VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/HM.cpp@ 80309

Last change on this file since 80309 was 80281, checked in by vboxsync, 5 years ago

VMM,++: Refactoring code to use VMMC & VMMCPUCC. bugref:9217

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 147.5 KB
Line 
1/* $Id: HM.cpp 80281 2019-08-15 07:29:37Z vboxsync $ */
2/** @file
3 * HM - Intel/AMD VM Hardware Support Manager.
4 */
5
6/*
7 * Copyright (C) 2006-2019 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/** @page pg_hm HM - Hardware Assisted Virtualization Manager
19 *
20 * The HM manages guest execution using the VT-x and AMD-V CPU hardware
21 * extensions.
22 *
23 * {summary of what HM does}
24 *
25 * Hardware assisted virtualization manager was originally abbreviated HWACCM,
26 * however that was cumbersome to write and parse for such a central component,
27 * so it was shortened to HM when refactoring the code in the 4.3 development
28 * cycle.
29 *
30 * {add sections with more details}
31 *
32 * @sa @ref grp_hm
33 */
34
35
36/*********************************************************************************************************************************
37* Header Files *
38*********************************************************************************************************************************/
39#define VBOX_BUGREF_9217_PART_I
40#define LOG_GROUP LOG_GROUP_HM
41#define VMCPU_INCL_CPUM_GST_CTX
42#include <VBox/vmm/cpum.h>
43#include <VBox/vmm/stam.h>
44#include <VBox/vmm/mm.h>
45#include <VBox/vmm/em.h>
46#include <VBox/vmm/pdmapi.h>
47#include <VBox/vmm/pgm.h>
48#include <VBox/vmm/ssm.h>
49#include <VBox/vmm/gim.h>
50#include <VBox/vmm/trpm.h>
51#include <VBox/vmm/dbgf.h>
52#include <VBox/vmm/iom.h>
53#include <VBox/vmm/iem.h>
54#include <VBox/vmm/selm.h>
55#include <VBox/vmm/nem.h>
56#ifdef VBOX_WITH_REM
57# include <VBox/vmm/rem.h>
58#endif
59#include <VBox/vmm/hm_vmx.h>
60#include <VBox/vmm/hm_svm.h>
61#include "HMInternal.h"
62#include <VBox/vmm/vmcc.h>
63#include <VBox/err.h>
64#include <VBox/param.h>
65
66#include <iprt/assert.h>
67#include <VBox/log.h>
68#include <iprt/asm.h>
69#include <iprt/asm-amd64-x86.h>
70#include <iprt/env.h>
71#include <iprt/thread.h>
72
73
74/*********************************************************************************************************************************
75* Defined Constants And Macros *
76*********************************************************************************************************************************/
77/** @def HMVMX_REPORT_FEAT
78 * Reports VT-x feature to the release log.
79 *
80 * @param a_uAllowed1 Mask of allowed-1 feature bits.
81 * @param a_uAllowed0 Mask of allowed-0 feature bits.
82 * @param a_StrDesc The description string to report.
83 * @param a_Featflag Mask of the feature to report.
84 */
85#define HMVMX_REPORT_FEAT(a_uAllowed1, a_uAllowed0, a_StrDesc, a_Featflag) \
86 do { \
87 if ((a_uAllowed1) & (a_Featflag)) \
88 { \
89 if ((a_uAllowed0) & (a_Featflag)) \
90 LogRel(("HM: " a_StrDesc " (must be set)\n")); \
91 else \
92 LogRel(("HM: " a_StrDesc "\n")); \
93 } \
94 else \
95 LogRel(("HM: " a_StrDesc " (must be cleared)\n")); \
96 } while (0)
97
98/** @def HMVMX_REPORT_ALLOWED_FEAT
99 * Reports an allowed VT-x feature to the release log.
100 *
101 * @param a_uAllowed1 Mask of allowed-1 feature bits.
102 * @param a_StrDesc The description string to report.
103 * @param a_FeatFlag Mask of the feature to report.
104 */
105#define HMVMX_REPORT_ALLOWED_FEAT(a_uAllowed1, a_StrDesc, a_FeatFlag) \
106 do { \
107 if ((a_uAllowed1) & (a_FeatFlag)) \
108 LogRel(("HM: " a_StrDesc "\n")); \
109 else \
110 LogRel(("HM: " a_StrDesc " not supported\n")); \
111 } while (0)
112
113/** @def HMVMX_REPORT_MSR_CAP
114 * Reports MSR feature capability.
115 *
116 * @param a_MsrCaps Mask of MSR feature bits.
117 * @param a_StrDesc The description string to report.
118 * @param a_fCap Mask of the feature to report.
119 */
120#define HMVMX_REPORT_MSR_CAP(a_MsrCaps, a_StrDesc, a_fCap) \
121 do { \
122 if ((a_MsrCaps) & (a_fCap)) \
123 LogRel(("HM: " a_StrDesc "\n")); \
124 } while (0)
125
126/** @def HMVMX_LOGREL_FEAT
127 * Dumps a feature flag from a bitmap of features to the release log.
128 *
129 * @param a_fVal The value of all the features.
130 * @param a_fMask The specific bitmask of the feature.
131 */
132#define HMVMX_LOGREL_FEAT(a_fVal, a_fMask) \
133 do { \
134 if ((a_fVal) & (a_fMask)) \
135 LogRel(("HM: %s\n", #a_fMask)); \
136 } while (0)
137
138
139/*********************************************************************************************************************************
140* Internal Functions *
141*********************************************************************************************************************************/
142static DECLCALLBACK(int) hmR3Save(PVM pVM, PSSMHANDLE pSSM);
143static DECLCALLBACK(int) hmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
144static DECLCALLBACK(void) hmR3InfoSvmNstGstVmcbCache(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
145static DECLCALLBACK(void) hmR3Info(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
146static DECLCALLBACK(void) hmR3InfoEventPending(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
147static int hmR3InitFinalizeR3(PVM pVM);
148static int hmR3InitFinalizeR0(PVM pVM);
149static int hmR3InitFinalizeR0Intel(PVM pVM);
150static int hmR3InitFinalizeR0Amd(PVM pVM);
151static int hmR3TermCPU(PVM pVM);
152
153
154
155/**
156 * Initializes the HM.
157 *
158 * This is the very first component to really do init after CFGM so that we can
159 * establish the predominant execution engine for the VM prior to initializing
160 * other modules. It takes care of NEM initialization if needed (HM disabled or
161 * not available in HW).
162 *
163 * If VT-x or AMD-V hardware isn't available, HM will try fall back on a native
164 * hypervisor API via NEM, and then back on raw-mode if that isn't available
165 * either. The fallback to raw-mode will not happen if /HM/HMForced is set
166 * (like for guest using SMP or 64-bit as well as for complicated guest like OS
167 * X, OS/2 and others).
168 *
169 * Note that a lot of the set up work is done in ring-0 and thus postponed till
170 * the ring-3 and ring-0 callback to HMR3InitCompleted.
171 *
172 * @returns VBox status code.
173 * @param pVM The cross context VM structure.
174 *
175 * @remarks Be careful with what we call here, since most of the VMM components
176 * are uninitialized.
177 */
178VMMR3_INT_DECL(int) HMR3Init(PVM pVM)
179{
180 LogFlowFunc(("\n"));
181
182 /*
183 * Assert alignment and sizes.
184 */
185 AssertCompileMemberAlignment(VM, hm.s, 32);
186 AssertCompile(sizeof(pVM->hm.s) <= sizeof(pVM->hm.padding));
187
188 /*
189 * Register the saved state data unit.
190 */
191 int rc = SSMR3RegisterInternal(pVM, "HWACCM", 0, HM_SAVED_STATE_VERSION, sizeof(HM),
192 NULL, NULL, NULL,
193 NULL, hmR3Save, NULL,
194 NULL, hmR3Load, NULL);
195 if (RT_FAILURE(rc))
196 return rc;
197
198 /*
199 * Register info handlers.
200 */
201 rc = DBGFR3InfoRegisterInternalEx(pVM, "hm", "Dumps HM info.", hmR3Info, DBGFINFO_FLAGS_ALL_EMTS);
202 AssertRCReturn(rc, rc);
203
204 rc = DBGFR3InfoRegisterInternalEx(pVM, "hmeventpending", "Dumps the pending HM event.", hmR3InfoEventPending,
205 DBGFINFO_FLAGS_ALL_EMTS);
206 AssertRCReturn(rc, rc);
207
208 rc = DBGFR3InfoRegisterInternalEx(pVM, "svmvmcbcache", "Dumps the HM SVM nested-guest VMCB cache.",
209 hmR3InfoSvmNstGstVmcbCache, DBGFINFO_FLAGS_ALL_EMTS);
210 AssertRCReturn(rc, rc);
211
212 /*
213 * Read configuration.
214 */
215 PCFGMNODE pCfgHm = CFGMR3GetChild(CFGMR3GetRoot(pVM), "HM/");
216
217 /*
218 * Validate the HM settings.
219 */
220 rc = CFGMR3ValidateConfig(pCfgHm, "/HM/",
221 "HMForced" /* implied 'true' these days */
222 "|UseNEMInstead"
223 "|FallbackToNEM"
224 "|EnableNestedPaging"
225 "|EnableUX"
226 "|EnableLargePages"
227 "|EnableVPID"
228 "|IBPBOnVMExit"
229 "|IBPBOnVMEntry"
230 "|SpecCtrlByHost"
231 "|L1DFlushOnSched"
232 "|L1DFlushOnVMEntry"
233 "|MDSClearOnSched"
234 "|MDSClearOnVMEntry"
235 "|TPRPatchingEnabled"
236 "|64bitEnabled"
237 "|Exclusive"
238 "|MaxResumeLoops"
239 "|VmxPleGap"
240 "|VmxPleWindow"
241 "|UseVmxPreemptTimer"
242 "|SvmPauseFilter"
243 "|SvmPauseFilterThreshold"
244 "|SvmVirtVmsaveVmload"
245 "|SvmVGif"
246 "|LovelyMesaDrvWorkaround",
247 "" /* pszValidNodes */, "HM" /* pszWho */, 0 /* uInstance */);
248 if (RT_FAILURE(rc))
249 return rc;
250
251 /** @cfgm{/HM/HMForced, bool, false}
252 * Forces hardware virtualization, no falling back on raw-mode. HM must be
253 * enabled, i.e. /HMEnabled must be true. */
254 bool fHMForced;
255 AssertRelease(pVM->fHMEnabled);
256 fHMForced = true;
257
258 /** @cfgm{/HM/UseNEMInstead, bool, true}
259 * Don't use HM, use NEM instead. */
260 bool fUseNEMInstead = false;
261 rc = CFGMR3QueryBoolDef(pCfgHm, "UseNEMInstead", &fUseNEMInstead, false);
262 AssertRCReturn(rc, rc);
263 if (fUseNEMInstead && pVM->fHMEnabled)
264 {
265 LogRel(("HM: Setting fHMEnabled to false because fUseNEMInstead is set.\n"));
266 pVM->fHMEnabled = false;
267 }
268
269 /** @cfgm{/HM/FallbackToNEM, bool, true}
270 * Enables fallback on NEM. */
271 bool fFallbackToNEM = true;
272 rc = CFGMR3QueryBoolDef(pCfgHm, "FallbackToNEM", &fFallbackToNEM, true);
273 AssertRCReturn(rc, rc);
274
275 /** @cfgm{/HM/EnableNestedPaging, bool, false}
276 * Enables nested paging (aka extended page tables). */
277 rc = CFGMR3QueryBoolDef(pCfgHm, "EnableNestedPaging", &pVM->hm.s.fAllowNestedPaging, false);
278 AssertRCReturn(rc, rc);
279
280 /** @cfgm{/HM/EnableUX, bool, true}
281 * Enables the VT-x unrestricted execution feature. */
282 rc = CFGMR3QueryBoolDef(pCfgHm, "EnableUX", &pVM->hm.s.vmx.fAllowUnrestricted, true);
283 AssertRCReturn(rc, rc);
284
285 /** @cfgm{/HM/EnableLargePages, bool, false}
286 * Enables using large pages (2 MB) for guest memory, thus saving on (nested)
287 * page table walking and maybe better TLB hit rate in some cases. */
288 rc = CFGMR3QueryBoolDef(pCfgHm, "EnableLargePages", &pVM->hm.s.fLargePages, false);
289 AssertRCReturn(rc, rc);
290
291 /** @cfgm{/HM/EnableVPID, bool, false}
292 * Enables the VT-x VPID feature. */
293 rc = CFGMR3QueryBoolDef(pCfgHm, "EnableVPID", &pVM->hm.s.vmx.fAllowVpid, false);
294 AssertRCReturn(rc, rc);
295
296 /** @cfgm{/HM/TPRPatchingEnabled, bool, false}
297 * Enables TPR patching for 32-bit windows guests with IO-APIC. */
298 rc = CFGMR3QueryBoolDef(pCfgHm, "TPRPatchingEnabled", &pVM->hm.s.fTprPatchingAllowed, false);
299 AssertRCReturn(rc, rc);
300
301 /** @cfgm{/HM/64bitEnabled, bool, 32-bit:false, 64-bit:true}
302 * Enables AMD64 cpu features.
303 * On 32-bit hosts this isn't default and require host CPU support. 64-bit hosts
304 * already have the support. */
305#ifdef VBOX_WITH_64_BITS_GUESTS
306 rc = CFGMR3QueryBoolDef(pCfgHm, "64bitEnabled", &pVM->hm.s.fAllow64BitGuests, HC_ARCH_BITS == 64);
307 AssertLogRelRCReturn(rc, rc);
308#else
309 pVM->hm.s.fAllow64BitGuests = false;
310#endif
311
312 /** @cfgm{/HM/VmxPleGap, uint32_t, 0}
313 * The pause-filter exiting gap in TSC ticks. When the number of ticks between
314 * two successive PAUSE instructions exceeds VmxPleGap, the CPU considers the
315 * latest PAUSE instruction to be start of a new PAUSE loop.
316 */
317 rc = CFGMR3QueryU32Def(pCfgHm, "VmxPleGap", &pVM->hm.s.vmx.cPleGapTicks, 0);
318 AssertRCReturn(rc, rc);
319
320 /** @cfgm{/HM/VmxPleWindow, uint32_t, 0}
321 * The pause-filter exiting window in TSC ticks. When the number of ticks
322 * between the current PAUSE instruction and first PAUSE of a loop exceeds
323 * VmxPleWindow, a VM-exit is triggered.
324 *
325 * Setting VmxPleGap and VmxPleGap to 0 disables pause-filter exiting.
326 */
327 rc = CFGMR3QueryU32Def(pCfgHm, "VmxPleWindow", &pVM->hm.s.vmx.cPleWindowTicks, 0);
328 AssertRCReturn(rc, rc);
329
330 /** @cfgm{/HM/SvmPauseFilterCount, uint16_t, 0}
331 * A counter that is decrement each time a PAUSE instruction is executed by the
332 * guest. When the counter is 0, a \#VMEXIT is triggered.
333 *
334 * Setting SvmPauseFilterCount to 0 disables pause-filter exiting.
335 */
336 rc = CFGMR3QueryU16Def(pCfgHm, "SvmPauseFilter", &pVM->hm.s.svm.cPauseFilter, 0);
337 AssertRCReturn(rc, rc);
338
339 /** @cfgm{/HM/SvmPauseFilterThreshold, uint16_t, 0}
340 * The pause filter threshold in ticks. When the elapsed time (in ticks) between
341 * two successive PAUSE instructions exceeds SvmPauseFilterThreshold, the
342 * PauseFilter count is reset to its initial value. However, if PAUSE is
343 * executed PauseFilter times within PauseFilterThreshold ticks, a VM-exit will
344 * be triggered.
345 *
346 * Requires SvmPauseFilterCount to be non-zero for pause-filter threshold to be
347 * activated.
348 */
349 rc = CFGMR3QueryU16Def(pCfgHm, "SvmPauseFilterThreshold", &pVM->hm.s.svm.cPauseFilterThresholdTicks, 0);
350 AssertRCReturn(rc, rc);
351
352 /** @cfgm{/HM/SvmVirtVmsaveVmload, bool, true}
353 * Whether to make use of virtualized VMSAVE/VMLOAD feature of the CPU if it's
354 * available. */
355 rc = CFGMR3QueryBoolDef(pCfgHm, "SvmVirtVmsaveVmload", &pVM->hm.s.svm.fVirtVmsaveVmload, true);
356 AssertRCReturn(rc, rc);
357
358 /** @cfgm{/HM/SvmVGif, bool, true}
359 * Whether to make use of Virtual GIF (Global Interrupt Flag) feature of the CPU
360 * if it's available. */
361 rc = CFGMR3QueryBoolDef(pCfgHm, "SvmVGif", &pVM->hm.s.svm.fVGif, true);
362 AssertRCReturn(rc, rc);
363
364 /** @cfgm{/HM/Exclusive, bool}
365 * Determines the init method for AMD-V and VT-x. If set to true, HM will do a
366 * global init for each host CPU. If false, we do local init each time we wish
367 * to execute guest code.
368 *
369 * On Windows, default is false due to the higher risk of conflicts with other
370 * hypervisors.
371 *
372 * On Mac OS X, this setting is ignored since the code does not handle local
373 * init when it utilizes the OS provided VT-x function, SUPR0EnableVTx().
374 */
375#if defined(RT_OS_DARWIN)
376 pVM->hm.s.fGlobalInit = true;
377#else
378 rc = CFGMR3QueryBoolDef(pCfgHm, "Exclusive", &pVM->hm.s.fGlobalInit,
379# if defined(RT_OS_WINDOWS)
380 false
381# else
382 true
383# endif
384 );
385 AssertLogRelRCReturn(rc, rc);
386#endif
387
388 /** @cfgm{/HM/MaxResumeLoops, uint32_t}
389 * The number of times to resume guest execution before we forcibly return to
390 * ring-3. The return value of RTThreadPreemptIsPendingTrusty in ring-0
391 * determines the default value. */
392 rc = CFGMR3QueryU32Def(pCfgHm, "MaxResumeLoops", &pVM->hm.s.cMaxResumeLoops, 0 /* set by R0 later */);
393 AssertLogRelRCReturn(rc, rc);
394
395 /** @cfgm{/HM/UseVmxPreemptTimer, bool}
396 * Whether to make use of the VMX-preemption timer feature of the CPU if it's
397 * available. */
398 rc = CFGMR3QueryBoolDef(pCfgHm, "UseVmxPreemptTimer", &pVM->hm.s.vmx.fUsePreemptTimer, true);
399 AssertLogRelRCReturn(rc, rc);
400
401 /** @cfgm{/HM/IBPBOnVMExit, bool}
402 * Costly paranoia setting. */
403 rc = CFGMR3QueryBoolDef(pCfgHm, "IBPBOnVMExit", &pVM->hm.s.fIbpbOnVmExit, false);
404 AssertLogRelRCReturn(rc, rc);
405
406 /** @cfgm{/HM/IBPBOnVMEntry, bool}
407 * Costly paranoia setting. */
408 rc = CFGMR3QueryBoolDef(pCfgHm, "IBPBOnVMEntry", &pVM->hm.s.fIbpbOnVmEntry, false);
409 AssertLogRelRCReturn(rc, rc);
410
411 /** @cfgm{/HM/L1DFlushOnSched, bool, true}
412 * CVE-2018-3646 workaround, ignored on CPUs that aren't affected. */
413 rc = CFGMR3QueryBoolDef(pCfgHm, "L1DFlushOnSched", &pVM->hm.s.fL1dFlushOnSched, true);
414 AssertLogRelRCReturn(rc, rc);
415
416 /** @cfgm{/HM/L1DFlushOnVMEntry, bool}
417 * CVE-2018-3646 workaround, ignored on CPUs that aren't affected. */
418 rc = CFGMR3QueryBoolDef(pCfgHm, "L1DFlushOnVMEntry", &pVM->hm.s.fL1dFlushOnVmEntry, false);
419 AssertLogRelRCReturn(rc, rc);
420
421 /* Disable L1DFlushOnSched if L1DFlushOnVMEntry is enabled. */
422 if (pVM->hm.s.fL1dFlushOnVmEntry)
423 pVM->hm.s.fL1dFlushOnSched = false;
424
425 /** @cfgm{/HM/SpecCtrlByHost, bool}
426 * Another expensive paranoia setting. */
427 rc = CFGMR3QueryBoolDef(pCfgHm, "SpecCtrlByHost", &pVM->hm.s.fSpecCtrlByHost, false);
428 AssertLogRelRCReturn(rc, rc);
429
430 /** @cfgm{/HM/MDSClearOnSched, bool, true}
431 * CVE-2018-12126, CVE-2018-12130, CVE-2018-12127, CVE-2019-11091 workaround,
432 * ignored on CPUs that aren't affected. */
433 rc = CFGMR3QueryBoolDef(pCfgHm, "MDSClearOnSched", &pVM->hm.s.fMdsClearOnSched, true);
434 AssertLogRelRCReturn(rc, rc);
435
436 /** @cfgm{/HM/MDSClearOnVmEntry, bool, false}
437 * CVE-2018-12126, CVE-2018-12130, CVE-2018-12127, CVE-2019-11091 workaround,
438 * ignored on CPUs that aren't affected. */
439 rc = CFGMR3QueryBoolDef(pCfgHm, "MDSClearOnVmEntry", &pVM->hm.s.fMdsClearOnVmEntry, false);
440 AssertLogRelRCReturn(rc, rc);
441
442 /* Disable MDSClearOnSched if MDSClearOnVmEntry is enabled. */
443 if (pVM->hm.s.fMdsClearOnVmEntry)
444 pVM->hm.s.fMdsClearOnSched = false;
445
446 /** @cfgm{/HM/LovelyMesaDrvWorkaround,bool}
447 * Workaround for mesa vmsvga 3d driver making incorrect assumptions about
448 * the hypervisor it is running under. */
449 bool f;
450 rc = CFGMR3QueryBoolDef(pCfgHm, "LovelyMesaDrvWorkaround", &f, false);
451 AssertLogRelRCReturn(rc, rc);
452 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
453 {
454 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
455 pVCpu->hm.s.fTrapXcptGpForLovelyMesaDrv = f;
456 }
457
458 /*
459 * Check if VT-x or AMD-v support according to the users wishes.
460 */
461 /** @todo SUPR3QueryVTCaps won't catch VERR_VMX_IN_VMX_ROOT_MODE or
462 * VERR_SVM_IN_USE. */
463 if (pVM->fHMEnabled)
464 {
465 uint32_t fCaps;
466 rc = SUPR3QueryVTCaps(&fCaps);
467 if (RT_SUCCESS(rc))
468 {
469 if (fCaps & SUPVTCAPS_AMD_V)
470 {
471 pVM->hm.s.svm.fSupported = true;
472 LogRel(("HM: HMR3Init: AMD-V%s\n", fCaps & SUPVTCAPS_NESTED_PAGING ? " w/ nested paging" : ""));
473 VM_SET_MAIN_EXECUTION_ENGINE(pVM, VM_EXEC_ENGINE_HW_VIRT);
474 }
475 else if (fCaps & SUPVTCAPS_VT_X)
476 {
477 const char *pszWhy;
478 rc = SUPR3QueryVTxSupported(&pszWhy);
479 if (RT_SUCCESS(rc))
480 {
481 pVM->hm.s.vmx.fSupported = true;
482 LogRel(("HM: HMR3Init: VT-x%s%s%s\n",
483 fCaps & SUPVTCAPS_NESTED_PAGING ? " w/ nested paging" : "",
484 fCaps & SUPVTCAPS_VTX_UNRESTRICTED_GUEST ? " and unrestricted guest execution" : "",
485 (fCaps & (SUPVTCAPS_NESTED_PAGING | SUPVTCAPS_VTX_UNRESTRICTED_GUEST)) ? " hw support" : ""));
486 VM_SET_MAIN_EXECUTION_ENGINE(pVM, VM_EXEC_ENGINE_HW_VIRT);
487 }
488 else
489 {
490 /*
491 * Before failing, try fallback to NEM if we're allowed to do that.
492 */
493 pVM->fHMEnabled = false;
494 Assert(pVM->bMainExecutionEngine == VM_EXEC_ENGINE_NOT_SET);
495 if (fFallbackToNEM)
496 {
497 LogRel(("HM: HMR3Init: Attempting fall back to NEM: The host kernel does not support VT-x - %s\n", pszWhy));
498 int rc2 = NEMR3Init(pVM, true /*fFallback*/, fHMForced);
499
500 ASMCompilerBarrier(); /* NEMR3Init may have changed bMainExecutionEngine. */
501 if ( RT_SUCCESS(rc2)
502 && pVM->bMainExecutionEngine != VM_EXEC_ENGINE_NOT_SET)
503 rc = VINF_SUCCESS;
504 }
505 if (RT_FAILURE(rc))
506 return VMSetError(pVM, rc, RT_SRC_POS, "The host kernel does not support VT-x: %s\n", pszWhy);
507 }
508 }
509 else
510 AssertLogRelMsgFailedReturn(("SUPR3QueryVTCaps didn't return either AMD-V or VT-x flag set (%#x)!\n", fCaps),
511 VERR_INTERNAL_ERROR_5);
512
513 /*
514 * Disable nested paging and unrestricted guest execution now if they're
515 * configured so that CPUM can make decisions based on our configuration.
516 */
517 Assert(!pVM->hm.s.fNestedPaging);
518 if (pVM->hm.s.fAllowNestedPaging)
519 {
520 if (fCaps & SUPVTCAPS_NESTED_PAGING)
521 pVM->hm.s.fNestedPaging = true;
522 else
523 pVM->hm.s.fAllowNestedPaging = false;
524 }
525
526 if (fCaps & SUPVTCAPS_VT_X)
527 {
528 Assert(!pVM->hm.s.vmx.fUnrestrictedGuest);
529 if (pVM->hm.s.vmx.fAllowUnrestricted)
530 {
531 if ( (fCaps & SUPVTCAPS_VTX_UNRESTRICTED_GUEST)
532 && pVM->hm.s.fNestedPaging)
533 pVM->hm.s.vmx.fUnrestrictedGuest = true;
534 else
535 pVM->hm.s.vmx.fAllowUnrestricted = false;
536 }
537 }
538 }
539 else
540 {
541 const char *pszMsg;
542 switch (rc)
543 {
544 case VERR_UNSUPPORTED_CPU: pszMsg = "Unknown CPU, VT-x or AMD-v features cannot be ascertained"; break;
545 case VERR_VMX_NO_VMX: pszMsg = "VT-x is not available"; break;
546 case VERR_VMX_MSR_VMX_DISABLED: pszMsg = "VT-x is disabled in the BIOS"; break;
547 case VERR_VMX_MSR_ALL_VMX_DISABLED: pszMsg = "VT-x is disabled in the BIOS for all CPU modes"; break;
548 case VERR_VMX_MSR_LOCKING_FAILED: pszMsg = "Failed to enable and lock VT-x features"; break;
549 case VERR_SVM_NO_SVM: pszMsg = "AMD-V is not available"; break;
550 case VERR_SVM_DISABLED: pszMsg = "AMD-V is disabled in the BIOS (or by the host OS)"; break;
551 default:
552 return VMSetError(pVM, rc, RT_SRC_POS, "SUPR3QueryVTCaps failed with %Rrc", rc);
553 }
554
555 /*
556 * Before failing, try fallback to NEM if we're allowed to do that.
557 */
558 pVM->fHMEnabled = false;
559 if (fFallbackToNEM)
560 {
561 LogRel(("HM: HMR3Init: Attempting fall back to NEM: %s\n", pszMsg));
562 int rc2 = NEMR3Init(pVM, true /*fFallback*/, fHMForced);
563 ASMCompilerBarrier(); /* NEMR3Init may have changed bMainExecutionEngine. */
564 if ( RT_SUCCESS(rc2)
565 && pVM->bMainExecutionEngine != VM_EXEC_ENGINE_NOT_SET)
566 rc = VINF_SUCCESS;
567 }
568 if (RT_FAILURE(rc))
569 return VM_SET_ERROR(pVM, rc, pszMsg);
570 }
571 }
572 else
573 {
574 /*
575 * Disabled HM mean raw-mode, unless NEM is supposed to be used.
576 */
577 if (fUseNEMInstead)
578 {
579 rc = NEMR3Init(pVM, false /*fFallback*/, true);
580 ASMCompilerBarrier(); /* NEMR3Init may have changed bMainExecutionEngine. */
581 if (RT_FAILURE(rc))
582 return rc;
583 }
584 if ( pVM->bMainExecutionEngine == VM_EXEC_ENGINE_NOT_SET
585 || pVM->bMainExecutionEngine == VM_EXEC_ENGINE_RAW_MODE
586 || pVM->bMainExecutionEngine == VM_EXEC_ENGINE_HW_VIRT /* paranoia */)
587 return VM_SET_ERROR(pVM, rc, "Misconfigured VM: No guest execution engine available!");
588 }
589
590 Assert(pVM->bMainExecutionEngine != VM_EXEC_ENGINE_NOT_SET);
591 Assert(pVM->bMainExecutionEngine != VM_EXEC_ENGINE_RAW_MODE);
592 return VINF_SUCCESS;
593}
594
595
596/**
597 * Initializes HM components after ring-3 phase has been fully initialized.
598 *
599 * @returns VBox status code.
600 * @param pVM The cross context VM structure.
601 */
602static int hmR3InitFinalizeR3(PVM pVM)
603{
604 LogFlowFunc(("\n"));
605
606 if (!HMIsEnabled(pVM))
607 return VINF_SUCCESS;
608
609 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
610 {
611 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
612 pVCpu->hm.s.fActive = false;
613 pVCpu->hm.s.fGIMTrapXcptUD = GIMShouldTrapXcptUD(pVCpu); /* Is safe to call now since GIMR3Init() has completed. */
614 }
615
616#ifdef VBOX_WITH_STATISTICS
617 STAM_REG(pVM, &pVM->hm.s.StatTprPatchSuccess, STAMTYPE_COUNTER, "/HM/TPR/Patch/Success", STAMUNIT_OCCURENCES, "Number of times an instruction was successfully patched.");
618 STAM_REG(pVM, &pVM->hm.s.StatTprPatchFailure, STAMTYPE_COUNTER, "/HM/TPR/Patch/Failed", STAMUNIT_OCCURENCES, "Number of unsuccessful patch attempts.");
619 STAM_REG(pVM, &pVM->hm.s.StatTprReplaceSuccessCr8, STAMTYPE_COUNTER, "/HM/TPR/Replace/SuccessCR8", STAMUNIT_OCCURENCES, "Number of instruction replacements by MOV CR8.");
620 STAM_REG(pVM, &pVM->hm.s.StatTprReplaceSuccessVmc, STAMTYPE_COUNTER, "/HM/TPR/Replace/SuccessVMC", STAMUNIT_OCCURENCES, "Number of instruction replacements by VMMCALL.");
621 STAM_REG(pVM, &pVM->hm.s.StatTprReplaceFailure, STAMTYPE_COUNTER, "/HM/TPR/Replace/Failed", STAMUNIT_OCCURENCES, "Number of unsuccessful replace attempts.");
622#endif
623
624 /*
625 * Statistics.
626 */
627 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
628 {
629 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
630 PHMCPU pHmCpu = &pVCpu->hm.s;
631 int rc;
632
633# define HM_REG_STAT(a_pVar, a_enmType, s_enmVisibility, a_enmUnit, a_szNmFmt, a_szDesc) do { \
634 rc = STAMR3RegisterF(pVM, a_pVar, a_enmType, s_enmVisibility, a_enmUnit, a_szDesc, a_szNmFmt, idCpu); \
635 AssertRC(rc); \
636 } while (0)
637# define HM_REG_PROFILE(a_pVar, a_szNmFmt, a_szDesc) \
638 HM_REG_STAT(a_pVar, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL, a_szNmFmt, a_szDesc)
639
640#ifdef VBOX_WITH_STATISTICS
641
642 HM_REG_PROFILE(&pHmCpu->StatPoke, "/PROF/CPU%u/HM/Poke", "Profiling of RTMpPokeCpu.");
643 HM_REG_PROFILE(&pHmCpu->StatSpinPoke, "/PROF/CPU%u/HM/PokeWait", "Profiling of poke wait.");
644 HM_REG_PROFILE(&pHmCpu->StatSpinPokeFailed, "/PROF/CPU%u/HM/PokeWaitFailed", "Profiling of poke wait when RTMpPokeCpu fails.");
645 HM_REG_PROFILE(&pHmCpu->StatEntry, "/PROF/CPU%u/HM/Entry", "Profiling of entry until entering GC.");
646 HM_REG_PROFILE(&pHmCpu->StatPreExit, "/PROF/CPU%u/HM/SwitchFromGC_1", "Profiling of pre-exit processing after returning from GC.");
647 HM_REG_PROFILE(&pHmCpu->StatExitHandling, "/PROF/CPU%u/HM/SwitchFromGC_2", "Profiling of exit handling (longjmps not included!)");
648 HM_REG_PROFILE(&pHmCpu->StatExitIO, "/PROF/CPU%u/HM/SwitchFromGC_2/IO", "I/O.");
649 HM_REG_PROFILE(&pHmCpu->StatExitMovCRx, "/PROF/CPU%u/HM/SwitchFromGC_2/MovCRx", "MOV CRx.");
650 HM_REG_PROFILE(&pHmCpu->StatExitXcptNmi, "/PROF/CPU%u/HM/SwitchFromGC_2/XcptNmi", "Exceptions, NMIs.");
651 HM_REG_PROFILE(&pHmCpu->StatExitVmentry, "/PROF/CPU%u/HM/SwitchFromGC_2/Vmentry", "VMLAUNCH/VMRESUME on Intel or VMRUN on AMD.");
652 HM_REG_PROFILE(&pHmCpu->StatImportGuestState, "/PROF/CPU%u/HM/ImportGuestState", "Profiling of importing guest state from hardware after VM-exit.");
653 HM_REG_PROFILE(&pHmCpu->StatExportGuestState, "/PROF/CPU%u/HM/ExportGuestState", "Profiling of exporting guest state to hardware before VM-entry.");
654 HM_REG_PROFILE(&pHmCpu->StatLoadGuestFpuState, "/PROF/CPU%u/HM/LoadGuestFpuState", "Profiling of CPUMR0LoadGuestFPU.");
655 HM_REG_PROFILE(&pHmCpu->StatInGC, "/PROF/CPU%u/HM/InGC", "Profiling of execution of guest-code in hardware.");
656# ifdef HM_PROFILE_EXIT_DISPATCH
657 HM_REG_STAT(&pHmCpu->StatExitDispatch, STAMTYPE_PROFILE_ADV, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
658 "/PROF/CPU%u/HM/ExitDispatch", "Profiling the dispatching of exit handlers.");
659# endif
660#endif
661# define HM_REG_COUNTER(a, b, desc) HM_REG_STAT(a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, b, desc)
662
663#ifdef VBOX_WITH_STATISTICS
664 HM_REG_COUNTER(&pHmCpu->StatExitAll, "/HM/CPU%u/Exit/All", "Total exits (including nested-guest exits).");
665 HM_REG_COUNTER(&pHmCpu->StatNestedExitAll, "/HM/CPU%u/Exit/NestedGuest/All", "Total nested-guest exits.");
666 HM_REG_COUNTER(&pHmCpu->StatExitShadowNM, "/HM/CPU%u/Exit/Trap/Shw/#NM", "Shadow #NM (device not available, no math co-processor) exception.");
667 HM_REG_COUNTER(&pHmCpu->StatExitGuestNM, "/HM/CPU%u/Exit/Trap/Gst/#NM", "Guest #NM (device not available, no math co-processor) exception.");
668 HM_REG_COUNTER(&pHmCpu->StatExitShadowPF, "/HM/CPU%u/Exit/Trap/Shw/#PF", "Shadow #PF (page fault) exception.");
669 HM_REG_COUNTER(&pHmCpu->StatExitShadowPFEM, "/HM/CPU%u/Exit/Trap/Shw/#PF-EM", "#PF (page fault) exception going back to ring-3 for emulating the instruction.");
670 HM_REG_COUNTER(&pHmCpu->StatExitGuestPF, "/HM/CPU%u/Exit/Trap/Gst/#PF", "Guest #PF (page fault) exception.");
671 HM_REG_COUNTER(&pHmCpu->StatExitGuestUD, "/HM/CPU%u/Exit/Trap/Gst/#UD", "Guest #UD (undefined opcode) exception.");
672 HM_REG_COUNTER(&pHmCpu->StatExitGuestSS, "/HM/CPU%u/Exit/Trap/Gst/#SS", "Guest #SS (stack-segment fault) exception.");
673 HM_REG_COUNTER(&pHmCpu->StatExitGuestNP, "/HM/CPU%u/Exit/Trap/Gst/#NP", "Guest #NP (segment not present) exception.");
674 HM_REG_COUNTER(&pHmCpu->StatExitGuestTS, "/HM/CPU%u/Exit/Trap/Gst/#TS", "Guest #TS (task switch) exception.");
675 HM_REG_COUNTER(&pHmCpu->StatExitGuestOF, "/HM/CPU%u/Exit/Trap/Gst/#OF", "Guest #OF (overflow) exception.");
676 HM_REG_COUNTER(&pHmCpu->StatExitGuestGP, "/HM/CPU%u/Exit/Trap/Gst/#GP", "Guest #GP (general protection) exception.");
677 HM_REG_COUNTER(&pHmCpu->StatExitGuestDE, "/HM/CPU%u/Exit/Trap/Gst/#DE", "Guest #DE (divide error) exception.");
678 HM_REG_COUNTER(&pHmCpu->StatExitGuestDF, "/HM/CPU%u/Exit/Trap/Gst/#DF", "Guest #DF (double fault) exception.");
679 HM_REG_COUNTER(&pHmCpu->StatExitGuestBR, "/HM/CPU%u/Exit/Trap/Gst/#BR", "Guest #BR (boundary range exceeded) exception.");
680 HM_REG_COUNTER(&pHmCpu->StatExitGuestAC, "/HM/CPU%u/Exit/Trap/Gst/#AC", "Guest #AC (alignment check) exception.");
681 HM_REG_COUNTER(&pHmCpu->StatExitGuestDB, "/HM/CPU%u/Exit/Trap/Gst/#DB", "Guest #DB (debug) exception.");
682 HM_REG_COUNTER(&pHmCpu->StatExitGuestMF, "/HM/CPU%u/Exit/Trap/Gst/#MF", "Guest #MF (x87 FPU error, math fault) exception.");
683 HM_REG_COUNTER(&pHmCpu->StatExitGuestBP, "/HM/CPU%u/Exit/Trap/Gst/#BP", "Guest #BP (breakpoint) exception.");
684 HM_REG_COUNTER(&pHmCpu->StatExitGuestXF, "/HM/CPU%u/Exit/Trap/Gst/#XF", "Guest #XF (extended math fault, SIMD FPU) exception.");
685 HM_REG_COUNTER(&pHmCpu->StatExitGuestXcpUnk, "/HM/CPU%u/Exit/Trap/Gst/Other", "Other guest exceptions.");
686 HM_REG_COUNTER(&pHmCpu->StatExitRdmsr, "/HM/CPU%u/Exit/Instr/Rdmsr", "MSR read.");
687 HM_REG_COUNTER(&pHmCpu->StatExitWrmsr, "/HM/CPU%u/Exit/Instr/Wrmsr", "MSR write.");
688 HM_REG_COUNTER(&pHmCpu->StatExitDRxWrite, "/HM/CPU%u/Exit/Instr/DR-Write", "Debug register write.");
689 HM_REG_COUNTER(&pHmCpu->StatExitDRxRead, "/HM/CPU%u/Exit/Instr/DR-Read", "Debug register read.");
690 HM_REG_COUNTER(&pHmCpu->StatExitCR0Read, "/HM/CPU%u/Exit/Instr/CR-Read/CR0", "CR0 read.");
691 HM_REG_COUNTER(&pHmCpu->StatExitCR2Read, "/HM/CPU%u/Exit/Instr/CR-Read/CR2", "CR2 read.");
692 HM_REG_COUNTER(&pHmCpu->StatExitCR3Read, "/HM/CPU%u/Exit/Instr/CR-Read/CR3", "CR3 read.");
693 HM_REG_COUNTER(&pHmCpu->StatExitCR4Read, "/HM/CPU%u/Exit/Instr/CR-Read/CR4", "CR4 read.");
694 HM_REG_COUNTER(&pHmCpu->StatExitCR8Read, "/HM/CPU%u/Exit/Instr/CR-Read/CR8", "CR8 read.");
695 HM_REG_COUNTER(&pHmCpu->StatExitCR0Write, "/HM/CPU%u/Exit/Instr/CR-Write/CR0", "CR0 write.");
696 HM_REG_COUNTER(&pHmCpu->StatExitCR2Write, "/HM/CPU%u/Exit/Instr/CR-Write/CR2", "CR2 write.");
697 HM_REG_COUNTER(&pHmCpu->StatExitCR3Write, "/HM/CPU%u/Exit/Instr/CR-Write/CR3", "CR3 write.");
698 HM_REG_COUNTER(&pHmCpu->StatExitCR4Write, "/HM/CPU%u/Exit/Instr/CR-Write/CR4", "CR4 write.");
699 HM_REG_COUNTER(&pHmCpu->StatExitCR8Write, "/HM/CPU%u/Exit/Instr/CR-Write/CR8", "CR8 write.");
700 HM_REG_COUNTER(&pHmCpu->StatExitClts, "/HM/CPU%u/Exit/Instr/CLTS", "CLTS instruction.");
701 HM_REG_COUNTER(&pHmCpu->StatExitLmsw, "/HM/CPU%u/Exit/Instr/LMSW", "LMSW instruction.");
702 HM_REG_COUNTER(&pHmCpu->StatExitXdtrAccess, "/HM/CPU%u/Exit/Instr/XdtrAccess", "GDTR, IDTR, LDTR access.");
703 HM_REG_COUNTER(&pHmCpu->StatExitIOWrite, "/HM/CPU%u/Exit/Instr/IO/Write", "I/O write.");
704 HM_REG_COUNTER(&pHmCpu->StatExitIORead, "/HM/CPU%u/Exit/Instr/IO/Read", "I/O read.");
705 HM_REG_COUNTER(&pHmCpu->StatExitIOStringWrite, "/HM/CPU%u/Exit/Instr/IO/WriteString", "String I/O write.");
706 HM_REG_COUNTER(&pHmCpu->StatExitIOStringRead, "/HM/CPU%u/Exit/Instr/IO/ReadString", "String I/O read.");
707 HM_REG_COUNTER(&pHmCpu->StatExitIntWindow, "/HM/CPU%u/Exit/IntWindow", "Interrupt-window exit. Guest is ready to receive interrupts.");
708 HM_REG_COUNTER(&pHmCpu->StatExitExtInt, "/HM/CPU%u/Exit/ExtInt", "Physical maskable interrupt (host).");
709#endif
710 HM_REG_COUNTER(&pHmCpu->StatExitHostNmiInGC, "/HM/CPU%u/Exit/HostNmiInGC", "Host NMI received while in guest context.");
711 HM_REG_COUNTER(&pHmCpu->StatExitHostNmiInGCIpi, "/HM/CPU%u/Exit/HostNmiInGCIpi", "Host NMI received while in guest context dispatched using IPIs.");
712#ifdef VBOX_WITH_STATISTICS
713 HM_REG_COUNTER(&pHmCpu->StatExitPreemptTimer, "/HM/CPU%u/Exit/PreemptTimer", "VMX-preemption timer expired.");
714 HM_REG_COUNTER(&pHmCpu->StatExitTprBelowThreshold, "/HM/CPU%u/Exit/TprBelowThreshold", "TPR lowered below threshold by the guest.");
715 HM_REG_COUNTER(&pHmCpu->StatExitTaskSwitch, "/HM/CPU%u/Exit/TaskSwitch", "Task switch caused through task gate in IDT.");
716 HM_REG_COUNTER(&pHmCpu->StatExitApicAccess, "/HM/CPU%u/Exit/ApicAccess", "APIC access. Guest attempted to access memory at a physical address on the APIC-access page.");
717
718 HM_REG_COUNTER(&pHmCpu->StatSwitchTprMaskedIrq, "/HM/CPU%u/Switch/TprMaskedIrq", "PDMGetInterrupt() signals TPR masks pending Irq.");
719 HM_REG_COUNTER(&pHmCpu->StatSwitchGuestIrq, "/HM/CPU%u/Switch/IrqPending", "PDMGetInterrupt() cleared behind our back!?!.");
720 HM_REG_COUNTER(&pHmCpu->StatSwitchPendingHostIrq, "/HM/CPU%u/Switch/PendingHostIrq", "Exit to ring-3 due to pending host interrupt before executing guest code.");
721 HM_REG_COUNTER(&pHmCpu->StatSwitchHmToR3FF, "/HM/CPU%u/Switch/HmToR3FF", "Exit to ring-3 due to pending timers, EMT rendezvous, critical section etc.");
722 HM_REG_COUNTER(&pHmCpu->StatSwitchVmReq, "/HM/CPU%u/Switch/VmReq", "Exit to ring-3 due to pending VM requests.");
723 HM_REG_COUNTER(&pHmCpu->StatSwitchPgmPoolFlush, "/HM/CPU%u/Switch/PgmPoolFlush", "Exit to ring-3 due to pending PGM pool flush.");
724 HM_REG_COUNTER(&pHmCpu->StatSwitchDma, "/HM/CPU%u/Switch/PendingDma", "Exit to ring-3 due to pending DMA requests.");
725 HM_REG_COUNTER(&pHmCpu->StatSwitchExitToR3, "/HM/CPU%u/Switch/ExitToR3", "Exit to ring-3 (total).");
726 HM_REG_COUNTER(&pHmCpu->StatSwitchLongJmpToR3, "/HM/CPU%u/Switch/LongJmpToR3", "Longjump to ring-3.");
727 HM_REG_COUNTER(&pHmCpu->StatSwitchMaxResumeLoops, "/HM/CPU%u/Switch/MaxResumeLoops", "Maximum VMRESUME inner-loop counter reached.");
728 HM_REG_COUNTER(&pHmCpu->StatSwitchHltToR3, "/HM/CPU%u/Switch/HltToR3", "HLT causing us to go to ring-3.");
729 HM_REG_COUNTER(&pHmCpu->StatSwitchApicAccessToR3, "/HM/CPU%u/Switch/ApicAccessToR3", "APIC access causing us to go to ring-3.");
730#endif
731 HM_REG_COUNTER(&pHmCpu->StatSwitchPreempt, "/HM/CPU%u/Switch/Preempting", "EMT has been preempted while in HM context.");
732#ifdef VBOX_WITH_STATISTICS
733 HM_REG_COUNTER(&pHmCpu->StatSwitchNstGstVmexit, "/HM/CPU%u/Switch/NstGstVmexit", "Nested-guest VM-exit occurred.");
734
735 HM_REG_COUNTER(&pHmCpu->StatInjectInterrupt, "/HM/CPU%u/EventInject/Interrupt", "Injected an external interrupt into the guest.");
736 HM_REG_COUNTER(&pHmCpu->StatInjectXcpt, "/HM/CPU%u/EventInject/Trap", "Injected an exception into the guest.");
737 HM_REG_COUNTER(&pHmCpu->StatInjectReflect, "/HM/CPU%u/EventInject/Reflect", "Reflecting an exception caused due to event injection.");
738 HM_REG_COUNTER(&pHmCpu->StatInjectConvertDF, "/HM/CPU%u/EventInject/ReflectDF", "Injected a converted #DF caused due to event injection.");
739 HM_REG_COUNTER(&pHmCpu->StatInjectInterpret, "/HM/CPU%u/EventInject/Interpret", "Falling back to interpreter for handling exception caused due to event injection.");
740 HM_REG_COUNTER(&pHmCpu->StatInjectReflectNPF, "/HM/CPU%u/EventInject/ReflectNPF", "Reflecting event that caused an EPT violation / nested #PF.");
741
742 HM_REG_COUNTER(&pHmCpu->StatFlushPage, "/HM/CPU%u/Flush/Page", "Invalidating a guest page on all guest CPUs.");
743 HM_REG_COUNTER(&pHmCpu->StatFlushPageManual, "/HM/CPU%u/Flush/Page/Virt", "Invalidating a guest page using guest-virtual address.");
744 HM_REG_COUNTER(&pHmCpu->StatFlushPhysPageManual, "/HM/CPU%u/Flush/Page/Phys", "Invalidating a guest page using guest-physical address.");
745 HM_REG_COUNTER(&pHmCpu->StatFlushTlb, "/HM/CPU%u/Flush/TLB", "Forcing a full guest-TLB flush (ring-0).");
746 HM_REG_COUNTER(&pHmCpu->StatFlushTlbManual, "/HM/CPU%u/Flush/TLB/Manual", "Request a full guest-TLB flush.");
747 HM_REG_COUNTER(&pHmCpu->StatFlushTlbNstGst, "/HM/CPU%u/Flush/TLB/NestedGuest", "Request a nested-guest-TLB flush.");
748 HM_REG_COUNTER(&pHmCpu->StatFlushTlbWorldSwitch, "/HM/CPU%u/Flush/TLB/CpuSwitch", "Forcing a full guest-TLB flush due to host-CPU reschedule or ASID-limit hit by another guest-VCPU.");
749 HM_REG_COUNTER(&pHmCpu->StatNoFlushTlbWorldSwitch, "/HM/CPU%u/Flush/TLB/Skipped", "No TLB flushing required.");
750 HM_REG_COUNTER(&pHmCpu->StatFlushEntire, "/HM/CPU%u/Flush/TLB/Entire", "Flush the entire TLB (host + guest).");
751 HM_REG_COUNTER(&pHmCpu->StatFlushAsid, "/HM/CPU%u/Flush/TLB/ASID", "Flushed guest-TLB entries for the current VPID.");
752 HM_REG_COUNTER(&pHmCpu->StatFlushNestedPaging, "/HM/CPU%u/Flush/TLB/NestedPaging", "Flushed guest-TLB entries for the current EPT.");
753 HM_REG_COUNTER(&pHmCpu->StatFlushTlbInvlpgVirt, "/HM/CPU%u/Flush/TLB/InvlpgVirt", "Invalidated a guest-TLB entry for a guest-virtual address.");
754 HM_REG_COUNTER(&pHmCpu->StatFlushTlbInvlpgPhys, "/HM/CPU%u/Flush/TLB/InvlpgPhys", "Currently not possible, flushes entire guest-TLB.");
755 HM_REG_COUNTER(&pHmCpu->StatTlbShootdown, "/HM/CPU%u/Flush/Shootdown/Page", "Inter-VCPU request to flush queued guest page.");
756 HM_REG_COUNTER(&pHmCpu->StatTlbShootdownFlush, "/HM/CPU%u/Flush/Shootdown/TLB", "Inter-VCPU request to flush entire guest-TLB.");
757
758 HM_REG_COUNTER(&pHmCpu->StatTscParavirt, "/HM/CPU%u/TSC/Paravirt", "Paravirtualized TSC in effect.");
759 HM_REG_COUNTER(&pHmCpu->StatTscOffset, "/HM/CPU%u/TSC/Offset", "TSC offsetting is in effect.");
760 HM_REG_COUNTER(&pHmCpu->StatTscIntercept, "/HM/CPU%u/TSC/Intercept", "Intercept TSC accesses.");
761
762 HM_REG_COUNTER(&pHmCpu->StatDRxArmed, "/HM/CPU%u/Debug/Armed", "Loaded guest-debug state while loading guest-state.");
763 HM_REG_COUNTER(&pHmCpu->StatDRxContextSwitch, "/HM/CPU%u/Debug/ContextSwitch", "Loaded guest-debug state on MOV DRx.");
764 HM_REG_COUNTER(&pHmCpu->StatDRxIoCheck, "/HM/CPU%u/Debug/IOCheck", "Checking for I/O breakpoint.");
765
766 HM_REG_COUNTER(&pHmCpu->StatExportMinimal, "/HM/CPU%u/Export/Minimal", "VM-entry exporting minimal guest-state.");
767 HM_REG_COUNTER(&pHmCpu->StatExportFull, "/HM/CPU%u/Export/Full", "VM-entry exporting the full guest-state.");
768 HM_REG_COUNTER(&pHmCpu->StatLoadGuestFpu, "/HM/CPU%u/Export/GuestFpu", "VM-entry loading the guest-FPU state.");
769 HM_REG_COUNTER(&pHmCpu->StatExportHostState, "/HM/CPU%u/Export/HostState", "VM-entry exporting host-state.");
770
771 HM_REG_COUNTER(&pHmCpu->StatVmxCheckBadRmSelBase, "/HM/CPU%u/VMXCheck/RMSelBase", "Could not use VMX due to unsuitable real-mode selector base.");
772 HM_REG_COUNTER(&pHmCpu->StatVmxCheckBadRmSelLimit, "/HM/CPU%u/VMXCheck/RMSelLimit", "Could not use VMX due to unsuitable real-mode selector limit.");
773 HM_REG_COUNTER(&pHmCpu->StatVmxCheckBadRmSelAttr, "/HM/CPU%u/VMXCheck/RMSelAttrs", "Could not use VMX due to unsuitable real-mode selector attributes.");
774
775 HM_REG_COUNTER(&pHmCpu->StatVmxCheckBadV86SelBase, "/HM/CPU%u/VMXCheck/V86SelBase", "Could not use VMX due to unsuitable v8086-mode selector base.");
776 HM_REG_COUNTER(&pHmCpu->StatVmxCheckBadV86SelLimit, "/HM/CPU%u/VMXCheck/V86SelLimit", "Could not use VMX due to unsuitable v8086-mode selector limit.");
777 HM_REG_COUNTER(&pHmCpu->StatVmxCheckBadV86SelAttr, "/HM/CPU%u/VMXCheck/V86SelAttrs", "Could not use VMX due to unsuitable v8086-mode selector attributes.");
778
779 HM_REG_COUNTER(&pHmCpu->StatVmxCheckRmOk, "/HM/CPU%u/VMXCheck/VMX_RM", "VMX execution in real (V86) mode OK.");
780 HM_REG_COUNTER(&pHmCpu->StatVmxCheckBadSel, "/HM/CPU%u/VMXCheck/Selector", "Could not use VMX due to unsuitable selector.");
781 HM_REG_COUNTER(&pHmCpu->StatVmxCheckBadRpl, "/HM/CPU%u/VMXCheck/RPL", "Could not use VMX due to unsuitable RPL.");
782 HM_REG_COUNTER(&pHmCpu->StatVmxCheckPmOk, "/HM/CPU%u/VMXCheck/VMX_PM", "VMX execution in protected mode OK.");
783
784 bool const fCpuSupportsVmx = ASMIsIntelCpu() || ASMIsViaCentaurCpu() || ASMIsShanghaiCpu();
785
786 /*
787 * Guest Exit reason stats.
788 */
789 pHmCpu->paStatExitReason = NULL;
790 rc = MMHyperAlloc(pVM, MAX_EXITREASON_STAT * sizeof(*pHmCpu->paStatExitReason), 0 /* uAlignment */, MM_TAG_HM,
791 (void **)&pHmCpu->paStatExitReason);
792 AssertRCReturn(rc, rc);
793
794 if (fCpuSupportsVmx)
795 {
796 for (int j = 0; j < MAX_EXITREASON_STAT; j++)
797 {
798 const char *pszExitName = HMGetVmxExitName(j);
799 if (pszExitName)
800 {
801 rc = STAMR3RegisterF(pVM, &pHmCpu->paStatExitReason[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED,
802 STAMUNIT_OCCURENCES, pszExitName, "/HM/CPU%u/Exit/Reason/%02x", idCpu, j);
803 AssertRCReturn(rc, rc);
804 }
805 }
806 }
807 else
808 {
809 for (int j = 0; j < MAX_EXITREASON_STAT; j++)
810 {
811 const char *pszExitName = HMGetSvmExitName(j);
812 if (pszExitName)
813 {
814 rc = STAMR3RegisterF(pVM, &pHmCpu->paStatExitReason[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED,
815 STAMUNIT_OCCURENCES, pszExitName, "/HM/CPU%u/Exit/Reason/%02x", idCpu, j);
816 AssertRC(rc);
817 }
818 }
819 }
820 HM_REG_COUNTER(&pHmCpu->StatExitReasonNpf, "/HM/CPU%u/Exit/Reason/#NPF", "Nested page faults");
821
822 pHmCpu->paStatExitReasonR0 = MMHyperR3ToR0(pVM, pHmCpu->paStatExitReason);
823 Assert(pHmCpu->paStatExitReasonR0 != NIL_RTR0PTR);
824
825#if defined(VBOX_WITH_NESTED_HWVIRT_SVM) || defined(VBOX_WITH_NESTED_HWVIRT_VMX)
826 /*
827 * Nested-guest VM-exit reason stats.
828 */
829 pHmCpu->paStatNestedExitReason = NULL;
830 rc = MMHyperAlloc(pVM, MAX_EXITREASON_STAT * sizeof(*pHmCpu->paStatNestedExitReason), 0 /* uAlignment */, MM_TAG_HM,
831 (void **)&pHmCpu->paStatNestedExitReason);
832 AssertRCReturn(rc, rc);
833 if (fCpuSupportsVmx)
834 {
835 for (int j = 0; j < MAX_EXITREASON_STAT; j++)
836 {
837 const char *pszExitName = HMGetVmxExitName(j);
838 if (pszExitName)
839 {
840 rc = STAMR3RegisterF(pVM, &pHmCpu->paStatNestedExitReason[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED,
841 STAMUNIT_OCCURENCES, pszExitName, "/HM/CPU%u/Exit/NestedGuest/Reason/%02x", idCpu, j);
842 AssertRC(rc);
843 }
844 }
845 }
846 else
847 {
848 for (int j = 0; j < MAX_EXITREASON_STAT; j++)
849 {
850 const char *pszExitName = HMGetSvmExitName(j);
851 if (pszExitName)
852 {
853 rc = STAMR3RegisterF(pVM, &pHmCpu->paStatNestedExitReason[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED,
854 STAMUNIT_OCCURENCES, pszExitName, "/HM/CPU%u/Exit/NestedGuest/Reason/%02x", idCpu, j);
855 AssertRC(rc);
856 }
857 }
858 }
859 HM_REG_COUNTER(&pHmCpu->StatNestedExitReasonNpf, "/HM/CPU%u/Exit/NestedGuest/Reason/#NPF", "Nested page faults");
860 pHmCpu->paStatNestedExitReasonR0 = MMHyperR3ToR0(pVM, pHmCpu->paStatNestedExitReason);
861 Assert(pHmCpu->paStatNestedExitReasonR0 != NIL_RTR0PTR);
862#endif
863
864 /*
865 * Injected events stats.
866 */
867 rc = MMHyperAlloc(pVM, sizeof(STAMCOUNTER) * 256, 8, MM_TAG_HM, (void **)&pHmCpu->paStatInjectedIrqs);
868 AssertRCReturn(rc, rc);
869 pHmCpu->paStatInjectedIrqsR0 = MMHyperR3ToR0(pVM, pHmCpu->paStatInjectedIrqs);
870 Assert(pHmCpu->paStatInjectedIrqsR0 != NIL_RTR0PTR);
871 for (unsigned j = 0; j < 255; j++)
872 {
873 rc = STAMR3RegisterF(pVM, &pHmCpu->paStatInjectedIrqs[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED,
874 STAMUNIT_OCCURENCES, "Injected events.",
875 j < 0x20 ? "/HM/CPU%u/EventInject/InjectTrap/%02X" : "/HM/CPU%u/EventInject/InjectIRQ/%02X",
876 idCpu, j);
877 AssertRC(rc);
878 }
879
880#endif /* VBOX_WITH_STATISTICS */
881#undef HM_REG_COUNTER
882#undef HM_REG_PROFILE
883#undef HM_REG_STAT
884 }
885
886 return VINF_SUCCESS;
887}
888
889
890/**
891 * Called when a init phase has completed.
892 *
893 * @returns VBox status code.
894 * @param pVM The cross context VM structure.
895 * @param enmWhat The phase that completed.
896 */
897VMMR3_INT_DECL(int) HMR3InitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
898{
899 switch (enmWhat)
900 {
901 case VMINITCOMPLETED_RING3:
902 return hmR3InitFinalizeR3(pVM);
903 case VMINITCOMPLETED_RING0:
904 return hmR3InitFinalizeR0(pVM);
905 default:
906 return VINF_SUCCESS;
907 }
908}
909
910
911/**
912 * Turns off normal raw mode features.
913 *
914 * @param pVM The cross context VM structure.
915 */
916static void hmR3DisableRawMode(PVM pVM)
917{
918/** @todo r=bird: HM shouldn't be doing this crap. */
919 /* Reinit the paging mode to force the new shadow mode. */
920 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
921 {
922 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
923 PGMHCChangeMode(pVM, pVCpu, PGMMODE_REAL);
924 }
925}
926
927
928/**
929 * Initialize VT-x or AMD-V.
930 *
931 * @returns VBox status code.
932 * @param pVM The cross context VM structure.
933 */
934static int hmR3InitFinalizeR0(PVM pVM)
935{
936 int rc;
937
938 if (!HMIsEnabled(pVM))
939 return VINF_SUCCESS;
940
941 /*
942 * Hack to allow users to work around broken BIOSes that incorrectly set
943 * EFER.SVME, which makes us believe somebody else is already using AMD-V.
944 */
945 if ( !pVM->hm.s.vmx.fSupported
946 && !pVM->hm.s.svm.fSupported
947 && pVM->hm.s.rcInit == VERR_SVM_IN_USE /* implies functional AMD-V */
948 && RTEnvExist("VBOX_HWVIRTEX_IGNORE_SVM_IN_USE"))
949 {
950 LogRel(("HM: VBOX_HWVIRTEX_IGNORE_SVM_IN_USE active!\n"));
951 pVM->hm.s.svm.fSupported = true;
952 pVM->hm.s.svm.fIgnoreInUseError = true;
953 pVM->hm.s.rcInit = VINF_SUCCESS;
954 }
955
956 /*
957 * Report ring-0 init errors.
958 */
959 if ( !pVM->hm.s.vmx.fSupported
960 && !pVM->hm.s.svm.fSupported)
961 {
962 LogRel(("HM: Failed to initialize VT-x / AMD-V: %Rrc\n", pVM->hm.s.rcInit));
963 LogRel(("HM: VMX MSR_IA32_FEATURE_CONTROL=%RX64\n", pVM->hm.s.vmx.Msrs.u64FeatCtrl));
964 switch (pVM->hm.s.rcInit)
965 {
966 case VERR_VMX_IN_VMX_ROOT_MODE:
967 return VM_SET_ERROR(pVM, VERR_VMX_IN_VMX_ROOT_MODE, "VT-x is being used by another hypervisor");
968 case VERR_VMX_NO_VMX:
969 return VM_SET_ERROR(pVM, VERR_VMX_NO_VMX, "VT-x is not available");
970 case VERR_VMX_MSR_VMX_DISABLED:
971 return VM_SET_ERROR(pVM, VERR_VMX_MSR_VMX_DISABLED, "VT-x is disabled in the BIOS");
972 case VERR_VMX_MSR_ALL_VMX_DISABLED:
973 return VM_SET_ERROR(pVM, VERR_VMX_MSR_ALL_VMX_DISABLED, "VT-x is disabled in the BIOS for all CPU modes");
974 case VERR_VMX_MSR_LOCKING_FAILED:
975 return VM_SET_ERROR(pVM, VERR_VMX_MSR_LOCKING_FAILED, "Failed to lock VT-x features while trying to enable VT-x");
976 case VERR_VMX_MSR_VMX_ENABLE_FAILED:
977 return VM_SET_ERROR(pVM, VERR_VMX_MSR_VMX_ENABLE_FAILED, "Failed to enable VT-x features");
978 case VERR_VMX_MSR_SMX_VMX_ENABLE_FAILED:
979 return VM_SET_ERROR(pVM, VERR_VMX_MSR_SMX_VMX_ENABLE_FAILED, "Failed to enable VT-x features in SMX mode");
980
981 case VERR_SVM_IN_USE:
982 return VM_SET_ERROR(pVM, VERR_SVM_IN_USE, "AMD-V is being used by another hypervisor");
983 case VERR_SVM_NO_SVM:
984 return VM_SET_ERROR(pVM, VERR_SVM_NO_SVM, "AMD-V is not available");
985 case VERR_SVM_DISABLED:
986 return VM_SET_ERROR(pVM, VERR_SVM_DISABLED, "AMD-V is disabled in the BIOS");
987 }
988 return VMSetError(pVM, pVM->hm.s.rcInit, RT_SRC_POS, "HM ring-0 init failed: %Rrc", pVM->hm.s.rcInit);
989 }
990
991 /*
992 * Enable VT-x or AMD-V on all host CPUs.
993 */
994 rc = SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pVM), 0 /*idCpu*/, VMMR0_DO_HM_ENABLE, 0, NULL);
995 if (RT_FAILURE(rc))
996 {
997 LogRel(("HM: Failed to enable, error %Rrc\n", rc));
998 HMR3CheckError(pVM, rc);
999 return rc;
1000 }
1001
1002 /*
1003 * No TPR patching is required when the IO-APIC is not enabled for this VM.
1004 * (Main should have taken care of this already)
1005 */
1006 if (!PDMHasIoApic(pVM))
1007 {
1008 Assert(!pVM->hm.s.fTprPatchingAllowed); /* paranoia */
1009 pVM->hm.s.fTprPatchingAllowed = false;
1010 }
1011
1012 /*
1013 * Check if L1D flush is needed/possible.
1014 */
1015 if ( !pVM->cpum.ro.HostFeatures.fFlushCmd
1016 || pVM->cpum.ro.HostFeatures.enmMicroarch < kCpumMicroarch_Intel_Core7_Nehalem
1017 || pVM->cpum.ro.HostFeatures.enmMicroarch >= kCpumMicroarch_Intel_Core7_End
1018 || pVM->cpum.ro.HostFeatures.fArchVmmNeedNotFlushL1d
1019 || pVM->cpum.ro.HostFeatures.fArchRdclNo)
1020 pVM->hm.s.fL1dFlushOnSched = pVM->hm.s.fL1dFlushOnVmEntry = false;
1021
1022 /*
1023 * Check if MDS flush is needed/possible.
1024 * On atoms and knight family CPUs, we will only allow clearing on scheduling.
1025 */
1026 if ( !pVM->cpum.ro.HostFeatures.fMdsClear
1027 || pVM->cpum.ro.HostFeatures.fArchMdsNo)
1028 pVM->hm.s.fMdsClearOnSched = pVM->hm.s.fMdsClearOnVmEntry = false;
1029 else if ( ( pVM->cpum.ro.HostFeatures.enmMicroarch >= kCpumMicroarch_Intel_Atom_Airmount
1030 && pVM->cpum.ro.HostFeatures.enmMicroarch < kCpumMicroarch_Intel_Atom_End)
1031 || ( pVM->cpum.ro.HostFeatures.enmMicroarch >= kCpumMicroarch_Intel_Phi_KnightsLanding
1032 && pVM->cpum.ro.HostFeatures.enmMicroarch < kCpumMicroarch_Intel_Phi_End))
1033 {
1034 if (!pVM->hm.s.fMdsClearOnSched)
1035 pVM->hm.s.fMdsClearOnSched = pVM->hm.s.fMdsClearOnVmEntry;
1036 pVM->hm.s.fMdsClearOnVmEntry = false;
1037 }
1038 else if ( pVM->cpum.ro.HostFeatures.enmMicroarch < kCpumMicroarch_Intel_Core7_Nehalem
1039 || pVM->cpum.ro.HostFeatures.enmMicroarch >= kCpumMicroarch_Intel_Core7_End)
1040 pVM->hm.s.fMdsClearOnSched = pVM->hm.s.fMdsClearOnVmEntry = false;
1041
1042 /*
1043 * Sync options.
1044 */
1045 /** @todo Move this out of of CPUMCTX and into some ring-0 only HM structure.
1046 * That will require a little bit of work, of course. */
1047 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1048 {
1049 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
1050 PCPUMCTX pCpuCtx = &pVCpu->cpum.GstCtx;
1051 pCpuCtx->fWorldSwitcher &= ~(CPUMCTX_WSF_IBPB_EXIT | CPUMCTX_WSF_IBPB_ENTRY);
1052 if (pVM->cpum.ro.HostFeatures.fIbpb)
1053 {
1054 if (pVM->hm.s.fIbpbOnVmExit)
1055 pCpuCtx->fWorldSwitcher |= CPUMCTX_WSF_IBPB_EXIT;
1056 if (pVM->hm.s.fIbpbOnVmEntry)
1057 pCpuCtx->fWorldSwitcher |= CPUMCTX_WSF_IBPB_ENTRY;
1058 }
1059 if (pVM->cpum.ro.HostFeatures.fFlushCmd && pVM->hm.s.fL1dFlushOnVmEntry)
1060 pCpuCtx->fWorldSwitcher |= CPUMCTX_WSF_L1D_ENTRY;
1061 if (pVM->cpum.ro.HostFeatures.fMdsClear && pVM->hm.s.fMdsClearOnVmEntry)
1062 pCpuCtx->fWorldSwitcher |= CPUMCTX_WSF_MDS_ENTRY;
1063 if (idCpu == 0)
1064 LogRel(("HM: fWorldSwitcher=%#x (fIbpbOnVmExit=%RTbool fIbpbOnVmEntry=%RTbool fL1dFlushOnVmEntry=%RTbool); fL1dFlushOnSched=%RTbool fMdsClearOnVmEntry=%RTbool\n",
1065 pCpuCtx->fWorldSwitcher, pVM->hm.s.fIbpbOnVmExit, pVM->hm.s.fIbpbOnVmEntry, pVM->hm.s.fL1dFlushOnVmEntry,
1066 pVM->hm.s.fL1dFlushOnSched, pVM->hm.s.fMdsClearOnVmEntry));
1067 }
1068
1069 /*
1070 * Do the vendor specific initialization
1071 *
1072 * Note! We disable release log buffering here since we're doing relatively
1073 * lot of logging and doesn't want to hit the disk with each LogRel
1074 * statement.
1075 */
1076 AssertLogRelReturn(!pVM->hm.s.fInitialized, VERR_HM_IPE_5);
1077 bool fOldBuffered = RTLogRelSetBuffering(true /*fBuffered*/);
1078 if (pVM->hm.s.vmx.fSupported)
1079 rc = hmR3InitFinalizeR0Intel(pVM);
1080 else
1081 rc = hmR3InitFinalizeR0Amd(pVM);
1082 LogRel((pVM->hm.s.fGlobalInit ? "HM: VT-x/AMD-V init method: Global\n"
1083 : "HM: VT-x/AMD-V init method: Local\n"));
1084 RTLogRelSetBuffering(fOldBuffered);
1085 pVM->hm.s.fInitialized = true;
1086
1087 return rc;
1088}
1089
1090
1091/**
1092 * @callback_method_impl{FNPDMVMMDEVHEAPNOTIFY}
1093 */
1094static DECLCALLBACK(void) hmR3VmmDevHeapNotify(PVM pVM, void *pvAllocation, RTGCPHYS GCPhysAllocation)
1095{
1096 NOREF(pVM);
1097 NOREF(pvAllocation);
1098 NOREF(GCPhysAllocation);
1099}
1100
1101
1102/**
1103 * Returns a description of the VMCS (and associated regions') memory type given the
1104 * IA32_VMX_BASIC MSR.
1105 *
1106 * @returns The descriptive memory type.
1107 * @param uMsrVmxBasic IA32_VMX_BASIC MSR value.
1108 */
1109static const char *hmR3VmxGetMemTypeDesc(uint64_t uMsrVmxBasic)
1110{
1111 uint8_t const uMemType = RT_BF_GET(uMsrVmxBasic, VMX_BF_BASIC_VMCS_MEM_TYPE);
1112 switch (uMemType)
1113 {
1114 case VMX_BASIC_MEM_TYPE_WB: return "Write Back (WB)";
1115 case VMX_BASIC_MEM_TYPE_UC: return "Uncacheable (UC)";
1116 }
1117 return "Unknown";
1118}
1119
1120
1121/**
1122 * Returns a single-line description of all the activity-states supported by the CPU
1123 * given the IA32_VMX_MISC MSR.
1124 *
1125 * @returns All supported activity states.
1126 * @param uMsrMisc IA32_VMX_MISC MSR value.
1127 */
1128static const char *hmR3VmxGetActivityStateAllDesc(uint64_t uMsrMisc)
1129{
1130 static const char * const s_apszActStates[] =
1131 {
1132 "",
1133 " ( HLT )",
1134 " ( SHUTDOWN )",
1135 " ( HLT SHUTDOWN )",
1136 " ( SIPI_WAIT )",
1137 " ( HLT SIPI_WAIT )",
1138 " ( SHUTDOWN SIPI_WAIT )",
1139 " ( HLT SHUTDOWN SIPI_WAIT )"
1140 };
1141 uint8_t const idxActStates = RT_BF_GET(uMsrMisc, VMX_BF_MISC_ACTIVITY_STATES);
1142 Assert(idxActStates < RT_ELEMENTS(s_apszActStates));
1143 return s_apszActStates[idxActStates];
1144}
1145
1146
1147/**
1148 * Reports MSR_IA32_FEATURE_CONTROL MSR to the log.
1149 *
1150 * @param fFeatMsr The feature control MSR value.
1151 */
1152static void hmR3VmxReportFeatCtlMsr(uint64_t fFeatMsr)
1153{
1154 uint64_t const val = fFeatMsr;
1155 LogRel(("HM: MSR_IA32_FEATURE_CONTROL = %#RX64\n", val));
1156 HMVMX_REPORT_MSR_CAP(val, "LOCK", MSR_IA32_FEATURE_CONTROL_LOCK);
1157 HMVMX_REPORT_MSR_CAP(val, "SMX_VMXON", MSR_IA32_FEATURE_CONTROL_SMX_VMXON);
1158 HMVMX_REPORT_MSR_CAP(val, "VMXON", MSR_IA32_FEATURE_CONTROL_VMXON);
1159 HMVMX_REPORT_MSR_CAP(val, "SENTER_LOCAL_FN0", MSR_IA32_FEATURE_CONTROL_SENTER_LOCAL_FN_0);
1160 HMVMX_REPORT_MSR_CAP(val, "SENTER_LOCAL_FN1", MSR_IA32_FEATURE_CONTROL_SENTER_LOCAL_FN_1);
1161 HMVMX_REPORT_MSR_CAP(val, "SENTER_LOCAL_FN2", MSR_IA32_FEATURE_CONTROL_SENTER_LOCAL_FN_2);
1162 HMVMX_REPORT_MSR_CAP(val, "SENTER_LOCAL_FN3", MSR_IA32_FEATURE_CONTROL_SENTER_LOCAL_FN_3);
1163 HMVMX_REPORT_MSR_CAP(val, "SENTER_LOCAL_FN4", MSR_IA32_FEATURE_CONTROL_SENTER_LOCAL_FN_4);
1164 HMVMX_REPORT_MSR_CAP(val, "SENTER_LOCAL_FN5", MSR_IA32_FEATURE_CONTROL_SENTER_LOCAL_FN_5);
1165 HMVMX_REPORT_MSR_CAP(val, "SENTER_LOCAL_FN6", MSR_IA32_FEATURE_CONTROL_SENTER_LOCAL_FN_6);
1166 HMVMX_REPORT_MSR_CAP(val, "SENTER_GLOBAL_EN", MSR_IA32_FEATURE_CONTROL_SENTER_GLOBAL_EN);
1167 HMVMX_REPORT_MSR_CAP(val, "SGX_LAUNCH_EN", MSR_IA32_FEATURE_CONTROL_SGX_LAUNCH_EN);
1168 HMVMX_REPORT_MSR_CAP(val, "SGX_GLOBAL_EN", MSR_IA32_FEATURE_CONTROL_SGX_GLOBAL_EN);
1169 HMVMX_REPORT_MSR_CAP(val, "LMCE", MSR_IA32_FEATURE_CONTROL_LMCE);
1170 if (!(val & MSR_IA32_FEATURE_CONTROL_LOCK))
1171 LogRel(("HM: MSR_IA32_FEATURE_CONTROL lock bit not set, possibly bad hardware!\n"));
1172}
1173
1174
1175/**
1176 * Reports MSR_IA32_VMX_BASIC MSR to the log.
1177 *
1178 * @param uBasicMsr The VMX basic MSR value.
1179 */
1180static void hmR3VmxReportBasicMsr(uint64_t uBasicMsr)
1181{
1182 LogRel(("HM: MSR_IA32_VMX_BASIC = %#RX64\n", uBasicMsr));
1183 LogRel(("HM: VMCS id = %#x\n", RT_BF_GET(uBasicMsr, VMX_BF_BASIC_VMCS_ID)));
1184 LogRel(("HM: VMCS size = %u bytes\n", RT_BF_GET(uBasicMsr, VMX_BF_BASIC_VMCS_SIZE)));
1185 LogRel(("HM: VMCS physical address limit = %s\n", RT_BF_GET(uBasicMsr, VMX_BF_BASIC_PHYSADDR_WIDTH) ?
1186 "< 4 GB" : "None"));
1187 LogRel(("HM: VMCS memory type = %s\n", hmR3VmxGetMemTypeDesc(uBasicMsr)));
1188 LogRel(("HM: Dual-monitor treatment support = %RTbool\n", RT_BF_GET(uBasicMsr, VMX_BF_BASIC_DUAL_MON)));
1189 LogRel(("HM: OUTS & INS instruction-info = %RTbool\n", RT_BF_GET(uBasicMsr, VMX_BF_BASIC_VMCS_INS_OUTS)));
1190 LogRel(("HM: Supports true capability MSRs = %RTbool\n", RT_BF_GET(uBasicMsr, VMX_BF_BASIC_TRUE_CTLS)));
1191}
1192
1193
1194/**
1195 * Reports MSR_IA32_PINBASED_CTLS to the log.
1196 *
1197 * @param pVmxMsr Pointer to the VMX MSR.
1198 */
1199static void hmR3VmxReportPinBasedCtlsMsr(PCVMXCTLSMSR pVmxMsr)
1200{
1201 uint64_t const fAllowed1 = pVmxMsr->n.allowed1;
1202 uint64_t const fAllowed0 = pVmxMsr->n.allowed0;
1203 LogRel(("HM: MSR_IA32_VMX_PINBASED_CTLS = %#RX64\n", pVmxMsr->u));
1204 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "EXT_INT_EXIT", VMX_PIN_CTLS_EXT_INT_EXIT);
1205 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "NMI_EXIT", VMX_PIN_CTLS_NMI_EXIT);
1206 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "VIRTUAL_NMI", VMX_PIN_CTLS_VIRT_NMI);
1207 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "PREEMPT_TIMER", VMX_PIN_CTLS_PREEMPT_TIMER);
1208 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "POSTED_INT", VMX_PIN_CTLS_POSTED_INT);
1209}
1210
1211
1212/**
1213 * Reports MSR_IA32_VMX_PROCBASED_CTLS MSR to the log.
1214 *
1215 * @param pVmxMsr Pointer to the VMX MSR.
1216 */
1217static void hmR3VmxReportProcBasedCtlsMsr(PCVMXCTLSMSR pVmxMsr)
1218{
1219 uint64_t const fAllowed1 = pVmxMsr->n.allowed1;
1220 uint64_t const fAllowed0 = pVmxMsr->n.allowed0;
1221 LogRel(("HM: MSR_IA32_VMX_PROCBASED_CTLS = %#RX64\n", pVmxMsr->u));
1222 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "INT_WINDOW_EXIT", VMX_PROC_CTLS_INT_WINDOW_EXIT);
1223 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "USE_TSC_OFFSETTING", VMX_PROC_CTLS_USE_TSC_OFFSETTING);
1224 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "HLT_EXIT", VMX_PROC_CTLS_HLT_EXIT);
1225 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "INVLPG_EXIT", VMX_PROC_CTLS_INVLPG_EXIT);
1226 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "MWAIT_EXIT", VMX_PROC_CTLS_MWAIT_EXIT);
1227 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "RDPMC_EXIT", VMX_PROC_CTLS_RDPMC_EXIT);
1228 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "RDTSC_EXIT", VMX_PROC_CTLS_RDTSC_EXIT);
1229 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CR3_LOAD_EXIT", VMX_PROC_CTLS_CR3_LOAD_EXIT);
1230 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CR3_STORE_EXIT", VMX_PROC_CTLS_CR3_STORE_EXIT);
1231 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CR8_LOAD_EXIT", VMX_PROC_CTLS_CR8_LOAD_EXIT);
1232 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CR8_STORE_EXIT", VMX_PROC_CTLS_CR8_STORE_EXIT);
1233 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "USE_TPR_SHADOW", VMX_PROC_CTLS_USE_TPR_SHADOW);
1234 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "NMI_WINDOW_EXIT", VMX_PROC_CTLS_NMI_WINDOW_EXIT);
1235 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "MOV_DR_EXIT", VMX_PROC_CTLS_MOV_DR_EXIT);
1236 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "UNCOND_IO_EXIT", VMX_PROC_CTLS_UNCOND_IO_EXIT);
1237 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "USE_IO_BITMAPS", VMX_PROC_CTLS_USE_IO_BITMAPS);
1238 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "MONITOR_TRAP_FLAG", VMX_PROC_CTLS_MONITOR_TRAP_FLAG);
1239 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "USE_MSR_BITMAPS", VMX_PROC_CTLS_USE_MSR_BITMAPS);
1240 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "MONITOR_EXIT", VMX_PROC_CTLS_MONITOR_EXIT);
1241 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "PAUSE_EXIT", VMX_PROC_CTLS_PAUSE_EXIT);
1242 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "USE_SECONDARY_CTLS", VMX_PROC_CTLS_USE_SECONDARY_CTLS);
1243}
1244
1245
1246/**
1247 * Reports MSR_IA32_VMX_PROCBASED_CTLS2 MSR to the log.
1248 *
1249 * @param pVmxMsr Pointer to the VMX MSR.
1250 */
1251static void hmR3VmxReportProcBasedCtls2Msr(PCVMXCTLSMSR pVmxMsr)
1252{
1253 uint64_t const fAllowed1 = pVmxMsr->n.allowed1;
1254 uint64_t const fAllowed0 = pVmxMsr->n.allowed0;
1255 LogRel(("HM: MSR_IA32_VMX_PROCBASED_CTLS2 = %#RX64\n", pVmxMsr->u));
1256 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "VIRT_APIC_ACCESS", VMX_PROC_CTLS2_VIRT_APIC_ACCESS);
1257 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "EPT", VMX_PROC_CTLS2_EPT);
1258 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "DESC_TABLE_EXIT", VMX_PROC_CTLS2_DESC_TABLE_EXIT);
1259 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "RDTSCP", VMX_PROC_CTLS2_RDTSCP);
1260 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "VIRT_X2APIC_MODE", VMX_PROC_CTLS2_VIRT_X2APIC_MODE);
1261 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "VPID", VMX_PROC_CTLS2_VPID);
1262 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "WBINVD_EXIT", VMX_PROC_CTLS2_WBINVD_EXIT);
1263 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "UNRESTRICTED_GUEST", VMX_PROC_CTLS2_UNRESTRICTED_GUEST);
1264 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "APIC_REG_VIRT", VMX_PROC_CTLS2_APIC_REG_VIRT);
1265 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "VIRT_INT_DELIVERY", VMX_PROC_CTLS2_VIRT_INT_DELIVERY);
1266 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "PAUSE_LOOP_EXIT", VMX_PROC_CTLS2_PAUSE_LOOP_EXIT);
1267 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "RDRAND_EXIT", VMX_PROC_CTLS2_RDRAND_EXIT);
1268 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "INVPCID", VMX_PROC_CTLS2_INVPCID);
1269 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "VMFUNC", VMX_PROC_CTLS2_VMFUNC);
1270 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "VMCS_SHADOWING", VMX_PROC_CTLS2_VMCS_SHADOWING);
1271 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "ENCLS_EXIT", VMX_PROC_CTLS2_ENCLS_EXIT);
1272 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "RDSEED_EXIT", VMX_PROC_CTLS2_RDSEED_EXIT);
1273 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "PML", VMX_PROC_CTLS2_PML);
1274 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "EPT_VE", VMX_PROC_CTLS2_EPT_VE);
1275 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CONCEAL_VMX_FROM_PT", VMX_PROC_CTLS2_CONCEAL_VMX_FROM_PT);
1276 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "XSAVES_XRSTORS", VMX_PROC_CTLS2_XSAVES_XRSTORS);
1277 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "MODE_BASED_EPT_PERM", VMX_PROC_CTLS2_MODE_BASED_EPT_PERM);
1278 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "SPPTP_EPT", VMX_PROC_CTLS2_SPPTP_EPT);
1279 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "PT_EPT", VMX_PROC_CTLS2_PT_EPT);
1280 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "TSC_SCALING", VMX_PROC_CTLS2_TSC_SCALING);
1281 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "USER_WAIT_PAUSE", VMX_PROC_CTLS2_USER_WAIT_PAUSE);
1282 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "ENCLV_EXIT", VMX_PROC_CTLS2_ENCLV_EXIT);
1283}
1284
1285
1286/**
1287 * Reports MSR_IA32_VMX_ENTRY_CTLS to the log.
1288 *
1289 * @param pVmxMsr Pointer to the VMX MSR.
1290 */
1291static void hmR3VmxReportEntryCtlsMsr(PCVMXCTLSMSR pVmxMsr)
1292{
1293 uint64_t const fAllowed1 = pVmxMsr->n.allowed1;
1294 uint64_t const fAllowed0 = pVmxMsr->n.allowed0;
1295 LogRel(("HM: MSR_IA32_VMX_ENTRY_CTLS = %#RX64\n", pVmxMsr->u));
1296 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_DEBUG", VMX_ENTRY_CTLS_LOAD_DEBUG);
1297 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "IA32E_MODE_GUEST", VMX_ENTRY_CTLS_IA32E_MODE_GUEST);
1298 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "ENTRY_TO_SMM", VMX_ENTRY_CTLS_ENTRY_TO_SMM);
1299 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "DEACTIVATE_DUAL_MON", VMX_ENTRY_CTLS_DEACTIVATE_DUAL_MON);
1300 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_PERF_MSR", VMX_ENTRY_CTLS_LOAD_PERF_MSR);
1301 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_PAT_MSR", VMX_ENTRY_CTLS_LOAD_PAT_MSR);
1302 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_EFER_MSR", VMX_ENTRY_CTLS_LOAD_EFER_MSR);
1303 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_BNDCFGS_MSR", VMX_ENTRY_CTLS_LOAD_BNDCFGS_MSR);
1304 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CONCEAL_VMX_FROM_PT", VMX_ENTRY_CTLS_CONCEAL_VMX_FROM_PT);
1305 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_RTIT_CTL_MSR", VMX_ENTRY_CTLS_LOAD_RTIT_CTL_MSR);
1306}
1307
1308
1309/**
1310 * Reports MSR_IA32_VMX_EXIT_CTLS to the log.
1311 *
1312 * @param pVmxMsr Pointer to the VMX MSR.
1313 */
1314static void hmR3VmxReportExitCtlsMsr(PCVMXCTLSMSR pVmxMsr)
1315{
1316 uint64_t const fAllowed1 = pVmxMsr->n.allowed1;
1317 uint64_t const fAllowed0 = pVmxMsr->n.allowed0;
1318 LogRel(("HM: MSR_IA32_VMX_EXIT_CTLS = %#RX64\n", pVmxMsr->u));
1319 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "SAVE_DEBUG", VMX_EXIT_CTLS_SAVE_DEBUG);
1320 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "HOST_ADDR_SPACE_SIZE", VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE);
1321 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_PERF_MSR", VMX_EXIT_CTLS_LOAD_PERF_MSR);
1322 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "ACK_EXT_INT", VMX_EXIT_CTLS_ACK_EXT_INT);
1323 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "SAVE_PAT_MSR", VMX_EXIT_CTLS_SAVE_PAT_MSR);
1324 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_PAT_MSR", VMX_EXIT_CTLS_LOAD_PAT_MSR);
1325 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "SAVE_EFER_MSR", VMX_EXIT_CTLS_SAVE_EFER_MSR);
1326 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_EFER_MSR", VMX_EXIT_CTLS_LOAD_EFER_MSR);
1327 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "SAVE_PREEMPT_TIMER", VMX_EXIT_CTLS_SAVE_PREEMPT_TIMER);
1328 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CLEAR_BNDCFGS_MSR", VMX_EXIT_CTLS_CLEAR_BNDCFGS_MSR);
1329 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CONCEAL_VMX_FROM_PT", VMX_EXIT_CTLS_CONCEAL_VMX_FROM_PT);
1330 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CLEAR_RTIT_CTL_MSR", VMX_EXIT_CTLS_CLEAR_RTIT_CTL_MSR);
1331}
1332
1333
1334/**
1335 * Reports MSR_IA32_VMX_EPT_VPID_CAP MSR to the log.
1336 *
1337 * @param fCaps The VMX EPT/VPID capability MSR value.
1338 */
1339static void hmR3VmxReportEptVpidCapsMsr(uint64_t fCaps)
1340{
1341 LogRel(("HM: MSR_IA32_VMX_EPT_VPID_CAP = %#RX64\n", fCaps));
1342 HMVMX_REPORT_MSR_CAP(fCaps, "RWX_X_ONLY", MSR_IA32_VMX_EPT_VPID_CAP_RWX_X_ONLY);
1343 HMVMX_REPORT_MSR_CAP(fCaps, "PAGE_WALK_LENGTH_4", MSR_IA32_VMX_EPT_VPID_CAP_PAGE_WALK_LENGTH_4);
1344 HMVMX_REPORT_MSR_CAP(fCaps, "EMT_UC", MSR_IA32_VMX_EPT_VPID_CAP_EMT_UC);
1345 HMVMX_REPORT_MSR_CAP(fCaps, "EMT_WB", MSR_IA32_VMX_EPT_VPID_CAP_EMT_WB);
1346 HMVMX_REPORT_MSR_CAP(fCaps, "PDE_2M", MSR_IA32_VMX_EPT_VPID_CAP_PDE_2M);
1347 HMVMX_REPORT_MSR_CAP(fCaps, "PDPTE_1G", MSR_IA32_VMX_EPT_VPID_CAP_PDPTE_1G);
1348 HMVMX_REPORT_MSR_CAP(fCaps, "INVEPT", MSR_IA32_VMX_EPT_VPID_CAP_INVEPT);
1349 HMVMX_REPORT_MSR_CAP(fCaps, "EPT_ACCESS_DIRTY", MSR_IA32_VMX_EPT_VPID_CAP_EPT_ACCESS_DIRTY);
1350 HMVMX_REPORT_MSR_CAP(fCaps, "INVEPT_SINGLE_CONTEXT", MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_SINGLE_CONTEXT);
1351 HMVMX_REPORT_MSR_CAP(fCaps, "INVEPT_ALL_CONTEXTS", MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_ALL_CONTEXTS);
1352 HMVMX_REPORT_MSR_CAP(fCaps, "INVVPID", MSR_IA32_VMX_EPT_VPID_CAP_INVVPID);
1353 HMVMX_REPORT_MSR_CAP(fCaps, "INVVPID_INDIV_ADDR", MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR);
1354 HMVMX_REPORT_MSR_CAP(fCaps, "INVVPID_SINGLE_CONTEXT", MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT);
1355 HMVMX_REPORT_MSR_CAP(fCaps, "INVVPID_ALL_CONTEXTS", MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_ALL_CONTEXTS);
1356 HMVMX_REPORT_MSR_CAP(fCaps, "INVVPID_SINGLE_CONTEXT_RETAIN_GLOBALS", MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT_RETAIN_GLOBALS);
1357}
1358
1359
1360/**
1361 * Reports MSR_IA32_VMX_MISC MSR to the log.
1362 *
1363 * @param pVM Pointer to the VM.
1364 * @param fMisc The VMX misc. MSR value.
1365 */
1366static void hmR3VmxReportMiscMsr(PVM pVM, uint64_t fMisc)
1367{
1368 LogRel(("HM: MSR_IA32_VMX_MISC = %#RX64\n", fMisc));
1369 uint8_t const cPreemptTimerShift = RT_BF_GET(fMisc, VMX_BF_MISC_PREEMPT_TIMER_TSC);
1370 if (cPreemptTimerShift == pVM->hm.s.vmx.cPreemptTimerShift)
1371 LogRel(("HM: PREEMPT_TIMER_TSC = %#x\n", cPreemptTimerShift));
1372 else
1373 {
1374 LogRel(("HM: PREEMPT_TIMER_TSC = %#x - erratum detected, using %#x instead\n", cPreemptTimerShift,
1375 pVM->hm.s.vmx.cPreemptTimerShift));
1376 }
1377 LogRel(("HM: EXIT_SAVE_EFER_LMA = %RTbool\n", RT_BF_GET(fMisc, VMX_BF_MISC_EXIT_SAVE_EFER_LMA)));
1378 LogRel(("HM: ACTIVITY_STATES = %#x%s\n", RT_BF_GET(fMisc, VMX_BF_MISC_ACTIVITY_STATES),
1379 hmR3VmxGetActivityStateAllDesc(fMisc)));
1380 LogRel(("HM: INTEL_PT = %RTbool\n", RT_BF_GET(fMisc, VMX_BF_MISC_INTEL_PT)));
1381 LogRel(("HM: SMM_READ_SMBASE_MSR = %RTbool\n", RT_BF_GET(fMisc, VMX_BF_MISC_SMM_READ_SMBASE_MSR)));
1382 LogRel(("HM: CR3_TARGET = %#x\n", RT_BF_GET(fMisc, VMX_BF_MISC_CR3_TARGET)));
1383 LogRel(("HM: MAX_MSR = %#x ( %u )\n", RT_BF_GET(fMisc, VMX_BF_MISC_MAX_MSRS),
1384 VMX_MISC_MAX_MSRS(fMisc)));
1385 LogRel(("HM: VMXOFF_BLOCK_SMI = %RTbool\n", RT_BF_GET(fMisc, VMX_BF_MISC_VMXOFF_BLOCK_SMI)));
1386 LogRel(("HM: VMWRITE_ALL = %RTbool\n", RT_BF_GET(fMisc, VMX_BF_MISC_VMWRITE_ALL)));
1387 LogRel(("HM: ENTRY_INJECT_SOFT_INT = %#x\n", RT_BF_GET(fMisc, VMX_BF_MISC_ENTRY_INJECT_SOFT_INT)));
1388 LogRel(("HM: MSEG_ID = %#x\n", RT_BF_GET(fMisc, VMX_BF_MISC_MSEG_ID)));
1389}
1390
1391
1392/**
1393 * Reports MSR_IA32_VMX_VMCS_ENUM MSR to the log.
1394 *
1395 * @param uVmcsEnum The VMX VMCS enum MSR value.
1396 */
1397static void hmR3VmxReportVmcsEnumMsr(uint64_t uVmcsEnum)
1398{
1399 LogRel(("HM: MSR_IA32_VMX_VMCS_ENUM = %#RX64\n", uVmcsEnum));
1400 LogRel(("HM: HIGHEST_IDX = %#x\n", RT_BF_GET(uVmcsEnum, VMX_BF_VMCS_ENUM_HIGHEST_IDX)));
1401}
1402
1403
1404/**
1405 * Reports MSR_IA32_VMX_VMFUNC MSR to the log.
1406 *
1407 * @param uVmFunc The VMX VMFUNC MSR value.
1408 */
1409static void hmR3VmxReportVmFuncMsr(uint64_t uVmFunc)
1410{
1411 LogRel(("HM: MSR_IA32_VMX_VMFUNC = %#RX64\n", uVmFunc));
1412 HMVMX_REPORT_ALLOWED_FEAT(uVmFunc, "EPTP_SWITCHING", RT_BF_GET(uVmFunc, VMX_BF_VMFUNC_EPTP_SWITCHING));
1413}
1414
1415
1416/**
1417 * Reports VMX CR0, CR4 fixed MSRs.
1418 *
1419 * @param pMsrs Pointer to the VMX MSRs.
1420 */
1421static void hmR3VmxReportCrFixedMsrs(PVMXMSRS pMsrs)
1422{
1423 LogRel(("HM: MSR_IA32_VMX_CR0_FIXED0 = %#RX64\n", pMsrs->u64Cr0Fixed0));
1424 LogRel(("HM: MSR_IA32_VMX_CR0_FIXED1 = %#RX64\n", pMsrs->u64Cr0Fixed1));
1425 LogRel(("HM: MSR_IA32_VMX_CR4_FIXED0 = %#RX64\n", pMsrs->u64Cr4Fixed0));
1426 LogRel(("HM: MSR_IA32_VMX_CR4_FIXED1 = %#RX64\n", pMsrs->u64Cr4Fixed1));
1427}
1428
1429
1430/**
1431 * Finish VT-x initialization (after ring-0 init).
1432 *
1433 * @returns VBox status code.
1434 * @param pVM The cross context VM structure.
1435 */
1436static int hmR3InitFinalizeR0Intel(PVM pVM)
1437{
1438 int rc;
1439
1440 Log(("pVM->hm.s.vmx.fSupported = %d\n", pVM->hm.s.vmx.fSupported));
1441 AssertLogRelReturn(pVM->hm.s.vmx.Msrs.u64FeatCtrl != 0, VERR_HM_IPE_4);
1442
1443 LogRel(("HM: Using VT-x implementation 3.0\n"));
1444 LogRel(("HM: Max resume loops = %u\n", pVM->hm.s.cMaxResumeLoops));
1445 LogRel(("HM: Host CR4 = %#RX64\n", pVM->hm.s.vmx.u64HostCr4));
1446 LogRel(("HM: Host EFER = %#RX64\n", pVM->hm.s.vmx.u64HostMsrEfer));
1447 LogRel(("HM: MSR_IA32_SMM_MONITOR_CTL = %#RX64\n", pVM->hm.s.vmx.u64HostSmmMonitorCtl));
1448
1449 hmR3VmxReportFeatCtlMsr(pVM->hm.s.vmx.Msrs.u64FeatCtrl);
1450 hmR3VmxReportBasicMsr(pVM->hm.s.vmx.Msrs.u64Basic);
1451
1452 hmR3VmxReportPinBasedCtlsMsr(&pVM->hm.s.vmx.Msrs.PinCtls);
1453 hmR3VmxReportProcBasedCtlsMsr(&pVM->hm.s.vmx.Msrs.ProcCtls);
1454 if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
1455 hmR3VmxReportProcBasedCtls2Msr(&pVM->hm.s.vmx.Msrs.ProcCtls2);
1456
1457 hmR3VmxReportEntryCtlsMsr(&pVM->hm.s.vmx.Msrs.EntryCtls);
1458 hmR3VmxReportExitCtlsMsr(&pVM->hm.s.vmx.Msrs.ExitCtls);
1459
1460 if (RT_BF_GET(pVM->hm.s.vmx.Msrs.u64Basic, VMX_BF_BASIC_TRUE_CTLS))
1461 {
1462 /* We don't extensively dump the true capability MSRs as we don't use them, see @bugref{9180#c5}. */
1463 LogRel(("HM: MSR_IA32_VMX_TRUE_PINBASED_CTLS = %#RX64\n", pVM->hm.s.vmx.Msrs.TruePinCtls));
1464 LogRel(("HM: MSR_IA32_VMX_TRUE_PROCBASED_CTLS = %#RX64\n", pVM->hm.s.vmx.Msrs.TrueProcCtls));
1465 LogRel(("HM: MSR_IA32_VMX_TRUE_ENTRY_CTLS = %#RX64\n", pVM->hm.s.vmx.Msrs.TrueEntryCtls));
1466 LogRel(("HM: MSR_IA32_VMX_TRUE_EXIT_CTLS = %#RX64\n", pVM->hm.s.vmx.Msrs.TrueExitCtls));
1467 }
1468
1469 hmR3VmxReportMiscMsr(pVM, pVM->hm.s.vmx.Msrs.u64Misc);
1470 hmR3VmxReportVmcsEnumMsr(pVM->hm.s.vmx.Msrs.u64VmcsEnum);
1471 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps)
1472 hmR3VmxReportEptVpidCapsMsr(pVM->hm.s.vmx.Msrs.u64EptVpidCaps);
1473 if (pVM->hm.s.vmx.Msrs.u64VmFunc)
1474 hmR3VmxReportVmFuncMsr(pVM->hm.s.vmx.Msrs.u64VmFunc);
1475 hmR3VmxReportCrFixedMsrs(&pVM->hm.s.vmx.Msrs);
1476
1477 LogRel(("HM: APIC-access page physaddr = %#RHp\n", pVM->hm.s.vmx.HCPhysApicAccess));
1478 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1479 {
1480 PCVMXVMCSINFO pVmcsInfo = &pVM->apCpusR3[idCpu]->hm.s.vmx.VmcsInfo;
1481 LogRel(("HM: VCPU%3d: MSR bitmap physaddr = %#RHp\n", idCpu, pVmcsInfo->HCPhysMsrBitmap));
1482 LogRel(("HM: VCPU%3d: VMCS physaddr = %#RHp\n", idCpu, pVmcsInfo->HCPhysVmcs));
1483 }
1484#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
1485 if (pVM->cpum.ro.GuestFeatures.fVmx)
1486 {
1487 LogRel(("HM: Nested-guest:\n"));
1488 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1489 {
1490 PCVMXVMCSINFO pVmcsInfoNstGst = &pVM->apCpusR3[idCpu]->hm.s.vmx.VmcsInfoNstGst;
1491 LogRel(("HM: VCPU%3d: MSR bitmap physaddr = %#RHp\n", idCpu, pVmcsInfoNstGst->HCPhysMsrBitmap));
1492 LogRel(("HM: VCPU%3d: VMCS physaddr = %#RHp\n", idCpu, pVmcsInfoNstGst->HCPhysVmcs));
1493 }
1494 }
1495#endif
1496
1497 /*
1498 * EPT and unrestricted guest execution are determined in HMR3Init, verify the sanity of that.
1499 */
1500 AssertLogRelReturn( !pVM->hm.s.fNestedPaging
1501 || (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_EPT),
1502 VERR_HM_IPE_1);
1503 AssertLogRelReturn( !pVM->hm.s.vmx.fUnrestrictedGuest
1504 || ( (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_UNRESTRICTED_GUEST)
1505 && pVM->hm.s.fNestedPaging),
1506 VERR_HM_IPE_1);
1507
1508 /*
1509 * Disallow RDTSCP in the guest if there is no secondary process-based VM execution controls as otherwise
1510 * RDTSCP would cause a #UD. There might be no CPUs out there where this happens, as RDTSCP was introduced
1511 * in Nehalems and secondary VM exec. controls should be supported in all of them, but nonetheless it's Intel...
1512 */
1513 if ( !(pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
1514 && CPUMR3GetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_RDTSCP))
1515 {
1516 CPUMR3ClearGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_RDTSCP);
1517 LogRel(("HM: Disabled RDTSCP\n"));
1518 }
1519
1520 if (!pVM->hm.s.vmx.fUnrestrictedGuest)
1521 {
1522 /* Allocate three pages for the TSS we need for real mode emulation. (2 pages for the IO bitmap) */
1523 rc = PDMR3VmmDevHeapAlloc(pVM, HM_VTX_TOTAL_DEVHEAP_MEM, hmR3VmmDevHeapNotify, (RTR3PTR *)&pVM->hm.s.vmx.pRealModeTSS);
1524 if (RT_SUCCESS(rc))
1525 {
1526 /* The IO bitmap starts right after the virtual interrupt redirection bitmap.
1527 Refer Intel spec. 20.3.3 "Software Interrupt Handling in Virtual-8086 mode"
1528 esp. Figure 20-5.*/
1529 ASMMemZero32(pVM->hm.s.vmx.pRealModeTSS, sizeof(*pVM->hm.s.vmx.pRealModeTSS));
1530 pVM->hm.s.vmx.pRealModeTSS->offIoBitmap = sizeof(*pVM->hm.s.vmx.pRealModeTSS);
1531
1532 /* Bit set to 0 means software interrupts are redirected to the
1533 8086 program interrupt handler rather than switching to
1534 protected-mode handler. */
1535 memset(pVM->hm.s.vmx.pRealModeTSS->IntRedirBitmap, 0, sizeof(pVM->hm.s.vmx.pRealModeTSS->IntRedirBitmap));
1536
1537 /* Allow all port IO, so that port IO instructions do not cause
1538 exceptions and would instead cause a VM-exit (based on VT-x's
1539 IO bitmap which we currently configure to always cause an exit). */
1540 memset(pVM->hm.s.vmx.pRealModeTSS + 1, 0, PAGE_SIZE * 2);
1541 *((unsigned char *)pVM->hm.s.vmx.pRealModeTSS + HM_VTX_TSS_SIZE - 2) = 0xff;
1542
1543 /*
1544 * Construct a 1024 element page directory with 4 MB pages for the identity mapped
1545 * page table used in real and protected mode without paging with EPT.
1546 */
1547 pVM->hm.s.vmx.pNonPagingModeEPTPageTable = (PX86PD)((char *)pVM->hm.s.vmx.pRealModeTSS + PAGE_SIZE * 3);
1548 for (uint32_t i = 0; i < X86_PG_ENTRIES; i++)
1549 {
1550 pVM->hm.s.vmx.pNonPagingModeEPTPageTable->a[i].u = _4M * i;
1551 pVM->hm.s.vmx.pNonPagingModeEPTPageTable->a[i].u |= X86_PDE4M_P | X86_PDE4M_RW | X86_PDE4M_US
1552 | X86_PDE4M_A | X86_PDE4M_D | X86_PDE4M_PS
1553 | X86_PDE4M_G;
1554 }
1555
1556 /* We convert it here every time as PCI regions could be reconfigured. */
1557 if (PDMVmmDevHeapIsEnabled(pVM))
1558 {
1559 RTGCPHYS GCPhys;
1560 rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pRealModeTSS, &GCPhys);
1561 AssertRCReturn(rc, rc);
1562 LogRel(("HM: Real Mode TSS guest physaddr = %#RGp\n", GCPhys));
1563
1564 rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pNonPagingModeEPTPageTable, &GCPhys);
1565 AssertRCReturn(rc, rc);
1566 LogRel(("HM: Non-Paging Mode EPT CR3 = %#RGp\n", GCPhys));
1567 }
1568 }
1569 else
1570 {
1571 LogRel(("HM: No real mode VT-x support (PDMR3VMMDevHeapAlloc returned %Rrc)\n", rc));
1572 pVM->hm.s.vmx.pRealModeTSS = NULL;
1573 pVM->hm.s.vmx.pNonPagingModeEPTPageTable = NULL;
1574 return VMSetError(pVM, rc, RT_SRC_POS,
1575 "HM failure: No real mode VT-x support (PDMR3VMMDevHeapAlloc returned %Rrc)", rc);
1576 }
1577 }
1578
1579 LogRel((pVM->hm.s.fAllow64BitGuests ? "HM: Guest support: 32-bit and 64-bit\n"
1580 : "HM: Guest support: 32-bit only\n"));
1581
1582 /*
1583 * Call ring-0 to set up the VM.
1584 */
1585 rc = SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pVM), 0 /* idCpu */, VMMR0_DO_HM_SETUP_VM, 0 /* u64Arg */, NULL /* pReqHdr */);
1586 if (rc != VINF_SUCCESS)
1587 {
1588 LogRel(("HM: VMX setup failed with rc=%Rrc!\n", rc));
1589 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1590 {
1591 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
1592 LogRel(("HM: CPU[%u] Last instruction error %#x\n", idCpu, pVCpu->hm.s.vmx.LastError.u32InstrError));
1593 LogRel(("HM: CPU[%u] HM error %#x (%u)\n", idCpu, pVCpu->hm.s.u32HMError, pVCpu->hm.s.u32HMError));
1594 }
1595 HMR3CheckError(pVM, rc);
1596 return VMSetError(pVM, rc, RT_SRC_POS, "VT-x setup failed: %Rrc", rc);
1597 }
1598
1599 LogRel(("HM: Supports VMCS EFER fields = %RTbool\n", pVM->hm.s.vmx.fSupportsVmcsEfer));
1600 LogRel(("HM: Enabled VMX\n"));
1601 pVM->hm.s.vmx.fEnabled = true;
1602
1603 hmR3DisableRawMode(pVM); /** @todo make this go away! */
1604
1605 /*
1606 * Change the CPU features.
1607 */
1608 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_SEP);
1609 if (pVM->hm.s.fAllow64BitGuests)
1610 {
1611 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_PAE);
1612 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_LONG_MODE);
1613 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_SYSCALL); /* 64 bits only on Intel CPUs */
1614 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_LAHF);
1615 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_NX);
1616 }
1617 /* Turn on NXE if PAE has been enabled *and* the host has turned on NXE
1618 (we reuse the host EFER in the switcher). */
1619 /** @todo this needs to be fixed properly!! */
1620 else if (CPUMR3GetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_PAE))
1621 {
1622 if (pVM->hm.s.vmx.u64HostMsrEfer & MSR_K6_EFER_NXE)
1623 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_NX);
1624 else
1625 LogRel(("HM: NX not enabled on the host, unavailable to PAE guest\n"));
1626 }
1627
1628 /*
1629 * Log configuration details.
1630 */
1631 if (pVM->hm.s.fNestedPaging)
1632 {
1633 LogRel(("HM: Enabled nested paging\n"));
1634 if (pVM->hm.s.vmx.enmTlbFlushEpt == VMXTLBFLUSHEPT_SINGLE_CONTEXT)
1635 LogRel(("HM: EPT flush type = Single context\n"));
1636 else if (pVM->hm.s.vmx.enmTlbFlushEpt == VMXTLBFLUSHEPT_ALL_CONTEXTS)
1637 LogRel(("HM: EPT flush type = All contexts\n"));
1638 else if (pVM->hm.s.vmx.enmTlbFlushEpt == VMXTLBFLUSHEPT_NOT_SUPPORTED)
1639 LogRel(("HM: EPT flush type = Not supported\n"));
1640 else
1641 LogRel(("HM: EPT flush type = %#x\n", pVM->hm.s.vmx.enmTlbFlushEpt));
1642
1643 if (pVM->hm.s.vmx.fUnrestrictedGuest)
1644 LogRel(("HM: Enabled unrestricted guest execution\n"));
1645
1646 if (pVM->hm.s.fLargePages)
1647 {
1648 /* Use large (2 MB) pages for our EPT PDEs where possible. */
1649 PGMSetLargePageUsage(pVM, true);
1650 LogRel(("HM: Enabled large page support\n"));
1651 }
1652 }
1653 else
1654 Assert(!pVM->hm.s.vmx.fUnrestrictedGuest);
1655
1656 if (pVM->hm.s.vmx.fVpid)
1657 {
1658 LogRel(("HM: Enabled VPID\n"));
1659 if (pVM->hm.s.vmx.enmTlbFlushVpid == VMXTLBFLUSHVPID_INDIV_ADDR)
1660 LogRel(("HM: VPID flush type = Individual addresses\n"));
1661 else if (pVM->hm.s.vmx.enmTlbFlushVpid == VMXTLBFLUSHVPID_SINGLE_CONTEXT)
1662 LogRel(("HM: VPID flush type = Single context\n"));
1663 else if (pVM->hm.s.vmx.enmTlbFlushVpid == VMXTLBFLUSHVPID_ALL_CONTEXTS)
1664 LogRel(("HM: VPID flush type = All contexts\n"));
1665 else if (pVM->hm.s.vmx.enmTlbFlushVpid == VMXTLBFLUSHVPID_SINGLE_CONTEXT_RETAIN_GLOBALS)
1666 LogRel(("HM: VPID flush type = Single context retain globals\n"));
1667 else
1668 LogRel(("HM: VPID flush type = %#x\n", pVM->hm.s.vmx.enmTlbFlushVpid));
1669 }
1670 else if (pVM->hm.s.vmx.enmTlbFlushVpid == VMXTLBFLUSHVPID_NOT_SUPPORTED)
1671 LogRel(("HM: Ignoring VPID capabilities of CPU\n"));
1672
1673 if (pVM->hm.s.vmx.fUsePreemptTimer)
1674 LogRel(("HM: Enabled VMX-preemption timer (cPreemptTimerShift=%u)\n", pVM->hm.s.vmx.cPreemptTimerShift));
1675 else
1676 LogRel(("HM: Disabled VMX-preemption timer\n"));
1677
1678 if (pVM->hm.s.fVirtApicRegs)
1679 LogRel(("HM: Enabled APIC-register virtualization support\n"));
1680
1681 if (pVM->hm.s.fPostedIntrs)
1682 LogRel(("HM: Enabled posted-interrupt processing support\n"));
1683
1684 if (pVM->hm.s.vmx.fUseVmcsShadowing)
1685 {
1686 bool const fFullVmcsShadow = RT_BOOL(pVM->hm.s.vmx.Msrs.u64Misc & VMX_MISC_VMWRITE_ALL);
1687 LogRel(("HM: Enabled %s VMCS shadowing\n", fFullVmcsShadow ? "full" : "partial"));
1688 }
1689
1690 return VINF_SUCCESS;
1691}
1692
1693
1694/**
1695 * Finish AMD-V initialization (after ring-0 init).
1696 *
1697 * @returns VBox status code.
1698 * @param pVM The cross context VM structure.
1699 */
1700static int hmR3InitFinalizeR0Amd(PVM pVM)
1701{
1702 Log(("pVM->hm.s.svm.fSupported = %d\n", pVM->hm.s.svm.fSupported));
1703
1704 LogRel(("HM: Using AMD-V implementation 2.0\n"));
1705
1706 uint32_t u32Family;
1707 uint32_t u32Model;
1708 uint32_t u32Stepping;
1709 if (HMIsSubjectToSvmErratum170(&u32Family, &u32Model, &u32Stepping))
1710 LogRel(("HM: AMD Cpu with erratum 170 family %#x model %#x stepping %#x\n", u32Family, u32Model, u32Stepping));
1711 LogRel(("HM: Max resume loops = %u\n", pVM->hm.s.cMaxResumeLoops));
1712 LogRel(("HM: AMD HWCR MSR = %#RX64\n", pVM->hm.s.svm.u64MsrHwcr));
1713 LogRel(("HM: AMD-V revision = %#x\n", pVM->hm.s.svm.u32Rev));
1714 LogRel(("HM: AMD-V max ASID = %RU32\n", pVM->hm.s.uMaxAsid));
1715 LogRel(("HM: AMD-V features = %#x\n", pVM->hm.s.svm.u32Features));
1716
1717 /*
1718 * Enumerate AMD-V features.
1719 */
1720 static const struct { uint32_t fFlag; const char *pszName; } s_aSvmFeatures[] =
1721 {
1722#define HMSVM_REPORT_FEATURE(a_StrDesc, a_Define) { a_Define, a_StrDesc }
1723 HMSVM_REPORT_FEATURE("NESTED_PAGING", X86_CPUID_SVM_FEATURE_EDX_NESTED_PAGING),
1724 HMSVM_REPORT_FEATURE("LBR_VIRT", X86_CPUID_SVM_FEATURE_EDX_LBR_VIRT),
1725 HMSVM_REPORT_FEATURE("SVM_LOCK", X86_CPUID_SVM_FEATURE_EDX_SVM_LOCK),
1726 HMSVM_REPORT_FEATURE("NRIP_SAVE", X86_CPUID_SVM_FEATURE_EDX_NRIP_SAVE),
1727 HMSVM_REPORT_FEATURE("TSC_RATE_MSR", X86_CPUID_SVM_FEATURE_EDX_TSC_RATE_MSR),
1728 HMSVM_REPORT_FEATURE("VMCB_CLEAN", X86_CPUID_SVM_FEATURE_EDX_VMCB_CLEAN),
1729 HMSVM_REPORT_FEATURE("FLUSH_BY_ASID", X86_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID),
1730 HMSVM_REPORT_FEATURE("DECODE_ASSISTS", X86_CPUID_SVM_FEATURE_EDX_DECODE_ASSISTS),
1731 HMSVM_REPORT_FEATURE("PAUSE_FILTER", X86_CPUID_SVM_FEATURE_EDX_PAUSE_FILTER),
1732 HMSVM_REPORT_FEATURE("PAUSE_FILTER_THRESHOLD", X86_CPUID_SVM_FEATURE_EDX_PAUSE_FILTER_THRESHOLD),
1733 HMSVM_REPORT_FEATURE("AVIC", X86_CPUID_SVM_FEATURE_EDX_AVIC),
1734 HMSVM_REPORT_FEATURE("VIRT_VMSAVE_VMLOAD", X86_CPUID_SVM_FEATURE_EDX_VIRT_VMSAVE_VMLOAD),
1735 HMSVM_REPORT_FEATURE("VGIF", X86_CPUID_SVM_FEATURE_EDX_VGIF),
1736#undef HMSVM_REPORT_FEATURE
1737 };
1738
1739 uint32_t fSvmFeatures = pVM->hm.s.svm.u32Features;
1740 for (unsigned i = 0; i < RT_ELEMENTS(s_aSvmFeatures); i++)
1741 if (fSvmFeatures & s_aSvmFeatures[i].fFlag)
1742 {
1743 LogRel(("HM: %s\n", s_aSvmFeatures[i].pszName));
1744 fSvmFeatures &= ~s_aSvmFeatures[i].fFlag;
1745 }
1746 if (fSvmFeatures)
1747 for (unsigned iBit = 0; iBit < 32; iBit++)
1748 if (RT_BIT_32(iBit) & fSvmFeatures)
1749 LogRel(("HM: Reserved bit %u\n", iBit));
1750
1751 /*
1752 * Nested paging is determined in HMR3Init, verify the sanity of that.
1753 */
1754 AssertLogRelReturn( !pVM->hm.s.fNestedPaging
1755 || (pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_NESTED_PAGING),
1756 VERR_HM_IPE_1);
1757
1758#if 0
1759 /** @todo Add and query IPRT API for host OS support for posted-interrupt IPI
1760 * here. */
1761 if (RTR0IsPostIpiSupport())
1762 pVM->hm.s.fPostedIntrs = true;
1763#endif
1764
1765 /*
1766 * Call ring-0 to set up the VM.
1767 */
1768 int rc = SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pVM), 0 /*idCpu*/, VMMR0_DO_HM_SETUP_VM, 0, NULL);
1769 if (rc != VINF_SUCCESS)
1770 {
1771 AssertMsgFailed(("%Rrc\n", rc));
1772 LogRel(("HM: AMD-V setup failed with rc=%Rrc!\n", rc));
1773 return VMSetError(pVM, rc, RT_SRC_POS, "AMD-V setup failed: %Rrc", rc);
1774 }
1775
1776 LogRel(("HM: Enabled SVM\n"));
1777 pVM->hm.s.svm.fEnabled = true;
1778
1779 if (pVM->hm.s.fNestedPaging)
1780 {
1781 LogRel(("HM: Enabled nested paging\n"));
1782
1783 /*
1784 * Enable large pages (2 MB) if applicable.
1785 */
1786 if (pVM->hm.s.fLargePages)
1787 {
1788 PGMSetLargePageUsage(pVM, true);
1789 LogRel(("HM: Enabled large page support\n"));
1790 }
1791 }
1792
1793 if (pVM->hm.s.fVirtApicRegs)
1794 LogRel(("HM: Enabled APIC-register virtualization support\n"));
1795
1796 if (pVM->hm.s.fPostedIntrs)
1797 LogRel(("HM: Enabled posted-interrupt processing support\n"));
1798
1799 hmR3DisableRawMode(pVM);
1800
1801 /*
1802 * Change the CPU features.
1803 */
1804 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_SEP);
1805 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_SYSCALL);
1806 if (pVM->hm.s.fAllow64BitGuests)
1807 {
1808 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_PAE);
1809 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_LONG_MODE);
1810 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_NX);
1811 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_LAHF);
1812 }
1813 /* Turn on NXE if PAE has been enabled. */
1814 else if (CPUMR3GetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_PAE))
1815 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_NX);
1816
1817 LogRel((pVM->hm.s.fTprPatchingAllowed ? "HM: Enabled TPR patching\n"
1818 : "HM: Disabled TPR patching\n"));
1819
1820 LogRel((pVM->hm.s.fAllow64BitGuests ? "HM: Guest support: 32-bit and 64-bit\n"
1821 : "HM: Guest support: 32-bit only\n"));
1822 return VINF_SUCCESS;
1823}
1824
1825
1826/**
1827 * Applies relocations to data and code managed by this
1828 * component. This function will be called at init and
1829 * whenever the VMM need to relocate it self inside the GC.
1830 *
1831 * @param pVM The cross context VM structure.
1832 */
1833VMMR3_INT_DECL(void) HMR3Relocate(PVM pVM)
1834{
1835 Log(("HMR3Relocate to %RGv\n", MMHyperGetArea(pVM, 0)));
1836
1837 /* Fetch the current paging mode during the relocate callback during state loading. */
1838 if (VMR3GetState(pVM) == VMSTATE_LOADING)
1839 {
1840 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1841 {
1842 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
1843 pVCpu->hm.s.enmShadowMode = PGMGetShadowMode(pVCpu);
1844 }
1845 }
1846}
1847
1848
1849/**
1850 * Terminates the HM.
1851 *
1852 * Termination means cleaning up and freeing all resources,
1853 * the VM itself is, at this point, powered off or suspended.
1854 *
1855 * @returns VBox status code.
1856 * @param pVM The cross context VM structure.
1857 */
1858VMMR3_INT_DECL(int) HMR3Term(PVM pVM)
1859{
1860 if (pVM->hm.s.vmx.pRealModeTSS)
1861 {
1862 PDMR3VmmDevHeapFree(pVM, pVM->hm.s.vmx.pRealModeTSS);
1863 pVM->hm.s.vmx.pRealModeTSS = 0;
1864 }
1865 hmR3TermCPU(pVM);
1866 return 0;
1867}
1868
1869
1870/**
1871 * Terminates the per-VCPU HM.
1872 *
1873 * @returns VBox status code.
1874 * @param pVM The cross context VM structure.
1875 */
1876static int hmR3TermCPU(PVM pVM)
1877{
1878#ifdef VBOX_WITH_STATISTICS
1879 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1880 {
1881 PVMCPU pVCpu = pVM->apCpusR3[idCpu]; NOREF(pVCpu);
1882 if (pVCpu->hm.s.paStatExitReason)
1883 {
1884 MMHyperFree(pVM, pVCpu->hm.s.paStatExitReason);
1885 pVCpu->hm.s.paStatExitReason = NULL;
1886 pVCpu->hm.s.paStatExitReasonR0 = NIL_RTR0PTR;
1887 }
1888 if (pVCpu->hm.s.paStatInjectedIrqs)
1889 {
1890 MMHyperFree(pVM, pVCpu->hm.s.paStatInjectedIrqs);
1891 pVCpu->hm.s.paStatInjectedIrqs = NULL;
1892 pVCpu->hm.s.paStatInjectedIrqsR0 = NIL_RTR0PTR;
1893 }
1894# if defined(VBOX_WITH_NESTED_HWVIRT_SVM) || defined(VBOX_WITH_NESTED_HWVIRT_VMX)
1895 if (pVCpu->hm.s.paStatNestedExitReason)
1896 {
1897 MMHyperFree(pVM, pVCpu->hm.s.paStatNestedExitReason);
1898 pVCpu->hm.s.paStatNestedExitReason = NULL;
1899 pVCpu->hm.s.paStatNestedExitReasonR0 = NIL_RTR0PTR;
1900 }
1901# endif
1902 }
1903#else
1904 RT_NOREF(pVM);
1905#endif
1906 return VINF_SUCCESS;
1907}
1908
1909
1910/**
1911 * Resets a virtual CPU.
1912 *
1913 * Used by HMR3Reset and CPU hot plugging.
1914 *
1915 * @param pVCpu The cross context virtual CPU structure to reset.
1916 */
1917VMMR3_INT_DECL(void) HMR3ResetCpu(PVMCPU pVCpu)
1918{
1919 /* Sync. entire state on VM reset ring-0 re-entry. It's safe to reset
1920 the HM flags here, all other EMTs are in ring-3. See VMR3Reset(). */
1921 pVCpu->hm.s.fCtxChanged |= HM_CHANGED_HOST_CONTEXT | HM_CHANGED_ALL_GUEST;
1922
1923 pVCpu->hm.s.fActive = false;
1924 pVCpu->hm.s.Event.fPending = false;
1925 pVCpu->hm.s.vmx.u64GstMsrApicBase = 0;
1926 pVCpu->hm.s.vmx.VmcsInfo.fSwitchedTo64on32Obsolete = false;
1927 pVCpu->hm.s.vmx.VmcsInfo.fWasInRealMode = true;
1928#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
1929 if (pVCpu->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.fVmx)
1930 {
1931 pVCpu->hm.s.vmx.VmcsInfoNstGst.fSwitchedTo64on32Obsolete = false;
1932 pVCpu->hm.s.vmx.VmcsInfoNstGst.fWasInRealMode = true;
1933 }
1934#endif
1935}
1936
1937
1938/**
1939 * The VM is being reset.
1940 *
1941 * For the HM component this means that any GDT/LDT/TSS monitors
1942 * needs to be removed.
1943 *
1944 * @param pVM The cross context VM structure.
1945 */
1946VMMR3_INT_DECL(void) HMR3Reset(PVM pVM)
1947{
1948 LogFlow(("HMR3Reset:\n"));
1949
1950 if (HMIsEnabled(pVM))
1951 hmR3DisableRawMode(pVM);
1952
1953 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1954 HMR3ResetCpu(pVM->apCpusR3[idCpu]);
1955
1956 /* Clear all patch information. */
1957 pVM->hm.s.pGuestPatchMem = 0;
1958 pVM->hm.s.pFreeGuestPatchMem = 0;
1959 pVM->hm.s.cbGuestPatchMem = 0;
1960 pVM->hm.s.cPatches = 0;
1961 pVM->hm.s.PatchTree = 0;
1962 pVM->hm.s.fTPRPatchingActive = false;
1963 ASMMemZero32(pVM->hm.s.aPatches, sizeof(pVM->hm.s.aPatches));
1964}
1965
1966
1967/**
1968 * Callback to patch a TPR instruction (vmmcall or mov cr8).
1969 *
1970 * @returns VBox strict status code.
1971 * @param pVM The cross context VM structure.
1972 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
1973 * @param pvUser Unused.
1974 */
1975static DECLCALLBACK(VBOXSTRICTRC) hmR3RemovePatches(PVM pVM, PVMCPU pVCpu, void *pvUser)
1976{
1977 VMCPUID idCpu = (VMCPUID)(uintptr_t)pvUser;
1978
1979 /* Only execute the handler on the VCPU the original patch request was issued. */
1980 if (pVCpu->idCpu != idCpu)
1981 return VINF_SUCCESS;
1982
1983 Log(("hmR3RemovePatches\n"));
1984 for (unsigned i = 0; i < pVM->hm.s.cPatches; i++)
1985 {
1986 uint8_t abInstr[15];
1987 PHMTPRPATCH pPatch = &pVM->hm.s.aPatches[i];
1988 RTGCPTR pInstrGC = (RTGCPTR)pPatch->Core.Key;
1989 int rc;
1990
1991#ifdef LOG_ENABLED
1992 char szOutput[256];
1993 rc = DBGFR3DisasInstrEx(pVM->pUVM, pVCpu->idCpu, CPUMGetGuestCS(pVCpu), pInstrGC, DBGF_DISAS_FLAGS_DEFAULT_MODE,
1994 szOutput, sizeof(szOutput), NULL);
1995 if (RT_SUCCESS(rc))
1996 Log(("Patched instr: %s\n", szOutput));
1997#endif
1998
1999 /* Check if the instruction is still the same. */
2000 rc = PGMPhysSimpleReadGCPtr(pVCpu, abInstr, pInstrGC, pPatch->cbNewOp);
2001 if (rc != VINF_SUCCESS)
2002 {
2003 Log(("Patched code removed? (rc=%Rrc0\n", rc));
2004 continue; /* swapped out or otherwise removed; skip it. */
2005 }
2006
2007 if (memcmp(abInstr, pPatch->aNewOpcode, pPatch->cbNewOp))
2008 {
2009 Log(("Patched instruction was changed! (rc=%Rrc0\n", rc));
2010 continue; /* skip it. */
2011 }
2012
2013 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pInstrGC, pPatch->aOpcode, pPatch->cbOp);
2014 AssertRC(rc);
2015
2016#ifdef LOG_ENABLED
2017 rc = DBGFR3DisasInstrEx(pVM->pUVM, pVCpu->idCpu, CPUMGetGuestCS(pVCpu), pInstrGC, DBGF_DISAS_FLAGS_DEFAULT_MODE,
2018 szOutput, sizeof(szOutput), NULL);
2019 if (RT_SUCCESS(rc))
2020 Log(("Original instr: %s\n", szOutput));
2021#endif
2022 }
2023 pVM->hm.s.cPatches = 0;
2024 pVM->hm.s.PatchTree = 0;
2025 pVM->hm.s.pFreeGuestPatchMem = pVM->hm.s.pGuestPatchMem;
2026 pVM->hm.s.fTPRPatchingActive = false;
2027 return VINF_SUCCESS;
2028}
2029
2030
2031/**
2032 * Worker for enabling patching in a VT-x/AMD-V guest.
2033 *
2034 * @returns VBox status code.
2035 * @param pVM The cross context VM structure.
2036 * @param idCpu VCPU to execute hmR3RemovePatches on.
2037 * @param pPatchMem Patch memory range.
2038 * @param cbPatchMem Size of the memory range.
2039 */
2040static int hmR3EnablePatching(PVM pVM, VMCPUID idCpu, RTRCPTR pPatchMem, unsigned cbPatchMem)
2041{
2042 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE, hmR3RemovePatches, (void *)(uintptr_t)idCpu);
2043 AssertRC(rc);
2044
2045 pVM->hm.s.pGuestPatchMem = pPatchMem;
2046 pVM->hm.s.pFreeGuestPatchMem = pPatchMem;
2047 pVM->hm.s.cbGuestPatchMem = cbPatchMem;
2048 return VINF_SUCCESS;
2049}
2050
2051
2052/**
2053 * Enable patching in a VT-x/AMD-V guest
2054 *
2055 * @returns VBox status code.
2056 * @param pVM The cross context VM structure.
2057 * @param pPatchMem Patch memory range.
2058 * @param cbPatchMem Size of the memory range.
2059 */
2060VMMR3_INT_DECL(int) HMR3EnablePatching(PVM pVM, RTGCPTR pPatchMem, unsigned cbPatchMem)
2061{
2062 VM_ASSERT_EMT(pVM);
2063 Log(("HMR3EnablePatching %RGv size %x\n", pPatchMem, cbPatchMem));
2064 if (pVM->cCpus > 1)
2065 {
2066 /* We own the IOM lock here and could cause a deadlock by waiting for a VCPU that is blocking on the IOM lock. */
2067 int rc = VMR3ReqCallNoWait(pVM, VMCPUID_ANY_QUEUE,
2068 (PFNRT)hmR3EnablePatching, 4, pVM, VMMGetCpuId(pVM), (RTRCPTR)pPatchMem, cbPatchMem);
2069 AssertRC(rc);
2070 return rc;
2071 }
2072 return hmR3EnablePatching(pVM, VMMGetCpuId(pVM), (RTRCPTR)pPatchMem, cbPatchMem);
2073}
2074
2075
2076/**
2077 * Disable patching in a VT-x/AMD-V guest.
2078 *
2079 * @returns VBox status code.
2080 * @param pVM The cross context VM structure.
2081 * @param pPatchMem Patch memory range.
2082 * @param cbPatchMem Size of the memory range.
2083 */
2084VMMR3_INT_DECL(int) HMR3DisablePatching(PVM pVM, RTGCPTR pPatchMem, unsigned cbPatchMem)
2085{
2086 Log(("HMR3DisablePatching %RGv size %x\n", pPatchMem, cbPatchMem));
2087 RT_NOREF2(pPatchMem, cbPatchMem);
2088
2089 Assert(pVM->hm.s.pGuestPatchMem == pPatchMem);
2090 Assert(pVM->hm.s.cbGuestPatchMem == cbPatchMem);
2091
2092 /** @todo Potential deadlock when other VCPUs are waiting on the IOM lock (we own it)!! */
2093 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE, hmR3RemovePatches,
2094 (void *)(uintptr_t)VMMGetCpuId(pVM));
2095 AssertRC(rc);
2096
2097 pVM->hm.s.pGuestPatchMem = 0;
2098 pVM->hm.s.pFreeGuestPatchMem = 0;
2099 pVM->hm.s.cbGuestPatchMem = 0;
2100 pVM->hm.s.fTPRPatchingActive = false;
2101 return VINF_SUCCESS;
2102}
2103
2104
2105/**
2106 * Callback to patch a TPR instruction (vmmcall or mov cr8).
2107 *
2108 * @returns VBox strict status code.
2109 * @param pVM The cross context VM structure.
2110 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
2111 * @param pvUser User specified CPU context.
2112 *
2113 */
2114static DECLCALLBACK(VBOXSTRICTRC) hmR3ReplaceTprInstr(PVM pVM, PVMCPU pVCpu, void *pvUser)
2115{
2116 /*
2117 * Only execute the handler on the VCPU the original patch request was
2118 * issued. (The other CPU(s) might not yet have switched to protected
2119 * mode, nor have the correct memory context.)
2120 */
2121 VMCPUID idCpu = (VMCPUID)(uintptr_t)pvUser;
2122 if (pVCpu->idCpu != idCpu)
2123 return VINF_SUCCESS;
2124
2125 /*
2126 * We're racing other VCPUs here, so don't try patch the instruction twice
2127 * and make sure there is still room for our patch record.
2128 */
2129 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
2130 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
2131 if (pPatch)
2132 {
2133 Log(("hmR3ReplaceTprInstr: already patched %RGv\n", pCtx->rip));
2134 return VINF_SUCCESS;
2135 }
2136 uint32_t const idx = pVM->hm.s.cPatches;
2137 if (idx >= RT_ELEMENTS(pVM->hm.s.aPatches))
2138 {
2139 Log(("hmR3ReplaceTprInstr: no available patch slots (%RGv)\n", pCtx->rip));
2140 return VINF_SUCCESS;
2141 }
2142 pPatch = &pVM->hm.s.aPatches[idx];
2143
2144 Log(("hmR3ReplaceTprInstr: rip=%RGv idxPatch=%u\n", pCtx->rip, idx));
2145
2146 /*
2147 * Disassembler the instruction and get cracking.
2148 */
2149 DBGFR3_DISAS_INSTR_CUR_LOG(pVCpu, "hmR3ReplaceTprInstr");
2150 PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
2151 uint32_t cbOp;
2152 int rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, &cbOp);
2153 AssertRC(rc);
2154 if ( rc == VINF_SUCCESS
2155 && pDis->pCurInstr->uOpcode == OP_MOV
2156 && cbOp >= 3)
2157 {
2158 static uint8_t const s_abVMMCall[3] = { 0x0f, 0x01, 0xd9 };
2159
2160 rc = PGMPhysSimpleReadGCPtr(pVCpu, pPatch->aOpcode, pCtx->rip, cbOp);
2161 AssertRC(rc);
2162
2163 pPatch->cbOp = cbOp;
2164
2165 if (pDis->Param1.fUse == DISUSE_DISPLACEMENT32)
2166 {
2167 /* write. */
2168 if (pDis->Param2.fUse == DISUSE_REG_GEN32)
2169 {
2170 pPatch->enmType = HMTPRINSTR_WRITE_REG;
2171 pPatch->uSrcOperand = pDis->Param2.Base.idxGenReg;
2172 Log(("hmR3ReplaceTprInstr: HMTPRINSTR_WRITE_REG %u\n", pDis->Param2.Base.idxGenReg));
2173 }
2174 else
2175 {
2176 Assert(pDis->Param2.fUse == DISUSE_IMMEDIATE32);
2177 pPatch->enmType = HMTPRINSTR_WRITE_IMM;
2178 pPatch->uSrcOperand = pDis->Param2.uValue;
2179 Log(("hmR3ReplaceTprInstr: HMTPRINSTR_WRITE_IMM %#llx\n", pDis->Param2.uValue));
2180 }
2181 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pCtx->rip, s_abVMMCall, sizeof(s_abVMMCall));
2182 AssertRC(rc);
2183
2184 memcpy(pPatch->aNewOpcode, s_abVMMCall, sizeof(s_abVMMCall));
2185 pPatch->cbNewOp = sizeof(s_abVMMCall);
2186 STAM_COUNTER_INC(&pVM->hm.s.StatTprReplaceSuccessVmc);
2187 }
2188 else
2189 {
2190 /*
2191 * TPR Read.
2192 *
2193 * Found:
2194 * mov eax, dword [fffe0080] (5 bytes)
2195 * Check if next instruction is:
2196 * shr eax, 4
2197 */
2198 Assert(pDis->Param1.fUse == DISUSE_REG_GEN32);
2199
2200 uint8_t const idxMmioReg = pDis->Param1.Base.idxGenReg;
2201 uint8_t const cbOpMmio = cbOp;
2202 uint64_t const uSavedRip = pCtx->rip;
2203
2204 pCtx->rip += cbOp;
2205 rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, &cbOp);
2206 DBGFR3_DISAS_INSTR_CUR_LOG(pVCpu, "Following read");
2207 pCtx->rip = uSavedRip;
2208
2209 if ( rc == VINF_SUCCESS
2210 && pDis->pCurInstr->uOpcode == OP_SHR
2211 && pDis->Param1.fUse == DISUSE_REG_GEN32
2212 && pDis->Param1.Base.idxGenReg == idxMmioReg
2213 && pDis->Param2.fUse == DISUSE_IMMEDIATE8
2214 && pDis->Param2.uValue == 4
2215 && cbOpMmio + cbOp < sizeof(pVM->hm.s.aPatches[idx].aOpcode))
2216 {
2217 uint8_t abInstr[15];
2218
2219 /* Replacing the two instructions above with an AMD-V specific lock-prefixed 32-bit MOV CR8 instruction so as to
2220 access CR8 in 32-bit mode and not cause a #VMEXIT. */
2221 rc = PGMPhysSimpleReadGCPtr(pVCpu, &pPatch->aOpcode, pCtx->rip, cbOpMmio + cbOp);
2222 AssertRC(rc);
2223
2224 pPatch->cbOp = cbOpMmio + cbOp;
2225
2226 /* 0xf0, 0x0f, 0x20, 0xc0 = mov eax, cr8 */
2227 abInstr[0] = 0xf0;
2228 abInstr[1] = 0x0f;
2229 abInstr[2] = 0x20;
2230 abInstr[3] = 0xc0 | pDis->Param1.Base.idxGenReg;
2231 for (unsigned i = 4; i < pPatch->cbOp; i++)
2232 abInstr[i] = 0x90; /* nop */
2233
2234 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pCtx->rip, abInstr, pPatch->cbOp);
2235 AssertRC(rc);
2236
2237 memcpy(pPatch->aNewOpcode, abInstr, pPatch->cbOp);
2238 pPatch->cbNewOp = pPatch->cbOp;
2239 STAM_COUNTER_INC(&pVM->hm.s.StatTprReplaceSuccessCr8);
2240
2241 Log(("Acceptable read/shr candidate!\n"));
2242 pPatch->enmType = HMTPRINSTR_READ_SHR4;
2243 }
2244 else
2245 {
2246 pPatch->enmType = HMTPRINSTR_READ;
2247 pPatch->uDstOperand = idxMmioReg;
2248
2249 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pCtx->rip, s_abVMMCall, sizeof(s_abVMMCall));
2250 AssertRC(rc);
2251
2252 memcpy(pPatch->aNewOpcode, s_abVMMCall, sizeof(s_abVMMCall));
2253 pPatch->cbNewOp = sizeof(s_abVMMCall);
2254 STAM_COUNTER_INC(&pVM->hm.s.StatTprReplaceSuccessVmc);
2255 Log(("hmR3ReplaceTprInstr: HMTPRINSTR_READ %u\n", pPatch->uDstOperand));
2256 }
2257 }
2258
2259 pPatch->Core.Key = pCtx->eip;
2260 rc = RTAvloU32Insert(&pVM->hm.s.PatchTree, &pPatch->Core);
2261 AssertRC(rc);
2262
2263 pVM->hm.s.cPatches++;
2264 return VINF_SUCCESS;
2265 }
2266
2267 /*
2268 * Save invalid patch, so we will not try again.
2269 */
2270 Log(("hmR3ReplaceTprInstr: Failed to patch instr!\n"));
2271 pPatch->Core.Key = pCtx->eip;
2272 pPatch->enmType = HMTPRINSTR_INVALID;
2273 rc = RTAvloU32Insert(&pVM->hm.s.PatchTree, &pPatch->Core);
2274 AssertRC(rc);
2275 pVM->hm.s.cPatches++;
2276 STAM_COUNTER_INC(&pVM->hm.s.StatTprReplaceFailure);
2277 return VINF_SUCCESS;
2278}
2279
2280
2281/**
2282 * Callback to patch a TPR instruction (jump to generated code).
2283 *
2284 * @returns VBox strict status code.
2285 * @param pVM The cross context VM structure.
2286 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
2287 * @param pvUser User specified CPU context.
2288 *
2289 */
2290static DECLCALLBACK(VBOXSTRICTRC) hmR3PatchTprInstr(PVM pVM, PVMCPU pVCpu, void *pvUser)
2291{
2292 /*
2293 * Only execute the handler on the VCPU the original patch request was
2294 * issued. (The other CPU(s) might not yet have switched to protected
2295 * mode, nor have the correct memory context.)
2296 */
2297 VMCPUID idCpu = (VMCPUID)(uintptr_t)pvUser;
2298 if (pVCpu->idCpu != idCpu)
2299 return VINF_SUCCESS;
2300
2301 /*
2302 * We're racing other VCPUs here, so don't try patch the instruction twice
2303 * and make sure there is still room for our patch record.
2304 */
2305 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
2306 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
2307 if (pPatch)
2308 {
2309 Log(("hmR3PatchTprInstr: already patched %RGv\n", pCtx->rip));
2310 return VINF_SUCCESS;
2311 }
2312 uint32_t const idx = pVM->hm.s.cPatches;
2313 if (idx >= RT_ELEMENTS(pVM->hm.s.aPatches))
2314 {
2315 Log(("hmR3PatchTprInstr: no available patch slots (%RGv)\n", pCtx->rip));
2316 return VINF_SUCCESS;
2317 }
2318 pPatch = &pVM->hm.s.aPatches[idx];
2319
2320 Log(("hmR3PatchTprInstr: rip=%RGv idxPatch=%u\n", pCtx->rip, idx));
2321 DBGFR3_DISAS_INSTR_CUR_LOG(pVCpu, "hmR3PatchTprInstr");
2322
2323 /*
2324 * Disassemble the instruction and get cracking.
2325 */
2326 PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
2327 uint32_t cbOp;
2328 int rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, &cbOp);
2329 AssertRC(rc);
2330 if ( rc == VINF_SUCCESS
2331 && pDis->pCurInstr->uOpcode == OP_MOV
2332 && cbOp >= 5)
2333 {
2334 uint8_t aPatch[64];
2335 uint32_t off = 0;
2336
2337 rc = PGMPhysSimpleReadGCPtr(pVCpu, pPatch->aOpcode, pCtx->rip, cbOp);
2338 AssertRC(rc);
2339
2340 pPatch->cbOp = cbOp;
2341 pPatch->enmType = HMTPRINSTR_JUMP_REPLACEMENT;
2342
2343 if (pDis->Param1.fUse == DISUSE_DISPLACEMENT32)
2344 {
2345 /*
2346 * TPR write:
2347 *
2348 * push ECX [51]
2349 * push EDX [52]
2350 * push EAX [50]
2351 * xor EDX,EDX [31 D2]
2352 * mov EAX,EAX [89 C0]
2353 * or
2354 * mov EAX,0000000CCh [B8 CC 00 00 00]
2355 * mov ECX,0C0000082h [B9 82 00 00 C0]
2356 * wrmsr [0F 30]
2357 * pop EAX [58]
2358 * pop EDX [5A]
2359 * pop ECX [59]
2360 * jmp return_address [E9 return_address]
2361 */
2362 bool fUsesEax = (pDis->Param2.fUse == DISUSE_REG_GEN32 && pDis->Param2.Base.idxGenReg == DISGREG_EAX);
2363
2364 aPatch[off++] = 0x51; /* push ecx */
2365 aPatch[off++] = 0x52; /* push edx */
2366 if (!fUsesEax)
2367 aPatch[off++] = 0x50; /* push eax */
2368 aPatch[off++] = 0x31; /* xor edx, edx */
2369 aPatch[off++] = 0xd2;
2370 if (pDis->Param2.fUse == DISUSE_REG_GEN32)
2371 {
2372 if (!fUsesEax)
2373 {
2374 aPatch[off++] = 0x89; /* mov eax, src_reg */
2375 aPatch[off++] = MAKE_MODRM(3, pDis->Param2.Base.idxGenReg, DISGREG_EAX);
2376 }
2377 }
2378 else
2379 {
2380 Assert(pDis->Param2.fUse == DISUSE_IMMEDIATE32);
2381 aPatch[off++] = 0xb8; /* mov eax, immediate */
2382 *(uint32_t *)&aPatch[off] = pDis->Param2.uValue;
2383 off += sizeof(uint32_t);
2384 }
2385 aPatch[off++] = 0xb9; /* mov ecx, 0xc0000082 */
2386 *(uint32_t *)&aPatch[off] = MSR_K8_LSTAR;
2387 off += sizeof(uint32_t);
2388
2389 aPatch[off++] = 0x0f; /* wrmsr */
2390 aPatch[off++] = 0x30;
2391 if (!fUsesEax)
2392 aPatch[off++] = 0x58; /* pop eax */
2393 aPatch[off++] = 0x5a; /* pop edx */
2394 aPatch[off++] = 0x59; /* pop ecx */
2395 }
2396 else
2397 {
2398 /*
2399 * TPR read:
2400 *
2401 * push ECX [51]
2402 * push EDX [52]
2403 * push EAX [50]
2404 * mov ECX,0C0000082h [B9 82 00 00 C0]
2405 * rdmsr [0F 32]
2406 * mov EAX,EAX [89 C0]
2407 * pop EAX [58]
2408 * pop EDX [5A]
2409 * pop ECX [59]
2410 * jmp return_address [E9 return_address]
2411 */
2412 Assert(pDis->Param1.fUse == DISUSE_REG_GEN32);
2413
2414 if (pDis->Param1.Base.idxGenReg != DISGREG_ECX)
2415 aPatch[off++] = 0x51; /* push ecx */
2416 if (pDis->Param1.Base.idxGenReg != DISGREG_EDX )
2417 aPatch[off++] = 0x52; /* push edx */
2418 if (pDis->Param1.Base.idxGenReg != DISGREG_EAX)
2419 aPatch[off++] = 0x50; /* push eax */
2420
2421 aPatch[off++] = 0x31; /* xor edx, edx */
2422 aPatch[off++] = 0xd2;
2423
2424 aPatch[off++] = 0xb9; /* mov ecx, 0xc0000082 */
2425 *(uint32_t *)&aPatch[off] = MSR_K8_LSTAR;
2426 off += sizeof(uint32_t);
2427
2428 aPatch[off++] = 0x0f; /* rdmsr */
2429 aPatch[off++] = 0x32;
2430
2431 if (pDis->Param1.Base.idxGenReg != DISGREG_EAX)
2432 {
2433 aPatch[off++] = 0x89; /* mov dst_reg, eax */
2434 aPatch[off++] = MAKE_MODRM(3, DISGREG_EAX, pDis->Param1.Base.idxGenReg);
2435 }
2436
2437 if (pDis->Param1.Base.idxGenReg != DISGREG_EAX)
2438 aPatch[off++] = 0x58; /* pop eax */
2439 if (pDis->Param1.Base.idxGenReg != DISGREG_EDX )
2440 aPatch[off++] = 0x5a; /* pop edx */
2441 if (pDis->Param1.Base.idxGenReg != DISGREG_ECX)
2442 aPatch[off++] = 0x59; /* pop ecx */
2443 }
2444 aPatch[off++] = 0xe9; /* jmp return_address */
2445 *(RTRCUINTPTR *)&aPatch[off] = ((RTRCUINTPTR)pCtx->eip + cbOp) - ((RTRCUINTPTR)pVM->hm.s.pFreeGuestPatchMem + off + 4);
2446 off += sizeof(RTRCUINTPTR);
2447
2448 if (pVM->hm.s.pFreeGuestPatchMem + off <= pVM->hm.s.pGuestPatchMem + pVM->hm.s.cbGuestPatchMem)
2449 {
2450 /* Write new code to the patch buffer. */
2451 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pVM->hm.s.pFreeGuestPatchMem, aPatch, off);
2452 AssertRC(rc);
2453
2454#ifdef LOG_ENABLED
2455 uint32_t cbCurInstr;
2456 for (RTGCPTR GCPtrInstr = pVM->hm.s.pFreeGuestPatchMem;
2457 GCPtrInstr < pVM->hm.s.pFreeGuestPatchMem + off;
2458 GCPtrInstr += RT_MAX(cbCurInstr, 1))
2459 {
2460 char szOutput[256];
2461 rc = DBGFR3DisasInstrEx(pVM->pUVM, pVCpu->idCpu, pCtx->cs.Sel, GCPtrInstr, DBGF_DISAS_FLAGS_DEFAULT_MODE,
2462 szOutput, sizeof(szOutput), &cbCurInstr);
2463 if (RT_SUCCESS(rc))
2464 Log(("Patch instr %s\n", szOutput));
2465 else
2466 Log(("%RGv: rc=%Rrc\n", GCPtrInstr, rc));
2467 }
2468#endif
2469
2470 pPatch->aNewOpcode[0] = 0xE9;
2471 *(RTRCUINTPTR *)&pPatch->aNewOpcode[1] = ((RTRCUINTPTR)pVM->hm.s.pFreeGuestPatchMem) - ((RTRCUINTPTR)pCtx->eip + 5);
2472
2473 /* Overwrite the TPR instruction with a jump. */
2474 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pCtx->eip, pPatch->aNewOpcode, 5);
2475 AssertRC(rc);
2476
2477 DBGFR3_DISAS_INSTR_CUR_LOG(pVCpu, "Jump");
2478
2479 pVM->hm.s.pFreeGuestPatchMem += off;
2480 pPatch->cbNewOp = 5;
2481
2482 pPatch->Core.Key = pCtx->eip;
2483 rc = RTAvloU32Insert(&pVM->hm.s.PatchTree, &pPatch->Core);
2484 AssertRC(rc);
2485
2486 pVM->hm.s.cPatches++;
2487 pVM->hm.s.fTPRPatchingActive = true;
2488 STAM_COUNTER_INC(&pVM->hm.s.StatTprPatchSuccess);
2489 return VINF_SUCCESS;
2490 }
2491
2492 Log(("Ran out of space in our patch buffer!\n"));
2493 }
2494 else
2495 Log(("hmR3PatchTprInstr: Failed to patch instr!\n"));
2496
2497
2498 /*
2499 * Save invalid patch, so we will not try again.
2500 */
2501 pPatch = &pVM->hm.s.aPatches[idx];
2502 pPatch->Core.Key = pCtx->eip;
2503 pPatch->enmType = HMTPRINSTR_INVALID;
2504 rc = RTAvloU32Insert(&pVM->hm.s.PatchTree, &pPatch->Core);
2505 AssertRC(rc);
2506 pVM->hm.s.cPatches++;
2507 STAM_COUNTER_INC(&pVM->hm.s.StatTprPatchFailure);
2508 return VINF_SUCCESS;
2509}
2510
2511
2512/**
2513 * Attempt to patch TPR mmio instructions.
2514 *
2515 * @returns VBox status code.
2516 * @param pVM The cross context VM structure.
2517 * @param pVCpu The cross context virtual CPU structure.
2518 */
2519VMMR3_INT_DECL(int) HMR3PatchTprInstr(PVM pVM, PVMCPU pVCpu)
2520{
2521 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE,
2522 pVM->hm.s.pGuestPatchMem ? hmR3PatchTprInstr : hmR3ReplaceTprInstr,
2523 (void *)(uintptr_t)pVCpu->idCpu);
2524 AssertRC(rc);
2525 return rc;
2526}
2527
2528
2529/**
2530 * Checks if we need to reschedule due to VMM device heap changes.
2531 *
2532 * @returns true if a reschedule is required, otherwise false.
2533 * @param pVM The cross context VM structure.
2534 * @param pCtx VM execution context.
2535 */
2536VMMR3_INT_DECL(bool) HMR3IsRescheduleRequired(PVM pVM, PCCPUMCTX pCtx)
2537{
2538 /*
2539 * The VMM device heap is a requirement for emulating real-mode or protected-mode without paging
2540 * when the unrestricted guest execution feature is missing (VT-x only).
2541 */
2542 if ( pVM->hm.s.vmx.fEnabled
2543 && !pVM->hm.s.vmx.fUnrestrictedGuest
2544 && CPUMIsGuestInRealModeEx(pCtx)
2545 && !PDMVmmDevHeapIsEnabled(pVM))
2546 return true;
2547
2548 return false;
2549}
2550
2551
2552/**
2553 * Noticiation callback from DBGF when interrupt breakpoints or generic debug
2554 * event settings changes.
2555 *
2556 * DBGF will call HMR3NotifyDebugEventChangedPerCpu on each CPU afterwards, this
2557 * function is just updating the VM globals.
2558 *
2559 * @param pVM The VM cross context VM structure.
2560 * @thread EMT(0)
2561 */
2562VMMR3_INT_DECL(void) HMR3NotifyDebugEventChanged(PVM pVM)
2563{
2564 /* Interrupts. */
2565 bool fUseDebugLoop = pVM->dbgf.ro.cSoftIntBreakpoints > 0
2566 || pVM->dbgf.ro.cHardIntBreakpoints > 0;
2567
2568 /* CPU Exceptions. */
2569 for (DBGFEVENTTYPE enmEvent = DBGFEVENT_XCPT_FIRST;
2570 !fUseDebugLoop && enmEvent <= DBGFEVENT_XCPT_LAST;
2571 enmEvent = (DBGFEVENTTYPE)(enmEvent + 1))
2572 fUseDebugLoop = DBGF_IS_EVENT_ENABLED(pVM, enmEvent);
2573
2574 /* Common VM exits. */
2575 for (DBGFEVENTTYPE enmEvent = DBGFEVENT_EXIT_FIRST;
2576 !fUseDebugLoop && enmEvent <= DBGFEVENT_EXIT_LAST_COMMON;
2577 enmEvent = (DBGFEVENTTYPE)(enmEvent + 1))
2578 fUseDebugLoop = DBGF_IS_EVENT_ENABLED(pVM, enmEvent);
2579
2580 /* Vendor specific VM exits. */
2581 if (HMR3IsVmxEnabled(pVM->pUVM))
2582 for (DBGFEVENTTYPE enmEvent = DBGFEVENT_EXIT_VMX_FIRST;
2583 !fUseDebugLoop && enmEvent <= DBGFEVENT_EXIT_VMX_LAST;
2584 enmEvent = (DBGFEVENTTYPE)(enmEvent + 1))
2585 fUseDebugLoop = DBGF_IS_EVENT_ENABLED(pVM, enmEvent);
2586 else
2587 for (DBGFEVENTTYPE enmEvent = DBGFEVENT_EXIT_SVM_FIRST;
2588 !fUseDebugLoop && enmEvent <= DBGFEVENT_EXIT_SVM_LAST;
2589 enmEvent = (DBGFEVENTTYPE)(enmEvent + 1))
2590 fUseDebugLoop = DBGF_IS_EVENT_ENABLED(pVM, enmEvent);
2591
2592 /* Done. */
2593 pVM->hm.s.fUseDebugLoop = fUseDebugLoop;
2594}
2595
2596
2597/**
2598 * Follow up notification callback to HMR3NotifyDebugEventChanged for each CPU.
2599 *
2600 * HM uses this to combine the decision made by HMR3NotifyDebugEventChanged with
2601 * per CPU settings.
2602 *
2603 * @param pVM The VM cross context VM structure.
2604 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
2605 */
2606VMMR3_INT_DECL(void) HMR3NotifyDebugEventChangedPerCpu(PVM pVM, PVMCPU pVCpu)
2607{
2608 pVCpu->hm.s.fUseDebugLoop = pVCpu->hm.s.fSingleInstruction | pVM->hm.s.fUseDebugLoop;
2609}
2610
2611
2612/**
2613 * Checks if we are currently using hardware acceleration.
2614 *
2615 * @returns true if hardware acceleration is being used, otherwise false.
2616 * @param pVCpu The cross context virtual CPU structure.
2617 */
2618VMMR3_INT_DECL(bool) HMR3IsActive(PCVMCPU pVCpu)
2619{
2620 return pVCpu->hm.s.fActive;
2621}
2622
2623
2624/**
2625 * External interface for querying whether hardware acceleration is enabled.
2626 *
2627 * @returns true if VT-x or AMD-V is being used, otherwise false.
2628 * @param pUVM The user mode VM handle.
2629 * @sa HMIsEnabled, HMIsEnabledNotMacro.
2630 */
2631VMMR3DECL(bool) HMR3IsEnabled(PUVM pUVM)
2632{
2633 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
2634 PVM pVM = pUVM->pVM;
2635 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
2636 return pVM->fHMEnabled; /* Don't use the macro as the GUI may query us very very early. */
2637}
2638
2639
2640/**
2641 * External interface for querying whether VT-x is being used.
2642 *
2643 * @returns true if VT-x is being used, otherwise false.
2644 * @param pUVM The user mode VM handle.
2645 * @sa HMR3IsSvmEnabled, HMIsEnabled
2646 */
2647VMMR3DECL(bool) HMR3IsVmxEnabled(PUVM pUVM)
2648{
2649 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
2650 PVM pVM = pUVM->pVM;
2651 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
2652 return pVM->hm.s.vmx.fEnabled
2653 && pVM->hm.s.vmx.fSupported
2654 && pVM->fHMEnabled;
2655}
2656
2657
2658/**
2659 * External interface for querying whether AMD-V is being used.
2660 *
2661 * @returns true if VT-x is being used, otherwise false.
2662 * @param pUVM The user mode VM handle.
2663 * @sa HMR3IsVmxEnabled, HMIsEnabled
2664 */
2665VMMR3DECL(bool) HMR3IsSvmEnabled(PUVM pUVM)
2666{
2667 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
2668 PVM pVM = pUVM->pVM;
2669 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
2670 return pVM->hm.s.svm.fEnabled
2671 && pVM->hm.s.svm.fSupported
2672 && pVM->fHMEnabled;
2673}
2674
2675
2676/**
2677 * Checks if we are currently using nested paging.
2678 *
2679 * @returns true if nested paging is being used, otherwise false.
2680 * @param pUVM The user mode VM handle.
2681 */
2682VMMR3DECL(bool) HMR3IsNestedPagingActive(PUVM pUVM)
2683{
2684 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
2685 PVM pVM = pUVM->pVM;
2686 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
2687 return pVM->hm.s.fNestedPaging;
2688}
2689
2690
2691/**
2692 * Checks if virtualized APIC registers is enabled.
2693 *
2694 * When enabled this feature allows the hardware to access most of the
2695 * APIC registers in the virtual-APIC page without causing VM-exits. See
2696 * Intel spec. 29.1.1 "Virtualized APIC Registers".
2697 *
2698 * @returns true if virtualized APIC registers is enabled, otherwise
2699 * false.
2700 * @param pUVM The user mode VM handle.
2701 */
2702VMMR3DECL(bool) HMR3IsVirtApicRegsEnabled(PUVM pUVM)
2703{
2704 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
2705 PVM pVM = pUVM->pVM;
2706 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
2707 return pVM->hm.s.fVirtApicRegs;
2708}
2709
2710
2711/**
2712 * Checks if APIC posted-interrupt processing is enabled.
2713 *
2714 * This returns whether we can deliver interrupts to the guest without
2715 * leaving guest-context by updating APIC state from host-context.
2716 *
2717 * @returns true if APIC posted-interrupt processing is enabled,
2718 * otherwise false.
2719 * @param pUVM The user mode VM handle.
2720 */
2721VMMR3DECL(bool) HMR3IsPostedIntrsEnabled(PUVM pUVM)
2722{
2723 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
2724 PVM pVM = pUVM->pVM;
2725 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
2726 return pVM->hm.s.fPostedIntrs;
2727}
2728
2729
2730/**
2731 * Checks if we are currently using VPID in VT-x mode.
2732 *
2733 * @returns true if VPID is being used, otherwise false.
2734 * @param pUVM The user mode VM handle.
2735 */
2736VMMR3DECL(bool) HMR3IsVpidActive(PUVM pUVM)
2737{
2738 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
2739 PVM pVM = pUVM->pVM;
2740 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
2741 return pVM->hm.s.vmx.fVpid;
2742}
2743
2744
2745/**
2746 * Checks if we are currently using VT-x unrestricted execution,
2747 * aka UX.
2748 *
2749 * @returns true if UX is being used, otherwise false.
2750 * @param pUVM The user mode VM handle.
2751 */
2752VMMR3DECL(bool) HMR3IsUXActive(PUVM pUVM)
2753{
2754 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
2755 PVM pVM = pUVM->pVM;
2756 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
2757 return pVM->hm.s.vmx.fUnrestrictedGuest
2758 || pVM->hm.s.svm.fSupported;
2759}
2760
2761
2762/**
2763 * Checks if the VMX-preemption timer is being used.
2764 *
2765 * @returns true if the VMX-preemption timer is being used, otherwise false.
2766 * @param pVM The cross context VM structure.
2767 */
2768VMMR3_INT_DECL(bool) HMR3IsVmxPreemptionTimerUsed(PVM pVM)
2769{
2770 return HMIsEnabled(pVM)
2771 && pVM->hm.s.vmx.fEnabled
2772 && pVM->hm.s.vmx.fUsePreemptTimer;
2773}
2774
2775
2776/**
2777 * Helper for HMR3CheckError to log VMCS controls to the release log.
2778 *
2779 * @param idCpu The Virtual CPU ID.
2780 * @param pVmcsInfo The VMCS info. object.
2781 */
2782static void hmR3CheckErrorLogVmcsCtls(VMCPUID idCpu, PCVMXVMCSINFO pVmcsInfo)
2783{
2784 LogRel(("HM: CPU[%u] PinCtls %#RX32\n", idCpu, pVmcsInfo->u32PinCtls));
2785 {
2786 uint32_t const u32Val = pVmcsInfo->u32PinCtls;
2787 HMVMX_LOGREL_FEAT(u32Val, VMX_PIN_CTLS_EXT_INT_EXIT );
2788 HMVMX_LOGREL_FEAT(u32Val, VMX_PIN_CTLS_NMI_EXIT );
2789 HMVMX_LOGREL_FEAT(u32Val, VMX_PIN_CTLS_VIRT_NMI );
2790 HMVMX_LOGREL_FEAT(u32Val, VMX_PIN_CTLS_PREEMPT_TIMER);
2791 HMVMX_LOGREL_FEAT(u32Val, VMX_PIN_CTLS_POSTED_INT );
2792 }
2793 LogRel(("HM: CPU[%u] ProcCtls %#RX32\n", idCpu, pVmcsInfo->u32ProcCtls));
2794 {
2795 uint32_t const u32Val = pVmcsInfo->u32ProcCtls;
2796 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_INT_WINDOW_EXIT );
2797 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_USE_TSC_OFFSETTING);
2798 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_HLT_EXIT );
2799 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_INVLPG_EXIT );
2800 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_MWAIT_EXIT );
2801 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_RDPMC_EXIT );
2802 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_RDTSC_EXIT );
2803 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_CR3_LOAD_EXIT );
2804 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_CR3_STORE_EXIT );
2805 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_CR8_LOAD_EXIT );
2806 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_CR8_STORE_EXIT );
2807 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_USE_TPR_SHADOW );
2808 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_NMI_WINDOW_EXIT );
2809 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_MOV_DR_EXIT );
2810 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_UNCOND_IO_EXIT );
2811 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_USE_IO_BITMAPS );
2812 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_MONITOR_TRAP_FLAG );
2813 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_USE_MSR_BITMAPS );
2814 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_MONITOR_EXIT );
2815 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_PAUSE_EXIT );
2816 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_USE_SECONDARY_CTLS);
2817 }
2818 LogRel(("HM: CPU[%u] ProcCtls2 %#RX32\n", idCpu, pVmcsInfo->u32ProcCtls2));
2819 {
2820 uint32_t const u32Val = pVmcsInfo->u32ProcCtls2;
2821 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_VIRT_APIC_ACCESS );
2822 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_EPT );
2823 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_DESC_TABLE_EXIT );
2824 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_RDTSCP );
2825 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_VIRT_X2APIC_MODE );
2826 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_VPID );
2827 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_WBINVD_EXIT );
2828 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_UNRESTRICTED_GUEST );
2829 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_APIC_REG_VIRT );
2830 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_VIRT_INT_DELIVERY );
2831 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_PAUSE_LOOP_EXIT );
2832 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_RDRAND_EXIT );
2833 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_INVPCID );
2834 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_VMFUNC );
2835 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_VMCS_SHADOWING );
2836 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_ENCLS_EXIT );
2837 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_RDSEED_EXIT );
2838 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_PML );
2839 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_EPT_VE );
2840 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_CONCEAL_VMX_FROM_PT);
2841 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_XSAVES_XRSTORS );
2842 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_MODE_BASED_EPT_PERM);
2843 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_SPPTP_EPT );
2844 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_PT_EPT );
2845 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_TSC_SCALING );
2846 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_USER_WAIT_PAUSE );
2847 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_ENCLV_EXIT );
2848 }
2849 LogRel(("HM: CPU[%u] EntryCtls %#RX32\n", idCpu, pVmcsInfo->u32EntryCtls));
2850 {
2851 uint32_t const u32Val = pVmcsInfo->u32EntryCtls;
2852 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_LOAD_DEBUG );
2853 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_IA32E_MODE_GUEST );
2854 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_ENTRY_TO_SMM );
2855 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_DEACTIVATE_DUAL_MON);
2856 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_LOAD_PERF_MSR );
2857 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_LOAD_PAT_MSR );
2858 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_LOAD_EFER_MSR );
2859 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_LOAD_BNDCFGS_MSR );
2860 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_CONCEAL_VMX_FROM_PT);
2861 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_LOAD_RTIT_CTL_MSR );
2862 }
2863 LogRel(("HM: CPU[%u] ExitCtls %#RX32\n", idCpu, pVmcsInfo->u32ExitCtls));
2864 {
2865 uint32_t const u32Val = pVmcsInfo->u32ExitCtls;
2866 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_SAVE_DEBUG );
2867 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE );
2868 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_LOAD_PERF_MSR );
2869 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_ACK_EXT_INT );
2870 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_SAVE_PAT_MSR );
2871 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_LOAD_PAT_MSR );
2872 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_SAVE_EFER_MSR );
2873 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_LOAD_EFER_MSR );
2874 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_SAVE_PREEMPT_TIMER );
2875 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_CLEAR_BNDCFGS_MSR );
2876 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_CONCEAL_VMX_FROM_PT );
2877 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_CLEAR_RTIT_CTL_MSR );
2878 }
2879}
2880
2881
2882/**
2883 * Check fatal VT-x/AMD-V error and produce some meaningful
2884 * log release message.
2885 *
2886 * @param pVM The cross context VM structure.
2887 * @param iStatusCode VBox status code.
2888 */
2889VMMR3_INT_DECL(void) HMR3CheckError(PVM pVM, int iStatusCode)
2890{
2891 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2892 {
2893 /** @todo r=ramshankar: Are all EMTs out of ring-0 at this point!? If not, we
2894 * might be getting inaccurate values for non-guru'ing EMTs. */
2895 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
2896 PCVMXVMCSINFO pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
2897 bool const fNstGstVmcsActive = pVCpu->hm.s.vmx.fSwitchedToNstGstVmcs;
2898 switch (iStatusCode)
2899 {
2900 case VERR_VMX_INVALID_VMCS_PTR:
2901 {
2902 LogRel(("HM: VERR_VMX_INVALID_VMCS_PTR:\n"));
2903 LogRel(("HM: CPU[%u] %s VMCS active\n", idCpu, fNstGstVmcsActive ? "Nested-guest" : "Guest"));
2904 LogRel(("HM: CPU[%u] Current pointer %#RHp vs %#RHp\n", idCpu, pVCpu->hm.s.vmx.LastError.HCPhysCurrentVmcs,
2905 pVmcsInfo->HCPhysVmcs));
2906 LogRel(("HM: CPU[%u] Current VMCS version %#x\n", idCpu, pVCpu->hm.s.vmx.LastError.u32VmcsRev));
2907 LogRel(("HM: CPU[%u] Entered Host Cpu %u\n", idCpu, pVCpu->hm.s.vmx.LastError.idEnteredCpu));
2908 LogRel(("HM: CPU[%u] Current Host Cpu %u\n", idCpu, pVCpu->hm.s.vmx.LastError.idCurrentCpu));
2909 break;
2910 }
2911
2912 case VERR_VMX_UNABLE_TO_START_VM:
2913 {
2914 LogRel(("HM: VERR_VMX_UNABLE_TO_START_VM:\n"));
2915 LogRel(("HM: CPU[%u] %s VMCS active\n", idCpu, fNstGstVmcsActive ? "Nested-guest" : "Guest"));
2916 LogRel(("HM: CPU[%u] Instruction error %#x\n", idCpu, pVCpu->hm.s.vmx.LastError.u32InstrError));
2917 LogRel(("HM: CPU[%u] Exit reason %#x\n", idCpu, pVCpu->hm.s.vmx.LastError.u32ExitReason));
2918
2919 if ( pVCpu->hm.s.vmx.LastError.u32InstrError == VMXINSTRERR_VMLAUNCH_NON_CLEAR_VMCS
2920 || pVCpu->hm.s.vmx.LastError.u32InstrError == VMXINSTRERR_VMRESUME_NON_LAUNCHED_VMCS)
2921 {
2922 LogRel(("HM: CPU[%u] Entered Host Cpu %u\n", idCpu, pVCpu->hm.s.vmx.LastError.idEnteredCpu));
2923 LogRel(("HM: CPU[%u] Current Host Cpu %u\n", idCpu, pVCpu->hm.s.vmx.LastError.idCurrentCpu));
2924 }
2925 else if (pVCpu->hm.s.vmx.LastError.u32InstrError == VMXINSTRERR_VMENTRY_INVALID_CTLS)
2926 {
2927 hmR3CheckErrorLogVmcsCtls(idCpu, pVmcsInfo);
2928 LogRel(("HM: CPU[%u] HCPhysMsrBitmap %#RHp\n", idCpu, pVmcsInfo->HCPhysMsrBitmap));
2929 LogRel(("HM: CPU[%u] HCPhysGuestMsrLoad %#RHp\n", idCpu, pVmcsInfo->HCPhysGuestMsrLoad));
2930 LogRel(("HM: CPU[%u] HCPhysGuestMsrStore %#RHp\n", idCpu, pVmcsInfo->HCPhysGuestMsrStore));
2931 LogRel(("HM: CPU[%u] HCPhysHostMsrLoad %#RHp\n", idCpu, pVmcsInfo->HCPhysHostMsrLoad));
2932 LogRel(("HM: CPU[%u] cEntryMsrLoad %u\n", idCpu, pVmcsInfo->cEntryMsrLoad));
2933 LogRel(("HM: CPU[%u] cExitMsrStore %u\n", idCpu, pVmcsInfo->cExitMsrStore));
2934 LogRel(("HM: CPU[%u] cExitMsrLoad %u\n", idCpu, pVmcsInfo->cExitMsrLoad));
2935 }
2936 /** @todo Log VM-entry event injection control fields
2937 * VMX_VMCS_CTRL_ENTRY_IRQ_INFO, VMX_VMCS_CTRL_ENTRY_EXCEPTION_ERRCODE
2938 * and VMX_VMCS_CTRL_ENTRY_INSTR_LENGTH from the VMCS. */
2939 break;
2940 }
2941
2942 case VERR_VMX_INVALID_GUEST_STATE:
2943 {
2944 LogRel(("HM: VERR_VMX_INVALID_GUEST_STATE:\n"));
2945 hmR3CheckErrorLogVmcsCtls(idCpu, pVmcsInfo);
2946 break;
2947 }
2948
2949 /* The guru will dump the HM error and exit history. Nothing extra to report for these errors. */
2950 case VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO:
2951 case VERR_VMX_INVALID_VMXON_PTR:
2952 case VERR_VMX_UNEXPECTED_EXIT:
2953 case VERR_VMX_INVALID_VMCS_FIELD:
2954 case VERR_SVM_UNKNOWN_EXIT:
2955 case VERR_SVM_UNEXPECTED_EXIT:
2956 case VERR_SVM_UNEXPECTED_PATCH_TYPE:
2957 case VERR_SVM_UNEXPECTED_XCPT_EXIT:
2958 case VERR_VMX_UNEXPECTED_INTERRUPTION_EXIT_TYPE:
2959 break;
2960 }
2961 }
2962
2963 if (iStatusCode == VERR_VMX_UNABLE_TO_START_VM)
2964 {
2965 LogRel(("HM: VERR_VMX_UNABLE_TO_START_VM: VM-entry allowed-1 %#RX32\n", pVM->hm.s.vmx.Msrs.EntryCtls.n.allowed1));
2966 LogRel(("HM: VERR_VMX_UNABLE_TO_START_VM: VM-entry allowed-0 %#RX32\n", pVM->hm.s.vmx.Msrs.EntryCtls.n.allowed0));
2967 }
2968 else if (iStatusCode == VERR_VMX_INVALID_VMXON_PTR)
2969 LogRel(("HM: HCPhysVmxEnableError = %#RHp\n", pVM->hm.s.vmx.HCPhysVmxEnableError));
2970}
2971
2972
2973/**
2974 * Execute state save operation.
2975 *
2976 * Save only data that cannot be re-loaded while entering HM ring-0 code. This
2977 * is because we always save the VM state from ring-3 and thus most HM state
2978 * will be re-synced dynamically at runtime and don't need to be part of the VM
2979 * saved state.
2980 *
2981 * @returns VBox status code.
2982 * @param pVM The cross context VM structure.
2983 * @param pSSM SSM operation handle.
2984 */
2985static DECLCALLBACK(int) hmR3Save(PVM pVM, PSSMHANDLE pSSM)
2986{
2987 int rc;
2988
2989 Log(("hmR3Save:\n"));
2990
2991 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2992 {
2993 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
2994 Assert(!pVCpu->hm.s.Event.fPending);
2995 if (pVM->cpum.ro.GuestFeatures.fSvm)
2996 {
2997 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
2998 rc = SSMR3PutBool(pSSM, pVmcbNstGstCache->fCacheValid);
2999 rc |= SSMR3PutU16(pSSM, pVmcbNstGstCache->u16InterceptRdCRx);
3000 rc |= SSMR3PutU16(pSSM, pVmcbNstGstCache->u16InterceptWrCRx);
3001 rc |= SSMR3PutU16(pSSM, pVmcbNstGstCache->u16InterceptRdDRx);
3002 rc |= SSMR3PutU16(pSSM, pVmcbNstGstCache->u16InterceptWrDRx);
3003 rc |= SSMR3PutU16(pSSM, pVmcbNstGstCache->u16PauseFilterThreshold);
3004 rc |= SSMR3PutU16(pSSM, pVmcbNstGstCache->u16PauseFilterCount);
3005 rc |= SSMR3PutU32(pSSM, pVmcbNstGstCache->u32InterceptXcpt);
3006 rc |= SSMR3PutU64(pSSM, pVmcbNstGstCache->u64InterceptCtrl);
3007 rc |= SSMR3PutU64(pSSM, pVmcbNstGstCache->u64TSCOffset);
3008 rc |= SSMR3PutBool(pSSM, pVmcbNstGstCache->fVIntrMasking);
3009 rc |= SSMR3PutBool(pSSM, pVmcbNstGstCache->fNestedPaging);
3010 rc |= SSMR3PutBool(pSSM, pVmcbNstGstCache->fLbrVirt);
3011 AssertRCReturn(rc, rc);
3012 }
3013 }
3014
3015 /* Save the guest patch data. */
3016 rc = SSMR3PutGCPtr(pSSM, pVM->hm.s.pGuestPatchMem);
3017 rc |= SSMR3PutGCPtr(pSSM, pVM->hm.s.pFreeGuestPatchMem);
3018 rc |= SSMR3PutU32(pSSM, pVM->hm.s.cbGuestPatchMem);
3019
3020 /* Store all the guest patch records too. */
3021 rc |= SSMR3PutU32(pSSM, pVM->hm.s.cPatches);
3022 AssertRCReturn(rc, rc);
3023
3024 for (uint32_t i = 0; i < pVM->hm.s.cPatches; i++)
3025 {
3026 AssertCompileSize(HMTPRINSTR, 4);
3027 PCHMTPRPATCH pPatch = &pVM->hm.s.aPatches[i];
3028 rc = SSMR3PutU32(pSSM, pPatch->Core.Key);
3029 rc |= SSMR3PutMem(pSSM, pPatch->aOpcode, sizeof(pPatch->aOpcode));
3030 rc |= SSMR3PutU32(pSSM, pPatch->cbOp);
3031 rc |= SSMR3PutMem(pSSM, pPatch->aNewOpcode, sizeof(pPatch->aNewOpcode));
3032 rc |= SSMR3PutU32(pSSM, pPatch->cbNewOp);
3033 rc |= SSMR3PutU32(pSSM, (uint32_t)pPatch->enmType);
3034 rc |= SSMR3PutU32(pSSM, pPatch->uSrcOperand);
3035 rc |= SSMR3PutU32(pSSM, pPatch->uDstOperand);
3036 rc |= SSMR3PutU32(pSSM, pPatch->pJumpTarget);
3037 rc |= SSMR3PutU32(pSSM, pPatch->cFaults);
3038 AssertRCReturn(rc, rc);
3039 }
3040
3041 return VINF_SUCCESS;
3042}
3043
3044
3045/**
3046 * Execute state load operation.
3047 *
3048 * @returns VBox status code.
3049 * @param pVM The cross context VM structure.
3050 * @param pSSM SSM operation handle.
3051 * @param uVersion Data layout version.
3052 * @param uPass The data pass.
3053 */
3054static DECLCALLBACK(int) hmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
3055{
3056 int rc;
3057
3058 LogFlowFunc(("uVersion=%u\n", uVersion));
3059 Assert(uPass == SSM_PASS_FINAL); NOREF(uPass);
3060
3061 /*
3062 * Validate version.
3063 */
3064 if ( uVersion != HM_SAVED_STATE_VERSION_SVM_NESTED_HWVIRT
3065 && uVersion != HM_SAVED_STATE_VERSION_TPR_PATCHING
3066 && uVersion != HM_SAVED_STATE_VERSION_NO_TPR_PATCHING
3067 && uVersion != HM_SAVED_STATE_VERSION_2_0_X)
3068 {
3069 AssertMsgFailed(("hmR3Load: Invalid version uVersion=%d!\n", uVersion));
3070 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
3071 }
3072
3073 /*
3074 * Load per-VCPU state.
3075 */
3076 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
3077 {
3078 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
3079 if (uVersion >= HM_SAVED_STATE_VERSION_SVM_NESTED_HWVIRT)
3080 {
3081 /* Load the SVM nested hw.virt state if the VM is configured for it. */
3082 if (pVM->cpum.ro.GuestFeatures.fSvm)
3083 {
3084 PSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
3085 rc = SSMR3GetBool(pSSM, &pVmcbNstGstCache->fCacheValid);
3086 rc |= SSMR3GetU16(pSSM, &pVmcbNstGstCache->u16InterceptRdCRx);
3087 rc |= SSMR3GetU16(pSSM, &pVmcbNstGstCache->u16InterceptWrCRx);
3088 rc |= SSMR3GetU16(pSSM, &pVmcbNstGstCache->u16InterceptRdDRx);
3089 rc |= SSMR3GetU16(pSSM, &pVmcbNstGstCache->u16InterceptWrDRx);
3090 rc |= SSMR3GetU16(pSSM, &pVmcbNstGstCache->u16PauseFilterThreshold);
3091 rc |= SSMR3GetU16(pSSM, &pVmcbNstGstCache->u16PauseFilterCount);
3092 rc |= SSMR3GetU32(pSSM, &pVmcbNstGstCache->u32InterceptXcpt);
3093 rc |= SSMR3GetU64(pSSM, &pVmcbNstGstCache->u64InterceptCtrl);
3094 rc |= SSMR3GetU64(pSSM, &pVmcbNstGstCache->u64TSCOffset);
3095 rc |= SSMR3GetBool(pSSM, &pVmcbNstGstCache->fVIntrMasking);
3096 rc |= SSMR3GetBool(pSSM, &pVmcbNstGstCache->fNestedPaging);
3097 rc |= SSMR3GetBool(pSSM, &pVmcbNstGstCache->fLbrVirt);
3098 AssertRCReturn(rc, rc);
3099 }
3100 }
3101 else
3102 {
3103 /* Pending HM event (obsolete for a long time since TPRM holds the info.) */
3104 rc = SSMR3GetU32(pSSM, &pVCpu->hm.s.Event.fPending);
3105 rc |= SSMR3GetU32(pSSM, &pVCpu->hm.s.Event.u32ErrCode);
3106 rc |= SSMR3GetU64(pSSM, &pVCpu->hm.s.Event.u64IntInfo);
3107
3108 /* VMX fWasInRealMode related data. */
3109 uint32_t uDummy;
3110 rc |= SSMR3GetU32(pSSM, &uDummy); AssertRCReturn(rc, rc);
3111 rc |= SSMR3GetU32(pSSM, &uDummy); AssertRCReturn(rc, rc);
3112 rc |= SSMR3GetU32(pSSM, &uDummy); AssertRCReturn(rc, rc);
3113 AssertRCReturn(rc, rc);
3114 }
3115 }
3116
3117 /*
3118 * Load TPR patching data.
3119 */
3120 if (uVersion >= HM_SAVED_STATE_VERSION_TPR_PATCHING)
3121 {
3122 rc = SSMR3GetGCPtr(pSSM, &pVM->hm.s.pGuestPatchMem);
3123 rc |= SSMR3GetGCPtr(pSSM, &pVM->hm.s.pFreeGuestPatchMem);
3124 rc |= SSMR3GetU32(pSSM, &pVM->hm.s.cbGuestPatchMem);
3125
3126 /* Fetch all TPR patch records. */
3127 rc |= SSMR3GetU32(pSSM, &pVM->hm.s.cPatches);
3128 AssertRCReturn(rc, rc);
3129 for (uint32_t i = 0; i < pVM->hm.s.cPatches; i++)
3130 {
3131 PHMTPRPATCH pPatch = &pVM->hm.s.aPatches[i];
3132 rc = SSMR3GetU32(pSSM, &pPatch->Core.Key);
3133 rc |= SSMR3GetMem(pSSM, pPatch->aOpcode, sizeof(pPatch->aOpcode));
3134 rc |= SSMR3GetU32(pSSM, &pPatch->cbOp);
3135 rc |= SSMR3GetMem(pSSM, pPatch->aNewOpcode, sizeof(pPatch->aNewOpcode));
3136 rc |= SSMR3GetU32(pSSM, &pPatch->cbNewOp);
3137 rc |= SSMR3GetU32(pSSM, (uint32_t *)&pPatch->enmType);
3138
3139 if (pPatch->enmType == HMTPRINSTR_JUMP_REPLACEMENT)
3140 pVM->hm.s.fTPRPatchingActive = true;
3141 Assert(pPatch->enmType == HMTPRINSTR_JUMP_REPLACEMENT || pVM->hm.s.fTPRPatchingActive == false);
3142
3143 rc |= SSMR3GetU32(pSSM, &pPatch->uSrcOperand);
3144 rc |= SSMR3GetU32(pSSM, &pPatch->uDstOperand);
3145 rc |= SSMR3GetU32(pSSM, &pPatch->cFaults);
3146 rc |= SSMR3GetU32(pSSM, &pPatch->pJumpTarget);
3147 AssertRCReturn(rc, rc);
3148
3149 LogFlow(("hmR3Load: patch %d\n", i));
3150 LogFlow(("Key = %x\n", pPatch->Core.Key));
3151 LogFlow(("cbOp = %d\n", pPatch->cbOp));
3152 LogFlow(("cbNewOp = %d\n", pPatch->cbNewOp));
3153 LogFlow(("type = %d\n", pPatch->enmType));
3154 LogFlow(("srcop = %d\n", pPatch->uSrcOperand));
3155 LogFlow(("dstop = %d\n", pPatch->uDstOperand));
3156 LogFlow(("cFaults = %d\n", pPatch->cFaults));
3157 LogFlow(("target = %x\n", pPatch->pJumpTarget));
3158
3159 rc = RTAvloU32Insert(&pVM->hm.s.PatchTree, &pPatch->Core);
3160 AssertRCReturn(rc, rc);
3161 }
3162 }
3163
3164 return VINF_SUCCESS;
3165}
3166
3167
3168/**
3169 * Displays HM info.
3170 *
3171 * @param pVM The cross context VM structure.
3172 * @param pHlp The info helper functions.
3173 * @param pszArgs Arguments, ignored.
3174 */
3175static DECLCALLBACK(void) hmR3Info(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3176{
3177 NOREF(pszArgs);
3178 PVMCPU pVCpu = VMMGetCpu(pVM);
3179 if (!pVCpu)
3180 pVCpu = pVM->apCpusR3[0];
3181
3182 if (HMIsEnabled(pVM))
3183 {
3184 if (pVM->hm.s.vmx.fSupported)
3185 pHlp->pfnPrintf(pHlp, "CPU[%u]: VT-x info:\n", pVCpu->idCpu);
3186 else
3187 pHlp->pfnPrintf(pHlp, "CPU[%u]: AMD-V info:\n", pVCpu->idCpu);
3188 pHlp->pfnPrintf(pHlp, " HM error = %#x (%u)\n", pVCpu->hm.s.u32HMError, pVCpu->hm.s.u32HMError);
3189 pHlp->pfnPrintf(pHlp, " rcLastExitToR3 = %Rrc\n", pVCpu->hm.s.rcLastExitToR3);
3190 if (pVM->hm.s.vmx.fSupported)
3191 {
3192 PCVMXVMCSINFO pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
3193 bool const fRealOnV86Active = pVmcsInfo->RealMode.fRealOnV86Active;
3194 bool const fNstGstVmcsActive = pVCpu->hm.s.vmx.fSwitchedToNstGstVmcs;
3195
3196 pHlp->pfnPrintf(pHlp, " %s VMCS active\n", fNstGstVmcsActive ? "Nested-guest" : "Guest");
3197 pHlp->pfnPrintf(pHlp, " Real-on-v86 active = %RTbool\n", fRealOnV86Active);
3198 if (fRealOnV86Active)
3199 {
3200 pHlp->pfnPrintf(pHlp, " EFlags = %#x\n", pVmcsInfo->RealMode.Eflags.u32);
3201 pHlp->pfnPrintf(pHlp, " Attr CS = %#x\n", pVmcsInfo->RealMode.AttrCS.u);
3202 pHlp->pfnPrintf(pHlp, " Attr SS = %#x\n", pVmcsInfo->RealMode.AttrSS.u);
3203 pHlp->pfnPrintf(pHlp, " Attr DS = %#x\n", pVmcsInfo->RealMode.AttrDS.u);
3204 pHlp->pfnPrintf(pHlp, " Attr ES = %#x\n", pVmcsInfo->RealMode.AttrES.u);
3205 pHlp->pfnPrintf(pHlp, " Attr FS = %#x\n", pVmcsInfo->RealMode.AttrFS.u);
3206 pHlp->pfnPrintf(pHlp, " Attr GS = %#x\n", pVmcsInfo->RealMode.AttrGS.u);
3207 }
3208 }
3209 }
3210 else
3211 pHlp->pfnPrintf(pHlp, "HM is not enabled for this VM!\n");
3212}
3213
3214
3215/**
3216 * Displays the HM pending event.
3217 *
3218 * @param pVM The cross context VM structure.
3219 * @param pHlp The info helper functions.
3220 * @param pszArgs Arguments, ignored.
3221 */
3222static DECLCALLBACK(void) hmR3InfoEventPending(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3223{
3224 NOREF(pszArgs);
3225 PVMCPU pVCpu = VMMGetCpu(pVM);
3226 if (!pVCpu)
3227 pVCpu = pVM->apCpusR3[0];
3228
3229 if (HMIsEnabled(pVM))
3230 {
3231 pHlp->pfnPrintf(pHlp, "CPU[%u]: HM event (fPending=%RTbool)\n", pVCpu->idCpu, pVCpu->hm.s.Event.fPending);
3232 if (pVCpu->hm.s.Event.fPending)
3233 {
3234 pHlp->pfnPrintf(pHlp, " u64IntInfo = %#RX64\n", pVCpu->hm.s.Event.u64IntInfo);
3235 pHlp->pfnPrintf(pHlp, " u32ErrCode = %#RX64\n", pVCpu->hm.s.Event.u32ErrCode);
3236 pHlp->pfnPrintf(pHlp, " cbInstr = %u bytes\n", pVCpu->hm.s.Event.cbInstr);
3237 pHlp->pfnPrintf(pHlp, " GCPtrFaultAddress = %#RGp\n", pVCpu->hm.s.Event.GCPtrFaultAddress);
3238 }
3239 }
3240 else
3241 pHlp->pfnPrintf(pHlp, "HM is not enabled for this VM!\n");
3242}
3243
3244
3245/**
3246 * Displays the SVM nested-guest VMCB cache.
3247 *
3248 * @param pVM The cross context VM structure.
3249 * @param pHlp The info helper functions.
3250 * @param pszArgs Arguments, ignored.
3251 */
3252static DECLCALLBACK(void) hmR3InfoSvmNstGstVmcbCache(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3253{
3254 NOREF(pszArgs);
3255 PVMCPU pVCpu = VMMGetCpu(pVM);
3256 if (!pVCpu)
3257 pVCpu = pVM->apCpusR3[0];
3258
3259 bool const fSvmEnabled = HMR3IsSvmEnabled(pVM->pUVM);
3260 if ( fSvmEnabled
3261 && pVM->cpum.ro.GuestFeatures.fSvm)
3262 {
3263 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
3264 pHlp->pfnPrintf(pHlp, "CPU[%u]: HM SVM nested-guest VMCB cache\n", pVCpu->idCpu);
3265 pHlp->pfnPrintf(pHlp, " fCacheValid = %#RTbool\n", pVmcbNstGstCache->fCacheValid);
3266 pHlp->pfnPrintf(pHlp, " u16InterceptRdCRx = %#RX16\n", pVmcbNstGstCache->u16InterceptRdCRx);
3267 pHlp->pfnPrintf(pHlp, " u16InterceptWrCRx = %#RX16\n", pVmcbNstGstCache->u16InterceptWrCRx);
3268 pHlp->pfnPrintf(pHlp, " u16InterceptRdDRx = %#RX16\n", pVmcbNstGstCache->u16InterceptRdDRx);
3269 pHlp->pfnPrintf(pHlp, " u16InterceptWrDRx = %#RX16\n", pVmcbNstGstCache->u16InterceptWrDRx);
3270 pHlp->pfnPrintf(pHlp, " u16PauseFilterThreshold = %#RX16\n", pVmcbNstGstCache->u16PauseFilterThreshold);
3271 pHlp->pfnPrintf(pHlp, " u16PauseFilterCount = %#RX16\n", pVmcbNstGstCache->u16PauseFilterCount);
3272 pHlp->pfnPrintf(pHlp, " u32InterceptXcpt = %#RX32\n", pVmcbNstGstCache->u32InterceptXcpt);
3273 pHlp->pfnPrintf(pHlp, " u64InterceptCtrl = %#RX64\n", pVmcbNstGstCache->u64InterceptCtrl);
3274 pHlp->pfnPrintf(pHlp, " u64TSCOffset = %#RX64\n", pVmcbNstGstCache->u64TSCOffset);
3275 pHlp->pfnPrintf(pHlp, " fVIntrMasking = %RTbool\n", pVmcbNstGstCache->fVIntrMasking);
3276 pHlp->pfnPrintf(pHlp, " fNestedPaging = %RTbool\n", pVmcbNstGstCache->fNestedPaging);
3277 pHlp->pfnPrintf(pHlp, " fLbrVirt = %RTbool\n", pVmcbNstGstCache->fLbrVirt);
3278 }
3279 else
3280 {
3281 if (!fSvmEnabled)
3282 pHlp->pfnPrintf(pHlp, "HM SVM is not enabled for this VM!\n");
3283 else
3284 pHlp->pfnPrintf(pHlp, "SVM feature is not exposed to the guest!\n");
3285 }
3286}
3287
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette