VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/CPUM.cpp@ 91297

Last change on this file since 91297 was 91297, checked in by vboxsync, 3 years ago

VMM/CPUM,++: Moved the nested VT-X VMCS allocation into CPUMCTX. bugref:10093

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 240.3 KB
Line 
1/* $Id: CPUM.cpp 91297 2021-09-17 11:51:23Z vboxsync $ */
2/** @file
3 * CPUM - CPU Monitor / Manager.
4 */
5
6/*
7 * Copyright (C) 2006-2020 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/** @page pg_cpum CPUM - CPU Monitor / Manager
19 *
20 * The CPU Monitor / Manager keeps track of all the CPU registers. It is
21 * also responsible for lazy FPU handling and some of the context loading
22 * in raw mode.
23 *
24 * There are three CPU contexts, the most important one is the guest one (GC).
25 * When running in raw-mode (RC) there is a special hyper context for the VMM
26 * part that floats around inside the guest address space. When running in
27 * raw-mode, CPUM also maintains a host context for saving and restoring
28 * registers across world switches. This latter is done in cooperation with the
29 * world switcher (@see pg_vmm).
30 *
31 * @see grp_cpum
32 *
33 * @section sec_cpum_fpu FPU / SSE / AVX / ++ state.
34 *
35 * TODO: proper write up, currently just some notes.
36 *
37 * The ring-0 FPU handling per OS:
38 *
39 * - 64-bit Windows uses XMM registers in the kernel as part of the calling
40 * convention (Visual C++ doesn't seem to have a way to disable
41 * generating such code either), so CR0.TS/EM are always zero from what I
42 * can tell. We are also forced to always load/save the guest XMM0-XMM15
43 * registers when entering/leaving guest context. Interrupt handlers
44 * using FPU/SSE will offically have call save and restore functions
45 * exported by the kernel, if the really really have to use the state.
46 *
47 * - 32-bit windows does lazy FPU handling, I think, probably including
48 * lazying saving. The Windows Internals book states that it's a bad
49 * idea to use the FPU in kernel space. However, it looks like it will
50 * restore the FPU state of the current thread in case of a kernel \#NM.
51 * Interrupt handlers should be same as for 64-bit.
52 *
53 * - Darwin allows taking \#NM in kernel space, restoring current thread's
54 * state if I read the code correctly. It saves the FPU state of the
55 * outgoing thread, and uses CR0.TS to lazily load the state of the
56 * incoming one. No idea yet how the FPU is treated by interrupt
57 * handlers, i.e. whether they are allowed to disable the state or
58 * something.
59 *
60 * - Linux also allows \#NM in kernel space (don't know since when), and
61 * uses CR0.TS for lazy loading. Saves outgoing thread's state, lazy
62 * loads the incoming unless configured to agressivly load it. Interrupt
63 * handlers can ask whether they're allowed to use the FPU, and may
64 * freely trash the state if Linux thinks it has saved the thread's state
65 * already. This is a problem.
66 *
67 * - Solaris will, from what I can tell, panic if it gets an \#NM in kernel
68 * context. When switching threads, the kernel will save the state of
69 * the outgoing thread and lazy load the incoming one using CR0.TS.
70 * There are a few routines in seeblk.s which uses the SSE unit in ring-0
71 * to do stuff, HAT are among the users. The routines there will
72 * manually clear CR0.TS and save the XMM registers they use only if
73 * CR0.TS was zero upon entry. They will skip it when not, because as
74 * mentioned above, the FPU state is saved when switching away from a
75 * thread and CR0.TS set to 1, so when CR0.TS is 1 there is nothing to
76 * preserve. This is a problem if we restore CR0.TS to 1 after loading
77 * the guest state.
78 *
79 * - FreeBSD - no idea yet.
80 *
81 * - OS/2 does not allow \#NMs in kernel space IIRC. Does lazy loading,
82 * possibly also lazy saving. Interrupts must preserve the CR0.TS+EM &
83 * FPU states.
84 *
85 * Up to r107425 (2016-05-24) we would only temporarily modify CR0.TS/EM while
86 * saving and restoring the host and guest states. The motivation for this
87 * change is that we want to be able to emulate SSE instruction in ring-0 (IEM).
88 *
89 * Starting with that change, we will leave CR0.TS=EM=0 after saving the host
90 * state and only restore it once we've restore the host FPU state. This has the
91 * accidental side effect of triggering Solaris to preserve XMM registers in
92 * sseblk.s. When CR0 was changed by saving the FPU state, CPUM must now inform
93 * the VT-x (HMVMX) code about it as it caches the CR0 value in the VMCS.
94 *
95 *
96 * @section sec_cpum_logging Logging Level Assignments.
97 *
98 * Following log level assignments:
99 * - Log6 is used for FPU state management.
100 * - Log7 is used for FPU state actualization.
101 *
102 */
103
104
105/*********************************************************************************************************************************
106* Header Files *
107*********************************************************************************************************************************/
108#define LOG_GROUP LOG_GROUP_CPUM
109#include <VBox/vmm/cpum.h>
110#include <VBox/vmm/cpumdis.h>
111#include <VBox/vmm/cpumctx-v1_6.h>
112#include <VBox/vmm/pgm.h>
113#include <VBox/vmm/apic.h>
114#include <VBox/vmm/mm.h>
115#include <VBox/vmm/em.h>
116#include <VBox/vmm/iem.h>
117#include <VBox/vmm/selm.h>
118#include <VBox/vmm/dbgf.h>
119#include <VBox/vmm/hm.h>
120#include <VBox/vmm/hmvmxinline.h>
121#include <VBox/vmm/ssm.h>
122#include "CPUMInternal.h"
123#include <VBox/vmm/vm.h>
124
125#include <VBox/param.h>
126#include <VBox/dis.h>
127#include <VBox/err.h>
128#include <VBox/log.h>
129#include <iprt/asm-amd64-x86.h>
130#include <iprt/assert.h>
131#include <iprt/cpuset.h>
132#include <iprt/mem.h>
133#include <iprt/mp.h>
134#include <iprt/string.h>
135
136
137/*********************************************************************************************************************************
138* Defined Constants And Macros *
139*********************************************************************************************************************************/
140/**
141 * This was used in the saved state up to the early life of version 14.
142 *
143 * It indicates that we may have some out-of-sync hidden segement registers.
144 * It is only relevant for raw-mode.
145 */
146#define CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID RT_BIT(12)
147
148
149/*********************************************************************************************************************************
150* Structures and Typedefs *
151*********************************************************************************************************************************/
152
153/**
154 * What kind of cpu info dump to perform.
155 */
156typedef enum CPUMDUMPTYPE
157{
158 CPUMDUMPTYPE_TERSE,
159 CPUMDUMPTYPE_DEFAULT,
160 CPUMDUMPTYPE_VERBOSE
161} CPUMDUMPTYPE;
162/** Pointer to a cpu info dump type. */
163typedef CPUMDUMPTYPE *PCPUMDUMPTYPE;
164
165
166/*********************************************************************************************************************************
167* Internal Functions *
168*********************************************************************************************************************************/
169static DECLCALLBACK(int) cpumR3LiveExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uPass);
170static DECLCALLBACK(int) cpumR3SaveExec(PVM pVM, PSSMHANDLE pSSM);
171static DECLCALLBACK(int) cpumR3LoadPrep(PVM pVM, PSSMHANDLE pSSM);
172static DECLCALLBACK(int) cpumR3LoadExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
173static DECLCALLBACK(int) cpumR3LoadDone(PVM pVM, PSSMHANDLE pSSM);
174static DECLCALLBACK(void) cpumR3InfoAll(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
175static DECLCALLBACK(void) cpumR3InfoGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
176static DECLCALLBACK(void) cpumR3InfoGuestHwvirt(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
177static DECLCALLBACK(void) cpumR3InfoGuestInstr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
178static DECLCALLBACK(void) cpumR3InfoHyper(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
179static DECLCALLBACK(void) cpumR3InfoHost(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
180
181
182/*********************************************************************************************************************************
183* Global Variables *
184*********************************************************************************************************************************/
185/** Saved state field descriptors for CPUMCTX. */
186static const SSMFIELD g_aCpumCtxFields[] =
187{
188 SSMFIELD_ENTRY( CPUMCTX, rdi),
189 SSMFIELD_ENTRY( CPUMCTX, rsi),
190 SSMFIELD_ENTRY( CPUMCTX, rbp),
191 SSMFIELD_ENTRY( CPUMCTX, rax),
192 SSMFIELD_ENTRY( CPUMCTX, rbx),
193 SSMFIELD_ENTRY( CPUMCTX, rdx),
194 SSMFIELD_ENTRY( CPUMCTX, rcx),
195 SSMFIELD_ENTRY( CPUMCTX, rsp),
196 SSMFIELD_ENTRY( CPUMCTX, rflags),
197 SSMFIELD_ENTRY( CPUMCTX, rip),
198 SSMFIELD_ENTRY( CPUMCTX, r8),
199 SSMFIELD_ENTRY( CPUMCTX, r9),
200 SSMFIELD_ENTRY( CPUMCTX, r10),
201 SSMFIELD_ENTRY( CPUMCTX, r11),
202 SSMFIELD_ENTRY( CPUMCTX, r12),
203 SSMFIELD_ENTRY( CPUMCTX, r13),
204 SSMFIELD_ENTRY( CPUMCTX, r14),
205 SSMFIELD_ENTRY( CPUMCTX, r15),
206 SSMFIELD_ENTRY( CPUMCTX, es.Sel),
207 SSMFIELD_ENTRY( CPUMCTX, es.ValidSel),
208 SSMFIELD_ENTRY( CPUMCTX, es.fFlags),
209 SSMFIELD_ENTRY( CPUMCTX, es.u64Base),
210 SSMFIELD_ENTRY( CPUMCTX, es.u32Limit),
211 SSMFIELD_ENTRY( CPUMCTX, es.Attr),
212 SSMFIELD_ENTRY( CPUMCTX, cs.Sel),
213 SSMFIELD_ENTRY( CPUMCTX, cs.ValidSel),
214 SSMFIELD_ENTRY( CPUMCTX, cs.fFlags),
215 SSMFIELD_ENTRY( CPUMCTX, cs.u64Base),
216 SSMFIELD_ENTRY( CPUMCTX, cs.u32Limit),
217 SSMFIELD_ENTRY( CPUMCTX, cs.Attr),
218 SSMFIELD_ENTRY( CPUMCTX, ss.Sel),
219 SSMFIELD_ENTRY( CPUMCTX, ss.ValidSel),
220 SSMFIELD_ENTRY( CPUMCTX, ss.fFlags),
221 SSMFIELD_ENTRY( CPUMCTX, ss.u64Base),
222 SSMFIELD_ENTRY( CPUMCTX, ss.u32Limit),
223 SSMFIELD_ENTRY( CPUMCTX, ss.Attr),
224 SSMFIELD_ENTRY( CPUMCTX, ds.Sel),
225 SSMFIELD_ENTRY( CPUMCTX, ds.ValidSel),
226 SSMFIELD_ENTRY( CPUMCTX, ds.fFlags),
227 SSMFIELD_ENTRY( CPUMCTX, ds.u64Base),
228 SSMFIELD_ENTRY( CPUMCTX, ds.u32Limit),
229 SSMFIELD_ENTRY( CPUMCTX, ds.Attr),
230 SSMFIELD_ENTRY( CPUMCTX, fs.Sel),
231 SSMFIELD_ENTRY( CPUMCTX, fs.ValidSel),
232 SSMFIELD_ENTRY( CPUMCTX, fs.fFlags),
233 SSMFIELD_ENTRY( CPUMCTX, fs.u64Base),
234 SSMFIELD_ENTRY( CPUMCTX, fs.u32Limit),
235 SSMFIELD_ENTRY( CPUMCTX, fs.Attr),
236 SSMFIELD_ENTRY( CPUMCTX, gs.Sel),
237 SSMFIELD_ENTRY( CPUMCTX, gs.ValidSel),
238 SSMFIELD_ENTRY( CPUMCTX, gs.fFlags),
239 SSMFIELD_ENTRY( CPUMCTX, gs.u64Base),
240 SSMFIELD_ENTRY( CPUMCTX, gs.u32Limit),
241 SSMFIELD_ENTRY( CPUMCTX, gs.Attr),
242 SSMFIELD_ENTRY( CPUMCTX, cr0),
243 SSMFIELD_ENTRY( CPUMCTX, cr2),
244 SSMFIELD_ENTRY( CPUMCTX, cr3),
245 SSMFIELD_ENTRY( CPUMCTX, cr4),
246 SSMFIELD_ENTRY( CPUMCTX, dr[0]),
247 SSMFIELD_ENTRY( CPUMCTX, dr[1]),
248 SSMFIELD_ENTRY( CPUMCTX, dr[2]),
249 SSMFIELD_ENTRY( CPUMCTX, dr[3]),
250 SSMFIELD_ENTRY( CPUMCTX, dr[6]),
251 SSMFIELD_ENTRY( CPUMCTX, dr[7]),
252 SSMFIELD_ENTRY( CPUMCTX, gdtr.cbGdt),
253 SSMFIELD_ENTRY( CPUMCTX, gdtr.pGdt),
254 SSMFIELD_ENTRY( CPUMCTX, idtr.cbIdt),
255 SSMFIELD_ENTRY( CPUMCTX, idtr.pIdt),
256 SSMFIELD_ENTRY( CPUMCTX, SysEnter.cs),
257 SSMFIELD_ENTRY( CPUMCTX, SysEnter.eip),
258 SSMFIELD_ENTRY( CPUMCTX, SysEnter.esp),
259 SSMFIELD_ENTRY( CPUMCTX, msrEFER),
260 SSMFIELD_ENTRY( CPUMCTX, msrSTAR),
261 SSMFIELD_ENTRY( CPUMCTX, msrPAT),
262 SSMFIELD_ENTRY( CPUMCTX, msrLSTAR),
263 SSMFIELD_ENTRY( CPUMCTX, msrCSTAR),
264 SSMFIELD_ENTRY( CPUMCTX, msrSFMASK),
265 SSMFIELD_ENTRY( CPUMCTX, msrKERNELGSBASE),
266 SSMFIELD_ENTRY( CPUMCTX, ldtr.Sel),
267 SSMFIELD_ENTRY( CPUMCTX, ldtr.ValidSel),
268 SSMFIELD_ENTRY( CPUMCTX, ldtr.fFlags),
269 SSMFIELD_ENTRY( CPUMCTX, ldtr.u64Base),
270 SSMFIELD_ENTRY( CPUMCTX, ldtr.u32Limit),
271 SSMFIELD_ENTRY( CPUMCTX, ldtr.Attr),
272 SSMFIELD_ENTRY( CPUMCTX, tr.Sel),
273 SSMFIELD_ENTRY( CPUMCTX, tr.ValidSel),
274 SSMFIELD_ENTRY( CPUMCTX, tr.fFlags),
275 SSMFIELD_ENTRY( CPUMCTX, tr.u64Base),
276 SSMFIELD_ENTRY( CPUMCTX, tr.u32Limit),
277 SSMFIELD_ENTRY( CPUMCTX, tr.Attr),
278 SSMFIELD_ENTRY_VER( CPUMCTX, aXcr[0], CPUM_SAVED_STATE_VERSION_XSAVE),
279 SSMFIELD_ENTRY_VER( CPUMCTX, aXcr[1], CPUM_SAVED_STATE_VERSION_XSAVE),
280 SSMFIELD_ENTRY_VER( CPUMCTX, fXStateMask, CPUM_SAVED_STATE_VERSION_XSAVE),
281 SSMFIELD_ENTRY_TERM()
282};
283
284/** Saved state field descriptors for SVM nested hardware-virtualization
285 * Host State. */
286static const SSMFIELD g_aSvmHwvirtHostState[] =
287{
288 SSMFIELD_ENTRY( SVMHOSTSTATE, uEferMsr),
289 SSMFIELD_ENTRY( SVMHOSTSTATE, uCr0),
290 SSMFIELD_ENTRY( SVMHOSTSTATE, uCr4),
291 SSMFIELD_ENTRY( SVMHOSTSTATE, uCr3),
292 SSMFIELD_ENTRY( SVMHOSTSTATE, uRip),
293 SSMFIELD_ENTRY( SVMHOSTSTATE, uRsp),
294 SSMFIELD_ENTRY( SVMHOSTSTATE, uRax),
295 SSMFIELD_ENTRY( SVMHOSTSTATE, rflags),
296 SSMFIELD_ENTRY( SVMHOSTSTATE, es.Sel),
297 SSMFIELD_ENTRY( SVMHOSTSTATE, es.ValidSel),
298 SSMFIELD_ENTRY( SVMHOSTSTATE, es.fFlags),
299 SSMFIELD_ENTRY( SVMHOSTSTATE, es.u64Base),
300 SSMFIELD_ENTRY( SVMHOSTSTATE, es.u32Limit),
301 SSMFIELD_ENTRY( SVMHOSTSTATE, es.Attr),
302 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.Sel),
303 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.ValidSel),
304 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.fFlags),
305 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.u64Base),
306 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.u32Limit),
307 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.Attr),
308 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.Sel),
309 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.ValidSel),
310 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.fFlags),
311 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.u64Base),
312 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.u32Limit),
313 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.Attr),
314 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.Sel),
315 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.ValidSel),
316 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.fFlags),
317 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.u64Base),
318 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.u32Limit),
319 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.Attr),
320 SSMFIELD_ENTRY( SVMHOSTSTATE, gdtr.cbGdt),
321 SSMFIELD_ENTRY( SVMHOSTSTATE, gdtr.pGdt),
322 SSMFIELD_ENTRY( SVMHOSTSTATE, idtr.cbIdt),
323 SSMFIELD_ENTRY( SVMHOSTSTATE, idtr.pIdt),
324 SSMFIELD_ENTRY_IGNORE(SVMHOSTSTATE, abPadding),
325 SSMFIELD_ENTRY_TERM()
326};
327
328/** Saved state field descriptors for VMX nested hardware-virtualization
329 * VMCS. */
330static const SSMFIELD g_aVmxHwvirtVmcs[] =
331{
332 SSMFIELD_ENTRY( VMXVVMCS, u32VmcsRevId),
333 SSMFIELD_ENTRY( VMXVVMCS, enmVmxAbort),
334 SSMFIELD_ENTRY( VMXVVMCS, fVmcsState),
335 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au8Padding0),
336 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au32Reserved0),
337
338 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, u16Reserved0),
339
340 SSMFIELD_ENTRY( VMXVVMCS, u32RoVmInstrError),
341 SSMFIELD_ENTRY( VMXVVMCS, u32RoExitReason),
342 SSMFIELD_ENTRY( VMXVVMCS, u32RoExitIntInfo),
343 SSMFIELD_ENTRY( VMXVVMCS, u32RoExitIntErrCode),
344 SSMFIELD_ENTRY( VMXVVMCS, u32RoIdtVectoringInfo),
345 SSMFIELD_ENTRY( VMXVVMCS, u32RoIdtVectoringErrCode),
346 SSMFIELD_ENTRY( VMXVVMCS, u32RoExitInstrLen),
347 SSMFIELD_ENTRY( VMXVVMCS, u32RoExitInstrInfo),
348 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au32RoReserved2),
349
350 SSMFIELD_ENTRY( VMXVVMCS, u64RoGuestPhysAddr),
351 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved1),
352
353 SSMFIELD_ENTRY( VMXVVMCS, u64RoExitQual),
354 SSMFIELD_ENTRY( VMXVVMCS, u64RoIoRcx),
355 SSMFIELD_ENTRY( VMXVVMCS, u64RoIoRsi),
356 SSMFIELD_ENTRY( VMXVVMCS, u64RoIoRdi),
357 SSMFIELD_ENTRY( VMXVVMCS, u64RoIoRip),
358 SSMFIELD_ENTRY( VMXVVMCS, u64RoGuestLinearAddr),
359 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved5),
360
361 SSMFIELD_ENTRY( VMXVVMCS, u16Vpid),
362 SSMFIELD_ENTRY( VMXVVMCS, u16PostIntNotifyVector),
363 SSMFIELD_ENTRY( VMXVVMCS, u16EptpIndex),
364 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au16Reserved0),
365
366 SSMFIELD_ENTRY( VMXVVMCS, u32PinCtls),
367 SSMFIELD_ENTRY( VMXVVMCS, u32ProcCtls),
368 SSMFIELD_ENTRY( VMXVVMCS, u32XcptBitmap),
369 SSMFIELD_ENTRY( VMXVVMCS, u32XcptPFMask),
370 SSMFIELD_ENTRY( VMXVVMCS, u32XcptPFMatch),
371 SSMFIELD_ENTRY( VMXVVMCS, u32Cr3TargetCount),
372 SSMFIELD_ENTRY( VMXVVMCS, u32ExitCtls),
373 SSMFIELD_ENTRY( VMXVVMCS, u32ExitMsrStoreCount),
374 SSMFIELD_ENTRY( VMXVVMCS, u32ExitMsrLoadCount),
375 SSMFIELD_ENTRY( VMXVVMCS, u32EntryCtls),
376 SSMFIELD_ENTRY( VMXVVMCS, u32EntryMsrLoadCount),
377 SSMFIELD_ENTRY( VMXVVMCS, u32EntryIntInfo),
378 SSMFIELD_ENTRY( VMXVVMCS, u32EntryXcptErrCode),
379 SSMFIELD_ENTRY( VMXVVMCS, u32EntryInstrLen),
380 SSMFIELD_ENTRY( VMXVVMCS, u32TprThreshold),
381 SSMFIELD_ENTRY( VMXVVMCS, u32ProcCtls2),
382 SSMFIELD_ENTRY( VMXVVMCS, u32PleGap),
383 SSMFIELD_ENTRY( VMXVVMCS, u32PleWindow),
384 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au32Reserved1),
385
386 SSMFIELD_ENTRY( VMXVVMCS, u64AddrIoBitmapA),
387 SSMFIELD_ENTRY( VMXVVMCS, u64AddrIoBitmapB),
388 SSMFIELD_ENTRY( VMXVVMCS, u64AddrMsrBitmap),
389 SSMFIELD_ENTRY( VMXVVMCS, u64AddrExitMsrStore),
390 SSMFIELD_ENTRY( VMXVVMCS, u64AddrExitMsrLoad),
391 SSMFIELD_ENTRY( VMXVVMCS, u64AddrEntryMsrLoad),
392 SSMFIELD_ENTRY( VMXVVMCS, u64ExecVmcsPtr),
393 SSMFIELD_ENTRY( VMXVVMCS, u64AddrPml),
394 SSMFIELD_ENTRY( VMXVVMCS, u64TscOffset),
395 SSMFIELD_ENTRY( VMXVVMCS, u64AddrVirtApic),
396 SSMFIELD_ENTRY( VMXVVMCS, u64AddrApicAccess),
397 SSMFIELD_ENTRY( VMXVVMCS, u64AddrPostedIntDesc),
398 SSMFIELD_ENTRY( VMXVVMCS, u64VmFuncCtls),
399 SSMFIELD_ENTRY( VMXVVMCS, u64EptpPtr),
400 SSMFIELD_ENTRY( VMXVVMCS, u64EoiExitBitmap0),
401 SSMFIELD_ENTRY( VMXVVMCS, u64EoiExitBitmap1),
402 SSMFIELD_ENTRY( VMXVVMCS, u64EoiExitBitmap2),
403 SSMFIELD_ENTRY( VMXVVMCS, u64EoiExitBitmap3),
404 SSMFIELD_ENTRY( VMXVVMCS, u64AddrEptpList),
405 SSMFIELD_ENTRY( VMXVVMCS, u64AddrVmreadBitmap),
406 SSMFIELD_ENTRY( VMXVVMCS, u64AddrVmwriteBitmap),
407 SSMFIELD_ENTRY( VMXVVMCS, u64AddrXcptVeInfo),
408 SSMFIELD_ENTRY( VMXVVMCS, u64XssExitBitmap),
409 SSMFIELD_ENTRY( VMXVVMCS, u64EnclsExitBitmap),
410 SSMFIELD_ENTRY( VMXVVMCS, u64SppTablePtr),
411 SSMFIELD_ENTRY( VMXVVMCS, u64TscMultiplier),
412 SSMFIELD_ENTRY_VER( VMXVVMCS, u64ProcCtls3, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2),
413 SSMFIELD_ENTRY_VER( VMXVVMCS, u64EnclvExitBitmap, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2),
414 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved0),
415
416 SSMFIELD_ENTRY( VMXVVMCS, u64Cr0Mask),
417 SSMFIELD_ENTRY( VMXVVMCS, u64Cr4Mask),
418 SSMFIELD_ENTRY( VMXVVMCS, u64Cr0ReadShadow),
419 SSMFIELD_ENTRY( VMXVVMCS, u64Cr4ReadShadow),
420 SSMFIELD_ENTRY( VMXVVMCS, u64Cr3Target0),
421 SSMFIELD_ENTRY( VMXVVMCS, u64Cr3Target1),
422 SSMFIELD_ENTRY( VMXVVMCS, u64Cr3Target2),
423 SSMFIELD_ENTRY( VMXVVMCS, u64Cr3Target3),
424 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved4),
425
426 SSMFIELD_ENTRY( VMXVVMCS, HostEs),
427 SSMFIELD_ENTRY( VMXVVMCS, HostCs),
428 SSMFIELD_ENTRY( VMXVVMCS, HostSs),
429 SSMFIELD_ENTRY( VMXVVMCS, HostDs),
430 SSMFIELD_ENTRY( VMXVVMCS, HostFs),
431 SSMFIELD_ENTRY( VMXVVMCS, HostGs),
432 SSMFIELD_ENTRY( VMXVVMCS, HostTr),
433 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au16Reserved2),
434
435 SSMFIELD_ENTRY( VMXVVMCS, u32HostSysenterCs),
436 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au32Reserved4),
437
438 SSMFIELD_ENTRY( VMXVVMCS, u64HostPatMsr),
439 SSMFIELD_ENTRY( VMXVVMCS, u64HostEferMsr),
440 SSMFIELD_ENTRY( VMXVVMCS, u64HostPerfGlobalCtlMsr),
441 SSMFIELD_ENTRY_VER( VMXVVMCS, u64HostPkrsMsr, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2),
442 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved3),
443
444 SSMFIELD_ENTRY( VMXVVMCS, u64HostCr0),
445 SSMFIELD_ENTRY( VMXVVMCS, u64HostCr3),
446 SSMFIELD_ENTRY( VMXVVMCS, u64HostCr4),
447 SSMFIELD_ENTRY( VMXVVMCS, u64HostFsBase),
448 SSMFIELD_ENTRY( VMXVVMCS, u64HostGsBase),
449 SSMFIELD_ENTRY( VMXVVMCS, u64HostTrBase),
450 SSMFIELD_ENTRY( VMXVVMCS, u64HostGdtrBase),
451 SSMFIELD_ENTRY( VMXVVMCS, u64HostIdtrBase),
452 SSMFIELD_ENTRY( VMXVVMCS, u64HostSysenterEsp),
453 SSMFIELD_ENTRY( VMXVVMCS, u64HostSysenterEip),
454 SSMFIELD_ENTRY( VMXVVMCS, u64HostRsp),
455 SSMFIELD_ENTRY( VMXVVMCS, u64HostRip),
456 SSMFIELD_ENTRY_VER( VMXVVMCS, u64HostSCetMsr, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2),
457 SSMFIELD_ENTRY_VER( VMXVVMCS, u64HostSsp, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2),
458 SSMFIELD_ENTRY_VER( VMXVVMCS, u64HostIntrSspTableAddrMsr, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2),
459 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved7),
460
461 SSMFIELD_ENTRY( VMXVVMCS, GuestEs),
462 SSMFIELD_ENTRY( VMXVVMCS, GuestCs),
463 SSMFIELD_ENTRY( VMXVVMCS, GuestSs),
464 SSMFIELD_ENTRY( VMXVVMCS, GuestDs),
465 SSMFIELD_ENTRY( VMXVVMCS, GuestFs),
466 SSMFIELD_ENTRY( VMXVVMCS, GuestGs),
467 SSMFIELD_ENTRY( VMXVVMCS, GuestLdtr),
468 SSMFIELD_ENTRY( VMXVVMCS, GuestTr),
469 SSMFIELD_ENTRY( VMXVVMCS, u16GuestIntStatus),
470 SSMFIELD_ENTRY( VMXVVMCS, u16PmlIndex),
471 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au16Reserved1),
472
473 SSMFIELD_ENTRY( VMXVVMCS, u32GuestEsLimit),
474 SSMFIELD_ENTRY( VMXVVMCS, u32GuestCsLimit),
475 SSMFIELD_ENTRY( VMXVVMCS, u32GuestSsLimit),
476 SSMFIELD_ENTRY( VMXVVMCS, u32GuestDsLimit),
477 SSMFIELD_ENTRY( VMXVVMCS, u32GuestFsLimit),
478 SSMFIELD_ENTRY( VMXVVMCS, u32GuestGsLimit),
479 SSMFIELD_ENTRY( VMXVVMCS, u32GuestLdtrLimit),
480 SSMFIELD_ENTRY( VMXVVMCS, u32GuestTrLimit),
481 SSMFIELD_ENTRY( VMXVVMCS, u32GuestGdtrLimit),
482 SSMFIELD_ENTRY( VMXVVMCS, u32GuestIdtrLimit),
483 SSMFIELD_ENTRY( VMXVVMCS, u32GuestEsAttr),
484 SSMFIELD_ENTRY( VMXVVMCS, u32GuestCsAttr),
485 SSMFIELD_ENTRY( VMXVVMCS, u32GuestSsAttr),
486 SSMFIELD_ENTRY( VMXVVMCS, u32GuestDsAttr),
487 SSMFIELD_ENTRY( VMXVVMCS, u32GuestFsAttr),
488 SSMFIELD_ENTRY( VMXVVMCS, u32GuestGsAttr),
489 SSMFIELD_ENTRY( VMXVVMCS, u32GuestLdtrAttr),
490 SSMFIELD_ENTRY( VMXVVMCS, u32GuestTrAttr),
491 SSMFIELD_ENTRY( VMXVVMCS, u32GuestIntrState),
492 SSMFIELD_ENTRY( VMXVVMCS, u32GuestActivityState),
493 SSMFIELD_ENTRY( VMXVVMCS, u32GuestSmBase),
494 SSMFIELD_ENTRY( VMXVVMCS, u32GuestSysenterCS),
495 SSMFIELD_ENTRY( VMXVVMCS, u32PreemptTimer),
496 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au32Reserved3),
497
498 SSMFIELD_ENTRY( VMXVVMCS, u64VmcsLinkPtr),
499 SSMFIELD_ENTRY( VMXVVMCS, u64GuestDebugCtlMsr),
500 SSMFIELD_ENTRY( VMXVVMCS, u64GuestPatMsr),
501 SSMFIELD_ENTRY( VMXVVMCS, u64GuestEferMsr),
502 SSMFIELD_ENTRY( VMXVVMCS, u64GuestPerfGlobalCtlMsr),
503 SSMFIELD_ENTRY( VMXVVMCS, u64GuestPdpte0),
504 SSMFIELD_ENTRY( VMXVVMCS, u64GuestPdpte1),
505 SSMFIELD_ENTRY( VMXVVMCS, u64GuestPdpte2),
506 SSMFIELD_ENTRY( VMXVVMCS, u64GuestPdpte3),
507 SSMFIELD_ENTRY( VMXVVMCS, u64GuestBndcfgsMsr),
508 SSMFIELD_ENTRY( VMXVVMCS, u64GuestRtitCtlMsr),
509 SSMFIELD_ENTRY_VER( VMXVVMCS, u64GuestPkrsMsr, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2),
510 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved2),
511
512 SSMFIELD_ENTRY( VMXVVMCS, u64GuestCr0),
513 SSMFIELD_ENTRY( VMXVVMCS, u64GuestCr3),
514 SSMFIELD_ENTRY( VMXVVMCS, u64GuestCr4),
515 SSMFIELD_ENTRY( VMXVVMCS, u64GuestEsBase),
516 SSMFIELD_ENTRY( VMXVVMCS, u64GuestCsBase),
517 SSMFIELD_ENTRY( VMXVVMCS, u64GuestSsBase),
518 SSMFIELD_ENTRY( VMXVVMCS, u64GuestDsBase),
519 SSMFIELD_ENTRY( VMXVVMCS, u64GuestFsBase),
520 SSMFIELD_ENTRY( VMXVVMCS, u64GuestGsBase),
521 SSMFIELD_ENTRY( VMXVVMCS, u64GuestLdtrBase),
522 SSMFIELD_ENTRY( VMXVVMCS, u64GuestTrBase),
523 SSMFIELD_ENTRY( VMXVVMCS, u64GuestGdtrBase),
524 SSMFIELD_ENTRY( VMXVVMCS, u64GuestIdtrBase),
525 SSMFIELD_ENTRY( VMXVVMCS, u64GuestDr7),
526 SSMFIELD_ENTRY( VMXVVMCS, u64GuestRsp),
527 SSMFIELD_ENTRY( VMXVVMCS, u64GuestRip),
528 SSMFIELD_ENTRY( VMXVVMCS, u64GuestRFlags),
529 SSMFIELD_ENTRY( VMXVVMCS, u64GuestPendingDbgXcpts),
530 SSMFIELD_ENTRY( VMXVVMCS, u64GuestSysenterEsp),
531 SSMFIELD_ENTRY( VMXVVMCS, u64GuestSysenterEip),
532 SSMFIELD_ENTRY_VER( VMXVVMCS, u64GuestSCetMsr, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2),
533 SSMFIELD_ENTRY_VER( VMXVVMCS, u64GuestSsp, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2),
534 SSMFIELD_ENTRY_VER( VMXVVMCS, u64GuestIntrSspTableAddrMsr, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2),
535 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved6),
536
537 SSMFIELD_ENTRY_TERM()
538};
539
540/** Saved state field descriptors for CPUMCTX. */
541static const SSMFIELD g_aCpumX87Fields[] =
542{
543 SSMFIELD_ENTRY( X86FXSTATE, FCW),
544 SSMFIELD_ENTRY( X86FXSTATE, FSW),
545 SSMFIELD_ENTRY( X86FXSTATE, FTW),
546 SSMFIELD_ENTRY( X86FXSTATE, FOP),
547 SSMFIELD_ENTRY( X86FXSTATE, FPUIP),
548 SSMFIELD_ENTRY( X86FXSTATE, CS),
549 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd1),
550 SSMFIELD_ENTRY( X86FXSTATE, FPUDP),
551 SSMFIELD_ENTRY( X86FXSTATE, DS),
552 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd2),
553 SSMFIELD_ENTRY( X86FXSTATE, MXCSR),
554 SSMFIELD_ENTRY( X86FXSTATE, MXCSR_MASK),
555 SSMFIELD_ENTRY( X86FXSTATE, aRegs[0]),
556 SSMFIELD_ENTRY( X86FXSTATE, aRegs[1]),
557 SSMFIELD_ENTRY( X86FXSTATE, aRegs[2]),
558 SSMFIELD_ENTRY( X86FXSTATE, aRegs[3]),
559 SSMFIELD_ENTRY( X86FXSTATE, aRegs[4]),
560 SSMFIELD_ENTRY( X86FXSTATE, aRegs[5]),
561 SSMFIELD_ENTRY( X86FXSTATE, aRegs[6]),
562 SSMFIELD_ENTRY( X86FXSTATE, aRegs[7]),
563 SSMFIELD_ENTRY( X86FXSTATE, aXMM[0]),
564 SSMFIELD_ENTRY( X86FXSTATE, aXMM[1]),
565 SSMFIELD_ENTRY( X86FXSTATE, aXMM[2]),
566 SSMFIELD_ENTRY( X86FXSTATE, aXMM[3]),
567 SSMFIELD_ENTRY( X86FXSTATE, aXMM[4]),
568 SSMFIELD_ENTRY( X86FXSTATE, aXMM[5]),
569 SSMFIELD_ENTRY( X86FXSTATE, aXMM[6]),
570 SSMFIELD_ENTRY( X86FXSTATE, aXMM[7]),
571 SSMFIELD_ENTRY( X86FXSTATE, aXMM[8]),
572 SSMFIELD_ENTRY( X86FXSTATE, aXMM[9]),
573 SSMFIELD_ENTRY( X86FXSTATE, aXMM[10]),
574 SSMFIELD_ENTRY( X86FXSTATE, aXMM[11]),
575 SSMFIELD_ENTRY( X86FXSTATE, aXMM[12]),
576 SSMFIELD_ENTRY( X86FXSTATE, aXMM[13]),
577 SSMFIELD_ENTRY( X86FXSTATE, aXMM[14]),
578 SSMFIELD_ENTRY( X86FXSTATE, aXMM[15]),
579 SSMFIELD_ENTRY_VER( X86FXSTATE, au32RsrvdForSoftware[0], CPUM_SAVED_STATE_VERSION_XSAVE), /* 32-bit/64-bit hack */
580 SSMFIELD_ENTRY_TERM()
581};
582
583/** Saved state field descriptors for X86XSAVEHDR. */
584static const SSMFIELD g_aCpumXSaveHdrFields[] =
585{
586 SSMFIELD_ENTRY( X86XSAVEHDR, bmXState),
587 SSMFIELD_ENTRY_TERM()
588};
589
590/** Saved state field descriptors for X86XSAVEYMMHI. */
591static const SSMFIELD g_aCpumYmmHiFields[] =
592{
593 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[0]),
594 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[1]),
595 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[2]),
596 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[3]),
597 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[4]),
598 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[5]),
599 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[6]),
600 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[7]),
601 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[8]),
602 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[9]),
603 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[10]),
604 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[11]),
605 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[12]),
606 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[13]),
607 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[14]),
608 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[15]),
609 SSMFIELD_ENTRY_TERM()
610};
611
612/** Saved state field descriptors for X86XSAVEBNDREGS. */
613static const SSMFIELD g_aCpumBndRegsFields[] =
614{
615 SSMFIELD_ENTRY( X86XSAVEBNDREGS, aRegs[0]),
616 SSMFIELD_ENTRY( X86XSAVEBNDREGS, aRegs[1]),
617 SSMFIELD_ENTRY( X86XSAVEBNDREGS, aRegs[2]),
618 SSMFIELD_ENTRY( X86XSAVEBNDREGS, aRegs[3]),
619 SSMFIELD_ENTRY_TERM()
620};
621
622/** Saved state field descriptors for X86XSAVEBNDCFG. */
623static const SSMFIELD g_aCpumBndCfgFields[] =
624{
625 SSMFIELD_ENTRY( X86XSAVEBNDCFG, fConfig),
626 SSMFIELD_ENTRY( X86XSAVEBNDCFG, fStatus),
627 SSMFIELD_ENTRY_TERM()
628};
629
630#if 0 /** @todo */
631/** Saved state field descriptors for X86XSAVEOPMASK. */
632static const SSMFIELD g_aCpumOpmaskFields[] =
633{
634 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[0]),
635 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[1]),
636 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[2]),
637 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[3]),
638 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[4]),
639 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[5]),
640 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[6]),
641 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[7]),
642 SSMFIELD_ENTRY_TERM()
643};
644#endif
645
646/** Saved state field descriptors for X86XSAVEZMMHI256. */
647static const SSMFIELD g_aCpumZmmHi256Fields[] =
648{
649 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[0]),
650 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[1]),
651 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[2]),
652 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[3]),
653 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[4]),
654 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[5]),
655 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[6]),
656 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[7]),
657 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[8]),
658 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[9]),
659 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[10]),
660 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[11]),
661 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[12]),
662 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[13]),
663 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[14]),
664 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[15]),
665 SSMFIELD_ENTRY_TERM()
666};
667
668/** Saved state field descriptors for X86XSAVEZMM16HI. */
669static const SSMFIELD g_aCpumZmm16HiFields[] =
670{
671 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[0]),
672 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[1]),
673 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[2]),
674 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[3]),
675 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[4]),
676 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[5]),
677 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[6]),
678 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[7]),
679 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[8]),
680 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[9]),
681 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[10]),
682 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[11]),
683 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[12]),
684 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[13]),
685 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[14]),
686 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[15]),
687 SSMFIELD_ENTRY_TERM()
688};
689
690
691
692/** Saved state field descriptors for CPUMCTX in V4.1 before the hidden selector
693 * registeres changed. */
694static const SSMFIELD g_aCpumX87FieldsMem[] =
695{
696 SSMFIELD_ENTRY( X86FXSTATE, FCW),
697 SSMFIELD_ENTRY( X86FXSTATE, FSW),
698 SSMFIELD_ENTRY( X86FXSTATE, FTW),
699 SSMFIELD_ENTRY( X86FXSTATE, FOP),
700 SSMFIELD_ENTRY( X86FXSTATE, FPUIP),
701 SSMFIELD_ENTRY( X86FXSTATE, CS),
702 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd1),
703 SSMFIELD_ENTRY( X86FXSTATE, FPUDP),
704 SSMFIELD_ENTRY( X86FXSTATE, DS),
705 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd2),
706 SSMFIELD_ENTRY( X86FXSTATE, MXCSR),
707 SSMFIELD_ENTRY( X86FXSTATE, MXCSR_MASK),
708 SSMFIELD_ENTRY( X86FXSTATE, aRegs[0]),
709 SSMFIELD_ENTRY( X86FXSTATE, aRegs[1]),
710 SSMFIELD_ENTRY( X86FXSTATE, aRegs[2]),
711 SSMFIELD_ENTRY( X86FXSTATE, aRegs[3]),
712 SSMFIELD_ENTRY( X86FXSTATE, aRegs[4]),
713 SSMFIELD_ENTRY( X86FXSTATE, aRegs[5]),
714 SSMFIELD_ENTRY( X86FXSTATE, aRegs[6]),
715 SSMFIELD_ENTRY( X86FXSTATE, aRegs[7]),
716 SSMFIELD_ENTRY( X86FXSTATE, aXMM[0]),
717 SSMFIELD_ENTRY( X86FXSTATE, aXMM[1]),
718 SSMFIELD_ENTRY( X86FXSTATE, aXMM[2]),
719 SSMFIELD_ENTRY( X86FXSTATE, aXMM[3]),
720 SSMFIELD_ENTRY( X86FXSTATE, aXMM[4]),
721 SSMFIELD_ENTRY( X86FXSTATE, aXMM[5]),
722 SSMFIELD_ENTRY( X86FXSTATE, aXMM[6]),
723 SSMFIELD_ENTRY( X86FXSTATE, aXMM[7]),
724 SSMFIELD_ENTRY( X86FXSTATE, aXMM[8]),
725 SSMFIELD_ENTRY( X86FXSTATE, aXMM[9]),
726 SSMFIELD_ENTRY( X86FXSTATE, aXMM[10]),
727 SSMFIELD_ENTRY( X86FXSTATE, aXMM[11]),
728 SSMFIELD_ENTRY( X86FXSTATE, aXMM[12]),
729 SSMFIELD_ENTRY( X86FXSTATE, aXMM[13]),
730 SSMFIELD_ENTRY( X86FXSTATE, aXMM[14]),
731 SSMFIELD_ENTRY( X86FXSTATE, aXMM[15]),
732 SSMFIELD_ENTRY_IGNORE( X86FXSTATE, au32RsrvdRest),
733 SSMFIELD_ENTRY_IGNORE( X86FXSTATE, au32RsrvdForSoftware),
734};
735
736/** Saved state field descriptors for CPUMCTX in V4.1 before the hidden selector
737 * registeres changed. */
738static const SSMFIELD g_aCpumCtxFieldsMem[] =
739{
740 SSMFIELD_ENTRY( CPUMCTX, rdi),
741 SSMFIELD_ENTRY( CPUMCTX, rsi),
742 SSMFIELD_ENTRY( CPUMCTX, rbp),
743 SSMFIELD_ENTRY( CPUMCTX, rax),
744 SSMFIELD_ENTRY( CPUMCTX, rbx),
745 SSMFIELD_ENTRY( CPUMCTX, rdx),
746 SSMFIELD_ENTRY( CPUMCTX, rcx),
747 SSMFIELD_ENTRY( CPUMCTX, rsp),
748 SSMFIELD_ENTRY_OLD( lss_esp, sizeof(uint32_t)),
749 SSMFIELD_ENTRY( CPUMCTX, ss.Sel),
750 SSMFIELD_ENTRY_OLD( ssPadding, sizeof(uint16_t)),
751 SSMFIELD_ENTRY( CPUMCTX, gs.Sel),
752 SSMFIELD_ENTRY_OLD( gsPadding, sizeof(uint16_t)),
753 SSMFIELD_ENTRY( CPUMCTX, fs.Sel),
754 SSMFIELD_ENTRY_OLD( fsPadding, sizeof(uint16_t)),
755 SSMFIELD_ENTRY( CPUMCTX, es.Sel),
756 SSMFIELD_ENTRY_OLD( esPadding, sizeof(uint16_t)),
757 SSMFIELD_ENTRY( CPUMCTX, ds.Sel),
758 SSMFIELD_ENTRY_OLD( dsPadding, sizeof(uint16_t)),
759 SSMFIELD_ENTRY( CPUMCTX, cs.Sel),
760 SSMFIELD_ENTRY_OLD( csPadding, sizeof(uint16_t)*3),
761 SSMFIELD_ENTRY( CPUMCTX, rflags),
762 SSMFIELD_ENTRY( CPUMCTX, rip),
763 SSMFIELD_ENTRY( CPUMCTX, r8),
764 SSMFIELD_ENTRY( CPUMCTX, r9),
765 SSMFIELD_ENTRY( CPUMCTX, r10),
766 SSMFIELD_ENTRY( CPUMCTX, r11),
767 SSMFIELD_ENTRY( CPUMCTX, r12),
768 SSMFIELD_ENTRY( CPUMCTX, r13),
769 SSMFIELD_ENTRY( CPUMCTX, r14),
770 SSMFIELD_ENTRY( CPUMCTX, r15),
771 SSMFIELD_ENTRY( CPUMCTX, es.u64Base),
772 SSMFIELD_ENTRY( CPUMCTX, es.u32Limit),
773 SSMFIELD_ENTRY( CPUMCTX, es.Attr),
774 SSMFIELD_ENTRY( CPUMCTX, cs.u64Base),
775 SSMFIELD_ENTRY( CPUMCTX, cs.u32Limit),
776 SSMFIELD_ENTRY( CPUMCTX, cs.Attr),
777 SSMFIELD_ENTRY( CPUMCTX, ss.u64Base),
778 SSMFIELD_ENTRY( CPUMCTX, ss.u32Limit),
779 SSMFIELD_ENTRY( CPUMCTX, ss.Attr),
780 SSMFIELD_ENTRY( CPUMCTX, ds.u64Base),
781 SSMFIELD_ENTRY( CPUMCTX, ds.u32Limit),
782 SSMFIELD_ENTRY( CPUMCTX, ds.Attr),
783 SSMFIELD_ENTRY( CPUMCTX, fs.u64Base),
784 SSMFIELD_ENTRY( CPUMCTX, fs.u32Limit),
785 SSMFIELD_ENTRY( CPUMCTX, fs.Attr),
786 SSMFIELD_ENTRY( CPUMCTX, gs.u64Base),
787 SSMFIELD_ENTRY( CPUMCTX, gs.u32Limit),
788 SSMFIELD_ENTRY( CPUMCTX, gs.Attr),
789 SSMFIELD_ENTRY( CPUMCTX, cr0),
790 SSMFIELD_ENTRY( CPUMCTX, cr2),
791 SSMFIELD_ENTRY( CPUMCTX, cr3),
792 SSMFIELD_ENTRY( CPUMCTX, cr4),
793 SSMFIELD_ENTRY( CPUMCTX, dr[0]),
794 SSMFIELD_ENTRY( CPUMCTX, dr[1]),
795 SSMFIELD_ENTRY( CPUMCTX, dr[2]),
796 SSMFIELD_ENTRY( CPUMCTX, dr[3]),
797 SSMFIELD_ENTRY_OLD( dr[4], sizeof(uint64_t)),
798 SSMFIELD_ENTRY_OLD( dr[5], sizeof(uint64_t)),
799 SSMFIELD_ENTRY( CPUMCTX, dr[6]),
800 SSMFIELD_ENTRY( CPUMCTX, dr[7]),
801 SSMFIELD_ENTRY( CPUMCTX, gdtr.cbGdt),
802 SSMFIELD_ENTRY( CPUMCTX, gdtr.pGdt),
803 SSMFIELD_ENTRY_OLD( gdtrPadding, sizeof(uint16_t)),
804 SSMFIELD_ENTRY( CPUMCTX, idtr.cbIdt),
805 SSMFIELD_ENTRY( CPUMCTX, idtr.pIdt),
806 SSMFIELD_ENTRY_OLD( idtrPadding, sizeof(uint16_t)),
807 SSMFIELD_ENTRY( CPUMCTX, ldtr.Sel),
808 SSMFIELD_ENTRY_OLD( ldtrPadding, sizeof(uint16_t)),
809 SSMFIELD_ENTRY( CPUMCTX, tr.Sel),
810 SSMFIELD_ENTRY_OLD( trPadding, sizeof(uint16_t)),
811 SSMFIELD_ENTRY( CPUMCTX, SysEnter.cs),
812 SSMFIELD_ENTRY( CPUMCTX, SysEnter.eip),
813 SSMFIELD_ENTRY( CPUMCTX, SysEnter.esp),
814 SSMFIELD_ENTRY( CPUMCTX, msrEFER),
815 SSMFIELD_ENTRY( CPUMCTX, msrSTAR),
816 SSMFIELD_ENTRY( CPUMCTX, msrPAT),
817 SSMFIELD_ENTRY( CPUMCTX, msrLSTAR),
818 SSMFIELD_ENTRY( CPUMCTX, msrCSTAR),
819 SSMFIELD_ENTRY( CPUMCTX, msrSFMASK),
820 SSMFIELD_ENTRY( CPUMCTX, msrKERNELGSBASE),
821 SSMFIELD_ENTRY( CPUMCTX, ldtr.u64Base),
822 SSMFIELD_ENTRY( CPUMCTX, ldtr.u32Limit),
823 SSMFIELD_ENTRY( CPUMCTX, ldtr.Attr),
824 SSMFIELD_ENTRY( CPUMCTX, tr.u64Base),
825 SSMFIELD_ENTRY( CPUMCTX, tr.u32Limit),
826 SSMFIELD_ENTRY( CPUMCTX, tr.Attr),
827 SSMFIELD_ENTRY_TERM()
828};
829
830/** Saved state field descriptors for CPUMCTX_VER1_6. */
831static const SSMFIELD g_aCpumX87FieldsV16[] =
832{
833 SSMFIELD_ENTRY( X86FXSTATE, FCW),
834 SSMFIELD_ENTRY( X86FXSTATE, FSW),
835 SSMFIELD_ENTRY( X86FXSTATE, FTW),
836 SSMFIELD_ENTRY( X86FXSTATE, FOP),
837 SSMFIELD_ENTRY( X86FXSTATE, FPUIP),
838 SSMFIELD_ENTRY( X86FXSTATE, CS),
839 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd1),
840 SSMFIELD_ENTRY( X86FXSTATE, FPUDP),
841 SSMFIELD_ENTRY( X86FXSTATE, DS),
842 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd2),
843 SSMFIELD_ENTRY( X86FXSTATE, MXCSR),
844 SSMFIELD_ENTRY( X86FXSTATE, MXCSR_MASK),
845 SSMFIELD_ENTRY( X86FXSTATE, aRegs[0]),
846 SSMFIELD_ENTRY( X86FXSTATE, aRegs[1]),
847 SSMFIELD_ENTRY( X86FXSTATE, aRegs[2]),
848 SSMFIELD_ENTRY( X86FXSTATE, aRegs[3]),
849 SSMFIELD_ENTRY( X86FXSTATE, aRegs[4]),
850 SSMFIELD_ENTRY( X86FXSTATE, aRegs[5]),
851 SSMFIELD_ENTRY( X86FXSTATE, aRegs[6]),
852 SSMFIELD_ENTRY( X86FXSTATE, aRegs[7]),
853 SSMFIELD_ENTRY( X86FXSTATE, aXMM[0]),
854 SSMFIELD_ENTRY( X86FXSTATE, aXMM[1]),
855 SSMFIELD_ENTRY( X86FXSTATE, aXMM[2]),
856 SSMFIELD_ENTRY( X86FXSTATE, aXMM[3]),
857 SSMFIELD_ENTRY( X86FXSTATE, aXMM[4]),
858 SSMFIELD_ENTRY( X86FXSTATE, aXMM[5]),
859 SSMFIELD_ENTRY( X86FXSTATE, aXMM[6]),
860 SSMFIELD_ENTRY( X86FXSTATE, aXMM[7]),
861 SSMFIELD_ENTRY( X86FXSTATE, aXMM[8]),
862 SSMFIELD_ENTRY( X86FXSTATE, aXMM[9]),
863 SSMFIELD_ENTRY( X86FXSTATE, aXMM[10]),
864 SSMFIELD_ENTRY( X86FXSTATE, aXMM[11]),
865 SSMFIELD_ENTRY( X86FXSTATE, aXMM[12]),
866 SSMFIELD_ENTRY( X86FXSTATE, aXMM[13]),
867 SSMFIELD_ENTRY( X86FXSTATE, aXMM[14]),
868 SSMFIELD_ENTRY( X86FXSTATE, aXMM[15]),
869 SSMFIELD_ENTRY_IGNORE( X86FXSTATE, au32RsrvdRest),
870 SSMFIELD_ENTRY_IGNORE( X86FXSTATE, au32RsrvdForSoftware),
871 SSMFIELD_ENTRY_TERM()
872};
873
874/** Saved state field descriptors for CPUMCTX_VER1_6. */
875static const SSMFIELD g_aCpumCtxFieldsV16[] =
876{
877 SSMFIELD_ENTRY( CPUMCTX, rdi),
878 SSMFIELD_ENTRY( CPUMCTX, rsi),
879 SSMFIELD_ENTRY( CPUMCTX, rbp),
880 SSMFIELD_ENTRY( CPUMCTX, rax),
881 SSMFIELD_ENTRY( CPUMCTX, rbx),
882 SSMFIELD_ENTRY( CPUMCTX, rdx),
883 SSMFIELD_ENTRY( CPUMCTX, rcx),
884 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, rsp),
885 SSMFIELD_ENTRY( CPUMCTX, ss.Sel),
886 SSMFIELD_ENTRY_OLD( ssPadding, sizeof(uint16_t)),
887 SSMFIELD_ENTRY_OLD( CPUMCTX, sizeof(uint64_t) /*rsp_notused*/),
888 SSMFIELD_ENTRY( CPUMCTX, gs.Sel),
889 SSMFIELD_ENTRY_OLD( gsPadding, sizeof(uint16_t)),
890 SSMFIELD_ENTRY( CPUMCTX, fs.Sel),
891 SSMFIELD_ENTRY_OLD( fsPadding, sizeof(uint16_t)),
892 SSMFIELD_ENTRY( CPUMCTX, es.Sel),
893 SSMFIELD_ENTRY_OLD( esPadding, sizeof(uint16_t)),
894 SSMFIELD_ENTRY( CPUMCTX, ds.Sel),
895 SSMFIELD_ENTRY_OLD( dsPadding, sizeof(uint16_t)),
896 SSMFIELD_ENTRY( CPUMCTX, cs.Sel),
897 SSMFIELD_ENTRY_OLD( csPadding, sizeof(uint16_t)*3),
898 SSMFIELD_ENTRY( CPUMCTX, rflags),
899 SSMFIELD_ENTRY( CPUMCTX, rip),
900 SSMFIELD_ENTRY( CPUMCTX, r8),
901 SSMFIELD_ENTRY( CPUMCTX, r9),
902 SSMFIELD_ENTRY( CPUMCTX, r10),
903 SSMFIELD_ENTRY( CPUMCTX, r11),
904 SSMFIELD_ENTRY( CPUMCTX, r12),
905 SSMFIELD_ENTRY( CPUMCTX, r13),
906 SSMFIELD_ENTRY( CPUMCTX, r14),
907 SSMFIELD_ENTRY( CPUMCTX, r15),
908 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, es.u64Base),
909 SSMFIELD_ENTRY( CPUMCTX, es.u32Limit),
910 SSMFIELD_ENTRY( CPUMCTX, es.Attr),
911 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, cs.u64Base),
912 SSMFIELD_ENTRY( CPUMCTX, cs.u32Limit),
913 SSMFIELD_ENTRY( CPUMCTX, cs.Attr),
914 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, ss.u64Base),
915 SSMFIELD_ENTRY( CPUMCTX, ss.u32Limit),
916 SSMFIELD_ENTRY( CPUMCTX, ss.Attr),
917 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, ds.u64Base),
918 SSMFIELD_ENTRY( CPUMCTX, ds.u32Limit),
919 SSMFIELD_ENTRY( CPUMCTX, ds.Attr),
920 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, fs.u64Base),
921 SSMFIELD_ENTRY( CPUMCTX, fs.u32Limit),
922 SSMFIELD_ENTRY( CPUMCTX, fs.Attr),
923 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, gs.u64Base),
924 SSMFIELD_ENTRY( CPUMCTX, gs.u32Limit),
925 SSMFIELD_ENTRY( CPUMCTX, gs.Attr),
926 SSMFIELD_ENTRY( CPUMCTX, cr0),
927 SSMFIELD_ENTRY( CPUMCTX, cr2),
928 SSMFIELD_ENTRY( CPUMCTX, cr3),
929 SSMFIELD_ENTRY( CPUMCTX, cr4),
930 SSMFIELD_ENTRY_OLD( cr8, sizeof(uint64_t)),
931 SSMFIELD_ENTRY( CPUMCTX, dr[0]),
932 SSMFIELD_ENTRY( CPUMCTX, dr[1]),
933 SSMFIELD_ENTRY( CPUMCTX, dr[2]),
934 SSMFIELD_ENTRY( CPUMCTX, dr[3]),
935 SSMFIELD_ENTRY_OLD( dr[4], sizeof(uint64_t)),
936 SSMFIELD_ENTRY_OLD( dr[5], sizeof(uint64_t)),
937 SSMFIELD_ENTRY( CPUMCTX, dr[6]),
938 SSMFIELD_ENTRY( CPUMCTX, dr[7]),
939 SSMFIELD_ENTRY( CPUMCTX, gdtr.cbGdt),
940 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, gdtr.pGdt),
941 SSMFIELD_ENTRY_OLD( gdtrPadding, sizeof(uint16_t)),
942 SSMFIELD_ENTRY_OLD( gdtrPadding64, sizeof(uint64_t)),
943 SSMFIELD_ENTRY( CPUMCTX, idtr.cbIdt),
944 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, idtr.pIdt),
945 SSMFIELD_ENTRY_OLD( idtrPadding, sizeof(uint16_t)),
946 SSMFIELD_ENTRY_OLD( idtrPadding64, sizeof(uint64_t)),
947 SSMFIELD_ENTRY( CPUMCTX, ldtr.Sel),
948 SSMFIELD_ENTRY_OLD( ldtrPadding, sizeof(uint16_t)),
949 SSMFIELD_ENTRY( CPUMCTX, tr.Sel),
950 SSMFIELD_ENTRY_OLD( trPadding, sizeof(uint16_t)),
951 SSMFIELD_ENTRY( CPUMCTX, SysEnter.cs),
952 SSMFIELD_ENTRY( CPUMCTX, SysEnter.eip),
953 SSMFIELD_ENTRY( CPUMCTX, SysEnter.esp),
954 SSMFIELD_ENTRY( CPUMCTX, msrEFER),
955 SSMFIELD_ENTRY( CPUMCTX, msrSTAR),
956 SSMFIELD_ENTRY( CPUMCTX, msrPAT),
957 SSMFIELD_ENTRY( CPUMCTX, msrLSTAR),
958 SSMFIELD_ENTRY( CPUMCTX, msrCSTAR),
959 SSMFIELD_ENTRY( CPUMCTX, msrSFMASK),
960 SSMFIELD_ENTRY_OLD( msrFSBASE, sizeof(uint64_t)),
961 SSMFIELD_ENTRY_OLD( msrGSBASE, sizeof(uint64_t)),
962 SSMFIELD_ENTRY( CPUMCTX, msrKERNELGSBASE),
963 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, ldtr.u64Base),
964 SSMFIELD_ENTRY( CPUMCTX, ldtr.u32Limit),
965 SSMFIELD_ENTRY( CPUMCTX, ldtr.Attr),
966 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, tr.u64Base),
967 SSMFIELD_ENTRY( CPUMCTX, tr.u32Limit),
968 SSMFIELD_ENTRY( CPUMCTX, tr.Attr),
969 SSMFIELD_ENTRY_OLD( padding, sizeof(uint32_t)*2),
970 SSMFIELD_ENTRY_TERM()
971};
972
973
974/**
975 * Checks for partial/leaky FXSAVE/FXRSTOR handling on AMD CPUs.
976 *
977 * AMD K7, K8 and newer AMD CPUs do not save/restore the x87 error pointers
978 * (last instruction pointer, last data pointer, last opcode) except when the ES
979 * bit (Exception Summary) in x87 FSW (FPU Status Word) is set. Thus if we don't
980 * clear these registers there is potential, local FPU leakage from a process
981 * using the FPU to another.
982 *
983 * See AMD Instruction Reference for FXSAVE, FXRSTOR.
984 *
985 * @param pVM The cross context VM structure.
986 */
987static void cpumR3CheckLeakyFpu(PVM pVM)
988{
989 uint32_t u32CpuVersion = ASMCpuId_EAX(1);
990 uint32_t const u32Family = u32CpuVersion >> 8;
991 if ( u32Family >= 6 /* K7 and higher */
992 && (ASMIsAmdCpu() || ASMIsHygonCpu()) )
993 {
994 uint32_t cExt = ASMCpuId_EAX(0x80000000);
995 if (ASMIsValidExtRange(cExt))
996 {
997 uint32_t fExtFeaturesEDX = ASMCpuId_EDX(0x80000001);
998 if (fExtFeaturesEDX & X86_CPUID_AMD_FEATURE_EDX_FFXSR)
999 {
1000 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1001 {
1002 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
1003 pVCpu->cpum.s.fUseFlags |= CPUM_USE_FFXSR_LEAKY;
1004 }
1005 Log(("CPUM: Host CPU has leaky fxsave/fxrstor behaviour\n"));
1006 }
1007 }
1008 }
1009}
1010
1011
1012/**
1013 * Initialize SVM hardware virtualization state (used to allocate it).
1014 *
1015 * @param pVM The cross context VM structure.
1016 */
1017static void cpumR3InitSvmHwVirtState(PVM pVM)
1018{
1019 Assert(pVM->cpum.s.GuestFeatures.fSvm);
1020
1021 LogRel(("CPUM: Allocating %u pages for the nested-guest SVM MSR and IO permission bitmaps\n",
1022 pVM->cCpus * (SVM_MSRPM_PAGES + SVM_IOPM_PAGES)));
1023 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1024 {
1025 PVMCPU pVCpu = pVM->apCpusR3[i];
1026 pVCpu->cpum.s.Guest.hwvirt.enmHwvirt = CPUMHWVIRT_SVM;
1027
1028 AssertCompile(SVM_VMCB_PAGES * X86_PAGE_SIZE == sizeof(pVCpu->cpum.s.Guest.hwvirt.svm.Vmcb));
1029 AssertCompile(SVM_MSRPM_PAGES * X86_PAGE_SIZE == sizeof(pVCpu->cpum.s.Guest.hwvirt.svm.abMsrBitmap));
1030 AssertCompile(SVM_IOPM_PAGES * X86_PAGE_SIZE == sizeof(pVCpu->cpum.s.Guest.hwvirt.svm.abIoBitmap));
1031 }
1032}
1033
1034
1035/**
1036 * Resets per-VCPU SVM hardware virtualization state.
1037 *
1038 * @param pVCpu The cross context virtual CPU structure.
1039 */
1040DECLINLINE(void) cpumR3ResetSvmHwVirtState(PVMCPU pVCpu)
1041{
1042 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
1043 Assert(pCtx->hwvirt.enmHwvirt == CPUMHWVIRT_SVM);
1044
1045 RT_ZERO(pCtx->hwvirt.svm.Vmcb);
1046 pCtx->hwvirt.svm.uMsrHSavePa = 0;
1047 pCtx->hwvirt.svm.uPrevPauseTick = 0;
1048}
1049
1050
1051/**
1052 * Frees memory allocated for the VMX hardware virtualization state.
1053 *
1054 * @param pVM The cross context VM structure.
1055 */
1056static void cpumR3FreeVmxHwVirtState(PVM pVM)
1057{
1058 Assert(pVM->cpum.s.GuestFeatures.fVmx);
1059 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1060 {
1061 PVMCPU pVCpu = pVM->apCpusR3[i];
1062 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
1063
1064 if (pCtx->hwvirt.vmx.pShadowVmcsR3)
1065 {
1066 SUPR3ContFree(pCtx->hwvirt.vmx.pShadowVmcsR3, VMX_V_VMCS_PAGES);
1067 pCtx->hwvirt.vmx.pShadowVmcsR3 = NULL;
1068 }
1069 if (pCtx->hwvirt.vmx.pvVirtApicPageR3)
1070 {
1071 SUPR3ContFree(pCtx->hwvirt.vmx.pvVirtApicPageR3, VMX_V_VIRT_APIC_PAGES);
1072 pCtx->hwvirt.vmx.pvVirtApicPageR3 = NULL;
1073 }
1074 if (pCtx->hwvirt.vmx.pvVmreadBitmapR3)
1075 {
1076 SUPR3ContFree(pCtx->hwvirt.vmx.pvVmreadBitmapR3, VMX_V_VMREAD_VMWRITE_BITMAP_PAGES);
1077 pCtx->hwvirt.vmx.pvVmreadBitmapR3 = NULL;
1078 }
1079 if (pCtx->hwvirt.vmx.pvVmwriteBitmapR3)
1080 {
1081 SUPR3ContFree(pCtx->hwvirt.vmx.pvVmwriteBitmapR3, VMX_V_VMREAD_VMWRITE_BITMAP_PAGES);
1082 pCtx->hwvirt.vmx.pvVmwriteBitmapR3 = NULL;
1083 }
1084 if (pCtx->hwvirt.vmx.pEntryMsrLoadAreaR3)
1085 {
1086 SUPR3ContFree(pCtx->hwvirt.vmx.pEntryMsrLoadAreaR3, VMX_V_AUTOMSR_AREA_PAGES);
1087 pCtx->hwvirt.vmx.pEntryMsrLoadAreaR3 = NULL;
1088 }
1089 if (pCtx->hwvirt.vmx.pExitMsrStoreAreaR3)
1090 {
1091 SUPR3ContFree(pCtx->hwvirt.vmx.pExitMsrStoreAreaR3, VMX_V_AUTOMSR_AREA_PAGES);
1092 pCtx->hwvirt.vmx.pExitMsrStoreAreaR3 = NULL;
1093 }
1094 if (pCtx->hwvirt.vmx.pExitMsrLoadAreaR3)
1095 {
1096 SUPR3ContFree(pCtx->hwvirt.vmx.pExitMsrLoadAreaR3, VMX_V_AUTOMSR_AREA_PAGES);
1097 pCtx->hwvirt.vmx.pExitMsrLoadAreaR3 = NULL;
1098 }
1099 if (pCtx->hwvirt.vmx.pvMsrBitmapR3)
1100 {
1101 SUPR3ContFree(pCtx->hwvirt.vmx.pvMsrBitmapR3, VMX_V_MSR_BITMAP_PAGES);
1102 pCtx->hwvirt.vmx.pvMsrBitmapR3 = NULL;
1103 }
1104 if (pCtx->hwvirt.vmx.pvIoBitmapR3)
1105 {
1106 SUPR3ContFree(pCtx->hwvirt.vmx.pvIoBitmapR3, VMX_V_IO_BITMAP_A_PAGES + VMX_V_IO_BITMAP_B_PAGES);
1107 pCtx->hwvirt.vmx.pvIoBitmapR3 = NULL;
1108 }
1109 }
1110}
1111
1112
1113/**
1114 * Allocates memory for the VMX hardware virtualization state.
1115 *
1116 * @returns VBox status code.
1117 * @param pVM The cross context VM structure.
1118 */
1119static int cpumR3AllocVmxHwVirtState(PVM pVM)
1120{
1121 int rc = VINF_SUCCESS;
1122 uint32_t const cPages = VMX_V_VMCS_PAGES
1123 + VMX_V_SHADOW_VMCS_PAGES
1124 + VMX_V_VIRT_APIC_PAGES
1125 + (2 * VMX_V_VMREAD_VMWRITE_BITMAP_PAGES)
1126 + (3 * VMX_V_AUTOMSR_AREA_PAGES)
1127 + VMX_V_MSR_BITMAP_PAGES
1128 + (VMX_V_IO_BITMAP_A_PAGES + VMX_V_IO_BITMAP_B_PAGES);
1129 LogRel(("CPUM: Allocating %u pages for the nested-guest VMCS and related structures\n", pVM->cCpus * cPages));
1130 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1131 {
1132 PVMCPU pVCpu = pVM->apCpusR3[i];
1133 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
1134 pCtx->hwvirt.enmHwvirt = CPUMHWVIRT_VMX;
1135
1136 AssertCompile(sizeof(pCtx->hwvirt.vmx.Vmcs) == VMX_V_VMCS_PAGES * X86_PAGE_SIZE);
1137
1138 /*
1139 * Allocate the nested-guest shadow VMCS.
1140 */
1141 pCtx->hwvirt.vmx.pShadowVmcsR3 = (PVMXVVMCS)SUPR3ContAlloc(VMX_V_VMCS_PAGES, &pCtx->hwvirt.vmx.pShadowVmcsR0, NULL);
1142 if (pCtx->hwvirt.vmx.pShadowVmcsR3)
1143 { /* likely */ }
1144 else
1145 {
1146 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's shadow VMCS\n", pVCpu->idCpu, VMX_V_VMCS_PAGES));
1147 break;
1148 }
1149
1150 /*
1151 * Allocate the virtual-APIC page.
1152 */
1153 pCtx->hwvirt.vmx.pvVirtApicPageR3 = SUPR3ContAlloc(VMX_V_VIRT_APIC_PAGES,
1154 &pCtx->hwvirt.vmx.pvVirtApicPageR0,
1155 &pCtx->hwvirt.vmx.HCPhysVirtApicPage);
1156 if (pCtx->hwvirt.vmx.pvVirtApicPageR3)
1157 { /* likely */ }
1158 else
1159 {
1160 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's virtual-APIC page\n", pVCpu->idCpu,
1161 VMX_V_VIRT_APIC_PAGES));
1162 break;
1163 }
1164
1165 /*
1166 * Allocate the VMREAD-bitmap.
1167 */
1168 pCtx->hwvirt.vmx.pvVmreadBitmapR3 = SUPR3ContAlloc(VMX_V_VMREAD_VMWRITE_BITMAP_PAGES,
1169 &pCtx->hwvirt.vmx.pvVmreadBitmapR0, NULL);
1170 if (pCtx->hwvirt.vmx.pvVmreadBitmapR3)
1171 { /* likely */ }
1172 else
1173 {
1174 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's VMREAD-bitmap\n", pVCpu->idCpu,
1175 VMX_V_VMREAD_VMWRITE_BITMAP_PAGES));
1176 break;
1177 }
1178
1179 /*
1180 * Allocatge the VMWRITE-bitmap.
1181 */
1182 pCtx->hwvirt.vmx.pvVmwriteBitmapR3 = SUPR3ContAlloc(VMX_V_VMREAD_VMWRITE_BITMAP_PAGES,
1183 &pCtx->hwvirt.vmx.pvVmwriteBitmapR0, NULL);
1184 if (pCtx->hwvirt.vmx.pvVmwriteBitmapR3)
1185 { /* likely */ }
1186 else
1187 {
1188 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's VMWRITE-bitmap\n", pVCpu->idCpu,
1189 VMX_V_VMREAD_VMWRITE_BITMAP_PAGES));
1190 break;
1191 }
1192
1193 /*
1194 * Allocate the VM-entry MSR-load area.
1195 */
1196 pCtx->hwvirt.vmx.pEntryMsrLoadAreaR3 = (PVMXAUTOMSR)SUPR3ContAlloc(VMX_V_AUTOMSR_AREA_PAGES,
1197 &pCtx->hwvirt.vmx.pEntryMsrLoadAreaR0, NULL);
1198 if (pCtx->hwvirt.vmx.pEntryMsrLoadAreaR3)
1199 { /* likely */ }
1200 else
1201 {
1202 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's VM-entry MSR-load area\n", pVCpu->idCpu,
1203 VMX_V_AUTOMSR_AREA_PAGES));
1204 break;
1205 }
1206
1207 /*
1208 * Allocate the VM-exit MSR-store area.
1209 */
1210 pCtx->hwvirt.vmx.pExitMsrStoreAreaR3 = (PVMXAUTOMSR)SUPR3ContAlloc(VMX_V_AUTOMSR_AREA_PAGES,
1211 &pCtx->hwvirt.vmx.pExitMsrStoreAreaR0, NULL);
1212 if (pCtx->hwvirt.vmx.pExitMsrStoreAreaR3)
1213 { /* likely */ }
1214 else
1215 {
1216 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's VM-exit MSR-store area\n", pVCpu->idCpu,
1217 VMX_V_AUTOMSR_AREA_PAGES));
1218 break;
1219 }
1220
1221 /*
1222 * Allocate the VM-exit MSR-load area.
1223 */
1224 pCtx->hwvirt.vmx.pExitMsrLoadAreaR3 = (PVMXAUTOMSR)SUPR3ContAlloc(VMX_V_AUTOMSR_AREA_PAGES,
1225 &pCtx->hwvirt.vmx.pExitMsrLoadAreaR0, NULL);
1226 if (pCtx->hwvirt.vmx.pExitMsrLoadAreaR3)
1227 { /* likely */ }
1228 else
1229 {
1230 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's VM-exit MSR-load area\n", pVCpu->idCpu,
1231 VMX_V_AUTOMSR_AREA_PAGES));
1232 break;
1233 }
1234
1235 /*
1236 * Allocate the MSR bitmap.
1237 */
1238 pCtx->hwvirt.vmx.pvMsrBitmapR3 = SUPR3ContAlloc(VMX_V_MSR_BITMAP_PAGES, &pCtx->hwvirt.vmx.pvMsrBitmapR0, NULL);
1239 if (pCtx->hwvirt.vmx.pvMsrBitmapR3)
1240 { /* likely */ }
1241 else
1242 {
1243 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's MSR bitmap\n", pVCpu->idCpu,
1244 VMX_V_MSR_BITMAP_PAGES));
1245 break;
1246 }
1247
1248 /*
1249 * Allocate the I/O bitmaps (A and B).
1250 */
1251 pCtx->hwvirt.vmx.pvIoBitmapR3 = SUPR3ContAlloc(VMX_V_IO_BITMAP_A_PAGES + VMX_V_IO_BITMAP_B_PAGES,
1252 &pCtx->hwvirt.vmx.pvIoBitmapR0, NULL);
1253 if (pCtx->hwvirt.vmx.pvIoBitmapR3)
1254 { /* likely */ }
1255 else
1256 {
1257 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's I/O bitmaps\n", pVCpu->idCpu,
1258 VMX_V_IO_BITMAP_A_PAGES + VMX_V_IO_BITMAP_B_PAGES));
1259 break;
1260 }
1261
1262 /*
1263 * Zero out all allocated pages (should compress well for saved-state).
1264 */
1265 RT_ZERO(pCtx->hwvirt.vmx.Vmcs);
1266 memset(pCtx->hwvirt.vmx.CTX_SUFF(pShadowVmcs), 0, VMX_V_SHADOW_VMCS_SIZE);
1267 memset(pCtx->hwvirt.vmx.CTX_SUFF(pvVirtApicPage), 0, VMX_V_VIRT_APIC_SIZE);
1268 memset(pCtx->hwvirt.vmx.CTX_SUFF(pvVmreadBitmap), 0, VMX_V_VMREAD_VMWRITE_BITMAP_SIZE);
1269 memset(pCtx->hwvirt.vmx.CTX_SUFF(pvVmwriteBitmap), 0, VMX_V_VMREAD_VMWRITE_BITMAP_SIZE);
1270 memset(pCtx->hwvirt.vmx.CTX_SUFF(pEntryMsrLoadArea), 0, VMX_V_AUTOMSR_AREA_SIZE);
1271 memset(pCtx->hwvirt.vmx.CTX_SUFF(pExitMsrStoreArea), 0, VMX_V_AUTOMSR_AREA_SIZE);
1272 memset(pCtx->hwvirt.vmx.CTX_SUFF(pExitMsrLoadArea), 0, VMX_V_AUTOMSR_AREA_SIZE);
1273 memset(pCtx->hwvirt.vmx.CTX_SUFF(pvMsrBitmap), 0, VMX_V_MSR_BITMAP_SIZE);
1274 memset(pCtx->hwvirt.vmx.CTX_SUFF(pvIoBitmap), 0, VMX_V_IO_BITMAP_A_SIZE + VMX_V_IO_BITMAP_B_SIZE);
1275 }
1276
1277 /* On any failure, cleanup. */
1278 if (RT_FAILURE(rc))
1279 cpumR3FreeVmxHwVirtState(pVM);
1280
1281 return rc;
1282}
1283
1284
1285/**
1286 * Resets per-VCPU VMX hardware virtualization state.
1287 *
1288 * @param pVCpu The cross context virtual CPU structure.
1289 */
1290DECLINLINE(void) cpumR3ResetVmxHwVirtState(PVMCPU pVCpu)
1291{
1292 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
1293 Assert(pCtx->hwvirt.enmHwvirt == CPUMHWVIRT_VMX);
1294 Assert(pCtx->hwvirt.vmx.CTX_SUFF(pShadowVmcs));
1295
1296 RT_ZERO(pCtx->hwvirt.vmx.Vmcs);
1297 memset(pCtx->hwvirt.vmx.CTX_SUFF(pShadowVmcs), 0, VMX_V_SHADOW_VMCS_SIZE);
1298 pCtx->hwvirt.vmx.GCPhysVmxon = NIL_RTGCPHYS;
1299 pCtx->hwvirt.vmx.GCPhysShadowVmcs = NIL_RTGCPHYS;
1300 pCtx->hwvirt.vmx.GCPhysVmxon = NIL_RTGCPHYS;
1301 pCtx->hwvirt.vmx.fInVmxRootMode = false;
1302 pCtx->hwvirt.vmx.fInVmxNonRootMode = false;
1303 /* Don't reset diagnostics here. */
1304
1305 /* Stop any VMX-preemption timer. */
1306 CPUMStopGuestVmxPremptTimer(pVCpu);
1307
1308 /* Clear all nested-guest FFs. */
1309 VMCPU_FF_CLEAR_MASK(pVCpu, VMCPU_FF_VMX_ALL_MASK);
1310}
1311
1312
1313/**
1314 * Displays the host and guest VMX features.
1315 *
1316 * @param pVM The cross context VM structure.
1317 * @param pHlp The info helper functions.
1318 * @param pszArgs "terse", "default" or "verbose".
1319 */
1320DECLCALLBACK(void) cpumR3InfoVmxFeatures(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
1321{
1322 RT_NOREF(pszArgs);
1323 PCCPUMFEATURES pHostFeatures = &pVM->cpum.s.HostFeatures;
1324 PCCPUMFEATURES pGuestFeatures = &pVM->cpum.s.GuestFeatures;
1325 if ( pHostFeatures->enmCpuVendor == CPUMCPUVENDOR_INTEL
1326 || pHostFeatures->enmCpuVendor == CPUMCPUVENDOR_VIA
1327 || pHostFeatures->enmCpuVendor == CPUMCPUVENDOR_SHANGHAI)
1328 {
1329#define VMXFEATDUMP(a_szDesc, a_Var) \
1330 pHlp->pfnPrintf(pHlp, " %s = %u (%u)\n", a_szDesc, pGuestFeatures->a_Var, pHostFeatures->a_Var)
1331
1332 pHlp->pfnPrintf(pHlp, "Nested hardware virtualization - VMX features\n");
1333 pHlp->pfnPrintf(pHlp, " Mnemonic - Description = guest (host)\n");
1334 VMXFEATDUMP("VMX - Virtual-Machine Extensions ", fVmx);
1335 /* Basic. */
1336 VMXFEATDUMP("InsOutInfo - INS/OUTS instruction info. ", fVmxInsOutInfo);
1337 /* Pin-based controls. */
1338 VMXFEATDUMP("ExtIntExit - External interrupt exiting ", fVmxExtIntExit);
1339 VMXFEATDUMP("NmiExit - NMI exiting ", fVmxNmiExit);
1340 VMXFEATDUMP("VirtNmi - Virtual NMIs ", fVmxVirtNmi);
1341 VMXFEATDUMP("PreemptTimer - VMX preemption timer ", fVmxPreemptTimer);
1342 VMXFEATDUMP("PostedInt - Posted interrupts ", fVmxPostedInt);
1343 /* Processor-based controls. */
1344 VMXFEATDUMP("IntWindowExit - Interrupt-window exiting ", fVmxIntWindowExit);
1345 VMXFEATDUMP("TscOffsetting - TSC offsetting ", fVmxTscOffsetting);
1346 VMXFEATDUMP("HltExit - HLT exiting ", fVmxHltExit);
1347 VMXFEATDUMP("InvlpgExit - INVLPG exiting ", fVmxInvlpgExit);
1348 VMXFEATDUMP("MwaitExit - MWAIT exiting ", fVmxMwaitExit);
1349 VMXFEATDUMP("RdpmcExit - RDPMC exiting ", fVmxRdpmcExit);
1350 VMXFEATDUMP("RdtscExit - RDTSC exiting ", fVmxRdtscExit);
1351 VMXFEATDUMP("Cr3LoadExit - CR3-load exiting ", fVmxCr3LoadExit);
1352 VMXFEATDUMP("Cr3StoreExit - CR3-store exiting ", fVmxCr3StoreExit);
1353 VMXFEATDUMP("Cr8LoadExit - CR8-load exiting ", fVmxCr8LoadExit);
1354 VMXFEATDUMP("Cr8StoreExit - CR8-store exiting ", fVmxCr8StoreExit);
1355 VMXFEATDUMP("UseTprShadow - Use TPR shadow ", fVmxUseTprShadow);
1356 VMXFEATDUMP("NmiWindowExit - NMI-window exiting ", fVmxNmiWindowExit);
1357 VMXFEATDUMP("MovDRxExit - Mov-DR exiting ", fVmxMovDRxExit);
1358 VMXFEATDUMP("UncondIoExit - Unconditional I/O exiting ", fVmxUncondIoExit);
1359 VMXFEATDUMP("UseIoBitmaps - Use I/O bitmaps ", fVmxUseIoBitmaps);
1360 VMXFEATDUMP("MonitorTrapFlag - Monitor Trap Flag ", fVmxMonitorTrapFlag);
1361 VMXFEATDUMP("UseMsrBitmaps - MSR bitmaps ", fVmxUseMsrBitmaps);
1362 VMXFEATDUMP("MonitorExit - MONITOR exiting ", fVmxMonitorExit);
1363 VMXFEATDUMP("PauseExit - PAUSE exiting ", fVmxPauseExit);
1364 VMXFEATDUMP("SecondaryExecCtl - Activate secondary controls ", fVmxSecondaryExecCtls);
1365 /* Secondary processor-based controls. */
1366 VMXFEATDUMP("VirtApic - Virtualize-APIC accesses ", fVmxVirtApicAccess);
1367 VMXFEATDUMP("Ept - Extended Page Tables ", fVmxEpt);
1368 VMXFEATDUMP("DescTableExit - Descriptor-table exiting ", fVmxDescTableExit);
1369 VMXFEATDUMP("Rdtscp - Enable RDTSCP ", fVmxRdtscp);
1370 VMXFEATDUMP("VirtX2ApicMode - Virtualize-x2APIC mode ", fVmxVirtX2ApicMode);
1371 VMXFEATDUMP("Vpid - Enable VPID ", fVmxVpid);
1372 VMXFEATDUMP("WbinvdExit - WBINVD exiting ", fVmxWbinvdExit);
1373 VMXFEATDUMP("UnrestrictedGuest - Unrestricted guest ", fVmxUnrestrictedGuest);
1374 VMXFEATDUMP("ApicRegVirt - APIC-register virtualization ", fVmxApicRegVirt);
1375 VMXFEATDUMP("VirtIntDelivery - Virtual-interrupt delivery ", fVmxVirtIntDelivery);
1376 VMXFEATDUMP("PauseLoopExit - PAUSE-loop exiting ", fVmxPauseLoopExit);
1377 VMXFEATDUMP("RdrandExit - RDRAND exiting ", fVmxRdrandExit);
1378 VMXFEATDUMP("Invpcid - Enable INVPCID ", fVmxInvpcid);
1379 VMXFEATDUMP("VmFuncs - Enable VM Functions ", fVmxVmFunc);
1380 VMXFEATDUMP("VmcsShadowing - VMCS shadowing ", fVmxVmcsShadowing);
1381 VMXFEATDUMP("RdseedExiting - RDSEED exiting ", fVmxRdseedExit);
1382 VMXFEATDUMP("PML - Page-Modification Log (PML) ", fVmxPml);
1383 VMXFEATDUMP("EptVe - EPT violations can cause #VE ", fVmxEptXcptVe);
1384 VMXFEATDUMP("XsavesXRstors - Enable XSAVES/XRSTORS ", fVmxXsavesXrstors);
1385 /* VM-entry controls. */
1386 VMXFEATDUMP("EntryLoadDebugCtls - Load debug controls on VM-entry ", fVmxEntryLoadDebugCtls);
1387 VMXFEATDUMP("Ia32eModeGuest - IA-32e mode guest ", fVmxIa32eModeGuest);
1388 VMXFEATDUMP("EntryLoadEferMsr - Load IA32_EFER MSR on VM-entry ", fVmxEntryLoadEferMsr);
1389 VMXFEATDUMP("EntryLoadPatMsr - Load IA32_PAT MSR on VM-entry ", fVmxEntryLoadPatMsr);
1390 /* VM-exit controls. */
1391 VMXFEATDUMP("ExitSaveDebugCtls - Save debug controls on VM-exit ", fVmxExitSaveDebugCtls);
1392 VMXFEATDUMP("HostAddrSpaceSize - Host address-space size ", fVmxHostAddrSpaceSize);
1393 VMXFEATDUMP("ExitAckExtInt - Acknowledge interrupt on VM-exit ", fVmxExitAckExtInt);
1394 VMXFEATDUMP("ExitSavePatMsr - Save IA32_PAT MSR on VM-exit ", fVmxExitSavePatMsr);
1395 VMXFEATDUMP("ExitLoadPatMsr - Load IA32_PAT MSR on VM-exit ", fVmxExitLoadPatMsr);
1396 VMXFEATDUMP("ExitSaveEferMsr - Save IA32_EFER MSR on VM-exit ", fVmxExitSaveEferMsr);
1397 VMXFEATDUMP("ExitLoadEferMsr - Load IA32_EFER MSR on VM-exit ", fVmxExitLoadEferMsr);
1398 VMXFEATDUMP("SavePreemptTimer - Save VMX-preemption timer ", fVmxSavePreemptTimer);
1399 /* Miscellaneous data. */
1400 VMXFEATDUMP("ExitSaveEferLma - Save IA32_EFER.LMA on VM-exit ", fVmxExitSaveEferLma);
1401 VMXFEATDUMP("IntelPt - Intel PT (Processor Trace) in VMX operation ", fVmxIntelPt);
1402 VMXFEATDUMP("VmwriteAll - VMWRITE to any supported VMCS field ", fVmxVmwriteAll);
1403 VMXFEATDUMP("EntryInjectSoftInt - Inject softint. with 0-len instr. ", fVmxEntryInjectSoftInt);
1404#undef VMXFEATDUMP
1405 }
1406 else
1407 pHlp->pfnPrintf(pHlp, "No VMX features present - requires an Intel or compatible CPU.\n");
1408}
1409
1410
1411/**
1412 * Checks whether nested-guest execution using hardware-assisted VMX (e.g, using HM
1413 * or NEM) is allowed.
1414 *
1415 * @returns @c true if hardware-assisted nested-guest execution is allowed, @c false
1416 * otherwise.
1417 * @param pVM The cross context VM structure.
1418 */
1419static bool cpumR3IsHwAssistNstGstExecAllowed(PVM pVM)
1420{
1421 AssertMsg(pVM->bMainExecutionEngine != VM_EXEC_ENGINE_NOT_SET, ("Calling this function too early!\n"));
1422#ifndef VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM
1423 if ( pVM->bMainExecutionEngine == VM_EXEC_ENGINE_HW_VIRT
1424 || pVM->bMainExecutionEngine == VM_EXEC_ENGINE_NATIVE_API)
1425 return true;
1426#else
1427 NOREF(pVM);
1428#endif
1429 return false;
1430}
1431
1432
1433/**
1434 * Initializes the VMX guest MSRs from guest CPU features based on the host MSRs.
1435 *
1436 * @param pVM The cross context VM structure.
1437 * @param pHostVmxMsrs The host VMX MSRs. Pass NULL when fully emulating VMX
1438 * and no hardware-assisted nested-guest execution is
1439 * possible for this VM.
1440 * @param pGuestFeatures The guest features to use (only VMX features are
1441 * accessed).
1442 * @param pGuestVmxMsrs Where to store the initialized guest VMX MSRs.
1443 *
1444 * @remarks This function ASSUMES the VMX guest-features are already exploded!
1445 */
1446static void cpumR3InitVmxGuestMsrs(PVM pVM, PCVMXMSRS pHostVmxMsrs, PCCPUMFEATURES pGuestFeatures, PVMXMSRS pGuestVmxMsrs)
1447{
1448 bool const fIsNstGstHwExecAllowed = cpumR3IsHwAssistNstGstExecAllowed(pVM);
1449
1450 Assert(!fIsNstGstHwExecAllowed || pHostVmxMsrs);
1451 Assert(pGuestFeatures->fVmx);
1452
1453 /*
1454 * We don't support the following MSRs yet:
1455 * - True Pin-based VM-execution controls.
1456 * - True Processor-based VM-execution controls.
1457 * - True VM-entry VM-execution controls.
1458 * - True VM-exit VM-execution controls.
1459 */
1460
1461 /* Feature control. */
1462 pGuestVmxMsrs->u64FeatCtrl = MSR_IA32_FEATURE_CONTROL_LOCK | MSR_IA32_FEATURE_CONTROL_VMXON;
1463
1464 /* Basic information. */
1465 {
1466 uint64_t const u64Basic = RT_BF_MAKE(VMX_BF_BASIC_VMCS_ID, VMX_V_VMCS_REVISION_ID )
1467 | RT_BF_MAKE(VMX_BF_BASIC_VMCS_SIZE, VMX_V_VMCS_SIZE )
1468 | RT_BF_MAKE(VMX_BF_BASIC_PHYSADDR_WIDTH, !pGuestFeatures->fLongMode )
1469 | RT_BF_MAKE(VMX_BF_BASIC_DUAL_MON, 0 )
1470 | RT_BF_MAKE(VMX_BF_BASIC_VMCS_MEM_TYPE, VMX_BASIC_MEM_TYPE_WB )
1471 | RT_BF_MAKE(VMX_BF_BASIC_VMCS_INS_OUTS, pGuestFeatures->fVmxInsOutInfo)
1472 | RT_BF_MAKE(VMX_BF_BASIC_TRUE_CTLS, 0 );
1473 pGuestVmxMsrs->u64Basic = u64Basic;
1474 }
1475
1476 /* Pin-based VM-execution controls. */
1477 {
1478 uint32_t const fFeatures = (pGuestFeatures->fVmxExtIntExit << VMX_BF_PIN_CTLS_EXT_INT_EXIT_SHIFT )
1479 | (pGuestFeatures->fVmxNmiExit << VMX_BF_PIN_CTLS_NMI_EXIT_SHIFT )
1480 | (pGuestFeatures->fVmxVirtNmi << VMX_BF_PIN_CTLS_VIRT_NMI_SHIFT )
1481 | (pGuestFeatures->fVmxPreemptTimer << VMX_BF_PIN_CTLS_PREEMPT_TIMER_SHIFT)
1482 | (pGuestFeatures->fVmxPostedInt << VMX_BF_PIN_CTLS_POSTED_INT_SHIFT );
1483 uint32_t const fAllowed0 = VMX_PIN_CTLS_DEFAULT1;
1484 uint32_t const fAllowed1 = fFeatures | VMX_PIN_CTLS_DEFAULT1;
1485 AssertMsg((fAllowed0 & fAllowed1) == fAllowed0, ("fAllowed0=%#RX32 fAllowed1=%#RX32 fFeatures=%#RX32\n",
1486 fAllowed0, fAllowed1, fFeatures));
1487 pGuestVmxMsrs->PinCtls.u = RT_MAKE_U64(fAllowed0, fAllowed1);
1488 }
1489
1490 /* Processor-based VM-execution controls. */
1491 {
1492 uint32_t const fFeatures = (pGuestFeatures->fVmxIntWindowExit << VMX_BF_PROC_CTLS_INT_WINDOW_EXIT_SHIFT )
1493 | (pGuestFeatures->fVmxTscOffsetting << VMX_BF_PROC_CTLS_USE_TSC_OFFSETTING_SHIFT)
1494 | (pGuestFeatures->fVmxHltExit << VMX_BF_PROC_CTLS_HLT_EXIT_SHIFT )
1495 | (pGuestFeatures->fVmxInvlpgExit << VMX_BF_PROC_CTLS_INVLPG_EXIT_SHIFT )
1496 | (pGuestFeatures->fVmxMwaitExit << VMX_BF_PROC_CTLS_MWAIT_EXIT_SHIFT )
1497 | (pGuestFeatures->fVmxRdpmcExit << VMX_BF_PROC_CTLS_RDPMC_EXIT_SHIFT )
1498 | (pGuestFeatures->fVmxRdtscExit << VMX_BF_PROC_CTLS_RDTSC_EXIT_SHIFT )
1499 | (pGuestFeatures->fVmxCr3LoadExit << VMX_BF_PROC_CTLS_CR3_LOAD_EXIT_SHIFT )
1500 | (pGuestFeatures->fVmxCr3StoreExit << VMX_BF_PROC_CTLS_CR3_STORE_EXIT_SHIFT )
1501 | (pGuestFeatures->fVmxTertiaryExecCtls << VMX_BF_PROC_CTLS_USE_TERTIARY_CTLS_SHIFT )
1502 | (pGuestFeatures->fVmxCr8LoadExit << VMX_BF_PROC_CTLS_CR8_LOAD_EXIT_SHIFT )
1503 | (pGuestFeatures->fVmxCr8StoreExit << VMX_BF_PROC_CTLS_CR8_STORE_EXIT_SHIFT )
1504 | (pGuestFeatures->fVmxUseTprShadow << VMX_BF_PROC_CTLS_USE_TPR_SHADOW_SHIFT )
1505 | (pGuestFeatures->fVmxNmiWindowExit << VMX_BF_PROC_CTLS_NMI_WINDOW_EXIT_SHIFT )
1506 | (pGuestFeatures->fVmxMovDRxExit << VMX_BF_PROC_CTLS_MOV_DR_EXIT_SHIFT )
1507 | (pGuestFeatures->fVmxUncondIoExit << VMX_BF_PROC_CTLS_UNCOND_IO_EXIT_SHIFT )
1508 | (pGuestFeatures->fVmxUseIoBitmaps << VMX_BF_PROC_CTLS_USE_IO_BITMAPS_SHIFT )
1509 | (pGuestFeatures->fVmxMonitorTrapFlag << VMX_BF_PROC_CTLS_MONITOR_TRAP_FLAG_SHIFT )
1510 | (pGuestFeatures->fVmxUseMsrBitmaps << VMX_BF_PROC_CTLS_USE_MSR_BITMAPS_SHIFT )
1511 | (pGuestFeatures->fVmxMonitorExit << VMX_BF_PROC_CTLS_MONITOR_EXIT_SHIFT )
1512 | (pGuestFeatures->fVmxPauseExit << VMX_BF_PROC_CTLS_PAUSE_EXIT_SHIFT )
1513 | (pGuestFeatures->fVmxSecondaryExecCtls << VMX_BF_PROC_CTLS_USE_SECONDARY_CTLS_SHIFT);
1514 uint32_t const fAllowed0 = VMX_PROC_CTLS_DEFAULT1;
1515 uint32_t const fAllowed1 = fFeatures | VMX_PROC_CTLS_DEFAULT1;
1516 AssertMsg((fAllowed0 & fAllowed1) == fAllowed0, ("fAllowed0=%#RX32 fAllowed1=%#RX32 fFeatures=%#RX32\n", fAllowed0,
1517 fAllowed1, fFeatures));
1518 pGuestVmxMsrs->ProcCtls.u = RT_MAKE_U64(fAllowed0, fAllowed1);
1519 }
1520
1521 /* Secondary processor-based VM-execution controls. */
1522 if (pGuestFeatures->fVmxSecondaryExecCtls)
1523 {
1524 uint32_t const fFeatures = (pGuestFeatures->fVmxVirtApicAccess << VMX_BF_PROC_CTLS2_VIRT_APIC_ACCESS_SHIFT )
1525 | (pGuestFeatures->fVmxEpt << VMX_BF_PROC_CTLS2_EPT_SHIFT )
1526 | (pGuestFeatures->fVmxDescTableExit << VMX_BF_PROC_CTLS2_DESC_TABLE_EXIT_SHIFT )
1527 | (pGuestFeatures->fVmxRdtscp << VMX_BF_PROC_CTLS2_RDTSCP_SHIFT )
1528 | (pGuestFeatures->fVmxVirtX2ApicMode << VMX_BF_PROC_CTLS2_VIRT_X2APIC_MODE_SHIFT )
1529 | (pGuestFeatures->fVmxVpid << VMX_BF_PROC_CTLS2_VPID_SHIFT )
1530 | (pGuestFeatures->fVmxWbinvdExit << VMX_BF_PROC_CTLS2_WBINVD_EXIT_SHIFT )
1531 | (pGuestFeatures->fVmxUnrestrictedGuest << VMX_BF_PROC_CTLS2_UNRESTRICTED_GUEST_SHIFT)
1532 | (pGuestFeatures->fVmxApicRegVirt << VMX_BF_PROC_CTLS2_APIC_REG_VIRT_SHIFT )
1533 | (pGuestFeatures->fVmxVirtIntDelivery << VMX_BF_PROC_CTLS2_VIRT_INT_DELIVERY_SHIFT )
1534 | (pGuestFeatures->fVmxPauseLoopExit << VMX_BF_PROC_CTLS2_PAUSE_LOOP_EXIT_SHIFT )
1535 | (pGuestFeatures->fVmxRdrandExit << VMX_BF_PROC_CTLS2_RDRAND_EXIT_SHIFT )
1536 | (pGuestFeatures->fVmxInvpcid << VMX_BF_PROC_CTLS2_INVPCID_SHIFT )
1537 | (pGuestFeatures->fVmxVmFunc << VMX_BF_PROC_CTLS2_VMFUNC_SHIFT )
1538 | (pGuestFeatures->fVmxVmcsShadowing << VMX_BF_PROC_CTLS2_VMCS_SHADOWING_SHIFT )
1539 | (pGuestFeatures->fVmxRdseedExit << VMX_BF_PROC_CTLS2_RDSEED_EXIT_SHIFT )
1540 | (pGuestFeatures->fVmxPml << VMX_BF_PROC_CTLS2_PML_SHIFT )
1541 | (pGuestFeatures->fVmxEptXcptVe << VMX_BF_PROC_CTLS2_EPT_VE_SHIFT )
1542 | (pGuestFeatures->fVmxXsavesXrstors << VMX_BF_PROC_CTLS2_XSAVES_XRSTORS_SHIFT )
1543 | (pGuestFeatures->fVmxUseTscScaling << VMX_BF_PROC_CTLS2_TSC_SCALING_SHIFT );
1544 uint32_t const fAllowed0 = 0;
1545 uint32_t const fAllowed1 = fFeatures;
1546 pGuestVmxMsrs->ProcCtls2.u = RT_MAKE_U64(fAllowed0, fAllowed1);
1547 }
1548
1549 /* Tertiary processor-based VM-execution controls. */
1550 if (pGuestFeatures->fVmxTertiaryExecCtls)
1551 {
1552 pGuestVmxMsrs->u64ProcCtls3 = (pGuestFeatures->fVmxLoadIwKeyExit << VMX_BF_PROC_CTLS3_LOADIWKEY_EXIT_SHIFT);
1553 }
1554
1555 /* VM-exit controls. */
1556 {
1557 uint32_t const fFeatures = (pGuestFeatures->fVmxExitSaveDebugCtls << VMX_BF_EXIT_CTLS_SAVE_DEBUG_SHIFT )
1558 | (pGuestFeatures->fVmxHostAddrSpaceSize << VMX_BF_EXIT_CTLS_HOST_ADDR_SPACE_SIZE_SHIFT)
1559 | (pGuestFeatures->fVmxExitAckExtInt << VMX_BF_EXIT_CTLS_ACK_EXT_INT_SHIFT )
1560 | (pGuestFeatures->fVmxExitSavePatMsr << VMX_BF_EXIT_CTLS_SAVE_PAT_MSR_SHIFT )
1561 | (pGuestFeatures->fVmxExitLoadPatMsr << VMX_BF_EXIT_CTLS_LOAD_PAT_MSR_SHIFT )
1562 | (pGuestFeatures->fVmxExitSaveEferMsr << VMX_BF_EXIT_CTLS_SAVE_EFER_MSR_SHIFT )
1563 | (pGuestFeatures->fVmxExitLoadEferMsr << VMX_BF_EXIT_CTLS_LOAD_EFER_MSR_SHIFT )
1564 | (pGuestFeatures->fVmxSavePreemptTimer << VMX_BF_EXIT_CTLS_SAVE_PREEMPT_TIMER_SHIFT );
1565 /* Set the default1 class bits. See Intel spec. A.4 "VM-exit Controls". */
1566 uint32_t const fAllowed0 = VMX_EXIT_CTLS_DEFAULT1;
1567 uint32_t const fAllowed1 = fFeatures | VMX_EXIT_CTLS_DEFAULT1;
1568 AssertMsg((fAllowed0 & fAllowed1) == fAllowed0, ("fAllowed0=%#RX32 fAllowed1=%#RX32 fFeatures=%#RX32\n", fAllowed0,
1569 fAllowed1, fFeatures));
1570 pGuestVmxMsrs->ExitCtls.u = RT_MAKE_U64(fAllowed0, fAllowed1);
1571 }
1572
1573 /* VM-entry controls. */
1574 {
1575 uint32_t const fFeatures = (pGuestFeatures->fVmxEntryLoadDebugCtls << VMX_BF_ENTRY_CTLS_LOAD_DEBUG_SHIFT )
1576 | (pGuestFeatures->fVmxIa32eModeGuest << VMX_BF_ENTRY_CTLS_IA32E_MODE_GUEST_SHIFT)
1577 | (pGuestFeatures->fVmxEntryLoadEferMsr << VMX_BF_ENTRY_CTLS_LOAD_EFER_MSR_SHIFT )
1578 | (pGuestFeatures->fVmxEntryLoadPatMsr << VMX_BF_ENTRY_CTLS_LOAD_PAT_MSR_SHIFT );
1579 uint32_t const fAllowed0 = VMX_ENTRY_CTLS_DEFAULT1;
1580 uint32_t const fAllowed1 = fFeatures | VMX_ENTRY_CTLS_DEFAULT1;
1581 AssertMsg((fAllowed0 & fAllowed1) == fAllowed0, ("fAllowed0=%#RX32 fAllowed0=%#RX32 fFeatures=%#RX32\n", fAllowed0,
1582 fAllowed1, fFeatures));
1583 pGuestVmxMsrs->EntryCtls.u = RT_MAKE_U64(fAllowed0, fAllowed1);
1584 }
1585
1586 /* Miscellaneous data. */
1587 {
1588 uint64_t const uHostMsr = fIsNstGstHwExecAllowed ? pHostVmxMsrs->u64Misc : 0;
1589
1590 uint8_t const cMaxMsrs = RT_MIN(RT_BF_GET(uHostMsr, VMX_BF_MISC_MAX_MSRS), VMX_V_AUTOMSR_COUNT_MAX);
1591 uint8_t const fActivityState = RT_BF_GET(uHostMsr, VMX_BF_MISC_ACTIVITY_STATES) & VMX_V_GUEST_ACTIVITY_STATE_MASK;
1592 pGuestVmxMsrs->u64Misc = RT_BF_MAKE(VMX_BF_MISC_PREEMPT_TIMER_TSC, VMX_V_PREEMPT_TIMER_SHIFT )
1593 | RT_BF_MAKE(VMX_BF_MISC_EXIT_SAVE_EFER_LMA, pGuestFeatures->fVmxExitSaveEferLma )
1594 | RT_BF_MAKE(VMX_BF_MISC_ACTIVITY_STATES, fActivityState )
1595 | RT_BF_MAKE(VMX_BF_MISC_INTEL_PT, pGuestFeatures->fVmxIntelPt )
1596 | RT_BF_MAKE(VMX_BF_MISC_SMM_READ_SMBASE_MSR, 0 )
1597 | RT_BF_MAKE(VMX_BF_MISC_CR3_TARGET, VMX_V_CR3_TARGET_COUNT )
1598 | RT_BF_MAKE(VMX_BF_MISC_MAX_MSRS, cMaxMsrs )
1599 | RT_BF_MAKE(VMX_BF_MISC_VMXOFF_BLOCK_SMI, 0 )
1600 | RT_BF_MAKE(VMX_BF_MISC_VMWRITE_ALL, pGuestFeatures->fVmxVmwriteAll )
1601 | RT_BF_MAKE(VMX_BF_MISC_ENTRY_INJECT_SOFT_INT, pGuestFeatures->fVmxEntryInjectSoftInt)
1602 | RT_BF_MAKE(VMX_BF_MISC_MSEG_ID, VMX_V_MSEG_REV_ID );
1603 }
1604
1605 /* CR0 Fixed-0. */
1606 pGuestVmxMsrs->u64Cr0Fixed0 = pGuestFeatures->fVmxUnrestrictedGuest ? VMX_V_CR0_FIXED0_UX : VMX_V_CR0_FIXED0;
1607
1608 /* CR0 Fixed-1. */
1609 {
1610 /*
1611 * All CPUs I've looked at so far report CR0 fixed-1 bits as 0xffffffff.
1612 * This is different from CR4 fixed-1 bits which are reported as per the
1613 * CPU features and/or micro-architecture/generation. Why? Ask Intel.
1614 */
1615 uint64_t const uHostMsr = fIsNstGstHwExecAllowed ? pHostVmxMsrs->u64Cr0Fixed1 : 0xffffffff;
1616 pGuestVmxMsrs->u64Cr0Fixed1 = uHostMsr | pGuestVmxMsrs->u64Cr0Fixed0; /* Make sure the CR0 MB1 bits are not clear. */
1617 }
1618
1619 /* CR4 Fixed-0. */
1620 pGuestVmxMsrs->u64Cr4Fixed0 = VMX_V_CR4_FIXED0;
1621
1622 /* CR4 Fixed-1. */
1623 {
1624 uint64_t const uHostMsr = fIsNstGstHwExecAllowed ? pHostVmxMsrs->u64Cr4Fixed1 : CPUMGetGuestCR4ValidMask(pVM);
1625 pGuestVmxMsrs->u64Cr4Fixed1 = uHostMsr | pGuestVmxMsrs->u64Cr4Fixed0; /* Make sure the CR4 MB1 bits are not clear. */
1626 }
1627
1628 /* VMCS Enumeration. */
1629 pGuestVmxMsrs->u64VmcsEnum = VMX_V_VMCS_MAX_INDEX << VMX_BF_VMCS_ENUM_HIGHEST_IDX_SHIFT;
1630
1631 /* VPID and EPT Capabilities. */
1632 if (pGuestFeatures->fVmxEpt)
1633 {
1634 /*
1635 * INVVPID instruction always causes a VM-exit unconditionally, so we are free to fake
1636 * and emulate any INVVPID flush type. However, it only makes sense to expose the types
1637 * when INVVPID instruction is supported just to be more compatible with guest
1638 * hypervisors that may make assumptions by only looking at this MSR even though they
1639 * are technically supposed to refer to bit 37 of MSR_IA32_VMX_PROC_CTLS2 first.
1640 *
1641 * See Intel spec. 25.1.2 "Instructions That Cause VM Exits Unconditionally".
1642 * See Intel spec. 30.3 "VMX Instructions".
1643 */
1644 uint64_t const uHostMsr = fIsNstGstHwExecAllowed ? pHostVmxMsrs->u64EptVpidCaps : UINT64_MAX;
1645 uint8_t const fVpid = pGuestFeatures->fVmxVpid;
1646
1647 uint8_t const fExecOnly = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_RWX_X_ONLY);
1648 uint8_t const fPml4 = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_PAGE_WALK_LENGTH_4);
1649 uint8_t const fEptMemUc = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_EMT_UC);
1650 uint8_t const fEptMemWb = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_EMT_WB);
1651 uint8_t const f2MPage = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_PDE_2M);
1652 uint8_t const f1GPage = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_PDPTE_1G);
1653 uint8_t const fInvept = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_INVEPT);
1654 uint8_t const fEptAccDirty = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_EPT_ACCESS_DIRTY);
1655 uint8_t const fEptSingle = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_INVEPT_SINGLE_CTX);
1656 uint8_t const fEptAll = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_INVEPT_ALL_CTX);
1657 uint8_t const fVpidIndiv = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_INVVPID_INDIV_ADDR);
1658 uint8_t const fVpidSingle = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_INVVPID_SINGLE_CTX);
1659 uint8_t const fVpidAll = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_INVVPID_ALL_CTX);
1660 uint8_t const fVpidSingleGlobal = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_INVVPID_SINGLE_CTX_RETAIN_GLOBALS);
1661 pGuestVmxMsrs->u64EptVpidCaps = RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_RWX_X_ONLY, fExecOnly)
1662 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_PAGE_WALK_LENGTH_4, fPml4)
1663 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_EMT_UC, fEptMemUc)
1664 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_EMT_WB, fEptMemWb)
1665 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_PDE_2M, f2MPage)
1666 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_PDPTE_1G, f1GPage)
1667 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_INVEPT, fInvept)
1668 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_EPT_ACCESS_DIRTY, fEptAccDirty)
1669 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_ADVEXITINFO_EPT, 0)
1670 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_SUPER_SHW_STACK, 0)
1671 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_INVEPT_SINGLE_CTX, fEptSingle)
1672 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_INVEPT_ALL_CTX, fEptAll)
1673 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_INVVPID, fVpid)
1674 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_INVVPID_INDIV_ADDR, fVpid & fVpidIndiv)
1675 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_INVVPID_SINGLE_CTX, fVpid & fVpidSingle)
1676 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_INVVPID_ALL_CTX, fVpid & fVpidAll)
1677 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_INVVPID_SINGLE_CTX_RETAIN_GLOBALS, fVpid & fVpidSingleGlobal);
1678 }
1679
1680 /* VM Functions. */
1681 if (pGuestFeatures->fVmxVmFunc)
1682 pGuestVmxMsrs->u64VmFunc = RT_BF_MAKE(VMX_BF_VMFUNC_EPTP_SWITCHING, 1);
1683}
1684
1685
1686/**
1687 * Checks whether the given guest CPU VMX features are compatible with the provided
1688 * base features.
1689 *
1690 * @returns @c true if compatible, @c false otherwise.
1691 * @param pVM The cross context VM structure.
1692 * @param pBase The base VMX CPU features.
1693 * @param pGst The guest VMX CPU features.
1694 *
1695 * @remarks Only VMX feature bits are examined.
1696 */
1697static bool cpumR3AreVmxCpuFeaturesCompatible(PVM pVM, PCCPUMFEATURES pBase, PCCPUMFEATURES pGst)
1698{
1699 if (!cpumR3IsHwAssistNstGstExecAllowed(pVM))
1700 return false;
1701
1702 /* Check first set of feature bits. */
1703 {
1704 uint64_t const fBase = ((uint64_t)pBase->fVmxInsOutInfo << 0) | ((uint64_t)pBase->fVmxExtIntExit << 1)
1705 | ((uint64_t)pBase->fVmxNmiExit << 2) | ((uint64_t)pBase->fVmxVirtNmi << 3)
1706 | ((uint64_t)pBase->fVmxPreemptTimer << 4) | ((uint64_t)pBase->fVmxPostedInt << 5)
1707 | ((uint64_t)pBase->fVmxIntWindowExit << 6) | ((uint64_t)pBase->fVmxTscOffsetting << 7)
1708 | ((uint64_t)pBase->fVmxHltExit << 8) | ((uint64_t)pBase->fVmxInvlpgExit << 9)
1709 | ((uint64_t)pBase->fVmxMwaitExit << 10) | ((uint64_t)pBase->fVmxRdpmcExit << 11)
1710 | ((uint64_t)pBase->fVmxRdtscExit << 12) | ((uint64_t)pBase->fVmxCr3LoadExit << 13)
1711 | ((uint64_t)pBase->fVmxCr3StoreExit << 14) | ((uint64_t)pBase->fVmxCr8LoadExit << 15)
1712 | ((uint64_t)pBase->fVmxCr8StoreExit << 16) | ((uint64_t)pBase->fVmxUseTprShadow << 17)
1713 | ((uint64_t)pBase->fVmxNmiWindowExit << 18) | ((uint64_t)pBase->fVmxMovDRxExit << 19)
1714 | ((uint64_t)pBase->fVmxUncondIoExit << 20) | ((uint64_t)pBase->fVmxUseIoBitmaps << 21)
1715 | ((uint64_t)pBase->fVmxMonitorTrapFlag << 22) | ((uint64_t)pBase->fVmxUseMsrBitmaps << 23)
1716 | ((uint64_t)pBase->fVmxMonitorExit << 24) | ((uint64_t)pBase->fVmxPauseExit << 25)
1717 | ((uint64_t)pBase->fVmxSecondaryExecCtls << 26) | ((uint64_t)pBase->fVmxVirtApicAccess << 27)
1718 | ((uint64_t)pBase->fVmxEpt << 28) | ((uint64_t)pBase->fVmxDescTableExit << 29)
1719 | ((uint64_t)pBase->fVmxRdtscp << 30) | ((uint64_t)pBase->fVmxVirtX2ApicMode << 31)
1720 | ((uint64_t)pBase->fVmxVpid << 32) | ((uint64_t)pBase->fVmxWbinvdExit << 33)
1721 | ((uint64_t)pBase->fVmxUnrestrictedGuest << 34) | ((uint64_t)pBase->fVmxApicRegVirt << 35)
1722 | ((uint64_t)pBase->fVmxVirtIntDelivery << 36) | ((uint64_t)pBase->fVmxPauseLoopExit << 37)
1723 | ((uint64_t)pBase->fVmxRdrandExit << 38) | ((uint64_t)pBase->fVmxInvpcid << 39)
1724 | ((uint64_t)pBase->fVmxVmFunc << 40) | ((uint64_t)pBase->fVmxVmcsShadowing << 41)
1725 | ((uint64_t)pBase->fVmxRdseedExit << 42) | ((uint64_t)pBase->fVmxPml << 43)
1726 | ((uint64_t)pBase->fVmxEptXcptVe << 44) | ((uint64_t)pBase->fVmxXsavesXrstors << 45)
1727 | ((uint64_t)pBase->fVmxUseTscScaling << 46) | ((uint64_t)pBase->fVmxEntryLoadDebugCtls << 47)
1728 | ((uint64_t)pBase->fVmxIa32eModeGuest << 48) | ((uint64_t)pBase->fVmxEntryLoadEferMsr << 49)
1729 | ((uint64_t)pBase->fVmxEntryLoadPatMsr << 50) | ((uint64_t)pBase->fVmxExitSaveDebugCtls << 51)
1730 | ((uint64_t)pBase->fVmxHostAddrSpaceSize << 52) | ((uint64_t)pBase->fVmxExitAckExtInt << 53)
1731 | ((uint64_t)pBase->fVmxExitSavePatMsr << 54) | ((uint64_t)pBase->fVmxExitLoadPatMsr << 55)
1732 | ((uint64_t)pBase->fVmxExitSaveEferMsr << 56) | ((uint64_t)pBase->fVmxExitLoadEferMsr << 57)
1733 | ((uint64_t)pBase->fVmxSavePreemptTimer << 58) | ((uint64_t)pBase->fVmxExitSaveEferLma << 59)
1734 | ((uint64_t)pBase->fVmxIntelPt << 60) | ((uint64_t)pBase->fVmxVmwriteAll << 61)
1735 | ((uint64_t)pBase->fVmxEntryInjectSoftInt << 62);
1736
1737 uint64_t const fGst = ((uint64_t)pGst->fVmxInsOutInfo << 0) | ((uint64_t)pGst->fVmxExtIntExit << 1)
1738 | ((uint64_t)pGst->fVmxNmiExit << 2) | ((uint64_t)pGst->fVmxVirtNmi << 3)
1739 | ((uint64_t)pGst->fVmxPreemptTimer << 4) | ((uint64_t)pGst->fVmxPostedInt << 5)
1740 | ((uint64_t)pGst->fVmxIntWindowExit << 6) | ((uint64_t)pGst->fVmxTscOffsetting << 7)
1741 | ((uint64_t)pGst->fVmxHltExit << 8) | ((uint64_t)pGst->fVmxInvlpgExit << 9)
1742 | ((uint64_t)pGst->fVmxMwaitExit << 10) | ((uint64_t)pGst->fVmxRdpmcExit << 11)
1743 | ((uint64_t)pGst->fVmxRdtscExit << 12) | ((uint64_t)pGst->fVmxCr3LoadExit << 13)
1744 | ((uint64_t)pGst->fVmxCr3StoreExit << 14) | ((uint64_t)pGst->fVmxCr8LoadExit << 15)
1745 | ((uint64_t)pGst->fVmxCr8StoreExit << 16) | ((uint64_t)pGst->fVmxUseTprShadow << 17)
1746 | ((uint64_t)pGst->fVmxNmiWindowExit << 18) | ((uint64_t)pGst->fVmxMovDRxExit << 19)
1747 | ((uint64_t)pGst->fVmxUncondIoExit << 20) | ((uint64_t)pGst->fVmxUseIoBitmaps << 21)
1748 | ((uint64_t)pGst->fVmxMonitorTrapFlag << 22) | ((uint64_t)pGst->fVmxUseMsrBitmaps << 23)
1749 | ((uint64_t)pGst->fVmxMonitorExit << 24) | ((uint64_t)pGst->fVmxPauseExit << 25)
1750 | ((uint64_t)pGst->fVmxSecondaryExecCtls << 26) | ((uint64_t)pGst->fVmxVirtApicAccess << 27)
1751 | ((uint64_t)pGst->fVmxEpt << 28) | ((uint64_t)pGst->fVmxDescTableExit << 29)
1752 | ((uint64_t)pGst->fVmxRdtscp << 30) | ((uint64_t)pGst->fVmxVirtX2ApicMode << 31)
1753 | ((uint64_t)pGst->fVmxVpid << 32) | ((uint64_t)pGst->fVmxWbinvdExit << 33)
1754 | ((uint64_t)pGst->fVmxUnrestrictedGuest << 34) | ((uint64_t)pGst->fVmxApicRegVirt << 35)
1755 | ((uint64_t)pGst->fVmxVirtIntDelivery << 36) | ((uint64_t)pGst->fVmxPauseLoopExit << 37)
1756 | ((uint64_t)pGst->fVmxRdrandExit << 38) | ((uint64_t)pGst->fVmxInvpcid << 39)
1757 | ((uint64_t)pGst->fVmxVmFunc << 40) | ((uint64_t)pGst->fVmxVmcsShadowing << 41)
1758 | ((uint64_t)pGst->fVmxRdseedExit << 42) | ((uint64_t)pGst->fVmxPml << 43)
1759 | ((uint64_t)pGst->fVmxEptXcptVe << 44) | ((uint64_t)pGst->fVmxXsavesXrstors << 45)
1760 | ((uint64_t)pGst->fVmxUseTscScaling << 46) | ((uint64_t)pGst->fVmxEntryLoadDebugCtls << 47)
1761 | ((uint64_t)pGst->fVmxIa32eModeGuest << 48) | ((uint64_t)pGst->fVmxEntryLoadEferMsr << 49)
1762 | ((uint64_t)pGst->fVmxEntryLoadPatMsr << 50) | ((uint64_t)pGst->fVmxExitSaveDebugCtls << 51)
1763 | ((uint64_t)pGst->fVmxHostAddrSpaceSize << 52) | ((uint64_t)pGst->fVmxExitAckExtInt << 53)
1764 | ((uint64_t)pGst->fVmxExitSavePatMsr << 54) | ((uint64_t)pGst->fVmxExitLoadPatMsr << 55)
1765 | ((uint64_t)pGst->fVmxExitSaveEferMsr << 56) | ((uint64_t)pGst->fVmxExitLoadEferMsr << 57)
1766 | ((uint64_t)pGst->fVmxSavePreemptTimer << 58) | ((uint64_t)pGst->fVmxExitSaveEferLma << 59)
1767 | ((uint64_t)pGst->fVmxIntelPt << 60) | ((uint64_t)pGst->fVmxVmwriteAll << 61)
1768 | ((uint64_t)pGst->fVmxEntryInjectSoftInt << 62);
1769
1770 if ((fBase | fGst) != fBase)
1771 {
1772 uint64_t const fDiff = fBase ^ fGst;
1773 LogRel(("CPUM: VMX features (1) now exposed to the guest are incompatible with those from the saved state. fBase=%#RX64 fGst=%#RX64 fDiff=%#RX64\n",
1774 fBase, fGst, fDiff));
1775 return false;
1776 }
1777 }
1778
1779 /* Check second set of feature bits. */
1780 {
1781 uint64_t const fBase = ((uint64_t)pBase->fVmxTertiaryExecCtls << 0) | ((uint64_t)pBase->fVmxLoadIwKeyExit << 1);
1782 uint64_t const fGst = ((uint64_t)pGst->fVmxTertiaryExecCtls << 0) | ((uint64_t)pGst->fVmxLoadIwKeyExit << 1);
1783 if ((fBase | fGst) != fBase)
1784 {
1785 uint64_t const fDiff = fBase ^ fGst;
1786 LogRel(("CPUM: VMX features (2) now exposed to the guest are incompatible with those from the saved state. fBase=%#RX64 fGst=%#RX64 fDiff=%#RX64\n",
1787 fBase, fGst, fDiff));
1788 return false;
1789 }
1790 }
1791
1792 return true;
1793}
1794
1795
1796/**
1797 * Initializes VMX guest features and MSRs.
1798 *
1799 * @param pVM The cross context VM structure.
1800 * @param pHostVmxMsrs The host VMX MSRs. Pass NULL when fully emulating VMX
1801 * and no hardware-assisted nested-guest execution is
1802 * possible for this VM.
1803 * @param pGuestVmxMsrs Where to store the initialized guest VMX MSRs.
1804 */
1805void cpumR3InitVmxGuestFeaturesAndMsrs(PVM pVM, PCVMXMSRS pHostVmxMsrs, PVMXMSRS pGuestVmxMsrs)
1806{
1807 Assert(pVM);
1808 Assert(pGuestVmxMsrs);
1809
1810 /*
1811 * While it would be nice to check this earlier while initializing fNestedVmxEpt
1812 * but we would not have enumearted host features then, so do it at least now.
1813 */
1814 if ( !pVM->cpum.s.HostFeatures.fNoExecute
1815 && pVM->cpum.s.fNestedVmxEpt)
1816 {
1817 LogRel(("CPUM: Warning! EPT not exposed to the guest since NX isn't available on the host.\n"));
1818 pVM->cpum.s.fNestedVmxEpt = false;
1819 pVM->cpum.s.fNestedVmxUnrestrictedGuest = false;
1820 }
1821
1822 /*
1823 * Initialize the set of VMX features we emulate.
1824 *
1825 * Note! Some bits might be reported as 1 always if they fall under the
1826 * default1 class bits (e.g. fVmxEntryLoadDebugCtls), see @bugref{9180#c5}.
1827 */
1828 CPUMFEATURES EmuFeat;
1829 RT_ZERO(EmuFeat);
1830 EmuFeat.fVmx = 1;
1831 EmuFeat.fVmxInsOutInfo = 1;
1832 EmuFeat.fVmxExtIntExit = 1;
1833 EmuFeat.fVmxNmiExit = 1;
1834 EmuFeat.fVmxVirtNmi = 1;
1835 EmuFeat.fVmxPreemptTimer = 0; /* pVM->cpum.s.fNestedVmxPreemptTimer -- Currently disabled on purpose, see @bugref{9180#c108}. */
1836 EmuFeat.fVmxPostedInt = 0;
1837 EmuFeat.fVmxIntWindowExit = 1;
1838 EmuFeat.fVmxTscOffsetting = 1;
1839 EmuFeat.fVmxHltExit = 1;
1840 EmuFeat.fVmxInvlpgExit = 1;
1841 EmuFeat.fVmxMwaitExit = 1;
1842 EmuFeat.fVmxRdpmcExit = 1;
1843 EmuFeat.fVmxRdtscExit = 1;
1844 EmuFeat.fVmxCr3LoadExit = 1;
1845 EmuFeat.fVmxCr3StoreExit = 1;
1846 EmuFeat.fVmxTertiaryExecCtls = 0;
1847 EmuFeat.fVmxCr8LoadExit = 1;
1848 EmuFeat.fVmxCr8StoreExit = 1;
1849 EmuFeat.fVmxUseTprShadow = 1;
1850 EmuFeat.fVmxNmiWindowExit = 0;
1851 EmuFeat.fVmxMovDRxExit = 1;
1852 EmuFeat.fVmxUncondIoExit = 1;
1853 EmuFeat.fVmxUseIoBitmaps = 1;
1854 EmuFeat.fVmxMonitorTrapFlag = 0;
1855 EmuFeat.fVmxUseMsrBitmaps = 1;
1856 EmuFeat.fVmxMonitorExit = 1;
1857 EmuFeat.fVmxPauseExit = 1;
1858 EmuFeat.fVmxSecondaryExecCtls = 1;
1859 EmuFeat.fVmxVirtApicAccess = 1;
1860 EmuFeat.fVmxEpt = pVM->cpum.s.fNestedVmxEpt;
1861 EmuFeat.fVmxDescTableExit = 1;
1862 EmuFeat.fVmxRdtscp = 1;
1863 EmuFeat.fVmxVirtX2ApicMode = 0;
1864 EmuFeat.fVmxVpid = EmuFeat.fVmxEpt;
1865 EmuFeat.fVmxWbinvdExit = 1;
1866 EmuFeat.fVmxUnrestrictedGuest = pVM->cpum.s.fNestedVmxUnrestrictedGuest;
1867 EmuFeat.fVmxApicRegVirt = 0;
1868 EmuFeat.fVmxVirtIntDelivery = 0;
1869 EmuFeat.fVmxPauseLoopExit = 0;
1870 EmuFeat.fVmxRdrandExit = 0;
1871 EmuFeat.fVmxInvpcid = 1;
1872 EmuFeat.fVmxVmFunc = 0;
1873 EmuFeat.fVmxVmcsShadowing = 0;
1874 EmuFeat.fVmxRdseedExit = 0;
1875 EmuFeat.fVmxPml = 0;
1876 EmuFeat.fVmxEptXcptVe = 0;
1877 EmuFeat.fVmxXsavesXrstors = 0;
1878 EmuFeat.fVmxUseTscScaling = 0;
1879 EmuFeat.fVmxLoadIwKeyExit = 0;
1880 EmuFeat.fVmxEntryLoadDebugCtls = 1;
1881 EmuFeat.fVmxIa32eModeGuest = 1;
1882 EmuFeat.fVmxEntryLoadEferMsr = 1;
1883 EmuFeat.fVmxEntryLoadPatMsr = 0;
1884 EmuFeat.fVmxExitSaveDebugCtls = 1;
1885 EmuFeat.fVmxHostAddrSpaceSize = 1;
1886 EmuFeat.fVmxExitAckExtInt = 1;
1887 EmuFeat.fVmxExitSavePatMsr = 0;
1888 EmuFeat.fVmxExitLoadPatMsr = 0;
1889 EmuFeat.fVmxExitSaveEferMsr = 1;
1890 EmuFeat.fVmxExitLoadEferMsr = 1;
1891 EmuFeat.fVmxSavePreemptTimer = 0; /* Cannot be enabled if VMX-preemption timer is disabled. */
1892 EmuFeat.fVmxExitSaveEferLma = 1; /* Cannot be disabled if unrestricted guest is enabled. */
1893 EmuFeat.fVmxIntelPt = 0;
1894 EmuFeat.fVmxVmwriteAll = 0; /** @todo NSTVMX: enable this when nested VMCS shadowing is enabled. */
1895 EmuFeat.fVmxEntryInjectSoftInt = 1;
1896
1897 /*
1898 * Merge guest features.
1899 *
1900 * When hardware-assisted VMX may be used, any feature we emulate must also be supported
1901 * by the hardware, hence we merge our emulated features with the host features below.
1902 */
1903 PCCPUMFEATURES pBaseFeat = cpumR3IsHwAssistNstGstExecAllowed(pVM) ? &pVM->cpum.s.HostFeatures : &EmuFeat;
1904 PCPUMFEATURES pGuestFeat = &pVM->cpum.s.GuestFeatures;
1905 Assert(pBaseFeat->fVmx);
1906 pGuestFeat->fVmxInsOutInfo = (pBaseFeat->fVmxInsOutInfo & EmuFeat.fVmxInsOutInfo );
1907 pGuestFeat->fVmxExtIntExit = (pBaseFeat->fVmxExtIntExit & EmuFeat.fVmxExtIntExit );
1908 pGuestFeat->fVmxNmiExit = (pBaseFeat->fVmxNmiExit & EmuFeat.fVmxNmiExit );
1909 pGuestFeat->fVmxVirtNmi = (pBaseFeat->fVmxVirtNmi & EmuFeat.fVmxVirtNmi );
1910 pGuestFeat->fVmxPreemptTimer = (pBaseFeat->fVmxPreemptTimer & EmuFeat.fVmxPreemptTimer );
1911 pGuestFeat->fVmxPostedInt = (pBaseFeat->fVmxPostedInt & EmuFeat.fVmxPostedInt );
1912 pGuestFeat->fVmxIntWindowExit = (pBaseFeat->fVmxIntWindowExit & EmuFeat.fVmxIntWindowExit );
1913 pGuestFeat->fVmxTscOffsetting = (pBaseFeat->fVmxTscOffsetting & EmuFeat.fVmxTscOffsetting );
1914 pGuestFeat->fVmxHltExit = (pBaseFeat->fVmxHltExit & EmuFeat.fVmxHltExit );
1915 pGuestFeat->fVmxInvlpgExit = (pBaseFeat->fVmxInvlpgExit & EmuFeat.fVmxInvlpgExit );
1916 pGuestFeat->fVmxMwaitExit = (pBaseFeat->fVmxMwaitExit & EmuFeat.fVmxMwaitExit );
1917 pGuestFeat->fVmxRdpmcExit = (pBaseFeat->fVmxRdpmcExit & EmuFeat.fVmxRdpmcExit );
1918 pGuestFeat->fVmxRdtscExit = (pBaseFeat->fVmxRdtscExit & EmuFeat.fVmxRdtscExit );
1919 pGuestFeat->fVmxCr3LoadExit = (pBaseFeat->fVmxCr3LoadExit & EmuFeat.fVmxCr3LoadExit );
1920 pGuestFeat->fVmxCr3StoreExit = (pBaseFeat->fVmxCr3StoreExit & EmuFeat.fVmxCr3StoreExit );
1921 pGuestFeat->fVmxTertiaryExecCtls = (pBaseFeat->fVmxTertiaryExecCtls & EmuFeat.fVmxTertiaryExecCtls );
1922 pGuestFeat->fVmxCr8LoadExit = (pBaseFeat->fVmxCr8LoadExit & EmuFeat.fVmxCr8LoadExit );
1923 pGuestFeat->fVmxCr8StoreExit = (pBaseFeat->fVmxCr8StoreExit & EmuFeat.fVmxCr8StoreExit );
1924 pGuestFeat->fVmxUseTprShadow = (pBaseFeat->fVmxUseTprShadow & EmuFeat.fVmxUseTprShadow );
1925 pGuestFeat->fVmxNmiWindowExit = (pBaseFeat->fVmxNmiWindowExit & EmuFeat.fVmxNmiWindowExit );
1926 pGuestFeat->fVmxMovDRxExit = (pBaseFeat->fVmxMovDRxExit & EmuFeat.fVmxMovDRxExit );
1927 pGuestFeat->fVmxUncondIoExit = (pBaseFeat->fVmxUncondIoExit & EmuFeat.fVmxUncondIoExit );
1928 pGuestFeat->fVmxUseIoBitmaps = (pBaseFeat->fVmxUseIoBitmaps & EmuFeat.fVmxUseIoBitmaps );
1929 pGuestFeat->fVmxMonitorTrapFlag = (pBaseFeat->fVmxMonitorTrapFlag & EmuFeat.fVmxMonitorTrapFlag );
1930 pGuestFeat->fVmxUseMsrBitmaps = (pBaseFeat->fVmxUseMsrBitmaps & EmuFeat.fVmxUseMsrBitmaps );
1931 pGuestFeat->fVmxMonitorExit = (pBaseFeat->fVmxMonitorExit & EmuFeat.fVmxMonitorExit );
1932 pGuestFeat->fVmxPauseExit = (pBaseFeat->fVmxPauseExit & EmuFeat.fVmxPauseExit );
1933 pGuestFeat->fVmxSecondaryExecCtls = (pBaseFeat->fVmxSecondaryExecCtls & EmuFeat.fVmxSecondaryExecCtls );
1934 pGuestFeat->fVmxVirtApicAccess = (pBaseFeat->fVmxVirtApicAccess & EmuFeat.fVmxVirtApicAccess );
1935 pGuestFeat->fVmxEpt = (pBaseFeat->fVmxEpt & EmuFeat.fVmxEpt );
1936 pGuestFeat->fVmxDescTableExit = (pBaseFeat->fVmxDescTableExit & EmuFeat.fVmxDescTableExit );
1937 pGuestFeat->fVmxRdtscp = (pBaseFeat->fVmxRdtscp & EmuFeat.fVmxRdtscp );
1938 pGuestFeat->fVmxVirtX2ApicMode = (pBaseFeat->fVmxVirtX2ApicMode & EmuFeat.fVmxVirtX2ApicMode );
1939 pGuestFeat->fVmxVpid = (pBaseFeat->fVmxVpid & EmuFeat.fVmxVpid );
1940 pGuestFeat->fVmxWbinvdExit = (pBaseFeat->fVmxWbinvdExit & EmuFeat.fVmxWbinvdExit );
1941 pGuestFeat->fVmxUnrestrictedGuest = (pBaseFeat->fVmxUnrestrictedGuest & EmuFeat.fVmxUnrestrictedGuest );
1942 pGuestFeat->fVmxApicRegVirt = (pBaseFeat->fVmxApicRegVirt & EmuFeat.fVmxApicRegVirt );
1943 pGuestFeat->fVmxVirtIntDelivery = (pBaseFeat->fVmxVirtIntDelivery & EmuFeat.fVmxVirtIntDelivery );
1944 pGuestFeat->fVmxPauseLoopExit = (pBaseFeat->fVmxPauseLoopExit & EmuFeat.fVmxPauseLoopExit );
1945 pGuestFeat->fVmxRdrandExit = (pBaseFeat->fVmxRdrandExit & EmuFeat.fVmxRdrandExit );
1946 pGuestFeat->fVmxInvpcid = (pBaseFeat->fVmxInvpcid & EmuFeat.fVmxInvpcid );
1947 pGuestFeat->fVmxVmFunc = (pBaseFeat->fVmxVmFunc & EmuFeat.fVmxVmFunc );
1948 pGuestFeat->fVmxVmcsShadowing = (pBaseFeat->fVmxVmcsShadowing & EmuFeat.fVmxVmcsShadowing );
1949 pGuestFeat->fVmxRdseedExit = (pBaseFeat->fVmxRdseedExit & EmuFeat.fVmxRdseedExit );
1950 pGuestFeat->fVmxPml = (pBaseFeat->fVmxPml & EmuFeat.fVmxPml );
1951 pGuestFeat->fVmxEptXcptVe = (pBaseFeat->fVmxEptXcptVe & EmuFeat.fVmxEptXcptVe );
1952 pGuestFeat->fVmxXsavesXrstors = (pBaseFeat->fVmxXsavesXrstors & EmuFeat.fVmxXsavesXrstors );
1953 pGuestFeat->fVmxUseTscScaling = (pBaseFeat->fVmxUseTscScaling & EmuFeat.fVmxUseTscScaling );
1954 pGuestFeat->fVmxLoadIwKeyExit = (pBaseFeat->fVmxLoadIwKeyExit & EmuFeat.fVmxLoadIwKeyExit );
1955 pGuestFeat->fVmxEntryLoadDebugCtls = (pBaseFeat->fVmxEntryLoadDebugCtls & EmuFeat.fVmxEntryLoadDebugCtls );
1956 pGuestFeat->fVmxIa32eModeGuest = (pBaseFeat->fVmxIa32eModeGuest & EmuFeat.fVmxIa32eModeGuest );
1957 pGuestFeat->fVmxEntryLoadEferMsr = (pBaseFeat->fVmxEntryLoadEferMsr & EmuFeat.fVmxEntryLoadEferMsr );
1958 pGuestFeat->fVmxEntryLoadPatMsr = (pBaseFeat->fVmxEntryLoadPatMsr & EmuFeat.fVmxEntryLoadPatMsr );
1959 pGuestFeat->fVmxExitSaveDebugCtls = (pBaseFeat->fVmxExitSaveDebugCtls & EmuFeat.fVmxExitSaveDebugCtls );
1960 pGuestFeat->fVmxHostAddrSpaceSize = (pBaseFeat->fVmxHostAddrSpaceSize & EmuFeat.fVmxHostAddrSpaceSize );
1961 pGuestFeat->fVmxExitAckExtInt = (pBaseFeat->fVmxExitAckExtInt & EmuFeat.fVmxExitAckExtInt );
1962 pGuestFeat->fVmxExitSavePatMsr = (pBaseFeat->fVmxExitSavePatMsr & EmuFeat.fVmxExitSavePatMsr );
1963 pGuestFeat->fVmxExitLoadPatMsr = (pBaseFeat->fVmxExitLoadPatMsr & EmuFeat.fVmxExitLoadPatMsr );
1964 pGuestFeat->fVmxExitSaveEferMsr = (pBaseFeat->fVmxExitSaveEferMsr & EmuFeat.fVmxExitSaveEferMsr );
1965 pGuestFeat->fVmxExitLoadEferMsr = (pBaseFeat->fVmxExitLoadEferMsr & EmuFeat.fVmxExitLoadEferMsr );
1966 pGuestFeat->fVmxSavePreemptTimer = (pBaseFeat->fVmxSavePreemptTimer & EmuFeat.fVmxSavePreemptTimer );
1967 pGuestFeat->fVmxExitSaveEferLma = (pBaseFeat->fVmxExitSaveEferLma & EmuFeat.fVmxExitSaveEferLma );
1968 pGuestFeat->fVmxIntelPt = (pBaseFeat->fVmxIntelPt & EmuFeat.fVmxIntelPt );
1969 pGuestFeat->fVmxVmwriteAll = (pBaseFeat->fVmxVmwriteAll & EmuFeat.fVmxVmwriteAll );
1970 pGuestFeat->fVmxEntryInjectSoftInt = (pBaseFeat->fVmxEntryInjectSoftInt & EmuFeat.fVmxEntryInjectSoftInt );
1971
1972 /* Don't expose VMX preemption timer if host is subject to VMX-preemption timer erratum. */
1973 if ( pGuestFeat->fVmxPreemptTimer
1974 && HMIsSubjectToVmxPreemptTimerErratum())
1975 {
1976 LogRel(("CPUM: Warning! VMX-preemption timer not exposed to guest due to host CPU erratum.\n"));
1977 pGuestFeat->fVmxPreemptTimer = 0;
1978 pGuestFeat->fVmxSavePreemptTimer = 0;
1979 }
1980
1981 /* Sanity checking. */
1982 if (!pGuestFeat->fVmxSecondaryExecCtls)
1983 {
1984 Assert(!pGuestFeat->fVmxVirtApicAccess);
1985 Assert(!pGuestFeat->fVmxEpt);
1986 Assert(!pGuestFeat->fVmxDescTableExit);
1987 Assert(!pGuestFeat->fVmxRdtscp);
1988 Assert(!pGuestFeat->fVmxVirtX2ApicMode);
1989 Assert(!pGuestFeat->fVmxVpid);
1990 Assert(!pGuestFeat->fVmxWbinvdExit);
1991 Assert(!pGuestFeat->fVmxUnrestrictedGuest);
1992 Assert(!pGuestFeat->fVmxApicRegVirt);
1993 Assert(!pGuestFeat->fVmxVirtIntDelivery);
1994 Assert(!pGuestFeat->fVmxPauseLoopExit);
1995 Assert(!pGuestFeat->fVmxRdrandExit);
1996 Assert(!pGuestFeat->fVmxInvpcid);
1997 Assert(!pGuestFeat->fVmxVmFunc);
1998 Assert(!pGuestFeat->fVmxVmcsShadowing);
1999 Assert(!pGuestFeat->fVmxRdseedExit);
2000 Assert(!pGuestFeat->fVmxPml);
2001 Assert(!pGuestFeat->fVmxEptXcptVe);
2002 Assert(!pGuestFeat->fVmxXsavesXrstors);
2003 Assert(!pGuestFeat->fVmxUseTscScaling);
2004 }
2005 else if (pGuestFeat->fVmxUnrestrictedGuest)
2006 {
2007 /* See footnote in Intel spec. 27.2 "Recording VM-Exit Information And Updating VM-entry Control Fields". */
2008 Assert(pGuestFeat->fVmxExitSaveEferLma);
2009 /* Unrestricted guest execution requires EPT. See Intel spec. 25.2.1.1 "VM-Execution Control Fields". */
2010 Assert(pGuestFeat->fVmxEpt);
2011 }
2012
2013 if (!pGuestFeat->fVmxTertiaryExecCtls)
2014 Assert(!pGuestFeat->fVmxLoadIwKeyExit);
2015
2016 /*
2017 * Finally initialize the VMX guest MSRs.
2018 */
2019 cpumR3InitVmxGuestMsrs(pVM, pHostVmxMsrs, pGuestFeat, pGuestVmxMsrs);
2020}
2021
2022
2023/**
2024 * Gets the host hardware-virtualization MSRs.
2025 *
2026 * @returns VBox status code.
2027 * @param pMsrs Where to store the MSRs.
2028 */
2029static int cpumR3GetHostHwvirtMsrs(PCPUMMSRS pMsrs)
2030{
2031 Assert(pMsrs);
2032
2033 uint32_t fCaps = 0;
2034 int rc = SUPR3QueryVTCaps(&fCaps);
2035 if (RT_SUCCESS(rc))
2036 {
2037 if (fCaps & (SUPVTCAPS_VT_X | SUPVTCAPS_AMD_V))
2038 {
2039 SUPHWVIRTMSRS HwvirtMsrs;
2040 rc = SUPR3GetHwvirtMsrs(&HwvirtMsrs, false /* fForceRequery */);
2041 if (RT_SUCCESS(rc))
2042 {
2043 if (fCaps & SUPVTCAPS_VT_X)
2044 HMGetVmxMsrsFromHwvirtMsrs(&HwvirtMsrs, &pMsrs->hwvirt.vmx);
2045 else
2046 HMGetSvmMsrsFromHwvirtMsrs(&HwvirtMsrs, &pMsrs->hwvirt.svm);
2047 return VINF_SUCCESS;
2048 }
2049
2050 LogRel(("CPUM: Querying hardware-virtualization MSRs failed. rc=%Rrc\n", rc));
2051 return rc;
2052 }
2053
2054 LogRel(("CPUM: Querying hardware-virtualization capability succeeded but did not find VT-x or AMD-V\n"));
2055 return VERR_INTERNAL_ERROR_5;
2056 }
2057 LogRel(("CPUM: No hardware-virtualization capability detected\n"));
2058 return VINF_SUCCESS;
2059}
2060
2061
2062/**
2063 * @callback_method_impl{FNTMTIMERINT,
2064 * Callback that fires when the nested VMX-preemption timer expired.}
2065 */
2066static DECLCALLBACK(void) cpumR3VmxPreemptTimerCallback(PVM pVM, TMTIMERHANDLE hTimer, void *pvUser)
2067{
2068 RT_NOREF(pVM, hTimer);
2069 PVMCPU pVCpu = (PVMCPUR3)pvUser;
2070 AssertPtr(pVCpu);
2071 VMCPU_FF_SET(pVCpu, VMCPU_FF_VMX_PREEMPT_TIMER);
2072}
2073
2074
2075/**
2076 * Initializes the CPUM.
2077 *
2078 * @returns VBox status code.
2079 * @param pVM The cross context VM structure.
2080 */
2081VMMR3DECL(int) CPUMR3Init(PVM pVM)
2082{
2083 LogFlow(("CPUMR3Init\n"));
2084
2085 /*
2086 * Assert alignment, sizes and tables.
2087 */
2088 AssertCompileMemberAlignment(VM, cpum.s, 32);
2089 AssertCompile(sizeof(pVM->cpum.s) <= sizeof(pVM->cpum.padding));
2090 AssertCompileSizeAlignment(CPUMCTX, 64);
2091 AssertCompileSizeAlignment(CPUMCTXMSRS, 64);
2092 AssertCompileSizeAlignment(CPUMHOSTCTX, 64);
2093 AssertCompileMemberAlignment(VM, cpum, 64);
2094 AssertCompileMemberAlignment(VMCPU, cpum.s, 64);
2095#ifdef VBOX_STRICT
2096 int rc2 = cpumR3MsrStrictInitChecks();
2097 AssertRCReturn(rc2, rc2);
2098#endif
2099
2100 /*
2101 * Gather info about the host CPU.
2102 */
2103 if (!ASMHasCpuId())
2104 {
2105 LogRel(("The CPU doesn't support CPUID!\n"));
2106 return VERR_UNSUPPORTED_CPU;
2107 }
2108
2109 pVM->cpum.s.fHostMxCsrMask = CPUMR3DeterminHostMxCsrMask();
2110
2111 CPUMMSRS HostMsrs;
2112 RT_ZERO(HostMsrs);
2113 int rc = cpumR3GetHostHwvirtMsrs(&HostMsrs);
2114 AssertLogRelRCReturn(rc, rc);
2115
2116 PCPUMCPUIDLEAF paLeaves;
2117 uint32_t cLeaves;
2118 rc = CPUMR3CpuIdCollectLeaves(&paLeaves, &cLeaves);
2119 AssertLogRelRCReturn(rc, rc);
2120
2121 rc = cpumR3CpuIdExplodeFeatures(paLeaves, cLeaves, &HostMsrs, &pVM->cpum.s.HostFeatures);
2122 RTMemFree(paLeaves);
2123 AssertLogRelRCReturn(rc, rc);
2124 pVM->cpum.s.GuestFeatures.enmCpuVendor = pVM->cpum.s.HostFeatures.enmCpuVendor;
2125
2126 /*
2127 * Check that the CPU supports the minimum features we require.
2128 */
2129 if (!pVM->cpum.s.HostFeatures.fFxSaveRstor)
2130 return VMSetError(pVM, VERR_UNSUPPORTED_CPU, RT_SRC_POS, "Host CPU does not support the FXSAVE/FXRSTOR instruction.");
2131 if (!pVM->cpum.s.HostFeatures.fMmx)
2132 return VMSetError(pVM, VERR_UNSUPPORTED_CPU, RT_SRC_POS, "Host CPU does not support MMX.");
2133 if (!pVM->cpum.s.HostFeatures.fTsc)
2134 return VMSetError(pVM, VERR_UNSUPPORTED_CPU, RT_SRC_POS, "Host CPU does not support RDTSC.");
2135
2136 /*
2137 * Setup the CR4 AND and OR masks used in the raw-mode switcher.
2138 */
2139 pVM->cpum.s.CR4.AndMask = X86_CR4_OSXMMEEXCPT | X86_CR4_PVI | X86_CR4_VME;
2140 pVM->cpum.s.CR4.OrMask = X86_CR4_OSFXSR;
2141
2142 /*
2143 * Figure out which XSAVE/XRSTOR features are available on the host.
2144 */
2145 uint64_t fXcr0Host = 0;
2146 uint64_t fXStateHostMask = 0;
2147 if ( pVM->cpum.s.HostFeatures.fXSaveRstor
2148 && pVM->cpum.s.HostFeatures.fOpSysXSaveRstor)
2149 {
2150 fXStateHostMask = fXcr0Host = ASMGetXcr0();
2151 fXStateHostMask &= XSAVE_C_X87 | XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI;
2152 AssertLogRelMsgStmt((fXStateHostMask & (XSAVE_C_X87 | XSAVE_C_SSE)) == (XSAVE_C_X87 | XSAVE_C_SSE),
2153 ("%#llx\n", fXStateHostMask), fXStateHostMask = 0);
2154 }
2155 pVM->cpum.s.fXStateHostMask = fXStateHostMask;
2156 LogRel(("CPUM: fXStateHostMask=%#llx; initial: %#llx; host XCR0=%#llx\n",
2157 pVM->cpum.s.fXStateHostMask, fXStateHostMask, fXcr0Host));
2158
2159 /*
2160 * Initialize the host XSAVE/XRSTOR mask.
2161 */
2162 uint32_t cbMaxXState = pVM->cpum.s.HostFeatures.cbMaxExtendedState;
2163 cbMaxXState = RT_ALIGN(cbMaxXState, 128);
2164 AssertLogRelReturn( pVM->cpum.s.HostFeatures.cbMaxExtendedState >= sizeof(X86FXSTATE)
2165 && pVM->cpum.s.HostFeatures.cbMaxExtendedState <= sizeof(pVM->apCpusR3[0]->cpum.s.Host.XState)
2166 && pVM->cpum.s.HostFeatures.cbMaxExtendedState <= sizeof(pVM->apCpusR3[0]->cpum.s.Guest.XState)
2167 , VERR_CPUM_IPE_2);
2168
2169 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2170 {
2171 PVMCPU pVCpu = pVM->apCpusR3[i];
2172
2173 pVCpu->cpum.s.Host.fXStateMask = fXStateHostMask;
2174 pVCpu->cpum.s.hNestedVmxPreemptTimer = NIL_TMTIMERHANDLE;
2175 }
2176
2177 /*
2178 * Register saved state data item.
2179 */
2180 rc = SSMR3RegisterInternal(pVM, "cpum", 1, CPUM_SAVED_STATE_VERSION, sizeof(CPUM),
2181 NULL, cpumR3LiveExec, NULL,
2182 NULL, cpumR3SaveExec, NULL,
2183 cpumR3LoadPrep, cpumR3LoadExec, cpumR3LoadDone);
2184 if (RT_FAILURE(rc))
2185 return rc;
2186
2187 /*
2188 * Register info handlers and registers with the debugger facility.
2189 */
2190 DBGFR3InfoRegisterInternalEx(pVM, "cpum", "Displays the all the cpu states.",
2191 &cpumR3InfoAll, DBGFINFO_FLAGS_ALL_EMTS);
2192 DBGFR3InfoRegisterInternalEx(pVM, "cpumguest", "Displays the guest cpu state.",
2193 &cpumR3InfoGuest, DBGFINFO_FLAGS_ALL_EMTS);
2194 DBGFR3InfoRegisterInternalEx(pVM, "cpumguesthwvirt", "Displays the guest hwvirt. cpu state.",
2195 &cpumR3InfoGuestHwvirt, DBGFINFO_FLAGS_ALL_EMTS);
2196 DBGFR3InfoRegisterInternalEx(pVM, "cpumhyper", "Displays the hypervisor cpu state.",
2197 &cpumR3InfoHyper, DBGFINFO_FLAGS_ALL_EMTS);
2198 DBGFR3InfoRegisterInternalEx(pVM, "cpumhost", "Displays the host cpu state.",
2199 &cpumR3InfoHost, DBGFINFO_FLAGS_ALL_EMTS);
2200 DBGFR3InfoRegisterInternalEx(pVM, "cpumguestinstr", "Displays the current guest instruction.",
2201 &cpumR3InfoGuestInstr, DBGFINFO_FLAGS_ALL_EMTS);
2202 DBGFR3InfoRegisterInternal( pVM, "cpuid", "Displays the guest cpuid leaves.", &cpumR3CpuIdInfo);
2203 DBGFR3InfoRegisterInternal( pVM, "cpumvmxfeat", "Displays the host and guest VMX hwvirt. features.",
2204 &cpumR3InfoVmxFeatures);
2205
2206 rc = cpumR3DbgInit(pVM);
2207 if (RT_FAILURE(rc))
2208 return rc;
2209
2210 /*
2211 * Check if we need to workaround partial/leaky FPU handling.
2212 */
2213 cpumR3CheckLeakyFpu(pVM);
2214
2215 /*
2216 * Initialize the Guest CPUID and MSR states.
2217 */
2218 rc = cpumR3InitCpuIdAndMsrs(pVM, &HostMsrs);
2219 if (RT_FAILURE(rc))
2220 return rc;
2221
2222 /*
2223 * Allocate memory required by the guest hardware-virtualization structures.
2224 * This must be done after initializing CPUID/MSR features as we access the
2225 * the VMX/SVM guest features below.
2226 *
2227 * In the case of nested VT-x, we also need to create the per-VCPU
2228 * VMX preemption timers.
2229 */
2230 if (pVM->cpum.s.GuestFeatures.fVmx)
2231 rc = cpumR3AllocVmxHwVirtState(pVM);
2232 else if (pVM->cpum.s.GuestFeatures.fSvm)
2233 cpumR3InitSvmHwVirtState(pVM);
2234 else
2235 Assert(pVM->apCpusR3[0]->cpum.s.Guest.hwvirt.enmHwvirt == CPUMHWVIRT_NONE);
2236 if (RT_FAILURE(rc))
2237 return rc;
2238
2239 CPUMR3Reset(pVM);
2240 return VINF_SUCCESS;
2241}
2242
2243
2244/**
2245 * Applies relocations to data and code managed by this
2246 * component. This function will be called at init and
2247 * whenever the VMM need to relocate it self inside the GC.
2248 *
2249 * The CPUM will update the addresses used by the switcher.
2250 *
2251 * @param pVM The cross context VM structure.
2252 */
2253VMMR3DECL(void) CPUMR3Relocate(PVM pVM)
2254{
2255 RT_NOREF(pVM);
2256}
2257
2258
2259/**
2260 * Terminates the CPUM.
2261 *
2262 * Termination means cleaning up and freeing all resources,
2263 * the VM it self is at this point powered off or suspended.
2264 *
2265 * @returns VBox status code.
2266 * @param pVM The cross context VM structure.
2267 */
2268VMMR3DECL(int) CPUMR3Term(PVM pVM)
2269{
2270#ifdef VBOX_WITH_CRASHDUMP_MAGIC
2271 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2272 {
2273 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
2274 memset(pVCpu->cpum.s.aMagic, 0, sizeof(pVCpu->cpum.s.aMagic));
2275 pVCpu->cpum.s.uMagic = 0;
2276 pvCpu->cpum.s.Guest.dr[5] = 0;
2277 }
2278#endif
2279
2280 if (pVM->cpum.s.GuestFeatures.fVmx)
2281 {
2282 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2283 {
2284 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
2285 if (pVCpu->cpum.s.hNestedVmxPreemptTimer != NIL_TMTIMERHANDLE)
2286 {
2287 int rc = TMR3TimerDestroy(pVM, pVCpu->cpum.s.hNestedVmxPreemptTimer); AssertRC(rc);
2288 pVCpu->cpum.s.hNestedVmxPreemptTimer = NIL_TMTIMERHANDLE;
2289 }
2290 }
2291
2292 cpumR3FreeVmxHwVirtState(pVM);
2293 }
2294 return VINF_SUCCESS;
2295}
2296
2297
2298/**
2299 * Resets a virtual CPU.
2300 *
2301 * Used by CPUMR3Reset and CPU hot plugging.
2302 *
2303 * @param pVM The cross context VM structure.
2304 * @param pVCpu The cross context virtual CPU structure of the CPU that is
2305 * being reset. This may differ from the current EMT.
2306 */
2307VMMR3DECL(void) CPUMR3ResetCpu(PVM pVM, PVMCPU pVCpu)
2308{
2309 /** @todo anything different for VCPU > 0? */
2310 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
2311
2312 /*
2313 * Initialize everything to ZERO first.
2314 */
2315 uint32_t fUseFlags = pVCpu->cpum.s.fUseFlags & ~CPUM_USED_FPU_SINCE_REM;
2316
2317 RT_BZERO(pCtx, RT_UOFFSETOF(CPUMCTX, aoffXState));
2318
2319 pVCpu->cpum.s.fUseFlags = fUseFlags;
2320
2321 pCtx->cr0 = X86_CR0_CD | X86_CR0_NW | X86_CR0_ET; //0x60000010
2322 pCtx->eip = 0x0000fff0;
2323 pCtx->edx = 0x00000600; /* P6 processor */
2324 pCtx->eflags.Bits.u1Reserved0 = 1;
2325
2326 pCtx->cs.Sel = 0xf000;
2327 pCtx->cs.ValidSel = 0xf000;
2328 pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
2329 pCtx->cs.u64Base = UINT64_C(0xffff0000);
2330 pCtx->cs.u32Limit = 0x0000ffff;
2331 pCtx->cs.Attr.n.u1DescType = 1; /* code/data segment */
2332 pCtx->cs.Attr.n.u1Present = 1;
2333 pCtx->cs.Attr.n.u4Type = X86_SEL_TYPE_ER_ACC;
2334
2335 pCtx->ds.fFlags = CPUMSELREG_FLAGS_VALID;
2336 pCtx->ds.u32Limit = 0x0000ffff;
2337 pCtx->ds.Attr.n.u1DescType = 1; /* code/data segment */
2338 pCtx->ds.Attr.n.u1Present = 1;
2339 pCtx->ds.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
2340
2341 pCtx->es.fFlags = CPUMSELREG_FLAGS_VALID;
2342 pCtx->es.u32Limit = 0x0000ffff;
2343 pCtx->es.Attr.n.u1DescType = 1; /* code/data segment */
2344 pCtx->es.Attr.n.u1Present = 1;
2345 pCtx->es.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
2346
2347 pCtx->fs.fFlags = CPUMSELREG_FLAGS_VALID;
2348 pCtx->fs.u32Limit = 0x0000ffff;
2349 pCtx->fs.Attr.n.u1DescType = 1; /* code/data segment */
2350 pCtx->fs.Attr.n.u1Present = 1;
2351 pCtx->fs.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
2352
2353 pCtx->gs.fFlags = CPUMSELREG_FLAGS_VALID;
2354 pCtx->gs.u32Limit = 0x0000ffff;
2355 pCtx->gs.Attr.n.u1DescType = 1; /* code/data segment */
2356 pCtx->gs.Attr.n.u1Present = 1;
2357 pCtx->gs.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
2358
2359 pCtx->ss.fFlags = CPUMSELREG_FLAGS_VALID;
2360 pCtx->ss.u32Limit = 0x0000ffff;
2361 pCtx->ss.Attr.n.u1Present = 1;
2362 pCtx->ss.Attr.n.u1DescType = 1; /* code/data segment */
2363 pCtx->ss.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
2364
2365 pCtx->idtr.cbIdt = 0xffff;
2366 pCtx->gdtr.cbGdt = 0xffff;
2367
2368 pCtx->ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
2369 pCtx->ldtr.u32Limit = 0xffff;
2370 pCtx->ldtr.Attr.n.u1Present = 1;
2371 pCtx->ldtr.Attr.n.u4Type = X86_SEL_TYPE_SYS_LDT;
2372
2373 pCtx->tr.fFlags = CPUMSELREG_FLAGS_VALID;
2374 pCtx->tr.u32Limit = 0xffff;
2375 pCtx->tr.Attr.n.u1Present = 1;
2376 pCtx->tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY; /* Deduction, not properly documented by Intel. */
2377
2378 pCtx->dr[6] = X86_DR6_INIT_VAL;
2379 pCtx->dr[7] = X86_DR7_INIT_VAL;
2380
2381 PX86FXSTATE pFpuCtx = &pCtx->XState.x87;
2382 pFpuCtx->FTW = 0x00; /* All empty (abbridged tag reg edition). */
2383 pFpuCtx->FCW = 0x37f;
2384
2385 /* Intel 64 and IA-32 Architectures Software Developer's Manual Volume 3A, Table 8-1.
2386 IA-32 Processor States Following Power-up, Reset, or INIT */
2387 pFpuCtx->MXCSR = 0x1F80;
2388 pFpuCtx->MXCSR_MASK = pVM->cpum.s.GuestInfo.fMxCsrMask; /** @todo check if REM messes this up... */
2389
2390 pCtx->aXcr[0] = XSAVE_C_X87;
2391 if (pVM->cpum.s.HostFeatures.cbMaxExtendedState >= RT_UOFFSETOF(X86XSAVEAREA, Hdr))
2392 {
2393 /* The entire FXSAVE state needs loading when we switch to XSAVE/XRSTOR
2394 as we don't know what happened before. (Bother optimize later?) */
2395 pCtx->XState.Hdr.bmXState = XSAVE_C_X87 | XSAVE_C_SSE;
2396 }
2397
2398 /*
2399 * MSRs.
2400 */
2401 /* Init PAT MSR */
2402 pCtx->msrPAT = MSR_IA32_CR_PAT_INIT_VAL;
2403
2404 /* EFER MBZ; see AMD64 Architecture Programmer's Manual Volume 2: Table 14-1. Initial Processor State.
2405 * The Intel docs don't mention it. */
2406 Assert(!pCtx->msrEFER);
2407
2408 /* IA32_MISC_ENABLE - not entirely sure what the init/reset state really
2409 is supposed to be here, just trying provide useful/sensible values. */
2410 PCPUMMSRRANGE pRange = cpumLookupMsrRange(pVM, MSR_IA32_MISC_ENABLE);
2411 if (pRange)
2412 {
2413 pVCpu->cpum.s.GuestMsrs.msr.MiscEnable = MSR_IA32_MISC_ENABLE_BTS_UNAVAIL
2414 | MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL
2415 | (pVM->cpum.s.GuestFeatures.fMonitorMWait ? MSR_IA32_MISC_ENABLE_MONITOR : 0)
2416 | MSR_IA32_MISC_ENABLE_FAST_STRINGS;
2417 pRange->fWrIgnMask |= MSR_IA32_MISC_ENABLE_BTS_UNAVAIL
2418 | MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL;
2419 pRange->fWrGpMask &= ~pVCpu->cpum.s.GuestMsrs.msr.MiscEnable;
2420 }
2421
2422 /** @todo Wire IA32_MISC_ENABLE bit 22 to our NT 4 CPUID trick. */
2423
2424 /** @todo r=ramshankar: Currently broken for SMP as TMCpuTickSet() expects to be
2425 * called from each EMT while we're getting called by CPUMR3Reset()
2426 * iteratively on the same thread. Fix later. */
2427#if 0 /** @todo r=bird: This we will do in TM, not here. */
2428 /* TSC must be 0. Intel spec. Table 9-1. "IA-32 Processor States Following Power-up, Reset, or INIT." */
2429 CPUMSetGuestMsr(pVCpu, MSR_IA32_TSC, 0);
2430#endif
2431
2432
2433 /* C-state control. Guesses. */
2434 pVCpu->cpum.s.GuestMsrs.msr.PkgCStateCfgCtrl = 1 /*C1*/ | RT_BIT_32(25) | RT_BIT_32(26) | RT_BIT_32(27) | RT_BIT_32(28);
2435 /* For Nehalem+ and Atoms, the 0xE2 MSR (MSR_PKG_CST_CONFIG_CONTROL) is documented. For Core 2,
2436 * it's undocumented but exists as MSR_PMG_CST_CONFIG_CONTROL and has similar but not identical
2437 * functionality. The default value must be different due to incompatible write mask.
2438 */
2439 if (CPUMMICROARCH_IS_INTEL_CORE2(pVM->cpum.s.GuestFeatures.enmMicroarch))
2440 pVCpu->cpum.s.GuestMsrs.msr.PkgCStateCfgCtrl = 0x202a01; /* From Mac Pro Harpertown, unlocked. */
2441 else if (pVM->cpum.s.GuestFeatures.enmMicroarch == kCpumMicroarch_Intel_Core_Yonah)
2442 pVCpu->cpum.s.GuestMsrs.msr.PkgCStateCfgCtrl = 0x26740c; /* From MacBookPro1,1. */
2443
2444 /*
2445 * Hardware virtualization state.
2446 */
2447 CPUMSetGuestGif(pCtx, true);
2448 Assert(!pVM->cpum.s.GuestFeatures.fVmx || !pVM->cpum.s.GuestFeatures.fSvm); /* Paranoia. */
2449 if (pVM->cpum.s.GuestFeatures.fVmx)
2450 cpumR3ResetVmxHwVirtState(pVCpu);
2451 else if (pVM->cpum.s.GuestFeatures.fSvm)
2452 cpumR3ResetSvmHwVirtState(pVCpu);
2453}
2454
2455
2456/**
2457 * Resets the CPU.
2458 *
2459 * @returns VINF_SUCCESS.
2460 * @param pVM The cross context VM structure.
2461 */
2462VMMR3DECL(void) CPUMR3Reset(PVM pVM)
2463{
2464 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2465 {
2466 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
2467 CPUMR3ResetCpu(pVM, pVCpu);
2468
2469#ifdef VBOX_WITH_CRASHDUMP_MAGIC
2470
2471 /* Magic marker for searching in crash dumps. */
2472 strcpy((char *)pVCpu->.cpum.s.aMagic, "CPUMCPU Magic");
2473 pVCpu->cpum.s.uMagic = UINT64_C(0xDEADBEEFDEADBEEF);
2474 pVCpu->cpum.s.Guest->dr[5] = UINT64_C(0xDEADBEEFDEADBEEF);
2475#endif
2476 }
2477}
2478
2479
2480
2481
2482/**
2483 * Pass 0 live exec callback.
2484 *
2485 * @returns VINF_SSM_DONT_CALL_AGAIN.
2486 * @param pVM The cross context VM structure.
2487 * @param pSSM The saved state handle.
2488 * @param uPass The pass (0).
2489 */
2490static DECLCALLBACK(int) cpumR3LiveExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uPass)
2491{
2492 AssertReturn(uPass == 0, VERR_SSM_UNEXPECTED_PASS);
2493 cpumR3SaveCpuId(pVM, pSSM);
2494 return VINF_SSM_DONT_CALL_AGAIN;
2495}
2496
2497
2498/**
2499 * Execute state save operation.
2500 *
2501 * @returns VBox status code.
2502 * @param pVM The cross context VM structure.
2503 * @param pSSM SSM operation handle.
2504 */
2505static DECLCALLBACK(int) cpumR3SaveExec(PVM pVM, PSSMHANDLE pSSM)
2506{
2507 /*
2508 * Save.
2509 */
2510 SSMR3PutU32(pSSM, pVM->cCpus);
2511 SSMR3PutU32(pSSM, sizeof(pVM->apCpusR3[0]->cpum.s.GuestMsrs.msr));
2512 CPUMCTX DummyHyperCtx;
2513 RT_ZERO(DummyHyperCtx);
2514 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2515 {
2516 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
2517
2518 SSMR3PutStructEx(pSSM, &DummyHyperCtx, sizeof(DummyHyperCtx), 0, g_aCpumCtxFields, NULL);
2519
2520 PCPUMCTX pGstCtx = &pVCpu->cpum.s.Guest;
2521 SSMR3PutStructEx(pSSM, pGstCtx, sizeof(*pGstCtx), 0, g_aCpumCtxFields, NULL);
2522 SSMR3PutStructEx(pSSM, &pGstCtx->XState.x87, sizeof(pGstCtx->XState.x87), 0, g_aCpumX87Fields, NULL);
2523 if (pGstCtx->fXStateMask != 0)
2524 SSMR3PutStructEx(pSSM, &pGstCtx->XState.Hdr, sizeof(pGstCtx->XState.Hdr), 0, g_aCpumXSaveHdrFields, NULL);
2525 if (pGstCtx->fXStateMask & XSAVE_C_YMM)
2526 {
2527 PCX86XSAVEYMMHI pYmmHiCtx = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_YMM_BIT, PCX86XSAVEYMMHI);
2528 SSMR3PutStructEx(pSSM, pYmmHiCtx, sizeof(*pYmmHiCtx), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumYmmHiFields, NULL);
2529 }
2530 if (pGstCtx->fXStateMask & XSAVE_C_BNDREGS)
2531 {
2532 PCX86XSAVEBNDREGS pBndRegs = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_BNDREGS_BIT, PCX86XSAVEBNDREGS);
2533 SSMR3PutStructEx(pSSM, pBndRegs, sizeof(*pBndRegs), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumBndRegsFields, NULL);
2534 }
2535 if (pGstCtx->fXStateMask & XSAVE_C_BNDCSR)
2536 {
2537 PCX86XSAVEBNDCFG pBndCfg = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_BNDCSR_BIT, PCX86XSAVEBNDCFG);
2538 SSMR3PutStructEx(pSSM, pBndCfg, sizeof(*pBndCfg), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumBndCfgFields, NULL);
2539 }
2540 if (pGstCtx->fXStateMask & XSAVE_C_ZMM_HI256)
2541 {
2542 PCX86XSAVEZMMHI256 pZmmHi256 = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_ZMM_HI256_BIT, PCX86XSAVEZMMHI256);
2543 SSMR3PutStructEx(pSSM, pZmmHi256, sizeof(*pZmmHi256), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumZmmHi256Fields, NULL);
2544 }
2545 if (pGstCtx->fXStateMask & XSAVE_C_ZMM_16HI)
2546 {
2547 PCX86XSAVEZMM16HI pZmm16Hi = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_ZMM_16HI_BIT, PCX86XSAVEZMM16HI);
2548 SSMR3PutStructEx(pSSM, pZmm16Hi, sizeof(*pZmm16Hi), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumZmm16HiFields, NULL);
2549 }
2550 SSMR3PutU64(pSSM, pGstCtx->aPaePdpes[0].u);
2551 SSMR3PutU64(pSSM, pGstCtx->aPaePdpes[1].u);
2552 SSMR3PutU64(pSSM, pGstCtx->aPaePdpes[2].u);
2553 SSMR3PutU64(pSSM, pGstCtx->aPaePdpes[3].u);
2554 if (pVM->cpum.s.GuestFeatures.fSvm)
2555 {
2556 SSMR3PutU64(pSSM, pGstCtx->hwvirt.svm.uMsrHSavePa);
2557 SSMR3PutGCPhys(pSSM, pGstCtx->hwvirt.svm.GCPhysVmcb);
2558 SSMR3PutU64(pSSM, pGstCtx->hwvirt.svm.uPrevPauseTick);
2559 SSMR3PutU16(pSSM, pGstCtx->hwvirt.svm.cPauseFilter);
2560 SSMR3PutU16(pSSM, pGstCtx->hwvirt.svm.cPauseFilterThreshold);
2561 SSMR3PutBool(pSSM, pGstCtx->hwvirt.svm.fInterceptEvents);
2562 SSMR3PutStructEx(pSSM, &pGstCtx->hwvirt.svm.HostState, sizeof(pGstCtx->hwvirt.svm.HostState), 0 /* fFlags */,
2563 g_aSvmHwvirtHostState, NULL /* pvUser */);
2564 SSMR3PutMem(pSSM, &pGstCtx->hwvirt.svm.Vmcb, sizeof(pGstCtx->hwvirt.svm.Vmcb));
2565 SSMR3PutMem(pSSM, &pGstCtx->hwvirt.svm.abMsrBitmap[0], sizeof(pGstCtx->hwvirt.svm.abMsrBitmap));
2566 SSMR3PutMem(pSSM, &pGstCtx->hwvirt.svm.abIoBitmap[0], sizeof(pGstCtx->hwvirt.svm.abIoBitmap));
2567 SSMR3PutU32(pSSM, pGstCtx->hwvirt.fLocalForcedActions);
2568 SSMR3PutBool(pSSM, pGstCtx->hwvirt.fGif);
2569 }
2570 if (pVM->cpum.s.GuestFeatures.fVmx)
2571 {
2572 SSMR3PutGCPhys(pSSM, pGstCtx->hwvirt.vmx.GCPhysVmxon);
2573 SSMR3PutGCPhys(pSSM, pGstCtx->hwvirt.vmx.GCPhysVmcs);
2574 SSMR3PutGCPhys(pSSM, pGstCtx->hwvirt.vmx.GCPhysShadowVmcs);
2575 SSMR3PutBool(pSSM, pGstCtx->hwvirt.vmx.fInVmxRootMode);
2576 SSMR3PutBool(pSSM, pGstCtx->hwvirt.vmx.fInVmxNonRootMode);
2577 SSMR3PutBool(pSSM, pGstCtx->hwvirt.vmx.fInterceptEvents);
2578 SSMR3PutBool(pSSM, pGstCtx->hwvirt.vmx.fNmiUnblockingIret);
2579 SSMR3PutStructEx(pSSM, &pGstCtx->hwvirt.vmx.Vmcs, sizeof(pGstCtx->hwvirt.vmx.Vmcs), 0, g_aVmxHwvirtVmcs, NULL);
2580 SSMR3PutStructEx(pSSM, pGstCtx->hwvirt.vmx.pShadowVmcsR3, sizeof(VMXVVMCS), 0, g_aVmxHwvirtVmcs, NULL);
2581 SSMR3PutMem(pSSM, pGstCtx->hwvirt.vmx.pvVmreadBitmapR3, VMX_V_VMREAD_VMWRITE_BITMAP_SIZE);
2582 SSMR3PutMem(pSSM, pGstCtx->hwvirt.vmx.pvVmwriteBitmapR3, VMX_V_VMREAD_VMWRITE_BITMAP_SIZE);
2583 SSMR3PutMem(pSSM, pGstCtx->hwvirt.vmx.pEntryMsrLoadAreaR3, VMX_V_AUTOMSR_AREA_SIZE);
2584 SSMR3PutMem(pSSM, pGstCtx->hwvirt.vmx.pExitMsrStoreAreaR3, VMX_V_AUTOMSR_AREA_SIZE);
2585 SSMR3PutMem(pSSM, pGstCtx->hwvirt.vmx.pExitMsrLoadAreaR3, VMX_V_AUTOMSR_AREA_SIZE);
2586 SSMR3PutMem(pSSM, pGstCtx->hwvirt.vmx.pvMsrBitmapR3, VMX_V_MSR_BITMAP_SIZE);
2587 SSMR3PutMem(pSSM, pGstCtx->hwvirt.vmx.pvIoBitmapR3, VMX_V_IO_BITMAP_A_SIZE + VMX_V_IO_BITMAP_B_SIZE);
2588 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.uFirstPauseLoopTick);
2589 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.uPrevPauseTick);
2590 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.uEntryTick);
2591 SSMR3PutU16(pSSM, pGstCtx->hwvirt.vmx.offVirtApicWrite);
2592 SSMR3PutBool(pSSM, pGstCtx->hwvirt.vmx.fVirtNmiBlocking);
2593 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64FeatCtrl);
2594 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64Basic);
2595 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.PinCtls.u);
2596 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.ProcCtls.u);
2597 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.ProcCtls2.u);
2598 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.ExitCtls.u);
2599 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.EntryCtls.u);
2600 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.TruePinCtls.u);
2601 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.TrueProcCtls.u);
2602 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.TrueEntryCtls.u);
2603 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.TrueExitCtls.u);
2604 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64Misc);
2605 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64Cr0Fixed0);
2606 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64Cr0Fixed1);
2607 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64Cr4Fixed0);
2608 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64Cr4Fixed1);
2609 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64VmcsEnum);
2610 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64VmFunc);
2611 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64EptVpidCaps);
2612 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64ProcCtls3);
2613 }
2614 SSMR3PutU32(pSSM, pVCpu->cpum.s.fUseFlags);
2615 SSMR3PutU32(pSSM, pVCpu->cpum.s.fChanged);
2616 AssertCompileSizeAlignment(pVCpu->cpum.s.GuestMsrs.msr, sizeof(uint64_t));
2617 SSMR3PutMem(pSSM, &pVCpu->cpum.s.GuestMsrs, sizeof(pVCpu->cpum.s.GuestMsrs.msr));
2618 }
2619
2620 cpumR3SaveCpuId(pVM, pSSM);
2621 return VINF_SUCCESS;
2622}
2623
2624
2625/**
2626 * @callback_method_impl{FNSSMINTLOADPREP}
2627 */
2628static DECLCALLBACK(int) cpumR3LoadPrep(PVM pVM, PSSMHANDLE pSSM)
2629{
2630 NOREF(pSSM);
2631 pVM->cpum.s.fPendingRestore = true;
2632 return VINF_SUCCESS;
2633}
2634
2635
2636/**
2637 * @callback_method_impl{FNSSMINTLOADEXEC}
2638 */
2639static DECLCALLBACK(int) cpumR3LoadExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
2640{
2641 int rc; /* Only for AssertRCReturn use. */
2642
2643 /*
2644 * Validate version.
2645 */
2646 if ( uVersion != CPUM_SAVED_STATE_VERSION_PAE_PDPES
2647 && uVersion != CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2
2648 && uVersion != CPUM_SAVED_STATE_VERSION_HWVIRT_VMX
2649 && uVersion != CPUM_SAVED_STATE_VERSION_HWVIRT_SVM
2650 && uVersion != CPUM_SAVED_STATE_VERSION_XSAVE
2651 && uVersion != CPUM_SAVED_STATE_VERSION_GOOD_CPUID_COUNT
2652 && uVersion != CPUM_SAVED_STATE_VERSION_BAD_CPUID_COUNT
2653 && uVersion != CPUM_SAVED_STATE_VERSION_PUT_STRUCT
2654 && uVersion != CPUM_SAVED_STATE_VERSION_MEM
2655 && uVersion != CPUM_SAVED_STATE_VERSION_NO_MSR_SIZE
2656 && uVersion != CPUM_SAVED_STATE_VERSION_VER3_2
2657 && uVersion != CPUM_SAVED_STATE_VERSION_VER3_0
2658 && uVersion != CPUM_SAVED_STATE_VERSION_VER2_1_NOMSR
2659 && uVersion != CPUM_SAVED_STATE_VERSION_VER2_0
2660 && uVersion != CPUM_SAVED_STATE_VERSION_VER1_6)
2661 {
2662 AssertMsgFailed(("cpumR3LoadExec: Invalid version uVersion=%d!\n", uVersion));
2663 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
2664 }
2665
2666 if (uPass == SSM_PASS_FINAL)
2667 {
2668 /*
2669 * Set the size of RTGCPTR for SSMR3GetGCPtr. (Only necessary for
2670 * really old SSM file versions.)
2671 */
2672 if (uVersion == CPUM_SAVED_STATE_VERSION_VER1_6)
2673 SSMR3HandleSetGCPtrSize(pSSM, sizeof(RTGCPTR32));
2674 else if (uVersion <= CPUM_SAVED_STATE_VERSION_VER3_0)
2675 SSMR3HandleSetGCPtrSize(pSSM, sizeof(RTGCPTR));
2676
2677 /*
2678 * Figure x86 and ctx field definitions to use for older states.
2679 */
2680 uint32_t const fLoad = uVersion > CPUM_SAVED_STATE_VERSION_MEM ? 0 : SSMSTRUCT_FLAGS_MEM_BAND_AID_RELAXED;
2681 PCSSMFIELD paCpumCtx1Fields = g_aCpumX87Fields;
2682 PCSSMFIELD paCpumCtx2Fields = g_aCpumCtxFields;
2683 if (uVersion == CPUM_SAVED_STATE_VERSION_VER1_6)
2684 {
2685 paCpumCtx1Fields = g_aCpumX87FieldsV16;
2686 paCpumCtx2Fields = g_aCpumCtxFieldsV16;
2687 }
2688 else if (uVersion <= CPUM_SAVED_STATE_VERSION_MEM)
2689 {
2690 paCpumCtx1Fields = g_aCpumX87FieldsMem;
2691 paCpumCtx2Fields = g_aCpumCtxFieldsMem;
2692 }
2693
2694 /*
2695 * The hyper state used to preceed the CPU count. Starting with
2696 * XSAVE it was moved down till after we've got the count.
2697 */
2698 CPUMCTX HyperCtxIgnored;
2699 if (uVersion < CPUM_SAVED_STATE_VERSION_XSAVE)
2700 {
2701 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2702 {
2703 X86FXSTATE Ign;
2704 SSMR3GetStructEx(pSSM, &Ign, sizeof(Ign), fLoad | SSMSTRUCT_FLAGS_NO_TAIL_MARKER, paCpumCtx1Fields, NULL);
2705 SSMR3GetStructEx(pSSM, &HyperCtxIgnored, sizeof(HyperCtxIgnored),
2706 fLoad | SSMSTRUCT_FLAGS_NO_LEAD_MARKER, paCpumCtx2Fields, NULL);
2707 }
2708 }
2709
2710 if (uVersion >= CPUM_SAVED_STATE_VERSION_VER2_1_NOMSR)
2711 {
2712 uint32_t cCpus;
2713 rc = SSMR3GetU32(pSSM, &cCpus); AssertRCReturn(rc, rc);
2714 AssertLogRelMsgReturn(cCpus == pVM->cCpus, ("Mismatching CPU counts: saved: %u; configured: %u \n", cCpus, pVM->cCpus),
2715 VERR_SSM_UNEXPECTED_DATA);
2716 }
2717 AssertLogRelMsgReturn( uVersion > CPUM_SAVED_STATE_VERSION_VER2_0
2718 || pVM->cCpus == 1,
2719 ("cCpus=%u\n", pVM->cCpus),
2720 VERR_SSM_UNEXPECTED_DATA);
2721
2722 uint32_t cbMsrs = 0;
2723 if (uVersion > CPUM_SAVED_STATE_VERSION_NO_MSR_SIZE)
2724 {
2725 rc = SSMR3GetU32(pSSM, &cbMsrs); AssertRCReturn(rc, rc);
2726 AssertLogRelMsgReturn(RT_ALIGN(cbMsrs, sizeof(uint64_t)) == cbMsrs, ("Size of MSRs is misaligned: %#x\n", cbMsrs),
2727 VERR_SSM_UNEXPECTED_DATA);
2728 AssertLogRelMsgReturn(cbMsrs <= sizeof(CPUMCTXMSRS) && cbMsrs > 0, ("Size of MSRs is out of range: %#x\n", cbMsrs),
2729 VERR_SSM_UNEXPECTED_DATA);
2730 }
2731
2732 /*
2733 * Do the per-CPU restoring.
2734 */
2735 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2736 {
2737 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
2738 PCPUMCTX pGstCtx = &pVCpu->cpum.s.Guest;
2739
2740 if (uVersion >= CPUM_SAVED_STATE_VERSION_XSAVE)
2741 {
2742 /*
2743 * The XSAVE saved state layout moved the hyper state down here.
2744 */
2745 rc = SSMR3GetStructEx(pSSM, &HyperCtxIgnored, sizeof(HyperCtxIgnored), 0, g_aCpumCtxFields, NULL);
2746 AssertRCReturn(rc, rc);
2747
2748 /*
2749 * Start by restoring the CPUMCTX structure and the X86FXSAVE bits of the extended state.
2750 */
2751 rc = SSMR3GetStructEx(pSSM, pGstCtx, sizeof(*pGstCtx), 0, g_aCpumCtxFields, NULL);
2752 rc = SSMR3GetStructEx(pSSM, &pGstCtx->XState.x87, sizeof(pGstCtx->XState.x87), 0, g_aCpumX87Fields, NULL);
2753 AssertRCReturn(rc, rc);
2754
2755 /* Check that the xsave/xrstor mask is valid (invalid results in #GP). */
2756 if (pGstCtx->fXStateMask != 0)
2757 {
2758 AssertLogRelMsgReturn(!(pGstCtx->fXStateMask & ~pVM->cpum.s.fXStateGuestMask),
2759 ("fXStateMask=%#RX64 fXStateGuestMask=%#RX64\n",
2760 pGstCtx->fXStateMask, pVM->cpum.s.fXStateGuestMask),
2761 VERR_CPUM_INCOMPATIBLE_XSAVE_COMP_MASK);
2762 AssertLogRelMsgReturn(pGstCtx->fXStateMask & XSAVE_C_X87,
2763 ("fXStateMask=%#RX64\n", pGstCtx->fXStateMask), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2764 AssertLogRelMsgReturn((pGstCtx->fXStateMask & (XSAVE_C_SSE | XSAVE_C_YMM)) != XSAVE_C_YMM,
2765 ("fXStateMask=%#RX64\n", pGstCtx->fXStateMask), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2766 AssertLogRelMsgReturn( (pGstCtx->fXStateMask & (XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI)) == 0
2767 || (pGstCtx->fXStateMask & (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI))
2768 == (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI),
2769 ("fXStateMask=%#RX64\n", pGstCtx->fXStateMask), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2770 }
2771
2772 /* Check that the XCR0 mask is valid (invalid results in #GP). */
2773 AssertLogRelMsgReturn(pGstCtx->aXcr[0] & XSAVE_C_X87, ("xcr0=%#RX64\n", pGstCtx->aXcr[0]), VERR_CPUM_INVALID_XCR0);
2774 if (pGstCtx->aXcr[0] != XSAVE_C_X87)
2775 {
2776 AssertLogRelMsgReturn(!(pGstCtx->aXcr[0] & ~(pGstCtx->fXStateMask | XSAVE_C_X87)),
2777 ("xcr0=%#RX64 fXStateMask=%#RX64\n", pGstCtx->aXcr[0], pGstCtx->fXStateMask),
2778 VERR_CPUM_INVALID_XCR0);
2779 AssertLogRelMsgReturn(pGstCtx->aXcr[0] & XSAVE_C_X87,
2780 ("xcr0=%#RX64\n", pGstCtx->aXcr[0]), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2781 AssertLogRelMsgReturn((pGstCtx->aXcr[0] & (XSAVE_C_SSE | XSAVE_C_YMM)) != XSAVE_C_YMM,
2782 ("xcr0=%#RX64\n", pGstCtx->aXcr[0]), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2783 AssertLogRelMsgReturn( (pGstCtx->aXcr[0] & (XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI)) == 0
2784 || (pGstCtx->aXcr[0] & (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI))
2785 == (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI),
2786 ("xcr0=%#RX64\n", pGstCtx->aXcr[0]), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2787 }
2788
2789 /* Check that the XCR1 is zero, as we don't implement it yet. */
2790 AssertLogRelMsgReturn(!pGstCtx->aXcr[1], ("xcr1=%#RX64\n", pGstCtx->aXcr[1]), VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2791
2792 /*
2793 * Restore the individual extended state components we support.
2794 */
2795 if (pGstCtx->fXStateMask != 0)
2796 {
2797 rc = SSMR3GetStructEx(pSSM, &pGstCtx->XState.Hdr, sizeof(pGstCtx->XState.Hdr),
2798 0, g_aCpumXSaveHdrFields, NULL);
2799 AssertRCReturn(rc, rc);
2800 AssertLogRelMsgReturn(!(pGstCtx->XState.Hdr.bmXState & ~pGstCtx->fXStateMask),
2801 ("bmXState=%#RX64 fXStateMask=%#RX64\n",
2802 pGstCtx->XState.Hdr.bmXState, pGstCtx->fXStateMask),
2803 VERR_CPUM_INVALID_XSAVE_HDR);
2804 }
2805 if (pGstCtx->fXStateMask & XSAVE_C_YMM)
2806 {
2807 PX86XSAVEYMMHI pYmmHiCtx = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_YMM_BIT, PX86XSAVEYMMHI);
2808 SSMR3GetStructEx(pSSM, pYmmHiCtx, sizeof(*pYmmHiCtx), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumYmmHiFields, NULL);
2809 }
2810 if (pGstCtx->fXStateMask & XSAVE_C_BNDREGS)
2811 {
2812 PX86XSAVEBNDREGS pBndRegs = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_BNDREGS_BIT, PX86XSAVEBNDREGS);
2813 SSMR3GetStructEx(pSSM, pBndRegs, sizeof(*pBndRegs), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumBndRegsFields, NULL);
2814 }
2815 if (pGstCtx->fXStateMask & XSAVE_C_BNDCSR)
2816 {
2817 PX86XSAVEBNDCFG pBndCfg = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_BNDCSR_BIT, PX86XSAVEBNDCFG);
2818 SSMR3GetStructEx(pSSM, pBndCfg, sizeof(*pBndCfg), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumBndCfgFields, NULL);
2819 }
2820 if (pGstCtx->fXStateMask & XSAVE_C_ZMM_HI256)
2821 {
2822 PX86XSAVEZMMHI256 pZmmHi256 = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_ZMM_HI256_BIT, PX86XSAVEZMMHI256);
2823 SSMR3GetStructEx(pSSM, pZmmHi256, sizeof(*pZmmHi256), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumZmmHi256Fields, NULL);
2824 }
2825 if (pGstCtx->fXStateMask & XSAVE_C_ZMM_16HI)
2826 {
2827 PX86XSAVEZMM16HI pZmm16Hi = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_ZMM_16HI_BIT, PX86XSAVEZMM16HI);
2828 SSMR3GetStructEx(pSSM, pZmm16Hi, sizeof(*pZmm16Hi), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumZmm16HiFields, NULL);
2829 }
2830 if (uVersion >= CPUM_SAVED_STATE_VERSION_PAE_PDPES)
2831 {
2832 SSMR3GetU64(pSSM, &pGstCtx->aPaePdpes[0].u);
2833 SSMR3GetU64(pSSM, &pGstCtx->aPaePdpes[1].u);
2834 SSMR3GetU64(pSSM, &pGstCtx->aPaePdpes[2].u);
2835 SSMR3GetU64(pSSM, &pGstCtx->aPaePdpes[3].u);
2836 }
2837 if (uVersion >= CPUM_SAVED_STATE_VERSION_HWVIRT_SVM)
2838 {
2839 if (pVM->cpum.s.GuestFeatures.fSvm)
2840 {
2841 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.svm.uMsrHSavePa);
2842 SSMR3GetGCPhys(pSSM, &pGstCtx->hwvirt.svm.GCPhysVmcb);
2843 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.svm.uPrevPauseTick);
2844 SSMR3GetU16(pSSM, &pGstCtx->hwvirt.svm.cPauseFilter);
2845 SSMR3GetU16(pSSM, &pGstCtx->hwvirt.svm.cPauseFilterThreshold);
2846 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.svm.fInterceptEvents);
2847 SSMR3GetStructEx(pSSM, &pGstCtx->hwvirt.svm.HostState, sizeof(pGstCtx->hwvirt.svm.HostState),
2848 0 /* fFlags */, g_aSvmHwvirtHostState, NULL /* pvUser */);
2849 SSMR3GetMem(pSSM, &pGstCtx->hwvirt.svm.Vmcb, sizeof(pGstCtx->hwvirt.svm.Vmcb));
2850 SSMR3GetMem(pSSM, &pGstCtx->hwvirt.svm.abMsrBitmap[0], sizeof(pGstCtx->hwvirt.svm.abMsrBitmap));
2851 SSMR3GetMem(pSSM, &pGstCtx->hwvirt.svm.abIoBitmap[0], sizeof(pGstCtx->hwvirt.svm.abIoBitmap));
2852 SSMR3GetU32(pSSM, &pGstCtx->hwvirt.fLocalForcedActions);
2853 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.fGif);
2854 }
2855 }
2856 if (uVersion >= CPUM_SAVED_STATE_VERSION_HWVIRT_VMX)
2857 {
2858 if (pVM->cpum.s.GuestFeatures.fVmx)
2859 {
2860 SSMR3GetGCPhys(pSSM, &pGstCtx->hwvirt.vmx.GCPhysVmxon);
2861 SSMR3GetGCPhys(pSSM, &pGstCtx->hwvirt.vmx.GCPhysVmcs);
2862 SSMR3GetGCPhys(pSSM, &pGstCtx->hwvirt.vmx.GCPhysShadowVmcs);
2863 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.vmx.fInVmxRootMode);
2864 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.vmx.fInVmxNonRootMode);
2865 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.vmx.fInterceptEvents);
2866 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.vmx.fNmiUnblockingIret);
2867 SSMR3GetStructEx(pSSM, &pGstCtx->hwvirt.vmx.Vmcs, sizeof(pGstCtx->hwvirt.vmx.Vmcs),
2868 0, g_aVmxHwvirtVmcs, NULL);
2869 SSMR3GetStructEx(pSSM, pGstCtx->hwvirt.vmx.pShadowVmcsR3, sizeof(VMXVVMCS), 0, g_aVmxHwvirtVmcs, NULL);
2870 SSMR3GetMem(pSSM, pGstCtx->hwvirt.vmx.pvVmreadBitmapR3, VMX_V_VMREAD_VMWRITE_BITMAP_SIZE);
2871 SSMR3GetMem(pSSM, pGstCtx->hwvirt.vmx.pvVmwriteBitmapR3, VMX_V_VMREAD_VMWRITE_BITMAP_SIZE);
2872 SSMR3GetMem(pSSM, pGstCtx->hwvirt.vmx.pEntryMsrLoadAreaR3, VMX_V_AUTOMSR_AREA_SIZE);
2873 SSMR3GetMem(pSSM, pGstCtx->hwvirt.vmx.pExitMsrStoreAreaR3, VMX_V_AUTOMSR_AREA_SIZE);
2874 SSMR3GetMem(pSSM, pGstCtx->hwvirt.vmx.pExitMsrLoadAreaR3, VMX_V_AUTOMSR_AREA_SIZE);
2875 SSMR3GetMem(pSSM, pGstCtx->hwvirt.vmx.pvMsrBitmapR3, VMX_V_MSR_BITMAP_SIZE);
2876 SSMR3GetMem(pSSM, pGstCtx->hwvirt.vmx.pvIoBitmapR3, VMX_V_IO_BITMAP_A_SIZE + VMX_V_IO_BITMAP_B_SIZE);
2877 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.uFirstPauseLoopTick);
2878 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.uPrevPauseTick);
2879 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.uEntryTick);
2880 SSMR3GetU16(pSSM, &pGstCtx->hwvirt.vmx.offVirtApicWrite);
2881 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.vmx.fVirtNmiBlocking);
2882 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64FeatCtrl);
2883 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64Basic);
2884 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.PinCtls.u);
2885 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.ProcCtls.u);
2886 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.ProcCtls2.u);
2887 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.ExitCtls.u);
2888 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.EntryCtls.u);
2889 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.TruePinCtls.u);
2890 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.TrueProcCtls.u);
2891 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.TrueEntryCtls.u);
2892 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.TrueExitCtls.u);
2893 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64Misc);
2894 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64Cr0Fixed0);
2895 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64Cr0Fixed1);
2896 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64Cr4Fixed0);
2897 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64Cr4Fixed1);
2898 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64VmcsEnum);
2899 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64VmFunc);
2900 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64EptVpidCaps);
2901 if (uVersion >= CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2)
2902 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64ProcCtls3);
2903 }
2904 }
2905 }
2906 else
2907 {
2908 /*
2909 * Pre XSAVE saved state.
2910 */
2911 SSMR3GetStructEx(pSSM, &pGstCtx->XState.x87, sizeof(pGstCtx->XState.x87),
2912 fLoad | SSMSTRUCT_FLAGS_NO_TAIL_MARKER, paCpumCtx1Fields, NULL);
2913 SSMR3GetStructEx(pSSM, pGstCtx, sizeof(*pGstCtx), fLoad | SSMSTRUCT_FLAGS_NO_LEAD_MARKER, paCpumCtx2Fields, NULL);
2914 }
2915
2916 /*
2917 * Restore a couple of flags and the MSRs.
2918 */
2919 uint32_t fIgnoredUsedFlags = 0;
2920 rc = SSMR3GetU32(pSSM, &fIgnoredUsedFlags); /* we're recalc the two relevant flags after loading state. */
2921 AssertRCReturn(rc, rc);
2922 SSMR3GetU32(pSSM, &pVCpu->cpum.s.fChanged);
2923
2924 rc = VINF_SUCCESS;
2925 if (uVersion > CPUM_SAVED_STATE_VERSION_NO_MSR_SIZE)
2926 rc = SSMR3GetMem(pSSM, &pVCpu->cpum.s.GuestMsrs.au64[0], cbMsrs);
2927 else if (uVersion >= CPUM_SAVED_STATE_VERSION_VER3_0)
2928 {
2929 SSMR3GetMem(pSSM, &pVCpu->cpum.s.GuestMsrs.au64[0], 2 * sizeof(uint64_t)); /* Restore two MSRs. */
2930 rc = SSMR3Skip(pSSM, 62 * sizeof(uint64_t));
2931 }
2932 AssertRCReturn(rc, rc);
2933
2934 /* REM and other may have cleared must-be-one fields in DR6 and
2935 DR7, fix these. */
2936 pGstCtx->dr[6] &= ~(X86_DR6_RAZ_MASK | X86_DR6_MBZ_MASK);
2937 pGstCtx->dr[6] |= X86_DR6_RA1_MASK;
2938 pGstCtx->dr[7] &= ~(X86_DR7_RAZ_MASK | X86_DR7_MBZ_MASK);
2939 pGstCtx->dr[7] |= X86_DR7_RA1_MASK;
2940 }
2941
2942 /* Older states does not have the internal selector register flags
2943 and valid selector value. Supply those. */
2944 if (uVersion <= CPUM_SAVED_STATE_VERSION_MEM)
2945 {
2946 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2947 {
2948 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
2949 bool const fValid = true /*!VM_IS_RAW_MODE_ENABLED(pVM)*/
2950 || ( uVersion > CPUM_SAVED_STATE_VERSION_VER3_2
2951 && !(pVCpu->cpum.s.fChanged & CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID));
2952 PCPUMSELREG paSelReg = CPUMCTX_FIRST_SREG(&pVCpu->cpum.s.Guest);
2953 if (fValid)
2954 {
2955 for (uint32_t iSelReg = 0; iSelReg < X86_SREG_COUNT; iSelReg++)
2956 {
2957 paSelReg[iSelReg].fFlags = CPUMSELREG_FLAGS_VALID;
2958 paSelReg[iSelReg].ValidSel = paSelReg[iSelReg].Sel;
2959 }
2960
2961 pVCpu->cpum.s.Guest.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
2962 pVCpu->cpum.s.Guest.ldtr.ValidSel = pVCpu->cpum.s.Guest.ldtr.Sel;
2963 }
2964 else
2965 {
2966 for (uint32_t iSelReg = 0; iSelReg < X86_SREG_COUNT; iSelReg++)
2967 {
2968 paSelReg[iSelReg].fFlags = 0;
2969 paSelReg[iSelReg].ValidSel = 0;
2970 }
2971
2972 /* This might not be 104% correct, but I think it's close
2973 enough for all practical purposes... (REM always loaded
2974 LDTR registers.) */
2975 pVCpu->cpum.s.Guest.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
2976 pVCpu->cpum.s.Guest.ldtr.ValidSel = pVCpu->cpum.s.Guest.ldtr.Sel;
2977 }
2978 pVCpu->cpum.s.Guest.tr.fFlags = CPUMSELREG_FLAGS_VALID;
2979 pVCpu->cpum.s.Guest.tr.ValidSel = pVCpu->cpum.s.Guest.tr.Sel;
2980 }
2981 }
2982
2983 /* Clear CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID. */
2984 if ( uVersion > CPUM_SAVED_STATE_VERSION_VER3_2
2985 && uVersion <= CPUM_SAVED_STATE_VERSION_MEM)
2986 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2987 {
2988 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
2989 pVCpu->cpum.s.fChanged &= CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID;
2990 }
2991
2992 /*
2993 * A quick sanity check.
2994 */
2995 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2996 {
2997 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
2998 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.es.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
2999 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.cs.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
3000 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.ss.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
3001 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.ds.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
3002 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.fs.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
3003 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.gs.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
3004 }
3005 }
3006
3007 pVM->cpum.s.fPendingRestore = false;
3008
3009 /*
3010 * Guest CPUIDs (and VMX MSR features).
3011 */
3012 if (uVersion >= CPUM_SAVED_STATE_VERSION_VER3_2)
3013 {
3014 CPUMMSRS GuestMsrs;
3015 RT_ZERO(GuestMsrs);
3016
3017 CPUMFEATURES BaseFeatures;
3018 bool const fVmxGstFeat = pVM->cpum.s.GuestFeatures.fVmx;
3019 if (fVmxGstFeat)
3020 {
3021 /*
3022 * At this point the MSRs in the guest CPU-context are loaded with the guest VMX MSRs from the saved state.
3023 * However the VMX sub-features have not been exploded yet. So cache the base (host derived) VMX features
3024 * here so we can compare them for compatibility after exploding guest features.
3025 */
3026 BaseFeatures = pVM->cpum.s.GuestFeatures;
3027
3028 /* Use the VMX MSR features from the saved state while exploding guest features. */
3029 GuestMsrs.hwvirt.vmx = pVM->apCpusR3[0]->cpum.s.Guest.hwvirt.vmx.Msrs;
3030 }
3031
3032 /* Load CPUID and explode guest features. */
3033 rc = cpumR3LoadCpuId(pVM, pSSM, uVersion, &GuestMsrs);
3034 if (fVmxGstFeat)
3035 {
3036 /*
3037 * Check if the exploded VMX features from the saved state are compatible with the host-derived features
3038 * we cached earlier (above). The is required if we use hardware-assisted nested-guest execution with
3039 * VMX features presented to the guest.
3040 */
3041 bool const fIsCompat = cpumR3AreVmxCpuFeaturesCompatible(pVM, &BaseFeatures, &pVM->cpum.s.GuestFeatures);
3042 if (!fIsCompat)
3043 return VERR_CPUM_INVALID_HWVIRT_FEAT_COMBO;
3044 }
3045 return rc;
3046 }
3047 return cpumR3LoadCpuIdPre32(pVM, pSSM, uVersion);
3048}
3049
3050
3051/**
3052 * @callback_method_impl{FNSSMINTLOADDONE}
3053 */
3054static DECLCALLBACK(int) cpumR3LoadDone(PVM pVM, PSSMHANDLE pSSM)
3055{
3056 if (RT_FAILURE(SSMR3HandleGetStatus(pSSM)))
3057 return VINF_SUCCESS;
3058
3059 /* just check this since we can. */ /** @todo Add a SSM unit flag for indicating that it's mandatory during a restore. */
3060 if (pVM->cpum.s.fPendingRestore)
3061 {
3062 LogRel(("CPUM: Missing state!\n"));
3063 return VERR_INTERNAL_ERROR_2;
3064 }
3065
3066 bool const fSupportsLongMode = VMR3IsLongModeAllowed(pVM);
3067 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
3068 {
3069 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
3070
3071 /* Notify PGM of the NXE states in case they've changed. */
3072 PGMNotifyNxeChanged(pVCpu, RT_BOOL(pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_NXE));
3073
3074 /* During init. this is done in CPUMR3InitCompleted(). */
3075 if (fSupportsLongMode)
3076 pVCpu->cpum.s.fUseFlags |= CPUM_USE_SUPPORTS_LONGMODE;
3077
3078 /* Recalc the CPUM_USE_DEBUG_REGS_HYPER value. */
3079 CPUMRecalcHyperDRx(pVCpu, UINT8_MAX);
3080 }
3081 return VINF_SUCCESS;
3082}
3083
3084
3085/**
3086 * Checks if the CPUM state restore is still pending.
3087 *
3088 * @returns true / false.
3089 * @param pVM The cross context VM structure.
3090 */
3091VMMDECL(bool) CPUMR3IsStateRestorePending(PVM pVM)
3092{
3093 return pVM->cpum.s.fPendingRestore;
3094}
3095
3096
3097/**
3098 * Formats the EFLAGS value into mnemonics.
3099 *
3100 * @param pszEFlags Where to write the mnemonics. (Assumes sufficient buffer space.)
3101 * @param efl The EFLAGS value.
3102 */
3103static void cpumR3InfoFormatFlags(char *pszEFlags, uint32_t efl)
3104{
3105 /*
3106 * Format the flags.
3107 */
3108 static const struct
3109 {
3110 const char *pszSet; const char *pszClear; uint32_t fFlag;
3111 } s_aFlags[] =
3112 {
3113 { "vip",NULL, X86_EFL_VIP },
3114 { "vif",NULL, X86_EFL_VIF },
3115 { "ac", NULL, X86_EFL_AC },
3116 { "vm", NULL, X86_EFL_VM },
3117 { "rf", NULL, X86_EFL_RF },
3118 { "nt", NULL, X86_EFL_NT },
3119 { "ov", "nv", X86_EFL_OF },
3120 { "dn", "up", X86_EFL_DF },
3121 { "ei", "di", X86_EFL_IF },
3122 { "tf", NULL, X86_EFL_TF },
3123 { "nt", "pl", X86_EFL_SF },
3124 { "nz", "zr", X86_EFL_ZF },
3125 { "ac", "na", X86_EFL_AF },
3126 { "po", "pe", X86_EFL_PF },
3127 { "cy", "nc", X86_EFL_CF },
3128 };
3129 char *psz = pszEFlags;
3130 for (unsigned i = 0; i < RT_ELEMENTS(s_aFlags); i++)
3131 {
3132 const char *pszAdd = s_aFlags[i].fFlag & efl ? s_aFlags[i].pszSet : s_aFlags[i].pszClear;
3133 if (pszAdd)
3134 {
3135 strcpy(psz, pszAdd);
3136 psz += strlen(pszAdd);
3137 *psz++ = ' ';
3138 }
3139 }
3140 psz[-1] = '\0';
3141}
3142
3143
3144/**
3145 * Formats a full register dump.
3146 *
3147 * @param pVM The cross context VM structure.
3148 * @param pCtx The context to format.
3149 * @param pCtxCore The context core to format.
3150 * @param pHlp Output functions.
3151 * @param enmType The dump type.
3152 * @param pszPrefix Register name prefix.
3153 */
3154static void cpumR3InfoOne(PVM pVM, PCPUMCTX pCtx, PCCPUMCTXCORE pCtxCore, PCDBGFINFOHLP pHlp, CPUMDUMPTYPE enmType,
3155 const char *pszPrefix)
3156{
3157 NOREF(pVM);
3158
3159 /*
3160 * Format the EFLAGS.
3161 */
3162 uint32_t efl = pCtxCore->eflags.u32;
3163 char szEFlags[80];
3164 cpumR3InfoFormatFlags(&szEFlags[0], efl);
3165
3166 /*
3167 * Format the registers.
3168 */
3169 switch (enmType)
3170 {
3171 case CPUMDUMPTYPE_TERSE:
3172 if (CPUMIsGuestIn64BitCodeEx(pCtx))
3173 pHlp->pfnPrintf(pHlp,
3174 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
3175 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
3176 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
3177 "%sr14=%016RX64 %sr15=%016RX64\n"
3178 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
3179 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %seflags=%08x\n",
3180 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
3181 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
3182 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
3183 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
3184 pszPrefix, pCtxCore->cs.Sel, pszPrefix, pCtxCore->ss.Sel, pszPrefix, pCtxCore->ds.Sel, pszPrefix, pCtxCore->es.Sel,
3185 pszPrefix, pCtxCore->fs.Sel, pszPrefix, pCtxCore->gs.Sel, pszPrefix, efl);
3186 else
3187 pHlp->pfnPrintf(pHlp,
3188 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
3189 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
3190 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %seflags=%08x\n",
3191 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
3192 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
3193 pszPrefix, pCtxCore->cs.Sel, pszPrefix, pCtxCore->ss.Sel, pszPrefix, pCtxCore->ds.Sel, pszPrefix, pCtxCore->es.Sel,
3194 pszPrefix, pCtxCore->fs.Sel, pszPrefix, pCtxCore->gs.Sel, pszPrefix, efl);
3195 break;
3196
3197 case CPUMDUMPTYPE_DEFAULT:
3198 if (CPUMIsGuestIn64BitCodeEx(pCtx))
3199 pHlp->pfnPrintf(pHlp,
3200 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
3201 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
3202 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
3203 "%sr14=%016RX64 %sr15=%016RX64\n"
3204 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
3205 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %str=%04x %seflags=%08x\n"
3206 "%scr0=%08RX64 %scr2=%08RX64 %scr3=%08RX64 %scr4=%08RX64 %sgdtr=%016RX64:%04x %sldtr=%04x\n"
3207 ,
3208 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
3209 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
3210 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
3211 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
3212 pszPrefix, pCtxCore->cs.Sel, pszPrefix, pCtxCore->ss.Sel, pszPrefix, pCtxCore->ds.Sel, pszPrefix, pCtxCore->es.Sel,
3213 pszPrefix, pCtxCore->fs.Sel, pszPrefix, pCtxCore->gs.Sel, pszPrefix, pCtx->tr.Sel, pszPrefix, efl,
3214 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
3215 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->ldtr.Sel);
3216 else
3217 pHlp->pfnPrintf(pHlp,
3218 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
3219 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
3220 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %str=%04x %seflags=%08x\n"
3221 "%scr0=%08RX64 %scr2=%08RX64 %scr3=%08RX64 %scr4=%08RX64 %sgdtr=%08RX64:%04x %sldtr=%04x\n"
3222 ,
3223 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
3224 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
3225 pszPrefix, pCtxCore->cs.Sel, pszPrefix, pCtxCore->ss.Sel, pszPrefix, pCtxCore->ds.Sel, pszPrefix, pCtxCore->es.Sel,
3226 pszPrefix, pCtxCore->fs.Sel, pszPrefix, pCtxCore->gs.Sel, pszPrefix, pCtx->tr.Sel, pszPrefix, efl,
3227 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
3228 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->ldtr.Sel);
3229 break;
3230
3231 case CPUMDUMPTYPE_VERBOSE:
3232 if (CPUMIsGuestIn64BitCodeEx(pCtx))
3233 pHlp->pfnPrintf(pHlp,
3234 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
3235 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
3236 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
3237 "%sr14=%016RX64 %sr15=%016RX64\n"
3238 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
3239 "%scs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
3240 "%sds={%04x base=%016RX64 limit=%08x flags=%08x}\n"
3241 "%ses={%04x base=%016RX64 limit=%08x flags=%08x}\n"
3242 "%sfs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
3243 "%sgs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
3244 "%sss={%04x base=%016RX64 limit=%08x flags=%08x}\n"
3245 "%scr0=%016RX64 %scr2=%016RX64 %scr3=%016RX64 %scr4=%016RX64\n"
3246 "%sdr0=%016RX64 %sdr1=%016RX64 %sdr2=%016RX64 %sdr3=%016RX64\n"
3247 "%sdr4=%016RX64 %sdr5=%016RX64 %sdr6=%016RX64 %sdr7=%016RX64\n"
3248 "%sgdtr=%016RX64:%04x %sidtr=%016RX64:%04x %seflags=%08x\n"
3249 "%sldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
3250 "%str ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
3251 "%sSysEnter={cs=%04llx eip=%016RX64 esp=%016RX64}\n"
3252 ,
3253 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
3254 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
3255 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
3256 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
3257 pszPrefix, pCtxCore->cs.Sel, pCtx->cs.u64Base, pCtx->cs.u32Limit, pCtx->cs.Attr.u,
3258 pszPrefix, pCtxCore->ds.Sel, pCtx->ds.u64Base, pCtx->ds.u32Limit, pCtx->ds.Attr.u,
3259 pszPrefix, pCtxCore->es.Sel, pCtx->es.u64Base, pCtx->es.u32Limit, pCtx->es.Attr.u,
3260 pszPrefix, pCtxCore->fs.Sel, pCtx->fs.u64Base, pCtx->fs.u32Limit, pCtx->fs.Attr.u,
3261 pszPrefix, pCtxCore->gs.Sel, pCtx->gs.u64Base, pCtx->gs.u32Limit, pCtx->gs.Attr.u,
3262 pszPrefix, pCtxCore->ss.Sel, pCtx->ss.u64Base, pCtx->ss.u32Limit, pCtx->ss.Attr.u,
3263 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
3264 pszPrefix, pCtx->dr[0], pszPrefix, pCtx->dr[1], pszPrefix, pCtx->dr[2], pszPrefix, pCtx->dr[3],
3265 pszPrefix, pCtx->dr[4], pszPrefix, pCtx->dr[5], pszPrefix, pCtx->dr[6], pszPrefix, pCtx->dr[7],
3266 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, pszPrefix, efl,
3267 pszPrefix, pCtx->ldtr.Sel, pCtx->ldtr.u64Base, pCtx->ldtr.u32Limit, pCtx->ldtr.Attr.u,
3268 pszPrefix, pCtx->tr.Sel, pCtx->tr.u64Base, pCtx->tr.u32Limit, pCtx->tr.Attr.u,
3269 pszPrefix, pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
3270 else
3271 pHlp->pfnPrintf(pHlp,
3272 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
3273 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
3274 "%scs={%04x base=%016RX64 limit=%08x flags=%08x} %sdr0=%08RX64 %sdr1=%08RX64\n"
3275 "%sds={%04x base=%016RX64 limit=%08x flags=%08x} %sdr2=%08RX64 %sdr3=%08RX64\n"
3276 "%ses={%04x base=%016RX64 limit=%08x flags=%08x} %sdr4=%08RX64 %sdr5=%08RX64\n"
3277 "%sfs={%04x base=%016RX64 limit=%08x flags=%08x} %sdr6=%08RX64 %sdr7=%08RX64\n"
3278 "%sgs={%04x base=%016RX64 limit=%08x flags=%08x} %scr0=%08RX64 %scr2=%08RX64\n"
3279 "%sss={%04x base=%016RX64 limit=%08x flags=%08x} %scr3=%08RX64 %scr4=%08RX64\n"
3280 "%sgdtr=%016RX64:%04x %sidtr=%016RX64:%04x %seflags=%08x\n"
3281 "%sldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
3282 "%str ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
3283 "%sSysEnter={cs=%04llx eip=%08llx esp=%08llx}\n"
3284 ,
3285 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
3286 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
3287 pszPrefix, pCtxCore->cs.Sel, pCtx->cs.u64Base, pCtx->cs.u32Limit, pCtx->cs.Attr.u, pszPrefix, pCtx->dr[0], pszPrefix, pCtx->dr[1],
3288 pszPrefix, pCtxCore->ds.Sel, pCtx->ds.u64Base, pCtx->ds.u32Limit, pCtx->ds.Attr.u, pszPrefix, pCtx->dr[2], pszPrefix, pCtx->dr[3],
3289 pszPrefix, pCtxCore->es.Sel, pCtx->es.u64Base, pCtx->es.u32Limit, pCtx->es.Attr.u, pszPrefix, pCtx->dr[4], pszPrefix, pCtx->dr[5],
3290 pszPrefix, pCtxCore->fs.Sel, pCtx->fs.u64Base, pCtx->fs.u32Limit, pCtx->fs.Attr.u, pszPrefix, pCtx->dr[6], pszPrefix, pCtx->dr[7],
3291 pszPrefix, pCtxCore->gs.Sel, pCtx->gs.u64Base, pCtx->gs.u32Limit, pCtx->gs.Attr.u, pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2,
3292 pszPrefix, pCtxCore->ss.Sel, pCtx->ss.u64Base, pCtx->ss.u32Limit, pCtx->ss.Attr.u, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
3293 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, pszPrefix, efl,
3294 pszPrefix, pCtx->ldtr.Sel, pCtx->ldtr.u64Base, pCtx->ldtr.u32Limit, pCtx->ldtr.Attr.u,
3295 pszPrefix, pCtx->tr.Sel, pCtx->tr.u64Base, pCtx->tr.u32Limit, pCtx->tr.Attr.u,
3296 pszPrefix, pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
3297
3298 pHlp->pfnPrintf(pHlp, "%sxcr=%016RX64 %sxcr1=%016RX64 %sxss=%016RX64 (fXStateMask=%016RX64)\n",
3299 pszPrefix, pCtx->aXcr[0], pszPrefix, pCtx->aXcr[1],
3300 pszPrefix, UINT64_C(0) /** @todo XSS */, pCtx->fXStateMask);
3301 {
3302 PX86FXSTATE pFpuCtx = &pCtx->XState.x87;
3303 pHlp->pfnPrintf(pHlp,
3304 "%sFCW=%04x %sFSW=%04x %sFTW=%04x %sFOP=%04x %sMXCSR=%08x %sMXCSR_MASK=%08x\n"
3305 "%sFPUIP=%08x %sCS=%04x %sRsrvd1=%04x %sFPUDP=%08x %sDS=%04x %sRsvrd2=%04x\n"
3306 ,
3307 pszPrefix, pFpuCtx->FCW, pszPrefix, pFpuCtx->FSW, pszPrefix, pFpuCtx->FTW, pszPrefix, pFpuCtx->FOP,
3308 pszPrefix, pFpuCtx->MXCSR, pszPrefix, pFpuCtx->MXCSR_MASK,
3309 pszPrefix, pFpuCtx->FPUIP, pszPrefix, pFpuCtx->CS, pszPrefix, pFpuCtx->Rsrvd1,
3310 pszPrefix, pFpuCtx->FPUDP, pszPrefix, pFpuCtx->DS, pszPrefix, pFpuCtx->Rsrvd2
3311 );
3312 /*
3313 * The FSAVE style memory image contains ST(0)-ST(7) at increasing addresses,
3314 * not (FP)R0-7 as Intel SDM suggests.
3315 */
3316 unsigned iShift = (pFpuCtx->FSW >> 11) & 7;
3317 for (unsigned iST = 0; iST < RT_ELEMENTS(pFpuCtx->aRegs); iST++)
3318 {
3319 unsigned iFPR = (iST + iShift) % RT_ELEMENTS(pFpuCtx->aRegs);
3320 unsigned uTag = (pFpuCtx->FTW >> (2 * iFPR)) & 3;
3321 char chSign = pFpuCtx->aRegs[iST].au16[4] & 0x8000 ? '-' : '+';
3322 unsigned iInteger = (unsigned)(pFpuCtx->aRegs[iST].au64[0] >> 63);
3323 uint64_t u64Fraction = pFpuCtx->aRegs[iST].au64[0] & UINT64_C(0x7fffffffffffffff);
3324 int iExponent = pFpuCtx->aRegs[iST].au16[4] & 0x7fff;
3325 iExponent -= 16383; /* subtract bias */
3326 /** @todo This isn't entirenly correct and needs more work! */
3327 pHlp->pfnPrintf(pHlp,
3328 "%sST(%u)=%sFPR%u={%04RX16'%08RX32'%08RX32} t%d %c%u.%022llu * 2 ^ %d (*)",
3329 pszPrefix, iST, pszPrefix, iFPR,
3330 pFpuCtx->aRegs[iST].au16[4], pFpuCtx->aRegs[iST].au32[1], pFpuCtx->aRegs[iST].au32[0],
3331 uTag, chSign, iInteger, u64Fraction, iExponent);
3332 if (pFpuCtx->aRegs[iST].au16[5] || pFpuCtx->aRegs[iST].au16[6] || pFpuCtx->aRegs[iST].au16[7])
3333 pHlp->pfnPrintf(pHlp, " res={%04RX16,%04RX16,%04RX16}\n",
3334 pFpuCtx->aRegs[iST].au16[5], pFpuCtx->aRegs[iST].au16[6], pFpuCtx->aRegs[iST].au16[7]);
3335 else
3336 pHlp->pfnPrintf(pHlp, "\n");
3337 }
3338
3339 /* XMM/YMM/ZMM registers. */
3340 if (pCtx->fXStateMask & XSAVE_C_YMM)
3341 {
3342 PCX86XSAVEYMMHI pYmmHiCtx = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_YMM_BIT, PCX86XSAVEYMMHI);
3343 if (!(pCtx->fXStateMask & XSAVE_C_ZMM_HI256))
3344 for (unsigned i = 0; i < RT_ELEMENTS(pFpuCtx->aXMM); i++)
3345 pHlp->pfnPrintf(pHlp, "%sYMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32\n",
3346 pszPrefix, i, i < 10 ? " " : "",
3347 pYmmHiCtx->aYmmHi[i].au32[3],
3348 pYmmHiCtx->aYmmHi[i].au32[2],
3349 pYmmHiCtx->aYmmHi[i].au32[1],
3350 pYmmHiCtx->aYmmHi[i].au32[0],
3351 pFpuCtx->aXMM[i].au32[3],
3352 pFpuCtx->aXMM[i].au32[2],
3353 pFpuCtx->aXMM[i].au32[1],
3354 pFpuCtx->aXMM[i].au32[0]);
3355 else
3356 {
3357 PCX86XSAVEZMMHI256 pZmmHi256 = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_ZMM_HI256_BIT, PCX86XSAVEZMMHI256);
3358 for (unsigned i = 0; i < RT_ELEMENTS(pFpuCtx->aXMM); i++)
3359 pHlp->pfnPrintf(pHlp,
3360 "%sZMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32''%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32\n",
3361 pszPrefix, i, i < 10 ? " " : "",
3362 pZmmHi256->aHi256Regs[i].au32[7],
3363 pZmmHi256->aHi256Regs[i].au32[6],
3364 pZmmHi256->aHi256Regs[i].au32[5],
3365 pZmmHi256->aHi256Regs[i].au32[4],
3366 pZmmHi256->aHi256Regs[i].au32[3],
3367 pZmmHi256->aHi256Regs[i].au32[2],
3368 pZmmHi256->aHi256Regs[i].au32[1],
3369 pZmmHi256->aHi256Regs[i].au32[0],
3370 pYmmHiCtx->aYmmHi[i].au32[3],
3371 pYmmHiCtx->aYmmHi[i].au32[2],
3372 pYmmHiCtx->aYmmHi[i].au32[1],
3373 pYmmHiCtx->aYmmHi[i].au32[0],
3374 pFpuCtx->aXMM[i].au32[3],
3375 pFpuCtx->aXMM[i].au32[2],
3376 pFpuCtx->aXMM[i].au32[1],
3377 pFpuCtx->aXMM[i].au32[0]);
3378
3379 PCX86XSAVEZMM16HI pZmm16Hi = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_ZMM_16HI_BIT, PCX86XSAVEZMM16HI);
3380 for (unsigned i = 0; i < RT_ELEMENTS(pZmm16Hi->aRegs); i++)
3381 pHlp->pfnPrintf(pHlp,
3382 "%sZMM%u=%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32''%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32\n",
3383 pszPrefix, i + 16,
3384 pZmm16Hi->aRegs[i].au32[15],
3385 pZmm16Hi->aRegs[i].au32[14],
3386 pZmm16Hi->aRegs[i].au32[13],
3387 pZmm16Hi->aRegs[i].au32[12],
3388 pZmm16Hi->aRegs[i].au32[11],
3389 pZmm16Hi->aRegs[i].au32[10],
3390 pZmm16Hi->aRegs[i].au32[9],
3391 pZmm16Hi->aRegs[i].au32[8],
3392 pZmm16Hi->aRegs[i].au32[7],
3393 pZmm16Hi->aRegs[i].au32[6],
3394 pZmm16Hi->aRegs[i].au32[5],
3395 pZmm16Hi->aRegs[i].au32[4],
3396 pZmm16Hi->aRegs[i].au32[3],
3397 pZmm16Hi->aRegs[i].au32[2],
3398 pZmm16Hi->aRegs[i].au32[1],
3399 pZmm16Hi->aRegs[i].au32[0]);
3400 }
3401 }
3402 else
3403 for (unsigned i = 0; i < RT_ELEMENTS(pFpuCtx->aXMM); i++)
3404 pHlp->pfnPrintf(pHlp,
3405 i & 1
3406 ? "%sXMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32\n"
3407 : "%sXMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32 ",
3408 pszPrefix, i, i < 10 ? " " : "",
3409 pFpuCtx->aXMM[i].au32[3],
3410 pFpuCtx->aXMM[i].au32[2],
3411 pFpuCtx->aXMM[i].au32[1],
3412 pFpuCtx->aXMM[i].au32[0]);
3413
3414 if (pCtx->fXStateMask & XSAVE_C_OPMASK)
3415 {
3416 PCX86XSAVEOPMASK pOpMask = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_OPMASK_BIT, PCX86XSAVEOPMASK);
3417 for (unsigned i = 0; i < RT_ELEMENTS(pOpMask->aKRegs); i += 4)
3418 pHlp->pfnPrintf(pHlp, "%sK%u=%016RX64 %sK%u=%016RX64 %sK%u=%016RX64 %sK%u=%016RX64\n",
3419 pszPrefix, i + 0, pOpMask->aKRegs[i + 0],
3420 pszPrefix, i + 1, pOpMask->aKRegs[i + 1],
3421 pszPrefix, i + 2, pOpMask->aKRegs[i + 2],
3422 pszPrefix, i + 3, pOpMask->aKRegs[i + 3]);
3423 }
3424
3425 if (pCtx->fXStateMask & XSAVE_C_BNDREGS)
3426 {
3427 PCX86XSAVEBNDREGS pBndRegs = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_BNDREGS_BIT, PCX86XSAVEBNDREGS);
3428 for (unsigned i = 0; i < RT_ELEMENTS(pBndRegs->aRegs); i += 2)
3429 pHlp->pfnPrintf(pHlp, "%sBNDREG%u=%016RX64/%016RX64 %sBNDREG%u=%016RX64/%016RX64\n",
3430 pszPrefix, i, pBndRegs->aRegs[i].uLowerBound, pBndRegs->aRegs[i].uUpperBound,
3431 pszPrefix, i + 1, pBndRegs->aRegs[i + 1].uLowerBound, pBndRegs->aRegs[i + 1].uUpperBound);
3432 }
3433
3434 if (pCtx->fXStateMask & XSAVE_C_BNDCSR)
3435 {
3436 PCX86XSAVEBNDCFG pBndCfg = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_BNDCSR_BIT, PCX86XSAVEBNDCFG);
3437 pHlp->pfnPrintf(pHlp, "%sBNDCFG.CONFIG=%016RX64 %sBNDCFG.STATUS=%016RX64\n",
3438 pszPrefix, pBndCfg->fConfig, pszPrefix, pBndCfg->fStatus);
3439 }
3440
3441 for (unsigned i = 0; i < RT_ELEMENTS(pFpuCtx->au32RsrvdRest); i++)
3442 if (pFpuCtx->au32RsrvdRest[i])
3443 pHlp->pfnPrintf(pHlp, "%sRsrvdRest[%u]=%RX32 (offset=%#x)\n",
3444 pszPrefix, i, pFpuCtx->au32RsrvdRest[i], RT_UOFFSETOF_DYN(X86FXSTATE, au32RsrvdRest[i]) );
3445 }
3446
3447 pHlp->pfnPrintf(pHlp,
3448 "%sEFER =%016RX64\n"
3449 "%sPAT =%016RX64\n"
3450 "%sSTAR =%016RX64\n"
3451 "%sCSTAR =%016RX64\n"
3452 "%sLSTAR =%016RX64\n"
3453 "%sSFMASK =%016RX64\n"
3454 "%sKERNELGSBASE =%016RX64\n",
3455 pszPrefix, pCtx->msrEFER,
3456 pszPrefix, pCtx->msrPAT,
3457 pszPrefix, pCtx->msrSTAR,
3458 pszPrefix, pCtx->msrCSTAR,
3459 pszPrefix, pCtx->msrLSTAR,
3460 pszPrefix, pCtx->msrSFMASK,
3461 pszPrefix, pCtx->msrKERNELGSBASE);
3462
3463 if (CPUMIsGuestInPAEModeEx(pCtx))
3464 for (unsigned i = 0; i < RT_ELEMENTS(pCtx->aPaePdpes); i++)
3465 pHlp->pfnPrintf(pHlp, "%sPAE PDPTE %u =%016RX64\n", pszPrefix, i, pCtx->aPaePdpes[i]);
3466 break;
3467 }
3468}
3469
3470
3471/**
3472 * Display all cpu states and any other cpum info.
3473 *
3474 * @param pVM The cross context VM structure.
3475 * @param pHlp The info helper functions.
3476 * @param pszArgs Arguments, ignored.
3477 */
3478static DECLCALLBACK(void) cpumR3InfoAll(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3479{
3480 cpumR3InfoGuest(pVM, pHlp, pszArgs);
3481 cpumR3InfoGuestInstr(pVM, pHlp, pszArgs);
3482 cpumR3InfoGuestHwvirt(pVM, pHlp, pszArgs);
3483 cpumR3InfoHyper(pVM, pHlp, pszArgs);
3484 cpumR3InfoHost(pVM, pHlp, pszArgs);
3485}
3486
3487
3488/**
3489 * Parses the info argument.
3490 *
3491 * The argument starts with 'verbose', 'terse' or 'default' and then
3492 * continues with the comment string.
3493 *
3494 * @param pszArgs The pointer to the argument string.
3495 * @param penmType Where to store the dump type request.
3496 * @param ppszComment Where to store the pointer to the comment string.
3497 */
3498static void cpumR3InfoParseArg(const char *pszArgs, CPUMDUMPTYPE *penmType, const char **ppszComment)
3499{
3500 if (!pszArgs)
3501 {
3502 *penmType = CPUMDUMPTYPE_DEFAULT;
3503 *ppszComment = "";
3504 }
3505 else
3506 {
3507 if (!strncmp(pszArgs, RT_STR_TUPLE("verbose")))
3508 {
3509 pszArgs += 7;
3510 *penmType = CPUMDUMPTYPE_VERBOSE;
3511 }
3512 else if (!strncmp(pszArgs, RT_STR_TUPLE("terse")))
3513 {
3514 pszArgs += 5;
3515 *penmType = CPUMDUMPTYPE_TERSE;
3516 }
3517 else if (!strncmp(pszArgs, RT_STR_TUPLE("default")))
3518 {
3519 pszArgs += 7;
3520 *penmType = CPUMDUMPTYPE_DEFAULT;
3521 }
3522 else
3523 *penmType = CPUMDUMPTYPE_DEFAULT;
3524 *ppszComment = RTStrStripL(pszArgs);
3525 }
3526}
3527
3528
3529/**
3530 * Display the guest cpu state.
3531 *
3532 * @param pVM The cross context VM structure.
3533 * @param pHlp The info helper functions.
3534 * @param pszArgs Arguments.
3535 */
3536static DECLCALLBACK(void) cpumR3InfoGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3537{
3538 CPUMDUMPTYPE enmType;
3539 const char *pszComment;
3540 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
3541
3542 PVMCPU pVCpu = VMMGetCpu(pVM);
3543 if (!pVCpu)
3544 pVCpu = pVM->apCpusR3[0];
3545
3546 pHlp->pfnPrintf(pHlp, "Guest CPUM (VCPU %d) state: %s\n", pVCpu->idCpu, pszComment);
3547
3548 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
3549 cpumR3InfoOne(pVM, pCtx, CPUMCTX2CORE(pCtx), pHlp, enmType, "");
3550}
3551
3552
3553/**
3554 * Displays an SVM VMCB control area.
3555 *
3556 * @param pHlp The info helper functions.
3557 * @param pVmcbCtrl Pointer to a SVM VMCB controls area.
3558 * @param pszPrefix Caller specified string prefix.
3559 */
3560static void cpumR3InfoSvmVmcbCtrl(PCDBGFINFOHLP pHlp, PCSVMVMCBCTRL pVmcbCtrl, const char *pszPrefix)
3561{
3562 AssertReturnVoid(pHlp);
3563 AssertReturnVoid(pVmcbCtrl);
3564
3565 pHlp->pfnPrintf(pHlp, "%sCRX-read intercepts = %#RX16\n", pszPrefix, pVmcbCtrl->u16InterceptRdCRx);
3566 pHlp->pfnPrintf(pHlp, "%sCRX-write intercepts = %#RX16\n", pszPrefix, pVmcbCtrl->u16InterceptWrCRx);
3567 pHlp->pfnPrintf(pHlp, "%sDRX-read intercepts = %#RX16\n", pszPrefix, pVmcbCtrl->u16InterceptRdDRx);
3568 pHlp->pfnPrintf(pHlp, "%sDRX-write intercepts = %#RX16\n", pszPrefix, pVmcbCtrl->u16InterceptWrDRx);
3569 pHlp->pfnPrintf(pHlp, "%sException intercepts = %#RX32\n", pszPrefix, pVmcbCtrl->u32InterceptXcpt);
3570 pHlp->pfnPrintf(pHlp, "%sControl intercepts = %#RX64\n", pszPrefix, pVmcbCtrl->u64InterceptCtrl);
3571 pHlp->pfnPrintf(pHlp, "%sPause-filter threshold = %#RX16\n", pszPrefix, pVmcbCtrl->u16PauseFilterThreshold);
3572 pHlp->pfnPrintf(pHlp, "%sPause-filter count = %#RX16\n", pszPrefix, pVmcbCtrl->u16PauseFilterCount);
3573 pHlp->pfnPrintf(pHlp, "%sIOPM bitmap physaddr = %#RX64\n", pszPrefix, pVmcbCtrl->u64IOPMPhysAddr);
3574 pHlp->pfnPrintf(pHlp, "%sMSRPM bitmap physaddr = %#RX64\n", pszPrefix, pVmcbCtrl->u64MSRPMPhysAddr);
3575 pHlp->pfnPrintf(pHlp, "%sTSC offset = %#RX64\n", pszPrefix, pVmcbCtrl->u64TSCOffset);
3576 pHlp->pfnPrintf(pHlp, "%sTLB Control\n", pszPrefix);
3577 pHlp->pfnPrintf(pHlp, " %sASID = %#RX32\n", pszPrefix, pVmcbCtrl->TLBCtrl.n.u32ASID);
3578 pHlp->pfnPrintf(pHlp, " %sTLB-flush type = %u\n", pszPrefix, pVmcbCtrl->TLBCtrl.n.u8TLBFlush);
3579 pHlp->pfnPrintf(pHlp, "%sInterrupt Control\n", pszPrefix);
3580 pHlp->pfnPrintf(pHlp, " %sVTPR = %#RX8 (%u)\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u8VTPR, pVmcbCtrl->IntCtrl.n.u8VTPR);
3581 pHlp->pfnPrintf(pHlp, " %sVIRQ (Pending) = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1VIrqPending);
3582 pHlp->pfnPrintf(pHlp, " %sVINTR vector = %#RX8\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u8VIntrVector);
3583 pHlp->pfnPrintf(pHlp, " %sVGIF = %u\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1VGif);
3584 pHlp->pfnPrintf(pHlp, " %sVINTR priority = %#RX8\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u4VIntrPrio);
3585 pHlp->pfnPrintf(pHlp, " %sIgnore TPR = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1IgnoreTPR);
3586 pHlp->pfnPrintf(pHlp, " %sVINTR masking = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1VIntrMasking);
3587 pHlp->pfnPrintf(pHlp, " %sVGIF enable = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1VGifEnable);
3588 pHlp->pfnPrintf(pHlp, " %sAVIC enable = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1AvicEnable);
3589 pHlp->pfnPrintf(pHlp, "%sInterrupt Shadow\n", pszPrefix);
3590 pHlp->pfnPrintf(pHlp, " %sInterrupt shadow = %RTbool\n", pszPrefix, pVmcbCtrl->IntShadow.n.u1IntShadow);
3591 pHlp->pfnPrintf(pHlp, " %sGuest-interrupt Mask = %RTbool\n", pszPrefix, pVmcbCtrl->IntShadow.n.u1GuestIntMask);
3592 pHlp->pfnPrintf(pHlp, "%sExit Code = %#RX64\n", pszPrefix, pVmcbCtrl->u64ExitCode);
3593 pHlp->pfnPrintf(pHlp, "%sEXITINFO1 = %#RX64\n", pszPrefix, pVmcbCtrl->u64ExitInfo1);
3594 pHlp->pfnPrintf(pHlp, "%sEXITINFO2 = %#RX64\n", pszPrefix, pVmcbCtrl->u64ExitInfo2);
3595 pHlp->pfnPrintf(pHlp, "%sExit Interrupt Info\n", pszPrefix);
3596 pHlp->pfnPrintf(pHlp, " %sValid = %RTbool\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u1Valid);
3597 pHlp->pfnPrintf(pHlp, " %sVector = %#RX8 (%u)\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u8Vector, pVmcbCtrl->ExitIntInfo.n.u8Vector);
3598 pHlp->pfnPrintf(pHlp, " %sType = %u\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u3Type);
3599 pHlp->pfnPrintf(pHlp, " %sError-code valid = %RTbool\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u1ErrorCodeValid);
3600 pHlp->pfnPrintf(pHlp, " %sError-code = %#RX32\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u32ErrorCode);
3601 pHlp->pfnPrintf(pHlp, "%sNested paging and SEV\n", pszPrefix);
3602 pHlp->pfnPrintf(pHlp, " %sNested paging = %RTbool\n", pszPrefix, pVmcbCtrl->NestedPagingCtrl.n.u1NestedPaging);
3603 pHlp->pfnPrintf(pHlp, " %sSEV (Secure Encrypted VM) = %RTbool\n", pszPrefix, pVmcbCtrl->NestedPagingCtrl.n.u1Sev);
3604 pHlp->pfnPrintf(pHlp, " %sSEV-ES (Encrypted State) = %RTbool\n", pszPrefix, pVmcbCtrl->NestedPagingCtrl.n.u1SevEs);
3605 pHlp->pfnPrintf(pHlp, "%sEvent Inject\n", pszPrefix);
3606 pHlp->pfnPrintf(pHlp, " %sValid = %RTbool\n", pszPrefix, pVmcbCtrl->EventInject.n.u1Valid);
3607 pHlp->pfnPrintf(pHlp, " %sVector = %#RX32 (%u)\n", pszPrefix, pVmcbCtrl->EventInject.n.u8Vector, pVmcbCtrl->EventInject.n.u8Vector);
3608 pHlp->pfnPrintf(pHlp, " %sType = %u\n", pszPrefix, pVmcbCtrl->EventInject.n.u3Type);
3609 pHlp->pfnPrintf(pHlp, " %sError-code valid = %RTbool\n", pszPrefix, pVmcbCtrl->EventInject.n.u1ErrorCodeValid);
3610 pHlp->pfnPrintf(pHlp, " %sError-code = %#RX32\n", pszPrefix, pVmcbCtrl->EventInject.n.u32ErrorCode);
3611 pHlp->pfnPrintf(pHlp, "%sNested-paging CR3 = %#RX64\n", pszPrefix, pVmcbCtrl->u64NestedPagingCR3);
3612 pHlp->pfnPrintf(pHlp, "%sLBR Virtualization\n", pszPrefix);
3613 pHlp->pfnPrintf(pHlp, " %sLBR virt = %RTbool\n", pszPrefix, pVmcbCtrl->LbrVirt.n.u1LbrVirt);
3614 pHlp->pfnPrintf(pHlp, " %sVirt. VMSAVE/VMLOAD = %RTbool\n", pszPrefix, pVmcbCtrl->LbrVirt.n.u1VirtVmsaveVmload);
3615 pHlp->pfnPrintf(pHlp, "%sVMCB Clean Bits = %#RX32\n", pszPrefix, pVmcbCtrl->u32VmcbCleanBits);
3616 pHlp->pfnPrintf(pHlp, "%sNext-RIP = %#RX64\n", pszPrefix, pVmcbCtrl->u64NextRIP);
3617 pHlp->pfnPrintf(pHlp, "%sInstruction bytes fetched = %u\n", pszPrefix, pVmcbCtrl->cbInstrFetched);
3618 pHlp->pfnPrintf(pHlp, "%sInstruction bytes = %.*Rhxs\n", pszPrefix, sizeof(pVmcbCtrl->abInstr), pVmcbCtrl->abInstr);
3619 pHlp->pfnPrintf(pHlp, "%sAVIC\n", pszPrefix);
3620 pHlp->pfnPrintf(pHlp, " %sBar addr = %#RX64\n", pszPrefix, pVmcbCtrl->AvicBar.n.u40Addr);
3621 pHlp->pfnPrintf(pHlp, " %sBacking page addr = %#RX64\n", pszPrefix, pVmcbCtrl->AvicBackingPagePtr.n.u40Addr);
3622 pHlp->pfnPrintf(pHlp, " %sLogical table addr = %#RX64\n", pszPrefix, pVmcbCtrl->AvicLogicalTablePtr.n.u40Addr);
3623 pHlp->pfnPrintf(pHlp, " %sPhysical table addr = %#RX64\n", pszPrefix, pVmcbCtrl->AvicPhysicalTablePtr.n.u40Addr);
3624 pHlp->pfnPrintf(pHlp, " %sLast guest core Id = %u\n", pszPrefix, pVmcbCtrl->AvicPhysicalTablePtr.n.u8LastGuestCoreId);
3625}
3626
3627
3628/**
3629 * Helper for dumping the SVM VMCB selector registers.
3630 *
3631 * @param pHlp The info helper functions.
3632 * @param pSel Pointer to the SVM selector register.
3633 * @param pszName Name of the selector.
3634 * @param pszPrefix Caller specified string prefix.
3635 */
3636DECLINLINE(void) cpumR3InfoSvmVmcbSelReg(PCDBGFINFOHLP pHlp, PCSVMSELREG pSel, const char *pszName, const char *pszPrefix)
3637{
3638 /* The string width of 4 used below is to handle 'LDTR'. Change later if longer register names are used. */
3639 pHlp->pfnPrintf(pHlp, "%s%-4s = {%04x base=%016RX64 limit=%08x flags=%04x}\n", pszPrefix,
3640 pszName, pSel->u16Sel, pSel->u64Base, pSel->u32Limit, pSel->u16Attr);
3641}
3642
3643
3644/**
3645 * Helper for dumping the SVM VMCB GDTR/IDTR registers.
3646 *
3647 * @param pHlp The info helper functions.
3648 * @param pXdtr Pointer to the descriptor table register.
3649 * @param pszName Name of the descriptor table register.
3650 * @param pszPrefix Caller specified string prefix.
3651 */
3652DECLINLINE(void) cpumR3InfoSvmVmcbXdtr(PCDBGFINFOHLP pHlp, PCSVMXDTR pXdtr, const char *pszName, const char *pszPrefix)
3653{
3654 /* The string width of 4 used below is to cover 'GDTR', 'IDTR'. Change later if longer register names are used. */
3655 pHlp->pfnPrintf(pHlp, "%s%-4s = %016RX64:%04x\n", pszPrefix, pszName, pXdtr->u64Base, pXdtr->u32Limit);
3656}
3657
3658
3659/**
3660 * Displays an SVM VMCB state-save area.
3661 *
3662 * @param pHlp The info helper functions.
3663 * @param pVmcbStateSave Pointer to a SVM VMCB controls area.
3664 * @param pszPrefix Caller specified string prefix.
3665 */
3666static void cpumR3InfoSvmVmcbStateSave(PCDBGFINFOHLP pHlp, PCSVMVMCBSTATESAVE pVmcbStateSave, const char *pszPrefix)
3667{
3668 AssertReturnVoid(pHlp);
3669 AssertReturnVoid(pVmcbStateSave);
3670
3671 char szEFlags[80];
3672 cpumR3InfoFormatFlags(&szEFlags[0], pVmcbStateSave->u64RFlags);
3673
3674 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->CS, "CS", pszPrefix);
3675 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->SS, "SS", pszPrefix);
3676 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->ES, "ES", pszPrefix);
3677 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->DS, "DS", pszPrefix);
3678 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->FS, "FS", pszPrefix);
3679 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->GS, "GS", pszPrefix);
3680 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->LDTR, "LDTR", pszPrefix);
3681 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->TR, "TR", pszPrefix);
3682 cpumR3InfoSvmVmcbXdtr(pHlp, &pVmcbStateSave->GDTR, "GDTR", pszPrefix);
3683 cpumR3InfoSvmVmcbXdtr(pHlp, &pVmcbStateSave->IDTR, "IDTR", pszPrefix);
3684 pHlp->pfnPrintf(pHlp, "%sCPL = %u\n", pszPrefix, pVmcbStateSave->u8CPL);
3685 pHlp->pfnPrintf(pHlp, "%sEFER = %#RX64\n", pszPrefix, pVmcbStateSave->u64EFER);
3686 pHlp->pfnPrintf(pHlp, "%sCR4 = %#RX64\n", pszPrefix, pVmcbStateSave->u64CR4);
3687 pHlp->pfnPrintf(pHlp, "%sCR3 = %#RX64\n", pszPrefix, pVmcbStateSave->u64CR3);
3688 pHlp->pfnPrintf(pHlp, "%sCR0 = %#RX64\n", pszPrefix, pVmcbStateSave->u64CR0);
3689 pHlp->pfnPrintf(pHlp, "%sDR7 = %#RX64\n", pszPrefix, pVmcbStateSave->u64DR7);
3690 pHlp->pfnPrintf(pHlp, "%sDR6 = %#RX64\n", pszPrefix, pVmcbStateSave->u64DR6);
3691 pHlp->pfnPrintf(pHlp, "%sRFLAGS = %#RX64 %31s\n", pszPrefix, pVmcbStateSave->u64RFlags, szEFlags);
3692 pHlp->pfnPrintf(pHlp, "%sRIP = %#RX64\n", pszPrefix, pVmcbStateSave->u64RIP);
3693 pHlp->pfnPrintf(pHlp, "%sRSP = %#RX64\n", pszPrefix, pVmcbStateSave->u64RSP);
3694 pHlp->pfnPrintf(pHlp, "%sRAX = %#RX64\n", pszPrefix, pVmcbStateSave->u64RAX);
3695 pHlp->pfnPrintf(pHlp, "%sSTAR = %#RX64\n", pszPrefix, pVmcbStateSave->u64STAR);
3696 pHlp->pfnPrintf(pHlp, "%sLSTAR = %#RX64\n", pszPrefix, pVmcbStateSave->u64LSTAR);
3697 pHlp->pfnPrintf(pHlp, "%sCSTAR = %#RX64\n", pszPrefix, pVmcbStateSave->u64CSTAR);
3698 pHlp->pfnPrintf(pHlp, "%sSFMASK = %#RX64\n", pszPrefix, pVmcbStateSave->u64SFMASK);
3699 pHlp->pfnPrintf(pHlp, "%sKERNELGSBASE = %#RX64\n", pszPrefix, pVmcbStateSave->u64KernelGSBase);
3700 pHlp->pfnPrintf(pHlp, "%sSysEnter CS = %#RX64\n", pszPrefix, pVmcbStateSave->u64SysEnterCS);
3701 pHlp->pfnPrintf(pHlp, "%sSysEnter EIP = %#RX64\n", pszPrefix, pVmcbStateSave->u64SysEnterEIP);
3702 pHlp->pfnPrintf(pHlp, "%sSysEnter ESP = %#RX64\n", pszPrefix, pVmcbStateSave->u64SysEnterESP);
3703 pHlp->pfnPrintf(pHlp, "%sCR2 = %#RX64\n", pszPrefix, pVmcbStateSave->u64CR2);
3704 pHlp->pfnPrintf(pHlp, "%sPAT = %#RX64\n", pszPrefix, pVmcbStateSave->u64PAT);
3705 pHlp->pfnPrintf(pHlp, "%sDBGCTL = %#RX64\n", pszPrefix, pVmcbStateSave->u64DBGCTL);
3706 pHlp->pfnPrintf(pHlp, "%sBR_FROM = %#RX64\n", pszPrefix, pVmcbStateSave->u64BR_FROM);
3707 pHlp->pfnPrintf(pHlp, "%sBR_TO = %#RX64\n", pszPrefix, pVmcbStateSave->u64BR_TO);
3708 pHlp->pfnPrintf(pHlp, "%sLASTXCPT_FROM = %#RX64\n", pszPrefix, pVmcbStateSave->u64LASTEXCPFROM);
3709 pHlp->pfnPrintf(pHlp, "%sLASTXCPT_TO = %#RX64\n", pszPrefix, pVmcbStateSave->u64LASTEXCPTO);
3710}
3711
3712
3713/**
3714 * Displays a virtual-VMCS.
3715 *
3716 * @param pVCpu The cross context virtual CPU structure.
3717 * @param pHlp The info helper functions.
3718 * @param pVmcs Pointer to a virtual VMCS.
3719 * @param pszPrefix Caller specified string prefix.
3720 */
3721static void cpumR3InfoVmxVmcs(PVMCPU pVCpu, PCDBGFINFOHLP pHlp, PCVMXVVMCS pVmcs, const char *pszPrefix)
3722{
3723 AssertReturnVoid(pHlp);
3724 AssertReturnVoid(pVmcs);
3725
3726 /* The string width of -4 used in the macros below to cover 'LDTR', 'GDTR', 'IDTR. */
3727#define CPUMVMX_DUMP_HOST_XDTR(a_pHlp, a_pVmcs, a_Seg, a_SegName, a_pszPrefix) \
3728 do { \
3729 (a_pHlp)->pfnPrintf((a_pHlp), " %s%-4s = {base=%016RX64}\n", \
3730 (a_pszPrefix), (a_SegName), (a_pVmcs)->u64Host##a_Seg##Base.u); \
3731 } while (0)
3732
3733#define CPUMVMX_DUMP_HOST_FS_GS_TR(a_pHlp, a_pVmcs, a_Seg, a_SegName, a_pszPrefix) \
3734 do { \
3735 (a_pHlp)->pfnPrintf((a_pHlp), " %s%-4s = {%04x base=%016RX64}\n", \
3736 (a_pszPrefix), (a_SegName), (a_pVmcs)->Host##a_Seg, (a_pVmcs)->u64Host##a_Seg##Base.u); \
3737 } while (0)
3738
3739#define CPUMVMX_DUMP_GUEST_SEGREG(a_pHlp, a_pVmcs, a_Seg, a_SegName, a_pszPrefix) \
3740 do { \
3741 (a_pHlp)->pfnPrintf((a_pHlp), " %s%-4s = {%04x base=%016RX64 limit=%08x flags=%04x}\n", \
3742 (a_pszPrefix), (a_SegName), (a_pVmcs)->Guest##a_Seg, (a_pVmcs)->u64Guest##a_Seg##Base.u, \
3743 (a_pVmcs)->u32Guest##a_Seg##Limit, (a_pVmcs)->u32Guest##a_Seg##Attr); \
3744 } while (0)
3745
3746#define CPUMVMX_DUMP_GUEST_XDTR(a_pHlp, a_pVmcs, a_Seg, a_SegName, a_pszPrefix) \
3747 do { \
3748 (a_pHlp)->pfnPrintf((a_pHlp), " %s%-4s = {base=%016RX64 limit=%08x}\n", \
3749 (a_pszPrefix), (a_SegName), (a_pVmcs)->u64Guest##a_Seg##Base.u, (a_pVmcs)->u32Guest##a_Seg##Limit); \
3750 } while (0)
3751
3752 /* Header. */
3753 {
3754 pHlp->pfnPrintf(pHlp, "%sHeader:\n", pszPrefix);
3755 pHlp->pfnPrintf(pHlp, " %sVMCS revision id = %#RX32\n", pszPrefix, pVmcs->u32VmcsRevId);
3756 pHlp->pfnPrintf(pHlp, " %sVMX-abort id = %#RX32 (%s)\n", pszPrefix, pVmcs->enmVmxAbort, VMXGetAbortDesc(pVmcs->enmVmxAbort));
3757 pHlp->pfnPrintf(pHlp, " %sVMCS state = %#x (%s)\n", pszPrefix, pVmcs->fVmcsState, VMXGetVmcsStateDesc(pVmcs->fVmcsState));
3758 }
3759
3760 /* Control fields. */
3761 {
3762 /* 16-bit. */
3763 pHlp->pfnPrintf(pHlp, "%sControl:\n", pszPrefix);
3764 pHlp->pfnPrintf(pHlp, " %sVPID = %#RX16\n", pszPrefix, pVmcs->u16Vpid);
3765 pHlp->pfnPrintf(pHlp, " %sPosted intr notify vector = %#RX16\n", pszPrefix, pVmcs->u16PostIntNotifyVector);
3766 pHlp->pfnPrintf(pHlp, " %sEPTP index = %#RX16\n", pszPrefix, pVmcs->u16EptpIndex);
3767
3768 /* 32-bit. */
3769 pHlp->pfnPrintf(pHlp, " %sPin ctls = %#RX32\n", pszPrefix, pVmcs->u32PinCtls);
3770 pHlp->pfnPrintf(pHlp, " %sProcessor ctls = %#RX32\n", pszPrefix, pVmcs->u32ProcCtls);
3771 pHlp->pfnPrintf(pHlp, " %sSecondary processor ctls = %#RX32\n", pszPrefix, pVmcs->u32ProcCtls2);
3772 pHlp->pfnPrintf(pHlp, " %sVM-exit ctls = %#RX32\n", pszPrefix, pVmcs->u32ExitCtls);
3773 pHlp->pfnPrintf(pHlp, " %sVM-entry ctls = %#RX32\n", pszPrefix, pVmcs->u32EntryCtls);
3774 pHlp->pfnPrintf(pHlp, " %sException bitmap = %#RX32\n", pszPrefix, pVmcs->u32XcptBitmap);
3775 pHlp->pfnPrintf(pHlp, " %sPage-fault mask = %#RX32\n", pszPrefix, pVmcs->u32XcptPFMask);
3776 pHlp->pfnPrintf(pHlp, " %sPage-fault match = %#RX32\n", pszPrefix, pVmcs->u32XcptPFMatch);
3777 pHlp->pfnPrintf(pHlp, " %sCR3-target count = %RU32\n", pszPrefix, pVmcs->u32Cr3TargetCount);
3778 pHlp->pfnPrintf(pHlp, " %sVM-exit MSR store count = %RU32\n", pszPrefix, pVmcs->u32ExitMsrStoreCount);
3779 pHlp->pfnPrintf(pHlp, " %sVM-exit MSR load count = %RU32\n", pszPrefix, pVmcs->u32ExitMsrLoadCount);
3780 pHlp->pfnPrintf(pHlp, " %sVM-entry MSR load count = %RU32\n", pszPrefix, pVmcs->u32EntryMsrLoadCount);
3781 pHlp->pfnPrintf(pHlp, " %sVM-entry interruption info = %#RX32\n", pszPrefix, pVmcs->u32EntryIntInfo);
3782 {
3783 uint32_t const fInfo = pVmcs->u32EntryIntInfo;
3784 uint8_t const uType = VMX_ENTRY_INT_INFO_TYPE(fInfo);
3785 pHlp->pfnPrintf(pHlp, " %sValid = %RTbool\n", pszPrefix, VMX_ENTRY_INT_INFO_IS_VALID(fInfo));
3786 pHlp->pfnPrintf(pHlp, " %sType = %#x (%s)\n", pszPrefix, uType, VMXGetEntryIntInfoTypeDesc(uType));
3787 pHlp->pfnPrintf(pHlp, " %sVector = %#x\n", pszPrefix, VMX_ENTRY_INT_INFO_VECTOR(fInfo));
3788 pHlp->pfnPrintf(pHlp, " %sNMI-unblocking-IRET = %RTbool\n", pszPrefix, VMX_ENTRY_INT_INFO_IS_NMI_UNBLOCK_IRET(fInfo));
3789 pHlp->pfnPrintf(pHlp, " %sError-code valid = %RTbool\n", pszPrefix, VMX_ENTRY_INT_INFO_IS_ERROR_CODE_VALID(fInfo));
3790 }
3791 pHlp->pfnPrintf(pHlp, " %sVM-entry xcpt error-code = %#RX32\n", pszPrefix, pVmcs->u32EntryXcptErrCode);
3792 pHlp->pfnPrintf(pHlp, " %sVM-entry instr length = %u byte(s)\n", pszPrefix, pVmcs->u32EntryInstrLen);
3793 pHlp->pfnPrintf(pHlp, " %sTPR threshold = %#RX32\n", pszPrefix, pVmcs->u32TprThreshold);
3794 pHlp->pfnPrintf(pHlp, " %sPLE gap = %#RX32\n", pszPrefix, pVmcs->u32PleGap);
3795 pHlp->pfnPrintf(pHlp, " %sPLE window = %#RX32\n", pszPrefix, pVmcs->u32PleWindow);
3796
3797 /* 64-bit. */
3798 pHlp->pfnPrintf(pHlp, " %sIO-bitmap A addr = %#RX64\n", pszPrefix, pVmcs->u64AddrIoBitmapA.u);
3799 pHlp->pfnPrintf(pHlp, " %sIO-bitmap B addr = %#RX64\n", pszPrefix, pVmcs->u64AddrIoBitmapB.u);
3800 pHlp->pfnPrintf(pHlp, " %sMSR-bitmap addr = %#RX64\n", pszPrefix, pVmcs->u64AddrMsrBitmap.u);
3801 pHlp->pfnPrintf(pHlp, " %sVM-exit MSR store addr = %#RX64\n", pszPrefix, pVmcs->u64AddrExitMsrStore.u);
3802 pHlp->pfnPrintf(pHlp, " %sVM-exit MSR load addr = %#RX64\n", pszPrefix, pVmcs->u64AddrExitMsrLoad.u);
3803 pHlp->pfnPrintf(pHlp, " %sVM-entry MSR load addr = %#RX64\n", pszPrefix, pVmcs->u64AddrEntryMsrLoad.u);
3804 pHlp->pfnPrintf(pHlp, " %sExecutive VMCS ptr = %#RX64\n", pszPrefix, pVmcs->u64ExecVmcsPtr.u);
3805 pHlp->pfnPrintf(pHlp, " %sPML addr = %#RX64\n", pszPrefix, pVmcs->u64AddrPml.u);
3806 pHlp->pfnPrintf(pHlp, " %sTSC offset = %#RX64\n", pszPrefix, pVmcs->u64TscOffset.u);
3807 pHlp->pfnPrintf(pHlp, " %sVirtual-APIC addr = %#RX64\n", pszPrefix, pVmcs->u64AddrVirtApic.u);
3808 pHlp->pfnPrintf(pHlp, " %sAPIC-access addr = %#RX64\n", pszPrefix, pVmcs->u64AddrApicAccess.u);
3809 pHlp->pfnPrintf(pHlp, " %sPosted-intr desc addr = %#RX64\n", pszPrefix, pVmcs->u64AddrPostedIntDesc.u);
3810 pHlp->pfnPrintf(pHlp, " %sVM-functions control = %#RX64\n", pszPrefix, pVmcs->u64VmFuncCtls.u);
3811 pHlp->pfnPrintf(pHlp, " %sEPTP ptr = %#RX64\n", pszPrefix, pVmcs->u64EptpPtr.u);
3812 pHlp->pfnPrintf(pHlp, " %sEOI-exit bitmap 0 = %#RX64\n", pszPrefix, pVmcs->u64EoiExitBitmap0.u);
3813 pHlp->pfnPrintf(pHlp, " %sEOI-exit bitmap 1 = %#RX64\n", pszPrefix, pVmcs->u64EoiExitBitmap1.u);
3814 pHlp->pfnPrintf(pHlp, " %sEOI-exit bitmap 2 = %#RX64\n", pszPrefix, pVmcs->u64EoiExitBitmap2.u);
3815 pHlp->pfnPrintf(pHlp, " %sEOI-exit bitmap 3 = %#RX64\n", pszPrefix, pVmcs->u64EoiExitBitmap3.u);
3816 pHlp->pfnPrintf(pHlp, " %sEPTP-list addr = %#RX64\n", pszPrefix, pVmcs->u64AddrEptpList.u);
3817 pHlp->pfnPrintf(pHlp, " %sVMREAD-bitmap addr = %#RX64\n", pszPrefix, pVmcs->u64AddrVmreadBitmap.u);
3818 pHlp->pfnPrintf(pHlp, " %sVMWRITE-bitmap addr = %#RX64\n", pszPrefix, pVmcs->u64AddrVmwriteBitmap.u);
3819 pHlp->pfnPrintf(pHlp, " %sVirt-Xcpt info addr = %#RX64\n", pszPrefix, pVmcs->u64AddrXcptVeInfo.u);
3820 pHlp->pfnPrintf(pHlp, " %sXSS-exiting bitmap = %#RX64\n", pszPrefix, pVmcs->u64XssExitBitmap.u);
3821 pHlp->pfnPrintf(pHlp, " %sENCLS-exiting bitmap = %#RX64\n", pszPrefix, pVmcs->u64EnclsExitBitmap.u);
3822 pHlp->pfnPrintf(pHlp, " %sSPP-table ptr = %#RX64\n", pszPrefix, pVmcs->u64SppTablePtr.u);
3823 pHlp->pfnPrintf(pHlp, " %sTSC multiplier = %#RX64\n", pszPrefix, pVmcs->u64TscMultiplier.u);
3824 pHlp->pfnPrintf(pHlp, " %sTertiary processor ctls = %#RX64\n", pszPrefix, pVmcs->u64ProcCtls3.u);
3825 pHlp->pfnPrintf(pHlp, " %sENCLV-exiting bitmap = %#RX64\n", pszPrefix, pVmcs->u64EnclvExitBitmap.u);
3826
3827 /* Natural width. */
3828 pHlp->pfnPrintf(pHlp, " %sCR0 guest/host mask = %#RX64\n", pszPrefix, pVmcs->u64Cr0Mask.u);
3829 pHlp->pfnPrintf(pHlp, " %sCR4 guest/host mask = %#RX64\n", pszPrefix, pVmcs->u64Cr4Mask.u);
3830 pHlp->pfnPrintf(pHlp, " %sCR0 read shadow = %#RX64\n", pszPrefix, pVmcs->u64Cr0ReadShadow.u);
3831 pHlp->pfnPrintf(pHlp, " %sCR4 read shadow = %#RX64\n", pszPrefix, pVmcs->u64Cr4ReadShadow.u);
3832 pHlp->pfnPrintf(pHlp, " %sCR3-target 0 = %#RX64\n", pszPrefix, pVmcs->u64Cr3Target0.u);
3833 pHlp->pfnPrintf(pHlp, " %sCR3-target 1 = %#RX64\n", pszPrefix, pVmcs->u64Cr3Target1.u);
3834 pHlp->pfnPrintf(pHlp, " %sCR3-target 2 = %#RX64\n", pszPrefix, pVmcs->u64Cr3Target2.u);
3835 pHlp->pfnPrintf(pHlp, " %sCR3-target 3 = %#RX64\n", pszPrefix, pVmcs->u64Cr3Target3.u);
3836 }
3837
3838 /* Guest state. */
3839 {
3840 char szEFlags[80];
3841 cpumR3InfoFormatFlags(&szEFlags[0], pVmcs->u64GuestRFlags.u);
3842 pHlp->pfnPrintf(pHlp, "%sGuest state:\n", pszPrefix);
3843
3844 /* 16-bit. */
3845 CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Cs, "CS", pszPrefix);
3846 CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Ss, "SS", pszPrefix);
3847 CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Es, "ES", pszPrefix);
3848 CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Ds, "DS", pszPrefix);
3849 CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Fs, "FS", pszPrefix);
3850 CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Gs, "GS", pszPrefix);
3851 CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Ldtr, "LDTR", pszPrefix);
3852 CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Tr, "TR", pszPrefix);
3853 CPUMVMX_DUMP_GUEST_XDTR(pHlp, pVmcs, Gdtr, "GDTR", pszPrefix);
3854 CPUMVMX_DUMP_GUEST_XDTR(pHlp, pVmcs, Idtr, "IDTR", pszPrefix);
3855 pHlp->pfnPrintf(pHlp, " %sInterrupt status = %#RX16\n", pszPrefix, pVmcs->u16GuestIntStatus);
3856 pHlp->pfnPrintf(pHlp, " %sPML index = %#RX16\n", pszPrefix, pVmcs->u16PmlIndex);
3857
3858 /* 32-bit. */
3859 pHlp->pfnPrintf(pHlp, " %sInterruptibility state = %#RX32\n", pszPrefix, pVmcs->u32GuestIntrState);
3860 pHlp->pfnPrintf(pHlp, " %sActivity state = %#RX32\n", pszPrefix, pVmcs->u32GuestActivityState);
3861 pHlp->pfnPrintf(pHlp, " %sSMBASE = %#RX32\n", pszPrefix, pVmcs->u32GuestSmBase);
3862 pHlp->pfnPrintf(pHlp, " %sSysEnter CS = %#RX32\n", pszPrefix, pVmcs->u32GuestSysenterCS);
3863 pHlp->pfnPrintf(pHlp, " %sVMX-preemption timer value = %#RX32\n", pszPrefix, pVmcs->u32PreemptTimer);
3864
3865 /* 64-bit. */
3866 pHlp->pfnPrintf(pHlp, " %sVMCS link ptr = %#RX64\n", pszPrefix, pVmcs->u64VmcsLinkPtr.u);
3867 pHlp->pfnPrintf(pHlp, " %sDBGCTL = %#RX64\n", pszPrefix, pVmcs->u64GuestDebugCtlMsr.u);
3868 pHlp->pfnPrintf(pHlp, " %sPAT = %#RX64\n", pszPrefix, pVmcs->u64GuestPatMsr.u);
3869 pHlp->pfnPrintf(pHlp, " %sEFER = %#RX64\n", pszPrefix, pVmcs->u64GuestEferMsr.u);
3870 pHlp->pfnPrintf(pHlp, " %sPERFGLOBALCTRL = %#RX64\n", pszPrefix, pVmcs->u64GuestPerfGlobalCtlMsr.u);
3871 pHlp->pfnPrintf(pHlp, " %sPDPTE 0 = %#RX64\n", pszPrefix, pVmcs->u64GuestPdpte0.u);
3872 pHlp->pfnPrintf(pHlp, " %sPDPTE 1 = %#RX64\n", pszPrefix, pVmcs->u64GuestPdpte1.u);
3873 pHlp->pfnPrintf(pHlp, " %sPDPTE 2 = %#RX64\n", pszPrefix, pVmcs->u64GuestPdpte2.u);
3874 pHlp->pfnPrintf(pHlp, " %sPDPTE 3 = %#RX64\n", pszPrefix, pVmcs->u64GuestPdpte3.u);
3875 pHlp->pfnPrintf(pHlp, " %sBNDCFGS = %#RX64\n", pszPrefix, pVmcs->u64GuestBndcfgsMsr.u);
3876 pHlp->pfnPrintf(pHlp, " %sRTIT_CTL = %#RX64\n", pszPrefix, pVmcs->u64GuestRtitCtlMsr.u);
3877 pHlp->pfnPrintf(pHlp, " %sPKRS = %#RX64\n", pszPrefix, pVmcs->u64GuestPkrsMsr.u);
3878
3879 /* Natural width. */
3880 pHlp->pfnPrintf(pHlp, " %sCR0 = %#RX64\n", pszPrefix, pVmcs->u64GuestCr0.u);
3881 pHlp->pfnPrintf(pHlp, " %sCR3 = %#RX64\n", pszPrefix, pVmcs->u64GuestCr3.u);
3882 pHlp->pfnPrintf(pHlp, " %sCR4 = %#RX64\n", pszPrefix, pVmcs->u64GuestCr4.u);
3883 pHlp->pfnPrintf(pHlp, " %sDR7 = %#RX64\n", pszPrefix, pVmcs->u64GuestDr7.u);
3884 pHlp->pfnPrintf(pHlp, " %sRSP = %#RX64\n", pszPrefix, pVmcs->u64GuestRsp.u);
3885 pHlp->pfnPrintf(pHlp, " %sRIP = %#RX64\n", pszPrefix, pVmcs->u64GuestRip.u);
3886 pHlp->pfnPrintf(pHlp, " %sRFLAGS = %#RX64 %31s\n",pszPrefix, pVmcs->u64GuestRFlags.u, szEFlags);
3887 pHlp->pfnPrintf(pHlp, " %sPending debug xcpts = %#RX64\n", pszPrefix, pVmcs->u64GuestPendingDbgXcpts.u);
3888 pHlp->pfnPrintf(pHlp, " %sSysEnter ESP = %#RX64\n", pszPrefix, pVmcs->u64GuestSysenterEsp.u);
3889 pHlp->pfnPrintf(pHlp, " %sSysEnter EIP = %#RX64\n", pszPrefix, pVmcs->u64GuestSysenterEip.u);
3890 pHlp->pfnPrintf(pHlp, " %sS_CET = %#RX64\n", pszPrefix, pVmcs->u64GuestSCetMsr.u);
3891 pHlp->pfnPrintf(pHlp, " %sSSP = %#RX64\n", pszPrefix, pVmcs->u64GuestSsp.u);
3892 pHlp->pfnPrintf(pHlp, " %sINTERRUPT_SSP_TABLE_ADDR = %#RX64\n", pszPrefix, pVmcs->u64GuestIntrSspTableAddrMsr.u);
3893 }
3894
3895 /* Host state. */
3896 {
3897 pHlp->pfnPrintf(pHlp, "%sHost state:\n", pszPrefix);
3898
3899 /* 16-bit. */
3900 pHlp->pfnPrintf(pHlp, " %sCS = %#RX16\n", pszPrefix, pVmcs->HostCs);
3901 pHlp->pfnPrintf(pHlp, " %sSS = %#RX16\n", pszPrefix, pVmcs->HostSs);
3902 pHlp->pfnPrintf(pHlp, " %sDS = %#RX16\n", pszPrefix, pVmcs->HostDs);
3903 pHlp->pfnPrintf(pHlp, " %sES = %#RX16\n", pszPrefix, pVmcs->HostEs);
3904 CPUMVMX_DUMP_HOST_FS_GS_TR(pHlp, pVmcs, Fs, "FS", pszPrefix);
3905 CPUMVMX_DUMP_HOST_FS_GS_TR(pHlp, pVmcs, Gs, "GS", pszPrefix);
3906 CPUMVMX_DUMP_HOST_FS_GS_TR(pHlp, pVmcs, Tr, "TR", pszPrefix);
3907 CPUMVMX_DUMP_HOST_XDTR(pHlp, pVmcs, Gdtr, "GDTR", pszPrefix);
3908 CPUMVMX_DUMP_HOST_XDTR(pHlp, pVmcs, Idtr, "IDTR", pszPrefix);
3909
3910 /* 32-bit. */
3911 pHlp->pfnPrintf(pHlp, " %sSysEnter CS = %#RX32\n", pszPrefix, pVmcs->u32HostSysenterCs);
3912
3913 /* 64-bit. */
3914 pHlp->pfnPrintf(pHlp, " %sEFER = %#RX64\n", pszPrefix, pVmcs->u64HostEferMsr.u);
3915 pHlp->pfnPrintf(pHlp, " %sPAT = %#RX64\n", pszPrefix, pVmcs->u64HostPatMsr.u);
3916 pHlp->pfnPrintf(pHlp, " %sPERFGLOBALCTRL = %#RX64\n", pszPrefix, pVmcs->u64HostPerfGlobalCtlMsr.u);
3917 pHlp->pfnPrintf(pHlp, " %sPKRS = %#RX64\n", pszPrefix, pVmcs->u64HostPkrsMsr.u);
3918
3919 /* Natural width. */
3920 pHlp->pfnPrintf(pHlp, " %sCR0 = %#RX64\n", pszPrefix, pVmcs->u64HostCr0.u);
3921 pHlp->pfnPrintf(pHlp, " %sCR3 = %#RX64\n", pszPrefix, pVmcs->u64HostCr3.u);
3922 pHlp->pfnPrintf(pHlp, " %sCR4 = %#RX64\n", pszPrefix, pVmcs->u64HostCr4.u);
3923 pHlp->pfnPrintf(pHlp, " %sSysEnter ESP = %#RX64\n", pszPrefix, pVmcs->u64HostSysenterEsp.u);
3924 pHlp->pfnPrintf(pHlp, " %sSysEnter EIP = %#RX64\n", pszPrefix, pVmcs->u64HostSysenterEip.u);
3925 pHlp->pfnPrintf(pHlp, " %sRSP = %#RX64\n", pszPrefix, pVmcs->u64HostRsp.u);
3926 pHlp->pfnPrintf(pHlp, " %sRIP = %#RX64\n", pszPrefix, pVmcs->u64HostRip.u);
3927 pHlp->pfnPrintf(pHlp, " %sS_CET = %#RX64\n", pszPrefix, pVmcs->u64HostSCetMsr.u);
3928 pHlp->pfnPrintf(pHlp, " %sSSP = %#RX64\n", pszPrefix, pVmcs->u64HostSsp.u);
3929 pHlp->pfnPrintf(pHlp, " %sINTERRUPT_SSP_TABLE_ADDR = %#RX64\n", pszPrefix, pVmcs->u64HostIntrSspTableAddrMsr.u);
3930
3931 }
3932
3933 /* Read-only fields. */
3934 {
3935 pHlp->pfnPrintf(pHlp, "%sRead-only data fields:\n", pszPrefix);
3936
3937 /* 16-bit (none currently). */
3938
3939 /* 32-bit. */
3940 pHlp->pfnPrintf(pHlp, " %sExit reason = %u (%s)\n", pszPrefix, pVmcs->u32RoExitReason, HMGetVmxExitName(pVmcs->u32RoExitReason));
3941 pHlp->pfnPrintf(pHlp, " %sExit qualification = %#RX64\n", pszPrefix, pVmcs->u64RoExitQual.u);
3942 pHlp->pfnPrintf(pHlp, " %sVM-instruction error = %#RX32\n", pszPrefix, pVmcs->u32RoVmInstrError);
3943 pHlp->pfnPrintf(pHlp, " %sVM-exit intr info = %#RX32\n", pszPrefix, pVmcs->u32RoExitIntInfo);
3944 {
3945 uint32_t const fInfo = pVmcs->u32RoExitIntInfo;
3946 uint8_t const uType = VMX_EXIT_INT_INFO_TYPE(fInfo);
3947 pHlp->pfnPrintf(pHlp, " %sValid = %RTbool\n", pszPrefix, VMX_EXIT_INT_INFO_IS_VALID(fInfo));
3948 pHlp->pfnPrintf(pHlp, " %sType = %#x (%s)\n", pszPrefix, uType, VMXGetExitIntInfoTypeDesc(uType));
3949 pHlp->pfnPrintf(pHlp, " %sVector = %#x\n", pszPrefix, VMX_EXIT_INT_INFO_VECTOR(fInfo));
3950 pHlp->pfnPrintf(pHlp, " %sNMI-unblocking-IRET = %RTbool\n", pszPrefix, VMX_EXIT_INT_INFO_IS_NMI_UNBLOCK_IRET(fInfo));
3951 pHlp->pfnPrintf(pHlp, " %sError-code valid = %RTbool\n", pszPrefix, VMX_EXIT_INT_INFO_IS_ERROR_CODE_VALID(fInfo));
3952 }
3953 pHlp->pfnPrintf(pHlp, " %sVM-exit intr error-code = %#RX32\n", pszPrefix, pVmcs->u32RoExitIntErrCode);
3954 pHlp->pfnPrintf(pHlp, " %sIDT-vectoring info = %#RX32\n", pszPrefix, pVmcs->u32RoIdtVectoringInfo);
3955 {
3956 uint32_t const fInfo = pVmcs->u32RoIdtVectoringInfo;
3957 uint8_t const uType = VMX_IDT_VECTORING_INFO_TYPE(fInfo);
3958 pHlp->pfnPrintf(pHlp, " %sValid = %RTbool\n", pszPrefix, VMX_IDT_VECTORING_INFO_IS_VALID(fInfo));
3959 pHlp->pfnPrintf(pHlp, " %sType = %#x (%s)\n", pszPrefix, uType, VMXGetIdtVectoringInfoTypeDesc(uType));
3960 pHlp->pfnPrintf(pHlp, " %sVector = %#x\n", pszPrefix, VMX_IDT_VECTORING_INFO_VECTOR(fInfo));
3961 pHlp->pfnPrintf(pHlp, " %sError-code valid = %RTbool\n", pszPrefix, VMX_IDT_VECTORING_INFO_IS_ERROR_CODE_VALID(fInfo));
3962 }
3963 pHlp->pfnPrintf(pHlp, " %sIDT-vectoring error-code = %#RX32\n", pszPrefix, pVmcs->u32RoIdtVectoringErrCode);
3964 pHlp->pfnPrintf(pHlp, " %sVM-exit instruction length = %u byte(s)\n", pszPrefix, pVmcs->u32RoExitInstrLen);
3965 pHlp->pfnPrintf(pHlp, " %sVM-exit instruction info = %#RX64\n", pszPrefix, pVmcs->u32RoExitInstrInfo);
3966
3967 /* 64-bit. */
3968 pHlp->pfnPrintf(pHlp, " %sGuest-physical addr = %#RX64\n", pszPrefix, pVmcs->u64RoGuestPhysAddr.u);
3969
3970 /* Natural width. */
3971 pHlp->pfnPrintf(pHlp, " %sI/O RCX = %#RX64\n", pszPrefix, pVmcs->u64RoIoRcx.u);
3972 pHlp->pfnPrintf(pHlp, " %sI/O RSI = %#RX64\n", pszPrefix, pVmcs->u64RoIoRsi.u);
3973 pHlp->pfnPrintf(pHlp, " %sI/O RDI = %#RX64\n", pszPrefix, pVmcs->u64RoIoRdi.u);
3974 pHlp->pfnPrintf(pHlp, " %sI/O RIP = %#RX64\n", pszPrefix, pVmcs->u64RoIoRip.u);
3975 pHlp->pfnPrintf(pHlp, " %sGuest-linear addr = %#RX64\n", pszPrefix, pVmcs->u64RoGuestLinearAddr.u);
3976 }
3977
3978#ifdef DEBUG_ramshankar
3979 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
3980 {
3981 void *pvPage = RTMemTmpAllocZ(VMX_V_VIRT_APIC_SIZE);
3982 Assert(pvPage);
3983 RTGCPHYS const GCPhysVirtApic = pVmcs->u64AddrVirtApic.u;
3984 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), pvPage, GCPhysVirtApic, VMX_V_VIRT_APIC_SIZE);
3985 if (RT_SUCCESS(rc))
3986 {
3987 pHlp->pfnPrintf(pHlp, " %sVirtual-APIC page\n", pszPrefix);
3988 pHlp->pfnPrintf(pHlp, "%.*Rhxs\n", VMX_V_VIRT_APIC_SIZE, pvPage);
3989 pHlp->pfnPrintf(pHlp, "\n");
3990 }
3991 RTMemTmpFree(pvPage);
3992 }
3993#else
3994 NOREF(pVCpu);
3995#endif
3996
3997#undef CPUMVMX_DUMP_HOST_XDTR
3998#undef CPUMVMX_DUMP_HOST_FS_GS_TR
3999#undef CPUMVMX_DUMP_GUEST_SEGREG
4000#undef CPUMVMX_DUMP_GUEST_XDTR
4001}
4002
4003
4004/**
4005 * Display the guest's hardware-virtualization cpu state.
4006 *
4007 * @param pVM The cross context VM structure.
4008 * @param pHlp The info helper functions.
4009 * @param pszArgs Arguments, ignored.
4010 */
4011static DECLCALLBACK(void) cpumR3InfoGuestHwvirt(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
4012{
4013 RT_NOREF(pszArgs);
4014
4015 PVMCPU pVCpu = VMMGetCpu(pVM);
4016 if (!pVCpu)
4017 pVCpu = pVM->apCpusR3[0];
4018
4019 PCCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
4020 bool const fSvm = pVM->cpum.s.GuestFeatures.fSvm;
4021 bool const fVmx = pVM->cpum.s.GuestFeatures.fVmx;
4022
4023 pHlp->pfnPrintf(pHlp, "VCPU[%u] hardware virtualization state:\n", pVCpu->idCpu);
4024 pHlp->pfnPrintf(pHlp, "fLocalForcedActions = %#RX32\n", pCtx->hwvirt.fLocalForcedActions);
4025 pHlp->pfnPrintf(pHlp, "In nested-guest hwvirt mode = %RTbool\n", CPUMIsGuestInNestedHwvirtMode(pCtx));
4026
4027 if (fSvm)
4028 {
4029 pHlp->pfnPrintf(pHlp, "SVM hwvirt state:\n");
4030 pHlp->pfnPrintf(pHlp, " fGif = %RTbool\n", pCtx->hwvirt.fGif);
4031
4032 char szEFlags[80];
4033 cpumR3InfoFormatFlags(&szEFlags[0], pCtx->hwvirt.svm.HostState.rflags.u);
4034 pHlp->pfnPrintf(pHlp, " uMsrHSavePa = %#RX64\n", pCtx->hwvirt.svm.uMsrHSavePa);
4035 pHlp->pfnPrintf(pHlp, " GCPhysVmcb = %#RGp\n", pCtx->hwvirt.svm.GCPhysVmcb);
4036 pHlp->pfnPrintf(pHlp, " VmcbCtrl:\n");
4037 cpumR3InfoSvmVmcbCtrl(pHlp, &pCtx->hwvirt.svm.Vmcb.ctrl, " " /* pszPrefix */);
4038 pHlp->pfnPrintf(pHlp, " VmcbStateSave:\n");
4039 cpumR3InfoSvmVmcbStateSave(pHlp, &pCtx->hwvirt.svm.Vmcb.guest, " " /* pszPrefix */);
4040 pHlp->pfnPrintf(pHlp, " HostState:\n");
4041 pHlp->pfnPrintf(pHlp, " uEferMsr = %#RX64\n", pCtx->hwvirt.svm.HostState.uEferMsr);
4042 pHlp->pfnPrintf(pHlp, " uCr0 = %#RX64\n", pCtx->hwvirt.svm.HostState.uCr0);
4043 pHlp->pfnPrintf(pHlp, " uCr4 = %#RX64\n", pCtx->hwvirt.svm.HostState.uCr4);
4044 pHlp->pfnPrintf(pHlp, " uCr3 = %#RX64\n", pCtx->hwvirt.svm.HostState.uCr3);
4045 pHlp->pfnPrintf(pHlp, " uRip = %#RX64\n", pCtx->hwvirt.svm.HostState.uRip);
4046 pHlp->pfnPrintf(pHlp, " uRsp = %#RX64\n", pCtx->hwvirt.svm.HostState.uRsp);
4047 pHlp->pfnPrintf(pHlp, " uRax = %#RX64\n", pCtx->hwvirt.svm.HostState.uRax);
4048 pHlp->pfnPrintf(pHlp, " rflags = %#RX64 %31s\n", pCtx->hwvirt.svm.HostState.rflags.u64, szEFlags);
4049 PCCPUMSELREG pSelEs = &pCtx->hwvirt.svm.HostState.es;
4050 pHlp->pfnPrintf(pHlp, " es = {%04x base=%016RX64 limit=%08x flags=%08x}\n",
4051 pSelEs->Sel, pSelEs->u64Base, pSelEs->u32Limit, pSelEs->Attr.u);
4052 PCCPUMSELREG pSelCs = &pCtx->hwvirt.svm.HostState.cs;
4053 pHlp->pfnPrintf(pHlp, " cs = {%04x base=%016RX64 limit=%08x flags=%08x}\n",
4054 pSelCs->Sel, pSelCs->u64Base, pSelCs->u32Limit, pSelCs->Attr.u);
4055 PCCPUMSELREG pSelSs = &pCtx->hwvirt.svm.HostState.ss;
4056 pHlp->pfnPrintf(pHlp, " ss = {%04x base=%016RX64 limit=%08x flags=%08x}\n",
4057 pSelSs->Sel, pSelSs->u64Base, pSelSs->u32Limit, pSelSs->Attr.u);
4058 PCCPUMSELREG pSelDs = &pCtx->hwvirt.svm.HostState.ds;
4059 pHlp->pfnPrintf(pHlp, " ds = {%04x base=%016RX64 limit=%08x flags=%08x}\n",
4060 pSelDs->Sel, pSelDs->u64Base, pSelDs->u32Limit, pSelDs->Attr.u);
4061 pHlp->pfnPrintf(pHlp, " gdtr = %016RX64:%04x\n", pCtx->hwvirt.svm.HostState.gdtr.pGdt,
4062 pCtx->hwvirt.svm.HostState.gdtr.cbGdt);
4063 pHlp->pfnPrintf(pHlp, " idtr = %016RX64:%04x\n", pCtx->hwvirt.svm.HostState.idtr.pIdt,
4064 pCtx->hwvirt.svm.HostState.idtr.cbIdt);
4065 pHlp->pfnPrintf(pHlp, " cPauseFilter = %RU16\n", pCtx->hwvirt.svm.cPauseFilter);
4066 pHlp->pfnPrintf(pHlp, " cPauseFilterThreshold = %RU32\n", pCtx->hwvirt.svm.cPauseFilterThreshold);
4067 pHlp->pfnPrintf(pHlp, " fInterceptEvents = %u\n", pCtx->hwvirt.svm.fInterceptEvents);
4068 }
4069 else if (fVmx)
4070 {
4071 pHlp->pfnPrintf(pHlp, "VMX hwvirt state:\n");
4072 pHlp->pfnPrintf(pHlp, " GCPhysVmxon = %#RGp\n", pCtx->hwvirt.vmx.GCPhysVmxon);
4073 pHlp->pfnPrintf(pHlp, " GCPhysVmcs = %#RGp\n", pCtx->hwvirt.vmx.GCPhysVmcs);
4074 pHlp->pfnPrintf(pHlp, " GCPhysShadowVmcs = %#RGp\n", pCtx->hwvirt.vmx.GCPhysShadowVmcs);
4075 pHlp->pfnPrintf(pHlp, " enmDiag = %u (%s)\n", pCtx->hwvirt.vmx.enmDiag, HMGetVmxDiagDesc(pCtx->hwvirt.vmx.enmDiag));
4076 pHlp->pfnPrintf(pHlp, " uDiagAux = %#RX64\n", pCtx->hwvirt.vmx.uDiagAux);
4077 pHlp->pfnPrintf(pHlp, " enmAbort = %u (%s)\n", pCtx->hwvirt.vmx.enmAbort, VMXGetAbortDesc(pCtx->hwvirt.vmx.enmAbort));
4078 pHlp->pfnPrintf(pHlp, " uAbortAux = %u (%#x)\n", pCtx->hwvirt.vmx.uAbortAux, pCtx->hwvirt.vmx.uAbortAux);
4079 pHlp->pfnPrintf(pHlp, " fInVmxRootMode = %RTbool\n", pCtx->hwvirt.vmx.fInVmxRootMode);
4080 pHlp->pfnPrintf(pHlp, " fInVmxNonRootMode = %RTbool\n", pCtx->hwvirt.vmx.fInVmxNonRootMode);
4081 pHlp->pfnPrintf(pHlp, " fInterceptEvents = %RTbool\n", pCtx->hwvirt.vmx.fInterceptEvents);
4082 pHlp->pfnPrintf(pHlp, " fNmiUnblockingIret = %RTbool\n", pCtx->hwvirt.vmx.fNmiUnblockingIret);
4083 pHlp->pfnPrintf(pHlp, " uFirstPauseLoopTick = %RX64\n", pCtx->hwvirt.vmx.uFirstPauseLoopTick);
4084 pHlp->pfnPrintf(pHlp, " uPrevPauseTick = %RX64\n", pCtx->hwvirt.vmx.uPrevPauseTick);
4085 pHlp->pfnPrintf(pHlp, " uEntryTick = %RX64\n", pCtx->hwvirt.vmx.uEntryTick);
4086 pHlp->pfnPrintf(pHlp, " offVirtApicWrite = %#RX16\n", pCtx->hwvirt.vmx.offVirtApicWrite);
4087 pHlp->pfnPrintf(pHlp, " fVirtNmiBlocking = %RTbool\n", pCtx->hwvirt.vmx.fVirtNmiBlocking);
4088 pHlp->pfnPrintf(pHlp, " VMCS cache:\n");
4089 cpumR3InfoVmxVmcs(pVCpu, pHlp, &pCtx->hwvirt.vmx.Vmcs, " " /* pszPrefix */);
4090 }
4091 else
4092 pHlp->pfnPrintf(pHlp, "Hwvirt state disabled.\n");
4093
4094#undef CPUMHWVIRTDUMP_NONE
4095#undef CPUMHWVIRTDUMP_COMMON
4096#undef CPUMHWVIRTDUMP_SVM
4097#undef CPUMHWVIRTDUMP_VMX
4098#undef CPUMHWVIRTDUMP_LAST
4099#undef CPUMHWVIRTDUMP_ALL
4100}
4101
4102/**
4103 * Display the current guest instruction
4104 *
4105 * @param pVM The cross context VM structure.
4106 * @param pHlp The info helper functions.
4107 * @param pszArgs Arguments, ignored.
4108 */
4109static DECLCALLBACK(void) cpumR3InfoGuestInstr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
4110{
4111 NOREF(pszArgs);
4112
4113 PVMCPU pVCpu = VMMGetCpu(pVM);
4114 if (!pVCpu)
4115 pVCpu = pVM->apCpusR3[0];
4116
4117 char szInstruction[256];
4118 szInstruction[0] = '\0';
4119 DBGFR3DisasInstrCurrent(pVCpu, szInstruction, sizeof(szInstruction));
4120 pHlp->pfnPrintf(pHlp, "\nCPUM%u: %s\n\n", pVCpu->idCpu, szInstruction);
4121}
4122
4123
4124/**
4125 * Display the hypervisor cpu state.
4126 *
4127 * @param pVM The cross context VM structure.
4128 * @param pHlp The info helper functions.
4129 * @param pszArgs Arguments, ignored.
4130 */
4131static DECLCALLBACK(void) cpumR3InfoHyper(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
4132{
4133 PVMCPU pVCpu = VMMGetCpu(pVM);
4134 if (!pVCpu)
4135 pVCpu = pVM->apCpusR3[0];
4136
4137 CPUMDUMPTYPE enmType;
4138 const char *pszComment;
4139 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
4140 pHlp->pfnPrintf(pHlp, "Hypervisor CPUM state: %s\n", pszComment);
4141
4142 pHlp->pfnPrintf(pHlp,
4143 ".dr0=%016RX64 .dr1=%016RX64 .dr2=%016RX64 .dr3=%016RX64\n"
4144 ".dr4=%016RX64 .dr5=%016RX64 .dr6=%016RX64 .dr7=%016RX64\n",
4145 pVCpu->cpum.s.Hyper.dr[0], pVCpu->cpum.s.Hyper.dr[1], pVCpu->cpum.s.Hyper.dr[2], pVCpu->cpum.s.Hyper.dr[3],
4146 pVCpu->cpum.s.Hyper.dr[4], pVCpu->cpum.s.Hyper.dr[5], pVCpu->cpum.s.Hyper.dr[6], pVCpu->cpum.s.Hyper.dr[7]);
4147 pHlp->pfnPrintf(pHlp, "CR4OrMask=%#x CR4AndMask=%#x\n", pVM->cpum.s.CR4.OrMask, pVM->cpum.s.CR4.AndMask);
4148}
4149
4150
4151/**
4152 * Display the host cpu state.
4153 *
4154 * @param pVM The cross context VM structure.
4155 * @param pHlp The info helper functions.
4156 * @param pszArgs Arguments, ignored.
4157 */
4158static DECLCALLBACK(void) cpumR3InfoHost(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
4159{
4160 CPUMDUMPTYPE enmType;
4161 const char *pszComment;
4162 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
4163 pHlp->pfnPrintf(pHlp, "Host CPUM state: %s\n", pszComment);
4164
4165 PVMCPU pVCpu = VMMGetCpu(pVM);
4166 if (!pVCpu)
4167 pVCpu = pVM->apCpusR3[0];
4168 PCPUMHOSTCTX pCtx = &pVCpu->cpum.s.Host;
4169
4170 /*
4171 * Format the EFLAGS.
4172 */
4173 uint64_t efl = pCtx->rflags;
4174 char szEFlags[80];
4175 cpumR3InfoFormatFlags(&szEFlags[0], efl);
4176
4177 /*
4178 * Format the registers.
4179 */
4180 pHlp->pfnPrintf(pHlp,
4181 "rax=xxxxxxxxxxxxxxxx rbx=%016RX64 rcx=xxxxxxxxxxxxxxxx\n"
4182 "rdx=xxxxxxxxxxxxxxxx rsi=%016RX64 rdi=%016RX64\n"
4183 "rip=xxxxxxxxxxxxxxxx rsp=%016RX64 rbp=%016RX64\n"
4184 " r8=xxxxxxxxxxxxxxxx r9=xxxxxxxxxxxxxxxx r10=%016RX64\n"
4185 "r11=%016RX64 r12=%016RX64 r13=%016RX64\n"
4186 "r14=%016RX64 r15=%016RX64\n"
4187 "iopl=%d %31s\n"
4188 "cs=%04x ds=%04x es=%04x fs=%04x gs=%04x eflags=%08RX64\n"
4189 "cr0=%016RX64 cr2=xxxxxxxxxxxxxxxx cr3=%016RX64\n"
4190 "cr4=%016RX64 ldtr=%04x tr=%04x\n"
4191 "dr[0]=%016RX64 dr[1]=%016RX64 dr[2]=%016RX64\n"
4192 "dr[3]=%016RX64 dr[6]=%016RX64 dr[7]=%016RX64\n"
4193 "gdtr=%016RX64:%04x idtr=%016RX64:%04x\n"
4194 "SysEnter={cs=%04x eip=%08x esp=%08x}\n"
4195 "FSbase=%016RX64 GSbase=%016RX64 efer=%08RX64\n"
4196 ,
4197 /*pCtx->rax,*/ pCtx->rbx, /*pCtx->rcx,
4198 pCtx->rdx,*/ pCtx->rsi, pCtx->rdi,
4199 /*pCtx->rip,*/ pCtx->rsp, pCtx->rbp,
4200 /*pCtx->r8, pCtx->r9,*/ pCtx->r10,
4201 pCtx->r11, pCtx->r12, pCtx->r13,
4202 pCtx->r14, pCtx->r15,
4203 X86_EFL_GET_IOPL(efl), szEFlags,
4204 pCtx->cs, pCtx->ds, pCtx->es, pCtx->fs, pCtx->gs, efl,
4205 pCtx->cr0, /*pCtx->cr2,*/ pCtx->cr3,
4206 pCtx->cr4, pCtx->ldtr, pCtx->tr,
4207 pCtx->dr0, pCtx->dr1, pCtx->dr2,
4208 pCtx->dr3, pCtx->dr6, pCtx->dr7,
4209 pCtx->gdtr.uAddr, pCtx->gdtr.cb, pCtx->idtr.uAddr, pCtx->idtr.cb,
4210 pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp,
4211 pCtx->FSbase, pCtx->GSbase, pCtx->efer);
4212}
4213
4214/**
4215 * Structure used when disassembling and instructions in DBGF.
4216 * This is used so the reader function can get the stuff it needs.
4217 */
4218typedef struct CPUMDISASSTATE
4219{
4220 /** Pointer to the CPU structure. */
4221 PDISCPUSTATE pCpu;
4222 /** Pointer to the VM. */
4223 PVM pVM;
4224 /** Pointer to the VMCPU. */
4225 PVMCPU pVCpu;
4226 /** Pointer to the first byte in the segment. */
4227 RTGCUINTPTR GCPtrSegBase;
4228 /** Pointer to the byte after the end of the segment. (might have wrapped!) */
4229 RTGCUINTPTR GCPtrSegEnd;
4230 /** The size of the segment minus 1. */
4231 RTGCUINTPTR cbSegLimit;
4232 /** Pointer to the current page - R3 Ptr. */
4233 void const *pvPageR3;
4234 /** Pointer to the current page - GC Ptr. */
4235 RTGCPTR pvPageGC;
4236 /** The lock information that PGMPhysReleasePageMappingLock needs. */
4237 PGMPAGEMAPLOCK PageMapLock;
4238 /** Whether the PageMapLock is valid or not. */
4239 bool fLocked;
4240 /** 64 bits mode or not. */
4241 bool f64Bits;
4242} CPUMDISASSTATE, *PCPUMDISASSTATE;
4243
4244
4245/**
4246 * @callback_method_impl{FNDISREADBYTES}
4247 */
4248static DECLCALLBACK(int) cpumR3DisasInstrRead(PDISCPUSTATE pDis, uint8_t offInstr, uint8_t cbMinRead, uint8_t cbMaxRead)
4249{
4250 PCPUMDISASSTATE pState = (PCPUMDISASSTATE)pDis->pvUser;
4251 for (;;)
4252 {
4253 RTGCUINTPTR GCPtr = pDis->uInstrAddr + offInstr + pState->GCPtrSegBase;
4254
4255 /*
4256 * Need to update the page translation?
4257 */
4258 if ( !pState->pvPageR3
4259 || (GCPtr >> PAGE_SHIFT) != (pState->pvPageGC >> PAGE_SHIFT))
4260 {
4261 /* translate the address */
4262 pState->pvPageGC = GCPtr & PAGE_BASE_GC_MASK;
4263
4264 /* Release mapping lock previously acquired. */
4265 if (pState->fLocked)
4266 PGMPhysReleasePageMappingLock(pState->pVM, &pState->PageMapLock);
4267 int rc = PGMPhysGCPtr2CCPtrReadOnly(pState->pVCpu, pState->pvPageGC, &pState->pvPageR3, &pState->PageMapLock);
4268 if (RT_SUCCESS(rc))
4269 pState->fLocked = true;
4270 else
4271 {
4272 pState->fLocked = false;
4273 pState->pvPageR3 = NULL;
4274 return rc;
4275 }
4276 }
4277
4278 /*
4279 * Check the segment limit.
4280 */
4281 if (!pState->f64Bits && pDis->uInstrAddr + offInstr > pState->cbSegLimit)
4282 return VERR_OUT_OF_SELECTOR_BOUNDS;
4283
4284 /*
4285 * Calc how much we can read.
4286 */
4287 uint32_t cb = PAGE_SIZE - (GCPtr & PAGE_OFFSET_MASK);
4288 if (!pState->f64Bits)
4289 {
4290 RTGCUINTPTR cbSeg = pState->GCPtrSegEnd - GCPtr;
4291 if (cb > cbSeg && cbSeg)
4292 cb = cbSeg;
4293 }
4294 if (cb > cbMaxRead)
4295 cb = cbMaxRead;
4296
4297 /*
4298 * Read and advance or exit.
4299 */
4300 memcpy(&pDis->abInstr[offInstr], (uint8_t *)pState->pvPageR3 + (GCPtr & PAGE_OFFSET_MASK), cb);
4301 offInstr += (uint8_t)cb;
4302 if (cb >= cbMinRead)
4303 {
4304 pDis->cbCachedInstr = offInstr;
4305 return VINF_SUCCESS;
4306 }
4307 cbMinRead -= (uint8_t)cb;
4308 cbMaxRead -= (uint8_t)cb;
4309 }
4310}
4311
4312
4313/**
4314 * Disassemble an instruction and return the information in the provided structure.
4315 *
4316 * @returns VBox status code.
4317 * @param pVM The cross context VM structure.
4318 * @param pVCpu The cross context virtual CPU structure.
4319 * @param pCtx Pointer to the guest CPU context.
4320 * @param GCPtrPC Program counter (relative to CS) to disassemble from.
4321 * @param pCpu Disassembly state.
4322 * @param pszPrefix String prefix for logging (debug only).
4323 *
4324 */
4325VMMR3DECL(int) CPUMR3DisasmInstrCPU(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, RTGCPTR GCPtrPC, PDISCPUSTATE pCpu,
4326 const char *pszPrefix)
4327{
4328 CPUMDISASSTATE State;
4329 int rc;
4330
4331 const PGMMODE enmMode = PGMGetGuestMode(pVCpu);
4332 State.pCpu = pCpu;
4333 State.pvPageGC = 0;
4334 State.pvPageR3 = NULL;
4335 State.pVM = pVM;
4336 State.pVCpu = pVCpu;
4337 State.fLocked = false;
4338 State.f64Bits = false;
4339
4340 /*
4341 * Get selector information.
4342 */
4343 DISCPUMODE enmDisCpuMode;
4344 if ( (pCtx->cr0 & X86_CR0_PE)
4345 && pCtx->eflags.Bits.u1VM == 0)
4346 {
4347 if (!CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->cs))
4348 return VERR_CPUM_HIDDEN_CS_LOAD_ERROR;
4349 State.f64Bits = enmMode >= PGMMODE_AMD64 && pCtx->cs.Attr.n.u1Long;
4350 State.GCPtrSegBase = pCtx->cs.u64Base;
4351 State.GCPtrSegEnd = pCtx->cs.u32Limit + 1 + (RTGCUINTPTR)pCtx->cs.u64Base;
4352 State.cbSegLimit = pCtx->cs.u32Limit;
4353 enmDisCpuMode = (State.f64Bits)
4354 ? DISCPUMODE_64BIT
4355 : pCtx->cs.Attr.n.u1DefBig
4356 ? DISCPUMODE_32BIT
4357 : DISCPUMODE_16BIT;
4358 }
4359 else
4360 {
4361 /* real or V86 mode */
4362 enmDisCpuMode = DISCPUMODE_16BIT;
4363 State.GCPtrSegBase = pCtx->cs.Sel * 16;
4364 State.GCPtrSegEnd = 0xFFFFFFFF;
4365 State.cbSegLimit = 0xFFFFFFFF;
4366 }
4367
4368 /*
4369 * Disassemble the instruction.
4370 */
4371 uint32_t cbInstr;
4372#ifndef LOG_ENABLED
4373 RT_NOREF_PV(pszPrefix);
4374 rc = DISInstrWithReader(GCPtrPC, enmDisCpuMode, cpumR3DisasInstrRead, &State, pCpu, &cbInstr);
4375 if (RT_SUCCESS(rc))
4376 {
4377#else
4378 char szOutput[160];
4379 rc = DISInstrToStrWithReader(GCPtrPC, enmDisCpuMode, cpumR3DisasInstrRead, &State,
4380 pCpu, &cbInstr, szOutput, sizeof(szOutput));
4381 if (RT_SUCCESS(rc))
4382 {
4383 /* log it */
4384 if (pszPrefix)
4385 Log(("%s-CPU%d: %s", pszPrefix, pVCpu->idCpu, szOutput));
4386 else
4387 Log(("%s", szOutput));
4388#endif
4389 rc = VINF_SUCCESS;
4390 }
4391 else
4392 Log(("CPUMR3DisasmInstrCPU: DISInstr failed for %04X:%RGv rc=%Rrc\n", pCtx->cs.Sel, GCPtrPC, rc));
4393
4394 /* Release mapping lock acquired in cpumR3DisasInstrRead. */
4395 if (State.fLocked)
4396 PGMPhysReleasePageMappingLock(pVM, &State.PageMapLock);
4397
4398 return rc;
4399}
4400
4401
4402
4403/**
4404 * API for controlling a few of the CPU features found in CR4.
4405 *
4406 * Currently only X86_CR4_TSD is accepted as input.
4407 *
4408 * @returns VBox status code.
4409 *
4410 * @param pVM The cross context VM structure.
4411 * @param fOr The CR4 OR mask.
4412 * @param fAnd The CR4 AND mask.
4413 */
4414VMMR3DECL(int) CPUMR3SetCR4Feature(PVM pVM, RTHCUINTREG fOr, RTHCUINTREG fAnd)
4415{
4416 AssertMsgReturn(!(fOr & ~(X86_CR4_TSD)), ("%#x\n", fOr), VERR_INVALID_PARAMETER);
4417 AssertMsgReturn((fAnd & ~(X86_CR4_TSD)) == ~(X86_CR4_TSD), ("%#x\n", fAnd), VERR_INVALID_PARAMETER);
4418
4419 pVM->cpum.s.CR4.OrMask &= fAnd;
4420 pVM->cpum.s.CR4.OrMask |= fOr;
4421
4422 return VINF_SUCCESS;
4423}
4424
4425
4426/**
4427 * Called when the ring-3 init phase completes.
4428 *
4429 * @returns VBox status code.
4430 * @param pVM The cross context VM structure.
4431 * @param enmWhat Which init phase.
4432 */
4433VMMR3DECL(int) CPUMR3InitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
4434{
4435 switch (enmWhat)
4436 {
4437 case VMINITCOMPLETED_RING3:
4438 {
4439 /*
4440 * Figure out if the guest uses 32-bit or 64-bit FPU state at runtime for 64-bit capable VMs.
4441 * Only applicable/used on 64-bit hosts, refer CPUMR0A.asm. See @bugref{7138}.
4442 */
4443 bool const fSupportsLongMode = VMR3IsLongModeAllowed(pVM);
4444 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
4445 {
4446 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
4447
4448 /* While loading a saved-state we fix it up in, cpumR3LoadDone(). */
4449 if (fSupportsLongMode)
4450 pVCpu->cpum.s.fUseFlags |= CPUM_USE_SUPPORTS_LONGMODE;
4451 }
4452
4453 /* Register statistic counters for MSRs. */
4454 cpumR3MsrRegStats(pVM);
4455
4456 /* Create VMX-preemption timer for nested guests if required. Must be
4457 done here as CPUM is initialized before TM. */
4458 if (pVM->cpum.s.GuestFeatures.fVmx)
4459 {
4460 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
4461 {
4462 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
4463 char szName[32];
4464 RTStrPrintf(szName, sizeof(szName), "Nested VMX-preemption %u", idCpu);
4465 int rc = TMR3TimerCreate(pVM, TMCLOCK_VIRTUAL_SYNC, cpumR3VmxPreemptTimerCallback, pVCpu,
4466 TMTIMER_FLAGS_RING0, szName, &pVCpu->cpum.s.hNestedVmxPreemptTimer);
4467 AssertLogRelRCReturn(rc, rc);
4468 }
4469 }
4470 break;
4471 }
4472
4473 default:
4474 break;
4475 }
4476 return VINF_SUCCESS;
4477}
4478
4479
4480/**
4481 * Called when the ring-0 init phases completed.
4482 *
4483 * @param pVM The cross context VM structure.
4484 */
4485VMMR3DECL(void) CPUMR3LogCpuIdAndMsrFeatures(PVM pVM)
4486{
4487 /*
4488 * Enable log buffering as we're going to log a lot of lines.
4489 */
4490 bool const fOldBuffered = RTLogRelSetBuffering(true /*fBuffered*/);
4491
4492 /*
4493 * Log the cpuid.
4494 */
4495 RTCPUSET OnlineSet;
4496 LogRel(("CPUM: Logical host processors: %u present, %u max, %u online, online mask: %016RX64\n",
4497 (unsigned)RTMpGetPresentCount(), (unsigned)RTMpGetCount(), (unsigned)RTMpGetOnlineCount(),
4498 RTCpuSetToU64(RTMpGetOnlineSet(&OnlineSet)) ));
4499 RTCPUID cCores = RTMpGetCoreCount();
4500 if (cCores)
4501 LogRel(("CPUM: Physical host cores: %u\n", (unsigned)cCores));
4502 LogRel(("************************* CPUID dump ************************\n"));
4503 DBGFR3Info(pVM->pUVM, "cpuid", "verbose", DBGFR3InfoLogRelHlp());
4504 LogRel(("\n"));
4505 DBGFR3_INFO_LOG_SAFE(pVM, "cpuid", "verbose"); /* macro */
4506 LogRel(("******************** End of CPUID dump **********************\n"));
4507
4508 /*
4509 * Log VT-x extended features.
4510 *
4511 * SVM features are currently all covered under CPUID so there is nothing
4512 * to do here for SVM.
4513 */
4514 if (pVM->cpum.s.HostFeatures.fVmx)
4515 {
4516 LogRel(("*********************** VT-x features ***********************\n"));
4517 DBGFR3Info(pVM->pUVM, "cpumvmxfeat", "default", DBGFR3InfoLogRelHlp());
4518 LogRel(("\n"));
4519 LogRel(("******************* End of VT-x features ********************\n"));
4520 }
4521
4522 /*
4523 * Restore the log buffering state to what it was previously.
4524 */
4525 RTLogRelSetBuffering(fOldBuffered);
4526}
4527
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette