VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/DBGFCoreWrite.cpp@ 80239

Last change on this file since 80239 was 80191, checked in by vboxsync, 5 years ago

VMM/r3: Refactored VMCPU enumeration in preparation that aCpus will be replaced with a pointer array. Removed two raw-mode offset members from the CPUM and CPUMCPU sub-structures. bugref:9217 bugref:9517

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 24.1 KB
Line 
1/* $Id: DBGFCoreWrite.cpp 80191 2019-08-08 00:36:57Z vboxsync $ */
2/** @file
3 * DBGF - Debugger Facility, Guest Core Dump.
4 */
5
6/*
7 * Copyright (C) 2010-2019 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/** @page pg_dbgf_vmcore VMCore Format
19 *
20 * The VirtualBox VMCore Format:
21 * [ ELF 64 Header] -- Only 1
22 *
23 * [ PT_NOTE ] -- Only 1
24 * - Offset into CoreDescriptor followed by list of Notes (Note Hdr + data) of VBox CPUs.
25 * - (Any Additional custom Note sections).
26 *
27 * [ PT_LOAD ] -- One for each contiguous memory chunk
28 * - Memory offset (physical).
29 * - File offset.
30 *
31 * CoreDescriptor
32 * - Magic, VBox version.
33 * - Number of CPus.
34 *
35 * Per-CPU register dump
36 * - CPU 1 Note Hdr + Data.
37 * - CPU 2 Note Hdr + Data.
38 * ...
39 * (Additional custom notes Hdr+data)
40 * - VBox 1 Note Hdr + Data.
41 * - VBox 2 Note Hdr + Data.
42 * ...
43 * Memory dump
44 *
45 */
46
47
48/*********************************************************************************************************************************
49* Header Files *
50*********************************************************************************************************************************/
51#define VBOX_BUGREF_9217_PART_I
52#define LOG_GROUP LOG_GROUP_DBGF
53#include <iprt/param.h>
54#include <iprt/file.h>
55#include <iprt/mem.h>
56#include <iprt/formats/elf64.h>
57
58#include "DBGFInternal.h"
59
60#include <VBox/vmm/cpum.h>
61#include <VBox/vmm/pgm.h>
62#include <VBox/vmm/apic.h>
63#include <VBox/vmm/dbgf.h>
64#include <VBox/vmm/dbgfcorefmt.h>
65#include <VBox/vmm/mm.h>
66#include <VBox/vmm/vm.h>
67#include <VBox/vmm/uvm.h>
68
69#include <VBox/err.h>
70#include <VBox/log.h>
71#include <VBox/version.h>
72
73
74/*********************************************************************************************************************************
75* Defined Constants And Macros *
76*********************************************************************************************************************************/
77#define DBGFLOG_NAME "DBGFCoreWrite"
78
79
80/*********************************************************************************************************************************
81* Global Variables *
82*********************************************************************************************************************************/
83static const int g_NoteAlign = 8;
84static const int g_cbNoteName = 16;
85
86/* The size of these strings (incl. NULL terminator) must align to 8 bytes (g_NoteAlign) and -not- 4 bytes. */
87static const char *g_pcszCoreVBoxCore = "VBCORE";
88static const char *g_pcszCoreVBoxCpu = "VBCPU";
89
90
91/*********************************************************************************************************************************
92* Structures and Typedefs *
93*********************************************************************************************************************************/
94/**
95 * Guest core writer data.
96 *
97 * Used to pass parameters from DBGFR3CoreWrite to dbgfR3CoreWriteRendezvous().
98 */
99typedef struct DBGFCOREDATA
100{
101 /** The name of the file to write the file to. */
102 const char *pszFilename;
103 /** Whether to replace (/overwrite) any existing file. */
104 bool fReplaceFile;
105} DBGFCOREDATA;
106/** Pointer to the guest core writer data. */
107typedef DBGFCOREDATA *PDBGFCOREDATA;
108
109
110
111/**
112 * ELF function to write 64-bit ELF header.
113 *
114 * @param hFile The file to write to.
115 * @param cProgHdrs Number of program headers.
116 * @param cSecHdrs Number of section headers.
117 *
118 * @return IPRT status code.
119 */
120static int Elf64WriteElfHdr(RTFILE hFile, uint16_t cProgHdrs, uint16_t cSecHdrs)
121{
122 Elf64_Ehdr ElfHdr;
123 RT_ZERO(ElfHdr);
124 ElfHdr.e_ident[EI_MAG0] = ELFMAG0;
125 ElfHdr.e_ident[EI_MAG1] = ELFMAG1;
126 ElfHdr.e_ident[EI_MAG2] = ELFMAG2;
127 ElfHdr.e_ident[EI_MAG3] = ELFMAG3;
128 ElfHdr.e_ident[EI_DATA] = ELFDATA2LSB;
129 ElfHdr.e_type = ET_CORE;
130 ElfHdr.e_version = EV_CURRENT;
131 ElfHdr.e_ident[EI_CLASS] = ELFCLASS64;
132 /* 32-bit builds will produce cores with e_machine EM_386. */
133#ifdef RT_ARCH_AMD64
134 ElfHdr.e_machine = EM_X86_64;
135#else
136 ElfHdr.e_machine = EM_386;
137#endif
138 ElfHdr.e_phnum = cProgHdrs;
139 ElfHdr.e_shnum = cSecHdrs;
140 ElfHdr.e_ehsize = sizeof(ElfHdr);
141 ElfHdr.e_phoff = sizeof(ElfHdr);
142 ElfHdr.e_phentsize = sizeof(Elf64_Phdr);
143 ElfHdr.e_shentsize = sizeof(Elf64_Shdr);
144
145 return RTFileWrite(hFile, &ElfHdr, sizeof(ElfHdr), NULL /* all */);
146}
147
148
149/**
150 * ELF function to write 64-bit program header.
151 *
152 * @param hFile The file to write to.
153 * @param Type Type of program header (PT_*).
154 * @param fFlags Flags (access permissions, PF_*).
155 * @param offFileData File offset of contents.
156 * @param cbFileData Size of contents in the file.
157 * @param cbMemData Size of contents in memory.
158 * @param Phys Physical address, pass zero if not applicable.
159 *
160 * @return IPRT status code.
161 */
162static int Elf64WriteProgHdr(RTFILE hFile, uint32_t Type, uint32_t fFlags, uint64_t offFileData, uint64_t cbFileData,
163 uint64_t cbMemData, RTGCPHYS Phys)
164{
165 Elf64_Phdr ProgHdr;
166 RT_ZERO(ProgHdr);
167 ProgHdr.p_type = Type;
168 ProgHdr.p_flags = fFlags;
169 ProgHdr.p_offset = offFileData;
170 ProgHdr.p_filesz = cbFileData;
171 ProgHdr.p_memsz = cbMemData;
172 ProgHdr.p_paddr = Phys;
173
174 return RTFileWrite(hFile, &ProgHdr, sizeof(ProgHdr), NULL /* all */);
175}
176
177
178/**
179 * Returns the size of the NOTE section given the name and size of the data.
180 *
181 * @param pszName Name of the note section.
182 * @param cbData Size of the data portion of the note section.
183 *
184 * @return The size of the NOTE section as rounded to the file alignment.
185 */
186static uint64_t Elf64NoteSectionSize(const char *pszName, uint64_t cbData)
187{
188 uint64_t cbNote = sizeof(Elf64_Nhdr);
189
190 size_t cbName = strlen(pszName) + 1;
191 size_t cbNameAlign = RT_ALIGN_Z(cbName, g_NoteAlign);
192
193 cbNote += cbNameAlign;
194 cbNote += RT_ALIGN_64(cbData, g_NoteAlign);
195 return cbNote;
196}
197
198
199/**
200 * Elf function to write 64-bit note header.
201 *
202 * @param hFile The file to write to.
203 * @param Type Type of this section.
204 * @param pszName Name of this section.
205 * @param pvData Opaque pointer to the data, if NULL only computes size.
206 * @param cbData Size of the data.
207 *
208 * @returns IPRT status code.
209 */
210static int Elf64WriteNoteHdr(RTFILE hFile, uint16_t Type, const char *pszName, const void *pvData, uint64_t cbData)
211{
212 AssertReturn(pvData, VERR_INVALID_POINTER);
213 AssertReturn(cbData > 0, VERR_NO_DATA);
214
215 char szNoteName[g_cbNoteName];
216 RT_ZERO(szNoteName);
217 RTStrCopy(szNoteName, sizeof(szNoteName), pszName);
218
219 size_t cbName = strlen(szNoteName) + 1;
220 size_t cbNameAlign = RT_ALIGN_Z(cbName, g_NoteAlign);
221 uint64_t cbDataAlign = RT_ALIGN_64(cbData, g_NoteAlign);
222
223 /*
224 * Yell loudly and bail if we are going to be writing a core file that is not compatible with
225 * both Solaris and the 64-bit ELF spec. which dictates 8-byte alignment. See @bugref{5211#c3}.
226 */
227 if (cbNameAlign - cbName > 3)
228 {
229 LogRel((DBGFLOG_NAME ": Elf64WriteNoteHdr pszName=%s cbName=%u cbNameAlign=%u, cbName aligns to 4 not 8-bytes!\n",
230 pszName, cbName, cbNameAlign));
231 return VERR_INVALID_PARAMETER;
232 }
233
234 if (cbDataAlign - cbData > 3)
235 {
236 LogRel((DBGFLOG_NAME ": Elf64WriteNoteHdr pszName=%s cbData=%u cbDataAlign=%u, cbData aligns to 4 not 8-bytes!\n",
237 pszName, cbData, cbDataAlign));
238 return VERR_INVALID_PARAMETER;
239 }
240
241 static const char s_achPad[7] = { 0, 0, 0, 0, 0, 0, 0 };
242 AssertCompile(sizeof(s_achPad) >= g_NoteAlign - 1);
243
244 Elf64_Nhdr ElfNoteHdr;
245 RT_ZERO(ElfNoteHdr);
246 ElfNoteHdr.n_namesz = (Elf64_Word)cbName - 1; /* Again, a discrepancy between ELF-64 and Solaris,
247 we will follow ELF-64, see @bugref{5211#c3}. */
248 ElfNoteHdr.n_type = Type;
249 ElfNoteHdr.n_descsz = (Elf64_Word)cbDataAlign;
250
251 /*
252 * Write note header.
253 */
254 int rc = RTFileWrite(hFile, &ElfNoteHdr, sizeof(ElfNoteHdr), NULL /* all */);
255 if (RT_SUCCESS(rc))
256 {
257 /*
258 * Write note name.
259 */
260 rc = RTFileWrite(hFile, szNoteName, cbName, NULL /* all */);
261 if (RT_SUCCESS(rc))
262 {
263 /*
264 * Write note name padding if required.
265 */
266 if (cbNameAlign > cbName)
267 rc = RTFileWrite(hFile, s_achPad, cbNameAlign - cbName, NULL);
268
269 if (RT_SUCCESS(rc))
270 {
271 /*
272 * Write note data.
273 */
274 rc = RTFileWrite(hFile, pvData, cbData, NULL /* all */);
275 if (RT_SUCCESS(rc))
276 {
277 /*
278 * Write note data padding if required.
279 */
280 if (cbDataAlign > cbData)
281 rc = RTFileWrite(hFile, s_achPad, cbDataAlign - cbData, NULL /* all*/);
282 }
283 }
284 }
285 }
286
287 if (RT_FAILURE(rc))
288 LogRel((DBGFLOG_NAME ": RTFileWrite failed. rc=%Rrc pszName=%s cbName=%u cbNameAlign=%u cbData=%u cbDataAlign=%u\n",
289 rc, pszName, cbName, cbNameAlign, cbData, cbDataAlign));
290
291 return rc;
292}
293
294
295/**
296 * Count the number of memory ranges that go into the core file.
297 *
298 * We cannot do a page-by-page dump of the entire guest memory as there will be
299 * way too many program header entries. Also we don't want to dump MMIO regions
300 * which means we cannot have a 1:1 mapping between core file offset and memory
301 * offset. Instead we dump the memory in ranges. A memory range is a contiguous
302 * memory area suitable for dumping to a core file.
303 *
304 * @param pVM The cross context VM structure.
305 *
306 * @return Number of memory ranges
307 */
308static uint32_t dbgfR3GetRamRangeCount(PVM pVM)
309{
310 return PGMR3PhysGetRamRangeCount(pVM);
311}
312
313
314/**
315 * Gets the guest-CPU context suitable for dumping into the core file.
316 *
317 * @param pVCpu The cross context virtual CPU structure.
318 * @param pDbgfCpu Where to dump the guest-CPU data.
319 */
320static void dbgfR3GetCoreCpu(PVMCPU pVCpu, PDBGFCORECPU pDbgfCpu)
321{
322#define DBGFCOPYSEL(a_dbgfsel, a_cpumselreg) \
323 do { \
324 (a_dbgfsel).uBase = (a_cpumselreg).u64Base; \
325 (a_dbgfsel).uLimit = (a_cpumselreg).u32Limit; \
326 (a_dbgfsel).uAttr = (a_cpumselreg).Attr.u; \
327 (a_dbgfsel).uSel = (a_cpumselreg).Sel; \
328 } while (0)
329
330 PVM pVM = pVCpu->CTX_SUFF(pVM);
331 PCCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
332 pDbgfCpu->rax = pCtx->rax;
333 pDbgfCpu->rbx = pCtx->rbx;
334 pDbgfCpu->rcx = pCtx->rcx;
335 pDbgfCpu->rdx = pCtx->rdx;
336 pDbgfCpu->rsi = pCtx->rsi;
337 pDbgfCpu->rdi = pCtx->rdi;
338 pDbgfCpu->r8 = pCtx->r8;
339 pDbgfCpu->r9 = pCtx->r9;
340 pDbgfCpu->r10 = pCtx->r10;
341 pDbgfCpu->r11 = pCtx->r11;
342 pDbgfCpu->r12 = pCtx->r12;
343 pDbgfCpu->r13 = pCtx->r13;
344 pDbgfCpu->r14 = pCtx->r14;
345 pDbgfCpu->r15 = pCtx->r15;
346 pDbgfCpu->rip = pCtx->rip;
347 pDbgfCpu->rsp = pCtx->rsp;
348 pDbgfCpu->rbp = pCtx->rbp;
349 pDbgfCpu->rflags = pCtx->rflags.u;
350 DBGFCOPYSEL(pDbgfCpu->cs, pCtx->cs);
351 DBGFCOPYSEL(pDbgfCpu->ds, pCtx->ds);
352 DBGFCOPYSEL(pDbgfCpu->es, pCtx->es);
353 DBGFCOPYSEL(pDbgfCpu->fs, pCtx->fs);
354 DBGFCOPYSEL(pDbgfCpu->gs, pCtx->gs);
355 DBGFCOPYSEL(pDbgfCpu->ss, pCtx->ss);
356 pDbgfCpu->cr0 = pCtx->cr0;
357 pDbgfCpu->cr2 = pCtx->cr2;
358 pDbgfCpu->cr3 = pCtx->cr3;
359 pDbgfCpu->cr4 = pCtx->cr4;
360 AssertCompile(RT_ELEMENTS(pDbgfCpu->dr) == RT_ELEMENTS(pCtx->dr));
361 for (unsigned i = 0; i < RT_ELEMENTS(pDbgfCpu->dr); i++)
362 pDbgfCpu->dr[i] = pCtx->dr[i];
363 pDbgfCpu->gdtr.uAddr = pCtx->gdtr.pGdt;
364 pDbgfCpu->gdtr.cb = pCtx->gdtr.cbGdt;
365 pDbgfCpu->idtr.uAddr = pCtx->idtr.pIdt;
366 pDbgfCpu->idtr.cb = pCtx->idtr.cbIdt;
367 DBGFCOPYSEL(pDbgfCpu->ldtr, pCtx->ldtr);
368 DBGFCOPYSEL(pDbgfCpu->tr, pCtx->tr);
369 pDbgfCpu->sysenter.cs = pCtx->SysEnter.cs;
370 pDbgfCpu->sysenter.eip = pCtx->SysEnter.eip;
371 pDbgfCpu->sysenter.esp = pCtx->SysEnter.esp;
372 pDbgfCpu->msrEFER = pCtx->msrEFER;
373 pDbgfCpu->msrSTAR = pCtx->msrSTAR;
374 pDbgfCpu->msrPAT = pCtx->msrPAT;
375 pDbgfCpu->msrLSTAR = pCtx->msrLSTAR;
376 pDbgfCpu->msrCSTAR = pCtx->msrCSTAR;
377 pDbgfCpu->msrSFMASK = pCtx->msrSFMASK;
378 pDbgfCpu->msrKernelGSBase = pCtx->msrKERNELGSBASE;
379 pDbgfCpu->msrApicBase = APICGetBaseMsrNoCheck(pVCpu);
380 pDbgfCpu->aXcr[0] = pCtx->aXcr[0];
381 pDbgfCpu->aXcr[1] = pCtx->aXcr[1];
382 AssertCompile(sizeof(pDbgfCpu->ext) == sizeof(*pCtx->pXStateR3));
383 pDbgfCpu->cbExt = pVM->cpum.ro.GuestFeatures.cbMaxExtendedState;
384 if (RT_LIKELY(pDbgfCpu->cbExt))
385 memcpy(&pDbgfCpu->ext, pCtx->pXStateR3, pDbgfCpu->cbExt);
386
387#undef DBGFCOPYSEL
388}
389
390
391/**
392 * Worker function for dbgfR3CoreWrite() which does the writing.
393 *
394 * @returns VBox status code
395 * @param pVM The cross context VM structure.
396 * @param hFile The file to write to. Caller closes this.
397 */
398static int dbgfR3CoreWriteWorker(PVM pVM, RTFILE hFile)
399{
400 /*
401 * Collect core information.
402 */
403 uint32_t const cu32MemRanges = dbgfR3GetRamRangeCount(pVM);
404 uint16_t const cMemRanges = cu32MemRanges < UINT16_MAX - 1 ? cu32MemRanges : UINT16_MAX - 1; /* One PT_NOTE Program header */
405 uint16_t const cProgHdrs = cMemRanges + 1;
406
407 DBGFCOREDESCRIPTOR CoreDescriptor;
408 RT_ZERO(CoreDescriptor);
409 CoreDescriptor.u32Magic = DBGFCORE_MAGIC;
410 CoreDescriptor.u32FmtVersion = DBGFCORE_FMT_VERSION;
411 CoreDescriptor.cbSelf = sizeof(CoreDescriptor);
412 CoreDescriptor.u32VBoxVersion = VBOX_FULL_VERSION;
413 CoreDescriptor.u32VBoxRevision = VMMGetSvnRev();
414 CoreDescriptor.cCpus = pVM->cCpus;
415
416 Log((DBGFLOG_NAME ": CoreDescriptor Version=%u Revision=%u\n", CoreDescriptor.u32VBoxVersion, CoreDescriptor.u32VBoxRevision));
417
418 /*
419 * Compute the file layout (see pg_dbgf_vmcore).
420 */
421 uint64_t const offElfHdr = RTFileTell(hFile);
422 uint64_t const offNoteSection = offElfHdr + sizeof(Elf64_Ehdr);
423 uint64_t const offLoadSections = offNoteSection + sizeof(Elf64_Phdr);
424 uint64_t const cbLoadSections = cMemRanges * sizeof(Elf64_Phdr);
425 uint64_t const offCoreDescriptor = offLoadSections + cbLoadSections;
426 uint64_t const cbCoreDescriptor = Elf64NoteSectionSize(g_pcszCoreVBoxCore, sizeof(CoreDescriptor));
427 uint64_t const offCpuDumps = offCoreDescriptor + cbCoreDescriptor;
428 uint64_t const cbCpuDumps = pVM->cCpus * Elf64NoteSectionSize(g_pcszCoreVBoxCpu, sizeof(DBGFCORECPU));
429 uint64_t const offMemory = offCpuDumps + cbCpuDumps;
430
431 uint64_t const offNoteSectionData = offCoreDescriptor;
432 uint64_t const cbNoteSectionData = cbCoreDescriptor + cbCpuDumps;
433
434 /*
435 * Write ELF header.
436 */
437 int rc = Elf64WriteElfHdr(hFile, cProgHdrs, 0 /* cSecHdrs */);
438 if (RT_FAILURE(rc))
439 {
440 LogRel((DBGFLOG_NAME ": Elf64WriteElfHdr failed. rc=%Rrc\n", rc));
441 return rc;
442 }
443
444 /*
445 * Write PT_NOTE program header.
446 */
447 Assert(RTFileTell(hFile) == offNoteSection);
448 rc = Elf64WriteProgHdr(hFile, PT_NOTE, PF_R,
449 offNoteSectionData, /* file offset to contents */
450 cbNoteSectionData, /* size in core file */
451 cbNoteSectionData, /* size in memory */
452 0); /* physical address */
453 if (RT_FAILURE(rc))
454 {
455 LogRel((DBGFLOG_NAME ": Elf64WritreProgHdr failed for PT_NOTE. rc=%Rrc\n", rc));
456 return rc;
457 }
458
459 /*
460 * Write PT_LOAD program header for each memory range.
461 */
462 Assert(RTFileTell(hFile) == offLoadSections);
463 uint64_t offMemRange = offMemory;
464 for (uint16_t iRange = 0; iRange < cMemRanges; iRange++)
465 {
466 RTGCPHYS GCPhysStart;
467 RTGCPHYS GCPhysEnd;
468 bool fIsMmio;
469 rc = PGMR3PhysGetRange(pVM, iRange, &GCPhysStart, &GCPhysEnd, NULL /* pszDesc */, &fIsMmio);
470 if (RT_FAILURE(rc))
471 {
472 LogRel((DBGFLOG_NAME ": PGMR3PhysGetRange failed for iRange(%u) rc=%Rrc\n", iRange, rc));
473 return rc;
474 }
475
476 uint64_t cbMemRange = GCPhysEnd - GCPhysStart + 1;
477 uint64_t cbFileRange = fIsMmio ? 0 : cbMemRange;
478
479 Log((DBGFLOG_NAME ": PGMR3PhysGetRange iRange=%u GCPhysStart=%#x GCPhysEnd=%#x cbMemRange=%u\n",
480 iRange, GCPhysStart, GCPhysEnd, cbMemRange));
481
482 rc = Elf64WriteProgHdr(hFile, PT_LOAD, PF_R,
483 offMemRange, /* file offset to contents */
484 cbFileRange, /* size in core file */
485 cbMemRange, /* size in memory */
486 GCPhysStart); /* physical address */
487 if (RT_FAILURE(rc))
488 {
489 LogRel((DBGFLOG_NAME ": Elf64WriteProgHdr failed for memory range(%u) cbFileRange=%u cbMemRange=%u rc=%Rrc\n",
490 iRange, cbFileRange, cbMemRange, rc));
491 return rc;
492 }
493
494 offMemRange += cbFileRange;
495 }
496
497 /*
498 * Write the Core descriptor note header and data.
499 */
500 Assert(RTFileTell(hFile) == offCoreDescriptor);
501 rc = Elf64WriteNoteHdr(hFile, NT_VBOXCORE, g_pcszCoreVBoxCore, &CoreDescriptor, sizeof(CoreDescriptor));
502 if (RT_FAILURE(rc))
503 {
504 LogRel((DBGFLOG_NAME ": Elf64WriteNoteHdr failed for Note '%s' rc=%Rrc\n", g_pcszCoreVBoxCore, rc));
505 return rc;
506 }
507
508 /*
509 * Write the CPU context note headers and data.
510 * We allocate the DBGFCORECPU struct. rather than using the stack as it can be pretty large due to X86XSAVEAREA.
511 */
512 Assert(RTFileTell(hFile) == offCpuDumps);
513 PDBGFCORECPU pDbgfCoreCpu = (PDBGFCORECPU)RTMemAlloc(sizeof(*pDbgfCoreCpu));
514 if (RT_UNLIKELY(!pDbgfCoreCpu))
515 {
516 LogRel((DBGFLOG_NAME ": Failed to alloc %u bytes for DBGFCORECPU\n", sizeof(*pDbgfCoreCpu)));
517 return VERR_NO_MEMORY;
518 }
519
520 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
521 {
522 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
523 RT_BZERO(pDbgfCoreCpu, sizeof(*pDbgfCoreCpu));
524 dbgfR3GetCoreCpu(pVCpu, pDbgfCoreCpu);
525
526 rc = Elf64WriteNoteHdr(hFile, NT_VBOXCPU, g_pcszCoreVBoxCpu, pDbgfCoreCpu, sizeof(*pDbgfCoreCpu));
527 if (RT_FAILURE(rc))
528 {
529 LogRel((DBGFLOG_NAME ": Elf64WriteNoteHdr failed for vCPU[%u] rc=%Rrc\n", idCpu, rc));
530 RTMemFree(pDbgfCoreCpu);
531 return rc;
532 }
533 }
534 RTMemFree(pDbgfCoreCpu);
535 pDbgfCoreCpu = NULL;
536
537 /*
538 * Write memory ranges.
539 */
540 Assert(RTFileTell(hFile) == offMemory);
541 for (uint16_t iRange = 0; iRange < cMemRanges; iRange++)
542 {
543 RTGCPHYS GCPhysStart;
544 RTGCPHYS GCPhysEnd;
545 bool fIsMmio;
546 rc = PGMR3PhysGetRange(pVM, iRange, &GCPhysStart, &GCPhysEnd, NULL /* pszDesc */, &fIsMmio);
547 if (RT_FAILURE(rc))
548 {
549 LogRel((DBGFLOG_NAME ": PGMR3PhysGetRange(2) failed for iRange(%u) rc=%Rrc\n", iRange, rc));
550 return rc;
551 }
552
553 if (fIsMmio)
554 continue;
555
556 /*
557 * Write page-by-page of this memory range.
558 *
559 * The read function may fail on MMIO ranges, we write these as zero
560 * pages for now (would be nice to have the VGA bits there though).
561 */
562 uint64_t cbMemRange = GCPhysEnd - GCPhysStart + 1;
563 uint64_t cPages = cbMemRange >> PAGE_SHIFT;
564 for (uint64_t iPage = 0; iPage < cPages; iPage++)
565 {
566 uint8_t abPage[PAGE_SIZE];
567 rc = PGMPhysSimpleReadGCPhys(pVM, abPage, GCPhysStart + (iPage << PAGE_SHIFT), sizeof(abPage));
568 if (RT_FAILURE(rc))
569 {
570 if (rc != VERR_PGM_PHYS_PAGE_RESERVED)
571 LogRel((DBGFLOG_NAME ": PGMPhysRead failed for iRange=%u iPage=%u. rc=%Rrc. Ignoring...\n", iRange, iPage, rc));
572 RT_ZERO(abPage);
573 }
574
575 rc = RTFileWrite(hFile, abPage, sizeof(abPage), NULL /* all */);
576 if (RT_FAILURE(rc))
577 {
578 LogRel((DBGFLOG_NAME ": RTFileWrite failed. iRange=%u iPage=%u rc=%Rrc\n", iRange, iPage, rc));
579 return rc;
580 }
581 }
582 }
583
584 return rc;
585}
586
587
588/**
589 * EMT Rendezvous worker function for DBGFR3CoreWrite().
590 *
591 * @param pVM The cross context VM structure.
592 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
593 * @param pvData Opaque data.
594 *
595 * @return VBox status code.
596 */
597static DECLCALLBACK(VBOXSTRICTRC) dbgfR3CoreWriteRendezvous(PVM pVM, PVMCPU pVCpu, void *pvData)
598{
599 /*
600 * Validate input.
601 */
602 AssertReturn(pVM, VERR_INVALID_VM_HANDLE);
603 AssertReturn(pVCpu, VERR_INVALID_VMCPU_HANDLE);
604 AssertReturn(pvData, VERR_INVALID_POINTER);
605
606 PDBGFCOREDATA pDbgfData = (PDBGFCOREDATA)pvData;
607
608 /*
609 * Create the core file.
610 */
611 uint32_t fFlags = (pDbgfData->fReplaceFile ? RTFILE_O_CREATE_REPLACE : RTFILE_O_CREATE)
612 | RTFILE_O_WRITE
613 | RTFILE_O_DENY_ALL
614 | (0600 << RTFILE_O_CREATE_MODE_SHIFT);
615 RTFILE hFile;
616 int rc = RTFileOpen(&hFile, pDbgfData->pszFilename, fFlags);
617 if (RT_SUCCESS(rc))
618 {
619 rc = dbgfR3CoreWriteWorker(pVM, hFile);
620 RTFileClose(hFile);
621 }
622 else
623 LogRel((DBGFLOG_NAME ": RTFileOpen failed for '%s' rc=%Rrc\n", pDbgfData->pszFilename, rc));
624 return rc;
625}
626
627
628/**
629 * Write core dump of the guest.
630 *
631 * @returns VBox status code.
632 * @param pUVM The user mode VM handle.
633 * @param pszFilename The name of the file to which the guest core
634 * dump should be written.
635 * @param fReplaceFile Whether to replace the file or not.
636 *
637 * @remarks The VM may need to be suspended before calling this function in
638 * order to truly stop all device threads and drivers. This function
639 * only synchronizes EMTs.
640 */
641VMMR3DECL(int) DBGFR3CoreWrite(PUVM pUVM, const char *pszFilename, bool fReplaceFile)
642{
643 UVM_ASSERT_VALID_EXT_RETURN(pUVM, VERR_INVALID_VM_HANDLE);
644 PVM pVM = pUVM->pVM;
645 VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE);
646 AssertReturn(pszFilename, VERR_INVALID_HANDLE);
647
648 /*
649 * Pass the core write request down to EMT rendezvous which makes sure
650 * other EMTs, if any, are not running. IO threads could still be running
651 * but we don't care about them.
652 */
653 DBGFCOREDATA CoreData;
654 RT_ZERO(CoreData);
655 CoreData.pszFilename = pszFilename;
656 CoreData.fReplaceFile = fReplaceFile;
657
658 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, dbgfR3CoreWriteRendezvous, &CoreData);
659 if (RT_SUCCESS(rc))
660 LogRel((DBGFLOG_NAME ": Successfully wrote guest core dump '%s'\n", pszFilename));
661 else
662 LogRel((DBGFLOG_NAME ": Failed to write guest core dump '%s'. rc=%Rrc\n", pszFilename, rc));
663 return rc;
664}
665
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette