VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/CPUMR3CpuId.cpp@ 107650

Last change on this file since 107650 was 107650, checked in by vboxsync, 3 weeks ago

VMM/CPUM,++: Made the HostFeatures match the host when targeting x86 guests on arm64 hosts. Merged and deduplicated code targeting x86 & amd64. jiraref:VBP-1470

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 300.9 KB
Line 
1/* $Id: CPUMR3CpuId.cpp 107650 2025-01-10 13:42:28Z vboxsync $ */
2/** @file
3 * CPUM - CPU ID part.
4 */
5
6/*
7 * Copyright (C) 2013-2024 Oracle and/or its affiliates.
8 *
9 * This file is part of VirtualBox base platform packages, as
10 * available from https://www.virtualbox.org.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation, in version 3 of the
15 * License.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, see <https://www.gnu.org/licenses>.
24 *
25 * SPDX-License-Identifier: GPL-3.0-only
26 */
27
28
29/*********************************************************************************************************************************
30* Header Files *
31*********************************************************************************************************************************/
32#define LOG_GROUP LOG_GROUP_CPUM
33#include <VBox/vmm/cpum.h>
34#include <VBox/vmm/dbgf.h>
35#include <VBox/vmm/hm.h>
36#include <VBox/vmm/nem.h>
37#include <VBox/vmm/ssm.h>
38#include "CPUMInternal.h"
39#include <VBox/vmm/vmcc.h>
40#include <VBox/sup.h>
41
42#include <VBox/err.h>
43#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
44# include <iprt/asm-amd64-x86.h>
45#endif
46#include <iprt/ctype.h>
47#include <iprt/mem.h>
48#include <iprt/string.h>
49#include <iprt/x86-helpers.h>
50
51
52/*********************************************************************************************************************************
53* Defined Constants And Macros *
54*********************************************************************************************************************************/
55/** For sanity and avoid wasting hyper heap on buggy config / saved state. */
56#define CPUM_CPUID_MAX_LEAVES 2048
57
58
59#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
60/**
61 * Determins the host CPU MXCSR mask.
62 *
63 * @returns MXCSR mask.
64 */
65VMMR3DECL(uint32_t) CPUMR3DeterminHostMxCsrMask(void)
66{
67 if ( ASMHasCpuId()
68 && RTX86IsValidStdRange(ASMCpuId_EAX(0))
69 && ASMCpuId_EDX(1) & X86_CPUID_FEATURE_EDX_FXSR)
70 {
71 uint8_t volatile abBuf[sizeof(X86FXSTATE) + 64];
72 PX86FXSTATE pState = (PX86FXSTATE)&abBuf[64 - ((uintptr_t)&abBuf[0] & 63)];
73 RT_ZERO(*pState);
74 ASMFxSave(pState);
75 if (pState->MXCSR_MASK == 0)
76 return 0xffbf;
77 return pState->MXCSR_MASK;
78 }
79 return 0;
80}
81#endif
82
83
84
85#ifndef IN_VBOX_CPU_REPORT
86/**
87 * Gets a matching leaf in the CPUID leaf array, converted to a CPUMCPUID.
88 *
89 * @returns true if found, false it not.
90 * @param paLeaves The CPUID leaves to search. This is sorted.
91 * @param cLeaves The number of leaves in the array.
92 * @param uLeaf The leaf to locate.
93 * @param uSubLeaf The subleaf to locate. Pass 0 if no sub-leaves.
94 * @param pLegacy The legacy output leaf.
95 */
96static bool cpumR3CpuIdGetLeafLegacy(PCPUMCPUIDLEAF paLeaves, uint32_t cLeaves, uint32_t uLeaf, uint32_t uSubLeaf,
97 PCPUMCPUID pLegacy)
98{
99 PCPUMCPUIDLEAF pLeaf = cpumCpuIdGetLeafInt(paLeaves, cLeaves, uLeaf, uSubLeaf);
100 if (pLeaf)
101 {
102 pLegacy->uEax = pLeaf->uEax;
103 pLegacy->uEbx = pLeaf->uEbx;
104 pLegacy->uEcx = pLeaf->uEcx;
105 pLegacy->uEdx = pLeaf->uEdx;
106 return true;
107 }
108 return false;
109}
110#endif /* IN_VBOX_CPU_REPORT */
111
112
113/**
114 * Inserts a CPU ID leaf, replacing any existing ones.
115 *
116 * When inserting a simple leaf where we already got a series of sub-leaves with
117 * the same leaf number (eax), the simple leaf will replace the whole series.
118 *
119 * When pVM is NULL, this ASSUMES that the leaves array is still on the normal
120 * host-context heap and has only been allocated/reallocated by the
121 * cpumCpuIdEnsureSpace function.
122 *
123 * @returns VBox status code.
124 * @param pVM The cross context VM structure. If NULL, use
125 * the process heap, otherwise the VM's hyper heap.
126 * @param ppaLeaves Pointer to the pointer to the array of sorted
127 * CPUID leaves and sub-leaves. Must be NULL if using
128 * the hyper heap.
129 * @param pcLeaves Where we keep the leaf count for *ppaLeaves. Must
130 * be NULL if using the hyper heap.
131 * @param pNewLeaf Pointer to the data of the new leaf we're about to
132 * insert.
133 */
134static int cpumR3CpuIdInsert(PVM pVM, PCPUMCPUIDLEAF *ppaLeaves, uint32_t *pcLeaves, PCPUMCPUIDLEAF pNewLeaf)
135{
136 /*
137 * Validate input parameters if we are using the hyper heap and use the VM's CPUID arrays.
138 */
139 if (pVM)
140 {
141 AssertReturn(!ppaLeaves, VERR_INVALID_PARAMETER);
142 AssertReturn(!pcLeaves, VERR_INVALID_PARAMETER);
143 AssertReturn(pVM->cpum.s.GuestInfo.paCpuIdLeavesR3 == pVM->cpum.s.GuestInfo.aCpuIdLeaves, VERR_INVALID_PARAMETER);
144
145 ppaLeaves = &pVM->cpum.s.GuestInfo.paCpuIdLeavesR3;
146 pcLeaves = &pVM->cpum.s.GuestInfo.cCpuIdLeaves;
147 }
148
149 PCPUMCPUIDLEAF paLeaves = *ppaLeaves;
150 uint32_t cLeaves = *pcLeaves;
151
152 /*
153 * Validate the new leaf a little.
154 */
155 AssertLogRelMsgReturn(!(pNewLeaf->fFlags & ~CPUMCPUIDLEAF_F_VALID_MASK),
156 ("%#x/%#x: %#x", pNewLeaf->uLeaf, pNewLeaf->uSubLeaf, pNewLeaf->fFlags),
157 VERR_INVALID_FLAGS);
158 AssertLogRelMsgReturn(pNewLeaf->fSubLeafMask != 0 || pNewLeaf->uSubLeaf == 0,
159 ("%#x/%#x: %#x", pNewLeaf->uLeaf, pNewLeaf->uSubLeaf, pNewLeaf->fSubLeafMask),
160 VERR_INVALID_PARAMETER);
161 AssertLogRelMsgReturn(RT_IS_POWER_OF_TWO(pNewLeaf->fSubLeafMask + 1),
162 ("%#x/%#x: %#x", pNewLeaf->uLeaf, pNewLeaf->uSubLeaf, pNewLeaf->fSubLeafMask),
163 VERR_INVALID_PARAMETER);
164 AssertLogRelMsgReturn((pNewLeaf->fSubLeafMask & pNewLeaf->uSubLeaf) == pNewLeaf->uSubLeaf,
165 ("%#x/%#x: %#x", pNewLeaf->uLeaf, pNewLeaf->uSubLeaf, pNewLeaf->fSubLeafMask),
166 VERR_INVALID_PARAMETER);
167
168 /*
169 * Find insertion point. The lazy bird uses the same excuse as in
170 * cpumCpuIdGetLeaf(), but optimizes for linear insertion (saved state).
171 */
172 uint32_t i;
173 if ( cLeaves > 0
174 && paLeaves[cLeaves - 1].uLeaf < pNewLeaf->uLeaf)
175 {
176 /* Add at end. */
177 i = cLeaves;
178 }
179 else if ( cLeaves > 0
180 && paLeaves[cLeaves - 1].uLeaf == pNewLeaf->uLeaf)
181 {
182 /* Either replacing the last leaf or dealing with sub-leaves. Spool
183 back to the first sub-leaf to pretend we did the linear search. */
184 i = cLeaves - 1;
185 while ( i > 0
186 && paLeaves[i - 1].uLeaf == pNewLeaf->uLeaf)
187 i--;
188 }
189 else
190 {
191 /* Linear search from the start. */
192 i = 0;
193 while ( i < cLeaves
194 && paLeaves[i].uLeaf < pNewLeaf->uLeaf)
195 i++;
196 }
197 if ( i < cLeaves
198 && paLeaves[i].uLeaf == pNewLeaf->uLeaf)
199 {
200 if (paLeaves[i].fSubLeafMask != pNewLeaf->fSubLeafMask)
201 {
202 /*
203 * The sub-leaf mask differs, replace all existing leaves with the
204 * same leaf number.
205 */
206 uint32_t c = 1;
207 while ( i + c < cLeaves
208 && paLeaves[i + c].uLeaf == pNewLeaf->uLeaf)
209 c++;
210 if (c > 1 && i + c < cLeaves)
211 {
212 memmove(&paLeaves[i + c], &paLeaves[i + 1], (cLeaves - i - c) * sizeof(paLeaves[0]));
213 *pcLeaves = cLeaves -= c - 1;
214 }
215
216 paLeaves[i] = *pNewLeaf;
217#ifdef VBOX_STRICT
218 cpumCpuIdAssertOrder(*ppaLeaves, *pcLeaves);
219#endif
220 return VINF_SUCCESS;
221 }
222
223 /* Find sub-leaf insertion point. */
224 while ( i < cLeaves
225 && paLeaves[i].uSubLeaf < pNewLeaf->uSubLeaf
226 && paLeaves[i].uLeaf == pNewLeaf->uLeaf)
227 i++;
228
229 /*
230 * If we've got an exactly matching leaf, replace it.
231 */
232 if ( i < cLeaves
233 && paLeaves[i].uLeaf == pNewLeaf->uLeaf
234 && paLeaves[i].uSubLeaf == pNewLeaf->uSubLeaf)
235 {
236 paLeaves[i] = *pNewLeaf;
237#ifdef VBOX_STRICT
238 cpumCpuIdAssertOrder(*ppaLeaves, *pcLeaves);
239#endif
240 return VINF_SUCCESS;
241 }
242 }
243
244 /*
245 * Adding a new leaf at 'i'.
246 */
247 AssertLogRelReturn(cLeaves < CPUM_CPUID_MAX_LEAVES, VERR_TOO_MANY_CPUID_LEAVES);
248 paLeaves = cpumCpuIdEnsureSpace(pVM, ppaLeaves, cLeaves);
249 if (!paLeaves)
250 return VERR_NO_MEMORY;
251
252 if (i < cLeaves)
253 memmove(&paLeaves[i + 1], &paLeaves[i], (cLeaves - i) * sizeof(paLeaves[0]));
254 *pcLeaves += 1;
255 paLeaves[i] = *pNewLeaf;
256
257#ifdef VBOX_STRICT
258 cpumCpuIdAssertOrder(*ppaLeaves, *pcLeaves);
259#endif
260 return VINF_SUCCESS;
261}
262
263
264#ifndef IN_VBOX_CPU_REPORT
265/**
266 * Removes a range of CPUID leaves.
267 *
268 * This will not reallocate the array.
269 *
270 * @param paLeaves The array of sorted CPUID leaves and sub-leaves.
271 * @param pcLeaves Where we keep the leaf count for @a paLeaves.
272 * @param uFirst The first leaf.
273 * @param uLast The last leaf.
274 */
275static void cpumR3CpuIdRemoveRange(PCPUMCPUIDLEAF paLeaves, uint32_t *pcLeaves, uint32_t uFirst, uint32_t uLast)
276{
277 uint32_t cLeaves = *pcLeaves;
278
279 Assert(uFirst <= uLast);
280
281 /*
282 * Find the first one.
283 */
284 uint32_t iFirst = 0;
285 while ( iFirst < cLeaves
286 && paLeaves[iFirst].uLeaf < uFirst)
287 iFirst++;
288
289 /*
290 * Find the end (last + 1).
291 */
292 uint32_t iEnd = iFirst;
293 while ( iEnd < cLeaves
294 && paLeaves[iEnd].uLeaf <= uLast)
295 iEnd++;
296
297 /*
298 * Adjust the array if anything needs removing.
299 */
300 if (iFirst < iEnd)
301 {
302 if (iEnd < cLeaves)
303 memmove(&paLeaves[iFirst], &paLeaves[iEnd], (cLeaves - iEnd) * sizeof(paLeaves[0]));
304 *pcLeaves = cLeaves -= (iEnd - iFirst);
305 }
306
307# ifdef VBOX_STRICT
308 cpumCpuIdAssertOrder(paLeaves, *pcLeaves);
309# endif
310}
311#endif /* IN_VBOX_CPU_REPORT */
312
313
314/**
315 * Gets a CPU ID leaf.
316 *
317 * @returns VBox status code.
318 * @param pVM The cross context VM structure.
319 * @param pLeaf Where to store the found leaf.
320 * @param uLeaf The leaf to locate.
321 * @param uSubLeaf The subleaf to locate. Pass 0 if no sub-leaves.
322 */
323VMMR3DECL(int) CPUMR3CpuIdGetLeaf(PVM pVM, PCPUMCPUIDLEAF pLeaf, uint32_t uLeaf, uint32_t uSubLeaf)
324{
325 PCPUMCPUIDLEAF pcLeaf = cpumCpuIdGetLeafInt(pVM->cpum.s.GuestInfo.paCpuIdLeavesR3, pVM->cpum.s.GuestInfo.cCpuIdLeaves,
326 uLeaf, uSubLeaf);
327 if (pcLeaf)
328 {
329 memcpy(pLeaf, pcLeaf, sizeof(*pLeaf));
330 return VINF_SUCCESS;
331 }
332
333 return VERR_NOT_FOUND;
334}
335
336
337/**
338 * Gets all the leaves.
339 *
340 * This only works after the CPUID leaves have been initialized. The interface
341 * is intended for NEM and configuring CPUID leaves for the native hypervisor.
342 *
343 * @returns Pointer to the array of leaves. NULL on failure.
344 * @param pVM The cross context VM structure.
345 * @param pcLeaves Where to return the number of leaves.
346 */
347VMMR3_INT_DECL(PCCPUMCPUIDLEAF) CPUMR3CpuIdGetPtr(PVM pVM, uint32_t *pcLeaves)
348{
349 *pcLeaves = pVM->cpum.s.GuestInfo.cCpuIdLeaves;
350 return pVM->cpum.s.GuestInfo.paCpuIdLeavesR3;
351}
352
353
354/**
355 * Inserts a CPU ID leaf, replacing any existing ones.
356 *
357 * @returns VBox status code.
358 * @param pVM The cross context VM structure.
359 * @param pNewLeaf Pointer to the leaf being inserted.
360 */
361VMMR3DECL(int) CPUMR3CpuIdInsert(PVM pVM, PCPUMCPUIDLEAF pNewLeaf)
362{
363 /*
364 * Validate parameters.
365 */
366 AssertReturn(pVM, VERR_INVALID_PARAMETER);
367 AssertReturn(pNewLeaf, VERR_INVALID_PARAMETER);
368
369 /*
370 * Disallow replacing CPU ID leaves that this API currently cannot manage.
371 * These leaves have dependencies on saved-states, see PATMCpuidReplacement().
372 * If you want to modify these leaves, use CPUMSetGuestCpuIdFeature().
373 */
374 if ( pNewLeaf->uLeaf == UINT32_C(0x00000000) /* Standard */
375 || pNewLeaf->uLeaf == UINT32_C(0x00000001)
376 || pNewLeaf->uLeaf == UINT32_C(0x80000000) /* Extended */
377 || pNewLeaf->uLeaf == UINT32_C(0x80000001)
378 || pNewLeaf->uLeaf == UINT32_C(0xc0000000) /* Centaur */
379 || pNewLeaf->uLeaf == UINT32_C(0xc0000001) )
380 {
381 return VERR_NOT_SUPPORTED;
382 }
383
384 return cpumR3CpuIdInsert(pVM, NULL /* ppaLeaves */, NULL /* pcLeaves */, pNewLeaf);
385}
386
387
388#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
389/**
390 * Determines the method the CPU uses to handle unknown CPUID leaves.
391 *
392 * @returns VBox status code.
393 * @param penmUnknownMethod Where to return the method.
394 * @param pDefUnknown Where to return default unknown values. This
395 * will be set, even if the resulting method
396 * doesn't actually needs it.
397 */
398VMMR3DECL(int) CPUMR3CpuIdDetectUnknownLeafMethod(PCPUMUNKNOWNCPUID penmUnknownMethod, PCPUMCPUID pDefUnknown)
399{
400 uint32_t uLastStd = ASMCpuId_EAX(0);
401 uint32_t uLastExt = ASMCpuId_EAX(0x80000000);
402 if (!RTX86IsValidExtRange(uLastExt))
403 uLastExt = 0x80000000;
404
405 uint32_t auChecks[] =
406 {
407 uLastStd + 1,
408 uLastStd + 5,
409 uLastStd + 8,
410 uLastStd + 32,
411 uLastStd + 251,
412 uLastExt + 1,
413 uLastExt + 8,
414 uLastExt + 15,
415 uLastExt + 63,
416 uLastExt + 255,
417 0x7fbbffcc,
418 0x833f7872,
419 0xefff2353,
420 0x35779456,
421 0x1ef6d33e,
422 };
423
424 static const uint32_t s_auValues[] =
425 {
426 0xa95d2156,
427 0x00000001,
428 0x00000002,
429 0x00000008,
430 0x00000000,
431 0x55773399,
432 0x93401769,
433 0x12039587,
434 };
435
436 /*
437 * Simple method, all zeros.
438 */
439 *penmUnknownMethod = CPUMUNKNOWNCPUID_DEFAULTS;
440 pDefUnknown->uEax = 0;
441 pDefUnknown->uEbx = 0;
442 pDefUnknown->uEcx = 0;
443 pDefUnknown->uEdx = 0;
444
445 /*
446 * Intel has been observed returning the last standard leaf.
447 */
448 uint32_t auLast[4];
449 ASMCpuIdExSlow(uLastStd, 0, 0, 0, &auLast[0], &auLast[1], &auLast[2], &auLast[3]);
450
451 uint32_t cChecks = RT_ELEMENTS(auChecks);
452 while (cChecks > 0)
453 {
454 uint32_t auCur[4];
455 ASMCpuIdExSlow(auChecks[cChecks - 1], 0, 0, 0, &auCur[0], &auCur[1], &auCur[2], &auCur[3]);
456 if (memcmp(auCur, auLast, sizeof(auCur)))
457 break;
458 cChecks--;
459 }
460 if (cChecks == 0)
461 {
462 /* Now, what happens when the input changes? Esp. ECX. */
463 uint32_t cTotal = 0;
464 uint32_t cSame = 0;
465 uint32_t cLastWithEcx = 0;
466 uint32_t cNeither = 0;
467 uint32_t cValues = RT_ELEMENTS(s_auValues);
468 while (cValues > 0)
469 {
470 uint32_t uValue = s_auValues[cValues - 1];
471 uint32_t auLastWithEcx[4];
472 ASMCpuIdExSlow(uLastStd, uValue, uValue, uValue,
473 &auLastWithEcx[0], &auLastWithEcx[1], &auLastWithEcx[2], &auLastWithEcx[3]);
474
475 cChecks = RT_ELEMENTS(auChecks);
476 while (cChecks > 0)
477 {
478 uint32_t auCur[4];
479 ASMCpuIdExSlow(auChecks[cChecks - 1], uValue, uValue, uValue, &auCur[0], &auCur[1], &auCur[2], &auCur[3]);
480 if (!memcmp(auCur, auLast, sizeof(auCur)))
481 {
482 cSame++;
483 if (!memcmp(auCur, auLastWithEcx, sizeof(auCur)))
484 cLastWithEcx++;
485 }
486 else if (!memcmp(auCur, auLastWithEcx, sizeof(auCur)))
487 cLastWithEcx++;
488 else
489 cNeither++;
490 cTotal++;
491 cChecks--;
492 }
493 cValues--;
494 }
495
496 Log(("CPUM: cNeither=%d cSame=%d cLastWithEcx=%d cTotal=%d\n", cNeither, cSame, cLastWithEcx, cTotal));
497 if (cSame == cTotal)
498 *penmUnknownMethod = CPUMUNKNOWNCPUID_LAST_STD_LEAF;
499 else if (cLastWithEcx == cTotal)
500 *penmUnknownMethod = CPUMUNKNOWNCPUID_LAST_STD_LEAF_WITH_ECX;
501 else
502 *penmUnknownMethod = CPUMUNKNOWNCPUID_LAST_STD_LEAF;
503 pDefUnknown->uEax = auLast[0];
504 pDefUnknown->uEbx = auLast[1];
505 pDefUnknown->uEcx = auLast[2];
506 pDefUnknown->uEdx = auLast[3];
507 return VINF_SUCCESS;
508 }
509
510 /*
511 * Unchanged register values?
512 */
513 cChecks = RT_ELEMENTS(auChecks);
514 while (cChecks > 0)
515 {
516 uint32_t const uLeaf = auChecks[cChecks - 1];
517 uint32_t cValues = RT_ELEMENTS(s_auValues);
518 while (cValues > 0)
519 {
520 uint32_t uValue = s_auValues[cValues - 1];
521 uint32_t auCur[4];
522 ASMCpuIdExSlow(uLeaf, uValue, uValue, uValue, &auCur[0], &auCur[1], &auCur[2], &auCur[3]);
523 if ( auCur[0] != uLeaf
524 || auCur[1] != uValue
525 || auCur[2] != uValue
526 || auCur[3] != uValue)
527 break;
528 cValues--;
529 }
530 if (cValues != 0)
531 break;
532 cChecks--;
533 }
534 if (cChecks == 0)
535 {
536 *penmUnknownMethod = CPUMUNKNOWNCPUID_PASSTHRU;
537 return VINF_SUCCESS;
538 }
539
540 /*
541 * Just go with the simple method.
542 */
543 return VINF_SUCCESS;
544}
545#endif /* RT_ARCH_X86 || RT_ARCH_AMD64 */
546
547
548/**
549 * Translates a unknow CPUID leaf method into the constant name (sans prefix).
550 *
551 * @returns Read only name string.
552 * @param enmUnknownMethod The method to translate.
553 */
554VMMR3DECL(const char *) CPUMR3CpuIdUnknownLeafMethodName(CPUMUNKNOWNCPUID enmUnknownMethod)
555{
556 switch (enmUnknownMethod)
557 {
558 case CPUMUNKNOWNCPUID_DEFAULTS: return "DEFAULTS";
559 case CPUMUNKNOWNCPUID_LAST_STD_LEAF: return "LAST_STD_LEAF";
560 case CPUMUNKNOWNCPUID_LAST_STD_LEAF_WITH_ECX: return "LAST_STD_LEAF_WITH_ECX";
561 case CPUMUNKNOWNCPUID_PASSTHRU: return "PASSTHRU";
562
563 case CPUMUNKNOWNCPUID_INVALID:
564 case CPUMUNKNOWNCPUID_END:
565 case CPUMUNKNOWNCPUID_32BIT_HACK:
566 break;
567 }
568 return "Invalid-unknown-CPUID-method";
569}
570
571
572/*
573 *
574 * Init related code.
575 * Init related code.
576 * Init related code.
577 *
578 *
579 */
580#ifndef IN_VBOX_CPU_REPORT
581
582
583/**
584 * Gets an exactly matching leaf + sub-leaf in the CPUID leaf array.
585 *
586 * This ignores the fSubLeafMask.
587 *
588 * @returns Pointer to the matching leaf, or NULL if not found.
589 * @param pCpum The CPUM instance data.
590 * @param uLeaf The leaf to locate.
591 * @param uSubLeaf The subleaf to locate.
592 */
593static PCPUMCPUIDLEAF cpumR3CpuIdGetExactLeaf(PCPUM pCpum, uint32_t uLeaf, uint32_t uSubLeaf)
594{
595 uint64_t uNeedle = RT_MAKE_U64(uSubLeaf, uLeaf);
596 PCPUMCPUIDLEAF paLeaves = pCpum->GuestInfo.paCpuIdLeavesR3;
597 uint32_t iEnd = pCpum->GuestInfo.cCpuIdLeaves;
598 if (iEnd)
599 {
600 uint32_t iBegin = 0;
601 for (;;)
602 {
603 uint32_t const i = (iEnd - iBegin) / 2 + iBegin;
604 uint64_t const uCur = RT_MAKE_U64(paLeaves[i].uSubLeaf, paLeaves[i].uLeaf);
605 if (uNeedle < uCur)
606 {
607 if (i > iBegin)
608 iEnd = i;
609 else
610 break;
611 }
612 else if (uNeedle > uCur)
613 {
614 if (i + 1 < iEnd)
615 iBegin = i + 1;
616 else
617 break;
618 }
619 else
620 return &paLeaves[i];
621 }
622 }
623 return NULL;
624}
625
626
627/**
628 * Loads MSR range overrides.
629 *
630 * This must be called before the MSR ranges are moved from the normal heap to
631 * the hyper heap!
632 *
633 * @returns VBox status code (VMSetError called).
634 * @param pVM The cross context VM structure.
635 * @param pMsrNode The CFGM node with the MSR overrides.
636 */
637static int cpumR3LoadMsrOverrides(PVM pVM, PCFGMNODE pMsrNode)
638{
639 for (PCFGMNODE pNode = CFGMR3GetFirstChild(pMsrNode); pNode; pNode = CFGMR3GetNextChild(pNode))
640 {
641 /*
642 * Assemble a valid MSR range.
643 */
644 CPUMMSRRANGE MsrRange;
645 MsrRange.offCpumCpu = 0;
646 MsrRange.fReserved = 0;
647
648 int rc = CFGMR3GetName(pNode, MsrRange.szName, sizeof(MsrRange.szName));
649 if (RT_FAILURE(rc))
650 return VMSetError(pVM, rc, RT_SRC_POS, "Invalid MSR entry (name is probably too long): %Rrc\n", rc);
651
652 rc = CFGMR3QueryU32(pNode, "First", &MsrRange.uFirst);
653 if (RT_FAILURE(rc))
654 return VMSetError(pVM, rc, RT_SRC_POS, "Invalid MSR entry '%s': Error querying mandatory 'First' value: %Rrc\n",
655 MsrRange.szName, rc);
656
657 rc = CFGMR3QueryU32Def(pNode, "Last", &MsrRange.uLast, MsrRange.uFirst);
658 if (RT_FAILURE(rc))
659 return VMSetError(pVM, rc, RT_SRC_POS, "Invalid MSR entry '%s': Error querying 'Last' value: %Rrc\n",
660 MsrRange.szName, rc);
661
662 char szType[32];
663 rc = CFGMR3QueryStringDef(pNode, "Type", szType, sizeof(szType), "FixedValue");
664 if (RT_FAILURE(rc))
665 return VMSetError(pVM, rc, RT_SRC_POS, "Invalid MSR entry '%s': Error querying 'Type' value: %Rrc\n",
666 MsrRange.szName, rc);
667 if (!RTStrICmp(szType, "FixedValue"))
668 {
669 MsrRange.enmRdFn = kCpumMsrRdFn_FixedValue;
670 MsrRange.enmWrFn = kCpumMsrWrFn_IgnoreWrite;
671
672 rc = CFGMR3QueryU64Def(pNode, "Value", &MsrRange.uValue, 0);
673 if (RT_FAILURE(rc))
674 return VMSetError(pVM, rc, RT_SRC_POS, "Invalid MSR entry '%s': Error querying 'Value' value: %Rrc\n",
675 MsrRange.szName, rc);
676
677 rc = CFGMR3QueryU64Def(pNode, "WrGpMask", &MsrRange.fWrGpMask, 0);
678 if (RT_FAILURE(rc))
679 return VMSetError(pVM, rc, RT_SRC_POS, "Invalid MSR entry '%s': Error querying 'WrGpMask' value: %Rrc\n",
680 MsrRange.szName, rc);
681
682 rc = CFGMR3QueryU64Def(pNode, "WrIgnMask", &MsrRange.fWrIgnMask, 0);
683 if (RT_FAILURE(rc))
684 return VMSetError(pVM, rc, RT_SRC_POS, "Invalid MSR entry '%s': Error querying 'WrIgnMask' value: %Rrc\n",
685 MsrRange.szName, rc);
686 }
687 else
688 return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS,
689 "Invalid MSR entry '%s': Unknown type '%s'\n", MsrRange.szName, szType);
690
691 /*
692 * Insert the range into the table (replaces/splits/shrinks existing
693 * MSR ranges).
694 */
695 rc = cpumR3MsrRangesInsert(NULL /* pVM */, &pVM->cpum.s.GuestInfo.paMsrRangesR3, &pVM->cpum.s.GuestInfo.cMsrRanges,
696 &MsrRange);
697 if (RT_FAILURE(rc))
698 return VMSetError(pVM, rc, RT_SRC_POS, "Error adding MSR entry '%s': %Rrc\n", MsrRange.szName, rc);
699 }
700
701 return VINF_SUCCESS;
702}
703
704
705/**
706 * Loads CPUID leaf overrides.
707 *
708 * This must be called before the CPUID leaves are moved from the normal
709 * heap to the hyper heap!
710 *
711 * @returns VBox status code (VMSetError called).
712 * @param pVM The cross context VM structure.
713 * @param pParentNode The CFGM node with the CPUID leaves.
714 * @param pszLabel How to label the overrides we're loading.
715 */
716static int cpumR3LoadCpuIdOverrides(PVM pVM, PCFGMNODE pParentNode, const char *pszLabel)
717{
718 for (PCFGMNODE pNode = CFGMR3GetFirstChild(pParentNode); pNode; pNode = CFGMR3GetNextChild(pNode))
719 {
720 /*
721 * Get the leaf and subleaf numbers.
722 */
723 char szName[128];
724 int rc = CFGMR3GetName(pNode, szName, sizeof(szName));
725 if (RT_FAILURE(rc))
726 return VMSetError(pVM, rc, RT_SRC_POS, "Invalid %s entry (name is probably too long): %Rrc\n", pszLabel, rc);
727
728 /* The leaf number is either specified directly or thru the node name. */
729 uint32_t uLeaf;
730 rc = CFGMR3QueryU32(pNode, "Leaf", &uLeaf);
731 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
732 {
733 rc = RTStrToUInt32Full(szName, 16, &uLeaf);
734 if (rc != VINF_SUCCESS)
735 return VMSetError(pVM, VERR_INVALID_NAME, RT_SRC_POS,
736 "Invalid %s entry: Invalid leaf number: '%s' \n", pszLabel, szName);
737 }
738 else if (RT_FAILURE(rc))
739 return VMSetError(pVM, rc, RT_SRC_POS, "Invalid %s entry '%s': Error querying 'Leaf' value: %Rrc\n",
740 pszLabel, szName, rc);
741
742 uint32_t uSubLeaf;
743 rc = CFGMR3QueryU32Def(pNode, "SubLeaf", &uSubLeaf, 0);
744 if (RT_FAILURE(rc))
745 return VMSetError(pVM, rc, RT_SRC_POS, "Invalid %s entry '%s': Error querying 'SubLeaf' value: %Rrc\n",
746 pszLabel, szName, rc);
747
748 uint32_t fSubLeafMask;
749 rc = CFGMR3QueryU32Def(pNode, "SubLeafMask", &fSubLeafMask, 0);
750 if (RT_FAILURE(rc))
751 return VMSetError(pVM, rc, RT_SRC_POS, "Invalid %s entry '%s': Error querying 'SubLeafMask' value: %Rrc\n",
752 pszLabel, szName, rc);
753
754 /*
755 * Look up the specified leaf, since the output register values
756 * defaults to any existing values. This allows overriding a single
757 * register, without needing to know the other values.
758 */
759 PCCPUMCPUIDLEAF pLeaf = cpumR3CpuIdGetExactLeaf(&pVM->cpum.s, uLeaf, uSubLeaf);
760 CPUMCPUIDLEAF Leaf;
761 if (pLeaf)
762 Leaf = *pLeaf;
763 else
764 RT_ZERO(Leaf);
765 Leaf.uLeaf = uLeaf;
766 Leaf.uSubLeaf = uSubLeaf;
767 Leaf.fSubLeafMask = fSubLeafMask;
768
769 rc = CFGMR3QueryU32Def(pNode, "eax", &Leaf.uEax, Leaf.uEax);
770 if (RT_FAILURE(rc))
771 return VMSetError(pVM, rc, RT_SRC_POS, "Invalid %s entry '%s': Error querying 'eax' value: %Rrc\n",
772 pszLabel, szName, rc);
773 rc = CFGMR3QueryU32Def(pNode, "ebx", &Leaf.uEbx, Leaf.uEbx);
774 if (RT_FAILURE(rc))
775 return VMSetError(pVM, rc, RT_SRC_POS, "Invalid %s entry '%s': Error querying 'ebx' value: %Rrc\n",
776 pszLabel, szName, rc);
777 rc = CFGMR3QueryU32Def(pNode, "ecx", &Leaf.uEcx, Leaf.uEcx);
778 if (RT_FAILURE(rc))
779 return VMSetError(pVM, rc, RT_SRC_POS, "Invalid %s entry '%s': Error querying 'ecx' value: %Rrc\n",
780 pszLabel, szName, rc);
781 rc = CFGMR3QueryU32Def(pNode, "edx", &Leaf.uEdx, Leaf.uEdx);
782 if (RT_FAILURE(rc))
783 return VMSetError(pVM, rc, RT_SRC_POS, "Invalid %s entry '%s': Error querying 'edx' value: %Rrc\n",
784 pszLabel, szName, rc);
785
786 /*
787 * Insert the leaf into the table (replaces existing ones).
788 */
789 rc = cpumR3CpuIdInsert(NULL /* pVM */, &pVM->cpum.s.GuestInfo.paCpuIdLeavesR3, &pVM->cpum.s.GuestInfo.cCpuIdLeaves,
790 &Leaf);
791 if (RT_FAILURE(rc))
792 return VMSetError(pVM, rc, RT_SRC_POS, "Error adding CPUID leaf entry '%s': %Rrc\n", szName, rc);
793 }
794
795 return VINF_SUCCESS;
796}
797
798
799
800/**
801 * Fetches overrides for a CPUID leaf.
802 *
803 * @returns VBox status code.
804 * @param pLeaf The leaf to load the overrides into.
805 * @param pCfgNode The CFGM node containing the overrides
806 * (/CPUM/HostCPUID/ or /CPUM/CPUID/).
807 * @param iLeaf The CPUID leaf number.
808 */
809static int cpumR3CpuIdFetchLeafOverride(PCPUMCPUID pLeaf, PCFGMNODE pCfgNode, uint32_t iLeaf)
810{
811 PCFGMNODE pLeafNode = CFGMR3GetChildF(pCfgNode, "%RX32", iLeaf);
812 if (pLeafNode)
813 {
814 uint32_t u32;
815 int rc = CFGMR3QueryU32(pLeafNode, "eax", &u32);
816 if (RT_SUCCESS(rc))
817 pLeaf->uEax = u32;
818 else
819 AssertReturn(rc == VERR_CFGM_VALUE_NOT_FOUND, rc);
820
821 rc = CFGMR3QueryU32(pLeafNode, "ebx", &u32);
822 if (RT_SUCCESS(rc))
823 pLeaf->uEbx = u32;
824 else
825 AssertReturn(rc == VERR_CFGM_VALUE_NOT_FOUND, rc);
826
827 rc = CFGMR3QueryU32(pLeafNode, "ecx", &u32);
828 if (RT_SUCCESS(rc))
829 pLeaf->uEcx = u32;
830 else
831 AssertReturn(rc == VERR_CFGM_VALUE_NOT_FOUND, rc);
832
833 rc = CFGMR3QueryU32(pLeafNode, "edx", &u32);
834 if (RT_SUCCESS(rc))
835 pLeaf->uEdx = u32;
836 else
837 AssertReturn(rc == VERR_CFGM_VALUE_NOT_FOUND, rc);
838
839 }
840 return VINF_SUCCESS;
841}
842
843
844/**
845 * Load the overrides for a set of CPUID leaves.
846 *
847 * @returns VBox status code.
848 * @param paLeaves The leaf array.
849 * @param cLeaves The number of leaves.
850 * @param uStart The start leaf number.
851 * @param pCfgNode The CFGM node containing the overrides
852 * (/CPUM/HostCPUID/ or /CPUM/CPUID/).
853 */
854static int cpumR3CpuIdInitLoadOverrideSet(uint32_t uStart, PCPUMCPUID paLeaves, uint32_t cLeaves, PCFGMNODE pCfgNode)
855{
856 for (uint32_t i = 0; i < cLeaves; i++)
857 {
858 int rc = cpumR3CpuIdFetchLeafOverride(&paLeaves[i], pCfgNode, uStart + i);
859 if (RT_FAILURE(rc))
860 return rc;
861 }
862
863 return VINF_SUCCESS;
864}
865
866
867/**
868 * Installs the CPUID leaves and explods the data into structures like
869 * GuestFeatures and CPUMCTX::aoffXState.
870 *
871 * @returns VBox status code.
872 * @param pVM The cross context VM structure.
873 * @param pCpum The CPUM part of @a VM.
874 * @param paLeaves The leaves. These will be copied (but not freed).
875 * @param cLeaves The number of leaves.
876 * @param pMsrs The MSRs.
877 */
878static int cpumR3CpuIdInstallAndExplodeLeaves(PVM pVM, PCPUM pCpum, PCPUMCPUIDLEAF paLeaves, uint32_t cLeaves, PCCPUMMSRS pMsrs)
879{
880# ifdef VBOX_STRICT
881 cpumCpuIdAssertOrder(paLeaves, cLeaves);
882# endif
883
884 /*
885 * Install the CPUID information.
886 */
887 AssertLogRelMsgReturn(cLeaves <= RT_ELEMENTS(pVM->cpum.s.GuestInfo.aCpuIdLeaves),
888 ("cLeaves=%u - max %u\n", cLeaves, RT_ELEMENTS(pVM->cpum.s.GuestInfo.aCpuIdLeaves)),
889 VERR_CPUM_IPE_1); /** @todo better status! */
890 if (paLeaves != pCpum->GuestInfo.aCpuIdLeaves)
891 memcpy(pCpum->GuestInfo.aCpuIdLeaves, paLeaves, cLeaves * sizeof(paLeaves[0]));
892 pCpum->GuestInfo.paCpuIdLeavesR3 = pCpum->GuestInfo.aCpuIdLeaves;
893 pCpum->GuestInfo.cCpuIdLeaves = cLeaves;
894
895 /*
896 * Update the default CPUID leaf if necessary.
897 */
898 switch (pCpum->GuestInfo.enmUnknownCpuIdMethod)
899 {
900 case CPUMUNKNOWNCPUID_LAST_STD_LEAF:
901 case CPUMUNKNOWNCPUID_LAST_STD_LEAF_WITH_ECX:
902 {
903 /* We don't use CPUID(0).eax here because of the NT hack that only
904 changes that value without actually removing any leaves. */
905 uint32_t i = 0;
906 if ( pCpum->GuestInfo.cCpuIdLeaves > 0
907 && pCpum->GuestInfo.paCpuIdLeavesR3[0].uLeaf <= UINT32_C(0xff))
908 {
909 while ( i + 1 < pCpum->GuestInfo.cCpuIdLeaves
910 && pCpum->GuestInfo.paCpuIdLeavesR3[i + 1].uLeaf <= UINT32_C(0xff))
911 i++;
912 pCpum->GuestInfo.DefCpuId.uEax = pCpum->GuestInfo.paCpuIdLeavesR3[i].uEax;
913 pCpum->GuestInfo.DefCpuId.uEbx = pCpum->GuestInfo.paCpuIdLeavesR3[i].uEbx;
914 pCpum->GuestInfo.DefCpuId.uEcx = pCpum->GuestInfo.paCpuIdLeavesR3[i].uEcx;
915 pCpum->GuestInfo.DefCpuId.uEdx = pCpum->GuestInfo.paCpuIdLeavesR3[i].uEdx;
916 }
917 break;
918 }
919 default:
920 break;
921 }
922
923 /*
924 * Explode the guest CPU features.
925 */
926 int rc = cpumCpuIdExplodeFeaturesX86(pCpum->GuestInfo.paCpuIdLeavesR3, pCpum->GuestInfo.cCpuIdLeaves, pMsrs,
927 &pCpum->GuestFeatures);
928 AssertLogRelRCReturn(rc, rc);
929
930 /*
931 * Adjust the scalable bus frequency according to the CPUID information
932 * we're now using.
933 */
934 if (CPUMMICROARCH_IS_INTEL_CORE7(pVM->cpum.s.GuestFeatures.enmMicroarch))
935 pCpum->GuestInfo.uScalableBusFreq = pCpum->GuestFeatures.enmMicroarch >= kCpumMicroarch_Intel_Core7_SandyBridge
936 ? UINT64_C(100000000) /* 100MHz */
937 : UINT64_C(133333333); /* 133MHz */
938
939 /*
940 * Populate the legacy arrays. Currently used for everything, later only
941 * for patch manager.
942 */
943 struct { PCPUMCPUID paCpuIds; uint32_t cCpuIds, uBase; } aOldRanges[] =
944 {
945 { pCpum->aGuestCpuIdPatmStd, RT_ELEMENTS(pCpum->aGuestCpuIdPatmStd), 0x00000000 },
946 { pCpum->aGuestCpuIdPatmExt, RT_ELEMENTS(pCpum->aGuestCpuIdPatmExt), 0x80000000 },
947 { pCpum->aGuestCpuIdPatmCentaur, RT_ELEMENTS(pCpum->aGuestCpuIdPatmCentaur), 0xc0000000 },
948 };
949 for (uint32_t i = 0; i < RT_ELEMENTS(aOldRanges); i++)
950 {
951 uint32_t cLeft = aOldRanges[i].cCpuIds;
952 uint32_t uLeaf = aOldRanges[i].uBase + cLeft;
953 PCPUMCPUID pLegacyLeaf = &aOldRanges[i].paCpuIds[cLeft];
954 while (cLeft-- > 0)
955 {
956 uLeaf--;
957 pLegacyLeaf--;
958
959 PCCPUMCPUIDLEAF pLeaf = cpumR3CpuIdGetExactLeaf(pCpum, uLeaf, 0 /* uSubLeaf */);
960 if (pLeaf)
961 {
962 pLegacyLeaf->uEax = pLeaf->uEax;
963 pLegacyLeaf->uEbx = pLeaf->uEbx;
964 pLegacyLeaf->uEcx = pLeaf->uEcx;
965 pLegacyLeaf->uEdx = pLeaf->uEdx;
966 }
967 else
968 *pLegacyLeaf = pCpum->GuestInfo.DefCpuId;
969 }
970 }
971
972 /*
973 * Configure XSAVE offsets according to the CPUID info and set the feature flags.
974 */
975 PVMCPU pVCpu0 = pVM->apCpusR3[0];
976 AssertCompile(sizeof(pVCpu0->cpum.s.Guest.abXState) == CPUM_MAX_XSAVE_AREA_SIZE);
977 memset(&pVCpu0->cpum.s.Guest.aoffXState[0], 0xff, sizeof(pVCpu0->cpum.s.Guest.aoffXState));
978 pVCpu0->cpum.s.Guest.aoffXState[XSAVE_C_X87_BIT] = 0;
979 pVCpu0->cpum.s.Guest.aoffXState[XSAVE_C_SSE_BIT] = 0;
980 for (uint32_t iComponent = XSAVE_C_SSE_BIT + 1; iComponent < 63; iComponent++)
981 if (pCpum->fXStateGuestMask & RT_BIT_64(iComponent))
982 {
983 PCPUMCPUIDLEAF pSubLeaf = cpumR3CpuIdGetExactLeaf(pCpum, 0xd, iComponent);
984 AssertLogRelMsgReturn(pSubLeaf, ("iComponent=%#x\n", iComponent), VERR_CPUM_IPE_1);
985 AssertLogRelMsgReturn(pSubLeaf->fSubLeafMask >= iComponent, ("iComponent=%#x\n", iComponent), VERR_CPUM_IPE_1);
986 AssertLogRelMsgReturn( pSubLeaf->uEax > 0
987 && pSubLeaf->uEbx >= CPUM_MIN_XSAVE_AREA_SIZE
988 && pSubLeaf->uEax <= pCpum->GuestFeatures.cbMaxExtendedState
989 && pSubLeaf->uEbx <= pCpum->GuestFeatures.cbMaxExtendedState
990 && pSubLeaf->uEbx + pSubLeaf->uEax <= pCpum->GuestFeatures.cbMaxExtendedState,
991 ("iComponent=%#x eax=%#x ebx=%#x cbMax=%#x\n", iComponent, pSubLeaf->uEax, pSubLeaf->uEbx,
992 pCpum->GuestFeatures.cbMaxExtendedState),
993 VERR_CPUM_IPE_1);
994 pVCpu0->cpum.s.Guest.aoffXState[iComponent] = pSubLeaf->uEbx;
995 }
996
997 /* Copy the CPU #0 data to the other CPUs. */
998 for (VMCPUID idCpu = 1; idCpu < pVM->cCpus; idCpu++)
999 {
1000 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
1001 memcpy(&pVCpu->cpum.s.Guest.aoffXState[0], &pVCpu0->cpum.s.Guest.aoffXState[0], sizeof(pVCpu0->cpum.s.Guest.aoffXState));
1002 }
1003
1004 return VINF_SUCCESS;
1005}
1006
1007
1008/** @name Instruction Set Extension Options
1009 * @{ */
1010/** Configuration option type (extended boolean, really). */
1011typedef uint8_t CPUMISAEXTCFG;
1012/** Always disable the extension. */
1013#define CPUMISAEXTCFG_DISABLED false
1014/** Enable the extension if it's supported by the host CPU. */
1015#define CPUMISAEXTCFG_ENABLED_SUPPORTED true
1016/** Enable the extension if it's supported by the host CPU or when on ARM64. */
1017#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
1018# define CPUMISAEXTCFG_ENABLED_SUPPORTED_OR_NOT_AMD64 CPUMISAEXTCFG_ENABLED_SUPPORTED
1019#else
1020# define CPUMISAEXTCFG_ENABLED_SUPPORTED_OR_NOT_AMD64 CPUMISAEXTCFG_ENABLED_ALWAYS
1021#endif
1022/** Enable the extension if it's supported by the host CPU, but don't let
1023 * the portable CPUID feature disable it. */
1024#define CPUMISAEXTCFG_ENABLED_PORTABLE UINT8_C(127)
1025/** Always enable the extension. */
1026#define CPUMISAEXTCFG_ENABLED_ALWAYS UINT8_C(255)
1027/** @} */
1028
1029/**
1030 * CPUID Configuration (from CFGM).
1031 *
1032 * @remarks The members aren't document since we would only be duplicating the
1033 * \@cfgm entries in cpumR3CpuIdReadConfig.
1034 */
1035typedef struct CPUMCPUIDCONFIG
1036{
1037 bool fNt4LeafLimit;
1038 bool fInvariantTsc;
1039 bool fInvariantApic;
1040 bool fForceVme;
1041 bool fNestedHWVirt;
1042
1043 CPUMISAEXTCFG enmCmpXchg16b;
1044 CPUMISAEXTCFG enmMonitor;
1045 CPUMISAEXTCFG enmMWaitExtensions;
1046 CPUMISAEXTCFG enmSse41;
1047 CPUMISAEXTCFG enmSse42;
1048 CPUMISAEXTCFG enmAvx;
1049 CPUMISAEXTCFG enmAvx2;
1050 CPUMISAEXTCFG enmXSave;
1051 CPUMISAEXTCFG enmAesNi;
1052 CPUMISAEXTCFG enmPClMul;
1053 CPUMISAEXTCFG enmPopCnt;
1054 CPUMISAEXTCFG enmMovBe;
1055 CPUMISAEXTCFG enmRdRand;
1056 CPUMISAEXTCFG enmRdSeed;
1057 CPUMISAEXTCFG enmSha;
1058 CPUMISAEXTCFG enmAdx;
1059 CPUMISAEXTCFG enmCLFlushOpt;
1060 CPUMISAEXTCFG enmFsGsBase;
1061 CPUMISAEXTCFG enmPcid;
1062 CPUMISAEXTCFG enmInvpcid;
1063 CPUMISAEXTCFG enmFlushCmdMsr;
1064 CPUMISAEXTCFG enmMdsClear;
1065 CPUMISAEXTCFG enmArchCapMsr;
1066 CPUMISAEXTCFG enmFma;
1067 CPUMISAEXTCFG enmF16c;
1068
1069 CPUMISAEXTCFG enmAbm;
1070 CPUMISAEXTCFG enmSse4A;
1071 CPUMISAEXTCFG enmMisAlnSse;
1072 CPUMISAEXTCFG enm3dNowPrf;
1073 CPUMISAEXTCFG enmAmdExtMmx;
1074
1075 uint32_t uMaxStdLeaf;
1076 uint32_t uMaxExtLeaf;
1077 uint32_t uMaxCentaurLeaf;
1078 uint32_t uMaxIntelFamilyModelStep;
1079 char szCpuName[128];
1080} CPUMCPUIDCONFIG;
1081/** Pointer to CPUID config (from CFGM). */
1082typedef CPUMCPUIDCONFIG *PCPUMCPUIDCONFIG;
1083
1084
1085/**
1086 * Mini CPU selection support for making Mac OS X happy.
1087 *
1088 * Executes the /CPUM/MaxIntelFamilyModelStep config.
1089 *
1090 * @param pCpum The CPUM instance data.
1091 * @param pConfig The CPUID configuration we've read from CFGM.
1092 */
1093static void cpumR3CpuIdLimitIntelFamModStep(PCPUM pCpum, PCPUMCPUIDCONFIG pConfig)
1094{
1095 if (pCpum->GuestFeatures.enmCpuVendor == CPUMCPUVENDOR_INTEL)
1096 {
1097 PCPUMCPUIDLEAF pStdFeatureLeaf = cpumR3CpuIdGetExactLeaf(pCpum, 1, 0);
1098 uint32_t uCurIntelFamilyModelStep = RT_MAKE_U32_FROM_U8(RTX86GetCpuStepping(pStdFeatureLeaf->uEax),
1099 RTX86GetCpuModelIntel(pStdFeatureLeaf->uEax),
1100 RTX86GetCpuFamily(pStdFeatureLeaf->uEax),
1101 0);
1102 uint32_t uMaxIntelFamilyModelStep = pConfig->uMaxIntelFamilyModelStep;
1103 if (pConfig->uMaxIntelFamilyModelStep < uCurIntelFamilyModelStep)
1104 {
1105 uint32_t uNew = pStdFeatureLeaf->uEax & UINT32_C(0xf0003000);
1106 uNew |= RT_BYTE1(uMaxIntelFamilyModelStep) & 0xf; /* stepping */
1107 uNew |= (RT_BYTE2(uMaxIntelFamilyModelStep) & 0xf) << 4; /* 4 low model bits */
1108 uNew |= (RT_BYTE2(uMaxIntelFamilyModelStep) >> 4) << 16; /* 4 high model bits */
1109 uNew |= (RT_BYTE3(uMaxIntelFamilyModelStep) & 0xf) << 8; /* 4 low family bits */
1110 if (RT_BYTE3(uMaxIntelFamilyModelStep) > 0xf) /* 8 high family bits, using intel's suggested calculation. */
1111 uNew |= ( (RT_BYTE3(uMaxIntelFamilyModelStep) - (RT_BYTE3(uMaxIntelFamilyModelStep) & 0xf)) & 0xff ) << 20;
1112 LogRel(("CPU: CPUID(0).EAX %#x -> %#x (uMaxIntelFamilyModelStep=%#x, uCurIntelFamilyModelStep=%#x\n",
1113 pStdFeatureLeaf->uEax, uNew, uMaxIntelFamilyModelStep, uCurIntelFamilyModelStep));
1114 pStdFeatureLeaf->uEax = uNew;
1115 }
1116 }
1117}
1118
1119
1120
1121/**
1122 * Limit it the number of entries, zapping the remainder.
1123 *
1124 * The limits are masking off stuff about power saving and similar, this
1125 * is perhaps a bit crudely done as there is probably some relatively harmless
1126 * info too in these leaves (like words about having a constant TSC).
1127 *
1128 * @param pCpum The CPUM instance data.
1129 * @param pConfig The CPUID configuration we've read from CFGM.
1130 */
1131static void cpumR3CpuIdLimitLeaves(PCPUM pCpum, PCPUMCPUIDCONFIG pConfig)
1132{
1133 /*
1134 * Standard leaves.
1135 */
1136 uint32_t uSubLeaf = 0;
1137 PCPUMCPUIDLEAF pCurLeaf = cpumR3CpuIdGetExactLeaf(pCpum, 0, uSubLeaf);
1138 if (pCurLeaf)
1139 {
1140 uint32_t uLimit = pCurLeaf->uEax;
1141 if (uLimit <= UINT32_C(0x000fffff))
1142 {
1143 if (uLimit > pConfig->uMaxStdLeaf)
1144 {
1145 pCurLeaf->uEax = uLimit = pConfig->uMaxStdLeaf;
1146 cpumR3CpuIdRemoveRange(pCpum->GuestInfo.paCpuIdLeavesR3, &pCpum->GuestInfo.cCpuIdLeaves,
1147 uLimit + 1, UINT32_C(0x000fffff));
1148 }
1149
1150 /* NT4 hack, no zapping of extra leaves here. */
1151 if (pConfig->fNt4LeafLimit && uLimit > 3)
1152 pCurLeaf->uEax = uLimit = 3;
1153
1154 while ((pCurLeaf = cpumR3CpuIdGetExactLeaf(pCpum, UINT32_C(0x00000000), ++uSubLeaf)) != NULL)
1155 pCurLeaf->uEax = uLimit;
1156 }
1157 else
1158 {
1159 LogRel(("CPUID: Invalid standard range: %#x\n", uLimit));
1160 cpumR3CpuIdRemoveRange(pCpum->GuestInfo.paCpuIdLeavesR3, &pCpum->GuestInfo.cCpuIdLeaves,
1161 UINT32_C(0x00000000), UINT32_C(0x0fffffff));
1162 }
1163 }
1164
1165 /*
1166 * Extended leaves.
1167 */
1168 uSubLeaf = 0;
1169 pCurLeaf = cpumR3CpuIdGetExactLeaf(pCpum, UINT32_C(0x80000000), uSubLeaf);
1170 if (pCurLeaf)
1171 {
1172 uint32_t uLimit = pCurLeaf->uEax;
1173 if ( uLimit >= UINT32_C(0x80000000)
1174 && uLimit <= UINT32_C(0x800fffff))
1175 {
1176 if (uLimit > pConfig->uMaxExtLeaf)
1177 {
1178 pCurLeaf->uEax = uLimit = pConfig->uMaxExtLeaf;
1179 cpumR3CpuIdRemoveRange(pCpum->GuestInfo.paCpuIdLeavesR3, &pCpum->GuestInfo.cCpuIdLeaves,
1180 uLimit + 1, UINT32_C(0x800fffff));
1181 while ((pCurLeaf = cpumR3CpuIdGetExactLeaf(pCpum, UINT32_C(0x80000000), ++uSubLeaf)) != NULL)
1182 pCurLeaf->uEax = uLimit;
1183 }
1184 }
1185 else
1186 {
1187 LogRel(("CPUID: Invalid extended range: %#x\n", uLimit));
1188 cpumR3CpuIdRemoveRange(pCpum->GuestInfo.paCpuIdLeavesR3, &pCpum->GuestInfo.cCpuIdLeaves,
1189 UINT32_C(0x80000000), UINT32_C(0x8ffffffd));
1190 }
1191 }
1192
1193 /*
1194 * Centaur leaves (VIA).
1195 */
1196 uSubLeaf = 0;
1197 pCurLeaf = cpumR3CpuIdGetExactLeaf(pCpum, UINT32_C(0xc0000000), uSubLeaf);
1198 if (pCurLeaf)
1199 {
1200 uint32_t uLimit = pCurLeaf->uEax;
1201 if ( uLimit >= UINT32_C(0xc0000000)
1202 && uLimit <= UINT32_C(0xc00fffff))
1203 {
1204 if (uLimit > pConfig->uMaxCentaurLeaf)
1205 {
1206 pCurLeaf->uEax = uLimit = pConfig->uMaxCentaurLeaf;
1207 cpumR3CpuIdRemoveRange(pCpum->GuestInfo.paCpuIdLeavesR3, &pCpum->GuestInfo.cCpuIdLeaves,
1208 uLimit + 1, UINT32_C(0xcfffffff));
1209 while ((pCurLeaf = cpumR3CpuIdGetExactLeaf(pCpum, UINT32_C(0xc0000000), ++uSubLeaf)) != NULL)
1210 pCurLeaf->uEax = uLimit;
1211 }
1212 }
1213 else
1214 {
1215 LogRel(("CPUID: Invalid centaur range: %#x\n", uLimit));
1216 cpumR3CpuIdRemoveRange(pCpum->GuestInfo.paCpuIdLeavesR3, &pCpum->GuestInfo.cCpuIdLeaves,
1217 UINT32_C(0xc0000000), UINT32_C(0xcfffffff));
1218 }
1219 }
1220}
1221
1222
1223/**
1224 * Clears a CPUID leaf and all sub-leaves (to zero).
1225 *
1226 * @param pCpum The CPUM instance data.
1227 * @param uLeaf The leaf to clear.
1228 */
1229static void cpumR3CpuIdZeroLeaf(PCPUM pCpum, uint32_t uLeaf)
1230{
1231 uint32_t uSubLeaf = 0;
1232 PCPUMCPUIDLEAF pCurLeaf;
1233 while ((pCurLeaf = cpumR3CpuIdGetExactLeaf(pCpum, uLeaf, uSubLeaf)) != NULL)
1234 {
1235 pCurLeaf->uEax = 0;
1236 pCurLeaf->uEbx = 0;
1237 pCurLeaf->uEcx = 0;
1238 pCurLeaf->uEdx = 0;
1239 uSubLeaf++;
1240 }
1241}
1242
1243
1244/**
1245 * Used by cpumR3CpuIdSanitize to ensure that we don't have any sub-leaves for
1246 * the given leaf.
1247 *
1248 * @returns pLeaf.
1249 * @param pCpum The CPUM instance data.
1250 * @param pLeaf The leaf to ensure is alone with it's EAX input value.
1251 */
1252static PCPUMCPUIDLEAF cpumR3CpuIdMakeSingleLeaf(PCPUM pCpum, PCPUMCPUIDLEAF pLeaf)
1253{
1254 Assert((uintptr_t)(pLeaf - pCpum->GuestInfo.paCpuIdLeavesR3) < pCpum->GuestInfo.cCpuIdLeaves);
1255 if (pLeaf->fSubLeafMask != 0)
1256 {
1257 /*
1258 * Figure out how many sub-leaves in need of removal (we'll keep the first).
1259 * Log everything while we're at it.
1260 */
1261 LogRel(("CPUM:\n"
1262 "CPUM: Unexpected CPUID sub-leaves for leaf %#x; fSubLeafMask=%#x\n", pLeaf->uLeaf, pLeaf->fSubLeafMask));
1263 PCPUMCPUIDLEAF pLast = &pCpum->GuestInfo.paCpuIdLeavesR3[pCpum->GuestInfo.cCpuIdLeaves - 1];
1264 PCPUMCPUIDLEAF pSubLeaf = pLeaf;
1265 for (;;)
1266 {
1267 LogRel(("CPUM: %08x/%08x: %08x %08x %08x %08x; flags=%#x mask=%#x\n",
1268 pSubLeaf->uLeaf, pSubLeaf->uSubLeaf,
1269 pSubLeaf->uEax, pSubLeaf->uEbx, pSubLeaf->uEcx, pSubLeaf->uEdx,
1270 pSubLeaf->fFlags, pSubLeaf->fSubLeafMask));
1271 if (pSubLeaf == pLast || pSubLeaf[1].uLeaf != pLeaf->uLeaf)
1272 break;
1273 pSubLeaf++;
1274 }
1275 LogRel(("CPUM:\n"));
1276
1277 /*
1278 * Remove the offending sub-leaves.
1279 */
1280 if (pSubLeaf != pLeaf)
1281 {
1282 if (pSubLeaf != pLast)
1283 memmove(pLeaf + 1, pSubLeaf + 1, (uintptr_t)pLast - (uintptr_t)pSubLeaf);
1284 pCpum->GuestInfo.cCpuIdLeaves -= (uint32_t)(pSubLeaf - pLeaf);
1285 }
1286
1287 /*
1288 * Convert the first sub-leaf into a single leaf.
1289 */
1290 pLeaf->uSubLeaf = 0;
1291 pLeaf->fSubLeafMask = 0;
1292 }
1293 return pLeaf;
1294}
1295
1296
1297/**
1298 * Sanitizes and adjust the CPUID leaves.
1299 *
1300 * Drop features that aren't virtualized (or virtualizable). Adjust information
1301 * and capabilities to fit the virtualized hardware. Remove information the
1302 * guest shouldn't have (because it's wrong in the virtual world or because it
1303 * gives away host details) or that we don't have documentation for and no idea
1304 * what means.
1305 *
1306 * @returns VBox status code.
1307 * @param pVM The cross context VM structure (for cCpus).
1308 * @param pCpum The CPUM instance data.
1309 * @param pConfig The CPUID configuration we've read from CFGM.
1310 */
1311static int cpumR3CpuIdSanitize(PVM pVM, PCPUM pCpum, PCPUMCPUIDCONFIG pConfig)
1312{
1313#define PORTABLE_CLEAR_BITS_WHEN(Lvl, a_pLeafReg, FeatNm, fMask, uValue) \
1314 if ( pCpum->u8PortableCpuIdLevel >= (Lvl) && ((a_pLeafReg) & (fMask)) == (uValue) ) \
1315 { \
1316 LogRel(("PortableCpuId: " #a_pLeafReg "[" #FeatNm "]: %#x -> 0\n", (a_pLeafReg) & (fMask))); \
1317 (a_pLeafReg) &= ~(uint32_t)(fMask); \
1318 }
1319#define PORTABLE_DISABLE_FEATURE_BIT(Lvl, a_pLeafReg, FeatNm, fBitMask) \
1320 if ( pCpum->u8PortableCpuIdLevel >= (Lvl) && ((a_pLeafReg) & (fBitMask)) ) \
1321 { \
1322 LogRel(("PortableCpuId: " #a_pLeafReg "[" #FeatNm "]: 1 -> 0\n")); \
1323 (a_pLeafReg) &= ~(uint32_t)(fBitMask); \
1324 }
1325#define PORTABLE_DISABLE_FEATURE_BIT_CFG(Lvl, a_pLeafReg, FeatNm, fBitMask, enmConfig) \
1326 if ( pCpum->u8PortableCpuIdLevel >= (Lvl) \
1327 && ((a_pLeafReg) & (fBitMask)) \
1328 && (enmConfig) != CPUMISAEXTCFG_ENABLED_PORTABLE ) \
1329 { \
1330 LogRel(("PortableCpuId: " #a_pLeafReg "[" #FeatNm "]: 1 -> 0\n")); \
1331 (a_pLeafReg) &= ~(uint32_t)(fBitMask); \
1332 }
1333 Assert(pCpum->GuestFeatures.enmCpuVendor != CPUMCPUVENDOR_INVALID);
1334
1335 /* The CPUID entries we start with here isn't necessarily the ones of the host, so we
1336 must consult HostFeatures when processing CPUMISAEXTCFG variables. */
1337#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
1338 PCCPUMFEATURES const pHstFeat = &pCpum->HostFeatures.s;
1339#else
1340 PCCPUMFEATURES const pHstFeat = &pCpum->GuestFeatures;
1341#endif
1342#define PASSTHRU_FEATURE(enmConfig, fHostFeature, fConst) \
1343 ((enmConfig) && ((enmConfig) == CPUMISAEXTCFG_ENABLED_ALWAYS || (fHostFeature)) ? (fConst) : 0)
1344#define PASSTHRU_FEATURE_EX(enmConfig, fHostFeature, fAndExpr, fConst) \
1345 ((enmConfig) && ((enmConfig) == CPUMISAEXTCFG_ENABLED_ALWAYS || (fHostFeature)) && (fAndExpr) ? (fConst) : 0)
1346#define PASSTHRU_FEATURE_NOT_IEM(enmConfig, fHostFeature, fConst) \
1347 PASSTHRU_FEATURE_EX(enmConfig, fHostFeature, !VM_IS_EXEC_ENGINE_IEM(pVM), fConst)
1348#define PASSTHRU_FEATURE_TODO(enmConfig, fConst) ((enmConfig) ? (fConst) : 0)
1349
1350 /* Cpuid 1:
1351 * EAX: CPU model, family and stepping.
1352 *
1353 * ECX + EDX: Supported features. Only report features we can support.
1354 * Note! When enabling new features the Synthetic CPU and Portable CPUID
1355 * options may require adjusting (i.e. stripping what was enabled).
1356 *
1357 * EBX: Branding, CLFLUSH line size, logical processors per package and
1358 * initial APIC ID.
1359 */
1360 PCPUMCPUIDLEAF pStdFeatureLeaf = cpumR3CpuIdGetExactLeaf(pCpum, 1, 0); /* Note! Must refetch when used later. */
1361 AssertLogRelReturn(pStdFeatureLeaf, VERR_CPUM_IPE_2);
1362 pStdFeatureLeaf = cpumR3CpuIdMakeSingleLeaf(pCpum, pStdFeatureLeaf);
1363
1364 pStdFeatureLeaf->uEdx &= X86_CPUID_FEATURE_EDX_FPU
1365 | X86_CPUID_FEATURE_EDX_VME
1366 | X86_CPUID_FEATURE_EDX_DE
1367 | X86_CPUID_FEATURE_EDX_PSE
1368 | X86_CPUID_FEATURE_EDX_TSC
1369 | X86_CPUID_FEATURE_EDX_MSR
1370 //| X86_CPUID_FEATURE_EDX_PAE - set later if configured.
1371 | X86_CPUID_FEATURE_EDX_MCE
1372 | X86_CPUID_FEATURE_EDX_CX8
1373 //| X86_CPUID_FEATURE_EDX_APIC - set by the APIC device if present.
1374 //| RT_BIT_32(10) - not defined
1375 | X86_CPUID_FEATURE_EDX_SEP
1376 | X86_CPUID_FEATURE_EDX_MTRR
1377 | X86_CPUID_FEATURE_EDX_PGE
1378 | X86_CPUID_FEATURE_EDX_MCA
1379 | X86_CPUID_FEATURE_EDX_CMOV
1380 | X86_CPUID_FEATURE_EDX_PAT /* 16 */
1381 | X86_CPUID_FEATURE_EDX_PSE36
1382 //| X86_CPUID_FEATURE_EDX_PSN - no serial number.
1383 | X86_CPUID_FEATURE_EDX_CLFSH
1384 //| RT_BIT_32(20) - not defined
1385 //| X86_CPUID_FEATURE_EDX_DS - no debug store.
1386 //| X86_CPUID_FEATURE_EDX_ACPI - not supported (not DevAcpi, right?).
1387 | X86_CPUID_FEATURE_EDX_MMX
1388 | X86_CPUID_FEATURE_EDX_FXSR
1389 | X86_CPUID_FEATURE_EDX_SSE
1390 | X86_CPUID_FEATURE_EDX_SSE2
1391 //| X86_CPUID_FEATURE_EDX_SS - no self snoop.
1392 | X86_CPUID_FEATURE_EDX_HTT
1393 //| X86_CPUID_FEATURE_EDX_TM - no thermal monitor.
1394 //| RT_BIT_32(30) - not defined
1395 //| X86_CPUID_FEATURE_EDX_PBE - no pending break enabled.
1396 ;
1397 pStdFeatureLeaf->uEcx &= X86_CPUID_FEATURE_ECX_SSE3
1398 | PASSTHRU_FEATURE_TODO(pConfig->enmPClMul, X86_CPUID_FEATURE_ECX_PCLMUL)
1399 //| X86_CPUID_FEATURE_ECX_DTES64 - not implemented yet.
1400 /* Can't properly emulate monitor & mwait with guest SMP; force the guest to use hlt for idling VCPUs. */
1401 | PASSTHRU_FEATURE_EX(pConfig->enmMonitor, pHstFeat->fMonitorMWait, pVM->cCpus == 1, X86_CPUID_FEATURE_ECX_MONITOR)
1402 //| X86_CPUID_FEATURE_ECX_CPLDS - no CPL qualified debug store.
1403 | (pConfig->fNestedHWVirt ? X86_CPUID_FEATURE_ECX_VMX : 0)
1404 //| X86_CPUID_FEATURE_ECX_SMX - not virtualized yet.
1405 //| X86_CPUID_FEATURE_ECX_EST - no extended speed step.
1406 //| X86_CPUID_FEATURE_ECX_TM2 - no thermal monitor 2.
1407 | X86_CPUID_FEATURE_ECX_SSSE3
1408 //| X86_CPUID_FEATURE_ECX_CNTXID - no L1 context id (MSR++).
1409 | PASSTHRU_FEATURE(pConfig->enmFma, pHstFeat->fFma, X86_CPUID_FEATURE_ECX_FMA)
1410 | PASSTHRU_FEATURE(pConfig->enmCmpXchg16b, pHstFeat->fCmpXchg16b, X86_CPUID_FEATURE_ECX_CX16)
1411 /* ECX Bit 14 - xTPR Update Control. Processor supports changing IA32_MISC_ENABLES[bit 23]. */
1412 //| X86_CPUID_FEATURE_ECX_TPRUPDATE
1413 //| X86_CPUID_FEATURE_ECX_PDCM - not implemented yet.
1414 | PASSTHRU_FEATURE_NOT_IEM(pConfig->enmPcid, pHstFeat->fPcid, X86_CPUID_FEATURE_ECX_PCID)
1415 //| X86_CPUID_FEATURE_ECX_DCA - not implemented yet.
1416 | PASSTHRU_FEATURE(pConfig->enmSse41, pHstFeat->fSse41, X86_CPUID_FEATURE_ECX_SSE4_1)
1417 | PASSTHRU_FEATURE(pConfig->enmSse42, pHstFeat->fSse42, X86_CPUID_FEATURE_ECX_SSE4_2)
1418 //| X86_CPUID_FEATURE_ECX_X2APIC - turned on later by the device if enabled.
1419 | PASSTHRU_FEATURE(pConfig->enmMovBe, pHstFeat->fMovBe, X86_CPUID_FEATURE_ECX_MOVBE)
1420 | PASSTHRU_FEATURE(pConfig->enmPopCnt, pHstFeat->fPopCnt, X86_CPUID_FEATURE_ECX_POPCNT)
1421 //| X86_CPUID_FEATURE_ECX_TSCDEADL - not implemented yet.
1422 | PASSTHRU_FEATURE_TODO(pConfig->enmAesNi, X86_CPUID_FEATURE_ECX_AES)
1423 | PASSTHRU_FEATURE(pConfig->enmXSave, pHstFeat->fXSaveRstor, X86_CPUID_FEATURE_ECX_XSAVE)
1424 //| X86_CPUID_FEATURE_ECX_OSXSAVE - mirrors CR4.OSXSAVE state, set dynamically.
1425 | PASSTHRU_FEATURE(pConfig->enmAvx, pHstFeat->fAvx, X86_CPUID_FEATURE_ECX_AVX)
1426 | PASSTHRU_FEATURE(pConfig->enmF16c, pHstFeat->fF16c, X86_CPUID_FEATURE_ECX_F16C)
1427 | PASSTHRU_FEATURE_TODO(pConfig->enmRdRand, X86_CPUID_FEATURE_ECX_RDRAND)
1428 //| X86_CPUID_FEATURE_ECX_HVP - Set explicitly later.
1429 ;
1430
1431 /* Mask out PCID unless FSGSBASE is exposed due to a bug in Windows 10 SMP guests, see @bugref{9089#c15}. */
1432 if ( !pVM->cpum.s.GuestFeatures.fFsGsBase
1433 && (pStdFeatureLeaf->uEcx & X86_CPUID_FEATURE_ECX_PCID))
1434 {
1435 pStdFeatureLeaf->uEcx &= ~X86_CPUID_FEATURE_ECX_PCID;
1436 LogRel(("CPUM: Disabled PCID without FSGSBASE to workaround buggy guests\n"));
1437 }
1438
1439 if (pCpum->u8PortableCpuIdLevel > 0)
1440 {
1441 PORTABLE_CLEAR_BITS_WHEN(1, pStdFeatureLeaf->uEax, ProcessorType, (UINT32_C(3) << 12), (UINT32_C(2) << 12));
1442 PORTABLE_DISABLE_FEATURE_BIT( 1, pStdFeatureLeaf->uEcx, SSSE3, X86_CPUID_FEATURE_ECX_SSSE3);
1443 PORTABLE_DISABLE_FEATURE_BIT_CFG(1, pStdFeatureLeaf->uEcx, PCID, X86_CPUID_FEATURE_ECX_PCID, pConfig->enmPcid);
1444 PORTABLE_DISABLE_FEATURE_BIT_CFG(1, pStdFeatureLeaf->uEcx, SSE4_1, X86_CPUID_FEATURE_ECX_SSE4_1, pConfig->enmSse41);
1445 PORTABLE_DISABLE_FEATURE_BIT_CFG(1, pStdFeatureLeaf->uEcx, SSE4_2, X86_CPUID_FEATURE_ECX_SSE4_2, pConfig->enmSse42);
1446 PORTABLE_DISABLE_FEATURE_BIT_CFG(1, pStdFeatureLeaf->uEcx, MOVBE, X86_CPUID_FEATURE_ECX_MOVBE, pConfig->enmMovBe);
1447 PORTABLE_DISABLE_FEATURE_BIT( 1, pStdFeatureLeaf->uEcx, AES, X86_CPUID_FEATURE_ECX_AES);
1448 PORTABLE_DISABLE_FEATURE_BIT( 1, pStdFeatureLeaf->uEcx, VMX, X86_CPUID_FEATURE_ECX_VMX);
1449 PORTABLE_DISABLE_FEATURE_BIT_CFG(1, pStdFeatureLeaf->uEcx, PCLMUL, X86_CPUID_FEATURE_ECX_PCLMUL, pConfig->enmPClMul);
1450 PORTABLE_DISABLE_FEATURE_BIT_CFG(1, pStdFeatureLeaf->uEcx, POPCNT, X86_CPUID_FEATURE_ECX_POPCNT, pConfig->enmPopCnt);
1451 PORTABLE_DISABLE_FEATURE_BIT( 1, pStdFeatureLeaf->uEcx, F16C, X86_CPUID_FEATURE_ECX_F16C);
1452 PORTABLE_DISABLE_FEATURE_BIT_CFG(1, pStdFeatureLeaf->uEcx, XSAVE, X86_CPUID_FEATURE_ECX_XSAVE, pConfig->enmXSave);
1453 PORTABLE_DISABLE_FEATURE_BIT_CFG(1, pStdFeatureLeaf->uEcx, AVX, X86_CPUID_FEATURE_ECX_AVX, pConfig->enmAvx);
1454 PORTABLE_DISABLE_FEATURE_BIT_CFG(1, pStdFeatureLeaf->uEcx, RDRAND, X86_CPUID_FEATURE_ECX_RDRAND, pConfig->enmRdRand);
1455 PORTABLE_DISABLE_FEATURE_BIT_CFG(1, pStdFeatureLeaf->uEcx, CX16, X86_CPUID_FEATURE_ECX_CX16, pConfig->enmCmpXchg16b);
1456 PORTABLE_DISABLE_FEATURE_BIT( 2, pStdFeatureLeaf->uEcx, SSE3, X86_CPUID_FEATURE_ECX_SSE3);
1457 PORTABLE_DISABLE_FEATURE_BIT( 3, pStdFeatureLeaf->uEdx, SSE2, X86_CPUID_FEATURE_EDX_SSE2);
1458 PORTABLE_DISABLE_FEATURE_BIT( 3, pStdFeatureLeaf->uEdx, SSE, X86_CPUID_FEATURE_EDX_SSE);
1459 PORTABLE_DISABLE_FEATURE_BIT( 3, pStdFeatureLeaf->uEdx, CLFSH, X86_CPUID_FEATURE_EDX_CLFSH);
1460 PORTABLE_DISABLE_FEATURE_BIT( 3, pStdFeatureLeaf->uEdx, CMOV, X86_CPUID_FEATURE_EDX_CMOV);
1461
1462 Assert(!(pStdFeatureLeaf->uEdx & ( X86_CPUID_FEATURE_EDX_SEP ///??
1463 | X86_CPUID_FEATURE_EDX_PSN
1464 | X86_CPUID_FEATURE_EDX_DS
1465 | X86_CPUID_FEATURE_EDX_ACPI
1466 | X86_CPUID_FEATURE_EDX_SS
1467 | X86_CPUID_FEATURE_EDX_TM
1468 | X86_CPUID_FEATURE_EDX_PBE
1469 )));
1470 Assert(!(pStdFeatureLeaf->uEcx & ( X86_CPUID_FEATURE_ECX_DTES64
1471 | X86_CPUID_FEATURE_ECX_CPLDS
1472 | X86_CPUID_FEATURE_ECX_AES
1473 | X86_CPUID_FEATURE_ECX_VMX
1474 | X86_CPUID_FEATURE_ECX_SMX
1475 | X86_CPUID_FEATURE_ECX_EST
1476 | X86_CPUID_FEATURE_ECX_TM2
1477 | X86_CPUID_FEATURE_ECX_CNTXID
1478 | X86_CPUID_FEATURE_ECX_FMA
1479 | X86_CPUID_FEATURE_ECX_TPRUPDATE
1480 | X86_CPUID_FEATURE_ECX_PDCM
1481 | X86_CPUID_FEATURE_ECX_DCA
1482 | X86_CPUID_FEATURE_ECX_OSXSAVE
1483 )));
1484 }
1485
1486 /* Set up APIC ID for CPU 0, configure multi core/threaded smp. */
1487 pStdFeatureLeaf->uEbx &= UINT32_C(0x0000ffff); /* (APIC-ID := 0 and #LogCpus := 0) */
1488
1489 /* The HTT bit is architectural and does not directly indicate hyper-threading or multiple cores;
1490 * it was set even on single-core/non-HT Northwood P4s for example. The HTT bit only means that the
1491 * information in EBX[23:16] (max number of addressable logical processor IDs) is valid.
1492 */
1493#ifdef VBOX_WITH_MULTI_CORE
1494 if (pVM->cCpus > 1)
1495 pStdFeatureLeaf->uEdx |= X86_CPUID_FEATURE_EDX_HTT; /* Force if emulating a multi-core CPU. */
1496#endif
1497 if (pStdFeatureLeaf->uEdx & X86_CPUID_FEATURE_EDX_HTT)
1498 {
1499 /* If CPUID Fn0000_0001_EDX[HTT] = 1 then LogicalProcessorCount is the number of threads per CPU
1500 core times the number of CPU cores per processor */
1501#ifdef VBOX_WITH_MULTI_CORE
1502 pStdFeatureLeaf->uEbx |= pVM->cCpus <= 0xff ? (pVM->cCpus << 16) : UINT32_C(0x00ff0000);
1503#else
1504 /* Single logical processor in a package. */
1505 pStdFeatureLeaf->uEbx |= (1 << 16);
1506#endif
1507 }
1508
1509 uint32_t uMicrocodeRev;
1510 int rc = SUPR3QueryMicrocodeRev(&uMicrocodeRev);
1511 if (RT_SUCCESS(rc))
1512 {
1513 LogRel(("CPUM: Microcode revision 0x%08X\n", uMicrocodeRev));
1514 }
1515 else
1516 {
1517 uMicrocodeRev = 0;
1518 LogRel(("CPUM: Failed to query microcode revision. rc=%Rrc\n", rc));
1519 }
1520
1521 /* Mask out the VME capability on certain CPUs, unless overridden by fForceVme.
1522 * VME bug was fixed in AGESA 1.0.0.6, microcode patch level 8001126.
1523 */
1524 if ( ( pVM->cpum.s.GuestFeatures.enmMicroarch == kCpumMicroarch_AMD_Zen_Ryzen
1525 /** @todo The following ASSUMES that Hygon uses the same version numbering
1526 * as AMD and that they shipped buggy firmware. */
1527 || pVM->cpum.s.GuestFeatures.enmMicroarch == kCpumMicroarch_Hygon_Dhyana)
1528 && uMicrocodeRev < 0x8001126
1529 && !pConfig->fForceVme)
1530 {
1531 /** @todo The above is a very coarse test but at the moment we don't know any better (see @bugref{8852}). */
1532 LogRel(("CPUM: Zen VME workaround engaged\n"));
1533 pStdFeatureLeaf->uEdx &= ~X86_CPUID_FEATURE_EDX_VME;
1534 }
1535
1536 /* Force standard feature bits. */
1537 if (pConfig->enmPClMul == CPUMISAEXTCFG_ENABLED_ALWAYS)
1538 pStdFeatureLeaf->uEcx |= X86_CPUID_FEATURE_ECX_PCLMUL;
1539 if (pConfig->enmMonitor == CPUMISAEXTCFG_ENABLED_ALWAYS)
1540 pStdFeatureLeaf->uEcx |= X86_CPUID_FEATURE_ECX_MONITOR;
1541 if (pConfig->enmCmpXchg16b == CPUMISAEXTCFG_ENABLED_ALWAYS)
1542 pStdFeatureLeaf->uEcx |= X86_CPUID_FEATURE_ECX_CX16;
1543 if (pConfig->enmSse41 == CPUMISAEXTCFG_ENABLED_ALWAYS)
1544 pStdFeatureLeaf->uEcx |= X86_CPUID_FEATURE_ECX_SSE4_1;
1545 if (pConfig->enmSse42 == CPUMISAEXTCFG_ENABLED_ALWAYS)
1546 pStdFeatureLeaf->uEcx |= X86_CPUID_FEATURE_ECX_SSE4_2;
1547 if (pConfig->enmMovBe == CPUMISAEXTCFG_ENABLED_ALWAYS)
1548 pStdFeatureLeaf->uEcx |= X86_CPUID_FEATURE_ECX_MOVBE;
1549 if (pConfig->enmPopCnt == CPUMISAEXTCFG_ENABLED_ALWAYS)
1550 pStdFeatureLeaf->uEcx |= X86_CPUID_FEATURE_ECX_POPCNT;
1551 if (pConfig->enmAesNi == CPUMISAEXTCFG_ENABLED_ALWAYS)
1552 pStdFeatureLeaf->uEcx |= X86_CPUID_FEATURE_ECX_AES;
1553 if (pConfig->enmXSave == CPUMISAEXTCFG_ENABLED_ALWAYS)
1554 pStdFeatureLeaf->uEcx |= X86_CPUID_FEATURE_ECX_XSAVE;
1555 if (pConfig->enmAvx == CPUMISAEXTCFG_ENABLED_ALWAYS)
1556 pStdFeatureLeaf->uEcx |= X86_CPUID_FEATURE_ECX_AVX;
1557 if (pConfig->enmRdRand == CPUMISAEXTCFG_ENABLED_ALWAYS)
1558 pStdFeatureLeaf->uEcx |= X86_CPUID_FEATURE_ECX_RDRAND;
1559
1560 pStdFeatureLeaf = NULL; /* Must refetch! */
1561
1562 /* Cpuid 0x80000001: (Similar, but in no way identical to 0x00000001.)
1563 * AMD:
1564 * EAX: CPU model, family and stepping.
1565 *
1566 * ECX + EDX: Supported features. Only report features we can support.
1567 * Note! When enabling new features the Synthetic CPU and Portable CPUID
1568 * options may require adjusting (i.e. stripping what was enabled).
1569 * ASSUMES that this is ALWAYS the AMD defined feature set if present.
1570 *
1571 * EBX: Branding ID and package type (or reserved).
1572 *
1573 * Intel and probably most others:
1574 * EAX: 0
1575 * EBX: 0
1576 * ECX + EDX: Subset of AMD features, mainly for AMD64 support.
1577 */
1578 PCPUMCPUIDLEAF pExtFeatureLeaf = cpumR3CpuIdGetExactLeaf(pCpum, UINT32_C(0x80000001), 0);
1579 if (pExtFeatureLeaf)
1580 {
1581 pExtFeatureLeaf = cpumR3CpuIdMakeSingleLeaf(pCpum, pExtFeatureLeaf);
1582
1583 pExtFeatureLeaf->uEdx &= X86_CPUID_AMD_FEATURE_EDX_FPU
1584 | X86_CPUID_AMD_FEATURE_EDX_VME
1585 | X86_CPUID_AMD_FEATURE_EDX_DE
1586 | X86_CPUID_AMD_FEATURE_EDX_PSE
1587 | X86_CPUID_AMD_FEATURE_EDX_TSC
1588 | X86_CPUID_AMD_FEATURE_EDX_MSR //?? this means AMD MSRs..
1589 //| X86_CPUID_AMD_FEATURE_EDX_PAE - turned on when necessary
1590 //| X86_CPUID_AMD_FEATURE_EDX_MCE - not virtualized yet.
1591 | X86_CPUID_AMD_FEATURE_EDX_CX8
1592 //| X86_CPUID_AMD_FEATURE_EDX_APIC - set by the APIC device if present.
1593 //| RT_BIT_32(10) - reserved
1594 | X86_CPUID_EXT_FEATURE_EDX_SYSCALL
1595 | X86_CPUID_AMD_FEATURE_EDX_MTRR
1596 | X86_CPUID_AMD_FEATURE_EDX_PGE
1597 | X86_CPUID_AMD_FEATURE_EDX_MCA
1598 | X86_CPUID_AMD_FEATURE_EDX_CMOV
1599 | X86_CPUID_AMD_FEATURE_EDX_PAT
1600 | X86_CPUID_AMD_FEATURE_EDX_PSE36
1601 //| RT_BIT_32(18) - reserved
1602 //| RT_BIT_32(19) - reserved
1603 | X86_CPUID_EXT_FEATURE_EDX_NX
1604 //| RT_BIT_32(21) - reserved
1605 | PASSTHRU_FEATURE(pConfig->enmAmdExtMmx, pHstFeat->fAmdMmxExts, X86_CPUID_AMD_FEATURE_EDX_AXMMX)
1606 | X86_CPUID_AMD_FEATURE_EDX_MMX
1607 | X86_CPUID_AMD_FEATURE_EDX_FXSR
1608 | X86_CPUID_AMD_FEATURE_EDX_FFXSR
1609 //| X86_CPUID_EXT_FEATURE_EDX_PAGE1GB
1610 | X86_CPUID_EXT_FEATURE_EDX_RDTSCP
1611 //| RT_BIT_32(28) - reserved
1612 //| X86_CPUID_EXT_FEATURE_EDX_LONG_MODE - turned on when necessary
1613 | X86_CPUID_AMD_FEATURE_EDX_3DNOW_EX
1614 | X86_CPUID_AMD_FEATURE_EDX_3DNOW
1615 ;
1616 pExtFeatureLeaf->uEcx &= X86_CPUID_EXT_FEATURE_ECX_LAHF_SAHF
1617 //| X86_CPUID_AMD_FEATURE_ECX_CMPL - set below if applicable.
1618 | (pConfig->fNestedHWVirt ? X86_CPUID_AMD_FEATURE_ECX_SVM : 0)
1619 //| X86_CPUID_AMD_FEATURE_ECX_EXT_APIC
1620 /* Note: This could prevent teleporting from AMD to Intel CPUs! */
1621 | X86_CPUID_AMD_FEATURE_ECX_CR8L /* expose lock mov cr0 = mov cr8 hack for guests that can use this feature to access the TPR. */
1622 | PASSTHRU_FEATURE(pConfig->enmAbm, pHstFeat->fAbm, X86_CPUID_AMD_FEATURE_ECX_ABM)
1623 | PASSTHRU_FEATURE_TODO(pConfig->enmSse4A, X86_CPUID_AMD_FEATURE_ECX_SSE4A)
1624 | PASSTHRU_FEATURE_TODO(pConfig->enmMisAlnSse, X86_CPUID_AMD_FEATURE_ECX_MISALNSSE)
1625 | PASSTHRU_FEATURE(pConfig->enm3dNowPrf, pHstFeat->f3DNowPrefetch, X86_CPUID_AMD_FEATURE_ECX_3DNOWPRF)
1626 //| X86_CPUID_AMD_FEATURE_ECX_OSVW
1627 //| X86_CPUID_AMD_FEATURE_ECX_IBS
1628 //| X86_CPUID_AMD_FEATURE_ECX_XOP
1629 //| X86_CPUID_AMD_FEATURE_ECX_SKINIT
1630 //| X86_CPUID_AMD_FEATURE_ECX_WDT
1631 //| RT_BIT_32(14) - reserved
1632 //| X86_CPUID_AMD_FEATURE_ECX_LWP - not supported
1633 //| X86_CPUID_AMD_FEATURE_ECX_FMA4 - not yet virtualized.
1634 //| RT_BIT_32(17) - reserved
1635 //| RT_BIT_32(18) - reserved
1636 //| X86_CPUID_AMD_FEATURE_ECX_NODEID - not yet virtualized.
1637 //| RT_BIT_32(20) - reserved
1638 //| X86_CPUID_AMD_FEATURE_ECX_TBM - not yet virtualized.
1639 //| X86_CPUID_AMD_FEATURE_ECX_TOPOEXT - not yet virtualized.
1640 //| RT_BIT_32(23) - reserved
1641 //| RT_BIT_32(24) - reserved
1642 //| RT_BIT_32(25) - reserved
1643 //| RT_BIT_32(26) - reserved
1644 //| RT_BIT_32(27) - reserved
1645 //| RT_BIT_32(28) - reserved
1646 //| RT_BIT_32(29) - reserved
1647 //| RT_BIT_32(30) - reserved
1648 //| RT_BIT_32(31) - reserved
1649 ;
1650#ifdef VBOX_WITH_MULTI_CORE
1651 if ( pVM->cCpus > 1
1652 && ( pCpum->GuestFeatures.enmCpuVendor == CPUMCPUVENDOR_AMD
1653 || pCpum->GuestFeatures.enmCpuVendor == CPUMCPUVENDOR_HYGON))
1654 pExtFeatureLeaf->uEcx |= X86_CPUID_AMD_FEATURE_ECX_CMPL; /* CmpLegacy */
1655#endif
1656
1657 if (pCpum->u8PortableCpuIdLevel > 0)
1658 {
1659 PORTABLE_DISABLE_FEATURE_BIT( 1, pExtFeatureLeaf->uEcx, CR8L, X86_CPUID_AMD_FEATURE_ECX_CR8L);
1660 PORTABLE_DISABLE_FEATURE_BIT( 1, pExtFeatureLeaf->uEcx, SVM, X86_CPUID_AMD_FEATURE_ECX_SVM);
1661 PORTABLE_DISABLE_FEATURE_BIT_CFG(1, pExtFeatureLeaf->uEcx, ABM, X86_CPUID_AMD_FEATURE_ECX_ABM, pConfig->enmAbm);
1662 PORTABLE_DISABLE_FEATURE_BIT_CFG(1, pExtFeatureLeaf->uEcx, SSE4A, X86_CPUID_AMD_FEATURE_ECX_SSE4A, pConfig->enmSse4A);
1663 PORTABLE_DISABLE_FEATURE_BIT_CFG(1, pExtFeatureLeaf->uEcx, MISALNSSE, X86_CPUID_AMD_FEATURE_ECX_MISALNSSE, pConfig->enmMisAlnSse);
1664 PORTABLE_DISABLE_FEATURE_BIT_CFG(1, pExtFeatureLeaf->uEcx, 3DNOWPRF, X86_CPUID_AMD_FEATURE_ECX_3DNOWPRF, pConfig->enm3dNowPrf);
1665 PORTABLE_DISABLE_FEATURE_BIT( 1, pExtFeatureLeaf->uEcx, XOP, X86_CPUID_AMD_FEATURE_ECX_XOP);
1666 PORTABLE_DISABLE_FEATURE_BIT( 1, pExtFeatureLeaf->uEcx, TBM, X86_CPUID_AMD_FEATURE_ECX_TBM);
1667 PORTABLE_DISABLE_FEATURE_BIT( 1, pExtFeatureLeaf->uEcx, FMA4, X86_CPUID_AMD_FEATURE_ECX_FMA4);
1668 PORTABLE_DISABLE_FEATURE_BIT_CFG(1, pExtFeatureLeaf->uEdx, AXMMX, X86_CPUID_AMD_FEATURE_EDX_AXMMX, pConfig->enmAmdExtMmx);
1669 PORTABLE_DISABLE_FEATURE_BIT( 1, pExtFeatureLeaf->uEdx, 3DNOW, X86_CPUID_AMD_FEATURE_EDX_3DNOW);
1670 PORTABLE_DISABLE_FEATURE_BIT( 1, pExtFeatureLeaf->uEdx, 3DNOW_EX, X86_CPUID_AMD_FEATURE_EDX_3DNOW_EX);
1671 PORTABLE_DISABLE_FEATURE_BIT( 1, pExtFeatureLeaf->uEdx, FFXSR, X86_CPUID_AMD_FEATURE_EDX_FFXSR);
1672 PORTABLE_DISABLE_FEATURE_BIT( 1, pExtFeatureLeaf->uEdx, RDTSCP, X86_CPUID_EXT_FEATURE_EDX_RDTSCP);
1673 PORTABLE_DISABLE_FEATURE_BIT( 2, pExtFeatureLeaf->uEcx, LAHF_SAHF, X86_CPUID_EXT_FEATURE_ECX_LAHF_SAHF);
1674 PORTABLE_DISABLE_FEATURE_BIT( 3, pExtFeatureLeaf->uEcx, CMOV, X86_CPUID_AMD_FEATURE_EDX_CMOV);
1675
1676 Assert(!(pExtFeatureLeaf->uEcx & ( X86_CPUID_AMD_FEATURE_ECX_SVM
1677 | X86_CPUID_AMD_FEATURE_ECX_EXT_APIC
1678 | X86_CPUID_AMD_FEATURE_ECX_OSVW
1679 | X86_CPUID_AMD_FEATURE_ECX_IBS
1680 | X86_CPUID_AMD_FEATURE_ECX_SKINIT
1681 | X86_CPUID_AMD_FEATURE_ECX_WDT
1682 | X86_CPUID_AMD_FEATURE_ECX_LWP
1683 | X86_CPUID_AMD_FEATURE_ECX_NODEID
1684 | X86_CPUID_AMD_FEATURE_ECX_TOPOEXT
1685 | UINT32_C(0xff964000)
1686 )));
1687 Assert(!(pExtFeatureLeaf->uEdx & ( RT_BIT(10)
1688 | X86_CPUID_EXT_FEATURE_EDX_SYSCALL
1689 | RT_BIT(18)
1690 | RT_BIT(19)
1691 | RT_BIT(21)
1692 | X86_CPUID_AMD_FEATURE_EDX_AXMMX
1693 | X86_CPUID_EXT_FEATURE_EDX_PAGE1GB
1694 | RT_BIT(28)
1695 )));
1696 }
1697
1698 /* Force extended feature bits. */
1699 if (pConfig->enmAbm == CPUMISAEXTCFG_ENABLED_ALWAYS)
1700 pExtFeatureLeaf->uEcx |= X86_CPUID_AMD_FEATURE_ECX_ABM;
1701 if (pConfig->enmSse4A == CPUMISAEXTCFG_ENABLED_ALWAYS)
1702 pExtFeatureLeaf->uEcx |= X86_CPUID_AMD_FEATURE_ECX_SSE4A;
1703 if (pConfig->enmMisAlnSse == CPUMISAEXTCFG_ENABLED_ALWAYS)
1704 pExtFeatureLeaf->uEcx |= X86_CPUID_AMD_FEATURE_ECX_MISALNSSE;
1705 if (pConfig->enm3dNowPrf == CPUMISAEXTCFG_ENABLED_ALWAYS)
1706 pExtFeatureLeaf->uEcx |= X86_CPUID_AMD_FEATURE_ECX_3DNOWPRF;
1707 if (pConfig->enmAmdExtMmx == CPUMISAEXTCFG_ENABLED_ALWAYS)
1708 pExtFeatureLeaf->uEdx |= X86_CPUID_AMD_FEATURE_EDX_AXMMX;
1709 }
1710 pExtFeatureLeaf = NULL; /* Must refetch! */
1711
1712
1713 /* Cpuid 2:
1714 * Intel: (Nondeterministic) Cache and TLB information
1715 * AMD: Reserved
1716 * VIA: Reserved
1717 * Safe to expose.
1718 */
1719 uint32_t uSubLeaf = 0;
1720 PCPUMCPUIDLEAF pCurLeaf;
1721 while ((pCurLeaf = cpumR3CpuIdGetExactLeaf(pCpum, 2, uSubLeaf)) != NULL)
1722 {
1723 if ((pCurLeaf->uEax & 0xff) > 1)
1724 {
1725 LogRel(("CpuId: Std[2].al: %d -> 1\n", pCurLeaf->uEax & 0xff));
1726 pCurLeaf->uEax &= UINT32_C(0xffffff01);
1727 }
1728 uSubLeaf++;
1729 }
1730
1731 /* Cpuid 3:
1732 * Intel: EAX, EBX - reserved (transmeta uses these)
1733 * ECX, EDX - Processor Serial Number if available, otherwise reserved
1734 * AMD: Reserved
1735 * VIA: Reserved
1736 * Safe to expose
1737 */
1738 pStdFeatureLeaf = cpumR3CpuIdGetExactLeaf(pCpum, 1, 0);
1739 if (!(pStdFeatureLeaf->uEdx & X86_CPUID_FEATURE_EDX_PSN))
1740 {
1741 uSubLeaf = 0;
1742 while ((pCurLeaf = cpumR3CpuIdGetExactLeaf(pCpum, 3, uSubLeaf)) != NULL)
1743 {
1744 pCurLeaf->uEcx = pCurLeaf->uEdx = 0;
1745 if (pCpum->u8PortableCpuIdLevel > 0)
1746 pCurLeaf->uEax = pCurLeaf->uEbx = 0;
1747 uSubLeaf++;
1748 }
1749 }
1750
1751 /* Cpuid 4 + ECX:
1752 * Intel: Deterministic Cache Parameters Leaf.
1753 * AMD: Reserved
1754 * VIA: Reserved
1755 * Safe to expose, except for EAX:
1756 * Bits 25-14: Maximum number of addressable IDs for logical processors sharing this cache (see note)**
1757 * Bits 31-26: Maximum number of processor cores in this physical package**
1758 * Note: These SMP values are constant regardless of ECX
1759 */
1760 uSubLeaf = 0;
1761 while ((pCurLeaf = cpumR3CpuIdGetExactLeaf(pCpum, 4, uSubLeaf)) != NULL)
1762 {
1763 pCurLeaf->uEax &= UINT32_C(0x00003fff); /* Clear the #maxcores, #threads-sharing-cache (both are #-1).*/
1764#ifdef VBOX_WITH_MULTI_CORE
1765 if ( pVM->cCpus > 1
1766 && pCpum->GuestFeatures.enmCpuVendor == CPUMCPUVENDOR_INTEL)
1767 {
1768 AssertReturn(pVM->cCpus <= 64, VERR_TOO_MANY_CPUS);
1769 /* One logical processor with possibly multiple cores. */
1770 /* See http://www.intel.com/Assets/PDF/appnote/241618.pdf p. 29 */
1771 pCurLeaf->uEax |= pVM->cCpus <= 0x40 ? ((pVM->cCpus - 1) << 26) : UINT32_C(0xfc000000); /* 6 bits only -> 64 cores! */
1772 }
1773#endif
1774 uSubLeaf++;
1775 }
1776
1777 /* Cpuid 5: Monitor/mwait Leaf
1778 * Intel: ECX, EDX - reserved
1779 * EAX, EBX - Smallest and largest monitor line size
1780 * AMD: EDX - reserved
1781 * EAX, EBX - Smallest and largest monitor line size
1782 * ECX - extensions (ignored for now)
1783 * VIA: Reserved
1784 * Safe to expose
1785 */
1786 uSubLeaf = 0;
1787 while ((pCurLeaf = cpumR3CpuIdGetExactLeaf(pCpum, 5, uSubLeaf)) != NULL)
1788 {
1789 pStdFeatureLeaf = cpumR3CpuIdGetExactLeaf(pCpum, 1, 0);
1790 if (!(pStdFeatureLeaf->uEcx & X86_CPUID_FEATURE_ECX_MONITOR))
1791 pCurLeaf->uEax = pCurLeaf->uEbx = 0;
1792
1793 pCurLeaf->uEcx = pCurLeaf->uEdx = 0;
1794 if (pConfig->enmMWaitExtensions)
1795 {
1796 pCurLeaf->uEcx = X86_CPUID_MWAIT_ECX_EXT | X86_CPUID_MWAIT_ECX_BREAKIRQIF0;
1797 /** @todo for now we just expose host's MWAIT C-states, although conceptually
1798 it shall be part of our power management virtualization model */
1799#if 0
1800 /* MWAIT sub C-states */
1801 pCurLeaf->uEdx =
1802 (0 << 0) /* 0 in C0 */ |
1803 (2 << 4) /* 2 in C1 */ |
1804 (2 << 8) /* 2 in C2 */ |
1805 (2 << 12) /* 2 in C3 */ |
1806 (0 << 16) /* 0 in C4 */
1807 ;
1808#endif
1809 }
1810 else
1811 pCurLeaf->uEcx = pCurLeaf->uEdx = 0;
1812 uSubLeaf++;
1813 }
1814
1815 /* Cpuid 6: Digital Thermal Sensor and Power Management Paramenters.
1816 * Intel: Various thermal and power management related stuff.
1817 * AMD: EBX, EDX - reserved.
1818 * EAX - Bit two is ARAT, indicating that APIC timers run at a constant
1819 * rate regardless of processor P-states. Same as Intel.
1820 * ECX - Bit zero is EffFreq, indicating MSR_0000_00e7 and MSR_0000_00e8
1821 * present. Same as Intel.
1822 * VIA: ??
1823 *
1824 * We clear everything except for the ARAT bit which is important for Windows 11.
1825 */
1826 uSubLeaf = 0;
1827 while ((pCurLeaf = cpumR3CpuIdGetExactLeaf(pCpum, 6, uSubLeaf)) != NULL)
1828 {
1829 pCurLeaf->uEbx = pCurLeaf->uEcx = pCurLeaf->uEdx = 0;
1830 pCurLeaf->uEax &= 0
1831 | X86_CPUID_POWER_EAX_ARAT
1832 ;
1833
1834 /* Since we emulate the APIC timers, we can normally set the ARAT bit
1835 * regardless of whether the host CPU sets it or not. Intel sets the ARAT
1836 * bit circa since the Westmere generation, AMD probably only since Zen.
1837 * See @bugref{10567}.
1838 */
1839 if (pConfig->fInvariantApic)
1840 pCurLeaf->uEax |= X86_CPUID_POWER_EAX_ARAT;
1841
1842 uSubLeaf++;
1843 }
1844
1845 /* Cpuid 7 + ECX: Structured Extended Feature Flags Enumeration
1846 * EAX: Number of sub leaves.
1847 * EBX+ECX+EDX: Feature flags
1848 *
1849 * We only have documentation for one sub-leaf, so clear all other (no need
1850 * to remove them as such, just set them to zero).
1851 *
1852 * Note! When enabling new features the Synthetic CPU and Portable CPUID
1853 * options may require adjusting (i.e. stripping what was enabled).
1854 */
1855 uSubLeaf = 0;
1856 while ((pCurLeaf = cpumR3CpuIdGetExactLeaf(pCpum, 7, uSubLeaf)) != NULL)
1857 {
1858 switch (uSubLeaf)
1859 {
1860 case 0:
1861 {
1862 pCurLeaf->uEax = 0; /* Max ECX input is 0. */
1863 pCurLeaf->uEbx &= 0
1864 | PASSTHRU_FEATURE(pConfig->enmFsGsBase, pHstFeat->fFsGsBase, X86_CPUID_STEXT_FEATURE_EBX_FSGSBASE)
1865 //| X86_CPUID_STEXT_FEATURE_EBX_TSC_ADJUST RT_BIT(1)
1866 //| X86_CPUID_STEXT_FEATURE_EBX_SGX RT_BIT(2)
1867 | X86_CPUID_STEXT_FEATURE_EBX_BMI1
1868 //| X86_CPUID_STEXT_FEATURE_EBX_HLE RT_BIT(4)
1869 | PASSTHRU_FEATURE(pConfig->enmAvx2, pHstFeat->fAvx2, X86_CPUID_STEXT_FEATURE_EBX_AVX2)
1870 | X86_CPUID_STEXT_FEATURE_EBX_FDP_EXCPTN_ONLY
1871 //| X86_CPUID_STEXT_FEATURE_EBX_SMEP RT_BIT(7)
1872 | X86_CPUID_STEXT_FEATURE_EBX_BMI2
1873 //| X86_CPUID_STEXT_FEATURE_EBX_ERMS RT_BIT(9)
1874 | PASSTHRU_FEATURE_NOT_IEM(pConfig->enmInvpcid, pHstFeat->fInvpcid, X86_CPUID_STEXT_FEATURE_EBX_INVPCID)
1875 //| X86_CPUID_STEXT_FEATURE_EBX_RTM RT_BIT(11)
1876 //| X86_CPUID_STEXT_FEATURE_EBX_PQM RT_BIT(12)
1877 | X86_CPUID_STEXT_FEATURE_EBX_DEPR_FPU_CS_DS
1878 //| X86_CPUID_STEXT_FEATURE_EBX_MPE RT_BIT(14)
1879 //| X86_CPUID_STEXT_FEATURE_EBX_PQE RT_BIT(15)
1880 //| X86_CPUID_STEXT_FEATURE_EBX_AVX512F RT_BIT(16)
1881 //| RT_BIT(17) - reserved
1882 | PASSTHRU_FEATURE_TODO(pConfig->enmRdSeed, X86_CPUID_STEXT_FEATURE_EBX_RDSEED)
1883 | PASSTHRU_FEATURE(pConfig->enmAdx, pHstFeat->fAdx, X86_CPUID_STEXT_FEATURE_EBX_ADX)
1884 //| X86_CPUID_STEXT_FEATURE_EBX_SMAP RT_BIT(20)
1885 //| RT_BIT(21) - reserved
1886 //| RT_BIT(22) - reserved
1887 | PASSTHRU_FEATURE(pConfig->enmCLFlushOpt, pHstFeat->fClFlushOpt, X86_CPUID_STEXT_FEATURE_EBX_CLFLUSHOPT)
1888 //| RT_BIT(24) - reserved
1889 //| X86_CPUID_STEXT_FEATURE_EBX_INTEL_PT RT_BIT(25)
1890 //| X86_CPUID_STEXT_FEATURE_EBX_AVX512PF RT_BIT(26)
1891 //| X86_CPUID_STEXT_FEATURE_EBX_AVX512ER RT_BIT(27)
1892 //| X86_CPUID_STEXT_FEATURE_EBX_AVX512CD RT_BIT(28)
1893 | PASSTHRU_FEATURE(pConfig->enmSha, pHstFeat->fSha, X86_CPUID_STEXT_FEATURE_EBX_SHA)
1894 //| RT_BIT(30) - reserved
1895 //| RT_BIT(31) - reserved
1896 ;
1897 pCurLeaf->uEcx &= 0
1898 //| X86_CPUID_STEXT_FEATURE_ECX_PREFETCHWT1 - we do not do vector functions yet.
1899 ;
1900 pCurLeaf->uEdx &= 0
1901 | PASSTHRU_FEATURE(pConfig->enmMdsClear, pHstFeat->fMdsClear, X86_CPUID_STEXT_FEATURE_EDX_MD_CLEAR)
1902 //| X86_CPUID_STEXT_FEATURE_EDX_IBRS_IBPB RT_BIT(26)
1903 //| X86_CPUID_STEXT_FEATURE_EDX_STIBP RT_BIT(27)
1904 | PASSTHRU_FEATURE(pConfig->enmFlushCmdMsr, pHstFeat->fFlushCmd, X86_CPUID_STEXT_FEATURE_EDX_FLUSH_CMD)
1905 | PASSTHRU_FEATURE(pConfig->enmArchCapMsr, pHstFeat->fArchCap, X86_CPUID_STEXT_FEATURE_EDX_ARCHCAP)
1906 ;
1907
1908 /* Mask out INVPCID unless FSGSBASE is exposed due to a bug in Windows 10 SMP guests, see @bugref{9089#c15}. */
1909 if ( !pVM->cpum.s.GuestFeatures.fFsGsBase
1910 && (pCurLeaf->uEbx & X86_CPUID_STEXT_FEATURE_EBX_INVPCID))
1911 {
1912 pCurLeaf->uEbx &= ~X86_CPUID_STEXT_FEATURE_EBX_INVPCID;
1913 LogRel(("CPUM: Disabled INVPCID without FSGSBASE to work around buggy guests\n"));
1914 }
1915
1916 if (pCpum->u8PortableCpuIdLevel > 0)
1917 {
1918 PORTABLE_DISABLE_FEATURE_BIT_CFG(1, pCurLeaf->uEbx, FSGSBASE, X86_CPUID_STEXT_FEATURE_EBX_FSGSBASE, pConfig->enmFsGsBase);
1919 PORTABLE_DISABLE_FEATURE_BIT( 1, pCurLeaf->uEbx, SGX, X86_CPUID_STEXT_FEATURE_EBX_SGX);
1920 PORTABLE_DISABLE_FEATURE_BIT_CFG(1, pCurLeaf->uEbx, AVX2, X86_CPUID_STEXT_FEATURE_EBX_AVX2, pConfig->enmAvx2);
1921 PORTABLE_DISABLE_FEATURE_BIT( 1, pCurLeaf->uEbx, SMEP, X86_CPUID_STEXT_FEATURE_EBX_SMEP);
1922 PORTABLE_DISABLE_FEATURE_BIT( 1, pCurLeaf->uEbx, BMI2, X86_CPUID_STEXT_FEATURE_EBX_BMI2);
1923 PORTABLE_DISABLE_FEATURE_BIT_CFG(1, pCurLeaf->uEbx, INVPCID, X86_CPUID_STEXT_FEATURE_EBX_INVPCID, pConfig->enmInvpcid);
1924 PORTABLE_DISABLE_FEATURE_BIT( 1, pCurLeaf->uEbx, AVX512F, X86_CPUID_STEXT_FEATURE_EBX_AVX512F);
1925 PORTABLE_DISABLE_FEATURE_BIT_CFG(1, pCurLeaf->uEbx, RDSEED, X86_CPUID_STEXT_FEATURE_EBX_RDSEED, pConfig->enmRdSeed);
1926 PORTABLE_DISABLE_FEATURE_BIT_CFG(1, pCurLeaf->uEbx, ADX, X86_CPUID_STEXT_FEATURE_EBX_ADX, pConfig->enmAdx);
1927 PORTABLE_DISABLE_FEATURE_BIT_CFG(1, pCurLeaf->uEbx, CLFLUSHOPT, X86_CPUID_STEXT_FEATURE_EBX_RDSEED, pConfig->enmCLFlushOpt);
1928 PORTABLE_DISABLE_FEATURE_BIT( 1, pCurLeaf->uEbx, AVX512PF, X86_CPUID_STEXT_FEATURE_EBX_AVX512PF);
1929 PORTABLE_DISABLE_FEATURE_BIT( 1, pCurLeaf->uEbx, AVX512ER, X86_CPUID_STEXT_FEATURE_EBX_AVX512ER);
1930 PORTABLE_DISABLE_FEATURE_BIT( 1, pCurLeaf->uEbx, AVX512CD, X86_CPUID_STEXT_FEATURE_EBX_AVX512CD);
1931 PORTABLE_DISABLE_FEATURE_BIT( 1, pCurLeaf->uEbx, SMAP, X86_CPUID_STEXT_FEATURE_EBX_SMAP);
1932 PORTABLE_DISABLE_FEATURE_BIT_CFG(1, pCurLeaf->uEbx, SHA, X86_CPUID_STEXT_FEATURE_EBX_SHA, pConfig->enmSha);
1933 PORTABLE_DISABLE_FEATURE_BIT( 1, pCurLeaf->uEcx, PREFETCHWT1, X86_CPUID_STEXT_FEATURE_ECX_PREFETCHWT1);
1934 PORTABLE_DISABLE_FEATURE_BIT_CFG(3, pCurLeaf->uEdx, FLUSH_CMD, X86_CPUID_STEXT_FEATURE_EDX_FLUSH_CMD, pConfig->enmFlushCmdMsr);
1935 PORTABLE_DISABLE_FEATURE_BIT_CFG(3, pCurLeaf->uEdx, MD_CLEAR, X86_CPUID_STEXT_FEATURE_EDX_MD_CLEAR, pConfig->enmMdsClear);
1936 PORTABLE_DISABLE_FEATURE_BIT_CFG(3, pCurLeaf->uEdx, ARCHCAP, X86_CPUID_STEXT_FEATURE_EDX_ARCHCAP, pConfig->enmArchCapMsr);
1937 }
1938
1939 /* Dependencies. */
1940 if (!(pCurLeaf->uEdx & X86_CPUID_STEXT_FEATURE_EDX_FLUSH_CMD))
1941 pCurLeaf->uEdx &= ~X86_CPUID_STEXT_FEATURE_EDX_MD_CLEAR;
1942
1943 /* Force standard feature bits. */
1944 if (pConfig->enmFsGsBase == CPUMISAEXTCFG_ENABLED_ALWAYS)
1945 pCurLeaf->uEbx |= X86_CPUID_STEXT_FEATURE_EBX_FSGSBASE;
1946 if (pConfig->enmAvx2 == CPUMISAEXTCFG_ENABLED_ALWAYS)
1947 pCurLeaf->uEbx |= X86_CPUID_STEXT_FEATURE_EBX_AVX2;
1948 if (pConfig->enmRdSeed == CPUMISAEXTCFG_ENABLED_ALWAYS)
1949 pCurLeaf->uEbx |= X86_CPUID_STEXT_FEATURE_EBX_RDSEED;
1950 if (pConfig->enmAdx == CPUMISAEXTCFG_ENABLED_ALWAYS)
1951 pCurLeaf->uEbx |= X86_CPUID_STEXT_FEATURE_EBX_ADX;
1952 if (pConfig->enmCLFlushOpt == CPUMISAEXTCFG_ENABLED_ALWAYS)
1953 pCurLeaf->uEbx |= X86_CPUID_STEXT_FEATURE_EBX_CLFLUSHOPT;
1954 if (pConfig->enmSha == CPUMISAEXTCFG_ENABLED_ALWAYS)
1955 pCurLeaf->uEbx |= X86_CPUID_STEXT_FEATURE_EBX_SHA;
1956 if (pConfig->enmInvpcid == CPUMISAEXTCFG_ENABLED_ALWAYS)
1957 pCurLeaf->uEbx |= X86_CPUID_STEXT_FEATURE_EBX_INVPCID;
1958 if (pConfig->enmFlushCmdMsr == CPUMISAEXTCFG_ENABLED_ALWAYS)
1959 pCurLeaf->uEdx |= X86_CPUID_STEXT_FEATURE_EDX_FLUSH_CMD;
1960 if (pConfig->enmMdsClear == CPUMISAEXTCFG_ENABLED_ALWAYS)
1961 pCurLeaf->uEdx |= X86_CPUID_STEXT_FEATURE_EDX_MD_CLEAR;
1962 if (pConfig->enmArchCapMsr == CPUMISAEXTCFG_ENABLED_ALWAYS)
1963 pCurLeaf->uEdx |= X86_CPUID_STEXT_FEATURE_EDX_ARCHCAP;
1964 break;
1965 }
1966
1967 default:
1968 /* Invalid index, all values are zero. */
1969 pCurLeaf->uEax = 0;
1970 pCurLeaf->uEbx = 0;
1971 pCurLeaf->uEcx = 0;
1972 pCurLeaf->uEdx = 0;
1973 break;
1974 }
1975 uSubLeaf++;
1976 }
1977
1978 /* Cpuid 8: Marked as reserved by Intel and AMD.
1979 * We zero this since we don't know what it may have been used for.
1980 */
1981 cpumR3CpuIdZeroLeaf(pCpum, 8);
1982
1983 /* Cpuid 9: Direct Cache Access (DCA) Parameters
1984 * Intel: EAX - Value of PLATFORM_DCA_CAP bits.
1985 * EBX, ECX, EDX - reserved.
1986 * AMD: Reserved
1987 * VIA: ??
1988 *
1989 * We zero this.
1990 */
1991 cpumR3CpuIdZeroLeaf(pCpum, 9);
1992
1993 /* Cpuid 0xa: Architectural Performance Monitor Features
1994 * Intel: EAX - Value of PLATFORM_DCA_CAP bits.
1995 * EBX, ECX, EDX - reserved.
1996 * AMD: Reserved
1997 * VIA: ??
1998 *
1999 * We zero this, for now at least.
2000 */
2001 cpumR3CpuIdZeroLeaf(pCpum, 10);
2002
2003 /* Cpuid 0xb+ECX: x2APIC Features / Processor Topology.
2004 * Intel: EAX - APCI ID shift right for next level.
2005 * EBX - Factory configured cores/threads at this level.
2006 * ECX - Level number (same as input) and level type (1,2,0).
2007 * EDX - Extended initial APIC ID.
2008 * AMD: Reserved
2009 * VIA: ??
2010 */
2011 uSubLeaf = 0;
2012 while ((pCurLeaf = cpumR3CpuIdGetExactLeaf(pCpum, 11, uSubLeaf)) != NULL)
2013 {
2014 if (pCurLeaf->fFlags & CPUMCPUIDLEAF_F_CONTAINS_APIC_ID)
2015 {
2016 uint8_t bLevelType = RT_BYTE2(pCurLeaf->uEcx);
2017 if (bLevelType == 1)
2018 {
2019 /* Thread level - we don't do threads at the moment. */
2020 pCurLeaf->uEax = 0; /** @todo is this correct? Real CPUs never do 0 here, I think... */
2021 pCurLeaf->uEbx = 1;
2022 }
2023 else if (bLevelType == 2)
2024 {
2025 /* Core level. */
2026 pCurLeaf->uEax = 1; /** @todo real CPUs are supposed to be in the 4-6 range, not 1. Our APIC ID assignments are a little special... */
2027#ifdef VBOX_WITH_MULTI_CORE
2028 while (RT_BIT_32(pCurLeaf->uEax) < pVM->cCpus)
2029 pCurLeaf->uEax++;
2030#endif
2031 pCurLeaf->uEbx = pVM->cCpus;
2032 }
2033 else
2034 {
2035 AssertLogRelMsg(bLevelType == 0, ("bLevelType=%#x uSubLeaf=%#x\n", bLevelType, uSubLeaf));
2036 pCurLeaf->uEax = 0;
2037 pCurLeaf->uEbx = 0;
2038 pCurLeaf->uEcx = 0;
2039 }
2040 pCurLeaf->uEcx = (pCurLeaf->uEcx & UINT32_C(0xffffff00)) | (uSubLeaf & 0xff);
2041 pCurLeaf->uEdx = 0; /* APIC ID is filled in by CPUMGetGuestCpuId() at runtime. Init for EMT(0) as usual. */
2042 }
2043 else
2044 {
2045 pCurLeaf->uEax = 0;
2046 pCurLeaf->uEbx = 0;
2047 pCurLeaf->uEcx = 0;
2048 pCurLeaf->uEdx = 0;
2049 }
2050 uSubLeaf++;
2051 }
2052
2053 /* Cpuid 0xc: Marked as reserved by Intel and AMD.
2054 * We zero this since we don't know what it may have been used for.
2055 */
2056 cpumR3CpuIdZeroLeaf(pCpum, 12);
2057
2058 /* Cpuid 0xd + ECX: Processor Extended State Enumeration
2059 * ECX=0: EAX - Valid bits in XCR0[31:0].
2060 * EBX - Maximum state size as per current XCR0 value.
2061 * ECX - Maximum state size for all supported features.
2062 * EDX - Valid bits in XCR0[63:32].
2063 * ECX=1: EAX - Various X-features.
2064 * EBX - Maximum state size as per current XCR0|IA32_XSS value.
2065 * ECX - Valid bits in IA32_XSS[31:0].
2066 * EDX - Valid bits in IA32_XSS[63:32].
2067 * ECX=N, where N in 2..63 and indicates a bit in XCR0 and/or IA32_XSS,
2068 * if the bit invalid all four registers are set to zero.
2069 * EAX - The state size for this feature.
2070 * EBX - The state byte offset of this feature.
2071 * ECX - Bit 0 indicates whether this sub-leaf maps to a valid IA32_XSS bit (=1) or a valid XCR0 bit (=0).
2072 * EDX - Reserved, but is set to zero if invalid sub-leaf index.
2073 *
2074 * Clear them all as we don't currently implement extended CPU state.
2075 */
2076 /* Figure out the supported XCR0/XSS mask component and make sure CPUID[1].ECX[27] = CR4.OSXSAVE. */
2077 uint64_t fGuestXcr0Mask = 0;
2078 pStdFeatureLeaf = cpumR3CpuIdGetExactLeaf(pCpum, 1, 0);
2079 if (pStdFeatureLeaf && (pStdFeatureLeaf->uEcx & X86_CPUID_FEATURE_ECX_XSAVE))
2080 {
2081 fGuestXcr0Mask = XSAVE_C_X87 | XSAVE_C_SSE;
2082 if (pStdFeatureLeaf && (pStdFeatureLeaf->uEcx & X86_CPUID_FEATURE_ECX_AVX))
2083 fGuestXcr0Mask |= XSAVE_C_YMM;
2084 pCurLeaf = cpumR3CpuIdGetExactLeaf(pCpum, 7, 0);
2085 if (pCurLeaf && (pCurLeaf->uEbx & X86_CPUID_STEXT_FEATURE_EBX_AVX512F))
2086 fGuestXcr0Mask |= XSAVE_C_ZMM_16HI | XSAVE_C_ZMM_HI256 | XSAVE_C_OPMASK;
2087 fGuestXcr0Mask &= pCpum->fXStateHostMask;
2088
2089 pStdFeatureLeaf->fFlags |= CPUMCPUIDLEAF_F_CONTAINS_OSXSAVE;
2090 }
2091 pStdFeatureLeaf = NULL;
2092 pCpum->fXStateGuestMask = fGuestXcr0Mask;
2093
2094 /* Work the sub-leaves. */
2095 uint32_t cbXSaveMaxActual = CPUM_MIN_XSAVE_AREA_SIZE;
2096 uint32_t cbXSaveMaxReport = CPUM_MIN_XSAVE_AREA_SIZE;
2097 for (uSubLeaf = 0; uSubLeaf < 63; uSubLeaf++)
2098 {
2099 pCurLeaf = cpumR3CpuIdGetExactLeaf(pCpum, 13, uSubLeaf);
2100 if (pCurLeaf)
2101 {
2102 if (fGuestXcr0Mask)
2103 {
2104 switch (uSubLeaf)
2105 {
2106 case 0:
2107 pCurLeaf->uEax &= RT_LO_U32(fGuestXcr0Mask);
2108 pCurLeaf->uEdx &= RT_HI_U32(fGuestXcr0Mask);
2109 AssertLogRelMsgReturn((pCurLeaf->uEax & (XSAVE_C_X87 | XSAVE_C_SSE)) == (XSAVE_C_X87 | XSAVE_C_SSE),
2110 ("CPUID(0xd/0).EAX missing mandatory X87 or SSE bits: %#RX32", pCurLeaf->uEax),
2111 VERR_CPUM_IPE_1);
2112 cbXSaveMaxActual = pCurLeaf->uEcx;
2113 AssertLogRelMsgReturn(cbXSaveMaxActual <= CPUM_MAX_XSAVE_AREA_SIZE && cbXSaveMaxActual >= CPUM_MIN_XSAVE_AREA_SIZE,
2114 ("%#x max=%#x\n", cbXSaveMaxActual, CPUM_MAX_XSAVE_AREA_SIZE), VERR_CPUM_IPE_2);
2115 AssertLogRelMsgReturn(pCurLeaf->uEbx >= CPUM_MIN_XSAVE_AREA_SIZE && pCurLeaf->uEbx <= cbXSaveMaxActual,
2116 ("ebx=%#x cbXSaveMaxActual=%#x\n", pCurLeaf->uEbx, cbXSaveMaxActual),
2117 VERR_CPUM_IPE_2);
2118 continue;
2119 case 1:
2120 pCurLeaf->uEax &= 0;
2121 pCurLeaf->uEcx &= 0;
2122 pCurLeaf->uEdx &= 0;
2123 /** @todo what about checking ebx? */
2124 continue;
2125 default:
2126 if (fGuestXcr0Mask & RT_BIT_64(uSubLeaf))
2127 {
2128 AssertLogRelMsgReturn( pCurLeaf->uEax <= cbXSaveMaxActual
2129 && pCurLeaf->uEax > 0
2130 && pCurLeaf->uEbx < cbXSaveMaxActual
2131 && pCurLeaf->uEbx >= CPUM_MIN_XSAVE_AREA_SIZE
2132 && pCurLeaf->uEbx + pCurLeaf->uEax <= cbXSaveMaxActual,
2133 ("%#x: eax=%#x ebx=%#x cbMax=%#x\n",
2134 uSubLeaf, pCurLeaf->uEax, pCurLeaf->uEbx, cbXSaveMaxActual),
2135 VERR_CPUM_IPE_2);
2136 AssertLogRel(!(pCurLeaf->uEcx & 1));
2137 pCurLeaf->uEcx = 0; /* Bit 0 should be zero (XCR0), the reset are reserved... */
2138 pCurLeaf->uEdx = 0; /* it's reserved... */
2139 if (pCurLeaf->uEbx + pCurLeaf->uEax > cbXSaveMaxReport)
2140 cbXSaveMaxReport = pCurLeaf->uEbx + pCurLeaf->uEax;
2141 continue;
2142 }
2143 break;
2144 }
2145 }
2146
2147 /* Clear the leaf. */
2148 pCurLeaf->uEax = 0;
2149 pCurLeaf->uEbx = 0;
2150 pCurLeaf->uEcx = 0;
2151 pCurLeaf->uEdx = 0;
2152 }
2153 }
2154
2155 /* Update the max and current feature sizes to shut up annoying Linux kernels. */
2156 if (cbXSaveMaxReport != cbXSaveMaxActual && fGuestXcr0Mask)
2157 {
2158 pCurLeaf = cpumR3CpuIdGetExactLeaf(pCpum, 13, 0);
2159 if (pCurLeaf)
2160 {
2161 LogRel(("CPUM: Changing leaf 13[0]: EBX=%#RX32 -> %#RX32, ECX=%#RX32 -> %#RX32\n",
2162 pCurLeaf->uEbx, cbXSaveMaxReport, pCurLeaf->uEcx, cbXSaveMaxReport));
2163 pCurLeaf->uEbx = cbXSaveMaxReport;
2164 pCurLeaf->uEcx = cbXSaveMaxReport;
2165 }
2166 }
2167
2168 /* Cpuid 0xe: Marked as reserved by Intel and AMD.
2169 * We zero this since we don't know what it may have been used for.
2170 */
2171 cpumR3CpuIdZeroLeaf(pCpum, 14);
2172
2173 /* Cpuid 0xf + ECX: Platform quality of service monitoring (PQM),
2174 * also known as Intel Resource Director Technology (RDT) Monitoring
2175 * We zero this as we don't currently virtualize PQM.
2176 */
2177 cpumR3CpuIdZeroLeaf(pCpum, 15);
2178
2179 /* Cpuid 0x10 + ECX: Platform quality of service enforcement (PQE),
2180 * also known as Intel Resource Director Technology (RDT) Allocation
2181 * We zero this as we don't currently virtualize PQE.
2182 */
2183 cpumR3CpuIdZeroLeaf(pCpum, 16);
2184
2185 /* Cpuid 0x11: Marked as reserved by Intel and AMD.
2186 * We zero this since we don't know what it may have been used for.
2187 */
2188 cpumR3CpuIdZeroLeaf(pCpum, 17);
2189
2190 /* Cpuid 0x12 + ECX: SGX resource enumeration.
2191 * We zero this as we don't currently virtualize this.
2192 */
2193 cpumR3CpuIdZeroLeaf(pCpum, 18);
2194
2195 /* Cpuid 0x13: Marked as reserved by Intel and AMD.
2196 * We zero this since we don't know what it may have been used for.
2197 */
2198 cpumR3CpuIdZeroLeaf(pCpum, 19);
2199
2200 /* Cpuid 0x14 + ECX: Processor Trace (PT) capability enumeration.
2201 * We zero this as we don't currently virtualize this.
2202 */
2203 cpumR3CpuIdZeroLeaf(pCpum, 20);
2204
2205 /* Cpuid 0x15: Timestamp Counter / Core Crystal Clock info.
2206 * Intel: uTscFrequency = uCoreCrystalClockFrequency * EBX / EAX.
2207 * EAX - denominator (unsigned).
2208 * EBX - numerator (unsigned).
2209 * ECX, EDX - reserved.
2210 * AMD: Reserved / undefined / not implemented.
2211 * VIA: Reserved / undefined / not implemented.
2212 * We zero this as we don't currently virtualize this.
2213 */
2214 cpumR3CpuIdZeroLeaf(pCpum, 21);
2215
2216 /* Cpuid 0x16: Processor frequency info
2217 * Intel: EAX - Core base frequency in MHz.
2218 * EBX - Core maximum frequency in MHz.
2219 * ECX - Bus (reference) frequency in MHz.
2220 * EDX - Reserved.
2221 * AMD: Reserved / undefined / not implemented.
2222 * VIA: Reserved / undefined / not implemented.
2223 * We zero this as we don't currently virtualize this.
2224 */
2225 cpumR3CpuIdZeroLeaf(pCpum, 22);
2226
2227 /* Cpuid 0x17..0x10000000: Unknown.
2228 * We don't know these and what they mean, so remove them. */
2229 cpumR3CpuIdRemoveRange(pCpum->GuestInfo.paCpuIdLeavesR3, &pCpum->GuestInfo.cCpuIdLeaves,
2230 UINT32_C(0x00000017), UINT32_C(0x0fffffff));
2231
2232
2233 /* CpuId 0x40000000..0x4fffffff: Reserved for hypervisor/emulator.
2234 * We remove all these as we're a hypervisor and must provide our own.
2235 */
2236 cpumR3CpuIdRemoveRange(pCpum->GuestInfo.paCpuIdLeavesR3, &pCpum->GuestInfo.cCpuIdLeaves,
2237 UINT32_C(0x40000000), UINT32_C(0x4fffffff));
2238
2239
2240 /* Cpuid 0x80000000 is harmless. */
2241
2242 /* Cpuid 0x80000001 is handled with cpuid 1 way up above. */
2243
2244 /* Cpuid 0x80000002...0x80000004 contains the processor name and is considered harmless. */
2245
2246 /* Cpuid 0x80000005 & 0x80000006 contain information about L1, L2 & L3 cache and TLB identifiers.
2247 * Safe to pass on to the guest.
2248 *
2249 * AMD: 0x80000005 L1 cache information
2250 * 0x80000006 L2/L3 cache information
2251 * Intel: 0x80000005 reserved
2252 * 0x80000006 L2 cache information
2253 * VIA: 0x80000005 TLB and L1 cache information
2254 * 0x80000006 L2 cache information
2255 */
2256
2257 uSubLeaf = 0;
2258 while ((pCurLeaf = cpumR3CpuIdGetExactLeaf(pCpum, UINT32_C(0x80000006), uSubLeaf)) != NULL)
2259 {
2260 if ( pCpum->GuestFeatures.enmCpuVendor == CPUMCPUVENDOR_AMD
2261 || pCpum->GuestFeatures.enmCpuVendor == CPUMCPUVENDOR_HYGON)
2262 {
2263 /*
2264 * Some AMD CPUs (e.g. Ryzen 7940HS) report zero L3 cache line size here and refer
2265 * to CPUID Fn8000_001D. This triggers division by zero in Linux if the
2266 * TopologyExtensions aka TOPOEXT bit in Fn8000_0001_ECX is not set, or if the kernel
2267 * is old enough (e.g. Linux 3.13) that it does not know about the topology extension
2268 * CPUID leaves.
2269 * We put a non-zero value in the cache line size here, if possible the actual value
2270 * gleaned from Fn8000_001D, or worst case a made-up valid number.
2271 */
2272 PCPUMCPUIDLEAF pTopoLeaf;
2273 uint32_t uTopoSubLeaf;
2274 uint32_t uCacheLineSize;
2275
2276 if ((pCurLeaf->uEdx & 0xff) == 0)
2277 {
2278 uTopoSubLeaf = 0;
2279
2280 uCacheLineSize = 64; /* Use 64-byte line size as a fallback. */
2281
2282 /* Find L3 cache information. Have to check the cache level in EAX. */
2283 while ((pTopoLeaf = cpumR3CpuIdGetExactLeaf(pCpum, UINT32_C(0x8000001d), uTopoSubLeaf)) != NULL)
2284 {
2285 if (((pTopoLeaf->uEax >> 5) & 0x07) == 3) {
2286 uCacheLineSize = (pTopoLeaf->uEbx & 0xfff) + 1;
2287 /* Fn8000_0006 can't report power of two line sizes greater than 128. */
2288 if (uCacheLineSize > 128)
2289 uCacheLineSize = 128;
2290
2291 break;
2292 }
2293 uTopoSubLeaf++;
2294 }
2295
2296 Assert(uCacheLineSize < 256);
2297 pCurLeaf->uEdx |= uCacheLineSize;
2298 LogRel(("CPUM: AMD L3 cache line size in CPUID leaf 0x80000006 was zero, adjusting to %u\n", uCacheLineSize));
2299 }
2300 }
2301 uSubLeaf++;
2302 }
2303
2304 /* Cpuid 0x80000007: Advanced Power Management Information.
2305 * AMD: EAX: Processor feedback capabilities.
2306 * EBX: RAS capabilites.
2307 * ECX: Advanced power monitoring interface.
2308 * EDX: Enhanced power management capabilities.
2309 * Intel: EAX, EBX, ECX - reserved.
2310 * EDX - Invariant TSC indicator supported (bit 8), the rest is reserved.
2311 * VIA: Reserved
2312 * We let the guest see EDX_TSCINVAR (and later maybe EDX_EFRO). Actually, we should set EDX_TSCINVAR.
2313 */
2314 uSubLeaf = 0;
2315 while ((pCurLeaf = cpumR3CpuIdGetExactLeaf(pCpum, UINT32_C(0x80000007), uSubLeaf)) != NULL)
2316 {
2317 pCurLeaf->uEax = pCurLeaf->uEbx = pCurLeaf->uEcx = 0;
2318 if ( pCpum->GuestFeatures.enmCpuVendor == CPUMCPUVENDOR_AMD
2319 || pCpum->GuestFeatures.enmCpuVendor == CPUMCPUVENDOR_HYGON)
2320 {
2321 /*
2322 * Older 64-bit linux kernels blindly assume that the AMD performance counters work
2323 * if X86_CPUID_AMD_ADVPOWER_EDX_TSCINVAR is set, see @bugref{7243#c85}. Exposing this
2324 * bit is now configurable.
2325 */
2326 pCurLeaf->uEdx &= 0
2327 //| X86_CPUID_AMD_ADVPOWER_EDX_TS
2328 //| X86_CPUID_AMD_ADVPOWER_EDX_FID
2329 //| X86_CPUID_AMD_ADVPOWER_EDX_VID
2330 //| X86_CPUID_AMD_ADVPOWER_EDX_TTP
2331 //| X86_CPUID_AMD_ADVPOWER_EDX_TM
2332 //| X86_CPUID_AMD_ADVPOWER_EDX_STC
2333 //| X86_CPUID_AMD_ADVPOWER_EDX_MC
2334 //| X86_CPUID_AMD_ADVPOWER_EDX_HWPSTATE
2335 | X86_CPUID_AMD_ADVPOWER_EDX_TSCINVAR
2336 //| X86_CPUID_AMD_ADVPOWER_EDX_CPB RT_BIT(9)
2337 //| X86_CPUID_AMD_ADVPOWER_EDX_EFRO RT_BIT(10)
2338 //| X86_CPUID_AMD_ADVPOWER_EDX_PFI RT_BIT(11)
2339 //| X86_CPUID_AMD_ADVPOWER_EDX_PA RT_BIT(12)
2340 | 0;
2341 }
2342 else
2343 pCurLeaf->uEdx &= X86_CPUID_AMD_ADVPOWER_EDX_TSCINVAR;
2344 if (!pConfig->fInvariantTsc)
2345 pCurLeaf->uEdx &= ~X86_CPUID_AMD_ADVPOWER_EDX_TSCINVAR;
2346 uSubLeaf++;
2347 }
2348
2349 /* Cpuid 0x80000008:
2350 * AMD: EAX: Long Mode Size Identifiers
2351 * EBX: Extended Feature Identifiers
2352 * ECX: Number of cores + APICIdCoreIdSize
2353 * EDX: RDPRU Register Identifier Range
2354 * Intel: EAX: Virtual/Physical address Size
2355 * EBX, ECX, EDX - reserved
2356 * VIA: EAX: Virtual/Physical address Size
2357 * EBX, ECX, EDX - reserved
2358 *
2359 * We only expose the virtual+pysical address size to the guest atm.
2360 * On AMD we set the core count, but not the apic id stuff as we're
2361 * currently not doing the apic id assignments in a compatible manner.
2362 */
2363 uSubLeaf = 0;
2364 while ((pCurLeaf = cpumR3CpuIdGetExactLeaf(pCpum, UINT32_C(0x80000008), uSubLeaf)) != NULL)
2365 {
2366 pCurLeaf->uEax &= UINT32_C(0x0000ffff); /* Virtual & physical address sizes only. */
2367 if ( pCpum->GuestFeatures.enmCpuVendor == CPUMCPUVENDOR_AMD
2368 || pCpum->GuestFeatures.enmCpuVendor == CPUMCPUVENDOR_HYGON)
2369 {
2370 /* Expose XSaveErPtr aka RstrFpErrPtrs to guest. */
2371 pCurLeaf->uEbx &= X86_CPUID_AMD_EFEID_EBX_XSAVE_ER_PTR; /* reserved - [12] == IBPB */
2372 }
2373 else
2374 pCurLeaf->uEbx = 0; /* reserved */
2375
2376 pCurLeaf->uEdx = 0; /* reserved */
2377
2378 /* Set APICIdCoreIdSize to zero (use legacy method to determine the number of cores per cpu).
2379 * Set core count to 0, indicating 1 core. Adjust if we're in multi core mode on AMD. */
2380 pCurLeaf->uEcx = 0;
2381#ifdef VBOX_WITH_MULTI_CORE
2382 if ( pVM->cCpus > 1
2383 && ( pCpum->GuestFeatures.enmCpuVendor == CPUMCPUVENDOR_AMD
2384 || pCpum->GuestFeatures.enmCpuVendor == CPUMCPUVENDOR_HYGON))
2385 pCurLeaf->uEcx |= (pVM->cCpus - 1) & UINT32_C(0xff);
2386#endif
2387 uSubLeaf++;
2388 }
2389
2390 /* Cpuid 0x80000009: Reserved
2391 * We zero this since we don't know what it may have been used for.
2392 */
2393 cpumR3CpuIdZeroLeaf(pCpum, UINT32_C(0x80000009));
2394
2395 /* Cpuid 0x8000000a: SVM information on AMD, invalid on Intel.
2396 * AMD: EAX - SVM revision.
2397 * EBX - Number of ASIDs.
2398 * ECX - Reserved.
2399 * EDX - SVM Feature identification.
2400 */
2401 if ( pCpum->GuestFeatures.enmCpuVendor == CPUMCPUVENDOR_AMD
2402 || pCpum->GuestFeatures.enmCpuVendor == CPUMCPUVENDOR_HYGON)
2403 {
2404 pExtFeatureLeaf = cpumR3CpuIdGetExactLeaf(pCpum, UINT32_C(0x80000001), 0);
2405 if ( pExtFeatureLeaf
2406 && (pExtFeatureLeaf->uEcx & X86_CPUID_AMD_FEATURE_ECX_SVM))
2407 {
2408 PCPUMCPUIDLEAF pSvmFeatureLeaf = cpumR3CpuIdGetExactLeaf(pCpum, 0x8000000a, 0);
2409 if (pSvmFeatureLeaf)
2410 {
2411 pSvmFeatureLeaf->uEax = 0x1;
2412 pSvmFeatureLeaf->uEbx = 0x8000; /** @todo figure out virtual NASID. */
2413 pSvmFeatureLeaf->uEcx = 0;
2414 pSvmFeatureLeaf->uEdx &= ( X86_CPUID_SVM_FEATURE_EDX_NRIP_SAVE /** @todo Support other SVM features */
2415 | X86_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID
2416 | X86_CPUID_SVM_FEATURE_EDX_DECODE_ASSISTS);
2417 }
2418 else
2419 {
2420 /* Should never happen. */
2421 LogRel(("CPUM: Warning! Expected CPUID leaf 0x8000000a not present! SVM features not exposed to the guest\n"));
2422 cpumR3CpuIdZeroLeaf(pCpum, UINT32_C(0x8000000a));
2423 }
2424 }
2425 else
2426 {
2427 /* If SVM is not supported, this is reserved, zero out. */
2428 cpumR3CpuIdZeroLeaf(pCpum, UINT32_C(0x8000000a));
2429 }
2430 }
2431 else
2432 {
2433 /* Cpuid 0x8000000a: Reserved on Intel.
2434 * We zero this since we don't know what it may have been used for.
2435 */
2436 cpumR3CpuIdZeroLeaf(pCpum, UINT32_C(0x8000000a));
2437 }
2438
2439 /* Cpuid 0x8000000b thru 0x80000018: Reserved
2440 * We clear these as we don't know what purpose they might have. */
2441 for (uint32_t uLeaf = UINT32_C(0x8000000b); uLeaf <= UINT32_C(0x80000018); uLeaf++)
2442 cpumR3CpuIdZeroLeaf(pCpum, uLeaf);
2443
2444 /* Cpuid 0x80000019: TLB configuration
2445 * Seems to be harmless, pass them thru as is. */
2446
2447 /* Cpuid 0x8000001a: Peformance optimization identifiers.
2448 * Strip anything we don't know what is or addresses feature we don't implement. */
2449 uSubLeaf = 0;
2450 while ((pCurLeaf = cpumR3CpuIdGetExactLeaf(pCpum, UINT32_C(0x8000001a), uSubLeaf)) != NULL)
2451 {
2452 pCurLeaf->uEax &= RT_BIT_32(0) /* FP128 - use 1x128-bit instead of 2x64-bit. */
2453 | RT_BIT_32(1) /* MOVU - Prefere unaligned MOV over MOVL + MOVH. */
2454 //| RT_BIT_32(2) /* FP256 - use 1x256-bit instead of 2x128-bit. */
2455 ;
2456 pCurLeaf->uEbx = 0; /* reserved */
2457 pCurLeaf->uEcx = 0; /* reserved */
2458 pCurLeaf->uEdx = 0; /* reserved */
2459 uSubLeaf++;
2460 }
2461
2462 /* Cpuid 0x8000001b: Instruct based sampling (IBS) information.
2463 * Clear this as we don't currently virtualize this feature. */
2464 cpumR3CpuIdZeroLeaf(pCpum, UINT32_C(0x8000001b));
2465
2466 /* Cpuid 0x8000001c: Lightweight profiling (LWP) information.
2467 * Clear this as we don't currently virtualize this feature. */
2468 cpumR3CpuIdZeroLeaf(pCpum, UINT32_C(0x8000001c));
2469
2470 /* Cpuid 0x8000001d+ECX: Get cache configuration descriptors.
2471 * We need to sanitize the cores per cache (EAX[25:14]).
2472 *
2473 * This is very much the same as Intel's CPUID(4) leaf, except EAX[31:26]
2474 * and EDX[2] are reserved here, and EAX[14:25] is documented having a
2475 * slightly different meaning.
2476 */
2477 uSubLeaf = 0;
2478 while ((pCurLeaf = cpumR3CpuIdGetExactLeaf(pCpum, UINT32_C(0x8000001d), uSubLeaf)) != NULL)
2479 {
2480#ifdef VBOX_WITH_MULTI_CORE
2481 uint32_t cCores = ((pCurLeaf->uEax >> 14) & 0xfff) + 1;
2482 if (cCores > pVM->cCpus)
2483 cCores = pVM->cCpus;
2484 pCurLeaf->uEax &= UINT32_C(0x00003fff);
2485 pCurLeaf->uEax |= ((cCores - 1) & 0xfff) << 14;
2486#else
2487 pCurLeaf->uEax &= UINT32_C(0x00003fff);
2488#endif
2489 uSubLeaf++;
2490 }
2491
2492 /* Cpuid 0x8000001e: Get APIC / unit / node information.
2493 * If AMD, we configure it for our layout (on EMT(0)). In the multi-core
2494 * setup, we have one compute unit with all the cores in it. Single node.
2495 */
2496 uSubLeaf = 0;
2497 while ((pCurLeaf = cpumR3CpuIdGetExactLeaf(pCpum, UINT32_C(0x8000001e), uSubLeaf)) != NULL)
2498 {
2499 pCurLeaf->uEax = 0; /* Extended APIC ID = EMT(0).idApic (== 0). */
2500 if (pCurLeaf->fFlags & CPUMCPUIDLEAF_F_CONTAINS_APIC_ID)
2501 {
2502#ifdef VBOX_WITH_MULTI_CORE
2503 pCurLeaf->uEbx = pVM->cCpus < 0x100
2504 ? (pVM->cCpus - 1) << 8 : UINT32_C(0x0000ff00); /* Compute unit ID 0, core per unit. */
2505#else
2506 pCurLeaf->uEbx = 0; /* Compute unit ID 0, 1 core per unit. */
2507#endif
2508 pCurLeaf->uEcx = 0; /* Node ID 0, 1 node per CPU. */
2509 }
2510 else
2511 {
2512 Assert(pCpum->GuestFeatures.enmCpuVendor != CPUMCPUVENDOR_AMD);
2513 Assert(pCpum->GuestFeatures.enmCpuVendor != CPUMCPUVENDOR_HYGON);
2514 pCurLeaf->uEbx = 0; /* Reserved. */
2515 pCurLeaf->uEcx = 0; /* Reserved. */
2516 }
2517 pCurLeaf->uEdx = 0; /* Reserved. */
2518 uSubLeaf++;
2519 }
2520
2521 /* Cpuid 0x8000001f...0x8ffffffd: Unknown.
2522 * We don't know these and what they mean, so remove them. */
2523 cpumR3CpuIdRemoveRange(pCpum->GuestInfo.paCpuIdLeavesR3, &pCpum->GuestInfo.cCpuIdLeaves,
2524 UINT32_C(0x8000001f), UINT32_C(0x8ffffffd));
2525
2526 /* Cpuid 0x8ffffffe: Mystery AMD K6 leaf.
2527 * Just pass it thru for now. */
2528
2529 /* Cpuid 0x8fffffff: Mystery hammer time leaf!
2530 * Just pass it thru for now. */
2531
2532 /* Cpuid 0xc0000000: Centaur stuff.
2533 * Harmless, pass it thru. */
2534
2535 /* Cpuid 0xc0000001: Centaur features.
2536 * VIA: EAX - Family, model, stepping.
2537 * EDX - Centaur extended feature flags. Nothing interesting, except may
2538 * FEMMS (bit 5), but VIA marks it as 'reserved', so never mind.
2539 * EBX, ECX - reserved.
2540 * We keep EAX but strips the rest.
2541 */
2542 uSubLeaf = 0;
2543 while ((pCurLeaf = cpumR3CpuIdGetExactLeaf(pCpum, UINT32_C(0xc0000001), uSubLeaf)) != NULL)
2544 {
2545 pCurLeaf->uEbx = 0;
2546 pCurLeaf->uEcx = 0;
2547 pCurLeaf->uEdx = 0; /* Bits 0 thru 9 are documented on sandpil.org, but we don't want them, except maybe 5 (FEMMS). */
2548 uSubLeaf++;
2549 }
2550
2551 /* Cpuid 0xc0000002: Old Centaur Current Performance Data.
2552 * We only have fixed stale values, but should be harmless. */
2553
2554 /* Cpuid 0xc0000003: Reserved.
2555 * We zero this since we don't know what it may have been used for.
2556 */
2557 cpumR3CpuIdZeroLeaf(pCpum, UINT32_C(0xc0000003));
2558
2559 /* Cpuid 0xc0000004: Centaur Performance Info.
2560 * We only have fixed stale values, but should be harmless. */
2561
2562
2563 /* Cpuid 0xc0000005...0xcfffffff: Unknown.
2564 * We don't know these and what they mean, so remove them. */
2565 cpumR3CpuIdRemoveRange(pCpum->GuestInfo.paCpuIdLeavesR3, &pCpum->GuestInfo.cCpuIdLeaves,
2566 UINT32_C(0xc0000005), UINT32_C(0xcfffffff));
2567
2568 return VINF_SUCCESS;
2569#undef PORTABLE_DISABLE_FEATURE_BIT
2570#undef PORTABLE_CLEAR_BITS_WHEN
2571}
2572
2573
2574/**
2575 * Reads a value in /CPUM/IsaExts/ node.
2576 *
2577 * @returns VBox status code (error message raised).
2578 * @param pVM The cross context VM structure. (For errors.)
2579 * @param pIsaExts The /CPUM/IsaExts node (can be NULL).
2580 * @param pszValueName The value / extension name.
2581 * @param penmValue Where to return the choice.
2582 * @param enmDefault The default choice.
2583 */
2584static int cpumR3CpuIdReadIsaExtCfg(PVM pVM, PCFGMNODE pIsaExts, const char *pszValueName,
2585 CPUMISAEXTCFG *penmValue, CPUMISAEXTCFG enmDefault)
2586{
2587 /*
2588 * Try integer encoding first.
2589 */
2590 uint64_t uValue;
2591 int rc = CFGMR3QueryInteger(pIsaExts, pszValueName, &uValue);
2592 if (RT_SUCCESS(rc))
2593 switch (uValue)
2594 {
2595 case 0: *penmValue = CPUMISAEXTCFG_DISABLED; break;
2596 case 1: *penmValue = CPUMISAEXTCFG_ENABLED_SUPPORTED; break;
2597 case 2: *penmValue = CPUMISAEXTCFG_ENABLED_ALWAYS; break;
2598 case 9: *penmValue = CPUMISAEXTCFG_ENABLED_PORTABLE; break;
2599 default:
2600 return VMSetError(pVM, VERR_CPUM_INVALID_CONFIG_VALUE, RT_SRC_POS,
2601 "Invalid config value for '/CPUM/IsaExts/%s': %llu (expected 0/'disabled', 1/'enabled', 2/'portable', or 9/'forced')",
2602 pszValueName, uValue);
2603 }
2604 /*
2605 * If missing, use default.
2606 */
2607 else if (rc == VERR_CFGM_VALUE_NOT_FOUND || rc == VERR_CFGM_NO_PARENT)
2608 *penmValue = enmDefault;
2609 else
2610 {
2611 if (rc == VERR_CFGM_NOT_INTEGER)
2612 {
2613 /*
2614 * Not an integer, try read it as a string.
2615 */
2616 char szValue[32];
2617 rc = CFGMR3QueryString(pIsaExts, pszValueName, szValue, sizeof(szValue));
2618 if (RT_SUCCESS(rc))
2619 {
2620 RTStrToLower(szValue);
2621 size_t cchValue = strlen(szValue);
2622#define EQ(a_str) (cchValue == sizeof(a_str) - 1U && memcmp(szValue, a_str, sizeof(a_str) - 1))
2623 if ( EQ("disabled") || EQ("disable") || EQ("off") || EQ("no"))
2624 *penmValue = CPUMISAEXTCFG_DISABLED;
2625 else if (EQ("enabled") || EQ("enable") || EQ("on") || EQ("yes"))
2626 *penmValue = CPUMISAEXTCFG_ENABLED_SUPPORTED;
2627 else if (EQ("forced") || EQ("force") || EQ("always"))
2628 *penmValue = CPUMISAEXTCFG_ENABLED_ALWAYS;
2629 else if (EQ("portable"))
2630 *penmValue = CPUMISAEXTCFG_ENABLED_PORTABLE;
2631 else if (EQ("default") || EQ("def"))
2632 *penmValue = enmDefault;
2633 else
2634 return VMSetError(pVM, VERR_CPUM_INVALID_CONFIG_VALUE, RT_SRC_POS,
2635 "Invalid config value for '/CPUM/IsaExts/%s': '%s' (expected 0/'disabled', 1/'enabled', 2/'portable', or 9/'forced')",
2636 pszValueName, uValue);
2637#undef EQ
2638 }
2639 }
2640 if (RT_FAILURE(rc))
2641 return VMSetError(pVM, rc, RT_SRC_POS, "Error reading config value '/CPUM/IsaExts/%s': %Rrc", pszValueName, rc);
2642 }
2643 return VINF_SUCCESS;
2644}
2645
2646
2647/**
2648 * Reads a value in /CPUM/IsaExts/ node, forcing it to DISABLED if wanted.
2649 *
2650 * @returns VBox status code (error message raised).
2651 * @param pVM The cross context VM structure. (For errors.)
2652 * @param pIsaExts The /CPUM/IsaExts node (can be NULL).
2653 * @param pszValueName The value / extension name.
2654 * @param penmValue Where to return the choice.
2655 * @param enmDefault The default choice.
2656 * @param fAllowed Allowed choice. Applied both to the result and to
2657 * the default value.
2658 */
2659static int cpumR3CpuIdReadIsaExtCfgEx(PVM pVM, PCFGMNODE pIsaExts, const char *pszValueName,
2660 CPUMISAEXTCFG *penmValue, CPUMISAEXTCFG enmDefault, bool fAllowed)
2661{
2662 int rc;
2663 if (fAllowed)
2664 rc = cpumR3CpuIdReadIsaExtCfg(pVM, pIsaExts, pszValueName, penmValue, enmDefault);
2665 else
2666 {
2667 rc = cpumR3CpuIdReadIsaExtCfg(pVM, pIsaExts, pszValueName, penmValue, false /*enmDefault*/);
2668 if (RT_SUCCESS(rc) && *penmValue == CPUMISAEXTCFG_ENABLED_ALWAYS)
2669 LogRel(("CPUM: Ignoring forced '%s'\n", pszValueName));
2670 *penmValue = CPUMISAEXTCFG_DISABLED;
2671 }
2672 return rc;
2673}
2674
2675
2676/**
2677 * Reads a value in /CPUM/IsaExts/ node that used to be located in /CPUM/.
2678 *
2679 * @returns VBox status code (error message raised).
2680 * @param pVM The cross context VM structure. (For errors.)
2681 * @param pIsaExts The /CPUM/IsaExts node (can be NULL).
2682 * @param pCpumCfg The /CPUM node (can be NULL).
2683 * @param pszValueName The value / extension name.
2684 * @param penmValue Where to return the choice.
2685 * @param enmDefault The default choice.
2686 */
2687static int cpumR3CpuIdReadIsaExtCfgLegacy(PVM pVM, PCFGMNODE pIsaExts, PCFGMNODE pCpumCfg, const char *pszValueName,
2688 CPUMISAEXTCFG *penmValue, CPUMISAEXTCFG enmDefault)
2689{
2690 if (CFGMR3Exists(pCpumCfg, pszValueName))
2691 {
2692 if (!CFGMR3Exists(pIsaExts, pszValueName))
2693 LogRel(("Warning: /CPUM/%s is deprecated, use /CPUM/IsaExts/%s instead.\n", pszValueName, pszValueName));
2694 else
2695 return VMSetError(pVM, VERR_DUPLICATE, RT_SRC_POS,
2696 "Duplicate config values '/CPUM/%s' and '/CPUM/IsaExts/%s' - please remove the former!",
2697 pszValueName, pszValueName);
2698
2699 bool fLegacy;
2700 int rc = CFGMR3QueryBoolDef(pCpumCfg, pszValueName, &fLegacy, enmDefault != CPUMISAEXTCFG_DISABLED);
2701 if (RT_SUCCESS(rc))
2702 {
2703 *penmValue = fLegacy;
2704 return VINF_SUCCESS;
2705 }
2706 return VMSetError(pVM, VERR_DUPLICATE, RT_SRC_POS, "Error querying '/CPUM/%s': %Rrc", pszValueName, rc);
2707 }
2708
2709 return cpumR3CpuIdReadIsaExtCfg(pVM, pIsaExts, pszValueName, penmValue, enmDefault);
2710}
2711
2712
2713static int cpumR3CpuIdReadConfig(PVM pVM, PCPUMCPUIDCONFIG pConfig, PCFGMNODE pCpumCfg, bool fNestedPagingAndFullGuestExec)
2714{
2715 int rc;
2716
2717 /** @cfgm{/CPUM/PortableCpuIdLevel, 8-bit, 0, 3, 0}
2718 * When non-zero CPUID features that could cause portability issues will be
2719 * stripped. The higher the value the more features gets stripped. Higher
2720 * values should only be used when older CPUs are involved since it may
2721 * harm performance and maybe also cause problems with specific guests. */
2722 rc = CFGMR3QueryU8Def(pCpumCfg, "PortableCpuIdLevel", &pVM->cpum.s.u8PortableCpuIdLevel, 0);
2723 AssertLogRelRCReturn(rc, rc);
2724
2725 /** @cfgm{/CPUM/GuestCpuName, string}
2726 * The name of the CPU we're to emulate. The default is the host CPU.
2727 * Note! CPUs other than "host" one is currently unsupported. */
2728 rc = CFGMR3QueryStringDef(pCpumCfg, "GuestCpuName", pConfig->szCpuName, sizeof(pConfig->szCpuName), "host");
2729 AssertLogRelRCReturn(rc, rc);
2730
2731 /** @cfgm{/CPUM/NT4LeafLimit, boolean, false}
2732 * Limit the number of standard CPUID leaves to 0..3 to prevent NT4 from
2733 * bugchecking with MULTIPROCESSOR_CONFIGURATION_NOT_SUPPORTED (0x3e).
2734 * This option corresponds somewhat to IA32_MISC_ENABLES.BOOT_NT4[bit 22].
2735 */
2736 rc = CFGMR3QueryBoolDef(pCpumCfg, "NT4LeafLimit", &pConfig->fNt4LeafLimit, false);
2737 AssertLogRelRCReturn(rc, rc);
2738
2739 /** @cfgm{/CPUM/InvariantTsc, boolean, true}
2740 * Pass-through the invariant TSC flag in 0x80000007 if available on the host
2741 * CPU. On AMD CPUs, users may wish to suppress it to avoid trouble from older
2742 * 64-bit linux guests which assume the presence of AMD performance counters
2743 * that we do not virtualize.
2744 */
2745 rc = CFGMR3QueryBoolDef(pCpumCfg, "InvariantTsc", &pConfig->fInvariantTsc, true);
2746 AssertLogRelRCReturn(rc, rc);
2747
2748 /** @cfgm{/CPUM/InvariantApic, boolean, true}
2749 * Set the Always Running APIC Timer (ARAT) flag in lea if true; otherwise
2750 * pass through the host setting. The Windows 10/11 HAL won't use APIC timers
2751 * unless the ARAT bit is set. Note that both Intel and AMD set this bit.
2752 */
2753 rc = CFGMR3QueryBoolDef(pCpumCfg, "InvariantApic", &pConfig->fInvariantApic, true);
2754 AssertLogRelRCReturn(rc, rc);
2755
2756 /** @cfgm{/CPUM/ForceVme, boolean, false}
2757 * Always expose the VME (Virtual-8086 Mode Extensions) capability if true.
2758 * By default the flag is passed thru as is from the host CPU, except
2759 * on AMD Ryzen CPUs where it's masked to avoid trouble with XP/Server 2003
2760 * guests and DOS boxes in general.
2761 */
2762 rc = CFGMR3QueryBoolDef(pCpumCfg, "ForceVme", &pConfig->fForceVme, false);
2763 AssertLogRelRCReturn(rc, rc);
2764
2765 /** @cfgm{/CPUM/MaxIntelFamilyModelStep, uint32_t, UINT32_MAX}
2766 * Restrict the reported CPU family+model+stepping of intel CPUs. This is
2767 * probably going to be a temporary hack, so don't depend on this.
2768 * The 1st byte of the value is the stepping, the 2nd byte value is the model
2769 * number and the 3rd byte value is the family, and the 4th value must be zero.
2770 */
2771 rc = CFGMR3QueryU32Def(pCpumCfg, "MaxIntelFamilyModelStep", &pConfig->uMaxIntelFamilyModelStep, UINT32_MAX);
2772 AssertLogRelRCReturn(rc, rc);
2773
2774 /** @cfgm{/CPUM/MaxStdLeaf, uint32_t, 0x00000016}
2775 * The last standard leaf to keep. The actual last value that is stored in EAX
2776 * is RT_MAX(CPUID[0].EAX,/CPUM/MaxStdLeaf). Leaves beyond the max leaf are
2777 * removed. (This works independently of and differently from NT4LeafLimit.)
2778 * The default is usually set to what we're able to reasonably sanitize.
2779 */
2780 rc = CFGMR3QueryU32Def(pCpumCfg, "MaxStdLeaf", &pConfig->uMaxStdLeaf, UINT32_C(0x00000016));
2781 AssertLogRelRCReturn(rc, rc);
2782
2783 /** @cfgm{/CPUM/MaxExtLeaf, uint32_t, 0x8000001e}
2784 * The last extended leaf to keep. The actual last value that is stored in EAX
2785 * is RT_MAX(CPUID[0x80000000].EAX,/CPUM/MaxStdLeaf). Leaves beyond the max
2786 * leaf are removed. The default is set to what we're able to sanitize.
2787 */
2788 rc = CFGMR3QueryU32Def(pCpumCfg, "MaxExtLeaf", &pConfig->uMaxExtLeaf, UINT32_C(0x8000001e));
2789 AssertLogRelRCReturn(rc, rc);
2790
2791 /** @cfgm{/CPUM/MaxCentaurLeaf, uint32_t, 0xc0000004}
2792 * The last extended leaf to keep. The actual last value that is stored in EAX
2793 * is RT_MAX(CPUID[0xc0000000].EAX,/CPUM/MaxCentaurLeaf). Leaves beyond the max
2794 * leaf are removed. The default is set to what we're able to sanitize.
2795 */
2796 rc = CFGMR3QueryU32Def(pCpumCfg, "MaxCentaurLeaf", &pConfig->uMaxCentaurLeaf, UINT32_C(0xc0000004));
2797 AssertLogRelRCReturn(rc, rc);
2798
2799#ifdef RT_ARCH_AMD64 /** @todo next VT-x/AMD-V on non-AMD64 hosts */
2800 bool fQueryNestedHwvirt = false
2801#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
2802 || pVM->cpum.s.HostFeatures.s.enmCpuVendor == CPUMCPUVENDOR_AMD
2803 || pVM->cpum.s.HostFeatures.s.enmCpuVendor == CPUMCPUVENDOR_HYGON
2804#endif
2805#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
2806 || pVM->cpum.s.HostFeatures.s.enmCpuVendor == CPUMCPUVENDOR_INTEL
2807 || pVM->cpum.s.HostFeatures.s.enmCpuVendor == CPUMCPUVENDOR_VIA
2808#endif
2809 ;
2810 if (fQueryNestedHwvirt)
2811 {
2812 /** @cfgm{/CPUM/NestedHWVirt, bool, false}
2813 * Whether to expose the hardware virtualization (VMX/SVM) feature to the guest.
2814 * The default is false, and when enabled requires a 64-bit CPU with support for
2815 * nested-paging and AMD-V or unrestricted guest mode.
2816 */
2817 rc = CFGMR3QueryBoolDef(pCpumCfg, "NestedHWVirt", &pConfig->fNestedHWVirt, false);
2818 AssertLogRelRCReturn(rc, rc);
2819 if (pConfig->fNestedHWVirt)
2820 {
2821 /** @todo Think about enabling this later with NEM/KVM. */
2822 if (VM_IS_NEM_ENABLED(pVM))
2823 {
2824 LogRel(("CPUM: Warning! Can't turn on nested VT-x/AMD-V when NEM is used! (later)\n"));
2825 pConfig->fNestedHWVirt = false;
2826 }
2827 else if (!fNestedPagingAndFullGuestExec)
2828 return VMSetError(pVM, VERR_CPUM_INVALID_HWVIRT_CONFIG, RT_SRC_POS,
2829 "Cannot enable nested VT-x/AMD-V without nested-paging and unrestricted guest execution!\n");
2830 }
2831 }
2832#endif /** @todo */
2833
2834 /*
2835 * Instruction Set Architecture (ISA) Extensions.
2836 */
2837 PCFGMNODE pIsaExts = CFGMR3GetChild(pCpumCfg, "IsaExts");
2838 if (pIsaExts)
2839 {
2840 rc = CFGMR3ValidateConfig(pIsaExts, "/CPUM/IsaExts/",
2841 "CMPXCHG16B"
2842 "|MONITOR"
2843 "|MWaitExtensions"
2844 "|SSE4.1"
2845 "|SSE4.2"
2846 "|XSAVE"
2847 "|AVX"
2848 "|AVX2"
2849 "|AESNI"
2850 "|PCLMUL"
2851 "|POPCNT"
2852 "|MOVBE"
2853 "|RDRAND"
2854 "|RDSEED"
2855 "|ADX"
2856 "|CLFLUSHOPT"
2857 "|SHA"
2858 "|FSGSBASE"
2859 "|PCID"
2860 "|INVPCID"
2861 "|FlushCmdMsr"
2862 "|MdsClear"
2863 "|ArchCapMsr"
2864 "|FMA"
2865 "|F16C"
2866 "|ABM"
2867 "|SSE4A"
2868 "|MISALNSSE"
2869 "|3DNOWPRF"
2870 "|AXMMX"
2871 , "" /*pszValidNodes*/, "CPUM" /*pszWho*/, 0 /*uInstance*/);
2872 if (RT_FAILURE(rc))
2873 return rc;
2874 }
2875
2876 /** @cfgm{/CPUM/IsaExts/CMPXCHG16B, boolean, true}
2877 * Expose CMPXCHG16B to the guest if available. All host CPUs which support
2878 * hardware virtualization have it.
2879 */
2880 rc = cpumR3CpuIdReadIsaExtCfgLegacy(pVM, pIsaExts, pCpumCfg, "CMPXCHG16B", &pConfig->enmCmpXchg16b, true);
2881 AssertLogRelRCReturn(rc, rc);
2882
2883 /** @cfgm{/CPUM/IsaExts/MONITOR, boolean, true}
2884 * Expose MONITOR/MWAIT instructions to the guest.
2885 */
2886 rc = cpumR3CpuIdReadIsaExtCfgLegacy(pVM, pIsaExts, pCpumCfg, "MONITOR", &pConfig->enmMonitor, true);
2887 AssertLogRelRCReturn(rc, rc);
2888
2889 /** @cfgm{/CPUM/IsaExts/MWaitExtensions, boolean, false}
2890 * Expose MWAIT extended features to the guest. For now we expose just MWAIT
2891 * break on interrupt feature (bit 1).
2892 */
2893 rc = cpumR3CpuIdReadIsaExtCfgLegacy(pVM, pIsaExts, pCpumCfg, "MWaitExtensions", &pConfig->enmMWaitExtensions, false);
2894 AssertLogRelRCReturn(rc, rc);
2895
2896 /** @cfgm{/CPUM/IsaExts/SSE4.1, boolean, true}
2897 * Expose SSE4.1 to the guest if available.
2898 */
2899 rc = cpumR3CpuIdReadIsaExtCfgLegacy(pVM, pIsaExts, pCpumCfg, "SSE4.1", &pConfig->enmSse41, true);
2900 AssertLogRelRCReturn(rc, rc);
2901
2902 /** @cfgm{/CPUM/IsaExts/SSE4.2, boolean, true}
2903 * Expose SSE4.2 to the guest if available.
2904 */
2905 rc = cpumR3CpuIdReadIsaExtCfgLegacy(pVM, pIsaExts, pCpumCfg, "SSE4.2", &pConfig->enmSse42, true);
2906 AssertLogRelRCReturn(rc, rc);
2907
2908#ifdef RT_ARCH_AMD64
2909 bool const fMayHaveXSave = pVM->cpum.s.HostFeatures.s.fXSaveRstor
2910 && pVM->cpum.s.HostFeatures.s.fOpSysXSaveRstor
2911 && ( VM_IS_NEM_ENABLED(pVM)
2912 ? NEMHCGetFeatures(pVM) & NEM_FEAT_F_XSAVE_XRSTOR
2913 : VM_IS_EXEC_ENGINE_IEM(pVM)
2914 ? true
2915 : fNestedPagingAndFullGuestExec);
2916 uint64_t const fXStateHostMask = pVM->cpum.s.fXStateHostMask;
2917#else
2918 bool const fMayHaveXSave = true;
2919 uint64_t const fXStateHostMask = XSAVE_C_YMM | XSAVE_C_SSE | XSAVE_C_X87;
2920#endif
2921
2922 /** @cfgm{/CPUM/IsaExts/XSAVE, boolean, depends}
2923 * Expose XSAVE/XRSTOR to the guest if available. For the time being the
2924 * default is to only expose this to VMs with nested paging and AMD-V or
2925 * unrestricted guest execution mode. Not possible to force this one without
2926 * host support at the moment.
2927 */
2928 rc = cpumR3CpuIdReadIsaExtCfgEx(pVM, pIsaExts, "XSAVE", &pConfig->enmXSave, true,
2929 fMayHaveXSave /*fAllowed*/);
2930 AssertLogRelRCReturn(rc, rc);
2931
2932 /** @cfgm{/CPUM/IsaExts/AVX, boolean, depends}
2933 * Expose the AVX instruction set extensions to the guest if available and
2934 * XSAVE is exposed too. For the time being the default is to only expose this
2935 * to VMs with nested paging and AMD-V or unrestricted guest execution mode.
2936 */
2937 rc = cpumR3CpuIdReadIsaExtCfgEx(pVM, pIsaExts, "AVX", &pConfig->enmAvx, fNestedPagingAndFullGuestExec,
2938 fMayHaveXSave && pConfig->enmXSave && (fXStateHostMask & XSAVE_C_YMM) /*fAllowed*/);
2939 AssertLogRelRCReturn(rc, rc);
2940
2941 /** @cfgm{/CPUM/IsaExts/AVX2, boolean, depends}
2942 * Expose the AVX2 instruction set extensions to the guest if available and
2943 * XSAVE is exposed too. For the time being the default is to only expose this
2944 * to VMs with nested paging and AMD-V or unrestricted guest execution mode.
2945 */
2946 rc = cpumR3CpuIdReadIsaExtCfgEx(pVM, pIsaExts, "AVX2", &pConfig->enmAvx2, fNestedPagingAndFullGuestExec /* temporarily */,
2947 fMayHaveXSave && pConfig->enmXSave && (fXStateHostMask & XSAVE_C_YMM) /*fAllowed*/);
2948 AssertLogRelRCReturn(rc, rc);
2949
2950 /** @cfgm{/CPUM/IsaExts/AESNI, isaextcfg, depends}
2951 * Whether to expose the AES instructions to the guest. For the time being the
2952 * default is to only do this for VMs with nested paging and AMD-V or
2953 * unrestricted guest mode.
2954 */
2955 rc = cpumR3CpuIdReadIsaExtCfg(pVM, pIsaExts, "AESNI", &pConfig->enmAesNi, fNestedPagingAndFullGuestExec);
2956 AssertLogRelRCReturn(rc, rc);
2957
2958 /** @cfgm{/CPUM/IsaExts/PCLMUL, isaextcfg, depends}
2959 * Whether to expose the PCLMULQDQ instructions to the guest. For the time
2960 * being the default is to only do this for VMs with nested paging and AMD-V or
2961 * unrestricted guest mode.
2962 */
2963 rc = cpumR3CpuIdReadIsaExtCfg(pVM, pIsaExts, "PCLMUL", &pConfig->enmPClMul, fNestedPagingAndFullGuestExec);
2964 AssertLogRelRCReturn(rc, rc);
2965
2966 /** @cfgm{/CPUM/IsaExts/POPCNT, isaextcfg, true}
2967 * Whether to expose the POPCNT instructions to the guest.
2968 */
2969 rc = cpumR3CpuIdReadIsaExtCfg(pVM, pIsaExts, "POPCNT", &pConfig->enmPopCnt, CPUMISAEXTCFG_ENABLED_SUPPORTED);
2970 AssertLogRelRCReturn(rc, rc);
2971
2972 /** @cfgm{/CPUM/IsaExts/MOVBE, isaextcfg, depends}
2973 * Whether to expose the MOVBE instructions to the guest. For the time
2974 * being the default is to only do this for VMs with nested paging and AMD-V or
2975 * unrestricted guest mode.
2976 */
2977 rc = cpumR3CpuIdReadIsaExtCfg(pVM, pIsaExts, "MOVBE", &pConfig->enmMovBe, true);
2978 AssertLogRelRCReturn(rc, rc);
2979
2980 /** @cfgm{/CPUM/IsaExts/RDRAND, isaextcfg, depends}
2981 * Whether to expose the RDRAND instructions to the guest. For the time being
2982 * the default is to only do this for VMs with nested paging and AMD-V or
2983 * unrestricted guest mode.
2984 */
2985 rc = cpumR3CpuIdReadIsaExtCfg(pVM, pIsaExts, "RDRAND", &pConfig->enmRdRand, fNestedPagingAndFullGuestExec);
2986 AssertLogRelRCReturn(rc, rc);
2987
2988 /** @cfgm{/CPUM/IsaExts/RDSEED, isaextcfg, depends}
2989 * Whether to expose the RDSEED instructions to the guest. For the time being
2990 * the default is to only do this for VMs with nested paging and AMD-V or
2991 * unrestricted guest mode.
2992 */
2993 rc = cpumR3CpuIdReadIsaExtCfg(pVM, pIsaExts, "RDSEED", &pConfig->enmRdSeed, fNestedPagingAndFullGuestExec);
2994 AssertLogRelRCReturn(rc, rc);
2995
2996 /** @cfgm{/CPUM/IsaExts/ADX, isaextcfg, depends}
2997 * Whether to expose the ADX instructions to the guest. For the time being
2998 * the default is to only do this for VMs with nested paging and AMD-V or
2999 * unrestricted guest mode.
3000 */
3001 rc = cpumR3CpuIdReadIsaExtCfg(pVM, pIsaExts, "ADX", &pConfig->enmAdx, fNestedPagingAndFullGuestExec);
3002 AssertLogRelRCReturn(rc, rc);
3003
3004 /** @cfgm{/CPUM/IsaExts/CLFLUSHOPT, isaextcfg, depends}
3005 * Whether to expose the CLFLUSHOPT instructions to the guest. For the time
3006 * being the default is to only do this for VMs with nested paging and AMD-V or
3007 * unrestricted guest mode.
3008 */
3009 rc = cpumR3CpuIdReadIsaExtCfg(pVM, pIsaExts, "CLFLUSHOPT", &pConfig->enmCLFlushOpt, fNestedPagingAndFullGuestExec);
3010 AssertLogRelRCReturn(rc, rc);
3011
3012 /** @cfgm{/CPUM/IsaExts/SHA, isaextcfg, depends}
3013 * Whether to expose the SHA instructions to the guest. For the time being
3014 * the default is to only do this for VMs with nested paging and AMD-V or
3015 * unrestricted guest mode.
3016 */
3017 rc = cpumR3CpuIdReadIsaExtCfg(pVM, pIsaExts, "SHA", &pConfig->enmSha, fNestedPagingAndFullGuestExec);
3018 AssertLogRelRCReturn(rc, rc);
3019
3020 /** @cfgm{/CPUM/IsaExts/FSGSBASE, isaextcfg, true}
3021 * Whether to expose the read/write FSGSBASE instructions to the guest.
3022 */
3023 rc = cpumR3CpuIdReadIsaExtCfg(pVM, pIsaExts, "FSGSBASE", &pConfig->enmFsGsBase, true);
3024 AssertLogRelRCReturn(rc, rc);
3025
3026 /** @cfgm{/CPUM/IsaExts/PCID, isaextcfg, true}
3027 * Whether to expose the PCID feature to the guest.
3028 */
3029 rc = cpumR3CpuIdReadIsaExtCfg(pVM, pIsaExts, "PCID", &pConfig->enmPcid, pConfig->enmFsGsBase);
3030 AssertLogRelRCReturn(rc, rc);
3031
3032 /** @cfgm{/CPUM/IsaExts/INVPCID, isaextcfg, true}
3033 * Whether to expose the INVPCID instruction to the guest.
3034 */
3035 rc = cpumR3CpuIdReadIsaExtCfg(pVM, pIsaExts, "INVPCID", &pConfig->enmInvpcid, pConfig->enmFsGsBase);
3036 AssertLogRelRCReturn(rc, rc);
3037
3038 /** @cfgm{/CPUM/IsaExts/FlushCmdMsr, isaextcfg, true}
3039 * Whether to expose the IA32_FLUSH_CMD MSR to the guest.
3040 */
3041 rc = cpumR3CpuIdReadIsaExtCfg(pVM, pIsaExts, "FlushCmdMsr", &pConfig->enmFlushCmdMsr, CPUMISAEXTCFG_ENABLED_SUPPORTED);
3042 AssertLogRelRCReturn(rc, rc);
3043
3044 /** @cfgm{/CPUM/IsaExts/MdsClear, isaextcfg, true}
3045 * Whether to advertise the VERW and MDS related IA32_FLUSH_CMD MSR bits to
3046 * the guest. Requires FlushCmdMsr to be present too.
3047 */
3048 rc = cpumR3CpuIdReadIsaExtCfg(pVM, pIsaExts, "MdsClear", &pConfig->enmMdsClear, CPUMISAEXTCFG_ENABLED_SUPPORTED);
3049 AssertLogRelRCReturn(rc, rc);
3050
3051 /** @cfgm{/CPUM/IsaExts/ArchCapMSr, isaextcfg, true}
3052 * Whether to expose the MSR_IA32_ARCH_CAPABILITIES MSR to the guest.
3053 */
3054 rc = cpumR3CpuIdReadIsaExtCfg(pVM, pIsaExts, "ArchCapMsr", &pConfig->enmArchCapMsr, CPUMISAEXTCFG_ENABLED_SUPPORTED_OR_NOT_AMD64);
3055 AssertLogRelRCReturn(rc, rc);
3056
3057 /** @cfgm{/CPUM/IsaExts/FMA, boolean, depends}
3058 * Expose the FMA instruction set extensions to the guest if available and
3059 * XSAVE is exposed too. For the time being the default is to only expose this
3060 * to VMs with nested paging and AMD-V or unrestricted guest execution mode.
3061 */
3062 rc = cpumR3CpuIdReadIsaExtCfgEx(pVM, pIsaExts, "FMA", &pConfig->enmFma, fNestedPagingAndFullGuestExec /* temporarily */,
3063 fMayHaveXSave && pConfig->enmXSave && (fXStateHostMask & XSAVE_C_YMM) /*fAllowed*/);
3064 AssertLogRelRCReturn(rc, rc);
3065
3066 /** @cfgm{/CPUM/IsaExts/F16C, boolean, depends}
3067 * Expose the F16C instruction set extensions to the guest if available and
3068 * XSAVE is exposed too. For the time being the default is to only expose this
3069 * to VMs with nested paging and AMD-V or unrestricted guest execution mode.
3070 */
3071 rc = cpumR3CpuIdReadIsaExtCfgEx(pVM, pIsaExts, "F16C", &pConfig->enmF16c, fNestedPagingAndFullGuestExec /* temporarily */,
3072 fMayHaveXSave && pConfig->enmXSave && (fXStateHostMask & XSAVE_C_YMM) /*fAllowed*/);
3073 AssertLogRelRCReturn(rc, rc);
3074
3075
3076 /* AMD: */
3077
3078 /** @cfgm{/CPUM/IsaExts/ABM, isaextcfg, true}
3079 * Whether to expose the AMD ABM instructions to the guest.
3080 */
3081 rc = cpumR3CpuIdReadIsaExtCfg(pVM, pIsaExts, "ABM", &pConfig->enmAbm, CPUMISAEXTCFG_ENABLED_SUPPORTED);
3082 AssertLogRelRCReturn(rc, rc);
3083
3084 /** @cfgm{/CPUM/IsaExts/SSE4A, isaextcfg, depends}
3085 * Whether to expose the AMD SSE4A instructions to the guest. For the time
3086 * being the default is to only do this for VMs with nested paging and AMD-V or
3087 * unrestricted guest mode.
3088 */
3089 rc = cpumR3CpuIdReadIsaExtCfg(pVM, pIsaExts, "SSE4A", &pConfig->enmSse4A, fNestedPagingAndFullGuestExec);
3090 AssertLogRelRCReturn(rc, rc);
3091
3092 /** @cfgm{/CPUM/IsaExts/MISALNSSE, isaextcfg, depends}
3093 * Whether to expose the AMD MisAlSse feature (MXCSR flag 17) to the guest. For
3094 * the time being the default is to only do this for VMs with nested paging and
3095 * AMD-V or unrestricted guest mode.
3096 */
3097 rc = cpumR3CpuIdReadIsaExtCfg(pVM, pIsaExts, "MISALNSSE", &pConfig->enmMisAlnSse, fNestedPagingAndFullGuestExec);
3098 AssertLogRelRCReturn(rc, rc);
3099
3100 /** @cfgm{/CPUM/IsaExts/3DNOWPRF, isaextcfg, depends}
3101 * Whether to expose the AMD 3D Now! prefetch instructions to the guest.
3102 * For the time being the default is to only do this for VMs with nested paging
3103 * and AMD-V or unrestricted guest mode.
3104 */
3105 rc = cpumR3CpuIdReadIsaExtCfg(pVM, pIsaExts, "3DNOWPRF", &pConfig->enm3dNowPrf, fNestedPagingAndFullGuestExec);
3106 AssertLogRelRCReturn(rc, rc);
3107
3108 /** @cfgm{/CPUM/IsaExts/AXMMX, isaextcfg, depends}
3109 * Whether to expose the AMD's MMX Extensions to the guest. For the time being
3110 * the default is to only do this for VMs with nested paging and AMD-V or
3111 * unrestricted guest mode.
3112 */
3113 rc = cpumR3CpuIdReadIsaExtCfg(pVM, pIsaExts, "AXMMX", &pConfig->enmAmdExtMmx, fNestedPagingAndFullGuestExec);
3114 AssertLogRelRCReturn(rc, rc);
3115
3116 return VINF_SUCCESS;
3117}
3118
3119
3120/**
3121 * Checks and fixes the maximum physical address width supported by the
3122 * variable-range MTRR MSRs to be consistent with what is reported in CPUID.
3123 *
3124 * @returns VBox status code.
3125 * @param pVM The cross context VM structure.
3126 * @param cVarMtrrs The number of variable-range MTRRs reported to the guest.
3127 */
3128static int cpumR3FixVarMtrrPhysAddrWidths(PVM pVM, uint8_t const cVarMtrrs)
3129{
3130 AssertLogRelMsgReturn(cVarMtrrs <= RT_ELEMENTS(pVM->apCpusR3[0]->cpum.s.GuestMsrs.msr.aMtrrVarMsrs),
3131 ("Invalid number of variable range MTRRs reported (%u)\n", cVarMtrrs),
3132 VERR_CPUM_IPE_2);
3133
3134 /*
3135 * CPUID determines the actual maximum physical address width reported and supported.
3136 * If the CPU DB profile reported fewer address bits, we must correct it here by
3137 * updating the MSR write #GP masks of all the variable-range MTRR MSRs. Otherwise,
3138 * they cause problems when guests write to these MTRR MSRs, see @bugref{10498#c32}.
3139 */
3140 PCPUMMSRRANGE pBaseRange0 = cpumLookupMsrRange(pVM, MSR_IA32_MTRR_PHYSBASE0);
3141 AssertLogRelMsgReturn(pBaseRange0, ("Failed to lookup the IA32_MTRR_PHYSBASE[0] MSR range\n"), VERR_NOT_FOUND);
3142
3143 PCPUMMSRRANGE pMaskRange0 = cpumLookupMsrRange(pVM, MSR_IA32_MTRR_PHYSMASK0);
3144 AssertLogRelMsgReturn(pMaskRange0, ("Failed to lookup the IA32_MTRR_PHYSMASK[0] MSR range\n"), VERR_NOT_FOUND);
3145
3146 uint64_t const fPhysBaseWrGpMask = pBaseRange0->fWrGpMask;
3147 uint64_t const fPhysMaskWrGpMask = pMaskRange0->fWrGpMask;
3148
3149 uint8_t const cGuestMaxPhysAddrWidth = pVM->cpum.s.GuestFeatures.cMaxPhysAddrWidth;
3150 uint8_t const cProfilePhysBaseMaxPhysAddrWidth = ASMBitLastSetU64(~fPhysBaseWrGpMask);
3151 uint8_t const cProfilePhysMaskMaxPhysAddrWidth = ASMBitLastSetU64(~fPhysMaskWrGpMask);
3152
3153 AssertLogRelMsgReturn(cProfilePhysBaseMaxPhysAddrWidth == cProfilePhysMaskMaxPhysAddrWidth,
3154 ("IA32_MTRR_PHYSBASE and IA32_MTRR_PHYSMASK report different physical address widths (%u and %u)\n",
3155 cProfilePhysBaseMaxPhysAddrWidth, cProfilePhysMaskMaxPhysAddrWidth),
3156 VERR_CPUM_IPE_2);
3157 AssertLogRelMsgReturn(cProfilePhysBaseMaxPhysAddrWidth > 12 && cProfilePhysBaseMaxPhysAddrWidth <= 64,
3158 ("IA32_MTRR_PHYSBASE and IA32_MTRR_PHYSMASK reports an invalid physical address width of %u bits\n",
3159 cProfilePhysBaseMaxPhysAddrWidth), VERR_CPUM_IPE_2);
3160
3161 if (cProfilePhysBaseMaxPhysAddrWidth < cGuestMaxPhysAddrWidth)
3162 {
3163 uint64_t fNewPhysBaseWrGpMask = fPhysBaseWrGpMask;
3164 uint64_t fNewPhysMaskWrGpMask = fPhysMaskWrGpMask;
3165 int8_t cBits = cGuestMaxPhysAddrWidth - cProfilePhysBaseMaxPhysAddrWidth;
3166 while (cBits)
3167 {
3168 uint64_t const fWrGpAndMask = ~(uint64_t)RT_BIT_64(cProfilePhysBaseMaxPhysAddrWidth + cBits - 1);
3169 fNewPhysBaseWrGpMask &= fWrGpAndMask;
3170 fNewPhysMaskWrGpMask &= fWrGpAndMask;
3171 --cBits;
3172 }
3173
3174 for (uint8_t iVarMtrr = 1; iVarMtrr < cVarMtrrs; iVarMtrr++)
3175 {
3176 PCPUMMSRRANGE pBaseRange = cpumLookupMsrRange(pVM, MSR_IA32_MTRR_PHYSBASE0 + (iVarMtrr * 2));
3177 AssertLogRelMsgReturn(pBaseRange, ("Failed to lookup the IA32_MTRR_PHYSBASE[%u] MSR range\n", iVarMtrr),
3178 VERR_NOT_FOUND);
3179
3180 PCPUMMSRRANGE pMaskRange = cpumLookupMsrRange(pVM, MSR_IA32_MTRR_PHYSMASK0 + (iVarMtrr * 2));
3181 AssertLogRelMsgReturn(pMaskRange, ("Failed to lookup the IA32_MTRR_PHYSMASK[%u] MSR range\n", iVarMtrr),
3182 VERR_NOT_FOUND);
3183
3184 AssertLogRelMsgReturn(pBaseRange->fWrGpMask == fPhysBaseWrGpMask,
3185 ("IA32_MTRR_PHYSBASE[%u] write GP mask (%#016RX64) differs from IA32_MTRR_PHYSBASE[0] write GP mask (%#016RX64)\n",
3186 iVarMtrr, pBaseRange->fWrGpMask, fPhysBaseWrGpMask),
3187 VERR_CPUM_IPE_1);
3188 AssertLogRelMsgReturn(pMaskRange->fWrGpMask == fPhysMaskWrGpMask,
3189 ("IA32_MTRR_PHYSMASK[%u] write GP mask (%#016RX64) differs from IA32_MTRR_PHYSMASK[0] write GP mask (%#016RX64)\n",
3190 iVarMtrr, pMaskRange->fWrGpMask, fPhysMaskWrGpMask),
3191 VERR_CPUM_IPE_1);
3192
3193 pBaseRange->fWrGpMask = fNewPhysBaseWrGpMask;
3194 pMaskRange->fWrGpMask = fNewPhysMaskWrGpMask;
3195 }
3196
3197 pBaseRange0->fWrGpMask = fNewPhysBaseWrGpMask;
3198 pMaskRange0->fWrGpMask = fNewPhysMaskWrGpMask;
3199
3200 LogRel(("CPUM: Updated IA32_MTRR_PHYSBASE[0..%u] MSR write #GP mask (old=%#016RX64 new=%#016RX64)\n",
3201 cVarMtrrs - 1, fPhysBaseWrGpMask, fNewPhysBaseWrGpMask));
3202 LogRel(("CPUM: Updated IA32_MTRR_PHYSMASK[0..%u] MSR write #GP mask (old=%#016RX64 new=%#016RX64)\n",
3203 cVarMtrrs - 1, fPhysMaskWrGpMask, fNewPhysMaskWrGpMask));
3204 }
3205
3206 return VINF_SUCCESS;
3207}
3208
3209
3210/**
3211 * Inserts variable-range MTRR MSR ranges based on the given count.
3212 *
3213 * Since we need to insert the MSRs beyond what the CPU profile has inserted, we
3214 * reinsert the whole range here since the variable-range MTRR MSR read+write
3215 * functions handle ranges as well as the \#GP checking.
3216 *
3217 * @returns VBox status code.
3218 * @param pVM The cross context VM structure.
3219 * @param cVarMtrrs The number of variable-range MTRRs to insert. This must be
3220 * less than or equal to CPUMCTX_MAX_MTRRVAR_COUNT.
3221 */
3222static int cpumR3VarMtrrMsrRangeInsert(PVM pVM, uint8_t const cVarMtrrs)
3223{
3224#ifdef VBOX_WITH_STATISTICS
3225# define CPUM_MTRR_PHYSBASE_MSRRANGE(a_uMsr, a_uValue, a_szName) \
3226 { (a_uMsr), (a_uMsr), kCpumMsrRdFn_Ia32MtrrPhysBaseN, kCpumMsrWrFn_Ia32MtrrPhysBaseN, 0, 0, a_uValue, 0, 0, a_szName, { 0 }, { 0 }, { 0 }, { 0 } }
3227# define CPUM_MTRR_PHYSMASK_MSRRANGE(a_uMsr, a_uValue, a_szName) \
3228 { (a_uMsr), (a_uMsr), kCpumMsrRdFn_Ia32MtrrPhysMaskN, kCpumMsrWrFn_Ia32MtrrPhysMaskN, 0, 0, a_uValue, 0, 0, a_szName, { 0 }, { 0 }, { 0 }, { 0 } }
3229#else
3230# define CPUM_MTRR_PHYSBASE_MSRRANGE(a_uMsr, a_uValue, a_szName) \
3231 { (a_uMsr), (a_uMsr), kCpumMsrRdFn_Ia32MtrrPhysBaseN, kCpumMsrWrFn_Ia32MtrrPhysBaseN, 0, 0, a_uValue, 0, 0, a_szName }
3232# define CPUM_MTRR_PHYSMASK_MSRRANGE(a_uMsr, a_uValue, a_szName) \
3233 { (a_uMsr), (a_uMsr), kCpumMsrRdFn_Ia32MtrrPhysMaskN, kCpumMsrWrFn_Ia32MtrrPhysMaskN, 0, 0, a_uValue, 0, 0, a_szName }
3234#endif
3235 static CPUMMSRRANGE const s_aMsrRanges_MtrrPhysBase[CPUMCTX_MAX_MTRRVAR_COUNT] =
3236 {
3237 CPUM_MTRR_PHYSBASE_MSRRANGE(MSR_IA32_MTRR_PHYSBASE0, 0, "MSR_IA32_MTRR_PHYSBASE0"),
3238 CPUM_MTRR_PHYSBASE_MSRRANGE(MSR_IA32_MTRR_PHYSBASE1, 1, "MSR_IA32_MTRR_PHYSBASE1"),
3239 CPUM_MTRR_PHYSBASE_MSRRANGE(MSR_IA32_MTRR_PHYSBASE2, 2, "MSR_IA32_MTRR_PHYSBASE2"),
3240 CPUM_MTRR_PHYSBASE_MSRRANGE(MSR_IA32_MTRR_PHYSBASE3, 3, "MSR_IA32_MTRR_PHYSBASE3"),
3241 CPUM_MTRR_PHYSBASE_MSRRANGE(MSR_IA32_MTRR_PHYSBASE4, 4, "MSR_IA32_MTRR_PHYSBASE4"),
3242 CPUM_MTRR_PHYSBASE_MSRRANGE(MSR_IA32_MTRR_PHYSBASE5, 5, "MSR_IA32_MTRR_PHYSBASE5"),
3243 CPUM_MTRR_PHYSBASE_MSRRANGE(MSR_IA32_MTRR_PHYSBASE6, 6, "MSR_IA32_MTRR_PHYSBASE6"),
3244 CPUM_MTRR_PHYSBASE_MSRRANGE(MSR_IA32_MTRR_PHYSBASE7, 7, "MSR_IA32_MTRR_PHYSBASE7"),
3245 CPUM_MTRR_PHYSBASE_MSRRANGE(MSR_IA32_MTRR_PHYSBASE8, 8, "MSR_IA32_MTRR_PHYSBASE8"),
3246 CPUM_MTRR_PHYSBASE_MSRRANGE(MSR_IA32_MTRR_PHYSBASE9, 9, "MSR_IA32_MTRR_PHYSBASE9"),
3247 CPUM_MTRR_PHYSBASE_MSRRANGE(MSR_IA32_MTRR_PHYSBASE9 + 2, 10, "MSR_IA32_MTRR_PHYSBASE10"),
3248 CPUM_MTRR_PHYSBASE_MSRRANGE(MSR_IA32_MTRR_PHYSBASE9 + 4, 11, "MSR_IA32_MTRR_PHYSBASE11"),
3249 CPUM_MTRR_PHYSBASE_MSRRANGE(MSR_IA32_MTRR_PHYSBASE9 + 6, 12, "MSR_IA32_MTRR_PHYSBASE12"),
3250 CPUM_MTRR_PHYSBASE_MSRRANGE(MSR_IA32_MTRR_PHYSBASE9 + 8, 13, "MSR_IA32_MTRR_PHYSBASE13"),
3251 CPUM_MTRR_PHYSBASE_MSRRANGE(MSR_IA32_MTRR_PHYSBASE9 + 10, 14, "MSR_IA32_MTRR_PHYSBASE14"),
3252 CPUM_MTRR_PHYSBASE_MSRRANGE(MSR_IA32_MTRR_PHYSBASE9 + 12, 15, "MSR_IA32_MTRR_PHYSBASE15"),
3253 };
3254 static CPUMMSRRANGE const s_aMsrRanges_MtrrPhysMask[CPUMCTX_MAX_MTRRVAR_COUNT] =
3255 {
3256 CPUM_MTRR_PHYSMASK_MSRRANGE(MSR_IA32_MTRR_PHYSMASK0, 0, "MSR_IA32_MTRR_PHYSMASK0"),
3257 CPUM_MTRR_PHYSMASK_MSRRANGE(MSR_IA32_MTRR_PHYSMASK1, 1, "MSR_IA32_MTRR_PHYSMASK1"),
3258 CPUM_MTRR_PHYSMASK_MSRRANGE(MSR_IA32_MTRR_PHYSMASK2, 2, "MSR_IA32_MTRR_PHYSMASK2"),
3259 CPUM_MTRR_PHYSMASK_MSRRANGE(MSR_IA32_MTRR_PHYSMASK3, 3, "MSR_IA32_MTRR_PHYSMASK3"),
3260 CPUM_MTRR_PHYSMASK_MSRRANGE(MSR_IA32_MTRR_PHYSMASK4, 4, "MSR_IA32_MTRR_PHYSMASK4"),
3261 CPUM_MTRR_PHYSMASK_MSRRANGE(MSR_IA32_MTRR_PHYSMASK5, 5, "MSR_IA32_MTRR_PHYSMASK5"),
3262 CPUM_MTRR_PHYSMASK_MSRRANGE(MSR_IA32_MTRR_PHYSMASK6, 6, "MSR_IA32_MTRR_PHYSMASK6"),
3263 CPUM_MTRR_PHYSMASK_MSRRANGE(MSR_IA32_MTRR_PHYSMASK7, 7, "MSR_IA32_MTRR_PHYSMASK7"),
3264 CPUM_MTRR_PHYSMASK_MSRRANGE(MSR_IA32_MTRR_PHYSMASK8, 8, "MSR_IA32_MTRR_PHYSMASK8"),
3265 CPUM_MTRR_PHYSMASK_MSRRANGE(MSR_IA32_MTRR_PHYSMASK9, 9, "MSR_IA32_MTRR_PHYSMASK9"),
3266 CPUM_MTRR_PHYSMASK_MSRRANGE(MSR_IA32_MTRR_PHYSMASK9 + 2, 10, "MSR_IA32_MTRR_PHYSMASK10"),
3267 CPUM_MTRR_PHYSMASK_MSRRANGE(MSR_IA32_MTRR_PHYSMASK9 + 4, 11, "MSR_IA32_MTRR_PHYSMASK11"),
3268 CPUM_MTRR_PHYSMASK_MSRRANGE(MSR_IA32_MTRR_PHYSMASK9 + 6, 12, "MSR_IA32_MTRR_PHYSMASK12"),
3269 CPUM_MTRR_PHYSMASK_MSRRANGE(MSR_IA32_MTRR_PHYSMASK9 + 8, 13, "MSR_IA32_MTRR_PHYSMASK13"),
3270 CPUM_MTRR_PHYSMASK_MSRRANGE(MSR_IA32_MTRR_PHYSMASK9 + 10, 14, "MSR_IA32_MTRR_PHYSMASK14"),
3271 CPUM_MTRR_PHYSMASK_MSRRANGE(MSR_IA32_MTRR_PHYSMASK9 + 12, 15, "MSR_IA32_MTRR_PHYSMASK15"),
3272 };
3273 AssertCompile(RT_ELEMENTS(s_aMsrRanges_MtrrPhysBase) == RT_ELEMENTS(pVM->apCpusR3[0]->cpum.s.GuestMsrs.msr.aMtrrVarMsrs));
3274 AssertCompile(RT_ELEMENTS(s_aMsrRanges_MtrrPhysMask) == RT_ELEMENTS(pVM->apCpusR3[0]->cpum.s.GuestMsrs.msr.aMtrrVarMsrs));
3275
3276 Assert(cVarMtrrs <= RT_ELEMENTS(pVM->apCpusR3[0]->cpum.s.GuestMsrs.msr.aMtrrVarMsrs));
3277 for (unsigned i = 0; i < cVarMtrrs; i++)
3278 {
3279 int rc = CPUMR3MsrRangesInsert(pVM, &s_aMsrRanges_MtrrPhysBase[i]);
3280 AssertLogRelRCReturn(rc, rc);
3281 rc = CPUMR3MsrRangesInsert(pVM, &s_aMsrRanges_MtrrPhysMask[i]);
3282 AssertLogRelRCReturn(rc, rc);
3283 }
3284 return VINF_SUCCESS;
3285
3286#undef CPUM_MTRR_PHYSBASE_MSRRANGE
3287#undef CPUM_MTRR_PHYSMASK_MSRRANGE
3288}
3289
3290
3291/**
3292 * Initialize MTRR capability based on what the guest CPU profile (typically host)
3293 * supports.
3294 *
3295 * @returns VBox status code.
3296 * @param pVM The cross context VM structure.
3297 * @param fMtrrVarCountIsVirt Whether the variable-range MTRR count is fully
3298 * virtualized (@c true) or derived from the CPU
3299 * profile (@c false).
3300 */
3301static int cpumR3InitMtrrCap(PVM pVM, bool fMtrrVarCountIsVirt)
3302{
3303#ifdef RT_ARCH_AMD64
3304 Assert(pVM->cpum.s.HostFeatures.s.fMtrr);
3305#endif
3306
3307 /* Lookup the number of variable-range MTRRs supported by the CPU profile. */
3308 PCCPUMMSRRANGE pMtrrCapRange = cpumLookupMsrRange(pVM, MSR_IA32_MTRR_CAP);
3309 AssertLogRelMsgReturn(pMtrrCapRange, ("Failed to lookup IA32_MTRR_CAP MSR range\n"), VERR_NOT_FOUND);
3310 uint8_t const cProfileVarRangeRegs = pMtrrCapRange->uValue & MSR_IA32_MTRR_CAP_VCNT_MASK;
3311
3312 /* Construct guest MTRR support capabilities. */
3313 uint8_t const cGuestVarRangeRegs = fMtrrVarCountIsVirt ? CPUMCTX_MAX_MTRRVAR_COUNT
3314 : RT_MIN(cProfileVarRangeRegs, CPUMCTX_MAX_MTRRVAR_COUNT);
3315 uint64_t const uGstMtrrCap = cGuestVarRangeRegs
3316 | MSR_IA32_MTRR_CAP_FIX
3317 | MSR_IA32_MTRR_CAP_WC;
3318 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
3319 {
3320 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
3321 pVCpu->cpum.s.GuestMsrs.msr.MtrrCap = uGstMtrrCap;
3322 pVCpu->cpum.s.GuestMsrs.msr.MtrrDefType = MSR_IA32_MTRR_DEF_TYPE_FIXED_EN
3323 | MSR_IA32_MTRR_DEF_TYPE_MTRR_EN
3324 | X86_MTRR_MT_UC;
3325 }
3326
3327 if (fMtrrVarCountIsVirt)
3328 {
3329 /*
3330 * Insert the full variable-range MTRR MSR range ourselves so it extends beyond what is
3331 * typically reported by the hardware CPU profile.
3332 */
3333 LogRel(("CPUM: Enabled fixed-range MTRRs and %u (virtualized) variable-range MTRRs\n", cGuestVarRangeRegs));
3334 return cpumR3VarMtrrMsrRangeInsert(pVM, cGuestVarRangeRegs);
3335 }
3336
3337 /*
3338 * Ensure that the maximum physical address width supported by the variable-range MTRRs
3339 * are consistent with what is reported to the guest via CPUID.
3340 */
3341 LogRel(("CPUM: Enabled fixed-range MTRRs and %u (CPU profile derived) variable-range MTRRs\n", cGuestVarRangeRegs));
3342 return cpumR3FixVarMtrrPhysAddrWidths(pVM, cGuestVarRangeRegs);
3343}
3344
3345
3346/**
3347 * Initializes the emulated CPU's CPUID & MSR information.
3348 *
3349 * @returns VBox status code.
3350 * @param pVM The cross context VM structure.
3351 * @param pHostMsrs Pointer to the host MSRs.
3352 */
3353int cpumR3InitCpuIdAndMsrs(PVM pVM, PCCPUMMSRS pHostMsrs)
3354{
3355 Assert(pHostMsrs);
3356
3357 PCPUM pCpum = &pVM->cpum.s;
3358 PCFGMNODE pCpumCfg = CFGMR3GetChild(CFGMR3GetRoot(pVM), "CPUM");
3359
3360 /*
3361 * Set the fCpuIdApicFeatureVisible flags so the APIC can assume visibility
3362 * on construction and manage everything from here on.
3363 */
3364 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
3365 {
3366 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
3367 pVCpu->cpum.s.fCpuIdApicFeatureVisible = true;
3368 }
3369
3370 /*
3371 * Read the configuration.
3372 */
3373 CPUMCPUIDCONFIG Config;
3374 RT_ZERO(Config);
3375
3376 bool const fNestedPagingAndFullGuestExec = VM_IS_NEM_ENABLED(pVM)
3377 || HMAreNestedPagingAndFullGuestExecEnabled(pVM);
3378 int rc = cpumR3CpuIdReadConfig(pVM, &Config, pCpumCfg, fNestedPagingAndFullGuestExec);
3379 AssertRCReturn(rc, rc);
3380
3381 /*
3382 * Get the guest CPU data from the database and/or the host.
3383 *
3384 * The CPUID and MSRs are currently living on the regular heap to avoid
3385 * fragmenting the hyper heap (and because there isn't/wasn't any realloc
3386 * API for the hyper heap). This means special cleanup considerations.
3387 */
3388 /** @todo The hyper heap will be removed ASAP, so the final destination is
3389 * now a fixed sized arrays in the VM structure. Maybe we can simplify
3390 * this allocation fun a little now? Or maybe it's too convenient for
3391 * the CPU reporter code... No time to figure that out now. */
3392 rc = cpumR3DbGetCpuInfo(Config.szCpuName, &pCpum->GuestInfo);
3393 if (RT_FAILURE(rc))
3394 return rc == VERR_CPUM_DB_CPU_NOT_FOUND
3395 ? VMSetError(pVM, rc, RT_SRC_POS,
3396 "Info on guest CPU '%s' could not be found. Please, select a different CPU.", Config.szCpuName)
3397 : rc;
3398
3399#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
3400 if (pCpum->GuestInfo.fMxCsrMask & ~pVM->cpum.s.fHostMxCsrMask)
3401 {
3402 LogRel(("Stripping unsupported MXCSR bits from guest mask: %#x -> %#x (host: %#x)\n", pCpum->GuestInfo.fMxCsrMask,
3403 pCpum->GuestInfo.fMxCsrMask & pVM->cpum.s.fHostMxCsrMask, pVM->cpum.s.fHostMxCsrMask));
3404 pCpum->GuestInfo.fMxCsrMask &= pVM->cpum.s.fHostMxCsrMask;
3405 }
3406 LogRel(("CPUM: MXCSR_MASK=%#x (host: %#x)\n", pCpum->GuestInfo.fMxCsrMask, pVM->cpum.s.fHostMxCsrMask));
3407#else
3408 LogRel(("CPUM: MXCSR_MASK=%#x\n", pCpum->GuestInfo.fMxCsrMask));
3409#endif
3410
3411 /** @cfgm{/CPUM/GuestMicrocodeRev,32-bit}
3412 * CPU microcode revision number to use. If UINT32_MAX we use the host
3413 * revision of the host CPU for the host-cpu profile and the database entry if a
3414 * specific one is selected (amd64 host only). */
3415 rc = CFGMR3QueryU32Def(pCpumCfg, "GuestMicrocodeRevision", &pCpum->GuestInfo.uMicrocodeRevision, UINT32_MAX);
3416 AssertLogRelRCReturn(rc, rc);
3417#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
3418 if ( pCpum->GuestInfo.uMicrocodeRevision == UINT32_MAX
3419 && strcmp(Config.szCpuName, "host") == 0)
3420 {
3421 rc = SUPR3QueryMicrocodeRev(&pCpum->GuestInfo.uMicrocodeRevision);
3422 if (RT_FAILURE(rc))
3423 pCpum->GuestInfo.uMicrocodeRevision = UINT32_MAX;
3424 }
3425#endif
3426
3427 /** @cfgm{/CPUM/MSRs/[Name]/[First|Last|Type|Value|...],}
3428 * Overrides the guest MSRs.
3429 */
3430 rc = cpumR3LoadMsrOverrides(pVM, CFGMR3GetChild(pCpumCfg, "MSRs"));
3431
3432 /** @cfgm{/CPUM/HostCPUID/[000000xx|800000xx|c000000x]/[eax|ebx|ecx|edx],32-bit}
3433 * Overrides the CPUID leaf values (from the host CPU usually) used for
3434 * calculating the guest CPUID leaves. This can be used to preserve the CPUID
3435 * values when moving a VM to a different machine. Another use is restricting
3436 * (or extending) the feature set exposed to the guest. */
3437 if (RT_SUCCESS(rc))
3438 rc = cpumR3LoadCpuIdOverrides(pVM, CFGMR3GetChild(pCpumCfg, "HostCPUID"), "HostCPUID");
3439
3440 if (RT_SUCCESS(rc) && CFGMR3GetChild(pCpumCfg, "CPUID")) /* 2nd override, now discontinued. */
3441 rc = VMSetError(pVM, VERR_CFGM_CONFIG_UNKNOWN_NODE, RT_SRC_POS,
3442 "Found unsupported configuration node '/CPUM/CPUID/'. "
3443 "Please use IMachine::setCPUIDLeaf() instead.");
3444
3445 CPUMMSRS GuestMsrs;
3446 RT_ZERO(GuestMsrs);
3447
3448 /*
3449 * Pre-explode the CPUID info.
3450 */
3451 if (RT_SUCCESS(rc))
3452 rc = cpumCpuIdExplodeFeaturesX86(pCpum->GuestInfo.paCpuIdLeavesR3, pCpum->GuestInfo.cCpuIdLeaves, &GuestMsrs,
3453 &pCpum->GuestFeatures);
3454
3455 /*
3456 * Sanitize the cpuid information passed on to the guest.
3457 */
3458 if (RT_SUCCESS(rc))
3459 {
3460 rc = cpumR3CpuIdSanitize(pVM, pCpum, &Config);
3461 if (RT_SUCCESS(rc))
3462 {
3463 cpumR3CpuIdLimitLeaves(pCpum, &Config);
3464 cpumR3CpuIdLimitIntelFamModStep(pCpum, &Config);
3465 }
3466 }
3467
3468 /*
3469 * Move the CPUID array over to the static VM structure allocation
3470 * and explode guest CPU features again. We must do this *before*
3471 * reconciling MSRs with CPUIDs and applying any fudging (esp on ARM64).
3472 */
3473 if (RT_SUCCESS(rc))
3474 {
3475 void * const pvFree = pCpum->GuestInfo.paCpuIdLeavesR3;
3476 rc = cpumR3CpuIdInstallAndExplodeLeaves(pVM, pCpum, pCpum->GuestInfo.paCpuIdLeavesR3,
3477 pCpum->GuestInfo.cCpuIdLeaves, &GuestMsrs);
3478 AssertLogRelRC(rc);
3479 RTMemFree(pvFree);
3480 if (RT_SUCCESS(rc))
3481 {
3482 /*
3483 * Setup MSRs introduced in microcode updates or that are otherwise not in
3484 * the CPU profile, but are advertised in the CPUID info we just sanitized.
3485 */
3486 if (RT_SUCCESS(rc))
3487 rc = cpumR3MsrReconcileWithCpuId(pVM);
3488 /*
3489 * MSR fudging.
3490 */
3491 if (RT_SUCCESS(rc))
3492 {
3493 /** @cfgm{/CPUM/FudgeMSRs, boolean, true}
3494 * Fudges some common MSRs if not present in the selected CPU database entry.
3495 * This is for trying to keep VMs running when moved between different hosts
3496 * and different CPU vendors. */
3497 bool fEnable;
3498 rc = CFGMR3QueryBoolDef(pCpumCfg, "FudgeMSRs", &fEnable, true); AssertRC(rc);
3499 if (RT_SUCCESS(rc) && fEnable)
3500 {
3501 rc = cpumR3MsrApplyFudge(pVM);
3502 AssertLogRelRC(rc);
3503 }
3504 }
3505 if (RT_SUCCESS(rc))
3506 {
3507 /*
3508 * Move the MSR arrays over to the static VM structure allocation.
3509 */
3510 AssertFatalMsg(pCpum->GuestInfo.cMsrRanges <= RT_ELEMENTS(pCpum->GuestInfo.aMsrRanges),
3511 ("%u\n", pCpum->GuestInfo.cMsrRanges));
3512 memcpy(pCpum->GuestInfo.aMsrRanges, pCpum->GuestInfo.paMsrRangesR3,
3513 sizeof(pCpum->GuestInfo.paMsrRangesR3[0]) * pCpum->GuestInfo.cMsrRanges);
3514 RTMemFree(pCpum->GuestInfo.paMsrRangesR3);
3515 pCpum->GuestInfo.paMsrRangesR3 = pCpum->GuestInfo.aMsrRanges;
3516
3517 /*
3518 * Some more configuration that we're applying at the end of everything
3519 * via the CPUMR3SetGuestCpuIdFeature API.
3520 */
3521
3522 /* Check if 64-bit guest supported was enabled. */
3523 bool fEnable64bit;
3524 rc = CFGMR3QueryBoolDef(pCpumCfg, "Enable64bit", &fEnable64bit, false);
3525 AssertRCReturn(rc, rc);
3526 if (fEnable64bit)
3527 {
3528 /* In case of a CPU upgrade: */
3529 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_SEP);
3530 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_SYSCALL); /* (Long mode only on Intel CPUs.) */
3531 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_PAE);
3532 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_LAHF);
3533 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_NX);
3534
3535 /* The actual feature: */
3536 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_LONG_MODE);
3537 }
3538
3539 /* Check if PAE was explicitely enabled by the user. */
3540 bool fEnable;
3541 rc = CFGMR3QueryBoolDef(CFGMR3GetRoot(pVM), "EnablePAE", &fEnable, fEnable64bit);
3542 AssertRCReturn(rc, rc);
3543 if (fEnable && !pVM->cpum.s.GuestFeatures.fPae)
3544 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_PAE);
3545
3546 /* We don't normally enable NX for raw-mode, so give the user a chance to force it on. */
3547 rc = CFGMR3QueryBoolDef(pCpumCfg, "EnableNX", &fEnable, fEnable64bit);
3548 AssertRCReturn(rc, rc);
3549 if (fEnable && !pVM->cpum.s.GuestFeatures.fNoExecute)
3550 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_NX);
3551
3552 /* Check if speculation control is enabled. */
3553 rc = CFGMR3QueryBoolDef(pCpumCfg, "SpecCtrl", &fEnable, false);
3554 AssertRCReturn(rc, rc);
3555 if (fEnable)
3556 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_SPEC_CTRL);
3557 else
3558 {
3559 /*
3560 * Set the "SSBD-not-needed" flag to work around a bug in some Linux kernels when the VIRT_SPEC_CTL
3561 * feature is not exposed on AMD CPUs and there is only 1 vCPU configured.
3562 * This was observed with kernel "4.15.0-29-generic #31~16.04.1-Ubuntu" but more versions are likely affected.
3563 *
3564 * The kernel doesn't initialize a lock and causes a NULL pointer exception later on when configuring SSBD:
3565 * EIP: _raw_spin_lock+0x14/0x30
3566 * EFLAGS: 00010046 CPU: 0
3567 * EAX: 00000000 EBX: 00000001 ECX: 00000004 EDX: 00000000
3568 * ESI: 00000000 EDI: 00000000 EBP: ee023f1c ESP: ee023f18
3569 * DS: 007b ES: 007b FS: 00d8 GS: 00e0 SS: 0068
3570 * CR0: 80050033 CR2: 00000004 CR3: 3671c180 CR4: 000006f0
3571 * Call Trace:
3572 * speculative_store_bypass_update+0x8e/0x180
3573 * ssb_prctl_set+0xc0/0xe0
3574 * arch_seccomp_spec_mitigate+0x1d/0x20
3575 * do_seccomp+0x3cb/0x610
3576 * SyS_seccomp+0x16/0x20
3577 * do_fast_syscall_32+0x7f/0x1d0
3578 * entry_SYSENTER_32+0x4e/0x7c
3579 *
3580 * The lock would've been initialized in process.c:speculative_store_bypass_ht_init() called from two places in smpboot.c.
3581 * First when a secondary CPU is started and second in native_smp_prepare_cpus() which is not called in a single vCPU environment.
3582 *
3583 * As spectre control features are completely disabled anyway when we arrived here there is no harm done in informing the
3584 * guest to not even try.
3585 */
3586 if ( pVM->cpum.s.GuestFeatures.enmCpuVendor == CPUMCPUVENDOR_AMD
3587 || pVM->cpum.s.GuestFeatures.enmCpuVendor == CPUMCPUVENDOR_HYGON)
3588 {
3589 PCPUMCPUIDLEAF pLeaf = cpumR3CpuIdGetExactLeaf(&pVM->cpum.s, UINT32_C(0x80000008), 0);
3590 if (pLeaf)
3591 {
3592 pLeaf->uEbx |= X86_CPUID_AMD_EFEID_EBX_NO_SSBD_REQUIRED;
3593 LogRel(("CPUM: Set SSBD not required flag for AMD to work around some buggy Linux kernels!\n"));
3594 }
3595 }
3596 }
3597
3598 /*
3599 * MTRR support.
3600 * We've always reported the MTRR feature bit in CPUID.
3601 * Here we allow exposing MTRRs with reasonable default values (especially required
3602 * by Windows 10 guests with Hyper-V enabled). The MTRR support isn't feature
3603 * complete, see @bugref{10318} and bugref{10498}.
3604 */
3605 if (pVM->cpum.s.GuestFeatures.fMtrr)
3606 {
3607 /** @cfgm{/CPUM/MtrrWrite, boolean, true}
3608 * Whether to enable MTRR read-write support. This overrides the MTRR read-only CFGM
3609 * setting. */
3610 bool fEnableMtrrReadWrite;
3611 rc = CFGMR3QueryBoolDef(pCpumCfg, "MtrrReadWrite", &fEnableMtrrReadWrite, true);
3612 AssertRCReturn(rc, rc);
3613 if (fEnableMtrrReadWrite)
3614 {
3615 pVM->cpum.s.fMtrrRead = true;
3616 pVM->cpum.s.fMtrrWrite = true;
3617 LogRel(("CPUM: Enabled MTRR read-write support\n"));
3618 }
3619 else
3620 {
3621 /** @cfgm{/CPUM/MtrrReadOnly, boolean, false}
3622 * Whether to enable MTRR read-only support and to initialize mapping of guest
3623 * memory via MTRRs. When disabled, MTRRs are left blank, returns 0 on reads and
3624 * ignores writes. Some guests like GNU/Linux recognize a virtual system when MTRRs
3625 * are left blank but some guests may expect their RAM to be mapped via MTRRs
3626 * similar to real hardware. */
3627 rc = CFGMR3QueryBoolDef(pCpumCfg, "MtrrReadOnly", &pVM->cpum.s.fMtrrRead, false);
3628 AssertRCReturn(rc, rc);
3629 LogRel(("CPUM: Enabled MTRR read-only support\n"));
3630 }
3631
3632 /* Setup MTRR capability based on what the guest CPU profile (typically host) supports. */
3633 Assert(!pVM->cpum.s.fMtrrWrite || pVM->cpum.s.fMtrrRead);
3634 if (pVM->cpum.s.fMtrrRead)
3635 {
3636 /** @cfgm{/CPUM/MtrrVarCountIsVirtual, boolean, true}
3637 * When enabled, the number of variable-range MTRRs are virtualized. When disabled,
3638 * the number of variable-range MTRRs are derived from the CPU profile. Unless
3639 * guests have problems with a virtualized number of variable-range MTRRs, it is
3640 * recommended to keep this enabled so that there are sufficient MTRRs to fully
3641 * describe all regions of the guest RAM. */
3642 bool fMtrrVarCountIsVirt;
3643 rc = CFGMR3QueryBoolDef(pCpumCfg, "MtrrVarCountIsVirtual", &fMtrrVarCountIsVirt, true);
3644 AssertRCReturn(rc, rc);
3645
3646 rc = cpumR3InitMtrrCap(pVM, fMtrrVarCountIsVirt);
3647 if (RT_SUCCESS(rc))
3648 { /* likely */ }
3649 else
3650 return rc;
3651 }
3652 }
3653
3654 /*
3655 * Finally, initialize guest VMX MSRs.
3656 *
3657 * This needs to be done -after- exploding guest features and sanitizing CPUID leaves
3658 * as constructing VMX capabilities MSRs rely on CPU feature bits like long mode,
3659 * unrestricted-guest execution, CR4 feature bits and possibly more in the future.
3660 */
3661 /** @todo r=bird: given that long mode never used to be enabled before the
3662 * VMINITCOMPLETED_RING0 state, and we're a lot earlier here in ring-3
3663 * init, the above comment cannot be entirely accurate. */
3664 if (pVM->cpum.s.GuestFeatures.fVmx)
3665 {
3666 Assert(Config.fNestedHWVirt);
3667 cpumR3InitVmxGuestFeaturesAndMsrs(pVM, pCpumCfg, &pHostMsrs->hwvirt.vmx, &GuestMsrs.hwvirt.vmx);
3668
3669 /* Copy MSRs to all VCPUs */
3670 PCVMXMSRS pVmxMsrs = &GuestMsrs.hwvirt.vmx;
3671 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
3672 {
3673 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
3674 memcpy(&pVCpu->cpum.s.Guest.hwvirt.vmx.Msrs, pVmxMsrs, sizeof(*pVmxMsrs));
3675 }
3676 }
3677
3678 return VINF_SUCCESS;
3679 }
3680
3681 /*
3682 * Failed before/while switching to internal VM structure storage.
3683 */
3684 RTMemFree(pCpum->GuestInfo.paCpuIdLeavesR3);
3685 pCpum->GuestInfo.paCpuIdLeavesR3 = NULL;
3686 }
3687 }
3688 RTMemFree(pCpum->GuestInfo.paMsrRangesR3);
3689 pCpum->GuestInfo.paMsrRangesR3 = NULL;
3690 return rc;
3691}
3692
3693
3694/**
3695 * Sets a CPUID feature bit during VM initialization.
3696 *
3697 * Since the CPUID feature bits are generally related to CPU features, other
3698 * CPUM configuration like MSRs can also be modified by calls to this API.
3699 *
3700 * @param pVM The cross context VM structure.
3701 * @param enmFeature The feature to set.
3702 */
3703VMMR3_INT_DECL(void) CPUMR3SetGuestCpuIdFeature(PVM pVM, CPUMCPUIDFEATURE enmFeature)
3704{
3705 PCPUMCPUIDLEAF pLeaf;
3706 PCPUMMSRRANGE pMsrRange;
3707
3708#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
3709# define CHECK_X86_HOST_FEATURE_RET(a_fFeature, a_szFeature) \
3710 if (!pVM->cpum.s.HostFeatures.s. a_fFeature) \
3711 { \
3712 LogRel(("CPUM: WARNING! Can't turn on " a_szFeature " when the host doesn't support it!\n")); \
3713 return; \
3714 } else do { } while (0)
3715#else
3716# define CHECK_X86_HOST_FEATURE_RET(a_fFeature, a_szFeature) do { } while (0)
3717#endif
3718
3719#define GET_8000_0001_CHECK_X86_HOST_FEATURE_RET(a_fFeature, a_szFeature) \
3720 do \
3721 { \
3722 pLeaf = cpumCpuIdGetLeaf(pVM, UINT32_C(0x80000001)); \
3723 if (!pLeaf) \
3724 { \
3725 LogRel(("CPUM: WARNING! Can't turn on " a_szFeature " when no 0x80000001 CPUID leaf!\n")); \
3726 return; \
3727 } \
3728 CHECK_X86_HOST_FEATURE_RET(a_fFeature,a_szFeature); \
3729 } while (0)
3730
3731 switch (enmFeature)
3732 {
3733 /*
3734 * Set the APIC bit in both feature masks.
3735 */
3736 case CPUMCPUIDFEATURE_APIC:
3737 pLeaf = cpumCpuIdGetLeaf(pVM, UINT32_C(0x00000001));
3738 if (pLeaf && (pLeaf->fFlags & CPUMCPUIDLEAF_F_CONTAINS_APIC))
3739 pVM->cpum.s.aGuestCpuIdPatmStd[1].uEdx = pLeaf->uEdx |= X86_CPUID_FEATURE_EDX_APIC;
3740
3741 pLeaf = cpumCpuIdGetLeaf(pVM, UINT32_C(0x80000001));
3742 if (pLeaf && (pLeaf->fFlags & CPUMCPUIDLEAF_F_CONTAINS_APIC))
3743 pVM->cpum.s.aGuestCpuIdPatmExt[1].uEdx = pLeaf->uEdx |= X86_CPUID_AMD_FEATURE_EDX_APIC;
3744
3745 pVM->cpum.s.GuestFeatures.fApic = 1;
3746
3747 /* Make sure we've got the APICBASE MSR present. */
3748 pMsrRange = cpumLookupMsrRange(pVM, MSR_IA32_APICBASE);
3749 if (!pMsrRange)
3750 {
3751 static CPUMMSRRANGE const s_ApicBase =
3752 {
3753 /*.uFirst =*/ MSR_IA32_APICBASE, /*.uLast =*/ MSR_IA32_APICBASE,
3754 /*.enmRdFn =*/ kCpumMsrRdFn_Ia32ApicBase, /*.enmWrFn =*/ kCpumMsrWrFn_Ia32ApicBase,
3755 /*.offCpumCpu =*/ UINT16_MAX, /*.fReserved =*/ 0, /*.uValue =*/ 0, /*.fWrIgnMask =*/ 0, /*.fWrGpMask =*/ 0,
3756 /*.szName = */ "IA32_APIC_BASE"
3757 };
3758 int rc = CPUMR3MsrRangesInsert(pVM, &s_ApicBase);
3759 AssertLogRelRC(rc);
3760 }
3761
3762 LogRel(("CPUM: SetGuestCpuIdFeature: Enabled xAPIC\n"));
3763 break;
3764
3765 /*
3766 * Set the x2APIC bit in the standard feature mask.
3767 * Note! ASSUMES CPUMCPUIDFEATURE_APIC is called first.
3768 */
3769 case CPUMCPUIDFEATURE_X2APIC:
3770 pLeaf = cpumCpuIdGetLeaf(pVM, UINT32_C(0x00000001));
3771 if (pLeaf)
3772 pVM->cpum.s.aGuestCpuIdPatmStd[1].uEcx = pLeaf->uEcx |= X86_CPUID_FEATURE_ECX_X2APIC;
3773 pVM->cpum.s.GuestFeatures.fX2Apic = 1;
3774
3775 /* Make sure the MSR doesn't GP or ignore the EXTD bit. */
3776 pMsrRange = cpumLookupMsrRange(pVM, MSR_IA32_APICBASE);
3777 if (pMsrRange)
3778 {
3779 pMsrRange->fWrGpMask &= ~MSR_IA32_APICBASE_EXTD;
3780 pMsrRange->fWrIgnMask &= ~MSR_IA32_APICBASE_EXTD;
3781 }
3782
3783 LogRel(("CPUM: SetGuestCpuIdFeature: Enabled x2APIC\n"));
3784 break;
3785
3786 /*
3787 * Set the sysenter/sysexit bit in the standard feature mask.
3788 * Assumes the caller knows what it's doing! (host must support these)
3789 */
3790 case CPUMCPUIDFEATURE_SEP:
3791 CHECK_X86_HOST_FEATURE_RET(fSysEnter, "SEP");
3792 pLeaf = cpumCpuIdGetLeaf(pVM, UINT32_C(0x00000001));
3793 if (pLeaf)
3794 pVM->cpum.s.aGuestCpuIdPatmStd[1].uEdx = pLeaf->uEdx |= X86_CPUID_FEATURE_EDX_SEP;
3795 pVM->cpum.s.GuestFeatures.fSysEnter = 1;
3796 LogRel(("CPUM: SetGuestCpuIdFeature: Enabled SYSENTER/EXIT\n"));
3797 break;
3798
3799 /*
3800 * Set the syscall/sysret bit in the extended feature mask.
3801 * Assumes the caller knows what it's doing! (host must support these)
3802 */
3803 case CPUMCPUIDFEATURE_SYSCALL:
3804 GET_8000_0001_CHECK_X86_HOST_FEATURE_RET(fSysCall, "SYSCALL/SYSRET");
3805
3806 /* Valid for both Intel and AMD CPUs, although only in 64 bits mode for Intel. */
3807 pVM->cpum.s.aGuestCpuIdPatmExt[1].uEdx = pLeaf->uEdx |= X86_CPUID_EXT_FEATURE_EDX_SYSCALL;
3808 pVM->cpum.s.GuestFeatures.fSysCall = 1;
3809 LogRel(("CPUM: SetGuestCpuIdFeature: Enabled SYSCALL/RET\n"));
3810 break;
3811
3812 /*
3813 * Set the PAE bit in both feature masks.
3814 * Assumes the caller knows what it's doing! (host must support these)
3815 */
3816 case CPUMCPUIDFEATURE_PAE:
3817 pLeaf = cpumCpuIdGetLeaf(pVM, UINT32_C(0x00000001));
3818 if (pLeaf)
3819 pVM->cpum.s.aGuestCpuIdPatmStd[1].uEdx = pLeaf->uEdx |= X86_CPUID_FEATURE_EDX_PAE;
3820
3821 pLeaf = cpumCpuIdGetLeaf(pVM, UINT32_C(0x80000001));
3822 if ( pLeaf
3823 && ( pVM->cpum.s.GuestFeatures.enmCpuVendor == CPUMCPUVENDOR_AMD
3824 || pVM->cpum.s.GuestFeatures.enmCpuVendor == CPUMCPUVENDOR_HYGON))
3825 pVM->cpum.s.aGuestCpuIdPatmExt[1].uEdx = pLeaf->uEdx |= X86_CPUID_AMD_FEATURE_EDX_PAE;
3826
3827 pVM->cpum.s.GuestFeatures.fPae = 1;
3828 LogRel(("CPUM: SetGuestCpuIdFeature: Enabled PAE\n"));
3829 break;
3830
3831 /*
3832 * Set the LONG MODE bit in the extended feature mask.
3833 * Assumes the caller knows what it's doing! (host must support these)
3834 */
3835 case CPUMCPUIDFEATURE_LONG_MODE:
3836 GET_8000_0001_CHECK_X86_HOST_FEATURE_RET(fLongMode, "LONG MODE");
3837
3838 /* Valid for both Intel and AMD. */
3839 pVM->cpum.s.aGuestCpuIdPatmExt[1].uEdx = pLeaf->uEdx |= X86_CPUID_EXT_FEATURE_EDX_LONG_MODE;
3840 pVM->cpum.s.GuestFeatures.fLongMode = 1;
3841 pVM->cpum.s.GuestFeatures.cVmxMaxPhysAddrWidth = pVM->cpum.s.GuestFeatures.cMaxPhysAddrWidth;
3842 if (pVM->cpum.s.GuestFeatures.fVmx)
3843 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
3844 {
3845 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
3846 pVCpu->cpum.s.Guest.hwvirt.vmx.Msrs.u64Basic &= ~VMX_BASIC_PHYSADDR_WIDTH_32BIT;
3847 }
3848 LogRel(("CPUM: SetGuestCpuIdFeature: Enabled LONG MODE\n"));
3849 break;
3850
3851 /*
3852 * Set the NX/XD bit in the extended feature mask.
3853 * Assumes the caller knows what it's doing! (host must support these)
3854 */
3855 case CPUMCPUIDFEATURE_NX:
3856 GET_8000_0001_CHECK_X86_HOST_FEATURE_RET(fNoExecute, "NX/XD");
3857
3858 /* Valid for both Intel and AMD. */
3859 pVM->cpum.s.aGuestCpuIdPatmExt[1].uEdx = pLeaf->uEdx |= X86_CPUID_EXT_FEATURE_EDX_NX;
3860 pVM->cpum.s.GuestFeatures.fNoExecute = 1;
3861 LogRel(("CPUM: SetGuestCpuIdFeature: Enabled NX\n"));
3862 break;
3863
3864
3865 /*
3866 * Set the LAHF/SAHF support in 64-bit mode.
3867 * Assumes the caller knows what it's doing! (host must support this)
3868 */
3869 case CPUMCPUIDFEATURE_LAHF:
3870 GET_8000_0001_CHECK_X86_HOST_FEATURE_RET(fLahfSahf, "LAHF/SAHF");
3871
3872 /* Valid for both Intel and AMD. */
3873 pVM->cpum.s.aGuestCpuIdPatmExt[1].uEcx = pLeaf->uEcx |= X86_CPUID_EXT_FEATURE_ECX_LAHF_SAHF;
3874 pVM->cpum.s.GuestFeatures.fLahfSahf = 1;
3875 LogRel(("CPUM: SetGuestCpuIdFeature: Enabled LAHF/SAHF\n"));
3876 break;
3877
3878 /*
3879 * Set the RDTSCP support bit.
3880 * Assumes the caller knows what it's doing! (host must support this)
3881 */
3882 case CPUMCPUIDFEATURE_RDTSCP:
3883 if (pVM->cpum.s.u8PortableCpuIdLevel > 0)
3884 return;
3885 GET_8000_0001_CHECK_X86_HOST_FEATURE_RET(fRdTscP, "RDTSCP");
3886 pLeaf = cpumCpuIdGetLeaf(pVM, UINT32_C(0x80000001));
3887
3888 /* Valid for both Intel and AMD. */
3889 pVM->cpum.s.aGuestCpuIdPatmExt[1].uEdx = pLeaf->uEdx |= X86_CPUID_EXT_FEATURE_EDX_RDTSCP;
3890 pVM->cpum.s.GuestFeatures.fRdTscP = 1;
3891 LogRel(("CPUM: SetGuestCpuIdFeature: Enabled RDTSCP.\n"));
3892 break;
3893
3894 /*
3895 * Set the Hypervisor Present bit in the standard feature mask.
3896 */
3897 case CPUMCPUIDFEATURE_HVP:
3898 pLeaf = cpumCpuIdGetLeaf(pVM, UINT32_C(0x00000001));
3899 if (pLeaf)
3900 pVM->cpum.s.aGuestCpuIdPatmStd[1].uEcx = pLeaf->uEcx |= X86_CPUID_FEATURE_ECX_HVP;
3901 pVM->cpum.s.GuestFeatures.fHypervisorPresent = 1;
3902 LogRel(("CPUM: SetGuestCpuIdFeature: Enabled Hypervisor Present bit\n"));
3903 break;
3904
3905 /*
3906 * Set up the speculation control CPUID bits and MSRs. This is quite complicated
3907 * on Intel CPUs, and different on AMDs.
3908 */
3909 case CPUMCPUIDFEATURE_SPEC_CTRL:
3910 if (pVM->cpum.s.GuestFeatures.enmCpuVendor == CPUMCPUVENDOR_INTEL)
3911 {
3912 pLeaf = cpumR3CpuIdGetExactLeaf(&pVM->cpum.s, UINT32_C(0x00000007), 0);
3913#ifdef RT_ARCH_AMD64
3914 if ( !pLeaf
3915 || !(pVM->cpum.s.HostFeatures.s.fIbpb || pVM->cpum.s.HostFeatures.s.fIbrs))
3916 {
3917 LogRel(("CPUM: WARNING! Can't turn on Speculation Control when the host doesn't support it!\n"));
3918 return;
3919 }
3920#else
3921 if (!pLeaf)
3922 {
3923 LogRel(("CPUM: WARNING! Can't turn on Speculation Control without leaf 0x00000007!\n"));
3924 return;
3925 }
3926#endif
3927
3928 /* The feature can be enabled. Let's see what we can actually do. */
3929 pVM->cpum.s.GuestFeatures.fSpeculationControl = 1;
3930
3931#ifdef RT_ARCH_AMD64
3932 /* We will only expose STIBP if IBRS is present to keep things simpler (simple is not an option). */
3933 if (pVM->cpum.s.HostFeatures.s.fIbrs)
3934#endif
3935 {
3936 pLeaf->uEdx |= X86_CPUID_STEXT_FEATURE_EDX_IBRS_IBPB;
3937 pVM->cpum.s.GuestFeatures.fIbrs = 1;
3938#ifdef RT_ARCH_AMD64
3939 if (pVM->cpum.s.HostFeatures.s.fStibp)
3940#endif
3941 {
3942 pLeaf->uEdx |= X86_CPUID_STEXT_FEATURE_EDX_STIBP;
3943 pVM->cpum.s.GuestFeatures.fStibp = 1;
3944 }
3945
3946 /* Make sure we have the speculation control MSR... */
3947 pMsrRange = cpumLookupMsrRange(pVM, MSR_IA32_SPEC_CTRL);
3948 if (!pMsrRange)
3949 {
3950 static CPUMMSRRANGE const s_SpecCtrl =
3951 {
3952 /*.uFirst =*/ MSR_IA32_SPEC_CTRL, /*.uLast =*/ MSR_IA32_SPEC_CTRL,
3953 /*.enmRdFn =*/ kCpumMsrRdFn_Ia32SpecCtrl, /*.enmWrFn =*/ kCpumMsrWrFn_Ia32SpecCtrl,
3954 /*.offCpumCpu =*/ UINT16_MAX, /*.fReserved =*/ 0, /*.uValue =*/ 0, /*.fWrIgnMask =*/ 0, /*.fWrGpMask =*/ 0,
3955 /*.szName = */ "IA32_SPEC_CTRL"
3956 };
3957 int rc = CPUMR3MsrRangesInsert(pVM, &s_SpecCtrl);
3958 AssertLogRelRC(rc);
3959 }
3960
3961 /* ... and the predictor command MSR. */
3962 pMsrRange = cpumLookupMsrRange(pVM, MSR_IA32_PRED_CMD);
3963 if (!pMsrRange)
3964 {
3965 /** @todo incorrect fWrGpMask. */
3966 static CPUMMSRRANGE const s_SpecCtrl =
3967 {
3968 /*.uFirst =*/ MSR_IA32_PRED_CMD, /*.uLast =*/ MSR_IA32_PRED_CMD,
3969 /*.enmRdFn =*/ kCpumMsrRdFn_WriteOnly, /*.enmWrFn =*/ kCpumMsrWrFn_Ia32PredCmd,
3970 /*.offCpumCpu =*/ UINT16_MAX, /*.fReserved =*/ 0, /*.uValue =*/ 0, /*.fWrIgnMask =*/ 0, /*.fWrGpMask =*/ 0,
3971 /*.szName = */ "IA32_PRED_CMD"
3972 };
3973 int rc = CPUMR3MsrRangesInsert(pVM, &s_SpecCtrl);
3974 AssertLogRelRC(rc);
3975 }
3976
3977 }
3978
3979#ifdef RT_ARCH_AMD64
3980 if (pVM->cpum.s.HostFeatures.s.fArchCap)
3981#endif
3982 {
3983 /* Install the architectural capabilities MSR. */
3984 pMsrRange = cpumLookupMsrRange(pVM, MSR_IA32_ARCH_CAPABILITIES);
3985 if (!pMsrRange)
3986 {
3987 static CPUMMSRRANGE const s_ArchCaps =
3988 {
3989 /*.uFirst =*/ MSR_IA32_ARCH_CAPABILITIES, /*.uLast =*/ MSR_IA32_ARCH_CAPABILITIES,
3990 /*.enmRdFn =*/ kCpumMsrRdFn_Ia32ArchCapabilities, /*.enmWrFn =*/ kCpumMsrWrFn_ReadOnly,
3991 /*.offCpumCpu =*/ UINT16_MAX, /*.fReserved =*/ 0, /*.uValue =*/ 0, /*.fWrIgnMask =*/ 0, /*.fWrGpMask =*/ UINT64_MAX,
3992 /*.szName = */ "IA32_ARCH_CAPABILITIES"
3993 };
3994 int rc = CPUMR3MsrRangesInsert(pVM, &s_ArchCaps);
3995 AssertLogRelRC(rc);
3996 }
3997
3998 /* Advertise IBRS_ALL if present at this point... */
3999#ifdef RT_ARCH_AMD64
4000 if (pVM->cpum.s.HostFeatures.s.fArchCap & MSR_IA32_ARCH_CAP_F_IBRS_ALL)
4001#endif
4002 VMCC_FOR_EACH_VMCPU_STMT(pVM, pVCpu->cpum.s.GuestMsrs.msr.ArchCaps |= MSR_IA32_ARCH_CAP_F_IBRS_ALL);
4003 }
4004
4005 LogRel(("CPUM: SetGuestCpuIdFeature: Enabled Speculation Control.\n"));
4006 }
4007 else if ( pVM->cpum.s.GuestFeatures.enmCpuVendor == CPUMCPUVENDOR_AMD
4008 || pVM->cpum.s.GuestFeatures.enmCpuVendor == CPUMCPUVENDOR_HYGON)
4009 {
4010 /* The precise details of AMD's implementation are not yet clear. */
4011 }
4012 break;
4013
4014 default:
4015 AssertMsgFailed(("enmFeature=%d\n", enmFeature));
4016 break;
4017 }
4018
4019 /** @todo can probably kill this as this API is now init time only... */
4020 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
4021 {
4022 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
4023 pVCpu->cpum.s.fChanged |= CPUM_CHANGED_CPUID;
4024 }
4025
4026#undef GET_8000_0001_CHECK_X86_HOST_FEATURE_RET
4027#undef CHECK_X86_HOST_FEATURE_RET
4028}
4029
4030
4031/**
4032 * Queries a CPUID feature bit.
4033 *
4034 * @returns boolean for feature presence
4035 * @param pVM The cross context VM structure.
4036 * @param enmFeature The feature to query.
4037 * @deprecated Use the cpum.ro.GuestFeatures directly instead.
4038 */
4039VMMR3_INT_DECL(bool) CPUMR3GetGuestCpuIdFeature(PVM pVM, CPUMCPUIDFEATURE enmFeature)
4040{
4041 switch (enmFeature)
4042 {
4043 case CPUMCPUIDFEATURE_APIC: return pVM->cpum.s.GuestFeatures.fApic;
4044 case CPUMCPUIDFEATURE_X2APIC: return pVM->cpum.s.GuestFeatures.fX2Apic;
4045 case CPUMCPUIDFEATURE_SYSCALL: return pVM->cpum.s.GuestFeatures.fSysCall;
4046 case CPUMCPUIDFEATURE_SEP: return pVM->cpum.s.GuestFeatures.fSysEnter;
4047 case CPUMCPUIDFEATURE_PAE: return pVM->cpum.s.GuestFeatures.fPae;
4048 case CPUMCPUIDFEATURE_NX: return pVM->cpum.s.GuestFeatures.fNoExecute;
4049 case CPUMCPUIDFEATURE_LAHF: return pVM->cpum.s.GuestFeatures.fLahfSahf;
4050 case CPUMCPUIDFEATURE_LONG_MODE: return pVM->cpum.s.GuestFeatures.fLongMode;
4051 case CPUMCPUIDFEATURE_RDTSCP: return pVM->cpum.s.GuestFeatures.fRdTscP;
4052 case CPUMCPUIDFEATURE_HVP: return pVM->cpum.s.GuestFeatures.fHypervisorPresent;
4053 case CPUMCPUIDFEATURE_SPEC_CTRL: return pVM->cpum.s.GuestFeatures.fSpeculationControl;
4054 case CPUMCPUIDFEATURE_INVALID:
4055 case CPUMCPUIDFEATURE_32BIT_HACK:
4056 break;
4057 }
4058 AssertFailed();
4059 return false;
4060}
4061
4062
4063/**
4064 * Clears a CPUID feature bit.
4065 *
4066 * @param pVM The cross context VM structure.
4067 * @param enmFeature The feature to clear.
4068 *
4069 * @deprecated Probably better to default the feature to disabled and only allow
4070 * setting (enabling) it during construction.
4071 */
4072VMMR3_INT_DECL(void) CPUMR3ClearGuestCpuIdFeature(PVM pVM, CPUMCPUIDFEATURE enmFeature)
4073{
4074 PCPUMCPUIDLEAF pLeaf;
4075 switch (enmFeature)
4076 {
4077 case CPUMCPUIDFEATURE_APIC:
4078 Assert(!pVM->cpum.s.GuestFeatures.fApic); /* We only expect this call during init. No MSR adjusting needed. */
4079 pLeaf = cpumCpuIdGetLeaf(pVM, UINT32_C(0x00000001));
4080 if (pLeaf)
4081 pVM->cpum.s.aGuestCpuIdPatmStd[1].uEdx = pLeaf->uEdx &= ~X86_CPUID_FEATURE_EDX_APIC;
4082
4083 pLeaf = cpumCpuIdGetLeaf(pVM, UINT32_C(0x80000001));
4084 if (pLeaf && (pLeaf->fFlags & CPUMCPUIDLEAF_F_CONTAINS_APIC))
4085 pVM->cpum.s.aGuestCpuIdPatmExt[1].uEdx = pLeaf->uEdx &= ~X86_CPUID_AMD_FEATURE_EDX_APIC;
4086
4087 pVM->cpum.s.GuestFeatures.fApic = 0;
4088 Log(("CPUM: ClearGuestCpuIdFeature: Disabled xAPIC\n"));
4089 break;
4090
4091 case CPUMCPUIDFEATURE_X2APIC:
4092 Assert(!pVM->cpum.s.GuestFeatures.fX2Apic); /* We only expect this call during init. No MSR adjusting needed. */
4093 pLeaf = cpumCpuIdGetLeaf(pVM, UINT32_C(0x00000001));
4094 if (pLeaf)
4095 pVM->cpum.s.aGuestCpuIdPatmStd[1].uEcx = pLeaf->uEcx &= ~X86_CPUID_FEATURE_ECX_X2APIC;
4096 pVM->cpum.s.GuestFeatures.fX2Apic = 0;
4097 Log(("CPUM: ClearGuestCpuIdFeature: Disabled x2APIC\n"));
4098 break;
4099
4100#if 0
4101 case CPUMCPUIDFEATURE_PAE:
4102 pLeaf = cpumCpuIdGetLeaf(pVM, UINT32_C(0x00000001));
4103 if (pLeaf)
4104 pVM->cpum.s.aGuestCpuIdPatmStd[1].uEdx = pLeaf->uEdx &= ~X86_CPUID_FEATURE_EDX_PAE;
4105
4106 pLeaf = cpumCpuIdGetLeaf(pVM, UINT32_C(0x80000001));
4107 if ( pLeaf
4108 && ( pVM->cpum.s.GuestFeatures.enmCpuVendor == CPUMCPUVENDOR_AMD
4109 || pVM->cpum.s.GuestFeatures.enmCpuVendor == CPUMCPUVENDOR_HYGON))
4110 pVM->cpum.s.aGuestCpuIdPatmExt[1].uEdx = pLeaf->uEdx &= ~X86_CPUID_AMD_FEATURE_EDX_PAE;
4111
4112 pVM->cpum.s.GuestFeatures.fPae = 0;
4113 Log(("CPUM: ClearGuestCpuIdFeature: Disabled PAE!\n"));
4114 break;
4115
4116 case CPUMCPUIDFEATURE_LONG_MODE:
4117 pLeaf = cpumCpuIdGetLeaf(pVM, UINT32_C(0x80000001));
4118 if (pLeaf)
4119 pVM->cpum.s.aGuestCpuIdPatmExt[1].uEdx = pLeaf->uEdx &= ~X86_CPUID_EXT_FEATURE_EDX_LONG_MODE;
4120 pVM->cpum.s.GuestFeatures.fLongMode = 0;
4121 pVM->cpum.s.GuestFeatures.cVmxMaxPhysAddrWidth = 32;
4122 if (pVM->cpum.s.GuestFeatures.fVmx)
4123 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
4124 {
4125 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
4126 pVCpu->cpum.s.Guest.hwvirt.vmx.Msrs.u64Basic |= VMX_BASIC_PHYSADDR_WIDTH_32BIT;
4127 }
4128 break;
4129
4130 case CPUMCPUIDFEATURE_LAHF:
4131 pLeaf = cpumCpuIdGetLeaf(pVM, UINT32_C(0x80000001));
4132 if (pLeaf)
4133 pVM->cpum.s.aGuestCpuIdPatmExt[1].uEcx = pLeaf->uEcx &= ~X86_CPUID_EXT_FEATURE_ECX_LAHF_SAHF;
4134 pVM->cpum.s.GuestFeatures.fLahfSahf = 0;
4135 break;
4136#endif
4137 case CPUMCPUIDFEATURE_RDTSCP:
4138 pLeaf = cpumCpuIdGetLeaf(pVM, UINT32_C(0x80000001));
4139 if (pLeaf)
4140 pVM->cpum.s.aGuestCpuIdPatmExt[1].uEdx = pLeaf->uEdx &= ~X86_CPUID_EXT_FEATURE_EDX_RDTSCP;
4141 pVM->cpum.s.GuestFeatures.fRdTscP = 0;
4142 Log(("CPUM: ClearGuestCpuIdFeature: Disabled RDTSCP!\n"));
4143 break;
4144
4145#if 0
4146 case CPUMCPUIDFEATURE_HVP:
4147 pLeaf = cpumCpuIdGetLeaf(pVM, UINT32_C(0x00000001));
4148 if (pLeaf)
4149 pVM->cpum.s.aGuestCpuIdPatmStd[1].uEcx = pLeaf->uEcx &= ~X86_CPUID_FEATURE_ECX_HVP;
4150 pVM->cpum.s.GuestFeatures.fHypervisorPresent = 0;
4151 break;
4152
4153 case CPUMCPUIDFEATURE_SPEC_CTRL:
4154 pLeaf = cpumR3CpuIdGetExactLeaf(&pVM->cpum.s, UINT32_C(0x00000007), 0);
4155 if (pLeaf)
4156 pLeaf->uEdx &= ~(X86_CPUID_STEXT_FEATURE_EDX_IBRS_IBPB | X86_CPUID_STEXT_FEATURE_EDX_STIBP);
4157 VMCC_FOR_EACH_VMCPU_STMT(pVM, pVCpu->cpum.s.GuestMsrs.msr.ArchCaps &= ~MSR_IA32_ARCH_CAP_F_IBRS_ALL);
4158 Log(("CPUM: ClearGuestCpuIdFeature: Disabled speculation control!\n"));
4159 break;
4160#endif
4161 default:
4162 AssertMsgFailed(("enmFeature=%d\n", enmFeature));
4163 break;
4164 }
4165
4166 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
4167 {
4168 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
4169 pVCpu->cpum.s.fChanged |= CPUM_CHANGED_CPUID;
4170 }
4171}
4172
4173
4174/**
4175 * Do some final polishing after all calls to CPUMR3SetGuestCpuIdFeature and
4176 * CPUMR3ClearGuestCpuIdFeature are (probably) done.
4177 *
4178 * @param pVM The cross context VM structure.
4179 */
4180void cpumR3CpuIdRing3InitDone(PVM pVM)
4181{
4182 /*
4183 * Do not advertise NX w/o PAE, seems to confuse windows 7 (black screen very
4184 * early in real mode).
4185 */
4186 PCPUMCPUIDLEAF pStdLeaf = cpumCpuIdGetLeaf(pVM, UINT32_C(0x00000001));
4187 PCPUMCPUIDLEAF pExtLeaf = cpumCpuIdGetLeaf(pVM, UINT32_C(0x80000001));
4188 if (pStdLeaf && pExtLeaf)
4189 {
4190 if ( !(pStdLeaf->uEdx & X86_CPUID_FEATURE_EDX_PAE)
4191 && (pExtLeaf->uEdx & X86_CPUID_EXT_FEATURE_EDX_NX))
4192 pExtLeaf->uEdx &= ~X86_CPUID_EXT_FEATURE_EDX_NX;
4193 }
4194}
4195
4196
4197/*
4198 *
4199 *
4200 * Saved state related code.
4201 * Saved state related code.
4202 * Saved state related code.
4203 *
4204 *
4205 */
4206
4207/**
4208 * Called both in pass 0 and the final pass.
4209 *
4210 * @param pVM The cross context VM structure.
4211 * @param pSSM The saved state handle.
4212 */
4213void cpumR3SaveCpuId(PVM pVM, PSSMHANDLE pSSM)
4214{
4215 /*
4216 * Save all the CPU ID leaves.
4217 */
4218 SSMR3PutU32(pSSM, sizeof(pVM->cpum.s.GuestInfo.paCpuIdLeavesR3[0]));
4219 SSMR3PutU32(pSSM, pVM->cpum.s.GuestInfo.cCpuIdLeaves);
4220 SSMR3PutMem(pSSM, pVM->cpum.s.GuestInfo.paCpuIdLeavesR3,
4221 sizeof(pVM->cpum.s.GuestInfo.paCpuIdLeavesR3[0]) * pVM->cpum.s.GuestInfo.cCpuIdLeaves);
4222
4223 SSMR3PutMem(pSSM, &pVM->cpum.s.GuestInfo.DefCpuId, sizeof(pVM->cpum.s.GuestInfo.DefCpuId));
4224
4225 /*
4226 * Save a good portion of the raw CPU IDs as well as they may come in
4227 * handy when validating features for raw mode.
4228 */
4229#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
4230 CPUMCPUID aRawStd[16];
4231 for (unsigned i = 0; i < RT_ELEMENTS(aRawStd); i++)
4232 ASMCpuIdExSlow(i, 0, 0, 0, &aRawStd[i].uEax, &aRawStd[i].uEbx, &aRawStd[i].uEcx, &aRawStd[i].uEdx);
4233 SSMR3PutU32(pSSM, RT_ELEMENTS(aRawStd));
4234 SSMR3PutMem(pSSM, &aRawStd[0], sizeof(aRawStd));
4235
4236 CPUMCPUID aRawExt[32];
4237 for (unsigned i = 0; i < RT_ELEMENTS(aRawExt); i++)
4238 ASMCpuIdExSlow(i | UINT32_C(0x80000000), 0, 0, 0, &aRawExt[i].uEax, &aRawExt[i].uEbx, &aRawExt[i].uEcx, &aRawExt[i].uEdx);
4239 SSMR3PutU32(pSSM, RT_ELEMENTS(aRawExt));
4240 SSMR3PutMem(pSSM, &aRawExt[0], sizeof(aRawExt));
4241
4242#else
4243 /* Two zero counts on non-x86 hosts. */
4244 SSMR3PutU32(pSSM, 0);
4245 SSMR3PutU32(pSSM, 0);
4246#endif
4247}
4248
4249
4250static int cpumR3LoadOneOldGuestCpuIdArray(PSSMHANDLE pSSM, uint32_t uBase, PCPUMCPUIDLEAF *ppaLeaves, uint32_t *pcLeaves)
4251{
4252 uint32_t cCpuIds;
4253 int rc = SSMR3GetU32(pSSM, &cCpuIds);
4254 if (RT_SUCCESS(rc))
4255 {
4256 if (cCpuIds < 64)
4257 {
4258 for (uint32_t i = 0; i < cCpuIds; i++)
4259 {
4260 CPUMCPUID CpuId;
4261 rc = SSMR3GetMem(pSSM, &CpuId, sizeof(CpuId));
4262 if (RT_FAILURE(rc))
4263 break;
4264
4265 CPUMCPUIDLEAF NewLeaf;
4266 NewLeaf.uLeaf = uBase + i;
4267 NewLeaf.uSubLeaf = 0;
4268 NewLeaf.fSubLeafMask = 0;
4269 NewLeaf.uEax = CpuId.uEax;
4270 NewLeaf.uEbx = CpuId.uEbx;
4271 NewLeaf.uEcx = CpuId.uEcx;
4272 NewLeaf.uEdx = CpuId.uEdx;
4273 NewLeaf.fFlags = 0;
4274 rc = cpumR3CpuIdInsert(NULL /* pVM */, ppaLeaves, pcLeaves, &NewLeaf);
4275 }
4276 }
4277 else
4278 rc = VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
4279 }
4280 if (RT_FAILURE(rc))
4281 {
4282 RTMemFree(*ppaLeaves);
4283 *ppaLeaves = NULL;
4284 *pcLeaves = 0;
4285 }
4286 return rc;
4287}
4288
4289
4290static int cpumR3LoadGuestCpuIdArray(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, PCPUMCPUIDLEAF *ppaLeaves, uint32_t *pcLeaves)
4291{
4292 *ppaLeaves = NULL;
4293 *pcLeaves = 0;
4294
4295 int rc;
4296 if (uVersion > CPUM_SAVED_STATE_VERSION_PUT_STRUCT)
4297 {
4298 /*
4299 * The new format. Starts by declaring the leave size and count.
4300 */
4301 uint32_t cbLeaf;
4302 SSMR3GetU32(pSSM, &cbLeaf);
4303 uint32_t cLeaves;
4304 rc = SSMR3GetU32(pSSM, &cLeaves);
4305 if (RT_SUCCESS(rc))
4306 {
4307 if (cbLeaf == sizeof(**ppaLeaves))
4308 {
4309 if (cLeaves <= CPUM_CPUID_MAX_LEAVES)
4310 {
4311 /*
4312 * Load the leaves one by one.
4313 *
4314 * The uPrev stuff is a kludge for working around a week worth of bad saved
4315 * states during the CPUID revamp in March 2015. We saved too many leaves
4316 * due to a bug in cpumR3CpuIdInstallAndExplodeLeaves, thus ending up with
4317 * garbage entires at the end of the array when restoring. We also had
4318 * a subleaf insertion bug that triggered with the leaf 4 stuff below,
4319 * this kludge doesn't deal correctly with that, but who cares...
4320 */
4321 uint32_t uPrev = 0;
4322 for (uint32_t i = 0; i < cLeaves && RT_SUCCESS(rc); i++)
4323 {
4324 CPUMCPUIDLEAF Leaf;
4325 rc = SSMR3GetMem(pSSM, &Leaf, sizeof(Leaf));
4326 if (RT_SUCCESS(rc))
4327 {
4328 if ( uVersion != CPUM_SAVED_STATE_VERSION_BAD_CPUID_COUNT
4329 || Leaf.uLeaf >= uPrev)
4330 {
4331 rc = cpumR3CpuIdInsert(NULL /* pVM */, ppaLeaves, pcLeaves, &Leaf);
4332 uPrev = Leaf.uLeaf;
4333 }
4334 else
4335 uPrev = UINT32_MAX;
4336 }
4337 }
4338 }
4339 else
4340 rc = SSMR3SetLoadError(pSSM, VERR_TOO_MANY_CPUID_LEAVES, RT_SRC_POS,
4341 "Too many CPUID leaves: %#x, max %#x", cLeaves, CPUM_CPUID_MAX_LEAVES);
4342 }
4343 else
4344 rc = SSMR3SetLoadError(pSSM, VERR_SSM_DATA_UNIT_FORMAT_CHANGED, RT_SRC_POS,
4345 "CPUMCPUIDLEAF size differs: saved=%#x, our=%#x", cbLeaf, sizeof(**ppaLeaves));
4346 }
4347 }
4348 else
4349 {
4350 /*
4351 * The old format with its three inflexible arrays.
4352 */
4353 rc = cpumR3LoadOneOldGuestCpuIdArray(pSSM, UINT32_C(0x00000000), ppaLeaves, pcLeaves);
4354 if (RT_SUCCESS(rc))
4355 rc = cpumR3LoadOneOldGuestCpuIdArray(pSSM, UINT32_C(0x80000000), ppaLeaves, pcLeaves);
4356 if (RT_SUCCESS(rc))
4357 rc = cpumR3LoadOneOldGuestCpuIdArray(pSSM, UINT32_C(0xc0000000), ppaLeaves, pcLeaves);
4358 if (RT_SUCCESS(rc))
4359 {
4360 /*
4361 * Fake up leaf 4 on intel like we used to do in CPUMGetGuestCpuId earlier.
4362 */
4363 PCPUMCPUIDLEAF pLeaf = cpumCpuIdGetLeafInt(*ppaLeaves, *pcLeaves, 0, 0);
4364 if ( pLeaf
4365 && RTX86IsIntelCpu(pLeaf->uEbx, pLeaf->uEcx, pLeaf->uEdx))
4366 {
4367 CPUMCPUIDLEAF Leaf;
4368 Leaf.uLeaf = 4;
4369 Leaf.fSubLeafMask = UINT32_MAX;
4370 Leaf.uSubLeaf = 0;
4371 Leaf.uEdx = UINT32_C(0); /* 3 flags, 0 is fine. */
4372 Leaf.uEcx = UINT32_C(63); /* sets - 1 */
4373 Leaf.uEbx = (UINT32_C(7) << 22) /* associativity -1 */
4374 | (UINT32_C(0) << 12) /* phys line partitions - 1 */
4375 | UINT32_C(63); /* system coherency line size - 1 */
4376 Leaf.uEax = (RT_MIN(pVM->cCpus - 1, UINT32_C(0x3f)) << 26) /* cores per package - 1 */
4377 | (UINT32_C(0) << 14) /* threads per cache - 1 */
4378 | (UINT32_C(1) << 5) /* cache level */
4379 | UINT32_C(1); /* cache type (data) */
4380 Leaf.fFlags = 0;
4381 rc = cpumR3CpuIdInsert(NULL /* pVM */, ppaLeaves, pcLeaves, &Leaf);
4382 if (RT_SUCCESS(rc))
4383 {
4384 Leaf.uSubLeaf = 1; /* Should've been cache type 2 (code), but buggy code made it data. */
4385 rc = cpumR3CpuIdInsert(NULL /* pVM */, ppaLeaves, pcLeaves, &Leaf);
4386 }
4387 if (RT_SUCCESS(rc))
4388 {
4389 Leaf.uSubLeaf = 2; /* Should've been cache type 3 (unified), but buggy code made it data. */
4390 Leaf.uEcx = 4095; /* sets - 1 */
4391 Leaf.uEbx &= UINT32_C(0x003fffff); /* associativity - 1 */
4392 Leaf.uEbx |= UINT32_C(23) << 22;
4393 Leaf.uEax &= UINT32_C(0xfc003fff); /* threads per cache - 1 */
4394 Leaf.uEax |= RT_MIN(pVM->cCpus - 1, UINT32_C(0xfff)) << 14;
4395 Leaf.uEax &= UINT32_C(0xffffff1f); /* level */
4396 Leaf.uEax |= UINT32_C(2) << 5;
4397 rc = cpumR3CpuIdInsert(NULL /* pVM */, ppaLeaves, pcLeaves, &Leaf);
4398 }
4399 }
4400 }
4401 }
4402 return rc;
4403}
4404
4405
4406/**
4407 * Loads the CPU ID leaves saved by pass 0, inner worker.
4408 *
4409 * @returns VBox status code.
4410 * @param pVM The cross context VM structure.
4411 * @param pSSM The saved state handle.
4412 * @param uVersion The format version.
4413 * @param paLeaves Guest CPUID leaves loaded from the state.
4414 * @param cLeaves The number of leaves in @a paLeaves.
4415 * @param pMsrs The guest MSRs.
4416 */
4417static int cpumR3LoadCpuIdInner(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, PCPUMCPUIDLEAF paLeaves, uint32_t cLeaves, PCCPUMMSRS pMsrs)
4418{
4419 AssertMsgReturn(uVersion >= CPUM_SAVED_STATE_VERSION_VER3_2, ("%u\n", uVersion), VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION);
4420#if !defined(RT_ARCH_AMD64) && !defined(RT_ARCH_X86)
4421 AssertMsgFailed(("Port me!"));
4422#endif
4423
4424 /*
4425 * Continue loading the state into stack buffers.
4426 */
4427 CPUMCPUID GuestDefCpuId;
4428 int rc = SSMR3GetMem(pSSM, &GuestDefCpuId, sizeof(GuestDefCpuId));
4429 AssertRCReturn(rc, rc);
4430
4431 CPUMCPUID aRawStd[16];
4432 uint32_t cRawStd;
4433 rc = SSMR3GetU32(pSSM, &cRawStd); AssertRCReturn(rc, rc);
4434 if (cRawStd > RT_ELEMENTS(aRawStd))
4435 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
4436 rc = SSMR3GetMem(pSSM, &aRawStd[0], cRawStd * sizeof(aRawStd[0]));
4437 AssertRCReturn(rc, rc);
4438 for (uint32_t i = cRawStd; i < RT_ELEMENTS(aRawStd); i++)
4439#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
4440 ASMCpuIdExSlow(i, 0, 0, 0, &aRawStd[i].uEax, &aRawStd[i].uEbx, &aRawStd[i].uEcx, &aRawStd[i].uEdx);
4441#else
4442 RT_ZERO(aRawStd[i]);
4443#endif
4444
4445 CPUMCPUID aRawExt[32];
4446 uint32_t cRawExt;
4447 rc = SSMR3GetU32(pSSM, &cRawExt); AssertRCReturn(rc, rc);
4448 if (cRawExt > RT_ELEMENTS(aRawExt))
4449 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
4450 rc = SSMR3GetMem(pSSM, &aRawExt[0], cRawExt * sizeof(aRawExt[0]));
4451 AssertRCReturn(rc, rc);
4452 for (uint32_t i = cRawExt; i < RT_ELEMENTS(aRawExt); i++)
4453#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
4454 ASMCpuIdExSlow(i | UINT32_C(0x80000000), 0, 0, 0, &aRawExt[i].uEax, &aRawExt[i].uEbx, &aRawExt[i].uEcx, &aRawExt[i].uEdx);
4455#else
4456 RT_ZERO(aRawExt[i]);
4457#endif
4458
4459 /*
4460 * Get the raw CPU IDs for the current host.
4461 */
4462 CPUMCPUID aHostRawStd[16];
4463#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
4464 for (unsigned i = 0; i < RT_ELEMENTS(aHostRawStd); i++)
4465 ASMCpuIdExSlow(i, 0, 0, 0, &aHostRawStd[i].uEax, &aHostRawStd[i].uEbx, &aHostRawStd[i].uEcx, &aHostRawStd[i].uEdx);
4466#else
4467 RT_ZERO(aHostRawStd);
4468#endif
4469
4470 CPUMCPUID aHostRawExt[32];
4471#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
4472 for (unsigned i = 0; i < RT_ELEMENTS(aHostRawExt); i++)
4473 ASMCpuIdExSlow(i | UINT32_C(0x80000000), 0, 0, 0,
4474 &aHostRawExt[i].uEax, &aHostRawExt[i].uEbx, &aHostRawExt[i].uEcx, &aHostRawExt[i].uEdx);
4475#else
4476 RT_ZERO(aHostRawExt);
4477#endif
4478
4479 /*
4480 * Get the host and guest overrides so we don't reject the state because
4481 * some feature was enabled thru these interfaces.
4482 * Note! We currently only need the feature leaves, so skip rest.
4483 */
4484 PCFGMNODE pOverrideCfg = CFGMR3GetChild(CFGMR3GetRoot(pVM), "CPUM/HostCPUID");
4485 CPUMCPUID aHostOverrideStd[2];
4486 memcpy(&aHostOverrideStd[0], &aHostRawStd[0], sizeof(aHostOverrideStd));
4487 cpumR3CpuIdInitLoadOverrideSet(UINT32_C(0x00000000), &aHostOverrideStd[0], RT_ELEMENTS(aHostOverrideStd), pOverrideCfg);
4488
4489 CPUMCPUID aHostOverrideExt[2];
4490 memcpy(&aHostOverrideExt[0], &aHostRawExt[0], sizeof(aHostOverrideExt));
4491 cpumR3CpuIdInitLoadOverrideSet(UINT32_C(0x80000000), &aHostOverrideExt[0], RT_ELEMENTS(aHostOverrideExt), pOverrideCfg);
4492
4493 /*
4494 * This can be skipped.
4495 *
4496 * @note On ARM we disable the strict checks for now because we can't verify with what the host supports
4497 * and just assume the interpreter/recompiler supports everything what was exposed earlier.
4498 */
4499 bool fStrictCpuIdChecks;
4500 CFGMR3QueryBoolDef(CFGMR3GetChild(CFGMR3GetRoot(pVM), "CPUM"), "StrictCpuIdChecks", &fStrictCpuIdChecks,
4501#ifdef RT_ARCH_ARM64
4502 false
4503#else
4504 true
4505#endif
4506 );
4507
4508 /*
4509 * Define a bunch of macros for simplifying the santizing/checking code below.
4510 */
4511 /* Generic expression + failure message. */
4512#define CPUID_CHECK_RET(expr, fmt) \
4513 do { \
4514 if (!(expr)) \
4515 { \
4516 char *pszMsg = RTStrAPrintf2 fmt; /* lack of variadic macros sucks */ \
4517 if (fStrictCpuIdChecks) \
4518 { \
4519 int rcCpuid = SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS, "%s", pszMsg); \
4520 RTStrFree(pszMsg); \
4521 return rcCpuid; \
4522 } \
4523 LogRel(("CPUM: %s\n", pszMsg)); \
4524 RTStrFree(pszMsg); \
4525 } \
4526 } while (0)
4527#define CPUID_CHECK_WRN(expr, fmt) \
4528 do { \
4529 if (!(expr)) \
4530 LogRel(fmt); \
4531 } while (0)
4532
4533 /* For comparing two values and bitch if they differs. */
4534#define CPUID_CHECK2_RET(what, host, saved) \
4535 do { \
4536 if ((host) != (saved)) \
4537 { \
4538 if (fStrictCpuIdChecks) \
4539 return SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS, \
4540 N_(#what " mismatch: host=%#x saved=%#x"), (host), (saved)); \
4541 LogRel(("CPUM: " #what " differs: host=%#x saved=%#x\n", (host), (saved))); \
4542 } \
4543 } while (0)
4544#define CPUID_CHECK2_WRN(what, host, saved) \
4545 do { \
4546 if ((host) != (saved)) \
4547 LogRel(("CPUM: " #what " differs: host=%#x saved=%#x\n", (host), (saved))); \
4548 } while (0)
4549
4550 /* For checking raw cpu features (raw mode). */
4551#define CPUID_RAW_FEATURE_RET(set, reg, bit) \
4552 do { \
4553 if ((aHostRaw##set [1].reg & bit) != (aRaw##set [1].reg & bit)) \
4554 { \
4555 if (fStrictCpuIdChecks) \
4556 return SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS, \
4557 N_(#bit " mismatch: host=%d saved=%d"), \
4558 !!(aHostRaw##set [1].reg & (bit)), !!(aRaw##set [1].reg & (bit)) ); \
4559 LogRel(("CPUM: " #bit" differs: host=%d saved=%d\n", \
4560 !!(aHostRaw##set [1].reg & (bit)), !!(aRaw##set [1].reg & (bit)) )); \
4561 } \
4562 } while (0)
4563#define CPUID_RAW_FEATURE_WRN(set, reg, bit) \
4564 do { \
4565 if ((aHostRaw##set [1].reg & bit) != (aRaw##set [1].reg & bit)) \
4566 LogRel(("CPUM: " #bit" differs: host=%d saved=%d\n", \
4567 !!(aHostRaw##set [1].reg & (bit)), !!(aRaw##set [1].reg & (bit)) )); \
4568 } while (0)
4569#define CPUID_RAW_FEATURE_IGN(set, reg, bit) do { } while (0)
4570
4571 /* For checking guest features. */
4572#define CPUID_GST_FEATURE_RET(set, reg, bit) \
4573 do { \
4574 if ( (aGuestCpuId##set [1].reg & bit) \
4575 && !(aHostRaw##set [1].reg & bit) \
4576 && !(aHostOverride##set [1].reg & bit) \
4577 ) \
4578 { \
4579 if (fStrictCpuIdChecks) \
4580 return SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS, \
4581 N_(#bit " is not supported by the host but has already exposed to the guest")); \
4582 LogRel(("CPUM: " #bit " is not supported by the host but has already exposed to the guest\n")); \
4583 } \
4584 } while (0)
4585#define CPUID_GST_FEATURE_WRN(set, reg, bit) \
4586 do { \
4587 if ( (aGuestCpuId##set [1].reg & bit) \
4588 && !(aHostRaw##set [1].reg & bit) \
4589 && !(aHostOverride##set [1].reg & bit) \
4590 ) \
4591 LogRel(("CPUM: " #bit " is not supported by the host but has already exposed to the guest\n")); \
4592 } while (0)
4593#define CPUID_GST_FEATURE_EMU(set, reg, bit) \
4594 do { \
4595 if ( (aGuestCpuId##set [1].reg & bit) \
4596 && !(aHostRaw##set [1].reg & bit) \
4597 && !(aHostOverride##set [1].reg & bit) \
4598 ) \
4599 LogRel(("CPUM: Warning - " #bit " is not supported by the host but already exposed to the guest. This may impact performance.\n")); \
4600 } while (0)
4601#define CPUID_GST_FEATURE_IGN(set, reg, bit) do { } while (0)
4602
4603 /* For checking guest features if AMD guest CPU. */
4604#define CPUID_GST_AMD_FEATURE_RET(set, reg, bit) \
4605 do { \
4606 if ( (aGuestCpuId##set [1].reg & bit) \
4607 && fGuestAmd \
4608 && (!fGuestAmd || !(aHostRaw##set [1].reg & bit)) \
4609 && !(aHostOverride##set [1].reg & bit) \
4610 ) \
4611 { \
4612 if (fStrictCpuIdChecks) \
4613 return SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS, \
4614 N_(#bit " is not supported by the host but has already exposed to the guest")); \
4615 LogRel(("CPUM: " #bit " is not supported by the host but has already exposed to the guest\n")); \
4616 } \
4617 } while (0)
4618#define CPUID_GST_AMD_FEATURE_WRN(set, reg, bit) \
4619 do { \
4620 if ( (aGuestCpuId##set [1].reg & bit) \
4621 && fGuestAmd \
4622 && (!fGuestAmd || !(aHostRaw##set [1].reg & bit)) \
4623 && !(aHostOverride##set [1].reg & bit) \
4624 ) \
4625 LogRel(("CPUM: " #bit " is not supported by the host but has already exposed to the guest\n")); \
4626 } while (0)
4627#define CPUID_GST_AMD_FEATURE_EMU(set, reg, bit) \
4628 do { \
4629 if ( (aGuestCpuId##set [1].reg & bit) \
4630 && fGuestAmd \
4631 && (!fGuestAmd || !(aHostRaw##set [1].reg & bit)) \
4632 && !(aHostOverride##set [1].reg & bit) \
4633 ) \
4634 LogRel(("CPUM: Warning - " #bit " is not supported by the host but already exposed to the guest. This may impact performance.\n")); \
4635 } while (0)
4636#define CPUID_GST_AMD_FEATURE_IGN(set, reg, bit) do { } while (0)
4637
4638 /* For checking AMD features which have a corresponding bit in the standard
4639 range. (Intel defines very few bits in the extended feature sets.) */
4640#define CPUID_GST_FEATURE2_RET(reg, ExtBit, StdBit) \
4641 do { \
4642 if ( (aGuestCpuIdExt [1].reg & (ExtBit)) \
4643 && !(fHostAmd \
4644 ? aHostRawExt[1].reg & (ExtBit) \
4645 : aHostRawStd[1].reg & (StdBit)) \
4646 && !(aHostOverrideExt[1].reg & (ExtBit)) \
4647 ) \
4648 { \
4649 if (fStrictCpuIdChecks) \
4650 return SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS, \
4651 N_(#ExtBit " is not supported by the host but has already exposed to the guest")); \
4652 LogRel(("CPUM: " #ExtBit " is not supported by the host but has already exposed to the guest\n")); \
4653 } \
4654 } while (0)
4655#define CPUID_GST_FEATURE2_WRN(reg, ExtBit, StdBit) \
4656 do { \
4657 if ( (aGuestCpuId[1].reg & (ExtBit)) \
4658 && !(fHostAmd \
4659 ? aHostRawExt[1].reg & (ExtBit) \
4660 : aHostRawStd[1].reg & (StdBit)) \
4661 && !(aHostOverrideExt[1].reg & (ExtBit)) \
4662 ) \
4663 LogRel(("CPUM: " #ExtBit " is not supported by the host but has already exposed to the guest\n")); \
4664 } while (0)
4665#define CPUID_GST_FEATURE2_EMU(reg, ExtBit, StdBit) \
4666 do { \
4667 if ( (aGuestCpuIdExt [1].reg & (ExtBit)) \
4668 && !(fHostAmd \
4669 ? aHostRawExt[1].reg & (ExtBit) \
4670 : aHostRawStd[1].reg & (StdBit)) \
4671 && !(aHostOverrideExt[1].reg & (ExtBit)) \
4672 ) \
4673 LogRel(("CPUM: Warning - " #ExtBit " is not supported by the host but already exposed to the guest. This may impact performance.\n")); \
4674 } while (0)
4675#define CPUID_GST_FEATURE2_IGN(reg, ExtBit, StdBit) do { } while (0)
4676
4677
4678 /*
4679 * Verify that we can support the features already exposed to the guest on
4680 * this host.
4681 *
4682 * Most of the features we're emulating requires intercepting instruction
4683 * and doing it the slow way, so there is no need to warn when they aren't
4684 * present in the host CPU. Thus we use IGN instead of EMU on these.
4685 *
4686 * Trailing comments:
4687 * "EMU" - Possible to emulate, could be lots of work and very slow.
4688 * "EMU?" - Can this be emulated?
4689 */
4690 CPUMCPUID aGuestCpuIdStd[2];
4691 RT_ZERO(aGuestCpuIdStd);
4692 cpumR3CpuIdGetLeafLegacy(paLeaves, cLeaves, 1, 0, &aGuestCpuIdStd[1]);
4693
4694 /* CPUID(1).ecx */
4695 CPUID_GST_FEATURE_RET(Std, uEcx, X86_CPUID_FEATURE_ECX_SSE3); // -> EMU
4696 CPUID_GST_FEATURE_RET(Std, uEcx, X86_CPUID_FEATURE_ECX_PCLMUL); // -> EMU?
4697 CPUID_GST_FEATURE_RET(Std, uEcx, X86_CPUID_FEATURE_ECX_DTES64); // -> EMU?
4698 CPUID_GST_FEATURE_IGN(Std, uEcx, X86_CPUID_FEATURE_ECX_MONITOR);
4699 CPUID_GST_FEATURE_RET(Std, uEcx, X86_CPUID_FEATURE_ECX_CPLDS); // -> EMU?
4700 CPUID_GST_FEATURE_RET(Std, uEcx, X86_CPUID_FEATURE_ECX_VMX); // -> EMU
4701 CPUID_GST_FEATURE_RET(Std, uEcx, X86_CPUID_FEATURE_ECX_SMX); // -> EMU
4702 CPUID_GST_FEATURE_RET(Std, uEcx, X86_CPUID_FEATURE_ECX_EST); // -> EMU
4703 CPUID_GST_FEATURE_RET(Std, uEcx, X86_CPUID_FEATURE_ECX_TM2); // -> EMU?
4704 CPUID_GST_FEATURE_RET(Std, uEcx, X86_CPUID_FEATURE_ECX_SSSE3); // -> EMU
4705 CPUID_GST_FEATURE_RET(Std, uEcx, X86_CPUID_FEATURE_ECX_CNTXID); // -> EMU
4706 CPUID_GST_FEATURE_IGN(Std, uEcx, X86_CPUID_FEATURE_ECX_SDBG);
4707 CPUID_GST_FEATURE_RET(Std, uEcx, X86_CPUID_FEATURE_ECX_FMA); // -> EMU? what's this?
4708 CPUID_GST_FEATURE_RET(Std, uEcx, X86_CPUID_FEATURE_ECX_CX16); // -> EMU?
4709 CPUID_GST_FEATURE_RET(Std, uEcx, X86_CPUID_FEATURE_ECX_TPRUPDATE);//-> EMU
4710 CPUID_GST_FEATURE_RET(Std, uEcx, X86_CPUID_FEATURE_ECX_PDCM); // -> EMU
4711 CPUID_GST_FEATURE_RET(Std, uEcx, RT_BIT_32(16) /*reserved*/);
4712 CPUID_GST_FEATURE_RET(Std, uEcx, X86_CPUID_FEATURE_ECX_PCID);
4713 CPUID_GST_FEATURE_RET(Std, uEcx, X86_CPUID_FEATURE_ECX_DCA); // -> EMU?
4714 CPUID_GST_FEATURE_RET(Std, uEcx, X86_CPUID_FEATURE_ECX_SSE4_1); // -> EMU
4715 CPUID_GST_FEATURE_RET(Std, uEcx, X86_CPUID_FEATURE_ECX_SSE4_2); // -> EMU
4716 CPUID_GST_FEATURE_IGN(Std, uEcx, X86_CPUID_FEATURE_ECX_X2APIC);
4717 CPUID_GST_FEATURE_RET(Std, uEcx, X86_CPUID_FEATURE_ECX_MOVBE); // -> EMU
4718 CPUID_GST_FEATURE_RET(Std, uEcx, X86_CPUID_FEATURE_ECX_POPCNT); // -> EMU
4719 CPUID_GST_FEATURE_RET(Std, uEcx, X86_CPUID_FEATURE_ECX_TSCDEADL);
4720 CPUID_GST_FEATURE_RET(Std, uEcx, X86_CPUID_FEATURE_ECX_AES); // -> EMU
4721 CPUID_GST_FEATURE_RET(Std, uEcx, X86_CPUID_FEATURE_ECX_XSAVE); // -> EMU
4722 CPUID_GST_FEATURE_IGN(Std, uEcx, X86_CPUID_FEATURE_ECX_OSXSAVE);
4723 CPUID_GST_FEATURE_RET(Std, uEcx, X86_CPUID_FEATURE_ECX_AVX); // -> EMU?
4724 CPUID_GST_FEATURE_RET(Std, uEcx, X86_CPUID_FEATURE_ECX_F16C);
4725 CPUID_GST_FEATURE_RET(Std, uEcx, X86_CPUID_FEATURE_ECX_RDRAND);
4726 CPUID_GST_FEATURE_IGN(Std, uEcx, X86_CPUID_FEATURE_ECX_HVP); // Normally not set by host
4727
4728 /* CPUID(1).edx */
4729 CPUID_GST_FEATURE_RET(Std, uEdx, X86_CPUID_FEATURE_EDX_FPU);
4730 CPUID_GST_FEATURE_RET(Std, uEdx, X86_CPUID_FEATURE_EDX_VME);
4731 CPUID_GST_FEATURE_RET(Std, uEdx, X86_CPUID_FEATURE_EDX_DE); // -> EMU?
4732 CPUID_GST_FEATURE_IGN(Std, uEdx, X86_CPUID_FEATURE_EDX_PSE);
4733 CPUID_GST_FEATURE_RET(Std, uEdx, X86_CPUID_FEATURE_EDX_TSC); // -> EMU
4734 CPUID_GST_FEATURE_RET(Std, uEdx, X86_CPUID_FEATURE_EDX_MSR); // -> EMU
4735 CPUID_GST_FEATURE_RET(Std, uEdx, X86_CPUID_FEATURE_EDX_PAE);
4736 CPUID_GST_FEATURE_IGN(Std, uEdx, X86_CPUID_FEATURE_EDX_MCE);
4737 CPUID_GST_FEATURE_RET(Std, uEdx, X86_CPUID_FEATURE_EDX_CX8); // -> EMU?
4738 CPUID_GST_FEATURE_IGN(Std, uEdx, X86_CPUID_FEATURE_EDX_APIC);
4739 CPUID_GST_FEATURE_RET(Std, uEdx, RT_BIT_32(10) /*reserved*/);
4740 CPUID_GST_FEATURE_IGN(Std, uEdx, X86_CPUID_FEATURE_EDX_SEP);
4741 CPUID_GST_FEATURE_IGN(Std, uEdx, X86_CPUID_FEATURE_EDX_MTRR);
4742 CPUID_GST_FEATURE_IGN(Std, uEdx, X86_CPUID_FEATURE_EDX_PGE);
4743 CPUID_GST_FEATURE_IGN(Std, uEdx, X86_CPUID_FEATURE_EDX_MCA);
4744 CPUID_GST_FEATURE_RET(Std, uEdx, X86_CPUID_FEATURE_EDX_CMOV); // -> EMU
4745 CPUID_GST_FEATURE_IGN(Std, uEdx, X86_CPUID_FEATURE_EDX_PAT);
4746 CPUID_GST_FEATURE_IGN(Std, uEdx, X86_CPUID_FEATURE_EDX_PSE36);
4747 CPUID_GST_FEATURE_IGN(Std, uEdx, X86_CPUID_FEATURE_EDX_PSN);
4748 CPUID_GST_FEATURE_RET(Std, uEdx, X86_CPUID_FEATURE_EDX_CLFSH); // -> EMU
4749 CPUID_GST_FEATURE_RET(Std, uEdx, RT_BIT_32(20) /*reserved*/);
4750 CPUID_GST_FEATURE_RET(Std, uEdx, X86_CPUID_FEATURE_EDX_DS); // -> EMU?
4751 CPUID_GST_FEATURE_RET(Std, uEdx, X86_CPUID_FEATURE_EDX_ACPI); // -> EMU?
4752 CPUID_GST_FEATURE_RET(Std, uEdx, X86_CPUID_FEATURE_EDX_MMX); // -> EMU
4753 CPUID_GST_FEATURE_RET(Std, uEdx, X86_CPUID_FEATURE_EDX_FXSR); // -> EMU
4754 CPUID_GST_FEATURE_RET(Std, uEdx, X86_CPUID_FEATURE_EDX_SSE); // -> EMU
4755 CPUID_GST_FEATURE_RET(Std, uEdx, X86_CPUID_FEATURE_EDX_SSE2); // -> EMU
4756 CPUID_GST_FEATURE_RET(Std, uEdx, X86_CPUID_FEATURE_EDX_SS); // -> EMU?
4757 CPUID_GST_FEATURE_IGN(Std, uEdx, X86_CPUID_FEATURE_EDX_HTT); // -> EMU?
4758 CPUID_GST_FEATURE_RET(Std, uEdx, X86_CPUID_FEATURE_EDX_TM); // -> EMU?
4759 CPUID_GST_FEATURE_RET(Std, uEdx, RT_BIT_32(30) /*JMPE/IA64*/); // -> EMU
4760 CPUID_GST_FEATURE_RET(Std, uEdx, X86_CPUID_FEATURE_EDX_PBE); // -> EMU?
4761
4762 /* CPUID(0x80000000). */
4763 CPUMCPUID aGuestCpuIdExt[2];
4764 RT_ZERO(aGuestCpuIdExt);
4765 if (cpumR3CpuIdGetLeafLegacy(paLeaves, cLeaves, UINT32_C(0x80000001), 0, &aGuestCpuIdExt[1]))
4766 {
4767 /** @todo deal with no 0x80000001 on the host. */
4768 bool const fHostAmd = RTX86IsAmdCpu(aHostRawStd[0].uEbx, aHostRawStd[0].uEcx, aHostRawStd[0].uEdx)
4769 || RTX86IsHygonCpu(aHostRawStd[0].uEbx, aHostRawStd[0].uEcx, aHostRawStd[0].uEdx);
4770 bool const fGuestAmd = RTX86IsAmdCpu(aGuestCpuIdExt[0].uEbx, aGuestCpuIdExt[0].uEcx, aGuestCpuIdExt[0].uEdx)
4771 || RTX86IsHygonCpu(aGuestCpuIdExt[0].uEbx, aGuestCpuIdExt[0].uEcx, aGuestCpuIdExt[0].uEdx);
4772
4773 /* CPUID(0x80000001).ecx */
4774 CPUID_GST_FEATURE_WRN(Ext, uEcx, X86_CPUID_EXT_FEATURE_ECX_LAHF_SAHF); // -> EMU
4775 CPUID_GST_AMD_FEATURE_WRN(Ext, uEcx, X86_CPUID_AMD_FEATURE_ECX_CMPL); // -> EMU
4776 CPUID_GST_AMD_FEATURE_RET(Ext, uEcx, X86_CPUID_AMD_FEATURE_ECX_SVM); // -> EMU
4777 CPUID_GST_AMD_FEATURE_WRN(Ext, uEcx, X86_CPUID_AMD_FEATURE_ECX_EXT_APIC);// ???
4778 CPUID_GST_AMD_FEATURE_RET(Ext, uEcx, X86_CPUID_AMD_FEATURE_ECX_CR8L); // -> EMU
4779 CPUID_GST_AMD_FEATURE_RET(Ext, uEcx, X86_CPUID_AMD_FEATURE_ECX_ABM); // -> EMU
4780 CPUID_GST_AMD_FEATURE_RET(Ext, uEcx, X86_CPUID_AMD_FEATURE_ECX_SSE4A); // -> EMU
4781 CPUID_GST_AMD_FEATURE_RET(Ext, uEcx, X86_CPUID_AMD_FEATURE_ECX_MISALNSSE);//-> EMU
4782 CPUID_GST_AMD_FEATURE_RET(Ext, uEcx, X86_CPUID_AMD_FEATURE_ECX_3DNOWPRF);// -> EMU
4783 CPUID_GST_AMD_FEATURE_RET(Ext, uEcx, X86_CPUID_AMD_FEATURE_ECX_OSVW); // -> EMU?
4784 CPUID_GST_AMD_FEATURE_RET(Ext, uEcx, X86_CPUID_AMD_FEATURE_ECX_IBS); // -> EMU
4785 CPUID_GST_AMD_FEATURE_RET(Ext, uEcx, X86_CPUID_AMD_FEATURE_ECX_XOP); // -> EMU
4786 CPUID_GST_AMD_FEATURE_RET(Ext, uEcx, X86_CPUID_AMD_FEATURE_ECX_SKINIT); // -> EMU
4787 CPUID_GST_AMD_FEATURE_RET(Ext, uEcx, X86_CPUID_AMD_FEATURE_ECX_WDT); // -> EMU
4788 CPUID_GST_AMD_FEATURE_WRN(Ext, uEcx, RT_BIT_32(14));
4789 CPUID_GST_AMD_FEATURE_WRN(Ext, uEcx, RT_BIT_32(15));
4790 CPUID_GST_AMD_FEATURE_WRN(Ext, uEcx, RT_BIT_32(16));
4791 CPUID_GST_AMD_FEATURE_WRN(Ext, uEcx, RT_BIT_32(17));
4792 CPUID_GST_AMD_FEATURE_WRN(Ext, uEcx, RT_BIT_32(18));
4793 CPUID_GST_AMD_FEATURE_WRN(Ext, uEcx, RT_BIT_32(19));
4794 CPUID_GST_AMD_FEATURE_WRN(Ext, uEcx, RT_BIT_32(20));
4795 CPUID_GST_AMD_FEATURE_WRN(Ext, uEcx, RT_BIT_32(21));
4796 CPUID_GST_AMD_FEATURE_WRN(Ext, uEcx, RT_BIT_32(22));
4797 CPUID_GST_AMD_FEATURE_WRN(Ext, uEcx, RT_BIT_32(23));
4798 CPUID_GST_AMD_FEATURE_WRN(Ext, uEcx, RT_BIT_32(24));
4799 CPUID_GST_AMD_FEATURE_WRN(Ext, uEcx, RT_BIT_32(25));
4800 CPUID_GST_AMD_FEATURE_WRN(Ext, uEcx, RT_BIT_32(26));
4801 CPUID_GST_AMD_FEATURE_WRN(Ext, uEcx, RT_BIT_32(27));
4802 CPUID_GST_AMD_FEATURE_WRN(Ext, uEcx, RT_BIT_32(28));
4803 CPUID_GST_AMD_FEATURE_WRN(Ext, uEcx, RT_BIT_32(29));
4804 CPUID_GST_AMD_FEATURE_WRN(Ext, uEcx, RT_BIT_32(30));
4805 CPUID_GST_AMD_FEATURE_WRN(Ext, uEcx, RT_BIT_32(31));
4806
4807 /* CPUID(0x80000001).edx */
4808 CPUID_GST_FEATURE2_RET( uEdx, X86_CPUID_AMD_FEATURE_EDX_FPU, X86_CPUID_FEATURE_EDX_FPU); // -> EMU
4809 CPUID_GST_FEATURE2_RET( uEdx, X86_CPUID_AMD_FEATURE_EDX_VME, X86_CPUID_FEATURE_EDX_VME); // -> EMU
4810 CPUID_GST_FEATURE2_RET( uEdx, X86_CPUID_AMD_FEATURE_EDX_DE, X86_CPUID_FEATURE_EDX_DE); // -> EMU
4811 CPUID_GST_FEATURE2_IGN( uEdx, X86_CPUID_AMD_FEATURE_EDX_PSE, X86_CPUID_FEATURE_EDX_PSE);
4812 CPUID_GST_FEATURE2_RET( uEdx, X86_CPUID_AMD_FEATURE_EDX_TSC, X86_CPUID_FEATURE_EDX_TSC); // -> EMU
4813 CPUID_GST_FEATURE2_RET( uEdx, X86_CPUID_AMD_FEATURE_EDX_MSR, X86_CPUID_FEATURE_EDX_MSR); // -> EMU
4814 CPUID_GST_FEATURE2_RET( uEdx, X86_CPUID_AMD_FEATURE_EDX_PAE, X86_CPUID_FEATURE_EDX_PAE);
4815 CPUID_GST_FEATURE2_IGN( uEdx, X86_CPUID_AMD_FEATURE_EDX_MCE, X86_CPUID_FEATURE_EDX_MCE);
4816 CPUID_GST_FEATURE2_RET( uEdx, X86_CPUID_AMD_FEATURE_EDX_CX8, X86_CPUID_FEATURE_EDX_CX8); // -> EMU?
4817 CPUID_GST_FEATURE2_IGN( uEdx, X86_CPUID_AMD_FEATURE_EDX_APIC, X86_CPUID_FEATURE_EDX_APIC);
4818 CPUID_GST_AMD_FEATURE_WRN(Ext, uEdx, RT_BIT_32(10) /*reserved*/);
4819 CPUID_GST_FEATURE_IGN( Ext, uEdx, X86_CPUID_EXT_FEATURE_EDX_SYSCALL); // On Intel: long mode only.
4820 CPUID_GST_FEATURE2_IGN( uEdx, X86_CPUID_AMD_FEATURE_EDX_MTRR, X86_CPUID_FEATURE_EDX_MTRR);
4821 CPUID_GST_FEATURE2_IGN( uEdx, X86_CPUID_AMD_FEATURE_EDX_PGE, X86_CPUID_FEATURE_EDX_PGE);
4822 CPUID_GST_FEATURE2_IGN( uEdx, X86_CPUID_AMD_FEATURE_EDX_MCA, X86_CPUID_FEATURE_EDX_MCA);
4823 CPUID_GST_FEATURE2_RET( uEdx, X86_CPUID_AMD_FEATURE_EDX_CMOV, X86_CPUID_FEATURE_EDX_CMOV); // -> EMU
4824 CPUID_GST_FEATURE2_IGN( uEdx, X86_CPUID_AMD_FEATURE_EDX_PAT, X86_CPUID_FEATURE_EDX_PAT);
4825 CPUID_GST_FEATURE2_IGN( uEdx, X86_CPUID_AMD_FEATURE_EDX_PSE36, X86_CPUID_FEATURE_EDX_PSE36);
4826 CPUID_GST_AMD_FEATURE_WRN(Ext, uEdx, RT_BIT_32(18) /*reserved*/);
4827 CPUID_GST_AMD_FEATURE_WRN(Ext, uEdx, RT_BIT_32(19) /*reserved*/);
4828 CPUID_GST_FEATURE_RET( Ext, uEdx, X86_CPUID_EXT_FEATURE_EDX_NX);
4829 CPUID_GST_FEATURE_WRN( Ext, uEdx, RT_BIT_32(21) /*reserved*/);
4830 CPUID_GST_FEATURE_RET( Ext, uEdx, X86_CPUID_AMD_FEATURE_EDX_AXMMX);
4831 CPUID_GST_FEATURE2_RET( uEdx, X86_CPUID_AMD_FEATURE_EDX_MMX, X86_CPUID_FEATURE_EDX_MMX); // -> EMU
4832 CPUID_GST_FEATURE2_RET( uEdx, X86_CPUID_AMD_FEATURE_EDX_FXSR, X86_CPUID_FEATURE_EDX_FXSR); // -> EMU
4833 CPUID_GST_AMD_FEATURE_RET(Ext, uEdx, X86_CPUID_AMD_FEATURE_EDX_FFXSR);
4834 CPUID_GST_AMD_FEATURE_RET(Ext, uEdx, X86_CPUID_EXT_FEATURE_EDX_PAGE1GB);
4835 CPUID_GST_AMD_FEATURE_RET(Ext, uEdx, X86_CPUID_EXT_FEATURE_EDX_RDTSCP);
4836 CPUID_GST_FEATURE_IGN( Ext, uEdx, RT_BIT_32(28) /*reserved*/);
4837 CPUID_GST_FEATURE_RET( Ext, uEdx, X86_CPUID_EXT_FEATURE_EDX_LONG_MODE);
4838 CPUID_GST_AMD_FEATURE_RET(Ext, uEdx, X86_CPUID_AMD_FEATURE_EDX_3DNOW_EX);
4839 CPUID_GST_AMD_FEATURE_RET(Ext, uEdx, X86_CPUID_AMD_FEATURE_EDX_3DNOW);
4840 }
4841
4842 /** @todo check leaf 7 */
4843
4844 /* CPUID(d) - XCR0 stuff - takes ECX as input.
4845 * ECX=0: EAX - Valid bits in XCR0[31:0].
4846 * EBX - Maximum state size as per current XCR0 value.
4847 * ECX - Maximum state size for all supported features.
4848 * EDX - Valid bits in XCR0[63:32].
4849 * ECX=1: EAX - Various X-features.
4850 * EBX - Maximum state size as per current XCR0|IA32_XSS value.
4851 * ECX - Valid bits in IA32_XSS[31:0].
4852 * EDX - Valid bits in IA32_XSS[63:32].
4853 * ECX=N, where N in 2..63 and indicates a bit in XCR0 and/or IA32_XSS,
4854 * if the bit invalid all four registers are set to zero.
4855 * EAX - The state size for this feature.
4856 * EBX - The state byte offset of this feature.
4857 * ECX - Bit 0 indicates whether this sub-leaf maps to a valid IA32_XSS bit (=1) or a valid XCR0 bit (=0).
4858 * EDX - Reserved, but is set to zero if invalid sub-leaf index.
4859 */
4860 uint64_t fGuestXcr0Mask = 0;
4861 PCPUMCPUIDLEAF pCurLeaf = cpumCpuIdGetLeafInt(paLeaves, cLeaves, UINT32_C(0x0000000d), 0);
4862 if ( pCurLeaf
4863 && (aGuestCpuIdStd[1].uEcx & X86_CPUID_FEATURE_ECX_XSAVE)
4864 && ( pCurLeaf->uEax
4865 || pCurLeaf->uEbx
4866 || pCurLeaf->uEcx
4867 || pCurLeaf->uEdx) )
4868 {
4869 fGuestXcr0Mask = RT_MAKE_U64(pCurLeaf->uEax, pCurLeaf->uEdx);
4870 if (fGuestXcr0Mask & ~pVM->cpum.s.fXStateHostMask)
4871 return SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS,
4872 N_("CPUID(0xd/0).EDX:EAX mismatch: %#llx saved, %#llx supported by the current host (XCR0 bits)"),
4873 fGuestXcr0Mask, pVM->cpum.s.fXStateHostMask);
4874 if ((fGuestXcr0Mask & (XSAVE_C_X87 | XSAVE_C_SSE)) != (XSAVE_C_X87 | XSAVE_C_SSE))
4875 return SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS,
4876 N_("CPUID(0xd/0).EDX:EAX missing mandatory X87 or SSE bits: %#RX64"), fGuestXcr0Mask);
4877
4878 /* We don't support any additional features yet. */
4879 pCurLeaf = cpumCpuIdGetLeafInt(paLeaves, cLeaves, UINT32_C(0x0000000d), 1);
4880 if (pCurLeaf && pCurLeaf->uEax)
4881 return SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS,
4882 N_("CPUID(0xd/1).EAX=%#x, expected zero"), pCurLeaf->uEax);
4883 if (pCurLeaf && (pCurLeaf->uEcx || pCurLeaf->uEdx))
4884 return SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS,
4885 N_("CPUID(0xd/1).EDX:ECX=%#llx, expected zero"),
4886 RT_MAKE_U64(pCurLeaf->uEdx, pCurLeaf->uEcx));
4887
4888
4889#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
4890 for (uint32_t uSubLeaf = 2; uSubLeaf < 64; uSubLeaf++)
4891 {
4892 pCurLeaf = cpumCpuIdGetLeafInt(paLeaves, cLeaves, UINT32_C(0x0000000d), uSubLeaf);
4893 if (pCurLeaf)
4894 {
4895 /* If advertised, the state component offset and size must match the one used by host. */
4896 if (pCurLeaf->uEax || pCurLeaf->uEbx || pCurLeaf->uEcx || pCurLeaf->uEdx)
4897 {
4898 CPUMCPUID RawHost;
4899 ASMCpuIdExSlow(UINT32_C(0x0000000d), 0, uSubLeaf, 0,
4900 &RawHost.uEax, &RawHost.uEbx, &RawHost.uEcx, &RawHost.uEdx);
4901 if ( RawHost.uEbx != pCurLeaf->uEbx
4902 || RawHost.uEax != pCurLeaf->uEax)
4903 return SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS,
4904 N_("CPUID(0xd/%#x).EBX/EAX=%#x/%#x, current host uses %#x/%#x (offset/size)"),
4905 uSubLeaf, pCurLeaf->uEbx, pCurLeaf->uEax, RawHost.uEbx, RawHost.uEax);
4906 }
4907 }
4908 }
4909#endif
4910 }
4911 /* Clear leaf 0xd just in case we're loading an old state... */
4912 else if (pCurLeaf)
4913 {
4914 for (uint32_t uSubLeaf = 0; uSubLeaf < 64; uSubLeaf++)
4915 {
4916 pCurLeaf = cpumCpuIdGetLeafInt(paLeaves, cLeaves, UINT32_C(0x0000000d), uSubLeaf);
4917 if (pCurLeaf)
4918 {
4919 AssertLogRelMsg( uVersion <= CPUM_SAVED_STATE_VERSION_PUT_STRUCT
4920 || ( pCurLeaf->uEax == 0
4921 && pCurLeaf->uEbx == 0
4922 && pCurLeaf->uEcx == 0
4923 && pCurLeaf->uEdx == 0),
4924 ("uVersion=%#x; %#x %#x %#x %#x\n",
4925 uVersion, pCurLeaf->uEax, pCurLeaf->uEbx, pCurLeaf->uEcx, pCurLeaf->uEdx));
4926 pCurLeaf->uEax = pCurLeaf->uEbx = pCurLeaf->uEcx = pCurLeaf->uEdx = 0;
4927 }
4928 }
4929 }
4930
4931 /* Update the fXStateGuestMask value for the VM. */
4932 if (pVM->cpum.s.fXStateGuestMask != fGuestXcr0Mask)
4933 {
4934 LogRel(("CPUM: fXStateGuestMask=%#llx -> %#llx\n", pVM->cpum.s.fXStateGuestMask, fGuestXcr0Mask));
4935 pVM->cpum.s.fXStateGuestMask = fGuestXcr0Mask;
4936 if (!fGuestXcr0Mask && (aGuestCpuIdStd[1].uEcx & X86_CPUID_FEATURE_ECX_XSAVE))
4937 return SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS,
4938 N_("Internal Processing Error: XSAVE feature bit enabled, but leaf 0xd is empty."));
4939 }
4940
4941#undef CPUID_CHECK_RET
4942#undef CPUID_CHECK_WRN
4943#undef CPUID_CHECK2_RET
4944#undef CPUID_CHECK2_WRN
4945#undef CPUID_RAW_FEATURE_RET
4946#undef CPUID_RAW_FEATURE_WRN
4947#undef CPUID_RAW_FEATURE_IGN
4948#undef CPUID_GST_FEATURE_RET
4949#undef CPUID_GST_FEATURE_WRN
4950#undef CPUID_GST_FEATURE_EMU
4951#undef CPUID_GST_FEATURE_IGN
4952#undef CPUID_GST_FEATURE2_RET
4953#undef CPUID_GST_FEATURE2_WRN
4954#undef CPUID_GST_FEATURE2_EMU
4955#undef CPUID_GST_FEATURE2_IGN
4956#undef CPUID_GST_AMD_FEATURE_RET
4957#undef CPUID_GST_AMD_FEATURE_WRN
4958#undef CPUID_GST_AMD_FEATURE_EMU
4959#undef CPUID_GST_AMD_FEATURE_IGN
4960
4961 /*
4962 * We're good, commit the CPU ID leaves.
4963 */
4964 pVM->cpum.s.GuestInfo.DefCpuId = GuestDefCpuId;
4965 rc = cpumR3CpuIdInstallAndExplodeLeaves(pVM, &pVM->cpum.s, paLeaves, cLeaves, pMsrs);
4966 AssertLogRelRCReturn(rc, rc);
4967
4968 return VINF_SUCCESS;
4969}
4970
4971
4972/**
4973 * Loads the CPU ID leaves saved by pass 0, x86 targets.
4974 *
4975 * @returns VBox status code.
4976 * @param pVM The cross context VM structure.
4977 * @param pSSM The saved state handle.
4978 * @param uVersion The format version.
4979 * @param pMsrs The guest MSRs.
4980 */
4981int cpumR3LoadCpuIdX86(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, PCCPUMMSRS pMsrs)
4982{
4983 AssertMsgReturn(uVersion >= CPUM_SAVED_STATE_VERSION_VER3_2, ("%u\n", uVersion), VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION);
4984
4985 /*
4986 * Load the CPUID leaves array first and call worker to do the rest, just so
4987 * we can free the memory when we need to without ending up in column 1000.
4988 */
4989 PCPUMCPUIDLEAF paLeaves;
4990 uint32_t cLeaves;
4991 int rc = cpumR3LoadGuestCpuIdArray(pVM, pSSM, uVersion, &paLeaves, &cLeaves);
4992 AssertRC(rc);
4993 if (RT_SUCCESS(rc))
4994 {
4995 rc = cpumR3LoadCpuIdInner(pVM, pSSM, uVersion, paLeaves, cLeaves, pMsrs);
4996 RTMemFree(paLeaves);
4997 }
4998 return rc;
4999}
5000
5001
5002
5003/**
5004 * Loads the CPU ID leaves saved by pass 0 in an pre 3.2 saved state.
5005 *
5006 * @returns VBox status code.
5007 * @param pVM The cross context VM structure.
5008 * @param pSSM The saved state handle.
5009 * @param uVersion The format version.
5010 */
5011int cpumR3LoadCpuIdPre32(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion)
5012{
5013 AssertMsgReturn(uVersion < CPUM_SAVED_STATE_VERSION_VER3_2, ("%u\n", uVersion), VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION);
5014
5015 /*
5016 * Restore the CPUID leaves.
5017 *
5018 * Note that we support restoring less than the current amount of standard
5019 * leaves because we've been allowed more is newer version of VBox.
5020 */
5021 uint32_t cElements;
5022 int rc = SSMR3GetU32(pSSM, &cElements); AssertRCReturn(rc, rc);
5023 if (cElements > RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdPatmStd))
5024 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
5025 SSMR3GetMem(pSSM, &pVM->cpum.s.aGuestCpuIdPatmStd[0], cElements*sizeof(pVM->cpum.s.aGuestCpuIdPatmStd[0]));
5026
5027 rc = SSMR3GetU32(pSSM, &cElements); AssertRCReturn(rc, rc);
5028 if (cElements != RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdPatmExt))
5029 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
5030 SSMR3GetMem(pSSM, &pVM->cpum.s.aGuestCpuIdPatmExt[0], sizeof(pVM->cpum.s.aGuestCpuIdPatmExt));
5031
5032 rc = SSMR3GetU32(pSSM, &cElements); AssertRCReturn(rc, rc);
5033 if (cElements != RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdPatmCentaur))
5034 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
5035 SSMR3GetMem(pSSM, &pVM->cpum.s.aGuestCpuIdPatmCentaur[0], sizeof(pVM->cpum.s.aGuestCpuIdPatmCentaur));
5036
5037 SSMR3GetMem(pSSM, &pVM->cpum.s.GuestInfo.DefCpuId, sizeof(pVM->cpum.s.GuestInfo.DefCpuId));
5038
5039 /*
5040 * Check that the basic cpuid id information is unchanged.
5041 */
5042 /** @todo we should check the 64 bits capabilities too! */
5043 uint32_t au32CpuId[8] = {0,0,0,0, 0,0,0,0};
5044#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
5045 ASMCpuIdExSlow(0, 0, 0, 0, &au32CpuId[0], &au32CpuId[1], &au32CpuId[2], &au32CpuId[3]);
5046 ASMCpuIdExSlow(1, 0, 0, 0, &au32CpuId[4], &au32CpuId[5], &au32CpuId[6], &au32CpuId[7]);
5047#endif
5048 uint32_t au32CpuIdSaved[8];
5049 rc = SSMR3GetMem(pSSM, &au32CpuIdSaved[0], sizeof(au32CpuIdSaved));
5050 if (RT_SUCCESS(rc))
5051 {
5052 /* Ignore CPU stepping. */
5053 au32CpuId[4] &= 0xfffffff0;
5054 au32CpuIdSaved[4] &= 0xfffffff0;
5055
5056 /* Ignore APIC ID (AMD specs). */
5057 au32CpuId[5] &= ~0xff000000;
5058 au32CpuIdSaved[5] &= ~0xff000000;
5059
5060 /* Ignore the number of Logical CPUs (AMD specs). */
5061 au32CpuId[5] &= ~0x00ff0000;
5062 au32CpuIdSaved[5] &= ~0x00ff0000;
5063
5064 /* Ignore some advanced capability bits, that we don't expose to the guest. */
5065 au32CpuId[6] &= ~( X86_CPUID_FEATURE_ECX_DTES64
5066 | X86_CPUID_FEATURE_ECX_VMX
5067 | X86_CPUID_FEATURE_ECX_SMX
5068 | X86_CPUID_FEATURE_ECX_EST
5069 | X86_CPUID_FEATURE_ECX_TM2
5070 | X86_CPUID_FEATURE_ECX_CNTXID
5071 | X86_CPUID_FEATURE_ECX_TPRUPDATE
5072 | X86_CPUID_FEATURE_ECX_PDCM
5073 | X86_CPUID_FEATURE_ECX_DCA
5074 | X86_CPUID_FEATURE_ECX_X2APIC
5075 );
5076 au32CpuIdSaved[6] &= ~( X86_CPUID_FEATURE_ECX_DTES64
5077 | X86_CPUID_FEATURE_ECX_VMX
5078 | X86_CPUID_FEATURE_ECX_SMX
5079 | X86_CPUID_FEATURE_ECX_EST
5080 | X86_CPUID_FEATURE_ECX_TM2
5081 | X86_CPUID_FEATURE_ECX_CNTXID
5082 | X86_CPUID_FEATURE_ECX_TPRUPDATE
5083 | X86_CPUID_FEATURE_ECX_PDCM
5084 | X86_CPUID_FEATURE_ECX_DCA
5085 | X86_CPUID_FEATURE_ECX_X2APIC
5086 );
5087
5088 /* Make sure we don't forget to update the masks when enabling
5089 * features in the future.
5090 */
5091 AssertRelease(!(pVM->cpum.s.aGuestCpuIdPatmStd[1].uEcx &
5092 ( X86_CPUID_FEATURE_ECX_DTES64
5093 | X86_CPUID_FEATURE_ECX_VMX
5094 | X86_CPUID_FEATURE_ECX_SMX
5095 | X86_CPUID_FEATURE_ECX_EST
5096 | X86_CPUID_FEATURE_ECX_TM2
5097 | X86_CPUID_FEATURE_ECX_CNTXID
5098 | X86_CPUID_FEATURE_ECX_TPRUPDATE
5099 | X86_CPUID_FEATURE_ECX_PDCM
5100 | X86_CPUID_FEATURE_ECX_DCA
5101 | X86_CPUID_FEATURE_ECX_X2APIC
5102 )));
5103 /* do the compare */
5104 if (memcmp(au32CpuIdSaved, au32CpuId, sizeof(au32CpuIdSaved)))
5105 {
5106 if (SSMR3HandleGetAfter(pSSM) == SSMAFTER_DEBUG_IT)
5107 LogRel(("cpumR3LoadExec: CpuId mismatch! (ignored due to SSMAFTER_DEBUG_IT)\n"
5108 "Saved=%.*Rhxs\n"
5109 "Real =%.*Rhxs\n",
5110 sizeof(au32CpuIdSaved), au32CpuIdSaved,
5111 sizeof(au32CpuId), au32CpuId));
5112 else
5113 {
5114 LogRel(("cpumR3LoadExec: CpuId mismatch!\n"
5115 "Saved=%.*Rhxs\n"
5116 "Real =%.*Rhxs\n",
5117 sizeof(au32CpuIdSaved), au32CpuIdSaved,
5118 sizeof(au32CpuId), au32CpuId));
5119 rc = VERR_SSM_LOAD_CPUID_MISMATCH;
5120 }
5121 }
5122 }
5123
5124 return rc;
5125}
5126
5127
5128
5129/*
5130 *
5131 *
5132 * CPUID Info Handler.
5133 * CPUID Info Handler.
5134 * CPUID Info Handler.
5135 *
5136 *
5137 */
5138
5139
5140
5141/**
5142 * Get L1 cache / TLS associativity.
5143 */
5144static const char *getCacheAss(unsigned u, char *pszBuf)
5145{
5146 if (u == 0)
5147 return "res0 ";
5148 if (u == 1)
5149 return "direct";
5150 if (u == 255)
5151 return "fully";
5152 if (u >= 256)
5153 return "???";
5154
5155 RTStrPrintf(pszBuf, 16, "%d way", u);
5156 return pszBuf;
5157}
5158
5159
5160/**
5161 * Get L2/L3 cache associativity.
5162 */
5163static const char *getL23CacheAss(unsigned u)
5164{
5165 switch (u)
5166 {
5167 case 0: return "off ";
5168 case 1: return "direct";
5169 case 2: return "2 way ";
5170 case 3: return "3 way ";
5171 case 4: return "4 way ";
5172 case 5: return "6 way ";
5173 case 6: return "8 way ";
5174 case 7: return "res7 ";
5175 case 8: return "16 way";
5176 case 9: return "tpoext"; /* Overridden by Fn8000_001D */
5177 case 10: return "32 way";
5178 case 11: return "48 way";
5179 case 12: return "64 way";
5180 case 13: return "96 way";
5181 case 14: return "128way";
5182 case 15: return "fully ";
5183 default: return "????";
5184 }
5185}
5186
5187
5188/** CPUID(1).EDX field descriptions. */
5189static DBGFREGSUBFIELD const g_aLeaf1EdxSubFields[] =
5190{
5191 DBGFREGSUBFIELD_RO("FPU\0" "x87 FPU on Chip", 0, 1, 0),
5192 DBGFREGSUBFIELD_RO("VME\0" "Virtual 8086 Mode Enhancements", 1, 1, 0),
5193 DBGFREGSUBFIELD_RO("DE\0" "Debugging extensions", 2, 1, 0),
5194 DBGFREGSUBFIELD_RO("PSE\0" "Page Size Extension", 3, 1, 0),
5195 DBGFREGSUBFIELD_RO("TSC\0" "Time Stamp Counter", 4, 1, 0),
5196 DBGFREGSUBFIELD_RO("MSR\0" "Model Specific Registers", 5, 1, 0),
5197 DBGFREGSUBFIELD_RO("PAE\0" "Physical Address Extension", 6, 1, 0),
5198 DBGFREGSUBFIELD_RO("MCE\0" "Machine Check Exception", 7, 1, 0),
5199 DBGFREGSUBFIELD_RO("CX8\0" "CMPXCHG8B instruction", 8, 1, 0),
5200 DBGFREGSUBFIELD_RO("APIC\0" "APIC On-Chip", 9, 1, 0),
5201 DBGFREGSUBFIELD_RO("SEP\0" "SYSENTER and SYSEXIT Present", 11, 1, 0),
5202 DBGFREGSUBFIELD_RO("MTRR\0" "Memory Type Range Registers", 12, 1, 0),
5203 DBGFREGSUBFIELD_RO("PGE\0" "PTE Global Bit", 13, 1, 0),
5204 DBGFREGSUBFIELD_RO("MCA\0" "Machine Check Architecture", 14, 1, 0),
5205 DBGFREGSUBFIELD_RO("CMOV\0" "Conditional Move instructions", 15, 1, 0),
5206 DBGFREGSUBFIELD_RO("PAT\0" "Page Attribute Table", 16, 1, 0),
5207 DBGFREGSUBFIELD_RO("PSE-36\0" "36-bit Page Size Extension", 17, 1, 0),
5208 DBGFREGSUBFIELD_RO("PSN\0" "Processor Serial Number", 18, 1, 0),
5209 DBGFREGSUBFIELD_RO("CLFSH\0" "CLFLUSH instruction", 19, 1, 0),
5210 DBGFREGSUBFIELD_RO("DS\0" "Debug Store", 21, 1, 0),
5211 DBGFREGSUBFIELD_RO("ACPI\0" "Thermal Mon. & Soft. Clock Ctrl.", 22, 1, 0),
5212 DBGFREGSUBFIELD_RO("MMX\0" "Intel MMX Technology", 23, 1, 0),
5213 DBGFREGSUBFIELD_RO("FXSR\0" "FXSAVE and FXRSTOR instructions", 24, 1, 0),
5214 DBGFREGSUBFIELD_RO("SSE\0" "SSE support", 25, 1, 0),
5215 DBGFREGSUBFIELD_RO("SSE2\0" "SSE2 support", 26, 1, 0),
5216 DBGFREGSUBFIELD_RO("SS\0" "Self Snoop", 27, 1, 0),
5217 DBGFREGSUBFIELD_RO("HTT\0" "Hyper-Threading Technology", 28, 1, 0),
5218 DBGFREGSUBFIELD_RO("TM\0" "Therm. Monitor", 29, 1, 0),
5219 DBGFREGSUBFIELD_RO("PBE\0" "Pending Break Enabled", 31, 1, 0),
5220 DBGFREGSUBFIELD_TERMINATOR()
5221};
5222
5223/** CPUID(1).ECX field descriptions. */
5224static DBGFREGSUBFIELD const g_aLeaf1EcxSubFields[] =
5225{
5226 DBGFREGSUBFIELD_RO("SSE3\0" "SSE3 support", 0, 1, 0),
5227 DBGFREGSUBFIELD_RO("PCLMUL\0" "PCLMULQDQ support (for AES-GCM)", 1, 1, 0),
5228 DBGFREGSUBFIELD_RO("DTES64\0" "DS Area 64-bit Layout", 2, 1, 0),
5229 DBGFREGSUBFIELD_RO("MONITOR\0" "MONITOR/MWAIT instructions", 3, 1, 0),
5230 DBGFREGSUBFIELD_RO("CPL-DS\0" "CPL Qualified Debug Store", 4, 1, 0),
5231 DBGFREGSUBFIELD_RO("VMX\0" "Virtual Machine Extensions", 5, 1, 0),
5232 DBGFREGSUBFIELD_RO("SMX\0" "Safer Mode Extensions", 6, 1, 0),
5233 DBGFREGSUBFIELD_RO("EST\0" "Enhanced SpeedStep Technology", 7, 1, 0),
5234 DBGFREGSUBFIELD_RO("TM2\0" "Terminal Monitor 2", 8, 1, 0),
5235 DBGFREGSUBFIELD_RO("SSSE3\0" "Supplemental Streaming SIMD Extensions 3", 9, 1, 0),
5236 DBGFREGSUBFIELD_RO("CNTX-ID\0" "L1 Context ID", 10, 1, 0),
5237 DBGFREGSUBFIELD_RO("SDBG\0" "Silicon Debug interface", 11, 1, 0),
5238 DBGFREGSUBFIELD_RO("FMA\0" "Fused Multiply Add extensions", 12, 1, 0),
5239 DBGFREGSUBFIELD_RO("CX16\0" "CMPXCHG16B instruction", 13, 1, 0),
5240 DBGFREGSUBFIELD_RO("TPRUPDATE\0" "xTPR Update Control", 14, 1, 0),
5241 DBGFREGSUBFIELD_RO("PDCM\0" "Perf/Debug Capability MSR", 15, 1, 0),
5242 DBGFREGSUBFIELD_RO("PCID\0" "Process Context Identifiers", 17, 1, 0),
5243 DBGFREGSUBFIELD_RO("DCA\0" "Direct Cache Access", 18, 1, 0),
5244 DBGFREGSUBFIELD_RO("SSE4_1\0" "SSE4_1 support", 19, 1, 0),
5245 DBGFREGSUBFIELD_RO("SSE4_2\0" "SSE4_2 support", 20, 1, 0),
5246 DBGFREGSUBFIELD_RO("X2APIC\0" "x2APIC support", 21, 1, 0),
5247 DBGFREGSUBFIELD_RO("MOVBE\0" "MOVBE instruction", 22, 1, 0),
5248 DBGFREGSUBFIELD_RO("POPCNT\0" "POPCNT instruction", 23, 1, 0),
5249 DBGFREGSUBFIELD_RO("TSCDEADL\0" "Time Stamp Counter Deadline", 24, 1, 0),
5250 DBGFREGSUBFIELD_RO("AES\0" "AES instructions", 25, 1, 0),
5251 DBGFREGSUBFIELD_RO("XSAVE\0" "XSAVE instruction", 26, 1, 0),
5252 DBGFREGSUBFIELD_RO("OSXSAVE\0" "OSXSAVE instruction", 27, 1, 0),
5253 DBGFREGSUBFIELD_RO("AVX\0" "AVX support", 28, 1, 0),
5254 DBGFREGSUBFIELD_RO("F16C\0" "16-bit floating point conversion instructions", 29, 1, 0),
5255 DBGFREGSUBFIELD_RO("RDRAND\0" "RDRAND instruction", 30, 1, 0),
5256 DBGFREGSUBFIELD_RO("HVP\0" "Hypervisor Present (we're a guest)", 31, 1, 0),
5257 DBGFREGSUBFIELD_TERMINATOR()
5258};
5259
5260/** CPUID(7,0).EBX field descriptions. */
5261static DBGFREGSUBFIELD const g_aLeaf7Sub0EbxSubFields[] =
5262{
5263 DBGFREGSUBFIELD_RO("FSGSBASE\0" "RDFSBASE/RDGSBASE/WRFSBASE/WRGSBASE instr.", 0, 1, 0),
5264 DBGFREGSUBFIELD_RO("TSCADJUST\0" "Supports MSR_IA32_TSC_ADJUST", 1, 1, 0),
5265 DBGFREGSUBFIELD_RO("SGX\0" "Supports Software Guard Extensions", 2, 1, 0),
5266 DBGFREGSUBFIELD_RO("BMI1\0" "Advanced Bit Manipulation extension 1", 3, 1, 0),
5267 DBGFREGSUBFIELD_RO("HLE\0" "Hardware Lock Elision", 4, 1, 0),
5268 DBGFREGSUBFIELD_RO("AVX2\0" "Advanced Vector Extensions 2", 5, 1, 0),
5269 DBGFREGSUBFIELD_RO("FDP_EXCPTN_ONLY\0" "FPU DP only updated on exceptions", 6, 1, 0),
5270 DBGFREGSUBFIELD_RO("SMEP\0" "Supervisor Mode Execution Prevention", 7, 1, 0),
5271 DBGFREGSUBFIELD_RO("BMI2\0" "Advanced Bit Manipulation extension 2", 8, 1, 0),
5272 DBGFREGSUBFIELD_RO("ERMS\0" "Enhanced REP MOVSB/STOSB instructions", 9, 1, 0),
5273 DBGFREGSUBFIELD_RO("INVPCID\0" "INVPCID instruction", 10, 1, 0),
5274 DBGFREGSUBFIELD_RO("RTM\0" "Restricted Transactional Memory", 11, 1, 0),
5275 DBGFREGSUBFIELD_RO("PQM\0" "Platform Quality of Service Monitoring", 12, 1, 0),
5276 DBGFREGSUBFIELD_RO("DEPFPU_CS_DS\0" "Deprecates FPU CS, FPU DS values if set", 13, 1, 0),
5277 DBGFREGSUBFIELD_RO("MPE\0" "Intel Memory Protection Extensions", 14, 1, 0),
5278 DBGFREGSUBFIELD_RO("PQE\0" "Platform Quality of Service Enforcement", 15, 1, 0),
5279 DBGFREGSUBFIELD_RO("AVX512F\0" "AVX512 Foundation instructions", 16, 1, 0),
5280 DBGFREGSUBFIELD_RO("RDSEED\0" "RDSEED instruction", 18, 1, 0),
5281 DBGFREGSUBFIELD_RO("ADX\0" "ADCX/ADOX instructions", 19, 1, 0),
5282 DBGFREGSUBFIELD_RO("SMAP\0" "Supervisor Mode Access Prevention", 20, 1, 0),
5283 DBGFREGSUBFIELD_RO("CLFLUSHOPT\0" "CLFLUSHOPT (Cache Line Flush) instruction", 23, 1, 0),
5284 DBGFREGSUBFIELD_RO("CLWB\0" "CLWB instruction", 24, 1, 0),
5285 DBGFREGSUBFIELD_RO("INTEL_PT\0" "Intel Processor Trace", 25, 1, 0),
5286 DBGFREGSUBFIELD_RO("AVX512PF\0" "AVX512 Prefetch instructions", 26, 1, 0),
5287 DBGFREGSUBFIELD_RO("AVX512ER\0" "AVX512 Exponential & Reciprocal instructions", 27, 1, 0),
5288 DBGFREGSUBFIELD_RO("AVX512CD\0" "AVX512 Conflict Detection instructions", 28, 1, 0),
5289 DBGFREGSUBFIELD_RO("SHA\0" "Secure Hash Algorithm extensions", 29, 1, 0),
5290 DBGFREGSUBFIELD_TERMINATOR()
5291};
5292
5293/** CPUID(7,0).ECX field descriptions. */
5294static DBGFREGSUBFIELD const g_aLeaf7Sub0EcxSubFields[] =
5295{
5296 DBGFREGSUBFIELD_RO("PREFETCHWT1\0" "PREFETCHWT1 instruction", 0, 1, 0),
5297 DBGFREGSUBFIELD_RO("UMIP\0" "User mode insturction prevention", 2, 1, 0),
5298 DBGFREGSUBFIELD_RO("PKU\0" "Protection Key for Usermode pages", 3, 1, 0),
5299 DBGFREGSUBFIELD_RO("OSPKE\0" "CR4.PKU mirror", 4, 1, 0),
5300 DBGFREGSUBFIELD_RO("MAWAU\0" "Value used by BNDLDX & BNDSTX", 17, 5, 0),
5301 DBGFREGSUBFIELD_RO("RDPID\0" "Read processor ID support", 22, 1, 0),
5302 DBGFREGSUBFIELD_RO("SGX_LC\0" "Supports SGX Launch Configuration", 30, 1, 0),
5303 DBGFREGSUBFIELD_TERMINATOR()
5304};
5305
5306/** CPUID(7,0).EDX field descriptions. */
5307static DBGFREGSUBFIELD const g_aLeaf7Sub0EdxSubFields[] =
5308{
5309 DBGFREGSUBFIELD_RO("MD_CLEAR\0" "Supports MDS related buffer clearing", 10, 1, 0),
5310 DBGFREGSUBFIELD_RO("IBRS_IBPB\0" "IA32_SPEC_CTRL.IBRS and IA32_PRED_CMD.IBPB", 26, 1, 0),
5311 DBGFREGSUBFIELD_RO("STIBP\0" "Supports IA32_SPEC_CTRL.STIBP", 27, 1, 0),
5312 DBGFREGSUBFIELD_RO("FLUSH_CMD\0" "Supports IA32_FLUSH_CMD", 28, 1, 0),
5313 DBGFREGSUBFIELD_RO("ARCHCAP\0" "Supports IA32_ARCH_CAP", 29, 1, 0),
5314 DBGFREGSUBFIELD_RO("CORECAP\0" "Supports IA32_CORE_CAP", 30, 1, 0),
5315 DBGFREGSUBFIELD_RO("SSBD\0" "Supports IA32_SPEC_CTRL.SSBD", 31, 1, 0),
5316 DBGFREGSUBFIELD_TERMINATOR()
5317};
5318
5319
5320/** CPUID(13,0).EAX+EDX, XCR0, ++ bit descriptions. */
5321static DBGFREGSUBFIELD const g_aXSaveStateBits[] =
5322{
5323 DBGFREGSUBFIELD_RO("x87\0" "Legacy FPU state", 0, 1, 0),
5324 DBGFREGSUBFIELD_RO("SSE\0" "128-bit SSE state", 1, 1, 0),
5325 DBGFREGSUBFIELD_RO("YMM_Hi128\0" "Upper 128 bits of YMM0-15 (AVX)", 2, 1, 0),
5326 DBGFREGSUBFIELD_RO("BNDREGS\0" "MPX bound register state", 3, 1, 0),
5327 DBGFREGSUBFIELD_RO("BNDCSR\0" "MPX bound config and status state", 4, 1, 0),
5328 DBGFREGSUBFIELD_RO("Opmask\0" "opmask state", 5, 1, 0),
5329 DBGFREGSUBFIELD_RO("ZMM_Hi256\0" "Upper 256 bits of ZMM0-15 (AVX-512)", 6, 1, 0),
5330 DBGFREGSUBFIELD_RO("Hi16_ZMM\0" "512-bits ZMM16-31 state (AVX-512)", 7, 1, 0),
5331 DBGFREGSUBFIELD_RO("LWP\0" "Lightweight Profiling (AMD)", 62, 1, 0),
5332 DBGFREGSUBFIELD_TERMINATOR()
5333};
5334
5335/** CPUID(13,1).EAX field descriptions. */
5336static DBGFREGSUBFIELD const g_aLeaf13Sub1EaxSubFields[] =
5337{
5338 DBGFREGSUBFIELD_RO("XSAVEOPT\0" "XSAVEOPT is available", 0, 1, 0),
5339 DBGFREGSUBFIELD_RO("XSAVEC\0" "XSAVEC and compacted XRSTOR supported", 1, 1, 0),
5340 DBGFREGSUBFIELD_RO("XGETBC1\0" "XGETBV with ECX=1 supported", 2, 1, 0),
5341 DBGFREGSUBFIELD_RO("XSAVES\0" "XSAVES/XRSTORS and IA32_XSS supported", 3, 1, 0),
5342 DBGFREGSUBFIELD_TERMINATOR()
5343};
5344
5345
5346/** CPUID(0x80000001,0).EDX field descriptions. */
5347static DBGFREGSUBFIELD const g_aExtLeaf1EdxSubFields[] =
5348{
5349 DBGFREGSUBFIELD_RO("FPU\0" "x87 FPU on Chip", 0, 1, 0),
5350 DBGFREGSUBFIELD_RO("VME\0" "Virtual 8086 Mode Enhancements", 1, 1, 0),
5351 DBGFREGSUBFIELD_RO("DE\0" "Debugging extensions", 2, 1, 0),
5352 DBGFREGSUBFIELD_RO("PSE\0" "Page Size Extension", 3, 1, 0),
5353 DBGFREGSUBFIELD_RO("TSC\0" "Time Stamp Counter", 4, 1, 0),
5354 DBGFREGSUBFIELD_RO("MSR\0" "K86 Model Specific Registers", 5, 1, 0),
5355 DBGFREGSUBFIELD_RO("PAE\0" "Physical Address Extension", 6, 1, 0),
5356 DBGFREGSUBFIELD_RO("MCE\0" "Machine Check Exception", 7, 1, 0),
5357 DBGFREGSUBFIELD_RO("CX8\0" "CMPXCHG8B instruction", 8, 1, 0),
5358 DBGFREGSUBFIELD_RO("APIC\0" "APIC On-Chip", 9, 1, 0),
5359 DBGFREGSUBFIELD_RO("SEP\0" "SYSCALL/SYSRET", 11, 1, 0),
5360 DBGFREGSUBFIELD_RO("MTRR\0" "Memory Type Range Registers", 12, 1, 0),
5361 DBGFREGSUBFIELD_RO("PGE\0" "PTE Global Bit", 13, 1, 0),
5362 DBGFREGSUBFIELD_RO("MCA\0" "Machine Check Architecture", 14, 1, 0),
5363 DBGFREGSUBFIELD_RO("CMOV\0" "Conditional Move instructions", 15, 1, 0),
5364 DBGFREGSUBFIELD_RO("PAT\0" "Page Attribute Table", 16, 1, 0),
5365 DBGFREGSUBFIELD_RO("PSE-36\0" "36-bit Page Size Extension", 17, 1, 0),
5366 DBGFREGSUBFIELD_RO("NX\0" "No-Execute/Execute-Disable", 20, 1, 0),
5367 DBGFREGSUBFIELD_RO("AXMMX\0" "AMD Extensions to MMX instructions", 22, 1, 0),
5368 DBGFREGSUBFIELD_RO("MMX\0" "Intel MMX Technology", 23, 1, 0),
5369 DBGFREGSUBFIELD_RO("FXSR\0" "FXSAVE and FXRSTOR Instructions", 24, 1, 0),
5370 DBGFREGSUBFIELD_RO("FFXSR\0" "AMD fast FXSAVE and FXRSTOR instructions", 25, 1, 0),
5371 DBGFREGSUBFIELD_RO("Page1GB\0" "1 GB large page", 26, 1, 0),
5372 DBGFREGSUBFIELD_RO("RDTSCP\0" "RDTSCP instruction", 27, 1, 0),
5373 DBGFREGSUBFIELD_RO("LM\0" "AMD64 Long Mode", 29, 1, 0),
5374 DBGFREGSUBFIELD_RO("3DNOWEXT\0" "AMD Extensions to 3DNow", 30, 1, 0),
5375 DBGFREGSUBFIELD_RO("3DNOW\0" "AMD 3DNow", 31, 1, 0),
5376 DBGFREGSUBFIELD_TERMINATOR()
5377};
5378
5379/** CPUID(0x80000001,0).ECX field descriptions. */
5380static DBGFREGSUBFIELD const g_aExtLeaf1EcxSubFields[] =
5381{
5382 DBGFREGSUBFIELD_RO("LahfSahf\0" "LAHF/SAHF support in 64-bit mode", 0, 1, 0),
5383 DBGFREGSUBFIELD_RO("CmpLegacy\0" "Core multi-processing legacy mode", 1, 1, 0),
5384 DBGFREGSUBFIELD_RO("SVM\0" "AMD Secure Virtual Machine extensions", 2, 1, 0),
5385 DBGFREGSUBFIELD_RO("EXTAPIC\0" "AMD Extended APIC registers", 3, 1, 0),
5386 DBGFREGSUBFIELD_RO("CR8L\0" "AMD LOCK MOV CR0 means MOV CR8", 4, 1, 0),
5387 DBGFREGSUBFIELD_RO("ABM\0" "AMD Advanced Bit Manipulation", 5, 1, 0),
5388 DBGFREGSUBFIELD_RO("SSE4A\0" "SSE4A instructions", 6, 1, 0),
5389 DBGFREGSUBFIELD_RO("MISALIGNSSE\0" "AMD Misaligned SSE mode", 7, 1, 0),
5390 DBGFREGSUBFIELD_RO("3DNOWPRF\0" "AMD PREFETCH and PREFETCHW instructions", 8, 1, 0),
5391 DBGFREGSUBFIELD_RO("OSVW\0" "AMD OS Visible Workaround", 9, 1, 0),
5392 DBGFREGSUBFIELD_RO("IBS\0" "Instruct Based Sampling", 10, 1, 0),
5393 DBGFREGSUBFIELD_RO("XOP\0" "Extended Operation support", 11, 1, 0),
5394 DBGFREGSUBFIELD_RO("SKINIT\0" "SKINIT, STGI, and DEV support", 12, 1, 0),
5395 DBGFREGSUBFIELD_RO("WDT\0" "AMD Watchdog Timer support", 13, 1, 0),
5396 DBGFREGSUBFIELD_RO("LWP\0" "Lightweight Profiling support", 15, 1, 0),
5397 DBGFREGSUBFIELD_RO("FMA4\0" "Four operand FMA instruction support", 16, 1, 0),
5398 DBGFREGSUBFIELD_RO("TCE\0" "Translation Cache Extension support", 17, 1, 0),
5399 DBGFREGSUBFIELD_RO("NodeId\0" "NodeId in MSR C001_100C", 19, 1, 0),
5400 DBGFREGSUBFIELD_RO("TBM\0" "Trailing Bit Manipulation instructions", 21, 1, 0),
5401 DBGFREGSUBFIELD_RO("TOPOEXT\0" "Topology Extensions", 22, 1, 0),
5402 DBGFREGSUBFIELD_RO("PRFEXTCORE\0" "Performance Counter Extensions support", 23, 1, 0),
5403 DBGFREGSUBFIELD_RO("PRFEXTNB\0" "NB Performance Counter Extensions support", 24, 1, 0),
5404 DBGFREGSUBFIELD_RO("DATABPEXT\0" "Data-access Breakpoint Extension", 26, 1, 0),
5405 DBGFREGSUBFIELD_RO("PERFTSC\0" "Performance Time Stamp Counter", 27, 1, 0),
5406 DBGFREGSUBFIELD_RO("PCX_L2I\0" "L2I/L3 Performance Counter Extensions", 28, 1, 0),
5407 DBGFREGSUBFIELD_RO("MONITORX\0" "MWAITX and MONITORX instructions", 29, 1, 0),
5408 DBGFREGSUBFIELD_RO("AddrMaskExt\0" "BP Addressing masking extended to bit 31", 30, 1, 0),
5409 DBGFREGSUBFIELD_TERMINATOR()
5410};
5411
5412/** CPUID(0x8000000a,0).EDX field descriptions. */
5413static DBGFREGSUBFIELD const g_aExtLeafAEdxSubFields[] =
5414{
5415 DBGFREGSUBFIELD_RO("NP\0" "Nested Paging", 0, 1, 0),
5416 DBGFREGSUBFIELD_RO("LbrVirt\0" "Last Branch Record Virtualization", 1, 1, 0),
5417 DBGFREGSUBFIELD_RO("SVML\0" "SVM Lock", 2, 1, 0),
5418 DBGFREGSUBFIELD_RO("NRIPS\0" "NextRIP Save", 3, 1, 0),
5419 DBGFREGSUBFIELD_RO("TscRateMsr\0" "MSR based TSC rate control", 4, 1, 0),
5420 DBGFREGSUBFIELD_RO("VmcbClean\0" "VMCB clean bits", 5, 1, 0),
5421 DBGFREGSUBFIELD_RO("FlushByASID\0" "Flush by ASID", 6, 1, 0),
5422 DBGFREGSUBFIELD_RO("DecodeAssists\0" "Decode Assists", 7, 1, 0),
5423 DBGFREGSUBFIELD_RO("PauseFilter\0" "Pause intercept filter", 10, 1, 0),
5424 DBGFREGSUBFIELD_RO("PauseFilterThreshold\0" "Pause filter threshold", 12, 1, 0),
5425 DBGFREGSUBFIELD_RO("AVIC\0" "Advanced Virtual Interrupt Controller", 13, 1, 0),
5426 DBGFREGSUBFIELD_RO("VMSAVEVirt\0" "VMSAVE and VMLOAD Virtualization", 15, 1, 0),
5427 DBGFREGSUBFIELD_RO("VGIF\0" "Virtual Global-Interrupt Flag", 16, 1, 0),
5428 DBGFREGSUBFIELD_RO("GMET\0" "Guest Mode Execute Trap Extension", 17, 1, 0),
5429 DBGFREGSUBFIELD_RO("x2AVIC\0" "AVIC support for x2APIC mode", 18, 1, 0),
5430 DBGFREGSUBFIELD_RO("SSSCheck\0" "SVM supervisor shadow stack restrictions", 19, 1, 0),
5431 DBGFREGSUBFIELD_RO("SpecCtrl\0" "SPEC_CTRL virtualization", 20, 1, 0),
5432 DBGFREGSUBFIELD_RO("ROGPT\0" "Read-Only Guest Page Table feature support", 21, 1, 0),
5433 DBGFREGSUBFIELD_RO("HOST_MCE_OVERRIDE\0" "Guest #MC can be intercepted", 23, 1, 0),
5434 DBGFREGSUBFIELD_RO("TlbiCtl\0" "INVLPGB/TLBSYNC enable and intercept", 24, 1, 0),
5435 DBGFREGSUBFIELD_RO("VNMI\0" "NMI Virtualization", 25, 1, 0),
5436 DBGFREGSUBFIELD_RO("IbsVirt\0" "IBS Virtualization", 26, 1, 0),
5437 DBGFREGSUBFIELD_RO("ExtLvtAvicAccessChg\0" "Extended LVT AVIC access changes", 27, 1, 0),
5438 DBGFREGSUBFIELD_RO("NestedVirtVmcbAddrChk\0""Guest VMCB address check", 28, 1, 0),
5439 DBGFREGSUBFIELD_RO("BusLockThreshold\0" "Bus Lock Threshold", 29, 1, 0),
5440 DBGFREGSUBFIELD_TERMINATOR()
5441};
5442
5443
5444/** CPUID(0x80000007,0).EDX field descriptions. */
5445static DBGFREGSUBFIELD const g_aExtLeaf7EdxSubFields[] =
5446{
5447 DBGFREGSUBFIELD_RO("TS\0" "Temperature Sensor", 0, 1, 0),
5448 DBGFREGSUBFIELD_RO("FID\0" "Frequency ID control", 1, 1, 0),
5449 DBGFREGSUBFIELD_RO("VID\0" "Voltage ID control", 2, 1, 0),
5450 DBGFREGSUBFIELD_RO("TTP\0" "Thermal Trip", 3, 1, 0),
5451 DBGFREGSUBFIELD_RO("TM\0" "Hardware Thermal Control (HTC)", 4, 1, 0),
5452 DBGFREGSUBFIELD_RO("100MHzSteps\0" "100 MHz Multiplier control", 6, 1, 0),
5453 DBGFREGSUBFIELD_RO("HwPstate\0" "Hardware P-state control", 7, 1, 0),
5454 DBGFREGSUBFIELD_RO("TscInvariant\0" "Invariant Time Stamp Counter", 8, 1, 0),
5455 DBGFREGSUBFIELD_RO("CPB\0" "Core Performance Boost", 9, 1, 0),
5456 DBGFREGSUBFIELD_RO("EffFreqRO\0" "Read-only Effective Frequency Interface", 10, 1, 0),
5457 DBGFREGSUBFIELD_RO("ProcFdbkIf\0" "Processor Feedback Interface", 11, 1, 0),
5458 DBGFREGSUBFIELD_RO("ProcPwrRep\0" "Core power reporting interface support", 12, 1, 0),
5459 DBGFREGSUBFIELD_RO("ConnectedStandby\0" "Connected Standby", 13, 1, 0),
5460 DBGFREGSUBFIELD_RO("RAPL\0" "Running average power limit", 14, 1, 0),
5461 DBGFREGSUBFIELD_TERMINATOR()
5462};
5463
5464/** CPUID(0x80000008,0).EBX field descriptions. */
5465static DBGFREGSUBFIELD const g_aExtLeaf8EbxSubFields[] =
5466{
5467 DBGFREGSUBFIELD_RO("CLZERO\0" "Clear zero instruction (cacheline)", 0, 1, 0),
5468 DBGFREGSUBFIELD_RO("IRPerf\0" "Instructions retired count support", 1, 1, 0),
5469 DBGFREGSUBFIELD_RO("XSaveErPtr\0" "Save/restore error pointers (FXSAVE/RSTOR)", 2, 1, 0),
5470 DBGFREGSUBFIELD_RO("INVLPGB\0" "INVLPGB and TLBSYNC instructions", 3, 1, 0),
5471 DBGFREGSUBFIELD_RO("RDPRU\0" "RDPRU instruction", 4, 1, 0),
5472 DBGFREGSUBFIELD_RO("BE\0" "Bandwidth Enforcement extension", 6, 1, 0),
5473 DBGFREGSUBFIELD_RO("MCOMMIT\0" "MCOMMIT instruction", 8, 1, 0),
5474 DBGFREGSUBFIELD_RO("WBNOINVD\0" "WBNOINVD instruction", 9, 1, 0),
5475 DBGFREGSUBFIELD_RO("IBPB\0" "Supports the IBPB command in IA32_PRED_CMD", 12, 1, 0),
5476 DBGFREGSUBFIELD_RO("INT_WBINVD\0" "WBINVD/WBNOINVD interruptible", 13, 1, 0),
5477 DBGFREGSUBFIELD_RO("IBRS\0" "Indirect Branch Restricted Speculation", 14, 1, 0),
5478 DBGFREGSUBFIELD_RO("STIBP\0" "Single Thread Indirect Branch Prediction", 15, 1, 0),
5479 DBGFREGSUBFIELD_RO("IbrsAlwaysOn\0" "Processor prefers that IBRS be left on", 16, 1, 0),
5480 DBGFREGSUBFIELD_RO("StibpAlwaysOn\0""Processor prefers that STIBP be left on", 17, 1, 0),
5481 DBGFREGSUBFIELD_RO("IbrsPreferred\0""IBRS preferred over software solution", 18, 1, 0),
5482 DBGFREGSUBFIELD_RO("IbrsSameMode\0" "IBRS limits same mode speculation", 19, 1, 0),
5483 DBGFREGSUBFIELD_RO("EferLmsleUnsupported\0" "EFER.LMSLE is unsupported", 20, 1, 0),
5484 DBGFREGSUBFIELD_RO("INVLPGBnestedPages\0" "INVLPGB for nested translation", 21, 1, 0),
5485 DBGFREGSUBFIELD_RO("SSBD\0" "Speculative Store Bypass Disable", 24, 1, 0),
5486 DBGFREGSUBFIELD_RO("SsbdVirtSpecCtrl\0" "Use VIRT_SPEC_CTL for SSBD", 25, 1, 0),
5487 DBGFREGSUBFIELD_RO("SsbdNotRequired\0" "SSBD not needed on this processor", 26, 1, 0),
5488 DBGFREGSUBFIELD_RO("CPPC\0" "Collaborative Processor Performance Control", 27, 1, 0),
5489 DBGFREGSUBFIELD_RO("PSFD\0" "Predictive Store Forward Disable", 28, 1, 0),
5490 DBGFREGSUBFIELD_RO("BTC_NO\0" "Unaffected by branch type confusion", 29, 1, 0),
5491 DBGFREGSUBFIELD_RO("IBPB_RET\0" "Clears RA predictor when PRED_CMD.IBPB set", 30, 1, 0),
5492 DBGFREGSUBFIELD_TERMINATOR()
5493};
5494
5495
5496static void cpumR3CpuIdInfoMnemonicListU32(PCDBGFINFOHLP pHlp, uint32_t uVal, PCDBGFREGSUBFIELD pDesc,
5497 const char *pszLeadIn, uint32_t cchWidth)
5498{
5499 if (pszLeadIn)
5500 pHlp->pfnPrintf(pHlp, "%*s", cchWidth, pszLeadIn);
5501
5502 for (uint32_t iBit = 0; iBit < 32; iBit++)
5503 if (RT_BIT_32(iBit) & uVal)
5504 {
5505 while ( pDesc->pszName != NULL
5506 && iBit >= (uint32_t)pDesc->iFirstBit + pDesc->cBits)
5507 pDesc++;
5508 if ( pDesc->pszName != NULL
5509 && iBit - (uint32_t)pDesc->iFirstBit < (uint32_t)pDesc->cBits)
5510 {
5511 if (pDesc->cBits == 1)
5512 pHlp->pfnPrintf(pHlp, " %s", pDesc->pszName);
5513 else
5514 {
5515 uint32_t uFieldValue = uVal >> pDesc->iFirstBit;
5516 if (pDesc->cBits < 32)
5517 uFieldValue &= RT_BIT_32(pDesc->cBits) - UINT32_C(1);
5518 pHlp->pfnPrintf(pHlp, pDesc->cBits < 4 ? " %s=%u" : " %s=%#x", pDesc->pszName, uFieldValue);
5519 iBit = pDesc->iFirstBit + pDesc->cBits - 1;
5520 }
5521 }
5522 else
5523 pHlp->pfnPrintf(pHlp, " %u", iBit);
5524 }
5525 if (pszLeadIn)
5526 pHlp->pfnPrintf(pHlp, "\n");
5527}
5528
5529
5530static void cpumR3CpuIdInfoMnemonicListU64(PCDBGFINFOHLP pHlp, uint64_t uVal, PCDBGFREGSUBFIELD pDesc,
5531 const char *pszLeadIn, uint32_t cchWidth)
5532{
5533 if (pszLeadIn)
5534 pHlp->pfnPrintf(pHlp, "%*s", cchWidth, pszLeadIn);
5535
5536 for (uint32_t iBit = 0; iBit < 64; iBit++)
5537 if (RT_BIT_64(iBit) & uVal)
5538 {
5539 while ( pDesc->pszName != NULL
5540 && iBit >= (uint32_t)pDesc->iFirstBit + pDesc->cBits)
5541 pDesc++;
5542 if ( pDesc->pszName != NULL
5543 && iBit - (uint32_t)pDesc->iFirstBit < (uint32_t)pDesc->cBits)
5544 {
5545 if (pDesc->cBits == 1)
5546 pHlp->pfnPrintf(pHlp, " %s", pDesc->pszName);
5547 else
5548 {
5549 uint64_t uFieldValue = uVal >> pDesc->iFirstBit;
5550 if (pDesc->cBits < 64)
5551 uFieldValue &= RT_BIT_64(pDesc->cBits) - UINT64_C(1);
5552 pHlp->pfnPrintf(pHlp, pDesc->cBits < 4 ? " %s=%llu" : " %s=%#llx", pDesc->pszName, uFieldValue);
5553 iBit = pDesc->iFirstBit + pDesc->cBits - 1;
5554 }
5555 }
5556 else
5557 pHlp->pfnPrintf(pHlp, " %u", iBit);
5558 }
5559 if (pszLeadIn)
5560 pHlp->pfnPrintf(pHlp, "\n");
5561}
5562
5563
5564static void cpumR3CpuIdInfoValueWithMnemonicListU64(PCDBGFINFOHLP pHlp, uint64_t uVal, PCDBGFREGSUBFIELD pDesc,
5565 const char *pszLeadIn, uint32_t cchWidth)
5566{
5567 if (!uVal)
5568 pHlp->pfnPrintf(pHlp, "%*s %#010x`%08x\n", cchWidth, pszLeadIn, RT_HI_U32(uVal), RT_LO_U32(uVal));
5569 else
5570 {
5571 pHlp->pfnPrintf(pHlp, "%*s %#010x`%08x (", cchWidth, pszLeadIn, RT_HI_U32(uVal), RT_LO_U32(uVal));
5572 cpumR3CpuIdInfoMnemonicListU64(pHlp, uVal, pDesc, NULL, 0);
5573 pHlp->pfnPrintf(pHlp, " )\n");
5574 }
5575}
5576
5577
5578static void cpumR3CpuIdInfoVerboseCompareListU32(PCDBGFINFOHLP pHlp, uint32_t uVal1, uint32_t uVal2, PCDBGFREGSUBFIELD pDesc,
5579 uint32_t cchWidth)
5580{
5581 uint32_t uCombined = uVal1 | uVal2;
5582 for (uint32_t iBit = 0; iBit < 32; iBit++)
5583 if ( (RT_BIT_32(iBit) & uCombined)
5584 || (iBit == pDesc->iFirstBit && pDesc->pszName) )
5585 {
5586 while ( pDesc->pszName != NULL
5587 && iBit >= (uint32_t)pDesc->iFirstBit + pDesc->cBits)
5588 pDesc++;
5589
5590 if ( pDesc->pszName != NULL
5591 && iBit - (uint32_t)pDesc->iFirstBit < (uint32_t)pDesc->cBits)
5592 {
5593 size_t cchMnemonic = strlen(pDesc->pszName);
5594 const char *pszDesc = pDesc->pszName + cchMnemonic + 1;
5595 size_t cchDesc = strlen(pszDesc);
5596 uint32_t uFieldValue1 = uVal1 >> pDesc->iFirstBit;
5597 uint32_t uFieldValue2 = uVal2 >> pDesc->iFirstBit;
5598 if (pDesc->cBits < 32)
5599 {
5600 uFieldValue1 &= RT_BIT_32(pDesc->cBits) - UINT32_C(1);
5601 uFieldValue2 &= RT_BIT_32(pDesc->cBits) - UINT32_C(1);
5602 }
5603
5604 pHlp->pfnPrintf(pHlp, pDesc->cBits < 4 ? " %s - %s%*s= %u (%u)\n" : " %s - %s%*s= %#x (%#x)\n",
5605 pDesc->pszName, pszDesc,
5606 cchMnemonic + 3 + cchDesc < cchWidth ? cchWidth - (cchMnemonic + 3 + cchDesc) : 1, "",
5607 uFieldValue1, uFieldValue2);
5608
5609 iBit = pDesc->iFirstBit + pDesc->cBits - 1U;
5610 pDesc++;
5611 }
5612 else
5613 pHlp->pfnPrintf(pHlp, " %2u - Reserved%*s= %u (%u)\n", iBit, 13 < cchWidth ? cchWidth - 13 : 1, "",
5614 RT_BOOL(uVal1 & RT_BIT_32(iBit)), RT_BOOL(uVal2 & RT_BIT_32(iBit)));
5615 }
5616}
5617
5618
5619/**
5620 * Produces a detailed summary of standard leaf 0x00000001.
5621 *
5622 * @param pHlp The info helper functions.
5623 * @param pCurLeaf The 0x00000001 leaf.
5624 * @param fVerbose Whether to be very verbose or not.
5625 * @param fIntel Set if intel CPU.
5626 */
5627static void cpumR3CpuIdInfoStdLeaf1Details(PCDBGFINFOHLP pHlp, PCCPUMCPUIDLEAF pCurLeaf, bool fVerbose, bool fIntel)
5628{
5629 Assert(pCurLeaf); Assert(pCurLeaf->uLeaf == 1);
5630 static const char * const s_apszTypes[4] = { "primary", "overdrive", "MP", "reserved" };
5631 uint32_t uEAX = pCurLeaf->uEax;
5632 uint32_t uEBX = pCurLeaf->uEbx;
5633
5634 pHlp->pfnPrintf(pHlp,
5635 "%36s %2d \tExtended: %d \tEffective: %d\n"
5636 "%36s %2d \tExtended: %d \tEffective: %d\n"
5637 "%36s %d\n"
5638 "%36s %d (%s)\n"
5639 "%36s %#04x\n"
5640 "%36s %d\n"
5641 "%36s %d\n"
5642 "%36s %#04x\n"
5643 ,
5644 "Family:", (uEAX >> 8) & 0xf, (uEAX >> 20) & 0x7f, RTX86GetCpuFamily(uEAX),
5645 "Model:", (uEAX >> 4) & 0xf, (uEAX >> 16) & 0x0f, RTX86GetCpuModel(uEAX, fIntel),
5646 "Stepping:", RTX86GetCpuStepping(uEAX),
5647 "Type:", (uEAX >> 12) & 3, s_apszTypes[(uEAX >> 12) & 3],
5648 "APIC ID:", (uEBX >> 24) & 0xff,
5649 "Logical CPUs:",(uEBX >> 16) & 0xff,
5650 "CLFLUSH Size:",(uEBX >> 8) & 0xff,
5651 "Brand ID:", (uEBX >> 0) & 0xff);
5652 if (fVerbose)
5653 {
5654 CPUMCPUID Host = {0};
5655#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
5656 ASMCpuIdExSlow(1, 0, 0, 0, &Host.uEax, &Host.uEbx, &Host.uEcx, &Host.uEdx);
5657#endif
5658 pHlp->pfnPrintf(pHlp, "Features\n");
5659 pHlp->pfnPrintf(pHlp, " Mnemonic - Description = guest (host)\n");
5660 cpumR3CpuIdInfoVerboseCompareListU32(pHlp, pCurLeaf->uEdx, Host.uEdx, g_aLeaf1EdxSubFields, 56);
5661 cpumR3CpuIdInfoVerboseCompareListU32(pHlp, pCurLeaf->uEcx, Host.uEcx, g_aLeaf1EcxSubFields, 56);
5662 }
5663 else
5664 {
5665 cpumR3CpuIdInfoMnemonicListU32(pHlp, pCurLeaf->uEdx, g_aLeaf1EdxSubFields, "Features EDX:", 36);
5666 cpumR3CpuIdInfoMnemonicListU32(pHlp, pCurLeaf->uEcx, g_aLeaf1EcxSubFields, "Features ECX:", 36);
5667 }
5668}
5669
5670
5671/**
5672 * Produces a detailed summary of standard leaf 0x00000007.
5673 *
5674 * @param pHlp The info helper functions.
5675 * @param paLeaves The CPUID leaves array.
5676 * @param cLeaves The number of leaves in the array.
5677 * @param pCurLeaf The first 0x00000007 leaf.
5678 * @param fVerbose Whether to be very verbose or not.
5679 */
5680static void cpumR3CpuIdInfoStdLeaf7Details(PCDBGFINFOHLP pHlp, PCCPUMCPUIDLEAF paLeaves, uint32_t cLeaves,
5681 PCCPUMCPUIDLEAF pCurLeaf, bool fVerbose)
5682{
5683 Assert(pCurLeaf); Assert(pCurLeaf->uLeaf == 7);
5684 pHlp->pfnPrintf(pHlp, "Structured Extended Feature Flags Enumeration (leaf 7):\n");
5685 for (;;)
5686 {
5687 CPUMCPUID Host = {0};
5688#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
5689 ASMCpuIdExSlow(pCurLeaf->uLeaf, 0, pCurLeaf->uSubLeaf, 0, &Host.uEax, &Host.uEbx, &Host.uEcx, &Host.uEdx);
5690#endif
5691
5692 switch (pCurLeaf->uSubLeaf)
5693 {
5694 case 0:
5695 if (fVerbose)
5696 {
5697 pHlp->pfnPrintf(pHlp, " Mnemonic - Description = guest (host)\n");
5698 cpumR3CpuIdInfoVerboseCompareListU32(pHlp, pCurLeaf->uEbx, Host.uEbx, g_aLeaf7Sub0EbxSubFields, 56);
5699 cpumR3CpuIdInfoVerboseCompareListU32(pHlp, pCurLeaf->uEcx, Host.uEcx, g_aLeaf7Sub0EcxSubFields, 56);
5700 if (pCurLeaf->uEdx || Host.uEdx)
5701 cpumR3CpuIdInfoVerboseCompareListU32(pHlp, pCurLeaf->uEdx, Host.uEdx, g_aLeaf7Sub0EdxSubFields, 56);
5702 }
5703 else
5704 {
5705 cpumR3CpuIdInfoMnemonicListU32(pHlp, pCurLeaf->uEbx, g_aLeaf7Sub0EbxSubFields, "Ext Features EBX:", 36);
5706 cpumR3CpuIdInfoMnemonicListU32(pHlp, pCurLeaf->uEcx, g_aLeaf7Sub0EcxSubFields, "Ext Features ECX:", 36);
5707 if (pCurLeaf->uEdx)
5708 cpumR3CpuIdInfoMnemonicListU32(pHlp, pCurLeaf->uEdx, g_aLeaf7Sub0EdxSubFields, "Ext Features EDX:", 36);
5709 }
5710 break;
5711
5712 default:
5713 if (pCurLeaf->uEdx || pCurLeaf->uEcx || pCurLeaf->uEbx)
5714 pHlp->pfnPrintf(pHlp, "Unknown extended feature sub-leaf #%u: EAX=%#x EBX=%#x ECX=%#x EDX=%#x\n",
5715 pCurLeaf->uSubLeaf, pCurLeaf->uEax, pCurLeaf->uEbx, pCurLeaf->uEcx, pCurLeaf->uEdx);
5716 break;
5717
5718 }
5719
5720 /* advance. */
5721 pCurLeaf++;
5722 if ( (uintptr_t)(pCurLeaf - paLeaves) >= cLeaves
5723 || pCurLeaf->uLeaf != 0x7)
5724 break;
5725 }
5726}
5727
5728
5729/**
5730 * Produces a detailed summary of standard leaf 0x0000000d.
5731 *
5732 * @param pHlp The info helper functions.
5733 * @param paLeaves The CPUID leaves array.
5734 * @param cLeaves The number of leaves in the array.
5735 * @param pCurLeaf The first 0x00000007 leaf.
5736 * @param fVerbose Whether to be very verbose or not.
5737 */
5738static void cpumR3CpuIdInfoStdLeaf13Details(PCDBGFINFOHLP pHlp, PCCPUMCPUIDLEAF paLeaves, uint32_t cLeaves,
5739 PCCPUMCPUIDLEAF pCurLeaf, bool fVerbose)
5740{
5741 RT_NOREF_PV(fVerbose);
5742 Assert(pCurLeaf); Assert(pCurLeaf->uLeaf == 13);
5743 pHlp->pfnPrintf(pHlp, "Processor Extended State Enumeration (leaf 0xd):\n");
5744 for (uint32_t uSubLeaf = 0; uSubLeaf < 64; uSubLeaf++)
5745 {
5746 CPUMCPUID Host = {0};
5747#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
5748 ASMCpuIdExSlow(UINT32_C(0x0000000d), 0, uSubLeaf, 0, &Host.uEax, &Host.uEbx, &Host.uEcx, &Host.uEdx);
5749#endif
5750
5751 switch (uSubLeaf)
5752 {
5753 case 0:
5754 if (pCurLeaf && pCurLeaf->uSubLeaf == uSubLeaf)
5755 pHlp->pfnPrintf(pHlp, "%42s %#x/%#x\n", "XSAVE area cur/max size by XCR0, guest:",
5756 pCurLeaf->uEbx, pCurLeaf->uEcx);
5757 pHlp->pfnPrintf(pHlp, "%42s %#x/%#x\n", "XSAVE area cur/max size by XCR0, host:", Host.uEbx, Host.uEcx);
5758
5759 if (pCurLeaf && pCurLeaf->uSubLeaf == uSubLeaf)
5760 cpumR3CpuIdInfoValueWithMnemonicListU64(pHlp, RT_MAKE_U64(pCurLeaf->uEax, pCurLeaf->uEdx), g_aXSaveStateBits,
5761 "Valid XCR0 bits, guest:", 42);
5762 cpumR3CpuIdInfoValueWithMnemonicListU64(pHlp, RT_MAKE_U64(Host.uEax, Host.uEdx), g_aXSaveStateBits,
5763 "Valid XCR0 bits, host:", 42);
5764 break;
5765
5766 case 1:
5767 if (pCurLeaf && pCurLeaf->uSubLeaf == uSubLeaf)
5768 cpumR3CpuIdInfoMnemonicListU32(pHlp, pCurLeaf->uEax, g_aLeaf13Sub1EaxSubFields, "XSAVE features, guest:", 42);
5769 cpumR3CpuIdInfoMnemonicListU32(pHlp, Host.uEax, g_aLeaf13Sub1EaxSubFields, "XSAVE features, host:", 42);
5770
5771 if (pCurLeaf && pCurLeaf->uSubLeaf == uSubLeaf)
5772 pHlp->pfnPrintf(pHlp, "%42s %#x\n", "XSAVE area cur size XCR0|XSS, guest:", pCurLeaf->uEbx);
5773 pHlp->pfnPrintf(pHlp, "%42s %#x\n", "XSAVE area cur size XCR0|XSS, host:", Host.uEbx);
5774
5775 if (pCurLeaf && pCurLeaf->uSubLeaf == uSubLeaf)
5776 cpumR3CpuIdInfoValueWithMnemonicListU64(pHlp, RT_MAKE_U64(pCurLeaf->uEcx, pCurLeaf->uEdx), g_aXSaveStateBits,
5777 " Valid IA32_XSS bits, guest:", 42);
5778 cpumR3CpuIdInfoValueWithMnemonicListU64(pHlp, RT_MAKE_U64(Host.uEdx, Host.uEcx), g_aXSaveStateBits,
5779 " Valid IA32_XSS bits, host:", 42);
5780 break;
5781
5782 default:
5783 if ( pCurLeaf
5784 && pCurLeaf->uSubLeaf == uSubLeaf
5785 && (pCurLeaf->uEax || pCurLeaf->uEbx || pCurLeaf->uEcx || pCurLeaf->uEdx) )
5786 {
5787 pHlp->pfnPrintf(pHlp, " State #%u, guest: off=%#06x, cb=%#06x %s", uSubLeaf, pCurLeaf->uEbx,
5788 pCurLeaf->uEax, pCurLeaf->uEcx & RT_BIT_32(0) ? "XCR0-bit" : "IA32_XSS-bit");
5789 if (pCurLeaf->uEcx & ~RT_BIT_32(0))
5790 pHlp->pfnPrintf(pHlp, " ECX[reserved]=%#x\n", pCurLeaf->uEcx & ~RT_BIT_32(0));
5791 if (pCurLeaf->uEdx)
5792 pHlp->pfnPrintf(pHlp, " EDX[reserved]=%#x\n", pCurLeaf->uEdx);
5793 pHlp->pfnPrintf(pHlp, " --");
5794 cpumR3CpuIdInfoMnemonicListU64(pHlp, RT_BIT_64(uSubLeaf), g_aXSaveStateBits, NULL, 0);
5795 pHlp->pfnPrintf(pHlp, "\n");
5796 }
5797 if (Host.uEax || Host.uEbx || Host.uEcx || Host.uEdx)
5798 {
5799 pHlp->pfnPrintf(pHlp, " State #%u, host: off=%#06x, cb=%#06x %s", uSubLeaf, Host.uEbx,
5800 Host.uEax, Host.uEcx & RT_BIT_32(0) ? "XCR0-bit" : "IA32_XSS-bit");
5801 if (Host.uEcx & ~RT_BIT_32(0))
5802 pHlp->pfnPrintf(pHlp, " ECX[reserved]=%#x\n", Host.uEcx & ~RT_BIT_32(0));
5803 if (Host.uEdx)
5804 pHlp->pfnPrintf(pHlp, " EDX[reserved]=%#x\n", Host.uEdx);
5805 pHlp->pfnPrintf(pHlp, " --");
5806 cpumR3CpuIdInfoMnemonicListU64(pHlp, RT_BIT_64(uSubLeaf), g_aXSaveStateBits, NULL, 0);
5807 pHlp->pfnPrintf(pHlp, "\n");
5808 }
5809 break;
5810
5811 }
5812
5813 /* advance. */
5814 if (pCurLeaf)
5815 {
5816 while ( (uintptr_t)(pCurLeaf - paLeaves) < cLeaves
5817 && pCurLeaf->uSubLeaf <= uSubLeaf
5818 && pCurLeaf->uLeaf == UINT32_C(0x0000000d))
5819 pCurLeaf++;
5820 if ( (uintptr_t)(pCurLeaf - paLeaves) >= cLeaves
5821 || pCurLeaf->uLeaf != UINT32_C(0x0000000d))
5822 pCurLeaf = NULL;
5823 }
5824 }
5825}
5826
5827
5828static PCCPUMCPUIDLEAF cpumR3CpuIdInfoRawRange(PCDBGFINFOHLP pHlp, PCCPUMCPUIDLEAF paLeaves, uint32_t cLeaves,
5829 PCCPUMCPUIDLEAF pCurLeaf, uint32_t uUpToLeaf, const char *pszTitle)
5830{
5831 if ( (uintptr_t)(pCurLeaf - paLeaves) < cLeaves
5832 && pCurLeaf->uLeaf <= uUpToLeaf)
5833 {
5834 pHlp->pfnPrintf(pHlp,
5835 " %s\n"
5836 " Leaf/sub-leaf eax ebx ecx edx\n", pszTitle);
5837 while ( (uintptr_t)(pCurLeaf - paLeaves) < cLeaves
5838 && pCurLeaf->uLeaf <= uUpToLeaf)
5839 {
5840 CPUMCPUID Host = {0};
5841#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
5842 ASMCpuIdExSlow(pCurLeaf->uLeaf, 0, pCurLeaf->uSubLeaf, 0, &Host.uEax, &Host.uEbx, &Host.uEcx, &Host.uEdx);
5843#endif
5844 pHlp->pfnPrintf(pHlp,
5845 "Gst: %08x/%04x %08x %08x %08x %08x\n"
5846 "Hst: %08x %08x %08x %08x\n",
5847 pCurLeaf->uLeaf, pCurLeaf->uSubLeaf, pCurLeaf->uEax, pCurLeaf->uEbx, pCurLeaf->uEcx, pCurLeaf->uEdx,
5848 Host.uEax, Host.uEbx, Host.uEcx, Host.uEdx);
5849 pCurLeaf++;
5850 }
5851 }
5852
5853 return pCurLeaf;
5854}
5855
5856
5857/**
5858 * Display the guest CpuId leaves.
5859 *
5860 * @param pVM The cross context VM structure.
5861 * @param pHlp The info helper functions.
5862 * @param pszArgs "terse", "default" or "verbose".
5863 */
5864DECLCALLBACK(void) cpumR3CpuIdInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
5865{
5866 /*
5867 * Parse the argument.
5868 */
5869 unsigned iVerbosity = 1;
5870 if (pszArgs)
5871 {
5872 pszArgs = RTStrStripL(pszArgs);
5873 if (!strcmp(pszArgs, "terse"))
5874 iVerbosity--;
5875 else if (!strcmp(pszArgs, "verbose"))
5876 iVerbosity++;
5877 }
5878
5879 uint32_t uLeaf;
5880 CPUMCPUID Host = {0};
5881 uint32_t cLeaves = pVM->cpum.s.GuestInfo.cCpuIdLeaves;
5882 PCPUMCPUIDLEAF paLeaves = pVM->cpum.s.GuestInfo.paCpuIdLeavesR3;
5883 PCCPUMCPUIDLEAF pCurLeaf;
5884 PCCPUMCPUIDLEAF pNextLeaf;
5885 bool const fIntel = RTX86IsIntelCpu(pVM->cpum.s.aGuestCpuIdPatmStd[0].uEbx,
5886 pVM->cpum.s.aGuestCpuIdPatmStd[0].uEcx,
5887 pVM->cpum.s.aGuestCpuIdPatmStd[0].uEdx);
5888
5889 /*
5890 * Standard leaves. Custom raw dump here due to ECX sub-leaves host handling.
5891 */
5892#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
5893 uint32_t cHstMax = ASMCpuId_EAX(0);
5894#else
5895 uint32_t cHstMax = 0;
5896#endif
5897 uint32_t cGstMax = paLeaves[0].uLeaf == 0 ? paLeaves[0].uEax : 0;
5898 uint32_t cMax = RT_MAX(cGstMax, cHstMax);
5899 pHlp->pfnPrintf(pHlp,
5900 " Raw Standard CPUID Leaves\n"
5901 " Leaf/sub-leaf eax ebx ecx edx\n");
5902 for (uLeaf = 0, pCurLeaf = paLeaves; uLeaf <= cMax; uLeaf++)
5903 {
5904 uint32_t cMaxSubLeaves = 1;
5905 if (uLeaf == 4 || uLeaf == 7 || uLeaf == 0xb)
5906 cMaxSubLeaves = 16;
5907 else if (uLeaf == 0xd)
5908 cMaxSubLeaves = 128;
5909
5910 for (uint32_t uSubLeaf = 0; uSubLeaf < cMaxSubLeaves; uSubLeaf++)
5911 {
5912#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
5913 ASMCpuIdExSlow(uLeaf, 0, uSubLeaf, 0, &Host.uEax, &Host.uEbx, &Host.uEcx, &Host.uEdx);
5914#endif
5915 if ( (uintptr_t)(pCurLeaf - paLeaves) < cLeaves
5916 && pCurLeaf->uLeaf == uLeaf
5917 && pCurLeaf->uSubLeaf == uSubLeaf)
5918 {
5919 pHlp->pfnPrintf(pHlp,
5920 "Gst: %08x/%04x %08x %08x %08x %08x\n"
5921 "Hst: %08x %08x %08x %08x\n",
5922 uLeaf, uSubLeaf, pCurLeaf->uEax, pCurLeaf->uEbx, pCurLeaf->uEcx, pCurLeaf->uEdx,
5923 Host.uEax, Host.uEbx, Host.uEcx, Host.uEdx);
5924 pCurLeaf++;
5925 }
5926 else if ( uLeaf != 0xd
5927 || uSubLeaf <= 1
5928 || Host.uEbx != 0 )
5929 pHlp->pfnPrintf(pHlp,
5930 "Hst: %08x/%04x %08x %08x %08x %08x\n",
5931 uLeaf, uSubLeaf, Host.uEax, Host.uEbx, Host.uEcx, Host.uEdx);
5932
5933 /* Done? */
5934 if ( ( (uintptr_t)(pCurLeaf - paLeaves) >= cLeaves
5935 || pCurLeaf->uLeaf != uLeaf)
5936 && ( (uLeaf == 0x4 && ((Host.uEax & 0x000f) == 0 || (Host.uEax & 0x000f) >= 8))
5937 || (uLeaf == 0x7 && Host.uEax == 0)
5938 || (uLeaf == 0xb && ((Host.uEcx & 0xff00) == 0 || (Host.uEcx & 0xff00) >= 8))
5939 || (uLeaf == 0xb && (Host.uEcx & 0xff) != uSubLeaf)
5940 || (uLeaf == 0xd && uSubLeaf >= 128)
5941 )
5942 )
5943 break;
5944 }
5945 }
5946 pNextLeaf = pCurLeaf;
5947
5948 /*
5949 * If verbose, decode it.
5950 */
5951 if (iVerbosity && paLeaves[0].uLeaf == 0)
5952 pHlp->pfnPrintf(pHlp,
5953 "%36s %.04s%.04s%.04s\n"
5954 "%36s 0x00000000-%#010x\n"
5955 ,
5956 "Name:", &paLeaves[0].uEbx, &paLeaves[0].uEdx, &paLeaves[0].uEcx,
5957 "Supports:", paLeaves[0].uEax);
5958
5959 if (iVerbosity && (pCurLeaf = cpumCpuIdGetLeafInt(paLeaves, cLeaves, UINT32_C(0x00000001), 0)) != NULL)
5960 cpumR3CpuIdInfoStdLeaf1Details(pHlp, pCurLeaf, iVerbosity > 1, fIntel);
5961
5962 if (iVerbosity && (pCurLeaf = cpumCpuIdGetLeafInt(paLeaves, cLeaves, UINT32_C(0x00000007), 0)) != NULL)
5963 cpumR3CpuIdInfoStdLeaf7Details(pHlp, paLeaves, cLeaves, pCurLeaf, iVerbosity > 1);
5964
5965 if (iVerbosity && (pCurLeaf = cpumCpuIdGetLeafInt(paLeaves, cLeaves, UINT32_C(0x0000000d), 0)) != NULL)
5966 cpumR3CpuIdInfoStdLeaf13Details(pHlp, paLeaves, cLeaves, pCurLeaf, iVerbosity > 1);
5967
5968 pCurLeaf = pNextLeaf;
5969
5970 /*
5971 * Hypervisor leaves.
5972 *
5973 * Unlike most of the other leaves reported, the guest hypervisor leaves
5974 * aren't a subset of the host CPUID bits.
5975 */
5976 pCurLeaf = cpumR3CpuIdInfoRawRange(pHlp, paLeaves, cLeaves, pCurLeaf, UINT32_C(0x3fffffff), "Unknown CPUID Leaves");
5977
5978#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
5979 ASMCpuIdExSlow(UINT32_C(0x40000000), 0, 0, 0, &Host.uEax, &Host.uEbx, &Host.uEcx, &Host.uEdx);
5980#endif
5981 cHstMax = Host.uEax >= UINT32_C(0x40000001) && Host.uEax <= UINT32_C(0x40000fff) ? Host.uEax : 0;
5982 cGstMax = (uintptr_t)(pCurLeaf - paLeaves) < cLeaves && pCurLeaf->uLeaf == UINT32_C(0x40000000)
5983 ? RT_MIN(pCurLeaf->uEax, UINT32_C(0x40000fff)) : 0;
5984 cMax = RT_MAX(cHstMax, cGstMax);
5985 if (cMax >= UINT32_C(0x40000000))
5986 {
5987 pNextLeaf = cpumR3CpuIdInfoRawRange(pHlp, paLeaves, cLeaves, pCurLeaf, cMax, "Raw Hypervisor CPUID Leaves");
5988
5989 /** @todo dump these in more detail. */
5990
5991 pCurLeaf = pNextLeaf;
5992 }
5993
5994
5995 /*
5996 * Extended. Custom raw dump here due to ECX sub-leaves host handling.
5997 * Implemented after AMD specs.
5998 */
5999 pCurLeaf = cpumR3CpuIdInfoRawRange(pHlp, paLeaves, cLeaves, pCurLeaf, UINT32_C(0x7fffffff), "Unknown CPUID Leaves");
6000
6001#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
6002 ASMCpuIdExSlow(UINT32_C(0x80000000), 0, 0, 0, &Host.uEax, &Host.uEbx, &Host.uEcx, &Host.uEdx);
6003#endif
6004 cHstMax = RTX86IsValidExtRange(Host.uEax) ? RT_MIN(Host.uEax, UINT32_C(0x80000fff)) : 0;
6005 cGstMax = (uintptr_t)(pCurLeaf - paLeaves) < cLeaves && pCurLeaf->uLeaf == UINT32_C(0x80000000)
6006 ? RT_MIN(pCurLeaf->uEax, UINT32_C(0x80000fff)) : 0;
6007 cMax = RT_MAX(cHstMax, cGstMax);
6008 if (cMax >= UINT32_C(0x80000000))
6009 {
6010
6011 pHlp->pfnPrintf(pHlp,
6012 " Raw Extended CPUID Leaves\n"
6013 " Leaf/sub-leaf eax ebx ecx edx\n");
6014 PCCPUMCPUIDLEAF pExtLeaf = pCurLeaf;
6015 for (uLeaf = UINT32_C(0x80000000); uLeaf <= cMax; uLeaf++)
6016 {
6017 uint32_t cMaxSubLeaves = 1;
6018 if (uLeaf == UINT32_C(0x8000001d))
6019 cMaxSubLeaves = 16;
6020
6021 for (uint32_t uSubLeaf = 0; uSubLeaf < cMaxSubLeaves; uSubLeaf++)
6022 {
6023#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
6024 ASMCpuIdExSlow(uLeaf, 0, uSubLeaf, 0, &Host.uEax, &Host.uEbx, &Host.uEcx, &Host.uEdx);
6025#endif
6026 if ( (uintptr_t)(pCurLeaf - paLeaves) < cLeaves
6027 && pCurLeaf->uLeaf == uLeaf
6028 && pCurLeaf->uSubLeaf == uSubLeaf)
6029 {
6030 pHlp->pfnPrintf(pHlp,
6031 "Gst: %08x/%04x %08x %08x %08x %08x\n"
6032 "Hst: %08x %08x %08x %08x\n",
6033 uLeaf, uSubLeaf, pCurLeaf->uEax, pCurLeaf->uEbx, pCurLeaf->uEcx, pCurLeaf->uEdx,
6034 Host.uEax, Host.uEbx, Host.uEcx, Host.uEdx);
6035 pCurLeaf++;
6036 }
6037 else if ( uLeaf != 0xd
6038 || uSubLeaf <= 1
6039 || Host.uEbx != 0 )
6040 pHlp->pfnPrintf(pHlp,
6041 "Hst: %08x/%04x %08x %08x %08x %08x\n",
6042 uLeaf, uSubLeaf, Host.uEax, Host.uEbx, Host.uEcx, Host.uEdx);
6043
6044 /* Done? */
6045 if ( ( (uintptr_t)(pCurLeaf - paLeaves) >= cLeaves
6046 || pCurLeaf->uLeaf != uLeaf)
6047 && (uLeaf == UINT32_C(0x8000001d) && ((Host.uEax & 0x000f) == 0 || (Host.uEax & 0x000f) >= 8)) )
6048 break;
6049 }
6050 }
6051 pNextLeaf = pCurLeaf;
6052
6053 /*
6054 * Understandable output
6055 */
6056 if (iVerbosity)
6057 pHlp->pfnPrintf(pHlp,
6058 "Ext Name: %.4s%.4s%.4s\n"
6059 "Ext Supports: 0x80000000-%#010x\n",
6060 &pExtLeaf->uEbx, &pExtLeaf->uEdx, &pExtLeaf->uEcx, pExtLeaf->uEax);
6061
6062 pCurLeaf = cpumCpuIdGetLeafInt(paLeaves, cLeaves, UINT32_C(0x80000001), 0);
6063 if (iVerbosity && pCurLeaf)
6064 {
6065 uint32_t uEAX = pCurLeaf->uEax;
6066 pHlp->pfnPrintf(pHlp,
6067 "Family: %d \tExtended: %d \tEffective: %d\n"
6068 "Model: %d \tExtended: %d \tEffective: %d\n"
6069 "Stepping: %d\n"
6070 "Brand ID: %#05x\n",
6071 (uEAX >> 8) & 0xf, (uEAX >> 20) & 0x7f, RTX86GetCpuFamily(uEAX),
6072 (uEAX >> 4) & 0xf, (uEAX >> 16) & 0x0f, RTX86GetCpuModel(uEAX, fIntel),
6073 RTX86GetCpuStepping(uEAX),
6074 pCurLeaf->uEbx & 0xfff);
6075
6076 if (iVerbosity == 1)
6077 {
6078 cpumR3CpuIdInfoMnemonicListU32(pHlp, pCurLeaf->uEdx, g_aExtLeaf1EdxSubFields, "Ext Features EDX:", 34);
6079 cpumR3CpuIdInfoMnemonicListU32(pHlp, pCurLeaf->uEcx, g_aExtLeaf1EdxSubFields, "Ext Features ECX:", 34);
6080 }
6081 else
6082 {
6083#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
6084 ASMCpuIdExSlow(0x80000001, 0, 0, 0, &Host.uEax, &Host.uEbx, &Host.uEcx, &Host.uEdx);
6085#endif
6086 pHlp->pfnPrintf(pHlp, "Ext Features\n");
6087 pHlp->pfnPrintf(pHlp, " Mnemonic - Description = guest (host)\n");
6088 cpumR3CpuIdInfoVerboseCompareListU32(pHlp, pCurLeaf->uEdx, Host.uEdx, g_aExtLeaf1EdxSubFields, 56);
6089 cpumR3CpuIdInfoVerboseCompareListU32(pHlp, pCurLeaf->uEcx, Host.uEcx, g_aExtLeaf1EcxSubFields, 56);
6090 if (Host.uEcx & X86_CPUID_AMD_FEATURE_ECX_SVM)
6091 {
6092 pHlp->pfnPrintf(pHlp, "SVM Feature Identification (leaf A):\n");
6093#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
6094 ASMCpuIdExSlow(0x8000000a, 0, 0, 0, &Host.uEax, &Host.uEbx, &Host.uEcx, &Host.uEdx);
6095#endif
6096 pCurLeaf = cpumCpuIdGetLeafInt(paLeaves, cLeaves, UINT32_C(0x8000000a), 0);
6097 uint32_t const uGstEdx = pCurLeaf ? pCurLeaf->uEdx : 0;
6098 cpumR3CpuIdInfoVerboseCompareListU32(pHlp, uGstEdx, Host.uEdx, g_aExtLeafAEdxSubFields, 56);
6099 }
6100 }
6101 }
6102
6103 if (iVerbosity && (pCurLeaf = cpumCpuIdGetLeafInt(paLeaves, cLeaves, UINT32_C(0x80000002), 0)) != NULL)
6104 {
6105 char szString[4*4*3+1] = {0};
6106 uint32_t *pu32 = (uint32_t *)szString;
6107 *pu32++ = pCurLeaf->uEax;
6108 *pu32++ = pCurLeaf->uEbx;
6109 *pu32++ = pCurLeaf->uEcx;
6110 *pu32++ = pCurLeaf->uEdx;
6111 pCurLeaf = cpumCpuIdGetLeafInt(paLeaves, cLeaves, UINT32_C(0x80000003), 0);
6112 if (pCurLeaf)
6113 {
6114 *pu32++ = pCurLeaf->uEax;
6115 *pu32++ = pCurLeaf->uEbx;
6116 *pu32++ = pCurLeaf->uEcx;
6117 *pu32++ = pCurLeaf->uEdx;
6118 }
6119 pCurLeaf = cpumCpuIdGetLeafInt(paLeaves, cLeaves, UINT32_C(0x80000004), 0);
6120 if (pCurLeaf)
6121 {
6122 *pu32++ = pCurLeaf->uEax;
6123 *pu32++ = pCurLeaf->uEbx;
6124 *pu32++ = pCurLeaf->uEcx;
6125 *pu32++ = pCurLeaf->uEdx;
6126 }
6127 pHlp->pfnPrintf(pHlp, "Full Name: \"%s\"\n", szString);
6128 }
6129
6130 if (iVerbosity && (pCurLeaf = cpumCpuIdGetLeafInt(paLeaves, cLeaves, UINT32_C(0x80000005), 0)) != NULL)
6131 {
6132 uint32_t uEAX = pCurLeaf->uEax;
6133 uint32_t uEBX = pCurLeaf->uEbx;
6134 uint32_t uECX = pCurLeaf->uEcx;
6135 uint32_t uEDX = pCurLeaf->uEdx;
6136 char sz1[32];
6137 char sz2[32];
6138
6139 pHlp->pfnPrintf(pHlp,
6140 "TLB 2/4M Instr/Uni: %s %3d entries\n"
6141 "TLB 2/4M Data: %s %3d entries\n",
6142 getCacheAss((uEAX >> 8) & 0xff, sz1), (uEAX >> 0) & 0xff,
6143 getCacheAss((uEAX >> 24) & 0xff, sz2), (uEAX >> 16) & 0xff);
6144 pHlp->pfnPrintf(pHlp,
6145 "TLB 4K Instr/Uni: %s %3d entries\n"
6146 "TLB 4K Data: %s %3d entries\n",
6147 getCacheAss((uEBX >> 8) & 0xff, sz1), (uEBX >> 0) & 0xff,
6148 getCacheAss((uEBX >> 24) & 0xff, sz2), (uEBX >> 16) & 0xff);
6149 pHlp->pfnPrintf(pHlp, "L1 Instr Cache Line Size: %d bytes\n"
6150 "L1 Instr Cache Lines Per Tag: %d\n"
6151 "L1 Instr Cache Associativity: %s\n"
6152 "L1 Instr Cache Size: %d KB\n",
6153 (uEDX >> 0) & 0xff,
6154 (uEDX >> 8) & 0xff,
6155 getCacheAss((uEDX >> 16) & 0xff, sz1),
6156 (uEDX >> 24) & 0xff);
6157 pHlp->pfnPrintf(pHlp,
6158 "L1 Data Cache Line Size: %d bytes\n"
6159 "L1 Data Cache Lines Per Tag: %d\n"
6160 "L1 Data Cache Associativity: %s\n"
6161 "L1 Data Cache Size: %d KB\n",
6162 (uECX >> 0) & 0xff,
6163 (uECX >> 8) & 0xff,
6164 getCacheAss((uECX >> 16) & 0xff, sz1),
6165 (uECX >> 24) & 0xff);
6166 }
6167
6168 if (iVerbosity && (pCurLeaf = cpumCpuIdGetLeafInt(paLeaves, cLeaves, UINT32_C(0x80000006), 0)) != NULL)
6169 {
6170 uint32_t uEAX = pCurLeaf->uEax;
6171 uint32_t uEBX = pCurLeaf->uEbx;
6172 uint32_t uECX = pCurLeaf->uEcx;
6173 uint32_t uEDX = pCurLeaf->uEdx;
6174
6175 pHlp->pfnPrintf(pHlp,
6176 "L2 TLB 2/4M Instr/Uni: %s %4d entries\n"
6177 "L2 TLB 2/4M Data: %s %4d entries\n",
6178 getL23CacheAss((uEAX >> 12) & 0xf), (uEAX >> 0) & 0xfff,
6179 getL23CacheAss((uEAX >> 28) & 0xf), (uEAX >> 16) & 0xfff);
6180 pHlp->pfnPrintf(pHlp,
6181 "L2 TLB 4K Instr/Uni: %s %4d entries\n"
6182 "L2 TLB 4K Data: %s %4d entries\n",
6183 getL23CacheAss((uEBX >> 12) & 0xf), (uEBX >> 0) & 0xfff,
6184 getL23CacheAss((uEBX >> 28) & 0xf), (uEBX >> 16) & 0xfff);
6185 pHlp->pfnPrintf(pHlp,
6186 "L2 Cache Line Size: %d bytes\n"
6187 "L2 Cache Lines Per Tag: %d\n"
6188 "L2 Cache Associativity: %s\n"
6189 "L2 Cache Size: %d KB\n",
6190 (uECX >> 0) & 0xff,
6191 (uECX >> 8) & 0xf,
6192 getL23CacheAss((uECX >> 12) & 0xf),
6193 (uECX >> 16) & 0xffff);
6194 pHlp->pfnPrintf(pHlp,
6195 "L3 Cache Line Size: %d bytes\n"
6196 "L3 Cache Lines Per Tag: %d\n"
6197 "L3 Cache Associativity: %s\n"
6198 "L3 Cache Size: %d KB\n",
6199 (uEDX >> 0) & 0xff,
6200 (uEDX >> 8) & 0xf,
6201 getL23CacheAss((uEDX >> 12) & 0xf),
6202 ((uEDX >> 18) & 0x3fff) * 512);
6203 }
6204
6205 if (iVerbosity && (pCurLeaf = cpumCpuIdGetLeafInt(paLeaves, cLeaves, UINT32_C(0x80000007), 0)) != NULL)
6206 {
6207#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
6208 ASMCpuIdExSlow(UINT32_C(0x80000007), 0, 0, 0, &Host.uEax, &Host.uEbx, &Host.uEcx, &Host.uEdx);
6209#endif
6210 if (pCurLeaf->uEdx || (Host.uEdx && iVerbosity))
6211 {
6212 if (iVerbosity < 1)
6213 cpumR3CpuIdInfoMnemonicListU32(pHlp, pCurLeaf->uEdx, g_aExtLeaf7EdxSubFields, "APM Features EDX:", 34);
6214 else
6215 cpumR3CpuIdInfoVerboseCompareListU32(pHlp, pCurLeaf->uEdx, Host.uEdx, g_aExtLeaf7EdxSubFields, 56);
6216 }
6217 }
6218
6219 pCurLeaf = cpumCpuIdGetLeafInt(paLeaves, cLeaves, UINT32_C(0x80000008), 0);
6220 if (pCurLeaf != NULL)
6221 {
6222#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
6223 ASMCpuIdExSlow(UINT32_C(0x80000008), 0, 0, 0, &Host.uEax, &Host.uEbx, &Host.uEcx, &Host.uEdx);
6224#endif
6225 if (pCurLeaf->uEbx || (Host.uEbx && iVerbosity))
6226 {
6227 if (iVerbosity < 1)
6228 cpumR3CpuIdInfoMnemonicListU32(pHlp, pCurLeaf->uEbx, g_aExtLeaf8EbxSubFields, "Ext Features ext IDs EBX:", 34);
6229 else
6230 cpumR3CpuIdInfoVerboseCompareListU32(pHlp, pCurLeaf->uEbx, Host.uEbx, g_aExtLeaf8EbxSubFields, 56);
6231 }
6232
6233 if (iVerbosity)
6234 {
6235 uint32_t uEAX = pCurLeaf->uEax;
6236 uint32_t uECX = pCurLeaf->uEcx;
6237
6238 /** @todo 0x80000008:EAX[23:16] is only defined for AMD. We'll get 0 on Intel. On
6239 * AMD if we get 0, the guest physical address width should be taken from
6240 * 0x80000008:EAX[7:0] instead. Guest Physical address width is relevant
6241 * for guests using nested paging. */
6242 pHlp->pfnPrintf(pHlp,
6243 "Physical Address Width: %d bits\n"
6244 "Virtual Address Width: %d bits\n"
6245 "Guest Physical Address Width: %d bits\n",
6246 (uEAX >> 0) & 0xff,
6247 (uEAX >> 8) & 0xff,
6248 (uEAX >> 16) & 0xff);
6249
6250 /** @todo 0x80000008:ECX is reserved on Intel (we'll get incorrect physical core
6251 * count here). */
6252 pHlp->pfnPrintf(pHlp,
6253 "Physical Core Count: %d\n",
6254 ((uECX >> 0) & 0xff) + 1);
6255 }
6256 }
6257
6258 pCurLeaf = pNextLeaf;
6259 }
6260
6261
6262
6263 /*
6264 * Centaur.
6265 */
6266 pCurLeaf = cpumR3CpuIdInfoRawRange(pHlp, paLeaves, cLeaves, pCurLeaf, UINT32_C(0xbfffffff), "Unknown CPUID Leaves");
6267
6268#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
6269 ASMCpuIdExSlow(UINT32_C(0xc0000000), 0, 0, 0, &Host.uEax, &Host.uEbx, &Host.uEcx, &Host.uEdx);
6270#endif
6271 cHstMax = Host.uEax >= UINT32_C(0xc0000001) && Host.uEax <= UINT32_C(0xc0000fff)
6272 ? RT_MIN(Host.uEax, UINT32_C(0xc0000fff)) : 0;
6273 cGstMax = (uintptr_t)(pCurLeaf - paLeaves) < cLeaves && pCurLeaf->uLeaf == UINT32_C(0xc0000000)
6274 ? RT_MIN(pCurLeaf->uEax, UINT32_C(0xc0000fff)) : 0;
6275 cMax = RT_MAX(cHstMax, cGstMax);
6276 if (cMax >= UINT32_C(0xc0000000))
6277 {
6278 pNextLeaf = cpumR3CpuIdInfoRawRange(pHlp, paLeaves, cLeaves, pCurLeaf, cMax, "Raw Centaur CPUID Leaves");
6279
6280 /*
6281 * Understandable output
6282 */
6283 if (iVerbosity && (pCurLeaf = cpumCpuIdGetLeafInt(paLeaves, cLeaves, UINT32_C(0xc0000000), 0)) != NULL)
6284 pHlp->pfnPrintf(pHlp,
6285 "Centaur Supports: 0xc0000000-%#010x\n",
6286 pCurLeaf->uEax);
6287
6288 if (iVerbosity && (pCurLeaf = cpumCpuIdGetLeafInt(paLeaves, cLeaves, UINT32_C(0xc0000001), 0)) != NULL)
6289 {
6290#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
6291 ASMCpuIdExSlow(0xc0000001, 0, 0, 0, &Host.uEax, &Host.uEbx, &Host.uEcx, &Host.uEdx);
6292#endif
6293 uint32_t uEdxGst = pCurLeaf->uEdx;
6294 uint32_t uEdxHst = Host.uEdx;
6295
6296 if (iVerbosity == 1)
6297 {
6298 pHlp->pfnPrintf(pHlp, "Centaur Features EDX: ");
6299 if (uEdxGst & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " AIS");
6300 if (uEdxGst & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " AIS-E");
6301 if (uEdxGst & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " RNG");
6302 if (uEdxGst & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " RNG-E");
6303 if (uEdxGst & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " LH");
6304 if (uEdxGst & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " FEMMS");
6305 if (uEdxGst & RT_BIT(6)) pHlp->pfnPrintf(pHlp, " ACE");
6306 if (uEdxGst & RT_BIT(7)) pHlp->pfnPrintf(pHlp, " ACE-E");
6307 /* possibly indicating MM/HE and MM/HE-E on older chips... */
6308 if (uEdxGst & RT_BIT(8)) pHlp->pfnPrintf(pHlp, " ACE2");
6309 if (uEdxGst & RT_BIT(9)) pHlp->pfnPrintf(pHlp, " ACE2-E");
6310 if (uEdxGst & RT_BIT(10)) pHlp->pfnPrintf(pHlp, " PHE");
6311 if (uEdxGst & RT_BIT(11)) pHlp->pfnPrintf(pHlp, " PHE-E");
6312 if (uEdxGst & RT_BIT(12)) pHlp->pfnPrintf(pHlp, " PMM");
6313 if (uEdxGst & RT_BIT(13)) pHlp->pfnPrintf(pHlp, " PMM-E");
6314 for (unsigned iBit = 14; iBit < 32; iBit++)
6315 if (uEdxGst & RT_BIT(iBit))
6316 pHlp->pfnPrintf(pHlp, " %d", iBit);
6317 pHlp->pfnPrintf(pHlp, "\n");
6318 }
6319 else
6320 {
6321 pHlp->pfnPrintf(pHlp, "Mnemonic - Description = guest (host)\n");
6322 pHlp->pfnPrintf(pHlp, "AIS - Alternate Instruction Set = %d (%d)\n", !!(uEdxGst & RT_BIT( 0)), !!(uEdxHst & RT_BIT( 0)));
6323 pHlp->pfnPrintf(pHlp, "AIS-E - AIS enabled = %d (%d)\n", !!(uEdxGst & RT_BIT( 1)), !!(uEdxHst & RT_BIT( 1)));
6324 pHlp->pfnPrintf(pHlp, "RNG - Random Number Generator = %d (%d)\n", !!(uEdxGst & RT_BIT( 2)), !!(uEdxHst & RT_BIT( 2)));
6325 pHlp->pfnPrintf(pHlp, "RNG-E - RNG enabled = %d (%d)\n", !!(uEdxGst & RT_BIT( 3)), !!(uEdxHst & RT_BIT( 3)));
6326 pHlp->pfnPrintf(pHlp, "LH - LongHaul MSR 0000_110Ah = %d (%d)\n", !!(uEdxGst & RT_BIT( 4)), !!(uEdxHst & RT_BIT( 4)));
6327 pHlp->pfnPrintf(pHlp, "FEMMS - FEMMS = %d (%d)\n", !!(uEdxGst & RT_BIT( 5)), !!(uEdxHst & RT_BIT( 5)));
6328 pHlp->pfnPrintf(pHlp, "ACE - Advanced Cryptography Engine = %d (%d)\n", !!(uEdxGst & RT_BIT( 6)), !!(uEdxHst & RT_BIT( 6)));
6329 pHlp->pfnPrintf(pHlp, "ACE-E - ACE enabled = %d (%d)\n", !!(uEdxGst & RT_BIT( 7)), !!(uEdxHst & RT_BIT( 7)));
6330 /* possibly indicating MM/HE and MM/HE-E on older chips... */
6331 pHlp->pfnPrintf(pHlp, "ACE2 - Advanced Cryptography Engine 2 = %d (%d)\n", !!(uEdxGst & RT_BIT( 8)), !!(uEdxHst & RT_BIT( 8)));
6332 pHlp->pfnPrintf(pHlp, "ACE2-E - ACE enabled = %d (%d)\n", !!(uEdxGst & RT_BIT( 9)), !!(uEdxHst & RT_BIT( 9)));
6333 pHlp->pfnPrintf(pHlp, "PHE - Padlock Hash Engine = %d (%d)\n", !!(uEdxGst & RT_BIT(10)), !!(uEdxHst & RT_BIT(10)));
6334 pHlp->pfnPrintf(pHlp, "PHE-E - PHE enabled = %d (%d)\n", !!(uEdxGst & RT_BIT(11)), !!(uEdxHst & RT_BIT(11)));
6335 pHlp->pfnPrintf(pHlp, "PMM - Montgomery Multiplier = %d (%d)\n", !!(uEdxGst & RT_BIT(12)), !!(uEdxHst & RT_BIT(12)));
6336 pHlp->pfnPrintf(pHlp, "PMM-E - PMM enabled = %d (%d)\n", !!(uEdxGst & RT_BIT(13)), !!(uEdxHst & RT_BIT(13)));
6337 pHlp->pfnPrintf(pHlp, "14 - Reserved = %d (%d)\n", !!(uEdxGst & RT_BIT(14)), !!(uEdxHst & RT_BIT(14)));
6338 pHlp->pfnPrintf(pHlp, "15 - Reserved = %d (%d)\n", !!(uEdxGst & RT_BIT(15)), !!(uEdxHst & RT_BIT(15)));
6339 pHlp->pfnPrintf(pHlp, "Parallax = %d (%d)\n", !!(uEdxGst & RT_BIT(16)), !!(uEdxHst & RT_BIT(16)));
6340 pHlp->pfnPrintf(pHlp, "Parallax enabled = %d (%d)\n", !!(uEdxGst & RT_BIT(17)), !!(uEdxHst & RT_BIT(17)));
6341 pHlp->pfnPrintf(pHlp, "Overstress = %d (%d)\n", !!(uEdxGst & RT_BIT(18)), !!(uEdxHst & RT_BIT(18)));
6342 pHlp->pfnPrintf(pHlp, "Overstress enabled = %d (%d)\n", !!(uEdxGst & RT_BIT(19)), !!(uEdxHst & RT_BIT(19)));
6343 pHlp->pfnPrintf(pHlp, "TM3 - Temperature Monitoring 3 = %d (%d)\n", !!(uEdxGst & RT_BIT(20)), !!(uEdxHst & RT_BIT(20)));
6344 pHlp->pfnPrintf(pHlp, "TM3-E - TM3 enabled = %d (%d)\n", !!(uEdxGst & RT_BIT(21)), !!(uEdxHst & RT_BIT(21)));
6345 pHlp->pfnPrintf(pHlp, "RNG2 - Random Number Generator 2 = %d (%d)\n", !!(uEdxGst & RT_BIT(22)), !!(uEdxHst & RT_BIT(22)));
6346 pHlp->pfnPrintf(pHlp, "RNG2-E - RNG2 enabled = %d (%d)\n", !!(uEdxGst & RT_BIT(23)), !!(uEdxHst & RT_BIT(23)));
6347 pHlp->pfnPrintf(pHlp, "24 - Reserved = %d (%d)\n", !!(uEdxGst & RT_BIT(24)), !!(uEdxHst & RT_BIT(24)));
6348 pHlp->pfnPrintf(pHlp, "PHE2 - Padlock Hash Engine 2 = %d (%d)\n", !!(uEdxGst & RT_BIT(25)), !!(uEdxHst & RT_BIT(25)));
6349 pHlp->pfnPrintf(pHlp, "PHE2-E - PHE2 enabled = %d (%d)\n", !!(uEdxGst & RT_BIT(26)), !!(uEdxHst & RT_BIT(26)));
6350 for (unsigned iBit = 27; iBit < 32; iBit++)
6351 if ((uEdxGst | uEdxHst) & RT_BIT(iBit))
6352 pHlp->pfnPrintf(pHlp, "Bit %d = %d (%d)\n", iBit, !!(uEdxGst & RT_BIT(iBit)), !!(uEdxHst & RT_BIT(iBit)));
6353 pHlp->pfnPrintf(pHlp, "\n");
6354 }
6355 }
6356
6357 pCurLeaf = pNextLeaf;
6358 }
6359
6360 /*
6361 * The remainder.
6362 */
6363 pCurLeaf = cpumR3CpuIdInfoRawRange(pHlp, paLeaves, cLeaves, pCurLeaf, UINT32_C(0xffffffff), "Unknown CPUID Leaves");
6364}
6365
6366#endif /* !IN_VBOX_CPU_REPORT */
6367
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette