VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/CPUMR3CpuId.cpp@ 51334

Last change on this file since 51334 was 51334, checked in by vboxsync, 11 years ago

VMM/CPUM: Fix NULL ptr deref. due to premature access.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 56.3 KB
Line 
1/* $Id: CPUMR3CpuId.cpp 51334 2014-05-22 06:06:18Z vboxsync $ */
2/** @file
3 * CPUM - CPU ID part.
4 */
5
6/*
7 * Copyright (C) 2013-2014 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/*******************************************************************************
19* Header Files *
20*******************************************************************************/
21#define LOG_GROUP LOG_GROUP_CPUM
22#include <VBox/vmm/cpum.h>
23#include "CPUMInternal.h"
24#include <VBox/vmm/vm.h>
25#include <VBox/vmm/mm.h>
26
27#include <VBox/err.h>
28#include <iprt/asm-amd64-x86.h>
29#include <iprt/ctype.h>
30#include <iprt/mem.h>
31#include <iprt/string.h>
32
33
34/*******************************************************************************
35* Global Variables *
36*******************************************************************************/
37/**
38 * The intel pentium family.
39 */
40static const CPUMMICROARCH g_aenmIntelFamily06[] =
41{
42 /* [ 0(0x00)] = */ kCpumMicroarch_Intel_P6, /* Pentium Pro A-step (says sandpile.org). */
43 /* [ 1(0x01)] = */ kCpumMicroarch_Intel_P6, /* Pentium Pro */
44 /* [ 2(0x02)] = */ kCpumMicroarch_Intel_Unknown,
45 /* [ 3(0x03)] = */ kCpumMicroarch_Intel_P6_II, /* PII Klamath */
46 /* [ 4(0x04)] = */ kCpumMicroarch_Intel_Unknown,
47 /* [ 5(0x05)] = */ kCpumMicroarch_Intel_P6_II, /* PII Deschutes */
48 /* [ 6(0x06)] = */ kCpumMicroarch_Intel_P6_II, /* Celeron Mendocino. */
49 /* [ 7(0x07)] = */ kCpumMicroarch_Intel_P6_III, /* PIII Katmai. */
50 /* [ 8(0x08)] = */ kCpumMicroarch_Intel_P6_III, /* PIII Coppermine (includes Celeron). */
51 /* [ 9(0x09)] = */ kCpumMicroarch_Intel_P6_M_Banias, /* Pentium/Celeron M Banias. */
52 /* [10(0x0a)] = */ kCpumMicroarch_Intel_P6_III, /* PIII Xeon */
53 /* [11(0x0b)] = */ kCpumMicroarch_Intel_P6_III, /* PIII Tualatin (includes Celeron). */
54 /* [12(0x0c)] = */ kCpumMicroarch_Intel_Unknown,
55 /* [13(0x0d)] = */ kCpumMicroarch_Intel_P6_M_Dothan, /* Pentium/Celeron M Dothan. */
56 /* [14(0x0e)] = */ kCpumMicroarch_Intel_Core_Yonah, /* Core Yonah (Enhanced Pentium M). */
57 /* [15(0x0f)] = */ kCpumMicroarch_Intel_Core2_Merom, /* Merom */
58 /* [16(0x10)] = */ kCpumMicroarch_Intel_Unknown,
59 /* [17(0x11)] = */ kCpumMicroarch_Intel_Unknown,
60 /* [18(0x12)] = */ kCpumMicroarch_Intel_Unknown,
61 /* [19(0x13)] = */ kCpumMicroarch_Intel_Unknown,
62 /* [20(0x14)] = */ kCpumMicroarch_Intel_Unknown,
63 /* [21(0x15)] = */ kCpumMicroarch_Intel_P6_M_Dothan, /* Tolapai - System-on-a-chip. */
64 /* [22(0x16)] = */ kCpumMicroarch_Intel_Core2_Merom,
65 /* [23(0x17)] = */ kCpumMicroarch_Intel_Core2_Penryn,
66 /* [24(0x18)] = */ kCpumMicroarch_Intel_Unknown,
67 /* [25(0x19)] = */ kCpumMicroarch_Intel_Unknown,
68 /* [26(0x1a)] = */ kCpumMicroarch_Intel_Core7_Nehalem,
69 /* [27(0x1b)] = */ kCpumMicroarch_Intel_Unknown,
70 /* [28(0x1c)] = */ kCpumMicroarch_Intel_Atom_Bonnell, /* Diamonville, Pineview, */
71 /* [29(0x1d)] = */ kCpumMicroarch_Intel_Core2_Penryn,
72 /* [30(0x1e)] = */ kCpumMicroarch_Intel_Core7_Nehalem, /* Clarksfield, Lynnfield, Jasper Forest. */
73 /* [31(0x1f)] = */ kCpumMicroarch_Intel_Core7_Nehalem, /* Only listed by sandpile.org. 2 cores ABD/HVD, whatever that means. */
74 /* [32(0x20)] = */ kCpumMicroarch_Intel_Unknown,
75 /* [33(0x21)] = */ kCpumMicroarch_Intel_Unknown,
76 /* [34(0x22)] = */ kCpumMicroarch_Intel_Unknown,
77 /* [35(0x23)] = */ kCpumMicroarch_Intel_Unknown,
78 /* [36(0x24)] = */ kCpumMicroarch_Intel_Unknown,
79 /* [37(0x25)] = */ kCpumMicroarch_Intel_Core7_Westmere, /* Arrandale, Clarksdale. */
80 /* [38(0x26)] = */ kCpumMicroarch_Intel_Atom_Lincroft,
81 /* [39(0x27)] = */ kCpumMicroarch_Intel_Atom_Saltwell,
82 /* [40(0x28)] = */ kCpumMicroarch_Intel_Unknown,
83 /* [41(0x29)] = */ kCpumMicroarch_Intel_Unknown,
84 /* [42(0x2a)] = */ kCpumMicroarch_Intel_Core7_SandyBridge,
85 /* [43(0x2b)] = */ kCpumMicroarch_Intel_Unknown,
86 /* [44(0x2c)] = */ kCpumMicroarch_Intel_Core7_Westmere, /* Gulftown, Westmere-EP. */
87 /* [45(0x2d)] = */ kCpumMicroarch_Intel_Core7_SandyBridge, /* SandyBridge-E, SandyBridge-EN, SandyBridge-EP. */
88 /* [46(0x2e)] = */ kCpumMicroarch_Intel_Core7_Nehalem, /* Beckton (Xeon). */
89 /* [47(0x2f)] = */ kCpumMicroarch_Intel_Core7_Westmere, /* Westmere-EX. */
90 /* [48(0x30)] = */ kCpumMicroarch_Intel_Unknown,
91 /* [49(0x31)] = */ kCpumMicroarch_Intel_Unknown,
92 /* [50(0x32)] = */ kCpumMicroarch_Intel_Unknown,
93 /* [51(0x33)] = */ kCpumMicroarch_Intel_Unknown,
94 /* [52(0x34)] = */ kCpumMicroarch_Intel_Unknown,
95 /* [53(0x35)] = */ kCpumMicroarch_Intel_Atom_Saltwell, /* ?? */
96 /* [54(0x36)] = */ kCpumMicroarch_Intel_Atom_Saltwell, /* Cedarview, ++ */
97 /* [55(0x37)] = */ kCpumMicroarch_Intel_Atom_Silvermont,
98 /* [56(0x38)] = */ kCpumMicroarch_Intel_Unknown,
99 /* [57(0x39)] = */ kCpumMicroarch_Intel_Unknown,
100 /* [58(0x3a)] = */ kCpumMicroarch_Intel_Core7_IvyBridge,
101 /* [59(0x3b)] = */ kCpumMicroarch_Intel_Unknown,
102 /* [60(0x3c)] = */ kCpumMicroarch_Intel_Core7_Haswell,
103 /* [61(0x3d)] = */ kCpumMicroarch_Intel_Core7_Broadwell,
104 /* [62(0x3e)] = */ kCpumMicroarch_Intel_Core7_IvyBridge,
105 /* [63(0x3f)] = */ kCpumMicroarch_Intel_Core7_Haswell,
106 /* [64(0x40)] = */ kCpumMicroarch_Intel_Unknown,
107 /* [65(0x41)] = */ kCpumMicroarch_Intel_Unknown,
108 /* [66(0x42)] = */ kCpumMicroarch_Intel_Unknown,
109 /* [67(0x43)] = */ kCpumMicroarch_Intel_Unknown,
110 /* [68(0x44)] = */ kCpumMicroarch_Intel_Unknown,
111 /* [69(0x45)] = */ kCpumMicroarch_Intel_Core7_Haswell,
112 /* [70(0x46)] = */ kCpumMicroarch_Intel_Core7_Haswell,
113 /* [71(0x47)] = */ kCpumMicroarch_Intel_Unknown,
114 /* [72(0x48)] = */ kCpumMicroarch_Intel_Unknown,
115 /* [73(0x49)] = */ kCpumMicroarch_Intel_Unknown,
116 /* [74(0x4a)] = */ kCpumMicroarch_Intel_Atom_Silvermont,
117 /* [75(0x4b)] = */ kCpumMicroarch_Intel_Unknown,
118 /* [76(0x4c)] = */ kCpumMicroarch_Intel_Unknown,
119 /* [77(0x4d)] = */ kCpumMicroarch_Intel_Atom_Silvermont,
120 /* [78(0x4e)] = */ kCpumMicroarch_Intel_Unknown,
121 /* [79(0x4f)] = */ kCpumMicroarch_Intel_Unknown,
122};
123
124
125
126/**
127 * Figures out the (sub-)micro architecture given a bit of CPUID info.
128 *
129 * @returns Micro architecture.
130 * @param enmVendor The CPU vendor .
131 * @param bFamily The CPU family.
132 * @param bModel The CPU model.
133 * @param bStepping The CPU stepping.
134 */
135VMMR3DECL(CPUMMICROARCH) CPUMR3CpuIdDetermineMicroarchEx(CPUMCPUVENDOR enmVendor, uint8_t bFamily,
136 uint8_t bModel, uint8_t bStepping)
137{
138 if (enmVendor == CPUMCPUVENDOR_AMD)
139 {
140 switch (bFamily)
141 {
142 case 0x02: return kCpumMicroarch_AMD_Am286; /* Not really kosher... */
143 case 0x03: return kCpumMicroarch_AMD_Am386;
144 case 0x23: return kCpumMicroarch_AMD_Am386; /* SX*/
145 case 0x04: return bModel < 14 ? kCpumMicroarch_AMD_Am486 : kCpumMicroarch_AMD_Am486Enh;
146 case 0x05: return bModel < 6 ? kCpumMicroarch_AMD_K5 : kCpumMicroarch_AMD_K6; /* Genode LX is 0x0a, lump it with K6. */
147 case 0x06:
148 switch (bModel)
149 {
150 case 0: kCpumMicroarch_AMD_K7_Palomino;
151 case 1: kCpumMicroarch_AMD_K7_Palomino;
152 case 2: kCpumMicroarch_AMD_K7_Palomino;
153 case 3: kCpumMicroarch_AMD_K7_Spitfire;
154 case 4: kCpumMicroarch_AMD_K7_Thunderbird;
155 case 6: kCpumMicroarch_AMD_K7_Palomino;
156 case 7: kCpumMicroarch_AMD_K7_Morgan;
157 case 8: kCpumMicroarch_AMD_K7_Thoroughbred;
158 case 10: kCpumMicroarch_AMD_K7_Barton; /* Thorton too. */
159 }
160 return kCpumMicroarch_AMD_K7_Unknown;
161 case 0x0f:
162 /*
163 * This family is a friggin mess. Trying my best to make some
164 * sense out of it. Too much happened in the 0x0f family to
165 * lump it all together as K8 (130nm->90nm->65nm, AMD-V, ++).
166 *
167 * Emperical CPUID.01h.EAX evidence from revision guides, wikipedia,
168 * cpu-world.com, and other places:
169 * - 130nm:
170 * - ClawHammer: F7A/SH-CG, F5A/-CG, F4A/-CG, F50/-B0, F48/-C0, F58/-C0,
171 * - SledgeHammer: F50/SH-B0, F48/-C0, F58/-C0, F4A/-CG, F5A/-CG, F7A/-CG, F51/-B3
172 * - Newcastle: FC0/DH-CG (errum #180: FE0/DH-CG), FF0/DH-CG
173 * - Dublin: FC0/-CG, FF0/-CG, F82/CH-CG, F4A/-CG, F48/SH-C0,
174 * - Odessa: FC0/DH-CG (errum #180: FE0/DH-CG)
175 * - Paris: FF0/DH-CG, FC0/DH-CG (errum #180: FE0/DH-CG),
176 * - 90nm:
177 * - Winchester: 10FF0/DH-D0, 20FF0/DH-E3.
178 * - Oakville: 10FC0/DH-D0.
179 * - Georgetown: 10FC0/DH-D0.
180 * - Sonora: 10FC0/DH-D0.
181 * - Venus: 20F71/SH-E4
182 * - Troy: 20F51/SH-E4
183 * - Athens: 20F51/SH-E4
184 * - San Diego: 20F71/SH-E4.
185 * - Lancaster: 20F42/SH-E5
186 * - Newark: 20F42/SH-E5.
187 * - Albany: 20FC2/DH-E6.
188 * - Roma: 20FC2/DH-E6.
189 * - Venice: 20FF0/DH-E3, 20FC2/DH-E6, 20FF2/DH-E6.
190 * - Palermo: 10FC0/DH-D0, 20FF0/DH-E3, 20FC0/DH-E3, 20FC2/DH-E6, 20FF2/DH-E6
191 * - 90nm introducing Dual core:
192 * - Denmark: 20F30/JH-E1, 20F32/JH-E6
193 * - Italy: 20F10/JH-E1, 20F12/JH-E6
194 * - Egypt: 20F10/JH-E1, 20F12/JH-E6
195 * - Toledo: 20F32/JH-E6, 30F72/DH-E6 (single code variant).
196 * - Manchester: 20FB1/BH-E4, 30FF2/BH-E4.
197 * - 90nm 2nd gen opteron ++, AMD-V introduced (might be missing in some cheaper models):
198 * - Santa Ana: 40F32/JH-F2, /-F3
199 * - Santa Rosa: 40F12/JH-F2, 40F13/JH-F3
200 * - Windsor: 40F32/JH-F2, 40F33/JH-F3, C0F13/JH-F3, 40FB2/BH-F2, ??20FB1/BH-E4??.
201 * - Manila: 50FF2/DH-F2, 40FF2/DH-F2
202 * - Orleans: 40FF2/DH-F2, 50FF2/DH-F2, 50FF3/DH-F3.
203 * - Keene: 40FC2/DH-F2.
204 * - Richmond: 40FC2/DH-F2
205 * - Taylor: 40F82/BH-F2
206 * - Trinidad: 40F82/BH-F2
207 *
208 * - 65nm:
209 * - Brisbane: 60FB1/BH-G1, 60FB2/BH-G2.
210 * - Tyler: 60F81/BH-G1, 60F82/BH-G2.
211 * - Sparta: 70FF1/DH-G1, 70FF2/DH-G2.
212 * - Lima: 70FF1/DH-G1, 70FF2/DH-G2.
213 * - Sherman: /-G1, 70FC2/DH-G2.
214 * - Huron: 70FF2/DH-G2.
215 */
216 if (bModel < 0x10)
217 return kCpumMicroarch_AMD_K8_130nm;
218 if (bModel >= 0x60 && bModel < 0x80)
219 return kCpumMicroarch_AMD_K8_65nm;
220 if (bModel >= 0x40)
221 return kCpumMicroarch_AMD_K8_90nm_AMDV;
222 switch (bModel)
223 {
224 case 0x21:
225 case 0x23:
226 case 0x2b:
227 case 0x2f:
228 case 0x37:
229 case 0x3f:
230 return kCpumMicroarch_AMD_K8_90nm_DualCore;
231 }
232 return kCpumMicroarch_AMD_K8_90nm;
233 case 0x10:
234 return kCpumMicroarch_AMD_K10;
235 case 0x11:
236 return kCpumMicroarch_AMD_K10_Lion;
237 case 0x12:
238 return kCpumMicroarch_AMD_K10_Llano;
239 case 0x14:
240 return kCpumMicroarch_AMD_Bobcat;
241 case 0x15:
242 switch (bModel)
243 {
244 case 0x00: return kCpumMicroarch_AMD_15h_Bulldozer; /* Any? prerelease? */
245 case 0x01: return kCpumMicroarch_AMD_15h_Bulldozer; /* Opteron 4200, FX-81xx. */
246 case 0x02: return kCpumMicroarch_AMD_15h_Piledriver; /* Opteron 4300, FX-83xx. */
247 case 0x10: return kCpumMicroarch_AMD_15h_Piledriver; /* A10-5800K for e.g. */
248 case 0x11: /* ?? */
249 case 0x12: /* ?? */
250 case 0x13: return kCpumMicroarch_AMD_15h_Piledriver; /* A10-6800K for e.g. */
251 }
252 return kCpumMicroarch_AMD_15h_Unknown;
253 case 0x16:
254 return kCpumMicroarch_AMD_Jaguar;
255
256 }
257 return kCpumMicroarch_AMD_Unknown;
258 }
259
260 if (enmVendor == CPUMCPUVENDOR_INTEL)
261 {
262 switch (bFamily)
263 {
264 case 3:
265 return kCpumMicroarch_Intel_80386;
266 case 4:
267 return kCpumMicroarch_Intel_80486;
268 case 5:
269 return kCpumMicroarch_Intel_P5;
270 case 6:
271 if (bModel < RT_ELEMENTS(g_aenmIntelFamily06))
272 return g_aenmIntelFamily06[bModel];
273 return kCpumMicroarch_Intel_Atom_Unknown;
274 case 15:
275 switch (bModel)
276 {
277 case 0: return kCpumMicroarch_Intel_NB_Willamette;
278 case 1: return kCpumMicroarch_Intel_NB_Willamette;
279 case 2: return kCpumMicroarch_Intel_NB_Northwood;
280 case 3: return kCpumMicroarch_Intel_NB_Prescott;
281 case 4: return kCpumMicroarch_Intel_NB_Prescott2M; /* ?? */
282 case 5: return kCpumMicroarch_Intel_NB_Unknown; /*??*/
283 case 6: return kCpumMicroarch_Intel_NB_CedarMill;
284 case 7: return kCpumMicroarch_Intel_NB_Gallatin;
285 default: return kCpumMicroarch_Intel_NB_Unknown;
286 }
287 break;
288 /* The following are not kosher but kind of follow intuitively from 6, 5 & 4. */
289 case 1:
290 return kCpumMicroarch_Intel_8086;
291 case 2:
292 return kCpumMicroarch_Intel_80286;
293 }
294 return kCpumMicroarch_Intel_Unknown;
295 }
296
297 if (enmVendor == CPUMCPUVENDOR_VIA)
298 {
299 switch (bFamily)
300 {
301 case 5:
302 switch (bModel)
303 {
304 case 1: return kCpumMicroarch_Centaur_C6;
305 case 4: return kCpumMicroarch_Centaur_C6;
306 case 8: return kCpumMicroarch_Centaur_C2;
307 case 9: return kCpumMicroarch_Centaur_C3;
308 }
309 break;
310
311 case 6:
312 switch (bModel)
313 {
314 case 5: return kCpumMicroarch_VIA_C3_M2;
315 case 6: return kCpumMicroarch_VIA_C3_C5A;
316 case 7: return bStepping < 8 ? kCpumMicroarch_VIA_C3_C5B : kCpumMicroarch_VIA_C3_C5C;
317 case 8: return kCpumMicroarch_VIA_C3_C5N;
318 case 9: return bStepping < 8 ? kCpumMicroarch_VIA_C3_C5XL : kCpumMicroarch_VIA_C3_C5P;
319 case 10: return kCpumMicroarch_VIA_C7_C5J;
320 case 15: return kCpumMicroarch_VIA_Isaiah;
321 }
322 break;
323 }
324 return kCpumMicroarch_VIA_Unknown;
325 }
326
327 if (enmVendor == CPUMCPUVENDOR_CYRIX)
328 {
329 switch (bFamily)
330 {
331 case 4:
332 switch (bModel)
333 {
334 case 9: return kCpumMicroarch_Cyrix_5x86;
335 }
336 break;
337
338 case 5:
339 switch (bModel)
340 {
341 case 2: return kCpumMicroarch_Cyrix_M1;
342 case 4: return kCpumMicroarch_Cyrix_MediaGX;
343 case 5: return kCpumMicroarch_Cyrix_MediaGXm;
344 }
345 break;
346
347 case 6:
348 switch (bModel)
349 {
350 case 0: return kCpumMicroarch_Cyrix_M2;
351 }
352 break;
353
354 }
355 return kCpumMicroarch_Cyrix_Unknown;
356 }
357
358 return kCpumMicroarch_Unknown;
359}
360
361
362/**
363 * Translates a microarchitecture enum value to the corresponding string
364 * constant.
365 *
366 * @returns Read-only string constant (omits "kCpumMicroarch_" prefix). Returns
367 * NULL if the value is invalid.
368 *
369 * @param enmMicroarch The enum value to convert.
370 */
371VMMR3DECL(const char *) CPUMR3MicroarchName(CPUMMICROARCH enmMicroarch)
372{
373 switch (enmMicroarch)
374 {
375#define CASE_RET_STR(enmValue) case enmValue: return #enmValue + (sizeof("kCpumMicroarch_") - 1)
376 CASE_RET_STR(kCpumMicroarch_Intel_8086);
377 CASE_RET_STR(kCpumMicroarch_Intel_80186);
378 CASE_RET_STR(kCpumMicroarch_Intel_80286);
379 CASE_RET_STR(kCpumMicroarch_Intel_80386);
380 CASE_RET_STR(kCpumMicroarch_Intel_80486);
381 CASE_RET_STR(kCpumMicroarch_Intel_P5);
382
383 CASE_RET_STR(kCpumMicroarch_Intel_P6);
384 CASE_RET_STR(kCpumMicroarch_Intel_P6_II);
385 CASE_RET_STR(kCpumMicroarch_Intel_P6_III);
386
387 CASE_RET_STR(kCpumMicroarch_Intel_P6_M_Banias);
388 CASE_RET_STR(kCpumMicroarch_Intel_P6_M_Dothan);
389 CASE_RET_STR(kCpumMicroarch_Intel_Core_Yonah);
390
391 CASE_RET_STR(kCpumMicroarch_Intel_Core2_Merom);
392 CASE_RET_STR(kCpumMicroarch_Intel_Core2_Penryn);
393
394 CASE_RET_STR(kCpumMicroarch_Intel_Core7_Nehalem);
395 CASE_RET_STR(kCpumMicroarch_Intel_Core7_Westmere);
396 CASE_RET_STR(kCpumMicroarch_Intel_Core7_SandyBridge);
397 CASE_RET_STR(kCpumMicroarch_Intel_Core7_IvyBridge);
398 CASE_RET_STR(kCpumMicroarch_Intel_Core7_Haswell);
399 CASE_RET_STR(kCpumMicroarch_Intel_Core7_Broadwell);
400 CASE_RET_STR(kCpumMicroarch_Intel_Core7_Skylake);
401 CASE_RET_STR(kCpumMicroarch_Intel_Core7_Cannonlake);
402
403 CASE_RET_STR(kCpumMicroarch_Intel_Atom_Bonnell);
404 CASE_RET_STR(kCpumMicroarch_Intel_Atom_Lincroft);
405 CASE_RET_STR(kCpumMicroarch_Intel_Atom_Saltwell);
406 CASE_RET_STR(kCpumMicroarch_Intel_Atom_Silvermont);
407 CASE_RET_STR(kCpumMicroarch_Intel_Atom_Airmount);
408 CASE_RET_STR(kCpumMicroarch_Intel_Atom_Goldmont);
409 CASE_RET_STR(kCpumMicroarch_Intel_Atom_Unknown);
410
411 CASE_RET_STR(kCpumMicroarch_Intel_NB_Willamette);
412 CASE_RET_STR(kCpumMicroarch_Intel_NB_Northwood);
413 CASE_RET_STR(kCpumMicroarch_Intel_NB_Prescott);
414 CASE_RET_STR(kCpumMicroarch_Intel_NB_Prescott2M);
415 CASE_RET_STR(kCpumMicroarch_Intel_NB_CedarMill);
416 CASE_RET_STR(kCpumMicroarch_Intel_NB_Gallatin);
417 CASE_RET_STR(kCpumMicroarch_Intel_NB_Unknown);
418
419 CASE_RET_STR(kCpumMicroarch_Intel_Unknown);
420
421 CASE_RET_STR(kCpumMicroarch_AMD_Am286);
422 CASE_RET_STR(kCpumMicroarch_AMD_Am386);
423 CASE_RET_STR(kCpumMicroarch_AMD_Am486);
424 CASE_RET_STR(kCpumMicroarch_AMD_Am486Enh);
425 CASE_RET_STR(kCpumMicroarch_AMD_K5);
426 CASE_RET_STR(kCpumMicroarch_AMD_K6);
427
428 CASE_RET_STR(kCpumMicroarch_AMD_K7_Palomino);
429 CASE_RET_STR(kCpumMicroarch_AMD_K7_Spitfire);
430 CASE_RET_STR(kCpumMicroarch_AMD_K7_Thunderbird);
431 CASE_RET_STR(kCpumMicroarch_AMD_K7_Morgan);
432 CASE_RET_STR(kCpumMicroarch_AMD_K7_Thoroughbred);
433 CASE_RET_STR(kCpumMicroarch_AMD_K7_Barton);
434 CASE_RET_STR(kCpumMicroarch_AMD_K7_Unknown);
435
436 CASE_RET_STR(kCpumMicroarch_AMD_K8_130nm);
437 CASE_RET_STR(kCpumMicroarch_AMD_K8_90nm);
438 CASE_RET_STR(kCpumMicroarch_AMD_K8_90nm_DualCore);
439 CASE_RET_STR(kCpumMicroarch_AMD_K8_90nm_AMDV);
440 CASE_RET_STR(kCpumMicroarch_AMD_K8_65nm);
441
442 CASE_RET_STR(kCpumMicroarch_AMD_K10);
443 CASE_RET_STR(kCpumMicroarch_AMD_K10_Lion);
444 CASE_RET_STR(kCpumMicroarch_AMD_K10_Llano);
445 CASE_RET_STR(kCpumMicroarch_AMD_Bobcat);
446 CASE_RET_STR(kCpumMicroarch_AMD_Jaguar);
447
448 CASE_RET_STR(kCpumMicroarch_AMD_15h_Bulldozer);
449 CASE_RET_STR(kCpumMicroarch_AMD_15h_Piledriver);
450 CASE_RET_STR(kCpumMicroarch_AMD_15h_Steamroller);
451 CASE_RET_STR(kCpumMicroarch_AMD_15h_Excavator);
452 CASE_RET_STR(kCpumMicroarch_AMD_15h_Unknown);
453
454 CASE_RET_STR(kCpumMicroarch_AMD_16h_First);
455
456 CASE_RET_STR(kCpumMicroarch_AMD_Unknown);
457
458 CASE_RET_STR(kCpumMicroarch_Centaur_C6);
459 CASE_RET_STR(kCpumMicroarch_Centaur_C2);
460 CASE_RET_STR(kCpumMicroarch_Centaur_C3);
461 CASE_RET_STR(kCpumMicroarch_VIA_C3_M2);
462 CASE_RET_STR(kCpumMicroarch_VIA_C3_C5A);
463 CASE_RET_STR(kCpumMicroarch_VIA_C3_C5B);
464 CASE_RET_STR(kCpumMicroarch_VIA_C3_C5C);
465 CASE_RET_STR(kCpumMicroarch_VIA_C3_C5N);
466 CASE_RET_STR(kCpumMicroarch_VIA_C3_C5XL);
467 CASE_RET_STR(kCpumMicroarch_VIA_C3_C5P);
468 CASE_RET_STR(kCpumMicroarch_VIA_C7_C5J);
469 CASE_RET_STR(kCpumMicroarch_VIA_Isaiah);
470 CASE_RET_STR(kCpumMicroarch_VIA_Unknown);
471
472 CASE_RET_STR(kCpumMicroarch_Cyrix_5x86);
473 CASE_RET_STR(kCpumMicroarch_Cyrix_M1);
474 CASE_RET_STR(kCpumMicroarch_Cyrix_MediaGX);
475 CASE_RET_STR(kCpumMicroarch_Cyrix_MediaGXm);
476 CASE_RET_STR(kCpumMicroarch_Cyrix_M2);
477 CASE_RET_STR(kCpumMicroarch_Cyrix_Unknown);
478
479 CASE_RET_STR(kCpumMicroarch_Unknown);
480
481#undef CASE_RET_STR
482 case kCpumMicroarch_Invalid:
483 case kCpumMicroarch_Intel_End:
484 case kCpumMicroarch_Intel_Core7_End:
485 case kCpumMicroarch_Intel_Atom_End:
486 case kCpumMicroarch_Intel_P6_Core_Atom_End:
487 case kCpumMicroarch_Intel_NB_End:
488 case kCpumMicroarch_AMD_K7_End:
489 case kCpumMicroarch_AMD_K8_End:
490 case kCpumMicroarch_AMD_15h_End:
491 case kCpumMicroarch_AMD_16h_End:
492 case kCpumMicroarch_AMD_End:
493 case kCpumMicroarch_VIA_End:
494 case kCpumMicroarch_Cyrix_End:
495 case kCpumMicroarch_32BitHack:
496 break;
497 /* no default! */
498 }
499
500 return NULL;
501}
502
503
504
505/**
506 * Gets a matching leaf in the CPUID leaf array.
507 *
508 * @returns Pointer to the matching leaf, or NULL if not found.
509 * @param paLeaves The CPUID leaves to search. This is sorted.
510 * @param cLeaves The number of leaves in the array.
511 * @param uLeaf The leaf to locate.
512 * @param uSubLeaf The subleaf to locate. Pass 0 if no subleaves.
513 */
514PCPUMCPUIDLEAF cpumR3CpuIdGetLeaf(PCPUMCPUIDLEAF paLeaves, uint32_t cLeaves, uint32_t uLeaf, uint32_t uSubLeaf)
515{
516 /* Lazy bird does linear lookup here since this is only used for the
517 occational CPUID overrides. */
518 for (uint32_t i = 0; i < cLeaves; i++)
519 if ( paLeaves[i].uLeaf == uLeaf
520 && paLeaves[i].uSubLeaf == (uSubLeaf & paLeaves[i].fSubLeafMask))
521 return &paLeaves[i];
522 return NULL;
523}
524
525
526/**
527 * Gets a matching leaf in the CPUID leaf array, converted to a CPUMCPUID.
528 *
529 * @returns true if found, false it not.
530 * @param paLeaves The CPUID leaves to search. This is sorted.
531 * @param cLeaves The number of leaves in the array.
532 * @param uLeaf The leaf to locate.
533 * @param uSubLeaf The subleaf to locate. Pass 0 if no subleaves.
534 * @param pLegacy The legacy output leaf.
535 */
536bool cpumR3CpuIdGetLeafLegacy(PCPUMCPUIDLEAF paLeaves, uint32_t cLeaves, uint32_t uLeaf, uint32_t uSubLeaf, PCPUMCPUID pLeagcy)
537{
538 PCPUMCPUIDLEAF pLeaf = cpumR3CpuIdGetLeaf(paLeaves, cLeaves, uLeaf, uSubLeaf);
539 if (pLeaf)
540 {
541 pLeagcy->eax = pLeaf->uEax;
542 pLeagcy->ebx = pLeaf->uEbx;
543 pLeagcy->ecx = pLeaf->uEcx;
544 pLeagcy->edx = pLeaf->uEdx;
545 return true;
546 }
547 return false;
548}
549
550
551/**
552 * Ensures that the CPUID leaf array can hold one more leaf.
553 *
554 * @returns Pointer to the CPUID leaf array (*ppaLeaves) on success. NULL on
555 * failure.
556 * @param pVM Pointer to the VM, used as the heap selector. Passing
557 * NULL uses the host-context heap, otherwise the VM's
558 * hyper heap is used.
559 * @param ppaLeaves Pointer to the variable holding the array pointer
560 * (input/output).
561 * @param cLeaves The current array size.
562 *
563 * @remarks This function will automatically update the R0 and RC pointers when
564 * using the hyper heap, which means @a ppaLeaves and @a cLeaves must
565 * be the corresponding VM's CPUID arrays (which is asserted).
566 */
567static PCPUMCPUIDLEAF cpumR3CpuIdEnsureSpace(PVM pVM, PCPUMCPUIDLEAF *ppaLeaves, uint32_t cLeaves)
568{
569 uint32_t cAllocated = RT_ALIGN(cLeaves, 16);
570 if (cLeaves + 1 > cAllocated)
571 {
572 void *pvNew;
573#ifndef IN_VBOX_CPU_REPORT
574 if (pVM)
575 {
576 Assert(ppaLeaves == &pVM->cpum.s.GuestInfo.paCpuIdLeavesR3);
577 Assert(cLeaves == pVM->cpum.s.GuestInfo.cCpuIdLeaves);
578
579 size_t cb = cAllocated * sizeof(**ppaLeaves);
580 size_t cbNew = (cAllocated + 16) * sizeof(**ppaLeaves);
581 int rc = MMR3HyperRealloc(pVM, *ppaLeaves, cb, 32, MM_TAG_CPUM_CPUID, cbNew, &pvNew);
582 if (RT_FAILURE(rc))
583 {
584 *ppaLeaves = NULL;
585 pVM->cpum.s.GuestInfo.paCpuIdLeavesR0 = NIL_RTR0PTR;
586 pVM->cpum.s.GuestInfo.paCpuIdLeavesRC = NIL_RTRCPTR;
587 return NULL;
588 }
589
590 /* Update the R0 and RC pointers. */
591 pVM->cpum.s.GuestInfo.paCpuIdLeavesR0 = MMHyperR3ToR0(pVM, *ppaLeaves);
592 pVM->cpum.s.GuestInfo.paCpuIdLeavesRC = MMHyperR3ToRC(pVM, *ppaLeaves);
593 }
594 else
595#endif
596 {
597 pvNew = RTMemRealloc(*ppaLeaves, (cAllocated + 16) * sizeof(**ppaLeaves));
598 if (!pvNew)
599 {
600 RTMemFree(*ppaLeaves);
601 *ppaLeaves = NULL;
602 return NULL;
603 }
604 }
605 *ppaLeaves = (PCPUMCPUIDLEAF)pvNew;
606 }
607 return *ppaLeaves;
608}
609
610
611/**
612 * Append a CPUID leaf or sub-leaf.
613 *
614 * ASSUMES linear insertion order, so we'll won't need to do any searching or
615 * replace anything. Use cpumR3CpuIdInsert() for those cases.
616 *
617 * @returns VINF_SUCCESS or VERR_NO_MEMORY. On error, *ppaLeaves is freed, so
618 * the caller need do no more work.
619 * @param ppaLeaves Pointer to the the pointer to the array of sorted
620 * CPUID leaves and sub-leaves.
621 * @param pcLeaves Where we keep the leaf count for *ppaLeaves.
622 * @param uLeaf The leaf we're adding.
623 * @param uSubLeaf The sub-leaf number.
624 * @param fSubLeafMask The sub-leaf mask.
625 * @param uEax The EAX value.
626 * @param uEbx The EBX value.
627 * @param uEcx The ECX value.
628 * @param uEdx The EDX value.
629 * @param fFlags The flags.
630 */
631static int cpumR3CollectCpuIdInfoAddOne(PCPUMCPUIDLEAF *ppaLeaves, uint32_t *pcLeaves,
632 uint32_t uLeaf, uint32_t uSubLeaf, uint32_t fSubLeafMask,
633 uint32_t uEax, uint32_t uEbx, uint32_t uEcx, uint32_t uEdx, uint32_t fFlags)
634{
635 if (!cpumR3CpuIdEnsureSpace(NULL /* pVM */, ppaLeaves, *pcLeaves))
636 return VERR_NO_MEMORY;
637
638 PCPUMCPUIDLEAF pNew = &(*ppaLeaves)[*pcLeaves];
639 Assert( *pcLeaves == 0
640 || pNew[-1].uLeaf < uLeaf
641 || (pNew[-1].uLeaf == uLeaf && pNew[-1].uSubLeaf < uSubLeaf) );
642
643 pNew->uLeaf = uLeaf;
644 pNew->uSubLeaf = uSubLeaf;
645 pNew->fSubLeafMask = fSubLeafMask;
646 pNew->uEax = uEax;
647 pNew->uEbx = uEbx;
648 pNew->uEcx = uEcx;
649 pNew->uEdx = uEdx;
650 pNew->fFlags = fFlags;
651
652 *pcLeaves += 1;
653 return VINF_SUCCESS;
654}
655
656
657/**
658 * Inserts a CPU ID leaf, replacing any existing ones.
659 *
660 * When inserting a simple leaf where we already got a series of subleaves with
661 * the same leaf number (eax), the simple leaf will replace the whole series.
662 *
663 * When pVM is NULL, this ASSUMES that the leaves array is still on the normal
664 * host-context heap and has only been allocated/reallocated by the
665 * cpumR3CpuIdEnsureSpace function.
666 *
667 * @returns VBox status code.
668 * @param pVM Pointer to the VM, used as the heap selector.
669 * Passing NULL uses the host-context heap, otherwise
670 * the VM's hyper heap is used.
671 * @param ppaLeaves Pointer to the the pointer to the array of sorted
672 * CPUID leaves and sub-leaves. Must be NULL if using
673 * the hyper heap.
674 * @param pcLeaves Where we keep the leaf count for *ppaLeaves. Must be
675 * NULL if using the hyper heap.
676 * @param pNewLeaf Pointer to the data of the new leaf we're about to
677 * insert.
678 */
679int cpumR3CpuIdInsert(PVM pVM, PCPUMCPUIDLEAF *ppaLeaves, uint32_t *pcLeaves, PCPUMCPUIDLEAF pNewLeaf)
680{
681 /*
682 * Validate input parameters if we are using the hyper heap and use the VM's CPUID arrays.
683 */
684 if (pVM)
685 {
686 AssertReturn(!ppaLeaves, VERR_INVALID_PARAMETER);
687 AssertReturn(!pcLeaves, VERR_INVALID_PARAMETER);
688
689 ppaLeaves = &pVM->cpum.s.GuestInfo.paCpuIdLeavesR3;
690 pcLeaves = &pVM->cpum.s.GuestInfo.cCpuIdLeaves;
691 }
692
693 PCPUMCPUIDLEAF paLeaves = *ppaLeaves;
694 uint32_t cLeaves = *pcLeaves;
695
696 /*
697 * Validate the new leaf a little.
698 */
699 AssertReturn(!(pNewLeaf->fFlags & ~CPUMCPUIDLEAF_F_SUBLEAVES_ECX_UNCHANGED), VERR_INVALID_FLAGS);
700 AssertReturn(pNewLeaf->fSubLeafMask != 0 || pNewLeaf->uSubLeaf == 0, VERR_INVALID_PARAMETER);
701 AssertReturn(RT_IS_POWER_OF_TWO(pNewLeaf->fSubLeafMask + 1), VERR_INVALID_PARAMETER);
702 AssertReturn((pNewLeaf->fSubLeafMask & pNewLeaf->uSubLeaf) == pNewLeaf->uSubLeaf, VERR_INVALID_PARAMETER);
703
704 /*
705 * Find insertion point. The lazy bird uses the same excuse as in
706 * cpumR3CpuIdGetLeaf().
707 */
708 uint32_t i = 0;
709 while ( i < cLeaves
710 && paLeaves[i].uLeaf < pNewLeaf->uLeaf)
711 i++;
712 if ( i < cLeaves
713 && paLeaves[i].uLeaf == pNewLeaf->uLeaf)
714 {
715 if (paLeaves[i].fSubLeafMask != pNewLeaf->fSubLeafMask)
716 {
717 /*
718 * The subleaf mask differs, replace all existing leaves with the
719 * same leaf number.
720 */
721 uint32_t c = 1;
722 while ( i + c < cLeaves
723 && paLeaves[i + c].uSubLeaf == pNewLeaf->uLeaf)
724 c++;
725 if (c > 1 && i + c < cLeaves)
726 {
727 memmove(&paLeaves[i + c], &paLeaves[i + 1], (cLeaves - i - c) * sizeof(paLeaves[0]));
728 *pcLeaves = cLeaves -= c - 1;
729 }
730
731 paLeaves[i] = *pNewLeaf;
732 return VINF_SUCCESS;
733 }
734
735 /* Find subleaf insertion point. */
736 while ( i < cLeaves
737 && paLeaves[i].uSubLeaf < pNewLeaf->uSubLeaf)
738 i++;
739
740 /*
741 * If we've got an exactly matching leaf, replace it.
742 */
743 if ( paLeaves[i].uLeaf == pNewLeaf->uLeaf
744 && paLeaves[i].uSubLeaf == pNewLeaf->uSubLeaf)
745 {
746 paLeaves[i] = *pNewLeaf;
747 return VINF_SUCCESS;
748 }
749 }
750
751 /*
752 * Adding a new leaf at 'i'.
753 */
754 paLeaves = cpumR3CpuIdEnsureSpace(pVM, ppaLeaves, cLeaves);
755 if (!paLeaves)
756 return VERR_NO_MEMORY;
757
758 if (i < cLeaves)
759 memmove(&paLeaves[i + 1], &paLeaves[i], (cLeaves - i) * sizeof(paLeaves[0]));
760 *pcLeaves += 1;
761 paLeaves[i] = *pNewLeaf;
762 return VINF_SUCCESS;
763}
764
765
766/**
767 * Removes a range of CPUID leaves.
768 *
769 * This will not reallocate the array.
770 *
771 * @param paLeaves The array of sorted CPUID leaves and sub-leaves.
772 * @param pcLeaves Where we keep the leaf count for @a paLeaves.
773 * @param uFirst The first leaf.
774 * @param uLast The last leaf.
775 */
776void cpumR3CpuIdRemoveRange(PCPUMCPUIDLEAF paLeaves, uint32_t *pcLeaves, uint32_t uFirst, uint32_t uLast)
777{
778 uint32_t cLeaves = *pcLeaves;
779
780 Assert(uFirst <= uLast);
781
782 /*
783 * Find the first one.
784 */
785 uint32_t iFirst = 0;
786 while ( iFirst < cLeaves
787 && paLeaves[iFirst].uLeaf < uFirst)
788 iFirst++;
789
790 /*
791 * Find the end (last + 1).
792 */
793 uint32_t iEnd = iFirst;
794 while ( iEnd < cLeaves
795 && paLeaves[iEnd].uLeaf <= uLast)
796 iEnd++;
797
798 /*
799 * Adjust the array if anything needs removing.
800 */
801 if (iFirst < iEnd)
802 {
803 if (iEnd < cLeaves)
804 memmove(&paLeaves[iFirst], &paLeaves[iEnd], (cLeaves - iEnd) * sizeof(paLeaves[0]));
805 *pcLeaves = cLeaves -= (iEnd - iFirst);
806 }
807}
808
809
810
811/**
812 * Checks if ECX make a difference when reading a given CPUID leaf.
813 *
814 * @returns @c true if it does, @c false if it doesn't.
815 * @param uLeaf The leaf we're reading.
816 * @param pcSubLeaves Number of sub-leaves accessible via ECX.
817 * @param pfFinalEcxUnchanged Whether ECX is passed thru when going beyond the
818 * final sub-leaf.
819 */
820static bool cpumR3IsEcxRelevantForCpuIdLeaf(uint32_t uLeaf, uint32_t *pcSubLeaves, bool *pfFinalEcxUnchanged)
821{
822 *pfFinalEcxUnchanged = false;
823
824 uint32_t auCur[4];
825 uint32_t auPrev[4];
826 ASMCpuIdExSlow(uLeaf, 0, 0, 0, &auPrev[0], &auPrev[1], &auPrev[2], &auPrev[3]);
827
828 /* Look for sub-leaves. */
829 uint32_t uSubLeaf = 1;
830 for (;;)
831 {
832 ASMCpuIdExSlow(uLeaf, 0, uSubLeaf, 0, &auCur[0], &auCur[1], &auCur[2], &auCur[3]);
833 if (memcmp(auCur, auPrev, sizeof(auCur)))
834 break;
835
836 /* Advance / give up. */
837 uSubLeaf++;
838 if (uSubLeaf >= 64)
839 {
840 *pcSubLeaves = 1;
841 return false;
842 }
843 }
844
845 /* Count sub-leaves. */
846 uint32_t cRepeats = 0;
847 uSubLeaf = 0;
848 for (;;)
849 {
850 ASMCpuIdExSlow(uLeaf, 0, uSubLeaf, 0, &auCur[0], &auCur[1], &auCur[2], &auCur[3]);
851
852 /* Figuring out when to stop isn't entirely straight forward as we need
853 to cover undocumented behavior up to a point and implementation shortcuts. */
854
855 /* 1. Look for zero values. */
856 if ( auCur[0] == 0
857 && auCur[1] == 0
858 && (auCur[2] == 0 || auCur[2] == uSubLeaf)
859 && (auCur[3] == 0 || uLeaf == 0xb /* edx is fixed */) )
860 break;
861
862 /* 2. Look for more than 4 repeating value sets. */
863 if ( auCur[0] == auPrev[0]
864 && auCur[1] == auPrev[1]
865 && ( auCur[2] == auPrev[2]
866 || ( auCur[2] == uSubLeaf
867 && auPrev[2] == uSubLeaf - 1) )
868 && auCur[3] == auPrev[3])
869 {
870 cRepeats++;
871 if (cRepeats > 4)
872 break;
873 }
874 else
875 cRepeats = 0;
876
877 /* 3. Leaf 0xb level type 0 check. */
878 if ( uLeaf == 0xb
879 && (auCur[3] & 0xff00) == 0
880 && (auPrev[3] & 0xff00) == 0)
881 break;
882
883 /* 99. Give up. */
884 if (uSubLeaf >= 128)
885 {
886#ifndef IN_VBOX_CPU_REPORT
887 /* Ok, limit it according to the documentation if possible just to
888 avoid annoying users with these detection issues. */
889 uint32_t cDocLimit = UINT32_MAX;
890 if (uLeaf == 0x4)
891 cDocLimit = 4;
892 else if (uLeaf == 0x7)
893 cDocLimit = 1;
894 else if (uLeaf == 0xf)
895 cDocLimit = 2;
896 if (cDocLimit != UINT32_MAX)
897 {
898 *pfFinalEcxUnchanged = auCur[2] == uSubLeaf;
899 *pcSubLeaves = cDocLimit + 3;
900 return true;
901 }
902#endif
903 *pcSubLeaves = UINT32_MAX;
904 return true;
905 }
906
907 /* Advance. */
908 uSubLeaf++;
909 memcpy(auPrev, auCur, sizeof(auCur));
910 }
911
912 /* Standard exit. */
913 *pfFinalEcxUnchanged = auCur[2] == uSubLeaf;
914 *pcSubLeaves = uSubLeaf + 1 - cRepeats;
915 return true;
916}
917
918
919/**
920 * Inserts a CPU ID leaf, replacing any existing ones.
921 *
922 * @returns VBox status code.
923 * @param pVM Pointer to the VM.
924 * @param pNewLeaf Pointer to the leaf being inserted.
925 */
926VMMR3DECL(int) CPUMR3CpuIdInsert(PVM pVM, PCPUMCPUIDLEAF pNewLeaf)
927{
928 /*
929 * Validate parameters.
930 */
931 AssertReturn(pVM, VERR_INVALID_PARAMETER);
932 AssertReturn(pNewLeaf, VERR_INVALID_PARAMETER);
933
934 /*
935 * Disallow replacing CPU ID leaves that this API currently cannot manage. .
936 * These leaves have dependencies on saved-states, see PATMCpuidReplacement().
937 * If you want to modify these leaves, use CPUMSetGuestCpuIdFeature(). .
938 */
939 if ( pNewLeaf->uLeaf == UINT32_C(0x00000000) /* Standard */
940 || pNewLeaf->uLeaf == UINT32_C(0x80000000) /* Extended */
941 || pNewLeaf->uLeaf == UINT32_C(0xc0000000)) /* Centaur */
942 {
943 return VERR_NOT_SUPPORTED;
944 }
945
946 return cpumR3CpuIdInsert(pVM, NULL /* ppaLeaves */, NULL /* pcLeaves */, pNewLeaf);
947}
948
949
950/**
951 * Collects CPUID leaves and sub-leaves, returning a sorted array of them.
952 *
953 * @returns VBox status code.
954 * @param ppaLeaves Where to return the array pointer on success.
955 * Use RTMemFree to release.
956 * @param pcLeaves Where to return the size of the array on
957 * success.
958 */
959VMMR3DECL(int) CPUMR3CpuIdCollectLeaves(PCPUMCPUIDLEAF *ppaLeaves, uint32_t *pcLeaves)
960{
961 *ppaLeaves = NULL;
962 *pcLeaves = 0;
963
964 /*
965 * Try out various candidates. This must be sorted!
966 */
967 static struct { uint32_t uMsr; bool fSpecial; } const s_aCandidates[] =
968 {
969 { UINT32_C(0x00000000), false },
970 { UINT32_C(0x10000000), false },
971 { UINT32_C(0x20000000), false },
972 { UINT32_C(0x30000000), false },
973 { UINT32_C(0x40000000), false },
974 { UINT32_C(0x50000000), false },
975 { UINT32_C(0x60000000), false },
976 { UINT32_C(0x70000000), false },
977 { UINT32_C(0x80000000), false },
978 { UINT32_C(0x80860000), false },
979 { UINT32_C(0x8ffffffe), true },
980 { UINT32_C(0x8fffffff), true },
981 { UINT32_C(0x90000000), false },
982 { UINT32_C(0xa0000000), false },
983 { UINT32_C(0xb0000000), false },
984 { UINT32_C(0xc0000000), false },
985 { UINT32_C(0xd0000000), false },
986 { UINT32_C(0xe0000000), false },
987 { UINT32_C(0xf0000000), false },
988 };
989
990 for (uint32_t iOuter = 0; iOuter < RT_ELEMENTS(s_aCandidates); iOuter++)
991 {
992 uint32_t uLeaf = s_aCandidates[iOuter].uMsr;
993 uint32_t uEax, uEbx, uEcx, uEdx;
994 ASMCpuIdExSlow(uLeaf, 0, 0, 0, &uEax, &uEbx, &uEcx, &uEdx);
995
996 /*
997 * Does EAX look like a typical leaf count value?
998 */
999 if ( uEax > uLeaf
1000 && uEax - uLeaf < UINT32_C(0xff)) /* Adjust 0xff limit when exceeded by real HW. */
1001 {
1002 /* Yes, dump them. */
1003 uint32_t cLeaves = uEax - uLeaf + 1;
1004 while (cLeaves-- > 0)
1005 {
1006 /* Check three times here to reduce the chance of CPU migration
1007 resulting in false positives with things like the APIC ID. */
1008 uint32_t cSubLeaves;
1009 bool fFinalEcxUnchanged;
1010 if ( cpumR3IsEcxRelevantForCpuIdLeaf(uLeaf, &cSubLeaves, &fFinalEcxUnchanged)
1011 && cpumR3IsEcxRelevantForCpuIdLeaf(uLeaf, &cSubLeaves, &fFinalEcxUnchanged)
1012 && cpumR3IsEcxRelevantForCpuIdLeaf(uLeaf, &cSubLeaves, &fFinalEcxUnchanged))
1013 {
1014 if (cSubLeaves > 16)
1015 {
1016 /* This shouldn't happen. But in case it does, file all
1017 relevant details in the release log. */
1018 LogRel(("CPUM: VERR_CPUM_TOO_MANY_CPUID_SUBLEAVES! uLeaf=%#x cSubLeaves=%#x\n", uLeaf, cSubLeaves));
1019 LogRel(("------------------ dump of problematic subleaves ------------------\n"));
1020 for (uint32_t uSubLeaf = 0; uSubLeaf < 128; uSubLeaf++)
1021 {
1022 uint32_t auTmp[4];
1023 ASMCpuIdExSlow(uLeaf, 0, uSubLeaf, 0, &auTmp[0], &auTmp[1], &auTmp[2], &auTmp[3]);
1024 LogRel(("CPUM: %#010x, %#010x => %#010x %#010x %#010x %#010x\n",
1025 uLeaf, uSubLeaf, auTmp[0], auTmp[1], auTmp[2], auTmp[3]));
1026 }
1027 LogRel(("----------------- dump of what we've found so far -----------------\n"));
1028 for (uint32_t i = 0 ; i < *pcLeaves; i++)
1029 LogRel(("CPUM: %#010x, %#010x/%#010x => %#010x %#010x %#010x %#010x\n",
1030 (*ppaLeaves)[i].uLeaf, (*ppaLeaves)[i].uSubLeaf, (*ppaLeaves)[i].fSubLeafMask,
1031 (*ppaLeaves)[i].uEax, (*ppaLeaves)[i].uEbx, (*ppaLeaves)[i].uEcx, (*ppaLeaves)[i].uEdx));
1032 LogRel(("\nPlease create a defect on virtualbox.org and attach this log file!\n\n"));
1033 return VERR_CPUM_TOO_MANY_CPUID_SUBLEAVES;
1034 }
1035
1036 for (uint32_t uSubLeaf = 0; uSubLeaf < cSubLeaves; uSubLeaf++)
1037 {
1038 ASMCpuIdExSlow(uLeaf, 0, uSubLeaf, 0, &uEax, &uEbx, &uEcx, &uEdx);
1039 int rc = cpumR3CollectCpuIdInfoAddOne(ppaLeaves, pcLeaves,
1040 uLeaf, uSubLeaf, UINT32_MAX, uEax, uEbx, uEcx, uEdx,
1041 uSubLeaf + 1 == cSubLeaves && fFinalEcxUnchanged
1042 ? CPUMCPUIDLEAF_F_SUBLEAVES_ECX_UNCHANGED : 0);
1043 if (RT_FAILURE(rc))
1044 return rc;
1045 }
1046 }
1047 else
1048 {
1049 ASMCpuIdExSlow(uLeaf, 0, 0, 0, &uEax, &uEbx, &uEcx, &uEdx);
1050 int rc = cpumR3CollectCpuIdInfoAddOne(ppaLeaves, pcLeaves,
1051 uLeaf, 0, 0, uEax, uEbx, uEcx, uEdx, 0);
1052 if (RT_FAILURE(rc))
1053 return rc;
1054 }
1055
1056 /* next */
1057 uLeaf++;
1058 }
1059 }
1060 /*
1061 * Special CPUIDs needs special handling as they don't follow the
1062 * leaf count principle used above.
1063 */
1064 else if (s_aCandidates[iOuter].fSpecial)
1065 {
1066 bool fKeep = false;
1067 if (uLeaf == 0x8ffffffe && uEax == UINT32_C(0x00494544))
1068 fKeep = true;
1069 else if ( uLeaf == 0x8fffffff
1070 && RT_C_IS_PRINT(RT_BYTE1(uEax))
1071 && RT_C_IS_PRINT(RT_BYTE2(uEax))
1072 && RT_C_IS_PRINT(RT_BYTE3(uEax))
1073 && RT_C_IS_PRINT(RT_BYTE4(uEax))
1074 && RT_C_IS_PRINT(RT_BYTE1(uEbx))
1075 && RT_C_IS_PRINT(RT_BYTE2(uEbx))
1076 && RT_C_IS_PRINT(RT_BYTE3(uEbx))
1077 && RT_C_IS_PRINT(RT_BYTE4(uEbx))
1078 && RT_C_IS_PRINT(RT_BYTE1(uEcx))
1079 && RT_C_IS_PRINT(RT_BYTE2(uEcx))
1080 && RT_C_IS_PRINT(RT_BYTE3(uEcx))
1081 && RT_C_IS_PRINT(RT_BYTE4(uEcx))
1082 && RT_C_IS_PRINT(RT_BYTE1(uEdx))
1083 && RT_C_IS_PRINT(RT_BYTE2(uEdx))
1084 && RT_C_IS_PRINT(RT_BYTE3(uEdx))
1085 && RT_C_IS_PRINT(RT_BYTE4(uEdx)) )
1086 fKeep = true;
1087 if (fKeep)
1088 {
1089 int rc = cpumR3CollectCpuIdInfoAddOne(ppaLeaves, pcLeaves,
1090 uLeaf, 0, 0, uEax, uEbx, uEcx, uEdx, 0);
1091 if (RT_FAILURE(rc))
1092 return rc;
1093 }
1094 }
1095 }
1096
1097 return VINF_SUCCESS;
1098}
1099
1100
1101/**
1102 * Determines the method the CPU uses to handle unknown CPUID leaves.
1103 *
1104 * @returns VBox status code.
1105 * @param penmUnknownMethod Where to return the method.
1106 * @param pDefUnknown Where to return default unknown values. This
1107 * will be set, even if the resulting method
1108 * doesn't actually needs it.
1109 */
1110VMMR3DECL(int) CPUMR3CpuIdDetectUnknownLeafMethod(PCPUMUKNOWNCPUID penmUnknownMethod, PCPUMCPUID pDefUnknown)
1111{
1112 uint32_t uLastStd = ASMCpuId_EAX(0);
1113 uint32_t uLastExt = ASMCpuId_EAX(0x80000000);
1114 if (!ASMIsValidExtRange(uLastExt))
1115 uLastExt = 0x80000000;
1116
1117 uint32_t auChecks[] =
1118 {
1119 uLastStd + 1,
1120 uLastStd + 5,
1121 uLastStd + 8,
1122 uLastStd + 32,
1123 uLastStd + 251,
1124 uLastExt + 1,
1125 uLastExt + 8,
1126 uLastExt + 15,
1127 uLastExt + 63,
1128 uLastExt + 255,
1129 0x7fbbffcc,
1130 0x833f7872,
1131 0xefff2353,
1132 0x35779456,
1133 0x1ef6d33e,
1134 };
1135
1136 static const uint32_t s_auValues[] =
1137 {
1138 0xa95d2156,
1139 0x00000001,
1140 0x00000002,
1141 0x00000008,
1142 0x00000000,
1143 0x55773399,
1144 0x93401769,
1145 0x12039587,
1146 };
1147
1148 /*
1149 * Simple method, all zeros.
1150 */
1151 *penmUnknownMethod = CPUMUKNOWNCPUID_DEFAULTS;
1152 pDefUnknown->eax = 0;
1153 pDefUnknown->ebx = 0;
1154 pDefUnknown->ecx = 0;
1155 pDefUnknown->edx = 0;
1156
1157 /*
1158 * Intel has been observed returning the last standard leaf.
1159 */
1160 uint32_t auLast[4];
1161 ASMCpuIdExSlow(uLastStd, 0, 0, 0, &auLast[0], &auLast[1], &auLast[2], &auLast[3]);
1162
1163 uint32_t cChecks = RT_ELEMENTS(auChecks);
1164 while (cChecks > 0)
1165 {
1166 uint32_t auCur[4];
1167 ASMCpuIdExSlow(auChecks[cChecks - 1], 0, 0, 0, &auCur[0], &auCur[1], &auCur[2], &auCur[3]);
1168 if (memcmp(auCur, auLast, sizeof(auCur)))
1169 break;
1170 cChecks--;
1171 }
1172 if (cChecks == 0)
1173 {
1174 /* Now, what happens when the input changes? Esp. ECX. */
1175 uint32_t cTotal = 0;
1176 uint32_t cSame = 0;
1177 uint32_t cLastWithEcx = 0;
1178 uint32_t cNeither = 0;
1179 uint32_t cValues = RT_ELEMENTS(s_auValues);
1180 while (cValues > 0)
1181 {
1182 uint32_t uValue = s_auValues[cValues - 1];
1183 uint32_t auLastWithEcx[4];
1184 ASMCpuIdExSlow(uLastStd, uValue, uValue, uValue,
1185 &auLastWithEcx[0], &auLastWithEcx[1], &auLastWithEcx[2], &auLastWithEcx[3]);
1186
1187 cChecks = RT_ELEMENTS(auChecks);
1188 while (cChecks > 0)
1189 {
1190 uint32_t auCur[4];
1191 ASMCpuIdExSlow(auChecks[cChecks - 1], uValue, uValue, uValue, &auCur[0], &auCur[1], &auCur[2], &auCur[3]);
1192 if (!memcmp(auCur, auLast, sizeof(auCur)))
1193 {
1194 cSame++;
1195 if (!memcmp(auCur, auLastWithEcx, sizeof(auCur)))
1196 cLastWithEcx++;
1197 }
1198 else if (!memcmp(auCur, auLastWithEcx, sizeof(auCur)))
1199 cLastWithEcx++;
1200 else
1201 cNeither++;
1202 cTotal++;
1203 cChecks--;
1204 }
1205 cValues--;
1206 }
1207
1208 Log(("CPUM: cNeither=%d cSame=%d cLastWithEcx=%d cTotal=%d\n", cNeither, cSame, cLastWithEcx, cTotal));
1209 if (cSame == cTotal)
1210 *penmUnknownMethod = CPUMUKNOWNCPUID_LAST_STD_LEAF;
1211 else if (cLastWithEcx == cTotal)
1212 *penmUnknownMethod = CPUMUKNOWNCPUID_LAST_STD_LEAF_WITH_ECX;
1213 else
1214 *penmUnknownMethod = CPUMUKNOWNCPUID_LAST_STD_LEAF;
1215 pDefUnknown->eax = auLast[0];
1216 pDefUnknown->ebx = auLast[1];
1217 pDefUnknown->ecx = auLast[2];
1218 pDefUnknown->edx = auLast[3];
1219 return VINF_SUCCESS;
1220 }
1221
1222 /*
1223 * Unchanged register values?
1224 */
1225 cChecks = RT_ELEMENTS(auChecks);
1226 while (cChecks > 0)
1227 {
1228 uint32_t const uLeaf = auChecks[cChecks - 1];
1229 uint32_t cValues = RT_ELEMENTS(s_auValues);
1230 while (cValues > 0)
1231 {
1232 uint32_t uValue = s_auValues[cValues - 1];
1233 uint32_t auCur[4];
1234 ASMCpuIdExSlow(uLeaf, uValue, uValue, uValue, &auCur[0], &auCur[1], &auCur[2], &auCur[3]);
1235 if ( auCur[0] != uLeaf
1236 || auCur[1] != uValue
1237 || auCur[2] != uValue
1238 || auCur[3] != uValue)
1239 break;
1240 cValues--;
1241 }
1242 if (cValues != 0)
1243 break;
1244 cChecks--;
1245 }
1246 if (cChecks == 0)
1247 {
1248 *penmUnknownMethod = CPUMUKNOWNCPUID_PASSTHRU;
1249 return VINF_SUCCESS;
1250 }
1251
1252 /*
1253 * Just go with the simple method.
1254 */
1255 return VINF_SUCCESS;
1256}
1257
1258
1259/**
1260 * Translates a unknow CPUID leaf method into the constant name (sans prefix).
1261 *
1262 * @returns Read only name string.
1263 * @param enmUnknownMethod The method to translate.
1264 */
1265VMMR3DECL(const char *) CPUMR3CpuIdUnknownLeafMethodName(CPUMUKNOWNCPUID enmUnknownMethod)
1266{
1267 switch (enmUnknownMethod)
1268 {
1269 case CPUMUKNOWNCPUID_DEFAULTS: return "DEFAULTS";
1270 case CPUMUKNOWNCPUID_LAST_STD_LEAF: return "LAST_STD_LEAF";
1271 case CPUMUKNOWNCPUID_LAST_STD_LEAF_WITH_ECX: return "LAST_STD_LEAF_WITH_ECX";
1272 case CPUMUKNOWNCPUID_PASSTHRU: return "PASSTHRU";
1273
1274 case CPUMUKNOWNCPUID_INVALID:
1275 case CPUMUKNOWNCPUID_END:
1276 case CPUMUKNOWNCPUID_32BIT_HACK:
1277 break;
1278 }
1279 return "Invalid-unknown-CPUID-method";
1280}
1281
1282
1283/**
1284 * Detect the CPU vendor give n the
1285 *
1286 * @returns The vendor.
1287 * @param uEAX EAX from CPUID(0).
1288 * @param uEBX EBX from CPUID(0).
1289 * @param uECX ECX from CPUID(0).
1290 * @param uEDX EDX from CPUID(0).
1291 */
1292VMMR3DECL(CPUMCPUVENDOR) CPUMR3CpuIdDetectVendorEx(uint32_t uEAX, uint32_t uEBX, uint32_t uECX, uint32_t uEDX)
1293{
1294 if (ASMIsValidStdRange(uEAX))
1295 {
1296 if (ASMIsAmdCpuEx(uEBX, uECX, uEDX))
1297 return CPUMCPUVENDOR_AMD;
1298
1299 if (ASMIsIntelCpuEx(uEBX, uECX, uEDX))
1300 return CPUMCPUVENDOR_INTEL;
1301
1302 if (ASMIsViaCentaurCpuEx(uEBX, uECX, uEDX))
1303 return CPUMCPUVENDOR_VIA;
1304
1305 if ( uEBX == UINT32_C(0x69727943) /* CyrixInstead */
1306 && uECX == UINT32_C(0x64616574)
1307 && uEDX == UINT32_C(0x736E4978))
1308 return CPUMCPUVENDOR_CYRIX;
1309
1310 /* "Geode by NSC", example: family 5, model 9. */
1311
1312 /** @todo detect the other buggers... */
1313 }
1314
1315 return CPUMCPUVENDOR_UNKNOWN;
1316}
1317
1318
1319/**
1320 * Translates a CPU vendor enum value into the corresponding string constant.
1321 *
1322 * The named can be prefixed with 'CPUMCPUVENDOR_' to construct a valid enum
1323 * value name. This can be useful when generating code.
1324 *
1325 * @returns Read only name string.
1326 * @param enmVendor The CPU vendor value.
1327 */
1328VMMR3DECL(const char *) CPUMR3CpuVendorName(CPUMCPUVENDOR enmVendor)
1329{
1330 switch (enmVendor)
1331 {
1332 case CPUMCPUVENDOR_INTEL: return "INTEL";
1333 case CPUMCPUVENDOR_AMD: return "AMD";
1334 case CPUMCPUVENDOR_VIA: return "VIA";
1335 case CPUMCPUVENDOR_CYRIX: return "CYRIX";
1336 case CPUMCPUVENDOR_UNKNOWN: return "UNKNOWN";
1337
1338 case CPUMCPUVENDOR_INVALID:
1339 case CPUMCPUVENDOR_32BIT_HACK:
1340 break;
1341 }
1342 return "Invalid-cpu-vendor";
1343}
1344
1345
1346static PCCPUMCPUIDLEAF cpumR3CpuIdFindLeaf(PCCPUMCPUIDLEAF paLeaves, uint32_t cLeaves, uint32_t uLeaf)
1347{
1348 /* Could do binary search, doing linear now because I'm lazy. */
1349 PCCPUMCPUIDLEAF pLeaf = paLeaves;
1350 while (cLeaves-- > 0)
1351 {
1352 if (pLeaf->uLeaf == uLeaf)
1353 return pLeaf;
1354 pLeaf++;
1355 }
1356 return NULL;
1357}
1358
1359
1360int cpumR3CpuIdExplodeFeatures(PCCPUMCPUIDLEAF paLeaves, uint32_t cLeaves, PCPUMFEATURES pFeatures)
1361{
1362 RT_ZERO(*pFeatures);
1363 if (cLeaves >= 2)
1364 {
1365 AssertLogRelReturn(paLeaves[0].uLeaf == 0, VERR_CPUM_IPE_1);
1366 AssertLogRelReturn(paLeaves[1].uLeaf == 1, VERR_CPUM_IPE_1);
1367
1368 pFeatures->enmCpuVendor = CPUMR3CpuIdDetectVendorEx(paLeaves[0].uEax,
1369 paLeaves[0].uEbx,
1370 paLeaves[0].uEcx,
1371 paLeaves[0].uEdx);
1372 pFeatures->uFamily = ASMGetCpuFamily(paLeaves[1].uEax);
1373 pFeatures->uModel = ASMGetCpuModel(paLeaves[1].uEax, pFeatures->enmCpuVendor == CPUMCPUVENDOR_INTEL);
1374 pFeatures->uStepping = ASMGetCpuStepping(paLeaves[1].uEax);
1375 pFeatures->enmMicroarch = CPUMR3CpuIdDetermineMicroarchEx((CPUMCPUVENDOR)pFeatures->enmCpuVendor,
1376 pFeatures->uFamily,
1377 pFeatures->uModel,
1378 pFeatures->uStepping);
1379
1380 PCCPUMCPUIDLEAF pLeaf = cpumR3CpuIdFindLeaf(paLeaves, cLeaves, 0x80000008);
1381 if (pLeaf)
1382 pFeatures->cMaxPhysAddrWidth = pLeaf->uEax & 0xff;
1383 else if (paLeaves[1].uEdx & X86_CPUID_FEATURE_EDX_PSE36)
1384 pFeatures->cMaxPhysAddrWidth = 36;
1385 else
1386 pFeatures->cMaxPhysAddrWidth = 32;
1387
1388 /* Standard features. */
1389 pFeatures->fMsr = RT_BOOL(paLeaves[1].uEdx & X86_CPUID_FEATURE_EDX_MSR);
1390 pFeatures->fApic = RT_BOOL(paLeaves[1].uEdx & X86_CPUID_FEATURE_EDX_APIC);
1391 pFeatures->fX2Apic = RT_BOOL(paLeaves[1].uEcx & X86_CPUID_FEATURE_ECX_X2APIC);
1392 pFeatures->fPse = RT_BOOL(paLeaves[1].uEdx & X86_CPUID_FEATURE_EDX_PSE);
1393 pFeatures->fPse36 = RT_BOOL(paLeaves[1].uEdx & X86_CPUID_FEATURE_EDX_PSE36);
1394 pFeatures->fPae = RT_BOOL(paLeaves[1].uEdx & X86_CPUID_FEATURE_EDX_PAE);
1395 pFeatures->fPat = RT_BOOL(paLeaves[1].uEdx & X86_CPUID_FEATURE_EDX_PAT);
1396 pFeatures->fFxSaveRstor = RT_BOOL(paLeaves[1].uEdx & X86_CPUID_FEATURE_EDX_FXSR);
1397 pFeatures->fSysEnter = RT_BOOL(paLeaves[1].uEdx & X86_CPUID_FEATURE_EDX_SEP);
1398 pFeatures->fHypervisorPresent = RT_BOOL(paLeaves[1].uEcx & X86_CPUID_FEATURE_ECX_HVP);
1399 pFeatures->fMonitorMWait = RT_BOOL(paLeaves[1].uEcx & X86_CPUID_FEATURE_ECX_MONITOR);
1400
1401 /* Extended features. */
1402 PCCPUMCPUIDLEAF const pExtLeaf = cpumR3CpuIdFindLeaf(paLeaves, cLeaves, 0x80000001);
1403 if (pExtLeaf)
1404 {
1405 pFeatures->fLongMode = RT_BOOL(pExtLeaf->uEdx & X86_CPUID_EXT_FEATURE_EDX_LONG_MODE);
1406 pFeatures->fSysCall = RT_BOOL(pExtLeaf->uEdx & X86_CPUID_EXT_FEATURE_EDX_SYSCALL);
1407 pFeatures->fNoExecute = RT_BOOL(pExtLeaf->uEdx & X86_CPUID_EXT_FEATURE_EDX_NX);
1408 pFeatures->fLahfSahf = RT_BOOL(pExtLeaf->uEcx & X86_CPUID_EXT_FEATURE_ECX_LAHF_SAHF);
1409 pFeatures->fRdTscP = RT_BOOL(pExtLeaf->uEdx & X86_CPUID_EXT_FEATURE_EDX_RDTSCP);
1410 }
1411
1412 if ( pExtLeaf
1413 && pFeatures->enmCpuVendor == CPUMCPUVENDOR_AMD)
1414 {
1415 /* AMD features. */
1416 pFeatures->fMsr |= RT_BOOL(pExtLeaf->uEdx & X86_CPUID_AMD_FEATURE_EDX_MSR);
1417 pFeatures->fApic |= RT_BOOL(pExtLeaf->uEdx & X86_CPUID_AMD_FEATURE_EDX_APIC);
1418 pFeatures->fPse |= RT_BOOL(pExtLeaf->uEdx & X86_CPUID_AMD_FEATURE_EDX_PSE);
1419 pFeatures->fPse36 |= RT_BOOL(pExtLeaf->uEdx & X86_CPUID_AMD_FEATURE_EDX_PSE36);
1420 pFeatures->fPae |= RT_BOOL(pExtLeaf->uEdx & X86_CPUID_AMD_FEATURE_EDX_PAE);
1421 pFeatures->fPat |= RT_BOOL(pExtLeaf->uEdx & X86_CPUID_AMD_FEATURE_EDX_PAT);
1422 pFeatures->fFxSaveRstor |= RT_BOOL(pExtLeaf->uEdx & X86_CPUID_AMD_FEATURE_EDX_FXSR);
1423 }
1424
1425 /*
1426 * Quirks.
1427 */
1428 pFeatures->fLeakyFxSR = pExtLeaf
1429 && (pExtLeaf->uEdx & X86_CPUID_AMD_FEATURE_EDX_FFXSR)
1430 && pFeatures->enmCpuVendor == CPUMCPUVENDOR_AMD
1431 && pFeatures->uFamily >= 6 /* K7 and up */;
1432 }
1433 else
1434 AssertLogRelReturn(cLeaves == 0, VERR_CPUM_IPE_1);
1435 return VINF_SUCCESS;
1436}
1437
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette