VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/DBGFDisas.cpp@ 53403

Last change on this file since 53403 was 49379, checked in by vboxsync, 11 years ago

VMM: allow to compile with VBOX_WITH_RAW_MODE disabled

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 29.5 KB
Line 
1/* $Id: DBGFDisas.cpp 49379 2013-11-04 10:18:47Z vboxsync $ */
2/** @file
3 * DBGF - Debugger Facility, Disassembler.
4 */
5
6/*
7 * Copyright (C) 2006-2013 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/*******************************************************************************
19* Header Files *
20*******************************************************************************/
21#define LOG_GROUP LOG_GROUP_DBGF
22#include <VBox/vmm/dbgf.h>
23#include <VBox/vmm/selm.h>
24#include <VBox/vmm/mm.h>
25#include <VBox/vmm/hm.h>
26#include <VBox/vmm/pgm.h>
27#include <VBox/vmm/cpum.h>
28#ifdef VBOX_WITH_RAW_MODE
29# include <VBox/vmm/patm.h>
30#endif
31#include "DBGFInternal.h"
32#include <VBox/dis.h>
33#include <VBox/err.h>
34#include <VBox/param.h>
35#include <VBox/vmm/vm.h>
36#include <VBox/vmm/uvm.h>
37#include "internal/pgm.h"
38
39#include <VBox/log.h>
40#include <iprt/assert.h>
41#include <iprt/string.h>
42#include <iprt/alloca.h>
43#include <iprt/ctype.h>
44
45
46/*******************************************************************************
47* Structures and Typedefs *
48*******************************************************************************/
49/**
50 * Structure used when disassembling and instructions in DBGF.
51 * This is used so the reader function can get the stuff it needs.
52 */
53typedef struct
54{
55 /** The core structure. */
56 DISCPUSTATE Cpu;
57 /** Pointer to the VM. */
58 PVM pVM;
59 /** Pointer to the VMCPU. */
60 PVMCPU pVCpu;
61 /** The address space for resolving symbol. */
62 RTDBGAS hDbgAs;
63 /** Pointer to the first byte in the segment. */
64 RTGCUINTPTR GCPtrSegBase;
65 /** Pointer to the byte after the end of the segment. (might have wrapped!) */
66 RTGCUINTPTR GCPtrSegEnd;
67 /** The size of the segment minus 1. */
68 RTGCUINTPTR cbSegLimit;
69 /** The guest paging mode. */
70 PGMMODE enmMode;
71 /** Pointer to the current page - R3 Ptr. */
72 void const *pvPageR3;
73 /** Pointer to the current page - GC Ptr. */
74 RTGCPTR GCPtrPage;
75 /** Pointer to the next instruction (relative to GCPtrSegBase). */
76 RTGCUINTPTR GCPtrNext;
77 /** The lock information that PGMPhysReleasePageMappingLock needs. */
78 PGMPAGEMAPLOCK PageMapLock;
79 /** Whether the PageMapLock is valid or not. */
80 bool fLocked;
81 /** 64 bits mode or not. */
82 bool f64Bits;
83 /** Read original unpatched bytes from the patch manager. */
84 bool fUnpatchedBytes;
85 /** Set when fUnpatchedBytes is active and we encounter patched bytes. */
86 bool fPatchedInstr;
87} DBGFDISASSTATE, *PDBGFDISASSTATE;
88
89
90/*******************************************************************************
91* Internal Functions *
92*******************************************************************************/
93static FNDISREADBYTES dbgfR3DisasInstrRead;
94
95
96
97/**
98 * Calls the disassembler with the proper reader functions and such for disa
99 *
100 * @returns VBox status code.
101 * @param pVM Pointer to the VM.
102 * @param pVCpu Pointer to the VMCPU.
103 * @param pSelInfo The selector info.
104 * @param enmMode The guest paging mode.
105 * @param fFlags DBGF_DISAS_FLAGS_XXX.
106 * @param GCPtr The GC pointer (selector offset).
107 * @param pState The disas CPU state.
108 */
109static int dbgfR3DisasInstrFirst(PVM pVM, PVMCPU pVCpu, PDBGFSELINFO pSelInfo, PGMMODE enmMode,
110 RTGCPTR GCPtr, uint32_t fFlags, PDBGFDISASSTATE pState)
111{
112 pState->GCPtrSegBase = pSelInfo->GCPtrBase;
113 pState->GCPtrSegEnd = pSelInfo->cbLimit + 1 + (RTGCUINTPTR)pSelInfo->GCPtrBase;
114 pState->cbSegLimit = pSelInfo->cbLimit;
115 pState->enmMode = enmMode;
116 pState->GCPtrPage = 0;
117 pState->pvPageR3 = NULL;
118 pState->hDbgAs = !HMIsEnabled(pVM)
119 ? DBGF_AS_RC_AND_GC_GLOBAL
120 : DBGF_AS_GLOBAL;
121 pState->pVM = pVM;
122 pState->pVCpu = pVCpu;
123 pState->fLocked = false;
124 pState->f64Bits = enmMode >= PGMMODE_AMD64 && pSelInfo->u.Raw.Gen.u1Long;
125#ifdef VBOX_WITH_RAW_MODE
126 pState->fUnpatchedBytes = RT_BOOL(fFlags & DBGF_DISAS_FLAGS_UNPATCHED_BYTES);
127 pState->fPatchedInstr = false;
128#endif
129
130 DISCPUMODE enmCpuMode;
131 switch (fFlags & DBGF_DISAS_FLAGS_MODE_MASK)
132 {
133 default:
134 AssertFailed();
135 case DBGF_DISAS_FLAGS_DEFAULT_MODE:
136 enmCpuMode = pState->f64Bits
137 ? DISCPUMODE_64BIT
138 : pSelInfo->u.Raw.Gen.u1DefBig
139 ? DISCPUMODE_32BIT
140 : DISCPUMODE_16BIT;
141 break;
142 case DBGF_DISAS_FLAGS_16BIT_MODE:
143 case DBGF_DISAS_FLAGS_16BIT_REAL_MODE:
144 enmCpuMode = DISCPUMODE_16BIT;
145 break;
146 case DBGF_DISAS_FLAGS_32BIT_MODE:
147 enmCpuMode = DISCPUMODE_32BIT;
148 break;
149 case DBGF_DISAS_FLAGS_64BIT_MODE:
150 enmCpuMode = DISCPUMODE_64BIT;
151 break;
152 }
153
154 uint32_t cbInstr;
155 int rc = DISInstrWithReader(GCPtr,
156 enmCpuMode,
157 dbgfR3DisasInstrRead,
158 &pState->Cpu,
159 &pState->Cpu,
160 &cbInstr);
161 if (RT_SUCCESS(rc))
162 {
163 pState->GCPtrNext = GCPtr + cbInstr;
164 return VINF_SUCCESS;
165 }
166
167 /* cleanup */
168 if (pState->fLocked)
169 {
170 PGMPhysReleasePageMappingLock(pVM, &pState->PageMapLock);
171 pState->fLocked = false;
172 }
173 return rc;
174}
175
176
177#if 0
178/**
179 * Calls the disassembler for disassembling the next instruction.
180 *
181 * @returns VBox status code.
182 * @param pState The disas CPU state.
183 */
184static int dbgfR3DisasInstrNext(PDBGFDISASSTATE pState)
185{
186 uint32_t cbInstr;
187 int rc = DISInstr(&pState->Cpu, (void *)pState->GCPtrNext, 0, &cbInstr, NULL);
188 if (RT_SUCCESS(rc))
189 {
190 pState->GCPtrNext = GCPtr + cbInstr;
191 return VINF_SUCCESS;
192 }
193 return rc;
194}
195#endif
196
197
198/**
199 * Done with the disassembler state, free associated resources.
200 *
201 * @param pState The disas CPU state ++.
202 */
203static void dbgfR3DisasInstrDone(PDBGFDISASSTATE pState)
204{
205 if (pState->fLocked)
206 {
207 PGMPhysReleasePageMappingLock(pState->pVM, &pState->PageMapLock);
208 pState->fLocked = false;
209 }
210}
211
212
213/**
214 * @callback_method_impl{FNDISREADBYTES}
215 *
216 * @remarks The source is relative to the base address indicated by
217 * DBGFDISASSTATE::GCPtrSegBase.
218 */
219static DECLCALLBACK(int) dbgfR3DisasInstrRead(PDISCPUSTATE pDis, uint8_t offInstr, uint8_t cbMinRead, uint8_t cbMaxRead)
220{
221 PDBGFDISASSTATE pState = (PDBGFDISASSTATE)pDis;
222 for (;;)
223 {
224 RTGCUINTPTR GCPtr = pDis->uInstrAddr + offInstr + pState->GCPtrSegBase;
225
226 /*
227 * Need to update the page translation?
228 */
229 if ( !pState->pvPageR3
230 || (GCPtr >> PAGE_SHIFT) != (pState->GCPtrPage >> PAGE_SHIFT))
231 {
232 int rc = VINF_SUCCESS;
233
234 /* translate the address */
235 pState->GCPtrPage = GCPtr & PAGE_BASE_GC_MASK;
236 if ( !HMIsEnabled(pState->pVM)
237 && MMHyperIsInsideArea(pState->pVM, pState->GCPtrPage))
238 {
239 pState->pvPageR3 = MMHyperRCToR3(pState->pVM, (RTRCPTR)pState->GCPtrPage);
240 if (!pState->pvPageR3)
241 rc = VERR_INVALID_POINTER;
242 }
243 else
244 {
245 if (pState->fLocked)
246 PGMPhysReleasePageMappingLock(pState->pVM, &pState->PageMapLock);
247
248 if (pState->enmMode <= PGMMODE_PROTECTED)
249 rc = PGMPhysGCPhys2CCPtrReadOnly(pState->pVM, pState->GCPtrPage, &pState->pvPageR3, &pState->PageMapLock);
250 else
251 rc = PGMPhysGCPtr2CCPtrReadOnly(pState->pVCpu, pState->GCPtrPage, &pState->pvPageR3, &pState->PageMapLock);
252 pState->fLocked = RT_SUCCESS_NP(rc);
253 }
254 if (RT_FAILURE(rc))
255 {
256 pState->pvPageR3 = NULL;
257 return rc;
258 }
259 }
260
261 /*
262 * Check the segment limit.
263 */
264 if (!pState->f64Bits && pDis->uInstrAddr + offInstr > pState->cbSegLimit)
265 return VERR_OUT_OF_SELECTOR_BOUNDS;
266
267 /*
268 * Calc how much we can read, maxing out the read.
269 */
270 uint32_t cb = PAGE_SIZE - (GCPtr & PAGE_OFFSET_MASK);
271 if (!pState->f64Bits)
272 {
273 RTGCUINTPTR cbSeg = pState->GCPtrSegEnd - GCPtr;
274 if (cb > cbSeg && cbSeg)
275 cb = cbSeg;
276 }
277 if (cb > cbMaxRead)
278 cb = cbMaxRead;
279
280#ifdef VBOX_WITH_RAW_MODE
281 /*
282 * Read original bytes from PATM if asked to do so.
283 */
284 if (pState->fUnpatchedBytes)
285 {
286 size_t cbRead = cb;
287 int rc = PATMR3ReadOrgInstr(pState->pVM, GCPtr, &pDis->abInstr[offInstr], cbRead, &cbRead);
288 if (RT_SUCCESS(rc))
289 {
290 pState->fPatchedInstr = true;
291 if (cbRead >= cbMinRead)
292 {
293 pDis->cbCachedInstr = offInstr + (uint8_t)cbRead;
294 return rc;
295 }
296
297 cbMinRead -= (uint8_t)cbRead;
298 cbMaxRead -= (uint8_t)cbRead;
299 cb -= (uint8_t)cbRead;
300 offInstr += (uint8_t)cbRead;
301 GCPtr += cbRead;
302 if (!cb)
303 continue;
304 }
305 }
306#endif /* VBOX_WITH_RAW_MODE */
307
308 /*
309 * Read and advance,
310 */
311 memcpy(&pDis->abInstr[offInstr], (char *)pState->pvPageR3 + (GCPtr & PAGE_OFFSET_MASK), cb);
312 offInstr += (uint8_t)cb;
313 if (cb >= cbMinRead)
314 {
315 pDis->cbCachedInstr = offInstr;
316 return VINF_SUCCESS;
317 }
318 cbMaxRead -= (uint8_t)cb;
319 cbMinRead -= (uint8_t)cb;
320 }
321}
322
323
324/**
325 * @copydoc FNDISGETSYMBOL
326 */
327static DECLCALLBACK(int) dbgfR3DisasGetSymbol(PCDISCPUSTATE pCpu, uint32_t u32Sel, RTUINTPTR uAddress,
328 char *pszBuf, size_t cchBuf, RTINTPTR *poff, void *pvUser)
329{
330 PDBGFDISASSTATE pState = (PDBGFDISASSTATE)pCpu;
331 PCDBGFSELINFO pSelInfo = (PCDBGFSELINFO)pvUser;
332
333 /*
334 * Address conversion
335 */
336 DBGFADDRESS Addr;
337 int rc;
338 /* Start with CS. */
339 if ( DIS_FMT_SEL_IS_REG(u32Sel)
340 ? DIS_FMT_SEL_GET_REG(u32Sel) == DISSELREG_CS
341 : pSelInfo->Sel == DIS_FMT_SEL_GET_VALUE(u32Sel))
342 rc = DBGFR3AddrFromSelInfoOff(pState->pVM->pUVM, &Addr, pSelInfo, uAddress);
343 /* In long mode everything but FS and GS is easy. */
344 else if ( pState->Cpu.uCpuMode == DISCPUMODE_64BIT
345 && DIS_FMT_SEL_IS_REG(u32Sel)
346 && DIS_FMT_SEL_GET_REG(u32Sel) != DISSELREG_GS
347 && DIS_FMT_SEL_GET_REG(u32Sel) != DISSELREG_FS)
348 {
349 DBGFR3AddrFromFlat(pState->pVM->pUVM, &Addr, uAddress);
350 rc = VINF_SUCCESS;
351 }
352 /* Here's a quick hack to catch patch manager SS relative access. */
353 else if ( DIS_FMT_SEL_IS_REG(u32Sel)
354 && DIS_FMT_SEL_GET_REG(u32Sel) == DISSELREG_SS
355 && pSelInfo->GCPtrBase == 0
356 && pSelInfo->cbLimit >= UINT32_MAX
357#ifdef VBOX_WITH_RAW_MODE
358 && PATMIsPatchGCAddr(pState->pVM, pState->Cpu.uInstrAddr)
359#endif
360 )
361 {
362 DBGFR3AddrFromFlat(pState->pVM->pUVM, &Addr, uAddress);
363 rc = VINF_SUCCESS;
364 }
365 else
366 {
367 /** @todo implement a generic solution here. */
368 rc = VERR_SYMBOL_NOT_FOUND;
369 }
370
371 /*
372 * If we got an address, try resolve it into a symbol.
373 */
374 if (RT_SUCCESS(rc))
375 {
376 RTDBGSYMBOL Sym;
377 RTGCINTPTR off;
378 rc = DBGFR3AsSymbolByAddr(pState->pVM->pUVM, pState->hDbgAs, &Addr, RTDBGSYMADDR_FLAGS_LESS_OR_EQUAL,
379 &off, &Sym, NULL /*phMod*/);
380 if (RT_SUCCESS(rc))
381 {
382 /*
383 * Return the symbol and offset.
384 */
385 size_t cchName = strlen(Sym.szName);
386 if (cchName >= cchBuf)
387 cchName = cchBuf - 1;
388 memcpy(pszBuf, Sym.szName, cchName);
389 pszBuf[cchName] = '\0';
390
391 *poff = off;
392 }
393 }
394 return rc;
395}
396
397
398/**
399 * Disassembles the one instruction according to the specified flags and
400 * address, internal worker executing on the EMT of the specified virtual CPU.
401 *
402 * @returns VBox status code.
403 * @param pVM Pointer to the VM.
404 * @param pVCpu Pointer to the VMCPU.
405 * @param Sel The code selector. This used to determine the 32/16 bit ness and
406 * calculation of the actual instruction address.
407 * @param pGCPtr Pointer to the variable holding the code address
408 * relative to the base of Sel.
409 * @param fFlags Flags controlling where to start and how to format.
410 * A combination of the DBGF_DISAS_FLAGS_* \#defines.
411 * @param pszOutput Output buffer.
412 * @param cbOutput Size of the output buffer.
413 * @param pcbInstr Where to return the size of the instruction.
414 */
415static DECLCALLBACK(int)
416dbgfR3DisasInstrExOnVCpu(PVM pVM, PVMCPU pVCpu, RTSEL Sel, PRTGCPTR pGCPtr, uint32_t fFlags,
417 char *pszOutput, uint32_t cbOutput, uint32_t *pcbInstr)
418{
419 VMCPU_ASSERT_EMT(pVCpu);
420 RTGCPTR GCPtr = *pGCPtr;
421 int rc;
422
423 /*
424 * Get the Sel and GCPtr if fFlags requests that.
425 */
426 PCCPUMCTXCORE pCtxCore = NULL;
427 PCCPUMSELREG pSRegCS = NULL;
428 if (fFlags & DBGF_DISAS_FLAGS_CURRENT_GUEST)
429 {
430 pCtxCore = CPUMGetGuestCtxCore(pVCpu);
431 Sel = pCtxCore->cs.Sel;
432 pSRegCS = &pCtxCore->cs;
433 GCPtr = pCtxCore->rip;
434 }
435 else if (fFlags & DBGF_DISAS_FLAGS_CURRENT_HYPER)
436 {
437 fFlags |= DBGF_DISAS_FLAGS_HYPER;
438 pCtxCore = CPUMGetHyperCtxCore(pVCpu);
439 Sel = pCtxCore->cs.Sel;
440 GCPtr = pCtxCore->rip;
441 }
442 /*
443 * Check if the selector matches the guest CS, use the hidden
444 * registers from that if they are valid. Saves time and effort.
445 */
446 else
447 {
448 pCtxCore = CPUMGetGuestCtxCore(pVCpu);
449 if (pCtxCore->cs.Sel == Sel && Sel != DBGF_SEL_FLAT)
450 pSRegCS = &pCtxCore->cs;
451 else
452 pCtxCore = NULL;
453 }
454
455 /*
456 * Read the selector info - assume no stale selectors and nasty stuff like that.
457 *
458 * Note! We CANNOT load invalid hidden selector registers since that would
459 * mean that log/debug statements or the debug will influence the
460 * guest state and make things behave differently.
461 */
462 DBGFSELINFO SelInfo;
463 const PGMMODE enmMode = PGMGetGuestMode(pVCpu);
464 bool fRealModeAddress = false;
465
466 if ( pSRegCS
467 && CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, pSRegCS))
468 {
469 SelInfo.Sel = Sel;
470 SelInfo.SelGate = 0;
471 SelInfo.GCPtrBase = pSRegCS->u64Base;
472 SelInfo.cbLimit = pSRegCS->u32Limit;
473 SelInfo.fFlags = PGMMODE_IS_LONG_MODE(enmMode)
474 ? DBGFSELINFO_FLAGS_LONG_MODE
475 : enmMode != PGMMODE_REAL && !pCtxCore->eflags.Bits.u1VM
476 ? DBGFSELINFO_FLAGS_PROT_MODE
477 : DBGFSELINFO_FLAGS_REAL_MODE;
478
479 SelInfo.u.Raw.au32[0] = 0;
480 SelInfo.u.Raw.au32[1] = 0;
481 SelInfo.u.Raw.Gen.u16LimitLow = 0xffff;
482 SelInfo.u.Raw.Gen.u4LimitHigh = 0xf;
483 SelInfo.u.Raw.Gen.u1Present = pSRegCS->Attr.n.u1Present;
484 SelInfo.u.Raw.Gen.u1Granularity = pSRegCS->Attr.n.u1Granularity;;
485 SelInfo.u.Raw.Gen.u1DefBig = pSRegCS->Attr.n.u1DefBig;
486 SelInfo.u.Raw.Gen.u1Long = pSRegCS->Attr.n.u1Long;
487 SelInfo.u.Raw.Gen.u1DescType = pSRegCS->Attr.n.u1DescType;
488 SelInfo.u.Raw.Gen.u4Type = pSRegCS->Attr.n.u4Type;
489 fRealModeAddress = !!(SelInfo.fFlags & DBGFSELINFO_FLAGS_REAL_MODE);
490 }
491 else if (Sel == DBGF_SEL_FLAT)
492 {
493 SelInfo.Sel = Sel;
494 SelInfo.SelGate = 0;
495 SelInfo.GCPtrBase = 0;
496 SelInfo.cbLimit = ~0;
497 SelInfo.fFlags = PGMMODE_IS_LONG_MODE(enmMode)
498 ? DBGFSELINFO_FLAGS_LONG_MODE
499 : enmMode != PGMMODE_REAL
500 ? DBGFSELINFO_FLAGS_PROT_MODE
501 : DBGFSELINFO_FLAGS_REAL_MODE;
502 SelInfo.u.Raw.au32[0] = 0;
503 SelInfo.u.Raw.au32[1] = 0;
504 SelInfo.u.Raw.Gen.u16LimitLow = 0xffff;
505 SelInfo.u.Raw.Gen.u4LimitHigh = 0xf;
506
507 pSRegCS = &CPUMGetGuestCtxCore(pVCpu)->cs;
508 if (CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, pSRegCS))
509 {
510 /* Assume the current CS defines the execution mode. */
511 SelInfo.u.Raw.Gen.u1Present = pSRegCS->Attr.n.u1Present;
512 SelInfo.u.Raw.Gen.u1Granularity = pSRegCS->Attr.n.u1Granularity;;
513 SelInfo.u.Raw.Gen.u1DefBig = pSRegCS->Attr.n.u1DefBig;
514 SelInfo.u.Raw.Gen.u1Long = pSRegCS->Attr.n.u1Long;
515 SelInfo.u.Raw.Gen.u1DescType = pSRegCS->Attr.n.u1DescType;
516 SelInfo.u.Raw.Gen.u4Type = pSRegCS->Attr.n.u4Type;
517 }
518 else
519 {
520 pSRegCS = NULL;
521 SelInfo.u.Raw.Gen.u1Present = 1;
522 SelInfo.u.Raw.Gen.u1Granularity = 1;
523 SelInfo.u.Raw.Gen.u1DefBig = 1;
524 SelInfo.u.Raw.Gen.u1DescType = 1;
525 SelInfo.u.Raw.Gen.u4Type = X86_SEL_TYPE_EO;
526 }
527 }
528 else if ( !(fFlags & DBGF_DISAS_FLAGS_HYPER)
529 && ( (pCtxCore && pCtxCore->eflags.Bits.u1VM)
530 || enmMode == PGMMODE_REAL
531 || (fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_16BIT_REAL_MODE
532 )
533 )
534 { /* V86 mode or real mode - real mode addressing */
535 SelInfo.Sel = Sel;
536 SelInfo.SelGate = 0;
537 SelInfo.GCPtrBase = Sel * 16;
538 SelInfo.cbLimit = ~0;
539 SelInfo.fFlags = DBGFSELINFO_FLAGS_REAL_MODE;
540 SelInfo.u.Raw.au32[0] = 0;
541 SelInfo.u.Raw.au32[1] = 0;
542 SelInfo.u.Raw.Gen.u16LimitLow = 0xffff;
543 SelInfo.u.Raw.Gen.u4LimitHigh = 0xf;
544 SelInfo.u.Raw.Gen.u1Present = 1;
545 SelInfo.u.Raw.Gen.u1Granularity = 1;
546 SelInfo.u.Raw.Gen.u1DefBig = 0; /* 16 bits */
547 SelInfo.u.Raw.Gen.u1DescType = 1;
548 SelInfo.u.Raw.Gen.u4Type = X86_SEL_TYPE_EO;
549 fRealModeAddress = true;
550 }
551 else
552 {
553 if (!(fFlags & DBGF_DISAS_FLAGS_HYPER))
554 rc = SELMR3GetSelectorInfo(pVM, pVCpu, Sel, &SelInfo);
555 else
556 rc = SELMR3GetShadowSelectorInfo(pVM, Sel, &SelInfo);
557 if (RT_FAILURE(rc))
558 {
559 RTStrPrintf(pszOutput, cbOutput, "Sel=%04x -> %Rrc\n", Sel, rc);
560 return rc;
561 }
562 }
563
564 /*
565 * Disassemble it.
566 */
567 DBGFDISASSTATE State;
568 rc = dbgfR3DisasInstrFirst(pVM, pVCpu, &SelInfo, enmMode, GCPtr, fFlags, &State);
569 if (RT_FAILURE(rc))
570 {
571 if (State.Cpu.cbCachedInstr)
572 RTStrPrintf(pszOutput, cbOutput, "Disas -> %Rrc; %.*Rhxs\n", rc, (size_t)State.Cpu.cbCachedInstr, State.Cpu.abInstr);
573 else
574 RTStrPrintf(pszOutput, cbOutput, "Disas -> %Rrc\n", rc);
575 return rc;
576 }
577
578 /*
579 * Format it.
580 */
581 char szBuf[512];
582 DISFormatYasmEx(&State.Cpu, szBuf, sizeof(szBuf),
583 DIS_FMT_FLAGS_RELATIVE_BRANCH,
584 fFlags & DBGF_DISAS_FLAGS_NO_SYMBOLS ? NULL : dbgfR3DisasGetSymbol,
585 &SelInfo);
586
587#ifdef VBOX_WITH_RAW_MODE
588 /*
589 * Patched instruction annotations.
590 */
591 char szPatchAnnotations[256];
592 szPatchAnnotations[0] = '\0';
593 if (fFlags & DBGF_DISAS_FLAGS_ANNOTATE_PATCHED)
594 PATMR3DbgAnnotatePatchedInstruction(pVM, GCPtr, State.Cpu.cbInstr, szPatchAnnotations, sizeof(szPatchAnnotations));
595#endif
596
597 /*
598 * Print it to the user specified buffer.
599 */
600 size_t cch;
601 if (fFlags & DBGF_DISAS_FLAGS_NO_BYTES)
602 {
603 if (fFlags & DBGF_DISAS_FLAGS_NO_ADDRESS)
604 cch = RTStrPrintf(pszOutput, cbOutput, "%s", szBuf);
605 else if (fRealModeAddress)
606 cch = RTStrPrintf(pszOutput, cbOutput, "%04x:%04x %s", Sel, (unsigned)GCPtr, szBuf);
607 else if (Sel == DBGF_SEL_FLAT)
608 {
609 if (enmMode >= PGMMODE_AMD64)
610 cch = RTStrPrintf(pszOutput, cbOutput, "%RGv %s", GCPtr, szBuf);
611 else
612 cch = RTStrPrintf(pszOutput, cbOutput, "%08RX32 %s", (uint32_t)GCPtr, szBuf);
613 }
614 else
615 {
616 if (enmMode >= PGMMODE_AMD64)
617 cch = RTStrPrintf(pszOutput, cbOutput, "%04x:%RGv %s", Sel, GCPtr, szBuf);
618 else
619 cch = RTStrPrintf(pszOutput, cbOutput, "%04x:%08RX32 %s", Sel, (uint32_t)GCPtr, szBuf);
620 }
621 }
622 else
623 {
624 uint32_t cbInstr = State.Cpu.cbInstr;
625 uint8_t const *pabInstr = State.Cpu.abInstr;
626 if (fFlags & DBGF_DISAS_FLAGS_NO_ADDRESS)
627 cch = RTStrPrintf(pszOutput, cbOutput, "%.*Rhxs%*s %s",
628 cbInstr, pabInstr, cbInstr < 8 ? (8 - cbInstr) * 3 : 0, "",
629 szBuf);
630 else if (fRealModeAddress)
631 cch = RTStrPrintf(pszOutput, cbOutput, "%04x:%04x %.*Rhxs%*s %s",
632 Sel, (unsigned)GCPtr,
633 cbInstr, pabInstr, cbInstr < 8 ? (8 - cbInstr) * 3 : 0, "",
634 szBuf);
635 else if (Sel == DBGF_SEL_FLAT)
636 {
637 if (enmMode >= PGMMODE_AMD64)
638 cch = RTStrPrintf(pszOutput, cbOutput, "%RGv %.*Rhxs%*s %s",
639 GCPtr,
640 cbInstr, pabInstr, cbInstr < 8 ? (8 - cbInstr) * 3 : 0, "",
641 szBuf);
642 else
643 cch = RTStrPrintf(pszOutput, cbOutput, "%08RX32 %.*Rhxs%*s %s",
644 (uint32_t)GCPtr,
645 cbInstr, pabInstr, cbInstr < 8 ? (8 - cbInstr) * 3 : 0, "",
646 szBuf);
647 }
648 else
649 {
650 if (enmMode >= PGMMODE_AMD64)
651 cch = RTStrPrintf(pszOutput, cbOutput, "%04x:%RGv %.*Rhxs%*s %s",
652 Sel, GCPtr,
653 cbInstr, pabInstr, cbInstr < 8 ? (8 - cbInstr) * 3 : 0, "",
654 szBuf);
655 else
656 cch = RTStrPrintf(pszOutput, cbOutput, "%04x:%08RX32 %.*Rhxs%*s %s",
657 Sel, (uint32_t)GCPtr,
658 cbInstr, pabInstr, cbInstr < 8 ? (8 - cbInstr) * 3 : 0, "",
659 szBuf);
660 }
661 }
662
663#ifdef VBOX_WITH_RAW_MODE
664 if (szPatchAnnotations[0] && cch + 1 < cbOutput)
665 RTStrPrintf(pszOutput + cch, cbOutput - cch, " ; %s", szPatchAnnotations);
666#endif
667
668 if (pcbInstr)
669 *pcbInstr = State.Cpu.cbInstr;
670
671 dbgfR3DisasInstrDone(&State);
672 return VINF_SUCCESS;
673}
674
675
676/**
677 * Disassembles the one instruction according to the specified flags and address.
678 *
679 * @returns VBox status code.
680 * @param pUVM The user mode VM handle.
681 * @param idCpu The ID of virtual CPU.
682 * @param Sel The code selector. This used to determine the 32/16 bit ness and
683 * calculation of the actual instruction address.
684 * @param GCPtr The code address relative to the base of Sel.
685 * @param fFlags Flags controlling where to start and how to format.
686 * A combination of the DBGF_DISAS_FLAGS_* \#defines.
687 * @param pszOutput Output buffer. This will always be properly
688 * terminated if @a cbOutput is greater than zero.
689 * @param cbOutput Size of the output buffer.
690 * @param pcbInstr Where to return the size of the instruction.
691 *
692 * @remarks May have to switch to the EMT of the virtual CPU in order to do
693 * address conversion.
694 */
695VMMR3DECL(int) DBGFR3DisasInstrEx(PUVM pUVM, VMCPUID idCpu, RTSEL Sel, RTGCPTR GCPtr, uint32_t fFlags,
696 char *pszOutput, uint32_t cbOutput, uint32_t *pcbInstr)
697{
698 AssertReturn(cbOutput > 0, VERR_INVALID_PARAMETER);
699 *pszOutput = '\0';
700 UVM_ASSERT_VALID_EXT_RETURN(pUVM, VERR_INVALID_VM_HANDLE);
701 PVM pVM = pUVM->pVM;
702 VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE);
703 AssertReturn(idCpu < pUVM->cCpus, VERR_INVALID_CPU_ID);
704 AssertReturn(!(fFlags & ~DBGF_DISAS_FLAGS_VALID_MASK), VERR_INVALID_PARAMETER);
705 AssertReturn((fFlags & DBGF_DISAS_FLAGS_MODE_MASK) <= DBGF_DISAS_FLAGS_64BIT_MODE, VERR_INVALID_PARAMETER);
706
707 /*
708 * Optimize the common case where we're called on the EMT of idCpu since
709 * we're using this all the time when logging.
710 */
711 int rc;
712 PVMCPU pVCpu = VMMGetCpu(pVM);
713 if ( pVCpu
714 && pVCpu->idCpu == idCpu)
715 rc = dbgfR3DisasInstrExOnVCpu(pVM, pVCpu, Sel, &GCPtr, fFlags, pszOutput, cbOutput, pcbInstr);
716 else
717 rc = VMR3ReqPriorityCallWait(pVM, idCpu, (PFNRT)dbgfR3DisasInstrExOnVCpu, 8,
718 pVM, VMMGetCpuById(pVM, idCpu), Sel, &GCPtr, fFlags, pszOutput, cbOutput, pcbInstr);
719 return rc;
720}
721
722
723/**
724 * Disassembles the current guest context instruction.
725 * All registers and data will be displayed. Addresses will be attempted resolved to symbols.
726 *
727 * @returns VBox status code.
728 * @param pVCpu Pointer to the VMCPU.
729 * @param pszOutput Output buffer. This will always be properly
730 * terminated if @a cbOutput is greater than zero.
731 * @param cbOutput Size of the output buffer.
732 * @thread EMT(pVCpu)
733 */
734VMMR3_INT_DECL(int) DBGFR3DisasInstrCurrent(PVMCPU pVCpu, char *pszOutput, uint32_t cbOutput)
735{
736 AssertReturn(cbOutput > 0, VERR_INVALID_PARAMETER);
737 *pszOutput = '\0';
738 Assert(VMCPU_IS_EMT(pVCpu));
739
740 RTGCPTR GCPtr = 0;
741 return dbgfR3DisasInstrExOnVCpu(pVCpu->pVMR3, pVCpu, 0, &GCPtr,
742 DBGF_DISAS_FLAGS_CURRENT_GUEST | DBGF_DISAS_FLAGS_DEFAULT_MODE
743 | DBGF_DISAS_FLAGS_ANNOTATE_PATCHED,
744 pszOutput, cbOutput, NULL);
745}
746
747
748/**
749 * Disassembles the current guest context instruction and writes it to the log.
750 * All registers and data will be displayed. Addresses will be attempted resolved to symbols.
751 *
752 * @returns VBox status code.
753 * @param pVCpu Pointer to the VMCPU.
754 * @param pszPrefix Short prefix string to the disassembly string. (optional)
755 * @thread EMT(pVCpu)
756 */
757VMMR3DECL(int) DBGFR3DisasInstrCurrentLogInternal(PVMCPU pVCpu, const char *pszPrefix)
758{
759 char szBuf[256];
760 szBuf[0] = '\0';
761 int rc = DBGFR3DisasInstrCurrent(pVCpu, &szBuf[0], sizeof(szBuf));
762 if (RT_FAILURE(rc))
763 RTStrPrintf(szBuf, sizeof(szBuf), "DBGFR3DisasInstrCurrentLog failed with rc=%Rrc\n", rc);
764 if (pszPrefix && *pszPrefix)
765 {
766 if (pVCpu->CTX_SUFF(pVM)->cCpus > 1)
767 RTLogPrintf("%s-CPU%u: %s\n", pszPrefix, pVCpu->idCpu, szBuf);
768 else
769 RTLogPrintf("%s: %s\n", pszPrefix, szBuf);
770 }
771 else
772 RTLogPrintf("%s\n", szBuf);
773 return rc;
774}
775
776
777
778/**
779 * Disassembles the specified guest context instruction and writes it to the log.
780 * Addresses will be attempted resolved to symbols.
781 *
782 * @returns VBox status code.
783 * @param pVCpu Pointer to the VMCPU, defaults to CPU 0 if NULL.
784 * @param Sel The code selector. This used to determine the 32/16 bit-ness and
785 * calculation of the actual instruction address.
786 * @param GCPtr The code address relative to the base of Sel.
787 * @param pszPrefix Short prefix string to the disassembly string. (optional)
788 * @thread EMT(pVCpu)
789 */
790VMMR3DECL(int) DBGFR3DisasInstrLogInternal(PVMCPU pVCpu, RTSEL Sel, RTGCPTR GCPtr, const char *pszPrefix)
791{
792 Assert(VMCPU_IS_EMT(pVCpu));
793
794 char szBuf[256];
795 RTGCPTR GCPtrTmp = GCPtr;
796 int rc = dbgfR3DisasInstrExOnVCpu(pVCpu->pVMR3, pVCpu, Sel, &GCPtrTmp, DBGF_DISAS_FLAGS_DEFAULT_MODE,
797 &szBuf[0], sizeof(szBuf), NULL);
798 if (RT_FAILURE(rc))
799 RTStrPrintf(szBuf, sizeof(szBuf), "DBGFR3DisasInstrLog(, %RTsel, %RGv) failed with rc=%Rrc\n", Sel, GCPtr, rc);
800 if (pszPrefix && *pszPrefix)
801 {
802 if (pVCpu->CTX_SUFF(pVM)->cCpus > 1)
803 RTLogPrintf("%s-CPU%u: %s\n", pszPrefix, pVCpu->idCpu, szBuf);
804 else
805 RTLogPrintf("%s: %s\n", pszPrefix, szBuf);
806 }
807 else
808 RTLogPrintf("%s\n", szBuf);
809 return rc;
810}
811
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette