VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/DBGFDisas.cpp@ 48215

Last change on this file since 48215 was 47889, checked in by vboxsync, 11 years ago

cpumguestinstr: always print what the disassembler returns, and make it return the cached instruction bytes on failure.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 29.5 KB
Line 
1/* $Id: DBGFDisas.cpp 47889 2013-08-20 11:15:31Z vboxsync $ */
2/** @file
3 * DBGF - Debugger Facility, Disassembler.
4 */
5
6/*
7 * Copyright (C) 2006-2013 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/*******************************************************************************
19* Header Files *
20*******************************************************************************/
21#define LOG_GROUP LOG_GROUP_DBGF
22#include <VBox/vmm/dbgf.h>
23#include <VBox/vmm/selm.h>
24#include <VBox/vmm/mm.h>
25#include <VBox/vmm/hm.h>
26#include <VBox/vmm/pgm.h>
27#include <VBox/vmm/cpum.h>
28#ifdef VBOX_WITH_RAW_MODE
29# include <VBox/vmm/patm.h>
30#endif
31#include "DBGFInternal.h"
32#include <VBox/dis.h>
33#include <VBox/err.h>
34#include <VBox/param.h>
35#include <VBox/vmm/vm.h>
36#include <VBox/vmm/uvm.h>
37#include "internal/pgm.h"
38
39#include <VBox/log.h>
40#include <iprt/assert.h>
41#include <iprt/string.h>
42#include <iprt/alloca.h>
43#include <iprt/ctype.h>
44
45
46/*******************************************************************************
47* Structures and Typedefs *
48*******************************************************************************/
49/**
50 * Structure used when disassembling and instructions in DBGF.
51 * This is used so the reader function can get the stuff it needs.
52 */
53typedef struct
54{
55 /** The core structure. */
56 DISCPUSTATE Cpu;
57 /** Pointer to the VM. */
58 PVM pVM;
59 /** Pointer to the VMCPU. */
60 PVMCPU pVCpu;
61 /** The address space for resolving symbol. */
62 RTDBGAS hDbgAs;
63 /** Pointer to the first byte in the segment. */
64 RTGCUINTPTR GCPtrSegBase;
65 /** Pointer to the byte after the end of the segment. (might have wrapped!) */
66 RTGCUINTPTR GCPtrSegEnd;
67 /** The size of the segment minus 1. */
68 RTGCUINTPTR cbSegLimit;
69 /** The guest paging mode. */
70 PGMMODE enmMode;
71 /** Pointer to the current page - R3 Ptr. */
72 void const *pvPageR3;
73 /** Pointer to the current page - GC Ptr. */
74 RTGCPTR GCPtrPage;
75 /** Pointer to the next instruction (relative to GCPtrSegBase). */
76 RTGCUINTPTR GCPtrNext;
77 /** The lock information that PGMPhysReleasePageMappingLock needs. */
78 PGMPAGEMAPLOCK PageMapLock;
79 /** Whether the PageMapLock is valid or not. */
80 bool fLocked;
81 /** 64 bits mode or not. */
82 bool f64Bits;
83 /** Read original unpatched bytes from the patch manager. */
84 bool fUnpatchedBytes;
85 /** Set when fUnpatchedBytes is active and we encounter patched bytes. */
86 bool fPatchedInstr;
87} DBGFDISASSTATE, *PDBGFDISASSTATE;
88
89
90/*******************************************************************************
91* Internal Functions *
92*******************************************************************************/
93static FNDISREADBYTES dbgfR3DisasInstrRead;
94
95
96
97/**
98 * Calls the disassembler with the proper reader functions and such for disa
99 *
100 * @returns VBox status code.
101 * @param pVM Pointer to the VM.
102 * @param pVCpu Pointer to the VMCPU.
103 * @param pSelInfo The selector info.
104 * @param enmMode The guest paging mode.
105 * @param fFlags DBGF_DISAS_FLAGS_XXX.
106 * @param GCPtr The GC pointer (selector offset).
107 * @param pState The disas CPU state.
108 */
109static int dbgfR3DisasInstrFirst(PVM pVM, PVMCPU pVCpu, PDBGFSELINFO pSelInfo, PGMMODE enmMode,
110 RTGCPTR GCPtr, uint32_t fFlags, PDBGFDISASSTATE pState)
111{
112 pState->GCPtrSegBase = pSelInfo->GCPtrBase;
113 pState->GCPtrSegEnd = pSelInfo->cbLimit + 1 + (RTGCUINTPTR)pSelInfo->GCPtrBase;
114 pState->cbSegLimit = pSelInfo->cbLimit;
115 pState->enmMode = enmMode;
116 pState->GCPtrPage = 0;
117 pState->pvPageR3 = NULL;
118 pState->hDbgAs = !HMIsEnabled(pVM)
119 ? DBGF_AS_RC_AND_GC_GLOBAL
120 : DBGF_AS_GLOBAL;
121 pState->pVM = pVM;
122 pState->pVCpu = pVCpu;
123 pState->fLocked = false;
124 pState->f64Bits = enmMode >= PGMMODE_AMD64 && pSelInfo->u.Raw.Gen.u1Long;
125#ifdef VBOX_WITH_RAW_MODE
126 pState->fUnpatchedBytes = RT_BOOL(fFlags & DBGF_DISAS_FLAGS_UNPATCHED_BYTES);
127 pState->fPatchedInstr = false;
128#endif
129
130 DISCPUMODE enmCpuMode;
131 switch (fFlags & DBGF_DISAS_FLAGS_MODE_MASK)
132 {
133 default:
134 AssertFailed();
135 case DBGF_DISAS_FLAGS_DEFAULT_MODE:
136 enmCpuMode = pState->f64Bits
137 ? DISCPUMODE_64BIT
138 : pSelInfo->u.Raw.Gen.u1DefBig
139 ? DISCPUMODE_32BIT
140 : DISCPUMODE_16BIT;
141 break;
142 case DBGF_DISAS_FLAGS_16BIT_MODE:
143 case DBGF_DISAS_FLAGS_16BIT_REAL_MODE:
144 enmCpuMode = DISCPUMODE_16BIT;
145 break;
146 case DBGF_DISAS_FLAGS_32BIT_MODE:
147 enmCpuMode = DISCPUMODE_32BIT;
148 break;
149 case DBGF_DISAS_FLAGS_64BIT_MODE:
150 enmCpuMode = DISCPUMODE_64BIT;
151 break;
152 }
153
154 uint32_t cbInstr;
155 int rc = DISInstrWithReader(GCPtr,
156 enmCpuMode,
157 dbgfR3DisasInstrRead,
158 &pState->Cpu,
159 &pState->Cpu,
160 &cbInstr);
161 if (RT_SUCCESS(rc))
162 {
163 pState->GCPtrNext = GCPtr + cbInstr;
164 return VINF_SUCCESS;
165 }
166
167 /* cleanup */
168 if (pState->fLocked)
169 {
170 PGMPhysReleasePageMappingLock(pVM, &pState->PageMapLock);
171 pState->fLocked = false;
172 }
173 return rc;
174}
175
176
177#if 0
178/**
179 * Calls the disassembler for disassembling the next instruction.
180 *
181 * @returns VBox status code.
182 * @param pState The disas CPU state.
183 */
184static int dbgfR3DisasInstrNext(PDBGFDISASSTATE pState)
185{
186 uint32_t cbInstr;
187 int rc = DISInstr(&pState->Cpu, (void *)pState->GCPtrNext, 0, &cbInstr, NULL);
188 if (RT_SUCCESS(rc))
189 {
190 pState->GCPtrNext = GCPtr + cbInstr;
191 return VINF_SUCCESS;
192 }
193 return rc;
194}
195#endif
196
197
198/**
199 * Done with the disassembler state, free associated resources.
200 *
201 * @param pState The disas CPU state ++.
202 */
203static void dbgfR3DisasInstrDone(PDBGFDISASSTATE pState)
204{
205 if (pState->fLocked)
206 {
207 PGMPhysReleasePageMappingLock(pState->pVM, &pState->PageMapLock);
208 pState->fLocked = false;
209 }
210}
211
212
213/**
214 * @callback_method_impl{FNDISREADBYTES}
215 *
216 * @remarks The source is relative to the base address indicated by
217 * DBGFDISASSTATE::GCPtrSegBase.
218 */
219static DECLCALLBACK(int) dbgfR3DisasInstrRead(PDISCPUSTATE pDis, uint8_t offInstr, uint8_t cbMinRead, uint8_t cbMaxRead)
220{
221 PDBGFDISASSTATE pState = (PDBGFDISASSTATE)pDis;
222 for (;;)
223 {
224 RTGCUINTPTR GCPtr = pDis->uInstrAddr + offInstr + pState->GCPtrSegBase;
225
226 /*
227 * Need to update the page translation?
228 */
229 if ( !pState->pvPageR3
230 || (GCPtr >> PAGE_SHIFT) != (pState->GCPtrPage >> PAGE_SHIFT))
231 {
232 int rc = VINF_SUCCESS;
233
234 /* translate the address */
235 pState->GCPtrPage = GCPtr & PAGE_BASE_GC_MASK;
236 if ( !HMIsEnabled(pState->pVM)
237 && MMHyperIsInsideArea(pState->pVM, pState->GCPtrPage))
238 {
239 pState->pvPageR3 = MMHyperRCToR3(pState->pVM, (RTRCPTR)pState->GCPtrPage);
240 if (!pState->pvPageR3)
241 rc = VERR_INVALID_POINTER;
242 }
243 else
244 {
245 if (pState->fLocked)
246 PGMPhysReleasePageMappingLock(pState->pVM, &pState->PageMapLock);
247
248 if (pState->enmMode <= PGMMODE_PROTECTED)
249 rc = PGMPhysGCPhys2CCPtrReadOnly(pState->pVM, pState->GCPtrPage, &pState->pvPageR3, &pState->PageMapLock);
250 else
251 rc = PGMPhysGCPtr2CCPtrReadOnly(pState->pVCpu, pState->GCPtrPage, &pState->pvPageR3, &pState->PageMapLock);
252 pState->fLocked = RT_SUCCESS_NP(rc);
253 }
254 if (RT_FAILURE(rc))
255 {
256 pState->pvPageR3 = NULL;
257 return rc;
258 }
259 }
260
261 /*
262 * Check the segment limit.
263 */
264 if (!pState->f64Bits && pDis->uInstrAddr + offInstr > pState->cbSegLimit)
265 return VERR_OUT_OF_SELECTOR_BOUNDS;
266
267 /*
268 * Calc how much we can read, maxing out the read.
269 */
270 uint32_t cb = PAGE_SIZE - (GCPtr & PAGE_OFFSET_MASK);
271 if (!pState->f64Bits)
272 {
273 RTGCUINTPTR cbSeg = pState->GCPtrSegEnd - GCPtr;
274 if (cb > cbSeg && cbSeg)
275 cb = cbSeg;
276 }
277 if (cb > cbMaxRead)
278 cb = cbMaxRead;
279
280#ifdef VBOX_WITH_RAW_MODE
281 /*
282 * Read original bytes from PATM if asked to do so.
283 */
284 if (pState->fUnpatchedBytes)
285 {
286 size_t cbRead = cb;
287 int rc = PATMR3ReadOrgInstr(pState->pVM, GCPtr, &pDis->abInstr[offInstr], cbRead, &cbRead);
288 if (RT_SUCCESS(rc))
289 {
290 pState->fPatchedInstr = true;
291 if (cbRead >= cbMinRead)
292 {
293 pDis->cbCachedInstr = offInstr + (uint8_t)cbRead;
294 return rc;
295 }
296
297 cbMinRead -= (uint8_t)cbRead;
298 cbMaxRead -= (uint8_t)cbRead;
299 cb -= (uint8_t)cbRead;
300 offInstr += (uint8_t)cbRead;
301 GCPtr += cbRead;
302 if (!cb)
303 continue;
304 }
305 }
306#endif /* VBOX_WITH_RAW_MODE */
307
308 /*
309 * Read and advance,
310 */
311 memcpy(&pDis->abInstr[offInstr], (char *)pState->pvPageR3 + (GCPtr & PAGE_OFFSET_MASK), cb);
312 offInstr += (uint8_t)cb;
313 if (cb >= cbMinRead)
314 {
315 pDis->cbCachedInstr = offInstr;
316 return VINF_SUCCESS;
317 }
318 cbMaxRead -= (uint8_t)cb;
319 cbMinRead -= (uint8_t)cb;
320 }
321}
322
323
324/**
325 * @copydoc FNDISGETSYMBOL
326 */
327static DECLCALLBACK(int) dbgfR3DisasGetSymbol(PCDISCPUSTATE pCpu, uint32_t u32Sel, RTUINTPTR uAddress,
328 char *pszBuf, size_t cchBuf, RTINTPTR *poff, void *pvUser)
329{
330 PDBGFDISASSTATE pState = (PDBGFDISASSTATE)pCpu;
331 PCDBGFSELINFO pSelInfo = (PCDBGFSELINFO)pvUser;
332
333 /*
334 * Address conversion
335 */
336 DBGFADDRESS Addr;
337 int rc;
338 /* Start with CS. */
339 if ( DIS_FMT_SEL_IS_REG(u32Sel)
340 ? DIS_FMT_SEL_GET_REG(u32Sel) == DISSELREG_CS
341 : pSelInfo->Sel == DIS_FMT_SEL_GET_VALUE(u32Sel))
342 rc = DBGFR3AddrFromSelInfoOff(pState->pVM->pUVM, &Addr, pSelInfo, uAddress);
343 /* In long mode everything but FS and GS is easy. */
344 else if ( pState->Cpu.uCpuMode == DISCPUMODE_64BIT
345 && DIS_FMT_SEL_IS_REG(u32Sel)
346 && DIS_FMT_SEL_GET_REG(u32Sel) != DISSELREG_GS
347 && DIS_FMT_SEL_GET_REG(u32Sel) != DISSELREG_FS)
348 {
349 DBGFR3AddrFromFlat(pState->pVM->pUVM, &Addr, uAddress);
350 rc = VINF_SUCCESS;
351 }
352 /* Here's a quick hack to catch patch manager SS relative access. */
353 else if ( DIS_FMT_SEL_IS_REG(u32Sel)
354 && DIS_FMT_SEL_GET_REG(u32Sel) == DISSELREG_SS
355 && pSelInfo->GCPtrBase == 0
356 && pSelInfo->cbLimit >= UINT32_MAX
357 && PATMIsPatchGCAddr(pState->pVM, pState->Cpu.uInstrAddr))
358 {
359 DBGFR3AddrFromFlat(pState->pVM->pUVM, &Addr, uAddress);
360 rc = VINF_SUCCESS;
361 }
362 else
363 {
364 /** @todo implement a generic solution here. */
365 rc = VERR_SYMBOL_NOT_FOUND;
366 }
367
368 /*
369 * If we got an address, try resolve it into a symbol.
370 */
371 if (RT_SUCCESS(rc))
372 {
373 RTDBGSYMBOL Sym;
374 RTGCINTPTR off;
375 rc = DBGFR3AsSymbolByAddr(pState->pVM->pUVM, pState->hDbgAs, &Addr, RTDBGSYMADDR_FLAGS_LESS_OR_EQUAL,
376 &off, &Sym, NULL /*phMod*/);
377 if (RT_SUCCESS(rc))
378 {
379 /*
380 * Return the symbol and offset.
381 */
382 size_t cchName = strlen(Sym.szName);
383 if (cchName >= cchBuf)
384 cchName = cchBuf - 1;
385 memcpy(pszBuf, Sym.szName, cchName);
386 pszBuf[cchName] = '\0';
387
388 *poff = off;
389 }
390 }
391 return rc;
392}
393
394
395/**
396 * Disassembles the one instruction according to the specified flags and
397 * address, internal worker executing on the EMT of the specified virtual CPU.
398 *
399 * @returns VBox status code.
400 * @param pVM Pointer to the VM.
401 * @param pVCpu Pointer to the VMCPU.
402 * @param Sel The code selector. This used to determine the 32/16 bit ness and
403 * calculation of the actual instruction address.
404 * @param pGCPtr Pointer to the variable holding the code address
405 * relative to the base of Sel.
406 * @param fFlags Flags controlling where to start and how to format.
407 * A combination of the DBGF_DISAS_FLAGS_* \#defines.
408 * @param pszOutput Output buffer.
409 * @param cbOutput Size of the output buffer.
410 * @param pcbInstr Where to return the size of the instruction.
411 */
412static DECLCALLBACK(int)
413dbgfR3DisasInstrExOnVCpu(PVM pVM, PVMCPU pVCpu, RTSEL Sel, PRTGCPTR pGCPtr, uint32_t fFlags,
414 char *pszOutput, uint32_t cbOutput, uint32_t *pcbInstr)
415{
416 VMCPU_ASSERT_EMT(pVCpu);
417 RTGCPTR GCPtr = *pGCPtr;
418 int rc;
419
420 /*
421 * Get the Sel and GCPtr if fFlags requests that.
422 */
423 PCCPUMCTXCORE pCtxCore = NULL;
424 PCCPUMSELREG pSRegCS = NULL;
425 if (fFlags & DBGF_DISAS_FLAGS_CURRENT_GUEST)
426 {
427 pCtxCore = CPUMGetGuestCtxCore(pVCpu);
428 Sel = pCtxCore->cs.Sel;
429 pSRegCS = &pCtxCore->cs;
430 GCPtr = pCtxCore->rip;
431 }
432 else if (fFlags & DBGF_DISAS_FLAGS_CURRENT_HYPER)
433 {
434 fFlags |= DBGF_DISAS_FLAGS_HYPER;
435 pCtxCore = CPUMGetHyperCtxCore(pVCpu);
436 Sel = pCtxCore->cs.Sel;
437 GCPtr = pCtxCore->rip;
438 }
439 /*
440 * Check if the selector matches the guest CS, use the hidden
441 * registers from that if they are valid. Saves time and effort.
442 */
443 else
444 {
445 pCtxCore = CPUMGetGuestCtxCore(pVCpu);
446 if (pCtxCore->cs.Sel == Sel && Sel != DBGF_SEL_FLAT)
447 pSRegCS = &pCtxCore->cs;
448 else
449 pCtxCore = NULL;
450 }
451
452 /*
453 * Read the selector info - assume no stale selectors and nasty stuff like that.
454 *
455 * Note! We CANNOT load invalid hidden selector registers since that would
456 * mean that log/debug statements or the debug will influence the
457 * guest state and make things behave differently.
458 */
459 DBGFSELINFO SelInfo;
460 const PGMMODE enmMode = PGMGetGuestMode(pVCpu);
461 bool fRealModeAddress = false;
462
463 if ( pSRegCS
464 && CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, pSRegCS))
465 {
466 SelInfo.Sel = Sel;
467 SelInfo.SelGate = 0;
468 SelInfo.GCPtrBase = pSRegCS->u64Base;
469 SelInfo.cbLimit = pSRegCS->u32Limit;
470 SelInfo.fFlags = PGMMODE_IS_LONG_MODE(enmMode)
471 ? DBGFSELINFO_FLAGS_LONG_MODE
472 : enmMode != PGMMODE_REAL && !pCtxCore->eflags.Bits.u1VM
473 ? DBGFSELINFO_FLAGS_PROT_MODE
474 : DBGFSELINFO_FLAGS_REAL_MODE;
475
476 SelInfo.u.Raw.au32[0] = 0;
477 SelInfo.u.Raw.au32[1] = 0;
478 SelInfo.u.Raw.Gen.u16LimitLow = 0xffff;
479 SelInfo.u.Raw.Gen.u4LimitHigh = 0xf;
480 SelInfo.u.Raw.Gen.u1Present = pSRegCS->Attr.n.u1Present;
481 SelInfo.u.Raw.Gen.u1Granularity = pSRegCS->Attr.n.u1Granularity;;
482 SelInfo.u.Raw.Gen.u1DefBig = pSRegCS->Attr.n.u1DefBig;
483 SelInfo.u.Raw.Gen.u1Long = pSRegCS->Attr.n.u1Long;
484 SelInfo.u.Raw.Gen.u1DescType = pSRegCS->Attr.n.u1DescType;
485 SelInfo.u.Raw.Gen.u4Type = pSRegCS->Attr.n.u4Type;
486 fRealModeAddress = !!(SelInfo.fFlags & DBGFSELINFO_FLAGS_REAL_MODE);
487 }
488 else if (Sel == DBGF_SEL_FLAT)
489 {
490 SelInfo.Sel = Sel;
491 SelInfo.SelGate = 0;
492 SelInfo.GCPtrBase = 0;
493 SelInfo.cbLimit = ~0;
494 SelInfo.fFlags = PGMMODE_IS_LONG_MODE(enmMode)
495 ? DBGFSELINFO_FLAGS_LONG_MODE
496 : enmMode != PGMMODE_REAL
497 ? DBGFSELINFO_FLAGS_PROT_MODE
498 : DBGFSELINFO_FLAGS_REAL_MODE;
499 SelInfo.u.Raw.au32[0] = 0;
500 SelInfo.u.Raw.au32[1] = 0;
501 SelInfo.u.Raw.Gen.u16LimitLow = 0xffff;
502 SelInfo.u.Raw.Gen.u4LimitHigh = 0xf;
503
504 pSRegCS = &CPUMGetGuestCtxCore(pVCpu)->cs;
505 if (CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, pSRegCS))
506 {
507 /* Assume the current CS defines the execution mode. */
508 SelInfo.u.Raw.Gen.u1Present = pSRegCS->Attr.n.u1Present;
509 SelInfo.u.Raw.Gen.u1Granularity = pSRegCS->Attr.n.u1Granularity;;
510 SelInfo.u.Raw.Gen.u1DefBig = pSRegCS->Attr.n.u1DefBig;
511 SelInfo.u.Raw.Gen.u1Long = pSRegCS->Attr.n.u1Long;
512 SelInfo.u.Raw.Gen.u1DescType = pSRegCS->Attr.n.u1DescType;
513 SelInfo.u.Raw.Gen.u4Type = pSRegCS->Attr.n.u4Type;
514 }
515 else
516 {
517 pSRegCS = NULL;
518 SelInfo.u.Raw.Gen.u1Present = 1;
519 SelInfo.u.Raw.Gen.u1Granularity = 1;
520 SelInfo.u.Raw.Gen.u1DefBig = 1;
521 SelInfo.u.Raw.Gen.u1DescType = 1;
522 SelInfo.u.Raw.Gen.u4Type = X86_SEL_TYPE_EO;
523 }
524 }
525 else if ( !(fFlags & DBGF_DISAS_FLAGS_HYPER)
526 && ( (pCtxCore && pCtxCore->eflags.Bits.u1VM)
527 || enmMode == PGMMODE_REAL
528 || (fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_16BIT_REAL_MODE
529 )
530 )
531 { /* V86 mode or real mode - real mode addressing */
532 SelInfo.Sel = Sel;
533 SelInfo.SelGate = 0;
534 SelInfo.GCPtrBase = Sel * 16;
535 SelInfo.cbLimit = ~0;
536 SelInfo.fFlags = DBGFSELINFO_FLAGS_REAL_MODE;
537 SelInfo.u.Raw.au32[0] = 0;
538 SelInfo.u.Raw.au32[1] = 0;
539 SelInfo.u.Raw.Gen.u16LimitLow = 0xffff;
540 SelInfo.u.Raw.Gen.u4LimitHigh = 0xf;
541 SelInfo.u.Raw.Gen.u1Present = 1;
542 SelInfo.u.Raw.Gen.u1Granularity = 1;
543 SelInfo.u.Raw.Gen.u1DefBig = 0; /* 16 bits */
544 SelInfo.u.Raw.Gen.u1DescType = 1;
545 SelInfo.u.Raw.Gen.u4Type = X86_SEL_TYPE_EO;
546 fRealModeAddress = true;
547 }
548 else
549 {
550 if (!(fFlags & DBGF_DISAS_FLAGS_HYPER))
551 rc = SELMR3GetSelectorInfo(pVM, pVCpu, Sel, &SelInfo);
552 else
553 rc = SELMR3GetShadowSelectorInfo(pVM, Sel, &SelInfo);
554 if (RT_FAILURE(rc))
555 {
556 RTStrPrintf(pszOutput, cbOutput, "Sel=%04x -> %Rrc\n", Sel, rc);
557 return rc;
558 }
559 }
560
561 /*
562 * Disassemble it.
563 */
564 DBGFDISASSTATE State;
565 rc = dbgfR3DisasInstrFirst(pVM, pVCpu, &SelInfo, enmMode, GCPtr, fFlags, &State);
566 if (RT_FAILURE(rc))
567 {
568 if (State.Cpu.cbCachedInstr)
569 RTStrPrintf(pszOutput, cbOutput, "Disas -> %Rrc; %.*Rhxs\n", rc, (size_t)State.Cpu.cbCachedInstr, State.Cpu.abInstr);
570 else
571 RTStrPrintf(pszOutput, cbOutput, "Disas -> %Rrc\n", rc);
572 return rc;
573 }
574
575 /*
576 * Format it.
577 */
578 char szBuf[512];
579 DISFormatYasmEx(&State.Cpu, szBuf, sizeof(szBuf),
580 DIS_FMT_FLAGS_RELATIVE_BRANCH,
581 fFlags & DBGF_DISAS_FLAGS_NO_SYMBOLS ? NULL : dbgfR3DisasGetSymbol,
582 &SelInfo);
583
584#ifdef VBOX_WITH_RAW_MODE
585 /*
586 * Patched instruction annotations.
587 */
588 char szPatchAnnotations[256];
589 szPatchAnnotations[0] = '\0';
590 if (fFlags & DBGF_DISAS_FLAGS_ANNOTATE_PATCHED)
591 PATMR3DbgAnnotatePatchedInstruction(pVM, GCPtr, State.Cpu.cbInstr, szPatchAnnotations, sizeof(szPatchAnnotations));
592#endif
593
594 /*
595 * Print it to the user specified buffer.
596 */
597 size_t cch;
598 if (fFlags & DBGF_DISAS_FLAGS_NO_BYTES)
599 {
600 if (fFlags & DBGF_DISAS_FLAGS_NO_ADDRESS)
601 cch = RTStrPrintf(pszOutput, cbOutput, "%s", szBuf);
602 else if (fRealModeAddress)
603 cch = RTStrPrintf(pszOutput, cbOutput, "%04x:%04x %s", Sel, (unsigned)GCPtr, szBuf);
604 else if (Sel == DBGF_SEL_FLAT)
605 {
606 if (enmMode >= PGMMODE_AMD64)
607 cch = RTStrPrintf(pszOutput, cbOutput, "%RGv %s", GCPtr, szBuf);
608 else
609 cch = RTStrPrintf(pszOutput, cbOutput, "%08RX32 %s", (uint32_t)GCPtr, szBuf);
610 }
611 else
612 {
613 if (enmMode >= PGMMODE_AMD64)
614 cch = RTStrPrintf(pszOutput, cbOutput, "%04x:%RGv %s", Sel, GCPtr, szBuf);
615 else
616 cch = RTStrPrintf(pszOutput, cbOutput, "%04x:%08RX32 %s", Sel, (uint32_t)GCPtr, szBuf);
617 }
618 }
619 else
620 {
621 uint32_t cbInstr = State.Cpu.cbInstr;
622 uint8_t const *pabInstr = State.Cpu.abInstr;
623 if (fFlags & DBGF_DISAS_FLAGS_NO_ADDRESS)
624 cch = RTStrPrintf(pszOutput, cbOutput, "%.*Rhxs%*s %s",
625 cbInstr, pabInstr, cbInstr < 8 ? (8 - cbInstr) * 3 : 0, "",
626 szBuf);
627 else if (fRealModeAddress)
628 cch = RTStrPrintf(pszOutput, cbOutput, "%04x:%04x %.*Rhxs%*s %s",
629 Sel, (unsigned)GCPtr,
630 cbInstr, pabInstr, cbInstr < 8 ? (8 - cbInstr) * 3 : 0, "",
631 szBuf);
632 else if (Sel == DBGF_SEL_FLAT)
633 {
634 if (enmMode >= PGMMODE_AMD64)
635 cch = RTStrPrintf(pszOutput, cbOutput, "%RGv %.*Rhxs%*s %s",
636 GCPtr,
637 cbInstr, pabInstr, cbInstr < 8 ? (8 - cbInstr) * 3 : 0, "",
638 szBuf);
639 else
640 cch = RTStrPrintf(pszOutput, cbOutput, "%08RX32 %.*Rhxs%*s %s",
641 (uint32_t)GCPtr,
642 cbInstr, pabInstr, cbInstr < 8 ? (8 - cbInstr) * 3 : 0, "",
643 szBuf);
644 }
645 else
646 {
647 if (enmMode >= PGMMODE_AMD64)
648 cch = RTStrPrintf(pszOutput, cbOutput, "%04x:%RGv %.*Rhxs%*s %s",
649 Sel, GCPtr,
650 cbInstr, pabInstr, cbInstr < 8 ? (8 - cbInstr) * 3 : 0, "",
651 szBuf);
652 else
653 cch = RTStrPrintf(pszOutput, cbOutput, "%04x:%08RX32 %.*Rhxs%*s %s",
654 Sel, (uint32_t)GCPtr,
655 cbInstr, pabInstr, cbInstr < 8 ? (8 - cbInstr) * 3 : 0, "",
656 szBuf);
657 }
658 }
659
660#ifdef VBOX_WITH_RAW_MODE
661 if (szPatchAnnotations[0] && cch + 1 < cbOutput)
662 RTStrPrintf(pszOutput + cch, cbOutput - cch, " ; %s", szPatchAnnotations);
663#endif
664
665 if (pcbInstr)
666 *pcbInstr = State.Cpu.cbInstr;
667
668 dbgfR3DisasInstrDone(&State);
669 return VINF_SUCCESS;
670}
671
672
673/**
674 * Disassembles the one instruction according to the specified flags and address.
675 *
676 * @returns VBox status code.
677 * @param pUVM The user mode VM handle.
678 * @param idCpu The ID of virtual CPU.
679 * @param Sel The code selector. This used to determine the 32/16 bit ness and
680 * calculation of the actual instruction address.
681 * @param GCPtr The code address relative to the base of Sel.
682 * @param fFlags Flags controlling where to start and how to format.
683 * A combination of the DBGF_DISAS_FLAGS_* \#defines.
684 * @param pszOutput Output buffer. This will always be properly
685 * terminated if @a cbOutput is greater than zero.
686 * @param cbOutput Size of the output buffer.
687 * @param pcbInstr Where to return the size of the instruction.
688 *
689 * @remarks May have to switch to the EMT of the virtual CPU in order to do
690 * address conversion.
691 */
692VMMR3DECL(int) DBGFR3DisasInstrEx(PUVM pUVM, VMCPUID idCpu, RTSEL Sel, RTGCPTR GCPtr, uint32_t fFlags,
693 char *pszOutput, uint32_t cbOutput, uint32_t *pcbInstr)
694{
695 AssertReturn(cbOutput > 0, VERR_INVALID_PARAMETER);
696 *pszOutput = '\0';
697 UVM_ASSERT_VALID_EXT_RETURN(pUVM, VERR_INVALID_VM_HANDLE);
698 PVM pVM = pUVM->pVM;
699 VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE);
700 AssertReturn(idCpu < pUVM->cCpus, VERR_INVALID_CPU_ID);
701 AssertReturn(!(fFlags & ~DBGF_DISAS_FLAGS_VALID_MASK), VERR_INVALID_PARAMETER);
702 AssertReturn((fFlags & DBGF_DISAS_FLAGS_MODE_MASK) <= DBGF_DISAS_FLAGS_64BIT_MODE, VERR_INVALID_PARAMETER);
703
704 /*
705 * Optimize the common case where we're called on the EMT of idCpu since
706 * we're using this all the time when logging.
707 */
708 int rc;
709 PVMCPU pVCpu = VMMGetCpu(pVM);
710 if ( pVCpu
711 && pVCpu->idCpu == idCpu)
712 rc = dbgfR3DisasInstrExOnVCpu(pVM, pVCpu, Sel, &GCPtr, fFlags, pszOutput, cbOutput, pcbInstr);
713 else
714 rc = VMR3ReqPriorityCallWait(pVM, idCpu, (PFNRT)dbgfR3DisasInstrExOnVCpu, 8,
715 pVM, VMMGetCpuById(pVM, idCpu), Sel, &GCPtr, fFlags, pszOutput, cbOutput, pcbInstr);
716 return rc;
717}
718
719
720/**
721 * Disassembles the current guest context instruction.
722 * All registers and data will be displayed. Addresses will be attempted resolved to symbols.
723 *
724 * @returns VBox status code.
725 * @param pVCpu Pointer to the VMCPU.
726 * @param pszOutput Output buffer. This will always be properly
727 * terminated if @a cbOutput is greater than zero.
728 * @param cbOutput Size of the output buffer.
729 * @thread EMT(pVCpu)
730 */
731VMMR3_INT_DECL(int) DBGFR3DisasInstrCurrent(PVMCPU pVCpu, char *pszOutput, uint32_t cbOutput)
732{
733 AssertReturn(cbOutput > 0, VERR_INVALID_PARAMETER);
734 *pszOutput = '\0';
735 Assert(VMCPU_IS_EMT(pVCpu));
736
737 RTGCPTR GCPtr = 0;
738 return dbgfR3DisasInstrExOnVCpu(pVCpu->pVMR3, pVCpu, 0, &GCPtr,
739 DBGF_DISAS_FLAGS_CURRENT_GUEST | DBGF_DISAS_FLAGS_DEFAULT_MODE
740 | DBGF_DISAS_FLAGS_ANNOTATE_PATCHED,
741 pszOutput, cbOutput, NULL);
742}
743
744
745/**
746 * Disassembles the current guest context instruction and writes it to the log.
747 * All registers and data will be displayed. Addresses will be attempted resolved to symbols.
748 *
749 * @returns VBox status code.
750 * @param pVCpu Pointer to the VMCPU.
751 * @param pszPrefix Short prefix string to the disassembly string. (optional)
752 * @thread EMT(pVCpu)
753 */
754VMMR3DECL(int) DBGFR3DisasInstrCurrentLogInternal(PVMCPU pVCpu, const char *pszPrefix)
755{
756 char szBuf[256];
757 szBuf[0] = '\0';
758 int rc = DBGFR3DisasInstrCurrent(pVCpu, &szBuf[0], sizeof(szBuf));
759 if (RT_FAILURE(rc))
760 RTStrPrintf(szBuf, sizeof(szBuf), "DBGFR3DisasInstrCurrentLog failed with rc=%Rrc\n", rc);
761 if (pszPrefix && *pszPrefix)
762 {
763 if (pVCpu->CTX_SUFF(pVM)->cCpus > 1)
764 RTLogPrintf("%s-CPU%u: %s\n", pszPrefix, pVCpu->idCpu, szBuf);
765 else
766 RTLogPrintf("%s: %s\n", pszPrefix, szBuf);
767 }
768 else
769 RTLogPrintf("%s\n", szBuf);
770 return rc;
771}
772
773
774
775/**
776 * Disassembles the specified guest context instruction and writes it to the log.
777 * Addresses will be attempted resolved to symbols.
778 *
779 * @returns VBox status code.
780 * @param pVCpu Pointer to the VMCPU, defaults to CPU 0 if NULL.
781 * @param Sel The code selector. This used to determine the 32/16 bit-ness and
782 * calculation of the actual instruction address.
783 * @param GCPtr The code address relative to the base of Sel.
784 * @param pszPrefix Short prefix string to the disassembly string. (optional)
785 * @thread EMT(pVCpu)
786 */
787VMMR3DECL(int) DBGFR3DisasInstrLogInternal(PVMCPU pVCpu, RTSEL Sel, RTGCPTR GCPtr, const char *pszPrefix)
788{
789 Assert(VMCPU_IS_EMT(pVCpu));
790
791 char szBuf[256];
792 RTGCPTR GCPtrTmp = GCPtr;
793 int rc = dbgfR3DisasInstrExOnVCpu(pVCpu->pVMR3, pVCpu, Sel, &GCPtrTmp, DBGF_DISAS_FLAGS_DEFAULT_MODE,
794 &szBuf[0], sizeof(szBuf), NULL);
795 if (RT_FAILURE(rc))
796 RTStrPrintf(szBuf, sizeof(szBuf), "DBGFR3DisasInstrLog(, %RTsel, %RGv) failed with rc=%Rrc\n", Sel, GCPtr, rc);
797 if (pszPrefix && *pszPrefix)
798 {
799 if (pVCpu->CTX_SUFF(pVM)->cCpus > 1)
800 RTLogPrintf("%s-CPU%u: %s\n", pszPrefix, pVCpu->idCpu, szBuf);
801 else
802 RTLogPrintf("%s: %s\n", pszPrefix, szBuf);
803 }
804 else
805 RTLogPrintf("%s\n", szBuf);
806 return rc;
807}
808
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette