VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/CPUMR3CpuId.cpp@ 49893

Last change on this file since 49893 was 49893, checked in by vboxsync, 11 years ago

MSR rewrite: initial hacking - half disabled.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 50.2 KB
Line 
1/* $Id: CPUMR3CpuId.cpp 49893 2013-12-13 00:40:20Z vboxsync $ */
2/** @file
3 * CPUM - CPU ID part.
4 */
5
6/*
7 * Copyright (C) 2013 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/*******************************************************************************
19* Header Files *
20*******************************************************************************/
21#define LOG_GROUP LOG_GROUP_CPUM
22#include <VBox/vmm/cpum.h>
23#include "CPUMInternal.h"
24#include <VBox/vmm/vm.h>
25
26#include <VBox/err.h>
27#include <iprt/asm-amd64-x86.h>
28#include <iprt/ctype.h>
29#include <iprt/mem.h>
30#include <iprt/stream.h>
31#include <iprt/string.h>
32
33
34/*******************************************************************************
35* Global Variables *
36*******************************************************************************/
37/**
38 * The intel pentium family.
39 */
40static const CPUMMICROARCH g_aenmIntelFamily06[] =
41{
42 /* [ 0(0x00)] = */ kCpumMicroarch_Intel_P6, /* Pentium Pro A-step (says sandpile.org). */
43 /* [ 1(0x01)] = */ kCpumMicroarch_Intel_P6, /* Pentium Pro */
44 /* [ 2(0x02)] = */ kCpumMicroarch_Intel_Unknown,
45 /* [ 3(0x03)] = */ kCpumMicroarch_Intel_P6_II, /* PII Klamath */
46 /* [ 4(0x04)] = */ kCpumMicroarch_Intel_Unknown,
47 /* [ 5(0x05)] = */ kCpumMicroarch_Intel_P6_II, /* PII Deschutes */
48 /* [ 6(0x06)] = */ kCpumMicroarch_Intel_P6_II, /* Celeron Mendocino. */
49 /* [ 7(0x07)] = */ kCpumMicroarch_Intel_P6_III, /* PIII Katmai. */
50 /* [ 8(0x08)] = */ kCpumMicroarch_Intel_P6_III, /* PIII Coppermine (includes Celeron). */
51 /* [ 9(0x09)] = */ kCpumMicroarch_Intel_P6_M_Banias, /* Pentium/Celeron M Banias. */
52 /* [10(0x0a)] = */ kCpumMicroarch_Intel_P6_III, /* PIII Xeon */
53 /* [11(0x0b)] = */ kCpumMicroarch_Intel_P6_III, /* PIII Tualatin (includes Celeron). */
54 /* [12(0x0c)] = */ kCpumMicroarch_Intel_Unknown,
55 /* [13(0x0d)] = */ kCpumMicroarch_Intel_P6_M_Dothan, /* Pentium/Celeron M Dothan. */
56 /* [14(0x0e)] = */ kCpumMicroarch_Intel_Core_Yonah, /* Core Yonah (Enhanced Pentium M). */
57 /* [15(0x0f)] = */ kCpumMicroarch_Intel_Core2_Merom, /* Merom */
58 /* [16(0x10)] = */ kCpumMicroarch_Intel_Unknown,
59 /* [17(0x11)] = */ kCpumMicroarch_Intel_Unknown,
60 /* [18(0x12)] = */ kCpumMicroarch_Intel_Unknown,
61 /* [19(0x13)] = */ kCpumMicroarch_Intel_Unknown,
62 /* [20(0x14)] = */ kCpumMicroarch_Intel_Unknown,
63 /* [21(0x15)] = */ kCpumMicroarch_Intel_P6_M_Dothan, /* Tolapai - System-on-a-chip. */
64 /* [22(0x16)] = */ kCpumMicroarch_Intel_Core2_Merom,
65 /* [23(0x17)] = */ kCpumMicroarch_Intel_Core2_Penryn,
66 /* [24(0x18)] = */ kCpumMicroarch_Intel_Unknown,
67 /* [25(0x19)] = */ kCpumMicroarch_Intel_Unknown,
68 /* [26(0x1a)] = */ kCpumMicroarch_Intel_Core7_Nehalem,
69 /* [27(0x1b)] = */ kCpumMicroarch_Intel_Unknown,
70 /* [28(0x1c)] = */ kCpumMicroarch_Intel_Atom_Bonnell, /* Diamonville, Pineview, */
71 /* [29(0x1d)] = */ kCpumMicroarch_Intel_Core2_Penryn,
72 /* [30(0x1e)] = */ kCpumMicroarch_Intel_Core7_Nehalem, /* Clarksfield, Lynnfield, Jasper Forest. */
73 /* [31(0x1f)] = */ kCpumMicroarch_Intel_Core7_Nehalem, /* Only listed by sandpile.org. 2 cores ABD/HVD, whatever that means. */
74 /* [32(0x20)] = */ kCpumMicroarch_Intel_Unknown,
75 /* [33(0x21)] = */ kCpumMicroarch_Intel_Unknown,
76 /* [34(0x22)] = */ kCpumMicroarch_Intel_Unknown,
77 /* [35(0x23)] = */ kCpumMicroarch_Intel_Unknown,
78 /* [36(0x24)] = */ kCpumMicroarch_Intel_Unknown,
79 /* [37(0x25)] = */ kCpumMicroarch_Intel_Core7_Westmere, /* Arrandale, Clarksdale. */
80 /* [38(0x26)] = */ kCpumMicroarch_Intel_Atom_Lincroft,
81 /* [39(0x27)] = */ kCpumMicroarch_Intel_Atom_Saltwell,
82 /* [40(0x28)] = */ kCpumMicroarch_Intel_Unknown,
83 /* [41(0x29)] = */ kCpumMicroarch_Intel_Unknown,
84 /* [42(0x2a)] = */ kCpumMicroarch_Intel_Core7_SandyBridge,
85 /* [43(0x2b)] = */ kCpumMicroarch_Intel_Unknown,
86 /* [44(0x2c)] = */ kCpumMicroarch_Intel_Core7_Westmere, /* Gulftown, Westmere-EP. */
87 /* [45(0x2d)] = */ kCpumMicroarch_Intel_Core7_SandyBridge, /* SandyBridge-E, SandyBridge-EN, SandyBridge-EP. */
88 /* [46(0x2e)] = */ kCpumMicroarch_Intel_Core7_Nehalem, /* Beckton (Xeon). */
89 /* [47(0x2f)] = */ kCpumMicroarch_Intel_Core7_Westmere, /* Westmere-EX. */
90 /* [48(0x30)] = */ kCpumMicroarch_Intel_Unknown,
91 /* [49(0x31)] = */ kCpumMicroarch_Intel_Unknown,
92 /* [50(0x32)] = */ kCpumMicroarch_Intel_Unknown,
93 /* [51(0x33)] = */ kCpumMicroarch_Intel_Unknown,
94 /* [52(0x34)] = */ kCpumMicroarch_Intel_Unknown,
95 /* [53(0x35)] = */ kCpumMicroarch_Intel_Atom_Saltwell, /* ?? */
96 /* [54(0x36)] = */ kCpumMicroarch_Intel_Atom_Saltwell, /* Cedarview, ++ */
97 /* [55(0x37)] = */ kCpumMicroarch_Intel_Atom_Silvermont,
98 /* [56(0x38)] = */ kCpumMicroarch_Intel_Unknown,
99 /* [57(0x39)] = */ kCpumMicroarch_Intel_Unknown,
100 /* [58(0x3a)] = */ kCpumMicroarch_Intel_Core7_IvyBridge,
101 /* [59(0x3b)] = */ kCpumMicroarch_Intel_Unknown,
102 /* [60(0x3c)] = */ kCpumMicroarch_Intel_Core7_Haswell,
103 /* [61(0x3d)] = */ kCpumMicroarch_Intel_Core7_Broadwell,
104 /* [62(0x3e)] = */ kCpumMicroarch_Intel_Core7_IvyBridge,
105 /* [63(0x3f)] = */ kCpumMicroarch_Intel_Core7_Haswell,
106 /* [64(0x40)] = */ kCpumMicroarch_Intel_Unknown,
107 /* [65(0x41)] = */ kCpumMicroarch_Intel_Unknown,
108 /* [66(0x42)] = */ kCpumMicroarch_Intel_Unknown,
109 /* [67(0x43)] = */ kCpumMicroarch_Intel_Unknown,
110 /* [68(0x44)] = */ kCpumMicroarch_Intel_Unknown,
111 /* [69(0x45)] = */ kCpumMicroarch_Intel_Core7_Haswell,
112 /* [70(0x46)] = */ kCpumMicroarch_Intel_Core7_Haswell,
113 /* [71(0x47)] = */ kCpumMicroarch_Intel_Unknown,
114 /* [72(0x48)] = */ kCpumMicroarch_Intel_Unknown,
115 /* [73(0x49)] = */ kCpumMicroarch_Intel_Unknown,
116 /* [74(0x4a)] = */ kCpumMicroarch_Intel_Atom_Silvermont,
117 /* [75(0x4b)] = */ kCpumMicroarch_Intel_Unknown,
118 /* [76(0x4c)] = */ kCpumMicroarch_Intel_Unknown,
119 /* [77(0x4d)] = */ kCpumMicroarch_Intel_Atom_Silvermont,
120 /* [78(0x4e)] = */ kCpumMicroarch_Intel_Unknown,
121 /* [79(0x4f)] = */ kCpumMicroarch_Intel_Unknown,
122};
123
124
125
126/**
127 * Figures out the (sub-)micro architecture given a bit of CPUID info.
128 *
129 * @returns Micro architecture.
130 * @param enmVendor The CPU vendor .
131 * @param bFamily The CPU family.
132 * @param bModel The CPU model.
133 * @param bStepping The CPU stepping.
134 */
135VMMR3DECL(CPUMMICROARCH) CPUMR3CpuIdDetermineMicroarchEx(CPUMCPUVENDOR enmVendor, uint8_t bFamily,
136 uint8_t bModel, uint8_t bStepping)
137{
138 if (enmVendor == CPUMCPUVENDOR_AMD)
139 {
140 switch (bFamily)
141 {
142 case 0x02: return kCpumMicroarch_AMD_Am286; /* Not really kosher... */
143 case 0x03: return kCpumMicroarch_AMD_Am386;
144 case 0x23: return kCpumMicroarch_AMD_Am386; /* SX*/
145 case 0x04: return bModel < 14 ? kCpumMicroarch_AMD_Am486 : kCpumMicroarch_AMD_Am486Enh;
146 case 0x05: return bModel < 6 ? kCpumMicroarch_AMD_K5 : kCpumMicroarch_AMD_K6; /* Genode LX is 0x0a, lump it with K6. */
147 case 0x06:
148 switch (bModel)
149 {
150 case 0: kCpumMicroarch_AMD_K7_Palomino;
151 case 1: kCpumMicroarch_AMD_K7_Palomino;
152 case 2: kCpumMicroarch_AMD_K7_Palomino;
153 case 3: kCpumMicroarch_AMD_K7_Spitfire;
154 case 4: kCpumMicroarch_AMD_K7_Thunderbird;
155 case 6: kCpumMicroarch_AMD_K7_Palomino;
156 case 7: kCpumMicroarch_AMD_K7_Morgan;
157 case 8: kCpumMicroarch_AMD_K7_Thoroughbred;
158 case 10: kCpumMicroarch_AMD_K7_Barton; /* Thorton too. */
159 }
160 return kCpumMicroarch_AMD_K7_Unknown;
161 case 0x0f:
162 /*
163 * This family is a friggin mess. Trying my best to make some
164 * sense out of it. Too much happened in the 0x0f family to
165 * lump it all together as K8 (130nm->90nm->65nm, AMD-V, ++).
166 *
167 * Emperical CPUID.01h.EAX evidence from revision guides, wikipedia,
168 * cpu-world.com, and other places:
169 * - 130nm:
170 * - ClawHammer: F7A/SH-CG, F5A/-CG, F4A/-CG, F50/-B0, F48/-C0, F58/-C0,
171 * - SledgeHammer: F50/SH-B0, F48/-C0, F58/-C0, F4A/-CG, F5A/-CG, F7A/-CG, F51/-B3
172 * - Newcastle: FC0/DH-CG (errum #180: FE0/DH-CG), FF0/DH-CG
173 * - Dublin: FC0/-CG, FF0/-CG, F82/CH-CG, F4A/-CG, F48/SH-C0,
174 * - Odessa: FC0/DH-CG (errum #180: FE0/DH-CG)
175 * - Paris: FF0/DH-CG, FC0/DH-CG (errum #180: FE0/DH-CG),
176 * - 90nm:
177 * - Winchester: 10FF0/DH-D0, 20FF0/DH-E3.
178 * - Oakville: 10FC0/DH-D0.
179 * - Georgetown: 10FC0/DH-D0.
180 * - Sonora: 10FC0/DH-D0.
181 * - Venus: 20F71/SH-E4
182 * - Troy: 20F51/SH-E4
183 * - Athens: 20F51/SH-E4
184 * - San Diego: 20F71/SH-E4.
185 * - Lancaster: 20F42/SH-E5
186 * - Newark: 20F42/SH-E5.
187 * - Albany: 20FC2/DH-E6.
188 * - Roma: 20FC2/DH-E6.
189 * - Venice: 20FF0/DH-E3, 20FC2/DH-E6, 20FF2/DH-E6.
190 * - Palermo: 10FC0/DH-D0, 20FF0/DH-E3, 20FC0/DH-E3, 20FC2/DH-E6, 20FF2/DH-E6
191 * - 90nm introducing Dual core:
192 * - Denmark: 20F30/JH-E1, 20F32/JH-E6
193 * - Italy: 20F10/JH-E1, 20F12/JH-E6
194 * - Egypt: 20F10/JH-E1, 20F12/JH-E6
195 * - Toledo: 20F32/JH-E6, 30F72/DH-E6 (single code variant).
196 * - Manchester: 20FB1/BH-E4, 30FF2/BH-E4.
197 * - 90nm 2nd gen opteron ++, AMD-V introduced (might be missing in some cheeper models):
198 * - Santa Ana: 40F32/JH-F2, /-F3
199 * - Santa Rosa: 40F12/JH-F2, 40F13/JH-F3
200 * - Windsor: 40F32/JH-F2, 40F33/JH-F3, C0F13/JH-F3, 40FB2/BH-F2, ??20FB1/BH-E4??.
201 * - Manila: 50FF2/DH-F2, 40FF2/DH-F2
202 * - Orleans: 40FF2/DH-F2, 50FF2/DH-F2, 50FF3/DH-F3.
203 * - Keene: 40FC2/DH-F2.
204 * - Richmond: 40FC2/DH-F2
205 * - Taylor: 40F82/BH-F2
206 * - Trinidad: 40F82/BH-F2
207 *
208 * - 65nm:
209 * - Brisbane: 60FB1/BH-G1, 60FB2/BH-G2.
210 * - Tyler: 60F81/BH-G1, 60F82/BH-G2.
211 * - Sparta: 70FF1/DH-G1, 70FF2/DH-G2.
212 * - Lima: 70FF1/DH-G1, 70FF2/DH-G2.
213 * - Sherman: /-G1, 70FC2/DH-G2.
214 * - Huron: 70FF2/DH-G2.
215 */
216 if (bModel < 0x10)
217 return kCpumMicroarch_AMD_K8_130nm;
218 if (bModel >= 0x60 && bModel < 0x80)
219 return kCpumMicroarch_AMD_K8_65nm;
220 if (bModel >= 0x40)
221 return kCpumMicroarch_AMD_K8_90nm_AMDV;
222 switch (bModel)
223 {
224 case 0x21:
225 case 0x23:
226 case 0x2b:
227 case 0x2f:
228 case 0x37:
229 case 0x3f:
230 return kCpumMicroarch_AMD_K8_90nm_DualCore;
231 }
232 return kCpumMicroarch_AMD_K8_90nm;
233 case 0x10:
234 return kCpumMicroarch_AMD_K10;
235 case 0x11:
236 return kCpumMicroarch_AMD_K10_Lion;
237 case 0x12:
238 return kCpumMicroarch_AMD_K10_Llano;
239 case 0x14:
240 return kCpumMicroarch_AMD_Bobcat;
241 case 0x15:
242 switch (bModel)
243 {
244 case 0x00: return kCpumMicroarch_AMD_15h_Bulldozer; /* Any? prerelease? */
245 case 0x01: return kCpumMicroarch_AMD_15h_Bulldozer; /* Opteron 4200, FX-81xx. */
246 case 0x02: return kCpumMicroarch_AMD_15h_Piledriver; /* Opteron 4300, FX-83xx. */
247 case 0x10: return kCpumMicroarch_AMD_15h_Piledriver; /* A10-5800K for e.g. */
248 case 0x11: /* ?? */
249 case 0x12: /* ?? */
250 case 0x13: return kCpumMicroarch_AMD_15h_Piledriver; /* A10-6800K for e.g. */
251 }
252 return kCpumMicroarch_AMD_15h_Unknown;
253 case 0x16:
254 return kCpumMicroarch_AMD_Jaguar;
255
256 }
257 return kCpumMicroarch_AMD_Unknown;
258 }
259
260 if (enmVendor == CPUMCPUVENDOR_INTEL)
261 {
262 switch (bFamily)
263 {
264 case 3:
265 return kCpumMicroarch_Intel_80386;
266 case 4:
267 return kCpumMicroarch_Intel_80486;
268 case 5:
269 return kCpumMicroarch_Intel_P5;
270 case 6:
271 if (bModel < RT_ELEMENTS(g_aenmIntelFamily06))
272 return g_aenmIntelFamily06[bModel];
273 return kCpumMicroarch_Intel_Atom_Unknown;
274 case 15:
275 switch (bModel)
276 {
277 case 0: return kCpumMicroarch_Intel_NB_Willamette;
278 case 1: return kCpumMicroarch_Intel_NB_Willamette;
279 case 2: return kCpumMicroarch_Intel_NB_Northwood;
280 case 3: return kCpumMicroarch_Intel_NB_Prescott;
281 case 4: return kCpumMicroarch_Intel_NB_Prescott2M; /* ?? */
282 case 5: return kCpumMicroarch_Intel_NB_Unknown; /*??*/
283 case 6: return kCpumMicroarch_Intel_NB_CedarMill;
284 case 7: return kCpumMicroarch_Intel_NB_Gallatin;
285 default: return kCpumMicroarch_Intel_NB_Unknown;
286 }
287 break;
288 /* The following are not kosher but kind of follow intuitively from 6, 5 & 4. */
289 case 1:
290 return kCpumMicroarch_Intel_8086;
291 case 2:
292 return kCpumMicroarch_Intel_80286;
293 }
294 return kCpumMicroarch_Intel_Unknown;
295 }
296
297 if (enmVendor == CPUMCPUVENDOR_VIA)
298 {
299 switch (bFamily)
300 {
301 case 5:
302 switch (bModel)
303 {
304 case 1: return kCpumMicroarch_Centaur_C6;
305 case 4: return kCpumMicroarch_Centaur_C6;
306 case 8: return kCpumMicroarch_Centaur_C2;
307 case 9: return kCpumMicroarch_Centaur_C3;
308 }
309 break;
310
311 case 6:
312 switch (bModel)
313 {
314 case 5: return kCpumMicroarch_VIA_C3_M2;
315 case 6: return kCpumMicroarch_VIA_C3_C5A;
316 case 7: return bStepping < 8 ? kCpumMicroarch_VIA_C3_C5B : kCpumMicroarch_VIA_C3_C5C;
317 case 8: return kCpumMicroarch_VIA_C3_C5N;
318 case 9: return bStepping < 8 ? kCpumMicroarch_VIA_C3_C5XL : kCpumMicroarch_VIA_C3_C5P;
319 case 10: return kCpumMicroarch_VIA_C7_C5J;
320 case 15: return kCpumMicroarch_VIA_Isaiah;
321 }
322 break;
323 }
324 return kCpumMicroarch_VIA_Unknown;
325 }
326
327 if (enmVendor == CPUMCPUVENDOR_CYRIX)
328 {
329 switch (bFamily)
330 {
331 case 4:
332 switch (bModel)
333 {
334 case 9: return kCpumMicroarch_Cyrix_5x86;
335 }
336 break;
337
338 case 5:
339 switch (bModel)
340 {
341 case 2: return kCpumMicroarch_Cyrix_M1;
342 case 4: return kCpumMicroarch_Cyrix_MediaGX;
343 case 5: return kCpumMicroarch_Cyrix_MediaGXm;
344 }
345 break;
346
347 case 6:
348 switch (bModel)
349 {
350 case 0: return kCpumMicroarch_Cyrix_M2;
351 }
352 break;
353
354 }
355 return kCpumMicroarch_Cyrix_Unknown;
356 }
357
358 return kCpumMicroarch_Unknown;
359}
360
361
362/**
363 * Translates a microarchitecture enum value to the corresponding string
364 * constant.
365 *
366 * @returns Read-only string constant (omits "kCpumMicroarch_" prefix). Returns
367 * NULL if the value is invalid.
368 *
369 * @param enmMicroarch The enum value to convert.
370 */
371VMMR3DECL(const char *) CPUMR3MicroarchName(CPUMMICROARCH enmMicroarch)
372{
373 switch (enmMicroarch)
374 {
375#define CASE_RET_STR(enmValue) case enmValue: return #enmValue + (sizeof("kCpumMicroarch_") - 1)
376 CASE_RET_STR(kCpumMicroarch_Intel_8086);
377 CASE_RET_STR(kCpumMicroarch_Intel_80186);
378 CASE_RET_STR(kCpumMicroarch_Intel_80286);
379 CASE_RET_STR(kCpumMicroarch_Intel_80386);
380 CASE_RET_STR(kCpumMicroarch_Intel_80486);
381 CASE_RET_STR(kCpumMicroarch_Intel_P5);
382
383 CASE_RET_STR(kCpumMicroarch_Intel_P6);
384 CASE_RET_STR(kCpumMicroarch_Intel_P6_II);
385 CASE_RET_STR(kCpumMicroarch_Intel_P6_III);
386
387 CASE_RET_STR(kCpumMicroarch_Intel_P6_M_Banias);
388 CASE_RET_STR(kCpumMicroarch_Intel_P6_M_Dothan);
389 CASE_RET_STR(kCpumMicroarch_Intel_Core_Yonah);
390
391 CASE_RET_STR(kCpumMicroarch_Intel_Core2_Merom);
392 CASE_RET_STR(kCpumMicroarch_Intel_Core2_Penryn);
393
394 CASE_RET_STR(kCpumMicroarch_Intel_Core7_Nehalem);
395 CASE_RET_STR(kCpumMicroarch_Intel_Core7_Westmere);
396 CASE_RET_STR(kCpumMicroarch_Intel_Core7_SandyBridge);
397 CASE_RET_STR(kCpumMicroarch_Intel_Core7_IvyBridge);
398 CASE_RET_STR(kCpumMicroarch_Intel_Core7_Haswell);
399 CASE_RET_STR(kCpumMicroarch_Intel_Core7_Broadwell);
400 CASE_RET_STR(kCpumMicroarch_Intel_Core7_Skylake);
401 CASE_RET_STR(kCpumMicroarch_Intel_Core7_Cannonlake);
402
403 CASE_RET_STR(kCpumMicroarch_Intel_Atom_Bonnell);
404 CASE_RET_STR(kCpumMicroarch_Intel_Atom_Lincroft);
405 CASE_RET_STR(kCpumMicroarch_Intel_Atom_Saltwell);
406 CASE_RET_STR(kCpumMicroarch_Intel_Atom_Silvermont);
407 CASE_RET_STR(kCpumMicroarch_Intel_Atom_Airmount);
408 CASE_RET_STR(kCpumMicroarch_Intel_Atom_Goldmont);
409 CASE_RET_STR(kCpumMicroarch_Intel_Atom_Unknown);
410
411 CASE_RET_STR(kCpumMicroarch_Intel_NB_Willamette);
412 CASE_RET_STR(kCpumMicroarch_Intel_NB_Northwood);
413 CASE_RET_STR(kCpumMicroarch_Intel_NB_Prescott);
414 CASE_RET_STR(kCpumMicroarch_Intel_NB_Prescott2M);
415 CASE_RET_STR(kCpumMicroarch_Intel_NB_CedarMill);
416 CASE_RET_STR(kCpumMicroarch_Intel_NB_Gallatin);
417 CASE_RET_STR(kCpumMicroarch_Intel_NB_Unknown);
418
419 CASE_RET_STR(kCpumMicroarch_Intel_Unknown);
420
421 CASE_RET_STR(kCpumMicroarch_AMD_Am286);
422 CASE_RET_STR(kCpumMicroarch_AMD_Am386);
423 CASE_RET_STR(kCpumMicroarch_AMD_Am486);
424 CASE_RET_STR(kCpumMicroarch_AMD_Am486Enh);
425 CASE_RET_STR(kCpumMicroarch_AMD_K5);
426 CASE_RET_STR(kCpumMicroarch_AMD_K6);
427
428 CASE_RET_STR(kCpumMicroarch_AMD_K7_Palomino);
429 CASE_RET_STR(kCpumMicroarch_AMD_K7_Spitfire);
430 CASE_RET_STR(kCpumMicroarch_AMD_K7_Thunderbird);
431 CASE_RET_STR(kCpumMicroarch_AMD_K7_Morgan);
432 CASE_RET_STR(kCpumMicroarch_AMD_K7_Thoroughbred);
433 CASE_RET_STR(kCpumMicroarch_AMD_K7_Barton);
434 CASE_RET_STR(kCpumMicroarch_AMD_K7_Unknown);
435
436 CASE_RET_STR(kCpumMicroarch_AMD_K8_130nm);
437 CASE_RET_STR(kCpumMicroarch_AMD_K8_90nm);
438 CASE_RET_STR(kCpumMicroarch_AMD_K8_90nm_DualCore);
439 CASE_RET_STR(kCpumMicroarch_AMD_K8_90nm_AMDV);
440 CASE_RET_STR(kCpumMicroarch_AMD_K8_65nm);
441
442 CASE_RET_STR(kCpumMicroarch_AMD_K10);
443 CASE_RET_STR(kCpumMicroarch_AMD_K10_Lion);
444 CASE_RET_STR(kCpumMicroarch_AMD_K10_Llano);
445 CASE_RET_STR(kCpumMicroarch_AMD_Bobcat);
446 CASE_RET_STR(kCpumMicroarch_AMD_Jaguar);
447
448 CASE_RET_STR(kCpumMicroarch_AMD_15h_Bulldozer);
449 CASE_RET_STR(kCpumMicroarch_AMD_15h_Piledriver);
450 CASE_RET_STR(kCpumMicroarch_AMD_15h_Steamroller);
451 CASE_RET_STR(kCpumMicroarch_AMD_15h_Excavator);
452 CASE_RET_STR(kCpumMicroarch_AMD_15h_Unknown);
453
454 CASE_RET_STR(kCpumMicroarch_AMD_16h_First);
455
456 CASE_RET_STR(kCpumMicroarch_AMD_Unknown);
457
458 CASE_RET_STR(kCpumMicroarch_Centaur_C6);
459 CASE_RET_STR(kCpumMicroarch_Centaur_C2);
460 CASE_RET_STR(kCpumMicroarch_Centaur_C3);
461 CASE_RET_STR(kCpumMicroarch_VIA_C3_M2);
462 CASE_RET_STR(kCpumMicroarch_VIA_C3_C5A);
463 CASE_RET_STR(kCpumMicroarch_VIA_C3_C5B);
464 CASE_RET_STR(kCpumMicroarch_VIA_C3_C5C);
465 CASE_RET_STR(kCpumMicroarch_VIA_C3_C5N);
466 CASE_RET_STR(kCpumMicroarch_VIA_C3_C5XL);
467 CASE_RET_STR(kCpumMicroarch_VIA_C3_C5P);
468 CASE_RET_STR(kCpumMicroarch_VIA_C7_C5J);
469 CASE_RET_STR(kCpumMicroarch_VIA_Isaiah);
470 CASE_RET_STR(kCpumMicroarch_VIA_Unknown);
471
472 CASE_RET_STR(kCpumMicroarch_Cyrix_5x86);
473 CASE_RET_STR(kCpumMicroarch_Cyrix_M1);
474 CASE_RET_STR(kCpumMicroarch_Cyrix_MediaGX);
475 CASE_RET_STR(kCpumMicroarch_Cyrix_MediaGXm);
476 CASE_RET_STR(kCpumMicroarch_Cyrix_M2);
477 CASE_RET_STR(kCpumMicroarch_Cyrix_Unknown);
478
479 CASE_RET_STR(kCpumMicroarch_Unknown);
480
481#undef CASE_RET_STR
482 case kCpumMicroarch_Invalid:
483 case kCpumMicroarch_Intel_End:
484 case kCpumMicroarch_Intel_Core7_End:
485 case kCpumMicroarch_Intel_Atom_End:
486 case kCpumMicroarch_Intel_P6_Core_Atom_End:
487 case kCpumMicroarch_Intel_NB_End:
488 case kCpumMicroarch_AMD_K7_End:
489 case kCpumMicroarch_AMD_K8_End:
490 case kCpumMicroarch_AMD_15h_End:
491 case kCpumMicroarch_AMD_16h_End:
492 case kCpumMicroarch_AMD_End:
493 case kCpumMicroarch_VIA_End:
494 case kCpumMicroarch_Cyrix_End:
495 case kCpumMicroarch_32BitHack:
496 break;
497 /* no default! */
498 }
499
500 return NULL;
501}
502
503
504
505/**
506 * Gets a matching leaf in the CPUID leaf array.
507 *
508 * @returns Pointer to the matching leaf, or NULL if not found.
509 * @param paLeaves The CPUID leaves to search. This is sorted.
510 * @param cLeaves The number of leaves in the array.
511 * @param uLeaf The leaf to locate.
512 * @param uSubLeaf The subleaf to locate. Pass 0 if no subleaves.
513 */
514PCPUMCPUIDLEAF cpumR3CpuIdGetLeaf(PCPUMCPUIDLEAF paLeaves, uint32_t cLeaves, uint32_t uLeaf, uint32_t uSubLeaf)
515{
516 /* Lazy bird does linear lookup here since this is only used for the
517 occational CPUID overrides. */
518 for (uint32_t i = 0; i < cLeaves; i++)
519 if ( paLeaves[i].uLeaf == uLeaf
520 && paLeaves[i].uSubLeaf == (uSubLeaf & paLeaves[i].fSubLeafMask))
521 return &paLeaves[i];
522 return NULL;
523}
524
525
526/**
527 * Gets a matching leaf in the CPUID leaf array, converted to a CPUMCPUID.
528 *
529 * @returns true if found, false it not.
530 * @param paLeaves The CPUID leaves to search. This is sorted.
531 * @param cLeaves The number of leaves in the array.
532 * @param uLeaf The leaf to locate.
533 * @param uSubLeaf The subleaf to locate. Pass 0 if no subleaves.
534 * @param pLegacy The legacy output leaf.
535 */
536bool cpumR3CpuIdGetLeafLegacy(PCPUMCPUIDLEAF paLeaves, uint32_t cLeaves, uint32_t uLeaf, uint32_t uSubLeaf, PCPUMCPUID pLeagcy)
537{
538 PCPUMCPUIDLEAF pLeaf = cpumR3CpuIdGetLeaf(paLeaves, cLeaves, uLeaf, uSubLeaf);
539 if (pLeaf)
540 {
541 pLeagcy->eax = pLeaf->uEax;
542 pLeagcy->ebx = pLeaf->uEbx;
543 pLeagcy->ecx = pLeaf->uEcx;
544 pLeagcy->edx = pLeaf->uEdx;
545 return true;
546 }
547 return false;
548}
549
550
551/**
552 * Ensures that the CPUID leaf array can hold one more leaf.
553 *
554 * @returns Pointer to the CPUID leaf array (*ppaLeaves) on success. NULL on
555 * failure.
556 * @param ppaLeaves Pointer to the variable holding the array
557 * pointer (input/output).
558 * @param cLeaves The current array size.
559 */
560static PCPUMCPUIDLEAF cpumR3CpuIdEnsureSpace(PCPUMCPUIDLEAF *ppaLeaves, uint32_t cLeaves)
561{
562 uint32_t cAllocated = RT_ALIGN(cLeaves, 16);
563 if (cLeaves + 1 > cAllocated)
564 {
565 void *pvNew = RTMemRealloc(*ppaLeaves, (cAllocated + 16) * sizeof(**ppaLeaves));
566 if (!pvNew)
567 {
568 RTMemFree(*ppaLeaves);
569 *ppaLeaves = NULL;
570 return NULL;
571 }
572 *ppaLeaves = (PCPUMCPUIDLEAF)pvNew;
573 }
574 return *ppaLeaves;
575}
576
577
578/**
579 * Append a CPUID leaf or sub-leaf.
580 *
581 * ASSUMES linear insertion order, so we'll won't need to do any searching or
582 * replace anything. Use cpumR3CpuIdInsert for those cases.
583 *
584 * @returns VINF_SUCCESS or VERR_NO_MEMORY. On error, *ppaLeaves is freed, so
585 * the caller need do no more work.
586 * @param ppaLeaves Pointer to the the pointer to the array of sorted
587 * CPUID leaves and sub-leaves.
588 * @param pcLeaves Where we keep the leaf count for *ppaLeaves.
589 * @param uLeaf The leaf we're adding.
590 * @param uSubLeaf The sub-leaf number.
591 * @param fSubLeafMask The sub-leaf mask.
592 * @param uEax The EAX value.
593 * @param uEbx The EBX value.
594 * @param uEcx The ECX value.
595 * @param uEdx The EDX value.
596 * @param fFlags The flags.
597 */
598static int cpumR3CollectCpuIdInfoAddOne(PCPUMCPUIDLEAF *ppaLeaves, uint32_t *pcLeaves,
599 uint32_t uLeaf, uint32_t uSubLeaf, uint32_t fSubLeafMask,
600 uint32_t uEax, uint32_t uEbx, uint32_t uEcx, uint32_t uEdx, uint32_t fFlags)
601{
602 if (!cpumR3CpuIdEnsureSpace(ppaLeaves, *pcLeaves))
603 return VERR_NO_MEMORY;
604
605 PCPUMCPUIDLEAF pNew = &(*ppaLeaves)[*pcLeaves];
606 Assert( *pcLeaves == 0
607 || pNew[-1].uLeaf < uLeaf
608 || (pNew[-1].uLeaf == uLeaf && pNew[-1].uSubLeaf < uSubLeaf) );
609
610 pNew->uLeaf = uLeaf;
611 pNew->uSubLeaf = uSubLeaf;
612 pNew->fSubLeafMask = fSubLeafMask;
613 pNew->uEax = uEax;
614 pNew->uEbx = uEbx;
615 pNew->uEcx = uEcx;
616 pNew->uEdx = uEdx;
617 pNew->fFlags = fFlags;
618
619 *pcLeaves += 1;
620 return VINF_SUCCESS;
621}
622
623
624/**
625 * Inserts a CPU ID leaf, replacing any existing ones.
626 *
627 * When inserting a simple leaf where we already got a series of subleaves with
628 * the same leaf number (eax), the simple leaf will replace the whole series.
629 *
630 * This ASSUMES that the leave array is still on the normal heap and has only
631 * been allocated/reallocated by the cpumR3CpuIdEnsureSpace function.
632 *
633 * @returns VBox status code.
634 * @param ppaLeaves Pointer to the the pointer to the array of sorted
635 * CPUID leaves and sub-leaves.
636 * @param pcLeaves Where we keep the leaf count for *ppaLeaves.
637 * @param pNewLeaf Pointer to the data of the new leaf we're about to
638 * insert.
639 */
640int cpumR3CpuIdInsert(PCPUMCPUIDLEAF *ppaLeaves, uint32_t *pcLeaves, PCPUMCPUIDLEAF pNewLeaf)
641{
642 PCPUMCPUIDLEAF paLeaves = *ppaLeaves;
643 uint32_t cLeaves = *pcLeaves;
644
645 /*
646 * Validate the new leaf a little.
647 */
648 AssertReturn(!(pNewLeaf->fFlags & ~CPUMCPUIDLEAF_F_SUBLEAVES_ECX_UNCHANGED), VERR_INVALID_FLAGS);
649 AssertReturn(pNewLeaf->fSubLeafMask != 0 || pNewLeaf->uSubLeaf == 0, VERR_INVALID_PARAMETER);
650 AssertReturn(RT_IS_POWER_OF_TWO(pNewLeaf->fSubLeafMask + 1), VERR_INVALID_PARAMETER);
651 AssertReturn((pNewLeaf->fSubLeafMask & pNewLeaf->uSubLeaf) == pNewLeaf->uSubLeaf, VERR_INVALID_PARAMETER);
652
653
654 /*
655 * Find insertion point. The lazy bird uses the same excuse as in
656 * cpumR3CpuIdGetLeaf().
657 */
658 uint32_t i = 0;
659 while ( i < cLeaves
660 && paLeaves[i].uLeaf < pNewLeaf->uLeaf)
661 i++;
662 if ( i < cLeaves
663 && paLeaves[i].uLeaf == pNewLeaf->uLeaf)
664 {
665 if (paLeaves[i].fSubLeafMask != pNewLeaf->fSubLeafMask)
666 {
667 /*
668 * The subleaf mask differs, replace all existing leaves with the
669 * same leaf number.
670 */
671 uint32_t c = 1;
672 while ( i + c < cLeaves
673 && paLeaves[i + c].uSubLeaf == pNewLeaf->uLeaf)
674 c++;
675 if (c > 1 && i + c < cLeaves)
676 {
677 memmove(&paLeaves[i + c], &paLeaves[i + 1], (cLeaves - i - c) * sizeof(paLeaves[0]));
678 *pcLeaves = cLeaves -= c - 1;
679 }
680
681 paLeaves[i] = *pNewLeaf;
682 return VINF_SUCCESS;
683 }
684
685 /* Find subleaf insertion point. */
686 while ( i < cLeaves
687 && paLeaves[i].uSubLeaf < pNewLeaf->uSubLeaf)
688 i++;
689
690 /*
691 * If we've got an exactly matching leaf, replace it.
692 */
693 if ( paLeaves[i].uLeaf == pNewLeaf->uLeaf
694 && paLeaves[i].uSubLeaf == pNewLeaf->uSubLeaf)
695 {
696 paLeaves[i] = *pNewLeaf;
697 return VINF_SUCCESS;
698 }
699 }
700
701 /*
702 * Adding a new leaf at 'i'.
703 */
704 paLeaves = cpumR3CpuIdEnsureSpace(ppaLeaves, cLeaves);
705 if (!paLeaves)
706 return VERR_NO_MEMORY;
707
708 if (i < cLeaves)
709 memmove(&paLeaves[i + 1], &paLeaves[i], (cLeaves - i) * sizeof(paLeaves[0]));
710 *pcLeaves += 1;
711 paLeaves[i] = *pNewLeaf;
712 return VINF_SUCCESS;
713}
714
715
716/**
717 * Removes a range of CPUID leaves.
718 *
719 * This will not reallocate the array.
720 *
721 * @param paLeaves The array of sorted CPUID leaves and sub-leaves.
722 * @param pcLeaves Where we keep the leaf count for @a paLeaves.
723 * @param uFirst The first leaf.
724 * @param uLast The last leaf.
725 */
726void cpumR3CpuIdRemoveRange(PCPUMCPUIDLEAF paLeaves, uint32_t *pcLeaves, uint32_t uFirst, uint32_t uLast)
727{
728 uint32_t cLeaves = *pcLeaves;
729
730 Assert(uFirst <= uLast);
731
732 /*
733 * Find the first one.
734 */
735 uint32_t iFirst = 0;
736 while ( iFirst < cLeaves
737 && paLeaves[iFirst].uLeaf < uFirst)
738 iFirst++;
739
740 /*
741 * Find the end (last + 1).
742 */
743 uint32_t iEnd = iFirst;
744 while ( iEnd < cLeaves
745 && paLeaves[iEnd].uLeaf <= uLast)
746 iEnd++;
747
748 /*
749 * Adjust the array if anything needs removing.
750 */
751 if (iFirst < iEnd)
752 {
753 if (iEnd < cLeaves)
754 memmove(&paLeaves[iFirst], &paLeaves[iEnd], (cLeaves - iEnd) * sizeof(paLeaves[0]));
755 *pcLeaves = cLeaves -= (iEnd - iFirst);
756 }
757}
758
759
760
761/**
762 * Checks if ECX make a difference when reading a given CPUID leaf.
763 *
764 * @returns @c true if it does, @c false if it doesn't.
765 * @param uLeaf The leaf we're reading.
766 * @param pcSubLeaves Number of sub-leaves accessible via ECX.
767 * @param pfFinalEcxUnchanged Whether ECX is passed thru when going beyond the
768 * final sub-leaf.
769 */
770static bool cpumR3IsEcxRelevantForCpuIdLeaf(uint32_t uLeaf, uint32_t *pcSubLeaves, bool *pfFinalEcxUnchanged)
771{
772 *pfFinalEcxUnchanged = false;
773
774 uint32_t auPrev[4];
775 ASMCpuIdExSlow(uLeaf, 0, 0, 0, &auPrev[0], &auPrev[1], &auPrev[2], &auPrev[3]);
776
777 /* Look for sub-leaves. */
778 uint32_t uSubLeaf = 1;
779 for (;;)
780 {
781 uint32_t auCur[4];
782 ASMCpuIdExSlow(uLeaf, 0, uSubLeaf, 0, &auCur[0], &auCur[1], &auCur[2], &auCur[3]);
783 if (memcmp(auCur, auPrev, sizeof(auCur)))
784 break;
785
786 /* Advance / give up. */
787 uSubLeaf++;
788 if (uSubLeaf >= 64)
789 {
790 *pcSubLeaves = 1;
791 return false;
792 }
793 }
794
795 /* Count sub-leaves. */
796 uSubLeaf = 0;
797 for (;;)
798 {
799 uint32_t auCur[4];
800 ASMCpuIdExSlow(uLeaf, 0, uSubLeaf, 0, &auCur[0], &auCur[1], &auCur[2], &auCur[3]);
801
802 /* Exactly when this terminates isn't quite consistent. When working
803 0xb, we should probably only check if ebx == 0... */
804 if ( auCur[0] == 0
805 && auCur[1] == 0
806 && (auCur[2] == 0 || auCur[2] == uSubLeaf)
807 && (auCur[3] == 0 || uLeaf == 0xb) )
808 {
809 if (auCur[2] == uSubLeaf)
810 *pfFinalEcxUnchanged = true;
811 *pcSubLeaves = uSubLeaf + 1;
812 return true;
813 }
814
815 /* Advance / give up. */
816 uSubLeaf++;
817 if (uSubLeaf >= 128)
818 {
819 *pcSubLeaves = UINT32_MAX;
820 return true;
821 }
822 }
823}
824
825
826/**
827 * Collects CPUID leaves and sub-leaves, returning a sorted array of them.
828 *
829 * @returns VBox status code.
830 * @param ppaLeaves Where to return the array pointer on success.
831 * Use RTMemFree to release.
832 * @param pcLeaves Where to return the size of the array on
833 * success.
834 */
835VMMR3DECL(int) CPUMR3CpuIdCollectLeaves(PCPUMCPUIDLEAF *ppaLeaves, uint32_t *pcLeaves)
836{
837 *ppaLeaves = NULL;
838 *pcLeaves = 0;
839
840 /*
841 * Try out various candidates. This must be sorted!
842 */
843 static struct { uint32_t uMsr; bool fSpecial; } const s_aCandidates[] =
844 {
845 { UINT32_C(0x00000000), false },
846 { UINT32_C(0x10000000), false },
847 { UINT32_C(0x20000000), false },
848 { UINT32_C(0x30000000), false },
849 { UINT32_C(0x40000000), false },
850 { UINT32_C(0x50000000), false },
851 { UINT32_C(0x60000000), false },
852 { UINT32_C(0x70000000), false },
853 { UINT32_C(0x80000000), false },
854 { UINT32_C(0x80860000), false },
855 { UINT32_C(0x8ffffffe), true },
856 { UINT32_C(0x8fffffff), true },
857 { UINT32_C(0x90000000), false },
858 { UINT32_C(0xa0000000), false },
859 { UINT32_C(0xb0000000), false },
860 { UINT32_C(0xc0000000), false },
861 { UINT32_C(0xd0000000), false },
862 { UINT32_C(0xe0000000), false },
863 { UINT32_C(0xf0000000), false },
864 };
865
866 for (uint32_t iOuter = 0; iOuter < RT_ELEMENTS(s_aCandidates); iOuter++)
867 {
868 uint32_t uLeaf = s_aCandidates[iOuter].uMsr;
869 uint32_t uEax, uEbx, uEcx, uEdx;
870 ASMCpuIdExSlow(uLeaf, 0, 0, 0, &uEax, &uEbx, &uEcx, &uEdx);
871
872 /*
873 * Does EAX look like a typical leaf count value?
874 */
875 if ( uEax > uLeaf
876 && uEax - uLeaf < UINT32_C(0xff)) /* Adjust 0xff limit when exceeded by real HW. */
877 {
878 /* Yes, dump them. */
879 uint32_t cLeaves = uEax - uLeaf + 1;
880 while (cLeaves-- > 0)
881 {
882 /* Check three times here to reduce the chance of CPU migration
883 resulting in false positives with things like the APIC ID. */
884 uint32_t cSubLeaves;
885 bool fFinalEcxUnchanged;
886 if ( cpumR3IsEcxRelevantForCpuIdLeaf(uLeaf, &cSubLeaves, &fFinalEcxUnchanged)
887 && cpumR3IsEcxRelevantForCpuIdLeaf(uLeaf, &cSubLeaves, &fFinalEcxUnchanged)
888 && cpumR3IsEcxRelevantForCpuIdLeaf(uLeaf, &cSubLeaves, &fFinalEcxUnchanged))
889 {
890 if (cSubLeaves > 16)
891 return VERR_CPUM_TOO_MANY_CPUID_SUBLEAVES;
892 for (uint32_t uSubLeaf = 0; uSubLeaf < cSubLeaves; uSubLeaf++)
893 {
894 ASMCpuIdExSlow(uLeaf, 0, uSubLeaf, 0, &uEax, &uEbx, &uEcx, &uEdx);
895 int rc = cpumR3CollectCpuIdInfoAddOne(ppaLeaves, pcLeaves,
896 uLeaf, uSubLeaf, UINT32_MAX, uEax, uEbx, uEcx, uEdx,
897 uSubLeaf + 1 == cSubLeaves && fFinalEcxUnchanged
898 ? CPUMCPUIDLEAF_F_SUBLEAVES_ECX_UNCHANGED : 0);
899 if (RT_FAILURE(rc))
900 return rc;
901 }
902 }
903 else
904 {
905 ASMCpuIdExSlow(uLeaf, 0, 0, 0, &uEax, &uEbx, &uEcx, &uEdx);
906 int rc = cpumR3CollectCpuIdInfoAddOne(ppaLeaves, pcLeaves,
907 uLeaf, 0, 0, uEax, uEbx, uEcx, uEdx, 0);
908 if (RT_FAILURE(rc))
909 return rc;
910 }
911
912 /* next */
913 uLeaf++;
914 }
915 }
916 /*
917 * Special CPUIDs needs special handling as they don't follow the
918 * leaf count principle used above.
919 */
920 else if (s_aCandidates[iOuter].fSpecial)
921 {
922 bool fKeep = false;
923 if (uLeaf == 0x8ffffffe && uEax == UINT32_C(0x00494544))
924 fKeep = true;
925 else if ( uLeaf == 0x8fffffff
926 && RT_C_IS_PRINT(RT_BYTE1(uEax))
927 && RT_C_IS_PRINT(RT_BYTE2(uEax))
928 && RT_C_IS_PRINT(RT_BYTE3(uEax))
929 && RT_C_IS_PRINT(RT_BYTE4(uEax))
930 && RT_C_IS_PRINT(RT_BYTE1(uEbx))
931 && RT_C_IS_PRINT(RT_BYTE2(uEbx))
932 && RT_C_IS_PRINT(RT_BYTE3(uEbx))
933 && RT_C_IS_PRINT(RT_BYTE4(uEbx))
934 && RT_C_IS_PRINT(RT_BYTE1(uEcx))
935 && RT_C_IS_PRINT(RT_BYTE2(uEcx))
936 && RT_C_IS_PRINT(RT_BYTE3(uEcx))
937 && RT_C_IS_PRINT(RT_BYTE4(uEcx))
938 && RT_C_IS_PRINT(RT_BYTE1(uEdx))
939 && RT_C_IS_PRINT(RT_BYTE2(uEdx))
940 && RT_C_IS_PRINT(RT_BYTE3(uEdx))
941 && RT_C_IS_PRINT(RT_BYTE4(uEdx)) )
942 fKeep = true;
943 if (fKeep)
944 {
945 int rc = cpumR3CollectCpuIdInfoAddOne(ppaLeaves, pcLeaves,
946 uLeaf, 0, 0, uEax, uEbx, uEcx, uEdx, 0);
947 if (RT_FAILURE(rc))
948 return rc;
949 }
950 }
951 }
952
953 return VINF_SUCCESS;
954}
955
956
957/**
958 * Determines the method the CPU uses to handle unknown CPUID leaves.
959 *
960 * @returns VBox status code.
961 * @param penmUnknownMethod Where to return the method.
962 * @param pDefUnknown Where to return default unknown values. This
963 * will be set, even if the resulting method
964 * doesn't actually needs it.
965 */
966VMMR3DECL(int) CPUMR3CpuIdDetectUnknownLeafMethod(PCPUMUKNOWNCPUID penmUnknownMethod, PCPUMCPUID pDefUnknown)
967{
968 uint32_t uLastStd = ASMCpuId_EAX(0);
969 uint32_t uLastExt = ASMCpuId_EAX(0x80000000);
970 if (!ASMIsValidExtRange(uLastExt))
971 uLastExt = 0x80000000;
972
973 uint32_t auChecks[] =
974 {
975 uLastStd + 1,
976 uLastStd + 5,
977 uLastStd + 8,
978 uLastStd + 32,
979 uLastStd + 251,
980 uLastExt + 1,
981 uLastExt + 8,
982 uLastExt + 15,
983 uLastExt + 63,
984 uLastExt + 255,
985 0x7fbbffcc,
986 0x833f7872,
987 0xefff2353,
988 0x35779456,
989 0x1ef6d33e,
990 };
991
992 static const uint32_t s_auValues[] =
993 {
994 0xa95d2156,
995 0x00000001,
996 0x00000002,
997 0x00000008,
998 0x00000000,
999 0x55773399,
1000 0x93401769,
1001 0x12039587,
1002 };
1003
1004 /*
1005 * Simple method, all zeros.
1006 */
1007 *penmUnknownMethod = CPUMUKNOWNCPUID_DEFAULTS;
1008 pDefUnknown->eax = 0;
1009 pDefUnknown->ebx = 0;
1010 pDefUnknown->ecx = 0;
1011 pDefUnknown->edx = 0;
1012
1013 /*
1014 * Intel has been observed returning the last standard leaf.
1015 */
1016 uint32_t auLast[4];
1017 ASMCpuIdExSlow(uLastStd, 0, 0, 0, &auLast[0], &auLast[1], &auLast[2], &auLast[3]);
1018
1019 uint32_t cChecks = RT_ELEMENTS(auChecks);
1020 while (cChecks > 0)
1021 {
1022 uint32_t auCur[4];
1023 ASMCpuIdExSlow(auChecks[cChecks - 1], 0, 0, 0, &auCur[0], &auCur[1], &auCur[2], &auCur[3]);
1024 if (memcmp(auCur, auLast, sizeof(auCur)))
1025 break;
1026 cChecks--;
1027 }
1028 if (cChecks == 0)
1029 {
1030 /* Now, what happens when the input changes? Esp. ECX. */
1031 uint32_t cTotal = 0;
1032 uint32_t cSame = 0;
1033 uint32_t cLastWithEcx = 0;
1034 uint32_t cNeither = 0;
1035 uint32_t cValues = RT_ELEMENTS(s_auValues);
1036 while (cValues > 0)
1037 {
1038 uint32_t uValue = s_auValues[cValues - 1];
1039 uint32_t auLastWithEcx[4];
1040 ASMCpuIdExSlow(uLastStd, uValue, uValue, uValue,
1041 &auLastWithEcx[0], &auLastWithEcx[1], &auLastWithEcx[2], &auLastWithEcx[3]);
1042
1043 cChecks = RT_ELEMENTS(auChecks);
1044 while (cChecks > 0)
1045 {
1046 uint32_t auCur[4];
1047 ASMCpuIdExSlow(auChecks[cChecks - 1], uValue, uValue, uValue, &auCur[0], &auCur[1], &auCur[2], &auCur[3]);
1048 if (!memcmp(auCur, auLast, sizeof(auCur)))
1049 {
1050 cSame++;
1051 if (!memcmp(auCur, auLastWithEcx, sizeof(auCur)))
1052 cLastWithEcx++;
1053 }
1054 else if (!memcmp(auCur, auLastWithEcx, sizeof(auCur)))
1055 cLastWithEcx++;
1056 else
1057 cNeither++;
1058 cTotal++;
1059 cChecks--;
1060 }
1061 cValues--;
1062 }
1063
1064 RTStrmPrintf(g_pStdErr, "cNeither=%d cSame=%d cLastWithEcx=%d cTotal=%d\n", cNeither, cSame, cLastWithEcx, cTotal);
1065 if (cSame == cTotal)
1066 *penmUnknownMethod = CPUMUKNOWNCPUID_LAST_STD_LEAF;
1067 else if (cLastWithEcx == cTotal)
1068 *penmUnknownMethod = CPUMUKNOWNCPUID_LAST_STD_LEAF_WITH_ECX;
1069 else
1070 *penmUnknownMethod = CPUMUKNOWNCPUID_LAST_STD_LEAF;
1071 pDefUnknown->eax = auLast[0];
1072 pDefUnknown->ebx = auLast[1];
1073 pDefUnknown->ecx = auLast[2];
1074 pDefUnknown->edx = auLast[3];
1075 return VINF_SUCCESS;
1076 }
1077
1078 /*
1079 * Unchanged register values?
1080 */
1081 cChecks = RT_ELEMENTS(auChecks);
1082 while (cChecks > 0)
1083 {
1084 uint32_t const uLeaf = auChecks[cChecks - 1];
1085 uint32_t cValues = RT_ELEMENTS(s_auValues);
1086 while (cValues > 0)
1087 {
1088 uint32_t uValue = s_auValues[cValues - 1];
1089 uint32_t auCur[4];
1090 ASMCpuIdExSlow(uLeaf, uValue, uValue, uValue, &auCur[0], &auCur[1], &auCur[2], &auCur[3]);
1091 if ( auCur[0] != uLeaf
1092 || auCur[1] != uValue
1093 || auCur[2] != uValue
1094 || auCur[3] != uValue)
1095 break;
1096 cValues--;
1097 }
1098 if (cValues != 0)
1099 break;
1100 cChecks--;
1101 }
1102 if (cChecks == 0)
1103 {
1104 *penmUnknownMethod = CPUMUKNOWNCPUID_PASSTHRU;
1105 return VINF_SUCCESS;
1106 }
1107
1108 /*
1109 * Just go with the simple method.
1110 */
1111 return VINF_SUCCESS;
1112}
1113
1114
1115/**
1116 * Translates a unknow CPUID leaf method into the constant name (sans prefix).
1117 *
1118 * @returns Read only name string.
1119 * @param enmUnknownMethod The method to translate.
1120 */
1121VMMR3DECL(const char *) CPUMR3CpuIdUnknownLeafMethodName(CPUMUKNOWNCPUID enmUnknownMethod)
1122{
1123 switch (enmUnknownMethod)
1124 {
1125 case CPUMUKNOWNCPUID_DEFAULTS: return "DEFAULTS";
1126 case CPUMUKNOWNCPUID_LAST_STD_LEAF: return "LAST_STD_LEAF";
1127 case CPUMUKNOWNCPUID_LAST_STD_LEAF_WITH_ECX: return "LAST_STD_LEAF_WITH_ECX";
1128 case CPUMUKNOWNCPUID_PASSTHRU: return "PASSTHRU";
1129
1130 case CPUMUKNOWNCPUID_INVALID:
1131 case CPUMUKNOWNCPUID_END:
1132 case CPUMUKNOWNCPUID_32BIT_HACK:
1133 break;
1134 }
1135 return "Invalid-unknown-CPUID-method";
1136}
1137
1138
1139/**
1140 * Detect the CPU vendor give n the
1141 *
1142 * @returns The vendor.
1143 * @param uEAX EAX from CPUID(0).
1144 * @param uEBX EBX from CPUID(0).
1145 * @param uECX ECX from CPUID(0).
1146 * @param uEDX EDX from CPUID(0).
1147 */
1148VMMR3DECL(CPUMCPUVENDOR) CPUMR3CpuIdDetectVendorEx(uint32_t uEAX, uint32_t uEBX, uint32_t uECX, uint32_t uEDX)
1149{
1150 if (ASMIsValidStdRange(uEAX))
1151 {
1152 if (ASMIsAmdCpuEx(uEBX, uECX, uEDX))
1153 return CPUMCPUVENDOR_AMD;
1154
1155 if (ASMIsIntelCpuEx(uEBX, uECX, uEDX))
1156 return CPUMCPUVENDOR_INTEL;
1157
1158 if (ASMIsViaCentaurCpuEx(uEBX, uECX, uEDX))
1159 return CPUMCPUVENDOR_VIA;
1160
1161 if ( uEBX == UINT32_C(0x69727943) /* CyrixInstead */
1162 && uECX == UINT32_C(0x64616574)
1163 && uEDX == UINT32_C(0x736E4978))
1164 return CPUMCPUVENDOR_CYRIX;
1165
1166 /* "Geode by NSC", example: family 5, model 9. */
1167
1168 /** @todo detect the other buggers... */
1169 }
1170
1171 return CPUMCPUVENDOR_UNKNOWN;
1172}
1173
1174
1175/**
1176 * Translates a CPU vendor enum value into the corresponding string constant.
1177 *
1178 * The named can be prefixed with 'CPUMCPUVENDOR_' to construct a valid enum
1179 * value name. This can be useful when generating code.
1180 *
1181 * @returns Read only name string.
1182 * @param enmVendor The CPU vendor value.
1183 */
1184VMMR3DECL(const char *) CPUMR3CpuVendorName(CPUMCPUVENDOR enmVendor)
1185{
1186 switch (enmVendor)
1187 {
1188 case CPUMCPUVENDOR_INTEL: return "INTEL";
1189 case CPUMCPUVENDOR_AMD: return "AMD";
1190 case CPUMCPUVENDOR_VIA: return "VIA";
1191 case CPUMCPUVENDOR_CYRIX: return "CYRIX";
1192 case CPUMCPUVENDOR_UNKNOWN: return "UNKNOWN";
1193
1194 case CPUMCPUVENDOR_INVALID:
1195 case CPUMCPUVENDOR_32BIT_HACK:
1196 break;
1197 }
1198 return "Invalid-cpu-vendor";
1199}
1200
1201
1202static PCCPUMCPUIDLEAF cpumR3CpuIdFindLeaf(PCCPUMCPUIDLEAF paLeaves, uint32_t cLeaves, uint32_t uLeaf)
1203{
1204 /* Could do binary search, doing linear now because I'm lazy. */
1205 PCCPUMCPUIDLEAF pLeaf = paLeaves;
1206 while (cLeaves-- > 0)
1207 {
1208 if (pLeaf->uLeaf == uLeaf)
1209 return pLeaf;
1210 pLeaf++;
1211 }
1212 return NULL;
1213}
1214
1215
1216int cpumR3CpuIdExplodeFeatures(PCCPUMCPUIDLEAF paLeaves, uint32_t cLeaves, PCPUMFEATURES pFeatures)
1217{
1218 RT_ZERO(*pFeatures);
1219 if (cLeaves >= 2)
1220 {
1221 AssertLogRelReturn(paLeaves[0].uLeaf == 0, VERR_CPUM_IPE_1);
1222 AssertLogRelReturn(paLeaves[1].uLeaf == 1, VERR_CPUM_IPE_1);
1223
1224 pFeatures->enmCpuVendor = CPUMR3CpuIdDetectVendorEx(paLeaves[0].uEax,
1225 paLeaves[0].uEbx,
1226 paLeaves[0].uEcx,
1227 paLeaves[0].uEdx);
1228 pFeatures->uFamily = ASMGetCpuFamily(paLeaves[1].uEax);
1229 pFeatures->uModel = ASMGetCpuModel(paLeaves[1].uEax, pFeatures->enmCpuVendor == CPUMCPUVENDOR_INTEL);
1230 pFeatures->uStepping = ASMGetCpuStepping(paLeaves[1].uEax);
1231 pFeatures->enmMicroarch = CPUMR3CpuIdDetermineMicroarchEx((CPUMCPUVENDOR)pFeatures->enmCpuVendor,
1232 pFeatures->uFamily,
1233 pFeatures->uModel,
1234 pFeatures->uStepping);
1235
1236 PCCPUMCPUIDLEAF pLeaf = cpumR3CpuIdFindLeaf(paLeaves, cLeaves, 0x80000008);
1237 if (pLeaf)
1238 pFeatures->cMaxPhysAddrWidth = pLeaf->uEax & 0xff;
1239 else if (paLeaves[1].uEdx & X86_CPUID_FEATURE_EDX_PSE36)
1240 pFeatures->cMaxPhysAddrWidth = 36;
1241 else
1242 pFeatures->cMaxPhysAddrWidth = 32;
1243
1244 /* Standard features. */
1245 pFeatures->fMsr = RT_BOOL(paLeaves[1].uEdx & X86_CPUID_FEATURE_EDX_MSR);
1246 pFeatures->fApic = RT_BOOL(paLeaves[1].uEdx & X86_CPUID_FEATURE_EDX_APIC);
1247 pFeatures->fX2Apic = RT_BOOL(paLeaves[1].uEcx & X86_CPUID_FEATURE_ECX_X2APIC);
1248 pFeatures->fPse = RT_BOOL(paLeaves[1].uEdx & X86_CPUID_FEATURE_EDX_PSE);
1249 pFeatures->fPse36 = RT_BOOL(paLeaves[1].uEdx & X86_CPUID_FEATURE_EDX_PSE36);
1250 pFeatures->fPae = RT_BOOL(paLeaves[1].uEdx & X86_CPUID_FEATURE_EDX_PAE);
1251 pFeatures->fPat = RT_BOOL(paLeaves[1].uEdx & X86_CPUID_FEATURE_EDX_PAT);
1252 pFeatures->fFxSaveRstor = RT_BOOL(paLeaves[1].uEdx & X86_CPUID_FEATURE_EDX_FXSR);
1253 pFeatures->fSysEnter = RT_BOOL(paLeaves[1].uEdx & X86_CPUID_FEATURE_EDX_SEP);
1254 pFeatures->fHypervisorPresent = RT_BOOL(paLeaves[1].uEcx & X86_CPUID_FEATURE_ECX_HVP);
1255 pFeatures->fMonitorMWait = RT_BOOL(paLeaves[1].uEcx & X86_CPUID_FEATURE_ECX_MONITOR);
1256
1257 /* Extended features. */
1258 PCCPUMCPUIDLEAF const pExtLeaf = cpumR3CpuIdFindLeaf(paLeaves, cLeaves, 0x80000001);
1259 if (pExtLeaf)
1260 {
1261 pFeatures->fLongMode = RT_BOOL(pExtLeaf->uEdx & X86_CPUID_EXT_FEATURE_EDX_LONG_MODE);
1262 pFeatures->fSysCall = RT_BOOL(pExtLeaf->uEdx & X86_CPUID_EXT_FEATURE_EDX_SYSCALL);
1263 pFeatures->fNoExecute = RT_BOOL(pExtLeaf->uEdx & X86_CPUID_EXT_FEATURE_EDX_NX);
1264 pFeatures->fLahfSahf = RT_BOOL(pExtLeaf->uEcx & X86_CPUID_EXT_FEATURE_ECX_LAHF_SAHF);
1265 pFeatures->fRdTscP = RT_BOOL(pExtLeaf->uEdx & X86_CPUID_EXT_FEATURE_EDX_RDTSCP);
1266 }
1267
1268 if ( pExtLeaf
1269 && pFeatures->enmCpuVendor == CPUMCPUVENDOR_AMD)
1270 {
1271 /* AMD features. */
1272 pFeatures->fMsr |= RT_BOOL(pExtLeaf->uEdx & X86_CPUID_AMD_FEATURE_EDX_MSR);
1273 pFeatures->fApic |= RT_BOOL(pExtLeaf->uEdx & X86_CPUID_AMD_FEATURE_EDX_APIC);
1274 pFeatures->fPse |= RT_BOOL(pExtLeaf->uEdx & X86_CPUID_AMD_FEATURE_EDX_PSE);
1275 pFeatures->fPse36 |= RT_BOOL(pExtLeaf->uEdx & X86_CPUID_AMD_FEATURE_EDX_PSE36);
1276 pFeatures->fPae |= RT_BOOL(pExtLeaf->uEdx & X86_CPUID_AMD_FEATURE_EDX_PAE);
1277 pFeatures->fPat |= RT_BOOL(pExtLeaf->uEdx & X86_CPUID_AMD_FEATURE_EDX_PAT);
1278 pFeatures->fFxSaveRstor |= RT_BOOL(pExtLeaf->uEdx & X86_CPUID_AMD_FEATURE_EDX_FXSR);
1279 }
1280
1281 /*
1282 * Quirks.
1283 */
1284 pFeatures->fLeakyFxSR = pExtLeaf
1285 && (pExtLeaf->uEdx & X86_CPUID_AMD_FEATURE_EDX_FFXSR)
1286 && pFeatures->enmCpuVendor == CPUMCPUVENDOR_AMD
1287 && pFeatures->uFamily >= 6 /* K7 and up */;
1288 }
1289 else
1290 AssertLogRelReturn(cLeaves == 0, VERR_CPUM_IPE_1);
1291 return VINF_SUCCESS;
1292}
1293
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette