\n", pszPrefix, pVmcbCtrl->NestedPagingCtrl.n.u1Sev);
3739 pHlp->pfnPrintf(pHlp, " %sSEV-ES (Encrypted State) = %RTbool\n", pszPrefix, pVmcbCtrl->NestedPagingCtrl.n.u1SevEs);
3740 pHlp->pfnPrintf(pHlp, "%sEvent Inject\n", pszPrefix);
3741 pHlp->pfnPrintf(pHlp, " %sValid = %RTbool\n", pszPrefix, pVmcbCtrl->EventInject.n.u1Valid);
3742 pHlp->pfnPrintf(pHlp, " %sVector = %#RX32 (%u)\n", pszPrefix, pVmcbCtrl->EventInject.n.u8Vector, pVmcbCtrl->EventInject.n.u8Vector);
3743 pHlp->pfnPrintf(pHlp, " %sType = %u\n", pszPrefix, pVmcbCtrl->EventInject.n.u3Type);
3744 pHlp->pfnPrintf(pHlp, " %sError-code valid = %RTbool\n", pszPrefix, pVmcbCtrl->EventInject.n.u1ErrorCodeValid);
3745 pHlp->pfnPrintf(pHlp, " %sError-code = %#RX32\n", pszPrefix, pVmcbCtrl->EventInject.n.u32ErrorCode);
3746 pHlp->pfnPrintf(pHlp, "%sNested-paging CR3 = %#RX64\n", pszPrefix, pVmcbCtrl->u64NestedPagingCR3);
3747 pHlp->pfnPrintf(pHlp, "%sLBR Virtualization\n", pszPrefix);
3748 pHlp->pfnPrintf(pHlp, " %sLBR virt = %RTbool\n", pszPrefix, pVmcbCtrl->LbrVirt.n.u1LbrVirt);
3749 pHlp->pfnPrintf(pHlp, " %sVirt. VMSAVE/VMLOAD = %RTbool\n", pszPrefix, pVmcbCtrl->LbrVirt.n.u1VirtVmsaveVmload);
3750 pHlp->pfnPrintf(pHlp, "%sVMCB Clean Bits = %#RX32\n", pszPrefix, pVmcbCtrl->u32VmcbCleanBits);
3751 pHlp->pfnPrintf(pHlp, "%sNext-RIP = %#RX64\n", pszPrefix, pVmcbCtrl->u64NextRIP);
3752 pHlp->pfnPrintf(pHlp, "%sInstruction bytes fetched = %u\n", pszPrefix, pVmcbCtrl->cbInstrFetched);
3753 pHlp->pfnPrintf(pHlp, "%sInstruction bytes = %.*Rhxs\n", pszPrefix, sizeof(pVmcbCtrl->abInstr), pVmcbCtrl->abInstr);
3754 pHlp->pfnPrintf(pHlp, "%sAVIC\n", pszPrefix);
3755 pHlp->pfnPrintf(pHlp, " %sBar addr = %#RX64\n", pszPrefix, pVmcbCtrl->AvicBar.n.u40Addr);
3756 pHlp->pfnPrintf(pHlp, " %sBacking page addr = %#RX64\n", pszPrefix, pVmcbCtrl->AvicBackingPagePtr.n.u40Addr);
3757 pHlp->pfnPrintf(pHlp, " %sLogical table addr = %#RX64\n", pszPrefix, pVmcbCtrl->AvicLogicalTablePtr.n.u40Addr);
3758 pHlp->pfnPrintf(pHlp, " %sPhysical table addr = %#RX64\n", pszPrefix, pVmcbCtrl->AvicPhysicalTablePtr.n.u40Addr);
3759 pHlp->pfnPrintf(pHlp, " %sLast guest core Id = %u\n", pszPrefix, pVmcbCtrl->AvicPhysicalTablePtr.n.u8LastGuestCoreId);
3760}
3761
3762
3763/**
3764 * Helper for dumping the SVM VMCB selector registers.
3765 *
3766 * @param pHlp The info helper functions.
3767 * @param pSel Pointer to the SVM selector register.
3768 * @param pszName Name of the selector.
3769 * @param pszPrefix Caller specified string prefix.
3770 */
3771DECLINLINE(void) cpumR3InfoSvmVmcbSelReg(PCDBGFINFOHLP pHlp, PCSVMSELREG pSel, const char *pszName, const char *pszPrefix)
3772{
3773 /* The string width of 4 used below is to handle 'LDTR'. Change later if longer register names are used. */
3774 pHlp->pfnPrintf(pHlp, "%s%-4s = {%04x base=%016RX64 limit=%08x flags=%04x}\n", pszPrefix,
3775 pszName, pSel->u16Sel, pSel->u64Base, pSel->u32Limit, pSel->u16Attr);
3776}
3777
3778
3779/**
3780 * Helper for dumping the SVM VMCB GDTR/IDTR registers.
3781 *
3782 * @param pHlp The info helper functions.
3783 * @param pXdtr Pointer to the descriptor table register.
3784 * @param pszName Name of the descriptor table register.
3785 * @param pszPrefix Caller specified string prefix.
3786 */
3787DECLINLINE(void) cpumR3InfoSvmVmcbXdtr(PCDBGFINFOHLP pHlp, PCSVMXDTR pXdtr, const char *pszName, const char *pszPrefix)
3788{
3789 /* The string width of 4 used below is to cover 'GDTR', 'IDTR'. Change later if longer register names are used. */
3790 pHlp->pfnPrintf(pHlp, "%s%-4s = %016RX64:%04x\n", pszPrefix, pszName, pXdtr->u64Base, pXdtr->u32Limit);
3791}
3792
3793
3794/**
3795 * Displays an SVM VMCB state-save area.
3796 *
3797 * @param pHlp The info helper functions.
3798 * @param pVmcbStateSave Pointer to a SVM VMCB controls area.
3799 * @param pszPrefix Caller specified string prefix.
3800 */
3801static void cpumR3InfoSvmVmcbStateSave(PCDBGFINFOHLP pHlp, PCSVMVMCBSTATESAVE pVmcbStateSave, const char *pszPrefix)
3802{
3803 AssertReturnVoid(pHlp);
3804 AssertReturnVoid(pVmcbStateSave);
3805
3806 char szEFlags[80];
3807 cpumR3InfoFormatFlags(&szEFlags[0], pVmcbStateSave->u64RFlags);
3808
3809 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->CS, "CS", pszPrefix);
3810 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->SS, "SS", pszPrefix);
3811 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->ES, "ES", pszPrefix);
3812 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->DS, "DS", pszPrefix);
3813 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->FS, "FS", pszPrefix);
3814 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->GS, "GS", pszPrefix);
3815 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->LDTR, "LDTR", pszPrefix);
3816 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->TR, "TR", pszPrefix);
3817 cpumR3InfoSvmVmcbXdtr(pHlp, &pVmcbStateSave->GDTR, "GDTR", pszPrefix);
3818 cpumR3InfoSvmVmcbXdtr(pHlp, &pVmcbStateSave->IDTR, "IDTR", pszPrefix);
3819 pHlp->pfnPrintf(pHlp, "%sCPL = %u\n", pszPrefix, pVmcbStateSave->u8CPL);
3820 pHlp->pfnPrintf(pHlp, "%sEFER = %#RX64\n", pszPrefix, pVmcbStateSave->u64EFER);
3821 pHlp->pfnPrintf(pHlp, "%sCR4 = %#RX64\n", pszPrefix, pVmcbStateSave->u64CR4);
3822 pHlp->pfnPrintf(pHlp, "%sCR3 = %#RX64\n", pszPrefix, pVmcbStateSave->u64CR3);
3823 pHlp->pfnPrintf(pHlp, "%sCR0 = %#RX64\n", pszPrefix, pVmcbStateSave->u64CR0);
3824 pHlp->pfnPrintf(pHlp, "%sDR7 = %#RX64\n", pszPrefix, pVmcbStateSave->u64DR7);
3825 pHlp->pfnPrintf(pHlp, "%sDR6 = %#RX64\n", pszPrefix, pVmcbStateSave->u64DR6);
3826 pHlp->pfnPrintf(pHlp, "%sRFLAGS = %#RX64 %31s\n", pszPrefix, pVmcbStateSave->u64RFlags, szEFlags);
3827 pHlp->pfnPrintf(pHlp, "%sRIP = %#RX64\n", pszPrefix, pVmcbStateSave->u64RIP);
3828 pHlp->pfnPrintf(pHlp, "%sRSP = %#RX64\n", pszPrefix, pVmcbStateSave->u64RSP);
3829 pHlp->pfnPrintf(pHlp, "%sRAX = %#RX64\n", pszPrefix, pVmcbStateSave->u64RAX);
3830 pHlp->pfnPrintf(pHlp, "%sSTAR = %#RX64\n", pszPrefix, pVmcbStateSave->u64STAR);
3831 pHlp->pfnPrintf(pHlp, "%sLSTAR = %#RX64\n", pszPrefix, pVmcbStateSave->u64LSTAR);
3832 pHlp->pfnPrintf(pHlp, "%sCSTAR = %#RX64\n", pszPrefix, pVmcbStateSave->u64CSTAR);
3833 pHlp->pfnPrintf(pHlp, "%sSFMASK = %#RX64\n", pszPrefix, pVmcbStateSave->u64SFMASK);
3834 pHlp->pfnPrintf(pHlp, "%sKERNELGSBASE = %#RX64\n", pszPrefix, pVmcbStateSave->u64KernelGSBase);
3835 pHlp->pfnPrintf(pHlp, "%sSysEnter CS = %#RX64\n", pszPrefix, pVmcbStateSave->u64SysEnterCS);
3836 pHlp->pfnPrintf(pHlp, "%sSysEnter EIP = %#RX64\n", pszPrefix, pVmcbStateSave->u64SysEnterEIP);
3837 pHlp->pfnPrintf(pHlp, "%sSysEnter ESP = %#RX64\n", pszPrefix, pVmcbStateSave->u64SysEnterESP);
3838 pHlp->pfnPrintf(pHlp, "%sCR2 = %#RX64\n", pszPrefix, pVmcbStateSave->u64CR2);
3839 pHlp->pfnPrintf(pHlp, "%sPAT = %#RX64\n", pszPrefix, pVmcbStateSave->u64PAT);
3840 pHlp->pfnPrintf(pHlp, "%sDBGCTL = %#RX64\n", pszPrefix, pVmcbStateSave->u64DBGCTL);
3841 pHlp->pfnPrintf(pHlp, "%sBR_FROM = %#RX64\n", pszPrefix, pVmcbStateSave->u64BR_FROM);
3842 pHlp->pfnPrintf(pHlp, "%sBR_TO = %#RX64\n", pszPrefix, pVmcbStateSave->u64BR_TO);
3843 pHlp->pfnPrintf(pHlp, "%sLASTXCPT_FROM = %#RX64\n", pszPrefix, pVmcbStateSave->u64LASTEXCPFROM);
3844 pHlp->pfnPrintf(pHlp, "%sLASTXCPT_TO = %#RX64\n", pszPrefix, pVmcbStateSave->u64LASTEXCPTO);
3845}
3846
3847
3848/**
3849 * Displays a virtual-VMCS.
3850 *
3851 * @param pVCpu The cross context virtual CPU structure.
3852 * @param pHlp The info helper functions.
3853 * @param pVmcs Pointer to a virtual VMCS.
3854 * @param pszPrefix Caller specified string prefix.
3855 */
3856static void cpumR3InfoVmxVmcs(PVMCPU pVCpu, PCDBGFINFOHLP pHlp, PCVMXVVMCS pVmcs, const char *pszPrefix)
3857{
3858 AssertReturnVoid(pHlp);
3859 AssertReturnVoid(pVmcs);
3860
3861 /* The string width of -4 used in the macros below to cover 'LDTR', 'GDTR', 'IDTR. */
3862#define CPUMVMX_DUMP_HOST_XDTR(a_pHlp, a_pVmcs, a_Seg, a_SegName, a_pszPrefix) \
3863 do { \
3864 (a_pHlp)->pfnPrintf((a_pHlp), " %s%-4s = {base=%016RX64}\n", \
3865 (a_pszPrefix), (a_SegName), (a_pVmcs)->u64Host##a_Seg##Base.u); \
3866 } while (0)
3867
3868#define CPUMVMX_DUMP_HOST_FS_GS_TR(a_pHlp, a_pVmcs, a_Seg, a_SegName, a_pszPrefix) \
3869 do { \
3870 (a_pHlp)->pfnPrintf((a_pHlp), " %s%-4s = {%04x base=%016RX64}\n", \
3871 (a_pszPrefix), (a_SegName), (a_pVmcs)->Host##a_Seg, (a_pVmcs)->u64Host##a_Seg##Base.u); \
3872 } while (0)
3873
3874#define CPUMVMX_DUMP_GUEST_SEGREG(a_pHlp, a_pVmcs, a_Seg, a_SegName, a_pszPrefix) \
3875 do { \
3876 (a_pHlp)->pfnPrintf((a_pHlp), " %s%-4s = {%04x base=%016RX64 limit=%08x flags=%04x}\n", \
3877 (a_pszPrefix), (a_SegName), (a_pVmcs)->Guest##a_Seg, (a_pVmcs)->u64Guest##a_Seg##Base.u, \
3878 (a_pVmcs)->u32Guest##a_Seg##Limit, (a_pVmcs)->u32Guest##a_Seg##Attr); \
3879 } while (0)
3880
3881#define CPUMVMX_DUMP_GUEST_XDTR(a_pHlp, a_pVmcs, a_Seg, a_SegName, a_pszPrefix) \
3882 do { \
3883 (a_pHlp)->pfnPrintf((a_pHlp), " %s%-4s = {base=%016RX64 limit=%08x}\n", \
3884 (a_pszPrefix), (a_SegName), (a_pVmcs)->u64Guest##a_Seg##Base.u, (a_pVmcs)->u32Guest##a_Seg##Limit); \
3885 } while (0)
3886
3887 /* Header. */
3888 {
3889 pHlp->pfnPrintf(pHlp, "%sHeader:\n", pszPrefix);
3890 pHlp->pfnPrintf(pHlp, " %sVMCS revision id = %#RX32\n", pszPrefix, pVmcs->u32VmcsRevId);
3891 pHlp->pfnPrintf(pHlp, " %sVMX-abort id = %#RX32 (%s)\n", pszPrefix, pVmcs->enmVmxAbort, VMXGetAbortDesc(pVmcs->enmVmxAbort));
3892 pHlp->pfnPrintf(pHlp, " %sVMCS state = %#x (%s)\n", pszPrefix, pVmcs->fVmcsState, VMXGetVmcsStateDesc(pVmcs->fVmcsState));
3893 }
3894
3895 /* Control fields. */
3896 {
3897 /* 16-bit. */
3898 pHlp->pfnPrintf(pHlp, "%sControl:\n", pszPrefix);
3899 pHlp->pfnPrintf(pHlp, " %sVPID = %#RX16\n", pszPrefix, pVmcs->u16Vpid);
3900 pHlp->pfnPrintf(pHlp, " %sPosted intr notify vector = %#RX16\n", pszPrefix, pVmcs->u16PostIntNotifyVector);
3901 pHlp->pfnPrintf(pHlp, " %sEPTP index = %#RX16\n", pszPrefix, pVmcs->u16EptpIndex);
3902
3903 /* 32-bit. */
3904 pHlp->pfnPrintf(pHlp, " %sPin ctls = %#RX32\n", pszPrefix, pVmcs->u32PinCtls);
3905 pHlp->pfnPrintf(pHlp, " %sProcessor ctls = %#RX32\n", pszPrefix, pVmcs->u32ProcCtls);
3906 pHlp->pfnPrintf(pHlp, " %sSecondary processor ctls = %#RX32\n", pszPrefix, pVmcs->u32ProcCtls2);
3907 pHlp->pfnPrintf(pHlp, " %sVM-exit ctls = %#RX32\n", pszPrefix, pVmcs->u32ExitCtls);
3908 pHlp->pfnPrintf(pHlp, " %sVM-entry ctls = %#RX32\n", pszPrefix, pVmcs->u32EntryCtls);
3909 pHlp->pfnPrintf(pHlp, " %sException bitmap = %#RX32\n", pszPrefix, pVmcs->u32XcptBitmap);
3910 pHlp->pfnPrintf(pHlp, " %sPage-fault mask = %#RX32\n", pszPrefix, pVmcs->u32XcptPFMask);
3911 pHlp->pfnPrintf(pHlp, " %sPage-fault match = %#RX32\n", pszPrefix, pVmcs->u32XcptPFMatch);
3912 pHlp->pfnPrintf(pHlp, " %sCR3-target count = %RU32\n", pszPrefix, pVmcs->u32Cr3TargetCount);
3913 pHlp->pfnPrintf(pHlp, " %sVM-exit MSR store count = %RU32\n", pszPrefix, pVmcs->u32ExitMsrStoreCount);
3914 pHlp->pfnPrintf(pHlp, " %sVM-exit MSR load count = %RU32\n", pszPrefix, pVmcs->u32ExitMsrLoadCount);
3915 pHlp->pfnPrintf(pHlp, " %sVM-entry MSR load count = %RU32\n", pszPrefix, pVmcs->u32EntryMsrLoadCount);
3916 pHlp->pfnPrintf(pHlp, " %sVM-entry interruption info = %#RX32\n", pszPrefix, pVmcs->u32EntryIntInfo);
3917 {
3918 uint32_t const fInfo = pVmcs->u32EntryIntInfo;
3919 uint8_t const uType = VMX_ENTRY_INT_INFO_TYPE(fInfo);
3920 pHlp->pfnPrintf(pHlp, " %sValid = %RTbool\n", pszPrefix, VMX_ENTRY_INT_INFO_IS_VALID(fInfo));
3921 pHlp->pfnPrintf(pHlp, " %sType = %#x (%s)\n", pszPrefix, uType, VMXGetEntryIntInfoTypeDesc(uType));
3922 pHlp->pfnPrintf(pHlp, " %sVector = %#x\n", pszPrefix, VMX_ENTRY_INT_INFO_VECTOR(fInfo));
3923 pHlp->pfnPrintf(pHlp, " %sNMI-unblocking-IRET = %RTbool\n", pszPrefix, VMX_ENTRY_INT_INFO_IS_NMI_UNBLOCK_IRET(fInfo));
3924 pHlp->pfnPrintf(pHlp, " %sError-code valid = %RTbool\n", pszPrefix, VMX_ENTRY_INT_INFO_IS_ERROR_CODE_VALID(fInfo));
3925 }
3926 pHlp->pfnPrintf(pHlp, " %sVM-entry xcpt error-code = %#RX32\n", pszPrefix, pVmcs->u32EntryXcptErrCode);
3927 pHlp->pfnPrintf(pHlp, " %sVM-entry instr length = %u byte(s)\n", pszPrefix, pVmcs->u32EntryInstrLen);
3928 pHlp->pfnPrintf(pHlp, " %sTPR threshold = %#RX32\n", pszPrefix, pVmcs->u32TprThreshold);
3929 pHlp->pfnPrintf(pHlp, " %sPLE gap = %#RX32\n", pszPrefix, pVmcs->u32PleGap);
3930 pHlp->pfnPrintf(pHlp, " %sPLE window = %#RX32\n", pszPrefix, pVmcs->u32PleWindow);
3931
3932 /* 64-bit. */
3933 pHlp->pfnPrintf(pHlp, " %sIO-bitmap A addr = %#RX64\n", pszPrefix, pVmcs->u64AddrIoBitmapA.u);
3934 pHlp->pfnPrintf(pHlp, " %sIO-bitmap B addr = %#RX64\n", pszPrefix, pVmcs->u64AddrIoBitmapB.u);
3935 pHlp->pfnPrintf(pHlp, " %sMSR-bitmap addr = %#RX64\n", pszPrefix, pVmcs->u64AddrMsrBitmap.u);
3936 pHlp->pfnPrintf(pHlp, " %sVM-exit MSR store addr = %#RX64\n", pszPrefix, pVmcs->u64AddrExitMsrStore.u);
3937 pHlp->pfnPrintf(pHlp, " %sVM-exit MSR load addr = %#RX64\n", pszPrefix, pVmcs->u64AddrExitMsrLoad.u);
3938 pHlp->pfnPrintf(pHlp, " %sVM-entry MSR load addr = %#RX64\n", pszPrefix, pVmcs->u64AddrEntryMsrLoad.u);
3939 pHlp->pfnPrintf(pHlp, " %sExecutive VMCS ptr = %#RX64\n", pszPrefix, pVmcs->u64ExecVmcsPtr.u);
3940 pHlp->pfnPrintf(pHlp, " %sPML addr = %#RX64\n", pszPrefix, pVmcs->u64AddrPml.u);
3941 pHlp->pfnPrintf(pHlp, " %sTSC offset = %#RX64\n", pszPrefix, pVmcs->u64TscOffset.u);
3942 pHlp->pfnPrintf(pHlp, " %sVirtual-APIC addr = %#RX64\n", pszPrefix, pVmcs->u64AddrVirtApic.u);
3943 pHlp->pfnPrintf(pHlp, " %sAPIC-access addr = %#RX64\n", pszPrefix, pVmcs->u64AddrApicAccess.u);
3944 pHlp->pfnPrintf(pHlp, " %sPosted-intr desc addr = %#RX64\n", pszPrefix, pVmcs->u64AddrPostedIntDesc.u);
3945 pHlp->pfnPrintf(pHlp, " %sVM-functions control = %#RX64\n", pszPrefix, pVmcs->u64VmFuncCtls.u);
3946 pHlp->pfnPrintf(pHlp, " %sEPTP ptr = %#RX64\n", pszPrefix, pVmcs->u64EptpPtr.u);
3947 pHlp->pfnPrintf(pHlp, " %sEOI-exit bitmap 0 = %#RX64\n", pszPrefix, pVmcs->u64EoiExitBitmap0.u);
3948 pHlp->pfnPrintf(pHlp, " %sEOI-exit bitmap 1 = %#RX64\n", pszPrefix, pVmcs->u64EoiExitBitmap1.u);
3949 pHlp->pfnPrintf(pHlp, " %sEOI-exit bitmap 2 = %#RX64\n", pszPrefix, pVmcs->u64EoiExitBitmap2.u);
3950 pHlp->pfnPrintf(pHlp, " %sEOI-exit bitmap 3 = %#RX64\n", pszPrefix, pVmcs->u64EoiExitBitmap3.u);
3951 pHlp->pfnPrintf(pHlp, " %sEPTP-list addr = %#RX64\n", pszPrefix, pVmcs->u64AddrEptpList.u);
3952 pHlp->pfnPrintf(pHlp, " %sVMREAD-bitmap addr = %#RX64\n", pszPrefix, pVmcs->u64AddrVmreadBitmap.u);
3953 pHlp->pfnPrintf(pHlp, " %sVMWRITE-bitmap addr = %#RX64\n", pszPrefix, pVmcs->u64AddrVmwriteBitmap.u);
3954 pHlp->pfnPrintf(pHlp, " %sVirt-Xcpt info addr = %#RX64\n", pszPrefix, pVmcs->u64AddrXcptVeInfo.u);
3955 pHlp->pfnPrintf(pHlp, " %sXSS-exiting bitmap = %#RX64\n", pszPrefix, pVmcs->u64XssExitBitmap.u);
3956 pHlp->pfnPrintf(pHlp, " %sENCLS-exiting bitmap = %#RX64\n", pszPrefix, pVmcs->u64EnclsExitBitmap.u);
3957 pHlp->pfnPrintf(pHlp, " %sSPP-table ptr = %#RX64\n", pszPrefix, pVmcs->u64SppTablePtr.u);
3958 pHlp->pfnPrintf(pHlp, " %sTSC multiplier = %#RX64\n", pszPrefix, pVmcs->u64TscMultiplier.u);
3959 pHlp->pfnPrintf(pHlp, " %sTertiary processor ctls = %#RX64\n", pszPrefix, pVmcs->u64ProcCtls3.u);
3960 pHlp->pfnPrintf(pHlp, " %sENCLV-exiting bitmap = %#RX64\n", pszPrefix, pVmcs->u64EnclvExitBitmap.u);
3961
3962 /* Natural width. */
3963 pHlp->pfnPrintf(pHlp, " %sCR0 guest/host mask = %#RX64\n", pszPrefix, pVmcs->u64Cr0Mask.u);
3964 pHlp->pfnPrintf(pHlp, " %sCR4 guest/host mask = %#RX64\n", pszPrefix, pVmcs->u64Cr4Mask.u);
3965 pHlp->pfnPrintf(pHlp, " %sCR0 read shadow = %#RX64\n", pszPrefix, pVmcs->u64Cr0ReadShadow.u);
3966 pHlp->pfnPrintf(pHlp, " %sCR4 read shadow = %#RX64\n", pszPrefix, pVmcs->u64Cr4ReadShadow.u);
3967 pHlp->pfnPrintf(pHlp, " %sCR3-target 0 = %#RX64\n", pszPrefix, pVmcs->u64Cr3Target0.u);
3968 pHlp->pfnPrintf(pHlp, " %sCR3-target 1 = %#RX64\n", pszPrefix, pVmcs->u64Cr3Target1.u);
3969 pHlp->pfnPrintf(pHlp, " %sCR3-target 2 = %#RX64\n", pszPrefix, pVmcs->u64Cr3Target2.u);
3970 pHlp->pfnPrintf(pHlp, " %sCR3-target 3 = %#RX64\n", pszPrefix, pVmcs->u64Cr3Target3.u);
3971 }
3972
3973 /* Guest state. */
3974 {
3975 char szEFlags[80];
3976 cpumR3InfoFormatFlags(&szEFlags[0], pVmcs->u64GuestRFlags.u);
3977 pHlp->pfnPrintf(pHlp, "%sGuest state:\n", pszPrefix);
3978
3979 /* 16-bit. */
3980 CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Cs, "CS", pszPrefix);
3981 CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Ss, "SS", pszPrefix);
3982 CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Es, "ES", pszPrefix);
3983 CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Ds, "DS", pszPrefix);
3984 CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Fs, "FS", pszPrefix);
3985 CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Gs, "GS", pszPrefix);
3986 CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Ldtr, "LDTR", pszPrefix);
3987 CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Tr, "TR", pszPrefix);
3988 CPUMVMX_DUMP_GUEST_XDTR(pHlp, pVmcs, Gdtr, "GDTR", pszPrefix);
3989 CPUMVMX_DUMP_GUEST_XDTR(pHlp, pVmcs, Idtr, "IDTR", pszPrefix);
3990 pHlp->pfnPrintf(pHlp, " %sInterrupt status = %#RX16\n", pszPrefix, pVmcs->u16GuestIntStatus);
3991 pHlp->pfnPrintf(pHlp, " %sPML index = %#RX16\n", pszPrefix, pVmcs->u16PmlIndex);
3992
3993 /* 32-bit. */
3994 pHlp->pfnPrintf(pHlp, " %sInterruptibility state = %#RX32\n", pszPrefix, pVmcs->u32GuestIntrState);
3995 pHlp->pfnPrintf(pHlp, " %sActivity state = %#RX32\n", pszPrefix, pVmcs->u32GuestActivityState);
3996 pHlp->pfnPrintf(pHlp, " %sSMBASE = %#RX32\n", pszPrefix, pVmcs->u32GuestSmBase);
3997 pHlp->pfnPrintf(pHlp, " %sSysEnter CS = %#RX32\n", pszPrefix, pVmcs->u32GuestSysenterCS);
3998 pHlp->pfnPrintf(pHlp, " %sVMX-preemption timer value = %#RX32\n", pszPrefix, pVmcs->u32PreemptTimer);
3999
4000 /* 64-bit. */
4001 pHlp->pfnPrintf(pHlp, " %sVMCS link ptr = %#RX64\n", pszPrefix, pVmcs->u64VmcsLinkPtr.u);
4002 pHlp->pfnPrintf(pHlp, " %sDBGCTL = %#RX64\n", pszPrefix, pVmcs->u64GuestDebugCtlMsr.u);
4003 pHlp->pfnPrintf(pHlp, " %sPAT = %#RX64\n", pszPrefix, pVmcs->u64GuestPatMsr.u);
4004 pHlp->pfnPrintf(pHlp, " %sEFER = %#RX64\n", pszPrefix, pVmcs->u64GuestEferMsr.u);
4005 pHlp->pfnPrintf(pHlp, " %sPERFGLOBALCTRL = %#RX64\n", pszPrefix, pVmcs->u64GuestPerfGlobalCtlMsr.u);
4006 pHlp->pfnPrintf(pHlp, " %sPDPTE 0 = %#RX64\n", pszPrefix, pVmcs->u64GuestPdpte0.u);
4007 pHlp->pfnPrintf(pHlp, " %sPDPTE 1 = %#RX64\n", pszPrefix, pVmcs->u64GuestPdpte1.u);
4008 pHlp->pfnPrintf(pHlp, " %sPDPTE 2 = %#RX64\n", pszPrefix, pVmcs->u64GuestPdpte2.u);
4009 pHlp->pfnPrintf(pHlp, " %sPDPTE 3 = %#RX64\n", pszPrefix, pVmcs->u64GuestPdpte3.u);
4010 pHlp->pfnPrintf(pHlp, " %sBNDCFGS = %#RX64\n", pszPrefix, pVmcs->u64GuestBndcfgsMsr.u);
4011 pHlp->pfnPrintf(pHlp, " %sRTIT_CTL = %#RX64\n", pszPrefix, pVmcs->u64GuestRtitCtlMsr.u);
4012 pHlp->pfnPrintf(pHlp, " %sPKRS = %#RX64\n", pszPrefix, pVmcs->u64GuestPkrsMsr.u);
4013
4014 /* Natural width. */
4015 pHlp->pfnPrintf(pHlp, " %sCR0 = %#RX64\n", pszPrefix, pVmcs->u64GuestCr0.u);
4016 pHlp->pfnPrintf(pHlp, " %sCR3 = %#RX64\n", pszPrefix, pVmcs->u64GuestCr3.u);
4017 pHlp->pfnPrintf(pHlp, " %sCR4 = %#RX64\n", pszPrefix, pVmcs->u64GuestCr4.u);
4018 pHlp->pfnPrintf(pHlp, " %sDR7 = %#RX64\n", pszPrefix, pVmcs->u64GuestDr7.u);
4019 pHlp->pfnPrintf(pHlp, " %sRSP = %#RX64\n", pszPrefix, pVmcs->u64GuestRsp.u);
4020 pHlp->pfnPrintf(pHlp, " %sRIP = %#RX64\n", pszPrefix, pVmcs->u64GuestRip.u);
4021 pHlp->pfnPrintf(pHlp, " %sRFLAGS = %#RX64 %31s\n",pszPrefix, pVmcs->u64GuestRFlags.u, szEFlags);
4022 pHlp->pfnPrintf(pHlp, " %sPending debug xcpts = %#RX64\n", pszPrefix, pVmcs->u64GuestPendingDbgXcpts.u);
4023 pHlp->pfnPrintf(pHlp, " %sSysEnter ESP = %#RX64\n", pszPrefix, pVmcs->u64GuestSysenterEsp.u);
4024 pHlp->pfnPrintf(pHlp, " %sSysEnter EIP = %#RX64\n", pszPrefix, pVmcs->u64GuestSysenterEip.u);
4025 pHlp->pfnPrintf(pHlp, " %sS_CET = %#RX64\n", pszPrefix, pVmcs->u64GuestSCetMsr.u);
4026 pHlp->pfnPrintf(pHlp, " %sSSP = %#RX64\n", pszPrefix, pVmcs->u64GuestSsp.u);
4027 pHlp->pfnPrintf(pHlp, " %sINTERRUPT_SSP_TABLE_ADDR = %#RX64\n", pszPrefix, pVmcs->u64GuestIntrSspTableAddrMsr.u);
4028 }
4029
4030 /* Host state. */
4031 {
4032 pHlp->pfnPrintf(pHlp, "%sHost state:\n", pszPrefix);
4033
4034 /* 16-bit. */
4035 pHlp->pfnPrintf(pHlp, " %sCS = %#RX16\n", pszPrefix, pVmcs->HostCs);
4036 pHlp->pfnPrintf(pHlp, " %sSS = %#RX16\n", pszPrefix, pVmcs->HostSs);
4037 pHlp->pfnPrintf(pHlp, " %sDS = %#RX16\n", pszPrefix, pVmcs->HostDs);
4038 pHlp->pfnPrintf(pHlp, " %sES = %#RX16\n", pszPrefix, pVmcs->HostEs);
4039 CPUMVMX_DUMP_HOST_FS_GS_TR(pHlp, pVmcs, Fs, "FS", pszPrefix);
4040 CPUMVMX_DUMP_HOST_FS_GS_TR(pHlp, pVmcs, Gs, "GS", pszPrefix);
4041 CPUMVMX_DUMP_HOST_FS_GS_TR(pHlp, pVmcs, Tr, "TR", pszPrefix);
4042 CPUMVMX_DUMP_HOST_XDTR(pHlp, pVmcs, Gdtr, "GDTR", pszPrefix);
4043 CPUMVMX_DUMP_HOST_XDTR(pHlp, pVmcs, Idtr, "IDTR", pszPrefix);
4044
4045 /* 32-bit. */
4046 pHlp->pfnPrintf(pHlp, " %sSysEnter CS = %#RX32\n", pszPrefix, pVmcs->u32HostSysenterCs);
4047
4048 /* 64-bit. */
4049 pHlp->pfnPrintf(pHlp, " %sEFER = %#RX64\n", pszPrefix, pVmcs->u64HostEferMsr.u);
4050 pHlp->pfnPrintf(pHlp, " %sPAT = %#RX64\n", pszPrefix, pVmcs->u64HostPatMsr.u);
4051 pHlp->pfnPrintf(pHlp, " %sPERFGLOBALCTRL = %#RX64\n", pszPrefix, pVmcs->u64HostPerfGlobalCtlMsr.u);
4052 pHlp->pfnPrintf(pHlp, " %sPKRS = %#RX64\n", pszPrefix, pVmcs->u64HostPkrsMsr.u);
4053
4054 /* Natural width. */
4055 pHlp->pfnPrintf(pHlp, " %sCR0 = %#RX64\n", pszPrefix, pVmcs->u64HostCr0.u);
4056 pHlp->pfnPrintf(pHlp, " %sCR3 = %#RX64\n", pszPrefix, pVmcs->u64HostCr3.u);
4057 pHlp->pfnPrintf(pHlp, " %sCR4 = %#RX64\n", pszPrefix, pVmcs->u64HostCr4.u);
4058 pHlp->pfnPrintf(pHlp, " %sSysEnter ESP = %#RX64\n", pszPrefix, pVmcs->u64HostSysenterEsp.u);
4059 pHlp->pfnPrintf(pHlp, " %sSysEnter EIP = %#RX64\n", pszPrefix, pVmcs->u64HostSysenterEip.u);
4060 pHlp->pfnPrintf(pHlp, " %sRSP = %#RX64\n", pszPrefix, pVmcs->u64HostRsp.u);
4061 pHlp->pfnPrintf(pHlp, " %sRIP = %#RX64\n", pszPrefix, pVmcs->u64HostRip.u);
4062 pHlp->pfnPrintf(pHlp, " %sS_CET = %#RX64\n", pszPrefix, pVmcs->u64HostSCetMsr.u);
4063 pHlp->pfnPrintf(pHlp, " %sSSP = %#RX64\n", pszPrefix, pVmcs->u64HostSsp.u);
4064 pHlp->pfnPrintf(pHlp, " %sINTERRUPT_SSP_TABLE_ADDR = %#RX64\n", pszPrefix, pVmcs->u64HostIntrSspTableAddrMsr.u);
4065
4066 }
4067
4068 /* Read-only fields. */
4069 {
4070 pHlp->pfnPrintf(pHlp, "%sRead-only data fields:\n", pszPrefix);
4071
4072 /* 16-bit (none currently). */
4073
4074 /* 32-bit. */
4075 pHlp->pfnPrintf(pHlp, " %sExit reason = %u (%s)\n", pszPrefix, pVmcs->u32RoExitReason, HMGetVmxExitName(pVmcs->u32RoExitReason));
4076 pHlp->pfnPrintf(pHlp, " %sExit qualification = %#RX64\n", pszPrefix, pVmcs->u64RoExitQual.u);
4077 pHlp->pfnPrintf(pHlp, " %sVM-instruction error = %#RX32\n", pszPrefix, pVmcs->u32RoVmInstrError);
4078 pHlp->pfnPrintf(pHlp, " %sVM-exit intr info = %#RX32\n", pszPrefix, pVmcs->u32RoExitIntInfo);
4079 {
4080 uint32_t const fInfo = pVmcs->u32RoExitIntInfo;
4081 uint8_t const uType = VMX_EXIT_INT_INFO_TYPE(fInfo);
4082 pHlp->pfnPrintf(pHlp, " %sValid = %RTbool\n", pszPrefix, VMX_EXIT_INT_INFO_IS_VALID(fInfo));
4083 pHlp->pfnPrintf(pHlp, " %sType = %#x (%s)\n", pszPrefix, uType, VMXGetExitIntInfoTypeDesc(uType));
4084 pHlp->pfnPrintf(pHlp, " %sVector = %#x\n", pszPrefix, VMX_EXIT_INT_INFO_VECTOR(fInfo));
4085 pHlp->pfnPrintf(pHlp, " %sNMI-unblocking-IRET = %RTbool\n", pszPrefix, VMX_EXIT_INT_INFO_IS_NMI_UNBLOCK_IRET(fInfo));
4086 pHlp->pfnPrintf(pHlp, " %sError-code valid = %RTbool\n", pszPrefix, VMX_EXIT_INT_INFO_IS_ERROR_CODE_VALID(fInfo));
4087 }
4088 pHlp->pfnPrintf(pHlp, " %sVM-exit intr error-code = %#RX32\n", pszPrefix, pVmcs->u32RoExitIntErrCode);
4089 pHlp->pfnPrintf(pHlp, " %sIDT-vectoring info = %#RX32\n", pszPrefix, pVmcs->u32RoIdtVectoringInfo);
4090 {
4091 uint32_t const fInfo = pVmcs->u32RoIdtVectoringInfo;
4092 uint8_t const uType = VMX_IDT_VECTORING_INFO_TYPE(fInfo);
4093 pHlp->pfnPrintf(pHlp, " %sValid = %RTbool\n", pszPrefix, VMX_IDT_VECTORING_INFO_IS_VALID(fInfo));
4094 pHlp->pfnPrintf(pHlp, " %sType = %#x (%s)\n", pszPrefix, uType, VMXGetIdtVectoringInfoTypeDesc(uType));
4095 pHlp->pfnPrintf(pHlp, " %sVector = %#x\n", pszPrefix, VMX_IDT_VECTORING_INFO_VECTOR(fInfo));
4096 pHlp->pfnPrintf(pHlp, " %sError-code valid = %RTbool\n", pszPrefix, VMX_IDT_VECTORING_INFO_IS_ERROR_CODE_VALID(fInfo));
4097 }
4098 pHlp->pfnPrintf(pHlp, " %sIDT-vectoring error-code = %#RX32\n", pszPrefix, pVmcs->u32RoIdtVectoringErrCode);
4099 pHlp->pfnPrintf(pHlp, " %sVM-exit instruction length = %u byte(s)\n", pszPrefix, pVmcs->u32RoExitInstrLen);
4100 pHlp->pfnPrintf(pHlp, " %sVM-exit instruction info = %#RX64\n", pszPrefix, pVmcs->u32RoExitInstrInfo);
4101
4102 /* 64-bit. */
4103 pHlp->pfnPrintf(pHlp, " %sGuest-physical addr = %#RX64\n", pszPrefix, pVmcs->u64RoGuestPhysAddr.u);
4104
4105 /* Natural width. */
4106 pHlp->pfnPrintf(pHlp, " %sI/O RCX = %#RX64\n", pszPrefix, pVmcs->u64RoIoRcx.u);
4107 pHlp->pfnPrintf(pHlp, " %sI/O RSI = %#RX64\n", pszPrefix, pVmcs->u64RoIoRsi.u);
4108 pHlp->pfnPrintf(pHlp, " %sI/O RDI = %#RX64\n", pszPrefix, pVmcs->u64RoIoRdi.u);
4109 pHlp->pfnPrintf(pHlp, " %sI/O RIP = %#RX64\n", pszPrefix, pVmcs->u64RoIoRip.u);
4110 pHlp->pfnPrintf(pHlp, " %sGuest-linear addr = %#RX64\n", pszPrefix, pVmcs->u64RoGuestLinearAddr.u);
4111 }
4112
4113#ifdef DEBUG_ramshankar
4114 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
4115 {
4116 void *pvPage = RTMemTmpAllocZ(VMX_V_VIRT_APIC_SIZE);
4117 Assert(pvPage);
4118 RTGCPHYS const GCPhysVirtApic = pVmcs->u64AddrVirtApic.u;
4119 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), pvPage, GCPhysVirtApic, VMX_V_VIRT_APIC_SIZE);
4120 if (RT_SUCCESS(rc))
4121 {
4122 pHlp->pfnPrintf(pHlp, " %sVirtual-APIC page\n", pszPrefix);
4123 pHlp->pfnPrintf(pHlp, "%.*Rhxs\n", VMX_V_VIRT_APIC_SIZE, pvPage);
4124 pHlp->pfnPrintf(pHlp, "\n");
4125 }
4126 RTMemTmpFree(pvPage);
4127 }
4128#else
4129 NOREF(pVCpu);
4130#endif
4131
4132#undef CPUMVMX_DUMP_HOST_XDTR
4133#undef CPUMVMX_DUMP_HOST_FS_GS_TR
4134#undef CPUMVMX_DUMP_GUEST_SEGREG
4135#undef CPUMVMX_DUMP_GUEST_XDTR
4136}
4137
4138
4139/**
4140 * Display the guest's hardware-virtualization cpu state.
4141 *
4142 * @param pVM The cross context VM structure.
4143 * @param pHlp The info helper functions.
4144 * @param pszArgs Arguments, ignored.
4145 */
4146static DECLCALLBACK(void) cpumR3InfoGuestHwvirt(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
4147{
4148 RT_NOREF(pszArgs);
4149
4150 PVMCPU pVCpu = VMMGetCpu(pVM);
4151 if (!pVCpu)
4152 pVCpu = pVM->apCpusR3[0];
4153
4154 PCCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
4155 bool const fSvm = pVM->cpum.s.GuestFeatures.fSvm;
4156 bool const fVmx = pVM->cpum.s.GuestFeatures.fVmx;
4157
4158 pHlp->pfnPrintf(pHlp, "VCPU[%u] hardware virtualization state:\n", pVCpu->idCpu);
4159 pHlp->pfnPrintf(pHlp, "fLocalForcedActions = %#RX32\n", pCtx->hwvirt.fLocalForcedActions);
4160 pHlp->pfnPrintf(pHlp, "In nested-guest hwvirt mode = %RTbool\n", CPUMIsGuestInNestedHwvirtMode(pCtx));
4161
4162 if (fSvm)
4163 {
4164 pHlp->pfnPrintf(pHlp, "SVM hwvirt state:\n");
4165 pHlp->pfnPrintf(pHlp, " fGif = %RTbool\n", pCtx->hwvirt.fGif);
4166
4167 char szEFlags[80];
4168 cpumR3InfoFormatFlags(&szEFlags[0], pCtx->hwvirt.svm.HostState.rflags.u);
4169 pHlp->pfnPrintf(pHlp, " uMsrHSavePa = %#RX64\n", pCtx->hwvirt.svm.uMsrHSavePa);
4170 pHlp->pfnPrintf(pHlp, " GCPhysVmcb = %#RGp\n", pCtx->hwvirt.svm.GCPhysVmcb);
4171 pHlp->pfnPrintf(pHlp, " VmcbCtrl:\n");
4172 cpumR3InfoSvmVmcbCtrl(pHlp, &pCtx->hwvirt.svm.pVmcbR3->ctrl, " " /* pszPrefix */);
4173 pHlp->pfnPrintf(pHlp, " VmcbStateSave:\n");
4174 cpumR3InfoSvmVmcbStateSave(pHlp, &pCtx->hwvirt.svm.pVmcbR3->guest, " " /* pszPrefix */);
4175 pHlp->pfnPrintf(pHlp, " HostState:\n");
4176 pHlp->pfnPrintf(pHlp, " uEferMsr = %#RX64\n", pCtx->hwvirt.svm.HostState.uEferMsr);
4177 pHlp->pfnPrintf(pHlp, " uCr0 = %#RX64\n", pCtx->hwvirt.svm.HostState.uCr0);
4178 pHlp->pfnPrintf(pHlp, " uCr4 = %#RX64\n", pCtx->hwvirt.svm.HostState.uCr4);
4179 pHlp->pfnPrintf(pHlp, " uCr3 = %#RX64\n", pCtx->hwvirt.svm.HostState.uCr3);
4180 pHlp->pfnPrintf(pHlp, " uRip = %#RX64\n", pCtx->hwvirt.svm.HostState.uRip);
4181 pHlp->pfnPrintf(pHlp, " uRsp = %#RX64\n", pCtx->hwvirt.svm.HostState.uRsp);
4182 pHlp->pfnPrintf(pHlp, " uRax = %#RX64\n", pCtx->hwvirt.svm.HostState.uRax);
4183 pHlp->pfnPrintf(pHlp, " rflags = %#RX64 %31s\n", pCtx->hwvirt.svm.HostState.rflags.u64, szEFlags);
4184 PCCPUMSELREG pSelEs = &pCtx->hwvirt.svm.HostState.es;
4185 pHlp->pfnPrintf(pHlp, " es = {%04x base=%016RX64 limit=%08x flags=%08x}\n",
4186 pSelEs->Sel, pSelEs->u64Base, pSelEs->u32Limit, pSelEs->Attr.u);
4187 PCCPUMSELREG pSelCs = &pCtx->hwvirt.svm.HostState.cs;
4188 pHlp->pfnPrintf(pHlp, " cs = {%04x base=%016RX64 limit=%08x flags=%08x}\n",
4189 pSelCs->Sel, pSelCs->u64Base, pSelCs->u32Limit, pSelCs->Attr.u);
4190 PCCPUMSELREG pSelSs = &pCtx->hwvirt.svm.HostState.ss;
4191 pHlp->pfnPrintf(pHlp, " ss = {%04x base=%016RX64 limit=%08x flags=%08x}\n",
4192 pSelSs->Sel, pSelSs->u64Base, pSelSs->u32Limit, pSelSs->Attr.u);
4193 PCCPUMSELREG pSelDs = &pCtx->hwvirt.svm.HostState.ds;
4194 pHlp->pfnPrintf(pHlp, " ds = {%04x base=%016RX64 limit=%08x flags=%08x}\n",
4195 pSelDs->Sel, pSelDs->u64Base, pSelDs->u32Limit, pSelDs->Attr.u);
4196 pHlp->pfnPrintf(pHlp, " gdtr = %016RX64:%04x\n", pCtx->hwvirt.svm.HostState.gdtr.pGdt,
4197 pCtx->hwvirt.svm.HostState.gdtr.cbGdt);
4198 pHlp->pfnPrintf(pHlp, " idtr = %016RX64:%04x\n", pCtx->hwvirt.svm.HostState.idtr.pIdt,
4199 pCtx->hwvirt.svm.HostState.idtr.cbIdt);
4200 pHlp->pfnPrintf(pHlp, " cPauseFilter = %RU16\n", pCtx->hwvirt.svm.cPauseFilter);
4201 pHlp->pfnPrintf(pHlp, " cPauseFilterThreshold = %RU32\n", pCtx->hwvirt.svm.cPauseFilterThreshold);
4202 pHlp->pfnPrintf(pHlp, " fInterceptEvents = %u\n", pCtx->hwvirt.svm.fInterceptEvents);
4203 pHlp->pfnPrintf(pHlp, " pvMsrBitmapR3 = %p\n", pCtx->hwvirt.svm.pvMsrBitmapR3);
4204 pHlp->pfnPrintf(pHlp, " pvMsrBitmapR0 = %RKv\n", pCtx->hwvirt.svm.pvMsrBitmapR0);
4205 pHlp->pfnPrintf(pHlp, " pvIoBitmapR3 = %p\n", pCtx->hwvirt.svm.pvIoBitmapR3);
4206 pHlp->pfnPrintf(pHlp, " pvIoBitmapR0 = %RKv\n", pCtx->hwvirt.svm.pvIoBitmapR0);
4207 }
4208 else if (fVmx)
4209 {
4210 pHlp->pfnPrintf(pHlp, "VMX hwvirt state:\n");
4211 pHlp->pfnPrintf(pHlp, " GCPhysVmxon = %#RGp\n", pCtx->hwvirt.vmx.GCPhysVmxon);
4212 pHlp->pfnPrintf(pHlp, " GCPhysVmcs = %#RGp\n", pCtx->hwvirt.vmx.GCPhysVmcs);
4213 pHlp->pfnPrintf(pHlp, " GCPhysShadowVmcs = %#RGp\n", pCtx->hwvirt.vmx.GCPhysShadowVmcs);
4214 pHlp->pfnPrintf(pHlp, " enmDiag = %u (%s)\n", pCtx->hwvirt.vmx.enmDiag, HMGetVmxDiagDesc(pCtx->hwvirt.vmx.enmDiag));
4215 pHlp->pfnPrintf(pHlp, " uDiagAux = %#RX64\n", pCtx->hwvirt.vmx.uDiagAux);
4216 pHlp->pfnPrintf(pHlp, " enmAbort = %u (%s)\n", pCtx->hwvirt.vmx.enmAbort, VMXGetAbortDesc(pCtx->hwvirt.vmx.enmAbort));
4217 pHlp->pfnPrintf(pHlp, " uAbortAux = %u (%#x)\n", pCtx->hwvirt.vmx.uAbortAux, pCtx->hwvirt.vmx.uAbortAux);
4218 pHlp->pfnPrintf(pHlp, " fInVmxRootMode = %RTbool\n", pCtx->hwvirt.vmx.fInVmxRootMode);
4219 pHlp->pfnPrintf(pHlp, " fInVmxNonRootMode = %RTbool\n", pCtx->hwvirt.vmx.fInVmxNonRootMode);
4220 pHlp->pfnPrintf(pHlp, " fInterceptEvents = %RTbool\n", pCtx->hwvirt.vmx.fInterceptEvents);
4221 pHlp->pfnPrintf(pHlp, " fNmiUnblockingIret = %RTbool\n", pCtx->hwvirt.vmx.fNmiUnblockingIret);
4222 pHlp->pfnPrintf(pHlp, " uFirstPauseLoopTick = %RX64\n", pCtx->hwvirt.vmx.uFirstPauseLoopTick);
4223 pHlp->pfnPrintf(pHlp, " uPrevPauseTick = %RX64\n", pCtx->hwvirt.vmx.uPrevPauseTick);
4224 pHlp->pfnPrintf(pHlp, " uEntryTick = %RX64\n", pCtx->hwvirt.vmx.uEntryTick);
4225 pHlp->pfnPrintf(pHlp, " offVirtApicWrite = %#RX16\n", pCtx->hwvirt.vmx.offVirtApicWrite);
4226 pHlp->pfnPrintf(pHlp, " fVirtNmiBlocking = %RTbool\n", pCtx->hwvirt.vmx.fVirtNmiBlocking);
4227 pHlp->pfnPrintf(pHlp, " VMCS cache:\n");
4228 cpumR3InfoVmxVmcs(pVCpu, pHlp, pCtx->hwvirt.vmx.pVmcsR3, " " /* pszPrefix */);
4229 }
4230 else
4231 pHlp->pfnPrintf(pHlp, "Hwvirt state disabled.\n");
4232
4233#undef CPUMHWVIRTDUMP_NONE
4234#undef CPUMHWVIRTDUMP_COMMON
4235#undef CPUMHWVIRTDUMP_SVM
4236#undef CPUMHWVIRTDUMP_VMX
4237#undef CPUMHWVIRTDUMP_LAST
4238#undef CPUMHWVIRTDUMP_ALL
4239}
4240
4241/**
4242 * Display the current guest instruction
4243 *
4244 * @param pVM The cross context VM structure.
4245 * @param pHlp The info helper functions.
4246 * @param pszArgs Arguments, ignored.
4247 */
4248static DECLCALLBACK(void) cpumR3InfoGuestInstr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
4249{
4250 NOREF(pszArgs);
4251
4252 PVMCPU pVCpu = VMMGetCpu(pVM);
4253 if (!pVCpu)
4254 pVCpu = pVM->apCpusR3[0];
4255
4256 char szInstruction[256];
4257 szInstruction[0] = '\0';
4258 DBGFR3DisasInstrCurrent(pVCpu, szInstruction, sizeof(szInstruction));
4259 pHlp->pfnPrintf(pHlp, "\nCPUM%u: %s\n\n", pVCpu->idCpu, szInstruction);
4260}
4261
4262
4263/**
4264 * Display the hypervisor cpu state.
4265 *
4266 * @param pVM The cross context VM structure.
4267 * @param pHlp The info helper functions.
4268 * @param pszArgs Arguments, ignored.
4269 */
4270static DECLCALLBACK(void) cpumR3InfoHyper(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
4271{
4272 PVMCPU pVCpu = VMMGetCpu(pVM);
4273 if (!pVCpu)
4274 pVCpu = pVM->apCpusR3[0];
4275
4276 CPUMDUMPTYPE enmType;
4277 const char *pszComment;
4278 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
4279 pHlp->pfnPrintf(pHlp, "Hypervisor CPUM state: %s\n", pszComment);
4280
4281 pHlp->pfnPrintf(pHlp,
4282 ".dr0=%016RX64 .dr1=%016RX64 .dr2=%016RX64 .dr3=%016RX64\n"
4283 ".dr4=%016RX64 .dr5=%016RX64 .dr6=%016RX64 .dr7=%016RX64\n",
4284 pVCpu->cpum.s.Hyper.dr[0], pVCpu->cpum.s.Hyper.dr[1], pVCpu->cpum.s.Hyper.dr[2], pVCpu->cpum.s.Hyper.dr[3],
4285 pVCpu->cpum.s.Hyper.dr[4], pVCpu->cpum.s.Hyper.dr[5], pVCpu->cpum.s.Hyper.dr[6], pVCpu->cpum.s.Hyper.dr[7]);
4286 pHlp->pfnPrintf(pHlp, "CR4OrMask=%#x CR4AndMask=%#x\n", pVM->cpum.s.CR4.OrMask, pVM->cpum.s.CR4.AndMask);
4287}
4288
4289
4290/**
4291 * Display the host cpu state.
4292 *
4293 * @param pVM The cross context VM structure.
4294 * @param pHlp The info helper functions.
4295 * @param pszArgs Arguments, ignored.
4296 */
4297static DECLCALLBACK(void) cpumR3InfoHost(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
4298{
4299 CPUMDUMPTYPE enmType;
4300 const char *pszComment;
4301 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
4302 pHlp->pfnPrintf(pHlp, "Host CPUM state: %s\n", pszComment);
4303
4304 PVMCPU pVCpu = VMMGetCpu(pVM);
4305 if (!pVCpu)
4306 pVCpu = pVM->apCpusR3[0];
4307 PCPUMHOSTCTX pCtx = &pVCpu->cpum.s.Host;
4308
4309 /*
4310 * Format the EFLAGS.
4311 */
4312 uint64_t efl = pCtx->rflags;
4313 char szEFlags[80];
4314 cpumR3InfoFormatFlags(&szEFlags[0], efl);
4315
4316 /*
4317 * Format the registers.
4318 */
4319 pHlp->pfnPrintf(pHlp,
4320 "rax=xxxxxxxxxxxxxxxx rbx=%016RX64 rcx=xxxxxxxxxxxxxxxx\n"
4321 "rdx=xxxxxxxxxxxxxxxx rsi=%016RX64 rdi=%016RX64\n"
4322 "rip=xxxxxxxxxxxxxxxx rsp=%016RX64 rbp=%016RX64\n"
4323 " r8=xxxxxxxxxxxxxxxx r9=xxxxxxxxxxxxxxxx r10=%016RX64\n"
4324 "r11=%016RX64 r12=%016RX64 r13=%016RX64\n"
4325 "r14=%016RX64 r15=%016RX64\n"
4326 "iopl=%d %31s\n"
4327 "cs=%04x ds=%04x es=%04x fs=%04x gs=%04x eflags=%08RX64\n"
4328 "cr0=%016RX64 cr2=xxxxxxxxxxxxxxxx cr3=%016RX64\n"
4329 "cr4=%016RX64 ldtr=%04x tr=%04x\n"
4330 "dr[0]=%016RX64 dr[1]=%016RX64 dr[2]=%016RX64\n"
4331 "dr[3]=%016RX64 dr[6]=%016RX64 dr[7]=%016RX64\n"
4332 "gdtr=%016RX64:%04x idtr=%016RX64:%04x\n"
4333 "SysEnter={cs=%04x eip=%08x esp=%08x}\n"
4334 "FSbase=%016RX64 GSbase=%016RX64 efer=%08RX64\n"
4335 ,
4336 /*pCtx->rax,*/ pCtx->rbx, /*pCtx->rcx,
4337 pCtx->rdx,*/ pCtx->rsi, pCtx->rdi,
4338 /*pCtx->rip,*/ pCtx->rsp, pCtx->rbp,
4339 /*pCtx->r8, pCtx->r9,*/ pCtx->r10,
4340 pCtx->r11, pCtx->r12, pCtx->r13,
4341 pCtx->r14, pCtx->r15,
4342 X86_EFL_GET_IOPL(efl), szEFlags,
4343 pCtx->cs, pCtx->ds, pCtx->es, pCtx->fs, pCtx->gs, efl,
4344 pCtx->cr0, /*pCtx->cr2,*/ pCtx->cr3,
4345 pCtx->cr4, pCtx->ldtr, pCtx->tr,
4346 pCtx->dr0, pCtx->dr1, pCtx->dr2,
4347 pCtx->dr3, pCtx->dr6, pCtx->dr7,
4348 pCtx->gdtr.uAddr, pCtx->gdtr.cb, pCtx->idtr.uAddr, pCtx->idtr.cb,
4349 pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp,
4350 pCtx->FSbase, pCtx->GSbase, pCtx->efer);
4351}
4352
4353/**
4354 * Structure used when disassembling and instructions in DBGF.
4355 * This is used so the reader function can get the stuff it needs.
4356 */
4357typedef struct CPUMDISASSTATE
4358{
4359 /** Pointer to the CPU structure. */
4360 PDISCPUSTATE pCpu;
4361 /** Pointer to the VM. */
4362 PVM pVM;
4363 /** Pointer to the VMCPU. */
4364 PVMCPU pVCpu;
4365 /** Pointer to the first byte in the segment. */
4366 RTGCUINTPTR GCPtrSegBase;
4367 /** Pointer to the byte after the end of the segment. (might have wrapped!) */
4368 RTGCUINTPTR GCPtrSegEnd;
4369 /** The size of the segment minus 1. */
4370 RTGCUINTPTR cbSegLimit;
4371 /** Pointer to the current page - R3 Ptr. */
4372 void const *pvPageR3;
4373 /** Pointer to the current page - GC Ptr. */
4374 RTGCPTR pvPageGC;
4375 /** The lock information that PGMPhysReleasePageMappingLock needs. */
4376 PGMPAGEMAPLOCK PageMapLock;
4377 /** Whether the PageMapLock is valid or not. */
4378 bool fLocked;
4379 /** 64 bits mode or not. */
4380 bool f64Bits;
4381} CPUMDISASSTATE, *PCPUMDISASSTATE;
4382
4383
4384/**
4385 * @callback_method_impl{FNDISREADBYTES}
4386 */
4387static DECLCALLBACK(int) cpumR3DisasInstrRead(PDISCPUSTATE pDis, uint8_t offInstr, uint8_t cbMinRead, uint8_t cbMaxRead)
4388{
4389 PCPUMDISASSTATE pState = (PCPUMDISASSTATE)pDis->pvUser;
4390 for (;;)
4391 {
4392 RTGCUINTPTR GCPtr = pDis->uInstrAddr + offInstr + pState->GCPtrSegBase;
4393
4394 /*
4395 * Need to update the page translation?
4396 */
4397 if ( !pState->pvPageR3
4398 || (GCPtr >> PAGE_SHIFT) != (pState->pvPageGC >> PAGE_SHIFT))
4399 {
4400 /* translate the address */
4401 pState->pvPageGC = GCPtr & PAGE_BASE_GC_MASK;
4402
4403 /* Release mapping lock previously acquired. */
4404 if (pState->fLocked)
4405 PGMPhysReleasePageMappingLock(pState->pVM, &pState->PageMapLock);
4406 int rc = PGMPhysGCPtr2CCPtrReadOnly(pState->pVCpu, pState->pvPageGC, &pState->pvPageR3, &pState->PageMapLock);
4407 if (RT_SUCCESS(rc))
4408 pState->fLocked = true;
4409 else
4410 {
4411 pState->fLocked = false;
4412 pState->pvPageR3 = NULL;
4413 return rc;
4414 }
4415 }
4416
4417 /*
4418 * Check the segment limit.
4419 */
4420 if (!pState->f64Bits && pDis->uInstrAddr + offInstr > pState->cbSegLimit)
4421 return VERR_OUT_OF_SELECTOR_BOUNDS;
4422
4423 /*
4424 * Calc how much we can read.
4425 */
4426 uint32_t cb = PAGE_SIZE - (GCPtr & PAGE_OFFSET_MASK);
4427 if (!pState->f64Bits)
4428 {
4429 RTGCUINTPTR cbSeg = pState->GCPtrSegEnd - GCPtr;
4430 if (cb > cbSeg && cbSeg)
4431 cb = cbSeg;
4432 }
4433 if (cb > cbMaxRead)
4434 cb = cbMaxRead;
4435
4436 /*
4437 * Read and advance or exit.
4438 */
4439 memcpy(&pDis->abInstr[offInstr], (uint8_t *)pState->pvPageR3 + (GCPtr & PAGE_OFFSET_MASK), cb);
4440 offInstr += (uint8_t)cb;
4441 if (cb >= cbMinRead)
4442 {
4443 pDis->cbCachedInstr = offInstr;
4444 return VINF_SUCCESS;
4445 }
4446 cbMinRead -= (uint8_t)cb;
4447 cbMaxRead -= (uint8_t)cb;
4448 }
4449}
4450
4451
4452/**
4453 * Disassemble an instruction and return the information in the provided structure.
4454 *
4455 * @returns VBox status code.
4456 * @param pVM The cross context VM structure.
4457 * @param pVCpu The cross context virtual CPU structure.
4458 * @param pCtx Pointer to the guest CPU context.
4459 * @param GCPtrPC Program counter (relative to CS) to disassemble from.
4460 * @param pCpu Disassembly state.
4461 * @param pszPrefix String prefix for logging (debug only).
4462 *
4463 */
4464VMMR3DECL(int) CPUMR3DisasmInstrCPU(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, RTGCPTR GCPtrPC, PDISCPUSTATE pCpu,
4465 const char *pszPrefix)
4466{
4467 CPUMDISASSTATE State;
4468 int rc;
4469
4470 const PGMMODE enmMode = PGMGetGuestMode(pVCpu);
4471 State.pCpu = pCpu;
4472 State.pvPageGC = 0;
4473 State.pvPageR3 = NULL;
4474 State.pVM = pVM;
4475 State.pVCpu = pVCpu;
4476 State.fLocked = false;
4477 State.f64Bits = false;
4478
4479 /*
4480 * Get selector information.
4481 */
4482 DISCPUMODE enmDisCpuMode;
4483 if ( (pCtx->cr0 & X86_CR0_PE)
4484 && pCtx->eflags.Bits.u1VM == 0)
4485 {
4486 if (!CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->cs))
4487 return VERR_CPUM_HIDDEN_CS_LOAD_ERROR;
4488 State.f64Bits = enmMode >= PGMMODE_AMD64 && pCtx->cs.Attr.n.u1Long;
4489 State.GCPtrSegBase = pCtx->cs.u64Base;
4490 State.GCPtrSegEnd = pCtx->cs.u32Limit + 1 + (RTGCUINTPTR)pCtx->cs.u64Base;
4491 State.cbSegLimit = pCtx->cs.u32Limit;
4492 enmDisCpuMode = (State.f64Bits)
4493 ? DISCPUMODE_64BIT
4494 : pCtx->cs.Attr.n.u1DefBig
4495 ? DISCPUMODE_32BIT
4496 : DISCPUMODE_16BIT;
4497 }
4498 else
4499 {
4500 /* real or V86 mode */
4501 enmDisCpuMode = DISCPUMODE_16BIT;
4502 State.GCPtrSegBase = pCtx->cs.Sel * 16;
4503 State.GCPtrSegEnd = 0xFFFFFFFF;
4504 State.cbSegLimit = 0xFFFFFFFF;
4505 }
4506
4507 /*
4508 * Disassemble the instruction.
4509 */
4510 uint32_t cbInstr;
4511#ifndef LOG_ENABLED
4512 RT_NOREF_PV(pszPrefix);
4513 rc = DISInstrWithReader(GCPtrPC, enmDisCpuMode, cpumR3DisasInstrRead, &State, pCpu, &cbInstr);
4514 if (RT_SUCCESS(rc))
4515 {
4516#else
4517 char szOutput[160];
4518 rc = DISInstrToStrWithReader(GCPtrPC, enmDisCpuMode, cpumR3DisasInstrRead, &State,
4519 pCpu, &cbInstr, szOutput, sizeof(szOutput));
4520 if (RT_SUCCESS(rc))
4521 {
4522 /* log it */
4523 if (pszPrefix)
4524 Log(("%s-CPU%d: %s", pszPrefix, pVCpu->idCpu, szOutput));
4525 else
4526 Log(("%s", szOutput));
4527#endif
4528 rc = VINF_SUCCESS;
4529 }
4530 else
4531 Log(("CPUMR3DisasmInstrCPU: DISInstr failed for %04X:%RGv rc=%Rrc\n", pCtx->cs.Sel, GCPtrPC, rc));
4532
4533 /* Release mapping lock acquired in cpumR3DisasInstrRead. */
4534 if (State.fLocked)
4535 PGMPhysReleasePageMappingLock(pVM, &State.PageMapLock);
4536
4537 return rc;
4538}
4539
4540
4541
4542/**
4543 * API for controlling a few of the CPU features found in CR4.
4544 *
4545 * Currently only X86_CR4_TSD is accepted as input.
4546 *
4547 * @returns VBox status code.
4548 *
4549 * @param pVM The cross context VM structure.
4550 * @param fOr The CR4 OR mask.
4551 * @param fAnd The CR4 AND mask.
4552 */
4553VMMR3DECL(int) CPUMR3SetCR4Feature(PVM pVM, RTHCUINTREG fOr, RTHCUINTREG fAnd)
4554{
4555 AssertMsgReturn(!(fOr & ~(X86_CR4_TSD)), ("%#x\n", fOr), VERR_INVALID_PARAMETER);
4556 AssertMsgReturn((fAnd & ~(X86_CR4_TSD)) == ~(X86_CR4_TSD), ("%#x\n", fAnd), VERR_INVALID_PARAMETER);
4557
4558 pVM->cpum.s.CR4.OrMask &= fAnd;
4559 pVM->cpum.s.CR4.OrMask |= fOr;
4560
4561 return VINF_SUCCESS;
4562}
4563
4564
4565/**
4566 * Called when the ring-3 init phase completes.
4567 *
4568 * @returns VBox status code.
4569 * @param pVM The cross context VM structure.
4570 * @param enmWhat Which init phase.
4571 */
4572VMMR3DECL(int) CPUMR3InitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
4573{
4574 switch (enmWhat)
4575 {
4576 case VMINITCOMPLETED_RING3:
4577 {
4578 /*
4579 * Figure out if the guest uses 32-bit or 64-bit FPU state at runtime for 64-bit capable VMs.
4580 * Only applicable/used on 64-bit hosts, refer CPUMR0A.asm. See @bugref{7138}.
4581 */
4582 bool const fSupportsLongMode = VMR3IsLongModeAllowed(pVM);
4583 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
4584 {
4585 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
4586
4587 /* While loading a saved-state we fix it up in, cpumR3LoadDone(). */
4588 if (fSupportsLongMode)
4589 pVCpu->cpum.s.fUseFlags |= CPUM_USE_SUPPORTS_LONGMODE;
4590 }
4591
4592 /* Register statistic counters for MSRs. */
4593 cpumR3MsrRegStats(pVM);
4594
4595 /* Create VMX-preemption timer for nested guests if required. Must be
4596 done here as CPUM is initialized before TM. */
4597 if (pVM->cpum.s.GuestFeatures.fVmx)
4598 {
4599 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
4600 {
4601 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
4602 char szName[32];
4603 RTStrPrintf(szName, sizeof(szName), "Nested VMX-preemption %u", idCpu);
4604 int rc = TMR3TimerCreate(pVM, TMCLOCK_VIRTUAL_SYNC, cpumR3VmxPreemptTimerCallback, pVCpu,
4605 TMTIMER_FLAGS_RING0, szName, &pVCpu->cpum.s.hNestedVmxPreemptTimer);
4606 AssertLogRelRCReturn(rc, rc);
4607 }
4608 }
4609 break;
4610 }
4611
4612 default:
4613 break;
4614 }
4615 return VINF_SUCCESS;
4616}
4617
4618
4619/**
4620 * Called when the ring-0 init phases completed.
4621 *
4622 * @param pVM The cross context VM structure.
4623 */
4624VMMR3DECL(void) CPUMR3LogCpuIdAndMsrFeatures(PVM pVM)
4625{
4626 /*
4627 * Enable log buffering as we're going to log a lot of lines.
4628 */
4629 bool const fOldBuffered = RTLogRelSetBuffering(true /*fBuffered*/);
4630
4631 /*
4632 * Log the cpuid.
4633 */
4634 RTCPUSET OnlineSet;
4635 LogRel(("CPUM: Logical host processors: %u present, %u max, %u online, online mask: %016RX64\n",
4636 (unsigned)RTMpGetPresentCount(), (unsigned)RTMpGetCount(), (unsigned)RTMpGetOnlineCount(),
4637 RTCpuSetToU64(RTMpGetOnlineSet(&OnlineSet)) ));
4638 RTCPUID cCores = RTMpGetCoreCount();
4639 if (cCores)
4640 LogRel(("CPUM: Physical host cores: %u\n", (unsigned)cCores));
4641 LogRel(("************************* CPUID dump ************************\n"));
4642 DBGFR3Info(pVM->pUVM, "cpuid", "verbose", DBGFR3InfoLogRelHlp());
4643 LogRel(("\n"));
4644 DBGFR3_INFO_LOG_SAFE(pVM, "cpuid", "verbose"); /* macro */
4645 LogRel(("******************** End of CPUID dump **********************\n"));
4646
4647 /*
4648 * Log VT-x extended features.
4649 *
4650 * SVM features are currently all covered under CPUID so there is nothing
4651 * to do here for SVM.
4652 */
4653 if (pVM->cpum.s.HostFeatures.fVmx)
4654 {
4655 LogRel(("*********************** VT-x features ***********************\n"));
4656 DBGFR3Info(pVM->pUVM, "cpumvmxfeat", "default", DBGFR3InfoLogRelHlp());
4657 LogRel(("\n"));
4658 LogRel(("******************* End of VT-x features ********************\n"));
4659 }
4660
4661 /*
4662 * Restore the log buffering state to what it was previously.
4663 */
4664 RTLogRelSetBuffering(fOldBuffered);
4665}
4666
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette