VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/CPUM.cpp@ 91358

Last change on this file since 91358 was 91358, checked in by vboxsync, 3 years ago

VMM: Nested VMX: bugref:10092 More consistent naming of EPT/VPID caps.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 234.2 KB
Line 
1/* $Id: CPUM.cpp 91358 2021-09-24 09:49:20Z vboxsync $ */
2/** @file
3 * CPUM - CPU Monitor / Manager.
4 */
5
6/*
7 * Copyright (C) 2006-2020 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/** @page pg_cpum CPUM - CPU Monitor / Manager
19 *
20 * The CPU Monitor / Manager keeps track of all the CPU registers. It is
21 * also responsible for lazy FPU handling and some of the context loading
22 * in raw mode.
23 *
24 * There are three CPU contexts, the most important one is the guest one (GC).
25 * When running in raw-mode (RC) there is a special hyper context for the VMM
26 * part that floats around inside the guest address space. When running in
27 * raw-mode, CPUM also maintains a host context for saving and restoring
28 * registers across world switches. This latter is done in cooperation with the
29 * world switcher (@see pg_vmm).
30 *
31 * @see grp_cpum
32 *
33 * @section sec_cpum_fpu FPU / SSE / AVX / ++ state.
34 *
35 * TODO: proper write up, currently just some notes.
36 *
37 * The ring-0 FPU handling per OS:
38 *
39 * - 64-bit Windows uses XMM registers in the kernel as part of the calling
40 * convention (Visual C++ doesn't seem to have a way to disable
41 * generating such code either), so CR0.TS/EM are always zero from what I
42 * can tell. We are also forced to always load/save the guest XMM0-XMM15
43 * registers when entering/leaving guest context. Interrupt handlers
44 * using FPU/SSE will offically have call save and restore functions
45 * exported by the kernel, if the really really have to use the state.
46 *
47 * - 32-bit windows does lazy FPU handling, I think, probably including
48 * lazying saving. The Windows Internals book states that it's a bad
49 * idea to use the FPU in kernel space. However, it looks like it will
50 * restore the FPU state of the current thread in case of a kernel \#NM.
51 * Interrupt handlers should be same as for 64-bit.
52 *
53 * - Darwin allows taking \#NM in kernel space, restoring current thread's
54 * state if I read the code correctly. It saves the FPU state of the
55 * outgoing thread, and uses CR0.TS to lazily load the state of the
56 * incoming one. No idea yet how the FPU is treated by interrupt
57 * handlers, i.e. whether they are allowed to disable the state or
58 * something.
59 *
60 * - Linux also allows \#NM in kernel space (don't know since when), and
61 * uses CR0.TS for lazy loading. Saves outgoing thread's state, lazy
62 * loads the incoming unless configured to agressivly load it. Interrupt
63 * handlers can ask whether they're allowed to use the FPU, and may
64 * freely trash the state if Linux thinks it has saved the thread's state
65 * already. This is a problem.
66 *
67 * - Solaris will, from what I can tell, panic if it gets an \#NM in kernel
68 * context. When switching threads, the kernel will save the state of
69 * the outgoing thread and lazy load the incoming one using CR0.TS.
70 * There are a few routines in seeblk.s which uses the SSE unit in ring-0
71 * to do stuff, HAT are among the users. The routines there will
72 * manually clear CR0.TS and save the XMM registers they use only if
73 * CR0.TS was zero upon entry. They will skip it when not, because as
74 * mentioned above, the FPU state is saved when switching away from a
75 * thread and CR0.TS set to 1, so when CR0.TS is 1 there is nothing to
76 * preserve. This is a problem if we restore CR0.TS to 1 after loading
77 * the guest state.
78 *
79 * - FreeBSD - no idea yet.
80 *
81 * - OS/2 does not allow \#NMs in kernel space IIRC. Does lazy loading,
82 * possibly also lazy saving. Interrupts must preserve the CR0.TS+EM &
83 * FPU states.
84 *
85 * Up to r107425 (2016-05-24) we would only temporarily modify CR0.TS/EM while
86 * saving and restoring the host and guest states. The motivation for this
87 * change is that we want to be able to emulate SSE instruction in ring-0 (IEM).
88 *
89 * Starting with that change, we will leave CR0.TS=EM=0 after saving the host
90 * state and only restore it once we've restore the host FPU state. This has the
91 * accidental side effect of triggering Solaris to preserve XMM registers in
92 * sseblk.s. When CR0 was changed by saving the FPU state, CPUM must now inform
93 * the VT-x (HMVMX) code about it as it caches the CR0 value in the VMCS.
94 *
95 *
96 * @section sec_cpum_logging Logging Level Assignments.
97 *
98 * Following log level assignments:
99 * - Log6 is used for FPU state management.
100 * - Log7 is used for FPU state actualization.
101 *
102 */
103
104
105/*********************************************************************************************************************************
106* Header Files *
107*********************************************************************************************************************************/
108#define LOG_GROUP LOG_GROUP_CPUM
109#include <VBox/vmm/cpum.h>
110#include <VBox/vmm/cpumdis.h>
111#include <VBox/vmm/cpumctx-v1_6.h>
112#include <VBox/vmm/pgm.h>
113#include <VBox/vmm/apic.h>
114#include <VBox/vmm/mm.h>
115#include <VBox/vmm/em.h>
116#include <VBox/vmm/iem.h>
117#include <VBox/vmm/selm.h>
118#include <VBox/vmm/dbgf.h>
119#include <VBox/vmm/hm.h>
120#include <VBox/vmm/hmvmxinline.h>
121#include <VBox/vmm/ssm.h>
122#include "CPUMInternal.h"
123#include <VBox/vmm/vm.h>
124
125#include <VBox/param.h>
126#include <VBox/dis.h>
127#include <VBox/err.h>
128#include <VBox/log.h>
129#include <iprt/asm-amd64-x86.h>
130#include <iprt/assert.h>
131#include <iprt/cpuset.h>
132#include <iprt/mem.h>
133#include <iprt/mp.h>
134#include <iprt/string.h>
135
136
137/*********************************************************************************************************************************
138* Defined Constants And Macros *
139*********************************************************************************************************************************/
140/**
141 * This was used in the saved state up to the early life of version 14.
142 *
143 * It indicates that we may have some out-of-sync hidden segement registers.
144 * It is only relevant for raw-mode.
145 */
146#define CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID RT_BIT(12)
147
148
149/*********************************************************************************************************************************
150* Structures and Typedefs *
151*********************************************************************************************************************************/
152
153/**
154 * What kind of cpu info dump to perform.
155 */
156typedef enum CPUMDUMPTYPE
157{
158 CPUMDUMPTYPE_TERSE,
159 CPUMDUMPTYPE_DEFAULT,
160 CPUMDUMPTYPE_VERBOSE
161} CPUMDUMPTYPE;
162/** Pointer to a cpu info dump type. */
163typedef CPUMDUMPTYPE *PCPUMDUMPTYPE;
164
165
166/*********************************************************************************************************************************
167* Internal Functions *
168*********************************************************************************************************************************/
169static DECLCALLBACK(int) cpumR3LiveExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uPass);
170static DECLCALLBACK(int) cpumR3SaveExec(PVM pVM, PSSMHANDLE pSSM);
171static DECLCALLBACK(int) cpumR3LoadPrep(PVM pVM, PSSMHANDLE pSSM);
172static DECLCALLBACK(int) cpumR3LoadExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
173static DECLCALLBACK(int) cpumR3LoadDone(PVM pVM, PSSMHANDLE pSSM);
174static DECLCALLBACK(void) cpumR3InfoAll(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
175static DECLCALLBACK(void) cpumR3InfoGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
176static DECLCALLBACK(void) cpumR3InfoGuestHwvirt(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
177static DECLCALLBACK(void) cpumR3InfoGuestInstr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
178static DECLCALLBACK(void) cpumR3InfoHyper(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
179static DECLCALLBACK(void) cpumR3InfoHost(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
180
181
182/*********************************************************************************************************************************
183* Global Variables *
184*********************************************************************************************************************************/
185/** Saved state field descriptors for CPUMCTX. */
186static const SSMFIELD g_aCpumCtxFields[] =
187{
188 SSMFIELD_ENTRY( CPUMCTX, rdi),
189 SSMFIELD_ENTRY( CPUMCTX, rsi),
190 SSMFIELD_ENTRY( CPUMCTX, rbp),
191 SSMFIELD_ENTRY( CPUMCTX, rax),
192 SSMFIELD_ENTRY( CPUMCTX, rbx),
193 SSMFIELD_ENTRY( CPUMCTX, rdx),
194 SSMFIELD_ENTRY( CPUMCTX, rcx),
195 SSMFIELD_ENTRY( CPUMCTX, rsp),
196 SSMFIELD_ENTRY( CPUMCTX, rflags),
197 SSMFIELD_ENTRY( CPUMCTX, rip),
198 SSMFIELD_ENTRY( CPUMCTX, r8),
199 SSMFIELD_ENTRY( CPUMCTX, r9),
200 SSMFIELD_ENTRY( CPUMCTX, r10),
201 SSMFIELD_ENTRY( CPUMCTX, r11),
202 SSMFIELD_ENTRY( CPUMCTX, r12),
203 SSMFIELD_ENTRY( CPUMCTX, r13),
204 SSMFIELD_ENTRY( CPUMCTX, r14),
205 SSMFIELD_ENTRY( CPUMCTX, r15),
206 SSMFIELD_ENTRY( CPUMCTX, es.Sel),
207 SSMFIELD_ENTRY( CPUMCTX, es.ValidSel),
208 SSMFIELD_ENTRY( CPUMCTX, es.fFlags),
209 SSMFIELD_ENTRY( CPUMCTX, es.u64Base),
210 SSMFIELD_ENTRY( CPUMCTX, es.u32Limit),
211 SSMFIELD_ENTRY( CPUMCTX, es.Attr),
212 SSMFIELD_ENTRY( CPUMCTX, cs.Sel),
213 SSMFIELD_ENTRY( CPUMCTX, cs.ValidSel),
214 SSMFIELD_ENTRY( CPUMCTX, cs.fFlags),
215 SSMFIELD_ENTRY( CPUMCTX, cs.u64Base),
216 SSMFIELD_ENTRY( CPUMCTX, cs.u32Limit),
217 SSMFIELD_ENTRY( CPUMCTX, cs.Attr),
218 SSMFIELD_ENTRY( CPUMCTX, ss.Sel),
219 SSMFIELD_ENTRY( CPUMCTX, ss.ValidSel),
220 SSMFIELD_ENTRY( CPUMCTX, ss.fFlags),
221 SSMFIELD_ENTRY( CPUMCTX, ss.u64Base),
222 SSMFIELD_ENTRY( CPUMCTX, ss.u32Limit),
223 SSMFIELD_ENTRY( CPUMCTX, ss.Attr),
224 SSMFIELD_ENTRY( CPUMCTX, ds.Sel),
225 SSMFIELD_ENTRY( CPUMCTX, ds.ValidSel),
226 SSMFIELD_ENTRY( CPUMCTX, ds.fFlags),
227 SSMFIELD_ENTRY( CPUMCTX, ds.u64Base),
228 SSMFIELD_ENTRY( CPUMCTX, ds.u32Limit),
229 SSMFIELD_ENTRY( CPUMCTX, ds.Attr),
230 SSMFIELD_ENTRY( CPUMCTX, fs.Sel),
231 SSMFIELD_ENTRY( CPUMCTX, fs.ValidSel),
232 SSMFIELD_ENTRY( CPUMCTX, fs.fFlags),
233 SSMFIELD_ENTRY( CPUMCTX, fs.u64Base),
234 SSMFIELD_ENTRY( CPUMCTX, fs.u32Limit),
235 SSMFIELD_ENTRY( CPUMCTX, fs.Attr),
236 SSMFIELD_ENTRY( CPUMCTX, gs.Sel),
237 SSMFIELD_ENTRY( CPUMCTX, gs.ValidSel),
238 SSMFIELD_ENTRY( CPUMCTX, gs.fFlags),
239 SSMFIELD_ENTRY( CPUMCTX, gs.u64Base),
240 SSMFIELD_ENTRY( CPUMCTX, gs.u32Limit),
241 SSMFIELD_ENTRY( CPUMCTX, gs.Attr),
242 SSMFIELD_ENTRY( CPUMCTX, cr0),
243 SSMFIELD_ENTRY( CPUMCTX, cr2),
244 SSMFIELD_ENTRY( CPUMCTX, cr3),
245 SSMFIELD_ENTRY( CPUMCTX, cr4),
246 SSMFIELD_ENTRY( CPUMCTX, dr[0]),
247 SSMFIELD_ENTRY( CPUMCTX, dr[1]),
248 SSMFIELD_ENTRY( CPUMCTX, dr[2]),
249 SSMFIELD_ENTRY( CPUMCTX, dr[3]),
250 SSMFIELD_ENTRY( CPUMCTX, dr[6]),
251 SSMFIELD_ENTRY( CPUMCTX, dr[7]),
252 SSMFIELD_ENTRY( CPUMCTX, gdtr.cbGdt),
253 SSMFIELD_ENTRY( CPUMCTX, gdtr.pGdt),
254 SSMFIELD_ENTRY( CPUMCTX, idtr.cbIdt),
255 SSMFIELD_ENTRY( CPUMCTX, idtr.pIdt),
256 SSMFIELD_ENTRY( CPUMCTX, SysEnter.cs),
257 SSMFIELD_ENTRY( CPUMCTX, SysEnter.eip),
258 SSMFIELD_ENTRY( CPUMCTX, SysEnter.esp),
259 SSMFIELD_ENTRY( CPUMCTX, msrEFER),
260 SSMFIELD_ENTRY( CPUMCTX, msrSTAR),
261 SSMFIELD_ENTRY( CPUMCTX, msrPAT),
262 SSMFIELD_ENTRY( CPUMCTX, msrLSTAR),
263 SSMFIELD_ENTRY( CPUMCTX, msrCSTAR),
264 SSMFIELD_ENTRY( CPUMCTX, msrSFMASK),
265 SSMFIELD_ENTRY( CPUMCTX, msrKERNELGSBASE),
266 SSMFIELD_ENTRY( CPUMCTX, ldtr.Sel),
267 SSMFIELD_ENTRY( CPUMCTX, ldtr.ValidSel),
268 SSMFIELD_ENTRY( CPUMCTX, ldtr.fFlags),
269 SSMFIELD_ENTRY( CPUMCTX, ldtr.u64Base),
270 SSMFIELD_ENTRY( CPUMCTX, ldtr.u32Limit),
271 SSMFIELD_ENTRY( CPUMCTX, ldtr.Attr),
272 SSMFIELD_ENTRY( CPUMCTX, tr.Sel),
273 SSMFIELD_ENTRY( CPUMCTX, tr.ValidSel),
274 SSMFIELD_ENTRY( CPUMCTX, tr.fFlags),
275 SSMFIELD_ENTRY( CPUMCTX, tr.u64Base),
276 SSMFIELD_ENTRY( CPUMCTX, tr.u32Limit),
277 SSMFIELD_ENTRY( CPUMCTX, tr.Attr),
278 SSMFIELD_ENTRY_VER( CPUMCTX, aXcr[0], CPUM_SAVED_STATE_VERSION_XSAVE),
279 SSMFIELD_ENTRY_VER( CPUMCTX, aXcr[1], CPUM_SAVED_STATE_VERSION_XSAVE),
280 SSMFIELD_ENTRY_VER( CPUMCTX, fXStateMask, CPUM_SAVED_STATE_VERSION_XSAVE),
281 SSMFIELD_ENTRY_TERM()
282};
283
284/** Saved state field descriptors for SVM nested hardware-virtualization
285 * Host State. */
286static const SSMFIELD g_aSvmHwvirtHostState[] =
287{
288 SSMFIELD_ENTRY( SVMHOSTSTATE, uEferMsr),
289 SSMFIELD_ENTRY( SVMHOSTSTATE, uCr0),
290 SSMFIELD_ENTRY( SVMHOSTSTATE, uCr4),
291 SSMFIELD_ENTRY( SVMHOSTSTATE, uCr3),
292 SSMFIELD_ENTRY( SVMHOSTSTATE, uRip),
293 SSMFIELD_ENTRY( SVMHOSTSTATE, uRsp),
294 SSMFIELD_ENTRY( SVMHOSTSTATE, uRax),
295 SSMFIELD_ENTRY( SVMHOSTSTATE, rflags),
296 SSMFIELD_ENTRY( SVMHOSTSTATE, es.Sel),
297 SSMFIELD_ENTRY( SVMHOSTSTATE, es.ValidSel),
298 SSMFIELD_ENTRY( SVMHOSTSTATE, es.fFlags),
299 SSMFIELD_ENTRY( SVMHOSTSTATE, es.u64Base),
300 SSMFIELD_ENTRY( SVMHOSTSTATE, es.u32Limit),
301 SSMFIELD_ENTRY( SVMHOSTSTATE, es.Attr),
302 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.Sel),
303 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.ValidSel),
304 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.fFlags),
305 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.u64Base),
306 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.u32Limit),
307 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.Attr),
308 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.Sel),
309 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.ValidSel),
310 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.fFlags),
311 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.u64Base),
312 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.u32Limit),
313 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.Attr),
314 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.Sel),
315 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.ValidSel),
316 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.fFlags),
317 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.u64Base),
318 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.u32Limit),
319 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.Attr),
320 SSMFIELD_ENTRY( SVMHOSTSTATE, gdtr.cbGdt),
321 SSMFIELD_ENTRY( SVMHOSTSTATE, gdtr.pGdt),
322 SSMFIELD_ENTRY( SVMHOSTSTATE, idtr.cbIdt),
323 SSMFIELD_ENTRY( SVMHOSTSTATE, idtr.pIdt),
324 SSMFIELD_ENTRY_IGNORE(SVMHOSTSTATE, abPadding),
325 SSMFIELD_ENTRY_TERM()
326};
327
328/** Saved state field descriptors for VMX nested hardware-virtualization
329 * VMCS. */
330static const SSMFIELD g_aVmxHwvirtVmcs[] =
331{
332 SSMFIELD_ENTRY( VMXVVMCS, u32VmcsRevId),
333 SSMFIELD_ENTRY( VMXVVMCS, enmVmxAbort),
334 SSMFIELD_ENTRY( VMXVVMCS, fVmcsState),
335 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au8Padding0),
336 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au32Reserved0),
337
338 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, u16Reserved0),
339
340 SSMFIELD_ENTRY( VMXVVMCS, u32RoVmInstrError),
341 SSMFIELD_ENTRY( VMXVVMCS, u32RoExitReason),
342 SSMFIELD_ENTRY( VMXVVMCS, u32RoExitIntInfo),
343 SSMFIELD_ENTRY( VMXVVMCS, u32RoExitIntErrCode),
344 SSMFIELD_ENTRY( VMXVVMCS, u32RoIdtVectoringInfo),
345 SSMFIELD_ENTRY( VMXVVMCS, u32RoIdtVectoringErrCode),
346 SSMFIELD_ENTRY( VMXVVMCS, u32RoExitInstrLen),
347 SSMFIELD_ENTRY( VMXVVMCS, u32RoExitInstrInfo),
348 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au32RoReserved2),
349
350 SSMFIELD_ENTRY( VMXVVMCS, u64RoGuestPhysAddr),
351 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved1),
352
353 SSMFIELD_ENTRY( VMXVVMCS, u64RoExitQual),
354 SSMFIELD_ENTRY( VMXVVMCS, u64RoIoRcx),
355 SSMFIELD_ENTRY( VMXVVMCS, u64RoIoRsi),
356 SSMFIELD_ENTRY( VMXVVMCS, u64RoIoRdi),
357 SSMFIELD_ENTRY( VMXVVMCS, u64RoIoRip),
358 SSMFIELD_ENTRY( VMXVVMCS, u64RoGuestLinearAddr),
359 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved5),
360
361 SSMFIELD_ENTRY( VMXVVMCS, u16Vpid),
362 SSMFIELD_ENTRY( VMXVVMCS, u16PostIntNotifyVector),
363 SSMFIELD_ENTRY( VMXVVMCS, u16EptpIndex),
364 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au16Reserved0),
365
366 SSMFIELD_ENTRY( VMXVVMCS, u32PinCtls),
367 SSMFIELD_ENTRY( VMXVVMCS, u32ProcCtls),
368 SSMFIELD_ENTRY( VMXVVMCS, u32XcptBitmap),
369 SSMFIELD_ENTRY( VMXVVMCS, u32XcptPFMask),
370 SSMFIELD_ENTRY( VMXVVMCS, u32XcptPFMatch),
371 SSMFIELD_ENTRY( VMXVVMCS, u32Cr3TargetCount),
372 SSMFIELD_ENTRY( VMXVVMCS, u32ExitCtls),
373 SSMFIELD_ENTRY( VMXVVMCS, u32ExitMsrStoreCount),
374 SSMFIELD_ENTRY( VMXVVMCS, u32ExitMsrLoadCount),
375 SSMFIELD_ENTRY( VMXVVMCS, u32EntryCtls),
376 SSMFIELD_ENTRY( VMXVVMCS, u32EntryMsrLoadCount),
377 SSMFIELD_ENTRY( VMXVVMCS, u32EntryIntInfo),
378 SSMFIELD_ENTRY( VMXVVMCS, u32EntryXcptErrCode),
379 SSMFIELD_ENTRY( VMXVVMCS, u32EntryInstrLen),
380 SSMFIELD_ENTRY( VMXVVMCS, u32TprThreshold),
381 SSMFIELD_ENTRY( VMXVVMCS, u32ProcCtls2),
382 SSMFIELD_ENTRY( VMXVVMCS, u32PleGap),
383 SSMFIELD_ENTRY( VMXVVMCS, u32PleWindow),
384 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au32Reserved1),
385
386 SSMFIELD_ENTRY( VMXVVMCS, u64AddrIoBitmapA),
387 SSMFIELD_ENTRY( VMXVVMCS, u64AddrIoBitmapB),
388 SSMFIELD_ENTRY( VMXVVMCS, u64AddrMsrBitmap),
389 SSMFIELD_ENTRY( VMXVVMCS, u64AddrExitMsrStore),
390 SSMFIELD_ENTRY( VMXVVMCS, u64AddrExitMsrLoad),
391 SSMFIELD_ENTRY( VMXVVMCS, u64AddrEntryMsrLoad),
392 SSMFIELD_ENTRY( VMXVVMCS, u64ExecVmcsPtr),
393 SSMFIELD_ENTRY( VMXVVMCS, u64AddrPml),
394 SSMFIELD_ENTRY( VMXVVMCS, u64TscOffset),
395 SSMFIELD_ENTRY( VMXVVMCS, u64AddrVirtApic),
396 SSMFIELD_ENTRY( VMXVVMCS, u64AddrApicAccess),
397 SSMFIELD_ENTRY( VMXVVMCS, u64AddrPostedIntDesc),
398 SSMFIELD_ENTRY( VMXVVMCS, u64VmFuncCtls),
399 SSMFIELD_ENTRY( VMXVVMCS, u64EptpPtr),
400 SSMFIELD_ENTRY( VMXVVMCS, u64EoiExitBitmap0),
401 SSMFIELD_ENTRY( VMXVVMCS, u64EoiExitBitmap1),
402 SSMFIELD_ENTRY( VMXVVMCS, u64EoiExitBitmap2),
403 SSMFIELD_ENTRY( VMXVVMCS, u64EoiExitBitmap3),
404 SSMFIELD_ENTRY( VMXVVMCS, u64AddrEptpList),
405 SSMFIELD_ENTRY( VMXVVMCS, u64AddrVmreadBitmap),
406 SSMFIELD_ENTRY( VMXVVMCS, u64AddrVmwriteBitmap),
407 SSMFIELD_ENTRY( VMXVVMCS, u64AddrXcptVeInfo),
408 SSMFIELD_ENTRY( VMXVVMCS, u64XssExitBitmap),
409 SSMFIELD_ENTRY( VMXVVMCS, u64EnclsExitBitmap),
410 SSMFIELD_ENTRY( VMXVVMCS, u64SppTablePtr),
411 SSMFIELD_ENTRY( VMXVVMCS, u64TscMultiplier),
412 SSMFIELD_ENTRY_VER( VMXVVMCS, u64ProcCtls3, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2),
413 SSMFIELD_ENTRY_VER( VMXVVMCS, u64EnclvExitBitmap, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2),
414 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved0),
415
416 SSMFIELD_ENTRY( VMXVVMCS, u64Cr0Mask),
417 SSMFIELD_ENTRY( VMXVVMCS, u64Cr4Mask),
418 SSMFIELD_ENTRY( VMXVVMCS, u64Cr0ReadShadow),
419 SSMFIELD_ENTRY( VMXVVMCS, u64Cr4ReadShadow),
420 SSMFIELD_ENTRY( VMXVVMCS, u64Cr3Target0),
421 SSMFIELD_ENTRY( VMXVVMCS, u64Cr3Target1),
422 SSMFIELD_ENTRY( VMXVVMCS, u64Cr3Target2),
423 SSMFIELD_ENTRY( VMXVVMCS, u64Cr3Target3),
424 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved4),
425
426 SSMFIELD_ENTRY( VMXVVMCS, HostEs),
427 SSMFIELD_ENTRY( VMXVVMCS, HostCs),
428 SSMFIELD_ENTRY( VMXVVMCS, HostSs),
429 SSMFIELD_ENTRY( VMXVVMCS, HostDs),
430 SSMFIELD_ENTRY( VMXVVMCS, HostFs),
431 SSMFIELD_ENTRY( VMXVVMCS, HostGs),
432 SSMFIELD_ENTRY( VMXVVMCS, HostTr),
433 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au16Reserved2),
434
435 SSMFIELD_ENTRY( VMXVVMCS, u32HostSysenterCs),
436 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au32Reserved4),
437
438 SSMFIELD_ENTRY( VMXVVMCS, u64HostPatMsr),
439 SSMFIELD_ENTRY( VMXVVMCS, u64HostEferMsr),
440 SSMFIELD_ENTRY( VMXVVMCS, u64HostPerfGlobalCtlMsr),
441 SSMFIELD_ENTRY_VER( VMXVVMCS, u64HostPkrsMsr, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2),
442 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved3),
443
444 SSMFIELD_ENTRY( VMXVVMCS, u64HostCr0),
445 SSMFIELD_ENTRY( VMXVVMCS, u64HostCr3),
446 SSMFIELD_ENTRY( VMXVVMCS, u64HostCr4),
447 SSMFIELD_ENTRY( VMXVVMCS, u64HostFsBase),
448 SSMFIELD_ENTRY( VMXVVMCS, u64HostGsBase),
449 SSMFIELD_ENTRY( VMXVVMCS, u64HostTrBase),
450 SSMFIELD_ENTRY( VMXVVMCS, u64HostGdtrBase),
451 SSMFIELD_ENTRY( VMXVVMCS, u64HostIdtrBase),
452 SSMFIELD_ENTRY( VMXVVMCS, u64HostSysenterEsp),
453 SSMFIELD_ENTRY( VMXVVMCS, u64HostSysenterEip),
454 SSMFIELD_ENTRY( VMXVVMCS, u64HostRsp),
455 SSMFIELD_ENTRY( VMXVVMCS, u64HostRip),
456 SSMFIELD_ENTRY_VER( VMXVVMCS, u64HostSCetMsr, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2),
457 SSMFIELD_ENTRY_VER( VMXVVMCS, u64HostSsp, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2),
458 SSMFIELD_ENTRY_VER( VMXVVMCS, u64HostIntrSspTableAddrMsr, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2),
459 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved7),
460
461 SSMFIELD_ENTRY( VMXVVMCS, GuestEs),
462 SSMFIELD_ENTRY( VMXVVMCS, GuestCs),
463 SSMFIELD_ENTRY( VMXVVMCS, GuestSs),
464 SSMFIELD_ENTRY( VMXVVMCS, GuestDs),
465 SSMFIELD_ENTRY( VMXVVMCS, GuestFs),
466 SSMFIELD_ENTRY( VMXVVMCS, GuestGs),
467 SSMFIELD_ENTRY( VMXVVMCS, GuestLdtr),
468 SSMFIELD_ENTRY( VMXVVMCS, GuestTr),
469 SSMFIELD_ENTRY( VMXVVMCS, u16GuestIntStatus),
470 SSMFIELD_ENTRY( VMXVVMCS, u16PmlIndex),
471 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au16Reserved1),
472
473 SSMFIELD_ENTRY( VMXVVMCS, u32GuestEsLimit),
474 SSMFIELD_ENTRY( VMXVVMCS, u32GuestCsLimit),
475 SSMFIELD_ENTRY( VMXVVMCS, u32GuestSsLimit),
476 SSMFIELD_ENTRY( VMXVVMCS, u32GuestDsLimit),
477 SSMFIELD_ENTRY( VMXVVMCS, u32GuestFsLimit),
478 SSMFIELD_ENTRY( VMXVVMCS, u32GuestGsLimit),
479 SSMFIELD_ENTRY( VMXVVMCS, u32GuestLdtrLimit),
480 SSMFIELD_ENTRY( VMXVVMCS, u32GuestTrLimit),
481 SSMFIELD_ENTRY( VMXVVMCS, u32GuestGdtrLimit),
482 SSMFIELD_ENTRY( VMXVVMCS, u32GuestIdtrLimit),
483 SSMFIELD_ENTRY( VMXVVMCS, u32GuestEsAttr),
484 SSMFIELD_ENTRY( VMXVVMCS, u32GuestCsAttr),
485 SSMFIELD_ENTRY( VMXVVMCS, u32GuestSsAttr),
486 SSMFIELD_ENTRY( VMXVVMCS, u32GuestDsAttr),
487 SSMFIELD_ENTRY( VMXVVMCS, u32GuestFsAttr),
488 SSMFIELD_ENTRY( VMXVVMCS, u32GuestGsAttr),
489 SSMFIELD_ENTRY( VMXVVMCS, u32GuestLdtrAttr),
490 SSMFIELD_ENTRY( VMXVVMCS, u32GuestTrAttr),
491 SSMFIELD_ENTRY( VMXVVMCS, u32GuestIntrState),
492 SSMFIELD_ENTRY( VMXVVMCS, u32GuestActivityState),
493 SSMFIELD_ENTRY( VMXVVMCS, u32GuestSmBase),
494 SSMFIELD_ENTRY( VMXVVMCS, u32GuestSysenterCS),
495 SSMFIELD_ENTRY( VMXVVMCS, u32PreemptTimer),
496 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au32Reserved3),
497
498 SSMFIELD_ENTRY( VMXVVMCS, u64VmcsLinkPtr),
499 SSMFIELD_ENTRY( VMXVVMCS, u64GuestDebugCtlMsr),
500 SSMFIELD_ENTRY( VMXVVMCS, u64GuestPatMsr),
501 SSMFIELD_ENTRY( VMXVVMCS, u64GuestEferMsr),
502 SSMFIELD_ENTRY( VMXVVMCS, u64GuestPerfGlobalCtlMsr),
503 SSMFIELD_ENTRY( VMXVVMCS, u64GuestPdpte0),
504 SSMFIELD_ENTRY( VMXVVMCS, u64GuestPdpte1),
505 SSMFIELD_ENTRY( VMXVVMCS, u64GuestPdpte2),
506 SSMFIELD_ENTRY( VMXVVMCS, u64GuestPdpte3),
507 SSMFIELD_ENTRY( VMXVVMCS, u64GuestBndcfgsMsr),
508 SSMFIELD_ENTRY( VMXVVMCS, u64GuestRtitCtlMsr),
509 SSMFIELD_ENTRY_VER( VMXVVMCS, u64GuestPkrsMsr, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2),
510 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved2),
511
512 SSMFIELD_ENTRY( VMXVVMCS, u64GuestCr0),
513 SSMFIELD_ENTRY( VMXVVMCS, u64GuestCr3),
514 SSMFIELD_ENTRY( VMXVVMCS, u64GuestCr4),
515 SSMFIELD_ENTRY( VMXVVMCS, u64GuestEsBase),
516 SSMFIELD_ENTRY( VMXVVMCS, u64GuestCsBase),
517 SSMFIELD_ENTRY( VMXVVMCS, u64GuestSsBase),
518 SSMFIELD_ENTRY( VMXVVMCS, u64GuestDsBase),
519 SSMFIELD_ENTRY( VMXVVMCS, u64GuestFsBase),
520 SSMFIELD_ENTRY( VMXVVMCS, u64GuestGsBase),
521 SSMFIELD_ENTRY( VMXVVMCS, u64GuestLdtrBase),
522 SSMFIELD_ENTRY( VMXVVMCS, u64GuestTrBase),
523 SSMFIELD_ENTRY( VMXVVMCS, u64GuestGdtrBase),
524 SSMFIELD_ENTRY( VMXVVMCS, u64GuestIdtrBase),
525 SSMFIELD_ENTRY( VMXVVMCS, u64GuestDr7),
526 SSMFIELD_ENTRY( VMXVVMCS, u64GuestRsp),
527 SSMFIELD_ENTRY( VMXVVMCS, u64GuestRip),
528 SSMFIELD_ENTRY( VMXVVMCS, u64GuestRFlags),
529 SSMFIELD_ENTRY( VMXVVMCS, u64GuestPendingDbgXcpts),
530 SSMFIELD_ENTRY( VMXVVMCS, u64GuestSysenterEsp),
531 SSMFIELD_ENTRY( VMXVVMCS, u64GuestSysenterEip),
532 SSMFIELD_ENTRY_VER( VMXVVMCS, u64GuestSCetMsr, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2),
533 SSMFIELD_ENTRY_VER( VMXVVMCS, u64GuestSsp, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2),
534 SSMFIELD_ENTRY_VER( VMXVVMCS, u64GuestIntrSspTableAddrMsr, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2),
535 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved6),
536
537 SSMFIELD_ENTRY_TERM()
538};
539
540/** Saved state field descriptors for CPUMCTX. */
541static const SSMFIELD g_aCpumX87Fields[] =
542{
543 SSMFIELD_ENTRY( X86FXSTATE, FCW),
544 SSMFIELD_ENTRY( X86FXSTATE, FSW),
545 SSMFIELD_ENTRY( X86FXSTATE, FTW),
546 SSMFIELD_ENTRY( X86FXSTATE, FOP),
547 SSMFIELD_ENTRY( X86FXSTATE, FPUIP),
548 SSMFIELD_ENTRY( X86FXSTATE, CS),
549 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd1),
550 SSMFIELD_ENTRY( X86FXSTATE, FPUDP),
551 SSMFIELD_ENTRY( X86FXSTATE, DS),
552 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd2),
553 SSMFIELD_ENTRY( X86FXSTATE, MXCSR),
554 SSMFIELD_ENTRY( X86FXSTATE, MXCSR_MASK),
555 SSMFIELD_ENTRY( X86FXSTATE, aRegs[0]),
556 SSMFIELD_ENTRY( X86FXSTATE, aRegs[1]),
557 SSMFIELD_ENTRY( X86FXSTATE, aRegs[2]),
558 SSMFIELD_ENTRY( X86FXSTATE, aRegs[3]),
559 SSMFIELD_ENTRY( X86FXSTATE, aRegs[4]),
560 SSMFIELD_ENTRY( X86FXSTATE, aRegs[5]),
561 SSMFIELD_ENTRY( X86FXSTATE, aRegs[6]),
562 SSMFIELD_ENTRY( X86FXSTATE, aRegs[7]),
563 SSMFIELD_ENTRY( X86FXSTATE, aXMM[0]),
564 SSMFIELD_ENTRY( X86FXSTATE, aXMM[1]),
565 SSMFIELD_ENTRY( X86FXSTATE, aXMM[2]),
566 SSMFIELD_ENTRY( X86FXSTATE, aXMM[3]),
567 SSMFIELD_ENTRY( X86FXSTATE, aXMM[4]),
568 SSMFIELD_ENTRY( X86FXSTATE, aXMM[5]),
569 SSMFIELD_ENTRY( X86FXSTATE, aXMM[6]),
570 SSMFIELD_ENTRY( X86FXSTATE, aXMM[7]),
571 SSMFIELD_ENTRY( X86FXSTATE, aXMM[8]),
572 SSMFIELD_ENTRY( X86FXSTATE, aXMM[9]),
573 SSMFIELD_ENTRY( X86FXSTATE, aXMM[10]),
574 SSMFIELD_ENTRY( X86FXSTATE, aXMM[11]),
575 SSMFIELD_ENTRY( X86FXSTATE, aXMM[12]),
576 SSMFIELD_ENTRY( X86FXSTATE, aXMM[13]),
577 SSMFIELD_ENTRY( X86FXSTATE, aXMM[14]),
578 SSMFIELD_ENTRY( X86FXSTATE, aXMM[15]),
579 SSMFIELD_ENTRY_VER( X86FXSTATE, au32RsrvdForSoftware[0], CPUM_SAVED_STATE_VERSION_XSAVE), /* 32-bit/64-bit hack */
580 SSMFIELD_ENTRY_TERM()
581};
582
583/** Saved state field descriptors for X86XSAVEHDR. */
584static const SSMFIELD g_aCpumXSaveHdrFields[] =
585{
586 SSMFIELD_ENTRY( X86XSAVEHDR, bmXState),
587 SSMFIELD_ENTRY_TERM()
588};
589
590/** Saved state field descriptors for X86XSAVEYMMHI. */
591static const SSMFIELD g_aCpumYmmHiFields[] =
592{
593 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[0]),
594 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[1]),
595 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[2]),
596 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[3]),
597 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[4]),
598 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[5]),
599 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[6]),
600 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[7]),
601 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[8]),
602 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[9]),
603 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[10]),
604 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[11]),
605 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[12]),
606 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[13]),
607 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[14]),
608 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[15]),
609 SSMFIELD_ENTRY_TERM()
610};
611
612/** Saved state field descriptors for X86XSAVEBNDREGS. */
613static const SSMFIELD g_aCpumBndRegsFields[] =
614{
615 SSMFIELD_ENTRY( X86XSAVEBNDREGS, aRegs[0]),
616 SSMFIELD_ENTRY( X86XSAVEBNDREGS, aRegs[1]),
617 SSMFIELD_ENTRY( X86XSAVEBNDREGS, aRegs[2]),
618 SSMFIELD_ENTRY( X86XSAVEBNDREGS, aRegs[3]),
619 SSMFIELD_ENTRY_TERM()
620};
621
622/** Saved state field descriptors for X86XSAVEBNDCFG. */
623static const SSMFIELD g_aCpumBndCfgFields[] =
624{
625 SSMFIELD_ENTRY( X86XSAVEBNDCFG, fConfig),
626 SSMFIELD_ENTRY( X86XSAVEBNDCFG, fStatus),
627 SSMFIELD_ENTRY_TERM()
628};
629
630#if 0 /** @todo */
631/** Saved state field descriptors for X86XSAVEOPMASK. */
632static const SSMFIELD g_aCpumOpmaskFields[] =
633{
634 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[0]),
635 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[1]),
636 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[2]),
637 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[3]),
638 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[4]),
639 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[5]),
640 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[6]),
641 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[7]),
642 SSMFIELD_ENTRY_TERM()
643};
644#endif
645
646/** Saved state field descriptors for X86XSAVEZMMHI256. */
647static const SSMFIELD g_aCpumZmmHi256Fields[] =
648{
649 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[0]),
650 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[1]),
651 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[2]),
652 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[3]),
653 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[4]),
654 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[5]),
655 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[6]),
656 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[7]),
657 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[8]),
658 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[9]),
659 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[10]),
660 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[11]),
661 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[12]),
662 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[13]),
663 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[14]),
664 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[15]),
665 SSMFIELD_ENTRY_TERM()
666};
667
668/** Saved state field descriptors for X86XSAVEZMM16HI. */
669static const SSMFIELD g_aCpumZmm16HiFields[] =
670{
671 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[0]),
672 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[1]),
673 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[2]),
674 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[3]),
675 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[4]),
676 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[5]),
677 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[6]),
678 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[7]),
679 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[8]),
680 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[9]),
681 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[10]),
682 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[11]),
683 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[12]),
684 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[13]),
685 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[14]),
686 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[15]),
687 SSMFIELD_ENTRY_TERM()
688};
689
690
691
692/** Saved state field descriptors for CPUMCTX in V4.1 before the hidden selector
693 * registeres changed. */
694static const SSMFIELD g_aCpumX87FieldsMem[] =
695{
696 SSMFIELD_ENTRY( X86FXSTATE, FCW),
697 SSMFIELD_ENTRY( X86FXSTATE, FSW),
698 SSMFIELD_ENTRY( X86FXSTATE, FTW),
699 SSMFIELD_ENTRY( X86FXSTATE, FOP),
700 SSMFIELD_ENTRY( X86FXSTATE, FPUIP),
701 SSMFIELD_ENTRY( X86FXSTATE, CS),
702 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd1),
703 SSMFIELD_ENTRY( X86FXSTATE, FPUDP),
704 SSMFIELD_ENTRY( X86FXSTATE, DS),
705 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd2),
706 SSMFIELD_ENTRY( X86FXSTATE, MXCSR),
707 SSMFIELD_ENTRY( X86FXSTATE, MXCSR_MASK),
708 SSMFIELD_ENTRY( X86FXSTATE, aRegs[0]),
709 SSMFIELD_ENTRY( X86FXSTATE, aRegs[1]),
710 SSMFIELD_ENTRY( X86FXSTATE, aRegs[2]),
711 SSMFIELD_ENTRY( X86FXSTATE, aRegs[3]),
712 SSMFIELD_ENTRY( X86FXSTATE, aRegs[4]),
713 SSMFIELD_ENTRY( X86FXSTATE, aRegs[5]),
714 SSMFIELD_ENTRY( X86FXSTATE, aRegs[6]),
715 SSMFIELD_ENTRY( X86FXSTATE, aRegs[7]),
716 SSMFIELD_ENTRY( X86FXSTATE, aXMM[0]),
717 SSMFIELD_ENTRY( X86FXSTATE, aXMM[1]),
718 SSMFIELD_ENTRY( X86FXSTATE, aXMM[2]),
719 SSMFIELD_ENTRY( X86FXSTATE, aXMM[3]),
720 SSMFIELD_ENTRY( X86FXSTATE, aXMM[4]),
721 SSMFIELD_ENTRY( X86FXSTATE, aXMM[5]),
722 SSMFIELD_ENTRY( X86FXSTATE, aXMM[6]),
723 SSMFIELD_ENTRY( X86FXSTATE, aXMM[7]),
724 SSMFIELD_ENTRY( X86FXSTATE, aXMM[8]),
725 SSMFIELD_ENTRY( X86FXSTATE, aXMM[9]),
726 SSMFIELD_ENTRY( X86FXSTATE, aXMM[10]),
727 SSMFIELD_ENTRY( X86FXSTATE, aXMM[11]),
728 SSMFIELD_ENTRY( X86FXSTATE, aXMM[12]),
729 SSMFIELD_ENTRY( X86FXSTATE, aXMM[13]),
730 SSMFIELD_ENTRY( X86FXSTATE, aXMM[14]),
731 SSMFIELD_ENTRY( X86FXSTATE, aXMM[15]),
732 SSMFIELD_ENTRY_IGNORE( X86FXSTATE, au32RsrvdRest),
733 SSMFIELD_ENTRY_IGNORE( X86FXSTATE, au32RsrvdForSoftware),
734};
735
736/** Saved state field descriptors for CPUMCTX in V4.1 before the hidden selector
737 * registeres changed. */
738static const SSMFIELD g_aCpumCtxFieldsMem[] =
739{
740 SSMFIELD_ENTRY( CPUMCTX, rdi),
741 SSMFIELD_ENTRY( CPUMCTX, rsi),
742 SSMFIELD_ENTRY( CPUMCTX, rbp),
743 SSMFIELD_ENTRY( CPUMCTX, rax),
744 SSMFIELD_ENTRY( CPUMCTX, rbx),
745 SSMFIELD_ENTRY( CPUMCTX, rdx),
746 SSMFIELD_ENTRY( CPUMCTX, rcx),
747 SSMFIELD_ENTRY( CPUMCTX, rsp),
748 SSMFIELD_ENTRY_OLD( lss_esp, sizeof(uint32_t)),
749 SSMFIELD_ENTRY( CPUMCTX, ss.Sel),
750 SSMFIELD_ENTRY_OLD( ssPadding, sizeof(uint16_t)),
751 SSMFIELD_ENTRY( CPUMCTX, gs.Sel),
752 SSMFIELD_ENTRY_OLD( gsPadding, sizeof(uint16_t)),
753 SSMFIELD_ENTRY( CPUMCTX, fs.Sel),
754 SSMFIELD_ENTRY_OLD( fsPadding, sizeof(uint16_t)),
755 SSMFIELD_ENTRY( CPUMCTX, es.Sel),
756 SSMFIELD_ENTRY_OLD( esPadding, sizeof(uint16_t)),
757 SSMFIELD_ENTRY( CPUMCTX, ds.Sel),
758 SSMFIELD_ENTRY_OLD( dsPadding, sizeof(uint16_t)),
759 SSMFIELD_ENTRY( CPUMCTX, cs.Sel),
760 SSMFIELD_ENTRY_OLD( csPadding, sizeof(uint16_t)*3),
761 SSMFIELD_ENTRY( CPUMCTX, rflags),
762 SSMFIELD_ENTRY( CPUMCTX, rip),
763 SSMFIELD_ENTRY( CPUMCTX, r8),
764 SSMFIELD_ENTRY( CPUMCTX, r9),
765 SSMFIELD_ENTRY( CPUMCTX, r10),
766 SSMFIELD_ENTRY( CPUMCTX, r11),
767 SSMFIELD_ENTRY( CPUMCTX, r12),
768 SSMFIELD_ENTRY( CPUMCTX, r13),
769 SSMFIELD_ENTRY( CPUMCTX, r14),
770 SSMFIELD_ENTRY( CPUMCTX, r15),
771 SSMFIELD_ENTRY( CPUMCTX, es.u64Base),
772 SSMFIELD_ENTRY( CPUMCTX, es.u32Limit),
773 SSMFIELD_ENTRY( CPUMCTX, es.Attr),
774 SSMFIELD_ENTRY( CPUMCTX, cs.u64Base),
775 SSMFIELD_ENTRY( CPUMCTX, cs.u32Limit),
776 SSMFIELD_ENTRY( CPUMCTX, cs.Attr),
777 SSMFIELD_ENTRY( CPUMCTX, ss.u64Base),
778 SSMFIELD_ENTRY( CPUMCTX, ss.u32Limit),
779 SSMFIELD_ENTRY( CPUMCTX, ss.Attr),
780 SSMFIELD_ENTRY( CPUMCTX, ds.u64Base),
781 SSMFIELD_ENTRY( CPUMCTX, ds.u32Limit),
782 SSMFIELD_ENTRY( CPUMCTX, ds.Attr),
783 SSMFIELD_ENTRY( CPUMCTX, fs.u64Base),
784 SSMFIELD_ENTRY( CPUMCTX, fs.u32Limit),
785 SSMFIELD_ENTRY( CPUMCTX, fs.Attr),
786 SSMFIELD_ENTRY( CPUMCTX, gs.u64Base),
787 SSMFIELD_ENTRY( CPUMCTX, gs.u32Limit),
788 SSMFIELD_ENTRY( CPUMCTX, gs.Attr),
789 SSMFIELD_ENTRY( CPUMCTX, cr0),
790 SSMFIELD_ENTRY( CPUMCTX, cr2),
791 SSMFIELD_ENTRY( CPUMCTX, cr3),
792 SSMFIELD_ENTRY( CPUMCTX, cr4),
793 SSMFIELD_ENTRY( CPUMCTX, dr[0]),
794 SSMFIELD_ENTRY( CPUMCTX, dr[1]),
795 SSMFIELD_ENTRY( CPUMCTX, dr[2]),
796 SSMFIELD_ENTRY( CPUMCTX, dr[3]),
797 SSMFIELD_ENTRY_OLD( dr[4], sizeof(uint64_t)),
798 SSMFIELD_ENTRY_OLD( dr[5], sizeof(uint64_t)),
799 SSMFIELD_ENTRY( CPUMCTX, dr[6]),
800 SSMFIELD_ENTRY( CPUMCTX, dr[7]),
801 SSMFIELD_ENTRY( CPUMCTX, gdtr.cbGdt),
802 SSMFIELD_ENTRY( CPUMCTX, gdtr.pGdt),
803 SSMFIELD_ENTRY_OLD( gdtrPadding, sizeof(uint16_t)),
804 SSMFIELD_ENTRY( CPUMCTX, idtr.cbIdt),
805 SSMFIELD_ENTRY( CPUMCTX, idtr.pIdt),
806 SSMFIELD_ENTRY_OLD( idtrPadding, sizeof(uint16_t)),
807 SSMFIELD_ENTRY( CPUMCTX, ldtr.Sel),
808 SSMFIELD_ENTRY_OLD( ldtrPadding, sizeof(uint16_t)),
809 SSMFIELD_ENTRY( CPUMCTX, tr.Sel),
810 SSMFIELD_ENTRY_OLD( trPadding, sizeof(uint16_t)),
811 SSMFIELD_ENTRY( CPUMCTX, SysEnter.cs),
812 SSMFIELD_ENTRY( CPUMCTX, SysEnter.eip),
813 SSMFIELD_ENTRY( CPUMCTX, SysEnter.esp),
814 SSMFIELD_ENTRY( CPUMCTX, msrEFER),
815 SSMFIELD_ENTRY( CPUMCTX, msrSTAR),
816 SSMFIELD_ENTRY( CPUMCTX, msrPAT),
817 SSMFIELD_ENTRY( CPUMCTX, msrLSTAR),
818 SSMFIELD_ENTRY( CPUMCTX, msrCSTAR),
819 SSMFIELD_ENTRY( CPUMCTX, msrSFMASK),
820 SSMFIELD_ENTRY( CPUMCTX, msrKERNELGSBASE),
821 SSMFIELD_ENTRY( CPUMCTX, ldtr.u64Base),
822 SSMFIELD_ENTRY( CPUMCTX, ldtr.u32Limit),
823 SSMFIELD_ENTRY( CPUMCTX, ldtr.Attr),
824 SSMFIELD_ENTRY( CPUMCTX, tr.u64Base),
825 SSMFIELD_ENTRY( CPUMCTX, tr.u32Limit),
826 SSMFIELD_ENTRY( CPUMCTX, tr.Attr),
827 SSMFIELD_ENTRY_TERM()
828};
829
830/** Saved state field descriptors for CPUMCTX_VER1_6. */
831static const SSMFIELD g_aCpumX87FieldsV16[] =
832{
833 SSMFIELD_ENTRY( X86FXSTATE, FCW),
834 SSMFIELD_ENTRY( X86FXSTATE, FSW),
835 SSMFIELD_ENTRY( X86FXSTATE, FTW),
836 SSMFIELD_ENTRY( X86FXSTATE, FOP),
837 SSMFIELD_ENTRY( X86FXSTATE, FPUIP),
838 SSMFIELD_ENTRY( X86FXSTATE, CS),
839 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd1),
840 SSMFIELD_ENTRY( X86FXSTATE, FPUDP),
841 SSMFIELD_ENTRY( X86FXSTATE, DS),
842 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd2),
843 SSMFIELD_ENTRY( X86FXSTATE, MXCSR),
844 SSMFIELD_ENTRY( X86FXSTATE, MXCSR_MASK),
845 SSMFIELD_ENTRY( X86FXSTATE, aRegs[0]),
846 SSMFIELD_ENTRY( X86FXSTATE, aRegs[1]),
847 SSMFIELD_ENTRY( X86FXSTATE, aRegs[2]),
848 SSMFIELD_ENTRY( X86FXSTATE, aRegs[3]),
849 SSMFIELD_ENTRY( X86FXSTATE, aRegs[4]),
850 SSMFIELD_ENTRY( X86FXSTATE, aRegs[5]),
851 SSMFIELD_ENTRY( X86FXSTATE, aRegs[6]),
852 SSMFIELD_ENTRY( X86FXSTATE, aRegs[7]),
853 SSMFIELD_ENTRY( X86FXSTATE, aXMM[0]),
854 SSMFIELD_ENTRY( X86FXSTATE, aXMM[1]),
855 SSMFIELD_ENTRY( X86FXSTATE, aXMM[2]),
856 SSMFIELD_ENTRY( X86FXSTATE, aXMM[3]),
857 SSMFIELD_ENTRY( X86FXSTATE, aXMM[4]),
858 SSMFIELD_ENTRY( X86FXSTATE, aXMM[5]),
859 SSMFIELD_ENTRY( X86FXSTATE, aXMM[6]),
860 SSMFIELD_ENTRY( X86FXSTATE, aXMM[7]),
861 SSMFIELD_ENTRY( X86FXSTATE, aXMM[8]),
862 SSMFIELD_ENTRY( X86FXSTATE, aXMM[9]),
863 SSMFIELD_ENTRY( X86FXSTATE, aXMM[10]),
864 SSMFIELD_ENTRY( X86FXSTATE, aXMM[11]),
865 SSMFIELD_ENTRY( X86FXSTATE, aXMM[12]),
866 SSMFIELD_ENTRY( X86FXSTATE, aXMM[13]),
867 SSMFIELD_ENTRY( X86FXSTATE, aXMM[14]),
868 SSMFIELD_ENTRY( X86FXSTATE, aXMM[15]),
869 SSMFIELD_ENTRY_IGNORE( X86FXSTATE, au32RsrvdRest),
870 SSMFIELD_ENTRY_IGNORE( X86FXSTATE, au32RsrvdForSoftware),
871 SSMFIELD_ENTRY_TERM()
872};
873
874/** Saved state field descriptors for CPUMCTX_VER1_6. */
875static const SSMFIELD g_aCpumCtxFieldsV16[] =
876{
877 SSMFIELD_ENTRY( CPUMCTX, rdi),
878 SSMFIELD_ENTRY( CPUMCTX, rsi),
879 SSMFIELD_ENTRY( CPUMCTX, rbp),
880 SSMFIELD_ENTRY( CPUMCTX, rax),
881 SSMFIELD_ENTRY( CPUMCTX, rbx),
882 SSMFIELD_ENTRY( CPUMCTX, rdx),
883 SSMFIELD_ENTRY( CPUMCTX, rcx),
884 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, rsp),
885 SSMFIELD_ENTRY( CPUMCTX, ss.Sel),
886 SSMFIELD_ENTRY_OLD( ssPadding, sizeof(uint16_t)),
887 SSMFIELD_ENTRY_OLD( CPUMCTX, sizeof(uint64_t) /*rsp_notused*/),
888 SSMFIELD_ENTRY( CPUMCTX, gs.Sel),
889 SSMFIELD_ENTRY_OLD( gsPadding, sizeof(uint16_t)),
890 SSMFIELD_ENTRY( CPUMCTX, fs.Sel),
891 SSMFIELD_ENTRY_OLD( fsPadding, sizeof(uint16_t)),
892 SSMFIELD_ENTRY( CPUMCTX, es.Sel),
893 SSMFIELD_ENTRY_OLD( esPadding, sizeof(uint16_t)),
894 SSMFIELD_ENTRY( CPUMCTX, ds.Sel),
895 SSMFIELD_ENTRY_OLD( dsPadding, sizeof(uint16_t)),
896 SSMFIELD_ENTRY( CPUMCTX, cs.Sel),
897 SSMFIELD_ENTRY_OLD( csPadding, sizeof(uint16_t)*3),
898 SSMFIELD_ENTRY( CPUMCTX, rflags),
899 SSMFIELD_ENTRY( CPUMCTX, rip),
900 SSMFIELD_ENTRY( CPUMCTX, r8),
901 SSMFIELD_ENTRY( CPUMCTX, r9),
902 SSMFIELD_ENTRY( CPUMCTX, r10),
903 SSMFIELD_ENTRY( CPUMCTX, r11),
904 SSMFIELD_ENTRY( CPUMCTX, r12),
905 SSMFIELD_ENTRY( CPUMCTX, r13),
906 SSMFIELD_ENTRY( CPUMCTX, r14),
907 SSMFIELD_ENTRY( CPUMCTX, r15),
908 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, es.u64Base),
909 SSMFIELD_ENTRY( CPUMCTX, es.u32Limit),
910 SSMFIELD_ENTRY( CPUMCTX, es.Attr),
911 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, cs.u64Base),
912 SSMFIELD_ENTRY( CPUMCTX, cs.u32Limit),
913 SSMFIELD_ENTRY( CPUMCTX, cs.Attr),
914 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, ss.u64Base),
915 SSMFIELD_ENTRY( CPUMCTX, ss.u32Limit),
916 SSMFIELD_ENTRY( CPUMCTX, ss.Attr),
917 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, ds.u64Base),
918 SSMFIELD_ENTRY( CPUMCTX, ds.u32Limit),
919 SSMFIELD_ENTRY( CPUMCTX, ds.Attr),
920 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, fs.u64Base),
921 SSMFIELD_ENTRY( CPUMCTX, fs.u32Limit),
922 SSMFIELD_ENTRY( CPUMCTX, fs.Attr),
923 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, gs.u64Base),
924 SSMFIELD_ENTRY( CPUMCTX, gs.u32Limit),
925 SSMFIELD_ENTRY( CPUMCTX, gs.Attr),
926 SSMFIELD_ENTRY( CPUMCTX, cr0),
927 SSMFIELD_ENTRY( CPUMCTX, cr2),
928 SSMFIELD_ENTRY( CPUMCTX, cr3),
929 SSMFIELD_ENTRY( CPUMCTX, cr4),
930 SSMFIELD_ENTRY_OLD( cr8, sizeof(uint64_t)),
931 SSMFIELD_ENTRY( CPUMCTX, dr[0]),
932 SSMFIELD_ENTRY( CPUMCTX, dr[1]),
933 SSMFIELD_ENTRY( CPUMCTX, dr[2]),
934 SSMFIELD_ENTRY( CPUMCTX, dr[3]),
935 SSMFIELD_ENTRY_OLD( dr[4], sizeof(uint64_t)),
936 SSMFIELD_ENTRY_OLD( dr[5], sizeof(uint64_t)),
937 SSMFIELD_ENTRY( CPUMCTX, dr[6]),
938 SSMFIELD_ENTRY( CPUMCTX, dr[7]),
939 SSMFIELD_ENTRY( CPUMCTX, gdtr.cbGdt),
940 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, gdtr.pGdt),
941 SSMFIELD_ENTRY_OLD( gdtrPadding, sizeof(uint16_t)),
942 SSMFIELD_ENTRY_OLD( gdtrPadding64, sizeof(uint64_t)),
943 SSMFIELD_ENTRY( CPUMCTX, idtr.cbIdt),
944 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, idtr.pIdt),
945 SSMFIELD_ENTRY_OLD( idtrPadding, sizeof(uint16_t)),
946 SSMFIELD_ENTRY_OLD( idtrPadding64, sizeof(uint64_t)),
947 SSMFIELD_ENTRY( CPUMCTX, ldtr.Sel),
948 SSMFIELD_ENTRY_OLD( ldtrPadding, sizeof(uint16_t)),
949 SSMFIELD_ENTRY( CPUMCTX, tr.Sel),
950 SSMFIELD_ENTRY_OLD( trPadding, sizeof(uint16_t)),
951 SSMFIELD_ENTRY( CPUMCTX, SysEnter.cs),
952 SSMFIELD_ENTRY( CPUMCTX, SysEnter.eip),
953 SSMFIELD_ENTRY( CPUMCTX, SysEnter.esp),
954 SSMFIELD_ENTRY( CPUMCTX, msrEFER),
955 SSMFIELD_ENTRY( CPUMCTX, msrSTAR),
956 SSMFIELD_ENTRY( CPUMCTX, msrPAT),
957 SSMFIELD_ENTRY( CPUMCTX, msrLSTAR),
958 SSMFIELD_ENTRY( CPUMCTX, msrCSTAR),
959 SSMFIELD_ENTRY( CPUMCTX, msrSFMASK),
960 SSMFIELD_ENTRY_OLD( msrFSBASE, sizeof(uint64_t)),
961 SSMFIELD_ENTRY_OLD( msrGSBASE, sizeof(uint64_t)),
962 SSMFIELD_ENTRY( CPUMCTX, msrKERNELGSBASE),
963 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, ldtr.u64Base),
964 SSMFIELD_ENTRY( CPUMCTX, ldtr.u32Limit),
965 SSMFIELD_ENTRY( CPUMCTX, ldtr.Attr),
966 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, tr.u64Base),
967 SSMFIELD_ENTRY( CPUMCTX, tr.u32Limit),
968 SSMFIELD_ENTRY( CPUMCTX, tr.Attr),
969 SSMFIELD_ENTRY_OLD( padding, sizeof(uint32_t)*2),
970 SSMFIELD_ENTRY_TERM()
971};
972
973
974/**
975 * Checks for partial/leaky FXSAVE/FXRSTOR handling on AMD CPUs.
976 *
977 * AMD K7, K8 and newer AMD CPUs do not save/restore the x87 error pointers
978 * (last instruction pointer, last data pointer, last opcode) except when the ES
979 * bit (Exception Summary) in x87 FSW (FPU Status Word) is set. Thus if we don't
980 * clear these registers there is potential, local FPU leakage from a process
981 * using the FPU to another.
982 *
983 * See AMD Instruction Reference for FXSAVE, FXRSTOR.
984 *
985 * @param pVM The cross context VM structure.
986 */
987static void cpumR3CheckLeakyFpu(PVM pVM)
988{
989 uint32_t u32CpuVersion = ASMCpuId_EAX(1);
990 uint32_t const u32Family = u32CpuVersion >> 8;
991 if ( u32Family >= 6 /* K7 and higher */
992 && (ASMIsAmdCpu() || ASMIsHygonCpu()) )
993 {
994 uint32_t cExt = ASMCpuId_EAX(0x80000000);
995 if (ASMIsValidExtRange(cExt))
996 {
997 uint32_t fExtFeaturesEDX = ASMCpuId_EDX(0x80000001);
998 if (fExtFeaturesEDX & X86_CPUID_AMD_FEATURE_EDX_FFXSR)
999 {
1000 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1001 {
1002 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
1003 pVCpu->cpum.s.fUseFlags |= CPUM_USE_FFXSR_LEAKY;
1004 }
1005 Log(("CPUM: Host CPU has leaky fxsave/fxrstor behaviour\n"));
1006 }
1007 }
1008 }
1009}
1010
1011
1012/**
1013 * Initialize SVM hardware virtualization state (used to allocate it).
1014 *
1015 * @param pVM The cross context VM structure.
1016 */
1017static void cpumR3InitSvmHwVirtState(PVM pVM)
1018{
1019 Assert(pVM->cpum.s.GuestFeatures.fSvm);
1020
1021 LogRel(("CPUM: AMD-V nested-guest init\n"));
1022 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1023 {
1024 PVMCPU pVCpu = pVM->apCpusR3[i];
1025 pVCpu->cpum.s.Guest.hwvirt.enmHwvirt = CPUMHWVIRT_SVM;
1026
1027 AssertCompile(SVM_VMCB_PAGES * X86_PAGE_SIZE == sizeof(pVCpu->cpum.s.Guest.hwvirt.svm.Vmcb));
1028 AssertCompile(SVM_MSRPM_PAGES * X86_PAGE_SIZE == sizeof(pVCpu->cpum.s.Guest.hwvirt.svm.abMsrBitmap));
1029 AssertCompile(SVM_IOPM_PAGES * X86_PAGE_SIZE == sizeof(pVCpu->cpum.s.Guest.hwvirt.svm.abIoBitmap));
1030 }
1031}
1032
1033
1034/**
1035 * Resets per-VCPU SVM hardware virtualization state.
1036 *
1037 * @param pVCpu The cross context virtual CPU structure.
1038 */
1039DECLINLINE(void) cpumR3ResetSvmHwVirtState(PVMCPU pVCpu)
1040{
1041 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
1042 Assert(pCtx->hwvirt.enmHwvirt == CPUMHWVIRT_SVM);
1043
1044 RT_ZERO(pCtx->hwvirt.svm.Vmcb);
1045 pCtx->hwvirt.svm.uMsrHSavePa = 0;
1046 pCtx->hwvirt.svm.uPrevPauseTick = 0;
1047}
1048
1049
1050/**
1051 * Allocates memory for the VMX hardware virtualization state.
1052 *
1053 * @param pVM The cross context VM structure.
1054 */
1055static void cpumR3InitVmxHwVirtState(PVM pVM)
1056{
1057 LogRel(("CPUM: VT-x nested-guest init\n"));
1058 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1059 {
1060 PVMCPU pVCpu = pVM->apCpusR3[i];
1061 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
1062
1063 pCtx->hwvirt.enmHwvirt = CPUMHWVIRT_VMX;
1064
1065 AssertCompile(sizeof(pCtx->hwvirt.vmx.Vmcs) == VMX_V_VMCS_PAGES * X86_PAGE_SIZE);
1066 AssertCompile(sizeof(pCtx->hwvirt.vmx.Vmcs) == VMX_V_VMCS_SIZE);
1067 AssertCompile(sizeof(pCtx->hwvirt.vmx.ShadowVmcs) == VMX_V_SHADOW_VMCS_PAGES * X86_PAGE_SIZE);
1068 AssertCompile(sizeof(pCtx->hwvirt.vmx.ShadowVmcs) == VMX_V_SHADOW_VMCS_SIZE);
1069 AssertCompile(sizeof(pCtx->hwvirt.vmx.abVmreadBitmap) == VMX_V_VMREAD_VMWRITE_BITMAP_PAGES * X86_PAGE_SIZE);
1070 AssertCompile(sizeof(pCtx->hwvirt.vmx.abVmreadBitmap) == VMX_V_VMREAD_VMWRITE_BITMAP_SIZE);
1071 AssertCompile(sizeof(pCtx->hwvirt.vmx.abVmwriteBitmap) == VMX_V_VMREAD_VMWRITE_BITMAP_PAGES * X86_PAGE_SIZE);
1072 AssertCompile(sizeof(pCtx->hwvirt.vmx.abVmwriteBitmap) == VMX_V_VMREAD_VMWRITE_BITMAP_SIZE);
1073 AssertCompile(sizeof(pCtx->hwvirt.vmx.aEntryMsrLoadArea) == VMX_V_AUTOMSR_AREA_PAGES * X86_PAGE_SIZE);
1074 AssertCompile(sizeof(pCtx->hwvirt.vmx.aEntryMsrLoadArea) == VMX_V_AUTOMSR_AREA_SIZE);
1075 AssertCompile(sizeof(pCtx->hwvirt.vmx.aExitMsrStoreArea) == VMX_V_AUTOMSR_AREA_PAGES * X86_PAGE_SIZE);
1076 AssertCompile(sizeof(pCtx->hwvirt.vmx.aExitMsrStoreArea) == VMX_V_AUTOMSR_AREA_SIZE);
1077 AssertCompile(sizeof(pCtx->hwvirt.vmx.aExitMsrLoadArea) == VMX_V_AUTOMSR_AREA_PAGES * X86_PAGE_SIZE);
1078 AssertCompile(sizeof(pCtx->hwvirt.vmx.aExitMsrLoadArea) == VMX_V_AUTOMSR_AREA_SIZE);
1079 AssertCompile(sizeof(pCtx->hwvirt.vmx.abMsrBitmap) == VMX_V_MSR_BITMAP_PAGES * X86_PAGE_SIZE);
1080 AssertCompile(sizeof(pCtx->hwvirt.vmx.abMsrBitmap) == VMX_V_MSR_BITMAP_SIZE);
1081 AssertCompile(sizeof(pCtx->hwvirt.vmx.abIoBitmap) == (VMX_V_IO_BITMAP_A_PAGES + VMX_V_IO_BITMAP_B_PAGES) * X86_PAGE_SIZE);
1082 AssertCompile(sizeof(pCtx->hwvirt.vmx.abIoBitmap) == VMX_V_IO_BITMAP_A_SIZE + VMX_V_IO_BITMAP_B_SIZE);
1083 AssertCompile(sizeof(pCtx->hwvirt.vmx.abVirtApicPage) == VMX_V_VIRT_APIC_PAGES * X86_PAGE_SIZE);
1084 AssertCompile(sizeof(pCtx->hwvirt.vmx.abVirtApicPage) == VMX_V_VIRT_APIC_SIZE);
1085
1086 /*
1087 * Zero out all allocated pages (should compress well for saved-state).
1088 */
1089 /** @todo r=bird: this is and always was unnecessary - they are already zeroed. */
1090 RT_ZERO(pCtx->hwvirt.vmx.Vmcs);
1091 RT_ZERO(pCtx->hwvirt.vmx.ShadowVmcs);
1092 RT_ZERO(pCtx->hwvirt.vmx.abVmreadBitmap);
1093 RT_ZERO(pCtx->hwvirt.vmx.abVmwriteBitmap);
1094 RT_ZERO(pCtx->hwvirt.vmx.aEntryMsrLoadArea);
1095 RT_ZERO(pCtx->hwvirt.vmx.aExitMsrStoreArea);
1096 RT_ZERO(pCtx->hwvirt.vmx.aExitMsrLoadArea);
1097 RT_ZERO(pCtx->hwvirt.vmx.abMsrBitmap);
1098 RT_ZERO(pCtx->hwvirt.vmx.abIoBitmap);
1099 RT_ZERO(pCtx->hwvirt.vmx.abVirtApicPage);
1100 }
1101}
1102
1103
1104/**
1105 * Resets per-VCPU VMX hardware virtualization state.
1106 *
1107 * @param pVCpu The cross context virtual CPU structure.
1108 */
1109DECLINLINE(void) cpumR3ResetVmxHwVirtState(PVMCPU pVCpu)
1110{
1111 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
1112 Assert(pCtx->hwvirt.enmHwvirt == CPUMHWVIRT_VMX);
1113
1114 RT_ZERO(pCtx->hwvirt.vmx.Vmcs);
1115 RT_ZERO(pCtx->hwvirt.vmx.ShadowVmcs);
1116 pCtx->hwvirt.vmx.GCPhysVmxon = NIL_RTGCPHYS;
1117 pCtx->hwvirt.vmx.GCPhysShadowVmcs = NIL_RTGCPHYS;
1118 pCtx->hwvirt.vmx.GCPhysVmxon = NIL_RTGCPHYS;
1119 pCtx->hwvirt.vmx.fInVmxRootMode = false;
1120 pCtx->hwvirt.vmx.fInVmxNonRootMode = false;
1121 /* Don't reset diagnostics here. */
1122
1123 /* Stop any VMX-preemption timer. */
1124 CPUMStopGuestVmxPremptTimer(pVCpu);
1125
1126 /* Clear all nested-guest FFs. */
1127 VMCPU_FF_CLEAR_MASK(pVCpu, VMCPU_FF_VMX_ALL_MASK);
1128}
1129
1130
1131/**
1132 * Displays the host and guest VMX features.
1133 *
1134 * @param pVM The cross context VM structure.
1135 * @param pHlp The info helper functions.
1136 * @param pszArgs "terse", "default" or "verbose".
1137 */
1138DECLCALLBACK(void) cpumR3InfoVmxFeatures(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
1139{
1140 RT_NOREF(pszArgs);
1141 PCCPUMFEATURES pHostFeatures = &pVM->cpum.s.HostFeatures;
1142 PCCPUMFEATURES pGuestFeatures = &pVM->cpum.s.GuestFeatures;
1143 if ( pHostFeatures->enmCpuVendor == CPUMCPUVENDOR_INTEL
1144 || pHostFeatures->enmCpuVendor == CPUMCPUVENDOR_VIA
1145 || pHostFeatures->enmCpuVendor == CPUMCPUVENDOR_SHANGHAI)
1146 {
1147#define VMXFEATDUMP(a_szDesc, a_Var) \
1148 pHlp->pfnPrintf(pHlp, " %s = %u (%u)\n", a_szDesc, pGuestFeatures->a_Var, pHostFeatures->a_Var)
1149
1150 pHlp->pfnPrintf(pHlp, "Nested hardware virtualization - VMX features\n");
1151 pHlp->pfnPrintf(pHlp, " Mnemonic - Description = guest (host)\n");
1152 VMXFEATDUMP("VMX - Virtual-Machine Extensions ", fVmx);
1153 /* Basic. */
1154 VMXFEATDUMP("InsOutInfo - INS/OUTS instruction info. ", fVmxInsOutInfo);
1155 /* Pin-based controls. */
1156 VMXFEATDUMP("ExtIntExit - External interrupt exiting ", fVmxExtIntExit);
1157 VMXFEATDUMP("NmiExit - NMI exiting ", fVmxNmiExit);
1158 VMXFEATDUMP("VirtNmi - Virtual NMIs ", fVmxVirtNmi);
1159 VMXFEATDUMP("PreemptTimer - VMX preemption timer ", fVmxPreemptTimer);
1160 VMXFEATDUMP("PostedInt - Posted interrupts ", fVmxPostedInt);
1161 /* Processor-based controls. */
1162 VMXFEATDUMP("IntWindowExit - Interrupt-window exiting ", fVmxIntWindowExit);
1163 VMXFEATDUMP("TscOffsetting - TSC offsetting ", fVmxTscOffsetting);
1164 VMXFEATDUMP("HltExit - HLT exiting ", fVmxHltExit);
1165 VMXFEATDUMP("InvlpgExit - INVLPG exiting ", fVmxInvlpgExit);
1166 VMXFEATDUMP("MwaitExit - MWAIT exiting ", fVmxMwaitExit);
1167 VMXFEATDUMP("RdpmcExit - RDPMC exiting ", fVmxRdpmcExit);
1168 VMXFEATDUMP("RdtscExit - RDTSC exiting ", fVmxRdtscExit);
1169 VMXFEATDUMP("Cr3LoadExit - CR3-load exiting ", fVmxCr3LoadExit);
1170 VMXFEATDUMP("Cr3StoreExit - CR3-store exiting ", fVmxCr3StoreExit);
1171 VMXFEATDUMP("Cr8LoadExit - CR8-load exiting ", fVmxCr8LoadExit);
1172 VMXFEATDUMP("Cr8StoreExit - CR8-store exiting ", fVmxCr8StoreExit);
1173 VMXFEATDUMP("UseTprShadow - Use TPR shadow ", fVmxUseTprShadow);
1174 VMXFEATDUMP("NmiWindowExit - NMI-window exiting ", fVmxNmiWindowExit);
1175 VMXFEATDUMP("MovDRxExit - Mov-DR exiting ", fVmxMovDRxExit);
1176 VMXFEATDUMP("UncondIoExit - Unconditional I/O exiting ", fVmxUncondIoExit);
1177 VMXFEATDUMP("UseIoBitmaps - Use I/O bitmaps ", fVmxUseIoBitmaps);
1178 VMXFEATDUMP("MonitorTrapFlag - Monitor Trap Flag ", fVmxMonitorTrapFlag);
1179 VMXFEATDUMP("UseMsrBitmaps - MSR bitmaps ", fVmxUseMsrBitmaps);
1180 VMXFEATDUMP("MonitorExit - MONITOR exiting ", fVmxMonitorExit);
1181 VMXFEATDUMP("PauseExit - PAUSE exiting ", fVmxPauseExit);
1182 VMXFEATDUMP("SecondaryExecCtl - Activate secondary controls ", fVmxSecondaryExecCtls);
1183 /* Secondary processor-based controls. */
1184 VMXFEATDUMP("VirtApic - Virtualize-APIC accesses ", fVmxVirtApicAccess);
1185 VMXFEATDUMP("Ept - Extended Page Tables ", fVmxEpt);
1186 VMXFEATDUMP("DescTableExit - Descriptor-table exiting ", fVmxDescTableExit);
1187 VMXFEATDUMP("Rdtscp - Enable RDTSCP ", fVmxRdtscp);
1188 VMXFEATDUMP("VirtX2ApicMode - Virtualize-x2APIC mode ", fVmxVirtX2ApicMode);
1189 VMXFEATDUMP("Vpid - Enable VPID ", fVmxVpid);
1190 VMXFEATDUMP("WbinvdExit - WBINVD exiting ", fVmxWbinvdExit);
1191 VMXFEATDUMP("UnrestrictedGuest - Unrestricted guest ", fVmxUnrestrictedGuest);
1192 VMXFEATDUMP("ApicRegVirt - APIC-register virtualization ", fVmxApicRegVirt);
1193 VMXFEATDUMP("VirtIntDelivery - Virtual-interrupt delivery ", fVmxVirtIntDelivery);
1194 VMXFEATDUMP("PauseLoopExit - PAUSE-loop exiting ", fVmxPauseLoopExit);
1195 VMXFEATDUMP("RdrandExit - RDRAND exiting ", fVmxRdrandExit);
1196 VMXFEATDUMP("Invpcid - Enable INVPCID ", fVmxInvpcid);
1197 VMXFEATDUMP("VmFuncs - Enable VM Functions ", fVmxVmFunc);
1198 VMXFEATDUMP("VmcsShadowing - VMCS shadowing ", fVmxVmcsShadowing);
1199 VMXFEATDUMP("RdseedExiting - RDSEED exiting ", fVmxRdseedExit);
1200 VMXFEATDUMP("PML - Page-Modification Log (PML) ", fVmxPml);
1201 VMXFEATDUMP("EptVe - EPT violations can cause #VE ", fVmxEptXcptVe);
1202 VMXFEATDUMP("XsavesXRstors - Enable XSAVES/XRSTORS ", fVmxXsavesXrstors);
1203 /* VM-entry controls. */
1204 VMXFEATDUMP("EntryLoadDebugCtls - Load debug controls on VM-entry ", fVmxEntryLoadDebugCtls);
1205 VMXFEATDUMP("Ia32eModeGuest - IA-32e mode guest ", fVmxIa32eModeGuest);
1206 VMXFEATDUMP("EntryLoadEferMsr - Load IA32_EFER MSR on VM-entry ", fVmxEntryLoadEferMsr);
1207 VMXFEATDUMP("EntryLoadPatMsr - Load IA32_PAT MSR on VM-entry ", fVmxEntryLoadPatMsr);
1208 /* VM-exit controls. */
1209 VMXFEATDUMP("ExitSaveDebugCtls - Save debug controls on VM-exit ", fVmxExitSaveDebugCtls);
1210 VMXFEATDUMP("HostAddrSpaceSize - Host address-space size ", fVmxHostAddrSpaceSize);
1211 VMXFEATDUMP("ExitAckExtInt - Acknowledge interrupt on VM-exit ", fVmxExitAckExtInt);
1212 VMXFEATDUMP("ExitSavePatMsr - Save IA32_PAT MSR on VM-exit ", fVmxExitSavePatMsr);
1213 VMXFEATDUMP("ExitLoadPatMsr - Load IA32_PAT MSR on VM-exit ", fVmxExitLoadPatMsr);
1214 VMXFEATDUMP("ExitSaveEferMsr - Save IA32_EFER MSR on VM-exit ", fVmxExitSaveEferMsr);
1215 VMXFEATDUMP("ExitLoadEferMsr - Load IA32_EFER MSR on VM-exit ", fVmxExitLoadEferMsr);
1216 VMXFEATDUMP("SavePreemptTimer - Save VMX-preemption timer ", fVmxSavePreemptTimer);
1217 /* Miscellaneous data. */
1218 VMXFEATDUMP("ExitSaveEferLma - Save IA32_EFER.LMA on VM-exit ", fVmxExitSaveEferLma);
1219 VMXFEATDUMP("IntelPt - Intel PT (Processor Trace) in VMX operation ", fVmxIntelPt);
1220 VMXFEATDUMP("VmwriteAll - VMWRITE to any supported VMCS field ", fVmxVmwriteAll);
1221 VMXFEATDUMP("EntryInjectSoftInt - Inject softint. with 0-len instr. ", fVmxEntryInjectSoftInt);
1222#undef VMXFEATDUMP
1223 }
1224 else
1225 pHlp->pfnPrintf(pHlp, "No VMX features present - requires an Intel or compatible CPU.\n");
1226}
1227
1228
1229/**
1230 * Checks whether nested-guest execution using hardware-assisted VMX (e.g, using HM
1231 * or NEM) is allowed.
1232 *
1233 * @returns @c true if hardware-assisted nested-guest execution is allowed, @c false
1234 * otherwise.
1235 * @param pVM The cross context VM structure.
1236 */
1237static bool cpumR3IsHwAssistNstGstExecAllowed(PVM pVM)
1238{
1239 AssertMsg(pVM->bMainExecutionEngine != VM_EXEC_ENGINE_NOT_SET, ("Calling this function too early!\n"));
1240#ifndef VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM
1241 if ( pVM->bMainExecutionEngine == VM_EXEC_ENGINE_HW_VIRT
1242 || pVM->bMainExecutionEngine == VM_EXEC_ENGINE_NATIVE_API)
1243 return true;
1244#else
1245 NOREF(pVM);
1246#endif
1247 return false;
1248}
1249
1250
1251/**
1252 * Initializes the VMX guest MSRs from guest CPU features based on the host MSRs.
1253 *
1254 * @param pVM The cross context VM structure.
1255 * @param pHostVmxMsrs The host VMX MSRs. Pass NULL when fully emulating VMX
1256 * and no hardware-assisted nested-guest execution is
1257 * possible for this VM.
1258 * @param pGuestFeatures The guest features to use (only VMX features are
1259 * accessed).
1260 * @param pGuestVmxMsrs Where to store the initialized guest VMX MSRs.
1261 *
1262 * @remarks This function ASSUMES the VMX guest-features are already exploded!
1263 */
1264static void cpumR3InitVmxGuestMsrs(PVM pVM, PCVMXMSRS pHostVmxMsrs, PCCPUMFEATURES pGuestFeatures, PVMXMSRS pGuestVmxMsrs)
1265{
1266 bool const fIsNstGstHwExecAllowed = cpumR3IsHwAssistNstGstExecAllowed(pVM);
1267
1268 Assert(!fIsNstGstHwExecAllowed || pHostVmxMsrs);
1269 Assert(pGuestFeatures->fVmx);
1270
1271 /*
1272 * We don't support the following MSRs yet:
1273 * - True Pin-based VM-execution controls.
1274 * - True Processor-based VM-execution controls.
1275 * - True VM-entry VM-execution controls.
1276 * - True VM-exit VM-execution controls.
1277 */
1278
1279 /* Basic information. */
1280 {
1281 uint64_t const u64Basic = RT_BF_MAKE(VMX_BF_BASIC_VMCS_ID, VMX_V_VMCS_REVISION_ID )
1282 | RT_BF_MAKE(VMX_BF_BASIC_VMCS_SIZE, VMX_V_VMCS_SIZE )
1283 | RT_BF_MAKE(VMX_BF_BASIC_PHYSADDR_WIDTH, !pGuestFeatures->fLongMode )
1284 | RT_BF_MAKE(VMX_BF_BASIC_DUAL_MON, 0 )
1285 | RT_BF_MAKE(VMX_BF_BASIC_VMCS_MEM_TYPE, VMX_BASIC_MEM_TYPE_WB )
1286 | RT_BF_MAKE(VMX_BF_BASIC_VMCS_INS_OUTS, pGuestFeatures->fVmxInsOutInfo)
1287 | RT_BF_MAKE(VMX_BF_BASIC_TRUE_CTLS, 0 );
1288 pGuestVmxMsrs->u64Basic = u64Basic;
1289 }
1290
1291 /* Pin-based VM-execution controls. */
1292 {
1293 uint32_t const fFeatures = (pGuestFeatures->fVmxExtIntExit << VMX_BF_PIN_CTLS_EXT_INT_EXIT_SHIFT )
1294 | (pGuestFeatures->fVmxNmiExit << VMX_BF_PIN_CTLS_NMI_EXIT_SHIFT )
1295 | (pGuestFeatures->fVmxVirtNmi << VMX_BF_PIN_CTLS_VIRT_NMI_SHIFT )
1296 | (pGuestFeatures->fVmxPreemptTimer << VMX_BF_PIN_CTLS_PREEMPT_TIMER_SHIFT)
1297 | (pGuestFeatures->fVmxPostedInt << VMX_BF_PIN_CTLS_POSTED_INT_SHIFT );
1298 uint32_t const fAllowed0 = VMX_PIN_CTLS_DEFAULT1;
1299 uint32_t const fAllowed1 = fFeatures | VMX_PIN_CTLS_DEFAULT1;
1300 AssertMsg((fAllowed0 & fAllowed1) == fAllowed0, ("fAllowed0=%#RX32 fAllowed1=%#RX32 fFeatures=%#RX32\n",
1301 fAllowed0, fAllowed1, fFeatures));
1302 pGuestVmxMsrs->PinCtls.u = RT_MAKE_U64(fAllowed0, fAllowed1);
1303 }
1304
1305 /* Processor-based VM-execution controls. */
1306 {
1307 uint32_t const fFeatures = (pGuestFeatures->fVmxIntWindowExit << VMX_BF_PROC_CTLS_INT_WINDOW_EXIT_SHIFT )
1308 | (pGuestFeatures->fVmxTscOffsetting << VMX_BF_PROC_CTLS_USE_TSC_OFFSETTING_SHIFT)
1309 | (pGuestFeatures->fVmxHltExit << VMX_BF_PROC_CTLS_HLT_EXIT_SHIFT )
1310 | (pGuestFeatures->fVmxInvlpgExit << VMX_BF_PROC_CTLS_INVLPG_EXIT_SHIFT )
1311 | (pGuestFeatures->fVmxMwaitExit << VMX_BF_PROC_CTLS_MWAIT_EXIT_SHIFT )
1312 | (pGuestFeatures->fVmxRdpmcExit << VMX_BF_PROC_CTLS_RDPMC_EXIT_SHIFT )
1313 | (pGuestFeatures->fVmxRdtscExit << VMX_BF_PROC_CTLS_RDTSC_EXIT_SHIFT )
1314 | (pGuestFeatures->fVmxCr3LoadExit << VMX_BF_PROC_CTLS_CR3_LOAD_EXIT_SHIFT )
1315 | (pGuestFeatures->fVmxCr3StoreExit << VMX_BF_PROC_CTLS_CR3_STORE_EXIT_SHIFT )
1316 | (pGuestFeatures->fVmxTertiaryExecCtls << VMX_BF_PROC_CTLS_USE_TERTIARY_CTLS_SHIFT )
1317 | (pGuestFeatures->fVmxCr8LoadExit << VMX_BF_PROC_CTLS_CR8_LOAD_EXIT_SHIFT )
1318 | (pGuestFeatures->fVmxCr8StoreExit << VMX_BF_PROC_CTLS_CR8_STORE_EXIT_SHIFT )
1319 | (pGuestFeatures->fVmxUseTprShadow << VMX_BF_PROC_CTLS_USE_TPR_SHADOW_SHIFT )
1320 | (pGuestFeatures->fVmxNmiWindowExit << VMX_BF_PROC_CTLS_NMI_WINDOW_EXIT_SHIFT )
1321 | (pGuestFeatures->fVmxMovDRxExit << VMX_BF_PROC_CTLS_MOV_DR_EXIT_SHIFT )
1322 | (pGuestFeatures->fVmxUncondIoExit << VMX_BF_PROC_CTLS_UNCOND_IO_EXIT_SHIFT )
1323 | (pGuestFeatures->fVmxUseIoBitmaps << VMX_BF_PROC_CTLS_USE_IO_BITMAPS_SHIFT )
1324 | (pGuestFeatures->fVmxMonitorTrapFlag << VMX_BF_PROC_CTLS_MONITOR_TRAP_FLAG_SHIFT )
1325 | (pGuestFeatures->fVmxUseMsrBitmaps << VMX_BF_PROC_CTLS_USE_MSR_BITMAPS_SHIFT )
1326 | (pGuestFeatures->fVmxMonitorExit << VMX_BF_PROC_CTLS_MONITOR_EXIT_SHIFT )
1327 | (pGuestFeatures->fVmxPauseExit << VMX_BF_PROC_CTLS_PAUSE_EXIT_SHIFT )
1328 | (pGuestFeatures->fVmxSecondaryExecCtls << VMX_BF_PROC_CTLS_USE_SECONDARY_CTLS_SHIFT);
1329 uint32_t const fAllowed0 = VMX_PROC_CTLS_DEFAULT1;
1330 uint32_t const fAllowed1 = fFeatures | VMX_PROC_CTLS_DEFAULT1;
1331 AssertMsg((fAllowed0 & fAllowed1) == fAllowed0, ("fAllowed0=%#RX32 fAllowed1=%#RX32 fFeatures=%#RX32\n", fAllowed0,
1332 fAllowed1, fFeatures));
1333 pGuestVmxMsrs->ProcCtls.u = RT_MAKE_U64(fAllowed0, fAllowed1);
1334 }
1335
1336 /* Secondary processor-based VM-execution controls. */
1337 if (pGuestFeatures->fVmxSecondaryExecCtls)
1338 {
1339 uint32_t const fFeatures = (pGuestFeatures->fVmxVirtApicAccess << VMX_BF_PROC_CTLS2_VIRT_APIC_ACCESS_SHIFT )
1340 | (pGuestFeatures->fVmxEpt << VMX_BF_PROC_CTLS2_EPT_SHIFT )
1341 | (pGuestFeatures->fVmxDescTableExit << VMX_BF_PROC_CTLS2_DESC_TABLE_EXIT_SHIFT )
1342 | (pGuestFeatures->fVmxRdtscp << VMX_BF_PROC_CTLS2_RDTSCP_SHIFT )
1343 | (pGuestFeatures->fVmxVirtX2ApicMode << VMX_BF_PROC_CTLS2_VIRT_X2APIC_MODE_SHIFT )
1344 | (pGuestFeatures->fVmxVpid << VMX_BF_PROC_CTLS2_VPID_SHIFT )
1345 | (pGuestFeatures->fVmxWbinvdExit << VMX_BF_PROC_CTLS2_WBINVD_EXIT_SHIFT )
1346 | (pGuestFeatures->fVmxUnrestrictedGuest << VMX_BF_PROC_CTLS2_UNRESTRICTED_GUEST_SHIFT)
1347 | (pGuestFeatures->fVmxApicRegVirt << VMX_BF_PROC_CTLS2_APIC_REG_VIRT_SHIFT )
1348 | (pGuestFeatures->fVmxVirtIntDelivery << VMX_BF_PROC_CTLS2_VIRT_INT_DELIVERY_SHIFT )
1349 | (pGuestFeatures->fVmxPauseLoopExit << VMX_BF_PROC_CTLS2_PAUSE_LOOP_EXIT_SHIFT )
1350 | (pGuestFeatures->fVmxRdrandExit << VMX_BF_PROC_CTLS2_RDRAND_EXIT_SHIFT )
1351 | (pGuestFeatures->fVmxInvpcid << VMX_BF_PROC_CTLS2_INVPCID_SHIFT )
1352 | (pGuestFeatures->fVmxVmFunc << VMX_BF_PROC_CTLS2_VMFUNC_SHIFT )
1353 | (pGuestFeatures->fVmxVmcsShadowing << VMX_BF_PROC_CTLS2_VMCS_SHADOWING_SHIFT )
1354 | (pGuestFeatures->fVmxRdseedExit << VMX_BF_PROC_CTLS2_RDSEED_EXIT_SHIFT )
1355 | (pGuestFeatures->fVmxPml << VMX_BF_PROC_CTLS2_PML_SHIFT )
1356 | (pGuestFeatures->fVmxEptXcptVe << VMX_BF_PROC_CTLS2_EPT_VE_SHIFT )
1357 | (pGuestFeatures->fVmxXsavesXrstors << VMX_BF_PROC_CTLS2_XSAVES_XRSTORS_SHIFT )
1358 | (pGuestFeatures->fVmxUseTscScaling << VMX_BF_PROC_CTLS2_TSC_SCALING_SHIFT );
1359 uint32_t const fAllowed0 = 0;
1360 uint32_t const fAllowed1 = fFeatures;
1361 pGuestVmxMsrs->ProcCtls2.u = RT_MAKE_U64(fAllowed0, fAllowed1);
1362 }
1363
1364 /* Tertiary processor-based VM-execution controls. */
1365 if (pGuestFeatures->fVmxTertiaryExecCtls)
1366 {
1367 pGuestVmxMsrs->u64ProcCtls3 = (pGuestFeatures->fVmxLoadIwKeyExit << VMX_BF_PROC_CTLS3_LOADIWKEY_EXIT_SHIFT);
1368 }
1369
1370 /* VM-exit controls. */
1371 {
1372 uint32_t const fFeatures = (pGuestFeatures->fVmxExitSaveDebugCtls << VMX_BF_EXIT_CTLS_SAVE_DEBUG_SHIFT )
1373 | (pGuestFeatures->fVmxHostAddrSpaceSize << VMX_BF_EXIT_CTLS_HOST_ADDR_SPACE_SIZE_SHIFT)
1374 | (pGuestFeatures->fVmxExitAckExtInt << VMX_BF_EXIT_CTLS_ACK_EXT_INT_SHIFT )
1375 | (pGuestFeatures->fVmxExitSavePatMsr << VMX_BF_EXIT_CTLS_SAVE_PAT_MSR_SHIFT )
1376 | (pGuestFeatures->fVmxExitLoadPatMsr << VMX_BF_EXIT_CTLS_LOAD_PAT_MSR_SHIFT )
1377 | (pGuestFeatures->fVmxExitSaveEferMsr << VMX_BF_EXIT_CTLS_SAVE_EFER_MSR_SHIFT )
1378 | (pGuestFeatures->fVmxExitLoadEferMsr << VMX_BF_EXIT_CTLS_LOAD_EFER_MSR_SHIFT )
1379 | (pGuestFeatures->fVmxSavePreemptTimer << VMX_BF_EXIT_CTLS_SAVE_PREEMPT_TIMER_SHIFT );
1380 /* Set the default1 class bits. See Intel spec. A.4 "VM-exit Controls". */
1381 uint32_t const fAllowed0 = VMX_EXIT_CTLS_DEFAULT1;
1382 uint32_t const fAllowed1 = fFeatures | VMX_EXIT_CTLS_DEFAULT1;
1383 AssertMsg((fAllowed0 & fAllowed1) == fAllowed0, ("fAllowed0=%#RX32 fAllowed1=%#RX32 fFeatures=%#RX32\n", fAllowed0,
1384 fAllowed1, fFeatures));
1385 pGuestVmxMsrs->ExitCtls.u = RT_MAKE_U64(fAllowed0, fAllowed1);
1386 }
1387
1388 /* VM-entry controls. */
1389 {
1390 uint32_t const fFeatures = (pGuestFeatures->fVmxEntryLoadDebugCtls << VMX_BF_ENTRY_CTLS_LOAD_DEBUG_SHIFT )
1391 | (pGuestFeatures->fVmxIa32eModeGuest << VMX_BF_ENTRY_CTLS_IA32E_MODE_GUEST_SHIFT)
1392 | (pGuestFeatures->fVmxEntryLoadEferMsr << VMX_BF_ENTRY_CTLS_LOAD_EFER_MSR_SHIFT )
1393 | (pGuestFeatures->fVmxEntryLoadPatMsr << VMX_BF_ENTRY_CTLS_LOAD_PAT_MSR_SHIFT );
1394 uint32_t const fAllowed0 = VMX_ENTRY_CTLS_DEFAULT1;
1395 uint32_t const fAllowed1 = fFeatures | VMX_ENTRY_CTLS_DEFAULT1;
1396 AssertMsg((fAllowed0 & fAllowed1) == fAllowed0, ("fAllowed0=%#RX32 fAllowed0=%#RX32 fFeatures=%#RX32\n", fAllowed0,
1397 fAllowed1, fFeatures));
1398 pGuestVmxMsrs->EntryCtls.u = RT_MAKE_U64(fAllowed0, fAllowed1);
1399 }
1400
1401 /* Miscellaneous data. */
1402 {
1403 uint64_t const uHostMsr = fIsNstGstHwExecAllowed ? pHostVmxMsrs->u64Misc : 0;
1404
1405 uint8_t const cMaxMsrs = RT_MIN(RT_BF_GET(uHostMsr, VMX_BF_MISC_MAX_MSRS), VMX_V_AUTOMSR_COUNT_MAX);
1406 uint8_t const fActivityState = RT_BF_GET(uHostMsr, VMX_BF_MISC_ACTIVITY_STATES) & VMX_V_GUEST_ACTIVITY_STATE_MASK;
1407 pGuestVmxMsrs->u64Misc = RT_BF_MAKE(VMX_BF_MISC_PREEMPT_TIMER_TSC, VMX_V_PREEMPT_TIMER_SHIFT )
1408 | RT_BF_MAKE(VMX_BF_MISC_EXIT_SAVE_EFER_LMA, pGuestFeatures->fVmxExitSaveEferLma )
1409 | RT_BF_MAKE(VMX_BF_MISC_ACTIVITY_STATES, fActivityState )
1410 | RT_BF_MAKE(VMX_BF_MISC_INTEL_PT, pGuestFeatures->fVmxIntelPt )
1411 | RT_BF_MAKE(VMX_BF_MISC_SMM_READ_SMBASE_MSR, 0 )
1412 | RT_BF_MAKE(VMX_BF_MISC_CR3_TARGET, VMX_V_CR3_TARGET_COUNT )
1413 | RT_BF_MAKE(VMX_BF_MISC_MAX_MSRS, cMaxMsrs )
1414 | RT_BF_MAKE(VMX_BF_MISC_VMXOFF_BLOCK_SMI, 0 )
1415 | RT_BF_MAKE(VMX_BF_MISC_VMWRITE_ALL, pGuestFeatures->fVmxVmwriteAll )
1416 | RT_BF_MAKE(VMX_BF_MISC_ENTRY_INJECT_SOFT_INT, pGuestFeatures->fVmxEntryInjectSoftInt)
1417 | RT_BF_MAKE(VMX_BF_MISC_MSEG_ID, VMX_V_MSEG_REV_ID );
1418 }
1419
1420 /* CR0 Fixed-0. */
1421 pGuestVmxMsrs->u64Cr0Fixed0 = pGuestFeatures->fVmxUnrestrictedGuest ? VMX_V_CR0_FIXED0_UX : VMX_V_CR0_FIXED0;
1422
1423 /* CR0 Fixed-1. */
1424 {
1425 /*
1426 * All CPUs I've looked at so far report CR0 fixed-1 bits as 0xffffffff.
1427 * This is different from CR4 fixed-1 bits which are reported as per the
1428 * CPU features and/or micro-architecture/generation. Why? Ask Intel.
1429 */
1430 uint64_t const uHostMsr = fIsNstGstHwExecAllowed ? pHostVmxMsrs->u64Cr0Fixed1 : 0xffffffff;
1431 pGuestVmxMsrs->u64Cr0Fixed1 = uHostMsr | pGuestVmxMsrs->u64Cr0Fixed0; /* Make sure the CR0 MB1 bits are not clear. */
1432 }
1433
1434 /* CR4 Fixed-0. */
1435 pGuestVmxMsrs->u64Cr4Fixed0 = VMX_V_CR4_FIXED0;
1436
1437 /* CR4 Fixed-1. */
1438 {
1439 uint64_t const uHostMsr = fIsNstGstHwExecAllowed ? pHostVmxMsrs->u64Cr4Fixed1 : CPUMGetGuestCR4ValidMask(pVM);
1440 pGuestVmxMsrs->u64Cr4Fixed1 = uHostMsr | pGuestVmxMsrs->u64Cr4Fixed0; /* Make sure the CR4 MB1 bits are not clear. */
1441 }
1442
1443 /* VMCS Enumeration. */
1444 pGuestVmxMsrs->u64VmcsEnum = VMX_V_VMCS_MAX_INDEX << VMX_BF_VMCS_ENUM_HIGHEST_IDX_SHIFT;
1445
1446 /* VPID and EPT Capabilities. */
1447 if (pGuestFeatures->fVmxEpt)
1448 {
1449 /*
1450 * INVVPID instruction always causes a VM-exit unconditionally, so we are free to fake
1451 * and emulate any INVVPID flush type. However, it only makes sense to expose the types
1452 * when INVVPID instruction is supported just to be more compatible with guest
1453 * hypervisors that may make assumptions by only looking at this MSR even though they
1454 * are technically supposed to refer to VMX_PROC_CTLS2_VPID first.
1455 *
1456 * See Intel spec. 25.1.2 "Instructions That Cause VM Exits Unconditionally".
1457 * See Intel spec. 30.3 "VMX Instructions".
1458 */
1459 uint64_t const uHostMsr = fIsNstGstHwExecAllowed ? pHostVmxMsrs->u64EptVpidCaps : UINT64_MAX;
1460 uint8_t const fVpid = pGuestFeatures->fVmxVpid;
1461
1462 uint8_t const fExecOnly = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_RWX_X_ONLY);
1463 uint8_t const fPml4 = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_PAGE_WALK_LENGTH_4);
1464 uint8_t const fMemTypeUc = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_MEMTYPE_UC);
1465 uint8_t const fMemTypeWb = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_MEMTYPE_WB);
1466 uint8_t const f2MPage = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_PDE_2M);
1467 uint8_t const f1GPage = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_PDPTE_1G);
1468 uint8_t const fInvept = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_INVEPT);
1469 uint8_t const fAccessDirty = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_ACCESS_DIRTY);
1470 uint8_t const fEptSingle = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_INVEPT_SINGLE_CTX);
1471 uint8_t const fEptAll = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_INVEPT_ALL_CTX);
1472 uint8_t const fVpidIndiv = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_INVVPID_INDIV_ADDR);
1473 uint8_t const fVpidSingle = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_INVVPID_SINGLE_CTX);
1474 uint8_t const fVpidAll = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_INVVPID_ALL_CTX);
1475 uint8_t const fVpidSingleGlobal = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_INVVPID_SINGLE_CTX_RETAIN_GLOBALS);
1476 pGuestVmxMsrs->u64EptVpidCaps = RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_RWX_X_ONLY, fExecOnly)
1477 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_PAGE_WALK_LENGTH_4, fPml4)
1478 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_MEMTYPE_UC, fMemTypeUc)
1479 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_MEMTYPE_WB, fMemTypeWb)
1480 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_PDE_2M, f2MPage)
1481 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_PDPTE_1G, f1GPage)
1482 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_INVEPT, fInvept)
1483 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_ACCESS_DIRTY, fAccessDirty)
1484 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_ADVEXITINFO_EPT_VIOLATION, 0)
1485 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_SUPER_SHW_STACK, 0)
1486 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_INVEPT_SINGLE_CTX, fEptSingle)
1487 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_INVEPT_ALL_CTX, fEptAll)
1488 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_INVVPID, fVpid)
1489 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_INVVPID_INDIV_ADDR, fVpid & fVpidIndiv)
1490 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_INVVPID_SINGLE_CTX, fVpid & fVpidSingle)
1491 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_INVVPID_ALL_CTX, fVpid & fVpidAll)
1492 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_INVVPID_SINGLE_CTX_RETAIN_GLOBALS, fVpid & fVpidSingleGlobal);
1493 }
1494
1495 /* VM Functions. */
1496 if (pGuestFeatures->fVmxVmFunc)
1497 pGuestVmxMsrs->u64VmFunc = RT_BF_MAKE(VMX_BF_VMFUNC_EPTP_SWITCHING, 1);
1498}
1499
1500
1501/**
1502 * Checks whether the given guest CPU VMX features are compatible with the provided
1503 * base features.
1504 *
1505 * @returns @c true if compatible, @c false otherwise.
1506 * @param pVM The cross context VM structure.
1507 * @param pBase The base VMX CPU features.
1508 * @param pGst The guest VMX CPU features.
1509 *
1510 * @remarks Only VMX feature bits are examined.
1511 */
1512static bool cpumR3AreVmxCpuFeaturesCompatible(PVM pVM, PCCPUMFEATURES pBase, PCCPUMFEATURES pGst)
1513{
1514 if (!cpumR3IsHwAssistNstGstExecAllowed(pVM))
1515 return false;
1516
1517 /* Check first set of feature bits. */
1518 {
1519 uint64_t const fBase = ((uint64_t)pBase->fVmxInsOutInfo << 0) | ((uint64_t)pBase->fVmxExtIntExit << 1)
1520 | ((uint64_t)pBase->fVmxNmiExit << 2) | ((uint64_t)pBase->fVmxVirtNmi << 3)
1521 | ((uint64_t)pBase->fVmxPreemptTimer << 4) | ((uint64_t)pBase->fVmxPostedInt << 5)
1522 | ((uint64_t)pBase->fVmxIntWindowExit << 6) | ((uint64_t)pBase->fVmxTscOffsetting << 7)
1523 | ((uint64_t)pBase->fVmxHltExit << 8) | ((uint64_t)pBase->fVmxInvlpgExit << 9)
1524 | ((uint64_t)pBase->fVmxMwaitExit << 10) | ((uint64_t)pBase->fVmxRdpmcExit << 11)
1525 | ((uint64_t)pBase->fVmxRdtscExit << 12) | ((uint64_t)pBase->fVmxCr3LoadExit << 13)
1526 | ((uint64_t)pBase->fVmxCr3StoreExit << 14) | ((uint64_t)pBase->fVmxCr8LoadExit << 15)
1527 | ((uint64_t)pBase->fVmxCr8StoreExit << 16) | ((uint64_t)pBase->fVmxUseTprShadow << 17)
1528 | ((uint64_t)pBase->fVmxNmiWindowExit << 18) | ((uint64_t)pBase->fVmxMovDRxExit << 19)
1529 | ((uint64_t)pBase->fVmxUncondIoExit << 20) | ((uint64_t)pBase->fVmxUseIoBitmaps << 21)
1530 | ((uint64_t)pBase->fVmxMonitorTrapFlag << 22) | ((uint64_t)pBase->fVmxUseMsrBitmaps << 23)
1531 | ((uint64_t)pBase->fVmxMonitorExit << 24) | ((uint64_t)pBase->fVmxPauseExit << 25)
1532 | ((uint64_t)pBase->fVmxSecondaryExecCtls << 26) | ((uint64_t)pBase->fVmxVirtApicAccess << 27)
1533 | ((uint64_t)pBase->fVmxEpt << 28) | ((uint64_t)pBase->fVmxDescTableExit << 29)
1534 | ((uint64_t)pBase->fVmxRdtscp << 30) | ((uint64_t)pBase->fVmxVirtX2ApicMode << 31)
1535 | ((uint64_t)pBase->fVmxVpid << 32) | ((uint64_t)pBase->fVmxWbinvdExit << 33)
1536 | ((uint64_t)pBase->fVmxUnrestrictedGuest << 34) | ((uint64_t)pBase->fVmxApicRegVirt << 35)
1537 | ((uint64_t)pBase->fVmxVirtIntDelivery << 36) | ((uint64_t)pBase->fVmxPauseLoopExit << 37)
1538 | ((uint64_t)pBase->fVmxRdrandExit << 38) | ((uint64_t)pBase->fVmxInvpcid << 39)
1539 | ((uint64_t)pBase->fVmxVmFunc << 40) | ((uint64_t)pBase->fVmxVmcsShadowing << 41)
1540 | ((uint64_t)pBase->fVmxRdseedExit << 42) | ((uint64_t)pBase->fVmxPml << 43)
1541 | ((uint64_t)pBase->fVmxEptXcptVe << 44) | ((uint64_t)pBase->fVmxXsavesXrstors << 45)
1542 | ((uint64_t)pBase->fVmxUseTscScaling << 46) | ((uint64_t)pBase->fVmxEntryLoadDebugCtls << 47)
1543 | ((uint64_t)pBase->fVmxIa32eModeGuest << 48) | ((uint64_t)pBase->fVmxEntryLoadEferMsr << 49)
1544 | ((uint64_t)pBase->fVmxEntryLoadPatMsr << 50) | ((uint64_t)pBase->fVmxExitSaveDebugCtls << 51)
1545 | ((uint64_t)pBase->fVmxHostAddrSpaceSize << 52) | ((uint64_t)pBase->fVmxExitAckExtInt << 53)
1546 | ((uint64_t)pBase->fVmxExitSavePatMsr << 54) | ((uint64_t)pBase->fVmxExitLoadPatMsr << 55)
1547 | ((uint64_t)pBase->fVmxExitSaveEferMsr << 56) | ((uint64_t)pBase->fVmxExitLoadEferMsr << 57)
1548 | ((uint64_t)pBase->fVmxSavePreemptTimer << 58) | ((uint64_t)pBase->fVmxExitSaveEferLma << 59)
1549 | ((uint64_t)pBase->fVmxIntelPt << 60) | ((uint64_t)pBase->fVmxVmwriteAll << 61)
1550 | ((uint64_t)pBase->fVmxEntryInjectSoftInt << 62);
1551
1552 uint64_t const fGst = ((uint64_t)pGst->fVmxInsOutInfo << 0) | ((uint64_t)pGst->fVmxExtIntExit << 1)
1553 | ((uint64_t)pGst->fVmxNmiExit << 2) | ((uint64_t)pGst->fVmxVirtNmi << 3)
1554 | ((uint64_t)pGst->fVmxPreemptTimer << 4) | ((uint64_t)pGst->fVmxPostedInt << 5)
1555 | ((uint64_t)pGst->fVmxIntWindowExit << 6) | ((uint64_t)pGst->fVmxTscOffsetting << 7)
1556 | ((uint64_t)pGst->fVmxHltExit << 8) | ((uint64_t)pGst->fVmxInvlpgExit << 9)
1557 | ((uint64_t)pGst->fVmxMwaitExit << 10) | ((uint64_t)pGst->fVmxRdpmcExit << 11)
1558 | ((uint64_t)pGst->fVmxRdtscExit << 12) | ((uint64_t)pGst->fVmxCr3LoadExit << 13)
1559 | ((uint64_t)pGst->fVmxCr3StoreExit << 14) | ((uint64_t)pGst->fVmxCr8LoadExit << 15)
1560 | ((uint64_t)pGst->fVmxCr8StoreExit << 16) | ((uint64_t)pGst->fVmxUseTprShadow << 17)
1561 | ((uint64_t)pGst->fVmxNmiWindowExit << 18) | ((uint64_t)pGst->fVmxMovDRxExit << 19)
1562 | ((uint64_t)pGst->fVmxUncondIoExit << 20) | ((uint64_t)pGst->fVmxUseIoBitmaps << 21)
1563 | ((uint64_t)pGst->fVmxMonitorTrapFlag << 22) | ((uint64_t)pGst->fVmxUseMsrBitmaps << 23)
1564 | ((uint64_t)pGst->fVmxMonitorExit << 24) | ((uint64_t)pGst->fVmxPauseExit << 25)
1565 | ((uint64_t)pGst->fVmxSecondaryExecCtls << 26) | ((uint64_t)pGst->fVmxVirtApicAccess << 27)
1566 | ((uint64_t)pGst->fVmxEpt << 28) | ((uint64_t)pGst->fVmxDescTableExit << 29)
1567 | ((uint64_t)pGst->fVmxRdtscp << 30) | ((uint64_t)pGst->fVmxVirtX2ApicMode << 31)
1568 | ((uint64_t)pGst->fVmxVpid << 32) | ((uint64_t)pGst->fVmxWbinvdExit << 33)
1569 | ((uint64_t)pGst->fVmxUnrestrictedGuest << 34) | ((uint64_t)pGst->fVmxApicRegVirt << 35)
1570 | ((uint64_t)pGst->fVmxVirtIntDelivery << 36) | ((uint64_t)pGst->fVmxPauseLoopExit << 37)
1571 | ((uint64_t)pGst->fVmxRdrandExit << 38) | ((uint64_t)pGst->fVmxInvpcid << 39)
1572 | ((uint64_t)pGst->fVmxVmFunc << 40) | ((uint64_t)pGst->fVmxVmcsShadowing << 41)
1573 | ((uint64_t)pGst->fVmxRdseedExit << 42) | ((uint64_t)pGst->fVmxPml << 43)
1574 | ((uint64_t)pGst->fVmxEptXcptVe << 44) | ((uint64_t)pGst->fVmxXsavesXrstors << 45)
1575 | ((uint64_t)pGst->fVmxUseTscScaling << 46) | ((uint64_t)pGst->fVmxEntryLoadDebugCtls << 47)
1576 | ((uint64_t)pGst->fVmxIa32eModeGuest << 48) | ((uint64_t)pGst->fVmxEntryLoadEferMsr << 49)
1577 | ((uint64_t)pGst->fVmxEntryLoadPatMsr << 50) | ((uint64_t)pGst->fVmxExitSaveDebugCtls << 51)
1578 | ((uint64_t)pGst->fVmxHostAddrSpaceSize << 52) | ((uint64_t)pGst->fVmxExitAckExtInt << 53)
1579 | ((uint64_t)pGst->fVmxExitSavePatMsr << 54) | ((uint64_t)pGst->fVmxExitLoadPatMsr << 55)
1580 | ((uint64_t)pGst->fVmxExitSaveEferMsr << 56) | ((uint64_t)pGst->fVmxExitLoadEferMsr << 57)
1581 | ((uint64_t)pGst->fVmxSavePreemptTimer << 58) | ((uint64_t)pGst->fVmxExitSaveEferLma << 59)
1582 | ((uint64_t)pGst->fVmxIntelPt << 60) | ((uint64_t)pGst->fVmxVmwriteAll << 61)
1583 | ((uint64_t)pGst->fVmxEntryInjectSoftInt << 62);
1584
1585 if ((fBase | fGst) != fBase)
1586 {
1587 uint64_t const fDiff = fBase ^ fGst;
1588 LogRel(("CPUM: VMX features (1) now exposed to the guest are incompatible with those from the saved state. fBase=%#RX64 fGst=%#RX64 fDiff=%#RX64\n",
1589 fBase, fGst, fDiff));
1590 return false;
1591 }
1592 }
1593
1594 /* Check second set of feature bits. */
1595 {
1596 uint64_t const fBase = ((uint64_t)pBase->fVmxTertiaryExecCtls << 0) | ((uint64_t)pBase->fVmxLoadIwKeyExit << 1);
1597 uint64_t const fGst = ((uint64_t)pGst->fVmxTertiaryExecCtls << 0) | ((uint64_t)pGst->fVmxLoadIwKeyExit << 1);
1598 if ((fBase | fGst) != fBase)
1599 {
1600 uint64_t const fDiff = fBase ^ fGst;
1601 LogRel(("CPUM: VMX features (2) now exposed to the guest are incompatible with those from the saved state. fBase=%#RX64 fGst=%#RX64 fDiff=%#RX64\n",
1602 fBase, fGst, fDiff));
1603 return false;
1604 }
1605 }
1606
1607 return true;
1608}
1609
1610
1611/**
1612 * Initializes VMX guest features and MSRs.
1613 *
1614 * @param pVM The cross context VM structure.
1615 * @param pHostVmxMsrs The host VMX MSRs. Pass NULL when fully emulating VMX
1616 * and no hardware-assisted nested-guest execution is
1617 * possible for this VM.
1618 * @param pGuestVmxMsrs Where to store the initialized guest VMX MSRs.
1619 */
1620void cpumR3InitVmxGuestFeaturesAndMsrs(PVM pVM, PCVMXMSRS pHostVmxMsrs, PVMXMSRS pGuestVmxMsrs)
1621{
1622 Assert(pVM);
1623 Assert(pGuestVmxMsrs);
1624
1625 /*
1626 * While it would be nice to check this earlier while initializing fNestedVmxEpt
1627 * but we would not have enumearted host features then, so do it at least now.
1628 */
1629 if ( !pVM->cpum.s.HostFeatures.fNoExecute
1630 && pVM->cpum.s.fNestedVmxEpt)
1631 {
1632 LogRel(("CPUM: Warning! EPT not exposed to the guest since NX isn't available on the host.\n"));
1633 pVM->cpum.s.fNestedVmxEpt = false;
1634 pVM->cpum.s.fNestedVmxUnrestrictedGuest = false;
1635 }
1636
1637 /*
1638 * Initialize the set of VMX features we emulate.
1639 *
1640 * Note! Some bits might be reported as 1 always if they fall under the
1641 * default1 class bits (e.g. fVmxEntryLoadDebugCtls), see @bugref{9180#c5}.
1642 */
1643 CPUMFEATURES EmuFeat;
1644 RT_ZERO(EmuFeat);
1645 EmuFeat.fVmx = 1;
1646 EmuFeat.fVmxInsOutInfo = 1;
1647 EmuFeat.fVmxExtIntExit = 1;
1648 EmuFeat.fVmxNmiExit = 1;
1649 EmuFeat.fVmxVirtNmi = 1;
1650 EmuFeat.fVmxPreemptTimer = pVM->cpum.s.fNestedVmxPreemptTimer;
1651 EmuFeat.fVmxPostedInt = 0;
1652 EmuFeat.fVmxIntWindowExit = 1;
1653 EmuFeat.fVmxTscOffsetting = 1;
1654 EmuFeat.fVmxHltExit = 1;
1655 EmuFeat.fVmxInvlpgExit = 1;
1656 EmuFeat.fVmxMwaitExit = 1;
1657 EmuFeat.fVmxRdpmcExit = 1;
1658 EmuFeat.fVmxRdtscExit = 1;
1659 EmuFeat.fVmxCr3LoadExit = 1;
1660 EmuFeat.fVmxCr3StoreExit = 1;
1661 EmuFeat.fVmxTertiaryExecCtls = 0;
1662 EmuFeat.fVmxCr8LoadExit = 1;
1663 EmuFeat.fVmxCr8StoreExit = 1;
1664 EmuFeat.fVmxUseTprShadow = 1;
1665 EmuFeat.fVmxNmiWindowExit = 0;
1666 EmuFeat.fVmxMovDRxExit = 1;
1667 EmuFeat.fVmxUncondIoExit = 1;
1668 EmuFeat.fVmxUseIoBitmaps = 1;
1669 EmuFeat.fVmxMonitorTrapFlag = 0;
1670 EmuFeat.fVmxUseMsrBitmaps = 1;
1671 EmuFeat.fVmxMonitorExit = 1;
1672 EmuFeat.fVmxPauseExit = 1;
1673 EmuFeat.fVmxSecondaryExecCtls = 1;
1674 EmuFeat.fVmxVirtApicAccess = 1;
1675 EmuFeat.fVmxEpt = pVM->cpum.s.fNestedVmxEpt;
1676 EmuFeat.fVmxDescTableExit = 1;
1677 EmuFeat.fVmxRdtscp = 1;
1678 EmuFeat.fVmxVirtX2ApicMode = 0;
1679 EmuFeat.fVmxVpid = 0; /** @todo Consider enabling this when EPT works. */
1680 EmuFeat.fVmxWbinvdExit = 1;
1681 EmuFeat.fVmxUnrestrictedGuest = pVM->cpum.s.fNestedVmxUnrestrictedGuest;
1682 EmuFeat.fVmxApicRegVirt = 0;
1683 EmuFeat.fVmxVirtIntDelivery = 0;
1684 EmuFeat.fVmxPauseLoopExit = 0;
1685 EmuFeat.fVmxRdrandExit = 0;
1686 EmuFeat.fVmxInvpcid = 1;
1687 EmuFeat.fVmxVmFunc = 0;
1688 EmuFeat.fVmxVmcsShadowing = 0;
1689 EmuFeat.fVmxRdseedExit = 0;
1690 EmuFeat.fVmxPml = 0;
1691 EmuFeat.fVmxEptXcptVe = 0;
1692 EmuFeat.fVmxXsavesXrstors = 0;
1693 EmuFeat.fVmxUseTscScaling = 0;
1694 EmuFeat.fVmxLoadIwKeyExit = 0;
1695 EmuFeat.fVmxEntryLoadDebugCtls = 1;
1696 EmuFeat.fVmxIa32eModeGuest = 1;
1697 EmuFeat.fVmxEntryLoadEferMsr = 1;
1698 EmuFeat.fVmxEntryLoadPatMsr = 0;
1699 EmuFeat.fVmxExitSaveDebugCtls = 1;
1700 EmuFeat.fVmxHostAddrSpaceSize = 1;
1701 EmuFeat.fVmxExitAckExtInt = 1;
1702 EmuFeat.fVmxExitSavePatMsr = 0;
1703 EmuFeat.fVmxExitLoadPatMsr = 0;
1704 EmuFeat.fVmxExitSaveEferMsr = 1;
1705 EmuFeat.fVmxExitLoadEferMsr = 1;
1706 EmuFeat.fVmxSavePreemptTimer = 0; /* Cannot be enabled if VMX-preemption timer is disabled. */
1707 EmuFeat.fVmxExitSaveEferLma = 1; /* Cannot be disabled if unrestricted guest is enabled. */
1708 EmuFeat.fVmxIntelPt = 0;
1709 EmuFeat.fVmxVmwriteAll = 0; /** @todo NSTVMX: enable this when nested VMCS shadowing is enabled. */
1710 EmuFeat.fVmxEntryInjectSoftInt = 1;
1711
1712 /*
1713 * Merge guest features.
1714 *
1715 * When hardware-assisted VMX may be used, any feature we emulate must also be supported
1716 * by the hardware, hence we merge our emulated features with the host features below.
1717 */
1718 PCCPUMFEATURES pBaseFeat = cpumR3IsHwAssistNstGstExecAllowed(pVM) ? &pVM->cpum.s.HostFeatures : &EmuFeat;
1719 PCPUMFEATURES pGuestFeat = &pVM->cpum.s.GuestFeatures;
1720 Assert(pBaseFeat->fVmx);
1721 pGuestFeat->fVmxInsOutInfo = (pBaseFeat->fVmxInsOutInfo & EmuFeat.fVmxInsOutInfo );
1722 pGuestFeat->fVmxExtIntExit = (pBaseFeat->fVmxExtIntExit & EmuFeat.fVmxExtIntExit );
1723 pGuestFeat->fVmxNmiExit = (pBaseFeat->fVmxNmiExit & EmuFeat.fVmxNmiExit );
1724 pGuestFeat->fVmxVirtNmi = (pBaseFeat->fVmxVirtNmi & EmuFeat.fVmxVirtNmi );
1725 pGuestFeat->fVmxPreemptTimer = (pBaseFeat->fVmxPreemptTimer & EmuFeat.fVmxPreemptTimer );
1726 pGuestFeat->fVmxPostedInt = (pBaseFeat->fVmxPostedInt & EmuFeat.fVmxPostedInt );
1727 pGuestFeat->fVmxIntWindowExit = (pBaseFeat->fVmxIntWindowExit & EmuFeat.fVmxIntWindowExit );
1728 pGuestFeat->fVmxTscOffsetting = (pBaseFeat->fVmxTscOffsetting & EmuFeat.fVmxTscOffsetting );
1729 pGuestFeat->fVmxHltExit = (pBaseFeat->fVmxHltExit & EmuFeat.fVmxHltExit );
1730 pGuestFeat->fVmxInvlpgExit = (pBaseFeat->fVmxInvlpgExit & EmuFeat.fVmxInvlpgExit );
1731 pGuestFeat->fVmxMwaitExit = (pBaseFeat->fVmxMwaitExit & EmuFeat.fVmxMwaitExit );
1732 pGuestFeat->fVmxRdpmcExit = (pBaseFeat->fVmxRdpmcExit & EmuFeat.fVmxRdpmcExit );
1733 pGuestFeat->fVmxRdtscExit = (pBaseFeat->fVmxRdtscExit & EmuFeat.fVmxRdtscExit );
1734 pGuestFeat->fVmxCr3LoadExit = (pBaseFeat->fVmxCr3LoadExit & EmuFeat.fVmxCr3LoadExit );
1735 pGuestFeat->fVmxCr3StoreExit = (pBaseFeat->fVmxCr3StoreExit & EmuFeat.fVmxCr3StoreExit );
1736 pGuestFeat->fVmxTertiaryExecCtls = (pBaseFeat->fVmxTertiaryExecCtls & EmuFeat.fVmxTertiaryExecCtls );
1737 pGuestFeat->fVmxCr8LoadExit = (pBaseFeat->fVmxCr8LoadExit & EmuFeat.fVmxCr8LoadExit );
1738 pGuestFeat->fVmxCr8StoreExit = (pBaseFeat->fVmxCr8StoreExit & EmuFeat.fVmxCr8StoreExit );
1739 pGuestFeat->fVmxUseTprShadow = (pBaseFeat->fVmxUseTprShadow & EmuFeat.fVmxUseTprShadow );
1740 pGuestFeat->fVmxNmiWindowExit = (pBaseFeat->fVmxNmiWindowExit & EmuFeat.fVmxNmiWindowExit );
1741 pGuestFeat->fVmxMovDRxExit = (pBaseFeat->fVmxMovDRxExit & EmuFeat.fVmxMovDRxExit );
1742 pGuestFeat->fVmxUncondIoExit = (pBaseFeat->fVmxUncondIoExit & EmuFeat.fVmxUncondIoExit );
1743 pGuestFeat->fVmxUseIoBitmaps = (pBaseFeat->fVmxUseIoBitmaps & EmuFeat.fVmxUseIoBitmaps );
1744 pGuestFeat->fVmxMonitorTrapFlag = (pBaseFeat->fVmxMonitorTrapFlag & EmuFeat.fVmxMonitorTrapFlag );
1745 pGuestFeat->fVmxUseMsrBitmaps = (pBaseFeat->fVmxUseMsrBitmaps & EmuFeat.fVmxUseMsrBitmaps );
1746 pGuestFeat->fVmxMonitorExit = (pBaseFeat->fVmxMonitorExit & EmuFeat.fVmxMonitorExit );
1747 pGuestFeat->fVmxPauseExit = (pBaseFeat->fVmxPauseExit & EmuFeat.fVmxPauseExit );
1748 pGuestFeat->fVmxSecondaryExecCtls = (pBaseFeat->fVmxSecondaryExecCtls & EmuFeat.fVmxSecondaryExecCtls );
1749 pGuestFeat->fVmxVirtApicAccess = (pBaseFeat->fVmxVirtApicAccess & EmuFeat.fVmxVirtApicAccess );
1750 pGuestFeat->fVmxEpt = (pBaseFeat->fVmxEpt & EmuFeat.fVmxEpt );
1751 pGuestFeat->fVmxDescTableExit = (pBaseFeat->fVmxDescTableExit & EmuFeat.fVmxDescTableExit );
1752 pGuestFeat->fVmxRdtscp = (pBaseFeat->fVmxRdtscp & EmuFeat.fVmxRdtscp );
1753 pGuestFeat->fVmxVirtX2ApicMode = (pBaseFeat->fVmxVirtX2ApicMode & EmuFeat.fVmxVirtX2ApicMode );
1754 pGuestFeat->fVmxVpid = (pBaseFeat->fVmxVpid & EmuFeat.fVmxVpid );
1755 pGuestFeat->fVmxWbinvdExit = (pBaseFeat->fVmxWbinvdExit & EmuFeat.fVmxWbinvdExit );
1756 pGuestFeat->fVmxUnrestrictedGuest = (pBaseFeat->fVmxUnrestrictedGuest & EmuFeat.fVmxUnrestrictedGuest );
1757 pGuestFeat->fVmxApicRegVirt = (pBaseFeat->fVmxApicRegVirt & EmuFeat.fVmxApicRegVirt );
1758 pGuestFeat->fVmxVirtIntDelivery = (pBaseFeat->fVmxVirtIntDelivery & EmuFeat.fVmxVirtIntDelivery );
1759 pGuestFeat->fVmxPauseLoopExit = (pBaseFeat->fVmxPauseLoopExit & EmuFeat.fVmxPauseLoopExit );
1760 pGuestFeat->fVmxRdrandExit = (pBaseFeat->fVmxRdrandExit & EmuFeat.fVmxRdrandExit );
1761 pGuestFeat->fVmxInvpcid = (pBaseFeat->fVmxInvpcid & EmuFeat.fVmxInvpcid );
1762 pGuestFeat->fVmxVmFunc = (pBaseFeat->fVmxVmFunc & EmuFeat.fVmxVmFunc );
1763 pGuestFeat->fVmxVmcsShadowing = (pBaseFeat->fVmxVmcsShadowing & EmuFeat.fVmxVmcsShadowing );
1764 pGuestFeat->fVmxRdseedExit = (pBaseFeat->fVmxRdseedExit & EmuFeat.fVmxRdseedExit );
1765 pGuestFeat->fVmxPml = (pBaseFeat->fVmxPml & EmuFeat.fVmxPml );
1766 pGuestFeat->fVmxEptXcptVe = (pBaseFeat->fVmxEptXcptVe & EmuFeat.fVmxEptXcptVe );
1767 pGuestFeat->fVmxXsavesXrstors = (pBaseFeat->fVmxXsavesXrstors & EmuFeat.fVmxXsavesXrstors );
1768 pGuestFeat->fVmxUseTscScaling = (pBaseFeat->fVmxUseTscScaling & EmuFeat.fVmxUseTscScaling );
1769 pGuestFeat->fVmxLoadIwKeyExit = (pBaseFeat->fVmxLoadIwKeyExit & EmuFeat.fVmxLoadIwKeyExit );
1770 pGuestFeat->fVmxEntryLoadDebugCtls = (pBaseFeat->fVmxEntryLoadDebugCtls & EmuFeat.fVmxEntryLoadDebugCtls );
1771 pGuestFeat->fVmxIa32eModeGuest = (pBaseFeat->fVmxIa32eModeGuest & EmuFeat.fVmxIa32eModeGuest );
1772 pGuestFeat->fVmxEntryLoadEferMsr = (pBaseFeat->fVmxEntryLoadEferMsr & EmuFeat.fVmxEntryLoadEferMsr );
1773 pGuestFeat->fVmxEntryLoadPatMsr = (pBaseFeat->fVmxEntryLoadPatMsr & EmuFeat.fVmxEntryLoadPatMsr );
1774 pGuestFeat->fVmxExitSaveDebugCtls = (pBaseFeat->fVmxExitSaveDebugCtls & EmuFeat.fVmxExitSaveDebugCtls );
1775 pGuestFeat->fVmxHostAddrSpaceSize = (pBaseFeat->fVmxHostAddrSpaceSize & EmuFeat.fVmxHostAddrSpaceSize );
1776 pGuestFeat->fVmxExitAckExtInt = (pBaseFeat->fVmxExitAckExtInt & EmuFeat.fVmxExitAckExtInt );
1777 pGuestFeat->fVmxExitSavePatMsr = (pBaseFeat->fVmxExitSavePatMsr & EmuFeat.fVmxExitSavePatMsr );
1778 pGuestFeat->fVmxExitLoadPatMsr = (pBaseFeat->fVmxExitLoadPatMsr & EmuFeat.fVmxExitLoadPatMsr );
1779 pGuestFeat->fVmxExitSaveEferMsr = (pBaseFeat->fVmxExitSaveEferMsr & EmuFeat.fVmxExitSaveEferMsr );
1780 pGuestFeat->fVmxExitLoadEferMsr = (pBaseFeat->fVmxExitLoadEferMsr & EmuFeat.fVmxExitLoadEferMsr );
1781 pGuestFeat->fVmxSavePreemptTimer = (pBaseFeat->fVmxSavePreemptTimer & EmuFeat.fVmxSavePreemptTimer );
1782 pGuestFeat->fVmxExitSaveEferLma = (pBaseFeat->fVmxExitSaveEferLma & EmuFeat.fVmxExitSaveEferLma );
1783 pGuestFeat->fVmxIntelPt = (pBaseFeat->fVmxIntelPt & EmuFeat.fVmxIntelPt );
1784 pGuestFeat->fVmxVmwriteAll = (pBaseFeat->fVmxVmwriteAll & EmuFeat.fVmxVmwriteAll );
1785 pGuestFeat->fVmxEntryInjectSoftInt = (pBaseFeat->fVmxEntryInjectSoftInt & EmuFeat.fVmxEntryInjectSoftInt );
1786
1787 /* Don't expose VMX preemption timer if host is subject to VMX-preemption timer erratum. */
1788 if ( pGuestFeat->fVmxPreemptTimer
1789 && HMIsSubjectToVmxPreemptTimerErratum())
1790 {
1791 LogRel(("CPUM: Warning! VMX-preemption timer not exposed to guest due to host CPU erratum.\n"));
1792 pGuestFeat->fVmxPreemptTimer = 0;
1793 pGuestFeat->fVmxSavePreemptTimer = 0;
1794 }
1795
1796 /* Sanity checking. */
1797 if (!pGuestFeat->fVmxSecondaryExecCtls)
1798 {
1799 Assert(!pGuestFeat->fVmxVirtApicAccess);
1800 Assert(!pGuestFeat->fVmxEpt);
1801 Assert(!pGuestFeat->fVmxDescTableExit);
1802 Assert(!pGuestFeat->fVmxRdtscp);
1803 Assert(!pGuestFeat->fVmxVirtX2ApicMode);
1804 Assert(!pGuestFeat->fVmxVpid);
1805 Assert(!pGuestFeat->fVmxWbinvdExit);
1806 Assert(!pGuestFeat->fVmxUnrestrictedGuest);
1807 Assert(!pGuestFeat->fVmxApicRegVirt);
1808 Assert(!pGuestFeat->fVmxVirtIntDelivery);
1809 Assert(!pGuestFeat->fVmxPauseLoopExit);
1810 Assert(!pGuestFeat->fVmxRdrandExit);
1811 Assert(!pGuestFeat->fVmxInvpcid);
1812 Assert(!pGuestFeat->fVmxVmFunc);
1813 Assert(!pGuestFeat->fVmxVmcsShadowing);
1814 Assert(!pGuestFeat->fVmxRdseedExit);
1815 Assert(!pGuestFeat->fVmxPml);
1816 Assert(!pGuestFeat->fVmxEptXcptVe);
1817 Assert(!pGuestFeat->fVmxXsavesXrstors);
1818 Assert(!pGuestFeat->fVmxUseTscScaling);
1819 }
1820 else if (pGuestFeat->fVmxUnrestrictedGuest)
1821 {
1822 /* See footnote in Intel spec. 27.2 "Recording VM-Exit Information And Updating VM-entry Control Fields". */
1823 Assert(pGuestFeat->fVmxExitSaveEferLma);
1824 /* Unrestricted guest execution requires EPT. See Intel spec. 25.2.1.1 "VM-Execution Control Fields". */
1825 Assert(pGuestFeat->fVmxEpt);
1826 }
1827
1828 if (!pGuestFeat->fVmxTertiaryExecCtls)
1829 Assert(!pGuestFeat->fVmxLoadIwKeyExit);
1830
1831 /*
1832 * Finally initialize the VMX guest MSRs.
1833 */
1834 cpumR3InitVmxGuestMsrs(pVM, pHostVmxMsrs, pGuestFeat, pGuestVmxMsrs);
1835}
1836
1837
1838/**
1839 * Gets the host hardware-virtualization MSRs.
1840 *
1841 * @returns VBox status code.
1842 * @param pMsrs Where to store the MSRs.
1843 */
1844static int cpumR3GetHostHwvirtMsrs(PCPUMMSRS pMsrs)
1845{
1846 Assert(pMsrs);
1847
1848 uint32_t fCaps = 0;
1849 int rc = SUPR3QueryVTCaps(&fCaps);
1850 if (RT_SUCCESS(rc))
1851 {
1852 if (fCaps & (SUPVTCAPS_VT_X | SUPVTCAPS_AMD_V))
1853 {
1854 SUPHWVIRTMSRS HwvirtMsrs;
1855 rc = SUPR3GetHwvirtMsrs(&HwvirtMsrs, false /* fForceRequery */);
1856 if (RT_SUCCESS(rc))
1857 {
1858 if (fCaps & SUPVTCAPS_VT_X)
1859 HMGetVmxMsrsFromHwvirtMsrs(&HwvirtMsrs, &pMsrs->hwvirt.vmx);
1860 else
1861 HMGetSvmMsrsFromHwvirtMsrs(&HwvirtMsrs, &pMsrs->hwvirt.svm);
1862 return VINF_SUCCESS;
1863 }
1864
1865 LogRel(("CPUM: Querying hardware-virtualization MSRs failed. rc=%Rrc\n", rc));
1866 return rc;
1867 }
1868
1869 LogRel(("CPUM: Querying hardware-virtualization capability succeeded but did not find VT-x or AMD-V\n"));
1870 return VERR_INTERNAL_ERROR_5;
1871 }
1872 LogRel(("CPUM: No hardware-virtualization capability detected\n"));
1873 return VINF_SUCCESS;
1874}
1875
1876
1877/**
1878 * @callback_method_impl{FNTMTIMERINT,
1879 * Callback that fires when the nested VMX-preemption timer expired.}
1880 */
1881static DECLCALLBACK(void) cpumR3VmxPreemptTimerCallback(PVM pVM, TMTIMERHANDLE hTimer, void *pvUser)
1882{
1883 RT_NOREF(pVM, hTimer);
1884 PVMCPU pVCpu = (PVMCPUR3)pvUser;
1885 AssertPtr(pVCpu);
1886 VMCPU_FF_SET(pVCpu, VMCPU_FF_VMX_PREEMPT_TIMER);
1887}
1888
1889
1890/**
1891 * Initializes the CPUM.
1892 *
1893 * @returns VBox status code.
1894 * @param pVM The cross context VM structure.
1895 */
1896VMMR3DECL(int) CPUMR3Init(PVM pVM)
1897{
1898 LogFlow(("CPUMR3Init\n"));
1899
1900 /*
1901 * Assert alignment, sizes and tables.
1902 */
1903 AssertCompileMemberAlignment(VM, cpum.s, 32);
1904 AssertCompile(sizeof(pVM->cpum.s) <= sizeof(pVM->cpum.padding));
1905 AssertCompileSizeAlignment(CPUMCTX, 64);
1906 AssertCompileSizeAlignment(CPUMCTXMSRS, 64);
1907 AssertCompileSizeAlignment(CPUMHOSTCTX, 64);
1908 AssertCompileMemberAlignment(VM, cpum, 64);
1909 AssertCompileMemberAlignment(VMCPU, cpum.s, 64);
1910#ifdef VBOX_STRICT
1911 int rc2 = cpumR3MsrStrictInitChecks();
1912 AssertRCReturn(rc2, rc2);
1913#endif
1914
1915 /*
1916 * Gather info about the host CPU.
1917 */
1918 if (!ASMHasCpuId())
1919 {
1920 LogRel(("The CPU doesn't support CPUID!\n"));
1921 return VERR_UNSUPPORTED_CPU;
1922 }
1923
1924 pVM->cpum.s.fHostMxCsrMask = CPUMR3DeterminHostMxCsrMask();
1925
1926 CPUMMSRS HostMsrs;
1927 RT_ZERO(HostMsrs);
1928 int rc = cpumR3GetHostHwvirtMsrs(&HostMsrs);
1929 AssertLogRelRCReturn(rc, rc);
1930
1931 PCPUMCPUIDLEAF paLeaves;
1932 uint32_t cLeaves;
1933 rc = CPUMR3CpuIdCollectLeaves(&paLeaves, &cLeaves);
1934 AssertLogRelRCReturn(rc, rc);
1935
1936 rc = cpumR3CpuIdExplodeFeatures(paLeaves, cLeaves, &HostMsrs, &pVM->cpum.s.HostFeatures);
1937 RTMemFree(paLeaves);
1938 AssertLogRelRCReturn(rc, rc);
1939 pVM->cpum.s.GuestFeatures.enmCpuVendor = pVM->cpum.s.HostFeatures.enmCpuVendor;
1940
1941 /*
1942 * Check that the CPU supports the minimum features we require.
1943 */
1944 if (!pVM->cpum.s.HostFeatures.fFxSaveRstor)
1945 return VMSetError(pVM, VERR_UNSUPPORTED_CPU, RT_SRC_POS, "Host CPU does not support the FXSAVE/FXRSTOR instruction.");
1946 if (!pVM->cpum.s.HostFeatures.fMmx)
1947 return VMSetError(pVM, VERR_UNSUPPORTED_CPU, RT_SRC_POS, "Host CPU does not support MMX.");
1948 if (!pVM->cpum.s.HostFeatures.fTsc)
1949 return VMSetError(pVM, VERR_UNSUPPORTED_CPU, RT_SRC_POS, "Host CPU does not support RDTSC.");
1950
1951 /*
1952 * Setup the CR4 AND and OR masks used in the raw-mode switcher.
1953 */
1954 pVM->cpum.s.CR4.AndMask = X86_CR4_OSXMMEEXCPT | X86_CR4_PVI | X86_CR4_VME;
1955 pVM->cpum.s.CR4.OrMask = X86_CR4_OSFXSR;
1956
1957 /*
1958 * Figure out which XSAVE/XRSTOR features are available on the host.
1959 */
1960 uint64_t fXcr0Host = 0;
1961 uint64_t fXStateHostMask = 0;
1962 if ( pVM->cpum.s.HostFeatures.fXSaveRstor
1963 && pVM->cpum.s.HostFeatures.fOpSysXSaveRstor)
1964 {
1965 fXStateHostMask = fXcr0Host = ASMGetXcr0();
1966 fXStateHostMask &= XSAVE_C_X87 | XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI;
1967 AssertLogRelMsgStmt((fXStateHostMask & (XSAVE_C_X87 | XSAVE_C_SSE)) == (XSAVE_C_X87 | XSAVE_C_SSE),
1968 ("%#llx\n", fXStateHostMask), fXStateHostMask = 0);
1969 }
1970 pVM->cpum.s.fXStateHostMask = fXStateHostMask;
1971 LogRel(("CPUM: fXStateHostMask=%#llx; initial: %#llx; host XCR0=%#llx\n",
1972 pVM->cpum.s.fXStateHostMask, fXStateHostMask, fXcr0Host));
1973
1974 /*
1975 * Initialize the host XSAVE/XRSTOR mask.
1976 */
1977 uint32_t cbMaxXState = pVM->cpum.s.HostFeatures.cbMaxExtendedState;
1978 cbMaxXState = RT_ALIGN(cbMaxXState, 128);
1979 AssertLogRelReturn( pVM->cpum.s.HostFeatures.cbMaxExtendedState >= sizeof(X86FXSTATE)
1980 && pVM->cpum.s.HostFeatures.cbMaxExtendedState <= sizeof(pVM->apCpusR3[0]->cpum.s.Host.XState)
1981 && pVM->cpum.s.HostFeatures.cbMaxExtendedState <= sizeof(pVM->apCpusR3[0]->cpum.s.Guest.XState)
1982 , VERR_CPUM_IPE_2);
1983
1984 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1985 {
1986 PVMCPU pVCpu = pVM->apCpusR3[i];
1987
1988 pVCpu->cpum.s.Host.fXStateMask = fXStateHostMask;
1989 pVCpu->cpum.s.hNestedVmxPreemptTimer = NIL_TMTIMERHANDLE;
1990 }
1991
1992 /*
1993 * Register saved state data item.
1994 */
1995 rc = SSMR3RegisterInternal(pVM, "cpum", 1, CPUM_SAVED_STATE_VERSION, sizeof(CPUM),
1996 NULL, cpumR3LiveExec, NULL,
1997 NULL, cpumR3SaveExec, NULL,
1998 cpumR3LoadPrep, cpumR3LoadExec, cpumR3LoadDone);
1999 if (RT_FAILURE(rc))
2000 return rc;
2001
2002 /*
2003 * Register info handlers and registers with the debugger facility.
2004 */
2005 DBGFR3InfoRegisterInternalEx(pVM, "cpum", "Displays the all the cpu states.",
2006 &cpumR3InfoAll, DBGFINFO_FLAGS_ALL_EMTS);
2007 DBGFR3InfoRegisterInternalEx(pVM, "cpumguest", "Displays the guest cpu state.",
2008 &cpumR3InfoGuest, DBGFINFO_FLAGS_ALL_EMTS);
2009 DBGFR3InfoRegisterInternalEx(pVM, "cpumguesthwvirt", "Displays the guest hwvirt. cpu state.",
2010 &cpumR3InfoGuestHwvirt, DBGFINFO_FLAGS_ALL_EMTS);
2011 DBGFR3InfoRegisterInternalEx(pVM, "cpumhyper", "Displays the hypervisor cpu state.",
2012 &cpumR3InfoHyper, DBGFINFO_FLAGS_ALL_EMTS);
2013 DBGFR3InfoRegisterInternalEx(pVM, "cpumhost", "Displays the host cpu state.",
2014 &cpumR3InfoHost, DBGFINFO_FLAGS_ALL_EMTS);
2015 DBGFR3InfoRegisterInternalEx(pVM, "cpumguestinstr", "Displays the current guest instruction.",
2016 &cpumR3InfoGuestInstr, DBGFINFO_FLAGS_ALL_EMTS);
2017 DBGFR3InfoRegisterInternal( pVM, "cpuid", "Displays the guest cpuid leaves.", &cpumR3CpuIdInfo);
2018 DBGFR3InfoRegisterInternal( pVM, "cpumvmxfeat", "Displays the host and guest VMX hwvirt. features.",
2019 &cpumR3InfoVmxFeatures);
2020
2021 rc = cpumR3DbgInit(pVM);
2022 if (RT_FAILURE(rc))
2023 return rc;
2024
2025 /*
2026 * Check if we need to workaround partial/leaky FPU handling.
2027 */
2028 cpumR3CheckLeakyFpu(pVM);
2029
2030 /*
2031 * Initialize the Guest CPUID and MSR states.
2032 */
2033 rc = cpumR3InitCpuIdAndMsrs(pVM, &HostMsrs);
2034 if (RT_FAILURE(rc))
2035 return rc;
2036
2037 /*
2038 * Init the VMX/SVM state.
2039 *
2040 * This must be done after initializing CPUID/MSR features as we access the
2041 * the VMX/SVM guest features below.
2042 *
2043 * In the case of nested VT-x, we also need to create the per-VCPU
2044 * VMX preemption timers.
2045 */
2046 if (pVM->cpum.s.GuestFeatures.fVmx)
2047 cpumR3InitVmxHwVirtState(pVM);
2048 else if (pVM->cpum.s.GuestFeatures.fSvm)
2049 cpumR3InitSvmHwVirtState(pVM);
2050 else
2051 Assert(pVM->apCpusR3[0]->cpum.s.Guest.hwvirt.enmHwvirt == CPUMHWVIRT_NONE);
2052
2053 CPUMR3Reset(pVM);
2054 return VINF_SUCCESS;
2055}
2056
2057
2058/**
2059 * Applies relocations to data and code managed by this
2060 * component. This function will be called at init and
2061 * whenever the VMM need to relocate it self inside the GC.
2062 *
2063 * The CPUM will update the addresses used by the switcher.
2064 *
2065 * @param pVM The cross context VM structure.
2066 */
2067VMMR3DECL(void) CPUMR3Relocate(PVM pVM)
2068{
2069 RT_NOREF(pVM);
2070}
2071
2072
2073/**
2074 * Terminates the CPUM.
2075 *
2076 * Termination means cleaning up and freeing all resources,
2077 * the VM it self is at this point powered off or suspended.
2078 *
2079 * @returns VBox status code.
2080 * @param pVM The cross context VM structure.
2081 */
2082VMMR3DECL(int) CPUMR3Term(PVM pVM)
2083{
2084#ifdef VBOX_WITH_CRASHDUMP_MAGIC
2085 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2086 {
2087 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
2088 memset(pVCpu->cpum.s.aMagic, 0, sizeof(pVCpu->cpum.s.aMagic));
2089 pVCpu->cpum.s.uMagic = 0;
2090 pvCpu->cpum.s.Guest.dr[5] = 0;
2091 }
2092#endif
2093
2094 if (pVM->cpum.s.GuestFeatures.fVmx)
2095 {
2096 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2097 {
2098 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
2099 if (pVCpu->cpum.s.hNestedVmxPreemptTimer != NIL_TMTIMERHANDLE)
2100 {
2101 int rc = TMR3TimerDestroy(pVM, pVCpu->cpum.s.hNestedVmxPreemptTimer); AssertRC(rc);
2102 pVCpu->cpum.s.hNestedVmxPreemptTimer = NIL_TMTIMERHANDLE;
2103 }
2104 }
2105 }
2106 return VINF_SUCCESS;
2107}
2108
2109
2110/**
2111 * Resets a virtual CPU.
2112 *
2113 * Used by CPUMR3Reset and CPU hot plugging.
2114 *
2115 * @param pVM The cross context VM structure.
2116 * @param pVCpu The cross context virtual CPU structure of the CPU that is
2117 * being reset. This may differ from the current EMT.
2118 */
2119VMMR3DECL(void) CPUMR3ResetCpu(PVM pVM, PVMCPU pVCpu)
2120{
2121 /** @todo anything different for VCPU > 0? */
2122 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
2123
2124 /*
2125 * Initialize everything to ZERO first.
2126 */
2127 uint32_t fUseFlags = pVCpu->cpum.s.fUseFlags & ~CPUM_USED_FPU_SINCE_REM;
2128
2129 RT_BZERO(pCtx, RT_UOFFSETOF(CPUMCTX, aoffXState));
2130
2131 pVCpu->cpum.s.fUseFlags = fUseFlags;
2132
2133 pCtx->cr0 = X86_CR0_CD | X86_CR0_NW | X86_CR0_ET; //0x60000010
2134 pCtx->eip = 0x0000fff0;
2135 pCtx->edx = 0x00000600; /* P6 processor */
2136 pCtx->eflags.Bits.u1Reserved0 = 1;
2137
2138 pCtx->cs.Sel = 0xf000;
2139 pCtx->cs.ValidSel = 0xf000;
2140 pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
2141 pCtx->cs.u64Base = UINT64_C(0xffff0000);
2142 pCtx->cs.u32Limit = 0x0000ffff;
2143 pCtx->cs.Attr.n.u1DescType = 1; /* code/data segment */
2144 pCtx->cs.Attr.n.u1Present = 1;
2145 pCtx->cs.Attr.n.u4Type = X86_SEL_TYPE_ER_ACC;
2146
2147 pCtx->ds.fFlags = CPUMSELREG_FLAGS_VALID;
2148 pCtx->ds.u32Limit = 0x0000ffff;
2149 pCtx->ds.Attr.n.u1DescType = 1; /* code/data segment */
2150 pCtx->ds.Attr.n.u1Present = 1;
2151 pCtx->ds.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
2152
2153 pCtx->es.fFlags = CPUMSELREG_FLAGS_VALID;
2154 pCtx->es.u32Limit = 0x0000ffff;
2155 pCtx->es.Attr.n.u1DescType = 1; /* code/data segment */
2156 pCtx->es.Attr.n.u1Present = 1;
2157 pCtx->es.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
2158
2159 pCtx->fs.fFlags = CPUMSELREG_FLAGS_VALID;
2160 pCtx->fs.u32Limit = 0x0000ffff;
2161 pCtx->fs.Attr.n.u1DescType = 1; /* code/data segment */
2162 pCtx->fs.Attr.n.u1Present = 1;
2163 pCtx->fs.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
2164
2165 pCtx->gs.fFlags = CPUMSELREG_FLAGS_VALID;
2166 pCtx->gs.u32Limit = 0x0000ffff;
2167 pCtx->gs.Attr.n.u1DescType = 1; /* code/data segment */
2168 pCtx->gs.Attr.n.u1Present = 1;
2169 pCtx->gs.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
2170
2171 pCtx->ss.fFlags = CPUMSELREG_FLAGS_VALID;
2172 pCtx->ss.u32Limit = 0x0000ffff;
2173 pCtx->ss.Attr.n.u1Present = 1;
2174 pCtx->ss.Attr.n.u1DescType = 1; /* code/data segment */
2175 pCtx->ss.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
2176
2177 pCtx->idtr.cbIdt = 0xffff;
2178 pCtx->gdtr.cbGdt = 0xffff;
2179
2180 pCtx->ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
2181 pCtx->ldtr.u32Limit = 0xffff;
2182 pCtx->ldtr.Attr.n.u1Present = 1;
2183 pCtx->ldtr.Attr.n.u4Type = X86_SEL_TYPE_SYS_LDT;
2184
2185 pCtx->tr.fFlags = CPUMSELREG_FLAGS_VALID;
2186 pCtx->tr.u32Limit = 0xffff;
2187 pCtx->tr.Attr.n.u1Present = 1;
2188 pCtx->tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY; /* Deduction, not properly documented by Intel. */
2189
2190 pCtx->dr[6] = X86_DR6_INIT_VAL;
2191 pCtx->dr[7] = X86_DR7_INIT_VAL;
2192
2193 PX86FXSTATE pFpuCtx = &pCtx->XState.x87;
2194 pFpuCtx->FTW = 0x00; /* All empty (abbridged tag reg edition). */
2195 pFpuCtx->FCW = 0x37f;
2196
2197 /* Intel 64 and IA-32 Architectures Software Developer's Manual Volume 3A, Table 8-1.
2198 IA-32 Processor States Following Power-up, Reset, or INIT */
2199 pFpuCtx->MXCSR = 0x1F80;
2200 pFpuCtx->MXCSR_MASK = pVM->cpum.s.GuestInfo.fMxCsrMask; /** @todo check if REM messes this up... */
2201
2202 pCtx->aXcr[0] = XSAVE_C_X87;
2203 if (pVM->cpum.s.HostFeatures.cbMaxExtendedState >= RT_UOFFSETOF(X86XSAVEAREA, Hdr))
2204 {
2205 /* The entire FXSAVE state needs loading when we switch to XSAVE/XRSTOR
2206 as we don't know what happened before. (Bother optimize later?) */
2207 pCtx->XState.Hdr.bmXState = XSAVE_C_X87 | XSAVE_C_SSE;
2208 }
2209
2210 /*
2211 * MSRs.
2212 */
2213 /* Init PAT MSR */
2214 pCtx->msrPAT = MSR_IA32_CR_PAT_INIT_VAL;
2215
2216 /* EFER MBZ; see AMD64 Architecture Programmer's Manual Volume 2: Table 14-1. Initial Processor State.
2217 * The Intel docs don't mention it. */
2218 Assert(!pCtx->msrEFER);
2219
2220 /* IA32_MISC_ENABLE - not entirely sure what the init/reset state really
2221 is supposed to be here, just trying provide useful/sensible values. */
2222 PCPUMMSRRANGE pRange = cpumLookupMsrRange(pVM, MSR_IA32_MISC_ENABLE);
2223 if (pRange)
2224 {
2225 pVCpu->cpum.s.GuestMsrs.msr.MiscEnable = MSR_IA32_MISC_ENABLE_BTS_UNAVAIL
2226 | MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL
2227 | (pVM->cpum.s.GuestFeatures.fMonitorMWait ? MSR_IA32_MISC_ENABLE_MONITOR : 0)
2228 | MSR_IA32_MISC_ENABLE_FAST_STRINGS;
2229 pRange->fWrIgnMask |= MSR_IA32_MISC_ENABLE_BTS_UNAVAIL
2230 | MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL;
2231 pRange->fWrGpMask &= ~pVCpu->cpum.s.GuestMsrs.msr.MiscEnable;
2232 }
2233
2234 /** @todo Wire IA32_MISC_ENABLE bit 22 to our NT 4 CPUID trick. */
2235
2236 /** @todo r=ramshankar: Currently broken for SMP as TMCpuTickSet() expects to be
2237 * called from each EMT while we're getting called by CPUMR3Reset()
2238 * iteratively on the same thread. Fix later. */
2239#if 0 /** @todo r=bird: This we will do in TM, not here. */
2240 /* TSC must be 0. Intel spec. Table 9-1. "IA-32 Processor States Following Power-up, Reset, or INIT." */
2241 CPUMSetGuestMsr(pVCpu, MSR_IA32_TSC, 0);
2242#endif
2243
2244
2245 /* C-state control. Guesses. */
2246 pVCpu->cpum.s.GuestMsrs.msr.PkgCStateCfgCtrl = 1 /*C1*/ | RT_BIT_32(25) | RT_BIT_32(26) | RT_BIT_32(27) | RT_BIT_32(28);
2247 /* For Nehalem+ and Atoms, the 0xE2 MSR (MSR_PKG_CST_CONFIG_CONTROL) is documented. For Core 2,
2248 * it's undocumented but exists as MSR_PMG_CST_CONFIG_CONTROL and has similar but not identical
2249 * functionality. The default value must be different due to incompatible write mask.
2250 */
2251 if (CPUMMICROARCH_IS_INTEL_CORE2(pVM->cpum.s.GuestFeatures.enmMicroarch))
2252 pVCpu->cpum.s.GuestMsrs.msr.PkgCStateCfgCtrl = 0x202a01; /* From Mac Pro Harpertown, unlocked. */
2253 else if (pVM->cpum.s.GuestFeatures.enmMicroarch == kCpumMicroarch_Intel_Core_Yonah)
2254 pVCpu->cpum.s.GuestMsrs.msr.PkgCStateCfgCtrl = 0x26740c; /* From MacBookPro1,1. */
2255
2256 /*
2257 * Hardware virtualization state.
2258 */
2259 CPUMSetGuestGif(pCtx, true);
2260 Assert(!pVM->cpum.s.GuestFeatures.fVmx || !pVM->cpum.s.GuestFeatures.fSvm); /* Paranoia. */
2261 if (pVM->cpum.s.GuestFeatures.fVmx)
2262 cpumR3ResetVmxHwVirtState(pVCpu);
2263 else if (pVM->cpum.s.GuestFeatures.fSvm)
2264 cpumR3ResetSvmHwVirtState(pVCpu);
2265}
2266
2267
2268/**
2269 * Resets the CPU.
2270 *
2271 * @returns VINF_SUCCESS.
2272 * @param pVM The cross context VM structure.
2273 */
2274VMMR3DECL(void) CPUMR3Reset(PVM pVM)
2275{
2276 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2277 {
2278 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
2279 CPUMR3ResetCpu(pVM, pVCpu);
2280
2281#ifdef VBOX_WITH_CRASHDUMP_MAGIC
2282
2283 /* Magic marker for searching in crash dumps. */
2284 strcpy((char *)pVCpu->.cpum.s.aMagic, "CPUMCPU Magic");
2285 pVCpu->cpum.s.uMagic = UINT64_C(0xDEADBEEFDEADBEEF);
2286 pVCpu->cpum.s.Guest->dr[5] = UINT64_C(0xDEADBEEFDEADBEEF);
2287#endif
2288 }
2289}
2290
2291
2292
2293
2294/**
2295 * Pass 0 live exec callback.
2296 *
2297 * @returns VINF_SSM_DONT_CALL_AGAIN.
2298 * @param pVM The cross context VM structure.
2299 * @param pSSM The saved state handle.
2300 * @param uPass The pass (0).
2301 */
2302static DECLCALLBACK(int) cpumR3LiveExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uPass)
2303{
2304 AssertReturn(uPass == 0, VERR_SSM_UNEXPECTED_PASS);
2305 cpumR3SaveCpuId(pVM, pSSM);
2306 return VINF_SSM_DONT_CALL_AGAIN;
2307}
2308
2309
2310/**
2311 * Execute state save operation.
2312 *
2313 * @returns VBox status code.
2314 * @param pVM The cross context VM structure.
2315 * @param pSSM SSM operation handle.
2316 */
2317static DECLCALLBACK(int) cpumR3SaveExec(PVM pVM, PSSMHANDLE pSSM)
2318{
2319 /*
2320 * Save.
2321 */
2322 SSMR3PutU32(pSSM, pVM->cCpus);
2323 SSMR3PutU32(pSSM, sizeof(pVM->apCpusR3[0]->cpum.s.GuestMsrs.msr));
2324 CPUMCTX DummyHyperCtx;
2325 RT_ZERO(DummyHyperCtx);
2326 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2327 {
2328 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
2329
2330 SSMR3PutStructEx(pSSM, &DummyHyperCtx, sizeof(DummyHyperCtx), 0, g_aCpumCtxFields, NULL);
2331
2332 PCPUMCTX pGstCtx = &pVCpu->cpum.s.Guest;
2333 SSMR3PutStructEx(pSSM, pGstCtx, sizeof(*pGstCtx), 0, g_aCpumCtxFields, NULL);
2334 SSMR3PutStructEx(pSSM, &pGstCtx->XState.x87, sizeof(pGstCtx->XState.x87), 0, g_aCpumX87Fields, NULL);
2335 if (pGstCtx->fXStateMask != 0)
2336 SSMR3PutStructEx(pSSM, &pGstCtx->XState.Hdr, sizeof(pGstCtx->XState.Hdr), 0, g_aCpumXSaveHdrFields, NULL);
2337 if (pGstCtx->fXStateMask & XSAVE_C_YMM)
2338 {
2339 PCX86XSAVEYMMHI pYmmHiCtx = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_YMM_BIT, PCX86XSAVEYMMHI);
2340 SSMR3PutStructEx(pSSM, pYmmHiCtx, sizeof(*pYmmHiCtx), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumYmmHiFields, NULL);
2341 }
2342 if (pGstCtx->fXStateMask & XSAVE_C_BNDREGS)
2343 {
2344 PCX86XSAVEBNDREGS pBndRegs = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_BNDREGS_BIT, PCX86XSAVEBNDREGS);
2345 SSMR3PutStructEx(pSSM, pBndRegs, sizeof(*pBndRegs), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumBndRegsFields, NULL);
2346 }
2347 if (pGstCtx->fXStateMask & XSAVE_C_BNDCSR)
2348 {
2349 PCX86XSAVEBNDCFG pBndCfg = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_BNDCSR_BIT, PCX86XSAVEBNDCFG);
2350 SSMR3PutStructEx(pSSM, pBndCfg, sizeof(*pBndCfg), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumBndCfgFields, NULL);
2351 }
2352 if (pGstCtx->fXStateMask & XSAVE_C_ZMM_HI256)
2353 {
2354 PCX86XSAVEZMMHI256 pZmmHi256 = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_ZMM_HI256_BIT, PCX86XSAVEZMMHI256);
2355 SSMR3PutStructEx(pSSM, pZmmHi256, sizeof(*pZmmHi256), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumZmmHi256Fields, NULL);
2356 }
2357 if (pGstCtx->fXStateMask & XSAVE_C_ZMM_16HI)
2358 {
2359 PCX86XSAVEZMM16HI pZmm16Hi = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_ZMM_16HI_BIT, PCX86XSAVEZMM16HI);
2360 SSMR3PutStructEx(pSSM, pZmm16Hi, sizeof(*pZmm16Hi), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumZmm16HiFields, NULL);
2361 }
2362 SSMR3PutU64(pSSM, pGstCtx->aPaePdpes[0].u);
2363 SSMR3PutU64(pSSM, pGstCtx->aPaePdpes[1].u);
2364 SSMR3PutU64(pSSM, pGstCtx->aPaePdpes[2].u);
2365 SSMR3PutU64(pSSM, pGstCtx->aPaePdpes[3].u);
2366 if (pVM->cpum.s.GuestFeatures.fSvm)
2367 {
2368 SSMR3PutU64(pSSM, pGstCtx->hwvirt.svm.uMsrHSavePa);
2369 SSMR3PutGCPhys(pSSM, pGstCtx->hwvirt.svm.GCPhysVmcb);
2370 SSMR3PutU64(pSSM, pGstCtx->hwvirt.svm.uPrevPauseTick);
2371 SSMR3PutU16(pSSM, pGstCtx->hwvirt.svm.cPauseFilter);
2372 SSMR3PutU16(pSSM, pGstCtx->hwvirt.svm.cPauseFilterThreshold);
2373 SSMR3PutBool(pSSM, pGstCtx->hwvirt.svm.fInterceptEvents);
2374 SSMR3PutStructEx(pSSM, &pGstCtx->hwvirt.svm.HostState, sizeof(pGstCtx->hwvirt.svm.HostState), 0 /* fFlags */,
2375 g_aSvmHwvirtHostState, NULL /* pvUser */);
2376 SSMR3PutMem(pSSM, &pGstCtx->hwvirt.svm.Vmcb, sizeof(pGstCtx->hwvirt.svm.Vmcb));
2377 SSMR3PutMem(pSSM, &pGstCtx->hwvirt.svm.abMsrBitmap[0], sizeof(pGstCtx->hwvirt.svm.abMsrBitmap));
2378 SSMR3PutMem(pSSM, &pGstCtx->hwvirt.svm.abIoBitmap[0], sizeof(pGstCtx->hwvirt.svm.abIoBitmap));
2379 SSMR3PutU32(pSSM, pGstCtx->hwvirt.fLocalForcedActions);
2380 SSMR3PutBool(pSSM, pGstCtx->hwvirt.fGif);
2381 }
2382 if (pVM->cpum.s.GuestFeatures.fVmx)
2383 {
2384 SSMR3PutGCPhys(pSSM, pGstCtx->hwvirt.vmx.GCPhysVmxon);
2385 SSMR3PutGCPhys(pSSM, pGstCtx->hwvirt.vmx.GCPhysVmcs);
2386 SSMR3PutGCPhys(pSSM, pGstCtx->hwvirt.vmx.GCPhysShadowVmcs);
2387 SSMR3PutBool(pSSM, pGstCtx->hwvirt.vmx.fInVmxRootMode);
2388 SSMR3PutBool(pSSM, pGstCtx->hwvirt.vmx.fInVmxNonRootMode);
2389 SSMR3PutBool(pSSM, pGstCtx->hwvirt.vmx.fInterceptEvents);
2390 SSMR3PutBool(pSSM, pGstCtx->hwvirt.vmx.fNmiUnblockingIret);
2391 SSMR3PutStructEx(pSSM, &pGstCtx->hwvirt.vmx.Vmcs, sizeof(pGstCtx->hwvirt.vmx.Vmcs), 0, g_aVmxHwvirtVmcs, NULL);
2392 SSMR3PutStructEx(pSSM, &pGstCtx->hwvirt.vmx.ShadowVmcs, sizeof(pGstCtx->hwvirt.vmx.ShadowVmcs),
2393 0, g_aVmxHwvirtVmcs, NULL);
2394 SSMR3PutMem(pSSM, &pGstCtx->hwvirt.vmx.abVmreadBitmap[0], sizeof(pGstCtx->hwvirt.vmx.abVmreadBitmap));
2395 SSMR3PutMem(pSSM, &pGstCtx->hwvirt.vmx.abVmwriteBitmap[0], sizeof(pGstCtx->hwvirt.vmx.abVmwriteBitmap));
2396 SSMR3PutMem(pSSM, &pGstCtx->hwvirt.vmx.aEntryMsrLoadArea[0], sizeof(pGstCtx->hwvirt.vmx.aEntryMsrLoadArea));
2397 SSMR3PutMem(pSSM, &pGstCtx->hwvirt.vmx.aExitMsrStoreArea[0], sizeof(pGstCtx->hwvirt.vmx.aExitMsrStoreArea));
2398 SSMR3PutMem(pSSM, &pGstCtx->hwvirt.vmx.aExitMsrLoadArea[0], sizeof(pGstCtx->hwvirt.vmx.aExitMsrLoadArea));
2399 SSMR3PutMem(pSSM, &pGstCtx->hwvirt.vmx.abMsrBitmap[0], sizeof(pGstCtx->hwvirt.vmx.abMsrBitmap));
2400 SSMR3PutMem(pSSM, &pGstCtx->hwvirt.vmx.abIoBitmap[0], sizeof(pGstCtx->hwvirt.vmx.abIoBitmap));
2401 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.uFirstPauseLoopTick);
2402 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.uPrevPauseTick);
2403 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.uEntryTick);
2404 SSMR3PutU16(pSSM, pGstCtx->hwvirt.vmx.offVirtApicWrite);
2405 SSMR3PutBool(pSSM, pGstCtx->hwvirt.vmx.fVirtNmiBlocking);
2406 SSMR3PutU64(pSSM, MSR_IA32_FEATURE_CONTROL_LOCK | MSR_IA32_FEATURE_CONTROL_VMXON); /* Deprecated since 2021/09/22. Value kept backwards compatibile with 6.1.26. */
2407 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64Basic);
2408 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.PinCtls.u);
2409 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.ProcCtls.u);
2410 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.ProcCtls2.u);
2411 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.ExitCtls.u);
2412 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.EntryCtls.u);
2413 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.TruePinCtls.u);
2414 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.TrueProcCtls.u);
2415 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.TrueEntryCtls.u);
2416 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.TrueExitCtls.u);
2417 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64Misc);
2418 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64Cr0Fixed0);
2419 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64Cr0Fixed1);
2420 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64Cr4Fixed0);
2421 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64Cr4Fixed1);
2422 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64VmcsEnum);
2423 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64VmFunc);
2424 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64EptVpidCaps);
2425 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64ProcCtls3);
2426 }
2427 SSMR3PutU32(pSSM, pVCpu->cpum.s.fUseFlags);
2428 SSMR3PutU32(pSSM, pVCpu->cpum.s.fChanged);
2429 AssertCompileSizeAlignment(pVCpu->cpum.s.GuestMsrs.msr, sizeof(uint64_t));
2430 SSMR3PutMem(pSSM, &pVCpu->cpum.s.GuestMsrs, sizeof(pVCpu->cpum.s.GuestMsrs.msr));
2431 }
2432
2433 cpumR3SaveCpuId(pVM, pSSM);
2434 return VINF_SUCCESS;
2435}
2436
2437
2438/**
2439 * @callback_method_impl{FNSSMINTLOADPREP}
2440 */
2441static DECLCALLBACK(int) cpumR3LoadPrep(PVM pVM, PSSMHANDLE pSSM)
2442{
2443 NOREF(pSSM);
2444 pVM->cpum.s.fPendingRestore = true;
2445 return VINF_SUCCESS;
2446}
2447
2448
2449/**
2450 * @callback_method_impl{FNSSMINTLOADEXEC}
2451 */
2452static DECLCALLBACK(int) cpumR3LoadExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
2453{
2454 int rc; /* Only for AssertRCReturn use. */
2455
2456 /*
2457 * Validate version.
2458 */
2459 if ( uVersion != CPUM_SAVED_STATE_VERSION_PAE_PDPES
2460 && uVersion != CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2
2461 && uVersion != CPUM_SAVED_STATE_VERSION_HWVIRT_VMX
2462 && uVersion != CPUM_SAVED_STATE_VERSION_HWVIRT_SVM
2463 && uVersion != CPUM_SAVED_STATE_VERSION_XSAVE
2464 && uVersion != CPUM_SAVED_STATE_VERSION_GOOD_CPUID_COUNT
2465 && uVersion != CPUM_SAVED_STATE_VERSION_BAD_CPUID_COUNT
2466 && uVersion != CPUM_SAVED_STATE_VERSION_PUT_STRUCT
2467 && uVersion != CPUM_SAVED_STATE_VERSION_MEM
2468 && uVersion != CPUM_SAVED_STATE_VERSION_NO_MSR_SIZE
2469 && uVersion != CPUM_SAVED_STATE_VERSION_VER3_2
2470 && uVersion != CPUM_SAVED_STATE_VERSION_VER3_0
2471 && uVersion != CPUM_SAVED_STATE_VERSION_VER2_1_NOMSR
2472 && uVersion != CPUM_SAVED_STATE_VERSION_VER2_0
2473 && uVersion != CPUM_SAVED_STATE_VERSION_VER1_6)
2474 {
2475 AssertMsgFailed(("cpumR3LoadExec: Invalid version uVersion=%d!\n", uVersion));
2476 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
2477 }
2478
2479 if (uPass == SSM_PASS_FINAL)
2480 {
2481 /*
2482 * Set the size of RTGCPTR for SSMR3GetGCPtr. (Only necessary for
2483 * really old SSM file versions.)
2484 */
2485 if (uVersion == CPUM_SAVED_STATE_VERSION_VER1_6)
2486 SSMR3HandleSetGCPtrSize(pSSM, sizeof(RTGCPTR32));
2487 else if (uVersion <= CPUM_SAVED_STATE_VERSION_VER3_0)
2488 SSMR3HandleSetGCPtrSize(pSSM, sizeof(RTGCPTR));
2489
2490 /*
2491 * Figure x86 and ctx field definitions to use for older states.
2492 */
2493 uint32_t const fLoad = uVersion > CPUM_SAVED_STATE_VERSION_MEM ? 0 : SSMSTRUCT_FLAGS_MEM_BAND_AID_RELAXED;
2494 PCSSMFIELD paCpumCtx1Fields = g_aCpumX87Fields;
2495 PCSSMFIELD paCpumCtx2Fields = g_aCpumCtxFields;
2496 if (uVersion == CPUM_SAVED_STATE_VERSION_VER1_6)
2497 {
2498 paCpumCtx1Fields = g_aCpumX87FieldsV16;
2499 paCpumCtx2Fields = g_aCpumCtxFieldsV16;
2500 }
2501 else if (uVersion <= CPUM_SAVED_STATE_VERSION_MEM)
2502 {
2503 paCpumCtx1Fields = g_aCpumX87FieldsMem;
2504 paCpumCtx2Fields = g_aCpumCtxFieldsMem;
2505 }
2506
2507 /*
2508 * The hyper state used to preceed the CPU count. Starting with
2509 * XSAVE it was moved down till after we've got the count.
2510 */
2511 CPUMCTX HyperCtxIgnored;
2512 if (uVersion < CPUM_SAVED_STATE_VERSION_XSAVE)
2513 {
2514 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2515 {
2516 X86FXSTATE Ign;
2517 SSMR3GetStructEx(pSSM, &Ign, sizeof(Ign), fLoad | SSMSTRUCT_FLAGS_NO_TAIL_MARKER, paCpumCtx1Fields, NULL);
2518 SSMR3GetStructEx(pSSM, &HyperCtxIgnored, sizeof(HyperCtxIgnored),
2519 fLoad | SSMSTRUCT_FLAGS_NO_LEAD_MARKER, paCpumCtx2Fields, NULL);
2520 }
2521 }
2522
2523 if (uVersion >= CPUM_SAVED_STATE_VERSION_VER2_1_NOMSR)
2524 {
2525 uint32_t cCpus;
2526 rc = SSMR3GetU32(pSSM, &cCpus); AssertRCReturn(rc, rc);
2527 AssertLogRelMsgReturn(cCpus == pVM->cCpus, ("Mismatching CPU counts: saved: %u; configured: %u \n", cCpus, pVM->cCpus),
2528 VERR_SSM_UNEXPECTED_DATA);
2529 }
2530 AssertLogRelMsgReturn( uVersion > CPUM_SAVED_STATE_VERSION_VER2_0
2531 || pVM->cCpus == 1,
2532 ("cCpus=%u\n", pVM->cCpus),
2533 VERR_SSM_UNEXPECTED_DATA);
2534
2535 uint32_t cbMsrs = 0;
2536 if (uVersion > CPUM_SAVED_STATE_VERSION_NO_MSR_SIZE)
2537 {
2538 rc = SSMR3GetU32(pSSM, &cbMsrs); AssertRCReturn(rc, rc);
2539 AssertLogRelMsgReturn(RT_ALIGN(cbMsrs, sizeof(uint64_t)) == cbMsrs, ("Size of MSRs is misaligned: %#x\n", cbMsrs),
2540 VERR_SSM_UNEXPECTED_DATA);
2541 AssertLogRelMsgReturn(cbMsrs <= sizeof(CPUMCTXMSRS) && cbMsrs > 0, ("Size of MSRs is out of range: %#x\n", cbMsrs),
2542 VERR_SSM_UNEXPECTED_DATA);
2543 }
2544
2545 /*
2546 * Do the per-CPU restoring.
2547 */
2548 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2549 {
2550 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
2551 PCPUMCTX pGstCtx = &pVCpu->cpum.s.Guest;
2552
2553 if (uVersion >= CPUM_SAVED_STATE_VERSION_XSAVE)
2554 {
2555 /*
2556 * The XSAVE saved state layout moved the hyper state down here.
2557 */
2558 rc = SSMR3GetStructEx(pSSM, &HyperCtxIgnored, sizeof(HyperCtxIgnored), 0, g_aCpumCtxFields, NULL);
2559 AssertRCReturn(rc, rc);
2560
2561 /*
2562 * Start by restoring the CPUMCTX structure and the X86FXSAVE bits of the extended state.
2563 */
2564 rc = SSMR3GetStructEx(pSSM, pGstCtx, sizeof(*pGstCtx), 0, g_aCpumCtxFields, NULL);
2565 rc = SSMR3GetStructEx(pSSM, &pGstCtx->XState.x87, sizeof(pGstCtx->XState.x87), 0, g_aCpumX87Fields, NULL);
2566 AssertRCReturn(rc, rc);
2567
2568 /* Check that the xsave/xrstor mask is valid (invalid results in #GP). */
2569 if (pGstCtx->fXStateMask != 0)
2570 {
2571 AssertLogRelMsgReturn(!(pGstCtx->fXStateMask & ~pVM->cpum.s.fXStateGuestMask),
2572 ("fXStateMask=%#RX64 fXStateGuestMask=%#RX64\n",
2573 pGstCtx->fXStateMask, pVM->cpum.s.fXStateGuestMask),
2574 VERR_CPUM_INCOMPATIBLE_XSAVE_COMP_MASK);
2575 AssertLogRelMsgReturn(pGstCtx->fXStateMask & XSAVE_C_X87,
2576 ("fXStateMask=%#RX64\n", pGstCtx->fXStateMask), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2577 AssertLogRelMsgReturn((pGstCtx->fXStateMask & (XSAVE_C_SSE | XSAVE_C_YMM)) != XSAVE_C_YMM,
2578 ("fXStateMask=%#RX64\n", pGstCtx->fXStateMask), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2579 AssertLogRelMsgReturn( (pGstCtx->fXStateMask & (XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI)) == 0
2580 || (pGstCtx->fXStateMask & (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI))
2581 == (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI),
2582 ("fXStateMask=%#RX64\n", pGstCtx->fXStateMask), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2583 }
2584
2585 /* Check that the XCR0 mask is valid (invalid results in #GP). */
2586 AssertLogRelMsgReturn(pGstCtx->aXcr[0] & XSAVE_C_X87, ("xcr0=%#RX64\n", pGstCtx->aXcr[0]), VERR_CPUM_INVALID_XCR0);
2587 if (pGstCtx->aXcr[0] != XSAVE_C_X87)
2588 {
2589 AssertLogRelMsgReturn(!(pGstCtx->aXcr[0] & ~(pGstCtx->fXStateMask | XSAVE_C_X87)),
2590 ("xcr0=%#RX64 fXStateMask=%#RX64\n", pGstCtx->aXcr[0], pGstCtx->fXStateMask),
2591 VERR_CPUM_INVALID_XCR0);
2592 AssertLogRelMsgReturn(pGstCtx->aXcr[0] & XSAVE_C_X87,
2593 ("xcr0=%#RX64\n", pGstCtx->aXcr[0]), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2594 AssertLogRelMsgReturn((pGstCtx->aXcr[0] & (XSAVE_C_SSE | XSAVE_C_YMM)) != XSAVE_C_YMM,
2595 ("xcr0=%#RX64\n", pGstCtx->aXcr[0]), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2596 AssertLogRelMsgReturn( (pGstCtx->aXcr[0] & (XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI)) == 0
2597 || (pGstCtx->aXcr[0] & (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI))
2598 == (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI),
2599 ("xcr0=%#RX64\n", pGstCtx->aXcr[0]), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2600 }
2601
2602 /* Check that the XCR1 is zero, as we don't implement it yet. */
2603 AssertLogRelMsgReturn(!pGstCtx->aXcr[1], ("xcr1=%#RX64\n", pGstCtx->aXcr[1]), VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2604
2605 /*
2606 * Restore the individual extended state components we support.
2607 */
2608 if (pGstCtx->fXStateMask != 0)
2609 {
2610 rc = SSMR3GetStructEx(pSSM, &pGstCtx->XState.Hdr, sizeof(pGstCtx->XState.Hdr),
2611 0, g_aCpumXSaveHdrFields, NULL);
2612 AssertRCReturn(rc, rc);
2613 AssertLogRelMsgReturn(!(pGstCtx->XState.Hdr.bmXState & ~pGstCtx->fXStateMask),
2614 ("bmXState=%#RX64 fXStateMask=%#RX64\n",
2615 pGstCtx->XState.Hdr.bmXState, pGstCtx->fXStateMask),
2616 VERR_CPUM_INVALID_XSAVE_HDR);
2617 }
2618 if (pGstCtx->fXStateMask & XSAVE_C_YMM)
2619 {
2620 PX86XSAVEYMMHI pYmmHiCtx = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_YMM_BIT, PX86XSAVEYMMHI);
2621 SSMR3GetStructEx(pSSM, pYmmHiCtx, sizeof(*pYmmHiCtx), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumYmmHiFields, NULL);
2622 }
2623 if (pGstCtx->fXStateMask & XSAVE_C_BNDREGS)
2624 {
2625 PX86XSAVEBNDREGS pBndRegs = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_BNDREGS_BIT, PX86XSAVEBNDREGS);
2626 SSMR3GetStructEx(pSSM, pBndRegs, sizeof(*pBndRegs), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumBndRegsFields, NULL);
2627 }
2628 if (pGstCtx->fXStateMask & XSAVE_C_BNDCSR)
2629 {
2630 PX86XSAVEBNDCFG pBndCfg = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_BNDCSR_BIT, PX86XSAVEBNDCFG);
2631 SSMR3GetStructEx(pSSM, pBndCfg, sizeof(*pBndCfg), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumBndCfgFields, NULL);
2632 }
2633 if (pGstCtx->fXStateMask & XSAVE_C_ZMM_HI256)
2634 {
2635 PX86XSAVEZMMHI256 pZmmHi256 = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_ZMM_HI256_BIT, PX86XSAVEZMMHI256);
2636 SSMR3GetStructEx(pSSM, pZmmHi256, sizeof(*pZmmHi256), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumZmmHi256Fields, NULL);
2637 }
2638 if (pGstCtx->fXStateMask & XSAVE_C_ZMM_16HI)
2639 {
2640 PX86XSAVEZMM16HI pZmm16Hi = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_ZMM_16HI_BIT, PX86XSAVEZMM16HI);
2641 SSMR3GetStructEx(pSSM, pZmm16Hi, sizeof(*pZmm16Hi), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumZmm16HiFields, NULL);
2642 }
2643 if (uVersion >= CPUM_SAVED_STATE_VERSION_PAE_PDPES)
2644 {
2645 SSMR3GetU64(pSSM, &pGstCtx->aPaePdpes[0].u);
2646 SSMR3GetU64(pSSM, &pGstCtx->aPaePdpes[1].u);
2647 SSMR3GetU64(pSSM, &pGstCtx->aPaePdpes[2].u);
2648 SSMR3GetU64(pSSM, &pGstCtx->aPaePdpes[3].u);
2649 }
2650 if (uVersion >= CPUM_SAVED_STATE_VERSION_HWVIRT_SVM)
2651 {
2652 if (pVM->cpum.s.GuestFeatures.fSvm)
2653 {
2654 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.svm.uMsrHSavePa);
2655 SSMR3GetGCPhys(pSSM, &pGstCtx->hwvirt.svm.GCPhysVmcb);
2656 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.svm.uPrevPauseTick);
2657 SSMR3GetU16(pSSM, &pGstCtx->hwvirt.svm.cPauseFilter);
2658 SSMR3GetU16(pSSM, &pGstCtx->hwvirt.svm.cPauseFilterThreshold);
2659 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.svm.fInterceptEvents);
2660 SSMR3GetStructEx(pSSM, &pGstCtx->hwvirt.svm.HostState, sizeof(pGstCtx->hwvirt.svm.HostState),
2661 0 /* fFlags */, g_aSvmHwvirtHostState, NULL /* pvUser */);
2662 SSMR3GetMem(pSSM, &pGstCtx->hwvirt.svm.Vmcb, sizeof(pGstCtx->hwvirt.svm.Vmcb));
2663 SSMR3GetMem(pSSM, &pGstCtx->hwvirt.svm.abMsrBitmap[0], sizeof(pGstCtx->hwvirt.svm.abMsrBitmap));
2664 SSMR3GetMem(pSSM, &pGstCtx->hwvirt.svm.abIoBitmap[0], sizeof(pGstCtx->hwvirt.svm.abIoBitmap));
2665 SSMR3GetU32(pSSM, &pGstCtx->hwvirt.fLocalForcedActions);
2666 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.fGif);
2667 }
2668 }
2669 if (uVersion >= CPUM_SAVED_STATE_VERSION_HWVIRT_VMX)
2670 {
2671 if (pVM->cpum.s.GuestFeatures.fVmx)
2672 {
2673 SSMR3GetGCPhys(pSSM, &pGstCtx->hwvirt.vmx.GCPhysVmxon);
2674 SSMR3GetGCPhys(pSSM, &pGstCtx->hwvirt.vmx.GCPhysVmcs);
2675 SSMR3GetGCPhys(pSSM, &pGstCtx->hwvirt.vmx.GCPhysShadowVmcs);
2676 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.vmx.fInVmxRootMode);
2677 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.vmx.fInVmxNonRootMode);
2678 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.vmx.fInterceptEvents);
2679 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.vmx.fNmiUnblockingIret);
2680 SSMR3GetStructEx(pSSM, &pGstCtx->hwvirt.vmx.Vmcs, sizeof(pGstCtx->hwvirt.vmx.Vmcs),
2681 0, g_aVmxHwvirtVmcs, NULL);
2682 SSMR3GetStructEx(pSSM, &pGstCtx->hwvirt.vmx.ShadowVmcs, sizeof(pGstCtx->hwvirt.vmx.ShadowVmcs),
2683 0, g_aVmxHwvirtVmcs, NULL);
2684 SSMR3GetMem(pSSM, &pGstCtx->hwvirt.vmx.abVmreadBitmap[0], sizeof(pGstCtx->hwvirt.vmx.abVmreadBitmap));
2685 SSMR3GetMem(pSSM, &pGstCtx->hwvirt.vmx.abVmwriteBitmap[0], sizeof(pGstCtx->hwvirt.vmx.abVmwriteBitmap));
2686 SSMR3GetMem(pSSM, &pGstCtx->hwvirt.vmx.aEntryMsrLoadArea[0], sizeof(pGstCtx->hwvirt.vmx.aEntryMsrLoadArea));
2687 SSMR3GetMem(pSSM, &pGstCtx->hwvirt.vmx.aExitMsrStoreArea[0], sizeof(pGstCtx->hwvirt.vmx.aExitMsrStoreArea));
2688 SSMR3GetMem(pSSM, &pGstCtx->hwvirt.vmx.aExitMsrLoadArea[0], sizeof(pGstCtx->hwvirt.vmx.aExitMsrLoadArea));
2689 SSMR3GetMem(pSSM, &pGstCtx->hwvirt.vmx.abMsrBitmap[0], sizeof(pGstCtx->hwvirt.vmx.abMsrBitmap));
2690 SSMR3GetMem(pSSM, &pGstCtx->hwvirt.vmx.abIoBitmap[0], sizeof(pGstCtx->hwvirt.vmx.abIoBitmap));
2691 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.uFirstPauseLoopTick);
2692 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.uPrevPauseTick);
2693 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.uEntryTick);
2694 SSMR3GetU16(pSSM, &pGstCtx->hwvirt.vmx.offVirtApicWrite);
2695 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.vmx.fVirtNmiBlocking);
2696 SSMR3Skip(pSSM, sizeof(uint64_t)); /* Unused - used to be IA32_FEATURE_CONTROL, see @bugref{10106}. */
2697 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64Basic);
2698 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.PinCtls.u);
2699 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.ProcCtls.u);
2700 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.ProcCtls2.u);
2701 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.ExitCtls.u);
2702 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.EntryCtls.u);
2703 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.TruePinCtls.u);
2704 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.TrueProcCtls.u);
2705 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.TrueEntryCtls.u);
2706 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.TrueExitCtls.u);
2707 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64Misc);
2708 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64Cr0Fixed0);
2709 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64Cr0Fixed1);
2710 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64Cr4Fixed0);
2711 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64Cr4Fixed1);
2712 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64VmcsEnum);
2713 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64VmFunc);
2714 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64EptVpidCaps);
2715 if (uVersion >= CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2)
2716 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64ProcCtls3);
2717 }
2718 }
2719 }
2720 else
2721 {
2722 /*
2723 * Pre XSAVE saved state.
2724 */
2725 SSMR3GetStructEx(pSSM, &pGstCtx->XState.x87, sizeof(pGstCtx->XState.x87),
2726 fLoad | SSMSTRUCT_FLAGS_NO_TAIL_MARKER, paCpumCtx1Fields, NULL);
2727 SSMR3GetStructEx(pSSM, pGstCtx, sizeof(*pGstCtx), fLoad | SSMSTRUCT_FLAGS_NO_LEAD_MARKER, paCpumCtx2Fields, NULL);
2728 }
2729
2730 /*
2731 * Restore a couple of flags and the MSRs.
2732 */
2733 uint32_t fIgnoredUsedFlags = 0;
2734 rc = SSMR3GetU32(pSSM, &fIgnoredUsedFlags); /* we're recalc the two relevant flags after loading state. */
2735 AssertRCReturn(rc, rc);
2736 SSMR3GetU32(pSSM, &pVCpu->cpum.s.fChanged);
2737
2738 rc = VINF_SUCCESS;
2739 if (uVersion > CPUM_SAVED_STATE_VERSION_NO_MSR_SIZE)
2740 rc = SSMR3GetMem(pSSM, &pVCpu->cpum.s.GuestMsrs.au64[0], cbMsrs);
2741 else if (uVersion >= CPUM_SAVED_STATE_VERSION_VER3_0)
2742 {
2743 SSMR3GetMem(pSSM, &pVCpu->cpum.s.GuestMsrs.au64[0], 2 * sizeof(uint64_t)); /* Restore two MSRs. */
2744 rc = SSMR3Skip(pSSM, 62 * sizeof(uint64_t));
2745 }
2746 AssertRCReturn(rc, rc);
2747
2748 /* REM and other may have cleared must-be-one fields in DR6 and
2749 DR7, fix these. */
2750 pGstCtx->dr[6] &= ~(X86_DR6_RAZ_MASK | X86_DR6_MBZ_MASK);
2751 pGstCtx->dr[6] |= X86_DR6_RA1_MASK;
2752 pGstCtx->dr[7] &= ~(X86_DR7_RAZ_MASK | X86_DR7_MBZ_MASK);
2753 pGstCtx->dr[7] |= X86_DR7_RA1_MASK;
2754 }
2755
2756 /* Older states does not have the internal selector register flags
2757 and valid selector value. Supply those. */
2758 if (uVersion <= CPUM_SAVED_STATE_VERSION_MEM)
2759 {
2760 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2761 {
2762 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
2763 bool const fValid = true /*!VM_IS_RAW_MODE_ENABLED(pVM)*/
2764 || ( uVersion > CPUM_SAVED_STATE_VERSION_VER3_2
2765 && !(pVCpu->cpum.s.fChanged & CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID));
2766 PCPUMSELREG paSelReg = CPUMCTX_FIRST_SREG(&pVCpu->cpum.s.Guest);
2767 if (fValid)
2768 {
2769 for (uint32_t iSelReg = 0; iSelReg < X86_SREG_COUNT; iSelReg++)
2770 {
2771 paSelReg[iSelReg].fFlags = CPUMSELREG_FLAGS_VALID;
2772 paSelReg[iSelReg].ValidSel = paSelReg[iSelReg].Sel;
2773 }
2774
2775 pVCpu->cpum.s.Guest.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
2776 pVCpu->cpum.s.Guest.ldtr.ValidSel = pVCpu->cpum.s.Guest.ldtr.Sel;
2777 }
2778 else
2779 {
2780 for (uint32_t iSelReg = 0; iSelReg < X86_SREG_COUNT; iSelReg++)
2781 {
2782 paSelReg[iSelReg].fFlags = 0;
2783 paSelReg[iSelReg].ValidSel = 0;
2784 }
2785
2786 /* This might not be 104% correct, but I think it's close
2787 enough for all practical purposes... (REM always loaded
2788 LDTR registers.) */
2789 pVCpu->cpum.s.Guest.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
2790 pVCpu->cpum.s.Guest.ldtr.ValidSel = pVCpu->cpum.s.Guest.ldtr.Sel;
2791 }
2792 pVCpu->cpum.s.Guest.tr.fFlags = CPUMSELREG_FLAGS_VALID;
2793 pVCpu->cpum.s.Guest.tr.ValidSel = pVCpu->cpum.s.Guest.tr.Sel;
2794 }
2795 }
2796
2797 /* Clear CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID. */
2798 if ( uVersion > CPUM_SAVED_STATE_VERSION_VER3_2
2799 && uVersion <= CPUM_SAVED_STATE_VERSION_MEM)
2800 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2801 {
2802 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
2803 pVCpu->cpum.s.fChanged &= CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID;
2804 }
2805
2806 /*
2807 * A quick sanity check.
2808 */
2809 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2810 {
2811 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
2812 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.es.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
2813 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.cs.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
2814 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.ss.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
2815 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.ds.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
2816 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.fs.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
2817 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.gs.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
2818 }
2819 }
2820
2821 pVM->cpum.s.fPendingRestore = false;
2822
2823 /*
2824 * Guest CPUIDs (and VMX MSR features).
2825 */
2826 if (uVersion >= CPUM_SAVED_STATE_VERSION_VER3_2)
2827 {
2828 CPUMMSRS GuestMsrs;
2829 RT_ZERO(GuestMsrs);
2830
2831 CPUMFEATURES BaseFeatures;
2832 bool const fVmxGstFeat = pVM->cpum.s.GuestFeatures.fVmx;
2833 if (fVmxGstFeat)
2834 {
2835 /*
2836 * At this point the MSRs in the guest CPU-context are loaded with the guest VMX MSRs from the saved state.
2837 * However the VMX sub-features have not been exploded yet. So cache the base (host derived) VMX features
2838 * here so we can compare them for compatibility after exploding guest features.
2839 */
2840 BaseFeatures = pVM->cpum.s.GuestFeatures;
2841
2842 /* Use the VMX MSR features from the saved state while exploding guest features. */
2843 GuestMsrs.hwvirt.vmx = pVM->apCpusR3[0]->cpum.s.Guest.hwvirt.vmx.Msrs;
2844 }
2845
2846 /* Load CPUID and explode guest features. */
2847 rc = cpumR3LoadCpuId(pVM, pSSM, uVersion, &GuestMsrs);
2848 if (fVmxGstFeat)
2849 {
2850 /*
2851 * Check if the exploded VMX features from the saved state are compatible with the host-derived features
2852 * we cached earlier (above). The is required if we use hardware-assisted nested-guest execution with
2853 * VMX features presented to the guest.
2854 */
2855 bool const fIsCompat = cpumR3AreVmxCpuFeaturesCompatible(pVM, &BaseFeatures, &pVM->cpum.s.GuestFeatures);
2856 if (!fIsCompat)
2857 return VERR_CPUM_INVALID_HWVIRT_FEAT_COMBO;
2858 }
2859 return rc;
2860 }
2861 return cpumR3LoadCpuIdPre32(pVM, pSSM, uVersion);
2862}
2863
2864
2865/**
2866 * @callback_method_impl{FNSSMINTLOADDONE}
2867 */
2868static DECLCALLBACK(int) cpumR3LoadDone(PVM pVM, PSSMHANDLE pSSM)
2869{
2870 if (RT_FAILURE(SSMR3HandleGetStatus(pSSM)))
2871 return VINF_SUCCESS;
2872
2873 /* just check this since we can. */ /** @todo Add a SSM unit flag for indicating that it's mandatory during a restore. */
2874 if (pVM->cpum.s.fPendingRestore)
2875 {
2876 LogRel(("CPUM: Missing state!\n"));
2877 return VERR_INTERNAL_ERROR_2;
2878 }
2879
2880 bool const fSupportsLongMode = VMR3IsLongModeAllowed(pVM);
2881 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2882 {
2883 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
2884
2885 /* Notify PGM of the NXE states in case they've changed. */
2886 PGMNotifyNxeChanged(pVCpu, RT_BOOL(pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_NXE));
2887
2888 /* During init. this is done in CPUMR3InitCompleted(). */
2889 if (fSupportsLongMode)
2890 pVCpu->cpum.s.fUseFlags |= CPUM_USE_SUPPORTS_LONGMODE;
2891
2892 /* Recalc the CPUM_USE_DEBUG_REGS_HYPER value. */
2893 CPUMRecalcHyperDRx(pVCpu, UINT8_MAX);
2894 }
2895 return VINF_SUCCESS;
2896}
2897
2898
2899/**
2900 * Checks if the CPUM state restore is still pending.
2901 *
2902 * @returns true / false.
2903 * @param pVM The cross context VM structure.
2904 */
2905VMMDECL(bool) CPUMR3IsStateRestorePending(PVM pVM)
2906{
2907 return pVM->cpum.s.fPendingRestore;
2908}
2909
2910
2911/**
2912 * Formats the EFLAGS value into mnemonics.
2913 *
2914 * @param pszEFlags Where to write the mnemonics. (Assumes sufficient buffer space.)
2915 * @param efl The EFLAGS value.
2916 */
2917static void cpumR3InfoFormatFlags(char *pszEFlags, uint32_t efl)
2918{
2919 /*
2920 * Format the flags.
2921 */
2922 static const struct
2923 {
2924 const char *pszSet; const char *pszClear; uint32_t fFlag;
2925 } s_aFlags[] =
2926 {
2927 { "vip",NULL, X86_EFL_VIP },
2928 { "vif",NULL, X86_EFL_VIF },
2929 { "ac", NULL, X86_EFL_AC },
2930 { "vm", NULL, X86_EFL_VM },
2931 { "rf", NULL, X86_EFL_RF },
2932 { "nt", NULL, X86_EFL_NT },
2933 { "ov", "nv", X86_EFL_OF },
2934 { "dn", "up", X86_EFL_DF },
2935 { "ei", "di", X86_EFL_IF },
2936 { "tf", NULL, X86_EFL_TF },
2937 { "nt", "pl", X86_EFL_SF },
2938 { "nz", "zr", X86_EFL_ZF },
2939 { "ac", "na", X86_EFL_AF },
2940 { "po", "pe", X86_EFL_PF },
2941 { "cy", "nc", X86_EFL_CF },
2942 };
2943 char *psz = pszEFlags;
2944 for (unsigned i = 0; i < RT_ELEMENTS(s_aFlags); i++)
2945 {
2946 const char *pszAdd = s_aFlags[i].fFlag & efl ? s_aFlags[i].pszSet : s_aFlags[i].pszClear;
2947 if (pszAdd)
2948 {
2949 strcpy(psz, pszAdd);
2950 psz += strlen(pszAdd);
2951 *psz++ = ' ';
2952 }
2953 }
2954 psz[-1] = '\0';
2955}
2956
2957
2958/**
2959 * Formats a full register dump.
2960 *
2961 * @param pVM The cross context VM structure.
2962 * @param pCtx The context to format.
2963 * @param pCtxCore The context core to format.
2964 * @param pHlp Output functions.
2965 * @param enmType The dump type.
2966 * @param pszPrefix Register name prefix.
2967 */
2968static void cpumR3InfoOne(PVM pVM, PCPUMCTX pCtx, PCCPUMCTXCORE pCtxCore, PCDBGFINFOHLP pHlp, CPUMDUMPTYPE enmType,
2969 const char *pszPrefix)
2970{
2971 NOREF(pVM);
2972
2973 /*
2974 * Format the EFLAGS.
2975 */
2976 uint32_t efl = pCtxCore->eflags.u32;
2977 char szEFlags[80];
2978 cpumR3InfoFormatFlags(&szEFlags[0], efl);
2979
2980 /*
2981 * Format the registers.
2982 */
2983 switch (enmType)
2984 {
2985 case CPUMDUMPTYPE_TERSE:
2986 if (CPUMIsGuestIn64BitCodeEx(pCtx))
2987 pHlp->pfnPrintf(pHlp,
2988 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
2989 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
2990 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
2991 "%sr14=%016RX64 %sr15=%016RX64\n"
2992 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
2993 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %seflags=%08x\n",
2994 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
2995 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
2996 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
2997 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2998 pszPrefix, pCtxCore->cs.Sel, pszPrefix, pCtxCore->ss.Sel, pszPrefix, pCtxCore->ds.Sel, pszPrefix, pCtxCore->es.Sel,
2999 pszPrefix, pCtxCore->fs.Sel, pszPrefix, pCtxCore->gs.Sel, pszPrefix, efl);
3000 else
3001 pHlp->pfnPrintf(pHlp,
3002 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
3003 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
3004 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %seflags=%08x\n",
3005 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
3006 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
3007 pszPrefix, pCtxCore->cs.Sel, pszPrefix, pCtxCore->ss.Sel, pszPrefix, pCtxCore->ds.Sel, pszPrefix, pCtxCore->es.Sel,
3008 pszPrefix, pCtxCore->fs.Sel, pszPrefix, pCtxCore->gs.Sel, pszPrefix, efl);
3009 break;
3010
3011 case CPUMDUMPTYPE_DEFAULT:
3012 if (CPUMIsGuestIn64BitCodeEx(pCtx))
3013 pHlp->pfnPrintf(pHlp,
3014 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
3015 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
3016 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
3017 "%sr14=%016RX64 %sr15=%016RX64\n"
3018 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
3019 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %str=%04x %seflags=%08x\n"
3020 "%scr0=%08RX64 %scr2=%08RX64 %scr3=%08RX64 %scr4=%08RX64 %sgdtr=%016RX64:%04x %sldtr=%04x\n"
3021 ,
3022 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
3023 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
3024 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
3025 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
3026 pszPrefix, pCtxCore->cs.Sel, pszPrefix, pCtxCore->ss.Sel, pszPrefix, pCtxCore->ds.Sel, pszPrefix, pCtxCore->es.Sel,
3027 pszPrefix, pCtxCore->fs.Sel, pszPrefix, pCtxCore->gs.Sel, pszPrefix, pCtx->tr.Sel, pszPrefix, efl,
3028 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
3029 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->ldtr.Sel);
3030 else
3031 pHlp->pfnPrintf(pHlp,
3032 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
3033 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
3034 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %str=%04x %seflags=%08x\n"
3035 "%scr0=%08RX64 %scr2=%08RX64 %scr3=%08RX64 %scr4=%08RX64 %sgdtr=%08RX64:%04x %sldtr=%04x\n"
3036 ,
3037 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
3038 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
3039 pszPrefix, pCtxCore->cs.Sel, pszPrefix, pCtxCore->ss.Sel, pszPrefix, pCtxCore->ds.Sel, pszPrefix, pCtxCore->es.Sel,
3040 pszPrefix, pCtxCore->fs.Sel, pszPrefix, pCtxCore->gs.Sel, pszPrefix, pCtx->tr.Sel, pszPrefix, efl,
3041 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
3042 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->ldtr.Sel);
3043 break;
3044
3045 case CPUMDUMPTYPE_VERBOSE:
3046 if (CPUMIsGuestIn64BitCodeEx(pCtx))
3047 pHlp->pfnPrintf(pHlp,
3048 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
3049 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
3050 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
3051 "%sr14=%016RX64 %sr15=%016RX64\n"
3052 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
3053 "%scs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
3054 "%sds={%04x base=%016RX64 limit=%08x flags=%08x}\n"
3055 "%ses={%04x base=%016RX64 limit=%08x flags=%08x}\n"
3056 "%sfs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
3057 "%sgs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
3058 "%sss={%04x base=%016RX64 limit=%08x flags=%08x}\n"
3059 "%scr0=%016RX64 %scr2=%016RX64 %scr3=%016RX64 %scr4=%016RX64\n"
3060 "%sdr0=%016RX64 %sdr1=%016RX64 %sdr2=%016RX64 %sdr3=%016RX64\n"
3061 "%sdr4=%016RX64 %sdr5=%016RX64 %sdr6=%016RX64 %sdr7=%016RX64\n"
3062 "%sgdtr=%016RX64:%04x %sidtr=%016RX64:%04x %seflags=%08x\n"
3063 "%sldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
3064 "%str ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
3065 "%sSysEnter={cs=%04llx eip=%016RX64 esp=%016RX64}\n"
3066 ,
3067 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
3068 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
3069 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
3070 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
3071 pszPrefix, pCtxCore->cs.Sel, pCtx->cs.u64Base, pCtx->cs.u32Limit, pCtx->cs.Attr.u,
3072 pszPrefix, pCtxCore->ds.Sel, pCtx->ds.u64Base, pCtx->ds.u32Limit, pCtx->ds.Attr.u,
3073 pszPrefix, pCtxCore->es.Sel, pCtx->es.u64Base, pCtx->es.u32Limit, pCtx->es.Attr.u,
3074 pszPrefix, pCtxCore->fs.Sel, pCtx->fs.u64Base, pCtx->fs.u32Limit, pCtx->fs.Attr.u,
3075 pszPrefix, pCtxCore->gs.Sel, pCtx->gs.u64Base, pCtx->gs.u32Limit, pCtx->gs.Attr.u,
3076 pszPrefix, pCtxCore->ss.Sel, pCtx->ss.u64Base, pCtx->ss.u32Limit, pCtx->ss.Attr.u,
3077 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
3078 pszPrefix, pCtx->dr[0], pszPrefix, pCtx->dr[1], pszPrefix, pCtx->dr[2], pszPrefix, pCtx->dr[3],
3079 pszPrefix, pCtx->dr[4], pszPrefix, pCtx->dr[5], pszPrefix, pCtx->dr[6], pszPrefix, pCtx->dr[7],
3080 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, pszPrefix, efl,
3081 pszPrefix, pCtx->ldtr.Sel, pCtx->ldtr.u64Base, pCtx->ldtr.u32Limit, pCtx->ldtr.Attr.u,
3082 pszPrefix, pCtx->tr.Sel, pCtx->tr.u64Base, pCtx->tr.u32Limit, pCtx->tr.Attr.u,
3083 pszPrefix, pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
3084 else
3085 pHlp->pfnPrintf(pHlp,
3086 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
3087 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
3088 "%scs={%04x base=%016RX64 limit=%08x flags=%08x} %sdr0=%08RX64 %sdr1=%08RX64\n"
3089 "%sds={%04x base=%016RX64 limit=%08x flags=%08x} %sdr2=%08RX64 %sdr3=%08RX64\n"
3090 "%ses={%04x base=%016RX64 limit=%08x flags=%08x} %sdr4=%08RX64 %sdr5=%08RX64\n"
3091 "%sfs={%04x base=%016RX64 limit=%08x flags=%08x} %sdr6=%08RX64 %sdr7=%08RX64\n"
3092 "%sgs={%04x base=%016RX64 limit=%08x flags=%08x} %scr0=%08RX64 %scr2=%08RX64\n"
3093 "%sss={%04x base=%016RX64 limit=%08x flags=%08x} %scr3=%08RX64 %scr4=%08RX64\n"
3094 "%sgdtr=%016RX64:%04x %sidtr=%016RX64:%04x %seflags=%08x\n"
3095 "%sldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
3096 "%str ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
3097 "%sSysEnter={cs=%04llx eip=%08llx esp=%08llx}\n"
3098 ,
3099 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
3100 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
3101 pszPrefix, pCtxCore->cs.Sel, pCtx->cs.u64Base, pCtx->cs.u32Limit, pCtx->cs.Attr.u, pszPrefix, pCtx->dr[0], pszPrefix, pCtx->dr[1],
3102 pszPrefix, pCtxCore->ds.Sel, pCtx->ds.u64Base, pCtx->ds.u32Limit, pCtx->ds.Attr.u, pszPrefix, pCtx->dr[2], pszPrefix, pCtx->dr[3],
3103 pszPrefix, pCtxCore->es.Sel, pCtx->es.u64Base, pCtx->es.u32Limit, pCtx->es.Attr.u, pszPrefix, pCtx->dr[4], pszPrefix, pCtx->dr[5],
3104 pszPrefix, pCtxCore->fs.Sel, pCtx->fs.u64Base, pCtx->fs.u32Limit, pCtx->fs.Attr.u, pszPrefix, pCtx->dr[6], pszPrefix, pCtx->dr[7],
3105 pszPrefix, pCtxCore->gs.Sel, pCtx->gs.u64Base, pCtx->gs.u32Limit, pCtx->gs.Attr.u, pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2,
3106 pszPrefix, pCtxCore->ss.Sel, pCtx->ss.u64Base, pCtx->ss.u32Limit, pCtx->ss.Attr.u, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
3107 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, pszPrefix, efl,
3108 pszPrefix, pCtx->ldtr.Sel, pCtx->ldtr.u64Base, pCtx->ldtr.u32Limit, pCtx->ldtr.Attr.u,
3109 pszPrefix, pCtx->tr.Sel, pCtx->tr.u64Base, pCtx->tr.u32Limit, pCtx->tr.Attr.u,
3110 pszPrefix, pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
3111
3112 pHlp->pfnPrintf(pHlp, "%sxcr=%016RX64 %sxcr1=%016RX64 %sxss=%016RX64 (fXStateMask=%016RX64)\n",
3113 pszPrefix, pCtx->aXcr[0], pszPrefix, pCtx->aXcr[1],
3114 pszPrefix, UINT64_C(0) /** @todo XSS */, pCtx->fXStateMask);
3115 {
3116 PX86FXSTATE pFpuCtx = &pCtx->XState.x87;
3117 pHlp->pfnPrintf(pHlp,
3118 "%sFCW=%04x %sFSW=%04x %sFTW=%04x %sFOP=%04x %sMXCSR=%08x %sMXCSR_MASK=%08x\n"
3119 "%sFPUIP=%08x %sCS=%04x %sRsrvd1=%04x %sFPUDP=%08x %sDS=%04x %sRsvrd2=%04x\n"
3120 ,
3121 pszPrefix, pFpuCtx->FCW, pszPrefix, pFpuCtx->FSW, pszPrefix, pFpuCtx->FTW, pszPrefix, pFpuCtx->FOP,
3122 pszPrefix, pFpuCtx->MXCSR, pszPrefix, pFpuCtx->MXCSR_MASK,
3123 pszPrefix, pFpuCtx->FPUIP, pszPrefix, pFpuCtx->CS, pszPrefix, pFpuCtx->Rsrvd1,
3124 pszPrefix, pFpuCtx->FPUDP, pszPrefix, pFpuCtx->DS, pszPrefix, pFpuCtx->Rsrvd2
3125 );
3126 /*
3127 * The FSAVE style memory image contains ST(0)-ST(7) at increasing addresses,
3128 * not (FP)R0-7 as Intel SDM suggests.
3129 */
3130 unsigned iShift = (pFpuCtx->FSW >> 11) & 7;
3131 for (unsigned iST = 0; iST < RT_ELEMENTS(pFpuCtx->aRegs); iST++)
3132 {
3133 unsigned iFPR = (iST + iShift) % RT_ELEMENTS(pFpuCtx->aRegs);
3134 unsigned uTag = (pFpuCtx->FTW >> (2 * iFPR)) & 3;
3135 char chSign = pFpuCtx->aRegs[iST].au16[4] & 0x8000 ? '-' : '+';
3136 unsigned iInteger = (unsigned)(pFpuCtx->aRegs[iST].au64[0] >> 63);
3137 uint64_t u64Fraction = pFpuCtx->aRegs[iST].au64[0] & UINT64_C(0x7fffffffffffffff);
3138 int iExponent = pFpuCtx->aRegs[iST].au16[4] & 0x7fff;
3139 iExponent -= 16383; /* subtract bias */
3140 /** @todo This isn't entirenly correct and needs more work! */
3141 pHlp->pfnPrintf(pHlp,
3142 "%sST(%u)=%sFPR%u={%04RX16'%08RX32'%08RX32} t%d %c%u.%022llu * 2 ^ %d (*)",
3143 pszPrefix, iST, pszPrefix, iFPR,
3144 pFpuCtx->aRegs[iST].au16[4], pFpuCtx->aRegs[iST].au32[1], pFpuCtx->aRegs[iST].au32[0],
3145 uTag, chSign, iInteger, u64Fraction, iExponent);
3146 if (pFpuCtx->aRegs[iST].au16[5] || pFpuCtx->aRegs[iST].au16[6] || pFpuCtx->aRegs[iST].au16[7])
3147 pHlp->pfnPrintf(pHlp, " res={%04RX16,%04RX16,%04RX16}\n",
3148 pFpuCtx->aRegs[iST].au16[5], pFpuCtx->aRegs[iST].au16[6], pFpuCtx->aRegs[iST].au16[7]);
3149 else
3150 pHlp->pfnPrintf(pHlp, "\n");
3151 }
3152
3153 /* XMM/YMM/ZMM registers. */
3154 if (pCtx->fXStateMask & XSAVE_C_YMM)
3155 {
3156 PCX86XSAVEYMMHI pYmmHiCtx = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_YMM_BIT, PCX86XSAVEYMMHI);
3157 if (!(pCtx->fXStateMask & XSAVE_C_ZMM_HI256))
3158 for (unsigned i = 0; i < RT_ELEMENTS(pFpuCtx->aXMM); i++)
3159 pHlp->pfnPrintf(pHlp, "%sYMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32\n",
3160 pszPrefix, i, i < 10 ? " " : "",
3161 pYmmHiCtx->aYmmHi[i].au32[3],
3162 pYmmHiCtx->aYmmHi[i].au32[2],
3163 pYmmHiCtx->aYmmHi[i].au32[1],
3164 pYmmHiCtx->aYmmHi[i].au32[0],
3165 pFpuCtx->aXMM[i].au32[3],
3166 pFpuCtx->aXMM[i].au32[2],
3167 pFpuCtx->aXMM[i].au32[1],
3168 pFpuCtx->aXMM[i].au32[0]);
3169 else
3170 {
3171 PCX86XSAVEZMMHI256 pZmmHi256 = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_ZMM_HI256_BIT, PCX86XSAVEZMMHI256);
3172 for (unsigned i = 0; i < RT_ELEMENTS(pFpuCtx->aXMM); i++)
3173 pHlp->pfnPrintf(pHlp,
3174 "%sZMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32''%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32\n",
3175 pszPrefix, i, i < 10 ? " " : "",
3176 pZmmHi256->aHi256Regs[i].au32[7],
3177 pZmmHi256->aHi256Regs[i].au32[6],
3178 pZmmHi256->aHi256Regs[i].au32[5],
3179 pZmmHi256->aHi256Regs[i].au32[4],
3180 pZmmHi256->aHi256Regs[i].au32[3],
3181 pZmmHi256->aHi256Regs[i].au32[2],
3182 pZmmHi256->aHi256Regs[i].au32[1],
3183 pZmmHi256->aHi256Regs[i].au32[0],
3184 pYmmHiCtx->aYmmHi[i].au32[3],
3185 pYmmHiCtx->aYmmHi[i].au32[2],
3186 pYmmHiCtx->aYmmHi[i].au32[1],
3187 pYmmHiCtx->aYmmHi[i].au32[0],
3188 pFpuCtx->aXMM[i].au32[3],
3189 pFpuCtx->aXMM[i].au32[2],
3190 pFpuCtx->aXMM[i].au32[1],
3191 pFpuCtx->aXMM[i].au32[0]);
3192
3193 PCX86XSAVEZMM16HI pZmm16Hi = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_ZMM_16HI_BIT, PCX86XSAVEZMM16HI);
3194 for (unsigned i = 0; i < RT_ELEMENTS(pZmm16Hi->aRegs); i++)
3195 pHlp->pfnPrintf(pHlp,
3196 "%sZMM%u=%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32''%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32\n",
3197 pszPrefix, i + 16,
3198 pZmm16Hi->aRegs[i].au32[15],
3199 pZmm16Hi->aRegs[i].au32[14],
3200 pZmm16Hi->aRegs[i].au32[13],
3201 pZmm16Hi->aRegs[i].au32[12],
3202 pZmm16Hi->aRegs[i].au32[11],
3203 pZmm16Hi->aRegs[i].au32[10],
3204 pZmm16Hi->aRegs[i].au32[9],
3205 pZmm16Hi->aRegs[i].au32[8],
3206 pZmm16Hi->aRegs[i].au32[7],
3207 pZmm16Hi->aRegs[i].au32[6],
3208 pZmm16Hi->aRegs[i].au32[5],
3209 pZmm16Hi->aRegs[i].au32[4],
3210 pZmm16Hi->aRegs[i].au32[3],
3211 pZmm16Hi->aRegs[i].au32[2],
3212 pZmm16Hi->aRegs[i].au32[1],
3213 pZmm16Hi->aRegs[i].au32[0]);
3214 }
3215 }
3216 else
3217 for (unsigned i = 0; i < RT_ELEMENTS(pFpuCtx->aXMM); i++)
3218 pHlp->pfnPrintf(pHlp,
3219 i & 1
3220 ? "%sXMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32\n"
3221 : "%sXMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32 ",
3222 pszPrefix, i, i < 10 ? " " : "",
3223 pFpuCtx->aXMM[i].au32[3],
3224 pFpuCtx->aXMM[i].au32[2],
3225 pFpuCtx->aXMM[i].au32[1],
3226 pFpuCtx->aXMM[i].au32[0]);
3227
3228 if (pCtx->fXStateMask & XSAVE_C_OPMASK)
3229 {
3230 PCX86XSAVEOPMASK pOpMask = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_OPMASK_BIT, PCX86XSAVEOPMASK);
3231 for (unsigned i = 0; i < RT_ELEMENTS(pOpMask->aKRegs); i += 4)
3232 pHlp->pfnPrintf(pHlp, "%sK%u=%016RX64 %sK%u=%016RX64 %sK%u=%016RX64 %sK%u=%016RX64\n",
3233 pszPrefix, i + 0, pOpMask->aKRegs[i + 0],
3234 pszPrefix, i + 1, pOpMask->aKRegs[i + 1],
3235 pszPrefix, i + 2, pOpMask->aKRegs[i + 2],
3236 pszPrefix, i + 3, pOpMask->aKRegs[i + 3]);
3237 }
3238
3239 if (pCtx->fXStateMask & XSAVE_C_BNDREGS)
3240 {
3241 PCX86XSAVEBNDREGS pBndRegs = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_BNDREGS_BIT, PCX86XSAVEBNDREGS);
3242 for (unsigned i = 0; i < RT_ELEMENTS(pBndRegs->aRegs); i += 2)
3243 pHlp->pfnPrintf(pHlp, "%sBNDREG%u=%016RX64/%016RX64 %sBNDREG%u=%016RX64/%016RX64\n",
3244 pszPrefix, i, pBndRegs->aRegs[i].uLowerBound, pBndRegs->aRegs[i].uUpperBound,
3245 pszPrefix, i + 1, pBndRegs->aRegs[i + 1].uLowerBound, pBndRegs->aRegs[i + 1].uUpperBound);
3246 }
3247
3248 if (pCtx->fXStateMask & XSAVE_C_BNDCSR)
3249 {
3250 PCX86XSAVEBNDCFG pBndCfg = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_BNDCSR_BIT, PCX86XSAVEBNDCFG);
3251 pHlp->pfnPrintf(pHlp, "%sBNDCFG.CONFIG=%016RX64 %sBNDCFG.STATUS=%016RX64\n",
3252 pszPrefix, pBndCfg->fConfig, pszPrefix, pBndCfg->fStatus);
3253 }
3254
3255 for (unsigned i = 0; i < RT_ELEMENTS(pFpuCtx->au32RsrvdRest); i++)
3256 if (pFpuCtx->au32RsrvdRest[i])
3257 pHlp->pfnPrintf(pHlp, "%sRsrvdRest[%u]=%RX32 (offset=%#x)\n",
3258 pszPrefix, i, pFpuCtx->au32RsrvdRest[i], RT_UOFFSETOF_DYN(X86FXSTATE, au32RsrvdRest[i]) );
3259 }
3260
3261 pHlp->pfnPrintf(pHlp,
3262 "%sEFER =%016RX64\n"
3263 "%sPAT =%016RX64\n"
3264 "%sSTAR =%016RX64\n"
3265 "%sCSTAR =%016RX64\n"
3266 "%sLSTAR =%016RX64\n"
3267 "%sSFMASK =%016RX64\n"
3268 "%sKERNELGSBASE =%016RX64\n",
3269 pszPrefix, pCtx->msrEFER,
3270 pszPrefix, pCtx->msrPAT,
3271 pszPrefix, pCtx->msrSTAR,
3272 pszPrefix, pCtx->msrCSTAR,
3273 pszPrefix, pCtx->msrLSTAR,
3274 pszPrefix, pCtx->msrSFMASK,
3275 pszPrefix, pCtx->msrKERNELGSBASE);
3276
3277 if (CPUMIsGuestInPAEModeEx(pCtx))
3278 for (unsigned i = 0; i < RT_ELEMENTS(pCtx->aPaePdpes); i++)
3279 pHlp->pfnPrintf(pHlp, "%sPAE PDPTE %u =%016RX64\n", pszPrefix, i, pCtx->aPaePdpes[i]);
3280 break;
3281 }
3282}
3283
3284
3285/**
3286 * Display all cpu states and any other cpum info.
3287 *
3288 * @param pVM The cross context VM structure.
3289 * @param pHlp The info helper functions.
3290 * @param pszArgs Arguments, ignored.
3291 */
3292static DECLCALLBACK(void) cpumR3InfoAll(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3293{
3294 cpumR3InfoGuest(pVM, pHlp, pszArgs);
3295 cpumR3InfoGuestInstr(pVM, pHlp, pszArgs);
3296 cpumR3InfoGuestHwvirt(pVM, pHlp, pszArgs);
3297 cpumR3InfoHyper(pVM, pHlp, pszArgs);
3298 cpumR3InfoHost(pVM, pHlp, pszArgs);
3299}
3300
3301
3302/**
3303 * Parses the info argument.
3304 *
3305 * The argument starts with 'verbose', 'terse' or 'default' and then
3306 * continues with the comment string.
3307 *
3308 * @param pszArgs The pointer to the argument string.
3309 * @param penmType Where to store the dump type request.
3310 * @param ppszComment Where to store the pointer to the comment string.
3311 */
3312static void cpumR3InfoParseArg(const char *pszArgs, CPUMDUMPTYPE *penmType, const char **ppszComment)
3313{
3314 if (!pszArgs)
3315 {
3316 *penmType = CPUMDUMPTYPE_DEFAULT;
3317 *ppszComment = "";
3318 }
3319 else
3320 {
3321 if (!strncmp(pszArgs, RT_STR_TUPLE("verbose")))
3322 {
3323 pszArgs += 7;
3324 *penmType = CPUMDUMPTYPE_VERBOSE;
3325 }
3326 else if (!strncmp(pszArgs, RT_STR_TUPLE("terse")))
3327 {
3328 pszArgs += 5;
3329 *penmType = CPUMDUMPTYPE_TERSE;
3330 }
3331 else if (!strncmp(pszArgs, RT_STR_TUPLE("default")))
3332 {
3333 pszArgs += 7;
3334 *penmType = CPUMDUMPTYPE_DEFAULT;
3335 }
3336 else
3337 *penmType = CPUMDUMPTYPE_DEFAULT;
3338 *ppszComment = RTStrStripL(pszArgs);
3339 }
3340}
3341
3342
3343/**
3344 * Display the guest cpu state.
3345 *
3346 * @param pVM The cross context VM structure.
3347 * @param pHlp The info helper functions.
3348 * @param pszArgs Arguments.
3349 */
3350static DECLCALLBACK(void) cpumR3InfoGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3351{
3352 CPUMDUMPTYPE enmType;
3353 const char *pszComment;
3354 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
3355
3356 PVMCPU pVCpu = VMMGetCpu(pVM);
3357 if (!pVCpu)
3358 pVCpu = pVM->apCpusR3[0];
3359
3360 pHlp->pfnPrintf(pHlp, "Guest CPUM (VCPU %d) state: %s\n", pVCpu->idCpu, pszComment);
3361
3362 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
3363 cpumR3InfoOne(pVM, pCtx, CPUMCTX2CORE(pCtx), pHlp, enmType, "");
3364}
3365
3366
3367/**
3368 * Displays an SVM VMCB control area.
3369 *
3370 * @param pHlp The info helper functions.
3371 * @param pVmcbCtrl Pointer to a SVM VMCB controls area.
3372 * @param pszPrefix Caller specified string prefix.
3373 */
3374static void cpumR3InfoSvmVmcbCtrl(PCDBGFINFOHLP pHlp, PCSVMVMCBCTRL pVmcbCtrl, const char *pszPrefix)
3375{
3376 AssertReturnVoid(pHlp);
3377 AssertReturnVoid(pVmcbCtrl);
3378
3379 pHlp->pfnPrintf(pHlp, "%sCRX-read intercepts = %#RX16\n", pszPrefix, pVmcbCtrl->u16InterceptRdCRx);
3380 pHlp->pfnPrintf(pHlp, "%sCRX-write intercepts = %#RX16\n", pszPrefix, pVmcbCtrl->u16InterceptWrCRx);
3381 pHlp->pfnPrintf(pHlp, "%sDRX-read intercepts = %#RX16\n", pszPrefix, pVmcbCtrl->u16InterceptRdDRx);
3382 pHlp->pfnPrintf(pHlp, "%sDRX-write intercepts = %#RX16\n", pszPrefix, pVmcbCtrl->u16InterceptWrDRx);
3383 pHlp->pfnPrintf(pHlp, "%sException intercepts = %#RX32\n", pszPrefix, pVmcbCtrl->u32InterceptXcpt);
3384 pHlp->pfnPrintf(pHlp, "%sControl intercepts = %#RX64\n", pszPrefix, pVmcbCtrl->u64InterceptCtrl);
3385 pHlp->pfnPrintf(pHlp, "%sPause-filter threshold = %#RX16\n", pszPrefix, pVmcbCtrl->u16PauseFilterThreshold);
3386 pHlp->pfnPrintf(pHlp, "%sPause-filter count = %#RX16\n", pszPrefix, pVmcbCtrl->u16PauseFilterCount);
3387 pHlp->pfnPrintf(pHlp, "%sIOPM bitmap physaddr = %#RX64\n", pszPrefix, pVmcbCtrl->u64IOPMPhysAddr);
3388 pHlp->pfnPrintf(pHlp, "%sMSRPM bitmap physaddr = %#RX64\n", pszPrefix, pVmcbCtrl->u64MSRPMPhysAddr);
3389 pHlp->pfnPrintf(pHlp, "%sTSC offset = %#RX64\n", pszPrefix, pVmcbCtrl->u64TSCOffset);
3390 pHlp->pfnPrintf(pHlp, "%sTLB Control\n", pszPrefix);
3391 pHlp->pfnPrintf(pHlp, " %sASID = %#RX32\n", pszPrefix, pVmcbCtrl->TLBCtrl.n.u32ASID);
3392 pHlp->pfnPrintf(pHlp, " %sTLB-flush type = %u\n", pszPrefix, pVmcbCtrl->TLBCtrl.n.u8TLBFlush);
3393 pHlp->pfnPrintf(pHlp, "%sInterrupt Control\n", pszPrefix);
3394 pHlp->pfnPrintf(pHlp, " %sVTPR = %#RX8 (%u)\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u8VTPR, pVmcbCtrl->IntCtrl.n.u8VTPR);
3395 pHlp->pfnPrintf(pHlp, " %sVIRQ (Pending) = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1VIrqPending);
3396 pHlp->pfnPrintf(pHlp, " %sVINTR vector = %#RX8\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u8VIntrVector);
3397 pHlp->pfnPrintf(pHlp, " %sVGIF = %u\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1VGif);
3398 pHlp->pfnPrintf(pHlp, " %sVINTR priority = %#RX8\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u4VIntrPrio);
3399 pHlp->pfnPrintf(pHlp, " %sIgnore TPR = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1IgnoreTPR);
3400 pHlp->pfnPrintf(pHlp, " %sVINTR masking = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1VIntrMasking);
3401 pHlp->pfnPrintf(pHlp, " %sVGIF enable = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1VGifEnable);
3402 pHlp->pfnPrintf(pHlp, " %sAVIC enable = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1AvicEnable);
3403 pHlp->pfnPrintf(pHlp, "%sInterrupt Shadow\n", pszPrefix);
3404 pHlp->pfnPrintf(pHlp, " %sInterrupt shadow = %RTbool\n", pszPrefix, pVmcbCtrl->IntShadow.n.u1IntShadow);
3405 pHlp->pfnPrintf(pHlp, " %sGuest-interrupt Mask = %RTbool\n", pszPrefix, pVmcbCtrl->IntShadow.n.u1GuestIntMask);
3406 pHlp->pfnPrintf(pHlp, "%sExit Code = %#RX64\n", pszPrefix, pVmcbCtrl->u64ExitCode);
3407 pHlp->pfnPrintf(pHlp, "%sEXITINFO1 = %#RX64\n", pszPrefix, pVmcbCtrl->u64ExitInfo1);
3408 pHlp->pfnPrintf(pHlp, "%sEXITINFO2 = %#RX64\n", pszPrefix, pVmcbCtrl->u64ExitInfo2);
3409 pHlp->pfnPrintf(pHlp, "%sExit Interrupt Info\n", pszPrefix);
3410 pHlp->pfnPrintf(pHlp, " %sValid = %RTbool\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u1Valid);
3411 pHlp->pfnPrintf(pHlp, " %sVector = %#RX8 (%u)\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u8Vector, pVmcbCtrl->ExitIntInfo.n.u8Vector);
3412 pHlp->pfnPrintf(pHlp, " %sType = %u\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u3Type);
3413 pHlp->pfnPrintf(pHlp, " %sError-code valid = %RTbool\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u1ErrorCodeValid);
3414 pHlp->pfnPrintf(pHlp, " %sError-code = %#RX32\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u32ErrorCode);
3415 pHlp->pfnPrintf(pHlp, "%sNested paging and SEV\n", pszPrefix);
3416 pHlp->pfnPrintf(pHlp, " %sNested paging = %RTbool\n", pszPrefix, pVmcbCtrl->NestedPagingCtrl.n.u1NestedPaging);
3417 pHlp->pfnPrintf(pHlp, " %sSEV (Secure Encrypted VM) = %RTbool\n", pszPrefix, pVmcbCtrl->NestedPagingCtrl.n.u1Sev);
3418 pHlp->pfnPrintf(pHlp, " %sSEV-ES (Encrypted State) = %RTbool\n", pszPrefix, pVmcbCtrl->NestedPagingCtrl.n.u1SevEs);
3419 pHlp->pfnPrintf(pHlp, "%sEvent Inject\n", pszPrefix);
3420 pHlp->pfnPrintf(pHlp, " %sValid = %RTbool\n", pszPrefix, pVmcbCtrl->EventInject.n.u1Valid);
3421 pHlp->pfnPrintf(pHlp, " %sVector = %#RX32 (%u)\n", pszPrefix, pVmcbCtrl->EventInject.n.u8Vector, pVmcbCtrl->EventInject.n.u8Vector);
3422 pHlp->pfnPrintf(pHlp, " %sType = %u\n", pszPrefix, pVmcbCtrl->EventInject.n.u3Type);
3423 pHlp->pfnPrintf(pHlp, " %sError-code valid = %RTbool\n", pszPrefix, pVmcbCtrl->EventInject.n.u1ErrorCodeValid);
3424 pHlp->pfnPrintf(pHlp, " %sError-code = %#RX32\n", pszPrefix, pVmcbCtrl->EventInject.n.u32ErrorCode);
3425 pHlp->pfnPrintf(pHlp, "%sNested-paging CR3 = %#RX64\n", pszPrefix, pVmcbCtrl->u64NestedPagingCR3);
3426 pHlp->pfnPrintf(pHlp, "%sLBR Virtualization\n", pszPrefix);
3427 pHlp->pfnPrintf(pHlp, " %sLBR virt = %RTbool\n", pszPrefix, pVmcbCtrl->LbrVirt.n.u1LbrVirt);
3428 pHlp->pfnPrintf(pHlp, " %sVirt. VMSAVE/VMLOAD = %RTbool\n", pszPrefix, pVmcbCtrl->LbrVirt.n.u1VirtVmsaveVmload);
3429 pHlp->pfnPrintf(pHlp, "%sVMCB Clean Bits = %#RX32\n", pszPrefix, pVmcbCtrl->u32VmcbCleanBits);
3430 pHlp->pfnPrintf(pHlp, "%sNext-RIP = %#RX64\n", pszPrefix, pVmcbCtrl->u64NextRIP);
3431 pHlp->pfnPrintf(pHlp, "%sInstruction bytes fetched = %u\n", pszPrefix, pVmcbCtrl->cbInstrFetched);
3432 pHlp->pfnPrintf(pHlp, "%sInstruction bytes = %.*Rhxs\n", pszPrefix, sizeof(pVmcbCtrl->abInstr), pVmcbCtrl->abInstr);
3433 pHlp->pfnPrintf(pHlp, "%sAVIC\n", pszPrefix);
3434 pHlp->pfnPrintf(pHlp, " %sBar addr = %#RX64\n", pszPrefix, pVmcbCtrl->AvicBar.n.u40Addr);
3435 pHlp->pfnPrintf(pHlp, " %sBacking page addr = %#RX64\n", pszPrefix, pVmcbCtrl->AvicBackingPagePtr.n.u40Addr);
3436 pHlp->pfnPrintf(pHlp, " %sLogical table addr = %#RX64\n", pszPrefix, pVmcbCtrl->AvicLogicalTablePtr.n.u40Addr);
3437 pHlp->pfnPrintf(pHlp, " %sPhysical table addr = %#RX64\n", pszPrefix, pVmcbCtrl->AvicPhysicalTablePtr.n.u40Addr);
3438 pHlp->pfnPrintf(pHlp, " %sLast guest core Id = %u\n", pszPrefix, pVmcbCtrl->AvicPhysicalTablePtr.n.u8LastGuestCoreId);
3439}
3440
3441
3442/**
3443 * Helper for dumping the SVM VMCB selector registers.
3444 *
3445 * @param pHlp The info helper functions.
3446 * @param pSel Pointer to the SVM selector register.
3447 * @param pszName Name of the selector.
3448 * @param pszPrefix Caller specified string prefix.
3449 */
3450DECLINLINE(void) cpumR3InfoSvmVmcbSelReg(PCDBGFINFOHLP pHlp, PCSVMSELREG pSel, const char *pszName, const char *pszPrefix)
3451{
3452 /* The string width of 4 used below is to handle 'LDTR'. Change later if longer register names are used. */
3453 pHlp->pfnPrintf(pHlp, "%s%-4s = {%04x base=%016RX64 limit=%08x flags=%04x}\n", pszPrefix,
3454 pszName, pSel->u16Sel, pSel->u64Base, pSel->u32Limit, pSel->u16Attr);
3455}
3456
3457
3458/**
3459 * Helper for dumping the SVM VMCB GDTR/IDTR registers.
3460 *
3461 * @param pHlp The info helper functions.
3462 * @param pXdtr Pointer to the descriptor table register.
3463 * @param pszName Name of the descriptor table register.
3464 * @param pszPrefix Caller specified string prefix.
3465 */
3466DECLINLINE(void) cpumR3InfoSvmVmcbXdtr(PCDBGFINFOHLP pHlp, PCSVMXDTR pXdtr, const char *pszName, const char *pszPrefix)
3467{
3468 /* The string width of 4 used below is to cover 'GDTR', 'IDTR'. Change later if longer register names are used. */
3469 pHlp->pfnPrintf(pHlp, "%s%-4s = %016RX64:%04x\n", pszPrefix, pszName, pXdtr->u64Base, pXdtr->u32Limit);
3470}
3471
3472
3473/**
3474 * Displays an SVM VMCB state-save area.
3475 *
3476 * @param pHlp The info helper functions.
3477 * @param pVmcbStateSave Pointer to a SVM VMCB controls area.
3478 * @param pszPrefix Caller specified string prefix.
3479 */
3480static void cpumR3InfoSvmVmcbStateSave(PCDBGFINFOHLP pHlp, PCSVMVMCBSTATESAVE pVmcbStateSave, const char *pszPrefix)
3481{
3482 AssertReturnVoid(pHlp);
3483 AssertReturnVoid(pVmcbStateSave);
3484
3485 char szEFlags[80];
3486 cpumR3InfoFormatFlags(&szEFlags[0], pVmcbStateSave->u64RFlags);
3487
3488 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->CS, "CS", pszPrefix);
3489 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->SS, "SS", pszPrefix);
3490 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->ES, "ES", pszPrefix);
3491 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->DS, "DS", pszPrefix);
3492 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->FS, "FS", pszPrefix);
3493 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->GS, "GS", pszPrefix);
3494 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->LDTR, "LDTR", pszPrefix);
3495 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->TR, "TR", pszPrefix);
3496 cpumR3InfoSvmVmcbXdtr(pHlp, &pVmcbStateSave->GDTR, "GDTR", pszPrefix);
3497 cpumR3InfoSvmVmcbXdtr(pHlp, &pVmcbStateSave->IDTR, "IDTR", pszPrefix);
3498 pHlp->pfnPrintf(pHlp, "%sCPL = %u\n", pszPrefix, pVmcbStateSave->u8CPL);
3499 pHlp->pfnPrintf(pHlp, "%sEFER = %#RX64\n", pszPrefix, pVmcbStateSave->u64EFER);
3500 pHlp->pfnPrintf(pHlp, "%sCR4 = %#RX64\n", pszPrefix, pVmcbStateSave->u64CR4);
3501 pHlp->pfnPrintf(pHlp, "%sCR3 = %#RX64\n", pszPrefix, pVmcbStateSave->u64CR3);
3502 pHlp->pfnPrintf(pHlp, "%sCR0 = %#RX64\n", pszPrefix, pVmcbStateSave->u64CR0);
3503 pHlp->pfnPrintf(pHlp, "%sDR7 = %#RX64\n", pszPrefix, pVmcbStateSave->u64DR7);
3504 pHlp->pfnPrintf(pHlp, "%sDR6 = %#RX64\n", pszPrefix, pVmcbStateSave->u64DR6);
3505 pHlp->pfnPrintf(pHlp, "%sRFLAGS = %#RX64 %31s\n", pszPrefix, pVmcbStateSave->u64RFlags, szEFlags);
3506 pHlp->pfnPrintf(pHlp, "%sRIP = %#RX64\n", pszPrefix, pVmcbStateSave->u64RIP);
3507 pHlp->pfnPrintf(pHlp, "%sRSP = %#RX64\n", pszPrefix, pVmcbStateSave->u64RSP);
3508 pHlp->pfnPrintf(pHlp, "%sRAX = %#RX64\n", pszPrefix, pVmcbStateSave->u64RAX);
3509 pHlp->pfnPrintf(pHlp, "%sSTAR = %#RX64\n", pszPrefix, pVmcbStateSave->u64STAR);
3510 pHlp->pfnPrintf(pHlp, "%sLSTAR = %#RX64\n", pszPrefix, pVmcbStateSave->u64LSTAR);
3511 pHlp->pfnPrintf(pHlp, "%sCSTAR = %#RX64\n", pszPrefix, pVmcbStateSave->u64CSTAR);
3512 pHlp->pfnPrintf(pHlp, "%sSFMASK = %#RX64\n", pszPrefix, pVmcbStateSave->u64SFMASK);
3513 pHlp->pfnPrintf(pHlp, "%sKERNELGSBASE = %#RX64\n", pszPrefix, pVmcbStateSave->u64KernelGSBase);
3514 pHlp->pfnPrintf(pHlp, "%sSysEnter CS = %#RX64\n", pszPrefix, pVmcbStateSave->u64SysEnterCS);
3515 pHlp->pfnPrintf(pHlp, "%sSysEnter EIP = %#RX64\n", pszPrefix, pVmcbStateSave->u64SysEnterEIP);
3516 pHlp->pfnPrintf(pHlp, "%sSysEnter ESP = %#RX64\n", pszPrefix, pVmcbStateSave->u64SysEnterESP);
3517 pHlp->pfnPrintf(pHlp, "%sCR2 = %#RX64\n", pszPrefix, pVmcbStateSave->u64CR2);
3518 pHlp->pfnPrintf(pHlp, "%sPAT = %#RX64\n", pszPrefix, pVmcbStateSave->u64PAT);
3519 pHlp->pfnPrintf(pHlp, "%sDBGCTL = %#RX64\n", pszPrefix, pVmcbStateSave->u64DBGCTL);
3520 pHlp->pfnPrintf(pHlp, "%sBR_FROM = %#RX64\n", pszPrefix, pVmcbStateSave->u64BR_FROM);
3521 pHlp->pfnPrintf(pHlp, "%sBR_TO = %#RX64\n", pszPrefix, pVmcbStateSave->u64BR_TO);
3522 pHlp->pfnPrintf(pHlp, "%sLASTXCPT_FROM = %#RX64\n", pszPrefix, pVmcbStateSave->u64LASTEXCPFROM);
3523 pHlp->pfnPrintf(pHlp, "%sLASTXCPT_TO = %#RX64\n", pszPrefix, pVmcbStateSave->u64LASTEXCPTO);
3524}
3525
3526
3527/**
3528 * Displays a virtual-VMCS.
3529 *
3530 * @param pVCpu The cross context virtual CPU structure.
3531 * @param pHlp The info helper functions.
3532 * @param pVmcs Pointer to a virtual VMCS.
3533 * @param pszPrefix Caller specified string prefix.
3534 */
3535static void cpumR3InfoVmxVmcs(PVMCPU pVCpu, PCDBGFINFOHLP pHlp, PCVMXVVMCS pVmcs, const char *pszPrefix)
3536{
3537 AssertReturnVoid(pHlp);
3538 AssertReturnVoid(pVmcs);
3539
3540 /* The string width of -4 used in the macros below to cover 'LDTR', 'GDTR', 'IDTR. */
3541#define CPUMVMX_DUMP_HOST_XDTR(a_pHlp, a_pVmcs, a_Seg, a_SegName, a_pszPrefix) \
3542 do { \
3543 (a_pHlp)->pfnPrintf((a_pHlp), " %s%-4s = {base=%016RX64}\n", \
3544 (a_pszPrefix), (a_SegName), (a_pVmcs)->u64Host##a_Seg##Base.u); \
3545 } while (0)
3546
3547#define CPUMVMX_DUMP_HOST_FS_GS_TR(a_pHlp, a_pVmcs, a_Seg, a_SegName, a_pszPrefix) \
3548 do { \
3549 (a_pHlp)->pfnPrintf((a_pHlp), " %s%-4s = {%04x base=%016RX64}\n", \
3550 (a_pszPrefix), (a_SegName), (a_pVmcs)->Host##a_Seg, (a_pVmcs)->u64Host##a_Seg##Base.u); \
3551 } while (0)
3552
3553#define CPUMVMX_DUMP_GUEST_SEGREG(a_pHlp, a_pVmcs, a_Seg, a_SegName, a_pszPrefix) \
3554 do { \
3555 (a_pHlp)->pfnPrintf((a_pHlp), " %s%-4s = {%04x base=%016RX64 limit=%08x flags=%04x}\n", \
3556 (a_pszPrefix), (a_SegName), (a_pVmcs)->Guest##a_Seg, (a_pVmcs)->u64Guest##a_Seg##Base.u, \
3557 (a_pVmcs)->u32Guest##a_Seg##Limit, (a_pVmcs)->u32Guest##a_Seg##Attr); \
3558 } while (0)
3559
3560#define CPUMVMX_DUMP_GUEST_XDTR(a_pHlp, a_pVmcs, a_Seg, a_SegName, a_pszPrefix) \
3561 do { \
3562 (a_pHlp)->pfnPrintf((a_pHlp), " %s%-4s = {base=%016RX64 limit=%08x}\n", \
3563 (a_pszPrefix), (a_SegName), (a_pVmcs)->u64Guest##a_Seg##Base.u, (a_pVmcs)->u32Guest##a_Seg##Limit); \
3564 } while (0)
3565
3566 /* Header. */
3567 {
3568 pHlp->pfnPrintf(pHlp, "%sHeader:\n", pszPrefix);
3569 pHlp->pfnPrintf(pHlp, " %sVMCS revision id = %#RX32\n", pszPrefix, pVmcs->u32VmcsRevId);
3570 pHlp->pfnPrintf(pHlp, " %sVMX-abort id = %#RX32 (%s)\n", pszPrefix, pVmcs->enmVmxAbort, VMXGetAbortDesc(pVmcs->enmVmxAbort));
3571 pHlp->pfnPrintf(pHlp, " %sVMCS state = %#x (%s)\n", pszPrefix, pVmcs->fVmcsState, VMXGetVmcsStateDesc(pVmcs->fVmcsState));
3572 }
3573
3574 /* Control fields. */
3575 {
3576 /* 16-bit. */
3577 pHlp->pfnPrintf(pHlp, "%sControl:\n", pszPrefix);
3578 pHlp->pfnPrintf(pHlp, " %sVPID = %#RX16\n", pszPrefix, pVmcs->u16Vpid);
3579 pHlp->pfnPrintf(pHlp, " %sPosted intr notify vector = %#RX16\n", pszPrefix, pVmcs->u16PostIntNotifyVector);
3580 pHlp->pfnPrintf(pHlp, " %sEPTP index = %#RX16\n", pszPrefix, pVmcs->u16EptpIndex);
3581
3582 /* 32-bit. */
3583 pHlp->pfnPrintf(pHlp, " %sPin ctls = %#RX32\n", pszPrefix, pVmcs->u32PinCtls);
3584 pHlp->pfnPrintf(pHlp, " %sProcessor ctls = %#RX32\n", pszPrefix, pVmcs->u32ProcCtls);
3585 pHlp->pfnPrintf(pHlp, " %sSecondary processor ctls = %#RX32\n", pszPrefix, pVmcs->u32ProcCtls2);
3586 pHlp->pfnPrintf(pHlp, " %sVM-exit ctls = %#RX32\n", pszPrefix, pVmcs->u32ExitCtls);
3587 pHlp->pfnPrintf(pHlp, " %sVM-entry ctls = %#RX32\n", pszPrefix, pVmcs->u32EntryCtls);
3588 pHlp->pfnPrintf(pHlp, " %sException bitmap = %#RX32\n", pszPrefix, pVmcs->u32XcptBitmap);
3589 pHlp->pfnPrintf(pHlp, " %sPage-fault mask = %#RX32\n", pszPrefix, pVmcs->u32XcptPFMask);
3590 pHlp->pfnPrintf(pHlp, " %sPage-fault match = %#RX32\n", pszPrefix, pVmcs->u32XcptPFMatch);
3591 pHlp->pfnPrintf(pHlp, " %sCR3-target count = %RU32\n", pszPrefix, pVmcs->u32Cr3TargetCount);
3592 pHlp->pfnPrintf(pHlp, " %sVM-exit MSR store count = %RU32\n", pszPrefix, pVmcs->u32ExitMsrStoreCount);
3593 pHlp->pfnPrintf(pHlp, " %sVM-exit MSR load count = %RU32\n", pszPrefix, pVmcs->u32ExitMsrLoadCount);
3594 pHlp->pfnPrintf(pHlp, " %sVM-entry MSR load count = %RU32\n", pszPrefix, pVmcs->u32EntryMsrLoadCount);
3595 pHlp->pfnPrintf(pHlp, " %sVM-entry interruption info = %#RX32\n", pszPrefix, pVmcs->u32EntryIntInfo);
3596 {
3597 uint32_t const fInfo = pVmcs->u32EntryIntInfo;
3598 uint8_t const uType = VMX_ENTRY_INT_INFO_TYPE(fInfo);
3599 pHlp->pfnPrintf(pHlp, " %sValid = %RTbool\n", pszPrefix, VMX_ENTRY_INT_INFO_IS_VALID(fInfo));
3600 pHlp->pfnPrintf(pHlp, " %sType = %#x (%s)\n", pszPrefix, uType, VMXGetEntryIntInfoTypeDesc(uType));
3601 pHlp->pfnPrintf(pHlp, " %sVector = %#x\n", pszPrefix, VMX_ENTRY_INT_INFO_VECTOR(fInfo));
3602 pHlp->pfnPrintf(pHlp, " %sNMI-unblocking-IRET = %RTbool\n", pszPrefix, VMX_ENTRY_INT_INFO_IS_NMI_UNBLOCK_IRET(fInfo));
3603 pHlp->pfnPrintf(pHlp, " %sError-code valid = %RTbool\n", pszPrefix, VMX_ENTRY_INT_INFO_IS_ERROR_CODE_VALID(fInfo));
3604 }
3605 pHlp->pfnPrintf(pHlp, " %sVM-entry xcpt error-code = %#RX32\n", pszPrefix, pVmcs->u32EntryXcptErrCode);
3606 pHlp->pfnPrintf(pHlp, " %sVM-entry instr length = %u byte(s)\n", pszPrefix, pVmcs->u32EntryInstrLen);
3607 pHlp->pfnPrintf(pHlp, " %sTPR threshold = %#RX32\n", pszPrefix, pVmcs->u32TprThreshold);
3608 pHlp->pfnPrintf(pHlp, " %sPLE gap = %#RX32\n", pszPrefix, pVmcs->u32PleGap);
3609 pHlp->pfnPrintf(pHlp, " %sPLE window = %#RX32\n", pszPrefix, pVmcs->u32PleWindow);
3610
3611 /* 64-bit. */
3612 pHlp->pfnPrintf(pHlp, " %sIO-bitmap A addr = %#RX64\n", pszPrefix, pVmcs->u64AddrIoBitmapA.u);
3613 pHlp->pfnPrintf(pHlp, " %sIO-bitmap B addr = %#RX64\n", pszPrefix, pVmcs->u64AddrIoBitmapB.u);
3614 pHlp->pfnPrintf(pHlp, " %sMSR-bitmap addr = %#RX64\n", pszPrefix, pVmcs->u64AddrMsrBitmap.u);
3615 pHlp->pfnPrintf(pHlp, " %sVM-exit MSR store addr = %#RX64\n", pszPrefix, pVmcs->u64AddrExitMsrStore.u);
3616 pHlp->pfnPrintf(pHlp, " %sVM-exit MSR load addr = %#RX64\n", pszPrefix, pVmcs->u64AddrExitMsrLoad.u);
3617 pHlp->pfnPrintf(pHlp, " %sVM-entry MSR load addr = %#RX64\n", pszPrefix, pVmcs->u64AddrEntryMsrLoad.u);
3618 pHlp->pfnPrintf(pHlp, " %sExecutive VMCS ptr = %#RX64\n", pszPrefix, pVmcs->u64ExecVmcsPtr.u);
3619 pHlp->pfnPrintf(pHlp, " %sPML addr = %#RX64\n", pszPrefix, pVmcs->u64AddrPml.u);
3620 pHlp->pfnPrintf(pHlp, " %sTSC offset = %#RX64\n", pszPrefix, pVmcs->u64TscOffset.u);
3621 pHlp->pfnPrintf(pHlp, " %sVirtual-APIC addr = %#RX64\n", pszPrefix, pVmcs->u64AddrVirtApic.u);
3622 pHlp->pfnPrintf(pHlp, " %sAPIC-access addr = %#RX64\n", pszPrefix, pVmcs->u64AddrApicAccess.u);
3623 pHlp->pfnPrintf(pHlp, " %sPosted-intr desc addr = %#RX64\n", pszPrefix, pVmcs->u64AddrPostedIntDesc.u);
3624 pHlp->pfnPrintf(pHlp, " %sVM-functions control = %#RX64\n", pszPrefix, pVmcs->u64VmFuncCtls.u);
3625 pHlp->pfnPrintf(pHlp, " %sEPTP ptr = %#RX64\n", pszPrefix, pVmcs->u64EptpPtr.u);
3626 pHlp->pfnPrintf(pHlp, " %sEOI-exit bitmap 0 = %#RX64\n", pszPrefix, pVmcs->u64EoiExitBitmap0.u);
3627 pHlp->pfnPrintf(pHlp, " %sEOI-exit bitmap 1 = %#RX64\n", pszPrefix, pVmcs->u64EoiExitBitmap1.u);
3628 pHlp->pfnPrintf(pHlp, " %sEOI-exit bitmap 2 = %#RX64\n", pszPrefix, pVmcs->u64EoiExitBitmap2.u);
3629 pHlp->pfnPrintf(pHlp, " %sEOI-exit bitmap 3 = %#RX64\n", pszPrefix, pVmcs->u64EoiExitBitmap3.u);
3630 pHlp->pfnPrintf(pHlp, " %sEPTP-list addr = %#RX64\n", pszPrefix, pVmcs->u64AddrEptpList.u);
3631 pHlp->pfnPrintf(pHlp, " %sVMREAD-bitmap addr = %#RX64\n", pszPrefix, pVmcs->u64AddrVmreadBitmap.u);
3632 pHlp->pfnPrintf(pHlp, " %sVMWRITE-bitmap addr = %#RX64\n", pszPrefix, pVmcs->u64AddrVmwriteBitmap.u);
3633 pHlp->pfnPrintf(pHlp, " %sVirt-Xcpt info addr = %#RX64\n", pszPrefix, pVmcs->u64AddrXcptVeInfo.u);
3634 pHlp->pfnPrintf(pHlp, " %sXSS-exiting bitmap = %#RX64\n", pszPrefix, pVmcs->u64XssExitBitmap.u);
3635 pHlp->pfnPrintf(pHlp, " %sENCLS-exiting bitmap = %#RX64\n", pszPrefix, pVmcs->u64EnclsExitBitmap.u);
3636 pHlp->pfnPrintf(pHlp, " %sSPP-table ptr = %#RX64\n", pszPrefix, pVmcs->u64SppTablePtr.u);
3637 pHlp->pfnPrintf(pHlp, " %sTSC multiplier = %#RX64\n", pszPrefix, pVmcs->u64TscMultiplier.u);
3638 pHlp->pfnPrintf(pHlp, " %sTertiary processor ctls = %#RX64\n", pszPrefix, pVmcs->u64ProcCtls3.u);
3639 pHlp->pfnPrintf(pHlp, " %sENCLV-exiting bitmap = %#RX64\n", pszPrefix, pVmcs->u64EnclvExitBitmap.u);
3640
3641 /* Natural width. */
3642 pHlp->pfnPrintf(pHlp, " %sCR0 guest/host mask = %#RX64\n", pszPrefix, pVmcs->u64Cr0Mask.u);
3643 pHlp->pfnPrintf(pHlp, " %sCR4 guest/host mask = %#RX64\n", pszPrefix, pVmcs->u64Cr4Mask.u);
3644 pHlp->pfnPrintf(pHlp, " %sCR0 read shadow = %#RX64\n", pszPrefix, pVmcs->u64Cr0ReadShadow.u);
3645 pHlp->pfnPrintf(pHlp, " %sCR4 read shadow = %#RX64\n", pszPrefix, pVmcs->u64Cr4ReadShadow.u);
3646 pHlp->pfnPrintf(pHlp, " %sCR3-target 0 = %#RX64\n", pszPrefix, pVmcs->u64Cr3Target0.u);
3647 pHlp->pfnPrintf(pHlp, " %sCR3-target 1 = %#RX64\n", pszPrefix, pVmcs->u64Cr3Target1.u);
3648 pHlp->pfnPrintf(pHlp, " %sCR3-target 2 = %#RX64\n", pszPrefix, pVmcs->u64Cr3Target2.u);
3649 pHlp->pfnPrintf(pHlp, " %sCR3-target 3 = %#RX64\n", pszPrefix, pVmcs->u64Cr3Target3.u);
3650 }
3651
3652 /* Guest state. */
3653 {
3654 char szEFlags[80];
3655 cpumR3InfoFormatFlags(&szEFlags[0], pVmcs->u64GuestRFlags.u);
3656 pHlp->pfnPrintf(pHlp, "%sGuest state:\n", pszPrefix);
3657
3658 /* 16-bit. */
3659 CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Cs, "CS", pszPrefix);
3660 CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Ss, "SS", pszPrefix);
3661 CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Es, "ES", pszPrefix);
3662 CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Ds, "DS", pszPrefix);
3663 CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Fs, "FS", pszPrefix);
3664 CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Gs, "GS", pszPrefix);
3665 CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Ldtr, "LDTR", pszPrefix);
3666 CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Tr, "TR", pszPrefix);
3667 CPUMVMX_DUMP_GUEST_XDTR(pHlp, pVmcs, Gdtr, "GDTR", pszPrefix);
3668 CPUMVMX_DUMP_GUEST_XDTR(pHlp, pVmcs, Idtr, "IDTR", pszPrefix);
3669 pHlp->pfnPrintf(pHlp, " %sInterrupt status = %#RX16\n", pszPrefix, pVmcs->u16GuestIntStatus);
3670 pHlp->pfnPrintf(pHlp, " %sPML index = %#RX16\n", pszPrefix, pVmcs->u16PmlIndex);
3671
3672 /* 32-bit. */
3673 pHlp->pfnPrintf(pHlp, " %sInterruptibility state = %#RX32\n", pszPrefix, pVmcs->u32GuestIntrState);
3674 pHlp->pfnPrintf(pHlp, " %sActivity state = %#RX32\n", pszPrefix, pVmcs->u32GuestActivityState);
3675 pHlp->pfnPrintf(pHlp, " %sSMBASE = %#RX32\n", pszPrefix, pVmcs->u32GuestSmBase);
3676 pHlp->pfnPrintf(pHlp, " %sSysEnter CS = %#RX32\n", pszPrefix, pVmcs->u32GuestSysenterCS);
3677 pHlp->pfnPrintf(pHlp, " %sVMX-preemption timer value = %#RX32\n", pszPrefix, pVmcs->u32PreemptTimer);
3678
3679 /* 64-bit. */
3680 pHlp->pfnPrintf(pHlp, " %sVMCS link ptr = %#RX64\n", pszPrefix, pVmcs->u64VmcsLinkPtr.u);
3681 pHlp->pfnPrintf(pHlp, " %sDBGCTL = %#RX64\n", pszPrefix, pVmcs->u64GuestDebugCtlMsr.u);
3682 pHlp->pfnPrintf(pHlp, " %sPAT = %#RX64\n", pszPrefix, pVmcs->u64GuestPatMsr.u);
3683 pHlp->pfnPrintf(pHlp, " %sEFER = %#RX64\n", pszPrefix, pVmcs->u64GuestEferMsr.u);
3684 pHlp->pfnPrintf(pHlp, " %sPERFGLOBALCTRL = %#RX64\n", pszPrefix, pVmcs->u64GuestPerfGlobalCtlMsr.u);
3685 pHlp->pfnPrintf(pHlp, " %sPDPTE 0 = %#RX64\n", pszPrefix, pVmcs->u64GuestPdpte0.u);
3686 pHlp->pfnPrintf(pHlp, " %sPDPTE 1 = %#RX64\n", pszPrefix, pVmcs->u64GuestPdpte1.u);
3687 pHlp->pfnPrintf(pHlp, " %sPDPTE 2 = %#RX64\n", pszPrefix, pVmcs->u64GuestPdpte2.u);
3688 pHlp->pfnPrintf(pHlp, " %sPDPTE 3 = %#RX64\n", pszPrefix, pVmcs->u64GuestPdpte3.u);
3689 pHlp->pfnPrintf(pHlp, " %sBNDCFGS = %#RX64\n", pszPrefix, pVmcs->u64GuestBndcfgsMsr.u);
3690 pHlp->pfnPrintf(pHlp, " %sRTIT_CTL = %#RX64\n", pszPrefix, pVmcs->u64GuestRtitCtlMsr.u);
3691 pHlp->pfnPrintf(pHlp, " %sPKRS = %#RX64\n", pszPrefix, pVmcs->u64GuestPkrsMsr.u);
3692
3693 /* Natural width. */
3694 pHlp->pfnPrintf(pHlp, " %sCR0 = %#RX64\n", pszPrefix, pVmcs->u64GuestCr0.u);
3695 pHlp->pfnPrintf(pHlp, " %sCR3 = %#RX64\n", pszPrefix, pVmcs->u64GuestCr3.u);
3696 pHlp->pfnPrintf(pHlp, " %sCR4 = %#RX64\n", pszPrefix, pVmcs->u64GuestCr4.u);
3697 pHlp->pfnPrintf(pHlp, " %sDR7 = %#RX64\n", pszPrefix, pVmcs->u64GuestDr7.u);
3698 pHlp->pfnPrintf(pHlp, " %sRSP = %#RX64\n", pszPrefix, pVmcs->u64GuestRsp.u);
3699 pHlp->pfnPrintf(pHlp, " %sRIP = %#RX64\n", pszPrefix, pVmcs->u64GuestRip.u);
3700 pHlp->pfnPrintf(pHlp, " %sRFLAGS = %#RX64 %31s\n",pszPrefix, pVmcs->u64GuestRFlags.u, szEFlags);
3701 pHlp->pfnPrintf(pHlp, " %sPending debug xcpts = %#RX64\n", pszPrefix, pVmcs->u64GuestPendingDbgXcpts.u);
3702 pHlp->pfnPrintf(pHlp, " %sSysEnter ESP = %#RX64\n", pszPrefix, pVmcs->u64GuestSysenterEsp.u);
3703 pHlp->pfnPrintf(pHlp, " %sSysEnter EIP = %#RX64\n", pszPrefix, pVmcs->u64GuestSysenterEip.u);
3704 pHlp->pfnPrintf(pHlp, " %sS_CET = %#RX64\n", pszPrefix, pVmcs->u64GuestSCetMsr.u);
3705 pHlp->pfnPrintf(pHlp, " %sSSP = %#RX64\n", pszPrefix, pVmcs->u64GuestSsp.u);
3706 pHlp->pfnPrintf(pHlp, " %sINTERRUPT_SSP_TABLE_ADDR = %#RX64\n", pszPrefix, pVmcs->u64GuestIntrSspTableAddrMsr.u);
3707 }
3708
3709 /* Host state. */
3710 {
3711 pHlp->pfnPrintf(pHlp, "%sHost state:\n", pszPrefix);
3712
3713 /* 16-bit. */
3714 pHlp->pfnPrintf(pHlp, " %sCS = %#RX16\n", pszPrefix, pVmcs->HostCs);
3715 pHlp->pfnPrintf(pHlp, " %sSS = %#RX16\n", pszPrefix, pVmcs->HostSs);
3716 pHlp->pfnPrintf(pHlp, " %sDS = %#RX16\n", pszPrefix, pVmcs->HostDs);
3717 pHlp->pfnPrintf(pHlp, " %sES = %#RX16\n", pszPrefix, pVmcs->HostEs);
3718 CPUMVMX_DUMP_HOST_FS_GS_TR(pHlp, pVmcs, Fs, "FS", pszPrefix);
3719 CPUMVMX_DUMP_HOST_FS_GS_TR(pHlp, pVmcs, Gs, "GS", pszPrefix);
3720 CPUMVMX_DUMP_HOST_FS_GS_TR(pHlp, pVmcs, Tr, "TR", pszPrefix);
3721 CPUMVMX_DUMP_HOST_XDTR(pHlp, pVmcs, Gdtr, "GDTR", pszPrefix);
3722 CPUMVMX_DUMP_HOST_XDTR(pHlp, pVmcs, Idtr, "IDTR", pszPrefix);
3723
3724 /* 32-bit. */
3725 pHlp->pfnPrintf(pHlp, " %sSysEnter CS = %#RX32\n", pszPrefix, pVmcs->u32HostSysenterCs);
3726
3727 /* 64-bit. */
3728 pHlp->pfnPrintf(pHlp, " %sEFER = %#RX64\n", pszPrefix, pVmcs->u64HostEferMsr.u);
3729 pHlp->pfnPrintf(pHlp, " %sPAT = %#RX64\n", pszPrefix, pVmcs->u64HostPatMsr.u);
3730 pHlp->pfnPrintf(pHlp, " %sPERFGLOBALCTRL = %#RX64\n", pszPrefix, pVmcs->u64HostPerfGlobalCtlMsr.u);
3731 pHlp->pfnPrintf(pHlp, " %sPKRS = %#RX64\n", pszPrefix, pVmcs->u64HostPkrsMsr.u);
3732
3733 /* Natural width. */
3734 pHlp->pfnPrintf(pHlp, " %sCR0 = %#RX64\n", pszPrefix, pVmcs->u64HostCr0.u);
3735 pHlp->pfnPrintf(pHlp, " %sCR3 = %#RX64\n", pszPrefix, pVmcs->u64HostCr3.u);
3736 pHlp->pfnPrintf(pHlp, " %sCR4 = %#RX64\n", pszPrefix, pVmcs->u64HostCr4.u);
3737 pHlp->pfnPrintf(pHlp, " %sSysEnter ESP = %#RX64\n", pszPrefix, pVmcs->u64HostSysenterEsp.u);
3738 pHlp->pfnPrintf(pHlp, " %sSysEnter EIP = %#RX64\n", pszPrefix, pVmcs->u64HostSysenterEip.u);
3739 pHlp->pfnPrintf(pHlp, " %sRSP = %#RX64\n", pszPrefix, pVmcs->u64HostRsp.u);
3740 pHlp->pfnPrintf(pHlp, " %sRIP = %#RX64\n", pszPrefix, pVmcs->u64HostRip.u);
3741 pHlp->pfnPrintf(pHlp, " %sS_CET = %#RX64\n", pszPrefix, pVmcs->u64HostSCetMsr.u);
3742 pHlp->pfnPrintf(pHlp, " %sSSP = %#RX64\n", pszPrefix, pVmcs->u64HostSsp.u);
3743 pHlp->pfnPrintf(pHlp, " %sINTERRUPT_SSP_TABLE_ADDR = %#RX64\n", pszPrefix, pVmcs->u64HostIntrSspTableAddrMsr.u);
3744
3745 }
3746
3747 /* Read-only fields. */
3748 {
3749 pHlp->pfnPrintf(pHlp, "%sRead-only data fields:\n", pszPrefix);
3750
3751 /* 16-bit (none currently). */
3752
3753 /* 32-bit. */
3754 pHlp->pfnPrintf(pHlp, " %sExit reason = %u (%s)\n", pszPrefix, pVmcs->u32RoExitReason, HMGetVmxExitName(pVmcs->u32RoExitReason));
3755 pHlp->pfnPrintf(pHlp, " %sExit qualification = %#RX64\n", pszPrefix, pVmcs->u64RoExitQual.u);
3756 pHlp->pfnPrintf(pHlp, " %sVM-instruction error = %#RX32\n", pszPrefix, pVmcs->u32RoVmInstrError);
3757 pHlp->pfnPrintf(pHlp, " %sVM-exit intr info = %#RX32\n", pszPrefix, pVmcs->u32RoExitIntInfo);
3758 {
3759 uint32_t const fInfo = pVmcs->u32RoExitIntInfo;
3760 uint8_t const uType = VMX_EXIT_INT_INFO_TYPE(fInfo);
3761 pHlp->pfnPrintf(pHlp, " %sValid = %RTbool\n", pszPrefix, VMX_EXIT_INT_INFO_IS_VALID(fInfo));
3762 pHlp->pfnPrintf(pHlp, " %sType = %#x (%s)\n", pszPrefix, uType, VMXGetExitIntInfoTypeDesc(uType));
3763 pHlp->pfnPrintf(pHlp, " %sVector = %#x\n", pszPrefix, VMX_EXIT_INT_INFO_VECTOR(fInfo));
3764 pHlp->pfnPrintf(pHlp, " %sNMI-unblocking-IRET = %RTbool\n", pszPrefix, VMX_EXIT_INT_INFO_IS_NMI_UNBLOCK_IRET(fInfo));
3765 pHlp->pfnPrintf(pHlp, " %sError-code valid = %RTbool\n", pszPrefix, VMX_EXIT_INT_INFO_IS_ERROR_CODE_VALID(fInfo));
3766 }
3767 pHlp->pfnPrintf(pHlp, " %sVM-exit intr error-code = %#RX32\n", pszPrefix, pVmcs->u32RoExitIntErrCode);
3768 pHlp->pfnPrintf(pHlp, " %sIDT-vectoring info = %#RX32\n", pszPrefix, pVmcs->u32RoIdtVectoringInfo);
3769 {
3770 uint32_t const fInfo = pVmcs->u32RoIdtVectoringInfo;
3771 uint8_t const uType = VMX_IDT_VECTORING_INFO_TYPE(fInfo);
3772 pHlp->pfnPrintf(pHlp, " %sValid = %RTbool\n", pszPrefix, VMX_IDT_VECTORING_INFO_IS_VALID(fInfo));
3773 pHlp->pfnPrintf(pHlp, " %sType = %#x (%s)\n", pszPrefix, uType, VMXGetIdtVectoringInfoTypeDesc(uType));
3774 pHlp->pfnPrintf(pHlp, " %sVector = %#x\n", pszPrefix, VMX_IDT_VECTORING_INFO_VECTOR(fInfo));
3775 pHlp->pfnPrintf(pHlp, " %sError-code valid = %RTbool\n", pszPrefix, VMX_IDT_VECTORING_INFO_IS_ERROR_CODE_VALID(fInfo));
3776 }
3777 pHlp->pfnPrintf(pHlp, " %sIDT-vectoring error-code = %#RX32\n", pszPrefix, pVmcs->u32RoIdtVectoringErrCode);
3778 pHlp->pfnPrintf(pHlp, " %sVM-exit instruction length = %u byte(s)\n", pszPrefix, pVmcs->u32RoExitInstrLen);
3779 pHlp->pfnPrintf(pHlp, " %sVM-exit instruction info = %#RX64\n", pszPrefix, pVmcs->u32RoExitInstrInfo);
3780
3781 /* 64-bit. */
3782 pHlp->pfnPrintf(pHlp, " %sGuest-physical addr = %#RX64\n", pszPrefix, pVmcs->u64RoGuestPhysAddr.u);
3783
3784 /* Natural width. */
3785 pHlp->pfnPrintf(pHlp, " %sI/O RCX = %#RX64\n", pszPrefix, pVmcs->u64RoIoRcx.u);
3786 pHlp->pfnPrintf(pHlp, " %sI/O RSI = %#RX64\n", pszPrefix, pVmcs->u64RoIoRsi.u);
3787 pHlp->pfnPrintf(pHlp, " %sI/O RDI = %#RX64\n", pszPrefix, pVmcs->u64RoIoRdi.u);
3788 pHlp->pfnPrintf(pHlp, " %sI/O RIP = %#RX64\n", pszPrefix, pVmcs->u64RoIoRip.u);
3789 pHlp->pfnPrintf(pHlp, " %sGuest-linear addr = %#RX64\n", pszPrefix, pVmcs->u64RoGuestLinearAddr.u);
3790 }
3791
3792#ifdef DEBUG_ramshankar
3793 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
3794 {
3795 void *pvPage = RTMemTmpAllocZ(VMX_V_VIRT_APIC_SIZE);
3796 Assert(pvPage);
3797 RTGCPHYS const GCPhysVirtApic = pVmcs->u64AddrVirtApic.u;
3798 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), pvPage, GCPhysVirtApic, VMX_V_VIRT_APIC_SIZE);
3799 if (RT_SUCCESS(rc))
3800 {
3801 pHlp->pfnPrintf(pHlp, " %sVirtual-APIC page\n", pszPrefix);
3802 pHlp->pfnPrintf(pHlp, "%.*Rhxs\n", VMX_V_VIRT_APIC_SIZE, pvPage);
3803 pHlp->pfnPrintf(pHlp, "\n");
3804 }
3805 RTMemTmpFree(pvPage);
3806 }
3807#else
3808 NOREF(pVCpu);
3809#endif
3810
3811#undef CPUMVMX_DUMP_HOST_XDTR
3812#undef CPUMVMX_DUMP_HOST_FS_GS_TR
3813#undef CPUMVMX_DUMP_GUEST_SEGREG
3814#undef CPUMVMX_DUMP_GUEST_XDTR
3815}
3816
3817
3818/**
3819 * Display the guest's hardware-virtualization cpu state.
3820 *
3821 * @param pVM The cross context VM structure.
3822 * @param pHlp The info helper functions.
3823 * @param pszArgs Arguments, ignored.
3824 */
3825static DECLCALLBACK(void) cpumR3InfoGuestHwvirt(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3826{
3827 RT_NOREF(pszArgs);
3828
3829 PVMCPU pVCpu = VMMGetCpu(pVM);
3830 if (!pVCpu)
3831 pVCpu = pVM->apCpusR3[0];
3832
3833 PCCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
3834 bool const fSvm = pVM->cpum.s.GuestFeatures.fSvm;
3835 bool const fVmx = pVM->cpum.s.GuestFeatures.fVmx;
3836
3837 pHlp->pfnPrintf(pHlp, "VCPU[%u] hardware virtualization state:\n", pVCpu->idCpu);
3838 pHlp->pfnPrintf(pHlp, "fLocalForcedActions = %#RX32\n", pCtx->hwvirt.fLocalForcedActions);
3839 pHlp->pfnPrintf(pHlp, "In nested-guest hwvirt mode = %RTbool\n", CPUMIsGuestInNestedHwvirtMode(pCtx));
3840
3841 if (fSvm)
3842 {
3843 pHlp->pfnPrintf(pHlp, "SVM hwvirt state:\n");
3844 pHlp->pfnPrintf(pHlp, " fGif = %RTbool\n", pCtx->hwvirt.fGif);
3845
3846 char szEFlags[80];
3847 cpumR3InfoFormatFlags(&szEFlags[0], pCtx->hwvirt.svm.HostState.rflags.u);
3848 pHlp->pfnPrintf(pHlp, " uMsrHSavePa = %#RX64\n", pCtx->hwvirt.svm.uMsrHSavePa);
3849 pHlp->pfnPrintf(pHlp, " GCPhysVmcb = %#RGp\n", pCtx->hwvirt.svm.GCPhysVmcb);
3850 pHlp->pfnPrintf(pHlp, " VmcbCtrl:\n");
3851 cpumR3InfoSvmVmcbCtrl(pHlp, &pCtx->hwvirt.svm.Vmcb.ctrl, " " /* pszPrefix */);
3852 pHlp->pfnPrintf(pHlp, " VmcbStateSave:\n");
3853 cpumR3InfoSvmVmcbStateSave(pHlp, &pCtx->hwvirt.svm.Vmcb.guest, " " /* pszPrefix */);
3854 pHlp->pfnPrintf(pHlp, " HostState:\n");
3855 pHlp->pfnPrintf(pHlp, " uEferMsr = %#RX64\n", pCtx->hwvirt.svm.HostState.uEferMsr);
3856 pHlp->pfnPrintf(pHlp, " uCr0 = %#RX64\n", pCtx->hwvirt.svm.HostState.uCr0);
3857 pHlp->pfnPrintf(pHlp, " uCr4 = %#RX64\n", pCtx->hwvirt.svm.HostState.uCr4);
3858 pHlp->pfnPrintf(pHlp, " uCr3 = %#RX64\n", pCtx->hwvirt.svm.HostState.uCr3);
3859 pHlp->pfnPrintf(pHlp, " uRip = %#RX64\n", pCtx->hwvirt.svm.HostState.uRip);
3860 pHlp->pfnPrintf(pHlp, " uRsp = %#RX64\n", pCtx->hwvirt.svm.HostState.uRsp);
3861 pHlp->pfnPrintf(pHlp, " uRax = %#RX64\n", pCtx->hwvirt.svm.HostState.uRax);
3862 pHlp->pfnPrintf(pHlp, " rflags = %#RX64 %31s\n", pCtx->hwvirt.svm.HostState.rflags.u64, szEFlags);
3863 PCCPUMSELREG pSelEs = &pCtx->hwvirt.svm.HostState.es;
3864 pHlp->pfnPrintf(pHlp, " es = {%04x base=%016RX64 limit=%08x flags=%08x}\n",
3865 pSelEs->Sel, pSelEs->u64Base, pSelEs->u32Limit, pSelEs->Attr.u);
3866 PCCPUMSELREG pSelCs = &pCtx->hwvirt.svm.HostState.cs;
3867 pHlp->pfnPrintf(pHlp, " cs = {%04x base=%016RX64 limit=%08x flags=%08x}\n",
3868 pSelCs->Sel, pSelCs->u64Base, pSelCs->u32Limit, pSelCs->Attr.u);
3869 PCCPUMSELREG pSelSs = &pCtx->hwvirt.svm.HostState.ss;
3870 pHlp->pfnPrintf(pHlp, " ss = {%04x base=%016RX64 limit=%08x flags=%08x}\n",
3871 pSelSs->Sel, pSelSs->u64Base, pSelSs->u32Limit, pSelSs->Attr.u);
3872 PCCPUMSELREG pSelDs = &pCtx->hwvirt.svm.HostState.ds;
3873 pHlp->pfnPrintf(pHlp, " ds = {%04x base=%016RX64 limit=%08x flags=%08x}\n",
3874 pSelDs->Sel, pSelDs->u64Base, pSelDs->u32Limit, pSelDs->Attr.u);
3875 pHlp->pfnPrintf(pHlp, " gdtr = %016RX64:%04x\n", pCtx->hwvirt.svm.HostState.gdtr.pGdt,
3876 pCtx->hwvirt.svm.HostState.gdtr.cbGdt);
3877 pHlp->pfnPrintf(pHlp, " idtr = %016RX64:%04x\n", pCtx->hwvirt.svm.HostState.idtr.pIdt,
3878 pCtx->hwvirt.svm.HostState.idtr.cbIdt);
3879 pHlp->pfnPrintf(pHlp, " cPauseFilter = %RU16\n", pCtx->hwvirt.svm.cPauseFilter);
3880 pHlp->pfnPrintf(pHlp, " cPauseFilterThreshold = %RU32\n", pCtx->hwvirt.svm.cPauseFilterThreshold);
3881 pHlp->pfnPrintf(pHlp, " fInterceptEvents = %u\n", pCtx->hwvirt.svm.fInterceptEvents);
3882 }
3883 else if (fVmx)
3884 {
3885 pHlp->pfnPrintf(pHlp, "VMX hwvirt state:\n");
3886 pHlp->pfnPrintf(pHlp, " GCPhysVmxon = %#RGp\n", pCtx->hwvirt.vmx.GCPhysVmxon);
3887 pHlp->pfnPrintf(pHlp, " GCPhysVmcs = %#RGp\n", pCtx->hwvirt.vmx.GCPhysVmcs);
3888 pHlp->pfnPrintf(pHlp, " GCPhysShadowVmcs = %#RGp\n", pCtx->hwvirt.vmx.GCPhysShadowVmcs);
3889 pHlp->pfnPrintf(pHlp, " enmDiag = %u (%s)\n", pCtx->hwvirt.vmx.enmDiag, HMGetVmxDiagDesc(pCtx->hwvirt.vmx.enmDiag));
3890 pHlp->pfnPrintf(pHlp, " uDiagAux = %#RX64\n", pCtx->hwvirt.vmx.uDiagAux);
3891 pHlp->pfnPrintf(pHlp, " enmAbort = %u (%s)\n", pCtx->hwvirt.vmx.enmAbort, VMXGetAbortDesc(pCtx->hwvirt.vmx.enmAbort));
3892 pHlp->pfnPrintf(pHlp, " uAbortAux = %u (%#x)\n", pCtx->hwvirt.vmx.uAbortAux, pCtx->hwvirt.vmx.uAbortAux);
3893 pHlp->pfnPrintf(pHlp, " fInVmxRootMode = %RTbool\n", pCtx->hwvirt.vmx.fInVmxRootMode);
3894 pHlp->pfnPrintf(pHlp, " fInVmxNonRootMode = %RTbool\n", pCtx->hwvirt.vmx.fInVmxNonRootMode);
3895 pHlp->pfnPrintf(pHlp, " fInterceptEvents = %RTbool\n", pCtx->hwvirt.vmx.fInterceptEvents);
3896 pHlp->pfnPrintf(pHlp, " fNmiUnblockingIret = %RTbool\n", pCtx->hwvirt.vmx.fNmiUnblockingIret);
3897 pHlp->pfnPrintf(pHlp, " uFirstPauseLoopTick = %RX64\n", pCtx->hwvirt.vmx.uFirstPauseLoopTick);
3898 pHlp->pfnPrintf(pHlp, " uPrevPauseTick = %RX64\n", pCtx->hwvirt.vmx.uPrevPauseTick);
3899 pHlp->pfnPrintf(pHlp, " uEntryTick = %RX64\n", pCtx->hwvirt.vmx.uEntryTick);
3900 pHlp->pfnPrintf(pHlp, " offVirtApicWrite = %#RX16\n", pCtx->hwvirt.vmx.offVirtApicWrite);
3901 pHlp->pfnPrintf(pHlp, " fVirtNmiBlocking = %RTbool\n", pCtx->hwvirt.vmx.fVirtNmiBlocking);
3902 pHlp->pfnPrintf(pHlp, " VMCS cache:\n");
3903 cpumR3InfoVmxVmcs(pVCpu, pHlp, &pCtx->hwvirt.vmx.Vmcs, " " /* pszPrefix */);
3904 }
3905 else
3906 pHlp->pfnPrintf(pHlp, "Hwvirt state disabled.\n");
3907
3908#undef CPUMHWVIRTDUMP_NONE
3909#undef CPUMHWVIRTDUMP_COMMON
3910#undef CPUMHWVIRTDUMP_SVM
3911#undef CPUMHWVIRTDUMP_VMX
3912#undef CPUMHWVIRTDUMP_LAST
3913#undef CPUMHWVIRTDUMP_ALL
3914}
3915
3916/**
3917 * Display the current guest instruction
3918 *
3919 * @param pVM The cross context VM structure.
3920 * @param pHlp The info helper functions.
3921 * @param pszArgs Arguments, ignored.
3922 */
3923static DECLCALLBACK(void) cpumR3InfoGuestInstr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3924{
3925 NOREF(pszArgs);
3926
3927 PVMCPU pVCpu = VMMGetCpu(pVM);
3928 if (!pVCpu)
3929 pVCpu = pVM->apCpusR3[0];
3930
3931 char szInstruction[256];
3932 szInstruction[0] = '\0';
3933 DBGFR3DisasInstrCurrent(pVCpu, szInstruction, sizeof(szInstruction));
3934 pHlp->pfnPrintf(pHlp, "\nCPUM%u: %s\n\n", pVCpu->idCpu, szInstruction);
3935}
3936
3937
3938/**
3939 * Display the hypervisor cpu state.
3940 *
3941 * @param pVM The cross context VM structure.
3942 * @param pHlp The info helper functions.
3943 * @param pszArgs Arguments, ignored.
3944 */
3945static DECLCALLBACK(void) cpumR3InfoHyper(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3946{
3947 PVMCPU pVCpu = VMMGetCpu(pVM);
3948 if (!pVCpu)
3949 pVCpu = pVM->apCpusR3[0];
3950
3951 CPUMDUMPTYPE enmType;
3952 const char *pszComment;
3953 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
3954 pHlp->pfnPrintf(pHlp, "Hypervisor CPUM state: %s\n", pszComment);
3955
3956 pHlp->pfnPrintf(pHlp,
3957 ".dr0=%016RX64 .dr1=%016RX64 .dr2=%016RX64 .dr3=%016RX64\n"
3958 ".dr4=%016RX64 .dr5=%016RX64 .dr6=%016RX64 .dr7=%016RX64\n",
3959 pVCpu->cpum.s.Hyper.dr[0], pVCpu->cpum.s.Hyper.dr[1], pVCpu->cpum.s.Hyper.dr[2], pVCpu->cpum.s.Hyper.dr[3],
3960 pVCpu->cpum.s.Hyper.dr[4], pVCpu->cpum.s.Hyper.dr[5], pVCpu->cpum.s.Hyper.dr[6], pVCpu->cpum.s.Hyper.dr[7]);
3961 pHlp->pfnPrintf(pHlp, "CR4OrMask=%#x CR4AndMask=%#x\n", pVM->cpum.s.CR4.OrMask, pVM->cpum.s.CR4.AndMask);
3962}
3963
3964
3965/**
3966 * Display the host cpu state.
3967 *
3968 * @param pVM The cross context VM structure.
3969 * @param pHlp The info helper functions.
3970 * @param pszArgs Arguments, ignored.
3971 */
3972static DECLCALLBACK(void) cpumR3InfoHost(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3973{
3974 CPUMDUMPTYPE enmType;
3975 const char *pszComment;
3976 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
3977 pHlp->pfnPrintf(pHlp, "Host CPUM state: %s\n", pszComment);
3978
3979 PVMCPU pVCpu = VMMGetCpu(pVM);
3980 if (!pVCpu)
3981 pVCpu = pVM->apCpusR3[0];
3982 PCPUMHOSTCTX pCtx = &pVCpu->cpum.s.Host;
3983
3984 /*
3985 * Format the EFLAGS.
3986 */
3987 uint64_t efl = pCtx->rflags;
3988 char szEFlags[80];
3989 cpumR3InfoFormatFlags(&szEFlags[0], efl);
3990
3991 /*
3992 * Format the registers.
3993 */
3994 pHlp->pfnPrintf(pHlp,
3995 "rax=xxxxxxxxxxxxxxxx rbx=%016RX64 rcx=xxxxxxxxxxxxxxxx\n"
3996 "rdx=xxxxxxxxxxxxxxxx rsi=%016RX64 rdi=%016RX64\n"
3997 "rip=xxxxxxxxxxxxxxxx rsp=%016RX64 rbp=%016RX64\n"
3998 " r8=xxxxxxxxxxxxxxxx r9=xxxxxxxxxxxxxxxx r10=%016RX64\n"
3999 "r11=%016RX64 r12=%016RX64 r13=%016RX64\n"
4000 "r14=%016RX64 r15=%016RX64\n"
4001 "iopl=%d %31s\n"
4002 "cs=%04x ds=%04x es=%04x fs=%04x gs=%04x eflags=%08RX64\n"
4003 "cr0=%016RX64 cr2=xxxxxxxxxxxxxxxx cr3=%016RX64\n"
4004 "cr4=%016RX64 ldtr=%04x tr=%04x\n"
4005 "dr[0]=%016RX64 dr[1]=%016RX64 dr[2]=%016RX64\n"
4006 "dr[3]=%016RX64 dr[6]=%016RX64 dr[7]=%016RX64\n"
4007 "gdtr=%016RX64:%04x idtr=%016RX64:%04x\n"
4008 "SysEnter={cs=%04x eip=%08x esp=%08x}\n"
4009 "FSbase=%016RX64 GSbase=%016RX64 efer=%08RX64\n"
4010 ,
4011 /*pCtx->rax,*/ pCtx->rbx, /*pCtx->rcx,
4012 pCtx->rdx,*/ pCtx->rsi, pCtx->rdi,
4013 /*pCtx->rip,*/ pCtx->rsp, pCtx->rbp,
4014 /*pCtx->r8, pCtx->r9,*/ pCtx->r10,
4015 pCtx->r11, pCtx->r12, pCtx->r13,
4016 pCtx->r14, pCtx->r15,
4017 X86_EFL_GET_IOPL(efl), szEFlags,
4018 pCtx->cs, pCtx->ds, pCtx->es, pCtx->fs, pCtx->gs, efl,
4019 pCtx->cr0, /*pCtx->cr2,*/ pCtx->cr3,
4020 pCtx->cr4, pCtx->ldtr, pCtx->tr,
4021 pCtx->dr0, pCtx->dr1, pCtx->dr2,
4022 pCtx->dr3, pCtx->dr6, pCtx->dr7,
4023 pCtx->gdtr.uAddr, pCtx->gdtr.cb, pCtx->idtr.uAddr, pCtx->idtr.cb,
4024 pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp,
4025 pCtx->FSbase, pCtx->GSbase, pCtx->efer);
4026}
4027
4028/**
4029 * Structure used when disassembling and instructions in DBGF.
4030 * This is used so the reader function can get the stuff it needs.
4031 */
4032typedef struct CPUMDISASSTATE
4033{
4034 /** Pointer to the CPU structure. */
4035 PDISCPUSTATE pCpu;
4036 /** Pointer to the VM. */
4037 PVM pVM;
4038 /** Pointer to the VMCPU. */
4039 PVMCPU pVCpu;
4040 /** Pointer to the first byte in the segment. */
4041 RTGCUINTPTR GCPtrSegBase;
4042 /** Pointer to the byte after the end of the segment. (might have wrapped!) */
4043 RTGCUINTPTR GCPtrSegEnd;
4044 /** The size of the segment minus 1. */
4045 RTGCUINTPTR cbSegLimit;
4046 /** Pointer to the current page - R3 Ptr. */
4047 void const *pvPageR3;
4048 /** Pointer to the current page - GC Ptr. */
4049 RTGCPTR pvPageGC;
4050 /** The lock information that PGMPhysReleasePageMappingLock needs. */
4051 PGMPAGEMAPLOCK PageMapLock;
4052 /** Whether the PageMapLock is valid or not. */
4053 bool fLocked;
4054 /** 64 bits mode or not. */
4055 bool f64Bits;
4056} CPUMDISASSTATE, *PCPUMDISASSTATE;
4057
4058
4059/**
4060 * @callback_method_impl{FNDISREADBYTES}
4061 */
4062static DECLCALLBACK(int) cpumR3DisasInstrRead(PDISCPUSTATE pDis, uint8_t offInstr, uint8_t cbMinRead, uint8_t cbMaxRead)
4063{
4064 PCPUMDISASSTATE pState = (PCPUMDISASSTATE)pDis->pvUser;
4065 for (;;)
4066 {
4067 RTGCUINTPTR GCPtr = pDis->uInstrAddr + offInstr + pState->GCPtrSegBase;
4068
4069 /*
4070 * Need to update the page translation?
4071 */
4072 if ( !pState->pvPageR3
4073 || (GCPtr >> PAGE_SHIFT) != (pState->pvPageGC >> PAGE_SHIFT))
4074 {
4075 /* translate the address */
4076 pState->pvPageGC = GCPtr & PAGE_BASE_GC_MASK;
4077
4078 /* Release mapping lock previously acquired. */
4079 if (pState->fLocked)
4080 PGMPhysReleasePageMappingLock(pState->pVM, &pState->PageMapLock);
4081 int rc = PGMPhysGCPtr2CCPtrReadOnly(pState->pVCpu, pState->pvPageGC, &pState->pvPageR3, &pState->PageMapLock);
4082 if (RT_SUCCESS(rc))
4083 pState->fLocked = true;
4084 else
4085 {
4086 pState->fLocked = false;
4087 pState->pvPageR3 = NULL;
4088 return rc;
4089 }
4090 }
4091
4092 /*
4093 * Check the segment limit.
4094 */
4095 if (!pState->f64Bits && pDis->uInstrAddr + offInstr > pState->cbSegLimit)
4096 return VERR_OUT_OF_SELECTOR_BOUNDS;
4097
4098 /*
4099 * Calc how much we can read.
4100 */
4101 uint32_t cb = PAGE_SIZE - (GCPtr & PAGE_OFFSET_MASK);
4102 if (!pState->f64Bits)
4103 {
4104 RTGCUINTPTR cbSeg = pState->GCPtrSegEnd - GCPtr;
4105 if (cb > cbSeg && cbSeg)
4106 cb = cbSeg;
4107 }
4108 if (cb > cbMaxRead)
4109 cb = cbMaxRead;
4110
4111 /*
4112 * Read and advance or exit.
4113 */
4114 memcpy(&pDis->abInstr[offInstr], (uint8_t *)pState->pvPageR3 + (GCPtr & PAGE_OFFSET_MASK), cb);
4115 offInstr += (uint8_t)cb;
4116 if (cb >= cbMinRead)
4117 {
4118 pDis->cbCachedInstr = offInstr;
4119 return VINF_SUCCESS;
4120 }
4121 cbMinRead -= (uint8_t)cb;
4122 cbMaxRead -= (uint8_t)cb;
4123 }
4124}
4125
4126
4127/**
4128 * Disassemble an instruction and return the information in the provided structure.
4129 *
4130 * @returns VBox status code.
4131 * @param pVM The cross context VM structure.
4132 * @param pVCpu The cross context virtual CPU structure.
4133 * @param pCtx Pointer to the guest CPU context.
4134 * @param GCPtrPC Program counter (relative to CS) to disassemble from.
4135 * @param pCpu Disassembly state.
4136 * @param pszPrefix String prefix for logging (debug only).
4137 *
4138 */
4139VMMR3DECL(int) CPUMR3DisasmInstrCPU(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, RTGCPTR GCPtrPC, PDISCPUSTATE pCpu,
4140 const char *pszPrefix)
4141{
4142 CPUMDISASSTATE State;
4143 int rc;
4144
4145 const PGMMODE enmMode = PGMGetGuestMode(pVCpu);
4146 State.pCpu = pCpu;
4147 State.pvPageGC = 0;
4148 State.pvPageR3 = NULL;
4149 State.pVM = pVM;
4150 State.pVCpu = pVCpu;
4151 State.fLocked = false;
4152 State.f64Bits = false;
4153
4154 /*
4155 * Get selector information.
4156 */
4157 DISCPUMODE enmDisCpuMode;
4158 if ( (pCtx->cr0 & X86_CR0_PE)
4159 && pCtx->eflags.Bits.u1VM == 0)
4160 {
4161 if (!CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->cs))
4162 return VERR_CPUM_HIDDEN_CS_LOAD_ERROR;
4163 State.f64Bits = enmMode >= PGMMODE_AMD64 && pCtx->cs.Attr.n.u1Long;
4164 State.GCPtrSegBase = pCtx->cs.u64Base;
4165 State.GCPtrSegEnd = pCtx->cs.u32Limit + 1 + (RTGCUINTPTR)pCtx->cs.u64Base;
4166 State.cbSegLimit = pCtx->cs.u32Limit;
4167 enmDisCpuMode = (State.f64Bits)
4168 ? DISCPUMODE_64BIT
4169 : pCtx->cs.Attr.n.u1DefBig
4170 ? DISCPUMODE_32BIT
4171 : DISCPUMODE_16BIT;
4172 }
4173 else
4174 {
4175 /* real or V86 mode */
4176 enmDisCpuMode = DISCPUMODE_16BIT;
4177 State.GCPtrSegBase = pCtx->cs.Sel * 16;
4178 State.GCPtrSegEnd = 0xFFFFFFFF;
4179 State.cbSegLimit = 0xFFFFFFFF;
4180 }
4181
4182 /*
4183 * Disassemble the instruction.
4184 */
4185 uint32_t cbInstr;
4186#ifndef LOG_ENABLED
4187 RT_NOREF_PV(pszPrefix);
4188 rc = DISInstrWithReader(GCPtrPC, enmDisCpuMode, cpumR3DisasInstrRead, &State, pCpu, &cbInstr);
4189 if (RT_SUCCESS(rc))
4190 {
4191#else
4192 char szOutput[160];
4193 rc = DISInstrToStrWithReader(GCPtrPC, enmDisCpuMode, cpumR3DisasInstrRead, &State,
4194 pCpu, &cbInstr, szOutput, sizeof(szOutput));
4195 if (RT_SUCCESS(rc))
4196 {
4197 /* log it */
4198 if (pszPrefix)
4199 Log(("%s-CPU%d: %s", pszPrefix, pVCpu->idCpu, szOutput));
4200 else
4201 Log(("%s", szOutput));
4202#endif
4203 rc = VINF_SUCCESS;
4204 }
4205 else
4206 Log(("CPUMR3DisasmInstrCPU: DISInstr failed for %04X:%RGv rc=%Rrc\n", pCtx->cs.Sel, GCPtrPC, rc));
4207
4208 /* Release mapping lock acquired in cpumR3DisasInstrRead. */
4209 if (State.fLocked)
4210 PGMPhysReleasePageMappingLock(pVM, &State.PageMapLock);
4211
4212 return rc;
4213}
4214
4215
4216
4217/**
4218 * API for controlling a few of the CPU features found in CR4.
4219 *
4220 * Currently only X86_CR4_TSD is accepted as input.
4221 *
4222 * @returns VBox status code.
4223 *
4224 * @param pVM The cross context VM structure.
4225 * @param fOr The CR4 OR mask.
4226 * @param fAnd The CR4 AND mask.
4227 */
4228VMMR3DECL(int) CPUMR3SetCR4Feature(PVM pVM, RTHCUINTREG fOr, RTHCUINTREG fAnd)
4229{
4230 AssertMsgReturn(!(fOr & ~(X86_CR4_TSD)), ("%#x\n", fOr), VERR_INVALID_PARAMETER);
4231 AssertMsgReturn((fAnd & ~(X86_CR4_TSD)) == ~(X86_CR4_TSD), ("%#x\n", fAnd), VERR_INVALID_PARAMETER);
4232
4233 pVM->cpum.s.CR4.OrMask &= fAnd;
4234 pVM->cpum.s.CR4.OrMask |= fOr;
4235
4236 return VINF_SUCCESS;
4237}
4238
4239
4240/**
4241 * Called when the ring-3 init phase completes.
4242 *
4243 * @returns VBox status code.
4244 * @param pVM The cross context VM structure.
4245 * @param enmWhat Which init phase.
4246 */
4247VMMR3DECL(int) CPUMR3InitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
4248{
4249 switch (enmWhat)
4250 {
4251 case VMINITCOMPLETED_RING3:
4252 {
4253 /*
4254 * Figure out if the guest uses 32-bit or 64-bit FPU state at runtime for 64-bit capable VMs.
4255 * Only applicable/used on 64-bit hosts, refer CPUMR0A.asm. See @bugref{7138}.
4256 */
4257 bool const fSupportsLongMode = VMR3IsLongModeAllowed(pVM);
4258 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
4259 {
4260 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
4261
4262 /* While loading a saved-state we fix it up in, cpumR3LoadDone(). */
4263 if (fSupportsLongMode)
4264 pVCpu->cpum.s.fUseFlags |= CPUM_USE_SUPPORTS_LONGMODE;
4265 }
4266
4267 /* Register statistic counters for MSRs. */
4268 cpumR3MsrRegStats(pVM);
4269
4270 /* Create VMX-preemption timer for nested guests if required. Must be
4271 done here as CPUM is initialized before TM. */
4272 if (pVM->cpum.s.GuestFeatures.fVmx)
4273 {
4274 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
4275 {
4276 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
4277 char szName[32];
4278 RTStrPrintf(szName, sizeof(szName), "Nested VMX-preemption %u", idCpu);
4279 int rc = TMR3TimerCreate(pVM, TMCLOCK_VIRTUAL_SYNC, cpumR3VmxPreemptTimerCallback, pVCpu,
4280 TMTIMER_FLAGS_RING0, szName, &pVCpu->cpum.s.hNestedVmxPreemptTimer);
4281 AssertLogRelRCReturn(rc, rc);
4282 }
4283 }
4284 break;
4285 }
4286
4287 default:
4288 break;
4289 }
4290 return VINF_SUCCESS;
4291}
4292
4293
4294/**
4295 * Called when the ring-0 init phases completed.
4296 *
4297 * @param pVM The cross context VM structure.
4298 */
4299VMMR3DECL(void) CPUMR3LogCpuIdAndMsrFeatures(PVM pVM)
4300{
4301 /*
4302 * Enable log buffering as we're going to log a lot of lines.
4303 */
4304 bool const fOldBuffered = RTLogRelSetBuffering(true /*fBuffered*/);
4305
4306 /*
4307 * Log the cpuid.
4308 */
4309 RTCPUSET OnlineSet;
4310 LogRel(("CPUM: Logical host processors: %u present, %u max, %u online, online mask: %016RX64\n",
4311 (unsigned)RTMpGetPresentCount(), (unsigned)RTMpGetCount(), (unsigned)RTMpGetOnlineCount(),
4312 RTCpuSetToU64(RTMpGetOnlineSet(&OnlineSet)) ));
4313 RTCPUID cCores = RTMpGetCoreCount();
4314 if (cCores)
4315 LogRel(("CPUM: Physical host cores: %u\n", (unsigned)cCores));
4316 LogRel(("************************* CPUID dump ************************\n"));
4317 DBGFR3Info(pVM->pUVM, "cpuid", "verbose", DBGFR3InfoLogRelHlp());
4318 LogRel(("\n"));
4319 DBGFR3_INFO_LOG_SAFE(pVM, "cpuid", "verbose"); /* macro */
4320 LogRel(("******************** End of CPUID dump **********************\n"));
4321
4322 /*
4323 * Log VT-x extended features.
4324 *
4325 * SVM features are currently all covered under CPUID so there is nothing
4326 * to do here for SVM.
4327 */
4328 if (pVM->cpum.s.HostFeatures.fVmx)
4329 {
4330 LogRel(("*********************** VT-x features ***********************\n"));
4331 DBGFR3Info(pVM->pUVM, "cpumvmxfeat", "default", DBGFR3InfoLogRelHlp());
4332 LogRel(("\n"));
4333 LogRel(("******************* End of VT-x features ********************\n"));
4334 }
4335
4336 /*
4337 * Restore the log buffering state to what it was previously.
4338 */
4339 RTLogRelSetBuffering(fOldBuffered);
4340}
4341
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette