VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/CPUM.cpp@ 91301

Last change on this file since 91301 was 91301, checked in by vboxsync, 4 years ago

VMM/CPUM,++: Moved the nested VT-X MSR load & store bitmap allocations into CPUMCTX. bugref:10093

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 237.1 KB
Line 
1/* $Id: CPUM.cpp 91301 2021-09-17 13:38:24Z vboxsync $ */
2/** @file
3 * CPUM - CPU Monitor / Manager.
4 */
5
6/*
7 * Copyright (C) 2006-2020 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/** @page pg_cpum CPUM - CPU Monitor / Manager
19 *
20 * The CPU Monitor / Manager keeps track of all the CPU registers. It is
21 * also responsible for lazy FPU handling and some of the context loading
22 * in raw mode.
23 *
24 * There are three CPU contexts, the most important one is the guest one (GC).
25 * When running in raw-mode (RC) there is a special hyper context for the VMM
26 * part that floats around inside the guest address space. When running in
27 * raw-mode, CPUM also maintains a host context for saving and restoring
28 * registers across world switches. This latter is done in cooperation with the
29 * world switcher (@see pg_vmm).
30 *
31 * @see grp_cpum
32 *
33 * @section sec_cpum_fpu FPU / SSE / AVX / ++ state.
34 *
35 * TODO: proper write up, currently just some notes.
36 *
37 * The ring-0 FPU handling per OS:
38 *
39 * - 64-bit Windows uses XMM registers in the kernel as part of the calling
40 * convention (Visual C++ doesn't seem to have a way to disable
41 * generating such code either), so CR0.TS/EM are always zero from what I
42 * can tell. We are also forced to always load/save the guest XMM0-XMM15
43 * registers when entering/leaving guest context. Interrupt handlers
44 * using FPU/SSE will offically have call save and restore functions
45 * exported by the kernel, if the really really have to use the state.
46 *
47 * - 32-bit windows does lazy FPU handling, I think, probably including
48 * lazying saving. The Windows Internals book states that it's a bad
49 * idea to use the FPU in kernel space. However, it looks like it will
50 * restore the FPU state of the current thread in case of a kernel \#NM.
51 * Interrupt handlers should be same as for 64-bit.
52 *
53 * - Darwin allows taking \#NM in kernel space, restoring current thread's
54 * state if I read the code correctly. It saves the FPU state of the
55 * outgoing thread, and uses CR0.TS to lazily load the state of the
56 * incoming one. No idea yet how the FPU is treated by interrupt
57 * handlers, i.e. whether they are allowed to disable the state or
58 * something.
59 *
60 * - Linux also allows \#NM in kernel space (don't know since when), and
61 * uses CR0.TS for lazy loading. Saves outgoing thread's state, lazy
62 * loads the incoming unless configured to agressivly load it. Interrupt
63 * handlers can ask whether they're allowed to use the FPU, and may
64 * freely trash the state if Linux thinks it has saved the thread's state
65 * already. This is a problem.
66 *
67 * - Solaris will, from what I can tell, panic if it gets an \#NM in kernel
68 * context. When switching threads, the kernel will save the state of
69 * the outgoing thread and lazy load the incoming one using CR0.TS.
70 * There are a few routines in seeblk.s which uses the SSE unit in ring-0
71 * to do stuff, HAT are among the users. The routines there will
72 * manually clear CR0.TS and save the XMM registers they use only if
73 * CR0.TS was zero upon entry. They will skip it when not, because as
74 * mentioned above, the FPU state is saved when switching away from a
75 * thread and CR0.TS set to 1, so when CR0.TS is 1 there is nothing to
76 * preserve. This is a problem if we restore CR0.TS to 1 after loading
77 * the guest state.
78 *
79 * - FreeBSD - no idea yet.
80 *
81 * - OS/2 does not allow \#NMs in kernel space IIRC. Does lazy loading,
82 * possibly also lazy saving. Interrupts must preserve the CR0.TS+EM &
83 * FPU states.
84 *
85 * Up to r107425 (2016-05-24) we would only temporarily modify CR0.TS/EM while
86 * saving and restoring the host and guest states. The motivation for this
87 * change is that we want to be able to emulate SSE instruction in ring-0 (IEM).
88 *
89 * Starting with that change, we will leave CR0.TS=EM=0 after saving the host
90 * state and only restore it once we've restore the host FPU state. This has the
91 * accidental side effect of triggering Solaris to preserve XMM registers in
92 * sseblk.s. When CR0 was changed by saving the FPU state, CPUM must now inform
93 * the VT-x (HMVMX) code about it as it caches the CR0 value in the VMCS.
94 *
95 *
96 * @section sec_cpum_logging Logging Level Assignments.
97 *
98 * Following log level assignments:
99 * - Log6 is used for FPU state management.
100 * - Log7 is used for FPU state actualization.
101 *
102 */
103
104
105/*********************************************************************************************************************************
106* Header Files *
107*********************************************************************************************************************************/
108#define LOG_GROUP LOG_GROUP_CPUM
109#include <VBox/vmm/cpum.h>
110#include <VBox/vmm/cpumdis.h>
111#include <VBox/vmm/cpumctx-v1_6.h>
112#include <VBox/vmm/pgm.h>
113#include <VBox/vmm/apic.h>
114#include <VBox/vmm/mm.h>
115#include <VBox/vmm/em.h>
116#include <VBox/vmm/iem.h>
117#include <VBox/vmm/selm.h>
118#include <VBox/vmm/dbgf.h>
119#include <VBox/vmm/hm.h>
120#include <VBox/vmm/hmvmxinline.h>
121#include <VBox/vmm/ssm.h>
122#include "CPUMInternal.h"
123#include <VBox/vmm/vm.h>
124
125#include <VBox/param.h>
126#include <VBox/dis.h>
127#include <VBox/err.h>
128#include <VBox/log.h>
129#include <iprt/asm-amd64-x86.h>
130#include <iprt/assert.h>
131#include <iprt/cpuset.h>
132#include <iprt/mem.h>
133#include <iprt/mp.h>
134#include <iprt/string.h>
135
136
137/*********************************************************************************************************************************
138* Defined Constants And Macros *
139*********************************************************************************************************************************/
140/**
141 * This was used in the saved state up to the early life of version 14.
142 *
143 * It indicates that we may have some out-of-sync hidden segement registers.
144 * It is only relevant for raw-mode.
145 */
146#define CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID RT_BIT(12)
147
148
149/*********************************************************************************************************************************
150* Structures and Typedefs *
151*********************************************************************************************************************************/
152
153/**
154 * What kind of cpu info dump to perform.
155 */
156typedef enum CPUMDUMPTYPE
157{
158 CPUMDUMPTYPE_TERSE,
159 CPUMDUMPTYPE_DEFAULT,
160 CPUMDUMPTYPE_VERBOSE
161} CPUMDUMPTYPE;
162/** Pointer to a cpu info dump type. */
163typedef CPUMDUMPTYPE *PCPUMDUMPTYPE;
164
165
166/*********************************************************************************************************************************
167* Internal Functions *
168*********************************************************************************************************************************/
169static DECLCALLBACK(int) cpumR3LiveExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uPass);
170static DECLCALLBACK(int) cpumR3SaveExec(PVM pVM, PSSMHANDLE pSSM);
171static DECLCALLBACK(int) cpumR3LoadPrep(PVM pVM, PSSMHANDLE pSSM);
172static DECLCALLBACK(int) cpumR3LoadExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
173static DECLCALLBACK(int) cpumR3LoadDone(PVM pVM, PSSMHANDLE pSSM);
174static DECLCALLBACK(void) cpumR3InfoAll(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
175static DECLCALLBACK(void) cpumR3InfoGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
176static DECLCALLBACK(void) cpumR3InfoGuestHwvirt(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
177static DECLCALLBACK(void) cpumR3InfoGuestInstr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
178static DECLCALLBACK(void) cpumR3InfoHyper(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
179static DECLCALLBACK(void) cpumR3InfoHost(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
180
181
182/*********************************************************************************************************************************
183* Global Variables *
184*********************************************************************************************************************************/
185/** Saved state field descriptors for CPUMCTX. */
186static const SSMFIELD g_aCpumCtxFields[] =
187{
188 SSMFIELD_ENTRY( CPUMCTX, rdi),
189 SSMFIELD_ENTRY( CPUMCTX, rsi),
190 SSMFIELD_ENTRY( CPUMCTX, rbp),
191 SSMFIELD_ENTRY( CPUMCTX, rax),
192 SSMFIELD_ENTRY( CPUMCTX, rbx),
193 SSMFIELD_ENTRY( CPUMCTX, rdx),
194 SSMFIELD_ENTRY( CPUMCTX, rcx),
195 SSMFIELD_ENTRY( CPUMCTX, rsp),
196 SSMFIELD_ENTRY( CPUMCTX, rflags),
197 SSMFIELD_ENTRY( CPUMCTX, rip),
198 SSMFIELD_ENTRY( CPUMCTX, r8),
199 SSMFIELD_ENTRY( CPUMCTX, r9),
200 SSMFIELD_ENTRY( CPUMCTX, r10),
201 SSMFIELD_ENTRY( CPUMCTX, r11),
202 SSMFIELD_ENTRY( CPUMCTX, r12),
203 SSMFIELD_ENTRY( CPUMCTX, r13),
204 SSMFIELD_ENTRY( CPUMCTX, r14),
205 SSMFIELD_ENTRY( CPUMCTX, r15),
206 SSMFIELD_ENTRY( CPUMCTX, es.Sel),
207 SSMFIELD_ENTRY( CPUMCTX, es.ValidSel),
208 SSMFIELD_ENTRY( CPUMCTX, es.fFlags),
209 SSMFIELD_ENTRY( CPUMCTX, es.u64Base),
210 SSMFIELD_ENTRY( CPUMCTX, es.u32Limit),
211 SSMFIELD_ENTRY( CPUMCTX, es.Attr),
212 SSMFIELD_ENTRY( CPUMCTX, cs.Sel),
213 SSMFIELD_ENTRY( CPUMCTX, cs.ValidSel),
214 SSMFIELD_ENTRY( CPUMCTX, cs.fFlags),
215 SSMFIELD_ENTRY( CPUMCTX, cs.u64Base),
216 SSMFIELD_ENTRY( CPUMCTX, cs.u32Limit),
217 SSMFIELD_ENTRY( CPUMCTX, cs.Attr),
218 SSMFIELD_ENTRY( CPUMCTX, ss.Sel),
219 SSMFIELD_ENTRY( CPUMCTX, ss.ValidSel),
220 SSMFIELD_ENTRY( CPUMCTX, ss.fFlags),
221 SSMFIELD_ENTRY( CPUMCTX, ss.u64Base),
222 SSMFIELD_ENTRY( CPUMCTX, ss.u32Limit),
223 SSMFIELD_ENTRY( CPUMCTX, ss.Attr),
224 SSMFIELD_ENTRY( CPUMCTX, ds.Sel),
225 SSMFIELD_ENTRY( CPUMCTX, ds.ValidSel),
226 SSMFIELD_ENTRY( CPUMCTX, ds.fFlags),
227 SSMFIELD_ENTRY( CPUMCTX, ds.u64Base),
228 SSMFIELD_ENTRY( CPUMCTX, ds.u32Limit),
229 SSMFIELD_ENTRY( CPUMCTX, ds.Attr),
230 SSMFIELD_ENTRY( CPUMCTX, fs.Sel),
231 SSMFIELD_ENTRY( CPUMCTX, fs.ValidSel),
232 SSMFIELD_ENTRY( CPUMCTX, fs.fFlags),
233 SSMFIELD_ENTRY( CPUMCTX, fs.u64Base),
234 SSMFIELD_ENTRY( CPUMCTX, fs.u32Limit),
235 SSMFIELD_ENTRY( CPUMCTX, fs.Attr),
236 SSMFIELD_ENTRY( CPUMCTX, gs.Sel),
237 SSMFIELD_ENTRY( CPUMCTX, gs.ValidSel),
238 SSMFIELD_ENTRY( CPUMCTX, gs.fFlags),
239 SSMFIELD_ENTRY( CPUMCTX, gs.u64Base),
240 SSMFIELD_ENTRY( CPUMCTX, gs.u32Limit),
241 SSMFIELD_ENTRY( CPUMCTX, gs.Attr),
242 SSMFIELD_ENTRY( CPUMCTX, cr0),
243 SSMFIELD_ENTRY( CPUMCTX, cr2),
244 SSMFIELD_ENTRY( CPUMCTX, cr3),
245 SSMFIELD_ENTRY( CPUMCTX, cr4),
246 SSMFIELD_ENTRY( CPUMCTX, dr[0]),
247 SSMFIELD_ENTRY( CPUMCTX, dr[1]),
248 SSMFIELD_ENTRY( CPUMCTX, dr[2]),
249 SSMFIELD_ENTRY( CPUMCTX, dr[3]),
250 SSMFIELD_ENTRY( CPUMCTX, dr[6]),
251 SSMFIELD_ENTRY( CPUMCTX, dr[7]),
252 SSMFIELD_ENTRY( CPUMCTX, gdtr.cbGdt),
253 SSMFIELD_ENTRY( CPUMCTX, gdtr.pGdt),
254 SSMFIELD_ENTRY( CPUMCTX, idtr.cbIdt),
255 SSMFIELD_ENTRY( CPUMCTX, idtr.pIdt),
256 SSMFIELD_ENTRY( CPUMCTX, SysEnter.cs),
257 SSMFIELD_ENTRY( CPUMCTX, SysEnter.eip),
258 SSMFIELD_ENTRY( CPUMCTX, SysEnter.esp),
259 SSMFIELD_ENTRY( CPUMCTX, msrEFER),
260 SSMFIELD_ENTRY( CPUMCTX, msrSTAR),
261 SSMFIELD_ENTRY( CPUMCTX, msrPAT),
262 SSMFIELD_ENTRY( CPUMCTX, msrLSTAR),
263 SSMFIELD_ENTRY( CPUMCTX, msrCSTAR),
264 SSMFIELD_ENTRY( CPUMCTX, msrSFMASK),
265 SSMFIELD_ENTRY( CPUMCTX, msrKERNELGSBASE),
266 SSMFIELD_ENTRY( CPUMCTX, ldtr.Sel),
267 SSMFIELD_ENTRY( CPUMCTX, ldtr.ValidSel),
268 SSMFIELD_ENTRY( CPUMCTX, ldtr.fFlags),
269 SSMFIELD_ENTRY( CPUMCTX, ldtr.u64Base),
270 SSMFIELD_ENTRY( CPUMCTX, ldtr.u32Limit),
271 SSMFIELD_ENTRY( CPUMCTX, ldtr.Attr),
272 SSMFIELD_ENTRY( CPUMCTX, tr.Sel),
273 SSMFIELD_ENTRY( CPUMCTX, tr.ValidSel),
274 SSMFIELD_ENTRY( CPUMCTX, tr.fFlags),
275 SSMFIELD_ENTRY( CPUMCTX, tr.u64Base),
276 SSMFIELD_ENTRY( CPUMCTX, tr.u32Limit),
277 SSMFIELD_ENTRY( CPUMCTX, tr.Attr),
278 SSMFIELD_ENTRY_VER( CPUMCTX, aXcr[0], CPUM_SAVED_STATE_VERSION_XSAVE),
279 SSMFIELD_ENTRY_VER( CPUMCTX, aXcr[1], CPUM_SAVED_STATE_VERSION_XSAVE),
280 SSMFIELD_ENTRY_VER( CPUMCTX, fXStateMask, CPUM_SAVED_STATE_VERSION_XSAVE),
281 SSMFIELD_ENTRY_TERM()
282};
283
284/** Saved state field descriptors for SVM nested hardware-virtualization
285 * Host State. */
286static const SSMFIELD g_aSvmHwvirtHostState[] =
287{
288 SSMFIELD_ENTRY( SVMHOSTSTATE, uEferMsr),
289 SSMFIELD_ENTRY( SVMHOSTSTATE, uCr0),
290 SSMFIELD_ENTRY( SVMHOSTSTATE, uCr4),
291 SSMFIELD_ENTRY( SVMHOSTSTATE, uCr3),
292 SSMFIELD_ENTRY( SVMHOSTSTATE, uRip),
293 SSMFIELD_ENTRY( SVMHOSTSTATE, uRsp),
294 SSMFIELD_ENTRY( SVMHOSTSTATE, uRax),
295 SSMFIELD_ENTRY( SVMHOSTSTATE, rflags),
296 SSMFIELD_ENTRY( SVMHOSTSTATE, es.Sel),
297 SSMFIELD_ENTRY( SVMHOSTSTATE, es.ValidSel),
298 SSMFIELD_ENTRY( SVMHOSTSTATE, es.fFlags),
299 SSMFIELD_ENTRY( SVMHOSTSTATE, es.u64Base),
300 SSMFIELD_ENTRY( SVMHOSTSTATE, es.u32Limit),
301 SSMFIELD_ENTRY( SVMHOSTSTATE, es.Attr),
302 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.Sel),
303 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.ValidSel),
304 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.fFlags),
305 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.u64Base),
306 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.u32Limit),
307 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.Attr),
308 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.Sel),
309 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.ValidSel),
310 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.fFlags),
311 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.u64Base),
312 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.u32Limit),
313 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.Attr),
314 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.Sel),
315 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.ValidSel),
316 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.fFlags),
317 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.u64Base),
318 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.u32Limit),
319 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.Attr),
320 SSMFIELD_ENTRY( SVMHOSTSTATE, gdtr.cbGdt),
321 SSMFIELD_ENTRY( SVMHOSTSTATE, gdtr.pGdt),
322 SSMFIELD_ENTRY( SVMHOSTSTATE, idtr.cbIdt),
323 SSMFIELD_ENTRY( SVMHOSTSTATE, idtr.pIdt),
324 SSMFIELD_ENTRY_IGNORE(SVMHOSTSTATE, abPadding),
325 SSMFIELD_ENTRY_TERM()
326};
327
328/** Saved state field descriptors for VMX nested hardware-virtualization
329 * VMCS. */
330static const SSMFIELD g_aVmxHwvirtVmcs[] =
331{
332 SSMFIELD_ENTRY( VMXVVMCS, u32VmcsRevId),
333 SSMFIELD_ENTRY( VMXVVMCS, enmVmxAbort),
334 SSMFIELD_ENTRY( VMXVVMCS, fVmcsState),
335 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au8Padding0),
336 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au32Reserved0),
337
338 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, u16Reserved0),
339
340 SSMFIELD_ENTRY( VMXVVMCS, u32RoVmInstrError),
341 SSMFIELD_ENTRY( VMXVVMCS, u32RoExitReason),
342 SSMFIELD_ENTRY( VMXVVMCS, u32RoExitIntInfo),
343 SSMFIELD_ENTRY( VMXVVMCS, u32RoExitIntErrCode),
344 SSMFIELD_ENTRY( VMXVVMCS, u32RoIdtVectoringInfo),
345 SSMFIELD_ENTRY( VMXVVMCS, u32RoIdtVectoringErrCode),
346 SSMFIELD_ENTRY( VMXVVMCS, u32RoExitInstrLen),
347 SSMFIELD_ENTRY( VMXVVMCS, u32RoExitInstrInfo),
348 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au32RoReserved2),
349
350 SSMFIELD_ENTRY( VMXVVMCS, u64RoGuestPhysAddr),
351 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved1),
352
353 SSMFIELD_ENTRY( VMXVVMCS, u64RoExitQual),
354 SSMFIELD_ENTRY( VMXVVMCS, u64RoIoRcx),
355 SSMFIELD_ENTRY( VMXVVMCS, u64RoIoRsi),
356 SSMFIELD_ENTRY( VMXVVMCS, u64RoIoRdi),
357 SSMFIELD_ENTRY( VMXVVMCS, u64RoIoRip),
358 SSMFIELD_ENTRY( VMXVVMCS, u64RoGuestLinearAddr),
359 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved5),
360
361 SSMFIELD_ENTRY( VMXVVMCS, u16Vpid),
362 SSMFIELD_ENTRY( VMXVVMCS, u16PostIntNotifyVector),
363 SSMFIELD_ENTRY( VMXVVMCS, u16EptpIndex),
364 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au16Reserved0),
365
366 SSMFIELD_ENTRY( VMXVVMCS, u32PinCtls),
367 SSMFIELD_ENTRY( VMXVVMCS, u32ProcCtls),
368 SSMFIELD_ENTRY( VMXVVMCS, u32XcptBitmap),
369 SSMFIELD_ENTRY( VMXVVMCS, u32XcptPFMask),
370 SSMFIELD_ENTRY( VMXVVMCS, u32XcptPFMatch),
371 SSMFIELD_ENTRY( VMXVVMCS, u32Cr3TargetCount),
372 SSMFIELD_ENTRY( VMXVVMCS, u32ExitCtls),
373 SSMFIELD_ENTRY( VMXVVMCS, u32ExitMsrStoreCount),
374 SSMFIELD_ENTRY( VMXVVMCS, u32ExitMsrLoadCount),
375 SSMFIELD_ENTRY( VMXVVMCS, u32EntryCtls),
376 SSMFIELD_ENTRY( VMXVVMCS, u32EntryMsrLoadCount),
377 SSMFIELD_ENTRY( VMXVVMCS, u32EntryIntInfo),
378 SSMFIELD_ENTRY( VMXVVMCS, u32EntryXcptErrCode),
379 SSMFIELD_ENTRY( VMXVVMCS, u32EntryInstrLen),
380 SSMFIELD_ENTRY( VMXVVMCS, u32TprThreshold),
381 SSMFIELD_ENTRY( VMXVVMCS, u32ProcCtls2),
382 SSMFIELD_ENTRY( VMXVVMCS, u32PleGap),
383 SSMFIELD_ENTRY( VMXVVMCS, u32PleWindow),
384 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au32Reserved1),
385
386 SSMFIELD_ENTRY( VMXVVMCS, u64AddrIoBitmapA),
387 SSMFIELD_ENTRY( VMXVVMCS, u64AddrIoBitmapB),
388 SSMFIELD_ENTRY( VMXVVMCS, u64AddrMsrBitmap),
389 SSMFIELD_ENTRY( VMXVVMCS, u64AddrExitMsrStore),
390 SSMFIELD_ENTRY( VMXVVMCS, u64AddrExitMsrLoad),
391 SSMFIELD_ENTRY( VMXVVMCS, u64AddrEntryMsrLoad),
392 SSMFIELD_ENTRY( VMXVVMCS, u64ExecVmcsPtr),
393 SSMFIELD_ENTRY( VMXVVMCS, u64AddrPml),
394 SSMFIELD_ENTRY( VMXVVMCS, u64TscOffset),
395 SSMFIELD_ENTRY( VMXVVMCS, u64AddrVirtApic),
396 SSMFIELD_ENTRY( VMXVVMCS, u64AddrApicAccess),
397 SSMFIELD_ENTRY( VMXVVMCS, u64AddrPostedIntDesc),
398 SSMFIELD_ENTRY( VMXVVMCS, u64VmFuncCtls),
399 SSMFIELD_ENTRY( VMXVVMCS, u64EptpPtr),
400 SSMFIELD_ENTRY( VMXVVMCS, u64EoiExitBitmap0),
401 SSMFIELD_ENTRY( VMXVVMCS, u64EoiExitBitmap1),
402 SSMFIELD_ENTRY( VMXVVMCS, u64EoiExitBitmap2),
403 SSMFIELD_ENTRY( VMXVVMCS, u64EoiExitBitmap3),
404 SSMFIELD_ENTRY( VMXVVMCS, u64AddrEptpList),
405 SSMFIELD_ENTRY( VMXVVMCS, u64AddrVmreadBitmap),
406 SSMFIELD_ENTRY( VMXVVMCS, u64AddrVmwriteBitmap),
407 SSMFIELD_ENTRY( VMXVVMCS, u64AddrXcptVeInfo),
408 SSMFIELD_ENTRY( VMXVVMCS, u64XssExitBitmap),
409 SSMFIELD_ENTRY( VMXVVMCS, u64EnclsExitBitmap),
410 SSMFIELD_ENTRY( VMXVVMCS, u64SppTablePtr),
411 SSMFIELD_ENTRY( VMXVVMCS, u64TscMultiplier),
412 SSMFIELD_ENTRY_VER( VMXVVMCS, u64ProcCtls3, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2),
413 SSMFIELD_ENTRY_VER( VMXVVMCS, u64EnclvExitBitmap, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2),
414 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved0),
415
416 SSMFIELD_ENTRY( VMXVVMCS, u64Cr0Mask),
417 SSMFIELD_ENTRY( VMXVVMCS, u64Cr4Mask),
418 SSMFIELD_ENTRY( VMXVVMCS, u64Cr0ReadShadow),
419 SSMFIELD_ENTRY( VMXVVMCS, u64Cr4ReadShadow),
420 SSMFIELD_ENTRY( VMXVVMCS, u64Cr3Target0),
421 SSMFIELD_ENTRY( VMXVVMCS, u64Cr3Target1),
422 SSMFIELD_ENTRY( VMXVVMCS, u64Cr3Target2),
423 SSMFIELD_ENTRY( VMXVVMCS, u64Cr3Target3),
424 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved4),
425
426 SSMFIELD_ENTRY( VMXVVMCS, HostEs),
427 SSMFIELD_ENTRY( VMXVVMCS, HostCs),
428 SSMFIELD_ENTRY( VMXVVMCS, HostSs),
429 SSMFIELD_ENTRY( VMXVVMCS, HostDs),
430 SSMFIELD_ENTRY( VMXVVMCS, HostFs),
431 SSMFIELD_ENTRY( VMXVVMCS, HostGs),
432 SSMFIELD_ENTRY( VMXVVMCS, HostTr),
433 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au16Reserved2),
434
435 SSMFIELD_ENTRY( VMXVVMCS, u32HostSysenterCs),
436 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au32Reserved4),
437
438 SSMFIELD_ENTRY( VMXVVMCS, u64HostPatMsr),
439 SSMFIELD_ENTRY( VMXVVMCS, u64HostEferMsr),
440 SSMFIELD_ENTRY( VMXVVMCS, u64HostPerfGlobalCtlMsr),
441 SSMFIELD_ENTRY_VER( VMXVVMCS, u64HostPkrsMsr, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2),
442 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved3),
443
444 SSMFIELD_ENTRY( VMXVVMCS, u64HostCr0),
445 SSMFIELD_ENTRY( VMXVVMCS, u64HostCr3),
446 SSMFIELD_ENTRY( VMXVVMCS, u64HostCr4),
447 SSMFIELD_ENTRY( VMXVVMCS, u64HostFsBase),
448 SSMFIELD_ENTRY( VMXVVMCS, u64HostGsBase),
449 SSMFIELD_ENTRY( VMXVVMCS, u64HostTrBase),
450 SSMFIELD_ENTRY( VMXVVMCS, u64HostGdtrBase),
451 SSMFIELD_ENTRY( VMXVVMCS, u64HostIdtrBase),
452 SSMFIELD_ENTRY( VMXVVMCS, u64HostSysenterEsp),
453 SSMFIELD_ENTRY( VMXVVMCS, u64HostSysenterEip),
454 SSMFIELD_ENTRY( VMXVVMCS, u64HostRsp),
455 SSMFIELD_ENTRY( VMXVVMCS, u64HostRip),
456 SSMFIELD_ENTRY_VER( VMXVVMCS, u64HostSCetMsr, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2),
457 SSMFIELD_ENTRY_VER( VMXVVMCS, u64HostSsp, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2),
458 SSMFIELD_ENTRY_VER( VMXVVMCS, u64HostIntrSspTableAddrMsr, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2),
459 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved7),
460
461 SSMFIELD_ENTRY( VMXVVMCS, GuestEs),
462 SSMFIELD_ENTRY( VMXVVMCS, GuestCs),
463 SSMFIELD_ENTRY( VMXVVMCS, GuestSs),
464 SSMFIELD_ENTRY( VMXVVMCS, GuestDs),
465 SSMFIELD_ENTRY( VMXVVMCS, GuestFs),
466 SSMFIELD_ENTRY( VMXVVMCS, GuestGs),
467 SSMFIELD_ENTRY( VMXVVMCS, GuestLdtr),
468 SSMFIELD_ENTRY( VMXVVMCS, GuestTr),
469 SSMFIELD_ENTRY( VMXVVMCS, u16GuestIntStatus),
470 SSMFIELD_ENTRY( VMXVVMCS, u16PmlIndex),
471 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au16Reserved1),
472
473 SSMFIELD_ENTRY( VMXVVMCS, u32GuestEsLimit),
474 SSMFIELD_ENTRY( VMXVVMCS, u32GuestCsLimit),
475 SSMFIELD_ENTRY( VMXVVMCS, u32GuestSsLimit),
476 SSMFIELD_ENTRY( VMXVVMCS, u32GuestDsLimit),
477 SSMFIELD_ENTRY( VMXVVMCS, u32GuestFsLimit),
478 SSMFIELD_ENTRY( VMXVVMCS, u32GuestGsLimit),
479 SSMFIELD_ENTRY( VMXVVMCS, u32GuestLdtrLimit),
480 SSMFIELD_ENTRY( VMXVVMCS, u32GuestTrLimit),
481 SSMFIELD_ENTRY( VMXVVMCS, u32GuestGdtrLimit),
482 SSMFIELD_ENTRY( VMXVVMCS, u32GuestIdtrLimit),
483 SSMFIELD_ENTRY( VMXVVMCS, u32GuestEsAttr),
484 SSMFIELD_ENTRY( VMXVVMCS, u32GuestCsAttr),
485 SSMFIELD_ENTRY( VMXVVMCS, u32GuestSsAttr),
486 SSMFIELD_ENTRY( VMXVVMCS, u32GuestDsAttr),
487 SSMFIELD_ENTRY( VMXVVMCS, u32GuestFsAttr),
488 SSMFIELD_ENTRY( VMXVVMCS, u32GuestGsAttr),
489 SSMFIELD_ENTRY( VMXVVMCS, u32GuestLdtrAttr),
490 SSMFIELD_ENTRY( VMXVVMCS, u32GuestTrAttr),
491 SSMFIELD_ENTRY( VMXVVMCS, u32GuestIntrState),
492 SSMFIELD_ENTRY( VMXVVMCS, u32GuestActivityState),
493 SSMFIELD_ENTRY( VMXVVMCS, u32GuestSmBase),
494 SSMFIELD_ENTRY( VMXVVMCS, u32GuestSysenterCS),
495 SSMFIELD_ENTRY( VMXVVMCS, u32PreemptTimer),
496 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au32Reserved3),
497
498 SSMFIELD_ENTRY( VMXVVMCS, u64VmcsLinkPtr),
499 SSMFIELD_ENTRY( VMXVVMCS, u64GuestDebugCtlMsr),
500 SSMFIELD_ENTRY( VMXVVMCS, u64GuestPatMsr),
501 SSMFIELD_ENTRY( VMXVVMCS, u64GuestEferMsr),
502 SSMFIELD_ENTRY( VMXVVMCS, u64GuestPerfGlobalCtlMsr),
503 SSMFIELD_ENTRY( VMXVVMCS, u64GuestPdpte0),
504 SSMFIELD_ENTRY( VMXVVMCS, u64GuestPdpte1),
505 SSMFIELD_ENTRY( VMXVVMCS, u64GuestPdpte2),
506 SSMFIELD_ENTRY( VMXVVMCS, u64GuestPdpte3),
507 SSMFIELD_ENTRY( VMXVVMCS, u64GuestBndcfgsMsr),
508 SSMFIELD_ENTRY( VMXVVMCS, u64GuestRtitCtlMsr),
509 SSMFIELD_ENTRY_VER( VMXVVMCS, u64GuestPkrsMsr, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2),
510 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved2),
511
512 SSMFIELD_ENTRY( VMXVVMCS, u64GuestCr0),
513 SSMFIELD_ENTRY( VMXVVMCS, u64GuestCr3),
514 SSMFIELD_ENTRY( VMXVVMCS, u64GuestCr4),
515 SSMFIELD_ENTRY( VMXVVMCS, u64GuestEsBase),
516 SSMFIELD_ENTRY( VMXVVMCS, u64GuestCsBase),
517 SSMFIELD_ENTRY( VMXVVMCS, u64GuestSsBase),
518 SSMFIELD_ENTRY( VMXVVMCS, u64GuestDsBase),
519 SSMFIELD_ENTRY( VMXVVMCS, u64GuestFsBase),
520 SSMFIELD_ENTRY( VMXVVMCS, u64GuestGsBase),
521 SSMFIELD_ENTRY( VMXVVMCS, u64GuestLdtrBase),
522 SSMFIELD_ENTRY( VMXVVMCS, u64GuestTrBase),
523 SSMFIELD_ENTRY( VMXVVMCS, u64GuestGdtrBase),
524 SSMFIELD_ENTRY( VMXVVMCS, u64GuestIdtrBase),
525 SSMFIELD_ENTRY( VMXVVMCS, u64GuestDr7),
526 SSMFIELD_ENTRY( VMXVVMCS, u64GuestRsp),
527 SSMFIELD_ENTRY( VMXVVMCS, u64GuestRip),
528 SSMFIELD_ENTRY( VMXVVMCS, u64GuestRFlags),
529 SSMFIELD_ENTRY( VMXVVMCS, u64GuestPendingDbgXcpts),
530 SSMFIELD_ENTRY( VMXVVMCS, u64GuestSysenterEsp),
531 SSMFIELD_ENTRY( VMXVVMCS, u64GuestSysenterEip),
532 SSMFIELD_ENTRY_VER( VMXVVMCS, u64GuestSCetMsr, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2),
533 SSMFIELD_ENTRY_VER( VMXVVMCS, u64GuestSsp, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2),
534 SSMFIELD_ENTRY_VER( VMXVVMCS, u64GuestIntrSspTableAddrMsr, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2),
535 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved6),
536
537 SSMFIELD_ENTRY_TERM()
538};
539
540/** Saved state field descriptors for CPUMCTX. */
541static const SSMFIELD g_aCpumX87Fields[] =
542{
543 SSMFIELD_ENTRY( X86FXSTATE, FCW),
544 SSMFIELD_ENTRY( X86FXSTATE, FSW),
545 SSMFIELD_ENTRY( X86FXSTATE, FTW),
546 SSMFIELD_ENTRY( X86FXSTATE, FOP),
547 SSMFIELD_ENTRY( X86FXSTATE, FPUIP),
548 SSMFIELD_ENTRY( X86FXSTATE, CS),
549 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd1),
550 SSMFIELD_ENTRY( X86FXSTATE, FPUDP),
551 SSMFIELD_ENTRY( X86FXSTATE, DS),
552 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd2),
553 SSMFIELD_ENTRY( X86FXSTATE, MXCSR),
554 SSMFIELD_ENTRY( X86FXSTATE, MXCSR_MASK),
555 SSMFIELD_ENTRY( X86FXSTATE, aRegs[0]),
556 SSMFIELD_ENTRY( X86FXSTATE, aRegs[1]),
557 SSMFIELD_ENTRY( X86FXSTATE, aRegs[2]),
558 SSMFIELD_ENTRY( X86FXSTATE, aRegs[3]),
559 SSMFIELD_ENTRY( X86FXSTATE, aRegs[4]),
560 SSMFIELD_ENTRY( X86FXSTATE, aRegs[5]),
561 SSMFIELD_ENTRY( X86FXSTATE, aRegs[6]),
562 SSMFIELD_ENTRY( X86FXSTATE, aRegs[7]),
563 SSMFIELD_ENTRY( X86FXSTATE, aXMM[0]),
564 SSMFIELD_ENTRY( X86FXSTATE, aXMM[1]),
565 SSMFIELD_ENTRY( X86FXSTATE, aXMM[2]),
566 SSMFIELD_ENTRY( X86FXSTATE, aXMM[3]),
567 SSMFIELD_ENTRY( X86FXSTATE, aXMM[4]),
568 SSMFIELD_ENTRY( X86FXSTATE, aXMM[5]),
569 SSMFIELD_ENTRY( X86FXSTATE, aXMM[6]),
570 SSMFIELD_ENTRY( X86FXSTATE, aXMM[7]),
571 SSMFIELD_ENTRY( X86FXSTATE, aXMM[8]),
572 SSMFIELD_ENTRY( X86FXSTATE, aXMM[9]),
573 SSMFIELD_ENTRY( X86FXSTATE, aXMM[10]),
574 SSMFIELD_ENTRY( X86FXSTATE, aXMM[11]),
575 SSMFIELD_ENTRY( X86FXSTATE, aXMM[12]),
576 SSMFIELD_ENTRY( X86FXSTATE, aXMM[13]),
577 SSMFIELD_ENTRY( X86FXSTATE, aXMM[14]),
578 SSMFIELD_ENTRY( X86FXSTATE, aXMM[15]),
579 SSMFIELD_ENTRY_VER( X86FXSTATE, au32RsrvdForSoftware[0], CPUM_SAVED_STATE_VERSION_XSAVE), /* 32-bit/64-bit hack */
580 SSMFIELD_ENTRY_TERM()
581};
582
583/** Saved state field descriptors for X86XSAVEHDR. */
584static const SSMFIELD g_aCpumXSaveHdrFields[] =
585{
586 SSMFIELD_ENTRY( X86XSAVEHDR, bmXState),
587 SSMFIELD_ENTRY_TERM()
588};
589
590/** Saved state field descriptors for X86XSAVEYMMHI. */
591static const SSMFIELD g_aCpumYmmHiFields[] =
592{
593 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[0]),
594 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[1]),
595 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[2]),
596 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[3]),
597 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[4]),
598 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[5]),
599 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[6]),
600 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[7]),
601 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[8]),
602 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[9]),
603 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[10]),
604 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[11]),
605 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[12]),
606 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[13]),
607 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[14]),
608 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[15]),
609 SSMFIELD_ENTRY_TERM()
610};
611
612/** Saved state field descriptors for X86XSAVEBNDREGS. */
613static const SSMFIELD g_aCpumBndRegsFields[] =
614{
615 SSMFIELD_ENTRY( X86XSAVEBNDREGS, aRegs[0]),
616 SSMFIELD_ENTRY( X86XSAVEBNDREGS, aRegs[1]),
617 SSMFIELD_ENTRY( X86XSAVEBNDREGS, aRegs[2]),
618 SSMFIELD_ENTRY( X86XSAVEBNDREGS, aRegs[3]),
619 SSMFIELD_ENTRY_TERM()
620};
621
622/** Saved state field descriptors for X86XSAVEBNDCFG. */
623static const SSMFIELD g_aCpumBndCfgFields[] =
624{
625 SSMFIELD_ENTRY( X86XSAVEBNDCFG, fConfig),
626 SSMFIELD_ENTRY( X86XSAVEBNDCFG, fStatus),
627 SSMFIELD_ENTRY_TERM()
628};
629
630#if 0 /** @todo */
631/** Saved state field descriptors for X86XSAVEOPMASK. */
632static const SSMFIELD g_aCpumOpmaskFields[] =
633{
634 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[0]),
635 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[1]),
636 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[2]),
637 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[3]),
638 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[4]),
639 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[5]),
640 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[6]),
641 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[7]),
642 SSMFIELD_ENTRY_TERM()
643};
644#endif
645
646/** Saved state field descriptors for X86XSAVEZMMHI256. */
647static const SSMFIELD g_aCpumZmmHi256Fields[] =
648{
649 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[0]),
650 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[1]),
651 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[2]),
652 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[3]),
653 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[4]),
654 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[5]),
655 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[6]),
656 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[7]),
657 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[8]),
658 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[9]),
659 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[10]),
660 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[11]),
661 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[12]),
662 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[13]),
663 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[14]),
664 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[15]),
665 SSMFIELD_ENTRY_TERM()
666};
667
668/** Saved state field descriptors for X86XSAVEZMM16HI. */
669static const SSMFIELD g_aCpumZmm16HiFields[] =
670{
671 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[0]),
672 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[1]),
673 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[2]),
674 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[3]),
675 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[4]),
676 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[5]),
677 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[6]),
678 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[7]),
679 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[8]),
680 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[9]),
681 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[10]),
682 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[11]),
683 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[12]),
684 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[13]),
685 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[14]),
686 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[15]),
687 SSMFIELD_ENTRY_TERM()
688};
689
690
691
692/** Saved state field descriptors for CPUMCTX in V4.1 before the hidden selector
693 * registeres changed. */
694static const SSMFIELD g_aCpumX87FieldsMem[] =
695{
696 SSMFIELD_ENTRY( X86FXSTATE, FCW),
697 SSMFIELD_ENTRY( X86FXSTATE, FSW),
698 SSMFIELD_ENTRY( X86FXSTATE, FTW),
699 SSMFIELD_ENTRY( X86FXSTATE, FOP),
700 SSMFIELD_ENTRY( X86FXSTATE, FPUIP),
701 SSMFIELD_ENTRY( X86FXSTATE, CS),
702 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd1),
703 SSMFIELD_ENTRY( X86FXSTATE, FPUDP),
704 SSMFIELD_ENTRY( X86FXSTATE, DS),
705 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd2),
706 SSMFIELD_ENTRY( X86FXSTATE, MXCSR),
707 SSMFIELD_ENTRY( X86FXSTATE, MXCSR_MASK),
708 SSMFIELD_ENTRY( X86FXSTATE, aRegs[0]),
709 SSMFIELD_ENTRY( X86FXSTATE, aRegs[1]),
710 SSMFIELD_ENTRY( X86FXSTATE, aRegs[2]),
711 SSMFIELD_ENTRY( X86FXSTATE, aRegs[3]),
712 SSMFIELD_ENTRY( X86FXSTATE, aRegs[4]),
713 SSMFIELD_ENTRY( X86FXSTATE, aRegs[5]),
714 SSMFIELD_ENTRY( X86FXSTATE, aRegs[6]),
715 SSMFIELD_ENTRY( X86FXSTATE, aRegs[7]),
716 SSMFIELD_ENTRY( X86FXSTATE, aXMM[0]),
717 SSMFIELD_ENTRY( X86FXSTATE, aXMM[1]),
718 SSMFIELD_ENTRY( X86FXSTATE, aXMM[2]),
719 SSMFIELD_ENTRY( X86FXSTATE, aXMM[3]),
720 SSMFIELD_ENTRY( X86FXSTATE, aXMM[4]),
721 SSMFIELD_ENTRY( X86FXSTATE, aXMM[5]),
722 SSMFIELD_ENTRY( X86FXSTATE, aXMM[6]),
723 SSMFIELD_ENTRY( X86FXSTATE, aXMM[7]),
724 SSMFIELD_ENTRY( X86FXSTATE, aXMM[8]),
725 SSMFIELD_ENTRY( X86FXSTATE, aXMM[9]),
726 SSMFIELD_ENTRY( X86FXSTATE, aXMM[10]),
727 SSMFIELD_ENTRY( X86FXSTATE, aXMM[11]),
728 SSMFIELD_ENTRY( X86FXSTATE, aXMM[12]),
729 SSMFIELD_ENTRY( X86FXSTATE, aXMM[13]),
730 SSMFIELD_ENTRY( X86FXSTATE, aXMM[14]),
731 SSMFIELD_ENTRY( X86FXSTATE, aXMM[15]),
732 SSMFIELD_ENTRY_IGNORE( X86FXSTATE, au32RsrvdRest),
733 SSMFIELD_ENTRY_IGNORE( X86FXSTATE, au32RsrvdForSoftware),
734};
735
736/** Saved state field descriptors for CPUMCTX in V4.1 before the hidden selector
737 * registeres changed. */
738static const SSMFIELD g_aCpumCtxFieldsMem[] =
739{
740 SSMFIELD_ENTRY( CPUMCTX, rdi),
741 SSMFIELD_ENTRY( CPUMCTX, rsi),
742 SSMFIELD_ENTRY( CPUMCTX, rbp),
743 SSMFIELD_ENTRY( CPUMCTX, rax),
744 SSMFIELD_ENTRY( CPUMCTX, rbx),
745 SSMFIELD_ENTRY( CPUMCTX, rdx),
746 SSMFIELD_ENTRY( CPUMCTX, rcx),
747 SSMFIELD_ENTRY( CPUMCTX, rsp),
748 SSMFIELD_ENTRY_OLD( lss_esp, sizeof(uint32_t)),
749 SSMFIELD_ENTRY( CPUMCTX, ss.Sel),
750 SSMFIELD_ENTRY_OLD( ssPadding, sizeof(uint16_t)),
751 SSMFIELD_ENTRY( CPUMCTX, gs.Sel),
752 SSMFIELD_ENTRY_OLD( gsPadding, sizeof(uint16_t)),
753 SSMFIELD_ENTRY( CPUMCTX, fs.Sel),
754 SSMFIELD_ENTRY_OLD( fsPadding, sizeof(uint16_t)),
755 SSMFIELD_ENTRY( CPUMCTX, es.Sel),
756 SSMFIELD_ENTRY_OLD( esPadding, sizeof(uint16_t)),
757 SSMFIELD_ENTRY( CPUMCTX, ds.Sel),
758 SSMFIELD_ENTRY_OLD( dsPadding, sizeof(uint16_t)),
759 SSMFIELD_ENTRY( CPUMCTX, cs.Sel),
760 SSMFIELD_ENTRY_OLD( csPadding, sizeof(uint16_t)*3),
761 SSMFIELD_ENTRY( CPUMCTX, rflags),
762 SSMFIELD_ENTRY( CPUMCTX, rip),
763 SSMFIELD_ENTRY( CPUMCTX, r8),
764 SSMFIELD_ENTRY( CPUMCTX, r9),
765 SSMFIELD_ENTRY( CPUMCTX, r10),
766 SSMFIELD_ENTRY( CPUMCTX, r11),
767 SSMFIELD_ENTRY( CPUMCTX, r12),
768 SSMFIELD_ENTRY( CPUMCTX, r13),
769 SSMFIELD_ENTRY( CPUMCTX, r14),
770 SSMFIELD_ENTRY( CPUMCTX, r15),
771 SSMFIELD_ENTRY( CPUMCTX, es.u64Base),
772 SSMFIELD_ENTRY( CPUMCTX, es.u32Limit),
773 SSMFIELD_ENTRY( CPUMCTX, es.Attr),
774 SSMFIELD_ENTRY( CPUMCTX, cs.u64Base),
775 SSMFIELD_ENTRY( CPUMCTX, cs.u32Limit),
776 SSMFIELD_ENTRY( CPUMCTX, cs.Attr),
777 SSMFIELD_ENTRY( CPUMCTX, ss.u64Base),
778 SSMFIELD_ENTRY( CPUMCTX, ss.u32Limit),
779 SSMFIELD_ENTRY( CPUMCTX, ss.Attr),
780 SSMFIELD_ENTRY( CPUMCTX, ds.u64Base),
781 SSMFIELD_ENTRY( CPUMCTX, ds.u32Limit),
782 SSMFIELD_ENTRY( CPUMCTX, ds.Attr),
783 SSMFIELD_ENTRY( CPUMCTX, fs.u64Base),
784 SSMFIELD_ENTRY( CPUMCTX, fs.u32Limit),
785 SSMFIELD_ENTRY( CPUMCTX, fs.Attr),
786 SSMFIELD_ENTRY( CPUMCTX, gs.u64Base),
787 SSMFIELD_ENTRY( CPUMCTX, gs.u32Limit),
788 SSMFIELD_ENTRY( CPUMCTX, gs.Attr),
789 SSMFIELD_ENTRY( CPUMCTX, cr0),
790 SSMFIELD_ENTRY( CPUMCTX, cr2),
791 SSMFIELD_ENTRY( CPUMCTX, cr3),
792 SSMFIELD_ENTRY( CPUMCTX, cr4),
793 SSMFIELD_ENTRY( CPUMCTX, dr[0]),
794 SSMFIELD_ENTRY( CPUMCTX, dr[1]),
795 SSMFIELD_ENTRY( CPUMCTX, dr[2]),
796 SSMFIELD_ENTRY( CPUMCTX, dr[3]),
797 SSMFIELD_ENTRY_OLD( dr[4], sizeof(uint64_t)),
798 SSMFIELD_ENTRY_OLD( dr[5], sizeof(uint64_t)),
799 SSMFIELD_ENTRY( CPUMCTX, dr[6]),
800 SSMFIELD_ENTRY( CPUMCTX, dr[7]),
801 SSMFIELD_ENTRY( CPUMCTX, gdtr.cbGdt),
802 SSMFIELD_ENTRY( CPUMCTX, gdtr.pGdt),
803 SSMFIELD_ENTRY_OLD( gdtrPadding, sizeof(uint16_t)),
804 SSMFIELD_ENTRY( CPUMCTX, idtr.cbIdt),
805 SSMFIELD_ENTRY( CPUMCTX, idtr.pIdt),
806 SSMFIELD_ENTRY_OLD( idtrPadding, sizeof(uint16_t)),
807 SSMFIELD_ENTRY( CPUMCTX, ldtr.Sel),
808 SSMFIELD_ENTRY_OLD( ldtrPadding, sizeof(uint16_t)),
809 SSMFIELD_ENTRY( CPUMCTX, tr.Sel),
810 SSMFIELD_ENTRY_OLD( trPadding, sizeof(uint16_t)),
811 SSMFIELD_ENTRY( CPUMCTX, SysEnter.cs),
812 SSMFIELD_ENTRY( CPUMCTX, SysEnter.eip),
813 SSMFIELD_ENTRY( CPUMCTX, SysEnter.esp),
814 SSMFIELD_ENTRY( CPUMCTX, msrEFER),
815 SSMFIELD_ENTRY( CPUMCTX, msrSTAR),
816 SSMFIELD_ENTRY( CPUMCTX, msrPAT),
817 SSMFIELD_ENTRY( CPUMCTX, msrLSTAR),
818 SSMFIELD_ENTRY( CPUMCTX, msrCSTAR),
819 SSMFIELD_ENTRY( CPUMCTX, msrSFMASK),
820 SSMFIELD_ENTRY( CPUMCTX, msrKERNELGSBASE),
821 SSMFIELD_ENTRY( CPUMCTX, ldtr.u64Base),
822 SSMFIELD_ENTRY( CPUMCTX, ldtr.u32Limit),
823 SSMFIELD_ENTRY( CPUMCTX, ldtr.Attr),
824 SSMFIELD_ENTRY( CPUMCTX, tr.u64Base),
825 SSMFIELD_ENTRY( CPUMCTX, tr.u32Limit),
826 SSMFIELD_ENTRY( CPUMCTX, tr.Attr),
827 SSMFIELD_ENTRY_TERM()
828};
829
830/** Saved state field descriptors for CPUMCTX_VER1_6. */
831static const SSMFIELD g_aCpumX87FieldsV16[] =
832{
833 SSMFIELD_ENTRY( X86FXSTATE, FCW),
834 SSMFIELD_ENTRY( X86FXSTATE, FSW),
835 SSMFIELD_ENTRY( X86FXSTATE, FTW),
836 SSMFIELD_ENTRY( X86FXSTATE, FOP),
837 SSMFIELD_ENTRY( X86FXSTATE, FPUIP),
838 SSMFIELD_ENTRY( X86FXSTATE, CS),
839 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd1),
840 SSMFIELD_ENTRY( X86FXSTATE, FPUDP),
841 SSMFIELD_ENTRY( X86FXSTATE, DS),
842 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd2),
843 SSMFIELD_ENTRY( X86FXSTATE, MXCSR),
844 SSMFIELD_ENTRY( X86FXSTATE, MXCSR_MASK),
845 SSMFIELD_ENTRY( X86FXSTATE, aRegs[0]),
846 SSMFIELD_ENTRY( X86FXSTATE, aRegs[1]),
847 SSMFIELD_ENTRY( X86FXSTATE, aRegs[2]),
848 SSMFIELD_ENTRY( X86FXSTATE, aRegs[3]),
849 SSMFIELD_ENTRY( X86FXSTATE, aRegs[4]),
850 SSMFIELD_ENTRY( X86FXSTATE, aRegs[5]),
851 SSMFIELD_ENTRY( X86FXSTATE, aRegs[6]),
852 SSMFIELD_ENTRY( X86FXSTATE, aRegs[7]),
853 SSMFIELD_ENTRY( X86FXSTATE, aXMM[0]),
854 SSMFIELD_ENTRY( X86FXSTATE, aXMM[1]),
855 SSMFIELD_ENTRY( X86FXSTATE, aXMM[2]),
856 SSMFIELD_ENTRY( X86FXSTATE, aXMM[3]),
857 SSMFIELD_ENTRY( X86FXSTATE, aXMM[4]),
858 SSMFIELD_ENTRY( X86FXSTATE, aXMM[5]),
859 SSMFIELD_ENTRY( X86FXSTATE, aXMM[6]),
860 SSMFIELD_ENTRY( X86FXSTATE, aXMM[7]),
861 SSMFIELD_ENTRY( X86FXSTATE, aXMM[8]),
862 SSMFIELD_ENTRY( X86FXSTATE, aXMM[9]),
863 SSMFIELD_ENTRY( X86FXSTATE, aXMM[10]),
864 SSMFIELD_ENTRY( X86FXSTATE, aXMM[11]),
865 SSMFIELD_ENTRY( X86FXSTATE, aXMM[12]),
866 SSMFIELD_ENTRY( X86FXSTATE, aXMM[13]),
867 SSMFIELD_ENTRY( X86FXSTATE, aXMM[14]),
868 SSMFIELD_ENTRY( X86FXSTATE, aXMM[15]),
869 SSMFIELD_ENTRY_IGNORE( X86FXSTATE, au32RsrvdRest),
870 SSMFIELD_ENTRY_IGNORE( X86FXSTATE, au32RsrvdForSoftware),
871 SSMFIELD_ENTRY_TERM()
872};
873
874/** Saved state field descriptors for CPUMCTX_VER1_6. */
875static const SSMFIELD g_aCpumCtxFieldsV16[] =
876{
877 SSMFIELD_ENTRY( CPUMCTX, rdi),
878 SSMFIELD_ENTRY( CPUMCTX, rsi),
879 SSMFIELD_ENTRY( CPUMCTX, rbp),
880 SSMFIELD_ENTRY( CPUMCTX, rax),
881 SSMFIELD_ENTRY( CPUMCTX, rbx),
882 SSMFIELD_ENTRY( CPUMCTX, rdx),
883 SSMFIELD_ENTRY( CPUMCTX, rcx),
884 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, rsp),
885 SSMFIELD_ENTRY( CPUMCTX, ss.Sel),
886 SSMFIELD_ENTRY_OLD( ssPadding, sizeof(uint16_t)),
887 SSMFIELD_ENTRY_OLD( CPUMCTX, sizeof(uint64_t) /*rsp_notused*/),
888 SSMFIELD_ENTRY( CPUMCTX, gs.Sel),
889 SSMFIELD_ENTRY_OLD( gsPadding, sizeof(uint16_t)),
890 SSMFIELD_ENTRY( CPUMCTX, fs.Sel),
891 SSMFIELD_ENTRY_OLD( fsPadding, sizeof(uint16_t)),
892 SSMFIELD_ENTRY( CPUMCTX, es.Sel),
893 SSMFIELD_ENTRY_OLD( esPadding, sizeof(uint16_t)),
894 SSMFIELD_ENTRY( CPUMCTX, ds.Sel),
895 SSMFIELD_ENTRY_OLD( dsPadding, sizeof(uint16_t)),
896 SSMFIELD_ENTRY( CPUMCTX, cs.Sel),
897 SSMFIELD_ENTRY_OLD( csPadding, sizeof(uint16_t)*3),
898 SSMFIELD_ENTRY( CPUMCTX, rflags),
899 SSMFIELD_ENTRY( CPUMCTX, rip),
900 SSMFIELD_ENTRY( CPUMCTX, r8),
901 SSMFIELD_ENTRY( CPUMCTX, r9),
902 SSMFIELD_ENTRY( CPUMCTX, r10),
903 SSMFIELD_ENTRY( CPUMCTX, r11),
904 SSMFIELD_ENTRY( CPUMCTX, r12),
905 SSMFIELD_ENTRY( CPUMCTX, r13),
906 SSMFIELD_ENTRY( CPUMCTX, r14),
907 SSMFIELD_ENTRY( CPUMCTX, r15),
908 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, es.u64Base),
909 SSMFIELD_ENTRY( CPUMCTX, es.u32Limit),
910 SSMFIELD_ENTRY( CPUMCTX, es.Attr),
911 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, cs.u64Base),
912 SSMFIELD_ENTRY( CPUMCTX, cs.u32Limit),
913 SSMFIELD_ENTRY( CPUMCTX, cs.Attr),
914 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, ss.u64Base),
915 SSMFIELD_ENTRY( CPUMCTX, ss.u32Limit),
916 SSMFIELD_ENTRY( CPUMCTX, ss.Attr),
917 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, ds.u64Base),
918 SSMFIELD_ENTRY( CPUMCTX, ds.u32Limit),
919 SSMFIELD_ENTRY( CPUMCTX, ds.Attr),
920 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, fs.u64Base),
921 SSMFIELD_ENTRY( CPUMCTX, fs.u32Limit),
922 SSMFIELD_ENTRY( CPUMCTX, fs.Attr),
923 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, gs.u64Base),
924 SSMFIELD_ENTRY( CPUMCTX, gs.u32Limit),
925 SSMFIELD_ENTRY( CPUMCTX, gs.Attr),
926 SSMFIELD_ENTRY( CPUMCTX, cr0),
927 SSMFIELD_ENTRY( CPUMCTX, cr2),
928 SSMFIELD_ENTRY( CPUMCTX, cr3),
929 SSMFIELD_ENTRY( CPUMCTX, cr4),
930 SSMFIELD_ENTRY_OLD( cr8, sizeof(uint64_t)),
931 SSMFIELD_ENTRY( CPUMCTX, dr[0]),
932 SSMFIELD_ENTRY( CPUMCTX, dr[1]),
933 SSMFIELD_ENTRY( CPUMCTX, dr[2]),
934 SSMFIELD_ENTRY( CPUMCTX, dr[3]),
935 SSMFIELD_ENTRY_OLD( dr[4], sizeof(uint64_t)),
936 SSMFIELD_ENTRY_OLD( dr[5], sizeof(uint64_t)),
937 SSMFIELD_ENTRY( CPUMCTX, dr[6]),
938 SSMFIELD_ENTRY( CPUMCTX, dr[7]),
939 SSMFIELD_ENTRY( CPUMCTX, gdtr.cbGdt),
940 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, gdtr.pGdt),
941 SSMFIELD_ENTRY_OLD( gdtrPadding, sizeof(uint16_t)),
942 SSMFIELD_ENTRY_OLD( gdtrPadding64, sizeof(uint64_t)),
943 SSMFIELD_ENTRY( CPUMCTX, idtr.cbIdt),
944 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, idtr.pIdt),
945 SSMFIELD_ENTRY_OLD( idtrPadding, sizeof(uint16_t)),
946 SSMFIELD_ENTRY_OLD( idtrPadding64, sizeof(uint64_t)),
947 SSMFIELD_ENTRY( CPUMCTX, ldtr.Sel),
948 SSMFIELD_ENTRY_OLD( ldtrPadding, sizeof(uint16_t)),
949 SSMFIELD_ENTRY( CPUMCTX, tr.Sel),
950 SSMFIELD_ENTRY_OLD( trPadding, sizeof(uint16_t)),
951 SSMFIELD_ENTRY( CPUMCTX, SysEnter.cs),
952 SSMFIELD_ENTRY( CPUMCTX, SysEnter.eip),
953 SSMFIELD_ENTRY( CPUMCTX, SysEnter.esp),
954 SSMFIELD_ENTRY( CPUMCTX, msrEFER),
955 SSMFIELD_ENTRY( CPUMCTX, msrSTAR),
956 SSMFIELD_ENTRY( CPUMCTX, msrPAT),
957 SSMFIELD_ENTRY( CPUMCTX, msrLSTAR),
958 SSMFIELD_ENTRY( CPUMCTX, msrCSTAR),
959 SSMFIELD_ENTRY( CPUMCTX, msrSFMASK),
960 SSMFIELD_ENTRY_OLD( msrFSBASE, sizeof(uint64_t)),
961 SSMFIELD_ENTRY_OLD( msrGSBASE, sizeof(uint64_t)),
962 SSMFIELD_ENTRY( CPUMCTX, msrKERNELGSBASE),
963 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, ldtr.u64Base),
964 SSMFIELD_ENTRY( CPUMCTX, ldtr.u32Limit),
965 SSMFIELD_ENTRY( CPUMCTX, ldtr.Attr),
966 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, tr.u64Base),
967 SSMFIELD_ENTRY( CPUMCTX, tr.u32Limit),
968 SSMFIELD_ENTRY( CPUMCTX, tr.Attr),
969 SSMFIELD_ENTRY_OLD( padding, sizeof(uint32_t)*2),
970 SSMFIELD_ENTRY_TERM()
971};
972
973
974/**
975 * Checks for partial/leaky FXSAVE/FXRSTOR handling on AMD CPUs.
976 *
977 * AMD K7, K8 and newer AMD CPUs do not save/restore the x87 error pointers
978 * (last instruction pointer, last data pointer, last opcode) except when the ES
979 * bit (Exception Summary) in x87 FSW (FPU Status Word) is set. Thus if we don't
980 * clear these registers there is potential, local FPU leakage from a process
981 * using the FPU to another.
982 *
983 * See AMD Instruction Reference for FXSAVE, FXRSTOR.
984 *
985 * @param pVM The cross context VM structure.
986 */
987static void cpumR3CheckLeakyFpu(PVM pVM)
988{
989 uint32_t u32CpuVersion = ASMCpuId_EAX(1);
990 uint32_t const u32Family = u32CpuVersion >> 8;
991 if ( u32Family >= 6 /* K7 and higher */
992 && (ASMIsAmdCpu() || ASMIsHygonCpu()) )
993 {
994 uint32_t cExt = ASMCpuId_EAX(0x80000000);
995 if (ASMIsValidExtRange(cExt))
996 {
997 uint32_t fExtFeaturesEDX = ASMCpuId_EDX(0x80000001);
998 if (fExtFeaturesEDX & X86_CPUID_AMD_FEATURE_EDX_FFXSR)
999 {
1000 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1001 {
1002 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
1003 pVCpu->cpum.s.fUseFlags |= CPUM_USE_FFXSR_LEAKY;
1004 }
1005 Log(("CPUM: Host CPU has leaky fxsave/fxrstor behaviour\n"));
1006 }
1007 }
1008 }
1009}
1010
1011
1012/**
1013 * Initialize SVM hardware virtualization state (used to allocate it).
1014 *
1015 * @param pVM The cross context VM structure.
1016 */
1017static void cpumR3InitSvmHwVirtState(PVM pVM)
1018{
1019 Assert(pVM->cpum.s.GuestFeatures.fSvm);
1020
1021 LogRel(("CPUM: Allocating %u pages for the nested-guest SVM MSR and IO permission bitmaps\n",
1022 pVM->cCpus * (SVM_MSRPM_PAGES + SVM_IOPM_PAGES)));
1023 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1024 {
1025 PVMCPU pVCpu = pVM->apCpusR3[i];
1026 pVCpu->cpum.s.Guest.hwvirt.enmHwvirt = CPUMHWVIRT_SVM;
1027
1028 AssertCompile(SVM_VMCB_PAGES * X86_PAGE_SIZE == sizeof(pVCpu->cpum.s.Guest.hwvirt.svm.Vmcb));
1029 AssertCompile(SVM_MSRPM_PAGES * X86_PAGE_SIZE == sizeof(pVCpu->cpum.s.Guest.hwvirt.svm.abMsrBitmap));
1030 AssertCompile(SVM_IOPM_PAGES * X86_PAGE_SIZE == sizeof(pVCpu->cpum.s.Guest.hwvirt.svm.abIoBitmap));
1031 }
1032}
1033
1034
1035/**
1036 * Resets per-VCPU SVM hardware virtualization state.
1037 *
1038 * @param pVCpu The cross context virtual CPU structure.
1039 */
1040DECLINLINE(void) cpumR3ResetSvmHwVirtState(PVMCPU pVCpu)
1041{
1042 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
1043 Assert(pCtx->hwvirt.enmHwvirt == CPUMHWVIRT_SVM);
1044
1045 RT_ZERO(pCtx->hwvirt.svm.Vmcb);
1046 pCtx->hwvirt.svm.uMsrHSavePa = 0;
1047 pCtx->hwvirt.svm.uPrevPauseTick = 0;
1048}
1049
1050
1051/**
1052 * Frees memory allocated for the VMX hardware virtualization state.
1053 *
1054 * @param pVM The cross context VM structure.
1055 */
1056static void cpumR3FreeVmxHwVirtState(PVM pVM)
1057{
1058 Assert(pVM->cpum.s.GuestFeatures.fVmx);
1059 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1060 {
1061 PVMCPU pVCpu = pVM->apCpusR3[i];
1062 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
1063
1064 if (pCtx->hwvirt.vmx.pvVirtApicPageR3)
1065 {
1066 SUPR3ContFree(pCtx->hwvirt.vmx.pvVirtApicPageR3, VMX_V_VIRT_APIC_PAGES);
1067 pCtx->hwvirt.vmx.pvVirtApicPageR3 = NULL;
1068 }
1069 if (pCtx->hwvirt.vmx.pvMsrBitmapR3)
1070 {
1071 SUPR3ContFree(pCtx->hwvirt.vmx.pvMsrBitmapR3, VMX_V_MSR_BITMAP_PAGES);
1072 pCtx->hwvirt.vmx.pvMsrBitmapR3 = NULL;
1073 }
1074 if (pCtx->hwvirt.vmx.pvIoBitmapR3)
1075 {
1076 SUPR3ContFree(pCtx->hwvirt.vmx.pvIoBitmapR3, VMX_V_IO_BITMAP_A_PAGES + VMX_V_IO_BITMAP_B_PAGES);
1077 pCtx->hwvirt.vmx.pvIoBitmapR3 = NULL;
1078 }
1079 }
1080}
1081
1082
1083/**
1084 * Allocates memory for the VMX hardware virtualization state.
1085 *
1086 * @returns VBox status code.
1087 * @param pVM The cross context VM structure.
1088 */
1089static int cpumR3AllocVmxHwVirtState(PVM pVM)
1090{
1091 int rc = VINF_SUCCESS;
1092 uint32_t const cPages = VMX_V_VMCS_PAGES
1093 + VMX_V_SHADOW_VMCS_PAGES
1094 + VMX_V_VIRT_APIC_PAGES
1095 + (2 * VMX_V_VMREAD_VMWRITE_BITMAP_PAGES)
1096 + (3 * VMX_V_AUTOMSR_AREA_PAGES)
1097 + VMX_V_MSR_BITMAP_PAGES
1098 + (VMX_V_IO_BITMAP_A_PAGES + VMX_V_IO_BITMAP_B_PAGES);
1099 LogRel(("CPUM: Allocating %u pages for the nested-guest VMCS and related structures\n", pVM->cCpus * cPages));
1100 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1101 {
1102 PVMCPU pVCpu = pVM->apCpusR3[i];
1103 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
1104 pCtx->hwvirt.enmHwvirt = CPUMHWVIRT_VMX;
1105
1106 AssertCompile(sizeof(pCtx->hwvirt.vmx.Vmcs) == VMX_V_VMCS_PAGES * X86_PAGE_SIZE);
1107 AssertCompile(sizeof(pCtx->hwvirt.vmx.Vmcs) == VMX_V_VMCS_SIZE);
1108 AssertCompile(sizeof(pCtx->hwvirt.vmx.ShadowVmcs) == VMX_V_SHADOW_VMCS_PAGES * X86_PAGE_SIZE);
1109 AssertCompile(sizeof(pCtx->hwvirt.vmx.ShadowVmcs) == VMX_V_SHADOW_VMCS_SIZE);
1110 AssertCompile(sizeof(pCtx->hwvirt.vmx.abVmreadBitmap) == VMX_V_VMREAD_VMWRITE_BITMAP_PAGES * X86_PAGE_SIZE);
1111 AssertCompile(sizeof(pCtx->hwvirt.vmx.abVmreadBitmap) == VMX_V_VMREAD_VMWRITE_BITMAP_SIZE);
1112 AssertCompile(sizeof(pCtx->hwvirt.vmx.abVmwriteBitmap) == VMX_V_VMREAD_VMWRITE_BITMAP_PAGES * X86_PAGE_SIZE);
1113 AssertCompile(sizeof(pCtx->hwvirt.vmx.abVmwriteBitmap) == VMX_V_VMREAD_VMWRITE_BITMAP_SIZE);
1114 AssertCompile(sizeof(pCtx->hwvirt.vmx.aEntryMsrLoadArea) == VMX_V_AUTOMSR_AREA_PAGES * X86_PAGE_SIZE);
1115 AssertCompile(sizeof(pCtx->hwvirt.vmx.aEntryMsrLoadArea) == VMX_V_AUTOMSR_AREA_SIZE);
1116 AssertCompile(sizeof(pCtx->hwvirt.vmx.aExitMsrStoreArea) == VMX_V_AUTOMSR_AREA_PAGES * X86_PAGE_SIZE);
1117 AssertCompile(sizeof(pCtx->hwvirt.vmx.aExitMsrStoreArea) == VMX_V_AUTOMSR_AREA_SIZE);
1118 AssertCompile(sizeof(pCtx->hwvirt.vmx.aExitMsrLoadArea) == VMX_V_AUTOMSR_AREA_PAGES * X86_PAGE_SIZE);
1119 AssertCompile(sizeof(pCtx->hwvirt.vmx.aExitMsrLoadArea) == VMX_V_AUTOMSR_AREA_SIZE);
1120
1121 /*
1122 * Allocate the virtual-APIC page.
1123 */
1124 pCtx->hwvirt.vmx.pvVirtApicPageR3 = SUPR3ContAlloc(VMX_V_VIRT_APIC_PAGES,
1125 &pCtx->hwvirt.vmx.pvVirtApicPageR0,
1126 &pCtx->hwvirt.vmx.HCPhysVirtApicPage);
1127 if (pCtx->hwvirt.vmx.pvVirtApicPageR3)
1128 { /* likely */ }
1129 else
1130 {
1131 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's virtual-APIC page\n", pVCpu->idCpu,
1132 VMX_V_VIRT_APIC_PAGES));
1133 break;
1134 }
1135
1136 /*
1137 * Allocate the MSR bitmap.
1138 */
1139 pCtx->hwvirt.vmx.pvMsrBitmapR3 = SUPR3ContAlloc(VMX_V_MSR_BITMAP_PAGES, &pCtx->hwvirt.vmx.pvMsrBitmapR0, NULL);
1140 if (pCtx->hwvirt.vmx.pvMsrBitmapR3)
1141 { /* likely */ }
1142 else
1143 {
1144 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's MSR bitmap\n", pVCpu->idCpu,
1145 VMX_V_MSR_BITMAP_PAGES));
1146 break;
1147 }
1148
1149 /*
1150 * Allocate the I/O bitmaps (A and B).
1151 */
1152 pCtx->hwvirt.vmx.pvIoBitmapR3 = SUPR3ContAlloc(VMX_V_IO_BITMAP_A_PAGES + VMX_V_IO_BITMAP_B_PAGES,
1153 &pCtx->hwvirt.vmx.pvIoBitmapR0, NULL);
1154 if (pCtx->hwvirt.vmx.pvIoBitmapR3)
1155 { /* likely */ }
1156 else
1157 {
1158 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's I/O bitmaps\n", pVCpu->idCpu,
1159 VMX_V_IO_BITMAP_A_PAGES + VMX_V_IO_BITMAP_B_PAGES));
1160 break;
1161 }
1162
1163 /*
1164 * Zero out all allocated pages (should compress well for saved-state).
1165 */
1166 RT_ZERO(pCtx->hwvirt.vmx.Vmcs);
1167 RT_ZERO(pCtx->hwvirt.vmx.ShadowVmcs);
1168 RT_ZERO(pCtx->hwvirt.vmx.abVmreadBitmap);
1169 RT_ZERO(pCtx->hwvirt.vmx.abVmwriteBitmap);
1170 RT_ZERO(pCtx->hwvirt.vmx.aEntryMsrLoadArea);
1171 RT_ZERO(pCtx->hwvirt.vmx.aExitMsrStoreArea);
1172 RT_ZERO(pCtx->hwvirt.vmx.aExitMsrLoadArea);
1173 memset(pCtx->hwvirt.vmx.CTX_SUFF(pvMsrBitmap), 0, VMX_V_MSR_BITMAP_SIZE);
1174 memset(pCtx->hwvirt.vmx.CTX_SUFF(pvIoBitmap), 0, VMX_V_IO_BITMAP_A_SIZE + VMX_V_IO_BITMAP_B_SIZE);
1175 memset(pCtx->hwvirt.vmx.CTX_SUFF(pvVirtApicPage), 0, VMX_V_VIRT_APIC_SIZE);
1176 }
1177
1178 /* On any failure, cleanup. */
1179 if (RT_FAILURE(rc))
1180 cpumR3FreeVmxHwVirtState(pVM);
1181
1182 return rc;
1183}
1184
1185
1186/**
1187 * Resets per-VCPU VMX hardware virtualization state.
1188 *
1189 * @param pVCpu The cross context virtual CPU structure.
1190 */
1191DECLINLINE(void) cpumR3ResetVmxHwVirtState(PVMCPU pVCpu)
1192{
1193 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
1194 Assert(pCtx->hwvirt.enmHwvirt == CPUMHWVIRT_VMX);
1195
1196 RT_ZERO(pCtx->hwvirt.vmx.Vmcs);
1197 RT_ZERO(pCtx->hwvirt.vmx.ShadowVmcs);
1198 pCtx->hwvirt.vmx.GCPhysVmxon = NIL_RTGCPHYS;
1199 pCtx->hwvirt.vmx.GCPhysShadowVmcs = NIL_RTGCPHYS;
1200 pCtx->hwvirt.vmx.GCPhysVmxon = NIL_RTGCPHYS;
1201 pCtx->hwvirt.vmx.fInVmxRootMode = false;
1202 pCtx->hwvirt.vmx.fInVmxNonRootMode = false;
1203 /* Don't reset diagnostics here. */
1204
1205 /* Stop any VMX-preemption timer. */
1206 CPUMStopGuestVmxPremptTimer(pVCpu);
1207
1208 /* Clear all nested-guest FFs. */
1209 VMCPU_FF_CLEAR_MASK(pVCpu, VMCPU_FF_VMX_ALL_MASK);
1210}
1211
1212
1213/**
1214 * Displays the host and guest VMX features.
1215 *
1216 * @param pVM The cross context VM structure.
1217 * @param pHlp The info helper functions.
1218 * @param pszArgs "terse", "default" or "verbose".
1219 */
1220DECLCALLBACK(void) cpumR3InfoVmxFeatures(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
1221{
1222 RT_NOREF(pszArgs);
1223 PCCPUMFEATURES pHostFeatures = &pVM->cpum.s.HostFeatures;
1224 PCCPUMFEATURES pGuestFeatures = &pVM->cpum.s.GuestFeatures;
1225 if ( pHostFeatures->enmCpuVendor == CPUMCPUVENDOR_INTEL
1226 || pHostFeatures->enmCpuVendor == CPUMCPUVENDOR_VIA
1227 || pHostFeatures->enmCpuVendor == CPUMCPUVENDOR_SHANGHAI)
1228 {
1229#define VMXFEATDUMP(a_szDesc, a_Var) \
1230 pHlp->pfnPrintf(pHlp, " %s = %u (%u)\n", a_szDesc, pGuestFeatures->a_Var, pHostFeatures->a_Var)
1231
1232 pHlp->pfnPrintf(pHlp, "Nested hardware virtualization - VMX features\n");
1233 pHlp->pfnPrintf(pHlp, " Mnemonic - Description = guest (host)\n");
1234 VMXFEATDUMP("VMX - Virtual-Machine Extensions ", fVmx);
1235 /* Basic. */
1236 VMXFEATDUMP("InsOutInfo - INS/OUTS instruction info. ", fVmxInsOutInfo);
1237 /* Pin-based controls. */
1238 VMXFEATDUMP("ExtIntExit - External interrupt exiting ", fVmxExtIntExit);
1239 VMXFEATDUMP("NmiExit - NMI exiting ", fVmxNmiExit);
1240 VMXFEATDUMP("VirtNmi - Virtual NMIs ", fVmxVirtNmi);
1241 VMXFEATDUMP("PreemptTimer - VMX preemption timer ", fVmxPreemptTimer);
1242 VMXFEATDUMP("PostedInt - Posted interrupts ", fVmxPostedInt);
1243 /* Processor-based controls. */
1244 VMXFEATDUMP("IntWindowExit - Interrupt-window exiting ", fVmxIntWindowExit);
1245 VMXFEATDUMP("TscOffsetting - TSC offsetting ", fVmxTscOffsetting);
1246 VMXFEATDUMP("HltExit - HLT exiting ", fVmxHltExit);
1247 VMXFEATDUMP("InvlpgExit - INVLPG exiting ", fVmxInvlpgExit);
1248 VMXFEATDUMP("MwaitExit - MWAIT exiting ", fVmxMwaitExit);
1249 VMXFEATDUMP("RdpmcExit - RDPMC exiting ", fVmxRdpmcExit);
1250 VMXFEATDUMP("RdtscExit - RDTSC exiting ", fVmxRdtscExit);
1251 VMXFEATDUMP("Cr3LoadExit - CR3-load exiting ", fVmxCr3LoadExit);
1252 VMXFEATDUMP("Cr3StoreExit - CR3-store exiting ", fVmxCr3StoreExit);
1253 VMXFEATDUMP("Cr8LoadExit - CR8-load exiting ", fVmxCr8LoadExit);
1254 VMXFEATDUMP("Cr8StoreExit - CR8-store exiting ", fVmxCr8StoreExit);
1255 VMXFEATDUMP("UseTprShadow - Use TPR shadow ", fVmxUseTprShadow);
1256 VMXFEATDUMP("NmiWindowExit - NMI-window exiting ", fVmxNmiWindowExit);
1257 VMXFEATDUMP("MovDRxExit - Mov-DR exiting ", fVmxMovDRxExit);
1258 VMXFEATDUMP("UncondIoExit - Unconditional I/O exiting ", fVmxUncondIoExit);
1259 VMXFEATDUMP("UseIoBitmaps - Use I/O bitmaps ", fVmxUseIoBitmaps);
1260 VMXFEATDUMP("MonitorTrapFlag - Monitor Trap Flag ", fVmxMonitorTrapFlag);
1261 VMXFEATDUMP("UseMsrBitmaps - MSR bitmaps ", fVmxUseMsrBitmaps);
1262 VMXFEATDUMP("MonitorExit - MONITOR exiting ", fVmxMonitorExit);
1263 VMXFEATDUMP("PauseExit - PAUSE exiting ", fVmxPauseExit);
1264 VMXFEATDUMP("SecondaryExecCtl - Activate secondary controls ", fVmxSecondaryExecCtls);
1265 /* Secondary processor-based controls. */
1266 VMXFEATDUMP("VirtApic - Virtualize-APIC accesses ", fVmxVirtApicAccess);
1267 VMXFEATDUMP("Ept - Extended Page Tables ", fVmxEpt);
1268 VMXFEATDUMP("DescTableExit - Descriptor-table exiting ", fVmxDescTableExit);
1269 VMXFEATDUMP("Rdtscp - Enable RDTSCP ", fVmxRdtscp);
1270 VMXFEATDUMP("VirtX2ApicMode - Virtualize-x2APIC mode ", fVmxVirtX2ApicMode);
1271 VMXFEATDUMP("Vpid - Enable VPID ", fVmxVpid);
1272 VMXFEATDUMP("WbinvdExit - WBINVD exiting ", fVmxWbinvdExit);
1273 VMXFEATDUMP("UnrestrictedGuest - Unrestricted guest ", fVmxUnrestrictedGuest);
1274 VMXFEATDUMP("ApicRegVirt - APIC-register virtualization ", fVmxApicRegVirt);
1275 VMXFEATDUMP("VirtIntDelivery - Virtual-interrupt delivery ", fVmxVirtIntDelivery);
1276 VMXFEATDUMP("PauseLoopExit - PAUSE-loop exiting ", fVmxPauseLoopExit);
1277 VMXFEATDUMP("RdrandExit - RDRAND exiting ", fVmxRdrandExit);
1278 VMXFEATDUMP("Invpcid - Enable INVPCID ", fVmxInvpcid);
1279 VMXFEATDUMP("VmFuncs - Enable VM Functions ", fVmxVmFunc);
1280 VMXFEATDUMP("VmcsShadowing - VMCS shadowing ", fVmxVmcsShadowing);
1281 VMXFEATDUMP("RdseedExiting - RDSEED exiting ", fVmxRdseedExit);
1282 VMXFEATDUMP("PML - Page-Modification Log (PML) ", fVmxPml);
1283 VMXFEATDUMP("EptVe - EPT violations can cause #VE ", fVmxEptXcptVe);
1284 VMXFEATDUMP("XsavesXRstors - Enable XSAVES/XRSTORS ", fVmxXsavesXrstors);
1285 /* VM-entry controls. */
1286 VMXFEATDUMP("EntryLoadDebugCtls - Load debug controls on VM-entry ", fVmxEntryLoadDebugCtls);
1287 VMXFEATDUMP("Ia32eModeGuest - IA-32e mode guest ", fVmxIa32eModeGuest);
1288 VMXFEATDUMP("EntryLoadEferMsr - Load IA32_EFER MSR on VM-entry ", fVmxEntryLoadEferMsr);
1289 VMXFEATDUMP("EntryLoadPatMsr - Load IA32_PAT MSR on VM-entry ", fVmxEntryLoadPatMsr);
1290 /* VM-exit controls. */
1291 VMXFEATDUMP("ExitSaveDebugCtls - Save debug controls on VM-exit ", fVmxExitSaveDebugCtls);
1292 VMXFEATDUMP("HostAddrSpaceSize - Host address-space size ", fVmxHostAddrSpaceSize);
1293 VMXFEATDUMP("ExitAckExtInt - Acknowledge interrupt on VM-exit ", fVmxExitAckExtInt);
1294 VMXFEATDUMP("ExitSavePatMsr - Save IA32_PAT MSR on VM-exit ", fVmxExitSavePatMsr);
1295 VMXFEATDUMP("ExitLoadPatMsr - Load IA32_PAT MSR on VM-exit ", fVmxExitLoadPatMsr);
1296 VMXFEATDUMP("ExitSaveEferMsr - Save IA32_EFER MSR on VM-exit ", fVmxExitSaveEferMsr);
1297 VMXFEATDUMP("ExitLoadEferMsr - Load IA32_EFER MSR on VM-exit ", fVmxExitLoadEferMsr);
1298 VMXFEATDUMP("SavePreemptTimer - Save VMX-preemption timer ", fVmxSavePreemptTimer);
1299 /* Miscellaneous data. */
1300 VMXFEATDUMP("ExitSaveEferLma - Save IA32_EFER.LMA on VM-exit ", fVmxExitSaveEferLma);
1301 VMXFEATDUMP("IntelPt - Intel PT (Processor Trace) in VMX operation ", fVmxIntelPt);
1302 VMXFEATDUMP("VmwriteAll - VMWRITE to any supported VMCS field ", fVmxVmwriteAll);
1303 VMXFEATDUMP("EntryInjectSoftInt - Inject softint. with 0-len instr. ", fVmxEntryInjectSoftInt);
1304#undef VMXFEATDUMP
1305 }
1306 else
1307 pHlp->pfnPrintf(pHlp, "No VMX features present - requires an Intel or compatible CPU.\n");
1308}
1309
1310
1311/**
1312 * Checks whether nested-guest execution using hardware-assisted VMX (e.g, using HM
1313 * or NEM) is allowed.
1314 *
1315 * @returns @c true if hardware-assisted nested-guest execution is allowed, @c false
1316 * otherwise.
1317 * @param pVM The cross context VM structure.
1318 */
1319static bool cpumR3IsHwAssistNstGstExecAllowed(PVM pVM)
1320{
1321 AssertMsg(pVM->bMainExecutionEngine != VM_EXEC_ENGINE_NOT_SET, ("Calling this function too early!\n"));
1322#ifndef VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM
1323 if ( pVM->bMainExecutionEngine == VM_EXEC_ENGINE_HW_VIRT
1324 || pVM->bMainExecutionEngine == VM_EXEC_ENGINE_NATIVE_API)
1325 return true;
1326#else
1327 NOREF(pVM);
1328#endif
1329 return false;
1330}
1331
1332
1333/**
1334 * Initializes the VMX guest MSRs from guest CPU features based on the host MSRs.
1335 *
1336 * @param pVM The cross context VM structure.
1337 * @param pHostVmxMsrs The host VMX MSRs. Pass NULL when fully emulating VMX
1338 * and no hardware-assisted nested-guest execution is
1339 * possible for this VM.
1340 * @param pGuestFeatures The guest features to use (only VMX features are
1341 * accessed).
1342 * @param pGuestVmxMsrs Where to store the initialized guest VMX MSRs.
1343 *
1344 * @remarks This function ASSUMES the VMX guest-features are already exploded!
1345 */
1346static void cpumR3InitVmxGuestMsrs(PVM pVM, PCVMXMSRS pHostVmxMsrs, PCCPUMFEATURES pGuestFeatures, PVMXMSRS pGuestVmxMsrs)
1347{
1348 bool const fIsNstGstHwExecAllowed = cpumR3IsHwAssistNstGstExecAllowed(pVM);
1349
1350 Assert(!fIsNstGstHwExecAllowed || pHostVmxMsrs);
1351 Assert(pGuestFeatures->fVmx);
1352
1353 /*
1354 * We don't support the following MSRs yet:
1355 * - True Pin-based VM-execution controls.
1356 * - True Processor-based VM-execution controls.
1357 * - True VM-entry VM-execution controls.
1358 * - True VM-exit VM-execution controls.
1359 */
1360
1361 /* Feature control. */
1362 pGuestVmxMsrs->u64FeatCtrl = MSR_IA32_FEATURE_CONTROL_LOCK | MSR_IA32_FEATURE_CONTROL_VMXON;
1363
1364 /* Basic information. */
1365 {
1366 uint64_t const u64Basic = RT_BF_MAKE(VMX_BF_BASIC_VMCS_ID, VMX_V_VMCS_REVISION_ID )
1367 | RT_BF_MAKE(VMX_BF_BASIC_VMCS_SIZE, VMX_V_VMCS_SIZE )
1368 | RT_BF_MAKE(VMX_BF_BASIC_PHYSADDR_WIDTH, !pGuestFeatures->fLongMode )
1369 | RT_BF_MAKE(VMX_BF_BASIC_DUAL_MON, 0 )
1370 | RT_BF_MAKE(VMX_BF_BASIC_VMCS_MEM_TYPE, VMX_BASIC_MEM_TYPE_WB )
1371 | RT_BF_MAKE(VMX_BF_BASIC_VMCS_INS_OUTS, pGuestFeatures->fVmxInsOutInfo)
1372 | RT_BF_MAKE(VMX_BF_BASIC_TRUE_CTLS, 0 );
1373 pGuestVmxMsrs->u64Basic = u64Basic;
1374 }
1375
1376 /* Pin-based VM-execution controls. */
1377 {
1378 uint32_t const fFeatures = (pGuestFeatures->fVmxExtIntExit << VMX_BF_PIN_CTLS_EXT_INT_EXIT_SHIFT )
1379 | (pGuestFeatures->fVmxNmiExit << VMX_BF_PIN_CTLS_NMI_EXIT_SHIFT )
1380 | (pGuestFeatures->fVmxVirtNmi << VMX_BF_PIN_CTLS_VIRT_NMI_SHIFT )
1381 | (pGuestFeatures->fVmxPreemptTimer << VMX_BF_PIN_CTLS_PREEMPT_TIMER_SHIFT)
1382 | (pGuestFeatures->fVmxPostedInt << VMX_BF_PIN_CTLS_POSTED_INT_SHIFT );
1383 uint32_t const fAllowed0 = VMX_PIN_CTLS_DEFAULT1;
1384 uint32_t const fAllowed1 = fFeatures | VMX_PIN_CTLS_DEFAULT1;
1385 AssertMsg((fAllowed0 & fAllowed1) == fAllowed0, ("fAllowed0=%#RX32 fAllowed1=%#RX32 fFeatures=%#RX32\n",
1386 fAllowed0, fAllowed1, fFeatures));
1387 pGuestVmxMsrs->PinCtls.u = RT_MAKE_U64(fAllowed0, fAllowed1);
1388 }
1389
1390 /* Processor-based VM-execution controls. */
1391 {
1392 uint32_t const fFeatures = (pGuestFeatures->fVmxIntWindowExit << VMX_BF_PROC_CTLS_INT_WINDOW_EXIT_SHIFT )
1393 | (pGuestFeatures->fVmxTscOffsetting << VMX_BF_PROC_CTLS_USE_TSC_OFFSETTING_SHIFT)
1394 | (pGuestFeatures->fVmxHltExit << VMX_BF_PROC_CTLS_HLT_EXIT_SHIFT )
1395 | (pGuestFeatures->fVmxInvlpgExit << VMX_BF_PROC_CTLS_INVLPG_EXIT_SHIFT )
1396 | (pGuestFeatures->fVmxMwaitExit << VMX_BF_PROC_CTLS_MWAIT_EXIT_SHIFT )
1397 | (pGuestFeatures->fVmxRdpmcExit << VMX_BF_PROC_CTLS_RDPMC_EXIT_SHIFT )
1398 | (pGuestFeatures->fVmxRdtscExit << VMX_BF_PROC_CTLS_RDTSC_EXIT_SHIFT )
1399 | (pGuestFeatures->fVmxCr3LoadExit << VMX_BF_PROC_CTLS_CR3_LOAD_EXIT_SHIFT )
1400 | (pGuestFeatures->fVmxCr3StoreExit << VMX_BF_PROC_CTLS_CR3_STORE_EXIT_SHIFT )
1401 | (pGuestFeatures->fVmxTertiaryExecCtls << VMX_BF_PROC_CTLS_USE_TERTIARY_CTLS_SHIFT )
1402 | (pGuestFeatures->fVmxCr8LoadExit << VMX_BF_PROC_CTLS_CR8_LOAD_EXIT_SHIFT )
1403 | (pGuestFeatures->fVmxCr8StoreExit << VMX_BF_PROC_CTLS_CR8_STORE_EXIT_SHIFT )
1404 | (pGuestFeatures->fVmxUseTprShadow << VMX_BF_PROC_CTLS_USE_TPR_SHADOW_SHIFT )
1405 | (pGuestFeatures->fVmxNmiWindowExit << VMX_BF_PROC_CTLS_NMI_WINDOW_EXIT_SHIFT )
1406 | (pGuestFeatures->fVmxMovDRxExit << VMX_BF_PROC_CTLS_MOV_DR_EXIT_SHIFT )
1407 | (pGuestFeatures->fVmxUncondIoExit << VMX_BF_PROC_CTLS_UNCOND_IO_EXIT_SHIFT )
1408 | (pGuestFeatures->fVmxUseIoBitmaps << VMX_BF_PROC_CTLS_USE_IO_BITMAPS_SHIFT )
1409 | (pGuestFeatures->fVmxMonitorTrapFlag << VMX_BF_PROC_CTLS_MONITOR_TRAP_FLAG_SHIFT )
1410 | (pGuestFeatures->fVmxUseMsrBitmaps << VMX_BF_PROC_CTLS_USE_MSR_BITMAPS_SHIFT )
1411 | (pGuestFeatures->fVmxMonitorExit << VMX_BF_PROC_CTLS_MONITOR_EXIT_SHIFT )
1412 | (pGuestFeatures->fVmxPauseExit << VMX_BF_PROC_CTLS_PAUSE_EXIT_SHIFT )
1413 | (pGuestFeatures->fVmxSecondaryExecCtls << VMX_BF_PROC_CTLS_USE_SECONDARY_CTLS_SHIFT);
1414 uint32_t const fAllowed0 = VMX_PROC_CTLS_DEFAULT1;
1415 uint32_t const fAllowed1 = fFeatures | VMX_PROC_CTLS_DEFAULT1;
1416 AssertMsg((fAllowed0 & fAllowed1) == fAllowed0, ("fAllowed0=%#RX32 fAllowed1=%#RX32 fFeatures=%#RX32\n", fAllowed0,
1417 fAllowed1, fFeatures));
1418 pGuestVmxMsrs->ProcCtls.u = RT_MAKE_U64(fAllowed0, fAllowed1);
1419 }
1420
1421 /* Secondary processor-based VM-execution controls. */
1422 if (pGuestFeatures->fVmxSecondaryExecCtls)
1423 {
1424 uint32_t const fFeatures = (pGuestFeatures->fVmxVirtApicAccess << VMX_BF_PROC_CTLS2_VIRT_APIC_ACCESS_SHIFT )
1425 | (pGuestFeatures->fVmxEpt << VMX_BF_PROC_CTLS2_EPT_SHIFT )
1426 | (pGuestFeatures->fVmxDescTableExit << VMX_BF_PROC_CTLS2_DESC_TABLE_EXIT_SHIFT )
1427 | (pGuestFeatures->fVmxRdtscp << VMX_BF_PROC_CTLS2_RDTSCP_SHIFT )
1428 | (pGuestFeatures->fVmxVirtX2ApicMode << VMX_BF_PROC_CTLS2_VIRT_X2APIC_MODE_SHIFT )
1429 | (pGuestFeatures->fVmxVpid << VMX_BF_PROC_CTLS2_VPID_SHIFT )
1430 | (pGuestFeatures->fVmxWbinvdExit << VMX_BF_PROC_CTLS2_WBINVD_EXIT_SHIFT )
1431 | (pGuestFeatures->fVmxUnrestrictedGuest << VMX_BF_PROC_CTLS2_UNRESTRICTED_GUEST_SHIFT)
1432 | (pGuestFeatures->fVmxApicRegVirt << VMX_BF_PROC_CTLS2_APIC_REG_VIRT_SHIFT )
1433 | (pGuestFeatures->fVmxVirtIntDelivery << VMX_BF_PROC_CTLS2_VIRT_INT_DELIVERY_SHIFT )
1434 | (pGuestFeatures->fVmxPauseLoopExit << VMX_BF_PROC_CTLS2_PAUSE_LOOP_EXIT_SHIFT )
1435 | (pGuestFeatures->fVmxRdrandExit << VMX_BF_PROC_CTLS2_RDRAND_EXIT_SHIFT )
1436 | (pGuestFeatures->fVmxInvpcid << VMX_BF_PROC_CTLS2_INVPCID_SHIFT )
1437 | (pGuestFeatures->fVmxVmFunc << VMX_BF_PROC_CTLS2_VMFUNC_SHIFT )
1438 | (pGuestFeatures->fVmxVmcsShadowing << VMX_BF_PROC_CTLS2_VMCS_SHADOWING_SHIFT )
1439 | (pGuestFeatures->fVmxRdseedExit << VMX_BF_PROC_CTLS2_RDSEED_EXIT_SHIFT )
1440 | (pGuestFeatures->fVmxPml << VMX_BF_PROC_CTLS2_PML_SHIFT )
1441 | (pGuestFeatures->fVmxEptXcptVe << VMX_BF_PROC_CTLS2_EPT_VE_SHIFT )
1442 | (pGuestFeatures->fVmxXsavesXrstors << VMX_BF_PROC_CTLS2_XSAVES_XRSTORS_SHIFT )
1443 | (pGuestFeatures->fVmxUseTscScaling << VMX_BF_PROC_CTLS2_TSC_SCALING_SHIFT );
1444 uint32_t const fAllowed0 = 0;
1445 uint32_t const fAllowed1 = fFeatures;
1446 pGuestVmxMsrs->ProcCtls2.u = RT_MAKE_U64(fAllowed0, fAllowed1);
1447 }
1448
1449 /* Tertiary processor-based VM-execution controls. */
1450 if (pGuestFeatures->fVmxTertiaryExecCtls)
1451 {
1452 pGuestVmxMsrs->u64ProcCtls3 = (pGuestFeatures->fVmxLoadIwKeyExit << VMX_BF_PROC_CTLS3_LOADIWKEY_EXIT_SHIFT);
1453 }
1454
1455 /* VM-exit controls. */
1456 {
1457 uint32_t const fFeatures = (pGuestFeatures->fVmxExitSaveDebugCtls << VMX_BF_EXIT_CTLS_SAVE_DEBUG_SHIFT )
1458 | (pGuestFeatures->fVmxHostAddrSpaceSize << VMX_BF_EXIT_CTLS_HOST_ADDR_SPACE_SIZE_SHIFT)
1459 | (pGuestFeatures->fVmxExitAckExtInt << VMX_BF_EXIT_CTLS_ACK_EXT_INT_SHIFT )
1460 | (pGuestFeatures->fVmxExitSavePatMsr << VMX_BF_EXIT_CTLS_SAVE_PAT_MSR_SHIFT )
1461 | (pGuestFeatures->fVmxExitLoadPatMsr << VMX_BF_EXIT_CTLS_LOAD_PAT_MSR_SHIFT )
1462 | (pGuestFeatures->fVmxExitSaveEferMsr << VMX_BF_EXIT_CTLS_SAVE_EFER_MSR_SHIFT )
1463 | (pGuestFeatures->fVmxExitLoadEferMsr << VMX_BF_EXIT_CTLS_LOAD_EFER_MSR_SHIFT )
1464 | (pGuestFeatures->fVmxSavePreemptTimer << VMX_BF_EXIT_CTLS_SAVE_PREEMPT_TIMER_SHIFT );
1465 /* Set the default1 class bits. See Intel spec. A.4 "VM-exit Controls". */
1466 uint32_t const fAllowed0 = VMX_EXIT_CTLS_DEFAULT1;
1467 uint32_t const fAllowed1 = fFeatures | VMX_EXIT_CTLS_DEFAULT1;
1468 AssertMsg((fAllowed0 & fAllowed1) == fAllowed0, ("fAllowed0=%#RX32 fAllowed1=%#RX32 fFeatures=%#RX32\n", fAllowed0,
1469 fAllowed1, fFeatures));
1470 pGuestVmxMsrs->ExitCtls.u = RT_MAKE_U64(fAllowed0, fAllowed1);
1471 }
1472
1473 /* VM-entry controls. */
1474 {
1475 uint32_t const fFeatures = (pGuestFeatures->fVmxEntryLoadDebugCtls << VMX_BF_ENTRY_CTLS_LOAD_DEBUG_SHIFT )
1476 | (pGuestFeatures->fVmxIa32eModeGuest << VMX_BF_ENTRY_CTLS_IA32E_MODE_GUEST_SHIFT)
1477 | (pGuestFeatures->fVmxEntryLoadEferMsr << VMX_BF_ENTRY_CTLS_LOAD_EFER_MSR_SHIFT )
1478 | (pGuestFeatures->fVmxEntryLoadPatMsr << VMX_BF_ENTRY_CTLS_LOAD_PAT_MSR_SHIFT );
1479 uint32_t const fAllowed0 = VMX_ENTRY_CTLS_DEFAULT1;
1480 uint32_t const fAllowed1 = fFeatures | VMX_ENTRY_CTLS_DEFAULT1;
1481 AssertMsg((fAllowed0 & fAllowed1) == fAllowed0, ("fAllowed0=%#RX32 fAllowed0=%#RX32 fFeatures=%#RX32\n", fAllowed0,
1482 fAllowed1, fFeatures));
1483 pGuestVmxMsrs->EntryCtls.u = RT_MAKE_U64(fAllowed0, fAllowed1);
1484 }
1485
1486 /* Miscellaneous data. */
1487 {
1488 uint64_t const uHostMsr = fIsNstGstHwExecAllowed ? pHostVmxMsrs->u64Misc : 0;
1489
1490 uint8_t const cMaxMsrs = RT_MIN(RT_BF_GET(uHostMsr, VMX_BF_MISC_MAX_MSRS), VMX_V_AUTOMSR_COUNT_MAX);
1491 uint8_t const fActivityState = RT_BF_GET(uHostMsr, VMX_BF_MISC_ACTIVITY_STATES) & VMX_V_GUEST_ACTIVITY_STATE_MASK;
1492 pGuestVmxMsrs->u64Misc = RT_BF_MAKE(VMX_BF_MISC_PREEMPT_TIMER_TSC, VMX_V_PREEMPT_TIMER_SHIFT )
1493 | RT_BF_MAKE(VMX_BF_MISC_EXIT_SAVE_EFER_LMA, pGuestFeatures->fVmxExitSaveEferLma )
1494 | RT_BF_MAKE(VMX_BF_MISC_ACTIVITY_STATES, fActivityState )
1495 | RT_BF_MAKE(VMX_BF_MISC_INTEL_PT, pGuestFeatures->fVmxIntelPt )
1496 | RT_BF_MAKE(VMX_BF_MISC_SMM_READ_SMBASE_MSR, 0 )
1497 | RT_BF_MAKE(VMX_BF_MISC_CR3_TARGET, VMX_V_CR3_TARGET_COUNT )
1498 | RT_BF_MAKE(VMX_BF_MISC_MAX_MSRS, cMaxMsrs )
1499 | RT_BF_MAKE(VMX_BF_MISC_VMXOFF_BLOCK_SMI, 0 )
1500 | RT_BF_MAKE(VMX_BF_MISC_VMWRITE_ALL, pGuestFeatures->fVmxVmwriteAll )
1501 | RT_BF_MAKE(VMX_BF_MISC_ENTRY_INJECT_SOFT_INT, pGuestFeatures->fVmxEntryInjectSoftInt)
1502 | RT_BF_MAKE(VMX_BF_MISC_MSEG_ID, VMX_V_MSEG_REV_ID );
1503 }
1504
1505 /* CR0 Fixed-0. */
1506 pGuestVmxMsrs->u64Cr0Fixed0 = pGuestFeatures->fVmxUnrestrictedGuest ? VMX_V_CR0_FIXED0_UX : VMX_V_CR0_FIXED0;
1507
1508 /* CR0 Fixed-1. */
1509 {
1510 /*
1511 * All CPUs I've looked at so far report CR0 fixed-1 bits as 0xffffffff.
1512 * This is different from CR4 fixed-1 bits which are reported as per the
1513 * CPU features and/or micro-architecture/generation. Why? Ask Intel.
1514 */
1515 uint64_t const uHostMsr = fIsNstGstHwExecAllowed ? pHostVmxMsrs->u64Cr0Fixed1 : 0xffffffff;
1516 pGuestVmxMsrs->u64Cr0Fixed1 = uHostMsr | pGuestVmxMsrs->u64Cr0Fixed0; /* Make sure the CR0 MB1 bits are not clear. */
1517 }
1518
1519 /* CR4 Fixed-0. */
1520 pGuestVmxMsrs->u64Cr4Fixed0 = VMX_V_CR4_FIXED0;
1521
1522 /* CR4 Fixed-1. */
1523 {
1524 uint64_t const uHostMsr = fIsNstGstHwExecAllowed ? pHostVmxMsrs->u64Cr4Fixed1 : CPUMGetGuestCR4ValidMask(pVM);
1525 pGuestVmxMsrs->u64Cr4Fixed1 = uHostMsr | pGuestVmxMsrs->u64Cr4Fixed0; /* Make sure the CR4 MB1 bits are not clear. */
1526 }
1527
1528 /* VMCS Enumeration. */
1529 pGuestVmxMsrs->u64VmcsEnum = VMX_V_VMCS_MAX_INDEX << VMX_BF_VMCS_ENUM_HIGHEST_IDX_SHIFT;
1530
1531 /* VPID and EPT Capabilities. */
1532 if (pGuestFeatures->fVmxEpt)
1533 {
1534 /*
1535 * INVVPID instruction always causes a VM-exit unconditionally, so we are free to fake
1536 * and emulate any INVVPID flush type. However, it only makes sense to expose the types
1537 * when INVVPID instruction is supported just to be more compatible with guest
1538 * hypervisors that may make assumptions by only looking at this MSR even though they
1539 * are technically supposed to refer to bit 37 of MSR_IA32_VMX_PROC_CTLS2 first.
1540 *
1541 * See Intel spec. 25.1.2 "Instructions That Cause VM Exits Unconditionally".
1542 * See Intel spec. 30.3 "VMX Instructions".
1543 */
1544 uint64_t const uHostMsr = fIsNstGstHwExecAllowed ? pHostVmxMsrs->u64EptVpidCaps : UINT64_MAX;
1545 uint8_t const fVpid = pGuestFeatures->fVmxVpid;
1546
1547 uint8_t const fExecOnly = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_RWX_X_ONLY);
1548 uint8_t const fPml4 = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_PAGE_WALK_LENGTH_4);
1549 uint8_t const fEptMemUc = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_EMT_UC);
1550 uint8_t const fEptMemWb = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_EMT_WB);
1551 uint8_t const f2MPage = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_PDE_2M);
1552 uint8_t const f1GPage = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_PDPTE_1G);
1553 uint8_t const fInvept = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_INVEPT);
1554 uint8_t const fEptAccDirty = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_EPT_ACCESS_DIRTY);
1555 uint8_t const fEptSingle = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_INVEPT_SINGLE_CTX);
1556 uint8_t const fEptAll = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_INVEPT_ALL_CTX);
1557 uint8_t const fVpidIndiv = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_INVVPID_INDIV_ADDR);
1558 uint8_t const fVpidSingle = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_INVVPID_SINGLE_CTX);
1559 uint8_t const fVpidAll = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_INVVPID_ALL_CTX);
1560 uint8_t const fVpidSingleGlobal = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_INVVPID_SINGLE_CTX_RETAIN_GLOBALS);
1561 pGuestVmxMsrs->u64EptVpidCaps = RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_RWX_X_ONLY, fExecOnly)
1562 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_PAGE_WALK_LENGTH_4, fPml4)
1563 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_EMT_UC, fEptMemUc)
1564 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_EMT_WB, fEptMemWb)
1565 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_PDE_2M, f2MPage)
1566 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_PDPTE_1G, f1GPage)
1567 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_INVEPT, fInvept)
1568 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_EPT_ACCESS_DIRTY, fEptAccDirty)
1569 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_ADVEXITINFO_EPT, 0)
1570 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_SUPER_SHW_STACK, 0)
1571 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_INVEPT_SINGLE_CTX, fEptSingle)
1572 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_INVEPT_ALL_CTX, fEptAll)
1573 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_INVVPID, fVpid)
1574 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_INVVPID_INDIV_ADDR, fVpid & fVpidIndiv)
1575 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_INVVPID_SINGLE_CTX, fVpid & fVpidSingle)
1576 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_INVVPID_ALL_CTX, fVpid & fVpidAll)
1577 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_INVVPID_SINGLE_CTX_RETAIN_GLOBALS, fVpid & fVpidSingleGlobal);
1578 }
1579
1580 /* VM Functions. */
1581 if (pGuestFeatures->fVmxVmFunc)
1582 pGuestVmxMsrs->u64VmFunc = RT_BF_MAKE(VMX_BF_VMFUNC_EPTP_SWITCHING, 1);
1583}
1584
1585
1586/**
1587 * Checks whether the given guest CPU VMX features are compatible with the provided
1588 * base features.
1589 *
1590 * @returns @c true if compatible, @c false otherwise.
1591 * @param pVM The cross context VM structure.
1592 * @param pBase The base VMX CPU features.
1593 * @param pGst The guest VMX CPU features.
1594 *
1595 * @remarks Only VMX feature bits are examined.
1596 */
1597static bool cpumR3AreVmxCpuFeaturesCompatible(PVM pVM, PCCPUMFEATURES pBase, PCCPUMFEATURES pGst)
1598{
1599 if (!cpumR3IsHwAssistNstGstExecAllowed(pVM))
1600 return false;
1601
1602 /* Check first set of feature bits. */
1603 {
1604 uint64_t const fBase = ((uint64_t)pBase->fVmxInsOutInfo << 0) | ((uint64_t)pBase->fVmxExtIntExit << 1)
1605 | ((uint64_t)pBase->fVmxNmiExit << 2) | ((uint64_t)pBase->fVmxVirtNmi << 3)
1606 | ((uint64_t)pBase->fVmxPreemptTimer << 4) | ((uint64_t)pBase->fVmxPostedInt << 5)
1607 | ((uint64_t)pBase->fVmxIntWindowExit << 6) | ((uint64_t)pBase->fVmxTscOffsetting << 7)
1608 | ((uint64_t)pBase->fVmxHltExit << 8) | ((uint64_t)pBase->fVmxInvlpgExit << 9)
1609 | ((uint64_t)pBase->fVmxMwaitExit << 10) | ((uint64_t)pBase->fVmxRdpmcExit << 11)
1610 | ((uint64_t)pBase->fVmxRdtscExit << 12) | ((uint64_t)pBase->fVmxCr3LoadExit << 13)
1611 | ((uint64_t)pBase->fVmxCr3StoreExit << 14) | ((uint64_t)pBase->fVmxCr8LoadExit << 15)
1612 | ((uint64_t)pBase->fVmxCr8StoreExit << 16) | ((uint64_t)pBase->fVmxUseTprShadow << 17)
1613 | ((uint64_t)pBase->fVmxNmiWindowExit << 18) | ((uint64_t)pBase->fVmxMovDRxExit << 19)
1614 | ((uint64_t)pBase->fVmxUncondIoExit << 20) | ((uint64_t)pBase->fVmxUseIoBitmaps << 21)
1615 | ((uint64_t)pBase->fVmxMonitorTrapFlag << 22) | ((uint64_t)pBase->fVmxUseMsrBitmaps << 23)
1616 | ((uint64_t)pBase->fVmxMonitorExit << 24) | ((uint64_t)pBase->fVmxPauseExit << 25)
1617 | ((uint64_t)pBase->fVmxSecondaryExecCtls << 26) | ((uint64_t)pBase->fVmxVirtApicAccess << 27)
1618 | ((uint64_t)pBase->fVmxEpt << 28) | ((uint64_t)pBase->fVmxDescTableExit << 29)
1619 | ((uint64_t)pBase->fVmxRdtscp << 30) | ((uint64_t)pBase->fVmxVirtX2ApicMode << 31)
1620 | ((uint64_t)pBase->fVmxVpid << 32) | ((uint64_t)pBase->fVmxWbinvdExit << 33)
1621 | ((uint64_t)pBase->fVmxUnrestrictedGuest << 34) | ((uint64_t)pBase->fVmxApicRegVirt << 35)
1622 | ((uint64_t)pBase->fVmxVirtIntDelivery << 36) | ((uint64_t)pBase->fVmxPauseLoopExit << 37)
1623 | ((uint64_t)pBase->fVmxRdrandExit << 38) | ((uint64_t)pBase->fVmxInvpcid << 39)
1624 | ((uint64_t)pBase->fVmxVmFunc << 40) | ((uint64_t)pBase->fVmxVmcsShadowing << 41)
1625 | ((uint64_t)pBase->fVmxRdseedExit << 42) | ((uint64_t)pBase->fVmxPml << 43)
1626 | ((uint64_t)pBase->fVmxEptXcptVe << 44) | ((uint64_t)pBase->fVmxXsavesXrstors << 45)
1627 | ((uint64_t)pBase->fVmxUseTscScaling << 46) | ((uint64_t)pBase->fVmxEntryLoadDebugCtls << 47)
1628 | ((uint64_t)pBase->fVmxIa32eModeGuest << 48) | ((uint64_t)pBase->fVmxEntryLoadEferMsr << 49)
1629 | ((uint64_t)pBase->fVmxEntryLoadPatMsr << 50) | ((uint64_t)pBase->fVmxExitSaveDebugCtls << 51)
1630 | ((uint64_t)pBase->fVmxHostAddrSpaceSize << 52) | ((uint64_t)pBase->fVmxExitAckExtInt << 53)
1631 | ((uint64_t)pBase->fVmxExitSavePatMsr << 54) | ((uint64_t)pBase->fVmxExitLoadPatMsr << 55)
1632 | ((uint64_t)pBase->fVmxExitSaveEferMsr << 56) | ((uint64_t)pBase->fVmxExitLoadEferMsr << 57)
1633 | ((uint64_t)pBase->fVmxSavePreemptTimer << 58) | ((uint64_t)pBase->fVmxExitSaveEferLma << 59)
1634 | ((uint64_t)pBase->fVmxIntelPt << 60) | ((uint64_t)pBase->fVmxVmwriteAll << 61)
1635 | ((uint64_t)pBase->fVmxEntryInjectSoftInt << 62);
1636
1637 uint64_t const fGst = ((uint64_t)pGst->fVmxInsOutInfo << 0) | ((uint64_t)pGst->fVmxExtIntExit << 1)
1638 | ((uint64_t)pGst->fVmxNmiExit << 2) | ((uint64_t)pGst->fVmxVirtNmi << 3)
1639 | ((uint64_t)pGst->fVmxPreemptTimer << 4) | ((uint64_t)pGst->fVmxPostedInt << 5)
1640 | ((uint64_t)pGst->fVmxIntWindowExit << 6) | ((uint64_t)pGst->fVmxTscOffsetting << 7)
1641 | ((uint64_t)pGst->fVmxHltExit << 8) | ((uint64_t)pGst->fVmxInvlpgExit << 9)
1642 | ((uint64_t)pGst->fVmxMwaitExit << 10) | ((uint64_t)pGst->fVmxRdpmcExit << 11)
1643 | ((uint64_t)pGst->fVmxRdtscExit << 12) | ((uint64_t)pGst->fVmxCr3LoadExit << 13)
1644 | ((uint64_t)pGst->fVmxCr3StoreExit << 14) | ((uint64_t)pGst->fVmxCr8LoadExit << 15)
1645 | ((uint64_t)pGst->fVmxCr8StoreExit << 16) | ((uint64_t)pGst->fVmxUseTprShadow << 17)
1646 | ((uint64_t)pGst->fVmxNmiWindowExit << 18) | ((uint64_t)pGst->fVmxMovDRxExit << 19)
1647 | ((uint64_t)pGst->fVmxUncondIoExit << 20) | ((uint64_t)pGst->fVmxUseIoBitmaps << 21)
1648 | ((uint64_t)pGst->fVmxMonitorTrapFlag << 22) | ((uint64_t)pGst->fVmxUseMsrBitmaps << 23)
1649 | ((uint64_t)pGst->fVmxMonitorExit << 24) | ((uint64_t)pGst->fVmxPauseExit << 25)
1650 | ((uint64_t)pGst->fVmxSecondaryExecCtls << 26) | ((uint64_t)pGst->fVmxVirtApicAccess << 27)
1651 | ((uint64_t)pGst->fVmxEpt << 28) | ((uint64_t)pGst->fVmxDescTableExit << 29)
1652 | ((uint64_t)pGst->fVmxRdtscp << 30) | ((uint64_t)pGst->fVmxVirtX2ApicMode << 31)
1653 | ((uint64_t)pGst->fVmxVpid << 32) | ((uint64_t)pGst->fVmxWbinvdExit << 33)
1654 | ((uint64_t)pGst->fVmxUnrestrictedGuest << 34) | ((uint64_t)pGst->fVmxApicRegVirt << 35)
1655 | ((uint64_t)pGst->fVmxVirtIntDelivery << 36) | ((uint64_t)pGst->fVmxPauseLoopExit << 37)
1656 | ((uint64_t)pGst->fVmxRdrandExit << 38) | ((uint64_t)pGst->fVmxInvpcid << 39)
1657 | ((uint64_t)pGst->fVmxVmFunc << 40) | ((uint64_t)pGst->fVmxVmcsShadowing << 41)
1658 | ((uint64_t)pGst->fVmxRdseedExit << 42) | ((uint64_t)pGst->fVmxPml << 43)
1659 | ((uint64_t)pGst->fVmxEptXcptVe << 44) | ((uint64_t)pGst->fVmxXsavesXrstors << 45)
1660 | ((uint64_t)pGst->fVmxUseTscScaling << 46) | ((uint64_t)pGst->fVmxEntryLoadDebugCtls << 47)
1661 | ((uint64_t)pGst->fVmxIa32eModeGuest << 48) | ((uint64_t)pGst->fVmxEntryLoadEferMsr << 49)
1662 | ((uint64_t)pGst->fVmxEntryLoadPatMsr << 50) | ((uint64_t)pGst->fVmxExitSaveDebugCtls << 51)
1663 | ((uint64_t)pGst->fVmxHostAddrSpaceSize << 52) | ((uint64_t)pGst->fVmxExitAckExtInt << 53)
1664 | ((uint64_t)pGst->fVmxExitSavePatMsr << 54) | ((uint64_t)pGst->fVmxExitLoadPatMsr << 55)
1665 | ((uint64_t)pGst->fVmxExitSaveEferMsr << 56) | ((uint64_t)pGst->fVmxExitLoadEferMsr << 57)
1666 | ((uint64_t)pGst->fVmxSavePreemptTimer << 58) | ((uint64_t)pGst->fVmxExitSaveEferLma << 59)
1667 | ((uint64_t)pGst->fVmxIntelPt << 60) | ((uint64_t)pGst->fVmxVmwriteAll << 61)
1668 | ((uint64_t)pGst->fVmxEntryInjectSoftInt << 62);
1669
1670 if ((fBase | fGst) != fBase)
1671 {
1672 uint64_t const fDiff = fBase ^ fGst;
1673 LogRel(("CPUM: VMX features (1) now exposed to the guest are incompatible with those from the saved state. fBase=%#RX64 fGst=%#RX64 fDiff=%#RX64\n",
1674 fBase, fGst, fDiff));
1675 return false;
1676 }
1677 }
1678
1679 /* Check second set of feature bits. */
1680 {
1681 uint64_t const fBase = ((uint64_t)pBase->fVmxTertiaryExecCtls << 0) | ((uint64_t)pBase->fVmxLoadIwKeyExit << 1);
1682 uint64_t const fGst = ((uint64_t)pGst->fVmxTertiaryExecCtls << 0) | ((uint64_t)pGst->fVmxLoadIwKeyExit << 1);
1683 if ((fBase | fGst) != fBase)
1684 {
1685 uint64_t const fDiff = fBase ^ fGst;
1686 LogRel(("CPUM: VMX features (2) now exposed to the guest are incompatible with those from the saved state. fBase=%#RX64 fGst=%#RX64 fDiff=%#RX64\n",
1687 fBase, fGst, fDiff));
1688 return false;
1689 }
1690 }
1691
1692 return true;
1693}
1694
1695
1696/**
1697 * Initializes VMX guest features and MSRs.
1698 *
1699 * @param pVM The cross context VM structure.
1700 * @param pHostVmxMsrs The host VMX MSRs. Pass NULL when fully emulating VMX
1701 * and no hardware-assisted nested-guest execution is
1702 * possible for this VM.
1703 * @param pGuestVmxMsrs Where to store the initialized guest VMX MSRs.
1704 */
1705void cpumR3InitVmxGuestFeaturesAndMsrs(PVM pVM, PCVMXMSRS pHostVmxMsrs, PVMXMSRS pGuestVmxMsrs)
1706{
1707 Assert(pVM);
1708 Assert(pGuestVmxMsrs);
1709
1710 /*
1711 * While it would be nice to check this earlier while initializing fNestedVmxEpt
1712 * but we would not have enumearted host features then, so do it at least now.
1713 */
1714 if ( !pVM->cpum.s.HostFeatures.fNoExecute
1715 && pVM->cpum.s.fNestedVmxEpt)
1716 {
1717 LogRel(("CPUM: Warning! EPT not exposed to the guest since NX isn't available on the host.\n"));
1718 pVM->cpum.s.fNestedVmxEpt = false;
1719 pVM->cpum.s.fNestedVmxUnrestrictedGuest = false;
1720 }
1721
1722 /*
1723 * Initialize the set of VMX features we emulate.
1724 *
1725 * Note! Some bits might be reported as 1 always if they fall under the
1726 * default1 class bits (e.g. fVmxEntryLoadDebugCtls), see @bugref{9180#c5}.
1727 */
1728 CPUMFEATURES EmuFeat;
1729 RT_ZERO(EmuFeat);
1730 EmuFeat.fVmx = 1;
1731 EmuFeat.fVmxInsOutInfo = 1;
1732 EmuFeat.fVmxExtIntExit = 1;
1733 EmuFeat.fVmxNmiExit = 1;
1734 EmuFeat.fVmxVirtNmi = 1;
1735 EmuFeat.fVmxPreemptTimer = 0; /* pVM->cpum.s.fNestedVmxPreemptTimer -- Currently disabled on purpose, see @bugref{9180#c108}. */
1736 EmuFeat.fVmxPostedInt = 0;
1737 EmuFeat.fVmxIntWindowExit = 1;
1738 EmuFeat.fVmxTscOffsetting = 1;
1739 EmuFeat.fVmxHltExit = 1;
1740 EmuFeat.fVmxInvlpgExit = 1;
1741 EmuFeat.fVmxMwaitExit = 1;
1742 EmuFeat.fVmxRdpmcExit = 1;
1743 EmuFeat.fVmxRdtscExit = 1;
1744 EmuFeat.fVmxCr3LoadExit = 1;
1745 EmuFeat.fVmxCr3StoreExit = 1;
1746 EmuFeat.fVmxTertiaryExecCtls = 0;
1747 EmuFeat.fVmxCr8LoadExit = 1;
1748 EmuFeat.fVmxCr8StoreExit = 1;
1749 EmuFeat.fVmxUseTprShadow = 1;
1750 EmuFeat.fVmxNmiWindowExit = 0;
1751 EmuFeat.fVmxMovDRxExit = 1;
1752 EmuFeat.fVmxUncondIoExit = 1;
1753 EmuFeat.fVmxUseIoBitmaps = 1;
1754 EmuFeat.fVmxMonitorTrapFlag = 0;
1755 EmuFeat.fVmxUseMsrBitmaps = 1;
1756 EmuFeat.fVmxMonitorExit = 1;
1757 EmuFeat.fVmxPauseExit = 1;
1758 EmuFeat.fVmxSecondaryExecCtls = 1;
1759 EmuFeat.fVmxVirtApicAccess = 1;
1760 EmuFeat.fVmxEpt = pVM->cpum.s.fNestedVmxEpt;
1761 EmuFeat.fVmxDescTableExit = 1;
1762 EmuFeat.fVmxRdtscp = 1;
1763 EmuFeat.fVmxVirtX2ApicMode = 0;
1764 EmuFeat.fVmxVpid = EmuFeat.fVmxEpt;
1765 EmuFeat.fVmxWbinvdExit = 1;
1766 EmuFeat.fVmxUnrestrictedGuest = pVM->cpum.s.fNestedVmxUnrestrictedGuest;
1767 EmuFeat.fVmxApicRegVirt = 0;
1768 EmuFeat.fVmxVirtIntDelivery = 0;
1769 EmuFeat.fVmxPauseLoopExit = 0;
1770 EmuFeat.fVmxRdrandExit = 0;
1771 EmuFeat.fVmxInvpcid = 1;
1772 EmuFeat.fVmxVmFunc = 0;
1773 EmuFeat.fVmxVmcsShadowing = 0;
1774 EmuFeat.fVmxRdseedExit = 0;
1775 EmuFeat.fVmxPml = 0;
1776 EmuFeat.fVmxEptXcptVe = 0;
1777 EmuFeat.fVmxXsavesXrstors = 0;
1778 EmuFeat.fVmxUseTscScaling = 0;
1779 EmuFeat.fVmxLoadIwKeyExit = 0;
1780 EmuFeat.fVmxEntryLoadDebugCtls = 1;
1781 EmuFeat.fVmxIa32eModeGuest = 1;
1782 EmuFeat.fVmxEntryLoadEferMsr = 1;
1783 EmuFeat.fVmxEntryLoadPatMsr = 0;
1784 EmuFeat.fVmxExitSaveDebugCtls = 1;
1785 EmuFeat.fVmxHostAddrSpaceSize = 1;
1786 EmuFeat.fVmxExitAckExtInt = 1;
1787 EmuFeat.fVmxExitSavePatMsr = 0;
1788 EmuFeat.fVmxExitLoadPatMsr = 0;
1789 EmuFeat.fVmxExitSaveEferMsr = 1;
1790 EmuFeat.fVmxExitLoadEferMsr = 1;
1791 EmuFeat.fVmxSavePreemptTimer = 0; /* Cannot be enabled if VMX-preemption timer is disabled. */
1792 EmuFeat.fVmxExitSaveEferLma = 1; /* Cannot be disabled if unrestricted guest is enabled. */
1793 EmuFeat.fVmxIntelPt = 0;
1794 EmuFeat.fVmxVmwriteAll = 0; /** @todo NSTVMX: enable this when nested VMCS shadowing is enabled. */
1795 EmuFeat.fVmxEntryInjectSoftInt = 1;
1796
1797 /*
1798 * Merge guest features.
1799 *
1800 * When hardware-assisted VMX may be used, any feature we emulate must also be supported
1801 * by the hardware, hence we merge our emulated features with the host features below.
1802 */
1803 PCCPUMFEATURES pBaseFeat = cpumR3IsHwAssistNstGstExecAllowed(pVM) ? &pVM->cpum.s.HostFeatures : &EmuFeat;
1804 PCPUMFEATURES pGuestFeat = &pVM->cpum.s.GuestFeatures;
1805 Assert(pBaseFeat->fVmx);
1806 pGuestFeat->fVmxInsOutInfo = (pBaseFeat->fVmxInsOutInfo & EmuFeat.fVmxInsOutInfo );
1807 pGuestFeat->fVmxExtIntExit = (pBaseFeat->fVmxExtIntExit & EmuFeat.fVmxExtIntExit );
1808 pGuestFeat->fVmxNmiExit = (pBaseFeat->fVmxNmiExit & EmuFeat.fVmxNmiExit );
1809 pGuestFeat->fVmxVirtNmi = (pBaseFeat->fVmxVirtNmi & EmuFeat.fVmxVirtNmi );
1810 pGuestFeat->fVmxPreemptTimer = (pBaseFeat->fVmxPreemptTimer & EmuFeat.fVmxPreemptTimer );
1811 pGuestFeat->fVmxPostedInt = (pBaseFeat->fVmxPostedInt & EmuFeat.fVmxPostedInt );
1812 pGuestFeat->fVmxIntWindowExit = (pBaseFeat->fVmxIntWindowExit & EmuFeat.fVmxIntWindowExit );
1813 pGuestFeat->fVmxTscOffsetting = (pBaseFeat->fVmxTscOffsetting & EmuFeat.fVmxTscOffsetting );
1814 pGuestFeat->fVmxHltExit = (pBaseFeat->fVmxHltExit & EmuFeat.fVmxHltExit );
1815 pGuestFeat->fVmxInvlpgExit = (pBaseFeat->fVmxInvlpgExit & EmuFeat.fVmxInvlpgExit );
1816 pGuestFeat->fVmxMwaitExit = (pBaseFeat->fVmxMwaitExit & EmuFeat.fVmxMwaitExit );
1817 pGuestFeat->fVmxRdpmcExit = (pBaseFeat->fVmxRdpmcExit & EmuFeat.fVmxRdpmcExit );
1818 pGuestFeat->fVmxRdtscExit = (pBaseFeat->fVmxRdtscExit & EmuFeat.fVmxRdtscExit );
1819 pGuestFeat->fVmxCr3LoadExit = (pBaseFeat->fVmxCr3LoadExit & EmuFeat.fVmxCr3LoadExit );
1820 pGuestFeat->fVmxCr3StoreExit = (pBaseFeat->fVmxCr3StoreExit & EmuFeat.fVmxCr3StoreExit );
1821 pGuestFeat->fVmxTertiaryExecCtls = (pBaseFeat->fVmxTertiaryExecCtls & EmuFeat.fVmxTertiaryExecCtls );
1822 pGuestFeat->fVmxCr8LoadExit = (pBaseFeat->fVmxCr8LoadExit & EmuFeat.fVmxCr8LoadExit );
1823 pGuestFeat->fVmxCr8StoreExit = (pBaseFeat->fVmxCr8StoreExit & EmuFeat.fVmxCr8StoreExit );
1824 pGuestFeat->fVmxUseTprShadow = (pBaseFeat->fVmxUseTprShadow & EmuFeat.fVmxUseTprShadow );
1825 pGuestFeat->fVmxNmiWindowExit = (pBaseFeat->fVmxNmiWindowExit & EmuFeat.fVmxNmiWindowExit );
1826 pGuestFeat->fVmxMovDRxExit = (pBaseFeat->fVmxMovDRxExit & EmuFeat.fVmxMovDRxExit );
1827 pGuestFeat->fVmxUncondIoExit = (pBaseFeat->fVmxUncondIoExit & EmuFeat.fVmxUncondIoExit );
1828 pGuestFeat->fVmxUseIoBitmaps = (pBaseFeat->fVmxUseIoBitmaps & EmuFeat.fVmxUseIoBitmaps );
1829 pGuestFeat->fVmxMonitorTrapFlag = (pBaseFeat->fVmxMonitorTrapFlag & EmuFeat.fVmxMonitorTrapFlag );
1830 pGuestFeat->fVmxUseMsrBitmaps = (pBaseFeat->fVmxUseMsrBitmaps & EmuFeat.fVmxUseMsrBitmaps );
1831 pGuestFeat->fVmxMonitorExit = (pBaseFeat->fVmxMonitorExit & EmuFeat.fVmxMonitorExit );
1832 pGuestFeat->fVmxPauseExit = (pBaseFeat->fVmxPauseExit & EmuFeat.fVmxPauseExit );
1833 pGuestFeat->fVmxSecondaryExecCtls = (pBaseFeat->fVmxSecondaryExecCtls & EmuFeat.fVmxSecondaryExecCtls );
1834 pGuestFeat->fVmxVirtApicAccess = (pBaseFeat->fVmxVirtApicAccess & EmuFeat.fVmxVirtApicAccess );
1835 pGuestFeat->fVmxEpt = (pBaseFeat->fVmxEpt & EmuFeat.fVmxEpt );
1836 pGuestFeat->fVmxDescTableExit = (pBaseFeat->fVmxDescTableExit & EmuFeat.fVmxDescTableExit );
1837 pGuestFeat->fVmxRdtscp = (pBaseFeat->fVmxRdtscp & EmuFeat.fVmxRdtscp );
1838 pGuestFeat->fVmxVirtX2ApicMode = (pBaseFeat->fVmxVirtX2ApicMode & EmuFeat.fVmxVirtX2ApicMode );
1839 pGuestFeat->fVmxVpid = (pBaseFeat->fVmxVpid & EmuFeat.fVmxVpid );
1840 pGuestFeat->fVmxWbinvdExit = (pBaseFeat->fVmxWbinvdExit & EmuFeat.fVmxWbinvdExit );
1841 pGuestFeat->fVmxUnrestrictedGuest = (pBaseFeat->fVmxUnrestrictedGuest & EmuFeat.fVmxUnrestrictedGuest );
1842 pGuestFeat->fVmxApicRegVirt = (pBaseFeat->fVmxApicRegVirt & EmuFeat.fVmxApicRegVirt );
1843 pGuestFeat->fVmxVirtIntDelivery = (pBaseFeat->fVmxVirtIntDelivery & EmuFeat.fVmxVirtIntDelivery );
1844 pGuestFeat->fVmxPauseLoopExit = (pBaseFeat->fVmxPauseLoopExit & EmuFeat.fVmxPauseLoopExit );
1845 pGuestFeat->fVmxRdrandExit = (pBaseFeat->fVmxRdrandExit & EmuFeat.fVmxRdrandExit );
1846 pGuestFeat->fVmxInvpcid = (pBaseFeat->fVmxInvpcid & EmuFeat.fVmxInvpcid );
1847 pGuestFeat->fVmxVmFunc = (pBaseFeat->fVmxVmFunc & EmuFeat.fVmxVmFunc );
1848 pGuestFeat->fVmxVmcsShadowing = (pBaseFeat->fVmxVmcsShadowing & EmuFeat.fVmxVmcsShadowing );
1849 pGuestFeat->fVmxRdseedExit = (pBaseFeat->fVmxRdseedExit & EmuFeat.fVmxRdseedExit );
1850 pGuestFeat->fVmxPml = (pBaseFeat->fVmxPml & EmuFeat.fVmxPml );
1851 pGuestFeat->fVmxEptXcptVe = (pBaseFeat->fVmxEptXcptVe & EmuFeat.fVmxEptXcptVe );
1852 pGuestFeat->fVmxXsavesXrstors = (pBaseFeat->fVmxXsavesXrstors & EmuFeat.fVmxXsavesXrstors );
1853 pGuestFeat->fVmxUseTscScaling = (pBaseFeat->fVmxUseTscScaling & EmuFeat.fVmxUseTscScaling );
1854 pGuestFeat->fVmxLoadIwKeyExit = (pBaseFeat->fVmxLoadIwKeyExit & EmuFeat.fVmxLoadIwKeyExit );
1855 pGuestFeat->fVmxEntryLoadDebugCtls = (pBaseFeat->fVmxEntryLoadDebugCtls & EmuFeat.fVmxEntryLoadDebugCtls );
1856 pGuestFeat->fVmxIa32eModeGuest = (pBaseFeat->fVmxIa32eModeGuest & EmuFeat.fVmxIa32eModeGuest );
1857 pGuestFeat->fVmxEntryLoadEferMsr = (pBaseFeat->fVmxEntryLoadEferMsr & EmuFeat.fVmxEntryLoadEferMsr );
1858 pGuestFeat->fVmxEntryLoadPatMsr = (pBaseFeat->fVmxEntryLoadPatMsr & EmuFeat.fVmxEntryLoadPatMsr );
1859 pGuestFeat->fVmxExitSaveDebugCtls = (pBaseFeat->fVmxExitSaveDebugCtls & EmuFeat.fVmxExitSaveDebugCtls );
1860 pGuestFeat->fVmxHostAddrSpaceSize = (pBaseFeat->fVmxHostAddrSpaceSize & EmuFeat.fVmxHostAddrSpaceSize );
1861 pGuestFeat->fVmxExitAckExtInt = (pBaseFeat->fVmxExitAckExtInt & EmuFeat.fVmxExitAckExtInt );
1862 pGuestFeat->fVmxExitSavePatMsr = (pBaseFeat->fVmxExitSavePatMsr & EmuFeat.fVmxExitSavePatMsr );
1863 pGuestFeat->fVmxExitLoadPatMsr = (pBaseFeat->fVmxExitLoadPatMsr & EmuFeat.fVmxExitLoadPatMsr );
1864 pGuestFeat->fVmxExitSaveEferMsr = (pBaseFeat->fVmxExitSaveEferMsr & EmuFeat.fVmxExitSaveEferMsr );
1865 pGuestFeat->fVmxExitLoadEferMsr = (pBaseFeat->fVmxExitLoadEferMsr & EmuFeat.fVmxExitLoadEferMsr );
1866 pGuestFeat->fVmxSavePreemptTimer = (pBaseFeat->fVmxSavePreemptTimer & EmuFeat.fVmxSavePreemptTimer );
1867 pGuestFeat->fVmxExitSaveEferLma = (pBaseFeat->fVmxExitSaveEferLma & EmuFeat.fVmxExitSaveEferLma );
1868 pGuestFeat->fVmxIntelPt = (pBaseFeat->fVmxIntelPt & EmuFeat.fVmxIntelPt );
1869 pGuestFeat->fVmxVmwriteAll = (pBaseFeat->fVmxVmwriteAll & EmuFeat.fVmxVmwriteAll );
1870 pGuestFeat->fVmxEntryInjectSoftInt = (pBaseFeat->fVmxEntryInjectSoftInt & EmuFeat.fVmxEntryInjectSoftInt );
1871
1872 /* Don't expose VMX preemption timer if host is subject to VMX-preemption timer erratum. */
1873 if ( pGuestFeat->fVmxPreemptTimer
1874 && HMIsSubjectToVmxPreemptTimerErratum())
1875 {
1876 LogRel(("CPUM: Warning! VMX-preemption timer not exposed to guest due to host CPU erratum.\n"));
1877 pGuestFeat->fVmxPreemptTimer = 0;
1878 pGuestFeat->fVmxSavePreemptTimer = 0;
1879 }
1880
1881 /* Sanity checking. */
1882 if (!pGuestFeat->fVmxSecondaryExecCtls)
1883 {
1884 Assert(!pGuestFeat->fVmxVirtApicAccess);
1885 Assert(!pGuestFeat->fVmxEpt);
1886 Assert(!pGuestFeat->fVmxDescTableExit);
1887 Assert(!pGuestFeat->fVmxRdtscp);
1888 Assert(!pGuestFeat->fVmxVirtX2ApicMode);
1889 Assert(!pGuestFeat->fVmxVpid);
1890 Assert(!pGuestFeat->fVmxWbinvdExit);
1891 Assert(!pGuestFeat->fVmxUnrestrictedGuest);
1892 Assert(!pGuestFeat->fVmxApicRegVirt);
1893 Assert(!pGuestFeat->fVmxVirtIntDelivery);
1894 Assert(!pGuestFeat->fVmxPauseLoopExit);
1895 Assert(!pGuestFeat->fVmxRdrandExit);
1896 Assert(!pGuestFeat->fVmxInvpcid);
1897 Assert(!pGuestFeat->fVmxVmFunc);
1898 Assert(!pGuestFeat->fVmxVmcsShadowing);
1899 Assert(!pGuestFeat->fVmxRdseedExit);
1900 Assert(!pGuestFeat->fVmxPml);
1901 Assert(!pGuestFeat->fVmxEptXcptVe);
1902 Assert(!pGuestFeat->fVmxXsavesXrstors);
1903 Assert(!pGuestFeat->fVmxUseTscScaling);
1904 }
1905 else if (pGuestFeat->fVmxUnrestrictedGuest)
1906 {
1907 /* See footnote in Intel spec. 27.2 "Recording VM-Exit Information And Updating VM-entry Control Fields". */
1908 Assert(pGuestFeat->fVmxExitSaveEferLma);
1909 /* Unrestricted guest execution requires EPT. See Intel spec. 25.2.1.1 "VM-Execution Control Fields". */
1910 Assert(pGuestFeat->fVmxEpt);
1911 }
1912
1913 if (!pGuestFeat->fVmxTertiaryExecCtls)
1914 Assert(!pGuestFeat->fVmxLoadIwKeyExit);
1915
1916 /*
1917 * Finally initialize the VMX guest MSRs.
1918 */
1919 cpumR3InitVmxGuestMsrs(pVM, pHostVmxMsrs, pGuestFeat, pGuestVmxMsrs);
1920}
1921
1922
1923/**
1924 * Gets the host hardware-virtualization MSRs.
1925 *
1926 * @returns VBox status code.
1927 * @param pMsrs Where to store the MSRs.
1928 */
1929static int cpumR3GetHostHwvirtMsrs(PCPUMMSRS pMsrs)
1930{
1931 Assert(pMsrs);
1932
1933 uint32_t fCaps = 0;
1934 int rc = SUPR3QueryVTCaps(&fCaps);
1935 if (RT_SUCCESS(rc))
1936 {
1937 if (fCaps & (SUPVTCAPS_VT_X | SUPVTCAPS_AMD_V))
1938 {
1939 SUPHWVIRTMSRS HwvirtMsrs;
1940 rc = SUPR3GetHwvirtMsrs(&HwvirtMsrs, false /* fForceRequery */);
1941 if (RT_SUCCESS(rc))
1942 {
1943 if (fCaps & SUPVTCAPS_VT_X)
1944 HMGetVmxMsrsFromHwvirtMsrs(&HwvirtMsrs, &pMsrs->hwvirt.vmx);
1945 else
1946 HMGetSvmMsrsFromHwvirtMsrs(&HwvirtMsrs, &pMsrs->hwvirt.svm);
1947 return VINF_SUCCESS;
1948 }
1949
1950 LogRel(("CPUM: Querying hardware-virtualization MSRs failed. rc=%Rrc\n", rc));
1951 return rc;
1952 }
1953
1954 LogRel(("CPUM: Querying hardware-virtualization capability succeeded but did not find VT-x or AMD-V\n"));
1955 return VERR_INTERNAL_ERROR_5;
1956 }
1957 LogRel(("CPUM: No hardware-virtualization capability detected\n"));
1958 return VINF_SUCCESS;
1959}
1960
1961
1962/**
1963 * @callback_method_impl{FNTMTIMERINT,
1964 * Callback that fires when the nested VMX-preemption timer expired.}
1965 */
1966static DECLCALLBACK(void) cpumR3VmxPreemptTimerCallback(PVM pVM, TMTIMERHANDLE hTimer, void *pvUser)
1967{
1968 RT_NOREF(pVM, hTimer);
1969 PVMCPU pVCpu = (PVMCPUR3)pvUser;
1970 AssertPtr(pVCpu);
1971 VMCPU_FF_SET(pVCpu, VMCPU_FF_VMX_PREEMPT_TIMER);
1972}
1973
1974
1975/**
1976 * Initializes the CPUM.
1977 *
1978 * @returns VBox status code.
1979 * @param pVM The cross context VM structure.
1980 */
1981VMMR3DECL(int) CPUMR3Init(PVM pVM)
1982{
1983 LogFlow(("CPUMR3Init\n"));
1984
1985 /*
1986 * Assert alignment, sizes and tables.
1987 */
1988 AssertCompileMemberAlignment(VM, cpum.s, 32);
1989 AssertCompile(sizeof(pVM->cpum.s) <= sizeof(pVM->cpum.padding));
1990 AssertCompileSizeAlignment(CPUMCTX, 64);
1991 AssertCompileSizeAlignment(CPUMCTXMSRS, 64);
1992 AssertCompileSizeAlignment(CPUMHOSTCTX, 64);
1993 AssertCompileMemberAlignment(VM, cpum, 64);
1994 AssertCompileMemberAlignment(VMCPU, cpum.s, 64);
1995#ifdef VBOX_STRICT
1996 int rc2 = cpumR3MsrStrictInitChecks();
1997 AssertRCReturn(rc2, rc2);
1998#endif
1999
2000 /*
2001 * Gather info about the host CPU.
2002 */
2003 if (!ASMHasCpuId())
2004 {
2005 LogRel(("The CPU doesn't support CPUID!\n"));
2006 return VERR_UNSUPPORTED_CPU;
2007 }
2008
2009 pVM->cpum.s.fHostMxCsrMask = CPUMR3DeterminHostMxCsrMask();
2010
2011 CPUMMSRS HostMsrs;
2012 RT_ZERO(HostMsrs);
2013 int rc = cpumR3GetHostHwvirtMsrs(&HostMsrs);
2014 AssertLogRelRCReturn(rc, rc);
2015
2016 PCPUMCPUIDLEAF paLeaves;
2017 uint32_t cLeaves;
2018 rc = CPUMR3CpuIdCollectLeaves(&paLeaves, &cLeaves);
2019 AssertLogRelRCReturn(rc, rc);
2020
2021 rc = cpumR3CpuIdExplodeFeatures(paLeaves, cLeaves, &HostMsrs, &pVM->cpum.s.HostFeatures);
2022 RTMemFree(paLeaves);
2023 AssertLogRelRCReturn(rc, rc);
2024 pVM->cpum.s.GuestFeatures.enmCpuVendor = pVM->cpum.s.HostFeatures.enmCpuVendor;
2025
2026 /*
2027 * Check that the CPU supports the minimum features we require.
2028 */
2029 if (!pVM->cpum.s.HostFeatures.fFxSaveRstor)
2030 return VMSetError(pVM, VERR_UNSUPPORTED_CPU, RT_SRC_POS, "Host CPU does not support the FXSAVE/FXRSTOR instruction.");
2031 if (!pVM->cpum.s.HostFeatures.fMmx)
2032 return VMSetError(pVM, VERR_UNSUPPORTED_CPU, RT_SRC_POS, "Host CPU does not support MMX.");
2033 if (!pVM->cpum.s.HostFeatures.fTsc)
2034 return VMSetError(pVM, VERR_UNSUPPORTED_CPU, RT_SRC_POS, "Host CPU does not support RDTSC.");
2035
2036 /*
2037 * Setup the CR4 AND and OR masks used in the raw-mode switcher.
2038 */
2039 pVM->cpum.s.CR4.AndMask = X86_CR4_OSXMMEEXCPT | X86_CR4_PVI | X86_CR4_VME;
2040 pVM->cpum.s.CR4.OrMask = X86_CR4_OSFXSR;
2041
2042 /*
2043 * Figure out which XSAVE/XRSTOR features are available on the host.
2044 */
2045 uint64_t fXcr0Host = 0;
2046 uint64_t fXStateHostMask = 0;
2047 if ( pVM->cpum.s.HostFeatures.fXSaveRstor
2048 && pVM->cpum.s.HostFeatures.fOpSysXSaveRstor)
2049 {
2050 fXStateHostMask = fXcr0Host = ASMGetXcr0();
2051 fXStateHostMask &= XSAVE_C_X87 | XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI;
2052 AssertLogRelMsgStmt((fXStateHostMask & (XSAVE_C_X87 | XSAVE_C_SSE)) == (XSAVE_C_X87 | XSAVE_C_SSE),
2053 ("%#llx\n", fXStateHostMask), fXStateHostMask = 0);
2054 }
2055 pVM->cpum.s.fXStateHostMask = fXStateHostMask;
2056 LogRel(("CPUM: fXStateHostMask=%#llx; initial: %#llx; host XCR0=%#llx\n",
2057 pVM->cpum.s.fXStateHostMask, fXStateHostMask, fXcr0Host));
2058
2059 /*
2060 * Initialize the host XSAVE/XRSTOR mask.
2061 */
2062 uint32_t cbMaxXState = pVM->cpum.s.HostFeatures.cbMaxExtendedState;
2063 cbMaxXState = RT_ALIGN(cbMaxXState, 128);
2064 AssertLogRelReturn( pVM->cpum.s.HostFeatures.cbMaxExtendedState >= sizeof(X86FXSTATE)
2065 && pVM->cpum.s.HostFeatures.cbMaxExtendedState <= sizeof(pVM->apCpusR3[0]->cpum.s.Host.XState)
2066 && pVM->cpum.s.HostFeatures.cbMaxExtendedState <= sizeof(pVM->apCpusR3[0]->cpum.s.Guest.XState)
2067 , VERR_CPUM_IPE_2);
2068
2069 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2070 {
2071 PVMCPU pVCpu = pVM->apCpusR3[i];
2072
2073 pVCpu->cpum.s.Host.fXStateMask = fXStateHostMask;
2074 pVCpu->cpum.s.hNestedVmxPreemptTimer = NIL_TMTIMERHANDLE;
2075 }
2076
2077 /*
2078 * Register saved state data item.
2079 */
2080 rc = SSMR3RegisterInternal(pVM, "cpum", 1, CPUM_SAVED_STATE_VERSION, sizeof(CPUM),
2081 NULL, cpumR3LiveExec, NULL,
2082 NULL, cpumR3SaveExec, NULL,
2083 cpumR3LoadPrep, cpumR3LoadExec, cpumR3LoadDone);
2084 if (RT_FAILURE(rc))
2085 return rc;
2086
2087 /*
2088 * Register info handlers and registers with the debugger facility.
2089 */
2090 DBGFR3InfoRegisterInternalEx(pVM, "cpum", "Displays the all the cpu states.",
2091 &cpumR3InfoAll, DBGFINFO_FLAGS_ALL_EMTS);
2092 DBGFR3InfoRegisterInternalEx(pVM, "cpumguest", "Displays the guest cpu state.",
2093 &cpumR3InfoGuest, DBGFINFO_FLAGS_ALL_EMTS);
2094 DBGFR3InfoRegisterInternalEx(pVM, "cpumguesthwvirt", "Displays the guest hwvirt. cpu state.",
2095 &cpumR3InfoGuestHwvirt, DBGFINFO_FLAGS_ALL_EMTS);
2096 DBGFR3InfoRegisterInternalEx(pVM, "cpumhyper", "Displays the hypervisor cpu state.",
2097 &cpumR3InfoHyper, DBGFINFO_FLAGS_ALL_EMTS);
2098 DBGFR3InfoRegisterInternalEx(pVM, "cpumhost", "Displays the host cpu state.",
2099 &cpumR3InfoHost, DBGFINFO_FLAGS_ALL_EMTS);
2100 DBGFR3InfoRegisterInternalEx(pVM, "cpumguestinstr", "Displays the current guest instruction.",
2101 &cpumR3InfoGuestInstr, DBGFINFO_FLAGS_ALL_EMTS);
2102 DBGFR3InfoRegisterInternal( pVM, "cpuid", "Displays the guest cpuid leaves.", &cpumR3CpuIdInfo);
2103 DBGFR3InfoRegisterInternal( pVM, "cpumvmxfeat", "Displays the host and guest VMX hwvirt. features.",
2104 &cpumR3InfoVmxFeatures);
2105
2106 rc = cpumR3DbgInit(pVM);
2107 if (RT_FAILURE(rc))
2108 return rc;
2109
2110 /*
2111 * Check if we need to workaround partial/leaky FPU handling.
2112 */
2113 cpumR3CheckLeakyFpu(pVM);
2114
2115 /*
2116 * Initialize the Guest CPUID and MSR states.
2117 */
2118 rc = cpumR3InitCpuIdAndMsrs(pVM, &HostMsrs);
2119 if (RT_FAILURE(rc))
2120 return rc;
2121
2122 /*
2123 * Allocate memory required by the guest hardware-virtualization structures.
2124 * This must be done after initializing CPUID/MSR features as we access the
2125 * the VMX/SVM guest features below.
2126 *
2127 * In the case of nested VT-x, we also need to create the per-VCPU
2128 * VMX preemption timers.
2129 */
2130 if (pVM->cpum.s.GuestFeatures.fVmx)
2131 rc = cpumR3AllocVmxHwVirtState(pVM);
2132 else if (pVM->cpum.s.GuestFeatures.fSvm)
2133 cpumR3InitSvmHwVirtState(pVM);
2134 else
2135 Assert(pVM->apCpusR3[0]->cpum.s.Guest.hwvirt.enmHwvirt == CPUMHWVIRT_NONE);
2136 if (RT_FAILURE(rc))
2137 return rc;
2138
2139 CPUMR3Reset(pVM);
2140 return VINF_SUCCESS;
2141}
2142
2143
2144/**
2145 * Applies relocations to data and code managed by this
2146 * component. This function will be called at init and
2147 * whenever the VMM need to relocate it self inside the GC.
2148 *
2149 * The CPUM will update the addresses used by the switcher.
2150 *
2151 * @param pVM The cross context VM structure.
2152 */
2153VMMR3DECL(void) CPUMR3Relocate(PVM pVM)
2154{
2155 RT_NOREF(pVM);
2156}
2157
2158
2159/**
2160 * Terminates the CPUM.
2161 *
2162 * Termination means cleaning up and freeing all resources,
2163 * the VM it self is at this point powered off or suspended.
2164 *
2165 * @returns VBox status code.
2166 * @param pVM The cross context VM structure.
2167 */
2168VMMR3DECL(int) CPUMR3Term(PVM pVM)
2169{
2170#ifdef VBOX_WITH_CRASHDUMP_MAGIC
2171 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2172 {
2173 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
2174 memset(pVCpu->cpum.s.aMagic, 0, sizeof(pVCpu->cpum.s.aMagic));
2175 pVCpu->cpum.s.uMagic = 0;
2176 pvCpu->cpum.s.Guest.dr[5] = 0;
2177 }
2178#endif
2179
2180 if (pVM->cpum.s.GuestFeatures.fVmx)
2181 {
2182 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2183 {
2184 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
2185 if (pVCpu->cpum.s.hNestedVmxPreemptTimer != NIL_TMTIMERHANDLE)
2186 {
2187 int rc = TMR3TimerDestroy(pVM, pVCpu->cpum.s.hNestedVmxPreemptTimer); AssertRC(rc);
2188 pVCpu->cpum.s.hNestedVmxPreemptTimer = NIL_TMTIMERHANDLE;
2189 }
2190 }
2191
2192 cpumR3FreeVmxHwVirtState(pVM);
2193 }
2194 return VINF_SUCCESS;
2195}
2196
2197
2198/**
2199 * Resets a virtual CPU.
2200 *
2201 * Used by CPUMR3Reset and CPU hot plugging.
2202 *
2203 * @param pVM The cross context VM structure.
2204 * @param pVCpu The cross context virtual CPU structure of the CPU that is
2205 * being reset. This may differ from the current EMT.
2206 */
2207VMMR3DECL(void) CPUMR3ResetCpu(PVM pVM, PVMCPU pVCpu)
2208{
2209 /** @todo anything different for VCPU > 0? */
2210 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
2211
2212 /*
2213 * Initialize everything to ZERO first.
2214 */
2215 uint32_t fUseFlags = pVCpu->cpum.s.fUseFlags & ~CPUM_USED_FPU_SINCE_REM;
2216
2217 RT_BZERO(pCtx, RT_UOFFSETOF(CPUMCTX, aoffXState));
2218
2219 pVCpu->cpum.s.fUseFlags = fUseFlags;
2220
2221 pCtx->cr0 = X86_CR0_CD | X86_CR0_NW | X86_CR0_ET; //0x60000010
2222 pCtx->eip = 0x0000fff0;
2223 pCtx->edx = 0x00000600; /* P6 processor */
2224 pCtx->eflags.Bits.u1Reserved0 = 1;
2225
2226 pCtx->cs.Sel = 0xf000;
2227 pCtx->cs.ValidSel = 0xf000;
2228 pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
2229 pCtx->cs.u64Base = UINT64_C(0xffff0000);
2230 pCtx->cs.u32Limit = 0x0000ffff;
2231 pCtx->cs.Attr.n.u1DescType = 1; /* code/data segment */
2232 pCtx->cs.Attr.n.u1Present = 1;
2233 pCtx->cs.Attr.n.u4Type = X86_SEL_TYPE_ER_ACC;
2234
2235 pCtx->ds.fFlags = CPUMSELREG_FLAGS_VALID;
2236 pCtx->ds.u32Limit = 0x0000ffff;
2237 pCtx->ds.Attr.n.u1DescType = 1; /* code/data segment */
2238 pCtx->ds.Attr.n.u1Present = 1;
2239 pCtx->ds.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
2240
2241 pCtx->es.fFlags = CPUMSELREG_FLAGS_VALID;
2242 pCtx->es.u32Limit = 0x0000ffff;
2243 pCtx->es.Attr.n.u1DescType = 1; /* code/data segment */
2244 pCtx->es.Attr.n.u1Present = 1;
2245 pCtx->es.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
2246
2247 pCtx->fs.fFlags = CPUMSELREG_FLAGS_VALID;
2248 pCtx->fs.u32Limit = 0x0000ffff;
2249 pCtx->fs.Attr.n.u1DescType = 1; /* code/data segment */
2250 pCtx->fs.Attr.n.u1Present = 1;
2251 pCtx->fs.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
2252
2253 pCtx->gs.fFlags = CPUMSELREG_FLAGS_VALID;
2254 pCtx->gs.u32Limit = 0x0000ffff;
2255 pCtx->gs.Attr.n.u1DescType = 1; /* code/data segment */
2256 pCtx->gs.Attr.n.u1Present = 1;
2257 pCtx->gs.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
2258
2259 pCtx->ss.fFlags = CPUMSELREG_FLAGS_VALID;
2260 pCtx->ss.u32Limit = 0x0000ffff;
2261 pCtx->ss.Attr.n.u1Present = 1;
2262 pCtx->ss.Attr.n.u1DescType = 1; /* code/data segment */
2263 pCtx->ss.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
2264
2265 pCtx->idtr.cbIdt = 0xffff;
2266 pCtx->gdtr.cbGdt = 0xffff;
2267
2268 pCtx->ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
2269 pCtx->ldtr.u32Limit = 0xffff;
2270 pCtx->ldtr.Attr.n.u1Present = 1;
2271 pCtx->ldtr.Attr.n.u4Type = X86_SEL_TYPE_SYS_LDT;
2272
2273 pCtx->tr.fFlags = CPUMSELREG_FLAGS_VALID;
2274 pCtx->tr.u32Limit = 0xffff;
2275 pCtx->tr.Attr.n.u1Present = 1;
2276 pCtx->tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY; /* Deduction, not properly documented by Intel. */
2277
2278 pCtx->dr[6] = X86_DR6_INIT_VAL;
2279 pCtx->dr[7] = X86_DR7_INIT_VAL;
2280
2281 PX86FXSTATE pFpuCtx = &pCtx->XState.x87;
2282 pFpuCtx->FTW = 0x00; /* All empty (abbridged tag reg edition). */
2283 pFpuCtx->FCW = 0x37f;
2284
2285 /* Intel 64 and IA-32 Architectures Software Developer's Manual Volume 3A, Table 8-1.
2286 IA-32 Processor States Following Power-up, Reset, or INIT */
2287 pFpuCtx->MXCSR = 0x1F80;
2288 pFpuCtx->MXCSR_MASK = pVM->cpum.s.GuestInfo.fMxCsrMask; /** @todo check if REM messes this up... */
2289
2290 pCtx->aXcr[0] = XSAVE_C_X87;
2291 if (pVM->cpum.s.HostFeatures.cbMaxExtendedState >= RT_UOFFSETOF(X86XSAVEAREA, Hdr))
2292 {
2293 /* The entire FXSAVE state needs loading when we switch to XSAVE/XRSTOR
2294 as we don't know what happened before. (Bother optimize later?) */
2295 pCtx->XState.Hdr.bmXState = XSAVE_C_X87 | XSAVE_C_SSE;
2296 }
2297
2298 /*
2299 * MSRs.
2300 */
2301 /* Init PAT MSR */
2302 pCtx->msrPAT = MSR_IA32_CR_PAT_INIT_VAL;
2303
2304 /* EFER MBZ; see AMD64 Architecture Programmer's Manual Volume 2: Table 14-1. Initial Processor State.
2305 * The Intel docs don't mention it. */
2306 Assert(!pCtx->msrEFER);
2307
2308 /* IA32_MISC_ENABLE - not entirely sure what the init/reset state really
2309 is supposed to be here, just trying provide useful/sensible values. */
2310 PCPUMMSRRANGE pRange = cpumLookupMsrRange(pVM, MSR_IA32_MISC_ENABLE);
2311 if (pRange)
2312 {
2313 pVCpu->cpum.s.GuestMsrs.msr.MiscEnable = MSR_IA32_MISC_ENABLE_BTS_UNAVAIL
2314 | MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL
2315 | (pVM->cpum.s.GuestFeatures.fMonitorMWait ? MSR_IA32_MISC_ENABLE_MONITOR : 0)
2316 | MSR_IA32_MISC_ENABLE_FAST_STRINGS;
2317 pRange->fWrIgnMask |= MSR_IA32_MISC_ENABLE_BTS_UNAVAIL
2318 | MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL;
2319 pRange->fWrGpMask &= ~pVCpu->cpum.s.GuestMsrs.msr.MiscEnable;
2320 }
2321
2322 /** @todo Wire IA32_MISC_ENABLE bit 22 to our NT 4 CPUID trick. */
2323
2324 /** @todo r=ramshankar: Currently broken for SMP as TMCpuTickSet() expects to be
2325 * called from each EMT while we're getting called by CPUMR3Reset()
2326 * iteratively on the same thread. Fix later. */
2327#if 0 /** @todo r=bird: This we will do in TM, not here. */
2328 /* TSC must be 0. Intel spec. Table 9-1. "IA-32 Processor States Following Power-up, Reset, or INIT." */
2329 CPUMSetGuestMsr(pVCpu, MSR_IA32_TSC, 0);
2330#endif
2331
2332
2333 /* C-state control. Guesses. */
2334 pVCpu->cpum.s.GuestMsrs.msr.PkgCStateCfgCtrl = 1 /*C1*/ | RT_BIT_32(25) | RT_BIT_32(26) | RT_BIT_32(27) | RT_BIT_32(28);
2335 /* For Nehalem+ and Atoms, the 0xE2 MSR (MSR_PKG_CST_CONFIG_CONTROL) is documented. For Core 2,
2336 * it's undocumented but exists as MSR_PMG_CST_CONFIG_CONTROL and has similar but not identical
2337 * functionality. The default value must be different due to incompatible write mask.
2338 */
2339 if (CPUMMICROARCH_IS_INTEL_CORE2(pVM->cpum.s.GuestFeatures.enmMicroarch))
2340 pVCpu->cpum.s.GuestMsrs.msr.PkgCStateCfgCtrl = 0x202a01; /* From Mac Pro Harpertown, unlocked. */
2341 else if (pVM->cpum.s.GuestFeatures.enmMicroarch == kCpumMicroarch_Intel_Core_Yonah)
2342 pVCpu->cpum.s.GuestMsrs.msr.PkgCStateCfgCtrl = 0x26740c; /* From MacBookPro1,1. */
2343
2344 /*
2345 * Hardware virtualization state.
2346 */
2347 CPUMSetGuestGif(pCtx, true);
2348 Assert(!pVM->cpum.s.GuestFeatures.fVmx || !pVM->cpum.s.GuestFeatures.fSvm); /* Paranoia. */
2349 if (pVM->cpum.s.GuestFeatures.fVmx)
2350 cpumR3ResetVmxHwVirtState(pVCpu);
2351 else if (pVM->cpum.s.GuestFeatures.fSvm)
2352 cpumR3ResetSvmHwVirtState(pVCpu);
2353}
2354
2355
2356/**
2357 * Resets the CPU.
2358 *
2359 * @returns VINF_SUCCESS.
2360 * @param pVM The cross context VM structure.
2361 */
2362VMMR3DECL(void) CPUMR3Reset(PVM pVM)
2363{
2364 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2365 {
2366 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
2367 CPUMR3ResetCpu(pVM, pVCpu);
2368
2369#ifdef VBOX_WITH_CRASHDUMP_MAGIC
2370
2371 /* Magic marker for searching in crash dumps. */
2372 strcpy((char *)pVCpu->.cpum.s.aMagic, "CPUMCPU Magic");
2373 pVCpu->cpum.s.uMagic = UINT64_C(0xDEADBEEFDEADBEEF);
2374 pVCpu->cpum.s.Guest->dr[5] = UINT64_C(0xDEADBEEFDEADBEEF);
2375#endif
2376 }
2377}
2378
2379
2380
2381
2382/**
2383 * Pass 0 live exec callback.
2384 *
2385 * @returns VINF_SSM_DONT_CALL_AGAIN.
2386 * @param pVM The cross context VM structure.
2387 * @param pSSM The saved state handle.
2388 * @param uPass The pass (0).
2389 */
2390static DECLCALLBACK(int) cpumR3LiveExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uPass)
2391{
2392 AssertReturn(uPass == 0, VERR_SSM_UNEXPECTED_PASS);
2393 cpumR3SaveCpuId(pVM, pSSM);
2394 return VINF_SSM_DONT_CALL_AGAIN;
2395}
2396
2397
2398/**
2399 * Execute state save operation.
2400 *
2401 * @returns VBox status code.
2402 * @param pVM The cross context VM structure.
2403 * @param pSSM SSM operation handle.
2404 */
2405static DECLCALLBACK(int) cpumR3SaveExec(PVM pVM, PSSMHANDLE pSSM)
2406{
2407 /*
2408 * Save.
2409 */
2410 SSMR3PutU32(pSSM, pVM->cCpus);
2411 SSMR3PutU32(pSSM, sizeof(pVM->apCpusR3[0]->cpum.s.GuestMsrs.msr));
2412 CPUMCTX DummyHyperCtx;
2413 RT_ZERO(DummyHyperCtx);
2414 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2415 {
2416 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
2417
2418 SSMR3PutStructEx(pSSM, &DummyHyperCtx, sizeof(DummyHyperCtx), 0, g_aCpumCtxFields, NULL);
2419
2420 PCPUMCTX pGstCtx = &pVCpu->cpum.s.Guest;
2421 SSMR3PutStructEx(pSSM, pGstCtx, sizeof(*pGstCtx), 0, g_aCpumCtxFields, NULL);
2422 SSMR3PutStructEx(pSSM, &pGstCtx->XState.x87, sizeof(pGstCtx->XState.x87), 0, g_aCpumX87Fields, NULL);
2423 if (pGstCtx->fXStateMask != 0)
2424 SSMR3PutStructEx(pSSM, &pGstCtx->XState.Hdr, sizeof(pGstCtx->XState.Hdr), 0, g_aCpumXSaveHdrFields, NULL);
2425 if (pGstCtx->fXStateMask & XSAVE_C_YMM)
2426 {
2427 PCX86XSAVEYMMHI pYmmHiCtx = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_YMM_BIT, PCX86XSAVEYMMHI);
2428 SSMR3PutStructEx(pSSM, pYmmHiCtx, sizeof(*pYmmHiCtx), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumYmmHiFields, NULL);
2429 }
2430 if (pGstCtx->fXStateMask & XSAVE_C_BNDREGS)
2431 {
2432 PCX86XSAVEBNDREGS pBndRegs = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_BNDREGS_BIT, PCX86XSAVEBNDREGS);
2433 SSMR3PutStructEx(pSSM, pBndRegs, sizeof(*pBndRegs), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumBndRegsFields, NULL);
2434 }
2435 if (pGstCtx->fXStateMask & XSAVE_C_BNDCSR)
2436 {
2437 PCX86XSAVEBNDCFG pBndCfg = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_BNDCSR_BIT, PCX86XSAVEBNDCFG);
2438 SSMR3PutStructEx(pSSM, pBndCfg, sizeof(*pBndCfg), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumBndCfgFields, NULL);
2439 }
2440 if (pGstCtx->fXStateMask & XSAVE_C_ZMM_HI256)
2441 {
2442 PCX86XSAVEZMMHI256 pZmmHi256 = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_ZMM_HI256_BIT, PCX86XSAVEZMMHI256);
2443 SSMR3PutStructEx(pSSM, pZmmHi256, sizeof(*pZmmHi256), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumZmmHi256Fields, NULL);
2444 }
2445 if (pGstCtx->fXStateMask & XSAVE_C_ZMM_16HI)
2446 {
2447 PCX86XSAVEZMM16HI pZmm16Hi = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_ZMM_16HI_BIT, PCX86XSAVEZMM16HI);
2448 SSMR3PutStructEx(pSSM, pZmm16Hi, sizeof(*pZmm16Hi), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumZmm16HiFields, NULL);
2449 }
2450 SSMR3PutU64(pSSM, pGstCtx->aPaePdpes[0].u);
2451 SSMR3PutU64(pSSM, pGstCtx->aPaePdpes[1].u);
2452 SSMR3PutU64(pSSM, pGstCtx->aPaePdpes[2].u);
2453 SSMR3PutU64(pSSM, pGstCtx->aPaePdpes[3].u);
2454 if (pVM->cpum.s.GuestFeatures.fSvm)
2455 {
2456 SSMR3PutU64(pSSM, pGstCtx->hwvirt.svm.uMsrHSavePa);
2457 SSMR3PutGCPhys(pSSM, pGstCtx->hwvirt.svm.GCPhysVmcb);
2458 SSMR3PutU64(pSSM, pGstCtx->hwvirt.svm.uPrevPauseTick);
2459 SSMR3PutU16(pSSM, pGstCtx->hwvirt.svm.cPauseFilter);
2460 SSMR3PutU16(pSSM, pGstCtx->hwvirt.svm.cPauseFilterThreshold);
2461 SSMR3PutBool(pSSM, pGstCtx->hwvirt.svm.fInterceptEvents);
2462 SSMR3PutStructEx(pSSM, &pGstCtx->hwvirt.svm.HostState, sizeof(pGstCtx->hwvirt.svm.HostState), 0 /* fFlags */,
2463 g_aSvmHwvirtHostState, NULL /* pvUser */);
2464 SSMR3PutMem(pSSM, &pGstCtx->hwvirt.svm.Vmcb, sizeof(pGstCtx->hwvirt.svm.Vmcb));
2465 SSMR3PutMem(pSSM, &pGstCtx->hwvirt.svm.abMsrBitmap[0], sizeof(pGstCtx->hwvirt.svm.abMsrBitmap));
2466 SSMR3PutMem(pSSM, &pGstCtx->hwvirt.svm.abIoBitmap[0], sizeof(pGstCtx->hwvirt.svm.abIoBitmap));
2467 SSMR3PutU32(pSSM, pGstCtx->hwvirt.fLocalForcedActions);
2468 SSMR3PutBool(pSSM, pGstCtx->hwvirt.fGif);
2469 }
2470 if (pVM->cpum.s.GuestFeatures.fVmx)
2471 {
2472 SSMR3PutGCPhys(pSSM, pGstCtx->hwvirt.vmx.GCPhysVmxon);
2473 SSMR3PutGCPhys(pSSM, pGstCtx->hwvirt.vmx.GCPhysVmcs);
2474 SSMR3PutGCPhys(pSSM, pGstCtx->hwvirt.vmx.GCPhysShadowVmcs);
2475 SSMR3PutBool(pSSM, pGstCtx->hwvirt.vmx.fInVmxRootMode);
2476 SSMR3PutBool(pSSM, pGstCtx->hwvirt.vmx.fInVmxNonRootMode);
2477 SSMR3PutBool(pSSM, pGstCtx->hwvirt.vmx.fInterceptEvents);
2478 SSMR3PutBool(pSSM, pGstCtx->hwvirt.vmx.fNmiUnblockingIret);
2479 SSMR3PutStructEx(pSSM, &pGstCtx->hwvirt.vmx.Vmcs, sizeof(pGstCtx->hwvirt.vmx.Vmcs), 0, g_aVmxHwvirtVmcs, NULL);
2480 SSMR3PutStructEx(pSSM, &pGstCtx->hwvirt.vmx.ShadowVmcs, sizeof(pGstCtx->hwvirt.vmx.ShadowVmcs),
2481 0, g_aVmxHwvirtVmcs, NULL);
2482 SSMR3PutMem(pSSM, &pGstCtx->hwvirt.vmx.abVmreadBitmap[0], sizeof(pGstCtx->hwvirt.vmx.abVmreadBitmap));
2483 SSMR3PutMem(pSSM, &pGstCtx->hwvirt.vmx.abVmwriteBitmap[0], sizeof(pGstCtx->hwvirt.vmx.abVmwriteBitmap));
2484 SSMR3PutMem(pSSM, &pGstCtx->hwvirt.vmx.aEntryMsrLoadArea[0], sizeof(pGstCtx->hwvirt.vmx.aEntryMsrLoadArea));
2485 SSMR3PutMem(pSSM, &pGstCtx->hwvirt.vmx.aExitMsrStoreArea[0], sizeof(pGstCtx->hwvirt.vmx.aExitMsrStoreArea));
2486 SSMR3PutMem(pSSM, &pGstCtx->hwvirt.vmx.aExitMsrLoadArea[0], sizeof(pGstCtx->hwvirt.vmx.aExitMsrLoadArea));
2487 SSMR3PutMem(pSSM, pGstCtx->hwvirt.vmx.pvMsrBitmapR3, VMX_V_MSR_BITMAP_SIZE);
2488 SSMR3PutMem(pSSM, pGstCtx->hwvirt.vmx.pvIoBitmapR3, VMX_V_IO_BITMAP_A_SIZE + VMX_V_IO_BITMAP_B_SIZE);
2489 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.uFirstPauseLoopTick);
2490 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.uPrevPauseTick);
2491 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.uEntryTick);
2492 SSMR3PutU16(pSSM, pGstCtx->hwvirt.vmx.offVirtApicWrite);
2493 SSMR3PutBool(pSSM, pGstCtx->hwvirt.vmx.fVirtNmiBlocking);
2494 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64FeatCtrl);
2495 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64Basic);
2496 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.PinCtls.u);
2497 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.ProcCtls.u);
2498 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.ProcCtls2.u);
2499 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.ExitCtls.u);
2500 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.EntryCtls.u);
2501 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.TruePinCtls.u);
2502 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.TrueProcCtls.u);
2503 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.TrueEntryCtls.u);
2504 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.TrueExitCtls.u);
2505 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64Misc);
2506 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64Cr0Fixed0);
2507 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64Cr0Fixed1);
2508 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64Cr4Fixed0);
2509 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64Cr4Fixed1);
2510 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64VmcsEnum);
2511 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64VmFunc);
2512 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64EptVpidCaps);
2513 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64ProcCtls3);
2514 }
2515 SSMR3PutU32(pSSM, pVCpu->cpum.s.fUseFlags);
2516 SSMR3PutU32(pSSM, pVCpu->cpum.s.fChanged);
2517 AssertCompileSizeAlignment(pVCpu->cpum.s.GuestMsrs.msr, sizeof(uint64_t));
2518 SSMR3PutMem(pSSM, &pVCpu->cpum.s.GuestMsrs, sizeof(pVCpu->cpum.s.GuestMsrs.msr));
2519 }
2520
2521 cpumR3SaveCpuId(pVM, pSSM);
2522 return VINF_SUCCESS;
2523}
2524
2525
2526/**
2527 * @callback_method_impl{FNSSMINTLOADPREP}
2528 */
2529static DECLCALLBACK(int) cpumR3LoadPrep(PVM pVM, PSSMHANDLE pSSM)
2530{
2531 NOREF(pSSM);
2532 pVM->cpum.s.fPendingRestore = true;
2533 return VINF_SUCCESS;
2534}
2535
2536
2537/**
2538 * @callback_method_impl{FNSSMINTLOADEXEC}
2539 */
2540static DECLCALLBACK(int) cpumR3LoadExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
2541{
2542 int rc; /* Only for AssertRCReturn use. */
2543
2544 /*
2545 * Validate version.
2546 */
2547 if ( uVersion != CPUM_SAVED_STATE_VERSION_PAE_PDPES
2548 && uVersion != CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2
2549 && uVersion != CPUM_SAVED_STATE_VERSION_HWVIRT_VMX
2550 && uVersion != CPUM_SAVED_STATE_VERSION_HWVIRT_SVM
2551 && uVersion != CPUM_SAVED_STATE_VERSION_XSAVE
2552 && uVersion != CPUM_SAVED_STATE_VERSION_GOOD_CPUID_COUNT
2553 && uVersion != CPUM_SAVED_STATE_VERSION_BAD_CPUID_COUNT
2554 && uVersion != CPUM_SAVED_STATE_VERSION_PUT_STRUCT
2555 && uVersion != CPUM_SAVED_STATE_VERSION_MEM
2556 && uVersion != CPUM_SAVED_STATE_VERSION_NO_MSR_SIZE
2557 && uVersion != CPUM_SAVED_STATE_VERSION_VER3_2
2558 && uVersion != CPUM_SAVED_STATE_VERSION_VER3_0
2559 && uVersion != CPUM_SAVED_STATE_VERSION_VER2_1_NOMSR
2560 && uVersion != CPUM_SAVED_STATE_VERSION_VER2_0
2561 && uVersion != CPUM_SAVED_STATE_VERSION_VER1_6)
2562 {
2563 AssertMsgFailed(("cpumR3LoadExec: Invalid version uVersion=%d!\n", uVersion));
2564 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
2565 }
2566
2567 if (uPass == SSM_PASS_FINAL)
2568 {
2569 /*
2570 * Set the size of RTGCPTR for SSMR3GetGCPtr. (Only necessary for
2571 * really old SSM file versions.)
2572 */
2573 if (uVersion == CPUM_SAVED_STATE_VERSION_VER1_6)
2574 SSMR3HandleSetGCPtrSize(pSSM, sizeof(RTGCPTR32));
2575 else if (uVersion <= CPUM_SAVED_STATE_VERSION_VER3_0)
2576 SSMR3HandleSetGCPtrSize(pSSM, sizeof(RTGCPTR));
2577
2578 /*
2579 * Figure x86 and ctx field definitions to use for older states.
2580 */
2581 uint32_t const fLoad = uVersion > CPUM_SAVED_STATE_VERSION_MEM ? 0 : SSMSTRUCT_FLAGS_MEM_BAND_AID_RELAXED;
2582 PCSSMFIELD paCpumCtx1Fields = g_aCpumX87Fields;
2583 PCSSMFIELD paCpumCtx2Fields = g_aCpumCtxFields;
2584 if (uVersion == CPUM_SAVED_STATE_VERSION_VER1_6)
2585 {
2586 paCpumCtx1Fields = g_aCpumX87FieldsV16;
2587 paCpumCtx2Fields = g_aCpumCtxFieldsV16;
2588 }
2589 else if (uVersion <= CPUM_SAVED_STATE_VERSION_MEM)
2590 {
2591 paCpumCtx1Fields = g_aCpumX87FieldsMem;
2592 paCpumCtx2Fields = g_aCpumCtxFieldsMem;
2593 }
2594
2595 /*
2596 * The hyper state used to preceed the CPU count. Starting with
2597 * XSAVE it was moved down till after we've got the count.
2598 */
2599 CPUMCTX HyperCtxIgnored;
2600 if (uVersion < CPUM_SAVED_STATE_VERSION_XSAVE)
2601 {
2602 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2603 {
2604 X86FXSTATE Ign;
2605 SSMR3GetStructEx(pSSM, &Ign, sizeof(Ign), fLoad | SSMSTRUCT_FLAGS_NO_TAIL_MARKER, paCpumCtx1Fields, NULL);
2606 SSMR3GetStructEx(pSSM, &HyperCtxIgnored, sizeof(HyperCtxIgnored),
2607 fLoad | SSMSTRUCT_FLAGS_NO_LEAD_MARKER, paCpumCtx2Fields, NULL);
2608 }
2609 }
2610
2611 if (uVersion >= CPUM_SAVED_STATE_VERSION_VER2_1_NOMSR)
2612 {
2613 uint32_t cCpus;
2614 rc = SSMR3GetU32(pSSM, &cCpus); AssertRCReturn(rc, rc);
2615 AssertLogRelMsgReturn(cCpus == pVM->cCpus, ("Mismatching CPU counts: saved: %u; configured: %u \n", cCpus, pVM->cCpus),
2616 VERR_SSM_UNEXPECTED_DATA);
2617 }
2618 AssertLogRelMsgReturn( uVersion > CPUM_SAVED_STATE_VERSION_VER2_0
2619 || pVM->cCpus == 1,
2620 ("cCpus=%u\n", pVM->cCpus),
2621 VERR_SSM_UNEXPECTED_DATA);
2622
2623 uint32_t cbMsrs = 0;
2624 if (uVersion > CPUM_SAVED_STATE_VERSION_NO_MSR_SIZE)
2625 {
2626 rc = SSMR3GetU32(pSSM, &cbMsrs); AssertRCReturn(rc, rc);
2627 AssertLogRelMsgReturn(RT_ALIGN(cbMsrs, sizeof(uint64_t)) == cbMsrs, ("Size of MSRs is misaligned: %#x\n", cbMsrs),
2628 VERR_SSM_UNEXPECTED_DATA);
2629 AssertLogRelMsgReturn(cbMsrs <= sizeof(CPUMCTXMSRS) && cbMsrs > 0, ("Size of MSRs is out of range: %#x\n", cbMsrs),
2630 VERR_SSM_UNEXPECTED_DATA);
2631 }
2632
2633 /*
2634 * Do the per-CPU restoring.
2635 */
2636 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2637 {
2638 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
2639 PCPUMCTX pGstCtx = &pVCpu->cpum.s.Guest;
2640
2641 if (uVersion >= CPUM_SAVED_STATE_VERSION_XSAVE)
2642 {
2643 /*
2644 * The XSAVE saved state layout moved the hyper state down here.
2645 */
2646 rc = SSMR3GetStructEx(pSSM, &HyperCtxIgnored, sizeof(HyperCtxIgnored), 0, g_aCpumCtxFields, NULL);
2647 AssertRCReturn(rc, rc);
2648
2649 /*
2650 * Start by restoring the CPUMCTX structure and the X86FXSAVE bits of the extended state.
2651 */
2652 rc = SSMR3GetStructEx(pSSM, pGstCtx, sizeof(*pGstCtx), 0, g_aCpumCtxFields, NULL);
2653 rc = SSMR3GetStructEx(pSSM, &pGstCtx->XState.x87, sizeof(pGstCtx->XState.x87), 0, g_aCpumX87Fields, NULL);
2654 AssertRCReturn(rc, rc);
2655
2656 /* Check that the xsave/xrstor mask is valid (invalid results in #GP). */
2657 if (pGstCtx->fXStateMask != 0)
2658 {
2659 AssertLogRelMsgReturn(!(pGstCtx->fXStateMask & ~pVM->cpum.s.fXStateGuestMask),
2660 ("fXStateMask=%#RX64 fXStateGuestMask=%#RX64\n",
2661 pGstCtx->fXStateMask, pVM->cpum.s.fXStateGuestMask),
2662 VERR_CPUM_INCOMPATIBLE_XSAVE_COMP_MASK);
2663 AssertLogRelMsgReturn(pGstCtx->fXStateMask & XSAVE_C_X87,
2664 ("fXStateMask=%#RX64\n", pGstCtx->fXStateMask), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2665 AssertLogRelMsgReturn((pGstCtx->fXStateMask & (XSAVE_C_SSE | XSAVE_C_YMM)) != XSAVE_C_YMM,
2666 ("fXStateMask=%#RX64\n", pGstCtx->fXStateMask), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2667 AssertLogRelMsgReturn( (pGstCtx->fXStateMask & (XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI)) == 0
2668 || (pGstCtx->fXStateMask & (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI))
2669 == (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI),
2670 ("fXStateMask=%#RX64\n", pGstCtx->fXStateMask), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2671 }
2672
2673 /* Check that the XCR0 mask is valid (invalid results in #GP). */
2674 AssertLogRelMsgReturn(pGstCtx->aXcr[0] & XSAVE_C_X87, ("xcr0=%#RX64\n", pGstCtx->aXcr[0]), VERR_CPUM_INVALID_XCR0);
2675 if (pGstCtx->aXcr[0] != XSAVE_C_X87)
2676 {
2677 AssertLogRelMsgReturn(!(pGstCtx->aXcr[0] & ~(pGstCtx->fXStateMask | XSAVE_C_X87)),
2678 ("xcr0=%#RX64 fXStateMask=%#RX64\n", pGstCtx->aXcr[0], pGstCtx->fXStateMask),
2679 VERR_CPUM_INVALID_XCR0);
2680 AssertLogRelMsgReturn(pGstCtx->aXcr[0] & XSAVE_C_X87,
2681 ("xcr0=%#RX64\n", pGstCtx->aXcr[0]), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2682 AssertLogRelMsgReturn((pGstCtx->aXcr[0] & (XSAVE_C_SSE | XSAVE_C_YMM)) != XSAVE_C_YMM,
2683 ("xcr0=%#RX64\n", pGstCtx->aXcr[0]), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2684 AssertLogRelMsgReturn( (pGstCtx->aXcr[0] & (XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI)) == 0
2685 || (pGstCtx->aXcr[0] & (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI))
2686 == (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI),
2687 ("xcr0=%#RX64\n", pGstCtx->aXcr[0]), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2688 }
2689
2690 /* Check that the XCR1 is zero, as we don't implement it yet. */
2691 AssertLogRelMsgReturn(!pGstCtx->aXcr[1], ("xcr1=%#RX64\n", pGstCtx->aXcr[1]), VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2692
2693 /*
2694 * Restore the individual extended state components we support.
2695 */
2696 if (pGstCtx->fXStateMask != 0)
2697 {
2698 rc = SSMR3GetStructEx(pSSM, &pGstCtx->XState.Hdr, sizeof(pGstCtx->XState.Hdr),
2699 0, g_aCpumXSaveHdrFields, NULL);
2700 AssertRCReturn(rc, rc);
2701 AssertLogRelMsgReturn(!(pGstCtx->XState.Hdr.bmXState & ~pGstCtx->fXStateMask),
2702 ("bmXState=%#RX64 fXStateMask=%#RX64\n",
2703 pGstCtx->XState.Hdr.bmXState, pGstCtx->fXStateMask),
2704 VERR_CPUM_INVALID_XSAVE_HDR);
2705 }
2706 if (pGstCtx->fXStateMask & XSAVE_C_YMM)
2707 {
2708 PX86XSAVEYMMHI pYmmHiCtx = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_YMM_BIT, PX86XSAVEYMMHI);
2709 SSMR3GetStructEx(pSSM, pYmmHiCtx, sizeof(*pYmmHiCtx), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumYmmHiFields, NULL);
2710 }
2711 if (pGstCtx->fXStateMask & XSAVE_C_BNDREGS)
2712 {
2713 PX86XSAVEBNDREGS pBndRegs = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_BNDREGS_BIT, PX86XSAVEBNDREGS);
2714 SSMR3GetStructEx(pSSM, pBndRegs, sizeof(*pBndRegs), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumBndRegsFields, NULL);
2715 }
2716 if (pGstCtx->fXStateMask & XSAVE_C_BNDCSR)
2717 {
2718 PX86XSAVEBNDCFG pBndCfg = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_BNDCSR_BIT, PX86XSAVEBNDCFG);
2719 SSMR3GetStructEx(pSSM, pBndCfg, sizeof(*pBndCfg), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumBndCfgFields, NULL);
2720 }
2721 if (pGstCtx->fXStateMask & XSAVE_C_ZMM_HI256)
2722 {
2723 PX86XSAVEZMMHI256 pZmmHi256 = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_ZMM_HI256_BIT, PX86XSAVEZMMHI256);
2724 SSMR3GetStructEx(pSSM, pZmmHi256, sizeof(*pZmmHi256), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumZmmHi256Fields, NULL);
2725 }
2726 if (pGstCtx->fXStateMask & XSAVE_C_ZMM_16HI)
2727 {
2728 PX86XSAVEZMM16HI pZmm16Hi = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_ZMM_16HI_BIT, PX86XSAVEZMM16HI);
2729 SSMR3GetStructEx(pSSM, pZmm16Hi, sizeof(*pZmm16Hi), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumZmm16HiFields, NULL);
2730 }
2731 if (uVersion >= CPUM_SAVED_STATE_VERSION_PAE_PDPES)
2732 {
2733 SSMR3GetU64(pSSM, &pGstCtx->aPaePdpes[0].u);
2734 SSMR3GetU64(pSSM, &pGstCtx->aPaePdpes[1].u);
2735 SSMR3GetU64(pSSM, &pGstCtx->aPaePdpes[2].u);
2736 SSMR3GetU64(pSSM, &pGstCtx->aPaePdpes[3].u);
2737 }
2738 if (uVersion >= CPUM_SAVED_STATE_VERSION_HWVIRT_SVM)
2739 {
2740 if (pVM->cpum.s.GuestFeatures.fSvm)
2741 {
2742 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.svm.uMsrHSavePa);
2743 SSMR3GetGCPhys(pSSM, &pGstCtx->hwvirt.svm.GCPhysVmcb);
2744 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.svm.uPrevPauseTick);
2745 SSMR3GetU16(pSSM, &pGstCtx->hwvirt.svm.cPauseFilter);
2746 SSMR3GetU16(pSSM, &pGstCtx->hwvirt.svm.cPauseFilterThreshold);
2747 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.svm.fInterceptEvents);
2748 SSMR3GetStructEx(pSSM, &pGstCtx->hwvirt.svm.HostState, sizeof(pGstCtx->hwvirt.svm.HostState),
2749 0 /* fFlags */, g_aSvmHwvirtHostState, NULL /* pvUser */);
2750 SSMR3GetMem(pSSM, &pGstCtx->hwvirt.svm.Vmcb, sizeof(pGstCtx->hwvirt.svm.Vmcb));
2751 SSMR3GetMem(pSSM, &pGstCtx->hwvirt.svm.abMsrBitmap[0], sizeof(pGstCtx->hwvirt.svm.abMsrBitmap));
2752 SSMR3GetMem(pSSM, &pGstCtx->hwvirt.svm.abIoBitmap[0], sizeof(pGstCtx->hwvirt.svm.abIoBitmap));
2753 SSMR3GetU32(pSSM, &pGstCtx->hwvirt.fLocalForcedActions);
2754 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.fGif);
2755 }
2756 }
2757 if (uVersion >= CPUM_SAVED_STATE_VERSION_HWVIRT_VMX)
2758 {
2759 if (pVM->cpum.s.GuestFeatures.fVmx)
2760 {
2761 SSMR3GetGCPhys(pSSM, &pGstCtx->hwvirt.vmx.GCPhysVmxon);
2762 SSMR3GetGCPhys(pSSM, &pGstCtx->hwvirt.vmx.GCPhysVmcs);
2763 SSMR3GetGCPhys(pSSM, &pGstCtx->hwvirt.vmx.GCPhysShadowVmcs);
2764 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.vmx.fInVmxRootMode);
2765 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.vmx.fInVmxNonRootMode);
2766 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.vmx.fInterceptEvents);
2767 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.vmx.fNmiUnblockingIret);
2768 SSMR3GetStructEx(pSSM, &pGstCtx->hwvirt.vmx.Vmcs, sizeof(pGstCtx->hwvirt.vmx.Vmcs),
2769 0, g_aVmxHwvirtVmcs, NULL);
2770 SSMR3GetStructEx(pSSM, &pGstCtx->hwvirt.vmx.ShadowVmcs, sizeof(pGstCtx->hwvirt.vmx.ShadowVmcs),
2771 0, g_aVmxHwvirtVmcs, NULL);
2772 SSMR3GetMem(pSSM, &pGstCtx->hwvirt.vmx.abVmreadBitmap[0], sizeof(pGstCtx->hwvirt.vmx.abVmreadBitmap));
2773 SSMR3GetMem(pSSM, &pGstCtx->hwvirt.vmx.abVmwriteBitmap[0], sizeof(pGstCtx->hwvirt.vmx.abVmwriteBitmap));
2774 SSMR3GetMem(pSSM, &pGstCtx->hwvirt.vmx.aEntryMsrLoadArea[0], sizeof(pGstCtx->hwvirt.vmx.aEntryMsrLoadArea));
2775 SSMR3GetMem(pSSM, &pGstCtx->hwvirt.vmx.aExitMsrStoreArea[0], sizeof(pGstCtx->hwvirt.vmx.aExitMsrStoreArea));
2776 SSMR3GetMem(pSSM, &pGstCtx->hwvirt.vmx.aExitMsrLoadArea[0], sizeof(pGstCtx->hwvirt.vmx.aExitMsrLoadArea));
2777 SSMR3GetMem(pSSM, pGstCtx->hwvirt.vmx.pvMsrBitmapR3, VMX_V_MSR_BITMAP_SIZE);
2778 SSMR3GetMem(pSSM, pGstCtx->hwvirt.vmx.pvIoBitmapR3, VMX_V_IO_BITMAP_A_SIZE + VMX_V_IO_BITMAP_B_SIZE);
2779 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.uFirstPauseLoopTick);
2780 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.uPrevPauseTick);
2781 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.uEntryTick);
2782 SSMR3GetU16(pSSM, &pGstCtx->hwvirt.vmx.offVirtApicWrite);
2783 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.vmx.fVirtNmiBlocking);
2784 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64FeatCtrl);
2785 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64Basic);
2786 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.PinCtls.u);
2787 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.ProcCtls.u);
2788 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.ProcCtls2.u);
2789 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.ExitCtls.u);
2790 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.EntryCtls.u);
2791 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.TruePinCtls.u);
2792 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.TrueProcCtls.u);
2793 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.TrueEntryCtls.u);
2794 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.TrueExitCtls.u);
2795 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64Misc);
2796 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64Cr0Fixed0);
2797 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64Cr0Fixed1);
2798 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64Cr4Fixed0);
2799 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64Cr4Fixed1);
2800 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64VmcsEnum);
2801 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64VmFunc);
2802 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64EptVpidCaps);
2803 if (uVersion >= CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2)
2804 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64ProcCtls3);
2805 }
2806 }
2807 }
2808 else
2809 {
2810 /*
2811 * Pre XSAVE saved state.
2812 */
2813 SSMR3GetStructEx(pSSM, &pGstCtx->XState.x87, sizeof(pGstCtx->XState.x87),
2814 fLoad | SSMSTRUCT_FLAGS_NO_TAIL_MARKER, paCpumCtx1Fields, NULL);
2815 SSMR3GetStructEx(pSSM, pGstCtx, sizeof(*pGstCtx), fLoad | SSMSTRUCT_FLAGS_NO_LEAD_MARKER, paCpumCtx2Fields, NULL);
2816 }
2817
2818 /*
2819 * Restore a couple of flags and the MSRs.
2820 */
2821 uint32_t fIgnoredUsedFlags = 0;
2822 rc = SSMR3GetU32(pSSM, &fIgnoredUsedFlags); /* we're recalc the two relevant flags after loading state. */
2823 AssertRCReturn(rc, rc);
2824 SSMR3GetU32(pSSM, &pVCpu->cpum.s.fChanged);
2825
2826 rc = VINF_SUCCESS;
2827 if (uVersion > CPUM_SAVED_STATE_VERSION_NO_MSR_SIZE)
2828 rc = SSMR3GetMem(pSSM, &pVCpu->cpum.s.GuestMsrs.au64[0], cbMsrs);
2829 else if (uVersion >= CPUM_SAVED_STATE_VERSION_VER3_0)
2830 {
2831 SSMR3GetMem(pSSM, &pVCpu->cpum.s.GuestMsrs.au64[0], 2 * sizeof(uint64_t)); /* Restore two MSRs. */
2832 rc = SSMR3Skip(pSSM, 62 * sizeof(uint64_t));
2833 }
2834 AssertRCReturn(rc, rc);
2835
2836 /* REM and other may have cleared must-be-one fields in DR6 and
2837 DR7, fix these. */
2838 pGstCtx->dr[6] &= ~(X86_DR6_RAZ_MASK | X86_DR6_MBZ_MASK);
2839 pGstCtx->dr[6] |= X86_DR6_RA1_MASK;
2840 pGstCtx->dr[7] &= ~(X86_DR7_RAZ_MASK | X86_DR7_MBZ_MASK);
2841 pGstCtx->dr[7] |= X86_DR7_RA1_MASK;
2842 }
2843
2844 /* Older states does not have the internal selector register flags
2845 and valid selector value. Supply those. */
2846 if (uVersion <= CPUM_SAVED_STATE_VERSION_MEM)
2847 {
2848 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2849 {
2850 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
2851 bool const fValid = true /*!VM_IS_RAW_MODE_ENABLED(pVM)*/
2852 || ( uVersion > CPUM_SAVED_STATE_VERSION_VER3_2
2853 && !(pVCpu->cpum.s.fChanged & CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID));
2854 PCPUMSELREG paSelReg = CPUMCTX_FIRST_SREG(&pVCpu->cpum.s.Guest);
2855 if (fValid)
2856 {
2857 for (uint32_t iSelReg = 0; iSelReg < X86_SREG_COUNT; iSelReg++)
2858 {
2859 paSelReg[iSelReg].fFlags = CPUMSELREG_FLAGS_VALID;
2860 paSelReg[iSelReg].ValidSel = paSelReg[iSelReg].Sel;
2861 }
2862
2863 pVCpu->cpum.s.Guest.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
2864 pVCpu->cpum.s.Guest.ldtr.ValidSel = pVCpu->cpum.s.Guest.ldtr.Sel;
2865 }
2866 else
2867 {
2868 for (uint32_t iSelReg = 0; iSelReg < X86_SREG_COUNT; iSelReg++)
2869 {
2870 paSelReg[iSelReg].fFlags = 0;
2871 paSelReg[iSelReg].ValidSel = 0;
2872 }
2873
2874 /* This might not be 104% correct, but I think it's close
2875 enough for all practical purposes... (REM always loaded
2876 LDTR registers.) */
2877 pVCpu->cpum.s.Guest.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
2878 pVCpu->cpum.s.Guest.ldtr.ValidSel = pVCpu->cpum.s.Guest.ldtr.Sel;
2879 }
2880 pVCpu->cpum.s.Guest.tr.fFlags = CPUMSELREG_FLAGS_VALID;
2881 pVCpu->cpum.s.Guest.tr.ValidSel = pVCpu->cpum.s.Guest.tr.Sel;
2882 }
2883 }
2884
2885 /* Clear CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID. */
2886 if ( uVersion > CPUM_SAVED_STATE_VERSION_VER3_2
2887 && uVersion <= CPUM_SAVED_STATE_VERSION_MEM)
2888 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2889 {
2890 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
2891 pVCpu->cpum.s.fChanged &= CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID;
2892 }
2893
2894 /*
2895 * A quick sanity check.
2896 */
2897 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2898 {
2899 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
2900 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.es.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
2901 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.cs.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
2902 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.ss.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
2903 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.ds.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
2904 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.fs.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
2905 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.gs.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
2906 }
2907 }
2908
2909 pVM->cpum.s.fPendingRestore = false;
2910
2911 /*
2912 * Guest CPUIDs (and VMX MSR features).
2913 */
2914 if (uVersion >= CPUM_SAVED_STATE_VERSION_VER3_2)
2915 {
2916 CPUMMSRS GuestMsrs;
2917 RT_ZERO(GuestMsrs);
2918
2919 CPUMFEATURES BaseFeatures;
2920 bool const fVmxGstFeat = pVM->cpum.s.GuestFeatures.fVmx;
2921 if (fVmxGstFeat)
2922 {
2923 /*
2924 * At this point the MSRs in the guest CPU-context are loaded with the guest VMX MSRs from the saved state.
2925 * However the VMX sub-features have not been exploded yet. So cache the base (host derived) VMX features
2926 * here so we can compare them for compatibility after exploding guest features.
2927 */
2928 BaseFeatures = pVM->cpum.s.GuestFeatures;
2929
2930 /* Use the VMX MSR features from the saved state while exploding guest features. */
2931 GuestMsrs.hwvirt.vmx = pVM->apCpusR3[0]->cpum.s.Guest.hwvirt.vmx.Msrs;
2932 }
2933
2934 /* Load CPUID and explode guest features. */
2935 rc = cpumR3LoadCpuId(pVM, pSSM, uVersion, &GuestMsrs);
2936 if (fVmxGstFeat)
2937 {
2938 /*
2939 * Check if the exploded VMX features from the saved state are compatible with the host-derived features
2940 * we cached earlier (above). The is required if we use hardware-assisted nested-guest execution with
2941 * VMX features presented to the guest.
2942 */
2943 bool const fIsCompat = cpumR3AreVmxCpuFeaturesCompatible(pVM, &BaseFeatures, &pVM->cpum.s.GuestFeatures);
2944 if (!fIsCompat)
2945 return VERR_CPUM_INVALID_HWVIRT_FEAT_COMBO;
2946 }
2947 return rc;
2948 }
2949 return cpumR3LoadCpuIdPre32(pVM, pSSM, uVersion);
2950}
2951
2952
2953/**
2954 * @callback_method_impl{FNSSMINTLOADDONE}
2955 */
2956static DECLCALLBACK(int) cpumR3LoadDone(PVM pVM, PSSMHANDLE pSSM)
2957{
2958 if (RT_FAILURE(SSMR3HandleGetStatus(pSSM)))
2959 return VINF_SUCCESS;
2960
2961 /* just check this since we can. */ /** @todo Add a SSM unit flag for indicating that it's mandatory during a restore. */
2962 if (pVM->cpum.s.fPendingRestore)
2963 {
2964 LogRel(("CPUM: Missing state!\n"));
2965 return VERR_INTERNAL_ERROR_2;
2966 }
2967
2968 bool const fSupportsLongMode = VMR3IsLongModeAllowed(pVM);
2969 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2970 {
2971 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
2972
2973 /* Notify PGM of the NXE states in case they've changed. */
2974 PGMNotifyNxeChanged(pVCpu, RT_BOOL(pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_NXE));
2975
2976 /* During init. this is done in CPUMR3InitCompleted(). */
2977 if (fSupportsLongMode)
2978 pVCpu->cpum.s.fUseFlags |= CPUM_USE_SUPPORTS_LONGMODE;
2979
2980 /* Recalc the CPUM_USE_DEBUG_REGS_HYPER value. */
2981 CPUMRecalcHyperDRx(pVCpu, UINT8_MAX);
2982 }
2983 return VINF_SUCCESS;
2984}
2985
2986
2987/**
2988 * Checks if the CPUM state restore is still pending.
2989 *
2990 * @returns true / false.
2991 * @param pVM The cross context VM structure.
2992 */
2993VMMDECL(bool) CPUMR3IsStateRestorePending(PVM pVM)
2994{
2995 return pVM->cpum.s.fPendingRestore;
2996}
2997
2998
2999/**
3000 * Formats the EFLAGS value into mnemonics.
3001 *
3002 * @param pszEFlags Where to write the mnemonics. (Assumes sufficient buffer space.)
3003 * @param efl The EFLAGS value.
3004 */
3005static void cpumR3InfoFormatFlags(char *pszEFlags, uint32_t efl)
3006{
3007 /*
3008 * Format the flags.
3009 */
3010 static const struct
3011 {
3012 const char *pszSet; const char *pszClear; uint32_t fFlag;
3013 } s_aFlags[] =
3014 {
3015 { "vip",NULL, X86_EFL_VIP },
3016 { "vif",NULL, X86_EFL_VIF },
3017 { "ac", NULL, X86_EFL_AC },
3018 { "vm", NULL, X86_EFL_VM },
3019 { "rf", NULL, X86_EFL_RF },
3020 { "nt", NULL, X86_EFL_NT },
3021 { "ov", "nv", X86_EFL_OF },
3022 { "dn", "up", X86_EFL_DF },
3023 { "ei", "di", X86_EFL_IF },
3024 { "tf", NULL, X86_EFL_TF },
3025 { "nt", "pl", X86_EFL_SF },
3026 { "nz", "zr", X86_EFL_ZF },
3027 { "ac", "na", X86_EFL_AF },
3028 { "po", "pe", X86_EFL_PF },
3029 { "cy", "nc", X86_EFL_CF },
3030 };
3031 char *psz = pszEFlags;
3032 for (unsigned i = 0; i < RT_ELEMENTS(s_aFlags); i++)
3033 {
3034 const char *pszAdd = s_aFlags[i].fFlag & efl ? s_aFlags[i].pszSet : s_aFlags[i].pszClear;
3035 if (pszAdd)
3036 {
3037 strcpy(psz, pszAdd);
3038 psz += strlen(pszAdd);
3039 *psz++ = ' ';
3040 }
3041 }
3042 psz[-1] = '\0';
3043}
3044
3045
3046/**
3047 * Formats a full register dump.
3048 *
3049 * @param pVM The cross context VM structure.
3050 * @param pCtx The context to format.
3051 * @param pCtxCore The context core to format.
3052 * @param pHlp Output functions.
3053 * @param enmType The dump type.
3054 * @param pszPrefix Register name prefix.
3055 */
3056static void cpumR3InfoOne(PVM pVM, PCPUMCTX pCtx, PCCPUMCTXCORE pCtxCore, PCDBGFINFOHLP pHlp, CPUMDUMPTYPE enmType,
3057 const char *pszPrefix)
3058{
3059 NOREF(pVM);
3060
3061 /*
3062 * Format the EFLAGS.
3063 */
3064 uint32_t efl = pCtxCore->eflags.u32;
3065 char szEFlags[80];
3066 cpumR3InfoFormatFlags(&szEFlags[0], efl);
3067
3068 /*
3069 * Format the registers.
3070 */
3071 switch (enmType)
3072 {
3073 case CPUMDUMPTYPE_TERSE:
3074 if (CPUMIsGuestIn64BitCodeEx(pCtx))
3075 pHlp->pfnPrintf(pHlp,
3076 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
3077 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
3078 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
3079 "%sr14=%016RX64 %sr15=%016RX64\n"
3080 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
3081 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %seflags=%08x\n",
3082 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
3083 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
3084 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
3085 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
3086 pszPrefix, pCtxCore->cs.Sel, pszPrefix, pCtxCore->ss.Sel, pszPrefix, pCtxCore->ds.Sel, pszPrefix, pCtxCore->es.Sel,
3087 pszPrefix, pCtxCore->fs.Sel, pszPrefix, pCtxCore->gs.Sel, pszPrefix, efl);
3088 else
3089 pHlp->pfnPrintf(pHlp,
3090 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
3091 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
3092 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %seflags=%08x\n",
3093 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
3094 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
3095 pszPrefix, pCtxCore->cs.Sel, pszPrefix, pCtxCore->ss.Sel, pszPrefix, pCtxCore->ds.Sel, pszPrefix, pCtxCore->es.Sel,
3096 pszPrefix, pCtxCore->fs.Sel, pszPrefix, pCtxCore->gs.Sel, pszPrefix, efl);
3097 break;
3098
3099 case CPUMDUMPTYPE_DEFAULT:
3100 if (CPUMIsGuestIn64BitCodeEx(pCtx))
3101 pHlp->pfnPrintf(pHlp,
3102 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
3103 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
3104 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
3105 "%sr14=%016RX64 %sr15=%016RX64\n"
3106 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
3107 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %str=%04x %seflags=%08x\n"
3108 "%scr0=%08RX64 %scr2=%08RX64 %scr3=%08RX64 %scr4=%08RX64 %sgdtr=%016RX64:%04x %sldtr=%04x\n"
3109 ,
3110 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
3111 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
3112 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
3113 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
3114 pszPrefix, pCtxCore->cs.Sel, pszPrefix, pCtxCore->ss.Sel, pszPrefix, pCtxCore->ds.Sel, pszPrefix, pCtxCore->es.Sel,
3115 pszPrefix, pCtxCore->fs.Sel, pszPrefix, pCtxCore->gs.Sel, pszPrefix, pCtx->tr.Sel, pszPrefix, efl,
3116 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
3117 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->ldtr.Sel);
3118 else
3119 pHlp->pfnPrintf(pHlp,
3120 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
3121 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
3122 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %str=%04x %seflags=%08x\n"
3123 "%scr0=%08RX64 %scr2=%08RX64 %scr3=%08RX64 %scr4=%08RX64 %sgdtr=%08RX64:%04x %sldtr=%04x\n"
3124 ,
3125 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
3126 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
3127 pszPrefix, pCtxCore->cs.Sel, pszPrefix, pCtxCore->ss.Sel, pszPrefix, pCtxCore->ds.Sel, pszPrefix, pCtxCore->es.Sel,
3128 pszPrefix, pCtxCore->fs.Sel, pszPrefix, pCtxCore->gs.Sel, pszPrefix, pCtx->tr.Sel, pszPrefix, efl,
3129 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
3130 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->ldtr.Sel);
3131 break;
3132
3133 case CPUMDUMPTYPE_VERBOSE:
3134 if (CPUMIsGuestIn64BitCodeEx(pCtx))
3135 pHlp->pfnPrintf(pHlp,
3136 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
3137 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
3138 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
3139 "%sr14=%016RX64 %sr15=%016RX64\n"
3140 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
3141 "%scs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
3142 "%sds={%04x base=%016RX64 limit=%08x flags=%08x}\n"
3143 "%ses={%04x base=%016RX64 limit=%08x flags=%08x}\n"
3144 "%sfs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
3145 "%sgs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
3146 "%sss={%04x base=%016RX64 limit=%08x flags=%08x}\n"
3147 "%scr0=%016RX64 %scr2=%016RX64 %scr3=%016RX64 %scr4=%016RX64\n"
3148 "%sdr0=%016RX64 %sdr1=%016RX64 %sdr2=%016RX64 %sdr3=%016RX64\n"
3149 "%sdr4=%016RX64 %sdr5=%016RX64 %sdr6=%016RX64 %sdr7=%016RX64\n"
3150 "%sgdtr=%016RX64:%04x %sidtr=%016RX64:%04x %seflags=%08x\n"
3151 "%sldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
3152 "%str ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
3153 "%sSysEnter={cs=%04llx eip=%016RX64 esp=%016RX64}\n"
3154 ,
3155 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
3156 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
3157 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
3158 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
3159 pszPrefix, pCtxCore->cs.Sel, pCtx->cs.u64Base, pCtx->cs.u32Limit, pCtx->cs.Attr.u,
3160 pszPrefix, pCtxCore->ds.Sel, pCtx->ds.u64Base, pCtx->ds.u32Limit, pCtx->ds.Attr.u,
3161 pszPrefix, pCtxCore->es.Sel, pCtx->es.u64Base, pCtx->es.u32Limit, pCtx->es.Attr.u,
3162 pszPrefix, pCtxCore->fs.Sel, pCtx->fs.u64Base, pCtx->fs.u32Limit, pCtx->fs.Attr.u,
3163 pszPrefix, pCtxCore->gs.Sel, pCtx->gs.u64Base, pCtx->gs.u32Limit, pCtx->gs.Attr.u,
3164 pszPrefix, pCtxCore->ss.Sel, pCtx->ss.u64Base, pCtx->ss.u32Limit, pCtx->ss.Attr.u,
3165 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
3166 pszPrefix, pCtx->dr[0], pszPrefix, pCtx->dr[1], pszPrefix, pCtx->dr[2], pszPrefix, pCtx->dr[3],
3167 pszPrefix, pCtx->dr[4], pszPrefix, pCtx->dr[5], pszPrefix, pCtx->dr[6], pszPrefix, pCtx->dr[7],
3168 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, pszPrefix, efl,
3169 pszPrefix, pCtx->ldtr.Sel, pCtx->ldtr.u64Base, pCtx->ldtr.u32Limit, pCtx->ldtr.Attr.u,
3170 pszPrefix, pCtx->tr.Sel, pCtx->tr.u64Base, pCtx->tr.u32Limit, pCtx->tr.Attr.u,
3171 pszPrefix, pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
3172 else
3173 pHlp->pfnPrintf(pHlp,
3174 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
3175 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
3176 "%scs={%04x base=%016RX64 limit=%08x flags=%08x} %sdr0=%08RX64 %sdr1=%08RX64\n"
3177 "%sds={%04x base=%016RX64 limit=%08x flags=%08x} %sdr2=%08RX64 %sdr3=%08RX64\n"
3178 "%ses={%04x base=%016RX64 limit=%08x flags=%08x} %sdr4=%08RX64 %sdr5=%08RX64\n"
3179 "%sfs={%04x base=%016RX64 limit=%08x flags=%08x} %sdr6=%08RX64 %sdr7=%08RX64\n"
3180 "%sgs={%04x base=%016RX64 limit=%08x flags=%08x} %scr0=%08RX64 %scr2=%08RX64\n"
3181 "%sss={%04x base=%016RX64 limit=%08x flags=%08x} %scr3=%08RX64 %scr4=%08RX64\n"
3182 "%sgdtr=%016RX64:%04x %sidtr=%016RX64:%04x %seflags=%08x\n"
3183 "%sldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
3184 "%str ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
3185 "%sSysEnter={cs=%04llx eip=%08llx esp=%08llx}\n"
3186 ,
3187 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
3188 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
3189 pszPrefix, pCtxCore->cs.Sel, pCtx->cs.u64Base, pCtx->cs.u32Limit, pCtx->cs.Attr.u, pszPrefix, pCtx->dr[0], pszPrefix, pCtx->dr[1],
3190 pszPrefix, pCtxCore->ds.Sel, pCtx->ds.u64Base, pCtx->ds.u32Limit, pCtx->ds.Attr.u, pszPrefix, pCtx->dr[2], pszPrefix, pCtx->dr[3],
3191 pszPrefix, pCtxCore->es.Sel, pCtx->es.u64Base, pCtx->es.u32Limit, pCtx->es.Attr.u, pszPrefix, pCtx->dr[4], pszPrefix, pCtx->dr[5],
3192 pszPrefix, pCtxCore->fs.Sel, pCtx->fs.u64Base, pCtx->fs.u32Limit, pCtx->fs.Attr.u, pszPrefix, pCtx->dr[6], pszPrefix, pCtx->dr[7],
3193 pszPrefix, pCtxCore->gs.Sel, pCtx->gs.u64Base, pCtx->gs.u32Limit, pCtx->gs.Attr.u, pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2,
3194 pszPrefix, pCtxCore->ss.Sel, pCtx->ss.u64Base, pCtx->ss.u32Limit, pCtx->ss.Attr.u, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
3195 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, pszPrefix, efl,
3196 pszPrefix, pCtx->ldtr.Sel, pCtx->ldtr.u64Base, pCtx->ldtr.u32Limit, pCtx->ldtr.Attr.u,
3197 pszPrefix, pCtx->tr.Sel, pCtx->tr.u64Base, pCtx->tr.u32Limit, pCtx->tr.Attr.u,
3198 pszPrefix, pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
3199
3200 pHlp->pfnPrintf(pHlp, "%sxcr=%016RX64 %sxcr1=%016RX64 %sxss=%016RX64 (fXStateMask=%016RX64)\n",
3201 pszPrefix, pCtx->aXcr[0], pszPrefix, pCtx->aXcr[1],
3202 pszPrefix, UINT64_C(0) /** @todo XSS */, pCtx->fXStateMask);
3203 {
3204 PX86FXSTATE pFpuCtx = &pCtx->XState.x87;
3205 pHlp->pfnPrintf(pHlp,
3206 "%sFCW=%04x %sFSW=%04x %sFTW=%04x %sFOP=%04x %sMXCSR=%08x %sMXCSR_MASK=%08x\n"
3207 "%sFPUIP=%08x %sCS=%04x %sRsrvd1=%04x %sFPUDP=%08x %sDS=%04x %sRsvrd2=%04x\n"
3208 ,
3209 pszPrefix, pFpuCtx->FCW, pszPrefix, pFpuCtx->FSW, pszPrefix, pFpuCtx->FTW, pszPrefix, pFpuCtx->FOP,
3210 pszPrefix, pFpuCtx->MXCSR, pszPrefix, pFpuCtx->MXCSR_MASK,
3211 pszPrefix, pFpuCtx->FPUIP, pszPrefix, pFpuCtx->CS, pszPrefix, pFpuCtx->Rsrvd1,
3212 pszPrefix, pFpuCtx->FPUDP, pszPrefix, pFpuCtx->DS, pszPrefix, pFpuCtx->Rsrvd2
3213 );
3214 /*
3215 * The FSAVE style memory image contains ST(0)-ST(7) at increasing addresses,
3216 * not (FP)R0-7 as Intel SDM suggests.
3217 */
3218 unsigned iShift = (pFpuCtx->FSW >> 11) & 7;
3219 for (unsigned iST = 0; iST < RT_ELEMENTS(pFpuCtx->aRegs); iST++)
3220 {
3221 unsigned iFPR = (iST + iShift) % RT_ELEMENTS(pFpuCtx->aRegs);
3222 unsigned uTag = (pFpuCtx->FTW >> (2 * iFPR)) & 3;
3223 char chSign = pFpuCtx->aRegs[iST].au16[4] & 0x8000 ? '-' : '+';
3224 unsigned iInteger = (unsigned)(pFpuCtx->aRegs[iST].au64[0] >> 63);
3225 uint64_t u64Fraction = pFpuCtx->aRegs[iST].au64[0] & UINT64_C(0x7fffffffffffffff);
3226 int iExponent = pFpuCtx->aRegs[iST].au16[4] & 0x7fff;
3227 iExponent -= 16383; /* subtract bias */
3228 /** @todo This isn't entirenly correct and needs more work! */
3229 pHlp->pfnPrintf(pHlp,
3230 "%sST(%u)=%sFPR%u={%04RX16'%08RX32'%08RX32} t%d %c%u.%022llu * 2 ^ %d (*)",
3231 pszPrefix, iST, pszPrefix, iFPR,
3232 pFpuCtx->aRegs[iST].au16[4], pFpuCtx->aRegs[iST].au32[1], pFpuCtx->aRegs[iST].au32[0],
3233 uTag, chSign, iInteger, u64Fraction, iExponent);
3234 if (pFpuCtx->aRegs[iST].au16[5] || pFpuCtx->aRegs[iST].au16[6] || pFpuCtx->aRegs[iST].au16[7])
3235 pHlp->pfnPrintf(pHlp, " res={%04RX16,%04RX16,%04RX16}\n",
3236 pFpuCtx->aRegs[iST].au16[5], pFpuCtx->aRegs[iST].au16[6], pFpuCtx->aRegs[iST].au16[7]);
3237 else
3238 pHlp->pfnPrintf(pHlp, "\n");
3239 }
3240
3241 /* XMM/YMM/ZMM registers. */
3242 if (pCtx->fXStateMask & XSAVE_C_YMM)
3243 {
3244 PCX86XSAVEYMMHI pYmmHiCtx = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_YMM_BIT, PCX86XSAVEYMMHI);
3245 if (!(pCtx->fXStateMask & XSAVE_C_ZMM_HI256))
3246 for (unsigned i = 0; i < RT_ELEMENTS(pFpuCtx->aXMM); i++)
3247 pHlp->pfnPrintf(pHlp, "%sYMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32\n",
3248 pszPrefix, i, i < 10 ? " " : "",
3249 pYmmHiCtx->aYmmHi[i].au32[3],
3250 pYmmHiCtx->aYmmHi[i].au32[2],
3251 pYmmHiCtx->aYmmHi[i].au32[1],
3252 pYmmHiCtx->aYmmHi[i].au32[0],
3253 pFpuCtx->aXMM[i].au32[3],
3254 pFpuCtx->aXMM[i].au32[2],
3255 pFpuCtx->aXMM[i].au32[1],
3256 pFpuCtx->aXMM[i].au32[0]);
3257 else
3258 {
3259 PCX86XSAVEZMMHI256 pZmmHi256 = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_ZMM_HI256_BIT, PCX86XSAVEZMMHI256);
3260 for (unsigned i = 0; i < RT_ELEMENTS(pFpuCtx->aXMM); i++)
3261 pHlp->pfnPrintf(pHlp,
3262 "%sZMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32''%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32\n",
3263 pszPrefix, i, i < 10 ? " " : "",
3264 pZmmHi256->aHi256Regs[i].au32[7],
3265 pZmmHi256->aHi256Regs[i].au32[6],
3266 pZmmHi256->aHi256Regs[i].au32[5],
3267 pZmmHi256->aHi256Regs[i].au32[4],
3268 pZmmHi256->aHi256Regs[i].au32[3],
3269 pZmmHi256->aHi256Regs[i].au32[2],
3270 pZmmHi256->aHi256Regs[i].au32[1],
3271 pZmmHi256->aHi256Regs[i].au32[0],
3272 pYmmHiCtx->aYmmHi[i].au32[3],
3273 pYmmHiCtx->aYmmHi[i].au32[2],
3274 pYmmHiCtx->aYmmHi[i].au32[1],
3275 pYmmHiCtx->aYmmHi[i].au32[0],
3276 pFpuCtx->aXMM[i].au32[3],
3277 pFpuCtx->aXMM[i].au32[2],
3278 pFpuCtx->aXMM[i].au32[1],
3279 pFpuCtx->aXMM[i].au32[0]);
3280
3281 PCX86XSAVEZMM16HI pZmm16Hi = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_ZMM_16HI_BIT, PCX86XSAVEZMM16HI);
3282 for (unsigned i = 0; i < RT_ELEMENTS(pZmm16Hi->aRegs); i++)
3283 pHlp->pfnPrintf(pHlp,
3284 "%sZMM%u=%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32''%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32\n",
3285 pszPrefix, i + 16,
3286 pZmm16Hi->aRegs[i].au32[15],
3287 pZmm16Hi->aRegs[i].au32[14],
3288 pZmm16Hi->aRegs[i].au32[13],
3289 pZmm16Hi->aRegs[i].au32[12],
3290 pZmm16Hi->aRegs[i].au32[11],
3291 pZmm16Hi->aRegs[i].au32[10],
3292 pZmm16Hi->aRegs[i].au32[9],
3293 pZmm16Hi->aRegs[i].au32[8],
3294 pZmm16Hi->aRegs[i].au32[7],
3295 pZmm16Hi->aRegs[i].au32[6],
3296 pZmm16Hi->aRegs[i].au32[5],
3297 pZmm16Hi->aRegs[i].au32[4],
3298 pZmm16Hi->aRegs[i].au32[3],
3299 pZmm16Hi->aRegs[i].au32[2],
3300 pZmm16Hi->aRegs[i].au32[1],
3301 pZmm16Hi->aRegs[i].au32[0]);
3302 }
3303 }
3304 else
3305 for (unsigned i = 0; i < RT_ELEMENTS(pFpuCtx->aXMM); i++)
3306 pHlp->pfnPrintf(pHlp,
3307 i & 1
3308 ? "%sXMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32\n"
3309 : "%sXMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32 ",
3310 pszPrefix, i, i < 10 ? " " : "",
3311 pFpuCtx->aXMM[i].au32[3],
3312 pFpuCtx->aXMM[i].au32[2],
3313 pFpuCtx->aXMM[i].au32[1],
3314 pFpuCtx->aXMM[i].au32[0]);
3315
3316 if (pCtx->fXStateMask & XSAVE_C_OPMASK)
3317 {
3318 PCX86XSAVEOPMASK pOpMask = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_OPMASK_BIT, PCX86XSAVEOPMASK);
3319 for (unsigned i = 0; i < RT_ELEMENTS(pOpMask->aKRegs); i += 4)
3320 pHlp->pfnPrintf(pHlp, "%sK%u=%016RX64 %sK%u=%016RX64 %sK%u=%016RX64 %sK%u=%016RX64\n",
3321 pszPrefix, i + 0, pOpMask->aKRegs[i + 0],
3322 pszPrefix, i + 1, pOpMask->aKRegs[i + 1],
3323 pszPrefix, i + 2, pOpMask->aKRegs[i + 2],
3324 pszPrefix, i + 3, pOpMask->aKRegs[i + 3]);
3325 }
3326
3327 if (pCtx->fXStateMask & XSAVE_C_BNDREGS)
3328 {
3329 PCX86XSAVEBNDREGS pBndRegs = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_BNDREGS_BIT, PCX86XSAVEBNDREGS);
3330 for (unsigned i = 0; i < RT_ELEMENTS(pBndRegs->aRegs); i += 2)
3331 pHlp->pfnPrintf(pHlp, "%sBNDREG%u=%016RX64/%016RX64 %sBNDREG%u=%016RX64/%016RX64\n",
3332 pszPrefix, i, pBndRegs->aRegs[i].uLowerBound, pBndRegs->aRegs[i].uUpperBound,
3333 pszPrefix, i + 1, pBndRegs->aRegs[i + 1].uLowerBound, pBndRegs->aRegs[i + 1].uUpperBound);
3334 }
3335
3336 if (pCtx->fXStateMask & XSAVE_C_BNDCSR)
3337 {
3338 PCX86XSAVEBNDCFG pBndCfg = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_BNDCSR_BIT, PCX86XSAVEBNDCFG);
3339 pHlp->pfnPrintf(pHlp, "%sBNDCFG.CONFIG=%016RX64 %sBNDCFG.STATUS=%016RX64\n",
3340 pszPrefix, pBndCfg->fConfig, pszPrefix, pBndCfg->fStatus);
3341 }
3342
3343 for (unsigned i = 0; i < RT_ELEMENTS(pFpuCtx->au32RsrvdRest); i++)
3344 if (pFpuCtx->au32RsrvdRest[i])
3345 pHlp->pfnPrintf(pHlp, "%sRsrvdRest[%u]=%RX32 (offset=%#x)\n",
3346 pszPrefix, i, pFpuCtx->au32RsrvdRest[i], RT_UOFFSETOF_DYN(X86FXSTATE, au32RsrvdRest[i]) );
3347 }
3348
3349 pHlp->pfnPrintf(pHlp,
3350 "%sEFER =%016RX64\n"
3351 "%sPAT =%016RX64\n"
3352 "%sSTAR =%016RX64\n"
3353 "%sCSTAR =%016RX64\n"
3354 "%sLSTAR =%016RX64\n"
3355 "%sSFMASK =%016RX64\n"
3356 "%sKERNELGSBASE =%016RX64\n",
3357 pszPrefix, pCtx->msrEFER,
3358 pszPrefix, pCtx->msrPAT,
3359 pszPrefix, pCtx->msrSTAR,
3360 pszPrefix, pCtx->msrCSTAR,
3361 pszPrefix, pCtx->msrLSTAR,
3362 pszPrefix, pCtx->msrSFMASK,
3363 pszPrefix, pCtx->msrKERNELGSBASE);
3364
3365 if (CPUMIsGuestInPAEModeEx(pCtx))
3366 for (unsigned i = 0; i < RT_ELEMENTS(pCtx->aPaePdpes); i++)
3367 pHlp->pfnPrintf(pHlp, "%sPAE PDPTE %u =%016RX64\n", pszPrefix, i, pCtx->aPaePdpes[i]);
3368 break;
3369 }
3370}
3371
3372
3373/**
3374 * Display all cpu states and any other cpum info.
3375 *
3376 * @param pVM The cross context VM structure.
3377 * @param pHlp The info helper functions.
3378 * @param pszArgs Arguments, ignored.
3379 */
3380static DECLCALLBACK(void) cpumR3InfoAll(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3381{
3382 cpumR3InfoGuest(pVM, pHlp, pszArgs);
3383 cpumR3InfoGuestInstr(pVM, pHlp, pszArgs);
3384 cpumR3InfoGuestHwvirt(pVM, pHlp, pszArgs);
3385 cpumR3InfoHyper(pVM, pHlp, pszArgs);
3386 cpumR3InfoHost(pVM, pHlp, pszArgs);
3387}
3388
3389
3390/**
3391 * Parses the info argument.
3392 *
3393 * The argument starts with 'verbose', 'terse' or 'default' and then
3394 * continues with the comment string.
3395 *
3396 * @param pszArgs The pointer to the argument string.
3397 * @param penmType Where to store the dump type request.
3398 * @param ppszComment Where to store the pointer to the comment string.
3399 */
3400static void cpumR3InfoParseArg(const char *pszArgs, CPUMDUMPTYPE *penmType, const char **ppszComment)
3401{
3402 if (!pszArgs)
3403 {
3404 *penmType = CPUMDUMPTYPE_DEFAULT;
3405 *ppszComment = "";
3406 }
3407 else
3408 {
3409 if (!strncmp(pszArgs, RT_STR_TUPLE("verbose")))
3410 {
3411 pszArgs += 7;
3412 *penmType = CPUMDUMPTYPE_VERBOSE;
3413 }
3414 else if (!strncmp(pszArgs, RT_STR_TUPLE("terse")))
3415 {
3416 pszArgs += 5;
3417 *penmType = CPUMDUMPTYPE_TERSE;
3418 }
3419 else if (!strncmp(pszArgs, RT_STR_TUPLE("default")))
3420 {
3421 pszArgs += 7;
3422 *penmType = CPUMDUMPTYPE_DEFAULT;
3423 }
3424 else
3425 *penmType = CPUMDUMPTYPE_DEFAULT;
3426 *ppszComment = RTStrStripL(pszArgs);
3427 }
3428}
3429
3430
3431/**
3432 * Display the guest cpu state.
3433 *
3434 * @param pVM The cross context VM structure.
3435 * @param pHlp The info helper functions.
3436 * @param pszArgs Arguments.
3437 */
3438static DECLCALLBACK(void) cpumR3InfoGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3439{
3440 CPUMDUMPTYPE enmType;
3441 const char *pszComment;
3442 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
3443
3444 PVMCPU pVCpu = VMMGetCpu(pVM);
3445 if (!pVCpu)
3446 pVCpu = pVM->apCpusR3[0];
3447
3448 pHlp->pfnPrintf(pHlp, "Guest CPUM (VCPU %d) state: %s\n", pVCpu->idCpu, pszComment);
3449
3450 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
3451 cpumR3InfoOne(pVM, pCtx, CPUMCTX2CORE(pCtx), pHlp, enmType, "");
3452}
3453
3454
3455/**
3456 * Displays an SVM VMCB control area.
3457 *
3458 * @param pHlp The info helper functions.
3459 * @param pVmcbCtrl Pointer to a SVM VMCB controls area.
3460 * @param pszPrefix Caller specified string prefix.
3461 */
3462static void cpumR3InfoSvmVmcbCtrl(PCDBGFINFOHLP pHlp, PCSVMVMCBCTRL pVmcbCtrl, const char *pszPrefix)
3463{
3464 AssertReturnVoid(pHlp);
3465 AssertReturnVoid(pVmcbCtrl);
3466
3467 pHlp->pfnPrintf(pHlp, "%sCRX-read intercepts = %#RX16\n", pszPrefix, pVmcbCtrl->u16InterceptRdCRx);
3468 pHlp->pfnPrintf(pHlp, "%sCRX-write intercepts = %#RX16\n", pszPrefix, pVmcbCtrl->u16InterceptWrCRx);
3469 pHlp->pfnPrintf(pHlp, "%sDRX-read intercepts = %#RX16\n", pszPrefix, pVmcbCtrl->u16InterceptRdDRx);
3470 pHlp->pfnPrintf(pHlp, "%sDRX-write intercepts = %#RX16\n", pszPrefix, pVmcbCtrl->u16InterceptWrDRx);
3471 pHlp->pfnPrintf(pHlp, "%sException intercepts = %#RX32\n", pszPrefix, pVmcbCtrl->u32InterceptXcpt);
3472 pHlp->pfnPrintf(pHlp, "%sControl intercepts = %#RX64\n", pszPrefix, pVmcbCtrl->u64InterceptCtrl);
3473 pHlp->pfnPrintf(pHlp, "%sPause-filter threshold = %#RX16\n", pszPrefix, pVmcbCtrl->u16PauseFilterThreshold);
3474 pHlp->pfnPrintf(pHlp, "%sPause-filter count = %#RX16\n", pszPrefix, pVmcbCtrl->u16PauseFilterCount);
3475 pHlp->pfnPrintf(pHlp, "%sIOPM bitmap physaddr = %#RX64\n", pszPrefix, pVmcbCtrl->u64IOPMPhysAddr);
3476 pHlp->pfnPrintf(pHlp, "%sMSRPM bitmap physaddr = %#RX64\n", pszPrefix, pVmcbCtrl->u64MSRPMPhysAddr);
3477 pHlp->pfnPrintf(pHlp, "%sTSC offset = %#RX64\n", pszPrefix, pVmcbCtrl->u64TSCOffset);
3478 pHlp->pfnPrintf(pHlp, "%sTLB Control\n", pszPrefix);
3479 pHlp->pfnPrintf(pHlp, " %sASID = %#RX32\n", pszPrefix, pVmcbCtrl->TLBCtrl.n.u32ASID);
3480 pHlp->pfnPrintf(pHlp, " %sTLB-flush type = %u\n", pszPrefix, pVmcbCtrl->TLBCtrl.n.u8TLBFlush);
3481 pHlp->pfnPrintf(pHlp, "%sInterrupt Control\n", pszPrefix);
3482 pHlp->pfnPrintf(pHlp, " %sVTPR = %#RX8 (%u)\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u8VTPR, pVmcbCtrl->IntCtrl.n.u8VTPR);
3483 pHlp->pfnPrintf(pHlp, " %sVIRQ (Pending) = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1VIrqPending);
3484 pHlp->pfnPrintf(pHlp, " %sVINTR vector = %#RX8\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u8VIntrVector);
3485 pHlp->pfnPrintf(pHlp, " %sVGIF = %u\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1VGif);
3486 pHlp->pfnPrintf(pHlp, " %sVINTR priority = %#RX8\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u4VIntrPrio);
3487 pHlp->pfnPrintf(pHlp, " %sIgnore TPR = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1IgnoreTPR);
3488 pHlp->pfnPrintf(pHlp, " %sVINTR masking = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1VIntrMasking);
3489 pHlp->pfnPrintf(pHlp, " %sVGIF enable = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1VGifEnable);
3490 pHlp->pfnPrintf(pHlp, " %sAVIC enable = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1AvicEnable);
3491 pHlp->pfnPrintf(pHlp, "%sInterrupt Shadow\n", pszPrefix);
3492 pHlp->pfnPrintf(pHlp, " %sInterrupt shadow = %RTbool\n", pszPrefix, pVmcbCtrl->IntShadow.n.u1IntShadow);
3493 pHlp->pfnPrintf(pHlp, " %sGuest-interrupt Mask = %RTbool\n", pszPrefix, pVmcbCtrl->IntShadow.n.u1GuestIntMask);
3494 pHlp->pfnPrintf(pHlp, "%sExit Code = %#RX64\n", pszPrefix, pVmcbCtrl->u64ExitCode);
3495 pHlp->pfnPrintf(pHlp, "%sEXITINFO1 = %#RX64\n", pszPrefix, pVmcbCtrl->u64ExitInfo1);
3496 pHlp->pfnPrintf(pHlp, "%sEXITINFO2 = %#RX64\n", pszPrefix, pVmcbCtrl->u64ExitInfo2);
3497 pHlp->pfnPrintf(pHlp, "%sExit Interrupt Info\n", pszPrefix);
3498 pHlp->pfnPrintf(pHlp, " %sValid = %RTbool\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u1Valid);
3499 pHlp->pfnPrintf(pHlp, " %sVector = %#RX8 (%u)\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u8Vector, pVmcbCtrl->ExitIntInfo.n.u8Vector);
3500 pHlp->pfnPrintf(pHlp, " %sType = %u\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u3Type);
3501 pHlp->pfnPrintf(pHlp, " %sError-code valid = %RTbool\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u1ErrorCodeValid);
3502 pHlp->pfnPrintf(pHlp, " %sError-code = %#RX32\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u32ErrorCode);
3503 pHlp->pfnPrintf(pHlp, "%sNested paging and SEV\n", pszPrefix);
3504 pHlp->pfnPrintf(pHlp, " %sNested paging = %RTbool\n", pszPrefix, pVmcbCtrl->NestedPagingCtrl.n.u1NestedPaging);
3505 pHlp->pfnPrintf(pHlp, " %sSEV (Secure Encrypted VM) = %RTbool\n", pszPrefix, pVmcbCtrl->NestedPagingCtrl.n.u1Sev);
3506 pHlp->pfnPrintf(pHlp, " %sSEV-ES (Encrypted State) = %RTbool\n", pszPrefix, pVmcbCtrl->NestedPagingCtrl.n.u1SevEs);
3507 pHlp->pfnPrintf(pHlp, "%sEvent Inject\n", pszPrefix);
3508 pHlp->pfnPrintf(pHlp, " %sValid = %RTbool\n", pszPrefix, pVmcbCtrl->EventInject.n.u1Valid);
3509 pHlp->pfnPrintf(pHlp, " %sVector = %#RX32 (%u)\n", pszPrefix, pVmcbCtrl->EventInject.n.u8Vector, pVmcbCtrl->EventInject.n.u8Vector);
3510 pHlp->pfnPrintf(pHlp, " %sType = %u\n", pszPrefix, pVmcbCtrl->EventInject.n.u3Type);
3511 pHlp->pfnPrintf(pHlp, " %sError-code valid = %RTbool\n", pszPrefix, pVmcbCtrl->EventInject.n.u1ErrorCodeValid);
3512 pHlp->pfnPrintf(pHlp, " %sError-code = %#RX32\n", pszPrefix, pVmcbCtrl->EventInject.n.u32ErrorCode);
3513 pHlp->pfnPrintf(pHlp, "%sNested-paging CR3 = %#RX64\n", pszPrefix, pVmcbCtrl->u64NestedPagingCR3);
3514 pHlp->pfnPrintf(pHlp, "%sLBR Virtualization\n", pszPrefix);
3515 pHlp->pfnPrintf(pHlp, " %sLBR virt = %RTbool\n", pszPrefix, pVmcbCtrl->LbrVirt.n.u1LbrVirt);
3516 pHlp->pfnPrintf(pHlp, " %sVirt. VMSAVE/VMLOAD = %RTbool\n", pszPrefix, pVmcbCtrl->LbrVirt.n.u1VirtVmsaveVmload);
3517 pHlp->pfnPrintf(pHlp, "%sVMCB Clean Bits = %#RX32\n", pszPrefix, pVmcbCtrl->u32VmcbCleanBits);
3518 pHlp->pfnPrintf(pHlp, "%sNext-RIP = %#RX64\n", pszPrefix, pVmcbCtrl->u64NextRIP);
3519 pHlp->pfnPrintf(pHlp, "%sInstruction bytes fetched = %u\n", pszPrefix, pVmcbCtrl->cbInstrFetched);
3520 pHlp->pfnPrintf(pHlp, "%sInstruction bytes = %.*Rhxs\n", pszPrefix, sizeof(pVmcbCtrl->abInstr), pVmcbCtrl->abInstr);
3521 pHlp->pfnPrintf(pHlp, "%sAVIC\n", pszPrefix);
3522 pHlp->pfnPrintf(pHlp, " %sBar addr = %#RX64\n", pszPrefix, pVmcbCtrl->AvicBar.n.u40Addr);
3523 pHlp->pfnPrintf(pHlp, " %sBacking page addr = %#RX64\n", pszPrefix, pVmcbCtrl->AvicBackingPagePtr.n.u40Addr);
3524 pHlp->pfnPrintf(pHlp, " %sLogical table addr = %#RX64\n", pszPrefix, pVmcbCtrl->AvicLogicalTablePtr.n.u40Addr);
3525 pHlp->pfnPrintf(pHlp, " %sPhysical table addr = %#RX64\n", pszPrefix, pVmcbCtrl->AvicPhysicalTablePtr.n.u40Addr);
3526 pHlp->pfnPrintf(pHlp, " %sLast guest core Id = %u\n", pszPrefix, pVmcbCtrl->AvicPhysicalTablePtr.n.u8LastGuestCoreId);
3527}
3528
3529
3530/**
3531 * Helper for dumping the SVM VMCB selector registers.
3532 *
3533 * @param pHlp The info helper functions.
3534 * @param pSel Pointer to the SVM selector register.
3535 * @param pszName Name of the selector.
3536 * @param pszPrefix Caller specified string prefix.
3537 */
3538DECLINLINE(void) cpumR3InfoSvmVmcbSelReg(PCDBGFINFOHLP pHlp, PCSVMSELREG pSel, const char *pszName, const char *pszPrefix)
3539{
3540 /* The string width of 4 used below is to handle 'LDTR'. Change later if longer register names are used. */
3541 pHlp->pfnPrintf(pHlp, "%s%-4s = {%04x base=%016RX64 limit=%08x flags=%04x}\n", pszPrefix,
3542 pszName, pSel->u16Sel, pSel->u64Base, pSel->u32Limit, pSel->u16Attr);
3543}
3544
3545
3546/**
3547 * Helper for dumping the SVM VMCB GDTR/IDTR registers.
3548 *
3549 * @param pHlp The info helper functions.
3550 * @param pXdtr Pointer to the descriptor table register.
3551 * @param pszName Name of the descriptor table register.
3552 * @param pszPrefix Caller specified string prefix.
3553 */
3554DECLINLINE(void) cpumR3InfoSvmVmcbXdtr(PCDBGFINFOHLP pHlp, PCSVMXDTR pXdtr, const char *pszName, const char *pszPrefix)
3555{
3556 /* The string width of 4 used below is to cover 'GDTR', 'IDTR'. Change later if longer register names are used. */
3557 pHlp->pfnPrintf(pHlp, "%s%-4s = %016RX64:%04x\n", pszPrefix, pszName, pXdtr->u64Base, pXdtr->u32Limit);
3558}
3559
3560
3561/**
3562 * Displays an SVM VMCB state-save area.
3563 *
3564 * @param pHlp The info helper functions.
3565 * @param pVmcbStateSave Pointer to a SVM VMCB controls area.
3566 * @param pszPrefix Caller specified string prefix.
3567 */
3568static void cpumR3InfoSvmVmcbStateSave(PCDBGFINFOHLP pHlp, PCSVMVMCBSTATESAVE pVmcbStateSave, const char *pszPrefix)
3569{
3570 AssertReturnVoid(pHlp);
3571 AssertReturnVoid(pVmcbStateSave);
3572
3573 char szEFlags[80];
3574 cpumR3InfoFormatFlags(&szEFlags[0], pVmcbStateSave->u64RFlags);
3575
3576 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->CS, "CS", pszPrefix);
3577 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->SS, "SS", pszPrefix);
3578 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->ES, "ES", pszPrefix);
3579 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->DS, "DS", pszPrefix);
3580 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->FS, "FS", pszPrefix);
3581 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->GS, "GS", pszPrefix);
3582 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->LDTR, "LDTR", pszPrefix);
3583 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->TR, "TR", pszPrefix);
3584 cpumR3InfoSvmVmcbXdtr(pHlp, &pVmcbStateSave->GDTR, "GDTR", pszPrefix);
3585 cpumR3InfoSvmVmcbXdtr(pHlp, &pVmcbStateSave->IDTR, "IDTR", pszPrefix);
3586 pHlp->pfnPrintf(pHlp, "%sCPL = %u\n", pszPrefix, pVmcbStateSave->u8CPL);
3587 pHlp->pfnPrintf(pHlp, "%sEFER = %#RX64\n", pszPrefix, pVmcbStateSave->u64EFER);
3588 pHlp->pfnPrintf(pHlp, "%sCR4 = %#RX64\n", pszPrefix, pVmcbStateSave->u64CR4);
3589 pHlp->pfnPrintf(pHlp, "%sCR3 = %#RX64\n", pszPrefix, pVmcbStateSave->u64CR3);
3590 pHlp->pfnPrintf(pHlp, "%sCR0 = %#RX64\n", pszPrefix, pVmcbStateSave->u64CR0);
3591 pHlp->pfnPrintf(pHlp, "%sDR7 = %#RX64\n", pszPrefix, pVmcbStateSave->u64DR7);
3592 pHlp->pfnPrintf(pHlp, "%sDR6 = %#RX64\n", pszPrefix, pVmcbStateSave->u64DR6);
3593 pHlp->pfnPrintf(pHlp, "%sRFLAGS = %#RX64 %31s\n", pszPrefix, pVmcbStateSave->u64RFlags, szEFlags);
3594 pHlp->pfnPrintf(pHlp, "%sRIP = %#RX64\n", pszPrefix, pVmcbStateSave->u64RIP);
3595 pHlp->pfnPrintf(pHlp, "%sRSP = %#RX64\n", pszPrefix, pVmcbStateSave->u64RSP);
3596 pHlp->pfnPrintf(pHlp, "%sRAX = %#RX64\n", pszPrefix, pVmcbStateSave->u64RAX);
3597 pHlp->pfnPrintf(pHlp, "%sSTAR = %#RX64\n", pszPrefix, pVmcbStateSave->u64STAR);
3598 pHlp->pfnPrintf(pHlp, "%sLSTAR = %#RX64\n", pszPrefix, pVmcbStateSave->u64LSTAR);
3599 pHlp->pfnPrintf(pHlp, "%sCSTAR = %#RX64\n", pszPrefix, pVmcbStateSave->u64CSTAR);
3600 pHlp->pfnPrintf(pHlp, "%sSFMASK = %#RX64\n", pszPrefix, pVmcbStateSave->u64SFMASK);
3601 pHlp->pfnPrintf(pHlp, "%sKERNELGSBASE = %#RX64\n", pszPrefix, pVmcbStateSave->u64KernelGSBase);
3602 pHlp->pfnPrintf(pHlp, "%sSysEnter CS = %#RX64\n", pszPrefix, pVmcbStateSave->u64SysEnterCS);
3603 pHlp->pfnPrintf(pHlp, "%sSysEnter EIP = %#RX64\n", pszPrefix, pVmcbStateSave->u64SysEnterEIP);
3604 pHlp->pfnPrintf(pHlp, "%sSysEnter ESP = %#RX64\n", pszPrefix, pVmcbStateSave->u64SysEnterESP);
3605 pHlp->pfnPrintf(pHlp, "%sCR2 = %#RX64\n", pszPrefix, pVmcbStateSave->u64CR2);
3606 pHlp->pfnPrintf(pHlp, "%sPAT = %#RX64\n", pszPrefix, pVmcbStateSave->u64PAT);
3607 pHlp->pfnPrintf(pHlp, "%sDBGCTL = %#RX64\n", pszPrefix, pVmcbStateSave->u64DBGCTL);
3608 pHlp->pfnPrintf(pHlp, "%sBR_FROM = %#RX64\n", pszPrefix, pVmcbStateSave->u64BR_FROM);
3609 pHlp->pfnPrintf(pHlp, "%sBR_TO = %#RX64\n", pszPrefix, pVmcbStateSave->u64BR_TO);
3610 pHlp->pfnPrintf(pHlp, "%sLASTXCPT_FROM = %#RX64\n", pszPrefix, pVmcbStateSave->u64LASTEXCPFROM);
3611 pHlp->pfnPrintf(pHlp, "%sLASTXCPT_TO = %#RX64\n", pszPrefix, pVmcbStateSave->u64LASTEXCPTO);
3612}
3613
3614
3615/**
3616 * Displays a virtual-VMCS.
3617 *
3618 * @param pVCpu The cross context virtual CPU structure.
3619 * @param pHlp The info helper functions.
3620 * @param pVmcs Pointer to a virtual VMCS.
3621 * @param pszPrefix Caller specified string prefix.
3622 */
3623static void cpumR3InfoVmxVmcs(PVMCPU pVCpu, PCDBGFINFOHLP pHlp, PCVMXVVMCS pVmcs, const char *pszPrefix)
3624{
3625 AssertReturnVoid(pHlp);
3626 AssertReturnVoid(pVmcs);
3627
3628 /* The string width of -4 used in the macros below to cover 'LDTR', 'GDTR', 'IDTR. */
3629#define CPUMVMX_DUMP_HOST_XDTR(a_pHlp, a_pVmcs, a_Seg, a_SegName, a_pszPrefix) \
3630 do { \
3631 (a_pHlp)->pfnPrintf((a_pHlp), " %s%-4s = {base=%016RX64}\n", \
3632 (a_pszPrefix), (a_SegName), (a_pVmcs)->u64Host##a_Seg##Base.u); \
3633 } while (0)
3634
3635#define CPUMVMX_DUMP_HOST_FS_GS_TR(a_pHlp, a_pVmcs, a_Seg, a_SegName, a_pszPrefix) \
3636 do { \
3637 (a_pHlp)->pfnPrintf((a_pHlp), " %s%-4s = {%04x base=%016RX64}\n", \
3638 (a_pszPrefix), (a_SegName), (a_pVmcs)->Host##a_Seg, (a_pVmcs)->u64Host##a_Seg##Base.u); \
3639 } while (0)
3640
3641#define CPUMVMX_DUMP_GUEST_SEGREG(a_pHlp, a_pVmcs, a_Seg, a_SegName, a_pszPrefix) \
3642 do { \
3643 (a_pHlp)->pfnPrintf((a_pHlp), " %s%-4s = {%04x base=%016RX64 limit=%08x flags=%04x}\n", \
3644 (a_pszPrefix), (a_SegName), (a_pVmcs)->Guest##a_Seg, (a_pVmcs)->u64Guest##a_Seg##Base.u, \
3645 (a_pVmcs)->u32Guest##a_Seg##Limit, (a_pVmcs)->u32Guest##a_Seg##Attr); \
3646 } while (0)
3647
3648#define CPUMVMX_DUMP_GUEST_XDTR(a_pHlp, a_pVmcs, a_Seg, a_SegName, a_pszPrefix) \
3649 do { \
3650 (a_pHlp)->pfnPrintf((a_pHlp), " %s%-4s = {base=%016RX64 limit=%08x}\n", \
3651 (a_pszPrefix), (a_SegName), (a_pVmcs)->u64Guest##a_Seg##Base.u, (a_pVmcs)->u32Guest##a_Seg##Limit); \
3652 } while (0)
3653
3654 /* Header. */
3655 {
3656 pHlp->pfnPrintf(pHlp, "%sHeader:\n", pszPrefix);
3657 pHlp->pfnPrintf(pHlp, " %sVMCS revision id = %#RX32\n", pszPrefix, pVmcs->u32VmcsRevId);
3658 pHlp->pfnPrintf(pHlp, " %sVMX-abort id = %#RX32 (%s)\n", pszPrefix, pVmcs->enmVmxAbort, VMXGetAbortDesc(pVmcs->enmVmxAbort));
3659 pHlp->pfnPrintf(pHlp, " %sVMCS state = %#x (%s)\n", pszPrefix, pVmcs->fVmcsState, VMXGetVmcsStateDesc(pVmcs->fVmcsState));
3660 }
3661
3662 /* Control fields. */
3663 {
3664 /* 16-bit. */
3665 pHlp->pfnPrintf(pHlp, "%sControl:\n", pszPrefix);
3666 pHlp->pfnPrintf(pHlp, " %sVPID = %#RX16\n", pszPrefix, pVmcs->u16Vpid);
3667 pHlp->pfnPrintf(pHlp, " %sPosted intr notify vector = %#RX16\n", pszPrefix, pVmcs->u16PostIntNotifyVector);
3668 pHlp->pfnPrintf(pHlp, " %sEPTP index = %#RX16\n", pszPrefix, pVmcs->u16EptpIndex);
3669
3670 /* 32-bit. */
3671 pHlp->pfnPrintf(pHlp, " %sPin ctls = %#RX32\n", pszPrefix, pVmcs->u32PinCtls);
3672 pHlp->pfnPrintf(pHlp, " %sProcessor ctls = %#RX32\n", pszPrefix, pVmcs->u32ProcCtls);
3673 pHlp->pfnPrintf(pHlp, " %sSecondary processor ctls = %#RX32\n", pszPrefix, pVmcs->u32ProcCtls2);
3674 pHlp->pfnPrintf(pHlp, " %sVM-exit ctls = %#RX32\n", pszPrefix, pVmcs->u32ExitCtls);
3675 pHlp->pfnPrintf(pHlp, " %sVM-entry ctls = %#RX32\n", pszPrefix, pVmcs->u32EntryCtls);
3676 pHlp->pfnPrintf(pHlp, " %sException bitmap = %#RX32\n", pszPrefix, pVmcs->u32XcptBitmap);
3677 pHlp->pfnPrintf(pHlp, " %sPage-fault mask = %#RX32\n", pszPrefix, pVmcs->u32XcptPFMask);
3678 pHlp->pfnPrintf(pHlp, " %sPage-fault match = %#RX32\n", pszPrefix, pVmcs->u32XcptPFMatch);
3679 pHlp->pfnPrintf(pHlp, " %sCR3-target count = %RU32\n", pszPrefix, pVmcs->u32Cr3TargetCount);
3680 pHlp->pfnPrintf(pHlp, " %sVM-exit MSR store count = %RU32\n", pszPrefix, pVmcs->u32ExitMsrStoreCount);
3681 pHlp->pfnPrintf(pHlp, " %sVM-exit MSR load count = %RU32\n", pszPrefix, pVmcs->u32ExitMsrLoadCount);
3682 pHlp->pfnPrintf(pHlp, " %sVM-entry MSR load count = %RU32\n", pszPrefix, pVmcs->u32EntryMsrLoadCount);
3683 pHlp->pfnPrintf(pHlp, " %sVM-entry interruption info = %#RX32\n", pszPrefix, pVmcs->u32EntryIntInfo);
3684 {
3685 uint32_t const fInfo = pVmcs->u32EntryIntInfo;
3686 uint8_t const uType = VMX_ENTRY_INT_INFO_TYPE(fInfo);
3687 pHlp->pfnPrintf(pHlp, " %sValid = %RTbool\n", pszPrefix, VMX_ENTRY_INT_INFO_IS_VALID(fInfo));
3688 pHlp->pfnPrintf(pHlp, " %sType = %#x (%s)\n", pszPrefix, uType, VMXGetEntryIntInfoTypeDesc(uType));
3689 pHlp->pfnPrintf(pHlp, " %sVector = %#x\n", pszPrefix, VMX_ENTRY_INT_INFO_VECTOR(fInfo));
3690 pHlp->pfnPrintf(pHlp, " %sNMI-unblocking-IRET = %RTbool\n", pszPrefix, VMX_ENTRY_INT_INFO_IS_NMI_UNBLOCK_IRET(fInfo));
3691 pHlp->pfnPrintf(pHlp, " %sError-code valid = %RTbool\n", pszPrefix, VMX_ENTRY_INT_INFO_IS_ERROR_CODE_VALID(fInfo));
3692 }
3693 pHlp->pfnPrintf(pHlp, " %sVM-entry xcpt error-code = %#RX32\n", pszPrefix, pVmcs->u32EntryXcptErrCode);
3694 pHlp->pfnPrintf(pHlp, " %sVM-entry instr length = %u byte(s)\n", pszPrefix, pVmcs->u32EntryInstrLen);
3695 pHlp->pfnPrintf(pHlp, " %sTPR threshold = %#RX32\n", pszPrefix, pVmcs->u32TprThreshold);
3696 pHlp->pfnPrintf(pHlp, " %sPLE gap = %#RX32\n", pszPrefix, pVmcs->u32PleGap);
3697 pHlp->pfnPrintf(pHlp, " %sPLE window = %#RX32\n", pszPrefix, pVmcs->u32PleWindow);
3698
3699 /* 64-bit. */
3700 pHlp->pfnPrintf(pHlp, " %sIO-bitmap A addr = %#RX64\n", pszPrefix, pVmcs->u64AddrIoBitmapA.u);
3701 pHlp->pfnPrintf(pHlp, " %sIO-bitmap B addr = %#RX64\n", pszPrefix, pVmcs->u64AddrIoBitmapB.u);
3702 pHlp->pfnPrintf(pHlp, " %sMSR-bitmap addr = %#RX64\n", pszPrefix, pVmcs->u64AddrMsrBitmap.u);
3703 pHlp->pfnPrintf(pHlp, " %sVM-exit MSR store addr = %#RX64\n", pszPrefix, pVmcs->u64AddrExitMsrStore.u);
3704 pHlp->pfnPrintf(pHlp, " %sVM-exit MSR load addr = %#RX64\n", pszPrefix, pVmcs->u64AddrExitMsrLoad.u);
3705 pHlp->pfnPrintf(pHlp, " %sVM-entry MSR load addr = %#RX64\n", pszPrefix, pVmcs->u64AddrEntryMsrLoad.u);
3706 pHlp->pfnPrintf(pHlp, " %sExecutive VMCS ptr = %#RX64\n", pszPrefix, pVmcs->u64ExecVmcsPtr.u);
3707 pHlp->pfnPrintf(pHlp, " %sPML addr = %#RX64\n", pszPrefix, pVmcs->u64AddrPml.u);
3708 pHlp->pfnPrintf(pHlp, " %sTSC offset = %#RX64\n", pszPrefix, pVmcs->u64TscOffset.u);
3709 pHlp->pfnPrintf(pHlp, " %sVirtual-APIC addr = %#RX64\n", pszPrefix, pVmcs->u64AddrVirtApic.u);
3710 pHlp->pfnPrintf(pHlp, " %sAPIC-access addr = %#RX64\n", pszPrefix, pVmcs->u64AddrApicAccess.u);
3711 pHlp->pfnPrintf(pHlp, " %sPosted-intr desc addr = %#RX64\n", pszPrefix, pVmcs->u64AddrPostedIntDesc.u);
3712 pHlp->pfnPrintf(pHlp, " %sVM-functions control = %#RX64\n", pszPrefix, pVmcs->u64VmFuncCtls.u);
3713 pHlp->pfnPrintf(pHlp, " %sEPTP ptr = %#RX64\n", pszPrefix, pVmcs->u64EptpPtr.u);
3714 pHlp->pfnPrintf(pHlp, " %sEOI-exit bitmap 0 = %#RX64\n", pszPrefix, pVmcs->u64EoiExitBitmap0.u);
3715 pHlp->pfnPrintf(pHlp, " %sEOI-exit bitmap 1 = %#RX64\n", pszPrefix, pVmcs->u64EoiExitBitmap1.u);
3716 pHlp->pfnPrintf(pHlp, " %sEOI-exit bitmap 2 = %#RX64\n", pszPrefix, pVmcs->u64EoiExitBitmap2.u);
3717 pHlp->pfnPrintf(pHlp, " %sEOI-exit bitmap 3 = %#RX64\n", pszPrefix, pVmcs->u64EoiExitBitmap3.u);
3718 pHlp->pfnPrintf(pHlp, " %sEPTP-list addr = %#RX64\n", pszPrefix, pVmcs->u64AddrEptpList.u);
3719 pHlp->pfnPrintf(pHlp, " %sVMREAD-bitmap addr = %#RX64\n", pszPrefix, pVmcs->u64AddrVmreadBitmap.u);
3720 pHlp->pfnPrintf(pHlp, " %sVMWRITE-bitmap addr = %#RX64\n", pszPrefix, pVmcs->u64AddrVmwriteBitmap.u);
3721 pHlp->pfnPrintf(pHlp, " %sVirt-Xcpt info addr = %#RX64\n", pszPrefix, pVmcs->u64AddrXcptVeInfo.u);
3722 pHlp->pfnPrintf(pHlp, " %sXSS-exiting bitmap = %#RX64\n", pszPrefix, pVmcs->u64XssExitBitmap.u);
3723 pHlp->pfnPrintf(pHlp, " %sENCLS-exiting bitmap = %#RX64\n", pszPrefix, pVmcs->u64EnclsExitBitmap.u);
3724 pHlp->pfnPrintf(pHlp, " %sSPP-table ptr = %#RX64\n", pszPrefix, pVmcs->u64SppTablePtr.u);
3725 pHlp->pfnPrintf(pHlp, " %sTSC multiplier = %#RX64\n", pszPrefix, pVmcs->u64TscMultiplier.u);
3726 pHlp->pfnPrintf(pHlp, " %sTertiary processor ctls = %#RX64\n", pszPrefix, pVmcs->u64ProcCtls3.u);
3727 pHlp->pfnPrintf(pHlp, " %sENCLV-exiting bitmap = %#RX64\n", pszPrefix, pVmcs->u64EnclvExitBitmap.u);
3728
3729 /* Natural width. */
3730 pHlp->pfnPrintf(pHlp, " %sCR0 guest/host mask = %#RX64\n", pszPrefix, pVmcs->u64Cr0Mask.u);
3731 pHlp->pfnPrintf(pHlp, " %sCR4 guest/host mask = %#RX64\n", pszPrefix, pVmcs->u64Cr4Mask.u);
3732 pHlp->pfnPrintf(pHlp, " %sCR0 read shadow = %#RX64\n", pszPrefix, pVmcs->u64Cr0ReadShadow.u);
3733 pHlp->pfnPrintf(pHlp, " %sCR4 read shadow = %#RX64\n", pszPrefix, pVmcs->u64Cr4ReadShadow.u);
3734 pHlp->pfnPrintf(pHlp, " %sCR3-target 0 = %#RX64\n", pszPrefix, pVmcs->u64Cr3Target0.u);
3735 pHlp->pfnPrintf(pHlp, " %sCR3-target 1 = %#RX64\n", pszPrefix, pVmcs->u64Cr3Target1.u);
3736 pHlp->pfnPrintf(pHlp, " %sCR3-target 2 = %#RX64\n", pszPrefix, pVmcs->u64Cr3Target2.u);
3737 pHlp->pfnPrintf(pHlp, " %sCR3-target 3 = %#RX64\n", pszPrefix, pVmcs->u64Cr3Target3.u);
3738 }
3739
3740 /* Guest state. */
3741 {
3742 char szEFlags[80];
3743 cpumR3InfoFormatFlags(&szEFlags[0], pVmcs->u64GuestRFlags.u);
3744 pHlp->pfnPrintf(pHlp, "%sGuest state:\n", pszPrefix);
3745
3746 /* 16-bit. */
3747 CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Cs, "CS", pszPrefix);
3748 CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Ss, "SS", pszPrefix);
3749 CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Es, "ES", pszPrefix);
3750 CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Ds, "DS", pszPrefix);
3751 CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Fs, "FS", pszPrefix);
3752 CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Gs, "GS", pszPrefix);
3753 CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Ldtr, "LDTR", pszPrefix);
3754 CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Tr, "TR", pszPrefix);
3755 CPUMVMX_DUMP_GUEST_XDTR(pHlp, pVmcs, Gdtr, "GDTR", pszPrefix);
3756 CPUMVMX_DUMP_GUEST_XDTR(pHlp, pVmcs, Idtr, "IDTR", pszPrefix);
3757 pHlp->pfnPrintf(pHlp, " %sInterrupt status = %#RX16\n", pszPrefix, pVmcs->u16GuestIntStatus);
3758 pHlp->pfnPrintf(pHlp, " %sPML index = %#RX16\n", pszPrefix, pVmcs->u16PmlIndex);
3759
3760 /* 32-bit. */
3761 pHlp->pfnPrintf(pHlp, " %sInterruptibility state = %#RX32\n", pszPrefix, pVmcs->u32GuestIntrState);
3762 pHlp->pfnPrintf(pHlp, " %sActivity state = %#RX32\n", pszPrefix, pVmcs->u32GuestActivityState);
3763 pHlp->pfnPrintf(pHlp, " %sSMBASE = %#RX32\n", pszPrefix, pVmcs->u32GuestSmBase);
3764 pHlp->pfnPrintf(pHlp, " %sSysEnter CS = %#RX32\n", pszPrefix, pVmcs->u32GuestSysenterCS);
3765 pHlp->pfnPrintf(pHlp, " %sVMX-preemption timer value = %#RX32\n", pszPrefix, pVmcs->u32PreemptTimer);
3766
3767 /* 64-bit. */
3768 pHlp->pfnPrintf(pHlp, " %sVMCS link ptr = %#RX64\n", pszPrefix, pVmcs->u64VmcsLinkPtr.u);
3769 pHlp->pfnPrintf(pHlp, " %sDBGCTL = %#RX64\n", pszPrefix, pVmcs->u64GuestDebugCtlMsr.u);
3770 pHlp->pfnPrintf(pHlp, " %sPAT = %#RX64\n", pszPrefix, pVmcs->u64GuestPatMsr.u);
3771 pHlp->pfnPrintf(pHlp, " %sEFER = %#RX64\n", pszPrefix, pVmcs->u64GuestEferMsr.u);
3772 pHlp->pfnPrintf(pHlp, " %sPERFGLOBALCTRL = %#RX64\n", pszPrefix, pVmcs->u64GuestPerfGlobalCtlMsr.u);
3773 pHlp->pfnPrintf(pHlp, " %sPDPTE 0 = %#RX64\n", pszPrefix, pVmcs->u64GuestPdpte0.u);
3774 pHlp->pfnPrintf(pHlp, " %sPDPTE 1 = %#RX64\n", pszPrefix, pVmcs->u64GuestPdpte1.u);
3775 pHlp->pfnPrintf(pHlp, " %sPDPTE 2 = %#RX64\n", pszPrefix, pVmcs->u64GuestPdpte2.u);
3776 pHlp->pfnPrintf(pHlp, " %sPDPTE 3 = %#RX64\n", pszPrefix, pVmcs->u64GuestPdpte3.u);
3777 pHlp->pfnPrintf(pHlp, " %sBNDCFGS = %#RX64\n", pszPrefix, pVmcs->u64GuestBndcfgsMsr.u);
3778 pHlp->pfnPrintf(pHlp, " %sRTIT_CTL = %#RX64\n", pszPrefix, pVmcs->u64GuestRtitCtlMsr.u);
3779 pHlp->pfnPrintf(pHlp, " %sPKRS = %#RX64\n", pszPrefix, pVmcs->u64GuestPkrsMsr.u);
3780
3781 /* Natural width. */
3782 pHlp->pfnPrintf(pHlp, " %sCR0 = %#RX64\n", pszPrefix, pVmcs->u64GuestCr0.u);
3783 pHlp->pfnPrintf(pHlp, " %sCR3 = %#RX64\n", pszPrefix, pVmcs->u64GuestCr3.u);
3784 pHlp->pfnPrintf(pHlp, " %sCR4 = %#RX64\n", pszPrefix, pVmcs->u64GuestCr4.u);
3785 pHlp->pfnPrintf(pHlp, " %sDR7 = %#RX64\n", pszPrefix, pVmcs->u64GuestDr7.u);
3786 pHlp->pfnPrintf(pHlp, " %sRSP = %#RX64\n", pszPrefix, pVmcs->u64GuestRsp.u);
3787 pHlp->pfnPrintf(pHlp, " %sRIP = %#RX64\n", pszPrefix, pVmcs->u64GuestRip.u);
3788 pHlp->pfnPrintf(pHlp, " %sRFLAGS = %#RX64 %31s\n",pszPrefix, pVmcs->u64GuestRFlags.u, szEFlags);
3789 pHlp->pfnPrintf(pHlp, " %sPending debug xcpts = %#RX64\n", pszPrefix, pVmcs->u64GuestPendingDbgXcpts.u);
3790 pHlp->pfnPrintf(pHlp, " %sSysEnter ESP = %#RX64\n", pszPrefix, pVmcs->u64GuestSysenterEsp.u);
3791 pHlp->pfnPrintf(pHlp, " %sSysEnter EIP = %#RX64\n", pszPrefix, pVmcs->u64GuestSysenterEip.u);
3792 pHlp->pfnPrintf(pHlp, " %sS_CET = %#RX64\n", pszPrefix, pVmcs->u64GuestSCetMsr.u);
3793 pHlp->pfnPrintf(pHlp, " %sSSP = %#RX64\n", pszPrefix, pVmcs->u64GuestSsp.u);
3794 pHlp->pfnPrintf(pHlp, " %sINTERRUPT_SSP_TABLE_ADDR = %#RX64\n", pszPrefix, pVmcs->u64GuestIntrSspTableAddrMsr.u);
3795 }
3796
3797 /* Host state. */
3798 {
3799 pHlp->pfnPrintf(pHlp, "%sHost state:\n", pszPrefix);
3800
3801 /* 16-bit. */
3802 pHlp->pfnPrintf(pHlp, " %sCS = %#RX16\n", pszPrefix, pVmcs->HostCs);
3803 pHlp->pfnPrintf(pHlp, " %sSS = %#RX16\n", pszPrefix, pVmcs->HostSs);
3804 pHlp->pfnPrintf(pHlp, " %sDS = %#RX16\n", pszPrefix, pVmcs->HostDs);
3805 pHlp->pfnPrintf(pHlp, " %sES = %#RX16\n", pszPrefix, pVmcs->HostEs);
3806 CPUMVMX_DUMP_HOST_FS_GS_TR(pHlp, pVmcs, Fs, "FS", pszPrefix);
3807 CPUMVMX_DUMP_HOST_FS_GS_TR(pHlp, pVmcs, Gs, "GS", pszPrefix);
3808 CPUMVMX_DUMP_HOST_FS_GS_TR(pHlp, pVmcs, Tr, "TR", pszPrefix);
3809 CPUMVMX_DUMP_HOST_XDTR(pHlp, pVmcs, Gdtr, "GDTR", pszPrefix);
3810 CPUMVMX_DUMP_HOST_XDTR(pHlp, pVmcs, Idtr, "IDTR", pszPrefix);
3811
3812 /* 32-bit. */
3813 pHlp->pfnPrintf(pHlp, " %sSysEnter CS = %#RX32\n", pszPrefix, pVmcs->u32HostSysenterCs);
3814
3815 /* 64-bit. */
3816 pHlp->pfnPrintf(pHlp, " %sEFER = %#RX64\n", pszPrefix, pVmcs->u64HostEferMsr.u);
3817 pHlp->pfnPrintf(pHlp, " %sPAT = %#RX64\n", pszPrefix, pVmcs->u64HostPatMsr.u);
3818 pHlp->pfnPrintf(pHlp, " %sPERFGLOBALCTRL = %#RX64\n", pszPrefix, pVmcs->u64HostPerfGlobalCtlMsr.u);
3819 pHlp->pfnPrintf(pHlp, " %sPKRS = %#RX64\n", pszPrefix, pVmcs->u64HostPkrsMsr.u);
3820
3821 /* Natural width. */
3822 pHlp->pfnPrintf(pHlp, " %sCR0 = %#RX64\n", pszPrefix, pVmcs->u64HostCr0.u);
3823 pHlp->pfnPrintf(pHlp, " %sCR3 = %#RX64\n", pszPrefix, pVmcs->u64HostCr3.u);
3824 pHlp->pfnPrintf(pHlp, " %sCR4 = %#RX64\n", pszPrefix, pVmcs->u64HostCr4.u);
3825 pHlp->pfnPrintf(pHlp, " %sSysEnter ESP = %#RX64\n", pszPrefix, pVmcs->u64HostSysenterEsp.u);
3826 pHlp->pfnPrintf(pHlp, " %sSysEnter EIP = %#RX64\n", pszPrefix, pVmcs->u64HostSysenterEip.u);
3827 pHlp->pfnPrintf(pHlp, " %sRSP = %#RX64\n", pszPrefix, pVmcs->u64HostRsp.u);
3828 pHlp->pfnPrintf(pHlp, " %sRIP = %#RX64\n", pszPrefix, pVmcs->u64HostRip.u);
3829 pHlp->pfnPrintf(pHlp, " %sS_CET = %#RX64\n", pszPrefix, pVmcs->u64HostSCetMsr.u);
3830 pHlp->pfnPrintf(pHlp, " %sSSP = %#RX64\n", pszPrefix, pVmcs->u64HostSsp.u);
3831 pHlp->pfnPrintf(pHlp, " %sINTERRUPT_SSP_TABLE_ADDR = %#RX64\n", pszPrefix, pVmcs->u64HostIntrSspTableAddrMsr.u);
3832
3833 }
3834
3835 /* Read-only fields. */
3836 {
3837 pHlp->pfnPrintf(pHlp, "%sRead-only data fields:\n", pszPrefix);
3838
3839 /* 16-bit (none currently). */
3840
3841 /* 32-bit. */
3842 pHlp->pfnPrintf(pHlp, " %sExit reason = %u (%s)\n", pszPrefix, pVmcs->u32RoExitReason, HMGetVmxExitName(pVmcs->u32RoExitReason));
3843 pHlp->pfnPrintf(pHlp, " %sExit qualification = %#RX64\n", pszPrefix, pVmcs->u64RoExitQual.u);
3844 pHlp->pfnPrintf(pHlp, " %sVM-instruction error = %#RX32\n", pszPrefix, pVmcs->u32RoVmInstrError);
3845 pHlp->pfnPrintf(pHlp, " %sVM-exit intr info = %#RX32\n", pszPrefix, pVmcs->u32RoExitIntInfo);
3846 {
3847 uint32_t const fInfo = pVmcs->u32RoExitIntInfo;
3848 uint8_t const uType = VMX_EXIT_INT_INFO_TYPE(fInfo);
3849 pHlp->pfnPrintf(pHlp, " %sValid = %RTbool\n", pszPrefix, VMX_EXIT_INT_INFO_IS_VALID(fInfo));
3850 pHlp->pfnPrintf(pHlp, " %sType = %#x (%s)\n", pszPrefix, uType, VMXGetExitIntInfoTypeDesc(uType));
3851 pHlp->pfnPrintf(pHlp, " %sVector = %#x\n", pszPrefix, VMX_EXIT_INT_INFO_VECTOR(fInfo));
3852 pHlp->pfnPrintf(pHlp, " %sNMI-unblocking-IRET = %RTbool\n", pszPrefix, VMX_EXIT_INT_INFO_IS_NMI_UNBLOCK_IRET(fInfo));
3853 pHlp->pfnPrintf(pHlp, " %sError-code valid = %RTbool\n", pszPrefix, VMX_EXIT_INT_INFO_IS_ERROR_CODE_VALID(fInfo));
3854 }
3855 pHlp->pfnPrintf(pHlp, " %sVM-exit intr error-code = %#RX32\n", pszPrefix, pVmcs->u32RoExitIntErrCode);
3856 pHlp->pfnPrintf(pHlp, " %sIDT-vectoring info = %#RX32\n", pszPrefix, pVmcs->u32RoIdtVectoringInfo);
3857 {
3858 uint32_t const fInfo = pVmcs->u32RoIdtVectoringInfo;
3859 uint8_t const uType = VMX_IDT_VECTORING_INFO_TYPE(fInfo);
3860 pHlp->pfnPrintf(pHlp, " %sValid = %RTbool\n", pszPrefix, VMX_IDT_VECTORING_INFO_IS_VALID(fInfo));
3861 pHlp->pfnPrintf(pHlp, " %sType = %#x (%s)\n", pszPrefix, uType, VMXGetIdtVectoringInfoTypeDesc(uType));
3862 pHlp->pfnPrintf(pHlp, " %sVector = %#x\n", pszPrefix, VMX_IDT_VECTORING_INFO_VECTOR(fInfo));
3863 pHlp->pfnPrintf(pHlp, " %sError-code valid = %RTbool\n", pszPrefix, VMX_IDT_VECTORING_INFO_IS_ERROR_CODE_VALID(fInfo));
3864 }
3865 pHlp->pfnPrintf(pHlp, " %sIDT-vectoring error-code = %#RX32\n", pszPrefix, pVmcs->u32RoIdtVectoringErrCode);
3866 pHlp->pfnPrintf(pHlp, " %sVM-exit instruction length = %u byte(s)\n", pszPrefix, pVmcs->u32RoExitInstrLen);
3867 pHlp->pfnPrintf(pHlp, " %sVM-exit instruction info = %#RX64\n", pszPrefix, pVmcs->u32RoExitInstrInfo);
3868
3869 /* 64-bit. */
3870 pHlp->pfnPrintf(pHlp, " %sGuest-physical addr = %#RX64\n", pszPrefix, pVmcs->u64RoGuestPhysAddr.u);
3871
3872 /* Natural width. */
3873 pHlp->pfnPrintf(pHlp, " %sI/O RCX = %#RX64\n", pszPrefix, pVmcs->u64RoIoRcx.u);
3874 pHlp->pfnPrintf(pHlp, " %sI/O RSI = %#RX64\n", pszPrefix, pVmcs->u64RoIoRsi.u);
3875 pHlp->pfnPrintf(pHlp, " %sI/O RDI = %#RX64\n", pszPrefix, pVmcs->u64RoIoRdi.u);
3876 pHlp->pfnPrintf(pHlp, " %sI/O RIP = %#RX64\n", pszPrefix, pVmcs->u64RoIoRip.u);
3877 pHlp->pfnPrintf(pHlp, " %sGuest-linear addr = %#RX64\n", pszPrefix, pVmcs->u64RoGuestLinearAddr.u);
3878 }
3879
3880#ifdef DEBUG_ramshankar
3881 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
3882 {
3883 void *pvPage = RTMemTmpAllocZ(VMX_V_VIRT_APIC_SIZE);
3884 Assert(pvPage);
3885 RTGCPHYS const GCPhysVirtApic = pVmcs->u64AddrVirtApic.u;
3886 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), pvPage, GCPhysVirtApic, VMX_V_VIRT_APIC_SIZE);
3887 if (RT_SUCCESS(rc))
3888 {
3889 pHlp->pfnPrintf(pHlp, " %sVirtual-APIC page\n", pszPrefix);
3890 pHlp->pfnPrintf(pHlp, "%.*Rhxs\n", VMX_V_VIRT_APIC_SIZE, pvPage);
3891 pHlp->pfnPrintf(pHlp, "\n");
3892 }
3893 RTMemTmpFree(pvPage);
3894 }
3895#else
3896 NOREF(pVCpu);
3897#endif
3898
3899#undef CPUMVMX_DUMP_HOST_XDTR
3900#undef CPUMVMX_DUMP_HOST_FS_GS_TR
3901#undef CPUMVMX_DUMP_GUEST_SEGREG
3902#undef CPUMVMX_DUMP_GUEST_XDTR
3903}
3904
3905
3906/**
3907 * Display the guest's hardware-virtualization cpu state.
3908 *
3909 * @param pVM The cross context VM structure.
3910 * @param pHlp The info helper functions.
3911 * @param pszArgs Arguments, ignored.
3912 */
3913static DECLCALLBACK(void) cpumR3InfoGuestHwvirt(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3914{
3915 RT_NOREF(pszArgs);
3916
3917 PVMCPU pVCpu = VMMGetCpu(pVM);
3918 if (!pVCpu)
3919 pVCpu = pVM->apCpusR3[0];
3920
3921 PCCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
3922 bool const fSvm = pVM->cpum.s.GuestFeatures.fSvm;
3923 bool const fVmx = pVM->cpum.s.GuestFeatures.fVmx;
3924
3925 pHlp->pfnPrintf(pHlp, "VCPU[%u] hardware virtualization state:\n", pVCpu->idCpu);
3926 pHlp->pfnPrintf(pHlp, "fLocalForcedActions = %#RX32\n", pCtx->hwvirt.fLocalForcedActions);
3927 pHlp->pfnPrintf(pHlp, "In nested-guest hwvirt mode = %RTbool\n", CPUMIsGuestInNestedHwvirtMode(pCtx));
3928
3929 if (fSvm)
3930 {
3931 pHlp->pfnPrintf(pHlp, "SVM hwvirt state:\n");
3932 pHlp->pfnPrintf(pHlp, " fGif = %RTbool\n", pCtx->hwvirt.fGif);
3933
3934 char szEFlags[80];
3935 cpumR3InfoFormatFlags(&szEFlags[0], pCtx->hwvirt.svm.HostState.rflags.u);
3936 pHlp->pfnPrintf(pHlp, " uMsrHSavePa = %#RX64\n", pCtx->hwvirt.svm.uMsrHSavePa);
3937 pHlp->pfnPrintf(pHlp, " GCPhysVmcb = %#RGp\n", pCtx->hwvirt.svm.GCPhysVmcb);
3938 pHlp->pfnPrintf(pHlp, " VmcbCtrl:\n");
3939 cpumR3InfoSvmVmcbCtrl(pHlp, &pCtx->hwvirt.svm.Vmcb.ctrl, " " /* pszPrefix */);
3940 pHlp->pfnPrintf(pHlp, " VmcbStateSave:\n");
3941 cpumR3InfoSvmVmcbStateSave(pHlp, &pCtx->hwvirt.svm.Vmcb.guest, " " /* pszPrefix */);
3942 pHlp->pfnPrintf(pHlp, " HostState:\n");
3943 pHlp->pfnPrintf(pHlp, " uEferMsr = %#RX64\n", pCtx->hwvirt.svm.HostState.uEferMsr);
3944 pHlp->pfnPrintf(pHlp, " uCr0 = %#RX64\n", pCtx->hwvirt.svm.HostState.uCr0);
3945 pHlp->pfnPrintf(pHlp, " uCr4 = %#RX64\n", pCtx->hwvirt.svm.HostState.uCr4);
3946 pHlp->pfnPrintf(pHlp, " uCr3 = %#RX64\n", pCtx->hwvirt.svm.HostState.uCr3);
3947 pHlp->pfnPrintf(pHlp, " uRip = %#RX64\n", pCtx->hwvirt.svm.HostState.uRip);
3948 pHlp->pfnPrintf(pHlp, " uRsp = %#RX64\n", pCtx->hwvirt.svm.HostState.uRsp);
3949 pHlp->pfnPrintf(pHlp, " uRax = %#RX64\n", pCtx->hwvirt.svm.HostState.uRax);
3950 pHlp->pfnPrintf(pHlp, " rflags = %#RX64 %31s\n", pCtx->hwvirt.svm.HostState.rflags.u64, szEFlags);
3951 PCCPUMSELREG pSelEs = &pCtx->hwvirt.svm.HostState.es;
3952 pHlp->pfnPrintf(pHlp, " es = {%04x base=%016RX64 limit=%08x flags=%08x}\n",
3953 pSelEs->Sel, pSelEs->u64Base, pSelEs->u32Limit, pSelEs->Attr.u);
3954 PCCPUMSELREG pSelCs = &pCtx->hwvirt.svm.HostState.cs;
3955 pHlp->pfnPrintf(pHlp, " cs = {%04x base=%016RX64 limit=%08x flags=%08x}\n",
3956 pSelCs->Sel, pSelCs->u64Base, pSelCs->u32Limit, pSelCs->Attr.u);
3957 PCCPUMSELREG pSelSs = &pCtx->hwvirt.svm.HostState.ss;
3958 pHlp->pfnPrintf(pHlp, " ss = {%04x base=%016RX64 limit=%08x flags=%08x}\n",
3959 pSelSs->Sel, pSelSs->u64Base, pSelSs->u32Limit, pSelSs->Attr.u);
3960 PCCPUMSELREG pSelDs = &pCtx->hwvirt.svm.HostState.ds;
3961 pHlp->pfnPrintf(pHlp, " ds = {%04x base=%016RX64 limit=%08x flags=%08x}\n",
3962 pSelDs->Sel, pSelDs->u64Base, pSelDs->u32Limit, pSelDs->Attr.u);
3963 pHlp->pfnPrintf(pHlp, " gdtr = %016RX64:%04x\n", pCtx->hwvirt.svm.HostState.gdtr.pGdt,
3964 pCtx->hwvirt.svm.HostState.gdtr.cbGdt);
3965 pHlp->pfnPrintf(pHlp, " idtr = %016RX64:%04x\n", pCtx->hwvirt.svm.HostState.idtr.pIdt,
3966 pCtx->hwvirt.svm.HostState.idtr.cbIdt);
3967 pHlp->pfnPrintf(pHlp, " cPauseFilter = %RU16\n", pCtx->hwvirt.svm.cPauseFilter);
3968 pHlp->pfnPrintf(pHlp, " cPauseFilterThreshold = %RU32\n", pCtx->hwvirt.svm.cPauseFilterThreshold);
3969 pHlp->pfnPrintf(pHlp, " fInterceptEvents = %u\n", pCtx->hwvirt.svm.fInterceptEvents);
3970 }
3971 else if (fVmx)
3972 {
3973 pHlp->pfnPrintf(pHlp, "VMX hwvirt state:\n");
3974 pHlp->pfnPrintf(pHlp, " GCPhysVmxon = %#RGp\n", pCtx->hwvirt.vmx.GCPhysVmxon);
3975 pHlp->pfnPrintf(pHlp, " GCPhysVmcs = %#RGp\n", pCtx->hwvirt.vmx.GCPhysVmcs);
3976 pHlp->pfnPrintf(pHlp, " GCPhysShadowVmcs = %#RGp\n", pCtx->hwvirt.vmx.GCPhysShadowVmcs);
3977 pHlp->pfnPrintf(pHlp, " enmDiag = %u (%s)\n", pCtx->hwvirt.vmx.enmDiag, HMGetVmxDiagDesc(pCtx->hwvirt.vmx.enmDiag));
3978 pHlp->pfnPrintf(pHlp, " uDiagAux = %#RX64\n", pCtx->hwvirt.vmx.uDiagAux);
3979 pHlp->pfnPrintf(pHlp, " enmAbort = %u (%s)\n", pCtx->hwvirt.vmx.enmAbort, VMXGetAbortDesc(pCtx->hwvirt.vmx.enmAbort));
3980 pHlp->pfnPrintf(pHlp, " uAbortAux = %u (%#x)\n", pCtx->hwvirt.vmx.uAbortAux, pCtx->hwvirt.vmx.uAbortAux);
3981 pHlp->pfnPrintf(pHlp, " fInVmxRootMode = %RTbool\n", pCtx->hwvirt.vmx.fInVmxRootMode);
3982 pHlp->pfnPrintf(pHlp, " fInVmxNonRootMode = %RTbool\n", pCtx->hwvirt.vmx.fInVmxNonRootMode);
3983 pHlp->pfnPrintf(pHlp, " fInterceptEvents = %RTbool\n", pCtx->hwvirt.vmx.fInterceptEvents);
3984 pHlp->pfnPrintf(pHlp, " fNmiUnblockingIret = %RTbool\n", pCtx->hwvirt.vmx.fNmiUnblockingIret);
3985 pHlp->pfnPrintf(pHlp, " uFirstPauseLoopTick = %RX64\n", pCtx->hwvirt.vmx.uFirstPauseLoopTick);
3986 pHlp->pfnPrintf(pHlp, " uPrevPauseTick = %RX64\n", pCtx->hwvirt.vmx.uPrevPauseTick);
3987 pHlp->pfnPrintf(pHlp, " uEntryTick = %RX64\n", pCtx->hwvirt.vmx.uEntryTick);
3988 pHlp->pfnPrintf(pHlp, " offVirtApicWrite = %#RX16\n", pCtx->hwvirt.vmx.offVirtApicWrite);
3989 pHlp->pfnPrintf(pHlp, " fVirtNmiBlocking = %RTbool\n", pCtx->hwvirt.vmx.fVirtNmiBlocking);
3990 pHlp->pfnPrintf(pHlp, " VMCS cache:\n");
3991 cpumR3InfoVmxVmcs(pVCpu, pHlp, &pCtx->hwvirt.vmx.Vmcs, " " /* pszPrefix */);
3992 }
3993 else
3994 pHlp->pfnPrintf(pHlp, "Hwvirt state disabled.\n");
3995
3996#undef CPUMHWVIRTDUMP_NONE
3997#undef CPUMHWVIRTDUMP_COMMON
3998#undef CPUMHWVIRTDUMP_SVM
3999#undef CPUMHWVIRTDUMP_VMX
4000#undef CPUMHWVIRTDUMP_LAST
4001#undef CPUMHWVIRTDUMP_ALL
4002}
4003
4004/**
4005 * Display the current guest instruction
4006 *
4007 * @param pVM The cross context VM structure.
4008 * @param pHlp The info helper functions.
4009 * @param pszArgs Arguments, ignored.
4010 */
4011static DECLCALLBACK(void) cpumR3InfoGuestInstr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
4012{
4013 NOREF(pszArgs);
4014
4015 PVMCPU pVCpu = VMMGetCpu(pVM);
4016 if (!pVCpu)
4017 pVCpu = pVM->apCpusR3[0];
4018
4019 char szInstruction[256];
4020 szInstruction[0] = '\0';
4021 DBGFR3DisasInstrCurrent(pVCpu, szInstruction, sizeof(szInstruction));
4022 pHlp->pfnPrintf(pHlp, "\nCPUM%u: %s\n\n", pVCpu->idCpu, szInstruction);
4023}
4024
4025
4026/**
4027 * Display the hypervisor cpu state.
4028 *
4029 * @param pVM The cross context VM structure.
4030 * @param pHlp The info helper functions.
4031 * @param pszArgs Arguments, ignored.
4032 */
4033static DECLCALLBACK(void) cpumR3InfoHyper(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
4034{
4035 PVMCPU pVCpu = VMMGetCpu(pVM);
4036 if (!pVCpu)
4037 pVCpu = pVM->apCpusR3[0];
4038
4039 CPUMDUMPTYPE enmType;
4040 const char *pszComment;
4041 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
4042 pHlp->pfnPrintf(pHlp, "Hypervisor CPUM state: %s\n", pszComment);
4043
4044 pHlp->pfnPrintf(pHlp,
4045 ".dr0=%016RX64 .dr1=%016RX64 .dr2=%016RX64 .dr3=%016RX64\n"
4046 ".dr4=%016RX64 .dr5=%016RX64 .dr6=%016RX64 .dr7=%016RX64\n",
4047 pVCpu->cpum.s.Hyper.dr[0], pVCpu->cpum.s.Hyper.dr[1], pVCpu->cpum.s.Hyper.dr[2], pVCpu->cpum.s.Hyper.dr[3],
4048 pVCpu->cpum.s.Hyper.dr[4], pVCpu->cpum.s.Hyper.dr[5], pVCpu->cpum.s.Hyper.dr[6], pVCpu->cpum.s.Hyper.dr[7]);
4049 pHlp->pfnPrintf(pHlp, "CR4OrMask=%#x CR4AndMask=%#x\n", pVM->cpum.s.CR4.OrMask, pVM->cpum.s.CR4.AndMask);
4050}
4051
4052
4053/**
4054 * Display the host cpu state.
4055 *
4056 * @param pVM The cross context VM structure.
4057 * @param pHlp The info helper functions.
4058 * @param pszArgs Arguments, ignored.
4059 */
4060static DECLCALLBACK(void) cpumR3InfoHost(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
4061{
4062 CPUMDUMPTYPE enmType;
4063 const char *pszComment;
4064 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
4065 pHlp->pfnPrintf(pHlp, "Host CPUM state: %s\n", pszComment);
4066
4067 PVMCPU pVCpu = VMMGetCpu(pVM);
4068 if (!pVCpu)
4069 pVCpu = pVM->apCpusR3[0];
4070 PCPUMHOSTCTX pCtx = &pVCpu->cpum.s.Host;
4071
4072 /*
4073 * Format the EFLAGS.
4074 */
4075 uint64_t efl = pCtx->rflags;
4076 char szEFlags[80];
4077 cpumR3InfoFormatFlags(&szEFlags[0], efl);
4078
4079 /*
4080 * Format the registers.
4081 */
4082 pHlp->pfnPrintf(pHlp,
4083 "rax=xxxxxxxxxxxxxxxx rbx=%016RX64 rcx=xxxxxxxxxxxxxxxx\n"
4084 "rdx=xxxxxxxxxxxxxxxx rsi=%016RX64 rdi=%016RX64\n"
4085 "rip=xxxxxxxxxxxxxxxx rsp=%016RX64 rbp=%016RX64\n"
4086 " r8=xxxxxxxxxxxxxxxx r9=xxxxxxxxxxxxxxxx r10=%016RX64\n"
4087 "r11=%016RX64 r12=%016RX64 r13=%016RX64\n"
4088 "r14=%016RX64 r15=%016RX64\n"
4089 "iopl=%d %31s\n"
4090 "cs=%04x ds=%04x es=%04x fs=%04x gs=%04x eflags=%08RX64\n"
4091 "cr0=%016RX64 cr2=xxxxxxxxxxxxxxxx cr3=%016RX64\n"
4092 "cr4=%016RX64 ldtr=%04x tr=%04x\n"
4093 "dr[0]=%016RX64 dr[1]=%016RX64 dr[2]=%016RX64\n"
4094 "dr[3]=%016RX64 dr[6]=%016RX64 dr[7]=%016RX64\n"
4095 "gdtr=%016RX64:%04x idtr=%016RX64:%04x\n"
4096 "SysEnter={cs=%04x eip=%08x esp=%08x}\n"
4097 "FSbase=%016RX64 GSbase=%016RX64 efer=%08RX64\n"
4098 ,
4099 /*pCtx->rax,*/ pCtx->rbx, /*pCtx->rcx,
4100 pCtx->rdx,*/ pCtx->rsi, pCtx->rdi,
4101 /*pCtx->rip,*/ pCtx->rsp, pCtx->rbp,
4102 /*pCtx->r8, pCtx->r9,*/ pCtx->r10,
4103 pCtx->r11, pCtx->r12, pCtx->r13,
4104 pCtx->r14, pCtx->r15,
4105 X86_EFL_GET_IOPL(efl), szEFlags,
4106 pCtx->cs, pCtx->ds, pCtx->es, pCtx->fs, pCtx->gs, efl,
4107 pCtx->cr0, /*pCtx->cr2,*/ pCtx->cr3,
4108 pCtx->cr4, pCtx->ldtr, pCtx->tr,
4109 pCtx->dr0, pCtx->dr1, pCtx->dr2,
4110 pCtx->dr3, pCtx->dr6, pCtx->dr7,
4111 pCtx->gdtr.uAddr, pCtx->gdtr.cb, pCtx->idtr.uAddr, pCtx->idtr.cb,
4112 pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp,
4113 pCtx->FSbase, pCtx->GSbase, pCtx->efer);
4114}
4115
4116/**
4117 * Structure used when disassembling and instructions in DBGF.
4118 * This is used so the reader function can get the stuff it needs.
4119 */
4120typedef struct CPUMDISASSTATE
4121{
4122 /** Pointer to the CPU structure. */
4123 PDISCPUSTATE pCpu;
4124 /** Pointer to the VM. */
4125 PVM pVM;
4126 /** Pointer to the VMCPU. */
4127 PVMCPU pVCpu;
4128 /** Pointer to the first byte in the segment. */
4129 RTGCUINTPTR GCPtrSegBase;
4130 /** Pointer to the byte after the end of the segment. (might have wrapped!) */
4131 RTGCUINTPTR GCPtrSegEnd;
4132 /** The size of the segment minus 1. */
4133 RTGCUINTPTR cbSegLimit;
4134 /** Pointer to the current page - R3 Ptr. */
4135 void const *pvPageR3;
4136 /** Pointer to the current page - GC Ptr. */
4137 RTGCPTR pvPageGC;
4138 /** The lock information that PGMPhysReleasePageMappingLock needs. */
4139 PGMPAGEMAPLOCK PageMapLock;
4140 /** Whether the PageMapLock is valid or not. */
4141 bool fLocked;
4142 /** 64 bits mode or not. */
4143 bool f64Bits;
4144} CPUMDISASSTATE, *PCPUMDISASSTATE;
4145
4146
4147/**
4148 * @callback_method_impl{FNDISREADBYTES}
4149 */
4150static DECLCALLBACK(int) cpumR3DisasInstrRead(PDISCPUSTATE pDis, uint8_t offInstr, uint8_t cbMinRead, uint8_t cbMaxRead)
4151{
4152 PCPUMDISASSTATE pState = (PCPUMDISASSTATE)pDis->pvUser;
4153 for (;;)
4154 {
4155 RTGCUINTPTR GCPtr = pDis->uInstrAddr + offInstr + pState->GCPtrSegBase;
4156
4157 /*
4158 * Need to update the page translation?
4159 */
4160 if ( !pState->pvPageR3
4161 || (GCPtr >> PAGE_SHIFT) != (pState->pvPageGC >> PAGE_SHIFT))
4162 {
4163 /* translate the address */
4164 pState->pvPageGC = GCPtr & PAGE_BASE_GC_MASK;
4165
4166 /* Release mapping lock previously acquired. */
4167 if (pState->fLocked)
4168 PGMPhysReleasePageMappingLock(pState->pVM, &pState->PageMapLock);
4169 int rc = PGMPhysGCPtr2CCPtrReadOnly(pState->pVCpu, pState->pvPageGC, &pState->pvPageR3, &pState->PageMapLock);
4170 if (RT_SUCCESS(rc))
4171 pState->fLocked = true;
4172 else
4173 {
4174 pState->fLocked = false;
4175 pState->pvPageR3 = NULL;
4176 return rc;
4177 }
4178 }
4179
4180 /*
4181 * Check the segment limit.
4182 */
4183 if (!pState->f64Bits && pDis->uInstrAddr + offInstr > pState->cbSegLimit)
4184 return VERR_OUT_OF_SELECTOR_BOUNDS;
4185
4186 /*
4187 * Calc how much we can read.
4188 */
4189 uint32_t cb = PAGE_SIZE - (GCPtr & PAGE_OFFSET_MASK);
4190 if (!pState->f64Bits)
4191 {
4192 RTGCUINTPTR cbSeg = pState->GCPtrSegEnd - GCPtr;
4193 if (cb > cbSeg && cbSeg)
4194 cb = cbSeg;
4195 }
4196 if (cb > cbMaxRead)
4197 cb = cbMaxRead;
4198
4199 /*
4200 * Read and advance or exit.
4201 */
4202 memcpy(&pDis->abInstr[offInstr], (uint8_t *)pState->pvPageR3 + (GCPtr & PAGE_OFFSET_MASK), cb);
4203 offInstr += (uint8_t)cb;
4204 if (cb >= cbMinRead)
4205 {
4206 pDis->cbCachedInstr = offInstr;
4207 return VINF_SUCCESS;
4208 }
4209 cbMinRead -= (uint8_t)cb;
4210 cbMaxRead -= (uint8_t)cb;
4211 }
4212}
4213
4214
4215/**
4216 * Disassemble an instruction and return the information in the provided structure.
4217 *
4218 * @returns VBox status code.
4219 * @param pVM The cross context VM structure.
4220 * @param pVCpu The cross context virtual CPU structure.
4221 * @param pCtx Pointer to the guest CPU context.
4222 * @param GCPtrPC Program counter (relative to CS) to disassemble from.
4223 * @param pCpu Disassembly state.
4224 * @param pszPrefix String prefix for logging (debug only).
4225 *
4226 */
4227VMMR3DECL(int) CPUMR3DisasmInstrCPU(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, RTGCPTR GCPtrPC, PDISCPUSTATE pCpu,
4228 const char *pszPrefix)
4229{
4230 CPUMDISASSTATE State;
4231 int rc;
4232
4233 const PGMMODE enmMode = PGMGetGuestMode(pVCpu);
4234 State.pCpu = pCpu;
4235 State.pvPageGC = 0;
4236 State.pvPageR3 = NULL;
4237 State.pVM = pVM;
4238 State.pVCpu = pVCpu;
4239 State.fLocked = false;
4240 State.f64Bits = false;
4241
4242 /*
4243 * Get selector information.
4244 */
4245 DISCPUMODE enmDisCpuMode;
4246 if ( (pCtx->cr0 & X86_CR0_PE)
4247 && pCtx->eflags.Bits.u1VM == 0)
4248 {
4249 if (!CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->cs))
4250 return VERR_CPUM_HIDDEN_CS_LOAD_ERROR;
4251 State.f64Bits = enmMode >= PGMMODE_AMD64 && pCtx->cs.Attr.n.u1Long;
4252 State.GCPtrSegBase = pCtx->cs.u64Base;
4253 State.GCPtrSegEnd = pCtx->cs.u32Limit + 1 + (RTGCUINTPTR)pCtx->cs.u64Base;
4254 State.cbSegLimit = pCtx->cs.u32Limit;
4255 enmDisCpuMode = (State.f64Bits)
4256 ? DISCPUMODE_64BIT
4257 : pCtx->cs.Attr.n.u1DefBig
4258 ? DISCPUMODE_32BIT
4259 : DISCPUMODE_16BIT;
4260 }
4261 else
4262 {
4263 /* real or V86 mode */
4264 enmDisCpuMode = DISCPUMODE_16BIT;
4265 State.GCPtrSegBase = pCtx->cs.Sel * 16;
4266 State.GCPtrSegEnd = 0xFFFFFFFF;
4267 State.cbSegLimit = 0xFFFFFFFF;
4268 }
4269
4270 /*
4271 * Disassemble the instruction.
4272 */
4273 uint32_t cbInstr;
4274#ifndef LOG_ENABLED
4275 RT_NOREF_PV(pszPrefix);
4276 rc = DISInstrWithReader(GCPtrPC, enmDisCpuMode, cpumR3DisasInstrRead, &State, pCpu, &cbInstr);
4277 if (RT_SUCCESS(rc))
4278 {
4279#else
4280 char szOutput[160];
4281 rc = DISInstrToStrWithReader(GCPtrPC, enmDisCpuMode, cpumR3DisasInstrRead, &State,
4282 pCpu, &cbInstr, szOutput, sizeof(szOutput));
4283 if (RT_SUCCESS(rc))
4284 {
4285 /* log it */
4286 if (pszPrefix)
4287 Log(("%s-CPU%d: %s", pszPrefix, pVCpu->idCpu, szOutput));
4288 else
4289 Log(("%s", szOutput));
4290#endif
4291 rc = VINF_SUCCESS;
4292 }
4293 else
4294 Log(("CPUMR3DisasmInstrCPU: DISInstr failed for %04X:%RGv rc=%Rrc\n", pCtx->cs.Sel, GCPtrPC, rc));
4295
4296 /* Release mapping lock acquired in cpumR3DisasInstrRead. */
4297 if (State.fLocked)
4298 PGMPhysReleasePageMappingLock(pVM, &State.PageMapLock);
4299
4300 return rc;
4301}
4302
4303
4304
4305/**
4306 * API for controlling a few of the CPU features found in CR4.
4307 *
4308 * Currently only X86_CR4_TSD is accepted as input.
4309 *
4310 * @returns VBox status code.
4311 *
4312 * @param pVM The cross context VM structure.
4313 * @param fOr The CR4 OR mask.
4314 * @param fAnd The CR4 AND mask.
4315 */
4316VMMR3DECL(int) CPUMR3SetCR4Feature(PVM pVM, RTHCUINTREG fOr, RTHCUINTREG fAnd)
4317{
4318 AssertMsgReturn(!(fOr & ~(X86_CR4_TSD)), ("%#x\n", fOr), VERR_INVALID_PARAMETER);
4319 AssertMsgReturn((fAnd & ~(X86_CR4_TSD)) == ~(X86_CR4_TSD), ("%#x\n", fAnd), VERR_INVALID_PARAMETER);
4320
4321 pVM->cpum.s.CR4.OrMask &= fAnd;
4322 pVM->cpum.s.CR4.OrMask |= fOr;
4323
4324 return VINF_SUCCESS;
4325}
4326
4327
4328/**
4329 * Called when the ring-3 init phase completes.
4330 *
4331 * @returns VBox status code.
4332 * @param pVM The cross context VM structure.
4333 * @param enmWhat Which init phase.
4334 */
4335VMMR3DECL(int) CPUMR3InitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
4336{
4337 switch (enmWhat)
4338 {
4339 case VMINITCOMPLETED_RING3:
4340 {
4341 /*
4342 * Figure out if the guest uses 32-bit or 64-bit FPU state at runtime for 64-bit capable VMs.
4343 * Only applicable/used on 64-bit hosts, refer CPUMR0A.asm. See @bugref{7138}.
4344 */
4345 bool const fSupportsLongMode = VMR3IsLongModeAllowed(pVM);
4346 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
4347 {
4348 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
4349
4350 /* While loading a saved-state we fix it up in, cpumR3LoadDone(). */
4351 if (fSupportsLongMode)
4352 pVCpu->cpum.s.fUseFlags |= CPUM_USE_SUPPORTS_LONGMODE;
4353 }
4354
4355 /* Register statistic counters for MSRs. */
4356 cpumR3MsrRegStats(pVM);
4357
4358 /* Create VMX-preemption timer for nested guests if required. Must be
4359 done here as CPUM is initialized before TM. */
4360 if (pVM->cpum.s.GuestFeatures.fVmx)
4361 {
4362 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
4363 {
4364 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
4365 char szName[32];
4366 RTStrPrintf(szName, sizeof(szName), "Nested VMX-preemption %u", idCpu);
4367 int rc = TMR3TimerCreate(pVM, TMCLOCK_VIRTUAL_SYNC, cpumR3VmxPreemptTimerCallback, pVCpu,
4368 TMTIMER_FLAGS_RING0, szName, &pVCpu->cpum.s.hNestedVmxPreemptTimer);
4369 AssertLogRelRCReturn(rc, rc);
4370 }
4371 }
4372 break;
4373 }
4374
4375 default:
4376 break;
4377 }
4378 return VINF_SUCCESS;
4379}
4380
4381
4382/**
4383 * Called when the ring-0 init phases completed.
4384 *
4385 * @param pVM The cross context VM structure.
4386 */
4387VMMR3DECL(void) CPUMR3LogCpuIdAndMsrFeatures(PVM pVM)
4388{
4389 /*
4390 * Enable log buffering as we're going to log a lot of lines.
4391 */
4392 bool const fOldBuffered = RTLogRelSetBuffering(true /*fBuffered*/);
4393
4394 /*
4395 * Log the cpuid.
4396 */
4397 RTCPUSET OnlineSet;
4398 LogRel(("CPUM: Logical host processors: %u present, %u max, %u online, online mask: %016RX64\n",
4399 (unsigned)RTMpGetPresentCount(), (unsigned)RTMpGetCount(), (unsigned)RTMpGetOnlineCount(),
4400 RTCpuSetToU64(RTMpGetOnlineSet(&OnlineSet)) ));
4401 RTCPUID cCores = RTMpGetCoreCount();
4402 if (cCores)
4403 LogRel(("CPUM: Physical host cores: %u\n", (unsigned)cCores));
4404 LogRel(("************************* CPUID dump ************************\n"));
4405 DBGFR3Info(pVM->pUVM, "cpuid", "verbose", DBGFR3InfoLogRelHlp());
4406 LogRel(("\n"));
4407 DBGFR3_INFO_LOG_SAFE(pVM, "cpuid", "verbose"); /* macro */
4408 LogRel(("******************** End of CPUID dump **********************\n"));
4409
4410 /*
4411 * Log VT-x extended features.
4412 *
4413 * SVM features are currently all covered under CPUID so there is nothing
4414 * to do here for SVM.
4415 */
4416 if (pVM->cpum.s.HostFeatures.fVmx)
4417 {
4418 LogRel(("*********************** VT-x features ***********************\n"));
4419 DBGFR3Info(pVM->pUVM, "cpumvmxfeat", "default", DBGFR3InfoLogRelHlp());
4420 LogRel(("\n"));
4421 LogRel(("******************* End of VT-x features ********************\n"));
4422 }
4423
4424 /*
4425 * Restore the log buffering state to what it was previously.
4426 */
4427 RTLogRelSetBuffering(fOldBuffered);
4428}
4429
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette