VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/DBGFDisas.cpp@ 45745

Last change on this file since 45745 was 45276, checked in by vboxsync, 12 years ago

Ring-1 compression patches, courtesy of trivirt AG:

  • main: diff to remove the hwvirt requirement for QNX
  • rem: diff for dealing with raw ring 0/1 selectors and general changes to allowed guest execution states
  • vmm: changes for using the guest's TSS selector index as our hypervisor TSS selector (makes str safe) (VBOX_WITH_SAFE_STR )
  • vmm: changes for dealing with guest ring 1 code (VBOX_WITH_RAW_RING1)
  • vmm: change to emulate smsw in RC/R0 (QNX uses this old style instruction a lot so going to qemu for emulation is very expensive)
  • vmm: change (hack) to kick out patm virtual handlers in case they conflict with guest GDT/TSS write monitors; we should allow multiple handlers per page, but that change would be rather invasive
  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 25.9 KB
Line 
1/* $Id: DBGFDisas.cpp 45276 2013-04-02 08:17:11Z vboxsync $ */
2/** @file
3 * DBGF - Debugger Facility, Disassembler.
4 */
5
6/*
7 * Copyright (C) 2006-2013 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/*******************************************************************************
19* Header Files *
20*******************************************************************************/
21#define LOG_GROUP LOG_GROUP_DBGF
22#include <VBox/vmm/dbgf.h>
23#include <VBox/vmm/selm.h>
24#include <VBox/vmm/mm.h>
25#include <VBox/vmm/pgm.h>
26#include <VBox/vmm/cpum.h>
27#include "DBGFInternal.h"
28#include <VBox/dis.h>
29#include <VBox/err.h>
30#include <VBox/param.h>
31#include <VBox/vmm/vm.h>
32#include <VBox/vmm/uvm.h>
33#include "internal/pgm.h"
34
35#include <VBox/log.h>
36#include <iprt/assert.h>
37#include <iprt/string.h>
38#include <iprt/alloca.h>
39#include <iprt/ctype.h>
40
41
42/*******************************************************************************
43* Structures and Typedefs *
44*******************************************************************************/
45/**
46 * Structure used when disassembling and instructions in DBGF.
47 * This is used so the reader function can get the stuff it needs.
48 */
49typedef struct
50{
51 /** The core structure. */
52 DISCPUSTATE Cpu;
53 /** Pointer to the VM. */
54 PVM pVM;
55 /** Pointer to the VMCPU. */
56 PVMCPU pVCpu;
57 /** The address space for resolving symbol. */
58 RTDBGAS hAs;
59 /** Pointer to the first byte in the segment. */
60 RTGCUINTPTR GCPtrSegBase;
61 /** Pointer to the byte after the end of the segment. (might have wrapped!) */
62 RTGCUINTPTR GCPtrSegEnd;
63 /** The size of the segment minus 1. */
64 RTGCUINTPTR cbSegLimit;
65 /** The guest paging mode. */
66 PGMMODE enmMode;
67 /** Pointer to the current page - R3 Ptr. */
68 void const *pvPageR3;
69 /** Pointer to the current page - GC Ptr. */
70 RTGCPTR GCPtrPage;
71 /** Pointer to the next instruction (relative to GCPtrSegBase). */
72 RTGCUINTPTR GCPtrNext;
73 /** The lock information that PGMPhysReleasePageMappingLock needs. */
74 PGMPAGEMAPLOCK PageMapLock;
75 /** Whether the PageMapLock is valid or not. */
76 bool fLocked;
77 /** 64 bits mode or not. */
78 bool f64Bits;
79} DBGFDISASSTATE, *PDBGFDISASSTATE;
80
81
82/*******************************************************************************
83* Internal Functions *
84*******************************************************************************/
85static FNDISREADBYTES dbgfR3DisasInstrRead;
86
87
88
89/**
90 * Calls the disassembler with the proper reader functions and such for disa
91 *
92 * @returns VBox status code.
93 * @param pVM Pointer to the VM.
94 * @param pVCpu Pointer to the VMCPU.
95 * @param pSelInfo The selector info.
96 * @param enmMode The guest paging mode.
97 * @param fFlags DBGF_DISAS_FLAGS_XXX.
98 * @param GCPtr The GC pointer (selector offset).
99 * @param pState The disas CPU state.
100 */
101static int dbgfR3DisasInstrFirst(PVM pVM, PVMCPU pVCpu, PDBGFSELINFO pSelInfo, PGMMODE enmMode,
102 RTGCPTR GCPtr, uint32_t fFlags, PDBGFDISASSTATE pState)
103{
104 pState->GCPtrSegBase = pSelInfo->GCPtrBase;
105 pState->GCPtrSegEnd = pSelInfo->cbLimit + 1 + (RTGCUINTPTR)pSelInfo->GCPtrBase;
106 pState->cbSegLimit = pSelInfo->cbLimit;
107 pState->enmMode = enmMode;
108 pState->GCPtrPage = 0;
109 pState->pvPageR3 = NULL;
110 pState->hAs = pSelInfo->fFlags & DBGFSELINFO_FLAGS_HYPER /** @todo Deal more explicitly with RC in DBGFR3Disas*. */
111 ? DBGF_AS_RC_AND_GC_GLOBAL
112 : DBGF_AS_GLOBAL;
113 pState->pVM = pVM;
114 pState->pVCpu = pVCpu;
115 pState->fLocked = false;
116 pState->f64Bits = enmMode >= PGMMODE_AMD64 && pSelInfo->u.Raw.Gen.u1Long;
117
118 DISCPUMODE enmCpuMode;
119 switch (fFlags & DBGF_DISAS_FLAGS_MODE_MASK)
120 {
121 default:
122 AssertFailed();
123 case DBGF_DISAS_FLAGS_DEFAULT_MODE:
124 enmCpuMode = pState->f64Bits
125 ? DISCPUMODE_64BIT
126 : pSelInfo->u.Raw.Gen.u1DefBig
127 ? DISCPUMODE_32BIT
128 : DISCPUMODE_16BIT;
129 break;
130 case DBGF_DISAS_FLAGS_16BIT_MODE:
131 case DBGF_DISAS_FLAGS_16BIT_REAL_MODE:
132 enmCpuMode = DISCPUMODE_16BIT;
133 break;
134 case DBGF_DISAS_FLAGS_32BIT_MODE:
135 enmCpuMode = DISCPUMODE_32BIT;
136 break;
137 case DBGF_DISAS_FLAGS_64BIT_MODE:
138 enmCpuMode = DISCPUMODE_64BIT;
139 break;
140 }
141
142 uint32_t cbInstr;
143 int rc = DISInstrWithReader(GCPtr,
144 enmCpuMode,
145 dbgfR3DisasInstrRead,
146 &pState->Cpu,
147 &pState->Cpu,
148 &cbInstr);
149 if (RT_SUCCESS(rc))
150 {
151 pState->GCPtrNext = GCPtr + cbInstr;
152 return VINF_SUCCESS;
153 }
154
155 /* cleanup */
156 if (pState->fLocked)
157 {
158 PGMPhysReleasePageMappingLock(pVM, &pState->PageMapLock);
159 pState->fLocked = false;
160 }
161 return rc;
162}
163
164
165#if 0
166/**
167 * Calls the disassembler for disassembling the next instruction.
168 *
169 * @returns VBox status code.
170 * @param pState The disas CPU state.
171 */
172static int dbgfR3DisasInstrNext(PDBGFDISASSTATE pState)
173{
174 uint32_t cbInstr;
175 int rc = DISInstr(&pState->Cpu, (void *)pState->GCPtrNext, 0, &cbInstr, NULL);
176 if (RT_SUCCESS(rc))
177 {
178 pState->GCPtrNext = GCPtr + cbInstr;
179 return VINF_SUCCESS;
180 }
181 return rc;
182}
183#endif
184
185
186/**
187 * Done with the disassembler state, free associated resources.
188 *
189 * @param pState The disas CPU state ++.
190 */
191static void dbgfR3DisasInstrDone(PDBGFDISASSTATE pState)
192{
193 if (pState->fLocked)
194 {
195 PGMPhysReleasePageMappingLock(pState->pVM, &pState->PageMapLock);
196 pState->fLocked = false;
197 }
198}
199
200
201/**
202 * @callback_method_impl{FNDISREADBYTES}
203 *
204 * @remarks The source is relative to the base address indicated by
205 * DBGFDISASSTATE::GCPtrSegBase.
206 */
207static DECLCALLBACK(int) dbgfR3DisasInstrRead(PDISCPUSTATE pDis, uint8_t offInstr, uint8_t cbMinRead, uint8_t cbMaxRead)
208{
209 PDBGFDISASSTATE pState = (PDBGFDISASSTATE)pDis;
210 for (;;)
211 {
212 RTGCUINTPTR GCPtr = pDis->uInstrAddr + offInstr + pState->GCPtrSegBase;
213
214 /*
215 * Need to update the page translation?
216 */
217 if ( !pState->pvPageR3
218 || (GCPtr >> PAGE_SHIFT) != (pState->GCPtrPage >> PAGE_SHIFT))
219 {
220 int rc = VINF_SUCCESS;
221
222 /* translate the address */
223 pState->GCPtrPage = GCPtr & PAGE_BASE_GC_MASK;
224 if (MMHyperIsInsideArea(pState->pVM, pState->GCPtrPage))
225 {
226 pState->pvPageR3 = MMHyperRCToR3(pState->pVM, (RTRCPTR)pState->GCPtrPage);
227 if (!pState->pvPageR3)
228 rc = VERR_INVALID_POINTER;
229 }
230 else
231 {
232 if (pState->fLocked)
233 PGMPhysReleasePageMappingLock(pState->pVM, &pState->PageMapLock);
234
235 if (pState->enmMode <= PGMMODE_PROTECTED)
236 rc = PGMPhysGCPhys2CCPtrReadOnly(pState->pVM, pState->GCPtrPage, &pState->pvPageR3, &pState->PageMapLock);
237 else
238 rc = PGMPhysGCPtr2CCPtrReadOnly(pState->pVCpu, pState->GCPtrPage, &pState->pvPageR3, &pState->PageMapLock);
239 pState->fLocked = RT_SUCCESS_NP(rc);
240 }
241 if (RT_FAILURE(rc))
242 {
243 pState->pvPageR3 = NULL;
244 return rc;
245 }
246 }
247
248 /*
249 * Check the segment limit.
250 */
251 if (!pState->f64Bits && pDis->uInstrAddr + offInstr > pState->cbSegLimit)
252 return VERR_OUT_OF_SELECTOR_BOUNDS;
253
254 /*
255 * Calc how much we can read, maxing out the read.
256 */
257 uint32_t cb = PAGE_SIZE - (GCPtr & PAGE_OFFSET_MASK);
258 if (!pState->f64Bits)
259 {
260 RTGCUINTPTR cbSeg = pState->GCPtrSegEnd - GCPtr;
261 if (cb > cbSeg && cbSeg)
262 cb = cbSeg;
263 }
264 if (cb > cbMaxRead)
265 cb = cbMaxRead;
266
267 /*
268 * Read and advance,
269 */
270 memcpy(&pDis->abInstr[offInstr], (char *)pState->pvPageR3 + (GCPtr & PAGE_OFFSET_MASK), cb);
271 offInstr += (uint8_t)cb;
272 if (cb >= cbMinRead)
273 {
274 pDis->cbCachedInstr = offInstr;
275 return VINF_SUCCESS;
276 }
277 cbMaxRead -= (uint8_t)cb;
278 cbMinRead -= (uint8_t)cb;
279 }
280}
281
282
283/**
284 * @copydoc FNDISGETSYMBOL
285 */
286static DECLCALLBACK(int) dbgfR3DisasGetSymbol(PCDISCPUSTATE pCpu, uint32_t u32Sel, RTUINTPTR uAddress, char *pszBuf, size_t cchBuf, RTINTPTR *poff, void *pvUser)
287{
288 PDBGFDISASSTATE pState = (PDBGFDISASSTATE)pCpu;
289 PCDBGFSELINFO pSelInfo = (PCDBGFSELINFO)pvUser;
290 DBGFADDRESS Addr;
291 RTDBGSYMBOL Sym;
292 RTGCINTPTR off;
293 int rc;
294
295 if ( DIS_FMT_SEL_IS_REG(u32Sel)
296 ? DIS_FMT_SEL_GET_REG(u32Sel) == DISSELREG_CS
297 : pSelInfo->Sel == DIS_FMT_SEL_GET_VALUE(u32Sel))
298 {
299 rc = DBGFR3AddrFromSelInfoOff(pState->pVM->pUVM, &Addr, pSelInfo, uAddress);
300 if (RT_SUCCESS(rc))
301 rc = DBGFR3AsSymbolByAddr(pState->pVM->pUVM, pState->hAs, &Addr, &off, &Sym, NULL /*phMod*/);
302 }
303 else
304 rc = VERR_SYMBOL_NOT_FOUND; /** @todo implement this */
305 if (RT_SUCCESS(rc))
306 {
307 size_t cchName = strlen(Sym.szName);
308 if (cchName >= cchBuf)
309 cchName = cchBuf - 1;
310 memcpy(pszBuf, Sym.szName, cchName);
311 pszBuf[cchName] = '\0';
312
313 *poff = off;
314 }
315
316 return rc;
317}
318
319
320/**
321 * Disassembles the one instruction according to the specified flags and
322 * address, internal worker executing on the EMT of the specified virtual CPU.
323 *
324 * @returns VBox status code.
325 * @param pVM Pointer to the VM.
326 * @param pVCpu Pointer to the VMCPU.
327 * @param Sel The code selector. This used to determine the 32/16 bit ness and
328 * calculation of the actual instruction address.
329 * @param pGCPtr Pointer to the variable holding the code address
330 * relative to the base of Sel.
331 * @param fFlags Flags controlling where to start and how to format.
332 * A combination of the DBGF_DISAS_FLAGS_* \#defines.
333 * @param pszOutput Output buffer.
334 * @param cbOutput Size of the output buffer.
335 * @param pcbInstr Where to return the size of the instruction.
336 */
337static DECLCALLBACK(int)
338dbgfR3DisasInstrExOnVCpu(PVM pVM, PVMCPU pVCpu, RTSEL Sel, PRTGCPTR pGCPtr, uint32_t fFlags,
339 char *pszOutput, uint32_t cbOutput, uint32_t *pcbInstr)
340{
341 VMCPU_ASSERT_EMT(pVCpu);
342 RTGCPTR GCPtr = *pGCPtr;
343 int rc;
344
345 /*
346 * Get the Sel and GCPtr if fFlags requests that.
347 */
348 PCCPUMCTXCORE pCtxCore = NULL;
349 PCCPUMSELREG pSRegCS = NULL;
350 if (fFlags & DBGF_DISAS_FLAGS_CURRENT_GUEST)
351 {
352 pCtxCore = CPUMGetGuestCtxCore(pVCpu);
353 Sel = pCtxCore->cs.Sel;
354 pSRegCS = &pCtxCore->cs;
355 GCPtr = pCtxCore->rip;
356 }
357 else if (fFlags & DBGF_DISAS_FLAGS_CURRENT_HYPER)
358 {
359 pCtxCore = CPUMGetHyperCtxCore(pVCpu);
360 Sel = pCtxCore->cs.Sel;
361 GCPtr = pCtxCore->rip;
362 }
363 /*
364 * Check if the selector matches the guest CS, use the hidden
365 * registers from that if they are valid. Saves time and effort.
366 */
367 else
368 {
369 pCtxCore = CPUMGetGuestCtxCore(pVCpu);
370 if (pCtxCore->cs.Sel == Sel && Sel != DBGF_SEL_FLAT)
371 pSRegCS = &pCtxCore->cs;
372 else
373 pCtxCore = NULL;
374 }
375
376 /*
377 * Read the selector info - assume no stale selectors and nasty stuff like that.
378 *
379 * Note! We CANNOT load invalid hidden selector registers since that would
380 * mean that log/debug statements or the debug will influence the
381 * guest state and make things behave differently.
382 */
383 DBGFSELINFO SelInfo;
384 const PGMMODE enmMode = PGMGetGuestMode(pVCpu);
385 bool fRealModeAddress = false;
386
387 if ( pSRegCS
388 && CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, pSRegCS))
389 {
390 SelInfo.Sel = Sel;
391 SelInfo.SelGate = 0;
392 SelInfo.GCPtrBase = pSRegCS->u64Base;
393 SelInfo.cbLimit = pSRegCS->u32Limit;
394 SelInfo.fFlags = PGMMODE_IS_LONG_MODE(enmMode)
395 ? DBGFSELINFO_FLAGS_LONG_MODE
396 : enmMode != PGMMODE_REAL && !pCtxCore->eflags.Bits.u1VM
397 ? DBGFSELINFO_FLAGS_PROT_MODE
398 : DBGFSELINFO_FLAGS_REAL_MODE;
399
400 SelInfo.u.Raw.au32[0] = 0;
401 SelInfo.u.Raw.au32[1] = 0;
402 SelInfo.u.Raw.Gen.u16LimitLow = 0xffff;
403 SelInfo.u.Raw.Gen.u4LimitHigh = 0xf;
404 SelInfo.u.Raw.Gen.u1Present = pSRegCS->Attr.n.u1Present;
405 SelInfo.u.Raw.Gen.u1Granularity = pSRegCS->Attr.n.u1Granularity;;
406 SelInfo.u.Raw.Gen.u1DefBig = pSRegCS->Attr.n.u1DefBig;
407 SelInfo.u.Raw.Gen.u1Long = pSRegCS->Attr.n.u1Long;
408 SelInfo.u.Raw.Gen.u1DescType = pSRegCS->Attr.n.u1DescType;
409 SelInfo.u.Raw.Gen.u4Type = pSRegCS->Attr.n.u4Type;
410 fRealModeAddress = !!(SelInfo.fFlags & DBGFSELINFO_FLAGS_REAL_MODE);
411 }
412 else if (Sel == DBGF_SEL_FLAT)
413 {
414 SelInfo.Sel = Sel;
415 SelInfo.SelGate = 0;
416 SelInfo.GCPtrBase = 0;
417 SelInfo.cbLimit = ~0;
418 SelInfo.fFlags = PGMMODE_IS_LONG_MODE(enmMode)
419 ? DBGFSELINFO_FLAGS_LONG_MODE
420 : enmMode != PGMMODE_REAL
421 ? DBGFSELINFO_FLAGS_PROT_MODE
422 : DBGFSELINFO_FLAGS_REAL_MODE;
423 SelInfo.u.Raw.au32[0] = 0;
424 SelInfo.u.Raw.au32[1] = 0;
425 SelInfo.u.Raw.Gen.u16LimitLow = 0xffff;
426 SelInfo.u.Raw.Gen.u4LimitHigh = 0xf;
427
428 pSRegCS = &CPUMGetGuestCtxCore(pVCpu)->cs;
429 if (CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, pSRegCS))
430 {
431 /* Assume the current CS defines the execution mode. */
432 SelInfo.u.Raw.Gen.u1Present = pSRegCS->Attr.n.u1Present;
433 SelInfo.u.Raw.Gen.u1Granularity = pSRegCS->Attr.n.u1Granularity;;
434 SelInfo.u.Raw.Gen.u1DefBig = pSRegCS->Attr.n.u1DefBig;
435 SelInfo.u.Raw.Gen.u1Long = pSRegCS->Attr.n.u1Long;
436 SelInfo.u.Raw.Gen.u1DescType = pSRegCS->Attr.n.u1DescType;
437 SelInfo.u.Raw.Gen.u4Type = pSRegCS->Attr.n.u4Type;
438 }
439 else
440 {
441 pSRegCS = NULL;
442 SelInfo.u.Raw.Gen.u1Present = 1;
443 SelInfo.u.Raw.Gen.u1Granularity = 1;
444 SelInfo.u.Raw.Gen.u1DefBig = 1;
445 SelInfo.u.Raw.Gen.u1DescType = 1;
446 SelInfo.u.Raw.Gen.u4Type = X86_SEL_TYPE_EO;
447 }
448 }
449 else if ( !(fFlags & DBGF_DISAS_FLAGS_CURRENT_HYPER)
450 && ( (pCtxCore && pCtxCore->eflags.Bits.u1VM)
451 || enmMode == PGMMODE_REAL
452 || (fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_16BIT_REAL_MODE
453 )
454 )
455 { /* V86 mode or real mode - real mode addressing */
456 SelInfo.Sel = Sel;
457 SelInfo.SelGate = 0;
458 SelInfo.GCPtrBase = Sel * 16;
459 SelInfo.cbLimit = ~0;
460 SelInfo.fFlags = DBGFSELINFO_FLAGS_REAL_MODE;
461 SelInfo.u.Raw.au32[0] = 0;
462 SelInfo.u.Raw.au32[1] = 0;
463 SelInfo.u.Raw.Gen.u16LimitLow = 0xffff;
464 SelInfo.u.Raw.Gen.u4LimitHigh = 0xf;
465 SelInfo.u.Raw.Gen.u1Present = 1;
466 SelInfo.u.Raw.Gen.u1Granularity = 1;
467 SelInfo.u.Raw.Gen.u1DefBig = 0; /* 16 bits */
468 SelInfo.u.Raw.Gen.u1DescType = 1;
469 SelInfo.u.Raw.Gen.u4Type = X86_SEL_TYPE_EO;
470 fRealModeAddress = true;
471 }
472 else
473 {
474 rc = SELMR3GetSelectorInfo(pVM, pVCpu, Sel, &SelInfo);
475 if (RT_FAILURE(rc))
476 {
477 RTStrPrintf(pszOutput, cbOutput, "Sel=%04x -> %Rrc\n", Sel, rc);
478 return rc;
479 }
480 }
481
482 /*
483 * Disassemble it.
484 */
485 DBGFDISASSTATE State;
486 rc = dbgfR3DisasInstrFirst(pVM, pVCpu, &SelInfo, enmMode, GCPtr, fFlags, &State);
487 if (RT_FAILURE(rc))
488 {
489 RTStrPrintf(pszOutput, cbOutput, "Disas -> %Rrc\n", rc);
490 return rc;
491 }
492
493 /*
494 * Format it.
495 */
496 char szBuf[512];
497 DISFormatYasmEx(&State.Cpu, szBuf, sizeof(szBuf),
498 DIS_FMT_FLAGS_RELATIVE_BRANCH,
499 fFlags & DBGF_DISAS_FLAGS_NO_SYMBOLS ? NULL : dbgfR3DisasGetSymbol,
500 &SelInfo);
501
502 /*
503 * Print it to the user specified buffer.
504 */
505 if (fFlags & DBGF_DISAS_FLAGS_NO_BYTES)
506 {
507 if (fFlags & DBGF_DISAS_FLAGS_NO_ADDRESS)
508 RTStrPrintf(pszOutput, cbOutput, "%s", szBuf);
509 else if (fRealModeAddress)
510 RTStrPrintf(pszOutput, cbOutput, "%04x:%04x %s", Sel, (unsigned)GCPtr, szBuf);
511 else if (Sel == DBGF_SEL_FLAT)
512 {
513 if (enmMode >= PGMMODE_AMD64)
514 RTStrPrintf(pszOutput, cbOutput, "%RGv %s", GCPtr, szBuf);
515 else
516 RTStrPrintf(pszOutput, cbOutput, "%08RX32 %s", (uint32_t)GCPtr, szBuf);
517 }
518 else
519 {
520 if (enmMode >= PGMMODE_AMD64)
521 RTStrPrintf(pszOutput, cbOutput, "%04x:%RGv %s", Sel, GCPtr, szBuf);
522 else
523 RTStrPrintf(pszOutput, cbOutput, "%04x:%08RX32 %s", Sel, (uint32_t)GCPtr, szBuf);
524 }
525 }
526 else
527 {
528 uint32_t cbInstr = State.Cpu.cbInstr;
529 uint8_t const *pabInstr = State.Cpu.abInstr;
530 if (fFlags & DBGF_DISAS_FLAGS_NO_ADDRESS)
531 RTStrPrintf(pszOutput, cbOutput, "%.*Rhxs%*s %s",
532 cbInstr, pabInstr, cbInstr < 8 ? (8 - cbInstr) * 3 : 0, "",
533 szBuf);
534 else if (fRealModeAddress)
535 RTStrPrintf(pszOutput, cbOutput, "%04x:%04x %.*Rhxs%*s %s",
536 Sel, (unsigned)GCPtr,
537 cbInstr, pabInstr, cbInstr < 8 ? (8 - cbInstr) * 3 : 0, "",
538 szBuf);
539 else if (Sel == DBGF_SEL_FLAT)
540 {
541 if (enmMode >= PGMMODE_AMD64)
542 RTStrPrintf(pszOutput, cbOutput, "%RGv %.*Rhxs%*s %s",
543 GCPtr,
544 cbInstr, pabInstr, cbInstr < 8 ? (8 - cbInstr) * 3 : 0, "",
545 szBuf);
546 else
547 RTStrPrintf(pszOutput, cbOutput, "%08RX32 %.*Rhxs%*s %s",
548 (uint32_t)GCPtr,
549 cbInstr, pabInstr, cbInstr < 8 ? (8 - cbInstr) * 3 : 0, "",
550 szBuf);
551 }
552 else
553 {
554 if (enmMode >= PGMMODE_AMD64)
555 RTStrPrintf(pszOutput, cbOutput, "%04x:%RGv %.*Rhxs%*s %s",
556 Sel, GCPtr,
557 cbInstr, pabInstr, cbInstr < 8 ? (8 - cbInstr) * 3 : 0, "",
558 szBuf);
559 else
560 RTStrPrintf(pszOutput, cbOutput, "%04x:%08RX32 %.*Rhxs%*s %s",
561 Sel, (uint32_t)GCPtr,
562 cbInstr, pabInstr, cbInstr < 8 ? (8 - cbInstr) * 3 : 0, "",
563 szBuf);
564 }
565 }
566
567 if (pcbInstr)
568 *pcbInstr = State.Cpu.cbInstr;
569
570 dbgfR3DisasInstrDone(&State);
571 return VINF_SUCCESS;
572}
573
574
575/**
576 * Disassembles the one instruction according to the specified flags and address.
577 *
578 * @returns VBox status code.
579 * @param pUVM The user mode VM handle.
580 * @param idCpu The ID of virtual CPU.
581 * @param Sel The code selector. This used to determine the 32/16 bit ness and
582 * calculation of the actual instruction address.
583 * @param GCPtr The code address relative to the base of Sel.
584 * @param fFlags Flags controlling where to start and how to format.
585 * A combination of the DBGF_DISAS_FLAGS_* \#defines.
586 * @param pszOutput Output buffer. This will always be properly
587 * terminated if @a cbOutput is greater than zero.
588 * @param cbOutput Size of the output buffer.
589 * @param pcbInstr Where to return the size of the instruction.
590 *
591 * @remarks May have to switch to the EMT of the virtual CPU in order to do
592 * address conversion.
593 */
594VMMR3DECL(int) DBGFR3DisasInstrEx(PUVM pUVM, VMCPUID idCpu, RTSEL Sel, RTGCPTR GCPtr, uint32_t fFlags,
595 char *pszOutput, uint32_t cbOutput, uint32_t *pcbInstr)
596{
597 AssertReturn(cbOutput > 0, VERR_INVALID_PARAMETER);
598 *pszOutput = '\0';
599 UVM_ASSERT_VALID_EXT_RETURN(pUVM, VERR_INVALID_VM_HANDLE);
600 PVM pVM = pUVM->pVM;
601 VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE);
602 AssertReturn(idCpu < pUVM->cCpus, VERR_INVALID_CPU_ID);
603 AssertReturn(!(fFlags & ~DBGF_DISAS_FLAGS_VALID_MASK), VERR_INVALID_PARAMETER);
604 AssertReturn((fFlags & DBGF_DISAS_FLAGS_MODE_MASK) <= DBGF_DISAS_FLAGS_64BIT_MODE, VERR_INVALID_PARAMETER);
605
606 /*
607 * Optimize the common case where we're called on the EMT of idCpu since
608 * we're using this all the time when logging.
609 */
610 int rc;
611 PVMCPU pVCpu = VMMGetCpu(pVM);
612 if ( pVCpu
613 && pVCpu->idCpu == idCpu)
614 rc = dbgfR3DisasInstrExOnVCpu(pVM, pVCpu, Sel, &GCPtr, fFlags, pszOutput, cbOutput, pcbInstr);
615 else
616 rc = VMR3ReqPriorityCallWait(pVM, idCpu, (PFNRT)dbgfR3DisasInstrExOnVCpu, 8,
617 pVM, VMMGetCpuById(pVM, idCpu), Sel, &GCPtr, fFlags, pszOutput, cbOutput, pcbInstr);
618 return rc;
619}
620
621
622/**
623 * Disassembles the current guest context instruction.
624 * All registers and data will be displayed. Addresses will be attempted resolved to symbols.
625 *
626 * @returns VBox status code.
627 * @param pVCpu Pointer to the VMCPU.
628 * @param pszOutput Output buffer. This will always be properly
629 * terminated if @a cbOutput is greater than zero.
630 * @param cbOutput Size of the output buffer.
631 * @thread EMT(pVCpu)
632 */
633VMMR3_INT_DECL(int) DBGFR3DisasInstrCurrent(PVMCPU pVCpu, char *pszOutput, uint32_t cbOutput)
634{
635 AssertReturn(cbOutput > 0, VERR_INVALID_PARAMETER);
636 *pszOutput = '\0';
637 Assert(VMCPU_IS_EMT(pVCpu));
638
639 RTGCPTR GCPtr = 0;
640 return dbgfR3DisasInstrExOnVCpu(pVCpu->pVMR3, pVCpu, 0, &GCPtr,
641 DBGF_DISAS_FLAGS_CURRENT_GUEST | DBGF_DISAS_FLAGS_DEFAULT_MODE,
642 pszOutput, cbOutput, NULL);
643}
644
645
646/**
647 * Disassembles the current guest context instruction and writes it to the log.
648 * All registers and data will be displayed. Addresses will be attempted resolved to symbols.
649 *
650 * @returns VBox status code.
651 * @param pVCpu Pointer to the VMCPU.
652 * @param pszPrefix Short prefix string to the disassembly string. (optional)
653 * @thread EMT(pVCpu)
654 */
655VMMR3DECL(int) DBGFR3DisasInstrCurrentLogInternal(PVMCPU pVCpu, const char *pszPrefix)
656{
657 char szBuf[256];
658 szBuf[0] = '\0';
659 int rc = DBGFR3DisasInstrCurrent(pVCpu, &szBuf[0], sizeof(szBuf));
660 if (RT_FAILURE(rc))
661 RTStrPrintf(szBuf, sizeof(szBuf), "DBGFR3DisasInstrCurrentLog failed with rc=%Rrc\n", rc);
662 if (pszPrefix && *pszPrefix)
663 {
664 if (pVCpu->CTX_SUFF(pVM)->cCpus > 1)
665 RTLogPrintf("%s-CPU%u: %s\n", pszPrefix, pVCpu->idCpu, szBuf);
666 else
667 RTLogPrintf("%s: %s\n", pszPrefix, szBuf);
668 }
669 else
670 RTLogPrintf("%s\n", szBuf);
671 return rc;
672}
673
674
675
676/**
677 * Disassembles the specified guest context instruction and writes it to the log.
678 * Addresses will be attempted resolved to symbols.
679 *
680 * @returns VBox status code.
681 * @param pVCpu Pointer to the VMCPU, defaults to CPU 0 if NULL.
682 * @param Sel The code selector. This used to determine the 32/16 bit-ness and
683 * calculation of the actual instruction address.
684 * @param GCPtr The code address relative to the base of Sel.
685 * @param pszPrefix Short prefix string to the disassembly string. (optional)
686 * @thread EMT(pVCpu)
687 */
688VMMR3DECL(int) DBGFR3DisasInstrLogInternal(PVMCPU pVCpu, RTSEL Sel, RTGCPTR GCPtr, const char *pszPrefix)
689{
690 Assert(VMCPU_IS_EMT(pVCpu));
691
692 char szBuf[256];
693 RTGCPTR GCPtrTmp = GCPtr;
694 int rc = dbgfR3DisasInstrExOnVCpu(pVCpu->pVMR3, pVCpu, Sel, &GCPtrTmp, DBGF_DISAS_FLAGS_DEFAULT_MODE,
695 &szBuf[0], sizeof(szBuf), NULL);
696 if (RT_FAILURE(rc))
697 RTStrPrintf(szBuf, sizeof(szBuf), "DBGFR3DisasInstrLog(, %RTsel, %RGv) failed with rc=%Rrc\n", Sel, GCPtr, rc);
698 if (pszPrefix && *pszPrefix)
699 {
700 if (pVCpu->CTX_SUFF(pVM)->cCpus > 1)
701 RTLogPrintf("%s-CPU%u: %s\n", pszPrefix, pVCpu->idCpu, szBuf);
702 else
703 RTLogPrintf("%s: %s\n", pszPrefix, szBuf);
704 }
705 else
706 RTLogPrintf("%s\n", szBuf);
707 return rc;
708}
709
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette