VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/DBGFDisas.cpp@ 72451

Last change on this file since 72451 was 70948, checked in by vboxsync, 7 years ago

VMM: Added a bMainExecutionEngine member to the VM structure for use instead of fHMEnabled and fNEMEnabled. Changed a lot of HMIsEnabled invocations to use the new macros VM_IS_RAW_MODE_ENABLED and VM_IS_HM_OR_NEM_ENABLED. Eliminated fHMEnabledFixed. Fixed inverted test for raw-mode debug register sanity checking. Some other minor cleanups.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 32.8 KB
Line 
1/* $Id: DBGFDisas.cpp 70948 2018-02-10 15:38:12Z vboxsync $ */
2/** @file
3 * DBGF - Debugger Facility, Disassembler.
4 */
5
6/*
7 * Copyright (C) 2006-2017 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_DBGF
23#include <VBox/vmm/dbgf.h>
24#include <VBox/vmm/selm.h>
25#include <VBox/vmm/mm.h>
26#include <VBox/vmm/hm.h>
27#include <VBox/vmm/pgm.h>
28#include <VBox/vmm/cpum.h>
29#ifdef VBOX_WITH_RAW_MODE
30# include <VBox/vmm/patm.h>
31#endif
32#include "DBGFInternal.h"
33#include <VBox/dis.h>
34#include <VBox/err.h>
35#include <VBox/param.h>
36#include <VBox/vmm/vm.h>
37#include <VBox/vmm/uvm.h>
38
39#include <VBox/log.h>
40#include <iprt/assert.h>
41#include <iprt/string.h>
42#include <iprt/alloca.h>
43#include <iprt/ctype.h>
44
45
46/*********************************************************************************************************************************
47* Structures and Typedefs *
48*********************************************************************************************************************************/
49/**
50 * Structure used when disassembling and instructions in DBGF.
51 * This is used so the reader function can get the stuff it needs.
52 */
53typedef struct
54{
55 /** The core structure. */
56 DISCPUSTATE Cpu;
57 /** The cross context VM structure. */
58 PVM pVM;
59 /** The cross context virtual CPU structure. */
60 PVMCPU pVCpu;
61 /** The address space for resolving symbol. */
62 RTDBGAS hDbgAs;
63 /** Pointer to the first byte in the segment. */
64 RTGCUINTPTR GCPtrSegBase;
65 /** Pointer to the byte after the end of the segment. (might have wrapped!) */
66 RTGCUINTPTR GCPtrSegEnd;
67 /** The size of the segment minus 1. */
68 RTGCUINTPTR cbSegLimit;
69 /** The guest paging mode. */
70 PGMMODE enmMode;
71 /** Pointer to the current page - R3 Ptr. */
72 void const *pvPageR3;
73 /** Pointer to the current page - GC Ptr. */
74 RTGCPTR GCPtrPage;
75 /** Pointer to the next instruction (relative to GCPtrSegBase). */
76 RTGCUINTPTR GCPtrNext;
77 /** The lock information that PGMPhysReleasePageMappingLock needs. */
78 PGMPAGEMAPLOCK PageMapLock;
79 /** Whether the PageMapLock is valid or not. */
80 bool fLocked;
81 /** 64 bits mode or not. */
82 bool f64Bits;
83 /** Read original unpatched bytes from the patch manager. */
84 bool fUnpatchedBytes;
85 /** Set when fUnpatchedBytes is active and we encounter patched bytes. */
86 bool fPatchedInstr;
87} DBGFDISASSTATE, *PDBGFDISASSTATE;
88
89
90/*********************************************************************************************************************************
91* Internal Functions *
92*********************************************************************************************************************************/
93static FNDISREADBYTES dbgfR3DisasInstrRead;
94
95
96
97/**
98 * Calls the disassembler with the proper reader functions and such for disa
99 *
100 * @returns VBox status code.
101 * @param pVM The cross context VM structure.
102 * @param pVCpu The cross context virtual CPU structure.
103 * @param pSelInfo The selector info.
104 * @param enmMode The guest paging mode.
105 * @param fFlags DBGF_DISAS_FLAGS_XXX.
106 * @param GCPtr The GC pointer (selector offset).
107 * @param pState The disas CPU state.
108 */
109static int dbgfR3DisasInstrFirst(PVM pVM, PVMCPU pVCpu, PDBGFSELINFO pSelInfo, PGMMODE enmMode,
110 RTGCPTR GCPtr, uint32_t fFlags, PDBGFDISASSTATE pState)
111{
112 pState->GCPtrSegBase = pSelInfo->GCPtrBase;
113 pState->GCPtrSegEnd = pSelInfo->cbLimit + 1 + (RTGCUINTPTR)pSelInfo->GCPtrBase;
114 pState->cbSegLimit = pSelInfo->cbLimit;
115 pState->enmMode = enmMode;
116 pState->GCPtrPage = 0;
117 pState->pvPageR3 = NULL;
118 pState->hDbgAs = VM_IS_RAW_MODE_ENABLED(pVM)
119 ? DBGF_AS_RC_AND_GC_GLOBAL
120 : DBGF_AS_GLOBAL;
121 pState->pVM = pVM;
122 pState->pVCpu = pVCpu;
123 pState->fLocked = false;
124 pState->f64Bits = enmMode >= PGMMODE_AMD64 && pSelInfo->u.Raw.Gen.u1Long;
125#ifdef VBOX_WITH_RAW_MODE
126 pState->fUnpatchedBytes = RT_BOOL(fFlags & DBGF_DISAS_FLAGS_UNPATCHED_BYTES);
127 pState->fPatchedInstr = false;
128#endif
129
130 DISCPUMODE enmCpuMode;
131 switch (fFlags & DBGF_DISAS_FLAGS_MODE_MASK)
132 {
133 default:
134 AssertFailed();
135 RT_FALL_THRU();
136 case DBGF_DISAS_FLAGS_DEFAULT_MODE:
137 enmCpuMode = pState->f64Bits
138 ? DISCPUMODE_64BIT
139 : pSelInfo->u.Raw.Gen.u1DefBig
140 ? DISCPUMODE_32BIT
141 : DISCPUMODE_16BIT;
142 break;
143 case DBGF_DISAS_FLAGS_16BIT_MODE:
144 case DBGF_DISAS_FLAGS_16BIT_REAL_MODE:
145 enmCpuMode = DISCPUMODE_16BIT;
146 break;
147 case DBGF_DISAS_FLAGS_32BIT_MODE:
148 enmCpuMode = DISCPUMODE_32BIT;
149 break;
150 case DBGF_DISAS_FLAGS_64BIT_MODE:
151 enmCpuMode = DISCPUMODE_64BIT;
152 break;
153 }
154
155 uint32_t cbInstr;
156 int rc = DISInstrWithReader(GCPtr,
157 enmCpuMode,
158 dbgfR3DisasInstrRead,
159 &pState->Cpu,
160 &pState->Cpu,
161 &cbInstr);
162 if (RT_SUCCESS(rc))
163 {
164 pState->GCPtrNext = GCPtr + cbInstr;
165 return VINF_SUCCESS;
166 }
167
168 /* cleanup */
169 if (pState->fLocked)
170 {
171 PGMPhysReleasePageMappingLock(pVM, &pState->PageMapLock);
172 pState->fLocked = false;
173 }
174 return rc;
175}
176
177
178#if 0
179/**
180 * Calls the disassembler for disassembling the next instruction.
181 *
182 * @returns VBox status code.
183 * @param pState The disas CPU state.
184 */
185static int dbgfR3DisasInstrNext(PDBGFDISASSTATE pState)
186{
187 uint32_t cbInstr;
188 int rc = DISInstr(&pState->Cpu, (void *)pState->GCPtrNext, 0, &cbInstr, NULL);
189 if (RT_SUCCESS(rc))
190 {
191 pState->GCPtrNext = GCPtr + cbInstr;
192 return VINF_SUCCESS;
193 }
194 return rc;
195}
196#endif
197
198
199/**
200 * Done with the disassembler state, free associated resources.
201 *
202 * @param pState The disas CPU state ++.
203 */
204static void dbgfR3DisasInstrDone(PDBGFDISASSTATE pState)
205{
206 if (pState->fLocked)
207 {
208 PGMPhysReleasePageMappingLock(pState->pVM, &pState->PageMapLock);
209 pState->fLocked = false;
210 }
211}
212
213
214/**
215 * @callback_method_impl{FNDISREADBYTES}
216 *
217 * @remarks The source is relative to the base address indicated by
218 * DBGFDISASSTATE::GCPtrSegBase.
219 */
220static DECLCALLBACK(int) dbgfR3DisasInstrRead(PDISCPUSTATE pDis, uint8_t offInstr, uint8_t cbMinRead, uint8_t cbMaxRead)
221{
222 PDBGFDISASSTATE pState = (PDBGFDISASSTATE)pDis;
223 for (;;)
224 {
225 RTGCUINTPTR GCPtr = pDis->uInstrAddr + offInstr + pState->GCPtrSegBase;
226
227 /*
228 * Need to update the page translation?
229 */
230 if ( !pState->pvPageR3
231 || (GCPtr >> PAGE_SHIFT) != (pState->GCPtrPage >> PAGE_SHIFT))
232 {
233 int rc = VINF_SUCCESS;
234
235 /* translate the address */
236 pState->GCPtrPage = GCPtr & PAGE_BASE_GC_MASK;
237 if ( VM_IS_RAW_MODE_ENABLED(pState->pVM)
238 && MMHyperIsInsideArea(pState->pVM, pState->GCPtrPage))
239 {
240 pState->pvPageR3 = MMHyperRCToR3(pState->pVM, (RTRCPTR)pState->GCPtrPage);
241 if (!pState->pvPageR3)
242 rc = VERR_INVALID_POINTER;
243 }
244 else
245 {
246 if (pState->fLocked)
247 PGMPhysReleasePageMappingLock(pState->pVM, &pState->PageMapLock);
248
249 if (pState->enmMode <= PGMMODE_PROTECTED)
250 rc = PGMPhysGCPhys2CCPtrReadOnly(pState->pVM, pState->GCPtrPage, &pState->pvPageR3, &pState->PageMapLock);
251 else
252 rc = PGMPhysGCPtr2CCPtrReadOnly(pState->pVCpu, pState->GCPtrPage, &pState->pvPageR3, &pState->PageMapLock);
253 pState->fLocked = RT_SUCCESS_NP(rc);
254 }
255 if (RT_FAILURE(rc))
256 {
257 pState->pvPageR3 = NULL;
258 return rc;
259 }
260 }
261
262 /*
263 * Check the segment limit.
264 */
265 if (!pState->f64Bits && pDis->uInstrAddr + offInstr > pState->cbSegLimit)
266 return VERR_OUT_OF_SELECTOR_BOUNDS;
267
268 /*
269 * Calc how much we can read, maxing out the read.
270 */
271 uint32_t cb = PAGE_SIZE - (GCPtr & PAGE_OFFSET_MASK);
272 if (!pState->f64Bits)
273 {
274 RTGCUINTPTR cbSeg = pState->GCPtrSegEnd - GCPtr;
275 if (cb > cbSeg && cbSeg)
276 cb = cbSeg;
277 }
278 if (cb > cbMaxRead)
279 cb = cbMaxRead;
280
281#ifdef VBOX_WITH_RAW_MODE
282 /*
283 * Read original bytes from PATM if asked to do so.
284 */
285 if (pState->fUnpatchedBytes)
286 {
287 size_t cbRead = cb;
288 int rc = PATMR3ReadOrgInstr(pState->pVM, GCPtr, &pDis->abInstr[offInstr], cbRead, &cbRead);
289 if (RT_SUCCESS(rc))
290 {
291 pState->fPatchedInstr = true;
292 if (cbRead >= cbMinRead)
293 {
294 pDis->cbCachedInstr = offInstr + (uint8_t)cbRead;
295 return rc;
296 }
297
298 cbMinRead -= (uint8_t)cbRead;
299 cbMaxRead -= (uint8_t)cbRead;
300 cb -= (uint8_t)cbRead;
301 offInstr += (uint8_t)cbRead;
302 GCPtr += cbRead;
303 if (!cb)
304 continue;
305 }
306 }
307#endif /* VBOX_WITH_RAW_MODE */
308
309 /*
310 * Read and advance,
311 */
312 memcpy(&pDis->abInstr[offInstr], (char *)pState->pvPageR3 + (GCPtr & PAGE_OFFSET_MASK), cb);
313 offInstr += (uint8_t)cb;
314 if (cb >= cbMinRead)
315 {
316 pDis->cbCachedInstr = offInstr;
317 return VINF_SUCCESS;
318 }
319 cbMaxRead -= (uint8_t)cb;
320 cbMinRead -= (uint8_t)cb;
321 }
322}
323
324
325/**
326 * @callback_method_impl{FNDISGETSYMBOL}
327 */
328static DECLCALLBACK(int) dbgfR3DisasGetSymbol(PCDISCPUSTATE pDis, uint32_t u32Sel, RTUINTPTR uAddress,
329 char *pszBuf, size_t cchBuf, RTINTPTR *poff, void *pvUser)
330{
331 PDBGFDISASSTATE pState = (PDBGFDISASSTATE)pDis;
332 PCDBGFSELINFO pSelInfo = (PCDBGFSELINFO)pvUser;
333
334 /*
335 * Address conversion
336 */
337 DBGFADDRESS Addr;
338 int rc;
339 /* Start with CS. */
340 if ( DIS_FMT_SEL_IS_REG(u32Sel)
341 ? DIS_FMT_SEL_GET_REG(u32Sel) == DISSELREG_CS
342 : pSelInfo->Sel == DIS_FMT_SEL_GET_VALUE(u32Sel))
343 rc = DBGFR3AddrFromSelInfoOff(pState->pVM->pUVM, &Addr, pSelInfo, uAddress);
344 /* In long mode everything but FS and GS is easy. */
345 else if ( pState->Cpu.uCpuMode == DISCPUMODE_64BIT
346 && DIS_FMT_SEL_IS_REG(u32Sel)
347 && DIS_FMT_SEL_GET_REG(u32Sel) != DISSELREG_GS
348 && DIS_FMT_SEL_GET_REG(u32Sel) != DISSELREG_FS)
349 {
350 DBGFR3AddrFromFlat(pState->pVM->pUVM, &Addr, uAddress);
351 rc = VINF_SUCCESS;
352 }
353 /* Here's a quick hack to catch patch manager SS relative access. */
354 else if ( DIS_FMT_SEL_IS_REG(u32Sel)
355 && DIS_FMT_SEL_GET_REG(u32Sel) == DISSELREG_SS
356 && pSelInfo->GCPtrBase == 0
357 && pSelInfo->cbLimit >= UINT32_MAX
358#ifdef VBOX_WITH_RAW_MODE
359 && PATMIsPatchGCAddr(pState->pVM, pState->Cpu.uInstrAddr)
360#endif
361 )
362 {
363 DBGFR3AddrFromFlat(pState->pVM->pUVM, &Addr, uAddress);
364 rc = VINF_SUCCESS;
365 }
366 else
367 {
368 /** @todo implement a generic solution here. */
369 rc = VERR_SYMBOL_NOT_FOUND;
370 }
371
372 /*
373 * If we got an address, try resolve it into a symbol.
374 */
375 if (RT_SUCCESS(rc))
376 {
377 RTDBGSYMBOL Sym;
378 RTGCINTPTR off;
379 rc = DBGFR3AsSymbolByAddr(pState->pVM->pUVM, pState->hDbgAs, &Addr, RTDBGSYMADDR_FLAGS_LESS_OR_EQUAL,
380 &off, &Sym, NULL /*phMod*/);
381 if (RT_SUCCESS(rc))
382 {
383 /*
384 * Return the symbol and offset.
385 */
386 size_t cchName = strlen(Sym.szName);
387 if (cchName >= cchBuf)
388 cchName = cchBuf - 1;
389 memcpy(pszBuf, Sym.szName, cchName);
390 pszBuf[cchName] = '\0';
391
392 *poff = off;
393 }
394 }
395 return rc;
396}
397
398
399/**
400 * Disassembles the one instruction according to the specified flags and
401 * address, internal worker executing on the EMT of the specified virtual CPU.
402 *
403 * @returns VBox status code.
404 * @param pVM The cross context VM structure.
405 * @param pVCpu The cross context virtual CPU structure.
406 * @param Sel The code selector. This used to determine the 32/16 bit ness and
407 * calculation of the actual instruction address.
408 * @param pGCPtr Pointer to the variable holding the code address
409 * relative to the base of Sel.
410 * @param fFlags Flags controlling where to start and how to format.
411 * A combination of the DBGF_DISAS_FLAGS_* \#defines.
412 * @param pszOutput Output buffer.
413 * @param cbOutput Size of the output buffer.
414 * @param pcbInstr Where to return the size of the instruction.
415 * @param pDisState Where to store the disassembler state into.
416 */
417static DECLCALLBACK(int)
418dbgfR3DisasInstrExOnVCpu(PVM pVM, PVMCPU pVCpu, RTSEL Sel, PRTGCPTR pGCPtr, uint32_t fFlags,
419 char *pszOutput, uint32_t cbOutput, uint32_t *pcbInstr, PDBGFDISSTATE pDisState)
420{
421 VMCPU_ASSERT_EMT(pVCpu);
422 RTGCPTR GCPtr = *pGCPtr;
423 int rc;
424
425 /*
426 * Get the Sel and GCPtr if fFlags requests that.
427 */
428 PCCPUMCTXCORE pCtxCore = NULL;
429 PCCPUMSELREG pSRegCS = NULL;
430 if (fFlags & DBGF_DISAS_FLAGS_CURRENT_GUEST)
431 {
432 pCtxCore = CPUMGetGuestCtxCore(pVCpu);
433 Sel = pCtxCore->cs.Sel;
434 pSRegCS = &pCtxCore->cs;
435 GCPtr = pCtxCore->rip;
436 }
437 else if (fFlags & DBGF_DISAS_FLAGS_CURRENT_HYPER)
438 {
439 fFlags |= DBGF_DISAS_FLAGS_HYPER;
440 pCtxCore = CPUMGetHyperCtxCore(pVCpu);
441 Sel = pCtxCore->cs.Sel;
442 GCPtr = pCtxCore->rip;
443 }
444 /*
445 * Check if the selector matches the guest CS, use the hidden
446 * registers from that if they are valid. Saves time and effort.
447 */
448 else
449 {
450 pCtxCore = CPUMGetGuestCtxCore(pVCpu);
451 if (pCtxCore->cs.Sel == Sel && Sel != DBGF_SEL_FLAT)
452 pSRegCS = &pCtxCore->cs;
453 else
454 pCtxCore = NULL;
455 }
456
457 /*
458 * Read the selector info - assume no stale selectors and nasty stuff like that.
459 *
460 * Note! We CANNOT load invalid hidden selector registers since that would
461 * mean that log/debug statements or the debug will influence the
462 * guest state and make things behave differently.
463 */
464 DBGFSELINFO SelInfo;
465 const PGMMODE enmMode = PGMGetGuestMode(pVCpu);
466 bool fRealModeAddress = false;
467
468 if ( pSRegCS
469 && CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, pSRegCS))
470 {
471 SelInfo.Sel = Sel;
472 SelInfo.SelGate = 0;
473 SelInfo.GCPtrBase = pSRegCS->u64Base;
474 SelInfo.cbLimit = pSRegCS->u32Limit;
475 SelInfo.fFlags = PGMMODE_IS_LONG_MODE(enmMode)
476 ? DBGFSELINFO_FLAGS_LONG_MODE
477 : enmMode != PGMMODE_REAL && !pCtxCore->eflags.Bits.u1VM
478 ? DBGFSELINFO_FLAGS_PROT_MODE
479 : DBGFSELINFO_FLAGS_REAL_MODE;
480
481 SelInfo.u.Raw.au32[0] = 0;
482 SelInfo.u.Raw.au32[1] = 0;
483 SelInfo.u.Raw.Gen.u16LimitLow = 0xffff;
484 SelInfo.u.Raw.Gen.u4LimitHigh = 0xf;
485 SelInfo.u.Raw.Gen.u1Present = pSRegCS->Attr.n.u1Present;
486 SelInfo.u.Raw.Gen.u1Granularity = pSRegCS->Attr.n.u1Granularity;;
487 SelInfo.u.Raw.Gen.u1DefBig = pSRegCS->Attr.n.u1DefBig;
488 SelInfo.u.Raw.Gen.u1Long = pSRegCS->Attr.n.u1Long;
489 SelInfo.u.Raw.Gen.u1DescType = pSRegCS->Attr.n.u1DescType;
490 SelInfo.u.Raw.Gen.u4Type = pSRegCS->Attr.n.u4Type;
491 fRealModeAddress = !!(SelInfo.fFlags & DBGFSELINFO_FLAGS_REAL_MODE);
492 }
493 else if (Sel == DBGF_SEL_FLAT)
494 {
495 SelInfo.Sel = Sel;
496 SelInfo.SelGate = 0;
497 SelInfo.GCPtrBase = 0;
498 SelInfo.cbLimit = ~(RTGCUINTPTR)0;
499 SelInfo.fFlags = PGMMODE_IS_LONG_MODE(enmMode)
500 ? DBGFSELINFO_FLAGS_LONG_MODE
501 : enmMode != PGMMODE_REAL
502 ? DBGFSELINFO_FLAGS_PROT_MODE
503 : DBGFSELINFO_FLAGS_REAL_MODE;
504 SelInfo.u.Raw.au32[0] = 0;
505 SelInfo.u.Raw.au32[1] = 0;
506 SelInfo.u.Raw.Gen.u16LimitLow = 0xffff;
507 SelInfo.u.Raw.Gen.u4LimitHigh = 0xf;
508
509 pSRegCS = &CPUMGetGuestCtxCore(pVCpu)->cs;
510 if (CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, pSRegCS))
511 {
512 /* Assume the current CS defines the execution mode. */
513 SelInfo.u.Raw.Gen.u1Present = pSRegCS->Attr.n.u1Present;
514 SelInfo.u.Raw.Gen.u1Granularity = pSRegCS->Attr.n.u1Granularity;;
515 SelInfo.u.Raw.Gen.u1DefBig = pSRegCS->Attr.n.u1DefBig;
516 SelInfo.u.Raw.Gen.u1Long = pSRegCS->Attr.n.u1Long;
517 SelInfo.u.Raw.Gen.u1DescType = pSRegCS->Attr.n.u1DescType;
518 SelInfo.u.Raw.Gen.u4Type = pSRegCS->Attr.n.u4Type;
519 }
520 else
521 {
522 pSRegCS = NULL;
523 SelInfo.u.Raw.Gen.u1Present = 1;
524 SelInfo.u.Raw.Gen.u1Granularity = 1;
525 SelInfo.u.Raw.Gen.u1DefBig = 1;
526 SelInfo.u.Raw.Gen.u1DescType = 1;
527 SelInfo.u.Raw.Gen.u4Type = X86_SEL_TYPE_EO;
528 }
529 }
530 else if ( !(fFlags & DBGF_DISAS_FLAGS_HYPER)
531 && ( (pCtxCore && pCtxCore->eflags.Bits.u1VM)
532 || enmMode == PGMMODE_REAL
533 || (fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_16BIT_REAL_MODE
534 )
535 )
536 { /* V86 mode or real mode - real mode addressing */
537 SelInfo.Sel = Sel;
538 SelInfo.SelGate = 0;
539 SelInfo.GCPtrBase = Sel * 16;
540 SelInfo.cbLimit = ~(RTGCUINTPTR)0;
541 SelInfo.fFlags = DBGFSELINFO_FLAGS_REAL_MODE;
542 SelInfo.u.Raw.au32[0] = 0;
543 SelInfo.u.Raw.au32[1] = 0;
544 SelInfo.u.Raw.Gen.u16LimitLow = 0xffff;
545 SelInfo.u.Raw.Gen.u4LimitHigh = 0xf;
546 SelInfo.u.Raw.Gen.u1Present = 1;
547 SelInfo.u.Raw.Gen.u1Granularity = 1;
548 SelInfo.u.Raw.Gen.u1DefBig = 0; /* 16 bits */
549 SelInfo.u.Raw.Gen.u1DescType = 1;
550 SelInfo.u.Raw.Gen.u4Type = X86_SEL_TYPE_EO;
551 fRealModeAddress = true;
552 }
553 else
554 {
555 if (!(fFlags & DBGF_DISAS_FLAGS_HYPER))
556 rc = SELMR3GetSelectorInfo(pVM, pVCpu, Sel, &SelInfo);
557 else
558 rc = SELMR3GetShadowSelectorInfo(pVM, Sel, &SelInfo);
559 if (RT_FAILURE(rc))
560 {
561 RTStrPrintf(pszOutput, cbOutput, "Sel=%04x -> %Rrc\n", Sel, rc);
562 return rc;
563 }
564 }
565
566 /*
567 * Disassemble it.
568 */
569 DBGFDISASSTATE State;
570 rc = dbgfR3DisasInstrFirst(pVM, pVCpu, &SelInfo, enmMode, GCPtr, fFlags, &State);
571 if (RT_FAILURE(rc))
572 {
573 if (State.Cpu.cbCachedInstr)
574 RTStrPrintf(pszOutput, cbOutput, "Disas -> %Rrc; %.*Rhxs\n", rc, (size_t)State.Cpu.cbCachedInstr, State.Cpu.abInstr);
575 else
576 RTStrPrintf(pszOutput, cbOutput, "Disas -> %Rrc\n", rc);
577 return rc;
578 }
579
580 /*
581 * Format it.
582 */
583 char szBuf[512];
584 DISFormatYasmEx(&State.Cpu, szBuf, sizeof(szBuf),
585 DIS_FMT_FLAGS_RELATIVE_BRANCH,
586 fFlags & DBGF_DISAS_FLAGS_NO_SYMBOLS ? NULL : dbgfR3DisasGetSymbol,
587 &SelInfo);
588
589#ifdef VBOX_WITH_RAW_MODE
590 /*
591 * Patched instruction annotations.
592 */
593 char szPatchAnnotations[256];
594 szPatchAnnotations[0] = '\0';
595 if (fFlags & DBGF_DISAS_FLAGS_ANNOTATE_PATCHED)
596 PATMR3DbgAnnotatePatchedInstruction(pVM, GCPtr, State.Cpu.cbInstr, szPatchAnnotations, sizeof(szPatchAnnotations));
597#endif
598
599 /*
600 * Print it to the user specified buffer.
601 */
602 size_t cch;
603 if (fFlags & DBGF_DISAS_FLAGS_NO_BYTES)
604 {
605 if (fFlags & DBGF_DISAS_FLAGS_NO_ADDRESS)
606 cch = RTStrPrintf(pszOutput, cbOutput, "%s", szBuf);
607 else if (fRealModeAddress)
608 cch = RTStrPrintf(pszOutput, cbOutput, "%04x:%04x %s", Sel, (unsigned)GCPtr, szBuf);
609 else if (Sel == DBGF_SEL_FLAT)
610 {
611 if (enmMode >= PGMMODE_AMD64)
612 cch = RTStrPrintf(pszOutput, cbOutput, "%RGv %s", GCPtr, szBuf);
613 else
614 cch = RTStrPrintf(pszOutput, cbOutput, "%08RX32 %s", (uint32_t)GCPtr, szBuf);
615 }
616 else
617 {
618 if (enmMode >= PGMMODE_AMD64)
619 cch = RTStrPrintf(pszOutput, cbOutput, "%04x:%RGv %s", Sel, GCPtr, szBuf);
620 else
621 cch = RTStrPrintf(pszOutput, cbOutput, "%04x:%08RX32 %s", Sel, (uint32_t)GCPtr, szBuf);
622 }
623 }
624 else
625 {
626 uint32_t cbInstr = State.Cpu.cbInstr;
627 uint8_t const *pabInstr = State.Cpu.abInstr;
628 if (fFlags & DBGF_DISAS_FLAGS_NO_ADDRESS)
629 cch = RTStrPrintf(pszOutput, cbOutput, "%.*Rhxs%*s %s",
630 cbInstr, pabInstr, cbInstr < 8 ? (8 - cbInstr) * 3 : 0, "",
631 szBuf);
632 else if (fRealModeAddress)
633 cch = RTStrPrintf(pszOutput, cbOutput, "%04x:%04x %.*Rhxs%*s %s",
634 Sel, (unsigned)GCPtr,
635 cbInstr, pabInstr, cbInstr < 8 ? (8 - cbInstr) * 3 : 0, "",
636 szBuf);
637 else if (Sel == DBGF_SEL_FLAT)
638 {
639 if (enmMode >= PGMMODE_AMD64)
640 cch = RTStrPrintf(pszOutput, cbOutput, "%RGv %.*Rhxs%*s %s",
641 GCPtr,
642 cbInstr, pabInstr, cbInstr < 8 ? (8 - cbInstr) * 3 : 0, "",
643 szBuf);
644 else
645 cch = RTStrPrintf(pszOutput, cbOutput, "%08RX32 %.*Rhxs%*s %s",
646 (uint32_t)GCPtr,
647 cbInstr, pabInstr, cbInstr < 8 ? (8 - cbInstr) * 3 : 0, "",
648 szBuf);
649 }
650 else
651 {
652 if (enmMode >= PGMMODE_AMD64)
653 cch = RTStrPrintf(pszOutput, cbOutput, "%04x:%RGv %.*Rhxs%*s %s",
654 Sel, GCPtr,
655 cbInstr, pabInstr, cbInstr < 8 ? (8 - cbInstr) * 3 : 0, "",
656 szBuf);
657 else
658 cch = RTStrPrintf(pszOutput, cbOutput, "%04x:%08RX32 %.*Rhxs%*s %s",
659 Sel, (uint32_t)GCPtr,
660 cbInstr, pabInstr, cbInstr < 8 ? (8 - cbInstr) * 3 : 0, "",
661 szBuf);
662 }
663 }
664
665#ifdef VBOX_WITH_RAW_MODE
666 if (szPatchAnnotations[0] && cch + 1 < cbOutput)
667 RTStrPrintf(pszOutput + cch, cbOutput - cch, " ; %s", szPatchAnnotations);
668#endif
669
670 if (pcbInstr)
671 *pcbInstr = State.Cpu.cbInstr;
672
673 if (pDisState)
674 {
675 pDisState->pCurInstr = State.Cpu.pCurInstr;
676 pDisState->cbInstr = State.Cpu.cbInstr;
677 pDisState->Param1 = State.Cpu.Param1;
678 pDisState->Param2 = State.Cpu.Param2;
679 pDisState->Param3 = State.Cpu.Param3;
680 pDisState->Param4 = State.Cpu.Param4;
681 }
682
683 dbgfR3DisasInstrDone(&State);
684 return VINF_SUCCESS;
685}
686
687
688/**
689 * Disassembles the one instruction according to the specified flags and address
690 * returning part of the disassembler state.
691 *
692 * @returns VBox status code.
693 * @param pUVM The user mode VM handle.
694 * @param idCpu The ID of virtual CPU.
695 * @param pAddr The code address.
696 * @param fFlags Flags controlling where to start and how to format.
697 * A combination of the DBGF_DISAS_FLAGS_* \#defines.
698 * @param pszOutput Output buffer. This will always be properly
699 * terminated if @a cbOutput is greater than zero.
700 * @param cbOutput Size of the output buffer.
701 * @param pDisState The disassembler state to fill in.
702 *
703 * @remarks May have to switch to the EMT of the virtual CPU in order to do
704 * address conversion.
705 */
706DECLHIDDEN(int) dbgfR3DisasInstrStateEx(PUVM pUVM, VMCPUID idCpu, PDBGFADDRESS pAddr, uint32_t fFlags,
707 char *pszOutput, uint32_t cbOutput, PDBGFDISSTATE pDisState)
708{
709 AssertReturn(cbOutput > 0, VERR_INVALID_PARAMETER);
710 *pszOutput = '\0';
711 UVM_ASSERT_VALID_EXT_RETURN(pUVM, VERR_INVALID_VM_HANDLE);
712 PVM pVM = pUVM->pVM;
713 VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE);
714 AssertReturn(idCpu < pUVM->cCpus, VERR_INVALID_CPU_ID);
715 AssertReturn(!(fFlags & ~DBGF_DISAS_FLAGS_VALID_MASK), VERR_INVALID_PARAMETER);
716 AssertReturn((fFlags & DBGF_DISAS_FLAGS_MODE_MASK) <= DBGF_DISAS_FLAGS_64BIT_MODE, VERR_INVALID_PARAMETER);
717
718 /*
719 * Optimize the common case where we're called on the EMT of idCpu since
720 * we're using this all the time when logging.
721 */
722 int rc;
723 PVMCPU pVCpu = VMMGetCpu(pVM);
724 if ( pVCpu
725 && pVCpu->idCpu == idCpu)
726 rc = dbgfR3DisasInstrExOnVCpu(pVM, pVCpu, pAddr->Sel, &pAddr->off, fFlags, pszOutput, cbOutput, NULL, pDisState);
727 else
728 rc = VMR3ReqPriorityCallWait(pVM, idCpu, (PFNRT)dbgfR3DisasInstrExOnVCpu, 9,
729 pVM, VMMGetCpuById(pVM, idCpu), pAddr->Sel, &pAddr->off, fFlags, pszOutput, cbOutput, NULL, pDisState);
730 return rc;
731}
732
733/**
734 * Disassembles the one instruction according to the specified flags and address.
735 *
736 * @returns VBox status code.
737 * @param pUVM The user mode VM handle.
738 * @param idCpu The ID of virtual CPU.
739 * @param Sel The code selector. This used to determine the 32/16 bit ness and
740 * calculation of the actual instruction address.
741 * @param GCPtr The code address relative to the base of Sel.
742 * @param fFlags Flags controlling where to start and how to format.
743 * A combination of the DBGF_DISAS_FLAGS_* \#defines.
744 * @param pszOutput Output buffer. This will always be properly
745 * terminated if @a cbOutput is greater than zero.
746 * @param cbOutput Size of the output buffer.
747 * @param pcbInstr Where to return the size of the instruction.
748 *
749 * @remarks May have to switch to the EMT of the virtual CPU in order to do
750 * address conversion.
751 */
752VMMR3DECL(int) DBGFR3DisasInstrEx(PUVM pUVM, VMCPUID idCpu, RTSEL Sel, RTGCPTR GCPtr, uint32_t fFlags,
753 char *pszOutput, uint32_t cbOutput, uint32_t *pcbInstr)
754{
755 AssertReturn(cbOutput > 0, VERR_INVALID_PARAMETER);
756 *pszOutput = '\0';
757 UVM_ASSERT_VALID_EXT_RETURN(pUVM, VERR_INVALID_VM_HANDLE);
758 PVM pVM = pUVM->pVM;
759 VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE);
760 AssertReturn(idCpu < pUVM->cCpus, VERR_INVALID_CPU_ID);
761 AssertReturn(!(fFlags & ~DBGF_DISAS_FLAGS_VALID_MASK), VERR_INVALID_PARAMETER);
762 AssertReturn((fFlags & DBGF_DISAS_FLAGS_MODE_MASK) <= DBGF_DISAS_FLAGS_64BIT_MODE, VERR_INVALID_PARAMETER);
763
764 /*
765 * Optimize the common case where we're called on the EMT of idCpu since
766 * we're using this all the time when logging.
767 */
768 int rc;
769 PVMCPU pVCpu = VMMGetCpu(pVM);
770 if ( pVCpu
771 && pVCpu->idCpu == idCpu)
772 rc = dbgfR3DisasInstrExOnVCpu(pVM, pVCpu, Sel, &GCPtr, fFlags, pszOutput, cbOutput, pcbInstr, NULL);
773 else
774 rc = VMR3ReqPriorityCallWait(pVM, idCpu, (PFNRT)dbgfR3DisasInstrExOnVCpu, 9,
775 pVM, VMMGetCpuById(pVM, idCpu), Sel, &GCPtr, fFlags, pszOutput, cbOutput, pcbInstr, NULL);
776 return rc;
777}
778
779
780/**
781 * Disassembles the current guest context instruction.
782 * All registers and data will be displayed. Addresses will be attempted resolved to symbols.
783 *
784 * @returns VBox status code.
785 * @param pVCpu The cross context virtual CPU structure.
786 * @param pszOutput Output buffer. This will always be properly
787 * terminated if @a cbOutput is greater than zero.
788 * @param cbOutput Size of the output buffer.
789 * @thread EMT(pVCpu)
790 */
791VMMR3_INT_DECL(int) DBGFR3DisasInstrCurrent(PVMCPU pVCpu, char *pszOutput, uint32_t cbOutput)
792{
793 AssertReturn(cbOutput > 0, VERR_INVALID_PARAMETER);
794 *pszOutput = '\0';
795 Assert(VMCPU_IS_EMT(pVCpu));
796
797 RTGCPTR GCPtr = 0;
798 return dbgfR3DisasInstrExOnVCpu(pVCpu->pVMR3, pVCpu, 0, &GCPtr,
799 DBGF_DISAS_FLAGS_CURRENT_GUEST | DBGF_DISAS_FLAGS_DEFAULT_MODE
800 | DBGF_DISAS_FLAGS_ANNOTATE_PATCHED,
801 pszOutput, cbOutput, NULL, NULL);
802}
803
804
805/**
806 * Disassembles the current guest context instruction and writes it to the log.
807 * All registers and data will be displayed. Addresses will be attempted resolved to symbols.
808 *
809 * @returns VBox status code.
810 * @param pVCpu The cross context virtual CPU structure.
811 * @param pszPrefix Short prefix string to the disassembly string. (optional)
812 * @thread EMT(pVCpu)
813 */
814VMMR3DECL(int) DBGFR3DisasInstrCurrentLogInternal(PVMCPU pVCpu, const char *pszPrefix)
815{
816 char szBuf[256];
817 szBuf[0] = '\0';
818 int rc = DBGFR3DisasInstrCurrent(pVCpu, &szBuf[0], sizeof(szBuf));
819 if (RT_FAILURE(rc))
820 RTStrPrintf(szBuf, sizeof(szBuf), "DBGFR3DisasInstrCurrentLog failed with rc=%Rrc\n", rc);
821 if (pszPrefix && *pszPrefix)
822 {
823 if (pVCpu->CTX_SUFF(pVM)->cCpus > 1)
824 RTLogPrintf("%s-CPU%u: %s\n", pszPrefix, pVCpu->idCpu, szBuf);
825 else
826 RTLogPrintf("%s: %s\n", pszPrefix, szBuf);
827 }
828 else
829 RTLogPrintf("%s\n", szBuf);
830 return rc;
831}
832
833
834
835/**
836 * Disassembles the specified guest context instruction and writes it to the log.
837 * Addresses will be attempted resolved to symbols.
838 *
839 * @returns VBox status code.
840 * @param pVCpu The cross context virtual CPU structure of the calling
841 * EMT.
842 * @param Sel The code selector. This used to determine the 32/16
843 * bit-ness and calculation of the actual instruction
844 * address.
845 * @param GCPtr The code address relative to the base of Sel.
846 * @param pszPrefix Short prefix string to the disassembly string.
847 * (optional)
848 * @thread EMT(pVCpu)
849 */
850VMMR3DECL(int) DBGFR3DisasInstrLogInternal(PVMCPU pVCpu, RTSEL Sel, RTGCPTR GCPtr, const char *pszPrefix)
851{
852 Assert(VMCPU_IS_EMT(pVCpu));
853
854 char szBuf[256];
855 RTGCPTR GCPtrTmp = GCPtr;
856 int rc = dbgfR3DisasInstrExOnVCpu(pVCpu->pVMR3, pVCpu, Sel, &GCPtrTmp, DBGF_DISAS_FLAGS_DEFAULT_MODE,
857 &szBuf[0], sizeof(szBuf), NULL, NULL);
858 if (RT_FAILURE(rc))
859 RTStrPrintf(szBuf, sizeof(szBuf), "DBGFR3DisasInstrLog(, %RTsel, %RGv) failed with rc=%Rrc\n", Sel, GCPtr, rc);
860 if (pszPrefix && *pszPrefix)
861 {
862 if (pVCpu->CTX_SUFF(pVM)->cCpus > 1)
863 RTLogPrintf("%s-CPU%u: %s\n", pszPrefix, pVCpu->idCpu, szBuf);
864 else
865 RTLogPrintf("%s: %s\n", pszPrefix, szBuf);
866 }
867 else
868 RTLogPrintf("%s\n", szBuf);
869 return rc;
870}
871
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette