VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/CPUMR3Db.cpp@ 70323

Last change on this file since 70323 was 69900, checked in by vboxsync, 7 years ago

CPUDb: Added T2600 (Yonah), T7600 (Merom) CPU profiles.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 42.4 KB
Line 
1/* $Id: CPUMR3Db.cpp 69900 2017-12-01 15:32:11Z vboxsync $ */
2/** @file
3 * CPUM - CPU database part.
4 */
5
6/*
7 * Copyright (C) 2013-2017 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_CPUM
23#include <VBox/vmm/cpum.h>
24#include "CPUMInternal.h"
25#include <VBox/vmm/vm.h>
26#include <VBox/vmm/mm.h>
27
28#include <VBox/err.h>
29#include <iprt/asm-amd64-x86.h>
30#include <iprt/mem.h>
31#include <iprt/string.h>
32
33
34/*********************************************************************************************************************************
35* Structures and Typedefs *
36*********************************************************************************************************************************/
37typedef struct CPUMDBENTRY
38{
39 /** The CPU name. */
40 const char *pszName;
41 /** The full CPU name. */
42 const char *pszFullName;
43 /** The CPU vendor (CPUMCPUVENDOR). */
44 uint8_t enmVendor;
45 /** The CPU family. */
46 uint8_t uFamily;
47 /** The CPU model. */
48 uint8_t uModel;
49 /** The CPU stepping. */
50 uint8_t uStepping;
51 /** The microarchitecture. */
52 CPUMMICROARCH enmMicroarch;
53 /** Scalable bus frequency used for reporting other frequencies. */
54 uint64_t uScalableBusFreq;
55 /** Flags - CPUDB_F_XXX. */
56 uint32_t fFlags;
57 /** The maximum physical address with of the CPU. This should correspond to
58 * the value in CPUID leaf 0x80000008 when present. */
59 uint8_t cMaxPhysAddrWidth;
60 /** The MXCSR mask. */
61 uint32_t fMxCsrMask;
62 /** Pointer to an array of CPUID leaves. */
63 PCCPUMCPUIDLEAF paCpuIdLeaves;
64 /** The number of CPUID leaves in the array paCpuIdLeaves points to. */
65 uint32_t cCpuIdLeaves;
66 /** The method used to deal with unknown CPUID leaves. */
67 CPUMUNKNOWNCPUID enmUnknownCpuId;
68 /** The default unknown CPUID value. */
69 CPUMCPUID DefUnknownCpuId;
70
71 /** MSR mask. Several microarchitectures ignore the higher bits of ECX in
72 * the RDMSR and WRMSR instructions. */
73 uint32_t fMsrMask;
74
75 /** The number of ranges in the table pointed to b paMsrRanges. */
76 uint32_t cMsrRanges;
77 /** MSR ranges for this CPU. */
78 PCCPUMMSRRANGE paMsrRanges;
79} CPUMDBENTRY;
80
81
82/*********************************************************************************************************************************
83* Defined Constants And Macros *
84*********************************************************************************************************************************/
85/** @name CPUDB_F_XXX - CPUDBENTRY::fFlags
86 * @{ */
87/** Should execute all in IEM.
88 * @todo Implement this - currently done in Main... */
89#define CPUDB_F_EXECUTE_ALL_IN_IEM RT_BIT_32(0)
90/** @} */
91
92
93/** @def NULL_ALONE
94 * For eliminating an unnecessary data dependency in standalone builds (for
95 * VBoxSVC). */
96/** @def ZERO_ALONE
97 * For eliminating an unnecessary data size dependency in standalone builds (for
98 * VBoxSVC). */
99#ifndef CPUM_DB_STANDALONE
100# define NULL_ALONE(a_aTable) a_aTable
101# define ZERO_ALONE(a_cTable) a_cTable
102#else
103# define NULL_ALONE(a_aTable) NULL
104# define ZERO_ALONE(a_cTable) 0
105#endif
106
107
108/** @name Short macros for the MSR range entries.
109 *
110 * These are rather cryptic, but this is to reduce the attack on the right
111 * margin.
112 *
113 * @{ */
114/** Alias one MSR onto another (a_uTarget). */
115#define MAL(a_uMsr, a_szName, a_uTarget) \
116 RINT(a_uMsr, a_uMsr, kCpumMsrRdFn_MsrAlias, kCpumMsrWrFn_MsrAlias, 0, a_uTarget, 0, 0, a_szName)
117/** Functions handles everything. */
118#define MFN(a_uMsr, a_szName, a_enmRdFnSuff, a_enmWrFnSuff) \
119 RINT(a_uMsr, a_uMsr, kCpumMsrRdFn_##a_enmRdFnSuff, kCpumMsrWrFn_##a_enmWrFnSuff, 0, 0, 0, 0, a_szName)
120/** Functions handles everything, with GP mask. */
121#define MFG(a_uMsr, a_szName, a_enmRdFnSuff, a_enmWrFnSuff, a_fWrGpMask) \
122 RINT(a_uMsr, a_uMsr, kCpumMsrRdFn_##a_enmRdFnSuff, kCpumMsrWrFn_##a_enmWrFnSuff, 0, 0, 0, a_fWrGpMask, a_szName)
123/** Function handlers, read-only. */
124#define MFO(a_uMsr, a_szName, a_enmRdFnSuff) \
125 RINT(a_uMsr, a_uMsr, kCpumMsrRdFn_##a_enmRdFnSuff, kCpumMsrWrFn_ReadOnly, 0, 0, 0, UINT64_MAX, a_szName)
126/** Function handlers, ignore all writes. */
127#define MFI(a_uMsr, a_szName, a_enmRdFnSuff) \
128 RINT(a_uMsr, a_uMsr, kCpumMsrRdFn_##a_enmRdFnSuff, kCpumMsrWrFn_IgnoreWrite, 0, 0, UINT64_MAX, 0, a_szName)
129/** Function handlers, with value. */
130#define MFV(a_uMsr, a_szName, a_enmRdFnSuff, a_enmWrFnSuff, a_uValue) \
131 RINT(a_uMsr, a_uMsr, kCpumMsrRdFn_##a_enmRdFnSuff, kCpumMsrWrFn_##a_enmWrFnSuff, 0, a_uValue, 0, 0, a_szName)
132/** Function handlers, with write ignore mask. */
133#define MFW(a_uMsr, a_szName, a_enmRdFnSuff, a_enmWrFnSuff, a_fWrIgnMask) \
134 RINT(a_uMsr, a_uMsr, kCpumMsrRdFn_##a_enmRdFnSuff, kCpumMsrWrFn_##a_enmWrFnSuff, 0, 0, a_fWrIgnMask, 0, a_szName)
135/** Function handlers, extended version. */
136#define MFX(a_uMsr, a_szName, a_enmRdFnSuff, a_enmWrFnSuff, a_uValue, a_fWrIgnMask, a_fWrGpMask) \
137 RINT(a_uMsr, a_uMsr, kCpumMsrRdFn_##a_enmRdFnSuff, kCpumMsrWrFn_##a_enmWrFnSuff, 0, a_uValue, a_fWrIgnMask, a_fWrGpMask, a_szName)
138/** Function handlers, with CPUMCPU storage variable. */
139#define MFS(a_uMsr, a_szName, a_enmRdFnSuff, a_enmWrFnSuff, a_CpumCpuMember) \
140 RINT(a_uMsr, a_uMsr, kCpumMsrRdFn_##a_enmRdFnSuff, kCpumMsrWrFn_##a_enmWrFnSuff, \
141 RT_OFFSETOF(CPUMCPU, a_CpumCpuMember), 0, 0, 0, a_szName)
142/** Function handlers, with CPUMCPU storage variable, ignore mask and GP mask. */
143#define MFZ(a_uMsr, a_szName, a_enmRdFnSuff, a_enmWrFnSuff, a_CpumCpuMember, a_fWrIgnMask, a_fWrGpMask) \
144 RINT(a_uMsr, a_uMsr, kCpumMsrRdFn_##a_enmRdFnSuff, kCpumMsrWrFn_##a_enmWrFnSuff, \
145 RT_OFFSETOF(CPUMCPU, a_CpumCpuMember), 0, a_fWrIgnMask, a_fWrGpMask, a_szName)
146/** Read-only fixed value. */
147#define MVO(a_uMsr, a_szName, a_uValue) \
148 RINT(a_uMsr, a_uMsr, kCpumMsrRdFn_FixedValue, kCpumMsrWrFn_ReadOnly, 0, a_uValue, 0, UINT64_MAX, a_szName)
149/** Read-only fixed value, ignores all writes. */
150#define MVI(a_uMsr, a_szName, a_uValue) \
151 RINT(a_uMsr, a_uMsr, kCpumMsrRdFn_FixedValue, kCpumMsrWrFn_IgnoreWrite, 0, a_uValue, UINT64_MAX, 0, a_szName)
152/** Read fixed value, ignore writes outside GP mask. */
153#define MVG(a_uMsr, a_szName, a_uValue, a_fWrGpMask) \
154 RINT(a_uMsr, a_uMsr, kCpumMsrRdFn_FixedValue, kCpumMsrWrFn_IgnoreWrite, 0, a_uValue, 0, a_fWrGpMask, a_szName)
155/** Read fixed value, extended version with both GP and ignore masks. */
156#define MVX(a_uMsr, a_szName, a_uValue, a_fWrIgnMask, a_fWrGpMask) \
157 RINT(a_uMsr, a_uMsr, kCpumMsrRdFn_FixedValue, kCpumMsrWrFn_IgnoreWrite, 0, a_uValue, a_fWrIgnMask, a_fWrGpMask, a_szName)
158/** The short form, no CPUM backing. */
159#define MSN(a_uMsr, a_szName, a_enmRdFnSuff, a_enmWrFnSuff, a_uInitOrReadValue, a_fWrIgnMask, a_fWrGpMask) \
160 RINT(a_uMsr, a_uMsr, kCpumMsrRdFn_##a_enmRdFnSuff, kCpumMsrWrFn_##a_enmWrFnSuff, 0, \
161 a_uInitOrReadValue, a_fWrIgnMask, a_fWrGpMask, a_szName)
162
163/** Range: Functions handles everything. */
164#define RFN(a_uFirst, a_uLast, a_szName, a_enmRdFnSuff, a_enmWrFnSuff) \
165 RINT(a_uFirst, a_uLast, kCpumMsrRdFn_##a_enmRdFnSuff, kCpumMsrWrFn_##a_enmWrFnSuff, 0, 0, 0, 0, a_szName)
166/** Range: Read fixed value, read-only. */
167#define RVO(a_uFirst, a_uLast, a_szName, a_uValue) \
168 RINT(a_uFirst, a_uLast, kCpumMsrRdFn_FixedValue, kCpumMsrWrFn_ReadOnly, 0, a_uValue, 0, UINT64_MAX, a_szName)
169/** Range: Read fixed value, ignore writes. */
170#define RVI(a_uFirst, a_uLast, a_szName, a_uValue) \
171 RINT(a_uFirst, a_uLast, kCpumMsrRdFn_FixedValue, kCpumMsrWrFn_IgnoreWrite, 0, a_uValue, UINT64_MAX, 0, a_szName)
172/** Range: The short form, no CPUM backing. */
173#define RSN(a_uFirst, a_uLast, a_szName, a_enmRdFnSuff, a_enmWrFnSuff, a_uInitOrReadValue, a_fWrIgnMask, a_fWrGpMask) \
174 RINT(a_uFirst, a_uLast, kCpumMsrRdFn_##a_enmRdFnSuff, kCpumMsrWrFn_##a_enmWrFnSuff, 0, \
175 a_uInitOrReadValue, a_fWrIgnMask, a_fWrGpMask, a_szName)
176
177/** Internal form used by the macros. */
178#ifdef VBOX_WITH_STATISTICS
179# define RINT(a_uFirst, a_uLast, a_enmRdFn, a_enmWrFn, a_offCpumCpu, a_uInitOrReadValue, a_fWrIgnMask, a_fWrGpMask, a_szName) \
180 { a_uFirst, a_uLast, a_enmRdFn, a_enmWrFn, a_offCpumCpu, 0, a_uInitOrReadValue, a_fWrIgnMask, a_fWrGpMask, a_szName, \
181 { 0 }, { 0 }, { 0 }, { 0 } }
182#else
183# define RINT(a_uFirst, a_uLast, a_enmRdFn, a_enmWrFn, a_offCpumCpu, a_uInitOrReadValue, a_fWrIgnMask, a_fWrGpMask, a_szName) \
184 { a_uFirst, a_uLast, a_enmRdFn, a_enmWrFn, a_offCpumCpu, 0, a_uInitOrReadValue, a_fWrIgnMask, a_fWrGpMask, a_szName }
185#endif
186/** @} */
187
188#ifndef CPUM_DB_STANDALONE
189
190#include "cpus/Intel_Core_i7_6700K.h"
191#include "cpus/Intel_Core_i7_5600U.h"
192#include "cpus/Intel_Core_i7_3960X.h"
193#include "cpus/Intel_Core_i5_3570.h"
194#include "cpus/Intel_Core_i7_2635QM.h"
195#include "cpus/Intel_Xeon_X5482_3_20GHz.h"
196#include "cpus/Intel_Core2_X6800_2_93GHz.h"
197#include "cpus/Intel_Core2_T7600_2_33GHz.h"
198#include "cpus/Intel_Core_Duo_T2600_2_16GHz.h"
199#include "cpus/Intel_Pentium_M_processor_2_00GHz.h"
200#include "cpus/Intel_Pentium_4_3_00GHz.h"
201#include "cpus/Intel_Pentium_N3530_2_16GHz.h"
202#include "cpus/Intel_Atom_330_1_60GHz.h"
203#include "cpus/Intel_80386.h"
204#include "cpus/Intel_80286.h"
205#include "cpus/Intel_80186.h"
206#include "cpus/Intel_8086.h"
207
208#include "cpus/AMD_FX_8150_Eight_Core.h"
209#include "cpus/AMD_Phenom_II_X6_1100T.h"
210#include "cpus/Quad_Core_AMD_Opteron_2384.h"
211#include "cpus/AMD_Athlon_64_X2_Dual_Core_4200.h"
212#include "cpus/AMD_Athlon_64_3200.h"
213
214#include "cpus/VIA_QuadCore_L4700_1_2_GHz.h"
215
216
217
218/**
219 * The database entries.
220 *
221 * 1. The first entry is special. It is the fallback for unknown
222 * processors. Thus, it better be pretty representative.
223 *
224 * 2. The first entry for a CPU vendor is likewise important as it is
225 * the default entry for that vendor.
226 *
227 * Generally we put the most recent CPUs first, since these tend to have the
228 * most complicated and backwards compatible list of MSRs.
229 */
230static CPUMDBENTRY const * const g_apCpumDbEntries[] =
231{
232#ifdef VBOX_CPUDB_Intel_Core_i7_6700K
233 &g_Entry_Intel_Core_i7_6700K,
234#endif
235#ifdef VBOX_CPUDB_Intel_Core_i7_5600U
236 &g_Entry_Intel_Core_i7_5600U,
237#endif
238#ifdef VBOX_CPUDB_Intel_Core_i5_3570
239 &g_Entry_Intel_Core_i5_3570,
240#endif
241#ifdef VBOX_CPUDB_Intel_Core_i7_3960X
242 &g_Entry_Intel_Core_i7_3960X,
243#endif
244#ifdef VBOX_CPUDB_Intel_Core_i7_2635QM
245 &g_Entry_Intel_Core_i7_2635QM,
246#endif
247#ifdef VBOX_CPUDB_Intel_Pentium_N3530_2_16GHz
248 &g_Entry_Intel_Pentium_N3530_2_16GHz,
249#endif
250#ifdef VBOX_CPUDB_Intel_Atom_330_1_60GHz
251 &g_Entry_Intel_Atom_330_1_60GHz,
252#endif
253#ifdef VBOX_CPUDB_Intel_Pentium_M_processor_2_00GHz
254 &g_Entry_Intel_Pentium_M_processor_2_00GHz,
255#endif
256#ifdef VBOX_CPUDB_Intel_Xeon_X5482_3_20GHz
257 &g_Entry_Intel_Xeon_X5482_3_20GHz,
258#endif
259#ifdef VBOX_CPUDB_Intel_Core2_X6800_2_93GHz
260 &g_Entry_Intel_Core2_X6800_2_93GHz,
261#endif
262#ifdef VBOX_CPUDB_Intel_Core2_T7600_2_33GHz
263 &g_Entry_Intel_Core2_T7600_2_33GHz,
264#endif
265#ifdef VBOX_CPUDB_Intel_Core_Duo_T2600_2_16GHz
266 &g_Entry_Intel_Core_Duo_T2600_2_16GHz,
267#endif
268#ifdef VBOX_CPUDB_Intel_Pentium_4_3_00GHz
269 &g_Entry_Intel_Pentium_4_3_00GHz,
270#endif
271#ifdef VBOX_CPUDB_Intel_80486
272 &g_Entry_Intel_80486,
273#endif
274#ifdef VBOX_CPUDB_Intel_80386
275 &g_Entry_Intel_80386,
276#endif
277#ifdef VBOX_CPUDB_Intel_80286
278 &g_Entry_Intel_80286,
279#endif
280#ifdef VBOX_CPUDB_Intel_80186
281 &g_Entry_Intel_80186,
282#endif
283#ifdef VBOX_CPUDB_Intel_8086
284 &g_Entry_Intel_8086,
285#endif
286
287#ifdef VBOX_CPUDB_AMD_FX_8150_Eight_Core
288 &g_Entry_AMD_FX_8150_Eight_Core,
289#endif
290#ifdef VBOX_CPUDB_AMD_Phenom_II_X6_1100T
291 &g_Entry_AMD_Phenom_II_X6_1100T,
292#endif
293#ifdef VBOX_CPUDB_Quad_Core_AMD_Opteron_2384
294 &g_Entry_Quad_Core_AMD_Opteron_2384,
295#endif
296#ifdef VBOX_CPUDB_AMD_Athlon_64_X2_Dual_Core_4200
297 &g_Entry_AMD_Athlon_64_X2_Dual_Core_4200,
298#endif
299#ifdef VBOX_CPUDB_AMD_Athlon_64_3200
300 &g_Entry_AMD_Athlon_64_3200,
301#endif
302
303#ifdef VBOX_CPUDB_VIA_QuadCore_L4700_1_2_GHz
304 &g_Entry_VIA_QuadCore_L4700_1_2_GHz,
305#endif
306
307#ifdef VBOX_CPUDB_NEC_V20
308 &g_Entry_NEC_V20,
309#endif
310};
311
312
313
314/**
315 * Binary search used by cpumR3MsrRangesInsert and has some special properties
316 * wrt to mismatches.
317 *
318 * @returns Insert location.
319 * @param paMsrRanges The MSR ranges to search.
320 * @param cMsrRanges The number of MSR ranges.
321 * @param uMsr What to search for.
322 */
323static uint32_t cpumR3MsrRangesBinSearch(PCCPUMMSRRANGE paMsrRanges, uint32_t cMsrRanges, uint32_t uMsr)
324{
325 if (!cMsrRanges)
326 return 0;
327
328 uint32_t iStart = 0;
329 uint32_t iLast = cMsrRanges - 1;
330 for (;;)
331 {
332 uint32_t i = iStart + (iLast - iStart + 1) / 2;
333 if ( uMsr >= paMsrRanges[i].uFirst
334 && uMsr <= paMsrRanges[i].uLast)
335 return i;
336 if (uMsr < paMsrRanges[i].uFirst)
337 {
338 if (i <= iStart)
339 return i;
340 iLast = i - 1;
341 }
342 else
343 {
344 if (i >= iLast)
345 {
346 if (i < cMsrRanges)
347 i++;
348 return i;
349 }
350 iStart = i + 1;
351 }
352 }
353}
354
355
356/**
357 * Ensures that there is space for at least @a cNewRanges in the table,
358 * reallocating the table if necessary.
359 *
360 * @returns Pointer to the MSR ranges on success, NULL on failure. On failure
361 * @a *ppaMsrRanges is freed and set to NULL.
362 * @param pVM The cross context VM structure. If NULL,
363 * use the process heap, otherwise the VM's hyper heap.
364 * @param ppaMsrRanges The variable pointing to the ranges (input/output).
365 * @param cMsrRanges The current number of ranges.
366 * @param cNewRanges The number of ranges to be added.
367 */
368static PCPUMMSRRANGE cpumR3MsrRangesEnsureSpace(PVM pVM, PCPUMMSRRANGE *ppaMsrRanges, uint32_t cMsrRanges, uint32_t cNewRanges)
369{
370 uint32_t cMsrRangesAllocated;
371 if (!pVM)
372 cMsrRangesAllocated = RT_ALIGN_32(cMsrRanges, 16);
373 else
374 {
375 /*
376 * We're using the hyper heap now, but when the range array was copied over to it from
377 * the host-context heap, we only copy the exact size and not the ensured size.
378 * See @bugref{7270}.
379 */
380 cMsrRangesAllocated = cMsrRanges;
381 }
382 if (cMsrRangesAllocated < cMsrRanges + cNewRanges)
383 {
384 void *pvNew;
385 uint32_t cNew = RT_ALIGN_32(cMsrRanges + cNewRanges, 16);
386 if (pVM)
387 {
388 Assert(ppaMsrRanges == &pVM->cpum.s.GuestInfo.paMsrRangesR3);
389 Assert(cMsrRanges == pVM->cpum.s.GuestInfo.cMsrRanges);
390
391 size_t cb = cMsrRangesAllocated * sizeof(**ppaMsrRanges);
392 size_t cbNew = cNew * sizeof(**ppaMsrRanges);
393 int rc = MMR3HyperRealloc(pVM, *ppaMsrRanges, cb, 32, MM_TAG_CPUM_MSRS, cbNew, &pvNew);
394 if (RT_FAILURE(rc))
395 {
396 *ppaMsrRanges = NULL;
397 pVM->cpum.s.GuestInfo.paMsrRangesR0 = NIL_RTR0PTR;
398 pVM->cpum.s.GuestInfo.paMsrRangesRC = NIL_RTRCPTR;
399 LogRel(("CPUM: cpumR3MsrRangesEnsureSpace: MMR3HyperRealloc failed. rc=%Rrc\n", rc));
400 return NULL;
401 }
402 *ppaMsrRanges = (PCPUMMSRRANGE)pvNew;
403 }
404 else
405 {
406 pvNew = RTMemRealloc(*ppaMsrRanges, cNew * sizeof(**ppaMsrRanges));
407 if (!pvNew)
408 {
409 RTMemFree(*ppaMsrRanges);
410 *ppaMsrRanges = NULL;
411 return NULL;
412 }
413 }
414 *ppaMsrRanges = (PCPUMMSRRANGE)pvNew;
415 }
416
417 if (pVM)
418 {
419 /* Update R0 and RC pointers. */
420 Assert(ppaMsrRanges == &pVM->cpum.s.GuestInfo.paMsrRangesR3);
421 pVM->cpum.s.GuestInfo.paMsrRangesR0 = MMHyperR3ToR0(pVM, *ppaMsrRanges);
422 pVM->cpum.s.GuestInfo.paMsrRangesRC = MMHyperR3ToRC(pVM, *ppaMsrRanges);
423 }
424
425 return *ppaMsrRanges;
426}
427
428
429/**
430 * Inserts a new MSR range in into an sorted MSR range array.
431 *
432 * If the new MSR range overlaps existing ranges, the existing ones will be
433 * adjusted/removed to fit in the new one.
434 *
435 * @returns VBox status code.
436 * @retval VINF_SUCCESS
437 * @retval VERR_NO_MEMORY
438 *
439 * @param pVM The cross context VM structure. If NULL,
440 * use the process heap, otherwise the VM's hyper heap.
441 * @param ppaMsrRanges The variable pointing to the ranges (input/output).
442 * Must be NULL if using the hyper heap.
443 * @param pcMsrRanges The variable holding number of ranges. Must be NULL
444 * if using the hyper heap.
445 * @param pNewRange The new range.
446 */
447int cpumR3MsrRangesInsert(PVM pVM, PCPUMMSRRANGE *ppaMsrRanges, uint32_t *pcMsrRanges, PCCPUMMSRRANGE pNewRange)
448{
449 Assert(pNewRange->uLast >= pNewRange->uFirst);
450 Assert(pNewRange->enmRdFn > kCpumMsrRdFn_Invalid && pNewRange->enmRdFn < kCpumMsrRdFn_End);
451 Assert(pNewRange->enmWrFn > kCpumMsrWrFn_Invalid && pNewRange->enmWrFn < kCpumMsrWrFn_End);
452
453 /*
454 * Validate and use the VM's MSR ranges array if we are using the hyper heap.
455 */
456 if (pVM)
457 {
458 AssertReturn(!ppaMsrRanges, VERR_INVALID_PARAMETER);
459 AssertReturn(!pcMsrRanges, VERR_INVALID_PARAMETER);
460
461 ppaMsrRanges = &pVM->cpum.s.GuestInfo.paMsrRangesR3;
462 pcMsrRanges = &pVM->cpum.s.GuestInfo.cMsrRanges;
463 }
464 else
465 {
466 AssertReturn(ppaMsrRanges, VERR_INVALID_POINTER);
467 AssertReturn(pcMsrRanges, VERR_INVALID_POINTER);
468 }
469
470 uint32_t cMsrRanges = *pcMsrRanges;
471 PCPUMMSRRANGE paMsrRanges = *ppaMsrRanges;
472
473 /*
474 * Optimize the linear insertion case where we add new entries at the end.
475 */
476 if ( cMsrRanges > 0
477 && paMsrRanges[cMsrRanges - 1].uLast < pNewRange->uFirst)
478 {
479 paMsrRanges = cpumR3MsrRangesEnsureSpace(pVM, ppaMsrRanges, cMsrRanges, 1);
480 if (!paMsrRanges)
481 return VERR_NO_MEMORY;
482 paMsrRanges[cMsrRanges] = *pNewRange;
483 *pcMsrRanges += 1;
484 }
485 else
486 {
487 uint32_t i = cpumR3MsrRangesBinSearch(paMsrRanges, cMsrRanges, pNewRange->uFirst);
488 Assert(i == cMsrRanges || pNewRange->uFirst <= paMsrRanges[i].uLast);
489 Assert(i == 0 || pNewRange->uFirst > paMsrRanges[i - 1].uLast);
490
491 /*
492 * Adding an entirely new entry?
493 */
494 if ( i >= cMsrRanges
495 || pNewRange->uLast < paMsrRanges[i].uFirst)
496 {
497 paMsrRanges = cpumR3MsrRangesEnsureSpace(pVM, ppaMsrRanges, cMsrRanges, 1);
498 if (!paMsrRanges)
499 return VERR_NO_MEMORY;
500 if (i < cMsrRanges)
501 memmove(&paMsrRanges[i + 1], &paMsrRanges[i], (cMsrRanges - i) * sizeof(paMsrRanges[0]));
502 paMsrRanges[i] = *pNewRange;
503 *pcMsrRanges += 1;
504 }
505 /*
506 * Replace existing entry?
507 */
508 else if ( pNewRange->uFirst == paMsrRanges[i].uFirst
509 && pNewRange->uLast == paMsrRanges[i].uLast)
510 paMsrRanges[i] = *pNewRange;
511 /*
512 * Splitting an existing entry?
513 */
514 else if ( pNewRange->uFirst > paMsrRanges[i].uFirst
515 && pNewRange->uLast < paMsrRanges[i].uLast)
516 {
517 paMsrRanges = cpumR3MsrRangesEnsureSpace(pVM, ppaMsrRanges, cMsrRanges, 2);
518 if (!paMsrRanges)
519 return VERR_NO_MEMORY;
520 if (i < cMsrRanges)
521 memmove(&paMsrRanges[i + 2], &paMsrRanges[i], (cMsrRanges - i) * sizeof(paMsrRanges[0]));
522 paMsrRanges[i + 1] = *pNewRange;
523 paMsrRanges[i + 2] = paMsrRanges[i];
524 paMsrRanges[i ].uLast = pNewRange->uFirst - 1;
525 paMsrRanges[i + 2].uFirst = pNewRange->uLast + 1;
526 *pcMsrRanges += 2;
527 }
528 /*
529 * Complicated scenarios that can affect more than one range.
530 *
531 * The current code does not optimize memmove calls when replacing
532 * one or more existing ranges, because it's tedious to deal with and
533 * not expected to be a frequent usage scenario.
534 */
535 else
536 {
537 /* Adjust start of first match? */
538 if ( pNewRange->uFirst <= paMsrRanges[i].uFirst
539 && pNewRange->uLast < paMsrRanges[i].uLast)
540 paMsrRanges[i].uFirst = pNewRange->uLast + 1;
541 else
542 {
543 /* Adjust end of first match? */
544 if (pNewRange->uFirst > paMsrRanges[i].uFirst)
545 {
546 Assert(paMsrRanges[i].uLast >= pNewRange->uFirst);
547 paMsrRanges[i].uLast = pNewRange->uFirst - 1;
548 i++;
549 }
550 /* Replace the whole first match (lazy bird). */
551 else
552 {
553 if (i + 1 < cMsrRanges)
554 memmove(&paMsrRanges[i], &paMsrRanges[i + 1], (cMsrRanges - i - 1) * sizeof(paMsrRanges[0]));
555 cMsrRanges = *pcMsrRanges -= 1;
556 }
557
558 /* Do the new range affect more ranges? */
559 while ( i < cMsrRanges
560 && pNewRange->uLast >= paMsrRanges[i].uFirst)
561 {
562 if (pNewRange->uLast < paMsrRanges[i].uLast)
563 {
564 /* Adjust the start of it, then we're done. */
565 paMsrRanges[i].uFirst = pNewRange->uLast + 1;
566 break;
567 }
568
569 /* Remove it entirely. */
570 if (i + 1 < cMsrRanges)
571 memmove(&paMsrRanges[i], &paMsrRanges[i + 1], (cMsrRanges - i - 1) * sizeof(paMsrRanges[0]));
572 cMsrRanges = *pcMsrRanges -= 1;
573 }
574 }
575
576 /* Now, perform a normal insertion. */
577 paMsrRanges = cpumR3MsrRangesEnsureSpace(pVM, ppaMsrRanges, cMsrRanges, 1);
578 if (!paMsrRanges)
579 return VERR_NO_MEMORY;
580 if (i < cMsrRanges)
581 memmove(&paMsrRanges[i + 1], &paMsrRanges[i], (cMsrRanges - i) * sizeof(paMsrRanges[0]));
582 paMsrRanges[i] = *pNewRange;
583 *pcMsrRanges += 1;
584 }
585 }
586
587 return VINF_SUCCESS;
588}
589
590
591/**
592 * Worker for cpumR3MsrApplyFudge that applies one table.
593 *
594 * @returns VBox status code.
595 * @param pVM The cross context VM structure.
596 * @param paRanges Array of MSRs to fudge.
597 * @param cRanges Number of MSRs in the array.
598 */
599static int cpumR3MsrApplyFudgeTable(PVM pVM, PCCPUMMSRRANGE paRanges, size_t cRanges)
600{
601 for (uint32_t i = 0; i < cRanges; i++)
602 if (!cpumLookupMsrRange(pVM, paRanges[i].uFirst))
603 {
604 LogRel(("CPUM: MSR fudge: %#010x %s\n", paRanges[i].uFirst, paRanges[i].szName));
605 int rc = cpumR3MsrRangesInsert(NULL /* pVM */, &pVM->cpum.s.GuestInfo.paMsrRangesR3, &pVM->cpum.s.GuestInfo.cMsrRanges,
606 &paRanges[i]);
607 if (RT_FAILURE(rc))
608 return rc;
609 }
610 return VINF_SUCCESS;
611}
612
613
614/**
615 * Fudges the MSRs that guest are known to access in some odd cases.
616 *
617 * A typical example is a VM that has been moved between different hosts where
618 * for instance the cpu vendor differs.
619 *
620 * Another example is older CPU profiles (e.g. Atom Bonnet) for newer CPUs (e.g.
621 * Atom Silvermont), where features reported thru CPUID aren't present in the
622 * MSRs (e.g. AMD64_TSC_AUX).
623 *
624 *
625 * @returns VBox status code.
626 * @param pVM The cross context VM structure.
627 */
628int cpumR3MsrApplyFudge(PVM pVM)
629{
630 /*
631 * Basic.
632 */
633 static CPUMMSRRANGE const s_aFudgeMsrs[] =
634 {
635 MFO(0x00000000, "IA32_P5_MC_ADDR", Ia32P5McAddr),
636 MFX(0x00000001, "IA32_P5_MC_TYPE", Ia32P5McType, Ia32P5McType, 0, 0, UINT64_MAX),
637 MVO(0x00000017, "IA32_PLATFORM_ID", 0),
638 MFN(0x0000001b, "IA32_APIC_BASE", Ia32ApicBase, Ia32ApicBase),
639 MVI(0x0000008b, "BIOS_SIGN", 0),
640 MFX(0x000000fe, "IA32_MTRRCAP", Ia32MtrrCap, ReadOnly, 0x508, 0, 0),
641 MFX(0x00000179, "IA32_MCG_CAP", Ia32McgCap, ReadOnly, 0x005, 0, 0),
642 MFX(0x0000017a, "IA32_MCG_STATUS", Ia32McgStatus, Ia32McgStatus, 0, ~(uint64_t)UINT32_MAX, 0),
643 MFN(0x000001a0, "IA32_MISC_ENABLE", Ia32MiscEnable, Ia32MiscEnable),
644 MFN(0x000001d9, "IA32_DEBUGCTL", Ia32DebugCtl, Ia32DebugCtl),
645 MFO(0x000001db, "P6_LAST_BRANCH_FROM_IP", P6LastBranchFromIp),
646 MFO(0x000001dc, "P6_LAST_BRANCH_TO_IP", P6LastBranchToIp),
647 MFO(0x000001dd, "P6_LAST_INT_FROM_IP", P6LastIntFromIp),
648 MFO(0x000001de, "P6_LAST_INT_TO_IP", P6LastIntToIp),
649 MFS(0x00000277, "IA32_PAT", Ia32Pat, Ia32Pat, Guest.msrPAT),
650 MFZ(0x000002ff, "IA32_MTRR_DEF_TYPE", Ia32MtrrDefType, Ia32MtrrDefType, GuestMsrs.msr.MtrrDefType, 0, ~(uint64_t)0xc07),
651 MFN(0x00000400, "IA32_MCi_CTL_STATUS_ADDR_MISC", Ia32McCtlStatusAddrMiscN, Ia32McCtlStatusAddrMiscN),
652 };
653 int rc = cpumR3MsrApplyFudgeTable(pVM, &s_aFudgeMsrs[0], RT_ELEMENTS(s_aFudgeMsrs));
654 AssertLogRelRCReturn(rc, rc);
655
656 /*
657 * XP might mistake opterons and other newer CPUs for P4s.
658 */
659 if (pVM->cpum.s.GuestFeatures.uFamily >= 0xf)
660 {
661 static CPUMMSRRANGE const s_aP4FudgeMsrs[] =
662 {
663 MFX(0x0000002c, "P4_EBC_FREQUENCY_ID", IntelP4EbcFrequencyId, IntelP4EbcFrequencyId, 0xf12010f, UINT64_MAX, 0),
664 };
665 rc = cpumR3MsrApplyFudgeTable(pVM, &s_aP4FudgeMsrs[0], RT_ELEMENTS(s_aP4FudgeMsrs));
666 AssertLogRelRCReturn(rc, rc);
667 }
668
669 if (pVM->cpum.s.GuestFeatures.fRdTscP)
670 {
671 static CPUMMSRRANGE const s_aRdTscPFudgeMsrs[] =
672 {
673 MFX(0xc0000103, "AMD64_TSC_AUX", Amd64TscAux, Amd64TscAux, 0, 0, ~(uint64_t)UINT32_MAX),
674 };
675 rc = cpumR3MsrApplyFudgeTable(pVM, &s_aRdTscPFudgeMsrs[0], RT_ELEMENTS(s_aRdTscPFudgeMsrs));
676 AssertLogRelRCReturn(rc, rc);
677 }
678
679 return rc;
680}
681
682
683/**
684 * Do we consider @a enmConsider a better match for @a enmTarget than
685 * @a enmFound?
686 *
687 * Only called when @a enmConsider isn't exactly what we're looking for.
688 *
689 * @returns true/false.
690 * @param enmConsider The new microarch to consider.
691 * @param enmTarget The target microarch.
692 * @param enmFound The best microarch match we've found thus far.
693 */
694DECLINLINE(bool) cpumR3DbIsBetterMarchMatch(CPUMMICROARCH enmConsider, CPUMMICROARCH enmTarget, CPUMMICROARCH enmFound)
695{
696 Assert(enmConsider != enmTarget);
697
698 /*
699 * If we've got an march match, don't bother with enmConsider.
700 */
701 if (enmFound == enmTarget)
702 return false;
703
704 /*
705 * Found is below: Pick 'consider' if it's closer to the target or above it.
706 */
707 if (enmFound < enmTarget)
708 return enmConsider > enmFound;
709
710 /*
711 * Found is above: Pick 'consider' if it's also above (paranoia: or equal)
712 * and but closer to the target.
713 */
714 return enmConsider >= enmTarget && enmConsider < enmFound;
715}
716
717
718/**
719 * Do we consider @a enmConsider a better match for @a enmTarget than
720 * @a enmFound?
721 *
722 * Only called for intel family 06h CPUs.
723 *
724 * @returns true/false.
725 * @param enmConsider The new microarch to consider.
726 * @param enmTarget The target microarch.
727 * @param enmFound The best microarch match we've found thus far.
728 */
729static bool cpumR3DbIsBetterIntelFam06Match(CPUMMICROARCH enmConsider, CPUMMICROARCH enmTarget, CPUMMICROARCH enmFound)
730{
731 /* Check intel family 06h claims. */
732 AssertReturn(enmConsider >= kCpumMicroarch_Intel_P6_Core_Atom_First && enmConsider <= kCpumMicroarch_Intel_P6_Core_Atom_End,
733 false);
734 AssertReturn(enmTarget >= kCpumMicroarch_Intel_P6_Core_Atom_First && enmTarget <= kCpumMicroarch_Intel_P6_Core_Atom_End,
735 false);
736
737 /* Put matches out of the way. */
738 if (enmConsider == enmTarget)
739 return true;
740 if (enmFound == enmTarget)
741 return false;
742
743 /* If found isn't a family 06h march, whatever we're considering must be a better choice. */
744 if ( enmFound < kCpumMicroarch_Intel_P6_Core_Atom_First
745 || enmFound > kCpumMicroarch_Intel_P6_Core_Atom_End)
746 return true;
747
748 /*
749 * The family 06h stuff is split into three categories:
750 * - Common P6 heritage
751 * - Core
752 * - Atom
753 *
754 * Determin which of the three arguments are Atom marchs, because that's
755 * all we need to make the right choice.
756 */
757 bool const fConsiderAtom = enmConsider >= kCpumMicroarch_Intel_Atom_First;
758 bool const fTargetAtom = enmTarget >= kCpumMicroarch_Intel_Atom_First;
759 bool const fFoundAtom = enmFound >= kCpumMicroarch_Intel_Atom_First;
760
761 /*
762 * Want atom:
763 */
764 if (fTargetAtom)
765 {
766 /* Pick the atom if we've got one of each.*/
767 if (fConsiderAtom != fFoundAtom)
768 return fConsiderAtom;
769 /* If we haven't got any atoms under consideration, pick a P6 or the earlier core.
770 Note! Not entirely sure Dothan is the best choice, but it'll do for now. */
771 if (!fConsiderAtom)
772 {
773 if (enmConsider > enmFound)
774 return enmConsider <= kCpumMicroarch_Intel_P6_M_Dothan;
775 return enmFound > kCpumMicroarch_Intel_P6_M_Dothan;
776 }
777 /* else: same category, default comparison rules. */
778 Assert(fConsiderAtom && fFoundAtom);
779 }
780 /*
781 * Want non-atom:
782 */
783 /* Pick the non-atom if we've got one of each. */
784 else if (fConsiderAtom != fFoundAtom)
785 return fFoundAtom;
786 /* If we've only got atoms under consideration, pick the older one just to pick something. */
787 else if (fConsiderAtom)
788 return enmConsider < enmFound;
789 else
790 Assert(!fConsiderAtom && !fFoundAtom);
791
792 /*
793 * Same basic category. Do same compare as caller.
794 */
795 return cpumR3DbIsBetterMarchMatch(enmConsider, enmTarget, enmFound);
796}
797
798
799int cpumR3DbGetCpuInfo(const char *pszName, PCPUMINFO pInfo)
800{
801 CPUMDBENTRY const *pEntry = NULL;
802 int rc;
803
804 if (!strcmp(pszName, "host"))
805 {
806 /*
807 * Create a CPU database entry for the host CPU. This means getting
808 * the CPUID bits from the real CPU and grabbing the closest matching
809 * database entry for MSRs.
810 */
811 rc = CPUMR3CpuIdDetectUnknownLeafMethod(&pInfo->enmUnknownCpuIdMethod, &pInfo->DefCpuId);
812 if (RT_FAILURE(rc))
813 return rc;
814 rc = CPUMR3CpuIdCollectLeaves(&pInfo->paCpuIdLeavesR3, &pInfo->cCpuIdLeaves);
815 if (RT_FAILURE(rc))
816 return rc;
817 pInfo->fMxCsrMask = CPUMR3DeterminHostMxCsrMask();
818
819 /* Lookup database entry for MSRs. */
820 CPUMCPUVENDOR const enmVendor = CPUMR3CpuIdDetectVendorEx(pInfo->paCpuIdLeavesR3[0].uEax,
821 pInfo->paCpuIdLeavesR3[0].uEbx,
822 pInfo->paCpuIdLeavesR3[0].uEcx,
823 pInfo->paCpuIdLeavesR3[0].uEdx);
824 uint32_t const uStd1Eax = pInfo->paCpuIdLeavesR3[1].uEax;
825 uint8_t const uFamily = ASMGetCpuFamily(uStd1Eax);
826 uint8_t const uModel = ASMGetCpuModel(uStd1Eax, enmVendor == CPUMCPUVENDOR_INTEL);
827 uint8_t const uStepping = ASMGetCpuStepping(uStd1Eax);
828 CPUMMICROARCH const enmMicroarch = CPUMR3CpuIdDetermineMicroarchEx(enmVendor, uFamily, uModel, uStepping);
829
830 for (unsigned i = 0; i < RT_ELEMENTS(g_apCpumDbEntries); i++)
831 {
832 CPUMDBENTRY const *pCur = g_apCpumDbEntries[i];
833 if ((CPUMCPUVENDOR)pCur->enmVendor == enmVendor)
834 {
835 /* Match against Family, Microarch, model and stepping. Except
836 for family, always match the closer with preference given to
837 the later/older ones. */
838 if (pCur->uFamily == uFamily)
839 {
840 if (pCur->enmMicroarch == enmMicroarch)
841 {
842 if (pCur->uModel == uModel)
843 {
844 if (pCur->uStepping == uStepping)
845 {
846 /* Perfect match. */
847 pEntry = pCur;
848 break;
849 }
850
851 if ( !pEntry
852 || pEntry->uModel != uModel
853 || pEntry->enmMicroarch != enmMicroarch
854 || pEntry->uFamily != uFamily)
855 pEntry = pCur;
856 else if ( pCur->uStepping >= uStepping
857 ? pCur->uStepping < pEntry->uStepping || pEntry->uStepping < uStepping
858 : pCur->uStepping > pEntry->uStepping)
859 pEntry = pCur;
860 }
861 else if ( !pEntry
862 || pEntry->enmMicroarch != enmMicroarch
863 || pEntry->uFamily != uFamily)
864 pEntry = pCur;
865 else if ( pCur->uModel >= uModel
866 ? pCur->uModel < pEntry->uModel || pEntry->uModel < uModel
867 : pCur->uModel > pEntry->uModel)
868 pEntry = pCur;
869 }
870 else if ( !pEntry
871 || pEntry->uFamily != uFamily)
872 pEntry = pCur;
873 /* Special march matching rules applies to intel family 06h. */
874 else if ( enmVendor == CPUMCPUVENDOR_INTEL
875 && uFamily == 6
876 ? cpumR3DbIsBetterIntelFam06Match(pCur->enmMicroarch, enmMicroarch, pEntry->enmMicroarch)
877 : cpumR3DbIsBetterMarchMatch(pCur->enmMicroarch, enmMicroarch, pEntry->enmMicroarch))
878 pEntry = pCur;
879 }
880 /* We don't do closeness matching on family, we use the first
881 entry for the CPU vendor instead. (P4 workaround.) */
882 else if (!pEntry)
883 pEntry = pCur;
884 }
885 }
886
887 if (pEntry)
888 LogRel(("CPUM: Matched host CPU %s %#x/%#x/%#x %s with CPU DB entry '%s' (%s %#x/%#x/%#x %s)\n",
889 CPUMR3CpuVendorName(enmVendor), uFamily, uModel, uStepping, CPUMR3MicroarchName(enmMicroarch),
890 pEntry->pszName, CPUMR3CpuVendorName((CPUMCPUVENDOR)pEntry->enmVendor), pEntry->uFamily, pEntry->uModel,
891 pEntry->uStepping, CPUMR3MicroarchName(pEntry->enmMicroarch) ));
892 else
893 {
894 pEntry = g_apCpumDbEntries[0];
895 LogRel(("CPUM: No matching processor database entry %s %#x/%#x/%#x %s, falling back on '%s'\n",
896 CPUMR3CpuVendorName(enmVendor), uFamily, uModel, uStepping, CPUMR3MicroarchName(enmMicroarch),
897 pEntry->pszName));
898 }
899 }
900 else
901 {
902 /*
903 * We're supposed to be emulating a specific CPU that is included in
904 * our CPU database. The CPUID tables needs to be copied onto the
905 * heap so the caller can modify them and so they can be freed like
906 * in the host case above.
907 */
908 for (unsigned i = 0; i < RT_ELEMENTS(g_apCpumDbEntries); i++)
909 if (!strcmp(pszName, g_apCpumDbEntries[i]->pszName))
910 {
911 pEntry = g_apCpumDbEntries[i];
912 break;
913 }
914 if (!pEntry)
915 {
916 LogRel(("CPUM: Cannot locate any CPU by the name '%s'\n", pszName));
917 return VERR_CPUM_DB_CPU_NOT_FOUND;
918 }
919
920 pInfo->cCpuIdLeaves = pEntry->cCpuIdLeaves;
921 if (pEntry->cCpuIdLeaves)
922 {
923 /* Must allocate a multiple of 16 here, matching cpumR3CpuIdEnsureSpace. */
924 size_t cbExtra = sizeof(pEntry->paCpuIdLeaves[0]) * (RT_ALIGN(pEntry->cCpuIdLeaves, 16) - pEntry->cCpuIdLeaves);
925 pInfo->paCpuIdLeavesR3 = (PCPUMCPUIDLEAF)RTMemDupEx(pEntry->paCpuIdLeaves,
926 sizeof(pEntry->paCpuIdLeaves[0]) * pEntry->cCpuIdLeaves,
927 cbExtra);
928 if (!pInfo->paCpuIdLeavesR3)
929 return VERR_NO_MEMORY;
930 }
931 else
932 pInfo->paCpuIdLeavesR3 = NULL;
933
934 pInfo->enmUnknownCpuIdMethod = pEntry->enmUnknownCpuId;
935 pInfo->DefCpuId = pEntry->DefUnknownCpuId;
936 pInfo->fMxCsrMask = pEntry->fMxCsrMask;
937
938 LogRel(("CPUM: Using CPU DB entry '%s' (%s %#x/%#x/%#x %s)\n",
939 pEntry->pszName, CPUMR3CpuVendorName((CPUMCPUVENDOR)pEntry->enmVendor),
940 pEntry->uFamily, pEntry->uModel, pEntry->uStepping, CPUMR3MicroarchName(pEntry->enmMicroarch) ));
941 }
942
943 pInfo->fMsrMask = pEntry->fMsrMask;
944 pInfo->iFirstExtCpuIdLeaf = 0; /* Set by caller. */
945 pInfo->uScalableBusFreq = pEntry->uScalableBusFreq;
946 pInfo->paCpuIdLeavesR0 = NIL_RTR0PTR;
947 pInfo->paMsrRangesR0 = NIL_RTR0PTR;
948 pInfo->paCpuIdLeavesRC = NIL_RTRCPTR;
949 pInfo->paMsrRangesRC = NIL_RTRCPTR;
950
951 /*
952 * Copy the MSR range.
953 */
954 uint32_t cMsrs = 0;
955 PCPUMMSRRANGE paMsrs = NULL;
956
957 PCCPUMMSRRANGE pCurMsr = pEntry->paMsrRanges;
958 uint32_t cLeft = pEntry->cMsrRanges;
959 while (cLeft-- > 0)
960 {
961 rc = cpumR3MsrRangesInsert(NULL /* pVM */, &paMsrs, &cMsrs, pCurMsr);
962 if (RT_FAILURE(rc))
963 {
964 Assert(!paMsrs); /* The above function frees this. */
965 RTMemFree(pInfo->paCpuIdLeavesR3);
966 pInfo->paCpuIdLeavesR3 = NULL;
967 return rc;
968 }
969 pCurMsr++;
970 }
971
972 pInfo->paMsrRangesR3 = paMsrs;
973 pInfo->cMsrRanges = cMsrs;
974 return VINF_SUCCESS;
975}
976
977
978/**
979 * Insert an MSR range into the VM.
980 *
981 * If the new MSR range overlaps existing ranges, the existing ones will be
982 * adjusted/removed to fit in the new one.
983 *
984 * @returns VBox status code.
985 * @param pVM The cross context VM structure.
986 * @param pNewRange Pointer to the MSR range being inserted.
987 */
988VMMR3DECL(int) CPUMR3MsrRangesInsert(PVM pVM, PCCPUMMSRRANGE pNewRange)
989{
990 AssertReturn(pVM, VERR_INVALID_PARAMETER);
991 AssertReturn(pNewRange, VERR_INVALID_PARAMETER);
992
993 return cpumR3MsrRangesInsert(pVM, NULL /* ppaMsrRanges */, NULL /* pcMsrRanges */, pNewRange);
994}
995
996
997/**
998 * Register statistics for the MSRs.
999 *
1000 * This must not be called before the MSRs have been finalized and moved to the
1001 * hyper heap.
1002 *
1003 * @returns VBox status code.
1004 * @param pVM The cross context VM structure.
1005 */
1006int cpumR3MsrRegStats(PVM pVM)
1007{
1008 /*
1009 * Global statistics.
1010 */
1011 PCPUM pCpum = &pVM->cpum.s;
1012 STAM_REL_REG(pVM, &pCpum->cMsrReads, STAMTYPE_COUNTER, "/CPUM/MSR-Totals/Reads",
1013 STAMUNIT_OCCURENCES, "All RDMSRs making it to CPUM.");
1014 STAM_REL_REG(pVM, &pCpum->cMsrReadsRaiseGp, STAMTYPE_COUNTER, "/CPUM/MSR-Totals/ReadsRaisingGP",
1015 STAMUNIT_OCCURENCES, "RDMSR raising #GPs, except unknown MSRs.");
1016 STAM_REL_REG(pVM, &pCpum->cMsrReadsUnknown, STAMTYPE_COUNTER, "/CPUM/MSR-Totals/ReadsUnknown",
1017 STAMUNIT_OCCURENCES, "RDMSR on unknown MSRs (raises #GP).");
1018 STAM_REL_REG(pVM, &pCpum->cMsrWrites, STAMTYPE_COUNTER, "/CPUM/MSR-Totals/Writes",
1019 STAMUNIT_OCCURENCES, "All RDMSRs making it to CPUM.");
1020 STAM_REL_REG(pVM, &pCpum->cMsrWritesRaiseGp, STAMTYPE_COUNTER, "/CPUM/MSR-Totals/WritesRaisingGP",
1021 STAMUNIT_OCCURENCES, "WRMSR raising #GPs, except unknown MSRs.");
1022 STAM_REL_REG(pVM, &pCpum->cMsrWritesToIgnoredBits, STAMTYPE_COUNTER, "/CPUM/MSR-Totals/WritesToIgnoredBits",
1023 STAMUNIT_OCCURENCES, "Writing of ignored bits.");
1024 STAM_REL_REG(pVM, &pCpum->cMsrWritesUnknown, STAMTYPE_COUNTER, "/CPUM/MSR-Totals/WritesUnknown",
1025 STAMUNIT_OCCURENCES, "WRMSR on unknown MSRs (raises #GP).");
1026
1027
1028# ifdef VBOX_WITH_STATISTICS
1029 /*
1030 * Per range.
1031 */
1032 PCPUMMSRRANGE paRanges = pVM->cpum.s.GuestInfo.paMsrRangesR3;
1033 uint32_t cRanges = pVM->cpum.s.GuestInfo.cMsrRanges;
1034 for (uint32_t i = 0; i < cRanges; i++)
1035 {
1036 char szName[160];
1037 ssize_t cchName;
1038
1039 if (paRanges[i].uFirst == paRanges[i].uLast)
1040 cchName = RTStrPrintf(szName, sizeof(szName), "/CPUM/MSRs/%#010x-%s",
1041 paRanges[i].uFirst, paRanges[i].szName);
1042 else
1043 cchName = RTStrPrintf(szName, sizeof(szName), "/CPUM/MSRs/%#010x-%#010x-%s",
1044 paRanges[i].uFirst, paRanges[i].uLast, paRanges[i].szName);
1045
1046 RTStrCopy(&szName[cchName], sizeof(szName) - cchName, "-reads");
1047 STAMR3Register(pVM, &paRanges[i].cReads, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, szName, STAMUNIT_OCCURENCES, "RDMSR");
1048
1049 RTStrCopy(&szName[cchName], sizeof(szName) - cchName, "-writes");
1050 STAMR3Register(pVM, &paRanges[i].cWrites, STAMTYPE_COUNTER, STAMVISIBILITY_USED, szName, STAMUNIT_OCCURENCES, "WRMSR");
1051
1052 RTStrCopy(&szName[cchName], sizeof(szName) - cchName, "-GPs");
1053 STAMR3Register(pVM, &paRanges[i].cGps, STAMTYPE_COUNTER, STAMVISIBILITY_USED, szName, STAMUNIT_OCCURENCES, "#GPs");
1054
1055 RTStrCopy(&szName[cchName], sizeof(szName) - cchName, "-ign-bits-writes");
1056 STAMR3Register(pVM, &paRanges[i].cIgnoredBits, STAMTYPE_COUNTER, STAMVISIBILITY_USED, szName, STAMUNIT_OCCURENCES, "WRMSR w/ ignored bits");
1057 }
1058# endif /* VBOX_WITH_STATISTICS */
1059
1060 return VINF_SUCCESS;
1061}
1062
1063#endif /* !CPUM_DB_STANDALONE */
1064
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette