VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/CPUMR3CpuId.cpp@ 106211

Last change on this file since 106211 was 106061, checked in by vboxsync, 4 months ago

Copyright year updates by scm.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 299.5 KB
Line 
1/* $Id: CPUMR3CpuId.cpp 106061 2024-09-16 14:03:52Z vboxsync $ */
2/** @file
3 * CPUM - CPU ID part.
4 */
5
6/*
7 * Copyright (C) 2013-2024 Oracle and/or its affiliates.
8 *
9 * This file is part of VirtualBox base platform packages, as
10 * available from https://www.virtualbox.org.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation, in version 3 of the
15 * License.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, see <https://www.gnu.org/licenses>.
24 *
25 * SPDX-License-Identifier: GPL-3.0-only
26 */
27
28
29/*********************************************************************************************************************************
30* Header Files *
31*********************************************************************************************************************************/
32#define LOG_GROUP LOG_GROUP_CPUM
33#include <VBox/vmm/cpum.h>
34#include <VBox/vmm/dbgf.h>
35#include <VBox/vmm/hm.h>
36#include <VBox/vmm/nem.h>
37#include <VBox/vmm/ssm.h>
38#include "CPUMInternal.h"
39#include <VBox/vmm/vmcc.h>
40#include <VBox/sup.h>
41
42#include <VBox/err.h>
43#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
44# include <iprt/asm-amd64-x86.h>
45#endif
46#include <iprt/ctype.h>
47#include <iprt/mem.h>
48#include <iprt/string.h>
49#include <iprt/x86-helpers.h>
50
51
52/*********************************************************************************************************************************
53* Defined Constants And Macros *
54*********************************************************************************************************************************/
55/** For sanity and avoid wasting hyper heap on buggy config / saved state. */
56#define CPUM_CPUID_MAX_LEAVES 2048
57
58
59#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
60/**
61 * Determins the host CPU MXCSR mask.
62 *
63 * @returns MXCSR mask.
64 */
65VMMR3DECL(uint32_t) CPUMR3DeterminHostMxCsrMask(void)
66{
67 if ( ASMHasCpuId()
68 && RTX86IsValidStdRange(ASMCpuId_EAX(0))
69 && ASMCpuId_EDX(1) & X86_CPUID_FEATURE_EDX_FXSR)
70 {
71 uint8_t volatile abBuf[sizeof(X86FXSTATE) + 64];
72 PX86FXSTATE pState = (PX86FXSTATE)&abBuf[64 - ((uintptr_t)&abBuf[0] & 63)];
73 RT_ZERO(*pState);
74 ASMFxSave(pState);
75 if (pState->MXCSR_MASK == 0)
76 return 0xffbf;
77 return pState->MXCSR_MASK;
78 }
79 return 0;
80}
81#endif
82
83
84
85#ifndef IN_VBOX_CPU_REPORT
86/**
87 * Gets a matching leaf in the CPUID leaf array, converted to a CPUMCPUID.
88 *
89 * @returns true if found, false it not.
90 * @param paLeaves The CPUID leaves to search. This is sorted.
91 * @param cLeaves The number of leaves in the array.
92 * @param uLeaf The leaf to locate.
93 * @param uSubLeaf The subleaf to locate. Pass 0 if no sub-leaves.
94 * @param pLegacy The legacy output leaf.
95 */
96static bool cpumR3CpuIdGetLeafLegacy(PCPUMCPUIDLEAF paLeaves, uint32_t cLeaves, uint32_t uLeaf, uint32_t uSubLeaf,
97 PCPUMCPUID pLegacy)
98{
99 PCPUMCPUIDLEAF pLeaf = cpumCpuIdGetLeafInt(paLeaves, cLeaves, uLeaf, uSubLeaf);
100 if (pLeaf)
101 {
102 pLegacy->uEax = pLeaf->uEax;
103 pLegacy->uEbx = pLeaf->uEbx;
104 pLegacy->uEcx = pLeaf->uEcx;
105 pLegacy->uEdx = pLeaf->uEdx;
106 return true;
107 }
108 return false;
109}
110#endif /* IN_VBOX_CPU_REPORT */
111
112
113/**
114 * Inserts a CPU ID leaf, replacing any existing ones.
115 *
116 * When inserting a simple leaf where we already got a series of sub-leaves with
117 * the same leaf number (eax), the simple leaf will replace the whole series.
118 *
119 * When pVM is NULL, this ASSUMES that the leaves array is still on the normal
120 * host-context heap and has only been allocated/reallocated by the
121 * cpumCpuIdEnsureSpace function.
122 *
123 * @returns VBox status code.
124 * @param pVM The cross context VM structure. If NULL, use
125 * the process heap, otherwise the VM's hyper heap.
126 * @param ppaLeaves Pointer to the pointer to the array of sorted
127 * CPUID leaves and sub-leaves. Must be NULL if using
128 * the hyper heap.
129 * @param pcLeaves Where we keep the leaf count for *ppaLeaves. Must
130 * be NULL if using the hyper heap.
131 * @param pNewLeaf Pointer to the data of the new leaf we're about to
132 * insert.
133 */
134static int cpumR3CpuIdInsert(PVM pVM, PCPUMCPUIDLEAF *ppaLeaves, uint32_t *pcLeaves, PCPUMCPUIDLEAF pNewLeaf)
135{
136 /*
137 * Validate input parameters if we are using the hyper heap and use the VM's CPUID arrays.
138 */
139 if (pVM)
140 {
141 AssertReturn(!ppaLeaves, VERR_INVALID_PARAMETER);
142 AssertReturn(!pcLeaves, VERR_INVALID_PARAMETER);
143 AssertReturn(pVM->cpum.s.GuestInfo.paCpuIdLeavesR3 == pVM->cpum.s.GuestInfo.aCpuIdLeaves, VERR_INVALID_PARAMETER);
144
145 ppaLeaves = &pVM->cpum.s.GuestInfo.paCpuIdLeavesR3;
146 pcLeaves = &pVM->cpum.s.GuestInfo.cCpuIdLeaves;
147 }
148
149 PCPUMCPUIDLEAF paLeaves = *ppaLeaves;
150 uint32_t cLeaves = *pcLeaves;
151
152 /*
153 * Validate the new leaf a little.
154 */
155 AssertLogRelMsgReturn(!(pNewLeaf->fFlags & ~CPUMCPUIDLEAF_F_VALID_MASK),
156 ("%#x/%#x: %#x", pNewLeaf->uLeaf, pNewLeaf->uSubLeaf, pNewLeaf->fFlags),
157 VERR_INVALID_FLAGS);
158 AssertLogRelMsgReturn(pNewLeaf->fSubLeafMask != 0 || pNewLeaf->uSubLeaf == 0,
159 ("%#x/%#x: %#x", pNewLeaf->uLeaf, pNewLeaf->uSubLeaf, pNewLeaf->fSubLeafMask),
160 VERR_INVALID_PARAMETER);
161 AssertLogRelMsgReturn(RT_IS_POWER_OF_TWO(pNewLeaf->fSubLeafMask + 1),
162 ("%#x/%#x: %#x", pNewLeaf->uLeaf, pNewLeaf->uSubLeaf, pNewLeaf->fSubLeafMask),
163 VERR_INVALID_PARAMETER);
164 AssertLogRelMsgReturn((pNewLeaf->fSubLeafMask & pNewLeaf->uSubLeaf) == pNewLeaf->uSubLeaf,
165 ("%#x/%#x: %#x", pNewLeaf->uLeaf, pNewLeaf->uSubLeaf, pNewLeaf->fSubLeafMask),
166 VERR_INVALID_PARAMETER);
167
168 /*
169 * Find insertion point. The lazy bird uses the same excuse as in
170 * cpumCpuIdGetLeaf(), but optimizes for linear insertion (saved state).
171 */
172 uint32_t i;
173 if ( cLeaves > 0
174 && paLeaves[cLeaves - 1].uLeaf < pNewLeaf->uLeaf)
175 {
176 /* Add at end. */
177 i = cLeaves;
178 }
179 else if ( cLeaves > 0
180 && paLeaves[cLeaves - 1].uLeaf == pNewLeaf->uLeaf)
181 {
182 /* Either replacing the last leaf or dealing with sub-leaves. Spool
183 back to the first sub-leaf to pretend we did the linear search. */
184 i = cLeaves - 1;
185 while ( i > 0
186 && paLeaves[i - 1].uLeaf == pNewLeaf->uLeaf)
187 i--;
188 }
189 else
190 {
191 /* Linear search from the start. */
192 i = 0;
193 while ( i < cLeaves
194 && paLeaves[i].uLeaf < pNewLeaf->uLeaf)
195 i++;
196 }
197 if ( i < cLeaves
198 && paLeaves[i].uLeaf == pNewLeaf->uLeaf)
199 {
200 if (paLeaves[i].fSubLeafMask != pNewLeaf->fSubLeafMask)
201 {
202 /*
203 * The sub-leaf mask differs, replace all existing leaves with the
204 * same leaf number.
205 */
206 uint32_t c = 1;
207 while ( i + c < cLeaves
208 && paLeaves[i + c].uLeaf == pNewLeaf->uLeaf)
209 c++;
210 if (c > 1 && i + c < cLeaves)
211 {
212 memmove(&paLeaves[i + c], &paLeaves[i + 1], (cLeaves - i - c) * sizeof(paLeaves[0]));
213 *pcLeaves = cLeaves -= c - 1;
214 }
215
216 paLeaves[i] = *pNewLeaf;
217#ifdef VBOX_STRICT
218 cpumCpuIdAssertOrder(*ppaLeaves, *pcLeaves);
219#endif
220 return VINF_SUCCESS;
221 }
222
223 /* Find sub-leaf insertion point. */
224 while ( i < cLeaves
225 && paLeaves[i].uSubLeaf < pNewLeaf->uSubLeaf
226 && paLeaves[i].uLeaf == pNewLeaf->uLeaf)
227 i++;
228
229 /*
230 * If we've got an exactly matching leaf, replace it.
231 */
232 if ( i < cLeaves
233 && paLeaves[i].uLeaf == pNewLeaf->uLeaf
234 && paLeaves[i].uSubLeaf == pNewLeaf->uSubLeaf)
235 {
236 paLeaves[i] = *pNewLeaf;
237#ifdef VBOX_STRICT
238 cpumCpuIdAssertOrder(*ppaLeaves, *pcLeaves);
239#endif
240 return VINF_SUCCESS;
241 }
242 }
243
244 /*
245 * Adding a new leaf at 'i'.
246 */
247 AssertLogRelReturn(cLeaves < CPUM_CPUID_MAX_LEAVES, VERR_TOO_MANY_CPUID_LEAVES);
248 paLeaves = cpumCpuIdEnsureSpace(pVM, ppaLeaves, cLeaves);
249 if (!paLeaves)
250 return VERR_NO_MEMORY;
251
252 if (i < cLeaves)
253 memmove(&paLeaves[i + 1], &paLeaves[i], (cLeaves - i) * sizeof(paLeaves[0]));
254 *pcLeaves += 1;
255 paLeaves[i] = *pNewLeaf;
256
257#ifdef VBOX_STRICT
258 cpumCpuIdAssertOrder(*ppaLeaves, *pcLeaves);
259#endif
260 return VINF_SUCCESS;
261}
262
263
264#ifndef IN_VBOX_CPU_REPORT
265/**
266 * Removes a range of CPUID leaves.
267 *
268 * This will not reallocate the array.
269 *
270 * @param paLeaves The array of sorted CPUID leaves and sub-leaves.
271 * @param pcLeaves Where we keep the leaf count for @a paLeaves.
272 * @param uFirst The first leaf.
273 * @param uLast The last leaf.
274 */
275static void cpumR3CpuIdRemoveRange(PCPUMCPUIDLEAF paLeaves, uint32_t *pcLeaves, uint32_t uFirst, uint32_t uLast)
276{
277 uint32_t cLeaves = *pcLeaves;
278
279 Assert(uFirst <= uLast);
280
281 /*
282 * Find the first one.
283 */
284 uint32_t iFirst = 0;
285 while ( iFirst < cLeaves
286 && paLeaves[iFirst].uLeaf < uFirst)
287 iFirst++;
288
289 /*
290 * Find the end (last + 1).
291 */
292 uint32_t iEnd = iFirst;
293 while ( iEnd < cLeaves
294 && paLeaves[iEnd].uLeaf <= uLast)
295 iEnd++;
296
297 /*
298 * Adjust the array if anything needs removing.
299 */
300 if (iFirst < iEnd)
301 {
302 if (iEnd < cLeaves)
303 memmove(&paLeaves[iFirst], &paLeaves[iEnd], (cLeaves - iEnd) * sizeof(paLeaves[0]));
304 *pcLeaves = cLeaves -= (iEnd - iFirst);
305 }
306
307# ifdef VBOX_STRICT
308 cpumCpuIdAssertOrder(paLeaves, *pcLeaves);
309# endif
310}
311#endif /* IN_VBOX_CPU_REPORT */
312
313
314/**
315 * Gets a CPU ID leaf.
316 *
317 * @returns VBox status code.
318 * @param pVM The cross context VM structure.
319 * @param pLeaf Where to store the found leaf.
320 * @param uLeaf The leaf to locate.
321 * @param uSubLeaf The subleaf to locate. Pass 0 if no sub-leaves.
322 */
323VMMR3DECL(int) CPUMR3CpuIdGetLeaf(PVM pVM, PCPUMCPUIDLEAF pLeaf, uint32_t uLeaf, uint32_t uSubLeaf)
324{
325 PCPUMCPUIDLEAF pcLeaf = cpumCpuIdGetLeafInt(pVM->cpum.s.GuestInfo.paCpuIdLeavesR3, pVM->cpum.s.GuestInfo.cCpuIdLeaves,
326 uLeaf, uSubLeaf);
327 if (pcLeaf)
328 {
329 memcpy(pLeaf, pcLeaf, sizeof(*pLeaf));
330 return VINF_SUCCESS;
331 }
332
333 return VERR_NOT_FOUND;
334}
335
336
337/**
338 * Gets all the leaves.
339 *
340 * This only works after the CPUID leaves have been initialized. The interface
341 * is intended for NEM and configuring CPUID leaves for the native hypervisor.
342 *
343 * @returns Pointer to the array of leaves. NULL on failure.
344 * @param pVM The cross context VM structure.
345 * @param pcLeaves Where to return the number of leaves.
346 */
347VMMR3_INT_DECL(PCCPUMCPUIDLEAF) CPUMR3CpuIdGetPtr(PVM pVM, uint32_t *pcLeaves)
348{
349 *pcLeaves = pVM->cpum.s.GuestInfo.cCpuIdLeaves;
350 return pVM->cpum.s.GuestInfo.paCpuIdLeavesR3;
351}
352
353
354/**
355 * Inserts a CPU ID leaf, replacing any existing ones.
356 *
357 * @returns VBox status code.
358 * @param pVM The cross context VM structure.
359 * @param pNewLeaf Pointer to the leaf being inserted.
360 */
361VMMR3DECL(int) CPUMR3CpuIdInsert(PVM pVM, PCPUMCPUIDLEAF pNewLeaf)
362{
363 /*
364 * Validate parameters.
365 */
366 AssertReturn(pVM, VERR_INVALID_PARAMETER);
367 AssertReturn(pNewLeaf, VERR_INVALID_PARAMETER);
368
369 /*
370 * Disallow replacing CPU ID leaves that this API currently cannot manage.
371 * These leaves have dependencies on saved-states, see PATMCpuidReplacement().
372 * If you want to modify these leaves, use CPUMSetGuestCpuIdFeature().
373 */
374 if ( pNewLeaf->uLeaf == UINT32_C(0x00000000) /* Standard */
375 || pNewLeaf->uLeaf == UINT32_C(0x00000001)
376 || pNewLeaf->uLeaf == UINT32_C(0x80000000) /* Extended */
377 || pNewLeaf->uLeaf == UINT32_C(0x80000001)
378 || pNewLeaf->uLeaf == UINT32_C(0xc0000000) /* Centaur */
379 || pNewLeaf->uLeaf == UINT32_C(0xc0000001) )
380 {
381 return VERR_NOT_SUPPORTED;
382 }
383
384 return cpumR3CpuIdInsert(pVM, NULL /* ppaLeaves */, NULL /* pcLeaves */, pNewLeaf);
385}
386
387
388#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
389/**
390 * Determines the method the CPU uses to handle unknown CPUID leaves.
391 *
392 * @returns VBox status code.
393 * @param penmUnknownMethod Where to return the method.
394 * @param pDefUnknown Where to return default unknown values. This
395 * will be set, even if the resulting method
396 * doesn't actually needs it.
397 */
398VMMR3DECL(int) CPUMR3CpuIdDetectUnknownLeafMethod(PCPUMUNKNOWNCPUID penmUnknownMethod, PCPUMCPUID pDefUnknown)
399{
400 uint32_t uLastStd = ASMCpuId_EAX(0);
401 uint32_t uLastExt = ASMCpuId_EAX(0x80000000);
402 if (!RTX86IsValidExtRange(uLastExt))
403 uLastExt = 0x80000000;
404
405 uint32_t auChecks[] =
406 {
407 uLastStd + 1,
408 uLastStd + 5,
409 uLastStd + 8,
410 uLastStd + 32,
411 uLastStd + 251,
412 uLastExt + 1,
413 uLastExt + 8,
414 uLastExt + 15,
415 uLastExt + 63,
416 uLastExt + 255,
417 0x7fbbffcc,
418 0x833f7872,
419 0xefff2353,
420 0x35779456,
421 0x1ef6d33e,
422 };
423
424 static const uint32_t s_auValues[] =
425 {
426 0xa95d2156,
427 0x00000001,
428 0x00000002,
429 0x00000008,
430 0x00000000,
431 0x55773399,
432 0x93401769,
433 0x12039587,
434 };
435
436 /*
437 * Simple method, all zeros.
438 */
439 *penmUnknownMethod = CPUMUNKNOWNCPUID_DEFAULTS;
440 pDefUnknown->uEax = 0;
441 pDefUnknown->uEbx = 0;
442 pDefUnknown->uEcx = 0;
443 pDefUnknown->uEdx = 0;
444
445 /*
446 * Intel has been observed returning the last standard leaf.
447 */
448 uint32_t auLast[4];
449 ASMCpuIdExSlow(uLastStd, 0, 0, 0, &auLast[0], &auLast[1], &auLast[2], &auLast[3]);
450
451 uint32_t cChecks = RT_ELEMENTS(auChecks);
452 while (cChecks > 0)
453 {
454 uint32_t auCur[4];
455 ASMCpuIdExSlow(auChecks[cChecks - 1], 0, 0, 0, &auCur[0], &auCur[1], &auCur[2], &auCur[3]);
456 if (memcmp(auCur, auLast, sizeof(auCur)))
457 break;
458 cChecks--;
459 }
460 if (cChecks == 0)
461 {
462 /* Now, what happens when the input changes? Esp. ECX. */
463 uint32_t cTotal = 0;
464 uint32_t cSame = 0;
465 uint32_t cLastWithEcx = 0;
466 uint32_t cNeither = 0;
467 uint32_t cValues = RT_ELEMENTS(s_auValues);
468 while (cValues > 0)
469 {
470 uint32_t uValue = s_auValues[cValues - 1];
471 uint32_t auLastWithEcx[4];
472 ASMCpuIdExSlow(uLastStd, uValue, uValue, uValue,
473 &auLastWithEcx[0], &auLastWithEcx[1], &auLastWithEcx[2], &auLastWithEcx[3]);
474
475 cChecks = RT_ELEMENTS(auChecks);
476 while (cChecks > 0)
477 {
478 uint32_t auCur[4];
479 ASMCpuIdExSlow(auChecks[cChecks - 1], uValue, uValue, uValue, &auCur[0], &auCur[1], &auCur[2], &auCur[3]);
480 if (!memcmp(auCur, auLast, sizeof(auCur)))
481 {
482 cSame++;
483 if (!memcmp(auCur, auLastWithEcx, sizeof(auCur)))
484 cLastWithEcx++;
485 }
486 else if (!memcmp(auCur, auLastWithEcx, sizeof(auCur)))
487 cLastWithEcx++;
488 else
489 cNeither++;
490 cTotal++;
491 cChecks--;
492 }
493 cValues--;
494 }
495
496 Log(("CPUM: cNeither=%d cSame=%d cLastWithEcx=%d cTotal=%d\n", cNeither, cSame, cLastWithEcx, cTotal));
497 if (cSame == cTotal)
498 *penmUnknownMethod = CPUMUNKNOWNCPUID_LAST_STD_LEAF;
499 else if (cLastWithEcx == cTotal)
500 *penmUnknownMethod = CPUMUNKNOWNCPUID_LAST_STD_LEAF_WITH_ECX;
501 else
502 *penmUnknownMethod = CPUMUNKNOWNCPUID_LAST_STD_LEAF;
503 pDefUnknown->uEax = auLast[0];
504 pDefUnknown->uEbx = auLast[1];
505 pDefUnknown->uEcx = auLast[2];
506 pDefUnknown->uEdx = auLast[3];
507 return VINF_SUCCESS;
508 }
509
510 /*
511 * Unchanged register values?
512 */
513 cChecks = RT_ELEMENTS(auChecks);
514 while (cChecks > 0)
515 {
516 uint32_t const uLeaf = auChecks[cChecks - 1];
517 uint32_t cValues = RT_ELEMENTS(s_auValues);
518 while (cValues > 0)
519 {
520 uint32_t uValue = s_auValues[cValues - 1];
521 uint32_t auCur[4];
522 ASMCpuIdExSlow(uLeaf, uValue, uValue, uValue, &auCur[0], &auCur[1], &auCur[2], &auCur[3]);
523 if ( auCur[0] != uLeaf
524 || auCur[1] != uValue
525 || auCur[2] != uValue
526 || auCur[3] != uValue)
527 break;
528 cValues--;
529 }
530 if (cValues != 0)
531 break;
532 cChecks--;
533 }
534 if (cChecks == 0)
535 {
536 *penmUnknownMethod = CPUMUNKNOWNCPUID_PASSTHRU;
537 return VINF_SUCCESS;
538 }
539
540 /*
541 * Just go with the simple method.
542 */
543 return VINF_SUCCESS;
544}
545#endif /* RT_ARCH_X86 || RT_ARCH_AMD64 */
546
547
548/**
549 * Translates a unknow CPUID leaf method into the constant name (sans prefix).
550 *
551 * @returns Read only name string.
552 * @param enmUnknownMethod The method to translate.
553 */
554VMMR3DECL(const char *) CPUMR3CpuIdUnknownLeafMethodName(CPUMUNKNOWNCPUID enmUnknownMethod)
555{
556 switch (enmUnknownMethod)
557 {
558 case CPUMUNKNOWNCPUID_DEFAULTS: return "DEFAULTS";
559 case CPUMUNKNOWNCPUID_LAST_STD_LEAF: return "LAST_STD_LEAF";
560 case CPUMUNKNOWNCPUID_LAST_STD_LEAF_WITH_ECX: return "LAST_STD_LEAF_WITH_ECX";
561 case CPUMUNKNOWNCPUID_PASSTHRU: return "PASSTHRU";
562
563 case CPUMUNKNOWNCPUID_INVALID:
564 case CPUMUNKNOWNCPUID_END:
565 case CPUMUNKNOWNCPUID_32BIT_HACK:
566 break;
567 }
568 return "Invalid-unknown-CPUID-method";
569}
570
571
572/*
573 *
574 * Init related code.
575 * Init related code.
576 * Init related code.
577 *
578 *
579 */
580#ifndef IN_VBOX_CPU_REPORT
581
582
583/**
584 * Gets an exactly matching leaf + sub-leaf in the CPUID leaf array.
585 *
586 * This ignores the fSubLeafMask.
587 *
588 * @returns Pointer to the matching leaf, or NULL if not found.
589 * @param pCpum The CPUM instance data.
590 * @param uLeaf The leaf to locate.
591 * @param uSubLeaf The subleaf to locate.
592 */
593static PCPUMCPUIDLEAF cpumR3CpuIdGetExactLeaf(PCPUM pCpum, uint32_t uLeaf, uint32_t uSubLeaf)
594{
595 uint64_t uNeedle = RT_MAKE_U64(uSubLeaf, uLeaf);
596 PCPUMCPUIDLEAF paLeaves = pCpum->GuestInfo.paCpuIdLeavesR3;
597 uint32_t iEnd = pCpum->GuestInfo.cCpuIdLeaves;
598 if (iEnd)
599 {
600 uint32_t iBegin = 0;
601 for (;;)
602 {
603 uint32_t const i = (iEnd - iBegin) / 2 + iBegin;
604 uint64_t const uCur = RT_MAKE_U64(paLeaves[i].uSubLeaf, paLeaves[i].uLeaf);
605 if (uNeedle < uCur)
606 {
607 if (i > iBegin)
608 iEnd = i;
609 else
610 break;
611 }
612 else if (uNeedle > uCur)
613 {
614 if (i + 1 < iEnd)
615 iBegin = i + 1;
616 else
617 break;
618 }
619 else
620 return &paLeaves[i];
621 }
622 }
623 return NULL;
624}
625
626
627/**
628 * Loads MSR range overrides.
629 *
630 * This must be called before the MSR ranges are moved from the normal heap to
631 * the hyper heap!
632 *
633 * @returns VBox status code (VMSetError called).
634 * @param pVM The cross context VM structure.
635 * @param pMsrNode The CFGM node with the MSR overrides.
636 */
637static int cpumR3LoadMsrOverrides(PVM pVM, PCFGMNODE pMsrNode)
638{
639 for (PCFGMNODE pNode = CFGMR3GetFirstChild(pMsrNode); pNode; pNode = CFGMR3GetNextChild(pNode))
640 {
641 /*
642 * Assemble a valid MSR range.
643 */
644 CPUMMSRRANGE MsrRange;
645 MsrRange.offCpumCpu = 0;
646 MsrRange.fReserved = 0;
647
648 int rc = CFGMR3GetName(pNode, MsrRange.szName, sizeof(MsrRange.szName));
649 if (RT_FAILURE(rc))
650 return VMSetError(pVM, rc, RT_SRC_POS, "Invalid MSR entry (name is probably too long): %Rrc\n", rc);
651
652 rc = CFGMR3QueryU32(pNode, "First", &MsrRange.uFirst);
653 if (RT_FAILURE(rc))
654 return VMSetError(pVM, rc, RT_SRC_POS, "Invalid MSR entry '%s': Error querying mandatory 'First' value: %Rrc\n",
655 MsrRange.szName, rc);
656
657 rc = CFGMR3QueryU32Def(pNode, "Last", &MsrRange.uLast, MsrRange.uFirst);
658 if (RT_FAILURE(rc))
659 return VMSetError(pVM, rc, RT_SRC_POS, "Invalid MSR entry '%s': Error querying 'Last' value: %Rrc\n",
660 MsrRange.szName, rc);
661
662 char szType[32];
663 rc = CFGMR3QueryStringDef(pNode, "Type", szType, sizeof(szType), "FixedValue");
664 if (RT_FAILURE(rc))
665 return VMSetError(pVM, rc, RT_SRC_POS, "Invalid MSR entry '%s': Error querying 'Type' value: %Rrc\n",
666 MsrRange.szName, rc);
667 if (!RTStrICmp(szType, "FixedValue"))
668 {
669 MsrRange.enmRdFn = kCpumMsrRdFn_FixedValue;
670 MsrRange.enmWrFn = kCpumMsrWrFn_IgnoreWrite;
671
672 rc = CFGMR3QueryU64Def(pNode, "Value", &MsrRange.uValue, 0);
673 if (RT_FAILURE(rc))
674 return VMSetError(pVM, rc, RT_SRC_POS, "Invalid MSR entry '%s': Error querying 'Value' value: %Rrc\n",
675 MsrRange.szName, rc);
676
677 rc = CFGMR3QueryU64Def(pNode, "WrGpMask", &MsrRange.fWrGpMask, 0);
678 if (RT_FAILURE(rc))
679 return VMSetError(pVM, rc, RT_SRC_POS, "Invalid MSR entry '%s': Error querying 'WrGpMask' value: %Rrc\n",
680 MsrRange.szName, rc);
681
682 rc = CFGMR3QueryU64Def(pNode, "WrIgnMask", &MsrRange.fWrIgnMask, 0);
683 if (RT_FAILURE(rc))
684 return VMSetError(pVM, rc, RT_SRC_POS, "Invalid MSR entry '%s': Error querying 'WrIgnMask' value: %Rrc\n",
685 MsrRange.szName, rc);
686 }
687 else
688 return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS,
689 "Invalid MSR entry '%s': Unknown type '%s'\n", MsrRange.szName, szType);
690
691 /*
692 * Insert the range into the table (replaces/splits/shrinks existing
693 * MSR ranges).
694 */
695 rc = cpumR3MsrRangesInsert(NULL /* pVM */, &pVM->cpum.s.GuestInfo.paMsrRangesR3, &pVM->cpum.s.GuestInfo.cMsrRanges,
696 &MsrRange);
697 if (RT_FAILURE(rc))
698 return VMSetError(pVM, rc, RT_SRC_POS, "Error adding MSR entry '%s': %Rrc\n", MsrRange.szName, rc);
699 }
700
701 return VINF_SUCCESS;
702}
703
704
705/**
706 * Loads CPUID leaf overrides.
707 *
708 * This must be called before the CPUID leaves are moved from the normal
709 * heap to the hyper heap!
710 *
711 * @returns VBox status code (VMSetError called).
712 * @param pVM The cross context VM structure.
713 * @param pParentNode The CFGM node with the CPUID leaves.
714 * @param pszLabel How to label the overrides we're loading.
715 */
716static int cpumR3LoadCpuIdOverrides(PVM pVM, PCFGMNODE pParentNode, const char *pszLabel)
717{
718 for (PCFGMNODE pNode = CFGMR3GetFirstChild(pParentNode); pNode; pNode = CFGMR3GetNextChild(pNode))
719 {
720 /*
721 * Get the leaf and subleaf numbers.
722 */
723 char szName[128];
724 int rc = CFGMR3GetName(pNode, szName, sizeof(szName));
725 if (RT_FAILURE(rc))
726 return VMSetError(pVM, rc, RT_SRC_POS, "Invalid %s entry (name is probably too long): %Rrc\n", pszLabel, rc);
727
728 /* The leaf number is either specified directly or thru the node name. */
729 uint32_t uLeaf;
730 rc = CFGMR3QueryU32(pNode, "Leaf", &uLeaf);
731 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
732 {
733 rc = RTStrToUInt32Full(szName, 16, &uLeaf);
734 if (rc != VINF_SUCCESS)
735 return VMSetError(pVM, VERR_INVALID_NAME, RT_SRC_POS,
736 "Invalid %s entry: Invalid leaf number: '%s' \n", pszLabel, szName);
737 }
738 else if (RT_FAILURE(rc))
739 return VMSetError(pVM, rc, RT_SRC_POS, "Invalid %s entry '%s': Error querying 'Leaf' value: %Rrc\n",
740 pszLabel, szName, rc);
741
742 uint32_t uSubLeaf;
743 rc = CFGMR3QueryU32Def(pNode, "SubLeaf", &uSubLeaf, 0);
744 if (RT_FAILURE(rc))
745 return VMSetError(pVM, rc, RT_SRC_POS, "Invalid %s entry '%s': Error querying 'SubLeaf' value: %Rrc\n",
746 pszLabel, szName, rc);
747
748 uint32_t fSubLeafMask;
749 rc = CFGMR3QueryU32Def(pNode, "SubLeafMask", &fSubLeafMask, 0);
750 if (RT_FAILURE(rc))
751 return VMSetError(pVM, rc, RT_SRC_POS, "Invalid %s entry '%s': Error querying 'SubLeafMask' value: %Rrc\n",
752 pszLabel, szName, rc);
753
754 /*
755 * Look up the specified leaf, since the output register values
756 * defaults to any existing values. This allows overriding a single
757 * register, without needing to know the other values.
758 */
759 PCCPUMCPUIDLEAF pLeaf = cpumR3CpuIdGetExactLeaf(&pVM->cpum.s, uLeaf, uSubLeaf);
760 CPUMCPUIDLEAF Leaf;
761 if (pLeaf)
762 Leaf = *pLeaf;
763 else
764 RT_ZERO(Leaf);
765 Leaf.uLeaf = uLeaf;
766 Leaf.uSubLeaf = uSubLeaf;
767 Leaf.fSubLeafMask = fSubLeafMask;
768
769 rc = CFGMR3QueryU32Def(pNode, "eax", &Leaf.uEax, Leaf.uEax);
770 if (RT_FAILURE(rc))
771 return VMSetError(pVM, rc, RT_SRC_POS, "Invalid %s entry '%s': Error querying 'eax' value: %Rrc\n",
772 pszLabel, szName, rc);
773 rc = CFGMR3QueryU32Def(pNode, "ebx", &Leaf.uEbx, Leaf.uEbx);
774 if (RT_FAILURE(rc))
775 return VMSetError(pVM, rc, RT_SRC_POS, "Invalid %s entry '%s': Error querying 'ebx' value: %Rrc\n",
776 pszLabel, szName, rc);
777 rc = CFGMR3QueryU32Def(pNode, "ecx", &Leaf.uEcx, Leaf.uEcx);
778 if (RT_FAILURE(rc))
779 return VMSetError(pVM, rc, RT_SRC_POS, "Invalid %s entry '%s': Error querying 'ecx' value: %Rrc\n",
780 pszLabel, szName, rc);
781 rc = CFGMR3QueryU32Def(pNode, "edx", &Leaf.uEdx, Leaf.uEdx);
782 if (RT_FAILURE(rc))
783 return VMSetError(pVM, rc, RT_SRC_POS, "Invalid %s entry '%s': Error querying 'edx' value: %Rrc\n",
784 pszLabel, szName, rc);
785
786 /*
787 * Insert the leaf into the table (replaces existing ones).
788 */
789 rc = cpumR3CpuIdInsert(NULL /* pVM */, &pVM->cpum.s.GuestInfo.paCpuIdLeavesR3, &pVM->cpum.s.GuestInfo.cCpuIdLeaves,
790 &Leaf);
791 if (RT_FAILURE(rc))
792 return VMSetError(pVM, rc, RT_SRC_POS, "Error adding CPUID leaf entry '%s': %Rrc\n", szName, rc);
793 }
794
795 return VINF_SUCCESS;
796}
797
798
799
800/**
801 * Fetches overrides for a CPUID leaf.
802 *
803 * @returns VBox status code.
804 * @param pLeaf The leaf to load the overrides into.
805 * @param pCfgNode The CFGM node containing the overrides
806 * (/CPUM/HostCPUID/ or /CPUM/CPUID/).
807 * @param iLeaf The CPUID leaf number.
808 */
809static int cpumR3CpuIdFetchLeafOverride(PCPUMCPUID pLeaf, PCFGMNODE pCfgNode, uint32_t iLeaf)
810{
811 PCFGMNODE pLeafNode = CFGMR3GetChildF(pCfgNode, "%RX32", iLeaf);
812 if (pLeafNode)
813 {
814 uint32_t u32;
815 int rc = CFGMR3QueryU32(pLeafNode, "eax", &u32);
816 if (RT_SUCCESS(rc))
817 pLeaf->uEax = u32;
818 else
819 AssertReturn(rc == VERR_CFGM_VALUE_NOT_FOUND, rc);
820
821 rc = CFGMR3QueryU32(pLeafNode, "ebx", &u32);
822 if (RT_SUCCESS(rc))
823 pLeaf->uEbx = u32;
824 else
825 AssertReturn(rc == VERR_CFGM_VALUE_NOT_FOUND, rc);
826
827 rc = CFGMR3QueryU32(pLeafNode, "ecx", &u32);
828 if (RT_SUCCESS(rc))
829 pLeaf->uEcx = u32;
830 else
831 AssertReturn(rc == VERR_CFGM_VALUE_NOT_FOUND, rc);
832
833 rc = CFGMR3QueryU32(pLeafNode, "edx", &u32);
834 if (RT_SUCCESS(rc))
835 pLeaf->uEdx = u32;
836 else
837 AssertReturn(rc == VERR_CFGM_VALUE_NOT_FOUND, rc);
838
839 }
840 return VINF_SUCCESS;
841}
842
843
844/**
845 * Load the overrides for a set of CPUID leaves.
846 *
847 * @returns VBox status code.
848 * @param paLeaves The leaf array.
849 * @param cLeaves The number of leaves.
850 * @param uStart The start leaf number.
851 * @param pCfgNode The CFGM node containing the overrides
852 * (/CPUM/HostCPUID/ or /CPUM/CPUID/).
853 */
854static int cpumR3CpuIdInitLoadOverrideSet(uint32_t uStart, PCPUMCPUID paLeaves, uint32_t cLeaves, PCFGMNODE pCfgNode)
855{
856 for (uint32_t i = 0; i < cLeaves; i++)
857 {
858 int rc = cpumR3CpuIdFetchLeafOverride(&paLeaves[i], pCfgNode, uStart + i);
859 if (RT_FAILURE(rc))
860 return rc;
861 }
862
863 return VINF_SUCCESS;
864}
865
866
867/**
868 * Installs the CPUID leaves and explods the data into structures like
869 * GuestFeatures and CPUMCTX::aoffXState.
870 *
871 * @returns VBox status code.
872 * @param pVM The cross context VM structure.
873 * @param pCpum The CPUM part of @a VM.
874 * @param paLeaves The leaves. These will be copied (but not freed).
875 * @param cLeaves The number of leaves.
876 * @param pMsrs The MSRs.
877 */
878static int cpumR3CpuIdInstallAndExplodeLeaves(PVM pVM, PCPUM pCpum, PCPUMCPUIDLEAF paLeaves, uint32_t cLeaves, PCCPUMMSRS pMsrs)
879{
880# ifdef VBOX_STRICT
881 cpumCpuIdAssertOrder(paLeaves, cLeaves);
882# endif
883
884 /*
885 * Install the CPUID information.
886 */
887 AssertLogRelMsgReturn(cLeaves <= RT_ELEMENTS(pVM->cpum.s.GuestInfo.aCpuIdLeaves),
888 ("cLeaves=%u - max %u\n", cLeaves, RT_ELEMENTS(pVM->cpum.s.GuestInfo.aCpuIdLeaves)),
889 VERR_CPUM_IPE_1); /** @todo better status! */
890 if (paLeaves != pCpum->GuestInfo.aCpuIdLeaves)
891 memcpy(pCpum->GuestInfo.aCpuIdLeaves, paLeaves, cLeaves * sizeof(paLeaves[0]));
892 pCpum->GuestInfo.paCpuIdLeavesR3 = pCpum->GuestInfo.aCpuIdLeaves;
893 pCpum->GuestInfo.cCpuIdLeaves = cLeaves;
894
895 /*
896 * Update the default CPUID leaf if necessary.
897 */
898 switch (pCpum->GuestInfo.enmUnknownCpuIdMethod)
899 {
900 case CPUMUNKNOWNCPUID_LAST_STD_LEAF:
901 case CPUMUNKNOWNCPUID_LAST_STD_LEAF_WITH_ECX:
902 {
903 /* We don't use CPUID(0).eax here because of the NT hack that only
904 changes that value without actually removing any leaves. */
905 uint32_t i = 0;
906 if ( pCpum->GuestInfo.cCpuIdLeaves > 0
907 && pCpum->GuestInfo.paCpuIdLeavesR3[0].uLeaf <= UINT32_C(0xff))
908 {
909 while ( i + 1 < pCpum->GuestInfo.cCpuIdLeaves
910 && pCpum->GuestInfo.paCpuIdLeavesR3[i + 1].uLeaf <= UINT32_C(0xff))
911 i++;
912 pCpum->GuestInfo.DefCpuId.uEax = pCpum->GuestInfo.paCpuIdLeavesR3[i].uEax;
913 pCpum->GuestInfo.DefCpuId.uEbx = pCpum->GuestInfo.paCpuIdLeavesR3[i].uEbx;
914 pCpum->GuestInfo.DefCpuId.uEcx = pCpum->GuestInfo.paCpuIdLeavesR3[i].uEcx;
915 pCpum->GuestInfo.DefCpuId.uEdx = pCpum->GuestInfo.paCpuIdLeavesR3[i].uEdx;
916 }
917 break;
918 }
919 default:
920 break;
921 }
922
923 /*
924 * Explode the guest CPU features.
925 */
926 int rc = cpumCpuIdExplodeFeaturesX86(pCpum->GuestInfo.paCpuIdLeavesR3, pCpum->GuestInfo.cCpuIdLeaves, pMsrs,
927 &pCpum->GuestFeatures);
928 AssertLogRelRCReturn(rc, rc);
929
930 /*
931 * Adjust the scalable bus frequency according to the CPUID information
932 * we're now using.
933 */
934 if (CPUMMICROARCH_IS_INTEL_CORE7(pVM->cpum.s.GuestFeatures.enmMicroarch))
935 pCpum->GuestInfo.uScalableBusFreq = pCpum->GuestFeatures.enmMicroarch >= kCpumMicroarch_Intel_Core7_SandyBridge
936 ? UINT64_C(100000000) /* 100MHz */
937 : UINT64_C(133333333); /* 133MHz */
938
939 /*
940 * Populate the legacy arrays. Currently used for everything, later only
941 * for patch manager.
942 */
943 struct { PCPUMCPUID paCpuIds; uint32_t cCpuIds, uBase; } aOldRanges[] =
944 {
945 { pCpum->aGuestCpuIdPatmStd, RT_ELEMENTS(pCpum->aGuestCpuIdPatmStd), 0x00000000 },
946 { pCpum->aGuestCpuIdPatmExt, RT_ELEMENTS(pCpum->aGuestCpuIdPatmExt), 0x80000000 },
947 { pCpum->aGuestCpuIdPatmCentaur, RT_ELEMENTS(pCpum->aGuestCpuIdPatmCentaur), 0xc0000000 },
948 };
949 for (uint32_t i = 0; i < RT_ELEMENTS(aOldRanges); i++)
950 {
951 uint32_t cLeft = aOldRanges[i].cCpuIds;
952 uint32_t uLeaf = aOldRanges[i].uBase + cLeft;
953 PCPUMCPUID pLegacyLeaf = &aOldRanges[i].paCpuIds[cLeft];
954 while (cLeft-- > 0)
955 {
956 uLeaf--;
957 pLegacyLeaf--;
958
959 PCCPUMCPUIDLEAF pLeaf = cpumR3CpuIdGetExactLeaf(pCpum, uLeaf, 0 /* uSubLeaf */);
960 if (pLeaf)
961 {
962 pLegacyLeaf->uEax = pLeaf->uEax;
963 pLegacyLeaf->uEbx = pLeaf->uEbx;
964 pLegacyLeaf->uEcx = pLeaf->uEcx;
965 pLegacyLeaf->uEdx = pLeaf->uEdx;
966 }
967 else
968 *pLegacyLeaf = pCpum->GuestInfo.DefCpuId;
969 }
970 }
971
972 /*
973 * Configure XSAVE offsets according to the CPUID info and set the feature flags.
974 */
975 PVMCPU pVCpu0 = pVM->apCpusR3[0];
976 AssertCompile(sizeof(pVCpu0->cpum.s.Guest.abXState) == CPUM_MAX_XSAVE_AREA_SIZE);
977 memset(&pVCpu0->cpum.s.Guest.aoffXState[0], 0xff, sizeof(pVCpu0->cpum.s.Guest.aoffXState));
978 pVCpu0->cpum.s.Guest.aoffXState[XSAVE_C_X87_BIT] = 0;
979 pVCpu0->cpum.s.Guest.aoffXState[XSAVE_C_SSE_BIT] = 0;
980 for (uint32_t iComponent = XSAVE_C_SSE_BIT + 1; iComponent < 63; iComponent++)
981 if (pCpum->fXStateGuestMask & RT_BIT_64(iComponent))
982 {
983 PCPUMCPUIDLEAF pSubLeaf = cpumR3CpuIdGetExactLeaf(pCpum, 0xd, iComponent);
984 AssertLogRelMsgReturn(pSubLeaf, ("iComponent=%#x\n", iComponent), VERR_CPUM_IPE_1);
985 AssertLogRelMsgReturn(pSubLeaf->fSubLeafMask >= iComponent, ("iComponent=%#x\n", iComponent), VERR_CPUM_IPE_1);
986 AssertLogRelMsgReturn( pSubLeaf->uEax > 0
987 && pSubLeaf->uEbx >= CPUM_MIN_XSAVE_AREA_SIZE
988 && pSubLeaf->uEax <= pCpum->GuestFeatures.cbMaxExtendedState
989 && pSubLeaf->uEbx <= pCpum->GuestFeatures.cbMaxExtendedState
990 && pSubLeaf->uEbx + pSubLeaf->uEax <= pCpum->GuestFeatures.cbMaxExtendedState,
991 ("iComponent=%#x eax=%#x ebx=%#x cbMax=%#x\n", iComponent, pSubLeaf->uEax, pSubLeaf->uEbx,
992 pCpum->GuestFeatures.cbMaxExtendedState),
993 VERR_CPUM_IPE_1);
994 pVCpu0->cpum.s.Guest.aoffXState[iComponent] = pSubLeaf->uEbx;
995 }
996
997 /* Copy the CPU #0 data to the other CPUs. */
998 for (VMCPUID idCpu = 1; idCpu < pVM->cCpus; idCpu++)
999 {
1000 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
1001 memcpy(&pVCpu->cpum.s.Guest.aoffXState[0], &pVCpu0->cpum.s.Guest.aoffXState[0], sizeof(pVCpu0->cpum.s.Guest.aoffXState));
1002 }
1003
1004 return VINF_SUCCESS;
1005}
1006
1007
1008/** @name Instruction Set Extension Options
1009 * @{ */
1010/** Configuration option type (extended boolean, really). */
1011typedef uint8_t CPUMISAEXTCFG;
1012/** Always disable the extension. */
1013#define CPUMISAEXTCFG_DISABLED false
1014/** Enable the extension if it's supported by the host CPU. */
1015#define CPUMISAEXTCFG_ENABLED_SUPPORTED true
1016/** Enable the extension if it's supported by the host CPU or when on ARM64. */
1017#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
1018# define CPUMISAEXTCFG_ENABLED_SUPPORTED_OR_NOT_AMD64 CPUMISAEXTCFG_ENABLED_SUPPORTED
1019#else
1020# define CPUMISAEXTCFG_ENABLED_SUPPORTED_OR_NOT_AMD64 CPUMISAEXTCFG_ENABLED_ALWAYS
1021#endif
1022/** Enable the extension if it's supported by the host CPU, but don't let
1023 * the portable CPUID feature disable it. */
1024#define CPUMISAEXTCFG_ENABLED_PORTABLE UINT8_C(127)
1025/** Always enable the extension. */
1026#define CPUMISAEXTCFG_ENABLED_ALWAYS UINT8_C(255)
1027/** @} */
1028
1029/**
1030 * CPUID Configuration (from CFGM).
1031 *
1032 * @remarks The members aren't document since we would only be duplicating the
1033 * \@cfgm entries in cpumR3CpuIdReadConfig.
1034 */
1035typedef struct CPUMCPUIDCONFIG
1036{
1037 bool fNt4LeafLimit;
1038 bool fInvariantTsc;
1039 bool fInvariantApic;
1040 bool fForceVme;
1041 bool fNestedHWVirt;
1042
1043 CPUMISAEXTCFG enmCmpXchg16b;
1044 CPUMISAEXTCFG enmMonitor;
1045 CPUMISAEXTCFG enmMWaitExtensions;
1046 CPUMISAEXTCFG enmSse41;
1047 CPUMISAEXTCFG enmSse42;
1048 CPUMISAEXTCFG enmAvx;
1049 CPUMISAEXTCFG enmAvx2;
1050 CPUMISAEXTCFG enmXSave;
1051 CPUMISAEXTCFG enmAesNi;
1052 CPUMISAEXTCFG enmPClMul;
1053 CPUMISAEXTCFG enmPopCnt;
1054 CPUMISAEXTCFG enmMovBe;
1055 CPUMISAEXTCFG enmRdRand;
1056 CPUMISAEXTCFG enmRdSeed;
1057 CPUMISAEXTCFG enmSha;
1058 CPUMISAEXTCFG enmAdx;
1059 CPUMISAEXTCFG enmCLFlushOpt;
1060 CPUMISAEXTCFG enmFsGsBase;
1061 CPUMISAEXTCFG enmPcid;
1062 CPUMISAEXTCFG enmInvpcid;
1063 CPUMISAEXTCFG enmFlushCmdMsr;
1064 CPUMISAEXTCFG enmMdsClear;
1065 CPUMISAEXTCFG enmArchCapMsr;
1066 CPUMISAEXTCFG enmFma;
1067 CPUMISAEXTCFG enmF16c;
1068
1069 CPUMISAEXTCFG enmAbm;
1070 CPUMISAEXTCFG enmSse4A;
1071 CPUMISAEXTCFG enmMisAlnSse;
1072 CPUMISAEXTCFG enm3dNowPrf;
1073 CPUMISAEXTCFG enmAmdExtMmx;
1074
1075 uint32_t uMaxStdLeaf;
1076 uint32_t uMaxExtLeaf;
1077 uint32_t uMaxCentaurLeaf;
1078 uint32_t uMaxIntelFamilyModelStep;
1079 char szCpuName[128];
1080} CPUMCPUIDCONFIG;
1081/** Pointer to CPUID config (from CFGM). */
1082typedef CPUMCPUIDCONFIG *PCPUMCPUIDCONFIG;
1083
1084
1085/**
1086 * Mini CPU selection support for making Mac OS X happy.
1087 *
1088 * Executes the /CPUM/MaxIntelFamilyModelStep config.
1089 *
1090 * @param pCpum The CPUM instance data.
1091 * @param pConfig The CPUID configuration we've read from CFGM.
1092 */
1093static void cpumR3CpuIdLimitIntelFamModStep(PCPUM pCpum, PCPUMCPUIDCONFIG pConfig)
1094{
1095 if (pCpum->GuestFeatures.enmCpuVendor == CPUMCPUVENDOR_INTEL)
1096 {
1097 PCPUMCPUIDLEAF pStdFeatureLeaf = cpumR3CpuIdGetExactLeaf(pCpum, 1, 0);
1098 uint32_t uCurIntelFamilyModelStep = RT_MAKE_U32_FROM_U8(RTX86GetCpuStepping(pStdFeatureLeaf->uEax),
1099 RTX86GetCpuModelIntel(pStdFeatureLeaf->uEax),
1100 RTX86GetCpuFamily(pStdFeatureLeaf->uEax),
1101 0);
1102 uint32_t uMaxIntelFamilyModelStep = pConfig->uMaxIntelFamilyModelStep;
1103 if (pConfig->uMaxIntelFamilyModelStep < uCurIntelFamilyModelStep)
1104 {
1105 uint32_t uNew = pStdFeatureLeaf->uEax & UINT32_C(0xf0003000);
1106 uNew |= RT_BYTE1(uMaxIntelFamilyModelStep) & 0xf; /* stepping */
1107 uNew |= (RT_BYTE2(uMaxIntelFamilyModelStep) & 0xf) << 4; /* 4 low model bits */
1108 uNew |= (RT_BYTE2(uMaxIntelFamilyModelStep) >> 4) << 16; /* 4 high model bits */
1109 uNew |= (RT_BYTE3(uMaxIntelFamilyModelStep) & 0xf) << 8; /* 4 low family bits */
1110 if (RT_BYTE3(uMaxIntelFamilyModelStep) > 0xf) /* 8 high family bits, using intel's suggested calculation. */
1111 uNew |= ( (RT_BYTE3(uMaxIntelFamilyModelStep) - (RT_BYTE3(uMaxIntelFamilyModelStep) & 0xf)) & 0xff ) << 20;
1112 LogRel(("CPU: CPUID(0).EAX %#x -> %#x (uMaxIntelFamilyModelStep=%#x, uCurIntelFamilyModelStep=%#x\n",
1113 pStdFeatureLeaf->uEax, uNew, uMaxIntelFamilyModelStep, uCurIntelFamilyModelStep));
1114 pStdFeatureLeaf->uEax = uNew;
1115 }
1116 }
1117}
1118
1119
1120
1121/**
1122 * Limit it the number of entries, zapping the remainder.
1123 *
1124 * The limits are masking off stuff about power saving and similar, this
1125 * is perhaps a bit crudely done as there is probably some relatively harmless
1126 * info too in these leaves (like words about having a constant TSC).
1127 *
1128 * @param pCpum The CPUM instance data.
1129 * @param pConfig The CPUID configuration we've read from CFGM.
1130 */
1131static void cpumR3CpuIdLimitLeaves(PCPUM pCpum, PCPUMCPUIDCONFIG pConfig)
1132{
1133 /*
1134 * Standard leaves.
1135 */
1136 uint32_t uSubLeaf = 0;
1137 PCPUMCPUIDLEAF pCurLeaf = cpumR3CpuIdGetExactLeaf(pCpum, 0, uSubLeaf);
1138 if (pCurLeaf)
1139 {
1140 uint32_t uLimit = pCurLeaf->uEax;
1141 if (uLimit <= UINT32_C(0x000fffff))
1142 {
1143 if (uLimit > pConfig->uMaxStdLeaf)
1144 {
1145 pCurLeaf->uEax = uLimit = pConfig->uMaxStdLeaf;
1146 cpumR3CpuIdRemoveRange(pCpum->GuestInfo.paCpuIdLeavesR3, &pCpum->GuestInfo.cCpuIdLeaves,
1147 uLimit + 1, UINT32_C(0x000fffff));
1148 }
1149
1150 /* NT4 hack, no zapping of extra leaves here. */
1151 if (pConfig->fNt4LeafLimit && uLimit > 3)
1152 pCurLeaf->uEax = uLimit = 3;
1153
1154 while ((pCurLeaf = cpumR3CpuIdGetExactLeaf(pCpum, UINT32_C(0x00000000), ++uSubLeaf)) != NULL)
1155 pCurLeaf->uEax = uLimit;
1156 }
1157 else
1158 {
1159 LogRel(("CPUID: Invalid standard range: %#x\n", uLimit));
1160 cpumR3CpuIdRemoveRange(pCpum->GuestInfo.paCpuIdLeavesR3, &pCpum->GuestInfo.cCpuIdLeaves,
1161 UINT32_C(0x00000000), UINT32_C(0x0fffffff));
1162 }
1163 }
1164
1165 /*
1166 * Extended leaves.
1167 */
1168 uSubLeaf = 0;
1169 pCurLeaf = cpumR3CpuIdGetExactLeaf(pCpum, UINT32_C(0x80000000), uSubLeaf);
1170 if (pCurLeaf)
1171 {
1172 uint32_t uLimit = pCurLeaf->uEax;
1173 if ( uLimit >= UINT32_C(0x80000000)
1174 && uLimit <= UINT32_C(0x800fffff))
1175 {
1176 if (uLimit > pConfig->uMaxExtLeaf)
1177 {
1178 pCurLeaf->uEax = uLimit = pConfig->uMaxExtLeaf;
1179 cpumR3CpuIdRemoveRange(pCpum->GuestInfo.paCpuIdLeavesR3, &pCpum->GuestInfo.cCpuIdLeaves,
1180 uLimit + 1, UINT32_C(0x800fffff));
1181 while ((pCurLeaf = cpumR3CpuIdGetExactLeaf(pCpum, UINT32_C(0x80000000), ++uSubLeaf)) != NULL)
1182 pCurLeaf->uEax = uLimit;
1183 }
1184 }
1185 else
1186 {
1187 LogRel(("CPUID: Invalid extended range: %#x\n", uLimit));
1188 cpumR3CpuIdRemoveRange(pCpum->GuestInfo.paCpuIdLeavesR3, &pCpum->GuestInfo.cCpuIdLeaves,
1189 UINT32_C(0x80000000), UINT32_C(0x8ffffffd));
1190 }
1191 }
1192
1193 /*
1194 * Centaur leaves (VIA).
1195 */
1196 uSubLeaf = 0;
1197 pCurLeaf = cpumR3CpuIdGetExactLeaf(pCpum, UINT32_C(0xc0000000), uSubLeaf);
1198 if (pCurLeaf)
1199 {
1200 uint32_t uLimit = pCurLeaf->uEax;
1201 if ( uLimit >= UINT32_C(0xc0000000)
1202 && uLimit <= UINT32_C(0xc00fffff))
1203 {
1204 if (uLimit > pConfig->uMaxCentaurLeaf)
1205 {
1206 pCurLeaf->uEax = uLimit = pConfig->uMaxCentaurLeaf;
1207 cpumR3CpuIdRemoveRange(pCpum->GuestInfo.paCpuIdLeavesR3, &pCpum->GuestInfo.cCpuIdLeaves,
1208 uLimit + 1, UINT32_C(0xcfffffff));
1209 while ((pCurLeaf = cpumR3CpuIdGetExactLeaf(pCpum, UINT32_C(0xc0000000), ++uSubLeaf)) != NULL)
1210 pCurLeaf->uEax = uLimit;
1211 }
1212 }
1213 else
1214 {
1215 LogRel(("CPUID: Invalid centaur range: %#x\n", uLimit));
1216 cpumR3CpuIdRemoveRange(pCpum->GuestInfo.paCpuIdLeavesR3, &pCpum->GuestInfo.cCpuIdLeaves,
1217 UINT32_C(0xc0000000), UINT32_C(0xcfffffff));
1218 }
1219 }
1220}
1221
1222
1223/**
1224 * Clears a CPUID leaf and all sub-leaves (to zero).
1225 *
1226 * @param pCpum The CPUM instance data.
1227 * @param uLeaf The leaf to clear.
1228 */
1229static void cpumR3CpuIdZeroLeaf(PCPUM pCpum, uint32_t uLeaf)
1230{
1231 uint32_t uSubLeaf = 0;
1232 PCPUMCPUIDLEAF pCurLeaf;
1233 while ((pCurLeaf = cpumR3CpuIdGetExactLeaf(pCpum, uLeaf, uSubLeaf)) != NULL)
1234 {
1235 pCurLeaf->uEax = 0;
1236 pCurLeaf->uEbx = 0;
1237 pCurLeaf->uEcx = 0;
1238 pCurLeaf->uEdx = 0;
1239 uSubLeaf++;
1240 }
1241}
1242
1243
1244/**
1245 * Used by cpumR3CpuIdSanitize to ensure that we don't have any sub-leaves for
1246 * the given leaf.
1247 *
1248 * @returns pLeaf.
1249 * @param pCpum The CPUM instance data.
1250 * @param pLeaf The leaf to ensure is alone with it's EAX input value.
1251 */
1252static PCPUMCPUIDLEAF cpumR3CpuIdMakeSingleLeaf(PCPUM pCpum, PCPUMCPUIDLEAF pLeaf)
1253{
1254 Assert((uintptr_t)(pLeaf - pCpum->GuestInfo.paCpuIdLeavesR3) < pCpum->GuestInfo.cCpuIdLeaves);
1255 if (pLeaf->fSubLeafMask != 0)
1256 {
1257 /*
1258 * Figure out how many sub-leaves in need of removal (we'll keep the first).
1259 * Log everything while we're at it.
1260 */
1261 LogRel(("CPUM:\n"
1262 "CPUM: Unexpected CPUID sub-leaves for leaf %#x; fSubLeafMask=%#x\n", pLeaf->uLeaf, pLeaf->fSubLeafMask));
1263 PCPUMCPUIDLEAF pLast = &pCpum->GuestInfo.paCpuIdLeavesR3[pCpum->GuestInfo.cCpuIdLeaves - 1];
1264 PCPUMCPUIDLEAF pSubLeaf = pLeaf;
1265 for (;;)
1266 {
1267 LogRel(("CPUM: %08x/%08x: %08x %08x %08x %08x; flags=%#x mask=%#x\n",
1268 pSubLeaf->uLeaf, pSubLeaf->uSubLeaf,
1269 pSubLeaf->uEax, pSubLeaf->uEbx, pSubLeaf->uEcx, pSubLeaf->uEdx,
1270 pSubLeaf->fFlags, pSubLeaf->fSubLeafMask));
1271 if (pSubLeaf == pLast || pSubLeaf[1].uLeaf != pLeaf->uLeaf)
1272 break;
1273 pSubLeaf++;
1274 }
1275 LogRel(("CPUM:\n"));
1276
1277 /*
1278 * Remove the offending sub-leaves.
1279 */
1280 if (pSubLeaf != pLeaf)
1281 {
1282 if (pSubLeaf != pLast)
1283 memmove(pLeaf + 1, pSubLeaf + 1, (uintptr_t)pLast - (uintptr_t)pSubLeaf);
1284 pCpum->GuestInfo.cCpuIdLeaves -= (uint32_t)(pSubLeaf - pLeaf);
1285 }
1286
1287 /*
1288 * Convert the first sub-leaf into a single leaf.
1289 */
1290 pLeaf->uSubLeaf = 0;
1291 pLeaf->fSubLeafMask = 0;
1292 }
1293 return pLeaf;
1294}
1295
1296
1297/**
1298 * Sanitizes and adjust the CPUID leaves.
1299 *
1300 * Drop features that aren't virtualized (or virtualizable). Adjust information
1301 * and capabilities to fit the virtualized hardware. Remove information the
1302 * guest shouldn't have (because it's wrong in the virtual world or because it
1303 * gives away host details) or that we don't have documentation for and no idea
1304 * what means.
1305 *
1306 * @returns VBox status code.
1307 * @param pVM The cross context VM structure (for cCpus).
1308 * @param pCpum The CPUM instance data.
1309 * @param pConfig The CPUID configuration we've read from CFGM.
1310 */
1311static int cpumR3CpuIdSanitize(PVM pVM, PCPUM pCpum, PCPUMCPUIDCONFIG pConfig)
1312{
1313#define PORTABLE_CLEAR_BITS_WHEN(Lvl, a_pLeafReg, FeatNm, fMask, uValue) \
1314 if ( pCpum->u8PortableCpuIdLevel >= (Lvl) && ((a_pLeafReg) & (fMask)) == (uValue) ) \
1315 { \
1316 LogRel(("PortableCpuId: " #a_pLeafReg "[" #FeatNm "]: %#x -> 0\n", (a_pLeafReg) & (fMask))); \
1317 (a_pLeafReg) &= ~(uint32_t)(fMask); \
1318 }
1319#define PORTABLE_DISABLE_FEATURE_BIT(Lvl, a_pLeafReg, FeatNm, fBitMask) \
1320 if ( pCpum->u8PortableCpuIdLevel >= (Lvl) && ((a_pLeafReg) & (fBitMask)) ) \
1321 { \
1322 LogRel(("PortableCpuId: " #a_pLeafReg "[" #FeatNm "]: 1 -> 0\n")); \
1323 (a_pLeafReg) &= ~(uint32_t)(fBitMask); \
1324 }
1325#define PORTABLE_DISABLE_FEATURE_BIT_CFG(Lvl, a_pLeafReg, FeatNm, fBitMask, enmConfig) \
1326 if ( pCpum->u8PortableCpuIdLevel >= (Lvl) \
1327 && ((a_pLeafReg) & (fBitMask)) \
1328 && (enmConfig) != CPUMISAEXTCFG_ENABLED_PORTABLE ) \
1329 { \
1330 LogRel(("PortableCpuId: " #a_pLeafReg "[" #FeatNm "]: 1 -> 0\n")); \
1331 (a_pLeafReg) &= ~(uint32_t)(fBitMask); \
1332 }
1333 Assert(pCpum->GuestFeatures.enmCpuVendor != CPUMCPUVENDOR_INVALID);
1334
1335 /* The CPUID entries we start with here isn't necessarily the ones of the host, so we
1336 must consult HostFeatures when processing CPUMISAEXTCFG variables. */
1337 PCCPUMFEATURES pHstFeat = &pCpum->HostFeatures;
1338#define PASSTHRU_FEATURE(enmConfig, fHostFeature, fConst) \
1339 ((enmConfig) && ((enmConfig) == CPUMISAEXTCFG_ENABLED_ALWAYS || (fHostFeature)) ? (fConst) : 0)
1340#define PASSTHRU_FEATURE_EX(enmConfig, fHostFeature, fAndExpr, fConst) \
1341 ((enmConfig) && ((enmConfig) == CPUMISAEXTCFG_ENABLED_ALWAYS || (fHostFeature)) && (fAndExpr) ? (fConst) : 0)
1342#define PASSTHRU_FEATURE_TODO(enmConfig, fConst) ((enmConfig) ? (fConst) : 0)
1343
1344 /* Cpuid 1:
1345 * EAX: CPU model, family and stepping.
1346 *
1347 * ECX + EDX: Supported features. Only report features we can support.
1348 * Note! When enabling new features the Synthetic CPU and Portable CPUID
1349 * options may require adjusting (i.e. stripping what was enabled).
1350 *
1351 * EBX: Branding, CLFLUSH line size, logical processors per package and
1352 * initial APIC ID.
1353 */
1354 PCPUMCPUIDLEAF pStdFeatureLeaf = cpumR3CpuIdGetExactLeaf(pCpum, 1, 0); /* Note! Must refetch when used later. */
1355 AssertLogRelReturn(pStdFeatureLeaf, VERR_CPUM_IPE_2);
1356 pStdFeatureLeaf = cpumR3CpuIdMakeSingleLeaf(pCpum, pStdFeatureLeaf);
1357
1358 pStdFeatureLeaf->uEdx &= X86_CPUID_FEATURE_EDX_FPU
1359 | X86_CPUID_FEATURE_EDX_VME
1360 | X86_CPUID_FEATURE_EDX_DE
1361 | X86_CPUID_FEATURE_EDX_PSE
1362 | X86_CPUID_FEATURE_EDX_TSC
1363 | X86_CPUID_FEATURE_EDX_MSR
1364 //| X86_CPUID_FEATURE_EDX_PAE - set later if configured.
1365 | X86_CPUID_FEATURE_EDX_MCE
1366 | X86_CPUID_FEATURE_EDX_CX8
1367 //| X86_CPUID_FEATURE_EDX_APIC - set by the APIC device if present.
1368 //| RT_BIT_32(10) - not defined
1369 | X86_CPUID_FEATURE_EDX_SEP
1370 | X86_CPUID_FEATURE_EDX_MTRR
1371 | X86_CPUID_FEATURE_EDX_PGE
1372 | X86_CPUID_FEATURE_EDX_MCA
1373 | X86_CPUID_FEATURE_EDX_CMOV
1374 | X86_CPUID_FEATURE_EDX_PAT /* 16 */
1375 | X86_CPUID_FEATURE_EDX_PSE36
1376 //| X86_CPUID_FEATURE_EDX_PSN - no serial number.
1377 | X86_CPUID_FEATURE_EDX_CLFSH
1378 //| RT_BIT_32(20) - not defined
1379 //| X86_CPUID_FEATURE_EDX_DS - no debug store.
1380 //| X86_CPUID_FEATURE_EDX_ACPI - not supported (not DevAcpi, right?).
1381 | X86_CPUID_FEATURE_EDX_MMX
1382 | X86_CPUID_FEATURE_EDX_FXSR
1383 | X86_CPUID_FEATURE_EDX_SSE
1384 | X86_CPUID_FEATURE_EDX_SSE2
1385 //| X86_CPUID_FEATURE_EDX_SS - no self snoop.
1386 | X86_CPUID_FEATURE_EDX_HTT
1387 //| X86_CPUID_FEATURE_EDX_TM - no thermal monitor.
1388 //| RT_BIT_32(30) - not defined
1389 //| X86_CPUID_FEATURE_EDX_PBE - no pending break enabled.
1390 ;
1391 pStdFeatureLeaf->uEcx &= X86_CPUID_FEATURE_ECX_SSE3
1392 | PASSTHRU_FEATURE_TODO(pConfig->enmPClMul, X86_CPUID_FEATURE_ECX_PCLMUL)
1393 //| X86_CPUID_FEATURE_ECX_DTES64 - not implemented yet.
1394 /* Can't properly emulate monitor & mwait with guest SMP; force the guest to use hlt for idling VCPUs. */
1395 | PASSTHRU_FEATURE_EX(pConfig->enmMonitor, pHstFeat->fMonitorMWait, pVM->cCpus == 1, X86_CPUID_FEATURE_ECX_MONITOR)
1396 //| X86_CPUID_FEATURE_ECX_CPLDS - no CPL qualified debug store.
1397 | (pConfig->fNestedHWVirt ? X86_CPUID_FEATURE_ECX_VMX : 0)
1398 //| X86_CPUID_FEATURE_ECX_SMX - not virtualized yet.
1399 //| X86_CPUID_FEATURE_ECX_EST - no extended speed step.
1400 //| X86_CPUID_FEATURE_ECX_TM2 - no thermal monitor 2.
1401 | X86_CPUID_FEATURE_ECX_SSSE3
1402 //| X86_CPUID_FEATURE_ECX_CNTXID - no L1 context id (MSR++).
1403 | PASSTHRU_FEATURE(pConfig->enmFma, pHstFeat->fFma, X86_CPUID_FEATURE_ECX_FMA)
1404 | PASSTHRU_FEATURE(pConfig->enmCmpXchg16b, pHstFeat->fCmpXchg16b, X86_CPUID_FEATURE_ECX_CX16)
1405 /* ECX Bit 14 - xTPR Update Control. Processor supports changing IA32_MISC_ENABLES[bit 23]. */
1406 //| X86_CPUID_FEATURE_ECX_TPRUPDATE
1407 //| X86_CPUID_FEATURE_ECX_PDCM - not implemented yet.
1408 | PASSTHRU_FEATURE(pConfig->enmPcid, pHstFeat->fPcid, X86_CPUID_FEATURE_ECX_PCID)
1409 //| X86_CPUID_FEATURE_ECX_DCA - not implemented yet.
1410 | PASSTHRU_FEATURE(pConfig->enmSse41, pHstFeat->fSse41, X86_CPUID_FEATURE_ECX_SSE4_1)
1411 | PASSTHRU_FEATURE(pConfig->enmSse42, pHstFeat->fSse42, X86_CPUID_FEATURE_ECX_SSE4_2)
1412 //| X86_CPUID_FEATURE_ECX_X2APIC - turned on later by the device if enabled.
1413 | PASSTHRU_FEATURE(pConfig->enmMovBe, pHstFeat->fMovBe, X86_CPUID_FEATURE_ECX_MOVBE)
1414 | PASSTHRU_FEATURE(pConfig->enmPopCnt, pHstFeat->fPopCnt, X86_CPUID_FEATURE_ECX_POPCNT)
1415 //| X86_CPUID_FEATURE_ECX_TSCDEADL - not implemented yet.
1416 | PASSTHRU_FEATURE_TODO(pConfig->enmAesNi, X86_CPUID_FEATURE_ECX_AES)
1417 | PASSTHRU_FEATURE(pConfig->enmXSave, pHstFeat->fXSaveRstor, X86_CPUID_FEATURE_ECX_XSAVE)
1418 //| X86_CPUID_FEATURE_ECX_OSXSAVE - mirrors CR4.OSXSAVE state, set dynamically.
1419 | PASSTHRU_FEATURE(pConfig->enmAvx, pHstFeat->fAvx, X86_CPUID_FEATURE_ECX_AVX)
1420 | PASSTHRU_FEATURE(pConfig->enmF16c, pHstFeat->fF16c, X86_CPUID_FEATURE_ECX_F16C)
1421 | PASSTHRU_FEATURE_TODO(pConfig->enmRdRand, X86_CPUID_FEATURE_ECX_RDRAND)
1422 //| X86_CPUID_FEATURE_ECX_HVP - Set explicitly later.
1423 ;
1424
1425 /* Mask out PCID unless FSGSBASE is exposed due to a bug in Windows 10 SMP guests, see @bugref{9089#c15}. */
1426 if ( !pVM->cpum.s.GuestFeatures.fFsGsBase
1427 && (pStdFeatureLeaf->uEcx & X86_CPUID_FEATURE_ECX_PCID))
1428 {
1429 pStdFeatureLeaf->uEcx &= ~X86_CPUID_FEATURE_ECX_PCID;
1430 LogRel(("CPUM: Disabled PCID without FSGSBASE to workaround buggy guests\n"));
1431 }
1432
1433 if (pCpum->u8PortableCpuIdLevel > 0)
1434 {
1435 PORTABLE_CLEAR_BITS_WHEN(1, pStdFeatureLeaf->uEax, ProcessorType, (UINT32_C(3) << 12), (UINT32_C(2) << 12));
1436 PORTABLE_DISABLE_FEATURE_BIT( 1, pStdFeatureLeaf->uEcx, SSSE3, X86_CPUID_FEATURE_ECX_SSSE3);
1437 PORTABLE_DISABLE_FEATURE_BIT_CFG(1, pStdFeatureLeaf->uEcx, PCID, X86_CPUID_FEATURE_ECX_PCID, pConfig->enmPcid);
1438 PORTABLE_DISABLE_FEATURE_BIT_CFG(1, pStdFeatureLeaf->uEcx, SSE4_1, X86_CPUID_FEATURE_ECX_SSE4_1, pConfig->enmSse41);
1439 PORTABLE_DISABLE_FEATURE_BIT_CFG(1, pStdFeatureLeaf->uEcx, SSE4_2, X86_CPUID_FEATURE_ECX_SSE4_2, pConfig->enmSse42);
1440 PORTABLE_DISABLE_FEATURE_BIT_CFG(1, pStdFeatureLeaf->uEcx, MOVBE, X86_CPUID_FEATURE_ECX_MOVBE, pConfig->enmMovBe);
1441 PORTABLE_DISABLE_FEATURE_BIT( 1, pStdFeatureLeaf->uEcx, AES, X86_CPUID_FEATURE_ECX_AES);
1442 PORTABLE_DISABLE_FEATURE_BIT( 1, pStdFeatureLeaf->uEcx, VMX, X86_CPUID_FEATURE_ECX_VMX);
1443 PORTABLE_DISABLE_FEATURE_BIT_CFG(1, pStdFeatureLeaf->uEcx, PCLMUL, X86_CPUID_FEATURE_ECX_PCLMUL, pConfig->enmPClMul);
1444 PORTABLE_DISABLE_FEATURE_BIT_CFG(1, pStdFeatureLeaf->uEcx, POPCNT, X86_CPUID_FEATURE_ECX_POPCNT, pConfig->enmPopCnt);
1445 PORTABLE_DISABLE_FEATURE_BIT( 1, pStdFeatureLeaf->uEcx, F16C, X86_CPUID_FEATURE_ECX_F16C);
1446 PORTABLE_DISABLE_FEATURE_BIT_CFG(1, pStdFeatureLeaf->uEcx, XSAVE, X86_CPUID_FEATURE_ECX_XSAVE, pConfig->enmXSave);
1447 PORTABLE_DISABLE_FEATURE_BIT_CFG(1, pStdFeatureLeaf->uEcx, AVX, X86_CPUID_FEATURE_ECX_AVX, pConfig->enmAvx);
1448 PORTABLE_DISABLE_FEATURE_BIT_CFG(1, pStdFeatureLeaf->uEcx, RDRAND, X86_CPUID_FEATURE_ECX_RDRAND, pConfig->enmRdRand);
1449 PORTABLE_DISABLE_FEATURE_BIT_CFG(1, pStdFeatureLeaf->uEcx, CX16, X86_CPUID_FEATURE_ECX_CX16, pConfig->enmCmpXchg16b);
1450 PORTABLE_DISABLE_FEATURE_BIT( 2, pStdFeatureLeaf->uEcx, SSE3, X86_CPUID_FEATURE_ECX_SSE3);
1451 PORTABLE_DISABLE_FEATURE_BIT( 3, pStdFeatureLeaf->uEdx, SSE2, X86_CPUID_FEATURE_EDX_SSE2);
1452 PORTABLE_DISABLE_FEATURE_BIT( 3, pStdFeatureLeaf->uEdx, SSE, X86_CPUID_FEATURE_EDX_SSE);
1453 PORTABLE_DISABLE_FEATURE_BIT( 3, pStdFeatureLeaf->uEdx, CLFSH, X86_CPUID_FEATURE_EDX_CLFSH);
1454 PORTABLE_DISABLE_FEATURE_BIT( 3, pStdFeatureLeaf->uEdx, CMOV, X86_CPUID_FEATURE_EDX_CMOV);
1455
1456 Assert(!(pStdFeatureLeaf->uEdx & ( X86_CPUID_FEATURE_EDX_SEP ///??
1457 | X86_CPUID_FEATURE_EDX_PSN
1458 | X86_CPUID_FEATURE_EDX_DS
1459 | X86_CPUID_FEATURE_EDX_ACPI
1460 | X86_CPUID_FEATURE_EDX_SS
1461 | X86_CPUID_FEATURE_EDX_TM
1462 | X86_CPUID_FEATURE_EDX_PBE
1463 )));
1464 Assert(!(pStdFeatureLeaf->uEcx & ( X86_CPUID_FEATURE_ECX_DTES64
1465 | X86_CPUID_FEATURE_ECX_CPLDS
1466 | X86_CPUID_FEATURE_ECX_AES
1467 | X86_CPUID_FEATURE_ECX_VMX
1468 | X86_CPUID_FEATURE_ECX_SMX
1469 | X86_CPUID_FEATURE_ECX_EST
1470 | X86_CPUID_FEATURE_ECX_TM2
1471 | X86_CPUID_FEATURE_ECX_CNTXID
1472 | X86_CPUID_FEATURE_ECX_FMA
1473 | X86_CPUID_FEATURE_ECX_TPRUPDATE
1474 | X86_CPUID_FEATURE_ECX_PDCM
1475 | X86_CPUID_FEATURE_ECX_DCA
1476 | X86_CPUID_FEATURE_ECX_OSXSAVE
1477 )));
1478 }
1479
1480 /* Set up APIC ID for CPU 0, configure multi core/threaded smp. */
1481 pStdFeatureLeaf->uEbx &= UINT32_C(0x0000ffff); /* (APIC-ID := 0 and #LogCpus := 0) */
1482
1483 /* The HTT bit is architectural and does not directly indicate hyper-threading or multiple cores;
1484 * it was set even on single-core/non-HT Northwood P4s for example. The HTT bit only means that the
1485 * information in EBX[23:16] (max number of addressable logical processor IDs) is valid.
1486 */
1487#ifdef VBOX_WITH_MULTI_CORE
1488 if (pVM->cCpus > 1)
1489 pStdFeatureLeaf->uEdx |= X86_CPUID_FEATURE_EDX_HTT; /* Force if emulating a multi-core CPU. */
1490#endif
1491 if (pStdFeatureLeaf->uEdx & X86_CPUID_FEATURE_EDX_HTT)
1492 {
1493 /* If CPUID Fn0000_0001_EDX[HTT] = 1 then LogicalProcessorCount is the number of threads per CPU
1494 core times the number of CPU cores per processor */
1495#ifdef VBOX_WITH_MULTI_CORE
1496 pStdFeatureLeaf->uEbx |= pVM->cCpus <= 0xff ? (pVM->cCpus << 16) : UINT32_C(0x00ff0000);
1497#else
1498 /* Single logical processor in a package. */
1499 pStdFeatureLeaf->uEbx |= (1 << 16);
1500#endif
1501 }
1502
1503 uint32_t uMicrocodeRev;
1504 int rc = SUPR3QueryMicrocodeRev(&uMicrocodeRev);
1505 if (RT_SUCCESS(rc))
1506 {
1507 LogRel(("CPUM: Microcode revision 0x%08X\n", uMicrocodeRev));
1508 }
1509 else
1510 {
1511 uMicrocodeRev = 0;
1512 LogRel(("CPUM: Failed to query microcode revision. rc=%Rrc\n", rc));
1513 }
1514
1515 /* Mask out the VME capability on certain CPUs, unless overridden by fForceVme.
1516 * VME bug was fixed in AGESA 1.0.0.6, microcode patch level 8001126.
1517 */
1518 if ( ( pVM->cpum.s.GuestFeatures.enmMicroarch == kCpumMicroarch_AMD_Zen_Ryzen
1519 /** @todo The following ASSUMES that Hygon uses the same version numbering
1520 * as AMD and that they shipped buggy firmware. */
1521 || pVM->cpum.s.GuestFeatures.enmMicroarch == kCpumMicroarch_Hygon_Dhyana)
1522 && uMicrocodeRev < 0x8001126
1523 && !pConfig->fForceVme)
1524 {
1525 /** @todo The above is a very coarse test but at the moment we don't know any better (see @bugref{8852}). */
1526 LogRel(("CPUM: Zen VME workaround engaged\n"));
1527 pStdFeatureLeaf->uEdx &= ~X86_CPUID_FEATURE_EDX_VME;
1528 }
1529
1530 /* Force standard feature bits. */
1531 if (pConfig->enmPClMul == CPUMISAEXTCFG_ENABLED_ALWAYS)
1532 pStdFeatureLeaf->uEcx |= X86_CPUID_FEATURE_ECX_PCLMUL;
1533 if (pConfig->enmMonitor == CPUMISAEXTCFG_ENABLED_ALWAYS)
1534 pStdFeatureLeaf->uEcx |= X86_CPUID_FEATURE_ECX_MONITOR;
1535 if (pConfig->enmCmpXchg16b == CPUMISAEXTCFG_ENABLED_ALWAYS)
1536 pStdFeatureLeaf->uEcx |= X86_CPUID_FEATURE_ECX_CX16;
1537 if (pConfig->enmSse41 == CPUMISAEXTCFG_ENABLED_ALWAYS)
1538 pStdFeatureLeaf->uEcx |= X86_CPUID_FEATURE_ECX_SSE4_1;
1539 if (pConfig->enmSse42 == CPUMISAEXTCFG_ENABLED_ALWAYS)
1540 pStdFeatureLeaf->uEcx |= X86_CPUID_FEATURE_ECX_SSE4_2;
1541 if (pConfig->enmMovBe == CPUMISAEXTCFG_ENABLED_ALWAYS)
1542 pStdFeatureLeaf->uEcx |= X86_CPUID_FEATURE_ECX_MOVBE;
1543 if (pConfig->enmPopCnt == CPUMISAEXTCFG_ENABLED_ALWAYS)
1544 pStdFeatureLeaf->uEcx |= X86_CPUID_FEATURE_ECX_POPCNT;
1545 if (pConfig->enmAesNi == CPUMISAEXTCFG_ENABLED_ALWAYS)
1546 pStdFeatureLeaf->uEcx |= X86_CPUID_FEATURE_ECX_AES;
1547 if (pConfig->enmXSave == CPUMISAEXTCFG_ENABLED_ALWAYS)
1548 pStdFeatureLeaf->uEcx |= X86_CPUID_FEATURE_ECX_XSAVE;
1549 if (pConfig->enmAvx == CPUMISAEXTCFG_ENABLED_ALWAYS)
1550 pStdFeatureLeaf->uEcx |= X86_CPUID_FEATURE_ECX_AVX;
1551 if (pConfig->enmRdRand == CPUMISAEXTCFG_ENABLED_ALWAYS)
1552 pStdFeatureLeaf->uEcx |= X86_CPUID_FEATURE_ECX_RDRAND;
1553
1554 pStdFeatureLeaf = NULL; /* Must refetch! */
1555
1556 /* Cpuid 0x80000001: (Similar, but in no way identical to 0x00000001.)
1557 * AMD:
1558 * EAX: CPU model, family and stepping.
1559 *
1560 * ECX + EDX: Supported features. Only report features we can support.
1561 * Note! When enabling new features the Synthetic CPU and Portable CPUID
1562 * options may require adjusting (i.e. stripping what was enabled).
1563 * ASSUMES that this is ALWAYS the AMD defined feature set if present.
1564 *
1565 * EBX: Branding ID and package type (or reserved).
1566 *
1567 * Intel and probably most others:
1568 * EAX: 0
1569 * EBX: 0
1570 * ECX + EDX: Subset of AMD features, mainly for AMD64 support.
1571 */
1572 PCPUMCPUIDLEAF pExtFeatureLeaf = cpumR3CpuIdGetExactLeaf(pCpum, UINT32_C(0x80000001), 0);
1573 if (pExtFeatureLeaf)
1574 {
1575 pExtFeatureLeaf = cpumR3CpuIdMakeSingleLeaf(pCpum, pExtFeatureLeaf);
1576
1577 pExtFeatureLeaf->uEdx &= X86_CPUID_AMD_FEATURE_EDX_FPU
1578 | X86_CPUID_AMD_FEATURE_EDX_VME
1579 | X86_CPUID_AMD_FEATURE_EDX_DE
1580 | X86_CPUID_AMD_FEATURE_EDX_PSE
1581 | X86_CPUID_AMD_FEATURE_EDX_TSC
1582 | X86_CPUID_AMD_FEATURE_EDX_MSR //?? this means AMD MSRs..
1583 //| X86_CPUID_AMD_FEATURE_EDX_PAE - turned on when necessary
1584 //| X86_CPUID_AMD_FEATURE_EDX_MCE - not virtualized yet.
1585 | X86_CPUID_AMD_FEATURE_EDX_CX8
1586 //| X86_CPUID_AMD_FEATURE_EDX_APIC - set by the APIC device if present.
1587 //| RT_BIT_32(10) - reserved
1588 | X86_CPUID_EXT_FEATURE_EDX_SYSCALL
1589 | X86_CPUID_AMD_FEATURE_EDX_MTRR
1590 | X86_CPUID_AMD_FEATURE_EDX_PGE
1591 | X86_CPUID_AMD_FEATURE_EDX_MCA
1592 | X86_CPUID_AMD_FEATURE_EDX_CMOV
1593 | X86_CPUID_AMD_FEATURE_EDX_PAT
1594 | X86_CPUID_AMD_FEATURE_EDX_PSE36
1595 //| RT_BIT_32(18) - reserved
1596 //| RT_BIT_32(19) - reserved
1597 | X86_CPUID_EXT_FEATURE_EDX_NX
1598 //| RT_BIT_32(21) - reserved
1599 | PASSTHRU_FEATURE(pConfig->enmAmdExtMmx, pHstFeat->fAmdMmxExts, X86_CPUID_AMD_FEATURE_EDX_AXMMX)
1600 | X86_CPUID_AMD_FEATURE_EDX_MMX
1601 | X86_CPUID_AMD_FEATURE_EDX_FXSR
1602 | X86_CPUID_AMD_FEATURE_EDX_FFXSR
1603 //| X86_CPUID_EXT_FEATURE_EDX_PAGE1GB
1604 | X86_CPUID_EXT_FEATURE_EDX_RDTSCP
1605 //| RT_BIT_32(28) - reserved
1606 //| X86_CPUID_EXT_FEATURE_EDX_LONG_MODE - turned on when necessary
1607 | X86_CPUID_AMD_FEATURE_EDX_3DNOW_EX
1608 | X86_CPUID_AMD_FEATURE_EDX_3DNOW
1609 ;
1610 pExtFeatureLeaf->uEcx &= X86_CPUID_EXT_FEATURE_ECX_LAHF_SAHF
1611 //| X86_CPUID_AMD_FEATURE_ECX_CMPL - set below if applicable.
1612 | (pConfig->fNestedHWVirt ? X86_CPUID_AMD_FEATURE_ECX_SVM : 0)
1613 //| X86_CPUID_AMD_FEATURE_ECX_EXT_APIC
1614 /* Note: This could prevent teleporting from AMD to Intel CPUs! */
1615 | X86_CPUID_AMD_FEATURE_ECX_CR8L /* expose lock mov cr0 = mov cr8 hack for guests that can use this feature to access the TPR. */
1616 | PASSTHRU_FEATURE(pConfig->enmAbm, pHstFeat->fAbm, X86_CPUID_AMD_FEATURE_ECX_ABM)
1617 | PASSTHRU_FEATURE_TODO(pConfig->enmSse4A, X86_CPUID_AMD_FEATURE_ECX_SSE4A)
1618 | PASSTHRU_FEATURE_TODO(pConfig->enmMisAlnSse, X86_CPUID_AMD_FEATURE_ECX_MISALNSSE)
1619 | PASSTHRU_FEATURE(pConfig->enm3dNowPrf, pHstFeat->f3DNowPrefetch, X86_CPUID_AMD_FEATURE_ECX_3DNOWPRF)
1620 //| X86_CPUID_AMD_FEATURE_ECX_OSVW
1621 //| X86_CPUID_AMD_FEATURE_ECX_IBS
1622 //| X86_CPUID_AMD_FEATURE_ECX_XOP
1623 //| X86_CPUID_AMD_FEATURE_ECX_SKINIT
1624 //| X86_CPUID_AMD_FEATURE_ECX_WDT
1625 //| RT_BIT_32(14) - reserved
1626 //| X86_CPUID_AMD_FEATURE_ECX_LWP - not supported
1627 //| X86_CPUID_AMD_FEATURE_ECX_FMA4 - not yet virtualized.
1628 //| RT_BIT_32(17) - reserved
1629 //| RT_BIT_32(18) - reserved
1630 //| X86_CPUID_AMD_FEATURE_ECX_NODEID - not yet virtualized.
1631 //| RT_BIT_32(20) - reserved
1632 //| X86_CPUID_AMD_FEATURE_ECX_TBM - not yet virtualized.
1633 //| X86_CPUID_AMD_FEATURE_ECX_TOPOEXT - not yet virtualized.
1634 //| RT_BIT_32(23) - reserved
1635 //| RT_BIT_32(24) - reserved
1636 //| RT_BIT_32(25) - reserved
1637 //| RT_BIT_32(26) - reserved
1638 //| RT_BIT_32(27) - reserved
1639 //| RT_BIT_32(28) - reserved
1640 //| RT_BIT_32(29) - reserved
1641 //| RT_BIT_32(30) - reserved
1642 //| RT_BIT_32(31) - reserved
1643 ;
1644#ifdef VBOX_WITH_MULTI_CORE
1645 if ( pVM->cCpus > 1
1646 && ( pCpum->GuestFeatures.enmCpuVendor == CPUMCPUVENDOR_AMD
1647 || pCpum->GuestFeatures.enmCpuVendor == CPUMCPUVENDOR_HYGON))
1648 pExtFeatureLeaf->uEcx |= X86_CPUID_AMD_FEATURE_ECX_CMPL; /* CmpLegacy */
1649#endif
1650
1651 if (pCpum->u8PortableCpuIdLevel > 0)
1652 {
1653 PORTABLE_DISABLE_FEATURE_BIT( 1, pExtFeatureLeaf->uEcx, CR8L, X86_CPUID_AMD_FEATURE_ECX_CR8L);
1654 PORTABLE_DISABLE_FEATURE_BIT( 1, pExtFeatureLeaf->uEcx, SVM, X86_CPUID_AMD_FEATURE_ECX_SVM);
1655 PORTABLE_DISABLE_FEATURE_BIT_CFG(1, pExtFeatureLeaf->uEcx, ABM, X86_CPUID_AMD_FEATURE_ECX_ABM, pConfig->enmAbm);
1656 PORTABLE_DISABLE_FEATURE_BIT_CFG(1, pExtFeatureLeaf->uEcx, SSE4A, X86_CPUID_AMD_FEATURE_ECX_SSE4A, pConfig->enmSse4A);
1657 PORTABLE_DISABLE_FEATURE_BIT_CFG(1, pExtFeatureLeaf->uEcx, MISALNSSE, X86_CPUID_AMD_FEATURE_ECX_MISALNSSE, pConfig->enmMisAlnSse);
1658 PORTABLE_DISABLE_FEATURE_BIT_CFG(1, pExtFeatureLeaf->uEcx, 3DNOWPRF, X86_CPUID_AMD_FEATURE_ECX_3DNOWPRF, pConfig->enm3dNowPrf);
1659 PORTABLE_DISABLE_FEATURE_BIT( 1, pExtFeatureLeaf->uEcx, XOP, X86_CPUID_AMD_FEATURE_ECX_XOP);
1660 PORTABLE_DISABLE_FEATURE_BIT( 1, pExtFeatureLeaf->uEcx, TBM, X86_CPUID_AMD_FEATURE_ECX_TBM);
1661 PORTABLE_DISABLE_FEATURE_BIT( 1, pExtFeatureLeaf->uEcx, FMA4, X86_CPUID_AMD_FEATURE_ECX_FMA4);
1662 PORTABLE_DISABLE_FEATURE_BIT_CFG(1, pExtFeatureLeaf->uEdx, AXMMX, X86_CPUID_AMD_FEATURE_EDX_AXMMX, pConfig->enmAmdExtMmx);
1663 PORTABLE_DISABLE_FEATURE_BIT( 1, pExtFeatureLeaf->uEdx, 3DNOW, X86_CPUID_AMD_FEATURE_EDX_3DNOW);
1664 PORTABLE_DISABLE_FEATURE_BIT( 1, pExtFeatureLeaf->uEdx, 3DNOW_EX, X86_CPUID_AMD_FEATURE_EDX_3DNOW_EX);
1665 PORTABLE_DISABLE_FEATURE_BIT( 1, pExtFeatureLeaf->uEdx, FFXSR, X86_CPUID_AMD_FEATURE_EDX_FFXSR);
1666 PORTABLE_DISABLE_FEATURE_BIT( 1, pExtFeatureLeaf->uEdx, RDTSCP, X86_CPUID_EXT_FEATURE_EDX_RDTSCP);
1667 PORTABLE_DISABLE_FEATURE_BIT( 2, pExtFeatureLeaf->uEcx, LAHF_SAHF, X86_CPUID_EXT_FEATURE_ECX_LAHF_SAHF);
1668 PORTABLE_DISABLE_FEATURE_BIT( 3, pExtFeatureLeaf->uEcx, CMOV, X86_CPUID_AMD_FEATURE_EDX_CMOV);
1669
1670 Assert(!(pExtFeatureLeaf->uEcx & ( X86_CPUID_AMD_FEATURE_ECX_SVM
1671 | X86_CPUID_AMD_FEATURE_ECX_EXT_APIC
1672 | X86_CPUID_AMD_FEATURE_ECX_OSVW
1673 | X86_CPUID_AMD_FEATURE_ECX_IBS
1674 | X86_CPUID_AMD_FEATURE_ECX_SKINIT
1675 | X86_CPUID_AMD_FEATURE_ECX_WDT
1676 | X86_CPUID_AMD_FEATURE_ECX_LWP
1677 | X86_CPUID_AMD_FEATURE_ECX_NODEID
1678 | X86_CPUID_AMD_FEATURE_ECX_TOPOEXT
1679 | UINT32_C(0xff964000)
1680 )));
1681 Assert(!(pExtFeatureLeaf->uEdx & ( RT_BIT(10)
1682 | X86_CPUID_EXT_FEATURE_EDX_SYSCALL
1683 | RT_BIT(18)
1684 | RT_BIT(19)
1685 | RT_BIT(21)
1686 | X86_CPUID_AMD_FEATURE_EDX_AXMMX
1687 | X86_CPUID_EXT_FEATURE_EDX_PAGE1GB
1688 | RT_BIT(28)
1689 )));
1690 }
1691
1692 /* Force extended feature bits. */
1693 if (pConfig->enmAbm == CPUMISAEXTCFG_ENABLED_ALWAYS)
1694 pExtFeatureLeaf->uEcx |= X86_CPUID_AMD_FEATURE_ECX_ABM;
1695 if (pConfig->enmSse4A == CPUMISAEXTCFG_ENABLED_ALWAYS)
1696 pExtFeatureLeaf->uEcx |= X86_CPUID_AMD_FEATURE_ECX_SSE4A;
1697 if (pConfig->enmMisAlnSse == CPUMISAEXTCFG_ENABLED_ALWAYS)
1698 pExtFeatureLeaf->uEcx |= X86_CPUID_AMD_FEATURE_ECX_MISALNSSE;
1699 if (pConfig->enm3dNowPrf == CPUMISAEXTCFG_ENABLED_ALWAYS)
1700 pExtFeatureLeaf->uEcx |= X86_CPUID_AMD_FEATURE_ECX_3DNOWPRF;
1701 if (pConfig->enmAmdExtMmx == CPUMISAEXTCFG_ENABLED_ALWAYS)
1702 pExtFeatureLeaf->uEdx |= X86_CPUID_AMD_FEATURE_EDX_AXMMX;
1703 }
1704 pExtFeatureLeaf = NULL; /* Must refetch! */
1705
1706
1707 /* Cpuid 2:
1708 * Intel: (Nondeterministic) Cache and TLB information
1709 * AMD: Reserved
1710 * VIA: Reserved
1711 * Safe to expose.
1712 */
1713 uint32_t uSubLeaf = 0;
1714 PCPUMCPUIDLEAF pCurLeaf;
1715 while ((pCurLeaf = cpumR3CpuIdGetExactLeaf(pCpum, 2, uSubLeaf)) != NULL)
1716 {
1717 if ((pCurLeaf->uEax & 0xff) > 1)
1718 {
1719 LogRel(("CpuId: Std[2].al: %d -> 1\n", pCurLeaf->uEax & 0xff));
1720 pCurLeaf->uEax &= UINT32_C(0xffffff01);
1721 }
1722 uSubLeaf++;
1723 }
1724
1725 /* Cpuid 3:
1726 * Intel: EAX, EBX - reserved (transmeta uses these)
1727 * ECX, EDX - Processor Serial Number if available, otherwise reserved
1728 * AMD: Reserved
1729 * VIA: Reserved
1730 * Safe to expose
1731 */
1732 pStdFeatureLeaf = cpumR3CpuIdGetExactLeaf(pCpum, 1, 0);
1733 if (!(pStdFeatureLeaf->uEdx & X86_CPUID_FEATURE_EDX_PSN))
1734 {
1735 uSubLeaf = 0;
1736 while ((pCurLeaf = cpumR3CpuIdGetExactLeaf(pCpum, 3, uSubLeaf)) != NULL)
1737 {
1738 pCurLeaf->uEcx = pCurLeaf->uEdx = 0;
1739 if (pCpum->u8PortableCpuIdLevel > 0)
1740 pCurLeaf->uEax = pCurLeaf->uEbx = 0;
1741 uSubLeaf++;
1742 }
1743 }
1744
1745 /* Cpuid 4 + ECX:
1746 * Intel: Deterministic Cache Parameters Leaf.
1747 * AMD: Reserved
1748 * VIA: Reserved
1749 * Safe to expose, except for EAX:
1750 * Bits 25-14: Maximum number of addressable IDs for logical processors sharing this cache (see note)**
1751 * Bits 31-26: Maximum number of processor cores in this physical package**
1752 * Note: These SMP values are constant regardless of ECX
1753 */
1754 uSubLeaf = 0;
1755 while ((pCurLeaf = cpumR3CpuIdGetExactLeaf(pCpum, 4, uSubLeaf)) != NULL)
1756 {
1757 pCurLeaf->uEax &= UINT32_C(0x00003fff); /* Clear the #maxcores, #threads-sharing-cache (both are #-1).*/
1758#ifdef VBOX_WITH_MULTI_CORE
1759 if ( pVM->cCpus > 1
1760 && pCpum->GuestFeatures.enmCpuVendor == CPUMCPUVENDOR_INTEL)
1761 {
1762 AssertReturn(pVM->cCpus <= 64, VERR_TOO_MANY_CPUS);
1763 /* One logical processor with possibly multiple cores. */
1764 /* See http://www.intel.com/Assets/PDF/appnote/241618.pdf p. 29 */
1765 pCurLeaf->uEax |= pVM->cCpus <= 0x40 ? ((pVM->cCpus - 1) << 26) : UINT32_C(0xfc000000); /* 6 bits only -> 64 cores! */
1766 }
1767#endif
1768 uSubLeaf++;
1769 }
1770
1771 /* Cpuid 5: Monitor/mwait Leaf
1772 * Intel: ECX, EDX - reserved
1773 * EAX, EBX - Smallest and largest monitor line size
1774 * AMD: EDX - reserved
1775 * EAX, EBX - Smallest and largest monitor line size
1776 * ECX - extensions (ignored for now)
1777 * VIA: Reserved
1778 * Safe to expose
1779 */
1780 uSubLeaf = 0;
1781 while ((pCurLeaf = cpumR3CpuIdGetExactLeaf(pCpum, 5, uSubLeaf)) != NULL)
1782 {
1783 pStdFeatureLeaf = cpumR3CpuIdGetExactLeaf(pCpum, 1, 0);
1784 if (!(pStdFeatureLeaf->uEcx & X86_CPUID_FEATURE_ECX_MONITOR))
1785 pCurLeaf->uEax = pCurLeaf->uEbx = 0;
1786
1787 pCurLeaf->uEcx = pCurLeaf->uEdx = 0;
1788 if (pConfig->enmMWaitExtensions)
1789 {
1790 pCurLeaf->uEcx = X86_CPUID_MWAIT_ECX_EXT | X86_CPUID_MWAIT_ECX_BREAKIRQIF0;
1791 /** @todo for now we just expose host's MWAIT C-states, although conceptually
1792 it shall be part of our power management virtualization model */
1793#if 0
1794 /* MWAIT sub C-states */
1795 pCurLeaf->uEdx =
1796 (0 << 0) /* 0 in C0 */ |
1797 (2 << 4) /* 2 in C1 */ |
1798 (2 << 8) /* 2 in C2 */ |
1799 (2 << 12) /* 2 in C3 */ |
1800 (0 << 16) /* 0 in C4 */
1801 ;
1802#endif
1803 }
1804 else
1805 pCurLeaf->uEcx = pCurLeaf->uEdx = 0;
1806 uSubLeaf++;
1807 }
1808
1809 /* Cpuid 6: Digital Thermal Sensor and Power Management Paramenters.
1810 * Intel: Various thermal and power management related stuff.
1811 * AMD: EBX, EDX - reserved.
1812 * EAX - Bit two is ARAT, indicating that APIC timers run at a constant
1813 * rate regardless of processor P-states. Same as Intel.
1814 * ECX - Bit zero is EffFreq, indicating MSR_0000_00e7 and MSR_0000_00e8
1815 * present. Same as Intel.
1816 * VIA: ??
1817 *
1818 * We clear everything except for the ARAT bit which is important for Windows 11.
1819 */
1820 uSubLeaf = 0;
1821 while ((pCurLeaf = cpumR3CpuIdGetExactLeaf(pCpum, 6, uSubLeaf)) != NULL)
1822 {
1823 pCurLeaf->uEbx = pCurLeaf->uEcx = pCurLeaf->uEdx = 0;
1824 pCurLeaf->uEax &= 0
1825 | X86_CPUID_POWER_EAX_ARAT
1826 ;
1827
1828 /* Since we emulate the APIC timers, we can normally set the ARAT bit
1829 * regardless of whether the host CPU sets it or not. Intel sets the ARAT
1830 * bit circa since the Westmere generation, AMD probably only since Zen.
1831 * See @bugref{10567}.
1832 */
1833 if (pConfig->fInvariantApic)
1834 pCurLeaf->uEax |= X86_CPUID_POWER_EAX_ARAT;
1835
1836 uSubLeaf++;
1837 }
1838
1839 /* Cpuid 7 + ECX: Structured Extended Feature Flags Enumeration
1840 * EAX: Number of sub leaves.
1841 * EBX+ECX+EDX: Feature flags
1842 *
1843 * We only have documentation for one sub-leaf, so clear all other (no need
1844 * to remove them as such, just set them to zero).
1845 *
1846 * Note! When enabling new features the Synthetic CPU and Portable CPUID
1847 * options may require adjusting (i.e. stripping what was enabled).
1848 */
1849 uSubLeaf = 0;
1850 while ((pCurLeaf = cpumR3CpuIdGetExactLeaf(pCpum, 7, uSubLeaf)) != NULL)
1851 {
1852 switch (uSubLeaf)
1853 {
1854 case 0:
1855 {
1856 pCurLeaf->uEax = 0; /* Max ECX input is 0. */
1857 pCurLeaf->uEbx &= 0
1858 | PASSTHRU_FEATURE(pConfig->enmFsGsBase, pHstFeat->fFsGsBase, X86_CPUID_STEXT_FEATURE_EBX_FSGSBASE)
1859 //| X86_CPUID_STEXT_FEATURE_EBX_TSC_ADJUST RT_BIT(1)
1860 //| X86_CPUID_STEXT_FEATURE_EBX_SGX RT_BIT(2)
1861 | X86_CPUID_STEXT_FEATURE_EBX_BMI1
1862 //| X86_CPUID_STEXT_FEATURE_EBX_HLE RT_BIT(4)
1863 | PASSTHRU_FEATURE(pConfig->enmAvx2, pHstFeat->fAvx2, X86_CPUID_STEXT_FEATURE_EBX_AVX2)
1864 | X86_CPUID_STEXT_FEATURE_EBX_FDP_EXCPTN_ONLY
1865 //| X86_CPUID_STEXT_FEATURE_EBX_SMEP RT_BIT(7)
1866 | X86_CPUID_STEXT_FEATURE_EBX_BMI2
1867 //| X86_CPUID_STEXT_FEATURE_EBX_ERMS RT_BIT(9)
1868 | PASSTHRU_FEATURE(pConfig->enmInvpcid, pHstFeat->fInvpcid, X86_CPUID_STEXT_FEATURE_EBX_INVPCID)
1869 //| X86_CPUID_STEXT_FEATURE_EBX_RTM RT_BIT(11)
1870 //| X86_CPUID_STEXT_FEATURE_EBX_PQM RT_BIT(12)
1871 | X86_CPUID_STEXT_FEATURE_EBX_DEPR_FPU_CS_DS
1872 //| X86_CPUID_STEXT_FEATURE_EBX_MPE RT_BIT(14)
1873 //| X86_CPUID_STEXT_FEATURE_EBX_PQE RT_BIT(15)
1874 //| X86_CPUID_STEXT_FEATURE_EBX_AVX512F RT_BIT(16)
1875 //| RT_BIT(17) - reserved
1876 | PASSTHRU_FEATURE_TODO(pConfig->enmRdSeed, X86_CPUID_STEXT_FEATURE_EBX_RDSEED)
1877 | PASSTHRU_FEATURE(pConfig->enmAdx, pHstFeat->fAdx, X86_CPUID_STEXT_FEATURE_EBX_ADX)
1878 //| X86_CPUID_STEXT_FEATURE_EBX_SMAP RT_BIT(20)
1879 //| RT_BIT(21) - reserved
1880 //| RT_BIT(22) - reserved
1881 | PASSTHRU_FEATURE(pConfig->enmCLFlushOpt, pHstFeat->fClFlushOpt, X86_CPUID_STEXT_FEATURE_EBX_CLFLUSHOPT)
1882 //| RT_BIT(24) - reserved
1883 //| X86_CPUID_STEXT_FEATURE_EBX_INTEL_PT RT_BIT(25)
1884 //| X86_CPUID_STEXT_FEATURE_EBX_AVX512PF RT_BIT(26)
1885 //| X86_CPUID_STEXT_FEATURE_EBX_AVX512ER RT_BIT(27)
1886 //| X86_CPUID_STEXT_FEATURE_EBX_AVX512CD RT_BIT(28)
1887 | PASSTHRU_FEATURE(pConfig->enmSha, pHstFeat->fSha, X86_CPUID_STEXT_FEATURE_EBX_SHA)
1888 //| RT_BIT(30) - reserved
1889 //| RT_BIT(31) - reserved
1890 ;
1891 pCurLeaf->uEcx &= 0
1892 //| X86_CPUID_STEXT_FEATURE_ECX_PREFETCHWT1 - we do not do vector functions yet.
1893 ;
1894 pCurLeaf->uEdx &= 0
1895 | PASSTHRU_FEATURE(pConfig->enmMdsClear, pHstFeat->fMdsClear, X86_CPUID_STEXT_FEATURE_EDX_MD_CLEAR)
1896 //| X86_CPUID_STEXT_FEATURE_EDX_IBRS_IBPB RT_BIT(26)
1897 //| X86_CPUID_STEXT_FEATURE_EDX_STIBP RT_BIT(27)
1898 | PASSTHRU_FEATURE(pConfig->enmFlushCmdMsr, pHstFeat->fFlushCmd, X86_CPUID_STEXT_FEATURE_EDX_FLUSH_CMD)
1899 | PASSTHRU_FEATURE(pConfig->enmArchCapMsr, pHstFeat->fArchCap, X86_CPUID_STEXT_FEATURE_EDX_ARCHCAP)
1900 ;
1901
1902 /* Mask out INVPCID unless FSGSBASE is exposed due to a bug in Windows 10 SMP guests, see @bugref{9089#c15}. */
1903 if ( !pVM->cpum.s.GuestFeatures.fFsGsBase
1904 && (pCurLeaf->uEbx & X86_CPUID_STEXT_FEATURE_EBX_INVPCID))
1905 {
1906 pCurLeaf->uEbx &= ~X86_CPUID_STEXT_FEATURE_EBX_INVPCID;
1907 LogRel(("CPUM: Disabled INVPCID without FSGSBASE to work around buggy guests\n"));
1908 }
1909
1910 if (pCpum->u8PortableCpuIdLevel > 0)
1911 {
1912 PORTABLE_DISABLE_FEATURE_BIT_CFG(1, pCurLeaf->uEbx, FSGSBASE, X86_CPUID_STEXT_FEATURE_EBX_FSGSBASE, pConfig->enmFsGsBase);
1913 PORTABLE_DISABLE_FEATURE_BIT( 1, pCurLeaf->uEbx, SGX, X86_CPUID_STEXT_FEATURE_EBX_SGX);
1914 PORTABLE_DISABLE_FEATURE_BIT_CFG(1, pCurLeaf->uEbx, AVX2, X86_CPUID_STEXT_FEATURE_EBX_AVX2, pConfig->enmAvx2);
1915 PORTABLE_DISABLE_FEATURE_BIT( 1, pCurLeaf->uEbx, SMEP, X86_CPUID_STEXT_FEATURE_EBX_SMEP);
1916 PORTABLE_DISABLE_FEATURE_BIT( 1, pCurLeaf->uEbx, BMI2, X86_CPUID_STEXT_FEATURE_EBX_BMI2);
1917 PORTABLE_DISABLE_FEATURE_BIT_CFG(1, pCurLeaf->uEbx, INVPCID, X86_CPUID_STEXT_FEATURE_EBX_INVPCID, pConfig->enmInvpcid);
1918 PORTABLE_DISABLE_FEATURE_BIT( 1, pCurLeaf->uEbx, AVX512F, X86_CPUID_STEXT_FEATURE_EBX_AVX512F);
1919 PORTABLE_DISABLE_FEATURE_BIT_CFG(1, pCurLeaf->uEbx, RDSEED, X86_CPUID_STEXT_FEATURE_EBX_RDSEED, pConfig->enmRdSeed);
1920 PORTABLE_DISABLE_FEATURE_BIT_CFG(1, pCurLeaf->uEbx, ADX, X86_CPUID_STEXT_FEATURE_EBX_ADX, pConfig->enmAdx);
1921 PORTABLE_DISABLE_FEATURE_BIT_CFG(1, pCurLeaf->uEbx, CLFLUSHOPT, X86_CPUID_STEXT_FEATURE_EBX_RDSEED, pConfig->enmCLFlushOpt);
1922 PORTABLE_DISABLE_FEATURE_BIT( 1, pCurLeaf->uEbx, AVX512PF, X86_CPUID_STEXT_FEATURE_EBX_AVX512PF);
1923 PORTABLE_DISABLE_FEATURE_BIT( 1, pCurLeaf->uEbx, AVX512ER, X86_CPUID_STEXT_FEATURE_EBX_AVX512ER);
1924 PORTABLE_DISABLE_FEATURE_BIT( 1, pCurLeaf->uEbx, AVX512CD, X86_CPUID_STEXT_FEATURE_EBX_AVX512CD);
1925 PORTABLE_DISABLE_FEATURE_BIT( 1, pCurLeaf->uEbx, SMAP, X86_CPUID_STEXT_FEATURE_EBX_SMAP);
1926 PORTABLE_DISABLE_FEATURE_BIT_CFG(1, pCurLeaf->uEbx, SHA, X86_CPUID_STEXT_FEATURE_EBX_SHA, pConfig->enmSha);
1927 PORTABLE_DISABLE_FEATURE_BIT( 1, pCurLeaf->uEcx, PREFETCHWT1, X86_CPUID_STEXT_FEATURE_ECX_PREFETCHWT1);
1928 PORTABLE_DISABLE_FEATURE_BIT_CFG(3, pCurLeaf->uEdx, FLUSH_CMD, X86_CPUID_STEXT_FEATURE_EDX_FLUSH_CMD, pConfig->enmFlushCmdMsr);
1929 PORTABLE_DISABLE_FEATURE_BIT_CFG(3, pCurLeaf->uEdx, MD_CLEAR, X86_CPUID_STEXT_FEATURE_EDX_MD_CLEAR, pConfig->enmMdsClear);
1930 PORTABLE_DISABLE_FEATURE_BIT_CFG(3, pCurLeaf->uEdx, ARCHCAP, X86_CPUID_STEXT_FEATURE_EDX_ARCHCAP, pConfig->enmArchCapMsr);
1931 }
1932
1933 /* Dependencies. */
1934 if (!(pCurLeaf->uEdx & X86_CPUID_STEXT_FEATURE_EDX_FLUSH_CMD))
1935 pCurLeaf->uEdx &= ~X86_CPUID_STEXT_FEATURE_EDX_MD_CLEAR;
1936
1937 /* Force standard feature bits. */
1938 if (pConfig->enmFsGsBase == CPUMISAEXTCFG_ENABLED_ALWAYS)
1939 pCurLeaf->uEbx |= X86_CPUID_STEXT_FEATURE_EBX_FSGSBASE;
1940 if (pConfig->enmAvx2 == CPUMISAEXTCFG_ENABLED_ALWAYS)
1941 pCurLeaf->uEbx |= X86_CPUID_STEXT_FEATURE_EBX_AVX2;
1942 if (pConfig->enmRdSeed == CPUMISAEXTCFG_ENABLED_ALWAYS)
1943 pCurLeaf->uEbx |= X86_CPUID_STEXT_FEATURE_EBX_RDSEED;
1944 if (pConfig->enmAdx == CPUMISAEXTCFG_ENABLED_ALWAYS)
1945 pCurLeaf->uEbx |= X86_CPUID_STEXT_FEATURE_EBX_ADX;
1946 if (pConfig->enmCLFlushOpt == CPUMISAEXTCFG_ENABLED_ALWAYS)
1947 pCurLeaf->uEbx |= X86_CPUID_STEXT_FEATURE_EBX_CLFLUSHOPT;
1948 if (pConfig->enmSha == CPUMISAEXTCFG_ENABLED_ALWAYS)
1949 pCurLeaf->uEbx |= X86_CPUID_STEXT_FEATURE_EBX_SHA;
1950 if (pConfig->enmInvpcid == CPUMISAEXTCFG_ENABLED_ALWAYS)
1951 pCurLeaf->uEbx |= X86_CPUID_STEXT_FEATURE_EBX_INVPCID;
1952 if (pConfig->enmFlushCmdMsr == CPUMISAEXTCFG_ENABLED_ALWAYS)
1953 pCurLeaf->uEdx |= X86_CPUID_STEXT_FEATURE_EDX_FLUSH_CMD;
1954 if (pConfig->enmMdsClear == CPUMISAEXTCFG_ENABLED_ALWAYS)
1955 pCurLeaf->uEdx |= X86_CPUID_STEXT_FEATURE_EDX_MD_CLEAR;
1956 if (pConfig->enmArchCapMsr == CPUMISAEXTCFG_ENABLED_ALWAYS)
1957 pCurLeaf->uEdx |= X86_CPUID_STEXT_FEATURE_EDX_ARCHCAP;
1958 break;
1959 }
1960
1961 default:
1962 /* Invalid index, all values are zero. */
1963 pCurLeaf->uEax = 0;
1964 pCurLeaf->uEbx = 0;
1965 pCurLeaf->uEcx = 0;
1966 pCurLeaf->uEdx = 0;
1967 break;
1968 }
1969 uSubLeaf++;
1970 }
1971
1972 /* Cpuid 8: Marked as reserved by Intel and AMD.
1973 * We zero this since we don't know what it may have been used for.
1974 */
1975 cpumR3CpuIdZeroLeaf(pCpum, 8);
1976
1977 /* Cpuid 9: Direct Cache Access (DCA) Parameters
1978 * Intel: EAX - Value of PLATFORM_DCA_CAP bits.
1979 * EBX, ECX, EDX - reserved.
1980 * AMD: Reserved
1981 * VIA: ??
1982 *
1983 * We zero this.
1984 */
1985 cpumR3CpuIdZeroLeaf(pCpum, 9);
1986
1987 /* Cpuid 0xa: Architectural Performance Monitor Features
1988 * Intel: EAX - Value of PLATFORM_DCA_CAP bits.
1989 * EBX, ECX, EDX - reserved.
1990 * AMD: Reserved
1991 * VIA: ??
1992 *
1993 * We zero this, for now at least.
1994 */
1995 cpumR3CpuIdZeroLeaf(pCpum, 10);
1996
1997 /* Cpuid 0xb+ECX: x2APIC Features / Processor Topology.
1998 * Intel: EAX - APCI ID shift right for next level.
1999 * EBX - Factory configured cores/threads at this level.
2000 * ECX - Level number (same as input) and level type (1,2,0).
2001 * EDX - Extended initial APIC ID.
2002 * AMD: Reserved
2003 * VIA: ??
2004 */
2005 uSubLeaf = 0;
2006 while ((pCurLeaf = cpumR3CpuIdGetExactLeaf(pCpum, 11, uSubLeaf)) != NULL)
2007 {
2008 if (pCurLeaf->fFlags & CPUMCPUIDLEAF_F_CONTAINS_APIC_ID)
2009 {
2010 uint8_t bLevelType = RT_BYTE2(pCurLeaf->uEcx);
2011 if (bLevelType == 1)
2012 {
2013 /* Thread level - we don't do threads at the moment. */
2014 pCurLeaf->uEax = 0; /** @todo is this correct? Real CPUs never do 0 here, I think... */
2015 pCurLeaf->uEbx = 1;
2016 }
2017 else if (bLevelType == 2)
2018 {
2019 /* Core level. */
2020 pCurLeaf->uEax = 1; /** @todo real CPUs are supposed to be in the 4-6 range, not 1. Our APIC ID assignments are a little special... */
2021#ifdef VBOX_WITH_MULTI_CORE
2022 while (RT_BIT_32(pCurLeaf->uEax) < pVM->cCpus)
2023 pCurLeaf->uEax++;
2024#endif
2025 pCurLeaf->uEbx = pVM->cCpus;
2026 }
2027 else
2028 {
2029 AssertLogRelMsg(bLevelType == 0, ("bLevelType=%#x uSubLeaf=%#x\n", bLevelType, uSubLeaf));
2030 pCurLeaf->uEax = 0;
2031 pCurLeaf->uEbx = 0;
2032 pCurLeaf->uEcx = 0;
2033 }
2034 pCurLeaf->uEcx = (pCurLeaf->uEcx & UINT32_C(0xffffff00)) | (uSubLeaf & 0xff);
2035 pCurLeaf->uEdx = 0; /* APIC ID is filled in by CPUMGetGuestCpuId() at runtime. Init for EMT(0) as usual. */
2036 }
2037 else
2038 {
2039 pCurLeaf->uEax = 0;
2040 pCurLeaf->uEbx = 0;
2041 pCurLeaf->uEcx = 0;
2042 pCurLeaf->uEdx = 0;
2043 }
2044 uSubLeaf++;
2045 }
2046
2047 /* Cpuid 0xc: Marked as reserved by Intel and AMD.
2048 * We zero this since we don't know what it may have been used for.
2049 */
2050 cpumR3CpuIdZeroLeaf(pCpum, 12);
2051
2052 /* Cpuid 0xd + ECX: Processor Extended State Enumeration
2053 * ECX=0: EAX - Valid bits in XCR0[31:0].
2054 * EBX - Maximum state size as per current XCR0 value.
2055 * ECX - Maximum state size for all supported features.
2056 * EDX - Valid bits in XCR0[63:32].
2057 * ECX=1: EAX - Various X-features.
2058 * EBX - Maximum state size as per current XCR0|IA32_XSS value.
2059 * ECX - Valid bits in IA32_XSS[31:0].
2060 * EDX - Valid bits in IA32_XSS[63:32].
2061 * ECX=N, where N in 2..63 and indicates a bit in XCR0 and/or IA32_XSS,
2062 * if the bit invalid all four registers are set to zero.
2063 * EAX - The state size for this feature.
2064 * EBX - The state byte offset of this feature.
2065 * ECX - Bit 0 indicates whether this sub-leaf maps to a valid IA32_XSS bit (=1) or a valid XCR0 bit (=0).
2066 * EDX - Reserved, but is set to zero if invalid sub-leaf index.
2067 *
2068 * Clear them all as we don't currently implement extended CPU state.
2069 */
2070 /* Figure out the supported XCR0/XSS mask component and make sure CPUID[1].ECX[27] = CR4.OSXSAVE. */
2071 uint64_t fGuestXcr0Mask = 0;
2072 pStdFeatureLeaf = cpumR3CpuIdGetExactLeaf(pCpum, 1, 0);
2073 if (pStdFeatureLeaf && (pStdFeatureLeaf->uEcx & X86_CPUID_FEATURE_ECX_XSAVE))
2074 {
2075 fGuestXcr0Mask = XSAVE_C_X87 | XSAVE_C_SSE;
2076 if (pStdFeatureLeaf && (pStdFeatureLeaf->uEcx & X86_CPUID_FEATURE_ECX_AVX))
2077 fGuestXcr0Mask |= XSAVE_C_YMM;
2078 pCurLeaf = cpumR3CpuIdGetExactLeaf(pCpum, 7, 0);
2079 if (pCurLeaf && (pCurLeaf->uEbx & X86_CPUID_STEXT_FEATURE_EBX_AVX512F))
2080 fGuestXcr0Mask |= XSAVE_C_ZMM_16HI | XSAVE_C_ZMM_HI256 | XSAVE_C_OPMASK;
2081 fGuestXcr0Mask &= pCpum->fXStateHostMask;
2082
2083 pStdFeatureLeaf->fFlags |= CPUMCPUIDLEAF_F_CONTAINS_OSXSAVE;
2084 }
2085 pStdFeatureLeaf = NULL;
2086 pCpum->fXStateGuestMask = fGuestXcr0Mask;
2087
2088 /* Work the sub-leaves. */
2089 uint32_t cbXSaveMaxActual = CPUM_MIN_XSAVE_AREA_SIZE;
2090 uint32_t cbXSaveMaxReport = CPUM_MIN_XSAVE_AREA_SIZE;
2091 for (uSubLeaf = 0; uSubLeaf < 63; uSubLeaf++)
2092 {
2093 pCurLeaf = cpumR3CpuIdGetExactLeaf(pCpum, 13, uSubLeaf);
2094 if (pCurLeaf)
2095 {
2096 if (fGuestXcr0Mask)
2097 {
2098 switch (uSubLeaf)
2099 {
2100 case 0:
2101 pCurLeaf->uEax &= RT_LO_U32(fGuestXcr0Mask);
2102 pCurLeaf->uEdx &= RT_HI_U32(fGuestXcr0Mask);
2103 AssertLogRelMsgReturn((pCurLeaf->uEax & (XSAVE_C_X87 | XSAVE_C_SSE)) == (XSAVE_C_X87 | XSAVE_C_SSE),
2104 ("CPUID(0xd/0).EAX missing mandatory X87 or SSE bits: %#RX32", pCurLeaf->uEax),
2105 VERR_CPUM_IPE_1);
2106 cbXSaveMaxActual = pCurLeaf->uEcx;
2107 AssertLogRelMsgReturn(cbXSaveMaxActual <= CPUM_MAX_XSAVE_AREA_SIZE && cbXSaveMaxActual >= CPUM_MIN_XSAVE_AREA_SIZE,
2108 ("%#x max=%#x\n", cbXSaveMaxActual, CPUM_MAX_XSAVE_AREA_SIZE), VERR_CPUM_IPE_2);
2109 AssertLogRelMsgReturn(pCurLeaf->uEbx >= CPUM_MIN_XSAVE_AREA_SIZE && pCurLeaf->uEbx <= cbXSaveMaxActual,
2110 ("ebx=%#x cbXSaveMaxActual=%#x\n", pCurLeaf->uEbx, cbXSaveMaxActual),
2111 VERR_CPUM_IPE_2);
2112 continue;
2113 case 1:
2114 pCurLeaf->uEax &= 0;
2115 pCurLeaf->uEcx &= 0;
2116 pCurLeaf->uEdx &= 0;
2117 /** @todo what about checking ebx? */
2118 continue;
2119 default:
2120 if (fGuestXcr0Mask & RT_BIT_64(uSubLeaf))
2121 {
2122 AssertLogRelMsgReturn( pCurLeaf->uEax <= cbXSaveMaxActual
2123 && pCurLeaf->uEax > 0
2124 && pCurLeaf->uEbx < cbXSaveMaxActual
2125 && pCurLeaf->uEbx >= CPUM_MIN_XSAVE_AREA_SIZE
2126 && pCurLeaf->uEbx + pCurLeaf->uEax <= cbXSaveMaxActual,
2127 ("%#x: eax=%#x ebx=%#x cbMax=%#x\n",
2128 uSubLeaf, pCurLeaf->uEax, pCurLeaf->uEbx, cbXSaveMaxActual),
2129 VERR_CPUM_IPE_2);
2130 AssertLogRel(!(pCurLeaf->uEcx & 1));
2131 pCurLeaf->uEcx = 0; /* Bit 0 should be zero (XCR0), the reset are reserved... */
2132 pCurLeaf->uEdx = 0; /* it's reserved... */
2133 if (pCurLeaf->uEbx + pCurLeaf->uEax > cbXSaveMaxReport)
2134 cbXSaveMaxReport = pCurLeaf->uEbx + pCurLeaf->uEax;
2135 continue;
2136 }
2137 break;
2138 }
2139 }
2140
2141 /* Clear the leaf. */
2142 pCurLeaf->uEax = 0;
2143 pCurLeaf->uEbx = 0;
2144 pCurLeaf->uEcx = 0;
2145 pCurLeaf->uEdx = 0;
2146 }
2147 }
2148
2149 /* Update the max and current feature sizes to shut up annoying Linux kernels. */
2150 if (cbXSaveMaxReport != cbXSaveMaxActual && fGuestXcr0Mask)
2151 {
2152 pCurLeaf = cpumR3CpuIdGetExactLeaf(pCpum, 13, 0);
2153 if (pCurLeaf)
2154 {
2155 LogRel(("CPUM: Changing leaf 13[0]: EBX=%#RX32 -> %#RX32, ECX=%#RX32 -> %#RX32\n",
2156 pCurLeaf->uEbx, cbXSaveMaxReport, pCurLeaf->uEcx, cbXSaveMaxReport));
2157 pCurLeaf->uEbx = cbXSaveMaxReport;
2158 pCurLeaf->uEcx = cbXSaveMaxReport;
2159 }
2160 }
2161
2162 /* Cpuid 0xe: Marked as reserved by Intel and AMD.
2163 * We zero this since we don't know what it may have been used for.
2164 */
2165 cpumR3CpuIdZeroLeaf(pCpum, 14);
2166
2167 /* Cpuid 0xf + ECX: Platform quality of service monitoring (PQM),
2168 * also known as Intel Resource Director Technology (RDT) Monitoring
2169 * We zero this as we don't currently virtualize PQM.
2170 */
2171 cpumR3CpuIdZeroLeaf(pCpum, 15);
2172
2173 /* Cpuid 0x10 + ECX: Platform quality of service enforcement (PQE),
2174 * also known as Intel Resource Director Technology (RDT) Allocation
2175 * We zero this as we don't currently virtualize PQE.
2176 */
2177 cpumR3CpuIdZeroLeaf(pCpum, 16);
2178
2179 /* Cpuid 0x11: Marked as reserved by Intel and AMD.
2180 * We zero this since we don't know what it may have been used for.
2181 */
2182 cpumR3CpuIdZeroLeaf(pCpum, 17);
2183
2184 /* Cpuid 0x12 + ECX: SGX resource enumeration.
2185 * We zero this as we don't currently virtualize this.
2186 */
2187 cpumR3CpuIdZeroLeaf(pCpum, 18);
2188
2189 /* Cpuid 0x13: Marked as reserved by Intel and AMD.
2190 * We zero this since we don't know what it may have been used for.
2191 */
2192 cpumR3CpuIdZeroLeaf(pCpum, 19);
2193
2194 /* Cpuid 0x14 + ECX: Processor Trace (PT) capability enumeration.
2195 * We zero this as we don't currently virtualize this.
2196 */
2197 cpumR3CpuIdZeroLeaf(pCpum, 20);
2198
2199 /* Cpuid 0x15: Timestamp Counter / Core Crystal Clock info.
2200 * Intel: uTscFrequency = uCoreCrystalClockFrequency * EBX / EAX.
2201 * EAX - denominator (unsigned).
2202 * EBX - numerator (unsigned).
2203 * ECX, EDX - reserved.
2204 * AMD: Reserved / undefined / not implemented.
2205 * VIA: Reserved / undefined / not implemented.
2206 * We zero this as we don't currently virtualize this.
2207 */
2208 cpumR3CpuIdZeroLeaf(pCpum, 21);
2209
2210 /* Cpuid 0x16: Processor frequency info
2211 * Intel: EAX - Core base frequency in MHz.
2212 * EBX - Core maximum frequency in MHz.
2213 * ECX - Bus (reference) frequency in MHz.
2214 * EDX - Reserved.
2215 * AMD: Reserved / undefined / not implemented.
2216 * VIA: Reserved / undefined / not implemented.
2217 * We zero this as we don't currently virtualize this.
2218 */
2219 cpumR3CpuIdZeroLeaf(pCpum, 22);
2220
2221 /* Cpuid 0x17..0x10000000: Unknown.
2222 * We don't know these and what they mean, so remove them. */
2223 cpumR3CpuIdRemoveRange(pCpum->GuestInfo.paCpuIdLeavesR3, &pCpum->GuestInfo.cCpuIdLeaves,
2224 UINT32_C(0x00000017), UINT32_C(0x0fffffff));
2225
2226
2227 /* CpuId 0x40000000..0x4fffffff: Reserved for hypervisor/emulator.
2228 * We remove all these as we're a hypervisor and must provide our own.
2229 */
2230 cpumR3CpuIdRemoveRange(pCpum->GuestInfo.paCpuIdLeavesR3, &pCpum->GuestInfo.cCpuIdLeaves,
2231 UINT32_C(0x40000000), UINT32_C(0x4fffffff));
2232
2233
2234 /* Cpuid 0x80000000 is harmless. */
2235
2236 /* Cpuid 0x80000001 is handled with cpuid 1 way up above. */
2237
2238 /* Cpuid 0x80000002...0x80000004 contains the processor name and is considered harmless. */
2239
2240 /* Cpuid 0x80000005 & 0x80000006 contain information about L1, L2 & L3 cache and TLB identifiers.
2241 * Safe to pass on to the guest.
2242 *
2243 * AMD: 0x80000005 L1 cache information
2244 * 0x80000006 L2/L3 cache information
2245 * Intel: 0x80000005 reserved
2246 * 0x80000006 L2 cache information
2247 * VIA: 0x80000005 TLB and L1 cache information
2248 * 0x80000006 L2 cache information
2249 */
2250
2251 uSubLeaf = 0;
2252 while ((pCurLeaf = cpumR3CpuIdGetExactLeaf(pCpum, UINT32_C(0x80000006), uSubLeaf)) != NULL)
2253 {
2254 if ( pCpum->GuestFeatures.enmCpuVendor == CPUMCPUVENDOR_AMD
2255 || pCpum->GuestFeatures.enmCpuVendor == CPUMCPUVENDOR_HYGON)
2256 {
2257 /*
2258 * Some AMD CPUs (e.g. Ryzen 7940HS) report zero L3 cache line size here and refer
2259 * to CPUID Fn8000_001D. This triggers division by zero in Linux if the
2260 * TopologyExtensions aka TOPOEXT bit in Fn8000_0001_ECX is not set, or if the kernel
2261 * is old enough (e.g. Linux 3.13) that it does not know about the topology extension
2262 * CPUID leaves.
2263 * We put a non-zero value in the cache line size here, if possible the actual value
2264 * gleaned from Fn8000_001D, or worst case a made-up valid number.
2265 */
2266 PCPUMCPUIDLEAF pTopoLeaf;
2267 uint32_t uTopoSubLeaf;
2268 uint32_t uCacheLineSize;
2269
2270 if ((pCurLeaf->uEdx & 0xff) == 0)
2271 {
2272 uTopoSubLeaf = 0;
2273
2274 uCacheLineSize = 64; /* Use 64-byte line size as a fallback. */
2275
2276 /* Find L3 cache information. Have to check the cache level in EAX. */
2277 while ((pTopoLeaf = cpumR3CpuIdGetExactLeaf(pCpum, UINT32_C(0x8000001d), uTopoSubLeaf)) != NULL)
2278 {
2279 if (((pTopoLeaf->uEax >> 5) & 0x07) == 3) {
2280 uCacheLineSize = (pTopoLeaf->uEbx & 0xfff) + 1;
2281 /* Fn8000_0006 can't report power of two line sizes greater than 128. */
2282 if (uCacheLineSize > 128)
2283 uCacheLineSize = 128;
2284
2285 break;
2286 }
2287 uTopoSubLeaf++;
2288 }
2289
2290 Assert(uCacheLineSize < 256);
2291 pCurLeaf->uEdx |= uCacheLineSize;
2292 LogRel(("CPUM: AMD L3 cache line size in CPUID leaf 0x80000006 was zero, adjusting to %u\n", uCacheLineSize));
2293 }
2294 }
2295 uSubLeaf++;
2296 }
2297
2298 /* Cpuid 0x80000007: Advanced Power Management Information.
2299 * AMD: EAX: Processor feedback capabilities.
2300 * EBX: RAS capabilites.
2301 * ECX: Advanced power monitoring interface.
2302 * EDX: Enhanced power management capabilities.
2303 * Intel: EAX, EBX, ECX - reserved.
2304 * EDX - Invariant TSC indicator supported (bit 8), the rest is reserved.
2305 * VIA: Reserved
2306 * We let the guest see EDX_TSCINVAR (and later maybe EDX_EFRO). Actually, we should set EDX_TSCINVAR.
2307 */
2308 uSubLeaf = 0;
2309 while ((pCurLeaf = cpumR3CpuIdGetExactLeaf(pCpum, UINT32_C(0x80000007), uSubLeaf)) != NULL)
2310 {
2311 pCurLeaf->uEax = pCurLeaf->uEbx = pCurLeaf->uEcx = 0;
2312 if ( pCpum->GuestFeatures.enmCpuVendor == CPUMCPUVENDOR_AMD
2313 || pCpum->GuestFeatures.enmCpuVendor == CPUMCPUVENDOR_HYGON)
2314 {
2315 /*
2316 * Older 64-bit linux kernels blindly assume that the AMD performance counters work
2317 * if X86_CPUID_AMD_ADVPOWER_EDX_TSCINVAR is set, see @bugref{7243#c85}. Exposing this
2318 * bit is now configurable.
2319 */
2320 pCurLeaf->uEdx &= 0
2321 //| X86_CPUID_AMD_ADVPOWER_EDX_TS
2322 //| X86_CPUID_AMD_ADVPOWER_EDX_FID
2323 //| X86_CPUID_AMD_ADVPOWER_EDX_VID
2324 //| X86_CPUID_AMD_ADVPOWER_EDX_TTP
2325 //| X86_CPUID_AMD_ADVPOWER_EDX_TM
2326 //| X86_CPUID_AMD_ADVPOWER_EDX_STC
2327 //| X86_CPUID_AMD_ADVPOWER_EDX_MC
2328 //| X86_CPUID_AMD_ADVPOWER_EDX_HWPSTATE
2329 | X86_CPUID_AMD_ADVPOWER_EDX_TSCINVAR
2330 //| X86_CPUID_AMD_ADVPOWER_EDX_CPB RT_BIT(9)
2331 //| X86_CPUID_AMD_ADVPOWER_EDX_EFRO RT_BIT(10)
2332 //| X86_CPUID_AMD_ADVPOWER_EDX_PFI RT_BIT(11)
2333 //| X86_CPUID_AMD_ADVPOWER_EDX_PA RT_BIT(12)
2334 | 0;
2335 }
2336 else
2337 pCurLeaf->uEdx &= X86_CPUID_AMD_ADVPOWER_EDX_TSCINVAR;
2338 if (!pConfig->fInvariantTsc)
2339 pCurLeaf->uEdx &= ~X86_CPUID_AMD_ADVPOWER_EDX_TSCINVAR;
2340 uSubLeaf++;
2341 }
2342
2343 /* Cpuid 0x80000008:
2344 * AMD: EAX: Long Mode Size Identifiers
2345 * EBX: Extended Feature Identifiers
2346 * ECX: Number of cores + APICIdCoreIdSize
2347 * EDX: RDPRU Register Identifier Range
2348 * Intel: EAX: Virtual/Physical address Size
2349 * EBX, ECX, EDX - reserved
2350 * VIA: EAX: Virtual/Physical address Size
2351 * EBX, ECX, EDX - reserved
2352 *
2353 * We only expose the virtual+pysical address size to the guest atm.
2354 * On AMD we set the core count, but not the apic id stuff as we're
2355 * currently not doing the apic id assignments in a compatible manner.
2356 */
2357 uSubLeaf = 0;
2358 while ((pCurLeaf = cpumR3CpuIdGetExactLeaf(pCpum, UINT32_C(0x80000008), uSubLeaf)) != NULL)
2359 {
2360 pCurLeaf->uEax &= UINT32_C(0x0000ffff); /* Virtual & physical address sizes only. */
2361 if ( pCpum->GuestFeatures.enmCpuVendor == CPUMCPUVENDOR_AMD
2362 || pCpum->GuestFeatures.enmCpuVendor == CPUMCPUVENDOR_HYGON)
2363 {
2364 /* Expose XSaveErPtr aka RstrFpErrPtrs to guest. */
2365 pCurLeaf->uEbx &= X86_CPUID_AMD_EFEID_EBX_XSAVE_ER_PTR; /* reserved - [12] == IBPB */
2366 }
2367 else
2368 pCurLeaf->uEbx = 0; /* reserved */
2369
2370 pCurLeaf->uEdx = 0; /* reserved */
2371
2372 /* Set APICIdCoreIdSize to zero (use legacy method to determine the number of cores per cpu).
2373 * Set core count to 0, indicating 1 core. Adjust if we're in multi core mode on AMD. */
2374 pCurLeaf->uEcx = 0;
2375#ifdef VBOX_WITH_MULTI_CORE
2376 if ( pVM->cCpus > 1
2377 && ( pCpum->GuestFeatures.enmCpuVendor == CPUMCPUVENDOR_AMD
2378 || pCpum->GuestFeatures.enmCpuVendor == CPUMCPUVENDOR_HYGON))
2379 pCurLeaf->uEcx |= (pVM->cCpus - 1) & UINT32_C(0xff);
2380#endif
2381 uSubLeaf++;
2382 }
2383
2384 /* Cpuid 0x80000009: Reserved
2385 * We zero this since we don't know what it may have been used for.
2386 */
2387 cpumR3CpuIdZeroLeaf(pCpum, UINT32_C(0x80000009));
2388
2389 /* Cpuid 0x8000000a: SVM information on AMD, invalid on Intel.
2390 * AMD: EAX - SVM revision.
2391 * EBX - Number of ASIDs.
2392 * ECX - Reserved.
2393 * EDX - SVM Feature identification.
2394 */
2395 if ( pCpum->GuestFeatures.enmCpuVendor == CPUMCPUVENDOR_AMD
2396 || pCpum->GuestFeatures.enmCpuVendor == CPUMCPUVENDOR_HYGON)
2397 {
2398 pExtFeatureLeaf = cpumR3CpuIdGetExactLeaf(pCpum, UINT32_C(0x80000001), 0);
2399 if ( pExtFeatureLeaf
2400 && (pExtFeatureLeaf->uEcx & X86_CPUID_AMD_FEATURE_ECX_SVM))
2401 {
2402 PCPUMCPUIDLEAF pSvmFeatureLeaf = cpumR3CpuIdGetExactLeaf(pCpum, 0x8000000a, 0);
2403 if (pSvmFeatureLeaf)
2404 {
2405 pSvmFeatureLeaf->uEax = 0x1;
2406 pSvmFeatureLeaf->uEbx = 0x8000; /** @todo figure out virtual NASID. */
2407 pSvmFeatureLeaf->uEcx = 0;
2408 pSvmFeatureLeaf->uEdx &= ( X86_CPUID_SVM_FEATURE_EDX_NRIP_SAVE /** @todo Support other SVM features */
2409 | X86_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID
2410 | X86_CPUID_SVM_FEATURE_EDX_DECODE_ASSISTS);
2411 }
2412 else
2413 {
2414 /* Should never happen. */
2415 LogRel(("CPUM: Warning! Expected CPUID leaf 0x8000000a not present! SVM features not exposed to the guest\n"));
2416 cpumR3CpuIdZeroLeaf(pCpum, UINT32_C(0x8000000a));
2417 }
2418 }
2419 else
2420 {
2421 /* If SVM is not supported, this is reserved, zero out. */
2422 cpumR3CpuIdZeroLeaf(pCpum, UINT32_C(0x8000000a));
2423 }
2424 }
2425 else
2426 {
2427 /* Cpuid 0x8000000a: Reserved on Intel.
2428 * We zero this since we don't know what it may have been used for.
2429 */
2430 cpumR3CpuIdZeroLeaf(pCpum, UINT32_C(0x8000000a));
2431 }
2432
2433 /* Cpuid 0x8000000b thru 0x80000018: Reserved
2434 * We clear these as we don't know what purpose they might have. */
2435 for (uint32_t uLeaf = UINT32_C(0x8000000b); uLeaf <= UINT32_C(0x80000018); uLeaf++)
2436 cpumR3CpuIdZeroLeaf(pCpum, uLeaf);
2437
2438 /* Cpuid 0x80000019: TLB configuration
2439 * Seems to be harmless, pass them thru as is. */
2440
2441 /* Cpuid 0x8000001a: Peformance optimization identifiers.
2442 * Strip anything we don't know what is or addresses feature we don't implement. */
2443 uSubLeaf = 0;
2444 while ((pCurLeaf = cpumR3CpuIdGetExactLeaf(pCpum, UINT32_C(0x8000001a), uSubLeaf)) != NULL)
2445 {
2446 pCurLeaf->uEax &= RT_BIT_32(0) /* FP128 - use 1x128-bit instead of 2x64-bit. */
2447 | RT_BIT_32(1) /* MOVU - Prefere unaligned MOV over MOVL + MOVH. */
2448 //| RT_BIT_32(2) /* FP256 - use 1x256-bit instead of 2x128-bit. */
2449 ;
2450 pCurLeaf->uEbx = 0; /* reserved */
2451 pCurLeaf->uEcx = 0; /* reserved */
2452 pCurLeaf->uEdx = 0; /* reserved */
2453 uSubLeaf++;
2454 }
2455
2456 /* Cpuid 0x8000001b: Instruct based sampling (IBS) information.
2457 * Clear this as we don't currently virtualize this feature. */
2458 cpumR3CpuIdZeroLeaf(pCpum, UINT32_C(0x8000001b));
2459
2460 /* Cpuid 0x8000001c: Lightweight profiling (LWP) information.
2461 * Clear this as we don't currently virtualize this feature. */
2462 cpumR3CpuIdZeroLeaf(pCpum, UINT32_C(0x8000001c));
2463
2464 /* Cpuid 0x8000001d+ECX: Get cache configuration descriptors.
2465 * We need to sanitize the cores per cache (EAX[25:14]).
2466 *
2467 * This is very much the same as Intel's CPUID(4) leaf, except EAX[31:26]
2468 * and EDX[2] are reserved here, and EAX[14:25] is documented having a
2469 * slightly different meaning.
2470 */
2471 uSubLeaf = 0;
2472 while ((pCurLeaf = cpumR3CpuIdGetExactLeaf(pCpum, UINT32_C(0x8000001d), uSubLeaf)) != NULL)
2473 {
2474#ifdef VBOX_WITH_MULTI_CORE
2475 uint32_t cCores = ((pCurLeaf->uEax >> 14) & 0xfff) + 1;
2476 if (cCores > pVM->cCpus)
2477 cCores = pVM->cCpus;
2478 pCurLeaf->uEax &= UINT32_C(0x00003fff);
2479 pCurLeaf->uEax |= ((cCores - 1) & 0xfff) << 14;
2480#else
2481 pCurLeaf->uEax &= UINT32_C(0x00003fff);
2482#endif
2483 uSubLeaf++;
2484 }
2485
2486 /* Cpuid 0x8000001e: Get APIC / unit / node information.
2487 * If AMD, we configure it for our layout (on EMT(0)). In the multi-core
2488 * setup, we have one compute unit with all the cores in it. Single node.
2489 */
2490 uSubLeaf = 0;
2491 while ((pCurLeaf = cpumR3CpuIdGetExactLeaf(pCpum, UINT32_C(0x8000001e), uSubLeaf)) != NULL)
2492 {
2493 pCurLeaf->uEax = 0; /* Extended APIC ID = EMT(0).idApic (== 0). */
2494 if (pCurLeaf->fFlags & CPUMCPUIDLEAF_F_CONTAINS_APIC_ID)
2495 {
2496#ifdef VBOX_WITH_MULTI_CORE
2497 pCurLeaf->uEbx = pVM->cCpus < 0x100
2498 ? (pVM->cCpus - 1) << 8 : UINT32_C(0x0000ff00); /* Compute unit ID 0, core per unit. */
2499#else
2500 pCurLeaf->uEbx = 0; /* Compute unit ID 0, 1 core per unit. */
2501#endif
2502 pCurLeaf->uEcx = 0; /* Node ID 0, 1 node per CPU. */
2503 }
2504 else
2505 {
2506 Assert(pCpum->GuestFeatures.enmCpuVendor != CPUMCPUVENDOR_AMD);
2507 Assert(pCpum->GuestFeatures.enmCpuVendor != CPUMCPUVENDOR_HYGON);
2508 pCurLeaf->uEbx = 0; /* Reserved. */
2509 pCurLeaf->uEcx = 0; /* Reserved. */
2510 }
2511 pCurLeaf->uEdx = 0; /* Reserved. */
2512 uSubLeaf++;
2513 }
2514
2515 /* Cpuid 0x8000001f...0x8ffffffd: Unknown.
2516 * We don't know these and what they mean, so remove them. */
2517 cpumR3CpuIdRemoveRange(pCpum->GuestInfo.paCpuIdLeavesR3, &pCpum->GuestInfo.cCpuIdLeaves,
2518 UINT32_C(0x8000001f), UINT32_C(0x8ffffffd));
2519
2520 /* Cpuid 0x8ffffffe: Mystery AMD K6 leaf.
2521 * Just pass it thru for now. */
2522
2523 /* Cpuid 0x8fffffff: Mystery hammer time leaf!
2524 * Just pass it thru for now. */
2525
2526 /* Cpuid 0xc0000000: Centaur stuff.
2527 * Harmless, pass it thru. */
2528
2529 /* Cpuid 0xc0000001: Centaur features.
2530 * VIA: EAX - Family, model, stepping.
2531 * EDX - Centaur extended feature flags. Nothing interesting, except may
2532 * FEMMS (bit 5), but VIA marks it as 'reserved', so never mind.
2533 * EBX, ECX - reserved.
2534 * We keep EAX but strips the rest.
2535 */
2536 uSubLeaf = 0;
2537 while ((pCurLeaf = cpumR3CpuIdGetExactLeaf(pCpum, UINT32_C(0xc0000001), uSubLeaf)) != NULL)
2538 {
2539 pCurLeaf->uEbx = 0;
2540 pCurLeaf->uEcx = 0;
2541 pCurLeaf->uEdx = 0; /* Bits 0 thru 9 are documented on sandpil.org, but we don't want them, except maybe 5 (FEMMS). */
2542 uSubLeaf++;
2543 }
2544
2545 /* Cpuid 0xc0000002: Old Centaur Current Performance Data.
2546 * We only have fixed stale values, but should be harmless. */
2547
2548 /* Cpuid 0xc0000003: Reserved.
2549 * We zero this since we don't know what it may have been used for.
2550 */
2551 cpumR3CpuIdZeroLeaf(pCpum, UINT32_C(0xc0000003));
2552
2553 /* Cpuid 0xc0000004: Centaur Performance Info.
2554 * We only have fixed stale values, but should be harmless. */
2555
2556
2557 /* Cpuid 0xc0000005...0xcfffffff: Unknown.
2558 * We don't know these and what they mean, so remove them. */
2559 cpumR3CpuIdRemoveRange(pCpum->GuestInfo.paCpuIdLeavesR3, &pCpum->GuestInfo.cCpuIdLeaves,
2560 UINT32_C(0xc0000005), UINT32_C(0xcfffffff));
2561
2562 return VINF_SUCCESS;
2563#undef PORTABLE_DISABLE_FEATURE_BIT
2564#undef PORTABLE_CLEAR_BITS_WHEN
2565}
2566
2567
2568/**
2569 * Reads a value in /CPUM/IsaExts/ node.
2570 *
2571 * @returns VBox status code (error message raised).
2572 * @param pVM The cross context VM structure. (For errors.)
2573 * @param pIsaExts The /CPUM/IsaExts node (can be NULL).
2574 * @param pszValueName The value / extension name.
2575 * @param penmValue Where to return the choice.
2576 * @param enmDefault The default choice.
2577 */
2578static int cpumR3CpuIdReadIsaExtCfg(PVM pVM, PCFGMNODE pIsaExts, const char *pszValueName,
2579 CPUMISAEXTCFG *penmValue, CPUMISAEXTCFG enmDefault)
2580{
2581 /*
2582 * Try integer encoding first.
2583 */
2584 uint64_t uValue;
2585 int rc = CFGMR3QueryInteger(pIsaExts, pszValueName, &uValue);
2586 if (RT_SUCCESS(rc))
2587 switch (uValue)
2588 {
2589 case 0: *penmValue = CPUMISAEXTCFG_DISABLED; break;
2590 case 1: *penmValue = CPUMISAEXTCFG_ENABLED_SUPPORTED; break;
2591 case 2: *penmValue = CPUMISAEXTCFG_ENABLED_ALWAYS; break;
2592 case 9: *penmValue = CPUMISAEXTCFG_ENABLED_PORTABLE; break;
2593 default:
2594 return VMSetError(pVM, VERR_CPUM_INVALID_CONFIG_VALUE, RT_SRC_POS,
2595 "Invalid config value for '/CPUM/IsaExts/%s': %llu (expected 0/'disabled', 1/'enabled', 2/'portable', or 9/'forced')",
2596 pszValueName, uValue);
2597 }
2598 /*
2599 * If missing, use default.
2600 */
2601 else if (rc == VERR_CFGM_VALUE_NOT_FOUND || rc == VERR_CFGM_NO_PARENT)
2602 *penmValue = enmDefault;
2603 else
2604 {
2605 if (rc == VERR_CFGM_NOT_INTEGER)
2606 {
2607 /*
2608 * Not an integer, try read it as a string.
2609 */
2610 char szValue[32];
2611 rc = CFGMR3QueryString(pIsaExts, pszValueName, szValue, sizeof(szValue));
2612 if (RT_SUCCESS(rc))
2613 {
2614 RTStrToLower(szValue);
2615 size_t cchValue = strlen(szValue);
2616#define EQ(a_str) (cchValue == sizeof(a_str) - 1U && memcmp(szValue, a_str, sizeof(a_str) - 1))
2617 if ( EQ("disabled") || EQ("disable") || EQ("off") || EQ("no"))
2618 *penmValue = CPUMISAEXTCFG_DISABLED;
2619 else if (EQ("enabled") || EQ("enable") || EQ("on") || EQ("yes"))
2620 *penmValue = CPUMISAEXTCFG_ENABLED_SUPPORTED;
2621 else if (EQ("forced") || EQ("force") || EQ("always"))
2622 *penmValue = CPUMISAEXTCFG_ENABLED_ALWAYS;
2623 else if (EQ("portable"))
2624 *penmValue = CPUMISAEXTCFG_ENABLED_PORTABLE;
2625 else if (EQ("default") || EQ("def"))
2626 *penmValue = enmDefault;
2627 else
2628 return VMSetError(pVM, VERR_CPUM_INVALID_CONFIG_VALUE, RT_SRC_POS,
2629 "Invalid config value for '/CPUM/IsaExts/%s': '%s' (expected 0/'disabled', 1/'enabled', 2/'portable', or 9/'forced')",
2630 pszValueName, uValue);
2631#undef EQ
2632 }
2633 }
2634 if (RT_FAILURE(rc))
2635 return VMSetError(pVM, rc, RT_SRC_POS, "Error reading config value '/CPUM/IsaExts/%s': %Rrc", pszValueName, rc);
2636 }
2637 return VINF_SUCCESS;
2638}
2639
2640
2641/**
2642 * Reads a value in /CPUM/IsaExts/ node, forcing it to DISABLED if wanted.
2643 *
2644 * @returns VBox status code (error message raised).
2645 * @param pVM The cross context VM structure. (For errors.)
2646 * @param pIsaExts The /CPUM/IsaExts node (can be NULL).
2647 * @param pszValueName The value / extension name.
2648 * @param penmValue Where to return the choice.
2649 * @param enmDefault The default choice.
2650 * @param fAllowed Allowed choice. Applied both to the result and to
2651 * the default value.
2652 */
2653static int cpumR3CpuIdReadIsaExtCfgEx(PVM pVM, PCFGMNODE pIsaExts, const char *pszValueName,
2654 CPUMISAEXTCFG *penmValue, CPUMISAEXTCFG enmDefault, bool fAllowed)
2655{
2656 int rc;
2657 if (fAllowed)
2658 rc = cpumR3CpuIdReadIsaExtCfg(pVM, pIsaExts, pszValueName, penmValue, enmDefault);
2659 else
2660 {
2661 rc = cpumR3CpuIdReadIsaExtCfg(pVM, pIsaExts, pszValueName, penmValue, false /*enmDefault*/);
2662 if (RT_SUCCESS(rc) && *penmValue == CPUMISAEXTCFG_ENABLED_ALWAYS)
2663 LogRel(("CPUM: Ignoring forced '%s'\n", pszValueName));
2664 *penmValue = CPUMISAEXTCFG_DISABLED;
2665 }
2666 return rc;
2667}
2668
2669
2670/**
2671 * Reads a value in /CPUM/IsaExts/ node that used to be located in /CPUM/.
2672 *
2673 * @returns VBox status code (error message raised).
2674 * @param pVM The cross context VM structure. (For errors.)
2675 * @param pIsaExts The /CPUM/IsaExts node (can be NULL).
2676 * @param pCpumCfg The /CPUM node (can be NULL).
2677 * @param pszValueName The value / extension name.
2678 * @param penmValue Where to return the choice.
2679 * @param enmDefault The default choice.
2680 */
2681static int cpumR3CpuIdReadIsaExtCfgLegacy(PVM pVM, PCFGMNODE pIsaExts, PCFGMNODE pCpumCfg, const char *pszValueName,
2682 CPUMISAEXTCFG *penmValue, CPUMISAEXTCFG enmDefault)
2683{
2684 if (CFGMR3Exists(pCpumCfg, pszValueName))
2685 {
2686 if (!CFGMR3Exists(pIsaExts, pszValueName))
2687 LogRel(("Warning: /CPUM/%s is deprecated, use /CPUM/IsaExts/%s instead.\n", pszValueName, pszValueName));
2688 else
2689 return VMSetError(pVM, VERR_DUPLICATE, RT_SRC_POS,
2690 "Duplicate config values '/CPUM/%s' and '/CPUM/IsaExts/%s' - please remove the former!",
2691 pszValueName, pszValueName);
2692
2693 bool fLegacy;
2694 int rc = CFGMR3QueryBoolDef(pCpumCfg, pszValueName, &fLegacy, enmDefault != CPUMISAEXTCFG_DISABLED);
2695 if (RT_SUCCESS(rc))
2696 {
2697 *penmValue = fLegacy;
2698 return VINF_SUCCESS;
2699 }
2700 return VMSetError(pVM, VERR_DUPLICATE, RT_SRC_POS, "Error querying '/CPUM/%s': %Rrc", pszValueName, rc);
2701 }
2702
2703 return cpumR3CpuIdReadIsaExtCfg(pVM, pIsaExts, pszValueName, penmValue, enmDefault);
2704}
2705
2706
2707static int cpumR3CpuIdReadConfig(PVM pVM, PCPUMCPUIDCONFIG pConfig, PCFGMNODE pCpumCfg, bool fNestedPagingAndFullGuestExec)
2708{
2709 int rc;
2710
2711 /** @cfgm{/CPUM/PortableCpuIdLevel, 8-bit, 0, 3, 0}
2712 * When non-zero CPUID features that could cause portability issues will be
2713 * stripped. The higher the value the more features gets stripped. Higher
2714 * values should only be used when older CPUs are involved since it may
2715 * harm performance and maybe also cause problems with specific guests. */
2716 rc = CFGMR3QueryU8Def(pCpumCfg, "PortableCpuIdLevel", &pVM->cpum.s.u8PortableCpuIdLevel, 0);
2717 AssertLogRelRCReturn(rc, rc);
2718
2719 /** @cfgm{/CPUM/GuestCpuName, string}
2720 * The name of the CPU we're to emulate. The default is the host CPU.
2721 * Note! CPUs other than "host" one is currently unsupported. */
2722 rc = CFGMR3QueryStringDef(pCpumCfg, "GuestCpuName", pConfig->szCpuName, sizeof(pConfig->szCpuName), "host");
2723 AssertLogRelRCReturn(rc, rc);
2724
2725 /** @cfgm{/CPUM/NT4LeafLimit, boolean, false}
2726 * Limit the number of standard CPUID leaves to 0..3 to prevent NT4 from
2727 * bugchecking with MULTIPROCESSOR_CONFIGURATION_NOT_SUPPORTED (0x3e).
2728 * This option corresponds somewhat to IA32_MISC_ENABLES.BOOT_NT4[bit 22].
2729 */
2730 rc = CFGMR3QueryBoolDef(pCpumCfg, "NT4LeafLimit", &pConfig->fNt4LeafLimit, false);
2731 AssertLogRelRCReturn(rc, rc);
2732
2733 /** @cfgm{/CPUM/InvariantTsc, boolean, true}
2734 * Pass-through the invariant TSC flag in 0x80000007 if available on the host
2735 * CPU. On AMD CPUs, users may wish to suppress it to avoid trouble from older
2736 * 64-bit linux guests which assume the presence of AMD performance counters
2737 * that we do not virtualize.
2738 */
2739 rc = CFGMR3QueryBoolDef(pCpumCfg, "InvariantTsc", &pConfig->fInvariantTsc, true);
2740 AssertLogRelRCReturn(rc, rc);
2741
2742 /** @cfgm{/CPUM/InvariantApic, boolean, true}
2743 * Set the Always Running APIC Timer (ARAT) flag in lea if true; otherwise
2744 * pass through the host setting. The Windows 10/11 HAL won't use APIC timers
2745 * unless the ARAT bit is set. Note that both Intel and AMD set this bit.
2746 */
2747 rc = CFGMR3QueryBoolDef(pCpumCfg, "InvariantApic", &pConfig->fInvariantApic, true);
2748 AssertLogRelRCReturn(rc, rc);
2749
2750 /** @cfgm{/CPUM/ForceVme, boolean, false}
2751 * Always expose the VME (Virtual-8086 Mode Extensions) capability if true.
2752 * By default the flag is passed thru as is from the host CPU, except
2753 * on AMD Ryzen CPUs where it's masked to avoid trouble with XP/Server 2003
2754 * guests and DOS boxes in general.
2755 */
2756 rc = CFGMR3QueryBoolDef(pCpumCfg, "ForceVme", &pConfig->fForceVme, false);
2757 AssertLogRelRCReturn(rc, rc);
2758
2759 /** @cfgm{/CPUM/MaxIntelFamilyModelStep, uint32_t, UINT32_MAX}
2760 * Restrict the reported CPU family+model+stepping of intel CPUs. This is
2761 * probably going to be a temporary hack, so don't depend on this.
2762 * The 1st byte of the value is the stepping, the 2nd byte value is the model
2763 * number and the 3rd byte value is the family, and the 4th value must be zero.
2764 */
2765 rc = CFGMR3QueryU32Def(pCpumCfg, "MaxIntelFamilyModelStep", &pConfig->uMaxIntelFamilyModelStep, UINT32_MAX);
2766 AssertLogRelRCReturn(rc, rc);
2767
2768 /** @cfgm{/CPUM/MaxStdLeaf, uint32_t, 0x00000016}
2769 * The last standard leaf to keep. The actual last value that is stored in EAX
2770 * is RT_MAX(CPUID[0].EAX,/CPUM/MaxStdLeaf). Leaves beyond the max leaf are
2771 * removed. (This works independently of and differently from NT4LeafLimit.)
2772 * The default is usually set to what we're able to reasonably sanitize.
2773 */
2774 rc = CFGMR3QueryU32Def(pCpumCfg, "MaxStdLeaf", &pConfig->uMaxStdLeaf, UINT32_C(0x00000016));
2775 AssertLogRelRCReturn(rc, rc);
2776
2777 /** @cfgm{/CPUM/MaxExtLeaf, uint32_t, 0x8000001e}
2778 * The last extended leaf to keep. The actual last value that is stored in EAX
2779 * is RT_MAX(CPUID[0x80000000].EAX,/CPUM/MaxStdLeaf). Leaves beyond the max
2780 * leaf are removed. The default is set to what we're able to sanitize.
2781 */
2782 rc = CFGMR3QueryU32Def(pCpumCfg, "MaxExtLeaf", &pConfig->uMaxExtLeaf, UINT32_C(0x8000001e));
2783 AssertLogRelRCReturn(rc, rc);
2784
2785 /** @cfgm{/CPUM/MaxCentaurLeaf, uint32_t, 0xc0000004}
2786 * The last extended leaf to keep. The actual last value that is stored in EAX
2787 * is RT_MAX(CPUID[0xc0000000].EAX,/CPUM/MaxCentaurLeaf). Leaves beyond the max
2788 * leaf are removed. The default is set to what we're able to sanitize.
2789 */
2790 rc = CFGMR3QueryU32Def(pCpumCfg, "MaxCentaurLeaf", &pConfig->uMaxCentaurLeaf, UINT32_C(0xc0000004));
2791 AssertLogRelRCReturn(rc, rc);
2792
2793 bool fQueryNestedHwvirt = false
2794#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
2795 || pVM->cpum.s.HostFeatures.enmCpuVendor == CPUMCPUVENDOR_AMD
2796 || pVM->cpum.s.HostFeatures.enmCpuVendor == CPUMCPUVENDOR_HYGON
2797#endif
2798#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
2799 || pVM->cpum.s.HostFeatures.enmCpuVendor == CPUMCPUVENDOR_INTEL
2800 || pVM->cpum.s.HostFeatures.enmCpuVendor == CPUMCPUVENDOR_VIA
2801#endif
2802 ;
2803 if (fQueryNestedHwvirt)
2804 {
2805 /** @cfgm{/CPUM/NestedHWVirt, bool, false}
2806 * Whether to expose the hardware virtualization (VMX/SVM) feature to the guest.
2807 * The default is false, and when enabled requires a 64-bit CPU with support for
2808 * nested-paging and AMD-V or unrestricted guest mode.
2809 */
2810 rc = CFGMR3QueryBoolDef(pCpumCfg, "NestedHWVirt", &pConfig->fNestedHWVirt, false);
2811 AssertLogRelRCReturn(rc, rc);
2812 if (pConfig->fNestedHWVirt)
2813 {
2814 /** @todo Think about enabling this later with NEM/KVM. */
2815 if (VM_IS_NEM_ENABLED(pVM))
2816 {
2817 LogRel(("CPUM: Warning! Can't turn on nested VT-x/AMD-V when NEM is used! (later)\n"));
2818 pConfig->fNestedHWVirt = false;
2819 }
2820 else if (!fNestedPagingAndFullGuestExec)
2821 return VMSetError(pVM, VERR_CPUM_INVALID_HWVIRT_CONFIG, RT_SRC_POS,
2822 "Cannot enable nested VT-x/AMD-V without nested-paging and unrestricted guest execution!\n");
2823 }
2824 }
2825
2826 /*
2827 * Instruction Set Architecture (ISA) Extensions.
2828 */
2829 PCFGMNODE pIsaExts = CFGMR3GetChild(pCpumCfg, "IsaExts");
2830 if (pIsaExts)
2831 {
2832 rc = CFGMR3ValidateConfig(pIsaExts, "/CPUM/IsaExts/",
2833 "CMPXCHG16B"
2834 "|MONITOR"
2835 "|MWaitExtensions"
2836 "|SSE4.1"
2837 "|SSE4.2"
2838 "|XSAVE"
2839 "|AVX"
2840 "|AVX2"
2841 "|AESNI"
2842 "|PCLMUL"
2843 "|POPCNT"
2844 "|MOVBE"
2845 "|RDRAND"
2846 "|RDSEED"
2847 "|ADX"
2848 "|CLFLUSHOPT"
2849 "|SHA"
2850 "|FSGSBASE"
2851 "|PCID"
2852 "|INVPCID"
2853 "|FlushCmdMsr"
2854 "|FMA"
2855 "|F16C"
2856 "|ABM"
2857 "|SSE4A"
2858 "|MISALNSSE"
2859 "|3DNOWPRF"
2860 "|AXMMX"
2861 , "" /*pszValidNodes*/, "CPUM" /*pszWho*/, 0 /*uInstance*/);
2862 if (RT_FAILURE(rc))
2863 return rc;
2864 }
2865
2866 /** @cfgm{/CPUM/IsaExts/CMPXCHG16B, boolean, true}
2867 * Expose CMPXCHG16B to the guest if available. All host CPUs which support
2868 * hardware virtualization have it.
2869 */
2870 rc = cpumR3CpuIdReadIsaExtCfgLegacy(pVM, pIsaExts, pCpumCfg, "CMPXCHG16B", &pConfig->enmCmpXchg16b, true);
2871 AssertLogRelRCReturn(rc, rc);
2872
2873 /** @cfgm{/CPUM/IsaExts/MONITOR, boolean, true}
2874 * Expose MONITOR/MWAIT instructions to the guest.
2875 */
2876 rc = cpumR3CpuIdReadIsaExtCfgLegacy(pVM, pIsaExts, pCpumCfg, "MONITOR", &pConfig->enmMonitor, true);
2877 AssertLogRelRCReturn(rc, rc);
2878
2879 /** @cfgm{/CPUM/IsaExts/MWaitExtensions, boolean, false}
2880 * Expose MWAIT extended features to the guest. For now we expose just MWAIT
2881 * break on interrupt feature (bit 1).
2882 */
2883 rc = cpumR3CpuIdReadIsaExtCfgLegacy(pVM, pIsaExts, pCpumCfg, "MWaitExtensions", &pConfig->enmMWaitExtensions, false);
2884 AssertLogRelRCReturn(rc, rc);
2885
2886 /** @cfgm{/CPUM/IsaExts/SSE4.1, boolean, true}
2887 * Expose SSE4.1 to the guest if available.
2888 */
2889 rc = cpumR3CpuIdReadIsaExtCfgLegacy(pVM, pIsaExts, pCpumCfg, "SSE4.1", &pConfig->enmSse41, true);
2890 AssertLogRelRCReturn(rc, rc);
2891
2892 /** @cfgm{/CPUM/IsaExts/SSE4.2, boolean, true}
2893 * Expose SSE4.2 to the guest if available.
2894 */
2895 rc = cpumR3CpuIdReadIsaExtCfgLegacy(pVM, pIsaExts, pCpumCfg, "SSE4.2", &pConfig->enmSse42, true);
2896 AssertLogRelRCReturn(rc, rc);
2897
2898 bool const fMayHaveXSave = pVM->cpum.s.HostFeatures.fXSaveRstor
2899 && pVM->cpum.s.HostFeatures.fOpSysXSaveRstor
2900 && ( VM_IS_NEM_ENABLED(pVM)
2901 ? NEMHCGetFeatures(pVM) & NEM_FEAT_F_XSAVE_XRSTOR
2902 : VM_IS_EXEC_ENGINE_IEM(pVM)
2903 ? true
2904 : fNestedPagingAndFullGuestExec);
2905 uint64_t const fXStateHostMask = pVM->cpum.s.fXStateHostMask;
2906
2907 /** @cfgm{/CPUM/IsaExts/XSAVE, boolean, depends}
2908 * Expose XSAVE/XRSTOR to the guest if available. For the time being the
2909 * default is to only expose this to VMs with nested paging and AMD-V or
2910 * unrestricted guest execution mode. Not possible to force this one without
2911 * host support at the moment.
2912 */
2913 rc = cpumR3CpuIdReadIsaExtCfgEx(pVM, pIsaExts, "XSAVE", &pConfig->enmXSave, true,
2914 fMayHaveXSave /*fAllowed*/);
2915 AssertLogRelRCReturn(rc, rc);
2916
2917 /** @cfgm{/CPUM/IsaExts/AVX, boolean, depends}
2918 * Expose the AVX instruction set extensions to the guest if available and
2919 * XSAVE is exposed too. For the time being the default is to only expose this
2920 * to VMs with nested paging and AMD-V or unrestricted guest execution mode.
2921 */
2922 rc = cpumR3CpuIdReadIsaExtCfgEx(pVM, pIsaExts, "AVX", &pConfig->enmAvx, fNestedPagingAndFullGuestExec,
2923 fMayHaveXSave && pConfig->enmXSave && (fXStateHostMask & XSAVE_C_YMM) /*fAllowed*/);
2924 AssertLogRelRCReturn(rc, rc);
2925
2926 /** @cfgm{/CPUM/IsaExts/AVX2, boolean, depends}
2927 * Expose the AVX2 instruction set extensions to the guest if available and
2928 * XSAVE is exposed too. For the time being the default is to only expose this
2929 * to VMs with nested paging and AMD-V or unrestricted guest execution mode.
2930 */
2931 rc = cpumR3CpuIdReadIsaExtCfgEx(pVM, pIsaExts, "AVX2", &pConfig->enmAvx2, fNestedPagingAndFullGuestExec /* temporarily */,
2932 fMayHaveXSave && pConfig->enmXSave && (fXStateHostMask & XSAVE_C_YMM) /*fAllowed*/);
2933 AssertLogRelRCReturn(rc, rc);
2934
2935 /** @cfgm{/CPUM/IsaExts/AESNI, isaextcfg, depends}
2936 * Whether to expose the AES instructions to the guest. For the time being the
2937 * default is to only do this for VMs with nested paging and AMD-V or
2938 * unrestricted guest mode.
2939 */
2940 rc = cpumR3CpuIdReadIsaExtCfg(pVM, pIsaExts, "AESNI", &pConfig->enmAesNi, fNestedPagingAndFullGuestExec);
2941 AssertLogRelRCReturn(rc, rc);
2942
2943 /** @cfgm{/CPUM/IsaExts/PCLMUL, isaextcfg, depends}
2944 * Whether to expose the PCLMULQDQ instructions to the guest. For the time
2945 * being the default is to only do this for VMs with nested paging and AMD-V or
2946 * unrestricted guest mode.
2947 */
2948 rc = cpumR3CpuIdReadIsaExtCfg(pVM, pIsaExts, "PCLMUL", &pConfig->enmPClMul, fNestedPagingAndFullGuestExec);
2949 AssertLogRelRCReturn(rc, rc);
2950
2951 /** @cfgm{/CPUM/IsaExts/POPCNT, isaextcfg, true}
2952 * Whether to expose the POPCNT instructions to the guest.
2953 */
2954 rc = cpumR3CpuIdReadIsaExtCfg(pVM, pIsaExts, "POPCNT", &pConfig->enmPopCnt, CPUMISAEXTCFG_ENABLED_SUPPORTED);
2955 AssertLogRelRCReturn(rc, rc);
2956
2957 /** @cfgm{/CPUM/IsaExts/MOVBE, isaextcfg, depends}
2958 * Whether to expose the MOVBE instructions to the guest. For the time
2959 * being the default is to only do this for VMs with nested paging and AMD-V or
2960 * unrestricted guest mode.
2961 */
2962 rc = cpumR3CpuIdReadIsaExtCfg(pVM, pIsaExts, "MOVBE", &pConfig->enmMovBe, true);
2963 AssertLogRelRCReturn(rc, rc);
2964
2965 /** @cfgm{/CPUM/IsaExts/RDRAND, isaextcfg, depends}
2966 * Whether to expose the RDRAND instructions to the guest. For the time being
2967 * the default is to only do this for VMs with nested paging and AMD-V or
2968 * unrestricted guest mode.
2969 */
2970 rc = cpumR3CpuIdReadIsaExtCfg(pVM, pIsaExts, "RDRAND", &pConfig->enmRdRand, fNestedPagingAndFullGuestExec);
2971 AssertLogRelRCReturn(rc, rc);
2972
2973 /** @cfgm{/CPUM/IsaExts/RDSEED, isaextcfg, depends}
2974 * Whether to expose the RDSEED instructions to the guest. For the time being
2975 * the default is to only do this for VMs with nested paging and AMD-V or
2976 * unrestricted guest mode.
2977 */
2978 rc = cpumR3CpuIdReadIsaExtCfg(pVM, pIsaExts, "RDSEED", &pConfig->enmRdSeed, fNestedPagingAndFullGuestExec);
2979 AssertLogRelRCReturn(rc, rc);
2980
2981 /** @cfgm{/CPUM/IsaExts/ADX, isaextcfg, depends}
2982 * Whether to expose the ADX instructions to the guest. For the time being
2983 * the default is to only do this for VMs with nested paging and AMD-V or
2984 * unrestricted guest mode.
2985 */
2986 rc = cpumR3CpuIdReadIsaExtCfg(pVM, pIsaExts, "ADX", &pConfig->enmAdx, fNestedPagingAndFullGuestExec);
2987 AssertLogRelRCReturn(rc, rc);
2988
2989 /** @cfgm{/CPUM/IsaExts/CLFLUSHOPT, isaextcfg, depends}
2990 * Whether to expose the CLFLUSHOPT instructions to the guest. For the time
2991 * being the default is to only do this for VMs with nested paging and AMD-V or
2992 * unrestricted guest mode.
2993 */
2994 rc = cpumR3CpuIdReadIsaExtCfg(pVM, pIsaExts, "CLFLUSHOPT", &pConfig->enmCLFlushOpt, fNestedPagingAndFullGuestExec);
2995 AssertLogRelRCReturn(rc, rc);
2996
2997 /** @cfgm{/CPUM/IsaExts/SHA, isaextcfg, depends}
2998 * Whether to expose the SHA instructions to the guest. For the time being
2999 * the default is to only do this for VMs with nested paging and AMD-V or
3000 * unrestricted guest mode.
3001 */
3002 rc = cpumR3CpuIdReadIsaExtCfg(pVM, pIsaExts, "SHA", &pConfig->enmSha, fNestedPagingAndFullGuestExec);
3003 AssertLogRelRCReturn(rc, rc);
3004
3005 /** @cfgm{/CPUM/IsaExts/FSGSBASE, isaextcfg, true}
3006 * Whether to expose the read/write FSGSBASE instructions to the guest.
3007 */
3008 rc = cpumR3CpuIdReadIsaExtCfg(pVM, pIsaExts, "FSGSBASE", &pConfig->enmFsGsBase, true);
3009 AssertLogRelRCReturn(rc, rc);
3010
3011 /** @cfgm{/CPUM/IsaExts/PCID, isaextcfg, true}
3012 * Whether to expose the PCID feature to the guest.
3013 */
3014 rc = cpumR3CpuIdReadIsaExtCfg(pVM, pIsaExts, "PCID", &pConfig->enmPcid, pConfig->enmFsGsBase);
3015 AssertLogRelRCReturn(rc, rc);
3016
3017 /** @cfgm{/CPUM/IsaExts/INVPCID, isaextcfg, true}
3018 * Whether to expose the INVPCID instruction to the guest.
3019 */
3020 rc = cpumR3CpuIdReadIsaExtCfg(pVM, pIsaExts, "INVPCID", &pConfig->enmInvpcid, pConfig->enmFsGsBase);
3021 AssertLogRelRCReturn(rc, rc);
3022
3023 /** @cfgm{/CPUM/IsaExts/FlushCmdMsr, isaextcfg, true}
3024 * Whether to expose the IA32_FLUSH_CMD MSR to the guest.
3025 */
3026 rc = cpumR3CpuIdReadIsaExtCfg(pVM, pIsaExts, "FlushCmdMsr", &pConfig->enmFlushCmdMsr, CPUMISAEXTCFG_ENABLED_SUPPORTED);
3027 AssertLogRelRCReturn(rc, rc);
3028
3029 /** @cfgm{/CPUM/IsaExts/MdsClear, isaextcfg, true}
3030 * Whether to advertise the VERW and MDS related IA32_FLUSH_CMD MSR bits to
3031 * the guest. Requires FlushCmdMsr to be present too.
3032 */
3033 rc = cpumR3CpuIdReadIsaExtCfg(pVM, pIsaExts, "MdsClear", &pConfig->enmMdsClear, CPUMISAEXTCFG_ENABLED_SUPPORTED);
3034 AssertLogRelRCReturn(rc, rc);
3035
3036 /** @cfgm{/CPUM/IsaExts/ArchCapMSr, isaextcfg, true}
3037 * Whether to expose the MSR_IA32_ARCH_CAPABILITIES MSR to the guest.
3038 */
3039 rc = cpumR3CpuIdReadIsaExtCfg(pVM, pIsaExts, "ArchCapMsr", &pConfig->enmArchCapMsr, CPUMISAEXTCFG_ENABLED_SUPPORTED_OR_NOT_AMD64);
3040 AssertLogRelRCReturn(rc, rc);
3041
3042 /** @cfgm{/CPUM/IsaExts/FMA, boolean, depends}
3043 * Expose the FMA instruction set extensions to the guest if available and
3044 * XSAVE is exposed too. For the time being the default is to only expose this
3045 * to VMs with nested paging and AMD-V or unrestricted guest execution mode.
3046 */
3047 rc = cpumR3CpuIdReadIsaExtCfgEx(pVM, pIsaExts, "FMA", &pConfig->enmFma, fNestedPagingAndFullGuestExec /* temporarily */,
3048 fMayHaveXSave && pConfig->enmXSave && (fXStateHostMask & XSAVE_C_YMM) /*fAllowed*/);
3049 AssertLogRelRCReturn(rc, rc);
3050
3051 /** @cfgm{/CPUM/IsaExts/F16C, boolean, depends}
3052 * Expose the F16C instruction set extensions to the guest if available and
3053 * XSAVE is exposed too. For the time being the default is to only expose this
3054 * to VMs with nested paging and AMD-V or unrestricted guest execution mode.
3055 */
3056 rc = cpumR3CpuIdReadIsaExtCfgEx(pVM, pIsaExts, "F16C", &pConfig->enmF16c, fNestedPagingAndFullGuestExec /* temporarily */,
3057 fMayHaveXSave && pConfig->enmXSave && (fXStateHostMask & XSAVE_C_YMM) /*fAllowed*/);
3058 AssertLogRelRCReturn(rc, rc);
3059
3060
3061 /* AMD: */
3062
3063 /** @cfgm{/CPUM/IsaExts/ABM, isaextcfg, true}
3064 * Whether to expose the AMD ABM instructions to the guest.
3065 */
3066 rc = cpumR3CpuIdReadIsaExtCfg(pVM, pIsaExts, "ABM", &pConfig->enmAbm, CPUMISAEXTCFG_ENABLED_SUPPORTED);
3067 AssertLogRelRCReturn(rc, rc);
3068
3069 /** @cfgm{/CPUM/IsaExts/SSE4A, isaextcfg, depends}
3070 * Whether to expose the AMD SSE4A instructions to the guest. For the time
3071 * being the default is to only do this for VMs with nested paging and AMD-V or
3072 * unrestricted guest mode.
3073 */
3074 rc = cpumR3CpuIdReadIsaExtCfg(pVM, pIsaExts, "SSE4A", &pConfig->enmSse4A, fNestedPagingAndFullGuestExec);
3075 AssertLogRelRCReturn(rc, rc);
3076
3077 /** @cfgm{/CPUM/IsaExts/MISALNSSE, isaextcfg, depends}
3078 * Whether to expose the AMD MisAlSse feature (MXCSR flag 17) to the guest. For
3079 * the time being the default is to only do this for VMs with nested paging and
3080 * AMD-V or unrestricted guest mode.
3081 */
3082 rc = cpumR3CpuIdReadIsaExtCfg(pVM, pIsaExts, "MISALNSSE", &pConfig->enmMisAlnSse, fNestedPagingAndFullGuestExec);
3083 AssertLogRelRCReturn(rc, rc);
3084
3085 /** @cfgm{/CPUM/IsaExts/3DNOWPRF, isaextcfg, depends}
3086 * Whether to expose the AMD 3D Now! prefetch instructions to the guest.
3087 * For the time being the default is to only do this for VMs with nested paging
3088 * and AMD-V or unrestricted guest mode.
3089 */
3090 rc = cpumR3CpuIdReadIsaExtCfg(pVM, pIsaExts, "3DNOWPRF", &pConfig->enm3dNowPrf, fNestedPagingAndFullGuestExec);
3091 AssertLogRelRCReturn(rc, rc);
3092
3093 /** @cfgm{/CPUM/IsaExts/AXMMX, isaextcfg, depends}
3094 * Whether to expose the AMD's MMX Extensions to the guest. For the time being
3095 * the default is to only do this for VMs with nested paging and AMD-V or
3096 * unrestricted guest mode.
3097 */
3098 rc = cpumR3CpuIdReadIsaExtCfg(pVM, pIsaExts, "AXMMX", &pConfig->enmAmdExtMmx, fNestedPagingAndFullGuestExec);
3099 AssertLogRelRCReturn(rc, rc);
3100
3101 return VINF_SUCCESS;
3102}
3103
3104
3105/**
3106 * Checks and fixes the maximum physical address width supported by the
3107 * variable-range MTRR MSRs to be consistent with what is reported in CPUID.
3108 *
3109 * @returns VBox status code.
3110 * @param pVM The cross context VM structure.
3111 * @param cVarMtrrs The number of variable-range MTRRs reported to the guest.
3112 */
3113static int cpumR3FixVarMtrrPhysAddrWidths(PVM pVM, uint8_t const cVarMtrrs)
3114{
3115 AssertLogRelMsgReturn(cVarMtrrs <= RT_ELEMENTS(pVM->apCpusR3[0]->cpum.s.GuestMsrs.msr.aMtrrVarMsrs),
3116 ("Invalid number of variable range MTRRs reported (%u)\n", cVarMtrrs),
3117 VERR_CPUM_IPE_2);
3118
3119 /*
3120 * CPUID determines the actual maximum physical address width reported and supported.
3121 * If the CPU DB profile reported fewer address bits, we must correct it here by
3122 * updating the MSR write #GP masks of all the variable-range MTRR MSRs. Otherwise,
3123 * they cause problems when guests write to these MTRR MSRs, see @bugref{10498#c32}.
3124 */
3125 PCPUMMSRRANGE pBaseRange0 = cpumLookupMsrRange(pVM, MSR_IA32_MTRR_PHYSBASE0);
3126 AssertLogRelMsgReturn(pBaseRange0, ("Failed to lookup the IA32_MTRR_PHYSBASE[0] MSR range\n"), VERR_NOT_FOUND);
3127
3128 PCPUMMSRRANGE pMaskRange0 = cpumLookupMsrRange(pVM, MSR_IA32_MTRR_PHYSMASK0);
3129 AssertLogRelMsgReturn(pMaskRange0, ("Failed to lookup the IA32_MTRR_PHYSMASK[0] MSR range\n"), VERR_NOT_FOUND);
3130
3131 uint64_t const fPhysBaseWrGpMask = pBaseRange0->fWrGpMask;
3132 uint64_t const fPhysMaskWrGpMask = pMaskRange0->fWrGpMask;
3133
3134 uint8_t const cGuestMaxPhysAddrWidth = pVM->cpum.s.GuestFeatures.cMaxPhysAddrWidth;
3135 uint8_t const cProfilePhysBaseMaxPhysAddrWidth = ASMBitLastSetU64(~fPhysBaseWrGpMask);
3136 uint8_t const cProfilePhysMaskMaxPhysAddrWidth = ASMBitLastSetU64(~fPhysMaskWrGpMask);
3137
3138 AssertLogRelMsgReturn(cProfilePhysBaseMaxPhysAddrWidth == cProfilePhysMaskMaxPhysAddrWidth,
3139 ("IA32_MTRR_PHYSBASE and IA32_MTRR_PHYSMASK report different physical address widths (%u and %u)\n",
3140 cProfilePhysBaseMaxPhysAddrWidth, cProfilePhysMaskMaxPhysAddrWidth),
3141 VERR_CPUM_IPE_2);
3142 AssertLogRelMsgReturn(cProfilePhysBaseMaxPhysAddrWidth > 12 && cProfilePhysBaseMaxPhysAddrWidth <= 64,
3143 ("IA32_MTRR_PHYSBASE and IA32_MTRR_PHYSMASK reports an invalid physical address width of %u bits\n",
3144 cProfilePhysBaseMaxPhysAddrWidth), VERR_CPUM_IPE_2);
3145
3146 if (cProfilePhysBaseMaxPhysAddrWidth < cGuestMaxPhysAddrWidth)
3147 {
3148 uint64_t fNewPhysBaseWrGpMask = fPhysBaseWrGpMask;
3149 uint64_t fNewPhysMaskWrGpMask = fPhysMaskWrGpMask;
3150 int8_t cBits = cGuestMaxPhysAddrWidth - cProfilePhysBaseMaxPhysAddrWidth;
3151 while (cBits)
3152 {
3153 uint64_t const fWrGpAndMask = ~(uint64_t)RT_BIT_64(cProfilePhysBaseMaxPhysAddrWidth + cBits - 1);
3154 fNewPhysBaseWrGpMask &= fWrGpAndMask;
3155 fNewPhysMaskWrGpMask &= fWrGpAndMask;
3156 --cBits;
3157 }
3158
3159 for (uint8_t iVarMtrr = 1; iVarMtrr < cVarMtrrs; iVarMtrr++)
3160 {
3161 PCPUMMSRRANGE pBaseRange = cpumLookupMsrRange(pVM, MSR_IA32_MTRR_PHYSBASE0 + (iVarMtrr * 2));
3162 AssertLogRelMsgReturn(pBaseRange, ("Failed to lookup the IA32_MTRR_PHYSBASE[%u] MSR range\n", iVarMtrr),
3163 VERR_NOT_FOUND);
3164
3165 PCPUMMSRRANGE pMaskRange = cpumLookupMsrRange(pVM, MSR_IA32_MTRR_PHYSMASK0 + (iVarMtrr * 2));
3166 AssertLogRelMsgReturn(pMaskRange, ("Failed to lookup the IA32_MTRR_PHYSMASK[%u] MSR range\n", iVarMtrr),
3167 VERR_NOT_FOUND);
3168
3169 AssertLogRelMsgReturn(pBaseRange->fWrGpMask == fPhysBaseWrGpMask,
3170 ("IA32_MTRR_PHYSBASE[%u] write GP mask (%#016RX64) differs from IA32_MTRR_PHYSBASE[0] write GP mask (%#016RX64)\n",
3171 iVarMtrr, pBaseRange->fWrGpMask, fPhysBaseWrGpMask),
3172 VERR_CPUM_IPE_1);
3173 AssertLogRelMsgReturn(pMaskRange->fWrGpMask == fPhysMaskWrGpMask,
3174 ("IA32_MTRR_PHYSMASK[%u] write GP mask (%#016RX64) differs from IA32_MTRR_PHYSMASK[0] write GP mask (%#016RX64)\n",
3175 iVarMtrr, pMaskRange->fWrGpMask, fPhysMaskWrGpMask),
3176 VERR_CPUM_IPE_1);
3177
3178 pBaseRange->fWrGpMask = fNewPhysBaseWrGpMask;
3179 pMaskRange->fWrGpMask = fNewPhysMaskWrGpMask;
3180 }
3181
3182 pBaseRange0->fWrGpMask = fNewPhysBaseWrGpMask;
3183 pMaskRange0->fWrGpMask = fNewPhysMaskWrGpMask;
3184
3185 LogRel(("CPUM: Updated IA32_MTRR_PHYSBASE[0..%u] MSR write #GP mask (old=%#016RX64 new=%#016RX64)\n",
3186 cVarMtrrs - 1, fPhysBaseWrGpMask, fNewPhysBaseWrGpMask));
3187 LogRel(("CPUM: Updated IA32_MTRR_PHYSMASK[0..%u] MSR write #GP mask (old=%#016RX64 new=%#016RX64)\n",
3188 cVarMtrrs - 1, fPhysMaskWrGpMask, fNewPhysMaskWrGpMask));
3189 }
3190
3191 return VINF_SUCCESS;
3192}
3193
3194
3195/**
3196 * Inserts variable-range MTRR MSR ranges based on the given count.
3197 *
3198 * Since we need to insert the MSRs beyond what the CPU profile has inserted, we
3199 * reinsert the whole range here since the variable-range MTRR MSR read+write
3200 * functions handle ranges as well as the \#GP checking.
3201 *
3202 * @returns VBox status code.
3203 * @param pVM The cross context VM structure.
3204 * @param cVarMtrrs The number of variable-range MTRRs to insert. This must be
3205 * less than or equal to CPUMCTX_MAX_MTRRVAR_COUNT.
3206 */
3207static int cpumR3VarMtrrMsrRangeInsert(PVM pVM, uint8_t const cVarMtrrs)
3208{
3209#ifdef VBOX_WITH_STATISTICS
3210# define CPUM_MTRR_PHYSBASE_MSRRANGE(a_uMsr, a_uValue, a_szName) \
3211 { (a_uMsr), (a_uMsr), kCpumMsrRdFn_Ia32MtrrPhysBaseN, kCpumMsrWrFn_Ia32MtrrPhysBaseN, 0, 0, a_uValue, 0, 0, a_szName, { 0 }, { 0 }, { 0 }, { 0 } }
3212# define CPUM_MTRR_PHYSMASK_MSRRANGE(a_uMsr, a_uValue, a_szName) \
3213 { (a_uMsr), (a_uMsr), kCpumMsrRdFn_Ia32MtrrPhysMaskN, kCpumMsrWrFn_Ia32MtrrPhysMaskN, 0, 0, a_uValue, 0, 0, a_szName, { 0 }, { 0 }, { 0 }, { 0 } }
3214#else
3215# define CPUM_MTRR_PHYSBASE_MSRRANGE(a_uMsr, a_uValue, a_szName) \
3216 { (a_uMsr), (a_uMsr), kCpumMsrRdFn_Ia32MtrrPhysBaseN, kCpumMsrWrFn_Ia32MtrrPhysBaseN, 0, 0, a_uValue, 0, 0, a_szName }
3217# define CPUM_MTRR_PHYSMASK_MSRRANGE(a_uMsr, a_uValue, a_szName) \
3218 { (a_uMsr), (a_uMsr), kCpumMsrRdFn_Ia32MtrrPhysMaskN, kCpumMsrWrFn_Ia32MtrrPhysMaskN, 0, 0, a_uValue, 0, 0, a_szName }
3219#endif
3220 static CPUMMSRRANGE const s_aMsrRanges_MtrrPhysBase[CPUMCTX_MAX_MTRRVAR_COUNT] =
3221 {
3222 CPUM_MTRR_PHYSBASE_MSRRANGE(MSR_IA32_MTRR_PHYSBASE0, 0, "MSR_IA32_MTRR_PHYSBASE0"),
3223 CPUM_MTRR_PHYSBASE_MSRRANGE(MSR_IA32_MTRR_PHYSBASE1, 1, "MSR_IA32_MTRR_PHYSBASE1"),
3224 CPUM_MTRR_PHYSBASE_MSRRANGE(MSR_IA32_MTRR_PHYSBASE2, 2, "MSR_IA32_MTRR_PHYSBASE2"),
3225 CPUM_MTRR_PHYSBASE_MSRRANGE(MSR_IA32_MTRR_PHYSBASE3, 3, "MSR_IA32_MTRR_PHYSBASE3"),
3226 CPUM_MTRR_PHYSBASE_MSRRANGE(MSR_IA32_MTRR_PHYSBASE4, 4, "MSR_IA32_MTRR_PHYSBASE4"),
3227 CPUM_MTRR_PHYSBASE_MSRRANGE(MSR_IA32_MTRR_PHYSBASE5, 5, "MSR_IA32_MTRR_PHYSBASE5"),
3228 CPUM_MTRR_PHYSBASE_MSRRANGE(MSR_IA32_MTRR_PHYSBASE6, 6, "MSR_IA32_MTRR_PHYSBASE6"),
3229 CPUM_MTRR_PHYSBASE_MSRRANGE(MSR_IA32_MTRR_PHYSBASE7, 7, "MSR_IA32_MTRR_PHYSBASE7"),
3230 CPUM_MTRR_PHYSBASE_MSRRANGE(MSR_IA32_MTRR_PHYSBASE8, 8, "MSR_IA32_MTRR_PHYSBASE8"),
3231 CPUM_MTRR_PHYSBASE_MSRRANGE(MSR_IA32_MTRR_PHYSBASE9, 9, "MSR_IA32_MTRR_PHYSBASE9"),
3232 CPUM_MTRR_PHYSBASE_MSRRANGE(MSR_IA32_MTRR_PHYSBASE9 + 2, 10, "MSR_IA32_MTRR_PHYSBASE10"),
3233 CPUM_MTRR_PHYSBASE_MSRRANGE(MSR_IA32_MTRR_PHYSBASE9 + 4, 11, "MSR_IA32_MTRR_PHYSBASE11"),
3234 CPUM_MTRR_PHYSBASE_MSRRANGE(MSR_IA32_MTRR_PHYSBASE9 + 6, 12, "MSR_IA32_MTRR_PHYSBASE12"),
3235 CPUM_MTRR_PHYSBASE_MSRRANGE(MSR_IA32_MTRR_PHYSBASE9 + 8, 13, "MSR_IA32_MTRR_PHYSBASE13"),
3236 CPUM_MTRR_PHYSBASE_MSRRANGE(MSR_IA32_MTRR_PHYSBASE9 + 10, 14, "MSR_IA32_MTRR_PHYSBASE14"),
3237 CPUM_MTRR_PHYSBASE_MSRRANGE(MSR_IA32_MTRR_PHYSBASE9 + 12, 15, "MSR_IA32_MTRR_PHYSBASE15"),
3238 };
3239 static CPUMMSRRANGE const s_aMsrRanges_MtrrPhysMask[CPUMCTX_MAX_MTRRVAR_COUNT] =
3240 {
3241 CPUM_MTRR_PHYSMASK_MSRRANGE(MSR_IA32_MTRR_PHYSMASK0, 0, "MSR_IA32_MTRR_PHYSMASK0"),
3242 CPUM_MTRR_PHYSMASK_MSRRANGE(MSR_IA32_MTRR_PHYSMASK1, 1, "MSR_IA32_MTRR_PHYSMASK1"),
3243 CPUM_MTRR_PHYSMASK_MSRRANGE(MSR_IA32_MTRR_PHYSMASK2, 2, "MSR_IA32_MTRR_PHYSMASK2"),
3244 CPUM_MTRR_PHYSMASK_MSRRANGE(MSR_IA32_MTRR_PHYSMASK3, 3, "MSR_IA32_MTRR_PHYSMASK3"),
3245 CPUM_MTRR_PHYSMASK_MSRRANGE(MSR_IA32_MTRR_PHYSMASK4, 4, "MSR_IA32_MTRR_PHYSMASK4"),
3246 CPUM_MTRR_PHYSMASK_MSRRANGE(MSR_IA32_MTRR_PHYSMASK5, 5, "MSR_IA32_MTRR_PHYSMASK5"),
3247 CPUM_MTRR_PHYSMASK_MSRRANGE(MSR_IA32_MTRR_PHYSMASK6, 6, "MSR_IA32_MTRR_PHYSMASK6"),
3248 CPUM_MTRR_PHYSMASK_MSRRANGE(MSR_IA32_MTRR_PHYSMASK7, 7, "MSR_IA32_MTRR_PHYSMASK7"),
3249 CPUM_MTRR_PHYSMASK_MSRRANGE(MSR_IA32_MTRR_PHYSMASK8, 8, "MSR_IA32_MTRR_PHYSMASK8"),
3250 CPUM_MTRR_PHYSMASK_MSRRANGE(MSR_IA32_MTRR_PHYSMASK9, 9, "MSR_IA32_MTRR_PHYSMASK9"),
3251 CPUM_MTRR_PHYSMASK_MSRRANGE(MSR_IA32_MTRR_PHYSMASK9 + 2, 10, "MSR_IA32_MTRR_PHYSMASK10"),
3252 CPUM_MTRR_PHYSMASK_MSRRANGE(MSR_IA32_MTRR_PHYSMASK9 + 4, 11, "MSR_IA32_MTRR_PHYSMASK11"),
3253 CPUM_MTRR_PHYSMASK_MSRRANGE(MSR_IA32_MTRR_PHYSMASK9 + 6, 12, "MSR_IA32_MTRR_PHYSMASK12"),
3254 CPUM_MTRR_PHYSMASK_MSRRANGE(MSR_IA32_MTRR_PHYSMASK9 + 8, 13, "MSR_IA32_MTRR_PHYSMASK13"),
3255 CPUM_MTRR_PHYSMASK_MSRRANGE(MSR_IA32_MTRR_PHYSMASK9 + 10, 14, "MSR_IA32_MTRR_PHYSMASK14"),
3256 CPUM_MTRR_PHYSMASK_MSRRANGE(MSR_IA32_MTRR_PHYSMASK9 + 12, 15, "MSR_IA32_MTRR_PHYSMASK15"),
3257 };
3258 AssertCompile(RT_ELEMENTS(s_aMsrRanges_MtrrPhysBase) == RT_ELEMENTS(pVM->apCpusR3[0]->cpum.s.GuestMsrs.msr.aMtrrVarMsrs));
3259 AssertCompile(RT_ELEMENTS(s_aMsrRanges_MtrrPhysMask) == RT_ELEMENTS(pVM->apCpusR3[0]->cpum.s.GuestMsrs.msr.aMtrrVarMsrs));
3260
3261 Assert(cVarMtrrs <= RT_ELEMENTS(pVM->apCpusR3[0]->cpum.s.GuestMsrs.msr.aMtrrVarMsrs));
3262 for (unsigned i = 0; i < cVarMtrrs; i++)
3263 {
3264 int rc = CPUMR3MsrRangesInsert(pVM, &s_aMsrRanges_MtrrPhysBase[i]);
3265 AssertLogRelRCReturn(rc, rc);
3266 rc = CPUMR3MsrRangesInsert(pVM, &s_aMsrRanges_MtrrPhysMask[i]);
3267 AssertLogRelRCReturn(rc, rc);
3268 }
3269 return VINF_SUCCESS;
3270
3271#undef CPUM_MTRR_PHYSBASE_MSRRANGE
3272#undef CPUM_MTRR_PHYSMASK_MSRRANGE
3273}
3274
3275
3276/**
3277 * Initialize MTRR capability based on what the guest CPU profile (typically host)
3278 * supports.
3279 *
3280 * @returns VBox status code.
3281 * @param pVM The cross context VM structure.
3282 * @param fMtrrVarCountIsVirt Whether the variable-range MTRR count is fully
3283 * virtualized (@c true) or derived from the CPU
3284 * profile (@c false).
3285 */
3286static int cpumR3InitMtrrCap(PVM pVM, bool fMtrrVarCountIsVirt)
3287{
3288#ifdef RT_ARCH_AMD64
3289 Assert(pVM->cpum.s.HostFeatures.fMtrr);
3290#endif
3291
3292 /* Lookup the number of variable-range MTRRs supported by the CPU profile. */
3293 PCCPUMMSRRANGE pMtrrCapRange = cpumLookupMsrRange(pVM, MSR_IA32_MTRR_CAP);
3294 AssertLogRelMsgReturn(pMtrrCapRange, ("Failed to lookup IA32_MTRR_CAP MSR range\n"), VERR_NOT_FOUND);
3295 uint8_t const cProfileVarRangeRegs = pMtrrCapRange->uValue & MSR_IA32_MTRR_CAP_VCNT_MASK;
3296
3297 /* Construct guest MTRR support capabilities. */
3298 uint8_t const cGuestVarRangeRegs = fMtrrVarCountIsVirt ? CPUMCTX_MAX_MTRRVAR_COUNT
3299 : RT_MIN(cProfileVarRangeRegs, CPUMCTX_MAX_MTRRVAR_COUNT);
3300 uint64_t const uGstMtrrCap = cGuestVarRangeRegs
3301 | MSR_IA32_MTRR_CAP_FIX
3302 | MSR_IA32_MTRR_CAP_WC;
3303 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
3304 {
3305 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
3306 pVCpu->cpum.s.GuestMsrs.msr.MtrrCap = uGstMtrrCap;
3307 pVCpu->cpum.s.GuestMsrs.msr.MtrrDefType = MSR_IA32_MTRR_DEF_TYPE_FIXED_EN
3308 | MSR_IA32_MTRR_DEF_TYPE_MTRR_EN
3309 | X86_MTRR_MT_UC;
3310 }
3311
3312 if (fMtrrVarCountIsVirt)
3313 {
3314 /*
3315 * Insert the full variable-range MTRR MSR range ourselves so it extends beyond what is
3316 * typically reported by the hardware CPU profile.
3317 */
3318 LogRel(("CPUM: Enabled fixed-range MTRRs and %u (virtualized) variable-range MTRRs\n", cGuestVarRangeRegs));
3319 return cpumR3VarMtrrMsrRangeInsert(pVM, cGuestVarRangeRegs);
3320 }
3321
3322 /*
3323 * Ensure that the maximum physical address width supported by the variable-range MTRRs
3324 * are consistent with what is reported to the guest via CPUID.
3325 */
3326 LogRel(("CPUM: Enabled fixed-range MTRRs and %u (CPU profile derived) variable-range MTRRs\n", cGuestVarRangeRegs));
3327 return cpumR3FixVarMtrrPhysAddrWidths(pVM, cGuestVarRangeRegs);
3328}
3329
3330
3331/**
3332 * Initializes the emulated CPU's CPUID & MSR information.
3333 *
3334 * @returns VBox status code.
3335 * @param pVM The cross context VM structure.
3336 * @param pHostMsrs Pointer to the host MSRs.
3337 */
3338int cpumR3InitCpuIdAndMsrs(PVM pVM, PCCPUMMSRS pHostMsrs)
3339{
3340 Assert(pHostMsrs);
3341
3342 PCPUM pCpum = &pVM->cpum.s;
3343 PCFGMNODE pCpumCfg = CFGMR3GetChild(CFGMR3GetRoot(pVM), "CPUM");
3344
3345 /*
3346 * Set the fCpuIdApicFeatureVisible flags so the APIC can assume visibility
3347 * on construction and manage everything from here on.
3348 */
3349 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
3350 {
3351 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
3352 pVCpu->cpum.s.fCpuIdApicFeatureVisible = true;
3353 }
3354
3355 /*
3356 * Read the configuration.
3357 */
3358 CPUMCPUIDCONFIG Config;
3359 RT_ZERO(Config);
3360
3361 bool const fNestedPagingAndFullGuestExec = VM_IS_NEM_ENABLED(pVM)
3362 || HMAreNestedPagingAndFullGuestExecEnabled(pVM);
3363 int rc = cpumR3CpuIdReadConfig(pVM, &Config, pCpumCfg, fNestedPagingAndFullGuestExec);
3364 AssertRCReturn(rc, rc);
3365
3366 /*
3367 * Get the guest CPU data from the database and/or the host.
3368 *
3369 * The CPUID and MSRs are currently living on the regular heap to avoid
3370 * fragmenting the hyper heap (and because there isn't/wasn't any realloc
3371 * API for the hyper heap). This means special cleanup considerations.
3372 */
3373 /** @todo The hyper heap will be removed ASAP, so the final destination is
3374 * now a fixed sized arrays in the VM structure. Maybe we can simplify
3375 * this allocation fun a little now? Or maybe it's too convenient for
3376 * the CPU reporter code... No time to figure that out now. */
3377 rc = cpumR3DbGetCpuInfo(Config.szCpuName, &pCpum->GuestInfo);
3378 if (RT_FAILURE(rc))
3379 return rc == VERR_CPUM_DB_CPU_NOT_FOUND
3380 ? VMSetError(pVM, rc, RT_SRC_POS,
3381 "Info on guest CPU '%s' could not be found. Please, select a different CPU.", Config.szCpuName)
3382 : rc;
3383
3384#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
3385 if (pCpum->GuestInfo.fMxCsrMask & ~pVM->cpum.s.fHostMxCsrMask)
3386 {
3387 LogRel(("Stripping unsupported MXCSR bits from guest mask: %#x -> %#x (host: %#x)\n", pCpum->GuestInfo.fMxCsrMask,
3388 pCpum->GuestInfo.fMxCsrMask & pVM->cpum.s.fHostMxCsrMask, pVM->cpum.s.fHostMxCsrMask));
3389 pCpum->GuestInfo.fMxCsrMask &= pVM->cpum.s.fHostMxCsrMask;
3390 }
3391 LogRel(("CPUM: MXCSR_MASK=%#x (host: %#x)\n", pCpum->GuestInfo.fMxCsrMask, pVM->cpum.s.fHostMxCsrMask));
3392#else
3393 LogRel(("CPUM: MXCSR_MASK=%#x\n", pCpum->GuestInfo.fMxCsrMask));
3394#endif
3395
3396 /** @cfgm{/CPUM/MSRs/[Name]/[First|Last|Type|Value|...],}
3397 * Overrides the guest MSRs.
3398 */
3399 rc = cpumR3LoadMsrOverrides(pVM, CFGMR3GetChild(pCpumCfg, "MSRs"));
3400
3401 /** @cfgm{/CPUM/HostCPUID/[000000xx|800000xx|c000000x]/[eax|ebx|ecx|edx],32-bit}
3402 * Overrides the CPUID leaf values (from the host CPU usually) used for
3403 * calculating the guest CPUID leaves. This can be used to preserve the CPUID
3404 * values when moving a VM to a different machine. Another use is restricting
3405 * (or extending) the feature set exposed to the guest. */
3406 if (RT_SUCCESS(rc))
3407 rc = cpumR3LoadCpuIdOverrides(pVM, CFGMR3GetChild(pCpumCfg, "HostCPUID"), "HostCPUID");
3408
3409 if (RT_SUCCESS(rc) && CFGMR3GetChild(pCpumCfg, "CPUID")) /* 2nd override, now discontinued. */
3410 rc = VMSetError(pVM, VERR_CFGM_CONFIG_UNKNOWN_NODE, RT_SRC_POS,
3411 "Found unsupported configuration node '/CPUM/CPUID/'. "
3412 "Please use IMachine::setCPUIDLeaf() instead.");
3413
3414 CPUMMSRS GuestMsrs;
3415 RT_ZERO(GuestMsrs);
3416
3417 /*
3418 * Pre-explode the CPUID info.
3419 */
3420 if (RT_SUCCESS(rc))
3421 rc = cpumCpuIdExplodeFeaturesX86(pCpum->GuestInfo.paCpuIdLeavesR3, pCpum->GuestInfo.cCpuIdLeaves, &GuestMsrs,
3422 &pCpum->GuestFeatures);
3423
3424 /*
3425 * Sanitize the cpuid information passed on to the guest.
3426 */
3427 if (RT_SUCCESS(rc))
3428 {
3429 rc = cpumR3CpuIdSanitize(pVM, pCpum, &Config);
3430 if (RT_SUCCESS(rc))
3431 {
3432 cpumR3CpuIdLimitLeaves(pCpum, &Config);
3433 cpumR3CpuIdLimitIntelFamModStep(pCpum, &Config);
3434 }
3435 }
3436
3437 /*
3438 * Move the CPUID array over to the static VM structure allocation
3439 * and explode guest CPU features again. We must do this *before*
3440 * reconciling MSRs with CPUIDs and applying any fudging (esp on ARM64).
3441 */
3442 if (RT_SUCCESS(rc))
3443 {
3444 void * const pvFree = pCpum->GuestInfo.paCpuIdLeavesR3;
3445 rc = cpumR3CpuIdInstallAndExplodeLeaves(pVM, pCpum, pCpum->GuestInfo.paCpuIdLeavesR3,
3446 pCpum->GuestInfo.cCpuIdLeaves, &GuestMsrs);
3447 AssertLogRelRC(rc);
3448 RTMemFree(pvFree);
3449 if (RT_SUCCESS(rc))
3450 {
3451 /*
3452 * Setup MSRs introduced in microcode updates or that are otherwise not in
3453 * the CPU profile, but are advertised in the CPUID info we just sanitized.
3454 */
3455 if (RT_SUCCESS(rc))
3456 rc = cpumR3MsrReconcileWithCpuId(pVM);
3457 /*
3458 * MSR fudging.
3459 */
3460 if (RT_SUCCESS(rc))
3461 {
3462 /** @cfgm{/CPUM/FudgeMSRs, boolean, true}
3463 * Fudges some common MSRs if not present in the selected CPU database entry.
3464 * This is for trying to keep VMs running when moved between different hosts
3465 * and different CPU vendors. */
3466 bool fEnable;
3467 rc = CFGMR3QueryBoolDef(pCpumCfg, "FudgeMSRs", &fEnable, true); AssertRC(rc);
3468 if (RT_SUCCESS(rc) && fEnable)
3469 {
3470 rc = cpumR3MsrApplyFudge(pVM);
3471 AssertLogRelRC(rc);
3472 }
3473 }
3474 if (RT_SUCCESS(rc))
3475 {
3476 /*
3477 * Move the MSR arrays over to the static VM structure allocation.
3478 */
3479 AssertFatalMsg(pCpum->GuestInfo.cMsrRanges <= RT_ELEMENTS(pCpum->GuestInfo.aMsrRanges),
3480 ("%u\n", pCpum->GuestInfo.cMsrRanges));
3481 memcpy(pCpum->GuestInfo.aMsrRanges, pCpum->GuestInfo.paMsrRangesR3,
3482 sizeof(pCpum->GuestInfo.paMsrRangesR3[0]) * pCpum->GuestInfo.cMsrRanges);
3483 RTMemFree(pCpum->GuestInfo.paMsrRangesR3);
3484 pCpum->GuestInfo.paMsrRangesR3 = pCpum->GuestInfo.aMsrRanges;
3485
3486 /*
3487 * Some more configuration that we're applying at the end of everything
3488 * via the CPUMR3SetGuestCpuIdFeature API.
3489 */
3490
3491 /* Check if 64-bit guest supported was enabled. */
3492 bool fEnable64bit;
3493 rc = CFGMR3QueryBoolDef(pCpumCfg, "Enable64bit", &fEnable64bit, false);
3494 AssertRCReturn(rc, rc);
3495 if (fEnable64bit)
3496 {
3497 /* In case of a CPU upgrade: */
3498 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_SEP);
3499 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_SYSCALL); /* (Long mode only on Intel CPUs.) */
3500 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_PAE);
3501 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_LAHF);
3502 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_NX);
3503
3504 /* The actual feature: */
3505 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_LONG_MODE);
3506 }
3507
3508 /* Check if PAE was explicitely enabled by the user. */
3509 bool fEnable;
3510 rc = CFGMR3QueryBoolDef(CFGMR3GetRoot(pVM), "EnablePAE", &fEnable, fEnable64bit);
3511 AssertRCReturn(rc, rc);
3512 if (fEnable && !pVM->cpum.s.GuestFeatures.fPae)
3513 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_PAE);
3514
3515 /* We don't normally enable NX for raw-mode, so give the user a chance to force it on. */
3516 rc = CFGMR3QueryBoolDef(pCpumCfg, "EnableNX", &fEnable, fEnable64bit);
3517 AssertRCReturn(rc, rc);
3518 if (fEnable && !pVM->cpum.s.GuestFeatures.fNoExecute)
3519 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_NX);
3520
3521 /* Check if speculation control is enabled. */
3522 rc = CFGMR3QueryBoolDef(pCpumCfg, "SpecCtrl", &fEnable, false);
3523 AssertRCReturn(rc, rc);
3524 if (fEnable)
3525 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_SPEC_CTRL);
3526 else
3527 {
3528 /*
3529 * Set the "SSBD-not-needed" flag to work around a bug in some Linux kernels when the VIRT_SPEC_CTL
3530 * feature is not exposed on AMD CPUs and there is only 1 vCPU configured.
3531 * This was observed with kernel "4.15.0-29-generic #31~16.04.1-Ubuntu" but more versions are likely affected.
3532 *
3533 * The kernel doesn't initialize a lock and causes a NULL pointer exception later on when configuring SSBD:
3534 * EIP: _raw_spin_lock+0x14/0x30
3535 * EFLAGS: 00010046 CPU: 0
3536 * EAX: 00000000 EBX: 00000001 ECX: 00000004 EDX: 00000000
3537 * ESI: 00000000 EDI: 00000000 EBP: ee023f1c ESP: ee023f18
3538 * DS: 007b ES: 007b FS: 00d8 GS: 00e0 SS: 0068
3539 * CR0: 80050033 CR2: 00000004 CR3: 3671c180 CR4: 000006f0
3540 * Call Trace:
3541 * speculative_store_bypass_update+0x8e/0x180
3542 * ssb_prctl_set+0xc0/0xe0
3543 * arch_seccomp_spec_mitigate+0x1d/0x20
3544 * do_seccomp+0x3cb/0x610
3545 * SyS_seccomp+0x16/0x20
3546 * do_fast_syscall_32+0x7f/0x1d0
3547 * entry_SYSENTER_32+0x4e/0x7c
3548 *
3549 * The lock would've been initialized in process.c:speculative_store_bypass_ht_init() called from two places in smpboot.c.
3550 * First when a secondary CPU is started and second in native_smp_prepare_cpus() which is not called in a single vCPU environment.
3551 *
3552 * As spectre control features are completely disabled anyway when we arrived here there is no harm done in informing the
3553 * guest to not even try.
3554 */
3555 if ( pVM->cpum.s.GuestFeatures.enmCpuVendor == CPUMCPUVENDOR_AMD
3556 || pVM->cpum.s.GuestFeatures.enmCpuVendor == CPUMCPUVENDOR_HYGON)
3557 {
3558 PCPUMCPUIDLEAF pLeaf = cpumR3CpuIdGetExactLeaf(&pVM->cpum.s, UINT32_C(0x80000008), 0);
3559 if (pLeaf)
3560 {
3561 pLeaf->uEbx |= X86_CPUID_AMD_EFEID_EBX_NO_SSBD_REQUIRED;
3562 LogRel(("CPUM: Set SSBD not required flag for AMD to work around some buggy Linux kernels!\n"));
3563 }
3564 }
3565 }
3566
3567 /*
3568 * MTRR support.
3569 * We've always reported the MTRR feature bit in CPUID.
3570 * Here we allow exposing MTRRs with reasonable default values (especially required
3571 * by Windows 10 guests with Hyper-V enabled). The MTRR support isn't feature
3572 * complete, see @bugref{10318} and bugref{10498}.
3573 */
3574 if (pVM->cpum.s.GuestFeatures.fMtrr)
3575 {
3576 /** @cfgm{/CPUM/MtrrWrite, boolean, true}
3577 * Whether to enable MTRR read-write support. This overrides the MTRR read-only CFGM
3578 * setting. */
3579 bool fEnableMtrrReadWrite;
3580 rc = CFGMR3QueryBoolDef(pCpumCfg, "MtrrReadWrite", &fEnableMtrrReadWrite, true);
3581 AssertRCReturn(rc, rc);
3582 if (fEnableMtrrReadWrite)
3583 {
3584 pVM->cpum.s.fMtrrRead = true;
3585 pVM->cpum.s.fMtrrWrite = true;
3586 LogRel(("CPUM: Enabled MTRR read-write support\n"));
3587 }
3588 else
3589 {
3590 /** @cfgm{/CPUM/MtrrReadOnly, boolean, false}
3591 * Whether to enable MTRR read-only support and to initialize mapping of guest
3592 * memory via MTRRs. When disabled, MTRRs are left blank, returns 0 on reads and
3593 * ignores writes. Some guests like GNU/Linux recognize a virtual system when MTRRs
3594 * are left blank but some guests may expect their RAM to be mapped via MTRRs
3595 * similar to real hardware. */
3596 rc = CFGMR3QueryBoolDef(pCpumCfg, "MtrrReadOnly", &pVM->cpum.s.fMtrrRead, false);
3597 AssertRCReturn(rc, rc);
3598 LogRel(("CPUM: Enabled MTRR read-only support\n"));
3599 }
3600
3601 /* Setup MTRR capability based on what the guest CPU profile (typically host) supports. */
3602 Assert(!pVM->cpum.s.fMtrrWrite || pVM->cpum.s.fMtrrRead);
3603 if (pVM->cpum.s.fMtrrRead)
3604 {
3605 /** @cfgm{/CPUM/MtrrVarCountIsVirtual, boolean, true}
3606 * When enabled, the number of variable-range MTRRs are virtualized. When disabled,
3607 * the number of variable-range MTRRs are derived from the CPU profile. Unless
3608 * guests have problems with a virtualized number of variable-range MTRRs, it is
3609 * recommended to keep this enabled so that there are sufficient MTRRs to fully
3610 * describe all regions of the guest RAM. */
3611 bool fMtrrVarCountIsVirt;
3612 rc = CFGMR3QueryBoolDef(pCpumCfg, "MtrrVarCountIsVirtual", &fMtrrVarCountIsVirt, true);
3613 AssertRCReturn(rc, rc);
3614
3615 rc = cpumR3InitMtrrCap(pVM, fMtrrVarCountIsVirt);
3616 if (RT_SUCCESS(rc))
3617 { /* likely */ }
3618 else
3619 return rc;
3620 }
3621 }
3622
3623 /*
3624 * Finally, initialize guest VMX MSRs.
3625 *
3626 * This needs to be done -after- exploding guest features and sanitizing CPUID leaves
3627 * as constructing VMX capabilities MSRs rely on CPU feature bits like long mode,
3628 * unrestricted-guest execution, CR4 feature bits and possibly more in the future.
3629 */
3630 /** @todo r=bird: given that long mode never used to be enabled before the
3631 * VMINITCOMPLETED_RING0 state, and we're a lot earlier here in ring-3
3632 * init, the above comment cannot be entirely accurate. */
3633 if (pVM->cpum.s.GuestFeatures.fVmx)
3634 {
3635 Assert(Config.fNestedHWVirt);
3636 cpumR3InitVmxGuestFeaturesAndMsrs(pVM, pCpumCfg, &pHostMsrs->hwvirt.vmx, &GuestMsrs.hwvirt.vmx);
3637
3638 /* Copy MSRs to all VCPUs */
3639 PCVMXMSRS pVmxMsrs = &GuestMsrs.hwvirt.vmx;
3640 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
3641 {
3642 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
3643 memcpy(&pVCpu->cpum.s.Guest.hwvirt.vmx.Msrs, pVmxMsrs, sizeof(*pVmxMsrs));
3644 }
3645 }
3646
3647 return VINF_SUCCESS;
3648 }
3649
3650 /*
3651 * Failed before/while switching to internal VM structure storage.
3652 */
3653 RTMemFree(pCpum->GuestInfo.paCpuIdLeavesR3);
3654 pCpum->GuestInfo.paCpuIdLeavesR3 = NULL;
3655 }
3656 }
3657 RTMemFree(pCpum->GuestInfo.paMsrRangesR3);
3658 pCpum->GuestInfo.paMsrRangesR3 = NULL;
3659 return rc;
3660}
3661
3662
3663/**
3664 * Sets a CPUID feature bit during VM initialization.
3665 *
3666 * Since the CPUID feature bits are generally related to CPU features, other
3667 * CPUM configuration like MSRs can also be modified by calls to this API.
3668 *
3669 * @param pVM The cross context VM structure.
3670 * @param enmFeature The feature to set.
3671 */
3672VMMR3_INT_DECL(void) CPUMR3SetGuestCpuIdFeature(PVM pVM, CPUMCPUIDFEATURE enmFeature)
3673{
3674 PCPUMCPUIDLEAF pLeaf;
3675 PCPUMMSRRANGE pMsrRange;
3676
3677#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
3678# define CHECK_X86_HOST_FEATURE_RET(a_fFeature, a_szFeature) \
3679 if (!pVM->cpum.s.HostFeatures. a_fFeature) \
3680 { \
3681 LogRel(("CPUM: WARNING! Can't turn on " a_szFeature " when the host doesn't support it!\n")); \
3682 return; \
3683 } else do { } while (0)
3684#else
3685# define CHECK_X86_HOST_FEATURE_RET(a_fFeature, a_szFeature) do { } while (0)
3686#endif
3687
3688#define GET_8000_0001_CHECK_X86_HOST_FEATURE_RET(a_fFeature, a_szFeature) \
3689 do \
3690 { \
3691 pLeaf = cpumCpuIdGetLeaf(pVM, UINT32_C(0x80000001)); \
3692 if (!pLeaf) \
3693 { \
3694 LogRel(("CPUM: WARNING! Can't turn on " a_szFeature " when no 0x80000001 CPUID leaf!\n")); \
3695 return; \
3696 } \
3697 CHECK_X86_HOST_FEATURE_RET(a_fFeature,a_szFeature); \
3698 } while (0)
3699
3700 switch (enmFeature)
3701 {
3702 /*
3703 * Set the APIC bit in both feature masks.
3704 */
3705 case CPUMCPUIDFEATURE_APIC:
3706 pLeaf = cpumCpuIdGetLeaf(pVM, UINT32_C(0x00000001));
3707 if (pLeaf && (pLeaf->fFlags & CPUMCPUIDLEAF_F_CONTAINS_APIC))
3708 pVM->cpum.s.aGuestCpuIdPatmStd[1].uEdx = pLeaf->uEdx |= X86_CPUID_FEATURE_EDX_APIC;
3709
3710 pLeaf = cpumCpuIdGetLeaf(pVM, UINT32_C(0x80000001));
3711 if (pLeaf && (pLeaf->fFlags & CPUMCPUIDLEAF_F_CONTAINS_APIC))
3712 pVM->cpum.s.aGuestCpuIdPatmExt[1].uEdx = pLeaf->uEdx |= X86_CPUID_AMD_FEATURE_EDX_APIC;
3713
3714 pVM->cpum.s.GuestFeatures.fApic = 1;
3715
3716 /* Make sure we've got the APICBASE MSR present. */
3717 pMsrRange = cpumLookupMsrRange(pVM, MSR_IA32_APICBASE);
3718 if (!pMsrRange)
3719 {
3720 static CPUMMSRRANGE const s_ApicBase =
3721 {
3722 /*.uFirst =*/ MSR_IA32_APICBASE, /*.uLast =*/ MSR_IA32_APICBASE,
3723 /*.enmRdFn =*/ kCpumMsrRdFn_Ia32ApicBase, /*.enmWrFn =*/ kCpumMsrWrFn_Ia32ApicBase,
3724 /*.offCpumCpu =*/ UINT16_MAX, /*.fReserved =*/ 0, /*.uValue =*/ 0, /*.fWrIgnMask =*/ 0, /*.fWrGpMask =*/ 0,
3725 /*.szName = */ "IA32_APIC_BASE"
3726 };
3727 int rc = CPUMR3MsrRangesInsert(pVM, &s_ApicBase);
3728 AssertLogRelRC(rc);
3729 }
3730
3731 LogRel(("CPUM: SetGuestCpuIdFeature: Enabled xAPIC\n"));
3732 break;
3733
3734 /*
3735 * Set the x2APIC bit in the standard feature mask.
3736 * Note! ASSUMES CPUMCPUIDFEATURE_APIC is called first.
3737 */
3738 case CPUMCPUIDFEATURE_X2APIC:
3739 pLeaf = cpumCpuIdGetLeaf(pVM, UINT32_C(0x00000001));
3740 if (pLeaf)
3741 pVM->cpum.s.aGuestCpuIdPatmStd[1].uEcx = pLeaf->uEcx |= X86_CPUID_FEATURE_ECX_X2APIC;
3742 pVM->cpum.s.GuestFeatures.fX2Apic = 1;
3743
3744 /* Make sure the MSR doesn't GP or ignore the EXTD bit. */
3745 pMsrRange = cpumLookupMsrRange(pVM, MSR_IA32_APICBASE);
3746 if (pMsrRange)
3747 {
3748 pMsrRange->fWrGpMask &= ~MSR_IA32_APICBASE_EXTD;
3749 pMsrRange->fWrIgnMask &= ~MSR_IA32_APICBASE_EXTD;
3750 }
3751
3752 LogRel(("CPUM: SetGuestCpuIdFeature: Enabled x2APIC\n"));
3753 break;
3754
3755 /*
3756 * Set the sysenter/sysexit bit in the standard feature mask.
3757 * Assumes the caller knows what it's doing! (host must support these)
3758 */
3759 case CPUMCPUIDFEATURE_SEP:
3760 CHECK_X86_HOST_FEATURE_RET(fSysEnter, "SEP");
3761 pLeaf = cpumCpuIdGetLeaf(pVM, UINT32_C(0x00000001));
3762 if (pLeaf)
3763 pVM->cpum.s.aGuestCpuIdPatmStd[1].uEdx = pLeaf->uEdx |= X86_CPUID_FEATURE_EDX_SEP;
3764 pVM->cpum.s.GuestFeatures.fSysEnter = 1;
3765 LogRel(("CPUM: SetGuestCpuIdFeature: Enabled SYSENTER/EXIT\n"));
3766 break;
3767
3768 /*
3769 * Set the syscall/sysret bit in the extended feature mask.
3770 * Assumes the caller knows what it's doing! (host must support these)
3771 */
3772 case CPUMCPUIDFEATURE_SYSCALL:
3773 GET_8000_0001_CHECK_X86_HOST_FEATURE_RET(fSysCall, "SYSCALL/SYSRET");
3774
3775 /* Valid for both Intel and AMD CPUs, although only in 64 bits mode for Intel. */
3776 pVM->cpum.s.aGuestCpuIdPatmExt[1].uEdx = pLeaf->uEdx |= X86_CPUID_EXT_FEATURE_EDX_SYSCALL;
3777 pVM->cpum.s.GuestFeatures.fSysCall = 1;
3778 LogRel(("CPUM: SetGuestCpuIdFeature: Enabled SYSCALL/RET\n"));
3779 break;
3780
3781 /*
3782 * Set the PAE bit in both feature masks.
3783 * Assumes the caller knows what it's doing! (host must support these)
3784 */
3785 case CPUMCPUIDFEATURE_PAE:
3786 pLeaf = cpumCpuIdGetLeaf(pVM, UINT32_C(0x00000001));
3787 if (pLeaf)
3788 pVM->cpum.s.aGuestCpuIdPatmStd[1].uEdx = pLeaf->uEdx |= X86_CPUID_FEATURE_EDX_PAE;
3789
3790 pLeaf = cpumCpuIdGetLeaf(pVM, UINT32_C(0x80000001));
3791 if ( pLeaf
3792 && ( pVM->cpum.s.GuestFeatures.enmCpuVendor == CPUMCPUVENDOR_AMD
3793 || pVM->cpum.s.GuestFeatures.enmCpuVendor == CPUMCPUVENDOR_HYGON))
3794 pVM->cpum.s.aGuestCpuIdPatmExt[1].uEdx = pLeaf->uEdx |= X86_CPUID_AMD_FEATURE_EDX_PAE;
3795
3796 pVM->cpum.s.GuestFeatures.fPae = 1;
3797 LogRel(("CPUM: SetGuestCpuIdFeature: Enabled PAE\n"));
3798 break;
3799
3800 /*
3801 * Set the LONG MODE bit in the extended feature mask.
3802 * Assumes the caller knows what it's doing! (host must support these)
3803 */
3804 case CPUMCPUIDFEATURE_LONG_MODE:
3805 GET_8000_0001_CHECK_X86_HOST_FEATURE_RET(fLongMode, "LONG MODE");
3806
3807 /* Valid for both Intel and AMD. */
3808 pVM->cpum.s.aGuestCpuIdPatmExt[1].uEdx = pLeaf->uEdx |= X86_CPUID_EXT_FEATURE_EDX_LONG_MODE;
3809 pVM->cpum.s.GuestFeatures.fLongMode = 1;
3810 pVM->cpum.s.GuestFeatures.cVmxMaxPhysAddrWidth = pVM->cpum.s.GuestFeatures.cMaxPhysAddrWidth;
3811 if (pVM->cpum.s.GuestFeatures.fVmx)
3812 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
3813 {
3814 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
3815 pVCpu->cpum.s.Guest.hwvirt.vmx.Msrs.u64Basic &= ~VMX_BASIC_PHYSADDR_WIDTH_32BIT;
3816 }
3817 LogRel(("CPUM: SetGuestCpuIdFeature: Enabled LONG MODE\n"));
3818 break;
3819
3820 /*
3821 * Set the NX/XD bit in the extended feature mask.
3822 * Assumes the caller knows what it's doing! (host must support these)
3823 */
3824 case CPUMCPUIDFEATURE_NX:
3825 GET_8000_0001_CHECK_X86_HOST_FEATURE_RET(fNoExecute, "NX/XD");
3826
3827 /* Valid for both Intel and AMD. */
3828 pVM->cpum.s.aGuestCpuIdPatmExt[1].uEdx = pLeaf->uEdx |= X86_CPUID_EXT_FEATURE_EDX_NX;
3829 pVM->cpum.s.GuestFeatures.fNoExecute = 1;
3830 LogRel(("CPUM: SetGuestCpuIdFeature: Enabled NX\n"));
3831 break;
3832
3833
3834 /*
3835 * Set the LAHF/SAHF support in 64-bit mode.
3836 * Assumes the caller knows what it's doing! (host must support this)
3837 */
3838 case CPUMCPUIDFEATURE_LAHF:
3839 GET_8000_0001_CHECK_X86_HOST_FEATURE_RET(fLahfSahf, "LAHF/SAHF");
3840
3841 /* Valid for both Intel and AMD. */
3842 pVM->cpum.s.aGuestCpuIdPatmExt[1].uEcx = pLeaf->uEcx |= X86_CPUID_EXT_FEATURE_ECX_LAHF_SAHF;
3843 pVM->cpum.s.GuestFeatures.fLahfSahf = 1;
3844 LogRel(("CPUM: SetGuestCpuIdFeature: Enabled LAHF/SAHF\n"));
3845 break;
3846
3847 /*
3848 * Set the RDTSCP support bit.
3849 * Assumes the caller knows what it's doing! (host must support this)
3850 */
3851 case CPUMCPUIDFEATURE_RDTSCP:
3852 if (pVM->cpum.s.u8PortableCpuIdLevel > 0)
3853 return;
3854 GET_8000_0001_CHECK_X86_HOST_FEATURE_RET(fRdTscP, "RDTSCP");
3855 pLeaf = cpumCpuIdGetLeaf(pVM, UINT32_C(0x80000001));
3856
3857 /* Valid for both Intel and AMD. */
3858 pVM->cpum.s.aGuestCpuIdPatmExt[1].uEdx = pLeaf->uEdx |= X86_CPUID_EXT_FEATURE_EDX_RDTSCP;
3859 pVM->cpum.s.HostFeatures.fRdTscP = 1;
3860 LogRel(("CPUM: SetGuestCpuIdFeature: Enabled RDTSCP.\n"));
3861 break;
3862
3863 /*
3864 * Set the Hypervisor Present bit in the standard feature mask.
3865 */
3866 case CPUMCPUIDFEATURE_HVP:
3867 pLeaf = cpumCpuIdGetLeaf(pVM, UINT32_C(0x00000001));
3868 if (pLeaf)
3869 pVM->cpum.s.aGuestCpuIdPatmStd[1].uEcx = pLeaf->uEcx |= X86_CPUID_FEATURE_ECX_HVP;
3870 pVM->cpum.s.GuestFeatures.fHypervisorPresent = 1;
3871 LogRel(("CPUM: SetGuestCpuIdFeature: Enabled Hypervisor Present bit\n"));
3872 break;
3873
3874 /*
3875 * Set up the speculation control CPUID bits and MSRs. This is quite complicated
3876 * on Intel CPUs, and different on AMDs.
3877 */
3878 case CPUMCPUIDFEATURE_SPEC_CTRL:
3879 if (pVM->cpum.s.GuestFeatures.enmCpuVendor == CPUMCPUVENDOR_INTEL)
3880 {
3881 pLeaf = cpumR3CpuIdGetExactLeaf(&pVM->cpum.s, UINT32_C(0x00000007), 0);
3882#ifdef RT_ARCH_AMD64
3883 if ( !pLeaf
3884 || !(pVM->cpum.s.HostFeatures.fIbpb || pVM->cpum.s.HostFeatures.fIbrs))
3885 {
3886 LogRel(("CPUM: WARNING! Can't turn on Speculation Control when the host doesn't support it!\n"));
3887 return;
3888 }
3889#else
3890 if (!pLeaf)
3891 {
3892 LogRel(("CPUM: WARNING! Can't turn on Speculation Control without leaf 0x00000007!\n"));
3893 return;
3894 }
3895#endif
3896
3897 /* The feature can be enabled. Let's see what we can actually do. */
3898 pVM->cpum.s.GuestFeatures.fSpeculationControl = 1;
3899
3900#ifdef RT_ARCH_AMD64
3901 /* We will only expose STIBP if IBRS is present to keep things simpler (simple is not an option). */
3902 if (pVM->cpum.s.HostFeatures.fIbrs)
3903#endif
3904 {
3905 pLeaf->uEdx |= X86_CPUID_STEXT_FEATURE_EDX_IBRS_IBPB;
3906 pVM->cpum.s.GuestFeatures.fIbrs = 1;
3907#ifdef RT_ARCH_AMD64
3908 if (pVM->cpum.s.HostFeatures.fStibp)
3909#endif
3910 {
3911 pLeaf->uEdx |= X86_CPUID_STEXT_FEATURE_EDX_STIBP;
3912 pVM->cpum.s.GuestFeatures.fStibp = 1;
3913 }
3914
3915 /* Make sure we have the speculation control MSR... */
3916 pMsrRange = cpumLookupMsrRange(pVM, MSR_IA32_SPEC_CTRL);
3917 if (!pMsrRange)
3918 {
3919 static CPUMMSRRANGE const s_SpecCtrl =
3920 {
3921 /*.uFirst =*/ MSR_IA32_SPEC_CTRL, /*.uLast =*/ MSR_IA32_SPEC_CTRL,
3922 /*.enmRdFn =*/ kCpumMsrRdFn_Ia32SpecCtrl, /*.enmWrFn =*/ kCpumMsrWrFn_Ia32SpecCtrl,
3923 /*.offCpumCpu =*/ UINT16_MAX, /*.fReserved =*/ 0, /*.uValue =*/ 0, /*.fWrIgnMask =*/ 0, /*.fWrGpMask =*/ 0,
3924 /*.szName = */ "IA32_SPEC_CTRL"
3925 };
3926 int rc = CPUMR3MsrRangesInsert(pVM, &s_SpecCtrl);
3927 AssertLogRelRC(rc);
3928 }
3929
3930 /* ... and the predictor command MSR. */
3931 pMsrRange = cpumLookupMsrRange(pVM, MSR_IA32_PRED_CMD);
3932 if (!pMsrRange)
3933 {
3934 /** @todo incorrect fWrGpMask. */
3935 static CPUMMSRRANGE const s_SpecCtrl =
3936 {
3937 /*.uFirst =*/ MSR_IA32_PRED_CMD, /*.uLast =*/ MSR_IA32_PRED_CMD,
3938 /*.enmRdFn =*/ kCpumMsrRdFn_WriteOnly, /*.enmWrFn =*/ kCpumMsrWrFn_Ia32PredCmd,
3939 /*.offCpumCpu =*/ UINT16_MAX, /*.fReserved =*/ 0, /*.uValue =*/ 0, /*.fWrIgnMask =*/ 0, /*.fWrGpMask =*/ 0,
3940 /*.szName = */ "IA32_PRED_CMD"
3941 };
3942 int rc = CPUMR3MsrRangesInsert(pVM, &s_SpecCtrl);
3943 AssertLogRelRC(rc);
3944 }
3945
3946 }
3947
3948#ifdef RT_ARCH_AMD64
3949 if (pVM->cpum.s.HostFeatures.fArchCap)
3950#endif
3951 {
3952 /* Install the architectural capabilities MSR. */
3953 pMsrRange = cpumLookupMsrRange(pVM, MSR_IA32_ARCH_CAPABILITIES);
3954 if (!pMsrRange)
3955 {
3956 static CPUMMSRRANGE const s_ArchCaps =
3957 {
3958 /*.uFirst =*/ MSR_IA32_ARCH_CAPABILITIES, /*.uLast =*/ MSR_IA32_ARCH_CAPABILITIES,
3959 /*.enmRdFn =*/ kCpumMsrRdFn_Ia32ArchCapabilities, /*.enmWrFn =*/ kCpumMsrWrFn_ReadOnly,
3960 /*.offCpumCpu =*/ UINT16_MAX, /*.fReserved =*/ 0, /*.uValue =*/ 0, /*.fWrIgnMask =*/ 0, /*.fWrGpMask =*/ UINT64_MAX,
3961 /*.szName = */ "IA32_ARCH_CAPABILITIES"
3962 };
3963 int rc = CPUMR3MsrRangesInsert(pVM, &s_ArchCaps);
3964 AssertLogRelRC(rc);
3965 }
3966
3967 /* Advertise IBRS_ALL if present at this point... */
3968 if (pVM->cpum.s.HostFeatures.fArchCap & MSR_IA32_ARCH_CAP_F_IBRS_ALL)
3969 VMCC_FOR_EACH_VMCPU_STMT(pVM, pVCpu->cpum.s.GuestMsrs.msr.ArchCaps |= MSR_IA32_ARCH_CAP_F_IBRS_ALL);
3970 }
3971
3972 LogRel(("CPUM: SetGuestCpuIdFeature: Enabled Speculation Control.\n"));
3973 }
3974 else if ( pVM->cpum.s.GuestFeatures.enmCpuVendor == CPUMCPUVENDOR_AMD
3975 || pVM->cpum.s.GuestFeatures.enmCpuVendor == CPUMCPUVENDOR_HYGON)
3976 {
3977 /* The precise details of AMD's implementation are not yet clear. */
3978 }
3979 break;
3980
3981 default:
3982 AssertMsgFailed(("enmFeature=%d\n", enmFeature));
3983 break;
3984 }
3985
3986 /** @todo can probably kill this as this API is now init time only... */
3987 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
3988 {
3989 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
3990 pVCpu->cpum.s.fChanged |= CPUM_CHANGED_CPUID;
3991 }
3992
3993#undef GET_8000_0001_CHECK_X86_HOST_FEATURE_RET
3994#undef CHECK_X86_HOST_FEATURE_RET
3995}
3996
3997
3998/**
3999 * Queries a CPUID feature bit.
4000 *
4001 * @returns boolean for feature presence
4002 * @param pVM The cross context VM structure.
4003 * @param enmFeature The feature to query.
4004 * @deprecated Use the cpum.ro.GuestFeatures directly instead.
4005 */
4006VMMR3_INT_DECL(bool) CPUMR3GetGuestCpuIdFeature(PVM pVM, CPUMCPUIDFEATURE enmFeature)
4007{
4008 switch (enmFeature)
4009 {
4010 case CPUMCPUIDFEATURE_APIC: return pVM->cpum.s.GuestFeatures.fApic;
4011 case CPUMCPUIDFEATURE_X2APIC: return pVM->cpum.s.GuestFeatures.fX2Apic;
4012 case CPUMCPUIDFEATURE_SYSCALL: return pVM->cpum.s.GuestFeatures.fSysCall;
4013 case CPUMCPUIDFEATURE_SEP: return pVM->cpum.s.GuestFeatures.fSysEnter;
4014 case CPUMCPUIDFEATURE_PAE: return pVM->cpum.s.GuestFeatures.fPae;
4015 case CPUMCPUIDFEATURE_NX: return pVM->cpum.s.GuestFeatures.fNoExecute;
4016 case CPUMCPUIDFEATURE_LAHF: return pVM->cpum.s.GuestFeatures.fLahfSahf;
4017 case CPUMCPUIDFEATURE_LONG_MODE: return pVM->cpum.s.GuestFeatures.fLongMode;
4018 case CPUMCPUIDFEATURE_RDTSCP: return pVM->cpum.s.GuestFeatures.fRdTscP;
4019 case CPUMCPUIDFEATURE_HVP: return pVM->cpum.s.GuestFeatures.fHypervisorPresent;
4020 case CPUMCPUIDFEATURE_SPEC_CTRL: return pVM->cpum.s.GuestFeatures.fSpeculationControl;
4021 case CPUMCPUIDFEATURE_INVALID:
4022 case CPUMCPUIDFEATURE_32BIT_HACK:
4023 break;
4024 }
4025 AssertFailed();
4026 return false;
4027}
4028
4029
4030/**
4031 * Clears a CPUID feature bit.
4032 *
4033 * @param pVM The cross context VM structure.
4034 * @param enmFeature The feature to clear.
4035 *
4036 * @deprecated Probably better to default the feature to disabled and only allow
4037 * setting (enabling) it during construction.
4038 */
4039VMMR3_INT_DECL(void) CPUMR3ClearGuestCpuIdFeature(PVM pVM, CPUMCPUIDFEATURE enmFeature)
4040{
4041 PCPUMCPUIDLEAF pLeaf;
4042 switch (enmFeature)
4043 {
4044 case CPUMCPUIDFEATURE_APIC:
4045 Assert(!pVM->cpum.s.GuestFeatures.fApic); /* We only expect this call during init. No MSR adjusting needed. */
4046 pLeaf = cpumCpuIdGetLeaf(pVM, UINT32_C(0x00000001));
4047 if (pLeaf)
4048 pVM->cpum.s.aGuestCpuIdPatmStd[1].uEdx = pLeaf->uEdx &= ~X86_CPUID_FEATURE_EDX_APIC;
4049
4050 pLeaf = cpumCpuIdGetLeaf(pVM, UINT32_C(0x80000001));
4051 if (pLeaf && (pLeaf->fFlags & CPUMCPUIDLEAF_F_CONTAINS_APIC))
4052 pVM->cpum.s.aGuestCpuIdPatmExt[1].uEdx = pLeaf->uEdx &= ~X86_CPUID_AMD_FEATURE_EDX_APIC;
4053
4054 pVM->cpum.s.GuestFeatures.fApic = 0;
4055 Log(("CPUM: ClearGuestCpuIdFeature: Disabled xAPIC\n"));
4056 break;
4057
4058 case CPUMCPUIDFEATURE_X2APIC:
4059 Assert(!pVM->cpum.s.GuestFeatures.fX2Apic); /* We only expect this call during init. No MSR adjusting needed. */
4060 pLeaf = cpumCpuIdGetLeaf(pVM, UINT32_C(0x00000001));
4061 if (pLeaf)
4062 pVM->cpum.s.aGuestCpuIdPatmStd[1].uEcx = pLeaf->uEcx &= ~X86_CPUID_FEATURE_ECX_X2APIC;
4063 pVM->cpum.s.GuestFeatures.fX2Apic = 0;
4064 Log(("CPUM: ClearGuestCpuIdFeature: Disabled x2APIC\n"));
4065 break;
4066
4067#if 0
4068 case CPUMCPUIDFEATURE_PAE:
4069 pLeaf = cpumCpuIdGetLeaf(pVM, UINT32_C(0x00000001));
4070 if (pLeaf)
4071 pVM->cpum.s.aGuestCpuIdPatmStd[1].uEdx = pLeaf->uEdx &= ~X86_CPUID_FEATURE_EDX_PAE;
4072
4073 pLeaf = cpumCpuIdGetLeaf(pVM, UINT32_C(0x80000001));
4074 if ( pLeaf
4075 && ( pVM->cpum.s.GuestFeatures.enmCpuVendor == CPUMCPUVENDOR_AMD
4076 || pVM->cpum.s.GuestFeatures.enmCpuVendor == CPUMCPUVENDOR_HYGON))
4077 pVM->cpum.s.aGuestCpuIdPatmExt[1].uEdx = pLeaf->uEdx &= ~X86_CPUID_AMD_FEATURE_EDX_PAE;
4078
4079 pVM->cpum.s.GuestFeatures.fPae = 0;
4080 Log(("CPUM: ClearGuestCpuIdFeature: Disabled PAE!\n"));
4081 break;
4082
4083 case CPUMCPUIDFEATURE_LONG_MODE:
4084 pLeaf = cpumCpuIdGetLeaf(pVM, UINT32_C(0x80000001));
4085 if (pLeaf)
4086 pVM->cpum.s.aGuestCpuIdPatmExt[1].uEdx = pLeaf->uEdx &= ~X86_CPUID_EXT_FEATURE_EDX_LONG_MODE;
4087 pVM->cpum.s.GuestFeatures.fLongMode = 0;
4088 pVM->cpum.s.GuestFeatures.cVmxMaxPhysAddrWidth = 32;
4089 if (pVM->cpum.s.GuestFeatures.fVmx)
4090 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
4091 {
4092 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
4093 pVCpu->cpum.s.Guest.hwvirt.vmx.Msrs.u64Basic |= VMX_BASIC_PHYSADDR_WIDTH_32BIT;
4094 }
4095 break;
4096
4097 case CPUMCPUIDFEATURE_LAHF:
4098 pLeaf = cpumCpuIdGetLeaf(pVM, UINT32_C(0x80000001));
4099 if (pLeaf)
4100 pVM->cpum.s.aGuestCpuIdPatmExt[1].uEcx = pLeaf->uEcx &= ~X86_CPUID_EXT_FEATURE_ECX_LAHF_SAHF;
4101 pVM->cpum.s.GuestFeatures.fLahfSahf = 0;
4102 break;
4103#endif
4104 case CPUMCPUIDFEATURE_RDTSCP:
4105 pLeaf = cpumCpuIdGetLeaf(pVM, UINT32_C(0x80000001));
4106 if (pLeaf)
4107 pVM->cpum.s.aGuestCpuIdPatmExt[1].uEdx = pLeaf->uEdx &= ~X86_CPUID_EXT_FEATURE_EDX_RDTSCP;
4108 pVM->cpum.s.GuestFeatures.fRdTscP = 0;
4109 Log(("CPUM: ClearGuestCpuIdFeature: Disabled RDTSCP!\n"));
4110 break;
4111
4112#if 0
4113 case CPUMCPUIDFEATURE_HVP:
4114 pLeaf = cpumCpuIdGetLeaf(pVM, UINT32_C(0x00000001));
4115 if (pLeaf)
4116 pVM->cpum.s.aGuestCpuIdPatmStd[1].uEcx = pLeaf->uEcx &= ~X86_CPUID_FEATURE_ECX_HVP;
4117 pVM->cpum.s.GuestFeatures.fHypervisorPresent = 0;
4118 break;
4119
4120 case CPUMCPUIDFEATURE_SPEC_CTRL:
4121 pLeaf = cpumR3CpuIdGetExactLeaf(&pVM->cpum.s, UINT32_C(0x00000007), 0);
4122 if (pLeaf)
4123 pLeaf->uEdx &= ~(X86_CPUID_STEXT_FEATURE_EDX_IBRS_IBPB | X86_CPUID_STEXT_FEATURE_EDX_STIBP);
4124 VMCC_FOR_EACH_VMCPU_STMT(pVM, pVCpu->cpum.s.GuestMsrs.msr.ArchCaps &= ~MSR_IA32_ARCH_CAP_F_IBRS_ALL);
4125 Log(("CPUM: ClearGuestCpuIdFeature: Disabled speculation control!\n"));
4126 break;
4127#endif
4128 default:
4129 AssertMsgFailed(("enmFeature=%d\n", enmFeature));
4130 break;
4131 }
4132
4133 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
4134 {
4135 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
4136 pVCpu->cpum.s.fChanged |= CPUM_CHANGED_CPUID;
4137 }
4138}
4139
4140
4141/**
4142 * Do some final polishing after all calls to CPUMR3SetGuestCpuIdFeature and
4143 * CPUMR3ClearGuestCpuIdFeature are (probably) done.
4144 *
4145 * @param pVM The cross context VM structure.
4146 */
4147void cpumR3CpuIdRing3InitDone(PVM pVM)
4148{
4149 /*
4150 * Do not advertise NX w/o PAE, seems to confuse windows 7 (black screen very
4151 * early in real mode).
4152 */
4153 PCPUMCPUIDLEAF pStdLeaf = cpumCpuIdGetLeaf(pVM, UINT32_C(0x00000001));
4154 PCPUMCPUIDLEAF pExtLeaf = cpumCpuIdGetLeaf(pVM, UINT32_C(0x80000001));
4155 if (pStdLeaf && pExtLeaf)
4156 {
4157 if ( !(pStdLeaf->uEdx & X86_CPUID_FEATURE_EDX_PAE)
4158 && (pExtLeaf->uEdx & X86_CPUID_EXT_FEATURE_EDX_NX))
4159 pExtLeaf->uEdx &= ~X86_CPUID_EXT_FEATURE_EDX_NX;
4160 }
4161}
4162
4163
4164/*
4165 *
4166 *
4167 * Saved state related code.
4168 * Saved state related code.
4169 * Saved state related code.
4170 *
4171 *
4172 */
4173
4174/**
4175 * Called both in pass 0 and the final pass.
4176 *
4177 * @param pVM The cross context VM structure.
4178 * @param pSSM The saved state handle.
4179 */
4180void cpumR3SaveCpuId(PVM pVM, PSSMHANDLE pSSM)
4181{
4182 /*
4183 * Save all the CPU ID leaves.
4184 */
4185 SSMR3PutU32(pSSM, sizeof(pVM->cpum.s.GuestInfo.paCpuIdLeavesR3[0]));
4186 SSMR3PutU32(pSSM, pVM->cpum.s.GuestInfo.cCpuIdLeaves);
4187 SSMR3PutMem(pSSM, pVM->cpum.s.GuestInfo.paCpuIdLeavesR3,
4188 sizeof(pVM->cpum.s.GuestInfo.paCpuIdLeavesR3[0]) * pVM->cpum.s.GuestInfo.cCpuIdLeaves);
4189
4190 SSMR3PutMem(pSSM, &pVM->cpum.s.GuestInfo.DefCpuId, sizeof(pVM->cpum.s.GuestInfo.DefCpuId));
4191
4192 /*
4193 * Save a good portion of the raw CPU IDs as well as they may come in
4194 * handy when validating features for raw mode.
4195 */
4196#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
4197 CPUMCPUID aRawStd[16];
4198 for (unsigned i = 0; i < RT_ELEMENTS(aRawStd); i++)
4199 ASMCpuIdExSlow(i, 0, 0, 0, &aRawStd[i].uEax, &aRawStd[i].uEbx, &aRawStd[i].uEcx, &aRawStd[i].uEdx);
4200 SSMR3PutU32(pSSM, RT_ELEMENTS(aRawStd));
4201 SSMR3PutMem(pSSM, &aRawStd[0], sizeof(aRawStd));
4202
4203 CPUMCPUID aRawExt[32];
4204 for (unsigned i = 0; i < RT_ELEMENTS(aRawExt); i++)
4205 ASMCpuIdExSlow(i | UINT32_C(0x80000000), 0, 0, 0, &aRawExt[i].uEax, &aRawExt[i].uEbx, &aRawExt[i].uEcx, &aRawExt[i].uEdx);
4206 SSMR3PutU32(pSSM, RT_ELEMENTS(aRawExt));
4207 SSMR3PutMem(pSSM, &aRawExt[0], sizeof(aRawExt));
4208
4209#else
4210 /* Two zero counts on non-x86 hosts. */
4211 SSMR3PutU32(pSSM, 0);
4212 SSMR3PutU32(pSSM, 0);
4213#endif
4214}
4215
4216
4217static int cpumR3LoadOneOldGuestCpuIdArray(PSSMHANDLE pSSM, uint32_t uBase, PCPUMCPUIDLEAF *ppaLeaves, uint32_t *pcLeaves)
4218{
4219 uint32_t cCpuIds;
4220 int rc = SSMR3GetU32(pSSM, &cCpuIds);
4221 if (RT_SUCCESS(rc))
4222 {
4223 if (cCpuIds < 64)
4224 {
4225 for (uint32_t i = 0; i < cCpuIds; i++)
4226 {
4227 CPUMCPUID CpuId;
4228 rc = SSMR3GetMem(pSSM, &CpuId, sizeof(CpuId));
4229 if (RT_FAILURE(rc))
4230 break;
4231
4232 CPUMCPUIDLEAF NewLeaf;
4233 NewLeaf.uLeaf = uBase + i;
4234 NewLeaf.uSubLeaf = 0;
4235 NewLeaf.fSubLeafMask = 0;
4236 NewLeaf.uEax = CpuId.uEax;
4237 NewLeaf.uEbx = CpuId.uEbx;
4238 NewLeaf.uEcx = CpuId.uEcx;
4239 NewLeaf.uEdx = CpuId.uEdx;
4240 NewLeaf.fFlags = 0;
4241 rc = cpumR3CpuIdInsert(NULL /* pVM */, ppaLeaves, pcLeaves, &NewLeaf);
4242 }
4243 }
4244 else
4245 rc = VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
4246 }
4247 if (RT_FAILURE(rc))
4248 {
4249 RTMemFree(*ppaLeaves);
4250 *ppaLeaves = NULL;
4251 *pcLeaves = 0;
4252 }
4253 return rc;
4254}
4255
4256
4257static int cpumR3LoadGuestCpuIdArray(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, PCPUMCPUIDLEAF *ppaLeaves, uint32_t *pcLeaves)
4258{
4259 *ppaLeaves = NULL;
4260 *pcLeaves = 0;
4261
4262 int rc;
4263 if (uVersion > CPUM_SAVED_STATE_VERSION_PUT_STRUCT)
4264 {
4265 /*
4266 * The new format. Starts by declaring the leave size and count.
4267 */
4268 uint32_t cbLeaf;
4269 SSMR3GetU32(pSSM, &cbLeaf);
4270 uint32_t cLeaves;
4271 rc = SSMR3GetU32(pSSM, &cLeaves);
4272 if (RT_SUCCESS(rc))
4273 {
4274 if (cbLeaf == sizeof(**ppaLeaves))
4275 {
4276 if (cLeaves <= CPUM_CPUID_MAX_LEAVES)
4277 {
4278 /*
4279 * Load the leaves one by one.
4280 *
4281 * The uPrev stuff is a kludge for working around a week worth of bad saved
4282 * states during the CPUID revamp in March 2015. We saved too many leaves
4283 * due to a bug in cpumR3CpuIdInstallAndExplodeLeaves, thus ending up with
4284 * garbage entires at the end of the array when restoring. We also had
4285 * a subleaf insertion bug that triggered with the leaf 4 stuff below,
4286 * this kludge doesn't deal correctly with that, but who cares...
4287 */
4288 uint32_t uPrev = 0;
4289 for (uint32_t i = 0; i < cLeaves && RT_SUCCESS(rc); i++)
4290 {
4291 CPUMCPUIDLEAF Leaf;
4292 rc = SSMR3GetMem(pSSM, &Leaf, sizeof(Leaf));
4293 if (RT_SUCCESS(rc))
4294 {
4295 if ( uVersion != CPUM_SAVED_STATE_VERSION_BAD_CPUID_COUNT
4296 || Leaf.uLeaf >= uPrev)
4297 {
4298 rc = cpumR3CpuIdInsert(NULL /* pVM */, ppaLeaves, pcLeaves, &Leaf);
4299 uPrev = Leaf.uLeaf;
4300 }
4301 else
4302 uPrev = UINT32_MAX;
4303 }
4304 }
4305 }
4306 else
4307 rc = SSMR3SetLoadError(pSSM, VERR_TOO_MANY_CPUID_LEAVES, RT_SRC_POS,
4308 "Too many CPUID leaves: %#x, max %#x", cLeaves, CPUM_CPUID_MAX_LEAVES);
4309 }
4310 else
4311 rc = SSMR3SetLoadError(pSSM, VERR_SSM_DATA_UNIT_FORMAT_CHANGED, RT_SRC_POS,
4312 "CPUMCPUIDLEAF size differs: saved=%#x, our=%#x", cbLeaf, sizeof(**ppaLeaves));
4313 }
4314 }
4315 else
4316 {
4317 /*
4318 * The old format with its three inflexible arrays.
4319 */
4320 rc = cpumR3LoadOneOldGuestCpuIdArray(pSSM, UINT32_C(0x00000000), ppaLeaves, pcLeaves);
4321 if (RT_SUCCESS(rc))
4322 rc = cpumR3LoadOneOldGuestCpuIdArray(pSSM, UINT32_C(0x80000000), ppaLeaves, pcLeaves);
4323 if (RT_SUCCESS(rc))
4324 rc = cpumR3LoadOneOldGuestCpuIdArray(pSSM, UINT32_C(0xc0000000), ppaLeaves, pcLeaves);
4325 if (RT_SUCCESS(rc))
4326 {
4327 /*
4328 * Fake up leaf 4 on intel like we used to do in CPUMGetGuestCpuId earlier.
4329 */
4330 PCPUMCPUIDLEAF pLeaf = cpumCpuIdGetLeafInt(*ppaLeaves, *pcLeaves, 0, 0);
4331 if ( pLeaf
4332 && RTX86IsIntelCpu(pLeaf->uEbx, pLeaf->uEcx, pLeaf->uEdx))
4333 {
4334 CPUMCPUIDLEAF Leaf;
4335 Leaf.uLeaf = 4;
4336 Leaf.fSubLeafMask = UINT32_MAX;
4337 Leaf.uSubLeaf = 0;
4338 Leaf.uEdx = UINT32_C(0); /* 3 flags, 0 is fine. */
4339 Leaf.uEcx = UINT32_C(63); /* sets - 1 */
4340 Leaf.uEbx = (UINT32_C(7) << 22) /* associativity -1 */
4341 | (UINT32_C(0) << 12) /* phys line partitions - 1 */
4342 | UINT32_C(63); /* system coherency line size - 1 */
4343 Leaf.uEax = (RT_MIN(pVM->cCpus - 1, UINT32_C(0x3f)) << 26) /* cores per package - 1 */
4344 | (UINT32_C(0) << 14) /* threads per cache - 1 */
4345 | (UINT32_C(1) << 5) /* cache level */
4346 | UINT32_C(1); /* cache type (data) */
4347 Leaf.fFlags = 0;
4348 rc = cpumR3CpuIdInsert(NULL /* pVM */, ppaLeaves, pcLeaves, &Leaf);
4349 if (RT_SUCCESS(rc))
4350 {
4351 Leaf.uSubLeaf = 1; /* Should've been cache type 2 (code), but buggy code made it data. */
4352 rc = cpumR3CpuIdInsert(NULL /* pVM */, ppaLeaves, pcLeaves, &Leaf);
4353 }
4354 if (RT_SUCCESS(rc))
4355 {
4356 Leaf.uSubLeaf = 2; /* Should've been cache type 3 (unified), but buggy code made it data. */
4357 Leaf.uEcx = 4095; /* sets - 1 */
4358 Leaf.uEbx &= UINT32_C(0x003fffff); /* associativity - 1 */
4359 Leaf.uEbx |= UINT32_C(23) << 22;
4360 Leaf.uEax &= UINT32_C(0xfc003fff); /* threads per cache - 1 */
4361 Leaf.uEax |= RT_MIN(pVM->cCpus - 1, UINT32_C(0xfff)) << 14;
4362 Leaf.uEax &= UINT32_C(0xffffff1f); /* level */
4363 Leaf.uEax |= UINT32_C(2) << 5;
4364 rc = cpumR3CpuIdInsert(NULL /* pVM */, ppaLeaves, pcLeaves, &Leaf);
4365 }
4366 }
4367 }
4368 }
4369 return rc;
4370}
4371
4372
4373/**
4374 * Loads the CPU ID leaves saved by pass 0, inner worker.
4375 *
4376 * @returns VBox status code.
4377 * @param pVM The cross context VM structure.
4378 * @param pSSM The saved state handle.
4379 * @param uVersion The format version.
4380 * @param paLeaves Guest CPUID leaves loaded from the state.
4381 * @param cLeaves The number of leaves in @a paLeaves.
4382 * @param pMsrs The guest MSRs.
4383 */
4384static int cpumR3LoadCpuIdInner(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, PCPUMCPUIDLEAF paLeaves, uint32_t cLeaves, PCCPUMMSRS pMsrs)
4385{
4386 AssertMsgReturn(uVersion >= CPUM_SAVED_STATE_VERSION_VER3_2, ("%u\n", uVersion), VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION);
4387#if !defined(RT_ARCH_AMD64) && !defined(RT_ARCH_X86)
4388 AssertMsgFailed(("Port me!"));
4389#endif
4390
4391 /*
4392 * Continue loading the state into stack buffers.
4393 */
4394 CPUMCPUID GuestDefCpuId;
4395 int rc = SSMR3GetMem(pSSM, &GuestDefCpuId, sizeof(GuestDefCpuId));
4396 AssertRCReturn(rc, rc);
4397
4398 CPUMCPUID aRawStd[16];
4399 uint32_t cRawStd;
4400 rc = SSMR3GetU32(pSSM, &cRawStd); AssertRCReturn(rc, rc);
4401 if (cRawStd > RT_ELEMENTS(aRawStd))
4402 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
4403 rc = SSMR3GetMem(pSSM, &aRawStd[0], cRawStd * sizeof(aRawStd[0]));
4404 AssertRCReturn(rc, rc);
4405 for (uint32_t i = cRawStd; i < RT_ELEMENTS(aRawStd); i++)
4406#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
4407 ASMCpuIdExSlow(i, 0, 0, 0, &aRawStd[i].uEax, &aRawStd[i].uEbx, &aRawStd[i].uEcx, &aRawStd[i].uEdx);
4408#else
4409 RT_ZERO(aRawStd[i]);
4410#endif
4411
4412 CPUMCPUID aRawExt[32];
4413 uint32_t cRawExt;
4414 rc = SSMR3GetU32(pSSM, &cRawExt); AssertRCReturn(rc, rc);
4415 if (cRawExt > RT_ELEMENTS(aRawExt))
4416 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
4417 rc = SSMR3GetMem(pSSM, &aRawExt[0], cRawExt * sizeof(aRawExt[0]));
4418 AssertRCReturn(rc, rc);
4419 for (uint32_t i = cRawExt; i < RT_ELEMENTS(aRawExt); i++)
4420#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
4421 ASMCpuIdExSlow(i | UINT32_C(0x80000000), 0, 0, 0, &aRawExt[i].uEax, &aRawExt[i].uEbx, &aRawExt[i].uEcx, &aRawExt[i].uEdx);
4422#else
4423 RT_ZERO(aRawExt[i]);
4424#endif
4425
4426 /*
4427 * Get the raw CPU IDs for the current host.
4428 */
4429 CPUMCPUID aHostRawStd[16];
4430#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
4431 for (unsigned i = 0; i < RT_ELEMENTS(aHostRawStd); i++)
4432 ASMCpuIdExSlow(i, 0, 0, 0, &aHostRawStd[i].uEax, &aHostRawStd[i].uEbx, &aHostRawStd[i].uEcx, &aHostRawStd[i].uEdx);
4433#else
4434 RT_ZERO(aHostRawStd);
4435#endif
4436
4437 CPUMCPUID aHostRawExt[32];
4438#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
4439 for (unsigned i = 0; i < RT_ELEMENTS(aHostRawExt); i++)
4440 ASMCpuIdExSlow(i | UINT32_C(0x80000000), 0, 0, 0,
4441 &aHostRawExt[i].uEax, &aHostRawExt[i].uEbx, &aHostRawExt[i].uEcx, &aHostRawExt[i].uEdx);
4442#else
4443 RT_ZERO(aHostRawExt);
4444#endif
4445
4446 /*
4447 * Get the host and guest overrides so we don't reject the state because
4448 * some feature was enabled thru these interfaces.
4449 * Note! We currently only need the feature leaves, so skip rest.
4450 */
4451 PCFGMNODE pOverrideCfg = CFGMR3GetChild(CFGMR3GetRoot(pVM), "CPUM/HostCPUID");
4452 CPUMCPUID aHostOverrideStd[2];
4453 memcpy(&aHostOverrideStd[0], &aHostRawStd[0], sizeof(aHostOverrideStd));
4454 cpumR3CpuIdInitLoadOverrideSet(UINT32_C(0x00000000), &aHostOverrideStd[0], RT_ELEMENTS(aHostOverrideStd), pOverrideCfg);
4455
4456 CPUMCPUID aHostOverrideExt[2];
4457 memcpy(&aHostOverrideExt[0], &aHostRawExt[0], sizeof(aHostOverrideExt));
4458 cpumR3CpuIdInitLoadOverrideSet(UINT32_C(0x80000000), &aHostOverrideExt[0], RT_ELEMENTS(aHostOverrideExt), pOverrideCfg);
4459
4460 /*
4461 * This can be skipped.
4462 *
4463 * @note On ARM we disable the strict checks for now because we can't verify with what the host supports
4464 * and just assume the interpreter/recompiler supports everything what was exposed earlier.
4465 */
4466 bool fStrictCpuIdChecks;
4467 CFGMR3QueryBoolDef(CFGMR3GetChild(CFGMR3GetRoot(pVM), "CPUM"), "StrictCpuIdChecks", &fStrictCpuIdChecks,
4468#ifdef RT_ARCH_ARM64
4469 false
4470#else
4471 true
4472#endif
4473 );
4474
4475 /*
4476 * Define a bunch of macros for simplifying the santizing/checking code below.
4477 */
4478 /* Generic expression + failure message. */
4479#define CPUID_CHECK_RET(expr, fmt) \
4480 do { \
4481 if (!(expr)) \
4482 { \
4483 char *pszMsg = RTStrAPrintf2 fmt; /* lack of variadic macros sucks */ \
4484 if (fStrictCpuIdChecks) \
4485 { \
4486 int rcCpuid = SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS, "%s", pszMsg); \
4487 RTStrFree(pszMsg); \
4488 return rcCpuid; \
4489 } \
4490 LogRel(("CPUM: %s\n", pszMsg)); \
4491 RTStrFree(pszMsg); \
4492 } \
4493 } while (0)
4494#define CPUID_CHECK_WRN(expr, fmt) \
4495 do { \
4496 if (!(expr)) \
4497 LogRel(fmt); \
4498 } while (0)
4499
4500 /* For comparing two values and bitch if they differs. */
4501#define CPUID_CHECK2_RET(what, host, saved) \
4502 do { \
4503 if ((host) != (saved)) \
4504 { \
4505 if (fStrictCpuIdChecks) \
4506 return SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS, \
4507 N_(#what " mismatch: host=%#x saved=%#x"), (host), (saved)); \
4508 LogRel(("CPUM: " #what " differs: host=%#x saved=%#x\n", (host), (saved))); \
4509 } \
4510 } while (0)
4511#define CPUID_CHECK2_WRN(what, host, saved) \
4512 do { \
4513 if ((host) != (saved)) \
4514 LogRel(("CPUM: " #what " differs: host=%#x saved=%#x\n", (host), (saved))); \
4515 } while (0)
4516
4517 /* For checking raw cpu features (raw mode). */
4518#define CPUID_RAW_FEATURE_RET(set, reg, bit) \
4519 do { \
4520 if ((aHostRaw##set [1].reg & bit) != (aRaw##set [1].reg & bit)) \
4521 { \
4522 if (fStrictCpuIdChecks) \
4523 return SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS, \
4524 N_(#bit " mismatch: host=%d saved=%d"), \
4525 !!(aHostRaw##set [1].reg & (bit)), !!(aRaw##set [1].reg & (bit)) ); \
4526 LogRel(("CPUM: " #bit" differs: host=%d saved=%d\n", \
4527 !!(aHostRaw##set [1].reg & (bit)), !!(aRaw##set [1].reg & (bit)) )); \
4528 } \
4529 } while (0)
4530#define CPUID_RAW_FEATURE_WRN(set, reg, bit) \
4531 do { \
4532 if ((aHostRaw##set [1].reg & bit) != (aRaw##set [1].reg & bit)) \
4533 LogRel(("CPUM: " #bit" differs: host=%d saved=%d\n", \
4534 !!(aHostRaw##set [1].reg & (bit)), !!(aRaw##set [1].reg & (bit)) )); \
4535 } while (0)
4536#define CPUID_RAW_FEATURE_IGN(set, reg, bit) do { } while (0)
4537
4538 /* For checking guest features. */
4539#define CPUID_GST_FEATURE_RET(set, reg, bit) \
4540 do { \
4541 if ( (aGuestCpuId##set [1].reg & bit) \
4542 && !(aHostRaw##set [1].reg & bit) \
4543 && !(aHostOverride##set [1].reg & bit) \
4544 ) \
4545 { \
4546 if (fStrictCpuIdChecks) \
4547 return SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS, \
4548 N_(#bit " is not supported by the host but has already exposed to the guest")); \
4549 LogRel(("CPUM: " #bit " is not supported by the host but has already exposed to the guest\n")); \
4550 } \
4551 } while (0)
4552#define CPUID_GST_FEATURE_WRN(set, reg, bit) \
4553 do { \
4554 if ( (aGuestCpuId##set [1].reg & bit) \
4555 && !(aHostRaw##set [1].reg & bit) \
4556 && !(aHostOverride##set [1].reg & bit) \
4557 ) \
4558 LogRel(("CPUM: " #bit " is not supported by the host but has already exposed to the guest\n")); \
4559 } while (0)
4560#define CPUID_GST_FEATURE_EMU(set, reg, bit) \
4561 do { \
4562 if ( (aGuestCpuId##set [1].reg & bit) \
4563 && !(aHostRaw##set [1].reg & bit) \
4564 && !(aHostOverride##set [1].reg & bit) \
4565 ) \
4566 LogRel(("CPUM: Warning - " #bit " is not supported by the host but already exposed to the guest. This may impact performance.\n")); \
4567 } while (0)
4568#define CPUID_GST_FEATURE_IGN(set, reg, bit) do { } while (0)
4569
4570 /* For checking guest features if AMD guest CPU. */
4571#define CPUID_GST_AMD_FEATURE_RET(set, reg, bit) \
4572 do { \
4573 if ( (aGuestCpuId##set [1].reg & bit) \
4574 && fGuestAmd \
4575 && (!fGuestAmd || !(aHostRaw##set [1].reg & bit)) \
4576 && !(aHostOverride##set [1].reg & bit) \
4577 ) \
4578 { \
4579 if (fStrictCpuIdChecks) \
4580 return SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS, \
4581 N_(#bit " is not supported by the host but has already exposed to the guest")); \
4582 LogRel(("CPUM: " #bit " is not supported by the host but has already exposed to the guest\n")); \
4583 } \
4584 } while (0)
4585#define CPUID_GST_AMD_FEATURE_WRN(set, reg, bit) \
4586 do { \
4587 if ( (aGuestCpuId##set [1].reg & bit) \
4588 && fGuestAmd \
4589 && (!fGuestAmd || !(aHostRaw##set [1].reg & bit)) \
4590 && !(aHostOverride##set [1].reg & bit) \
4591 ) \
4592 LogRel(("CPUM: " #bit " is not supported by the host but has already exposed to the guest\n")); \
4593 } while (0)
4594#define CPUID_GST_AMD_FEATURE_EMU(set, reg, bit) \
4595 do { \
4596 if ( (aGuestCpuId##set [1].reg & bit) \
4597 && fGuestAmd \
4598 && (!fGuestAmd || !(aHostRaw##set [1].reg & bit)) \
4599 && !(aHostOverride##set [1].reg & bit) \
4600 ) \
4601 LogRel(("CPUM: Warning - " #bit " is not supported by the host but already exposed to the guest. This may impact performance.\n")); \
4602 } while (0)
4603#define CPUID_GST_AMD_FEATURE_IGN(set, reg, bit) do { } while (0)
4604
4605 /* For checking AMD features which have a corresponding bit in the standard
4606 range. (Intel defines very few bits in the extended feature sets.) */
4607#define CPUID_GST_FEATURE2_RET(reg, ExtBit, StdBit) \
4608 do { \
4609 if ( (aGuestCpuIdExt [1].reg & (ExtBit)) \
4610 && !(fHostAmd \
4611 ? aHostRawExt[1].reg & (ExtBit) \
4612 : aHostRawStd[1].reg & (StdBit)) \
4613 && !(aHostOverrideExt[1].reg & (ExtBit)) \
4614 ) \
4615 { \
4616 if (fStrictCpuIdChecks) \
4617 return SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS, \
4618 N_(#ExtBit " is not supported by the host but has already exposed to the guest")); \
4619 LogRel(("CPUM: " #ExtBit " is not supported by the host but has already exposed to the guest\n")); \
4620 } \
4621 } while (0)
4622#define CPUID_GST_FEATURE2_WRN(reg, ExtBit, StdBit) \
4623 do { \
4624 if ( (aGuestCpuId[1].reg & (ExtBit)) \
4625 && !(fHostAmd \
4626 ? aHostRawExt[1].reg & (ExtBit) \
4627 : aHostRawStd[1].reg & (StdBit)) \
4628 && !(aHostOverrideExt[1].reg & (ExtBit)) \
4629 ) \
4630 LogRel(("CPUM: " #ExtBit " is not supported by the host but has already exposed to the guest\n")); \
4631 } while (0)
4632#define CPUID_GST_FEATURE2_EMU(reg, ExtBit, StdBit) \
4633 do { \
4634 if ( (aGuestCpuIdExt [1].reg & (ExtBit)) \
4635 && !(fHostAmd \
4636 ? aHostRawExt[1].reg & (ExtBit) \
4637 : aHostRawStd[1].reg & (StdBit)) \
4638 && !(aHostOverrideExt[1].reg & (ExtBit)) \
4639 ) \
4640 LogRel(("CPUM: Warning - " #ExtBit " is not supported by the host but already exposed to the guest. This may impact performance.\n")); \
4641 } while (0)
4642#define CPUID_GST_FEATURE2_IGN(reg, ExtBit, StdBit) do { } while (0)
4643
4644
4645 /*
4646 * Verify that we can support the features already exposed to the guest on
4647 * this host.
4648 *
4649 * Most of the features we're emulating requires intercepting instruction
4650 * and doing it the slow way, so there is no need to warn when they aren't
4651 * present in the host CPU. Thus we use IGN instead of EMU on these.
4652 *
4653 * Trailing comments:
4654 * "EMU" - Possible to emulate, could be lots of work and very slow.
4655 * "EMU?" - Can this be emulated?
4656 */
4657 CPUMCPUID aGuestCpuIdStd[2];
4658 RT_ZERO(aGuestCpuIdStd);
4659 cpumR3CpuIdGetLeafLegacy(paLeaves, cLeaves, 1, 0, &aGuestCpuIdStd[1]);
4660
4661 /* CPUID(1).ecx */
4662 CPUID_GST_FEATURE_RET(Std, uEcx, X86_CPUID_FEATURE_ECX_SSE3); // -> EMU
4663 CPUID_GST_FEATURE_RET(Std, uEcx, X86_CPUID_FEATURE_ECX_PCLMUL); // -> EMU?
4664 CPUID_GST_FEATURE_RET(Std, uEcx, X86_CPUID_FEATURE_ECX_DTES64); // -> EMU?
4665 CPUID_GST_FEATURE_IGN(Std, uEcx, X86_CPUID_FEATURE_ECX_MONITOR);
4666 CPUID_GST_FEATURE_RET(Std, uEcx, X86_CPUID_FEATURE_ECX_CPLDS); // -> EMU?
4667 CPUID_GST_FEATURE_RET(Std, uEcx, X86_CPUID_FEATURE_ECX_VMX); // -> EMU
4668 CPUID_GST_FEATURE_RET(Std, uEcx, X86_CPUID_FEATURE_ECX_SMX); // -> EMU
4669 CPUID_GST_FEATURE_RET(Std, uEcx, X86_CPUID_FEATURE_ECX_EST); // -> EMU
4670 CPUID_GST_FEATURE_RET(Std, uEcx, X86_CPUID_FEATURE_ECX_TM2); // -> EMU?
4671 CPUID_GST_FEATURE_RET(Std, uEcx, X86_CPUID_FEATURE_ECX_SSSE3); // -> EMU
4672 CPUID_GST_FEATURE_RET(Std, uEcx, X86_CPUID_FEATURE_ECX_CNTXID); // -> EMU
4673 CPUID_GST_FEATURE_IGN(Std, uEcx, X86_CPUID_FEATURE_ECX_SDBG);
4674 CPUID_GST_FEATURE_RET(Std, uEcx, X86_CPUID_FEATURE_ECX_FMA); // -> EMU? what's this?
4675 CPUID_GST_FEATURE_RET(Std, uEcx, X86_CPUID_FEATURE_ECX_CX16); // -> EMU?
4676 CPUID_GST_FEATURE_RET(Std, uEcx, X86_CPUID_FEATURE_ECX_TPRUPDATE);//-> EMU
4677 CPUID_GST_FEATURE_RET(Std, uEcx, X86_CPUID_FEATURE_ECX_PDCM); // -> EMU
4678 CPUID_GST_FEATURE_RET(Std, uEcx, RT_BIT_32(16) /*reserved*/);
4679 CPUID_GST_FEATURE_RET(Std, uEcx, X86_CPUID_FEATURE_ECX_PCID);
4680 CPUID_GST_FEATURE_RET(Std, uEcx, X86_CPUID_FEATURE_ECX_DCA); // -> EMU?
4681 CPUID_GST_FEATURE_RET(Std, uEcx, X86_CPUID_FEATURE_ECX_SSE4_1); // -> EMU
4682 CPUID_GST_FEATURE_RET(Std, uEcx, X86_CPUID_FEATURE_ECX_SSE4_2); // -> EMU
4683 CPUID_GST_FEATURE_IGN(Std, uEcx, X86_CPUID_FEATURE_ECX_X2APIC);
4684 CPUID_GST_FEATURE_RET(Std, uEcx, X86_CPUID_FEATURE_ECX_MOVBE); // -> EMU
4685 CPUID_GST_FEATURE_RET(Std, uEcx, X86_CPUID_FEATURE_ECX_POPCNT); // -> EMU
4686 CPUID_GST_FEATURE_RET(Std, uEcx, X86_CPUID_FEATURE_ECX_TSCDEADL);
4687 CPUID_GST_FEATURE_RET(Std, uEcx, X86_CPUID_FEATURE_ECX_AES); // -> EMU
4688 CPUID_GST_FEATURE_RET(Std, uEcx, X86_CPUID_FEATURE_ECX_XSAVE); // -> EMU
4689 CPUID_GST_FEATURE_IGN(Std, uEcx, X86_CPUID_FEATURE_ECX_OSXSAVE);
4690 CPUID_GST_FEATURE_RET(Std, uEcx, X86_CPUID_FEATURE_ECX_AVX); // -> EMU?
4691 CPUID_GST_FEATURE_RET(Std, uEcx, X86_CPUID_FEATURE_ECX_F16C);
4692 CPUID_GST_FEATURE_RET(Std, uEcx, X86_CPUID_FEATURE_ECX_RDRAND);
4693 CPUID_GST_FEATURE_IGN(Std, uEcx, X86_CPUID_FEATURE_ECX_HVP); // Normally not set by host
4694
4695 /* CPUID(1).edx */
4696 CPUID_GST_FEATURE_RET(Std, uEdx, X86_CPUID_FEATURE_EDX_FPU);
4697 CPUID_GST_FEATURE_RET(Std, uEdx, X86_CPUID_FEATURE_EDX_VME);
4698 CPUID_GST_FEATURE_RET(Std, uEdx, X86_CPUID_FEATURE_EDX_DE); // -> EMU?
4699 CPUID_GST_FEATURE_IGN(Std, uEdx, X86_CPUID_FEATURE_EDX_PSE);
4700 CPUID_GST_FEATURE_RET(Std, uEdx, X86_CPUID_FEATURE_EDX_TSC); // -> EMU
4701 CPUID_GST_FEATURE_RET(Std, uEdx, X86_CPUID_FEATURE_EDX_MSR); // -> EMU
4702 CPUID_GST_FEATURE_RET(Std, uEdx, X86_CPUID_FEATURE_EDX_PAE);
4703 CPUID_GST_FEATURE_IGN(Std, uEdx, X86_CPUID_FEATURE_EDX_MCE);
4704 CPUID_GST_FEATURE_RET(Std, uEdx, X86_CPUID_FEATURE_EDX_CX8); // -> EMU?
4705 CPUID_GST_FEATURE_IGN(Std, uEdx, X86_CPUID_FEATURE_EDX_APIC);
4706 CPUID_GST_FEATURE_RET(Std, uEdx, RT_BIT_32(10) /*reserved*/);
4707 CPUID_GST_FEATURE_IGN(Std, uEdx, X86_CPUID_FEATURE_EDX_SEP);
4708 CPUID_GST_FEATURE_IGN(Std, uEdx, X86_CPUID_FEATURE_EDX_MTRR);
4709 CPUID_GST_FEATURE_IGN(Std, uEdx, X86_CPUID_FEATURE_EDX_PGE);
4710 CPUID_GST_FEATURE_IGN(Std, uEdx, X86_CPUID_FEATURE_EDX_MCA);
4711 CPUID_GST_FEATURE_RET(Std, uEdx, X86_CPUID_FEATURE_EDX_CMOV); // -> EMU
4712 CPUID_GST_FEATURE_IGN(Std, uEdx, X86_CPUID_FEATURE_EDX_PAT);
4713 CPUID_GST_FEATURE_IGN(Std, uEdx, X86_CPUID_FEATURE_EDX_PSE36);
4714 CPUID_GST_FEATURE_IGN(Std, uEdx, X86_CPUID_FEATURE_EDX_PSN);
4715 CPUID_GST_FEATURE_RET(Std, uEdx, X86_CPUID_FEATURE_EDX_CLFSH); // -> EMU
4716 CPUID_GST_FEATURE_RET(Std, uEdx, RT_BIT_32(20) /*reserved*/);
4717 CPUID_GST_FEATURE_RET(Std, uEdx, X86_CPUID_FEATURE_EDX_DS); // -> EMU?
4718 CPUID_GST_FEATURE_RET(Std, uEdx, X86_CPUID_FEATURE_EDX_ACPI); // -> EMU?
4719 CPUID_GST_FEATURE_RET(Std, uEdx, X86_CPUID_FEATURE_EDX_MMX); // -> EMU
4720 CPUID_GST_FEATURE_RET(Std, uEdx, X86_CPUID_FEATURE_EDX_FXSR); // -> EMU
4721 CPUID_GST_FEATURE_RET(Std, uEdx, X86_CPUID_FEATURE_EDX_SSE); // -> EMU
4722 CPUID_GST_FEATURE_RET(Std, uEdx, X86_CPUID_FEATURE_EDX_SSE2); // -> EMU
4723 CPUID_GST_FEATURE_RET(Std, uEdx, X86_CPUID_FEATURE_EDX_SS); // -> EMU?
4724 CPUID_GST_FEATURE_IGN(Std, uEdx, X86_CPUID_FEATURE_EDX_HTT); // -> EMU?
4725 CPUID_GST_FEATURE_RET(Std, uEdx, X86_CPUID_FEATURE_EDX_TM); // -> EMU?
4726 CPUID_GST_FEATURE_RET(Std, uEdx, RT_BIT_32(30) /*JMPE/IA64*/); // -> EMU
4727 CPUID_GST_FEATURE_RET(Std, uEdx, X86_CPUID_FEATURE_EDX_PBE); // -> EMU?
4728
4729 /* CPUID(0x80000000). */
4730 CPUMCPUID aGuestCpuIdExt[2];
4731 RT_ZERO(aGuestCpuIdExt);
4732 if (cpumR3CpuIdGetLeafLegacy(paLeaves, cLeaves, UINT32_C(0x80000001), 0, &aGuestCpuIdExt[1]))
4733 {
4734 /** @todo deal with no 0x80000001 on the host. */
4735 bool const fHostAmd = RTX86IsAmdCpu(aHostRawStd[0].uEbx, aHostRawStd[0].uEcx, aHostRawStd[0].uEdx)
4736 || RTX86IsHygonCpu(aHostRawStd[0].uEbx, aHostRawStd[0].uEcx, aHostRawStd[0].uEdx);
4737 bool const fGuestAmd = RTX86IsAmdCpu(aGuestCpuIdExt[0].uEbx, aGuestCpuIdExt[0].uEcx, aGuestCpuIdExt[0].uEdx)
4738 || RTX86IsHygonCpu(aGuestCpuIdExt[0].uEbx, aGuestCpuIdExt[0].uEcx, aGuestCpuIdExt[0].uEdx);
4739
4740 /* CPUID(0x80000001).ecx */
4741 CPUID_GST_FEATURE_WRN(Ext, uEcx, X86_CPUID_EXT_FEATURE_ECX_LAHF_SAHF); // -> EMU
4742 CPUID_GST_AMD_FEATURE_WRN(Ext, uEcx, X86_CPUID_AMD_FEATURE_ECX_CMPL); // -> EMU
4743 CPUID_GST_AMD_FEATURE_RET(Ext, uEcx, X86_CPUID_AMD_FEATURE_ECX_SVM); // -> EMU
4744 CPUID_GST_AMD_FEATURE_WRN(Ext, uEcx, X86_CPUID_AMD_FEATURE_ECX_EXT_APIC);// ???
4745 CPUID_GST_AMD_FEATURE_RET(Ext, uEcx, X86_CPUID_AMD_FEATURE_ECX_CR8L); // -> EMU
4746 CPUID_GST_AMD_FEATURE_RET(Ext, uEcx, X86_CPUID_AMD_FEATURE_ECX_ABM); // -> EMU
4747 CPUID_GST_AMD_FEATURE_RET(Ext, uEcx, X86_CPUID_AMD_FEATURE_ECX_SSE4A); // -> EMU
4748 CPUID_GST_AMD_FEATURE_RET(Ext, uEcx, X86_CPUID_AMD_FEATURE_ECX_MISALNSSE);//-> EMU
4749 CPUID_GST_AMD_FEATURE_RET(Ext, uEcx, X86_CPUID_AMD_FEATURE_ECX_3DNOWPRF);// -> EMU
4750 CPUID_GST_AMD_FEATURE_RET(Ext, uEcx, X86_CPUID_AMD_FEATURE_ECX_OSVW); // -> EMU?
4751 CPUID_GST_AMD_FEATURE_RET(Ext, uEcx, X86_CPUID_AMD_FEATURE_ECX_IBS); // -> EMU
4752 CPUID_GST_AMD_FEATURE_RET(Ext, uEcx, X86_CPUID_AMD_FEATURE_ECX_XOP); // -> EMU
4753 CPUID_GST_AMD_FEATURE_RET(Ext, uEcx, X86_CPUID_AMD_FEATURE_ECX_SKINIT); // -> EMU
4754 CPUID_GST_AMD_FEATURE_RET(Ext, uEcx, X86_CPUID_AMD_FEATURE_ECX_WDT); // -> EMU
4755 CPUID_GST_AMD_FEATURE_WRN(Ext, uEcx, RT_BIT_32(14));
4756 CPUID_GST_AMD_FEATURE_WRN(Ext, uEcx, RT_BIT_32(15));
4757 CPUID_GST_AMD_FEATURE_WRN(Ext, uEcx, RT_BIT_32(16));
4758 CPUID_GST_AMD_FEATURE_WRN(Ext, uEcx, RT_BIT_32(17));
4759 CPUID_GST_AMD_FEATURE_WRN(Ext, uEcx, RT_BIT_32(18));
4760 CPUID_GST_AMD_FEATURE_WRN(Ext, uEcx, RT_BIT_32(19));
4761 CPUID_GST_AMD_FEATURE_WRN(Ext, uEcx, RT_BIT_32(20));
4762 CPUID_GST_AMD_FEATURE_WRN(Ext, uEcx, RT_BIT_32(21));
4763 CPUID_GST_AMD_FEATURE_WRN(Ext, uEcx, RT_BIT_32(22));
4764 CPUID_GST_AMD_FEATURE_WRN(Ext, uEcx, RT_BIT_32(23));
4765 CPUID_GST_AMD_FEATURE_WRN(Ext, uEcx, RT_BIT_32(24));
4766 CPUID_GST_AMD_FEATURE_WRN(Ext, uEcx, RT_BIT_32(25));
4767 CPUID_GST_AMD_FEATURE_WRN(Ext, uEcx, RT_BIT_32(26));
4768 CPUID_GST_AMD_FEATURE_WRN(Ext, uEcx, RT_BIT_32(27));
4769 CPUID_GST_AMD_FEATURE_WRN(Ext, uEcx, RT_BIT_32(28));
4770 CPUID_GST_AMD_FEATURE_WRN(Ext, uEcx, RT_BIT_32(29));
4771 CPUID_GST_AMD_FEATURE_WRN(Ext, uEcx, RT_BIT_32(30));
4772 CPUID_GST_AMD_FEATURE_WRN(Ext, uEcx, RT_BIT_32(31));
4773
4774 /* CPUID(0x80000001).edx */
4775 CPUID_GST_FEATURE2_RET( uEdx, X86_CPUID_AMD_FEATURE_EDX_FPU, X86_CPUID_FEATURE_EDX_FPU); // -> EMU
4776 CPUID_GST_FEATURE2_RET( uEdx, X86_CPUID_AMD_FEATURE_EDX_VME, X86_CPUID_FEATURE_EDX_VME); // -> EMU
4777 CPUID_GST_FEATURE2_RET( uEdx, X86_CPUID_AMD_FEATURE_EDX_DE, X86_CPUID_FEATURE_EDX_DE); // -> EMU
4778 CPUID_GST_FEATURE2_IGN( uEdx, X86_CPUID_AMD_FEATURE_EDX_PSE, X86_CPUID_FEATURE_EDX_PSE);
4779 CPUID_GST_FEATURE2_RET( uEdx, X86_CPUID_AMD_FEATURE_EDX_TSC, X86_CPUID_FEATURE_EDX_TSC); // -> EMU
4780 CPUID_GST_FEATURE2_RET( uEdx, X86_CPUID_AMD_FEATURE_EDX_MSR, X86_CPUID_FEATURE_EDX_MSR); // -> EMU
4781 CPUID_GST_FEATURE2_RET( uEdx, X86_CPUID_AMD_FEATURE_EDX_PAE, X86_CPUID_FEATURE_EDX_PAE);
4782 CPUID_GST_FEATURE2_IGN( uEdx, X86_CPUID_AMD_FEATURE_EDX_MCE, X86_CPUID_FEATURE_EDX_MCE);
4783 CPUID_GST_FEATURE2_RET( uEdx, X86_CPUID_AMD_FEATURE_EDX_CX8, X86_CPUID_FEATURE_EDX_CX8); // -> EMU?
4784 CPUID_GST_FEATURE2_IGN( uEdx, X86_CPUID_AMD_FEATURE_EDX_APIC, X86_CPUID_FEATURE_EDX_APIC);
4785 CPUID_GST_AMD_FEATURE_WRN(Ext, uEdx, RT_BIT_32(10) /*reserved*/);
4786 CPUID_GST_FEATURE_IGN( Ext, uEdx, X86_CPUID_EXT_FEATURE_EDX_SYSCALL); // On Intel: long mode only.
4787 CPUID_GST_FEATURE2_IGN( uEdx, X86_CPUID_AMD_FEATURE_EDX_MTRR, X86_CPUID_FEATURE_EDX_MTRR);
4788 CPUID_GST_FEATURE2_IGN( uEdx, X86_CPUID_AMD_FEATURE_EDX_PGE, X86_CPUID_FEATURE_EDX_PGE);
4789 CPUID_GST_FEATURE2_IGN( uEdx, X86_CPUID_AMD_FEATURE_EDX_MCA, X86_CPUID_FEATURE_EDX_MCA);
4790 CPUID_GST_FEATURE2_RET( uEdx, X86_CPUID_AMD_FEATURE_EDX_CMOV, X86_CPUID_FEATURE_EDX_CMOV); // -> EMU
4791 CPUID_GST_FEATURE2_IGN( uEdx, X86_CPUID_AMD_FEATURE_EDX_PAT, X86_CPUID_FEATURE_EDX_PAT);
4792 CPUID_GST_FEATURE2_IGN( uEdx, X86_CPUID_AMD_FEATURE_EDX_PSE36, X86_CPUID_FEATURE_EDX_PSE36);
4793 CPUID_GST_AMD_FEATURE_WRN(Ext, uEdx, RT_BIT_32(18) /*reserved*/);
4794 CPUID_GST_AMD_FEATURE_WRN(Ext, uEdx, RT_BIT_32(19) /*reserved*/);
4795 CPUID_GST_FEATURE_RET( Ext, uEdx, X86_CPUID_EXT_FEATURE_EDX_NX);
4796 CPUID_GST_FEATURE_WRN( Ext, uEdx, RT_BIT_32(21) /*reserved*/);
4797 CPUID_GST_FEATURE_RET( Ext, uEdx, X86_CPUID_AMD_FEATURE_EDX_AXMMX);
4798 CPUID_GST_FEATURE2_RET( uEdx, X86_CPUID_AMD_FEATURE_EDX_MMX, X86_CPUID_FEATURE_EDX_MMX); // -> EMU
4799 CPUID_GST_FEATURE2_RET( uEdx, X86_CPUID_AMD_FEATURE_EDX_FXSR, X86_CPUID_FEATURE_EDX_FXSR); // -> EMU
4800 CPUID_GST_AMD_FEATURE_RET(Ext, uEdx, X86_CPUID_AMD_FEATURE_EDX_FFXSR);
4801 CPUID_GST_AMD_FEATURE_RET(Ext, uEdx, X86_CPUID_EXT_FEATURE_EDX_PAGE1GB);
4802 CPUID_GST_AMD_FEATURE_RET(Ext, uEdx, X86_CPUID_EXT_FEATURE_EDX_RDTSCP);
4803 CPUID_GST_FEATURE_IGN( Ext, uEdx, RT_BIT_32(28) /*reserved*/);
4804 CPUID_GST_FEATURE_RET( Ext, uEdx, X86_CPUID_EXT_FEATURE_EDX_LONG_MODE);
4805 CPUID_GST_AMD_FEATURE_RET(Ext, uEdx, X86_CPUID_AMD_FEATURE_EDX_3DNOW_EX);
4806 CPUID_GST_AMD_FEATURE_RET(Ext, uEdx, X86_CPUID_AMD_FEATURE_EDX_3DNOW);
4807 }
4808
4809 /** @todo check leaf 7 */
4810
4811 /* CPUID(d) - XCR0 stuff - takes ECX as input.
4812 * ECX=0: EAX - Valid bits in XCR0[31:0].
4813 * EBX - Maximum state size as per current XCR0 value.
4814 * ECX - Maximum state size for all supported features.
4815 * EDX - Valid bits in XCR0[63:32].
4816 * ECX=1: EAX - Various X-features.
4817 * EBX - Maximum state size as per current XCR0|IA32_XSS value.
4818 * ECX - Valid bits in IA32_XSS[31:0].
4819 * EDX - Valid bits in IA32_XSS[63:32].
4820 * ECX=N, where N in 2..63 and indicates a bit in XCR0 and/or IA32_XSS,
4821 * if the bit invalid all four registers are set to zero.
4822 * EAX - The state size for this feature.
4823 * EBX - The state byte offset of this feature.
4824 * ECX - Bit 0 indicates whether this sub-leaf maps to a valid IA32_XSS bit (=1) or a valid XCR0 bit (=0).
4825 * EDX - Reserved, but is set to zero if invalid sub-leaf index.
4826 */
4827 uint64_t fGuestXcr0Mask = 0;
4828 PCPUMCPUIDLEAF pCurLeaf = cpumCpuIdGetLeafInt(paLeaves, cLeaves, UINT32_C(0x0000000d), 0);
4829 if ( pCurLeaf
4830 && (aGuestCpuIdStd[1].uEcx & X86_CPUID_FEATURE_ECX_XSAVE)
4831 && ( pCurLeaf->uEax
4832 || pCurLeaf->uEbx
4833 || pCurLeaf->uEcx
4834 || pCurLeaf->uEdx) )
4835 {
4836 fGuestXcr0Mask = RT_MAKE_U64(pCurLeaf->uEax, pCurLeaf->uEdx);
4837 if (fGuestXcr0Mask & ~pVM->cpum.s.fXStateHostMask)
4838 return SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS,
4839 N_("CPUID(0xd/0).EDX:EAX mismatch: %#llx saved, %#llx supported by the current host (XCR0 bits)"),
4840 fGuestXcr0Mask, pVM->cpum.s.fXStateHostMask);
4841 if ((fGuestXcr0Mask & (XSAVE_C_X87 | XSAVE_C_SSE)) != (XSAVE_C_X87 | XSAVE_C_SSE))
4842 return SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS,
4843 N_("CPUID(0xd/0).EDX:EAX missing mandatory X87 or SSE bits: %#RX64"), fGuestXcr0Mask);
4844
4845 /* We don't support any additional features yet. */
4846 pCurLeaf = cpumCpuIdGetLeafInt(paLeaves, cLeaves, UINT32_C(0x0000000d), 1);
4847 if (pCurLeaf && pCurLeaf->uEax)
4848 return SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS,
4849 N_("CPUID(0xd/1).EAX=%#x, expected zero"), pCurLeaf->uEax);
4850 if (pCurLeaf && (pCurLeaf->uEcx || pCurLeaf->uEdx))
4851 return SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS,
4852 N_("CPUID(0xd/1).EDX:ECX=%#llx, expected zero"),
4853 RT_MAKE_U64(pCurLeaf->uEdx, pCurLeaf->uEcx));
4854
4855
4856#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
4857 for (uint32_t uSubLeaf = 2; uSubLeaf < 64; uSubLeaf++)
4858 {
4859 pCurLeaf = cpumCpuIdGetLeafInt(paLeaves, cLeaves, UINT32_C(0x0000000d), uSubLeaf);
4860 if (pCurLeaf)
4861 {
4862 /* If advertised, the state component offset and size must match the one used by host. */
4863 if (pCurLeaf->uEax || pCurLeaf->uEbx || pCurLeaf->uEcx || pCurLeaf->uEdx)
4864 {
4865 CPUMCPUID RawHost;
4866 ASMCpuIdExSlow(UINT32_C(0x0000000d), 0, uSubLeaf, 0,
4867 &RawHost.uEax, &RawHost.uEbx, &RawHost.uEcx, &RawHost.uEdx);
4868 if ( RawHost.uEbx != pCurLeaf->uEbx
4869 || RawHost.uEax != pCurLeaf->uEax)
4870 return SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS,
4871 N_("CPUID(0xd/%#x).EBX/EAX=%#x/%#x, current host uses %#x/%#x (offset/size)"),
4872 uSubLeaf, pCurLeaf->uEbx, pCurLeaf->uEax, RawHost.uEbx, RawHost.uEax);
4873 }
4874 }
4875 }
4876#endif
4877 }
4878 /* Clear leaf 0xd just in case we're loading an old state... */
4879 else if (pCurLeaf)
4880 {
4881 for (uint32_t uSubLeaf = 0; uSubLeaf < 64; uSubLeaf++)
4882 {
4883 pCurLeaf = cpumCpuIdGetLeafInt(paLeaves, cLeaves, UINT32_C(0x0000000d), uSubLeaf);
4884 if (pCurLeaf)
4885 {
4886 AssertLogRelMsg( uVersion <= CPUM_SAVED_STATE_VERSION_PUT_STRUCT
4887 || ( pCurLeaf->uEax == 0
4888 && pCurLeaf->uEbx == 0
4889 && pCurLeaf->uEcx == 0
4890 && pCurLeaf->uEdx == 0),
4891 ("uVersion=%#x; %#x %#x %#x %#x\n",
4892 uVersion, pCurLeaf->uEax, pCurLeaf->uEbx, pCurLeaf->uEcx, pCurLeaf->uEdx));
4893 pCurLeaf->uEax = pCurLeaf->uEbx = pCurLeaf->uEcx = pCurLeaf->uEdx = 0;
4894 }
4895 }
4896 }
4897
4898 /* Update the fXStateGuestMask value for the VM. */
4899 if (pVM->cpum.s.fXStateGuestMask != fGuestXcr0Mask)
4900 {
4901 LogRel(("CPUM: fXStateGuestMask=%#llx -> %#llx\n", pVM->cpum.s.fXStateGuestMask, fGuestXcr0Mask));
4902 pVM->cpum.s.fXStateGuestMask = fGuestXcr0Mask;
4903 if (!fGuestXcr0Mask && (aGuestCpuIdStd[1].uEcx & X86_CPUID_FEATURE_ECX_XSAVE))
4904 return SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS,
4905 N_("Internal Processing Error: XSAVE feature bit enabled, but leaf 0xd is empty."));
4906 }
4907
4908#undef CPUID_CHECK_RET
4909#undef CPUID_CHECK_WRN
4910#undef CPUID_CHECK2_RET
4911#undef CPUID_CHECK2_WRN
4912#undef CPUID_RAW_FEATURE_RET
4913#undef CPUID_RAW_FEATURE_WRN
4914#undef CPUID_RAW_FEATURE_IGN
4915#undef CPUID_GST_FEATURE_RET
4916#undef CPUID_GST_FEATURE_WRN
4917#undef CPUID_GST_FEATURE_EMU
4918#undef CPUID_GST_FEATURE_IGN
4919#undef CPUID_GST_FEATURE2_RET
4920#undef CPUID_GST_FEATURE2_WRN
4921#undef CPUID_GST_FEATURE2_EMU
4922#undef CPUID_GST_FEATURE2_IGN
4923#undef CPUID_GST_AMD_FEATURE_RET
4924#undef CPUID_GST_AMD_FEATURE_WRN
4925#undef CPUID_GST_AMD_FEATURE_EMU
4926#undef CPUID_GST_AMD_FEATURE_IGN
4927
4928 /*
4929 * We're good, commit the CPU ID leaves.
4930 */
4931 pVM->cpum.s.GuestInfo.DefCpuId = GuestDefCpuId;
4932 rc = cpumR3CpuIdInstallAndExplodeLeaves(pVM, &pVM->cpum.s, paLeaves, cLeaves, pMsrs);
4933 AssertLogRelRCReturn(rc, rc);
4934
4935 return VINF_SUCCESS;
4936}
4937
4938
4939/**
4940 * Loads the CPU ID leaves saved by pass 0.
4941 *
4942 * @returns VBox status code.
4943 * @param pVM The cross context VM structure.
4944 * @param pSSM The saved state handle.
4945 * @param uVersion The format version.
4946 * @param pMsrs The guest MSRs.
4947 */
4948int cpumR3LoadCpuId(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, PCCPUMMSRS pMsrs)
4949{
4950 AssertMsgReturn(uVersion >= CPUM_SAVED_STATE_VERSION_VER3_2, ("%u\n", uVersion), VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION);
4951
4952 /*
4953 * Load the CPUID leaves array first and call worker to do the rest, just so
4954 * we can free the memory when we need to without ending up in column 1000.
4955 */
4956 PCPUMCPUIDLEAF paLeaves;
4957 uint32_t cLeaves;
4958 int rc = cpumR3LoadGuestCpuIdArray(pVM, pSSM, uVersion, &paLeaves, &cLeaves);
4959 AssertRC(rc);
4960 if (RT_SUCCESS(rc))
4961 {
4962 rc = cpumR3LoadCpuIdInner(pVM, pSSM, uVersion, paLeaves, cLeaves, pMsrs);
4963 RTMemFree(paLeaves);
4964 }
4965 return rc;
4966}
4967
4968
4969
4970/**
4971 * Loads the CPU ID leaves saved by pass 0 in an pre 3.2 saved state.
4972 *
4973 * @returns VBox status code.
4974 * @param pVM The cross context VM structure.
4975 * @param pSSM The saved state handle.
4976 * @param uVersion The format version.
4977 */
4978int cpumR3LoadCpuIdPre32(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion)
4979{
4980 AssertMsgReturn(uVersion < CPUM_SAVED_STATE_VERSION_VER3_2, ("%u\n", uVersion), VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION);
4981
4982 /*
4983 * Restore the CPUID leaves.
4984 *
4985 * Note that we support restoring less than the current amount of standard
4986 * leaves because we've been allowed more is newer version of VBox.
4987 */
4988 uint32_t cElements;
4989 int rc = SSMR3GetU32(pSSM, &cElements); AssertRCReturn(rc, rc);
4990 if (cElements > RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdPatmStd))
4991 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
4992 SSMR3GetMem(pSSM, &pVM->cpum.s.aGuestCpuIdPatmStd[0], cElements*sizeof(pVM->cpum.s.aGuestCpuIdPatmStd[0]));
4993
4994 rc = SSMR3GetU32(pSSM, &cElements); AssertRCReturn(rc, rc);
4995 if (cElements != RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdPatmExt))
4996 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
4997 SSMR3GetMem(pSSM, &pVM->cpum.s.aGuestCpuIdPatmExt[0], sizeof(pVM->cpum.s.aGuestCpuIdPatmExt));
4998
4999 rc = SSMR3GetU32(pSSM, &cElements); AssertRCReturn(rc, rc);
5000 if (cElements != RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdPatmCentaur))
5001 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
5002 SSMR3GetMem(pSSM, &pVM->cpum.s.aGuestCpuIdPatmCentaur[0], sizeof(pVM->cpum.s.aGuestCpuIdPatmCentaur));
5003
5004 SSMR3GetMem(pSSM, &pVM->cpum.s.GuestInfo.DefCpuId, sizeof(pVM->cpum.s.GuestInfo.DefCpuId));
5005
5006 /*
5007 * Check that the basic cpuid id information is unchanged.
5008 */
5009 /** @todo we should check the 64 bits capabilities too! */
5010 uint32_t au32CpuId[8] = {0,0,0,0, 0,0,0,0};
5011#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
5012 ASMCpuIdExSlow(0, 0, 0, 0, &au32CpuId[0], &au32CpuId[1], &au32CpuId[2], &au32CpuId[3]);
5013 ASMCpuIdExSlow(1, 0, 0, 0, &au32CpuId[4], &au32CpuId[5], &au32CpuId[6], &au32CpuId[7]);
5014#endif
5015 uint32_t au32CpuIdSaved[8];
5016 rc = SSMR3GetMem(pSSM, &au32CpuIdSaved[0], sizeof(au32CpuIdSaved));
5017 if (RT_SUCCESS(rc))
5018 {
5019 /* Ignore CPU stepping. */
5020 au32CpuId[4] &= 0xfffffff0;
5021 au32CpuIdSaved[4] &= 0xfffffff0;
5022
5023 /* Ignore APIC ID (AMD specs). */
5024 au32CpuId[5] &= ~0xff000000;
5025 au32CpuIdSaved[5] &= ~0xff000000;
5026
5027 /* Ignore the number of Logical CPUs (AMD specs). */
5028 au32CpuId[5] &= ~0x00ff0000;
5029 au32CpuIdSaved[5] &= ~0x00ff0000;
5030
5031 /* Ignore some advanced capability bits, that we don't expose to the guest. */
5032 au32CpuId[6] &= ~( X86_CPUID_FEATURE_ECX_DTES64
5033 | X86_CPUID_FEATURE_ECX_VMX
5034 | X86_CPUID_FEATURE_ECX_SMX
5035 | X86_CPUID_FEATURE_ECX_EST
5036 | X86_CPUID_FEATURE_ECX_TM2
5037 | X86_CPUID_FEATURE_ECX_CNTXID
5038 | X86_CPUID_FEATURE_ECX_TPRUPDATE
5039 | X86_CPUID_FEATURE_ECX_PDCM
5040 | X86_CPUID_FEATURE_ECX_DCA
5041 | X86_CPUID_FEATURE_ECX_X2APIC
5042 );
5043 au32CpuIdSaved[6] &= ~( X86_CPUID_FEATURE_ECX_DTES64
5044 | X86_CPUID_FEATURE_ECX_VMX
5045 | X86_CPUID_FEATURE_ECX_SMX
5046 | X86_CPUID_FEATURE_ECX_EST
5047 | X86_CPUID_FEATURE_ECX_TM2
5048 | X86_CPUID_FEATURE_ECX_CNTXID
5049 | X86_CPUID_FEATURE_ECX_TPRUPDATE
5050 | X86_CPUID_FEATURE_ECX_PDCM
5051 | X86_CPUID_FEATURE_ECX_DCA
5052 | X86_CPUID_FEATURE_ECX_X2APIC
5053 );
5054
5055 /* Make sure we don't forget to update the masks when enabling
5056 * features in the future.
5057 */
5058 AssertRelease(!(pVM->cpum.s.aGuestCpuIdPatmStd[1].uEcx &
5059 ( X86_CPUID_FEATURE_ECX_DTES64
5060 | X86_CPUID_FEATURE_ECX_VMX
5061 | X86_CPUID_FEATURE_ECX_SMX
5062 | X86_CPUID_FEATURE_ECX_EST
5063 | X86_CPUID_FEATURE_ECX_TM2
5064 | X86_CPUID_FEATURE_ECX_CNTXID
5065 | X86_CPUID_FEATURE_ECX_TPRUPDATE
5066 | X86_CPUID_FEATURE_ECX_PDCM
5067 | X86_CPUID_FEATURE_ECX_DCA
5068 | X86_CPUID_FEATURE_ECX_X2APIC
5069 )));
5070 /* do the compare */
5071 if (memcmp(au32CpuIdSaved, au32CpuId, sizeof(au32CpuIdSaved)))
5072 {
5073 if (SSMR3HandleGetAfter(pSSM) == SSMAFTER_DEBUG_IT)
5074 LogRel(("cpumR3LoadExec: CpuId mismatch! (ignored due to SSMAFTER_DEBUG_IT)\n"
5075 "Saved=%.*Rhxs\n"
5076 "Real =%.*Rhxs\n",
5077 sizeof(au32CpuIdSaved), au32CpuIdSaved,
5078 sizeof(au32CpuId), au32CpuId));
5079 else
5080 {
5081 LogRel(("cpumR3LoadExec: CpuId mismatch!\n"
5082 "Saved=%.*Rhxs\n"
5083 "Real =%.*Rhxs\n",
5084 sizeof(au32CpuIdSaved), au32CpuIdSaved,
5085 sizeof(au32CpuId), au32CpuId));
5086 rc = VERR_SSM_LOAD_CPUID_MISMATCH;
5087 }
5088 }
5089 }
5090
5091 return rc;
5092}
5093
5094
5095
5096/*
5097 *
5098 *
5099 * CPUID Info Handler.
5100 * CPUID Info Handler.
5101 * CPUID Info Handler.
5102 *
5103 *
5104 */
5105
5106
5107
5108/**
5109 * Get L1 cache / TLS associativity.
5110 */
5111static const char *getCacheAss(unsigned u, char *pszBuf)
5112{
5113 if (u == 0)
5114 return "res0 ";
5115 if (u == 1)
5116 return "direct";
5117 if (u == 255)
5118 return "fully";
5119 if (u >= 256)
5120 return "???";
5121
5122 RTStrPrintf(pszBuf, 16, "%d way", u);
5123 return pszBuf;
5124}
5125
5126
5127/**
5128 * Get L2/L3 cache associativity.
5129 */
5130static const char *getL23CacheAss(unsigned u)
5131{
5132 switch (u)
5133 {
5134 case 0: return "off ";
5135 case 1: return "direct";
5136 case 2: return "2 way ";
5137 case 3: return "3 way ";
5138 case 4: return "4 way ";
5139 case 5: return "6 way ";
5140 case 6: return "8 way ";
5141 case 7: return "res7 ";
5142 case 8: return "16 way";
5143 case 9: return "tpoext"; /* Overridden by Fn8000_001D */
5144 case 10: return "32 way";
5145 case 11: return "48 way";
5146 case 12: return "64 way";
5147 case 13: return "96 way";
5148 case 14: return "128way";
5149 case 15: return "fully ";
5150 default: return "????";
5151 }
5152}
5153
5154
5155/** CPUID(1).EDX field descriptions. */
5156static DBGFREGSUBFIELD const g_aLeaf1EdxSubFields[] =
5157{
5158 DBGFREGSUBFIELD_RO("FPU\0" "x87 FPU on Chip", 0, 1, 0),
5159 DBGFREGSUBFIELD_RO("VME\0" "Virtual 8086 Mode Enhancements", 1, 1, 0),
5160 DBGFREGSUBFIELD_RO("DE\0" "Debugging extensions", 2, 1, 0),
5161 DBGFREGSUBFIELD_RO("PSE\0" "Page Size Extension", 3, 1, 0),
5162 DBGFREGSUBFIELD_RO("TSC\0" "Time Stamp Counter", 4, 1, 0),
5163 DBGFREGSUBFIELD_RO("MSR\0" "Model Specific Registers", 5, 1, 0),
5164 DBGFREGSUBFIELD_RO("PAE\0" "Physical Address Extension", 6, 1, 0),
5165 DBGFREGSUBFIELD_RO("MCE\0" "Machine Check Exception", 7, 1, 0),
5166 DBGFREGSUBFIELD_RO("CX8\0" "CMPXCHG8B instruction", 8, 1, 0),
5167 DBGFREGSUBFIELD_RO("APIC\0" "APIC On-Chip", 9, 1, 0),
5168 DBGFREGSUBFIELD_RO("SEP\0" "SYSENTER and SYSEXIT Present", 11, 1, 0),
5169 DBGFREGSUBFIELD_RO("MTRR\0" "Memory Type Range Registers", 12, 1, 0),
5170 DBGFREGSUBFIELD_RO("PGE\0" "PTE Global Bit", 13, 1, 0),
5171 DBGFREGSUBFIELD_RO("MCA\0" "Machine Check Architecture", 14, 1, 0),
5172 DBGFREGSUBFIELD_RO("CMOV\0" "Conditional Move instructions", 15, 1, 0),
5173 DBGFREGSUBFIELD_RO("PAT\0" "Page Attribute Table", 16, 1, 0),
5174 DBGFREGSUBFIELD_RO("PSE-36\0" "36-bit Page Size Extension", 17, 1, 0),
5175 DBGFREGSUBFIELD_RO("PSN\0" "Processor Serial Number", 18, 1, 0),
5176 DBGFREGSUBFIELD_RO("CLFSH\0" "CLFLUSH instruction", 19, 1, 0),
5177 DBGFREGSUBFIELD_RO("DS\0" "Debug Store", 21, 1, 0),
5178 DBGFREGSUBFIELD_RO("ACPI\0" "Thermal Mon. & Soft. Clock Ctrl.", 22, 1, 0),
5179 DBGFREGSUBFIELD_RO("MMX\0" "Intel MMX Technology", 23, 1, 0),
5180 DBGFREGSUBFIELD_RO("FXSR\0" "FXSAVE and FXRSTOR instructions", 24, 1, 0),
5181 DBGFREGSUBFIELD_RO("SSE\0" "SSE support", 25, 1, 0),
5182 DBGFREGSUBFIELD_RO("SSE2\0" "SSE2 support", 26, 1, 0),
5183 DBGFREGSUBFIELD_RO("SS\0" "Self Snoop", 27, 1, 0),
5184 DBGFREGSUBFIELD_RO("HTT\0" "Hyper-Threading Technology", 28, 1, 0),
5185 DBGFREGSUBFIELD_RO("TM\0" "Therm. Monitor", 29, 1, 0),
5186 DBGFREGSUBFIELD_RO("PBE\0" "Pending Break Enabled", 31, 1, 0),
5187 DBGFREGSUBFIELD_TERMINATOR()
5188};
5189
5190/** CPUID(1).ECX field descriptions. */
5191static DBGFREGSUBFIELD const g_aLeaf1EcxSubFields[] =
5192{
5193 DBGFREGSUBFIELD_RO("SSE3\0" "SSE3 support", 0, 1, 0),
5194 DBGFREGSUBFIELD_RO("PCLMUL\0" "PCLMULQDQ support (for AES-GCM)", 1, 1, 0),
5195 DBGFREGSUBFIELD_RO("DTES64\0" "DS Area 64-bit Layout", 2, 1, 0),
5196 DBGFREGSUBFIELD_RO("MONITOR\0" "MONITOR/MWAIT instructions", 3, 1, 0),
5197 DBGFREGSUBFIELD_RO("CPL-DS\0" "CPL Qualified Debug Store", 4, 1, 0),
5198 DBGFREGSUBFIELD_RO("VMX\0" "Virtual Machine Extensions", 5, 1, 0),
5199 DBGFREGSUBFIELD_RO("SMX\0" "Safer Mode Extensions", 6, 1, 0),
5200 DBGFREGSUBFIELD_RO("EST\0" "Enhanced SpeedStep Technology", 7, 1, 0),
5201 DBGFREGSUBFIELD_RO("TM2\0" "Terminal Monitor 2", 8, 1, 0),
5202 DBGFREGSUBFIELD_RO("SSSE3\0" "Supplemental Streaming SIMD Extensions 3", 9, 1, 0),
5203 DBGFREGSUBFIELD_RO("CNTX-ID\0" "L1 Context ID", 10, 1, 0),
5204 DBGFREGSUBFIELD_RO("SDBG\0" "Silicon Debug interface", 11, 1, 0),
5205 DBGFREGSUBFIELD_RO("FMA\0" "Fused Multiply Add extensions", 12, 1, 0),
5206 DBGFREGSUBFIELD_RO("CX16\0" "CMPXCHG16B instruction", 13, 1, 0),
5207 DBGFREGSUBFIELD_RO("TPRUPDATE\0" "xTPR Update Control", 14, 1, 0),
5208 DBGFREGSUBFIELD_RO("PDCM\0" "Perf/Debug Capability MSR", 15, 1, 0),
5209 DBGFREGSUBFIELD_RO("PCID\0" "Process Context Identifiers", 17, 1, 0),
5210 DBGFREGSUBFIELD_RO("DCA\0" "Direct Cache Access", 18, 1, 0),
5211 DBGFREGSUBFIELD_RO("SSE4_1\0" "SSE4_1 support", 19, 1, 0),
5212 DBGFREGSUBFIELD_RO("SSE4_2\0" "SSE4_2 support", 20, 1, 0),
5213 DBGFREGSUBFIELD_RO("X2APIC\0" "x2APIC support", 21, 1, 0),
5214 DBGFREGSUBFIELD_RO("MOVBE\0" "MOVBE instruction", 22, 1, 0),
5215 DBGFREGSUBFIELD_RO("POPCNT\0" "POPCNT instruction", 23, 1, 0),
5216 DBGFREGSUBFIELD_RO("TSCDEADL\0" "Time Stamp Counter Deadline", 24, 1, 0),
5217 DBGFREGSUBFIELD_RO("AES\0" "AES instructions", 25, 1, 0),
5218 DBGFREGSUBFIELD_RO("XSAVE\0" "XSAVE instruction", 26, 1, 0),
5219 DBGFREGSUBFIELD_RO("OSXSAVE\0" "OSXSAVE instruction", 27, 1, 0),
5220 DBGFREGSUBFIELD_RO("AVX\0" "AVX support", 28, 1, 0),
5221 DBGFREGSUBFIELD_RO("F16C\0" "16-bit floating point conversion instructions", 29, 1, 0),
5222 DBGFREGSUBFIELD_RO("RDRAND\0" "RDRAND instruction", 30, 1, 0),
5223 DBGFREGSUBFIELD_RO("HVP\0" "Hypervisor Present (we're a guest)", 31, 1, 0),
5224 DBGFREGSUBFIELD_TERMINATOR()
5225};
5226
5227/** CPUID(7,0).EBX field descriptions. */
5228static DBGFREGSUBFIELD const g_aLeaf7Sub0EbxSubFields[] =
5229{
5230 DBGFREGSUBFIELD_RO("FSGSBASE\0" "RDFSBASE/RDGSBASE/WRFSBASE/WRGSBASE instr.", 0, 1, 0),
5231 DBGFREGSUBFIELD_RO("TSCADJUST\0" "Supports MSR_IA32_TSC_ADJUST", 1, 1, 0),
5232 DBGFREGSUBFIELD_RO("SGX\0" "Supports Software Guard Extensions", 2, 1, 0),
5233 DBGFREGSUBFIELD_RO("BMI1\0" "Advanced Bit Manipulation extension 1", 3, 1, 0),
5234 DBGFREGSUBFIELD_RO("HLE\0" "Hardware Lock Elision", 4, 1, 0),
5235 DBGFREGSUBFIELD_RO("AVX2\0" "Advanced Vector Extensions 2", 5, 1, 0),
5236 DBGFREGSUBFIELD_RO("FDP_EXCPTN_ONLY\0" "FPU DP only updated on exceptions", 6, 1, 0),
5237 DBGFREGSUBFIELD_RO("SMEP\0" "Supervisor Mode Execution Prevention", 7, 1, 0),
5238 DBGFREGSUBFIELD_RO("BMI2\0" "Advanced Bit Manipulation extension 2", 8, 1, 0),
5239 DBGFREGSUBFIELD_RO("ERMS\0" "Enhanced REP MOVSB/STOSB instructions", 9, 1, 0),
5240 DBGFREGSUBFIELD_RO("INVPCID\0" "INVPCID instruction", 10, 1, 0),
5241 DBGFREGSUBFIELD_RO("RTM\0" "Restricted Transactional Memory", 11, 1, 0),
5242 DBGFREGSUBFIELD_RO("PQM\0" "Platform Quality of Service Monitoring", 12, 1, 0),
5243 DBGFREGSUBFIELD_RO("DEPFPU_CS_DS\0" "Deprecates FPU CS, FPU DS values if set", 13, 1, 0),
5244 DBGFREGSUBFIELD_RO("MPE\0" "Intel Memory Protection Extensions", 14, 1, 0),
5245 DBGFREGSUBFIELD_RO("PQE\0" "Platform Quality of Service Enforcement", 15, 1, 0),
5246 DBGFREGSUBFIELD_RO("AVX512F\0" "AVX512 Foundation instructions", 16, 1, 0),
5247 DBGFREGSUBFIELD_RO("RDSEED\0" "RDSEED instruction", 18, 1, 0),
5248 DBGFREGSUBFIELD_RO("ADX\0" "ADCX/ADOX instructions", 19, 1, 0),
5249 DBGFREGSUBFIELD_RO("SMAP\0" "Supervisor Mode Access Prevention", 20, 1, 0),
5250 DBGFREGSUBFIELD_RO("CLFLUSHOPT\0" "CLFLUSHOPT (Cache Line Flush) instruction", 23, 1, 0),
5251 DBGFREGSUBFIELD_RO("CLWB\0" "CLWB instruction", 24, 1, 0),
5252 DBGFREGSUBFIELD_RO("INTEL_PT\0" "Intel Processor Trace", 25, 1, 0),
5253 DBGFREGSUBFIELD_RO("AVX512PF\0" "AVX512 Prefetch instructions", 26, 1, 0),
5254 DBGFREGSUBFIELD_RO("AVX512ER\0" "AVX512 Exponential & Reciprocal instructions", 27, 1, 0),
5255 DBGFREGSUBFIELD_RO("AVX512CD\0" "AVX512 Conflict Detection instructions", 28, 1, 0),
5256 DBGFREGSUBFIELD_RO("SHA\0" "Secure Hash Algorithm extensions", 29, 1, 0),
5257 DBGFREGSUBFIELD_TERMINATOR()
5258};
5259
5260/** CPUID(7,0).ECX field descriptions. */
5261static DBGFREGSUBFIELD const g_aLeaf7Sub0EcxSubFields[] =
5262{
5263 DBGFREGSUBFIELD_RO("PREFETCHWT1\0" "PREFETCHWT1 instruction", 0, 1, 0),
5264 DBGFREGSUBFIELD_RO("UMIP\0" "User mode insturction prevention", 2, 1, 0),
5265 DBGFREGSUBFIELD_RO("PKU\0" "Protection Key for Usermode pages", 3, 1, 0),
5266 DBGFREGSUBFIELD_RO("OSPKE\0" "CR4.PKU mirror", 4, 1, 0),
5267 DBGFREGSUBFIELD_RO("MAWAU\0" "Value used by BNDLDX & BNDSTX", 17, 5, 0),
5268 DBGFREGSUBFIELD_RO("RDPID\0" "Read processor ID support", 22, 1, 0),
5269 DBGFREGSUBFIELD_RO("SGX_LC\0" "Supports SGX Launch Configuration", 30, 1, 0),
5270 DBGFREGSUBFIELD_TERMINATOR()
5271};
5272
5273/** CPUID(7,0).EDX field descriptions. */
5274static DBGFREGSUBFIELD const g_aLeaf7Sub0EdxSubFields[] =
5275{
5276 DBGFREGSUBFIELD_RO("MD_CLEAR\0" "Supports MDS related buffer clearing", 10, 1, 0),
5277 DBGFREGSUBFIELD_RO("IBRS_IBPB\0" "IA32_SPEC_CTRL.IBRS and IA32_PRED_CMD.IBPB", 26, 1, 0),
5278 DBGFREGSUBFIELD_RO("STIBP\0" "Supports IA32_SPEC_CTRL.STIBP", 27, 1, 0),
5279 DBGFREGSUBFIELD_RO("FLUSH_CMD\0" "Supports IA32_FLUSH_CMD", 28, 1, 0),
5280 DBGFREGSUBFIELD_RO("ARCHCAP\0" "Supports IA32_ARCH_CAP", 29, 1, 0),
5281 DBGFREGSUBFIELD_RO("CORECAP\0" "Supports IA32_CORE_CAP", 30, 1, 0),
5282 DBGFREGSUBFIELD_RO("SSBD\0" "Supports IA32_SPEC_CTRL.SSBD", 31, 1, 0),
5283 DBGFREGSUBFIELD_TERMINATOR()
5284};
5285
5286
5287/** CPUID(13,0).EAX+EDX, XCR0, ++ bit descriptions. */
5288static DBGFREGSUBFIELD const g_aXSaveStateBits[] =
5289{
5290 DBGFREGSUBFIELD_RO("x87\0" "Legacy FPU state", 0, 1, 0),
5291 DBGFREGSUBFIELD_RO("SSE\0" "128-bit SSE state", 1, 1, 0),
5292 DBGFREGSUBFIELD_RO("YMM_Hi128\0" "Upper 128 bits of YMM0-15 (AVX)", 2, 1, 0),
5293 DBGFREGSUBFIELD_RO("BNDREGS\0" "MPX bound register state", 3, 1, 0),
5294 DBGFREGSUBFIELD_RO("BNDCSR\0" "MPX bound config and status state", 4, 1, 0),
5295 DBGFREGSUBFIELD_RO("Opmask\0" "opmask state", 5, 1, 0),
5296 DBGFREGSUBFIELD_RO("ZMM_Hi256\0" "Upper 256 bits of ZMM0-15 (AVX-512)", 6, 1, 0),
5297 DBGFREGSUBFIELD_RO("Hi16_ZMM\0" "512-bits ZMM16-31 state (AVX-512)", 7, 1, 0),
5298 DBGFREGSUBFIELD_RO("LWP\0" "Lightweight Profiling (AMD)", 62, 1, 0),
5299 DBGFREGSUBFIELD_TERMINATOR()
5300};
5301
5302/** CPUID(13,1).EAX field descriptions. */
5303static DBGFREGSUBFIELD const g_aLeaf13Sub1EaxSubFields[] =
5304{
5305 DBGFREGSUBFIELD_RO("XSAVEOPT\0" "XSAVEOPT is available", 0, 1, 0),
5306 DBGFREGSUBFIELD_RO("XSAVEC\0" "XSAVEC and compacted XRSTOR supported", 1, 1, 0),
5307 DBGFREGSUBFIELD_RO("XGETBC1\0" "XGETBV with ECX=1 supported", 2, 1, 0),
5308 DBGFREGSUBFIELD_RO("XSAVES\0" "XSAVES/XRSTORS and IA32_XSS supported", 3, 1, 0),
5309 DBGFREGSUBFIELD_TERMINATOR()
5310};
5311
5312
5313/** CPUID(0x80000001,0).EDX field descriptions. */
5314static DBGFREGSUBFIELD const g_aExtLeaf1EdxSubFields[] =
5315{
5316 DBGFREGSUBFIELD_RO("FPU\0" "x87 FPU on Chip", 0, 1, 0),
5317 DBGFREGSUBFIELD_RO("VME\0" "Virtual 8086 Mode Enhancements", 1, 1, 0),
5318 DBGFREGSUBFIELD_RO("DE\0" "Debugging extensions", 2, 1, 0),
5319 DBGFREGSUBFIELD_RO("PSE\0" "Page Size Extension", 3, 1, 0),
5320 DBGFREGSUBFIELD_RO("TSC\0" "Time Stamp Counter", 4, 1, 0),
5321 DBGFREGSUBFIELD_RO("MSR\0" "K86 Model Specific Registers", 5, 1, 0),
5322 DBGFREGSUBFIELD_RO("PAE\0" "Physical Address Extension", 6, 1, 0),
5323 DBGFREGSUBFIELD_RO("MCE\0" "Machine Check Exception", 7, 1, 0),
5324 DBGFREGSUBFIELD_RO("CX8\0" "CMPXCHG8B instruction", 8, 1, 0),
5325 DBGFREGSUBFIELD_RO("APIC\0" "APIC On-Chip", 9, 1, 0),
5326 DBGFREGSUBFIELD_RO("SEP\0" "SYSCALL/SYSRET", 11, 1, 0),
5327 DBGFREGSUBFIELD_RO("MTRR\0" "Memory Type Range Registers", 12, 1, 0),
5328 DBGFREGSUBFIELD_RO("PGE\0" "PTE Global Bit", 13, 1, 0),
5329 DBGFREGSUBFIELD_RO("MCA\0" "Machine Check Architecture", 14, 1, 0),
5330 DBGFREGSUBFIELD_RO("CMOV\0" "Conditional Move instructions", 15, 1, 0),
5331 DBGFREGSUBFIELD_RO("PAT\0" "Page Attribute Table", 16, 1, 0),
5332 DBGFREGSUBFIELD_RO("PSE-36\0" "36-bit Page Size Extension", 17, 1, 0),
5333 DBGFREGSUBFIELD_RO("NX\0" "No-Execute/Execute-Disable", 20, 1, 0),
5334 DBGFREGSUBFIELD_RO("AXMMX\0" "AMD Extensions to MMX instructions", 22, 1, 0),
5335 DBGFREGSUBFIELD_RO("MMX\0" "Intel MMX Technology", 23, 1, 0),
5336 DBGFREGSUBFIELD_RO("FXSR\0" "FXSAVE and FXRSTOR Instructions", 24, 1, 0),
5337 DBGFREGSUBFIELD_RO("FFXSR\0" "AMD fast FXSAVE and FXRSTOR instructions", 25, 1, 0),
5338 DBGFREGSUBFIELD_RO("Page1GB\0" "1 GB large page", 26, 1, 0),
5339 DBGFREGSUBFIELD_RO("RDTSCP\0" "RDTSCP instruction", 27, 1, 0),
5340 DBGFREGSUBFIELD_RO("LM\0" "AMD64 Long Mode", 29, 1, 0),
5341 DBGFREGSUBFIELD_RO("3DNOWEXT\0" "AMD Extensions to 3DNow", 30, 1, 0),
5342 DBGFREGSUBFIELD_RO("3DNOW\0" "AMD 3DNow", 31, 1, 0),
5343 DBGFREGSUBFIELD_TERMINATOR()
5344};
5345
5346/** CPUID(0x80000001,0).ECX field descriptions. */
5347static DBGFREGSUBFIELD const g_aExtLeaf1EcxSubFields[] =
5348{
5349 DBGFREGSUBFIELD_RO("LahfSahf\0" "LAHF/SAHF support in 64-bit mode", 0, 1, 0),
5350 DBGFREGSUBFIELD_RO("CmpLegacy\0" "Core multi-processing legacy mode", 1, 1, 0),
5351 DBGFREGSUBFIELD_RO("SVM\0" "AMD Secure Virtual Machine extensions", 2, 1, 0),
5352 DBGFREGSUBFIELD_RO("EXTAPIC\0" "AMD Extended APIC registers", 3, 1, 0),
5353 DBGFREGSUBFIELD_RO("CR8L\0" "AMD LOCK MOV CR0 means MOV CR8", 4, 1, 0),
5354 DBGFREGSUBFIELD_RO("ABM\0" "AMD Advanced Bit Manipulation", 5, 1, 0),
5355 DBGFREGSUBFIELD_RO("SSE4A\0" "SSE4A instructions", 6, 1, 0),
5356 DBGFREGSUBFIELD_RO("MISALIGNSSE\0" "AMD Misaligned SSE mode", 7, 1, 0),
5357 DBGFREGSUBFIELD_RO("3DNOWPRF\0" "AMD PREFETCH and PREFETCHW instructions", 8, 1, 0),
5358 DBGFREGSUBFIELD_RO("OSVW\0" "AMD OS Visible Workaround", 9, 1, 0),
5359 DBGFREGSUBFIELD_RO("IBS\0" "Instruct Based Sampling", 10, 1, 0),
5360 DBGFREGSUBFIELD_RO("XOP\0" "Extended Operation support", 11, 1, 0),
5361 DBGFREGSUBFIELD_RO("SKINIT\0" "SKINIT, STGI, and DEV support", 12, 1, 0),
5362 DBGFREGSUBFIELD_RO("WDT\0" "AMD Watchdog Timer support", 13, 1, 0),
5363 DBGFREGSUBFIELD_RO("LWP\0" "Lightweight Profiling support", 15, 1, 0),
5364 DBGFREGSUBFIELD_RO("FMA4\0" "Four operand FMA instruction support", 16, 1, 0),
5365 DBGFREGSUBFIELD_RO("TCE\0" "Translation Cache Extension support", 17, 1, 0),
5366 DBGFREGSUBFIELD_RO("NodeId\0" "NodeId in MSR C001_100C", 19, 1, 0),
5367 DBGFREGSUBFIELD_RO("TBM\0" "Trailing Bit Manipulation instructions", 21, 1, 0),
5368 DBGFREGSUBFIELD_RO("TOPOEXT\0" "Topology Extensions", 22, 1, 0),
5369 DBGFREGSUBFIELD_RO("PRFEXTCORE\0" "Performance Counter Extensions support", 23, 1, 0),
5370 DBGFREGSUBFIELD_RO("PRFEXTNB\0" "NB Performance Counter Extensions support", 24, 1, 0),
5371 DBGFREGSUBFIELD_RO("DATABPEXT\0" "Data-access Breakpoint Extension", 26, 1, 0),
5372 DBGFREGSUBFIELD_RO("PERFTSC\0" "Performance Time Stamp Counter", 27, 1, 0),
5373 DBGFREGSUBFIELD_RO("PCX_L2I\0" "L2I/L3 Performance Counter Extensions", 28, 1, 0),
5374 DBGFREGSUBFIELD_RO("MONITORX\0" "MWAITX and MONITORX instructions", 29, 1, 0),
5375 DBGFREGSUBFIELD_RO("AddrMaskExt\0" "BP Addressing masking extended to bit 31", 30, 1, 0),
5376 DBGFREGSUBFIELD_TERMINATOR()
5377};
5378
5379/** CPUID(0x8000000a,0).EDX field descriptions. */
5380static DBGFREGSUBFIELD const g_aExtLeafAEdxSubFields[] =
5381{
5382 DBGFREGSUBFIELD_RO("NP\0" "Nested Paging", 0, 1, 0),
5383 DBGFREGSUBFIELD_RO("LbrVirt\0" "Last Branch Record Virtualization", 1, 1, 0),
5384 DBGFREGSUBFIELD_RO("SVML\0" "SVM Lock", 2, 1, 0),
5385 DBGFREGSUBFIELD_RO("NRIPS\0" "NextRIP Save", 3, 1, 0),
5386 DBGFREGSUBFIELD_RO("TscRateMsr\0" "MSR based TSC rate control", 4, 1, 0),
5387 DBGFREGSUBFIELD_RO("VmcbClean\0" "VMCB clean bits", 5, 1, 0),
5388 DBGFREGSUBFIELD_RO("FlushByASID\0" "Flush by ASID", 6, 1, 0),
5389 DBGFREGSUBFIELD_RO("DecodeAssists\0" "Decode Assists", 7, 1, 0),
5390 DBGFREGSUBFIELD_RO("PauseFilter\0" "Pause intercept filter", 10, 1, 0),
5391 DBGFREGSUBFIELD_RO("PauseFilterThreshold\0" "Pause filter threshold", 12, 1, 0),
5392 DBGFREGSUBFIELD_RO("AVIC\0" "Advanced Virtual Interrupt Controller", 13, 1, 0),
5393 DBGFREGSUBFIELD_RO("VMSAVEVirt\0" "VMSAVE and VMLOAD Virtualization", 15, 1, 0),
5394 DBGFREGSUBFIELD_RO("VGIF\0" "Virtual Global-Interrupt Flag", 16, 1, 0),
5395 DBGFREGSUBFIELD_RO("GMET\0" "Guest Mode Execute Trap Extension", 17, 1, 0),
5396 DBGFREGSUBFIELD_RO("x2AVIC\0" "AVIC support for x2APIC mode", 18, 1, 0),
5397 DBGFREGSUBFIELD_RO("SSSCheck\0" "SVM supervisor shadow stack restrictions", 19, 1, 0),
5398 DBGFREGSUBFIELD_RO("SpecCtrl\0" "SPEC_CTRL virtualization", 20, 1, 0),
5399 DBGFREGSUBFIELD_RO("ROGPT\0" "Read-Only Guest Page Table feature support", 21, 1, 0),
5400 DBGFREGSUBFIELD_RO("HOST_MCE_OVERRIDE\0" "Guest #MC can be intercepted", 23, 1, 0),
5401 DBGFREGSUBFIELD_RO("TlbiCtl\0" "INVLPGB/TLBSYNC enable and intercept", 24, 1, 0),
5402 DBGFREGSUBFIELD_RO("VNMI\0" "NMI Virtualization", 25, 1, 0),
5403 DBGFREGSUBFIELD_RO("IbsVirt\0" "IBS Virtualization", 26, 1, 0),
5404 DBGFREGSUBFIELD_RO("ExtLvtAvicAccessChg\0" "Extended LVT AVIC access changes", 27, 1, 0),
5405 DBGFREGSUBFIELD_RO("NestedVirtVmcbAddrChk\0""Guest VMCB address check", 28, 1, 0),
5406 DBGFREGSUBFIELD_RO("BusLockThreshold\0" "Bus Lock Threshold", 29, 1, 0),
5407 DBGFREGSUBFIELD_TERMINATOR()
5408};
5409
5410
5411/** CPUID(0x80000007,0).EDX field descriptions. */
5412static DBGFREGSUBFIELD const g_aExtLeaf7EdxSubFields[] =
5413{
5414 DBGFREGSUBFIELD_RO("TS\0" "Temperature Sensor", 0, 1, 0),
5415 DBGFREGSUBFIELD_RO("FID\0" "Frequency ID control", 1, 1, 0),
5416 DBGFREGSUBFIELD_RO("VID\0" "Voltage ID control", 2, 1, 0),
5417 DBGFREGSUBFIELD_RO("TTP\0" "Thermal Trip", 3, 1, 0),
5418 DBGFREGSUBFIELD_RO("TM\0" "Hardware Thermal Control (HTC)", 4, 1, 0),
5419 DBGFREGSUBFIELD_RO("100MHzSteps\0" "100 MHz Multiplier control", 6, 1, 0),
5420 DBGFREGSUBFIELD_RO("HwPstate\0" "Hardware P-state control", 7, 1, 0),
5421 DBGFREGSUBFIELD_RO("TscInvariant\0" "Invariant Time Stamp Counter", 8, 1, 0),
5422 DBGFREGSUBFIELD_RO("CPB\0" "Core Performance Boost", 9, 1, 0),
5423 DBGFREGSUBFIELD_RO("EffFreqRO\0" "Read-only Effective Frequency Interface", 10, 1, 0),
5424 DBGFREGSUBFIELD_RO("ProcFdbkIf\0" "Processor Feedback Interface", 11, 1, 0),
5425 DBGFREGSUBFIELD_RO("ProcPwrRep\0" "Core power reporting interface support", 12, 1, 0),
5426 DBGFREGSUBFIELD_RO("ConnectedStandby\0" "Connected Standby", 13, 1, 0),
5427 DBGFREGSUBFIELD_RO("RAPL\0" "Running average power limit", 14, 1, 0),
5428 DBGFREGSUBFIELD_TERMINATOR()
5429};
5430
5431/** CPUID(0x80000008,0).EBX field descriptions. */
5432static DBGFREGSUBFIELD const g_aExtLeaf8EbxSubFields[] =
5433{
5434 DBGFREGSUBFIELD_RO("CLZERO\0" "Clear zero instruction (cacheline)", 0, 1, 0),
5435 DBGFREGSUBFIELD_RO("IRPerf\0" "Instructions retired count support", 1, 1, 0),
5436 DBGFREGSUBFIELD_RO("XSaveErPtr\0" "Save/restore error pointers (FXSAVE/RSTOR)", 2, 1, 0),
5437 DBGFREGSUBFIELD_RO("INVLPGB\0" "INVLPGB and TLBSYNC instructions", 3, 1, 0),
5438 DBGFREGSUBFIELD_RO("RDPRU\0" "RDPRU instruction", 4, 1, 0),
5439 DBGFREGSUBFIELD_RO("BE\0" "Bandwidth Enforcement extension", 6, 1, 0),
5440 DBGFREGSUBFIELD_RO("MCOMMIT\0" "MCOMMIT instruction", 8, 1, 0),
5441 DBGFREGSUBFIELD_RO("WBNOINVD\0" "WBNOINVD instruction", 9, 1, 0),
5442 DBGFREGSUBFIELD_RO("IBPB\0" "Supports the IBPB command in IA32_PRED_CMD", 12, 1, 0),
5443 DBGFREGSUBFIELD_RO("INT_WBINVD\0" "WBINVD/WBNOINVD interruptible", 13, 1, 0),
5444 DBGFREGSUBFIELD_RO("IBRS\0" "Indirect Branch Restricted Speculation", 14, 1, 0),
5445 DBGFREGSUBFIELD_RO("STIBP\0" "Single Thread Indirect Branch Prediction", 15, 1, 0),
5446 DBGFREGSUBFIELD_RO("IbrsAlwaysOn\0" "Processor prefers that IBRS be left on", 16, 1, 0),
5447 DBGFREGSUBFIELD_RO("StibpAlwaysOn\0""Processor prefers that STIBP be left on", 17, 1, 0),
5448 DBGFREGSUBFIELD_RO("IbrsPreferred\0""IBRS preferred over software solution", 18, 1, 0),
5449 DBGFREGSUBFIELD_RO("IbrsSameMode\0" "IBRS limits same mode speculation", 19, 1, 0),
5450 DBGFREGSUBFIELD_RO("EferLmsleUnsupported\0" "EFER.LMSLE is unsupported", 20, 1, 0),
5451 DBGFREGSUBFIELD_RO("INVLPGBnestedPages\0" "INVLPGB for nested translation", 21, 1, 0),
5452 DBGFREGSUBFIELD_RO("SSBD\0" "Speculative Store Bypass Disable", 24, 1, 0),
5453 DBGFREGSUBFIELD_RO("SsbdVirtSpecCtrl\0" "Use VIRT_SPEC_CTL for SSBD", 25, 1, 0),
5454 DBGFREGSUBFIELD_RO("SsbdNotRequired\0" "SSBD not needed on this processor", 26, 1, 0),
5455 DBGFREGSUBFIELD_RO("CPPC\0" "Collaborative Processor Performance Control", 27, 1, 0),
5456 DBGFREGSUBFIELD_RO("PSFD\0" "Predictive Store Forward Disable", 28, 1, 0),
5457 DBGFREGSUBFIELD_RO("BTC_NO\0" "Unaffected by branch type confusion", 29, 1, 0),
5458 DBGFREGSUBFIELD_RO("IBPB_RET\0" "Clears RA predictor when PRED_CMD.IBPB set", 30, 1, 0),
5459 DBGFREGSUBFIELD_TERMINATOR()
5460};
5461
5462
5463static void cpumR3CpuIdInfoMnemonicListU32(PCDBGFINFOHLP pHlp, uint32_t uVal, PCDBGFREGSUBFIELD pDesc,
5464 const char *pszLeadIn, uint32_t cchWidth)
5465{
5466 if (pszLeadIn)
5467 pHlp->pfnPrintf(pHlp, "%*s", cchWidth, pszLeadIn);
5468
5469 for (uint32_t iBit = 0; iBit < 32; iBit++)
5470 if (RT_BIT_32(iBit) & uVal)
5471 {
5472 while ( pDesc->pszName != NULL
5473 && iBit >= (uint32_t)pDesc->iFirstBit + pDesc->cBits)
5474 pDesc++;
5475 if ( pDesc->pszName != NULL
5476 && iBit - (uint32_t)pDesc->iFirstBit < (uint32_t)pDesc->cBits)
5477 {
5478 if (pDesc->cBits == 1)
5479 pHlp->pfnPrintf(pHlp, " %s", pDesc->pszName);
5480 else
5481 {
5482 uint32_t uFieldValue = uVal >> pDesc->iFirstBit;
5483 if (pDesc->cBits < 32)
5484 uFieldValue &= RT_BIT_32(pDesc->cBits) - UINT32_C(1);
5485 pHlp->pfnPrintf(pHlp, pDesc->cBits < 4 ? " %s=%u" : " %s=%#x", pDesc->pszName, uFieldValue);
5486 iBit = pDesc->iFirstBit + pDesc->cBits - 1;
5487 }
5488 }
5489 else
5490 pHlp->pfnPrintf(pHlp, " %u", iBit);
5491 }
5492 if (pszLeadIn)
5493 pHlp->pfnPrintf(pHlp, "\n");
5494}
5495
5496
5497static void cpumR3CpuIdInfoMnemonicListU64(PCDBGFINFOHLP pHlp, uint64_t uVal, PCDBGFREGSUBFIELD pDesc,
5498 const char *pszLeadIn, uint32_t cchWidth)
5499{
5500 if (pszLeadIn)
5501 pHlp->pfnPrintf(pHlp, "%*s", cchWidth, pszLeadIn);
5502
5503 for (uint32_t iBit = 0; iBit < 64; iBit++)
5504 if (RT_BIT_64(iBit) & uVal)
5505 {
5506 while ( pDesc->pszName != NULL
5507 && iBit >= (uint32_t)pDesc->iFirstBit + pDesc->cBits)
5508 pDesc++;
5509 if ( pDesc->pszName != NULL
5510 && iBit - (uint32_t)pDesc->iFirstBit < (uint32_t)pDesc->cBits)
5511 {
5512 if (pDesc->cBits == 1)
5513 pHlp->pfnPrintf(pHlp, " %s", pDesc->pszName);
5514 else
5515 {
5516 uint64_t uFieldValue = uVal >> pDesc->iFirstBit;
5517 if (pDesc->cBits < 64)
5518 uFieldValue &= RT_BIT_64(pDesc->cBits) - UINT64_C(1);
5519 pHlp->pfnPrintf(pHlp, pDesc->cBits < 4 ? " %s=%llu" : " %s=%#llx", pDesc->pszName, uFieldValue);
5520 iBit = pDesc->iFirstBit + pDesc->cBits - 1;
5521 }
5522 }
5523 else
5524 pHlp->pfnPrintf(pHlp, " %u", iBit);
5525 }
5526 if (pszLeadIn)
5527 pHlp->pfnPrintf(pHlp, "\n");
5528}
5529
5530
5531static void cpumR3CpuIdInfoValueWithMnemonicListU64(PCDBGFINFOHLP pHlp, uint64_t uVal, PCDBGFREGSUBFIELD pDesc,
5532 const char *pszLeadIn, uint32_t cchWidth)
5533{
5534 if (!uVal)
5535 pHlp->pfnPrintf(pHlp, "%*s %#010x`%08x\n", cchWidth, pszLeadIn, RT_HI_U32(uVal), RT_LO_U32(uVal));
5536 else
5537 {
5538 pHlp->pfnPrintf(pHlp, "%*s %#010x`%08x (", cchWidth, pszLeadIn, RT_HI_U32(uVal), RT_LO_U32(uVal));
5539 cpumR3CpuIdInfoMnemonicListU64(pHlp, uVal, pDesc, NULL, 0);
5540 pHlp->pfnPrintf(pHlp, " )\n");
5541 }
5542}
5543
5544
5545static void cpumR3CpuIdInfoVerboseCompareListU32(PCDBGFINFOHLP pHlp, uint32_t uVal1, uint32_t uVal2, PCDBGFREGSUBFIELD pDesc,
5546 uint32_t cchWidth)
5547{
5548 uint32_t uCombined = uVal1 | uVal2;
5549 for (uint32_t iBit = 0; iBit < 32; iBit++)
5550 if ( (RT_BIT_32(iBit) & uCombined)
5551 || (iBit == pDesc->iFirstBit && pDesc->pszName) )
5552 {
5553 while ( pDesc->pszName != NULL
5554 && iBit >= (uint32_t)pDesc->iFirstBit + pDesc->cBits)
5555 pDesc++;
5556
5557 if ( pDesc->pszName != NULL
5558 && iBit - (uint32_t)pDesc->iFirstBit < (uint32_t)pDesc->cBits)
5559 {
5560 size_t cchMnemonic = strlen(pDesc->pszName);
5561 const char *pszDesc = pDesc->pszName + cchMnemonic + 1;
5562 size_t cchDesc = strlen(pszDesc);
5563 uint32_t uFieldValue1 = uVal1 >> pDesc->iFirstBit;
5564 uint32_t uFieldValue2 = uVal2 >> pDesc->iFirstBit;
5565 if (pDesc->cBits < 32)
5566 {
5567 uFieldValue1 &= RT_BIT_32(pDesc->cBits) - UINT32_C(1);
5568 uFieldValue2 &= RT_BIT_32(pDesc->cBits) - UINT32_C(1);
5569 }
5570
5571 pHlp->pfnPrintf(pHlp, pDesc->cBits < 4 ? " %s - %s%*s= %u (%u)\n" : " %s - %s%*s= %#x (%#x)\n",
5572 pDesc->pszName, pszDesc,
5573 cchMnemonic + 3 + cchDesc < cchWidth ? cchWidth - (cchMnemonic + 3 + cchDesc) : 1, "",
5574 uFieldValue1, uFieldValue2);
5575
5576 iBit = pDesc->iFirstBit + pDesc->cBits - 1U;
5577 pDesc++;
5578 }
5579 else
5580 pHlp->pfnPrintf(pHlp, " %2u - Reserved%*s= %u (%u)\n", iBit, 13 < cchWidth ? cchWidth - 13 : 1, "",
5581 RT_BOOL(uVal1 & RT_BIT_32(iBit)), RT_BOOL(uVal2 & RT_BIT_32(iBit)));
5582 }
5583}
5584
5585
5586/**
5587 * Produces a detailed summary of standard leaf 0x00000001.
5588 *
5589 * @param pHlp The info helper functions.
5590 * @param pCurLeaf The 0x00000001 leaf.
5591 * @param fVerbose Whether to be very verbose or not.
5592 * @param fIntel Set if intel CPU.
5593 */
5594static void cpumR3CpuIdInfoStdLeaf1Details(PCDBGFINFOHLP pHlp, PCCPUMCPUIDLEAF pCurLeaf, bool fVerbose, bool fIntel)
5595{
5596 Assert(pCurLeaf); Assert(pCurLeaf->uLeaf == 1);
5597 static const char * const s_apszTypes[4] = { "primary", "overdrive", "MP", "reserved" };
5598 uint32_t uEAX = pCurLeaf->uEax;
5599 uint32_t uEBX = pCurLeaf->uEbx;
5600
5601 pHlp->pfnPrintf(pHlp,
5602 "%36s %2d \tExtended: %d \tEffective: %d\n"
5603 "%36s %2d \tExtended: %d \tEffective: %d\n"
5604 "%36s %d\n"
5605 "%36s %d (%s)\n"
5606 "%36s %#04x\n"
5607 "%36s %d\n"
5608 "%36s %d\n"
5609 "%36s %#04x\n"
5610 ,
5611 "Family:", (uEAX >> 8) & 0xf, (uEAX >> 20) & 0x7f, RTX86GetCpuFamily(uEAX),
5612 "Model:", (uEAX >> 4) & 0xf, (uEAX >> 16) & 0x0f, RTX86GetCpuModel(uEAX, fIntel),
5613 "Stepping:", RTX86GetCpuStepping(uEAX),
5614 "Type:", (uEAX >> 12) & 3, s_apszTypes[(uEAX >> 12) & 3],
5615 "APIC ID:", (uEBX >> 24) & 0xff,
5616 "Logical CPUs:",(uEBX >> 16) & 0xff,
5617 "CLFLUSH Size:",(uEBX >> 8) & 0xff,
5618 "Brand ID:", (uEBX >> 0) & 0xff);
5619 if (fVerbose)
5620 {
5621 CPUMCPUID Host = {0};
5622#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
5623 ASMCpuIdExSlow(1, 0, 0, 0, &Host.uEax, &Host.uEbx, &Host.uEcx, &Host.uEdx);
5624#endif
5625 pHlp->pfnPrintf(pHlp, "Features\n");
5626 pHlp->pfnPrintf(pHlp, " Mnemonic - Description = guest (host)\n");
5627 cpumR3CpuIdInfoVerboseCompareListU32(pHlp, pCurLeaf->uEdx, Host.uEdx, g_aLeaf1EdxSubFields, 56);
5628 cpumR3CpuIdInfoVerboseCompareListU32(pHlp, pCurLeaf->uEcx, Host.uEcx, g_aLeaf1EcxSubFields, 56);
5629 }
5630 else
5631 {
5632 cpumR3CpuIdInfoMnemonicListU32(pHlp, pCurLeaf->uEdx, g_aLeaf1EdxSubFields, "Features EDX:", 36);
5633 cpumR3CpuIdInfoMnemonicListU32(pHlp, pCurLeaf->uEcx, g_aLeaf1EcxSubFields, "Features ECX:", 36);
5634 }
5635}
5636
5637
5638/**
5639 * Produces a detailed summary of standard leaf 0x00000007.
5640 *
5641 * @param pHlp The info helper functions.
5642 * @param paLeaves The CPUID leaves array.
5643 * @param cLeaves The number of leaves in the array.
5644 * @param pCurLeaf The first 0x00000007 leaf.
5645 * @param fVerbose Whether to be very verbose or not.
5646 */
5647static void cpumR3CpuIdInfoStdLeaf7Details(PCDBGFINFOHLP pHlp, PCCPUMCPUIDLEAF paLeaves, uint32_t cLeaves,
5648 PCCPUMCPUIDLEAF pCurLeaf, bool fVerbose)
5649{
5650 Assert(pCurLeaf); Assert(pCurLeaf->uLeaf == 7);
5651 pHlp->pfnPrintf(pHlp, "Structured Extended Feature Flags Enumeration (leaf 7):\n");
5652 for (;;)
5653 {
5654 CPUMCPUID Host = {0};
5655#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
5656 ASMCpuIdExSlow(pCurLeaf->uLeaf, 0, pCurLeaf->uSubLeaf, 0, &Host.uEax, &Host.uEbx, &Host.uEcx, &Host.uEdx);
5657#endif
5658
5659 switch (pCurLeaf->uSubLeaf)
5660 {
5661 case 0:
5662 if (fVerbose)
5663 {
5664 pHlp->pfnPrintf(pHlp, " Mnemonic - Description = guest (host)\n");
5665 cpumR3CpuIdInfoVerboseCompareListU32(pHlp, pCurLeaf->uEbx, Host.uEbx, g_aLeaf7Sub0EbxSubFields, 56);
5666 cpumR3CpuIdInfoVerboseCompareListU32(pHlp, pCurLeaf->uEcx, Host.uEcx, g_aLeaf7Sub0EcxSubFields, 56);
5667 if (pCurLeaf->uEdx || Host.uEdx)
5668 cpumR3CpuIdInfoVerboseCompareListU32(pHlp, pCurLeaf->uEdx, Host.uEdx, g_aLeaf7Sub0EdxSubFields, 56);
5669 }
5670 else
5671 {
5672 cpumR3CpuIdInfoMnemonicListU32(pHlp, pCurLeaf->uEbx, g_aLeaf7Sub0EbxSubFields, "Ext Features EBX:", 36);
5673 cpumR3CpuIdInfoMnemonicListU32(pHlp, pCurLeaf->uEcx, g_aLeaf7Sub0EcxSubFields, "Ext Features ECX:", 36);
5674 if (pCurLeaf->uEdx)
5675 cpumR3CpuIdInfoMnemonicListU32(pHlp, pCurLeaf->uEdx, g_aLeaf7Sub0EdxSubFields, "Ext Features EDX:", 36);
5676 }
5677 break;
5678
5679 default:
5680 if (pCurLeaf->uEdx || pCurLeaf->uEcx || pCurLeaf->uEbx)
5681 pHlp->pfnPrintf(pHlp, "Unknown extended feature sub-leaf #%u: EAX=%#x EBX=%#x ECX=%#x EDX=%#x\n",
5682 pCurLeaf->uSubLeaf, pCurLeaf->uEax, pCurLeaf->uEbx, pCurLeaf->uEcx, pCurLeaf->uEdx);
5683 break;
5684
5685 }
5686
5687 /* advance. */
5688 pCurLeaf++;
5689 if ( (uintptr_t)(pCurLeaf - paLeaves) >= cLeaves
5690 || pCurLeaf->uLeaf != 0x7)
5691 break;
5692 }
5693}
5694
5695
5696/**
5697 * Produces a detailed summary of standard leaf 0x0000000d.
5698 *
5699 * @param pHlp The info helper functions.
5700 * @param paLeaves The CPUID leaves array.
5701 * @param cLeaves The number of leaves in the array.
5702 * @param pCurLeaf The first 0x00000007 leaf.
5703 * @param fVerbose Whether to be very verbose or not.
5704 */
5705static void cpumR3CpuIdInfoStdLeaf13Details(PCDBGFINFOHLP pHlp, PCCPUMCPUIDLEAF paLeaves, uint32_t cLeaves,
5706 PCCPUMCPUIDLEAF pCurLeaf, bool fVerbose)
5707{
5708 RT_NOREF_PV(fVerbose);
5709 Assert(pCurLeaf); Assert(pCurLeaf->uLeaf == 13);
5710 pHlp->pfnPrintf(pHlp, "Processor Extended State Enumeration (leaf 0xd):\n");
5711 for (uint32_t uSubLeaf = 0; uSubLeaf < 64; uSubLeaf++)
5712 {
5713 CPUMCPUID Host = {0};
5714#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
5715 ASMCpuIdExSlow(UINT32_C(0x0000000d), 0, uSubLeaf, 0, &Host.uEax, &Host.uEbx, &Host.uEcx, &Host.uEdx);
5716#endif
5717
5718 switch (uSubLeaf)
5719 {
5720 case 0:
5721 if (pCurLeaf && pCurLeaf->uSubLeaf == uSubLeaf)
5722 pHlp->pfnPrintf(pHlp, "%42s %#x/%#x\n", "XSAVE area cur/max size by XCR0, guest:",
5723 pCurLeaf->uEbx, pCurLeaf->uEcx);
5724 pHlp->pfnPrintf(pHlp, "%42s %#x/%#x\n", "XSAVE area cur/max size by XCR0, host:", Host.uEbx, Host.uEcx);
5725
5726 if (pCurLeaf && pCurLeaf->uSubLeaf == uSubLeaf)
5727 cpumR3CpuIdInfoValueWithMnemonicListU64(pHlp, RT_MAKE_U64(pCurLeaf->uEax, pCurLeaf->uEdx), g_aXSaveStateBits,
5728 "Valid XCR0 bits, guest:", 42);
5729 cpumR3CpuIdInfoValueWithMnemonicListU64(pHlp, RT_MAKE_U64(Host.uEax, Host.uEdx), g_aXSaveStateBits,
5730 "Valid XCR0 bits, host:", 42);
5731 break;
5732
5733 case 1:
5734 if (pCurLeaf && pCurLeaf->uSubLeaf == uSubLeaf)
5735 cpumR3CpuIdInfoMnemonicListU32(pHlp, pCurLeaf->uEax, g_aLeaf13Sub1EaxSubFields, "XSAVE features, guest:", 42);
5736 cpumR3CpuIdInfoMnemonicListU32(pHlp, Host.uEax, g_aLeaf13Sub1EaxSubFields, "XSAVE features, host:", 42);
5737
5738 if (pCurLeaf && pCurLeaf->uSubLeaf == uSubLeaf)
5739 pHlp->pfnPrintf(pHlp, "%42s %#x\n", "XSAVE area cur size XCR0|XSS, guest:", pCurLeaf->uEbx);
5740 pHlp->pfnPrintf(pHlp, "%42s %#x\n", "XSAVE area cur size XCR0|XSS, host:", Host.uEbx);
5741
5742 if (pCurLeaf && pCurLeaf->uSubLeaf == uSubLeaf)
5743 cpumR3CpuIdInfoValueWithMnemonicListU64(pHlp, RT_MAKE_U64(pCurLeaf->uEcx, pCurLeaf->uEdx), g_aXSaveStateBits,
5744 " Valid IA32_XSS bits, guest:", 42);
5745 cpumR3CpuIdInfoValueWithMnemonicListU64(pHlp, RT_MAKE_U64(Host.uEdx, Host.uEcx), g_aXSaveStateBits,
5746 " Valid IA32_XSS bits, host:", 42);
5747 break;
5748
5749 default:
5750 if ( pCurLeaf
5751 && pCurLeaf->uSubLeaf == uSubLeaf
5752 && (pCurLeaf->uEax || pCurLeaf->uEbx || pCurLeaf->uEcx || pCurLeaf->uEdx) )
5753 {
5754 pHlp->pfnPrintf(pHlp, " State #%u, guest: off=%#06x, cb=%#06x %s", uSubLeaf, pCurLeaf->uEbx,
5755 pCurLeaf->uEax, pCurLeaf->uEcx & RT_BIT_32(0) ? "XCR0-bit" : "IA32_XSS-bit");
5756 if (pCurLeaf->uEcx & ~RT_BIT_32(0))
5757 pHlp->pfnPrintf(pHlp, " ECX[reserved]=%#x\n", pCurLeaf->uEcx & ~RT_BIT_32(0));
5758 if (pCurLeaf->uEdx)
5759 pHlp->pfnPrintf(pHlp, " EDX[reserved]=%#x\n", pCurLeaf->uEdx);
5760 pHlp->pfnPrintf(pHlp, " --");
5761 cpumR3CpuIdInfoMnemonicListU64(pHlp, RT_BIT_64(uSubLeaf), g_aXSaveStateBits, NULL, 0);
5762 pHlp->pfnPrintf(pHlp, "\n");
5763 }
5764 if (Host.uEax || Host.uEbx || Host.uEcx || Host.uEdx)
5765 {
5766 pHlp->pfnPrintf(pHlp, " State #%u, host: off=%#06x, cb=%#06x %s", uSubLeaf, Host.uEbx,
5767 Host.uEax, Host.uEcx & RT_BIT_32(0) ? "XCR0-bit" : "IA32_XSS-bit");
5768 if (Host.uEcx & ~RT_BIT_32(0))
5769 pHlp->pfnPrintf(pHlp, " ECX[reserved]=%#x\n", Host.uEcx & ~RT_BIT_32(0));
5770 if (Host.uEdx)
5771 pHlp->pfnPrintf(pHlp, " EDX[reserved]=%#x\n", Host.uEdx);
5772 pHlp->pfnPrintf(pHlp, " --");
5773 cpumR3CpuIdInfoMnemonicListU64(pHlp, RT_BIT_64(uSubLeaf), g_aXSaveStateBits, NULL, 0);
5774 pHlp->pfnPrintf(pHlp, "\n");
5775 }
5776 break;
5777
5778 }
5779
5780 /* advance. */
5781 if (pCurLeaf)
5782 {
5783 while ( (uintptr_t)(pCurLeaf - paLeaves) < cLeaves
5784 && pCurLeaf->uSubLeaf <= uSubLeaf
5785 && pCurLeaf->uLeaf == UINT32_C(0x0000000d))
5786 pCurLeaf++;
5787 if ( (uintptr_t)(pCurLeaf - paLeaves) >= cLeaves
5788 || pCurLeaf->uLeaf != UINT32_C(0x0000000d))
5789 pCurLeaf = NULL;
5790 }
5791 }
5792}
5793
5794
5795static PCCPUMCPUIDLEAF cpumR3CpuIdInfoRawRange(PCDBGFINFOHLP pHlp, PCCPUMCPUIDLEAF paLeaves, uint32_t cLeaves,
5796 PCCPUMCPUIDLEAF pCurLeaf, uint32_t uUpToLeaf, const char *pszTitle)
5797{
5798 if ( (uintptr_t)(pCurLeaf - paLeaves) < cLeaves
5799 && pCurLeaf->uLeaf <= uUpToLeaf)
5800 {
5801 pHlp->pfnPrintf(pHlp,
5802 " %s\n"
5803 " Leaf/sub-leaf eax ebx ecx edx\n", pszTitle);
5804 while ( (uintptr_t)(pCurLeaf - paLeaves) < cLeaves
5805 && pCurLeaf->uLeaf <= uUpToLeaf)
5806 {
5807 CPUMCPUID Host = {0};
5808#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
5809 ASMCpuIdExSlow(pCurLeaf->uLeaf, 0, pCurLeaf->uSubLeaf, 0, &Host.uEax, &Host.uEbx, &Host.uEcx, &Host.uEdx);
5810#endif
5811 pHlp->pfnPrintf(pHlp,
5812 "Gst: %08x/%04x %08x %08x %08x %08x\n"
5813 "Hst: %08x %08x %08x %08x\n",
5814 pCurLeaf->uLeaf, pCurLeaf->uSubLeaf, pCurLeaf->uEax, pCurLeaf->uEbx, pCurLeaf->uEcx, pCurLeaf->uEdx,
5815 Host.uEax, Host.uEbx, Host.uEcx, Host.uEdx);
5816 pCurLeaf++;
5817 }
5818 }
5819
5820 return pCurLeaf;
5821}
5822
5823
5824/**
5825 * Display the guest CpuId leaves.
5826 *
5827 * @param pVM The cross context VM structure.
5828 * @param pHlp The info helper functions.
5829 * @param pszArgs "terse", "default" or "verbose".
5830 */
5831DECLCALLBACK(void) cpumR3CpuIdInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
5832{
5833 /*
5834 * Parse the argument.
5835 */
5836 unsigned iVerbosity = 1;
5837 if (pszArgs)
5838 {
5839 pszArgs = RTStrStripL(pszArgs);
5840 if (!strcmp(pszArgs, "terse"))
5841 iVerbosity--;
5842 else if (!strcmp(pszArgs, "verbose"))
5843 iVerbosity++;
5844 }
5845
5846 uint32_t uLeaf;
5847 CPUMCPUID Host = {0};
5848 uint32_t cLeaves = pVM->cpum.s.GuestInfo.cCpuIdLeaves;
5849 PCPUMCPUIDLEAF paLeaves = pVM->cpum.s.GuestInfo.paCpuIdLeavesR3;
5850 PCCPUMCPUIDLEAF pCurLeaf;
5851 PCCPUMCPUIDLEAF pNextLeaf;
5852 bool const fIntel = RTX86IsIntelCpu(pVM->cpum.s.aGuestCpuIdPatmStd[0].uEbx,
5853 pVM->cpum.s.aGuestCpuIdPatmStd[0].uEcx,
5854 pVM->cpum.s.aGuestCpuIdPatmStd[0].uEdx);
5855
5856 /*
5857 * Standard leaves. Custom raw dump here due to ECX sub-leaves host handling.
5858 */
5859#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
5860 uint32_t cHstMax = ASMCpuId_EAX(0);
5861#else
5862 uint32_t cHstMax = 0;
5863#endif
5864 uint32_t cGstMax = paLeaves[0].uLeaf == 0 ? paLeaves[0].uEax : 0;
5865 uint32_t cMax = RT_MAX(cGstMax, cHstMax);
5866 pHlp->pfnPrintf(pHlp,
5867 " Raw Standard CPUID Leaves\n"
5868 " Leaf/sub-leaf eax ebx ecx edx\n");
5869 for (uLeaf = 0, pCurLeaf = paLeaves; uLeaf <= cMax; uLeaf++)
5870 {
5871 uint32_t cMaxSubLeaves = 1;
5872 if (uLeaf == 4 || uLeaf == 7 || uLeaf == 0xb)
5873 cMaxSubLeaves = 16;
5874 else if (uLeaf == 0xd)
5875 cMaxSubLeaves = 128;
5876
5877 for (uint32_t uSubLeaf = 0; uSubLeaf < cMaxSubLeaves; uSubLeaf++)
5878 {
5879#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
5880 ASMCpuIdExSlow(uLeaf, 0, uSubLeaf, 0, &Host.uEax, &Host.uEbx, &Host.uEcx, &Host.uEdx);
5881#endif
5882 if ( (uintptr_t)(pCurLeaf - paLeaves) < cLeaves
5883 && pCurLeaf->uLeaf == uLeaf
5884 && pCurLeaf->uSubLeaf == uSubLeaf)
5885 {
5886 pHlp->pfnPrintf(pHlp,
5887 "Gst: %08x/%04x %08x %08x %08x %08x\n"
5888 "Hst: %08x %08x %08x %08x\n",
5889 uLeaf, uSubLeaf, pCurLeaf->uEax, pCurLeaf->uEbx, pCurLeaf->uEcx, pCurLeaf->uEdx,
5890 Host.uEax, Host.uEbx, Host.uEcx, Host.uEdx);
5891 pCurLeaf++;
5892 }
5893 else if ( uLeaf != 0xd
5894 || uSubLeaf <= 1
5895 || Host.uEbx != 0 )
5896 pHlp->pfnPrintf(pHlp,
5897 "Hst: %08x/%04x %08x %08x %08x %08x\n",
5898 uLeaf, uSubLeaf, Host.uEax, Host.uEbx, Host.uEcx, Host.uEdx);
5899
5900 /* Done? */
5901 if ( ( (uintptr_t)(pCurLeaf - paLeaves) >= cLeaves
5902 || pCurLeaf->uLeaf != uLeaf)
5903 && ( (uLeaf == 0x4 && ((Host.uEax & 0x000f) == 0 || (Host.uEax & 0x000f) >= 8))
5904 || (uLeaf == 0x7 && Host.uEax == 0)
5905 || (uLeaf == 0xb && ((Host.uEcx & 0xff00) == 0 || (Host.uEcx & 0xff00) >= 8))
5906 || (uLeaf == 0xb && (Host.uEcx & 0xff) != uSubLeaf)
5907 || (uLeaf == 0xd && uSubLeaf >= 128)
5908 )
5909 )
5910 break;
5911 }
5912 }
5913 pNextLeaf = pCurLeaf;
5914
5915 /*
5916 * If verbose, decode it.
5917 */
5918 if (iVerbosity && paLeaves[0].uLeaf == 0)
5919 pHlp->pfnPrintf(pHlp,
5920 "%36s %.04s%.04s%.04s\n"
5921 "%36s 0x00000000-%#010x\n"
5922 ,
5923 "Name:", &paLeaves[0].uEbx, &paLeaves[0].uEdx, &paLeaves[0].uEcx,
5924 "Supports:", paLeaves[0].uEax);
5925
5926 if (iVerbosity && (pCurLeaf = cpumCpuIdGetLeafInt(paLeaves, cLeaves, UINT32_C(0x00000001), 0)) != NULL)
5927 cpumR3CpuIdInfoStdLeaf1Details(pHlp, pCurLeaf, iVerbosity > 1, fIntel);
5928
5929 if (iVerbosity && (pCurLeaf = cpumCpuIdGetLeafInt(paLeaves, cLeaves, UINT32_C(0x00000007), 0)) != NULL)
5930 cpumR3CpuIdInfoStdLeaf7Details(pHlp, paLeaves, cLeaves, pCurLeaf, iVerbosity > 1);
5931
5932 if (iVerbosity && (pCurLeaf = cpumCpuIdGetLeafInt(paLeaves, cLeaves, UINT32_C(0x0000000d), 0)) != NULL)
5933 cpumR3CpuIdInfoStdLeaf13Details(pHlp, paLeaves, cLeaves, pCurLeaf, iVerbosity > 1);
5934
5935 pCurLeaf = pNextLeaf;
5936
5937 /*
5938 * Hypervisor leaves.
5939 *
5940 * Unlike most of the other leaves reported, the guest hypervisor leaves
5941 * aren't a subset of the host CPUID bits.
5942 */
5943 pCurLeaf = cpumR3CpuIdInfoRawRange(pHlp, paLeaves, cLeaves, pCurLeaf, UINT32_C(0x3fffffff), "Unknown CPUID Leaves");
5944
5945#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
5946 ASMCpuIdExSlow(UINT32_C(0x40000000), 0, 0, 0, &Host.uEax, &Host.uEbx, &Host.uEcx, &Host.uEdx);
5947#endif
5948 cHstMax = Host.uEax >= UINT32_C(0x40000001) && Host.uEax <= UINT32_C(0x40000fff) ? Host.uEax : 0;
5949 cGstMax = (uintptr_t)(pCurLeaf - paLeaves) < cLeaves && pCurLeaf->uLeaf == UINT32_C(0x40000000)
5950 ? RT_MIN(pCurLeaf->uEax, UINT32_C(0x40000fff)) : 0;
5951 cMax = RT_MAX(cHstMax, cGstMax);
5952 if (cMax >= UINT32_C(0x40000000))
5953 {
5954 pNextLeaf = cpumR3CpuIdInfoRawRange(pHlp, paLeaves, cLeaves, pCurLeaf, cMax, "Raw Hypervisor CPUID Leaves");
5955
5956 /** @todo dump these in more detail. */
5957
5958 pCurLeaf = pNextLeaf;
5959 }
5960
5961
5962 /*
5963 * Extended. Custom raw dump here due to ECX sub-leaves host handling.
5964 * Implemented after AMD specs.
5965 */
5966 pCurLeaf = cpumR3CpuIdInfoRawRange(pHlp, paLeaves, cLeaves, pCurLeaf, UINT32_C(0x7fffffff), "Unknown CPUID Leaves");
5967
5968#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
5969 ASMCpuIdExSlow(UINT32_C(0x80000000), 0, 0, 0, &Host.uEax, &Host.uEbx, &Host.uEcx, &Host.uEdx);
5970#endif
5971 cHstMax = RTX86IsValidExtRange(Host.uEax) ? RT_MIN(Host.uEax, UINT32_C(0x80000fff)) : 0;
5972 cGstMax = (uintptr_t)(pCurLeaf - paLeaves) < cLeaves && pCurLeaf->uLeaf == UINT32_C(0x80000000)
5973 ? RT_MIN(pCurLeaf->uEax, UINT32_C(0x80000fff)) : 0;
5974 cMax = RT_MAX(cHstMax, cGstMax);
5975 if (cMax >= UINT32_C(0x80000000))
5976 {
5977
5978 pHlp->pfnPrintf(pHlp,
5979 " Raw Extended CPUID Leaves\n"
5980 " Leaf/sub-leaf eax ebx ecx edx\n");
5981 PCCPUMCPUIDLEAF pExtLeaf = pCurLeaf;
5982 for (uLeaf = UINT32_C(0x80000000); uLeaf <= cMax; uLeaf++)
5983 {
5984 uint32_t cMaxSubLeaves = 1;
5985 if (uLeaf == UINT32_C(0x8000001d))
5986 cMaxSubLeaves = 16;
5987
5988 for (uint32_t uSubLeaf = 0; uSubLeaf < cMaxSubLeaves; uSubLeaf++)
5989 {
5990#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
5991 ASMCpuIdExSlow(uLeaf, 0, uSubLeaf, 0, &Host.uEax, &Host.uEbx, &Host.uEcx, &Host.uEdx);
5992#endif
5993 if ( (uintptr_t)(pCurLeaf - paLeaves) < cLeaves
5994 && pCurLeaf->uLeaf == uLeaf
5995 && pCurLeaf->uSubLeaf == uSubLeaf)
5996 {
5997 pHlp->pfnPrintf(pHlp,
5998 "Gst: %08x/%04x %08x %08x %08x %08x\n"
5999 "Hst: %08x %08x %08x %08x\n",
6000 uLeaf, uSubLeaf, pCurLeaf->uEax, pCurLeaf->uEbx, pCurLeaf->uEcx, pCurLeaf->uEdx,
6001 Host.uEax, Host.uEbx, Host.uEcx, Host.uEdx);
6002 pCurLeaf++;
6003 }
6004 else if ( uLeaf != 0xd
6005 || uSubLeaf <= 1
6006 || Host.uEbx != 0 )
6007 pHlp->pfnPrintf(pHlp,
6008 "Hst: %08x/%04x %08x %08x %08x %08x\n",
6009 uLeaf, uSubLeaf, Host.uEax, Host.uEbx, Host.uEcx, Host.uEdx);
6010
6011 /* Done? */
6012 if ( ( (uintptr_t)(pCurLeaf - paLeaves) >= cLeaves
6013 || pCurLeaf->uLeaf != uLeaf)
6014 && (uLeaf == UINT32_C(0x8000001d) && ((Host.uEax & 0x000f) == 0 || (Host.uEax & 0x000f) >= 8)) )
6015 break;
6016 }
6017 }
6018 pNextLeaf = pCurLeaf;
6019
6020 /*
6021 * Understandable output
6022 */
6023 if (iVerbosity)
6024 pHlp->pfnPrintf(pHlp,
6025 "Ext Name: %.4s%.4s%.4s\n"
6026 "Ext Supports: 0x80000000-%#010x\n",
6027 &pExtLeaf->uEbx, &pExtLeaf->uEdx, &pExtLeaf->uEcx, pExtLeaf->uEax);
6028
6029 pCurLeaf = cpumCpuIdGetLeafInt(paLeaves, cLeaves, UINT32_C(0x80000001), 0);
6030 if (iVerbosity && pCurLeaf)
6031 {
6032 uint32_t uEAX = pCurLeaf->uEax;
6033 pHlp->pfnPrintf(pHlp,
6034 "Family: %d \tExtended: %d \tEffective: %d\n"
6035 "Model: %d \tExtended: %d \tEffective: %d\n"
6036 "Stepping: %d\n"
6037 "Brand ID: %#05x\n",
6038 (uEAX >> 8) & 0xf, (uEAX >> 20) & 0x7f, RTX86GetCpuFamily(uEAX),
6039 (uEAX >> 4) & 0xf, (uEAX >> 16) & 0x0f, RTX86GetCpuModel(uEAX, fIntel),
6040 RTX86GetCpuStepping(uEAX),
6041 pCurLeaf->uEbx & 0xfff);
6042
6043 if (iVerbosity == 1)
6044 {
6045 cpumR3CpuIdInfoMnemonicListU32(pHlp, pCurLeaf->uEdx, g_aExtLeaf1EdxSubFields, "Ext Features EDX:", 34);
6046 cpumR3CpuIdInfoMnemonicListU32(pHlp, pCurLeaf->uEcx, g_aExtLeaf1EdxSubFields, "Ext Features ECX:", 34);
6047 }
6048 else
6049 {
6050#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
6051 ASMCpuIdExSlow(0x80000001, 0, 0, 0, &Host.uEax, &Host.uEbx, &Host.uEcx, &Host.uEdx);
6052#endif
6053 pHlp->pfnPrintf(pHlp, "Ext Features\n");
6054 pHlp->pfnPrintf(pHlp, " Mnemonic - Description = guest (host)\n");
6055 cpumR3CpuIdInfoVerboseCompareListU32(pHlp, pCurLeaf->uEdx, Host.uEdx, g_aExtLeaf1EdxSubFields, 56);
6056 cpumR3CpuIdInfoVerboseCompareListU32(pHlp, pCurLeaf->uEcx, Host.uEcx, g_aExtLeaf1EcxSubFields, 56);
6057 if (Host.uEcx & X86_CPUID_AMD_FEATURE_ECX_SVM)
6058 {
6059 pHlp->pfnPrintf(pHlp, "SVM Feature Identification (leaf A):\n");
6060#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
6061 ASMCpuIdExSlow(0x8000000a, 0, 0, 0, &Host.uEax, &Host.uEbx, &Host.uEcx, &Host.uEdx);
6062#endif
6063 pCurLeaf = cpumCpuIdGetLeafInt(paLeaves, cLeaves, UINT32_C(0x8000000a), 0);
6064 uint32_t const uGstEdx = pCurLeaf ? pCurLeaf->uEdx : 0;
6065 cpumR3CpuIdInfoVerboseCompareListU32(pHlp, uGstEdx, Host.uEdx, g_aExtLeafAEdxSubFields, 56);
6066 }
6067 }
6068 }
6069
6070 if (iVerbosity && (pCurLeaf = cpumCpuIdGetLeafInt(paLeaves, cLeaves, UINT32_C(0x80000002), 0)) != NULL)
6071 {
6072 char szString[4*4*3+1] = {0};
6073 uint32_t *pu32 = (uint32_t *)szString;
6074 *pu32++ = pCurLeaf->uEax;
6075 *pu32++ = pCurLeaf->uEbx;
6076 *pu32++ = pCurLeaf->uEcx;
6077 *pu32++ = pCurLeaf->uEdx;
6078 pCurLeaf = cpumCpuIdGetLeafInt(paLeaves, cLeaves, UINT32_C(0x80000003), 0);
6079 if (pCurLeaf)
6080 {
6081 *pu32++ = pCurLeaf->uEax;
6082 *pu32++ = pCurLeaf->uEbx;
6083 *pu32++ = pCurLeaf->uEcx;
6084 *pu32++ = pCurLeaf->uEdx;
6085 }
6086 pCurLeaf = cpumCpuIdGetLeafInt(paLeaves, cLeaves, UINT32_C(0x80000004), 0);
6087 if (pCurLeaf)
6088 {
6089 *pu32++ = pCurLeaf->uEax;
6090 *pu32++ = pCurLeaf->uEbx;
6091 *pu32++ = pCurLeaf->uEcx;
6092 *pu32++ = pCurLeaf->uEdx;
6093 }
6094 pHlp->pfnPrintf(pHlp, "Full Name: \"%s\"\n", szString);
6095 }
6096
6097 if (iVerbosity && (pCurLeaf = cpumCpuIdGetLeafInt(paLeaves, cLeaves, UINT32_C(0x80000005), 0)) != NULL)
6098 {
6099 uint32_t uEAX = pCurLeaf->uEax;
6100 uint32_t uEBX = pCurLeaf->uEbx;
6101 uint32_t uECX = pCurLeaf->uEcx;
6102 uint32_t uEDX = pCurLeaf->uEdx;
6103 char sz1[32];
6104 char sz2[32];
6105
6106 pHlp->pfnPrintf(pHlp,
6107 "TLB 2/4M Instr/Uni: %s %3d entries\n"
6108 "TLB 2/4M Data: %s %3d entries\n",
6109 getCacheAss((uEAX >> 8) & 0xff, sz1), (uEAX >> 0) & 0xff,
6110 getCacheAss((uEAX >> 24) & 0xff, sz2), (uEAX >> 16) & 0xff);
6111 pHlp->pfnPrintf(pHlp,
6112 "TLB 4K Instr/Uni: %s %3d entries\n"
6113 "TLB 4K Data: %s %3d entries\n",
6114 getCacheAss((uEBX >> 8) & 0xff, sz1), (uEBX >> 0) & 0xff,
6115 getCacheAss((uEBX >> 24) & 0xff, sz2), (uEBX >> 16) & 0xff);
6116 pHlp->pfnPrintf(pHlp, "L1 Instr Cache Line Size: %d bytes\n"
6117 "L1 Instr Cache Lines Per Tag: %d\n"
6118 "L1 Instr Cache Associativity: %s\n"
6119 "L1 Instr Cache Size: %d KB\n",
6120 (uEDX >> 0) & 0xff,
6121 (uEDX >> 8) & 0xff,
6122 getCacheAss((uEDX >> 16) & 0xff, sz1),
6123 (uEDX >> 24) & 0xff);
6124 pHlp->pfnPrintf(pHlp,
6125 "L1 Data Cache Line Size: %d bytes\n"
6126 "L1 Data Cache Lines Per Tag: %d\n"
6127 "L1 Data Cache Associativity: %s\n"
6128 "L1 Data Cache Size: %d KB\n",
6129 (uECX >> 0) & 0xff,
6130 (uECX >> 8) & 0xff,
6131 getCacheAss((uECX >> 16) & 0xff, sz1),
6132 (uECX >> 24) & 0xff);
6133 }
6134
6135 if (iVerbosity && (pCurLeaf = cpumCpuIdGetLeafInt(paLeaves, cLeaves, UINT32_C(0x80000006), 0)) != NULL)
6136 {
6137 uint32_t uEAX = pCurLeaf->uEax;
6138 uint32_t uEBX = pCurLeaf->uEbx;
6139 uint32_t uECX = pCurLeaf->uEcx;
6140 uint32_t uEDX = pCurLeaf->uEdx;
6141
6142 pHlp->pfnPrintf(pHlp,
6143 "L2 TLB 2/4M Instr/Uni: %s %4d entries\n"
6144 "L2 TLB 2/4M Data: %s %4d entries\n",
6145 getL23CacheAss((uEAX >> 12) & 0xf), (uEAX >> 0) & 0xfff,
6146 getL23CacheAss((uEAX >> 28) & 0xf), (uEAX >> 16) & 0xfff);
6147 pHlp->pfnPrintf(pHlp,
6148 "L2 TLB 4K Instr/Uni: %s %4d entries\n"
6149 "L2 TLB 4K Data: %s %4d entries\n",
6150 getL23CacheAss((uEBX >> 12) & 0xf), (uEBX >> 0) & 0xfff,
6151 getL23CacheAss((uEBX >> 28) & 0xf), (uEBX >> 16) & 0xfff);
6152 pHlp->pfnPrintf(pHlp,
6153 "L2 Cache Line Size: %d bytes\n"
6154 "L2 Cache Lines Per Tag: %d\n"
6155 "L2 Cache Associativity: %s\n"
6156 "L2 Cache Size: %d KB\n",
6157 (uECX >> 0) & 0xff,
6158 (uECX >> 8) & 0xf,
6159 getL23CacheAss((uECX >> 12) & 0xf),
6160 (uECX >> 16) & 0xffff);
6161 pHlp->pfnPrintf(pHlp,
6162 "L3 Cache Line Size: %d bytes\n"
6163 "L3 Cache Lines Per Tag: %d\n"
6164 "L3 Cache Associativity: %s\n"
6165 "L3 Cache Size: %d KB\n",
6166 (uEDX >> 0) & 0xff,
6167 (uEDX >> 8) & 0xf,
6168 getL23CacheAss((uEDX >> 12) & 0xf),
6169 ((uEDX >> 18) & 0x3fff) * 512);
6170 }
6171
6172 if (iVerbosity && (pCurLeaf = cpumCpuIdGetLeafInt(paLeaves, cLeaves, UINT32_C(0x80000007), 0)) != NULL)
6173 {
6174#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
6175 ASMCpuIdExSlow(UINT32_C(0x80000007), 0, 0, 0, &Host.uEax, &Host.uEbx, &Host.uEcx, &Host.uEdx);
6176#endif
6177 if (pCurLeaf->uEdx || (Host.uEdx && iVerbosity))
6178 {
6179 if (iVerbosity < 1)
6180 cpumR3CpuIdInfoMnemonicListU32(pHlp, pCurLeaf->uEdx, g_aExtLeaf7EdxSubFields, "APM Features EDX:", 34);
6181 else
6182 cpumR3CpuIdInfoVerboseCompareListU32(pHlp, pCurLeaf->uEdx, Host.uEdx, g_aExtLeaf7EdxSubFields, 56);
6183 }
6184 }
6185
6186 pCurLeaf = cpumCpuIdGetLeafInt(paLeaves, cLeaves, UINT32_C(0x80000008), 0);
6187 if (pCurLeaf != NULL)
6188 {
6189#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
6190 ASMCpuIdExSlow(UINT32_C(0x80000008), 0, 0, 0, &Host.uEax, &Host.uEbx, &Host.uEcx, &Host.uEdx);
6191#endif
6192 if (pCurLeaf->uEbx || (Host.uEbx && iVerbosity))
6193 {
6194 if (iVerbosity < 1)
6195 cpumR3CpuIdInfoMnemonicListU32(pHlp, pCurLeaf->uEbx, g_aExtLeaf8EbxSubFields, "Ext Features ext IDs EBX:", 34);
6196 else
6197 cpumR3CpuIdInfoVerboseCompareListU32(pHlp, pCurLeaf->uEbx, Host.uEbx, g_aExtLeaf8EbxSubFields, 56);
6198 }
6199
6200 if (iVerbosity)
6201 {
6202 uint32_t uEAX = pCurLeaf->uEax;
6203 uint32_t uECX = pCurLeaf->uEcx;
6204
6205 /** @todo 0x80000008:EAX[23:16] is only defined for AMD. We'll get 0 on Intel. On
6206 * AMD if we get 0, the guest physical address width should be taken from
6207 * 0x80000008:EAX[7:0] instead. Guest Physical address width is relevant
6208 * for guests using nested paging. */
6209 pHlp->pfnPrintf(pHlp,
6210 "Physical Address Width: %d bits\n"
6211 "Virtual Address Width: %d bits\n"
6212 "Guest Physical Address Width: %d bits\n",
6213 (uEAX >> 0) & 0xff,
6214 (uEAX >> 8) & 0xff,
6215 (uEAX >> 16) & 0xff);
6216
6217 /** @todo 0x80000008:ECX is reserved on Intel (we'll get incorrect physical core
6218 * count here). */
6219 pHlp->pfnPrintf(pHlp,
6220 "Physical Core Count: %d\n",
6221 ((uECX >> 0) & 0xff) + 1);
6222 }
6223 }
6224
6225 pCurLeaf = pNextLeaf;
6226 }
6227
6228
6229
6230 /*
6231 * Centaur.
6232 */
6233 pCurLeaf = cpumR3CpuIdInfoRawRange(pHlp, paLeaves, cLeaves, pCurLeaf, UINT32_C(0xbfffffff), "Unknown CPUID Leaves");
6234
6235#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
6236 ASMCpuIdExSlow(UINT32_C(0xc0000000), 0, 0, 0, &Host.uEax, &Host.uEbx, &Host.uEcx, &Host.uEdx);
6237#endif
6238 cHstMax = Host.uEax >= UINT32_C(0xc0000001) && Host.uEax <= UINT32_C(0xc0000fff)
6239 ? RT_MIN(Host.uEax, UINT32_C(0xc0000fff)) : 0;
6240 cGstMax = (uintptr_t)(pCurLeaf - paLeaves) < cLeaves && pCurLeaf->uLeaf == UINT32_C(0xc0000000)
6241 ? RT_MIN(pCurLeaf->uEax, UINT32_C(0xc0000fff)) : 0;
6242 cMax = RT_MAX(cHstMax, cGstMax);
6243 if (cMax >= UINT32_C(0xc0000000))
6244 {
6245 pNextLeaf = cpumR3CpuIdInfoRawRange(pHlp, paLeaves, cLeaves, pCurLeaf, cMax, "Raw Centaur CPUID Leaves");
6246
6247 /*
6248 * Understandable output
6249 */
6250 if (iVerbosity && (pCurLeaf = cpumCpuIdGetLeafInt(paLeaves, cLeaves, UINT32_C(0xc0000000), 0)) != NULL)
6251 pHlp->pfnPrintf(pHlp,
6252 "Centaur Supports: 0xc0000000-%#010x\n",
6253 pCurLeaf->uEax);
6254
6255 if (iVerbosity && (pCurLeaf = cpumCpuIdGetLeafInt(paLeaves, cLeaves, UINT32_C(0xc0000001), 0)) != NULL)
6256 {
6257#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
6258 ASMCpuIdExSlow(0xc0000001, 0, 0, 0, &Host.uEax, &Host.uEbx, &Host.uEcx, &Host.uEdx);
6259#endif
6260 uint32_t uEdxGst = pCurLeaf->uEdx;
6261 uint32_t uEdxHst = Host.uEdx;
6262
6263 if (iVerbosity == 1)
6264 {
6265 pHlp->pfnPrintf(pHlp, "Centaur Features EDX: ");
6266 if (uEdxGst & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " AIS");
6267 if (uEdxGst & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " AIS-E");
6268 if (uEdxGst & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " RNG");
6269 if (uEdxGst & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " RNG-E");
6270 if (uEdxGst & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " LH");
6271 if (uEdxGst & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " FEMMS");
6272 if (uEdxGst & RT_BIT(6)) pHlp->pfnPrintf(pHlp, " ACE");
6273 if (uEdxGst & RT_BIT(7)) pHlp->pfnPrintf(pHlp, " ACE-E");
6274 /* possibly indicating MM/HE and MM/HE-E on older chips... */
6275 if (uEdxGst & RT_BIT(8)) pHlp->pfnPrintf(pHlp, " ACE2");
6276 if (uEdxGst & RT_BIT(9)) pHlp->pfnPrintf(pHlp, " ACE2-E");
6277 if (uEdxGst & RT_BIT(10)) pHlp->pfnPrintf(pHlp, " PHE");
6278 if (uEdxGst & RT_BIT(11)) pHlp->pfnPrintf(pHlp, " PHE-E");
6279 if (uEdxGst & RT_BIT(12)) pHlp->pfnPrintf(pHlp, " PMM");
6280 if (uEdxGst & RT_BIT(13)) pHlp->pfnPrintf(pHlp, " PMM-E");
6281 for (unsigned iBit = 14; iBit < 32; iBit++)
6282 if (uEdxGst & RT_BIT(iBit))
6283 pHlp->pfnPrintf(pHlp, " %d", iBit);
6284 pHlp->pfnPrintf(pHlp, "\n");
6285 }
6286 else
6287 {
6288 pHlp->pfnPrintf(pHlp, "Mnemonic - Description = guest (host)\n");
6289 pHlp->pfnPrintf(pHlp, "AIS - Alternate Instruction Set = %d (%d)\n", !!(uEdxGst & RT_BIT( 0)), !!(uEdxHst & RT_BIT( 0)));
6290 pHlp->pfnPrintf(pHlp, "AIS-E - AIS enabled = %d (%d)\n", !!(uEdxGst & RT_BIT( 1)), !!(uEdxHst & RT_BIT( 1)));
6291 pHlp->pfnPrintf(pHlp, "RNG - Random Number Generator = %d (%d)\n", !!(uEdxGst & RT_BIT( 2)), !!(uEdxHst & RT_BIT( 2)));
6292 pHlp->pfnPrintf(pHlp, "RNG-E - RNG enabled = %d (%d)\n", !!(uEdxGst & RT_BIT( 3)), !!(uEdxHst & RT_BIT( 3)));
6293 pHlp->pfnPrintf(pHlp, "LH - LongHaul MSR 0000_110Ah = %d (%d)\n", !!(uEdxGst & RT_BIT( 4)), !!(uEdxHst & RT_BIT( 4)));
6294 pHlp->pfnPrintf(pHlp, "FEMMS - FEMMS = %d (%d)\n", !!(uEdxGst & RT_BIT( 5)), !!(uEdxHst & RT_BIT( 5)));
6295 pHlp->pfnPrintf(pHlp, "ACE - Advanced Cryptography Engine = %d (%d)\n", !!(uEdxGst & RT_BIT( 6)), !!(uEdxHst & RT_BIT( 6)));
6296 pHlp->pfnPrintf(pHlp, "ACE-E - ACE enabled = %d (%d)\n", !!(uEdxGst & RT_BIT( 7)), !!(uEdxHst & RT_BIT( 7)));
6297 /* possibly indicating MM/HE and MM/HE-E on older chips... */
6298 pHlp->pfnPrintf(pHlp, "ACE2 - Advanced Cryptography Engine 2 = %d (%d)\n", !!(uEdxGst & RT_BIT( 8)), !!(uEdxHst & RT_BIT( 8)));
6299 pHlp->pfnPrintf(pHlp, "ACE2-E - ACE enabled = %d (%d)\n", !!(uEdxGst & RT_BIT( 9)), !!(uEdxHst & RT_BIT( 9)));
6300 pHlp->pfnPrintf(pHlp, "PHE - Padlock Hash Engine = %d (%d)\n", !!(uEdxGst & RT_BIT(10)), !!(uEdxHst & RT_BIT(10)));
6301 pHlp->pfnPrintf(pHlp, "PHE-E - PHE enabled = %d (%d)\n", !!(uEdxGst & RT_BIT(11)), !!(uEdxHst & RT_BIT(11)));
6302 pHlp->pfnPrintf(pHlp, "PMM - Montgomery Multiplier = %d (%d)\n", !!(uEdxGst & RT_BIT(12)), !!(uEdxHst & RT_BIT(12)));
6303 pHlp->pfnPrintf(pHlp, "PMM-E - PMM enabled = %d (%d)\n", !!(uEdxGst & RT_BIT(13)), !!(uEdxHst & RT_BIT(13)));
6304 pHlp->pfnPrintf(pHlp, "14 - Reserved = %d (%d)\n", !!(uEdxGst & RT_BIT(14)), !!(uEdxHst & RT_BIT(14)));
6305 pHlp->pfnPrintf(pHlp, "15 - Reserved = %d (%d)\n", !!(uEdxGst & RT_BIT(15)), !!(uEdxHst & RT_BIT(15)));
6306 pHlp->pfnPrintf(pHlp, "Parallax = %d (%d)\n", !!(uEdxGst & RT_BIT(16)), !!(uEdxHst & RT_BIT(16)));
6307 pHlp->pfnPrintf(pHlp, "Parallax enabled = %d (%d)\n", !!(uEdxGst & RT_BIT(17)), !!(uEdxHst & RT_BIT(17)));
6308 pHlp->pfnPrintf(pHlp, "Overstress = %d (%d)\n", !!(uEdxGst & RT_BIT(18)), !!(uEdxHst & RT_BIT(18)));
6309 pHlp->pfnPrintf(pHlp, "Overstress enabled = %d (%d)\n", !!(uEdxGst & RT_BIT(19)), !!(uEdxHst & RT_BIT(19)));
6310 pHlp->pfnPrintf(pHlp, "TM3 - Temperature Monitoring 3 = %d (%d)\n", !!(uEdxGst & RT_BIT(20)), !!(uEdxHst & RT_BIT(20)));
6311 pHlp->pfnPrintf(pHlp, "TM3-E - TM3 enabled = %d (%d)\n", !!(uEdxGst & RT_BIT(21)), !!(uEdxHst & RT_BIT(21)));
6312 pHlp->pfnPrintf(pHlp, "RNG2 - Random Number Generator 2 = %d (%d)\n", !!(uEdxGst & RT_BIT(22)), !!(uEdxHst & RT_BIT(22)));
6313 pHlp->pfnPrintf(pHlp, "RNG2-E - RNG2 enabled = %d (%d)\n", !!(uEdxGst & RT_BIT(23)), !!(uEdxHst & RT_BIT(23)));
6314 pHlp->pfnPrintf(pHlp, "24 - Reserved = %d (%d)\n", !!(uEdxGst & RT_BIT(24)), !!(uEdxHst & RT_BIT(24)));
6315 pHlp->pfnPrintf(pHlp, "PHE2 - Padlock Hash Engine 2 = %d (%d)\n", !!(uEdxGst & RT_BIT(25)), !!(uEdxHst & RT_BIT(25)));
6316 pHlp->pfnPrintf(pHlp, "PHE2-E - PHE2 enabled = %d (%d)\n", !!(uEdxGst & RT_BIT(26)), !!(uEdxHst & RT_BIT(26)));
6317 for (unsigned iBit = 27; iBit < 32; iBit++)
6318 if ((uEdxGst | uEdxHst) & RT_BIT(iBit))
6319 pHlp->pfnPrintf(pHlp, "Bit %d = %d (%d)\n", iBit, !!(uEdxGst & RT_BIT(iBit)), !!(uEdxHst & RT_BIT(iBit)));
6320 pHlp->pfnPrintf(pHlp, "\n");
6321 }
6322 }
6323
6324 pCurLeaf = pNextLeaf;
6325 }
6326
6327 /*
6328 * The remainder.
6329 */
6330 pCurLeaf = cpumR3CpuIdInfoRawRange(pHlp, paLeaves, cLeaves, pCurLeaf, UINT32_C(0xffffffff), "Unknown CPUID Leaves");
6331}
6332
6333#endif /* !IN_VBOX_CPU_REPORT */
6334
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette