VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/HM.cpp@ 93725

Last change on this file since 93725 was 93725, checked in by vboxsync, 3 years ago

VMM: More arm64 adjustments. bugref:9898

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 156.4 KB
Line 
1/* $Id: HM.cpp 93725 2022-02-14 13:46:16Z vboxsync $ */
2/** @file
3 * HM - Intel/AMD VM Hardware Support Manager.
4 */
5
6/*
7 * Copyright (C) 2006-2022 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/** @page pg_hm HM - Hardware Assisted Virtualization Manager
19 *
20 * The HM manages guest execution using the VT-x and AMD-V CPU hardware
21 * extensions.
22 *
23 * {summary of what HM does}
24 *
25 * Hardware assisted virtualization manager was originally abbreviated HWACCM,
26 * however that was cumbersome to write and parse for such a central component,
27 * so it was shortened to HM when refactoring the code in the 4.3 development
28 * cycle.
29 *
30 * {add sections with more details}
31 *
32 * @sa @ref grp_hm
33 */
34
35
36/*********************************************************************************************************************************
37* Header Files *
38*********************************************************************************************************************************/
39#define LOG_GROUP LOG_GROUP_HM
40#define VMCPU_INCL_CPUM_GST_CTX
41#include <VBox/vmm/cpum.h>
42#include <VBox/vmm/stam.h>
43#include <VBox/vmm/em.h>
44#include <VBox/vmm/pdmapi.h>
45#include <VBox/vmm/pgm.h>
46#include <VBox/vmm/ssm.h>
47#include <VBox/vmm/gim.h>
48#include <VBox/vmm/trpm.h>
49#include <VBox/vmm/dbgf.h>
50#include <VBox/vmm/iom.h>
51#include <VBox/vmm/iem.h>
52#include <VBox/vmm/selm.h>
53#include <VBox/vmm/nem.h>
54#include <VBox/vmm/hm_vmx.h>
55#include <VBox/vmm/hm_svm.h>
56#include "HMInternal.h"
57#include <VBox/vmm/vmcc.h>
58#include <VBox/err.h>
59#include <VBox/param.h>
60
61#include <iprt/assert.h>
62#include <VBox/log.h>
63#include <iprt/asm.h>
64#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
65# include <iprt/asm-amd64-x86.h>
66#endif
67#include <iprt/env.h>
68#include <iprt/thread.h>
69
70
71/*********************************************************************************************************************************
72* Defined Constants And Macros *
73*********************************************************************************************************************************/
74/** @def HMVMX_REPORT_FEAT
75 * Reports VT-x feature to the release log.
76 *
77 * @param a_uAllowed1 Mask of allowed-1 feature bits.
78 * @param a_uAllowed0 Mask of allowed-0 feature bits.
79 * @param a_StrDesc The description string to report.
80 * @param a_Featflag Mask of the feature to report.
81 */
82#define HMVMX_REPORT_FEAT(a_uAllowed1, a_uAllowed0, a_StrDesc, a_Featflag) \
83 do { \
84 if ((a_uAllowed1) & (a_Featflag)) \
85 { \
86 if ((a_uAllowed0) & (a_Featflag)) \
87 LogRel(("HM: " a_StrDesc " (must be set)\n")); \
88 else \
89 LogRel(("HM: " a_StrDesc "\n")); \
90 } \
91 else \
92 LogRel(("HM: " a_StrDesc " (must be cleared)\n")); \
93 } while (0)
94
95/** @def HMVMX_REPORT_ALLOWED_FEAT
96 * Reports an allowed VT-x feature to the release log.
97 *
98 * @param a_uAllowed1 Mask of allowed-1 feature bits.
99 * @param a_StrDesc The description string to report.
100 * @param a_FeatFlag Mask of the feature to report.
101 */
102#define HMVMX_REPORT_ALLOWED_FEAT(a_uAllowed1, a_StrDesc, a_FeatFlag) \
103 do { \
104 if ((a_uAllowed1) & (a_FeatFlag)) \
105 LogRel(("HM: " a_StrDesc "\n")); \
106 else \
107 LogRel(("HM: " a_StrDesc " not supported\n")); \
108 } while (0)
109
110/** @def HMVMX_REPORT_MSR_CAP
111 * Reports MSR feature capability.
112 *
113 * @param a_MsrCaps Mask of MSR feature bits.
114 * @param a_StrDesc The description string to report.
115 * @param a_fCap Mask of the feature to report.
116 */
117#define HMVMX_REPORT_MSR_CAP(a_MsrCaps, a_StrDesc, a_fCap) \
118 do { \
119 if ((a_MsrCaps) & (a_fCap)) \
120 LogRel(("HM: " a_StrDesc "\n")); \
121 } while (0)
122
123/** @def HMVMX_LOGREL_FEAT
124 * Dumps a feature flag from a bitmap of features to the release log.
125 *
126 * @param a_fVal The value of all the features.
127 * @param a_fMask The specific bitmask of the feature.
128 */
129#define HMVMX_LOGREL_FEAT(a_fVal, a_fMask) \
130 do { \
131 if ((a_fVal) & (a_fMask)) \
132 LogRel(("HM: %s\n", #a_fMask)); \
133 } while (0)
134
135
136/*********************************************************************************************************************************
137* Internal Functions *
138*********************************************************************************************************************************/
139static DECLCALLBACK(int) hmR3Save(PVM pVM, PSSMHANDLE pSSM);
140static DECLCALLBACK(int) hmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
141static DECLCALLBACK(void) hmR3InfoSvmNstGstVmcbCache(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
142static DECLCALLBACK(void) hmR3Info(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
143static DECLCALLBACK(void) hmR3InfoEventPending(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
144static DECLCALLBACK(void) hmR3InfoLbr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
145static int hmR3InitFinalizeR3(PVM pVM);
146static int hmR3InitFinalizeR0(PVM pVM);
147static int hmR3InitFinalizeR0Intel(PVM pVM);
148static int hmR3InitFinalizeR0Amd(PVM pVM);
149static int hmR3TermCPU(PVM pVM);
150
151
152#ifdef VBOX_WITH_STATISTICS
153/**
154 * Returns the name of the hardware exception.
155 *
156 * @returns The name of the hardware exception.
157 * @param uVector The exception vector.
158 */
159static const char *hmR3GetXcptName(uint8_t uVector)
160{
161 switch (uVector)
162 {
163 case X86_XCPT_DE: return "#DE";
164 case X86_XCPT_DB: return "#DB";
165 case X86_XCPT_NMI: return "#NMI";
166 case X86_XCPT_BP: return "#BP";
167 case X86_XCPT_OF: return "#OF";
168 case X86_XCPT_BR: return "#BR";
169 case X86_XCPT_UD: return "#UD";
170 case X86_XCPT_NM: return "#NM";
171 case X86_XCPT_DF: return "#DF";
172 case X86_XCPT_CO_SEG_OVERRUN: return "#CO_SEG_OVERRUN";
173 case X86_XCPT_TS: return "#TS";
174 case X86_XCPT_NP: return "#NP";
175 case X86_XCPT_SS: return "#SS";
176 case X86_XCPT_GP: return "#GP";
177 case X86_XCPT_PF: return "#PF";
178 case X86_XCPT_MF: return "#MF";
179 case X86_XCPT_AC: return "#AC";
180 case X86_XCPT_MC: return "#MC";
181 case X86_XCPT_XF: return "#XF";
182 case X86_XCPT_VE: return "#VE";
183 case X86_XCPT_CP: return "#CP";
184 case X86_XCPT_VC: return "#VC";
185 case X86_XCPT_SX: return "#SX";
186 }
187 return "Reserved";
188}
189#endif /* VBOX_WITH_STATISTICS */
190
191
192/**
193 * Initializes the HM.
194 *
195 * This is the very first component to really do init after CFGM so that we can
196 * establish the predominant execution engine for the VM prior to initializing
197 * other modules. It takes care of NEM initialization if needed (HM disabled or
198 * not available in HW).
199 *
200 * If VT-x or AMD-V hardware isn't available, HM will try fall back on a native
201 * hypervisor API via NEM, and then back on raw-mode if that isn't available
202 * either. The fallback to raw-mode will not happen if /HM/HMForced is set
203 * (like for guest using SMP or 64-bit as well as for complicated guest like OS
204 * X, OS/2 and others).
205 *
206 * Note that a lot of the set up work is done in ring-0 and thus postponed till
207 * the ring-3 and ring-0 callback to HMR3InitCompleted.
208 *
209 * @returns VBox status code.
210 * @param pVM The cross context VM structure.
211 *
212 * @remarks Be careful with what we call here, since most of the VMM components
213 * are uninitialized.
214 */
215VMMR3_INT_DECL(int) HMR3Init(PVM pVM)
216{
217 LogFlowFunc(("\n"));
218
219 /*
220 * Assert alignment and sizes.
221 */
222 AssertCompileMemberAlignment(VM, hm.s, 32);
223 AssertCompile(sizeof(pVM->hm.s) <= sizeof(pVM->hm.padding));
224
225 /*
226 * Register the saved state data unit.
227 */
228 int rc = SSMR3RegisterInternal(pVM, "HWACCM", 0, HM_SAVED_STATE_VERSION, sizeof(HM),
229 NULL, NULL, NULL,
230 NULL, hmR3Save, NULL,
231 NULL, hmR3Load, NULL);
232 if (RT_FAILURE(rc))
233 return rc;
234
235 /*
236 * Read configuration.
237 */
238 PCFGMNODE pCfgHm = CFGMR3GetChild(CFGMR3GetRoot(pVM), "HM/");
239
240 /*
241 * Validate the HM settings.
242 */
243 rc = CFGMR3ValidateConfig(pCfgHm, "/HM/",
244 "HMForced" /* implied 'true' these days */
245 "|UseNEMInstead"
246 "|FallbackToNEM"
247 "|EnableNestedPaging"
248 "|EnableUX"
249 "|EnableLargePages"
250 "|EnableVPID"
251 "|IBPBOnVMExit"
252 "|IBPBOnVMEntry"
253 "|SpecCtrlByHost"
254 "|L1DFlushOnSched"
255 "|L1DFlushOnVMEntry"
256 "|MDSClearOnSched"
257 "|MDSClearOnVMEntry"
258 "|TPRPatchingEnabled"
259 "|64bitEnabled"
260 "|Exclusive"
261 "|MaxResumeLoops"
262 "|VmxPleGap"
263 "|VmxPleWindow"
264 "|VmxLbr"
265 "|UseVmxPreemptTimer"
266 "|SvmPauseFilter"
267 "|SvmPauseFilterThreshold"
268 "|SvmVirtVmsaveVmload"
269 "|SvmVGif"
270 "|LovelyMesaDrvWorkaround"
271 "|MissingOS2TlbFlushWorkaround",
272 "" /* pszValidNodes */, "HM" /* pszWho */, 0 /* uInstance */);
273 if (RT_FAILURE(rc))
274 return rc;
275
276 /** @cfgm{/HM/HMForced, bool, false}
277 * Forces hardware virtualization, no falling back on raw-mode. HM must be
278 * enabled, i.e. /HMEnabled must be true. */
279 bool fHMForced;
280 AssertRelease(pVM->fHMEnabled);
281 fHMForced = true;
282
283 /** @cfgm{/HM/UseNEMInstead, bool, true}
284 * Don't use HM, use NEM instead. */
285 bool fUseNEMInstead = false;
286 rc = CFGMR3QueryBoolDef(pCfgHm, "UseNEMInstead", &fUseNEMInstead, false);
287 AssertRCReturn(rc, rc);
288 if (fUseNEMInstead && pVM->fHMEnabled)
289 {
290 LogRel(("HM: Setting fHMEnabled to false because fUseNEMInstead is set.\n"));
291 pVM->fHMEnabled = false;
292 }
293
294 /** @cfgm{/HM/FallbackToNEM, bool, true}
295 * Enables fallback on NEM. */
296 bool fFallbackToNEM = true;
297 rc = CFGMR3QueryBoolDef(pCfgHm, "FallbackToNEM", &fFallbackToNEM, true);
298 AssertRCReturn(rc, rc);
299
300 /** @cfgm{/HM/EnableNestedPaging, bool, false}
301 * Enables nested paging (aka extended page tables). */
302 bool fAllowNestedPaging = false;
303 rc = CFGMR3QueryBoolDef(pCfgHm, "EnableNestedPaging", &fAllowNestedPaging, false);
304 AssertRCReturn(rc, rc);
305
306 /** @cfgm{/HM/EnableUX, bool, true}
307 * Enables the VT-x unrestricted execution feature. */
308 bool fAllowUnrestricted = true;
309 rc = CFGMR3QueryBoolDef(pCfgHm, "EnableUX", &fAllowUnrestricted, true);
310 AssertRCReturn(rc, rc);
311
312 /** @cfgm{/HM/EnableLargePages, bool, false}
313 * Enables using large pages (2 MB) for guest memory, thus saving on (nested)
314 * page table walking and maybe better TLB hit rate in some cases. */
315 rc = CFGMR3QueryBoolDef(pCfgHm, "EnableLargePages", &pVM->hm.s.fLargePages, false);
316 AssertRCReturn(rc, rc);
317
318 /** @cfgm{/HM/EnableVPID, bool, false}
319 * Enables the VT-x VPID feature. */
320 rc = CFGMR3QueryBoolDef(pCfgHm, "EnableVPID", &pVM->hm.s.vmx.fAllowVpid, false);
321 AssertRCReturn(rc, rc);
322
323 /** @cfgm{/HM/TPRPatchingEnabled, bool, false}
324 * Enables TPR patching for 32-bit windows guests with IO-APIC. */
325 rc = CFGMR3QueryBoolDef(pCfgHm, "TPRPatchingEnabled", &pVM->hm.s.fTprPatchingAllowed, false);
326 AssertRCReturn(rc, rc);
327
328 /** @cfgm{/HM/64bitEnabled, bool, 32-bit:false, 64-bit:true}
329 * Enables AMD64 cpu features.
330 * On 32-bit hosts this isn't default and require host CPU support. 64-bit hosts
331 * already have the support. */
332#ifdef VBOX_WITH_64_BITS_GUESTS
333 rc = CFGMR3QueryBoolDef(pCfgHm, "64bitEnabled", &pVM->hm.s.fAllow64BitGuestsCfg, HC_ARCH_BITS == 64);
334 AssertLogRelRCReturn(rc, rc);
335#else
336 pVM->hm.s.fAllow64BitGuestsCfg = false;
337#endif
338
339 /** @cfgm{/HM/VmxPleGap, uint32_t, 0}
340 * The pause-filter exiting gap in TSC ticks. When the number of ticks between
341 * two successive PAUSE instructions exceeds VmxPleGap, the CPU considers the
342 * latest PAUSE instruction to be start of a new PAUSE loop.
343 */
344 rc = CFGMR3QueryU32Def(pCfgHm, "VmxPleGap", &pVM->hm.s.vmx.cPleGapTicks, 0);
345 AssertRCReturn(rc, rc);
346
347 /** @cfgm{/HM/VmxPleWindow, uint32_t, 0}
348 * The pause-filter exiting window in TSC ticks. When the number of ticks
349 * between the current PAUSE instruction and first PAUSE of a loop exceeds
350 * VmxPleWindow, a VM-exit is triggered.
351 *
352 * Setting VmxPleGap and VmxPleGap to 0 disables pause-filter exiting.
353 */
354 rc = CFGMR3QueryU32Def(pCfgHm, "VmxPleWindow", &pVM->hm.s.vmx.cPleWindowTicks, 0);
355 AssertRCReturn(rc, rc);
356
357 /** @cfgm{/HM/VmxLbr, bool, false}
358 * Whether to enable LBR for the guest. This is disabled by default as it's only
359 * useful while debugging and enabling it causes a noticeable performance hit. */
360 rc = CFGMR3QueryBoolDef(pCfgHm, "VmxLbr", &pVM->hm.s.vmx.fLbrCfg, false);
361 AssertRCReturn(rc, rc);
362
363 /** @cfgm{/HM/SvmPauseFilterCount, uint16_t, 0}
364 * A counter that is decrement each time a PAUSE instruction is executed by the
365 * guest. When the counter is 0, a \#VMEXIT is triggered.
366 *
367 * Setting SvmPauseFilterCount to 0 disables pause-filter exiting.
368 */
369 rc = CFGMR3QueryU16Def(pCfgHm, "SvmPauseFilter", &pVM->hm.s.svm.cPauseFilter, 0);
370 AssertRCReturn(rc, rc);
371
372 /** @cfgm{/HM/SvmPauseFilterThreshold, uint16_t, 0}
373 * The pause filter threshold in ticks. When the elapsed time (in ticks) between
374 * two successive PAUSE instructions exceeds SvmPauseFilterThreshold, the
375 * PauseFilter count is reset to its initial value. However, if PAUSE is
376 * executed PauseFilter times within PauseFilterThreshold ticks, a VM-exit will
377 * be triggered.
378 *
379 * Requires SvmPauseFilterCount to be non-zero for pause-filter threshold to be
380 * activated.
381 */
382 rc = CFGMR3QueryU16Def(pCfgHm, "SvmPauseFilterThreshold", &pVM->hm.s.svm.cPauseFilterThresholdTicks, 0);
383 AssertRCReturn(rc, rc);
384
385 /** @cfgm{/HM/SvmVirtVmsaveVmload, bool, true}
386 * Whether to make use of virtualized VMSAVE/VMLOAD feature of the CPU if it's
387 * available. */
388 rc = CFGMR3QueryBoolDef(pCfgHm, "SvmVirtVmsaveVmload", &pVM->hm.s.svm.fVirtVmsaveVmload, true);
389 AssertRCReturn(rc, rc);
390
391 /** @cfgm{/HM/SvmVGif, bool, true}
392 * Whether to make use of Virtual GIF (Global Interrupt Flag) feature of the CPU
393 * if it's available. */
394 rc = CFGMR3QueryBoolDef(pCfgHm, "SvmVGif", &pVM->hm.s.svm.fVGif, true);
395 AssertRCReturn(rc, rc);
396
397 /** @cfgm{/HM/SvmLbrVirt, bool, false}
398 * Whether to make use of the LBR virtualization feature of the CPU if it's
399 * available. This is disabled by default as it's only useful while debugging
400 * and enabling it causes a small hit to performance. */
401 rc = CFGMR3QueryBoolDef(pCfgHm, "SvmLbrVirt", &pVM->hm.s.svm.fLbrVirt, false);
402 AssertRCReturn(rc, rc);
403
404 /** @cfgm{/HM/Exclusive, bool}
405 * Determines the init method for AMD-V and VT-x. If set to true, HM will do a
406 * global init for each host CPU. If false, we do local init each time we wish
407 * to execute guest code.
408 *
409 * On Windows, default is false due to the higher risk of conflicts with other
410 * hypervisors.
411 *
412 * On Mac OS X, this setting is ignored since the code does not handle local
413 * init when it utilizes the OS provided VT-x function, SUPR0EnableVTx().
414 */
415#if defined(RT_OS_DARWIN)
416 pVM->hm.s.fGlobalInit = true;
417#else
418 rc = CFGMR3QueryBoolDef(pCfgHm, "Exclusive", &pVM->hm.s.fGlobalInit,
419# if defined(RT_OS_WINDOWS)
420 false
421# else
422 true
423# endif
424 );
425 AssertLogRelRCReturn(rc, rc);
426#endif
427
428 /** @cfgm{/HM/MaxResumeLoops, uint32_t}
429 * The number of times to resume guest execution before we forcibly return to
430 * ring-3. The return value of RTThreadPreemptIsPendingTrusty in ring-0
431 * determines the default value. */
432 rc = CFGMR3QueryU32Def(pCfgHm, "MaxResumeLoops", &pVM->hm.s.cMaxResumeLoopsCfg, 0 /* set by R0 later */);
433 AssertLogRelRCReturn(rc, rc);
434
435 /** @cfgm{/HM/UseVmxPreemptTimer, bool}
436 * Whether to make use of the VMX-preemption timer feature of the CPU if it's
437 * available. */
438 rc = CFGMR3QueryBoolDef(pCfgHm, "UseVmxPreemptTimer", &pVM->hm.s.vmx.fUsePreemptTimerCfg, true);
439 AssertLogRelRCReturn(rc, rc);
440
441 /** @cfgm{/HM/IBPBOnVMExit, bool}
442 * Costly paranoia setting. */
443 rc = CFGMR3QueryBoolDef(pCfgHm, "IBPBOnVMExit", &pVM->hm.s.fIbpbOnVmExit, false);
444 AssertLogRelRCReturn(rc, rc);
445
446 /** @cfgm{/HM/IBPBOnVMEntry, bool}
447 * Costly paranoia setting. */
448 rc = CFGMR3QueryBoolDef(pCfgHm, "IBPBOnVMEntry", &pVM->hm.s.fIbpbOnVmEntry, false);
449 AssertLogRelRCReturn(rc, rc);
450
451 /** @cfgm{/HM/L1DFlushOnSched, bool, true}
452 * CVE-2018-3646 workaround, ignored on CPUs that aren't affected. */
453 rc = CFGMR3QueryBoolDef(pCfgHm, "L1DFlushOnSched", &pVM->hm.s.fL1dFlushOnSched, true);
454 AssertLogRelRCReturn(rc, rc);
455
456 /** @cfgm{/HM/L1DFlushOnVMEntry, bool}
457 * CVE-2018-3646 workaround, ignored on CPUs that aren't affected. */
458 rc = CFGMR3QueryBoolDef(pCfgHm, "L1DFlushOnVMEntry", &pVM->hm.s.fL1dFlushOnVmEntry, false);
459 AssertLogRelRCReturn(rc, rc);
460
461 /* Disable L1DFlushOnSched if L1DFlushOnVMEntry is enabled. */
462 if (pVM->hm.s.fL1dFlushOnVmEntry)
463 pVM->hm.s.fL1dFlushOnSched = false;
464
465 /** @cfgm{/HM/SpecCtrlByHost, bool}
466 * Another expensive paranoia setting. */
467 rc = CFGMR3QueryBoolDef(pCfgHm, "SpecCtrlByHost", &pVM->hm.s.fSpecCtrlByHost, false);
468 AssertLogRelRCReturn(rc, rc);
469
470 /** @cfgm{/HM/MDSClearOnSched, bool, true}
471 * CVE-2018-12126, CVE-2018-12130, CVE-2018-12127, CVE-2019-11091 workaround,
472 * ignored on CPUs that aren't affected. */
473 rc = CFGMR3QueryBoolDef(pCfgHm, "MDSClearOnSched", &pVM->hm.s.fMdsClearOnSched, true);
474 AssertLogRelRCReturn(rc, rc);
475
476 /** @cfgm{/HM/MDSClearOnVmEntry, bool, false}
477 * CVE-2018-12126, CVE-2018-12130, CVE-2018-12127, CVE-2019-11091 workaround,
478 * ignored on CPUs that aren't affected. */
479 rc = CFGMR3QueryBoolDef(pCfgHm, "MDSClearOnVmEntry", &pVM->hm.s.fMdsClearOnVmEntry, false);
480 AssertLogRelRCReturn(rc, rc);
481
482 /* Disable MDSClearOnSched if MDSClearOnVmEntry is enabled. */
483 if (pVM->hm.s.fMdsClearOnVmEntry)
484 pVM->hm.s.fMdsClearOnSched = false;
485
486 /** @cfgm{/HM/LovelyMesaDrvWorkaround,bool}
487 * Workaround for mesa vmsvga 3d driver making incorrect assumptions about
488 * the hypervisor it is running under. */
489 bool fMesaWorkaround;
490 rc = CFGMR3QueryBoolDef(pCfgHm, "LovelyMesaDrvWorkaround", &fMesaWorkaround, false);
491 AssertLogRelRCReturn(rc, rc);
492 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
493 {
494 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
495 pVCpu->hm.s.fTrapXcptGpForLovelyMesaDrv = fMesaWorkaround;
496 }
497
498 /** @cfgm{/HM/MissingOS2TlbFlushWorkaround,bool}
499 * Workaround OS/2 not flushing the TLB after page directory and page table
500 * modifications when returning to protected mode from a real mode call
501 * (TESTCFG.SYS typically crashes). See ticketref:20625 for details. */
502 rc = CFGMR3QueryBoolDef(pCfgHm, "MissingOS2TlbFlushWorkaround", &pVM->hm.s.fMissingOS2TlbFlushWorkaround, false);
503 AssertLogRelRCReturn(rc, rc);
504
505 /*
506 * Check if VT-x or AMD-v support according to the users wishes.
507 */
508 /** @todo SUPR3QueryVTCaps won't catch VERR_VMX_IN_VMX_ROOT_MODE or
509 * VERR_SVM_IN_USE. */
510 if (pVM->fHMEnabled)
511 {
512 /*
513 * Register info handlers.
514 */
515 rc = DBGFR3InfoRegisterInternalEx(pVM, "hm", "Dumps HM info.", hmR3Info, DBGFINFO_FLAGS_ALL_EMTS);
516 AssertRCReturn(rc, rc);
517
518 rc = DBGFR3InfoRegisterInternalEx(pVM, "hmeventpending", "Dumps the pending HM event.", hmR3InfoEventPending,
519 DBGFINFO_FLAGS_ALL_EMTS);
520 AssertRCReturn(rc, rc);
521
522 rc = DBGFR3InfoRegisterInternalEx(pVM, "svmvmcbcache", "Dumps the HM SVM nested-guest VMCB cache.",
523 hmR3InfoSvmNstGstVmcbCache, DBGFINFO_FLAGS_ALL_EMTS);
524 AssertRCReturn(rc, rc);
525
526 rc = DBGFR3InfoRegisterInternalEx(pVM, "lbr", "Dumps the HM LBR info.", hmR3InfoLbr, DBGFINFO_FLAGS_ALL_EMTS);
527 AssertRCReturn(rc, rc);
528
529
530 uint32_t fCaps;
531 rc = SUPR3QueryVTCaps(&fCaps);
532 if (RT_SUCCESS(rc))
533 {
534 if (fCaps & SUPVTCAPS_AMD_V)
535 {
536 pVM->hm.s.svm.fSupported = true;
537 LogRel(("HM: HMR3Init: AMD-V%s\n", fCaps & SUPVTCAPS_NESTED_PAGING ? " w/ nested paging" : ""));
538 VM_SET_MAIN_EXECUTION_ENGINE(pVM, VM_EXEC_ENGINE_HW_VIRT);
539 }
540 else if (fCaps & SUPVTCAPS_VT_X)
541 {
542 const char *pszWhy;
543 rc = SUPR3QueryVTxSupported(&pszWhy);
544 if (RT_SUCCESS(rc))
545 {
546 pVM->hm.s.vmx.fSupported = true;
547 LogRel(("HM: HMR3Init: VT-x%s%s%s\n",
548 fCaps & SUPVTCAPS_NESTED_PAGING ? " w/ nested paging" : "",
549 fCaps & SUPVTCAPS_VTX_UNRESTRICTED_GUEST ? " and unrestricted guest execution" : "",
550 (fCaps & (SUPVTCAPS_NESTED_PAGING | SUPVTCAPS_VTX_UNRESTRICTED_GUEST)) ? " hw support" : ""));
551 VM_SET_MAIN_EXECUTION_ENGINE(pVM, VM_EXEC_ENGINE_HW_VIRT);
552 }
553 else
554 {
555 /*
556 * Before failing, try fallback to NEM if we're allowed to do that.
557 */
558 pVM->fHMEnabled = false;
559 Assert(pVM->bMainExecutionEngine == VM_EXEC_ENGINE_NOT_SET);
560 if (fFallbackToNEM)
561 {
562 LogRel(("HM: HMR3Init: Attempting fall back to NEM: The host kernel does not support VT-x - %s\n", pszWhy));
563 int rc2 = NEMR3Init(pVM, true /*fFallback*/, fHMForced);
564
565 ASMCompilerBarrier(); /* NEMR3Init may have changed bMainExecutionEngine. */
566 if ( RT_SUCCESS(rc2)
567 && pVM->bMainExecutionEngine != VM_EXEC_ENGINE_NOT_SET)
568 rc = VINF_SUCCESS;
569 }
570 if (RT_FAILURE(rc))
571 return VMSetError(pVM, rc, RT_SRC_POS, "The host kernel does not support VT-x: %s\n", pszWhy);
572 }
573 }
574 else
575 AssertLogRelMsgFailedReturn(("SUPR3QueryVTCaps didn't return either AMD-V or VT-x flag set (%#x)!\n", fCaps),
576 VERR_INTERNAL_ERROR_5);
577
578 /*
579 * Disable nested paging and unrestricted guest execution now if they're
580 * configured so that CPUM can make decisions based on our configuration.
581 */
582 if ( fAllowNestedPaging
583 && (fCaps & SUPVTCAPS_NESTED_PAGING))
584 {
585 pVM->hm.s.fNestedPagingCfg = true;
586 if (fCaps & SUPVTCAPS_VT_X)
587 {
588 if ( fAllowUnrestricted
589 && (fCaps & SUPVTCAPS_VTX_UNRESTRICTED_GUEST))
590 pVM->hm.s.vmx.fUnrestrictedGuestCfg = true;
591 else
592 Assert(!pVM->hm.s.vmx.fUnrestrictedGuestCfg);
593 }
594 }
595 else
596 Assert(!pVM->hm.s.fNestedPagingCfg);
597 }
598 else
599 {
600 const char *pszMsg;
601 switch (rc)
602 {
603 case VERR_UNSUPPORTED_CPU: pszMsg = "Unknown CPU, VT-x or AMD-v features cannot be ascertained"; break;
604 case VERR_VMX_NO_VMX: pszMsg = "VT-x is not available"; break;
605 case VERR_VMX_MSR_VMX_DISABLED: pszMsg = "VT-x is disabled in the BIOS"; break;
606 case VERR_VMX_MSR_ALL_VMX_DISABLED: pszMsg = "VT-x is disabled in the BIOS for all CPU modes"; break;
607 case VERR_VMX_MSR_LOCKING_FAILED: pszMsg = "Failed to enable and lock VT-x features"; break;
608 case VERR_SVM_NO_SVM: pszMsg = "AMD-V is not available"; break;
609 case VERR_SVM_DISABLED: pszMsg = "AMD-V is disabled in the BIOS (or by the host OS)"; break;
610 case VERR_SUP_DRIVERLESS: pszMsg = "Driverless mode"; break;
611 default:
612 return VMSetError(pVM, rc, RT_SRC_POS, "SUPR3QueryVTCaps failed with %Rrc", rc);
613 }
614
615 /*
616 * Before failing, try fallback to NEM if we're allowed to do that.
617 */
618 pVM->fHMEnabled = false;
619 if (fFallbackToNEM)
620 {
621 LogRel(("HM: HMR3Init: Attempting fall back to NEM: %s\n", pszMsg));
622 int rc2 = NEMR3Init(pVM, true /*fFallback*/, fHMForced);
623 ASMCompilerBarrier(); /* NEMR3Init may have changed bMainExecutionEngine. */
624 if ( RT_SUCCESS(rc2)
625 && pVM->bMainExecutionEngine != VM_EXEC_ENGINE_NOT_SET)
626 {
627 rc = VINF_SUCCESS;
628
629 /* For some reason, HM is in charge or large pages. Make sure to enable them: */
630 PGMSetLargePageUsage(pVM, pVM->hm.s.fLargePages);
631 }
632 }
633 if (RT_FAILURE(rc))
634 return VM_SET_ERROR(pVM, rc, pszMsg);
635 }
636 }
637 else
638 {
639 /*
640 * Disabled HM mean raw-mode, unless NEM is supposed to be used.
641 */
642 if (fUseNEMInstead)
643 {
644 rc = NEMR3Init(pVM, false /*fFallback*/, true);
645 ASMCompilerBarrier(); /* NEMR3Init may have changed bMainExecutionEngine. */
646 if (RT_FAILURE(rc))
647 return rc;
648
649 /* For some reason, HM is in charge or large pages. Make sure to enable them: */
650 PGMSetLargePageUsage(pVM, pVM->hm.s.fLargePages);
651 }
652 if ( pVM->bMainExecutionEngine == VM_EXEC_ENGINE_NOT_SET
653 || pVM->bMainExecutionEngine == VM_EXEC_ENGINE_RAW_MODE
654 || pVM->bMainExecutionEngine == VM_EXEC_ENGINE_HW_VIRT /* paranoia */)
655 return VM_SET_ERROR(pVM, rc, "Misconfigured VM: No guest execution engine available!");
656 }
657
658 Assert(pVM->bMainExecutionEngine != VM_EXEC_ENGINE_NOT_SET);
659 Assert(pVM->bMainExecutionEngine != VM_EXEC_ENGINE_RAW_MODE);
660 return VINF_SUCCESS;
661}
662
663
664/**
665 * Initializes HM components after ring-3 phase has been fully initialized.
666 *
667 * @returns VBox status code.
668 * @param pVM The cross context VM structure.
669 */
670static int hmR3InitFinalizeR3(PVM pVM)
671{
672 LogFlowFunc(("\n"));
673
674 if (!HMIsEnabled(pVM))
675 return VINF_SUCCESS;
676
677 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
678 {
679 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
680 pVCpu->hm.s.fActive = false;
681 pVCpu->hm.s.fGIMTrapXcptUD = GIMShouldTrapXcptUD(pVCpu); /* Is safe to call now since GIMR3Init() has completed. */
682 }
683
684 /*
685 * Check if L1D flush is needed/possible.
686 */
687 if ( !pVM->cpum.ro.HostFeatures.fFlushCmd
688 || pVM->cpum.ro.HostFeatures.enmMicroarch < kCpumMicroarch_Intel_Core7_Nehalem
689 || pVM->cpum.ro.HostFeatures.enmMicroarch >= kCpumMicroarch_Intel_Core7_End
690 || pVM->cpum.ro.HostFeatures.fArchVmmNeedNotFlushL1d
691 || pVM->cpum.ro.HostFeatures.fArchRdclNo)
692 pVM->hm.s.fL1dFlushOnSched = pVM->hm.s.fL1dFlushOnVmEntry = false;
693
694 /*
695 * Check if MDS flush is needed/possible.
696 * On atoms and knight family CPUs, we will only allow clearing on scheduling.
697 */
698 if ( !pVM->cpum.ro.HostFeatures.fMdsClear
699 || pVM->cpum.ro.HostFeatures.fArchMdsNo)
700 pVM->hm.s.fMdsClearOnSched = pVM->hm.s.fMdsClearOnVmEntry = false;
701 else if ( ( pVM->cpum.ro.HostFeatures.enmMicroarch >= kCpumMicroarch_Intel_Atom_Airmount
702 && pVM->cpum.ro.HostFeatures.enmMicroarch < kCpumMicroarch_Intel_Atom_End)
703 || ( pVM->cpum.ro.HostFeatures.enmMicroarch >= kCpumMicroarch_Intel_Phi_KnightsLanding
704 && pVM->cpum.ro.HostFeatures.enmMicroarch < kCpumMicroarch_Intel_Phi_End))
705 {
706 if (!pVM->hm.s.fMdsClearOnSched)
707 pVM->hm.s.fMdsClearOnSched = pVM->hm.s.fMdsClearOnVmEntry;
708 pVM->hm.s.fMdsClearOnVmEntry = false;
709 }
710 else if ( pVM->cpum.ro.HostFeatures.enmMicroarch < kCpumMicroarch_Intel_Core7_Nehalem
711 || pVM->cpum.ro.HostFeatures.enmMicroarch >= kCpumMicroarch_Intel_Core7_End)
712 pVM->hm.s.fMdsClearOnSched = pVM->hm.s.fMdsClearOnVmEntry = false;
713
714 /*
715 * Statistics.
716 */
717#ifdef VBOX_WITH_STATISTICS
718 STAM_REG(pVM, &pVM->hm.s.StatTprPatchSuccess, STAMTYPE_COUNTER, "/HM/TPR/Patch/Success", STAMUNIT_OCCURENCES, "Number of times an instruction was successfully patched.");
719 STAM_REG(pVM, &pVM->hm.s.StatTprPatchFailure, STAMTYPE_COUNTER, "/HM/TPR/Patch/Failed", STAMUNIT_OCCURENCES, "Number of unsuccessful patch attempts.");
720 STAM_REG(pVM, &pVM->hm.s.StatTprReplaceSuccessCr8, STAMTYPE_COUNTER, "/HM/TPR/Replace/SuccessCR8", STAMUNIT_OCCURENCES, "Number of instruction replacements by MOV CR8.");
721 STAM_REG(pVM, &pVM->hm.s.StatTprReplaceSuccessVmc, STAMTYPE_COUNTER, "/HM/TPR/Replace/SuccessVMC", STAMUNIT_OCCURENCES, "Number of instruction replacements by VMMCALL.");
722 STAM_REG(pVM, &pVM->hm.s.StatTprReplaceFailure, STAMTYPE_COUNTER, "/HM/TPR/Replace/Failed", STAMUNIT_OCCURENCES, "Number of unsuccessful replace attempts.");
723#endif
724
725 bool const fCpuSupportsVmx = ASMIsIntelCpu() || ASMIsViaCentaurCpu() || ASMIsShanghaiCpu();
726 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
727 {
728 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
729 PHMCPU pHmCpu = &pVCpu->hm.s;
730 int rc;
731
732# define HM_REG_STAT(a_pVar, a_enmType, s_enmVisibility, a_enmUnit, a_szNmFmt, a_szDesc) do { \
733 rc = STAMR3RegisterF(pVM, a_pVar, a_enmType, s_enmVisibility, a_enmUnit, a_szDesc, a_szNmFmt, idCpu); \
734 AssertRC(rc); \
735 } while (0)
736# define HM_REG_PROFILE(a_pVar, a_szNmFmt, a_szDesc) \
737 HM_REG_STAT(a_pVar, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL, a_szNmFmt, a_szDesc)
738
739#ifdef VBOX_WITH_STATISTICS
740
741 HM_REG_PROFILE(&pHmCpu->StatPoke, "/PROF/CPU%u/HM/Poke", "Profiling of RTMpPokeCpu.");
742 HM_REG_PROFILE(&pHmCpu->StatSpinPoke, "/PROF/CPU%u/HM/PokeWait", "Profiling of poke wait.");
743 HM_REG_PROFILE(&pHmCpu->StatSpinPokeFailed, "/PROF/CPU%u/HM/PokeWaitFailed", "Profiling of poke wait when RTMpPokeCpu fails.");
744 HM_REG_PROFILE(&pHmCpu->StatEntry, "/PROF/CPU%u/HM/Entry", "Profiling of entry until entering GC.");
745 HM_REG_PROFILE(&pHmCpu->StatPreExit, "/PROF/CPU%u/HM/SwitchFromGC_1", "Profiling of pre-exit processing after returning from GC.");
746 HM_REG_PROFILE(&pHmCpu->StatExitHandling, "/PROF/CPU%u/HM/SwitchFromGC_2", "Profiling of exit handling (longjmps not included!)");
747 HM_REG_PROFILE(&pHmCpu->StatExitIO, "/PROF/CPU%u/HM/SwitchFromGC_2/IO", "I/O.");
748 HM_REG_PROFILE(&pHmCpu->StatExitMovCRx, "/PROF/CPU%u/HM/SwitchFromGC_2/MovCRx", "MOV CRx.");
749 HM_REG_PROFILE(&pHmCpu->StatExitXcptNmi, "/PROF/CPU%u/HM/SwitchFromGC_2/XcptNmi", "Exceptions, NMIs.");
750 HM_REG_PROFILE(&pHmCpu->StatExitVmentry, "/PROF/CPU%u/HM/SwitchFromGC_2/Vmentry", "VMLAUNCH/VMRESUME on Intel or VMRUN on AMD.");
751 HM_REG_PROFILE(&pHmCpu->StatImportGuestState, "/PROF/CPU%u/HM/ImportGuestState", "Profiling of importing guest state from hardware after VM-exit.");
752 HM_REG_PROFILE(&pHmCpu->StatExportGuestState, "/PROF/CPU%u/HM/ExportGuestState", "Profiling of exporting guest state to hardware before VM-entry.");
753 HM_REG_PROFILE(&pHmCpu->StatLoadGuestFpuState, "/PROF/CPU%u/HM/LoadGuestFpuState", "Profiling of CPUMR0LoadGuestFPU.");
754 HM_REG_PROFILE(&pHmCpu->StatInGC, "/PROF/CPU%u/HM/InGC", "Profiling of execution of guest-code in hardware.");
755# ifdef HM_PROFILE_EXIT_DISPATCH
756 HM_REG_STAT(&pHmCpu->StatExitDispatch, STAMTYPE_PROFILE_ADV, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
757 "/PROF/CPU%u/HM/ExitDispatch", "Profiling the dispatching of exit handlers.");
758# endif
759#endif
760# define HM_REG_COUNTER(a, b, desc) HM_REG_STAT(a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, b, desc)
761
762#ifdef VBOX_WITH_STATISTICS
763 HM_REG_COUNTER(&pHmCpu->StatExitAll, "/HM/CPU%u/Exit/All", "Total exits (excludes nested-guest and debug loops exits).");
764 HM_REG_COUNTER(&pHmCpu->StatDebugExitAll, "/HM/CPU%u/Exit/DebugAll", "Total debug-loop exits.");
765 HM_REG_COUNTER(&pHmCpu->StatNestedExitAll, "/HM/CPU%u/Exit/NestedGuest/All", "Total nested-guest exits.");
766 HM_REG_COUNTER(&pHmCpu->StatExitShadowNM, "/HM/CPU%u/Exit/Trap/Shw/#NM", "Shadow #NM (device not available, no math co-processor) exception.");
767 HM_REG_COUNTER(&pHmCpu->StatExitGuestNM, "/HM/CPU%u/Exit/Trap/Gst/#NM", "Guest #NM (device not available, no math co-processor) exception.");
768 HM_REG_COUNTER(&pHmCpu->StatExitShadowPF, "/HM/CPU%u/Exit/Trap/Shw/#PF", "Shadow #PF (page fault) exception.");
769 HM_REG_COUNTER(&pHmCpu->StatExitShadowPFEM, "/HM/CPU%u/Exit/Trap/Shw/#PF-EM", "#PF (page fault) exception going back to ring-3 for emulating the instruction.");
770 HM_REG_COUNTER(&pHmCpu->StatExitGuestPF, "/HM/CPU%u/Exit/Trap/Gst/#PF", "Guest #PF (page fault) exception.");
771 HM_REG_COUNTER(&pHmCpu->StatExitGuestUD, "/HM/CPU%u/Exit/Trap/Gst/#UD", "Guest #UD (undefined opcode) exception.");
772 HM_REG_COUNTER(&pHmCpu->StatExitGuestSS, "/HM/CPU%u/Exit/Trap/Gst/#SS", "Guest #SS (stack-segment fault) exception.");
773 HM_REG_COUNTER(&pHmCpu->StatExitGuestNP, "/HM/CPU%u/Exit/Trap/Gst/#NP", "Guest #NP (segment not present) exception.");
774 HM_REG_COUNTER(&pHmCpu->StatExitGuestTS, "/HM/CPU%u/Exit/Trap/Gst/#TS", "Guest #TS (task switch) exception.");
775 HM_REG_COUNTER(&pHmCpu->StatExitGuestOF, "/HM/CPU%u/Exit/Trap/Gst/#OF", "Guest #OF (overflow) exception.");
776 HM_REG_COUNTER(&pHmCpu->StatExitGuestGP, "/HM/CPU%u/Exit/Trap/Gst/#GP", "Guest #GP (general protection) exception.");
777 HM_REG_COUNTER(&pHmCpu->StatExitGuestDE, "/HM/CPU%u/Exit/Trap/Gst/#DE", "Guest #DE (divide error) exception.");
778 HM_REG_COUNTER(&pHmCpu->StatExitGuestDF, "/HM/CPU%u/Exit/Trap/Gst/#DF", "Guest #DF (double fault) exception.");
779 HM_REG_COUNTER(&pHmCpu->StatExitGuestBR, "/HM/CPU%u/Exit/Trap/Gst/#BR", "Guest #BR (boundary range exceeded) exception.");
780#endif
781 HM_REG_COUNTER(&pHmCpu->StatExitGuestAC, "/HM/CPU%u/Exit/Trap/Gst/#AC", "Guest #AC (alignment check) exception.");
782 if (fCpuSupportsVmx)
783 HM_REG_COUNTER(&pHmCpu->StatExitGuestACSplitLock, "/HM/CPU%u/Exit/Trap/Gst/#AC-split-lock", "Guest triggered #AC due to split-lock being enabled on the host (interpreted).");
784#ifdef VBOX_WITH_STATISTICS
785 HM_REG_COUNTER(&pHmCpu->StatExitGuestDB, "/HM/CPU%u/Exit/Trap/Gst/#DB", "Guest #DB (debug) exception.");
786 HM_REG_COUNTER(&pHmCpu->StatExitGuestMF, "/HM/CPU%u/Exit/Trap/Gst/#MF", "Guest #MF (x87 FPU error, math fault) exception.");
787 HM_REG_COUNTER(&pHmCpu->StatExitGuestBP, "/HM/CPU%u/Exit/Trap/Gst/#BP", "Guest #BP (breakpoint) exception.");
788 HM_REG_COUNTER(&pHmCpu->StatExitGuestXF, "/HM/CPU%u/Exit/Trap/Gst/#XF", "Guest #XF (extended math fault, SIMD FPU) exception.");
789 HM_REG_COUNTER(&pHmCpu->StatExitGuestXcpUnk, "/HM/CPU%u/Exit/Trap/Gst/Other", "Other guest exceptions.");
790 HM_REG_COUNTER(&pHmCpu->StatExitRdmsr, "/HM/CPU%u/Exit/Instr/Rdmsr", "MSR read.");
791 HM_REG_COUNTER(&pHmCpu->StatExitWrmsr, "/HM/CPU%u/Exit/Instr/Wrmsr", "MSR write.");
792 HM_REG_COUNTER(&pHmCpu->StatExitDRxWrite, "/HM/CPU%u/Exit/Instr/DR-Write", "Debug register write.");
793 HM_REG_COUNTER(&pHmCpu->StatExitDRxRead, "/HM/CPU%u/Exit/Instr/DR-Read", "Debug register read.");
794 HM_REG_COUNTER(&pHmCpu->StatExitCR0Read, "/HM/CPU%u/Exit/Instr/CR-Read/CR0", "CR0 read.");
795 HM_REG_COUNTER(&pHmCpu->StatExitCR2Read, "/HM/CPU%u/Exit/Instr/CR-Read/CR2", "CR2 read.");
796 HM_REG_COUNTER(&pHmCpu->StatExitCR3Read, "/HM/CPU%u/Exit/Instr/CR-Read/CR3", "CR3 read.");
797 HM_REG_COUNTER(&pHmCpu->StatExitCR4Read, "/HM/CPU%u/Exit/Instr/CR-Read/CR4", "CR4 read.");
798 HM_REG_COUNTER(&pHmCpu->StatExitCR8Read, "/HM/CPU%u/Exit/Instr/CR-Read/CR8", "CR8 read.");
799 HM_REG_COUNTER(&pHmCpu->StatExitCR0Write, "/HM/CPU%u/Exit/Instr/CR-Write/CR0", "CR0 write.");
800 HM_REG_COUNTER(&pHmCpu->StatExitCR2Write, "/HM/CPU%u/Exit/Instr/CR-Write/CR2", "CR2 write.");
801 HM_REG_COUNTER(&pHmCpu->StatExitCR3Write, "/HM/CPU%u/Exit/Instr/CR-Write/CR3", "CR3 write.");
802 HM_REG_COUNTER(&pHmCpu->StatExitCR4Write, "/HM/CPU%u/Exit/Instr/CR-Write/CR4", "CR4 write.");
803 HM_REG_COUNTER(&pHmCpu->StatExitCR8Write, "/HM/CPU%u/Exit/Instr/CR-Write/CR8", "CR8 write.");
804 HM_REG_COUNTER(&pHmCpu->StatExitClts, "/HM/CPU%u/Exit/Instr/CLTS", "CLTS instruction.");
805 HM_REG_COUNTER(&pHmCpu->StatExitLmsw, "/HM/CPU%u/Exit/Instr/LMSW", "LMSW instruction.");
806 HM_REG_COUNTER(&pHmCpu->StatExitXdtrAccess, "/HM/CPU%u/Exit/Instr/XdtrAccess", "GDTR, IDTR, LDTR access.");
807 HM_REG_COUNTER(&pHmCpu->StatExitIOWrite, "/HM/CPU%u/Exit/Instr/IO/Write", "I/O write.");
808 HM_REG_COUNTER(&pHmCpu->StatExitIORead, "/HM/CPU%u/Exit/Instr/IO/Read", "I/O read.");
809 HM_REG_COUNTER(&pHmCpu->StatExitIOStringWrite, "/HM/CPU%u/Exit/Instr/IO/WriteString", "String I/O write.");
810 HM_REG_COUNTER(&pHmCpu->StatExitIOStringRead, "/HM/CPU%u/Exit/Instr/IO/ReadString", "String I/O read.");
811 HM_REG_COUNTER(&pHmCpu->StatExitIntWindow, "/HM/CPU%u/Exit/IntWindow", "Interrupt-window exit. Guest is ready to receive interrupts.");
812 HM_REG_COUNTER(&pHmCpu->StatExitExtInt, "/HM/CPU%u/Exit/ExtInt", "Physical maskable interrupt (host).");
813#endif
814 HM_REG_COUNTER(&pHmCpu->StatExitHostNmiInGC, "/HM/CPU%u/Exit/HostNmiInGC", "Host NMI received while in guest context.");
815 HM_REG_COUNTER(&pHmCpu->StatExitHostNmiInGCIpi, "/HM/CPU%u/Exit/HostNmiInGCIpi", "Host NMI received while in guest context dispatched using IPIs.");
816 HM_REG_COUNTER(&pHmCpu->StatExitPreemptTimer, "/HM/CPU%u/Exit/PreemptTimer", "VMX-preemption timer expired.");
817#ifdef VBOX_WITH_STATISTICS
818 HM_REG_COUNTER(&pHmCpu->StatExitTprBelowThreshold, "/HM/CPU%u/Exit/TprBelowThreshold", "TPR lowered below threshold by the guest.");
819 HM_REG_COUNTER(&pHmCpu->StatExitTaskSwitch, "/HM/CPU%u/Exit/TaskSwitch", "Task switch caused through task gate in IDT.");
820 HM_REG_COUNTER(&pHmCpu->StatExitApicAccess, "/HM/CPU%u/Exit/ApicAccess", "APIC access. Guest attempted to access memory at a physical address on the APIC-access page.");
821
822 HM_REG_COUNTER(&pHmCpu->StatSwitchTprMaskedIrq, "/HM/CPU%u/Switch/TprMaskedIrq", "PDMGetInterrupt() signals TPR masks pending Irq.");
823 HM_REG_COUNTER(&pHmCpu->StatSwitchGuestIrq, "/HM/CPU%u/Switch/IrqPending", "PDMGetInterrupt() cleared behind our back!?!.");
824 HM_REG_COUNTER(&pHmCpu->StatSwitchPendingHostIrq, "/HM/CPU%u/Switch/PendingHostIrq", "Exit to ring-3 due to pending host interrupt before executing guest code.");
825 HM_REG_COUNTER(&pHmCpu->StatSwitchHmToR3FF, "/HM/CPU%u/Switch/HmToR3FF", "Exit to ring-3 due to pending timers, EMT rendezvous, critical section etc.");
826 HM_REG_COUNTER(&pHmCpu->StatSwitchVmReq, "/HM/CPU%u/Switch/VmReq", "Exit to ring-3 due to pending VM requests.");
827 HM_REG_COUNTER(&pHmCpu->StatSwitchPgmPoolFlush, "/HM/CPU%u/Switch/PgmPoolFlush", "Exit to ring-3 due to pending PGM pool flush.");
828 HM_REG_COUNTER(&pHmCpu->StatSwitchDma, "/HM/CPU%u/Switch/PendingDma", "Exit to ring-3 due to pending DMA requests.");
829 HM_REG_COUNTER(&pHmCpu->StatSwitchExitToR3, "/HM/CPU%u/Switch/ExitToR3", "Exit to ring-3 (total).");
830 HM_REG_COUNTER(&pHmCpu->StatSwitchLongJmpToR3, "/HM/CPU%u/Switch/LongJmpToR3", "Longjump to ring-3.");
831 HM_REG_COUNTER(&pHmCpu->StatSwitchMaxResumeLoops, "/HM/CPU%u/Switch/MaxResumeLoops", "Maximum VMRESUME inner-loop counter reached.");
832 HM_REG_COUNTER(&pHmCpu->StatSwitchHltToR3, "/HM/CPU%u/Switch/HltToR3", "HLT causing us to go to ring-3.");
833 HM_REG_COUNTER(&pHmCpu->StatSwitchApicAccessToR3, "/HM/CPU%u/Switch/ApicAccessToR3", "APIC access causing us to go to ring-3.");
834#endif
835 HM_REG_COUNTER(&pHmCpu->StatSwitchPreempt, "/HM/CPU%u/Switch/Preempting", "EMT has been preempted while in HM context.");
836#ifdef VBOX_WITH_STATISTICS
837 HM_REG_COUNTER(&pHmCpu->StatSwitchNstGstVmexit, "/HM/CPU%u/Switch/NstGstVmexit", "Nested-guest VM-exit occurred.");
838
839 HM_REG_COUNTER(&pHmCpu->StatInjectInterrupt, "/HM/CPU%u/EventInject/Interrupt", "Injected an external interrupt into the guest.");
840 HM_REG_COUNTER(&pHmCpu->StatInjectXcpt, "/HM/CPU%u/EventInject/Trap", "Injected an exception into the guest.");
841 HM_REG_COUNTER(&pHmCpu->StatInjectReflect, "/HM/CPU%u/EventInject/Reflect", "Reflecting an exception caused due to event injection.");
842 HM_REG_COUNTER(&pHmCpu->StatInjectConvertDF, "/HM/CPU%u/EventInject/ReflectDF", "Injected a converted #DF caused due to event injection.");
843 HM_REG_COUNTER(&pHmCpu->StatInjectInterpret, "/HM/CPU%u/EventInject/Interpret", "Falling back to interpreter for handling exception caused due to event injection.");
844 HM_REG_COUNTER(&pHmCpu->StatInjectReflectNPF, "/HM/CPU%u/EventInject/ReflectNPF", "Reflecting event that caused an EPT violation / nested #PF.");
845
846 HM_REG_COUNTER(&pHmCpu->StatFlushPage, "/HM/CPU%u/Flush/Page", "Invalidating a guest page on all guest CPUs.");
847 HM_REG_COUNTER(&pHmCpu->StatFlushPageManual, "/HM/CPU%u/Flush/Page/Virt", "Invalidating a guest page using guest-virtual address.");
848 HM_REG_COUNTER(&pHmCpu->StatFlushPhysPageManual, "/HM/CPU%u/Flush/Page/Phys", "Invalidating a guest page using guest-physical address.");
849 HM_REG_COUNTER(&pHmCpu->StatFlushTlb, "/HM/CPU%u/Flush/TLB", "Forcing a full guest-TLB flush (ring-0).");
850 HM_REG_COUNTER(&pHmCpu->StatFlushTlbManual, "/HM/CPU%u/Flush/TLB/Manual", "Request a full guest-TLB flush.");
851 HM_REG_COUNTER(&pHmCpu->StatFlushTlbNstGst, "/HM/CPU%u/Flush/TLB/NestedGuest", "Request a nested-guest-TLB flush.");
852 HM_REG_COUNTER(&pHmCpu->StatFlushTlbWorldSwitch, "/HM/CPU%u/Flush/TLB/CpuSwitch", "Forcing a full guest-TLB flush due to host-CPU reschedule or ASID-limit hit by another guest-VCPU.");
853 HM_REG_COUNTER(&pHmCpu->StatNoFlushTlbWorldSwitch, "/HM/CPU%u/Flush/TLB/Skipped", "No TLB flushing required.");
854 HM_REG_COUNTER(&pHmCpu->StatFlushEntire, "/HM/CPU%u/Flush/TLB/Entire", "Flush the entire TLB (host + guest).");
855 HM_REG_COUNTER(&pHmCpu->StatFlushAsid, "/HM/CPU%u/Flush/TLB/ASID", "Flushed guest-TLB entries for the current VPID.");
856 HM_REG_COUNTER(&pHmCpu->StatFlushNestedPaging, "/HM/CPU%u/Flush/TLB/NestedPaging", "Flushed guest-TLB entries for the current EPT.");
857 HM_REG_COUNTER(&pHmCpu->StatFlushTlbInvlpgVirt, "/HM/CPU%u/Flush/TLB/InvlpgVirt", "Invalidated a guest-TLB entry for a guest-virtual address.");
858 HM_REG_COUNTER(&pHmCpu->StatFlushTlbInvlpgPhys, "/HM/CPU%u/Flush/TLB/InvlpgPhys", "Currently not possible, flushes entire guest-TLB.");
859 HM_REG_COUNTER(&pHmCpu->StatTlbShootdown, "/HM/CPU%u/Flush/Shootdown/Page", "Inter-VCPU request to flush queued guest page.");
860 HM_REG_COUNTER(&pHmCpu->StatTlbShootdownFlush, "/HM/CPU%u/Flush/Shootdown/TLB", "Inter-VCPU request to flush entire guest-TLB.");
861
862 HM_REG_COUNTER(&pHmCpu->StatTscParavirt, "/HM/CPU%u/TSC/Paravirt", "Paravirtualized TSC in effect.");
863 HM_REG_COUNTER(&pHmCpu->StatTscOffset, "/HM/CPU%u/TSC/Offset", "TSC offsetting is in effect.");
864 HM_REG_COUNTER(&pHmCpu->StatTscIntercept, "/HM/CPU%u/TSC/Intercept", "Intercept TSC accesses.");
865
866 HM_REG_COUNTER(&pHmCpu->StatDRxArmed, "/HM/CPU%u/Debug/Armed", "Loaded guest-debug state while loading guest-state.");
867 HM_REG_COUNTER(&pHmCpu->StatDRxContextSwitch, "/HM/CPU%u/Debug/ContextSwitch", "Loaded guest-debug state on MOV DRx.");
868 HM_REG_COUNTER(&pHmCpu->StatDRxIoCheck, "/HM/CPU%u/Debug/IOCheck", "Checking for I/O breakpoint.");
869
870 HM_REG_COUNTER(&pHmCpu->StatExportMinimal, "/HM/CPU%u/Export/Minimal", "VM-entry exporting minimal guest-state.");
871 HM_REG_COUNTER(&pHmCpu->StatExportFull, "/HM/CPU%u/Export/Full", "VM-entry exporting the full guest-state.");
872 HM_REG_COUNTER(&pHmCpu->StatLoadGuestFpu, "/HM/CPU%u/Export/GuestFpu", "VM-entry loading the guest-FPU state.");
873 HM_REG_COUNTER(&pHmCpu->StatExportHostState, "/HM/CPU%u/Export/HostState", "VM-entry exporting host-state.");
874
875 if (fCpuSupportsVmx)
876 {
877 HM_REG_COUNTER(&pHmCpu->StatVmxWriteHostRip, "/HM/CPU%u/WriteHostRIP", "Number of VMX_VMCS_HOST_RIP instructions.");
878 HM_REG_COUNTER(&pHmCpu->StatVmxWriteHostRsp, "/HM/CPU%u/WriteHostRSP", "Number of VMX_VMCS_HOST_RSP instructions.");
879 HM_REG_COUNTER(&pHmCpu->StatVmxVmLaunch, "/HM/CPU%u/VMLaunch", "Number of VM-entries using VMLAUNCH.");
880 HM_REG_COUNTER(&pHmCpu->StatVmxVmResume, "/HM/CPU%u/VMResume", "Number of VM-entries using VMRESUME.");
881 }
882
883 HM_REG_COUNTER(&pHmCpu->StatVmxCheckBadRmSelBase, "/HM/CPU%u/VMXCheck/RMSelBase", "Could not use VMX due to unsuitable real-mode selector base.");
884 HM_REG_COUNTER(&pHmCpu->StatVmxCheckBadRmSelLimit, "/HM/CPU%u/VMXCheck/RMSelLimit", "Could not use VMX due to unsuitable real-mode selector limit.");
885 HM_REG_COUNTER(&pHmCpu->StatVmxCheckBadRmSelAttr, "/HM/CPU%u/VMXCheck/RMSelAttrs", "Could not use VMX due to unsuitable real-mode selector attributes.");
886
887 HM_REG_COUNTER(&pHmCpu->StatVmxCheckBadV86SelBase, "/HM/CPU%u/VMXCheck/V86SelBase", "Could not use VMX due to unsuitable v8086-mode selector base.");
888 HM_REG_COUNTER(&pHmCpu->StatVmxCheckBadV86SelLimit, "/HM/CPU%u/VMXCheck/V86SelLimit", "Could not use VMX due to unsuitable v8086-mode selector limit.");
889 HM_REG_COUNTER(&pHmCpu->StatVmxCheckBadV86SelAttr, "/HM/CPU%u/VMXCheck/V86SelAttrs", "Could not use VMX due to unsuitable v8086-mode selector attributes.");
890
891 HM_REG_COUNTER(&pHmCpu->StatVmxCheckRmOk, "/HM/CPU%u/VMXCheck/VMX_RM", "VMX execution in real (V86) mode OK.");
892 HM_REG_COUNTER(&pHmCpu->StatVmxCheckBadSel, "/HM/CPU%u/VMXCheck/Selector", "Could not use VMX due to unsuitable selector.");
893 HM_REG_COUNTER(&pHmCpu->StatVmxCheckBadRpl, "/HM/CPU%u/VMXCheck/RPL", "Could not use VMX due to unsuitable RPL.");
894 HM_REG_COUNTER(&pHmCpu->StatVmxCheckPmOk, "/HM/CPU%u/VMXCheck/VMX_PM", "VMX execution in protected mode OK.");
895#endif
896 if (fCpuSupportsVmx)
897 {
898 HM_REG_COUNTER(&pHmCpu->StatExitPreemptTimer, "/HM/CPU%u/PreemptTimer", "VMX-preemption timer fired.");
899 HM_REG_COUNTER(&pHmCpu->StatVmxPreemptionReusingDeadline, "/HM/CPU%u/PreemptTimer/ReusingDeadline", "VMX-preemption timer arming logic using previously calculated deadline");
900 HM_REG_COUNTER(&pHmCpu->StatVmxPreemptionReusingDeadlineExpired, "/HM/CPU%u/PreemptTimer/ReusingDeadlineExpired", "VMX-preemption timer arming logic found previous deadline already expired (ignored)");
901 HM_REG_COUNTER(&pHmCpu->StatVmxPreemptionRecalcingDeadline, "/HM/CPU%u/PreemptTimer/RecalcingDeadline", "VMX-preemption timer arming logic recalculating the deadline (slightly expensive)");
902 HM_REG_COUNTER(&pHmCpu->StatVmxPreemptionRecalcingDeadlineExpired, "/HM/CPU%u/PreemptTimer/RecalcingDeadlineExpired", "VMX-preemption timer arming logic found recalculated deadline expired (ignored)");
903 }
904#ifdef VBOX_WITH_STATISTICS
905 /*
906 * Guest Exit reason stats.
907 */
908 if (fCpuSupportsVmx)
909 {
910 for (int j = 0; j < MAX_EXITREASON_STAT; j++)
911 {
912 const char *pszExitName = HMGetVmxExitName(j);
913 if (pszExitName)
914 {
915 rc = STAMR3RegisterF(pVM, &pHmCpu->aStatExitReason[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED,
916 STAMUNIT_OCCURENCES, pszExitName, "/HM/CPU%u/Exit/Reason/%02x", idCpu, j);
917 AssertRCReturn(rc, rc);
918 }
919 }
920 }
921 else
922 {
923 for (int j = 0; j < MAX_EXITREASON_STAT; j++)
924 {
925 const char *pszExitName = HMGetSvmExitName(j);
926 if (pszExitName)
927 {
928 rc = STAMR3RegisterF(pVM, &pHmCpu->aStatExitReason[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED,
929 STAMUNIT_OCCURENCES, pszExitName, "/HM/CPU%u/Exit/Reason/%02x", idCpu, j);
930 AssertRC(rc);
931 }
932 }
933 }
934 HM_REG_COUNTER(&pHmCpu->StatExitReasonNpf, "/HM/CPU%u/Exit/Reason/#NPF", "Nested page faults");
935
936#if defined(VBOX_WITH_NESTED_HWVIRT_SVM) || defined(VBOX_WITH_NESTED_HWVIRT_VMX)
937 /*
938 * Nested-guest VM-exit reason stats.
939 */
940 if (fCpuSupportsVmx)
941 {
942 for (int j = 0; j < MAX_EXITREASON_STAT; j++)
943 {
944 const char *pszExitName = HMGetVmxExitName(j);
945 if (pszExitName)
946 {
947 rc = STAMR3RegisterF(pVM, &pHmCpu->aStatNestedExitReason[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED,
948 STAMUNIT_OCCURENCES, pszExitName, "/HM/CPU%u/Exit/NestedGuest/Reason/%02x", idCpu, j);
949 AssertRC(rc);
950 }
951 }
952 }
953 else
954 {
955 for (int j = 0; j < MAX_EXITREASON_STAT; j++)
956 {
957 const char *pszExitName = HMGetSvmExitName(j);
958 if (pszExitName)
959 {
960 rc = STAMR3RegisterF(pVM, &pHmCpu->aStatNestedExitReason[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED,
961 STAMUNIT_OCCURENCES, pszExitName, "/HM/CPU%u/Exit/NestedGuest/Reason/%02x", idCpu, j);
962 AssertRC(rc);
963 }
964 }
965 }
966 HM_REG_COUNTER(&pHmCpu->StatNestedExitReasonNpf, "/HM/CPU%u/Exit/NestedGuest/Reason/#NPF", "Nested page faults");
967#endif
968
969 /*
970 * Injected interrupts stats.
971 */
972 char szDesc[64];
973 for (unsigned j = 0; j < RT_ELEMENTS(pHmCpu->aStatInjectedIrqs); j++)
974 {
975 RTStrPrintf(&szDesc[0], sizeof(szDesc), "Interrupt %u", j);
976 rc = STAMR3RegisterF(pVM, &pHmCpu->aStatInjectedIrqs[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED,
977 STAMUNIT_OCCURENCES, szDesc, "/HM/CPU%u/EventInject/InjectIntr/%02X", idCpu, j);
978 AssertRC(rc);
979 }
980
981 /*
982 * Injected exception stats.
983 */
984 for (unsigned j = 0; j < RT_ELEMENTS(pHmCpu->aStatInjectedXcpts); j++)
985 {
986 RTStrPrintf(&szDesc[0], sizeof(szDesc), "%s exception", hmR3GetXcptName(j));
987 rc = STAMR3RegisterF(pVM, &pHmCpu->aStatInjectedXcpts[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED,
988 STAMUNIT_OCCURENCES, szDesc, "/HM/CPU%u/EventInject/InjectXcpt/%02X", idCpu, j);
989 AssertRC(rc);
990 }
991
992#endif /* VBOX_WITH_STATISTICS */
993#undef HM_REG_COUNTER
994#undef HM_REG_PROFILE
995#undef HM_REG_STAT
996 }
997
998 return VINF_SUCCESS;
999}
1000
1001
1002/**
1003 * Called when a init phase has completed.
1004 *
1005 * @returns VBox status code.
1006 * @param pVM The cross context VM structure.
1007 * @param enmWhat The phase that completed.
1008 */
1009VMMR3_INT_DECL(int) HMR3InitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
1010{
1011 switch (enmWhat)
1012 {
1013 case VMINITCOMPLETED_RING3:
1014 return hmR3InitFinalizeR3(pVM);
1015 case VMINITCOMPLETED_RING0:
1016 return hmR3InitFinalizeR0(pVM);
1017 default:
1018 return VINF_SUCCESS;
1019 }
1020}
1021
1022
1023/**
1024 * Turns off normal raw mode features.
1025 *
1026 * @param pVM The cross context VM structure.
1027 */
1028static void hmR3DisableRawMode(PVM pVM)
1029{
1030/** @todo r=bird: HM shouldn't be doing this crap. */
1031 /* Reinit the paging mode to force the new shadow mode. */
1032 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1033 {
1034 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
1035 PGMHCChangeMode(pVM, pVCpu, PGMMODE_REAL);
1036 }
1037}
1038
1039
1040/**
1041 * Initialize VT-x or AMD-V.
1042 *
1043 * @returns VBox status code.
1044 * @param pVM The cross context VM structure.
1045 */
1046static int hmR3InitFinalizeR0(PVM pVM)
1047{
1048 int rc;
1049
1050 if (!HMIsEnabled(pVM))
1051 return VINF_SUCCESS;
1052
1053 /*
1054 * Hack to allow users to work around broken BIOSes that incorrectly set
1055 * EFER.SVME, which makes us believe somebody else is already using AMD-V.
1056 */
1057 if ( !pVM->hm.s.vmx.fSupported
1058 && !pVM->hm.s.svm.fSupported
1059 && pVM->hm.s.ForR3.rcInit == VERR_SVM_IN_USE /* implies functional AMD-V */
1060 && RTEnvExist("VBOX_HWVIRTEX_IGNORE_SVM_IN_USE"))
1061 {
1062 LogRel(("HM: VBOX_HWVIRTEX_IGNORE_SVM_IN_USE active!\n"));
1063 pVM->hm.s.svm.fSupported = true;
1064 pVM->hm.s.svm.fIgnoreInUseError = true;
1065 pVM->hm.s.ForR3.rcInit = VINF_SUCCESS;
1066 }
1067
1068 /*
1069 * Report ring-0 init errors.
1070 */
1071 if ( !pVM->hm.s.vmx.fSupported
1072 && !pVM->hm.s.svm.fSupported)
1073 {
1074 LogRel(("HM: Failed to initialize VT-x / AMD-V: %Rrc\n", pVM->hm.s.ForR3.rcInit));
1075 LogRel(("HM: VMX MSR_IA32_FEATURE_CONTROL=%RX64\n", pVM->hm.s.ForR3.vmx.u64HostFeatCtrl));
1076 switch (pVM->hm.s.ForR3.rcInit)
1077 {
1078 case VERR_VMX_IN_VMX_ROOT_MODE:
1079 return VM_SET_ERROR(pVM, VERR_VMX_IN_VMX_ROOT_MODE, "VT-x is being used by another hypervisor");
1080 case VERR_VMX_NO_VMX:
1081 return VM_SET_ERROR(pVM, VERR_VMX_NO_VMX, "VT-x is not available");
1082 case VERR_VMX_MSR_VMX_DISABLED:
1083 return VM_SET_ERROR(pVM, VERR_VMX_MSR_VMX_DISABLED, "VT-x is disabled in the BIOS");
1084 case VERR_VMX_MSR_ALL_VMX_DISABLED:
1085 return VM_SET_ERROR(pVM, VERR_VMX_MSR_ALL_VMX_DISABLED, "VT-x is disabled in the BIOS for all CPU modes");
1086 case VERR_VMX_MSR_LOCKING_FAILED:
1087 return VM_SET_ERROR(pVM, VERR_VMX_MSR_LOCKING_FAILED, "Failed to lock VT-x features while trying to enable VT-x");
1088 case VERR_VMX_MSR_VMX_ENABLE_FAILED:
1089 return VM_SET_ERROR(pVM, VERR_VMX_MSR_VMX_ENABLE_FAILED, "Failed to enable VT-x features");
1090 case VERR_VMX_MSR_SMX_VMX_ENABLE_FAILED:
1091 return VM_SET_ERROR(pVM, VERR_VMX_MSR_SMX_VMX_ENABLE_FAILED, "Failed to enable VT-x features in SMX mode");
1092
1093 case VERR_SVM_IN_USE:
1094 return VM_SET_ERROR(pVM, VERR_SVM_IN_USE, "AMD-V is being used by another hypervisor");
1095 case VERR_SVM_NO_SVM:
1096 return VM_SET_ERROR(pVM, VERR_SVM_NO_SVM, "AMD-V is not available");
1097 case VERR_SVM_DISABLED:
1098 return VM_SET_ERROR(pVM, VERR_SVM_DISABLED, "AMD-V is disabled in the BIOS");
1099 }
1100 return VMSetError(pVM, pVM->hm.s.ForR3.rcInit, RT_SRC_POS, "HM ring-0 init failed: %Rrc", pVM->hm.s.ForR3.rcInit);
1101 }
1102
1103 /*
1104 * Enable VT-x or AMD-V on all host CPUs.
1105 */
1106 rc = SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pVM), 0 /*idCpu*/, VMMR0_DO_HM_ENABLE, 0, NULL);
1107 if (RT_FAILURE(rc))
1108 {
1109 LogRel(("HM: Failed to enable, error %Rrc\n", rc));
1110 HMR3CheckError(pVM, rc);
1111 return rc;
1112 }
1113
1114 /*
1115 * No TPR patching is required when the IO-APIC is not enabled for this VM.
1116 * (Main should have taken care of this already)
1117 */
1118 if (!PDMHasIoApic(pVM))
1119 {
1120 Assert(!pVM->hm.s.fTprPatchingAllowed); /* paranoia */
1121 pVM->hm.s.fTprPatchingAllowed = false;
1122 }
1123
1124 LogRel(("HM: fWorldSwitcher=%#x (fIbpbOnVmExit=%RTbool fIbpbOnVmEntry=%RTbool fL1dFlushOnVmEntry=%RTbool); fL1dFlushOnSched=%RTbool fMdsClearOnVmEntry=%RTbool\n",
1125 pVM->hm.s.ForR3.fWorldSwitcher, pVM->hm.s.fIbpbOnVmExit, pVM->hm.s.fIbpbOnVmEntry, pVM->hm.s.fL1dFlushOnVmEntry,
1126 pVM->hm.s.fL1dFlushOnSched, pVM->hm.s.fMdsClearOnVmEntry));
1127
1128 /*
1129 * Do the vendor specific initialization
1130 *
1131 * Note! We disable release log buffering here since we're doing relatively
1132 * lot of logging and doesn't want to hit the disk with each LogRel
1133 * statement.
1134 */
1135 AssertLogRelReturn(!pVM->hm.s.fInitialized, VERR_HM_IPE_5);
1136 bool fOldBuffered = RTLogRelSetBuffering(true /*fBuffered*/);
1137 if (pVM->hm.s.vmx.fSupported)
1138 rc = hmR3InitFinalizeR0Intel(pVM);
1139 else
1140 rc = hmR3InitFinalizeR0Amd(pVM);
1141 LogRel((pVM->hm.s.fGlobalInit ? "HM: VT-x/AMD-V init method: Global\n"
1142 : "HM: VT-x/AMD-V init method: Local\n"));
1143 RTLogRelSetBuffering(fOldBuffered);
1144 pVM->hm.s.fInitialized = true;
1145
1146 return rc;
1147}
1148
1149
1150/**
1151 * @callback_method_impl{FNPDMVMMDEVHEAPNOTIFY}
1152 */
1153static DECLCALLBACK(void) hmR3VmmDevHeapNotify(PVM pVM, void *pvAllocation, RTGCPHYS GCPhysAllocation)
1154{
1155 NOREF(pVM);
1156 NOREF(pvAllocation);
1157 NOREF(GCPhysAllocation);
1158}
1159
1160
1161/**
1162 * Returns a description of the VMCS (and associated regions') memory type given the
1163 * IA32_VMX_BASIC MSR.
1164 *
1165 * @returns The descriptive memory type.
1166 * @param uMsrVmxBasic IA32_VMX_BASIC MSR value.
1167 */
1168static const char *hmR3VmxGetMemTypeDesc(uint64_t uMsrVmxBasic)
1169{
1170 uint8_t const uMemType = RT_BF_GET(uMsrVmxBasic, VMX_BF_BASIC_VMCS_MEM_TYPE);
1171 switch (uMemType)
1172 {
1173 case VMX_BASIC_MEM_TYPE_WB: return "Write Back (WB)";
1174 case VMX_BASIC_MEM_TYPE_UC: return "Uncacheable (UC)";
1175 }
1176 return "Unknown";
1177}
1178
1179
1180/**
1181 * Returns a single-line description of all the activity-states supported by the CPU
1182 * given the IA32_VMX_MISC MSR.
1183 *
1184 * @returns All supported activity states.
1185 * @param uMsrMisc IA32_VMX_MISC MSR value.
1186 */
1187static const char *hmR3VmxGetActivityStateAllDesc(uint64_t uMsrMisc)
1188{
1189 static const char * const s_apszActStates[] =
1190 {
1191 "",
1192 " ( HLT )",
1193 " ( SHUTDOWN )",
1194 " ( HLT SHUTDOWN )",
1195 " ( SIPI_WAIT )",
1196 " ( HLT SIPI_WAIT )",
1197 " ( SHUTDOWN SIPI_WAIT )",
1198 " ( HLT SHUTDOWN SIPI_WAIT )"
1199 };
1200 uint8_t const idxActStates = RT_BF_GET(uMsrMisc, VMX_BF_MISC_ACTIVITY_STATES);
1201 Assert(idxActStates < RT_ELEMENTS(s_apszActStates));
1202 return s_apszActStates[idxActStates];
1203}
1204
1205
1206/**
1207 * Reports MSR_IA32_FEATURE_CONTROL MSR to the log.
1208 *
1209 * @param fFeatMsr The feature control MSR value.
1210 */
1211static void hmR3VmxReportFeatCtlMsr(uint64_t fFeatMsr)
1212{
1213 uint64_t const val = fFeatMsr;
1214 LogRel(("HM: MSR_IA32_FEATURE_CONTROL = %#RX64\n", val));
1215 HMVMX_REPORT_MSR_CAP(val, "LOCK", MSR_IA32_FEATURE_CONTROL_LOCK);
1216 HMVMX_REPORT_MSR_CAP(val, "SMX_VMXON", MSR_IA32_FEATURE_CONTROL_SMX_VMXON);
1217 HMVMX_REPORT_MSR_CAP(val, "VMXON", MSR_IA32_FEATURE_CONTROL_VMXON);
1218 HMVMX_REPORT_MSR_CAP(val, "SENTER_LOCAL_FN0", MSR_IA32_FEATURE_CONTROL_SENTER_LOCAL_FN_0);
1219 HMVMX_REPORT_MSR_CAP(val, "SENTER_LOCAL_FN1", MSR_IA32_FEATURE_CONTROL_SENTER_LOCAL_FN_1);
1220 HMVMX_REPORT_MSR_CAP(val, "SENTER_LOCAL_FN2", MSR_IA32_FEATURE_CONTROL_SENTER_LOCAL_FN_2);
1221 HMVMX_REPORT_MSR_CAP(val, "SENTER_LOCAL_FN3", MSR_IA32_FEATURE_CONTROL_SENTER_LOCAL_FN_3);
1222 HMVMX_REPORT_MSR_CAP(val, "SENTER_LOCAL_FN4", MSR_IA32_FEATURE_CONTROL_SENTER_LOCAL_FN_4);
1223 HMVMX_REPORT_MSR_CAP(val, "SENTER_LOCAL_FN5", MSR_IA32_FEATURE_CONTROL_SENTER_LOCAL_FN_5);
1224 HMVMX_REPORT_MSR_CAP(val, "SENTER_LOCAL_FN6", MSR_IA32_FEATURE_CONTROL_SENTER_LOCAL_FN_6);
1225 HMVMX_REPORT_MSR_CAP(val, "SENTER_GLOBAL_EN", MSR_IA32_FEATURE_CONTROL_SENTER_GLOBAL_EN);
1226 HMVMX_REPORT_MSR_CAP(val, "SGX_LAUNCH_EN", MSR_IA32_FEATURE_CONTROL_SGX_LAUNCH_EN);
1227 HMVMX_REPORT_MSR_CAP(val, "SGX_GLOBAL_EN", MSR_IA32_FEATURE_CONTROL_SGX_GLOBAL_EN);
1228 HMVMX_REPORT_MSR_CAP(val, "LMCE", MSR_IA32_FEATURE_CONTROL_LMCE);
1229 if (!(val & MSR_IA32_FEATURE_CONTROL_LOCK))
1230 LogRel(("HM: MSR_IA32_FEATURE_CONTROL lock bit not set, possibly bad hardware!\n"));
1231}
1232
1233
1234/**
1235 * Reports MSR_IA32_VMX_BASIC MSR to the log.
1236 *
1237 * @param uBasicMsr The VMX basic MSR value.
1238 */
1239static void hmR3VmxReportBasicMsr(uint64_t uBasicMsr)
1240{
1241 LogRel(("HM: MSR_IA32_VMX_BASIC = %#RX64\n", uBasicMsr));
1242 LogRel(("HM: VMCS id = %#x\n", RT_BF_GET(uBasicMsr, VMX_BF_BASIC_VMCS_ID)));
1243 LogRel(("HM: VMCS size = %u bytes\n", RT_BF_GET(uBasicMsr, VMX_BF_BASIC_VMCS_SIZE)));
1244 LogRel(("HM: VMCS physical address limit = %s\n", RT_BF_GET(uBasicMsr, VMX_BF_BASIC_PHYSADDR_WIDTH) ?
1245 "< 4 GB" : "None"));
1246 LogRel(("HM: VMCS memory type = %s\n", hmR3VmxGetMemTypeDesc(uBasicMsr)));
1247 LogRel(("HM: Dual-monitor treatment support = %RTbool\n", RT_BF_GET(uBasicMsr, VMX_BF_BASIC_DUAL_MON)));
1248 LogRel(("HM: OUTS & INS instruction-info = %RTbool\n", RT_BF_GET(uBasicMsr, VMX_BF_BASIC_VMCS_INS_OUTS)));
1249 LogRel(("HM: Supports true-capability MSRs = %RTbool\n", RT_BF_GET(uBasicMsr, VMX_BF_BASIC_TRUE_CTLS)));
1250 LogRel(("HM: VM-entry Xcpt error-code optional = %RTbool\n", RT_BF_GET(uBasicMsr, VMX_BF_BASIC_XCPT_ERRCODE)));
1251}
1252
1253
1254/**
1255 * Reports MSR_IA32_PINBASED_CTLS to the log.
1256 *
1257 * @param pVmxMsr Pointer to the VMX MSR.
1258 */
1259static void hmR3VmxReportPinBasedCtlsMsr(PCVMXCTLSMSR pVmxMsr)
1260{
1261 uint64_t const fAllowed1 = pVmxMsr->n.allowed1;
1262 uint64_t const fAllowed0 = pVmxMsr->n.allowed0;
1263 LogRel(("HM: MSR_IA32_VMX_PINBASED_CTLS = %#RX64\n", pVmxMsr->u));
1264 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "EXT_INT_EXIT", VMX_PIN_CTLS_EXT_INT_EXIT);
1265 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "NMI_EXIT", VMX_PIN_CTLS_NMI_EXIT);
1266 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "VIRTUAL_NMI", VMX_PIN_CTLS_VIRT_NMI);
1267 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "PREEMPT_TIMER", VMX_PIN_CTLS_PREEMPT_TIMER);
1268 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "POSTED_INT", VMX_PIN_CTLS_POSTED_INT);
1269}
1270
1271
1272/**
1273 * Reports MSR_IA32_VMX_PROCBASED_CTLS MSR to the log.
1274 *
1275 * @param pVmxMsr Pointer to the VMX MSR.
1276 */
1277static void hmR3VmxReportProcBasedCtlsMsr(PCVMXCTLSMSR pVmxMsr)
1278{
1279 uint64_t const fAllowed1 = pVmxMsr->n.allowed1;
1280 uint64_t const fAllowed0 = pVmxMsr->n.allowed0;
1281 LogRel(("HM: MSR_IA32_VMX_PROCBASED_CTLS = %#RX64\n", pVmxMsr->u));
1282 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "INT_WINDOW_EXIT", VMX_PROC_CTLS_INT_WINDOW_EXIT);
1283 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "USE_TSC_OFFSETTING", VMX_PROC_CTLS_USE_TSC_OFFSETTING);
1284 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "HLT_EXIT", VMX_PROC_CTLS_HLT_EXIT);
1285 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "INVLPG_EXIT", VMX_PROC_CTLS_INVLPG_EXIT);
1286 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "MWAIT_EXIT", VMX_PROC_CTLS_MWAIT_EXIT);
1287 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "RDPMC_EXIT", VMX_PROC_CTLS_RDPMC_EXIT);
1288 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "RDTSC_EXIT", VMX_PROC_CTLS_RDTSC_EXIT);
1289 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CR3_LOAD_EXIT", VMX_PROC_CTLS_CR3_LOAD_EXIT);
1290 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CR3_STORE_EXIT", VMX_PROC_CTLS_CR3_STORE_EXIT);
1291 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "USE_TERTIARY_CTLS", VMX_PROC_CTLS_USE_TERTIARY_CTLS);
1292 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CR8_LOAD_EXIT", VMX_PROC_CTLS_CR8_LOAD_EXIT);
1293 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CR8_STORE_EXIT", VMX_PROC_CTLS_CR8_STORE_EXIT);
1294 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "USE_TPR_SHADOW", VMX_PROC_CTLS_USE_TPR_SHADOW);
1295 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "NMI_WINDOW_EXIT", VMX_PROC_CTLS_NMI_WINDOW_EXIT);
1296 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "MOV_DR_EXIT", VMX_PROC_CTLS_MOV_DR_EXIT);
1297 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "UNCOND_IO_EXIT", VMX_PROC_CTLS_UNCOND_IO_EXIT);
1298 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "USE_IO_BITMAPS", VMX_PROC_CTLS_USE_IO_BITMAPS);
1299 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "MONITOR_TRAP_FLAG", VMX_PROC_CTLS_MONITOR_TRAP_FLAG);
1300 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "USE_MSR_BITMAPS", VMX_PROC_CTLS_USE_MSR_BITMAPS);
1301 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "MONITOR_EXIT", VMX_PROC_CTLS_MONITOR_EXIT);
1302 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "PAUSE_EXIT", VMX_PROC_CTLS_PAUSE_EXIT);
1303 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "USE_SECONDARY_CTLS", VMX_PROC_CTLS_USE_SECONDARY_CTLS);
1304}
1305
1306
1307/**
1308 * Reports MSR_IA32_VMX_PROCBASED_CTLS2 MSR to the log.
1309 *
1310 * @param pVmxMsr Pointer to the VMX MSR.
1311 */
1312static void hmR3VmxReportProcBasedCtls2Msr(PCVMXCTLSMSR pVmxMsr)
1313{
1314 uint64_t const fAllowed1 = pVmxMsr->n.allowed1;
1315 uint64_t const fAllowed0 = pVmxMsr->n.allowed0;
1316 LogRel(("HM: MSR_IA32_VMX_PROCBASED_CTLS2 = %#RX64\n", pVmxMsr->u));
1317 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "VIRT_APIC_ACCESS", VMX_PROC_CTLS2_VIRT_APIC_ACCESS);
1318 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "EPT", VMX_PROC_CTLS2_EPT);
1319 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "DESC_TABLE_EXIT", VMX_PROC_CTLS2_DESC_TABLE_EXIT);
1320 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "RDTSCP", VMX_PROC_CTLS2_RDTSCP);
1321 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "VIRT_X2APIC_MODE", VMX_PROC_CTLS2_VIRT_X2APIC_MODE);
1322 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "VPID", VMX_PROC_CTLS2_VPID);
1323 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "WBINVD_EXIT", VMX_PROC_CTLS2_WBINVD_EXIT);
1324 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "UNRESTRICTED_GUEST", VMX_PROC_CTLS2_UNRESTRICTED_GUEST);
1325 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "APIC_REG_VIRT", VMX_PROC_CTLS2_APIC_REG_VIRT);
1326 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "VIRT_INT_DELIVERY", VMX_PROC_CTLS2_VIRT_INT_DELIVERY);
1327 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "PAUSE_LOOP_EXIT", VMX_PROC_CTLS2_PAUSE_LOOP_EXIT);
1328 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "RDRAND_EXIT", VMX_PROC_CTLS2_RDRAND_EXIT);
1329 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "INVPCID", VMX_PROC_CTLS2_INVPCID);
1330 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "VMFUNC", VMX_PROC_CTLS2_VMFUNC);
1331 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "VMCS_SHADOWING", VMX_PROC_CTLS2_VMCS_SHADOWING);
1332 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "ENCLS_EXIT", VMX_PROC_CTLS2_ENCLS_EXIT);
1333 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "RDSEED_EXIT", VMX_PROC_CTLS2_RDSEED_EXIT);
1334 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "PML", VMX_PROC_CTLS2_PML);
1335 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "EPT_XCPT_VE", VMX_PROC_CTLS2_EPT_XCPT_VE);
1336 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CONCEAL_VMX_FROM_PT", VMX_PROC_CTLS2_CONCEAL_VMX_FROM_PT);
1337 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "XSAVES_XRSTORS", VMX_PROC_CTLS2_XSAVES_XRSTORS);
1338 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "MODE_BASED_EPT_PERM", VMX_PROC_CTLS2_MODE_BASED_EPT_PERM);
1339 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "SPP_EPT", VMX_PROC_CTLS2_SPP_EPT);
1340 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "PT_EPT", VMX_PROC_CTLS2_PT_EPT);
1341 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "TSC_SCALING", VMX_PROC_CTLS2_TSC_SCALING);
1342 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "USER_WAIT_PAUSE", VMX_PROC_CTLS2_USER_WAIT_PAUSE);
1343 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "ENCLV_EXIT", VMX_PROC_CTLS2_ENCLV_EXIT);
1344}
1345
1346
1347/**
1348 * Reports MSR_IA32_VMX_PROCBASED_CTLS3 MSR to the log.
1349 *
1350 * @param uProcCtls3 The tertiary processor-based VM-execution control MSR.
1351 */
1352static void hmR3VmxReportProcBasedCtls3Msr(uint64_t uProcCtls3)
1353{
1354 LogRel(("HM: MSR_IA32_VMX_PROCBASED_CTLS3 = %#RX64\n", uProcCtls3));
1355 LogRel(("HM: LOADIWKEY_EXIT = %RTbool\n", RT_BOOL(uProcCtls3 & VMX_PROC_CTLS3_LOADIWKEY_EXIT)));
1356}
1357
1358
1359/**
1360 * Reports MSR_IA32_VMX_ENTRY_CTLS to the log.
1361 *
1362 * @param pVmxMsr Pointer to the VMX MSR.
1363 */
1364static void hmR3VmxReportEntryCtlsMsr(PCVMXCTLSMSR pVmxMsr)
1365{
1366 uint64_t const fAllowed1 = pVmxMsr->n.allowed1;
1367 uint64_t const fAllowed0 = pVmxMsr->n.allowed0;
1368 LogRel(("HM: MSR_IA32_VMX_ENTRY_CTLS = %#RX64\n", pVmxMsr->u));
1369 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_DEBUG", VMX_ENTRY_CTLS_LOAD_DEBUG);
1370 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "IA32E_MODE_GUEST", VMX_ENTRY_CTLS_IA32E_MODE_GUEST);
1371 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "ENTRY_TO_SMM", VMX_ENTRY_CTLS_ENTRY_TO_SMM);
1372 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "DEACTIVATE_DUAL_MON", VMX_ENTRY_CTLS_DEACTIVATE_DUAL_MON);
1373 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_PERF_MSR", VMX_ENTRY_CTLS_LOAD_PERF_MSR);
1374 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_PAT_MSR", VMX_ENTRY_CTLS_LOAD_PAT_MSR);
1375 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_EFER_MSR", VMX_ENTRY_CTLS_LOAD_EFER_MSR);
1376 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_BNDCFGS_MSR", VMX_ENTRY_CTLS_LOAD_BNDCFGS_MSR);
1377 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CONCEAL_VMX_FROM_PT", VMX_ENTRY_CTLS_CONCEAL_VMX_FROM_PT);
1378 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_RTIT_CTL_MSR", VMX_ENTRY_CTLS_LOAD_RTIT_CTL_MSR);
1379 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_CET_STATE", VMX_ENTRY_CTLS_LOAD_CET_STATE);
1380 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_PKRS_MSR", VMX_ENTRY_CTLS_LOAD_PKRS_MSR);
1381}
1382
1383
1384/**
1385 * Reports MSR_IA32_VMX_EXIT_CTLS to the log.
1386 *
1387 * @param pVmxMsr Pointer to the VMX MSR.
1388 */
1389static void hmR3VmxReportExitCtlsMsr(PCVMXCTLSMSR pVmxMsr)
1390{
1391 uint64_t const fAllowed1 = pVmxMsr->n.allowed1;
1392 uint64_t const fAllowed0 = pVmxMsr->n.allowed0;
1393 LogRel(("HM: MSR_IA32_VMX_EXIT_CTLS = %#RX64\n", pVmxMsr->u));
1394 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "SAVE_DEBUG", VMX_EXIT_CTLS_SAVE_DEBUG);
1395 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "HOST_ADDR_SPACE_SIZE", VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE);
1396 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_PERF_MSR", VMX_EXIT_CTLS_LOAD_PERF_MSR);
1397 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "ACK_EXT_INT", VMX_EXIT_CTLS_ACK_EXT_INT);
1398 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "SAVE_PAT_MSR", VMX_EXIT_CTLS_SAVE_PAT_MSR);
1399 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_PAT_MSR", VMX_EXIT_CTLS_LOAD_PAT_MSR);
1400 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "SAVE_EFER_MSR", VMX_EXIT_CTLS_SAVE_EFER_MSR);
1401 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_EFER_MSR", VMX_EXIT_CTLS_LOAD_EFER_MSR);
1402 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "SAVE_PREEMPT_TIMER", VMX_EXIT_CTLS_SAVE_PREEMPT_TIMER);
1403 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CLEAR_BNDCFGS_MSR", VMX_EXIT_CTLS_CLEAR_BNDCFGS_MSR);
1404 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CONCEAL_VMX_FROM_PT", VMX_EXIT_CTLS_CONCEAL_VMX_FROM_PT);
1405 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CLEAR_RTIT_CTL_MSR", VMX_EXIT_CTLS_CLEAR_RTIT_CTL_MSR);
1406 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_CET_STATE", VMX_EXIT_CTLS_LOAD_CET_STATE);
1407 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_PKRS_MSR", VMX_EXIT_CTLS_LOAD_PKRS_MSR);
1408}
1409
1410
1411/**
1412 * Reports MSR_IA32_VMX_EPT_VPID_CAP MSR to the log.
1413 *
1414 * @param fCaps The VMX EPT/VPID capability MSR value.
1415 */
1416static void hmR3VmxReportEptVpidCapsMsr(uint64_t fCaps)
1417{
1418 LogRel(("HM: MSR_IA32_VMX_EPT_VPID_CAP = %#RX64\n", fCaps));
1419 HMVMX_REPORT_MSR_CAP(fCaps, "RWX_X_ONLY", MSR_IA32_VMX_EPT_VPID_CAP_RWX_X_ONLY);
1420 HMVMX_REPORT_MSR_CAP(fCaps, "PAGE_WALK_LENGTH_4", MSR_IA32_VMX_EPT_VPID_CAP_PAGE_WALK_LENGTH_4);
1421 HMVMX_REPORT_MSR_CAP(fCaps, "PAGE_WALK_LENGTH_5", MSR_IA32_VMX_EPT_VPID_CAP_PAGE_WALK_LENGTH_5);
1422 HMVMX_REPORT_MSR_CAP(fCaps, "MEMTYPE_UC", MSR_IA32_VMX_EPT_VPID_CAP_MEMTYPE_UC);
1423 HMVMX_REPORT_MSR_CAP(fCaps, "MEMTYPE_WB", MSR_IA32_VMX_EPT_VPID_CAP_MEMTYPE_WB);
1424 HMVMX_REPORT_MSR_CAP(fCaps, "PDE_2M", MSR_IA32_VMX_EPT_VPID_CAP_PDE_2M);
1425 HMVMX_REPORT_MSR_CAP(fCaps, "PDPTE_1G", MSR_IA32_VMX_EPT_VPID_CAP_PDPTE_1G);
1426 HMVMX_REPORT_MSR_CAP(fCaps, "INVEPT", MSR_IA32_VMX_EPT_VPID_CAP_INVEPT);
1427 HMVMX_REPORT_MSR_CAP(fCaps, "ACCESS_DIRTY", MSR_IA32_VMX_EPT_VPID_CAP_ACCESS_DIRTY);
1428 HMVMX_REPORT_MSR_CAP(fCaps, "ADVEXITINFO_EPT_VIOLATION", MSR_IA32_VMX_EPT_VPID_CAP_ADVEXITINFO_EPT_VIOLATION);
1429 HMVMX_REPORT_MSR_CAP(fCaps, "SUPER_SHW_STACK", MSR_IA32_VMX_EPT_VPID_CAP_SUPER_SHW_STACK);
1430 HMVMX_REPORT_MSR_CAP(fCaps, "INVEPT_SINGLE_CONTEXT", MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_SINGLE_CONTEXT);
1431 HMVMX_REPORT_MSR_CAP(fCaps, "INVEPT_ALL_CONTEXTS", MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_ALL_CONTEXTS);
1432 HMVMX_REPORT_MSR_CAP(fCaps, "INVVPID", MSR_IA32_VMX_EPT_VPID_CAP_INVVPID);
1433 HMVMX_REPORT_MSR_CAP(fCaps, "INVVPID_INDIV_ADDR", MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR);
1434 HMVMX_REPORT_MSR_CAP(fCaps, "INVVPID_SINGLE_CONTEXT", MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT);
1435 HMVMX_REPORT_MSR_CAP(fCaps, "INVVPID_ALL_CONTEXTS", MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_ALL_CONTEXTS);
1436 HMVMX_REPORT_MSR_CAP(fCaps, "INVVPID_SINGLE_CONTEXT_RETAIN_GLOBALS", MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT_RETAIN_GLOBALS);
1437}
1438
1439
1440/**
1441 * Reports MSR_IA32_VMX_MISC MSR to the log.
1442 *
1443 * @param pVM Pointer to the VM.
1444 * @param fMisc The VMX misc. MSR value.
1445 */
1446static void hmR3VmxReportMiscMsr(PVM pVM, uint64_t fMisc)
1447{
1448 LogRel(("HM: MSR_IA32_VMX_MISC = %#RX64\n", fMisc));
1449 uint8_t const cPreemptTimerShift = RT_BF_GET(fMisc, VMX_BF_MISC_PREEMPT_TIMER_TSC);
1450 if (cPreemptTimerShift == pVM->hm.s.vmx.cPreemptTimerShift)
1451 LogRel(("HM: PREEMPT_TIMER_TSC = %#x\n", cPreemptTimerShift));
1452 else
1453 {
1454 LogRel(("HM: PREEMPT_TIMER_TSC = %#x - erratum detected, using %#x instead\n", cPreemptTimerShift,
1455 pVM->hm.s.vmx.cPreemptTimerShift));
1456 }
1457 LogRel(("HM: EXIT_SAVE_EFER_LMA = %RTbool\n", RT_BF_GET(fMisc, VMX_BF_MISC_EXIT_SAVE_EFER_LMA)));
1458 LogRel(("HM: ACTIVITY_STATES = %#x%s\n", RT_BF_GET(fMisc, VMX_BF_MISC_ACTIVITY_STATES),
1459 hmR3VmxGetActivityStateAllDesc(fMisc)));
1460 LogRel(("HM: INTEL_PT = %RTbool\n", RT_BF_GET(fMisc, VMX_BF_MISC_INTEL_PT)));
1461 LogRel(("HM: SMM_READ_SMBASE_MSR = %RTbool\n", RT_BF_GET(fMisc, VMX_BF_MISC_SMM_READ_SMBASE_MSR)));
1462 LogRel(("HM: CR3_TARGET = %#x\n", RT_BF_GET(fMisc, VMX_BF_MISC_CR3_TARGET)));
1463 LogRel(("HM: MAX_MSR = %#x ( %u )\n", RT_BF_GET(fMisc, VMX_BF_MISC_MAX_MSRS),
1464 VMX_MISC_MAX_MSRS(fMisc)));
1465 LogRel(("HM: VMXOFF_BLOCK_SMI = %RTbool\n", RT_BF_GET(fMisc, VMX_BF_MISC_VMXOFF_BLOCK_SMI)));
1466 LogRel(("HM: VMWRITE_ALL = %RTbool\n", RT_BF_GET(fMisc, VMX_BF_MISC_VMWRITE_ALL)));
1467 LogRel(("HM: ENTRY_INJECT_SOFT_INT = %#x\n", RT_BF_GET(fMisc, VMX_BF_MISC_ENTRY_INJECT_SOFT_INT)));
1468 LogRel(("HM: MSEG_ID = %#x\n", RT_BF_GET(fMisc, VMX_BF_MISC_MSEG_ID)));
1469}
1470
1471
1472/**
1473 * Reports MSR_IA32_VMX_VMCS_ENUM MSR to the log.
1474 *
1475 * @param uVmcsEnum The VMX VMCS enum MSR value.
1476 */
1477static void hmR3VmxReportVmcsEnumMsr(uint64_t uVmcsEnum)
1478{
1479 LogRel(("HM: MSR_IA32_VMX_VMCS_ENUM = %#RX64\n", uVmcsEnum));
1480 LogRel(("HM: HIGHEST_IDX = %#x\n", RT_BF_GET(uVmcsEnum, VMX_BF_VMCS_ENUM_HIGHEST_IDX)));
1481}
1482
1483
1484/**
1485 * Reports MSR_IA32_VMX_VMFUNC MSR to the log.
1486 *
1487 * @param uVmFunc The VMX VMFUNC MSR value.
1488 */
1489static void hmR3VmxReportVmFuncMsr(uint64_t uVmFunc)
1490{
1491 LogRel(("HM: MSR_IA32_VMX_VMFUNC = %#RX64\n", uVmFunc));
1492 HMVMX_REPORT_ALLOWED_FEAT(uVmFunc, "EPTP_SWITCHING", RT_BF_GET(uVmFunc, VMX_BF_VMFUNC_EPTP_SWITCHING));
1493}
1494
1495
1496/**
1497 * Reports VMX CR0, CR4 fixed MSRs.
1498 *
1499 * @param pMsrs Pointer to the VMX MSRs.
1500 */
1501static void hmR3VmxReportCrFixedMsrs(PVMXMSRS pMsrs)
1502{
1503 LogRel(("HM: MSR_IA32_VMX_CR0_FIXED0 = %#RX64\n", pMsrs->u64Cr0Fixed0));
1504 LogRel(("HM: MSR_IA32_VMX_CR0_FIXED1 = %#RX64\n", pMsrs->u64Cr0Fixed1));
1505 LogRel(("HM: MSR_IA32_VMX_CR4_FIXED0 = %#RX64\n", pMsrs->u64Cr4Fixed0));
1506 LogRel(("HM: MSR_IA32_VMX_CR4_FIXED1 = %#RX64\n", pMsrs->u64Cr4Fixed1));
1507}
1508
1509
1510/**
1511 * Finish VT-x initialization (after ring-0 init).
1512 *
1513 * @returns VBox status code.
1514 * @param pVM The cross context VM structure.
1515 */
1516static int hmR3InitFinalizeR0Intel(PVM pVM)
1517{
1518 int rc;
1519
1520 LogFunc(("pVM->hm.s.vmx.fSupported = %d\n", pVM->hm.s.vmx.fSupported));
1521 AssertLogRelReturn(pVM->hm.s.ForR3.vmx.u64HostFeatCtrl != 0, VERR_HM_IPE_4);
1522
1523 LogRel(("HM: Using VT-x implementation 3.0\n"));
1524 LogRel(("HM: Max resume loops = %u\n", pVM->hm.s.cMaxResumeLoopsCfg));
1525 LogRel(("HM: Host CR4 = %#RX64\n", pVM->hm.s.ForR3.vmx.u64HostCr4));
1526 LogRel(("HM: Host EFER = %#RX64\n", pVM->hm.s.ForR3.vmx.u64HostMsrEfer));
1527 LogRel(("HM: MSR_IA32_SMM_MONITOR_CTL = %#RX64\n", pVM->hm.s.ForR3.vmx.u64HostSmmMonitorCtl));
1528
1529 hmR3VmxReportFeatCtlMsr(pVM->hm.s.ForR3.vmx.u64HostFeatCtrl);
1530 hmR3VmxReportBasicMsr(pVM->hm.s.ForR3.vmx.Msrs.u64Basic);
1531
1532 hmR3VmxReportPinBasedCtlsMsr(&pVM->hm.s.ForR3.vmx.Msrs.PinCtls);
1533 hmR3VmxReportProcBasedCtlsMsr(&pVM->hm.s.ForR3.vmx.Msrs.ProcCtls);
1534 if (pVM->hm.s.ForR3.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
1535 hmR3VmxReportProcBasedCtls2Msr(&pVM->hm.s.ForR3.vmx.Msrs.ProcCtls2);
1536 if (pVM->hm.s.ForR3.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_TERTIARY_CTLS)
1537 hmR3VmxReportProcBasedCtls3Msr(pVM->hm.s.ForR3.vmx.Msrs.u64ProcCtls3);
1538
1539 hmR3VmxReportEntryCtlsMsr(&pVM->hm.s.ForR3.vmx.Msrs.EntryCtls);
1540 hmR3VmxReportExitCtlsMsr(&pVM->hm.s.ForR3.vmx.Msrs.ExitCtls);
1541
1542 if (RT_BF_GET(pVM->hm.s.ForR3.vmx.Msrs.u64Basic, VMX_BF_BASIC_TRUE_CTLS))
1543 {
1544 /* We don't extensively dump the true capability MSRs as we don't use them, see @bugref{9180#c5}. */
1545 LogRel(("HM: MSR_IA32_VMX_TRUE_PINBASED_CTLS = %#RX64\n", pVM->hm.s.ForR3.vmx.Msrs.TruePinCtls));
1546 LogRel(("HM: MSR_IA32_VMX_TRUE_PROCBASED_CTLS = %#RX64\n", pVM->hm.s.ForR3.vmx.Msrs.TrueProcCtls));
1547 LogRel(("HM: MSR_IA32_VMX_TRUE_ENTRY_CTLS = %#RX64\n", pVM->hm.s.ForR3.vmx.Msrs.TrueEntryCtls));
1548 LogRel(("HM: MSR_IA32_VMX_TRUE_EXIT_CTLS = %#RX64\n", pVM->hm.s.ForR3.vmx.Msrs.TrueExitCtls));
1549 }
1550
1551 hmR3VmxReportMiscMsr(pVM, pVM->hm.s.ForR3.vmx.Msrs.u64Misc);
1552 hmR3VmxReportVmcsEnumMsr(pVM->hm.s.ForR3.vmx.Msrs.u64VmcsEnum);
1553 if (pVM->hm.s.ForR3.vmx.Msrs.u64EptVpidCaps)
1554 hmR3VmxReportEptVpidCapsMsr(pVM->hm.s.ForR3.vmx.Msrs.u64EptVpidCaps);
1555 if (pVM->hm.s.ForR3.vmx.Msrs.u64VmFunc)
1556 hmR3VmxReportVmFuncMsr(pVM->hm.s.ForR3.vmx.Msrs.u64VmFunc);
1557 hmR3VmxReportCrFixedMsrs(&pVM->hm.s.ForR3.vmx.Msrs);
1558
1559#ifdef TODO_9217_VMCSINFO
1560 LogRel(("HM: APIC-access page physaddr = %#RHp\n", pVM->hm.s.vmx.HCPhysApicAccess));
1561 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1562 {
1563 PCVMXVMCSINFOSHARED pVmcsInfo = &pVM->apCpusR3[idCpu]->hm.s.vmx.VmcsInfo;
1564 LogRel(("HM: VCPU%3d: MSR bitmap physaddr = %#RHp\n", idCpu, pVmcsInfo->HCPhysMsrBitmap));
1565 LogRel(("HM: VCPU%3d: VMCS physaddr = %#RHp\n", idCpu, pVmcsInfo->HCPhysVmcs));
1566 }
1567#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
1568 if (pVM->cpum.ro.GuestFeatures.fVmx)
1569 {
1570 LogRel(("HM: Nested-guest:\n"));
1571 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1572 {
1573 PCVMXVMCSINFOSHARED pVmcsInfoNstGst = &pVM->apCpusR3[idCpu]->hm.s.vmx.VmcsInfoNstGst;
1574 LogRel(("HM: VCPU%3d: MSR bitmap physaddr = %#RHp\n", idCpu, pVmcsInfoNstGst->HCPhysMsrBitmap));
1575 LogRel(("HM: VCPU%3d: VMCS physaddr = %#RHp\n", idCpu, pVmcsInfoNstGst->HCPhysVmcs));
1576 }
1577 }
1578#endif
1579#endif /* TODO_9217_VMCSINFO */
1580
1581 /*
1582 * EPT and unrestricted guest execution are determined in HMR3Init, verify the sanity of that.
1583 */
1584 AssertLogRelReturn( !pVM->hm.s.fNestedPagingCfg
1585 || (pVM->hm.s.ForR3.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_EPT),
1586 VERR_HM_IPE_1);
1587 AssertLogRelReturn( !pVM->hm.s.vmx.fUnrestrictedGuestCfg
1588 || ( (pVM->hm.s.ForR3.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_UNRESTRICTED_GUEST)
1589 && pVM->hm.s.fNestedPagingCfg),
1590 VERR_HM_IPE_1);
1591
1592 /*
1593 * Disallow RDTSCP in the guest if there is no secondary process-based VM execution controls as otherwise
1594 * RDTSCP would cause a #UD. There might be no CPUs out there where this happens, as RDTSCP was introduced
1595 * in Nehalems and secondary VM exec. controls should be supported in all of them, but nonetheless it's Intel...
1596 */
1597 if ( !(pVM->hm.s.ForR3.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
1598 && CPUMR3GetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_RDTSCP))
1599 {
1600 CPUMR3ClearGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_RDTSCP);
1601 LogRel(("HM: Disabled RDTSCP\n"));
1602 }
1603
1604 if (!pVM->hm.s.vmx.fUnrestrictedGuestCfg)
1605 {
1606 /* Allocate three pages for the TSS we need for real mode emulation. (2 pages for the IO bitmap) */
1607 rc = PDMR3VmmDevHeapAlloc(pVM, HM_VTX_TOTAL_DEVHEAP_MEM, hmR3VmmDevHeapNotify, (RTR3PTR *)&pVM->hm.s.vmx.pRealModeTSS);
1608 if (RT_SUCCESS(rc))
1609 {
1610 /* The IO bitmap starts right after the virtual interrupt redirection bitmap.
1611 Refer Intel spec. 20.3.3 "Software Interrupt Handling in Virtual-8086 mode"
1612 esp. Figure 20-5.*/
1613 ASMMemZero32(pVM->hm.s.vmx.pRealModeTSS, sizeof(*pVM->hm.s.vmx.pRealModeTSS));
1614 pVM->hm.s.vmx.pRealModeTSS->offIoBitmap = sizeof(*pVM->hm.s.vmx.pRealModeTSS);
1615
1616 /* Bit set to 0 means software interrupts are redirected to the
1617 8086 program interrupt handler rather than switching to
1618 protected-mode handler. */
1619 memset(pVM->hm.s.vmx.pRealModeTSS->IntRedirBitmap, 0, sizeof(pVM->hm.s.vmx.pRealModeTSS->IntRedirBitmap));
1620
1621 /* Allow all port IO, so that port IO instructions do not cause
1622 exceptions and would instead cause a VM-exit (based on VT-x's
1623 IO bitmap which we currently configure to always cause an exit). */
1624 memset(pVM->hm.s.vmx.pRealModeTSS + 1, 0, X86_PAGE_SIZE * 2);
1625 *((unsigned char *)pVM->hm.s.vmx.pRealModeTSS + HM_VTX_TSS_SIZE - 2) = 0xff;
1626
1627 /*
1628 * Construct a 1024 element page directory with 4 MB pages for the identity mapped
1629 * page table used in real and protected mode without paging with EPT.
1630 */
1631 pVM->hm.s.vmx.pNonPagingModeEPTPageTable = (PX86PD)((char *)pVM->hm.s.vmx.pRealModeTSS + X86_PAGE_SIZE * 3);
1632 for (uint32_t i = 0; i < X86_PG_ENTRIES; i++)
1633 {
1634 pVM->hm.s.vmx.pNonPagingModeEPTPageTable->a[i].u = _4M * i;
1635 pVM->hm.s.vmx.pNonPagingModeEPTPageTable->a[i].u |= X86_PDE4M_P | X86_PDE4M_RW | X86_PDE4M_US
1636 | X86_PDE4M_A | X86_PDE4M_D | X86_PDE4M_PS
1637 | X86_PDE4M_G;
1638 }
1639
1640 /* We convert it here every time as PCI regions could be reconfigured. */
1641 if (PDMVmmDevHeapIsEnabled(pVM))
1642 {
1643 RTGCPHYS GCPhys;
1644 rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pRealModeTSS, &GCPhys);
1645 AssertRCReturn(rc, rc);
1646 LogRel(("HM: Real Mode TSS guest physaddr = %#RGp\n", GCPhys));
1647
1648 rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pNonPagingModeEPTPageTable, &GCPhys);
1649 AssertRCReturn(rc, rc);
1650 LogRel(("HM: Non-Paging Mode EPT CR3 = %#RGp\n", GCPhys));
1651 }
1652 }
1653 else
1654 {
1655 LogRel(("HM: No real mode VT-x support (PDMR3VMMDevHeapAlloc returned %Rrc)\n", rc));
1656 pVM->hm.s.vmx.pRealModeTSS = NULL;
1657 pVM->hm.s.vmx.pNonPagingModeEPTPageTable = NULL;
1658 return VMSetError(pVM, rc, RT_SRC_POS,
1659 "HM failure: No real mode VT-x support (PDMR3VMMDevHeapAlloc returned %Rrc)", rc);
1660 }
1661 }
1662
1663 LogRel((pVM->hm.s.fAllow64BitGuestsCfg ? "HM: Guest support: 32-bit and 64-bit\n"
1664 : "HM: Guest support: 32-bit only\n"));
1665
1666 /*
1667 * Call ring-0 to set up the VM.
1668 */
1669 rc = SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pVM), 0 /* idCpu */, VMMR0_DO_HM_SETUP_VM, 0 /* u64Arg */, NULL /* pReqHdr */);
1670 if (rc != VINF_SUCCESS)
1671 {
1672 LogRel(("HM: VMX setup failed with rc=%Rrc!\n", rc));
1673 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1674 {
1675 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
1676 LogRel(("HM: CPU[%u] Last instruction error %#x\n", idCpu, pVCpu->hm.s.vmx.LastError.u32InstrError));
1677 LogRel(("HM: CPU[%u] HM error %#x (%u)\n", idCpu, pVCpu->hm.s.u32HMError, pVCpu->hm.s.u32HMError));
1678 }
1679 HMR3CheckError(pVM, rc);
1680 return VMSetError(pVM, rc, RT_SRC_POS, "VT-x setup failed: %Rrc", rc);
1681 }
1682
1683 LogRel(("HM: Supports VMCS EFER fields = %RTbool\n", pVM->hm.s.ForR3.vmx.fSupportsVmcsEfer));
1684 LogRel(("HM: Enabled VMX\n"));
1685 pVM->hm.s.vmx.fEnabled = true;
1686
1687 hmR3DisableRawMode(pVM); /** @todo make this go away! */
1688
1689 /*
1690 * Change the CPU features.
1691 */
1692 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_SEP);
1693 if (pVM->hm.s.fAllow64BitGuestsCfg)
1694 {
1695 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_PAE);
1696 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_LONG_MODE);
1697 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_SYSCALL); /* (Long mode only on Intel CPUs.) */
1698 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_LAHF);
1699 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_NX);
1700 }
1701 /* Given that we're on a long mode host, we can simply enable NX for PAE capable guests. */
1702 else if (CPUMR3GetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_PAE))
1703 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_NX);
1704
1705 /*
1706 * Log configuration details.
1707 */
1708 if (pVM->hm.s.fNestedPagingCfg)
1709 {
1710 LogRel(("HM: Enabled nested paging\n"));
1711 if (pVM->hm.s.ForR3.vmx.enmTlbFlushEpt == VMXTLBFLUSHEPT_SINGLE_CONTEXT)
1712 LogRel(("HM: EPT flush type = Single context\n"));
1713 else if (pVM->hm.s.ForR3.vmx.enmTlbFlushEpt == VMXTLBFLUSHEPT_ALL_CONTEXTS)
1714 LogRel(("HM: EPT flush type = All contexts\n"));
1715 else if (pVM->hm.s.ForR3.vmx.enmTlbFlushEpt == VMXTLBFLUSHEPT_NOT_SUPPORTED)
1716 LogRel(("HM: EPT flush type = Not supported\n"));
1717 else
1718 LogRel(("HM: EPT flush type = %#x\n", pVM->hm.s.ForR3.vmx.enmTlbFlushEpt));
1719
1720 if (pVM->hm.s.vmx.fUnrestrictedGuestCfg)
1721 LogRel(("HM: Enabled unrestricted guest execution\n"));
1722
1723 if (pVM->hm.s.fLargePages)
1724 {
1725 /* Use large (2 MB) pages for our EPT PDEs where possible. */
1726 PGMSetLargePageUsage(pVM, true);
1727 LogRel(("HM: Enabled large page support\n"));
1728 }
1729 }
1730 else
1731 Assert(!pVM->hm.s.vmx.fUnrestrictedGuestCfg);
1732
1733 if (pVM->hm.s.ForR3.vmx.fVpid)
1734 {
1735 LogRel(("HM: Enabled VPID\n"));
1736 if (pVM->hm.s.ForR3.vmx.enmTlbFlushVpid == VMXTLBFLUSHVPID_INDIV_ADDR)
1737 LogRel(("HM: VPID flush type = Individual addresses\n"));
1738 else if (pVM->hm.s.ForR3.vmx.enmTlbFlushVpid == VMXTLBFLUSHVPID_SINGLE_CONTEXT)
1739 LogRel(("HM: VPID flush type = Single context\n"));
1740 else if (pVM->hm.s.ForR3.vmx.enmTlbFlushVpid == VMXTLBFLUSHVPID_ALL_CONTEXTS)
1741 LogRel(("HM: VPID flush type = All contexts\n"));
1742 else if (pVM->hm.s.ForR3.vmx.enmTlbFlushVpid == VMXTLBFLUSHVPID_SINGLE_CONTEXT_RETAIN_GLOBALS)
1743 LogRel(("HM: VPID flush type = Single context retain globals\n"));
1744 else
1745 LogRel(("HM: VPID flush type = %#x\n", pVM->hm.s.ForR3.vmx.enmTlbFlushVpid));
1746 }
1747 else if (pVM->hm.s.ForR3.vmx.enmTlbFlushVpid == VMXTLBFLUSHVPID_NOT_SUPPORTED)
1748 LogRel(("HM: Ignoring VPID capabilities of CPU\n"));
1749
1750 if (pVM->hm.s.vmx.fUsePreemptTimerCfg)
1751 LogRel(("HM: Enabled VMX-preemption timer (cPreemptTimerShift=%u)\n", pVM->hm.s.vmx.cPreemptTimerShift));
1752 else
1753 LogRel(("HM: Disabled VMX-preemption timer\n"));
1754
1755 if (pVM->hm.s.fVirtApicRegs)
1756 LogRel(("HM: Enabled APIC-register virtualization support\n"));
1757
1758 if (pVM->hm.s.fPostedIntrs)
1759 LogRel(("HM: Enabled posted-interrupt processing support\n"));
1760
1761 if (pVM->hm.s.ForR3.vmx.fUseVmcsShadowing)
1762 {
1763 bool const fFullVmcsShadow = RT_BOOL(pVM->hm.s.ForR3.vmx.Msrs.u64Misc & VMX_MISC_VMWRITE_ALL);
1764 LogRel(("HM: Enabled %s VMCS shadowing\n", fFullVmcsShadow ? "full" : "partial"));
1765 }
1766
1767 return VINF_SUCCESS;
1768}
1769
1770
1771/**
1772 * Finish AMD-V initialization (after ring-0 init).
1773 *
1774 * @returns VBox status code.
1775 * @param pVM The cross context VM structure.
1776 */
1777static int hmR3InitFinalizeR0Amd(PVM pVM)
1778{
1779 LogFunc(("pVM->hm.s.svm.fSupported = %d\n", pVM->hm.s.svm.fSupported));
1780
1781 LogRel(("HM: Using AMD-V implementation 2.0\n"));
1782
1783 uint32_t u32Family;
1784 uint32_t u32Model;
1785 uint32_t u32Stepping;
1786 if (HMIsSubjectToSvmErratum170(&u32Family, &u32Model, &u32Stepping))
1787 LogRel(("HM: AMD Cpu with erratum 170 family %#x model %#x stepping %#x\n", u32Family, u32Model, u32Stepping));
1788 LogRel(("HM: Max resume loops = %u\n", pVM->hm.s.cMaxResumeLoopsCfg));
1789 LogRel(("HM: AMD HWCR MSR = %#RX64\n", pVM->hm.s.ForR3.svm.u64MsrHwcr));
1790 LogRel(("HM: AMD-V revision = %#x\n", pVM->hm.s.ForR3.svm.u32Rev));
1791 LogRel(("HM: AMD-V max ASID = %RU32\n", pVM->hm.s.ForR3.uMaxAsid));
1792 LogRel(("HM: AMD-V features = %#x\n", pVM->hm.s.ForR3.svm.fFeatures));
1793
1794 /*
1795 * Enumerate AMD-V features.
1796 */
1797 static const struct { uint32_t fFlag; const char *pszName; } s_aSvmFeatures[] =
1798 {
1799#define HMSVM_REPORT_FEATURE(a_StrDesc, a_Define) { a_Define, a_StrDesc }
1800 HMSVM_REPORT_FEATURE("NESTED_PAGING", X86_CPUID_SVM_FEATURE_EDX_NESTED_PAGING),
1801 HMSVM_REPORT_FEATURE("LBR_VIRT", X86_CPUID_SVM_FEATURE_EDX_LBR_VIRT),
1802 HMSVM_REPORT_FEATURE("SVM_LOCK", X86_CPUID_SVM_FEATURE_EDX_SVM_LOCK),
1803 HMSVM_REPORT_FEATURE("NRIP_SAVE", X86_CPUID_SVM_FEATURE_EDX_NRIP_SAVE),
1804 HMSVM_REPORT_FEATURE("TSC_RATE_MSR", X86_CPUID_SVM_FEATURE_EDX_TSC_RATE_MSR),
1805 HMSVM_REPORT_FEATURE("VMCB_CLEAN", X86_CPUID_SVM_FEATURE_EDX_VMCB_CLEAN),
1806 HMSVM_REPORT_FEATURE("FLUSH_BY_ASID", X86_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID),
1807 HMSVM_REPORT_FEATURE("DECODE_ASSISTS", X86_CPUID_SVM_FEATURE_EDX_DECODE_ASSISTS),
1808 HMSVM_REPORT_FEATURE("PAUSE_FILTER", X86_CPUID_SVM_FEATURE_EDX_PAUSE_FILTER),
1809 HMSVM_REPORT_FEATURE("PAUSE_FILTER_THRESHOLD", X86_CPUID_SVM_FEATURE_EDX_PAUSE_FILTER_THRESHOLD),
1810 HMSVM_REPORT_FEATURE("AVIC", X86_CPUID_SVM_FEATURE_EDX_AVIC),
1811 HMSVM_REPORT_FEATURE("VIRT_VMSAVE_VMLOAD", X86_CPUID_SVM_FEATURE_EDX_VIRT_VMSAVE_VMLOAD),
1812 HMSVM_REPORT_FEATURE("VGIF", X86_CPUID_SVM_FEATURE_EDX_VGIF),
1813 HMSVM_REPORT_FEATURE("GMET", X86_CPUID_SVM_FEATURE_EDX_GMET),
1814#undef HMSVM_REPORT_FEATURE
1815 };
1816
1817 uint32_t fSvmFeatures = pVM->hm.s.ForR3.svm.fFeatures;
1818 for (unsigned i = 0; i < RT_ELEMENTS(s_aSvmFeatures); i++)
1819 if (fSvmFeatures & s_aSvmFeatures[i].fFlag)
1820 {
1821 LogRel(("HM: %s\n", s_aSvmFeatures[i].pszName));
1822 fSvmFeatures &= ~s_aSvmFeatures[i].fFlag;
1823 }
1824 if (fSvmFeatures)
1825 for (unsigned iBit = 0; iBit < 32; iBit++)
1826 if (RT_BIT_32(iBit) & fSvmFeatures)
1827 LogRel(("HM: Reserved bit %u\n", iBit));
1828
1829 /*
1830 * Nested paging is determined in HMR3Init, verify the sanity of that.
1831 */
1832 AssertLogRelReturn( !pVM->hm.s.fNestedPagingCfg
1833 || (pVM->hm.s.ForR3.svm.fFeatures & X86_CPUID_SVM_FEATURE_EDX_NESTED_PAGING),
1834 VERR_HM_IPE_1);
1835
1836#if 0
1837 /** @todo Add and query IPRT API for host OS support for posted-interrupt IPI
1838 * here. */
1839 if (RTR0IsPostIpiSupport())
1840 pVM->hm.s.fPostedIntrs = true;
1841#endif
1842
1843 /*
1844 * Determine whether we need to intercept #UD in SVM mode for emulating
1845 * intel SYSENTER/SYSEXIT on AMD64, as these instructions results in #UD
1846 * when executed in long-mode. This is only really applicable when
1847 * non-default CPU profiles are in effect, i.e. guest vendor differs
1848 * from the host one.
1849 */
1850 if (CPUMGetGuestCpuVendor(pVM) != CPUMGetHostCpuVendor(pVM))
1851 switch (CPUMGetGuestCpuVendor(pVM))
1852 {
1853 case CPUMCPUVENDOR_INTEL:
1854 case CPUMCPUVENDOR_VIA: /*?*/
1855 case CPUMCPUVENDOR_SHANGHAI: /*?*/
1856 switch (CPUMGetHostCpuVendor(pVM))
1857 {
1858 case CPUMCPUVENDOR_AMD:
1859 case CPUMCPUVENDOR_HYGON:
1860 if (pVM->hm.s.fAllow64BitGuestsCfg)
1861 {
1862 LogRel(("HM: Intercepting #UD for emulating SYSENTER/SYSEXIT in long mode.\n"));
1863 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1864 pVM->apCpusR3[idCpu]->hm.s.svm.fEmulateLongModeSysEnterExit = true;
1865 }
1866 break;
1867 default: break;
1868 }
1869 default: break;
1870 }
1871
1872 /*
1873 * Call ring-0 to set up the VM.
1874 */
1875 int rc = SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pVM), 0 /*idCpu*/, VMMR0_DO_HM_SETUP_VM, 0, NULL);
1876 if (rc != VINF_SUCCESS)
1877 {
1878 AssertMsgFailed(("%Rrc\n", rc));
1879 LogRel(("HM: AMD-V setup failed with rc=%Rrc!\n", rc));
1880 return VMSetError(pVM, rc, RT_SRC_POS, "AMD-V setup failed: %Rrc", rc);
1881 }
1882
1883 LogRel(("HM: Enabled SVM\n"));
1884 pVM->hm.s.svm.fEnabled = true;
1885
1886 if (pVM->hm.s.fNestedPagingCfg)
1887 {
1888 LogRel(("HM: Enabled nested paging\n"));
1889
1890 /*
1891 * Enable large pages (2 MB) if applicable.
1892 */
1893 if (pVM->hm.s.fLargePages)
1894 {
1895 PGMSetLargePageUsage(pVM, true);
1896 LogRel(("HM: Enabled large page support\n"));
1897 }
1898 }
1899
1900 if (pVM->hm.s.fVirtApicRegs)
1901 LogRel(("HM: Enabled APIC-register virtualization support\n"));
1902
1903 if (pVM->hm.s.fPostedIntrs)
1904 LogRel(("HM: Enabled posted-interrupt processing support\n"));
1905
1906 hmR3DisableRawMode(pVM);
1907
1908 /*
1909 * Change the CPU features.
1910 */
1911 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_SEP);
1912 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_SYSCALL);
1913 if (pVM->hm.s.fAllow64BitGuestsCfg)
1914 {
1915 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_PAE);
1916 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_LONG_MODE);
1917 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_NX);
1918 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_LAHF);
1919 }
1920 /* Turn on NXE if PAE has been enabled. */
1921 else if (CPUMR3GetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_PAE))
1922 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_NX);
1923
1924 LogRel((pVM->hm.s.fTprPatchingAllowed ? "HM: Enabled TPR patching\n"
1925 : "HM: Disabled TPR patching\n"));
1926
1927 LogRel((pVM->hm.s.fAllow64BitGuestsCfg ? "HM: Guest support: 32-bit and 64-bit\n"
1928 : "HM: Guest support: 32-bit only\n"));
1929 return VINF_SUCCESS;
1930}
1931
1932
1933/**
1934 * Applies relocations to data and code managed by this
1935 * component. This function will be called at init and
1936 * whenever the VMM need to relocate it self inside the GC.
1937 *
1938 * @param pVM The cross context VM structure.
1939 */
1940VMMR3_INT_DECL(void) HMR3Relocate(PVM pVM)
1941{
1942 /* Fetch the current paging mode during the relocate callback during state loading. */
1943 if (VMR3GetState(pVM) == VMSTATE_LOADING)
1944 {
1945 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1946 {
1947 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
1948 pVCpu->hm.s.enmShadowMode = PGMGetShadowMode(pVCpu);
1949 }
1950 }
1951}
1952
1953
1954/**
1955 * Terminates the HM.
1956 *
1957 * Termination means cleaning up and freeing all resources,
1958 * the VM itself is, at this point, powered off or suspended.
1959 *
1960 * @returns VBox status code.
1961 * @param pVM The cross context VM structure.
1962 */
1963VMMR3_INT_DECL(int) HMR3Term(PVM pVM)
1964{
1965 if (pVM->hm.s.vmx.pRealModeTSS)
1966 {
1967 PDMR3VmmDevHeapFree(pVM, pVM->hm.s.vmx.pRealModeTSS);
1968 pVM->hm.s.vmx.pRealModeTSS = 0;
1969 }
1970 hmR3TermCPU(pVM);
1971 return 0;
1972}
1973
1974
1975/**
1976 * Terminates the per-VCPU HM.
1977 *
1978 * @returns VBox status code.
1979 * @param pVM The cross context VM structure.
1980 */
1981static int hmR3TermCPU(PVM pVM)
1982{
1983 RT_NOREF(pVM);
1984 return VINF_SUCCESS;
1985}
1986
1987
1988/**
1989 * Resets a virtual CPU.
1990 *
1991 * Used by HMR3Reset and CPU hot plugging.
1992 *
1993 * @param pVCpu The cross context virtual CPU structure to reset.
1994 */
1995VMMR3_INT_DECL(void) HMR3ResetCpu(PVMCPU pVCpu)
1996{
1997 /* Sync. entire state on VM reset ring-0 re-entry. It's safe to reset
1998 the HM flags here, all other EMTs are in ring-3. See VMR3Reset(). */
1999 pVCpu->hm.s.fCtxChanged |= HM_CHANGED_HOST_CONTEXT | HM_CHANGED_ALL_GUEST;
2000
2001 pVCpu->hm.s.fActive = false;
2002 pVCpu->hm.s.Event.fPending = false;
2003 pVCpu->hm.s.vmx.u64GstMsrApicBase = 0;
2004 pVCpu->hm.s.vmx.VmcsInfo.fWasInRealMode = true;
2005#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
2006 if (pVCpu->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.fVmx)
2007 pVCpu->hm.s.vmx.VmcsInfoNstGst.fWasInRealMode = true;
2008#endif
2009}
2010
2011
2012/**
2013 * The VM is being reset.
2014 *
2015 * For the HM component this means that any GDT/LDT/TSS monitors
2016 * needs to be removed.
2017 *
2018 * @param pVM The cross context VM structure.
2019 */
2020VMMR3_INT_DECL(void) HMR3Reset(PVM pVM)
2021{
2022 LogFlow(("HMR3Reset:\n"));
2023
2024 if (HMIsEnabled(pVM))
2025 hmR3DisableRawMode(pVM);
2026
2027 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2028 HMR3ResetCpu(pVM->apCpusR3[idCpu]);
2029
2030 /* Clear all patch information. */
2031 pVM->hm.s.pGuestPatchMem = 0;
2032 pVM->hm.s.pFreeGuestPatchMem = 0;
2033 pVM->hm.s.cbGuestPatchMem = 0;
2034 pVM->hm.s.cPatches = 0;
2035 pVM->hm.s.PatchTree = 0;
2036 pVM->hm.s.fTprPatchingActive = false;
2037 ASMMemZero32(pVM->hm.s.aPatches, sizeof(pVM->hm.s.aPatches));
2038}
2039
2040
2041/**
2042 * Callback to patch a TPR instruction (vmmcall or mov cr8).
2043 *
2044 * @returns VBox strict status code.
2045 * @param pVM The cross context VM structure.
2046 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
2047 * @param pvUser Unused.
2048 */
2049static DECLCALLBACK(VBOXSTRICTRC) hmR3RemovePatches(PVM pVM, PVMCPU pVCpu, void *pvUser)
2050{
2051 VMCPUID idCpu = (VMCPUID)(uintptr_t)pvUser;
2052
2053 /* Only execute the handler on the VCPU the original patch request was issued. */
2054 if (pVCpu->idCpu != idCpu)
2055 return VINF_SUCCESS;
2056
2057 Log(("hmR3RemovePatches\n"));
2058 for (unsigned i = 0; i < pVM->hm.s.cPatches; i++)
2059 {
2060 uint8_t abInstr[15];
2061 PHMTPRPATCH pPatch = &pVM->hm.s.aPatches[i];
2062 RTGCPTR pInstrGC = (RTGCPTR)pPatch->Core.Key;
2063 int rc;
2064
2065#ifdef LOG_ENABLED
2066 char szOutput[256];
2067 rc = DBGFR3DisasInstrEx(pVM->pUVM, pVCpu->idCpu, CPUMGetGuestCS(pVCpu), pInstrGC, DBGF_DISAS_FLAGS_DEFAULT_MODE,
2068 szOutput, sizeof(szOutput), NULL);
2069 if (RT_SUCCESS(rc))
2070 Log(("Patched instr: %s\n", szOutput));
2071#endif
2072
2073 /* Check if the instruction is still the same. */
2074 rc = PGMPhysSimpleReadGCPtr(pVCpu, abInstr, pInstrGC, pPatch->cbNewOp);
2075 if (rc != VINF_SUCCESS)
2076 {
2077 Log(("Patched code removed? (rc=%Rrc0\n", rc));
2078 continue; /* swapped out or otherwise removed; skip it. */
2079 }
2080
2081 if (memcmp(abInstr, pPatch->aNewOpcode, pPatch->cbNewOp))
2082 {
2083 Log(("Patched instruction was changed! (rc=%Rrc0\n", rc));
2084 continue; /* skip it. */
2085 }
2086
2087 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pInstrGC, pPatch->aOpcode, pPatch->cbOp);
2088 AssertRC(rc);
2089
2090#ifdef LOG_ENABLED
2091 rc = DBGFR3DisasInstrEx(pVM->pUVM, pVCpu->idCpu, CPUMGetGuestCS(pVCpu), pInstrGC, DBGF_DISAS_FLAGS_DEFAULT_MODE,
2092 szOutput, sizeof(szOutput), NULL);
2093 if (RT_SUCCESS(rc))
2094 Log(("Original instr: %s\n", szOutput));
2095#endif
2096 }
2097 pVM->hm.s.cPatches = 0;
2098 pVM->hm.s.PatchTree = 0;
2099 pVM->hm.s.pFreeGuestPatchMem = pVM->hm.s.pGuestPatchMem;
2100 pVM->hm.s.fTprPatchingActive = false;
2101 return VINF_SUCCESS;
2102}
2103
2104
2105/**
2106 * Worker for enabling patching in a VT-x/AMD-V guest.
2107 *
2108 * @returns VBox status code.
2109 * @param pVM The cross context VM structure.
2110 * @param idCpu VCPU to execute hmR3RemovePatches on.
2111 * @param pPatchMem Patch memory range.
2112 * @param cbPatchMem Size of the memory range.
2113 */
2114static DECLCALLBACK(int) hmR3EnablePatching(PVM pVM, VMCPUID idCpu, RTRCPTR pPatchMem, unsigned cbPatchMem)
2115{
2116 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE, hmR3RemovePatches, (void *)(uintptr_t)idCpu);
2117 AssertRC(rc);
2118
2119 pVM->hm.s.pGuestPatchMem = pPatchMem;
2120 pVM->hm.s.pFreeGuestPatchMem = pPatchMem;
2121 pVM->hm.s.cbGuestPatchMem = cbPatchMem;
2122 return VINF_SUCCESS;
2123}
2124
2125
2126/**
2127 * Enable patching in a VT-x/AMD-V guest
2128 *
2129 * @returns VBox status code.
2130 * @param pVM The cross context VM structure.
2131 * @param pPatchMem Patch memory range.
2132 * @param cbPatchMem Size of the memory range.
2133 */
2134VMMR3_INT_DECL(int) HMR3EnablePatching(PVM pVM, RTGCPTR pPatchMem, unsigned cbPatchMem)
2135{
2136 VM_ASSERT_EMT(pVM);
2137 Log(("HMR3EnablePatching %RGv size %x\n", pPatchMem, cbPatchMem));
2138 if (pVM->cCpus > 1)
2139 {
2140 /* We own the IOM lock here and could cause a deadlock by waiting for a VCPU that is blocking on the IOM lock. */
2141 int rc = VMR3ReqCallNoWait(pVM, VMCPUID_ANY_QUEUE,
2142 (PFNRT)hmR3EnablePatching, 4, pVM, VMMGetCpuId(pVM), (RTRCPTR)pPatchMem, cbPatchMem);
2143 AssertRC(rc);
2144 return rc;
2145 }
2146 return hmR3EnablePatching(pVM, VMMGetCpuId(pVM), (RTRCPTR)pPatchMem, cbPatchMem);
2147}
2148
2149
2150/**
2151 * Disable patching in a VT-x/AMD-V guest.
2152 *
2153 * @returns VBox status code.
2154 * @param pVM The cross context VM structure.
2155 * @param pPatchMem Patch memory range.
2156 * @param cbPatchMem Size of the memory range.
2157 */
2158VMMR3_INT_DECL(int) HMR3DisablePatching(PVM pVM, RTGCPTR pPatchMem, unsigned cbPatchMem)
2159{
2160 Log(("HMR3DisablePatching %RGv size %x\n", pPatchMem, cbPatchMem));
2161 RT_NOREF2(pPatchMem, cbPatchMem);
2162
2163 Assert(pVM->hm.s.pGuestPatchMem == pPatchMem);
2164 Assert(pVM->hm.s.cbGuestPatchMem == cbPatchMem);
2165
2166 /** @todo Potential deadlock when other VCPUs are waiting on the IOM lock (we own it)!! */
2167 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE, hmR3RemovePatches,
2168 (void *)(uintptr_t)VMMGetCpuId(pVM));
2169 AssertRC(rc);
2170
2171 pVM->hm.s.pGuestPatchMem = 0;
2172 pVM->hm.s.pFreeGuestPatchMem = 0;
2173 pVM->hm.s.cbGuestPatchMem = 0;
2174 pVM->hm.s.fTprPatchingActive = false;
2175 return VINF_SUCCESS;
2176}
2177
2178
2179/**
2180 * Callback to patch a TPR instruction (vmmcall or mov cr8).
2181 *
2182 * @returns VBox strict status code.
2183 * @param pVM The cross context VM structure.
2184 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
2185 * @param pvUser User specified CPU context.
2186 *
2187 */
2188static DECLCALLBACK(VBOXSTRICTRC) hmR3ReplaceTprInstr(PVM pVM, PVMCPU pVCpu, void *pvUser)
2189{
2190 /*
2191 * Only execute the handler on the VCPU the original patch request was
2192 * issued. (The other CPU(s) might not yet have switched to protected
2193 * mode, nor have the correct memory context.)
2194 */
2195 VMCPUID idCpu = (VMCPUID)(uintptr_t)pvUser;
2196 if (pVCpu->idCpu != idCpu)
2197 return VINF_SUCCESS;
2198
2199 /*
2200 * We're racing other VCPUs here, so don't try patch the instruction twice
2201 * and make sure there is still room for our patch record.
2202 */
2203 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
2204 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
2205 if (pPatch)
2206 {
2207 Log(("hmR3ReplaceTprInstr: already patched %RGv\n", pCtx->rip));
2208 return VINF_SUCCESS;
2209 }
2210 uint32_t const idx = pVM->hm.s.cPatches;
2211 if (idx >= RT_ELEMENTS(pVM->hm.s.aPatches))
2212 {
2213 Log(("hmR3ReplaceTprInstr: no available patch slots (%RGv)\n", pCtx->rip));
2214 return VINF_SUCCESS;
2215 }
2216 pPatch = &pVM->hm.s.aPatches[idx];
2217
2218 Log(("hmR3ReplaceTprInstr: rip=%RGv idxPatch=%u\n", pCtx->rip, idx));
2219
2220 /*
2221 * Disassembler the instruction and get cracking.
2222 */
2223 DBGFR3_DISAS_INSTR_CUR_LOG(pVCpu, "hmR3ReplaceTprInstr");
2224 DISCPUSTATE Dis;
2225 uint32_t cbOp;
2226 int rc = EMInterpretDisasCurrent(pVM, pVCpu, &Dis, &cbOp);
2227 AssertRC(rc);
2228 if ( rc == VINF_SUCCESS
2229 && Dis.pCurInstr->uOpcode == OP_MOV
2230 && cbOp >= 3)
2231 {
2232 static uint8_t const s_abVMMCall[3] = { 0x0f, 0x01, 0xd9 };
2233
2234 rc = PGMPhysSimpleReadGCPtr(pVCpu, pPatch->aOpcode, pCtx->rip, cbOp);
2235 AssertRC(rc);
2236
2237 pPatch->cbOp = cbOp;
2238
2239 if (Dis.Param1.fUse == DISUSE_DISPLACEMENT32)
2240 {
2241 /* write. */
2242 if (Dis.Param2.fUse == DISUSE_REG_GEN32)
2243 {
2244 pPatch->enmType = HMTPRINSTR_WRITE_REG;
2245 pPatch->uSrcOperand = Dis.Param2.Base.idxGenReg;
2246 Log(("hmR3ReplaceTprInstr: HMTPRINSTR_WRITE_REG %u\n", Dis.Param2.Base.idxGenReg));
2247 }
2248 else
2249 {
2250 Assert(Dis.Param2.fUse == DISUSE_IMMEDIATE32);
2251 pPatch->enmType = HMTPRINSTR_WRITE_IMM;
2252 pPatch->uSrcOperand = Dis.Param2.uValue;
2253 Log(("hmR3ReplaceTprInstr: HMTPRINSTR_WRITE_IMM %#llx\n", Dis.Param2.uValue));
2254 }
2255 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pCtx->rip, s_abVMMCall, sizeof(s_abVMMCall));
2256 AssertRC(rc);
2257
2258 memcpy(pPatch->aNewOpcode, s_abVMMCall, sizeof(s_abVMMCall));
2259 pPatch->cbNewOp = sizeof(s_abVMMCall);
2260 STAM_COUNTER_INC(&pVM->hm.s.StatTprReplaceSuccessVmc);
2261 }
2262 else
2263 {
2264 /*
2265 * TPR Read.
2266 *
2267 * Found:
2268 * mov eax, dword [fffe0080] (5 bytes)
2269 * Check if next instruction is:
2270 * shr eax, 4
2271 */
2272 Assert(Dis.Param1.fUse == DISUSE_REG_GEN32);
2273
2274 uint8_t const idxMmioReg = Dis.Param1.Base.idxGenReg;
2275 uint8_t const cbOpMmio = cbOp;
2276 uint64_t const uSavedRip = pCtx->rip;
2277
2278 pCtx->rip += cbOp;
2279 rc = EMInterpretDisasCurrent(pVM, pVCpu, &Dis, &cbOp);
2280 DBGFR3_DISAS_INSTR_CUR_LOG(pVCpu, "Following read");
2281 pCtx->rip = uSavedRip;
2282
2283 if ( rc == VINF_SUCCESS
2284 && Dis.pCurInstr->uOpcode == OP_SHR
2285 && Dis.Param1.fUse == DISUSE_REG_GEN32
2286 && Dis.Param1.Base.idxGenReg == idxMmioReg
2287 && Dis.Param2.fUse == DISUSE_IMMEDIATE8
2288 && Dis.Param2.uValue == 4
2289 && cbOpMmio + cbOp < sizeof(pVM->hm.s.aPatches[idx].aOpcode))
2290 {
2291 uint8_t abInstr[15];
2292
2293 /* Replacing the two instructions above with an AMD-V specific lock-prefixed 32-bit MOV CR8 instruction so as to
2294 access CR8 in 32-bit mode and not cause a #VMEXIT. */
2295 rc = PGMPhysSimpleReadGCPtr(pVCpu, &pPatch->aOpcode, pCtx->rip, cbOpMmio + cbOp);
2296 AssertRC(rc);
2297
2298 pPatch->cbOp = cbOpMmio + cbOp;
2299
2300 /* 0xf0, 0x0f, 0x20, 0xc0 = mov eax, cr8 */
2301 abInstr[0] = 0xf0;
2302 abInstr[1] = 0x0f;
2303 abInstr[2] = 0x20;
2304 abInstr[3] = 0xc0 | Dis.Param1.Base.idxGenReg;
2305 for (unsigned i = 4; i < pPatch->cbOp; i++)
2306 abInstr[i] = 0x90; /* nop */
2307
2308 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pCtx->rip, abInstr, pPatch->cbOp);
2309 AssertRC(rc);
2310
2311 memcpy(pPatch->aNewOpcode, abInstr, pPatch->cbOp);
2312 pPatch->cbNewOp = pPatch->cbOp;
2313 STAM_COUNTER_INC(&pVM->hm.s.StatTprReplaceSuccessCr8);
2314
2315 Log(("Acceptable read/shr candidate!\n"));
2316 pPatch->enmType = HMTPRINSTR_READ_SHR4;
2317 }
2318 else
2319 {
2320 pPatch->enmType = HMTPRINSTR_READ;
2321 pPatch->uDstOperand = idxMmioReg;
2322
2323 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pCtx->rip, s_abVMMCall, sizeof(s_abVMMCall));
2324 AssertRC(rc);
2325
2326 memcpy(pPatch->aNewOpcode, s_abVMMCall, sizeof(s_abVMMCall));
2327 pPatch->cbNewOp = sizeof(s_abVMMCall);
2328 STAM_COUNTER_INC(&pVM->hm.s.StatTprReplaceSuccessVmc);
2329 Log(("hmR3ReplaceTprInstr: HMTPRINSTR_READ %u\n", pPatch->uDstOperand));
2330 }
2331 }
2332
2333 pPatch->Core.Key = pCtx->eip;
2334 rc = RTAvloU32Insert(&pVM->hm.s.PatchTree, &pPatch->Core);
2335 AssertRC(rc);
2336
2337 pVM->hm.s.cPatches++;
2338 return VINF_SUCCESS;
2339 }
2340
2341 /*
2342 * Save invalid patch, so we will not try again.
2343 */
2344 Log(("hmR3ReplaceTprInstr: Failed to patch instr!\n"));
2345 pPatch->Core.Key = pCtx->eip;
2346 pPatch->enmType = HMTPRINSTR_INVALID;
2347 rc = RTAvloU32Insert(&pVM->hm.s.PatchTree, &pPatch->Core);
2348 AssertRC(rc);
2349 pVM->hm.s.cPatches++;
2350 STAM_COUNTER_INC(&pVM->hm.s.StatTprReplaceFailure);
2351 return VINF_SUCCESS;
2352}
2353
2354
2355/**
2356 * Callback to patch a TPR instruction (jump to generated code).
2357 *
2358 * @returns VBox strict status code.
2359 * @param pVM The cross context VM structure.
2360 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
2361 * @param pvUser User specified CPU context.
2362 *
2363 */
2364static DECLCALLBACK(VBOXSTRICTRC) hmR3PatchTprInstr(PVM pVM, PVMCPU pVCpu, void *pvUser)
2365{
2366 /*
2367 * Only execute the handler on the VCPU the original patch request was
2368 * issued. (The other CPU(s) might not yet have switched to protected
2369 * mode, nor have the correct memory context.)
2370 */
2371 VMCPUID idCpu = (VMCPUID)(uintptr_t)pvUser;
2372 if (pVCpu->idCpu != idCpu)
2373 return VINF_SUCCESS;
2374
2375 /*
2376 * We're racing other VCPUs here, so don't try patch the instruction twice
2377 * and make sure there is still room for our patch record.
2378 */
2379 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
2380 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
2381 if (pPatch)
2382 {
2383 Log(("hmR3PatchTprInstr: already patched %RGv\n", pCtx->rip));
2384 return VINF_SUCCESS;
2385 }
2386 uint32_t const idx = pVM->hm.s.cPatches;
2387 if (idx >= RT_ELEMENTS(pVM->hm.s.aPatches))
2388 {
2389 Log(("hmR3PatchTprInstr: no available patch slots (%RGv)\n", pCtx->rip));
2390 return VINF_SUCCESS;
2391 }
2392 pPatch = &pVM->hm.s.aPatches[idx];
2393
2394 Log(("hmR3PatchTprInstr: rip=%RGv idxPatch=%u\n", pCtx->rip, idx));
2395 DBGFR3_DISAS_INSTR_CUR_LOG(pVCpu, "hmR3PatchTprInstr");
2396
2397 /*
2398 * Disassemble the instruction and get cracking.
2399 */
2400 DISCPUSTATE Dis;
2401 uint32_t cbOp;
2402 int rc = EMInterpretDisasCurrent(pVM, pVCpu, &Dis, &cbOp);
2403 AssertRC(rc);
2404 if ( rc == VINF_SUCCESS
2405 && Dis.pCurInstr->uOpcode == OP_MOV
2406 && cbOp >= 5)
2407 {
2408 uint8_t aPatch[64];
2409 uint32_t off = 0;
2410
2411 rc = PGMPhysSimpleReadGCPtr(pVCpu, pPatch->aOpcode, pCtx->rip, cbOp);
2412 AssertRC(rc);
2413
2414 pPatch->cbOp = cbOp;
2415 pPatch->enmType = HMTPRINSTR_JUMP_REPLACEMENT;
2416
2417 if (Dis.Param1.fUse == DISUSE_DISPLACEMENT32)
2418 {
2419 /*
2420 * TPR write:
2421 *
2422 * push ECX [51]
2423 * push EDX [52]
2424 * push EAX [50]
2425 * xor EDX,EDX [31 D2]
2426 * mov EAX,EAX [89 C0]
2427 * or
2428 * mov EAX,0000000CCh [B8 CC 00 00 00]
2429 * mov ECX,0C0000082h [B9 82 00 00 C0]
2430 * wrmsr [0F 30]
2431 * pop EAX [58]
2432 * pop EDX [5A]
2433 * pop ECX [59]
2434 * jmp return_address [E9 return_address]
2435 */
2436 bool fUsesEax = (Dis.Param2.fUse == DISUSE_REG_GEN32 && Dis.Param2.Base.idxGenReg == DISGREG_EAX);
2437
2438 aPatch[off++] = 0x51; /* push ecx */
2439 aPatch[off++] = 0x52; /* push edx */
2440 if (!fUsesEax)
2441 aPatch[off++] = 0x50; /* push eax */
2442 aPatch[off++] = 0x31; /* xor edx, edx */
2443 aPatch[off++] = 0xd2;
2444 if (Dis.Param2.fUse == DISUSE_REG_GEN32)
2445 {
2446 if (!fUsesEax)
2447 {
2448 aPatch[off++] = 0x89; /* mov eax, src_reg */
2449 aPatch[off++] = MAKE_MODRM(3, Dis.Param2.Base.idxGenReg, DISGREG_EAX);
2450 }
2451 }
2452 else
2453 {
2454 Assert(Dis.Param2.fUse == DISUSE_IMMEDIATE32);
2455 aPatch[off++] = 0xb8; /* mov eax, immediate */
2456 *(uint32_t *)&aPatch[off] = Dis.Param2.uValue;
2457 off += sizeof(uint32_t);
2458 }
2459 aPatch[off++] = 0xb9; /* mov ecx, 0xc0000082 */
2460 *(uint32_t *)&aPatch[off] = MSR_K8_LSTAR;
2461 off += sizeof(uint32_t);
2462
2463 aPatch[off++] = 0x0f; /* wrmsr */
2464 aPatch[off++] = 0x30;
2465 if (!fUsesEax)
2466 aPatch[off++] = 0x58; /* pop eax */
2467 aPatch[off++] = 0x5a; /* pop edx */
2468 aPatch[off++] = 0x59; /* pop ecx */
2469 }
2470 else
2471 {
2472 /*
2473 * TPR read:
2474 *
2475 * push ECX [51]
2476 * push EDX [52]
2477 * push EAX [50]
2478 * mov ECX,0C0000082h [B9 82 00 00 C0]
2479 * rdmsr [0F 32]
2480 * mov EAX,EAX [89 C0]
2481 * pop EAX [58]
2482 * pop EDX [5A]
2483 * pop ECX [59]
2484 * jmp return_address [E9 return_address]
2485 */
2486 Assert(Dis.Param1.fUse == DISUSE_REG_GEN32);
2487
2488 if (Dis.Param1.Base.idxGenReg != DISGREG_ECX)
2489 aPatch[off++] = 0x51; /* push ecx */
2490 if (Dis.Param1.Base.idxGenReg != DISGREG_EDX )
2491 aPatch[off++] = 0x52; /* push edx */
2492 if (Dis.Param1.Base.idxGenReg != DISGREG_EAX)
2493 aPatch[off++] = 0x50; /* push eax */
2494
2495 aPatch[off++] = 0x31; /* xor edx, edx */
2496 aPatch[off++] = 0xd2;
2497
2498 aPatch[off++] = 0xb9; /* mov ecx, 0xc0000082 */
2499 *(uint32_t *)&aPatch[off] = MSR_K8_LSTAR;
2500 off += sizeof(uint32_t);
2501
2502 aPatch[off++] = 0x0f; /* rdmsr */
2503 aPatch[off++] = 0x32;
2504
2505 if (Dis.Param1.Base.idxGenReg != DISGREG_EAX)
2506 {
2507 aPatch[off++] = 0x89; /* mov dst_reg, eax */
2508 aPatch[off++] = MAKE_MODRM(3, DISGREG_EAX, Dis.Param1.Base.idxGenReg);
2509 }
2510
2511 if (Dis.Param1.Base.idxGenReg != DISGREG_EAX)
2512 aPatch[off++] = 0x58; /* pop eax */
2513 if (Dis.Param1.Base.idxGenReg != DISGREG_EDX )
2514 aPatch[off++] = 0x5a; /* pop edx */
2515 if (Dis.Param1.Base.idxGenReg != DISGREG_ECX)
2516 aPatch[off++] = 0x59; /* pop ecx */
2517 }
2518 aPatch[off++] = 0xe9; /* jmp return_address */
2519 *(RTRCUINTPTR *)&aPatch[off] = ((RTRCUINTPTR)pCtx->eip + cbOp) - ((RTRCUINTPTR)pVM->hm.s.pFreeGuestPatchMem + off + 4);
2520 off += sizeof(RTRCUINTPTR);
2521
2522 if (pVM->hm.s.pFreeGuestPatchMem + off <= pVM->hm.s.pGuestPatchMem + pVM->hm.s.cbGuestPatchMem)
2523 {
2524 /* Write new code to the patch buffer. */
2525 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pVM->hm.s.pFreeGuestPatchMem, aPatch, off);
2526 AssertRC(rc);
2527
2528#ifdef LOG_ENABLED
2529 uint32_t cbCurInstr;
2530 for (RTGCPTR GCPtrInstr = pVM->hm.s.pFreeGuestPatchMem;
2531 GCPtrInstr < pVM->hm.s.pFreeGuestPatchMem + off;
2532 GCPtrInstr += RT_MAX(cbCurInstr, 1))
2533 {
2534 char szOutput[256];
2535 rc = DBGFR3DisasInstrEx(pVM->pUVM, pVCpu->idCpu, pCtx->cs.Sel, GCPtrInstr, DBGF_DISAS_FLAGS_DEFAULT_MODE,
2536 szOutput, sizeof(szOutput), &cbCurInstr);
2537 if (RT_SUCCESS(rc))
2538 Log(("Patch instr %s\n", szOutput));
2539 else
2540 Log(("%RGv: rc=%Rrc\n", GCPtrInstr, rc));
2541 }
2542#endif
2543
2544 pPatch->aNewOpcode[0] = 0xE9;
2545 *(RTRCUINTPTR *)&pPatch->aNewOpcode[1] = ((RTRCUINTPTR)pVM->hm.s.pFreeGuestPatchMem) - ((RTRCUINTPTR)pCtx->eip + 5);
2546
2547 /* Overwrite the TPR instruction with a jump. */
2548 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pCtx->eip, pPatch->aNewOpcode, 5);
2549 AssertRC(rc);
2550
2551 DBGFR3_DISAS_INSTR_CUR_LOG(pVCpu, "Jump");
2552
2553 pVM->hm.s.pFreeGuestPatchMem += off;
2554 pPatch->cbNewOp = 5;
2555
2556 pPatch->Core.Key = pCtx->eip;
2557 rc = RTAvloU32Insert(&pVM->hm.s.PatchTree, &pPatch->Core);
2558 AssertRC(rc);
2559
2560 pVM->hm.s.cPatches++;
2561 pVM->hm.s.fTprPatchingActive = true;
2562 STAM_COUNTER_INC(&pVM->hm.s.StatTprPatchSuccess);
2563 return VINF_SUCCESS;
2564 }
2565
2566 Log(("Ran out of space in our patch buffer!\n"));
2567 }
2568 else
2569 Log(("hmR3PatchTprInstr: Failed to patch instr!\n"));
2570
2571
2572 /*
2573 * Save invalid patch, so we will not try again.
2574 */
2575 pPatch = &pVM->hm.s.aPatches[idx];
2576 pPatch->Core.Key = pCtx->eip;
2577 pPatch->enmType = HMTPRINSTR_INVALID;
2578 rc = RTAvloU32Insert(&pVM->hm.s.PatchTree, &pPatch->Core);
2579 AssertRC(rc);
2580 pVM->hm.s.cPatches++;
2581 STAM_COUNTER_INC(&pVM->hm.s.StatTprPatchFailure);
2582 return VINF_SUCCESS;
2583}
2584
2585
2586/**
2587 * Attempt to patch TPR mmio instructions.
2588 *
2589 * @returns VBox status code.
2590 * @param pVM The cross context VM structure.
2591 * @param pVCpu The cross context virtual CPU structure.
2592 */
2593VMMR3_INT_DECL(int) HMR3PatchTprInstr(PVM pVM, PVMCPU pVCpu)
2594{
2595 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE,
2596 pVM->hm.s.pGuestPatchMem ? hmR3PatchTprInstr : hmR3ReplaceTprInstr,
2597 (void *)(uintptr_t)pVCpu->idCpu);
2598 AssertRC(rc);
2599 return rc;
2600}
2601
2602
2603/**
2604 * Checks if we need to reschedule due to VMM device heap changes.
2605 *
2606 * @returns true if a reschedule is required, otherwise false.
2607 * @param pVM The cross context VM structure.
2608 * @param pCtx VM execution context.
2609 */
2610VMMR3_INT_DECL(bool) HMR3IsRescheduleRequired(PVM pVM, PCCPUMCTX pCtx)
2611{
2612 /*
2613 * The VMM device heap is a requirement for emulating real-mode or protected-mode without paging
2614 * when the unrestricted guest execution feature is missing (VT-x only).
2615 */
2616 if ( pVM->hm.s.vmx.fEnabled
2617 && !pVM->hm.s.vmx.fUnrestrictedGuestCfg
2618 && CPUMIsGuestInRealModeEx(pCtx)
2619 && !PDMVmmDevHeapIsEnabled(pVM))
2620 return true;
2621
2622 return false;
2623}
2624
2625
2626/**
2627 * Noticiation callback from DBGF when interrupt breakpoints or generic debug
2628 * event settings changes.
2629 *
2630 * DBGF will call HMR3NotifyDebugEventChangedPerCpu on each CPU afterwards, this
2631 * function is just updating the VM globals.
2632 *
2633 * @param pVM The VM cross context VM structure.
2634 * @thread EMT(0)
2635 */
2636VMMR3_INT_DECL(void) HMR3NotifyDebugEventChanged(PVM pVM)
2637{
2638 /* Interrupts. */
2639 bool fUseDebugLoop = pVM->dbgf.ro.cSoftIntBreakpoints > 0
2640 || pVM->dbgf.ro.cHardIntBreakpoints > 0;
2641
2642 /* CPU Exceptions. */
2643 for (DBGFEVENTTYPE enmEvent = DBGFEVENT_XCPT_FIRST;
2644 !fUseDebugLoop && enmEvent <= DBGFEVENT_XCPT_LAST;
2645 enmEvent = (DBGFEVENTTYPE)(enmEvent + 1))
2646 fUseDebugLoop = DBGF_IS_EVENT_ENABLED(pVM, enmEvent);
2647
2648 /* Common VM exits. */
2649 for (DBGFEVENTTYPE enmEvent = DBGFEVENT_EXIT_FIRST;
2650 !fUseDebugLoop && enmEvent <= DBGFEVENT_EXIT_LAST_COMMON;
2651 enmEvent = (DBGFEVENTTYPE)(enmEvent + 1))
2652 fUseDebugLoop = DBGF_IS_EVENT_ENABLED(pVM, enmEvent);
2653
2654 /* Vendor specific VM exits. */
2655 if (HMR3IsVmxEnabled(pVM->pUVM))
2656 for (DBGFEVENTTYPE enmEvent = DBGFEVENT_EXIT_VMX_FIRST;
2657 !fUseDebugLoop && enmEvent <= DBGFEVENT_EXIT_VMX_LAST;
2658 enmEvent = (DBGFEVENTTYPE)(enmEvent + 1))
2659 fUseDebugLoop = DBGF_IS_EVENT_ENABLED(pVM, enmEvent);
2660 else
2661 for (DBGFEVENTTYPE enmEvent = DBGFEVENT_EXIT_SVM_FIRST;
2662 !fUseDebugLoop && enmEvent <= DBGFEVENT_EXIT_SVM_LAST;
2663 enmEvent = (DBGFEVENTTYPE)(enmEvent + 1))
2664 fUseDebugLoop = DBGF_IS_EVENT_ENABLED(pVM, enmEvent);
2665
2666 /* Done. */
2667 pVM->hm.s.fUseDebugLoop = fUseDebugLoop;
2668}
2669
2670
2671/**
2672 * Follow up notification callback to HMR3NotifyDebugEventChanged for each CPU.
2673 *
2674 * HM uses this to combine the decision made by HMR3NotifyDebugEventChanged with
2675 * per CPU settings.
2676 *
2677 * @param pVM The VM cross context VM structure.
2678 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
2679 */
2680VMMR3_INT_DECL(void) HMR3NotifyDebugEventChangedPerCpu(PVM pVM, PVMCPU pVCpu)
2681{
2682 pVCpu->hm.s.fUseDebugLoop = pVCpu->hm.s.fSingleInstruction | pVM->hm.s.fUseDebugLoop;
2683}
2684
2685
2686/**
2687 * Checks if we are currently using hardware acceleration.
2688 *
2689 * @returns true if hardware acceleration is being used, otherwise false.
2690 * @param pVCpu The cross context virtual CPU structure.
2691 */
2692VMMR3_INT_DECL(bool) HMR3IsActive(PCVMCPU pVCpu)
2693{
2694 return pVCpu->hm.s.fActive;
2695}
2696
2697
2698/**
2699 * External interface for querying whether hardware acceleration is enabled.
2700 *
2701 * @returns true if VT-x or AMD-V is being used, otherwise false.
2702 * @param pUVM The user mode VM handle.
2703 * @sa HMIsEnabled, HMIsEnabledNotMacro.
2704 */
2705VMMR3DECL(bool) HMR3IsEnabled(PUVM pUVM)
2706{
2707 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
2708 PVM pVM = pUVM->pVM;
2709 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
2710 return pVM->fHMEnabled; /* Don't use the macro as the GUI may query us very very early. */
2711}
2712
2713
2714/**
2715 * External interface for querying whether VT-x is being used.
2716 *
2717 * @returns true if VT-x is being used, otherwise false.
2718 * @param pUVM The user mode VM handle.
2719 * @sa HMR3IsSvmEnabled, HMIsEnabled
2720 */
2721VMMR3DECL(bool) HMR3IsVmxEnabled(PUVM pUVM)
2722{
2723 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
2724 PVM pVM = pUVM->pVM;
2725 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
2726 return pVM->hm.s.vmx.fEnabled
2727 && pVM->hm.s.vmx.fSupported
2728 && pVM->fHMEnabled;
2729}
2730
2731
2732/**
2733 * External interface for querying whether AMD-V is being used.
2734 *
2735 * @returns true if VT-x is being used, otherwise false.
2736 * @param pUVM The user mode VM handle.
2737 * @sa HMR3IsVmxEnabled, HMIsEnabled
2738 */
2739VMMR3DECL(bool) HMR3IsSvmEnabled(PUVM pUVM)
2740{
2741 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
2742 PVM pVM = pUVM->pVM;
2743 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
2744 return pVM->hm.s.svm.fEnabled
2745 && pVM->hm.s.svm.fSupported
2746 && pVM->fHMEnabled;
2747}
2748
2749
2750/**
2751 * Checks if we are currently using nested paging.
2752 *
2753 * @returns true if nested paging is being used, otherwise false.
2754 * @param pUVM The user mode VM handle.
2755 */
2756VMMR3DECL(bool) HMR3IsNestedPagingActive(PUVM pUVM)
2757{
2758 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
2759 PVM pVM = pUVM->pVM;
2760 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
2761 return pVM->hm.s.fNestedPagingCfg;
2762}
2763
2764
2765/**
2766 * Checks if virtualized APIC registers are enabled.
2767 *
2768 * When enabled this feature allows the hardware to access most of the
2769 * APIC registers in the virtual-APIC page without causing VM-exits. See
2770 * Intel spec. 29.1.1 "Virtualized APIC Registers".
2771 *
2772 * @returns true if virtualized APIC registers is enabled, otherwise
2773 * false.
2774 * @param pUVM The user mode VM handle.
2775 */
2776VMMR3DECL(bool) HMR3AreVirtApicRegsEnabled(PUVM pUVM)
2777{
2778 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
2779 PVM pVM = pUVM->pVM;
2780 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
2781 return pVM->hm.s.fVirtApicRegs;
2782}
2783
2784
2785/**
2786 * Checks if APIC posted-interrupt processing is enabled.
2787 *
2788 * This returns whether we can deliver interrupts to the guest without
2789 * leaving guest-context by updating APIC state from host-context.
2790 *
2791 * @returns true if APIC posted-interrupt processing is enabled,
2792 * otherwise false.
2793 * @param pUVM The user mode VM handle.
2794 */
2795VMMR3DECL(bool) HMR3IsPostedIntrsEnabled(PUVM pUVM)
2796{
2797 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
2798 PVM pVM = pUVM->pVM;
2799 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
2800 return pVM->hm.s.fPostedIntrs;
2801}
2802
2803
2804/**
2805 * Checks if we are currently using VPID in VT-x mode.
2806 *
2807 * @returns true if VPID is being used, otherwise false.
2808 * @param pUVM The user mode VM handle.
2809 */
2810VMMR3DECL(bool) HMR3IsVpidActive(PUVM pUVM)
2811{
2812 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
2813 PVM pVM = pUVM->pVM;
2814 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
2815 return pVM->hm.s.ForR3.vmx.fVpid;
2816}
2817
2818
2819/**
2820 * Checks if we are currently using VT-x unrestricted execution,
2821 * aka UX.
2822 *
2823 * @returns true if UX is being used, otherwise false.
2824 * @param pUVM The user mode VM handle.
2825 */
2826VMMR3DECL(bool) HMR3IsUXActive(PUVM pUVM)
2827{
2828 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
2829 PVM pVM = pUVM->pVM;
2830 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
2831 return pVM->hm.s.vmx.fUnrestrictedGuestCfg
2832 || pVM->hm.s.svm.fSupported;
2833}
2834
2835
2836/**
2837 * Checks if the VMX-preemption timer is being used.
2838 *
2839 * @returns true if the VMX-preemption timer is being used, otherwise false.
2840 * @param pVM The cross context VM structure.
2841 */
2842VMMR3_INT_DECL(bool) HMR3IsVmxPreemptionTimerUsed(PVM pVM)
2843{
2844 return HMIsEnabled(pVM)
2845 && pVM->hm.s.vmx.fEnabled
2846 && pVM->hm.s.vmx.fUsePreemptTimerCfg;
2847}
2848
2849
2850#ifdef TODO_9217_VMCSINFO
2851/**
2852 * Helper for HMR3CheckError to log VMCS controls to the release log.
2853 *
2854 * @param idCpu The Virtual CPU ID.
2855 * @param pVmcsInfo The VMCS info. object.
2856 */
2857static void hmR3CheckErrorLogVmcsCtls(VMCPUID idCpu, PCVMXVMCSINFO pVmcsInfo)
2858{
2859 LogRel(("HM: CPU[%u] PinCtls %#RX32\n", idCpu, pVmcsInfo->u32PinCtls));
2860 {
2861 uint32_t const u32Val = pVmcsInfo->u32PinCtls;
2862 HMVMX_LOGREL_FEAT(u32Val, VMX_PIN_CTLS_EXT_INT_EXIT );
2863 HMVMX_LOGREL_FEAT(u32Val, VMX_PIN_CTLS_NMI_EXIT );
2864 HMVMX_LOGREL_FEAT(u32Val, VMX_PIN_CTLS_VIRT_NMI );
2865 HMVMX_LOGREL_FEAT(u32Val, VMX_PIN_CTLS_PREEMPT_TIMER);
2866 HMVMX_LOGREL_FEAT(u32Val, VMX_PIN_CTLS_POSTED_INT );
2867 }
2868 LogRel(("HM: CPU[%u] ProcCtls %#RX32\n", idCpu, pVmcsInfo->u32ProcCtls));
2869 {
2870 uint32_t const u32Val = pVmcsInfo->u32ProcCtls;
2871 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_INT_WINDOW_EXIT );
2872 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_USE_TSC_OFFSETTING);
2873 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_HLT_EXIT );
2874 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_INVLPG_EXIT );
2875 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_MWAIT_EXIT );
2876 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_RDPMC_EXIT );
2877 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_RDTSC_EXIT );
2878 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_CR3_LOAD_EXIT );
2879 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_CR3_STORE_EXIT );
2880 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_USE_TERTIARY_CTLS );
2881 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_CR8_LOAD_EXIT );
2882 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_CR8_STORE_EXIT );
2883 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_USE_TPR_SHADOW );
2884 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_NMI_WINDOW_EXIT );
2885 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_MOV_DR_EXIT );
2886 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_UNCOND_IO_EXIT );
2887 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_USE_IO_BITMAPS );
2888 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_MONITOR_TRAP_FLAG );
2889 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_USE_MSR_BITMAPS );
2890 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_MONITOR_EXIT );
2891 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_PAUSE_EXIT );
2892 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_USE_SECONDARY_CTLS);
2893 }
2894 LogRel(("HM: CPU[%u] ProcCtls2 %#RX32\n", idCpu, pVmcsInfo->u32ProcCtls2));
2895 {
2896 uint32_t const u32Val = pVmcsInfo->u32ProcCtls2;
2897 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_VIRT_APIC_ACCESS );
2898 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_EPT );
2899 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_DESC_TABLE_EXIT );
2900 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_RDTSCP );
2901 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_VIRT_X2APIC_MODE );
2902 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_VPID );
2903 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_WBINVD_EXIT );
2904 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_UNRESTRICTED_GUEST );
2905 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_APIC_REG_VIRT );
2906 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_VIRT_INT_DELIVERY );
2907 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_PAUSE_LOOP_EXIT );
2908 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_RDRAND_EXIT );
2909 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_INVPCID );
2910 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_VMFUNC );
2911 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_VMCS_SHADOWING );
2912 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_ENCLS_EXIT );
2913 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_RDSEED_EXIT );
2914 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_PML );
2915 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_EPT_XCPT_VE );
2916 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_CONCEAL_VMX_FROM_PT);
2917 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_XSAVES_XRSTORS );
2918 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_MODE_BASED_EPT_PERM);
2919 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_SPP_EPT );
2920 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_PT_EPT );
2921 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_TSC_SCALING );
2922 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_USER_WAIT_PAUSE );
2923 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_ENCLV_EXIT );
2924 }
2925 LogRel(("HM: CPU[%u] EntryCtls %#RX32\n", idCpu, pVmcsInfo->u32EntryCtls));
2926 {
2927 uint32_t const u32Val = pVmcsInfo->u32EntryCtls;
2928 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_LOAD_DEBUG );
2929 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_IA32E_MODE_GUEST );
2930 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_ENTRY_TO_SMM );
2931 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_DEACTIVATE_DUAL_MON);
2932 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_LOAD_PERF_MSR );
2933 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_LOAD_PAT_MSR );
2934 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_LOAD_EFER_MSR );
2935 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_LOAD_BNDCFGS_MSR );
2936 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_CONCEAL_VMX_FROM_PT);
2937 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_LOAD_RTIT_CTL_MSR );
2938 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_LOAD_CET_STATE );
2939 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_LOAD_PKRS_MSR );
2940 }
2941 LogRel(("HM: CPU[%u] ExitCtls %#RX32\n", idCpu, pVmcsInfo->u32ExitCtls));
2942 {
2943 uint32_t const u32Val = pVmcsInfo->u32ExitCtls;
2944 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_SAVE_DEBUG );
2945 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE );
2946 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_LOAD_PERF_MSR );
2947 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_ACK_EXT_INT );
2948 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_SAVE_PAT_MSR );
2949 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_LOAD_PAT_MSR );
2950 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_SAVE_EFER_MSR );
2951 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_LOAD_EFER_MSR );
2952 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_SAVE_PREEMPT_TIMER );
2953 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_CLEAR_BNDCFGS_MSR );
2954 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_CONCEAL_VMX_FROM_PT );
2955 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_CLEAR_RTIT_CTL_MSR );
2956 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_LOAD_CET_STATE );
2957 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_LOAD_PKRS_MSR );
2958 }
2959}
2960#endif
2961
2962
2963/**
2964 * Check fatal VT-x/AMD-V error and produce some meaningful
2965 * log release message.
2966 *
2967 * @param pVM The cross context VM structure.
2968 * @param iStatusCode VBox status code.
2969 */
2970VMMR3_INT_DECL(void) HMR3CheckError(PVM pVM, int iStatusCode)
2971{
2972 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2973 {
2974 /** @todo r=ramshankar: Are all EMTs out of ring-0 at this point!? If not, we
2975 * might be getting inaccurate values for non-guru'ing EMTs. */
2976 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
2977#ifdef TODO_9217_VMCSINFO
2978 PCVMXVMCSINFOSHARED pVmcsInfo = hmGetVmxActiveVmcsInfoShared(pVCpu);
2979#endif
2980 bool const fNstGstVmcsActive = pVCpu->hm.s.vmx.fSwitchedToNstGstVmcsCopyForRing3;
2981 switch (iStatusCode)
2982 {
2983 case VERR_VMX_INVALID_VMCS_PTR:
2984 {
2985 LogRel(("HM: VERR_VMX_INVALID_VMCS_PTR:\n"));
2986 LogRel(("HM: CPU[%u] %s VMCS active\n", idCpu, fNstGstVmcsActive ? "Nested-guest" : "Guest"));
2987#ifdef TODO_9217_VMCSINFO
2988 LogRel(("HM: CPU[%u] Current pointer %#RHp vs %#RHp\n", idCpu, pVCpu->hm.s.vmx.LastError.HCPhysCurrentVmcs,
2989 pVmcsInfo->HCPhysVmcs));
2990#endif
2991 LogRel(("HM: CPU[%u] Current VMCS version %#x\n", idCpu, pVCpu->hm.s.vmx.LastError.u32VmcsRev));
2992 LogRel(("HM: CPU[%u] Entered Host Cpu %u\n", idCpu, pVCpu->hm.s.vmx.LastError.idEnteredCpu));
2993 LogRel(("HM: CPU[%u] Current Host Cpu %u\n", idCpu, pVCpu->hm.s.vmx.LastError.idCurrentCpu));
2994 break;
2995 }
2996
2997 case VERR_VMX_UNABLE_TO_START_VM:
2998 {
2999 LogRel(("HM: VERR_VMX_UNABLE_TO_START_VM:\n"));
3000 LogRel(("HM: CPU[%u] %s VMCS active\n", idCpu, fNstGstVmcsActive ? "Nested-guest" : "Guest"));
3001 LogRel(("HM: CPU[%u] Instruction error %#x\n", idCpu, pVCpu->hm.s.vmx.LastError.u32InstrError));
3002 LogRel(("HM: CPU[%u] Exit reason %#x\n", idCpu, pVCpu->hm.s.vmx.LastError.u32ExitReason));
3003
3004 if ( pVCpu->hm.s.vmx.LastError.u32InstrError == VMXINSTRERR_VMLAUNCH_NON_CLEAR_VMCS
3005 || pVCpu->hm.s.vmx.LastError.u32InstrError == VMXINSTRERR_VMRESUME_NON_LAUNCHED_VMCS)
3006 {
3007 LogRel(("HM: CPU[%u] Entered Host Cpu %u\n", idCpu, pVCpu->hm.s.vmx.LastError.idEnteredCpu));
3008 LogRel(("HM: CPU[%u] Current Host Cpu %u\n", idCpu, pVCpu->hm.s.vmx.LastError.idCurrentCpu));
3009 }
3010 else if (pVCpu->hm.s.vmx.LastError.u32InstrError == VMXINSTRERR_VMENTRY_INVALID_CTLS)
3011 {
3012#ifdef TODO_9217_VMCSINFO
3013 hmR3CheckErrorLogVmcsCtls(idCpu, pVmcsInfo);
3014 LogRel(("HM: CPU[%u] HCPhysMsrBitmap %#RHp\n", idCpu, pVmcsInfo->HCPhysMsrBitmap));
3015 LogRel(("HM: CPU[%u] HCPhysGuestMsrLoad %#RHp\n", idCpu, pVmcsInfo->HCPhysGuestMsrLoad));
3016 LogRel(("HM: CPU[%u] HCPhysGuestMsrStore %#RHp\n", idCpu, pVmcsInfo->HCPhysGuestMsrStore));
3017 LogRel(("HM: CPU[%u] HCPhysHostMsrLoad %#RHp\n", idCpu, pVmcsInfo->HCPhysHostMsrLoad));
3018 LogRel(("HM: CPU[%u] cEntryMsrLoad %u\n", idCpu, pVmcsInfo->cEntryMsrLoad));
3019 LogRel(("HM: CPU[%u] cExitMsrStore %u\n", idCpu, pVmcsInfo->cExitMsrStore));
3020 LogRel(("HM: CPU[%u] cExitMsrLoad %u\n", idCpu, pVmcsInfo->cExitMsrLoad));
3021#endif
3022 }
3023 /** @todo Log VM-entry event injection control fields
3024 * VMX_VMCS_CTRL_ENTRY_IRQ_INFO, VMX_VMCS_CTRL_ENTRY_EXCEPTION_ERRCODE
3025 * and VMX_VMCS_CTRL_ENTRY_INSTR_LENGTH from the VMCS. */
3026 break;
3027 }
3028
3029 case VERR_VMX_INVALID_GUEST_STATE:
3030 {
3031 LogRel(("HM: VERR_VMX_INVALID_GUEST_STATE:\n"));
3032 LogRel(("HM: CPU[%u] HM error = %#RX32\n", idCpu, pVCpu->hm.s.u32HMError));
3033 LogRel(("HM: CPU[%u] Guest-intr. state = %#RX32\n", idCpu, pVCpu->hm.s.vmx.LastError.u32GuestIntrState));
3034#ifdef TODO_9217_VMCSINFO
3035 hmR3CheckErrorLogVmcsCtls(idCpu, pVmcsInfo);
3036#endif
3037 break;
3038 }
3039
3040 /* The guru will dump the HM error and exit history. Nothing extra to report for these errors. */
3041 case VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO:
3042 case VERR_VMX_INVALID_VMXON_PTR:
3043 case VERR_VMX_UNEXPECTED_EXIT:
3044 case VERR_VMX_INVALID_VMCS_FIELD:
3045 case VERR_SVM_UNKNOWN_EXIT:
3046 case VERR_SVM_UNEXPECTED_EXIT:
3047 case VERR_SVM_UNEXPECTED_PATCH_TYPE:
3048 case VERR_SVM_UNEXPECTED_XCPT_EXIT:
3049 case VERR_VMX_UNEXPECTED_INTERRUPTION_EXIT_TYPE:
3050 break;
3051 }
3052 }
3053
3054 if (iStatusCode == VERR_VMX_UNABLE_TO_START_VM)
3055 {
3056 LogRel(("HM: VERR_VMX_UNABLE_TO_START_VM: VM-entry allowed-1 %#RX32\n", pVM->hm.s.ForR3.vmx.Msrs.EntryCtls.n.allowed1));
3057 LogRel(("HM: VERR_VMX_UNABLE_TO_START_VM: VM-entry allowed-0 %#RX32\n", pVM->hm.s.ForR3.vmx.Msrs.EntryCtls.n.allowed0));
3058 }
3059 else if (iStatusCode == VERR_VMX_INVALID_VMXON_PTR)
3060 LogRel(("HM: HCPhysVmxEnableError = %#RHp\n", pVM->hm.s.ForR3.vmx.HCPhysVmxEnableError));
3061}
3062
3063
3064/**
3065 * Execute state save operation.
3066 *
3067 * Save only data that cannot be re-loaded while entering HM ring-0 code. This
3068 * is because we always save the VM state from ring-3 and thus most HM state
3069 * will be re-synced dynamically at runtime and don't need to be part of the VM
3070 * saved state.
3071 *
3072 * @returns VBox status code.
3073 * @param pVM The cross context VM structure.
3074 * @param pSSM SSM operation handle.
3075 */
3076static DECLCALLBACK(int) hmR3Save(PVM pVM, PSSMHANDLE pSSM)
3077{
3078 Log(("hmR3Save:\n"));
3079
3080 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
3081 {
3082 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
3083 Assert(!pVCpu->hm.s.Event.fPending);
3084 if (pVM->cpum.ro.GuestFeatures.fSvm)
3085 {
3086 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
3087 SSMR3PutBool(pSSM, pVmcbNstGstCache->fCacheValid);
3088 SSMR3PutU16(pSSM, pVmcbNstGstCache->u16InterceptRdCRx);
3089 SSMR3PutU16(pSSM, pVmcbNstGstCache->u16InterceptWrCRx);
3090 SSMR3PutU16(pSSM, pVmcbNstGstCache->u16InterceptRdDRx);
3091 SSMR3PutU16(pSSM, pVmcbNstGstCache->u16InterceptWrDRx);
3092 SSMR3PutU16(pSSM, pVmcbNstGstCache->u16PauseFilterThreshold);
3093 SSMR3PutU16(pSSM, pVmcbNstGstCache->u16PauseFilterCount);
3094 SSMR3PutU32(pSSM, pVmcbNstGstCache->u32InterceptXcpt);
3095 SSMR3PutU64(pSSM, pVmcbNstGstCache->u64InterceptCtrl);
3096 SSMR3PutU64(pSSM, pVmcbNstGstCache->u64TSCOffset);
3097 SSMR3PutBool(pSSM, pVmcbNstGstCache->fVIntrMasking);
3098 SSMR3PutBool(pSSM, pVmcbNstGstCache->fNestedPaging);
3099 SSMR3PutBool(pSSM, pVmcbNstGstCache->fLbrVirt);
3100 }
3101 }
3102
3103 /* Save the guest patch data. */
3104 SSMR3PutGCPtr(pSSM, pVM->hm.s.pGuestPatchMem);
3105 SSMR3PutGCPtr(pSSM, pVM->hm.s.pFreeGuestPatchMem);
3106 SSMR3PutU32(pSSM, pVM->hm.s.cbGuestPatchMem);
3107
3108 /* Store all the guest patch records too. */
3109 int rc = SSMR3PutU32(pSSM, pVM->hm.s.cPatches);
3110 if (RT_FAILURE(rc))
3111 return rc;
3112
3113 for (uint32_t i = 0; i < pVM->hm.s.cPatches; i++)
3114 {
3115 AssertCompileSize(HMTPRINSTR, 4);
3116 PCHMTPRPATCH pPatch = &pVM->hm.s.aPatches[i];
3117 SSMR3PutU32(pSSM, pPatch->Core.Key);
3118 SSMR3PutMem(pSSM, pPatch->aOpcode, sizeof(pPatch->aOpcode));
3119 SSMR3PutU32(pSSM, pPatch->cbOp);
3120 SSMR3PutMem(pSSM, pPatch->aNewOpcode, sizeof(pPatch->aNewOpcode));
3121 SSMR3PutU32(pSSM, pPatch->cbNewOp);
3122 SSMR3PutU32(pSSM, (uint32_t)pPatch->enmType);
3123 SSMR3PutU32(pSSM, pPatch->uSrcOperand);
3124 SSMR3PutU32(pSSM, pPatch->uDstOperand);
3125 SSMR3PutU32(pSSM, pPatch->pJumpTarget);
3126 rc = SSMR3PutU32(pSSM, pPatch->cFaults);
3127 if (RT_FAILURE(rc))
3128 return rc;
3129 }
3130
3131 return VINF_SUCCESS;
3132}
3133
3134
3135/**
3136 * Execute state load operation.
3137 *
3138 * @returns VBox status code.
3139 * @param pVM The cross context VM structure.
3140 * @param pSSM SSM operation handle.
3141 * @param uVersion Data layout version.
3142 * @param uPass The data pass.
3143 */
3144static DECLCALLBACK(int) hmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
3145{
3146 int rc;
3147
3148 LogFlowFunc(("uVersion=%u\n", uVersion));
3149 Assert(uPass == SSM_PASS_FINAL); NOREF(uPass);
3150
3151 /*
3152 * Validate version.
3153 */
3154 if ( uVersion != HM_SAVED_STATE_VERSION_SVM_NESTED_HWVIRT
3155 && uVersion != HM_SAVED_STATE_VERSION_TPR_PATCHING
3156 && uVersion != HM_SAVED_STATE_VERSION_NO_TPR_PATCHING
3157 && uVersion != HM_SAVED_STATE_VERSION_2_0_X)
3158 {
3159 AssertMsgFailed(("hmR3Load: Invalid version uVersion=%d!\n", uVersion));
3160 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
3161 }
3162
3163 /*
3164 * Load per-VCPU state.
3165 */
3166 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
3167 {
3168 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
3169 if (uVersion >= HM_SAVED_STATE_VERSION_SVM_NESTED_HWVIRT)
3170 {
3171 /* Load the SVM nested hw.virt state if the VM is configured for it. */
3172 if (pVM->cpum.ro.GuestFeatures.fSvm)
3173 {
3174 PSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
3175 SSMR3GetBool(pSSM, &pVmcbNstGstCache->fCacheValid);
3176 SSMR3GetU16(pSSM, &pVmcbNstGstCache->u16InterceptRdCRx);
3177 SSMR3GetU16(pSSM, &pVmcbNstGstCache->u16InterceptWrCRx);
3178 SSMR3GetU16(pSSM, &pVmcbNstGstCache->u16InterceptRdDRx);
3179 SSMR3GetU16(pSSM, &pVmcbNstGstCache->u16InterceptWrDRx);
3180 SSMR3GetU16(pSSM, &pVmcbNstGstCache->u16PauseFilterThreshold);
3181 SSMR3GetU16(pSSM, &pVmcbNstGstCache->u16PauseFilterCount);
3182 SSMR3GetU32(pSSM, &pVmcbNstGstCache->u32InterceptXcpt);
3183 SSMR3GetU64(pSSM, &pVmcbNstGstCache->u64InterceptCtrl);
3184 SSMR3GetU64(pSSM, &pVmcbNstGstCache->u64TSCOffset);
3185 SSMR3GetBool(pSSM, &pVmcbNstGstCache->fVIntrMasking);
3186 SSMR3GetBool(pSSM, &pVmcbNstGstCache->fNestedPaging);
3187 rc = SSMR3GetBool(pSSM, &pVmcbNstGstCache->fLbrVirt);
3188 AssertRCReturn(rc, rc);
3189 }
3190 }
3191 else
3192 {
3193 /* Pending HM event (obsolete for a long time since TPRM holds the info.) */
3194 SSMR3GetU32(pSSM, &pVCpu->hm.s.Event.fPending);
3195 SSMR3GetU32(pSSM, &pVCpu->hm.s.Event.u32ErrCode);
3196 SSMR3GetU64(pSSM, &pVCpu->hm.s.Event.u64IntInfo);
3197
3198 /* VMX fWasInRealMode related data. */
3199 uint32_t uDummy;
3200 SSMR3GetU32(pSSM, &uDummy);
3201 SSMR3GetU32(pSSM, &uDummy);
3202 rc = SSMR3GetU32(pSSM, &uDummy);
3203 AssertRCReturn(rc, rc);
3204 }
3205 }
3206
3207 /*
3208 * Load TPR patching data.
3209 */
3210 if (uVersion >= HM_SAVED_STATE_VERSION_TPR_PATCHING)
3211 {
3212 SSMR3GetGCPtr(pSSM, &pVM->hm.s.pGuestPatchMem);
3213 SSMR3GetGCPtr(pSSM, &pVM->hm.s.pFreeGuestPatchMem);
3214 SSMR3GetU32(pSSM, &pVM->hm.s.cbGuestPatchMem);
3215
3216 /* Fetch all TPR patch records. */
3217 rc = SSMR3GetU32(pSSM, &pVM->hm.s.cPatches);
3218 AssertRCReturn(rc, rc);
3219 for (uint32_t i = 0; i < pVM->hm.s.cPatches; i++)
3220 {
3221 PHMTPRPATCH pPatch = &pVM->hm.s.aPatches[i];
3222 SSMR3GetU32(pSSM, &pPatch->Core.Key);
3223 SSMR3GetMem(pSSM, pPatch->aOpcode, sizeof(pPatch->aOpcode));
3224 SSMR3GetU32(pSSM, &pPatch->cbOp);
3225 SSMR3GetMem(pSSM, pPatch->aNewOpcode, sizeof(pPatch->aNewOpcode));
3226 SSMR3GetU32(pSSM, &pPatch->cbNewOp);
3227 SSM_GET_ENUM32_RET(pSSM, pPatch->enmType, HMTPRINSTR);
3228
3229 if (pPatch->enmType == HMTPRINSTR_JUMP_REPLACEMENT)
3230 pVM->hm.s.fTprPatchingActive = true;
3231 Assert(pPatch->enmType == HMTPRINSTR_JUMP_REPLACEMENT || pVM->hm.s.fTprPatchingActive == false);
3232
3233 SSMR3GetU32(pSSM, &pPatch->uSrcOperand);
3234 SSMR3GetU32(pSSM, &pPatch->uDstOperand);
3235 SSMR3GetU32(pSSM, &pPatch->cFaults);
3236 rc = SSMR3GetU32(pSSM, &pPatch->pJumpTarget);
3237 AssertRCReturn(rc, rc);
3238
3239 LogFlow(("hmR3Load: patch %d\n", i));
3240 LogFlow(("Key = %x\n", pPatch->Core.Key));
3241 LogFlow(("cbOp = %d\n", pPatch->cbOp));
3242 LogFlow(("cbNewOp = %d\n", pPatch->cbNewOp));
3243 LogFlow(("type = %d\n", pPatch->enmType));
3244 LogFlow(("srcop = %d\n", pPatch->uSrcOperand));
3245 LogFlow(("dstop = %d\n", pPatch->uDstOperand));
3246 LogFlow(("cFaults = %d\n", pPatch->cFaults));
3247 LogFlow(("target = %x\n", pPatch->pJumpTarget));
3248
3249 rc = RTAvloU32Insert(&pVM->hm.s.PatchTree, &pPatch->Core);
3250 AssertRCReturn(rc, rc);
3251 }
3252 }
3253
3254 return VINF_SUCCESS;
3255}
3256
3257
3258/**
3259 * Displays HM info.
3260 *
3261 * @param pVM The cross context VM structure.
3262 * @param pHlp The info helper functions.
3263 * @param pszArgs Arguments, ignored.
3264 */
3265static DECLCALLBACK(void) hmR3Info(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3266{
3267 NOREF(pszArgs);
3268 PVMCPU pVCpu = VMMGetCpu(pVM);
3269 if (!pVCpu)
3270 pVCpu = pVM->apCpusR3[0];
3271
3272 if (HMIsEnabled(pVM))
3273 {
3274 if (pVM->hm.s.vmx.fSupported)
3275 pHlp->pfnPrintf(pHlp, "CPU[%u]: VT-x info:\n", pVCpu->idCpu);
3276 else
3277 pHlp->pfnPrintf(pHlp, "CPU[%u]: AMD-V info:\n", pVCpu->idCpu);
3278 pHlp->pfnPrintf(pHlp, " HM error = %#x (%u)\n", pVCpu->hm.s.u32HMError, pVCpu->hm.s.u32HMError);
3279 pHlp->pfnPrintf(pHlp, " rcLastExitToR3 = %Rrc\n", pVCpu->hm.s.rcLastExitToR3);
3280 if (pVM->hm.s.vmx.fSupported)
3281 {
3282 PCVMXVMCSINFOSHARED pVmcsInfoShared = hmGetVmxActiveVmcsInfoShared(pVCpu);
3283 bool const fRealOnV86Active = pVmcsInfoShared->RealMode.fRealOnV86Active;
3284 bool const fNstGstVmcsActive = pVCpu->hm.s.vmx.fSwitchedToNstGstVmcsCopyForRing3;
3285
3286 pHlp->pfnPrintf(pHlp, " %s VMCS active\n", fNstGstVmcsActive ? "Nested-guest" : "Guest");
3287 pHlp->pfnPrintf(pHlp, " Real-on-v86 active = %RTbool\n", fRealOnV86Active);
3288 if (fRealOnV86Active)
3289 {
3290 pHlp->pfnPrintf(pHlp, " EFlags = %#x\n", pVmcsInfoShared->RealMode.Eflags.u32);
3291 pHlp->pfnPrintf(pHlp, " Attr CS = %#x\n", pVmcsInfoShared->RealMode.AttrCS.u);
3292 pHlp->pfnPrintf(pHlp, " Attr SS = %#x\n", pVmcsInfoShared->RealMode.AttrSS.u);
3293 pHlp->pfnPrintf(pHlp, " Attr DS = %#x\n", pVmcsInfoShared->RealMode.AttrDS.u);
3294 pHlp->pfnPrintf(pHlp, " Attr ES = %#x\n", pVmcsInfoShared->RealMode.AttrES.u);
3295 pHlp->pfnPrintf(pHlp, " Attr FS = %#x\n", pVmcsInfoShared->RealMode.AttrFS.u);
3296 pHlp->pfnPrintf(pHlp, " Attr GS = %#x\n", pVmcsInfoShared->RealMode.AttrGS.u);
3297 }
3298 }
3299 }
3300 else
3301 pHlp->pfnPrintf(pHlp, "HM is not enabled for this VM!\n");
3302}
3303
3304
3305/**
3306 * Displays the HM Last-Branch-Record info. for the guest.
3307 *
3308 * @param pVM The cross context VM structure.
3309 * @param pHlp The info helper functions.
3310 * @param pszArgs Arguments, ignored.
3311 */
3312static DECLCALLBACK(void) hmR3InfoLbr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3313{
3314 NOREF(pszArgs);
3315 PVMCPU pVCpu = VMMGetCpu(pVM);
3316 if (!pVCpu)
3317 pVCpu = pVM->apCpusR3[0];
3318
3319 if (!HMIsEnabled(pVM))
3320 pHlp->pfnPrintf(pHlp, "HM is not enabled for this VM!\n");
3321 else if (HMIsVmxActive(pVM))
3322 {
3323 if (pVM->hm.s.vmx.fLbrCfg)
3324 {
3325 PCVMXVMCSINFOSHARED pVmcsInfoShared = hmGetVmxActiveVmcsInfoShared(pVCpu);
3326 uint32_t const cLbrStack = pVM->hm.s.ForR3.vmx.idLbrFromIpMsrLast - pVM->hm.s.ForR3.vmx.idLbrFromIpMsrFirst + 1;
3327
3328 /** @todo r=ramshankar: The index technically varies depending on the CPU, but
3329 * 0xf should cover everything we support thus far. Fix if necessary
3330 * later. */
3331 uint32_t const idxTopOfStack = pVmcsInfoShared->u64LbrTosMsr & 0xf;
3332 if (idxTopOfStack > cLbrStack)
3333 {
3334 pHlp->pfnPrintf(pHlp, "Top-of-stack LBR MSR seems corrupt (index=%u, msr=%#RX64) expected index < %u\n",
3335 idxTopOfStack, pVmcsInfoShared->u64LbrTosMsr, cLbrStack);
3336 return;
3337 }
3338
3339 /*
3340 * Dump the circular buffer of LBR records starting from the most recent record (contained in idxTopOfStack).
3341 */
3342 pHlp->pfnPrintf(pHlp, "CPU[%u]: LBRs (most-recent first)\n", pVCpu->idCpu);
3343 uint32_t idxCurrent = idxTopOfStack;
3344 Assert(idxTopOfStack < cLbrStack);
3345 Assert(RT_ELEMENTS(pVmcsInfoShared->au64LbrFromIpMsr) <= cLbrStack);
3346 Assert(RT_ELEMENTS(pVmcsInfoShared->au64LbrToIpMsr) <= cLbrStack);
3347 for (;;)
3348 {
3349 if (pVM->hm.s.ForR3.vmx.idLbrToIpMsrFirst)
3350 pHlp->pfnPrintf(pHlp, " Branch (%2u): From IP=%#016RX64 - To IP=%#016RX64\n", idxCurrent,
3351 pVmcsInfoShared->au64LbrFromIpMsr[idxCurrent], pVmcsInfoShared->au64LbrToIpMsr[idxCurrent]);
3352 else
3353 pHlp->pfnPrintf(pHlp, " Branch (%2u): LBR=%#RX64\n", idxCurrent, pVmcsInfoShared->au64LbrFromIpMsr[idxCurrent]);
3354
3355 idxCurrent = (idxCurrent - 1) % cLbrStack;
3356 if (idxCurrent == idxTopOfStack)
3357 break;
3358 }
3359 }
3360 else
3361 pHlp->pfnPrintf(pHlp, "VM not configured to record LBRs for the guest\n");
3362 }
3363 else
3364 {
3365 Assert(HMIsSvmActive(pVM));
3366 /** @todo SVM: LBRs (get them from VMCB if possible). */
3367 pHlp->pfnPrintf(pHlp, "SVM LBR not implemented.\n");
3368 }
3369}
3370
3371
3372/**
3373 * Displays the HM pending event.
3374 *
3375 * @param pVM The cross context VM structure.
3376 * @param pHlp The info helper functions.
3377 * @param pszArgs Arguments, ignored.
3378 */
3379static DECLCALLBACK(void) hmR3InfoEventPending(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3380{
3381 NOREF(pszArgs);
3382 PVMCPU pVCpu = VMMGetCpu(pVM);
3383 if (!pVCpu)
3384 pVCpu = pVM->apCpusR3[0];
3385
3386 if (HMIsEnabled(pVM))
3387 {
3388 pHlp->pfnPrintf(pHlp, "CPU[%u]: HM event (fPending=%RTbool)\n", pVCpu->idCpu, pVCpu->hm.s.Event.fPending);
3389 if (pVCpu->hm.s.Event.fPending)
3390 {
3391 pHlp->pfnPrintf(pHlp, " u64IntInfo = %#RX64\n", pVCpu->hm.s.Event.u64IntInfo);
3392 pHlp->pfnPrintf(pHlp, " u32ErrCode = %#RX64\n", pVCpu->hm.s.Event.u32ErrCode);
3393 pHlp->pfnPrintf(pHlp, " cbInstr = %u bytes\n", pVCpu->hm.s.Event.cbInstr);
3394 pHlp->pfnPrintf(pHlp, " GCPtrFaultAddress = %#RGp\n", pVCpu->hm.s.Event.GCPtrFaultAddress);
3395 }
3396 }
3397 else
3398 pHlp->pfnPrintf(pHlp, "HM is not enabled for this VM!\n");
3399}
3400
3401
3402/**
3403 * Displays the SVM nested-guest VMCB cache.
3404 *
3405 * @param pVM The cross context VM structure.
3406 * @param pHlp The info helper functions.
3407 * @param pszArgs Arguments, ignored.
3408 */
3409static DECLCALLBACK(void) hmR3InfoSvmNstGstVmcbCache(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3410{
3411 NOREF(pszArgs);
3412 PVMCPU pVCpu = VMMGetCpu(pVM);
3413 if (!pVCpu)
3414 pVCpu = pVM->apCpusR3[0];
3415
3416 bool const fSvmEnabled = HMR3IsSvmEnabled(pVM->pUVM);
3417 if ( fSvmEnabled
3418 && pVM->cpum.ro.GuestFeatures.fSvm)
3419 {
3420 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
3421 pHlp->pfnPrintf(pHlp, "CPU[%u]: HM SVM nested-guest VMCB cache\n", pVCpu->idCpu);
3422 pHlp->pfnPrintf(pHlp, " fCacheValid = %#RTbool\n", pVmcbNstGstCache->fCacheValid);
3423 pHlp->pfnPrintf(pHlp, " u16InterceptRdCRx = %#RX16\n", pVmcbNstGstCache->u16InterceptRdCRx);
3424 pHlp->pfnPrintf(pHlp, " u16InterceptWrCRx = %#RX16\n", pVmcbNstGstCache->u16InterceptWrCRx);
3425 pHlp->pfnPrintf(pHlp, " u16InterceptRdDRx = %#RX16\n", pVmcbNstGstCache->u16InterceptRdDRx);
3426 pHlp->pfnPrintf(pHlp, " u16InterceptWrDRx = %#RX16\n", pVmcbNstGstCache->u16InterceptWrDRx);
3427 pHlp->pfnPrintf(pHlp, " u16PauseFilterThreshold = %#RX16\n", pVmcbNstGstCache->u16PauseFilterThreshold);
3428 pHlp->pfnPrintf(pHlp, " u16PauseFilterCount = %#RX16\n", pVmcbNstGstCache->u16PauseFilterCount);
3429 pHlp->pfnPrintf(pHlp, " u32InterceptXcpt = %#RX32\n", pVmcbNstGstCache->u32InterceptXcpt);
3430 pHlp->pfnPrintf(pHlp, " u64InterceptCtrl = %#RX64\n", pVmcbNstGstCache->u64InterceptCtrl);
3431 pHlp->pfnPrintf(pHlp, " u64TSCOffset = %#RX64\n", pVmcbNstGstCache->u64TSCOffset);
3432 pHlp->pfnPrintf(pHlp, " fVIntrMasking = %RTbool\n", pVmcbNstGstCache->fVIntrMasking);
3433 pHlp->pfnPrintf(pHlp, " fNestedPaging = %RTbool\n", pVmcbNstGstCache->fNestedPaging);
3434 pHlp->pfnPrintf(pHlp, " fLbrVirt = %RTbool\n", pVmcbNstGstCache->fLbrVirt);
3435 }
3436 else
3437 {
3438 if (!fSvmEnabled)
3439 pHlp->pfnPrintf(pHlp, "HM SVM is not enabled for this VM!\n");
3440 else
3441 pHlp->pfnPrintf(pHlp, "SVM feature is not exposed to the guest!\n");
3442 }
3443}
3444
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette