VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/CPUMR3Db.cpp@ 82812

Last change on this file since 82812 was 81605, checked in by vboxsync, 5 years ago

VMM (and related changes): Add support for Hygon Dhyana CPUs. Modified and improved contribution by Hongyong Zang submitted under MIT license. Thank you!

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 45.1 KB
Line 
1/* $Id: CPUMR3Db.cpp 81605 2019-10-31 14:29:46Z vboxsync $ */
2/** @file
3 * CPUM - CPU database part.
4 */
5
6/*
7 * Copyright (C) 2013-2019 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_CPUM
23#include <VBox/vmm/cpum.h>
24#include "CPUMInternal.h"
25#include <VBox/vmm/vm.h>
26#include <VBox/vmm/mm.h>
27
28#include <VBox/err.h>
29#include <iprt/asm-amd64-x86.h>
30#include <iprt/mem.h>
31#include <iprt/string.h>
32
33
34/*********************************************************************************************************************************
35* Structures and Typedefs *
36*********************************************************************************************************************************/
37typedef struct CPUMDBENTRY
38{
39 /** The CPU name. */
40 const char *pszName;
41 /** The full CPU name. */
42 const char *pszFullName;
43 /** The CPU vendor (CPUMCPUVENDOR). */
44 uint8_t enmVendor;
45 /** The CPU family. */
46 uint8_t uFamily;
47 /** The CPU model. */
48 uint8_t uModel;
49 /** The CPU stepping. */
50 uint8_t uStepping;
51 /** The microarchitecture. */
52 CPUMMICROARCH enmMicroarch;
53 /** Scalable bus frequency used for reporting other frequencies. */
54 uint64_t uScalableBusFreq;
55 /** Flags - CPUDB_F_XXX. */
56 uint32_t fFlags;
57 /** The maximum physical address with of the CPU. This should correspond to
58 * the value in CPUID leaf 0x80000008 when present. */
59 uint8_t cMaxPhysAddrWidth;
60 /** The MXCSR mask. */
61 uint32_t fMxCsrMask;
62 /** Pointer to an array of CPUID leaves. */
63 PCCPUMCPUIDLEAF paCpuIdLeaves;
64 /** The number of CPUID leaves in the array paCpuIdLeaves points to. */
65 uint32_t cCpuIdLeaves;
66 /** The method used to deal with unknown CPUID leaves. */
67 CPUMUNKNOWNCPUID enmUnknownCpuId;
68 /** The default unknown CPUID value. */
69 CPUMCPUID DefUnknownCpuId;
70
71 /** MSR mask. Several microarchitectures ignore the higher bits of ECX in
72 * the RDMSR and WRMSR instructions. */
73 uint32_t fMsrMask;
74
75 /** The number of ranges in the table pointed to b paMsrRanges. */
76 uint32_t cMsrRanges;
77 /** MSR ranges for this CPU. */
78 PCCPUMMSRRANGE paMsrRanges;
79} CPUMDBENTRY;
80
81
82/*********************************************************************************************************************************
83* Defined Constants And Macros *
84*********************************************************************************************************************************/
85/** @name CPUDB_F_XXX - CPUDBENTRY::fFlags
86 * @{ */
87/** Should execute all in IEM.
88 * @todo Implement this - currently done in Main... */
89#define CPUDB_F_EXECUTE_ALL_IN_IEM RT_BIT_32(0)
90/** @} */
91
92
93/** @def NULL_ALONE
94 * For eliminating an unnecessary data dependency in standalone builds (for
95 * VBoxSVC). */
96/** @def ZERO_ALONE
97 * For eliminating an unnecessary data size dependency in standalone builds (for
98 * VBoxSVC). */
99#ifndef CPUM_DB_STANDALONE
100# define NULL_ALONE(a_aTable) a_aTable
101# define ZERO_ALONE(a_cTable) a_cTable
102#else
103# define NULL_ALONE(a_aTable) NULL
104# define ZERO_ALONE(a_cTable) 0
105#endif
106
107
108/** @name Short macros for the MSR range entries.
109 *
110 * These are rather cryptic, but this is to reduce the attack on the right
111 * margin.
112 *
113 * @{ */
114/** Alias one MSR onto another (a_uTarget). */
115#define MAL(a_uMsr, a_szName, a_uTarget) \
116 RINT(a_uMsr, a_uMsr, kCpumMsrRdFn_MsrAlias, kCpumMsrWrFn_MsrAlias, 0, a_uTarget, 0, 0, a_szName)
117/** Functions handles everything. */
118#define MFN(a_uMsr, a_szName, a_enmRdFnSuff, a_enmWrFnSuff) \
119 RINT(a_uMsr, a_uMsr, kCpumMsrRdFn_##a_enmRdFnSuff, kCpumMsrWrFn_##a_enmWrFnSuff, 0, 0, 0, 0, a_szName)
120/** Functions handles everything, with GP mask. */
121#define MFG(a_uMsr, a_szName, a_enmRdFnSuff, a_enmWrFnSuff, a_fWrGpMask) \
122 RINT(a_uMsr, a_uMsr, kCpumMsrRdFn_##a_enmRdFnSuff, kCpumMsrWrFn_##a_enmWrFnSuff, 0, 0, 0, a_fWrGpMask, a_szName)
123/** Function handlers, read-only. */
124#define MFO(a_uMsr, a_szName, a_enmRdFnSuff) \
125 RINT(a_uMsr, a_uMsr, kCpumMsrRdFn_##a_enmRdFnSuff, kCpumMsrWrFn_ReadOnly, 0, 0, 0, UINT64_MAX, a_szName)
126/** Function handlers, ignore all writes. */
127#define MFI(a_uMsr, a_szName, a_enmRdFnSuff) \
128 RINT(a_uMsr, a_uMsr, kCpumMsrRdFn_##a_enmRdFnSuff, kCpumMsrWrFn_IgnoreWrite, 0, 0, UINT64_MAX, 0, a_szName)
129/** Function handlers, with value. */
130#define MFV(a_uMsr, a_szName, a_enmRdFnSuff, a_enmWrFnSuff, a_uValue) \
131 RINT(a_uMsr, a_uMsr, kCpumMsrRdFn_##a_enmRdFnSuff, kCpumMsrWrFn_##a_enmWrFnSuff, 0, a_uValue, 0, 0, a_szName)
132/** Function handlers, with write ignore mask. */
133#define MFW(a_uMsr, a_szName, a_enmRdFnSuff, a_enmWrFnSuff, a_fWrIgnMask) \
134 RINT(a_uMsr, a_uMsr, kCpumMsrRdFn_##a_enmRdFnSuff, kCpumMsrWrFn_##a_enmWrFnSuff, 0, 0, a_fWrIgnMask, 0, a_szName)
135/** Function handlers, extended version. */
136#define MFX(a_uMsr, a_szName, a_enmRdFnSuff, a_enmWrFnSuff, a_uValue, a_fWrIgnMask, a_fWrGpMask) \
137 RINT(a_uMsr, a_uMsr, kCpumMsrRdFn_##a_enmRdFnSuff, kCpumMsrWrFn_##a_enmWrFnSuff, 0, a_uValue, a_fWrIgnMask, a_fWrGpMask, a_szName)
138/** Function handlers, with CPUMCPU storage variable. */
139#define MFS(a_uMsr, a_szName, a_enmRdFnSuff, a_enmWrFnSuff, a_CpumCpuMember) \
140 RINT(a_uMsr, a_uMsr, kCpumMsrRdFn_##a_enmRdFnSuff, kCpumMsrWrFn_##a_enmWrFnSuff, \
141 RT_OFFSETOF(CPUMCPU, a_CpumCpuMember), 0, 0, 0, a_szName)
142/** Function handlers, with CPUMCPU storage variable, ignore mask and GP mask. */
143#define MFZ(a_uMsr, a_szName, a_enmRdFnSuff, a_enmWrFnSuff, a_CpumCpuMember, a_fWrIgnMask, a_fWrGpMask) \
144 RINT(a_uMsr, a_uMsr, kCpumMsrRdFn_##a_enmRdFnSuff, kCpumMsrWrFn_##a_enmWrFnSuff, \
145 RT_OFFSETOF(CPUMCPU, a_CpumCpuMember), 0, a_fWrIgnMask, a_fWrGpMask, a_szName)
146/** Read-only fixed value. */
147#define MVO(a_uMsr, a_szName, a_uValue) \
148 RINT(a_uMsr, a_uMsr, kCpumMsrRdFn_FixedValue, kCpumMsrWrFn_ReadOnly, 0, a_uValue, 0, UINT64_MAX, a_szName)
149/** Read-only fixed value, ignores all writes. */
150#define MVI(a_uMsr, a_szName, a_uValue) \
151 RINT(a_uMsr, a_uMsr, kCpumMsrRdFn_FixedValue, kCpumMsrWrFn_IgnoreWrite, 0, a_uValue, UINT64_MAX, 0, a_szName)
152/** Read fixed value, ignore writes outside GP mask. */
153#define MVG(a_uMsr, a_szName, a_uValue, a_fWrGpMask) \
154 RINT(a_uMsr, a_uMsr, kCpumMsrRdFn_FixedValue, kCpumMsrWrFn_IgnoreWrite, 0, a_uValue, 0, a_fWrGpMask, a_szName)
155/** Read fixed value, extended version with both GP and ignore masks. */
156#define MVX(a_uMsr, a_szName, a_uValue, a_fWrIgnMask, a_fWrGpMask) \
157 RINT(a_uMsr, a_uMsr, kCpumMsrRdFn_FixedValue, kCpumMsrWrFn_IgnoreWrite, 0, a_uValue, a_fWrIgnMask, a_fWrGpMask, a_szName)
158/** The short form, no CPUM backing. */
159#define MSN(a_uMsr, a_szName, a_enmRdFnSuff, a_enmWrFnSuff, a_uInitOrReadValue, a_fWrIgnMask, a_fWrGpMask) \
160 RINT(a_uMsr, a_uMsr, kCpumMsrRdFn_##a_enmRdFnSuff, kCpumMsrWrFn_##a_enmWrFnSuff, 0, \
161 a_uInitOrReadValue, a_fWrIgnMask, a_fWrGpMask, a_szName)
162
163/** Range: Functions handles everything. */
164#define RFN(a_uFirst, a_uLast, a_szName, a_enmRdFnSuff, a_enmWrFnSuff) \
165 RINT(a_uFirst, a_uLast, kCpumMsrRdFn_##a_enmRdFnSuff, kCpumMsrWrFn_##a_enmWrFnSuff, 0, 0, 0, 0, a_szName)
166/** Range: Read fixed value, read-only. */
167#define RVO(a_uFirst, a_uLast, a_szName, a_uValue) \
168 RINT(a_uFirst, a_uLast, kCpumMsrRdFn_FixedValue, kCpumMsrWrFn_ReadOnly, 0, a_uValue, 0, UINT64_MAX, a_szName)
169/** Range: Read fixed value, ignore writes. */
170#define RVI(a_uFirst, a_uLast, a_szName, a_uValue) \
171 RINT(a_uFirst, a_uLast, kCpumMsrRdFn_FixedValue, kCpumMsrWrFn_IgnoreWrite, 0, a_uValue, UINT64_MAX, 0, a_szName)
172/** Range: The short form, no CPUM backing. */
173#define RSN(a_uFirst, a_uLast, a_szName, a_enmRdFnSuff, a_enmWrFnSuff, a_uInitOrReadValue, a_fWrIgnMask, a_fWrGpMask) \
174 RINT(a_uFirst, a_uLast, kCpumMsrRdFn_##a_enmRdFnSuff, kCpumMsrWrFn_##a_enmWrFnSuff, 0, \
175 a_uInitOrReadValue, a_fWrIgnMask, a_fWrGpMask, a_szName)
176
177/** Internal form used by the macros. */
178#ifdef VBOX_WITH_STATISTICS
179# define RINT(a_uFirst, a_uLast, a_enmRdFn, a_enmWrFn, a_offCpumCpu, a_uInitOrReadValue, a_fWrIgnMask, a_fWrGpMask, a_szName) \
180 { a_uFirst, a_uLast, a_enmRdFn, a_enmWrFn, a_offCpumCpu, 0, a_uInitOrReadValue, a_fWrIgnMask, a_fWrGpMask, a_szName, \
181 { 0 }, { 0 }, { 0 }, { 0 } }
182#else
183# define RINT(a_uFirst, a_uLast, a_enmRdFn, a_enmWrFn, a_offCpumCpu, a_uInitOrReadValue, a_fWrIgnMask, a_fWrGpMask, a_szName) \
184 { a_uFirst, a_uLast, a_enmRdFn, a_enmWrFn, a_offCpumCpu, 0, a_uInitOrReadValue, a_fWrIgnMask, a_fWrGpMask, a_szName }
185#endif
186/** @} */
187
188#ifndef CPUM_DB_STANDALONE
189
190#include "cpus/Intel_Core_i7_6700K.h"
191#include "cpus/Intel_Core_i7_5600U.h"
192#include "cpus/Intel_Core_i7_3960X.h"
193#include "cpus/Intel_Core_i5_3570.h"
194#include "cpus/Intel_Core_i7_2635QM.h"
195#include "cpus/Intel_Xeon_X5482_3_20GHz.h"
196#include "cpus/Intel_Core2_X6800_2_93GHz.h"
197#include "cpus/Intel_Core2_T7600_2_33GHz.h"
198#include "cpus/Intel_Core_Duo_T2600_2_16GHz.h"
199#include "cpus/Intel_Pentium_M_processor_2_00GHz.h"
200#include "cpus/Intel_Pentium_4_3_00GHz.h"
201#include "cpus/Intel_Pentium_N3530_2_16GHz.h"
202#include "cpus/Intel_Atom_330_1_60GHz.h"
203#include "cpus/Intel_80486.h"
204#include "cpus/Intel_80386.h"
205#include "cpus/Intel_80286.h"
206#include "cpus/Intel_80186.h"
207#include "cpus/Intel_8086.h"
208
209#include "cpus/AMD_FX_8150_Eight_Core.h"
210#include "cpus/AMD_Phenom_II_X6_1100T.h"
211#include "cpus/Quad_Core_AMD_Opteron_2384.h"
212#include "cpus/AMD_Athlon_64_X2_Dual_Core_4200.h"
213#include "cpus/AMD_Athlon_64_3200.h"
214
215#include "cpus/VIA_QuadCore_L4700_1_2_GHz.h"
216
217#include "cpus/ZHAOXIN_KaiXian_KX_U5581_1_8GHz.h"
218
219#include "cpus/Hygon_C86_7185_32_core.h"
220
221
222/**
223 * The database entries.
224 *
225 * 1. The first entry is special. It is the fallback for unknown
226 * processors. Thus, it better be pretty representative.
227 *
228 * 2. The first entry for a CPU vendor is likewise important as it is
229 * the default entry for that vendor.
230 *
231 * Generally we put the most recent CPUs first, since these tend to have the
232 * most complicated and backwards compatible list of MSRs.
233 */
234static CPUMDBENTRY const * const g_apCpumDbEntries[] =
235{
236#ifdef VBOX_CPUDB_Intel_Core_i7_6700K_h
237 &g_Entry_Intel_Core_i7_6700K,
238#endif
239#ifdef VBOX_CPUDB_Intel_Core_i7_5600U_h
240 &g_Entry_Intel_Core_i7_5600U,
241#endif
242#ifdef VBOX_CPUDB_Intel_Core_i5_3570_h
243 &g_Entry_Intel_Core_i5_3570,
244#endif
245#ifdef VBOX_CPUDB_Intel_Core_i7_3960X_h
246 &g_Entry_Intel_Core_i7_3960X,
247#endif
248#ifdef VBOX_CPUDB_Intel_Core_i7_2635QM_h
249 &g_Entry_Intel_Core_i7_2635QM,
250#endif
251#ifdef VBOX_CPUDB_Intel_Pentium_N3530_2_16GHz_h
252 &g_Entry_Intel_Pentium_N3530_2_16GHz,
253#endif
254#ifdef VBOX_CPUDB_Intel_Atom_330_1_60GHz_h
255 &g_Entry_Intel_Atom_330_1_60GHz,
256#endif
257#ifdef VBOX_CPUDB_Intel_Pentium_M_processor_2_00GHz_h
258 &g_Entry_Intel_Pentium_M_processor_2_00GHz,
259#endif
260#ifdef VBOX_CPUDB_Intel_Xeon_X5482_3_20GHz_h
261 &g_Entry_Intel_Xeon_X5482_3_20GHz,
262#endif
263#ifdef VBOX_CPUDB_Intel_Core2_X6800_2_93GHz_h
264 &g_Entry_Intel_Core2_X6800_2_93GHz,
265#endif
266#ifdef VBOX_CPUDB_Intel_Core2_T7600_2_33GHz_h
267 &g_Entry_Intel_Core2_T7600_2_33GHz,
268#endif
269#ifdef VBOX_CPUDB_Intel_Core_Duo_T2600_2_16GHz_h
270 &g_Entry_Intel_Core_Duo_T2600_2_16GHz,
271#endif
272#ifdef VBOX_CPUDB_Intel_Pentium_4_3_00GHz_h
273 &g_Entry_Intel_Pentium_4_3_00GHz,
274#endif
275#ifdef VBOX_CPUDB_Intel_Pentium_4_3_00GHz_h
276 &g_Entry_Intel_Pentium_4_3_00GHz,
277#endif
278/** @todo pentium, pentium mmx, pentium pro, pentium II, pentium III */
279#ifdef VBOX_CPUDB_Intel_80486_h
280 &g_Entry_Intel_80486,
281#endif
282#ifdef VBOX_CPUDB_Intel_80386_h
283 &g_Entry_Intel_80386,
284#endif
285#ifdef VBOX_CPUDB_Intel_80286_h
286 &g_Entry_Intel_80286,
287#endif
288#ifdef VBOX_CPUDB_Intel_80186_h
289 &g_Entry_Intel_80186,
290#endif
291#ifdef VBOX_CPUDB_Intel_8086_h
292 &g_Entry_Intel_8086,
293#endif
294
295#ifdef VBOX_CPUDB_AMD_FX_8150_Eight_Core_h
296 &g_Entry_AMD_FX_8150_Eight_Core,
297#endif
298#ifdef VBOX_CPUDB_AMD_Phenom_II_X6_1100T_h
299 &g_Entry_AMD_Phenom_II_X6_1100T,
300#endif
301#ifdef VBOX_CPUDB_Quad_Core_AMD_Opteron_2384_h
302 &g_Entry_Quad_Core_AMD_Opteron_2384,
303#endif
304#ifdef VBOX_CPUDB_AMD_Athlon_64_X2_Dual_Core_4200_h
305 &g_Entry_AMD_Athlon_64_X2_Dual_Core_4200,
306#endif
307#ifdef VBOX_CPUDB_AMD_Athlon_64_3200_h
308 &g_Entry_AMD_Athlon_64_3200,
309#endif
310
311#ifdef VBOX_CPUDB_ZHAOXIN_KaiXian_KX_U5581_1_8GHz_h
312 &g_Entry_ZHAOXIN_KaiXian_KX_U5581_1_8GHz,
313#endif
314
315#ifdef VBOX_CPUDB_VIA_QuadCore_L4700_1_2_GHz_h
316 &g_Entry_VIA_QuadCore_L4700_1_2_GHz,
317#endif
318
319#ifdef VBOX_CPUDB_NEC_V20_h
320 &g_Entry_NEC_V20,
321#endif
322
323#ifdef VBOX_CPUDB_Hygon_C86_7185_32_core_h
324 &g_Entry_Hygon_C86_7185_32_core,
325#endif
326};
327
328
329
330/**
331 * Binary search used by cpumR3MsrRangesInsert and has some special properties
332 * wrt to mismatches.
333 *
334 * @returns Insert location.
335 * @param paMsrRanges The MSR ranges to search.
336 * @param cMsrRanges The number of MSR ranges.
337 * @param uMsr What to search for.
338 */
339static uint32_t cpumR3MsrRangesBinSearch(PCCPUMMSRRANGE paMsrRanges, uint32_t cMsrRanges, uint32_t uMsr)
340{
341 if (!cMsrRanges)
342 return 0;
343
344 uint32_t iStart = 0;
345 uint32_t iLast = cMsrRanges - 1;
346 for (;;)
347 {
348 uint32_t i = iStart + (iLast - iStart + 1) / 2;
349 if ( uMsr >= paMsrRanges[i].uFirst
350 && uMsr <= paMsrRanges[i].uLast)
351 return i;
352 if (uMsr < paMsrRanges[i].uFirst)
353 {
354 if (i <= iStart)
355 return i;
356 iLast = i - 1;
357 }
358 else
359 {
360 if (i >= iLast)
361 {
362 if (i < cMsrRanges)
363 i++;
364 return i;
365 }
366 iStart = i + 1;
367 }
368 }
369}
370
371
372/**
373 * Ensures that there is space for at least @a cNewRanges in the table,
374 * reallocating the table if necessary.
375 *
376 * @returns Pointer to the MSR ranges on success, NULL on failure. On failure
377 * @a *ppaMsrRanges is freed and set to NULL.
378 * @param pVM The cross context VM structure. If NULL,
379 * use the process heap, otherwise the VM's hyper heap.
380 * @param ppaMsrRanges The variable pointing to the ranges (input/output).
381 * @param cMsrRanges The current number of ranges.
382 * @param cNewRanges The number of ranges to be added.
383 */
384static PCPUMMSRRANGE cpumR3MsrRangesEnsureSpace(PVM pVM, PCPUMMSRRANGE *ppaMsrRanges, uint32_t cMsrRanges, uint32_t cNewRanges)
385{
386 uint32_t cMsrRangesAllocated;
387 if (!pVM)
388 cMsrRangesAllocated = RT_ALIGN_32(cMsrRanges, 16);
389 else
390 {
391 /*
392 * We're using the hyper heap now, but when the range array was copied over to it from
393 * the host-context heap, we only copy the exact size and not the ensured size.
394 * See @bugref{7270}.
395 */
396 cMsrRangesAllocated = cMsrRanges;
397 }
398 if (cMsrRangesAllocated < cMsrRanges + cNewRanges)
399 {
400 void *pvNew;
401 uint32_t cNew = RT_ALIGN_32(cMsrRanges + cNewRanges, 16);
402 if (pVM)
403 {
404 Assert(ppaMsrRanges == &pVM->cpum.s.GuestInfo.paMsrRangesR3);
405 Assert(cMsrRanges == pVM->cpum.s.GuestInfo.cMsrRanges);
406
407 size_t cb = cMsrRangesAllocated * sizeof(**ppaMsrRanges);
408 size_t cbNew = cNew * sizeof(**ppaMsrRanges);
409 int rc = MMR3HyperRealloc(pVM, *ppaMsrRanges, cb, 32, MM_TAG_CPUM_MSRS, cbNew, &pvNew);
410 if (RT_FAILURE(rc))
411 {
412 *ppaMsrRanges = NULL;
413 pVM->cpum.s.GuestInfo.paMsrRangesR0 = NIL_RTR0PTR;
414 LogRel(("CPUM: cpumR3MsrRangesEnsureSpace: MMR3HyperRealloc failed. rc=%Rrc\n", rc));
415 return NULL;
416 }
417 *ppaMsrRanges = (PCPUMMSRRANGE)pvNew;
418 }
419 else
420 {
421 pvNew = RTMemRealloc(*ppaMsrRanges, cNew * sizeof(**ppaMsrRanges));
422 if (!pvNew)
423 {
424 RTMemFree(*ppaMsrRanges);
425 *ppaMsrRanges = NULL;
426 return NULL;
427 }
428 }
429 *ppaMsrRanges = (PCPUMMSRRANGE)pvNew;
430 }
431
432 if (pVM)
433 {
434 /* Update the R0 pointer. */
435 Assert(ppaMsrRanges == &pVM->cpum.s.GuestInfo.paMsrRangesR3);
436 pVM->cpum.s.GuestInfo.paMsrRangesR0 = MMHyperR3ToR0(pVM, *ppaMsrRanges);
437 }
438
439 return *ppaMsrRanges;
440}
441
442
443/**
444 * Inserts a new MSR range in into an sorted MSR range array.
445 *
446 * If the new MSR range overlaps existing ranges, the existing ones will be
447 * adjusted/removed to fit in the new one.
448 *
449 * @returns VBox status code.
450 * @retval VINF_SUCCESS
451 * @retval VERR_NO_MEMORY
452 *
453 * @param pVM The cross context VM structure. If NULL,
454 * use the process heap, otherwise the VM's hyper heap.
455 * @param ppaMsrRanges The variable pointing to the ranges (input/output).
456 * Must be NULL if using the hyper heap.
457 * @param pcMsrRanges The variable holding number of ranges. Must be NULL
458 * if using the hyper heap.
459 * @param pNewRange The new range.
460 */
461int cpumR3MsrRangesInsert(PVM pVM, PCPUMMSRRANGE *ppaMsrRanges, uint32_t *pcMsrRanges, PCCPUMMSRRANGE pNewRange)
462{
463 Assert(pNewRange->uLast >= pNewRange->uFirst);
464 Assert(pNewRange->enmRdFn > kCpumMsrRdFn_Invalid && pNewRange->enmRdFn < kCpumMsrRdFn_End);
465 Assert(pNewRange->enmWrFn > kCpumMsrWrFn_Invalid && pNewRange->enmWrFn < kCpumMsrWrFn_End);
466
467 /*
468 * Validate and use the VM's MSR ranges array if we are using the hyper heap.
469 */
470 if (pVM)
471 {
472 AssertReturn(!ppaMsrRanges, VERR_INVALID_PARAMETER);
473 AssertReturn(!pcMsrRanges, VERR_INVALID_PARAMETER);
474
475 ppaMsrRanges = &pVM->cpum.s.GuestInfo.paMsrRangesR3;
476 pcMsrRanges = &pVM->cpum.s.GuestInfo.cMsrRanges;
477 }
478 else
479 {
480 AssertReturn(ppaMsrRanges, VERR_INVALID_POINTER);
481 AssertReturn(pcMsrRanges, VERR_INVALID_POINTER);
482 }
483
484 uint32_t cMsrRanges = *pcMsrRanges;
485 PCPUMMSRRANGE paMsrRanges = *ppaMsrRanges;
486
487 /*
488 * Optimize the linear insertion case where we add new entries at the end.
489 */
490 if ( cMsrRanges > 0
491 && paMsrRanges[cMsrRanges - 1].uLast < pNewRange->uFirst)
492 {
493 paMsrRanges = cpumR3MsrRangesEnsureSpace(pVM, ppaMsrRanges, cMsrRanges, 1);
494 if (!paMsrRanges)
495 return VERR_NO_MEMORY;
496 paMsrRanges[cMsrRanges] = *pNewRange;
497 *pcMsrRanges += 1;
498 }
499 else
500 {
501 uint32_t i = cpumR3MsrRangesBinSearch(paMsrRanges, cMsrRanges, pNewRange->uFirst);
502 Assert(i == cMsrRanges || pNewRange->uFirst <= paMsrRanges[i].uLast);
503 Assert(i == 0 || pNewRange->uFirst > paMsrRanges[i - 1].uLast);
504
505 /*
506 * Adding an entirely new entry?
507 */
508 if ( i >= cMsrRanges
509 || pNewRange->uLast < paMsrRanges[i].uFirst)
510 {
511 paMsrRanges = cpumR3MsrRangesEnsureSpace(pVM, ppaMsrRanges, cMsrRanges, 1);
512 if (!paMsrRanges)
513 return VERR_NO_MEMORY;
514 if (i < cMsrRanges)
515 memmove(&paMsrRanges[i + 1], &paMsrRanges[i], (cMsrRanges - i) * sizeof(paMsrRanges[0]));
516 paMsrRanges[i] = *pNewRange;
517 *pcMsrRanges += 1;
518 }
519 /*
520 * Replace existing entry?
521 */
522 else if ( pNewRange->uFirst == paMsrRanges[i].uFirst
523 && pNewRange->uLast == paMsrRanges[i].uLast)
524 paMsrRanges[i] = *pNewRange;
525 /*
526 * Splitting an existing entry?
527 */
528 else if ( pNewRange->uFirst > paMsrRanges[i].uFirst
529 && pNewRange->uLast < paMsrRanges[i].uLast)
530 {
531 paMsrRanges = cpumR3MsrRangesEnsureSpace(pVM, ppaMsrRanges, cMsrRanges, 2);
532 if (!paMsrRanges)
533 return VERR_NO_MEMORY;
534 if (i < cMsrRanges)
535 memmove(&paMsrRanges[i + 2], &paMsrRanges[i], (cMsrRanges - i) * sizeof(paMsrRanges[0]));
536 paMsrRanges[i + 1] = *pNewRange;
537 paMsrRanges[i + 2] = paMsrRanges[i];
538 paMsrRanges[i ].uLast = pNewRange->uFirst - 1;
539 paMsrRanges[i + 2].uFirst = pNewRange->uLast + 1;
540 *pcMsrRanges += 2;
541 }
542 /*
543 * Complicated scenarios that can affect more than one range.
544 *
545 * The current code does not optimize memmove calls when replacing
546 * one or more existing ranges, because it's tedious to deal with and
547 * not expected to be a frequent usage scenario.
548 */
549 else
550 {
551 /* Adjust start of first match? */
552 if ( pNewRange->uFirst <= paMsrRanges[i].uFirst
553 && pNewRange->uLast < paMsrRanges[i].uLast)
554 paMsrRanges[i].uFirst = pNewRange->uLast + 1;
555 else
556 {
557 /* Adjust end of first match? */
558 if (pNewRange->uFirst > paMsrRanges[i].uFirst)
559 {
560 Assert(paMsrRanges[i].uLast >= pNewRange->uFirst);
561 paMsrRanges[i].uLast = pNewRange->uFirst - 1;
562 i++;
563 }
564 /* Replace the whole first match (lazy bird). */
565 else
566 {
567 if (i + 1 < cMsrRanges)
568 memmove(&paMsrRanges[i], &paMsrRanges[i + 1], (cMsrRanges - i - 1) * sizeof(paMsrRanges[0]));
569 cMsrRanges = *pcMsrRanges -= 1;
570 }
571
572 /* Do the new range affect more ranges? */
573 while ( i < cMsrRanges
574 && pNewRange->uLast >= paMsrRanges[i].uFirst)
575 {
576 if (pNewRange->uLast < paMsrRanges[i].uLast)
577 {
578 /* Adjust the start of it, then we're done. */
579 paMsrRanges[i].uFirst = pNewRange->uLast + 1;
580 break;
581 }
582
583 /* Remove it entirely. */
584 if (i + 1 < cMsrRanges)
585 memmove(&paMsrRanges[i], &paMsrRanges[i + 1], (cMsrRanges - i - 1) * sizeof(paMsrRanges[0]));
586 cMsrRanges = *pcMsrRanges -= 1;
587 }
588 }
589
590 /* Now, perform a normal insertion. */
591 paMsrRanges = cpumR3MsrRangesEnsureSpace(pVM, ppaMsrRanges, cMsrRanges, 1);
592 if (!paMsrRanges)
593 return VERR_NO_MEMORY;
594 if (i < cMsrRanges)
595 memmove(&paMsrRanges[i + 1], &paMsrRanges[i], (cMsrRanges - i) * sizeof(paMsrRanges[0]));
596 paMsrRanges[i] = *pNewRange;
597 *pcMsrRanges += 1;
598 }
599 }
600
601 return VINF_SUCCESS;
602}
603
604
605/**
606 * Reconciles CPUID info with MSRs (selected ones).
607 *
608 * @returns VBox status code.
609 * @param pVM The cross context VM structure.
610 */
611int cpumR3MsrReconcileWithCpuId(PVM pVM)
612{
613 PCCPUMMSRRANGE papToAdd[10];
614 uint32_t cToAdd = 0;
615
616 /*
617 * The IA32_FLUSH_CMD MSR was introduced in MCUs for CVS-2018-3646 and associates.
618 */
619 if (pVM->cpum.s.GuestFeatures.fFlushCmd && !cpumLookupMsrRange(pVM, MSR_IA32_FLUSH_CMD))
620 {
621 static CPUMMSRRANGE const s_FlushCmd =
622 {
623 /*.uFirst =*/ MSR_IA32_FLUSH_CMD,
624 /*.uLast =*/ MSR_IA32_FLUSH_CMD,
625 /*.enmRdFn =*/ kCpumMsrRdFn_WriteOnly,
626 /*.enmWrFn =*/ kCpumMsrWrFn_Ia32FlushCmd,
627 /*.offCpumCpu =*/ UINT16_MAX,
628 /*.fReserved =*/ 0,
629 /*.uValue =*/ 0,
630 /*.fWrIgnMask =*/ 0,
631 /*.fWrGpMask =*/ ~MSR_IA32_FLUSH_CMD_F_L1D,
632 /*.szName = */ "IA32_FLUSH_CMD"
633 };
634 papToAdd[cToAdd++] = &s_FlushCmd;
635 }
636
637 /*
638 * The MSR_IA32_ARCH_CAPABILITIES was introduced in various spectre MCUs, or at least
639 * documented in relation to such.
640 */
641 if (pVM->cpum.s.GuestFeatures.fArchCap && !cpumLookupMsrRange(pVM, MSR_IA32_ARCH_CAPABILITIES))
642 {
643 static CPUMMSRRANGE const s_ArchCaps =
644 {
645 /*.uFirst =*/ MSR_IA32_ARCH_CAPABILITIES,
646 /*.uLast =*/ MSR_IA32_ARCH_CAPABILITIES,
647 /*.enmRdFn =*/ kCpumMsrRdFn_Ia32ArchCapabilities,
648 /*.enmWrFn =*/ kCpumMsrWrFn_ReadOnly,
649 /*.offCpumCpu =*/ UINT16_MAX,
650 /*.fReserved =*/ 0,
651 /*.uValue =*/ 0,
652 /*.fWrIgnMask =*/ 0,
653 /*.fWrGpMask =*/ UINT64_MAX,
654 /*.szName = */ "IA32_ARCH_CAPABILITIES"
655 };
656 papToAdd[cToAdd++] = &s_ArchCaps;
657 }
658
659 /*
660 * Do the adding.
661 */
662 for (uint32_t i = 0; i < cToAdd; i++)
663 {
664 PCCPUMMSRRANGE pRange = papToAdd[i];
665 LogRel(("CPUM: MSR/CPUID reconciliation insert: %#010x %s\n", pRange->uFirst, pRange->szName));
666 int rc = cpumR3MsrRangesInsert(NULL /* pVM */, &pVM->cpum.s.GuestInfo.paMsrRangesR3, &pVM->cpum.s.GuestInfo.cMsrRanges,
667 pRange);
668 if (RT_FAILURE(rc))
669 return rc;
670 }
671 return VINF_SUCCESS;
672}
673
674
675/**
676 * Worker for cpumR3MsrApplyFudge that applies one table.
677 *
678 * @returns VBox status code.
679 * @param pVM The cross context VM structure.
680 * @param paRanges Array of MSRs to fudge.
681 * @param cRanges Number of MSRs in the array.
682 */
683static int cpumR3MsrApplyFudgeTable(PVM pVM, PCCPUMMSRRANGE paRanges, size_t cRanges)
684{
685 for (uint32_t i = 0; i < cRanges; i++)
686 if (!cpumLookupMsrRange(pVM, paRanges[i].uFirst))
687 {
688 LogRel(("CPUM: MSR fudge: %#010x %s\n", paRanges[i].uFirst, paRanges[i].szName));
689 int rc = cpumR3MsrRangesInsert(NULL /* pVM */, &pVM->cpum.s.GuestInfo.paMsrRangesR3, &pVM->cpum.s.GuestInfo.cMsrRanges,
690 &paRanges[i]);
691 if (RT_FAILURE(rc))
692 return rc;
693 }
694 return VINF_SUCCESS;
695}
696
697
698/**
699 * Fudges the MSRs that guest are known to access in some odd cases.
700 *
701 * A typical example is a VM that has been moved between different hosts where
702 * for instance the cpu vendor differs.
703 *
704 * Another example is older CPU profiles (e.g. Atom Bonnet) for newer CPUs (e.g.
705 * Atom Silvermont), where features reported thru CPUID aren't present in the
706 * MSRs (e.g. AMD64_TSC_AUX).
707 *
708 *
709 * @returns VBox status code.
710 * @param pVM The cross context VM structure.
711 */
712int cpumR3MsrApplyFudge(PVM pVM)
713{
714 /*
715 * Basic.
716 */
717 static CPUMMSRRANGE const s_aFudgeMsrs[] =
718 {
719 MFO(0x00000000, "IA32_P5_MC_ADDR", Ia32P5McAddr),
720 MFX(0x00000001, "IA32_P5_MC_TYPE", Ia32P5McType, Ia32P5McType, 0, 0, UINT64_MAX),
721 MVO(0x00000017, "IA32_PLATFORM_ID", 0),
722 MFN(0x0000001b, "IA32_APIC_BASE", Ia32ApicBase, Ia32ApicBase),
723 MVI(0x0000008b, "BIOS_SIGN", 0),
724 MFX(0x000000fe, "IA32_MTRRCAP", Ia32MtrrCap, ReadOnly, 0x508, 0, 0),
725 MFX(0x00000179, "IA32_MCG_CAP", Ia32McgCap, ReadOnly, 0x005, 0, 0),
726 MFX(0x0000017a, "IA32_MCG_STATUS", Ia32McgStatus, Ia32McgStatus, 0, ~(uint64_t)UINT32_MAX, 0),
727 MFN(0x000001a0, "IA32_MISC_ENABLE", Ia32MiscEnable, Ia32MiscEnable),
728 MFN(0x000001d9, "IA32_DEBUGCTL", Ia32DebugCtl, Ia32DebugCtl),
729 MFO(0x000001db, "P6_LAST_BRANCH_FROM_IP", P6LastBranchFromIp),
730 MFO(0x000001dc, "P6_LAST_BRANCH_TO_IP", P6LastBranchToIp),
731 MFO(0x000001dd, "P6_LAST_INT_FROM_IP", P6LastIntFromIp),
732 MFO(0x000001de, "P6_LAST_INT_TO_IP", P6LastIntToIp),
733 MFS(0x00000277, "IA32_PAT", Ia32Pat, Ia32Pat, Guest.msrPAT),
734 MFZ(0x000002ff, "IA32_MTRR_DEF_TYPE", Ia32MtrrDefType, Ia32MtrrDefType, GuestMsrs.msr.MtrrDefType, 0, ~(uint64_t)0xc07),
735 MFN(0x00000400, "IA32_MCi_CTL_STATUS_ADDR_MISC", Ia32McCtlStatusAddrMiscN, Ia32McCtlStatusAddrMiscN),
736 };
737 int rc = cpumR3MsrApplyFudgeTable(pVM, &s_aFudgeMsrs[0], RT_ELEMENTS(s_aFudgeMsrs));
738 AssertLogRelRCReturn(rc, rc);
739
740 /*
741 * XP might mistake opterons and other newer CPUs for P4s.
742 */
743 if (pVM->cpum.s.GuestFeatures.uFamily >= 0xf)
744 {
745 static CPUMMSRRANGE const s_aP4FudgeMsrs[] =
746 {
747 MFX(0x0000002c, "P4_EBC_FREQUENCY_ID", IntelP4EbcFrequencyId, IntelP4EbcFrequencyId, 0xf12010f, UINT64_MAX, 0),
748 };
749 rc = cpumR3MsrApplyFudgeTable(pVM, &s_aP4FudgeMsrs[0], RT_ELEMENTS(s_aP4FudgeMsrs));
750 AssertLogRelRCReturn(rc, rc);
751 }
752
753 if (pVM->cpum.s.GuestFeatures.fRdTscP)
754 {
755 static CPUMMSRRANGE const s_aRdTscPFudgeMsrs[] =
756 {
757 MFX(0xc0000103, "AMD64_TSC_AUX", Amd64TscAux, Amd64TscAux, 0, 0, ~(uint64_t)UINT32_MAX),
758 };
759 rc = cpumR3MsrApplyFudgeTable(pVM, &s_aRdTscPFudgeMsrs[0], RT_ELEMENTS(s_aRdTscPFudgeMsrs));
760 AssertLogRelRCReturn(rc, rc);
761 }
762
763 return rc;
764}
765
766
767/**
768 * Do we consider @a enmConsider a better match for @a enmTarget than
769 * @a enmFound?
770 *
771 * Only called when @a enmConsider isn't exactly what we're looking for.
772 *
773 * @returns true/false.
774 * @param enmConsider The new microarch to consider.
775 * @param enmTarget The target microarch.
776 * @param enmFound The best microarch match we've found thus far.
777 */
778DECLINLINE(bool) cpumR3DbIsBetterMarchMatch(CPUMMICROARCH enmConsider, CPUMMICROARCH enmTarget, CPUMMICROARCH enmFound)
779{
780 Assert(enmConsider != enmTarget);
781
782 /*
783 * If we've got an march match, don't bother with enmConsider.
784 */
785 if (enmFound == enmTarget)
786 return false;
787
788 /*
789 * Found is below: Pick 'consider' if it's closer to the target or above it.
790 */
791 if (enmFound < enmTarget)
792 return enmConsider > enmFound;
793
794 /*
795 * Found is above: Pick 'consider' if it's also above (paranoia: or equal)
796 * and but closer to the target.
797 */
798 return enmConsider >= enmTarget && enmConsider < enmFound;
799}
800
801
802/**
803 * Do we consider @a enmConsider a better match for @a enmTarget than
804 * @a enmFound?
805 *
806 * Only called for intel family 06h CPUs.
807 *
808 * @returns true/false.
809 * @param enmConsider The new microarch to consider.
810 * @param enmTarget The target microarch.
811 * @param enmFound The best microarch match we've found thus far.
812 */
813static bool cpumR3DbIsBetterIntelFam06Match(CPUMMICROARCH enmConsider, CPUMMICROARCH enmTarget, CPUMMICROARCH enmFound)
814{
815 /* Check intel family 06h claims. */
816 AssertReturn(enmConsider >= kCpumMicroarch_Intel_P6_Core_Atom_First && enmConsider <= kCpumMicroarch_Intel_P6_Core_Atom_End,
817 false);
818 AssertReturn(enmTarget >= kCpumMicroarch_Intel_P6_Core_Atom_First && enmTarget <= kCpumMicroarch_Intel_P6_Core_Atom_End,
819 false);
820
821 /* Put matches out of the way. */
822 if (enmConsider == enmTarget)
823 return true;
824 if (enmFound == enmTarget)
825 return false;
826
827 /* If found isn't a family 06h march, whatever we're considering must be a better choice. */
828 if ( enmFound < kCpumMicroarch_Intel_P6_Core_Atom_First
829 || enmFound > kCpumMicroarch_Intel_P6_Core_Atom_End)
830 return true;
831
832 /*
833 * The family 06h stuff is split into three categories:
834 * - Common P6 heritage
835 * - Core
836 * - Atom
837 *
838 * Determin which of the three arguments are Atom marchs, because that's
839 * all we need to make the right choice.
840 */
841 bool const fConsiderAtom = enmConsider >= kCpumMicroarch_Intel_Atom_First;
842 bool const fTargetAtom = enmTarget >= kCpumMicroarch_Intel_Atom_First;
843 bool const fFoundAtom = enmFound >= kCpumMicroarch_Intel_Atom_First;
844
845 /*
846 * Want atom:
847 */
848 if (fTargetAtom)
849 {
850 /* Pick the atom if we've got one of each.*/
851 if (fConsiderAtom != fFoundAtom)
852 return fConsiderAtom;
853 /* If we haven't got any atoms under consideration, pick a P6 or the earlier core.
854 Note! Not entirely sure Dothan is the best choice, but it'll do for now. */
855 if (!fConsiderAtom)
856 {
857 if (enmConsider > enmFound)
858 return enmConsider <= kCpumMicroarch_Intel_P6_M_Dothan;
859 return enmFound > kCpumMicroarch_Intel_P6_M_Dothan;
860 }
861 /* else: same category, default comparison rules. */
862 Assert(fConsiderAtom && fFoundAtom);
863 }
864 /*
865 * Want non-atom:
866 */
867 /* Pick the non-atom if we've got one of each. */
868 else if (fConsiderAtom != fFoundAtom)
869 return fFoundAtom;
870 /* If we've only got atoms under consideration, pick the older one just to pick something. */
871 else if (fConsiderAtom)
872 return enmConsider < enmFound;
873 else
874 Assert(!fConsiderAtom && !fFoundAtom);
875
876 /*
877 * Same basic category. Do same compare as caller.
878 */
879 return cpumR3DbIsBetterMarchMatch(enmConsider, enmTarget, enmFound);
880}
881
882
883int cpumR3DbGetCpuInfo(const char *pszName, PCPUMINFO pInfo)
884{
885 CPUMDBENTRY const *pEntry = NULL;
886 int rc;
887
888 if (!strcmp(pszName, "host"))
889 {
890 /*
891 * Create a CPU database entry for the host CPU. This means getting
892 * the CPUID bits from the real CPU and grabbing the closest matching
893 * database entry for MSRs.
894 */
895 rc = CPUMR3CpuIdDetectUnknownLeafMethod(&pInfo->enmUnknownCpuIdMethod, &pInfo->DefCpuId);
896 if (RT_FAILURE(rc))
897 return rc;
898 rc = CPUMR3CpuIdCollectLeaves(&pInfo->paCpuIdLeavesR3, &pInfo->cCpuIdLeaves);
899 if (RT_FAILURE(rc))
900 return rc;
901 pInfo->fMxCsrMask = CPUMR3DeterminHostMxCsrMask();
902
903 /* Lookup database entry for MSRs. */
904 CPUMCPUVENDOR const enmVendor = CPUMR3CpuIdDetectVendorEx(pInfo->paCpuIdLeavesR3[0].uEax,
905 pInfo->paCpuIdLeavesR3[0].uEbx,
906 pInfo->paCpuIdLeavesR3[0].uEcx,
907 pInfo->paCpuIdLeavesR3[0].uEdx);
908 uint32_t const uStd1Eax = pInfo->paCpuIdLeavesR3[1].uEax;
909 uint8_t const uFamily = ASMGetCpuFamily(uStd1Eax);
910 uint8_t const uModel = ASMGetCpuModel(uStd1Eax, enmVendor == CPUMCPUVENDOR_INTEL);
911 uint8_t const uStepping = ASMGetCpuStepping(uStd1Eax);
912 CPUMMICROARCH const enmMicroarch = CPUMR3CpuIdDetermineMicroarchEx(enmVendor, uFamily, uModel, uStepping);
913
914 for (unsigned i = 0; i < RT_ELEMENTS(g_apCpumDbEntries); i++)
915 {
916 CPUMDBENTRY const *pCur = g_apCpumDbEntries[i];
917 if ((CPUMCPUVENDOR)pCur->enmVendor == enmVendor)
918 {
919 /* Match against Family, Microarch, model and stepping. Except
920 for family, always match the closer with preference given to
921 the later/older ones. */
922 if (pCur->uFamily == uFamily)
923 {
924 if (pCur->enmMicroarch == enmMicroarch)
925 {
926 if (pCur->uModel == uModel)
927 {
928 if (pCur->uStepping == uStepping)
929 {
930 /* Perfect match. */
931 pEntry = pCur;
932 break;
933 }
934
935 if ( !pEntry
936 || pEntry->uModel != uModel
937 || pEntry->enmMicroarch != enmMicroarch
938 || pEntry->uFamily != uFamily)
939 pEntry = pCur;
940 else if ( pCur->uStepping >= uStepping
941 ? pCur->uStepping < pEntry->uStepping || pEntry->uStepping < uStepping
942 : pCur->uStepping > pEntry->uStepping)
943 pEntry = pCur;
944 }
945 else if ( !pEntry
946 || pEntry->enmMicroarch != enmMicroarch
947 || pEntry->uFamily != uFamily)
948 pEntry = pCur;
949 else if ( pCur->uModel >= uModel
950 ? pCur->uModel < pEntry->uModel || pEntry->uModel < uModel
951 : pCur->uModel > pEntry->uModel)
952 pEntry = pCur;
953 }
954 else if ( !pEntry
955 || pEntry->uFamily != uFamily)
956 pEntry = pCur;
957 /* Special march matching rules applies to intel family 06h. */
958 else if ( enmVendor == CPUMCPUVENDOR_INTEL
959 && uFamily == 6
960 ? cpumR3DbIsBetterIntelFam06Match(pCur->enmMicroarch, enmMicroarch, pEntry->enmMicroarch)
961 : cpumR3DbIsBetterMarchMatch(pCur->enmMicroarch, enmMicroarch, pEntry->enmMicroarch))
962 pEntry = pCur;
963 }
964 /* We don't do closeness matching on family, we use the first
965 entry for the CPU vendor instead. (P4 workaround.) */
966 else if (!pEntry)
967 pEntry = pCur;
968 }
969 }
970
971 if (pEntry)
972 LogRel(("CPUM: Matched host CPU %s %#x/%#x/%#x %s with CPU DB entry '%s' (%s %#x/%#x/%#x %s)\n",
973 CPUMR3CpuVendorName(enmVendor), uFamily, uModel, uStepping, CPUMR3MicroarchName(enmMicroarch),
974 pEntry->pszName, CPUMR3CpuVendorName((CPUMCPUVENDOR)pEntry->enmVendor), pEntry->uFamily, pEntry->uModel,
975 pEntry->uStepping, CPUMR3MicroarchName(pEntry->enmMicroarch) ));
976 else
977 {
978 pEntry = g_apCpumDbEntries[0];
979 LogRel(("CPUM: No matching processor database entry %s %#x/%#x/%#x %s, falling back on '%s'\n",
980 CPUMR3CpuVendorName(enmVendor), uFamily, uModel, uStepping, CPUMR3MicroarchName(enmMicroarch),
981 pEntry->pszName));
982 }
983 }
984 else
985 {
986 /*
987 * We're supposed to be emulating a specific CPU that is included in
988 * our CPU database. The CPUID tables needs to be copied onto the
989 * heap so the caller can modify them and so they can be freed like
990 * in the host case above.
991 */
992 for (unsigned i = 0; i < RT_ELEMENTS(g_apCpumDbEntries); i++)
993 if (!strcmp(pszName, g_apCpumDbEntries[i]->pszName))
994 {
995 pEntry = g_apCpumDbEntries[i];
996 break;
997 }
998 if (!pEntry)
999 {
1000 LogRel(("CPUM: Cannot locate any CPU by the name '%s'\n", pszName));
1001 return VERR_CPUM_DB_CPU_NOT_FOUND;
1002 }
1003
1004 pInfo->cCpuIdLeaves = pEntry->cCpuIdLeaves;
1005 if (pEntry->cCpuIdLeaves)
1006 {
1007 /* Must allocate a multiple of 16 here, matching cpumR3CpuIdEnsureSpace. */
1008 size_t cbExtra = sizeof(pEntry->paCpuIdLeaves[0]) * (RT_ALIGN(pEntry->cCpuIdLeaves, 16) - pEntry->cCpuIdLeaves);
1009 pInfo->paCpuIdLeavesR3 = (PCPUMCPUIDLEAF)RTMemDupEx(pEntry->paCpuIdLeaves,
1010 sizeof(pEntry->paCpuIdLeaves[0]) * pEntry->cCpuIdLeaves,
1011 cbExtra);
1012 if (!pInfo->paCpuIdLeavesR3)
1013 return VERR_NO_MEMORY;
1014 }
1015 else
1016 pInfo->paCpuIdLeavesR3 = NULL;
1017
1018 pInfo->enmUnknownCpuIdMethod = pEntry->enmUnknownCpuId;
1019 pInfo->DefCpuId = pEntry->DefUnknownCpuId;
1020 pInfo->fMxCsrMask = pEntry->fMxCsrMask;
1021
1022 LogRel(("CPUM: Using CPU DB entry '%s' (%s %#x/%#x/%#x %s)\n",
1023 pEntry->pszName, CPUMR3CpuVendorName((CPUMCPUVENDOR)pEntry->enmVendor),
1024 pEntry->uFamily, pEntry->uModel, pEntry->uStepping, CPUMR3MicroarchName(pEntry->enmMicroarch) ));
1025 }
1026
1027 pInfo->fMsrMask = pEntry->fMsrMask;
1028 pInfo->iFirstExtCpuIdLeaf = 0; /* Set by caller. */
1029 pInfo->uScalableBusFreq = pEntry->uScalableBusFreq;
1030 pInfo->paCpuIdLeavesR0 = NIL_RTR0PTR;
1031 pInfo->paMsrRangesR0 = NIL_RTR0PTR;
1032
1033 /*
1034 * Copy the MSR range.
1035 */
1036 uint32_t cMsrs = 0;
1037 PCPUMMSRRANGE paMsrs = NULL;
1038
1039 PCCPUMMSRRANGE pCurMsr = pEntry->paMsrRanges;
1040 uint32_t cLeft = pEntry->cMsrRanges;
1041 while (cLeft-- > 0)
1042 {
1043 rc = cpumR3MsrRangesInsert(NULL /* pVM */, &paMsrs, &cMsrs, pCurMsr);
1044 if (RT_FAILURE(rc))
1045 {
1046 Assert(!paMsrs); /* The above function frees this. */
1047 RTMemFree(pInfo->paCpuIdLeavesR3);
1048 pInfo->paCpuIdLeavesR3 = NULL;
1049 return rc;
1050 }
1051 pCurMsr++;
1052 }
1053
1054 pInfo->paMsrRangesR3 = paMsrs;
1055 pInfo->cMsrRanges = cMsrs;
1056 return VINF_SUCCESS;
1057}
1058
1059
1060/**
1061 * Insert an MSR range into the VM.
1062 *
1063 * If the new MSR range overlaps existing ranges, the existing ones will be
1064 * adjusted/removed to fit in the new one.
1065 *
1066 * @returns VBox status code.
1067 * @param pVM The cross context VM structure.
1068 * @param pNewRange Pointer to the MSR range being inserted.
1069 */
1070VMMR3DECL(int) CPUMR3MsrRangesInsert(PVM pVM, PCCPUMMSRRANGE pNewRange)
1071{
1072 AssertReturn(pVM, VERR_INVALID_PARAMETER);
1073 AssertReturn(pNewRange, VERR_INVALID_PARAMETER);
1074
1075 return cpumR3MsrRangesInsert(pVM, NULL /* ppaMsrRanges */, NULL /* pcMsrRanges */, pNewRange);
1076}
1077
1078
1079/**
1080 * Register statistics for the MSRs.
1081 *
1082 * This must not be called before the MSRs have been finalized and moved to the
1083 * hyper heap.
1084 *
1085 * @returns VBox status code.
1086 * @param pVM The cross context VM structure.
1087 */
1088int cpumR3MsrRegStats(PVM pVM)
1089{
1090 /*
1091 * Global statistics.
1092 */
1093 PCPUM pCpum = &pVM->cpum.s;
1094 STAM_REL_REG(pVM, &pCpum->cMsrReads, STAMTYPE_COUNTER, "/CPUM/MSR-Totals/Reads",
1095 STAMUNIT_OCCURENCES, "All RDMSRs making it to CPUM.");
1096 STAM_REL_REG(pVM, &pCpum->cMsrReadsRaiseGp, STAMTYPE_COUNTER, "/CPUM/MSR-Totals/ReadsRaisingGP",
1097 STAMUNIT_OCCURENCES, "RDMSR raising #GPs, except unknown MSRs.");
1098 STAM_REL_REG(pVM, &pCpum->cMsrReadsUnknown, STAMTYPE_COUNTER, "/CPUM/MSR-Totals/ReadsUnknown",
1099 STAMUNIT_OCCURENCES, "RDMSR on unknown MSRs (raises #GP).");
1100 STAM_REL_REG(pVM, &pCpum->cMsrWrites, STAMTYPE_COUNTER, "/CPUM/MSR-Totals/Writes",
1101 STAMUNIT_OCCURENCES, "All WRMSRs making it to CPUM.");
1102 STAM_REL_REG(pVM, &pCpum->cMsrWritesRaiseGp, STAMTYPE_COUNTER, "/CPUM/MSR-Totals/WritesRaisingGP",
1103 STAMUNIT_OCCURENCES, "WRMSR raising #GPs, except unknown MSRs.");
1104 STAM_REL_REG(pVM, &pCpum->cMsrWritesToIgnoredBits, STAMTYPE_COUNTER, "/CPUM/MSR-Totals/WritesToIgnoredBits",
1105 STAMUNIT_OCCURENCES, "Writing of ignored bits.");
1106 STAM_REL_REG(pVM, &pCpum->cMsrWritesUnknown, STAMTYPE_COUNTER, "/CPUM/MSR-Totals/WritesUnknown",
1107 STAMUNIT_OCCURENCES, "WRMSR on unknown MSRs (raises #GP).");
1108
1109
1110# ifdef VBOX_WITH_STATISTICS
1111 /*
1112 * Per range.
1113 */
1114 PCPUMMSRRANGE paRanges = pVM->cpum.s.GuestInfo.paMsrRangesR3;
1115 uint32_t cRanges = pVM->cpum.s.GuestInfo.cMsrRanges;
1116 for (uint32_t i = 0; i < cRanges; i++)
1117 {
1118 char szName[160];
1119 ssize_t cchName;
1120
1121 if (paRanges[i].uFirst == paRanges[i].uLast)
1122 cchName = RTStrPrintf(szName, sizeof(szName), "/CPUM/MSRs/%#010x-%s",
1123 paRanges[i].uFirst, paRanges[i].szName);
1124 else
1125 cchName = RTStrPrintf(szName, sizeof(szName), "/CPUM/MSRs/%#010x-%#010x-%s",
1126 paRanges[i].uFirst, paRanges[i].uLast, paRanges[i].szName);
1127
1128 RTStrCopy(&szName[cchName], sizeof(szName) - cchName, "-reads");
1129 STAMR3Register(pVM, &paRanges[i].cReads, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, szName, STAMUNIT_OCCURENCES, "RDMSR");
1130
1131 RTStrCopy(&szName[cchName], sizeof(szName) - cchName, "-writes");
1132 STAMR3Register(pVM, &paRanges[i].cWrites, STAMTYPE_COUNTER, STAMVISIBILITY_USED, szName, STAMUNIT_OCCURENCES, "WRMSR");
1133
1134 RTStrCopy(&szName[cchName], sizeof(szName) - cchName, "-GPs");
1135 STAMR3Register(pVM, &paRanges[i].cGps, STAMTYPE_COUNTER, STAMVISIBILITY_USED, szName, STAMUNIT_OCCURENCES, "#GPs");
1136
1137 RTStrCopy(&szName[cchName], sizeof(szName) - cchName, "-ign-bits-writes");
1138 STAMR3Register(pVM, &paRanges[i].cIgnoredBits, STAMTYPE_COUNTER, STAMVISIBILITY_USED, szName, STAMUNIT_OCCURENCES, "WRMSR w/ ignored bits");
1139 }
1140# endif /* VBOX_WITH_STATISTICS */
1141
1142 return VINF_SUCCESS;
1143}
1144
1145#endif /* !CPUM_DB_STANDALONE */
1146
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette